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Abstract

In this thesis, we investigate the problem of robustness and resilience in simul-

taneous localization and mapping systems (SLAM). With the vast adoption of

robotics in many industries and disciplines, robustness and resilience are be-

coming of immense importance for the reliable and safe deployment of robotics

in real-world settings. The current literature in SLAM treats accuracy as a

synonym for both robustness and resilience. In this thesis, we start by provid-

ing a rigorous and formal definition for robustness and resilience as two major

objectives in modern robotics, which reveals the following requirements for

achieving them: (1) quantitative characterization of operating conditions, (2)

objective evaluation of SLAM, (3) predictability of performance, and (4) real-

time fault detection and performance monitoring. Thus, the thesis is divided

into four parts addressing each of the aforementioned requirements.

Robustness and resilience are tightly coupled to measurable operating con-

ditions in which a robot is deployed. Due to the difficulty of SLAM evaluation

in the real-world, researchers utilize datasets for that purpose. These datasets

implicitly include the operating condition at which the reported performance

is guaranteed. Thus, our first proposal addresses this problem by introducing

a generic and extensible framework for the quantitative characterization of

SLAM datasets and benchmarks. The proposed system automatically charac-

terizes datasets based on defined metrics that collectively represent the oper-

ating conditions imposed by an environment or robot motion. Additionally,

the proposed system automatically and systematically provides analysis of
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datasets on the measurement, sequence, and dataset level, which can be used

to push the boundaries of SLAM evaluation. Moreover, it analyzes the corre-

lation between metrics and SLAM performance, revealing the sensitivity of a

given algorithm to many environmental conditions.

Current evaluation methodologies in SLAM are very redundant in nature

and do not take into consideration the characteristics of the deployment en-

vironment. To that end, our second proposal tackles this point by proposing

a tabulation-based dynamic programming algorithm that utilizes the quan-

titative characterization of SLAM datasets to achieve two goals, which are:

elimination of redundancy in the evaluation pool of data sequences, and ob-

jective selection of the most proper subset of sequences to ensure coverage of

the deployment conditions.

Moreover, we address the problem of performance predictability in SLAM

in our third proposal by employing a supervised ensemble learning regression

model to predict SLAM errors on the pose level and the trajectory level. We

utilize the concept of sub-trajectories for diversifying the number of training

samples and apply a 1-D global average pooling function for dimensionality

reduction. Additionally, we ensure the efficacy of the method with limited

training data and analyzes out-of-distribution predictions.

Fault detection is critical for resilience in SLAM since it highlights the

need to engage recovery mechanisms to converge when divergence is detected.

Therefore, our fourth proposal uses a decoupled calibrated IMU-based kine-

matics model as a high-accuracy supervisory monitoring signal for SLAM. The

method relies on a modified version of DUET, a deep learning IMU calibra-

tion method, to provide reliable IMU measurements. Then, consistency is

measured between IMU-based and SLAM pose streams and is then used as

an indicator of faults. Moreover, the proposed method is non-invasive and

algorithm agnostic since it has no assumptions on the SLAM system itself.
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Chapter 1

Introduction

1.1 Motivation and Problem Statement

Simultaneous localization and mapping (SLAM) is considered a standard and

fundamental building block in many modern robotic systems due to its ability

to achieve two critical goals, which are accurate localization of the robot in

the observed environment while building a map of that environment at the

same time [192]. Currently, robotics is being used in a wide spectrum of

applications such as autonomous driving, material handling, search and rescue

missions, among many others. Due to the increase in the adoption of robotics

in these applications and much more, the reliability of SLAM becomes more

critical due to its responsibility to provide subsequent control or navigation

tasks with accurate estimates for both the localization and mapping tasks.

The accuracy and reliability of these estimates when a robot is faced with a

challenging situation are crucial to ensure successful and safe deployment of

robotics in the real world.

The literature divides the history of SLAM into three major ages where

each one witnessed a theme to the work and effort done to solve the SLAM

problem [24]. The first was the classical age (1986-2004), where the problem

was formulated and filtering-based methods were introduced. This was fol-

lowed by algorithm analysis age (2004-2015), where the focus was directed to

analyze the formerly introduced SLAM algorithms and the study of observabil-

ity, convergence, and consistency of SLAM estimates. Afterwards, we entered

the robust perception age (2004-now), where SLAM became task-driven, which
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highlighted the need for robust and resilient SLAM and also the need for long-

term operation in real-world settings.

Despite claims that the SLAM problem is solved, many argue that it evolves

into other problems that are more fundamental and critical at the same time

[42] with the introduction of new deployment requirements, new supporting

technologies, and more advanced computational power. As outlined in [24],

robustness and resilience are among the major fundamental requirements in

modern robotic systems due to their deployment in a wide spectrum of settings.

Emphasis on this idea was also provided in [50], where both robustness and

resilience were recognized as some of the main challenges facing today’s robotic

field and one of the current open problems that we shall direct our research

efforts towards. In order to achieve robustness/resilience or measure them in

SLAM, a proper definition for them must be achieved first by, for example,

exploring how they are defined in other disciplines in science and engineer-

ing. For instance, biological systems [173][54], systems engineering [179], and

control engineering [172][175] define robustness as the ability of the system to

maintain performance under measured perturbations. On the other hand, psy-

chology and ecology [68] [108], mechanical and physical robotic systems [124]

[87], and system engineering [193] [27] define resilience as the convergence of

a system after divergence while operating outside of its nominal perturbation

limits. Perturbations are defined as any external conditions causing the system

to deviate from its equilibrium state.

In the SLAM literature, accuracy is used as an indication of robustness and

resilience. However, the aforementioned definitions disagree with this line of

thinking and suggest that accuracy cannot be used to measure robustness or

resilience without the quantitative characterization of operational conditions

in which the system will be deployed as well as the performance of the system

is guaranteed.

Thus, a distinction between the three definitions is an essential first step

that shall precede any discussion of how to make SLAM systems robust or re-

silient. Based on the aforementioned definitions in closely related fields in sci-

ence and engineering, one can deduce the following definitions that accurately
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distinguish each term. Accuracy in SLAM is the measurable performance

of the SLAM system under perturbations, which is not a direct indication of

either robustness or resilience if such perturbations are not defined, and if the

relation between the performance and these perturbations is not identified.

On the other hand, robustness in SLAM is defined to be the ability of

a SLAM system to maintain its guaranteed performance under defined per-

turbations. It is typically concerned with the performance of SLAM within

its nominal operating conditions or perturbations levels. While Resilience

in SLAM can be defined as the ability to detect faults and to converge to a

defined performance level after divergence due to the operation outside of its

nominal operating conditions or perturbation levels. As shown, both objec-

tives (robustness and resilience) are tightly coupled to defined and measured

perturbation levels to which a SLAM system is subject. In SLAM, accuracy

is usually measured on benchmark datasets which implicitly contain these de-

fined perturbation levels. Thus, the following requirements can be drawn from

the two definitions to address both robustness and resilience in SLAM.

1. Characterization of perturbations and their correlation to SLAM perfor-

mance highlighting SLAM sensitivity to certain conditions.

2. Objective evaluation of SLAM where deployment conditions are incor-

porated in evaluation procedures so that we can safely deploy SLAM

systems.

3. Predictability of performance to allow the judgment of the suitability

of a system to a given deployment setting that was not included in the

evaluation process but characterized and measured sufficiently.

4. Fault detection to engage recovery mechanism to ensure convergence of

SLAM to nominal defined performance boundaries when faced with out-

of-boundary conditions in the real world.

Although numerous SLAM algorithms and benchmark datasets are pro-

posed in the literature, a big gap is yet to be filled to address the aforemen-

tioned requirements. This is due to the lack of a formal and rigorous definition
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(a) (b) (c)

Figure 1.1: Requirements for (a) robustness and (b) resilience in SLAM, which
form our contributions in this thesis as depicted in (c) linked to their respected
chapters in this thesis

for robustness and resilience. In this thesis, we seek to bridge this gap by sys-

tematically addressing the problem of robustness and resilience in SLAM with

solutions to the major requirements for robustness and resilience, where these

requirements are directly extracted from a formal and rigorous definition of

both terms in the SLAM context.

1.2 Contributions

The contributions of this thesis are as follows:

• We propose a generic and extendable framework for the quantitative

characterization of SLAM datasets and benchmarks, which is essential

for measuring robustness and resilience in SLAM systems. Utilizing RGB

cameras and IMUs, our methodology derives various characterization

metrics, creating a modular framework that easily accommodates new

metrics, sensors, or datasets.

• We address the problem of objective evaluation and dataset redundancy

reduction in SLAM by proposing a tabulation-based dynamic program-

ming (DP) algorithm to select the optimal subset of sequences for test-

ing and evaluating SLAM based on objective criteria. Our method,

evaluated on both single-objective and multi-objective criteria, demon-

strates superiority in optimality and time complexity compared to base-

line methods such as random search and greedy-based algorithms.
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• We tackle the problem of performance predictability in SLAM as an

integrity measure, essential for determining the suitability of a SLAM

algorithm for deployment based on its performance in previously evalu-

ated environments. We propose an ensemble learning regression model

to predict the absolute trajectory error (ATE) and the absolute pose

error (APE) respectively. Additionally, we study the reliability of this

method when limited training data is available.

• We discuss fault detection in SLAM using a decoupled IMU-based kine-

matics model as an external supervisory signal for real-time consistency

checks and early fault detection. Employing a modified DUET method

for IMU calibration, we minimize measurement errors and drift. Evalu-

ation covers four fault indicators, shows the IMU model’s reliability in

the short-term, and includes a comparison with traditional SLAM fault

detection techniques, as well as an analysis of sensitivity to history size

and error thresholds.

1.3 Thesis Outline

The remainder of this thesis is organized as follows. In Chapter 2, we pro-

vide an overview of relevant background and a detailed discussion of the work

related to this thesis. We highlight prior work done to address the aforemen-

tioned requirements as well as the gap in the literature that we seek to fill.

After that, in Chapter 3, we propose our framework for quantitative charac-

terization of SLAM datasets, which addresses the problem of robustness and

resilience evaluation and measurement. Then, in Chapter 4, we discuss our

proposal for objective evaluation of SLAM using a tabulation-based dynamic

programming algorithm. In Chapter 5, we address the problem of predicting

different SLAM errors at both the pose level and the trajectory level using an

ensemble learning regression methodology. This is followed by the proposal of

an algorithm-agnostic method for fault detection in SLAM using a decoupled

calibrated IMU-based kinematics model that is used to measure the consis-

tency of SLAM estimates in Chapter 6. The conclusion of this thesis and
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directions for future work are explained in Chapter 7.
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Chapter 2

Background and Related Work

In Chapter 1, we provided a definition for robustness and resilience in SLAM

and extracted some fundamental requirements to achieve both robustness and

resilience. As highlighted, despite the availability of some previous efforts to

address these important requirements, these efforts fall short when it comes

to either generality, completeness, or efficacy.

In this chapter, we provide a background of related concepts in SLAM fol-

lowed by a detailed literature review of related work. We highlight the gaps

in the literature for each of the aforementioned requirements mentioned in

Chapter 1 which are, operating conditions characterization as a way to mea-

sure robustness and resilience and their correlation to the SLAM performance,

objective evaluation of SLAM and coverage analysis, predictability of SLAM

performance, and finally fault detection and recovery in SLAM.

2.1 The SLAM Problem

As mentioned earlier, Simultaneous Localization and Mapping (SLAM) is the

process of building a map of the environment and localizing the robot in this

environment at the same time [24]. The requirement of the map is crucial for

accurate localization of the robot, as it allows the robot to reset its error when

a location in the map is revisited through loop closure [195]. This process is

illustrated in Figure 2.1, which shows the dual objective of SLAM compared

to localization-only or mapping-only systems.

Given a robot traversing a trajectory in an environment, we define the
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(a) The robot pose (b) Observation of map point

(c) Map is a collection of observations (d) SLAM

Figure 2.1: Steps to achieve SLAM where a robot in 2D or in 3D seeks to
estimate its location inside a map that is being built at the same time compared
to single-task systems

following [192] representing a single state of the robot, landmarks, or observa-

tions:

• x: defines a robot pose/state in the trajectory traversed.

• u: represents an odometry constraint between two robot poses.

• mi: represents the location of landmark i.

• zi: represents the observation for the location of landmark i.

Subsequently, we define the following sets, representing the history of

SLAM variables over the traversed trajectory so far.

• χk = {x1,x2, ...,xk}: represents the history of robot poses.

• Uk = {u1, u2, ..., uk}: represents the history of odometry vectors.

• m = {m1,m2, ...,mn}: represents the locations of all available land-

marks.

• Zk = {z(i,1), z(i,2), ..., z(i,k)}: represents the history of observations of

landmark locations at each previously visited robot pose xi.
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Given the aforementioned parameters, we seek to find the correct poses

of the robot throughout the trajectory traversed as well as the locations of

different landmarks observed at the same time. Through the history of SLAM,

multiple solutions has been proposed to solve this problem efficiently. In this

section, we give a brief history of the problem, highlighting major milestones

and paradigm shifts as well as the different methodologies used to solve the

SLAM problem efficiently. After that, we explore emerging trends in SLAM

and how the problem is evolving to meet modern requirements in the real

world. Finally, we ask the important question of whether SLAM is a solved

problem or not, which is a reflection of why more work is still needed in SLAM.

2.1.1 Evolution of SLAM and The Rise of Visual-SLAM
(VSLAM)

In the evolution of SLAM, there exist a clear distinction between traditional

SLAM methods that relies on range sensing and filtering-based solutions, and

Visual SLAM (VSLAM) in their approach to handling dimensionality and en-

vironment complexity. As stated, traditional SLAM methods employ filtering-

based techniques, such as Extended Kalman Filter (EKF), to handle high di-

mensional state spaces. This category of methods were originally developed to

deal with uncertainties in the filter state, where sensors provided limited infor-

mation. For instance, in EKF SLAM, the estimator maintains a probabilistic

estimates of the robot position as well as each point in the map. Afterwards

and iteratively, it updates these estimates as new sensor measurements arrives

[192]. Although these methods showed effectiveness in estimating uncertain-

ties, it remains impractical due to its intensive computational requirements

and struggles with large-scale environments which suggest that this group of

methods are not scalable in nature [117].

A significant paradigm shift occurred with the rise of Visual SLAM (VS-

LAM), which was driven by advances in multi-view geometry techniques as

well as the advances in visual sensing technologies. With the development of

scale-invariant feature transform (SIFT) [102], a key technology became avail-

able for robust feature detection and matching across multiple views, which
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is fundamental to VSLAM. This technique and others provided VSLAM with

the ability to leverage visual data more effectively and provided richer infor-

mation that can be utilized for localization and mapping [159]. Additionally,

Structure-from-Motion (SFM) techniques have witnessed significant advances

and offered solutions for reconstructing 3D points from 2D images [66]. Early

filtering-based approaches to SLAM, such as Mono-SLAM [43], utilized these

principles. However, they were limited in terms of depth estimation and scal-

ability due to the inherited limitations of filtering-based methods.

The integration of multi-view geometry and Structure-from-Motion tech-

niques in SLAM provided major advances to the solution of the VSLAM prob-

lem. This was exemplified in the introduction of PTAM [83] which incorporates

geometric insights in SLAM for more accurate and scalable feature tracking

and mapping. This transition from filtering-based methods to geometry-based

methods was further validated in [176], where the superior performance of

geometry-based techniques over filtering-based methods was proven in the

comparative study conducted. This study paved the way to new optimiza-

tion frameworks such as g2o [90], which builds upon these technologies.

2.1.2 Graph-based SLAM

Traditional SLAM architecture relied on Extended Kalman Filters (EKF) [182]

or Particle Filters (PF) [181] to solve the SLAM problem. However, such

methods suffered from accuracy, consistency, and scalability issues [44]. Thus,

graph-based SLAM was introduced to bridge the gap and overcome the short-

comings of previously introduced methods.

Modern SLAM architectures depend on dividing the SLAM pipeline into

two major modules: the front-end and the back-end. The front-end is respon-

sible for feature extraction and both short and long-term data association,

while the back-end formulates SLAM estimation as a Maximum A Posteriori

(MAP) estimation problem that consumes the information produced by the

front-end. Figure 2.2 provides an illustration of the SLAM pipeline.

The relation between different SLAM variables (robot states, loop closure,

odometry, and landmark positions) is typically modeled in the form of a factor

10





which maximizes the belief over χ given the measurements Z, which can be

formulated as:

χ∗ = argmax
χ

P (χ)
m
∏

k=1

P (zk|χk) (2.2)

following the derivation in [24], we end up with the following formulation

of the MAP estimation:

χ∗ = argmin
χ

m
∑

k=1

||hk(χk)− zk||2Ωk
(2.3)

2.1.3 Localization and Mapping Representation

The outcome of SLAM is twofold: the pose of the robot and the map of the

environment observed. The representation of these two outcomes is governed

by the operation of the robot in either 2-dimensional space or 3-dimensional

space, and the requirements imposed by either subsequent control algorithms

or deployment limitations.

2.1.3.1 Robot Pose

In 2D SLAM, the pose of a robot at time k can be represented using the Special

Euclidean Group SE(2). The group SE(2) describes the set of all possible 2D

transformations, which include both translation and rotation. Thus, a robot

pose x in 2D SLAM at time k is represented by:

xk = [xk yk θk]
T (2.4)

where xk and yk are the Cartesian coordinates of the robot in 2-D space, and

θk is the yaw angle relative to a reference frame.

On the other hand, in 3D SLAM, the pose of a robot at time k is repre-

sented using the Special Euclidean Group SE(3). SE(3) describes the set of all

possible 3D transformations, which include translation and rotation in three

dimensions. Therefore, a robot pose x in 3D SLAM at time t can be given by:

xk = [xk yk zk qx qy qz qw]
T (2.5)

Where xk, yk, zk are the Cartesian coordinates of the robot in 3-D space, and

qx, qy, qz, qw are the quaternion components representing the robot orientation.
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2.1.3.2 Estimated Map

From the mapping perspective, numerous representations were utilized to rep-

resent the estimated map. These representations differ in their memory re-

quirements and the level of detail achieved. Table 2.1 compares different

mapping representations, highlighting key differences and examples of each

method. Additionally, Table 2.2 briefly compares the pros and cons of each

mapping method.

Table 2.1: A detailed comparison of different mapping method used in SLAM

# Method 2D/3D Definition Example

1 Grid-based maps Both
- Divides the environment into a set of grid cells (2D) or voxels (3D)
- Each cell/voxel holds the probability of occupancy by an object

[65]

2 Feature-based maps Both - Uses features keypoints to represent the environment [25]
3 Point cloud maps 3D - Uses dense point clouds from LiDAR or depth cameras [203]
4 Semantic maps Both - Add semantic labels to traditional maps [111]

5 Topological maps 2D
- Representation of the environment as a graph
- Nodes in the graph are robot poses, and edges are navigational path

[114]

6 Hybrid maps Both - Combines different map types to get the best of both worlds [69]

Table 2.2: A detailed comparison of the pros and cons of different mapping
method used in SLAM

# Method Pros Cons

1 Grid-based maps [65]
- Simple representation
- Good for obstable avoidance

- Performance is grid resolution-dependent
- Not suitable for dynamic envionrment

2 Feature-based maps [25] - Efficient representation
- Environment dependent.
- Fails in textureless environment.

3 Point cloud maps [203]
- Accurate mapping of the environment
- Represents surface geometries

- High computational cost
- Hard to manipulate and process

4 Semantic maps [111] - Useful for complex manipulation tasks - Complex pipeline with object recognition

5 Topological maps [114]
- Very compact representation
- Suitable for navigation tasks

- Very abstract representation
- Challenges in dynamic environments

6 Hybrid maps [69]
- More diverse and detailed mapping
- Balance pros/cons of different methods

- Complex implementation
- Integration challenges

2.1.4 Key Metrics for SLAM Evaluation

The performance of SLAM can be measured by running a SLAM algorithm

against a pre-recorded dataset. That is due to the difficulty of having repeat-

able experiments in the real-world and the lack of resources to achieve that.

A dataset consists of sensor measurements as well as ground truth informa-

tion of the actual robot pose and map structure. The performance of SLAM

is achieved by comparing the outcomes of SLAM to available ground truth

data to calculate how far SLAM estimates are from target outcomes. Due
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to the dual objectives of SLAM (localization and mapping), the evaluation of

performance is done on each objective separately.

2.1.4.1 Localization Evaluation

Two metrics are highly accepted and utilized in the community for evaluating

the localization performance of SLAM: the Absolute Trajectory Error (ATE)

and the Relative Pose Error (RPE) [205]. Both metrics require the availability

of ground-truth localization information and proper alignment and scaling of

both the ground-truth data and SLAM outcomes.

1. Absolute Trajectory Errors (ATE) is the de facto method for mea-

suring performance, which is the root mean square of the errors between

corresponding absolute pose errors (APE). The APE for translation and

rotation are given by:

APEtrans(k) = ||T̂i − Ti|| (2.6)

APErot(k) = R̂i

T
Ri (2.7)

where APEtrans(k) and APErot(k) are translational and rotational errors

at time step k, respectively.

Consequently, the Absolute trajectory error (ATE) for translation and

rotations can be calculated by:

ATEtrans =

√

√

√

√

1

N

N
∑

i=1

||T̂i − Ti||2 (2.8)

ATErot =

√

√

√

√

1

N

N
∑

i=1

|| log(R̂i

T
Ri)||2 (2.9)

where ATEtrans and ATErot are translational and rotational absolute

trajectory errors over a trajectory of size N .

2. Relative Trajectory Errors (RPE) exploits the effect of the length

of the trajectory on localization accuracy by calculating the root mean

square error (RMSE) of APEs over a fixed time interval ∆t. Varying the
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time interval ∆t produces multiple error numbers, and thus, statistical

operators such as mean, median, and standard deviation are used to

report the overall performance of SLAM or visual odometry modules.

2.1.4.2 Mapping Evaluation

Due to the availability of multiple representation methods for mapping in

SLAM, a unified method for the evaluation of mapping performance is not

available. Rather, each representation requires a different evaluation strategy

that stems from the nature of the representation itself. Additionally, SLAM

researchers and practitioners tend to use localization accuracy as an indication

of mapping accuracy based on the fact that accurate localization is not possible

if the mapping is not accurate as well. This assumption may not hold true

if the map is being used by subsequent tasks for any control or manipulation

missions. Thus, more work is needed in that direction to formally evaluate

different mapping representations.

2.1.5 Emerging Technologies in SLAM

The SLAM architecture evolves with the introduction of new technologies,

making use of their performance and allowing the extension of its utilization

beyond traditional applications. In this section, we discuss two major emerging

technologies that are currently being used in SLAM and are transforming its

performance and structure.

2.1.5.1 Deep Learning in SLAM

Due to the great success of deep learning (DL) algorithms in a wide spectrum

of vision-based applications, SLAM researchers have directed their attention

to the study of how to harness this success for SLAM [116]. Thus, the usage

of DL in SLAM was divided into two categories. The first category is end-

to-end SLAM, where the whole SLAM pipeline is replaced with a deep neural

network. The input is typically the unprocessed sensor measurements, while

the output is the estimated robot poses and environment map. For instance,

DeepSLAM [95] proposed an unsupervised learning pipeline that consists of
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a number of DNNs, where each performs a specific task of SLAM, such as

tracking, mapping, and loop closure. The algorithm depends on using stereo

pairs of images as inputs but operates in monocular mode when in the in-

ference phase. DeepSLAM showed very promising performance compared to

traditional SLAM algorithms when evaluated on publicly available datasets.

The second category of contributions is concerned with replacing a single

module in the traditional SLAM pipeline with a DL counterpart. This achieves

a hybrid pipeline where we can leverage the accuracy of DL modules while

keeping the robustness of traditional non-DL methods [116]. These proposals

included the usage of deep feature extraction modules [94], deep loop closure

modules [10], and vision-based pose estimation [186].

2.1.5.2 Semantic SLAM

Another emerging technology in SLAM is the utilization and/or production of

semantic information within the traditional pipeline of SLAM. The availabil-

ity of rich semantic information can greatly enhance the performance of both

localization and mapping, which impacts any subsequent application in which

SLAM is used [33]. Additionally, a number of SLAM systems have been pro-

posed where a semantic map is generated in contrast to traditional maps [32].

This opens doors to the deployment of SLAM in a wider space of applications

where such capabilities are of great importance.

2.1.5.3 Neural Radiance Fields and Gaussian Splatting in SLAM

Neural Radiance Fields (NeRF) [113] is a novel method in the field of computer

vision and 3D reconstruction for representing and rendering 3D scenes from a

set of 2D images. It leverages deep neural network models to generate detailed

3D scenes by learning a continuous volumetric scene function from a set of 2D

images.

Another representation of 3D scenes is Gaussian Splatting [81], which is

also a novel method for rendering and reconstructing 3D scenes. It represents

a scene using a set of Gaussian splats rather than traditional polygons or voxel

grids.
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Integrating Neural Radiance Fields (NeRF) and Gaussian Splatting into

SLAM systems offers complementary benefits for 3D mapping and localization.

NeRF provides high-quality, detailed reconstructions and novel view synthe-

sis, which enhances scene understanding and visual fidelity but comes with

high computational demands and extensive training requirements. In contrast,

Gaussian Splatting offers efficient, real-time 3D representation with smooth,

continuous surfaces, making it suitable for fast, dynamic SLAM applications

[109]. While NeRF excels in generating detailed maps for high-resolution ap-

plications, Gaussian Splatting’s computational efficiency supports real-time

performance and large-scale data handling, making both techniques valuable

depending on the specific needs of the SLAM system.

2.2 Related Work

Study of the robustness and resilience problem in SLAM is tightly coupled

to the requirements implied in their definitions. Thus, in this section, we

thoroughly review the literature to highlight key contributions that are related

the problem of robustness and resilience in SLAM. We divide our literature

review into three main categories: the characterization of SLAM datasets as a

way to determine operating conditions of SLAM, prior work in data analysis

and coverage as a way to optimize the evaluation process, and finally the

problem of fault detection and recovery as a main requirement for robustness

and resilience in modern SLAM systems.

2.2.1 SLAM Datasets and Benchmarks

A wide range of SLAM datasets and benchmarks have been introduced to the

SLAM research community in the last decade. These classical set of SLAM

datasets that is usually used to evaluate and compare SLAM performance

include and is not limited to: the KITTI odometry benchmark [59], TUM

Visual-Inertial dataset [163], and EuroC MAV dataset [22], among many oth-

ers. Recently, a great attention and many trials were directed towards pushing

the limits of SLAM through exposing them to very challenging situations and
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scenarios. A number of these challenging datasets were gathered using physical

systems such as: The UZH-FPV Drone Racing Dataset[45] and the blackbird

dataset [9] to name a few, while others were synthetic rendered data produced

using modern game engines. The improvements witnessed in photo-realistic

simulators such as: CARLA[48] and FlighMare [171], and the existence of so-

phisticated game engines with advanced physics and graphics capabilities such

as: Unreal Engine [52]; both directed the attention of SLAM datasets creators

to the usage of these engines/simulators to create more challenging conditions

for SLAM that are hard to capture with a physical system. For instance, the

TartanAir dataset [187] is a photo-realistic synthetic dataset that was built

using the Unreal game engine [52] with the objective of pushing the limits

of SLAM systems by exposing SLAM solutions to a number of challenging

scenarios in terms of lighting, aggressive motion profiles, texture-less scenes,

among many other conditions.

In this subsection, we provide a comparison of an extended number of

SLAM datasets (55 SLAM datasets/benchmarks) in terms of the dataset size,

data acquisition conditions, and sensory configuration. Additionally, the com-

parison includes qualitative comparison of the environment conditions and the

carrier used for data capturing. The comparisons mentioned in this section

are qualitative and are based on the information available in the original pub-

lication of each dataset.

2.2.1.1 The Taxonomy of SLAM Datasets and Benchmarks

SLAM datasets and benchmarks differ in a wide spectrum of aspects. For

instance, they differ in their sensory configuration, size, availability of ground

truth data, data collection methods, environment in which the data was col-

lected, sensory configuration carrier, among many other aspects. Despite the

introduction of new datasets each year with a steady trend, one can observe a

similarity in terms of the qualitative aspects of most of the introduced datasets.

As shown in Figure 2.5 and Figure 2.4, one can clearly see that diversity is only

witnessed in the type of carrier used for data acquisition, the type of environ-

ment (indoor vs. outdoor), and the sensory configuration. On the contrary,
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Dataset Data Acquisition
⇒ Real Data ⇒ [170] [20] [30] [136] [74] [93] [168] [130] [123] [177] [59] [21] [61] [26] [29] [36] [22] [51] [70] [105] [188] [137]
[106] [92] [34] [206] [201] [163] [115] [38] [58] [78] [45] [128] [140] [162] [79] [160] [149] [49] [167] [190] [110] [191] [35] [76] [84] [67]

⇒ Synthetic Data ⇒ [56] [96] [155] [187] [23]

Ground Truth Availability
⇒ Available ⇒ [20] [30] [136] [74] [93] [130] [177] [59] [61] [26] [29] [22] [70] [105] [56] [188] [119] [137] [106] [92] [34]
[206] [201] [163] [115] [38] [96] [9] [58] [78] [155] [45] [128] [140] [162] [160] [149] [187] [49] [167] [23] [190] [110] [191] [35] [84] [67]

⇒ Not Available ⇒ [170] [168] [123] [21] [36] [51] [79] [76]

No. of Robots
⇒ Single Robot ⇒ [170] [20] [30] [136] [74] [168] [130] [123] [177] [59] [21] [61] [26] [29] [36] [22] [51] [70] [105] [56] [188] [119] [137]
[106] [92] [34] [201] [163] [115] [38] [96] [9] [58] [78] [155] [45] [128] [140] [162] [79] [160] [149] [167] [23] [190] [110] [191] [35] [76] [84] [67]

⇒ Multi-Robot ⇒ [93] [206] [187] [49]

Sensory Configuration Inertial
⇒ Gyroscope ⇒ [170] [20] [30] [136] [74] [130] [59] [21] [26] [22] [70] [105] [119] [137] [106] [34]
[206] [163] [115] [38] [96] [9] [58] [78] [45] [140] [162] [79] [160] [149] [49] [167] [190] [191] [35] [84] [67]

⇒ Accelerometer ⇒ [170] [20] [30] [136] [74] [168] [130] [123] [59] [21] [26] [22] [70] [105] [119] [137] [106]
[34] [206] [163] [115] [38] [96] [9] [58] [78] [45] [140] [162] [79] [160] [149] [49] [167] [190] [191] [35] [84] [67]

Visual
⇒ Monocular ⇒ [136] [74] [93] [168] [123] [177] [61] [51] [70] [105] [56]
[188] [137] [106] [201] [96] [9] [155] [128] [162] [79] [160] [49] [167] [35] [76] [67]

⇒ Stereo ⇒ [170] [20] [30] [74] [59] [21] [36] [22] [105] [137] [106] [92] [34] [206]
[201] [163] [115] [38] [9] [58] [78] [45] [140] [149] [187] [49] [167] [23] [110] [191] [84] [67]

⇒ Omni-Directional ⇒ [170] [136] [130] [26] [29] [190]

⇒ Thermal ⇒ [70] [188] [34]

⇒ Depth ⇒ [168] [123] [177] [61] [51] [56] [188] [155] [128] [160] [187] [167] [23]

⇒ Event ⇒ [119] [206] [96] [45] [84]

Laser ⇒ LiDAR ⇒ [170] [20] [30] [136] [74] [130] [59] [21] [26] [105] [92] [34] [58] [78] [149] [167] [190] [110] [67]

Others ⇒Wheel Odometer ⇒ [74] [26] [78] [140] [167]

⇒ GPS/GNSS ⇒ [170] [20] [30] [136] [74] [130] [59] [21] [26] [36]
[70] [105] [106] [34] [206] [115] [38] [58] [140] [160] [190] [191] [35] [76]

⇒ Ref. System ⇒ [74] [130] [59] [26] [29] [22] [70] [105] [56] [119] [137] [106] [34]
[206] [163] [115] [38] [96] [9] [58] [78] [140] [162] [149] [167] [23] [190] [191] [84] [67]

Semantic Labels ⇒ Object-Level Labels ⇒ [168] [123] [36] [56] [187] [110]

⇒ Pixel-Level Labels ⇒ [36]

⇒ No Labels ⇒ [170] [20] [30] [136] [74] [93] [130] [177] [59] [21] [61] [26] [29] [22] [51] [70] [105] [188] [119] [137] [106] [92]
[34] [206] [201] [163] [115] [38] [96] [9] [58] [78] [155] [45] [128] [140] [162] [79] [160] [149] [49] [167] [23] [190] [191] [35] [76] [84] [67]

HDR Imaging ⇒ Available ⇒ [36] [119] [34] [201] [163] [45]

⇒ Not Available ⇒ [170] [20] [30] [136] [74] [93] [168] [130] [123] [177] [59] [21] [61] [26] [29] [22] [51] [70] [105] [56] [188] [137]
[106] [92] [206] [115] [38] [96] [9] [58] [78] [155] [128] [140] [162] [79] [160] [149] [187] [49] [167] [23] [190] [110] [191] [35] [76] [84] [67]

Carrier ⇒ Car ⇒ [170] [20] [74] [130] [59] [21] [105] [56] [34] [58] [78] [149] [23] [190] [110] [191]

⇒ UGV ⇒ [30] [136] [93] [26] [92] [140] [49] [167] [35]

⇒ Canoe ⇒ [115]

⇒ UAV ⇒ [22] [70] [106] [9] [45]

⇒ Handheld ⇒ [168] [123] [61] [29] [36] [51] [188] [119] [137] [201] [163] [38] [96] [128] [162] [79] [160] [76] [84] [67]

⇒ Hybrid ⇒ [177] [206] [155] [187]

Environment Dynamics Environment Scene
⇒ Land ⇒ [170] [20] [30] [136] [74] [93] [168] [130] [123] [177] [59] [21] [61] [26]
[29] [36] [70] [105] [56] [188] [119] [137] [92] [34] [201] [38] [96] [9] [58] [78] [155] [128]
[140] [162] [79] [160] [149] [49] [167] [23] [190] [110] [191] [35] [76] [84] [67]

⇒Water ⇒ [115]

⇒ Hybrid ⇒ [22] [51] [106] [206] [163] [45] [187]

Environment Engineering ⇒ Controlled ⇒ [136] [93] [168] [123] [177] [61] [22] [188] [119] [96] [155] [45] [162] [79] [187] [49]

⇒ Uncontrolled ⇒ [170] [20] [30] [74] [130] [59] [21] [26] [29] [36] [70] [105] [56] [137] [106]
[92] [34] [206] [201] [115] [38] [9] [58] [78] [140] [149] [167] [23] [190] [110] [191] [35] [76] [84] [67]

⇒ Hybrid ⇒ [51] [163] [128] [160]

Indoor vs. Outdoor ⇒ Indoor ⇒ [93] [168] [123] [177] [61] [22] [188] [96] [9] [155] [128] [162] [79] [49]

⇒ Outdoor ⇒ [170] [20] [136] [74] [130] [59] [21] [36] [70] [105] [56]
[106] [92] [34] [115] [58] [78] [140] [149] [23] [190] [110] [191] [35] [76]

⇒ Hybrid ⇒ [30] [26] [29] [51] [119] [137] [206] [201] [163] [38] [45] [160] [187] [167] [84] [67]

Figure 2.6: A Detailed Taxonomy of SLAM Datasets/Benchmarks Based on
Qualitative Properties
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2.2.1.2 A Qualitative Comparison of SLAM Datasets

In order to provide an overview of the SLAM dataset landscape, we qualita-

tively compare an extended number of SLAM datasets and benchmarks which

are widely used in the community. We start by comparing the sensory config-

urations in Table 2.3. Then, we compare diversity aspects of different datasets

such as the dataset structure, carrier used, and environment exploited in Ta-

ble 2.4. Finally, we provide a comparison of the popularity of those studied

datasets by comparing the number of citations for each one of them in Table

2.5.

2.2.2 Characterization of SLAM datasets

Quantitative comparison of datasets is typically conducted in the context of

introducing a new SLAM algorithm/system with the purpose of justifying the

evaluation methodology selected, or introducing a new SLAM dataset to illus-

trate and elaborate on the differences between the new proposed dataset, and

the previously available ones [155]. In the former context, datasets are quali-

tatively compared with respect to publicly available information. While in the

latter context, they are usually compared based on a single metric to provide

evidence of how the new dataset is superior compared to its peers. Lately, the

focus has started to direct towards SLAM datasets as a discipline of study.

For instance, in [101], an extended number of SLAM datasets were reviewed

and compared based on a number of qualitative metrics. The paper provided

a good overview of the landscape and paved the way to many complementary

studies.

On the other hand, quantitative comparison of datasets can provide some

interesting and useful metrics for dataset characterization. However, the gen-

eralization of these metrics and the aggregation of them under a single frame-

work for dataset characterization have rarely been attempted, although studies

exist on narrow aspects of dataset characteristics. For instance, in [155], the

difficulty of a sequence of robot sensor measurements has been measured in-

dependently from the execution of any SLAM system using the Wasserstein
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Table 2.3: Qualitative Comparison of Sensory Configurations of Publicly
Available SLAM Datasets

Dataset
Release

Date

Data

Type

Sensors Setup Freq.(Hz)
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New College [170] 2009 Real x x X X - X - X X - - X - - 20 28

Malaga 2009 [20] 2009 Real X x X X - X - X - - - X - - 7.5 100

Rasweeds [30] 2009 Real X x X X - X - X - - - X - - 15 100

Marulan [136] 2010 Real X x X X - X X - X - - X - - 10-15 50

DARPA Urban [74] 2010 Real X x X X X X X X - - - X - X 10 100

UTIAS MRCLAM [93] 2011 Real X X - - - - X - - - - - - - 10 x

NYU Depth V1 [168] 2011 Real x x - X - - X - - - X - - - 30 30

Ford Campus [130] 2011 Real X x X X - X - - X - - X - X 15 100

NYU Depth V2 [123] 2012 Real x x - X - - X - - - X - - - 30 30

TUM RGB-D SLAM [177] 2012 Real X x - - - - X - - - X - - - 30 -

KITTI Odometry [59] 2012 Real X x X X - X - X - - - X - X 10 100

Malaga 2013 [21] 2013 Real x x X X - X - X - - - X - - 20 100

MS 7-Scenes [61] 2013 Real X x - - - - X - - - X - - - 30 x

UMich NCLT [26] 2015 Real X x X X X X - - X - - X - X 5 100

TUM Omni LS-SLAM [29] 2015 Real X x - - - - - - X - - - - X 30 -

Cityscapes [36] 2016 Real x x - - - X - X - - - - - - 17 x

EuRoC MAV [22] 2016 Real X x X X - - - X - - - - - X 20 200

TUM Monocular VO [51] 2016 Real x x - - - - X - - - X - - - 20-50 x

Hetero.UAV Fleet [70] 2016 Real X x X X - X X - - X - - - X 30 50

Oxford RobotCar [105] 2016 Real X x X X - X X X - - - X - X 16 50

Virtual KITTI [56] 2016 Synthetic X x - - - - X - - - X - - X 10 -

CoRBS [188] 2016 Real X x - - - - X - - X X - - - 30 -

Event Cam Dataset [119] 2017 Both X x X X - - - - - - - - X X 24 1k

PennCOSYVIO [137] 2017 Real X x X X - - X X - - - - - X 20 200

Zurich Urban MAV [106] 2017 Real X x X X - X X X - - - - - X 30 30

Chilean Mine [92] 2017 Real X x - - - - - X - - - X - - 16 -

KAIST MS [34] 2018 Real X x X X - X - X - X - X - X 30 25

MVSEC [206] 2018 Real X X X X - X - X - - - - X X 20-50 200

SPVO [201] 2018 Real X x - - - - X X - - - - - - 30 x

TUM Visual-Inertial [163] 2018 Real X x X X - - - X - - - - - X 20 200

VI Canoe [115] 2018 Real X x X X - X - X - - - - - X 20 200

ADVIO [38] 2018 Real X x X X - X - X - - - - - X 60 100

InteriorNet [96] 2018 Synthetic X x X X - - X - - - - - X X 25 800

Blackbird [9] 2018 Both X x X X - - X X - - - - - X 120 100

Urban@CRAS [58] 2018 Real X x X X - X - X - - - X - X 15 200

Complex Urban [78] 2019 Real X x X X X - - X - - - X - X 10 200

ICL [155] 2019 Synthetic X x - - - - X - - - X - - - 20-30 x

UZH-FPV [45] 2019 Real X x X X - - - X - - - - X - 30-50 0.5-1k

ReFusion [128] 2019 Real X x - - - - X - - - X - - - 30 -

Rosario [140] 2019 Real X x X X X X - X - - - - - X 15 142

TUM RS-VI [162] 2019 Real X x X X - - X - - - - - - X 20 200

ZJU-SenseTime [79] 2019 Real x x X X - - X - - - - - - - 30 100-400

ETH3D [160] 2019 Real X x X X - X X - - - X - - - 27 -

Newer College [149] 2020 Real X x X X - - - X - - - X - X 30 650

TartanAir [187] 2020 Synthetic X X - - - - - X - - X - - - - x

AirMuseum [49] 2020 Real X X X X - - X X - - - - - - 20 400k

OpenLORIS [167] 2020 Real X x X X X - X X - - X X - X 30 60-400

Virtual KITTI 2 [23] 2020 Synthetic X x - - - - - X - - X - - X 10 -

UrbanLoco [190] 2020 Real X x X X - X - - X - - X - X 10 100

YCOR [110] 2021 Real X x - - - - - X - - - X - - 10 x

4Seasons [191] 2021 Real X x X X - X - X - - - - - X 30 2k

ROOAD [35] 2021 Real X x X X - X X - - - - - - - 30 400

CrowdDriven [76] 2021 Real x x - - - X X - - - - - - - - -

TUM VIE [84] 2021 Real X x X X - - - X - - - - X X 20 200

HILTI SLAM Challenge [67] 2021 Real X x X X - - X X - - - X - X 10 800
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Table 2.4: Qualitative Comparison of SLAM datasets Diversity and Capabili-
ties

Dataset
Distance

(km)
#Frames #Scenes #Seq’s Labels HDR Carrier

Environment

Scene Ctrl’d In/Out

New College [170] 2.2 51,000 - 9 - - Car Land x Outdoor

Malaga 2009 [20] 6 38,000 2 6 - - Car Land x Outdoor

Rasweeds [30] 1.9 - - 11 - - UGV Land x Both

Marulan [136] - - 40 40 - - UGV Land X Outdoor

DARPA Urban [74] 92.7 - 3 3 - - Car Land x Outdoor

UTIAS MRCLAM [93] - - 1 9 - - UGV Land X Indoor

NYU Depth V1 [168] - 108,617 7 64 X - Handheld Land X Indoor

Ford Campus [130] 5.1 7,000 2 2 - - Car Land x Outdoor

NYU Depth V2 [123] - 435,103 26 464 X - Handheld Land X Indoor

TUM RGB-D SLAM [177] 0.4 65,000 27 27 - - Hybrid Land X Indoor

KITTI Odometry [59] 39.2 41,000 22 22 - - Car Land x Outdoor

Malaga 2013 [21] 36.8 113,082 15 15 - - Car Land x Outdoor

MS 7-Scenes [61] - 42,660 7 50 - - Handheld Land X Indoor

UMich NCLT [26] 147.4 - 2 27 - - UGV Land x Both

TUM Omni LS-SLAM [29] - 33634 5 5 - - Handheld Land x Both

Cityscapes [36] - 25,000 8 50 X X Handheld Land x Outdoor

EuRoC MAV [22] 0.8936 27,049 2 11 - - UAV Hybrid X Indoor

TUM Monocular VO [51] - 190,573 50 50 - - Handheld Hybrid X Both

Hetero.UAV Fleet [70] - - - 17 - - UAV Land x Outdoor

Oxford RobotCar [105] 1010 11,070,651 - 133 - - Car Land x Outdoor

Virtual KITTI [56] - 17000 5 35 X - Car Land x Outdoor

CoRBS [188] 0.407 - 20 4 - - Handheld Land X Indoor

Event Cam Dataset [119] - N/A 11 27 - X Handheld Land X Both

PennCOSYVIO [137] 0.6 - 2 1 - - Handheld Land x Both

Zurich Urban MAV [106] 2 - - - - - UAV Hybrid x Outdoor

Chilean Mine [92] 2 - 7 58 - - UGV Land x Outdoor

KAIST MS [34] 42 105,000 4 27 - X Car Land x Outdoor

MVSEC [206] - - 5 11 - - Hybrid Hybrid x Both

SPVO [201] - - - 11 - X Handheld Land x Both

TUM Visual-Inertial [163] 20 - 5 28 - X Handheld Hybrid X Both

VI Canoe [115] 2.7 53,275 1 10 - - Canoe Water x Outdoor

ADVIO [38] 4.5 - 5 23 - - Handheld Land x Both

InteriorNet [96] - 15000 15 15 - - Handheld Land X Indoor

Blackbird [9] - - 5 186 - - UAV Land x Indoor

Urban@CRAS [58] 14.2 - 5 5 - - Car Land x Outdoor

Complex Urban [78] 190.989 - 12 18 - - Car Land x Outdoor

ICL [155] 0.5848 - 4 8 - - Hybrid Land X Indoor

UZH-FPV [45] 10 - 4 27 - X UAV Hybrid X Both

ReFusion [128] - - 8 24 - - Handheld Land X Indoor

Rosario [140] 2.296 - 6 6 - - UGV Land x Outdoor

TUM RS-VI [162] 0.446 - 1 10 - - Handheld Land X Indoor

ZJU-SenseTime [79] - - 9 16 - - Handheld Land X Indoor

ETH3D [160] - 100170 19 98 - - Handheld Land X Both

Newer College [149] 2.2 - 2 7 - - Car Land x Outdoor

TartanAir [187] - 1,000,000 30 1037 X - Hybrid Hybrid X Both

AirMuseum [49] - 12,232 1 5 - - UGV Land X Indoor

OpenLORIS [167] - - 5 22 - - UGV Land x Both

Virtual KITTI 2 [23] - 17000 5 35 - - Car Land x Outdoor

UrbanLoco [190] 13.8 - 12 12 - - Car Land x Outdoor

YCOR [110] - 1,076 4 4 X - Car Land x Outdoor

4Seasons [191] - - 9 33 - - Car Land x Outdoor

ROOAD [35] 0.835 20566 6 6 - - UGV Land x Outdoor

CrowdDriven [76] - 2847 26 40 - - Handheld Land x Outdoor

TUM VIE [84] - - - 21 - - Handheld Land x Both

HILTI SLAM Challenge [67] - - 8 12 - - Handheld Land x Both
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Table 2.5: Online availability of SLAM datasets and benchmarks and their
popularity measured by number of citations

Dataset Year Citations Link

New College [170] 2009 331 N/A

Malaga 2009 [20] 2009 191 https://www.mrpt.org/malaga dataset 2009

Rasweeds [30] 2009 161 http://www.rawseeds.org/home/

Marulan [136] 2010 82 http://sdi.acfr.usyd.edu.au/

DARPA Urban [74] 2010 61 N/A

UTIAS MRCLAM [93] 2011 66 http://asrl.utias.utoronto.ca/datasets/mrclam/

NYU Depth V1 [168] 2011 546 https://cs.nyu.edu/ silberman/datasets/nyu depth v1.html

Ford Campus [130] 2011 287 http://robots.engin.umich.edu/SoftwareData/Ford

NYU Depth V2 [123] 2012 3690 https://cs.nyu.edu/ silberman/datasets/nyu depth v2.html

TUM RGB-D SLAM [177] 2012 2475 https://vision.in.tum.de/data/datasets/rgbd-dataset

KITTI Odometry [59] 2012 7735 http://www.cvlibs.net/datasets/kitti/eval odometry.php

Malaga 2013 [21] 2013 206 https://www.mrpt.org/MalagaUrbanDataset

MS 7-Scenes [61] 2013 126 https://www.microsoft.com/en-us/research/project/rgb-d-dataset-7-scenes/

UMich NCLT [26] 2015 209 http://robots.engin.umich.edu/nclt/

TUM Omni LS-SLAM [29] 2015 238 https://vision.in.tum.de/data/datasets/omni-lsdslam

Cityscapes [36] 2016 5934 https://www.cityscapes-dataset.com/

EuRoC MAV [22] 2016 863 https://projects.asl.ethz.ch/datasets/doku.phpN/Aid=kmavvisualinertialdatasets

TUM Monocular VO [51] 2016 153 https://vision.in.tum.de/data/datasets/mono-dataset

Hetero.UAV Fleet [70] 2016 20 https://projects.asl.ethz.ch/datasets/doku.phpN/Aid=iser2016

Oxford RobotCar [105] 2016 809 https://robotcar-dataset.robots.ox.ac.uk/

Virtual KITTI [56] 2016 775 N/A

CoRBS [188] 2016 88 http://corbs.dfki.uni-kl.de/

Event Cam Dataset [119] 2017 284 http://rpg.ifi.uzh.ch/davis data.html

PennCOSYVIO [137] 2017 68 https://daniilidis-group.github.io/penncosyvio/

Zurich Urban MAV [106] 2017 84 http://rpg.ifi.uzh.ch/zurichmavdataset.html

Chilean Mine [92] 2017 19 N/A

KAIST MS [34] 2018 97 https://sites.google.com/view/multispectral/home

MVSEC [206] 2018 153 https://daniilidis-group.github.io/mvsec/

SPVO [201] 2018 6 https://www.hs-karlsruhe.de/odometry-data/

TUM Visual-Inertial [163] 2018 123 https://vision.in.tum.de/data/datasets/visual-inertial-dataset

VI Canoe [115] 2018 16 https://databank.illinois.edu/datasets/IDB-9342111

ADVIO [38] 2018 40 https://github.com/AaltoVision/ADVIO

InteriorNet [96] 2018 119 https://interiornet.org/

Blackbird [9] 2018 33 N/A

Urban@CRAS [58] 2018 19 https://rdm.inesctec.pt/dataset/nis-2018-001

Complex Urban [78] 2019 78 https://irap.kaist.ac.kr/dataset/

ICL [155] 2019 9 https://peringlab.org/lmdata/

UZH-FPV [45] 2019 82 https://fpv.ifi.uzh.ch/

ReFusion [128] 2019 28 N/A

Rosario [140] 2019 22 https://www.cifasis-conicet.gov.ar/robot/doku.php

TUM RS-VI [162] 2019 17 https://vision.in.tum.de/data/datasets/rolling-shutter-dataset

ZJU-SenseTime [79] 2019 22 http://www.zjucvg.net/eval-vislam/

ETH3D [160] 2019 76 https://www.eth3d.net/slam datasets

Newer College [149] 2020 18 https://ori-drs.github.io/newer-college-dataset/

TartanAir [187] 2020 31 https://theairlab.org/tartanair-dataset/

AirMuseum [49] 2020 1 http://ieee-dataport.org/2683

OpenLORIS [167] 2020 38 https://lifelong-robotic-vision.github.io/dataset/scene.html

Virtual KITTI 2 [23] 2020 45 https://europe.naverlabs.com/research/computer-vision/proxy-virtual-worlds-vkitti-2/

UrbanLoco [190] 2020 27 https://advdataset2019.wixsite.com/urbanloco

YCOR [110] 2021 44 https://theairlab.org/yamaha-offroad-dataset/

4Seasons [191] 2021 7 https://www.4seasons-dataset.com/

ROOAD [35] 2021 0 https://github.com/unmannedlab/ROOAD

CrowdDriven [76] 2021 0 N/A

TUM VIE [84] 2021 0 https://vision.in.tum.de/data/datasets/visual-inertial-event-dataset

HILTI SLAM Challenge [67] 2021 0 N/A
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distance, which is a statistical method to measure the distance between ran-

dom variables. By treating each pose as a random variable, the metric can

be computed, and thus, is used to measure the level of difficulty of the given

sequence. Additionally, the aggressiveness of the robot motion was measured

in [45] using the magnitude of optical flow. Finally, the motion composition

and its variability among system axes were measured using principal compo-

nent analysis (PCA) in [187] in the analysis of the new challenging TartanAir

dataset. A study of the relation between the dataset properties and the SLAM

performance was presented in [198]. In this study, qualitative characteristics

of datasets were used as categorical features to build a decision tree to char-

acterize the difficulty of a dataset. Then, the study was extended to explore

the relationship between the SLAM performance and the categorical proper-

ties. These efforts were directed towards the introduction of characterization

metrics, rather than a framework for dataset characterization.

2.2.3 Dataset analysis and coverage

Analysis of dataset properties is a crucial topic in a wide range of disciplines

in science and engineering especially in learning problems [107] and in pure

data analysis problems [11]. The analysis of dataset bias [183] and dataset

shift [185] in the aforementioned disciplines led to methods and techniques

for correcting the dataset bias [82] particularly in the context of deep neural

network models [88]. Although the aforementioned research is directed to other

computer vision tasks, the same concepts can be adopted in SLAM research

especially in learning-based SLAM [104]. The concept of coverage pattern was

introduced in [11], which uses characterization parameters as a feature vector.

Moreover, the relationship between different patterns was modelled by edges

in a directed graph. The approach proposed is suitable for situations where the

characterization metrics are discrete and not continuous. In SLAM, however,

the characterization of measurements is often a continuous variable. Thus, to

utilize the same concepts mentioned in [11], quantization in the continuous

space is required, leading to quantization errors and potential sub-optimal

analysis of the coverage.
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2.2.4 Fault detection in SLAM

Fault detection in SLAM is crucial to achieve robustness and resilience due

to the fact that both rely on the ability of the system to self assess its per-

formance and take any corrective actions required. However, this topic was

not the core focus of the research community. Recently, a modest attention

is given to this direction in SLAM and in robotics in general. In this section,

we review the effort exerted in that field and discuss the relevance of the work

done to robustness and resilience of SLAM in detail. Additionally, we pro-

vide a taxonomy of the different methods mentioned to provide a graphical

representation of the available landscape in that topic.

There exist a wide spectrum of methods for fault detection associated

with the specifics of the SLAM paradigm, internal structure, sensors used,

observability, and evaluation environment. The following subsections discuss

each category of fault detection and briefly discuss its principle of operation.

As known, modern graph-based SLAM pipelines consist of three major sub-

modules: Sensors and sensor acquisition/pre-processing, front-end where fea-

ture extraction and data association is conducted, and back-end where MAP

estimation is conducted.

Prior to graph-based SLAM, different filtering techniques were used to

solve the SLAM problem. Filtering-based SLAM depends the utilization of

either kalman filters and their variants or Particle filters for the estimation of

the SLAM state [24]. Fault detection in Filtering-based method was relatively

straight forward due to the nature of the filters themselves that has an internal

indicator for state quality. For instance, in kalman filters, monitoring of state

covariance was used in [73] to detect faults in the system as it provides an

indication of the quality of the estimates. On the other hand, anomalies in

the weights of different particles in particle filters can be used as an indicator

for estimation faults [47].
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2.2.4.1 Fault detection in sensory inputs

SLAM relies on sensory inputs to percept the environment, and among the

most famous sensors used are: IMUs, RGB cameras, and LiDARs. It is worth

mentioning that, faults in SLAM due to sensors can be divided into two cat-

egories: faults in the sensor hardware itself resulting in input signals that are

not properly representing the environment, and faults due to the nature of the

environment and the motion profiles of the carrier.

The former category is usually detected by means of fault detection and iso-

lation (FDI) techniques [180], where nominal sensor conditions are monitored

and a fault sensor is isolated from any estimation process. A wide spectrum

of faults can happen in sensors due to manufacturing defects and variability,

operation outside nominal conditions, and bad calibration. A comprehensive

review of such faults are provided in [18] for IMUs, [164] for RGB camera, and

in [31] for LiDARs.

On the other hand, the latter category relies on the detection of out-of-

distribution measurements, consistency among sensor readings, and statistical

modeling of sensor errors. This is under the assumption that the sensor itself

is not faulty and that, sensor readings are a reflection of the environment it

was deployed in.

Statistical modeling of IMU biases has been discussed in the context of

filtering-based SLAM, where the EKF state is defined to include both gyro-

scope biases and accelerometer biases [197]. This statistical modeling seeks

to predict the non-deterministic bias instability in both gyroscopes and ac-

celerometers along side the covariance of such estimations. This covariance is

usually used as an indication of the quality of the input, and thus, an in-direct

indication of a potential fault in subsequent modules. Additionally, saturation

conditions in IMUs (specifically accelerometers) were used to detect failures

in aggressive manoeuvres of drones in [53], while detection of zero-rate states

was used for detection of stationary carriers which was used an initiator for

error correction in navigation state in [7].

Additionally, the monitoring of image quality and consistency over a tra-
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jectory is one key to detect failure in SLAM systems due to the fact that

such conditions can constitute a big challenge for SLAM to overcome. This

can be done by characterization of RGB images and studying the relation be-

tween such characteristics and the overall performance of SLAM, which was

introduced and discussed in our prior work [5].

Moreover, LiDARs play a vital role in modern perception systems, and

range measurements can be impacted by adverse conditions in the environment

such as fog, rain, among many others. These conditions result in anomalies in

the point clouds retrieved and can indicate a challenge on the SLAM system,

which is also an indirect indication of failure. Detection of such anomalies was

provided in [202] where point clouds were analyzed and a metric for measuring

the quality of point clouds retrieved from LiDARs. Studying the relation

between such metric and SLAM performance can provide an early indicator

of global SLAM failure.

Finally, consensus of sensor readings was also considered as a method for

detecting reliable sensors to use in estimation. For instance, in [80], a number

of parallel EKFs were used with different mixes of sensory inputs. Then, a

majority vote-like decision process was conducted to detect and isolate prob-

lematic sensory inputs.

2.2.4.2 Fault detection in SLAM front-end

SLAM front-end is responsible for both short and long term data association.

For that to happen, a wide spectrum of tasks are performed such as feature

extraction, feature matching, odometry, and registration. Faults can happen in

any or all of these modules. Thus, there exist many categories of fault detection

methods that differ in terms of their indication of either local or global fault,

their dependency on a ground-truth for operation, and their knowledge of the

structure of the SLAM algorithm architecture. In this section we discuss these

techniques and provide a synthesis of their usage in SLAM pipelines.

Local fault detection is the detection of faults in a specific SLAM com-

ponent. This may not necessitate the failure of the whole SLAM system as

correction can happen in later modules. Such techniques can be classified
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based on their reliance on ground truth data or the local module/component

in SLAM they test.

The need for ground truth data was evident in a number of studies. For

instance, the amount of clutter in the scene (scene complexity) was modeled

using an α parameter in [122], which is then used to estimate the uncertainty in

pose estimation. Weak-supervision used inertial data in [3] to train a predictor

that can predict failures in odometry modules. Labels were generated using

radar readings, and was assumed to be inaccurate in the learning process.

Ground truth data was also used in [6], where an model was trained to predict

failures in LiDAR SLAM. The method crafts a descriptor of the input data

(laser scans) and pass this through two a supervised model to predict pass/fail

conditions. Point cloud alignment score was also used to predict SLAM failures

by training a classifier with score-pass/fail data in [199].

However, other methods and techniques were able to detect faults without

the reliance on ground truth data. For instance, detection of failure in features

tracking was presented in ORB-SLAM3 [25] where the number of tracked

points is monitored, and a failure is declared when this number falls below a

threshold of 15 points. Key points covariance was predicted in [112] and was

utilized to judge keypoints and guide their association process in object-based

SLAM. Moreover, uncertainty in visual odometry estimates was introduced

in [2], where it was then used to verify loop closure estimates. The system

keeps track of all loop closure opportunities and perform late verification on

them to avoid rejecting good loop closure candidates. RTAB-Map [91] also

relied on odometry failures as an indicator of SLAM faults, where it detects

constant odometry estimates that are equal to identity transforms to initiate its

sub-mapping module. Additionally, point cloud alignment and scan matching

scores were used to predict failures in a self-supervised setup in [1] where

the concept of entropy was used to produce a quality metric that is highly

sensitive to the performance of LiDAR odometry. Scan matching was utilized

as a fault detection technique in [77], results of scan matching using ICP

are converted to images and then feed to a CNN to detect matching errors.

Furthermore, residuals monitoring was also utilized to estimate faults in vision
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sub-module in GPS/SLAM setup in [17] by using the concept of super-pixel.

The detect faults were used to reject bad estimates coming from vision sub-

module. Finally, a model of the error residual is learned on-line in [148]. This

error is used to determine the important portions of the image, where more

features are likely to be reliable. The predicted residuals are then fed-back to

the feature extraction module to extract more features from important and

interesting parts of the image.

On the other hand, global fault detection is concerned with the detection of

situations where SLAM will either not produces estimates or provide unreliable

estimates that cannot be consumed by subsequent control algorithms. Most

of the global methods for global fault detection require ground-truth data.

For instance, GT is required to properly model SLAM errors as discussed

in [204] where a model of the vision system is learned in order to predict

failures. Additionally, prediction of SLAM performance cannot be achieved

without GT data as proposed in [103] where a regression model is trained

using an extended number of simulations to predict the performance of SLAM

by modeling the travelled path traversed by the robot by Voronoi Graphs.

Although the system is relying on ground-truth data to perform, this GT

data is acquired from simulations, which lowers the level of effort required to

provide it. In our work [4], we rely on ground truth to train a random forest

given the characterization of the input to predict the ATE of the trajectory

travelled so far. Moreover, a metric was defined to classify pass/fail conditions

of SLAM estimates using a supervised learning setup in [40], where features

were extracted from sensor inputs using a neural network. In [89], another

model was trained to detect pass/fail conditions as well using sensor inputs

where the model embraces early detection of failures before they happen given

a sequence of events. Finally, to determine map consistency, a new metric

was developed in [118] that requires ground truth maps. However, the system

cannot run on-line in real-time which is an obstacle in the way of using it for

real-world applications.

Finally, model-agnostic fault detection systems can be obtained by means

of simulation-based modeling of errors given only the input characteristics.
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The independence of the model in this context means independence from eval-

uation setup, and from an input from the SLAM system. An example of this

system is the aforementioned predictor of SLAM performance [103].

2.2.4.3 Built-in fault detection mechanism in SLAM

A wide range of SLAM systems do not have an internal mechanism for detect-

ing faults due to their reliance on loop closure for the corrections of errors if

they happen. However, this assumption may not hold true in many real-world

scenarios where loop closure opportunities may be very scarce or when they

are not reliable enough to be included in the SLAM optimization problem.

For that reason, a limited number of SLAM systems introduced an extra

module to the conventional SLAM pipeline, which is responsible for the de-

tection of faults, and the triggering of any recovery mechanisms if available.

For instance, ORB-SLAM3 [25] monitors the number of matches between two

keyframes, when this number falls below a defined threshold, the system is de-

clared to be visually lost. To recover, the system enters an inertial-only mode

where only measurements from the IMU are used for localization till the vi-

sion pipeline recovers. Additionally, VINS-Mono [146] relies on multiple fault

indicators which are the number of tracked features across keyframes, sudden

jump in the estimated pose (translation or rotation), and sudden change in

IMU bias values optimized by the backend. In RTAB-Map [91], the system

relies on the detection of identity transformation from odometry sources for a

defined time window. When this behaviour is detected, a failure is declared

and recovery mechanism is engaged using sub-mapping.

2.2.4.4 Fault detection in multi-robot systems

Fault detection in multi-agent/robot system can be achieved by collective

crowd-sending in the sense that, different agents/robots share their perception

information and enforce different constraints to maintain both local and global

consistency. The existence of more sensing and constraints sources makes it

easier for rejecting outlier that this where only one robot is used for sensing.

For instance, this concept was utilized in [100], where multiple robots were used
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to provide globally consistent maps through sharing of experience. Then, the

globally consistent information where used to calculate the local reprojection

error residuals, which guides the process of feature matching. Consequently,

they were able to maintain local consistency through global consistency.

2.2.5 Fault tolerance and recovery in SLAM

Fault tolerance and recovery play a critical role to achieve resilience in SLAM

due to the fact that they equip SLAM algorithms with the ability to re-

converge after a divergence is witnessed due to the in ability to produce esti-

mates or when estimates are not reliable enough for subsequent tasks. In this

section, we discuss how fault recovery was introduced in the SLAM pipeline.

2.2.5.1 Fault tolerance in SLAM back-end

Most of the mentioned approaches so far either deal with the sensory in-

put or the SLAM front end. However, others directed the attention to the

SLAM backend and proposed the usage of certifiable algorithms [196] where

the back-end (MAP optimization) is modified to provide robustness against

huge amount of outlier constraints (70% to 90% of random outlier constraints)

in the pose graph.

2.2.5.2 Fault recovery after detection

A limited number of general purpose SLAM algorithms are equipped with

modules to monitor the existence of a fault and thus provides a mechanism to

overcome such faults. In the literature, two paradigms in fault recovery were

witnessed. The first paradigm relies on the existence of multiple odometry

sources that differ in their failure modes. For instance, visual-inertial SLAM

is a typical example of a multi-sensor SLAM system where inertial odometry

and visual odometry failure modes do not intersect. In that case, when a fault

is detected in the visual pipeline, it is suspended from producing estimates,

and the inertial odometry pipeline overtakes the system until a recovery in

the visual pipeline is observed. An example of such behaviour was introduced

in LVI-SAM [165] and R3-LIVE [97], where a tightly-coupled visual-inertial
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architecture was utilized. Once a fault is detected by monitoring the number

of matched points, the coupling is disengaged and the systems runs in inertial

odometry-only mode.

The second paradigm relies on the fact the initialization phase of SLAM is

more rigorous and stable compared to normal operation. For that reason, re-

initialization of the system was conducted whenever a fault is detected. This

is evident in VINS-Mono [146] where re-initialization is invoked whenever a

fault is detected by monitoring the number of matched points, the consistency

in the estimated trajectories, and the sudden changes in carrier direction or

pose.

Modern SLAM solutions depends on a mix of the two paradigms to achieve

higher reliability. Once a fault is detected, the visual pipeline is suspended and

the inertial odometry is engaged as the sole estimates producer in the system.

If the error is sustained over a long period of time, re-initialization is engaged

as well to provide a new stable and reliable state of the system. In order

to avoid the shortcomings of re-initialization, the concept of sub-mapping is

utilized where an initialization of a new map is conducted and then those

sub-maps are merged in parallel whenever a loop closure is detected. This

technique was introduced in RTAB-Map [91] and ORB-SLAM3 [25] to provide

a more rigorous fault recovery mechanism for SLAM.

2.2.5.3 Fault correction without detection

A wide spectrum of SLAM algorithms depend on the correction of errors with-

out detection by solely relying on loop closure constraints to the factor graph

and initiate a new optimization iteration. This is evident in google cartogra-

pher [69], ORB-SLAM3 [121], and S-PTAM [139] to name a few. This category

of systems assumes correct detection of loop closure and the availability of loop

closure opportunities in the trajectory traversed, which are strong assumptions

specially for general-purpose SLAM algorithms.
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Chapter 3

A Framework for Quantitative
Characterization of Datasets

3.1 Introduction and Motivation

The last few decades have witnessed a number of advancements in the field of

Simultaneous Localization and Mapping (SLAM). This has been manifested

in the introduction of a number of SLAM solutions targeting accuracy and

efficiency such as: RTAB-Map [91], ORB-SLAM 1,2, and 3 [120][121][25], and

VINS-Mono [146], among many others. However, another important consider-

ation of performance, robustness/resilience, has rarely been formally addressed

or measured due to the lack of a rigorous definition for it in the SLAM litera-

ture. With the increasing need for reliable SLAM solutions in a wide range of

critical applications, such as autonomous driving, search and rescue mission,

social robotics etc., one may ask whether currently available datasets are able

to properly test robustness and resilience of a SLAM system, and whether they

can provide us with enough confidence in the system performance both in a

challenging situation outside of its tested operating range, and for operating

for an extended period of time.

As outlined previously, robustness and resilience are tightly coupled with

the pertrubations subjected to a robotic system. Perturbations are defined to

be any external conditions causing the system to deviate from its equilibrium

state. In SLAM, perturbations are usually implicitly contained in benchmark
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Developing a SLAM system typically focuses on two aspects: the design

of the algorithm itself, and the methodology used for testing and evaluation.

The former aspect has received a lot of attention from the SLAM community

and led to the development of many advanced and complex systems with dif-

ferent characteristics, sensors support, and architectures. On the other hand,

the evaluation of SLAM has focused on the quantification of the localization

and mapping quality [55], and on the introduction of benchmarks and datasets

to be used for off-line testing and evaluation. The characterization of the in-

troduced benchmarks/datasets, and the comparison between them has been

mostly done qualitatively [101]. In this work, we direct the attention of the

SLAM community to the importance of the characterization of the datasets

themselves rather than the algorithms with the purpose of defining the oper-

ating conditions of systems. We provide a measurement of robustness and an

evaluation procedure for resilience.

3.1.1 Measurement of Robustness and Resilience

As outlines in Chapter 1, the definitions for robustness and resilience rely on

the knowledge of the operating conditions in which a SLAM system will be

deployed. Current practices report accuracy when a given SLAM system is

run against a pre-recorded dataset. The reported performance cannot be used

as an indication for robustness or resilience unless the operation conditions

this dataset imposes are defined and measured. Thus, the proposed frame-

work bridges the gap by provided a systematic way to define operating condi-

tions (characterization metrics) as well as measuring them (applying them on

datasets). Therefore, accuracy is now tied to measurable environment condi-

tions, and performance can only guaranteed if the deployment environment is

exhibiting the same characteristics as the evaluation and testing environment.
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3.2 Problem Formulation

Let D be a set of sequences Qi of a SLAM dataset where:

D = {Qi, i = 1, ..., n} (3.1)

As such, a sequence Qi is a vector of mi measurements (e.g. images/inertial

measurements), i.e. mi = |Qi|, where i corresponds to a sequence inside the

dataset D.
Let F be a set of c characterization metrics fk(.), where:

F = {fk, k = 1, ..., c} (3.2)

Each characterization metric fk(.) is a function which response when ap-

plied is denoted by qi. Thus, we characterize each sequence, and a correspond-

ing characterization vector qi is generated for each characterization metric fk(.)

applied so that:

qi = {qi,1, ..., qi,mi
} (3.3)

qi,j,k is a feature representing the result of applying a characterization met-

ric fk(.) on sample (e.g. image) Ij in sequence i, and is given by:

qi,j,k = fk(Ii,j) (3.4)

For each characterization metric fk(.) in F , we seek to obtain a character-

ization vector qi for each sequence Qi in D.

3.3 Proposed Method

To address the aforementioned need, we introduce a generic and extendable

framework for the automatic characterization and analysis of SLAM datasets.

The framework is designed to offer an efficient way for extension to additional

sensors, characteristics, or datasets with limited development efforts. The

current version supports visual-inertial SLAM datasets, given their popularity

in the SLAM literature.
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The framework is divided into a number of sub-modules that either work

on-line (for data characterization) or off-line (for data analysis and visualiza-

tion). The system includes a number of built-in configuration files to control

different tunable hyperparameters present in the system. In Figure 3.2, a

block diagram of all sub-modules of the framework and their interactions are

provided in detail. These components are detailed as follows:

1. Dataset Adaptor Datasets differ in terms of the way the data is or-

ganized, which requires unification in order for the system to operate

seamlessly. Thus, adaptation of datasets to match a certain format is

done off-line before the start of the characterization process. This block

changes based on the selected dataset and generates a dataset description

file which is used by the framework for dataset reading.

2. Dataset Handler This module consists of a database that holds the

set of sequences Qi, and their enclosed sensor data. The acquisition

timestamps are saved alongside the data for synchronization purposes.

Additionally, it includes a scoreboard to store the characterization re-

sults once calculated from processing elements. Utility functions are also

available to facilitate the process of data exchange with other modules.

3. Processing Elements Handler This module consists of a number of

sample/sequence-level processing engines fk(.), which perform the char-

acterization on dataset data. The characterization results qi are propa-

gated back to the dataset handler for recording in the dataset scoreboard.

4. Dataset Scoreboard The dataset scoreboard is a 2-D vector of smaller

scoreboards/databases, where each element represents the characteriza-

tion results of a sequence qi when run through one of the processing

elements fk(.).

5. UI Handler and System Controller The main responsibility of this

sub-module is to handle the communication with the user, and control

the flow of actions and data among system modules and components.
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6. Help Function and System-Wide Utilities A number of system

utilities are available such as: statistical utilities, calculus utilities, and

data conversion/manipulation functions. Additionally, a number of im-

port/export functions are provided to facilitate the later phase of results

visualization.

7. Data Analysis and Post-Processing This module is considered an

off-line parallel sub-system, where the characterization results are ana-

lyized and visualized after exporting.

3.3.1 Characterization Stages

The characterization process is conducted on three different levels: Sample-

level, Sequence-level, and Dataset-level. The system starts by applying differ-

ent processing elements on applicable dataset samples in each sequence. Then,

statistical analysis of the extracted sample-level data is conducted. The ob-

jective of this stage is to provide insights on the similarities and the level of

diversity of sequences within the same dataset. Finally, statistical analysis of

the aggregated data of the whole dataset is done with the objective of compar-

ing datasets and providing rigorous measurement of their implied operating

conditions.

3.3.2 Characterization Assumptions

The framework uses the default values of the configuration parameters of any

underlying engines such as feature extraction, disparity calculations, etc. Tun-

able parameters such as threshold values can be controlled from within the

framework. Both default and tunable parameters used for the characteriza-

tion process are kept exactly the same to ensure fairness of comparison.
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3.3.3 SLAM Dataset Characterization Metrics

A wide spectrum of characterization metrics can be selected for the purpose

of determining the operating conditions of a SLAM dataset. Thus, we select

a sub-set of metrics that are directly impacting SLAM performance and are

of interest to the SLAM community. This section provides a description of

a selection of characterization metrics which are both measurable and chal-

lenging to SLAM systems. However, the framework can be extended to more

characterization parameters easily by defining new processing elements. The

characterization parameters are categorized into three different groups, ac-

cording to the aforementioned characterization levels of the framework. The

different characterization parameters are summarized in Table 3.1.

3.3.3.1 General Characterization Metrics

General characterizations of datasets refer to the characteristics which do not

depend on the physical output of a certain sensor. Rather, they depend on the

conditions of data acquisition such as the size of the data, its total duration,

changes in sampling rates, and the mismatch between timestamps of different

sensors. These characteristics are usually reported as part of the qualitative

description of SLAM datasets. However, not all datasets report them. Thus,

the need to automatically report these quantities becomes important in our

context.

A. Dataset Size

Dataset size refers to the number of sequences available |Q| and the num-

ber of sensor measurements available mi = |Qi| for each sequence. This can

be extended to detect the number of scenes available as well, however, this

semantic analysis is beyond the current scope of the paper.

B. Total Duration

The total duration is calculated by accumulating the timestamp difference

of the sequence, which is equivalent to the difference between the end and start
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Table 3.1: A Concise Summary of Datasets’ Characterization Parameters

Parameter Unit SM-L SQ-L DS-L Definition

General Parameters

Measurements Size Samples X X Total number of measured samples / sensor

Total Duration Sec. X X ttotal =
∑N

i=2(ti − ti−1)

Sampling Time Sec. X X X tsensor = (
∑N

i=2(ti − ti−1))/N

Timestamps Mismatch Sec. X X X Timestamps difference between corresponding sensors’ samples

Higher-Order Derivatives [161]

Jerk (j) m/sec3 X X X 1st-order time-derivative of acceleration data [Ax, Ay, Az]
T .

Snap (S) m/sec4 X X X 2nd-order time-derivative of acceleration data [Ax, Ay, Az]
T .

Angular acc. (α) °/sec2 X X X 1st-order time-derivative of angular velocity data [Gx, Gy, Gz]
T .

Angular jerk (ϕ) °/sec4 X X X 2nd-order time-derivative of angular velocity data [Gx, Gy, Gz]
T .

Sensor Saturation

Dynamic Range Coverage % X X (Maxsensor −Minsensor/DRsensor)%

Dynamic Range Crossing [125] % X X (
∑n

i=1 1|x(i,sensor) −DR(sensor)| < DR(crossing−ratio)) %

Rotation-Only Motion

Acceleration Magnitude [125] m/sec2 X X X fmag =
√

f 2
x,b + f 2

y,b + f 2
z,b

Rotation-Only Samples % X X X (
∑n

i 1(fmagnitude ≥ 9.81± 10%)) %

Image Brightness

Avg. Brightness (Br) [16] DL X X X Br =
∑n

i (0.299 ∗R + 0.587 ∗G+ 0.114 ∗B)

Zero-Mean Avg. Brightness Derivative (βBr) DL X X βBr = dBr/dt− µBr

Ratio of Thresholding (βBr) % X X (
∑n

i 1(|βBr| < σT ))%, σT ∈ {σBr, 2σBr, 3σBr}
Image Exposure

Trimmed Image Mean (µα) [150] DL X X X µα = (1)/(n− 2[nα]) ∗
∑[nα+1]

i=n−[nα] Ii

Trimmed Image Skewness (Sα) [150] DL X X X Sα = (
∑[nα+1]

i=n−[nα](Ii − µα)
2)/((n− 2[nα]− 1) ∗ σ3

α)

Exposure Zone [60] DL X X X Detection of black, white, under-, over-, or properly exposed images

Image Contrast [134]

Contrast Ratio (CCR) DL X X X CCR = (Ltarget/Lbackground) ∗ 100
Weber Contrast (CW ) DL X X X CW = ((Ltarget − Lbackground)/Lbackground) ∗ 100
Michelson Contrast (CM) DL X X X CM = (Lmax − Lmin)/(Lmax + Lmin)

RMS Contrast (CRMS) DL X X X CRMS =
√

1/n
∑n

i=1(li − l̄)2

Image Blurring [135]

Blurring Score (σ∇2) DL X X X Variance of the laplacian (σ2
∇2) = variance(∂2I/∂x2 ∗ ∂2I/∂y2)

Blurring Percentage/Image % X X X (
∑n

i 1σ
2
∇2,sub−img

> BlurringThreshold)%

Blurred Images Percentage % X X (
∑n

i 1σ
2
∇2,img

> BlurringThreshold)%

Detectable V-Features(SIFT[102], ORB[153], FAST[152])

Avg. # Feature/sub-image (Favg) Features X X X Favg = (Ftotal)/(dIH/bdime ∗ dIW/bdime)
Avg. Spatial distribution Ratio (Fdist−avg) % X X X Fdist−avg = (

∑n

i=1 1(Fi >= Favg))/(btotal)%

Abs. Spatial distribution Ratio (Fdist−abs) % X X X Fdist−abs = (
∑n

i=1 1(Fi >= 1))/(btotal)%

Image Disparity

Avg. Disp.(StereoBM) (µD,BM) [86] DL X X X Average of Disparity Map using StereoBM Method

Std. Dev. Disp.(StereoBM) (σD,BM) [86] DL X X X Standard dev. of Disparity Map using StereoBM Method

Avg. Disp.(StereoSGBM) (µD,SGBM) [71] DL X X X Average of Disparity Map using StereoSGBM Method

Std. Dev. Disp.(StereoSGBM) (σD,SGBM) [71] DL X X X Standard dev. of Disparity Map using StereoSGBM Method

Image Similarity [57]

DBoW2 Similarity Score DL X X X DBoW2 score to closet match in the same sequence

Distance to Closest Match Frames X X X The proximity distance between an image and its closest match in a sequence

* SM-L, SQ-L, and DS-L refers to sample-, sequence-, and dataset level characterization

* DR refers to inertial sensor’s dynamic range

* DL refers to dimensionless quantity
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sample timestamps, which is given by:

Durationtotal =
N
∑

i=2

(ti − ti−1) = tN − t1 (3.5)

The duration is reported for each available sensor in the data acquisition set-

up as an indication of the level of synchronization between different dataset

sensors.

C. Sample Time of Dataset sensors

The sample time is defined as the time step which a certain data sample

represents and is reported in seconds. This can be calculated by measuring the

difference between timestamps. The average sample time is an approximation

that is usually used to represent the sensors’ sampling rates, which can be

calculated the definition of total duration mentioned above as:

tsensor =
Durationtotal

N
(3.6)

Instead of using the average sample time for different calculus operations,

we use the exact sample time for our differentiation/integration operations

throughout the framework. This leads to a better and a more accurate cal-

culation of higher order derivatives and avoids the production of any residual

errors as a result of the sample time approximations.

D. Mismatch Between Dataset Sensors

Most of the available SLAM datasets provide their sensor data after some

level of post-processing, which usually includes removing a number of data

anomalies such as timestamps mismatch. However, this is not the general case

when raw data are used directly. However, for any multi-sensor system (such

as SLAM) to operate correctly, input information must be synchronized and

must be sampled at the exact same time to avoid any data integrity issues

which can lead to erroneous estimations. In order to detect these challenges,

and with the help of existing timestamps of all dataset sensors, the mismatch

between timestamps of different input sensors can be detected. The process is

simple, as it relies on finding the closest match for a certain sensor sample in

other available sensors. Then the difference in timestamps is calculated and

reported as an indication of the level of timestamps mismatch.
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3.3.3.2 Inertial Characterization Metrics

Inertial Measurement Units (IMUs) are currently considered a basic build-

ing block in industrial/commercial navigation systems. The reason for that,

is the considerable gain in terms of accuracy that can be achieved with the

integration of visual and inertial sensors either in a loosely-coupled or a tightly-

coupled schemes. This is reflected on datasets since the introduction of the

New College Dataset [170] and until our current day with tens of introduced

datasets in-between. Inertial characteristics of a dataset can provide informa-

tion on the motion profile, the aggressiveness of motion, and the composition

of motion with respect to different axes in a coordinate system.

Inertial measurements can be referenced to either the body frame or the

inertial global frame [125]. Commonly, inertial data in SLAM datasets are

presented in body frame [163][22]. This is, usually, coupled with alignment

information of the the system sensors with respect to each other. The existence

of a either a INS/GNSS system or a reference system is needed if body frame-

referenced inertial data are needed to be referenced in the local-level frame.

The relation between the two systems of axes is determined by a homogeneous

rotation matrix Rl
b, which can be used for executing the conversion of system

axes when needed.

A. Higher-Order Time Derivatives of Inertial Data

Statistical analysis of inertial data is commonly used as an indicator of the

boundaries of motion profiles the dataset are experiencing. Moreover, more

information can be deduced from the statistical analysis of higher order time

derivatives of inertial measurements in the body frame space. For instance,

Jerk (j) and Snap S [161], given in Equ. 3.7 and 3.8, are defined to be the first

and second order time-derivatives of acceleration, which are a commonly used

quantities to measure the smoothness of motion and the level of sudden/abrupt

changes a certain rigid body is experiencing. Similarly, first and second order

time-derivatives of angular velocity data known as the angular acceleration

α and angular jerk ϕ, provided in Equ. 3.9 and 3.10, are indicators of the

aggressiveness and smoothness of the rotation performed by the carrier holding
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the system sensors.

~jb =
d~f b

dt
(3.7)

~Sb =
d~jb

dt
=

d2 ~f b

dt2
(3.8)

~αb =
d ~ωb

dt
(3.9)

~ϕb =
d ~αb

dt
=

d2 ~ωb

dt2
(3.10)

Where: ~jb, ~Sb, ~αb, and ~ϕb are the jerk, snap, angular acceleration, and

angular jerk. The quantities provided are 3-dimensional vectors representing

the three sensing axes of accelerometer and gyroscope referenced to the body

frame.

Furthermore, the relative location of the IMU and the camera and the

accuracy of alignment and referencing to a single unified system of axes can

differentiate the angular motion from being a spinning motion or an orbiting

motion. The existence of one type of motion while having physical constraints

from the carrier itself can cause more uncertainty in the measurements and will

lead to erroneous motion estimation by the SLAM algorithm. For instance, a

UAV can have a spinning motion, while a car cannot due to its structure and

principles of motion imposed by its mechanical structure.

Higher-order derivative of motion profiles are of great importance in mod-

ern control systems due to the reliance of control systems on them for con-

trolling the motion of the complete physical plant. Controlling higher-order

derivatives is used in order to provide more stability and robustness [126] to

the controlled plant.

B. Sensors Saturation

Examination of the inertial sensor measurements against the dynamic range

can be used to detect the occurrence of sensor saturation, which is an indication

of possible data loss by the data clipping experienced. It is also an indication
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that the motion is beyond the measurements limits of the IMU, and thus

an indication of the wrong choice of the sensors configuration in the dataset

collection set-up.

(a) (b)

Figure 3.3: An example of inertial sensor saturation and data loss anomaly. (a)
Represents a physical signal within the sensor dynamic range. (b) Represents
a physical signal beyond the sensor’s dynamic range and illustrating the data
clipping/loss witnessed

Fig. 3.3 illustrates the importance of data saturation checking. It shows

two different angular velocity measurements. The first one is not experiencing

any data clipping or wrapping as it is within the sensor’s dynamic range,

while the second one is experiencing data loss due to information clipping

when the physical quantity measured is exceeding the sensor’s dynamic range.

In the later case, IMU measurements are unreliable due to the data clipping

witnessed. This data loss can cause odometry modules to produce unreliable

odometry measurements and can degrade the performance of the whole SLAM

solution if not corrected by aiding odometry sources or detected by implicit

measurements reliability/integrity checks.

C. Detection of Rotation-Only Motion Profiles

Rotation-only motion profiles is the scenario where the carrier is only per-

forming rotation around its center-of-mass with no translation in any axis.

This motion profile imposes a challenge on traditional SLAM systems that rely

on keyframes for motion estimation. The rotation-only motion profile forces

the keyframe selection engine to drop a huge number of frames, resulting in a

very sparse keyframe vector which causes both the mapping and localization
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to fail [138]. Due to this fact, SLAM datasets need to be characterized for the

detection of such motion profiles.

The detection of rotation-only motion profiles can be done either by analyz-

ing the ground-truth localization data provided with datasets or by analyzing

the acceleration data provided as part of the raw data of the dataset. The for-

mer method is straightforward and is done by extracting the translation vector

of the carrier and detecting any non-zero components present. The process

can be enhanced by setting a threshold to absorb the small noise margin the

data acquisition system may be subject to.

The later method of analyzing the accelerometer data depends on the prin-

ciple of operation of the accelerometer itself. The accelerometer is capable of

measuring any linear acceleration (in case of linear motion) and the gravity

vector as well [125]. Although the acceleration measurements are provided in

the body frame, the existence of linear acceleration can be detected by mea-

suring the total acceleration magnitude, and comparing it to the gravity value.

The comparison is augmented by an uncertainty range of 10% to avoid any ac-

celeration noises present. This ratio is added to accommodate for non-ideality

of inertial sensors, as well as for the compensation of the Corlios effect. Thus,

The acceleration magnitude can be calculated by:

fmagnitude =
√

f 2
x,b + f 2

y,b + f 2
z,b (3.11)

Where [fx,b, fy,b, fz,b]
T is the acceleration vector in the body frame. The

acceleration magnitude fmagnitude is then tested to detect linear translation as

follows:

Tstatus =

{

1, if fmagnitude ≤ 9.81± 10%

0, otherwise
(3.12)

The former method is useful when the ground-truth localization informa-

tion are provided with the dataset, which is the case for most of the released

SLAM datasets. While the later method is specifically useful in the situation

where the ground-truth data are not available.
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3.3.3.3 Visual Characterization Metrics

Visual sensors is the most commonly used sensors in the SLAM datasets and

benchmarks literature. This is a direct indication of the important of such

sensors and the implicit indication of the utilization of vision as a basic and

fundamental building block in both legacy and modern SLAM systems. Thus,

the characterization of the visual data provided in datasets is essential and

critical to stand on the operating boundaries of SLAM systems. Visual infor-

mation is rich in nature and provides a wide range of insights into the scene

a SLAM system is deployed in. However, this implies a huge challenge in the

process of characterization of such information due to its diversity and rich-

ness. Thus, in the proposed framework, a number of characterization metrics

were picked based on their direct impact on the front-end sub-system of SLAM

solution, and also based on the claimed qualitative characteristics of any newly

proposed SLAM dataset. The generic nature of our proposed framework is a

key feature of it, and is a key enabler for future extension and alteration of

characterization metric with limited development efforts.

A. Detectable Visual Features

A fundamental building block in visual SLAM systems is the feature ex-

traction and matching block. The process starts with feature extraction from

subsequent images using one of the famous feature extractors such as SIFT

[102], SURF [13], ORB [153], among many others. Features are then matched

between each two consecutive images and the matches are then used in order

to estimate both the rotation and the displacement which was performed by

the camera. This process is known to be very critical in the SLAM pipeline

[24], as the accuracy of the matching governs the accuracy of the estimated

motion that, in turn, affects the accuracy of both localization and mapping

of the SLAM solution. Motion estimation can be performed with a limited

number of keypoint matches, however, with an extended number of feature

matches, the motion estimation process becomes over-constrained, resulting

in more accurate estimations. On the other hand, the less detectable features,

the more challenging the SLAM process becomes. This highlights the need
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to have guarantees in the systems to deal with such situations is crucial to

achieve a robust performance under these challenging conditions.

Subsequently, the measurement of the number of detectable features in

datasets as well as their spatial distribution across the image are needed to

indicate the level of challenge a certain dataset imposes on the SLAM system.

This measurement shall be done on the image level, sequence level, and finally

the whole dataset level.

In the proposed framework, we start from the image level, where we utilize

three visual feature extractors which are: SIFT [102], FAST [152], and ORB

[153] to report the total number of detectable visual features in an image.

Then, we divide the image into square-shaped bins with configurable dimen-

sions. After that we calculate the average number of feature per bin, which is

given as:

Favg =
Ftotal

dIH/bdime ∗ dIW/bdime
(3.13)

where: Favg is the average features per bin, Ftotal is the total number of de-

tectable features in an image, IH and IW are the height and width of the

image, and bdim is the configurable dimension of the image bin.

After that, we compare the number of features in each bin Fb with the

average number of features per bin Favg to decide on whether the features

are uniformly distributed or spatially biased in the image. If a the number

of features in a certain bin is greater than or equal to the average number of

features per bin, then, the bin is marked to have enough a proper number of

features, and vice versa otherwise.

The number of bins with features that are greater than or equal to the

average number of features per bin Favg are then counted to calculate the

percentage of bins with above average detectable features count using the

following formula:

Fdist−avg =

∑n

i=1 1(Fi >= Favg)

btotal
% (3.14)

Additionally, the number of bins with any number of features presented
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50, and 100 pixel. As shown, we can observe that with the increased bin size,

the spatial distribution bias of visual features fades away. It also shows how

the spatial distribution of the features in the image can provide insights of

reliability of detected visual features.

B. Image Disparity Levels

A wide spectrum of modern SLAM solutions support stereo vision due to

its usefulness in the detection of image depth and the lack of problem of scale

ambiguity that is present in monocular vision solutions [158]. Consequently,

most of the available SLAM datasets provide stereo vision data. One of the

challenges a SLAM solution faces is the range of disparity values, which is

directly related to the depth by the following equation:

Disparity = x− x′ =
Bf

Z
(3.16)

where x and x′ are the 2D projections of a 3D point in two stereo image pair,

B is the baseline between the two stereo camera, f is the focal length of the

camera, and finally Z is the depth of the 3D point.

In order to characterize the range of disparity values, we calculate the

disparity image of the input image pairs and report the average image dispar-

ity µDisparity and the standard deviation σDisparity of each resulting disparity

image. Two different algorithms were used in order to diversity the char-

acterization process which are: the Block Matching algorithm (StereoBM in

OpenCV) [86] and the Semi-Global Block Matching algorithm (StereoSGBM

in OpenCV)[71]. Similar parameters were provided to both algorithms in order

to ensure the fairness of comparison.

C. Revisit Frequency and Image Similarity

A wide range of visual SLAM algorithms depend on the existence of loop-

closure opportunities to correct the accumulated errors, which is not guaran-

teed to exist when the system is deployed in an environment or tested on a

dataset different from what it was trained to tackle. In fact, the lack of loop-

closure opportunities adds to the challenge a SLAM system has to tackle, and

impact the system robust when these opportunities are rare or non-existing.
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Thus, the revisit frequency in SLAM datasets has to be quantitatively mea-

sured and reported to expose the dependency of the SLAM solution accuracy

and loop-closure.

A well-known and widely-used technique for loop-closure detection is the

bag-of-visual-features method, where images are described by a histogram of

visual features’ frequencies [169]. These visual features are called the visual

dictionary of the vocabulary and are the result of clustering the visual features

space [8]. In the proposed framework, we utilize DBoW2 [57] which is used by a

number of modern state-of-the-art SLAM solutions for loop-closure detection

such as RTAB-Map [91], ORB-SLAM 1,2, and 3 [120][121][25], and VINS-

Mono [146], among many others. Moreover, we utilize the visual vocabulary

provided with the ORB-SLAM series (ORBVoc) as the base vocabulary for

image descriptors due to its diversity.

A number of metrics can be extracted to indicate the level of image sim-

ilarity in the sequence in hand. The DBoW2 [57] provides a similarity score

between the query image and the closest match in the sequence loaded to the

database. This score, denoted as LCS, is recorded. Additionally, the distance

to the closest match, denoted by LCD and represented in frames, is recorded

as an indicator of the level of dynamics in the sequence. The calculated score

LCS is checked for three thresholds which are S = 1.0, 0.9, 0.5 and the num-

ber of matches above the aforementioned scores is recorded. In the original

DBoW2 [57] work, a score of S = 0.3 was considered a successful loop closure

opportunity.

D. Motion Blurring

Motion blurring can be a result of the motion of either the camera or the

objects inside the camera’s field of view. In the former case, motion blur is

expected to be global and its impact shall be manifested on the whole image,

while in the latter case, we can witness local blurring of specific objects in

the image. Consequently, the detection of each type of image blurring is

different and both are important characterization metrics of SLAM datasets

as they pose two different types of challenges on the SLAM algorithms and
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on sub-images and thus detect localized blurring.

The resulting matrix of blurring scores of sub-images can further be utilized

to detect the percentage of blurring in images. Moreover, the declaration of

an image being blurred or not is now subject to the number of blurred sub-

images. In the proposed framework, an image is considered blurred if more

than 50% of its sub-images are blurred. The process is illustrated in Fig. 3.5.

In order to test the technique proposed, four images were selected from

KITTI Odometry [59] and EuroC MAV [22] datasets. Then, an induced blur-

ring was super-imposed on the selected images, and the algorithm was applied

to determine whether it will successfully detect the blurring percentage in-

duced or not. Table 3.2 provides a summarization of the results of applying

the segmented variance of Laplacian method on selected sample images.

Table 3.2: Blurring Detection Results using Segmented Variance of Laplacian
Method with bin size = 50px and blur threshold = 50

Blur Ratio

Dataset Sequence - Image Score Induced Detected Blurred?

EUROC MH 01 easy - SI#1

401.21 25 % 23.8 % No
280.54 50 % 53.1 % Yes
176.45 75 % 73.1 % Yes
5.87 100 % 100 % Yes

EUROC MH 05 difficult - SI#2

244.88 25 % 30 % No
185.19 50 % 55 % Yes
94.83 75 % 77.5 % Yes
5.99 100 % 99.4 % Yes

KITTI 00 - SI#3

557.24 25 % 36.5 % No
503.24 50 % 49.5 % No
134.87 75 % 82 % Yes
4.2194 100 % 100 % Yes

KITTI 08 - SI#4

924.72 25 % 35 % No
590.79 50 % 57.5 % Yes
160.77 75 % 81 % Yes
3.75 100 % 100 % Yes

It can be shown that, the algorithm was able to detect the percentage of

induced blurring in all of the introduced images with a small error. The error

is a result of the existence of blurring in the sample images before inducing the

simulated blurring and due to the empirical tuning of the blurring threshold

on which a sub-image is declared blurred or not.

The utilized algorithm has some limitation due to its sensitivity to the value

of the threshold thresholdblur. Another limitation stems from the nature of
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the scene we wish to characterize. For instance feature-less scenes such as clear

skies cannot be characterized by the aforementioned measure. However, with

the combination with other metrics (e.g. detectable visual features metrics),

one can identify the reliability of the blurring score and results provided.

E. Image Brightness

Image brightness is one of the metrics that can pose a challenge on SLAM

algorithms, specially when the image brightness is biased or skewed towards

being either too dark or too shiny. However, these terms need to be quan-

tified for the sake of comparison. A number of operators are being used the

academia and the industry to calculate the brightness of each pixel in an im-

age. Some of these operators, their differences, and their limitations were

mentioned and discussed in [16] such as arithmetic mean, HSV color scheme,

BCH color scheme, and YUV color scheme.

In our proposed framework, we depend on the openCV library’s definition

of brightness which depends on the definition of Luma used in image compres-

sion algorithms (e.g. MPEG ... etc), which is given by:

B = 0.299 ∗R + 0.587 ∗G+ 0.114 ∗B (3.19)

To have a single brightness characterization metric for the whole image bright-

ness, we calculate the geometric mean of all brightness values (grayscale image

intensities) and report this value to be the average image brightness.

On the sequence level, rapid and abrupt changes in image brightness put

more challenges into the path of SLAM algorithms, and thus, the characteriza-

tion of such phenomena is of great importance. The change of brightness can

be characterized by calculating the first-order time derivative of image bright-

ness values dB
dt
. A new variable βB is defined to be the zero-mean first-order

time-derivative of brightness and is given by:

βB =
dB

dt
− µB (3.20)

This zero-mean rate of change of image brightness given by the variable βB
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is then examined against whether it exceeds the values of |σ|, |2σ|, and |3σ|.
The number of samples exceeding each threshold is counted and the ratios of

the changes w.r.t. the size of the sequence are calculated.

F. Image Exposure

A closely-related metric to image brightness is image exposure, which is

an indication of the quality of the lighting condition of the image. In order to

measure image exposure and to detect whether an image is either properly-

exposed, over-exposed, or under-exposed, the image intensity histogram is

to be constructed. Additionally, the mean µ, variance σ, and skewness S

values are to be calculated. Due to the fact that images may have some pixels

with extreme intensity values, we utilize the concept of trimmed mean [194]

instead of the arithmetic mean that is usually used, which mandates dropping

a percentage of pixels α with extreme intensity values present on the two ends

of the histogram. The trimmed mean is defined by[150]:

µα =
1

n− 2[nα]

[nα+1]
∑

i=n−[nα]

Ii (3.21)

Subsequently, the standard deviation and the skewness can be defined as:

σα =

√

√

√

√

√

√

[nα+1]
∑

i=n−[nα]

(Ii − µα)

n− 2[nα]
(3.22)

Sα =

[nα+1]
∑

i=n−[nα]

(Ii − µα)
2

(n− 2[nα]− 1) ∗ σ3
α

(3.23)

As shown in Fig. 3.6, a bias in the location of the trimmed mean µα can

be one indication of the improper exposure of the image. Also, the selectivity

of the trimmed standard deviation σalpha and the signal skewness adds more

emphasis on the detected anomaly. The objective is to detect whether an image

is properly exposed, over-exposed, or underexposed. For that purpose, the

image intensity histogram is divided into seven regions: two discarded regions,

each representing 5% of the dynamic range, that are of extreme intensity and
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exposed, white image, and properly-exposed image status.

G. Image Contrast

Intuitively, image contrast C is a property of that represents the differences

in pixel colors and brightness. These differences play a vital role in making

these images both identifiable and distinguishable. Quantitative measurement

of image contrast is a long discussed problem in the literature, however, there

exist a number of definitions, outlined and discussed in [134], that are practi-

cally used, which we briefly discuss.

The first method, which is considered the simplest, is the Contrast Ratio

and is given by:

CR =
Ltarget

Lbackground

∗ 100 (3.25)

The second method is given by the Weber Formula and is given by:

CWeber =
Ltarget − Lbackground

Lbackground

∗ 100 (3.26)

The third method is based on the Michelson Formula and is given by:

CMichelson =
Lmax − Lmin

Lmax + Lmin

(3.27)

While the last method is measuring the root-mean square (RMS) of the

image pixels’ intensities, and can be given by:

CRMS = [
1

n

n
∑

i=1

(li − l̄)2]

1

2

(3.28)

where: Lmax, Lmin, and Lbackground are the maximum, minimum, and back-

ground luminance values in the image extracted from the image after the

conversion to the LAB colorspace. li is the pixel intensity at pixel i, and l̄ is

the normalized mean of the image pixels’ intensities. The contrast ratio, We-

ber contrast, and Michelson contrast values are scaled by 100 for visualization

purposes.

The methods used measure the ratio of luminance change in the image

w.r.t. the background luminance. However, they differ in the dynamic range
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in which the outputs are provided and in the corner cases where they pro-

vide unexpected behaviour. The suitability of the aforementioned methods

for measuring contrast is also on the long discussed issues in the literatures.

For instance, having one pixel with extreme intensity values can bias the con-

trast measurement, which is not a proper representation of image contrast.

However, we believe that the contrast measurements shall be evaluated w.r.t.

the application. In the SLAM case, having pixels with extreme values can

impact the reliability of some of the SLAM building blocks such as feature

matching and tracking unless some pre-processing is done. Thus, using the

contrast measurement to indicate such anomalies may have its usefulness in

the SLAM context.

3.4 Experimental Setup

To systematically analyze and compare measured characteristics, dataset char-

acterization techniques from the field of data science [132] are used. The analy-

sis includes: Statistical Analysis, Diversity And Interestingness Analysis where

Shannon Entropy (H) and Simpson Diversity Index (SDI) are calculated, and

Correlation Analysis where Pearson Correlation Coefficient (PPMC) is mea-

sured between the characterization metrics and performance metrics of SLAM

algorithms. The analysis metrics are provided in Table. 3.3.

Table 3.3: Dataset Characterization Results’ Analysis Metrics

Analysis Metric Formula Parameters

Statistical Analysis µ, mid, σ, σ2, S
N total number of samples
x input vector

Entropy (H) H = −
∑k

i=0 pi log2 (pi)
k no. of unique values
pi prob. associated

Simpson Diversity Index (SDI) SDI = 1 −
∑

k

i=1
ni(ni−1)

N(N−1)

N total number of samples
k no. of unique values
ni no. of samples for a unique value

Pearson Correlation Coefficient (PPMC) PPMC(x, y) = N
∑

(x.y)−
∑

(x)
∑

(y)√
[N

∑
(x2)−(

∑
(x)2)].[N

∑
(y2)−(

∑
(y)2)]

N total number of samples
x first characterization metric vector
y second characterization metric vector

The framework has been used to characterize three datasets which, to-

gether, are considered a classical standard for benchmarking SLAM. These

datasets are KITTI Odometry [59], EuroC MAV [22], and TUM VI [163]. Due

to the extendability and generality of the framework, support for additional
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characterization parameters, sensors, or datasets is possible with minimal de-

velopment efforts.

The importance of the characterization becomes evident when one takes a

deeper look at the results as many insights can be extracted and measured.

The following points highlight some of the benefits for the SLAM research and

development community. The framework provides a foundation for a complete

ecosystem for a systematic and a reliable methodology for SLAM algorithms

development, testing, and performance evaluation.

3.5 Results and Discussion

In this section, we present the characterization results of the three datasets

previously mentioned. As we will show, the framework proposed provides a

plethora of tools for characterization and analysis of datasets on the mea-

surement level, the sequence level, and the dataset level. Those tools enables

in depth understanding of the boundaries of situations implied by a dataset

and paves the way to systematic measurement of robustness and resilience in

SLAM.

3.5.1 Dataset Diversity and Interestingness

In Figure 3.8 and Figure 3.9, entropy and SDI analysis results are presented.

It can be shown that although the three datasets are very diverse, the amount

of information measured by the entropy and the SDI vary due to the nature of

the dataset formulation. Moreover, one can observe that the TUM-VI dataset

is superior in diversity when compared to EURO-C MAV and KITTI in terms

of both general and visual characterization. However, the diversity of TUM-VI

and EURO-CMAV is almost the same when it comes to inertial characteristics.

3.5.2 Dataset Anomalies

Dataset anomalies can be detected using the proposed framework. For in-

stance, sensor timestamp mismatch has been detected in the TUM-VI dataset,
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undiscovered anomalies, and opening the door to various research stud-

ies.

• The link between data characteristics and algorithm performance can be

established, leading to a systematic evaluation methodology for SLAM

system research and development, while guiding the introduction of new

datasets by detecting anomalies and providing measures for diversity,

redundancy, and coverage in previously introduced ones.

66



Chapter 4

Optimization of the SLAM
Evaluation Process

4.1 Introduction and Motivation

The robustness and resilience of SLAM cannot be determined, guaranteed, or

transferred without the quantification of the design and testing conditions first,

and then the validation and deployment conditions [183]. The performance of

SLAM is often evaluated by subjecting it to a temporal sequence of sensor

measurements in the form of a pre-recorded dataset. Thus, this gives rise to

the need to provide quantitative characterization of such datasets.

Usually, SLAM evaluation begins with the selection of a number of datasets

where each dataset consists of a number of sequences. The selection of the

datasets and their corresponding sequences are thought to capture the envi-

ronment conditions and anomalies sufficiently to establish an objective eval-

uation of the proposed SLAM algorithm. This selection has typically been

done qualitatively without an explicit consideration of the dynamic range of a

certain environmental parameter. In fact, as this study proposes, there exists

a huge level of redundancy and similarity among datasets and among measure-

ment sequences in the same dataset. Thus, we attempt to analyze and identify

the coverage of dynamic range achieved by a certain experimental setup, which

plays an important role in quantifying the robustness of a SLAM system. This

identification can lead to an optimal selection of testing sequences to achieve

the same level of coverage in terms of time and effort. With the aid of the
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where j is an index of the minimum or maximum element in the joint set ∆Q.

Therefore, the outer measure [154] of the interval ∆Q is given by:

|∆Q| = |∆Qmax −∆Qmin| − ε (4.4)

where ε is the numerical discontinuity in the ∆Q.

We seek to find a subset of sequences Q̃ ⊆ Q of size ñ such that:

ñ ≤ n & ∆Q̃ = ∆Q (4.5)

To find the minimum set Q̃, we define two quantities to compare subsets.

The first one is the cost of dynamic range coverage C(Q̃) defined by the number

of processed measurements per unit dynamic range coverage:

C(Q̃) = (
ñ

∑

i=1

mi) / |∆Q̃| (4.6)

The second is the dynamic range coverage percentage P (Q̃), which is the

dynamic range coverage of subset Q̃ relative to the full set of sequences Q,

which is given by:

P (Q̃) =
|∆Q̃|
|∆Q| % (4.7)

Finally, we define our problem as one of finding the subset Q̃ that achieves

the least number of SLAM evaluation sequences (LS) by solving:

argmin
ñ

ñ = |Q̃|

s.t. ñ ≤ n, Q̃ ⊆ Q, ∆Q̃ = ∆Q
(4.8)

or the lowest possible cost (LC) of dynamic range coverage by solving:

argmin
Q̃

C(Q̃) = (
ñ

∑

i=1

mi) / |∆Q̃|

s.t. Q̃ ⊆ Q, ∆Q̃ = ∆Q

(4.9)

The two objectives aspire reducing the footprint of SLAM evaluation while

maintaining the same dynamic range coverage achieved by a pool of evaluation

sequences.

To illustrate the relation between characterization metrics, and the afore-

mentioned definition, we discuss the following example. Assume we want to

70



evaluate a SLAM system against illumination changes (the objective charac-

terization metric) on the KITTI dataset, denoted as Q, that consists of 22

sequences (n = 22). After applying the illumination change characterization

metric f(.) on each sequence Qi, we obtain a characterization vector of size mi

denoted as qi. We calculate the dynamic range coverage ∆Q, and the cost of

coverage C(Q̃) of processing all sequences available in KITTI. We seek to find

a minimum set Q̃ with ñ sequences. This subset Q̃ must achieve a dynamic

range coverage for illumination changes that is equivalent to that of the full

KITTI dataset by either reducing the number of processed sequences (ñ ≤ n)

or reducing the cost of dynamic range coverage (C(Q̃) ≤ C(Q)).

4.3 Proposed Method

Given a set of dataset sequences, we seek to find an optimal minimal subset

of sequences that achieves a defined evaluation objective, which is achieving a

dynamic range coverage that is equivalent to the full input dataset over one

of characterization metrics. As shown in Figure 4.3, the process starts by

characterizing all sequences in the dataset w.r.t. the selected characterization

metric using the method proposed in [5]. This step produces a characterization

vector and a dynamic range coverage for each data sequence. After that,

this information is sent to an optimization algorithm which iteratively selects

an optimal subset of sequences satisfying the evaluation criteria. At each

iteration, the algorithm computes the dynamic range coverage of a candidate

and updates its internal state. Once all sequences are considered, the optimal

subset is reported.

Computation of the dynamic range coverage is described in Algorithm 1,

which depends on integrating sequences boundaries taking into consideration

numerical discontinuity regions among intervals that represent sequences in the

input dataset. The algorithm yields ∆Q̃ which is the dynamic range coverage

of a given set of sequences Q̃.

On the other hand, the problem of finding the optimal subset of intervals

to match a target dynamic range was historically solved using greedy-based
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Algorithm 2 Greedy Optimization Algorithm

Input: Q : set of sequences to optimize
Input: δq : set of characterization vectors
Output: Q̃ : optimal subset of sequences
Initialization:

B P (Q̃) ← 0 , current coverage percentage
B Q̃ ← {} , empty set

BEGIN: Greedy Optimization Approach

1: Sort δq list on min. value in characterization vector
2: i← 1, current sequence to process
3: while P (Q̃) < 100% do
4: if δqi,max > ∆Q̃max then
5: Update ∆Q̃max ← δqi,max

6: end if
7: if δqi,min < ∆Q̃min then
8: Update ∆Q̃min ← δqi,min

9: end if
10: Add Qi to Q̃
11: Update P (Q̃)← (|∆Q̃|/|∆Q|)%
12: Increment i
13: end while
14: Return: Q̃

4.3.1 A Greedy algorithm

Greedy algorithm is a methodology for solving optimization problems that

depends on selecting the best available options at the time of decision [37] and

is considered the baseline method to which our proposed method is compared.

The algorithm does not allow rolling back a taken decision based on observed

better alternatives. Thus, it can yield a non-optimal solution upon termination

due to its reliance on achieving local-optimality as illustrated in Algorithm 2.

As the problem definition suggests, one can abstract the problem of find-

ing the optimal set of sub-intervals to match the range of a target interval to

the famous knapsack problem [157] where the optimal subset of objects are

selected to fill a knapsack with defined capacity. Consequently, dynamic pro-

gramming solutions can be used for the problem to achieve optimal solution

with polynomial time [184].
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4.3.2 Dynamic programming (DP)

DP is used for solving an optimization problem by dividing it into smaller and

easier sub-problems. The final optimal solution is an incremental compila-

tion of the solution of the sub-problems [37]. Moreover, DP has the ability of

providing optimal solutions while maintaining reasonable and linear time com-

plexity when the optimization space is discrete, and can provide near-optimal

solution when the space is continuous due to the need to perform quanti-

zation. Tabulation-based techniques in DP depend on removing redundant

calculations of sub-problems [19] ensuring the calculation of any sub-problem

once at most as provided in Algorithm 3. The result of any sub-problem is

stored in a table-like data structure and is re-used when needed. Similar to

any recursive-based solution, a base case has to be defined and is used as a

program entry point. In our case, the dynamic range coverage percentage

P (Q) is quantized into 10 regions where each represents 10% coverage of the

range. In addition to that, an initial empty state representing 0% coverage

has to be defined as a base case. Thus, the DP algorithm defines 11 states,

where the first is the base state, and the last is required subset equivalent to

P (Q) = 100%. In tabulation-based DP, the optimization objective is embed-

ded in the algorithm by defining the replacement function which is responsible

for replacing the current state of a table cell with another. The replacement

function behaviour changes based on the optimization objective. For instance,

the dynamic range coverage of the potential state solution is computed and is

compared to the current state solution. The one with higher dynamic range

coverage is selected. Otherwise, either the one with the least number of se-

quences or the least coverage cost is selected.

4.3.3 Local optimality vs. sub-optimality

Local optimality in greedy-based algorithms seeks to find a solution given the

current state with memoryless strategy. This means that the algorithm cannot

undo a non-optimal step and would build upon it given any new information

received. This local optimality is different from sub-optimality, where an algo-
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Algorithm 3 Dynamic Programming Algorithm

Input: Q : set of sequences to optimize
Input: δq : set of characterization vectors
Input: s : number of states
Output: Q̃ : optimal subset of sequences
Initialization:

B T2..s ← null
B T1 ← { }

BEGIN: DP Optimization Approach

1: for i in range(1, s) do
2: for j in n do
3: L← { }, temp list to current subset candidate
4: if Ti not null then
5: L← Ti ∪ qj
6: P (L)← |∆(L)|/|∆Q|%
7: loc← bP (L)|/10c+ 1
8: if loc < 11 then
9: if Tloc not null then
10: Tloc ← L
11: else
12: if |∆(Tloc)| < |∆(L)| then
13: Tloc ← L
14: end if
15: if |∆(Tloc)| = |∆(L)| then
16: Execute: Replacement Fn.
17: end if
18: end if
19: end if
20: end if
21: end for
22: end for
23: Set Q̃← Ts

24: Return: Q̃

rithm can undo a step given newly revealed information, and would achieve a

near optimal solution. The divergence from optimality in that case is a result

of state aggregation or quantization errors.

4.3.4 Multi-objective optimization

Support of multiple objectives is also conducted to allow SLAM researcher

to optimize for a number of objectives at once when needed. Formerly, DP
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states are defined by the dynamic range coverage percentage P (Q̃). For mul-

tiple objectives, DP states are defined by the average dynamic range coverage

percentage P (Q̃), which is given by:

P (Q̃) =
k

∑

i=1

P (Q̃)i (4.10)

where k represents the number of characterization metrics (i.e. objectives) to

optimize for.

In order to enable multiple objective optimization to happen in polynomial

time, two extensions to the original DP algorithm are introduced:

1. Adaptive state quantization: Since the dynamic range coverage

is a continuous random variable, the need to perform quantization is

inevitable. This introduces some shortcomings which are improper choice

of granularity of quantization levels and can lead to local minima, which

will results in the inability of the DP algorithm to achieve a solution.

For that reason, we enhanced the traditional DP structure to adaptively

selecting the quantization level when a solution cannot be reached as

such, the algorithm refines the quantization granularity gradually by

increasing the number of states represents the total dynamic coverage

range when until a solution is reached.

2. State aggregation: Aggregation in dynamic programming is a well-

known method used in order to limit the number of states to maintain

the polynomial time complexity of the algorithm [14]. With the in-

troduction of multiple objectives optimization, representing all possible

combinations of objectives is not feasible specially when dealing with

an increasing number of objectives. For that reason, state aggregation

is performed as such, the average dynamic range coverage percentage

P (Q̃) is used to represent the state space on which quantization is per-

formed. Despite the ability of state aggregation to limit the state space

in which the DP algorithm is operating, it adds to its sub-optimality due

to the treatment of multiple real-world states are a single state, which is

considered an approximation.

76



4.4 Experimental Setup

Three datasets, KITTI [59], EuroC-MAV [22], and TUM-VI [163], along with

their characterizations, were used to demonstrate the performance of the pro-

posed method. When combined, they provide a total of 61 sequences. The

corresponding average combined dynamic range is used as the target coverage

dynamic range (100% coverage). The proposed method is evaluated in two dif-

ferent experimental set-ups that differ in the number of evaluation objectives

the algorithm aspires to optimize for.

Single-objective optimization: We start by evaluating the performance

of our proposed method given a single objective criterion. Characterization

metrics were divided into three groups: general, visual, and inertial character-

ization metrics. A baseline is defined to be the process of running all available

sequences in order till required coverage is achieved. In this case, the ordering

of sequences is following the traditional practice of running complete datasets

sequentially, and the stopping criteria is achieving dynamic range coverage

equivalent to the whole pool of sequences. In order to show the advantage

of our proposed method over traditional SLAM evaluation practice, we com-

pare our results to using: a single dataset, the complete pool of datasets (61

sequences), and the baseline.

Multiple-objective optimization: After that, we examine the perfor-

mance of the proposed method given multiple objective criterion and we com-

bine all characterization metrics in a fourth group, which includes the metrics

from the three aforementioned groups of metrics. To examine the performance

of our algorithm against multiple objective optimization, we vary the number

of objectives to cover ε in the range ε ∈ [1, k], where k is the number of ob-

jectives in a given group. For each step ε, we apply the proposed method to

100 randomly selected subsets of objectives, each of size ε. The process is con-

ducted twice to cover two optimization goals: least number of sequences (LE)

and least possible cost (LC). A more challenging baseline was selected for the

multiple-objective case. Thus, greedy algorithm is selected as the baseline to

which our algorithm is compared to, in order to provide an evidence for the
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Table 4.1: Dynamic range coverage analysis of general (G), inertial (I), and
visual (V) characterization metrics for optimization objective of least possible
sequences (LS) and least possible cost (LC) for single dataset, all datasets,
baseline, and our proposed selection method. Results are averaged over all
characterization metrics in a given group.

General Metrics Inertial Metrics Visual Metrics

Method subset Q̃ C(Q̃) P (Q̃) ñ C(Q̃) P (Q̃) ñ C(Q̃) P (Q̃) ñ

KITTI 598433 17.24 − − − − 3856.62 58.16 −
EURO-C 6.39242e+10 23.96 − 1119.14 81.94 − 1689.78 64.07 −
TUM-VI 5.78004e+9 84.23 − 19954.86 62.37 N− 15864.8 80.33 −
KITTI & EuroC & TUM-VI 6.32624e+9 100.0 61.0 10845.5 100.0 61.0 17969.97 100.0 61.0
Baseline 4.29366e+9 100.0 44.5 2713.21 100.0 18.54 14470.19 100.0 42.14
LS - Greedy (Ours) 4.71574e+8 100.0 3.6 1013.93 100.0 2.58 2171.16 100.0 12.59
LS - DP (Ours) 4.7144e+8 100.0 2.6 446.38 100.0 1.58 516.74 100.0 2.78
LC - Greedy (Ours) 3.52865e+9 100.0 12.3 2063.65 100.0 11.85 4218.88 100.0 27.51
LC - DP (Ours) 4.71439e+8 100.0 2.6 424.53 100.0 1.58 512.78 100.0 2.81

superiority of the proposed algorithm. Time and space complexity are ana-

lyzed for the baseline and the proposed algorithm to show the edge of using

DP algorithms compared to other available options.

4.5 Results and Discussion

In this section we present the experimental results of the proposed DP algo-

rithm compared to the selected baseline. We start by evaluating the perfor-

mance in terms of the size of the resulting subset compared to the original

subset of SLAM evaluation sequences. Next, we discuss how the SLAM per-

formance outcomes compare when run on the complete pool of sequences vs.

the reduced subset of sequences. After that, we discuss a real-world case study

where we aspire to optimize the evaluation process of a SLAM algorithm given

its design objectives. Next, we discuss the time and memory complexity of

our proposed method compared to the baseline and other available methods.

Finally, we conclude by illustrating some of the limitations of DP algorithms.

4.5.1 Single-objective subset optimization

In order to show the advantage of our proposed method over traditional SLAM

evaluation practice, we compare our results to using: a single dataset, the

complete pool of datasets (61 sequences), and the baseline. Table 4.2 shows
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Table 4.2: Sample optimal subset given a single metric objective divided into
3 groups: general metrics, inertial metrics, and visual metrics.

Least sequences (LS) Least cost (LC)

Characterization Metric subset Q̃ # seq. ñ Reduction % subset Q̃ # seq. ñ Reduction %

RGB samples outdoor63 1 98.3 % outdoor63 1 98.3 %
IMU sample rate outdoors53, corridor53 2 96.7 % outdoors53, corridor53 2 96.7 %

IMU/RGB ts mismatch
MH 05 difficult2, magistrale23,

MH 04 difficult2
3 95.08 %

V2 03 difficult2, magistrale23,
MH 04 difficult2

3 95.08 %

X-axis acceleration MH 01 easy2 1 98.3 % MH 01 easy2 1 98.3 %
X-axis angular velocity room53, room43 2 96.7 % room53, room43 2 96.7 %
Rotation only motion room66 1 98.3 % room66 1 98.3 %

Avg. ORB spatial distribution corridor13, 021, corridor33, slides13 4 93.44 % corridor13, 021, corridor33, slides23 4 93.44 %
Blur percentage 121, slides13 2 96.7 % 141, slides23 2 96.7 %
Inter-image brightness change magistrale33 1 98.3 % magistrale33 1 98.3 %

1,2,3 refer to sequences from KITTI, EuroC, and TUM-VI datasets respectively.

a sample of the reduced testing subsets (Q̃) for each of the characterization

metric groups (i.e. general (G), inertial (I), and visual (V)). The same process

was applied on all available characterization metrics (73 characterized metrics

presented in [5]) and the results were aggregated for each group of metrics,

which are summarized in Table 4.1.

4.5.2 Multiple-objective subset optimization

A greedy algorithm is defined to be the baseline to which we compare our

results in terms of the subset size and cost of the produced evaluation subset.

For that to happen, a heuristic must be selected to govern the operation of the

greedy approach, which was selected to be the average dynamic range coverage

percentage when optimizing for least number of experiments, and the average

cost when optimizing for least cost. Figure 4.4 shows the performance of the

DP algorithm compared to the greedy approach on the four characterization

metric groups while varying the number of objectives to cover for the two afore-

mentioned goals. We can observe the superiority of the dynamic programming

algorithm in selecting the optimal subset compared to the greedy approach re-

gardless of the objective group, number of objectives to optimize for, and

optimization goal. The superior performance is achieved in polynomial time

and is a result of the adaptive setting of quantization states. As mentioned in

Sec 4.3, the DP algorithm adjusts the number of states adaptively to a finer

granularity when a certain quantization level is not able achieve a solution,

and stops when a solution is acquired. Figure 4.5 provides an histogram of

different quantization levels and their success rate. As shown, the adaptive
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Table 4.3: ATE Properties with Reduced Evaluation Footprint for All, general
(G), inertial (I), and Visual (V) Characterization Metrics

ORB-SLAM3 VINS-Mono

Eval. Setup # Seq µ Med σ µ Med σ

Full TUM-VI 28 5.56 0.48 11.62 23.29 0.89 43.20

Reduced TUM-VI (All) 24 5.94 0.44 12.38 23.45 0.89 44.39

Reduced TUM-VI (G) 6 2.99 1.17 3.78 44.83 1.94 61.73
Reduced TUM-VI (I) 19 7.44 0.47 13.52 29.43 1.56 48.14
Reduced TUM-VI (V) 24 5.94 0.44 12.38 23.45 0.89 44.39

Table 4.4: Wasserstine distance of a randomly selected vs. DP-selected se-
quence sub-set

Eval. Setup # Seq ORB-SLAM3 VINS-Mono

Random Sub-set 24 0.9042067 3.2687920
DP-Selected Sub-set 24 0.4923214 1.7422619

DP vs. random selection different 45.5% (P=0.003) 46.7% (P=0.0015)

complete TUM-VI dataset and the optimized TUM-VI dataset taking into

consideration the multi-objective coverage of 73 characterization metrics. The

results presented in Table 4.3 show that, the SLAM ATE properties are the

same after reducing the evaluation footprint by 15%, and is almost the same

after a 30% reduction using only inertial metrics. To measure the significance

of the selected subset of sequences in describing the ATE properties of a SLAM

algorithm, the DP-optimized subset was compared to the random selection of

sequences of the same size. Due to the unbalanced distribution of the ATE

values, Wasserstein distance [129] is used to measure the similarity between

the probability distribution of the reduced TUM-VI subset and a randomly

selected TUM-VI subset. The experiment included increasing the subset size

until the full TUM-VI dataset is included, and comparing the 24 sequence cut-

off with the DP-based results as shown in Fig. 4.6. The experiment outcomes

were averaged over 2000 iterations. Calculating the probability of producing

the same DP results from random experiments showed that, DP subset is closer

in distance to the original subset with distance less than 45% of its random

counterpart. Additionally, the probability of producing the same DP outcomes

randomly is very improbable with a probability approaching zero as shown in
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Table 4.5: Comparison between the manual selection and our methdology for
selection with defined evaluation criterion.

Selection Method Evaluation Subset Q̃ # seq. ñ

Manually, used in [131]
fr1/desk, fr1/desk2,

fr1/plant, fr1/room, fr2/desk
5

DP [Illumination]∗
fr2/360-kidnap,

fr3/nostruct-notext-near-withloop
2

DP [Illumination Changes]∗ fr2/360-kidnap 1
∗Using the method introduced in this work
[...] indicates the selection objective

4.5.5 Time and memory complexity analysis

One of the main advantages of dynamic programming approaches is the ability

to reach an optimal solution in polynomial time compared to brute force so-

lutions. However, this comes with the cost of using more memory. To explain

the trade-off, we compare the time and memory complexity of our proposed

DP approach with the greedy approach (baseline), exhausted search approach

(brute force), and random search approach. As shown in Table 4.6, one can

observe the ability of the DP algorithm to achieve a near optimal solution in

polynomial time while maintaining an acceptable memory complexity. On the

other hand, other solutions are not par with the DP solution in either their

optimality level (e.g. random search and greedy approaches) or in their time

complexity (e.g. brute force exhausted search).

Table 4.6: Time and memory complexity of different approaches compared to
their optimality level

Method Time Memory Optimality

Brute force O(n ∗ 2n) O(n) Optimal

Random search N/A∗ O(n) Not optimal

Greedy approach O(nlog(n) O(n) Not optimal

DP algorithm (ours) O(n ∗m) O(m) Sub optimal
∗ time complexity depends on the no. of iterations tried
n : no. of sequences
m : no. of characterization metrics
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4.5.6 DP optimization limitations

A number of parameters determine the performance and level of optimality

the DP algorithm can achieve. These parameters are the granularity of con-

tinuous space quantization, the choice of the state replacement function, and

the choice of the state aggregation method. For instance, the definition of the

DP states has a huge influence on the performance specially when the space

we want to cover is continuous in nature and quantization is required. There-

fore, the granularity of quantization has a direct impact on the optimality and

time/memory complexity. Moreover, the definition of the replacement func-

tion in case of collision also has an impact on the performance as it can lead to

local minima. Finally, the choice of the state aggregation method can also add

to the algorithm sub-optimality if improper aggregation is conducted. Despite

the mentioned shortcomings of the DP algorithm, it can still outperform the

greedy approach.

4.6 Summary

The key points of this chapter can be summarized as follows:

• The problem of measuring the dynamic range coverage and objective

evaluation of SLAM was discussed, which is a fundamental requirement

in robustness and resilience in SLAM.

• An approach for optimizing the selection of the testing set was introduced

with two different optimization objectives: minimization of the number

of SLAM evaluation sequences and minimization of the total cost of

dynamic range coverage, with results for each presented and discussed.

• The results for each characterization category were presented in detail,

showing that the DP algorithm provided superior performance in se-

lecting the evaluation dataset compared to the greedy algorithm, while

maintaining polynomial time complexity given varying evaluation crite-

ria set size.
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• The DP-based approach reduced the mix of sequences needed to achieve

the same coverage objectives of the whole evaluation pool, highlight-

ing redundancy in SLAM datasets and providing a systematic approach

for designing SLAM experiments. This work shifts the focus of SLAM

evaluation from quantity to quality and establishes a framework for the

objective evaluation of SLAM, facilitating proper measurement of ro-

bustness and resilience in a quantitative manner.
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Chapter 5

Ensemble Learning Regression
of SLAM Errors

5.1 Introduction and Motivation

Simultaneous localization and mapping (SLAM) is a fundamental building

block that gives modern robotic systems the ability to estimate its location

while building a map of the navigated environment [12]. Over the last few

decades, SLAM research has evolved significantly in terms of architecture, ac-

curacy, requirements, and challenges [24]. One of the major challenges faced by

SLAM is the robustness and resilience of the system when deployed in the real

world [145]. Robustness of SLAM is the ability of the system to provide ac-

ceptable performance when operating under predefined conditions. Resilience

is the ability of a system to converge to an acceptable performance when op-

erating outside of the predefined conditions, which implicitly highlights the

importance of having internal error prediction and tolerance mechanisms in

SLAM to allow for this convergence to happen effectively [5]. For that reason,

researchers have directed their attention towards the introduction of integrity

indicators of either some blocks in the SLAM pipeline [28], or the final SLAM

outcome [103].

Absolute Trajectory Error (ATE) [205] is considered the de-facto metric for

measuring the accuracy of localization in SLAM and is used by most state-of-

the-art solutions such as ORB-SLAM3 [25], VINS-Mono [146], among many

others. ATE is defined to be the root mean square (RMS) of the Absolute Pose
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Error (APE), which is the instantaneous error between corresponding poses

in the traversed trajectory. The relation between ATE and APE is given by:

APE = ||X̂i −Xi|| (5.1)

ATE =

√

√

√

√(
1

N

N
∑

n=0

(APE)2) (5.2)

where X̂i and Xi are the estimated and ground truth pose at keyframe i

respectively.

Therefore, on-line prediction of SLAM ATE is an integral part of the quest

to reach robust and resilient SLAM as it provides SLAM systems with internal

indicators of the integrity of their estimates, which can be used to correct esti-

mation errors, govern switching between localization alternatives, and improve

robotics safety when deployed.

In this chapter, we propose a novel methodology for predicting the absolute

trajectory error (ATE) of a SLAM algorithm using 1-D global pooling of input

data characteristics and an ensemble learning-based regression model. This

methodology is motivated by the high correlation observed and reported in

our previous work [5] between the SLAM performance of multiple algorithms

on one side, and the characterization metrics measured on different SLAM

datasets on the other side. Since ATE is considered a coarse performance

metric, the method was also evaluated for suitability to predict APE as well.

5.2 Problem Formulation

Following the definition of the characterization process of a dataset in Section

3.2, the characterization vector qi (as introduced in Equation 3.3), we define

yi which is a scalar variable corresponding to the error of the trajectory.

Each characterization matrix qi is transformed to a 1-D vector zi of size

(m× 1) by applying a 1-D global pooling function g(.) as follows:

zi = g(xi) (5.3)
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5.3.2 Sequence characterization and 1-D global pooling

Each generated sub-sequence is considered to be an independent sequence of

images/sensor readings. We apply the characterization framework introduced

in [5] which contains an array of characterization metrics (e.g. measuring

brightness, contrast ... etc.) that generate a characterization vector for each

image/sensor reading in the sequence. As seen in Figure 5.3, characterization

generates a 2D matrix of size (m × n), where each row represents a charac-

terization metric outcome, and each column represents an input sub-sequence.

Due to the variability in sequence sizes, the generated 2D matrices are not of

the same dimension. Thus, to reduce the dimensionality and provide unified

feature vectors for training, we apply a 1-D global pooling function on 2-D

matrices to generate 1-D vectors of unified size of (m × 1). This is achieved

by reducing each row in the characterization matrix into a single scalar value

using the pooling function.

Global 1-D pooling is a technique that was introduced in [98] as a solution

to the problem of overfitting in neural networks. The technique does this

by reducing the spatial dimension of a feature map to a single value using

a global pooling function (e.g., average, min, max, etc.) across all features.

Essentially, this reduction replaces a detailed feature map with an abstract,

descriptive characteristic of it. Learning those characteristics instead of the

examples themselves was proven to enhance the generalization of the learned

model [62]. In this work, we examined different statistical 1-D global pooling

functions and their impact on prediction quality, which resulted in choosing

1-D global average pooling (GAP) due to its superior performance compared

to others.

In this chapter, we utilize one of 12 different pooling functions that include

statistical pooling functions (e.g. mean, min, max ... etc.) and diversity

pooling functions (e.g. entropy, simpson diversity index and its variants). In

order to provide the prediction model with more descriptive features, we also

concatenate all 1-D global pooled features into a single feature vector, study

its impact on the prediction quality, and compare its performance to using a
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regression model in order to ensure prediction stability of the trained regression

model.

5.3.4 Random forest regression model

A random forest regression model is trained and tuned on 70 % of the data

examples available for each test case. After that, the model is tested on the

remaining unseen 30 % in order to determine its performance. We utilize the

random forest regression implementation provided in scikit learn library [133]

due to its efficiency and ease-of-use. It also exposes a number of hyperparam-

eters that we can tune for optimal performance of the model.

Tuning the random forest hyperparameters is essential to achieve the best

prediction performance. For that, we perform a randomized grid search with

cross validation on the multi-dimensional space of hyperparameters provided

in Table 5.1. This method is proven efficient in selecting the best hyperpa-

rameters while maintaining reasonable complexity and execution time [143].

5.3.5 Performance Evaluation

To quantitatively evaluate the regression quality of our method, four different

metrics are utilized, which are defined as follows.

1. Coefficient of determination (R2)

R2 = 1−
∑n

i=1(ŷi − yi)
2

∑n

i=0(yi − ȳi)2
(5.5)

2. Mean absolute percentage error (MAPE)

MAPE =
100%

n

n
∑

i=1

∣

∣

∣

∣

yi − ŷi
yi

∣

∣

∣

∣

(5.6)

3. Mean absolute error (MAE)

MAE =
1

n

n
∑

i=1

|yi − ŷi| (5.7)

4. Root mean squared errors (RMSE)

RMSE =

√

∑n

i=1(yi − ŷi)2

n
(5.8)
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where y is the ground truth, ŷ is the predicted value, and n is the number of

testing samples.

Those metrics differ in terms of their allowable range, and their indication

of the quality of performance. Together, they give a clear indication of the

performance and suppress any corner cases or anomalies any metric can suffer

from.

5.4 Experimental Setup

In this section, we describe and discuss our experimental setup and associated

experimental results. As mentioned in Section 5.3, we run ORB-SLAM3 [25]

on three different datasets and in four different modes of operations, resulting

in 10 test cases as illustrated in Table 5.2. For each test case, we train and

tune the random forest, and evaluate the model performance. Additionally,

we study the impact of reducing the amount of training data on the ATE

prediction quality to show how our proposed prediction model can still perform

relatively well when limited data is available for training.

After that, the same experiments are repeated to predict SLAM APE in-

stead of ATE to evaluate the suitability of the proposed method for the pre-

diction of instantaneous errors of SLAM.

5.5 Results and Discussion

In this section, we show the experimental results of the proposed method-

ology along with a discussion of the performance of the model, how does it

compare to the selected baseline, and the performance of the model on out-of-

distribution data.

The experimental results show that the proposed method is able to predict

SLAM ATE with a mean accuracy of 93.1 %. On the other hand, the same

methodology was able to predict APE with a mean accuracy of 80.45 %, which

is a direct indication of the efficacy of our method, the validity of using the

characterization metrics as data descriptors, and the proper choice of the 1-D

global pooling function for the SLAM ATE/APE prediction task.
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Table 5.2: The number of sub-trajectories available from each dataset at dif-
ferent operation modes

# sub-trajectories available

Dataset # Seq M S M-I S-I

KITTI 22 11799 23201 - -
EuroC-MAV 11 3348 1956 3043 1484
TUM-VI 28 2049 1161 4230 1924

* M, S, M-I, and S-I refer to monocular, stereo,
monocular-inertial, and stereo-inertial respectively.

5.5.1 Training data generation

To generate examples for training the prediction model, we ran ORB-SLAM3

[25] on all sequences available in three different datasets, which are: KITTI

[59], EuroC-MAV [22], and TUM-VI [163]. We apply our proposed data ex-

ample generation process, which resulted in a great increase in the number of

available examples for training, testing, and validation. The method is applied

on four different modes of ORB-SLAM3 [25] which are monocular, monocular-

inertial, stereo, and stereo-inertial, resulting in 10 different test cases. Table

5.2 shows the number of training examples generated for each of the test cases.

5.5.2 Selection of regression algorithm

In order to validate our selection of the regression algorithm, we examined a

number of famous regression models with their default hyperparameter values

provided in [133]. These algorithms are: dummy regression that takes the

average of input features, linear regression, decision tree, random forest, Ada

boosting, and gradient boosting. The evaluation is done using R2 and MAPE

metrics to allow comparison of different test cases as they provide an absolute

measure of performance regardless of the value and range of the predicted

variable. As shown in Figure 5.4, random forests outperform other regression

algorithms resulting in the highest R2 value and the lowest MAPE value as

well. This confirms the argument outlined in [64] where it was found that

tree-based solutions can outperform other methods include neural networks

when the data is in a structured format. In our case, the characterization
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5.5.5 Impact of limited training data on SLAM error
prediction

The supervised learning formulation of the problem requires ground truth data

to produce training examples. The availability of such data may be challenging

and limited, thus, we examine our method against limited training data in

order to provide evidence of its adaptability to such challenging situations.

Not surprisingly, reducing the data available for training will reduce the

quality of ATE and APE predictions. However, the question is how much re-

duction should one expect in case of having limited amount of data available

for training. In addition to that, we seek to examine whether the proposed

method can be utilized to reduce evaluation efforts of SLAM by training on a

small portion of the dataset and the prediction of the rest of the dataset.

As shown in Figure 5.7, we can observe the normal behaviour of increased

prediction quality when more training data is utilized. When we look at the

R2 and MAPE metrics, we can observe that we are able to properly predict

ATE while training on only 20% of each test case. In that case, the reduction

in R2 is limited to only 6.51% on average. On the other hand, MAPE also

dropped by only 4.7%.

On the other hand, in Figure 5.8 we can observe the same increase in

predication quality with the usage of more training data. A closer look at

R2 and MAPE metrics show the ability to properly predict APE with only

40% of the data produces a reduction of 10.1% and 4% in R2 and MAPE

respectively.

5.5.6 ATE prediction accuracy

The comparison between the actual ATE and the predicted ATE using 1-D

GAP and random forests is presented in Figure 5.9 for the 10 testcases we

examined. Moreover, we present the kernel distribution estimate (KDE) of

the absolute error percentage of all testing example in each of the 10 testcases

in Figure 5.10. One can observe that we are able to predict the ATE value
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test cases.

• The study highlights the method’s capability to predict both coarse and

fine SLAM error metrics, enabling SLAM algorithms to self-assess and

enhance robustness and resilience.
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Chapter 6

On-line Fault Detection in
VI-SLAM

6.1 Introduction and Motivation

Robustness and resilience of SLAM systems are becoming critical requirements

in modern robotic systems due to their impact on our ability to safely deploy

robot systems in more diverse and challenging environments [5]. One of the

main requirements for having robustness and resilience is the ability of SLAM

to self-assess its estimation performance and provide mechanisms for the de-

tection and recovery from different faults.

What is a fault in SLAM? A proper definition of a fault in SLAM

is a critical first step that shall precede the proposal of any fault detection

or monitoring mechanism. A closer look into the literature reveals that the

definition of a fault is divided into two categories. The first is the inability of

the system to produce an output with limited attention to the reliability of such

output [25], [146]. While the second category defines a fault as the degradation

of performance beyond a defined boundary [103]. While the former definition

is easier to detect. For instance, RTAB-Map [91] monitors the transformation

between current and previous keyframes, and declares a fault when an identity

transformation is witnessed over a defined period of time. Nevertheless, this

category of fault detection methods was proven ineffective and led to many

false negative situations where fault recovery mechanisms were not engaged

while needed as shown in Figure 6.1. As shown, the error in ORB-SLAM3
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Due to the nature of the measurements of the IMU, deducing a navigational

state (e.g., orientation, position, and velocity) can be challenging due to the

accumulated error that leads to estimates drift [125]. However, with proper

calibration [141] and restriction of the IMU to operate in the short term, one

can achieve relatively acceptable estimates that can complement some of the

shortcomings of visual systems such as operating in textureless environments

or in poor lighting conditions to name a few.

In this chapter, we seek to provide a solution to the problem of performance

monitoring in VI-SLAM. The method relies on using a decoupled IMU-based

kinematic model in the short term that can act as a reliable supervisory signal

for VI-SLAM. With the existence of this supervisory signal, consistency of

VI-SLAM outcomes can be evaluated and faults can be detected robustly.

To achieve that, we start by providing a modified version of DUET [99] (i.e.,

Sequential DUET ), which is a data-driven IMU calibration method responsible

for the prediction of the IMU errors. Afterwards, we propose the utilization

of trajectory alignment using a buffered history of poses from VI-SLAM and

the IMU-based kinematics model to allow the measurement of consistency

between the two sources, and thus, the detection of faults if present. This

concept is employed in a wide spectrum of application such as multi-agent

robotics [100], redundant multi-source localization sensor fusion [189] [178],

and fault detection and isolation systems [75]. The proposed method neither

relies on the availability of ground truth data nor the building of a model

for SLAM, which makes it algorithm-agnostic, and suggests its suitability for

integration with any SLAM system retroactively. Additionally, the decoupled

nature of the proposed architecture avoids the negative feedback loop caused

by the traditional tightly-coupled architectures used in VI-SLAM [25].

6.2 Problem Formulation

Given a set of timestamped VI-SLAM poses Xs of size Ns, defined as:

Xs = {(ts,i, xs,i) | i = 1, 2, . . . , Ns} (6.1)
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such:

ε̂g,i = Fg(ω̃i−N , . . . , ω̃i) (6.4)

The predicted gyroscope error ε̂g,i and an optimized multiplier Ĉg are then

used to correct the raw gyroscope measurement as follows:

ω̂i = Ĉg(ω̃i − ε̂g,i) (6.5)

Afterwards, the corrected N + 1 gyroscope measurements ω̂ and raw ac-

celerometer measurements ã are fed to the second dilated CNN Fa to estimate

the accelerometer error ε̂a,i of sample ã as follows:

ε̂a,i = Fa((ω̂i−N , ãi−N), . . . , (ω̂i, ãi)) (6.6)

Then, the predicted accelerometer error ε̂a,i and an optimized multiplier

Ĉa are used to produce the corrected accelerometer measurement âi as follows:

âi = Ĉa(ãi − ε̂a,i) (6.7)

The original loss function L is disjoint to accommodate the new training

strategy as follows.

6.3.1.2 Loss Function

The proposed joint loss function outlined in [99] depends on joint optimization

of both the orientation and position error using a weighted average between two

loss functions: L1((p,R), â) and L2((R), ω̂), where the first aims at optimizing

for the position error given the ground truth position p and orientation R and

the second aims at optimizing for the orientation error given the ground truth

orientation R only. This joint loss function was designed to accommodate

the original strategy for simultaneous training of the two CNNs. However, in

Sequential DUET, we utilize each loss function separately due to our detached

structure and sequential training strategy.
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6.3.2 IMU Kinematic Model

To determine the pose of the carrier using the calibrated angular velocity

vector ω̂ and calibrated acceleration vector â, we utilize the kinematics model

[85], illustrated in Figure 6.4.

Given the initial state of a moving carrier (R(0), v(0), and p(0)) and the

calibrated IMU measurements represented by the angular velocity vector ω̂

and acceleration vector â:

ω̂ = [ω̂x, ω̂y, ω̂z]
T (6.8)

â = [âx, ây, âz]
T (6.9)

We start by calculating the skew-symmetric matrix of the calibrated an-

gular velocity vector ω̂:

Ω =





0 −ω̂z ω̂y

ω̂z 0 −ω̂x

−ω̂y ω̂x 0



 (6.10)

The time derivative of the rotation matrix is:

Ṙ(t) = R(t) ·Ω(t) (6.11)

Using the Taylor expansion and ignoring higher-order terms, for a small

timestep ∆t, the rotation matrix at time t+∆t is approximated as:

R(t+∆t) ≈ R(t)(I+Ω(t)∆t) (6.12)

To obtain the carrier velocity and position, the acceleration vector â is

transformed from the body frame to the inertial frame:

âinertial = R · âbody (6.13)

and then compensated to remove the gravity component g = [0, 0, 9.81]T :

ânet = âinertial − g (6.14)

The carrier velocity is updated as:

v(t+∆t) = v(t) + ânet,(t) ·∆t (6.15)
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6.3.4.2 Poses Alignment

Using Horn’s Method [72], [174], VI-SLAM poses Xs and interpolated IMU

kinematics model poses Xm,int are aligned. VI-SLAM poses are considered the

source trajectory and interpolated IMU kinematics model poses the destination

trajectory. The transformation from the source trajectory to the destination

trajectory is found and applied, aligning the two trajectories for comparison.

6.3.4.3 Pose and Trajectory Errors Calculation

Operating in real-time, we focus on error at the current time step. With

a history of poses in the current active map of the last n poses, errors can

be calculated both at the pose level and the trajectory level. On the pose

level, we utilize the translational and rotational pose error (APE) provide

in Equations 2.6 and Equation 2.7 respectively. On the trajectory level, we

employ the translational and rotation trajectory (ATE) outline in Equation

2.8 and Equation 2.9 respectively.

6.3.5 VI-SLAM Fault Thresholding

As outlined in Section 6.1, a fault is determined using threshold values εAPE,t,

εAPE,r, εATE,t, εATE,r for acceptable pose error and trajectory error at time

step t. A fault ξ̂ is detected by thresholding an error indicator E(t):

ξ̂(t) =

{

1 if E(t) > ε

0 otherwise
(6.21)

6.4 Experimental Setup

To evaluate the performance of the proposed methodology, we utilize the

EuRoC-MAV dataset [22] and TUM-VI dataset [163] and run their sequences

on the state-of-the-art ORB-SLAM3 [25] as our VI-SLAM system in monocular-

inertial mode. We start by evaluating the performance of sequential DUET

for IMU calibration using the Relative Translation Error (RTE), showcasing

the improvement witnessed when applying the kinematics model described in

Section 6.3.2 on both raw and calibrated data. Afterwards, we compare the
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Table 6.1: Relative translation error (RTE) performance of Sequential DUET
on EuroC-MAV and TUM-VI datasets

RTE (m)

Sequence Raw SeqDUET Improvement Improvement %

EuRoC-MAV - MH 01 easy 0.915 0.192 0.789 86.240
EuRoC-MAV - MH 02 easy 0.882 0.168 0.809 91.689
EuRoC-MAV - MH 03 medium 0.715 0.218 0.685 95.729
EuRoC-MAV - MH 04 difficult 0.838 0.226 0.732 87.375
EuRoC-MAV - MH 05 difficult 0.809 0.181 0.774 95.581
EuRoC-MAV - V1 02 medium 0.684 0.334 0.449 65.723
EuRoC-MAV - V1 03 difficult 1.087 0.443 0.594 54.678
EuRoC-MAV - V2 01 easy 1.009 0.550 0.429 42.516
EuRoC-MAV - V2 02 medium 0.678 0.736 -0.184 27.086
EuRoC-MAV - V2 03 difficult 0.847 0.685 -0.012 1.473

TUMVI - Room 1 0.482 0.422 0.168 34.737
TUMVI - Room 2 0.511 0.452 0.158 30.862
TUMVI - Room 3 0.574 0.542 0.090 15.675
TUMVI - Room 4 0.606 0.599 -0.008 -1.341
TUMVI - Room 5 0.537 0.521 0.042 7.768
TUMVI - Room 6 0.590 0.629 -0.096 -16.346

APE and ATE errors from SLAM and the calibrated IMU kinematics model

in the short term, which is the cornerstone for the proposed method. Then,

we study the impact of the sub-trajectory size on the performance of fault

detection. Finally, we compare our method for fault detection to the methods

used in reputable SLAM systems such as ORB-SLAM3 [25] and VINS-Mono

[146].

6.5 Results and Discussion

6.5.1 IMU Calibration Using Sequential DUET

To evaluate the performance of sequential DUET with our proposed sequential

training strategy, we employ Relative Translation Error (RTE) [205], the same

performance metric used in DUET [99]. This metric examines the performance

on sub-trajectories to explore the impact of trajectory size on calculated error.

As shown in Table 6.1, one can observe significant improvement in the perfor-

mance of the IMU kinematics model when calibration is applied to raw IMU

measurements in the EuroC-MAV dataset. However, the improvement is lim-

ited when it comes to TUM-VI sequences due to the pre-calibration conducted
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Figure 6.9: Fault detection accuracy and confidence intervals for difference
error indicator with varying trajectory size and error thresholds for TUM-VI
dataset

6.5.3 Accuracy and Confidence Intervals

To evaluate the performance of the proposed method, we calculated the ac-

curacy of different fault indicators and their confidence intervals using boot-

strapping techniques [46] over 1000 iterations. As shown in Figure 6.8 and

Figure 6.9, we observe similarities between ATE and APE indicators due to

relying on short-term sub-trajectories of poses. The method shows sensitivity

to both trajectory size and fault thresholding, with high accuracy observed

when thresholds are low. This is followed by a decrease in accuracy with an

increase in the confidence interval range, and then an increase in accuracy with

high thresholds. Due to the reliance on thresholding for fault detection, the

proposed method tends to treat all samples as faults when thresholds are low.

As thresholds increase, the method becomes more conservative, reducing false

positives but possibly increasing false negatives, leading to a drop in accuracy.

Finally, with high threshold values, the methodology detects faults with high

confidence.
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(a) EuRoC-MAV (b) TUM-VI

Figure 6.10: Baseline fault indicators used in ORB-SLAM3 (first row) and
VINS-Mono (second and third rows)

(a) Translational ATE (b) Rotational ATE

(c) Translational APE (d) Rotational APE

Figure 6.11: Accuracy of different error indicators vs. baseline methods for
fault detection on EuRoC-MAV dataset
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(a) Translational ATE (b) Rotational ATE

(c) Translational APE (d) Rotational APE

Figure 6.12: Accuracy of different error indicators vs. baseline methods for
fault detection on TUM-VI dataset

6.5.4 Comparison to Traditional Fault Detection Meth-
ods in VI-SLAM

Fault detection is not a standard component in VI-SLAM due to reliance on

backend optimization and loop closure constraints for error correction. How-

ever, some VI-SLAM systems include fault detection modules to guide SLAM

operation and engage fault correction mechanisms, crucial for robust real-time

performance when loop closure opportunities are scarce. In this subsection,

we evaluate these methods and their ability to detect faults.

ORB-SLAM3 [25] depends on thresholding the number of matched points

to declare a visually lost condition when fewer than 15 points are matched

in the current frame. VINS-Mono [146] combines this approach with other

heuristics, such as detecting significant changes in translation or rotation es-

timates from SLAM. We evaluate the three heuristics from both VI-SLAM

systems in Figure 6.10. As shown, all heuristics fail to indicate a fault and

accept performance degradation due to tracking a large number of points or

minimal motion produced by VI-SLAM. The observed behavior suggests that
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Figure 6.13: Heat maps results on EuRoC-MAV dataset for Precision, Recall,
and F1-Score (rows) results of fault detection for different fault detectors APE
translation, APE rotation, ATE translation, and ATE rotation respectively
(columns)

these heuristics can only detect significant errors that jeopardize system safety

in real-world scenarios. In contrast, our methodology can be tuned to detect

small errors, providing early indications and real-time monitoring of system

performance. The three aforementioned heuristics are then used for fault

detection by applying a binary thresholding function. The output is a binary

signal that is evaluated against our proposed method. As shown in Figure 6.11

and Figure 6.12, the proposed fault indicators outperform the three methods

as such they exhibit consistent accuracy over varying error threshold criterion.

The three baseline methods are highly sensitive to the error threshold criteria

which suggests their unsuitability for fault detection.

6.5.5 Impact of Trajectory Size and Error Thresholds

Due to the reliance on thresholding in our methodology, fault detection can

be viewed as a classification problem with a binary signal compared to ground

truth. Therefore, precision, recall, and F1-Score are better performance in-

dicators than accuracy [156] for evaluating the impact of trajectory size and
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Figure 6.14: Heat maps results on TUM-VI dataset for Precision, Recall, and
F1-Score (rows) results of fault detection for different fault detectors APE
translation, APE rotation, ATE translation, and ATE rotation respectively
(columns)

error thresholds on different fault indicators [63]. Figure 6.13 and Figure 6.14

provide a heatmap illustrating the relationship between trajectory size, error

threshold, and performance metrics (precision, recall, and F1-Score), while

Figure 6.15 and Figure 6.16 show a 3D surface for better visualization. For

translation fault indicators and the same threshold, an increase in true pos-

itives and true negatives is observed with increasing trajectory size. Larger

trajectory sizes provide more context for alignment in the proposed method,

improving initial values for the IMU-based kinematics model. Conversely, no

obvious impact of trajectory size is observed for rotational fault indicators.

The same behaviour is witnessed for both EuroC-MAV dataset and TUM-VI

dataset, which suggests that the proposed method is invariant to the dataset

used for evaluation.

Additionally, the sensitivity of the method to error thresholds is evident,

explaining changes in accuracy shown in Figure 6.8 and Figure 6.9. Precision

and recall heatmaps demonstrate initial false negatives, followed by conser-

vative fault detection, and finally, detection of only large faults with high
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Figure 6.15: EuRoC-MAV dataset results for 3D surfaces of Precision, Recall,
and F1-Score (rows) results of fault detection for different fault detectors APE
translation, APE rotation, ATE translation, and ATE rotation respectively
(columns) showing the relation between each metric and both trajectory size
and threshold

confidence.

6.6 Summary

The key points of this chapter can be summarized as follows:

• We address the challenges of performance degradation monitoring and

fault detection in VI-SLAM, which is crucial for ensuring robustness and

resilience in SLAM systems.

• Our IMU-based methodology for performance monitoring and fault de-

tection is introduced, which relies on a calibrated IMU to generate a

supervisory pose stream for comparison with VI-SLAM estimates, em-

ploying four fault indicators: translational APE, rotational APE, trans-

lational ATE, and rotational ATE.

• Experimental results demonstrate high accuracy in error detection across

varying trajectory sizes, with translational indicators showing greater

122



Figure 6.16: TUM-VI dataset results for 3D surfaces of Precision, Recall, and
F1-Score (rows) results of fault detection for different fault detectors APE
translation, APE rotation, ATE translation, and ATE rotation respectively
(columns) showing the relation between each metric and both trajectory size
and threshold

reliability due to higher accuracy compared to rotational ones. However,

sensitivity to error thresholds with direct binary thresholding is revealed,

leading to increased false negatives for minor errors and false positives

for major errors.

• A comparison with standard fault detection methods used in VINS-Mono

and ORB-SLAM3 underscores the superiority of our approach, proving

it to be simple yet effective, and playing a crucial role in achieving robust

and resilient SLAM capabilities.
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Chapter 7

Conclusion and Future Work

7.1 Conclusions

In this thesis, we systematically addressed the problem of robustness and re-

silience in SLAM by introducing a formal and rigorous definition for both

terms. These definitions allowed us to extract a number of fundamental re-

quirements by which a SLAM system can achieve robustness and resilience.

We proposed a set of algorithms and solutions that address each requirement

in robustness and resilience in SLAM. Through extensive experimentation,

analysis, and comparison to available methodologies in the literature, we have

proved that our solutions directly tackle the problem of robustness and re-

silience and provide an ecosystem where both objectives can be achieved.

• In Chapter 3, the problem of quantitative characterization of SLAM

datasets is discussed. It has been shown that quantitative characteriza-

tion of datasets can provide a measurement for the operating ranges and

conditions and serve as a key to measuring robustness and resilience.

Moreover, such characterization can provide a systematic methodology

for designing experiments where a certain environment condition is ex-

ploited. Thus, a novel dataset characterization framework has been in-

troduced and described in detail. As an example, the framework is used

to characterize three different datasets with the objective of showing its

capabilities in terms of measurements and visualization. The character-

ization process highlights a number of undiscovered anomalies present
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in some of the datasets and opens doors to a wide range of studies that

can be conducted. The link between the characteristics of the data and

the algorithm performance can finally be established and can lead to a

systematic evaluation methodology for SLAM system research and de-

velopment. On the other hand, introduction of new datasets can be

guided by the framework outcomes in terms of detecting anomalies by

providing a measure for diversity, redundancy, and coverage.

• In Chapter 4, the problem of measuring the dynamic range coverage of

SLAM was discussed. The study started with a brief review of the topic

in closely related disciplines. After that, we introduced an approach

for optimizing the selection of the validation set with two different opti-

mization objectives: minimization of the number of validation sequences,

and minimization of the total cost of dynamic range coverage. The re-

sults of each optimization objective were presented and discussed. After

that, the results for each characterization category were presented in de-

tail. It was shown that the DP algorithm was able to provide superior

performance in selecting the evaluation dataset compared to the greedy

algorithm, while maintaining polynomial time complexity. Utilizing the

DP-based approach provided a reduced mix of sequences that achieves

the same coverage objectives as the whole evaluation pool of multiple

datasets. The reduction achieved highlights the redundancy present in

SLAM datasets and provides a systematic approach to design SLAM

experiments given defined criteria. This work directs the attention of

SLAM evaluation from quantity to quality and provides a framework for

objective evaluation of SLAM. This shall open doors to proper measure-

ment of robustness and resilience of SLAM solutions in a quantitative

manner.

• In Chapter 5, the problem of performance prediction in SLAM is ad-

dressed as a fundamental requirement for robustness and resilience in

SLAM. The study starts by giving a brief review of the literature related

to this topic and provides a basis for the proposed algorithm. After that,
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we introduce our methodology for predicting SLAM errors using an en-

semble learning technique and 1-D global average pooling of input data

characterization results. Our methodology is first compared to a multi-

tude of regression models to validate our selection of random forests as

our regression model. Then, the methodology is tested on 10 different

test cases to quantify its adaptability to different datasets. The exper-

imental results showed superiority in using random forest compared to

our selected baseline and provided evidence for the ability to predict

ORB-SLAM3 errors using characterized and pooled features with accu-

racy that can reach 93.1% and 80.45% for ATE and APE respectively.

Additionally, the paper studied the impact of reducing the amount of

training data on error prediction quality, and it is shown that we are able

to use only 20% for ATE and 40% for APE to maintain proper prediction

quality. This is critical due to the limited availability of ground truth

data in practical settings. Finally, we study the suitability of the method

proposed to predict out-of-distribution data and provide evidence on the

dataset shift observed between different test cases examined. The study

illustrated the possibility to predict both coarse and fine SLAM error

metrics, that can equip SLAM algorithms with the ability to self-assess

their estimates and enhance their robustness and resilience capabilities.

• In Chapter 6, we address the challenges of performance degradation

monitoring and fault detection in VI-SLAM, crucial for ensuring robust-

ness and resilience in SLAM systems. The study begins with a review

of prior literature and synthesizes previous approaches proposed to solve

these issues. We then introduce our IMU-based methodology for perfor-

mance monitoring and fault detection, which relies on a calibrated IMU

to generate a supervisory pose stream for comparison with VI-SLAM es-

timates. Our method employs four fault indicators: translational APE,

rotational APE, translational ATE, and rotational ATE. Experimental

results demonstrate high accuracy in error detection across varying tra-

jectory sizes. While all four indicators detect faults effectively, trans-
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lational indicators show greater reliability due to their higher accuracy

compared to rotational ones. However, our analysis reveals sensitivity

to error thresholds with direct binary thresholding, leading to increased

false negatives for minor errors and false positives for major errors. Fi-

nally, a comparison with standard fault detection methods used in VINS-

Mono and ORB-SLAM3 underscores the superiority of our approach.

Our proposed method is proven to be simple yet effective, playing a

crucial role in achieving robust and resilient SLAM capabilities.

7.2 Limitations and Future Directions

A wide spectrum of research directions can be explored in order to build upon

the contributions of this thesis. We summarize some of them in the following

points.

• In Chapter 3, an extendible and generic framework was proposed to ad-

dress the problem of dataset characterization. The framework provided

a very systematic and automatic way to characterize datasets, and also

provided a wide spectrum of analysis tools by which we can understand

SLAM datasets more deeply. The system was evaluated on three differ-

ent datasets. However, we think that more datasets should be character-

ized and aggregations of these characterization results should be done.

This allows us to identify the gaps in SLAM dataset literature, provide a

method to measure the novelty of any newly introduced work, and also

push the limits of SLAM by highlighting their sensitivity to different

properties of the environment.

• Objective evaluation of SLAMwas discussed in Chapter 4 where a tabulation-

based dynamic programming algorithm was proposed to eliminate redun-

dancy in evaluation and provide only relevant data for evaluation. The

method assumes that the variability is only in the metrics in the eval-

uation criteria set of metrics. However, other metrics are also variable

and not constant, which may impact the evaluation process. For that
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reason, the method proposed can be augmented by taking into account

the variability of non-objective metrics as well by considering their cor-

relation to the performance of the SLAM system under test. Another

limitation of the system is state aggregation which was critical to ensure

a solution in polynomial time. The impact of this aggregation should

be studied to quantitatively evaluate how far our sub-optimal solution

is from optimality.

• A method for predicting SLAM errors was proposed where an ensemble

learning regression model was used to predict both the absolute trajec-

tory error (ATE) and the absolute pose error (APE) in Chapter 5. The

method showed high prediction accuracy when the training and testing

data relate to the same environment. However, it showed poor quality

of predictions when faced with out-of-distribution samples. This is due

to the supervised learning formulation of the problem. A number of op-

tions are available to overcome this problem. First, this problem can

be tackled by exploring semi-supervised and self-supervised techniques

where the out-of-distribution prediction accuracy can be enhanced by

augmenting training data with different transformations of the available

samples. Secondly, the method depends on the utilization of the metrics

outlined in the framework presented in Chapter 3, which may not be a

sufficient descriptor of the data. Utilization of deep neural networks to

provide a descriptor of the data can become handy in this situation and

can provide a more generalized descriptor for training data.

• A decoupled method for the detection of performance degradation in VI-

SLAM was proposed in Chapter 6. First, the method proposed operates

under the assumption of having the IMU-based kinematics model as a

high-accuracy signal that is in fact more accurate than VI-SLAM. This

may not hold true for future SLAM algorithms where performance is con-

tinuously being improved. Thus, automatic validation of this assumption

is required prior to the dependency on the methodology as the sole fault

indicator. Secondly, The method showed satisfactory results compared
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to standard methods, which suggests its suitability for integration with

SLAM pipeline where fault correction/tolerance can be triggered based

on the outcomes of the proposed fault detection mechanism. Despite the

fact that this would require an alteration in the internal architecture of a

VI-SLAM algorithm, it can optimize the localization accuracy and opti-

mize the outcomes sent to subsequent tasks as well. Thirdly, the method

proposed relies on Horn’s method for alignment which depends on the

alignment of the translation portion of the robot pose which proven to

be sufficient. However, the impact of other techniques for alignment on

the performance, such as Umeyama method [205], should be evaluated

as well. This allows SLAM researchers to make informed decisions on

which technique to choose for their implementation.
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“The málaga urban dataset: High-rate stereo and lidar in a realistic ur-
ban scenario,” The International Journal of Robotics Research, vol. 33,
no. 2, pp. 207–214, 2014.

[22] M. Burri, J. Nikolic, P. Gohl, T. Schneider, J. Rehder, S. Omari, M. W.
Achtelik, and R. Siegwart, “The euroc micro aerial vehicle datasets,”
The International Journal of Robotics Research, vol. 35, no. 10, pp. 1157–
1163, 2016.

131



[23] Y. Cabon, N. Murray, and M. Humenberger, “Virtual kitti 2,” arXiv
preprint arXiv:2001.10773, 2020.

[24] C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira,
I. Reid, and J. J. Leonard, “Past, present, and future of simultaneous
localization and mapping: Toward the robust-perception age,” IEEE
Transactions on robotics, vol. 32, no. 6, pp. 1309–1332, 2016.

[25] C. Campos, R. Elvira, J. J. G. Rodriguez, J. M. Montiel, and J. D.
Tardos, “Orb-slam3: An accurate open-source library for visual, visual–
inertial, and multimap slam,” IEEE Transactions on Robotics, vol. 37,
no. 6, pp. 1874–1890, 2021.

[26] N. Carlevaris-Bianco, A. K. Ushani, and R. M. Eustice, “University
of michigan north campus long-term vision and lidar dataset,” The
International Journal of Robotics Research, vol. 35, no. 9, pp. 1023–
1035, 2016.

[27] S. Carpenter, B. Walker, J. M. Anderies, and N. Abel, “From metaphor
to measurement: Resilience of what to what?” Ecosystems, vol. 4, no. 8,
pp. 765–781, 2001.

[28] H. Carson, J. J. Ford, and M. Milford, “Predicting to improve: Integrity
measures for assessing visual localization performance,” IEEE Robotics
and Automation Letters, vol. 7, no. 4, pp. 9627–9634, 2022.

[29] D. Caruso, J. Engel, and D. Cremers, “Large-scale direct slam for omni-
directional cameras,” in 2015 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), IEEE, 2015, pp. 141–148.

[30] S. Ceriani, G. Fontana, A. Giusti, D. Marzorati, M. Matteucci, D.
Migliore, D. Rizzi, D. G. Sorrenti, and P. Taddei, “Rawseeds ground
truth collection systems for indoor self-localization and mapping,” Au-
tonomous Robots, vol. 27, no. 4, pp. 353–371, 2009.

[31] F. Chang, E. Jafarzadeh, J. Del Gatto, G. Cran, and H. Sadjadi, “Fail-
ure mode investigation to enable lidar health monitoring for automotive
application,” in Annual Conference of the PHM Society, vol. 15, 2023.

[32] K. Chen, J. Zhang, J. Liu, Q. Tong, R. Liu, and S. Chen, “Semantic vi-
sual simultaneous localization and mapping: A survey,” arXiv preprint
arXiv:2209.06428, 2022.

[33] W. Chen, G. Shang, A. Ji, C. Zhou, X. Wang, C. Xu, Z. Li, and K.
Hu, “An overview on visual slam: From tradition to semantic,” Remote
Sensing, vol. 14, no. 13, p. 3010, 2022.

[34] Y. Choi, N. Kim, S. Hwang, K. Park, J. S. Yoon, K. An, and I. S.
Kweon, “Kaist multi-spectral day/night data set for autonomous and
assisted driving,” IEEE Transactions on Intelligent Transportation Sys-
tems, vol. 19, no. 3, pp. 934–948, 2018.

132



[35] G. Chustz and S. Saripalli, “Rooad: Rellis off-road odometry analysis
dataset,” arXiv preprint arXiv:2109.08228, 2021.

[36] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Be-
nenson, U. Franke, S. Roth, and B. Schiele, “The cityscapes dataset
for semantic urban scene understanding,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2016, pp. 3213–
3223.

[37] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to algorithms. MIT press, 2022.

[38] S. Cortés, A. Solin, E. Rahtu, and J. Kannala, “Advio: An authentic
dataset for visual-inertial odometry,” in Proceedings of the European
Conference on Computer Vision (ECCV), 2018, pp. 419–434.

[39] M. Cuturi, “Sinkhorn distances: Lightspeed computation of optimal
transport,” Advances in neural information processing systems, vol. 26,
2013.

[40] S. Daftry, S. Zeng, J. A. Bagnell, and M. Hebert, “Introspective percep-
tion: Learning to predict failures in vision systems,” in 2016 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
IEEE, 2016, pp. 1743–1750.

[41] J. I. Daoud, “Multicollinearity and regression analysis,” in Journal of
Physics: Conference Series, IOP Publishing, vol. 949, 2017, p. 012 009.

[42] A. J. Davison, “Futuremapping: The computational structure of spatial
ai systems,” arXiv preprint arXiv:1803.11288, 2018.

[43] A. J. Davison, I. D. Reid, N. D. Molton, and O. Stasse, “Monoslam:
Real-time single camera slam,” IEEE transactions on pattern analysis
and machine intelligence, vol. 29, no. 6, pp. 1052–1067, 2007.

[44] F. Dellaert, M. Kaess, et al., “Factor graphs for robot perception,”
Foundations and Trends® in Robotics, vol. 6, no. 1-2, pp. 1–139, 2017.

[45] J. Delmerico, T. Cieslewski, H. Rebecq, M. Faessler, and D. Scara-
muzza, “Are we ready for autonomous drone racing? the UZH-FPV
drone racing dataset,” in IEEE Int. Conf. Robot. Autom. (ICRA), 2019.

[46] T. J. DiCiccio and B. Efron, “Bootstrap confidence intervals,” Statis-
tical science, vol. 11, no. 3, pp. 189–228, 1996.

[47] P. M. Djuric, J. H. Kotecha, J. Zhang, Y. Huang, T. Ghirmai, M. F.
Bugallo, and J. Miguez, “Particle filtering,” IEEE signal processing
magazine, vol. 20, no. 5, pp. 19–38, 2003.

[48] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “CARLA:
An open urban driving simulator,” in Proceedings of the 1st Annual
Conference on Robot Learning, 2017, pp. 1–16.

133



[49] R. Dubois, A. Eudes, and V. Frémont, “Airmuseum: A heterogeneous
multi-robot dataset for stereo-visual and inertial simultaneous localiza-
tion and mapping,” in 2020 IEEE International Conference on Mul-
tisensor Fusion and Integration for Intelligent Systems (MFI), IEEE,
2020, pp. 166–172.

[50] K. Ebadi, L. Bernreiter, H. Biggie, G. Catt, Y. Chang, A. Chatter-
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