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Abstract

For influenza viruses, the species barrier between pigs and humans is relatively
low when compared with the barrier between birds and humans. Therefore,
pigs may function as intermediates and mixing vessels for the creation of new
pandemic strains, either by introduction of avian viruses into pigs in toto or
by reassortment of individual genes during antigenic shifts. In this thesis, we
formulate and analyze cross-infection models between human and pig species. In
particular, two directions are considered. The first is as b; and by, the strength
of cross-barrier infection, change. The second is to include temporal delay in
one of ithe two populations. In the absense of time delay. the model whose b,
and b, are constant seems to converge to an equilibrium (either the no-disease
or the endemic one). The model with a delay term is formulated under the
assumption that there is loss of immunity after a certain period of time for the
human population but no time delay in the pig population due to their relatively

short lifecycle. We show that the delay model may have periodic solutions.
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Chapter 1

Introduction

1.1 Influenza

Influenza is a highly contagious acute respiratory disease. It is globally important
because it has caused epidemics and pandemics in humans for centuries. Nor-
mally the infection is over after a couple of days, but sometimes deaths occur
in elderly people and in smokers and those with chronic heart and lung disease.
Influenza in man occurs in two epidemiological forms. The first is pandemic in-
fluenza, which results from the emergence of a new influenza A virus antigenic
shift to which the population possesses little or no immunity. It therefore nor-
mally spreads with high attack rates throughout all parts of the world. The
second is interpandemic influenza, occurring as sporadic infections, a localized
outbreak or endemic, the latter representing an outbreak in a given community
which usually occurs abruptly, peaks within 2-3 weeks, lasts 5-6 weeks. and is
associated with significant drift of the surface antigens. Epidemics occur virtually
every year almost exclusively in the winter months in the northern hemisphere
(October to April), and in May to September in the Southern hemisphere. Vi-

rological, seroarchaeological and molecular studies have revealed that although



all 15 haemagglutinin and 9 neuraminidase subtypes of influenza A have been
isolated from birds in most probable combinations. only a limited number have
caused outbreak in human. In general, influenza viruses are species specific, how-
ever, whole viruses may occasionally be transmitted from one species to another
and genetic reassortment between viruses from two different hosts can create a
virus that is infectious to a third host. Influenza viruses are negative sense RNA
viruses with single-stranded genomes composed of 8 segments (for influenza A
and B, influenza C has 7 segments). The viruses can be divided into a num-
ber of subtypes based on differences in the surface glycoproteins, hemagglutinin
(H1-H13: 15 subtypes) and neuraminidase (N1-N9: 9 subtypes) [37].

Influenza A

Influenza A viruses are divided into subtypes on the basis of serological and
genetic differences in the surface glycoproteins and the genes that encode them.
Hemagglutinin (H1-H15: 15 subtypes) and Neuraminidase (N1-N9: 9 subtypes)
have been found. Among them, influenza A viruses with hemagglutinin proteins
of H1, H2 and H3 subtypes, and neuraminidase proteins of N1 and N2 subtypes
have caused epidemic and pandemic in humans. All known subtypes of influenza
viruses are found among wild avian species that are the primary reservoirs for
the virus. Various subtypes have also been found from pigs, horses, seals, and
whales. These avian viruses have been verified to cross species barriers, which
means that influenza is not considered an eradicable disease. Therefore control
and prevention are important here. Human influenza A viruses causes recur-
rent epidemic, pandemic and repeated infections in human, which is due to the
remarkable variability of the viruses.

Influenza B

The antigenic stability of the surface glycoproteins of influenza B is greater

than that of influenza A. Thus outbreaks of influenza B occur among younger age



groups, particularly school-age children. Influenza B virus undergoes antigenic
drift but not antigenic shift, therefore, influenza B has not been seen in pandemic
form. It resembles influenza A on a smaller scale. It is clinically indistinguishable
from influenza A.

Influenza C

Influenza C virus infection is very common among children and elderly people,
but because of its mildness it is not recognized as an epidemic and has not been
studied as much widely as influenza A and B which are responsible for the vast
majority of influenza-related morbidity and mortality. It is a cause of the common
cold. It is normally human influenza, but it has been found in pigs in China.

Definition of Pandemic

There are two conditions. First one is that the outbreak of infection spreads
throughout the world; a high percentage of individuals are infected resulting in
increased mortality rates. Second one is that a pandemic is caused by a new
influenza A virus subtype. Both conditions should be satisfied for pandemic.[37,
12]

Antigenic shift

Antigenic shift (big change) results in emergence of a new or recycled subtypes
of influenza A virus. Thus, there are only partial immunity of the elderly for
recycled subtype (e.g. the subtype of pandemic in 1968 and 1898). otherwise
there is no immunity. It causes pandemic.

Antigenic drift

Antigenic drift (small change) is the revolution of existing strains of influenza
A and B, which allows new variants to escape immunity from prior influenza
infection or vaccination. It has caused interpandemic. Crossreacting antibody
is found in many people induced by recent influenza infection, but little or no

immunity in infants. Therefore, young children are especially vulnerable and



attack rate (morbidity and mortality) are various up to the degree of revolution.[1,

39]

1.1.1 History of influenza

[30, 37. 42]

The history of influenza is very long. The first appearance of an epidemic
through clear influenzal symptoms was in AD1173-4, and Molineux described
the next outbreak (1694).

In the 16th century, there were at least three influenza epidemic interpreted,
and pandemic occurred in America and Europe during the 17th century. The
first pandemic occurred in 1580 from Asia during the summer time, spreaded to
Africa and then to Europe. It infected the whole of Europe in a 6-month period
and the infection landed in America.

The influenza pandemic in 1729 started in Russia in spring time, embraced all
of Europe in a 6-month period and continued over a 3-year period with high death
rate. After 40 years the next pandemic started in China in autumn, spreaded via
Russia westwards to the whole of Europe in an 8-month period. The total attack
rate was estimated at 10 million people.

There was a big pandemic in 1830-33, which began in China in winter,
spreaded southwards and across Russia into Europe. The outbreak in America
was reported in 1831-32. 20-25% of the population was infected.

The influenza pandemic in 1889 spreaded to all of the world, from central
Russia in spring, effected the whole of Europe and some part of northern Africa
and reached North America and South America in early 1890. It also reached the
whole of Asia. The attack rate was between 25- 50% of the population. 300,000
people died. And there were second and third waves in 1891 and 1892.

These pandemics (Spanish flu) occurred in widely disparate parts of the world



at the same time. The pandemic of 1918-20 killed globally more people in a few
months than all the armies of World War I in four years and infected 50% of
the population. The pandemic resulted in over 20 million deaths globally. It
reached the whole world quickly. [i possibly emerged from swine or avian host
of a mutated HIN1 virus which is closely related to the virus later found in pigs,
and it still infects pigs nowadays.

The influenza pandemic (Asian flu) in 1957 began in the Yunan Province of
China, and extended to the whole of China. Next it affected all of Asia, crossed
to Australia, North and South America. Then it moved to Europe and Africa.
New subtype (H2N2) of influenza A showed up. It possibly came from mixed
infection of an animal with human HIN1 and avian H2N2 virus strains, which
took place in pigs in Asia. The attack rate was 40-30% of the population, of
which 25-30% was clinical disease.

The pandemic (Hong Kong flu) of 1968 originated in China, spreaded globally
to Asia, Australia, Europe and America. This pandemic was by a new subtype
(H3N2) of influenza A virus, which is considered from dual infection of an animal
with human H2N2 and avian H3Nx virus strains in Asia with high probability.

The pandemic (Russian flu) of 1977 appeared world widely and the virus
strain (HIN1) was almost identical to the influenza A viruses which circulated
from 1947 to 1957. Its reappearance was detected at almost the same time in
China and Siberia. From this time, HIN1 and H3N2 virus have co-circulated to
the present day in human.

In addition to true pandemics, false alarms-emergences of novel strains with
few cases and little human transmissibility have also occurred. Several involved
swine influenza viruses (4-6) antigenically related to viruses circulating in some
pig populations and linked to viruses of the 1918 pandemic. Incidents of 1976
(Swine flu, HIN1, United States), 1986 (HIN1, Netherlands), 1988 (Swine flu,

o



HINI1. United States) and 1993 (H3N2, Netherlands) were related with those
viruses.

Molecular biologic analysis of viral nucleic acid supports the hypothesis that
animals (particularly birds and pigs) may have been the source for (and possibly
are a continuing reservoir of) the hemagglutinin and other genes found in viruses

from the above pandemics.

1.1.2 Avian influenza

(40, 37]

The first avian influenza (AI) virus was isolated in 1902, although it was not
identified as a member of the influenza A virus family until 1955. Antigenic
and genetic studies strongly suggest that the 1957 Asian and 1968 Hong Kong
pandemic strains were generated by genetic reassortment between human and
avian viruses.

The available evidence suggests that avian (HIN1) influenza viruses were
transmitted to pigs and are causing significant disease.

Longitudinal studies on wild ducks in Canada established that influenza A
viruses are perpetuated in apparently healthy feral ducks. Each of the 9 different
neuraminidase (NA) subtypes and 14 of 15 haemagglutinin (HA) subtypes of
influenza viruses have been isolated from wild ducks. In wild ducks in the northern
Hemisphere, influenza viruses predominate in August and September. Juvenile
birds are infected as they congregate in marshalling areas prior to migration, and
up to 30% of the birds hatched each vear shed influenza viruses in their feces.
Viruses shedding continues during early migration, but the frequency of virus
isolation falls to a very low level ( < 0.01%) by November.

In wild ducks, influenza viruses replicate preferentially in the cells that line the

intestinal tract, cause no disease signs, and are excreted in high concentrations in



the faeces. Laboratory studies showed that viruses retained infectivity in faecal
material for as long as 30 days at 4 degrees and for 7 days at 20 degrees. Because
ducks can shed the virus for up to 30 days, very few passages would be required

to maintain the virus in the population.

1.1.3 Influenza in pigs and their role as mixing vessels

[44, 51, 47, 40, 48]

Previous studies have shown that interspecies transmission and genetic reas-
sortment of viruses are associated with the appearance of pandemic influenza.
These reassortments may have occurred as a result of transfer of an avian virus
to a human host already infected with a human strain. However, the available ev-
idence indicates that influenza viruses of avian origin do not undergo productive
replication in humans. Therefore, a more likely explanation for the reassortment
events responsible for the 1957 and 1968 pandemic viruses is that mixing viruses
occurred in another animal that served as a mixing vessel. Pigs have been sug-
gested to be such an intermediate host wherein influenza genomes of human,
porcine, and avian origins can mix.

Pigs possess receptors for both avian and human influenza viruses

Reassortment of viral RNA segments during dual infection with an avian and
a human influenza virus provides a mechanism by which a new virus is created.
In this way, a virus can be generated that has surface antigens against which the
human population does not have neutralizing antibodies and is not protected. In
order for reassortment and antigenic shift to occur, a host must be dually infected
with an avian and a human virus. Avian influenza viruses do not spread in the
human viruses, which do not establish themselves in bird populations; thus, the
species barrier between birds and humans is quite tight. However, it is shown

that pigs can be infected by avian or human influenza A viruses relatively easily



and that the species barriers between pigs and birds or humans are much less
stringent. Therefore, pigs may function as intermediate hosts in establishing new
influenza virus lineages in humans.

Avian influenza virus transmission to pigs is a relatively rare event, whereas
the transmission of human influenza viruses of the H3N2 subtype is relatively
frequent

In 1979, an influenza virus with genes all of avian origin was transmitted to
pigs in Europe and has continued to spread and cause disease in pigs, viruses
whose genome consisted of a mixture of influenza segments of human and avian
origins were isolated from pigs in Italy. In addition, direct transfer and replication
of a virus has been reported in pigs, and interspecies transmission of influenza

viruses from pigs to humans has occurred.

1.2 Mathematical modeling of interspecies trans-
mission of influenza

Each population of size V;(t) for j = 1,2, which is assumed to be constant,
is divided into disjoint classes of individuals who are susceptible, infective and
recovered. Human population has temporary immunity, but pigs do not have
temporary immunity since its lifetime is shorter than the continuation of immu-
nity in pigs. The dynamical relation among classes of each population is shown
in the diagram.

It is assumed that all newborns are susceptible and there is no vertical trans-

mission.
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Figure 1.1: Transfer diagram for influenza with two hosts
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The following notation for the variables is used throughout. For j =1, 2.

S; : susceptible class in population j

I; : infectious class in population j

R, : recovered class in population j

I, . birth rate and death rate in population j.

: In pig population, it implies slaughtered rate.

y, : total population in population j (N; = S; + I, + R;)

Bk : infection coeflicient of virus from population j to population
vj : recovery rate in population j

d; : rate of loss of immunity in population j

€1 : proportion of farm workers in population 1

<1 : proportion of people who handle raw pork in population 1

B;;1;/N;j  : the force of infection

1 : human population
2 : pig population.
Let
)
. I,
N 1.1
1’] ZVJ' ( )
Tj = %
j
Let
by = Bi2€,

by = Bai€1 + Bar o

In diagram (1.1) we assume that b; consists only of direct cross infection

(B12€1) from human and b, consists of direct (S2,¢;) as well as indirect infection

10



(32161442) from pigs. It means that pigs could be infected by farm workers who

have influenza infection, but human has two possible ways to get infection from

pigs. The first is the infection of farm workers from live pigs, and the other is the

infection of those people who handle infected raw pork in slaughterhouse, restau-

rant and normal kitchen etc. Without the b, and b, terms, the mathematical

model of each population is a standard SIRS model. The case with no time delay

is considered in chapter 2, and the general delay case is considered in chapter 3.

The following differential equations are derived based on the basis assumptions

and the transfer diagram (1.1):

S =

=Sy — BuSili /Ny — B216,5112/Na = B S1 [/ No + py Ny + 0, Ry

=gl = i + 30S LN+ 3216081 L/ Ny + 3016111251 Lo [ N

I — Ry -6 R,

— 1252 — B22S2l2 /Ny — Bio€1 S2ly [Ny + pa N2 + 62 R,
—p2lz — y2Iz + By Sala [Ny + Bi2€1S211 /N,
RI2 = v2l2 — paRy — 0, Ry.

Using the change of variables (1.1), (1.2)-(1.3) become

'
5

-f
4

~m181 — Busiiy — Ba€1sita — BuSipasiia + py + 017
— 1t = 1t + Busity + Bai€rSite + B prsiia

Tty — wry — 6

— a3y = Japsaly — 312610182 + fg + dary

— 2ty ~ Yoig + Bpasaia + 312€11152

, .
Ty = Yalg — foTy — 0975,

Notice that

11

(1.2)

(1.3)

(1.4)



s;(t) +4;(t) +ri(t) =1, for t > 0. (1.6)
Svstem (1.4)-(1.5) can be reduced further using (1.6) to
o= —priy — i+ 8u(l =4 — r)
+ Baei(1 — iy = ri)ia + Basipa(l — iy = r1)iz (1.7)
ry=mb = mry = 6y
Iy = — oty — Yoy + B2(l — iy — 12)ip + Bra€yiy (1 — iy — 12) (1.8)

.I — y 1] N
Ty = Yalg — Hal'y — 09T3.

1.3 Thesis outline

In Chapter 2, equations (1.7)-(1.8) will be considered. At first, we discuss the case
when there is no cross infection. Equations (1.7)-(1.8) become two independent
SIRS model. We find the local and global stability of two decoupled SIRS model.
After that we return to the case when there exists cross infection (b, is constant).
We discuss the existence and stability of disease—free and endemic equilibrium
of this model expressed with (1.7)-(1.8) analytically and numerically. We see
numerically that there is no periodic solution. But when we use non-constant b;,
we show numerically that there occurs numerical solution.

In Chapter 3, delay term will be introduced in human population because
human keeps immunity for 7-8 years, then starts to lose immunity. For the first,
single host SIRS with one delay is to be considered analytically to find that there
appears periodic solution due to the delay term newly introduced. From the fact
that there occurs periodic solution, we will discuss numerically the effect of this
periodic solution on the other host without delay term in coupled SIRS with one
delay term. We will see that there appears periodic solution for the pig population

due to the delay term of the human population.
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In Appendix A, we present some definitions ( stable , asymptotically stable
, globally stable ---) and theorems (Dulac’s Criteria, Poincaré-Bendizson, The
Routh-Hurwitz - - -) Theorem which are used in this thesis

In Appendix B, we present numerical codes used in this thesis, which include

dde23, DDE-BIFTOOL, XPPAUT and Campbell(cm.gen).
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Chapter 2

Model without Delay

This chapter is based on Liu et al. [32]. In this book, Liu and Levin mention
originally the model with coupling of two host populations with no time delay,
which is considered in this thesis. Liu et al. [33. 34| considered SIRS model with
nonlinear incidence rate. Holt and Pickering [24] discussed two hosts SIS model.
Hethcote [20] considered SIRS model with temporary immunity.

Note 1: SIR model is that the population under consideration is divided into
three disjoint classes which change with time ¢ (1. The susceptible class consists
of those individuals who can incur the disease but not yet infective. 2. The in-
fective class consists of those who are transmitting the disease to others. 3. The
recovered class consists of those who are recovered from the susceptible-infective
interaction with immunity.)

Note 2: When the immunity is temporary, then after for a while the recovered
individual return to the susceptible, which makes SIRS model.

Note 3: When the period of immunity is zero, then the recovered individual re-
turn to the susceptible as soon as he/she joins the recovered class, which makes
SIS model. There is no recovered class.

Note 4: When we introduce incubation period before individual moves from sus-

14



ceptible class to infective class, We can deal with SEIR model.

In this chapter, we assume that there is no delay. Then the dynamical model
is written by equations (1.7) and (1.8). When b, and b, are zero, the equations
(1.7) and (1.8) become two decoupled differential system. At first, b, and b, are
considered zero. Next we consider them none zero constant case. and at last none

constant case is mentioned.

2.1 No cross infection

When the cross infection (between humans and pigs) terms, b, and b,, are zero,
system (1.4)-(1.5) is decoupled into two simple SIRS (c.f. Brauer [4]. Hethcote

[20], Levin [28] and Murray [36]) models. each of which is of the form:

s'=~us - Bsi+ p
t = —pi—~i+ Bsi (2.1)
r' = ~i— ur - or.
Since
s(t)+i(t)+r(t) =1, fort >0, (2.
system (2.1) can be reduced to:
i = —pi—yi+ Bi(l —i—r) (2.3)
' = yi ~ pr — or.
Definition of global stability. See Appendiz.

Theorem. If o := 8/(p+ %) > 1, system (2.3) has a globally stable positive
equilibrium (i*, 7*). Otherwise, the trivial equilibrium (g, 7o) := (0, 0) is globally

stable for (2.3).
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Proof.  Eristence of endemic equilibrium
Setting the right hand side of (2.3) to zeroes and solve for i and r. we get that
either i = 0 or 7 = ¢*. where
_(B-p—7)(p+9)

= (L= 1/0)/ (149 +8)) = 5 B (2.4)

Also, r =0 when ¢ = 0 and r = r*, where

L  U-VYa) A -n-7) .
rE ) = D T B sy (23)

when i = ¢*. This shows that the endemic (positive) equilibrium (:*,r*) exists

when and only when o > 1.
Stability of the disease-free equilibrium (0, 0)

Linearizing system (2.3) about the origin (0, 0), we get the Jacobian matrix:

J:(d—uuw) 0 wrne-n 0
2 —(n+9) g —(k +9)
J has two eigenvalues: A, = (p +7)(c — 1) and Ay = —(p + 4). When o < 1,
both A, and A, are negative and hence the origin (0, 0) is locally asymptotically
stable provided o < 1.
Let D be the triangle {(¢,r):i>0,r > 0,i +r < 1}.

Claim.  For o < 1, all solutions of system (2.3) in the region D approach the
disease—free equilibrium (0, 0).
Proof of Claim.  Clearly the region D is positively invariant.

When o < 1, there is unique equilibrium at origin (0,0). By Theorem 6.8.2
(p- 180){49], there may be one closed orbit around the origin (0,0). But such
orbit will cross the i-axis and r-axis, and thus violating the positive invariance
of the region D. Hence, there is no periodic orbit and the origin is a globally

stable equilibrium point, by Poincaré-Bendixson theorem (c.f. [41]).
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Non-ezistence of periodic orbits

When o > 1, there are two equilibria: (0,0) and (i*,r*). Periodic orbit about
(t9.ro) = (0.0) is ruled out by the positive invariance of D as before. To show
that there is no other periodic orbits. we can apply Dulac’s criterion (c.f. [49].
1)),
Let B(i,r) = 1/i. Then

V. (Bf) = 2(B) + 2 (Br)

0 or

~ ) oy D _mr_dr
=GB i)+ (- = - ) (2.7)
__g_ht_?9

= i

<0,

where f = (',r'). on D except at the origin (0,0). Hence, by Dulac’s criteria,
(2.3) has no periodic orbit in D.
Stability of the endemic equilibrium

The Jacobian matrix of system (2.3) at the endemic equilibrium point (i*,r*)

is given by:
= | 7P A . (2.8)
v —(p+9)
Since
trace(J) = —B3i* — (p+9) <0
and

det(J) = Bi*(u + 8) + Bvi* >0,

therefore the two eigenvalues of J must have negative real parts. This means that
the endemic equilibrium is locally asymptotically stable when it exists, i.e. when

o> 1.
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Combining the asymptotic stability of (¢*,7*), together with the non-existence

of periodic orbits in D, it follows from Poincaré-Bendixson theorem that the

endemic equilibrium (z*,r*) is globally asymptotically stable.

Figures 2.1-2.2 illustrate the positive invariance of D and the global stability

of the equilibria in a single SIRS model as o changes. It is done using xpp [12].

2.2 Coupled case I: b; is a constant

When b; (j = 1,2) is a positive constant, we can expect cross-infection between

the two different hosts: human and pigs. The model equation (1.4)-(1.3) now

reads:

i = —mi — it + Bu(l =i = )i+ Baer(1 — 4y —ry)ip
+,B'31(1/1,2(1 - ‘i[ bt ’I‘l)ig
=Tl — = &y

Iy = —aty — Yaiy + Ba2(l — ia — ra)iy + B2er(1 — i2 — ra)iy

’ .
Ty = Yaly — HaTy — 02T,

2.2.1 Existence and uniqueness of the nontrivial-

equilibrium. (i}, r},13,73)

Let
b, = Br2ey
by = Bar€y + BarSip2
51 = ﬂu
B2 = Ba2.
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Figure 2.1: Phase portrait for a single SIRS to illustrate the positive invariance

of D and the stability of endemic equilibrium (¢*,7*) when o = 5.98,6 = 0.04.
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Figure 2.2: Phase portrait for a single SIRS to illustrate the positive invariance

of D and the stability of disease-free equilibrium (0,0) when o = 0.499,4 = 0.04
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Then (2.9) becomes

o= =it — i+ 81 =4 = )iy + by(1 — i) — 7y)is

=Tk — i — 6y (2.10)
iy = — oty — Vain + 32(1 — is = ra)ia + by (1 = iy — ra)i,
ry = “aly = pary — dary.

Let (if.r}.:5.r3) be a non-trivial equilibrium for (2.10). Then

r; = hyi} > 0, (2.11)
where
hy =71 /(p +61) (2.12)
and
ry = haiy > 0, (2.13)
where
hy = va/(p2 + &2). (2.14)

Let s; = 1—; ~r;. It follows easily from (2.10) that s; > 0. Since s; = 1—i3—
ry = l=tj—hyi; = 1=(1+h,)i}, which is positive, therefore i3 < 1/(1+h,) =: H,.
Also. i; > 0 and one of them is positive. i; and i, can be expressed in terms

of each other as follows:

i = fi(3) = i5(pe + 72 — Basy)/(bys3)
= (u2 + 72 — B2l — i3/ Ha)) /(01 (1 — i3/ Ha))
(12 + 12)iz(02t3/ Ha — (02 — 1))/ (bi(1 — i3/ Hy)), (2.15)

where

o2 = B2/ (12 + 12). (2.16)
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Similarly, we can express i3 as a function of i} as follows.

i = ) =40 (p + v - Bisy)/(basy)
= (i +mn =8l =i /H))/ (b1 - ii/H))
= (1 +m)it(oil/Hy - (0, — 1))/ (bo(1 — 3}/ H})), (2.17)

where o, = 3,/(pty + 1), and H, =1/(1 + hy) > i}.

Therefore i} and 73 are positive for a nontrivial equilibrium because of (2.11),
(2.13), (2.15) and (2.17)

Set z; =4j/Hj;, and zj = (u; + v;)H;/(bs—jH3_;), where j = 1,2.

Then equations (2.15) and (2.17) become

Ty = Fi(z2) = 2022(1/(1 = 13) — 03) (2.18)

ry = Fy(z))=22,(1/(1 = 1y) — oy). (2.19)

Lemma. For z > 0, the function

f(z) =z2(1/(1 - 1) - 0)

is convex on(—oo, 1)

Proof.

fliz) =z/(1-12)* - 20 (2.20)
f'(z)=2z/(1-z)*>0forz < 1. (2.21)

Because the second derivative of f is positive for z < 1, elementary calculus

shows that f(z) is a concave upwards on the interval (—oo, 1).

Theorem. A nontrivial equilibrium exists for (2.10) if and only if
(1) oy >1or
(i) og > 1 or

(ii)) oy < 1,05 < 1 and (1 = 01)(1 = 02) < biba/((71 + 1) (12 + p2))-
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Moreover, such an equilibrium is unique when it exists.

Proof. In Figure 2.3, we graph (2.18)-(2.19) on the (z,.z2) plane. Note that
F\(17) = +noc and F,(17) = +oc. Due to the parameters. z;. z5. 0, and &.,. there
are four kinds of graphs in figure 2.3. Among them, (b), (c) and (d) types have
nontrivial intersection, which is determined by the initial slope (at the origin) of
each function (2.18) and (2.19). The initial slope of the inverse of F) is z;(1 —0,).
The initial slope of F, is 1/(z;(1 —01)). When the initial slope of (2.18) is greater
than or equal to the slope of (2.19)that is figure 2.3 (case (a)), there is only trivial
solution.

Therefore, if z;(1 — 0,) > 1/(z3(1 — 02)), then there is only the trivial solution
(intersection point), meaning case (a). By the definition of z;, this inequality can

be rewritten as:
(1-01)(1 = 02) 2 biba/((11 + p1)(72 + p2))
which becomes
(1 =a1)(1 = a2)(m + m)(v2 + p2) 2 biba.

In order to have a nontrivial solution, we must be in cases (b),(c) or (d).
Case (b) says that (I) the slope of each function (2.18) and (2.19) should be
positive. and (II) the slope of (2.19) should be greater than or equal to the slope

of (2.18). These two conditions are equivalent to (iii):

o <1, and g9 < 1 and (1 - Ul)(]. - 0’2)(’)’1 + [1«1)(')’2 + ﬂQ) < blbg.

Cases (c) and (d) say that there is at least one negative initial slope. This is

equivalent to (i) g, > 1 or (ii) o3 > 1.



0 02 04 0.6 08 1
x

08} 0.8}
06} 0.6}
& 04} S04
02} 02}

0 ol

02 04 06 08 1 052

Figure 2.3: As the initial slopes of (2.18)-(2.19) change, there show up four
possible types of graph.
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2.2.2 Stability of the trivial equilibrium (0,0, 0,0)

When we linearize (2.10) about the trivial equilibrium, we get the Jacobian matrix

F= (e + 1) 0 b, 0
Jo o —(py + 1) 0 0 (2.22)
by 0 B2 = (p2 + 72) 0
0 0 Y2 —(p2 + 02)

When we exchange r, and i,, we have the block matrix:

Br— (1 +m) b2 0 0
- b ) — + 1 0 0
o 1 By — (k2 + 72) (2.23)
" 0 =(p1 +61) 0
0 Y2 0 —(p2 +d2)
To find the eigenvalues of J. we need to check the two 2 x 2 matrices:
- + b
3, = Br— (p1+m) 2 . (2.24)
by B2 — (p2 + 72)
and
—(p1+4 0
Jp = (1 +01) . (2.25)
0 —(p2 + 02)
Clearly, J; has two negative real eigenvalues A3 := —(u;+6;) and Ay := —(pua+4,).
Let

a, = =B+ (m+m)

ay = =By + (p2 + 72).
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Then the characteristic equation of J, is given by:

(A+ar)A+az) —bby=0 (2.26)
which can be simplified to
/\2 + (Cl[ + (lg)z\ +aya; — b1b2 =0. (227)

The two eigenvalues of Jy have negative real parts (and hence the trivial equilib-
rium is asymptotically stable) if and only if a; + a> > 0 and a,ay ~ b,b2 > 0 The

first condition is equivalent to
(1 —a)(n+p) + (1= 02)(72 + p2) > 0. (2.28)

The second condition is equivalent to

(m + m1)(v2 + p2)(1 — 01)(1 — 02) > biby, (2.29)

since o; = 3;/(p; + ;) (7 =1,2).
There are four cases to consider:

i)o, > 10,21

(

(M) oy >2loy< 1:

(iii) oy < 1,09 2> 1; and
(

iv) oy <l,oy <1.

Clearly case (i) fails to satisfy (2.28). Also cases (ii) and (iii) do not satisfy (2.29).
Only in case (iv) that we are be able to find parameters which will satisfy (2.28)
and (2.29) simultaneously. Under case (iv), since o; > 0, we can modify the

equation (2.29) as:

(M + 1) (72 + p2) > (1 + w)(v2 + p2)(1 — 01)(1 = 02) > byby, (2.30)
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since
0< (1 — 0’[) < 1.
So a necessary condition for the trivial equilibrium to be asymptotically stable is
that
(71 + ) (v2 + p2) > biby, (2.31)

Next we will give some sufficient condition for the global stability of disease—free
(trivial) equilibrium. Let D = {(¢y,71,42,r2) 1 4; 2 0,r; 2 0,45 +7; < 1lforj =
1.2}, i.e. D is the product of two triangles.

Claim. The region D is positively invariant.

Proof of Claim. If D is not positively invariant. Then there exists a solution of
(2.10) such that i;(0) and r;(0) € D but i;(T) or r;j(T) ¢ D for some T > 0.
[t means that i;(t) or r;(t) cross the boundary of D for some t > 0. We try to
show that D is positively invariant by showing that no i,(t) or r,(t) cross the
boundary of D. Ou the i, axis, r, become zero. Thus we have r} = v,i,, which
is positive, which means that a solution of (2.10) cannot cross the boundary
of D through i; axis. Similarly on the r; axis, i; become zero. Thus we have
G = =yt =1+ Bi(1—i;)i+ba—j(1—i5)i3—; = (—p; —v;+85(1—1;))ij +b3-;(1-
lj)i3—;,which is positive for ¢; < 0, since for the first term —pu; — v, + 3; < 0,
and for the second second term bz_;(1 —#;)i3—; > 0, which means that a solution
of (2.10) cannot cross the boundary of D through r; axis. On the i, +r; =1,
(¢ +1;) = —p;(i; + rj) — 6;7; < 0, which means that (¢; + r;) cannot become
greater than 1. Therefore D is positively invariant.

Theorem. If 8, +b; < pu; +v1 and B2+ by < py + 72, then all solution of system
(2.10) in the region D approach the disease-free equilibrium (0,0,0,0).

Proof. Consider the Lyapunov function V'(i,, 7, i3, 73) = 1;+i2 > 0 for all ¢,.45 >

0 . Then the trajectory derivative of V is given by:
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Vi=d +1,

=Bl =iy =) = (m + 7)) +boia(1 =3y —1y)
+ Batz(1 ~ iy — 1) — (b2 + 12)ia + byiy (1 ~dg — 12)

=i (= =M+ 3 QA =iy =) +b(1 =iy — 7)) (2.32)
+ia{—p2 — 2 + B2(l — 82 —ra) +bo(l — iy — 1))

Sial=p—m+5+b) +ia(—p2 — 12+ 82+ by)

< 0.

The last inequality holds since we have assumed 3, + b, < yt; +~v; and B> + b, <

p2 + v2. This means that as t approaches +oo, i; and i, approach 0. Therefore,

ri and r, in system (2.10) can be expressed as (as t — o0):

1"1 = —-ur; - 517’1 (233)
1‘; = —/.1.27‘2 - (527'2. (234)
When we solve these, we get

ry(t) = r;(0) exp{—(n; +4,)t},

where j = 1,2 and r;(0) is the initial condition. Hence, each r;(t) approaches
0 as t approaches oc. Therefore, by the Lyapunov-LaSalle theorem, the origin

(0,0,0.0) is globally stable provided 8, + b; < pu; +v, and 8y + by < py + 2.

Remark. The above argument can be made rigorous by using the theory of

asymptotically autonomous systems. (c.f. [35])

2.2.3 Local stability of nontrivial equilibrium (¢}, r},3,73).

The Jacobian matrix of (2.10) at the endemic equilibrium (2}, 7,33, 73) is given

by:
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Jist =y — (i1 + 1) - I 0

J = N —(u1 +01) 0 0
T2 0 B2sy — y2 — (p2 + 72) ~¥2
0 0 Y2 ~(p2 + 02)

(2.35)

. v . L Pt e L — ot . e[
where si=1-4—r}, y; = B;1; +b3-ji3_;, T; = by_js;. Let k = i5/1] and

m; = p; +9d;. Then J becomes

—Tik-y1 -y I 0
I= neo T 0 o | (2.36)
Ly 0 -z/k—y -y
0 0 Y2 -y
Let 1y = =k =y, and 1y = —ry/k — yo. Then the eigenvalues of J are given by
the roots of:
m—A — I 0
0mdet| T TmTH 0 0 . (2.37)
Iy 0 e — A —Y2
0 0 V2 -my; — A

Expanding the determinant, we get the following characteristic equation:
M+ AN+ BN +CA+ D=0, (2.38)
where
A=mi+my—n —n;
B = yyn + yov2 — mpamy —mmy = tpmy — qimy + mymy + i — 1L
C = mmmi - my272 — Y1 N + Miy272
= Thmmz + MMy — MMy + MaY1Y1 — T1T2M) — I1T2M2;

D = yyyiy2v2 — mmuyay2 + mmmymy — nomay1Y1 — T1Zamymy.
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Symmetric case
To find the local stability, first we consider the symmetric case. Thatis S = S, =
Seo.t=hh=hoy=y =y =1, =To.k=1l.m=m +mg, p=p =
K2, ¥ =71 =", 0 =4, =0, therefore n =1, = n,.

Jacobian matrix becomes:

n—2A -y z 0
~ -m-A 0 0 ,
J = (2.39)
I 0 n-—A -y
0 0 ¥ -m-—=A

Expanding the determinent, we get the following characteristic equation:

M+ AN +BAX +CA+ D=0, (2.40)

where,

2(m = n);

A
B = 2yy — 4nm + m? + n* - 2%;

1
o

C = 2n°m — 2nm?® + 2(m - n)yy — 22%m;

D = y*4* — 2amyy + n*m?® - 2°m>.

From here. we use the Routh - Hurwitz criterion [8. 52].
Theorem. In the symmetric case the endemic equilibrium is locally stable.

Proof. A, B,C, D can be written as:

A =2(m - n);

B =2(yy - nm) + (m - n)? — =%
C = 2(m - n)(yy — nm) - 2z°m;
D = (yy — am)? — z?m?.
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Because m >0, y >0, v >0and 7 <0, and n = —r — y one shows easily that

A is positive. B is shown to be positive by (m ~ n)? > 22. D is positive, since

n’m? > r?m? and (yy — nm)? > £2m?.

Finally, we need to show
C(AB -C) > A*D, (2.41)

for local stability, that is all the roots of (2.40) have negative real parts.

Using Maple, we can see the inequality of (2.41). Then :

C(AB-C)-A’D = (2.42)
—dn-m+z)(-n+m+zx)

(mnz® + 2p*m® — m’n + m*yy — mp* + yyn® — 2pmyy).  (2.43)

We have three factors.  — m + z < 0 by the definition of n = —r — y, and
similarly =5+ m +x > 0. In the last part, all but mnz? are positive since 1 < 0,
and the third factor is positive because mnz? — mzy® > 0 and the other terms
are positive. Therefore the inequality (2.41) is verified. By the Routh-Hurwitz

criterion [8, 52], we proved the theorem.
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General case
Conjecture. In general case the endemic equilibrium is locally asymptotically

stable.

As before A. B.C. D can be written as:

A=(my—m) + (m2 = ),
B = (111 — mmy) + (4272 — lama) + (my — qu)(my — 1) — 211,
C = (my = n)(y272 — mm2) + (my — ) (11 — mma) = £122(my + my),
D = (yyv — mmy)(y2v2 — mama) — z129m ms.
Because m; > 0. my >0, y, >0, y, >0, 7, > 0 and v > 0,
we have 7, < 0 and 7, < 0. Therefore one sees easily that A is positive. B is

shown to be positive because by |n;| > |z;| and |na| > |22, (m) — m)(ma — 1) >

z1z2. D is positive, owing to mne > z,z5.
According to the Routh- Hurwitz criterion 8, 52|, we need to show

C(AB -C) > A*D. (2.44)
in order to establish local stability.
When we expand C(AB—C)— A?D with z,, 2, yi, Y2, k, t1, 2, 71, Y2, there
are 372 positive terms and 9 negative terms.

Using Maple [18] and the parameters in table 2.2 with g, = 0.00004, u; =

0.004, we have following unique endemic equilibrium:

symbol | value symbol | value
1] 0.11574662283275188132 i 0.55948930436823675786¢e — 1
r 0.69309354989671785224 rs 0.69936163046029594733
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Hence C(AB — C) — 42D = .28375093779383370730e — 9
For the global theorem, see Appendix A.
Note: We made attempt to treat the global stability problem using the threorem

at the end of Appendix but, we were not successful in carrying that out.

2.3 Coupled case II: b; is non constant

In this section, we follow Liu and Levin [32], and assume b; is not a constant:

Instead b; is the function of i;, such as b; = bje;(i;), where

(

0 if i; <c,
ej(ij) =< ((—;j%zl)aj if c; < 'ij < dj (245)
1 ifi; > d,
\

In this section, we consider the one-way coupling case when e, (¢;) = 0,and ea(i)
is defined by (2.43).

The equations(2.9) become:

0 =~ — N + Biist + baey(iz)ias,

r'=mi - — i (2.46)
si+i+r =1

iy' = —pgiy — Ytz + P2i2s,

ry' = Yaiz — pary — 0o (2.47)
S+t +rp=1

System (2.47) becomes a single SIR for the pig population independent of the

human population with d, = 0 for the pig.

Theorem. System (2.47) has a nontrivial equilibrium(i},r3), if and only if

B2

Gata > |- And system (2.46) has a nontrivial equilibrium(éf, r7), if

O9 =
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and only if o, := (mf_’;,“) > 1.

Proof. When g, > 1, system (2.47) is a single SIRS model which we consid-
ered before. When o, > 1 and e,(i}) = 0, system (2.46) becomes a single SIRS
model as well. Hence in this proof. we consider e,(i3) # 0. Since ey(:3) > 0,
ri = huand s; =1 — ij/H, . where h) = L (see (2.12) and H, = l—flh—l Also

0 = Biiys) — (p1 + 71)i1 + ea(d3)izs).

We consider the quadratic equation

oy (1 =4 /Hy) — iy +e(i3)iz(1 — iy /H ) /(1 + 1) = 0. (2.48)
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where o, =
The coefficient of the quadratic term is —o,/H; < 0 and the constant term is
e(23)i3/ (1 + ) > 0.

Since these two constants are of different sign it means that this equation has one
positive root and one negative root.

Lemma. This positive root .ij. is smaller than H,.

Proof. If i} > H,, then 1 —i}/H, < 0. Therefore the leftside of (2.48) is < 0,
which is contradiction.

Therefore there exists an unique nontrivial equilibrium.

Theorem. The endemic equilibrium is locally stable when it exists.

Proof. We have the following Jacobian matrix.

—ex(i3)i3s1/1] — Bui] —ea(33)iy —Bui — e2(i3)i3  (e3(i3)i; + e2(i3))sy 0
J _ 94! —Hy — 51 0 0 |
0 0 —BQ'L; —ﬂzla
0 0 Y2 — 2 — 92
(2.49)
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To find the eigenvalues of J, we need to consider two block matrices J;.J3,

where
5, o [ e/ - B - eai)is ~Buit - ealis)i (2.50)
M b
and,
—B- '. _ i
5= | TR ) (2.51)
T2 —H2— 0

Matrices J; and J, are of the form

[
e
|
N
|
[~
|
o~
—_—
)
wt
D)
e

where a.b.c.d > 0.
The characteristic equation corresponding to J3 looks like

f(z) = 22 + (a + d)x + ad + bc = 0, for each of J; and J,. Since trace
J3 = sum of eigenvalues = —(a +d) < 0 and det(J3) = product of eigenvalues
= ad+bc > 0, it implies that all the eigenvalue have negative real part. Therefore
the endemic equilibrium is locally stable.
The case when e,(1,) # 0, e2(22) # 0 i.e two—way coupling.
We consider two~way coupling numerically. In (2.10), we take b; => b;e;(i;) where
e;(i;) is defined in (2.45) We will show numerically that two-way coupling has a
periodic solution when b; and b, are larger than some critical values (see figure

2.4-2.5).
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Figure 2.4: There is no periodic solution for two-way coupling case t time vs

i2(t). by =0.1 and b, = 0.3 see Appendix B for the parameters used in here
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Figure 2.5: Periodic solution for two-way coupling case appears t time vs i(t).

by = 0.3 and b, = 0.3 see Appendix B for the parameters used in here
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- . . ) .
i = —pty — 7t + Biiisy + beeg(ia)igs,

1 -
Ty =7t — T — 017y

si+4y+r =1

, . . . .
Iy = —ialy — Y2ig + Boiasy + biei(1))i) s,

) .
Ty = "alag — HaT2 — dors

So+tp+ra =1,

where function e, is defined as (2.45).

Using XPP (see Appendix B), we demonstrate the existence of the periodic so-

lutions of (2.53)-(2.34).

From figure 2.6 to figure 2.8 and figure 2.9 to figure 2.11, we can see that as b,

and b, increase, the length of the period becomes longer and the rate of infection

becomes higher.

symbol | value svmbol | value
B 37.66 32 40.0
I 0.004 M2 0.0028
T 33.333 Y2 33.333
0 0.01 9y 0.0
i 0.00008 c2 0.0002
d 0.0001 d, 0.00022

Table 2.1: Data of the two-way coupling with varying b; for j =1, 2.
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Figure 2.6: Periodic solution for the two-way coupling case t time vs #,(t). b; =

2.0 and b, = 2.5. See table 2.1 for the other parameters used in here.
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Figure 2.7: Periodic solution for the two-way coupling case ¢ time vs i|(t). b, =

7.0 and b, = 8.0. See 2.1 for the other parameters used in here.
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Figure 2.8: Periodic solution for the two-way coupling case t time vs (). b =

17.0 and b, = 18.0. See 2.1 for the other parameters used in here.
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Figure 2.9: Periodic solution for the two-way coupling case ¢t time
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2.0 and b, = 2.5. See 2.1 for the other parameters used in here.
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Figure 2.10: Periodic solution for the two-way coupling case t time vs i,(t).

by = 7.0 and b, = 8.0. See 2.1 for the other parameters used in here.
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Figure 2.11: Periodic solution for the two-way coupling case t time vs i(t).

by = 17.0 and b, = 18.0. See 2.1 for the other parameters used in here.

44



2.4 Discussion and numerical results

DDE23(matlab base)(46] (see Appendix B) is now used to verify that there is no
periodic solution in the two hosts SIRS model with no time delay.
Figure(2.12) to Figure(2.17) show ¢ vs r phase portrait as u; and p, (see the

diagram(1.1)) change. There does not appear any periodic solution.

symbol | value [ symbol | value
81 0.1 Ba 0.2
T 0.02 Y2 0.05
4 0.0033 0y 0.0
b 0.01 by 0.01

Table 2.2: Data of two SIRS system with varying u; for j = 1,2.

Figure(2.18) to Figure(2.23) show ¢ vs r phase portrait as b, and b, (see the
diagram(1.1)) change. There does not appear to be any periodic solution as well.
The numerical evidence points to the conjecture that the endemic equilibrium is

globally stable when it exists for the case b,, b, are constant.

symbol | value symbol | value
8 0.1 B2 0.2
u | 0.000004 | 4, | 0.004
" 0.02 Yo 0.05
&y 0.0033 2 0.0

Table 2.3: Data of two SIRS system with varying b; for j = 1,2.

45



influenza test for u(1) = 46-0068 and u(2) = 0.004. influenza test for u(1) = 4@-006 and n(2) = 0.004.
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Figure 2.12: i — r plane of two hosts cross infection with no time delay term for

1 = 4e — 006 and p, = 0.004.

influenza test for u(1) = 4e-0068 and u(2) = 0.0004. influenza test for u(1) = 4e-0068 and u(2) = 0.0004.
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Figure 2.13: i — r plane of two hosts cross infection with no time delay term for

py = 4e — 006 and p, = 0.0004.
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influenza test for u(1) = 0.0004 and u(2) = 0.04. influenza test for u(1) = 0.0004 and u(2) = 0.04.
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Figure 2.14: i — r plane of two hosts cross infection with no time delay term for

st = 0.0004 and p, = 0.04.

influenza test for (1) = 0.004 and u(2) = 0.04. influenza test for (1) = 0.004 and u(2) = 0.04.
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Figure 2.15: ¢ — r plane of two hosts cross infection with no time delay term for

Hi = 0.004 and Ho = 0.04.
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influenza test for u(1) = 0.0004 and u(2) = 0.004. influenza test for u{(t) = 0.0004 and u(2) = 0.004.
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Figure 2.16: ¢ — r plane of two hosts cross infection with no time delay term for

i, = 0.0004 and p; = 0.004.

influenza test for u(1) = 0.004 and u(2) = 0.1. influenza test for (1) = 0.004 and u(2) =0.1.
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Figure 2.17: © — r plane of two hosts cross infection with no time delay term for

i1 = 0.004 and po = 0.1.
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influenza test tor b(1) = 0.01 and b(2) = 0.01.
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influenza test for b(1) = 0.01 and b(2) = 0.01.
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Figure 2.18: ¢ — r plane of two hosts cross infection with no time delay term for

by = 0.01 and b, = 0.01.

influenza test for b(1) = 0 and b(2) = 0.
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Figure 2.19: 7 — r plane of two hosts cross infection with no time delay term for

by = 0.0 and b, = 0.0.
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s 2

influenza test for b(1) = 0.01 and b(2) = 0.0001. influenza test for b(1) = 0.0t and b(2) = 0.0001.
0.4 T v v — 0.9 v

0.35 E

0.25} g

R,
o]
N

0.1s} -

0.05 - p

0.2 0.3 0.4 0.5 0.6 0.7 (o) 0.1 0.2 0.3 0.4
IO I,

Figure 2.20: i — r plane of two hosts cross infection with no time delay term for

by = 0.01 and b, = 0.0001.

influenza test for b(1) = 0.01 and b(2) = 0.05. influenza test for b(1) = 0.01 and b(2) = 0.0%.
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Figure 2.21: i — r plane of two hosts cross infection with no time delay term for

bl = 0.01 and b2 = 0.05.
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influenza test for b(1) = 0.0001 and b(2) = 0.01. influenza test for b(1) = 0.0001 and b(2) = 0.01.
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Figure 2.22: i — r plane of two hosts cross infection with no time delay term for

by = 0.0001 and b, = 0.01.
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Figure 2.23: i — r plane of two hosts cross infection with no time delay term for

b, = 0.0001 and b, = 0.0001.
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influenza test for b(1) = 0 and b(2) = 0.01.
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Figure 2.24: 7 — r plane of two hosts cross infection with no time delay term for

b[ = 0.0 and b2 = 0.01.
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influenza test for b(1) = 0.01 and b(2) = 0.
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Figure 2.25: ¢ — r plane of two hosts cross infection with no time delay term for

b, = 0.01 and b, = 0.0.
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2.5 Conclusion

In this Chapter, we show that SIRS model without cross infection has globally
stable endemic equilibrium for o := 8/(u + v) > 1. When there is cross infec-
tion, we show that coupled SIRS with constant b; has endemic equilibrium for
(1-0)(l-0y) < (_”T“':)Lt’f’m, which includes case g; > 1 or 0, > 1. Because
of b;, there occurs endemic equilibrium even though o, < 1 and 0, < 1, which
means that cross infection gives virius more chance to survive or sustain with less
antigenic shift or drift. We show that disease-free equilibrium is locally and glob-
ally stable with some condition without endemic equilibrium. And we find that
endemic equilibrium is locally stable for symmetric case, but we could not show
fully the local stability of endemic equilibrium generally. We use numerically to
show that. From numerical simulation, we could see that there is no periodic so-

lution for constant b;. However, we could see that there appears periodic solution

when we use non-constant b;.

53



Chapter 3

Model with Delay

Hethcote, Stech and van den Driessche [22] showed that periodic solution can
exist in SIRS model with time delay even when vital dynamics was not included.
Hethcote, Lewis and van den Driessche [21] showed that there appears periodic
solutions for some parameter values in SIRS delay model with a nonlinear inci-
dence rate. Hethcote and van den Driessche [23] mentioned periodic solutions
in SIRS delay model with vital dynamics. However the detailed algebraic and
numerical calculations related to Hopf bifurcation were not carried out for their
model [23].

In this chapter, we will try to do the detailed algebraic and numerical calcu-
lations with several tools for a single SIRS model with time delay and a coupled

SIRS model with one time delay as well.

3.1 Single host SIRS with one delay term

In this chapter, we use the fact that human population lives longer than the
time period of temporary immunity, namely 7, so that there is one time delay

for human. On the contrary, pig does not survive longer than the time period
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of temporary immunity due to being slaughtered, therefore we do not need a
time delay for the pig population. Without a time delay, the model of the pig
population is expressed as the second part of 2.10. For the part of the human
population, we assume that before time passes 7, no individual comes back into s
(susceptible class) and. each individual starts to comes out of r (recovered class)
(into s) (susceptible class) 7 units after entering r (recovered class), which is
expressed as 7vi(t — 7)., except that some die in r (recovered class). Let g :=
~i(t — 7). then we can see that ¢’ = —ug. Solving this differential equation from
0 to 7, g(r) = g(0) exp(—ur). Hence the rate of coming out of r, 7 units after
entering r, is g(0) exp(—u7) = ~vi(t — ) exp(—ut). Therefore r need to be divided
by two cases (fort < rTandt> 7).

Then the dynamical model is written as:

i = =i — i+ (1 =i )i+ ba(l =iy —1)in
Vit — f 1) ift<r

l'll = (31)
Tt =y — exp(—u 1) (t — 1) otherwise

i) = —paiy — Yaia + Ba(1 — 2 — ra)iz + by (1 — iy — r2)i)

ra = iy — wora.

In this equations (3.1) ( see [22, 21, 23], 7 is delay term and the other parameters
are the same as in chapter2. Because human has long life cycle compared to
temporary immunity, human group has delay term here. On the contrary, pig
group does not have a delay term owing to their short life cycle (within one year).
First we consider the human group with a delay term. It is modelled by equation

(3.2). Later the full equation (3.1) is considered using numerical simulation.
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I(t) = Bi(t)s(t) — (k+7)i(t)
ot = vi(t) — pr(t) ift<r 52
vi(t) — ur(t) —yexp(—pr)i(t - 7) ift>rT,
where s =1 — (i +r).

The positive equilibrium (z*, r*) for (3.2) satisfies

Bit(l =1 =r") —(p+7)i"=0. (3.3)
Divide by ¢*, we have
31 =i =) = (u+7), (3.4)
so that
r=1-(u+)/8- 0" (3.5)

Using the second equation in (3.2), we have

vi" — vy exp(—pt)i® = pr, (3.6)
or
V(1 = exp(—p7))i" = pr* = pu(l — (p+7)/8 - ¢°) (3.7)
so that
. w(B = (n+7))
"= 0, . 3.8
i B(7(1—e"”)+u)> Jfor B> pu+~ (3.8)
and

rro= (B-(p+7))/8-7

(1 BTy _al=e™)
B T[r(1—er)+p
> 0,for 8>u+1. (3.9
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THus we see that the positive equilibrium exists if and only if 3 > 2+ v. Let us

linearize equation (3.2) about (i*,r*)

Set
i=i—1" (3.10)
F=r—r'. (3.11)
Then
[ =8il—i—1)—(p+1)i
=BG +)1-(G+7F) -G +7)) = (+7)GE+i") (3.12)

= Bi(1 = G+7) = (" + 7)) = i +7) — (1 + ),

since 3¢*(1 — (* +r*)) — (4 + 7¥)i* = 0. So up to linear term we have

T =(8-(p+7)=28i - Bri)i - Bi'F.

We can take the same steps for r. Then for t > 7

F=-i- ur — yexp(—pur)i(t — T)
=i — ur — yexp(—pu7)i(t - 7) 4+ vi* — ur® — yexp(—ur)i* (3.13)

= i — uT — yexp(~pur)i(t - 1),

by (3.6)
From now on, we replace 7 by i and 7 by r for simplicity of notation and we obtain

the linearized equation for (3.6) as

i = (8- (u+7) - 2Bi" - Br*)i — Bi°r. (3.14)

r' =i — ur — yexp(—ur)i(t — 7). (3.15)
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Let

a= (8- (p+7)—26i" - 8r),

b=-31i",
c=7
d= —H,

f = —vexp(—pr).

Thena =b<0.¢>0.d <0and f <0, by (3.4)

To find the characteristic equation for (3.14)-(3.15), we plug the trial solution
((t) = Xgexp(&t), and r(t) = Ypexp(&t) into (3.14)-(3.15). where .\ and Y} are
not both zero.

After dividing by exp(&t), we get

Xo€ = aXy + bYp (3.16)
Yol = ¢ Xo +dYy + fXpexp(=£7). (3.17)

Since .X; and Y; are not both zero, the coefficient matrix should be nonsingular

that is, det(J) # 0 where

E—a -b
J= . (3.18)
( —c = Jexp(~¢7) e—d)

The condition det(J) = 0 gives us the characteristic equation.
(€ —a)(§ ~ d) — blc+ fexp(—£7)) =0 (3.19)

and £ is a characteristic root here.
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Claim. £ = 0 cannot be a characteristic root.

Proof of Claim. Plug € = 0 into the equation (3.19), we need

ad =b(c+ f). Nowsincea <0, d<0, b<0, ¢+ f >0, therefore the left hand

side is positive and the right hand side is zero. Hence £ = 0 cannot be a root of

(3.19).

Theorem. (3.19) can have purely imaginary roots.

Proof. Plug & =i\ (A > 0) into the equation(3.19). Then

(ad — bc) — \? = bf cos(AT)
(a+d)X = bfsin(AT).

We need to see if we can solve for A >0, 7 > 0.

Square both sides of (3.20)-(3.21) and add them, we have
{(ad — bc) — A*} + {(a + d)A}* = V*f2.
Let A =T > 0. Then we have

{(ad — bc) — T}? + (a + d)?T = b*f2.

Rearrange (3.23) in decreasing order of T, we have

T2 + (a® — 2bc + d®)T + (ad — be)? ~ b2 f? = 0.

Claim. (3.24) can have two positive solutions.

(3.23)

(3.24)

Proof of Claim. Since (3.24) is quadratic equation, the standard form of (3.24)

is (3.26).

Because C = a?{(d — ¢)? — f?} > 0, two roots of (3.24) should be same sign. In
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order to have positive real roots, (3.24) should satisfy following two conditions.
(1) B <0 and (2) B? — 4C > 0 discriminant should be non-negative.

Since a = b from (3.4),(3.24) can be written as
T? - (2a(d — ¢) — (a +d)>)T +a*{(d — ¢)* - f?} =0. (3.25)

Since d is negative , c is positive, and ¢2 > f2, the constant term is positive. the
first condition is satisfied. Here C = a*{(d - ¢)*> — f?} > 0 and B = (a + d)? —

2u(d — ¢). Then (3.24) becomes
T°+BT+C=0 (3.26)

Next, we need to check the second condition (B < 0). B = pu/(y — vexp(ur) +
1) 4, where

A= =202 + 2202 exp(—p1) — 4ydp + opy? — 4py? exp(—pur)
+ 671’ + 293 — 297 exp(—pt) + pA? — 22pu% + 243
+ py’ exp(—2u1) — 2u*y exp(—pr) (3.27)

Note that 4 and B have the same sign here.

Let a =X - (nx++). Then a > 0.

We will consider 4 as a function of a as follows

Aa) = py? exp(=2u7) — 2u®y exp(—put) — 2u~? exp(—ut) + uy + 271% - 24%a
+ 13 + pa — 2uva + 29% exp(—pt)a.
(3.28)

A(0) = py* exp(-2pu7) — 24y exp(—p7) — 2y exp(—pt) + py + 2y + 4
= py*(exp(—2u7) + 1 — 2exp(—p7)) + 2y4*(1 — exp(—p1)) + 4* > 0,
(3.29)
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Note that A(0) is positive, because u > 0, 1> exp(—ur)
and exp(~2pu7) + 1 = 2exp(—ur) = {exp(—pr) — 1}* > 0.

B should be negative. It implies that A(a) should be negative as well.

Ale) = pa® = 2y(p + v - yexp(—ur))a + A(0).

This equation is a quadratic equation, which has condition x > 0, 4(0) > 0.
When the discriminant is positive, A(a) has negative part since it has two dis-
tinct positive.

Let F(a) = (v(p + v — vexp(—urt)))? — pA(0) > 0 (discriminant of A(a)),
Fla) = 4(v — 1) (v + 1) (4 + 2pv° py exp(—p7) — 2% exp(—pt) + ¥ exp(—2u7) +
),

since £ > 0, v >0, v > p. To check the sign of F(a), we need to check the sign
of

G(a) = (1 + 7Py exp(—pr) — 292 exp(—p7) + 7 exp(=2u7) + 7).

since py > pyexp(—pvy),exp(—2ur) — 2exp(—put) + 1 = {exp(—ur) = 1}* >0
For all a > 0,G(a) > 0. Therefore F(a) > 0.

[t means that there exists a such that A(a) < 0.

Finally we need to check the third condition ( B2 — 4C > 0 i.e. discriminant is

non-negative).
D := B? — 4C = a* - 24°d* + 4a°c + d* + 4d%ac + 8a%dc + 4f2. (3.30)

Similarly we can make D function of a with let @ = A — (i + 7). Then we see
that denominator of D(a) is always positive and numerator of D(a) become de-
gree 3 polynomial of a. The leading term (coefficient of a3) is 4v2u® exp(—pur) —
4v*p3 — 4yu? < 0. The constant term is function of x, 7 and v. When we collect
this constant term with respect to v, we have degree 6 polynomial. The coeffi-

cient of v is —4p” exp(—pur) + 447 > 0 and constant term is u8. Therefore for
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2] \
b 1
]

Figure 3.1: One periodic solution as v changes. z = yand y = X2 =T > 0,

p#=0004, A =10 and 7:=3. .

small v the constant term of D becomes positive, and we can find some a such
that D is non-negative. Specially when v = i, we see that constant term of D is
1648 + 6448 xexp(—2put) — 8B exp(—3p1) — 12848 exp(—3u7) +24u exp(—2u71) +
12 exp(—4put)+9648 exp(—4y17) —32u8 exp(—5u1) =328 exp(—pur)+4p8 exp(—6p7.
which is computed to be positive.

Therefore for a, p, 7 and v which satisfy both A(a) < 0 and D >, Claim is
proven here. Therefore Theorem is proven as well.
(3.26) has two positive roots.
Using Maple, we can see that Figure (3.1) shows that there may be one periodic

solution as <y changes and other parameters are fixed in .
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R(})

-0.05

T

Figure 3.2: The real parts of the rightmost roots of the characteristic equation
for 3 =10. 7 = 3. £ = 0.004. v € [0, 10]. Hopf bifurcations are indicated with a

0.
3.2 Discussion and numerical results

(I). Using DDEBIF [10, 11] (see Appendix B), we computed the real part of the
rightmost roots of the characteristic equation of the endemic steady state solution
of 3.2 as v change.

Time is rescaled to 100x and other parameters are rescaled to 1/100x.

(II). We use Campbell’s Maple program(cm.gen) to calculate the reduced
equation on the centre manifold for the delay equations(3.2) (see Appendix B).
The coefficients of the reduced equation on the center manifold are calculated.
Campbell’s other Maple program ( nf.gen ) finds the coefficients of the Takens
normal form for the reduced equation. Among them, all determines the stability
of the bifurcated periodic orbit. 11 < 0 means it is a stable bifurcated periodic

orbit. It turns out for (3.12) all = 0. Therefore to determine the stability of
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Figure 3.3: The real parts of the rightmost roots of the characteristic equation

for v =2, 7 =3, u=0.004, 3 € [0,10]. Hopf bifurcations are indicated with a

o
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bifurcated periodic orbit, we need to go to fifth order terms. We have not carried
that out for this thesis.

(II1). DDE23(matlab base)[46] (see Appendix B) is used to show numerically
that there is a periodic solution in the two hosts SIRS model with one time delay.

Figure(3.4) to Figure(3.11) show i vs r graphs as the b; and b, (see the
diagram(1.1) change. There appears periodic solution. When the b, and b, are
zero, there is periodic solution in the first host and not in the second host. In
those figures, one sees that there appears periodic solution in the second host as
by and b, change. As cross infection becomes stronger, the periodic solution in
first group shrinks and one in the second group swells. The b, ( more than b,)

plays a role to make second periodic solution appear in the second group.

symbol | value symbol | value
S (01 3, 102
My 0.000004 U2 0.004
T 0.02 Y2 0.05
T 300

Table 3.1: Data of two SIRS system with varying b; for j =1,2.
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influenza test for b(1) = 0.01 and b(2) = 0.01. influenza test for b(1) = 0.01 and b(2) = 0.01.
1 v v o8 v v v

.a

{1
{

—0.5 - 0.4 L

R
R

0 0.2 0.4 0.8 o8 o 0.1 0.2 03 0.4
1, I, (1)

Figure 3.4: i — r plane of two hosts cross infection with time delay term for

b, = 0.01 and b, = 0.01.

influenza test for b(1) = 0 and b(2) = 0. influenza test for b(1) = 0 and b(2) = 0.
v v v 0.8 v r v v

i
Ui

—0.5 1 ~0.4 4

R
R

o 0.2 0.4 o8 o8 o 005 0.1 0.15 02 o025
1w N0

Figure 3.5: i — r plane of two hosts cross infection with time delay term for

b, = 0.0 and b, = 0.0
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v v

influenza test for b(1) = 0.01 and b(2) = 0.0001. influenza test for b(1) = 0.01 and b(2) = 0.0001.
1 o8 T

g — v

R
1:(l)
(1]

R,

o . . . .
o 0.2 0.4 0.6 0.8 o 0.1 0.2 0.3 0.4
1, (M i, M

Figure 3.6: i — r plane of two hosts cross infection with time delay term for

by = 0.01 and b, = 0.0001.

influenza test for (1) = 0.01 and b(2) = 0.05. influenza test for b(1) = 0.01 and b(2) = 0.05.
1 s v T 0.8 v T v
0.9 B
0.8 E
0.7 ;
0.6 p
a=° E et X J

(o] 0.2 0.4 0.6 [o - ) o 0.1 0.2 0.3 0.4
b () 5 (M

Figure 3.7: i — r plane of two hosts cross infection with time delay term for

b, = 0.01 and b, = 0.05.
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influenza test for b(1) = 0.0001 and b(2) = 0.01. influenza test for b(1) = 0.0001 and b(2) = 0.01.
1 T v v 0.8 ' T

-r T

{
{1

R
A

o —_ e N
o 0.2 0.4 0.6 0.8 o 0.0 0.1 0.15 0.2 0.25

) NG

Figure 3.8: i — r plane of two hosts cross infection with time delay term for

b; = 0.0001 and b, = 0.01.

influenza test for b(1) = 0.0001 and b(2) = 0.0001. influenza test for b(1) = 0.0001 and b(2) = 0.0001.
1 v v v 0.8 r v T v

R
b()
R,

° . R
o 0.2 0.4 0.6 0.8
1, M

0.25

Figure 3.9: ¢ — r plane of two hosts cross infection with time delay term for

b, = 0.0001 and b, = 0.0001.
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influenza test for b(1) = 0 and b(2) = 0.01. influenza test for b(1) = 0 and b(2) = 0.01.
1 T — v 0.8 v — T v

0.9 1

0.8 1

0.7 4

0.6 . 1
cx:"o h a:"p'd 4

0.4

0.3

0.2

o 0.2 0?4 0:6 0.8 [¢] 0.05 O:‘l O.‘15 Oj2 0.25
i m )
Figure 3.10: i — r plane of two hosts cross infection with time delay term for

by = 0.0 and b, = 0.01.

influenza test for b(1) = 0.01 and b(2) = 0.
1 v v

influenza test for b(1) = 0.01 and b(2) = 0.
v 0.8 v v g

("

-0.5 1

R

o] 0.2 0.4 0.6 0.8 00 0.1 0.2 0.3 0.4
M M

Figure 3.11: ¢ — r plane of two hosts cross infection with time delay term for

b, = 0.01 and b, = 0.0.
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Figure(3.12) to Figure(3.17) show ¢ vs r graphs as y; and p, (see the diagram(1.1)
change. There appears periodic solution. In those figures. one sees that there
appears periodic solution in the second host as g, and p, change. For a fixed
H1, as u, increases, first the periodic solution in the second group appears but as
/Ly increases more, periodic solution becomes shrinking. As p, increases, periodic

solution in first group shrinks and disappears at last.

symbol | value | symbol | value
B 0.1 B2 0.2
M 0.02 Y2 0.08
b, 0.01 ba 0.01
T 300

Table 3.2: Data of two SIRS system with varying y, for j =1, 2.

3.3 Conclusion

In this Chapter, we show that single SIRS model with one delay term has periodic
solutionfor some condition, which makes the other single SIRS model without de-
lay term have periodic solution with cross infection. We use constant b; here,
but the model of coupled SIRS with one delay term has periodic solution numer-
ically. From this result, we can see that There occurs oscillation of endemic in
pig population with cross infection, which would not appear without cross infec-
tion. We conclude that cross infection sustains virus longer, which may explain
why influenza virus appear without extinction. However, those model discussed
in this thesis can be modified with considering cross infection between pig and

avian species or including spatial ,seasonal and age effect.
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influenza test for u(1) = 46-006 and u(2) = 0.004. influenza test for u(1) = 4e-008 and u(2) = 0.004.
1 v v X} v v T

0.6

0.5

{n
U]

cc.-0 s h caD 4 1
03 p
1
0.2 “
0.1 4
s o s " N
(o] 0.2 0.4 0.8 0.8 o 0.1 0.2 0.3 0.4

I, () I5 (V)

Figure 3.12: i — r plane of two hosts cross infection with time delay term for

1 =4 — 006 and p, = 0.004.

influenza test for u(1) = 4@-006 and u(2) = 0.0004. influenza test for u(1) = 46-006 and u(2) = 0.0004.
1 T T v 1 . v T

. 0.9 .
: 0.8 4
. 0.7 .
. o.e .
f_o.s 1 fﬁp.s 1
: 0.4 .
1 0.3 1
. 0.2 .
1 o.t 4
o 0.2 Y ) o8 % 0.1 0.2 YY) 0.4

1, ® I ®

Figure 3.13: i — r plane of two hosts cross infection with time delay term for

gy = 4 — 006 and p, = 0.0004.
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influenza test for u(1) = 0.0004 and u(2) = 0.04. influenza test for u(1) = 0.0004 and (2) = 0.04.
1 r v v v T

0.35 - v

0.3

0.25

0.2 .
=0 . ars
0.15 .
1 0.1 J
0.05 4
R \ o , \ . .
o 0.2 0.4 0.6 0.8 o 0.05 0.1 0.15 0.2 0.2s

1, ® M

Figure 3.14: ¢ — r plane of two hosts cross infection with time delay term for

i, = 0.0004 and p, = 0.04.

influenza test for u(1) = 0.004 and u(2) = 0.04. influenza test for (1) = 0.004 and u(2) = 0.04.
.7 v — T T 0.35 T T T T
E 03 E
“ 0.25} “
- o.2r -4
m‘\l
4 0.15} i
b 0.1+ g
- Q.05 -
o N N . N
0.6 o 0.05 0.1 0.1§ 0.2 0.25

Figure 3.15: i — r plane of two hosts cross infection with time delay term for

1, = 0.004 and uy = 0.04.
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nfluenza test for u(1) = 0.0004 and u(2) = 0.004. influenza test for u(1) = 0.0004 and u(2) = 0.004.
1 v v v 0.8 v v T

0.8

0.5

]
{)

R
R

0.3

0.2

o 0.2 0.4 0.6 0.8 o 0.1 0.2 0.3 0.4
1, I, (1

Figure 3.16: { — r plane of two hosts cross infection with time delay term for

1 = 0.0004 and uq = 0.004.

influenza test for u(1) = 0.004 and p(2) = 0.1. influenza test for ju(1) = 0.004 and u(2) =0.1.
0.7 v v v v 0.12 T g

[o X3 .
0.08 E
[« -2 -
a I«‘loﬁ .
0.3} E
0.04 R
02+ B
0.1} | 0.02 h
o N . N o . - s
0.1 0.2 0.3 0.4 0.5 0.6 o] 0.05 0.1 0.15 0.2

) I, M

Figure 3.17: i — r plane of two hosts cross infection with time delay term for

p1 = 0.004 and p, =0.1.
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Appendix A

Definitions and Theorems

Consider a system of autonoumous ordinary differential equations

' = f(g;), (.-\1)
where f: D — R" isa C' map and D C R" is open.

Theorem. (Dulac’s Criteria) (41, 49] Let f € C'(E) where E is a simply
connected region in R2. If there exists a function B € C'(E) such that V-(Bf) is
not identically zero and does not change sign in E, then (A.1) has no closed orbit
lying entirely in E. If A is an annular region contained in E on which V - (Bf)

does not change sign, then there is at most one periodic orbit of (A.1) in A.

Theorem. (Poincaré-Bendixson Theorem) [41, 49]. Suppose that (A.1)
is a relatively prime analytic system in an open set E of R? and that (A.1) has a
trajectory I' with I, contained in a compact subset F of E. Then it follows that
w(I') is either a critical point of (A.1), a periodic orbit of (A.1), or a graphic of

(A.1).

Definition. (30, 41]. Let (¢, 7o) denote the flow of the differential equation
(A.1) defined for all t € R such that (0, z) = £(0) = zo. An equilibrium point
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T € D of (A.1) is stable if for all £ > 0 there exists a § > 0 such that for all

I € N§(T) and t > 0 we have
(L, ) € N(T). (A.2)

The equilibrium point T is unstable if it is not stable. And T is asymptotically
stable if it is stable and if there exists a § > 0 such that for all z € N;(T) we
have

lim p(t,z) = T. (A.3)

t—o00
T is globally stable on D if for all z € D of (A.1) we have

tlim o(t,z) =T. (A.4)
Theorem. (The Routh—Hurwitz) [8, 52] Either of the following conditions
is necessary and sufficient for zero of the real polynomial

f(z)=az"+a12" '+ - +a, (ag>0) (A.3)

to have negative real part:

(t)an, >0, ay2>0, @y >0,---;H,_, >0, H,_3>0,--- (A.6)

-

(¢d)ap, >0, @y, >0, an_3>0,---:H,_, >0, H,_3>0,---, (A7)

where H is the square matrix of the nth order:

( a; a3 as 0
a a ay 0
0 a a; 0
H= 0 a a, 0 (A.8)
0 0 g 0
\ 0 0 0 - a,
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The index of the coefficients decreases by one along a column, and increases by

two along a row. The element h;; is:

hi; = ag; if0< 2 — j < m,
R (A.9)

=0 if2i<jor2i—j>n.

Definition. = The kth order principal minors of an n x n matrix i are the
determinants of the k£ x k matrices obtained by deleting n — k£ rows and the

corresponding n — k columns of H (where k = 1,--- ,n).

Definition.  The kth order leading principal minor of the n x n matrix H =

(hij) is the determinant of the matrix obtained by deleting the last n — & rows

and columns of H (where k =1.---,n).
The leading principal minors H, Hs,--- , H,, of H are the determinants:
a, ag
aQ a
He=|0 q --- Jk=1,2--- . n (A.10)
0 0 (47
(e.g. n=2,3,4)
n=21ayz’+az+a a, >0,a; >0.
n=3|ayz’+a;z° +axz +a; az > 0.a2 > 0.a,a> > agay
n=+4 (l().?.'4 + (1133 + 0232 +azz+ay | a4 >0,a, >0,a, >0, ag(a[(lg - 0.00.3) > a'fa4

Table A.1: Special cases of the Routh-Hurwitz theorem for n = 2,3,4 .

Lemma. (Another criteria for the stability of matrices) [31, 29]. Let

A be an m x m matrix with real entries. For A to be stable, it is necessary and
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sufficient that

1. The second compound matrix A® is stable,

2. (-1)"det(A) > 0.

Note that for the definition of the second compound matrix see the above refer-
ence.

For example, for m = 4. the second compound matrix A® of a 4 x 4 matrix

A= ((L,‘j) is

( ap +ax a3 Qa4 —a)3 —ajyy 0 \
azp ay; + a3z asy a2 0 —a4
a a a a
Al — ay2 as3 1+ 0 12 13
—az) azy 0 az + as asq —ayy
—ay 0 as) a43 az + ay a3
\ 0 —ay) as —Q42 as; aszz + aqq }
(A.11)
Definition. [17, 41, 49] A function V' : D — R satisfving the following

properties is called a Lyapunov function.

Let T be a equilibrium of (A.1).

1. Vi(z) >0 for all - € D\ {T}, and V/(T) = 0.
2. V' <0forall z € D\ {7},

where

V(&) = SV (ot )leeo = TV (@) £ (2. (A.12)

Theorem. (LaSalle’s Invariance Principle) [38] Given (A.1),V : D - R,
V' <O0forz € D. Let S = {r € D:V'(c) =0} Ifthe only complete
trajectory which stays in S is 7, then (A.1) is globally (asymptotically) stable (i.e.

all trajectories flow toward T).

Theorem. (Global stability theorem) [30] Assume that

(H1) D is simply connected,
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(H2) there is a compact absorbing set K C D,

(H3) z* is the only equilibrium of (A.1) in D.

Under assumptions (H1), (H2), and (H3), z* is a globally asymptotically stable
in D if

PR L . |
p(ArA™ + A o A7) < -6<0 onkK, (A.13)

for some 4, where A is a nonsingular (3) x (%) matrix-valued function z — A(z)
which is C' in D and a vector norm |-| on R{?) and let i be the Lozinskii measure
with respect to |-|. Qg is the second compound matrix of g—’ﬁ, and Ay is obtained
by replacing each entry a;; in A by its directional derivative in the direction of f

(i.e. if A; = (ay;), then a;; := %“}L ).
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Appendix B

Codes of numerical simulations

Software used in this thesis

dde23 ( L. Shampine and S. Thompson) simulates a large class of functional
differential equations (Matlab base).

DDE-BIFTOOL (K. Engelborghs) allows computation and stability analysis of
steady state solutions, their fold and Hopf bifurcations and periodic solutions of
differential equations with several fixed discrete delays (Matlab base).

XPPAUT (G.B. Ermentrout) simulates differential equations with several fixed
discrete delays and allows limited stability analysis of steady state solutions of
differential equations with several fixed discrete delays.

(see http://www.cs.kuleuven.ac.be/ koen/delay /software.shtml)

Campbell Maple program.

cminputs - this contains the user inputs to the programs an example is included
in the file

cm.gen - this file contains the program to calculate the centre manifold of a
(system of) delay equation(s)

nf.gen - this file contains the program to calculate the normal form coefficients

for a dynamical system with pure imaginary or zero eigenvalues
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( see http://conley.math.ualberta.ca/joso/software/sueann/ )
Maple ( Waterloo Maple Inc.) is a general purpose computer algebra system, de-
signed to solve mathematical problems and produce high-quality technical graph-

ics and incorporates a high-level programming language.

Matlab ( MathWorks, Inc. ) handles numerical calculations and high-quality
graphics. provides a convenient interface to built-in state-of-the-art subroutine

libraries. and incorporates a high-level programming language.

XPP CODE

lee.ode

#cross-infection.

par b, =7.0 b, = 8.0 v, = 33.333 7, = 33.333

par p, =0.004 uo = 0.028 4, =0.01 4, = 0.00

par 3; = 37.66 3, = 40.0

par cl = 0.00008 c2 = 0.0002 d1 = 0.0001 d2 = 0.00022
h=Gici+exiz)*(1—ip—r)=(u +n)*4
V= ovip = (g +0y) x

b= (Srxiyt+e *xyl)« (L —ig—ry) — (2 +72) * iy
ry="2xiy— (2 + d2) * 13

e; = b, * maz(min(gl,1),0)

gl = (yl - c1)3/(d1 — c1)®

ez = by *x maz(min(f2,1),0)

92 = (y2 - 2)*/(d2 — ¢2)3

init 7; = 0.000001 z; = 0.000002 r, = 0.02 r» = 0.04
@ maxstor=1500000
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@ total=800

done

CM.GEN CODE
cminputs
# BEGINFILE cminputs
# This file defines inputs for cm.gen
# # Equation - Simple flu model with Delayed term
# z1'(t) = aa * z1(t) * (1 — z1(t) — 22(t)) — (bb + cc) * z1(¢t)
# 12'(t) = ccx z1(t) — bb* z2(t) — cc * exp(—bb * t1) * T1(t — t1)
# Linearised equation
# zl'(t) = (aa —bb—cc—2xaa*xi*" —aaxr*) «z1(t) — aa * i* * £2(t)
# 22'(t) = cc * x1(t) — bb x 22(t) — cc x exp(—bb x t1) * x1(t — t1)
# quadratiques : —aa * (z1(t))® — aa * r1(t) * 2(t) in eqn 1

#

#

#

# Part I : Define system

#

sysdim:=2; # number of equations/variables in system

numdel:=1; # number of delays (0,1,...)

zerdel:=1; # presence (1) or absence (0) of nondelayed terms in rhs of equa-
tions

#

# Define coefficients

#

# Define linear terms of rhs of equation, using z1, z2, z3,... as variables
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# t1, t2, t3,... as delays
#

lin :=array(1..sysdim);

aa :=0.1;
bb := 0.000004;
ce = 0.02;

i* :=bbx (aa — (bb+cc))/(aa * (cc * (1 — exp(—bb * t1)) + bb)):

r* :=1-(bb+ cc)/aa - i*;

lin[l] ;== (aa —bb ~cc — 2+ aa *i* — aa *r*) x T1(t) — aa + i* * 22(t);

lin[2] := cc * £1(t) — bb * £2(t) — cc » exp(—bb * t1) » r1(t — t1);

#

# Define nonlinear terms of rhs of equation, using z1, 22, z3,... as variables

# t1, t2, t3,... as delays

#

nonlin:=array(l..sysdim);

nonlin[l] := —aa * (z1(t))? — aa * 1(t) * z2(t);

nonlin[2] := 0;

#

# Part II : Define numbers of eigenvalues and eigenvectors
#

numzer: = 0; # number of zero e-values (0 or 1)

numimg: = 1; # number of PAIRS of pure imaginary eigenvalues (0,1,..)
#

# Define order of approximation

#

quadraticl :=true;

cubicl :=true:
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quarticl :=true;

quinticl :=false;

#

# Define simplifying equations at bifurcation point

# This can significantly speed up computations

#

simpres := [cos(wl x t1) = ((aa —bb—cc — 2 *x aa * i* — aa = r*)

* (=bb) — (w1)? — (—aa xi*) x cc)/(aa * i* * cc * exp(—bb x t1)),

sin(wlxtl) = wl*((aa—bb—cc—2*aaxi® —aaxi*)—bb)/(aa*i" xccxexp(—bb*t1))];
# cmdone determines whether coefficients of orginal dynamical system are
# read in from the file coefs.gen or not

cmdone:=true;

# ENDFILE cminputs

DDEBIF CODE

lee.m

clear:

% init system:

[name,n] = sys_init

% construct a first, approximate steady state point:
format long

stst.kind="stst’;

stst.parameter=[10 0.004 2 3|;

stst.x={0.1148 0.6848];

% get default method parameters for stst calculations:

method=df_mthod(’stst’)
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method.stability.root_accuracy= 1.0000e-08
method.stability.minimal _time_step =0.001
method.stability.max_newton_iterations= 8
% correct the point:
[stst.success|=p_correc(stst.[].[].method.point)
stst.xX

% compute its stability:
stst.stability=p_stabil(stst,method.stability);
% plot its stability:

figure(1); clf;

p-splot(stst);

% ask for roots with more negative real part:
method.stability.minimal real_part=-0.5;

% recompute stability:
stst.stability=p_stabil(stst,method.stability);
% plot stability:

figure(2): clf;

p-splot(stst);

% get an empty branch with 1(3) as a free parameter:
branchl=df_brnch(1,stst")
branchl.parameter
branchl.parameter.min_bound
branchl.parameter.min_bound(1,:)=[1 0J;
branchl.parameter.max_bound(1,:)=[1 10J;
branchl.parameter.max_step(1,:)=[1 0.2];
branchl.method stability.minimal time step =0.001

branchl.method stability.max_newton_iterations= 8
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7 use stst as a first branch point:
branchl.point(1)=stst;

% perturb and correct the point:
stst.parameter(1)=stst.parameter(1)-0.1;
[stst,success]=p_correc(stst,{],[],method.point);
% use as a second branch point:
branchl.point(2)=stst;

% set some continuation parameters:
branchl.method.continuation.plot=0;

% continue in one direction:
[branchl.s.f,r]=br_contn(branch1,100)

% turn the branch around:
branchl=br_rvers(branchl);

% continue in the other direction:
[branchl,s,f,r]=br_contn(branch1,100);
branchl.method.stability.minimal real_part=-.5;
branchl=br_stabl(branch1,0,0);

% obtain suitable scalar measures to plot stability along branch:
(xm,ym]=df_measr(1,branch1);

% plot stability along branch:

figure(3); cif;

br_plot(branchl,xm,ym,’b’);

vm

vm.subfield="10":

br_plot(branchl,xm,ym,'c’);

plot({0 10],{0 0],-.");

plot( 2.068 , 0 ,'0’);
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plot( 5.29, 0 ,0');
xlabel(’3")
vlabel("R(A)")
axis([0 10 -.05 0.03));

sys_rhs.m

function f=sys_rhs(xx, par)

% &z : rl z2

% par: Bupu~T

f(1,1) = —((par(2)+par(3))*zz(1, 1)) +par(1)*zz(1,1)* (1 —zz(1, 1) —rz(2,1));
f(2,1) = par(3) *zz(1, 1) — exp(—(par(2) * par(4))) * par(3) * zz(1,2) — par(2) *
rz(2,1);

return;

DDE25 CODE
fu.m

(1) = 0.1; 3(2) = 0.2; (1) = 0.000004; x(2) = 0.004; (1) = 0.02; ¥(2) = 0.08;
b(1) = 0.01; b(2) = 0.01; opts = ddeset('RelTol’,l1e — 8,"AbsTol’,1e — 8); 7 = 300
sol = dde23(’fluf’,7,'fluh’,[0, 10000],0pts.- - -

B, 1,7, b, 7); x = linspace(0, 10000, 400); figure subplot(2, 2, 1); plot(sol.y(1,:),s0l.y(2,:))
title(["influenza test for b(1) = ",num2str(b(1)),’ and b(2) = ’,num2str(b(2)),".’])
xlabel("I, (t)’) ylabel(’R, (t)’) subplot(2, 2, 2); plot(sol.y(3,:),s0l.y(4,:))

fluf.m
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function v = fluf(t,y, Z,8,1,7,b,7)

ylag = 2(:,1);

v = zeros(4,1);

u(1) = (8(1) * y(1) + b(2) * y(3)) * (1.0 — y(1) — y(2)) ~ ((1) +¥(1)) * y(1);
if t<=tau

v(2) = (1) * y(1) = p(1) * y(2);

else v(2) = (1) * y(1) — p(1) * y(2) — v(1) * exp(—p(1) * 7) * ylag(1);

end

v(3) = (8(2) xy(3) + b(1) x y(1)) * (1.0 — y(3) — y(4)) — (1(2) +7(2)) * y(3);
v(4) = 7(2) * y(3) — u(2) * y(4);

function v = fluh(t,B8.pu,7,b,7)

v = zeros(4, 1);

v(1l) = 0.2;
v(2) = 0.0;
v(3) = 0.0001
v(4) = 0.01;
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