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ABSTRACT
Projected and subspace clustering algorithms search for clus-
ters of points in subsets of attributes. Projected cluster-
ing computes several disjoint clusters, plus outliers, so that
each cluster exists in its own subset of attributes. Sub-
space clustering enumerates clusters of points in all subsets
of attributes, typically producing many overlapping clusters.
One problem of existing approaches is that their objectives
are stated in a way that is not independent of the particular
algorithm proposed to detect such clusters. A second prob-
lem is the definition of cluster density based on user-defined
parameters, which makes it hard to assess whether the re-
ported clusters are an artifact of the algorithm or whether
they actually stand out in the data in a statistical sense.

We propose a novel problem formulation that aims at ex-
tracting axis-parallel regions that stand out in the data in
a statistical sense. The set of axis-parallel, statistically sig-
nificant regions that exist in a given data set is typically
highly redundant. Therefore, we formulate the problem of
representing this set through a reduced, non-redundant set
of axis-parallel, statistically significant regions as an opti-
mization problem. Exhaustive search is not a viable so-
lution due to computational infeasibility, and we propose
the approximation algorithm STATPC. Our comprehensive
experimental evaluation shows that STATPC significantly
outperforms existing projected and subspace clustering al-
gorithms in terms of accuracy.

Categories and Subject Descriptors
H.3.3 [Information Systems]: Information Search and Re-
trieval—Clustering

General Terms
Algorithms
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Projected clustering, Subspace clustering

1. INTRODUCTION
Seminal research [9] has shown that increasing data dimen-
sionality results in the loss of contrast in distances between
data points. Thus, clustering algorithms measuring the sim-
ilarity between points based on all features/attributes of the
data tend to break down in high dimensional spaces.

It is hypothesized [21] that data points may form clusters
only when a subset of attributes, i.e., a subspace, is consid-
ered. Furthermore, points may belong to clusters in different
subspaces. Global dimensionality reduction techniques clus-
ter data only in a particular subspace in which it may not be
possible to recover all clusters, and information concerning
points clustered differently in different subspaces is lost [21].

Therefore, several algorithms for discovering clusters of points
in subsets of attributes have been proposed in the literature.
They can be classified into two categories: subspace cluster-
ing algorithms, and projected clustering algorithms.

Subspace clustering algorithms search for all clusters of points
in all subspaces of a data set according to their respec-
tive cluster definition. A large number of overlapping clus-
ters is typically reported. To avoid an exhaustive search
through all possible subspaces, the cluster definition is typ-
ically based on a global density threshold that ensures anti-
monotonic properties necessary for an Apriori style search.
However, the cluster definition ignores that density decreases
with dimensionality. Large values for the global density
threshold will result in only low-dimensional clusters, whereas
small values for the global density threshold will result in a
large number of low-dimensional clusters (many of which are
meaningless), in addition to the higher-dimensional clusters.

Projected clustering algorithms define a projected cluster
as a pair (X, Y ), where X is a subset of data points, and
Y is a subset of data attributes, so that the points in X
are “close” when projected on the attributes in Y , but they
are “not close” when projected on the remaining attributes.
Projected clustering algorithms have an explicit or implicit
measure of “closeness” on relevant attributes (e.g., small
range/variance), and a “non-closeness” measure on irrele-
vant attributes (e.g., uniform distribution/large variance).
A search method will report all projected clusters in the
particular search space that an algorithm considers. If only
k projected clusters are desired, the algorithms typically use
an objective function to define what the optimal set of k pro-



jected clusters is.

Based on our analysis, we argue that a first problem for both
projected and subspace clustering is that their objectives are
stated in a way that is not independent of the particular
algorithm that is proposed to detect such clusters in the
data - often leaving the practical relevance of the detected
clusters unclear, particularly since their performance also
depends critically on difficult to set parameter values.

A second problem for the most previous approaches is that
they assume, explicitly or implicitly, that clusters have some
point density controlled by user-defined parameters, and
they will (in most cases) report some clusters. However,
we have to judge if these clusters “stand out” in the data in
some way, or, if, in fact, there are many structures alike in
the data. Therefore, a density criterion for selecting clusters
should be based on statistical principles.

Contributions and Outline of the paper. Motivated by
these observations, we propose a novel problem formulation
that aims at extracting from the data axis-parallel regions
that “stand out” in a statistical sense. Intuitively, a statisti-
cally significant region is a region that contains significantly
more points than expected. In this paper, we consider the
expectation under uniform distribution. The set of statisti-
cally significant regions R that exist in a data set is typically
highly redundant in the sense that regions that overlap with,
contain, or are contained in other statistically significant re-
gions may themselves be statistically significant. Therefore,
we propose to represent the set R through a reduced, non-
redundant set of (axis-parallel) statistically significant re-
gions that in a statistically meaningful sense “explain” the
existence of all the regions in R. We will formalize these
notions and formulate the task of finding a minimal set of
statistically significant “explaining” regions as an optimiza-
tion problem. Exhaustive search is not a viable solution be-
cause of computational infeasibility. We propose STATPC -
an algorithm for 1) selecting a suitable set Rreduced ⊂ R in
which we can efficiently search for 2) a smallest set P ∗ that
explains (at least) all elements in Rreduced. Our compre-
hensive experimental evaluation shows that STATPC signif-
icantly outperforms previously proposed projected and sub-
space clustering algorithms in the accuracy of both cluster
points and relevant attributes found.

The paper is organized as follows. Section 2 surveys related
work. Section 3 describes our problem definition. The algo-
rithm STATPC is presented in section 4. Section 5 contains
an experimental evaluation of STATPC. Conclusions and
directions for future work are presented in section 6.

2. RELATED WORK
CLIQUE [4], ENCLUS [11], MAFIA [19], nCluster [17] are
grid-based subspace clustering algorithms that use global
density thresholds in a bottom-up, Apriori style [5] discov-
ery of clusters. Grid-based subspace clustering algorithms
are sensitive to the resolution of the grid, and they may miss
clusters inadequately oriented or shaped due to the position-
ing of the grid. SCHISM [23] uses a variable, statistically-
aware, density threshold in order to detect dense regions
in a grid-based discretization of the data. However, for the
largest part of the search space, the variable threshold equals

a global density threshold. SUBCLU [15] is a grid-free ap-
proach that can detect subspace clusters with more general
orientation and shape than grid-based approaches, but it is
also based on a global density threshold. DiSH [1] computes
hierarchies of subspace clusters in which multiple inheritance
is possible. Algorithmically, DiSH resembles both subspace
and projected clustering algorithms. DiSH uses a bottom-up
search based on a global density threshold to compute a sub-
space dimensionality for each data point. These subspace di-
mensionalities are used to derive a distance between points,
which is then used in a top-down computation of clusters.
In DUSC [6], a point is initially considered a core point if its
density measure is F times larger than the expected value of
the density measure under uniform distribution, which does
not have anti-monotonic properties, and thus cannot be used
for pruning the search space. As a solution, DUSC modifies
the definition of a core point so that it is anti-monotonic,
which, however, introduces a global density threshold.

Several subspace clustering algorithms attempt to compute
a succinct representation of the numerous subspace clusters
that they produce, by reporting only the highest dimensional
subspace clusters [19], merge similar subspace clusters [23],
or organize them hierarchically [1].

Projected clustering algorithms can be classified into 1) k-
medoid-like algorithms: PROCLUS [3], SSPC [26]; 2) hyper-
cube based approaches: DOC/FASTDOC [22], MINECLUS
[27]; 3) hierarchical: HARP [25]; 4) DBSCAN-like approach:
PREDECON [10]; and 5) algorithms based on the assump-
tion that clusters stand out in low dimensional projections:
EPCH [20], FIRES [16], P3C [18]. For the algorithms in cat-
egories 1) and 2), the problem is defined using an objective
function. However, these objective functions are restrictive
and/or require critical parameters that are hard to set. The
other algorithms do not define what a projected cluster is
independent of the method that finds it. P3C takes into
account statistical principles for deciding whether two 1D
projections belong to the same cluster. Many of these al-
gorithms show unsatisfactory performance for discovering
low-dimensional projected clusters.

Related to our work is also the work on Scan Statistics [2], in
which the goal is to detect spatial regions with significantly
higher counts relative to some underlying baseline. The
methods in Scan Statistics are applicable to full-dimensional
data, whereas our problem formulation concerns statistically
significant regions in all subspaces of a data set. Also re-
lated is the method PRIM [13], which shares some similari-
ties with DOC and its variants, since it computes one dense
axis-aligned box at a time, where the density of the box
is controlled by a user-defined parameter. PRIM does not
take into account the statistical significance of the computed
boxes and often reports many redundant boxes for the same
high-density region.

3. PROBLEM DEFINITION
3.1 Preliminary De�nitions
Let D = {(xi1, . . . , xid)|1 ≤ i ≤ n} be a data set of n d-
dimensional data points. Let A = {Attr1, . . . , Attrd} be
the set of the d attributes of the points in D so that xij ∈
dom(Attrj), where dom(Attrj) denotes the domain of the
attribute Attrj , 1 ≤ j ≤ d. Without restricting the general-



ity, we assume that all attributes have normalized domains,
i.e., dom(Attrj) = [0, 1], and we also refer to projections of
a point xi ∈ D using dot-notation, i.e., if xi = (xi1, . . . , xid)
then xi.Attrj = xij .

A subspace S is a non-empty subset of attributes, S ⊆ A.
The dimensionality of S, dim(S), is cardinality of S.

An interval I = [vl, vu] on an attribute a ∈ A is defined as
all real values x ∈ dom(a) so that vl ≤ x ≤ vu. The width of
interval I is defined as width(I) := vu − vl. The associated
attribute of an interval I is denoted by attr(I).

A hyper-rectangle H is an axis-aligned box of intervals on
different attributes in A, H = I1 × . . .× Ip, 1 ≤ p ≤ d, and
attr(Ii) 6= attr(Ij) for i 6= j. S = {attr(I1), . . . , attr(Ip)} is
the subspace of H, denoted by subspace(H).

Let H = I1 × . . .× Ip be a hyper-rectangle, 1 ≤ p ≤ d. The
volume of H, denoted by vol(H), is defined as the hyper-
volume occupied by H in subspace(H), which is computed
as vol(H) =

Qp
i=1 width(Ii). The support set of H, denoted

by SuppSet(H), represents the set of database points whose
coordinate values fall within the intervals of H for the cor-
responding attributes in subspace(H), i.e., SuppSet(H) :=
{x ∈ D|x.attr(Ii) ∈ Ii, ∀i : 1 ≤ i ≤ p}. The actual support
of H, denoted by AS(H), represents the cardinality of its
support set, i.e., AS(H) := |SuppSet(H)|.

3.2 Statistical Signi�cance
Let H be a hyper-rectangle in a subspace S. We use the
methodology of statistical hypothesis testing to determine
the probability that H contains AS(H) data points under
the null hypothesis that the n data points are uniformly dis-
tributed in subspace S. The distribution of the test statistic,
AS(H), under the null hypothesis is the Binomial distribu-
tion with parameters n and vol(H) [7] 1, i.e.,

AS(H) ∼ Binomial(n, vol(H)) (1)

The significance level α of a statistical hypothesis test is a
fixed probability of wrongly rejecting the null hypothesis,
when in fact it is true. α is also called the rate of false
positives or the probability of type I error.

The critical value of a statistical hypothesis test is a thresh-
old to which the value of the test statistic is compared to
determine whether or not the null hypothesis is rejected. For
a one-sided test, the critical value θα is computed based on

α = probab(AS(H) ≥ θα) (2)

for a two-sided test, the right critical value θR
α is computed

by (1), and the left critical value θL
α is computed based on

α = probab(AS(H) ≤ θL
α) (3)

where the probability is computed in each case using the
distribution of the test statistic under the null hypothesis.

Definition 1. Let H be a hyper-rectangle in a subspace S.
Let α0 be a significance level. Let θα0 be the critical value

1Note that if the attributes are not normalized to [0, 1], we
have to replace vol(H) by vol(H)/vol(S).

computed at significance level α0 based on (2), where the
probability is computed using Binomial(n, vol(H)). H is a
statistically significant hyper-rectangle if AS(H) > θα0 .

A statistically significant hyper-rectangle H contains signif-
icantly more points than what is expected under uniform
distribution, i.e., the probability of observing AS(H) many
points in H, when the n data points are uniformly dis-
tributed in subspace S is less than α0.

Let α0 be an initial significance level. A value of α0 = 0.001
is quite common in statistical tests when a single and typ-
ically well-conceived hypothesis (i.e., one that has a high
chance of being true) is tested; however, the value should be
much smaller if the number of possible tests is very large,
and we are actually searching for hypotheses that will pass
a test; otherwise, a considerable number of false positives
will be eventually reported. We will test for statistical sig-
nificance hyper-rectangles in each subspace of the data set.
Thus, the number of false positives increases proportionally
to the number of subspaces tested. We can use a conserva-
tive Bonferroni approach and adjust the significance level α0

for testing hyper-rectangles in a subspace of dimensionality
p by the total number of subspaces of dimensionality p as
α = α0

choose(d,p)
, where choose(d, p) is the binomial coefficient

choose(d, p) = d!
p!∗(d−p)!

, or we can use the FDR method [8].

An important property of statistical significance is that it
is not anti-monotonic, i.e., if H = I1 × . . . × Ip is a sta-
tistically significant hyper-rectangle, then a hyper-rectangle
H ′ = Ii1 × . . . × Iik , 1 ≤ ij ≤ p, 1 ≤ j ≤ k, formed by a
subset of the intervals of H, is not necessarily statistically
significant. Therefore, Apriori-like bottom-up constructions
of statistically significant hyper-rectangles is not possible.

3.3 Relevant vs. irrelevant attributes
Let H be a hyper-rectangle in a subspace S. As the di-
mensionality of S increases, vol(H) decreases towards 0,
and, consequently, the critical value θα decreases towards
1. Thus, in high dimensional subspaces, hyper-rectangles H
with very few points may be statistically significant.

Also, assume H is a statistically significant hyper-rectangle
in a subspace S, and assume that there is another attribute
a /∈ S where the coordinates of the points in SuppSet(H)
are uniformly distributed in dom(a). We could then add the
smallest interval I ′ = [l, u] to H that satisfies attr(I ′) = a
and SuppSet(I ′) = H, i.e., l = min{x.a|x ∈ SuppSet(H)},
and u = max{x.a|x ∈ SuppSet(H)}. The resulting hyper-
rectangle H ′ will then be statistically significant in subspace
S′ = S ∪ {a}. We prove this result as follows.

For simplicity of notation, let p = vol(H), 0 ≤ p ≤ 1, and let
A be the right critical value of the distribution Binomial(n, p)
at significance level α0, as in equation (2). By definition 1,
AS(H) > A. Let q = vol(H ′), 0 ≤ q ≤ 1. Let B be the
right critical value of the distribution Binomial(n, q) at sig-
nificance level α0. By the construction of H ′, it holds that
AS(H) = AS(H ′) and vol(H ′) = q ≤ p = vol(H).

Let X be a Binomial distributed variable with parameters n
and p. Then, the probability Pr(X ≥ k), k ∈ {0, 1, . . . , n},



of obtaining k or more successes in n independent “yes/no”
experiments, where each experiment has the probability of
success p, is Pr(X ≥ k) =

Pn
i=k choose(n, i)∗pi∗(1−p)n−i.

Let X ′ be a Binomial distributed variable with parameters n
and q. Then, the probability Pr(X ′ ≥ k), k ∈ {0, 1, . . . , n},
of obtaining k or more successes in n independent “yes/no”
experiments, where each experiment has the probability of
success q, is Pr(X ′ ≥ k) =

Pn
i=k choose(n, i)∗qi∗(1−q)n−i.

Since q ≤ p, it holds that Pr(X ≥ k) ≥ Pr(X ′ ≥ k),
∀k ∈ {0, 1, . . . , n} [12].

From equation (2), it follows that Pr(X ≥ A) = α0. But
Pr(X ≥ k) ≥ Pr(X ′ ≥ k), ∀k ∈ {0, 1, . . . , n}; thus, Pr(X ≥
A) ≥ Pr(X ′ ≥ A). It follows that Pr(X ′ ≥ A) ≤ α0.
From the definition of the right critical value of a Binomial
distribution with parameters n and q at significance level α0,
it holds that Pr(X ′ ≥ B) = α0. Based on Pr(X ′ ≥ A) ≤ α0

and Pr(X ′ ≥ B) = α0, it must follow that B ≤ A.

Since B ≤ A, it holds that AS(H ′) = AS(H) > A ≥ B;
thus, by definition 1, H ′ is also a statistically significant
hyper-rectangle at significance level α0.

Clearly, reporting statistically significant hyper-rectangles
such as H ′ does not add any information, since their exis-
tence is“caused”by the existence of other statistically signif-
icant hyper-rectangles to which intervals have been added in
which the points are uniformly distributed along the whole
range of the corresponding attributes.

To deal with these problems, we introduce the concept of
“relevant” attributes versus “irrelevant” attributes.

Definition 2. Let H be a hyper-rectangle in a subspace
S. An attribute a ∈ S, is called relevant for H if points in
SuppSet(H) are not uniformly distributed in dom(a); oth-
erwise it is called irrelevant for H.

To test whether points in SuppSet(H) are uniformly dis-
tributed in the whole range of an attribute a we use the
Kolmogorov-Smirnov goodness of fit test for the uniform
distribution [24] with a significance level of the test of αK .

3.4 Redundancy-oblivious problem de�nition
Given a data set D of n d-dimensional points, we would
like to find in each subspace all hyper-rectangles that sat-
isfy definitions 1 and 2. The number of hyper-rectangles in
a certain subspace can be infinite. However, we consider,
for each subspace, all unique Minimum Bounding Rectan-
gles (MBRs) formed with data points instead of all possible
hyper-rectangles. The reason is that adding empty space
to an MBR keeps its support constant, but it increases its
volume; thus, it only decreases its statistical significance.

Definition 3. Given a data set D of n d-dimensional points.
We define a subspace cluster as an MBR formed with data
points in some subspace so that the MBR 1) is statistically
significant, and 2) has only relevant attributes.

Redundancy-oblivious problem definition. Find all

unique subspace clusters in a set of n d-dimensional points.

For any non-trivial values of n and d, the size of the search
space for the redundancy-oblivious problem definition is ob-
viously very large. There are 2d − 1 subspaces, and the
number of unique MBRs in each subspace S, that contain
at least 2 points, assuming all coordinates of n points to be
distinct in S, is at least choose(n, 2) and upper bounded by
choose(n, 2) + choose(n, 3) + . . . + choose(n, 2× dim(S)).

The size of the solution to the redundancy-oblivious prob-
lem definition can be quite large as well, even if the overall
distribution is generated by only a few “true” subspace clus-
ters {T1, . . . , Tk}, k ≥ 1, plus uniform background noise: 1)
for each Ti, 1 ≤ i ≤ k, other subspace clusters may ex-
ist around it in subspace(Ti), formed by subsets of points in
SuppSet(Ti) plus possibly neighboring points in subspace(Ti)
- Figures 1(a), 1(b) and 1(c) illustrate some of these cases; 2)
subspace clusters may also exist in lower or higher-dimensional
subspaces of subspace(Ti) due to the existence of Ti - Figure
1(d) illustrates for a true 2-dimensional subspace cluster in
the xy-plane an induced 3-dimensional subspace cluster and
two 1-dimensional subspace clusters; 3) additional subspace
clusters may also exist whose points or attributes belong
to different Ti - Figure 1(e) illustrates a subspace cluster in-
duced by two subspace clusters from the same subspace, 1(f)
illustrates a subspace cluster induced by two subspace clus-
ters from different subspaces; 4) combinations of all these
cases are possible as well, and the number of subspace clus-
ters that exist only because of the “true” subspace clusters is
typically very large. For instance, the total number of sub-
space clusters in even the simple data set depicted in Figure
1(g) —with 50 points and two 2-dimensional subspace clus-
ters, which are embedded in a 3-dimensional space— is 656.

Conceptually, the solution R to the redundancy-oblivious
problem definition contains three types of elements: 1) a
set of subspace clusters T representing the “true” subspace
clusters, 2) a set ε representing the false positives reported
by the statistical tests, and 3) a set of subspace clusters F
representing subspace clusters that exist only because of the
subspace clusters in T and possibly ε, i.e.,

R = T ∪ ε ∪ F (4)

We argue that reporting the entire set R is not only com-
putationally expensive, but it will also overwhelm the user
with a highly redundant amount of information, because of
the large number of elements in F .

3.5 Explain relationship
Our goal is to represent the set R of all subspace clusters in
a given data set by a reduced set P opt of subspace clusters
such that the existence of each subspace cluster H ∈ R can
be explained by the existence of the subspace clusters P opt,
and P opt should be a smallest set of subspace clusters with
that property. Ideally, P opt = T ∪ ε.

To achieve this goal, we have to define an appropriate Ex-
plain relationship, which is based on the following intuition.
We can think of the overall data distribution as being gen-
erated by the “true” subspace clusters, which we hope to
capture in the set P opt, plus background noise. We can say
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Figure 1: (a)-(f) Redundancy in R (solid/dotted lines for true/“induced” subspace clusters) (g) Example data

that the actual support AS(H) of a subspace cluster H can
be explained by a set of subspace clusters P , if AS(H) is
consistent with the assumption that the data was generated
by only the subspace clusters in P and background noise.

More formally, if we have a set P = {P1, ..., PK} of subspace
clusters that should explain all subspace clusters in R, we
assume that the overall distribution is a distribution mixture
of K + 1 components, K components corresponding to (de-
rived from) the K elements in P and the K + 1 component
corresponding to background noise, i.e.,

f(x; Θ) =

K+1X
k=1

µkfk(x; θk) (5)

where θk are the parameters of each component density, and
µk are the proportions of the mixture.

Conceptually, to justify that an observed subspace cluster H
is explained by P , we have to test that the actual support
AS(H) of H is not significantly larger or smaller than what
can be expected under the given model. Again, this can in
theory be done using a statistical test, if we can determine
left and right critical values for the distribution of the test
statistics AS(H), given a desired significance level.

Practically, there are limitations to what can be done analyt-
ically to apply such a statistical test. An analytical solution
requires to first estimate the parameters and mixing propor-
tions of the model, using the data and information that can
be derived from the set P ; and then, an equation for the
distribution of AS(H) has to be derived from the equation
for the mixture model. Obviously, this is challenging (if not
impossible) for more complex forms of distributions.

In the following, we show how to define the Explain rela-
tionship assuming that all component densities are Uniform
distributions. Let the K + 1 component be the uniform
background noise in the whole space, i.e.,

fK+1(x) ∼ Uniform([0, 1]× . . .× [0, 1]) (6)

For the other components, corresponding to Pk ∈ P , we
assume that data is generated such that in subspace(Pk),
1 ≤ k ≤ K, the points are uniformly distributed in the cor-
responding intervals of Pk (and uniformly distributed in the
whole domain in the remaining attributes, since these are the
irrelevant attributes for Pk). Formally, if Pk has mk relevant
attributes, i.e., Pk = Ik

1 × . . .×Ik
mk

, and the d attributes are

ordered as (attr(Ik
1 ), . . . , attr(Ik

mk
), [0, 1] . . . , [0, 1]), the k-th

component density is given by

fk(x) ∼ Uniform(Ik
1 × . . .× Ik

mk
× [0, 1]× . . .× [0, 1]) (7)

To determine whether the existence of a subspace cluster
H = IH

1 × . . . × IH
mH

is consistent with such a model, we
have to estimate the possible contribution of each compo-
nent density to H. For a component density fk, that con-
tribution is proportional to the volume of the intersection
between fk and H in the subspace of H, i.e., we have to
determine the part of fk that lies in H. This intersection
is —like H— an mH -dimensional hyper-rectangle πH(Pk)
that can be computed as following. For fk, 1 ≤ k ≤ K, let
Pk = Ik

1 × . . . × Ik
mk

, and for fK+1, i.e. background noise,
let PK+1 = [0, 1]× . . .× [0, 1]:

πH(Pk) = IπH
1 × . . .× IπH

mH
, (8)

where

IπH
i =

(
IH

i ∩ Ik
j if ∃j : attr(Ik

j ) = attr(IH
i )

IH
i else

Because fk is a uniform distribution, the number of points
in πH(Pk) generated by fk follows a Binomial distribution

Binomial(nk,
vol(πH(Pk))

vol(Pk)
) (9)

with expected value nk ∗ vol(πH(Pk))
vol(Pk)

, where nk is the total

number of points generated by fk, and vol(πH (Pk))
vol(Pk)

is the

fraction of Pk that intersects H.

The numbers nk can easily (under our assumptions) be es-
timated using the total number of points n and the infor-
mation about the actual supports AS(Pi) of the subspace
clusters Pi ∈ P in the data set. For any of the compo-
nents fi, 1 ≤ i ≤ K + 1, the number of points generated
by that component is, according to the data model, equal
to the observed number of points in Pi, AS(Pi), minus the
contributions nj of the other components fj , j 6= i, and
PK+1 = [0, 1]× . . .× [0, 1] (for the background noise fK+1):

ni = AS(Pi)−
X

1≤j≤K+1
j 6=i

vol(πPi(Pj))

vol(Pj)
∗ nj (10)

where πPi(Pj) is the intersection of hyper-rectangle Pj with
hyper-rectangle Pi as defined in equation (8). The equations



in (10) can easily be solved for ni since (10) is a system of
K + 1 linear equations in K + 1 variables. 2

We want to say that a set of subspace clusters P , plus back-
ground noise, explains a subspace cluster H if the observed
number of points in H is consistent with this assumption
and not significantly larger or smaller that expected. From
the Binomial distributions (9), we can derive a lower and
an upper bound on the number of points in H that could
be generated by component density fk, without this num-
ber being statistically significant; these are the left θL

α0(k),

respectively right θR
α0(k), critical values of this Binomial dis-

tribution, with significance level α0.

By summing up these bounds for each component density,
we obtain a range [ESL

H , ESU
H ] of the number of points in

H that could be accounted for just by the presence of the
subspace clusters in P , plus background noise, i.e.,

ESL
H =

K+1X
k=1

θL
α0(k) (11)

ESU
H =

K+1X
k=1

θR
α0(k) (12)

If AS(H) falls into this range, we can say that AS(H) is
consistent with P , or that P is in fact sufficient to explain
the observed number of points in H.

Definition 4. Let P ∪ {H} be a set of subspace clusters.
P explains H if and only if AS(H) ∈ [ESL

H , ESU
H ].

Property 1. {H} ∪ P explains H.

Proof. Based on (10), it follows that:

AS(H) = nH +
X

1≤j≤K+1

vol(πH(Pj))

vol(Pj)
∗ nj (13)

Thus, AS(H) is the sum of the expected values of the Bino-
mial distributions given in (9), ∀k = {1, . . . , K +1}, plus the
expected value of the Binomial distribution Binomial(H, 1),
which represents the component H. Since the expected
value of a Binomial distribution is between the left and right
critical values of the Binomial distribution, it follows that
AS(H) ∈ [ESL

H , ESU
H ], i.e., {H} ∪ P explains H.

3.6 Redundancy-aware problem de�nition
The problem of representing R via a smallest (in this sense
non-redundant) set of subspace clusters can now be defined.

Redundancy-aware problem definition. Given a data
set D of n d-dimensional points. Let R be the set of all
subspace clusters. Find a non-empty set P opt ⊆ R with

2When the solution to (10) is not unique or has negative
values for some ni this indicates redundancy in the set P ,
respectively inconsistency with our assumptions, and we can
later use this fact to prune such a candidate set P early.

smallest cardinality |P opt| so that P opt explains H for all
H ∈ R.

Note that the optimization problem has always a solution,
since R explains H for all H ∈ R, because of Property 1.

We emphasize the fact that the redundancy-aware problem
definition avoids shortcomings of existing problem defini-
tions in the literature. First, our objective is formulated
through an optimization problem, which is independent of a
particular algorithm used to solve it. Second, our definition
of subspace cluster is based on statistical principles; thus,
we can trust that P opt stands out in the data in a statistical
way, and is not simply an artifact of the method.

Enumerating all elements in R in an exhaustive way is com-
putationally infeasible for larger values of n and d. Finding
a smallest set of explaining subspace clusters by testing all
possible subsets of R has complexity 2|R|, which is in turn
computationally infeasible for typical sizes of R. We ran an
exhaustive search on several small data sets where some low-
dimensional subspace clusters were embedded into higher
dimensional spaces, similar to and including the data set
depicted in Figure 1(g). The result set P opt found for these
data sets was always containing only the embedded subspace
clusters (i.e., we did not even have any false positives in these
cases); In Figure 1(g), the two depicted 2-dimensional rect-
angles indicating the embedded subspace clusters represent
in fact the subspace clusters found by the exhaustive search.

4. APPROXIMATION ALGORITHM
Let P opt = {T1, . . . , Tk} be the solution to the redundancy-
aware problem definition. We refer to the subspace clusters
in P opt as the “true” subspace clusters. The approximation
algorithm STATPC constructs a set Rreduced by trying to
find true subspace clusters around data points. These data
points are called anchor points. Ideally, P opt ⊆ Rreduced.
Second, we solve heuristically the optimization problem on
Rreduced through a greedy optimization strategy and we ob-
tain the solution P sol.

The pseudo-code of STATPC is given in figure 2.

4.1 Finding a true subspace cluster around an
anchor point

We want to determine if a true subspace cluster could exist
around an anchor point Q. Towards this goal, we select up
to 3 candidate subspaces around Q, so that, when a true
subspace cluster exists around Q, the probability that at
least one of the candidate subspaces is relevant for the true
subspace cluster is high. Second, for each candidate sub-
space, we find a locally optimal subspace cluster around Q.
Up to 3 locally optimal subspace clusters around Q are de-
tected, and from those, we select the“best”one as the locally
optimal subspace cluster between them.

4.1.1 Detecting candidate subspaces
To determine a candidate subspace around Q, we start by
building a hyper-rectangle of side width 2 ∗ δ around Q in
each 2D subspace of the data set. δ is a real number, δ ∈
[0, 0.5]. These hyper-rectangles are built by taking intervals



Input: Data set D = (xij)i=1,n,j=1,d, parameters α0, αK ,
αH .
Output: Several, possibly overlapping, subspace clusters,
and outliers.
Method:

1. Build a set Rreduced:

(a) Select an anchor point Q: either randomly from
the set of data points that are eligible as anchor
points, or based on a previous recommendation,
if it exists.

(b) Detect up to 3 candidate subspaces around Q
(figure 4).

(c) For each candidate subspace, detect a locally
optimal subspace cluster around Q (figure 5).

(d) Between the (up to) 3 subspace clusters de-
tected in steps 1.b) and 1.c), detect a locally
optimal subspace cluster, store it in Rreduced,
and mark its points as not being eligible as an-
chor points.

(e) Repeat steps 1.a), 1.b), 1.c), and 1.d) until no
data points eligible as anchor points are left.

2. Solve greedily the redundancy-aware problem on
Rreduced, and obtain a solution P sol (figure 6).
Points that do not belong to any of the subspace
clusters in P sol are declared outliers.

Figure 2: Pseudo-code of STATPC

of width δ to the right and width δ to the left of Q on each
attribute. If it is not possible to take an interval of length
δ to the left, respectively, right of Q, we take the maximum
possible interval to the left, respectively, right of Q, and we
compensate the difference in length with an interval to the
opposite side of Q, i.e., the right, respectively, left of Q.

Subsequently, we rank the 2D subspaces in decreasing or-
der of the actual support of these 2D hyper-rectangles. Let
Rank denote this ranking.

Let M be a positive integer, 1 ≤ M ≤ choose(d, 2). Let aj ,
j = 1, d be an attribute of the data set D. Let us assume
that we select M pairs of attributes randomly from the set
of all pairs of attributes. Let X be the random variable
that represents the number of occurrences of attribute aj in
the selected M pairs of attributes. There are choose(d, 2) =
d∗(d−1)

2
pairs of attributes, and the total number of pairs

of attributes that contain attribute aj is (d − 1). Thus, X
is a hyper-geometric distributed variables with parameters
d∗(d−1)

2
, d − 1, M , i.e., the probability that attribute aj

occurs k times in the selected M pairs of attributes, k ∈
{0, 1, . . . , M} is:

Pr(X = k) =
choose(d− 1, k) ∗ choose( d∗(d−1)

2
− (d− 1), M − k)

choose( d∗(d−1)
2

, M)

This is because there are choose( d∗(d−1)
2

, M) different sam-
ples of size M in the set of all pairs of attributes, and the

number of such samples with exactly k pairs of attributes
that contain aj is obtained by multiplying the number of
ways of choosing k pairs of attributes that contain aj from
the set of (d− 1) pairs of attributes that contain aj and the
number of way of choosing M − k pairs of attributes that

do not contain aj from the set of d∗(d−1)
2

− (d − 1) pairs of
attributes that do not contain aj .

Definition 5. Let d be the dimensionality of the data set D.
Let M be a positive integer, 1 ≤ M ≤ choose(d, 2). Let αH

be a significance level. Let θαH be the right critical value of

the Hyper-geometric distribution with parameters d∗(d−1)
2

,
d − 1, and M , at significance level αH . An attribute aj ,
j = 1, d, is said to occur more often than expected in the top
M pairs of attributes in the ranking Rank, if its number of
occurrences in the top M pairs of attributes in the ranking
Rank is larger than θαH .

When one or more true subspace clusters exist around Q,
the actual support of the 2-dimensional projections that in-
volve attributes of the true subspace clusters may not be
statistically significant, nor higher than the support of some
2-dimensional rectangles formed by uniformly distributed
attributes. However, the actual support is likely to be at
least in the higher range of possible support values under
uniform distribution. This does not mean that the top M
pairs consist mostly of relevant attributes, but it means that
the frequency with which individual relevant attributes are
involved in the top M pairs is likely to be significantly higher
than the frequency of a randomly chosen attribute.

We have to decide a value for M . M should take relatively
small values, because, as we go down the ranking, eventually
all attributes will appear as often as expected.

We observe that, given a fixed significance level value αH ,
different values of M result in the same right critical values

θαH for Hyper−geometric( d∗(d−1)
2

, d−1, M). For instance,

if αH = 0.001, d = 50, then θαH = 2 for M ∈ Mval =
{2, 3, 4, 5}. This means that, for any value of M in the set
Mval, we will conclude that an attribute aj , j = 1, d, occurs
more often than expected in the top M pairs of attributes
in Rank, if it occurs at least θαH times in the top M pairs
of attributes in Rank. Therefore, we shall choose M as the
largest value in Mval.

In STATPC, in order to be robust to the value of M , and in
order to position M at the top of the ranking, we consider
three sets of values Mval

1 , Mval
2 , and Mval

3 for M that result
in three consecutive critical values θαB ∈ {2, 3, 4}. In each
case, we set M to the largest value in (Mval

i )i=1,3, and we ob-
tain three values (Mi)i=1,3 for M . In our example, the three
values for M are 5, 12, and 20, because ∀M ∈ {2, 3, 4, 5},
we obtain θαH = 2; ∀M ∈ {6, 7, 8, 9, 10, 11, 12}, we obtain
θαH = 3; and ∀M ∈ {13, 14, 15, 16, 17, 18, 19, 20}, we obtain
θαH = 4.

Definition 5.6 For each (Mi)i=1,3, let (Ai)i=1,3 be sets of
attributes that occur more often than expected in the top
(Mi)i=1,3 pairs of attributes in the ranking Rank. We define
the signaled attributes as being the attributes most frequent



in (Ai)i=1,3.

For example, if we obtain A1 = {a1, a2, a3} for M1 = 5;
A2 = {a1, a2, a3} for M2 = 12; and A3 = {a1, a3} for M3 =
20, then the set of signaled attributes is {a1, a3}.

By taking the signaled attributes to be the most frequently
occurring attributes in (Ai)i=1,3, we decrease the probability
that a signaled attribute is irrelevant for all true subspace
clusters, and we increase the probability that a signaled at-
tribute is relevant for the true subspace cluster to which Q
belongs.

Iterative refinement of signaled attributes. Let S0 be
the set of signaled attributes. S0 may be a subset of a set
of relevant attributes for a true subspace cluster around Q,
in which case, we would like to extend S0 with all relevant
attributes for the true subspace cluster around Q.

We observe that, if S0 is a subset of a set of relevant at-
tributes for a true subspace cluster around Q, then, by build-
ing a hyper-rectangle W of side width 2∗δ around Q in sub-
space S0, we capture a certain fraction of the true subspace
cluster’s points. Based on W , we can determine the at-
tributes aj , j = 1, d, where the data points in SuppSet(W )
are not uniformly distributed. Let S1 be the set of these
attributes. The more cluster points W captures, the more
likely that S1 consists of attributes relevant for the true sub-
space cluster around Q.

Based on this observation, we obtain a candidate subspace
around Q through an iterative refinement of S0, as follows.
If S0 is not included in S1, the candidate subspace is the
empty set ∅. If S0 = S1, the candidate subspace is S0.
Otherwise, we repeat the same procedure for S1 as for S0

until no more attributes can be added.

Commit to a candidate subspace or recommend the
next anchor point. Let S = Siter, iter ≥ 1, S 6= ∅, be the
candidate subspace determined by the iterative refinement
of a set of signaled attributes S0. Let us consider a hyper-
rectangle W of side width 2∗δ around Q in subspace Siter−1.
Clearly, by the construction of the set S, the data points in
SuppSet(W ) are not uniformly distributed on each attribute
aj ∈ S.

For each attribute aj ∈ S, we would like to detect the 1D
regions that are responsible for the fact that the data points
in SuppSet(W ) are not uniformly distributed on aj . There
is at least one such 1D region on each attribute aj ∈ S, due
to the construction of S. In addition, Q may or may not
belong to these 1D regions. Figure 3 illustrates such a case.

In figure 3, Q is an anchor point, and the set of signaled
attributes S0 for Q is S0 = {a1}. W is a hyper-rectangle of
side width 2 ∗ δ around Q in subspace S0 = {a1}. Through
the iterative refinement, S0 is extended into the candidate
subspace S = {a1, a2}, because the points in SuppSet(W )
are not uniformly distributed on a1 and on a2. The 1D
regions that are responsible for the fact that the points in
SuppSet(W ) are not uniformly distributed on a1 and on a2

are depicted as bold lines on a1 and on a2. Q belongs to

 

a1 

a2 

Q 

W 

Figure 3: The issue of committing to a candidate
subspace

such a 1D region on the signaled attribute a1, but it does
not belong to such a 1D region on the attribute a2.

As exemplified in figure 3, there are cases when the candi-
date subspace contains a subspace cluster of interest, i.e., a
possible true subspace cluster, and Q is placed in this sub-
space in the vicinity of this subspace cluster. If we keep
this subspace as a candidate subspace, then, in the next
step, STATPC computes a locally optimal subspace cluster
around Q in this subspace. Because of the positioning of Q
with respect to the subspace cluster, the locally optimal sub-
space cluster around Q in this subspace will be a subspace
cluster that includes Q and some of the cluster points.

As explained in the next subsections, the locally optimal
subspace cluster around Q in this subspace may be stored
in Rreduced, in which case, its points cannot be selected as
eligible anchor points anymore. This means that the chance
of selecting an anchor point that is centrally located in the
subspace cluster of interest has decreased. This also means
that the chance of having the subspace cluster of interest in
Rreduced has decreased.

Thus, if a situation like the one illustrated in figure 3 is de-
tected, we do not commit to the candidate subspace, i.e., we
do not keep this subspace as a candidate subspace. Further-
more, we are able to recommend the next anchor point as an
eligible data point located centrally in the subspace cluster
of interest. In this way, we increase the chance to put in
Rreduced the subspace cluster of interest when considering
the next anchor point.

Concretely, we decide whether to commit or not to a candi-
date subspace as follows. Let aj be an attribute so that the
data points in SuppSet(W ) are not uniformly distributed
on aj . We detect the 1D region(s) where the data points
in SuppSet(W ) are not uniformly distributed on aj using a
methodology similar to the one used in P3C to detect cluster
projections.

First, we divide attribute aj into b1+log2(AS(W ))c bins, by
the Sturge’s rule [24]. Second, we compute, for each bin, how
many points from SuppSet(W ) it contains, and compare this
number with the expected number of points in a bin if the
points in SuppSet(W ) were uniformly distributed across all
these bins. If a bin has more points than expected, then the
bin is marked. Finally, adjacent marked bins are merged



Input: Data set D = (xij)i=1,n,j=1,d, parameter αH , an-
chor point Q.
Output: Up to 3 candidate subspaces around Q.
Method:

1. For each δ ∈ {0.05, 0.1, 0.15}:
(a) Build a hyper-rectangle of side width 2 ∗ δ

around Q in each 2D subspace of the data set.

(b) Rank the 2D subspaces in decreasing order of
the actual support of the 2D hyper-rectangles
built at step 1.a).

(c) Let θαH be the right critical value of distribu-

tion Hyper − geometric( d∗(d−1)
2

, d − 1, M) at
significance level αH . Determine the largest
values M1, M2, M3 for which the corresponding
critical values θαH are, respectively, 2, 3 and 4.

(d) For each (Mi)i=1,3, determine a set of at-
tributes (Ai)i=1,3 that occur more often than
expected in the top Mi pairs in the ranking com-
puted in step 1.b), i.e., attributes that occur
more than the corresponding θαH times in the
top Mi pairs in the ranking computed in step
1.b).

(e) Compute the set of signaled attributes S0 as
the attributes most frequent in (Ai)i=1,3.

(f) Refine iteratively S0 and obtain a candidate
subspace S.

(g) Decide whether to commit to candidate sub-
space S, and if not, recommend the next anchor
point.

Figure 4: Pseudo-code of detecting candidate sub-
spaces around an anchor point Q

into 1D regions.

If there exists at least one attribute aj in the candidate sub-
space S so that Q does not belong to one 1D region, com-
puted as above, on this attribute, then, we conclude that,
if there were a subspace cluster of interest in the candidate
subspace, then Q is placed in its vicinity, and thus we do
not commit to this candidate subspace.

When we do not commit to a candidate subspace, we can
recommend the next anchor point. The 1D regions iden-
tified as described above form a multi-dimensional region
in the candidate subspace. We recommend as the next an-
chor point the eligible data point that is closest, in terms of
Manhattan distance in this subspace, to the centroid of the
multi-dimensional region formed with 1D regions.

So far, we have detected a candidate subspace around Q
given a certain value for δ. There is no “best” value for δ,
and to improve our chances of detecting a true subspace
cluster if it exists around an anchor point, we simply try
the 3 values 0.05, 0.1, 0.15 for δ. The candidate subspaces
detected for different values of δ may be identical or they
may be the empty set ∅; thus, we detect up to 3 candidate
subspaces.

4.1.2 Detecting a locally optimal subspace cluster
Let S be a candidate subspace determined in the previous
step. We want to determine if a true subspace cluster around
Q exists in S. There could be many MBRs in S that include
Q; however, if there were a true subspace cluster around Q
in S, we would like to capture it with the MBRs around Q.

Thus, starting from Q, we build a series of at most (n − 1)
MBRs in S, by adding one point at a time to the current
MBR, i.e., the data point with smallest MINDIST to the
current MBR. MINDIST 3 is the popular distance between
a data point and an MBR used in index structures [14]. For
efficiency reasons, and because a cluster contains typically
only a fraction of the total number of points, we build 0.3∗n
MBRs around Q in subspace S.

Let Rlocal be the set of MBRs built in this way that are also
subspace clusters. If Rlocal = ∅, no true subspace cluster
around Q in S could be found.

Out of all subspace clusters in Rlocal, we search for the sub-
space cluster that is locally optimal in the sense that it ex-
plains more subspace clusters in Rlocal than any other sub-
space cluster in Rlocal.

We compute for each subspace cluster in Rlocal, the number
of subspace clusters in Rlocal that it explains. However,
assuming that there exists a true subspace cluster around Q
in S, there may be several subspace clusters in Rlocal, which
may differ only in a few points, and which explain the same
maximum number of subspace clusters in Rlocal.

We would like to differentiate between such subspace clus-
ters. For this, we need, instead of the current binary Explain
relationship, an Explain relationship that can distinguish
various degrees of being explained.

This can be easily achieved when the explaining set P con-
sists of just one subspace cluster, as in the current context.
Let P1 be a subspace cluster that represents the explaining
set and let H be a subspace cluster to be explained. Under
the same data model assumptions as for the Explain rela-
tionship, we can define the expected support of a subspace
cluster H assuming a single subspace cluster P1, as:

ES(H|P1) = nP1 ∗
vol(H ∩ P1)

vol(P1)
+ (n− nP1) ∗ vol(H) (14)

where nP1 is the number of points generated by the density
component associated with P1, obtained by solving equation
(10) for P1 and background noise.

Then, we introduce the notion of quality of explanation QualityExplain :
Rlocal x Rlocal → [0, 1], so that:

QualityExplain(P1, H) := 1− |AS(H)− ES(H|P1)|
max(AS(H), ES(H|P1))

, P1, H ∈ Rlocal

QualityExplain represents the relative difference between

3If l = (l1, . . . , ld) and u = (u1, . . . , ud) are the left-most,
respectively, right-most corners of a d-dimensional MBR
M , then MINDIST between a d-dimensional point P =
(p1, . . . , pd) and the MBR M is the square of

Pd
i=1(pi−ri)

2,
where ri = li, if pi < li; ri = ui, if pi > ui; ri = pi, else.



Input: Data set D = (xij)i=1,n,j=1,d, parameter α0, αK ,
anchor point Q, candidate subspace S.
Output: A subspace cluster around Q in subspace S.
Method:

1. Build 0.3 ∗ n MBRs around Q in subspace S by
adding, one at a time, the data point with small-
est MINDIST to the current MBR.

2. Build Rlocal as the set of MBRs constructed in step
1) that are subspace clusters.

3. Choose as the locally optimal subspace
cluster around Q in S the subspace
cluster P local ∈ Rlocal that maximizesP

H∈Rlocal QualityExplain(P local, H).

Figure 5: Pseudo-code of detecting a locally opti-
mal subspace cluster around an anchor point Q in a
candidate subspace S.

the actual support AS(H) of H and the estimated support
ES(H|P1) of H given the subspace cluster P1 and the back-
ground noise. Equivalently, QualityExplain(P1, H) can be
written as:

QualityExplain(P1, H) =
AS(H)

ES(H|P1)
, if AS(H) < ES(H|P1)

QualityExplain(P1, H) =
ES(H|P1)

AS(H)
, if AS(H) ≥ ES(H|P1)

The closer AS(H) and ES(H|P1) are, the closer QualityExplain
is to 1, and the better the quality of explanation.

Consequently, we choose as the locally optimal cluster around
Q in S the subspace cluster P local ∈ Rlocal that maximizesP

H∈Rlocal QualityExplain(P local, H). Ties may be possi-
ble with the QualityExplain relationship too, but with a
much lower probability. If there are however ties, we choose
one of the subspace clusters in the tie at random.

4.1.3 Detecting a locally optimal subspace cluster
between locally optimal subspace clusters in
candidate subspaces

For a given anchor point Q, let Rall local be the set of all
locally optimal subspace clusters around Q detected in pre-
vious steps. Since we determine up to 3 candidate subspaces
around Q, and in each one of these candidates subspaces, we
determine up to 1 locally optimal subspace cluster around
Q, it holds that |Rall local| ≤ 3.

We regard as the “true” subspace cluster around Q the sub-
space cluster P all local ∈ Rall local that explains more sub-
space clusters in Rall local than any other subspace cluster
in Rall local. Formally, the “true” subspace cluster around Q
is the subspace cluster P all local ∈ Rall local that maximizesP

H∈Rall local QualityExplain(P all local, H).

4.2 Greedy optimization

Input: Data set D = (xij)i=1,n,j=1,d, parameter α0, set

Rreduced.
Output: A solution P sol ⊆ Rreduced so that
Explain(P sol, H) = 1, ∀H ∈ Rreduced.
Method:
1. Initialization: P sol := ∅; Cand := Rreduced.
2. Greedy optimization:
While (Cand 6= ∅)
Choose Hi∗ ∈ Cand so that NrExplained(P sol ∪
{Hi∗}) = maxHi∈CandNrExplained(P sol ∪Hi).
P sol := P sol ∪ {Hi∗}.
Cand := Rreduced\Explained(P sol).
End while

Figure 6: Pseudo-code of detecting greedily a solu-
tion P sol on Rreduced.

Section 4.1 of STATPC tries to find true subspace clusters
around anchor points. The points of a “true” subspace clus-
ter already found around an anchor point cannot be selected
as anchor points for finding future true subspace clusters.
The first anchor point is selected randomly. Subsequent an-
chor points are selected randomly from the eligible anchor
points left. Building Rreduced terminates when no data point
can be selected as the next anchor point.

Although |Rreduced| < |R|, solving the optimization problem
on Rreduced by testing all its possible subsets is still unac-
ceptable for practical purposes. Thus, we construct greedily
a set P sol that explains all subspace clusters in Rreduced,
but may not be the smallest set with this property.

We build P sol by adding one subspace cluster at a time from
Rreduced. At each step, let Cand be the set of subspace
clusters in Rreduced that are not explained by the current
P sol. Thus, subspace clusters in Cand can be used to extend
P sol furthermore, until P sol explains all subspace clusters in
Rreduced. Initially, P sol = ∅ and Cand = Rreduced. At each
step, we select in P sol greedily the subspace cluster Hi∗ ∈
Cand for which P sol∪{Hi∗} explains more subspace clusters
in Rreduced than any other P sol ∪ {Hi}, for Hi ∈ Cand. We
stop when Cand is void.

Because of Property 1, set Cand cannot include a subspace
cluster that has been already selected in P sol. Thus, Cand
is guaranteed to become void, and the optimization strategy
is guaranteed to end.

The pseudo-code of the greedy optimization is given in figure
6. For ∀P ∈ PowerSet(Rreduced), we define Explained(P )
as the set of subspace clusters in Rreduced that are explained
by P , i.e., Explained(P ) := {H ∈ Rreduced|Explain(P, H) =
1}. We also define NrExplained(P ) as be the number of
subspace clusters in Rreduced that are explained by P , i.e.,
NrExplained(P ) := |Explained(P )|.

5. EXPERIMENTAL EVALUATION
The experiments reported in this section were conducted on
a Linux machine with 3 GHz CPU and 2 GB RAM.



Synthetic Data.4 We generated data with n = 300 points,
d = 50 attributes, k = 5 subspace clusters (with sizes 60, 50,
40, 40, and 50 points), plus 60 uniformly distributed noise
points. The distribution of points in subspace clusters can be
1) uniform or 2) Gaussian. Subspace clusters can have 1) an
equal or 2) a different number of relevant attributes. Thus,
we obtained 4 categories of data for which we generated data
sets with average numbers of relevant attributes 2, 4, 6, 8,
10, 15, and 20. The width of clusters in relevant attributes
was 10% – 30% of the attribute range. Clusters did not
overlap in common relevant attributes.

Real Data. We test the performance of the compared al-
gorithms on the following data sets from the UCI machine
learning repository 5: Pima Indians Diabetes (768 points,
8 attributes, 2 classes); Liver Disorders (345 points, 6 at-
tributes, 2 classes); and Wisconsin Breast Cancer Prognostic
(WPBC)(198 points, 34 attributes, 2 classes).

Experimental setup. We evaluate STATPC against pro-
jected clustering algorithms PROCLUS, ORCLUS, HARP,
SSPC, MINECLUS, P3C; subspace clustering algorithm MAFIA;
and the method PRIM. For MINECLUS, HARP, SSPC and
P3C we used the original implementations. PROCLUS and
ORCLUS were provided by the SemBiosphere project6. PRIM
is available as a package7 for the R statistical software.
MAFIA was implemented by us.

We also compared STATPC against a representative set of
full dimensional clustering algorithms: KMeans, EM, CLARANS,
agglomerative (BAHC) and divisive (DIANA) hierarchical
clustering, and DBSCAN.

On synthetic data, we set the target number of clusters
to the number of implanted clusters for PROCLUS, OR-
CLUS, HARP, SSPC, and MINECLUS. PROCLUS and OR-
CLUS require the average cluster dimensionality, which was
set to the known average cluster dimensionality. HARP
requires the maximum percentage of outliers, which was
set to the known percentage of outliers. For algorithms
that require other parameter settings, we set these param-
eters as recommended by their authors: for PROCLUS:
A = 20, B = 5; for ORCLUS: α = 0.5, k0 = 30, srr = 10;
for SSPC: m = 0.5; for MINECLUS: w = 0.3, α = 0.1,
β = 0.25, maxout = 20; for P3C: Poisson threshold =
1.0E−5; for MAFIA: α = 1.5, β = 0.35, no tiny bins = 50,
no intervals unif distrib = 5; for PRIM: peel alpha =
0.05, paste alpha = 0.01, mass min = 0.1. SSPC was run
without the supervision option. Except HARP, P3C, and
MAFIA, all algorithms are non-deterministic; thus, each of
them is run 5 times, and the results are averaged. STATPC,
P3C, and MAFIA allow data points to belong to more than
one cluster; the other algorithms compute disjoint clusters.

STATPC requires 3 significance levels: α0, αK , and αH .
After testing the sensitivity of STATPC to these parameters
(see Figure 7), we set α0 = 1.0E − 10, αK = αH = 0.001.

4Available at http://www.cs.ualberta.ca/~gabi/SData/
5http://archive.ics.uci.edu/ml/
6yeasthub2.gersteinlab.org/sembiosphere
7http://cran.r-project.org/web/packages/prim/

On real data, we use class labels as cluster labels. We set
the target number of clusters to the number of classes. For
parameters such as the average cluster dimensionality, whose
values are hard to determine, several values are tried and the
results with best accuracy are reported.

The real data sets used were collected for classification pur-
poses. We use such real data sets because a systematic
evaluation of the compared algorithms on unlabeled data
is cumbersome. However, in such real data sets, most of the
attributes were selected in the first place because they were
considered potentially relevant for the classification prob-
lems. Consequently, the real data sets may contain only
full-dimensional subspace clusters or very high-dimensional
subspace clusters. To actually verify the capability of the
competing algorithms to find subspace clusters, we add 5,
10, 20, respectively 50 attributes to each real data set where
the data points are uniformly distributed. Subspace clusters
that may exist in the data sets, full-dimensional or not, will
be subspace clusters of increasingly lower dimensionality as
we add more uniform attributes to the data sets.

Performance measures. We use an F value to measure
the clustering accuracy. We refer to implanted clusters as
input clusters, and to found clusters as output clusters. For
each output cluster i, we determine the input cluster ji with
which it shares the largest number of points. The precision
of output cluster i is defined as the number of points com-
mon to i and ji divided by the total number of points in
i. The recall of output cluster i is defined as the number of
points common to i and ji divided by the total number of
points in ji. The F value of output cluster i is the harmonic
mean of its precision and recall. The F value of a clustering
solution is obtained by averaging the F values of all its out-
put clusters. Similarly, we use an F value to measure the
accuracy of found relevant attributes based on the match-
ing between output and input clusters (except for ORCLUS,
since it generates general sets of orthogonal vectors).

Statistical significance of results. STATPC computes
subspace clusters that are statistically significant. The other
algorithms sometimes compute statistically significant sub-
space clusters, other times they do not, depending on pa-
rameter values and on the density of the implanted clusters
(denser clusters are easier to detect). The classes in the real
data sets form statistically significant clusters, and these
clusters stay statistically significant when adding uniform
attributes, as shown in section 3.3.

Accuracy results. Figure 8 shows the accuracy of the
compared algorithms as a function of increased average clus-
ter dimensionality for the category Uniform Equal, where
the cluster points are uniformly distributed in their relevant
subspace, and the clusters have an equal number of relevant
attributes. Figures 9, 10, 11 illustrate the accuracy of the
compared algorithms as a function of increased average clus-
ter dimensionality for the categories Uniform Different,
Gaussian Equal, and Gaussian Different. We observe
that STATPC significantly and consistently outperforms the
competing algorithms, both in terms of clustering accuracy
and in terms of accuracy of the found relevant attributes.
STATPC obtains an improvement in clustering accuracy and
accuracy of the found relevant attributes over the best other
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Figure 7: Sensitivity to (a) α0 (b) αK (c) αH

competing algorithm of up to 30%, and respectively, 34%.
The difference in accuracy between STATPC and previous
algorithms is more pronounced for the more difficult case
of data sets with low-dimensional subspace clusters. As the
number of relevant attributes increases, the accuracy of com-
peting algorithms increases as well, since the clusters become
more easily recognizable in full-dimensional space.

Equal versus different number of relevant attributes for sub-
space clusters does not have an impact on the accuracy of
STATPC. The accuracy results of STATPC on data sets
where cluster points are uniformly distributed in their rele-
vant subspace is slightly higher than when the cluster points
are Gaussian distributed in their relevant subspace. This is
because in the later case, STATPC may miss some points
at the clusters’ boundaries. We observe that the full dimen-
sional clustering algorithms do not perform well for the task
of extracting subspace clusters.

We have also studied systematically the accuracy of STATPC
as a function of different data generation parameters.

Figure 12 shows accuracy results for increasing database di-
mensionality d on synthetic data sets from category Uniform
Equal with n = 300, k = 5 (60, 50, 40, 40, 50 cluster points,
and 60 uniformly distributed noise points), and 4 relevant
attributes per cluster. STATPC is unaffected by increas-
ing database dimensionality, whereas the accuracy of the
other algorithms decreases. This is because the clusters be-
come increasingly lower dimensional as d increases, and the
competing algorithms have difficulties with low dimensional
projected clusters.

Figure 13 shows accuracy results for increasing database size
n on synthetic data sets from category Uniform Equal with
d = 50, k = 5, 4 relevant attributes per cluster. Cluster sizes
and number of noise points are as follows: for n = 100: 20,
17, 14, 14, 17 cluster points and 18 noise points; for n = 300:
60, 50, 40, 40, 50 cluster points and 60 noise points; for
n = 500: 100, 84, 67, 67, 84 cluster points and 98 noise
points; for n = 1000: 200, 170, 140, 140, 170 cluster points
and 180 noise points; for n = 2000, 400, 340, 280, 280, 340
cluster points and 360 noise points. The accuracies of all
algorithms increases as n increases, because clusters become
more easily discernible.

Figure 14 shows accuracy results for increasing number of
clusters on synthetic data sets from category Uniform Equal
with n = 300, d = 50, 4 relevant attributes per cluster. Clus-

ter sizes and number of noise points are as follows: for k = 1:
125, 125 cluster points and 50 noise points; for k = 3: 83,
83, 84 cluster points and 50 noise points; for k = 4: 62,
63, 63, 62 cluster points and 50 noise points; for k = 5;
50, 50, 50, 50, 50 cluster points and 50 noise points. The
accuracy of STATPC is unaffected by increasing number of
clusters. In contrast, the accuracy of competing algorithms
decreases, because these algorithms are not effective, and
this fact is even more pronounced when more clusters have
to be discovered.

Figure 15 shows accuracy results for increasing cluster sizes
(and consequently, decreasing number of noise points) on
synthetic data sets from category Uniform Equal with n =
300, d = 50, k = 5, 4 relevant attributes per cluster. Cluster
sizes and number of noise points are as follows: 1) 40, 30,
20, 20, 30 cluster points and 160 noise points; 2) 50, 40,
30, 30, 40 cluster points and 110 noise points; 3) 60, 50,
40, 40, 50 cluster points and 50 noise points; 4) 65, 55,
45, 45, 55 cluster points and 35 noise points; 5) 72, 62, 52,
52, 62 cluster points and 0 noise points. The accuracy of all
algorithms increases with increasing cluster sizes because the
clusters become denser, and thus, more easily recognizable.

Figure 16 shows accuracy results for increasing extent in rel-
evant attributes on synthetic data sets from category Uniform
Equal with n = 300, d = 50, k = 5 (60, 50, 40, 40, 50 cluster
points and 50 noise points), 4 relevant attributes per clus-
ter. The data sets are characterized by clusters with 0.1, 0.2,
0.3, respectively 0.4 extent in the relevant attributes. The
accuracy of all algorithms decreases with increasing extent
in relevant attributes because the clusters become sparser,
and thus less statistically significant.

Figure 17 shows accuracy results for increasing overlap be-
tween clusters on common relevant attributes on synthetic
data sets from category Uniform Equal with n = 300,
d = 50, k = 2 (125, 125 cluster points and 50 noise points), 2
relevant attributes per cluster. The two clusters are charac-
terized by an overlap of 0, 0.1, 0.2, respectively 0.3 overlap
in common relevant attributes. The accuracy all algorithms
decreases with increasing overlap in common relevant at-
tributes because the clusters become more and more identi-
cal.

Figure 18 shows the accuracy of the compared algorithms
on the 3 real data sets, as a function of increased number
of uniform attributes added to the data. The first point in
the graphs corresponds to the original data sets with no at-
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Figure 8: Category Uniform Equal
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Figure 9: Category Uniform Different
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Figure 10: Category Gaussian Equal
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Figure 11: Category Gaussian Different
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Figure 12: Effect d
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Figure 13: Effect n
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Figure 14: Effect k
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Figure 15: Effect Cluster Sizes
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Figure 16: Effect Extent
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Figure 17: Effect Overlap

tributes added. STATPC consistently finds 7 8-dimensional
subspace clusters, 5 6-dimensional subspace clusters, and 2
33-dimensional subspace clusters on Pima Indians Diabetes,
Liver Disorders, respectively WPBC data sets and their ex-
tensions, outperforming the other algorithms by at least a
margin of 20%, 10%, respectively 10%.

Scalability experiments. In all scalability figures, the
time is represented on a log10 scale. Figure 19(a) shows
scalability results for increasing database sizes on synthetic
data sets from category Uniform Equal with d = 10, k = 2,
2 relevant attributes per cluster. Although STATPC has a
larger runtime than previous algorithms, it is still accept-
able and, as we believe, worth the trade-off for much bet-
ter effectiveness in finding subspace clusters. Figure 19(b)
shows scalability results for increasing database dimension-
ality on synthetic data sets from category Uniform Equal
with n = 300, k = 2, 2 relevant attributes per cluster. The
scalability of STATPC is comparable to that of the other
algorithms. Figure 19(c) shows that STATPC is unaffected
by increasing average cluster dimensionalities on the data
sets from category Uniform Equal.

6. CONCLUSIONS AND FUTURE WORK
In this work, we identified important shortcomings in the ex-
isting projected and subspace clustering literature and pro-
posed a novel problem formulation that ensures that found
subspace clusters actually stand out in the data in a statis-
tical sense. We also proposed an approximation algorithm
STATPC for the problem, which in our experimental evalu-

ation clearly outperforms state-of-the art projected and sub-
space clustering algorithms.

There are many opportunities for future work such as the
study of other approximation algorithms, and the investiga-
tion of distribution assumptions other than Uniform.
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