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.

Over the last decade there has been considerable effort spent by iev;iiil,_au}hofa on L
the calculation of the 'a_ugmezltation terminal of certain groups. Due to the comfplexity ‘
of the problem, this research has been centered on abelian groups culminating in Alfred

~ Hales giving a description of the augmentation terminal of a finite abelian p-group. This

result ‘shows the augmentation terminal to be isomorphic to a particular finite abelian
p-group from which the invariants of the group must be calculated in a very tedious and
time consi;mi_ng manner. In this thesis a result is derived which gives the invariants of the
aug’mentat;on terminal directly from the invariants of the origiqal group.
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In Chapte} I basic definitions and some reduction theorems show how calculating the
uu'gmentation terminal of abelian groups can be reduced to calculatmg the augmentation
terminals of ﬁnM‘nbehan p-g:q ps. ‘

Chapter IT brexﬂy presy he complicated result of Héles refered to above. Also a
detailed description of maximal cyclic subgroupe is given w}uch is used in Hales el
well as the main theorem of this thesis. : R

, ‘In Chapter III thd'ﬁnam result of calculating the invariants of the al .
terminal in a direct tﬁumer, is presented. This chapter also contains several exa
lxllustrating the calculation of the invariants with and without the main theorem.

The last chapter presenta a brief hmtory and gummary of the work.and results accom-
~ plished in the non-abelian case.

Regarding nota.tlon, results within a chapter are referred to by two digits. A three
point reference like (11.1.3) refers to (1.3) of Cha.pter I. References from the bibliography
are enclosed within square brackets. .
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PREREQUISITES | l -

The reader is assumed to be f iar with basic group and ring theory. Unless stated
otherwis¢, N and Z will denote the set of natural numbers and the set of integers respec-
tively. p will denote a prime number. : o :

Throughout this thesis, we will be dedling with the group ring ZG of the group G
over the ring of integers Z. ZG. is the ring of all formal sums

A = E ‘,g, z, € j
€C g
such that the set {g € G | zy # 0} is finite; with the followihg rules
1 = ) <= 2, =y, forallg € G,
1) Zz,g Zy,g 5 =Yy or‘a g€

2) Z Zp9 + Z Yog = Z(zv + ¥y)9,
€G 9EG 9EG

g
3) (E z;ﬂ)(; !Iga) = Z wyg where wy = Z ZAYA-14.
9€G g g€G g

heG
Note, in this thesis almost all groups G are finite and so these.are the natural rules of
. addition and multiplication.

If ec is the identity of G then 1 =1-ec is the identity of ZG and vea.ch 2 € Z can be
identified with z - eg. Hence 2g = pzforallz€ Z and g € G.

Define the map ¢: ZG — Z by

‘(E z,9) =2: 2 € 2.

g€C 9€G .

Then e is a homomorphis?;and its kernel ' o .

L 85(@) ==Y 50€26| Y5 =0)
9EG 9EG

!

is called the augmentation ideal’of ZG. We sometimes denote Az (G’) by A if the groub
G is understood. (The underlying ring is always Z .)
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- '~ CHAPTER 1

Some ﬂaduétio'm of the Problem

. >

~ The study of augmentation quotients was initiated by Passi in [Passi '68]. He re-
“fuced the problem of calculating the augmentation quotients of arbitrary finitely-generated

" - abelian groups to that of calculating the structures of polynomial groups of finite abelian

. p-groups. In this chapter we shall present some of the reductions to this problem. ' In
Section 1, definitions and some easy results are given. Section 2 shows how to take care of
cyclic groups. Finally in the last section some of the reductions are proved.

14

Section I  Definitions and some easy results.

.

A" forn;O,l,Z,...,by ‘ \

A°=2G, ‘and A"=A"'A foraline N.

1.1 Definition. Let'G" be a group and A = Az(G) the augmentation ideal of ZG. Define

rd

A" are the powers of the ideal A. ya ’ , A

1.3 Remark. Recall that if I and J areme ideals of ZG then
1J = {Zz;y.-, finite sums | z; € I and y; € J} .

is also an ideal of ZG.

Therefore, the sequence {A"}%2, is a descending sequence of ideals in ZG. We ca.n-C
~now make the following definition. ) ~ ‘

1.3 Definition. Let G be a group and A the augmentation idsp.l of ZG. By an
augmentation quotient of G we mean the (left) ZG-modules

Q”v’ (G) S AR/A“H
where n and r are any non-negative integers. For simplicity we denote
Qn,l (G) = A"/AM.l by Qu (G), ’ and Ql,n (G) = A/A"H by P, (G)

1.4 Remark. -The modules Q, (G) and Py (G) are called polynomial groups.

1 7
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1.8 Remark. Let i: Qy(G) — Pa(G) be the inclusion map and lat
projn : Pa(G) — Pa; (G) be the projection map. ie. if a € A" and A€ A then

]

(a+a™)=a+a™  (wAa®cA) and
proja(B+ A™1) = 8+ A%  ( this ls'wall defined as A D A" ).

Then we have the following exact sequence:
0 — Qu(G) -~ P\ (G) ™A P, (G) — 0

Thus, although we agffipncerned with the augmgntation quotients @, (G), because of
the above exact sequence we should also study the polynomial groups P, (G). However,
because the results that are needed do not require the use of P, (G). the corresponding

ults for P, (G) will be stated without proof. The reader should consult [Passi 79,
Chabpter viii, Section G| for these. .

We shall now prove the following easy but useful results.

‘6 Proposition. Let G be a group. Then A = Az(G) is a free Z-module with the
Z-basis {g—-1|1# g€ G). ’
-~ Proof. Let a=Y"" zg; € A. Then /
n ‘
J a=Y " z[(gi-1)+1]

=1

= zn:z"(a.'—l)“*'f:‘i

i=1 - =1
=Y z(gi 1) 0=cla) =) =
i=1 v

Hence, {g—1 |1 # g € G} spans A. Now suppose Y i ai(gi—1) = O for some g; € G\{1},
ai € Z, the g; all distinct. Then comparing coffecients of the g's in ZG and using the fact
that {g € G} are a basis for ZG we get that all a; = 0. Therefore {9-1|1#9g€G)is
linearly independent and hence is a basis. g

" . 1.7 Proposition. Let G be a cyclic gfoub, G= <z>. ThenA = 2Z2G(z-1) = {(z-1)},
the ideal generated by (z — 1). .
Proof. Using the augmentation map it is easy to see Z G(z — 1) C A. It suffices to show
that 2 —~ 1 € ZG(z — 1) Vi € Z\{0}. Now let i € N. Then
- 1= (m}"" +23 ... +1)(z— 1) € ZG(z - 1), and this gives
£ - 1= +z (' - 1) € 2G(z - 1).



1.8 Corollary LetG=<z>. Then A" za(e - 1):- Vn ¢ N. Lo
Proof Follows fronr above. l R | s
1.9 Propositlon “Let G’ be a ﬁmte group. Then Q,/, (G’) (and P,. (G) ) are ﬁnite Vn > 1.
Proof Let]GI-—m<oo Thusz —IV::EG Then S '
B ' S 0=z™ —1-—[2( )(x—l)]—l—z( )(z—l)' :
‘ =1, ‘ . S
] ‘ : e = 1\ .
N Z;()‘ yeat
Smce T - 1 z € G\{l} generate A (by proposltxon 1 6) we ha.ve mA C A2 Let ne N

Then '
(mA)An-—l C AzAn— .__ Aﬂ-l-l

e mA" C A"”‘l Yin € N Thus every element of Q,. (G) has ﬁmte order But Q,,(G)
: generated by the fimte ﬁer of elements L \ ,

| (=1 £ 14z —1) (zn - 1) -i;A"“ g € G
Lo o \ 1 - ) :
Smce Qn (G’) is an abelxan group ,generated by a ﬁmte number of elements of ﬁmte order,

we have that Q,,( ') is a finite’ abelian group - _

Scctt'bn 2 ‘Th"eicyglic ce.se. -

- T

; We now w1sh to start mca.mmmg the augmentatxon quotxents of some groups Therefore
. the easiest case, the cyché group, should be dealt with first. In thls sectxon we present a ‘
“modified version of the proof gnven in [Passl ’68 p127] First, we shall need the followmg o
,well—known result. : o e ‘ o

‘ .2 1 Theorem If G is an abelmn group and A 1ts augmentazon JdeaJ then G = 2 A / Az

‘ Proo[ By proposltlon 1 .6, A is a free abelnan group with ba.sls {g ~1|1#g€ G} Also,

“since G'i8 abelian, if we define © : A —.G by 9(11 - 1) = g, Vg€ G\{l} then 2} extends’
: lmea.tly to a homomorphxsm, na.mely, N

& .Let K_ = kernel(e) We need to show K= A2 Let v,w E A, say v = Ea,(g — 1) |
»w—th(h—l) Then . ;

.",,.vw Ea,bh(g—l) -—1) Eagbh[(gh-—l) -"‘1) (h 1)]

\3 )



e.nd so ) | -
L Q(WP H(gh agby (g)—o,b:. (h)“'a“h = u Gis abelian

Hence vw € K a.nA by addltlon we have A2 C K Conversely, if }:a,(g - l) € K then v |

[ Z“o(g"l)) Hg“"

-Hence, - | o - ‘ ‘ o s
coe N H(l + z,)“ﬂ =1 Where “oxg=g—1. 7 '
Evaluatlng the /product we get o | ' | ' B
| 1 + Za,z, =1 mod A2 Sor Z-a"f? =0 mod Al

f _ , ‘
Thls 1mplxes tl'Tat - '

| Za, - 1) 0 mod A’
ﬂHence KC A’i and so K = =A%y o |

2.2 Remark ‘ " The above result is a specxahzatlon of the more. general result that

A(G)/ AYG ) ‘ G/G' where G' =G, G] is the denved subgroup

| 2.3 Propos;tgon Let G be a group and let z € G.

Ce g s ‘ : ‘ : . o

| “ | Deﬁne . i: = {1 + z + +z°(z) N Y ifo(:c)’ < i
- o, - otherwise.

. Then {aGZGIa(z—l) —o} ZGt. |
o Proof Suppose a(z— 1) Owhere a€E ZG, a= Ehec.' a;,h Then |

a(z—l) 0 <> (Eahh)(z-—l) 0 <= Eah(hx) —-Za1.h
S = Za"’" h= Zahh RN aQpz-1 —ah VhEG’ //Q ;
> a=ew Vi€Z, heg. o / R

! )

Suppose o(z) = co. Then hz i€ Z are all dlstlnct elements of G. So if some/aj, # 0/ then -
all apzi =ap #0and a is not a finite sum; contradxctxon toa€ Z G Thus a = 0. Now
suppose o(:z:) m < co. Hence ° : : :

a=ahh(1+z+ +a:"‘ l)+a;.,,hg(1+:':-+- x"""‘)+..',. g >(ﬁn‘ite'sum)

= pz forsome ﬂEZG
\

"‘ In both cases, 1f\a(z - 1) = 0 theén a- € ZG% Conversely, if € ZG#% then a = ﬂz for
someﬂEZGa.nda(z‘—l) ﬂz(z—l)—Oasz(z—l) OV::EG SR

We are now ready to prove the mam reeult of thls section.

._\ . .
) 4
~
v ) .
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o ﬁ Thgorom. IfG = <z > is a cyclic group, then Q,. (G) = G Vn € N.

Py g :[ By theorem 2.1 we have Ql( ) > G. Thus we need qnly establish an momorphlsm ‘
/ Qn(G) = Q1 (G) ¥n > 2. Since G is cyclic, by corollary 1.8 we have that A® = ZG(z - 1)" 4
Vn € N. For n 2> 2 consider the additive group homomorphism f : A —-A™ given by -

~
»

ToE-10)=pE=1". Be2).

(This is well defined and 2 home‘morphism.) Now note that\ |

\

(1) R ZGihZG(r—i) =..{o}‘

»

If o(z) = oo then ZG’i: = {0} and the claim holds. So let o(z) = m < oo and notice
- that (£)? = m2. Let a € ZGZN ZG(z - 1) Then a = a2 a.nd a= az(z - 1) for some
ay,a3. € ZG. But o :

' alzm af —ag(z—l)z—

Soali OThenforﬂeZG | o | o \

>,

f(BE=1) €A™ e Bz =1 =2l = U™ for some v € ZG
' <= B-4(z-1))(z-1)"=0 for someﬁéZG" i
= B-vz-)](z-1)"" €262 for some Y€ 7G" . -
= B-v(z-1))z-1)* =0 “for some y € ZG, by, (1)
<> [ﬂ '1(1: —-1)l(z—1) =0 for some € ZG e
(By repeating the argument. ) S S , “
o> ﬁ(z—l)—'y(z 1)2 ~ for somquZG o

~ Thus f induces a monomorphism f* : A/A? — A® / A"‘” But f is clea.rly onto and so
© f*isan 1somorphlsm Thus Q ( ) Qn (G) and we aré' done. g : ,y

- Therefore we see that the structure of Q,.( ) for G cyclxc is relatxvely slmple However
" the calculations and the correspondmg result for P, (G) are extremely complicated. (See .
[Passl '68].) For future reference it should be noted that Py (Z ) = (Z)*. - ‘

Section 8 v'Red‘ixctiox_z Theorems.

We shall give some reductions for the computetion’ef Q,.( ).

S _, The first case we examine is when the group is the direct sum of two groups of coprime
Vexponent PR o o ' ’ { '



“ 3 1 Deﬁnitioh.‘ Th&wm__nf of a group G is the smallest integer r. > 0 such that
-z —IV:t:GG xfzt ex:sts and oo otherwise. ; . :

3 2 Theorem " Let G and H be groups of ﬁmte exponent r and s mpechvely Suppose
'r and s are relatxvely prime. Then: -

t) (z—-l)(!/—l)EA'(GeH) Va>lz€Gy€H

’ 1) Qu(GQH) Qn( )eQn( )»,' and /
i) Po(G@ H) = Pa(G) @ Py (H).
Proom First note that if z EG Ehen'

"

" | 0= z' ‘-j I'=((z -‘—‘1.)>+ 1) -1 =jz=.; (J) (z-1) -1

. —Ji:(v)(z—lvﬂ v | »v.
E '(3'—‘1)=;E(J)(3—1)’EA’(G) Vz€G.
L=

Thus rA(G) C A? (G). By “mductxon we have r'= lA(G) c A(G) Vi > 2. Likewise
« & 1A(H) C A‘(H) Vi > 2. Since r and s are relatively prime we have (ri-1, i~ 1) =1
Hi> 2. Hence there exists mtegers u; and v; such that

yi u+a' =1 Vi>2

N \

Let 1 > 2 be ﬁx& ?g'x/d let u = u;,v=uv,. Now ifze G and y € H and regardmg G and
‘H as actually bemg contamed inG® H, we ha.ve

(-1y-1) = (“u+a"v)[ —1)(v—1)]
C 0 = e D) e - ) - )
| ea™ (GeoH) ' Y
: Thus,(z—l)(y—l)EA'+l(G®H)Vz>1zEG,yGH v
i) Let fi :G®H — G and fg G® H— H be glven by the pl'OJeCthIl maps

filwy) =2z and  fo(ey) =y v
Consider the obvious hémqmorphxsms: |
(1) :Qn(@OH) > Qu(G)  snd  Qu(h):Qu(GoH) ~Qu(H)

6



" gi\fexi byk‘ ‘ 'A : | | ;

Qu(f)(a+ 8™ (G0 H)) = fi(a) + A (6) and
@n (f?)(“ + A"fl (Go H)) = fi(a) + A" (H) forace A"(Qﬁi HZ:

.Now‘consider the hombmorphism ks o & |
. . ‘;“‘, .

o:aGom-a@eam T o

g

givenbby . ‘ R - S e

- " 8(2)=a(A)(2)@Qn(fa)(2), = forzeQu(Go H).

- We need to show that e is an xsomorphxsm Let 2 be a general element of Qn (G ®H )

Then _ ‘

, . oz= }: t(xwl ~ 1)(zgyg ~1)-- (z:,‘y,, - 1) + A""'1 (Go H).
g |

Using the identity zy — 1= (z—1) + (y—1)+ (z—1)(y — 1) and using i), we have

- S ~ , ' : ” ‘vf
| s= Z t{(z1 - 1)(z3 = 1)--o(za — 1) + (11 = 1) (3 — 1) (ya — 1)} ‘\s
(*\) NECHER ‘ S , LT

€ A (Go H).

Now suppose z € kcmcl(é) Then 9( ) =0 which says Q, (fl)( ) =0 and
@n (fz) (z) = 0. Applying thls to the original z we have ) :

Zt(z,--n(z,-l)---(x,.-l) A"+1 ), and Zt(y, 1) yg—l) (yn—1) € A™ (

But from (%) this says that z € A"‘H (G® H). Thus 9 is a monomorphism. But © is
obvnously onto and so © is‘an isomorphism. Thus Q, (GoH)=Q.(G)® Q,.( )
" iii) This is slmxlmr (and easxer) than the proof of ii). g

Néw that we can handle a dnrect‘sum of two finite groups of relatnvely prime orders,
it would be nice if we could split off direct factors of m?ute cyclic groups To this end we
have the following reduction [Passi '79 p117). |

3.3 Thebrem. 'Let G be an arbitrary group. Then for aII n> 1 we have:

i) Qn(Z20G)=Qn(2)0Qn(G)®Qn-1(G)o®-- GSQ:(G)te(G) and
i) P.(Zec)ap..(z)ep.(a)eﬂ.-l(G)e ePz( ) @ Pi(G).

Proof Deﬁne M=X& G where X is an infinite cyclic group w1th generator z. (Hence .
X ='Z.) Consider ZM as a group ring of X over ZG. i.e. ZM = (ZG)X. Consider the
- Z G'-homomorphlsm n:2G — (Z G)X given by n(1) = 12°. Let € be the augmentation

7
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map of (ZG)X (so £ maps z — 1). Then it is easy to see that con:2G —~ 2G is the
1dent1ty homomorphxsm. Hence :

M = (ZG’)X = smage(n) evkernel(e") =2Gz° ® Azc (X) o \ )
Now (as in the proof of propoaition 1.7) we have | |
| Aze(X) = [(26)X](z~1) = ZM(z —1).

Hence, we have

s | _ZM= ZGeZM(z—l)

Taking the augmentatlon of this (in ZM) we have A(M) = A(G) ® ZM (= —‘1). Using
“(*) and by induction on n > 1 we have

IM=2G® ZG(z-1) o aG(z ~1)? 9. -02G(z - ™! @ ZM(z - 1)" and
A(M) =A(G) ©2G(z - 1) ® ZG(z - 1)2 @ 02ZG(z~1)""! @ ZM(z - 1)".

Therefore

 AM(M) = A™(G) +A™ (a) (z— 1)+A"‘3 () =1+ A(G)(a- 1" +2M(z~1)". |
" But A*(G)(z - 1)"“ C ZG(z—1)"* Vz =1,2,...,n and since ZM ia‘a direct product
) .

of these factors, so is A"( That is
AN (M) = A" (G)ea™'(G)z-1o -0 ;S(G)(z -1)" @ ZM(z - )" v >t
Let n > 1 be given. Then - : ‘ : ' ﬁ '
o . n—-1 ' ' v | )
A (M) = [P A~ (G)(z-1)'] @ ZM(z - 1)
=0 ‘ !
’é A"“/(G -1)° | © 2G(z ~1)" ® ZM(z —1)"*!
1=0 .
| A™ (M) = [P A™ (G)(z - 1)] @ ZM(z ~ 1)
' =0 - \
Henge, ‘ | : v
' : n—1 -
Qn (M) = Z” (M)/A™ (M) = [P A (G) /A"““ (G)] @ 2G/A(G) ® ZM/ZM
- 3, _ t=0 , . '
n—~1 . . ‘ .
[Be(@)]ez6/a(6).



Sihce ZG/A(G) 9!‘Z‘we havev . |
( ) Qn( )@Qn—l(G)e'“QQl(G)QZ.‘
But by theorem 2.4 we have Q,.( ) = Z. Hence we have -

Q..( ) = Qu(2 )eQ,.( ) ®Qn-1(G)@---®Q1(G).

. "

"Ina ‘very similiar ma.nner we get ii), g-

3.4 Remark. Passi also calculated the augmentatiox} quotients for the following two

types of groups: '

i)fn> (m-—l)(P—l) + 1 then Q,.(Z("')) ’—‘Z( T ) form > 1.

ii) If F is the free group on a set X then Q, (F) is the free abelian group on the set of all
. cosets a, + A"H! (F) where a, runs through all elements of ‘the type

(21 —1)(z3 — 1) ( Ty — 1) where z1,z;,...,2, G‘.F. | '

We are now ready tb handlé the case of abelian groups.

by Pwse
3 o
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CHAPTER 2

o The Abeljan Case

Let G be a finite abelian group. Then by the Fundamental Theorem on Finite Abelian
Groups [Herstein '75], G = G; ® H where G| is a finite direct sum of cyclic p-groups and
H is a finite direct sum of groups whose exponent g is relatively prime to p. By theorem
1.3.2 we have Q, (G) = Qn (Gg) ® Qn (H); Hence it is sufficient to study finite abelian

p-groups, -

~In this chapter, for a finite abelian p-group, we will define a group Qg which will
be isomorphic to Qs (G) for all n large enough. From this group Qg we can then find
~ the invariants of Q, (G) for large n in a straight forward but time-consuming manner. In
Chapter 3 we will present a theorem for determining these invariants. Right now, we shall
use the results of [Hales '83] and [Hales '85] to show the.isomorphism Qg & Q, (G) for
large n. o S

In section 1, Hales’ conjecture will be presented. Section 2 will define and determine
~ some results about maximal cyclic subgroups. These results will be needed for both Chap-
ters 2 and 3. Section 3 will present a condensed proof of Hales’ conjecture which has been
included for completeness. This section is very detailed and can be skimmed over without
affecting the understanding of Chapter 3.

Section 1 " The conjecture.

The following result of Bachmann and Grunenfelder [Bachmann and Grunenfelder '74]
(stated for nilpotent groups) is an extension of Passi [Passi ’68]. |

. -

- 2

1.1 Theorem. Let G be a finite nilpotent group of class ¢. - " -
Let € = least common multiple of {1,2,... »¢}. Then there exist positive integers N and
* 7 such that = divides & and Qu+x (G) 2= Qu(G) for alln > N.

Note that an abelian group is nilpotent of class 1. Hence for a finite abelian p-grou;i '
G there exists a no(G) such that : ‘

@ () = Quosi (6) = -
as aBelia.n groups. This leads to the following definition.

1.2 Definition. Let G be a finite abelian p-group. Let no(G)' be as above. Let
Qoo (G) = Qno (G) Then Qoo = Qoo (G) is-the augmentation terminal of G. -

We ¢an now define Qg.

;e
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1.8 Definition. - Let G be a finite abelian p-group. Define-an abelian group Qg by the
- following generators and, relations. Let Pg denote the poset of cyclic subgroups H of G.
(So Pg is & tree with root Hy = {1}.) Take/one generator zy for each H € Pg, and
relations pzy = zx whenever H covers K in Pg (1 e KCHand[H: K | = p). Also
definezpy, =0. ? k

. 1.4 Example. Let G <z> where o(:c) = p™. Then define Ho <1>and
'H‘—-<zm >wherezw‘- "Hfon-lz .,m. Thus

Pg = {Hi |i=0,1,...,m} and
Qa-—{zm[:—OI .M, pTH, =ZzgH_, }.

‘ Thlu' gwee Q¢ = {zﬂm | p me' = 0} = Zyn = G. Note by theorem I.2.4 we had
Quo(<z>)® <z >. 80 inthis case Qoo(< z>) = Q> -

Partially motivated by the above example, A. ‘Hales stated the following conjecture .
[Hales '83]:"

1.5 Conjecture. Let G be a&ﬁnite abelian p-group. Then Qg = Qo (G)
The rest of the chapter will be concerned with proving thg 'a,bov‘e conjecture.

A

-
4
4

(é Lo . .
.is'er.gtio‘w 2 . Maximal Cyclic Subgroups.

T Beosy

As the above hypothesm depends extensively on knowing what the structure of Qg is,
we should have a good understanding of the maximal cyclic subgroups in a finite abeha.n
.group. In this sectlon we present an inductive way of creating the generators of such
groups. ' o S

3.1 Definition. Let G be a group and H a cyclic subgroup of G. Then H is a
maximal cyclic subgroup (M.C.S) of G if there does not exist any cyclic subgroup N of
G such that H ¢ N Zpropgr contunment) The set of all maximal cycbc subgroups is

" denoted byMCSfG) L

It should be noted that the only M.C.S. of a cyclic group G is G itself. Thxs slight
variation from the atanda.rd meaning of maximal should not cause the reader many
- problems.

Also every cyclxc subgroup of G is contained in a M.C. S Hence for the rest of this
section'we will only be concerned with the maximal cyclxc subgroups of G.

3.2 Remark. Throughout this section (nnless otherwise specxﬁed) we let G be a ﬁmte
abehan p-group with the form

G.-H<g. —<g1>x<g,>x ‘X < gm >

=1 -

wherem>1 o(g.)—-p" fors=1,2,. ,m, ande; > e3> >epm > 1.

"11 - {
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2.3 Proposition. Let G be as in remark 2.2. Let z = (97", 95,...,gPm) where
05ﬂ{<p“,for:’=1,2,.7.,m. . ‘ ‘

a) <z > € MCS(G) if and only if p does not divide g; for some i € {1,2,...,171}“};
b) If H € MCS(G) then p*~ < | H | < p*t. :

Proof. a) (=). For contradictionj?nrposes suppose p | §; for all i.
Lety = (gf‘/p ghlr ..,gg."‘/”). If B;'=0 for all i then z = (1,1,...,1) and so LR
<z>¢MCS(G) as | G| > 1 and so there exists a.y € G\{z} and < z > C <y >4
some f§; #0 then z # y (defined as above) and z = y?. Hence < ¢ > C < y > as ‘
o(z) = o(y"j = 3‘;"1 < o(y). In either case we get a contradiction. .
(¢<=). Suppose < z > is not a M.C.S. Then there exists y = (g, .., g¥m)
<z>C <y>. Hence z =y’ for some 0 < j < o(y). Suppose (j,p) = 1. TH
Then (j,0(y)) = 1 and so there exist integers s and ¢ such that sj + to(y) = 1.
de 2% =y = y(=1) = y implies that <y > C < z >, which is a contradiction. _
Thus ¢ = yP* for some 0 < k < ﬂ;"’l. Therefore §; = pka; (mod p*') fori=1,2,...,m
and p | B; Vi. This is a contradiction. Hence <z > is a M.C.S. )
b)Let H=<z > where z = (gf‘,'...,gg;") for some 0 < B3; < p®. Then

e ey (2] ey ~e m, _e1—-e o
P = (0] )P (7 T (BT ) = (1,15, 1),
ie. | H| < p°. Now suppose | H | < p®~. Then B -

(1’1,-- .,1) = zp‘m_l = (glﬁlpgé—!:- . ,gg‘mp'm—l).

Therefore, .

' Bip ' =0 (modp%)forl1<i< m,

Bi=0 (mod p“""“ﬂ) fgr“‘\‘i”é < m,

Bi=0 (inodp)forlSiSm‘ase.-—em20.
Therefore p | 8; for 1 < i < m and part a) gives us that H is not'a M.C.S. Contradiction.
Hence p* < | H | < p™. 3 ' T .

2.4 Definition. Let G be as in remark 2.2 and let z = (gf‘, ...,g8m) be a generator
of a maximal cyclic subgroup of G. Let o(z) = p'. Choose 1 < j < m minimally such

i =1

" that o(gf") =p'. Let 0 < k < p% be such that gf’k = g;-’" . Define y = z*. Then
<Yy >.= <> andy is called the standardization of z or y is standardized. J is called

‘the index of standardization.

2.5 Remark. The above definition makes sense. By proposition 2.3 we have 1 <e¢,, < -
‘and since o(g;) = p% we have I < e;. Hence - 7

oflg;')=p' = Bip'=0 (modp%)
= ;=0 (modp%~)
= f;= Ep""" for some 0 < g < p%i~(¢i=D = pl,

12
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Also if p | # then

( )ol—H'lll (ﬁ) &= (modp )

= o(gJ- )< p'™!.  Cortradiction.

'GI”Q

Hence 3; = fp% ! where (8,p) = 1 or (B,p') = 1. Now there exist integers s and ¢ such
that s8 + tp' = 1. Then :

Biye _ 809%™ _ (1-tphpti=! _ p4-! ?tp" pti=!
c--l !
Let k'= s (modp‘f) Thengﬂ’ =g ad<y>=<zt>C<z>
_l ‘
Buto(y)>o(g, )= p—o(z)le <y>=<z>

2.6 Remark. _Let H be a M.C.S. of G and suppose < z; > = < 23 > = H. Let ~
y1 and y; be the standardizations of a:l and z; respectively. Let | H | =p' and let -

T, = (91 b ’gg'm) !md T, = (gf‘, ,gm ) Smce <z >=<1z2>We must have
min{i € {1,...,m} | o(g? V=p'} = min{i € {1,.. ,m}lo(g,')—p} = J.
Hence ’

L cj-l

~ A o
1= (¥ ¥onn 8 Wi Vi) and v = (4], ¥ g ).

e; ~1
Since<y;>=<y2>—Hando(g;” ) = p! = | H | we have y; = y,.

Thus if H is a M.C.S. of G then the standardization of H is < y > where y is the
standardization of any z € H such that < z > = H.

2.7 Definitions. Let G be as in remark 2.2 and assume m 5 2. We define e, — e, + 2

classes of maximal cyclic subgroups To(G), T1(G)s- Tey-enm (G), and S(G) of G as

follows: ‘
Foreachi,0<i<e; —en, let G; =[], Xgi > W{ere m; < m is chosen maximal

1=1

"so that e, 2em+i.

For0<i<e —en deﬁne T; (G) as the set of maximal cyclic subgroups of G,
(gf‘, ghr ) > where < (g ye ,gm, )> isa M.C.S. of G¥ ; 0 < B,n < p*™; and for-
mi < j < m we have o(g;’) < p*m
Also define S(G) as the set of M.C.S. < (g8, .,g,f;") > where o(g]’) < p°m for all
1 <j <m—1. (If G is understood then let § = S(G) and T; = T;(G)).

For future reference, let = = (g%, .. ., gom 9 and note if <z > € MCS(G’ ) is stan-
dardized and if < (¢, ..., g,e,"') > € MCS(G) (as derived above) then it is also standard-

ized. ‘This is because (using proposition 2.3)

ofz) > > p"" : (z: € G”‘f) = o) > p‘"‘ (if z is conmdered{n G).

Since o( (gf{"ﬁ' vernygBm )5 < p*~ by definition, we have that both the old and new elements
haVe tye same 1ndex of standardxzatxon and so if z is already sta.xyiardmed so will be the
new ele'ﬁxent

13
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2.8 Proposition. To, Th,... ,’T.,.-e.,,, and § partition the set of maximal cyclic subgroups
.of G. '

Proof. Let z = (g4",...,g%m) generate a M.C.S of G. Ifo(gf’) <p'foralll < j<m-1
then < z > € § by definition. Now suppose < = > € S. Then we can define *

and ig = min{ej -1 | o(gf’) = p" where 0 SJSm-=1landl; >e, }

jo=max{i€ {L,...om=1}]e; = i = 10, i>em).

Claim<z > € Tl'o' ' ‘
Now m;, < m is chosen maximal so that €mi, 2 €m + 0. Also jo is chosen maximal so
that i = ¢, — I;, and ljz 2 em. Hence '

€jo =20 + 1, i + e = Jo < mj, as m;, chosen mati;mmlly.

Now suppose there exi:ats,m}o < k < m such that [t > em. Then since k > mi, > jo and

Jo was chosen maximally such that ip = ¢}, —lj,, is & minimum, we hhve
ex — Ik > 49 = ex>to+lk2ioten = k<,

a contradiction to k > m;,. Finally note that

Miy ,

Bion e {. . 0 . io Sio
ogjg")=pro=p™® =o(gl") InGi'=]] <o >,
- ’ ‘ )

A
3 ,

which implies that . ‘ ‘ o

(-——.—,p) = . (Similiar to; the proof of prop. 2.3a.)

H

Hence by proposition 2.3, < “(ﬁf‘, - ,gi‘°) > 1s a M.C.S. of G‘:o'o. ie. <z > €T, Now

since 2 is uniquely defined we have each Ty, Ty,...,T.,—.,,, and S are disjoint. g

2.9 Corollary. With the same notation as above, wa have: -

v a)| Ty | = p*™ - (number of M.C.S.’s of Gy),
X O)ITi| = (™ —p*1) - (p=~1)™=™ =1 . (number of M.C.S.’s in Gfi)
' forl_{igcl.—em,and '
&)1 = (pm=tymt,

chosen for m; + 1 < j < m such that o(h;) < p*~ and p(h;) < p*~. Let

Proof. Let < (gf,....,gm7") > be a M.CS. of G?" in standardized form. Let h;, k', bo .

\ Bm: » . ﬂm‘ ’
\\\ -H1=<(glﬂl,-"7/gm".7hj+11"',hm)> a-nd H2=<(glﬂl,.-.,‘gm‘ ,h.,1‘+l,...,hl’n)>.
\ : ‘ ‘ .

: 14 \
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Note H; and H; are standardized as < (¢f* voren o ) > was standardized in G*'. Hence
Hy, = Hy iff hj = k) for all m¢ +1 < j < m, by remark 2.6. Thus we can choose each h;
formi<j<m ub{tnry such that o(h;) < p*™. Also hy, can be chosen arbitrarily except
that if ¢ > 1 then o(hm) = p*™ as otherwise by proposition 2.3a) we do not have a maximal
cyclic subgroup. Note there are (p*™ — p*m=1) h,,'s such that ofhm) = p*=.:

a) Thus |Tp | = p*~ - (numberofMCS'lofGo),umo m —1 and hm can be chosen °
arbitrarily, '

b) For 1 <1 < ¢; — ¢m we have

| Ti | = (p*™ = p*=~1) - (p*~~1)™=m™~1 . (number of M.C.S.’s in G’-") from above, and

) |S|=(*"1)™! asif <z> €S then z = (gf verergPm) where o(g¥) < ptm for
i=1,2,...,(m—1) and o(g?) = p* since <z > isa M C.S. But z is standardized im-
- plies fm =1 a8 o(gm) = o(z). & |

 We now have a recursive method for calculating the generators of all maximal cyclic
subgroups. For illustrative purposes, we now will calculate the standardized generators for
a small class of abelian groups.

2.10 kExample Let G=<g> x < h> where o(g)'- p®, o(h) = p? and e; > e;.
Hence, in our previous notation, m = 2. thus Go=Gp == G-y =< g>as
1<m; <2forall 0t < ey —ey. Note<g"' > mtheonlyMCS of <g” > and is in
standardized form. Hence : . , \ .
={<@r)>lo<i<p) o
Ti={< (g".,hj) >|0< 5 <p%, pt}Oes not divide 5}
: . for1 <1 <e —e3,and .
S={<(@" ™"V k) >|0<j<pa}.

Section 8 Hales’ Result.

This section is concerned with showing the proof of Hales’ conjecture (1.5). For brevity
and because of the complexity involved in the proof of the result, we will not show the
entire proof. The complete result can be found in [Hales '83] and [Hales '85].-.

The following two results provide the punch for the proof of the result. They are by
no means obvious but quite complex'and detailed. They are respectively lemma 1 and
lemma 2 as found in [Hales '85).

3.1 Lemma. LetG =<g> x < h> whereg and h have orders p™ and p™ respectively
withm > n. lnthegrouprngGIetz—g—landy h — 1. Then for each k,0 < k < n,

we blVB that n—h ___n—k—1 “n—k—1 —k
’ p y(m-n)(p - ) (=" T A yr" )

'15



lies in
A(m-—n)(P"“'“P""")+p""+p""“+l ’

3.2 Lemma.yLlet G = <g>x <h>x<a; >x--x <a, > wherer > 0, o(g) = p™,
o(h) = p", ando(a;) = p* fori =1,2,...,r. Also assumem Zn=e >ep > >, D>,
InZG definex =g—-1,y=h~1,andz; = a; ~ 1 foreach i. Suppose the positive integers

K = {k,ky,...,k.} exists such that 0 < k < e,, and for each i with 1 <t <r that k,
satisfies e; + k; < e;. Define for each i
r ‘ . ' \
di=di(G,K)=ei~ Y k;~k, and
 jmitl *
i = 8i(G,K) = p¥~' 4 ki(p% - p1).
Also let ¢ = q(K) = 2:=l ki + k. Then
pk . @m’"'q . zl‘l . z;’ PR z:' )
lies in A!, where
Omng(G) =Ompng = y(""")(l"'"—n""")(zp""ypf‘""‘ — "7 and
. AN

G, k) =l=(m=-n)(p"~? —p"~9=1) 4 p"~7 4 prtt 4+ Zs;--}- 1.
. - =1

J :
3.3 Rgmark. Lemma 3.2 is the multivariable equivalent of lemma 3.1.

These two lemmas give iden-tities which. hold in the augmentation quotients Qn (G )
for N large enough. The way these lemmas will be used is as follows.

3.4 Lemma. Let G be defined as in lemma 3.2 (except we require e, > 1). Suppose
K' ={k,ky,...,k.} exists such that GP and K' satisfy the conditions of lemma 3.2. If
K={k+1,ki,...,k.} then G and K satisfy lemma 3.2 and the idegtity satisfied by G
and K is p times the identity satisfied by GP and K'. \

Proof. First since GP and K’ satisfy 3.2 we have 0 < k < e, ~ 1 implies 0 < k+ 1 < e,.

Alsofori=1,...,r

(e = 1)+ k; < (ei—; — 1) where o(af) = p""-vl

implies
ei + ki < ej—; where o(a;) = p*‘.

\
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| '}(ence G’ and K satxsfy the condxtlons Also for i=1,.

";“w:-—d(G”K)—-(rs-—l)—(z’“ k=¢ ._(Z k,) k+1) (GK) d,, -~
‘ ikl "(‘ ) J-—l+] . . L -
and _ , | | ’
T g = 1+k(p._,,.,1)._s(ax;:s.

= r‘mauy g( K') - % Z,_l,k +(k+1)—1=¢q(K)-1 s

~ Note (m—1)+(n—1)=m—-n and (n.— 1) ——q(K’) ‘—n-—l’—(q_(‘ v)—l)—-n—q(K)
~ Thus the powers in ©m_1 n_1,g(k?) (G”) are the same as those powers in G)m,n,q(;()(G’)
- and l(G”’ K’) = I(G K) Slncep p = p""‘1 we have the result. B .

3.5 Lemma - Let'G. be deﬁned as, in Iemma 3.2, Suppose K’ = {k kl, k } and
0< kr+1 exrsts such that G?""*' and K' satxsfy the ‘conditions of Iemma 3. 2 Also fet .
- G=Gx< a,.+1 > Whereo(a,+1) PETHY, Zepy = Qrgy — 1, and K ={k, k1,.. kr,kr.,.l} o
CIF all cychc factors of GP'T Y have order > p°"+l then G a.nd K satlsfy Iemma 3 2 and the
1dent1ty sat:sﬁed by G and K is ) RS : A

e A pe.sn-l‘-‘ +k +1(p¢r+‘l—§_p=r+x—l k)
r+l

txmes the xdentrty satrsxﬁed by G” bt and K’ e S 7» ;’:I
Proof. Srnc,e G’" f+‘ and K' satxsfy lemma 3.2 we have fori = L,.. Lo o

J (e ".—kr+1)+k <(e:—1*kr+1)=>e.+k <eiy.

) Smce aJl factors of Grirt have order > p"'“ - we also have e, — k,.+1 > ert1 1mphes '
€ral + kr+1 < e,. Thus G and K satlsfy lemma 3.2 Also , '

' : i r+1 ’ '
4:-=d.-(ov*'»+*,,K'-)-( ""kr+1)— }j bimk=ei— 3 ki —k=di f{) =d;

J=iHl S J—t+1 :

Afori=1,.: .,rond dr+1 = er+1 —,k Thus

Y —s.(G” frt JK') —s.(G K)-—s. forz—l r,‘and'

e ~1-k -k e ~1—k
P° r+1 +k I(P r41° -p r41 )
3r+l = zr+1 t o .

X

Smce R 4 R
. 5 i r+1 R . . S
G) Zk+k—.Zk +k)+kr+1“'q(G)+kr+1—q +kr+1,‘ |
. Ce=1 o=l

: 'thlS nges the result (as in the proof of lemma 34).1

e Let G be a finite abelian p—group In order to show Qoo & QG, the first thmg we need i
_toshowxsthatlQool—|Qc;| oy ; : -

N
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3.6 Theorem. Let G be a finite abelian p-group Then | QOO(G) | = 1Qa |

. Proof. Smger showed in [Smger ’77b] that the order of Qoo (G) is p°=1; where ¢ is the:,, o
. -number of components of the rational group- a.lgebra QG. But ¢ is also the nuinber of

cyclic subgroups of G, mcludmg < 1>./See [Curtis and Riener '62 §39].) Finally by the
- definition of Qo (G) it is easy to see that its order. is P mThlS is because Q¢ has one
generator zy for every cyclic subgroup H of G, and the ‘t‘elﬁ-txons pzy = r) whenever H
: -covers K in Pg. Hence there are ¢ — 1 extensions (H e Pg - {g 1> <zy>D <>
- of index p. Thus | Qoo( ) | = l QG |=p°~! where ¢ is the number of cyclic subgroups of
4G- l ) ) o 4-”; ¢ ,

This next lemma provxdes the stepplng stone to be used iti the proof‘%f the come('turt
3. 7Lemma Let G H._l < gi > Whereo(g.) p® withe; > e 2%V > e > 1. Sup- |

‘posefor k =0,1,...,e; — 1 that p"QN( ) (for large N ) can be’gqurated by the number
- of elements requxred to.generate p QG Then Qoo = QG ‘ ,

" Proo Proof. Reca.ll by proposition 2.3 that any maxunal cyclic subgroup of G has order < pe.
. ‘Hence any cyclic subgroup of G has order < p'l ‘and so by definition 1.3 of Qa 1t is’ easy‘ .
to see tha.t the exponent of Qg is p*. Also for i = 1,. ’

o (= 1) = 27 (" (i = 1) ep“*°'A2(G)

(s p*(0: = 1) = = 520 (5 ) (9 — 1), B ' A
Hence p&t A™ C A"'H implies the exponent of Qoo < p°t. As both Qg and Q,:,o are abeliag
and ha,ve exponent < pel we may erte : .

Qm:H Zyi ',‘mdQG:H(z

i=1 \ \9

*

- for some a;’s and b 8 non—negatxve integers. Note that P*Qoo and p*Qg cdn be generated
by akt1 + aksz + "+ @, and beyy + bpya + - + bel elements respectively.

By hypothes1s p"Q N (G) (for large N) can be generated by the number of elements needed
to generate p*Qg. Butp Qg is generated by bk+1 + beya 4+ - o+ + be, elements (the remain-
mg cycllc components under the map & = p a) Hence

(1) @t + - + Ge; < b"‘“ + + bey s for k = 0,1,...,e; —-.1.
But e T |
| Qe | =5GP P = prrttesttn,
- Likewise ‘ R ‘ | B
S l QG , — pbl+2b2+"'+elbel' S
 Writing -

a1 +2a2 -+ €18e; = (@14 -+ +a.,) + (a2 + "+a¢;)+ -+ (ae,)

- and Sinliliarly for by +2by +:-- + ¢ b.,, then it is tlear that | Qoo | = | QG | (theorern 3. 6).
. and (1), forces a.ll the mequa.htles to be-equalities. Hence Qoo 2 [T1,(2,:)" = Qq. &

=1
At last, we are ready.to‘ _sh_ow‘_ that Qg = Qw(G ).
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3.8 Theorem. Ha.les Conjecture Proved.
Let G be a finite abelian p-group., Then Qg = Qoo (G)."

Proot Let G= lel < ¢i'> where o(g;) = p ¢, and e > ez > + 2 em. For each i let
z;=gi—-1€2G. By lemma 3.7 it is sufficient to show that, for k 0,1,...,e1—1 and
for large N, p"Q N can be generated by the number of elérnents required to generate p*Qg¢.
Note that from definition 1.3 it is e y to see that the number of elements requu-ed to gen-
crate p¥Qg is the number of maximal cyclic subgroups of G**. o
Let k € {0,1]. ,el ~ 1} be giveri: Then, for any N, p*Qy is generated by (the im-

ages of) all monomxals P H =1 a:;" with Y a; =N (proposxtxon 1.1.6 and I.1.7). We will
 show that, for large N, there is a subcollection of these monomials which also generates

p*Qn and whose cardinality is the number of maximal cyclic subgroups of G?*. We also

- show that the identities of lemma 3.2 suffice to give the appropriate collectlon of monomials

~ which generates p*Qn. We proceed by induction on m.. :

If m=1 then G=<g; > and A™(G) = ZG(91 ~1)" (by corollary 1.1.8) for all
n € N. Hence p" QN is generated by the one element p*(g; — 1) +QN41.

“But MCS G? ) = {< _q1 >} has only one element and so the m =1 case is true.

Let-m > 1 and assume that our induction hypothesis holds for all finite abelian
p-groups G' with rank < m. That is, for large N, p*Qn(G') ¢an be generated by the
number of elements required to generate p"Qgr and the appropriate set of monomials
which generates p*Qn (G') has been found through the identities of lemma:3. 2

First, recall deﬁmtlon 2.7. We have that .

Mes(e?) = s(6") v CU"'}T &)

=0

where m; < m is chosen ma.xlmal so that em_ > e,,, + ¢ and G H,_l < gi >

(fori=0,1,...,e; —em). F o
Now for O <k<em, construct sets C (N) C1(N),...Ce . (N) D, (N) of mono-

mials representing elements of AN (G) in such a way that | Ci(N) I—l T; (G’" )| (for all 7)

and | D(N) |=| S(6"") |.
Let Co(N) be the set of all monomlals p I] il ;”' where 0 < am < p""‘k

}:;’:_1 aj=N, and where 2 | i =1 .1: ¥ is a monomial which is a member of a previously
chosen set of generators for p*Qn —,, (Go). Note Gy = H,_l < gi > where mg < m and
. 80 Go has rank less than m. By our induction hypothesis the result holds for Go and so
this definition is valid.

Sxmlharly, for each i with 1< i< e; — em, let C; (N ) be the set of monorma.ls .
2 n w12, where :

Pt diptm T - g ) <o < A )

a; <p*~*1 for m; < j < m, E_r—l aj =N, and P I'[J_1 7’ is a monomial which is

a member of a previously chosen set of generators for p"Q N Z (Gf ). Since
| | | =m+1 %

19



- rank(G’ ) = mi < m we again_ have this is well defined by our induction hypothesxs
Fma.HQ' let D(N) be the set of monomials p* Iy =5 ;' where aj < pem=k=1for j <‘m.’
and 3770, @; =N. *
We now need to show that | Ci ( ) I=| Ti(GP*) | (for all i) and | D(N ) |=| S(G*") |,
and that the sets C;(N) and D(N) are pmrwxse disjoint for N sufficiently large. This is
also by inductionl on m.

. Ifm=2thenG;=<g >for0<z<f:1—eg HencelMC’S(GP)|=1for
0<i<e —e=(e1—k) 2—k)andbycorollary29wehave

| To(G2) | =p ’""-1=p‘?"‘, * .
. a ‘ R
I T.(Gf ) I = (pez—k _peg—k—l) . (peg—k—t)o 1 .
= pc:—k _pcg_—k—l, for 1 S 1 e — éz, and
)
SE = o

Also, since Go is cyclic we have one generator fér D QN_Q,(GO) whxch is {p"mN @2y,
Thus, . .
Co(N )'-{Pkl"lnzgzeAN( ) |0<a2 <P(&x L1+ a3 = N}

= (P 2f) 0 S e < pr7H).

'AIso‘fori=1 ce.y€1 —eg,

: c(N),_ (Pra gt | pmhot ik - parhol) < g,
: R ag < pc’—k TG+ - pik ) and
- D(N) = {p* af‘xz T 0S ap < pTRY, |

Note
e |co( V=t eine)), |
TG = "'f‘ L+ G+ - 1) - (4= 1)] =57+ - 1)
‘ ‘, g —|T(G”)|fori=1,...,el—-€2; and -
!D(N)I— k=l oy 5(67) |
Finally note for any N > p®2=*%=1 4 () —e; + 1)(Pe°—k P »éé; and any ¢ # j,

- 0<z,5 <e —e2, that C’( )ﬂ C; (N) = 0. This is because the range of the «;’s are
completely disjoint. Also for N € {1 2 .. } such that P

N 2 pe_z—k—l + (el —ep+ 1)(pez—k _pcz—k—l):

then D(N) N C ( ) =0 for all : = 0,. ,el ~ em as the exponent of z, for any elomont
in D(N) is greater than any exponent of zg in | JiL*? Ci(N). Hence the claim is true for
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m=2, : ‘
" Assume m > 2 and the claim is true for a.ll appropnate groups with rank < m. Let
Nq be large enough so that C; (No) (i =0,...,e; — em—1) and D(No) are pairwise disjoint

for the group Go. Then .
’ {Co (No) | = p*»~* . (number of generators for PQN-a,, (Go))
=pm* | MCS(GE') |

( by our main induction and since rank(Go) < rank(G)
LI

_'I TO(GP ) l, , .
IC(No)I— A+ G+ )P -1) - (1+(p—1))] (plem k- IJ)m mi~1
number of generaters for p*Qy, _ S | (Gf’ ))

= (prnt i) ekt | wes ()|
(since rank(G" ) < rank(G" )) | '
=| T.-(G"D )| fori=1,...,e; — en, and
| D(No) | = (p~~*=1)m~1 =| 5(6*") | . | o S
Now let N = (p*m~* — 1) + Ny. Then' N — (p®=~* — 1) > Ny and so as above all sets must

be pairwise disjoint. i.e. We have finished showing that for large enough N the sets Ci(N) .

and D(N) are disjoint and of the correct size.
'We now continue on with the proof of our main induction.
To show that the (images of the) monomials in the C;(IV) and D(N) generate p*Qn,
m aj

where N is sufﬁc1ently large, suppose to the contrary that some monomial p H =17

with 31 j=1@j = NN cannot be expressed as & linear combination (modulo AN+1) of mono-
. mials in the C;(N) and D(N). Let the m-tuple (al, .,am) be lexiographically greatest
with' this property.

Consxder the exponent a,, and ﬁrst suppose am,m < p®™. By induction the mono-
mial p* 1= °" is (modulo A(G)) +1_°"‘) a linear combination of a prev1ously chosen -
‘set of. generators for p"QN_am (Go). Multiplying by zgm, we obtain an expression for
- p*[Ij=, 2;’ as a linear combination (modulo AN*1) of elements of Co (N ).

Suppose am > pt™. Note since o(gm) = p°™ we have P T = P (g — 1) € A? (see
the proof of I.1.9). Now if k > e, then p* :1:"‘"‘ -p" e'"(p”":r: )z2m =1 is in the ideal
A% Aom=l = Aom+l Thys p* [T o T € AN'H or p*[I7x, 257 = 0in ANF1(G). Hence
we need only consider the case a,, > p*m and k < em. .

Suppose for some i with 1 < i < e; — e,, that

. pem—k 1+z(pc"‘—k . pe,,. —k— l)<a <pem—k l+(z+1)(pe"' —k pem—k—l).

If aj with m; < j < m satisfies a; > p*~~%~1 then by the deﬁmt1on of m; we have
e; < em +i1orej —e,m <t Therefore

( "f Cm)(Pem—k pcm k l)+pcm -k <(1 1)(pem—k __pem'-_-k—l)_*_pe;n_-v_k |
. . | —'Z(pem -k pem“kf1)+pem—k_1.
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Therefore lemma 3.1 (or lemma 3.2) allows us to simultaneously replace ap by
O — (pim =K _ pem—k-1y" a.nd a; by aj + (p* ¥ ~ pem=k=1y without changing the mono-
mial modulo AN*!, This contradicts the lexncographxc max&mlxty of (al, o am) Hence
we conclude a; < p""‘"" =1 for m; < j <m. Now the mono jal P H,:: 2%’ (considered

o

4

as an element. of p*Q, _ A (G” )) can be written as a linear comblnatlon of the

mi+1
(1mages of the) appropriate set of proviously chosen generators by our induction hypotheqls

-and by applying instances of lemma 3.2 to G” (since m; < m). Note since em; > em + i we

- have that e, —1t 2> em for a.ll 1 <j < em;. i.e. All cyclic factors of G’ have order > p*m,
Hence if G” and {k, ky,.. km,} satxsﬁes the conditions of lemma 3.2 then this identity

holds for G X < gm > and {k ki, o s kmiyem} by lemma 3 5. Therefore multiplication by

[[[xm.412;° converts p o | z;’ to an expression for p *ITj=, =}’ as a linear combina-
tion (mod AN +1) of elements of Ci(N), converts monomials from the appropriate set for

G’” to those for G, and converts instances of lem,ma 3.2 for G” to instances of lemma 3.2

for G.

Finally suppose a,, > p‘m"‘ T4(er—em+ 1)(p°"' —k p°M"‘ l). Then as above,-

lemma 3.1 allows us to conclude that a; < p"""‘ ~1 for all j < m, so p* H =1%; ¥ lies in
D(N).

This. proves that for large N p*Q N( ) can be generated by the number of maximal
cyehc subgroups of G*" , and by lemma 3. 7 we have the result. g

Usmg this result we ‘will now present a formula for the calculation of Qoo( ) 2 Qq
in the following chapter
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" CHAPTER 3

i

A General Formula

4

, In this chapter we examine the result of Chapter 2 and actually determine a formula
for calculating the augmentation terminal of a finite abelian p-group. In Section 1 in order
. to establish definitions and also for illustrative purposes, we first give a formula for a
certain class of gro hrough the method suggested by the proof of Hales’ theorem. In

~ Section 2 we prove &am formula for all groups Finally in Section 3 we illustrate some
results that were previously known. : ’

Section 1 Some Examples.

- ‘ ,
'If we follow the proof of theorem II.5.1 in order to determine the augmentation

" quotient of the finite abelian p-group G, we must examine the group Q¢ and determine

its invariants. In order to illustrate how this is done we have the following example.

1.1 Example. Let G= <g> X .< h > where o(g) = o(h) = 32. We wish to calculate
Qg . First recall the definition of Qg (II1.1.3). We let Pz denote the poset of cyclic sub-
groups H of G. We then take one generator zg for each H € P and relations pzy = zx
whenever H covers K in Pg. We also define Hy = {1} and zH, =0. Now, in order to
" determine the cyclic subgroups of G it suffices to generate all the ma.xxma.l cyclic subgroups
of G. By example 11.2.10, MCS(G) = To( ) US(G) where

Ty (G) = {<(g,h’)>|0<]<9} and S(G) { < (¢%, h)>|0<]<3}

They are also in standardized form as we only work with the sta.nda.rdxzed M.C.S.’s. Now
~ note that if we have < (g, h?) > for some 0 < j < 9 then < (g,h’) > covers < (¢%,h7%) >
Also < (93’ h) > only covers < (1,h%) >. Hence all the cyclic subgroups are

‘X =MCS(G U[U <(g,h3‘)>]u <(1h3)> u <1, 1)>
’ =0

Also

3z (0> = T M)> ST N> = (M) 5
3:::}; = Z(1,> for all other H E X.

~and

Therefore we get the follomng poset Pg:



Zip T13 T18 ZTig  Tig 1,7

where z;; = :t<(f M)> -

So what are theihvaria.nyts of this group? Consider the part of Pg:

? J:o,o . . !

Z3,0

zl,o%zl,a\ zl,e

This subgroup is
<Z1,0,%1,3,%1,6 I 0(4:1,3") =3%fors= 0,1,2 and 3(::1,0) = 3(2:1,3) = 3(31,6) >

=< a,bc | o(a) =9, o(b) = o(c) =3 > wherea = 10, b=1213 ~a, e =124 —a.
= (Zp) x (25" | |
Hence G = [Zg x (25)*]* = (Z32)* x (2)°.

- Thus the invariants are read off the poset Pg. First we need this defifiition.

- 1.2 Definition. Given the boset Pg as defined in I1 .1.3 we say that

x..‘ 4 p”'zH], — p". tz == v e e = pr" = x%l

N

forms a chain of n nodes. i.e. Geometrically we have '

1

Now coxitinuing with the cample, note the repetition of Z<(,)> - If one always works
with standardized subgmups‘&\!(g do) then we can drop the z notation and represent
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Ted M)> by (¢°, 1Y) ) itself. When doing this We will also go back to multiplicative notation
(as it now makes sense). i.e. If we have : 4
S ' ‘ . L Y
@ M)> =PI M) = Tppe)> = Te(pp)> |

this is now represented by '

(9", 8Y)® = (', h%)? - (¢°,h%) = (6, %). |

The main thing to remember is that v(g", h7) is the standardized representative of the
cyclic subgroup < (g*,h?) > of G. -

Note < (g,h%) > = < (g%, %) >. o if we did not work with standardized representa-
tives we.would have (g, h%) = (g,h*)® = (g2, h8)® = (g8, h®) and this notation would not
be valid. : '

- It is hoped this notation will not cause the reader any problems.

> Thus we have that Q¢ is isomorphic to the abelian p-group:

i

@0 @) (6", 4% (1,49)

r'a
S

(9:1) (9.5%) (9,h%) (g,h) (9,4*) (g,h") (0,%) (9,4°) (4,h%) (1,h) (4°,h) (¢%.h)

To determine the invariants we need only count the number of chains of each length
beginning at a M.C.S. of G and never reusing a node except at the end of a chain. In the
above we haye four%ﬁa.uy of length two,

1) — @) = (L1) | (0,h) — (¢%h%) — (1,1)
(9,h) — (¢%,4%) — (1,.1) L‘l,h) — (1,h%) — (1,1)
. Al.so we have eight chains of length one, ’ v.

@) — @) @4 — @) (08 — @8 658 — 08

(grhs) - (ga: 1) (9sh7) - (gs:hs) (g’ha) - (gash‘e) (gevh) - (1: hs)

Then a chain of length n means Qg has a factor Zyn in'it. Hence from above we see

- | Qg = (Z;z)‘ X (Za)s.

As we can see from the above example, determining the invariants from Qg as it is
presented is time-consuming and tedious. For each group G we must first calculate out
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maximal cyclic subgroups and then determine what the poset Pg looks like. Then we have
to count the chains and their lengths. This method does not make it ver likely that we
can find a general formula. Even with certain classes of groups with highfsymmetry this
is not very easy. To illustrate we will take the class of groups G =X (Z,»)™ and exhibit a
genetal formula for Qg. It shoul_ci be noted that this is an extension of [Hales ’82] in which
he verified that the augmentation terminal of G was Qq.

1.3 Deflnition. Let G;'=[[L_, <gi> 2(Z,n) . Define the sets
L,(G_,-) forl=1,...,j as follows:
3 .
LI(GJ) = {(gf.il vgg‘i:v R ,grj{-‘lwghg:.l:‘]l9 cee 19;}) ' 0 S ilai2v ceey z'l—l < P".—.l '
. 05i1+h---»ij<}’"}

1.4 Remarks. ' ‘
1) Note if I # I, then L;, (G;) N Ly, (G;) = 0 (This is because o(gy,) = o(gi,) = p".)
2) | Li(G;) | = pU-D(n=D+G=n,

3) Each element of L;(G;) is a standardized representative of a M.C.S. of G;. (See prop.
I11.2.3.) ' J

1.5 Lemma. Let Gy = e, <gi>= (Zpn)™. Then MCS(GQ) =Ur, Li(G).
Proof. By induction on m.

Let m=1. Then G, =< g, > & Zpn. Thus MCS(Gl) ={<g >} Also

L1(G1) = { < g > } Hence MCS(G]) = Ull=1 LI(GI) = L](Gl) _
Thus we will assume the result is true for G; where 1 <1< m. In the notation of 1.2 we -
have e; = e; = ...¢m =n. Thuse; —e,, =0 and mg = m'— 1. “;”I‘hen

To(Gm) = { < (o083 00m) > | < (of'y- ., 6575) > € MCS(Gimy)
and 0 < Bm < P"}

~m—1

By induction MCS(G,,._I) = Ui=1 LI(Gm_l).
" Noteforl=1,....m—1

[4 -

Li(Gm) ={ < (h,gi7) > | 0< im < p” and h € Li(Grm_y)).

(ie. ifh=<(q,%,... ,gg{:‘i‘) > then (h,gim) = (¢2*,... ,gf,”'_]‘,gf;,“ )). Hence

To(Gnm) ;'Dl Li(Gum).

Also ‘ ' .
S(G"‘) = { < (glﬂl’-- -,95;":11,95{") > l 0 < :Bi < Pn and O(Q?‘) < p"_'l ‘4

fori=1,...,m~-1}.
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But < (¢",...,9%") > € MCS(Gm) s0 o(g m) = p" (by I1.2.3) and Bm = 1 when this
element is standardized (I1.2.4).

Le.

n-1

S(Gm) ={ < (¢?,...,¢"m7 /9m) > | where 0 < f; < p" and o(g%) < p
' fori=1,. ,m—l}

={<(gf", .. gk gm) > | 0% i <p"forj=1,...,m—1)}
= Lm (Gm) |

Thus MCS(Gm) = To(Gm) U S(Gm) = U™, Li(Gnm). n

Note ‘that the hard part in the above proof is epoming up with the general form of
MCS(Gm). This must be done by examing the lower cases and hoping that we can see
the general result. This is what makes determing the invariants of Qg extremely difficult
when the group G can not be broken down into parts of some symmetry.

Once we have the maximal cyclic subgroups we can then determine the invariants of
Q¢ as follows: : :

pa

1.8 Theorem. LetG = H:';l < gi > (Zpn)™. Theﬁ

P

Qo = (Zpn) (5 xH(z ) (BTG
‘>,

¢

Proof. In order to count the chains in P we need to know what the poset of cyclic
dubgroups looks like. To do this we need to know how many cyclic subgroups of order p

there are. Note
n-1

(Ll(c"m))’p."—l ={<(L,1L,%. 1,4 '91-:1 g l‘m.) >}
= {< (1,1,...,1',gf" l,gf_:l J'fl,...,g,’: ""‘) >0 < 141, 514255 Jm <p} ’
and that every p-order subgroup must come from one of these (L;(Gm))”"_1 (using 1.5.).
Hence the set of all subgroups of order p is |JZ,(Li(Gm))?""". Also note that
(Li(Gm))P" " N (L; (Gm))P" ™ =0if i # j by usipg the fact that all elements were stan-
dardized. Also note | (Ly(Gm))?" ™' | = p™! for I=1,...,m and so the number of p-

subgroups is
m=-1

»abbl

v =0

)

Now consider an arbitrary element z from some (L,( Gm))?P" . ie

=(1,1,...,1, g,n-‘,g,’_"_"’l‘(o)"" 1,.. g"”‘(o)"n l) for some 0 < j; (0) <p,i=1l+1,.
Then the subgroups of order p? which lie over z are

A=Y ja(1)pnt Jioi(Dp™™t pn-2
(gl 79 )”-»g[ 1 )gf ) )
. $141(0)p" "2+ 41 (1)pn ! im(0)p™ " 2+ jm(1)p™ !
N g ,_“,g{n(lp im(Dp )
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o
where 0 < ji(1) <p, k=1,...,m, k # 1.
That is because the only eleme[xt that can lie over r is from the set Li(Gm) (by stan-

. dardization) and the ements of prder p? come form (Li(Gm))?" "', Hence there are pm-t
subgroups of order p* Which lie over/each subgroup of order P

-3 - "
(Note that only gf" is mapped into g, ' as it i.s.“standardized.)
In a like manner we find that each subgroup of or@p‘ (0=1,....n~=1) has pm-!
subgroups of order p'*! that lie over it. Also the maximtum order of a cyclie subgroup is

p". Therefore we have that the dot diagram of G, (or the poset Pg) is as in dingram 1.7,

1.7 Dfagram.

We need only count the nuriber of chains of each length to get our result. Let us say
the top node is at_level 0, the next row of nodes at_level 1, etc. Then we have n levels
.-# of nodes in diagrdm 1.7 and ( l-%ll) nodes in level f'(the number of p-subgroups). Now

P
starting at the nodes at level n — 1 we see each piece .

E4

. y
¥ Ny oA
& -

el

s
has p™~! chains of leng‘\thj 1.



Then all the nodes at level n - 2 look like:

(+)

which each have

1 chain of length 2,
and » . _ ‘
p™" —1 chains of length 1. /
Thus each structure (*) has \
\ . p™ ! chains of lengthr2,
P (p™! = 1) chains of length 1.

Now continuing in this manner we see that each node at level 1 has a subtree beneath it
with . ' '

and :

m

p™™! chains of length n — 1L
and | (p™! - 1)(p™~ ') chains of lengthn—j -
forj=1,...,n-2 ,/
Thus placing all this information together we get that Qg has

( Pp —11) chains of length n,
pm -1 m-—1 . )
! ( p—1 )p — 1) chains of length n — 1, and
pm -1 m-—1 m—1yj . V .
( p—1 )(P - 1)(p )’ chains of length n — j—1
forj=1,...,n-2
- '
4
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which gives our result. 3

Thus we have calculated the invariants of this particular class of groups which Halex
first worked with. But as one can see, this method does not help in establishing a general
formula applicable to all finite abelian p-groups. Thus we search for a different method.

Sevction 2 The General Formula.

As stated earlier, in this section we derive the general formula.. The method depends
on two reBults.which allow us to proceed in steps. Each one of these two results comens
from looking geometrically at the posets P of some specific smaller group G', and then
examining the effect which occurs in Pg “from changing G' into G. These two steps are
amazing in their simplicity. However because of the way they work we can ot derive
a general formula® which is pleasing to the eye. But this formula was expéeted to bhe
complicated by our knowledge of previous results.

It is interesting in the way these steps were discovered. When one tackles the problem
of finding the invariants of Qg by building up the maximal cyclic subgroups, the geomet-
rical simplicity is lost in the actual calculations. It is very hard indeed to know what is -
hap'pening to the chains and nodes within the poset when you have the sets Ty, . . .", Ter—eons
S all being defined in different manners. Also because of the tedious calculations, one nat-
urally gets lost. Because of this, a fairly complex computer program was developed which
for<a given prime p and a given group G, calculated the maximal cyclic subgroups as in
I1.2. It then used these M.C.S.’s and built the poset Pg finally giving the invariants of
Q¢ and outputting the picture of Pg to the user. By looking at the structure of P
(for different primes when needed) we could generalize the poset for an arbitrary prime
and this G. We then could calculate the chains and nodes and come out with the result.

\ However even this is not, as easy as it sounds, as these posets Qg get large fairly rapidly.
For instance, the group G = Z3s x (Z;)* has 201 maximal cyclic subgroups and the group
G = Z33 X Z31 x (Z3)* has 1881 maximal cyclic subgroups. Hence the program was not
helpful for any modest sized group. However the program gave a picture of the posets for
G and by looking:at these posets the manner in which to proceed became quite clear.

Before we start, we need some notations which will make the result easier to usec.

/"‘72.1 Notation. Let G be a finite abelian p-groupt (‘}ivlen fi20fori=1,....n, let
G = (Zpn ) x (Zpn-1)F3 x - x (Z,)!". Then we denote G by G = (fi,fas-- s fn). .

It should be noted that this notation will"only be applied to Qg, and G itself will
be written in the normal fashion. Hence this notation also makes it easier to know which
group we are referring to. ‘

We also have the following easy, results.

2.2 Proposition. Let G = Zper X Zpes X -+ Zpen wheree; 2 e3> --- > e, > 1. Then

ch(flif2v--'1fl) o7 -

: {
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o by 1123

where f; # 0 and ! = ‘ey. (ie. Qo has at least one factor an )

C roo[ Note if G = I'[,_.,‘ < z; > where ofz;) = " then the subgroup
 H=<(z,1,1,...,1) > € MCS(G) by proposmon IT.2.3and H is standardlzed Hence '
H € Pg and H is in the n long chain L,

HDH”D DHP""’ 73HP"'—<1'>

" Hence Qa has the factor Z e in it (see 1. 1) Also it ca.n not have any M.C.S. of order > p"l -
o ,

2.3 Proposxtion Ify € G" has index ofstandardzzatzon 10 and :c” Y then z has 1ndex |
of standardlzatxon 20. - : » c

,> , Proo f. Follows directly from the deﬁmtxon of mdex of standardlzatmn a.nd the fact that

G is an abehan group of direct factors." n e

. We are now ready for our ﬁrst result ’
2 4 Lemma ( The Movmg Up Lemma) ‘ " ‘

Let G'22 Zpe, "k’ Zper X+ Dpep where e; > e, ;T l’> em > 1 and suppose

Qa = (fL: fg,‘ vfn) Let G = Z e1+1 X VA peat1 X - X Z pemti. Then t

F. QGl =‘(flvf2y . 1fe1’f€1+1) Where fe1+1 Zf'
R R Ji=1

. L
. 4e

_ "Proof Let G = I'[._l /< g./>/aﬁ:l’1et G' ‘ H:"l < h > where, without loss of gener-
ality, we may-assiime h” =g Letz= (h ooy hBm) be a standardized ma.xxmal cyclic

> psubgroupof G'. (Note we are using the notatmn of 1. 1 ie. actually <@ > G M C’S (G" )- )
. Then o '

A mp = ((hﬁf) ’(hﬂm p) ( hp)ﬂl\, ,(h" ﬁm)
(gl ,.. ) ,gm _M,;Z . '\ . ‘ ' h . \

_ . SN
: We have that 0< 8B < p‘““ but ’oy proposxtxon II 2.2 for i =1,...,m, there exists a
1<j<m. such that p does not divide Bj, Let B! = B; mod pe for t=1,...,m. Then
0< B <p%andp does not divide f; implies p does not.divide 3}, Thus by I I 2.3 we have_
2P € MCS(G). (Note 2P is also standardized.) ‘Therefore for every zeEM CS(G'), we -
. have.z? € MCS(G) Now consider y € MCS(G) and suppose y = (g, ..., g%m ). Thus
0 < a; < pi for i <i<m and there existy 1 < j <m such that p nq«;.z divide oj.
Suppose TE€ M CS (G') and z? = y. Then obv1ously  7

.

(hm+ﬂ1p 1 ha:+ﬂ:p°3 ham-i-ﬂmp ) . - T “ o
o for some 0 < Bi < pfori=1,...,m. Also since p does not dmde a; we, have that pdoes Aot -
t--d:vxde (a, + B,p ) for any 0 < ,BJ < p. Hence z will be in MCS(G ) if it is standard1zed. o
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tarh @,&)txon of y is i (say) which says that the index of standardxza-
#elso io. ;"”‘p osition 2.3.) Hence aj, =1 and so must a,o + ﬁ,op o ='1 for

7 to be'ta dardized. ie. If y € MCS(G) then there are exactly p™=! z's in MCS(G")
suchthat z? ='y. Since every 2 € MCS(G') is such that zP € MCS(G) we have Pg is
the poset £g with every M.C.S. ‘(or every external node) of Pg nowshaving p™~! fathers.

Hence é¥éty chain of. nwnodes Has now become- 1 chain of n + 1 nodes and (pm~! -1)

B chams of length 1 (As each chmn begms at a M.C.S. for its group. )

—e <1>

~But QG = ‘(fl‘, ,fel) which means there are f; chains of length ey —i+ 1 for

i=1,...,e. By the above thxs becomes
4 f.chmnsoflength(cl—z+1)+1—e1—z+°
an
(p"‘ ! — 1) chains of length 1
\'forz--l .y e1. - . S
"’I’herefore a.ltogether‘we get there are ‘ B RNt
fi chams of length &1 - 1+ 2 for 1= 1
d f B . |
e Z f.)(pm =1 1) chams of length L. o S o

i=1.

‘Hence deﬁne f e1+1 as above a.nd we have the result |
" 2.5 Remark. S ‘ .

- 1) Because of the notation we adopted for Qg we have an easy to remember result as all

‘one does is tack on to the previous result.

o 2) Geometrically, what has happened i3 that every M,C.S. (or external node) of G (within

Pg) sprouts p™~! fathers. For an example where & = Z32 x Z3 and G' = Z3s X Zya see

| : dlagrams 2.7a) and 2.7b).

We now get the followmg easy corollary

2.6 Proposmlon Let‘;_ be_as in 24. Let H, = Zper4n X Zpertn X e x_Z,,«.,.a,.r.. for
n 2 1. Then d » . -

e

B
* ., T

k

: v QH,. = (flr‘--afel-"oifel-}-la ’f¢1+n) Where fe1+J Zf (J l)(m l)(pm l_.()
DI S BT | P

forj=1,...,n

P

)



2.7 Diagram. Illustration of how Qg changes as the group G does.
- a) Let G =23, X‘,’Za,.,,.fl‘_hen Qa=<z> x <y>as follows:

Ly

(2,1) @y @)
o

' b) Let G' = Z3s x Zja. Then QG: is as follows: (The solid hnes represent Q¢ and
the dashed lines indicate the addition of QG,) :

A\
c) Let G" =G x Z3. Then Qau is as. follows (The solid lines represent QG and the
da.shed lines mdxcate the a.ddxtlon of Qgr).
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Proof.'B'y induction on n.
If n =1 then this is just Lemma 2.4.
‘Suppose the result holds true for H,._l . Then

QQH,.._,=('f1,fz.‘ ,f.,,fw,.  for4n-1 ) where fo 1 = Zf )pl-tm1) (pme _y)

=1

fori=1,...,n—1.
To move up to H, we apply Lemma 2.4 to H,‘_l which gives

Qu, = (fi, 2y s ferin— » fer+n ) Where f; (§ ="1,...,e; + n — 1) are defined as before
and : o

fern ?(elg )™ - | |
= (;‘j_;fs‘)(l""_ —-1)+ ’ife;;z)(pm - |
| =:(i;ff)(p"‘ 2(2”4‘ 1)(W(p"'" - 1)] g}m-l .
=,(;V_‘;;..)(,;m—1 -1+ 6™ - ;f DD |,
= (Zf. 1) [1&"‘"”‘”‘"" ~1] o, '
= oo | g
= (g fs')(p"‘fl _\}1)p("'1)(m—1) | %ﬁ -
which gh}es theresult.n o ,

R4

Therefore we can now move up to higher order groups by knowing the structures of
lower order groups (with the same basic structure). What is needed now is to be able to
tack on to a group. For thxs we have the following lemma

4

2.8 Lemma. The Tackmg On Lemma) '
'Let G and Q¢ be as in lemma 2.4. Let G = G X Zp. Then

e1—1

QG’ = (.fl:va-' "fcl—'l ’F+ 1+pfé1) wbere F Z (el -1 + l)ft)(p - l)

oog=1

Préof. Let Q‘:H"’;l <gi> X <1 > and we can let H = :'_'__':1 <gi >, (We‘ will
adopt this non standard notation for G for ease of use.) Let z = (",...,9%,1) be a

. B 34
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stand'ardized M.C.S. of G. Then < z > D<a?>2D...0<z’" ' >D«1 > generates
a chain of length n in Qg. Now z is standardized a,nd z € MCS G’). Hence for any
0 £ 7 < p we have that ‘

T(1,4).F (gf‘,‘, - ,gim,g£.+l) € MCS(G) .
and is standardxzed (By prop I1.2.3, and the fact that the index of standardlzatlon is the
same for z and z(; ;) by definition I1.2.4.). Also for j =0,...,p — 1 we have (z(; ;))? = zP. .

Now for i = 1,. = 1 consider z?' = (97 ﬂ‘, ooy gl Bim ,1) of order p"#! Then for
1<i<n-1 and ; ] < p consider the element z(y ;) of G' defined by

. ’ M . ‘ ‘ ' ‘.Nt‘
k oz = (8P ghAm

)g{n-i-l)'
Because p does not.divide j and o(z(pi j)) = o(:z:” y=p""" > p we have thatnx(ie,j) is in
MCS(G') by II 2.3. Alsoas z € MCS(G) we must have the index of standardization of
iy (=1 .,p—1: i=1,...,n — 1) is the same as z itself. (Apply 2.3 several times.)
By I I 2 3 we have that P does not divide B} for some j. Let

Sy = {m(l,_,-) |z € M'C'S(G),O <jJ <p} and
Sy = {z(pi,j) |z € MCS(G),1 <i<m where o(z) = p",1<j<p}

~ Therefore we have : | ' _ ; /
| | MCS(G') 251U S,. | VAN

P
. : 4

Now let y = (g1 ) ,g,‘i”‘,gi”_}_‘;‘) € MCS(G') and y standaxaxzed where for 1 <4 <m

we have 0 < §; < p" and 0 < Bm4+1 < p.-Suppose that some ﬂ,o #0forl <ip <m. Then

choose 0 < j maximal such that p/ | B; for all.0 <: < m. If J = 0 then obviously y € 5;

and if j > 0 then y € S, (as take z = ( B/v - ,gg,"'/") ) then y = x(p!,ﬂm+1))- Thus if
some f;, #Oforl <ip<m thenye SIUSg
ﬂ"""‘) Then y € MCS(G') and y is standardized

Now suppose that y = (1,1 1, Gt
implies By = 1. i.é/.y/z(l,l,...,l,gmﬂ) Hence we have

® MOS(E)=SiUS;U{(LL,. ., 1gme) ).

\

We need to consider the chains of Pgr. By (*) we can look at the chains of Pg. Let

2 . n—1
P o P

:z:-——-x?’
be a chain of length n > 0 in Pg. By (%) We see that this becomes the chain

- 3



Z(1,1) I(1,p~1) ' - “’.(p"“-l)‘ L(pn-1,p—1)

" Hence the chain of léngth n becomes:

1 chain of length n ’
"~ and
‘ n(p<+ 1) chains of length 1. K)

- Finally the M.C.S. (1, 1,...,1 gm+1) gives a chain of length 1.in Pg:.

Hence let Qg = (fl,...,fe,). i.e. There are f. chains of length ey —i+1,1= 1,...',01.
Thus these become

- fi chains of length e; —¢ 41

and ‘
f.(el —1i+1)(p — 1) chains of length 1 gt

-

fore=1,...,¢e;. Thus

Qe = (firos fers [Y0 fler — i+ (o= D] +1+ £.,)
i=1

- er-1 ' o
=(f1’--'afel—1’[z fu(el’—l+1)J(p~1)+1+pf¢,) o
i=1 _ ' e
_ ='(f1"'.'?f€l—1,F+’1+pfe1,)'

2.9 Remark Geometrically, what has happened is that every node of Pg (except < 1 >)
has acquired p — 1 brothers. (br else these nodes have split into p nodes.)' We also have
that one new node was created ((1 1,...,1, gm+1) ). 'For an example where G = Z3: x Z3
‘and G' = Z3: x (Z3)® see diagrams 2. 7a) and 2.7c¢). ' '

~ We also get the following corollary.

~2.10 Corolléry Let G = Zper X Zpea X - "X Zpem where eQ>ep > > e,;. > 1 and
suppose QG = (f1,f2,-.., fe,). Let G' & G x (Zp)* where k > 1. Then ‘ :

v

S
Qn = (fufrvoes S0 (BN F + 1) 454 )
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where .
i T ey=1

F= Z(e;“—z+1f,)( -1).- <
|=l .

]

Proof. By iaductions on &. .
k=1 then this is just lemma 2 8. So suppose the above holds for the groups G; for

j=1,. Ic——lwhereG,NGx( »)’. Then
| pt-1 - 1 k-1 : -
"QG:...1 =(flsza""'afel—l’(_—p—_'__i—)(F-*-1)+p fel)'
y .
By lemma 2.8, sihce',g" = Gk._l X Zp we have that

k—l

Qg = (fla‘f2”,“ "fCI-l’F+1+p[ 1)(F+'1) +p* 7 feu])

‘B‘ut /
- k-1 Sl - pk=1 -1 - ‘ B
P 14p[(o o) F D+ ] = P(S) +UE+ D +5*f,,

k
_ (P
(P

-1 .
1 )(F + 1) +Pkfe1'
2

We can now state our main result which just uses a combination of The Moving Up .

Lemma and The Tacking On Lemma. Before we do, it should be noted that in actual use
it is easier to use the two lemmas, but for completeness we have the following,.

2.11 Theorem. Let G (Z,,n )™ X (Zpea)™ X -+ X (Zpen )™ where
€1 >e >+ >ep>1andallm; > 1. Then : :

; ; g o
Q6 & (Zp1 ) X (Zyer-1)1 x -+ x (Z,2)f171 x (Z,) 1.
where fori = 1,.. .,ey the f; are’calculated successively as follows:

() ifi=1;
fi= f“(j)_, ifi:elf;ej'+1forsomej=2,3,...,n;
fo(j,k) fi=e —e;+1+k . :
where 1 < k< ej—ejy1 —1forsomej=1,...,n"=1 (en41 =0);

w§ ere

e1—e;j 1*

g pm’ —1
f (J)_=( (Z €1~ ¢€j +2-1)f1)(P—1)+1]
Cx—e, 1+1 .
+p Z f;)p(” 1—¢; =1)(my+mat-dm; 1-1)(pmx+ +m: 1—-1 ~1)

=1
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and : A> o, ‘
. e1—ej+1 ' L
f? (j,k) = ( f,)p(k—l_)(v’m+m,+---+m,»—1)(pm‘+-.-+m,—l - 1)
I=1 '
- )
Proof. By induction on the number of factors n of G. .
Let n = 1. Then G = (Z,¢,)™ where ¢; > 1, m; > 1, and we need to show that

Qﬂ = (fh{?y'--,fel—hfcl)

where: " |
_ p™ —1 o ‘ ‘
f1=('—;—_'—1-) _and fi=f (1,1—1) for .=2,3,...,¢;
Buti.'or'l=2,3,..7,el we get ‘ ¥

ey —e-+1

= fo(1,1-1) Z fo)pl=1 =D (m1~ 1)(pml—1 1)'

_flp(' 2)(mx ”(p"'"'l—-l) ‘ o o
= (2 ™1 ‘

(1—2)(m1-1)(
p—1

)p pmTl 1)

But this is true by theorem 1.6. Hence we may assume the result is true for all groups G
with number of factors less than n.

Case 1 Suppose en = 1. ' ) _
Let G' = (Zpe )™ X (Zpea )™ X -+ X (Zpen-1 )™=, Thus G & G’ x (Zp)™. By induc-
pon Qg = (hl, ey e1) where : : ) '
m -~
() ifi=1 :

- f'(j) ifi=e -¢j+1forsomej=23,...,n;

fo(j,k) ’ifi=e1—ej+1+'k .’:

‘ where 1 < k < €5 — €41 —.1'forsomej =1, ...,n——l(e,, = 0);

with the corresponding f; replaced by h; in the functmns f* and f°. We need to show
Q¢ = (fl,fg, ,fel) where the fi’s are as stated in the theorem (with en = 1). Note
since hl f1-this says that : . G ‘

hi=fi for i=1,...,(e; —en- i),3t§-1+(e;.f1'—en—l)
orfor i=1,...,e; — lase,.v—-l

Note h,, = f° (n‘— l,en—1 —1) and f,, = f* (n;)74~5By'corollary 2.10 we have

‘.,’

QGzl(flafza" 'afcl—li(p:;l 1)(F+1)+pmnh¢l)

.
&
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v  where
el-l

5 - F= (Zel-m)f.)(p—l)

i=1

ie. By above we need to show that
I

. . m" ey ~1
fr(n) = fo, = (B - [(Z et —i+1)f)p=-1)+1] +p™ f(n~1,eny — 1).
=1
i.e. does

pm" _ 1 ey ~—1

( — Z(el'—l-i-z—l)fl)(p—l)-i-l]
e —en-1+1 .

+pm,.( Z fl)p(e,._l‘—l—1)(m1+....+m,._1—1)(pm1 +otma =1 1)
=1

el—l

&) L3 (@ =i+ DA S 41 4™ (= Lenoy —1).

Cancelling like terms we need to show that

el—e,. 1+1- ‘
Z f’) (en—1— 2)(m1+ Amal l"l)(pml'l' +m,. 1—1 1) <
=1 )

=f0(n—1aen—l _1) ‘
e1—en_1+1 '

= ( Z f’)p(en—1-*1—1)(m1+.1.+mh;1—1)(pm1+...+m,’_1_1 _ 1)‘
lal )

~“which i is obvious. Thus Case 1 is finished.
" Case2e, > 1.

Let G' = (Zpe1-ant1)™ X (Zpes- en+l) X X (Zpepogmentr)™ T
« Let G" = G’ X (Zp)™n. 'Ehen by case 1 (as we can now assume the result is true for all

groups with n factors if e, = 1) Qg+ = (f{, f3,-- ’f01—¢n+1) where the f{’s are given by

(B =
fl= jj‘(]) ifi =€ —e;+1 forsome j=2,3,..:;n;
O, k) ifi=¢ — e; +1+k
where 1 <k < e; —eji; — 1 for some j=1,...,n (eny =0);

‘where

PO =16) md fGE) =G
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\

(with the corresponding f; réplaced by f! in the functions % f°). We need to show
Qa = (f1,f2,- -, fe,) Where the f;'s are as stated in the theorem. Now by corollory 2.7
we have /

. ' ' '
QG = (f{v . 7fc17-¢.,+l’f(a;—c,.+l)+l' tee »f(n-a..-{-l)-c-(e"—l))

where
ey =—en+t+1

Sermentryrs = (D f)pUmDImttmasDpmitgma=) _ )
=1

}
S

Note because f; = fi we have by simple induction

.

“fi=fi for i=1,...,e; —en+1.
Thus we need to show that S T -

f(cl‘en'*“l)“"]. ,:/f(,él-en'f'l)"l"l for ] = 1,...,8" - 1.

-

4

, o g
But both are equal to f%(n, ;) by

: inspecticm. He{me we are finished With.the case e, > 1. 0
and the theorem is proved. . ' : .

This completes the des'éription of the augmentation terminal of a finite abelian g‘r‘oup.
Although it is not pretty, it does allow us to prove some earlier known results much ensier.

}

This is the subject of the next section. B
: p
Section 3} Ilustfhtions. '

o

Finally, in this section we illustrate theorem 2.11 by some examples. In particular, we
obtain some previously known results, as well as an example using only¥The Tacking On

Lemma and Th*oving Up Lemma.
To begin w;

) 3
we obtain the ﬁrst.rgsult due to Passt,

A4

3.1 Example. [cf Remark 1.3.4¢]"
If G = (Z,)™ then Q¢ = (2,)(5T) for m > 1.

‘Proof. By 2.11 Qg = (Z,)' where f =»(’§_—’ll).f‘|

Since we used theorem 1.6 in the proof of theprem 2.11 we should be able to recover
it easily. It'should be noted that we did not need to use 1.6 in the proof of 2.11 (Case’
n = 1). Instead we could have started with theorem I.2.4 (i.e. if G2 Z, then Qg = Z,)
and used The Tacking on Lemma and The Moving Up Lemma to accomplish this task. If
we had done this, we would. then get: !
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3.2 Example. [cf. Theorem 1.6]
If G & (Zypn)™ then

m " n-1 o _ L _ - .
J Qg = (Z,,..)('.—-"rl) % H(zp,,_,)(‘,—.rl)r‘"' DU=Dpm=tay) -
j=1.
Proof. In the notation of theorem 2.11 we have e; = n and m; = m. Hence
QG = (Z'pn)fl X (Zp"“)h X oo X (Zp)fn

where .

) andy fi4j =f°(1,j) fory=1,...,n—1.

But

1 m ‘
:  — - m-— =1 j—1)(m— -
£ (1,5) = (O f)p=Dm=D(p 1—1)=(pp_1 )pli=Dlm=b(pm=1 _ 1)
=1

which gives the result. g

This next example will completé,the case for all groups G of exponent p?.

3.3 Example. Exponent p?
Let G = (2,3)™ x (Zp)™ for some prime p and m;,my,> 0. Then

Qc = (Zp2)* x (2,) | .

where

m pm2_1 pml'—l
- 1

)(pml-i-m’z-—l _ 1)' .

Proof. If m; =my =0 (i.e. G=<1>)thena=0=band so QG = < 1> and we are
trivially done. ’ - ’ ' / :
Ifm; =0, my>1thena=0and b= (”—p—:’—l) . Hence G = (Zp)'{‘\" and

Qo =(2,)° x (2,) ) = (z)(F%)
which is true by example 3.2;
Likewise, if m; > 1 and m; = 0 then we easily get our result.
Finally let m;,m2 > 1. By theorem 2.11 we have ‘

Q6 = (Z,2)1 x(Z,)":
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where ' \
“ - 4

1
fi= (%) and
h=£@) N :
ma _ 1 ei"er
= (=T r-eat2-0f)p- 1)+ 1]
= ’
e‘_e‘+:‘
+pmz( Z f,)p(el—cz—l)(mn—l)(pm‘—l -1 . \
E S
. ma2 . q ™1 “pm o .
- =GeGS )(p~1)+1]+p'"’(pp—11)(p'"'"‘—1)
ma _ Q."‘.l — '
= (pp__ 11)[(10"" = 1) +p™] +P""(£;)—_—1—1)(p'""‘ -1)

\ =p"“(.”m’1)+(”m"11)[(p"'=—1)+p'"’(p'"“'-1)]

)[pm,+m{—1 - 1]

S =ém1(pm2_1 + pml-l
p—1 p—1

3

Noticing @ = f) and b = f, we have our resylt. g

Asa ﬁna.l/ewunp\mhf use of 2.11 we give the following result due to Singer.

3.4 Example. “[Singer 'T7a] _
Let G = (Zs)* x (Z4) x (Z3)° where a,b,c > 0. Then

Qa = (Zs)* x (24)7 x (2,)°

-

- where ' .
A=2"_1

B = 2‘20+b-—1 + 2a+b—l - 2a+l + 1

C = 23a+26+c—2 + 22a+26+c—2 + 2a+b+c—l - 22a+b _ 2a+b + 2.

Proof. Note if a = 0 then this is example 3.3 with p = 2, m, = b, and. m, = c as

A=2°-1=0,
B=2"142"1_9211=2.25"1_1-9"_1 and
C = 22br+c—2 + 22b+c—2 + 2b+c—l _ 2b _ 2b + 20 = 22b+c—'l + 2b+c“:-l - 2b+l + 1.

<
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In example 3.3 we have Q¢

-

X (Z4)' x (Z;)'* where

1] i -
fi --(2 1)--2"“—1 and
f? = 2m| 2 ! - 2m|+mr—l . 1)
o= 2""<2"‘=,— )+ (2"" - 1)(2'"'“""" -1)
= 2m|+mz — 2"!1 + 22m|+mz-l _ 2m1 _ 2m|+m:—ly + 1
. - 22m,+mg-l + 2m1+rrrq—l(2 - 1) - 2(2m1) + 1
- 22"!1"""!2—1 + 2m;+m:-—l _ 2ml+1 + 1
which gives us the result.
Hence we may assume a > 1.
Caselp=c=0
Then G (Z5)® which by example 3.2 gives
R | Qe = (Zs)' x (Z4)* x (Z2)"
where
¥
fi=2"—1,(=4)
f2 - (2a _ 1)(2a—1 _ 1) = 22a-1 -—2“ _ 2a—l + 1’
fa=(2° - 120D 1) = 2071 p,,

L 4

,v \
Now note that

which gives f, = B. Also
A

6 ' _20 _ 24-—1 = 2a—l(__2 _ 1) — 2a—1(1

1f2_2a 1(22a 1 2a -1

_ 4) = 20—1 _ 2a+1

-

fo =20 —2tt )
= 234-—2 + 22a -2 _ 22a + 98-~ l. =C. .
Case2c>1,6>1
Then by 2.11 . )

"Qg = (Zs)fl X (Z4)f2 X (Zz)fa
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" where

fi=2°=1= A, -
=2 =2 - D22* - 1)(2- 1) + 1]+ 252 - )22 - 1)
= (26 _ 1)(2a+l -1+ 26(220—1 ~ 9201 _oa +1)
= 90tb+1 _ 9b _ oa+1 +1+4 26(22a—l 4 90-1 _ oa+l +.1) {see Case 1)
— 2a+b+1 . 26 _ 2a+l +1 + 22a+b-l + 2a+b-—l - 2a+b+l + 2b
= 92a+b—1 | gatb-1 _ 20+1 4
= B, and
fr=f7(8) = (2° = DIBA +2£)2 - 1) + 1] +2°(f + fr)2*=D — 1)
=(2° - 1)[3(2% — 1) 4 2(2%#0-1 2o +b=t _gatt 4 ) 4 "
+(20¥bFeml _gejodathal | gatb-1 o ~2) + (=1 +1)] ‘
=(2° — 1)[22a+b 4 2a+b _ 29) + (2a+b+a- ‘ 2a+b~1 | gatb-1 _ 29)
= 23a+2b+c-—2 + 22a+2b+c—2 + 2a+b+c—l(2

=200y 90 o2akbte-lg 1 _ 1) 4 oo
=C. '

Fina.lliy the two cases b>1,¢ =0, and b=0,c > 1 are handled in a similiar manner to
case 2. Thus we have proved the result. g

It should be noted that we could easily handle exponent p® groups as in the above
example, except that simplifying the results is no longer so easy as we extensively used the
fact that p— 1 =2 —1 =1 in the above.

Finally we conclude this section and chapter by finding the augmentation terminal
of the group G = Z,s x (Zp3)? x Zp2 (of order p'*) using lemmas 2.4 and 2.8 and their
corollaries.

3.5 Example. Let G = Zys X (Zps)* x sz. We want to calculate Q¢ using The Tacking
On Lemma and The Moving Up Lemma. In order to do this we will return to our notation
of section 2. Here we have

61=5, m1=1, €2 =3, m2=2,a.ndc3=2, m3=1.
Note e; —ea+1=23.

Thus consider G; = ps. Then Qg, = (1,0,0) (example 3.2).
Now let G, = Z,s x (Z,)?. Then Qg, = (1,0, f3) where

fs= (’;2__11)[(3(1) +2(0))(p—1)+1] +p*(1)  (cor. 2.10)

=4p’ +p-2.
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‘Smce e —e3 + 1 = 2 we consjder Gs = ,,4 X (sz)2 Then by Iemma 2 4 we have .
- Qa, (1,0, 4p +p 2, f,,) where .

f ( +0+(4p +p-—2))(p31 1) = 4p4+p3'5p2— 41,

\'J,‘

| ;Nowlet G4—-~Z 4x(Z n) x Zp. By lernma28wegetQG4 = (1 0, 4p +p 29 f4) where

f4-[4(1 +3(0)+2(4p +p 2)](p~1)+1+p(4p +p 5p —p+1)
‘“—4p +p +3p —7p p+1

. JFinally let G5 YR~ Zpu X (Z 3)2 x sz By lemma 2.4 we have

“" Q (104’1’2“"1’ 24? +P +3p 7p fP+'1,fs)
‘ where - ‘ _ ‘ | e

. B I
\ f5 = ((1) +(0)+(4p +P 2)+ (4p +P +3P 7 P+ 1))( 4=1 1)
_'41’ +P + 3p® — 7 3P +3p ol e

i.e. IfGQ‘Zpax( pa)_ x,Z: then

Qe (2 x (2 s>°x<Z=)“><<Zp>°

-“where '
o re=4t4po2 e
’},d“‘4p5+'p'4+3p3 ~ Tp* p+1 and
PR J'e—4p +p +3p - p° p’ 1—-3p +3p
' . w . ’ .'“' ER AR - - - / ‘
I should be noted that thls method of calculatmg the augmethatlon termmal of a
: \glven group G can ea.sxly be 1mplemented in a computer program R
: - L.
\ .;, : V 'Q :

.",4_5;“ .



CHAPTER 4

Sdimhary of the Non-abelian Case, "

. "W\(-,' C S R P e
" We now bkno‘w‘w'hVat Qo (G) is fof G a finite abelian group. But what is known about
¢ Qn (G) when G is a finite non-abelian p-group? That is the subject of the following section.

o Py

Section 1 A Brief Account. : ' ‘

, From the study of the abelian case, we know thé structure of @, (G) can be quite ~

complicated.” This is even more so when G is non-abelian. One of the added degrees of

~ difficulty is that Q. (G) may nolonger have an augmentation terminal Qo (G). Bachmann

. and Grunenfelder’s result (I1I.1.1, which can be stated for all finite groups) only guarantecs

~ that the @, (G) will become periodic. Hence for a group G we must calculate = groups

(Qno (G), Qnoi1 (‘G)','-'-‘-,,"Qm,{n-r(G))'('Wher?i 7 is the period) in order'to determine the
~stable béha.vior‘"on,»».(G).v' e B S

- Given this and the complicated nature of the abelian Caée, it is easy to understand
why we do not know what the stable behavior of Q,(G) is, for all non-abelian finite groups
G. Actually, we knowirelatively little of what occurs in tixe non-abelian case and it is likely
that any complete answer for this will'be ¢ xtremiely omplicated and detailed. However,
there ‘havei;bqgéﬁ several méthods: developed for calculating Q,, (G) for certain non;abelian

p-groups.; "Ja,rfrtl;ésg mgtﬁoﬁs have only been"used for groups of order p™ where m < 4. -
3 It,shdulsiﬂ 'stated Wat these ?pgthbds’,‘requir'e very detailed calculations and probably can

t‘i’s,e_‘on ps: - .

, y were the first. to calculate the stable behavior of Q. (G)
abe 0’G in [Los }';‘and Losey '79a). They wanted to present some exam-
% .ples of Bachmann;and 'dfuexaig lér’sTesult for a group which was not abelian. In order to
"\ do this, they. considered the"elass of finite p-grdups in which the lower central series is an

. N, series.-(An N, series for a group G and Prime p is 4 fformal series H = {H .-,}?_:l'in G -

+ for a nén-al

with [H;, Hj] < Hiyj and H? <Hyp ¥igj 21)

 In this situation, it is tie that §, (G) issfinite elementary abelian p-group and hence
thgy need ly to ¥ cu gté“ the rank of Qn (Q), To do this they first found a special
" -skt oy basi; ‘dleme ts X0t each A™. From this, a‘basis for Q. (G) was found and counting
" arguements give the results for various groups of this class. ' ’ ' '

. Theresults Losey and Losey were able to achievé iri\tl_iis»manﬂéf were as follows: |
" 11 ‘Result. (Proposition 3.1 [Losey »a'x_1-d'Loséy‘ 'M9al.) S L
' I%)ét G=<zy,z|2P =y?=2"=[z,2] = [y,2] = 1, [z,y] = z > where p is an odd prime.
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Lo 46



i ’Fbr alln>2p-1,Qy (G) is an elementary abelia.n p-group of rank

i [ Rp+1)? if n is odd;
’@(G) = {~§(p+;)? +1 ifniseven.

1.2 Result. (Proposition 3.3 [Losey and Losey '79a).)” :

Let G be a finite 2-group of class 2 in which G/G’ is elementary abelian of rank ¢; and G-
is elemen abelian of rank ¢3. Foralln > ¢, + °2_tg -1, Q,.K(G) is-an elementary abelian
2-group£1f rank 2171 (22 +1)-1. (¢' ={G,G]) = " ‘

They also presented one more result (Proposition 3.2 [Losey and Losey "79a]) which

calculated Qn (G) for a finite group of order p*, exponent p, and class 3. However this will .
‘be stated later. ‘ : : T , o

Gerald Losey and Nora Losey then calculated the stable behavior of Qn(G) for all
remaining groups of order p® in [Losey and Losey '79b]. Thjs meant they had to calculate
. Qn(G) for one more non-abelian p-group. (They also had to handle the remaining abelian
- groups as Hales’ result was not yet known.) As this non-abelian group has a lower central
series which was not an N, series, a different method was employed. ‘Again they explicitly
constructed a basis for A™ (G) and calculated the structure of Q, (G) from these. However
- a different method was involved in calculating the basis. Their result for this final non-
abelian group of order p® wagj : - o ‘ , '
1.3 Result. (Proposition 4.2 [Losey and Losey '79b].) - | .
- LetG= <§.y4 éc‘l’ = y”? = [z,9?] =1,[z,y] = ¢y? >.. Foralln >2p—1,.
g d(@=(z) . . S
R Finally, the last work known about Q, (G) where G is non-abelian was seen in a
series of three papers by Kazunori Horibe, Ken-Ichi Tahara, and Tsuneyo Yamada in
[Horibe and Tahara '84], [Tahara and Yamada '84], and [Tahara and Yamada ’85]. In these
‘papers they continued the work of Losey and Losey by calculating the stable behavior of -
- Qn(G) for all groups G of order p*. } : | R x
‘ By extending the methods employed by Losey and Losey. and making use of a result
of [Tahara '82] they were able to finish the case where G has order p'. As evidence of
‘the detailed calculations n@ed it can be noted tfrat these three Papers were over seventy
pages in length. R T " . SR

i

o B 4

- I3

| The result’of Tahara méntidngd'abpve was: Rt e‘ T
1.4 Result. (Thegrem 4.3 [Tahara '82].) .
Ifa = NT is the semidirect product’

- ) ' PEAA é'

J 0 MO RgDesnel m21,

m)\‘:‘ N ,.-.‘“ ' e [ N c . A
WhgrellAm}%l '-_l'i_s"vthek_ca.n'oﬁcb.l‘ filtration of A(N) with respect to the N-series

N =Ny 2Ng 22 Ng 2Ny =1 e




with Ngjy = Nand Ny = [Ne-1,G] k 2 2. Also Ty = A(T)A, aad

n—1 "
Ta=) A (T)Ain > 2,

=1

This theorem was used in calculating the basis elements for Q,(G).

For completeness the results for the non-abelian groups of order p follow. |
1.5 Table. Qe (G) for G (non—abehan) of order p* where p is an ‘odd prime.
1) [Horibe and Tahara ’84 Propostion 3.1] s

G=2,x <z, y,:clz”-y”-—z”—-[z o=z, gk

Then Qnoti(G) = (2 )(1/2)(p+1)(P’+p+1)+1“1-‘?. . ?f;#}i

ot | ‘Q -
2) [Losey and Losey '79a Proposition 3.2] ‘ H u

G= <z,9 2 w| 2P =yP =P = wP = [w, a:] [w,y] [w, z] [z yl =1,
, [y, z] = z,[2, l=w>.
Let g = 4p — 3. Then Qno4:(G) =12, )"“°+ @ (ie {0 1,2,3,4,5,6)) where o
Case 1. p=1 miod
sne+i(G) = K(i =0, 4), K+ 1(2 =1,2, 3)/K + 2(2 = 5),
whereK—-1+p+ 2(p D+3i-1),
- Case 2. p-——2mod3 ' o
,_ 0),L+2(z—15),L+1(z—234)
el 1 L(; - 1)+ L(p° - 2)
'3) [Ho ara '84 Proposxtlon 5. 3]
2 =y? =2 =[y,5] = [2?,5] = 1,[z,1] —y,[2 y] P>
3. Then Qno+|(G) ( )(l)(3P +2P+1)+l . 0 1.0 .

. 4) [Honbe and Ta.hara "84 Proposxtlon 4.3] ¢ :
G = Zx<.1:y|‘m"—y” 1[y,z]—y”> Letno—3p 2.
' Then Qn, (G) = (2,)* ¥+,
,5) [Honbe and Tahara ’84 Proposxtxon 6.3]
G= <:c,y,z|a:”-y"—z” ly,z] = [z, y]—l [z z] =y > . Let ng —-4p 3..
Then Qng4i(G) = (Z,) P20 g 7 i, 1
: ~6) [Taha.ra and Yamada ’85 Proposition 4. 10]
G=<z,y|z? =y*" =1,[y,z] =¢y? >. Let no = p’ +2p-1.
Then Qn, (G) = (2 )” REY Y
) [Honbe and Ta.hara ’84 Proposmon 4.3]
G=<zy,z L:c” =yP = 2P = [z,z] = [z, y] =1, (yyz] = 2P > . Let no =3p - 2.
o 2
Then Qn, (G) = (2,) 7% , |

&
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'8) [Ta.hara and Yamada '84’ Propomtlon 4.3 @ " ‘
<z,y,2|2P =yP = 27 =(z,y] = 1,[2,7] =y, [y, 2] = z‘p 5, Let mng =4p — 3.
Then Qno+|( ) (Z )(})(3P +2p+l)+: i 0,1.

9) [Tahara and Yamada '84 Proposmon 4.3] :
G=<z,yz|z? =y =2 =[z,y] = 1,[z,2] =y ly,z] =297 > . Let no —-4p 3.
Then Qno+l( ) ( )(é)(ap +2p+1)+i i=0,1,

(o is a quadratic non-residue modulo p.)

10) [Tahara and Yamada '84 Proposition 5.7]

G=<uz, y|:c”=y” \,[y,z]‘-y" > .Let ng=3p—2.
‘Then Qn,(G) = (Z,) "' @ Z,2. ;

11) [Tahara and Yamada ’85 Proposxtlon 3.1}

G=<z,yz |y} =2° =[2,y] = 1,2% = 22, [y, 2] = 22 [z a:]-—y> Letno—-9
Then Qnp+i(G) = (2)"™ i=0,1.

This concludes what is known fOr non-abelian groups. As one can see, the problem .
for non-abelian groups is far from being completed
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