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Abstract

Two finite clements are presented here to study low frequency duct acoustics; a
quadratic one-dimensional element and a linear isoparametric three-dimensional elernent.
With the goal of developing simnle finite element methods for the acoustics engineer, the
computer programs developed «.. .implemented on desktop computers.

The one-dimensional element was devel.ped to study plane wave acoustics in
rigid and flexible walled ducts with stationary flow. Its accuracy was tested by
determining the natural frequencies of a standing wave in a rigid closed tube and a
flexible walled tube with mass and stiffness controlled flexible walls. Very few elements
were nceded to caiculate the sixth natural frequency with significant accuracy. To
demonstrate the usefulness of the element in approximating various one-dimensional
systems, sudden and gradual area changes, expansion chambers, Helmholtz resonators,
sidebranches, junctions and curved pipe sections were all modelled using the element.
These systems could all be accurately modeiled by the element as long as the system was
purely one-dimensional; offset systems and junctions with angle dependent sidebranches
could not be modelled using this element.

A linear isoparametric three-dimensional clement was formulated with the
specific purpose of analysing plane wave, dipole and quadrupole mode propagation and
attenuation in ducts using the procedure of chain assembling the elements in the axial
direction. Mode cut-off frequencies could be predicted with an accuracy of 10.27%
because of the linear approximation in the transverse direction of the duct. A linear
isoparametric two-dimensional surface element was coupled to the three-dimensional
clement to allow the approximation of mass and stiffness controlled locally reacting
flexible walls.

Sources of aerodynamic sound such as turbulence may represented by equivalent
dipole and quadrupole sources. A hybrid element known as the hypercube was
formulated to model aerodynamic sound sources by constraining the inner faces of the
clement with equivalent dipoles and quadrupoles. Various sound sources in a straight
duct section were considered where it was found that sound propagation was independent
of source configuration if the dimensions of the source were small compared with the
acoustic waveler_th.
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CHAPTER 1
Introduction

Designers of ducted flow equipment such as air conditioning or ventilation
systems and intake and exhaust systems need to consider acoustic behaviour as well as
aerodynamic performance in the design and construction of the duct. These systems
typically incur noise problems due to fans or duct configuration and there is a need to
accurately predict noise generation and propagation within these systems. The sound
field produced by noise sources in the duct system depends upon the geometry of the
system, characteristics of the duct walls (flexible, rigid, lined) and the form of duct
termination. Air flow through the system can also have the added effect of increasing or
decreasing the speed at which sound waves travel through the system. Practical
analytical solutions are only available for duct systems with very simple geometries and
constraints. This leaves the engineer with only gross approximations to use when
designing a duct system. Simple acoustic finite clements may be employed by the
engineer to assist duct system design. Although finite elements are only a form of
approximation, they provide much better accuracy than the rules of thumb available to
the acoustics engineer and they are able to model any complex geometries.

The objective of this thesis was to present simple acoustic finite clements which
could be easily implemented by engineers using current desktop computer technology.
Two finite elements were used in this research; a one-dimensional element with quadratic
pressure variation between nodes and a three-dimensional isoparametric hexahedral
element with linear variations in pressure between nodes. These simple elements are
sufficient to approximate low frequency duct systems, including the quadrupole mode.
All elements and applicable equations are developed using Galerkin's method of
weighted residuals, contrary to the use of variational principles in much of the literature.
The propagation of sound through various duct components is considered for systems of
no flow and low frequencies. Elements are formulated to model systems with both rigid
walls and locally reacting flexible boundaries. As well, the propagation of plane wave
modes and higher order modes up to the quadrupole mode have been considered. The
higher order dipole and quadrupole modes cause bending and torsion in the walls of the
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procedure can rapidly become very exhausting. For complicated non-uniform ducts with
and without flow, numerical methods of solution must be employed.

A brief history of important developments in the use of finite elements to solve
acoustic problems is presented here in a chronological order of development.  This
history is by no means complete but several significant works are presented here with
particular reference to the duct and pipe acoustics discussed in this thesis. These works
are fundamental references for an individual interested in acoustic finite clements.

The earliest research concerning the use of acoustic finite elemenc: was work by
Gladwell [57] in 1965. Energy variational principles were used which lead to the
governing differential equations and boundary conditions. One-dimensional clements
and two-dimensional square elements with cubic polynomial shape functions were
considered, with the acoustic pressure and spatial derivatives as the nodal quantities. A
coupled acoustic system consisting of an air column with piston at one end was modelled
using 3 one-dimensional elements with resulting frequencies within 5% of the exact
frequencies. Standing waves inside a square were approximated using | and 4 two-
dimensional elements. The finite element approximation gave frequencics identical to
those obtained by exact theory.

Craggs [24] used a three-dimensional cuboid element in 1971, with cubic
Hermitian polynomial shape functions and acoustic velocity potential and spatial
derivatives at the nodes. A Ritz variational method was used to formulate the element
and the acoustics of a rectangular room were modelled. The first seven room modes
were predicted to within 0.13% of exact solution using a one element model. This
element is restricted to acoustic systems such as rooms or ducts with corners due (o its
non deformable cuboid shape. Later, Craggs [25, 26] employed simple tetrahedral
elements with linear shape functions and acoustic pressure as the only nodal quantity to
model irregular shaped enclosures. These elements were not as accurate as those used in
earlier work [24, 57], but they did allow flexibility at modelling irregular shapes where
extreme accuraCy was not the governing criterion.

Young and Crocker [98] employed a rectangular cubic Hermitian element to
model two-dimensional rectangular expansion chambers in 1975. Nodal parameters were
the acoustic pressure and its spatial derivatives. Acoustic four-pole parameters were
derived from the finite element models and used to predict the transmission loss of an
expansion chamber with non-reflective impedance (pc) at the ends. A finite element
method for damped acoustic systems was developed by Craggs [27] to model
axisymmetric reactive mufflers using simple, geometrically constrained linear
isoparametric hexahedral :ments with acoustic pressure as the nodal quantity. This



isoparametric form of clement was extremely flexible and could be used to model any
geometry.  The variational approach was used to develop the finite element
approximations for a damped acoustic system, based on the concept of an adjoint system
given earlier by Gladwell |58, 59] and Morse and Ingard [71). This type of formulation
allows a variety of forms of energy dissipation to be modelled and subsequently the work
was continued by Craggs [28, 29] to include mufflers with dissipative liners.

Acoustic transmission in non-uniform ducts, including higher order modes in
connccting straight ducts, was studied by Astley and Eversman (7] using finite elements
with two-dimensional quadrilateral isoparametric formulation and acoustic pressure as
the nodal quantity. The element was formulated using a Galerkin method rather than the
traditional variational approach. Astley and Eversman [10] extended this work to include
the effect of compressible mean flow in non-uniform ducts. The element was formulated
with both acoustic pressure and velocity components as dependent variables and results
of the work suggested that modal interactions are present for mean flow at high mach
numbers.

The acoustic characteristics of duct bends with no flow were considered by
Cabelli and Shepherd [19, 91] using two-dimensional quadratic isoparametric element
models formulated in terms of acoustic pressure. Propagation of higher order cross
modes was investigated and general predictions were made based on the outer and inner
radii of the duct. Later, Cabelli [16] extended this work to include the effects of flow on
the transmission and reflection characteristics of a duct bend. The irrotational
compressible flow solution was obtained using six-noded triangular finite elements with
the stream function and local density as nodal variables. Governing acoustic equations
were approximated with eight-noded quadrilateral isoparametric elements in terms of
velocity potential.

Simple one-dimensional finite elements were used by Craggs [31] to siudy the
acoustic properties of pipe systems with restriction that the transverse dimensions of the
clement be small compared with the wavelength. The element was formulated using a
variational approach with quadratic variation in pressure, the only nodal quantity.
Eigenvalues of a closed tube of unit length were determined with a high degree of
accuracy for only a few elements. Indications were that the element could be easily used
to model pipe systems and pipes containing expansion chambers, the restriction being
that frequencies are small enough so that the wavelength restriction holds, this being the
case in many practical situations.

In the works presented to this point, only plane wave mode propagation has been
considered using simple linear elements. Craggs [32] suggested higher order mode



propagation up to the quadrupole mode for simple finite clement models of duct
networks using linear isoparametric hexahedral finite clements.  The majority of the
work presented in this thesis is an extension of this carlier rescarch by Craggs.

In the earliest acoustics work with finite elements, rectangular elements were used
to model problems with rectangular geometries. Typically, pressure or velocity potential
were the nodal quantities and spatial derivatives were included. Cubic Hermitian
elements were often employed giving very accurate results for restrictive rectangular
geometries. This element was probably a favourite of carly rescarchers. High accuracies
were obtained using only a few elements, no small consideration as computer usage was
probably quite expensive at the time.

Triangular or tetrahedral clements were initially used to model complex
geometries and curved surfaces. The polynomial shape functions for these clements
could be integrated analytically. Later, deformable isoparametric clements were used to
model complex geometries but element integrations must be carried out numerically with
this type of element due to the number of coordinate transformations between global and
local domains.

Variational principles were used extensively in early finite element formulations.
This was fine if an existing energy functional was available for the problem of interest.
Recently, Galerkin's method of weighted residuals has become quite accepted for
formulating acoustic finite elements as it is applicable to a more general problem set than
variational methods; only a governing differential equation is needed for formulation. As
well, it provides solutions identical to those provided by the Ritz variational method, for
problems where an energy functional exists.

A one-dimensional finite element with quadratic pressurc and arca variation is
formulated to approximate the Webster Horn equation by Galerkin's method of weighted
residuals in Chapter 2. Element accuracy is tested by solving the acoustic cigenvalue
problem for a rigid walled closed tube. The approximate equations governing the forced
harmonic motion of a damped acoustic system are developed and then used in
conjunction with a transmission loss expression to model pipe systems. Sudden area
expansions, tapered sections, finite length exponential horns, Helmholtz resonators,
sidebranches and expansion chambers are all considered. Advantages and limitations of
one-dimensicr:zl acoustic theory are explored.

In Chagier 3, an element similar to the one developed in Chapter 2 is formulated
except that the walls of the element are considered to be locally reacting, meaning that
wall moiion is either mass or stiffness controlled. Eigenvalues are determined for a
ciosed tube with mass and stiffness controlled walls and comparison is made with the



rigid walled case to demonstrate the effect of a locally reacting boundary on the natural
frequencics of a system. Included are standing wave pressure distributions at the first
three natural frequencies for a flexible walled open tube with forcing piston.

A three-dimensional lincar isoparametric hexahedral finite element is developed
with pressure as the nodal quantity in Chapter 4. The clement is deformable and is able
to model any geometry. The accuracy of the element is determined for two rigid walled
cases: the eigenvalues are solved for a cylindrical enclosure, the eigenvalues are solved
for a closed, straight duct section. Comparison is made between the one-dimensional
clement presented in Chapter 2 and the three-dimensional element to demonstrate the
limitations of one-dimensional tueory. Higher order modes such as the dipole and
quadrupole modes are considercd which cause bending and twisting of duct sections.
Sound transmission and the cffect of cut-off frequency on the propagation of higher
order modes is demonstrated for various duct geometries including bends, curves and
junctions.

A similar linear isoparas ..ric hexahedral element is presented in Chapter 5, only
that it has been formulated to - lude the effects of locally reacting boundaries that are
cither mass or stiffness controlled. The effects of a locally reacting boundary on the
natural frequencics of a duct section are determined and comparison is made with the
rigid walled case.

In Chapter 6, a hybrid element referred to as the hypercube is introduced which
may be used to represent various dipole and quadrupole sources in ducts. The hypercube
actually consists of seven HEX8 elements assembled to form a "cube within a cube”
configuration. The advantage of this type of element is that it may be connected to a
simple chain assembly of HEX8 elements, thus keeping with the goal of using simple
element configurations to model low frequency duct acoustics. This element may be
especially useful for modelling turbvlent sources in ducts with flow.

Concluding comments an. 2r potential research considerations are included
in Chapter 7.



CHAPTER 2

A Cne-Dimensional Quadratic Finite Element
for Duct Systems

2.1 Introduction

Finite elements are in common use now for studying the acoustic properties of
duct systems. These elements are generally of the three-dimensional variety and may not
be necessary for studying plane wave acoustics at low frequencies (one-dimensional
theory). In this chapter, a simple nne-dimensional quadratic acoustic finite clement (pipe
element) is developed for studying the acoustic propertics of duct systems including
various area discontinuities and branched systems, the only restriction being that the
transverse dimensions of the element be small compared to the acoustic wavelength [71).
There has not been extensive previous research [31, 38, 57] into the application of one-
dimensional acoustic finite elements but as will be shown later in the chapter, there are
many practical, low frequency situations which arise where these clements may be used
quite successfully.

Galerkin's method of weighted residuals is used to formulate the one-dimensional
acoustic finite element discussed here which contrasts previous development of the pipe
element by variational methods [31]. This method and other weighted residual methods
provide an alternative to developing the finite element cquations using Rayleigh-Ritz
variational methods. While Ritz variational methods are commonly used to formulate
finite element equations, they require an existing energy functional, thus limiting their
application to specific problems where the functional is known. Alternatively, Galerkin's
method may be applied to any differential equation, making the method more applicable
to a larger set of problems than variational methods. Also, when Galerkin's method is
applied to a differential equation with an energy functional, the solution is identical to the
Rayleigh-Ritz solution [14].

All formulations presented in this Chapter are based on assumptions of systems
with rigid (hard) walls and no flow. Followirg the goal of developing a simple element
for the acoustics engineer, all transmission loss calculations made with finitc element



models were considered as part of an infinite transmission line (pc erminaunn). Other
complex impedance terminations could be considered but the subsequent complexity was
not warranted in this work. Computations with the pipe element were carried out on a
80386 personal computer using FORTRAN code.

Mathematical development of the Webster Horn equation is considered in the
next section using a control volume formulation. This is followed by development of the
corresponding finite clement equations and eigenvalue testing of the element. The last
sections concern the development of damped equations of motion which are used in
conjunction with a transmission loss equation to model sudden area expansions, tapered
sections, finite length exponential horns, Helmholtz resonators, sidebranches and reactive
cxpansion chambers.

2.2 The Webster Horn Equation

The one-dimensional wave equation may be developed by considering an element
of fluid under pressure which is fixed in space. Equations expressing Newton's second
law of motion, the laws of the conservation of mass and the gas law are established and
then combined to produce the 1-D wave equation.

An infinitesimal element of fluid of length dx, shown in Fig. 2.1, where the
particle velocity, cross-sectional area at any x and fluid density are designated by u, A
and p respectively. If the element is considered as a control volume, mass must be

+8$/x

A+ QA dxXu+Qudx)at
pAuat o g.; X gl,.lt )

——— —— e - — . —— e - ————

Figure 2.1: Infinitesimal Fluid Element of Varying Cross-Sectional Area
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conserved and the mass change within the control volume is related to the inflow and
outtlow of fluid crossing the end taces of the clement. This condition may be written -

)
/{ A +~()—A—(l.\') "+ '()-{‘»(Ix )dt ~pAudt + » Advdr =0, (2D
dx N o

Simplification of Eq. (2.1) yields the lincarized equation of mass conservation.

2t JdA dp
A ~— + P — + A = () 22)
P ax P o (

A linearized form of the momentum cquation is also written as

b o .
-t -5 2.3
r)x p (7! (

and the acoustic pressure may be written as

ap _ ¥p, dp
¥ _TF YP 24
* o a (24

where 7 is the ratio of the specific heats of the fluid. Eq. (2.4) is now substituted into
Eq. (2.2) and the result is differentiated with respect to time.  Thus,

Pu  udA Aﬁ

—t—t

—_ ={). 2.
a3 ox g ot (23)

The momentum equation may be differentiated with respect to x; the result being
substituted into Eq. (2.5).
AQ’_€7+.@B_A_&§TP=(, (2.6)
ox‘ drox yp, o
The local speed of sound is defined as ¢ = Yp,/ p, which is now substituted into Eq.
(2.6), yielding the one-dimensional equation for acoustic waves travelling through a
variable cross-sectional area wave guide at speed c,
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d(,dp) Adp
— A= |~ =), 2.7
t)x[ 3xJ @7)

If only harmonic motion is considered, the acoustic pressure has the form p= pe’”,
where @ is the angular frequency and j is the complex operator. Substituting this into
Eq. (2.7), the time derivative is eliminated thus resulting in the Webster Horn equation
which represents one-dimensional sound waves in a pipe with varying cross-sectional

area

d(,dp 2
ZlaZE = 2.8
Ew (A 3x)+k Ap=0 (2.8)

where & is the wavenumber, o/ c.
2.3 Pipe Element Formulation

A finite element which allows quadratic variation in both pressure and cross-
sectional area throughout its length was chosen to approximate the Webster Horn
equation. A quadratic element was chosen over a linear element as it provides better
accuracy and fewer elements are required to model acoustic systems, increasing
computational efficiency by reducing the pumber of pressure unknowns to be solved.
The element, shown in Fig. 2.2, has three pressure degrees of freedom, at the ends and
midway along the length of the element and will be referred to as the pipe element.

In a finite clement approximation to the Webster Horn equation, pressure and
area may be represented by quadratic interpolation polynomials

\ 2

p=a+bh GJH, G) (2.9)
2

A=g, +b2(§)+cz(ﬂ (2.10)

where a. b and ¢ are constants representing pressures and cross-sectional areas at each
clement node.



Figure 2.2: Quadratic Variable Cross-Section Pipe Element

After substitution of the nodal pressures into Eq. (2.9), the pressure polynomial is written
as

x _x° x o, x x _x
p=pl(1"'3-,—+21—2)+p2(4—[—47]+p3(~7+2—1—2—). (2.11)

Also, Eq. (2.11) may be written in matrix form

p={{{p.}={r.} {s} (2.12)
) 4
{Pe} ={P:
Ps
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where {p,} is the vector containing the nodal acoustic pressures and { f } is the vector

containing the quadratic interpolation polynomials. The superscript T denotes the matrix
has been transposed. In similar fashion, the cross-sectional area may be written as

2

X X x  x° x x
A=Al 1-3~+42= 4=-4— [+ A)| ——+2=
l( l IZJ A'Z( 1 12 3 l 12

A=A +(44,-34 —A,)(%)+(2A, —4A, +2A,)(il‘;-j. (2.13)

Using Galerkin's method of weighted residuals, Eq. (2.12) is substituted into Eq.
(2.8) and the residual, R, is written as [ 14]:

R=-;;(A{f;}’){p,bsz{f}T{p,}. (2.14)

where { £} denotes df / dx. Galerkin's equation is given as
{
[{r}Rax=0 (2.15)
0

and after substitution of the residual into Eq. (2.15), Galerkin's equation can be rewritten

| ({f}a—i(A{ﬁ'}T)w*sz{f}{f}T){p,}dx=0- (2.16)

The first term of Eq. (2.16) contains a matrix which is non-symmetric as the terms are
not of the same order. It is integrated by parts with the result becoming

(Al Ky -l Y Wp e =0 @.17)

© Sy =~

with boundary conditions Adp/dx=0 at x = 0 and x = | implying that there are no
volume source terms present at these locations {31]. The relationship for cross-sectional
area is now substituted into Eq. (2.17) and direct integration of the terms gives the finite
clement approximate equation of motion
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([S1-K* [P p} =10}, (2.18)

where [S] and [P] represent the square, symmetric kinetic and potential encrgy matrices
respectively. These matrices are given as:

(1= (AT Yp b

7 -8 1 3 -4 1 3 -6 3
[S]l=o,|-8 16 -8[+ou|-4 16 -12{+o,|-6 32 -26
1 -8 7 1 -12 11 3 -26 23
-34, - -4A, +2
a‘=§,_’a2=(4Ae , Ag),aﬁ(zA,  +24)
3l 6! 15

j

[P)= [(ALFHfY Kb, }ax

0

4 2 -1 1 0 =1 2 -4 -5

[P]=B|2 16 2[+B,J0 16 4 |+B,|-4 64 24

-1 2 4 -1 4 7 -5 24 44

B =14‘1_l B =(4A2—3A1_A3)1 i =(2Al-4A2+2Ag)I
'3 " 60 P 420

where all matrices have the dimensions 3x 3. 1 is noted that for a pipe of uniform cross-
sectional area (A, = A, = A,), o, &3, B, and B, all have values of zero.

2.3.1 Assembly of Elements

In Eq. (2.18), it is assumed that there are no volume source terms-present
meaning that the boundaries of the element are immobile. In this configiration, the
element cannot be connected to another system. If volume sources Q, and Q, are present

at the ends of the element, the inhomogeneous finite element equation becomes
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[0
((s1-k*(P)p. } = pw?{ 0, }. (2.19)
Q0

The clement assembly procedure is demonstrated by considering two pipe
clements as shown in Fig. 2.3. In this configuration, the elements are unconstrained and
s1ave six pressure unknowns; p,, P2 Pys Ps» Ps and p; with volume sources: Q,, 0, 0.,

0., O, and o,.

P1 P2 P3 P4 PS P6

Figure 2.3: Unconstrained Pipe Elements

The elements may be joined at node 3 as shown in Fig. 2.4, and two conditions must be
satisfied: p, =p, = py and pw’Q, +pw’Q, =0. There are no external volume sonrce

terms introduced at the connection node as implied by the second equation shown above.

Figure 2.4: Global System of Connected Pipe Elements

The two element system with six degrees of freedom has now become a global system
with five degrees of freedom with corresponding finite element equation given as

([s°]-[P°{p°} = perr{ge}. 2.20)

with corresponding global kinetic and potential energy matrices
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Individual element matrices can be assembled into a global system by overlaying them at
the connecting nodes as demonstrated above. Many elements may be linked together
using this procedure. It is common for the elements to be assembled together chain-like
to form a system in one direction but the elements can also be connected to form
branched systems as well.

23.2 Continuity BE:tween Elements

A sufficient condition for the convergence of a finite element approximation is
that continuity and completeness criteria [14] are satisfied. The continuity condition
states that for second order differential equations such as the Webster Horn equation,
only the dependent variable must be continuous across element boundaries. It is
therefore sufficient to use a C° element (an element where only the dependent variable is
continuous across element boundaries) in the finite element approximation as slope
continuity is not required at the element boundaries. Only pressure continuity is required
at the element boundaries. Completeness states that at least a linear polynomial should
be used as a shape function when modelling a second order differential equation. The
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use of a quadratic polynomial satisfies this criterion. Both continunity and completeness
have been satisfied in this finite element approximation assuring solution convergence. It
should be noted that clements with both dependent variable and slope continuity (C')
require fewer degrees of freedom upon assembly.

24 Element Testing: The Eigenvalue Problem

The accuracy of the pipe element was tested by predicting the natural frequencies
of a closed tube with rigid walls containing a stationary medium. This test has been
administered before with this element [31], but the results given here are a reassurance of

the accuracy and convergence of the element. If the pressure perturbation modes in the x
direction have the form [44]

nnx .
p= Acos—l——sm w?,

then an exact solution for the eigenvalues, or natural frequencies, of Eq. (2.8) are given

a5
2 2
(“’") =u2(ﬁ) , 2.21)
c 1

where [ is the length of the section and n is any integer denoting the mode number.

2.4.1 Finite Element Models

Finite element models with 5, 9 and 13 pipe elements were used to approximate
the eigenvalues of a closed tube with a length of unity and cross-sectional area of 0.1 m2.
A model consisting of 5 elements is shown in Fig. 2.5 and is representative of the other
finite clement models. It has 11 pressure nodes or 11 degrees of freedom (DOF).
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Figure 2.5: 5 Element Model of a Closed Tube

The exact eigenvalues of Eq. (2.22) and the cigenvaluc approximations from the
corresponding finite element models are show/n in Table 2.1.

Results presented in Tables 2.1 and 2.2 demonstrate that a system of pipe
elements is extremely accurate, ~ven when only a few elements are used. The 5 element
model with 11 DOF was accurate for the lower natural frequencies with a prediction
error of 0.3% for the second natural frequency. The 9 element model with 19 DOF was
quite accurate for the six modes presented here with a prediction error of 2.2% for the
sixth natural frequency. A model with 13 elements and 27 DOF provided very accurate
approximations to the first six natural frequencies hav_.:g a prediction error of only 0.6%
for the sixth natural frequency.

A Jacobi method eigenvalue routine [11, 82] was implemented in the finite
element code for the eigenvalue approximations. This method will always provide
absolute convergence to the eigenvalue solutions for real, symmetric matrices. The
method is not as computationally efficient as some other eigenvalue routines but for the
relatively small number of DOF in the finite element models presented here,
computational times were acceptable. A complete listing of the Jacobi method and
corresponding FORTRAN source code is given in the Appendix.



Table 2.1: Eigenvalues of a Closed Tube of Unit Length

Mode Exact 5 9 13
Number, n | Eigenvalues | Elements Elements Elements
I 9.87 9.87 9.87 9.87
2 39.48 39.60 39.49 39.48
3 88.83 90.15 88.97 88.86
4 157.91 164.46 158.67 158.10
5 246.74 300.00 249.50 247.42
6 355.31 433.17 363.09 357.28
Table 2.2: Eigenvalue Model Prediction Errors
Mode 5 Elements | 9 Elements | 13 Elements
Number, n % Erfoi % Error % Error

1 0.0 0.0 0.0

2 0.3 0.03 0.0

3 1.5 0.2 0.03

4 4.2 0.5 0.1

5 21.6 1.1 0.3

6 219 2.2 0.6
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2.5 Application of the Pipe Element to Sound Transmission

The transmission of sound energy in a duct can be reduced by absorbing part of
the incident energy inside the duct using some sort of absorptive material. If the sound
energy arrives at a discontinuity, some energy reflects back towards the source while a
fraction of the sound energy will flow past the discontinuity. Reflective filters are most
effective at low frequencies while absorptive filters arc most effective at higher
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frequencies. The pipe element provides valid approximations only at the lower
frequencies where only plane waves exist in the system. For this reason, only reflective
systems will be modelled using the pipe element in this section.

Two common techniques are used to determine sound energy reduction in an
acoustic system. The insertion loss technique compares the sound pressure levels at a
specified point with and without filters present in the system while transmission loss
(T.L.) gives the relationship between the energy in the incident wave at an inlet location
and the transmitted wave at an outlet location. In much of the literature, a variety of
reflective filters have been tested experimentally with much of the results presented in
terms of T.L. In this section, many of these filters are modelled with the pipe element to
demonstrate its diversity using T.L. calculations over a plane wave frequency range
allowing easy comparison with the experimental T.L. results presented in the literature.

The T.L. equations are developed for a damped acoustic system and are
implemented into the finite element equations in the following sections. Many reflective
filters are modelled with the pipe element using T.L. calculations, demonstraung the
application of the pipe element for approximating one-dimensional acoustic systems.

2.5.1 Transmission Loss of Damped Acoustic Systems

The approximate equations governing the forced harmonic motion of a damped
acoustic system are developed using Galerkin's method of weighted residuals. A
variational approach for studying damped vibration problems has been presented
previously [59, 60, 71] based on the concept of an adjoint energy system which absorbs
energy dissipated from the original system. An adjoint energy system neced not be
considered when developing the governing equations of motion using Galerkin's method
but the resulting equations are identical to those developed using the variational approach
and the adjoint energy system.

When damping exists in an acoustic system, both phase and amplitude are needed
to completely describe the response. This has the effect of doubling the number of
equations required to specify the response compared to the undamped case. Consider the

one-dimensional enclosure shown in Fig. 2.6. The enclosure has velocity distribution
u=U coswr over surface A, at x, and reactive admittance {=U/ p over A, al x,.
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Figure 2.6: One-Dimensional Acoustic Enclosure
If there is no energy dissipation in the system, the approximate equations of motion may
be obtained by applying Galerkin's method to the Webster Horn equation, Eq. (2.8),

together with boundary conditions dp/ dx = jpwlU on X, dp/ dx=~jpwlp on x,. The
acoustic pressure may be represented by the following general approximation

p=[NT{p.}. (2.22)

where [N] is a matrix containing the trial solutions, { p.} is a vector containing the nodal

acoustic pressures and the superscript T denotes the transpose operation. Following
Galerkin's method described earlier, Eq. (2.22) is substituted into Eq. (2.8) and the
residual, R, is written as

d ,
R==(A[N:T o, b+ RAINT {p,}. (2.23)
where [N!] denotes IV / dx. Galerkin's equation is now written as

J(N]Rdx =0 (2.24)

and upon substitution of Eq. (2.23) into Galerkin's equation, the result becomes

J(1 52 A )TN i, ae=o. @25
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The first term of Ej. (2.25) is integrated by parts and the boundary conditions are
introduced, the resuit being the approximate governing equation of motion

JAININT {p. Yax =& [ AINYINY {p, e~ (V1A (N2 ()

=0. (2.26)

Yy 0'!:

Introduction of the real and imaginary parts of the response  pressure,
p=(p, +jp,)e’™; velocity, U=(U, +jU )e'*; and adminance. C=(Z +4¢)e’™ into
Eq. (2.26) leads to a new equation of motion which describes the system

(K, +ilsHpd -6 (P p, }- K (PY . } - jpwU, [[NYdx, +

paU, [[(N)dx, + jpat, [[NINT {p, bz, - pat, [[NYINY {p, bix, - (2.27)

2

~po, [[NINT {p, b, - jout, [ININY {p,}ux, =0

*2

where the subscripts 7 and i denote the real and imaginary parts and J s the complex
operator. As before, [S] and [P] represent the square, symmetric kinctic and potential

energy matrices respectively. Collecting the real terms of Eq. (2.27), the resulting
equation is of the form

(51~ [P)-pefC,Hp. } -pulC. ){p.} ={0.}. (2.28)
Likewise, collecting the imaginary terms of Eq. (2.27) results in an equation of the form
([s1-#[P1-pefC ) p.}+palC Kp, } = {0} (2.29)

If the real and imaginary response pressure vectors, {P,} and { p,}. contain the input
pressures p', the internal pressures p°® and the output pressures p?, then the response
pressure vectors may be written as

p p!
{p.}=4p1 {p}=4{P’}.
2

p’ p;
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the matrices [C, | and [C,] are given by
00 0 00 0
[C]=]0 0o o | [c]=[o 0o o |

0 0 (D, 0 0 ¢D,

and the real and imaginary source vectors, {Q,} and {Q } are

-D,U, +D,U,
{0}=pay 0 } {0}=pal o
0 0

Here D, is a coupling matrix linking the nodal pressures at the input boundary; similarly,
D,, is a coupling matrix linking the nodal pressures at the output boundary. As a matter
of convenience, Eq. (2.28) and Eq. (2.29) are combined into single matrix form

[$]-k*[P]-paC] -pa[C,] Jp, _[e
[ +pa[C]  [S]-K[P]-palC)] {,,} {Q} (230

It is worth noting that all terms in Eq. (2.30) are rea! quantities and for a given source,
standard algorithms such as Gauss elimination or LU decomposition and back
substitution may be employed to solve the system of simultaneous linear equations. A
complete description of the LU method and corresponding FORTRAN source code is
given in the Appendix.

The study of transmission loss is an ideal concept for analyzing the acoustic
behaviour of various systems. Transmission loss is defined as the ratio, in decibels (dB),
of the power of an incident acoustic wave to the power of a transmitted acoustic wave
thus giving an indication of the pressure losses for a particular acoustic system. It is
therefore an ideal quantity for analytical computations; the transmission loss equations
are developed from Eq. (2.30). Consider the reactive muffler element shown in Fig. 2.7.
The usual assumptions regarding the transmission loss calculations for the muffler
element are 25 follows: the muffler element is inserted into an infinite transmission line
(pc termination), the system is excited by plane progressive wave input and there are no
reflections of the transmitted and reflected waves because of the previous assumption.
At the muffler input, a plane wave, p*e’®, provides system excitation and the wave
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reflected back by the mutfler is given by pe’™. The wave transmitted down ghe line
from the muffler is givcn hy P,"’j“"-

p-ej(unu) }
* e ——_—
p e ut-uy)
p+ej(ut-h|) Muffler Element -

J‘\——-_‘
e —————

Figure 2.7: Reactive Muffler Model for Transmission Loss Calculationg

Total acoustic pressure at the muffler input is p = (p’ +p )e"‘"; the particle vejocity on
the muffler input surface is U =(1/pc)(p* — p~)e’™ ; the normal acoustic admiyance is
taken as entirely real and is given by { =1/pc. System exCitation is Provi ded by &
velocity source given by the incident pressure wave p*1pc (assumed Cntirely real).
Therefore, the real and imaginary velocity vectors are U, = p' /pc—p;/ pc and
U= p; /pc respectively. These quantities may be substituted into Eq. (2.30) resulting

in a new set of equations. The Iesponse vectors are now given as

P +p; P! +p;
{pl=y 21 Linl={ »* |
p; P

and the source vectors have now become

D,p; D, (p:-p;)
{0}=k{ 0 L {0}=k{ o0
0 0

In this form, the unknown quantities, p™, are on the right-hand side of Eq. (2.30) and the
known quantities, p*, are on the left. For convenience, Eq. (2.30) is rearrangeq so that
only unknown quantities are present on the left side
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[S]-4'[P] -pa[C]] HP? } _ {Qr' } @2.31)

+polC] [S1-E[P))|p:) " |@

The pressure vectors can now be written as

p; p;
{pt={pt {n}={pt
! P

the matrix [C,’ ] is given as

(1/pc)D,, 0 0
[C]=] o o o |
0 0 (1/pc)D,

and the source vectors are now written as
0 =-([s"]-#*[P")p;,

kD, p;
o=1 o0 |
0

where the matrix ([S’]-kl[P’]) represents columns of ([S]-*[P]) corresponding to the

input nodes.
For a system in which the incident pressure vector has values of unity, the
transmission loss at the output nodes may be calculated from the following equation

T.L.=-10log,,(p? + p?). (2.32)

If inlet and outlet cross-sectional ureas are not equivalent, Eq. (2.32) must be modified as
follows

T.L=-10 logw((p,2 +p‘°)§‘-’—] (2.33)
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to allow for the difference in cross-sectional areas. Here A, is the outlet cross-sectional
area and A, is the inlet cross-sectional area.

2.5.2 Sudden Area Changes

This section considers the situation in waich the cross-sectional area of the pipe
abruptly changes as shown in Fig. 2.8. A transmitted wave travels down the pipe while
another wave is reflected back from the discontinuity towards the source. The boundary
conditions of pressure continuity and mass conservation are satisfied at the discontinuity.

S1

Figure 2.8: Abrupt Area Change in a Pipe

Since some sound is reflected at the discontinuity and not all the sound power is
transmitted, the transmission loss equation for the case of a sudden area change in a pipe
[44] is given as

(5,+5,)’
L=1 . 34
T.L Olog,o( 55 (2.34)

1

The transmission loss is symmetric in S, and S,, meaning the transmission loss is the
same whether the sound is incident at S, or §,. It is assumed that the transmitted and
reflected waves are plane waves but in the immediate region of the discontinuity, there is
a departure of the plane wave front. In practice, this condition is not of great concern
and transmission loss values calculated with Eq. (2.34) are satisfactory [37].
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A sudden change in pipe cross-sectional area can be easily represented by the pipe
element. Consider the finite element mesh shown in Fig. 2.9. The mesh consists of 10
pipe clements with 21 DOF. This model was assumed t0 be part of an infinite
transmission line and a plane wave with incident pressure values of unity was input form
the left at S,. Application of this condition to Eq. (2.31) involves replacing the coupling
matrices D), and D,, with the respective input and output cross-sectional areas for the
chamber. A plane wave with incident pressure values of unity was input into the
chamber, allowing the use of Eq. (2.33) for the calculation of transmission loss values.
The cross-sectional areas were 0.001 m? and 0.01 m? respectively.

Figure 2.9: Finite Element Mesh for Sudden Cross-Sectional Area Change in a Pipe
(10 element model)

Approximate transmission loss values were calculated with Eq. (2.33) up to a frequency
of 500 Hz. These values compare well with the exact transmission loss value of 4.8073
dB calculated with Eq. (2.34) as shown in Fig. 2.10.
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Figure 2.10: Exact and Approximate T.L. Values for a Sudden Areca Change

The approximate transmission loss values determined with the pipe element are very
accurate at the lower frequencies and even in the region around 400 Hz, the transmission
loss values differ from the exact value by only 0.05%. At higher frequencics, the error
increases because the one-dimensional model does not allow for transverse wave motion.
A simple area change can reduce sound transmission in a pipe but most effective
reflective filters make use of more than one area change.

2.5.3 Gradual Area Changes

The pipe element has been formulated to model one-dimensional systems with
varying cross-sectional areas and is particularly useful for approximating systems with
tapered and exponential horn shaped sections. Consider the tapered section shown in
Fig. 2.11 of section length / with cross-sectional areas S, and §,. This section is easily
modelled with a mesh of pipe elements as shown in Fig. 2.12. The mesh consists of 10
elements in the tapered region and 2 elements each in the inlet and outlet regions of the
section with a combined total of 29 DOF. The length of the tapered region was 0.5 m
with an inlet cross-sectional area of 0.01 m? and expansion ratios of 25 and 50. For the
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transmission loss calculations, the model was assumed to be part of an infinite
transmission line.

1 S2

Figure 2.12: Finite Element Mesh for a Gradual Area Change in a Pipe (14 element
model)

Calculated transmission loss values up to 500 Hz for the two expansion ratios are

presented in Fig. 2.13 and are in exact agreement with measured T.L. values for a similar
system [13].
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Figure 2.13: T.L. Values For Gradual Area Changes of Various Expansion Ratios

Exponential horns may also be modelled with a system of pipe ciements. Due to
the complexities of the mouth and throat impedances for exponential horns, the results
presented here consider the horn to be a part of an infinite transmission line as an
exponential connector, allowing a pc termination (infinite transmission line) to be
applied at the mouth and throat of the horn. This restriction allows the transmission loss
values of the horn to be compared with a tapered section of similar dimensions.

Consider the exponential horn shown in Fig. 2.14. The cross-sectional area at the
mouth of the horn is denoted by §, with corresponding throat cross-sectional area
denoted by S,. The length of the horn region is denoted by 1.



30

Figure 2.14: Exponential Horn Section

The cross-sectional area of the exponential horn is governed by the following equation:

§=Se (2.35)

where o is the flare constant of the horn and x is the distance from the throat. If the
length of the horn is less than 1/4 wavelength, it may be treated as an area discontinuity
[13] and thus may be modelled by finite elements using the pc termination. A finite
element model of an exponential connector is shown in Fig. 2.15. The model consists of
14 pipe elements with 29 DOF. The length of the horn was 0.5 m with throat cross-
sectional area 0.01 m? and mouth cross-sectional area 0.2 m2. The flare constant was
5.99465 m-!.

Figure 2.15: Finite Element Mesh for an Exponential Connector (14 element model)
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Transmission loss values are presented in Fig. 2.16 for an exponential connector and a
tapered region of similar dimensions. Examination of the results shows that for lower
frequencies, the exponential connector does indced behave as a simple area discontinuity.
At about 170 Hz, this approximation does not apply and the T.L. values begin to differ
due to the pc termination used in the finite element approximation. At very high
frequencies, the mouth impedance becomes resistive again and is approximately equal to
that of a plane wave in a tube (pc termination).

10 T L T T T T T T T

—~—— Taper
-—- Exp. Horn

Transmission Loss (dB)

~ P
0 1 L 1. 1 L s g dw— 1

0 S0 100 150 200 250 300 350 400 450 500
Frequency (Hz)

Figure 2.16: T.L. Comparison Between Exp. Horn and Tapered Section

As demonstrated above, tapered sections and exponentiai horn sections can be
successfully modelled with the pipe element. For the exponential horn, impedance terms
can become very complicated and vary with frequency. Therefore, the selected case of
an exponential connector was modelled because it allowed the use of the prescribed
infinite transmission line assumption.
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25.4 Helmholtz Resonators

A Helmholtz resonator, or commonly referred to as the volume resonator,
climinates an undesired frequency component from an acoustic system. It is depicted in
Fig. 2.17. Resonator volume is represented by V, the cross-sectional area and length of
the neck are represented by A and / respectively, S denotes the cross-sectional area of the
duct and P, F,, F, denote the incident, reflected and transmitted pressure waves.

it S

At
é ‘ %
~-———— Pr
S ) — Pt
f — e P

Figure 2.17: Helmholtz Resonator

The resonator behaves like a spring-mass system where the neck of the chamber
behaves like a mass and the chamber volume behaves like a spring. A pressure wave is
incident upon the resonator, the mass of fluid in the neck is forced, causing the chamber
volume to oscillate. Some of the energy of the incident pressure wave is absorbed while
the remaining energy either reflects back. towards the source or transmits down the duct.
The equation which describes the spring-mass behaviour of the neck and volume of the
resonator has the form of a harmonic oscillator

c’A

i+ 54 120 2.36
W (2.36)

where c is the speed of sound. Subsequently, the frequency of the resonator (Hz) can be
written as

f=—|= (3.37)
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and the wavelength of the pressure wave is assumed to be larger than the dimensions of
the resonator. Also, in most practical situations, there is an end effect on the effective
mass length of the neck which must be considered. At the resonator frequency,
transmission loss is infinite [37] which is an ideal situation to be modelled by a mesh of
pipe elements.

A pipe element mesh representing a Helmholtz resonator and duct section is
shown in Fig. 2.18. The mesh consists of 15 pipe elements with 33 DOF. The duct
section is part of an infinite transmission line with a cross-sectional a=ca of 0.01 m?2.
Resonator volume was 0.006 m?, neck length was 0.05 m with a cross-sectional area of
0.005 m2.

Notice that the pipe element may be assembled to model junctions such as the
location where the resonator neck is connected to the duct. At this junction, the pressure
is a simple scalar quantity so it does not accurately represent acoustic pressure at this
point. One such case is when the junction is connected to the duct at a specific angle
other than 90°; this is not taken into account by a mesh of pipe clements. This will be
explained in detail in Chapter 4.

e 90 ¢

b o

Figure 2.18: Finite Element Mesh for a Helmholiz Resonator (15 element model)

Transmission loss values are presented in Fig. 2.19 for the Helmholtz resonator of
consideration. Examination of the results shows that T.L. becomes infinite at a
frequency of 205 Hz which compares well to the actual transmission loss value of 210 Hz
calculated with Eq. (3.37). Discrepancy between the values is likely due 1o the sampling
frequency interval of 5 Hz used in the finite element calculations.

A simple Helmholtz resonator can be successfully modelled using the pipe
element. The fine element mesh presented in Fig. 2.18 is generally unnecessary for most
practical purposes; only in regions where discontinuities are present should the element
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mesh be fine. Three-dimensional elements are needed to model resonators with more
complicated configurations.
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Figure 2.19: T.L. Values for a Helmholtz Resonator

2.5.5 Sidebranch Resonator

Just as the pipe element was able to model a Helmholtz resonator, it also can be
used to model a sidebranch resonator such as the one shown in Fig. 2.20. A sidebranch
resonator eliminates sound propagation at very narrow frequencies for particular intervals
and serves a similar function as the Helmholtz resonator described earlier. Notation is
similar to that used for the Helmholtz resonator except here / is the length of the
sidebranch and 5, is the branch pressure.
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Figure 2.20: Closed-Tube Sidebranch Resonator
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The impedance relationship for the sidebranch has the form [96]

Ccoskl

Z, = jpc
v =Pkl

(3.38)

which becomes zero when kl =nx/2 (n=1,2,3,...). Therefore, the sidebranch length can
be determined for maximum T.L. using the quarter wavelength formula I =nc/4f for a
particular frequency. The cross-sectional area of the sidebranch is irrelevant pertainirg
to T.L., only the length of the branch is important.

A finite element mesh representing a closed-tube sidebranch resonator is shown
in Fig. 2.21 consisting of 26 pipe elements and 45 DOF. The cross-sectional area of the
duct was 0.01 m2 and the length of the sidebranch was 0.25 m.
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Figure 2.21: Finite Elcment Mesh of a Closed-Tube Sidebranch Resonator (26 element
model)

Transmission loss values are presented in Fig. 2.22 for this particular sidebranch
resonator and the T.L. becomes infinite at 343 Hz which is in exact accordance with the
frequency predicted by Eq. (3.38).
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Figure 2.22: T.L. Values for a Closed-Tube Sidebranch Resonator
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25.6 Tiansmission Loss Calculations for a Simple Expansion
Chamber

A simple expansion chamber may be represented as shown in Fig. 2.8. At the
inlet to the chamber are the incident and reflected pressure waves and at the chamber
outlet is the transmitted pressure wave,

a i £
Y 52 B 3 -
Pr 51 __, }—‘

N :
Figure 2.23: Simple Expansion Chamber

The length of the chamber is represented by /; inlet and outlet cross-sectional areas are
equal in this case and are denoted by S,; the chamber cross-sectional area is denoted by
S,. The expansion ratio of the chamber may be written as m = $,/S,. Assuming plane
wave input and output from the chamber (one-dimensional theory), the equation for the
transmission loss (dB) of the chamber is given as:

2

T.L.=lOlogl0(l+l(m——l—) sinzkl], (2.39)
4 m

which is the exact equation for the transmission Ivss of a reactive muffler. Consider the

finite element mesh shown in Fig. 2.24. The model consisted of 10 one-dimensional
elements with a total of 21 DOF.
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Figure 2.24: Finite Element Mesh for a Simple Expansion Chamber (10 element
model)

This model was assumed to be part of an infinite transmission line (pc impedance
termination), meaning no waves will be reflected from the ends of the chamber.
Transmission loss results for various expansion ratios are shown in Fig, 2.25.
Comparison of the finite element transmission loss results calculated with Eq. (2.32) and
¢xact transmission loss results calculated with Eq. (2.39) show no discernible differences.
Values for which the transmission loss becomes zero are given by kl=nn (where n =0,
[,2,...). Values for which transmission loss is a maximum occur when | =nA/4 (where
n=1,3,5,..). Here k is the wavenumber @/c and A is the acoustic wavelength.
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Figure 2.25: T.L. Values for a Reactive Muffler
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The one-dimensional pipe clement has proven to be extremely accurate in
approximating acoustic systems and the finite element transmission loss cquations have
also proven to be accurate in calculating the transmission loss of a reactive muftler. For
~ompleteness, a variety of expansion chambers are now modelled with pipe elements to
.urther demonstrate their application.

Expansion chambers with inward extending inlet and outlet pipes may bhe
modelled using a mesh of pipe elements. Transmission losses can vary considerably for
various inward extending pipe configurations and attenuation can be increased
substantially because the part of the chamber between the end of the extended pipe and
the chamber sidewall acts as a si.cbranch resonator. When the frequency is such that the
length of the intrusion corresponds to a quarter wavelength A/ 4, or odd multiples of,
then the extended pipe is at a node point and very little sound is transmitted [27]. High
transmission losses occur whenever the length of the extended pipe is | =(A/4)xn,
n=l,2,3,...

The following finite element models of expansion chambers with extended inlet
or outlet pipes and their corresponding T.L. curves further demonstrate the diverse
application of the pipe element. These results compare identically to transmission losses
calculated for similar expansion chambers using three-dimensional finite elements [27).

Figure 2.26: Finite Element Mesh for an Expansion Chamber with Outlet Pipe
Extended 0.6 Length of the Chamber (6 element model)
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Figure 2.27: T.L. Values for Expansion Chamber with Outlet Pipe Extended 0.6
Length of the Chamber
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Figure 2.28: Finitc Element Mesh for an Expansion Chamber with Outlet Pipe
Extended 0.5 Length of the Chamber (5 element model)

40



41

50 [ T 1 T L T
rye -
)
2
n 30 = ~
n
o
-t
[
Q
a
E 20t ~
[=
o
=
10 -
0 1 1 1 i 1
0 500 1000 1500 2000 2500 3000

w (rad/sec)

Figure 2.29: T.L. Values for Expansion Chamber with Qutlet Pipe Extended 0.5

Length of the Chamber

Figure 2.30: Finite Element Mesh for Expansion Chamber with Outlet Pipe Extended
0.4 Length of the Chamber (3 element model)



42

Figure 2.31: Finitc Element Mesh for Expansion Chamber with Outlet Pipe Extended
0.4 Length of the Chamber (6 element model)

The transmission loss calculations of Fig. 2.32 represent the finite element models
of Figures 2.30 and 2.31. The purpose of this comparison was to demonstrate the
accuracy improvement of the finite element approximation as the number of elements is

increased.
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Figure 2.32: T.L. Values for Expansion Chamber with Outlet Pipe Extended 0.4
Length of the Chamber (3 and 6 element models)
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2.6 Curved Pipe Sections

The pipe element may be used to approximate duct and pipe systems where plane
wave theory applies; these are systems where the acoustic wavelength is such that it is
much greater than the transverse dimensions of the element. Narrow curved pipe
sections may be considered as being straight for long wave propagation [84, 86, 87, 88).
Therefore, the pipe element may be used to model curved pipe scctions if the
aforementioned conditions apply.



CHAPTER 3
One-Dimensional Element with Flexible Walls

3.1 Introduction

In this chapter, a one-dimensional finite element is developed which is suitable
for approximating pipe systems where the pipe walls are flexible, not rigid. The pipe
walls are considered to be locally reacting, meaning that the motion of one portion of the
pipe wall is dependent only on the acoustic pressure incident on that portion of the wall
and is independent of the motion of all other surrounding wall portions. No expansive
wave motion is produced along the pipe by the wave motion inside.

The interaction between sound waves and a locally reacting surface is defined by
specifying its acoustic impedance (or admittance) as a function of frequency. For the
work considered here, the surface impedance is assumed to be either mass controlled or
stiffness controlled. This is an extension of previous research [26], where three-
dimensional acoustic finite elements were used to model irregular enclosures with
flexible boundaries. As well, the assumption of locally reacting flexible walls is
necessary from the point of view of analytical tractability [71].

A flexible walled pipe element is a natural extension of the pipe element
described in Chapter 2. That element was shown to be extremely useful in modelling
duct and piping systems where low frequencies were involved, particularly for reactive
muffler systems. The assumption that the pipe walls were rigid (infinite transverse
impedance) does not necessarily apply to most practical situations; walls of finite
thickness are generally compliant in nature and the transverse impedance is finite. Thus,
the development of a flexible walled pipe element would be useful for simple low
frequency approximations of practical duct and piping systems.

In this chapter, the one-dimensional wave equation is formulated which allows
for flexible boundaries. Using Galerkin's method of weighted residuals, a flexible walled
pipe element is composed by similar process as the pipe element of Chapter 2. The
cffects of mass controlled and stiffness controlled wall motion are considered by
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determining the eigenvalues of a closed tube. As well, the effects of wall motion on the
standing waves in an open tube are considered.

3.2 Webster Horn Equation with Flexible Walis

A one-dimensional wave equation may be developed for systems with flexible
walls by considering an element of fluid fixed in space acted on by pressure forces.
Equations expressing Newton's second law of motion, mass conservation and the gas law
are established and then used in combination to produce a wave equation suitable for
pipe systems with flexible walls.

An infinitesimal fluid element of length dx is shown in Fig. 3.1, where u is the
particle velocity of the fluid, A the cross-sectional area, p the fluid density and v the wall

velocity normal to the surface of the element. If the element is considered as a control
A+9Ad
+g_?
A%
] v

A+ QA dx X u+dydx)dt
pAudt Al ge X ﬂ )

————— g~ — - - - - m—— ————
element

Q\I\

Figure 3.1: Infinitesimal Fluid Element of Varying Cross-Sectional Area with Flexible
Side Walls

~~

volume, mass must be conserved and the mass change within the control volume is
related to the inflow and outflow of fluid crossing the end faces of the clement. This
may be written as

p(A-#-%)(u +%)dt—pAudt+%teAdxdt+pvrﬁdxdt =0 3.1

where r, is the radial perimeter of the element. Simplification of Eq. (3.1) yields
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.ai‘.+pu§ﬂ+ég,4+pvrp=0 (3.2)

oA ox dx ot

which is the linearized equation of mass conservation. Wall velocity normal to the
surface of the clement can be expressed as the ratio of the acoustic pressure and the
acoustic impedance of the surface (v=p/ Z,). Therefore, Eq. (3.2) can be rewritten as

pA—~—+pu-g——+3‘:A+p Z =0. (3.3)

A linearized form of the momentum equation is given as

PN (3.4)

-
————— ————

ox ot

and the acoustic pressure may be written as

P _ 1P 9% 3.5
y=s (3.5)

where v is the ratio of specific fluid heats. Eqg. (3.5) is now substituted into Eq. (3.3) and
the result is differentiated with respect to time, yielding

P
% =o0. (3.6)

The momentum equation may be differentiated with respect to x; the result being
substituted into Eq. (3.6).

Fp vp aA r,
_pAaxp pogxpa a:2+”°’z'L%=O G-

The local speed of sound is defined as ¢’ = yp, / p, which is now substituted into Eq.

(3.7), yielding the one-dimensional equation for acoustic waves travelling through a
wave guide with variable cross-sectional area and flexible walls
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A—+ - p- (3.8)
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If only harmonic motion is considered, the acoustic pressure has the form
p=pe’, where o is the angular frequency and j is the complex operator. Upon
substitution of harmonic acoustic pressure into Eq. (3.8), the time derivative is eliminated
thus yielding the Webster Horn equation for one-dimensional waves in pipes of varying
cross-sectional area with flexible walls

d ()P) 2 .
—| A== [+ Kk Ap+ jpw-Lp=0, 3.9
ax( Fe p+Jp pr 3.9)

where k is the wavenumber, @/ c.

3.3 Flexible Walled Pipe Element

A one-dimensional finite element which allows quadratic variation in pressure,
cross-sectional area and radial perimeter was chosen to approximatec Eq. (3.9). The
element, shown in Fig. 3.2, has three pressure degrees of freedom, at the ends of the
element and midway along its length as was the case with the pipe element described
earlier. This element will be referred to as the flex-wall pipe element and is formulated
using Galerkin's method of weighted residuals by procedure similar to that which was
presented in Section 2.3.

Figure 3.2: Quadratic Variable Cross-Section Pipe Element with Flexible Side Walls
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For the finite element approximation to Eq. (3.9), pressure, cross-sectional area
and radial perimeter may be represented by the following quadratic interpolation
polynomials

¢

p=a +b.(f)+cx (f) (3.10)
2

A=a2+b,(§)+c2(il‘-) (3.11)
X X 2

r,=a +b3(—l—)+c3(—l—) (3.12)

where a, b and ¢ are constants representing pressures, cross-sectional areas and radial
perimeters at each element node. After substitution of the nodal pressures into Eq.
(3.10), the pressure polynomial is written as

x . x x x x . x
P=Pl(1-37+27{ +p 4‘1"'4“[7 +p, —7+272— . (3.13)

Also, Eq. (3.13) may be written in matrix form

p={rt{p.}={n.}{s} (3.14)
b
{pe} = p2
P,

4 2 3
X AX
1-3—42—
( ! 1’)

(= (4§-4x’)
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where { p.} is the vector containing the nodal acoustic pressures and { £} is the vector

containing the quadratic interpolation polynomials. The superscript 7 denotes a matrix
transpose. In similar fashion, the cross-sectional area and radial perimeter may by
written as

2 2 .3
A=Al1-32425 lpalaf-af |va 2428
' L T ‘

l I
A=A +(44,-3A, —,4,)(315)+(2AX —4A, +2A,)(7~;) (3.15)
X x* x x x X
r, = p'(l—37+ 2-1—2—)4'7",1(4-[——4—1'2— +r, "-1—+2-ﬁ‘
rP = rPl +(4er —3rP1 _rPJ )(%)*'(er. _4"?: +2rﬂ) )(fl_;.) (3.16)

Using Galerkin's method of weighted residuals, Eq. (3.14) is substituted into Eq.
(3.9) and the residual, R, is obtained

(s e o,
R =b}(A{fx }T){pe}+k2A{f}T{P,}+_]pw—zp—{f}r{p'} (3.17)
where {f/} denotes 9f / . Galerkin's equation is given as

I
j{f}mtx:o (3.18)
0

and after substitution of the residual into Eq. (3.1%), Galerkin's equation can be rewritlen
as

J ({f};%(A{L'}’)+k’A{f}{f}’+jpw-§’—{f}{f}’){p,}dx=o. (3.19)

Notice that the first term of Eq. (3.19) contains a matrix which is non-symmetric as the
terms are not of the same order. Itis integrated by parts with the result becoming
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i

J (A{f.'}{f:}"' -kZA{f}{f}’—jpmg-{f}{f}’){p.}duo (3.20)

0

with boundary conditions Adp/dx=( at x=0 and x=/ implying t.at there are no
volume sonrce terms present at these locations. The relationships for cross-sectional area
and radi. erimeter are now substituted into Eq. (3.20) and direct integration of the
terms gives the approximation of Eq. (3.9) for one flex-wall pipe element

([S]-k’[P]-jp—Zai[A]){p.}={0}. a.21)

where [S] and [P] represent the kinetic and potential energy matrices respectively and
are square, symmetric. The square, symmetric matrix [A] is similar in composition as
the potential energy matrix. These matrices are given as

(5)= (AL HAF Yo, e

7 -8 1 3 -4 1 3 -6 3
[S]=c[-8 16 -8|+a,|-4 16 -12|+a,l-6 32 -26
1 -8 7 1 -12 11 3 26 23

A (4A2 —3A - Aa) (2A1 —44,+ 2A3)

o, =—, O, = . =
b 6! ’ 151
I
[P1= (AL} Y Np. }ax
0
4 2 -1 1 0 -l 2 -4 -5
[P)=B|2 16 2|+B,/0 16 4|+B,|-4 64 24
-1 2 4 -1 4 7 -5 24 44

(24, -4A,+2A,)1
420

B, =

_AL o _(44,-34 -4
ﬁl"'30’ ﬂz‘ 60 s
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{

[A)= [({AHAY Hp, bax

4]

4 2 -1 I 0 =l 2 -4 -§

Al=x| 2 16 2|+x,|0 16 4l|+y|-4 64 24

-1 2 4 147 -5 24 44

r (4r, =30 =1 )i (2r, —ar, +2r )i
L= KT 60 S 420

where all matrices presented here have the dimensions 3 x 3.

Consider the case where the wall niotion of the pipe is cither mass controlled or
stiffness controlled. If wall motion is mass controlled, the wall velocity can be written as
(26]

ve-JP_ (3.22)
wm

where m, is the generalised wall mass. Making use of the relationship v = p/ Z,, Eq.
(3.22) can be written in terms of the wall impedance

z, =0 (3.23)
J

Substituting this expression into Eq. (3.21) gives the equation of motion as
(([S]+f-[A]]-k’[P]J{p.} ={0}. (3.24)

Notice that for a mass controlled wall, terms are added to the kinetic energy matrix. This
has the effect of increasing the natural frequencies of the system.

Alternatively, consider the case where wall motion is stiffness controlled. The
wall velocity can be represented by [26]

. ap .



where k, is the generalised wall stiffness. Again, Eq. (3.25) can be written in terms of

wall impedance

2
7, =Sk (3.26)
Jja

This result is now subsiituted into Eq. (3.21) and the resulting equation of motion
becomes

([S]—k’([P]+k£[A])J{p,}= {0}. (3.27)

For the stiffness controlled wall, terms are added to the potential energy matrix. This has
the effect of reducing the natural frequencies of the system. Examining Egs. (3.24) and
(3.27), it can be seen that if either the mass or stiffness is increased indefinitely, (the
generalised mass or stiffness terms are increasing), the added terms to the kinetic and
potential energy matrices become zero corresponding to the limiting rigid wall condition.

The flex-wall pipe element is assembled using the same method as the pipe
clement. This procedure is described in Section 2.3.1. Continuity and convergence
conditions are both satisfied for this element by the arguments presented in Section 2.3.2.

3.4 Element Testing

Tte effects of a flexible boundary on the frequencies of a one-dimensional system
are demonstrated here by two methods. First, the eigenvalues of a closed tube with
flexible walls are determined and compared with the rigid case; second, the effects of
flexible walls on standing waves in a tube are demonstrated. Cases where wall motion is
mass controlled and stiffness contro'led are considered. The results presented here are
entirely numerical. No experimental results exist in the literature for one-dimensional
systems with flexible walls using the locally reacting assumption but the results presented
here do agree with conclusions presented in earlier research [26)].

3.4.1 Eigenvalue Models

Finite element models consisting of 13 flex-wall pipe elements with 27 DOF were
used to approximate the eigenvalues of a closed tube of unit length with various



generalised wall masses. These results are presented in Table 3.1. For comparison
purposes, eigenvalues for the rigid walled closed tube of Section 2.4.1 are included as
well.

Table 3.1: Eigenvalues of a Closed Tube of Unit Length with Mass-Controlled Flexible

Walls
Mode Rigid Flex-Wall | Flex-Wall | Flex-Wall | Flex-Wall
Number,n | Walled | m, =0.01 m, =1 m, =10 [m, = 10000

1 9.87 1366.28 23.43 11.23 9.87

2 39.48 1395.89 53.05 40.84 39.48
3 88.86 1445.27 102.42 90.22 88.86
4 158.10 1514.50 171.66 159.45 158.10
5 247.42 1603.83 260.98 248.78 247.42
6 357.28 1713.69 370.84 3158.63 357.28

The results presented in Table 3.1 demonstrate that a mass controlled boundary
increases the natural frequencies of the systeii. ™~r caces where the mass is increased
indefinitely (m, =10000), the additional terms of Eq. (3.24) approach zcro and the
eigenvalues approach the limiting, rigid walled case. Generally, the cigenvalues for
generalised wall masses of m, =1 and m, = 10 display the expected characteristics
where the natural frequencies of the closed tube are increased by the mass controlled
wall, increasing as the generalised wall mass decreases. A mass controlled flexible wall
has greater effect on the lower natural frequencies than the higher ones; the lower natural
frequencies differ from the rigid case in larger proportion than do the higher frequencies.
This may be ex*... :d by considering that for low frequencics where the wavelength is
much longer - -1 transverse dimensions of the tube, wave motion is along the axis.
As frequencics ..icrease, some transverse wave motion develops which is unaffected by
the flexible boundary due to the assumption of locally reacting surfaces.

Eigenvaiues for the same closed tube with stiffness controlled flexible walls with
various generalised wall stiffnesses were calculated as well with the results being
presented in Table 3.2,



Table 3.2: Eigenvalues of a Closed Tube of Unit Length with Stiffness Controlled

Flexible Walls
Mode Rigid Flex-Wall | Flex-Wall | Flex-Wall | Flex-Wall
Number,n | Walled k, =0.01 k, =1 k,=10 |k, =10000
1 9.87 0.014 1.26 5.87 9.86
2 39.48 0.058 5.05 23.47 39.46
3 88.86 0.13 11.36 52.84 88.86
4 158.10 0.23 20.24 94.15 158.31
5 : 247.42 0.36 31.76 147.74 248.43
6 357.28 0.53 46.08 214.30 360.35

Results presented in Table 3.2 indicate that a stiffness controlled boundary affects
the natvral frequencies of a system in a way opposite to the effects provided by the mass
¢t tr “ed boundary. For cases where the stiffness is increased indefinitely, the
adattonal tlerms added to the potential energy matrix approach zero and the eigenvalues
approach the limiting, rigid wall condition. As wall stiffness increases, the natural

frequencies of the system increase as well, converging on the rigid wall case.
3.4.2 Standing Waves in a Tube

Pressure distributions for standing waves in a tube are presented here to further
demonstrate *he effects of a flexible boundary on the natural frequencies of one-
dimensional systems. Only the case where the tube wall is mass controlied is considered.
The pressure distributions are determined for a tube with generalised wall masses of m,
=10, m, =1 and m, = 0.01. As well, the distributions are also included for the rigid
walled case for comparison purposes.

To approximate the standing waves in a tube using one-dimensional finite
clements, the system requires some means of forcing. An oscillating piston positioned at
x=0 produces the required forcing by introducing a volume source to the system as
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depicted in Fig. 3.3. At x=/, the end of the tube is open introducing a zero pressure
boundary condition. The natural frequencies of this tube can be determined if the

piston @ p=-0

Figure 3.3: Tube with Forcing Piston at x =0, Open End at x =1
acoustic pressure is assumed to have the form

p(x)=(Acoskx+ Bsink»)e'™". (3.28)

The particle velocity at the face of the piston is represented by u = Ue’™. Acoustic
pressure and particle velocity are related by Eq. (3.4). Substituting the pressure and
velocity terms into Eq. (3.4), and introducing the zero pressure boundary condition at
x =1, leads to the equation for the pressure distribution of the tube

sin kx gl

3.29;
coskl ( !

p(x)=-jpcU

The pressure distribution of the tube becomes infinite when coskl =0, meaning the
corresponding natural frequencies are represented by Eq. (3.30)
(2n-1)mc

), = —— (3.30
. 37 3.30)

where (n=1, 2, 3,...).

A finite element mesh consisting of 20 pipe elements with 41 DOF was used (o
model the standing wave pressure distribution in a rigid walled open tube with an
oscillating piston at one end. Only the first three natural frequencies given by Eq. (3.30)
were considered. Pressures were plotted for each node point along the entire length of
the tube. The pressure distributions for each of the first three natural frequencies are
presented in Figures 3.4, 3.5 and 3.6. Notice that the dotted line represents the centreline
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of the tube. The results are identical to those obtained by plotting the real part of Eq.
(3.29). These results for a rigid walled tube will be used as a reference to further
demonstrate the effects of a flexible walled tube on the natural frequencies.

Pressure

K0 x=t

Figure 3.4: Standing Wave in a Rigid Walled Pipe; Piston at x =0, Open at x =1;
w=ncl/2l

A similar tube with a mass controlled flexible wall is now modelled with a mesh
of flex-wall pipe elements. The flexible wall has a generalised mass of value m, = 10.
Pressure distributions for the first three natural frequencies determined form Eq. (3.30)
are presented in Figures (3.7), (3.8) and (3.9). Comparison with the rigid walled results
presented earlier demonstrate that even for a generalised mass of 10, the flexible walled
tube appears nearly rigid and pressure distributions are nearly identical to the rigid case.
This is not unexpected as inspection of the eigenvalues given in Table 3.1 confirms that
for m, = 10, the tube wall is becoming quite rigid.



ressure

P

x=0 xmi

Figure 3.5: Standing Wave in a Rigid Walled Pipe; Piston at x = (), Open at x =/
w=13nc/(2l

Pressure

x=0 i

Figure 3.6: Standing Wave in a Rigid Walled Pipe; Piston at x =(), Open at x =/
w=5nc/2l

.
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Pressute

x=0

Figure 3.7: Standing Wave in a Flexible Walled Pipe (m,

atx=l,w=ncl/2l

x=t

= 10); Piston at x =0, Open

ressure

p

x=0

Figure 3.8: Standing Wave in a Flexible Walled Pipe (m,

at x=[; w=3mnc/ 2l

x=|

= 10); Piston at x=0, Open
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ressure

p

x=0 x=i

Figure 3.9: Standing Wave in a Flexible Walled Pipe (m,, = 10); Piston at x =0, Open
at x=1l, w=5rc/2

Flexible walled tubes with generalised masses of m, = 1 and m, = 0.01 were also
considered with pressure distributions for the first three natural frequencies of Eq. (3.30)
presented in Figures 3.10 - 3.15. For the case where m, = |, pressure distributions are
out of phase as compared with the rigid walled case. This result is not unexpected as the
eigenvalues for the closed tube given in Table 3.1 demonstrate the significant effect a
flexible boundary has on the natural frequencies of a system. Clearly, for the case where
m, = 0.01, all energy has essentially been absorbed by the pipe walls and there is
minimal pressure distribution along the length of the pipe. The pipe is acting as an
effective Helmholtz resonator.
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Pressure

x=0 x=|

Figure 3.10: Standing Wa-. 1 a Flexible Walled Pipe (m, = 1); Piston at x =0, Open
atx=l, w=mc/2l

Presauyre

x=Q xw|

Figure 3.11: Standing Wave in a Flexible Walled Pipe (m,, = 1); Piston at x =0, Open
at x=!; w=3xc/2l
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Pressure

Figure 3.12: Standing Wave in : Flexible Walled Pipe (m, = 1); Piston at x =0, Open
atx=1; w=5nc/2l

Pressure
i

x=20 y=)

Figure 3.13: Standing Wave in a Flexible Walled Pipe (m_ = 0.01); Piston at x =),
Openat x=1; w=rnc/2l
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Figure 3.14: Standing Wave i1 a Flexible Walled Pipe (m,, = 0.01); Piston at x =0,

Openat x=1!; w=3nc/2l

Pressure

T

pr — — —

x=0

Figure 3.15: Standing Wave in a Flexible Walled Pipe (m, = 0.01); Piston at x =0,

Openat x=I; @=5xc/ 2l



CHAPTER 4

A Simple Three-Dimensional Finite Element
to Model Dipole and Quadrupole Mode
Propagation in Ducts

41 Introduction

Higher order three-dimensional finite elements with quadratic or even cubic
pressure variations are commonly used to study the acoustics of duct systems. The added
complexities of these higher order elements are generally not necessary for low
frequency duct acoustics where the frequzncies of excitation and duct section dim~nsions
are such that lower modes of transmission dominate the response and a simpler element
mesh may be sufficient. It is the objective of this chapter to demonstrate that chain-
assembled three-dimensional finite elements may be used to successfully model low
frequency duct acoustics including significant 3-D effects such as higher order mode cut-
off frequencies. Also, the limitations of plane wave theory will be discussed.

A three-dimensional linear isoparametric hexahedral finite element is formulated
with acoustic pressure as the only nodal quantity using Galerkin's method of weighted
residuals and will be referred to subsequently as the HEXS element. The HEXS element
is deformable and is able to easily model any duct geometries. The accuracy of the
element is shown for two rigid walled cases with stationary flow: a closed, straight duct
section and a cylindrical enclosure.

On any one face of the HEX8 element, there are only four degrees of freedom,
thus only four modes of propagation are allowed [32]. This makes the HEX8 element an
ideal choice for modelling higher order modes such as the dipole and quadrupole modes
which cause bending and torsional twisting of the duct walls. Sound transmission and
the effect of cut-off frequencies on the propagation of higher modes is demonstrated for
various duct geometries including chambers, bends, curves and junctions.

All formulations presented in this chapter are based on assumptions of systems
with rigid (acoustically hard) walls and stationary flow. Following the goal of
developing simple elements for the acoustics engineer, all finite element models were

63
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considered as part of an infinite trapsmission Ine (pc termination).  Other complex
impedance eriminations could be considered but the subscquent complexity was not
warranted in this work. Computations with the HEXE ¢lement were carried out on an
IBM RS/600C 32C 1 workstation using FORTRAN source code.

Mathe.nat::l development of the 3-D Helmholtz equation is considered in the
next section based un a control volume formulation. This is followed by formulation of
the corresponding finite elcment equations and eigenvalue testing of the element. The
remaining scciions concern the propagation of higher order dipole and quadrupole modes
using the damed transmission loss equations developed in Chapter 2.

4.2 The iielmholtz Equation

The three-dimensional wave equation may be developed by considering a 3-D
clement of fluid fixed in space acted upon by uniform ambient pressure. [fiquations
expressing the iaws of conservation of mass, momentum equations and pressut::-density
relationships are established and then combined to formulate the 3-D wave equation in
rectangular coordinates.

An infinitesimal element of fluid is shown in Fig. 4.1, where u, v and w +ivsent
fluid particie velocities in their respective coordinates, p is the acoustic pressure ...:* 0 is
the fluid densiy.

Figure 4.1: Infinitesimal 3-D Fluid Element
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It the clement is considered as a control volume, mass must be conserved and the
linearized equation of mass conservation is given as

M N ow) oIp
— o e e e | - 4,
p» ¢9y+9z) o “.n

The linearized momentum equations in the x, y and z coordinates are written as

—--q[-)—zpé‘. _@= _a_v- _Q)‘=p~&l
a  d " 3

and the pressure-density relationship is given by the following equation

%: c’ _3_[2 (4.2)

o

which is the same as Eq. (2.4) where c is the local speed of sound of the fluid medium.
Substitution of Eq. (4.2) into Eq. (4.1) produces an equation of the form

‘,(95_+591+;92)=_Li 4.3)

which can be differentiated with respect to time becoming

Fu Fv Fw) 1dp
axa:+ayat+aza,)" . (4.4)

The linearized momentum equations may be used to eliminate the particle velocities from
Eq. (4.4), resulting in the 3-D wave equation in rectangular coordinates

(82p+3’p+82p)_clz%=0. (4.5)

axz ()yz aZZ

If only harmonic motion is considered, the acoustic pressure has the form p = pe’®
where  is the radian frequency. Upon substitution of the pressure term into the wave
equation, the time derivative is eliminated thus yielding the Helmholtz equation in 3-D
rectangular coordinates
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Fp Fp Fp
ax,:+ ay§’+ S +kip=0 (4.6)

where k is the wavenumber @/ c.
4.3 3-D Hexahedral Element Formulation

A three-dimensional isoparametric hexahedral finite element which allows linear
variations in pressure between its node points was chosen to approximate the Heimholtz
cquation. The HEXS8 clement was formulated using Galerkin's method of weighted
residuals but because of the added degrees of freedom and the extra two dimensions, it is
not practical to evaluate all of the terms analytically as was done with the pipe element.
Numerical integration procedures are used to formulate the element allowing greater
fiexibility in implementing the HEXS8 element.

Local Coordinates Global Coordinates

Figure 4.2: Isoparametric HEX8 Element in Local and Global Coordinate Systems

The HEXR element is shown in Fig. 4.2 in its local (r, s, #) and global (x, y, z) coordinate
systems. In its local coordinate system, the element remains a fixed cube with nodal
coordinaies varying between the values -1 and +1. In its global coordinate system, the
clement may be deformed into almost any shape, the restriction being that all interior
angles of the element be smaller than 180°. As will be demonstrated later in this
Chapter, the HEX8 element is easily distorted into many configurations allowing the
modelling of many complex geometries.
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In a finite element approximation to the Helmholtz equation, the lincar pressure
distribution between the nodes of the clement may be represented by simple polynomials
[14]

P=a +a,r+as+ag+ars+agrt+a,st+agrst (4.7
or in matrix form
p={F}{a} (4.8)
where
{FY'={L r s t rs rt st rst}
and

{ay={"

where the superscript T denotes a matrix transform. The pressure is expressed in terms
of generalised coordinates a,---a, which govern the contribution of each of the terms of
the simple polynomial. These may be related to the acoustic pressures at the individual
node points of the element by inserting boundary values for each nodal pressure.

Boundary values for the eight node points of the HEX8 element in its local coordinates
are shown in Fig. 4.3.



68

/\\
(-1 >ﬁ(-1.1,1)

(-1.1,-1)

(1-—'1-"1)55 // 3(—1,—1,1)
r\1/t 1 (_1'—1._1)

Figure 4.3: HEXS Element in the Local Coordinate System

Insertion of the boundary values for each nodal pressure results in a system of eight
equations and cight unknowns which can be expressed in matrix form as

{p.}=[TNa} or {a} =[T"|{p.}.

where the transformation matrix is

r

!
Y
|
r—
}
[T
[a—
[y
—
{
[

e e T e T o S VO GO

111 1 1 1 1 1)

The pressure at any point (r, s, 1) within the element can now be written in terms of the
nodal pressures

p={F}Y[T"){p.}. 4.9)
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The use of simple polynomials rather than shape functions means the
transformation matrix must be inverted but this need onlv be done once with the result
stored in computer memory and used as needed. This should not be considered as a
disadvantage 10 using simple polynomials rather than shape functions as the computer
code for an element formed by polynomials has a much more generalised form than the
code for an element formed by shape functions. This allows the computer code to be
easily modified to accommodate other higher order elements.

The polynomials which govern the variation in pressure may be used o govern
the variation in geometry. This is the basis of an isoparametric finite clement and allows
the geometry of the element to be distorted. Therefore, the regular geometry in the local
coordinate system is transformed to a distorted gcometry in the global coordinate system
by the following transformations

x={F}[r*|{x}
y={FY [Ty}
z= {F}T[T“']{z,}

where {x,}, {y,} and {z,} are vectors confaining the x, y and z coordinates at the

element node points. The relationship between the local and global coordinates may be
determined by applying the rules of partial differentiation. Using the chain rule, we have

d_ x93 M3 &k

o or 8x+—87$+5 d

9 X3 HI %0

ds dsdx dsdy s

In matrix form, this may be written as
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2] [ & ]2
or or dr OJr||ox
JOL_|x H 2|9
ds ds Jds Os 3,\1r
o | » | d
o] | or atd@;}
K Kl
I
=T Z
ds /] @(
9 d
Lo u?zJ
where the Jacobian matrix is written as
XS
X
=15 2 &
& & I
(ot & o]

relating the global coordinate derivatives to the local coordinate derivatives. This may be
rewritien in the following form

,
"

¥FloP|op|ov

o

- [J“]<

low|oe|e

r
~
-

implying that the inverse of [J] exists. The inverse exists provided that there is a unique
(one-to-one) correspondence between the global and local element coordinates [11].
Only in situations where the element has been extremely distorted does the uniqueness
condition between the coordinate systems fail. This occurs when an interior angle in the
clement has become 180" or greater. Transformation of the coordinate systems is given

by
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dxdvdz =|J||drds dt
where /]| denotes the absolute value of the determinant of the Jacobian | 1 1.
The finite element approximations to the Helmholtz equation may be formulated

using Galerkin's method of weighted residuals. Upon substitution for pressure in the
Helmholtz equation, the residual R, may be written as

R={EY [T Ko} {E Y [T Wp b+ ARV [T K e RV [T )} ity

where the vector {F”} denotes *F/dx?, {Fy”} denotes &°F/ v’ and {E} denotes

&’ F/d7*. Galerkin's equation is written in the usual form
[[J{iftRdxdvaz=0 (a.11)
where
{ry=[T"]{r}
and after substitution of the residual into Galerkin's cquation, the result becomes

M1 A [T o =Y () o Tl ey [
T T AFHFY [T Np barayde =0

In this for:a, the matrices in the first three terms are null and non-symmetric. Green's
first theorem states:

JUrHEY av=[ (Y kas - [{EM Y av

and by making use of this theorem, Galerkin's equation may now be written in a form
with symmetric matrices
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I TEREY [ [ T UM B (o7 (N R [ )

~k [T] {FHF} [T“']){p,}dxdydz=0

with boundary condition dp / i = on the surface of the element where 7 is a vector in
the direction of the outward normal.

The Jacobian may now be introduced to transform from the global x, y, 2
coordinates to the local r, s, ¢ coordinates

A14l4]

61 T [ st . bar ds di-

=l=1-
+1+1+4]

[T TtrHey . lardsdi=o

=i-1=]

making note that

Here, [G] is a 3x8 matrix. Galerkin's equation may be separated into two parts, the
kinetic and potential energy matrices respectively

+i41 41

[S]= f j ] ([r']’[G]’[J"]T[r' ][G][’I"‘]HJH){ p.}drdsd: 4.12)
(P1= [T T0r T tr ey [ o, b s w13

~l-1-1

where [S] and [P] are square, symmetric and 8x8 in size. Notice that all integrations
are between the limits ~1 to +1, conforming with standard iimits of numerical
integration schemes such as the Gauss quadrature technique [11]. The approximate finite
element equation of motion can now be written as
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([s1- K [P p} = {o}. (@.14)
43.1 Assembly Of Elements

Itis assumed in Eq. (4.14) that there are no volume source terms present meaning
that the boundaries of the HEX8 element are iramobile. In this configuration, the
element cannot be connected to another system. If velume sources are present at the
nodes of the element, the inhomogeneous form ot the finite element cquation becomes

((s1-&* (P p. } = pw*{Q.}. (4.15)

The assembly procedure for the HEX8 element is demonstrated by considering
the two finite elements shown in Fig. 4.4. In this configuration, the clements are
unconstrained and have a total of sixteen pressure unknowns and sixteen volume sources.
The elements may be connected at nodes 5, 6, 7, 8 and 9, 10, 11, 12 as shown in Fig. 4.5;
the following conditions must be satisfied

Ps=Py=P5, Ps=Py=Pg. Py=py=pS, py=p,=p’

1) 0,
po’ g‘: +pw’ g’: =0,
0, 0y

There are no volume source terms introduced at the connection nodes as implied by the
second equation.
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Figure 4.5: Global System of Assembled HEXS8 Elements

The two element system, with sixtezn degrees of freedom, shown in Fig. 4.4 has become

the global system shown in Fig. 4.5. The global system now has twelve degrees of
freedom with corresponding equation of motion

(se)~k[P°Np°} = po?{Q°} (4.16)

where the global kinetic energy matrix is



5]

along with the corresponding global volume source vector

Pe

A, pB
Fs+ B,

A, DB
Fis + P,

A, pB
P+ P,

A, pB
Fs + P,

R

(Ql‘

O O OO e

v

0]
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Individual element matrices can be assembled together into a global system by
overlaying them at the connecting nodes as demonstrated above. Many elements may be
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connected together into almost any imaginable shape and configuration using this
procedure. On must only consider the practical limitations of computer memory Ssize.

4.3.2 Continuity Between Elements

Sufficient conditions that assure the convergence of a finite element
approximation are that certain continuity and completeness criteria [14] are satisfied.
The continuity condition states that for second order differential equations such as the
Helmholtz. equation, only the dependent variable must be continuous across element
boundarics. The HEX8 element discussed here has C° continuity, meaning that only the
independent  pressure variable p is continuous across the element boundaries.
Completeness states that at least a linear polynomial should be used when modelling a
second order differential equation. The use of a linear polynomial satisfies this criterion.
Both continuity and completeness have been satisfied in the finite element approximation
of the Helmholtz equation, assuring solution convergence.

4.4 Element Testing: The Eigenvalue Problem

The accuracy of the HEX8 element was tested by predicting the natural
frequencies of a rectangular duct section with rigid walls containing a stationary medium.
If the pressure perturbation modes have the form [44]

p = Acos| X |cos| 7Y cos(”—’” 4.17)
I l i

ther an exact solution for the eigenvalues of the H  'oltz equation in terms of the

K= -’.2+i”-2+£2 (4.18)
l, I, )\l ‘

where /, m and n are any integers and l,, |, and ! represent the dimensions of the

wavenumber k, is

enclosure as shown in Fig. 4.6.
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Figure 4.6: Rectangular Duct Section

Finite eiement models consisting of 40 HEXS8 clements with 164 DOF and 80
HEXS elements with 324 DOF were used to approximate the axial cigenvalues of a
rectangular duct section with dimensions 0.1 m x 0.1 m X 1.0 m with the results being
presented in Table 4.1. The elements were just chained together to form the duct section
by the method described in Section 4.3.1, thus the flexibility of the system was increased
only in the axial direction. For comparison purposes, the axjal eigenvalues of this duct
section were also approximated using 13 pipe elements with 27 DOF.

Results presented in Table 4.1 clearly demonstrate that for essentially one-
dimensional systems such as the duct section considered here, the one-dimensional pipe
elemert has distinct advantages over the three-dimensional HEX8 element. A pipe
element model with 27 DOF apprc -ates the sixth axial natural frequency with a
prediction error of 0.55% while HEX8 element models with 164 DOF and 324 DOF
approximate the sixth longitudinal natural frequency with prediction errors of 1.86% and
0.46% respectively. There are significant reductions in computational time and core
memory requirements by employing the pipe element to model simple one-dimensional
systems rather than using HEX8 elements. The pipe clement employs a quadratic
pressure formulation which allows the use of fewer elements and thus fewer degrees of
freedom when modelling an acoustic system. Of course, one must remember that the
pipe element is restricted to plane wave acoustics for simple geometries. Higher order
mode effects or three-dimensional wave motions cannot be modelled with the pipe
element. Higher order three-dimensional elements such as the quadratic HEX20 clement
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or cubic HEX32 clement could be utilised rather than the HEXS8 element but the added
complexity of using such elements is not warranted for low frequency acoustic systems.

Table 4.1: Axial Eigenvalues (k’) of a Rectangular Duct Section. Comparison with
Exact Eigenvalues and Those Calculated with 1-D Pipe Elements

Mode Exact 13 Pipe 40 HEX8 80 HEXS8
Number, n | Eigenvalues | Elements Elements Elements
1 9.87 9.87 9.87 9.87
2 39.48 39.48 39.56 39.50
3 88.83 88.86 89.24 88.93
4 157.91 158.10 159.22 158.23
5 246.74 247.42 249.93 247.23
6 355.31 357.28 361.93 356.95

A significant benefit of using the isoparametric HEX8 element is that it may be
distorted into almost any shape, allowing the modelling of many intricate geometries. To
demonstrate the accuracy of the element in a deformed configuration, the eigenvalues
were determined for a circular, cylindrical enclosure with rigid walls and stationary flow.
For this model, the 8 DOF HEX8 element was converted to a 4 DOF axisymmetric ring
element by a series of geometric and nodal pressure constraints. In this procedure, a
typical HEX8 element (refer to Fig. 4.2) is constrained into the ring segment shown in
Fig. 4.7 by the following geometric constray ..

x, =0
G =nsing, x;=r,sin¢

X =X
Xs=nsing, x,=rn°
N=Te Yy e Vy=h, Y, =0

Vs =T,COSQ, Yy = 1,L00, y; S1COSP, Yy = 7,COS ¢



79

Figure 4.7: Formation of Ring Segment

2

Figure 4.8: Ring Seginent Cross-Section

These constraints may be better visualised if one considers the cross-section of a ring
segment shown in Fig. 4.8. Further constrain's may be applied to the nodal pressures

Ps=Di» Ps P2 Pr=P3» Py =Dy
which completes the series of geometric and pressure constraints applied to the HEXS

element. The HEXS8 element now exists as a two-dimensional, 4 DOF axisymmetric ring
element suitable for modelling cvlinc ~ical enclosures.
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For circular ducts, the wave equation can be separated to give the following
equation for pressure variation in the radial direciion

a’.’p l ap 2 "12
IP Pl 1h=0 4.19
or-  ror ( re p ( )

where k is the wavenumber, m a constant and r is the radius of the duct. Using the
relationship x = kr, Eq. (4.19) can be transformed into the Besscl equation [47] assuming
k+#0

332_P+l@+(1_.”;),,=o. (4.20)
X

From the Bessel equation, the radial dependence of acoustic pressure in a circular duct
has the form

p=Al (kr), (k+#0) (4.21)

where J is a Bessel function of the first kind of order m and A is a constant. At the wall

of the duct, the boundary condition is such that the normal component of the velocity
approaches zero

v=BI (kr)=0, (k#0) (4.22)

where B is a constant. For each value of m, this condition is fulfilled resulting in a series
of wave numbers, k, , associated with each solution of Eq. (4.20).

The accuracy of the constraint procedure was tested by calculating the
eigenvalues in the radial direction for a cylindrical enclosure with radius 0.1 m. Ten
HEXS elements were assembled radially outward from the centreline of the enclosure in
ring segment form as shown in Fig. 4.9. Pressure constraints were applied to the nodes
resulting in a two-dimensional mesh of ten axisymmetric ring elements with 22 DOF as
shown in Fig. 4.10.
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Figure 4.9: 10 HEXS8 Elements Assembled in Ring Segment Form to Model a
Cylindrical Enclosure

Figure 4.10: 2-D Mesh of 10 Axisymmetric Ring Elements with 22 DOF

Eigenvalues for the first four modes in the radial direction for various angles ¢ along
with the exact eigenvalues are given in Table 4.2.



Table 4.2: Eigenvalues for a Circular Cylindrical Enclosure, 10 Radial Elements

Exact Solution
Mode Jo(kr)=0 ¢=6 ¢=10" | ¢=20" | ¢=30
1,0 3 3.85 3.86 391 3.98
2,0 7.02 7.14 7.16 7.24 7.38
3,0 10.17 10.56 10.58 10.72 10.91
4,0 13.32 14.20 14.24 14.40 14.68

Table 4.3: Eigenvalue Model Prediction Errors

0=6 | ¢=100 | ¢=20°" | ¢=30

Mode | % Error | % Error | % Error | % Error
1,0 0.53 0.78 2.00 3.93
2,0 1.75 2.00 3.21 5.19
3,0 3.77 4.03 5.33 7.29
4,0 6.59 6.85 8.11 10.20

Eigenvalue results presented in Table 4.2 indicate that decreasing ¢ improves the
accuracy of the finite element mesh but it should be noted that too small a value of ¢
produced numerical errors. The accuracy of the eigenvalues may also be improved by
increasing the number of elements in the radial direction. These results demonstrate that
the HEX8 element can be easily distorted to model complicated geometrics while
retaining an acceptable degree of accuracy. Higher order finite elements such as the
HEX?20 or HEX32 elements would provide much improved accuracy for modelling a
cylindrical enclosure but the purpose of using the HEX8 element in this case was to
illustrate that the simple HEX8 element may be used to model complex geometries with
much success. Later, this fact will be illustrated further as the simple HEX§ clement is
used to model many complicated duct configurations.
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4.5 Transmission Loss of Damped Acoustic Systems with
Special Consideration of Dipole and Qaudrupole Mode Effects

Even at low frequencies, three-dimensional wave effects in a duct may generate
higher order modes and if these modes are not attenuated sufficiently, they alter the
acoustics of the duct considerably. The plane wave theory presenied in Chapter 2 does
not allow for the onset of higher order modes, thus its use should be limited to providing
an initial generalisation of the low frequency response of the duct. Subsequent
calculations with three-dimensional elements should then be undertaken to determine the
higher order mode effects present in the system. Three-dimensional effects are a primary
source of discrepancy between measured values of acoustic response and that predicted
by plane wave theory at higher frequencies [71] and their presence cannot be neglected.

In keeping with the goal of providing uncomplicated finite element methods for
the acoustics engineer, the simple three-dimensional H5X8 element will now be
implemented throughout this section to model higher order modes present in vazious duct
configurations, concentrating on the effects of dipole and quadrupole modes. First, a
comparison of the pipe element and HEXS8 element must be made to demonstrate the
limitations of plane wave theory. A simple cylindrical expansion chamber with
expansion ratio = 10 was modelled using a network of 10 pipe elements with 21 DOF
and using 50 HEXS8 elements constrained by the procedure outlined in Section 4.4 to
form a mesh of axisymmetric ring elements with 66 DOF as shown in Fig. 4.11. The
chamber was part of an infinite transmission line (pc termination) with plane wave input.
The equations of Section 2.5.1 were used to calculate the transmission loss of the
chamber.

Transmission loss results for the chamber over a 10000 rad/s frequency range are
presented in Fig. 4.12. They clearly illustrate the onset of higher order modes at
approximately 1500 rad/s for the three-dimensional model, indicating the failure of plane
wave theory. Ensuing higher order modes dominate the remainder of the frequency

range. These higher order modes appear as radial and diametral pressure distributions as
indicated in Fig. 4.13; their wavenumbers k,, appear in Table 4.4 as solutions of

J, (k,,r)=0.
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Figure 4.11: Axisymmetric Ring Element Mesh to Model Cylindrical Expansion
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Flgure 4.12: Transmission Loss Results for a Cylindrical Expansion Chamber with
Expansion Ratio = 10; One and Three-Dimensional Elements
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Table 4.4: Radial and Diametral Modes in rad/s for Expansion Chamber r= 0.5 m

m
0 1 2 3
0 0 1262.24 2092.30 2881.20

n| 1 2627.38 3656.38 4603.06 5501.72

2 4815.72 5858.44 6839.42 7786.10

3 6976.62 8033.06 9034.62 10008.74

A courser mesh of axisymmetric ring elements would provide acceptable accuracies. A
mesh with three elements in the radial direction rather than the five used here would
provide similar results. A similar rectangular expansion chamber with expansion ratio =
10 was also modelled using 10 pipe elements and 10 HEXS8 elements. In this case, the
HEXS8 clements were not distributed transversely, they were only assembled axially.
Transmission loss results for the chamber are shown in Fig. 4.14 and indicate that a
simple configuration of HEX8 elements assembled axially can be used to mode] plane
wave effects in a duct. The difference between the two TL curves is present because the
pipe clement has quadratic pressure variations between the nodes while the HEX8
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element only has linear pressure variations between nodes, thus the pipe clement
provides improved accuracy in the axial direction for similar mesh sizes. It should be
noted here that the pipe element is restricted to simple one-dimensional systems where
offsets, bends and junctions do not exist. Thus, chain-assembled HEXS elements have a
much greater degree of application.

20 N 1 T .

1-D elementa
-« 3~D elements

15 | 1

Transmission Loss (a8)
o
T

0 150 Riv] 450 600 750 900
Frequency (H2)

Figure 4.14: Transmission Loss Results for a Rectangular Expansion Chamber,
Expansion Ratio = 10; One and Three-Dimensional Elements

4.5.1 Tapered Elements

With respect to computational efficiency, it is beneficial to try to limit the global
degrees of freedom of an element mesh representing a duct. Therefore, an element mesh
consisting of simply chained HEX8 elements is the desired configuration. In many duct
networks, there may appear sudden area expansions, contractions or chambers. A simple
HEXS element is sufficient to model these discontinuities for low frequencies where the
wavelength of the acoustic wave is much longer than the transverse dimensions of the

duct and transverse wave motion in the region of the discontinuity can be assumed to be
negligible.
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It would then be ideal to use a single HEXS8 eclement to model an area
discontinuity. Ccnsider the element mesh shown in Fig. 4.15, which represents a sudden
area expansion and contraction in a duct. At the area discontinuitics, a single HEX8
clement has been deformed (flattened out) to model the sudden area expansion and
contraction. Dimensions for the 0.15 m x 0.45 m x (.75 m chamber region are given in
Fig. 4.16, along with the taper length, /, ot the deformed element. Reducing the taper
length of the clement effectively flattens it out. Transmission loss results are given in
Fig. 4.17 for this chamber with taper lengths of 0.001 m and 0.00001 m respectively and
show no discernible differences, indicating that the HEX8 element may be tapered to
model area discontinuitics. There are limits as to how much the element may be tapered;
a taper length of zero causes interior angles within the element to be 180°, causing
singularities to appear in the Jacobian matrix. The element may be tapered to a length of
almost zero, within the numerical precision of the computer.

/
/

Figure 4.15: HEXS8 Element Mesh Representing Sudden Area Changes in a Duct
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Figure 4.17: Transmission Loss Results for a Chamber with Various Taper Lengths

45.2 Dipole and Quadrupole Mode Propagation

In duct acoustics at low frequencies, most of the energy is transmitted with the
plane wave mode or fundamental wave. As frequencies are increased, however, some of
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the higher order transverse modes become excited and are also propagated, and these
additional modes must also be considered.  Therefore, in addition to the fundamen:al
wave travel'ing in the axial direction having wavefronts which are uniform across the
duct section, there are waves reflecting from the duct walls as they proceed through the
duct, for which the pressure distribution is not uniform across the duct |71]. In this
section, the simple HEX S element formulated earlier will be adapted to model significant
higher order acoustic mode effects using a technique introduced in earlier research work
[32). Here, the method is extended to include the effects of dipole and quadrupole modes
on duct sections including chambers, bends, curves and junctions. These modes are
signiticant as they cause hending and twisting forces in duct walls at low frequencies and
therefore cannot be neglected.

Each acoustic mode has a cut-off frequency and for driving frequencies above
this frequency, the mode will propagate along the duct with usually very little
attenuation; for driving frequencies less than the cut-off frequency, attenuation is very
large and the mode will not propagate as a wave. At frequencies below the cut-off
frequency of the lowest higher mode, only the plane wave mode propagates, all other
modes are strongly attenyated.

If one recalls the HEX8 clement shown in Fig. 4.2, the element can be said to
have four pressure unknowns at each of its faces and the pressure vector at any surface
can be expressed as a linear combination of four pressure distributions {32])

where a, b, ¢ and d are constants. The first vector corresponds to tiie plane wave mode
which has a cut-off frequency of zero. The second and third vectors correspond to dipole
modes which have cut-off frequencies given by A_=n/L,, A, =n/L,, where L, and L,
represent the transverse dimensions of the duct in the x and y directions as shown in Fig.
4.18. The fourth vector represents a quadrupole mode which has an exact cut-off
frequency given by [32]

A= n\ﬁx/L, F+(yLY. (4.23)



)

These modes are shown in Fig. 4 '9 in a form representing their respective pressure
distributions as they would appear in a duct cross-section.  In a hinite element
contiguration where HEXS elements have been assembled axially in a duct section, only
four pressure nodes are present at any point in the duct cross-section, allowing only tour
modes of propagation; the plane wave mode, the dipole two modes and the quadrupole
mode. As such, the HEXR clement is the simplest one for modelling dipole and
quadrupole mode effects in ducts, keeping with the original goals ot this thesis o provide
simple finite element methods for the acoustics engineer to study low (requency duct
acouslics.

Ly

Lx ~

Figure 4.18: Location of Nodal Pressures for a Duct Cross-Section.
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Figure 4.19: Modes of Propagation for a Rectangular Section: the Plane Wave, Dipole
and Quadrupole Mode Pressure Distributions.

The higher order dipole and quadrupole modes can be considered as multipole
sources (point volume velocity sources), each an array of simple sources of equal
amplitudes but with equal or opposite phases. These are the relevant point multipole
sources of order because aerodynamic sound can be described in terms of equivalent
source distributions of dipole and quadrupole order {64].

The dipole sources shown in Fig. 4.19 can be considered as two neighbouring
point volume velocity sources (monopoles) of equivalent magnitude but opposite sign
(phase). As such, the dipole source consists of a positive point monopole, +Q,e’*, and
negative point monopole, —Q,e’*". These two neighbouring point sources of equal
magnitude but opposite 3ign combine to apply an external force to the acoustic medium.
This external force is significant as it causes bending effects in duct sections. Therefore,
the response of the dipole source can be used to predict the response of the duct to a force



dise. ution. This is important for engine-duct acoustics where compressor and turbine
sources may often be modelled by force distributions | 39].

In similar fashion, the quadrupole source shown in Fig. 419 may be descnbed as
an array of four equivalent point monopoles, two positive and two negative se that rere
is zero total monopole moment.  Alternatively, a quadrupole may be egarded as two
neighbouring, opposed dipoles.  The interactions of the opposing dipoles apply an
external stress to the acoustic medium, subsequently causing twisting etfects in the duct
walls.

To demonstrate the accuracy of the lincar HEXS element for modetling tansverse
modes such as the dipole and quadrupole modes, the eigenvalues were caleulated for a
rigid walled straight duct section with dimensions 0.5 m x 0.67 m x 1.0 m. Calculations
were performed with 100 HEXS8 elements assembled in the axial direction of the duct
section so that the system is equivalent to having 404 degrees of freedom.  The
cigenvalues for a duct section with these dimensions have been calculated before {32],
but only the first five eigenvalues were presented and the results for the quadrupole mode
were not included. Eigenvalue results presented here include the quadrupole mode
calculations. As was the case in Section 4.4, the c¢xact modes have the form
cos(Inx /1, )cos(mmy /1l )cos(nmz/ 1), where [,, |, and I, are duct dimensions.

There is an effective fine mesh in the axial direction of the duct and thus the axial
modes are predicted quite accurately as shown in Table 4.5; the (0,0,1) mode is exact to
three decimal places while the (0,0,2) mode has an error of 0.02%. The cut-off
frequencies of the dipole modes, (1,0,0) and (0,1,0), and the quadrupole made (1,1,0)
predicted by this mesh are about 10.27% higher than e¢xact values duc to the linear
approximation in the transverse direction. Modes which include an axial component
such as the (1,0,1) mode are predicted much more accurately than the purely transverse
modes by this type of mesh due to the fact that this is an axial mesh with many clements
assembled in that direction.

If dipole and quadrupole mode effects in duct acoustics are to be analysed using
finite elements, the element mesh representing the duct must be constraingd with these
modes to produce higher order mode propagation in the duct. The constraints may be
applied by pre and post multiplying the global finite element matrices by a Boolean
transfer matrix [B], which is composed of ones and zeros. This has the effect of
reducing the number of degrees of freedom in the system.
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Table 4.5: Exact and Calculated Eigenvalues for a Straight Duct Section

Mode Number | Exact 100 HEX8
Lmn Eigenvalues, A, Elements % Error
0,0,1 3.142 3.142 0.00
1,0,0 4.689 5.170 10.27
1,0,1 5.644 6.050 7.19
0,0,2 6.283 6.284 0.02
0,1,0 6.283 6.928 10.27
0,1,1 7.025 7.607 8.29
1,0,2 7.840 8.138 3.80
1,1,0 7.8340 8.645 10.27
Consider the simple straight duct network consistin; - -0 .3;°X8 elements and

12 ZOF shown in Fig. 4.20. The duct inlet is at the 1, 2, 3 and 4 nvues while the duct
outlet is at the 9, 10, 11 and 12 nodes. If plane wave propagation exists in this duct , the
pressure distribution is uniform across the duct cross-section (refer to Fig. 4.19) and may
be represented by components of equal magnitude and phase at the pressure nodes.
Therefore, this equivalent pressure distribution may be represented by values of unity at
the pressure nodes.

Figure 4.20: Straight Duct Sectit 1; Unconstrained and Constrained (*) Pressure Nodes
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These constraints may be applied to the global element mesh by the following procedure.
The pressure nodes are renumbered using * notation as shown in Fig. 4.20 and the global
pressure vector can be rewritten as

{p}=(8Yp'} (4.24)
(p,} T1 0 0 0 0 0]
p,l 1100000
pl 1100000
pl 11 000 0 offp
pl 10100 0 oflp
pel 100 1 00 offp:
1905l0 001 0 of|p
pl 10000 1 ofp
p| 1000 ¢ 0 1{|p
pol 10 0 0 0 0 1
pl 0000 01
P2 |00 0 0 0 1]

where [B] is the Boolean transfer matrix. Notice that in the first and sixth columns of
matrix [B]. a series of ones has been placed representing plane wave propagation at the
inlet and outlet nodes of the duct section. Using this procedure, the number of DOF for
this element mesh has been reduced from 12 to 6 DOF to allow for the plane wave
constraints applied to the duct. Similarly, the Boolean transfer matrix may be applied to
the global finite element equations in the following form

(BT ((s1-#*1P)B)p } = pa*{Q’} (4.25)

where the superscript 7 denotes a matrix transpose.

Dipole and quadrupole constraints can be applied to a duct using the same
procedure. If the aforementioned duct section was constrained with the (0,1) dipole
mode shown in Fig. 4.19, its global pressure vector would be written in this form.
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(p) [T 0O 00 0 O
A 1 0000 O
pl (-1 0000 0
p.l |-1 000 0 0]p)
P 0 1000 Oflp;
‘p6>=001000<p;»
Py 0 0010 O]flp;
P 0 000 1 0flp;
P 0 000 0 1{ps]
Pol O 000 0 1
pyl |0 000 0 -1
p,) [0 00 0 0 -1

Notice the presence of positive and negative values in columns one and six of the
Boolean transfer matrix. These represent the opposing point monopoles which produce
the dipole at the duct inlet and outlet. A quadrupole mode may be produced using this
method as well.

It has been demonstrated that a simple finite element mesh consisting of axially
connected HEXS8 elements may be used to calculate cut-off frequencies of dipole and
quadrupole modes with an accuracy of 10.27%. In the following sections, the
propagation of these modes is examined to illustrate the efect of cut-off frequencies on
the attenuation of these modes. Various geometries are c.asidered including chambers,
duct bends, curved sections and junctions. The results show that higher mode effects
may be analysed for very complicated geometries using this method.

4.5.2.1 Chambers

In Chapter 2 of this thesis, transmission loss results for various expansion
chambers were presented to demonstrate the effectiveness of the pipe clement in
modelling acoustic ducts with plane wave propagation. In this section, the simple HEX3
clement is implemented to model dipole and quadrupole mode propagation in expansion
chambers with the results also being presented in terms of transmission loss. Since the
T.L. of the chamber is calculated over a frequency range, the effects of cut-off frequency
on a mode's propagation is clearly illustrated by the T.L. calculations.

A model consisting of 12 HEXS elements representing an expansion chamber
with dimensions 0.13 m x 0.30 m x 0.50 m is shown in Fig. 4.21. The elements have
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been assembled only in the axial direction and the model was assuriaed to be part of an
infinite transmission line (pc termination). A dipole mode (1,0) was prescribed at the
inlet and outlet of the chamber to analyse its propagation and attenuation; prescription of
the dipole mode at the outlet was necessary to avoid noise in the T.L. calculations. T.L.
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Figure 4.21: Finite Element Model of Expansion Chamber; 12 HEX8 Elements

values are presented in Fig. 4.22 for this system. For these particular chamber
dimensions, the (1,0) mode has an exact cut-off frequency, f. =c/(2l,), of 1391.23 Hz
where the speed of sound is 343 m/s. The cut-off frequency calculated by the finite
element model is 1455 Hz, which is approximately 10.27% greater than the exact
frequency. The extremely high T.L. values which appear before the cut-off frequency
indicate that the mode is being strongly attenuated and is not propagating in this
frequency range. In this frequency region, only the fundamental mode (plane wave) can
propagate. For driving frequencies greater than the cut-off frequency, the mode is
attenuated significantly less and will propagate as a wave, causing bending forces in the
chamber.

The other dipole mode (0,1) and the quadrupole mode (1,1) were also prescribed
to the chamber to determine their attenuation and propagation. T.L. values for the (0,1)
mode are presented in Fig. 4.23. An exact cut-off frequency, f, =c/(2l,)), of 571.67 Hz
was calculated for these dimensions. The cut-off frequency as determined from the finite
element calculations was 630 Hz, which is 10.27% greater than the exact frequency as
expected. High T L. values appearing before the cut-off frequency indicate strong
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Figure 4.22: T.L. Values for an Expansion Chamber; Dipole Mode (1,0) Propagation
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Figure 4.23: T.L. Values of an Expansion Chamber; Dipole Mode (0,1) Propagation
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attenuation and the mode is not propagating in this frequency region.  Above the cut-oft
frequency, the mode propagates causing bending forces in the chamber,

Lastly, a quadrupole mode (1,1) was prescribed to the chamber with the
subsequent T.L. calculations appearing in Fig. 4.24. The exact cut-oft frequency for the
(1,1) mode for this system is 1437.77 Hz as calculated by the formulac,
f£o=c/2(1/ LY +(1/1)*)"?. The cut-off frequency had a value of 1585 Hz as
determined from the finite element calculations; this was 10.27% greater than the exact
cut-off frequency. Attenuation of the mode is significant below the cut-off frequency as
indicated by the extremely high T.L. values. The mode propagates for driving
frequencies greater than the cut-off frequency, causing torsional stresses in the chamber.

It should be noted that the extremely high T.L. values presented here represent
pressures which are well beyond the range of any instrument. As such, the high T.L.

values are purely academic, they only indicate that the mode is being attenuated and is
not propagating.
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Figure 4.24: T.L. Values of an Expansion Chamber; Quadrupole Mode (1,1)
Propagation
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Curious results appear when the element used to model the inlet and outlet of the
chamber has cubic dimensions. Peaks representing sidebranch resonator effects show up
in the T.L. curves in the region where there is strong mode attenuation. These peaks are
a purely academic phenomenon as they appear in the frequency region of high T.L.
(below cut-off frequency). Their appearance seems to be determined entirely by the
dimensions of the element used to model the chamber inlet ~nd outlet.

Consider the 14 HEXS8 element mesh representing an expansion chamber with
dimensions of 0.15 m x 0.45m x 0.75 m as shown in Fig. 4.25. The element used to
model the chamber inlet and outlet has a length of 0.15 m.
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Figure 4.25: Finite Element Model of an Expansion Chamber; 14 HEX8 Elements

Dipole mode (1,0) propagation was considered for this chamber with the T.L. values
presented in Fig. 4.26. This mode has an exact cut-off frequency of 1143.33 Hz and a
cut-off frequency of 1261 Hz as calculated by the finite element model, which is 10.27%
greater than the exact value. Mode attenuation and propagation for this system are as
described carlier. At a frequency of 888 Hz, a strong sidebranch resonator effect
appears, dramatically increasing mode attenuation. The mechanism responsible for this
attenuation increase has not been determined, but is interesting from an academic point
of view. In practice, attenuation is high in the frequency region below the mode cut-off
frequency irregardless of this sidebranch resonator effect. Increasing the width of model
to 0.20 m has the effect of moving the location of the sidebranch resonator peak to a
lower frequency of 320 Hz as shown in Fig. 4.27; the change in dimension lowered the
cut-off frequency to a value of 946 Hz as well.
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Figure 4.26: T.L. Values for an Expansion Chamber; Dipole Mode (1,0) Propagation

250 T T T T T T T

200

150

100

Transmission Loss (dB)

50

0
0 250 500 750 1000 1250 1500 1750 2000 2250 2500
Frequency (Hz)

Figure 4.27: T.L. Values of an Expansion Chamber; Dipole Mode (1,0) Propagation
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A similar situation occurs when propagation of the dipole mode (0,1) is
considered. A large sidebranch resonator peak appears at a frequency of 888 Hz as
shown in Fig. 4.28. This is significant as it appears at a frequency greater than the cut-
off frequency of 420 Hz.
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Figure 4.28: T.L. Values of an Expansion Chamber; Dipole Mode (0,1) Propagation

Increasing the chamber inlet height to 0.20 m has the effect of moving back the peak to a
frequency of 320 Hz as shown in Fig. 4.29. The cut-off frequency for the chamber has
not changed as the dimensions of the chamber itself have not changed, only the
inlet/outlet dimensions have been altered. Clearly, the dimensions of the chamber have
no effect on the appearance of these peaks in the T.L. curves, only the dimensions of the
element modelling the inlet/outlet are relevant. These peaks did not appear in the
response curves of the chamber presented earlier. For these cases, the length of the
clement modelling the inlet/outlet regions of the chamber was not the same as any of the
cross-sectional dimensions of the element. This appears to be necessary for these
sidebranch peaks to appear in the chamber response curves.
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Figure 4.29: T.L. Values of an Expansion Chamber; Dipole Mode (0,1) Propagation

The propagation of the quadrupole mode (1,1) for this chamber was also
examined and the large sidebranch resonator peaks again were present in the response
curves. When the chamber inlet/outlet cross-section had dimensions 0.15 m x 0.15 m, a
sidebranch peak appeared at a frequency of 1540 Hz as shown in Fig. 4.30. The width of
the model was increased to 0.20 m and the peak appeared at 1300 Hz as shown in Fig.
4.31. The cut-off frequencies for the quadrupole mode were 1329 Hz and 1035 Hz
respectively for these situations.

In some cases, the large sidebranch resonator peaks appear in the frequency
region beyond the cut-off frequency and this is important as they attenuate the mode in
this region, which is not as one would expect. The appearance of these pcaks in the
frequency region below the cut-off frequency has no practical influence on the
propagation of the m~de in this region as it is being strongly attenuated. More research
in this area is necessary to determine the forcing mechanism responsible for the
sidebrazi~h resonater je2ks appearing in the response curves for these chambers. These
peaks kave not appearc for any of the other geometries considered in this thesis.
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4.52.2 Duct Bends

The propagation of sound waves in duct bends has been studied extensively by
previous researchers [15, 16, 34, 35, 76, 771 so a detailed discussion of this topic is not
presented in this section. The propagation of plane waves, dipole and quadrupole modes
in 90° duct bends will be considered in this section using the methods described in
Section 4.5.2.1.

A simple finite element mesh consisting of 36 HEX8 clements assembled along
the axial direction of a 90° duct bend is shown in Figure 4.32.
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Figure 4.32: Finite Element Model of a 90° Duct Bend; 36 HEX8 Elements

The duct has cross-sectional dimensions of 0.15 m x 0.15 m and was assumed to be part
of an infinite transmission line (pc termination). Plane wave propagation was first
considered to demonstrate that simply connected HEX8 elements ~an be used to
successfully model the low frequency response of a complicated geometry such as a duct
bend. Transmission loss values for plane wave propagation are presented in Fig. 4.33
and the results are similar to those presented by [61]. It may he assumed that this type of
element mesh provides acceptable modelling of the low frequency acoustics of a duct
bend.
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Figure 4.33: T.L. Values for a 90° Duct Bend; Plane Wave Propagation

Propagation and attenuation of the two dipole modes, (1,0) and (0,1), was also
considered for this duct bend with the results shown in Figures 4.34 and 4.35. The exact
cut-off frequency for this duct is 1143.33 Hz for a speed of sound of 343 m/s. The cut-
off frequency as calculated by the finite element model was 1260 Hz which is 10.27%
greater than the exact frequency as expected. Attenuation of the mode is strong below
the cut-off frequency as indicated by the high transmission loss values in this frequency
region. Here, the mode does not propagate as a wave. For frequencies above the cut-off
frequency, attenuation of the mode is not very strong and it propagates along the duct
bend, causing bending forces in the duct.

Quadrupole mode (1,1) propagation and attenuation was also examined for this
duct section with the T.L. values being presented in Fig. 4.36. The calculated cut-off
frequency is 1783 Hz which is 10.27% greater than the exact cut-off frequency of
1616.92 Hz. Atenuation is strong below the cut-off frequency and the mode does not
propagate in this region; above the cut-off frequency, the mode propagates causing
torsional stresses in the duct. The method presented in this chapter of prescribing dipole
and quadrupole modes in ducts tc study the propagation and attenuation of these modes
has proven successful for complicated geometries such as duct bends.
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Figure 4.36: T.L. Values for a 90° Duct Bend; Quadrupole Mode (1,1) Propagation

45.2.3 Curved Duct Sections

As was the case with sound propagation in duct bends, the propagation of sound
waves in curved duct sections has been extensively studied [19, 34, 56, 77, 86, 87, 88].
The propagation of the plane wave mode, dipole and quadrupole modes in curved
waveguides is examined here using simple element meshes consisting of chain-assembled
HEXS elements based on the methods described in Section 4.5.2.1.

A 90" curved duct section with cross-section dimensions 0.15 m x 0.15 m and
radius of curvature R = 0.30 m and R, = 0.45 m was considered. A simple chain-
assembled finite element mesh representing this duct section consisted of 36 HEX8
elements with 148 DOF as shown in Fig. 4.37. Again, the duct was assumed to be part
of an infinite transmission line so that there would be no reflections back from the end of
the duct section.
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Figure 4.37: Finite Element Model of a 90° Curved Duct Section; R =0.30m, R, =
0.45 m; 36 HEX8 Elements

Transmission loss values for plane wave propagation are presented in Fig. 4.38, clearly
showing that there is minimal attenuation of the plane wave for the lcw frequencies
considered here. This result is not unexpected as long waves in a narrow curved
waveguide propagate as if the waveguide were straight [84, 86]. As the frequencies of
interest increase, radial reflections from the curved section decrease the amplitude of the
transmitted wave causing increased attenuation of the wave.

Dipole mode (1,0), (0,1) propagation and attenuation was examined for the
curved duct section using the element mesh described above with T.L. results being
presented in Figures 4.39 and 4.40. The calculated cut-off frequency for this duct section
was 1260 Hz which is 10.27% greater than the exact cut-off frequency of 1143.33 Hz.
There is strong attenuation of the modes below the cut-off frequency and the mode will
not propagate as a wave. Above the cut-off frequency, there is much less attenuation and
the modes propagate, causing bending stresses in the walls of the duct section.
Sidebranch resonator effects appear in the response curve of the (1,0) mode below the
cut-off frequency. The forcing mechanism responsible for this is not fully understood
and the results are presented here as an interesting phenomena only. Further research
could be undertaken to determine the source of the sidebranch resonator effects but this
was considered beyond the original scope of the thesis.
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Figure 4.38: T.L. Values for a 90° Curved Duct Section; Plane Wave Propagation
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Figure 4.39: T.L. Values fora 90" Curved Duct Section; Dipole Mode (1,0)
Propagation
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Propagation and attennation of the quadrupole mode (1,1) was examined for the
curved duct section with T.L. values presented in Fig. 4.41. As with the duct bend
considered in the previous section, the calculated cut-off frequency of the mode was
1783 Hz. This is exactly 10.27% greater than the exact cut-off frequency of 1616.92 Hz
as expected. There is strong attenuation of the mode below the cut-off frequency and the
mode does not propagate in this frequency region. For frequencies greater than cut-off,
the mode propagates causing torsional stresses in the walls of the duct. A large
sidebranch resonator peak appeared in the T.L. curve in the frequency range below the
cut-off frequency. This peak is of academic interest only as it appears in the region of
strong mode attenuation. The method of chain-assembling HEXS elements together to
form simple element meshes to study dipole and quadrupole mode propagation in curved

duct sections provides expected accuracies when calculating the cut-off frequencies of
these modes.

150 T T T T

125

100

75

Transmission Loss (dB)

50

25

1 L l

0
0O 250 500 750 1000 1250 1500 1750 2000 2250 2500

Frequency (Hz)

Figure 4.40: T.L. Values for a 90" Curved Duct Section; Dipole Mode (0,1)
Propagation
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Figure 4.41: T.L. Values for a 90" Curved Duct Section; Quadrupole Mode (1,1)
Propageation

4.5.2.4 Junctions

There has been a relatively small amount of research done on sound propagation
through duct junctions where three or more sections join at a common intersection. The
remainder of this chapter demonstrates that simple HEX8 elements chain-assembled
together may be used to approximate the junction problem where anechoically terminated
duct sections meet at a junction.

It is necessary to use three-dimensional elements when modelling complex duct
junctions. The pipe element introduced in Chapter 2 is able to approximate duct
junctions on a very limited scale. With that element, the acoustic pressure at the junction
is treated as a single nodal quantity and cannot take into account reflections and
diffractions present at the junction. As such, sidebranches with various offset angles are
not accurately modelled. Using the HEX8 element, sidebranches of any offset angle may
be modelled and the reflections and diffractions present at the junction may be accurately
represented. It was found that a single HEX8 element was usually sufficient to model the
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junction; for the low frequencies considered here, results were identical to those obtained
with a fine element mesh in the junction area.

Plane wave, dipole and quadrupole mode propagation was considered for a duct
junction with 45" sidebranch as shown in Fig. 4.42. The finite clement mode! consisted
of 38 HEX8 elements with 150 DOF; cross-sectional dimensions were 0.15 m x 0.15 m.
A mesh with fewer elements in the straight duct sections would be acceptable as well.

(A

Figure 4.42: Finite Element Model of Junction with 45" Sidebranch; 38 HEX8
Elements

Transmission loss values for plane wave propagation through the junction is
shown in Fig. 4.43, indicating very little attenuation for the low frequencies considered.
Response curves for dipole mode propagation and quadrupole mode propagation are
presented in Figures 4.44-4.46. The cut-off frequencies for the junction are identical to
those for the duct bend and curved section considered earlier. More complicated
junctions could be considered but the purpose of this section was only to introduce the
procedure for examining dipole and quadrupole mode propagation using simple HEX8
elements.
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Chapter5

A Three-Dimensional HEX8 Finite Element
with Flexible Boundaries

5.1 Introduction

If fluid motion normal to a surface is possible, there will be wave motion in that
surface. For certain cases, various parts of the surface are not strongly coupled together
and the motion normal to the surface, of any one portion of the surface, is dependent only
on the acoustic pressure which is incident on that surface portion. It is independent of
the motion of any other part of the surface {71]. For such cases, the surface is said to be
locally reacting. The three-dimensional HEX8 acoustic clement discussed in Chapter 4
will be modified here to allow suitable approximation of locally reacting surfaces, this
being an extension of previous research [26] where hexahedral elements were used to
study the effects of boundary flexibility on normal modes and natural frequencies. The
locally reacting assumption follows the basic goal of this thesis; to provide simple finite
element methods for the acoustics engineer concerned with duct acoustics.

When surface reaction at one point depends on the motion of neighbouring
points, so that the reaction is different for various incident waves, the surface is extended
reacting. Surfaces such as ones which are membrane-like, ones with laminated structure,
ones where waves penetrate into the surface material and surfaces where waves
propagate parallel to the surface may all be considered extended reacting. Theoretical
treatment of an extended reacting surface involves considering surface motion as being
governed by the unsteady plate equation. This must be coupled with equations governing
the acoustics of the duct in the finite element model. This is not a trivial undertaking.

The interaction between sound waves and a locally reacting surface is defined by
snecifying its acoustic impedance as a function of frequency. Simplifying assumptions
are usually made by workers in acoustics concerning surface impedance, usually that the
surface impedance be either mass, stiffness or damping controlled. Damping is usually
very slight at low frequencies and only mass controlled or stiffness controlled surfaces
were considered here.

115
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A linear isoparametric two-dimensional finite clement with four pressure nodes is
formuiated using Galerkin's method of weighted residuals to model surface motion and is
coupled to the HEX8 element. This procedure does not add any new degrees of freedom
to the system as the HEXS element has only four pressure nodes on any of its surfaces.
The effects of mass or stiffuess controlled surface motion on wave propagation are
considered by determining the eigenvalues of a closed tube with tlexible side walls and
rigid ends. Comparison is made with the flexible walled pipe element developed in
Chapter 3.

5.2 3-D Hexahedral Element with Flexible Walls

The HEX8 element presented in Chapter 4 is modified here to allow for not only
rigid duct walls but locally reacting flexible walls as well and is shown in Fig. 5.1.
Essentially, acoustic wave motion will be approximated using the three-dimensional
HEX8 element but the wall motion of any of the surfaces of the clement will be
approximated using linear isoparametric two-dimensional surface elements. In this way,
any combination of rigid and locally reacting flexible duct walls may be modelled using
a combination of simple linear elements while not increasing the number of degrees of
freedom in the system.

Figure 5.1: HEXS Element with Flexible Walls

The three-dimensional Helmholtz equation governs the acoustic wave motion in
any duct
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sz Ozp Fp

Fw c)y azz+k p=4, 5.1

together with the boundary conditions, Vp =0 on any rigid surface, Vp = ypwv on any
flexible surface. Here, p is the acoustic pressure, v is the velocity of thc¢ moving
boundary, p is the density of the acoustic medium, @ is the angular frequency and the
gradient operator has the usual form, V =0/dx+d/dy+d/dz. The governing finite
clement equations used to approximate the Helmholtz equation with corresponding rigid
and flexible walled boundary conditions are formulated using Galerkin's method of
weighted residuals as presented in Chapter 4. With respect to efficiency, only the
formulation of the element equations is presented here; the linear polynomial,
transformation matrix and Jacobian for the HEX8 element have been given previously in
Section 4.3.

Galerkin's method of weighted residuals is used to formulate the finite element
approximations to the Helmholtz equation. The residual, R, may be written as

R={FY [T Wp }+{F Y [T R b+ e [T K} + 2 FY [T M} 52

where the vector {F;’} denotes FF/ox*, {F;'} denotes & F/dy’ and {Fz”} denotes
@ F[az*. As before, Galerkin's equation has the form

[[[ir}Rardydz=0 (5.3)

where
{r1=[r"]{F}
Substitution of the residual into Galerkin's equation results in the following equation.
f j [Ty [+ [ TR Y [ [ TP Y [+

{1 T {FHFY T W p, }ddydz =
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In this form, the matrices in the first three terms are null and non-symmetric and there
are no surface terms representing the wall motion of the element. Greens first theorem

JEHEY av = [1rH Eas - [{EMEY av

v

can be used to make the matrices symmetric and also introduce the surface terms into the
equation,

T MY [ 1o TR Y () TN )

(5.4)
[T T{FHFY [T )p. }dx dvdz+ joo (pv)ds =0

with the previously mentioned rigid and flexible wall boundary conditions.

The surface terms of Eq. (5.4) need to be modelled with some finite element other
than the three-dimensional HEX8 element. A linear isoparametric two-dimensional
element with four pressure nodes was chosen to model the motion of any of the surfaces
of the HEX8 element and will be referred to as the surface element. This is a logical
choice as any particular surface of the isoparametric HEX8 clement has only four
pressure nodes. The surface element is deformable to any geometry, has linear pressure
variations between its four node points and is shown in Fig. 5.2 in its local (r, s5) and
global (x, y) coordinate systems, Similar to the HEX8 element, the surface element
remains a fixed square in its local coordinate system with coordinates varying between
-1 and +1. The element may be deformed to almost any geometry in its global
coordinates, the restriction being that all interior angles be less than 180° to avoid
singularities in the Jacobian matrix. All integrations for the surface clement are

performed numerically between *1 limits, conforming with the Gauss quadrature
technique.
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Figure 5.2: Linear Isoparametric Surface Element in Local and Global Coordinate
Systems

The linear pressure distribution between the nodes on any surface of the surface
element may be represented by a simple polynomial

p=a +ar+a;s+a,rs (5.5)
which can be expressed in matrix form as
p={F{a} (5.6)
where the subscript S denotes the surface element and
{FY.={1 r s rs}

a,
a,

a,
a,

{a}=

The pressure is exrressed in terms of generalised coordinates g,---a, which govern the
contribution of each of the terms of the simple polynomial. They are related to the
acoustic pressures at the individual node points of the element by inserting boundary
values for each nodal pressure. Insertion of the boundary values for each nodal pressure
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results in a system of four cquations and four unknowns which c.n be expressed in
matrix form as

{p.},=[Tdabor et =[T"]{p.},

where the transformation matrix for the surface element is

1 -1 -1 1
I -t 1 -l
| N
| G N G

(7] =

The pressure at any point (r, s) within the clement may now be writien in terms of the
nodal pressures

p={F[T"]{p.}; (5.7)

For an isoparametric acoustic finite element, the variation in geometry is
governed by the same polynomials which govern the variation in pressure, allowing the
element to be distorted to any geometry. The regular geometry in the local coordinate
system is transformed to a distorted geometry in the global system; the relationship
between local and global coordinates can be determined by applying rules of partial
differentiation

9 _kd &I
or Jdrodx ordy
9 _9xd dy 3
ds Osx Osdy

Following the steps presented in Section 4.3, the relationship between global coordinate
derivatives and local coordinate derivatives is written as
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where [J]; denotes the Jacobian matrix for the surface element. Transformation of the
coordinate systems is given by, dxdy =||J||;drds, where |J|; denotes the absolute value

of the determinant of the surface Jacobian matrix. Using Galerkin's method of weighted
residuals, the equations representing the surface element may be introduced into Eq.
(5.4). Subsequently, the respective Jacobians for the HEX8 and surface elements can
also be introduced imo Eq. (5.4) to transform the equations to local coordinates.

+1+141
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If the relationship, v=p/Z, (Z, being the wall impedance), is substituted for the
velocity of the moving surface, the above equation may be rewritten in terms of the wall
impedance

+1+1+41
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or in more compact form, it may be written as

(s1-417D)+ /22001 b= 0} 59

w

which is the approximate finite element equation of motion for an acoustic system with
locally reacting flexible walls {26]. This equation is only suitable for undamped systems
where there is no energy dissipation; this was not a significant handicap for this work as
for most low frequency acoustic problems the damping is slight. As usual, Eq. (5.8) may



be separated into the square symmetric 8x3 kinetic [S] and potential [P] cnergy
matrices respectively. As well, the surface term is represented by the square symmetric
4x 4 matrix [A).
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The global kinetic and potential energy matrices are assembled in the usual way;
the surface elements are assembled based on the nodal configuration of the global system
of HEX8 elements. As such, the global surface element matrix will have the same
number of degrees of freedom as the global kinetic and potential energy matrices,
irregardless of which surfaces are considered flexible and independent of the number of
surface elements in the element mesh; this procedure does not increase the number of
degrees of freedom of the system.

The selected values for the acoustic wall impedance, Z,, were purely hypothetical
and were chosen only to demonstrate the effects of mass or stiffness-controlled locally
reacting flexible walls. These particular impedances to not have any specific references
to the properties of a specific materia.. Considcr the case where the wall motion is mass
controlled. The velocity of the moving surface can be written as [26]

V= (5.13)

where m,, is the generalised wall mass. Making use of the relationship v=p/Z,_, Eq.
(5.13) can be written in terms of the wall impedance

= (5.14)
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Substituting the mass controlled wall impedance into Eq. (5.9), the approximate equation
of motion becomes

[([S] --;”—[A])-k’[P]J{p}= {o}. (5.15)

w

It would appear as though the mass controlled terms are subtracted from the Kkinetic
energy matrix. Actually, the globally assembled coefficients of [A] are negative, thus the
mass controlled terms are added to the kinetic energy matrix. This has the effect of
increasing the natural frequencies of the system.

Alternatively, wall motion may be stiffness controlled. Wall surface velocity is
represented by [26]

Jjop
=- 5.16
Y c’k, ©.16)

where k,, is the generalised wall stiffness term. Again, Eq. (5.16) can be written in terms

of the wail impedance

2
z =-Sk, (5.17)
Jo

This result is now substituted into Eq. (5.9) and the approximate equation of motion now
becomes

([S] - kz([P]—kﬂ[A]D{p} ={0}. (5.18)

The globally assembled coefficients of [A] are negative, therefore the stiffness controlled
terms are added to the potential energy matrix. This has the effect of decreasing the
natural frequencies of the system. Examination of Egs. (5.15) and (5.18) shows that if
the generalised wall mass or generalised wall stiffness terms are increased indefinitely,
the terms added to the kinetic and potential energy matrices approach zero,
corresponding to the limiting rigid wall condition.

The HEX8 element is assembled using the method described in Section 4.3.1.
The surface element is assembled for any non-rigid surface using the nodal connectivity
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information of the HEX8 element. Mass or stiffness controlied terms added to the global
» metic and potential energy matrices have the same degrees of freedom. Continuity and
convergence conditions are both satisfied for the coupled HEX8-surface clement by the
arguments presented in Section 4.3.2.

5.3 Element Testing

The effects of a flexible boundary on the frequencies of a closed straight duct
section with flexible side walls and rigid ends are demonstrated by considering the wall
motion to be either mass or stiffness controlled; eigenvalue results are compared with the
rigid case and with results obtained for a similar tube using the flexible walled pipe
clement. The results presented here are entirely numerical in nature as no experimentally
determined natural frequencies exist in the literature for ducts with locally reacting
surfaces.

5.3.1 Eigenvalue Models

Finite element models consisting of 80 HEX8 elements with 324 DOF were chain
assembled to represent a closed straight duct section with flexible side walls and
stationary medium as shown in Fig. 5.3. The shaded areas represented the non-rigid
surfaces. The duct section was unit length with cross-section dimensions 0.1 m x 0.1 m.

Figure 5.3: Closed Straight Duct Section with Flexible Side Walls and Rigid Ends
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For the case where the flexible walls are mass-controlled, eigenvalue resuits are
presented in Table 5.1. These results demonstrate that a mass controlled flexible
boundary increases the natural frequencies of a system. The eigenvalues converge from
above (o the rigid walled case as the generalised mass term is increased. For the case
where m, = 10000, the limiting condition has almost been reached and the side walls are
very nearly rigid; the eigenvalues are nearly identical to the rigid walled case. Results
for wall masses m, = 1 and m, = 10 display the expected characteristics where the
natural frequencies are increased by the mass controlled walls, increasing as the
generalised wall mass decreases. This may be summarised by stating that the motion of
the mass controlled walls is out of phase with the acoustic pressure, pushing the waves
along at a quicker pace than they would travel in free space.

When the flexible walls are stiffness controlled, eigenvalue results are presented
in Table 5.2. Clearly, stiffness controlled flexible boundaries decrease the natural
frequencies of a system. The eigenvalues converge from below the rigid walled case as
the generalised stiffness term is increased. When &, = 10000, the limiting condition has
almost been reached and the side walls are very nearly rigid. For wall masses &, = 1 and
k, = 10, eigenvalues are decreased, increasing as the generalised stiffness term increases
as expected. Wall motion is out of phase with the acoustic pressure and the wave
progresses down the duct at a slower pace than they would travel in free space.

A similar duct section was modelled in Chapter 3 using the flexible walled pipe
element for mass and stiffness controlled walls. Comparison of the results show similar
trends for the natural frequencies for nearly rigid cases but as the duct walls become
more flexible, the difference in natural frequencies is more dramatic. This difference
arises since the pipe element models duct sections as tubes and for any length of duct, the
surface area of the tube is less than a square duct section. The added surface area
accounted for by the coupled HEX8-surface element increases the values of the terms
added to the kinetic and potential eneirgy matrices, therefore the difference in natural
frequencies.



126

Table 5.1: Eigenvalues of a Closed Straight Duct Section of Unit Length with Mass

Controlled Flexible Walls
Mode Rigid Flex-Wall | Flex-Wall | Flex-Wall | Flex-Wall
Number,n | Walled | m, =0.01 m, =1 m, =10 [m, =10000

1 9.87 4849.87 58.27 14.71 9.88

2 39.50 4879.50 87.90 44.34 39.50
3 88.93 4928.93 137.33 93.77 88.93
4 158.23 4998.24 206.64 163.08 158.24
5 247.53 5087.53 295.93 252.37 247.54
6 356.95 5196.95 405.35 361.79 356.96

Table 5.2: Eigenvalues of a Closed Duct Section of Unit Length with Stiffness
Controlled Flexible Walls

Mode Rigid Flex-Wall | Flex-Wall | Flex-Wall | Flex-Wall
Number,n | Walled | k,=0.01 k,=1 k,=10 |k, =10000
1 9.87 0.002 0.20 1.69 9.82
2 39.50 0.008 0.80 6.76 39.31
3 88.93 0.02 1.80 15.23 88.50
4 158.23 0.03 3.20 27.10 157.48
5 247.53 0.05 5.01 42.39 246.34
6 356.95 0.07 7.23 61.12 355.23




CHAPTERG
The Hypercube Element

6.1 Introduction

Disturbances such as turbulence in fluids or thermal fluctuations produce
equivalent volume source distributions, generating acoustic waves (continuous
distributions of monopole sources over a finiic region) {64]. Intense acoustic waves can
generate turbulence or thermal disturbances m a fluid as well. Compressor fans or
turbine stages do not behave like a simple source and are usually represented by a
distribution of point sources over a certain region of the duct; often as a dipole source
{39]. Noise generated by a turbulent jet can be regarded as being caused by a distribution
of equivalent acoustic quadrupole sources over the jet mixing region. In summary,
aerodynamic sound can be described in terms of equivalent dipole and quadrupole source
distributions and therefore it may be said that the important higher order point multipole
sources are the dipole and quadrupole.

In Chapter 4, a method was introduced where a simple HEXS finite element was
constrained to represent higher order dipole and quadrupole mode effects in a duct. In
this chapter, a hybrid element known as the hypercube* is developed to model various
dipole and quadrupole source configurations in a duct section. The hypercube consists of
7 HEX8 elements, assembled in such a way as to form a "cube within a cube" shape,
similar to the four-dimensional cube used to represent the principle of parallel
processing. This element allows various sources of aerodynamic sound in a duct to be
modelled and is easily connected to a chain assembly of simple HEXS8 elements.

All duct systems considered in this chapter are based on the assumption of a rigid
walled duct with stationary medium and all duct sections were considered to be part of an
infinite transmission line (anechoically terminated). Computations with the hypercube
element were carried out on an IBM RS/6000 320H workstation using FORTRAN source
code with extremely fast computation times. The hypercube element is described in
detail in the subsequent section followed by the modelling of various dipole and
quadrupole sources using a mesh of HEX8 and hypercube elements.
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6.2 The Hypercube Element

Consider an elementary source distribution present in a duct as shown in Fig. 6.1.

- -

-
-
-
-

Figure 6.1: Elementary Source Distribution in a Duct

The linear dimensions of the source are small compared with the acoustic wavelength
and therefore the shape of the source region is not critical {39]; for a rectangular duct, the
region is assumed to be cubic in nature.

Figure 6.2: Hypercube Element (7 Assembled HEX8 Elements)

* The hypercube element was forinulated to model multiple sources in duct acoustics based on suggestion
from Dr. A. Craggs, Department of Mechanical Engineering, University of Alberta, Edmonton, Canada.
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The assumption that the source region be cubic in nature lends ijtself perfectly to the
hypercube element. A hypercube element is actually an assembly of 7 HEXS8 elements
with 16 nodes or DOF to form a "cube within a cube” as shown in Fig. 6.2. In this
configuration, a source region is represented by the inner cube of the element. The
element has only four pressure nodes on any of its outer faces, thus allowing only plane
wave, dipole and quadrupole modes of propagation. This makes the element ideal for
connecting into a mesh of chain assembled HEX8 elements, keeping with the goal of
providing simple finite element techniques for the acoustics engineer.

To represent sources of dipole and quadrupole order, appropriate mode
constraints are applied to the faces of the inner cube using the procedure of pre and post
multiplying the global finite element matrices by a Boolean transfer matrix. By this
method, axial and transverse sources in the duct may be modellcd by constraining the
faces of the inner cube as shown in Fig. 6.3. It should be noted that this is an
isoparametric element and the inner cube may be formulated to represent a source of any
size and can even be rotated if desired.

Figure 6.3: Surfaces of the Inner Cube Representing Axial and Transverse Sources in a
Duct
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6.3 Modelling Dipole and Quadrupole Source Distributions

In this section, various dipole and quadrupole sources are considered for a straight
duct section using a mesh of a hypercube element and HEXS8 clements. Results are
presented in terms of transmission loss, clearly illustrating the effects of cut-off
frequency on higher order mode propagation,

A finite element model approximating a source in a straight duct section with
dimensions 0.2 m X 0.2 m x 1.0 m is shown in Fig. 6.4. A hypercube clement is used to
model the source while 8 HEX8 elements represent the remainder of the duct section; the
mesh has 48 DOF. The source (inner cube) has dimensions 0.05 m x 0.05 m x 0.05 m
and is located in the centre of the duct. One end of the duct section is assumed to be
rigid while the other end is anechoically terminated.

Figure 6.4: Hypercube Element Representing a Sound Source in a Straight Duct
Section

First, an axial dipole (1,0) source was considered by constraining a face of the inner cube
(face A shown in Fig. 6.3) with transmission loss results being shown in Fig. 6.5. A
dipole (1,0) was also applied to the outlet of the duct section (anechoically terminated
end). For these particular duct dimensions, the dipole mode has an exact cut-off
frequency of 857.5 Hz. The cut-off frequency calculated with the finite element model is
945.6 Hz which is 10.27% greater than the exact value as expected based on results
presented in Chapter 4. Mode propagation is entirely dependent on the dimensions of the
duct, not on the configuration of the source.
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Flgure 6.5: Axial Dipole (1,0) Source; Dipole (1,0) Prescribed at Outlet

An axial quadrupole (i,1) source was also considered with a quadrupole being prescribed
at the outlet of the duct section. T.L. results are presented in Fig. 6.6, clearly illustrating
the effects of cut-off frequency on propagation of the mode. Below the calculated cut-
off frequency of 1337.2 Hz, the mode is strongly attenuated and does not propagate as a
wave. Above the cut-off frequency, the mode is attenuated much less and propagates,
introducing torsional stresses in the walls of the duct. For the remainder of the work
presented in this chapter, the duct dimensions will be 0.2 m X 0.2 m x 1.0 m and the
calculated cut-off frequencies for the dipole and quadrupole modes will be 945.6 Hz and
1337.2 Hz respectively.

It should be noted that the mode applied to the outlet of the duct section is
particularly important. If a dipole (1,0) source is considered and an opposing dipole
(0,1) is applied at the duct outlet, the opposing modes essentially nullify each other,
producing a destructive interference effect as shown in Fig. 6.7.
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Figure 6.6: Axial Quadrupole (1,1) Source; Quadrupole (1,1) Prescribed at Outlet
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Figure 6.7: Axial Dipole (1,0) Source; Dipole (0,1) Prescribed at Qutlet
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Transverse sources may also be modelled by constraining face B of the inner cube
as shown in Fig. 6.3, A transverse dipole (1,0) source was considered with a plane wave
prescribed at the duct outlet.  T.L. results presented in Fig. 6.8 demonstrate that care
must be taken when applying modes at the termination of the duct as they may
destructively interfere with the propagation of both axial and transverse source modes.
As such, no cut-off frequencies were calculated with this finite element model.
Similarly, a transverse dipole (0,1) source was considered with a plane wave again being
prescribed at the duct outlet. For this case, interference appears to be much greater than
when the other dipole (1,0) source was considered as shown by the T.L. results presented
in Fig. 6.9. This is probably due to the manner in which each of these modes reflects
from the duct walls because of the transverse source distribution. If transverse dipole
and quadrupole sources are considered with corresponding dipoles and quadrupoles
applied at the duct outlet, mode propagation is the same as if the sources were axial as
shown in Figures 6.10 and 6.11, again demonstrating that mode propagation depends
only on the duct configuration, not on the source, based on the assumptions mentioned at
the beginning of the chapter.
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Figure 6.8: Transversc Dipole (1,0) Source; Plane Wave Prescribed at Outlet
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Figure 6.9: Transverse Dipole (0,1) Source; Plane Wave Prescribed at Qutlet
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Figure 6.10: Transverse Dipole (1,0) Source; Dipole (1,0) Prescribed at Outlet
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Figure 6.11: Transverse Quadrupole (1,1) Source; Quadrupole (1,1) Prescribed at
Outlet

The inner cube of the hypercube may be offset to any position within the larger
cube to represent any type of source located within the duct. It may even be rotated by
some angle less than 45° as well. Axial propagation from an offset higher order source
was considered as shown in Fig. 6.12. A dipole (1,0) source was considered with a
dipole (1,0) being prescribed at the duct outlet with T.L. results being presented in Fig.
6.13. Propagation and cut-off effects of the dipole mode are similar to those presented
earlier but within the frequency range below the cut-off frequency, a sidebranch
resonator peak appears, probably due to reflections caused by the offset source. This
peak appears in the region of strong mode attenuation and thus is of no practical interest.
Therefore, the mechanism responsible for this peak has not been examined in this thesis
work.
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A larger sound source in a straight duct section was also considered with the
source having dimensions of 0.1 m x 0.1 m x 0.1 m as shown in Fig. 6.14. As before,
oth axial and transverse dipcle and quadrupole sources are examined.

Figure 6.14: Large Source in a Straight Duct Section

An axial dipole (1,0) source was prescribed to face A of the inner cube (refer to Fig. 6.3)
with the same dipole set at the duct outlet. T.L. resalts for this case are presented in Fig.
6.15; the calculated mode cut-off frequency is 857.5 Hz, demonstrating once again that
the mode cut-off frequency is independent of source configuration. The same modes
were considered for a transverse source with T.L. results shown in Fig. 6.16. For this
case, the mode cut-off frequency is not distinct and the general shape of the T.L. curve in
the frequency region below 1000 Hz suggests that many reflections are present in this
duct section. Clearly, the size of the sound source is the cause of the added reflection in
the duct section. Although theory suggests that the shape of the source region is not
critical [39), care must be taken that the criterion stating the linear dimensions of the
source be small compared with the acoustic wavelength is not violated.

If a dipole (1,0) source is prescribed to all faces of the inner cube with the same
dipole being applied to the duct outlet, the result is that the source just puisates and no
sound propagates down the duct, as the destructive interference present in Fig. 6.17
suggests.
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Figure 6.15: Large Axial Dipole (1,0) Source; Dipole (1,0) Prescribed at Qutlet
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Prescribed at Outlet

Very small sound sources were also considered for a straight duct section where
the linear dimensions of the inner cube were 0.001 m and 0.000001 m respectively. This
configuration is shown in Fig. 6.18.

Figure 6.18: Small Source in a Straight Duct Section
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Dipole and quadrupole sources were considered by applying these modes to all faces of
the inner cube with respective modes being prescribed at the duct outlet. T.L. results for
these cases are presented in Figures 6.19 and 6.20, clearly illustrating the effects of cut-
off frequency and mode propagation. In these configurations, the source pulsates and
there is very little sound propagation as indicted by the elevated pressure losses beyond
the respective cut-off frequencies. If the dimensions of the source are reduced to
0.000001 m and a mode is applied to all faces of the inner cube, the source begins to
pulsate completely and there is no sound propagation as indicated by the T.L. results and
destructive interference patterns presented in Fig. 6.21. Again, theory states that the
shape of the source is not critical for cases where the dimensions of the source
distribution are small compared with the acoustic wavelength. Care must be taken when
using these assumptions in conjunction with finite element approximations.
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CHAPTER7
Conclusions

This thesis has presented a variety of simple one and three-dimensional finite
element methods for studying low frequency duct acoustics. These methods are directed
at the acoustics engineer who needs more accurate methods than the "rules of thumb" he
may be using to design acoustic duct systems and provide him with uncomplicated finite
element models which require only limited computer resources. First, a quadratic one-
dimensional finite element is formulated for studying plane wave acoustics for rigid and
flexible walled ducts with anechoic termination and stationary flow. Second, a linear
isoparametric three-dimensional element is formulated to study low frequency plane
wave, dipole and quadrupole mode propagation in ducts for rigid and flexible walled
cases with anechoic termination and stationary flow. Last, the three-dimensional element
is modified to form a hybrid element suitable for modelling aerodynamic sound sources
in ducts.

The second chapter of this thesis introduced a one-dimensional quadratic finite
element (pipe element) to model plane wave acoustics, the restriction being that the
transverse dimensions of the element be small compared with the acoustic wavelength.
The element is formulated based on quadratic pressure and cross-sectional area variations
using Galerkin's method of weighted residuals. This method is more general than - rgy
methods such as the Rayleigh-Ritz variational method allowing Galerkin's methud to be
more applicable to a wider range of problems. A reflective filter is one which removes
low frequencies from a system while an absorptive filter is more useful for removing
higher frequencies form a system. The finite element used in this chapter was formulated
for plane wave or low frequency acoustics and thus only reflective systems were
considered. Absorptive systems which dissipate energy were not analysed with this
element. The damped equations of motion for an acoustic system were formulated using
Galerkin's method as well. While only undamped reflective systems were considered
here, various sources of dissipation could be considered in future work using these
equations. All systems were considered to be rigid walled with stationary flow.

Element accuracy was determined by calculating the eigenvalues of a standing
wave in a closed tube. Using thirteen pipe elements, the sixth natural frequency of the
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tube was calculated with an error of 0.6%. The frequency response of a variety of one-
dimensional systems including area expansions, chambers, sidebranches, resonators,
finite length horns and junctions were considered. For low frequencies where only the
plane wave mode propagates, only a few elements were necessary to effectively model
the system. A limitation of the pipe element is that it is only one-dimensional and
therefore cannot model offsets or junctions where the branch angle is important. This
element is particularly useful for determining the initial low frequency response of a
system which could subsequently be analysed by three-dimensional elements.

For most practical duct configurations, wall thickness is finite and may not
always be considered as being completely rigid. The pipe element is modified in Chapter
3 to include the effects of locally reacting mass and stiffness controlled duct walls. A
mass controlled duct wall increases the natural frequencies of a system by adding terms
to the kinetic energy matrix while a stiffness controlled wall decreases the natural
frequencies of a system by adding terms to the potential energy matrix. As wall mass is
increased, the limiting rigid wall case is approached; as wall stiffness is increased, the
limiting rigid walled case is approached.

In Chapter 4, the HEX8 element was formulated using Galerkin's method of
weighted residuals, a method which is much more general than a variational energy
formulation such as the Rayleigh-Ritz method and thus Galerkin's method is applicable
to a wider range of problems. The HEXS8 element is isoparametric in nature meaning
that it is deformable to almost any shape as long as all interior angles are less than 180°.
The accuracy of this element in deformed shape was determined by calculating the
eigenvalues of a cylindrical enclosure.

On any face of the HEXS element, there are only four pressure nodes meaning
that only four modes of propagation are allowed; the plane wave, two dipole modes and
the quadrupole mode. For low frequency acoustics, these modes cannot be neglected as
they cause bending forces and torsional stresses in the walls of the duct. By applying
appropriate pressure constraints to a duct section, mode propagation and attenuation can
be examined using the methods introduced in this chapter. For the simple element
meshes consisting of HEX8 elements chain assembled together, there is only a linear
approximation in the transverse direction, thus the cut-off frequencies of the dipole and
quadrupole modes are calculated as being 10.27% greater than exact values. Various
duct configurations including chambers, bends, curves and junctions were considered
using simple chain assembled element meshes with low frequency results being
extremely good for the first four modes of propagation. Even in the region of a junction,
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only one HEX8 element was necessary because only up to the fourth mode was
propagating, greatly simplifying the element mesh,

Significant low frequency 3-D wave effects including mode propagation and
attenuation can be examined using only simple chain assembled HEX8 elements, leading
to subsequent reduction in the usage of computer resources. Higher order elements could
be constrained with these modes to study propagation and attenuation of more
complicated systems but that would be the subject of future work.

Similar to the procedure presented in Chapter 3, the HEX8 element is modified
in Chapter 5 to include locally reacting mass and stiffness controlled wall effects. This is
a simplified approach to approximating wall motion on the acoustics of the duct. A
much more difficult approach is to allow wall motion to be governed by the unsteady
plate equation and couple it to the acoustic model. Here, locally reacting mass and
stiffness controlled wall effects are approximated using a linear, two-dimensional
isoparametric element coupled to the surfaces of a HEX8 element. Again, a mass
controlled wall increases natural frequencies while a stiffness controlled wall causes a
decrease in the natural frequencies of the system. A straight rectangular duct section was
modelled with both the flexible walled HEX8 eclement and the flexible walled pipe
element. The calculated eigenvalues showed similar trends but values differed slightly
because the surface area modelled with the three-dimensional element was greater than
for the pipe element, which considered the duct section as a tube. Experimental work
could be undertaken to determine the validity of locally reacting mass and stiffness
controlled wall approximations as compared to wall motion governed by the unsteady
plate equation. The method presented here is a much simpler approach.

A hybrid finite element known as the hypercube was introduced in Chapter 6.
Based on the "cube within a cube" description used to represent parallel processing
theory, the element actually consists of seven assembled HEXS8 elements. The major
advantage of this is that the element is easily connected to a chain assembly of simple
HEXS elements. Aerodynamic sound can be represented by continuous distributions of
monopole sources over a finite region and thus thermal fluctuations, compressor fans,
turbine stages and turbulence may be represented by equivalent dipole or quadrupole
source distributions. By constraining the hypercube element with appropriate dipole or
quadrupole modes, various sources of aerodynamic sound can be approximated by the
finite element method including offset and rotated sources. Preliminary results presented
in this thesis indicate that mode propagation is entirely dependent on the dimensions of
the duct, not on the configuration of the source as long as the linear dimensions of the
source are small compared with the acoustic wavelength. The hypercube is in its infancy
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and much further work could be done with the element including considering systems
with more complicated geometries than a straight duct section aild systems with multiple
sources. This clement may prove particularly useful in the future for representing
turbulent sources generated in ducts with high Mach number {low. There has only been
limited work thus far in this area.

Hopefully, the finite element methods presented in this thesis work will be
beneficial to the practical analysis of low frequency acoustic systems, particularly to
future work in the field of turbulent noise generated in ducts with flow. Listings of
computers programs will be published as a department:l report.
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APPENDIX A

A.1  The J¢ ~ubi Method

The Jacobi method was developed for the solution of standard cigenvalue
problems and has been used extensively because of the method's simplicity and stability
[11]; it is foolproof for all real, symmetric matrices. The method consists of a sequence
of orthogonal similarity transformations of the form

A-P AP P P -A-P PP P P -AP-P,-P, s erc. (A

where P is some transformation matrix. These similarity transformations direct the
matrix A towards a diagonal form. Each transformation is just a plane rotation (Jacobi
rotation) designed to eliminate one of the off-diagonal matrix elements. Previously set
zeros may be undone by successive transformations but the off-diagonal elements
continue to be reduced until the matrix is diagonal to computer precision. The product of
the transformations can be accumulated as follows to give the matrix of eigenvectors

X=P PP, (A.2)
and the elements of the final diagonal matrix are the eigenvalues.

Following the procedure and notation outlined in [82], a basic Jacobi rotation is a
matrix of the form

—s s C
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and is selected in such a way that an off-diagonal element in A is zeroed. All diagonal
elements are unity except for two cosine elements ¢ in rows and columns p and ¢. All
off-diagonal elements are zero except for the two sine elements s and —s in rows and
columns p and q.

A plane rotation is used to transform the matrix A according to

A'=Pl-A-P, (A.3)

where the superscript T denotes a matrix transformation. The operation P, -A changes
only rows p and ¢ of A, while A-P, changes only columns p and ¢ of A. Thus the

changed elements of A are only in the p and g rows and columns

’ »
alp s alq
, ’ ’ ’
a, a, a, Qpn
Ar=| : : :
’ ’ ’ ’
a, a, Ay A
’ ’
L G ay, ]

The following explicit formulas can be determined by multiplying out Eq. (A.3)
and making use of the symmetry of A

’ fmd —
a,, =ca, —sa,

a, =ca,+sa, Tr*p, r#q (A4)
a, =c'a, +s'a,~2sca,, (A.5)
a,= szapp + cza" +2sca,, (A.6)

a, =(c* -5 )a,, + sc(a” - a“) (A.7)

To set a,, =0, Eq. (A.7) gives the following expression for the angle of the plane

rotation
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f=cot2¢= C.z;:- = ‘"2; Cor (A.8)
Pq

d

If we let ¢ =5/ ¢, the definition of © can be rewritien as
£ +26-1=0 (A.9)
The smaller root of Eq. (A.9) corresponds to a rotation angle less than x/4,

which gives the most stable reduction at each phase of the operation. Using the form of

the quadratic formula with the discriminant in the denominator, the smaller root can be
written as

sgn(6) .
f=—= (A.10)
|6|+‘/62 +1

If @ is so large that 6° would overflow the computer, we set £=1/(26). It follows that
the cosine and sine terms can be rewritten as

c= (A.11)
s—/t’+l

s=tc (A.12)
When we use Egs. (A.4-A.7) numerically, we rewrite them to minimize round-off
error and Eq. (A.7) is replaced by a;,. The idea in the remaining equations is to set the
new quantity equal to the old quantity plus a small correction. Therefore, we can
eliminate a;, from Eq. (A.5), giving
a,, =a, —ta,, (A.13)
In similar fashion,

a;q =a, +1a,, (A.14)

a,=a, -s(a,q + ra,,,) (A.15)
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a, =a,+ s(a,,, - ta,q) (A.16)

where 7T is defined by t=s/(1+¢).
One can see the convergence of the Jacobi method by considering the sum of the
squares of the off-diagonal elements.

2

5=3

res

(A.17)

aﬂ

Equations (A.4-A.7) imply that

§'=5-2a,| (A.18)

Since the transformation is orthogonal, the sum of the squares of the diagonal elements
. . 2. .

increases correspondingly by 2|a"| . Since the sequence is bounded below zero, and we
can choose a,, to be whatever we want, the sequence can be made to converge to zero.

Eventually, the matrix D becomes diagonal to computer precision. The diagonal
elements give the eigenvalues of the original matrix A, since

D=V .A.V (A.19)
where
V=P -P,-P;--- (A.20)

the P's being the successive Jacobi rotation matrices. The columns of V are the
eigenvectors (A-V=V.D). They can be determined by considering

V'=V-P, (A.21)
at each stage of the calculation, where V is the identity matrix. In detail, Eq. (A.21) is

v,=v, (s#p, s#q)
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v, =V, -8y, (A.22)
Vi =SV, oy,

These equations are also rewritten in terms of T to minimize round-oft error.

The following routines listed in FORTRAN code are used to compute the
eigenvalues and eigenvectors of a real, symmetric matrix. They are part of the IMSL
reference library. Notice that the matrices must be in vector format.

SUBROUTINE NROOT(M,A,B, XL, X)
This routine computes the eigenvalues and eigenvectors of a real,
symmetric matrix of the form B-inverse times A. The routine
EIGEN is used in combination with NROOT. The matrices must be input
as vectors.

eXeNeKe!

M - order of sdquare matrices A, B and X.

A - input vector (M x M).

B - input vector (M x M).

YL - output vector of length M containing eigenvalues of B-inverse
times A.

X - output vector (M x M) containing eigenvectors columnwise,

oo NO RS NS NY!

IMPLICIT REAL*8 (A-H,0-2)
IMPLICIT INTEGER*2 (I-N)
REAL*8 A(M*M), B(M*M), XL(M), X(M*M), SUMV

C Compute eigenvalues and eigenvectors of B

K=1
DO 100 J=2,M
L=M* (J-1)
DO 100 I=1,J
L=L+1
K=K+1

100 B(K)=B(L)

C The matrix B is a real symmetric matrix.
MV=0
CALL EIGEN(B,X,M,MV)

C Form reciprocals of square root of eigenvalues. The results are
C premultiplied by the associated eigenvectors.
Do 110 J=1,M
L=L+J
110 XL(J)=1.0/DSQRT(DABS(B(L))}
K=0
DO 115 J:lrM
DO 115 I=1,M
K=K+1
115 B(K)=X(K)*XL(J)

C Form (B**(-1/2))PRIME*A*(B**(-1/2))
DO 120 I=1,M

N2=0
DO 120 J=1,M
N1=M*(I-1)

L=M* (J-1)+I



~

[

C Compute :he norcalized eigenvectors

nnaoaaooaaaonan

XLy N0
PO 120 K=1,M
N1=Nl+1
M2=N2+1
120 X(L)=X(')+F N1)*A(N2)
L=0
DO 130 J=1,:
DO 130 1=,
N1=I-M
N2=M*(J-1)
L=L+1
A(L)=0.0
DO 130 “=1i,M
N1=N1+M
N2=N2+)
130 A(L)=n{:;+4(N1)*B(N2)

Compute rig:<awvalues and eigenvectors of A.

CALL EICENI{A,.X,M,MV)
L=0
DU 1670 [:1,4
L=L+1
140 XL(I)- &t

DO 1%0 I=1,M
N2=0
DO 150 J=i,M
N1=I-M
L=M*(J-1)+1
P00
DO 150 K=1,M
N1=N1+M
N2=N2+1

150 A (L) =A(L)+B(N1;*X(N2)
L=0
K=0
DO 180 J=1,M
SUMV=0.0
DO 170 1=1,M
L=L+1

170 SUMV=SUMV+A (L) *A (L)

175 SUMV=DSQRT (SUMV)
DO 180 I=1,M
K=K+1

180 X {(K) =A(K)/SUMV
RETURN
END

SUBROUTINE EIGEN(A,R,N,MV)

This routine computes the eigenvalues and eigenvectors of a real

symmetric matrix.

A - original matrix (symmetric), destroyed in computation.
eigenvalues are developed in diagonal of matrix A in descending

orxrder.

R - resultant matrix of eigenvectors (stored columnwise, in same

sequence as eigenvalues).
N - order of matrices A and R.
MV - input code.

0 compute eigenvalues and eigenvectors.
1 compute eigenvalues only (R need not be dimensioned but
must still appear in calling sequence).

IMPLICIT REAL*8 (A-H,0-2)
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Resultant
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IMPLICIT INTEGER*2 (I-N)
REAL*8 A(N,N), R({N,N)

C Generate identity matrix.
5 RANGE=1.0E-012
IF (MvV-1) 10,25,10

10 IQ=-N
DO 20 J=1,N
IQ=IQ+N
DO 20 I=1,N
IJ=IQ+I
R(IJ)=0.0
IF (I-J) 20,15,20
15 R(1J)=1.0
20 CONTINUE

C Compute initial and final norms (anorm and anormx)
25 ANORM=0.0
po 35 1=1,N
DO 35 J=1,N
IF (1I-J) 30,35,30
30 IA=I+(J*J-J)/2
ANORM=ANORM+A (IA) *A (IA)
35 CONTINUE
IF (ANORM) 165,165,40
40 ANORM=1.414*DSQRT (ANORM)
ANRMX=ANORM*RANGE/DFLOAT (N)

C Initialize indicators and compute threshold, thr.
IND=0
THR=ANORM
45 THR=THR/DFLOAT (N)
50 L=1
55 M=L+1

C Computs: sin and cos

60 MQ= M*M-M)/2
LQ=(L*L-L)/2
LM=L+MQ

62 IF (DABS(A(LM))-THR) 130,65,65

65 IND=1
LL=L+LQ
MM=M+MQ
X=0.5*(A(LL)-A(MM))

68 Y=-A(LM)/DSQRT (A(LM) *A (LM) +X*X)
IF (X) 70,75,75

70 Y=-Y

75 SINX=Y/DSQRT(2.0*(1.0+(DSQRT(1.0-Y*Y})))
SINX2=SINX*SINX

78 COSX=DSQRT(1.0-SINx2)
COSX2=COSX*COSX
SINCS=SINX*COSX

C Rotate L and M columns.
ILO=N*(L-1)
IMQ=N* (M-1)
DO 125 I=1,N
IQ=(I*I-I)/2
IF (I-L) 80,115,80
80 IF (I-M) 85,115,90
85 IM=I+MQ
GOTO 95
90 IM=M+IQ
95 IF (I-L) 100,105,105
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100 IL=I+LQ
GOTO 110

105 IL=L+IQ

110 X=A(IL) *COSX-A(IM)*SINX
A(IM)=A(IL) *SINX+A(IM) *COSX
A(IL)=X

115 IF (MV-1) 120,125,120

120 ILR=ILQ+I
IMR=IMQ+I
AX=R(ILR) *COSX~R(IMR) *SINX
R(IMR}=R (ILR) *SINX+R (IMR) *COSX
R(ILR)=X

125 CONTINUE
X=2.0*A{LM) *SINCS
Y=A(LL) *COSX2+A (MM) *SINX2-X
X=A(LL) *SINX2+A (MM) *COSX2+X
A{(LM) = (A(LL)~-A(MM)) *SINCS+A(LM) * (COSX2-SINX2)

A{(LL)=Y

A (MM) =X
Tests for completion.
Test for M = last column.
130 IF (M-N) 135,140,135
135 M=M+1

GOTO 60

Test for L = second from last column.
140 IF (L-(N-1)) 145,150,145
145 L=L+1
GOTO 55
150 IF (IND-1) 160,155,160
155 IND=0
GOTO 50

Compare threshold with final norm.
160 IF (THR-ANRMX) 165,165,455

Sort eigenvalues and eigenvectors.
165 IQ=-N
DO 185 I=1,N
IQ=IQ+N
LL=I+(I*I-1)/2
JQ=N*(I-2)
DO 185 J=I,N
JQ=JQ+N
MM=J+ (J*J~-J) /2
IF (A(LL)-A(MM)) 170,185,185
170 X=A(LL)
A (LL)=A (MM)
A (MM) =X
IF (MV-1) 175,185,175
17% DO 180 K=1,N
ILR=IQ+K
IMR=JQ+K
X=R(ILR)
R{ILR)=R({IMR)
180 R(IMR) =X
185 CONTINUE
RETURN
END
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A.2 LU Decomposition

Consider that the coefficent matrix A can be written as the product of two
matrices,

L-U=A (A.23)
where L is lower triangular (has clements only on the diagonal and below) and U is
upner triangular (has elements only on the diagonal and above). For the case of a 3x3
matrix A, Eq. (A.23) has the form

o, O 0 1 B B By a4y, a4y “n],

o, oy 0 0 By By|=|ay dn 9y
o, %y 05| 0 0 By dy Uy Uy

We can use a decomposition such as Eq. (A.23) to solve the linear sct of
equations

A-x=(L-U)-x=L-(U-x)=b (A.24)
by first solving for the vector y such that
L-y=b (A.25)
and then solving
U-x=y (A.26)
The advantage of breaking up one linear set into two successive ones is that the

solution of a triangular set of equations is quite trivial. Thus, Eq. (A.25) can be solved
by forward elimination as follows,
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y‘ ?&[bﬁia"y’]} i=2,3,...N (A.27)

=l

while Eq. (A.26) can then be solved by backsubstitution as follows,

N
Xy =——
" Bw
1 N
% =g vi— 2Bx; | i=N-1, N-2,..1 (A.28)
i j=i#|

Notice that once we have the LU decomposition of A we can solve with as many
right-hand sides as we then care to, one at a time. This is a distinct advantage over the
methods of Gauss-Jordan elimination and Gauss elimination with backsubstitution.

The following routines listed in FORTRAN code are used in combination to solve
sets of linear cquations and are listed in reference [82]. As well, the routines may be
used to determine the inverse of a matrix as well as its determinant.

SUBROUTINE Ludcmp (A, N, INDX,D)
Given an N by N matrix A with physical dimension NP, this routine
replaces it by the LU decomposition of a rowwise permutation of
itself. A and N are input. INDX is an output vector which records
the row permutation effected by the partial pivoting; D is output as
+- 1 depending on whether the number c¢f row interchanges was odd or
even. This routine is used in combination with LUBKSB to solve
linear equations or invert a matrix. (See Numerical Recipes, Fortran
Version, p. 35)
IMPLICIT REAL*4 (A-H,0-Z)
IMPLICIT INTEGER*2 (I-N)
PARAMETER (NMAX=500,TINY=1.0E-20)
REAL*4 A(N,N), VV(NMAX)
INTEGER*2 INDX (N)
D=1.0
Do I=1,N
AAMAX=0.0
DO J=1,N
IF (ABS(A(I,J)).GT.AAMAX) AAMAX=ABS(A(I,J))
END DO
IF (AAMAX.EQ.0.0) PAUSE ‘'Singular matrix.'
VV(I)=1.0/AAMAX
END DO
DO J=1,N
DO I=1,J-1
SUM=A(I,J)
DO K=1,I-1
SUM=SUM-A(I,K)*A(K,J)
END DO
A(I,J)=SUM
END DO
AAMMAX=0.0

NnOOnNONOnOn



c
C
C

NOaOOCONNONON

166

END DO
A(I,J)=5UM
DUM=VV (I) *ABS (SUM)
IF (DUM.GE.AAMAX) THEN
IMAX=T
AAMAX =DUM
ENDIF
END DO
IF (J.NE.IMAX) THEN
DO K=1,N
DUM=A (IMAX, K}
A(IMAX,K)=A(J,K)

A(J,K)=DUM
END DO
D=-D
VV (IMAX) =VV (J)

ENDIF
INDX (J) =IMAX
IF (A(J,J).EQ.0.0) A(J,J)=TINY
If the pivot element is zerc the matrix is singular (at least to the
precision of the algorithm). For some applications on sinqular
matrices, it is desirable to substitute TINY for zero.
IF (J.NE.N) THEN
DUM=1.0/A(J,J)
DO I=J+1,N
A(I,J)=A(I,J)*DUM
END DO
ENDIF
END DO
RETURN
END

SUEROUTINE Lubksb(A,N,INDX,B)
Solves the set of N linear equations A*x=B. Here A is input, not as
the matrix A kut as its LU decomposition, determined by the routine
LUDCMP. INuUX is input as the permutation vector returned by LUDCMP.
B is input as the right-hand side vector B, and returns with the
solution vector X. A, N, NP and INDX are not modified by this routine
and can be left in place for successive calls with different right-
hand sides B. This routine takes into account the possibkility that B
will begin with many zero elements, so it is efficient for use in
matrix inversion. (See Numerical Recipes, Fortran Version, p. 36).
IMPLICIT REAL*4 (A-H,0-Z)
IMPLICIT INTEGER*2 (I-N)
REAL*4 A(NP,NP), B(N)
INTEGER*2 INDX(N)
I1I=0
DO I=1,N
LL=INDX(I)
SUM=B (LL)
B(LL)=B(I)
IF (II.NE.O; THEN
DO J=II,1-1
SUM=SUM-A(I,J) *B(J)
END DO
ELSE IF (SUM.NE.0.0) THEN
II=1
ENDIF
B(I)=SUM



END DO

DO I=N,1,-1
SUM=B (1)
DO J=I+1,xq

SUM=SUM-A(I,J)*B(J)

END DO
B(I)=SUM/A(I,I)

END DO

RETURN

END
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