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Abstract

Set expansion aims at expanding a given query seed set into a larger and more

complete set by adding elements that are likely to belong to the same grouping

as the elements of the query set. This thesis studies the problem of efficient

set expansion; in particular, given a collection of data sets, each corresponding

to an object grouping, and a query set, we develop offline strategies to prepro-

cess and organize the data sets such that online set expansion queries can be

answered efficiently. We show how those strategies can be tuned for different

set expansion semantics. We also evaluate our algorithms on a real dataset,

constructed from the Wikipedia tables.
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Chapter 1

Introduction

Have you ever wondered about the Los Angeles Lakers roster that won NBA

finals a couple of years ago but only remembered the names of a few players?

Or, have you tried finding more sci-fi movies like Interstellar and Inception?

We may search them on a search engine using keywords like “Los Angeles

Lakers roster NBA final 2000-2003” and “sci-fi movies interstellar inception”.

For popular searches such as those listed, we may gather the answers after

browsing a few Web pages; for less popular searches, the chance of finding an

answer can be slim. These are some examples of set expansion queries, and a

system supporting such queries can provide more efficient and elegant results.

This is our motivation for investigating the problem of efficient set expansion.

1.1 Problem statement

Set expansion aims at expanding a small set of elements into a more complete

set by searching for other elements that may also belong to the same set or

grouping [He and Xin, 2011]. Here a grouping can be any collection of elements

that may belong to the same set, for example put together by someone or

largely agreed on by the public, and a query seed set is a subset of a larger

and perhaps “more complete” set. Consider the names of all NBA teams as

a set; given a small number of team names such as “Los Angeles Lakers” and

“Boston Celtics” as seeds, a set expansion scheme would discover other NBA

teams such as “Chicago Bulls” and “San Antonio Spurs”, etc.

More formally, given a seed set: {x1, x2, ..., xk}, where each xi ∈ S, set
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expansion aims at retrieving a list of other elements: {e1, e2, ..., en}, where

each ei ∈ S. Most of the time, we don’t know which set is the superset S. So

we need to mine the potential sets from a large collection.

It is not hard to see that a set expansion can retrieve results that may

not be easy to retrieve using a search engine. In particular, when we do not

know the category name or the keyword for a given seed set, it is hard to

guess which query should be issued to the search engine. For example, given

“Toronto Raptors”, “Orlando Magic” and “Utah Jazz” as the seed set, what

should be the search query? Is it “the list of all NBA teams?” Actually, “list

of NBA teams that have never won a championship” is more proper than the

previous one, since these three teams share this specific feature more than just

being NBA teams. However, a set expansion system may be able to pickup

the unifying relationships that hold for the elements in the query seed set, and

return a ranked list of other elements that may share the same relationships.

Unlike an alphabetical or a chronological ordering of elements that may

be found in Web pages, the result of a set expansion is usually ranked based

on the similarity or the relevance to the seed set, so that the more relevant

elements are ranked higher in the list.

Table 1.1 gives two sample queries and part of their expanded sets. As

we can learn from the table, the top ranked elements are very relevant to

the input queries. For query {China, Canada, Australia}, the expanded set

is other country names, while for query {The Amazing Race, American Idol,

The Voice} the expanded set is American TV shows. We also notice that the

last few elements in the outputs are not that relevant to the query sets, e.g.

Winnipeg and Alaska are not country names but city or state names. This is

because set expansion system will rank the most relevant elements at the top

while the less relevant ones are expected to be at the bottom.

We have created a lightweight web interface for some example set expansion

queries. You can see more examples from there1.

1https://webdocs.cs.ualberta.ca/∼kzhou3/SetExpansion.php
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Table 1.1: Real examples of Set Expansion input and output

input seeds
China The Amazing Race
Canada American Idol
Australia The Voice

outputs

United States America’s Got Talent
France Dancing with the Stars

Germany Survivor
Japan The X Factor
Italy So You Think You Can Dance
Russia Top Chef
Spain America’s Next Top Model
Greece Access Hollywood

Great Britain Late Night with Jimmy Fallon
Belgium The Price Is Right

Netherlands The Ellen Show
... ...

*Winnipeg *Godzilla: Unleashed
*Alaska *Deca Sports 3
*Sheet D *WWE A.M. Raw

1.2 Challenges

Set expansion may be treated as a variant of a typical information retrieval

task. However, unlike a typical information retrieval query, it is not sufficient

in a set expansion to only retrieve a set of top ranked documents. The goal is

to dig deeper and further analyze the documents or sets, and extract the most

relevant terms or elements to construct a complete set.

There are a few challenges associated to set expansion; this thesis studies

two specific problems. First, given a query set, how to efficiently retrieve

and rank the most relevant documents or sets from a large data set? Second,

given a set of relevant sets to a query set, how to merge the relevant sets

or documents into a complete expanded set, which is the most meaningful

expanded set for the query set? To address these challenges, we study efficient

indexes and ranking strategies for set expansion queries.
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1.3 Our contribution

In this thesis, we study the problem of efficient set expansion, focusing on

conducting set expansion using specific local data sources without resorting to

online data. As our dataset, we have extracted all the table data on Wikipedia

pages, treating each column in a table as a set. This results in a dataset with

millions of concept sets, which we can use in our experiments. We propose

two indexing strategies for set expansion, one is based on an inverted index

and another is based on asymmetric minwise hashing. We observe that each

indexing strategy has its own advantages on some specific types of queries.

We develop offline strategies to preprocess and organize the data sets such

that online set expansion queries can be answered efficiently. We show how

those strategies can be tuned for different set expansion semantics. We also

evaluate our algorithms on a real dataset, constructed from the Wikipedia

tables.

1.4 Thesis overview

The rest of the thesis is organized as follows. The next chapter covers the

related work. We introduce an inverted index based set expansion in Chapter 3

and a asymmetric minwise hashing based method in Chapter 4. In the context

of a set expansion, we study the problem of top-k retrieval in Chapter 5. Our

experimental evaluation and analysis are presented in Chapter 6. Finally we

conclude this thesis in Chapter 7.
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Chapter 2

Related Work

Our work relates to the lines of work on set expansion and similar set retrieval;

this chapter reviews those lines of work. We will also review two indexing

strategies: inverted index and locality sensitive hashing. Our proposed indexes

are based on these two strategies.

2.1 Set expansion

Set expansion has received much attention lately from both industry and

academia [Ghahramani and Heller, 2005, He and Xin, 2011, Wang and Co-

hen, 2007, Pantel et al., 2009, Sarmento et al., 2007]. Some approaches to set

expansion are totally online, using search engines to retrieve relevant docu-

ments and mining similar terms and elements within documents to construct

a complete set. On the other hand, corpus based approaches to set expansion

assume the entire corpus is available in advance. Thus, efficient indexes can

be built offline, and these indexes may be used for fast online retrieving of

similar elements.

As a related work, we have to mention Google Sets1, which used to provide

an online set expansion interface; but the details of this method have not

been published. Another outstanding work is the SEAL system [Wang and

Cohen, 2007, 2008, 2009]. SEAL worked by fetching some web pages that

contain “lists” of elements, and then aggregating and ranking these “lists”

as a complete set. SEAL did an online web data extraction and processing,

1http://labs.google.com/sets
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which is costly and does not scale up well. He and Xin studied the problem of

using general-purpose web data (web lists and query logs) to expand a set of

seed entities [He and Xin, 2011]. They proposed a simple yet effective quality

metric to measure the expanded set, and designed two iterative thresholding

algorithms to rank candidate entities. Similarly in Sarmento’s work [Sarmento

et al., 2007], the authors extracted the Wikipedia “list of * ” pages, treating

each list in a page as a concept set. They computed the co-occurrence stats of

all the set elements, which can then be used for scoring during a set expansion.

The aforementioned work has largely focused on finding documents that

mention a query seed set and using the HTML structure surrounding the

seed set to find more elements (e.g. [He and Xin, 2011, Wang and Cohen,

2007]). This is a time-consuming process and does not scale to large number of

queries or document collections. The problem studied in this thesis is efficiently

supporting online set expansion queries through offline processing strategies.

In particular, we assume similar sets are collected or extracted in advance, and

we want to find strategies for organizing them for more efficient querying.

2.2 Similar set retrieval

A closely related line of work to set expansion is similar set retrieval [Gionis

et al., 2001, Mamoulis et al., 2003], where given a set, the goal is to find

other similar sets. Some commonalities between set expansion and similar

set retrrieval are (1) both need to define some reasonable similarity functions

between sets and (2) both approaches usually make use of indexes for retrieving

those highly similar sets efficiently.

However, there are some differences between expanding a set and finding

similar sets. Expanding a set is more like finding the super set of a query set,

while similar sets retrieval tends to fetch other largely overlapping sets, which

may have similar contents and be roughly about the same set sizes. A well-used

similarity function for similar set retrieval is the Jaccard similarity [Rajaraman

et al., 2012]. As a matter of fact, the Jaccard similarity function penalizes the

matching sets based on their sizes; for a given fixed query set, the larger a
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Table 2.1: Domain D

set ID elements
S1 apple, banana, grape
S2 apple, google, facebook

matching set is the less Jaccard similarity it will have, which is not desirable

in set expansion situations where the query sets are small and the target sets

are typically large (see Section 4.3 for some details).

Nevertheless, the basic goal of similar set retrieval and set expansion are

very alike. Both need to retrieve relevant sets from a large collection of sets,

even though the definition of relevance is a little different. There has been

many work on efficiently retrieving similar sets, based on the Jaccard similarity,

using an inverted index [Patil et al., 2011, Fontoura et al., 2011, Zobel and

Moffat, 2006, Yan et al., 2009], locality sensitive hashing [Datar et al., 2004,

Slaney and Casey, 2008], etc. Set expansion may use the relevant literature

on similar set retrieval and efficiently find sets from which an answer can be

constructed.

2.3 Inverted index

Inverted index is widely used in modern information retrieval systems, for

example, to support keyword searches on documents [Zobel and Moffat, 2006].

An inverted index may also be used in efficiently retrieving similar sets. In this

case, an inverted index consists of a directory containing all distinct elements

that appear in a set and a posting list of set IDs where each element appears

in. Inverted index offers a promising strategy for set expansion.

For example, consider the two sets, S1 = {apple, banana, grape} and S2

= {apple, google, facebook}. The data sets are shown in Table 2.1 and an

inverted index is shown in Table 2.2.

Given a query set q = {apple, google}, we can first retrieve the set IDs

that they appear in, which are S1 and S2; S2 may be ranked higher because it

contains both query elements. Having retrieved the set IDs, we can go back
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Table 2.2: Inverted index

element set IDs
apple S1, S2

banana S1

grape S1

google S2

facebook S2

to each set and retrieve other set members as relevant elements to the query.

In this particular case, the result set may be {apple, google, facebook} or

{apple, google, facebook, banana, grape} depending on the result set size that

is expected or a similarity threshold that may be desired.

As mentioned in Chapter 1, a set expansion may not retrieve all answers

but only those with high relevance, hence the literature on top-k document

retrieval is also relevant. In a top-k document retrieval using inverted in-

dexes, queries are evaluated using two major approaches: document-at-a-time

(DAAT), term-at-a-time (TAAT) and Weighted-AND (WAND) [Culpepper

et al., 2012, Jonassen and Bratsberg, 2011, Patil et al., 2011, Ilyas et al.,

2008]. Let us take a look into them.

2.3.1 DAAT

A DAAT approach to keyword queries simultaneously traverses the postings

lists for all terms in the query [Fontoura et al., 2011]. A naive implementation

of DAAT simply merges the involved postings lists and examines all the docu-

ments in the union. A min-heap is normally used to store the top-k documents

during the evaluation. Whenever a new candidate document is identified, it

must be scored. The computed score is then compared to the minimum score

in the heap, and if it is higher, the candidate document is added to the heap.

At the end of processing, the top-k documents are guaranteed to be in the

heap.

There are two main factors in evaluating the performance of the DAAT

algorithms: the index access cost and the scoring cost. In the case of the naive

DAAT algorithm, every posting for every query term must be accessed. The

8



index access cost is then proportional to the sum of the sizes of the postings list

for all query terms. The scoring cost includes computing the scoring function

and updating the result heap.

2.3.2 TAAT

A TAAT algorithm traverses one postings list at-a-time [Fontoura et al., 2011].

The contributions from each query term to the final score of each document

must be stored in an array, then be added up to the final score. The size of the

array is the number of documents in the index. In the naive implementation

of TAAT we must access every posting for every term. For each posting, we

compute its score contribution and add it to the array.

The costs of both DAAT and TAAT algorithms are O(N), i.e. linear com-

plexity with respect to the size of the posting list. Previous work has compared

DAAT and TAAT algorithms’ performance on a large TREC GOV2 document

collection [Carmel and Amitay, 2006]. They found that even though DAAT

and TAAT are at the same order in terms of cost, DAAT was superior than

TAAT. However, unlike our work, which focuses on memory-resident indexes,

the authors used the disk-base indexes for their performance evaluations.

2.3.3 WAND

In a set expansion context, we have two rounds of top-k retrievals. The first

round is to retrieve top-k relevant sets. The second round is to merge the sets

and produce top-k ranked relevant terms. As a result, there are two kinds of

scoring functions for each round of a top-k retrieval, which can be considered

as the largest part of the cost.

Many algorithms are proposed to speed up the scoring process, of which

WAND [Ding and Suel, 2011, Broder et al., 2003] is a very popular one. The

main intuition behind WAND is to use upper bounds on score contributions

to improve query performance. For each postings list in the index, we can pre-

compute and store the maximum score value. It is demonstrated that using

the document-at-a-time approach and a two-level query evaluation method
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using the WAND operator for the first stage, pruning can yield a substantial

gain in efficiency at no loss in precision and recall [Broder et al., 2003].

2.4 Locality sensitive hashing

Locality sensitive hashing (LSH) may also be used to store sets and to retrieve

similar sets. Unlike an inverted index which stores each set ID in the posting

list of every element, LSH indexes the sets as a whole.

LSH is a widely used strategy for data clustering and nearest neighbor

search [Rajaraman et al., 2012, Datar et al., 2004, Slaney and Casey, 2008,

Charikar, 2002]. LSH hashes the input elements so that similar elements map

to the same buckets with high probability (the number of buckets is much

smaller than the universe of possible input elements). LSH differs from con-

ventional and cryptographic hash functions because it aims to maximize the

probability of a collision for similar elements [Rajaraman et al., 2012].

LSH is also a very promising way of indexing similar sets. It is based on the

assumption that similar sets have higher probability to be hashed into a same

bucket. Instead of hashing a set directly, we usually hash the min value signa-

ture of the set. The simplest version of the MinHash scheme uses k different

hash functions, where k is a fixed integer parameter, and represents each set

S by the k values of min(S) for these k functions. Those signatures represent

the sets and can be hashed into corresponding buckets more efficiently.

2.4.1 Asymmetric minwise hashing

However, using MinHashes for a set expansion task is problematic [Shrivastava

and Li, 2014, 2015], because its underlining Jaccard similarity has inherent bias

towards smaller sets.

For example, consider these two sets, S1 = {apple, banana, grape}, S2 =

{apple, google, facebook, microsoft, linkedin, amazon, intel, ibm, dropbox}. If

the query seed set Sq is {apple, google}, then the Jaccard similarity between Sq

and S1 is J(Sq, S1) =
1

4
= 0.25, and that between Sq and S2 is J(Sq, S2) =

2

9
=

0.22. As a result, simply based on the Jaccard similarity, S1, having higher

10



Jaccard similarity, is more similar to Sq than S2, which however should not be

correct in this case, since Sq and S2 are both sets of technology companies in

the US while S1 is just a set of fruits.

The issue here is that the Jaccard similarity penalizes larger sets, or it

favors small sets, and this can hurt the set expansion whose goal is to find

larger and more complete sets. In order to utilize MinHash as a tool for set

expansion under the overlap similarity, we have to do some modifications, such

as adding some asymmetric factors into the similarity function to alleviate the

large set size penalty, see Chapter 4.3 for details.

In our work, we propose and experiment with two indexing strategies for set

expansion: inverted index and asymmetric minwise hashing. The methods are

presented in Chapter 3 and 4 and a preliminary evaluation of their performance

is presented in Chapter 6.

11



Chapter 3

Set Expansion using Inverted

Index

Inverted index can work as a key component for retrieving relevant sets during

a set expansion process. In this chapter, we study the problem of efficient set

expansion using an inverted index.

3.1 Inverted index

Let S represent a set and E be the element in the set. In an inverted index,

each element E ∈ S is associated with a posting list that contains set IDs of all

the sets that contain element E . If we donate a posting list with P , our dataset

consists a collection of sets like Si = {E1, E2, ..., En} and a set of posting lists

PEi = {S1, S2, ..., Sn}, extracted from the sets. Given a set expansion query

Q = {E1, E2, E3}, we retrieve all the posting lists (PE1 , PE2 , PE3) using the

inverted index, which will be intersected or merged to produce a final result.

As described in Chapter 2.3, with an inverted index constructed on all

elements, the first step for expanding a query set is to retrieve the posting

list P of each element in the query set. Different semantics may be used to

merge the posting lists P ; this results in a set of set IDs, which can be used to

fetch more relevant elements. Lastly, we merge those elements based on some

scoring function to get a ranked list of elements, referred to as an expanded

set. Algorithm 1 is a general inverted index based algorithm for set expansion.

The merge function in steps 5 and 9, and the rank function in step 10

12



Algorithm 1 Set Expansion Using Inverted Index

Input: Query set: Q set={element1, element2, ..., elementM}
Output: Expanded set: E set={element1, element2, ..., elementN}, N ≥ M
Require: Dataset: D={set:elements}; index: DInverted = {element:sets}.
Steps:

1: Initialize posting list P = {}, expanded set E set = {}
2: Retrieve all relevant set IDs into P :
3: for e in Q set :
4: p ← DInverted.get(e)
5: P ← merge(p, P)
6: Retrieve all the relevant elements into E set :
7: for s in P :
8: elements ← D.get(s)
9: E set ← merge(elements, E set)
10: rank(E set)
11: Return E set

can implement different query semantics, such as merge by union, intersection

or frequency count, and use different algorithms such as quick sort or heap

sort. More details are discussed in Chapter 3.2.

3.1.1 Algorithm cost analysis

The computation cost can be estimated based on the query set size and some

statistics of the dataset. Let n denote the query set size and pi denote the

size of a posting list i. Let the average set size be µ. The cost includes two

parts: (1) the cost of getting all the relevant sets and (2) the cost of merging

and ranking all the relevant elements. For the first part, we need to aggregate

the posting lists of the query set, and its cost is the summation of the posting

lists P =
n
∑

i=1

pi. For the second part, the cost varies for different merge and

rank methods. If we denote the two costs respectively by Cmerge and Crank,

the total cost becomes

C = O(P ) + Cmerge + Crank. (3.1)

13



3.2 Merge and rank methods

An inverted index on set elements can help us retrieve all relevant set IDs, but

we need to find some effective ways to merge those sets and produce meaningful

ranked list as an expanded result. Some naive ways to merge is to take the

union or intersection of the sets. When we take the union, the expanded result

may be too large and contain many irrelevant or noisy elements. On the other

hand, when taking intersection of the sets, it may not always guarantee that

the intersection of all the sets is not empty.

Let us take the two sets used in Chapter 2.4.1 for an example. The two

relevant sets for the query set Sq = {apple, google} are S1 = {apple, banana,

grape} and S2 = {apple, google, facebook, microsoft, linkedin, amazon, intel,

ibm, dropbox}. If we take the union of S1 and S2 as the expanded set, then we

can get E set = {apple, banana, grape, google, facebook, microsoft, linkedin,

amazon, intel, ibm, dropbox}. This expanded set is not only too large, but

also self-inconsistent as a meaningful set. On the contrary, when we take the

intersection of S1 and S2 as the expanded set E set = {apple}, even though

it is not an empty set, it is obviously not an expanded set for the query set.

As a result, we need more sophisticated strategies to merge the sets and

rank the elements. We have investigated three ranking strategies.

3.2.1 Rank by Overlap Similarity

Let us present the formal definition of overlap similarity first. For sets S1 and

S2, the overlap similarity between S1 and S2 is the ratio of the number of

elements of their intersection and the size of S1:

O(S1, S2) =
|S1 ∩ S2|

|S1|
.

One way to rank the query result is to first rank the sets from which the

result is derived. Sets may be ranked based on their overlap similarities with

the query set. The sets with higher overlap similarities are ranked higher in

the list. To construct an expanded set, we can scan the list from the top and

fetch the elements of those sets to build the expanded set. That means the
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elements of the first set in the list are all ranked higher than the elements of

the second set, and the elements of the second set are ranked higher than those

of the third, etc.

For example, consider the query {Canada, US} with the matching sets

S1={Canada, US, China, Noise1}, S2={Canada, Australia, Noise2} and S3

{US, Australia, Noise3}. S1 has an overlap similarity of 2/2, while both S2

and S3 have an overlap similarity of 1/2. All the elements in S1 (including

Noise1 ) are ranked higher than elements in S2 and S3. This method is called

Rank by Overlap Similarity (ROS).

Let us analyze the cost of this ranking method. First, it needs to sort

the sets by their overlap similarity with the query set. We know that the

size of the posting list is P , so the cost for sorting is Csort = O(P ∗ logP ).

Then we can merge the elements from this ranked list of sets. Suppose X is a

random variable representing the size of each set; then the size of the merged

list Cmerge = O(
P
∑

i=1

Xi). Since Xi is independent and identically distributed

(i.i.d.), we have

E(
P
∑

i=1

Xi) =
P
∑

i=1

E(Xi)

= PE(X)

= Pµ

So the the cost for set expansion rank by overlap similarity is

C = O(P ) + Cmerge + Crank

= O(P ) +O(Pµ) +O(P ∗ logP )

= O(P + Pµ+ P ∗ logP )

.

3.2.2 Rank by Frequency Count

The method described above can be a bit rough sometimes, in that, it only

considers the similarity between the sets. Not all elements in a set may be
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relevant to the query set, and some elements may be more relevant than others.

In the last example, we notice that element Noise1 is also ranked higher than

any other elements in S2 and S3, such as Australia. In this case, we expect an

extended set to be a set of country names, and clearly Noise1 is not what we

expect in the result. Our ranking by Frequency Count (FC) takes the element

similarity into consideration to get more reasonable results.

The basic assumption for our ranking here is that if an element co-occur

with another element in many sets, these two elements are likely to be related.

For example, Canada and US typically co-occur in many sets, such as the set

of all countries, the set of all North American countries or the set of largest

countries in the world. In this case, many set ids in the posting list of Canada

are expected to appear in the posting list of USA as well, and vice versa. Based

on this observation, we assume that the more frequent two elements appear in

the same sets, the more relevant those two elements are.

Furthermore, we can combine the frequency count and overlap similarity

rank together to produce a potentially more meaningful ranked list of elements.

To be specific, if a set has a higher overlap similarity with the query set, the

elements in this set should be more relevant with the query set. Taking this

into consideration, we can assign the set overlap similarity as a weight to each

set when doing the counting of element’s frequency.

For example, consider again the query set {Canada, US} and the matching

sets S1={Canada, US, China, Noise1}, S2={Canada, Australia, Noise2} and

S3={US, Australia, Noise3}. If we only count the frequency of elements,

China and Noise2 and Noise3 will have the same frequency. However, the

overlap similarity between the query and S1 is 2/2= 1 and that between the

query and S2 and S3 is 1/2. If the sets S1, S2 and S3 are weighted based on

their overlap similarities, China will gain a weight of w(S1)=1 whereas, Noise2

only appears in S2 and will have the weight of w(S2)=0.5, Noise3 also only

has the weight of w(S3)=0.5. As a result, China is ranked higher than Noise2

and Noise3 in the expanded set.

In order to accumulate the frequency of each element in all the posting

lists, we can store the elements in a hash table, where the key is the element
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and the value is its frequency. Using this extra space, we can obtain all element

frequencies in just one pass of the posting lists. Having the element frequencies

in a hash table, we can sort the elements by their frequencies so that the most

relevant elements are ranked on the top of the list.

Algorithm 2 Frequency Count

Input: Query set: Q set={element1, element2, ..., elementM}
Output: Expanded set: E set={element1, element2, ..., elementN}, N ≥ M
Require: Dataset: D={set:elements}; index: DInverted = {element:sets}.
Steps:

1: Initialize posting list P={} as a hash table to count the frequency of sets
2: Retrieve all relevant set IDs into P :
3: for e in Q set:
4: p ← DInverted.get(e)
5: for s in p:
6: if s in P :
7: P [s ]++
8: else:
9: P [s ] = 1
10: Initialize E set={} as a hash table to count the frequency of elements
11: Retrieve all the relevant elements into E set :
12: for s in P :
13: elements ← D.get(s)
14: weight = P [s ]
15: for e in elements:
16: if e in E set :
17: E set [e] += weight
18: else:
19: E set [e] = weight
20: sort(E set) by the weights
21: Return E set

Algorithm 2 is the complete algorithm of Frequency Count. It contains

two major phases. In the first phase (Steps 3 to 9), we merge all the posting

lists so that we know the similarity weights between the query set Q set and

other relevant sets in D, which is

P(Q set) = {(s, w)|s ∈ D ∧ w = |s ∩Q set|}.

In the second phase (Steps 12 to 19), we use the aggregated posting list and
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elements’ frequency counts to produce the merged elements list, which is

E set = {(e,
∑

wi)|(s, wi) ∈ P(Q set) ∧ e ∈ s}.

Let us analyze the cost of this ranking method. The parts on retrieving

the relevant sets and merging are very similar to the previous method. What

is different is the sorting part. In the frequency count method, we need to

sort the elements based on their frequency counts instead of their overlap

similarities. So the cost for sorting becomes Crank = O(Pµ ∗ logPµ) and total

cost for set expansion in Rank by Frequency Count is

C = O(P ) + Cmerge + Crank (3.2)

= O(P ) +O(Pµ) +O(Pµ ∗ logPµ) (3.3)

= O(P + Pµ+ Pµ ∗ logPµ). (3.4)

3.2.3 Rank by Frequency and Inverse Frequency Count

Inspired by the two methods discussed above and the widely used Term Frequency-

Inverse Document Frequency (TF-IDF) weighting in information retrieval and

text mining tasks [Rajaraman et al., 2012, Wu et al., 2008, Salton and Buckley,

1988], we can develop another ranking method for elements in an expanded

set, which is called Frequency and Inverse Frequency Count (F-IFC).

TF-IDF weighting is a statistical measure used to evaluate how important

a word is to a document in a collection or corpus [Wu et al., 2008]. The

importance increases proportionally to the number of times a word appears

in the document but is offset by the frequency of the word in the corpus.

Variations of the TF-IDF weighting scheme are often used by search engines

as a way of scoring and ranking a document relevance to a given user query.

As TF in our case, we consider weighting the elements of a list based on

the number of times an element appears. The TF weighting scheme may be

applied in the context of set expansion by treating a set as a document and

an element of a set as a term of the document. However, there are some

differences between a set and a document. Since an element can appear at

most once in a set, the TF is either 1 or 0. If we treat TF for a document as a
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probability distribution over terms, then the probability that a term e appears

in set S can be expressed as:

TF (e, S) =















1

|S|
, e ∈ S

0

|S|
, e 6∈ S

(3.5)

Again in an information retrieval context the Inverse Document Frequency

(IDF) measures how important a term is. In computing a TF score, all terms

are considered equally important. However it is known that certain terms,

such as “is”, “of”, and “that”, may appear many times and in a large number

of documents with little importance. The IDF weighting weighs down the

frequent terms while scales up the rare ones.

In a set expansion context, let N denote the number of sets and Ne be the

number of sets with element e in them. Then the IDF score of e is

IDF (e) = log(N/Ne). (3.6)

Let us look at an example here. Consider a set containing 100 elements

where the element cat is in it. The term frequency (i.e., TF) for cat is then

(1/100) = 0.01. Now, assume we have one thousand sets and the element cat

appears in ten of these. Then, the inverse document frequency (i.e., IDF) is

calculated as log(1,000 / 10) = 2. Thus, the TF-IDF weight of that element

is the product of these quantities: 0.01 * 2 = 0.02.

The TF-IDF weighting schema can also be combined with set overlap

weight as in the Frequency Count method. Algorithm 3 is the complete algo-

rithm of Frequency and Inverse Frequency Count.

The TF-IDF function in the algorithm is using Eq. 3.5 and 3.6 to get the

tf-idf score. The cost of this algorithm is quite similar to that of FC, since the

only difference is the way the weights are calculated.

3.2.4 A comparisons of different merge and rank meth-

ods

We have developed a few merge and rank methods, as discussed above, each

with its own advantages under different settings.
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Algorithm 3 Frequency and Inverse Frequency Count

Input: Query set: Q set={element1, element2, ..., elementM}
Output: Expanded set: E set={element1, element2, ..., elementN}, N ≥ M
Require: Dataset: D={set:elements}; index: DInverted = {element:sets}.
Steps:

1: Initialize posting list P={} as a hash table to count the frequency of sets
2: Retrieve all relevant set IDs into P :
3: for e in Q set:
4: p ← DInverted.get(e)
5: for s in p:
6: if s in P :
7: P [s ]++
8: else:
9: P [s ] = 1
10: Initialize E set={} as a hash table to count the frequency of elements
11: Retrieve all the relevant elements into E set :
12: for s in P :
13: elements ← D.get(s)
14: weight = P [s ]
15: for e in elements:
16: if e in E set :
17: E set [e] += weight*TF-IDF(e, s)
18: else:
19: E set [e] = weight*TF-IDF(e, s)
20: sort(E set) by the weights
21: Return E set

For example, if we want to expand a query set as large as possible, merg-

ing by union operation is the best choice. On the other hand, if we only

need to find the most relevant elements, merging by intersection suits our

goal. Rank by overlap similarity works the best when the dataset does not

contain much noise. Rank by frequency and inversed frequency count are two

similar ways of noise-tolerant scoring strategies. Frequency count takes the co-

occurrence statistics into consideration, while inversed frequency count brings

some regularization penalties to those too frequent stop-words. We will do an

experimental evaluation of these ranking methods to see if one strategy works

better in general set expansion cases.
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3.3 Some issues with inverted index based set

expansion

Based on the cost analysis, we know that the inverted index based methods

cannot scale well when the posting list sizes increase. As shown in Eq. 3.4,

it takes linearithmic time (NlogN) to sort the list of elements. Also, we have

found that the timing performance of them suffers when the distribution of

the elements is skewed, meaning some elements appear far more frequently in

different sets, resulting in long posting lists. This is also consistent with earlier

findings [Chaudhuri et al., 2007] and leads us to finding other strategies, such

as locality sensitive hashing, to be discussed next.
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Chapter 4

Set Expansion using Hashing

Mechanism

In this chapter, we will discuss how we can use the locality sensitive hashing

mechanism and its modification to solve set expansion problems.

4.1 MinHash signatures

First of all, we know that hashing a set directly is very costly. So we find a

way to use MinHash signatures to represent the original sets.

Given a set S ⊆ D = {1, 2, ..., N} and a permutation π : D → D
′

, the

minwise hashing of S with respect to π, denoted as hπ(S), is the element in

S with the least index in the permutation. In general, D may not be a set of

integers, but any such set can be mapped to a set of integers.

A commonly used similarity function between sets is the Jaccard similarity,

which is defined for sets S1 and S2 as the ratio of the number of elements of

their intersection and the number of elements of their union:

J(S1, S2) =
|S1 ∩ S2|

|S1 ∪ S2|
.

Given the sets S1 and S2, it has been shown that the probability that these

two sets have the same MinHash is their Jaccard similarity J(S1, S2) [Broder,

1997],

Prπ(hπ(S1) = hπ(S2)) =
|S1 ∩ S2|

|S1 ∪ S2|
= J(S1, S2).

Having this property, we can use MinHash signatures to represent the sets,
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so that sets with high Jaccard similarity will have a high probability of sharing

an identical MinHash signature.

4.2 Locality sensitive hashing

Having the MinHash signatures of all the sets, we want to place the most

similar sets in near locations. One general approach to LSH is to hash items

several times, in such a way that similar items are more likely to be hashed to

the same bucket than dissimilar items are.

We implement LSH functions using the banding technique [Rajaraman

et al., 2012]. To be specific, we divide the MinHash signature into b bands

with r values in each band. We take each mini-band as a MinHash signature

and hash it into a corresponding bucket. Thus we hash the whole MinHash

signature b times, and this is expected to increase the collision probabilities

for similar sets. Suppose the Jaccard similarity between two sets is s, then

the probability that the two sets will be hashed into a same bucket (become a

candidate pair) is

1− (1− sr)b.

Please refer to Chapter 3.4 in Rajaraman’s book [Rajaraman et al., 2012] for

detailed derivation.

This probability function has the form of an S-curve, as shown in Figure 4.1.

By adjusting parameters b and r, we can set the threshold, which is the steepest

rise point in the curve, to a similarity value s that we desire.

4.3 Asymmetric minwise hashing

As our example in Chapter 2.4.1 shows, the use of MinHash for set expansion is

problematic since the Jaccard similarity biases towards smaller sets. Recently

Shrivastava and Li [Shrivastava and Li, 2015] present a simple asymmetric

trick to fix this problem and to make the overall probability of matching the

MinHash monotonic with overlap similarity.

The basic idea is that we reduce the advantage of small sets by adding
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Figure 4.1: LSH’s collision probability S-curve

some random irrelevant elements. Now, we will describe in detail how do

add this asymmetry into a traditional MinHash. In order to utilize MinHash

as a tool for set expansion under the overlap similarity, we have to do some

modifications.

Suppose sets are represented using binary vectors. We define a constant

M as

M = max
S∈D
|S|

where M is the maximum set size in the collection. Then, we apply the

following transformations P ′() and Q′() respectively to data and query sets.

P ′(x) = [x; 1; 1; 1; ...; 1; 0; 0; ...; 0]

Q′(q) = [q; 0; 0; 0; ...; 0; 0; 0; ...; 0]

P ′(x) appends M −fx 1s and fx zeros to x, where fx is the size of set x. Q′(q)

appends M zeros to q. Now we can get the Jaccard similarity between P ′(x)

and Q′(q):

J(P ′, Q′) =
|P ′ ∩Q′|

|P ′ ∪Q′|
=

a

fx + fq − a+M − fx
=

a

M + fq − a
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where fq is the size of query set q, a is the overlap between the two sets. We

know that the overlap similarity between x and q is O(x, q) = a
fq
. As we can

see

J(P ′, Q′) =
a

M + fq − a
.

For a fixed fq and large constant M , J(P ′, Q′) increases monotonically with a,

which means ranking the results based on J(P ′, Q′) would provide a reasonably

good estimation of O(x, q) = a
fq
. In our dataset, the constant M is very large,

close to four thousand. So this asymmetric transformation can be taken as a

bridge between Jaccard similarity and the overlap similarity in the MinHash

framework.

The asymmetric MinHash in Shrivastava and Li’s work [Shrivastava and

Li, 2015] is presented for binary vectors but because of the sparsity of those

vectors, a binary representation leads to large storage overhead and less effi-

cient access. As a solution, we treat each set as a set of integers (or longs) and

modify the transformations as follows:

P ′(x) = x ∪ {(M − fx) random integers beyond the sets}, (4.1)

Q′(q) = q. (4.2)

All the results presented for binary vectors can be extended to the new repre-

sentations. We refer to this method as MH-ALSH.

4.4 Set expansion using MH-ALSH

Now we can use the MH-ALSH strategy to do the set expansion. Based on

previous explanations, we know that sets that have a large overlap similarity

are more likely to be hashed into same index buckets using MH-ALSH. So we

can use those indexes to retrieve similar sets, which is extremely useful when

we do the set expansion.

To do so, the first step is to get the MinHash signature of the query set.

Then, use the MH-ALSH hashing mechanism to hash it into some buckets and

retrieve the other sets in those buckets that are the relevant to the query set.

After the similar sets are retrieved, we can use the merge and rank methods
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(discussed in Chapter 3.2 to do a set expansion. The complete algorithm is in

Algorithm 4.

Algorithm 4 Set Expansion Using MH-ALSH Index

Input: Query set: Q set={element1, element2, ..., elementM}
Output: Expanded set: E set={element1, element2, ..., elementN}, N ≥ M
Require: Dataset: D={set:elements}; index: DMH−ALSH = {bucket:sets}.
Steps:

1: Calculate indexes for the query set:
2: Sig Q ← MinHash signature of the query set Q set
3: bucket IDs ← locality hashing Sig Q to different buckets
4: Initialize posting list P = {}, expanded set E set = {}
5: Retrieve all relevant set IDs into P :
6: for b in bucket IDs:
7: sets ← DMH−ALSH .get(b)
8: P ← merge(sets, P)
9: Retrieve all the relevant elements into E set :
10: for s in P :
11: elements ← D.get(s)
12: E set ← merge(elements, E set)
13: sort(E set)
14: Return E set

The cost of a MH-ALSH based set expansion is similar to that of an inverted

index. Let us take the cost of rank by frequency count as an example. The

cost is

C = O(P + Pµ+ Pµ ∗ logPµ).

However, the posting list size P here is different. It is not dataset dependent

anymore, which means we can control the range of P by tuning the hashing

parameters. As discussed in Section 3.3, an inverted index based set expansion

suffers when the distribution of the elements is skewed which leads to long

posting lists. In a MH-ALSH based set expansion, we can tune the hashing

parameters (such as b and r) to adjust the collision similarity threshold, only

allowing sets with high similarity to be hashed in a same bucket, so that each

bucket will not have too many sets to cause the long posting lists problem.

With a controlled size of P , an MH-ALSH based set expansion is expected to

have a faster query response time than an inverted index based approach.

The fundamental difference between the inverted index based method and

26



MH-ALSH based method is that inverted index returns all the overlapped sets,

including sets that have only one element in common with the query set, while

the similarity threshold for set collisions can be controlled in MH-ALSH.
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Chapter 5

Top-k Retrieval

Sometimes we want to fix or bound the size of an expanded set. In particular,

given a ranking of the results, we may want to only return the top k results.

A naive way of implementing a top-k retrieval is to do a full set expansion first

and to return only the first k results. For a full set expansion, our algorithms

from the previous chapters can be used. This is clearly a waste of computing

resources since we are computing results which may not be used. An alterna-

tive method is to do a set expansion while keeping the size of the expanded

result not surpass k. The second method is expected to be more efficient (both

in time and space costs) than the naive one since it does not need to build a

complete expended set beforehand. This chapter focuses on efficient top-k set

expansion.

There are a number of top-k algorithms in the literature (e.g. [Ilyas et al.,

2008, Yan et al., 2009]) that can be used. A major data structure being used

is a priority queue (or a min-heap), which is a very efficient data structure for

maintaining a ranked list dynamically [Knuth, 1968]. The advantage of using

a fixed size priority queue is that it can constrain the cost of retrieving top-k

under a k factor.

To be specific, if we are sorting the whole list to get the top-k elements,

the cost would be in the scale of O(nlogn), where n is the length of the list.

However, when using a priority queue, we only need to do a linear scan of

the list and maintain the top-k candidates in the priority queue. The cost for

maintaining a priority queue is O(logk). As a result, the total cost is reduced
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from O(nlogn) to O(nlogk). Most of the time, k is much less than n. So we

have reduced the cost a lot.

Algorithm 5 describes how we can use a priority queue to build the top-k

results without constructing a complete expended set. The first phase (Steps 1

to 9) is still to retrieve the relevant set IDs from the posting lists as the same

with the set expansion algorithms. The second phase (Steps 10 to 19) is

to fetch and accumulate set elements from those set IDs. After we get the

elements, we can use a fixed size priority queue to collect the top k elements

for the expanded set. The cost of this algorithm becomes:

C = O(P + Pµ+ Pµ ∗ logk).
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Algorithm 5 Top-k retrieving

Input: Query set: Q set={element1, element2, ..., elementM}
Output: Top-k expanded set: Top set={element1, element2, ..., elementK}
Require: Dataset: D={set:elements}; index: DInverted = {element:sets}.
Steps:

1: Initialize posting list P={} as a hash table to count the frequency of sets
2: Retrieve all relevant set IDs into P :
3: for e in Q set:
4: p ← DInverted.get(e)
5: for s in p:
6: if s in P :
7: P [s ]++
8: else:
9: P [s ] = 1
10: Initialize E set={} as a hash table to count the frequency of elements
11: Expand the set into a larger set size of k :
12: for s in P :
13: elements ← D.get(s)
14: weight = P [s ]
15: for e in elements:
16: if e in E set :
17: E set [e] += weight
18: else:
19: E set [e] = weight
20: Initialize a priority queue PQ size of k to store the top-k elements
21: for key, value in E set :
22: put key, value into PQ
23: Top set ← elements that remain in the PQ
24: Return Top set

30



Chapter 6

Experiments and Discussions

In this chapter, we report our experimental evaluations of the performance of

our algorithms, including the running time and the accuracy of the results.

6.1 Dataset

For our experiments in this thesis, we use a set of lists collected from the

Web. More specifically, we extract all tables from Wikipedia and treat each

column of a table as a set based on the observation that each column has a

domain and the values are drawn from that domain or set; see Figure 6.1 for

an example of table on the Wikipedia website. In this table, we can extract

sets like {Steve Nash, Kobe Bryant, Tracy McGrady, Tim Duncan, Yao Ming}

and {Phoenix Suns, Los Angeles Lakers, Houston Rockets, San Antonio Spurs,

Houston Rockets} etc.

Our preliminary experiments reveal that these sets are highly useful for

set expansion tasks; for example, the sets are very diverse and have rich infor-

mation that cover most domains of interest. On the other hand, the data is

inherently noisy and we need to do some filtering to clean it.

In particular, we remove any set that has less than three distinct elements

and sets that consist of all numbers, since those small and numerical sets is

not very useful for set expansion tasks. We remove duplicates in each column

to reduce a list into a pure set. We also delete a few frequent keywords such as

unknown, tba, total. After those cleanings, we obtain 1,707,913 sets, with the

average set size 11, minimum size 3, and maximum size 3,823. The standard
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Figure 6.1: A sample table on the Wikipedia

deviation of the set size is 23. We invert the sets, obtaining for each element a

list of set IDs where the element is listed in. As for the posting list statistics,

the average posting list size is 3, minimum is 1, maximum is 27,959 and the

standard deviation of the size is 46.

6.2 Experiment settings

We ran all the experiments on a Linux machine with 16 AMD CPU cores, 2300

MHz each core, and 96GB RAM, running Ubuntu 12.04 LTS. The methods

were all implemented in Python 2.7. We evaluate the different schemes on the
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actual task of retrieving top-ranked elements.

A difficulty in evaluating the accuracy of a set expansion algorithm is the

lack of a publicly available dataset containing query seed sets and ground

truth of the “concept sets”. Therefore, we construct our query sets and their

matching data sets as follows:

First, we get the stats about the posting list size of each element. Then,

we randomly pick elements with the posting list size in the range 3 to 10,000

with the goal of covering the whole spectrum. At last, for each seed element,

we fetch more relevant elements that co-occur in the same set with the seed

element (note that a seed element may appear in many sets, but we only pick

one set as the source set). Those correlated elements build up our query set.

The original set that those elements are derived from is the ground truth of the

expanded set. For example, if we pick “swimming” as a seed element and its

posting list size is around 500. We then randomly pick some other elements

from those sets where “swimming” appears in and add them to the query

set, such as “running” and “cycling”. Then the query set is {“swimming”,

“running”, “cycling”}. We also vary the size of each query seed set from 3 to

20.

6.3 Results

In this section, we present the timing and accuracy performance results of each

set expansion algorithm.

6.3.1 Timing performances for set expansion

As our work focus on offline strategies for online set expansion, one of our

main goals is to make sure online search can response as fast as possible. So

we have done extensive experiments about timing.

From the algorithm complexity analysis in Chapter 3.1.1, we know that

posting list size is the major factor that influence the query response time.

Thus we create an experimental query set by varying the set’s total posting

list sizes. There are one thousand query sets, with each set’s total posting list
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Figure 6.2: Timing of query response for set expansion

size ranging from 3 to 10,000. The reason why we choose the sum of all the

posting list sizes is that it represents the worst case possible when merging the

posting lists. We run the experiments 10 times and record the mean value of

all the running time. The result is shown in Figure 6.2.

We can see that MH-ALSH can nearly maintain a constant response time

for different posting list sizes (MH-ALSH’s timing performances of different

merge and rank methods are very close, so we only present the result of MH-

ALSH using Rank by Frequency Count).

On the other hand, inverted index based methods using Rank by Overlap

Similarity (ROS), Frequency Count (FC) and Frequency-Inverted Frequency

Count (F-IFC), have very different timing performances. The naive one, ROS,

has the best timing performance, since it is quite easy and straightforward,

does not need much computation in the merge and rank steps. But later we

will see that the accuracy performance of ROS is not as good as the others.

Both FC and F-IFC have the long posting list problem, taking much time to

process when the posting list is large. This confirms the cost analysis for FC
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and F-IFC, which is O(P + Pµ + Pµ ∗ logPµ). The computation time grows

linearithmically with the posting list size of the query times the average set

size µ of the dataset. One thing to mention is that, the worst running time

performance in this experiment setting is about 0.45 seconds, which is just

0.25 seconds above the average performance. Although it is not a big absolute

difference, it represents the scalability of the algorithms. When we further

increase the size of the dataset, the gap will become more obvious.

We can see that all the queries are processed within one second, even

though the dataset contains more than one million sets. This is because of

the efficient indexes we have built. While other online set expansion systems,

such as SEAL [Wang and Cohen, 2007], typically take 10 ∼ 20 seconds for one

single query. Since they need to retrieve relevant documents first, then fetch

elements from the documents on the fly. This response time difference is the

biggest advantage for the corpus based offline strategies over the Web based

online strategies.

6.3.2 Timing performances for top-k retrieval

The experimental results for top-k are shown in Figure 6.3. As a baseline

for comparison, we have also plotted the case where all relevant results (and

not just top k) is returned. We can see that if k is set to a small value, the

processing time is very fast. This will not happen if we use the first kind of

top-k retrieval method discussed in Chapter 5, which needs to construct the

complete ranked expended set first.

6.3.3 Accuracy performances for merge and rank meth-

ods

In order to evaluate the accuracy performance of different merge and rank

methods, we measure the top-100 precision and recall using the ground truth

sets we have created in Chapter 6.2. The result is presented in Figure 6.4.

We can see that both FC and F-IFC are much better than the naive ranking

method. This result confirms our hypothesis in Chapter 3.2.2, that taking the

element’s co-occurrence statistics into consideration tends to get more accurate

35



Figure 6.3: Timing for different k in top-k retrieval

results.

We can also find that the performance of FC is a little better than the F-

IFC’s. This may be that the term frequency and inversed document frequency

weight is more appropriate in the documents context, where each term can

appear multiple times in the documents, so the TF and IDF weights are more

representative of the terms. While in the context of sets, the term TF is

less meaningful because an element can exist at most once in a set and the

maximum frequency of an element in a set is fixed at 1/(size of the set).

6.3.4 MH-ALSH v.s. LSH

In LSH functions families, the main parameters are the number of hashing

functions for the pseudo permutations and how we divide a signature into

b bands. By varying the number of hashing functions and the banding pa-

rameters b and r, we can adjust the similarity threshold in the S-curve of the

collision probability [Leskovec et al., 2014]. To be specific, we vary the number
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Figure 6.4: Top-100 retrieving precision and recall for different merge and rank
methods. Higher precision at a given recall is better
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Figure 6.5: Top-100 retrieving precision and recall for MH-ALSH and LSH

of hashing functions from 30 to 120. In each setting, we adjust the parameters

b and r to make sure the similarity threshold remains the same.

Figure 6.5 shows the performance (in terms of precision and recall) of MH-

ALSH and LSH set expansion using Rank by Frequency Count (FC achieves

the best accuracy performance in both cases). We can see that MH-ALSH

is far more accurate than traditional LSH, which confirms the asymmetric

modification for LSH does work better in set expansion contexts; and, with

an increase in the number of hashing functions, the MH-ALSH performance

can be improved further. This is because the longer the MinHash signature is,

the more representative it stands for the original set. Of course, more hashing

functions means the size of the indexes will increase, and the running time

may also be affected.
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Figure 6.6: Top-100 retrieving precision and recall for MH-ALSH and Inverted
index

6.3.5 Inverted index v.s. MH-ALSH

In Chapter 6.3.1, we have compared the timing performance of inverted in-

dex and MH-ALSH based set expansion systems. Now we want to show the

accuracy performance comparison of two.

For inverted index, we choose the one with the best performance result

which is achieved from Rank by Frequency Count. As for the MH-ALSH, we

know that the more hashing functions, the better the performance will be. So

we choose two typical parameter settings for comparison. One is MH-ALSH

with 60 hashes, which consumes approximately the same memory space as the

inverted index. Another one is MH-ALSH with 120 hashes, which takes twice

as much memory as the inverted index. The result is shown in Figure 6.6.

From Figure 6.6, we can learn that the performance of MH-ALSH and

inverted index are very close when they have the same amount of memory.

However, when given more memory, MH-ALSH can have better accuracy per-
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formance.
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Chapter 7

Conclusions and Future Work

In this thesis, we have presented two efficient offline strategies for online set

expansion, inverted index based and MH-ALSH based. Both of them have

their own strengths and weaknesses. Inverted index based methods have a

long latency when the post lists are very long, while MH-ALSH does not have

this problem. On the other hand, inverted index is quite easy to setup for

any datasets, while MH-ALSH needs carefully tuned parameters to achieve

the best performance.

To our best knowledge, this is the first work on efficient set expansion for

large data set collections. We evaluated our methods on real sets extracted

from Wikipedia tables, which consists of near two million sets. Our proposed

methods can also be extended to even larger scale datasets by incorporating

more data sources, which could produce a set expansion system with huge

potential applications.

7.1 Future work

After we use inverted index or MH-ALSH to retrieve relevant sets, there are

still many potential ways to merge the sets and rank all the elements based

on some scoring metrics. We have tried frequency count as our main merge

and rank function. Integrating other rank and aggregation functions such as

random walk is a possible future direction.

To further speedup the query response time, using some parallel processing

techniques is also a promising direction to explore.
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7.2 Future applications

Set expansion systems are of practical importance and can be used in various

applications. For instance, web search engines may use the set expansion

tools to create a comprehensive entity repository (for, say, brand names of

each product category), in order to deliver better results to entity-oriented

queries [He and Xin, 2011].

Another application for set expansion is recommendation systems. If we

treat the few preferred products of a user as seed set, then set expansion

may be used to find other potential products that may also meet the user’s

preference. In this context, the preferred products of every user makes a set

which can be used in a set expansion.
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