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ABSTRACT

In this thesis, a number of nearest neighbor (NN) type decision rules are
proposed for classifying a (small) set of K (= 2) multiple observations (that is,
independent and identically distributed, (i.i.d.)) into one of s (2 2) given populations,
The proposed rules are generalizations of certain known NN rules for the case K = 1.
The rules are based on the information contained in the (available) "training” (i.i.d.)
samples from the s populations under consideration. The asymptotic risk functions
of the proposed classification rules, as "training” sample sizes tend to infinity, are
derived and appropriate bounds for them are studied.

In Chapter 1, the relevant literature on NN classification is reviewed. In Chapter
2, we consider the case s =2 and propose NN classification rules for K multiple
multivariate observtions in both the (empirical) Bayes as well as the nonparametric
formulations of the problem. It is shown that the asymptotic risks of the proposed
NN rules in the above two models are identical. Also, for the case K = 2, the
asymptotic risk is shown to coincide with that of the 1-NN rule of Cover and Hant
(1967). In Chapter 3, we consider again the case s = 2, but for K (2 2) multiple
univariate observations using a two sided Rank nearest neighbor (RNN) rule and
derive the asymptotic risks of the proposed so called "M-stage” RNN rule. For the
case K=2 and M = 1, we derive an upper bound on the risk when the sample sizes
are equal. An estimate of the asymptotic risk of first-stage RNN rule is shown to be
asymptotically unbiased and consistent. In Chapter 4, we extend the above NN and
RNN rules of Chapter 2 and Chapter 3, respectively, to the case s > 2. In Chapter §,
we develop the sub-sample approach, namely, that based on all possible sub-samples
of size K from the "training” samples. The asymptotic risk of the proposed NN rule
in this case is shown to have bounds that are parallel to those obtained by Cover and
Hart (1967) for the case K = 1. Finally, in Chapter 6, some Monte-Carlo results are
given to compare the expected performance of the proposed rules in the small sample
situations.
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CHAPTER 1
INTRODUCTION

The object of the present thesis is to investigate suitable nonparametric
procedures for the classification of an observed random sample into one of two
or more populations. We shall, however, limit our investigations to “Nearest
Neighbor” (NN) type procedures only, and generalize certain well known single
observation “Nearest Neighbor” and “Rank Nearest Neighbor” (RNN) procedures
for the classification of multiple independently and identically distributed (i.i.d.)
observations.

The basic problem in Discriminant Analysis is to devise appropriate proce-
dures for classifying one or more observations into one of two or more distinct
populations on the basis of their values. Specifically, let g: {Z1,....ZR}HEN > 1)
with Z; = (Zi,....Zia)'.t =1,.... K\, denote a sample of independent and identi-
cally distributed d-variate observations from one of the s-populations 7y, 72,..... Ty
The object is to correctly classify g into its parent population. In this situation
there are two extremes of knowledge which a Statistician may possess: either
he may have complete statistical knowledge about the underlying distributions
of these populations or he may have no knowledge at all beyond some brc ad
information regarding some general properties of these populations along with
identified samples (i.e. training samples) from them. In the first situation an
optimum solution, derived by Welch (1939), is implicit in the Neyman-Pearson
lemma. In the other extreme, the problem is in the domain of nonparametric
Statistics and, quite naturally, no optimal solution exists in this case with re-
spect to all underlying distributions. For the case ' =1, that is, when there is
only a single observation to be classified, there have been many nonparametric
classification procedures proposed in the literature, such as (i) Nearest Neighbor
(NN) rules (Fix and Hodges (1951)): (ii) Rules based on density estimates (Van
Ryzin (1966)); (iii) Rules based on distance between Empirical c.d.f’s (Matusita

(1956)), (iv) An Empirical Bayes approach (Johns (1961)), (v) Rules based on
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ranks (Das Gupta (1964)) (vi) Rules based on tolerance regions (Quesenberry and
Gessmnan./;(iaéé)), etc. (See also Broffitt et. al. (1976), Cacoullos (1973), Cover
(1968, 196\9); Das Gupta (1962, 1973), Lachenbruch (1975), Peterson (1970) and
Randles et. al. (1978)).

While most of the work done in parametric or nonparametric Discriminant
Analysis is on the classification of a single observation, the more general prob-
lem of classifying a set of multiple observations, assumed to be originating from
the same population, has been virtually ignored in the literature. The simplest,
and a rather naive, way to classify these multiple observations would he to re-
peat I’ times one of the above single observation classification procedures. The
drawback of this “repeating” procedure is that it does not utilize the full infor-
mation available in the data. It can be seen easily (see (2.41) below) that any
such procedure would be inevitably inadmissible. Das Gupta (1964) considered
the problem of classifying a random sample based on Kolmogorov’s distance and
¥ ilcoxon’s statistic and showed the consistency of the rules proposed. However,
these rules are only appropriate when both the size of the random sample to be
classified and the sizes of the training samples are moderately large.

The NN rule for classifying a single observation Z into one of two popula-
tions 7 and w2 was first introduced by Fix and Hodges (1951). Their proposcd
k-NN rule may be described as follows:

Let {X11,...,Xy, } and {X3,...,X3,,} be the random samples from 7, and =
respectively. Using a distance function d(X|j,Z), order the observed distances
d(zij,z) for i=1,2 and j = 1,2,...,n;. For a fixed integer k, the k&-NN rule as-
signs Z to =y if ,% > %, where k; is the number of observations from =;,i = 1.2,
among & observations nearest to Z. For n; = n, = n, they showed that the
probability of misclassification (PMC) of the NN-rule tends to the PMC of the
kn) ) (for details sce

n

Fix and Hodges, 1951). In 1967, Cover and Hart studied an 1-NN rule, again

maximum likelihood rule as n — oo,k = k(n) — oo and

for classifying a single observation, based on an identified training sample from

a mixture of s-populations 7y,...,7,. Their model follows the Bayesian set up



and the proposed 1-NN rule assigns Z to =; if the NN (measured by a distance
function d) of Z belongs to the i-th population 7;,i = 1,...,s. They were the
first to obtain a bound on the NN risk R,)(1) (ie. the total probability of mis-
classification (TPMC)) of the type R(,)(1) < R)(1) < R, (1) (2 - a—}lR(‘s)(l))
where Ry (1) is the Bayes risk (see (2.9)). In 1966, Anderson suggested a non-
parametric procedure in the case of two populations based on separate training
samples. The procedure may be described as follows: Let {X11,...,X1,,} and
{X21,...,X2,,} be the training samples from 7, and 7, and Z be the single
observation to be classified Letween 7; and 7. Combine the X1i’s Xyj's. and Z
and rank them in increasing order. (i) If the Z is either the smallest or largest,
classify it to the class of its Nearest Neighbor, and (ii) if both the left and right
hand Nearest Neighbors are of same kind, classify Z to that class. (iii) if Z
falls between two different types of observations, classify it into either of the
two classes with probability 1/2 and 1/2. Das Gupta and Lin (1980) studied the
above rule and termed it a Rank Nearest Neighbor (RNN) rule. They derived
the asymptotic total probability of misclassification (TPMC) which turned out
to be exactly the same as the limiting risk obtained by Cover and Hart ( 1967)
with their 1-NV rule. They also considered a Multistage (M-stage) version of
the RNN rule and showed that the asymptotic TPMC of the M-stage RNN rule
decreases as the stage M increases. They suggested estimates based on “runs”
to estimate the PMC’s of the one-stage RNN rule and showed that these esti-
mates are asymptotically unbiased. Das Gupta and Lin’s proceduie is especially
useful when the observations are available only in terms of their ranks. Wag-
ner (1971) showed that the conditional risk of the 1-NN rule of Cover and Hart
(1967}, given the identified training sample of n observations, denoted by L.,
converges to R(3)(1), the asymptotic NN risk, with probability 1 under certain
mild continuity and moment conditions on the assumed densities. Also an esti-
mate of R(2)(1) was suggested and was shown to be consistent. Fritz in 1975,
improved Wagner’s result by replacing the assumption regarding the existence

and continuity of the density with non-atomicity of the underlying probability
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distributions. Fritz considered the case of general s and k¥ = 1, and showed

that lim, o Ln = Ry)(1) as.. In fact, for any given ¢ > 0, he established the

| exponential bound P(|L, - Ry(1)] > ¢) = O(e=°V™). Fritz also indicated that

when k > 1, the expression for L, becomes far more complicated. For &k > 1,
Xiru (1985) noticed that L, is a kind of “weighted U-statistic” and for s = 2
and & odd, he showed that ni_i_{xgo Ln = R(y)(k) as. still holds by establishing
again an exponential bound for P(|L, — R)(k)| 2 €). In the meantime Devroye
(1981) extended the result of Cover and Hart (1967) from the 1-NN to the k-
NN rule and obtained the following bound on the asymptotic k-NN risk Ri(1):
Ri(1) < (1+ai) Ry (1), ax = 1255 (14 o), k 0dd, & > 5 where Ry, (1) is the
Bayes risk (see (2.10)) and a = 0.3399... and B = 0.074... are universal con-
stants. The bound is the best possible in a “certain” sense (see Devroye (1081)).
Now we give ~ brief summary of our results.

A brief summary of the results:

In chapter two, we propose a classification procedure of the Nearest Neighbor
type for multiple observations, both in the (empirical) Bayesian and the nonpara-
metric framework. First we consider the problem in Bayesian formulation, where
the training sample is from a mixture of populations; then we consider a non-
parametric model where the training samples have been drawn separately from
the populations. In both cases, we arrive at the same asymptotic risk when ob-
servations are classified between two populations. The asymptotic risk for A" = 2
also coincides with the respective asymptotic risk of the 1-NN rule of Cover &
Hart (1967).

Chapter 3 deals with the classification of Multiple univariate observations be-
tween two populations using the RNN rule. We obtain asymptotic total proba-
bility of misclassification (TPMC) of the proposed first-stage RNN rule and derive
an upper bound for it when the sample sizes are equal. Asymptotic TPMC of
the M-stage RNN rule is also derived. An estimate of the asymptotic TPMC of

first-stage RNN rule is shown to be asymptotically unbiased and consistent.



In chapter 4, we extend our proposed NN and RNN type classification rules
of Chapter 2 and Chapter 3 respectively to general s popul;.tions. First in Sec-
tion 4.1, we ccnsider the classification of a single univariate observation (K = 1)
to one among s univariate populations using RNN rule, i.e. it is an extension of
Das Gupta and Lin (1980) single observation RNN classification procedure to s
populations. Here we derive its asymptotic TPMC, which turns out to be exactly
the same as the limiting risk of the 1-NN rule of Cover and Hart (1967) for s
populations. We also derive the asymptotic TPMC of the corresponding multi-
stage procedure. A simple estimate of the asymptotic TPMC of the first-stage
RNN is proposed and it ié shown to be asymiptotically unbiased and consistent.
In Section 4.2, for general K and s, we propose a classification procedure us-
ing the first-stage RNN rule in the univariate case and indicate how to get the
limiting TPMC of the proposed rule. Finally in Section 4.3, we propose a classi-
fication procedure for Multivariate observations for general I and s. For K = 2
and general s we obtain its limiting risk which turns out to be exactly the same
as that of Cover and Hart (1967) for general s.

We also consider in Chapter 5, a 1-N N classification rule for classifying Mul-
tiple observations based on sub-groupings of size ' from the training samples.
We derive its asymptotic risk R(,)(X) for the general case of I observations
and s populations. The bounds obtained on R(,)(X) come out to be parallel
to the bounds derived by Cover and Hart (1967) for the case K = 1. An esti-
mate R(3)(K) is also considered and shown to be asymptotically unbiased and
consistent.

Finally in Chapter 6, we report the results of a Monte Carlo simulation study
to examine the performance of our proposed rules in small sample situations. In
section 6.2, a comparison is made between the Cover and Hart procedure and
the Das Gupta and Lin procedure for certain different pairs of distributions. The
performance of the Ist-stage RNN rule is studied in Section 6.3. We calculate

the average proportion of misclassification R&) (K') for each increasing value of

K. Interestingly, we find that RE;;(K) decreases with the increasing value of K.
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Finally in Section 6.4, we make a small sample comparison between the 1st-stage
RNN and the sub-sample (SS) procedure. In the small sample situations the

sub-sample procedure seems to perform very well in most cases.



CHAPTER 2 N
ONE-NEAREST NEIGHBOR CLASSIFICATION RULES FOR
MULTIPLE OBSERVATIONS BETWEEN TWO POPULATIONS.

2.0 Introduction. In this chapter a simple Nearest Neighbor (NN) decision rule
is proposed for classifying an independent, identically distributed (i.i.d.) sample
of K (K > 1) observations into one of two populations. The asymptotic aver-
age probability of misclassification (PMC) R5)(X), also called average risk, is
derived for the proposed classification rule, both in the Bayesian as well as the
nonparametric formulations. For ' = 2, we obtain bounds on R (LK) of the
type R(5)(1) < R2)(2) < 2R, (1)(1 - R(,)(1)) in both Baysian and nonparametric
frameworks, where R(‘Q)(l) is the Bayes risk (see (2.10)) corresponding to the sin-
gle observation classification rule. We make a conjecture regarding the bounds on
R(2)(&) for ' > 3 and an example is given in support of the proposed bounds.
First we describe the preliminaries of the Bayesian model.

Let (X1,6:),(X2,6;),...,(Xn,68,) be iid. random variables taking value in
IR%x {1,2,...,s}, where {6;},i =1,...,n are i.i.d. discrete random variables with
Pi=j)=¢&,i=1,...,n,j=1,...,s and 3_;_, & = 1. The §;’s are called the
prior probabilities associated with populations =;,j =1,...,s. If §; = j. we say
that .X; is from the population #; with distribution function F; which is assumed
to possess a probability density function (p.df.) f; with respect to Lebesgue
measure p. Let fo,(z) denote the conditional probability density of X; given
;i =1,...,n,—c0 < 7 < co. Throughout the thesis, we assume f;,j = 1.2,. L §
are continuous. Assume now that we have (Z,6,),(Z,,62),....(Zx,60x). IV i.i.d.
observations taking values in R x {1.2....,s}, where only Z;.Z,,...,2Zx arc
observable and we assume that 6, = ... = §;- = 6 (say). The object is to
classify g: (Z1,23,...,2Zx) into-one among 7, 72,...,7,. For this, we need to
estimate # using the information contained in the “identified” (training) sample
(Xi,6;) i =1,...,n. By “identified” sample we mean that the value of each 6,

is assumed to be correctly given or known. Let 8!, be an estimate of 8 and

-]



8
L(6,8;) denote the loss incurred in estimating 8 with 6!. We write the posterior
probabilities given Z, = z; by Bayes theorem

r;,-(zg) = P(9 = i/Z( = 3()
= _ &ifiz) (2.1)
Sizy &ifi(ze)’

1=12,...,80=12,... K, and for given Z=z:= (21, 23,....5x),
A ~

&Il fitz)
Z;’=1€i :\zxfi(:r)

If we decide to classify Z to the population j, then the conditional risk given

—_
(V]
[~

—

n(z)=P6 =i/ Z=:)=

2t

Z=:z is given hy

~ A

. . (2.3)
=Y ui()Lid).
i=1

Bayes decision rule ¢* chooses the population 7; for which r;(z) in (2 3) is

minimum. Using é°, the conditional Bayes risk r*(z) can be written as
~

F(z)=mi =)L(i,7)}. 2.4

() = wind 3 i (L)) (24)

The overall minimum expected risk R, (K), called the Bayes risk, is given by
Rip(K) = Er'(z) = [r()f()d (23)

where
v N

flizy= Y& ] fitzo. (2.6)
1= (=1
Throughout the thesis, we take our loss function L{6.8',) as
L(6.6,)=0if =6
=1if 0 4£6,.
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Using the (0-1) loss function (2.7) above, the expressions (2.4) and (2.5) reduce

to the following expressions respectively:

r(2) = min(l =g (),- .., 1 = ni(2)), (2.8)
and
Rio() = [min(1 = ni(2) .1 = 3 (DF(2) 5
N I (2.9)
= [win(C & ] Ao, & [ fitzond ;.
i#1 =1 i#£s (=1
For ' =1 and s = 2, one may write (2.9) as
Riy(1) = [ min(n(a0),1 = m (o)1)
(2.10)

- / min(€ f1(21), €2 fa(22))dz1.

Suppose our proposed NN decision rule é, (say) classifies Z to the population

6. Then we define the NN risk R,)(R:6,) by

Ry (K;6,) = EL(8.6,), (2.11)
and the large sample NN risk by

R (K) = nli‘ngoEL(G, 6,,). (2.12)

We describe now the preliminaries of the nonparametric model. Let X;j.j =
1,2,....n; be a training sample from the i-th population =;,i = 1.2,...,s. Let

Z2=(2Zy,.... Zy ) be a random sample from = where it is known that =y = =,

for exactly one i. The problem is to classify g to the correct population i for
which 79 = =;.i = 1,...,s. We shall denote the c.d.f. of population =; by Fi.i =
1,2,...,s. We shall assume that each F; possesses a density f;,i =1,2....,s with
respect to the Lebesgue measure u. Let a¢j, ( # j = 1,2,...,s be the probability
of classifying g as being from m; when in fact, it is really from ;. In notation
we write it as

a¢j = P( Decide ge w¢/ gé 7). (2.13)



10
Now we define the total probability of misclassification (TPMC) by

L) :
RyK) =YY &a;. (2.14)
=1 j=1 .
t#j
The quantities R,)(K) and Ry, (K) (limiting value) would be equivalent, if we
use (0-1) loss function in (2.12).
For convenience of presentation we shall first consider the case for i = 2

and s = 2, then in section 2.2, we deal with the situation for general K and

2.

8

2.1 Asymptotic risk and its bounds in the Bayesian model when i = 2

observations are classified.

Let (X1,6,),(X2,6;),...,(X,,6,) be the identified training sample taking
values in IRY x {1,2}. Let (Z,,6,) and (23, 6;) be a random sample taking values
in R? x {1,2} where it is known that 6, = 8; = 6. Now to classify the pair
;Z, = (2,,2;) into =} or w3, we need to estimate 8 using the information contained
in the preceding identified training sample.

We call X} € {X1,X;,...,X,} a Nearest Neighbor (NN) of Z;

i min X Zi] = |1X0, - Z,l], =12 (2.15)

Let X7, and X, be the NN of Z, and Z,, respectively, and suppose that X7,
and X, are identified as being from the category 8, and 6, respectively. We
now define a Nearest Neighbor classification rule which we shall call 1-Nearest
Neighbor (1-NN) rule and denote it by 622 (the subscript B signifies Bayesian

framework):

Classify (Z1.2;) to = with probability one

if both the NN's of Z, and Z, are from =,,; = 1,2; and
(2.16)
classify (Z1.2;) to =,.j = 1,2 with probability each 1/2 (

if the NN's of Z) and Z; are from different populations. )
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Now we stale a lemma concerning the a.s. convergence of the NN X}, to Z;,j =
1,2 |

LEMMA 2.1.1. Let 2,2, and X,.X,,...,X, be the independent and iden-
tically distributed random variables. Suppose X|; is the NN of Zj.j = 1,2.
Then

X, —2Z; as asn-— oo

PROOQOYF. In view of continuity of f; for j = 1,2, we have for every : > 0

P{|X7; = 2]l > ¢} = P{min || X - Z;] > ¢}

=P{IX1 = Zjl| > . | X2 = Zil| > 2. | X0 = Z5]) > 2}
= [P{lIX1 = Zj]| > <})"

=[1-P{IX: - Z;|| < "

— 0 as n—> 0. (2.17)
Since ||X},; — Z;|| is monotonically decreasing in n, it follows that

Jim PUia{IX}; = 25 > ¢}l = lim PN, = 2l > (218

so that by (2.17) we have

-
X, —Zj as. asn-— oo

The proof is complete. ]

Let 6, be an estimate of 6 defined by (2.16). Then the conditional risk given

= (21,22) and X' =2’ = (a),.2%,) is given by
I~

r(ziz )= E{L(6.6,)/ z.2' )
=P #6,/:.1")

=P{6,=1n6=2)u(b,=2Nn6=1)/:.2"}

~ ~n

=P@6,=1N8=2/z2")+ P, =2n8=1/:.1").

~ ~n ~ ~n
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In the above expression, using the conditional independence of 8 and 8!, we get

(el =PO=2/3) PO, =1/ ) +PO=1/3) PO, =2/ ')

=n(2) m(ziz ) +ni(z) ma(ziz)), (2.19)

where 5f(z) for I =2 is as given in (2.2),

iz )= P8, =1/ ')

= £ fi(zn) fi(Thr)
Bn

+ La&lhEn)fa(The) + fi(zh) fa(zi))
2 Bn

with

Bn“flfl(lnl)fl( Ty +S2f2( nl f2 112
+&&(fi(zn) fo(zhe) + filzng) fa(zhy))
=(Elfl(tnl + 2f2(tnl) (flfl(lnz)'*'f" n2 )

=H(Slf1 n_])+’5"f2(rn])) (2.

=1

[V

(L]

—
~—

E f" nl f" n2
Bn
( nl f" nl + fl(vn2 fl(xnl)
Bn

1§62
*3

Now we prove a theorem on limiting NN risk.
THEOREM 2.1.1. Suppose z; and z; are continuity points of both f, and f,.

Then the limiting conditional risk given Z= (zy,22) and the unconditional risk
~

for the rule 6223) are given respectively by

r(z)= lim r(z:2")
~ n—oc ~ ~n

=77§(;:) ,-( +'h( ) /.2( a.s.,

and



Rep(2) = lim E{r(z:2))} = E{r(z)},

where
m(z) = §hENDA()
~° mia (& fi(zi) + Safalzi))
+ L&& (A2 f2(22) + fi(22) fa(21))
2wl (& AHGED)+ ()
and
ma(2) = & f2(z1)fa(z1)
TR R (GG + & ()

180N (21) fa(z2) + fi(z2) fa(21))
(& hzi) + ()

1
t3

PROOF. By Lemma 2.1.1, we know that, as n — co.
X,y —nand X, -2 as.

so that by the continuity of the fi's i = 1,2, we get

and

fi(X}2) — fi(z2) as. as n— cc.

Thus, by (2.20), (2.21), (2.22). (2.25) and (2.26). we have

(2" ) — m(2) a.s.
~ ~n -~
and
ma(z; 2’ ) — my(2) as. asn— 2.
~ A -~




Therefore, by (2.19), (2.27) and (2.28)

Y=limr(z:a'
r(z)=limr(ziz!)

=n3(z) limm(zizn) +03(z) - Himma(z;2),)

=n3(2) - mi(z) +0y(z) - mo(2) as.. (2.29)

Again, by the Lehesque Dominated Convergence Theorem (D.C.T.), we get
R2)(2) =lim E{r(z;27)} = Er(2). (2.30)

The proof is complete. ]

Now, we state and prove a theorem regarding the bounds on R2)(2).

THEOREM 2.1.2. The asymptotic risk R2)(2) of the rule ‘528 has the follow-
ing bounds

[Ev]
(98]
Py
~

Ri3)(1) < R(2)(2) < 2Ry, (1)(1 — Ry, (1)), (2.31

where R7,\(1) is the Bayes risk (see 2.10) based on a single observation.

PROOF. By (2.29), (2.23) and (2.24) we write

£2f2(
<1

) f2(22)
flfl( z1) + & folx 2

)_m(ﬂ A

2) + €2 fa(22))

o 1_&8AGDAG) + filz)fi(=) ]
2060 fi(z1) + Lo fo(21)) 1 fi(z2) + €2 fa(22))

E (1) fi(z2)
(Ehfi(z1) + E2fa(20)) 6 fi(z2) + E2f2(22))

+ (= )[

§162(f 1)f2( )+ fi(z2)f2(z1)) ]

1
Ty ATy D€ f1(22) + €2fa(2))



Using (2.1) and (2.2) in above, we get

r(z) =n7(z)[na(=1)  m(22) + 5 (771( ) - ma(22) + m(z2) - m2(21))]
+n2(z Ym(z1) - m(z2) + 5 ('h( 1) - n2(22) + m(22) - ma(=1))]
1 1 1
=ny(z )[ sm(z1)m(z2) + gm(a)na(z2) + 5772(31)'72(32)+5771(32)772(31)]
ol 1 i
+0:(2) [3mz)m(z) + 5m(a Jn2(z2) + gmizin(z2) + 3mlz2)na(=1)]
‘ 1 |
=n(z )[ n2(z2)(m(z1) + n2(21)) + 5'72(31)(771(32)+772(-‘~z))]
+n3(z )[ m(z1)(m(z 2)+'72(32))+é771(32)(771(31)+772(31))]

5 [2(21) + m2(22)] +03(z) - [711( 21) + m(z2)]. (2.32)

lulr—a

=n(z)-
Note that

(f)>mm{ (m(z )+771(22)),%(77:»(21)+772(:2))}

1,
smin{ni(z1) + m(22),1—nl-.) - 1= n(z2)}

1 o
2> ;)-{min(m(:l), 1 —m(z1)) + min(n(22),1 = n(=2))}- (2.33)

Taking expections both sides of (2.23) with respect to the distribution of Z=

(z1,22) and using (2.30), we have



1‘6
Ray(2) = B(r(2)) 2 5 / / min(n(z1),1 = (1))

X (E1f1(21) f1(z2) + €2 f2(21) fa(22) )dzydz,

1
+ 3//min(771(_22),1— m(z2))

X (&1 £1(z1)f1(22) + E2F2(21) fa(22))dz1dzg

1o [ . R
:;[/111111(771(31),1 =m(=1)) Y &ifi(s1)dn
- i=1

2
+ [ mintn (21 = mie2) 3 €ifiza)dz).
i=1
Now using (2.10) in above we get

1
R (2) 2 5[Riy(1) + Ry (1) = RBy)(1). (2.34)

Again, taking expectations both sides of (2.32) w.r.t. the distribution of :=

~

(z1,22) and using (2.30), we write

R(?)(:Z):E(r(i = § //Elfl j] 1]2( ])(l 1(l..)

//flfl( )i(z2)m2(22)d2dz 2+//fzf"( 20)fa(z)mi (2 )dzydzy
+//§2f2(21)f2(~”2)7)1(~"2)d~”1(132]

1
= 3[/£1f1(:1)772(31 )dz +/61f1(:2)7/2(32)d:.2



+/52f2(21)m(21)d21 +/§2f2(22)'71(52)d21d22]

it

o~

'3 :,"/ m{2ma(z)6 fi(z) + f2f2(3))d3]

]
n

= 28 [m ()1 = ua(2)] (2.35)
Recall that the conditional Bayes risk from (2.8) for s = 2 is given by
r*(z) = min{nz(z),m(2)} (2.36)

which is symmetric in »; and #2; since 5; + 52 = 1, thus by (2.35), (2.36) and

Jensen’s inequality, we have

R(5)(2) = 2E[r"()(1 - 7*(2))]
= 2[Er*(z) — E(r*(z))?]
< 2[Er*(z) - (Er*(z))]

2Ry (1) - B (1))

= 2R(5)(1)(1 — R{)(1))- (2.37)
From (2.34) and (2.37), we get
R(5)(1) < R2)(2) £ 2R (1)(1 = Riy(1)). (2.38)
The proof is complete. =]

REMARKS 2.1.1. The bounds obtained for the risk R(3)(2) of the rule 6&23 in
(2.16) are in terms of the Bayes Risk corresponding to a single observation classi-
fication rule and therefore are not the ones we had hoped for. These bounds are,
in fact, exactly the same as those Cover and Hart (1967) obtained corresponding
to their rule for the classification of a single observation. However the asymp-

totic risk R(3)(2) is less than the asymptotic risk of the “repeating” procedure
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(that is, when observations are classified one by one). Now we prove this last
assertion.
Let R(1) be the asymptotic NN risk when a single observation is classified.

Thus, when two observations are classified repeatedly, the risk is given by

R (repeated) =1- (1 - R(1))?
=2R(1) - R*(1); | (2.39)

but by (2.35), we have
R(2)(2) = R(1). (2.40)
C?onseritiently
R (repeated) — R(9)(2) = R(1) - R*(1)
= R(1)(1 - R(1)) 2 0,
which implies,
R(2)(2) < R (repeated) . (2.41)

Thus, from (2.41), we conclude that R;)(2) has a lower risk compared to the
repeated case.
Now we propose a classification rule which generalizes the rule 6&23) in (2.10)

to I\ observations and we obtain its limiting risk.

2.2. Asymptotic risk in a Bayesian model when I observations are clas-

sified.

Let (X1,6,),(X2,6,),....(X,,6,) be a random training samnple taking values
in IR? x {1,2}.

Let (gz (Z1,2,...,2Zr),8) be a random sample of size I\ to be classified

between w; and m,. We describe a classification rule 6;3}5 as follows:



»
First, we find the NN’s (defined in (2.15)) of all Z,’s for fall (or each)
¢=1,2,...,K and we identify them. Then,
Classify g into 7y with probability 1
if # of NN from =; > # of NN from y;
(and of course to m with prob. 1 if # of NN from
w2 > # of NN from m;);

|+

M

classify Z into m; with probability

s

t

if # of NN from 7; = # of NN from =,. (2.42)

Applying the rule bI\B descubed in (2.42), we estimate 8. Suppose the estimate

of 8 is 6;,.

Now we state a lemma on almost sure convergence of NN X} to Z;,j =

1,2,...,K.

LEMMA 2.2.1. Let 2,,2,,.... Zy and X;,X,,...,X, be iid random vari-
ables. Let X, . be the NN to Z;,j =1,2,..., K. Then

X, — Zj as. as n — co.

PROOF. The proof is similar to Lemma 2.1.1 and hence it is omitted.

We denote Z— (Z1,22,...,Zx) and .\ = (X' X' ,....X" ). Let Sp—;
~nl ~n2 ~nk
be the set of permutations of { 1,1,....1, 2,2 ...,2 % and also let r= (ry,ry,...,71)
(K= 0
be an element of Si_;. The conditional risk given Z=z= (z1,2;.....2) and
X'=(ah,2hy,. .., a0 ) = 2}, is given by

~n

r(z;2') = E(L(6,6,)/ z,z2")
which, by using the conditional independence of 6 and 8], can be written as

r(zie')=P(®=2/z) P(Bh=1/2' )+ P(8 =1/ z)-P(6, =2/ 2')

~n

=n3(z) - m(ziz )+ ai(z) ma(zi2)). (2.43)
n n

-~
~
~



!

Expressions for 7, and 7, are given below for the cases K even and K odd

Case 1. when K, is even, say, K = 2m, then

m(ziz ) =P8, =1/ z')
m-1"

= {Z Cl\ l(n + Cm n)}"'

=0

ma(z:a' ) =P8, =2/ :c'

...{ Z CI\ ;(n)+ Cm(n)}—.
t=m+1
with
C[\(n I-Ifl nJ
K-1
CI\ l(n)—f\ l{z{H fl(q'n) f2 nI\ + H fl(l"J)f'(rlnl\—T
I P
N
-+ [T AR,
Jj=2
Cl\'-i(n —sl[\ lf" Z f"l(‘lnl)f"z n?) f"l\ nl\ *
r€Sk-i
] KN
Co(n) = €N Hfz(l"nj),
j=1
and

KN
B" = Z C[(n.).
(=0

(2.44)

(2.45)

(2.46)

(2.47)

(2.48)

(2.49)



A

THEOREM 2.2.1, Let z1,22,...,2x be the continuity points of f; and f,.

Then the limiting conditional risk given Z= (21,...,2x) and the unconditional
risk for the rule 653}3 are given respectively by

r(i) = lim r(z;2')

n—oo ~ ~n

=n()m(2) +0i(2)m(z) as.

and
Ray(K) = lim Er(z;2') = E(r(2)),
where
m-—1 1 1
m(:) = {§ Ci-i+3Cm} 5 (2.50)
and
2m-1 1 1
() ={ ) Cu-i+35Cn} (2:31)
=m+]
. K
Cr =& [ fiz)
j=1
Ch-i =& Y fri(z1)fr(z2) - fru(zr),
r€SK i
) KN
Co =& [] f2z5)
j=1
and

.
B=Zc[.

£€=0
PROOF. By Lemma 2.2.1, we know

X,',j —Z; as. asn-—o00, jJ= 1,2,.... k.



o
o

Since both f; and f, are continuous at z;,z;,...,zx, we have

Cr-i(m) 22 686 S £/ (e fra(22) o fric (o)

PESK -

=Cr-i V¥i=12,... K (2.52)
and .
B, 23y Cn_i=B (2.53)
i=
Therefore by (2.44)-(2.33), we get
m(zie’ ) 25 m(z), (2.54)
and

ma(zi2!) 5 m(3) (2.55)

So by (2.43), (2.54) and (2.35) we have
r(z) = lim r(z,a')

=m(2)m(z) +m(z)m(z). as

') = E(r(z)).

~ ~n

By D.C.T. we also get
R (N) = "12130 Er(

'D
) in (2.530) and (2.51)

The proof is complete
Case II. When K = 2m +1. we replace 7,(z) and my(z
by
m(z) =) Cn-i/B, (2.56)
1=0
(2.57)

2m+1
) = Z Cn-i/B, respectively.

and
~
1=m-+1

H

2(



REMARK 2.2.1. We have not been able to extend (2.31) for general K > 2;

however, we expect that the following bounds hold for any KX > 2:

Ri3)(K/2) € Ra)(X) £ 2R(,)(K/2)(1 = R(,)(K/2)) if K is even, (2.58)

B3y < Ry < 2Ry (B30 - Rey (B2 ) i K ks odd(2.50)

Ry (

where Ry, (X) is defined in (2.9). Thus, we notice that when I increases the
upper bound of R;)(&\) decreases and that when K = 2, the bounds in (2.58)
pecome the bounds in (2.31). The bounds mentioned in (2.38) and (2.59) have

been verified in specific cases and an example of which is given below:

Example 2.1. Let fi(z) =2z, O0<z <], fo(y) =2-2y, 0<y<1and

& =& =4. By (2.35), we write R3)(2) as

R(3)(2) = 2E(m(2)n2(=))
_o [ _&h()es(2) ds
“Jo Gh(z)+E&f(2)

1
=:2/ (1 - z)dz
Jo

(2.60)

The Bayes risk from (2.9) for X' =2 and s =2, is



R @) = [ [mintefite) i), @) fo(ea))dsrde
1 1
2/0 /O min(z1 22, (1 = 21 )(1 = 1))y dz,

[ // le'zd.-‘,'ld" // (1-2z)1 - 29)dzydz,]

i
)

5153<(l=2 ) (1=~2; 5132>(1=25)(1~23)
= [// 2y zodzidzg+ // (1= 2)(1 = 23)dzydz)
1+:2<1 S1+32>1

9

[/0 %/,, ~od-2d~1+/ 1—~1)/ (1 = 23)dzydz)

1 1
= 2[;/ 1—..1) d"l +/ (1 —-.1)/ ..gd..od-l]
= Jo
1 /! 2
=25 | (1 ~=z)dz / 23(1 = 21)dz,]
= Jo 0
1
1 1
= 1-"d..—2——--=-
2 [s1- s =2t - ) ]
Thus
1 9
,‘,, 2 - =3 2,
Riy(2) = ¢ 51 (2.61)
The Bayes risk from (2.10) is
Rip(1) = [ min(6 fi(2), €2 ut) )
1
=/ min(z,1 — z)dz
0
=/ :d:+/ (1-2z)d:
i<l—2 D>l-s
1/2 1
=/ :(l:+/ (1~ z2)d=
0 1/2
1,1 1_ 6
T8 8 4 2w
Thus
R(1) = 6 2.62
(1) = 7% (2.62)



Therefore, by (2.60) and (2.62), we have

6
Riy»(1) = 7 S R(2) =

uol »

> < 2Rp(1)(1 - Ripy(D) = 57

Thus, the inequality (2.58) is satisfied for K = 2. Now using Theorem 2.2.1 and
(2.56) and (2.537) for K =3, we get

Ry(3) = / / / €1 £ (=0 Fu(52) Fu(20) a0 ma(z2) + ma(z0)ma(z3)m (22)

+ n2(z2m2(z3)m (21))

+///fzfz(:l)fz(ze)fz(zs)['h(sl)771('22)+771(31)771(33)712(32)

+ m(z2m(z3)n2(z1)]
= 'Il + 0.

1 1 p1
Il=4[/0/0/0212233[(1—21)(1—:g)+(1—:1):-:2(1—-:3)

+ (1 - 22)(1 - 23)21]d21d22d.’:3

1 1 1 1 1 1
= 4[/ 5(1 -31)/ z9(1 — 32)/ 23 +/ (1 - 31)/ :g/ z3(1 — z3)
0 0 0 0

: 1 1 gl
I =4[/ / / (1 =z)(1 = 22)(1 = z3)[z122) + 2123(1 — 22)
o Jo Jo

+ 2223(1 - )]d21 d22d23

=4[/01 zl(l-zl)folle—zg)/ol(l—:s)
+/01 ZI(l-zl)/ol(l-zgf/OI zs(l—zs)+/ol(1—z1>2
X /01 z2(1 = 29) /01 z3(1 — 23)]



Thus,
Ray(3)= gz + 532 = 3= = 2 (2.63)

Therefore, by (2.61) and (2.63), we have

9 14 . 15
Rin(2) = 57 S B(3) = g7 < 2R, (1~ By (D) = 2.

Thus, for I = 3 the inequality (2.59) is satisfied.

2.3 Asymptotic TPMC and its bounds in a nonparametric model when
K > 2 observations are classified.

Let =, and 7; be two distinct multivariate populations taking values in IR?
with density functions f; and f, respectively. Assume that a random sample
(Z1,22) comes from one or the other of the two populations. Now the problem
is to classify (Z;,22) to m; or =,.

Let (X11,X12,... Xin, ) and (X21, X22,... X24a,) be the separate training sam-
ples from 7, and m; respectively.

Consider the following 1-NN procedure:

Let Uy and U; be the two Nearest Neighbors (using some distance function) of
Z, and Z; respectively from the combined samples X};’s and X> j’s and denote
by 61(21,29; Xyi's,Xai's i = 1,...,n,,) = 1,...,ny) the discriminant function,
namely, the probability with which one decides to choose 7; (over 7). Then the
1-NN nonparametric classification procedure 6% an 1s defined as (N denotes the

non-parametric model)

(1 if Uy and U, both are from =,

by = 4 1/2 if one of U; and U, is from m; and other (2.64)
: is from m : =

0 otherwise.

We assume that P(U; = U,) = 0, which holds when F, and F; are continuous.
Let

Tws = Uy - Z4]) = sin, IW; - 21, (2.65)



and
Ty =|U; - 2Z4) = . ’<’.“<”v Wi = Z,||, - (2.66)

where {W), W5,... Wa}, (N = ny + np) stands for the pooled samples of Xy;'s

and X3j's. Let n = min(ny,n;).

LEMMA 2.3.1. If Z, and Z, are i.i.d. with density fi, as n — oo, we have

Ty; =0 2.5, ° (2.67)
and
-ITn2 =0 as. as n— oo (2.68)

PROOQF. For any t; >0

P(Tny > t) = P(IUy, - 2, > ty)
= P(lr_<nii£n |W; - 2, | > 1)
= [P(J|X11 = Z1]| > t)]™ - [P|| X2y = Z4]] > ;)™

— 0 as n— 0. (2.69)
Since, Ty, is monotonically decreasing in N, by (2.69) and (2.18)
Tny—0as. , asn— oo.
Similarly, one can prove
Tns = 0 as., as n— oo.

The proof is complete. g

Let E;; denote the event that U; and U, come respectively from i-th and
J-th populations ¢ = 1,2; j = 1,2, We shall first find the conditional joint

distribution of Ty; and Tn2 given Eij and Z= (21,z2) ¢ = 1,2 and j = 1,2.



First we find joint c.d.f for Tny and Tn; , when both U, and U; are from =,.
We have
Gt tz) = P[Tny < 4,Tne < t2/En, 2
=1-Pu[Tn > ty] = Pi1[Tng > t,)

+ Puu[Tny > £y, Tng > tg]. (2.70)

|
-

Now
Piy(Tnr > 4,Tng > tp)
-[ / ma(ny = DL = Py(Sa, (llur = z1]])
Nur=zuli>t Jflug—=2al|>t,
= Pi(Ss,(luz — z|)™ 2
X {1 = Py(S: (lwr = 21l) = Po(Se(fluz = z2)))]"
X dPy(uy)dPy(us),

which by the transformation u; — z; = v, and uy — 2, = va, equals
v 1 2 2 y €q

/ / ny(ny = D1 = Po(Sey (Joa) = Po(Ss, (o)) 2
o>t Jllvall>t,
% [1 = Py(Ss.(lo2]))) = Po(Ssy ([lo )™

X Ji{v1 + 21) - fi(va + 29)dvydvy

o~
(]
-1
oy
e

where S ([lvill), i = 1,2 is the sphere centered at z; and radius lvill-
Let v = (vllvv127 v ,’U]d)l; Uy = (U'Zlvv221 <. 'av2d)’y

1 =(211,212,.-,514) and 22 = (291, 222, . ., 224) .

Now consider the following transformations:
V11 = ricosb,

Vg = 1pstnbcosb,

V77 = T1sinbcosh; .. . sinby_yc0s64-,

vg =1y sinfysinb,...sinby_,sinfy_,,




07 <00,0<8;<m,i=12,...,d=2; 0<6,4_, < 2r,
1 s S = pd=l g d=2g . d-3 : r o=
with jacobian = [Ji| = r{"'sin®*"?4,sin?"36,...sinb,_,, and r, = lle1]l, and

Ug1 = Tcosy;

V22 = roSINQ;CoSq

V7= = T2 Sinacosy .. . Sin Gg—2c08ag—)
Vad = Tesinog sinag .. .sinag_gsinag_,
0Sr2<o00,0<a;<m, i=12,...,d-2; 0< ay_y < 2,

d-2 d-3

with jacobian = |J;] = rg_l sin® “ a;sin®" asz...sinag-g, and ry = vl
Applying the above polar transformations in (2.71), we substitute the value
of (2.71) in (2.70) and then differentiate (2.70) with respect to ¢; and #, to get

the conditional joint p.df. of t; and ¢t;. Thus we have

f(lil)nl,na(tlth) = nl(nl - 1)[1 - Pl(Szl(tl)) - Pl(Szz(t2))]nl-2
X (1= Py(Se,(11)) = Pa(Ss, (t2))]" - t{ 85!
" L4 2r
X/ / fl(t160801+211,t1 sin01c0392+312,...
0 0o Jo
tysinf;sinf,...sinfy_; + 214) sin®~1 4, sin¢? 6,
...5in84-0d6,db, ...d8;_,
T T 2x
X / / fi(ticosay + 291, t; sina;cosay + 299, . . .,
0 o Jo

tzsinagsinay...stnag—; + 224) sin?—? aj sin?™? Qs

[8)
-]
SV
~—

...sinag_sdaday . ..day_;. (2.7
Similarly, one can obtain

FOP o ma(t1,t2) = na(ny = 1)[1 — Py(Se, (t1)) — Py(S:,(t2))]"72
X [1 = Pi(S;,(t1)) = Po(Sy(t2))]™ - 48 1ed 1

” T M2
X/ / fg(tlcosﬂl + =11, t1 sin @y cosb, + z12,. ..,
0 0 Jo
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tysinfy sinf;...sinf4_y + 214)sin?"2 6, sin? % 4,
...8in Gd_gdﬂldﬂg cen ded-l
. r p2n
. X / v '/ fg(tgcosal + 291,12 sinalcosag + 230,000,
0 0 0

d-3

2 ag sin (43

tasinagsinag ... sinag-) + z2¢)sin?™

...sln ad_gdaldag e dad_l, (273)

f(l'g)m,nz(tlst?) = nl"?[l - P(S:, (1)) - Pl(stz(ti’).)]nl—l
X [L = Py(S:, (1)) = Po( Sy (12))]"™ " - ¢ t5 ™!
g r M2r
x/ --'/ fl(tlcosﬂl +211,t1 Si110160862+312,...,
0 0 0
t sin 01 sin 02 e sin@d_l + 21d) Sind—2 91 Sil’ldu3 0'_)
...sin Gd_gdeldez v dgd—l
™ T p2r
X / / fa(tacosay + z21,ty sinaycosay + 299, ...,
0 0 0

d-3

2aysin® 3 ay

tasina) sinag...stnag—y + 224) sin?~

cosinag_qdaydag .. . dag., (2.74)

and

f(2'1)nl,nz(t1at2) = 11]712[1 - Pl(Szl(tl)) - PI(S:z(tz))]m—]
X [1 = Po(S., (1)) = Pa(Sey(t2))]"27" - t1 1ty
T L4 2n
x/ .../ fl(tchSCYl +211,t1 Sina1C0802+322,...,
0 0 0

20 sin® 2 ay

tasina;sinag...sinag-1 + z2q) sin?~
...sin ad_zdalda'g e dad...l
g T p2r
X/ / fz(tlco.sel +321,t1 Si110160892+2|2,....
0 0 0

tasinf)sinf,...s5inby— + z24) sin?2 9, sin?~? 8,

[{™]
-1
Cr

...sinﬂd_gdﬂldﬂg...(19,1_1. (' .
By Lemma 2.3.1 as n — oo

t; =0 as and 1, — 0 a.s..




So that

and

[1 = Py(S:, (1)) — Py(Se, (1)) = 1, as.

[1 = Po(S:, (1)) = Po(S,(82)))° — 1, as.

L4 ~ b1.4
/ x / fi(t1cosby + z11,t; sinbycosby + 232, ...,
0 o Jo

Similarly

tasinfysinbs...sinfg—1 + 214)

x sin?"2 6, sin?"% 8, ...sinBy_,db,db . ..

fud n
— fi(z1) / sin?~2 6, dé, / sin®™% 6,8, - - -
0 ]

g 2n
/ sin gd..gde_g . dad—l
0

X 2

= fi(z1) \/g —\/-d_—_é-_—_l_ \/_

1=1,2, as. .

T Ld 2r
/ / fi(tgcosal + z21,t2 sinaycosag + 292,...,
0 0 0

Let

tasinagsinag...stnag—; + z24)

d- d-3 Py

X sin

2(71’)‘1r

b
Y4
2

2 .
Qq sin

t=1,2, as. .

= fi(z2) -

n;

pi = lim r=1,2.

n Ny 4+ ng ’

2...8Inay_sdadas ...

C[Gd_l

dad—l

(2.79)

(2.80)

The conditional probability of deciding that z; and z; come from 7;, given Z; =

21, Zz = 29, is

m(21,29;n1,n2) = E(¢1/2) = 21,22 = 27)

(2.81)



Now we state and. prove the main theorem of this section.

THEOREM 2.3.1. Let z; and z, be continuity points of both f, and f,. Then
the asymptotic conditional probability of deciding Z= (z1,z2) from m, given

Zy =2z and Z, = z; of rule 62(,%), is given by

. ~ 1.
m(21,22) = 11,{117"(31,32;"-1,712) =M + 3N,
where
2f (= o
M= = p1f1(z1)f1(22) (2.82)
[Tizi {1 f1(20) + P2 fo(2i))
and

5 = PpilhiGe)fa(z2) + fi(z2) fa(z1)) 2.83
" n?=1{131f1(3i) + pafa(zi)} (2.83)

PROOF. From (2.64) and (2.81) we have

1 1
m(z,z2im,ne) = P($y = 1/2y = 21,2y = 20) + 5P(b1 = 5/2) = 21,2, = =)

1 1
= EP(¢1 =1/U1, Uzi 21,%2) + 5EP(¢1 = 5 /Uy, Uy; 21, 72).(2.84)
It can be seen that

P(¢1 =1/U1,Us;21,22) = P($1 = 1/||Uy = 21| = 11, |Uz = =a| = ta; 21, 29)
r(l,l)
ni,nz t ,t
=f 1, (1 2), (285)
fﬂ[,llz(tlst2) ’
where

Faina(tista) = FO0 (4, ts) + L2 (o ta) + FO2 (4,1) + &0 (4, 12). (2.86)
Now using (2.72) - (2.80), (2.85) and (2.86) we get

li’xlnP(dol = 1/Uy,Uy; 21, 22)

_ Pifi(z1)fi(z2)
PLAGOA(z2) + P3fa(20) f2(22) + pip2(fi (210 f2(22) + Fi(22) f2(=1 )
Pifi(=1)fi(=2) (2.87)

- (Prhi(z1) + p2afa(z1)) (P2 filz2) + pafalza))
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: 'Sitnilarly, one would get

' 1 - FB (1) + FER (11, 0)
IimP(é) = =/Uy,Up; 24,2 =ll 1.3l 1,3ty
" s 2/ ez 22) fryna(t1,t2)

— __ pnp(fi(a)fa(22) + fi(22)fa(21)) (2.88)
(Prfr(z1) + p2fa(21))(prfi(22) + P2 fo(22)) -
Now using (2.84), (2.87), (2.88) and by DCT, we get

n(21,22) = Iirx‘n n(21, 22; 1, 0)

- P fi(z1 fi(z2)

Tizi {p1f1(23) + p2fa(2:))
1pipa(fi(21) f2(22) + fi(z2) f2(21))
2 [T {pihil(=) + p2fal)

-~

0-

+

I —

The proof is complete. 0
Now we derive the TPMC for the rule b,_(,"f\), The limiting PMC’s are given

as follows:
= nlLI{.loP(DeClde( 1,-2) € 7!'2/( 1,1.2) € 771)
= [ [ - mienntands,

= //[ pifa(z1)f2(22)
[T (P filzi) + P2 fa(2:)}

+ _1_P1P2(f1(21)f2(22) + f1(32)f2(31))]
2 [l {pifi(z:) +pafolzi)}
x fi(z1)f1(z2)dz1dze (2:89)

and

az = lim P(Decide(z,22) € 7 /(21,22) € m3)

N==O00

=//7r(zl,z-;'fg(zl)f2 z2)dz1dzy
//[ P1f1 l)fl( )
—-1{Pl fl ~x +p2f2("l)}
1pipa(fi(z 1)f2(~2)+f1(~2)f2(21))]

S | R AEN +P2f°(2i)}
X fa(z1)f2(z2)dz1dzs (2.90)

+
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| Suj)posé €1 and & are the prior probabilities, then we take pi=& (=12

for comparison of the limiting TPMC. Now the limiting TPMC for the rule 62(,?\3

is given by

R2)(2) = &10y + G0
=//"(i)(51f1(31)f1(22)+§2f2(31)f2(32))d21d~72
= E7(5) . (2.91).

where

)t s €3 f2(21) fa(22)
2 771(;)n?=1{€1.f1(2i) + &2 fa(2i)}
+ 18&Ui(z1)fa(z2) + fi(z2)fa(= ).)]
2 e d&hi(z) + & fa(2))
.. §h1(z1)hi(z2)
¥ ’72(;)[”?:1{511'1(2&) + & fa(zi)}
+ 2a&lh(z)fa(z2) + fi(z2)fa(21)) .
2 [Ticd&hi(z) + &fol(=))

Using (2.23) and (2.24) in above, we write

r(2) = ni(2)m(2) + 03 (2)m(2) (2.92)

where 5}, i = 1,2 for K = 2 are defined in (2.2). Thus the total limiting PMC in
(2.91) is exactly equal to the total limiting risk in (2.30) in the Bayesian model.
Therefore (2.91) will have same bounds that are obtained in Theorem 2.1.9. In

the nonparametric set-up when K observations are to he classified using rule

(2)
61\'8'

model. It is routine and lengthy, so it is omitted.

the same asymptotic TPMC R(3)(I) can be ohtained as in the Bayesian



‘ CHAPTER 3
CLASSIFICATION OF MULTIPLE UNIVARIA’I‘E OBSERVATIONS
USING MULTISTAGE RANK NEAREST NEIGHBOR RULE

3.0 Introduction. We consider the problem of classifying multiple univariate
observations from one of the two given populations m; and =y, thus generaliz-
ing the work of Das Gupta and Lin (1980) from one to K observations. Let
(X1,X3,...,X,,) and (", Ys,....Y,,) be training samples from =, and =, re-
spectively. Suppose g: (Z1,...,2k) is a random sample from either =, or L2
and is to be classified into one or the other. We shall prop sse a left-right Multi-
Stage Rank Nearest Neighbor rule. We now describe the first stage RNN rule
as follows: Combine X;s, Yj’'s and Z,’s and arrange them in increasing or-
der, and look for the first left and right hand rank nearest neighbors of each
Z¢VE=1,2,... K and identify them. Then the first stage Rank Nearest Neigh-
bor (RNN)rule is:
Classify g into m; with probability 1,

if #(1°' stage) RNN's from m; > #(1** stage) RNN's from ,)
classify Z into =, with probability 1
if #(1° stage) RNN’s from = < #(1°' stage) RNN’s from =, , r (3.1)

classify Z into 7, or m, with probability 1 /2 each

if #(1°* stage) RNN’s from m; = #(1°" stage) RNN’s from =, . J

To reduce the chance of randomization in the above RNN rule defined by (3.1)
we consider a multi-stage version as follows:

If the 1st-stage F.NN rule leads to a tie, delete those tied observations and apply
the first-stage rule to the remaining observations. Proceed in this way, moving
to the next stage whenever a tie occurs. The M-stage RNN rule denoted by
MRNN is defined to be the one which terminates at the M-th stage (and allows
for a tie in the final stage). We derive the asymptotic total PMC Rf;; (I\) for the
Ist-stage RNN rule where ' = 2. We explicitly derive the total PMC R(,,)P
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;. ~ and show that Rg;@) < Rg;(l) whea § = &. We also illustrate this by an

example,

In the case of M-stage, we prove that the asymptotic total PMC Rg:;“ (2) de-
creases as the stage level (M) increases. We also suggest an estimate for Rf;;(?)
which is asymptotically unbiased and consistent. We shall denote the c.d.f's of
7 and m; by Fy and Fj, respectively and assume that F; possesses a density

function f; w.r.t. Lebesque measure y, i=1,2.

3.1 Asymptotic PMC’s of the First-stage RNN rule when i = 2.

We assume g = (21, 2;) is either from m; or m;. The following lemma shows that
asymptotically the right-hand and the left-hand neighbors of Z, (¢ = 1,2) exist
atthe M-th stage. We denote the right-hand and left-hand M'*RNN's of Z, by

Vc(M) and U,(M) respectively, £ = 1,2. Let n = min(ny,n;) and assume Z; < Z,.

LEMMA 3.1.1. If M/n — 0 as n — oo, the probability that there are at least
2M observations between Z) and Z; and also M observations to the left of Z,

and to right of Z, is one.

PROOQF. Since F is absolutely continuous, it is sufficient to prove the lemma

conditional on Z; = z; and Z; = z,, with z; < z, and Fi(z) = Fy(z1) > 0. Define

m

Wi=I (X)) =120, W=y W, (3.2)
i=1

where [ is an indicator function. Then E(W;) = Fy(z2) — Fi(z1) > 0 for each i,
By the strong law of large numbers, we have from (3.2) that
iy Wi .
P[—&;-L—- — E(W;) as n; — oo] =1 (3.3)
1

Now since &L — 0 as ny — oo and E(W;) > 0, these exists an integer N such
ny 1 B

that E(TF)) > -:’,;—‘l’- for ny > N, so that from (3.3)

P Z Wi 2 2M for all sufficiently large n) = 1.

=1



e

~ The corresponding results for left-hand RNN of Z; and right¥hahd RNN of Z;
can be proved similarly by defining W; = J(_o .,)(X;) and W; = Ii:;,00)(Xi)

respectively. The proof is complete. o
fox (M) /(M) . .
Next we prove U,™’ and V,™"’ converge to Z,; almost surely as n — co.

LEMMA 3.1.2, If Z, and Z; are distributed as F, and %f_—v 0, as n; — oo,

then
UI(M), VI(M) - Z1 a.s.

and

UZSM)’ ‘;2(1‘1) N Z2 a.s. as n — oo,

PROQF. Let S = {z: Fi(z+2) - Fi(z) >0, F(z) - Fi(: —¢) >0 Ve> 0}.
‘Then P(Z; € §;) =1 and P(Z; € S;) = 1. This follows from the fact that
the set of intervals in which F} is constant is at most countable which implies
in view of absolute continuity of Fj that the set of endpoints of these intervals
has Fj-measure zero with probability one. Accordingly, for every ¢ > 0, F1(Z,) -
Fi(Zy—-¢)>0and Fi(Z2)~F1(Z2—¢) > 0. as.. If Wis as defined in (3.2) with
(21 — &,21), in place of (z1,22), we have for almost all given Z; = z,, {UI(M) <

71 —¢} C {W < M} which implies
PWUM < 2y —¢) < P(W < M). (3.4)

Letting q1 = Fy(21) — Fi(z1 ~ ¢€) so that E(W) = ny;q; > 0 and choosing n,

sufficiently large such that for some ¢ > 0
@ —M/n, 2t>0 ie ny(q —t)>M, (3.5)
we obtain by (3.4) and (3.5)

P(W < M) < P(W < ny(q, —t)) < e=2mt" (3.6)



CI
| ‘ where the last inequality follows in view of the well-known Hoéﬁ'ding inequality j
for sums of independent random variables (See Hoeffding (1963) p.13). From

(3.4) to (3.6), we have

[= <] [e <}
Y PUM <z -e)< ¥ ™ <o, (3.7)

ny=1 n=l

By the Borel-Cantelli lemma and (3.7), we can then conclude that UI(M) — 5

. . { 4 ‘
a.s.. Similary, we can show that UéM) — z; as., VI(M) — 21 and 1-’2(‘ n_ z9 a.s.

as n — oo for almost all 21,3z, € S;. The proof is complete. 0O

Define

(1 if the total no. of X-MRNN of Z,,...,2is greater than
the total no. of Y-MRNN of Z,,..., 2.

¢(1W) = J

1/2 if they are equal

L 0 otherwise.
(3.8)

Let 4™ be the event that both U M) and vi" e=1,2,... I are well-defined
at the M-th stage.

First consider the case I =2 i.e., when two observations Z; and Zy are to
be classified between 71 and 7. We assume without loss of generality Z, < Z3.
Then the conditional probability, given Z; = z; and Z, = z2, of deciding Z; and

Z, are from 7, using lst-stage RNN rule, is given by

7"(1)(21,22;711,77-2) = E'(d)(l)/zl =:11,2; = 2,)
= E(é(”I(.‘\(l”ﬂA(,”)/Zl =2z1,49 = :2)

+E(Cb“)I(A(ll)n{‘(zl))c/21 231,22 =:2). (39)




i quever
E(¢(l)I(A$1)nA(21))c/Zl =21,2; = 5) = B(¢V], (Apuagsy /81 = 21,22 = 22)

< P{(4(1) UA(U_ )12y = 21,22 = 23}

S P(AY /2y = 2;) + P(AY /2y = )

— 0, as n— oo, (3.10)

the last convergence holding by lemma 3.1.1. Now we write

E(¢(UI(A(1UA(2U)/21 =21,22 = 27)

=P({¢V =1} n A4V /2, = 21,2, = z5)

lulo—a

P({6™ = 1/2) N ADAD /2, = 21,2, = 2))

n,n2

_EP(4 3) (Ul(l) ‘/(1) U‘;l) V(l),-v],ZQ)

1 1 1 1
+ EP,‘,?M(UI‘ v UM vz 2),

(3.11)

where

P43)

ny, n,(ul,vl,uz,vz, ~1,~2)

= P(¢™ = 1/UN = uy, VIV = 0y, UY = up, VIV = w5 A 44Y), (3.12)

2 .
P (u1,v1,u2,v2; 21, 27)

= P(e® = 2/ = s, VP = 0, U = 10, Y = s 40 40) (319

2




and

0 .
PMO (uy,v1,u2,v9; 21, 22)

=P(¢® = 0/U{" = uy, ViV = vy, USY = ug, VIV = 0p; AP AM). (3.14)

It can be seen from (3.12) to (3.14) that
Ci(n1,n2) | Ci(ng,n3)

(4,3) . - 15
Pn;,ng(ulvvlau%v?v~1s22) B(ni,mz) T B(ny,me) (3.13)
Ca(ny,n
Pr(z?n, (ulvvlau2sv2§zl,32) = 32(%_11_;22_)) (3.16)
Ci(n1,m2) | Coln,na) -
(1,0) . .- - o 1 17 2 0 1 2 3'
'Pnl,nz (ztl’vl?uzivzﬁ"l!"2) B(nl,n2) B(nl’nz) ) ( 1‘)

‘where, by setting pgl) = Fi(vy) = Fi(u,), pﬁ” = Fy(vq) — Fl(uz),pgl) = Fy(v) —
Fo(uy) and pgz) = Fy(vy) — Fa(uq) we have

———— 12 —4
Co(n1,n2) = na(ng — 1)(n - 2)(ny — 3)(1 —pt +p‘f’)

x (1 —pgl) +pg2)) lf2(ul)f2(vl)f2(“2)f2(v2)»

errmmt—— 12 =3
Ci(n1,n2) = na(ng — 1)(ng — 2)(ny = 1) (1 -pV 4 p‘;’)

e\, 01 =1
X (1 -piV +p§2)) [f2(w1) fa(vr) foluz) fi(va)
+ fa(u1) fa(vr) fr(ug) fa(v2)
+ f2(ur) fr(vi) f2(ua) fa(v2)

+ fi(u1) fa(vr) f2(uz) fo (v2)],

——————, 122
Ca(n1,n2) = ny(ny — )ng(nz — 1) (1 - 1’&” +Pg2))

x (1 - +p&”)M[fl(ul>fl(-v,)f2<-acz,)ﬁz<'v2>
+ fi(w) fo(v1) fi(u2) fa(v2)

+ fo(ur) fi(vr) f2(u2) fi(v2)

+ fi{w) fa(vi) f2(u2) fr(v2)

+ fa(ur)fi(vi) fi(uz) fa(v2)

+ fa(wr)f2(vi) fi(uz) fi(ve)],




. o o . ' : ’ iy ny—
C3(ny,m3) = ny(ny — 1)(ny = 2)(ng ~ 1)(1 - +,,;2>)

< (1A 7)) A it
+ fi(u) fi(vr) fa(u2) fi(ve)

+ fi(w) fa(vr) fr(uz) fi(ve)

+ fa(ua) fr(vr) fi(u2) fi(v2)),

e ———————— ne
Cy(n,ng) = ny(ny — 1)(ny — 2)(n; ~ 3) (1 - p(gl) +p£'))

e\, 11— 4
y (1 =) +p§”) Fi(r) fa(or) fuuz) f1 (v2)

and
B(n1,n2) = Co(n1,n2) + C1(ny1,n2) + Ca(ny,nz) + Ca(ny,ny) + Cy(ny, ng).

Note that Cy(n;,n3) and Cy(n1,n,) are proportional to the conditional proba-
bility that all four and any three RNN’s are from 7 respectively. Cy(ny,n,) is
proportional to the conditional probability that any two RNN’s are from = (or
72). C3(ny,n3) and Cy(ny,ng) are proportional to the conditional probability

that any three and all four RNN are from m; respectively. Now assume that

pi = lim .t =1,2, exist and are positive . 3.18
pi= lim i1, P (3.18)

THEOREM 3.1.1. Suppose z; and z; are continuity points of both f, and fa.
Then the limiting conditional probability of deciding that z, and z, come from

T, given Z) = z1, 22 = z4, is given by

Do wy 1 VS
NN (z1,2) = nlglgo"( Y21, 22311, n2)

-~ _— ]'A
=n+n3+ 372

where
By = (P f1(2:)f1(22)) : (3.19)
{(p1f1(21) + P2 f2{21))(P1 f1(22) + P2 fa(22))}2" '




as snlp e ) oten)+ S 820)
{(1h1(21) + p2fa(21))(p1fi(22) + pafo(22)) P2

and

Py = piP3(fR (=) f3(22) + 4f1(20) 1 (22) fa(21) fal22) + FR(22) f3(21)) 321)
. {(prhi(21) + p2fo(21))(prfi(22) + p2.fa(22)) 12 ' )

PROOF. First note that by lemma 3.1.2 U{") 23 ;) y1) 22, o

and Uz(l) 23 2, q(l) 2%z as n— o0, so that dividing the numerator and de-
S —————— 2 S ————— —1

nominator of %(‘f—;:‘—::-)- by (ny+n2)?, (1 —pi) +p§2)) and (1 -pV +p$2))

we obtain,

Cy(ni,na) .. n‘("l'(l,,)fi‘n:f«l(n‘—s)fl('ux)fl(vl)fl(uz)fl(vz)

lim = lim .
N—00 B(nl,ng) n—0o0 [Denomznator]

ny(ng = 1)(ny = 2Jns = 3) (1= p{" +pP)*
(ng + ng)4 (1 —pgl) +pg2))4

with [Denominator] =
X fa(ur) f2(v1) fa(uz) f2(v2)

na(ng — 1)(na2 ~ 2)(n; - 1) (1~ p(l) +p§2))3
¥ (n1 +na)! 1), (@3
(1-py +p")

X [f2(w1) fa(vr) f2(u2) f1(v2)

+ fa(u) fa(vi) fr(uz) fo(v) + faur) fi(vr) fo(uz) fo(v2)
+ fi(uy) fa(vr) fa(uz) f2(ve)]

n;(nl - l)ng(ng — 1) . (1 pgl) + (2))
N A CES S O
X [fi(wr)fi(vr) f2(uz) fa(v2)

+ filur)f2(vi) fruz) fa(ve) + fa(wr)fr(ug) fa(uz) fr(ve)



+ fi(w) fa(v1) fa(u2) fr(v2)

+ Fa(ur) fr(vn) fr(uz) fi(va) + Fo(wr) fa(vr) fi(ug) fi(v2))

711(711 "1 711 "))(Tlg-—l) (1 p1)+p2))
B CEar e e SRS

+ A(u)fi(v1) fa(uz) fr(ve) + fr(ur) fa(vr) fir(u2) fi(v2) + four) fi(er) fr(uz ) fi s )]

L ra(n = 1) = 2)(ny = 3

(n1 + ng)? fl(ul Al fiu) fi(v2)]. (3.23)

Since p(') =% 0 as n — co, therefore, by (3.18) and (3.23), we get

lim[Denominator] = [(p(fi(21)f1(22)) + (P fa(21) fa(22))?
+ 2012 (f (21)f1(22) Fa(22) + f2(22) i(21) fa(21)) + PIR(FR(=1) F3(22)
+4f1(21) fi(22) fa(z1) fa(22) + ff(zz)Jff(zl))
+ 20103 (f1(22)f3(21) Fa(22) + Fi(21) fF(22) fa(21))]
= (BHAie0)f(2)) + (3 fa(20)fel2) + DY A(50) fol=2)
+ fi(22) fa(21))? + 2pip3 f1(=1) f1(22) fa(21) fo( 22)
+ 212 f1(21) fi(22)(Fi(21) fa(22) + fi(z2) fa(21)) + 2Pap3 fol21) Fal 22) (o (21) o 22

+ fi(22) fa(21))



4
= {Plfl(zl)fx(zz) +pafa(21)fa(22) + prp2(fi(21) fa(22) + fi(22) fo(21)))?

= {(1hi(z1) + p2f2(21))(P1 f1(22) + pa fa(22))} 2 . (3.24)
Thus by (3.22) and (3.24) we get
i S4(01,72) ass (P} f1(21)f1(22))?

n B(ni,ng)  {prfi(z1) +pafa(21))(pifi(22) + pafa(22)) )2

= 7. (3.23)
Similarly,

lim Cs(ny,ny) )Pxpz[fl 1f1(z2)fa(22) + f(z2) fi(z1) fa(21)
n B(ny,ng)  {(pihi(z )+P°f2( 1I)(P1f1(22) + pafa(z2)))?

and

. C'«z(n],ng)
hrfn B(ny,ns)

_ i3 (2)fE(z2) + 4£120) i (22) fa(51) fal(22) + f3 (= 2)f3(z1))
{(Plfl( 1) +p2f2(21))(prfi(22) + pafa(z2))}?
=12 a.s.. (3.27)
Therefore by (3.15), (3.16) and (3.25) to (3.27) as n — oo

4,3) ) -
Pr(ll n;(ulv Uy U, U2, 2y, 22)

a.s (1’ fl l)fl(:‘.’.))2
{(prhi(z1) + pafa(21))p1fi(22 + pafa(z2))}?

203p2[fE 1) Fi(22) falz2) + FR(22) fil2)) fol = )]
{(;prfi(=z +P°fz 1)1 fi ~2)+I’2f2(3') }"




and

2 -~ -
valzng(“lv vy, U2, Vg, 21, 32)

as, PR3 (=1)f3(22) + 4hH (=) fi(z2) fa(51) fa(22) + FE(22) F3(21)]
{(prf1(21) + p2fa(21))(P1f1(22) + P2 fa(22))}?

= 2. (3.29)

Using (3.9), (3.11) and (3.10), we get

O (2, 2) = li'1}1 72y, 29501, m2)

__hmEP(-& 3) (l'(l) ‘/(1) U(l),‘ +(1), ~l’~2)

ny,n2z

L1 i .
+ 5 EmEPY, (U0, V0, U0, V21, ), (3.30)

so that by (3.28) to (3.30) and the Dominated Convergence theorem, we have

572

o —

I (z1,22) =y + 73 +

The proof is complete. O

Now we will derive the asymptotic TPMC for the 1st-stage RNN rule. The
limiting PMC’s of the first-stage RNN rule are given as follows:

01'(2) = lim P(Decide(z1,2:) € 7o/(21.72) € 1)

= //[I—H(l)(zl,zZ)]fl(zl )f1(z2)dz1dz,

=// [(P§f2(31)f2(22))2+)P100(f1 2)f3(z1) fa(z2) + A(z1) f3(22) f2(21))
{(P1fi(z1) + p2fo(21))(P1f1(22) + P2 fa(z 2))}



46

o 1IRUHE 3en) + )Rl le)ales) + P ) J
2 {(Prhi(21) + p2fa(21))(P2 f1(22) + P2 fa(22))}?

X fi(z1)fi(z2)dz1dz, (3.31)
a.(zl)(;z) = nli_nolc P(Decide(:l,:g) € m1/(21,32) € ™)

=//H“)(Zl,32)f2($i)f2(32)d~’1d32

//[1’1f1 21)f1(22))* + 203p2(fE (1) f1(22) fa(z2) + F2(22) Fi(21)fa(2)))
{(Prf1(21) + p2fa(20))(P1 Fi(22) + pafa(z2)))?

1 p3p3(f2(21) f3(22) + 4f1(= )f (22)fa(=1)f2(22) + fi(22) fE(=21))

+§ {(prfr(21) + pafo(z1))(p2fi(22) + p2fa(22)) ]2

X fa(21)f2(22)dz1dz,. (3.32)

By letting p; = &, i = 1,2, the prior probabilities; we get the limiting value of
the total PMC of 1st-stage RNN rule as '

R1})(2) = 601"(2) + £0M(2), (3.33)

which, using (3.31) and (3.32), can be written as

Ri3(2) = Er(z) = / / r(NEfi(z0filz2) + Eafolni) falz2))dzidzy,  (3.34)

where r(z) can be written as

-
~
~

r(z) = §1fi(z1 f1(~2)
~ (&hi(z)fi(z2) + (z1)f2(=2)

X i(ﬁgfz(zx)fz(zz))z + 265 0f1(22) fF (=) fa(22) + filz) fE (=) fals
2
{H:’;l(flfl(za)+52f2(3i))}




L1 ) +4f1(21)fx(zz)fz(zl)fz(zz) +f (ez)f?(zx))}
t3
{ nv-l(elfl (‘!) + £2f2(‘t))}

+ &2 f2(21) f2(22)
§1f1(z1)f1(22) + E2F2(21) fa(22)

(€3 f1(21) f1(22))? + 2686(F2(21) fi(z2) fa(22) + {f(zz)fx(e‘l )f2(z1)) |
{H?:;(fxfl(si) + fzfz(zi))}

+ 1882 (=)fF(22) + 4h(z)A(z2) fal21) ol 22) + f(22) F2(21))
2

. (3.33)
' { [ fiz) + Eafz(zz‘))}
We define
€\ — Etfl(‘l)f( 2) :
m(z)= 1 f1(z)f1(22) + Eafa(z1) fal 22) (3.36)
and
(5] = §ifi(z5) 19 i -
7i(5) §1£1(25) + &2 fa(5)) =LA J=12 (3.37)

Using (3.36) and (3.37), we can write (3.35) as

r(z) =11 (2)m3(20)m3(22) + 2 (=2)nd (51 )n2(22) + m(z1)nd(z2)m2(21))

1
+ (3 (z0)n3(22) + 4 (z0)m(z2)n2(z1)m2(22) + 0} (22 03 (1))

+03(2) 3 (21)nf (22) + 20} (=1)m (=2 )2l 22) + nf(z2)m (212 (21))

[SVE N

+ (M (z0)md(22) + 4 (z1)m(z2)m2( 21 )ma(22) + UHESTHED] (3.38)

Now,

n3(31)m3(22) + 2(mi(z2)n2 (z1)m2(22) + M (2102 (22)m2( 21

H

+ 503 (z21)n3(22) + 41 (z0)m (22 )ma (=1 )ma(z2) + n?(z2)n3 (1))

= 2(m(z2)n3(z 1)772(32)+'71(31)7I§(32)772(~*1)_)



similarly,

+ 2m(21)m(z2)n2(z1)n2(22)

= n2(21)m2(22)(m(22)n2(z1) + mi(z1)m2(22))
+ SIBEM(2) + () + 2 (zoma(=0)
+03(21)(1f (1) + 13 (21) + 2m(1)ma(21))]
+2m(z)m(z2)ne(z1)m2(22)
=m2(z)m2(z2)(m(z2)n2(21) + i (21)m2(22))
+ 201 (z1)m(z2)m2(z1)n2(22)

+ :1'[773(22) +a3(21)]

= ma(z)m2(z2)(m(22)m2(21) + m(z1)m(z2)
+m{zone(z2) + mlz)m(z2))

+ 50(z2) + ()]

=n2(z1)m2(22)[Mm(z2) + m(z)] + %[713(32) +93(2)];

m(zomi(z2) + 203 (z0)m (z2)n(z2) + 02 (22)m (21)n2(21))

1 2
+ 5(MF(z0m3(22) + 4m(z0m(z2)n2(z1)m (22) +

1
=m(z)m(z2)[n2(z2) + n2(21)] + = ['71( 1)+ ni(z2)]

We write 7(z) from (3.38), (3.39) and (3.40) as

r(

“~
~

o
~

3R (2) + ndz2)) + (o) mden) + ()

2)m3(21))

v 1 . .,
z) =1 (2 )2z 1)'72(32)[711(31)+7lx(32)]+§('If(=1)+7li(~’2))]

+02(2)mz0mz2)me(z) +m2(z2)) + 5 ('h( SERHEN]
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(3.39)

(3.40)

(4.41)




Now
m(20)m(z0)lm (z1) + ()] + Srd(e) + d(ea)]

= %[772(31 Y(m2(21) + n2(z2)m (1)) + n2(22)(n2(22) + 12(2 I (z2))]

+ 1(771(:1) +m(z2))n2(21)n2(22)

= %(172(~1)+772(~2)) l—m( Om(z2) + = (771(,1)4.7,1( 22))72(22 )72 (22)
=§(7}2( 1)+ n2(z2)) + = (771 (21) + m(z2))n2(21)m2(z2)
- %( (21) + m(z2))m(z1)m(z2); (3.42)

similarly,

. 1 .
m(z)m(z2)n2(z1) + n2(z2)] + 50(21) + ni(z2)]
1 , 1
= s(m(z1) +m(z2))+ 5(772(31) + n2(22))m(z1)m(z2)

2
1
5(771(31) + 01(22))n2(21)n2(=2). (3.43)

Therefore, in view of (3.41) to (3.43), we get

(m(z1) + m(z2))

[SVT

r(z)=n(z)- '(779( f1)+n2(22)) + m3(2) -

5(m2(21) + ma(z2))m(21)mi (22)]

(ulo—-a

+ 77;(5)[:;'(771(31) + mi(z2)) -

.ol 1 |
+12(2)5(M2(21) + 7m2(22)) — 3(m(z) +m(z2))ne(z1)m(z)]. (3.44)
Thus, (3.34) and (3.44) implies

R(;)(2) = Er(z)

[//flf1 J1(=2)(n2(21) + n2(22))dz1 dzy

//fzfo (z1)fa(22)(m(z1) + mi(22))dz dz J



+ %//(flfl(zl)fl(zz) = &2fa(21)fa(22))
X ((m(z1) + m(z2))ma(z1)m2(22) = (2(z1) + nalz2))m (21 I (22)))

X dzydz,. | (3.43)
Now
. . . V) — §1f1(1) §1f1(z2)
(m(z1) + m(z2))m(z1)na(z2) Ehi(z) + &2 f2(2) M §1f1(22) + £afa(ze)
€3 f2(21) fa(22)

(El fi(z1) + &2 F2(21))(& f1(22) + €2 f2(22))

["51f1( z1)fi(z2) + & &a(fi() f‘) (22) + fi(22) fa(21))J€R fa( 21 ) fal 2)
Elfx( 21) + &2 f2(21))2(&1 fi(22) + E2f2(21))?

(m2(21) + n2(22))m(z1)m(22)
_ §2f2(z1) + §2.f2(z22)
Shi(z1)+&fa(z1) & fi(z2) + Eafa(z2)
£ f1(z1)fi22)
(Elfl( 1) +&f2(21)) (1 fi(z2) + &2 fa(22))

_ [263 fo(z1)f2(52) + E1€2( fi( 1) fa( ) + fl (z2)fo(21)))ER f1 (= /x(w)
(&1 f1(z 1)+€zf2( (flfl +52fz( 1))?

Therefore,



(m(20) + mlea ) )a(z2) = (1) + maCa)m (2 m(z2)

- l 3 (o Nl o F2(
. T (G h() + &REDE () + 6 fa(22)) &) ()i ()

+ &€ 11(22)F3(21) fa(22) = E €2 fR(21) fr(22) fa(22) = €362 F1(21) FE(22) Fal 1))

1
T (Gh(n) + Ef2(21)2 6 f1(22) + E2£2(22)) [€1€2£1(21) f2(z2) %

(63 f2(21)fa(22) = E fi(21) fi(22)) + E162f1(22) fa(21)
X (€3 f1(z1)fa(z2) = € fi(z1) f1(22))]

_ _&&E N (EDA(2) = & fa(=1) f2(22))(fi(21) fo(22) + fi(z2) f2(21))
(&1f1(z1) + &2£2(21)) (61 fi(22) + €2 fa(22))? '

(3.46)

Also note that

. %[//Elfl(zl)fl(z?)("?(zl)+712(32))d31d32
+//§2f2(31)f2.(32)(771(21)+771(32))d31d32]
= %[/§1f1(22)772(51 )dz +/€1f1(~’2)772(32)f122
+ [nGomda + [hmed

218 [ mGEmEE () + Efo(2))dz]

-

= 2Em(z)n(z)
= R{;)(1). (3.47)



| Sofrom (345), .(3.4.6) and (347) we obtain
R(2) = Rz (1) |
- %fz'//(flfl(zl)fl(zz) = &f2(21)f2(22))

y (121 A(22) = E fa(21) f2(22))(fi(21) fa(22) + Fi(22) fa(21))
(§1h1(21) + E2f2(21))2(6 fi(z2) + E2f2(22) )2
X dzydz,. (3.48)

We shall now obtain a bound for the limiting TPMC Ré;;(?).

THEOREM 3.1.2, Let. the Bayesian model with prior probability &; for the

population n;,i = 1,2 hold. Then under the condition &1 =&,, we have
R(5)(2) £ R3)(1) < 2R (1)(1 - Ry (1)), (3.49)

where R7,,(1) is the Bayes risk given by (2.10).

PROOF. When & = & = 1/2, (3.48) becomes

Rf;;(?) 8))(1) //(fl( 21)f1(22) — fa(z1) fa(22))?

(fr(z1)fa(22) + fi(22) f2(21))
(fi(z1) + f2(21))2(fi(22) + fa(22))?
X dzydzy (3.50)

which implies Rf;;(?.) < Rf;;(l) (see (3.50)).
By (3.47) and using the fact that r*(z) = min{n(z),m2(z)} which is symmetric

in n; (see (2.8)) and Jensen’s inequality we have

R (1) = 2Em (<))
=2Er*(z)(1 = r*(2))
= 3[R{,,(1) — E(r**(z))]
< 2ARG,(1) = R (1)]
= 2R?,,(1)(1 - Ryyy(1)).



‘ Thls completes the pl'oof D e |
‘We now give an example to xllustrate the lnequahty (3. 49) an d another pos-

sible upper bound for Rg; (2).

Example 3.1. Let fi(z) =2z,0<2<1; fo(y)=2-24,0<y < 1;
and 51 =2 = 1/2
write (3.34) as

Ri»(®) -
=//51[(5§f2(31)f2(22))2+°§1E§(f1(22)f§(31)f2(32)+f1(=1)f22(32)f2(31)]
{7 (61 fi(zi) + E2f2(20) P

X f1(21)fa(z2)dz1dz,

_*,‘//‘5“-’[(§%f1(51)fl(*“'z))2 + 260 E(f2(21) fi(22) fo(22) + FE(22)fa(21) fa(z1)]
{7 (& fi(z:) + E2fa(2:))}2

x fg(zl)fg(zg)dzld;‘:g

+l//fffg(ff(zl)fzg(zz)+4f1(zl)fl(zz)fz(zl)fz(zz)+fxg(zz)fzz(zl))
2 {r2 (&1 f1(zi) + €2 fo(2i)))?

X (&1f1(z1)f1(22) + €2 fo(21) fo(22))d21d 22,

= I + L + I (3.51)
Now . 1
&1f1(z1) + &2f2(2 )=‘§231 +§ 2:(1—21) =1,
flfl(~2)+52f2(~2)—--;— +% 2.(1-2)=1

Calculations of I3:



G0+ Eafa(a)fale) = A1z + (1= 2)(1 = 22))

860 () + 4h(2) A=) a(2)fa(2) + (2 £ (21))

11
“-'—(4..12 4(1— 2)2+4'42132'4(1—31)(1-32)4‘423-4(1—21)2)

- [ 2(1 - "2) +4~1~2(1—'1)(1-"2)+"l~2(1 _ l) ]
k —/ / [é a(l=-22)? +4:825(1 - 2)(1 ~ 22) + 2133(1 - =1)?

+zl(1-zl)(l-—zg)a+4zlzg(1—z1)2(1—-z;)2+(1— 1)3:2 3(1 - }

1 1 1 1 1 1

“[124 153 1547122 T 133 124]
= [t i]-l[l i3] =2 +3]
T 112 33| "3t 121273
5

~ 36

Calculation of [;:

&1 [(3 fa(z1) fa(z 2)) 25153<f1(22)f22(31)f2(22)+f1(31)f22(22)f2(21))J

x fr(z1)fi(z2)
111 1 11 9
=:~;[Z'Z4(1—21)2° 4(1—2z) +2. 33 22 41— 2)* - 2(1 = z3)

~

+221 41— 2) 2(1 = 21))| X 4212

L—l

=2[:( a) -zl - 2) +20(1 — 5)? - 23(1 - )
+2:3(1 - z1) - 2(1 - 2)]

I, =’// [~1(1- 31— 2)t + 25 (1 = 2)2 231 - )

+223(1 - z1) - 2p(1 — 22)2J dzydzy

111 2 5
=9 = 249 =2
(12.12 tst 12.6) mrititd=5

-




( FCi\.lciJl:ﬁtijoti' of' L

2 )
& [ (e?fl(sx)fl(zz)) +oge, (ff(a V(e fa(z2) + F2(2) fu(n) ol ))]
A X f1(z21)f2(z2)

(4312 2z 2(1 - 32)

Q|
o) —

..1 1 2, 4.2
—5[‘1‘6'461‘462 +2’
+4222'2(1—21)'221)]4(1~21)(1-—32)
=2[zl2(1—zl)zg(l-zz)+22f(1—zl)-zg(1-—:g)2
#25(1- ) 1 = o
1oty . _
I, =2// [z;(l—.zl)'z§(1—32_)+231'(1—zl)-22(1—32)2
0o Jo

+25(1-2)% 221 - ZQ)J dzdz

Therefore by (3.51) the limiting total PMC is

RY@) =5 + L + L

The Bayes risk for (i = 2) from (2.61) is
¢ (or - 1
R(Q)(z) = 6.

The Bayes risk for (K = 1) from (2.62) is

) 1



g The lunmng total PMC (k = 1) is given by

e §641(2)f(2)
(2)(1) 2/ GhGE +&f( DE

_.,/0 :(1-2)dz=2 /o(:—'

=2(1/2-1/3] =1/3. (3.33)

Therefore, Rg))('z) = -1"’3 < Rg;(l) = 1 = &, Further it is easy to see that

Ry,)(2) = & so that R})(2) =2 {;;(")(1 — 82

3.2 Asymptotic PMC’s of the 1st-stage RNN Rule when K& observations
are classified hetween two populations.
Suppose, we have K-observations (2, 2,,...,2Zx) to be classified between

m and m2. Let Z(;), i=1,...K be the order statistics of Z,’s.

LEMMA 3.2.1. If M/n — 0 as n — oo, the probability that there are at
least 2 observations between Z(y and Z(pyy) V€ =1,2,...,K and at least M

observations to the left of Z(;) and to the right of Zy is one.

LEMMA 3.2.2. Given that Z,,...,2Zj are distributed as f,, then U,(M) and

VC(M) converges to Zy as V¢ =1,2,... K as n; = 0o and M/n — 0.

The proofs of Lemma 3.2.1 and Lemma 3.2.2 are similar to those of Lemma
3.1.1 and Lemma 3.1.2 respectively and hence are omitted.

Let 4, () he the event that both U, M and V, (l) , the left-hand and the right
hand nelghbors of Z¢, are well defined at the 1st stage, V€=1,2,... K.

The conditional probability that §= (Z1,...2Zk) is from »; using the one-

stage RNN rule, given Z; = z,...,Zy = zy, is given by

H(l)(zl,. IRy, M) = E(Q’m/Zl =21,23 =22,...,2) = z}) (3.54)
= E(¢“) (A 4L ‘(l))/Zl =z21,...0k = k)

+E(¢(”I(A(ll)/\g”u-i‘(,:))c/zl = 21y Zl' = ~l\) (3 55)



where we have used (3.8) to get the second equality above. However,

E-.(é(UI(A&”A‘,"...A‘,}’)c/Zl =21, K = k)
= E(¢(”I(UK A(l)“-)/zl =21, ZI\' = 31\')

=l

N
= P(U AV2 = 2,0, 2 = 2x)

i-'l

< ZP( APz =) -0, (3.56)

the above convergence following from Lemma 3.2.1.

Also, note that

:(1
E'((D( )I(A(l”f‘(zl)‘---"'(x“)/zl =iy D = zK)

=P({¢W =1, AWM. AWz =z, 2k = 2p)

1 1 1
+5P{eM =172 n AVA Al Z =5 2 = )
' 1 (1) 1 1
— EP,(:I,\Q; I\+1)(U1( )’I'l( ’.“’Ug\')’v( ),’.]’.“’-1\)
+= EP,(,f‘,),z(Ul(”,V:f” LSUPV e, (3.57)

where

2K, K+1 . oo
r(zl,nz )(ulsvlv"'ul\'svl\'1*la"'v"'1\)

1 (1 1 1 1 1
= P(¢\1) = l/Ul( )=u1,1'1( )=-vl,...U,(\-) = uK,VI(\-) = v;;;.—lg ),....-‘1(1\.)),

K .- R
P(\) (ll] U1, . ul\',vl\'v"'l""y"l\)

1) 1 1 (1 (1 (1)
= P(¢(l) = S/LTI( = ulﬂ‘/l( ‘ =V, ’U[(\') = ul\""l(\') = vl\';-{l )7' . 'AI\' );
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P('Jl(....,l(-{-l)(ul ’

ny,ng vl9'°'ul(yvl(';zla--'vzl\')

= Carn(ny,n2) + Cok—1(n1yna) + ... + Oy (ny, na)

: 3.58)
B(ny,n,) (3.58)
- Ci(ny,n, .
P)‘(I{\,r)lg(u'l’ Uy « c UKL UR 21y e 0y 3]\') = %)—), (309)
Pr(lf\,';zl"”'())('“h Upy o o VUK ZVUR STy 0oy Z]\’)
_ Cr-1(n1,n2) + Cr—2(n1,ng) + ... + Co(ny,ny) (3.60)
B(ny,ns)
with A
2K
B(ny,ng) = Z Can-i(n1,ny). (3.61)
e
Let pgi) = Fy(v;) — Fi(w;) and p.(zi) = Fy(vi) — Fp(u;) for i = 1,2,.... K. Now the

Con-i’s for i =0,1,...,2K are given by

K
Cax(ny,ng) =ny(ny —1)...(ny = 3Rk — 1)-(1- Zp(l'))"""”"

i=1

k ngy K
(1 ~ Zpé“) x [T At futon),
=1 i=1



C21\'-l(nl ng) =ny(ny - 1) (n1 = 2K =3)n,x

U‘ZP"’ M-I~ ZP('))"’-I[Hfl(uu)fl(l’c)(fz(ulfl(tx)+f1 uy)fa(vy))

i=2
+ H Fua fulv;)(Fa(u2) fi(va) + filuz) fa(va)) + ...
:3:%
+ Hfl wi) fu(ed) (fa(w)fi(v) + Fi(w) fal;))

t#J
K-1

4+ H Fr(wi) fiilea)( fo(un) fi(vw) + fi(ur ) fo(vie)).

Cgl\_,(nl,ng)_n.l(n,l -1 (m ~RKN -+ 1)ng(na—1)...(na —1=1)

i N
x(1-— Zpgn)nl—(zl\—u(l _ Zpén)n;-.
X Z ,r‘(lll)f"z(l?)f""(u? f"4 v2) f"zl 1('“\)f"21\(‘*1\)
re€Syp i

where r = (ry,7ry,...r9)) is an element of Sy;-—; and

vy o~y s

PRIt g

2N —i i

San—i = set of all possible permuations of (u 21,22 2)

2K . Ar-
E = sum over ————— terms (=20,1.....2R.
(2K - )l
res'_’l\'—i )

C'l(nl,ng) = 72177-7(712 - 1) (112 — 92K - ‘7)

I_Zp(l) ny— 1(1 Z (7) 112—21\ 1

=1

x [Hf’ wi)fa(vi)(fr(uy) folvn) + folur) fr(vr)+

K
H fa(ui) fo(vi)(fr{uz) f2(ve) + fa(u2)fi(ua))
5

K-1

+...+ H Fa(wi) f2(vi)( fr(uw ) fa(vr) + Folun ) fi(ug)]
=1
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and i
K i
Co(n1,n2) =ng(ng —1)...(n2 =3K = 1)(1 - Zpg'))"‘
(1- Zp Dyna=2i Hfz(zu)fz(v
i=l
Let
pi= lim i a= min(ny, ng) and (3.62)

1
n—oo ('11 + ng)’

assume 0 < p; <1 for i =1,2.

THEOREM 3.2.1. Suppose zy,z;,... 2 are continuity points of both fi and
fo. Then

H(l)(:le:’.’e"'e:l\')=nli_l‘x}on(”(:ls:?'.”'v:I\';nlrn?)
KN-1
= Z Nap—-i + "771\
i=0
where
M =pit fo /{H(p1f1(~, )+ pafa(=i))2, (3.63)
2K -1
- 2pi" " pa [
Dak—1 = RAENE | BH(ED)
{H,— plfl ~x +P°f'7 ~1 } ‘I_I_ !
K-1
+ fi(z2)fa( 2)Hf1 (zi)+... + Ailzw ) fa(zk) H f|2(3i)] (3.64)
z#’ i=1
2N
'~ pt r ry 12 ".fl'g\‘-l SK )M rap\ZH
Ronv—s = P2 eresueey I (51 )il : 2( W racE) 3 65
{Hi.-:] (P1fr(zi) 4 P2f2(3i))}
and

~ 1’{\1’%\ ZrESzK K Fri(z0) fra(z1) frg(22) fri 2 )oor Fraca (51 ) fran (210)

nnw =
(T (o1 fi(=0) + pa fo 3:‘))}2
(3.66)
PROOF. First note that UM 225 -, vV 25 . wr—12 . K.
Then

v N
C>1\(n1 n2) as. P?l Hi:l f12(:l) ~

lim = =M.

n—x B(ny,ny) {Hf;,(plfl(zi)+P2f2(3i))}2




Zp‘" }_‘,m(v.) Fy(u) 3

a—l
Ep"’ Z(Fz(vi) - Fy(ui)) =¥ 0
i=1
Zp(') K 33 1
i=1
N )
and (1- Zpg'))" =,
i=1

and also upon dividing the numerator and the denominator by appropriate fac-
tors. Similarly,

. Cop—1(nm,ng) .
Iim =Mn-1 as.
n—o  B(n;,ng) )

Cor—i(ny,n2) . _
72[\'.—.; a.s.
2% " B(nr, n)

g
I

Cr(ni,n2)
—————— =10 as.

nl‘l"ngo B(nl,ng)

lim So(P1:m2) "’"'ﬁf( ) =
1 =D )= a.s..

Therefore, by (3.58) to (3.60), when n — oc,

2K,...,K+1 . e s ..
r(11’1\12 ' )(ulsl'la'"-ltl\-.l)l\v*le'"9"1\)
a.Ss., ~ o~ -—
= M+ -1+ .+ K41, (3.67)
J; . Ly S~
PR) (uyvr,. o upc vz, 2R) S A, (3.68)
and
I . -~
P1(11\n2 (ul Uiy vuf\'~v1\'1zls"'a"1\')

a.8

S -1+ -2+ ...+ 70. (3.69)




Using (3.55) to (3.57) we write
II(”(ZJ,Z:', ey IR) = "lglgo H(l)(-’.'l,a’g, ey SRR NY)
- hmEPv(ufl:t'z l\'+1)([fl(l)"/l(l) U(l) v (\l)v"la

+

o]

lim EP{FL (U, ViV, oD vz

which by (3.67), (3.68) and the (Lebesque) Dominated Convergence theorem,

vields
-1 1
H(l)(zh o0 PRI 31\') = Z ﬁ?]\'—i + 5'771\.
i=0 -
The proof is complete. a

The limiting PMC’s of the 1st-stage RNN rule for I -observations are given below:

oK) = lim P(Decide(zy,....2x) € mp/(21,...,2x) € m)
N
=/---/(1—H“’(:l,...,z,\-nnfl(z,-)dzldzz...d:,\-
(1)(A)_,11212°P(Decxde( 1y 2K) € T /(21,0 0 2K) € W)

K
=/---/(1 —‘H“)(zl,...,2[\'))Hf2(:i)dzld32-'-dzl\'
=1

Hence the total limiting PMC of the 1st-stage RNN rule for classifying ' obser-

vations is given by

R)(K) = &V (K) + 08" (K).

3.3. Limiting PMC’s of the M-Stage MRNN rule

Let #()(zy,... 2 iny,n,) be the conditional probability given Z, = z,,

zr that the M-stage MRNN rule classifies Z=(Z,... Zx) into m .



Recall the definition of ¢(* in (3.8). It is easily seen that

My, sina ng) = P(@Y) =1/ Z=3)
M )
+3 P8 =1/2,6D =1/2,.... ¢ =1/ Z=:)
i=2
+-%P(¢‘”=1/2,.. M =172/ Z=:). (3.71)
Let w(“”(i) = nli_ngo 7r(M)(:1,...,z,;;n],nz). (3.72)
Now

P(¢ =1/2,...,60"0 =1/2,¢") =1/ Z=z)
=P(¢!" =1/2/ Z=:)- P(6® = 1/2/¢'V = 1/2,

x P(1 = 1/2/¢'¥ =172, = 1/2, Z=:)
PV =1/2/80 0 =172, o) =172, Z=3)
x P(¢!71 =1/2/87 =1/2... ¢ = 1/2, Z=2)
x P(¢' =1/¢"Y =1/2,... ¢ = 1/2,Z=:)

z_u

= P(¢'") = 1/2/ Z=z) - M} P(¢") =1/2/¢ 7V =1/2,... ¢!V = 1/2, Z=:)
x P(¢() =1/64D =172, ... M =1/2; Z =3); (3.73)
similarly,
PV =1/2,..., M= =12 43D = 179/ Z=:z)
=L P(6Y = 1/2/¢97 0 =1/2,... ¢V = 1/2,2=:)
x P(¢V) =172/ Z=z). (3.74)

Now we state two Lemmas whose proofs are similar to those of Lemma 3.1 and

3.2 of Das Gupta and Lin (1980) and hence omitted.

Suppose ¢! = 1/2. Delete the observation corresponding to U{" and V", V¢ =
1,2,..., X from the pooled training sample. Denote the remaining n; ~ i’ X-
observations and ny — i’ Y-observations by sz)(i =1,...,ny — I\') and Y;-(?) U=

1,...,n2 — I\') respectively.
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LEMMA 3.3.1. Given 2y = 2,...,2x = 2,6 = 1/2,U0") = o, ¥V =

vl,...,U,(g) = u; and V,(‘v” = vy, then
(i) .\',-(2)’5 and Yj(z) 's are mutually conditionally independent;
(i) the conditional density of .-",(2) is

1(2)(.'8)= fl(‘r) .
- +p 4+ 5]

on [(u;,v)U...U (up, vp))°. (3.73)

(iii) the conditional density of ¥* is

2(2)(y) _ fa(y) -
1= +p2 + ..+ )

on [(uy,v1)U...U (up,vp)]s. (3.76)
where

P\ = Fi(vi) - Fi(wi) and p{) = Fy(v;) - Fy(u;)) fori=1,... K.

Lemma 3.3.1 can be extended in similar fashion inductively. Suppose ¢! =
1/2 (j=1,...,i—1). Delete the observation corresponding to U,m and V}m(é’ =
1,...,K;5 =1,2,...,i—1) and denote the remaining n; —(i —1)\' X-observations

and ny — (i — 1)K’ Y-observations by "'ﬁi)(v‘ =1,...,n; —({ = 1)K) and 1",-(i)('7' =

1,...,n3 = (¢ — 1)K) respectively.

LEMMA 3.3.2. Given Z=z,¢") =12, U\ V(¢ =1,... . K;j=1,...,i-1)
the following are true: '

(i) XY and ¥ are mutually conditionally independent;




(ii) the conditional density of . 9 s

(C)( ) fl(i-l)(x) =
L-EVE- D+ - D+ +p" G - 1)) -
(3.77)
on [(ugi -1) v§z—1)) U(u("”, x‘_-l))]c
where
P0G =1) = FPU0) - FED W60 e=19,. . K

and F) (i=1) is the c.d.f. corresponding to fl(i—l) , defined inductively by (3.75)
and (3.77).
(iii) the conditional density of Y, sl

0 A7y
)= -G =D +...+p8( - 1))
on [(u(li—”,v(""'”) U(u(l X !(L_i_l))]c, (3.78)

where

(i —1) = F 7000 - BTV, =1, R
and F, (-1) is the c.d.f. corresponding to fé"l) defined inductively by (3.76) and
(3.78).

First we state a theorem and then derive exact expressions for the limiting PMC’s

of M-stage MRNN rule when ' = 2.

THEOREM 3.3.1. Suppose z; and z, are points of continuity of both f, and
f» then the limiting probability of classifying Z, and Z, into =, using the M-stage

MRNN rule, given Zy = z1,Z2 = z3, is giveu by

Tr(l‘”(:l’:?) = nl-i-r.l;o ﬂ’(‘”)( <1, %2, ;11,n2)

M-=1
= (s + 73) Z Ny + )'7 (3.79)

=1



where 74,73 and 7; are given by (3.19), (3.20) and (3.21) respectively.

PROOF. The conditional probabilities ¢ = 1 and ¢') = 1/2 given 2, =
1,22 = 2, U = o v = o0 = 1,9)j = 1,2 2,.. i) and ¢ = 1/3(j =
1,2,...,1=1) are respectively given by -;-;,%?ﬂ and 7;}-7 where C(’).C'(') C(') BY
are obtained from Cy,C3,C2, B (given in 3.15-3.16) respectively after replacing
n1,n2, uy,v1, U, 02, f1, fa bY m =206 = 1),mp = 2~ 1), ul?, vi? ul? o gD g0

respectively (using (i) of Lemma 3.3.2).

Since f;'s (j = 1,2) are continuous u(,",vg" — 3 (€ =1,2) as. imply
f(') u[’)) — fi(z¢) and f(‘)(v(')) — fi(z¢) a.s. (note that from Lemma 3.3.2(ii)

f](‘l)
e {1 = () + 9P (1))

f(x) =

and pm(z) +p(2) (1) >0 as, fori=1,....M,j=1,2as n— oc). Thus the
(i) (¥) c9
limiting values of E—"-B;:',-,%— and —f—; are (73 +73) and 7 respectively. Introducing

the sets A(ll), Ag” and arguing as in (3.9)-(3.11), (3.79) follows from (3.71)-(3.74).
The proof is completed. O

The limiting PMC’s of the M-stage MRNN rule (I = 2) are given below:
aiM)(Q) = nli_l’lgo P[v M-stage MRNN rule decides (z1,22) € m2/(2),22) € ]

= //[1 — 7D (21, 20)) fi(21) fr(22)d1dzs

a$"(2) = lim P[ M-stage MRNN rule decides (z1,2,) € m1/(z1, 22) € 3]

n=—2

// M (21, 22) fa(21) fa( 22)d21dze

If we take p; = £;(i = 1,2) as prior probabilities, then the limiting total PMC

for the M-étage MRNN rule is given by

R = 600+ e ) @50



Note that \
M " & -

L=ny20) = B+ 70) Y 4 + 32, (3.81)
i=0 =

where 7, and 7 are given by

ﬁl = 2plpg[fl(32)f22(21)f2(22) + fl(zl)f;?(32)f2(21)]

{”tg:l (plfl(zi) +P2f2(:,')}2 (3.82)
A= (P3f2(21) fa(22))?
P T hiG) +pe GO (3.83)

THEOREM 3.3.2.

RGP <RIV ir e, =,

and Rfy(2) < Ri3(2)

where Ry (2) is Ba}'es risk given by (2.9).

PROOF. We write Rzg)’)(:?) from (3.80) as

B = [ [ (1 —w“‘”(zl,zg))f1<zl)f1(sz)dz1dzg
+52//”(“”(31,‘72)f2(31)f2(32)d~’1d22-
Thus,
M), (M-1),,
RBi)'(2) - R T(2)

= 51// (n(‘”"l)(zl,zg) —n(““(zl,z»_;))fl(:l)fl(zg)(lzlcl:g

—_ f‘z // (n(‘w'“(:l, zr_;) —_ 7?'(‘”)('21, -*_))fg(:l )fg(.—":g)d:](lz'_)_. (384)

We know from (3.79)

U
)

RYERS |

, -~ - ~ 1.
”(1\1)(:1,32) = (774 + 7}3) Z 7;5 + ;7}5\1.

1=0




~ Therefore,
7 0(2y,29) = #lM=1(zy, 2,)
1.
= (774 +us)n”’ Lo s (1 - )
1. ~ o~ A omom oA
=5m ‘("m + Mg =y — s~y - no)
lm-
=3 M — 7o+ 02— m (3.83)
Using (3.84) and (3.85) we obtain |
M- M
Ry "(2) - R (2)
=-3 //(62f2(31)f2(32) =& fi(z)fi(z2)) 7o — Ay + 1 ~ 7a)dz1dz,(3.86)
where we have put p; = §; for i =1,2.

Thus, we have

Po = e = (€3 f2(21) f2(22))? _ (€2 f1(21) fi(22))?
L Gh@) +&REDE T P ERG) + &RE)T

(<f;»f9 (z1)f2(22) = €2 fi(21)A1(22))(E2 fa (= 21)fa(22) + €3 f1(= 1)f1(~2))
{”z_l(flfl(w) + §2f2(z:))}?

NP 1 306 (N r2 .
Mm =1 =AY +£2f2(-2i))}2[25152(.f1(~2)fg(~1)f2(~2)

+ f1(21)f3(22) fa(21))

= 2616 (fH(21) filz2) fa(22) + (=) Az fa(21)

26162
{Wz—l(€1f1(~z)+fofo }2[£°f1 fz( l)f"(

+ &3 f1(21) f2(22) fa(21)

= & (21) fr(z2)f222) = € F2(z2) frl21) faley )]



266 ~‘))}2[f,(.,2)f2 21)(52f2(~1)f2(~2) E2f1(‘l)fl(~2))

h’:—l(flfl(e:) + € fa(z

+ fi(21)f2(22)(E3 fa(21) fo(22) — &€} f1(21) F1(22))]

_ 26&((&f2(21)fa(z2) — 51f1(~1)f1(62))(f1(~1)f2(z°))+f1(~°)f°( 1))] (3.88)
{72 (61 f1(zi) + & fa(20)) )P .

Using (3.87) and (3.88) we write (3.86) as

By (2) = Ry ()
-1 / / (Efalz0)falz2) = € Fi(2) u(22)) (€ falen) folz2) = E2Fr(en) fi(22)

[fzfz( 1)f2(22) + E fr(z1) fi(22) + 261€2(fi(21) fol22) + f1(22) fa(21))]
{7" l(flfl(‘“z) + 62f"(~1))}2
X dzydz; (3.89)

If & =& =& =1 we get from (3.89),

Rfé‘)” Rﬁ)f = ‘ji'//(fz(zl)fz(zz) - fi(21)f1(22))?
X (n2(z1)n2(z2) + m(z1)m(z2)
+ 2(mi(21)n2(22) + m(22)m2(21))d=1dz.

The above expressions implies

Ry’ <RIV (3.90)

Now
)5 (M)
Ri(2 ) =lim R (2)

- // Kﬁl * ﬁO>51f1(21)f1(z2) + (’74 + ﬁs)fzfz(zl)fz(zz)]

1 '-772) d 1d.:-2

771+7]0
//[04+773+n1+ﬁ'flfl(‘l)fl(~")

T+ ,
+ = 2(2 29) | dz1dz 3.91
Ta+ 73+ + 0o =G fa2)fa(z 2)] ! ( )




" Note that

min(fl;fl(""'ll’)fl("-'!),y Ezfz(zl)fz("z))

N + 7o
774+773+'71+'I & f1(21)f1(22)

s+ s
+
A & f2(21) f2(22)

Integrating both sides w.r.t. z; and z3, we get

/ / min(& f1(2)fi(z)y  Eafale1)fo(22))dz1dz,

ﬁl‘f—ﬁo
< f Z')
'//[774‘*’73*‘7}14")61]‘( 21)f1(z;

4 + 73
] z d_ d"
’74 +7]3 +7’1 +17 £2f( 1)f2( 2) 1

Which by (2.9) and (3.91) implies
R%)(2) < R (2). (5.92)
The proof is complete. m]

3.4 Estimation of PMC'S of the first stage RNN rule
We shall propose estimates of PMC'S of the first stage MRNN rule for i =
using a deleted counting method and show that these estimates are asymptotically

unbiased and consistent. Let
YO =1 — 6K X1 Xa's, Yy s i# o i + 1) (3.93)

PERD = GOV Vigr; Xo's, ¥ s b # B £ K +1), (3.94)

where ¢(1) is defined in (3.8).
Let

S,; = {1,3,5,...,N1;N1 =n;—-11if n; even, N1 =qn; ~-2 if ny odd },

Sy=1{1,3,5,...,Ny; Na = ny — 1 if n, even, N3 =nz ~2 if n; odd },

Z ¢(t ,i+1) (3.95)

I€S,

pz [-—L



!

1 g
Py = i Y gy (3.96)
< Jies,
1 [ ; -
= __T L d)( +l)/\u‘\:+l) (39()
2 €S,
1
e XS: E({F 5 Y, Yigy) (3.98)
and
_ mp; +nzpy .
=t (3.99)

Then p; and p, can be used as estimates of PMC’s and p,, can be used as an
estimate of total PMC.
Note that

E(p£)=//(l—ﬁ(”(:l,:g;nl—'2,n«_))f1( Vfa(22)dzydzy,

therefore by

lim E(p,) //(1—"(” sz ) fi(z) fi(z2)dz1dz
=all(2) (3.100)

..4

Similarly,
lim E(p,) = a$"(2). ©(3.101)

Also note that U, and U, are U-statistics so that (see Serfling (1980, p. 190))

as n — oc, we have _
U, 25 aM(2), U, 2 alP(2). (3.102)

Therefore, to establishthe consistency of p, as an estimator for 0(1” (2), it is

enough to show that p, — U, P, 0 which is implied by E(p, —U;)* — 0.
LEMMA 3.4.1. E(p,~-U,)* = O(T;IT) and E(p,—-U,)? = O(,—,’; where pz,p,, U,
and U, are defined in (3.95)-(3.98) respectively.

PROOF. Using (3.95) and (3.97), we have

1 . . o
pe = Ue = gy ) (WD = EQETD /X Xin),
M

W E



-1
[SV]

and
E(Pr _ U,,)g = 'Tzl—'g' [ Z E(’l/)g'H'l) - E(wii'i.‘-”/-\.ie~\’i+l))2
[$1l&
+ 202 Bl — Byl Xy, X))
i#j
Now
E{,lr/,ii,H-l) . E(u'l,i.i,i-#l)/‘\'i’.\-i*_l)}2 = E Var E( lf/,&i,i-f-l)/k’i"\'“_l)
= E{EW{ "X Xip) — (EWE*Y)X5 Xi)?)
S E{E@ /X X)) — (B X X))
=E{1 - 7"(X;, X0 =2, ny) — (1 —aM(Xy, Xipyiny — 2, n2))?}
=FE{(1- 7r(1)(‘X; ny—2, 712))7.'(”(X;n1 —2,n3)}
1
< 2
=7 (3.104)
and

E(u" Y — B /X0, X)Wt — E(pU9t0 /X, X))

= E{E(:"FY — B+ /X, X))

(@D — Bt X X))/ X, SUSIRSIR RS

= E{E(p{""* /[ X;, Xip1) - E(pUHD /X X,



- E(d,gi,iﬂ)/xhx'.“) . E(tl)(j’j“)/Xj,X'jH))
- E(U V)X X)) - EQUIY X, X j4y)

+ B X X)) - EGYUIHY X, X))
=0. (3.103)

Therefore using (3.103)-(3.105) we get
) 1
E(p —U,)* =0 — |;
similarly, one gets
E(p, - U,)* = 0(%).
This completes the proof. a

Note that Lemma 3.4.1 shows that p, — U, £.0 and also U, L, a(ll) 2) so

that by (3.102) we have, as n — o
(1) d (1) g
Pr N «; '(2) and p, £, a; ’(2). (3.106)

By letting &; = lim %~ ¢ =1,2 we obtain by (3.99) and (3.106) we get

Pry R fla(l)( )+ &2 a(l)(’) = Q((i;( ), as n — oo.

Similarly, one could get an asymptotically unbiased and consistent estimator for

R{,)(K).



CHAPTER ¢
CLASSIFICATION OF MULTIPLE OBSERVATIONS INTO
ONE OF s POPULATIONS.

4.0 Introduction. In this Chapter, we are concerned with the classification of
K (K 2 1) observations into one of s populations. First in Section 4.1, we con-
sider the problem of classifying a single univariate observation into one among
s univariate populations using left and right hand Rank Nearest Neighbor rule.
Chis extends the results of Das Gupta and Lin (1980) to more than two popula-
tions. In Section 4.2, we propose a rule which generalizes the rule (3.1) for classi-
fying K univariate observations to one of s univariate population using first-stage
RNN rule and indicate how to get the asymptotic total probability of misclassi-
fication of the proposed rule. Finally, in Section 4.3, we consider the problem of
classifying ' (¥ > 2) multivariate observations to one of s multivariate popula-
tions in a‘Bayesian framework. For K =2 and general s, we obtain the limiting
risk of the proposed rule which turns out to be the exactly same as the limiting
risk of 1-NN rule obtained by Cover and Hart (1967) for s populations and we

also indicate bounds on it.

4.1 Classification of a single univariate observation into one among s
populations using left and right Rank Nearest Neighbor rule.

Suppose we have s populations ry,rs,..., 7, and an observation Z to be clas-
sified into one among given s-populations 7, 7,,..., 7,. Let (Xi1, Xig, ..., Xiy)
be the training sample from i-th population 7; ¢ = 1,2,.... s. The classification
RNN rule may be described as follows:

Pool observatons Xij’s,1=1,2,...,5,7=1,2,....n; and Z and rank them; then
(i) if Z is either the smallest or the largest, classify Z into the population of its
nearest rank neighbors;

(ii) if both the left and right neighbors of Z belong to one population, classify
Z to that population;
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(iii) If both the immediate left and right neighbors of Z belong to different
populations, classify Z into either of the two populations with probabilities 1/2
and 1/2.

In the sub section 4.1.1 the asymptotic probabilities of misclassification are de-
rived from the RNN rule. It turns out that the total asymptotic probability of
misclassification is same as the asymptotic risk of the 1-NN rule with d as the
metric distance, obtained by Cover and Hart (1967) for s populations. It may
be pointed out that the Cover and Hart analysis is based on Bayesian set up
whereas our analysis is based on a nonparametric frame work and depends on
ranks.

To reduce the chance of randomization one may consider a multi-stage version
as follows:

If the first stage leads to a tic delete these two tied observations and apply the
first-stage rule to the remaining. Proceed this way and move to the next stage
whenever a tie occurs. The M-stage RNN rule is defined to be the one which
terminates at the M-th stage (and allows for a tie in the final stage). In the sub
section 4.1.2 the asymptotic PMC’s of the M-stage RNN rule are obtained. It is
shown that total PMC decreases as the stage M increases. Therefore our result
agrees with the intuition.

The estimates of the PMC’s of first stage RNN rule based on deletion-counting
method are given in the sub section 4.1.3. It is shown that the estimates are
asymptotically unbiased and consistent.

Let X;; have c.df F; and corresponding p.d.f f;,1=1,2,... 3.

4.1.1 Limiting PMC’s of the First-stage RNN rule. Let the right-hand
and the left-hand RNN of Z at the M-th stage be V() and y(M) respectively.,

Let n = min(n;,n,,... ).

LEMMA 4.1.1. If M/n — 0 as n — oo the probability that (under any Z ~
fi,i =1,2,...,5) there are at least M observations to the left of Z and at least

M observations to the right of Z in the pooled sample as n — oo is one.
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LEMMA 4.1.2, Given that Z ~ F, and -;% — 0 as n; — co then VM) and

UM 4 Z as. asn — oo.

The proofs of the above two Lemmas are similar to those of Lemma 2.1 and 2.2

of Das Gupta and Lin (1980) hence they are omitted.

Let UM and V(M) be the left-hand and right-hand RNN of Z at the M-stage

respectively. Define ¢((M)(Z;4",'j’s i=1,...8 7 =12,...,n;) as

(1 if both UM and V(M are from (-th population or Z is
an extreme observation and its RNN is an observation
from {(-th population.

{AN) - J

Q¢ (4.1)

if either U™ or V') belongs to é-th population
(i.e. one of UM) and V(M) belongs to ¢-th population)

tof—

‘0 otherwise.

Let 4; be the event that both U} and V(1) are well defined.
The conditional probability that Z comes from ¢ using the one-stage RNN rule

given Z =z is

1) 1)
7"3 (3;721,...,713)=E(¢2 /Z ==z)

1 " (4.2)
= E(¢y 14,/ =) + E(¢{"14:/Z = :).
However, the lemma 4.1.1 implies
E(${"14:/Z = ) < P(45/Z = z) — 0. (4.3)

Also

E(¢¢'14,/Z = )

1 1 :
=P(# ) =1N4/Z =)+ 5P(6{" = 5N Ay/Z =)
= Ep(11) (U(”,V(”,z)

N1yeey Ny

1
+5EPRY L, (UM VD, ), (44)



where
POV (UMD, VO 2y = P4 = 1JUD = 0, VD = 4, 4;)

N yeeny Ny

POY U VO 5y = P(g) = 1/2 UM = u, v = v, 4y).

Ny,..

Now note that

Ce(ny,...,ng) .
(11) .) = 26\
Pfh,...,n,(“’ v,z B(nl,-.-,ns) (4":))
C (Tl yooe yns)
(10) 2) = 2f0\71
Pnl ..... n,(uivv") B(nl,---,ng) ] (4°6)
Where V0 =1,2,...,s,
Ce(n1,- .., ng) = ne(ne — 1)(1 — (Fe(v) — Fe(u)))™ 2
x T](1 = (F(w) = Fiw)™ - fe(w)fe(v), (47)
=1
i#t

Ceo(ny,...,ng) = Z nenm(l — (Fe(v) — Fo(u))]" 71 = (Fn(v) - Fo(uw)]"1?

Mt
x I 1= (F5) = Fiu))¥ [fe(w)fm(v) + fm(u)fe(v)]
it
(4.8)
and , ,
B(ni,..-,ne) =Y Ce(na,...,ns) + Y Ceo(na, ..., ms). (4.9)
=1 ' =1

Ce(ny,...,n,) is proportional to the conditional probability of classifying Z into
m¢, given Z = z and Cp(ny,...,n,) is the proportional to the conditional prob-

ability that only one of V(!) and U() is from 7, given Z = z. Let

pi = lim e and (4.10)

n—cony +ne+...+n,

assume 0 < p; < 1.
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THEOREM 4.1.1. Suppose z is a continuity point of all fi, fa,...,fs. Then
the asymptotic conditional probability that z comes from 7, given Z = z is given

by
1), . 1
775 )(z) = nhm 7r£ )(z;nl,...,n,)

~ 1.
=7 + 30,
where
~ P fi(z)
4,11
= ST T (11
and

2pefe(2) (5 m=1 Pmfm(z))

e = (Xt Pefc( ))? (4.12)

PROOF. Write Gi(n) = Fi(v)— Fi(u). Since UM — z as. and V() =z as., as
n — oo, and F; is continuous, Gi(n) — 0 as n — co. Now by (4.5) and dividing
the numerator and denominator of %-(—(nﬁ‘—n'% by 37, ni and Z‘Z;} (1= (Fi(v)-

Fi(u))™, we get

o — C[(nly' . 7"'3)
1111 ! B(TLI,---,TI’S)

(g7 (es)oosr

[Denominator] '

where,

[Denominator] = ; <£;l) (nzg:;il)f'e(u)fe(v)

+ Y (5% (52) (88 ey i

© €=1m=]
&<Km

+ fm(u)fe(v)). (4.14)




By (4.10) and (4.14) and as n — oo,
s 2
[Denominator] — (}: pi f.-(z)) a.s. (4.13)
i=1 '
so that by (4.13) and (4.15) we get, as n — oo,

pifE(z)
(Z?=1Pifi(~’))

3 a.s. .

.....

- Cm(nl,. .o ,n,)
B(ni,...,n,)

_ Lm=1,mae (iﬂ—l) (:“") B (fe(w) frm(v) + fm(u) fo(v))

[Denominator]

.....

. (4.16)

where [Denominator] is given by (4.14). Thus by (4.10), (4.15) and (4.16), we

have

2pufee) Ty )

Pr(lt?.)..,n,(uav’ 3) — 3 a.s.
(Z?:l Pifi(z))
Hence, using Dominated Convergence Theorem, we get
2£20,
EPUY | (u,v, pefelz) o (417)

TS pfi2)Y
2p1fe() Tinzy P fm(2)

)
(Shmfi2)
Thus from (4.2), (4.3), (4.4), (4.17) and (4.18), we have

and

EP,(,:O.)_ n, (4,0,2) = (4.18)

ey

7 (z) = lim 7D (zny,..,n,)

IAHE

= - 3 -f'

(Zf=1 Pefz(z))

2pefe(2) Z’g:;} Pmfm(z)
(Z;l pu&(z))'

- 1’\
=ne + §mo-
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The proof is complete. )

Now we derive the limiting TPMC of the RNN rule. First-stage limiting PMC's

of the RNN rule are given as follows:

ag) lim P( Decide z € m¢/z € m;)

- /wll)(z)fj(z)dz

- / [ PfL) +P¢ft(3)2’;;;;;pmf:(z)
(Z'Ll p.-fi(z)) (22;1 Pifi(z))
By,
i=1 Pifi(z

_ pefe(z)fi(2) . ' .
-/ (z;:;pi;.-(z))d 9

]fj(z)clz

We may take p, = €, as prior probabilities for ¥V ¢ = 1,2,...,s. Therefore the
total limiting PMC is given by

(1) (1)
R, (1) = ZZ Siay
1j=1
l#J

i1 Lg= Eefe(2)E5f5(2)
=/ 2 dz
E:_1 Efft( )

Yf—l EJ =1 flfl E]f](z)
5

=/ (Zf:x fifi(:))2 Z;Eifi(Z)dz- e

The Bayes risk for K =1 in (2.9) is given by

R = [min (T 6fi(a) D &hilz), 0 3 €ifi))ds

171 1#2 1#3

= /mln(l - 771(2)71 - 772(2)7 AR 1- 77.!(2)) Zfifi(z)dzv (421)
=1




.where
| §ifi(2)

(2) = el |

m(?) Y= &ifiz)

THEOREM 4.1.2. If f1,fs,..., fs are continuous, then RE:)) (1) has the follow-

ing bounds:
Rig() < RYW) < Riy(0)(2 - 25 Riy)

where R3(1) is the Bayes risk given in (2.9).

PROOF'. Note that

min (z (2 D &ifi(2) Y €.‘fi(2))
J#1 i#2 i#s
~ _ &ful(2) N~
= ; Sim Eifi(2) ,; Gi2)

J#t

Integrating both sides with respect to z in above, we get
1 97
Ry, (1) < B(;(1). (4.22)
To prove the upper limit, let

r(z):ZZ Elf:(-’)fjfj(z)2
A (E,-=1§ifi(z))

=33 ne(zni(2)

=1 j=1
L#£)

=1-) ni(2), (4.23)
i=1

which in view of (4.20) gives

R (1) = Er(z). (4.24) -



§2

Suppose max;{n;(z)} = ne(z) so that the conditional Bayes risk r*(z) using (2.8)
is given by
r*(z) =1-max{n;(z)} =1 - ne(2)- (4.25)

Using Cauchy-Schwartz inequality we have from (4.23) and (4.25)

R ION if:mz)r

=1 j=1 =] j=1
¢+ t4i

which implies

(s =1 nj(z) = (™)) + (s = 1)(1 = r*(2))?

=1
le.,
$

s—1

Therefore, by (4.24), (4.26), (4.21) and Jensen’s inequality, we have

r(2) < 2r*(2) = ——(r*(2))%. (4.26)

RO = Er(z) £ 28r°() — =S B(r* (o)
* S *
<2R(,(1) - -s—:—l-R 3(1)
S . _
= Rzl.s)(l)(2 b 5 — 1R(s)(1)). (4.2‘)
Thus by (4.22) and (4.27), we get
* . s .
Riy(1) S BG(D) < Riy(2~ == REy (1)) (4.28)

The proof is complete. ]

Note that the inequality thained in (4.28) is exactly the same as the in-
equality obtained by Cover and Hart (1967) for s-population case. Now we move
to another sub-section where we will obtain the limiting TPMC for the M-stage

RNN rule.



7> 412 Limiting PMC's of the M-stage RNN Rule. Let 1™ (sins,np, .. on0)

be the conditional probability that the M-stage RNN rule classifies Z into
given Z = z. Let '

ng)(z) = nlingo x;M)(z; N1y Ny ey Ng) (4.29)

By the definition of ¢$M) (see (4.1)), we have

aM(zing,.. . 0. = P[ oV =1/2 = z]

M
+ ZP[W) =1/2,...,60 0 =1/2,¢{) =1/2 = z}
i=1
1 P[‘ﬁgl) =1/2,...,64" =1/2/2 = z]. (4.30)
Now

[ 60 =172, 447V =1/2,¢£‘)=1/Z=z]

= (“)-1/’/ )~P(¢§”=1/2, E"=1/2,Z=z)

x p(qsg“) =1/2/¢,” =1/2,8," =1/2,7 = z)

...... ( 8 =1/2/¢8V =1/2,...,¢0 =1/2,Z = z»
J .

...... P( D =1/2/¢0 " =172,...,6Y =1/2,2 = z)

P(qsﬁ" =1/¢¢V =1/2,...,60 =1/2,Z2 = z)
= P(¢$‘) =1/2/2 = )

-1

XHP(¢(J) 1!9/¢(J 1) / (1)_1/2, =z)

Jj=

X P((ﬁ(') = 1/¢(1 = 1/2,... ,¢$l) =1/2,2 = z)_ (4.31)



* Similarly, we write
P[¢£l)= 1/2)' e y¢$M) = 1/2,2 = Z]
= P(¢§” =1/2/2 ='z)

M .
X HP(¢$J) = 1/2/¢£J-1) = 1/2,...,¢$1) =1/2,2 = 2), (4.32)

=2

" Under certain conditions we shall show that

lim P(¢<" =1/¢8V =1/2,...,6V =1/2,Z = z)

= lim P(¢$" =1/7 = z) =% (4.93)
and

lim P<¢(" =1/2/¢0 Y =1/2,..:,6) =1/2,Z = z)

n=—-0o

= lim P<¢g" =1/2/Z = z) = fno. (4.34)

Where 7¢ and 7 are given in (4.11) and (4.12).
Therefore, using (4.29) to (4.34), we have

(M=-1) .
M -~ o~ ~r -~
met(2) = e+ e Y Ak + 50

i=]

M-1 ) 1
- ﬁe(l + 3 ) + 7
M-

Z Moo + oﬁé‘é » (4.35)

Suppose ¢£1) = 1/2. Delete the observations corresponding to U") and V(¥ from
the pooled ordered training sample. Denote the remaining (n — 2) observations

2
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LEMMA 4.1.3. Given Z = z, ¢(1) = 1/2,UM = o) V(” = v(1), the condi-
tional distributions of Xg-)(j =1,2,...,n,—1) and X{,f;’-)(k # €), are given as
follows:

(i) Xm s are mutally independent,

(ii) the density of X(2 is

fe(z) )
f¢(2)(a:) = 1 __(Ft(,,u;) —Fe(a)] on [uy,v] (4.36)
and
(iii) the density of X(2)
Nz) = fi(z) c A
f,£2 (z) = 1= (Fk(v(ll;) ~ (@) on [uy,v]°. (4.37)

Lemma 4.1.3 can be extended in a similar manner as follows:
Let ¢E,m) =1/2(m =1,2,...,i—1). Delete the observations corresponding to U(™)
and V{™(m =1,2,...,7—1) and denote the remaining n — 2(¢ — 1) observations
~(1)
by X 5.
LEMMA 4.1.4. Given Z = z,U(™ = y(m) y(m) — y(m) anq p™ = 1/2 (m =
1,2,...,4—1) the conditional distributions of X,(;)(B =12,...,np—1+1) and
X("(L #0) s are given as follows:
(1) AC(' s are mutually independent,
(ii) the density of Xgﬁ is

1@ = 0@/ = (B U) - By (a3s)

on [u(“l),v(i“l)]c, where Fe(iq) is c.d.f corresponding to f}i_” defined in-
ductively
(iii) and the density of ‘Xiﬁ is

@) = A7)/ = (B 60) - FD -0y (4.39)
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on [uli=,v0-D]e where F\'™" is c.d.f corresponding to f{'™", defined induc-
tively. |

The proofs of the above two lemmas are similar to those of Lemma 3.1 and

3.2 of Das Gupta and Lin (1980), and hence they are omitted.

THEOREM 4.1.3. If z is a continuity point of all fi,..., f, then the limiting
conditional probability of classifying Z into =, using M-stage RNN rule, given

Z =z, Is given by
M . M
7r£ )(z) = nlx_{xgo 71’5 )(z;n.l, ceeyNg)

M~1
=1e- z ne+ ,ﬂeo

i=0
PROOF. As in (4.5) and (4.6) the conditional probabilities ¢{” =1 and ¢/’ =
1/2 given Z = z, U = u) V() = (D(j = 1,...,4) and ¢£j) =1/2(j=1,...,1—
1), are respectively given by Cgi)/B(i)(rel, ...yN,) and Cgé)/B(i)(nl, ..., Ng), where
C(z) C(‘) and B(‘)(nl,...,ns) are obtained from Cy,C¢ and B(ni,...,n) re-
spectively (see (4.7), (4.8) and (4.9)) after replacing n¢,ni(k # Ou,v, fo, fi by
ne—t+1,ng — i + l,u(‘),U(i),fgi), éi) respectively i1’s are such that Y, ix = 1.
Let
pe(i = 1) = F' (1) - P (), (4.40)

We note that pe(i — 1) 2% 0 as n — oo since v~V — z and Y = 7 as. So

that from (4.36), (4.38) and (4.40), (Lemma 4.1.3 and 4.1.4) we get

(l) _ fe(z)
Je(e) = (1 =pe(1))(1 = pe(2))... (1 —pe( — 1)) (4.41)

Therefore using (4.41), (Lemma 4.1.2) and continuity of f;,(j = 1,...,s) at z,

we get
Oy — foz) as.

and
WD) — fi(z) as.



similarly,
D) — fiz) as.
and
f(i)(v(i)) — fi(z) a.s. as n — co.
' c® (1)
Thus the limiting values of s and g(, are 7¢ and 7go respectively and hence

(4.35) and (4.34) hold. Now introducting the set 4; as in Theorem 4.1.1 and
arguing as for (4.2) to (4.4) we get the result (4.35) in view of (4.30) to (4.34).
a

Now we obtain limiting TPMC for the M-stage RNN rule.

The limiting PMC'’s of the M-stage RNN rule are given as follows:

O‘gtﬁ Jim P[M-stage RNN rule decides z € /= € ;]

= / w0 (2) fi(2)de.

In the limiting case we may take p; = §i(i =1,2,...5) so that the limiting total
PMC for the M-stage KNN rule is given by
M M
R{(1) —ZZ Ealt]. (4.43)

=1 j=1
0]

(4.42)

Now we prove a theorem regarding a pxoperty of R( M) y (1)

THEOREM 4.1.4. RE :)4 ) (1) defined in (4.43) has the following property:

Réf;[)(l) <R(M l)( )

PROOF. Using (4.42) and (4.43), we write

(M) (M~ l) 1\1) (1\1 1)
A= R =33 6 (o)) - ol ™)

=1 j=1
b#j

/ ZZ Eifi(2) (M (z) = aMD(2))dz. (4.44)

£€=1 j=1
£



We also know from (4.35)

M) M-1 ' 1
(=) =R Y flo+ 5700

=0
so that by applying (4.11), (4.12) and (2.1), we have

M M=1)  ~ M- . lqM-1,~
”5)~7"$ )=’7e'ﬁ§o )+§n§o (0 = 1)

AM=1)~ , 14 1
= '750 G + 570 = 5]

_ A(M-1) [_fjff(Z) LGSl B ifi() 1
ST | EEARY T T (LGP

M- 1 - 1
=fa' [zi’ﬁ(?@) - E] = (0= 3)-

Now writing (4.45) as

M) M~1) LyMm-1,, .
() = mM0(2) = =5k (1 - 200)

-

we get from (4.44) and (4.46),
E::l Z?Fl fifj(z)
J#¢L
Z::l Eifi(z)

R((1) - RO V(1) =

(4.45)

(4.46)

(rM(z) =7V EN Y &ifilz)dz
=1

--1 / Y (1 -n)(1 =200 Y Gifi(z)dz (447)
= =1 i=1

Again we write 7¢ in (4.12) using (2.1), as

~ _ thft(z)Zj;eefjfj(z)
TS GREP
= 2n¢(1 — ne).

Thus, by (4.47) and (4.48), we have

(s)

X Z&fi(z)dz-
i=1

(4.48)

s
R(Nl)(l) _ Rg;‘;f—l)(l) — _2M-2 / Znéw—l(l _ 77£)M—2(1 _ 7”)2(1 _ 277[)
=1
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Now we apply the fact that —(1=1n¢)? < —(1-2n) in the above to obtain
Ry (1) = By~ (1)

<-2¥=2 [ S =11 = oM~ 2(1—"m)2ZE.f.

=1
= —2M-2 E E[((1 = ne)ne)™ ~2ne(1 - 2n,)?) (4.49)
i=1
= R(}P(1) < RN V(). (4.50)
The proof is complete. a

4.1.3. Estimation of PMC’s of the one-stage RNN rule. We shall estimate
the PMC’s of the one-stage RNN rule by the deleted counting method which we

describe as follows. Let
b = 1= 6 (Xee; Xijsi =100y, 5= 1,...,m j # k) (4.51)

where qo is defined in (4.1).
Let
ny¢
pena,...yng) =Y /g 0=1,2,...,s (4.52)
k=

and
mp1(ny, . ng) + .+ nape(ng, ..., ny)
n1+n2+...+n, '

Then pg’s £ =1,2,...,s are estimates of PMC’s. From (4.2), (4.51) and (4.52),

P(ny,...,ny) = (4.53)

we note that

EPl(nh--- anS) = /(1 - ”il)(z;nl - l,ng,...,n,))f](Z)(l"
Epe(ny,...,n,) = /(1 - W}])(z;nl,ng,...,m ~1,...,n,)) fe(2)dz,

Eps(n1,...,ng) = /(1 — 7 (zin1,na,.. . 0y — 1)) fu(2)dz.
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Therefore

EZpg(n -1,...,n,) =/ Ewﬁ”(z;nl = 1Lng,...,n,)fi(2)dz

=1 {#1

+ /Zxﬁl)(z;nl,ng =1,...n4)f2(z)dz

{#2

+/Z7r$l)(z;n1,n2,...n, = 1)fs(2)dz

l#s

so that from above we have

L |
nepe(n—1,...,n,)\ _ o ~
E;( f"i ) - Z"’t (zing — L,ng,...,n,) fi(2)dz=

i t#1

Zﬂ' l)(z; ny,ne —1,...n4)fo(2)dz

P oes2

Z?T l)(z;nl,...n_, —1)fo(z)dz

tl¢

Let

& = lxm

E g (4.55)
By (4.53) to (4.55) and the (Lebesque) Dominated Convergence Theorem, we get

lirxlnE[p(nl, n,]—hmE[ ZZ 2 wgl) zZing,...ng—=1,...,ny)

=1 j=1
£

=E Y Y gn(z)

=1 j:=1
t#)

=336 [mrea

£=1 j=1
e#j

= Z Z ¢iag) = R{(1). | (4.56)

=1 j=1
03]
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From (4.56) it follows that p(n;,...,n,) is aSymptocally unbiased for Rf:))(l).
Now order the combined observations and let ry(€ = 1,2,...,s) be the number

of runs for the observations from (-th population. We note that
nepe(ny, ... ,ng) =re + 6y, (4.37)

where 16¢] < 1, 8¢’s (€ =1,2,...,s) are the contributions arising from the extreme

observations. Now, by (4.32) and (4.57), we write

im E(re/ne) = li'x'n Epe(ny,...,ny,)

=/<1—f"’( ) fel2)dz

/ Z (=) ful 2z (4.58)
J#l

and let r be the total number of runs; then from (4.56) and (4.58) we have

) r Yonepe(ng, ..., ny)
‘*f.nE(zn,.) ~,.‘L“;°E( S, )
—ZZEJ/ ¢ (2)f, (=Ml

t=1 )=
)

_225, i) =R, (459

(=1 j=1
(#)

Let Uy be a U-statistic defined by

Ty

U= — Z E@WY ) X ). (4.60)

It follows from Theorem A of Serfling (1980, p. 190) we get, as n — 2o,

=5 Y el (4.61)
1#L

We will now show that E(p, — U¢)? = O(n~") which will establish that

pe—Ue 250, (4.62)




so that from (4.61) and (4.62), we may conclude that

pe 5 3ol (4.63)
J#t

LEMMA 4.1.5. E(p¢-U.)? = O(1/n), where p; and U, are as defined in (4.52)
and (4.60) repsecitvely.

PROOF. Using (4.52) and (4.60), we write
1 :

(pe= Vo) = gwﬁ"’ - E(¥¢" /X))
from which we get

1 (& ' N ol

(e = U0 = 5 { 042 ~ B0/ X))
k=1
+2 33 (" - B” [ X)) = E({™ [ Xem >>}. (4.64)

k<m

Now

E(Y — B | Xem))? = EVar(E(${" | Xem))
= E{EW{"? | Xtm) — (B | Xem)?)
< E{E(" | Xtm) — (B | Xem))?)
=E{(1- Rgl)(.\.[k; NpyeenyMgyyeneyN2)
— (1 =X nay.e ney, . n2))?)
= Ex"(Xpsny, .. ne—1,...,n,)
x (1 -7 (Xesny, .. one=1,...,n,))

<1 (4.65)

4
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and

E(" - B [X0)se™ = EW™ [ Xem))
= E{E(W" /N = B/ Xem g™ = B [ Xew))/ N X1 )
= BB U™~ BB Xon) - RV
+ EQ@Y X ) - E(0F™ [ Xem } New, Xew )]
= E[E@™ 1 X0 Xem) = E( - E(R™ 1 X 1)/ N ety N ew)
= By B )N w)/ Xk Xew) + EGHE [N 0) - EG08™ 71X 1)
= EIE( /Xa) - EQW¢™ | Xem) = EG™ [ X o) - EGHD X 1)
— E /X0y Q™ I X tw) + B X o) - EGE™ X 1)
=0. (4.66)

Hence, from (4.64) to (4.66). we get

E(])( - U()'z = ()(-—l—)
Ny

The proof is complete. 0
Thus from (4.53). (4.53) and (4.63) we note that

plg..... n,)———oflz (”+£ L";]}'f' 4+ & 2_‘ o

I#1 12 17

=Z'z’:£!n)l= R

(=] 3=}
%)

Similar estimates for limiting PMC’s of the M-stage RNN rule ean bhe obtained.

4.2 Classification of multiple univariate observations to one of + populn-
tions using left and right Rank Nearest Neighbors.

Here we consider a problem of classifing N univariate observations to one
among s nnivariatc.popnl:xtions using first-stage RNN rule. This would be an ex.
tension of the first-stage RNN rule given in (3.1) for « = 2 to the general s popm.
lations. Let .X,,.j = 1,2.... ,n, be the random training sunple from the i-th pop-

ulation 7.1 = 1.2.....5. Suppose we have n random sample Z= (Z,, Zy... .. Z1)
-~
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to be classified to one of s populations. We propose the classification rule 6%)

as follows:

Combine X;’s and Z,’s i =1,2,...,8,j = 1,2,...,n;,¢=1,2,..., K and arrange
them in ascending order , “hen identify the first left and right hand Rank Nearest

Neighbors of Z; for all £ =1,2,...,K. Let m; be the number of Rank Nearest

Neighbors identified as from being the population =;,7 = 1,2,...,s. Then classify

Z2=(2,,23,...,2y) to the ¢-th population m,
if m¢ =m®*, where m® is unique maximum of {m;, 1 <i <s};
if m*=m; =m;, =...=m,;,, then classify

Z to m¢ with probability 1/J for € =iy,i2,...1,. (4.67)

Now to obtain limiting total probability of misclassification for the rule 63\’-})

described in (4.67), one should fol'low similar type of argument given in Section
3.1 of Chapter 3. Because of its natural cumbersome expressions we do not

include a discussion on them.

4.3 Classification of multiple (K > 2) multivariate observations to one of
s populations using 1-NN rule in Bayesian model.

Suppose we have a random identified training sample (\X.6;),(X2.6,).....
(X,,0,) taking values in R? x {1,2,...,s}, where {6;}i=1.2. ... are i.i.d discrete
random variable with P(6; = j)=¢;,i=1,...,n,j = 1,...,s and Z;‘=1 & =1
The object is to classify §= (Z1,22,...,2K) to one of s populations =y, 7a,...,7,.
Let X, be the NN of Z; (see (2.15)) for all j =1,2,..., K. Let m; be the num-
ber of Nearest Neighbor observations identified as being from the population
7,1t =1,2,...,s. Now we define a classification rule 6(,\{')3 as follows:

T

Classify Z to population 7,

if m¢ =m"*, where m* is unique maximum of

{mi, 1 <i<s)y if m* =m;, =my, =... =m,,, then classify
. N | oo .
Z to m¢ with probability i for € =1,,19,...,1,. (4.68)
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Now we will obtain the limiting risk of the rule 8 in the case when & =2
observations are to be classified. Suppose the real eategory of Z is @ and its
estimate 8. We will use the (0—1) loss defined in (2.7). so that the conditional

risk given Z= (21, 22) and X' = (,,.xl), is given by
l'( o .I"") = E{L(e' n:x )/ <, 'r:| }

=PO#6,/ 50

~ ~n

now using the conditional independence of 8 and 6, in above, we get

r(zial)=3 Y PB=i/z) P, =(]1)

1=1 (=} o
1#
=Y "N s maat, (4.69)
1= (=1 "
144

where 7(z) for N =2 is given as in (2.2) and

mlr' )= PO, =] ')

S’ ) e
— ~1n “vn
B Bn
1 Stf z.,'nglﬁm‘fl(ﬁr ’fm(-z" )’4“ fl(f-,‘ )fm(-‘r, ”
+ - nj nl nd o) ) (“-'-“)
2 3. !
(=1.2.....5. and
Bn = Zfi,f,(r' )fl‘_f’ )+ ) Z E’Em(f/(f' ’fm('r’ ) ¢+ /l‘f’ )/'"‘f’ li
(=1 ~nl ~n2 "?;, i “~*nt “*ni “~u “~a}
£+ m

=(Q_&dus’ Nt . (471
(=1 "= T

Now we prove the theorem on limiting risk,
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THEOREM 4.3.1. Suppose 2, and z; are continuity points of all f;,i = 1,2,...,s.
Then the limiting conditional risk given z= {2y, 2;) and the limiting unconditional
risk for the rule &f,g, are given respectively by

d)-hmdﬁxr§:th>r«>as

n=—:od

'—xl¢l¢-l
and
R(2) = lim Er(z;z')=E{r(2)},
where

m(z) = = & fe(z1)fe(22)

(Ci=1 & Fie)) (D=1 &ifi(22)
lftzm;eefm(fe(el)fm(‘-?)+ft’(~2)fm(~'1))
2 (T &ifia)(Eiai6ifi(z))
£=12,...,s. (4.72)

+

PROOQOF. By the continuity of f;, at 2,2 =1,2,...,s, Lemma 2.1.1 and (4.70),

we have
me(z' ) 25 m(2) (4.73)
~n ~

which by (4.69) and (4.73), yields

r(z)=limr(z;2")
~ n

~ ~n
DI HEIE me( ). (4.74)
i=] £=1
1#L

Now using the Dominated Convergence thocrem we obtain

oY
-1
Ot

R(2) = lim E{r(z;2')} = E{r()). (4.

The proof is complete. m]




Now from (4.72), (4.74) and (4.75), R(,)(2) can be exprceecd ns:

R =3 [ 33 i)

i=] (=1
il

2% ( )fl(~")+£lfl( I)Z,,.#(\m]m 2)+ (fl -')Z,,,,rt.mfm\ l)

* ((_un 1\mfm l)(zm |\mfm( ))

X Z mfm l)fm(:'.’)d:ld:'.’

L.lfl X)Z,,, )\mfm 2) *\ff(( .__‘,,,3|\mfm( l)

1
§/ E___:’Z (Z:,.:l\"lfm Ny )(Z,,,=|\mfm(~l )

)

x ng fn(21) fm(z2)dzydzy

m=

/ ZZ 3 (ne(zr) +ne(z2)) - & f( ) filza)dzydzy,

=] (=}
i#(

= 1,2, in the above is defined in (2.1),

where ne(z).i
—(/m( DE S22z + /7/1 ) (22 ey)

i

=1 (=]
£l
/ZZM UREN Ls.f.( ) )z,
=] =] 1ex )
F 14

{(4.7G)

:/r(:l)'zf.lfy(:l)d-?). (Ml.\')
=1

Now we obtain bounds on R,,(2) in the following
By hax the following

THEOREM 4.3.2. The limiting risk R (2} of the rule é

bounds
Rig(1) £ Ry(2) 2 207, (1)) = RY, (1)), (457



98

where Ry, (1) is the Bayes risk (see (2.9)).

PROOF . From (4.76), write

r(z1) =) ) ne(z)m(=)

i=1 (=1
i#e

g

=1-Y "ni(a). (4.78)
j=1
Note that if n¢(21) = max;{n;(z1)}, the conditional Bayes risk r*(z;) in (2.8),

can be written as

(1) = 1 - max{y;(21))
1) | (4.79)

By the Cauchy-Schwartz inequality and (4.79), we have

(s = 1)) ni(z1) = D _ni(2)]?
J#t J#e

= [1 = ne(21)]* = (r*(21))%

Thus, adding (s — 1)n2(2;) both sides in above, we get

Zw 2 CER ey (480)

From (4.78) and (4.80), we have

r@gggwpg-siluwan2 (4.81)

so that by (4.76), (4.81) and Jensen’s inequality, we obtain

Ro(2) < 261 (21) = == E(r* (1)),
< 2Ry (1) - ——[Er*(z)],
= 2R}, (1) - == R3(1)
= Riy(1)(2 = == R{y(1))- (4.82)
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Also, note that

min(}_&ifi(n), ) &ifilz)...., Y &ifi(21)

s i¢2 idts
_&ifi(z) S
Z Z lstfg(q) g §ifi(z1)
i#]

so that by integrating both sides w.r.t. z;, we get
Ry (1) < Ry)(2). (4.83)

The proof is complete in view of (4.82) and (4.83). O
Also, similar results can be obtained by using the above arguments for gen-
eral K > 2; the details are lengthy and hence are omitted. We also note that in

*he nonparametric model, similar a limiting risk for K > 2 can also be obtained.



CHAPTER 5.
CLASSIFICATION OF MULTIPLE OBSERVATIONS USING
SUB-SAMPLE APPROACH

5.0 Introduction . In this chapter, we propose a 1-Nearest Neighbor discrimi-
nant rule for the classification of multiple observations {Z1,...,Zx} among two
or more populations based on sub-groupings of size X from the training samples.
This rule generalizes the Cover and Hart's (1967) 1-Nearest Neighbor rule to IV
observations. Here we prove the almost sure convergence of Nearest Neighbor
and derive its asymptotic risk. We show that asymptotic risk has a bound that
is parallel to the one obtained by Cover and Hart (1967). We also propose an

 estimator of the risk function and show that it is unbiased and consistent.

Let (X1,6:),(X2,82), ...,(Xn,0,) be iid random vectors from R x {1,2,...,s)
with P(6; = j) = &, j = 1,2,...,s and E;___l §; = 1 where §;’s are called
the prior probabilities. If 8; takes value j,(i.e. 6; = j) then we say X; is from
population 7;, i=1,2,...,n; j =1,2,...,s. Let (Z,,0),(Z,0),...,(Zx,6) be a
random sample from one of the distinct populations among 7, 72,...,7,. Assume
that m; has density f; (w.r. to Lebesque measure y on R j=1,2,...,s, and use
the notation ((Z,,6),(Z,,9)...(Z2k,9)) = (g,e) noting that only g is observable.
It is desired to estimate # by making use of the information contained in the
training sample described above. Assume that the training sample has been

identified. We shall now describe the sub-sample approach as follows:

Let n; be the numbers of X-observations in the training sample identified
as being from the population 7;,7 =1,...,s. Thus E;=1 nj = n where we also
assume K < min(ng,ne,...,n,) without loss of generality.

Consider the set of all possible sub-samples from each of the identified parts of

the training samples corresponding to the populations my,mg,..., 7, viz.,

§= {}::: (‘Yil’Xiz"“ 7Xi1()T’ 01'1 = 91'2 == eik = T(ix-uil()’il # i3 56 # 2-I\'}'
(5.1)

100
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Suppose {rm} is a sequence of i.i.d random variables with P(rn = j) = ¢; V) =
1,...,s and E;=1 €; = 1. Thus we treat the sequence {):"",Tm}m=l‘2w"‘v as
an identically distributed training sample with Range space IR*? x {1,2,...,s},
Where N =ny, +n2, +...+ngp, . The symbol np, denote the number of per-
mutations of n things takeﬁ r at a time. We shall now define the “sub-sample”
classification procedure 67 : Denote by {'NE {1:1,}:2, . ,{'N} the Nearest Neigh-
bor to g, that is, if

mal ¥ -Z1=1Y, -2 (52)
suppose Z"N is identified as from the population corresponding to r, say, =,

then classify Z to the population 7,7 =1,...,s. A mistake is made in classifi-

cation if 7 # t), where we have set § = 7, the true category of Z .

5.1 Asymptotic NN risk when K = 2 observations are to be classified

between two populations

In this section we shall treat the simpler case s = 2 and ' = 2 for conve-
nience of presentation — the general case is treated in the next section. Let
(X1,61),(X2,62),...,(Xn,60,) be an identified training sample from R¢ x {1,2}
and let {#;}i=12,.,n be i.i.d random variables with P(6; = 1) = ¢, and P(6; =
2)=¢6Vi=1,...,n where §§ + 6 = 1.

If 6; =1 we say X; is from =, with p.df f; and if 8; =2 we say X; is from =
with p.d.f f,. Let n; be the number of X’s that have been identified as coming
from =; for : = 1,2. Note that n; +no =n.

According to the sub-sample procedure described above we consider the set
S ={Y=(X:,X;)T; 6 = 8; = m,i #j}. (5.3)

The set defined in (5.3) has (ni,, +n3,,) elements. Set N = (n,, + 12, ). We
note that there are {(N) = [24] + [52] mutually independent pairs of random
variables in the set defined by (5.3).

Let {rm} be i.i.d random variables with P(7, =1) = & and P(7, = 2) =&, and



102

§1+& =1 so that we can consider {): »Tm}m=1,2,...~ as identically distributed
training samples of which 0(N) of thel':l are mutually independent.

Let (Zy,7) and (Z,,7) be the new observations to be classified. Denote
{(21,7),(22,7)} = (Z 7). Suppose )" is the Nearest Neighbor of Z and Y:V
belongs to the category 5. Then we classxfy Z into the category of rJ,.

Now we give, the proof of almost sure convergence of Nearest Neighbor {n g

in the following lemma.

LEMMA 5.1.1. Suppose ZandY Y, .Y v e identically distributed ran-

~1 ~2

dom vectors. Also suppose that there are €2(N) mutually independent random

vectors present among Y Y ,YN, where €3(N) = c0 as N — co.
2 -~
If Y be the Nearest Nexghbor of Z from the set {Y' YV | ,YN}, then
Y;J——»Z as. asn-— oo. (5.4)

PROOF. For any ¢ >0

PUY, = 21>} =Plain]| ¥ -2 >¢)
=PUY, - ZI>elly, - ZI>e.Y -z >e)
SPIY -2 >e)®

=(1-P(IY - 7] <e)}e™

— 0 as n — 0. _ (5.5)

Since || Y:v — Z || is monotonically decreasing in N, similar arguments as for
(2.18) together with (5.5) imply ¥’ —Z as. as n — oo, a
~ N ~
Now since 7 is the true category of Z, taking the loss due to misclassification

using the NN rule to be of the (0,1) type, i.e.,

Lir,7p)=0if r = ™

=1if 7 # 7, (5.6)
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the risk R3)(2) (in general R(,)(K)) of 6! is given by
Rey(2) = lim EL(r, 7). (5.7)

Denote by R{(K) = the Bayes risk for classifying Z= (Z,...,2Zx) into one of
s populations. Then Ry, (K) = EL(r,7y) = E[r*(z)] with #*(2) = min;<;<.(1-
7}(z)) and |

n(2)=P(r =3/ Z=z)

= et SiC) g o 8
E;=l£jfj(zl)'-~fj(2k') or)=12,...,9¢ (5.8)

r*(z) is called the conditional Bayes risk given Z=z . We can now state in the

special case I = 2,5 = 2 the following theorem.

THEOREM 5.1.1. Let z; and z, be the continuity points of both f, and fa
and fi(zj) > 0 for i = 1,2;5 = 1,2. Then the NN risk R(2)(2) satisfies the
inequalities

R(3)(2) < R(2)(2) < 2R(5(2)(1 ~ Ry (2)),

‘the bound on the right being the best possible.

PROOF. The conditional NN risk given Z=z and Y'V 1s given by
~i

~ A

Y Y=E 1 2,Y'
Y )= BT 2,Y )
= P(r # 70/ 2" )

=P(T=2,TII\,=1/ 21Y,,V)+P(T=17TIIV=2/ :’)”I}V)
=P(r=2/2) Ptk =1/Y' )+ P(r=1/z)-P(rly =2/ Y" ),
~ ~ ~ ~.,'\Y )

where in the last equality we have used the conditional independence of 7 and

Th- By (5.8), we thus obtain

YI =tz_t},—l .Z"'—'. g.
r(z, Y ) =m(z) m(Y ) +ni(z) na(Y) (5.9)
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Since z; and z; are continuity points of both f; and f,, z= (21, 22) is a continuity

point of n*. Now since ¥’ —z a.s. as n — oo by lemma 5.1.1., we have

~N -~
(Y )= ni(z) as. (5.10)
n(Y' ) = ni(z) as. . (5.11)

By (5.9), (5.10) and (5.11) we have
r(i’{;\/) = 7(2) =2n7(2)n3(z) as. ; (5.12)
in fact, we can express the conditional, given Z=z, risk of §* as

r(2) = 2n(2)n3(2) = 7 (2)(1 =0y (2))
=2r7(z)(1 - r*(2)), (5.13)

the last equality following in view of the fact that »*(z) is symmetric in ni(z)’s.

Further, since r(z,Y;V) is bounded and by (5.12) r(z,Y'V) — 7(z) as., using
~ Ay ~ ~1 ~

dominated convergence theorem we have

Rip(2) = im B{r(z,Y" )}

N
= E{limr(i,}:' )}
= E(r(z)). (5.14)

From (5.13) and (5.14), we thus have using Jensen’s inequality

Rip(2) = &r(=
= 2{E(r*(2)) = E(r**(z))},
S 2{E(r(2)) - (Er*(2))),

= 2(R{3(2) - R{3)(2)),
= 2R%)(2)(1 — Riy(2). (5.15)

= 2E(r*(z)(1 = 1*(2))
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Again, note that

r*(z) = min(n}(2),73(2))

<297 (2)nz(z) = r(2). (5.16)

Now taking expectations of both sides of (5.16) we get

R3)(2) < Ripy(2). (5.17)
Thus, (5.15) and (5.17) yield
R(3)(2) £ R3)(2) < 2Rp,(2)(1 = B(y(2)). (5.18)
The proof is complete. i

5.2 Asymptotic NN risk when I’ multiple observations are to be classi-
fied into one among s-populations.

Let (X1,6:1),(X2,62),...,(Xs,0,) be the identified training sample from RY x
{1,2,...,s}. If 6; = j, we say X; is from the population r; with p.d.f. £,
Vi=12,...,nand j=1,2,...,s.

Let n; be the number of observations in the training sample identified as
being from =, j = 1,2,...,s with 3 5_, n; = n.

Consider again (from (5.1))

S = {}:= (-‘—ix"Yl'zy"'y-‘Yi"); Bil = 957 =l = 9,’,\. = T(il ..... i) il # "2 # s % 7’\}

Note that the set & has N = ("’P;; + "2 P+ ...+ "'P[;) clements.  Let
{rm} be ii.d. random variables with P(r, = i) = & and Yoo & = 1; then
{Y ,Tm}m=12.. 5 may be taken as an identically distributed (not all mtually
independent) training samples from RM x {1,2,...,s} with {;(N) = (5] +
... + [#£] mutually independent variables. Let (Z;,7), (Z2,7)0.. . (Zpe.7) be

K -observations to be classified. For notational convenience we denote (Z,7) =

-~



Suppose Y' is the Nearest Neighbor of Z and Y' is identified as bexng from
7n. So an estunate of ris ry. Thus, we classxfy Z as from ry. The following

Lemma gives almost sure convergence of the Nearest neighbor Y3, to Z .

LEMMA 5.2.1, Let g and Yl,}:z,...,I:N be identically distributed random
vectors. We assume €5 (N) of the Y 's are mutually independent where {;;(N) —

o0, as n — oo. Let ¥’ Y denote the Nearest Neighbor of Z from the set {Y .Y
~1"~2

.,YN}. Then, as n — oo,

Y' =2 as. . (5.19)

PROOF. For any § >0

PUIY, - Z1>6) =Pmin| ¥ -Z[>8)
=PIY - ZI>81Y - ZI>6.IY - Z]>3)
S{PUIY, - Z 11> 0y

={(1-P(1Y, - Z| S8

—0 as n — oo, (5.20)
where K is finite. The result now follows as in Lemma 5.1.1. The proof is
complete. 0O

Taking our loss function again as:
L(z,jy=0 if i=j
=1 if i#],

the asymptotic NN risk, R(,)(/) is by definition (see (5.7) and (2.9))

(1
(V]
—
~—

Ry (K) = li’xln EL(r,7y) (5.



and overall Bayes rigk R{,)(K) is given by

Ry (K) = Er*(z)

THEOREM 8.2.1. Let z,2;,...,z) be the continuity points of each of the
t=1,...,8 J =

densities f1, fa,..., and f, and suppose that fi(z;) > 0 for i

K. Then the limiting NN risk R, (K') has the following bounds:

= I)R;‘,,(K ) (5.23)

R (K) £ Ry(K) < R(,,(I{)(z -

=z and Y' =y’ is given hy

PROOQF. The conditional NN risk given Z N
~ o~ ~No~N

r(ziy )= E{L(r,7v)/ 2y )

=P(r #1y/ ”J,,) (5.24)
Using the conditional independence of 7 and 7}, we have
r(zy' V=) P(r=i n=ilzy)
N i#]
= Z P ( T = .]/ J -
i#] ~N
so that by (5.8)
iy )= iy ). (5.25)
~‘F\1 l#] ~Iv
Since y' —z as and fi's i = 1,...,s are continuous, we have
~N ~
nily' )= () as. Vi=1,2,..., s (5.26)
~IV ~
Thus
(5.27)

r(z,y' )= r(z) as.
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where for fixed 2,

r(z) =Y mi(z)n}(z)

i%]
9
=1-3 ni%(z). (5.28)
=t
By letting 57 () = max; {77]‘-(:)}, the conditional Bayes risk r*(z) can be written
as

r*(z) =1-max{nj(z)}

e
[
L

=1—77;(£)! (3.

so that by the Cauchy~Sch;.vartz inequality

9 2
=002 [ L)
J#e J#e
= (1-n:(2))®
= (r*(2))%. (5.30)

Adding (s - 1) n;%(2) both sides in (5.30), we have

<L (r*(2))? o o
> n D2y +a-re)t, (5.31)

j=1
so that from (5.28) and (5.31), we get
s

s—1

r(2) S 2°(z) -

bl
-~
~

(r(2))%. (5.32)
Now by the (Lebesque) Dominated Converge Theorem, (5.32) and Jensen’s in-

equality we have

R (K)=lmE(r(z;y" )
n ~ ~N

= Er(z)
< 2R, (K) = — B(r*(2))?
< 2R}y (K) - === (Er*(2))*
= 2R},(K) = == R} (K)

S

= st)(I\’)(Q - R(‘S)(Iﬂ')). (533)

s—1
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Also note that

K | K K
min (Z{.- Il fiz0, Y& [Ifize), - Y 6] fi(2¢))

i#1 (=1 i#? =1 i#l (=1
ft "l) = '
— 6' 1] .'34)
,Z > J«z:)z, ,I.If N

which on integrating both sides w.r.t. to z, and adjusting the integral, yields

Er*(z) SEY ni(z)m}(z),

i#
R{,)(K) < R(g)(K). (5.35)

Thus from (5.33) and (5.35) we get

Riy(K) S Ra)(K) < R, (K)(2 - (n (V).

This completes the proof. O

5.3 Estimation of asymptotic NN risk R)(X).

Let (Y ,m),( Y \T2),- ..,() ,Tn) be identically distributed random vectors
from IR""xl{l,"’} where {T,,,}m_
Pt =1)=&,P(tm =2)=¢&, 6 +& =1and N = Mip,e +12p, . Now delete
(l:j,rj) from (Zl,rl),(gz,m),...,({'N,TN), and let r)'-N be the NN estimate of
rjfor 1<j <N,

N 1s sequence of i.i.d. random variables with

Let
N
Pn = Z (r!#75) (5.36)
and
1 &
Uy = Nj;E{1<r;N¢,,,/({),r,)} (5.37)
where

— 1 if T'N # 7 -
I(';,v#’;) - {0 if TjN =, : (9.38)



Note that
E(py) = E(Un) (5.39)

and by (5.7)
E(py) = Rgy(K) as n — co. (5.40)

So p, is asymptotically unbiased for R2)(K). We also note that Uy defined by
(5.37) is a U-statistic and hence by Theorem A of Serfling (1980, p. 190)

Uv =5 Rg)(K) as n — oo. (5.41)

Now we will show E(fy, —Un)? = 0 as n — oo which, in view of (5.41) will

imply the consistency of 5, .

LEMMA 5.3.1. E(py, —Un)? = O(+4) where p,, and Uy are defined in (5.36)
and (5.37) respectively.

PROOF. Using (5.36) and (5.37), we write

N
1 ¥ oAqf
=72 {I<r,~’~¢r,-) - E(I(r;,v;er,.)/({j, Tj))}- (5.42)
j=1
Thus
1 N
Ey = Un = 53 3 Bl = Bl /(X 730"
IVZ Z;QZ E{I(r N;‘-r, E(I(r'!N#ri)/(}:i’ Ti))}
i#]
X {I("j'lv#*j) _.E(I(T;N¢Tj)/({j’ Tj))}- (5.43)
Now

E{l iz ) — Eyyprn (Y70}
= E?)GT(I(,;‘\’#,-). )/({j, Tj))
<1/4, (5.44)



e

and

E{liryr) = Erty#r /(Y i)}
X {I(ry#m) = E(I(r;,,;erj)/({'j,fj))}
= E[E{I(r;y#r) — EIriy 2 /(Y 7))}
X {I(rt 7y — E(I(r;N;;,j)/(_{'j,rj))}/({'i, i) (¥ 575l
= E{E(Iry s Iy rp /(Y 57, ({’jy 7))
- E(I(r;N;e,,.)/({'j, TiNEUrty 2 (Y 5 73))
- E(Ir{N#ri)/[(Z’is Tj))E(Ir;N;er,-)/(Zj» 75))
+ E(I(r{Naﬁr.-)/(}:iv Ti))E(I(rj’N#r,-)/(}:jv i)},

using conditional independence of I(,: 4., and I(,jr";,j ), the last expression equals

E{E{I(r:,v#r.-)/({i,Ti)f(r;,,;érj)/({’j,Tj))
- E{I(r;~¢r;)/(l~’i, r,-)I(r;N#,,.)/(l::j,Tj))}
=0. (5.4

[ ]
' 59
[ )

Thus, using (5.43) - (5.45) we have, as n — oo,
~ 2 1 - ’ -
E(p, —Un)" = O(N)' (5.46)

The proof is complete. O

COROLLARY 5.3.1. Under the conditions of Theorem 5.2.1 the estimate

defined by (5.36) is a consistent estimate of Ry)(K).

REMARKS 5.3.1. The estimate of (5.36) is known as cross-validation estimate
(see Breiman et al (1984), p. 11-12). The estimate p, and the consistency results

of this section can be generalized to the case of more than two populations.




CHAPTE?. 6
SOME EMPIRICAL RESULTS USING
MONTE CARLO SIMULATION

6.0 Introduction. As we have noted in earlier chapters the theoretical proper-
ties of the classification rules tend to be quite complex. We have studied some
asyraptotic properties of proposed classification rules, but these properties are
not necessarily true for small samples. The present chapter is concerned with
the performance of some of the proposed procedures when the sample sizes are
small. In any Monte Carlo simulation study, it is only possible to deal with spe-
cial cases, but one may still cover a wide range of interesting situations. In these

simulation studies we consider classification of one or more observations among

two populations.

6.1 Notation.

N(y,0?) = Normal distribution with mean g and variance o?;

the p.df. is given by

1

2ro

—l — )2
eI 55 0,—00 < p < 0.

f(z) =
LA(a,b) = Laplace distribution witi location and scale parameters

a and b respectively;

the p.d.f. is given by

f(z) = %e""“‘”/b, b > 0.

LG(a,b) = Logistic distribution with location and scale parameters

a and b respectively;
the p.d.f. is given by

e—(z=a)/b

f(z) = bl 4 e-G-a/i2’ b>0,—-c0 < a<co.

112 ,
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EX(a,b) = Exponential distribution with loeatic~ and scale parameters

a and b respectively;

the p.d.f is given by
1 ~(z—a)/b
f(:c)=ze y =>a,b>0.

GA(a,b) = Gamma distribution with parameters a and b;

the p.df. is given by

po—leg—z/b

f(.r):—w, m>0,a>0,b>0.

WE(a,b) = Weibull distribution with parameters a and b;

the p.d.f is given by

a-1_,—(z/b)*
f(m):m::“a, 2>0,a>0,b>0.

6.2 A small sample comparison between the Cover and Hart Procedure
and the Das Gupta and Lin procedure.

Let Xi1,X12,...,X1n, be a random sample from the population =, and
X21,X32,...,Xp4, be a random sample from the population 7;. Let Z be an
observation known to be either from #; or from 73, the problem is to decide
which.

According to Cover and Hart NN rule, using distance function d, Xi’s and
X2;j’s are ranked as per their distance from Z; then classify Z to = if it’s Nearest
Neighbor is from 7;, otherwise classify Z to m,.

Das Gupta and Lin’s RNN rule proceeds as follows: X1i’s, X2;'s and Z are
ranked in the increasing order of magnitude;

(i) if Z is either smallest or largest then classify Z into it’s Nearest Rank Neigh-
bor (RNN);
(i1) if both left and right RNN of Z belong to the same class, classify Z to that

class;
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(iii) if both left and right RNN belong to different classes, classify Z into either

of the ¢wia classue vwith probability 1/2 and 1/2.

For the companison of tke above mentioned rules, random samples of equal
size (n = my = ny) were generated from a pair of univariate distributions,
namely, normal vs normal, Laplace vs Laplace, normal vs Laplace distributoins
etc. For given Xi;'s and Xj;'s, each procedure was based on samples of sizes
n = 10,20,30,40 and 50. A random sample of size 100 from m; and another
random sample of the same size from 7, are classified by using the two classifi-
cation rules. The proportion among 200 Z’s that were misclassified given Xj;’s
and X3;'s are given in TABLE 6.1, TABLE 6.2 and TABLE 6.3; thus these pro-
portions are the conditional probabilities of misclassification given the training

samples Xy;’s and Xy;'s.

Table 6.1
Comparison of Cover & Hart (I) vs Das Gupta & Lin (II) procedures

in the case of normal distributions, given training samples.

N(0,1) vs N(1,1) N(0,1) vs N(2,1) N(0,1) vs N(3,1)
n I II I II I II
10 0400 04350 0.2450 0.2625 0.2500  0.2500
20 0.3500 0.3500 0.2100 0.2350  0.1900  0.2025
30 0.3000 0.3275 0.2500 0.2600 0.2700  0.2475
40 0.3050 0.3375 0.2400 0.2300  0.2200  0.2425
50 0.3400 0.3350 0.2300 0.2300 0.2300  0.2250
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Table 6.2
Comparison of Cover & Hart vs Das Gupta & Lin procedures

in the case of Laplace distributions, given training samples

LA(0,1) vs LA(1,1) LA(0,1) vs LA(2,1) LA(0,1) vs LA(3,1)
n I ) I 1l I 11
10 0.3650 04000 02750 02900 02150  0.2200
20 03775 03700 02100 02325 01900  0.2000
30 03950 03625  0.2850  0.2950 01550  0.1575
£0 03750 03675  0.2950 02925  0.1600  0.1600
50 0.3750 03825  0.2800 02725  0.1900  0.1750

Table 6.3
Comparison of Cover & Hart vs Das Gupta & Lin procedures
for the pair Normal vs Laplace and Normal vs Logistic distributions,

given training samples

N(0,1) vs LA(2,1) N(0,1) vs LG(2,1) LA(0,1) vs LA(2,1)
n I II I II I 1I
10 0.2800 02800  0.2250  0.2700  0.2750  0.2900
20 0.2350  0.2325  0.3300  0.3200 0.2100  0.2325
30 0.2350  0.2600  0.2600  0.2475  0.2850  0.2950
40 0.2750  0.2625  0.2000  0.2750  0.2950  0.2925
50 0.2100 02175 03050  0.3075  0.2800  0.2725

n = Sample size taken from each population.
I = Average proportion of Misclassification for Cover & Hart procedure, given
Xii's and Xj;j's.
II = Average proportion of Misclassification for Das Gupta & Lin procedure,
given Xy;’s and Xj;'s.

From Table 6.1, Table 6.2 and Table 6.3 it is seen that, the Cover and Hart
rule performed uniformly better than Das Gupta and Lin procedure in the case
of small samples n = 10,20. The two procedures tend to perform equally or

fairly close to each other for n = 50. Only in few cases for the pair Normal vs
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Laplace, Normal vs Logistic, Laplace vs Laplace Das Gupta and Lin procedure
performed better than Cover and Hart procedure in case of moderate sample sizes
n = 30,40. However as has been established, both the rules are asymptoticallly
equivalent (have the same asymptotic probability of misclassification).

Now we employ another method to compare the performance of the Cover
and Hart and Das Gupta and Lin rules. For given Z (the observations to be
classified) 100 samples from ; and 100 samples from 7, of sizes n = 10,20, 30,40
and 50 are generated in each case. A given Z (one from 7; and another from T2 )
is classified each time. The proportion of times that Z is misclassified among 200
samples is noted. The results are given in TABLE 6.4, TABLE 6.5 and TABLE
6.6.

Table 6.4
Comparison of Cover & Hart vs Das Gupta & Lin procedures

in the case of Normal distributions, given Z.

N(0,1) vs N(1,1) N(0,1) vs N(2,1) N(0,1) vs N(3,1)
n I I I I I 11
10 03450 0.3375 0.2450 0.2350 0.1100  0.1225
20 03200 02775 0.3000 0.2825 0.0800  0.0950
30 03600 0.3350 0.2400 0.2475  0.0700  0.0800
40 03050 02725 02750 0.2925 0.1000  0.0950
50 0.1550 0.1500 0.2750  0.2000  0.0850  0.0925




in the case of Laplace distributions, given Z.

Table 6.5

Comparison of Cover & Hart vs Das Gupta & Lin procedures

LA(0,1) vs LA(1,1) LA(0,1) vs LA(2,1) LA(0,1) vs LA(3,1)

n I I I II I Il

10 0.3150 0.2900 0.1100 0.1775 0.0400 0.0575

20 0.2200 0.2475 0.0950 0.1325 0.0300 0.0550

30 - 0.2800 0.2775 0.1300 0.1250 0.0630 0.0650

40 0.2250 0.2525 0.1125 0.1100 0.0450 0.0425

50 0.2750 0.2700 0.1000 0.1150 0.0700 0.0775
Table 6.6

Comparison of Cover & Hart vs Das Gupta & Lin procedures

in the case of Normal vs Laplace & Logistic distributions, given Z.

N(0,1) vs LA(2,1) N(0,1) vs LA(3,1) .N(0,1) vs LG(0,1)

n I 11 I I1 ) I1
10 0.0800 0.0600 0.0400 0.0600 0.4600 0.4300
20 0.0850 0.0875 0.0300 0.0425 0.4450  0.4650
30 0.0750 0.0600 0.0450 0.0500 0.4000 0.4175
40 0.0750 0.0775 0.0200 0.0350 0.4250 0.4475
50 0.0450 0.0525 0.0600 0.0600 0.4600 0.4575

ur

Here we notice two different trends in the average proportion of misclas-

sification. The Das Gupta and Lin procedure performs better when the two

distributions are close to each other; but when they are apart Cover and Hart's -

procedure seemed better.

6.3 Performance of first stage RNN rule in small samples.

Let X11,X12,...,X1n, and X3y, X32,..., X24, be independent random sam-

ples from two populations 7; and 72. Another randem sample Z=(2,,2,,....2y)

is taken from one of these two populations and the problem is to classify Z into

] Or Wa.

We may describe our 1st stage RNN rule as follows:
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Combine Xy;'s , X3;'s and Z’s and arrange them in increasing'érdet; the
left and right hand neighbors of Z,,¥ € = 1,2,...,K are identified. These are
called Rank Nearest Neighbors (RNN’s). Then, classify Z to the population =,

if # RNN from =, > # RNN from m,;
classify Z to the population 72 with probability 1/2
if # RNN from #; = # RNN from m,.

The object of this section is to study the behavior of average proportion .of
misclassification RE;;(K) as I\ varies. In our simulation study we vary K from
1to 5. Given X};’s and X>;’s each procedure is based on equal sample sizes of 50.
Now 1st stage RNN rule is used to classify 200 random sample ;Z,= (Z1,...,2ZK),
100 form each population. The number of these random samples g that are
misclassified is recorded. The average proportion of misclassification given X;'s

and X3;’s for different pair of distributions, are given in TABLE 6.7, TABLE 6.8
and TABLE 6.9.

Table 6.7
The values of RE;;(I\’) for the different pair of normal distributions
and the pair Normal vs Laplace, given training samples.

N(0,1) vs N(1,1) N(0,1) vs N(2,1) N(0,1) vs LA(2,1)

K R (K) R)(K) RG)(K)
1 0.3875 0.2325 0.2600
2 0.3325 0.1555 0.2150
3 0.3025 0.1225 0.1725
4 0.2175 0.0850 0.1550
5 0.2175 0.0375 0.1375
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Table 6.8
The values of Rg;(K ) for the pair of Laplace vs Laplace, Logistic vs Logistic
and Normal vs Logistic, given training samples.

LA(0,1) vs LA(1,1) LG(0,1) vs LG(2,1) N(0,1) vs LG(2,1)

K RO)(K) . R(K) RO)(K)
1 0.3075 0.3739 0.4800
2 0.2750 . 0.3375 04075
3 0.1925 | 0.2875 0.3825
4 0.1825 0.2675 0.3500
5

0.1550 0.2075 0.3425

Table 6.9
The values of RE;;(I\’ ) for the pair of Exponential vs Gamma,

- Exponential vs Weibull and,Weibull vs Gamma, given training samples.

EX(0,1) vs GA(2,1) EX(0,1) vs WE(2,1) WE(2,1) vs GA(3,1)

K RG)(K) RL)(K) RY(K)
1 0.2950 0.4800 0.2025
2 0.2050 0.4425 0.1675
3 0.1575 04375 0.0850
4 0.1050 0.4100 0.0575
5 0.0900 0.3975 0.0500

We notice that for all the distributions the average proportion of misclassifi-

cation R(l)(K) decreases as the value of I increases; this is a desirable property

(2)

of R (K).
Now we want to see whether the same property holds for R:;;(I\') given
g = (Z1,...,Zk). Here we start with ' =1 then incrcase K’ one by one keeping
those old Z’s fixed. We have simulated 100 random samples from =; and 100
random samples from 73 to classify a given pair of random sample g (one from

each population) {or each value of K'. First stage RNN rule is applied to decide

the class of Z and the number of misclassifications are recorded. The average
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proportion of rrtisclassiﬁcation Rg;(l( )'s are given in the TABLE 6.10, TABLE' "

6.11 and TABLE 6.12 for various pairs of distributions.

Table 6.10

The values of Rg;;(K ) for the different pair of normal distributions and,

the pair Normal vs Laplace, given 2

N(0,1) vs N(1,1) N(0,1) vs N(2,1) N(0,1) vs LA(2, 1)

K RG)(K) RY(K) RO(K)

1 0.4400 0.3175 0.1225

2 0.2800 0.1925 0.0050

3 0.2175 0.1925 0.0900

4 0.1675 0.1300 0.0775

5 0.1675 0.1200 0.0400
Table 6.11

The values of R(l)(Ii') for the pair of Laplace vs Laplace, Logistic vs Logistic

(2)

and Normal vs Logistic, given Z.

LA(0,1) vs LA(2,1) "LG(0,1) vs LG(2,1) N(0,1) vs LG(0,1)

K RO (K) RG)(K) R)(K)
1 0.3425 0.4275 0.4200
2 0.2050 0.3950 0.4200
3 0.1900 0.2250 0.3675
4 0.1250 0.1475 0.3400
5 0.1250 0.1450 0.2800




Table 6.12
The values of Rg; (K) for the pair of Exponential vs Gamma,
Exponential vs Weibull and Weibull vs Gamma, given g
EX(0,1) vs GA(3,1) EX(0,1) vs WE(2,1) WE(2,1) vs GA(3,1)

K RY(K) RO(K) RO(K)
1 0.4900 0.1925 . 0.0875
2 0.3350 0.1850 0.0725
3 0.1275 0.2425 0.0200
4 0.0800 0.1600 0.0150
5 0.0525 0.0100 0.0000

Similar property seems to hold for Rg;([() (ie. RE;;(K) decreases as I\

increases) here also as expected.

6.4 Sub-sample procedure and comparison with first stage RNN rule in
the small samples

Let X11,X12... X1a, and X5, X2,,... X3, be random samples from 7, and
7o respectively. A random sample g =(21,22,.-.,2ZK) is to be classified into T
or ;. |

The sub-sample procedure may be described as follows:

First find all possible permutations taking K observations at a time from the
lst-sample and 2nd-samples. The set of subsamples of size K in the 1st-sample
contains "' P elements and 2nd-sample contains "2 Py elements. Using the usual
Euclidean distance function d, rank the distances of all the N = (" Py + ")
elements in the combined sub-sample from Z. Classify Z into the class to which
the nearest neighbor of g belongs.

First we study the behavior of average proportion of misclassification Ri»(N)
when K increases. In our study we took n = n; = ny = 10 and K = 1,2,
or 3. Suppose X;;’s énd Xz;’s are given. We simulate a random sample g.—:

(Zy,...,2x) (K = 1,2,3), 100 from each population, and classify them using
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sub-sample procedure. The number of times the observed value of random sam-
ple vector g is misclassified is recorded. Given Xy;'s and X, j's the average
proportion of misclassification for different pairs of distributions and for different
values of I\ are given in TABLE 6.13, TABLE 6.14 and TABLE 6.13.

Table 6.13
The values of R(5)(X) for the different pairs of normal distributions

for the sub-sample procedure, given training samples.

N(0,1) vs N(1,1) N(0,1) vs N(2,1) N(0,1) vs N(3,1)

K R2)(KX) Ri3)(K) Re)(K)

1 0.3700 0.1750 0.1000

2 0.3400 0.1230 . 0.0250

3 0.2250 0.0700 0.0200
Table 6.14

The values of R(2)(RK’) for the different pair of Laplace distributions
and a pair of Logistic distributions for the

sub-sample procedure, given training samples.

LA(0,1) vs LA(L,1) LA(0,1) vs LA(2,1) LG(0,1) vs LG(2,1)
I Rea)(K) Ry (K) R (K)
1 0.4550 0.3100 0.4250
2 0.4200 - 0.2900 0.2750
3 0.4100 0.2450 0.2150
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Table 6.15
The values of R(3)(K’) for the pair Normal vs Laplace , Normal vs Logistic

for the sub-sample procedure, given training samples.

N(0,1) vs LA(1,1) N(0,1) vs LA(2,1) N(0,1) vs LG(L, 1)

K R (X) R (X) Ry (K)
1 0.4400 0.3900 0.4200
2 0.4050 0.3250 0.3650
3 0.3150 0.2300 0.3500

From the above table we observe that average proportion of misclassification
R(2)(K) decreases as the \;alue of K increases to 3. This is an expected result.
F inally, we want 1o compare sub-sample procedure with 1st stage RNN rule
which has been described earlier (section 6.3). For simplicity, we take n = ny =
nz = 10 and vary K from 1 to 3. For given Xy;’s and X3;’ s we classify 200
random sample §= (Z1,...,2K), 100 from each population using sub-sample
procedure and 1st stage RNN rule. The average proportion of misclassifications
R3)(K) were calculated for both the sub-sample procedure and the 1lst stage
RNN rule. The results are given in TABLE 6.16, TABLE 6.17 and TABLE 6.18.

‘Table 6.16
Comparison of sub-sample procedure and 1st stage RNN rule for the

different pair of Normal distributions, given training samples.

N(0,1) vs N(1,1) N(0,1) vs N(2,1) N(0,1) vs N(3,1)
K I I I II I I
0.3300  0.3500  0.3500  0.3600  0.1000 0.1175
02600 0.3375 0.2450  0.2975  0.0250 - 0.0525
0.2650 0.3000 0.1500  0.2600  0.0200  0.0400

QLW NI




Table 6.17 v ,
Comparison of sub-sample procedure and 1lst stage RNN rule for the

different pairs of Laplace distributions, and a pair of

Loigistic distributions, given training samples.

LA(0,1) vs LA(1,1) LA(0,1) vs LA(2,1) LG(0,1) vs LG(2,1)

K I Il ) 11 1 11

1 0.3600 0.3900 0.2350 0.2550 0.3600 0.3625

2 0.2700 0.2800 0.1700 0.1500 0.3500 0.3300

3 0.2600 0.2950 0.1750 0.1350 0.2600 0.3125
Table 6.18

Comparison of sub-sample procedure and 1st stage RNN rule for the

pair of Normal vs Laplace and Normal vs Logistic distributions,

given training samples.

N(0,1) vs LA(1,1) N(0,1) vs LA(2,1)

N(0,1) vs LG(2,1)

K I I 1 11 I I

1 04150 0.4450 0.1700 0.1950 0.3450 0.3500
2 0.2850 0.3425 0.1750 0.1875 0.2400 0.2375
3 0.3350 0.3600 0.0100 0.1025 0.1600 - 0.2225

I = Average proportion of misclassification of sub-sample procedure

II = Average proportion of misclassification of 1st stage RNN rule.
From the TABLE 6.16 and TABLE 6.18 we Notice that sub-sample pro-
cedure perform uniformly better than 1st stage RNN rule with few exceptions

(underlined in the tables).

6.5 Concluding Remarks.

It is to see that in all cases the average proportion of misclassifications

decreases as the distance between the distributions increases. Diagrams are shown

for each pair of distributions at the end of this section to visualize the intersection

part of each pair of distributions and accordingly compare the average proportion



bof miﬁcléésiﬁcatiqﬁs. ::-.In_ section 6.2, there Qeems to be no ’con’sistent‘tendency in
average 'prbportion of misclassifications for either procedure as the sainple size
increases. In section 6.3, we notice the remarkable pattern in Rf;; (K) which
decreases as the value of K increases. We observe a similar pattern for Ry (K)
in section 6.4 where the sub-sample procedure performed better than the 1st
stage RNN rule in most of the situations. If one has traning samples of small
sizes and a very small sample to be classified, then the sub-samplé procedure
would be advisable, as its performance seems to be better. In moderately lafge .
or large sample cases, the subsample approach involves lot of computations and
is quite tedious; the 1st stage RNN rule should be used in this case as it is
simple to employ and performs very well in moderately large or large samples.
The results of our simulation study are, of course, not conclusive but at least
they throw some light on the relative performance of different classification rules

(those existing already in the literature and those proposed in the thesis).
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: N(O,7) AND N(1,1)
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FIG.2 : N(O,) AND N(2,1)
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FIG.3 : N(0,) AND N(3,
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FIG.4 : N(O,) AND LG(0,1)
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' FIG.5 : N(0,7) AND LG(1
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N(O,7) AND LA(2,1)
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EX(0,) AND GA(2,)
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EX(0,1) AND WE(2,1)
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FIG.15 : WE(2,1) AND GA(3,1)
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PROGRAM A

This program has two parts, program Al and program A2. For the given training
samples X's and Y's , the program Al (written in Minitab (see Ryan et. al.(1966))
generates 200 Z's (100 from each population), the observations to be classified. In
order to compute, average PMC of RNN rule (Das Gupta & Lin's procedure) for each
Z, it combines X's, Y's and Z's and arranges them in increasing order; then prints them
under Order.1 (if Z is an X) and Order.2 (if Z is an Y) in codesl, 2 and 3, where 1, 2
and 3 respectively denote the X, Y and Z observations. At the same time,to compute
average PMC of NN rule (Cover & Hart's procedure) for each Z, it computes the
distances from all X's and Y's and then arrange the distances in increasing order and
prints them under Cover.1 (if Z an X) and Cover.2 (if Z is an Y) in codes] and 2,where
1 and 2 denote the distances from X's and Y's respectively.

Program A2 (written in Fortran) reads the output from program Al and makes
decision in each case according to the rules and writes them. Finally, it calculates the
average PMC for both RNN and NN rules simultaneously.



PROGRAM Al

Name C1="SmplX' C2='SmplY' C3='SmpliZ' C4='Smpl2Z'
Name C11='Order.1' C13='Order.2' C23='"Cover.l' C25='Cover.2'

Let K4=100

Read 'DATAXY.F Cl C2
STORE 'RAVI

NOECHO

Random 1 observation put into C3;
NORMAL mean=0, s.d.=1.
Random 1 observation put into C4;
NORMAL mean=2, s.d.=1.
STACK C1 C2 C3 into CS;
Subscripts C6.

STACK Cl! C2 C3 into C7;
Subscripts C8. '
SORT CS carry C6 putinto C10 C11
SORT C7 carry C8 putinto C12 C13
LET C14=ABSOLUTE(C1-C3)

LET C15=ABSOLUTE(C2-C3)

LET C18=ABSOLUTE(C1-C4)

LET C19=ABSOLUTE(C2-C4)

STACK Cl14 C1S into Cl6;

Subscripts C17.

STACK C18 C19 into C20;

Subscripts C21.

SORT C16 carry C17 putinto C22 C23
SORT C20 carry C21 putinto C24 C25
Delete 3:20 of C23

Delete 3:20 of C2§

PRINT C11

PRINT C13

PRINT C23

PRINT C25

END

EXECUTE 'RAVI' K4

Stop
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PROGRAM A2

#t*t........t..t"“.‘t‘t.*‘.UO..““*‘*“.““.O‘#.

t
* PROGRAM TPMC
*

THIS PROGRAM CALCULATES AVERAGE PMC OF
RNN RULE & NN RULE ( K=1 ) SIMULTANOUSLY

*
*
*i#*.‘U.tt“‘.#."i'U.‘tt‘*‘*’t‘i.‘t#“.“‘*‘*‘t‘“0
#"i..‘t......‘..0...U.‘t“#".'t‘t“t*tt‘**t“t*ttt
(A2 22221 1)

sweevsver  MAIN PROGRAM

SEERISS Y
*tt*‘t““".“‘.*.‘.t‘.0.‘0.‘.‘.““‘0“0*.#“V*‘t*

CHARACTER®*80 A B*40S
OPEN(UNTT=20 FILE='SUBHAS' STATUS='0LD))
OPEN(UNIT=30,FILE='SCAN',STATUS='OLD’)

CLOSE(UNIT=30,STATUS='DELETE)
OPEN(UNIT=30,FILE='SCAN',STATUS='NEW')

IORDER=0

JORDER=0

CRT=0

CWR=0

WRONG=0.

RIGHT=0.

***t*tt*t!i#‘**“#*t*t*t‘***‘****i‘**‘t“t#‘t***‘t****“#
* .

* CHANGE THE VALUE OF "M" FOR TESTING DIFFERENT

* NUMBER OF 38

‘*#**“*“*‘.l‘*‘*N*{"l*"‘“*‘.‘*“*‘*‘*#“***t*‘*“*‘“‘
PRINT®,"’
PRINT®,""
PRINT®,""
PRIN'I‘U "U“#“‘*“***‘*#U“**.***‘i***t**“‘**‘#*‘*’
PRINT®,'* . *
PRINT®,'"* -
PRINT*,* WELCOME TO "DEB.SCAN", SUBHAS!!!  *
PRINT*,* *
PRINT*
PRIN'I“."*‘*““‘ PRmRAM RUN STARTS USSRV RYE’
PRIN'P‘,' t

100 READ(20,'(A80) ,END=500)A
KC1=INDEX(A, Cover.1 ")
KC2=INDEX(A,'Cover.2 ")
K=INDEX(A,Order.1 )
KK=INDEX(A,'Order.2 ')

v e e . _ e

. _w -

" *'



IF(K NE.0O.OR KK.NE.0)THEN

ITYPE=]
IORDER=!
ELSE IF(KC1.NE.0.OR.KC2.NE.O)THEN
ITYPE=O
JORDER=1

ENDIF .

IFITYPE.EQ.1.OR.ITYPE.EQ.0)THEN
WRI'I'E(SO")'I L2442 22242 11122 2113211 12y
WRITE(30,*)' v "
WRITE(30,*) * PROGRAM TPMC OUTPUT ¢
WRITE(30,*) b ¥
WRITE(30,*) * CODEDBY: S.BAGUI hd
WRITE(30,*) ¥ DEPT. OF STATISTICS i
WRITE(30,*) * UNIV. OF ALBERTA ¥
WRITE(30,*) ¥ DATE :89/04/30 4
WRITE(30,*) * CODE :FORTRAN A4
WRI’I‘E(30'.)' SHCESS SOV EPIVSS NSNS SIS SO !
WRITE(30,%)""

WRITE(30,*)"'

WRITE(SO")' PEEVESSUEISVS PSS LSS SSHE SIS SRS NSRS’

WRITE(30,%)' **** PROGRAM OUTPUT STARTS *+#+'
WRITE(30'0)' LA A 222 2 22 22222 122221212112 111t
WRITE(30.%)"'
WRITE(30,%)A

IF(ITYPE.EQ.1)THEN

PRINT*,-> NOW PROCESSING (DASGUPTA) SAMPLE NUMBER:',
* JORDER

WRITE(30,*)' (DASGUPTA) SAMPLE NUMBER: ', JORDER

ENDIF

IFATYPE.EQ.0)THEN
WRITE(30,*)' (COVER) SAMPLE NUMBER: ' JORDER
PRINT*,-> NOW PROCESSING (COVER) SAMPLE NUMBER:',
* JORDER
ENDIF

WRITE(30,*)"’
READ(A(8:8),'(I1))NORDER
WRITE(30,*)"’
GOTO 110

ENDIF
GOTO100

110 DO 200 I=1,10000
CALL READER(A,NORDER NORD,B,ISTART RIGHT,
*WRONG,IORDER M,CRT.CWR,JORDER,ITYPE,ITP)
IFATYPE.EQ.1)CALL SEE(B,ISTART ,NORDER RIGHT,
* WRONG, M)

ITYPE=ITP

IF(ITYPE.EQ.1)IORDER = IORDER + |
IF(ITYPE.EQ.0)JORDER=JORDER+1




WRITE(30,%)'' : .
WRITE(30,%)* #9904 4408500000883 93000 4453000949’
"WRITE(30,*)"’

WRITE(30,*)A

IF(ITYPE.EQ.1)THEN
};g%‘l‘aﬁ'é NOW PROCESSING (DASGUPTA) SAMPLE NUMBER!',

ggrgz(so.*)' (DASGUPTA) SAMPLE NUMBER: 'JORDER

IFATYPE.EQ.0)THEN
WRITE(30,*) (COVER) SAMPLE NUMBER: ' JORDER
PRINT®,-> NOW PROCESSING (COVER) SAMPLE NUMBER ',
* JORDER
ENDIF

WRITE(30,*)"’

NORDER = NORD
200 CONTINUE
500 STOP

END

(A2 022 222222l 22222222 22 2 AL 22222 22 TRt 2 2]
SEIVESLY

PSPV READER

L e 2222124

LA ddd 22 L L2222 122221 a 2222222 R 222 22222 2 21221237

SUBROUTINE READER(A,NORDER ,NORD,B,ISTART,RIGHT,
*WRONG,IORDER M,CRT,CWR JORDER,ITYPE,ITP)
INTEGER NUM(S0) .

CHARACTER*(¥)A,B

ISTART=0

100 READ(20,'(A80) ,END=555)A
K=INDEX(A, Order.1 ")
KK=INDEX(A,Order.2 ")
KC1=INDEX(A,'Cover.] D)
KC2=INDEX(A,'Cover.2 )
J=INDEX(A,*** Minitab')

IF(J.NE.O.)THEN
555 IF(ITYPE.EQ.1)CALL SEE(B,ISTART ,NORDER,RIGHT,

* WRONG, M)

WRITE(30,*)""

WRITE(30,#) # #5555 5 6045004 43404433 4B U SASSH RS

WRITE(30,*)"’

WRITE(30,*) SUMMARY: '

WRITE(30,*)"*

WRITE(30,*) NOTE: '

WRITE(30,*)' #1. THE POPULATION DATA WAS READ FROM ',
*FILE: SUBHAS'

WRITE(30,*)#2. THE NUMBER OF 3s IN EACH POPULATION ',
vIS:'M




S

" WRITE(3044)
44 FORMAT( . IF'I'!-!ENUMBER OF 35 ARE CHANGED, ',

*ALTER THE VALUE OF /

v "M" INLINE 32 OF FILE "DEB.SCAN", AND THEN ',
“RECOMPILE
v DEB.SCAN, BEFORE RUNNING BATCHFILE.)
WRITE(30,)"’

WRITE(30,%) SR

WRITE(30,%)"'

WRITE(30,%)""

WRITE(30,*) DASGUPTA SAMPLE ANALYSIS'

WRITE(30*) eeeeemeeoreemee '

WRITE(30,%)"'

WRITE(30,*)' TOTAL NUMBER OF SAMPLES ARE : 'JORDER
‘wnngg \*Y TOTAL NUMBER OF CORRECT CLASSIFICATIONS ARE',

1] 'm
‘w'mw?(itl)c;)'roru NUMBER OF WRONG CLASSIFICATIONS ARE ',

WRITE(30,) '

WRITE(30,) TOTAL PROBABILITY OF ,

*MIS-CLASSIFICATION IS :',WRONG/IORDER

WRITE(30,*) TOTAL PROBABILITY OF ',

*CORRECT CLASSIFICATION IS : 'RIGHT/IORDER

WRITE (30,%)"'

WRITE(30,*)"'

WRITE(30,*)''

WRITE(30,*) COVER SAMPLE ANALYSIS'

WRITE(30,*)  —eeeemeeeemeeemee :

WRITE(30,*) '

WRITE(30,*) TOTAL NUMBER OF SAMPLES ARE : 'JORDER

WRITE(30,*) TOTAL NUMBER OF CORRECT CLASSIFICATIONS ARE',
‘V 1] mT

WRITE(30,*) TOTAL NUMBER OF WRONG CLASSIFICATIONS ARE ',
*:'CWR

WRITE(30,*)' '

WRITE(30,*) TOTAL PROBABILITY OF ',
*'MIS-CLASSIFICATION IS :'CWR/JORDER
WRITE(30,*)’ TOTAL PROBABILITY OF ',
*'CORRECT CLASSIFICATION IS : ',CRT/JORDER
WRITE (30,*)

W’I’E(so")'ttt‘.‘U‘&.“Ut.“....".'U‘t..‘.tt‘..ttt...t'

WRITE(30,*)'**** N(0,1) N(2,1) N=50 R(1) XY.F svsvss’

WRITE(30,5)$*4455 0304535540830 00 0555555840844 0 3398494

PRINT®, '

PRINT® '#ssvssssssvss pROGRAM RUN ENDS *##*¢¢ssssvsve:

PRINT®,* 4

PRINT®,* RESULTS ARE IN FILE "SCAN" 4

PRINT®,™* i

PRINT®, #4080 508 4504000308 000008 08000t sssssteussvsssssves’
500 STOP

ENDIF

IF(K.NE.0.OR.KK.NE.0.OR.KC1.NE.0.OR.KC2.NE.0)THEN
IF(K.NE.O.OR . KK.NE.O)ITP=1
IF(KC1.NE.0.OR.KC2.NE.0)I TP=0
READ(A(8:8),(I1))NORD
GO TO 103



ENDIF |
IFATYPE.EQ.0)THEN
DO 1121=1,80
TF(AQ:D).NE. YTHEN
READ(A(L:D), 11))NVAL
GOTON3
END IF
112 CONTINUE
113 IF(NVAL.EQ.NORDER)THEN
WRITE(30,*)' '
WRITE(30,*) FIRST ELEMENT OF THE SAMPLE IS : 'NVAL
WRITE(30,%)''
WRITE(30,*)’ *** CORRECT CLASSIFICATION!!!'
WRITE(30,%)
CRT=CRT+1
ELSE

WRITE(30,*)'
WRITE(30,*)' FIRST ELEMENT OF THE SAMPLE IS : 'NVAL
WRITE(30,*)' .
WRITE(30,*)' *** MISCLASSIFICATION!!!!"
WRITE(30,*) '
CWR=CWR+!
END IF
ITYPE=2
ENDIF

IF(ITYPE.EQ.1)THEN
INUM=0

DO 101 I=1,80
IF(A(LI).NE.' )"THEN
INUM=INUM+1
READ(A(LD), (11))NUM(INUM)
ISTART=ISTART+1 :
WRITE(B(ISTART:ISTART),'(I11))NUM(INUM)
END IF
101 CONTINUE
ENDF

GOTO 100
103 RETURN

END
Laaddd DI LD IR g T LT L e SRR,
sersEEse

p 2 i 4l 222 ] SEE

Lada 2 2414
‘*‘.‘vvvvvv'vvvvvvvvvvv"v vvvvvvvvvvvvvv SHIHBUISBEINES S

SUBROUTINE SEE(B,ISTART,NORDER RIGHT,WRONG M)
CHARACTER*(*)B,STRING*S,STORE*S

N1=0

N2=0

STRING="33333'

STORE=00000'




DOROI=6MS
KS=0
Kls0

60 KS=INDEX(B(K1+1:ISTART),STRING(I:))
KlsK1+KS
IF(KS.EQ.0)THEN
GOTO®
ELSE
[F(K1.EQ.1)THEN

READ(B(K1+6-L:K1+6-1),'A1)) IR
IF(IR.EQ.1)N1=N1+1%(6-)
IF(IR.EQ.2)N2=N2+1%(6-1)

ELSE IF(K1.EQISTART-S+)THEN
READB(KI-LKI1-1),d)) IL
IFL.EQ.I)N1=N1+1%(6-)
IF(L.EQ.2)N2=N2+1%(6-1)

ELSE
READ(B(K1-1:K1-1), AL
IFAL.EQ.1)N1=N1+1%(6-1)
JF(L.EQ.2)N2=N2+1%(6-I)
READ(B(K1+6-1:K1+6-1),'(11))IR
IF(R.EQ.1)N1=N1+1%(6-1)
IF(IR.EQ.2)N2=N2+1%(6-1)

ENDIF
B(K1:K1+5-D=STORE(I:)

GOTO&
ENDIF

80 CONTINUE

WRITE(30,*)' # RNN FROM POPULATION.11S: N1
WRITE(30,*)' # RNN FROM POPULATION.2 IS : ‘N2

WR=0.
RI=0.

IF(NORDER.EQ.1)THEN
[F(NLLT.N2)WR=1.
IF(N1.EQ.N2)WR=(.§
IF(N1.EQ.N2)RI=0.5
IF(N1.GT.N2)RI=1.

ELSE
IF(N2LT.N1)WR=1,
IF(N2.EQ.N1)WR=0.5
IF(N2.EQ.N1)RI=0.5
IF(N2.GT.NI)RI=1.

ENDIF

WRITE(30,*)
IF(N1.GT.N2)WRITE(30,*)---> # RNN OF POPULATION.1 ',
*'> #RNN OF POPULATION.2
IF(N2.GT.N1)WRITE(30,*)---> # RNN OF POPULATION.2 ',
*' > # RNN OF POPULATION.I'
IF(N1.EQ.N2)WRITE(30,*)---> # RNN OF POPULATION.1 °,
* = #RNN OF POPULATION.2




WRITEQOS) '
TF(WR.EQ.1.)WRITE(30,*)'** MIS-CLASSIFICATION!!!!V'
IF(WR.EQ.0.S)WRITE(30,*)'** ERROR FUNCTION 1S HALF!'
IFRI.EQ.1.)WRITE(30,*)'** CORRECT CLASSIFICATION!!'

WRONG=WRONG+WR
RIGHT=RIGHT+R!
RETURN

END




' PROGRAM B

This program calculates the average PMC for the first stage RNN rule when up to five
multiple observations ( K) are classified. It consists of two parts , program Bl and
program B2, Similar to the program A , program B2 reads the output from program Bl
and makes a decision at each case and finally gives the average PMC of the MRNN
rule. In order to compute the average PMC for MRNN rule for different values of K,
one should repeat the program B changing the value of K.




PROGRAM B1

Name Cl='SmpIX' C2='SmplY' C3='smpl1Z' C4='Smpl2Z'
Name C11='Order.1' C13='Order.2'
LET Kd4=100

READ DATAXY.F Cl1 C2
STORE 'MALA'

NOECHO

Random S observations putinto C3;
NORMAL mean=0, s.d.=1.

Random S observations put into C4;
NORMAL mean=2, s.d.=1.

STACK C1 C2C3 inwo CS;
Subscripts C6.

STACK C1C2C4 intoC7;
Subscripts C8.

SORT CS carry C6 putinto C10 C11
SORT C7 carry C8 putinto C12 C13
PRINT Cl11

PRINT C13

END

EXECUTE 'MALA' K4

STOP
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PROGRAM B2

A ddddd A4 LI AL LI e L T T I a i,

PROGRAM TPMC

THIS PROGRAM CALCULATES AVERAGE PMC OF
FIRST-STAGE ( K=1,2,3,4,5) RNNRULE

Aaddd A A LA A a2l L 2 2 A2l 2 2 il I T R el g

¢ & 4 4 & @

L T L L LT T ey
T

hadddddddd MAIN PROGRAM

PEESUEIS

L L L T L L Lt LTy T

CHARACTER*80 A B*405
OPEN(UNIT=20,FILE='SUBHAS'.STATUS='0OLD")
OPEN(UNIT=30,FILE='SCAN' STATUS='0OLD")

CLOSE(UNIT=30,STATUS='DELETE))
OPEN(UNIT=30,FILE='SCAN',STATUS='NEW')

IORDER=1

WRONG=0.

RIGHT=0.

AR R AL LA 2 L2222 2 2T TR 1R T 2T 2R 2 ot o e
*

* CHANGE THE VALUE OF "M" FOR TESTING DIFFERENT
* NUMBER OF 3§
M=5

hhdddd A A L2 220 I 22 22t a2 T L T Lt olTay

100 READ(20,'(A80)'END=500)A
K=INDEX(A,'Order.1
KK=INDEX(A,Order.2 )

IF(K.NE.0.OR.KK.NE.O)THEN
READ(A,'(I1))NORDER
WRITE(30,*)’ T T T S AT
WRITE(30,*)' * -
WRITE(30,*) * PROGRAM TPMC OUTPU'I' »
WRITE(30,*)’ L S
WRITE(30,*) * CODEDBY:S.BAGUI *
WRITE(30,*) * DEPT OF STATISTICS *
WRITE(30,%)' * UNIV. OF ALBERTA .
WRITE(30,*) * DATE : 89/04/15 .
WRITE(30,*) * CODE : FORTRAN .
WRITE(30,*)' L L T ——
WRITE(30,*)"*
WRITE(30,*)''

WRI’I'E(30't)' LA A 222222 22222 T2 22 1 1T T2 2y o]
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WRITE(30,*)' **¢* PROGRAM OUTPUT STARTS ¢sse'

WRITE(30,%) $960030000¢50450800903 5030430538800 0¢'

WRITE(30,*)"
WRITE(30,*)A
WRITE(30,*) SAMPLE NUMBER: ' JORDER
WRITE@30,*)"'
READ(A(8:8),/(11))NORDER
WRITE(30,*)''
GOTO110
END IF
GO TO 100

110 DO 200 I=1,10000
CALL READER(A,NORDERNORD,B,ISTART RIGHT,

* WRONG, IORDER, M)
CALL SEE(B,JSTART,NORDER RIGHT,WRONG,M)
IORDER = IORDER + 1
WRITE(30,%)"’
wm(so")'......“‘.‘O‘.U.‘....O..‘..t..‘..tt"
WRITE(30,%)"’
WRITE(30,*)A
WRITE(30,*)' SAMPLE NUMBER: ' JORDER
WRITE(30,%)'’
NORDER = NORD
200 CONTINUE
500 sTOP
END

Aa A A A A AL L A2 222l 22224 21T 2 I ISl )
EESPERY

PEIPVES S READER

(22 L2222
‘tt‘*“*it*““t‘.“\t‘t‘*t;c“‘tt““t.“‘t“*t“‘t‘tt‘

SUBROUTINE READER(A,NORDER,NORD,B,ISTART,RIGHT,

* WRONG, IORDER, M)
INTEGER NUM(50)
CHARACTER*(*)A,B
ISTART=0

100 READ(20,'(A80) END=500)A
K=INDEX(A,Order.1 )
KK=INDEX(A, Order.2 ')
J=INDEX(A,*** Minitab')

IF(J.NE.0.)THEN
CALL SEE(B,ISTART,NORDER,RIGHT,WRONG,M)

WRITE(30,*)"

WRITE(30,%) 55 #5553 554340505554 45555351 4444 ¥ 034"
WRITE(30,*)"'

WRITE(30,*) SUMMARY: '
WRITE(30,*)"’

WRITE(30,*) NOTE: '

WRITE(30,*)' #1. THE POPULATION DATA WAS READ FROM',

*FILE: SUBHAS'
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WRI'IE(SO *)' #2. THE NUMBER OF 3s IN EACH POPULATION',

*18:'M
WRITE(30,44)
44 FORMAT( #3. IF THE NUMBER OF 3s ARE CHANGED,',
*ALTER THE VALUE OF '/
4 "M" INLINE 32 OF FILE "DEB.SCAN", AND THEN',
"RECOMPILE /
. DEB.SCAN, BEFORE RUNNING BATCHFILE.")
WRITE(SO ‘)' '
WRITE(30,*)’ ————
WRITE(30,%)’

WRITE(30,*)' TOTAL NUMBER OF SAMPLES ARE : ' JORDER
Wkﬁgg »*)TOTAL NUMBER OF CORRECT CLASSIFICATIONS ARE',
¥ ]
WRITE(SO *)TOTAL NUMBER OF WRONG CLASSIFICATIONS ARE',
:"WRONG
WRITE(30,*)" '
WRITE(30,*)’ TOTAL PROBABILITY OF ',
*'MIS-CLASSIFICATION IS : ', WRONG/IORDER
WRITE(30,*)’ TOTAL PROBABILITY OF ',
¥'CORRECT CLASSIFICATION IS : ' RIGHT/IORDER
WRITE (30,*)'°

WRITE(SO'.)".O‘t..‘0..i‘.t‘.."t‘t..tti.t.t‘t...‘*.‘t'

WRITE(30,%)***%* N(0,1) N(2,1) XY.F R(S) ¥svevsvse

WRITE(30,%) #4563 505008808458 05 853534 0¥0 8004 045304’
500. STOP

ENDIF

IF(K.NE.0.OR.KK.NE.O)THEN
READ(A,(I1))NORD
READ(A(8:8),'(11))NORD

GO TO 103
ENDIF

INUM=0
DO 101 I=1,80
IF(A(ILI).NE.' Y"THEN
INUM=INUM+1
READ(A(LD),'(I11))NUM(INUM)
ISTART=ISTART+1
WRITE(B(ISTART:ISTART),'(I11))NUM(INUM)
ENDIF

101 CONTINUE
GO TO 100

103 RETURN
END

hadd g L 2 d A A 222 222212 D L2 L2 1T 1T 1 2yt g g g g
EE 2222 2 2]

b2 222122 ] SEE

(222221 2]

ha A a A A2 42 2222 L2 R 2 22112 21T 112 Tty s e gy

SUBROUTINE SEE(B,ISTART,NORDER RIGHT, WRONG M)
CHARACTER®*(*)B,STRING*S,STORE*S



Nl=0

N2«0
STRING='3333%'
STORE=00000'

DO 80 I=6-M,5
K5=0
Kl=0

60 KS=INDEX(B(K1+L:ISTART)STRING(I:))
Kl=K14KS
IF(KS.EQ.0)THEN
GOTO®
ELSE
IF(K1.EQ.1)THEN
READ(B(K1+6-1:K1+6-1),'11)) IR
IF(IR.EQ.1)N1=N1+1%(6-1)
IF(IR.EQ.2)N2=N2+1%(6-])
ELSE [F(K1.EQISTART-S+])THEN

READ(B(K1-1:K1-1),/A1)) IL
IF(L.EQ.1)N1=N1+1%(6-1)
IF(IL.EQ.2)N2=N2+1%(6-I)

ELSE
READ(B(K1-1:K1-1),'(I11))IL
IF(IL.EQ.1)N1=N1+1%(6-I)
IF(IL.EQ.2)N2aN2+1%(6-1)
READ(B(K1+6-1:K1+6-1),'(I11))IR
IF(IR.EQ.1)N1=N1+1%(6-1)
IF(IR.EQ.2)N2=N2+1%(6-)

ENDIF
B(KL:K1+5-)=STORE(I:)

GOTO&
ENDIF

80 CONTINUE

WRITE(30,*)' # RNN FROM POPULATION.1 IS : 'N1
WRITE(30,*)' # RNN FROM POPULATION.2 IS : 'N2

WR=0,
RI=0.

I[F(NORDER.EQ.1)THEN
IF(N1.LT.N2)WR=1.
IF(N1.EQ.N2)WR=0.5
IF(N1.EQ.N2)RI=0.5
IFIN1.GT.N2)RI=1.

ELSE
IF(N2.LT.N1)WR=1.
IF(IN2.EQ.N1)WR=0.5
IF(N2.EQ.N1)RI=0.5
IF(N2.GT.N1)RI=1.

END IF

WRITE(30,*)"
[F(N1.GT.N2)WRITE(30,*)"---> # RNN OF POPULATION.!',




*> #RNNOF POPULATION.2'
IF(N2.GT.N1)WRITE(30,%)---> # RNN OF POPULATION.2',

*' > #RNN OF POPULATION.!'
IF(N1.EQ.N2)WRITE(30,*)"---> # RNN OF POPULATION.1',

¥ = # RNN OF POPULATION.2

WRITE(30,*) '
IF(WR.EQ.1.)WRITE(30,*)"** MIS-CLASSIFICATION!!'
IF(WR.EQ.0.5)WRITE(30,*)** ERROR FUNCTION IS HALF!'

IF(RI.EQ.1.)WRITE(30,*)'** CORRECT CLASSIFICATION!!'

WRONG=WRONG+WR
RIGHT=RIGHT+RI
RETURN

END
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PROGRAMC

It also has two parts as program C1 and program C2. The second part program C2
reads the output from program C1 and calculates average PMC for first stage RNN
rule and Sub-Sample procedure simultanously. We also added two more Fortran
programs , program P1 and Program P2 to get permutations Of N elements taken 2 and
3 at a time respectively.
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10

20
13

PROGRAM P!

PROGRAM PERM2
DIMENTION Z(20)
OPEN( UNIT=1S, FILE='INPUT', STATUS='OLD")
OPEN( UNIT=16, FILE='OUT?2,, STATUS='OLD")
CLOSE(UNIT=16, STATUS=DELETE') .
OPEN( UNIT=16, FILE='OUT2', STATUS='NEW")
DO 10 I=1,10
READ (15,*) D
DO 20 =19
DO 20 J=(i+1), 10
WRITE (16,13) ZQ), 2(J)
WRITE (16,13) Z(),Z()
FORMAT(1X, 2(F10.6,2X))
STOP
END




PROGRAM P2

PROGRAM PERM3
DIMENSION Z(20), P(3)

OPEN( UNIT=2S, FILE='INPUT, STATUS='OLD")
OPEN( UNIT=26, FILE='OUT3', STATUS='OLD)

CLOSE( UNIT=26, STATUS='DELETE)

OPEN( UNIT=26, FILE='OUT3', STATUS='NEW')

DO 10 1=1,10

10 READ (2§,*) 2()

DO 201=1,8
DO 20 J=(+1),9
DO 20 K=(J+1),10
WRITE (26,30) Z(D), Z(J), Z(K)
P(1)=Z(1)
P(2)=Z(])
P(3)=Z(K)
M=]
DO 17 L=13
IF (M.LE.S) THEN
CALL INT12(P.3)
WRITE (26,30) (P(1), 11=1,3)
M=aM+]
IF (M.LE.S) THEN
CALL INT23(P3)
WRITE (26,30) (P(11), 11=1,3)
M=M+1
ENDIF
END IF

17 CONTINUE
20 CONTINUE
30 FORMAT (1X, 3(F10.6,2X))

STOP
END

SUBROUTINE INTI2(R.3)
DIMENTION R(3), T(1)
T(1)=R(1)

R(1)=R(2)

R(2)=T(1)

END

SUBROUTINE INT23(R.3)
DIMENTION R(3), T(1)
T(1)=R(2)

R(2)=R(3)

R(3)=T(1)

END




PROGRAMC1

Read 'OUTPX3' C1 C2 C3
Read 'OUTPY3 C4 CS C6
-Read 'INPUTX' C13

Read 'INPUTY' Cl14

LET K4=100

NAME C34='Cover.1', C36='Cover.2', C22='Order.1', C24='Order.2'

STORE 'MRN.3'

NOECHO

Random 1 C7 C8 C9;

NORMAL mean=0, s.d.=1.

Random 1 C10 C11 C12;

NORMAL mean=2, s.d.=1.

STACK C7 C8 C9 intwo C1§

STACK C10 C11 C12 into C16
STACK C13 C14 CI1S into C17;
Subscripts C18.

STACK C13 C14 C16 into C19;
Subscripts C20.

SORT C17 carry CI8 putinto C21 C22
SORT C19 carry C20 putinto C23 C24

LET C25=SQRT((C1-C7)**2 + (C2-C8)**2 + (C3-C9)**2)
LET C26=SQRT((C4-C7)**2 + (CS-C8)**2 + (C6-C9)**2)
LET C27=SQRT((C1-C10)**2 + (C2-C11)**2 + (C3-C12)**2)
LET C28sSQP.T((C4-C10)**2 + (C5-C11)**2 + (C6-C12)**2)

STACK C25 C26 putino C29;
Subscripts C30.

STACK C27 C28 putinto C31;
Subscripts C32.

SORT C29 carry C30 putinto C33 C34
SORT C31 carry C32 putinto C3S C36
DELETE 4:1440 C34

DELETE 4:1440 C36

PRINT C22

PRINT C24

PRINT C34

PRINT C36

END

EXECUTE 'MRN.3' K4

STOP



PROGRAM C2
AT T T I T T T e

L J
v

: PROGRAM TPMC

¥ THIS PROGRAM CALCULATES AVERAGE PMC OF
* IST STAGE RNN RULE & SUB-SAMPLE PROCEDURE
* (K=1,2,3 ) SIMULTANOUSLY

AR AL AL LA A A LAt LI T 2 2T 11122 2 1 17

SOCIUVIEE PSPPI IPSRE IS PSPPI INIIS S USSP S VIV SO Y
L4 2142412 ]
svesvesss  MAIN PROGRAM

SEVEIIERS
LA A A D LS AL AR DL D2 S22 2 AT T I 2 22 12 2Lt

CHARACTER®80 A, B*40S
OPEN(UNIT=20,FILE='SUBHAS' STATUS='0LD")
OPEN(UNIT=30,FILEs'SCAN' STATUS='OLD)
CLOSE(UNIT=30,STATUS=DELETE')
OPEN(UNIT=30,FILE="SCAN',STATUS=NEW")

IORDER=1

JORDER=0

CRT=0

CWRx0

WRONG=0.

RIGHT=0.

FEISFVENUPGESESPEBP SRR LS ESSE S PI RIS E R RS I SSES S PRSI S S
*

* CHANGE THE VALUE OF "M" FOR TESTING DIFFERENT

* NUMBER OF 3§
M=]

L R PP,
PRINT®,’
PRINT®,"'
PRINT®,'
PRINT® 5% 5545508554 4043004504 30044 0¥ $3S 45844 S!
PRINT®* .
PRINT®,'* .
PRINT*,* WELCOME TO "DEB.SCAN", SUBHAS!!! *
PRINT®,* )
PRINT®,* 4
PRINT® 'sessvsvss PROGRAM RUN STARTS ss+sssss
PRINT™,"’ .

100 READ(20,'(A80) END=S00)A
KC1=INDEX(A,Cover.1 )
KC2=INDEX(A,'Cover.2 )
K=INDEX(A, Order.l1 )
KK=INDEX(A,Order.2 )



IF(K NE.0.OR. KK.NE.O)THEN
ITY

PEsl
IORDER=1 ‘
ELSE IF(KC1.NE.0.OR.KC2.NE.O)THE
ITYPE=O
JORDER=s]
ENDIF '
IF(ITYPE.EQ.1.OR.ITYPE.EQ.0)THEN
WRITE(30,*)'1 SEBIISERSSEIIISVESRESFE SISO’
WRITE(30,*) ’ v
WRITE(30,*) * PROGRAM TPMC OUTPUT *'
WRITE(30,*%) 4 .4
WRITE(30,*)' * CODEDBY: S. BAGUI »
WRITE(30,%) * DEPT. OF STATISTICS v
WRITE(30,*) ¢ UNIV. OF ALBERTA ¥
WRITE(30,%) * DATE :8908/1§ 4 :
WRITE(30,*) * CODE :FORTRAN 4
WRITE(30,*) L T L ey
WRITE(0,*)'"
WRITE(30,*)"’

WRITEGO.‘)' bAAd AL T4 EIEE L A T YT

WRITE(30,%)' *** PROGRAM OUTPUT STARTS *#+
WRIE(so")' AAAALL AL LA LA DA A D222 L2122 222
WRITEG0Y)'" |
WRITE(30,%)A

IFITYPE.EQ.1)THEN

PgIN'I;ﬁ'o NOW PROCESSING (DASGUPTA) SAMPLE NUMBER:',
* IORD:! '

WRITE(30,*)' (DASGUPTA) SAMPLE NUMBER: ' IORDER

END IF :

IFITYPE.EQ.0)THEN
WRITE(30,*)' (COVER) SAMPLE NUMBER: ' JORDER
PRINT®,-> NOW PROCESSING (COVER) SAMPLE NUMBER:,
* JORDER
ENDIF

WRITE(30,*)'" .
READ(A(8:8),(I1))NORDER
WRITE(30,*)"’
GOT:3110

ENDIF
GOTO100

110 DO 200 I=1,10000
CALL READER(A,NORDER,NORD,B,ISTART,RIGHT,
*WRONG,IORDER,M,CRT,CWR JORDER,ITYPE,ITP)
IFATYPE.EQ.1)CALL SEE(B,ISTART NORDER RIGHT,
* WRONG, M)

ITYPE=ITP

IF(TYPE.EQ.1)IORDER = |ORDER + 1
IF(ITYPE.EQ.0)JORDER=JORDER+1




wnrm(so oy
wm(ao .)'..0.0‘..‘O..Ut.......t.t.....'.t.‘.ﬂ
WRITE(30,%)""

WRITE(30,°)A

IFATYPE.EQ.1)THEN
‘% -> NOW PROCESSING (DASGUPTA) SAMPLE NUMBER:',
EWNEI;!FEGO \*)' (DASGUPTA) SAMPLE NUMBER: 'JORDER

IFATYFE.EQ.0)THEN
WRITE(30,*): (COVER) SAMPLE NUMBER: 'JORDER
PRINT®,.> NOW PROCESSING (COVER) SAMPLE NUMBER :,
* JORDER
ENDIF

WRITE(30,*)'

NORDER = NORD
200 CONTINUE
500 STOP

END

WAl i e T T T T T
seeseIny

sssesves  READER

vessvee

A U LA A D L I T T I L T L T e ey

SUBROUTINE READER(A,NORDER NORD,B,ISTART RIGHT,
*WRONG,IORDER M,CRT,CWR JORDER,ITYPE,ITP)
INTEGER NUM(50)

CHARACTER*(*»)A,B

ISTART=0

100 READ(20,'(A80) END=SSS)A
K=INDEX(A,Order.1 9
KK=INDEX(A,Order.2 ")
KC1=INDEX(A, Cover.1 b
KC2=INDEX(A,' Cover.2 ")
J=INDEX(A,'*** Minitab")

IF(J.NE.O.)THEN
555 IFATYPE.EQ.1)CALL SEE(B.ISTART NORDER RIGHT,WRONG,M)

WRITE(30,*)"

WRITE(30,7) #9585 33 54335458 488533 56449334334 3383 358 %'
WRITE(30,*)"’

WRITE(30,*) SUMMARY: '

WRITE(30,*)""

WRITE(30,*) NOTE: '

WRITE(30,%)" #1. THE POPULATION DATA WAS READ FROM ',
*'FILE: SUBHAS'

WRITE(30,*)' #2. THE NUMBER OF 3s IN EACH POPULATION ',
*IS:'M

WRITE(30,44)




44 FORMAT( - - #3,IF THE NUMBER OF 3s ARE CHANGED, ',
" WALTER THE VALUE OF / S

* " "M"INLINE 32 OF FILE "DEB.SCAN", AND THEN ',
YRECOMPILE /

o DEB.SCAN, BEFORE RUNNING BATCHFILE.)
WRITE(30,)'"

WRITE(30,*) e !

WRITE(30,%)"

WRITE(30,%)''

WRITE(30,*)’ FIRST- STAGE RNN -- SAMPLE ANALYSIS'
WRITE(30,*) '
WRITE(30,%)"' ’

WRITE(30,*) TOTAL NUMBER OF SAMPLES ARE : 'IORDER
"WBJ{!TC?%.')TOTAL NUMBER OF CORRECT CLASSIFICATIONS ARE!,
WRITE(30,*) TOTAL NUMBER OF WRONG CLASSIFICATIONS ARE ',
*:"WRONG

WRITE(30,%)'’

WRITE(30,*) TOTAL PROBABILITY OF ',

*'MIS-CLASSIFICATION IS :'WRONG/IORDER

WRITE(30,*)’ TOTAL PROBABILITY OF ',

*'CORRECT CLASSIFICATION IS : 'RIGHT/IORDER

WRITE (30,%)'"

WRITE(30,%)"'

WRITE(30,*)'

WRITE(30,*) SUB - SAMPLE ANALYSIS'

WRITE(30,#)  covmreorcveenee !

WRITE(30,*)''

WRITE(30,*) TOTAL NUMBER OF SAMPLES ARE : ' JORDER

WRITE(30,*) TOTAL NUMBER OF CORRECT CLASSIFICATIONS ARE,,
*:"\CRT

WRITE(30,*) TOTAL NUMBER OF WRONG CLASSIFICATIONS ARE ',
“ o CWR

WRITE(30,*)’

WRITE(30,*) TOTAL PROBABILITY OF
*'MIS-CLASSIFICATION IS :'CWR/JORDER
WRITE(30,*)' TOTAL PROBABILITY OF
¥'CORRECT CLASSIFICATION IS : ',CRT/JORDER
WRITE (30.*) '

WRITE(30'O)'U““0“.....“.t“‘.t...ttt*“‘*““t‘t‘it*'

WRITE(30,*)'** MRN.SUB N(0,1) N(2,1) N=10 R(1) XY.F **
WRITE(30,%) # #5555 5 5588805585053 3455430342444 S S4B 44’
PRINTY, '

PRINT®, #svvvvssusvssss PROGRAM RUN ENDS ¢##svsssssusess

PRINTY," v
PRINTY,*  RESULTS ARE IN FILE "SCAN" v
PRINT®,"* -

PRIN’I'C"*‘..‘.‘tt*‘.*.*‘.‘t‘.‘.**t“‘*tt*“*‘t“t&““‘.*“"

i00 STOP
ENDIF

IF(K.NE.0.OR.KK.NE.0.0OR.KC1.NE.0.OR.KC2.NE.0)THEN
IF(K.NE.0.OR. KK.NE.O)ITP=1
IF(KC1.NE.0.OR.KC2.NE.O)ITP=0
READ(A(8:8),'(11))NORD
GO TO 103

ENDIF




IFGTYPE.EQ.0)THEN
DO 112 Is=1,80
IF(ACQLD).NE.' "THEN
READ(A(:D),'(T1))NVAL
GOTO113

END IF
112 CONTINUE
113 IF(NVAL.EQ.NORDER)THEN
WRITE(30,*) '
WRITE(30,*)’ FIRST ELEMENT OF THE SAMPLE IS : 'NVAL
WRITE(30,*)''
WRITE(30,*)' *** CORRECT CLASSIFICATION!!!"
WRITE(30,*) '
CRT=CRT+!
ELSE
WRITE(30,*) '
WRITE(30,*) FIRST ELEMENT OF THE SAMPLE IS : 'NVAL
WRITE(30,*)" :
WRITE(30,*)' *** MISCLASSIFICATION!!!!
WRITE(30,*)
CWR=CWR+1
END IF
ITYPE=2
ENDIF

[FITYPE.EQ.1)THEN
INUM =0
DO 101 I=1,80
IF(A(LI).NE.' "THEN
INUM=INUM+1
READ(A(L:D),'(I1))NUM(INUM)
ISTART=ISTART+1
WRITE(B(ISTART:ISTART),'(I11))NUM(INUM)
END IF
101 CONTINUE
ENDIF

GO TO 100
103 RETURN
END

LA 22 AL LRI a 2222 22 2RIt 22t T2 iR e PR aE AT ey
b i3 22 12 2

p 2 i 22424 SEE

*eRSIeee
REPEVSE RN ERE SIS SR B EU R KRS SRR PRk ek ha RN RN R

SUBROUTINE SEE(B,ISTART ,NORDER RIGHT,WRONG M)
CHARACTER*(*)B,STRING*S,STORE*5

Ni=0

N2=0

STRING="33333'

STORE=00000'

DO 80I=6-M,5




KS=0
Ki=0

60 KS=INDEX(B(K1+1:ISTART),STRING(I:))
K1=K1+KS
IF(KS.EQ.0)THEN
GOTO®0
ELSE
IF(K1.EQ.1)THEN
READ(B(K1+6-1:K1+6-1),'(11)) IR
IF(IR.EQ.1)N1=N1+1%(6-I)
IF(IR.EQ.2)N2=N2+1%(6-I)
ELSE IF(K1.EQ.ISTART-S+I)THEN

READ(B(K1-1:K1-1),/(1)) IL
IF(IL.EQ.1)N1=N1+1%(6-1)
IF(L.EQ.2)N2=N2+1%(c-1)

ELSE
READ(B(K1-1:K1-1),'(I1))IL
IF(IL.EQ.1)N1=N1+1%(6-I)
IF(IL.EQ.2)N2=N2+1%(6-I)
READ(B(K1+6-1:K1+6-1),'11))IR
IF(IR.EQ.1)N1=N1+1%(6-)
IF(IR.EQ.2)N2=N2+1%(6-I)

ENDIF
B(K1:K1+5-I)=STORE(I:)

GOTO®
ENDIF

80 CONTINUE

WRITE(30,*)' # RNN FROM POPULATION.11S : 'N1
WRITE(30,*)' # RNN FROM POPULATION.2IS : 'N2

WR=0.
RI=0.

IF(NORDER .EQ.1)THEN
IF(N1.LT.N2)WR=1.
IF(N1.EQ.N2)WR=0.5
IF(N1.EQ.N2)RI=(.S
I[F(N1.GT.N2)RI=1.

ELSE
IF(N2.LT.N1)WR=1.
IF(N2.EQ.N1)WR=0.5
IF(N2.EQ.N1)RI=0.5
IF(N2.GT.N1jRI=1.

END [F

WRITE(30,*)""

IF(N1.GT.N2)WRITE(30,*)"----> # RNN OF POPULATION.1 ',
*'> #RNN OF POPULATION.2'
IF(N2.GT.N1)WRITE(30,*)"----> # RNN OF POPULATION.2 ',
*' > #RNN OF POPULATION.I'
IF(N1.EQ.N2)WRITE(30,*)"----> # RNN OF POPULATION.1 °,
* = # RNN OF POPULATION.2'

WRITE(30,*)"




IF(WR.EQ.1)WRITE(30,%)*® MIS-CLASSIFICATION!!!!'
IF(WR.EQ.0.5)WRITE(30,*)** ERROR FUNCTION IS HALF!'
IFRLEQ.1.)WRITE(30,*)'** CORRECT CLASSIFICATION!!!'

WRONGsWRONG+WR
RIGHTaRIGHT+R! .
RETURN

END




