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Abstract 

 

The current available g-functions obtained from the moving finite line source (MFLS) 

model for design and simulation of vertical borehole heat exchangers (BHEs) neglects the 

effects of buried depth, i.e. the vertical distance between the ground surface and the 

BHEs. This study proposed a new analytical solution of the MFLS model in a single 

integral form that extends the validity of the MFLS model by taking the effects of buried 

depth into consideration. Furthermore, the spatial superposition technique was employed 

to computing new g-functions using the new proposed analytical solution for multiple 

borehole field. A customized MATLAB code was deployed to compute the new proposed 

solution and the new g-functions. The correctness of them was numerically verified with 

an equivalent three-dimensional (3D) finite-element (FE) model developed in COMSOL 

Multiphysics software. A sensitivity study was carried out to investigate the influence of 

the buried depth. Results reveal that the new proposed solution must be used over the 

standard MFLS model to consider the combined effects of buried depth and groundwater 

flow when calculating the temperature variation of the Peclet number (Pe) < 22. The 

findings also indicate that the effects of buried depth increase as the borehole length 

decreases, and the effect of buried depth is more significant in a borehole field containing 

multiple boreholes due to the accumulation effects of the buried borehole. Neglecting 

buried depth could result in an under-estimation of the temperature variation by more 

than 8%. Therefore, the buried depth becomes an important parameter in the design of 

BHEs.  
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1. Introduction 

1.1. Research background 

In Canada, mining activities usually need a huge amount of energy from burning fossil 

fuels for heating purpose due to the long last cold winter [1]. As an example, in 

underground mine operations, fresh air has to be pre-heated to a sufficient temperature 

(1.5 °C), preventing the seeped groundwater from freezing in the ventilation shafts [2]; 

and the pre-heating costs millions of gallons of natural gas or propane annually [3]. To 

reduce the considerably fossil fuels consumption for heating, applications of ground 

source heat pump (GSHP) rise great attention in the mining sector [4, 5]. 

GSHP systems, also known as shallow geothermal or geoexchange systems, have been 

utilized in residential and commercial buildings to provide space heating and cooling. 

From 2010 to 2015, the installed capacity of GSHP systems has grown by 52%, from 

33,134 MWt to 50,258 MWt, while the corresponding annual geothermal energy utilized 

has grown by 63%, from 200,149 TJ to 326,848 TJ [6]. The GSHP system has been 

receiving escalating interest due to its high energy efficiency, low electricity 

consumption, and the potential to reduce greenhouse gas emissions [7]. 

The GSHP system uses the ground as a heat source or a heat sink. The ground is a 

desirable thermal energy reservoir because the ground temperature remains relatively 

constant below a certain depth throughout the year [8]. For example, in Canada, the 

shallow ground temperature is commonly within a range of 6 °C to 12 °C, and this 

temperature is relatively constant. The constant temperature is caused by the high thermal 

inertia of soil and rock. Thermal inertia represents the tendency of soil and rock to resist 
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temperature changes; it diminishes the influence of the ground surface temperature 

fluctuations as the depth increases [8, 9], providing the potential for using GSHP system 

[10].  

In general, the GSHP system has two common layouts — one that is horizontal and the 

one that is vertical [11]. In comparison with the horizontal layout, the vertical layout 

requires a relatively smaller ground area, has a more stable heat source, and provides 

more efficient performance [11, 12]. In a vertical GSHP system, the heat pump is 

normally combined with a set of borehole heat exchangers (BHEs). These BHEs are used 

for heat extraction from (or heat injection into) the subsurface (see Fig. 1) [13]. The most 

common form of BHE is a vertical closed loop system that has single U-tubes made of 

high-density polyethylene pipes. These pipes are installed into multiple vertical boreholes 

down to a depth ranging from 50 m to 150 m [14]. Boreholes are typically 0.1 m to 0.15 

m in diameter [15]. The performance of the BHE is crucial to the success of the GSHP 

system because it determines the amount of thermal energy extraction from the ground 

[16]. For a successful GSHP system, the performance of BHE is required for satisfying 

the a project’s thermal energy demand during the life cycle of the system [16].  
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Figure 1. Schematics of a GSHP system for space (a) heating and (b) cooling. 
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To evaluate the long-term performance of BHE, an approach using the g-function (also 

known as thermal response factor) is widely accepted. The g-function is determined by 

the following relationship [17]: 

 

 𝛥𝑇 = 𝑇𝑏 − 𝑇0 =
𝑞𝑙

2𝜋𝑘
× 𝑔(𝑥1, 𝑥2, ⋯ ) (1) 

 

where, bT  [K] is the borehole wall temperature; 0T  [K] is the undisturbed ground 

temperature; lq  [Wm-1] is the rate of heat production or withdrawal per unit length; k 

[Wm-1K-1] is the ground thermal conductivity; 𝑔(𝑥1, 𝑥2, ⋯ ) is the g-function; and 1 2,x x

are several non-dimensional parameters, such as non-dimensional time and non-

dimensional borehole radius. The g-function is the non-dimensional temperature variation 

( ), averaged over the borehole wall surface, in response to a time-constant heat transfer 

rate in a single BHE [18, 19]: 

 

 𝑔(𝑥1, 𝑥2, ⋯ ) = 𝛩 =
2𝜋𝑘𝛥𝑇

𝑞𝑙
  (2) 

 

The g-function approach is widely used because of two reasons. First, since the g-

function is non-dimensional, it is convenient for a wide range of ground thermal 

properties and borehole geometries with equal non-dimensional parameters. For example, 
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the same g-function can be valid for boreholes with various lengths (H) and radiuses 

( br ), as long as these boreholes have the same non-dimensional borehole radius ( br H ). 

Second, g-functions can be computed to consider thermal interaction between multiple 

boreholes with the help of the spatial superposition principle [17, 20]. The temporal 

superposition principle can also be employed to consider the time-varying heat flux due 

to variations in cooling and heating loads of projects [19]. In this regard, the g-function 

methodology has been implemented commonly in GSHP design tools, such as 

GLHEPRO [21] and Earth Energy Designer (EED) [22]. Current available g-functions 

are obtained through numerical models [23-26], analytical models [27-32], or a 

combination of the two [17, 33]. In engineering practice, analytical models are generally 

favoured over numerical models for sizing, optimizing and simulating the BHE system 

[34-37]. Advantages to the analytical approach include (1) the flexibility for any BHE 

geometries and configurations, (2) the superior computational time with an acceptable 

accuracy, and (3) the simplicity for the designers [30, 38]. This research emphasizes on 

g-functions obtained from analytical models.  

1.2. Problem definition  

A review of existing analytical models for computing g-functions (see Ch. 2) shows that 

several simplifications were assumed in the development of the analytical models. These 

simplifications include, but are not limited to, (a) adiabatic top layer assumption, (b) 

purely heat conduction assumption, (c) constant ground surface temperature assumption, 

and (d) homogeneous ground assumption. The analytical models have also been further 

explored in the corresponding aspects to reflect myriad practical conditions in BHE 
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design: (a) buried depth [29, 39], (b) groundwater flow [30, 31], (c) ground surface 

temperature [32, 40], and (d) multiple ground layers [38, 41]. Among these aspects, the 

buried depth and groundwater flow are of particular importance in BHE design. These 

two aspects are briefly introduced as below. 

Buried depth (D) is the distance from the ground surface to the starting point of the 

vertical BHEs (see Fig.2) [42]. This distance was taken as zero in some analytical 

solutions [27, 28, 30, 31]. However, buried depth varies in different geological 

environments and climates regions. In cold regions (e.g., Canada, Northern Europe), 

ground temperature can drop below the freezing point of groundwater [43]. Therefore, 

BHEs are normally buried deeper in cold regions than in warm regions to avoid the 

associated risk of freeze-thaw cycles in the seasonally frozen ground [44]. As the buried 

depth increases, the  heat exchange between the ground surface and BHEs is diminished 

by the thermal resistance of the ground layer above the boreholes, yielding a lower 

thermal performance of BHEs [39, 45].  

In addition to buried depth, another significant aspect in BHE design is groundwater 

flow. Groundwater is the water that exists in the pores in saturated ground, and it flows 

showing hydraulic gradients [46]. According to local geological and hydraulic conditions, 

groundwater flow rates vary from metres per year to metres per day [46]. Groundwater 

flow is found in many geological environments, and it can considerably change the 

temperature regime around the borehole [34, 47]. When groundwater exists, the heat 

exchange between the borehole and the ground is inherently coupled with gross heat 

advection by the movement of groundwater, providing a synergistic effect on the thermal 
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performance of BHEs. This synergistic effect can shorten the design length of BHEs 

without sacrificing performance [48-50].  

In general, buried depth and groundwater flow both have certain influences on the long-

term performance of BHE. However, no work has been done to incorporate their effects 

at the same time in an analytical model. To this end, a new solution of the analytical 

model is needed to offer a more accurate estimation of the g-function by taking the buried 

depth and groundwater flow into consideration. 

Borehole

Hot Liquid 

Cold Liquid

Ground surface

Buried depth (D)

U-tube

Grout

 

Figure 2. Schematic of borehole heat exchangers (BHEs). 
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1.3. Research objective 

The overall objective of the present study is to develop a new analytical solution for 

computing g-functions in order to take account of the effects of buried depth and 

groundwater flow. 

Besides, four sub-objectives are also identified: 

i. Review analytical model for a single borehole; 

ii. Verify the new derived analytical solution numerically; 

iii. Elucidate the role of buried depth in BHEs design; 

iv. Examine the thermal interactions within the borehole fields. 

1.4. Thesis structure 

The thesis is organized according to the objectives of this study and presented in seven 

chapters. This chapter (Ch. 1) introduce the background and defined the problem of this 

study, as well as the objectives. 

Chapter 2 provides a comprehensive review of the analytical line source models for a 

single borehole, as well as the spatial superposition principle for multiple borehole field. 

Chapter 3 proposed a new integral mean solution of the MFLS model that considers the 

effects of buried depth (MFLSD). This chapter also presents a three-dimensional (3D) 

finite element (FE) COMSOL model constructed using the software COMSOL 

Multiphysics for numerical verification. 
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Chapter 4 presents the numerical verification of MFLSD solution. This chapter also 

presents a sensitivity study of buried depth in the non-dimensional form.  

Chapter 5 presents the investigation of the thermal interactions with borehole field. 

Chapter 6 concludes the major findings from this work  

Chapter 7 lists the major limitations of this work and suggests a direction for the further 

study.  

 

  



10 

 

2. Analytical models (Literature review) 

Most analytical models for computing g-functions [28, 29, 39, 51] evolved from the line 

source theory [52]. The term “line source” refers to a continuous series of point heat 

sources along a straight line with a constant heat flux per unit length ( lq ) [52]. In 

practice, the borehole can be assumed to be a line source because the radius of the 

borehole (e.g., br  = 0.045 m) is tiny when compared with its length (e.g., H = 70 m) 

[27]. In this chapter, four analytical models have been briefly reviewed—the infinite line 

source model (ILS), the finite line source model (FLS), the moving infinite line source 

model (MILS), and the moving finite line source model (MFLS). Among these models, 

the ILS model is the earliest version of g-function; the FLS model is the current design 

theory implemented in commercial software (e.g., GLD2016 [53]); and the MILS model 

and the MFLS model are refined analytical models that include the effects of 

groundwater flow. 

2.1. Infinite line source (ILS) model  

Infinite line source (ILS) model is the earliest analytical model to calculate the heat 

transfer between a single borehole and its surrounding ground [20]. To apply the ILS 

model in the thermal analysis of BHE, the ground is regarded as an infinite, 

homogeneous and isotropic medium, in which the borehole is assumed as an infinite line 

source [18]. In the ILS model, the heat transfer is governed by the one-dimensional 

transient heat conduction equation in the radial direction [26, 52]: 
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2

2

1T T T
c k

t r r r


   
= + 

   
 (3) 

 

where T [°C] is the temperature of the medium, k [Wm-1K-1] is the ground thermal 

conductivity, c  [Jm-3K-1] is the volumetric heat capacity of the medium, and r [m] is the 

radial distance to the line source. 

If the line source starts releasing heat continuously at time zero, and if the medium has a 

uniform initial temperature ( 0T ), a mathematical solution of the ILS model (Ingersoll et 

al. [52]) gives the temperature variation ( T ) at any later time (t) and any radius (r) 

around the line. 

 

 

2

4
2

l
ILS

r t

q e
T d

k





 
 

 −

=    (4) 

 

where
( )4

r

t t



=

−
, and k c =  [m2s-1] is the thermal diffusivity. 

Introducing the exponential integral function ( )1

t

X

e
E X dt

t

 −

=  , which is a special 

function in mathematics, Carslaw and Jaeger [54] described Eq.(4) as: 
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



 
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 
  (5) 

 

where ( )( )2 4r t t  = − . 

At the time 
25t r  , the exponential integral ( )1E X  in Eq. (5) can be approximated 

as: 

 

 

2

1 2

4

4

r t
E ln

t r






   
= −   

  
 (6) 

 

where γ donates the Euler’s constant (approximating to 0.5772…). 

Gehlin [47] reported that the natural logarithm approximation gives errors less than 10%. 

The maximum error drops to 2.5% for the time 
220t r  . 

The ILS model is characterized by its simplicity [18]. However, these assumed 

simplifications may also restrict its applications. First, the pure conductive heat transfer 

assumption ignores the presence of groundwater flow that has considerable influence in 

the long-time period. Second, the infinite assumption neglects the heat transfer in the 

direction of the borehole axis (i.e., axial effect), including the heat conduction at the 

bottom and top of boreholes. As a result, the solutions of Eq. (4) and Eq. (5) are 
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inadequate for yearly simulation of BHEs system [27, 32]. Marcotte et al. [55] concluded 

that the borehole length could be 15% shorter when the axial effect is considered.  

2.2. Finite line source (FLS) model  

A step forward to the ILS model, the finite line source (FLS) model considers the 

borehole as a constant line source with a finite length to solve the governing equation of 

two-dimentional (radial and axial) transient heat conduction [56] in clindrycial 

coordinates (r, φ, z) as below: 

 

 

2 2

2 2

1T T T T
c k

t r r r z


    
= + + 

    
 (7) 

 

In the FLS model, the ground is regarded as a semi-infinite medium by assuming that the 

interface between ambient air and ground surface is maintained at constant temperature 

(the same as the undisturbed ground temperature 0T ).  

Initially proposed by Eskilson [17], a general solution of the FLS model was later 

constructed by Zeng et al. [27]. Setting a virtual mirror sink above the ground surface, the 

constant temperature boundary condition at the surface is compiled by the symmetrical 

distribution of line heat source and sink. Then the temperature rise at a point of the 

surrounding ground can be obtained by integrating contributions of all the continuous 

point sources on the line heat source and sink [17, 27]: 
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where H [m] is the borehole length, D [m] is the buried depth, z’ is the coordinate of the 

point source, and ( )
22 t

X

erfc e dtX




−=   is the complementary error function in 

mathematics.  

In Eskilson’s original work [17], it concluded that the exact value of buried depth (D) is 

not important for a fixed active borehole length (H), since only small temperature 

variations (i.e., 0.1 °C) were found among several numerical simulations for buried depth 

of 2 m to 8 m. However, the other used input parameters were not reported. 

The temperature variation is only given at a single point by Eq. (8). To estimate the 

average borehole wall temperature variation, the FLS solution by Zeng et al. [27] requires 

one additional integration at the borehole radius ( br ) over the borehole length (H).  
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Accordingly, this double integration results in a remarkable increase of computational 

efforts. Then Lamarche and Beauchamp [28] presented another expression for the FLS 

model that simplifies the FLS solution by Zeng et al. [27] from a double integral into a 

single integral. This simplification considerably reduced the computational time by a 

factor of thousand times [28]. The Lamarche and Beauchamp’s expression [28] for 

integrated average temperature variation is: 
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where ( )
22r z z = + − , ( )

22r z z  = + + and 
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Bandos et al. [32] also presented a single integral expression for approximating the FLS 

solution. Taking account for the air temperature fluctuation at the ground surface, this 

approximation was used to estimate the ground thermal conductivity from the TRT data. 

The estimation demonstrated that the finite length correction of the borehole yields a 
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lower estimated value of the ground thermal conductivity and improves the accuracy of 

the evaluation [57]. Moreover, this approximation, as shown below, was implemented in 

commercial design tool GLD2016 as the current design approach [53]. 
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where ( ) ( )1erf erfcX X= −  is the error function in mathematics. 

More recently, Claesson and Javed [29] reformulated the FLS solution by changing the 

order of the integration. Zeng et al. [27] and Lamarche and Beauchamp [28] integrated 

the point heat source in the time domain first, and then the solutions (Eq. (8) and (10)) 

were given in a form of a single integral in the space domain. On the contrary, Claesson 

and Javed [29] integrated the point heat source in the space domain first, and then the 

solution was given in a form of a single integral in the time domain. In this way, the FLS 

solution by Claesson and Javed [29] took the buried depth (D) into consideration 
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where 𝑠 =
1

√4𝛼(𝑡−𝑡′)
 and 
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(14) 

 

The FLS model has considered the finite length of the borehole, through which the 

effects of axial heat conduction has been taken into account. In particular, the axial heat 

conduction accelerates the heat exchange at the bottom of the borehole and transfers the 

imbalance heat of extraction and injection on a year-round basis to the ambient air 

through the ground surface [27, 30]. However, the FLS model is still a solution to the 

purely heat conductive problem, which neglects the heat advection by groundwater flow. 

2.3. Moving infinite line source (MILS) model  

The moving infinite line source model (MILS) was explored by Sutton et al. [58] and 

Diao et al. [46] to account for the convective heat transported by the moving water. In 

MILS model, the heat transfer is composed of (1) heat conduction through the solid and 

water in the pores and (2) the heat advection through the flowing groundwater. Based on 

moving heat source theory [59], the heat conduction-advection equation (Eq. (15)) was 

established using the effective thermal transfer velocity (U) in place of the moving speed 

of the heat source. Assuming that the groundwater flows parallel to the ground surface in 

the x-direction, the two-dimensional (xy coordinates plane) heat conduction-advection of 

a moving line source in a saturated porous medium can be expressed as follow [46]: 
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 (15) 

 

where 
du  [ms-1] denotes the uniform groundwater velocity which can be determined 

using Darcy’s law, w wc  [Jm-3K-1] is the volumetric heat capacity of the groundwater and 

( )d w wU u c c =  [ms-1] is the effective thermal transfer velocity.  

Diao et al. [46] and Sutton et al. [58] solved the partial differential Eq. (15) for an infinite 

moving line using the Green’s function method [60]: 
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The MILS model has incorporated the effect of moving groundwater. However, results 

produced by the MILS model usually overestimate the long-term temperature response 

(years and decades), because the axial effects are not taken into account [30]. This is a 

common disadvantage for all the analytical models that adopt the infinite assumption.   
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2.4. Moving finite line source (MFLS) model  

For long-term simulation of BHEs operation, both the axial heat conduction and 

groundwater flow can considerably change the temperature regime around the borehole. 

As a result, the moving finite line source (MFLS) model was developed to take into 

account both effects [30]. The governing equation of the three-dimensional heat 

conduction-advection in porous media is described as follow [61]: 
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 (17) 

 

Using the same theory as the MILS model and applying a methodology similar to the 

FLS model, Molina-Giraldo et al. [30] proposed a general solution of the MFLS model 

which turns out to be: 
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Similar to the FLS solution of Zeng et al. (Eq. (8)), Eq. (18) needs integrating itself over 

the borehole length and the borehole circumference for the average borehole wall 

temperature. Therefore, inspired by Lamarche and Beauchamp [28], Tye-Gingras and 

Gosselin [31] reformulated the triple integral formulation to an alternative single integral 

expression: 
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where ( )0I X  is the modified zero-order Bessel function of the first kind and 
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Rivera et al. [62] also proposed an alternative expression to describe the integrated 

average temperature variation ( MFLST ) at the borehole wall ( br r= ). The expression was 

developed based on the FLS approximation given by Bandos et al (Eq. (12)) 
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where 2 = . 

One step to the FLS and MILS models, the MFLS model incorporated the effects of 

groundwater flow and axial heat conduction at the same time. However, the current 

available MFLS model negelectd the buried depth (D) which also has considerable 

influence in the long-term simulation of the BHEs operation. 

In brief, this chapter introduced four analytical models for a single borehole. In Appendix 

A, a comparison was made between these models to evaluate the effects of groundwater 

flow and axial conduction.  

2.5. Superposition principle for borehole fields 

These aforementioned analytical models for a single borehole have provided a foundation 

for thermal analysis of a multiple borehole field [46]. As stated in Ch.1, the principle of 

superposition can be applied in to consider thermal interaction between multiple 

boreholes [17, 25, 28, 31, 63]. In practical applications, multiple BHEs are common in 

large-scale commercial buildings that have high energy demands. In this case, 

temperature variations of multiple BHEs should be more significant than the one of 
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single BHE due to the thermal interaction between boreholes [64]. A simplified approach 

to obtain the temperature variations at any location in a multiple borehole field is 

superposing the contribution of each individual line source. For a BHEs field composed 

of N boreholes (see Fig. 3), the mean temperature variation on a certain borehole wall 

(i.e., borehole i) is given by: 
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where j iT →  is the thermal effect of borehole j on the borehole i. 

The overall temperature variation over the field is then computed as following: 
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= =
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Then a new g-function for a particular borehole configuration can be computed using Eq. 

(2) while accounting for the thermal interaction among boreholes. 
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j - 1 j j + 1 N
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…

… indicates the omission of identical boreholes in the field
 

Figure 3. Schematic (plan view) for the thermal interaction on a specific borehole i in a multiple borehole 

field with N boreholes.   
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3. Methodology 

In this section, a new analytical solution of the MFLS model (MFLSD) is presented. 

Inspired by the FLS solution of Claesson and Javed [29], the MFLSD solution was 

derived in a single integral form with consideration of the buried depth. The spatial 

superposition principle was employed to computing new g-functions for multiple 

borehole field. To numerically verify the MFLSD solution and the new g-functions, a 

three-dimensional (3D) finite element (FE) model was constructed using the software 

COMSOL Multiphysics for numerical verification. The 3D-FE solution solved the same 

heat transfer problem as the MFLSD solution using the same input parameters from a real 

geoexchange project in Edmonton, Alberta, Canada. The discrepancy between the two 

solutions is evaluated using the mean absolute error (MAE) and the root mean square 

deviation (RMSD). A one percent (1%) difference is employed as a criterion to decide 

whether the effects of buried depth are negligible. When the discrepancy between the 

MFLSD solution and the MFLS solution is greater than 1%, the g-function must be 

computed using MFLSD solution to include the effects of buried depth. A general 

flowchart is shown as below: 
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principle

Verify 

(MAE&RMSD)

 

Figure 4. A flowchart showing the overall methodology. 

3.1. Moving finite line source model that includes buried depth (MFLSD) – a new 

solution 

Claesson and Javed [29] provided a two-dimensional (radial and axial) mathematical 

solution for geothermal analysis. The model gives the average temperature variation over 

the length of a line source at a distance below a constant temperature surface in the axial 

direction and at a radial distance from the line source. Based on their mathematical 
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approach, the MFLS solution was modified in this study to calculate the average borehole 

wall temperature variation ( T ), taking buried depth into account.  

Three common simplifying assumptions are made to develop this new MFLS solution, 

these assumptions are consistent with the work of Tye-Gingras and Gosselin [31]: 

a. The groundwater is parallel to the ground in the x-direction with a uniform Darcy 

velocity du ;  

b. Local thermal equilibrium (LTE) is considered (i.e., the groundwater temperature 

is the same as the ground temperature at any point), which is a commonly used 

hypothesis for heat transfer in porous media[65]. In a macroscopic scale, LTE is 

valid because the temperatures of water and solid vary slowly in time and space, 

and the difference between them is very small [66];  

c. All the thermal and hydraulic properties are not affected by temperatures.  

The governing equation of the heat conduction-advection in porous media is given as 

follows [61]: 
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The solution of the partial differential equation (Eq. (24)) for the temperature difference 

at any later time (t) and any arbitrary point (x, y, z) of a continuous point source at 

coordinate (0, 0, z’) in a semi-infinite porous media is given by the Green’s function [60]: 
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Then, the Cartesian coordinates (x, y, z) are converted to cylindrical coordinates (r, φ, z):   
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where  1 x
cos

r
 −  

=  
 

; and 2 2r x y= +  is the radial distance to the line source.  

As shown in Fig. 5, a constant temperature surface can be set up by the method of images 

[27]. After that, temperature variation at any point is obtained from the spatial integration 

of the point sources and point sinks along the z-axis over the heat source length D < z < D 

+ H; 
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One additional integration is required to estimate the average temperature variation along 

the borehole length. Then, the integrated average temperature variation over the heat 

source length is represented as a triple integral: 
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Figure 5. Schematics of the MFLSD solution. 
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Referring to the work of Claesson and Javed [29],  a solution to the double integration 

part of Eq. (29) is provided as 
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The average temperature variation, Eq. (30), can be integrated over the borehole 

circumference at the borehole radius (where r = rb),  
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Both Eq. (30) and (31) can be non-dimensionalized to reduce the number of independent 

variables. Non-dimensional variables are introduced: 𝛩𝑀𝐹𝐿𝑆 =
2𝜋𝑘𝛥𝑇

𝑞𝑙
, 𝑅𝑏 =

𝑟𝑏

𝐻
, 𝑑 =

𝐷

𝐻
, 

Fourier number 𝐹𝑜 =
𝛼𝑡

𝐻2 and Peclet number 𝑃𝑒 =
𝑈𝐻

𝛼
. Both Eq. (30) and (31) can be 

expressed as 
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Eq. (33) gives the non-dimensional average temperature variation over a borehole wall 

surface due to its own heat load. In a BHE field containing multiple boreholes, the spatial 

superposition technique must be performed to compute the overall mean temperature 

variation of the whole field. To apply the spatial superposition principle, the heat transfer 

rate was normally assumed to be equal for all boreholes [28, 29]. Then, the thermal 

interaction effect of N boreholes on the borehole i becomes [31] 
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where, j i →  is the thermal effect of borehole j on the borehole i in non-dimensional 

form, and  



32 

 

 

( ) ( )

( )

2 21
j i j ij i

i j

j i

j i

x x y yR
H

x x
cos

R


→

→

→

− −= +

−
=

 (35) 

 

Then, the overall mean temperature response over the BHEs field (or g-function) for the 

MFLS solution is computed following 
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(36) 

 

3.2. Implementing the MFLSD and numerical model through a real scenario 

Validating the MFLSD solution requires comparison with established methods or data. 

Due to a lack of long-term physical monitoring data from a GSHP system, a numerical 

verification method is necessary. For the verification of the MFLSD solution, a test case 

is designed based on a real geoexchange system project in Edmonton. As shown in Table 

1, a typical borehole used in a real geoexchange system project in Edmonton was chosen. 

The borehole length, buried depth and radius are 70 m, 2 m, and 0.04595 m, respectively. 

The influence of different buried depths was further examined. Guided by the Eskilson’s 
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original work [17], two other values of buried depth (D = 0 m and 8 m) were selected for 

the study. The borehole spacing (B) selected in the project is 7.6 m. To reduce the 

thermal interference between individual boreholes with a small footprint, ASHRAE 

(American Society of Heating, refrigerating and Air-Conditioning Engineer [15]) 

recommended a borehole spacing from 6 m to 8 m. These two values of borehole spacing 

were also selected for the study. 

The thermal properties were obtained from an in-situ thermal conductivity test from the 

local project [67]. The tested undisturbed ground temperature ( 0T ) is 6 °C, the thermal 

conductivity (k) is 1.59 Wm-1K-1, and the thermal diffusivity of the borehole (α) is 6.944 

× 10-7 m2s-1. The volumetric heat capacity of the bulk porous medium ( c ) is 2.290 x 106 

Jm-3K-1. A transient study was set for a sufficiently long time, from 20 hours (about Fo = 

10-5) to 100 years (about Fo = 0.5), to verify the MFLSD solution. For 100-year 

continuous simulates, the heat injection rate was kept at lq = 56 Wm-1 which is the 

expected peak load on the U-tubes for the project. 

The hydraulic condition was not tested in the project; however, a common assumption is 

made that groundwater is in the x-direction and parallel to the ground surface. Molina-

Giraldo et al. [30] concluded that the influence of groundwater flow becomes non-

negligible for Pe > 1.2. In our case, when D = 0 m, a preliminary analysis (Appendix. A.) 

shows that the influence of groundwater flow on the result is greater than 1% after a 

1000-year continuous operation for Pe > 1.87. Hence, a scenario was defined with a 

uniform velocity at 84 10du −=   ms-1 (or Pe = 7.5) to represent the heat conduction-
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advection condition. In comparison, another scenario was defined at 0du =  ms-1 (or Pe = 

0) for the conduction-dominated condition. 

Table 1. Parameters used in the calculations [67]. 

Parameter Value 

Length of the borehole (H) 70 m 

Borehole radius ( br ) 0.04595 m 

Thermal conductivity ground (k) 1.59 Wm-1K-1 

Thermal diffusivity of the ground (α) 6.944 × 10-7 m2s-1 

Volumetric heat capacity-ground ( c ) 2.290 × 106 Jm-3K-1 

Volumetric heat capacity-water ( w wc ) at 6 °C 4.200 × 106 Jm-3K-1 

 

Finally, a customized MATLAB code was employed, to calculate the mathematical 

solutions for the average borehole wall temperature variation ( T ). For the evaluation of 

a single integral, the MATLAB integral function with a tolerance of 10-12 was used. All 

calculations were performed on an Intel Xeon-E3, 3.10 GHz processor with 64 GB RAM.  

3.3. Numerical model for verification 

Similar to many previous researchers (e.g. [38, 55-57]), a finite element analysis in 

COMSOL Multiphysics was used for this numerical verification Fig. 6 shows a 
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representation of the 3D-FE COMSOL model. A symmetrical boundary condition was 

applied to reduce the domain size by half. Every single borehole was represented by a 

cylinder aligned with the z-axis, and its surrounding ground was built as a water saturated 

porous medium with constant thermal properties. The model becomes more complex in a 

multiple borehole field. As shown in Fig. 7, a simple rectangle configuration of 3 × 2 

boreholes with an equal borehole spacing (B) was selected for the multiple borehole 

study. The same borehole configuration has been used by many other researchers for 

BHEs modelling [24, 26, 39, 46, 68]. The boundary conditions were assigned according 

to the assumptions made for the analytical model. A constant continuous heat flux ( lq ) of 

56 Wm-1 of was applied along the length of the BHE. A uniform groundwater flow was 

assigned throughout the entire domain aligned with the x-axis. Moreover, a uniform 

initial temperature of 6 °C was assigned to the entire domain to represent undisturbed 

ground temperature ( 0T ). The top boundary was at a fixed temperature at the same values 

as the undisturbed ground temperature to represent constant ground surface temperature. 

Borehole geometries and thermal properties are the same as in the real case scenario. 
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Figure 6. 3D-FE COMSOL model used for numerical verification of a single borehole. 
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Figure 7. Schematic of a multiple borehole field of 3 × 2 boreholes with an equal borehole spacing (B). 
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A preliminary analysis was done to ensure that the simulation results are unaffected by 

the extension of the model domain and the size of elements. More detailed information is 

provided in Appendix B. After the preliminary analysis, a model was constructed with a 

horizontal domain of (x = 800 m) × (y = 200 m) and a thickness of (z = 280m). At the 

selected domain size, temperature changes at the external boundaries were less than 0.004 

°C at the end of the simulations. The reliability of the domain size was also verified by 

comparing the average temperature at the borehole wall; the average temperature had a 

relative difference of less than 1% in the last extension. In addition, the mesh was 

generated using free tetrahedral elements. In order to have a more accurate temperature 

variation at the borehole wall, extremely fine (0.018 m) elements were meshed close to 

the borehole, and coarser elements (20 m) were meshed further out. The mesh geometry 

with about two million (2,000,000) elements was selected to ensure the mesh 

independent. When the number of elements of the domain doubled from about one 

million to two million, the maximum difference of the T was about 0.04% in the 

considered time domain.  

To calculate the discrepancy between the MFLSD solution and the 3D-FE COMSOL 

solution, the MAE and RMSD were computed over the given time period from 20 hours 

to 100 years. MAE and RMSD are two of the most well-known and commonly accepted 

estimators that tell how much spread there is for the solutions in the vertical direction 

[69]. In our case, the MAE represents the average magnitude of the differences between 

the   predicted from MFLSD solution and the   observed from the FE COMSOL 

solution: 
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And the RMSD represents the standard deviation of that differences: 
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The acceptable values for MAE and RMSD are decided for each specific case [70]. 

Molina-Giraldo et al. [30] accepted a RMSD of 0.03 °C with respect to T  (equivalent 

to RMSD = 0.02 with respect to  ), and Tye-Gingras and Gosselin [31] had a MAE less 

than 0.01 respect to lk T q (equivalent to MAE = 0.06 with respect to  ). In this study, 

0.02 was set as the threshold limits on the MAE and RMSD with respect to  . 

RMSD was also used to compare the differences between   obtained from other 

analytical solutions (i.e., the FLS solution and the MFLS solution) and   from the FE 

COMSOL solution.  

3.4. Criterion 

In this study, one percent (1%) difference was employed as a criterion to decide whether 

the effects of buried depth are negligible. This criterion is consistent with the work of 

Molina-Giraldo et al. [30] who concluded that the influence of groundwater flow is not 

negligible if the groundwater flow has more than 1% influence on the results. In that 

situation, the borehole wall temperature variation (ΔT) must be calculated using MFLS 

model which considers groundwater flow, as opposed to using the standard FLS models 
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of Eskilson [17] and Zeng et al. [27] which do not take groundwater flow into 

consideration. Similarly, the effects of buried depth are not negligible when the 

discrepancy between the MFLSD solution and the MFLS solution is greater than 1% (i.e. 

1 1MFLSD MFLS/ %  −  ). At that time, the g-function must be computed using the 

MFLSD solution instead of the MFLS solution to consider the effects of buried depth.  
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4. Single borehole 

4.1. Verification of the MFLSD model 

A comparison between the MFLSD solution and numerical solution was conducted. An 

example of the absolute difference between the MFLSD and numerical solutions for Pe = 

0 and D = 2 m was displayed in Fig. 8. It was observed that the absolute difference is 

relatively huge (up to 1.88 °C) in short-term (Fo < 3×105), and then it is stabilised and is 

kept under 0.06 °C in long-term (Fo > 3×105). The larger absolute difference in short-

term is caused by the line source assumption that neglect the geometry within the 

borehole. Therefore, the line source models are only valid in long-term simulations which 

is Fo > 3×105 in this study.   
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Figure 8. The absolute difference between the MFLSD and numerical solutions for Pe = 0 and D = 2 m. 
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As shown in Fig. 9, T was plotted against the Fourier number (Fo) for three buried 

depths (D = 0 m, D = 2 m and D = 8 m) and two Peclet numbers (Pe = 0 and Pe = 7.5). It 

is shown that the MFLSD solution exhibits a good agreement with the numerical solution 

generated with COMSOL Multiphysics over 100-year of continuous operation. As shown 

in Table 2, for the given parameters of this section, the MAE and RMSD yield values of 

about 0.007 and 0.007 respectively, which are lower than the thresholds of the acceptable 

MAE (0.02) and RMSD (0.02). Thus, the MFLSD solution was considered to be verified 

numerically.  
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Figure 9. Borehole wall Temperature variations against Fourier number (Fo) for the given parameters (a) 

Pe = 0, D = 0 m; (b) Pe = 0, D = 2 m; (c) Pe = 0, D = 8 m; (d) Pe = 7.5, D = 0 m; (e) Pe = 7.5, D = 2 m; (f) 

Pe = 7.5, D = 8 m. 
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In addition, a comparison with the MFLS solution of Tye-Gingras and Gosselin [31] and 

the FLS solution of Claesson and Javed [29] was also carried out. Worth noting is that the 

MFLSD solution is identical with the MFLS solution for D = 0 m (Fig. 9a and 9d), and it 

is also identical with the FLS solution for Pe = 0 (Fig. 9a, 9b and 9c). For Pe = 7.5, the 

MFLSD and FLS solutions (Fig. 9d, 9e and 9f) start to differ by about 1% after two-year 

operation, and the dispersion grows as the simulation time increases. Compared with the 

FLS results, the temperature variations from the MFLSD solution is smaller, i.e. about 

8.70%, 9.01%, and 9.82% for D = 0 m, 2 m, and 8 m at 100 years, respectively. These 

reductions can be explained by the effects of groundwater flow, through which 

accumulated heat at the borehole is broadly distributed [71]. For D = 8 m, results from 

the MFLSD solution are greater by about 3.15% and 1.88% for Pe = 0 and Pe = 7.5 at 

100 years (Fig. 9c and 9f), respectively. Those differences indicate that neglecting buried 

depth can underestimate the temperature variation. The underestimation is caused by the 

thermal resistance of the ground layer between the ground surface and BHE. The thermal 

resistance diminishes the changes in temperature [39]. In general, both buried depth and 

groundwater flow influence the temperature variations in long-term. When incorporating 

the effects of buried depth and groundwater flow simultaneously (Fig. 9e and 9f), the 

MFLSD model provides a better prediction of the temperature variation. As shown in 

Table 2, MSRD always yields a smaller value for the MFLSD model.  
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Table 2. The MAE and MRSD between the non-dimensional temperature variations ( ) predicted from 

analytical models and   observed from the FE COMSOL model. 

 

 

Pe = 0 Pe = 7.5 

D = 0 m (a) 2 m (b) 8 m (c) D = 0 m (d) 2 m (e) 8 m (f) 

MAE 0.007 0.007 0.007 0.007 0.007 0.007 

RMSD 

FLS 0.007 0.007 0.007 0.220 0.229 0.248 

MFLS 0.007 0.039 0.083 0.007 0.030 0.056 

MFLSD 0.007 0.007 0.007 0.007 0.008 0.007 

 

4.2. Computational time 

Computational time is another interesting aspect used to compare analytical solutions and 

numerical solutions. When a program is to be executed repeatedly, its computational time 

determines the productivity of the given program [72]. In this study, computational time 

represents the total amount of time required to execute MATLAB scripts or COMSOL 

simulations. In comparison, borehole wall temperature variations were computed using 

FLS solution [29], MFLS solution [31], MFLSD solution and 3D-FE COMSOL solution 

for D = 2 m and Pe = 7.5. Other borehole geometry and thermal properties are the same 

as those in the real case scenario.  

The computational time of various time scale (i.e. hour, month, year and decade) 

simulations for each analytical and numerical solutions is shown in Table 3. Compared 
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with the FLS solution, the MFLSD solution is able to account for groundwater flow 

without any significant drawbacks on computational time. Meanwhile, using the method 

given by Claesson and Javed [29], the MFLSD solution reduces the computational time 

of the MFLS solution by approximately 16% in hourly and monthly simulation. In 

comparison with COMSOL solution, the MFLSD solution reduces the computational 

time by a factor of ten thousand times for monthly and yearly simulation. In addition, the 

COMSOL model failed to finish the hourly simulation due to the limited available disk 

space (5.4 TB). Thus, the MFLSD solution is more computationally efficient than a 3D 

numerical model from the viewpoint of time and space usage.  

Table 3. Comparison of the computational time for the analytical solutions and numerical solutions. 

   Computational time (s) 

Time scale Number of points COMSOL  FLS MFLS MFLSD 

Hour 876000 N/A 382.62 471.80 397.01 

Month 1200 6234 0.58 0.70 0.59 

Year 100 3784 0.10 0.11 0.12 

Decade 10 2992 0.06 0.06 0.07 

 

4.3. Sensitivity study of the non-dimensional buried depth (d) 

The MFLSD solution includes the effect of buried depth in the MFLS model. The 

MFLSD solution can be expressed as four variables in non-dimensional form, as shown 

in Eq. (33):
b bR r H= , d D H= , Fourier number 

2Fo t H=  and Peclet number 
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Pe UH = . To elucidate the role of buried depth, a sensitivity study was conducted 

based on the identified non-dimensional variables. 

4.3.1 Effects of non-dimensional buried depth (d) on the temperature variation at 

various Fo values 

Fig. 10 demonstrates the non-dimensional temperature variation ( )MFLSD Fo obtained 

with the MFLSD solution for Pe = 0 and bR = 0.001. According to the typical length of a 

vertical borehole (50 m to 150 m) and selected values of buried depth (0 m to 8 m), a 

ratio of d D H= varying from 0 to 0.2 was considered for this study. Three other values 

(0.02, 0.05, and 0.1) were chosen within this range for the sensitivity study. In addition, a 

theoretical upper bound solution corresponding to d = ∞ was also tested [73] to set the 

upper limit of the solutions, although d = ∞ is unrealistic for practical applications. For 

every d value, ( )MFLSD Fo rises monotonically as Fo increases and eventually reaches a 

steady state. As shown in Table 4, as the ratio d D H= is enlarged from 0 to 0.2, the 

steady state value increases from 5.91 to 6.20. This increase can be explained by the 

thermal resistance of the ground layer above the BHE [39]. As the BHEs are buried 

further below the ground surface, the thermal resistance of the ground layer above the 

BHEs becomes larger, which reduces the heat flow between the BHEs and ground 

surface. 
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Figure 10. Non-dimensional temperature variations for Pe = 0 and bR = 0.001 considering various non-

dimensional buried depth (d) ranging from 0 to 0.2. 

Also, it is shown in Fig. 10 that the influence of the buried depth becomes more evident 

for temperature variation in the long term. For example, at the beginning (Fo = 0.001), 

the value of MFLSD has virtually no difference; at a steady state, the value of MFLSD rises 

by about 5.00% when the ratio d D H= varies from 0 to 0.2 (Table 4). According to the 

1% criterion, the buried depth becomes negligible in the long term. In addition, the 

calculated value of MFLSD is only for a single borehole in this chapter. For multiple 
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borehole configurations, the value of MFLSD increases when there is a heat source 

interaction [73]. Therefore, it is concluded that the buried depth is a significant parameter 

that cannot be neglected in the generation of g-functions.  

Table 4. Non-dimensional temperature variation for Pe = 0 and bR = 0.001 considering various d ranging 

from 0 to 0.2. 

 
Non-dimensional temperature variation 

Fo d = 0 0.02 0.05 0.1 0.2 ∞ 

0.001 3.81 3.82 3.82 3.82 3.82 3.82 

0.01 4.84 4.88 4.89 4.90 4.90 4.90 

0.1 5.63 5.68 5.73 5.76 5.79 5.81 

1 5.89 5.96 6.02 6.09 6.17 6.32 

10 5.91 5.98 6.04 6.11 6.20 6.51 

 

4.3.2 Effects of non-dimensional buried depth (d) on the temperature variation at 

various b
R values 

The ( )MFLSD bR was obtained with the MFLSD model for Pe = 0 considering various d 

ranging from 0 to 0.2 at the steady state. Boreholes are typically 0.1 m to 0.15 m in 

diameter [15]. According to the typical length of a vertical borehole (50 m to 150 m), a 

ratio of 
b bR r H=  varying from 0.0003 to 0.0015 was considered. As shown in Fig. 11a, 
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the slopes of all the curves are similar. Therefore, the difference of two solutions (

MFLSD MFLS − ) was used to describe the discrepancy between the two solutions. Fig. 

11b indicates that the difference between the two solutions is constant for any bR values. 

The same phenomenon appears for any value of Fo in the considered range. In other 

words, the effects of buried depth are unaffected by the borehole radius. 
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Figure 11. (a) Non-dimensional temperature variations for various non-dimensional buried depths (d) 

ranging from 0 to 0.2 and various non-dimensional borehole radii ( bR ) ranging from 0.0003 to 0.0015 at a 

steady state (Fo = 10) and at Pe = 0. (b) The difference between the MFLS and MFLSD solutions for 

various d values. 

4.3.3 Effects of non-dimensional buried depth (d) on the temperature variation at 

various Pe values 

To evaluate the influences of both groundwater flow and buried depth, another 

comparison between the MFLSD solution ( MFLSD ) and the MFLS solution of Tye-

Gingras and Gosselin ( MFLS ) was carried out. The ratio of MFLSD MFLS   was used to 

describe the discrepancy between the two solutions. At the steady state, the percentage 

difference between two solutions for different buried depths and different Peclet numbers 
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0.1 < Pe < 1000 was plotted. Fig. 12 demonstrates that the increase of the groundwater 

flow velocity reduces the effect of buried depth. For example, for d = 0.2, the percentage 

of difference between the two solutions is about 5% for Pe = 0.1 and it falls to about 

0.07% for Pe = 1000. Moreover, for Pe > 100, the curves at different buried depths are in 

close agreement with each other, which means the effect of groundwater advection 

eliminates the influence of buried depth. For Pe > 22, the discrepancy between the MFLS 

solution and the MFLSD solution for d = ∞ is less than 1%. Since the MFLSD solution 

for d = ∞ laid out the upper bound limit of the results [73], the percentage of difference 

between the two solutions for any buried depth are greater than 1% for Pe < 22. 

According to the one percent criterion, the g-function must be calculated by the MFLSD 

solution rather than by the MFLS solution for Pe < 22. 
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Figure 12. Percentage difference between the MFLS and MFLSD solutions for various non-dimensional 

buried depths (d) and various Peclet numbers (Pe). 
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4.4. Influence of buried depth at fixed borehole lengths  

Although the aforementioned non-dimensional variables have obvious advantages, 

parameters with physical meanings including buried depth, borehole length and operation 

time are of great concern in engineering design. The MFLSD solution was simulated for 

common borehole lengths ranging from 50 m to 150 m and for Pe = 0. For each fixed 

borehole length, buried depth varied from 0 m to 8 m. Other borehole geometries and 

thermal properties were the same as in the real geoexchange system project. The 

simulation was run for 30 years which is the expected lifetime of GSHP systems [74]. 

The temperature variations were calculated using Eq. (31), and then the values were 

recast in non-dimensional forms.  

By analyzing the MFLSD  against the time in years for Pe = 0 (as shown in Fig. 13), it can 

be demonstrated that the effect of buried depth increases as the borehole length decreases. 

For example, compared to the standard MFLS model (D = 0 m), the MFLSD  rises by 

1.12% for a 150 m borehole that starts from 8 m below the surface and it rises by 3.55% 

if the borehole is only 50 m in length (see Table 5). The other Peclet number scenario (Pe 

= 7.5) was also calculated. Although the influence of groundwater flow reduces the 

effects of buried depth, MFLSD  still rises by 2.62% for a 50 m borehole for D = 8 m. 

According to the one percent criterion, the buried depth becomes an important parameter 

for the design of short BHEs. In contrast, Eskilson’s original work [17] concluded that 

the exact value of buried depth is not important, since only small temperature variations 

(i.e., 0.1 °C) were found among several numerical simulations for buried depth of 2 m to 

8 m with a fixed active borehole length H. Eskilson’s [17] conclusion is adequate for 
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longer boreholes. As shown in Table 5, for a 150 m borehole, temperature variation 

increases by 0.58% when the buried depth varies from 2 m to 8 m. However, the 

conclusion is inadequate for a shallow borehole. For a 50 m borehole, the percentage 

difference is 1.83% between the temperature variations with D = 2 m and D = 8 m. Since 

the percentage difference is greater than 1%, these two cases need to be treated 

differently.  

To summarize, in practical application, buried depth is a significant parameter in the 

design of short BHEs; the exact value of buried depth cannot be neglected. 
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Figure 13. Non-dimensional temperature variations over time for Pe = 0 (a) H = 50 m, (b) H = 70 m, (c) H 

= 100 m, (d) H = 150 m. 
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Table 5. Non-dimensional temperature variations for different buried depths and groundwater flow 

scenarios at 30 years. 

 
Non-dimensional temperature variations % Difference ( 1MFLSD MFLS  − ) 

Pe = 0 H = 50 m 70 m 100 m 150 m 50 m 70 m 100 m 150 m 

MFLS  

(D = 0 m) 

5.88 6.11 6.30 6.44 Ref 

D = 1 m 5.95 6.16 6.33 6.46 1.08% 0.76% 0.52% 0.34% 

2 m 5.99 6.19 6.35 6.47 1.72% 1.21% 0.83% 0.54% 

4 m 6.04 6.22 6.37 6.49 2.57% 1.82% 1.24% 0.81% 

8 m 6.09 6.27 6.40 6.51 3.55% 2.51% 1.72% 1.12% 

Pe = 7.5 H = 50 m 70 m 100 m 150 m 50 m 70 m 100 m 150 m 

MFLS  

(D = 0 m) 

5.57 5.72 5.83 5.92 Ref 

D = 1 m 5.62 5.75 5.86 5.94 0.95% 0.66% 0.46% 0.30% 

2 m 5.65 5.77 5.87 5.94 1.44% 1.01% 0.70% 0.46% 

4 m 5.68 5.80 5.89 5.96 2.04% 1.43% 0.99% 0.65% 

8 m 5.72 5.82 5.90 5.97 2.62% 1.84% 1.27% 0.83% 
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5. Multiple boreholes 

In practical applications, multiple BHEs are common in large-scale commercial buildings 

that have high energy demands. The aforementioned MFLSD solution for a single 

borehole has provided a foundation for thermal analysis of a multiple borehole field. The 

MFLSD solution does not only determine the average temperature variation at the 

borehole wall, but also calculate the average temperature variation over the length of the 

borehole at any radial distance in any direction (Eq. (30)). In other words, the thermal 

interaction between two boreholes can be calculated using MFLSD solution for any 

distance (in any direction) separating the two boreholes in the multiple borehole field. For 

a multiple borehole field of 3 × 2 boreholes (described in Section 3.3), the distances are 

shown in Fig. 14. Then, the temperature variation of a specific borehole was calculated 

by linearly superposing all the temperature changes produced by individual BHE in the 

multiple BHE field. Using borehole 1 as an example, the non-dimensional temperature 

variation on the borehole 1 became 
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 (39) 

 

Finally, the g-function was obtained by averaging the non-dimentional temperature 

variation of all the boreholes in the multiple borehole field.  
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Figure 14. Distances in a multiple borehole field of 3 × 2 boreholes. 

5.1. Numerical verification  

Similar to the MFLSD solution for a single borehole, the g-functions for multiple 

borehole field is also verified numerically with a 3D-FE COMSOL model solving the 

same heat transfer problems. The COMSOL model of a single borehole in previous study 

is expanded to a multiple borehole field of 3 × 2 boreholes. 

A preliminary analysis was done to ensure the simulation results are unaffected by the 

extension of the model domain and the size of elements. The procedure is similar to the 

one for single borehole. The preliminary analysis showed that the selected domain size 

for a single borehole is also valid for the multiple borehole field of 3 × 2 boreholes, since 
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the temperature changes at the external boundaries were less than 0.003 °C at the end of 

the simulations. The reliability of the domain size was also verified by comparing 

average temperature at the borehole wall. The mesh geometry with about eleven million 

(11,000,000) elements was selected to ensure the mesh independent.  

The comparison between the analytical and numerical solution was conducted. As shown 

in Fig. 15, T in a borehole filed with 3 × 2 boreholes was plotted against Fourier 

number (Fo) for three borehole spacings (B = 6 m, B = 7.6 m and B = 8 m) and two 

Peclet numbers (Pe = 0 and Pe = 7.5). Moreover, ( )T Fo  with three different borehole 

configurations (1 × 2, 3 × 1 and 3 × 2) and two different buried depths (D = 2 m and D = 

8 m) were displayed in Fig. 16. It is shown that the temperature variation obtained from 

g-function (using Eq. (1)) exhibits a good agreement with the numerical solution 

generated with COMSOL Multiphysics over 100-year (about Fo = 0.5) continuous 

operation. It can be seen from Table 6, for the given results of this section, the maximum 

values of MAE and RMSD are approximately 0.012 and 0.015 respectively, which are 

lower than the thresholds of the acceptable MAE (0.02) and RMSD (0.02). Therefore, the 

analytical g-functions for multiple boreholes were considered to be verified numerically.  
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Table 6. MAE and MRSD between the   predicted from g-functions and   observed from FE COMSOL 

model. 

 RMSD MAE 

Pe = 0 

D = 8 m  

3 × 2 boreholes 

B = 6 m 0.015 0.012 

7.6 m 0.013 0.010 

8 m 0.014 0.011 

Pe = 7.5 

D = 8 m 

3 × 2 boreholes 

B = 6 m 0.008 0.007 

7.6 m 0.007 0.006 

8 m 0.007 0.006 

Pe = 7.5 

B = 7.6 m 

3 × 2 boreholes 

D = 2 m 0.007 0.006 

8 m 0.007 0.006 

Pe = 7.5 

D = 2 m 

B = 7.6 m 

3 × 2 boreholes 0.008 0.007 

3 × 1 boreholes 0.007 0.006 

1 × 2 boreholes 0.007 0.006 
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Figure 15. Borehole wall temperature variations in a borehole field with 3 × 2 boreholes against Fourier 

number (Fo) for the given parameters (a) Pe = 0 D = 8 m (b) Pe = 7.5 D = 8 m. 
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Figure 16. Borehole wall temperature variation against Fourier number (Fo) with three different borehole 

configurations (1 × 2, 3 × 1 and 3 × 2) and two different buried depths (D = 2 m and D = 8 m) for Pe = 7.5. 
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Computational time was also compared between the analytical solution and the numerical 

solution. The comparison indicated that using numerical model to determine temperature 

variation at the borehole wall is a time-consuming and computationally intensive task. 

For example, the COMSOL results shown in Fig. 15 and Fig. 16 were obtained from 

numerical simulations that calculated the temperature variation at 96 points in time. For a 

scenario with Pe = 7.5, D = 2 m and B = 7.6 m, the numerical simulation took 27,669 s 

(i.e., 7 hours 41 minutes 9 seconds) in computing. The other numerical simulations had a 

similar computational time at about 8 hours. On the contrary to the numerical simulation, 

the analytical simulation costed 0.94 s in the calculation of the 96 points in time, and it 

only took 3,813 s (i.e., 1 hours 03 minutes 33 seconds) in an hourly simulation which 

contains 876,000 points in time. Therefore, analytical g-functions are favored over 

numerical models for sizing, optimizing and simulating the BHE system due to their 

superior computational time. 

5.2. Effects of thermal interaction  

Analytical g-functions obtained from MFLSD model includes the effect of thermal 

interactions. To elucidate the role of thermal interaction in multiple borehole field, a 

sensitivity study was conducted based on the identified non-dimension variables. A 

simple rectangle configuration of 3 × 2 boreholes with an equal borehole spacing (B) was 

selected for the study. 
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5.2.1 Effects of thermal interaction on the temperature variation at various Fo 

values  

Fig. 17 demonstrates the non-dimensional temperature variation ( )3 2 Fo  obtained with 

the analytical g-functions for Pe = 0, bR = 0.001, d = 0.02. Based on the ASHRAE’s 

Handbook, the values of borehole spacing were chosen varying from 5 m to 8 m in this 

section. According to the typical length of a vertical borehole (50 m to 150 m), the ratio 

b B H= varying from 0.03 to 0.2 was considered. Two other values (0.06 and 0.1) were 

chosen within this range for the sensitivity study. In addition, a theoretical lower bound 

solution corresponding to b = ∞ was also tested to set the lower limit of the solutions, 

which is identical with the MFLSD solution for a single borehole. For every d value, 

( )3 2 Fo  rises monotonically as Fo increases and eventually reaches a steady state. As 

shown in Table 7, as the ratio b B H= reduces from 0.2 to 0.03, the steady state value 

increases from 9.62 to 17.64. This is because that the thermal interaction between distant 

boreholes becomes weaker [75]. For the same reason, the influence of the thermal 

interactions appears early with a shorter borehole spacing. For example, all the ( )3 2 Fo   

with different borehole spacing overlap at the beginning. Then, the ( )3 2 Fo   for b = 0.03 

is the first that increases dramatically than the others at Fo > 10-4. In contrary, the 

( )3 2 Fo   for b = 0.2 has a similar sharp increase until Fo > 4.5 × 10-3. In general, the 

effect of the thermal interactions appears faster and is stronger when the B H  ration is 

smaller. 
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Table 7. Non-dimensional temperature variation for Pe = 0, bR = 0.001 d = 0.02 considering various d 

ranging from 0 to 0.2. 

 
Non-dimensional temperature variation 

Fo b = 0.03 0.06 0.1 0.2 ∞ 

0.00003 
2.10 2.10 2.10 2.10 2.10 

0.0001 
2.78 2.73 2.73 2.73 2.73 

0.001 5.76 4.22 3.88 3.85 3.85 

0.01 11.21 8.23 6.48 5.17 4.89 

10 17.64 14.43 12.23 9.62 5.98 
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Figure 17. Non-dimensional temperature variations for Pe = 0, bR = 0.001 and d = 0.02 considering various 

non-dimensional borehole spacings (b) ranging from 0 to 0.2. 

5.2.2 Effects of buried depth (d) in multiple borehole field  

To evaluate the influence of buried depth in multiple borehole field, a comparison 

between the MFLSD solution ( MFLSD ) for a single borehole and the g-function for 

multiple borehole was carried out. The effect of buried depth for a single borehole was 

already evaluated in Section 4.3. In this section, the effect of buried depth was evaluated 

for multiple boreholes. 
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Fig. 18 demonstrates the non-dimensional temperature variation ( )3 2 Fo  obtained with 

b = 0.1. The other input parameters were set to be same as those used for the single 

borehole (Section 4.3.1). As shown in Fig. 18, ( )3 2 Fo  rises as Fo increases and reaches 

a steady state eventually. As the ratio d D H= is enlarged from 0 to 0.2, the steady state 

limit increases by 12.22% (from 11.97 to 13.43). The percentage difference is much lager 

then the one (5.00%) obtained from MFLSD  for a single borehole (Section 4.3.1). It is an 

expected behaviour since the thermal interaction between the boreholes were linearly 

added up. Therefore, it is concluded that the buried depth is a significant parameter that 

cannot be neglected in the design of BHEs system. 
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Figure 18. Non-dimensional temperature variations for Pe = 0, bR  = 0.001 and b = 0.1 considering various 

non-dimensional buried depths (d) ranging from 0 to 0.2. 
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5.3. Influence of buried depth at fixed borehole lengths  

As aforementioned in Section 4.4, parameters with physical meanings are of great 

concern in the engineering design, including the borehole length, buried depth and 

operation time. The non-dimensional borehole wall temperature variation was calculated 

for a common borehole length ranging from 50 m to 150 m, Pe = 0 and B = 7.6 m with 

various buried depths from 0 m to 8 m. Other borehole geometries and thermal properties 

were the same as those in the real geoexchange system project. The simulation was run 

for 30 years which is the expected lifetime of GSHP systems [74].  

The 3 2   against the time in years has a similar pattern with MFLSD . As shown in Fig. 

19, it is demonstrated that the impact of buried depth grows as the borehole length drops. 

For example, with regard to the standard MFLS model (D = 0 m), the MFLSD  rises by 

2.39% for a 150 m borehole buried 8 m below the surface and it rises by 8.49% if the 

borehole is only 50 m in length (see Table 8). Compering with the result obtained in 

Section 4.4, the rising in   is much larger for multiple borehole field than for a single 

borehole. For example, when H = 70 m, the temperature variation for a single borehole 

increases by 0.83% when the buried depth varies from 0 m to 2 m (see Table 5); in the 

multiple borehole field, the temperature variation increases by 1.48% when the buried 

depth varies from 0 m to 2 m. According to the one percent criterion, buried depth 

becomes an important parameter for the design of BHEs in practical application.  
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Figure 19. Temperature variations over time for Pe = 0 and B = 7.6 m (a) H = 50 m; (b) H = 70 m; (c) H = 

100 m; (d) H = 150 m.  
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Table 8. Non-dimensional temperature variation for different buried depths and groundwater flow scenarios 

at 30 years. 

 
Non-dimensional temperature variations % Difference  

 
H = 50 m 70 m 100 m 150 m 50 m 70 m 100 m 150 m 

D = 0 m 9.81 10.79 11.59 12.22 Ref 

2 m 10.13 11.03 11.76 12.33 3.32% 2.25% 1.48% 0.93% 

8 m 10.64 11.41 12.02 12.51 8.47% 5.75% 3.78% 2.39% 
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6. Conclusion 

The following conclusions were drawn from the study: 

(1) A new single integral solution of the moving finite line source (MFLS) model was 

generated to consider the effect of buried depth. The new solution (MFLSD) gives 

the average temperature variation over the borehole surface at any borehole 

radius. The MFLSD solution is verified numerically with a three-dimensional 

(3D) finite-element (FE) COMSOL model. Compared with the 3D-FE COMSOL 

model, the MFLSD solution is more computationally efficient from the viewpoint 

of time and space usage.  

(2) In general, both groundwater flow and buried depth have certain effects on the 

temperature variation of a borehole heat exchanger (BHE) in a long-time 

simulation. The effect of buried depth diminishes heat transfer between the 

ground surface and BHE; and the effect of groundwater flow balances the 

accumulated heat in the ground gradually. The MFLSD solution, incorporating 

the effects of buried depth and groundwater flow at the same time, provides a 

more accurate estimation of the g-functions, leading to a more thermal-effective 

design.  

(3) The effect of buried depth heavily depends on the groundwater velocity. The 

increase of the groundwater flow velocity reduces the effect of buried depth. In a 

very high groundwater flow velocity scenario (i.e., Pe > 100), the effect of 

groundwater advection eliminates the influence of buried depth. For Pe < 22, the 

MFLSD solution must be used over the standard MFLS model to consider the 
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combined effects of buried depth and groundwater flow when calculating 

temperature variation. 

(4) The effect of buried depth becomes larger with regard to long-term temperature 

variation as the borehole length reduces. For the given parameters in this study, 

for a long borehole (H = 150 m), the average non-dimensional temperature rises 

by about 1.12% as the buried depth increase from 0 m to 8 m; for a short borehole 

(H = 50 m), the non-dimensional temperature rises by about 3.55% with the same 

change in buried depth. In practical application, buried depth is a significant 

parameter in the design of short BHEs; the exact value of buried depth cannot be 

neglected. 

(5) The MFLSD solution was combined with a spatial superposition procedure to 

compute the g-functions for the borehole field. The g-functions are also verified 

numerically with a three-dimensional (3D) finite-element (FE) COMSOL model. 

(6) The effect of buried depth is more significant in a borehole field containing 

multiple boreholes due to the accumulation effects of the buried borehole. For the 

given parameters in this study, for a single borehole with H = 100 m, the average 

non-dimensional temperature rises by about 0.83% as the buried depth increase 

from 0 m to 2 m; in a multiple borehole field with 3 × 2 boreholes, the non-

dimensional temperature rises by about 1.48% with the same change in buried 

depth. Therefore, the buried depth becomes an important parameter in the design 

of BHEs.  
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7. Limitations and future work 

(1) The development of the MFLSD solution is based on the homogeneous ground 

assumption: the ground is assumed to be uniform along the vertical depth of a 

borehole. In practical applications, the boreholes are normally drilled through 

different layers, and these layers have different thermal properties and the hydro-

geological conditions. Particularly, water table (the upper surface of the zone of 

the saturated ground) is generally found at a certain depth underneath the ground 

surface, and the water table fluctuates seasonally and from year to year [76]. 

Therefore, the homogeneous assumption can lead to unreliable results [41]. To 

avoid the associated limitation of homogeneous ground assumption, multiple 

ground layers will be taken account into the MFLSD solution in the future study. 

(2) The development of line source model assumes that a constant heat flux is applied 

along the borehole length, i.e. constant heat flux boundary condition, and the 

temperature on the borehole wall changes accordingly. On the other hand, another 

boundary condition, uniform temperature boundary condition, is also commonly 

used for generating g-functions [77-79]. The uniform temperature boundary 

condition assumes that a uniform temperature is applied along the borehole length 

and all boreholes have the same temperature at the borehole wall [78]. Note that 

Eskilson’s g-functions were computed using the uniform temperature boundary 

condition [17]. An dispersion between the Eskilson’s g-functions and the 

analytical g-functions, which obtained from the FLS model with the constant heat 

flux boundary condition, was observed [28, 77, 78, 80]. The dispersion is greater 

for larger borehole fields [78]. For example, Monzo et al. [77] found that the 



73 

 

difference between the results with the two different boundary conditions are 

virtually insignificant for a small multiple borehole field of 2 × 3 boreholes, and 

Cimmino and Bernier [78] found that the differences become 52% at the steady 

state for a large multiple borehole field of 10 × 10 boreholes. However, there is no 

work has been done to determine which boundary condition has a better 

agreement with the practical condition. Therefore, future study will be devoted to 

evaluating the differences between the practical condition and the two assumed 

boundary conditions. 
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Appendices  

A. Comparison study of analytical models 

A comprehensive review of the analytical line source models for a single borehole was 

presented in Ch.2. To illustrate the difference between these analytical models, a 

comparison study was carried out. Using the same input parameters (Section 3.2), the 

temperature variations at the borehole wall were calculated by the mathematical solutions 

of these four analytical models: the ILS solution (Eq. (5)) by Carslaw and Jaeger [54], the 

FLS solution (Eq. (12)) by Bandos et al. [32], the MILS solution (Eq. (16)) by Diao et al. 

[46], and MFLS solution (Eq. (21)) by Rivera et al. [62]. then the values were recast in 

non-dimensional form. 

Before the comparison study, the velocity of the groundwater flow needs to be presumed 

since the hydraulic condition was not tested in the project. Molina-Giraldo et al. [30] 

found that the difference between MILS model and MFLS model is greater than 1% for 

Pe < 10, and the difference between FLS model and MFLS model is greater than 1% for 

Pe > 1.2. Based on these findings, Molina-Giraldo et al. concluded that the use of MFLS 

model is necessary for a Pe ranging between 1.2 to 10 [20, 30]. The same one percent 

criterion was adapted for this study. To define a suitable Pe value for illustrating the 

difference between these analytical models, the ratio of MFLS MILS    and the ratio of 

MFLS FLS   the were calculated for 1,000-year operation. Fig. A1. shows that the MFLS 

solution differs from the MILS solution by more than 1% for Pe < 80.76 and differs from 

the FLS solution by more than 1% for Pe > 1.87. It is indicated that the MFLS model is 

distinguishable from the other models for a Pe ranging between 1.87 to 80.76 in our case. 
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Therefore, a uniform Darcy velocity at 84 10du −=   ms-1 corresponding to Pe = 7.5 was 

used in the study. 
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Figure A1. Ratio of MFLS MILS 
  and the ratio of MFLS FLS 

. 

Once the velocity of the groundwater flow is defined, the temperature variations at the 

borehole wall can be calculated by the mathematical solutions of analytical models. As 

shown in Fig. A2 and Table A1, all temperature responses increase with time, and they 

are in close agreement with each other in the first month. In particularly, in the first 50 

hours (a typical duration of TRT test), the results of the ILS solution and the other 

solutions (FLS, MILS and MFLS) differ by about 0.32%. This small difference indicates 

that, in short-term, the other models cannot provide much more information regarding the 
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influence of axial heat conduction and groundwater flow. After the first month, the 

temperature variations from the ILS and MFLS solutions started to be more different (i.e., 

99MFLS ILS %   ), and the dispersion increases as the simulation time increases. The 

dispersion between the ILS solution and the FLS solution becomes noticeable (i.e., 

99FLS ILS %   ) after 48 days. This dispersion can be explained by the effect of axial 

heat conduction, which accelerates the heat exchange at the bottom of the borehole and 

transfers the imbalance heat of extraction and injection on a year-round basis to the 

ambient air through the ground surface [27, 30]. As a result of the axial effect, the ILS 

solution yields the non-dimensional temperature of 8.48 without convergence and the 

FLS solution reaches steady-state value of 6.33 after one thousand years. The dispersion 

between the ILS and MILS solutions and it between the FLS and MFLS solutions 

become noticeable (i.e., 99MILS ILS %   , 99MFLS FLS %   ) after 1.73 years and 1.90 

years respectively. These dispersions can be explained by the synergistic effect of 

groundwater flow, by which the accumulated heat is balanced [46]. This effect becomes 

more evident if the Darcy velocity increases [30]. After one thousand years, and the 

MILS and MFLS model obtain the non-dimensional temperature variations to steady-

state values of 6.12 and 5.73 respectively. Note that thirty-year is the expected lifetime of 

GSHP systems [74]. After thirty years continuous operation, the ratio of MFLS FLS   and 

the ratio of MFLS MILS   both are about 94%. The 6% difference indicates that neglecting 

groundwater flow or axial heat conduction can cause an overestimation of ground 

temperature variation. This ultimately results in an underestimation of geothermal 
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potential, leading to an over-conservative borehole design and increasing the unnecessary 

cost [81].  

Table A1. Non-dimensional integrated mean borehole wall temperature variation with various specified 

time period obtained from four various analytical solutions. 

Durations 1 hour 1 day 1 month 1 year 30 years 1000 years 

ILS 0.59 2.08 3.78 5.03 6.73 8.48 

FLS 0.59 2.08 3.75 4.92 6.11 6.33 

MILS 0.59 2.08 3.78 5.00 6.09 6.12 

MFLS 0.59 2.08 3.74 4.89 5.72 5.73 



88 

 

 

0

2

4

6

8

1000 years

30 years

1 year

1 m
onth

1 day

N
o

n
-d

im
en

si
o

n
al

 T
em

p
er

at
u

re
 V

ar
ia

ti
o

n

Time

 ILS

 FLS

 MILS

 MFLS

1 hour

 

Figure A2. Comparison of various analytical models for non-dimensional temperature variations (A log-10 

scale of time is used in the x-axis). 
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B. Model domain and mesh selection 

A preliminary analysis has been done to ensure the simulation results are independent 

from the model domain and the mesh geometry. Referring to the work of Molina-Giraldo 

et al. [30], the domain dimension was enlarged starting from a horizontal domain size of 

(x = 200 m) × (y = 50 m) with a thickness of (z = 130 m), till the maximum temperature 

changes at the external boundaries are less than 0.005 °C at the end of the simulations. In 

principle, the temperature at far boundary supposed to be kept in undisturbed condition; 

the selected 0.005 °C tolerance assures a reasonable domain size and preserve the 

calculation accuracy [20].  

The maximum temperature changes at the external boundaries are tabulated in Table B1 

for each domain size. The domain extensions were firstly determined in a purely heat 

conduction scenario (Pe = 0) with a buried depth of 8 m. After that, a uniform 

groundwater flow was assigned throughout the entire domain aligned with x-axis. Due to 

the influence of groundwater flow, the model domain was further extended in positive x-

direction. Finally, the 3D-FE model was constructed with a domain size of (x = 800 m) × 

(y = 200 m) × (z = 320 m). The same domain size is also valid for a multiple borehole 

field of3 × 2 boreholes. Worth noticing, the reliability of the domain size was also 

verified by comparing average temperature at borehole wall, which has relative 

differences less than 1% in the last extension. 
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Table B1. The maximum temperature changes at the external boundaries. 

 Single borehole 

Multiple 

boreholes 

Negative x-direction and y-direction 50 m 100 m 150 m 200 m 200 m 

Maximum temperature (°C) 3.0468 0.3736 0.0436 0.0036 0.0028 

z-direction 130 m 180 m 230 m 280 m 280 m 

Maximum temperature (°C) 1.1026 0.1487 0.0149 0.0010 0.0009 

Positive x-direction 200 m 400 m 600 m 
 

600 m 

Maximum temperature (°C) 0.5243 0.0096 0.0002 
 

0.0003 

 

About the mesh, extremely fine elements were chosen near the borehole, and coarser 

elements were chosen at further locations to reduce mesh numbers (see Fig. B1). Tye-

Gingras and Gosselin [31] suggested that a mesh-independent solution can be obtained 

when doubling the number of meshes yielded a relevant difference of less than 1% on the 

results for every time-step. Therefore, a comparison of average borehole wall temperature 

was carried out with an increasing number of elements on the borehole wall boundary. In 

our case, when the number of elements of the domain doubled from about one million to 

two million, the maximum difference on the average borehole wall temperature is about 

0.04% (between 35.52 °C and 35.65 °C) in the considered time domain. This difference 

is acceptable since it is far less than 1%. Finally, the mesh geometry with about two 
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million (2,000,000) elements was selected which assure a reasonable number of elements 

and preserve the calculation accuracy. 

 

Figure B1. Mesh used in numerical simulations. 
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C. Isotherms obtained from the MFLSD model 

The MFLSD solution provides the average temperature variation over the length of the 

borehole at any radial distance in any direction (Eq. (30)). In order to have a better 

understanding of the effects of buried depth, isotherms for a single borehole with various 

buried depth was plotted. The isotherms delineate the average temperature variation over 

the borehole length (H = 70 m) for Pe = 7.5 after 30-year operation. As shown in Fig. C1, 

the buried depth can considerably change the temperature regime around the borehole. 

The temperature plumes become longer as the buried depth increases, which means a 

longer buried depth yield a smaller temperature variation at any distance from the line 

source. This is because the heat exchange between the ground surface and BHEs is 

diminished by the thermal resistance of the ground layer above the boreholes. Therefore, 

neglecting buried depth could result in an over-prediction of the BHE performance in the 

design [45]. 
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Figure C1. Isotherms of the average temperature variation over the borehole length (H = 70 m) for Pe = 7.5 

and various buried depths after 30-year operation. 


