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Abstract

With the popularity of smart mobile devices, the need to control mobile devices

using voice is increasing. Also, there is greater expectation for the accuracy of key-

word spotting. Many existing researches have applied neural networks to keyword

spotting, and have great performances. However, at the same time, for keyword

spotting on mobile devices, there is still a need to further reduce the parameter size

and improve the recognition accuracy simultaneously.

In this thesis, I apply the neural network architecture search approach to key-

word spotting, and proposed a Differentiable Architecture Search Approach for

keyword spotting. This approach can design multiple neural network models for

keyword spotting through search. In this thesis, I proposed eight specific neural

network models designed by this approach. All models beat the state-of-the-art

model based on the evaluation on Google Commands Dataset, with similar or much

smaller parameter sizes.
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Chapter 1

Introduction

1.1 Keyword Spotting

With the rapid development of smartphones and smart tablets, voice-recognition-

related technology are becoming progressively popular. Several famous technology

companies have launched related products, such as Apple’s Siri, Microsoft’s Cor-

tana and Amazon’s Alexa. Keyword spotting is a typical problem in speech process-

ing, it deals with the identification of keywords in utterances. Basically, keyword

spotting process is performed in the cloud after audio recordings from users’ mobile

devices are transferred to the cloud [1] [2]. The advantage of this is very obvious.

In the cloud, one can use very large scales neural network frameworks to improve

keyword spotting accuracy. However, in such a frequent data transmission process,

privacy issues will be tricky, and some important information of users is at risk of

leakage [2]. Therefore, many researchers have studied on small footprint keyword

spotting models in an effort to obtain small size models that can be deployed on

low power and performance-limited devices [2]. Small footprint keyword spotting

usually only focuses on recognition of common commands, such as ‘yes’, ‘no’, ‘on’

and ‘off’, and enables these keywords to be quickly identified directly on the device

and controls the device accordingly.

With the continuous innovation of computer science technology, keyword spot-

ting models have been continuously updated in the past twenty years. Two decades
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ago, the commonly used technique for keyword spotting is the Keyword Filler Hid-

den Markov Model (HMM) [5][6]. Generally, this approach uses every keyword

to train an HMM model and uses the non-keyword segments to train a filter HMM

model [5][7]. In the model operation, because the most likely state sequence needs

to be found, the Viterbi algorithm needs to be used for decoding, which is very

computationally expensive [8][9]. In addition, some work built keyword spotting

models based on large margin formulations, which surpass HMM models in terms

of accuracy, but have high detection latency [10].

With the increasing popularity of neural networks, lots of solutions for key-

word spotting based on neural networks appeared in recent years. Guoguo Chen

applied deep neural networks (DNN) to achieve a great improvement over the pre-

vious HMM solutions [7]. Tara N. Sainath and Carolina Parada first applied con-

volutional neural networks (CNN) to the problem of keyword spotting, and pro-

posed that keyword spotting should aim at fewer parameters (smaller footprint) [1].

Raphael Tang and Jimmy Lin improved on the previous convolutional neural net-

work framework and applied Deep residual networks (ResNets) to the model, which

outperformed Tara’s model. Based on tests on the classic public dataset Google

Commands Dataset, Raphael and Jimmy’s model (named as Honk by themselves)

has the state-of-the-art performance so far [2].

So far, the state-of-the-art in the field of keyword spotting is the Honk model

which is based on convolutional neural networks. However, due to the accumu-

lation of a large number of Resnet Blocks in the Honk model, the model size is

still large. In addition, the positions of the various types of layers inside the model

are completely based on manual design, and the optimal performance under this

model size has not been achieved. Thus, this paper will explore the best convolu-

tional neural network architecture to solve the problem of keyword spotting. I will

not be limited to the structure Raphael and Jimmy proposed, but will redesign the

neural network structure from the lowest level, considering where different types

of layers should be placed. The design of the convolutional neural network will be

based on Neural Architecture Search (NAS) method, and related information will
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be explained in the next section.

1.2 Neural Architecture Search

In the previous section, it was introduced that the state-of-the-art of keyword spot-

ting is based on the convolutional neural network architecture. In order to explore

the method of optimizing this CNN architecture, it is necessary to deeply study the

area where CNN is most applied, image recognition. The most classic approach

for image recognition is to design various convolutional neural network architec-

tures. In 2017, Barret Zoph first proposed that a neural network architecture could

be searched, rather than manually designed [11]. His Neural Architecture Search

(NAS) approach outperformed the state-of-the-art on CIFAR-10 dataset.

Barret’s NAS method is based on an RNN controller. The controller first sam-

ples a child architecture and then trains it to convergence to see its performance.

Then the controller explores other better architectures based on the performance.

This process needs to be repeated for hundreds of iterations and has an extremely

large running time complexity and space complexity. Usually, the running time of

NAS exceeds 30,000 GPU hours for CIFAR-10 dataset, which means that for many

ordinary research institutions or laboratories, they do not have enough computing

resources to reproduce NAS methods.

To reduce GPU Hours, several approaches for speeding up NAS have been pro-

posed. Hieu Pham proposed the Efficient Neural Architecture Search (ENAS) ap-

proach based on NAS [12]. The main contribution of ENAS is to increase NAS

performance by requiring all child models to share weights from scratch to con-

vergence in order to escape training of each child model. By sharing parameters,

ENAS reduced GPU hours by 1000x compared to NAS. Hanxiao Liu proposed

hierarchical representations for efficient architecture search by imposing a partic-

ular structure of the search space [13]. Han Cai proposed a new NAS framework,

in which the meta-controller explores the space of the architecture by means of

network transformation operations [14]. The above mentioned Neural architecture
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search methods are optimized in runtime, but they still treat the architecture search

as a black-box optimization problem within a discrete search space, which results

in a great number of necessary architecture evaluations [4].

According to this, Haoxiao Liu and Karen Simonyan approached the neural ar-

chitecture search problem from a different angle. Instead of searching for a discrete

set of candidate architectures, they make the search space continuous so that the

architecture can be optimized by gradient descent according to its validation set

performance [4]. Since it is a gradient-based optimization, they called their method

Differentiable ARchiTecture Search (DARTS). Comparing to inefficient black-box

search, DARTS can achieve competitive performance with the state-of-the-art on

CIFAR-10 and ImageNet dataset, with much less computation time (30 to 90 GPU

hours) [4].The convolutional cell designed by DARTS can achieve 2.76% test error

on CIFAR-10 dataset using 3.3M parameters, which is comparable to the state-of-

the-art result by regularized evolution, and can achieve 26.7% top-1 error on Ima-

geNet dataset which is competitive with the state-of-the-art result by reinforcement

learning [4].

Considering the existing neural architecture search approaches and the specific

requirements of the keyword spotting problem, I summarize the current situation of

keyword spotting as follows:

• As of now, the best-performing model for keyword spotting converts key-

word audio utterances into an image-like structure, and then designs a convo-

lutional neural network for recognition.

• The structure of the design is to stack Resnet blocks, which results in a large

number of model parameters. In the field of image recognition, this has been

proven to be not very optimal.

• For the on-device keyword spotting purpose, it is necessary to further reduce

the number of model parameters and obtain comparable or even better per-

formance than the existing state-of-the-art model.
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• The solution this paper proposed is based on an existing neural architecture

search method, searching for a convolutional neural network suitable for key-

word spotting.

And the reasons I choose DARTS as the baseline model are summarized as

follows:

• Keyword spotting and image recognition have many similarities, so when de-

signing a convolutional neural network, the performance of each NAS model

in image recognition should be an important reference.

• DARTS can achieve comparable results to the state-of-the-art results on clas-

sical image datasets, like CIFAR-10, CIFAR-100 and ImageNet.

• Due to the data efficiency of gradient-based optimization, DARTS can achieve

competitive performance with less computation resources.

Based on the above summarization, in this thesis, I will propose a differentiable

architecture search approach for keyword spotting, in order to achieve better key-

word spotting accuracy with a smaller model size.

1.3 Neural Architecture Search for Keyword Spot-

ting

So far, very little work has been done on neural architecture search for keyword

spotting. As far as we know, only Tom Veniat proposed a stochastic adaptive neural

architecture search approach for keyword spotting. His approach is to adapt the

architecture to the difficulty of the recognition of audios, i.e. choosing a simple

architecture when the keyword spotting is easy and a larger architecture when the

keyword spotting is difficult [15]. His main objective is to reduce computation and

energy consumption, but the spotting accuracy is pretty lower than the state-of-the-

art result. In summary, existing works on neural architecture search for keyword

spotting choose from existing architectures rather than searching and designing an
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architecture, and also sacrifice a large amount of accuracy for the purpose of energy

consumption reduction.

In this thesis, I approach the keyword spotting problem from a different angle,

propose a differentiable architecture search approach for keyword spotting, and de-

sign the whole architecture from the ground up. The key steps in building this

model are as follows:

• Preprocess the audio utterances, make sure the processed data can be used as

the input of the convolutional neural network without losing the information

carried by the audio.

• Design the CNN architecture based on neural architecture search approaches,

specifically search for what type of layer should be used between every two

nodes in the architecture, instead of choosing from specific architectures.

• Figure out specific operations (layers) suitable for keyword spotting. On the

premise of ensuring the keyword spotting accuracy of the model, reduce the

number of parameters as much as possible.

I proposed eight specific models obtained by the differentiable architecture search

approach. All eight models outperform the state-of-the-art model proposed by Tang

[2], with much less or comparable parameter sizes, based on tests on Google Com-

mands Dataset [16].

1.4 Thesis Outline

The remainder of this thesis is organized as follows. Chapter 2 mainly introduces

how to pre-process speech samples, how to design a differential architecture search

approach for keyword spotting, and how to select suitable candidate operations

through previous research work. Chapter 3 proposes eight specific models based

on the differential architecture search approach, and details the design ideas, model

architecture, and model-related parameters. Chapter 4 introduces the experimental
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test of our model on Google Commands Dataset, and gives comparison with the

evaluation results of baseline models. Finally, we summarize our work and discuss

future works in chapter 5.
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Chapter 2

Model Implementation

2.1 Introduction

This chapter introduces the details of our model implementation. The remainder

of this chapter is organized as follows. Section 2.2 introduces the method for pre-

processing the speech samples. Section 2.3 analyzes in detail and determines the

candidate operations that our model should apply, then introduces the Differentiable

Architecture Search algorithm for Keyword Spotting.

2.2 Input Preprocessing

The inputs of our models are 65,000 one-second long utterances (.wav files) of 30

short words from Google’s Speech Commands Dataset [16]. Detailed experimental

setup will be described in next chapter. Extracting the best parametric representa-

tion of acoustic signals is an important task to deliver a better result in recognition.

Classical acoustic signals extraction approaches include Per-Channel Energy Nor-

malization (PCEN) and Mel Frequency Cepstral Coefficient (MFCC) [17][18]. In

our models, we choose MFCC.

MFCC has been the popular features used for speech recognition and keyword

spotting since it was created [19]. Its wide applications are due to its ability to

represent the speech amplitude spectrum in a compact form. Moreover, MFCC
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is based on human hearing perceptions and human ear’s critical bandwidth with

frequency that cannot detect frequencies above 1KHz [20]. Thus, MFCC has a

clean form which can be easily processed in models and also can capture important

characteristic and information of phonetic in speech.

In our models, we follow the traditional process of the generation of MFCC,

including six main steps [20][21].

• Pre–emphasis: This step processes acoustic signal through a filter that ac-

centuates higher frequencies. This process aims to increase the energy of

acoustic signal at higher frequency and is not a necessary process.

• Analog to Digital Conversion: To convert the original acoustic signals to

digital signals, this step segments the speech utterances into small frames

with the length of 10 msec. An acoustic signal is divided into frames of N

samples. E.g. for a 1 second long signal, N should be 100.

• Windowing: In this step, the signal is multiplied with a Hamming window

or a Hanning window. The windowing process equation is given as follows

[20]:

Y (n) = X(n) ∗H(n) (2.1)

where n = number of samples in each frame, Y(n) = Output Signal, X(n) =

Input Signal, H(n) = Hamming or Hanning window function. For Hamming

window:

H(n) = 0.54− 0.46 ∗ cos(2 ∗ π ∗ n/(N − 1)), 0 ≤ n ≤ N − 1 (2.2)

For Hanning window:

H(n) = 0.5− 0.5 ∗ cos(2 ∗ π ∗ n/(N − 1)), 0 ≤ n ≤ N − 1 (2.3)

• Fast Fourier Transform (FFT): This step converts each frame of N sam-

ples from time domain into frequency domain. This conversion is based on
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traditional fast Fourier Transform [20].

• Mel Processing: Use a bunch of triangle filters to compute a weighted sum

of filter spectral components, if the frequencies range in FFT spectrum is too

wide. Then compute the Mel for the frequency f in Hz as follows [20][21].

F (Mel) = 2595 log10(1 +
f

700
) (2.4)

• Discrete Cosine Transform (DCT): In this stage, we convert the log Mel

spectrum into time domain based on Discrete Cosine Transform (DCT), and

obtain the Mel Frequency Cepstrum Coefficient. Now, each input audio ut-

terance is transformed into a sequence of vector [20][21].

In this thesis, I segment each speech utterances into 101 frames and use 40

different frequencies to compute MFCC. In this way, 1*101*40 dimensional Mel-

Frequency Cepstrum Coefficient (MFCC) frames are constructed, which have a

similar structure with a one-channel image . To test the robustness of our models

and increase the difficulty of spotting, we also add background noise consisting

of whitenoise, pink noise, and human-made noise, then perform random shift to

each sample. Details will be shown in the experiment section. The whole feature

extraction process is shown in Fig. 2.1.

2.3 Differentiable Architecture Search for Keyword

Spotting (DAS_KWS)

In this section, we introduce our differentiable architecture search approach for

keyword spotting in details, based on DARTS by Liu, NAS by Zoph and ENAS by

Cai [11][12][4]. We describe our general search space and general model structure

of the differentiable architecture search approach in 2.3.1.

10



101 frames (time domain)

40 different frequencies
(frequency domain) Each Pixel represents the 

MFCC value corresponding 
the frequency and time

Fig. 2.1. MFCC generation [2]

2.3.1 Overall Structure of DAS_KWS

The overall structure of DAS_KWS follows DARTS, as shown in Fig. 2.2. We

search for two types of cells as the building block of the final neural architecture,

normal cells and reduction cells. Then we stack the learnt cells to form a convolu-

tional neural network [4]. For cell, we follow the definition in DARTS and ENAS.

A cell is a directed acyclic graph consisting of an ordered N node chain, while each

node x(i) is a feature map in convolutional networks. Between each two nodes,

there is a directed edge (i, j) corresponding to an operation o(i,j) (e.g., convolution,

max pooling)[12][4]. Each cell has two input nodes and one output node. The in-

puts are the outputs of the previous two cells and the output is obtained through

concatenation on all intermediate nodes [4]. Each intermediate node is determined

by all its previous nodes [4]:

x(i) =
∑
i<j

o(i,j)(x(i)) (2.5)
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MFCC Features

Output

Convolutional Neural Network

Convolutional Neural Network 

is stacked by normal cells and 

reduction cells.

A cell is a directed acyclic 

graph consisting of an ordered 

N node chain

Fig. 2.2. Overall Structure of DAS_KWS

In sum, the overall structure and process of DAS_KWS are summarized as fol-

lows.

• The topmost structure is to use the convolutional neural network to process

the MFCC features and get the classification output. But the structure of

convolutional neural networks is unknown.

• The convolutional neural network is formed by stacking learnt normal cells

and reduction cells. Generally, a reduction cell is stacked after every N nor-

mal cells.

• A cell is a directed acyclic graph consisting of an ordered sequence of N

nodes. Learning a cell is equivalent to learning which operations should be

applied to the edge between each two nodes [4].

Thus, the entire keyword spotting problem is simplified as: which operations to

choose from, and how to determine which operation to use through learning.
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2.3.2 Operations Options

In this thesis, an operation is associated with a directed edge between two nodes,

that transforms a node. In other words, an operation is a layer in neural network,

e.g. a convolutional layer, a max pooling layer.

Reviewing previous research, Sainath first proposed the use of convolutional

neural networks to solve the problem of keyword spotting[1]. Then, Tang re-

designed a convolutional neural network based on Resnet, and obtained the state-

of-the-art results on the Google Commands Dataset [2].

Sainath’s model is an improvement on the Deep Neural Network (DNN) model.

Previously, only pure DNN was used to solve the problem of keyword spotting.

Sainath places one or two convolutional layers before the DNN, which greatly

improves spotting accuracy. In summary, Sainath’s model first passes the input

through one or two convolutional layers, then passes the output of these convo-

lutional layers to a linear low-rank layer or one to two DNN layers, and obtains

outputs by softmax function. For these convolutional layers, it chooses normal bias-

free convolutional layer with weights W ∈ R(m∗r)∗n, where m is the width, r is the

height and n is the number of feature maps. The values of m and r can be determined

artificially, as long as the following rules are followed: m ≤ width of input,

and r ≤ height of input, where in this thesis the width and height of the in-

put represent the input feature dimension in time and frequency respectively. The

overall structure diagram of Sainath’s model is shown in Fig. 2.3 [1].

Based on the above-mentioned overall structure, Sainath proposed several spe-

cific models. Here we list two classic ones: trad-fpool3, which is their base model;

and tpool2, the most accurate variant of the models they explored. Schematic dia-

grams of the two models are shown in Fig. 2.4 and corresponding parameters are

shown in Table. 2.1 and Table. 2.2 [1].

Sainath first proposed the use of CNN for keyword spotting, and we found the

following improvement points.

• Only the basic convolutional layers are used instead of advanced convolu-

13



Inputs

One or two Convolutional Layers

Several DNN Layers

Outputs

softmax

Fig. 2.3. Overall Structure of Sainath’s model [1]

layer type m r n

conv 20 8 64
conv 10 4 64
lin - - 32
dnn - - 128

softmax - - 4

Number of Parameters 244K

TABLE 2.1
ARCHITECTURE FOR TRAD-FPOOL3 [1]

layer type m r n

conv 21 8 94
conv 6 4 94
lin - - 32

softmax - - 4
- - - -

Number of Parameters 7400K

TABLE 2.2
ARCHITECTURE FOR TPOOL2 [1]
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Convolutional 
layer

Convolutional 
layer

Linear low-
rank layer

DNN layer

Softmax

(a) trad-fpool3

Convolutional 
layer

Convolutional 
layer

Linear low-
rank layer

Softmax

(b) tpool2

Fig. 2.4. Baseline Model; (a) tradfpool3, (b) tpool2

tional layers, such as Separate Convolution, Dilated Convolution, Grouped

Convolution and other advanced convolutional layers that have proven to be

excellent in image recognition.

• Each layer is sequentially stacked together, without using complex neural

network architectures, such as ResNet [22], MobileNets [23]. There should

be more complicated connections between nodes.

• When there’s a need to reduce the size of the model, it simply deletes one

or two layers, which makes the test accuracy of the model lower. Operations

with many parameters in some locations can actually be replaced with simpler

operations.

Tang improved on Sainath’s model and got the state-of-the-art results on Google

Commands Dataset. Tang mainly improved the model in two aspects, one is to use

dilated convolutional layers, and the other is to apply deep residual networks.
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Fig. 2.5. The Residual Learning Block

Deep residual networks (ResNet) are a great breakthrough in deep learning that

allowed everyone to train a much deeper neural network. They were first applied

on image recognition and obtained results that beat the state-of-the-art performance.

The motivation for inventing Resnet was to solve the degradation problem of ex-

tremely deep neural networks [22][24]. The degradation problem is: with the net-

work depth rising, accuracy is saturated and then rapidly degrades. And this degra-

dation problem is not caused by overfitting, because when the number of neural

network layers is increased to make the network deeper, not only the test accuracy

will decrease, but the train accuracy will also decrease significantly. They solved

the degradation problem by proposing a residual learning block, to let the layers fit

a residual mapping instead of expecting each stacked layers to fit a desired mapping

[22]. The residual learning block is shown in Fig. 2.5.

Tang proposed a deep residual learning approach for keyword spotting based

on the standard ResNet architectures. Their model is formed by stacking multiple

ResNet blocks, where each ResNet block consists of a bias-free convolution layer

with weights W ∈ R(m∗r)∗n (where m is the width, r is the height and n is the

number of feature maps), ReLU activation units, and a batch normalization layer

[2]. Their model architecture is shown in Fig. 2.6.

Based on the architecture, Tang proposed three baseline models, called res8-

narrow, res15 and res26, according to different numbers of residual blocks [2]. Pa-
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Fig. 2.6. Architecture of residual learning approach for keyword spotting

rameters used for the models are illustrated in Table. 2.3, Table. 2.4 and Table. 2.5,

where m, r, n are the width, the height and the number of features maps, respec-

tively, and dw, dh are convolution dilation.

layer type m r n dw dh

conv 3 3 45 - -
residual block ×6 3 3 45 2

i
3 2

i
3

conv 3 3 45 16 16
batch normalization - - 45 - -

average-pool - - 45 - -
softmax - - 12 - -

Number of Parameters 238K

TABLE 2.3
PARAMETERS FOR RES15

In sum, Tang first proposed the use of dilation convolutional layers and ResNet

for keyword spotting, and achieved the state-of-the-art results. And we found the

following improvement points for a better keyword spotting model [2].
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layer type m r n

conv 3 3 19
average-pool 4 3 19

residual block ×3 3 3 19
average-pool - - 19

softmax - - 12

Number of Parameters 20K

TABLE 2.4
PARAMETERS FOR RES8-NARROW

layer type m r n

conv 3 3 45
average-pool 2 2 45

residual block ×12 3 3 45
average-pool - - 45

softmax - - 12

Number of Parameters 438K

TABLE 2.5
PARAMETERS FOR RES26

• In addition to the dilated convolutional layer, consider applying a variety of

advanced convolutional layers, such as transposed convolutional layer, sepa-

rable convolutional layer, etc.

• Don’t fix the combination of layers. For example, in Sainath’s model, the out-

put of each convolutional layer is always passed to a max pooling layer, while

in Tang’s model, the output of one residual block is always passed to one

residual block. This design method is likely to cause too many parameters.

In this thesis, between each two nodes in the neural network architecture, we

set enough candidate operations with different degrees of complexity, which

could be a simple single max pooling layer or a complex residual block.

• In the whole architecture, there should be a possibility of connection between

every two nodes. Take Fig. 2.7 as an example. This is part of the residual

learning model. By definition, there are six nodes in this architecture, num-

bered Node1 to Node6. In this architecture, disconnected nodes pairs are:

[1, 3], [1, 4], [1, 5], [1, 6], [2, 5], [2, 6], [3, 5] and [3, 6]. This makes some of the

possibilities of a better performing neural network architecture lost.

In this thesis, we search each candidate operation for the edge between any

two nodes. On the other hand, we also allow no connection between two

nodes. One of the candidate operations is "skip connections".

In summary, our search space (candidate operations) is designed as follows.
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Fig. 2.7. Schematic diagram of nodes in a neural network

• Skip Connections: There is no operation on this edge.

• Identity: There is the identity operation on this edge.

• Average Pooling & Max Pooling: The aim of pooling is to turn the joint

representation of features into a more functional one which keeps important

information while discarding irrelevant information [25]. In image recogni-

tion, pooling can greatly help the model to identify the same object at differ-

ent locations (ignoring the irrelevant information of location). Similarly, in

keyword spotting, since we perform random time shift to each sample in or-

der to increase the difficulty of recognition, the MFCC features have similar

characteristic, as the width of it represents the time dimension. Thus, pooling

layers should be candidate operations of our model.

The max pooling method selects the largest element in each pooling region

as: [25]

ykij = max
(p,q)∈Rij

xkpq (2.6)

while the average pooling method takes the arithmetic mean of the elements
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in each pooling region as:

ykij =
1

|Rij|
∑

(p,q)∈Rij

xkpq (2.7)

where Rij is the pooling region, |Rij| is the size of the pooling region, ykij

is the output of the pooling operator for the kth feature map and xkpq is the

element at location (p, q) within the pooling region [25].

• Dilated Convolution: Dilated convolution is an advanced convolution oper-

ation with a wider kernel. Let F be a discrete function and k be a discrete

filter [26]. The original discrete convolution operator * is defined as [26]:

(F ∗ k)(p) =
∑
s+t=p

F (s)k(t) (2.8)

And the dilated convolution operator ∗l is defined as:

(F ∗l k)(p) =
∑
s+lt=p

F (s)k(t) (2.9)

Essentially, ordinary convolution operators are a special case of dilated con-

volution operators (l = 1), as shown in Fig. 2.8. Dilated Convolution has

been shown to be effective in identifying object contours [26][27]. Corre-

spondingly, in keyword spotting, it can help identify the higher energy part

of the MFCC map, that is, the pronunciation part. We add 3 × 3, 5 × 5,

7 × 7 and 9 × 9 dilated convolutions to the candidate operations. Each di-

lated convolution operation follows ReLU-DilatedConv-BatchNormalization

order.

• Separable Convolution: Separable convolution, which is also called depth-

wise separable convolution, is a special convolution structure. It consists of

a spatial convolution conducted independently over each channel of an input,

followed by a point-sensitive convolution, i.e. a 1×1 convolution, projecting
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(a) Standard Convolution (l=1) (b) Dilated Convolution (l=2)

Fig. 2.8. Dilated Convolution [3]

the channels output onto a new channel space by the depth-sensitive convo-

lution [28][29].

Compared to the standard convolution, separable convolution can save up a

lot on computational power. A standard convolution’s computation cost is

[23]:

CostConv = DK ×DK ×M ×N ×DF ×DF (2.10)

where M, N are the number of input channels and output channels respec-

tively, DK ×DK is the kernel size and DF ×DF is the feature map size.

On the other hand, the depthwise separable convolution has two layers, one

for filtering and one for combining.The filtering computation cost is DK ×

DK ×M × DF × DF , and the combination computation cost is M × N ×

DF ×DF . Thus, depthwise separable convolutions cost is [23]:

CostSepConv = DK ×DK ×M ×DF ×DF +M ×N ×DF ×DF (2.11)
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And it causes a reduction in computation of [23]:

DK ×DK ×M ×DF ×DF +M ×N ×DF ×DF

DK ×DK ×M ×N ×DF ×DF

=
1

N
+

1

D2
K

(2.12)

This reduction in computation is very useful for the keyword spotting on

mobile devices. We add 3× 3, 5× 5, 7× 7 and 9× 9 separable convolutions

to the candidate operations and each separable convolution is always applied

twice.

• Residual Block: The characteristics and structure of the Residual block have

been explained in detail above. We add the residual block shown in the dotted

box in Fig. 2.6 to the candidate operations.

In this section, we analyze various convolutional layers, and combinations of con-

volutional layers and other layers in detail to determine candidate operations for our

model. In the next section, we will introduce the search algorithm for how to find

the best operation from candidate operations.

2.3.3 Differentiable Architecture Search Algorithm

In order to perform a differentiable architecture search using gradient descent, the

search space need to be continuous. Thus, we need perform a continuous relaxation

on all operations (e.g. convolution, max pooling, average pooling). Let S be a set

of all candidate operations. To make the search space continuous, over all possible

operations, we relax the discrete option of an operation to a softmax function [4]:

o(i,j)(x) =
∑
o∈S

exp(αo
(i,j))∑

o′∈S exp(αo′
(i,j))

o(x) (2.13)

where o(i,j) is mixed operation and α(i,j) is a parameter vector, storing the oper-

ation mixing weights for a pair of nodes (i, j). We called α mixing probabilities or

architecture weights. At the end of the search, we select the α with the largest value

and use its corresponding operation as the operation between these two nodes [4].
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After continuous relaxation, there are two types of weights, architecture weights

α and network weights w (weights of convolutional neural networks). α is the

weights used to decide which operation to choose, but there is no way to learn α

directly. Instead, the value of α must be learnt and optimized by training the neural

network corresponding to α and comparing the validation accuracy. Thus, α and w

need to be learnt jointly, using gradient descent [4].

We denote the training loss by Lostrain and the validation loss by Losval. The

joint optimization for α and w requires following rules.

When training a neural network, the weightsw are determined when the training

loss is minimized. Thus, the optimal weights w are [4]:

w∗ = argminwLostrain(w, α
∗) (2.14)

On the other hand, the lowest validation loss means the neural architecture is

great, corresponding to the optimized α.The optimization process of weights α

is[4]:

min
α

Losval(w
∗(α), α)

s.t. w∗(α) = argminwLostrain(w, α)

(2.15)

This is a bilevel optimization problem with α as the upper-level variable and w

as the lower-level variable [4].

To avoid expensive inner optimization, we follow DARTS’ approximation ap-

proach on the gradient of the validation loss [4]:

∇αLossval(w
∗(α), α) ≈ ∇αLossval(w − ξ∇wLosstrain(w, α), α) (2.16)

where w is the current neural network weights and ξ is the learning rate for one

step of inner optimization. Based on the Equation. 2.16, we can approximate w∗(α)

using only one single step, instead of spending a lot of time in the inner optimization

in Equation. 2.15. And according to the experiment practice of DARTS, we should

set ξ equal to the learning rate for optimizing w [4].
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Algorithm 2.1 Differentiable Architecture Search algorithm for Keyword Spotting
1: Input training set and testing set. Each set contains MFCC features and corre-

sponding labels.
2: Input candidate operations
3: Determine the structure of the cell (number of nodes)
4: For each edge (i, j), create a mixed operation parametrized by the architecture

weights α(i,j).
5: while not converged do
6: Update the architecture weights α by descending ∇αLossval(w −

ξ∇wLosstrain(w, α), α)
7: Update the neural network weights w by descending Lostrain(w, α)
8: Determine the final architecture based on α

The outline of Differentiable Architecture Search algorithm for Keyword Spot-

ting (DAS_KWS) is shown in Alg. 2.1.

There is also a simplified version of the architecture search approach, which

is to set ξ to zero.From Equation. 2.16, we can find that when ξ is equal to zero,

ξ∇wLosstrain(w, α) = 0. The architecture gradient becomes [4]:

∇αLossval(w
∗(α), α) ≈ ∇αLossval(w, α) (2.17)

This is equivalent to assuming that the current w equals to w∗(α). This is a

less accurate approximation method, but it can greatly speed up the operation. We

follow DARTS’s naming of these two approximation methods. When ξ is equal to

zero, it is a first-order approximation. When ξ is greater than zero, it is a second-

order approximation [4].

After running the architecture search algorithm shown by Alg. 2.1, all α values

are obtained. In the last step, we need to export the architecture by the value of α.

An intuitive method is to select the operation corresponding to the largest α value

on each edge, and form the final architecture. However, this method leads to a prob-

lem: the architecture found is very cluttered because each node is connected to all

previous nodes. Therefore, here we follow the previous neural network architecture

search method. For each node in the architecture, we only keep the top two best

operations that came from the previous nodes [11][12][4]. We define the quality of
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Fig. 2.9. Example of a cell that only top two best operations are kept

an operation like this (a greater value means the operation is better):

exp(αo
(i,j))∑

o′∈S exp(αo′
(i,j))

(2.18)

Take Fig. 2.9 as an example to illustrate this process more clearly. This cell

has a total of 7 nodes, c_{k-1}, c_{k-2} are input nodes, node0, node1, node2,

node3 are intermediate nodes, and c_{k} is the output node [4]. It can be seen that,

for each intermediate node, only two operations passed from the previous node are

retained.For example, for node3, only the connection between node0 and c_{k-1}

is preserved. If this filtering method is not adopted, node3 will be connected at all

previous nodes, which will make the architecture too chaotic.

So far, we have introduced the Differentiable Architecture Search algorithm

for Keyword Spotting in detail, summarized it in Alg. 2.1, and made a detailed

description of each step in Alg. 2.1.

2.4 Concluding Remarks

This Chapter mainly introduces the entire process of our model implementation,

including the macro design of the entire model, the pre-processing of input data, the

design of candidate operations, and how to search the neural network architecture.
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Chapter 3

Model Search and Design

Our overall work of the next stage is divided into two steps: searching out the model

and evaluating the model (training and testing the model). This chapter mainly

introduces the work of the first part, mainly introduce how to use the DAS_KWS

algorithm to search out specific models for keyword spotting.

The remainder of this chapter is organized as follows. Section 4.1 specifically

introduces the setup process before the experiment, including application scenarios,

data set split, data preprocessing, etc. Section 3.2 specifically introduces the design

of the top-level architecture of our model and the structural design inside the cell.

Section 3.3 shows eight convolutional neural network models we designed for key-

word spotting, and details the model architecture, the number of various layers, and

the total parameter size of the model.

3.1 Experimental Setup

We use Google Commands Dataset to search the neural network architecture [16].

Google Commands Dataset is a dataset published by Google specifically for key-

word spotting. It contains 65,000 one-second audio utterances and contains 30

different words. For each word, 2,000 to 3,000 different people’s pronunciations

were collected. These thirty words include: ’bed’, ’bird’, ’cat’, ’dog’, ’down’,

’eight’, ’five’, ’four’, ’go’, ’happy’, ’house’, ’left’, ’marvin’, ’nine’, ’no’, ’off’,
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’on’, ’one’, ’right’, ’seven’, ’Sheila’, ’six’, ’stop’, ’three’, ’tree’, ’two’, ’up’, ’wow’,

’yes’, ’zero’. In addition, the data set also includes background noise samples, a

total of six types: noise when doing the dishes, noise of miaowing, noise when

exercising bike, pink noise, noise of running tap and white noise.

Our task is to discriminate among 12 classes: “yes,” “no,” “up,” “down,” “left,”

“right,” “on,” “off,” “stop,” “go”, unknown, or silence. These words are the vo-

cabulary most commonly used for voice control on mobile devices and have great

practical significance. We divide the entire Google Commands Dataset into three

parts, 40% for the training set, 40% for the validation set, and 20% for the test

set. The three data sets are used as follows: In this chapter, we use the training

set (40%) and the validation set (40%) to search the model’s architecture to obtain

several specific models. The specific use of training set and validation set has been

explained in detail in the algorithm of Chapter2. After obtaining the specific mod-

els, the training set (40%) and the validation set (40%) are combined into a new

training set (80%) to train the model, and the test set is used to evaluate the mod-

els. Note that when searching the neural network architecture or training the neural

network, the test set is not involved.

To generate training data, we followed Tang’s preprocessing approaches[2].

This is to allow a more rigorous comparison of the performance of our models,

to ensure that the differences in model performance are not caused by different

ways of processing the input data. First, at each epoch, we add background noise

to the audio samples with 80% probability, and the choice of noise is completely

random. Next, we perform random t millisecond time shifts on the audio samples

to increase the difficulty of keyword spotting, where t satisfies a uniform distribu-

tion from -100 to 100. After that, we use a 20Hz / 4kHz filter to filter out frequency

bands that the human ear cannot recognize. Finally, we follow the input preprocess-

ing method introduced in Section. 2.2 to convert audio samples into 1 × 101 × 40

MFCC features.
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Fig. 3.1. Top-most architecture of DAS_KWS

3.2 Architecture Design

Our entire model architecture is designed like this. In order to control the size of the

model, the top-most architecture is made up of six cells stacked, each two normal

cells followed by a reduction cell, as shown in Fig. 3.1.

The definition of normal cells and reduction cells follows DARTS[4]. Nor-

mal cells ensure that their output spatial dimension is the same as the input, while

reduction cells double the number of channels as their output spatial dimension.

During the differentiable architecture search, the architecture weights α are kept

as (αnormal, αreduction), while αnormal is shared by all normal cells and αreduction is

shared by all reduction cells[4].

Both normal and reduction cells include 7 nodes, as shown in Fig. 3.2. The

blue nodes c_{k-1}, c_{k-2} are input nodes, the green nodes node0, node1, node2,

node3 are intermediate nodes, and the gray node c_{k} is the output node. For input

nodes, the input is the cell outputs in the previous two layers. For output nodes, the
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Fig. 3.2. Cell Design

output is concatenation of all the intermediate nodes. For the intermediate nodes,

we will search for the edges between the node and all its previous nodes, determine

the operation on each edge, and only retain the best two edges, according to the

judgment method introduced in the Equation. 2.18.

All models in this thesis will be built according to the architecture described in

this section. The structure of cells all follows Fig. 3.2. And after the searched cells

are obtained, they are stacked using the method shown in Fig. 3.1 to obtain the final

model.

3.3 Model search

In this section, we will show all our models searched by DAS_KWS algorithm.

For architecture search, we consider the following 14 candidate operations for each

edge: 3× 3, 5× 5, 7× 7 and 9× 9 separable convolutions, 3× 3, 5× 5, 7× 7 and

9 × 9 dilated convolutions, 3 × 3 and 5 × 5 residual blocks, max pooling, average

pooling, identity and skip connections. All operations are of stride one (if it has a

stride). For each convolutional operation, we follow the order of Relu-Conv-BN.

For each dilated convolution, the dilation parameter is set to 2. And each separable

convolution should be applied twice to form an operation.
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The searched normal cells and reductions will be stacked in the structure shown

in Fig. 3.1 to get the final model. Therefore, in this section, we only show the

specific structure of normal cells and reduction cells of each model.

We execute both first-order DAS_KWS and second-order DAS_KWS algo-

rithms and get four models for keyword spotting respectively. In order to prove the

robustness of our method, the model architecture search process does not contain

a very extensive hyper parameters tuning process. In addition, these eight models

were also selected at random, not based on test results. The internal schematic di-

agrams of the cells of these first-order models are shown from Fig. 3.3 to Fig. 3.6.

For these first-order models, they are named as ’DASF1’ to ’DASF4’. The detailed

parameters of the first-order models are shown from Table. 3.1 to Table. 3.4. The

number of each operation listed in the tables and the total number of parameters of

the model refer to the model formed by six cells.

For these second-order models, they are named as ’DASS1’ to ’DASS4’, which

are shown from Fig. 3.7 to Fig. 3.10. The detailed parameters of the second-order

models are shown from Table. 3.5 to Table. 3.8.

layer type m r n

sep-conv ×4 5 5 16
dil-conv ×4 3 3 16

max-pool ×40 3 3 16
- - - -
- - - -

Number of Parameters 84K

TABLE 3.1
PARAMETERS FOR DASF1

layer type m r n

dil-conv ×4 3 3 16
dil-conv ×2 5 5 16

residual block ×2 3 3 16
max-pool ×38 3 3 16
sep-conv ×2 5 5 16

Number of Parameters 148K

TABLE 3.2
PARAMETERS FOR DASF2
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layer type m r n

sep-conv ×4 3 3 16
dil-conv ×2 3 3 16
dil-conv ×8 5 5 16

max-pool ×34 3 3 16
- - - -

Number of Parameters 98K

TABLE 3.3
PARAMETERS FOR DASF3

layer type m r n

dil-conv ×12 5 5 16
sep-conv ×4 3 3 16
sep-conv ×8 7 7 16

max-pool ×16 3 3 16
average-pool ×8 3 3 16

Number of Parameters 149K

TABLE 3.4
PARAMETERS FOR DASF4

layer type m r n

dil-conv ×14 5 5 16
sep-conv ×4 3 3 16

max-pool ×20 3 3 16
skip-connect ×10 - - -

- - - -

Number of Parameters 105K

TABLE 3.5
PARAMETERS FOR DASS1

layer type m r n

sep-conv ×12 7 7 16
sep-conv ×8 5 5 16
sep-conv ×4 3 3 16

average-pool ×16 3 3 16
skip-connect ×8 - - -

Number of Parameters 207K

TABLE 3.6
PARAMETERS FOR DASS2

layer type m r n

sep-conv ×4 3 3 16
sep-conv ×12 5 5 16
sep-conv ×10 7 7 16
max-pool ×22 3 3 16

- - - -
- - - -

Number of Parameters 197K

TABLE 3.7
PARAMETERS FOR DASS3

layer type m r n

dil-conv ×10 5 5 16
dil-conv ×2 3 3 16
sep-conv ×4 5 5 16
sep-conv ×20 7 7 16
max-pool ×10 3 3 16

skip-connect ×2 - - -

Number of Parameters 243K

TABLE 3.8
PARAMETERS FOR DASS4
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32



Normal Cell

Reduction Cell

Fig. 3.5. Model DASF3 [4]

Normal Cell

Reduction Cell
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3.4 Conclusions

In this chapter, eight convolutional neural network models for keyword spotting are

proposed, and their model architecture and parameter size are explained in detail.

These eight models will be compared with the state-of-the-art models on keyword

spotting.
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Chapter 4

Evaluation

In Chapter 3, we propose eight convolutional neural network models for keyword

spotting. In this chapter, we evaluate these models through tests.

The remainder of this chapter is organized as follows. Section 4.1 follows Sec-

tion 3.1 of Chapter3, and introduces experimental setup in detail, including ex-

perimental motivation, data set selection, and so on. In section 4.2, we conduct

evaluations on the Google Commands Dataset and compare the performance of

our proposed approaches with other algorithms. We conclude this chapter in sec-

tion 4.3.

4.1 Experimental Setup

The experimental setup follows the setup of the previous chapter. In the previous

chapter, 10 vocabulary frequently used for voice control have been selected from

Google Commands Dataset: “yes,” “no,” “up,” “down,” “left,” “right,” “on,” “off,”

“stop,” “go”. This set of keywords is named "control keywords". These data is

divided into a 40% training set, a 40% validation set, and a 20% test set. In the

previous chapter, a training set and a validation set were used to design the archi-

tecture of the model. After obtaining the models, we merge the training set and the

validation set into a new training set (80%), use this new training set to train DASF1

to DASF4 models and DASS1 to DASS4 models from scratch for 100 epochs, and
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then use the test set (20%) to test. There are two reasons for this design:

• The test set should not be used at any step until the final test. So both when

searching for the model architecture and when training the model, only the

training set and validation set are used.

• When training a model, initialize the model’s weights and start training from

scratch. The purpose of this is: when searching the model structure, not only

the architecture weights α are continuously optimized, but also the neural

network weights w are learnt. What we want to evaluate is the designed

convolutional neural network architecture, so we should ignore the w learnt

before and train from scratch.

In addition to evaluating our models by keyword spotting accuracy, we also

want to evaluate the transferability of our models. The DASF and DASS models

are designed based on this set of "control keywords". We need to test whether

the DASF and DASS models can be transferred and applied to the recognition of

another set of keywords.

We selected another set of keywords from Google Commands Dataset, a total of

ten, including: “zero,” “one,” “two,” “three,” “four,” “five,” “six,” “seven,” “eight,”

“nine”[16]. This set of keywords is named "numerical keywords". These two sets of

keywords, "control keywords" and "numerical keywords", are shown in Table 4.1.

We will also use the data set consisting of "numerical keywords" to evaluate

the DASF and DASS models to prove the transferability of these models. The

experimental method is similar to testing the "control keywords" data set. The

"numerical keywords" data set is divided into a training set (80%) and a test set

(20%). The training set is used to train the neural network from scratch, and then

the test set is used to test.

The process of data generation and data preprocessing is exactly the same as

explained in the previous chapter.
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TABLE 4.1
KEYWORD SETS

Control Keywords Numerical Keywords
yes zero
no one
up two
down three
left four
right five
on six
off seven
stop eight
go nine

4.2 Performance Evaluation

Based on the data set generated by 10 control keywords, we train DASF1 to DASF4,

DASS1 to DASS4 models from scratch, and evaluate the model with test accuracy.

For model training, we used gradient descent with a momentum of 0.9, learning rate

of 0.025, batch size of 64 and weight decay of 3× 10−4. Our models are trained for

a total of 100 epochs.

For the comparison model, we choose the classic CNN model of Sainath and

the ResNet-based model of Tang, as shown in Table. 2.1, Table. 2.2, Table. 2.3,

Table. 2.4 and Table. 2.5. The trad-fpool3 model is Sainath’s base model; and

tpool2 is the most accurate variant of Sainath’s models [1]. The res15 and res26

model are top two most accurate variant of Tang’s models, and res8-narrow is the

most compact variant of Tang’s models [2].

When training these baseline models, we fine-tuned the hyper parameters based

on the open source code (https://github.com/castorini/honk). After getting the best-

performing hyper parameters, we repeat the training-test process five times to get

the final test results. Each baseline model is trained for 100 epochs. In addition, for

easy comparison, we use the same data preprocessing method as Tang, so we use

the experimental results listed in Tang’s paper as the reference result as well [2].
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All DASF models, DASS models, and baseline models are trained and tested

for five times, so the reported test accuracy is the average of the five test results and

shows a 95% confidence interval.

TABLE 4.2
TEST RESULTS ON CONTROL KEYWORDS

Model Architecture Test Accuracy+ (%) Parameters (K)

trad-fpool3∗ 90.0%± 0.31 244
tpool2∗ 93.1%± 0.67 7400

res15_retrain∗ 93.2%± 0.52 238
res8-narrow_retrain∗ 88.7%± 0.98 20

res26_retrain∗ 92.9%± 0.33 438
res15∗∗ 95.8%± 0.48 238

res8-narrow∗∗ 90.1%± 0.98 20
res26∗∗ 95.2%± 0.18 438

DASF1∗∗∗ 96.3%± 0.47 84
DASF2∗∗∗ 96.1%± 0.35 148
DASF3∗∗∗ 95.9%± 0.33 98
DASF4∗∗∗ 96.4%± 0.35 149
DASS1∗∗∗ 96.6%± 0.39 105
DASS2∗∗∗ 96.2%± 0.37 207
DASS3∗∗∗ 96.4%± 0.40 197
DASS4∗∗∗ 96.4%± 0.37 243

* Obtained by repeating training the model for 5 times with different ran-
dom seeds using the code publicly released by the authors, after fine-
tuning the hyperparameters

** Obtained from the results in the authors’ paper
*** Obtained by repeating training our models for 5 times using different

random seeds
+ Test accuracy of each model with 95% confidence intervals (across five

trials)

The test accuracies on control keywords of our models and baseline models

are presented in Table. 4.2. Notably, all DASF and DASS models achieved results

better than the state-of-the-art (res15 model). Moreover, except for model DASS4,

all DASF and DASS models have a smaller parameter size than the state-of-the-

art. Although the parameter size of the res8-narrow model is much smaller than

our DASF and DASS models, our model beats it by 6 to 7 percentage points in

test accuracy. In addition, the DASF and DASS models also defeated Sainath’s
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trad-fpool3 and tpool2 models in both test accuracy and parameter size.

We also test the transferability of the DASF and DASS models by changing

the dataset from control keywords to numerical keywords. All experimental setup,

data pre-processing process, and hyper parameters used for training are the same as

before.

TABLE 4.3
TEST RESULTS ON NUMERICAL KEYWORDS

Model Architecture Test Accuracy+ (%) Parameters (K)

trad-fpool3∗ 90.7%± 0.50 244
tpool2∗ 93.2%± 0.62 7400

res15_retrain∗ 92.8%± 0.66 238
res8-narrow_retrain∗ 87.9%± 0.95 20

res26_retrain∗ 92.3%± 0.72 438

DASF1∗∗∗ 97.5%± 0.32 84
DASF2∗∗∗ 97.3%± 0.30 148
DASF3∗∗∗ 97.1%± 0.35 98
DASF4∗∗∗ 97.2%± 0.22 149
DASS1∗∗∗ 97.4%± 0.38 105
DASS2∗∗∗ 96.9%± 0.32 207
DASS3∗∗∗ 97.4%± 0.30 197
DASS4∗∗∗ 97.3%± 0.27 243

* Obtained by repeating training the model for 5 times with different ran-
dom seeds using the code publicly released by the authors, after fine-
tuning the hyperparameters

*** Obtained by repeating training our models for 5 times using different
random seeds

+ Test accuracy of each model with 95% confidence intervals (across five
trials)

The test accuracies on numerical keywords of our models and baseline models

are presented in Table. 4.3. All DASF and DASS models beat five baseline models

in performance. Notably, on this set of numerical keywords, all DASF and DASS

models (with more than 96.9% test accuracy) outperformed their performance on

the control keywords set. This proves that our model based on control keywords

can be transferable to other keywords.
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4.3 Conclusions

In this chapter, we evaluate 4 DASF models and 4 DASS models designed in Chap-

ter 3 by experiments. Two datasets were used: the control keywords dataset and

the numerical keywords dataset. At the same time, we also introduce five baseline

models for comparison, trad-fpool3, tpool2, res15, res8-narrow and res26, where

res15 is the state-of-the-art model for keyword spotting. The test results show that:

4 DASF models and 4 DASS models can outperform the state-of-the-art model on

two datasets, with a smaller parameter size. And the DASF and DASS models have

a good transferability, they could transfer to other keywords and have comparable

great performance.
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Chapter 5

Conclusion and Future Work

In this thesis, we mainly worked on how to improve the accuracy of keyword spot-

ting with smaller parameter sizes. The previous methods are to stack convolutional

layers to form a model. When the parameter size is too large, the model is com-

pacted by reducing the model depth or the number of feature maps. I first proposed

the Differential Architecture Search Approach to solve the problem of keyword

spotting. This approach optimizes the model from the architecture itself, which not

only makes the model compact, but also improves the recognition accuracy.

Our approach is very robust. The DASF and DASS models designed are very

different from each other in structure, but they all have similar and very competitive

test results, all of which beat the state-of-the-art results. In addition, the model

I proposed has great generality and transferability, which achieved state-of-the-art

results on completely different keywords.

The future work should be focusing on exploring the connection ways between

cells. The improvement in accuracy of our model mainly depends on the libera-

tion of the internal connection relationship within the neural network. Within each

cell, allow any two points to be connected, instead of connecting them sequentially

with layers. However, in our model, the connection method of cell to cell is very

fixed. We stack cells in a fixed order to form the final model. We should explore

more possibilities for the connection between cells, and optimize on the top-level

architecture.
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