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Abstract

Theories attempting to explain the lack of invariance of an F1 by F2
repraesentation of vowels brought about by speaker differences often
propose different candidates for a speaker normalization factor, including:
(intrinsic) FO, (intrinsic) F3, and (extrinsic) formant range information.
Human listeners' identification of adolescent vowels presented in two
listening conditions was compared to the predictions from a statistical model
of spesech recognition in order to test hypotheses concarning the importance
of intrinsic and extrinsic information in speaker normalization. The vowels
from eight speakers, whose mean fundamental frequency correlated poorly
with their mean formant frequency (r= .21), served as the stimuli (data) for
both the human listener and pattern recognition identification tests. The
potenstial intrinsic cue {FO) to speaker identification (formant range
information) was not available in thess. Nonstheless, the human rates of
identification are still comparable to those for “normal™ aduit vowels, in
similar studies, in which the expected correlation between fundamental and
formant frequencies exists. While the addition of syllable-intrinsic F3 or FO
slightly improved the statistical classification, extrinsic information ( provided
by a formant normalization procedure) was even more sffective. Evidence
for extrinsic formant range normalization is provided by the improvement in
the identification rates in a speaker blocked (over a mixed speaker)
presentation being correlated with the change in the response profiles
between a mods! that included F1 & F2 and a model that included formant
range normalized F1 & F2. Cues to speaker identity useful in the

normalization of vowels seem to be available from both intrinsic and
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extrinsic sources, and are perhaps used in varying degrees dependent on

their value under the particular conditions.
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Chapter 1

Introduction

Speaker diffarences (graphically represented as tha overlap of vowel
categories in a plot of F1 x F2) are a major source of variation in the acoustic
characteristics of vowsls. Joos (1948) and Chiba and Kajiyama (1941)
ware among the first to point out that the first two formant frequencies,
though important determinants of vowel identity, are not invariant across
different speakers. One way that vowel perception theory has attempted to
reduce the overlap problern that is introduced by speaker variation, is
through an appeal to normalization of the vowels. Not all contemporary
theorists embrace normalization explicitly. One alternate explanation
appeals to formant ratios. Both a normalization view and a formant ratio
view can explain the overlap problem to some degrese. The difference
between approaches hinges on whether or not a distinct normalization factor
is involved in the perceptual process. If such a factor is in fact part of the
speaker normalization process, we should be able to discover where it
comes from. The candidates for normalizer inciude factors such as FO, F3,
and formant range information. Confusion sets in when both normalization
and formant ratio explanations appeal to the same source of information.
For example, a ratio theory may also claim FO or F3 to be important, but not
rafer to it as a normalization factor. Therefore the distinction in how the
information is used must be made clear. This will be called the manner
distinction.  Historical differences among vowel perception theories will be
outlined in a framework of two basic distinctions. The first addresses the
question of where the normalization information comes from. 1 will use the

terms “intrinsic” and “extrinsic” (as was done by Ainsworth, 1975; and



Nearey, 1989) in discussing the information-source issue. The second
distinction, the manner-of-use issue, will be discussed in terms of Johnson's
[in press] terminology : “direct” or “indirect” usas of such information. A
description of how some theories differ in terms of these distinctions is
presented. While this study looks at the possibility of either intrinsic or
extrinsic sources' providing sheaker normalization information, it assumes
an “indirect” use of such information. That is, a normalization view rather
than a ratio view is held. Finally, the motivation for using adolescent voices

to investigate speaker normalization is outlined.

Terminology

Normalization, as opposed to a ratio theory, involves a re-scaling of
formant values. This is typically achieved by using a speaker scale factor
calculated by reference to some extra-syllabic factor (e.g. formant range
‘nformation from context vowels). Extra-syllabic information may be thought
of as coming from an extrinsic source. Relative formant normalizations such
as the constant log interval hypothesis (CLIH) of Nearey (1978) and the
linear rescaling normalizations of Gerstman (1968) and Lobanov (1971), fali
into the category of extrinsic theories. They may differ in what specific
information is required to calculate the scale factor (and in the number ot
scale factors), but the source of the information is always extrinsic.
Evidence for the formant range effects of context on test vowsls abounds
(most of it is from synthetic carrier sentences and precursor syllables
examples): Ladefoged and Broadbent, 1957; Ainsworth, 1975; Nearey,
1978: Assmann, Nearey and Hogan, 1982 (hereafter ANH); Dechovitz,
1977.



Classic ratio theories, on the other hand, do not refer to anything
outside the syllable; they are based exclusively on information intrinsic to
the vowsl. Intrinsic factors include the formant frequencies, the fundamental
frequency and any other components of the vowel itself (also mostly tested
by synthetic stimuli: Fujisaki and Kawashima, 1968). Support for ratio
“normalization” has been fuelled by evidence of the strong relation between
FO and formant frequencies in natural voices. For example, in the intonation
range of a single speaker, F1 is seen to weakly follow FO (Syrdai and
Steele, 1985). There is also cross-speaker evidence for the link. An
increase in formant frequencies of approximately 30%, accompanying a
100% increase in fundamental frequency, was noted by Ainsworth and
confirmed in calculations of natural data, including Peterson and Barnay's
(1952) study of male, female and child vowels. However, this 30% to 100%
relation between formant and fundamental frequencies is not always upheld.
Although there have not been many studies on natural voices having a low
correlation between fundamental and formants, the Gottfried and Chew
(1986) study showad that in vowels intoned by a (male) counter-tenor, the
increase in formant frequency corresponding to a 100% increase in pitch
was only 5 tc 10%, {much lower than the expected standard 30%).

Slawson {1968), with synthetic experiments found that difference
judgements in vowel quality due to a 100% rise in FO were minimized when
accompanied by a 12% increase in formant frequencies. Such evidence
weakens the argument for the direct use of FO as a normalizer.

Both intrinsic and extrinsic factors have been empirically shown to be
useful sources of information for vowel perception. Ainsworth (1975) found
both intrinsic (FO) and extrinsic (formant ranges of precursor vowels) effects

to influence the categorization of synthetic stimuli. Nearey (1989),



expanding on Ainsworth's design with better-quality syntnetic stimuli, also
found both intrinsic and extrinsic effects. Both experimentars found greater
offacts for context formant ranges than for FO, however. Therefore, intrinsic
information alone certainly cannot be the entire answer, in view of the good
evidence for effects of context (Ainsworth,1975; Dechovitz, 1977). Neither,
though, doses a purely extrinsib explanation appear to be completely
accurate, since isolated vowels of difterent speakers in random order are
quite well identified (ANH, 1982). If speaker context is required for vowel
perception, a mixed speaker presentation (of voices from very different
formant ranges, e.g. male and female ranges) would cause
misidentifications. Howaver, ANH found that a mixed speaker condition still
yielded high identification rates of vowels of men and women (94.5%).
Nevertheless, they also found that when vowelis were presented blocked by
speaker, (providing extrinsic formant range information) identification rates
were significantly higher than in the mixed speaksr condition. A number of
studies show similar advantages under blocked speaker conditions. See
Nearey (1989, Tables | and ii, p. 2089) for a summary.

In addition to the source of information used for normalization,
Johnson (in press) distinguishes the manner in which the information is
used. It can be used directly to characterize the vowel, as intrinsic ratio
theories propose; or indirectly, suggesting a referential perceptual space for
vowel interpretation, as extrinsic formant range normalizations suggest.
Johnson's direct/indirect distinction incorporates the "pure" theories referred

to by Nearey (1989).! Ratio theories (Traunmdiller, 19812; Syrdal and

1 Johnson's terms "indirect-extrinsic™ and “direct-Intrinsic™ are equivalent to Nearey's "pure-
axtrinsic” and “pure- intrinsic”, raspectively.
2Traunmiller's more recent work appears to be less extreme,



Gopal, 1986) contend that formant spacing is the only important factor for
vowel identification. Early suggestions of this nature were made by Potter
and Steinberg (1950) and, physiologically, are frequently related in terms of
tonotopic basilar membrane sensitivity. The proponents belie: e that the
frequency ratio or Bark difference values of F1 to FO, F2to F1 and F3to F2
are the defining characten’sticé of vowels. The manner in which FO and F3
are treated is crucial to the distinction being made betwsen direct and
indirect theories. In a ratio theory the role of FO is direct since it makes up
part of the ratio. The role of F3 would also be direct. In an indirect theory, on
the other hand, the role of FO and/or F3 is only indirect, in the sense that they
are used to calculate a normalization factor.

Fujisaki and Kawashima (1968} found both FO and F3 to be
influential in the perception of vowsiz, znd while the design of their
experiment strictly tasted a ratio theory, they suggested that these intrinsic
factors may in fact be used indirectly. An intrinsic factor, in an indirect
treatment, acts as a cus to the referential F1 X F2 space for a particular
speaker. A theory that proposes the indirect use of intrinsic factors is
logically distinct from either a ratio-type (direct-intrinsic) or a formant
normalization (indirect-extrinsic) theory, though experiments necessary to
differentiate among them empirically may be quite subtle. {(See Johnson, in
press).

Slawson (1968) posits the possible combination of uses of
information. A direct use is made of inherant lower formant cues ina
“sensory” stage. An indirect use is made of F3, as an aid in the
interpretation of the lower formant information, in a phonetic or cognitive
stage. Listeners made judgements as to the vowel quality differences

between pairs of synthetic sounds. Pairs of sounds in a series ( presented in



an AX experimental design) differed by a formant shift factor ranging from
0.95 to 1.3. One experiment raised the higher formants (F3 and F4) to
values comparable to those of a child (based partly on Peterson and Bamey,
1952), another experiment doubled the standard FO from 135 Hz to 270 Hz ,
and a third experiment raised both the FO and the higher formants. Slawson
found that the greatest magniﬁ.nde differences in quality were due to shifts in
the lower two formants. Smailer differences in vowel quality were functions
of both the first two formants and the fundamental. Higher formants also
played a very small role. He proposed F3 as a candidate for the cue (with
littie effect on vowel quality) that is used as an aid in the identification of
children's vowels. The 100% increase in FO, from typical male to child
values, caused minimal difference judgements when it was accompanied by
an approximate 12% rise in formant frequency. Siawson therefore suggests
that the identity of the talker (expected formant range) may be determined
by the length of the vocal tract. Since higher formants remain fairly stable
across vowels for a single talker, F3is often thought of as a correlate to
vocal tract length, in an inverse relation (Peterson and Barney, 1952). The
higher formant information could be used to cue the expected range of the
lower formants. Slawson suggests that “the small quality differences, dus to
higher formants, indicate how the greatar differences, due to lower

formants, should be used to classify the vowel.”

Methodology: Stimuli

By virtus of the hypotheses, much of the experimentation testing
intrinsic theories has used synthetic stimuli. Using synthetic stimuli allows
the experimenter easy control of experimental factors. Work on naturally

produced vowels does not permit the same freedom. However, evidence



from studies with natural speech is needed to verify the results from synthetic
speach experiments. Adult male versus aduit female vowsls can be used
when formant range differences or F0 differences are desired in
experimental stimuli. However, in adult data, where FO and resonance
information are strongly correlated, it is difficult to differentiate between their
individual contributions.

Natural voices that lack such a correlation are required for the
investigation of the differential effects of the two sources. Nearey (1989)
mentions sevaral notable voices that mest the “lack of correlation”
requirement, those of: Julia Child (high fundamental but low formant
frequencies) and Popeye (high formant frequencies and a low fundamental),
for example. It was conjectured that a similar situation might be found in a
larger sample, namely in an adolescent population. Because rapid changes
in the suprarlaryngeal vocal tract and the larynx occur dunng adolescence, a
weak correlation of their acoustic products might also be found. An example
of the rapid growth that takes place in this age group {as well as gender
differences) is illustrated by the amount of change in size of the larynx itself.
The male larynx is known to double in size, while the female larynx
increases in size by only haif2 (F. B. Wilson, personal communication). If a
weak correlation can be shown to exist between the two sources of
information, the opportunity to examine differential effects would be
provided. The measurement study of vowels from adolescent speakers that

was undertaken to this end is presented in Chapter two.

3 While the length of the vocal fokis is generally believed to be a main determinant of
fundamental frequency, many other factors may be involved, therefore the size of vocal
apparatus and fundamental frequency may not always be directly related (F. B. Wilson,
parsonal communication).



Chapter three describes a perceptual test involving the vowels from
those speakers whose voices were found to differ widely in terms of vocal

tract resonances yet had similar fundamental frequencies.

Analyses

Algorithmic testing is a viable demonstration of reduction of the
physical overiap in production measures. In favor of using natural stimuli for
perceptual tests, ANH (1982) developed a technique to compare statistical
classification of vowels from measurements of their acoustic characteristics
with actual identification by listeners. An index of resolution that such a
method provides is an a posteriori probability of membership in an intended
category, denoted (APFi). "Intended category” is that which was intended
by the speaker in production.

The statistical model serves two functions. It first provides a direct
index of resolution by which to compare the performance of algorithms.
Secondly, its APP predictions can be used to make relatively fine
comparisons between the listeners' and the statistical model's
categorization behavior. Though the classification modelling technique
provides good evidence for which parameters are salient to vowel
perception {by means of testing various combinations of parameters and
comparing the resultant measures of resolution), one cannot infer that an
additional parameter which causes the mods! to classify vowals with better
separation is necessarily a “normalizing” tactor. The model does not
explicitly test the contribution of the parameters nor how they interact with
each other. In order to qualify a factor as playing a normalization role, it has
to be shown that its contribution is indirect, acting to rescale F1 and F2. An

a priori normalization must be performed. Of the relative formant



normalization procedures compared in ANH (1982), CLIH (from Nearey
1978) was one of the mare effective, and is therefore employed as the
procedure for the current test. Intrinsic factors are tested for their contribution
to the separation power of an algorithm merely by their presence or absence
in an algorithm.

it will be shown that exfﬁnsic information attained in blocked speaker
prasentation is of perceptual importance. In addition to extrinsic relative
formant information, the possibility of intrinsic FO and F3 (and other sources

of "speaker identity” information) being used indirectly will be entertained in

the concluding discussion.



Chapter 2

Measurement Study

Recordings

Thirty-two speakers from ages 1110 15 were recorded reading /hvVd/
words from flash cards preseﬁted in succession but random order until the
entire list containing the 11 Canadian vowals had been run through at least
three times. Repstitions of the list for the same speaker were in different
orders, and the ordsr changed from speaker to speaker as well. Two tokens
of each of the vowels were digitized for 27 of the speakers. The speakers
were volunteers from a junior high school in Edmonton. They were told to
read the words in their normal speaking voice. Each speaker was seated at
a table upon which the microphone {Sony Dynamic MTL-F96) was
distanced approximatsly 45 cm from, and almost level to his/her mouth. The
recorder was a portable Sony CR22 Cassette-corder. The recordings were
made in a generally quiet room in the school, over the course of severai
days, during which recording conditions varied.4 The floor was tile and the
walls thin. There were sounds of footsteps from outside the room captured
on the recording. The hum of the air conditioning system was particularly
noticeable on one of the recording days. Fortunately, 27 (14 girls and 13
boys) of the speakers' recordings were of suitable quality to be analyzed.

Non-invasive physiological measures (height and neck size) were

taken at the time of the recording session.®

45 will be shown below, the subset of stimuli used in the perceptual experiment were highly
identifiable to listeners. In addition, high classification rates in self-trained and jackknifed
analyses make it likely that valid measures were available for those fokens.

5The physiological measures are not discussed in this thesls, but were presented in another
work (Merino & Nearey, 1989).

10



Digitization

The signals were bandpass filtered at 80 to 7800 Hz on a Wavetek
Rockland filter (model 852). The CSRE signal processing software for PC
{Jamieson et al.,1990) was used to digitize at a sampling rate of 16.6 KHZ

and 12 bit resolution. The signals were stored on a Zenith PC.

Analysis:

Selective-range auto-correlation LPC and cepstral analyses were
performed as implemented on a Macintosh Il computer (Welz, 1989) using
software that was the prototype for the raw track component of the CSRE
system (Jamieson et al., 1990).

Parameter settings were changed depending on the expected range
of formants, either 9 or 11 coefficients were used (analysis set to the " order”
of 9 or 11). The order parameter then would determine the number of
formants that could be extracted from the range, two cosfficients being
required for any given formant. See Jamieson et al. (1990) for a further
explanation of the parameters. The first thres of four formants were thereby
tracked throughout the signal. The number of formants that would be
tracked by the analysis also depended on the frequency range setting. A
focussed range was used in the higher frequency region if the second and
third formants seemed to merge or the tracking was not smooth in that
region. For example, the lower limit of the frequency range would be raised
to 500 Hz and the number of coefficients decreased.

The upper frequency cutoff was pre-selected at 4000 for initial
analysis, but was increased to 4500 Hz if the third formant had not been

clearly tracked for a particular speaker.

11
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A typical setting of the parameters for a signal analysis might consist
of the following:

LPC window duration: 15 ms.

Hop duration: 5 ms.

Cepstral window duration: 30 ms.

Analysis Order: 11 coefﬁcients.

Frequency range: 0-4000 Hz.

Cepstral limit: 75- 400.

Silence amplitude threshold: 5 dB

Zeoro crossing threshold: 1500.

The tracking files were displayed in a format with the frequency
values printed every 5 ms. From special graphic displays showing unit
accuracy to 1 Hertz below the 1000 Hz range, and to 10 Hz above 1000 Hz,
measures of the pitch and the first three formants were made "early” and
~late” in the vowel. See the appendix for a graphic formant tracking
example. The criteria for the taking of measurements were as follows: The
EARLY (initial) VOWEL MEASURE was taken as close to the beginning of
the signal as possible where (1) the pitch appeared stable, and (2) the
overall amplitude was near its maximum for the syllable. The LATE (final)
VOWEL MEASURE was taken where {1} the overall amplitude of the signal
was within 3 dB of peak amplitude, and (2) the first and second formants did
not exhibit rapid movement due to consonantal transition. The third
consideration in determining the frame for the late vowel measure was that
(3) the frame preceded, by approximately 40 ms, the characteristic, rapid
decrease in amplitude due to closure for the final /d/. The DURATION of the

vowel was taken as the time between the initial reading of 10 dB below peak
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amplitude and the next 10 dB below peak reading. The duration,
determined almost exclusively by the reliable “amplitude-at-closure” strategy
(above), did not always coincide with the duration between the formant
frequency measurement frames. The early and late points were used for the
measuremant of the first three formants as well as the fundamental
frequency, so that, ideally, all three formant frequency values and the
fundamaental frequency were taken from the same analysis frame. If,
however, tha chosen frame did not provide a reliable reading for one of the
formants or the fundamantal, the closest time frame was used. Figure 2.1

shows the F1 x F2 vowel space (early measures only) for the twenty-seven

speakers.
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Figure 2.1 The F1 x F2 vowael space of twenty seven speakers. Eight vowels are plotted
for each speaker. The vowals without American approximates, /e/ and /o/ are not shown.



Descriptive Comparison

The frequency values from the early measures of the three formants
were averaged into a geometric mean for each of the twenty seven
speakers. The fundamental frequency values across all vowsls for a
speaker wers collapsed into a.mean FO value. Only the initial measures are
used in these averagings for comparison with the Peterson and Barney
1952 study, in which there was one measure taken in mid-vowel. With two
measures per speaker, one to represent vocal tract resonance {7 ) and the

other source frequency (7o), F was plotted against FU to determine the

amount of correlation between the two potential "size estimating” measures.

The Peterson ans Barney data was likewise treated to the same averaging
applications, and the two groups were compared for amount of correlation
between FO and formants. The two American vowels /a/and /o/ were
averaged to produce an approximate to the Canadian /p/. The Canadian

vowels /e/, and/o/ were not included in the comparison, as the Peterson

and Barney data have no equivalents to thsm. Neither was /2+/ included.

14
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Figure 2.2: Geometric mean of formant frequencies by geomatric mean of fundamental

frequency, for Paterson and Barney (1952) data (adult male, adult female and child vowels).
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Figure 2.3: Geometric mean of formant frequencies by geometric mean of fundamental

frequency, for Hillcrest data (adolescent male and adolescent female vowals).



Table 2.1:Correlation of Fo with F
(based on Peterson and Barney 1952 data)

male female child all
T .36 .50 .29 .84
F2 .16 .29 15 .85
3 .04 .38 -.09 84
F 31 .53 16 .88
Table 2.2: correlation of 'F& with F
(Adolescent data)
male female hi-FO all
T 72 -.01 a2 .58
F2 .64 .25 .29 .67
I .63 .05 1 .62
F .76 .09 .21 .70

The Peterson and Barney data showed higher correlation {r=.88) as a
group than the group of Hillcrest speakers taken as a whole {r=.70). The
correlation was radically reduced when the sub-group of higher pitch voices
was isolated (r=.21), i.e. , the speakers that had adult male-like voices were
in an obviously separated group from the others, as seen in figure 2.3.
When the male-like pitched voices were removed, the remaining voices
showed an average pitch of approximately 200 Hz. A comparison of the
Peterson and Barney female speakers with the Hillcrast high-FO group
shows tha average fundamentals of the two groups to be similar. The

Hillcrest high-FO group's vowsls are most similar to the Peterson and

Barney adult female vowels in terms of fundamental frequency, but in terms

17
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of formant frequencies they show a much greater variation than those of the
Peterson and Bamey adult females.

There is a cluster of voices at a female-like pitch (around 200 Hz),
these speakers' vowals will be looked at in greater detail as they will serve
as the stimuli for the following perceptual experiment. Before the perceptual
experiment is run, the ~and-vowel” measures are added to the data corpus.

Another screening of the data found some measurement arror in the
formant frequency values. Corrections ware made prior to the perceptual
experiment and pattern recognition analyses. Correlations were checked for
any change caused by the new values, and it was found that the F was not

greatly affected by those few errors.



Chapter 3

Perceptual Experiment

A perceptual experiment was designed to test how well listeners
could identify the vowels of adolescent speakers. As in ANH (1982),
speaker formant range information is presumed to be available when a
speaker's vowels are presented in a blocked order. Further, if the
information is used in a manner like that predicted by the formant

normalization hypothesis, the vowels should be correctly identified at a
higher rate in the blocked than the mixed presentation order, since
“exposure to several of a speaker’s vowels [facilitates] identification of
subsequent vowels” (ANH, 1€82, p. 979). The results of ANH 1982 showed
a significant improvement in the blocked condition, 95.9% correct, over the
mixed condition, 94.5%,(t= 2.36; d.f.= 34, p < .02).

In the present experiment the speaker dependent factors are reduced
to formant information almost totally. The vowels from nine speakers, four
boys and five girls, were selected on the basis of similar values of the
calculated geometric mean of the fundamental frequency (Fo). The nine
speakers' mean Fo was 221 Hz, with a 5.88 Hz standard deviation.

The geometric mean of formant values (7)) on the other hand, varied
greatly (standard deviation 108.74). Speaker information is presented in
Table 3.1. A Pearson correlation between Fo and F for the selected
speakers actually gave a negative r value (- 0.245). The negative

corrslation is opposite to what would be expected in an adult population.

19



Table 3.1: Chosen speaker information

Speaker Sex Age T To

1 maje 12 1870 218

2 male 12 1688 213

3 male 13 1814 218

4 male 13~ 1650 222

5 female @ 12 1859 223

6 female 12 1853 2198

7 temale 11 1814 220

8 female 14 1802 221

) female 14 1659 233

mean FO 221 (s.d.=5.88)
mean F 1782 (5.d.=108.74)

Other differences in the voices may exist that have not been
measured in this study, but the “direct” intrinsic scaling factor of pitch cue has
effectively been removed, as much as possible by the selection of voices.
The test hypothesis weighs the extrinsic scale factor of formant normalizer
more heavily as the favorable information to aid perception. If the vowels
are better identified in a blocked order, despited the pitch cue to expect
similar formant ranges, then it can be said that the extrinsic information is

useful in aiding vowel identification in its own right and not merely a

8This speaker's vowels were deleted from the corpus before analysis of the dala because of
experimental error in labelling. Cne vowel was missing and another was over-represented.
To avold complications in the scoring the subject's data was deleted completely, leaving eight

speakers’ vowels, a dataset of 80 vowals.

20



21

supplementary cuse that backs up the intrinsic pitch cue. A pure ( direct)
intrinsic hypothesis would predict that since the vowel inherent cues do not
correlate, vowsl identification should be poor in both conditions. Speaker
blocking, which is advantageous according to a formant normalization

hypothasis, would not be considered so by a pure intrinsic hypothesis.

Method:

Three repetitions of each vowel were heard in a mixed order
presentation and again in a speaker-blocked presentation. Half of the
listeners heard the mixed order first followed by the blocked, the other half
heard the blocked followed by the mixed order. All listeners heard both
orders. Each of the two sessions was exclusively one presentation order.
The test sessions were separated by a minimum break of two hours; most
listenars came on another day for their second session, and for some the
sessions were separated by several weeks. Listeners were not permitted to
do the sessions conssecutively, in order to avoid a drop in attention, and at
the same time to avoid any learning effects (presuming the familiarity with
the voices would have been lost after some time.)

Listeners were seated at a Zenith 286 PC terminal, heard the stimuli
at a comfortable listening level over tight-fitting headphones, and used the
keyboard to respond. The response to each presented vowel was made by
hitting the appropriately labelled key on the keyboard:

/i, e,¢,2,D,A,0,0,u/. A stimulus vowel was heard only once, and the
response time was determined by the listener. When the response was
made, there was a 250 ms wait period before the next stimulus vows| was
presented. Labels for the forced-choice vowel categories were in phonetic

transcription and accompanied by a sample /hVd/ word typed above the
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phonetic symbol as a reminder. The responses for the three trials (per
session) were concatenated, so that there was one response table per

subject per presentation order.

Subjects

Twelve listeners particibated voluntarily. All were familiar with
phonetic transcription, having taken at the very least two courses in
phonetics. One listener was an unasergraduate linguistics major, three were
professors and eight were graduate students in the Department of
Linguistics at the University of Alberta. The three professors were American,
two of whom had been residents of the Edmonton area for more than ten
years. The third professor was a visiting professor who had lived in the area
just under a year. He expressed discomfort with one vowel category,

finding it unnatural, and somewhere between his Mid-Atlantic dialect's two
low back vowels:/a/ and /o /.

Results

Percent error was caiculated for each of the listening conditions:
mixed- and blocked, and the mean error rates compared. Listeners in the
mixed condition got 92.42 % correct identification, while in the blocked
condition they improved to 94.19 % correct. Aithough the mean percent
correct was higher in the blocked than the mixed condition, a t-test of paired
scores was not significant. A systematic labelling error by one of the
listeners was noted, and rather than discard his response data, an additional

t-test was run with the revised mean score.



Table 3.2(a): Listeners’ percent corract identification

Listener Mixed(x)

bd 78.33
ea 94.16
ja 96.67
kd 95.4
kt 95.4
mm 97.08
b 93.3
rd 80.83
rt 93.75
sS 87.9
td 93.3
tn 92.9

mean 92.42

Blocked(y)
90

94.17
95.83
97
97.5
99.17
93.75
92.5
95
83.3
98.3
93.75
94.12

Difference
11.67
0.01
-0.84
1.6
2.1
2.09
-0.45
1.67
1.25
-4.6

5
0.85

Table 3.2(b): Listeners’ percent correct identiiication.
Corraction made for labelling error

Listener Mixed(x)

bd 85
ea 94.16
ja 96.67
kd 95.4
kt 95.4
mm 97.08
rh 93.3
rd 90.83
rt 93.75
ss 87.9
td 93.3
tn 92.9

mean 93.81

Blocked(y)
90
94.17
95.83
97
97.5
99.17
93.75
92.5
95
83.3
98.3
93.75
94.12

Differance
-5
0.01
-0.84
1.6
2.1
2.09
-0.45
1.67
1.25
-4.6
5
0.85

Table 3.3 Listeners' mean identification scores

Listening condition

Random(table 3.2a)
Random(table 3.2b)
Blocked

Percent correct

92.42
93.81
94.19

Standard deviation

5.1
2.5
4.3

23
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The corrected version (see Table 3.3) while reducing the difference in
means also lowsered the standard deviation for the mixed condition percent
correct scores. A significant difference was still not found between the
listening conditions. A randomization test {the most powerful non-parametric
test) was run on the paired scores. itis calcu!atqd as follows:

dif = score(ic)- score (i,¢),

With ¢,i,c’ tested over all possible permutations of assignments of
mixed/blocked treatments (212 = 4096) the result was not significant
(p<0.082).

Most of the listeners (eight) did better in the blocked than the mixed
condition. The trend toward higher scores seen here may have become a
significant difference if the sample population had been larger (d.f.=11).
The high identification scores in the mixed condition at least rule out ths
most extreme relative formant range hypothesis, which predicts much lower
scores in a speaker-mixed than blocked presentation.

The slight improvement in the blocked over the mixed orders,
consistent with findings from previous studies, suggests that extrinsic
properties in the vowels aid identification. To strengthen the evidence for
the influence of extrinsic factors, further comparative analyses are needed.
The data analytic methods used in ANH (1 982) and Nearey and Assmann
(1986), hereafter NA, were emplcyed for that purpose.

The particular vowe! errors made are of interast. Pooled responses
(pooled over all listeners in the mixed speaker condition) were plotted in a
confusion matrix for each speaker. (That confusion matrix of mixed order
responses is later compared to the automatic recognizer in Chapter 4).
Figure 3.1 is an example of a confusion matrix from which errors in

categorization are easily seen as any respense off the diagonai. The



presented vowael token is shown on the vertical and thé response vowal
categories are on the horizontal. Correct responses fall on the diagonal
(and the particular vowel substitutions are easily spotted as anything off the
diagonal). The height of the bar represents the pooled listensrs’ number of
responses, whare the highest bar is 100% of the responses. When a vowel
was not correctly identified 106% of the time, the height of tha bar on the
diagonal is reduced and other bars appear in that row under the columns of

the incorrect vowel! responses.

25
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Figure 3.1 shows the pooled responses to the first 10 tokens (the

vowsls of speaker 1). White bars represent the mixed condition and shadow

bars are the blocked condition responses.

S

l
I

I
e |
l

6 _ _ — — — [
u e e e m — — — — &= ﬂ
i . e € 22 A b 0 O u
Figure 3.1 Vowel response confusion matrices for two speaker condilions. The

presented vowe! is indicated on the vertical and the perceived vowel on the horizontal.
Maximum height of a bar is 100% identification. The white bars represent the responses to
vowels presented in mixed speaker order and the shadow bars represent responses to
vowels presented in speaker-blocked order.

It can be seen, for example, that / e/ is better identified in the mixed
condition, but /1/ was better identified in the blocked condition. Discounting

the /A—u/ replacement by listener 1 (explained earlier as a transcription



error) the following confusions were made more than 15% of the time in the

mixed speaker condition:
Speaker 1:  /1/ as /e/,

/e/, /\/ as /e/

/o/ as /n/
Speaker 2: /n/ as /o/

/ee/ as /A/

/n/ as /n/, /e/
Speaker 4: /e/ as /v/

/x/ as /A/
Speaker 6: I/ as /e/
Speaker 7: /e/ as /\/, /u/, /i/

Some of the errors are understandable in that the vowels are
phonstically similar, (e.g., the confusion amongst the front vowels, for
example, seen for speaker 7 and especially for speaker 1). The central
vowels in /o/ and / A/ seem to present a problem for listeners, especially
those vowels from speakers 1 and 2. Speakers 1 and 2 were problematic in
general. There were scattered errors in all their vowels, but none as
prominent as the /o—A/ confusion’?. Speakers 1 and 2 may have a
tendency to over-neutralize lax8 vowsls. Speaker 1 also caused listeners to
confuse /&/ for /&/, and /1/. Speaker 2 caused problems primarily with

back vowels, and all involving the neutral vowel /A/.

Perhaps many of the substitution errors can be explained in terms of

the proximity of the mistaken token's formant frequency values to the mean

7Assmann (1978, p.76), of the vowels commonly confused, /o—a / and /A—p /do not

show Improvement in the blocked condition
8Lax occurs as a comparison to tense; vowels that are the lax counterparts of tense ones are
shorter, lower, and more central (Ladefoged, 1982).

27
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frequency values of the category it was mistaken for. Plotted F1 x F2 means
for the vowel categories are shown in Figure 3.2. The means of the category
are based on the eight speakers’ values. The problematic vowsis are
plotted in the F1 x F2 space in Figure 3.3. A comparison can be made of the
location of catagory means and the location of the mistaken vowel (see
Figure 3.3). |
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Figure 3.2:  Category means of initial and final F1 and F2 values averaged across aight
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Figure 3.3 initial and final F1 and F2 values for misidentified vowels. Labels are for the
intended vowal category.



If one were to overlay the plots it would be seen that the erronecusly

identified vowels are often closer to a category mean other than their own
category. For example, an intended /i/ (in Figure 3.3) appears to be

closer to the /e/ than the /1/ category (in Figure 3.2). Although not all

information relevant to categorization is shown in these plots, they

nonetheless lend some insight into the problem.

30



Chapter 4

Data Analytic Vowel Recognition

The purpose of this chapter is to compare listeners’ performance with
a series of pattern racognition models in a manner similar to that of ANH
(1982) and NA (1986). The pattern recognition model is a “normal a
posteriori probability model’, implemented via linear discriminant analysis”
(NA, 1986). In ANH, several distinct pattern recognition model hypotheses
were tested. The predictions of the models were compared to listeners’
correct identifications in various listening conditions. If a model's
performance approximates the listeners’ behavior then the parameters that
the model uses are assumed to be salient to vowel perception. The
algorithm the model uses is likened to the perceptual process of the listener.

From ANH (1982) it was found that the model classified vowels better
when given both end points of a formant. Formant trajectory information,
“inherent spectral change,” was raquired for the model to be able to classify
vowels as well as listeners did. The model also did better (as expecled, from
Nearey, 1978) when the frequency values were log-transformed. Very good
identification rates were attained from a data set including: GO (averaged),
G1, and G2 (initial and final) (*G” refers to & natural log-transformed
frequency value). The normalized version, a variation of the constant log
interval hypothesis {CLIH) discussed in Nearey 1978, had even higher
identification rates. The normalizing procedure of the CLIH is one in which
the mean of each formant (across all vowels for a speaker) is subtracted

from the formant value of each token for that speaker.
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The Pattern Recognition Model

In the present expetiment the modoal is used in each of three ways:

(1} in a self-training mode; (2) in a jackknife self-training (partial cross-
validation} mode; and (3) in a pure cross-validation mode. In a gelf-training
mode the data to be tested is used to determine category means and the
covariance matrix, then the probability of membership in the categories is
calculated from that matrix for each token. The Jackknife method (also
known as the U method} calculates the membership probabilities slightly
differently. in effect, it reduces the optimistic bias otherwise inherent in self-
trained classifications (Gray and Schucany, 1972). In a pure Cross-
validation mode, category means from a matrix calculated on a previous
training set are used to test the new data set. Such an a prioti test run is
important, becauss it shows that the algorithm does as well on an
indepsndant set of vowels.

With ihe exception of the jackknited analyses mentioned below, all of
the classification procedures and & posterior probability (APP) estimates
were carmied out within a maximum ikelihood Bayesian classification
framework. Mean vectors for each vowel category and a single pooled (over
all vowels) covariance matrix were estimated from a training set. A posterion
- robabilities, assuming multivariate Gaussian distribution were calculated
jor each element of the test set. For the simple self-training mode, the test
set was equivalent to the training set. Each test token is classified as
belonging to the category for which its APP score is highest. In the case of
the jackknifed estimates, classification and a posteriori probability gsiimates
were performed using the jackknife option of the BMDP linear discriminant

{unction analysis (LDFA) program. Although in some cases classification via
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LLDFA takes place in a reduced parameter spacs, in all the current examples,
the number of variates preserved was equal to the total number of variates in
the original Bayesian classification analysis. In such cases, LDFA and
Bayesian classification analysis are equivalent.

The NA (1986) data set (100 adult vowels, 10 vowels from each of 5
male and 5 female speakers) was always used as the training set for cross-

validation runs of the classifier.

Level one comparison:

Statistical Resolution

A subset of the modsls investigated by ANH (1982) was chosen for
evaluation on the present data (ses ANH, Table IlI, p. 982). The measure of
resolution adopted here is that used by ANH, the average APP for intended
category, which will be denoted by avgAPP; . The overall percent correct
classification scores, based on the calculated APP;, are also reported. Self-
trained runs of the model identified the 80 Hillcrest vowels with an accuracy
rate of 91 to 92.5%° . The best resuits, 92.5%, are yielded when only the first
two formants, but both the initial and final measures, were given.
Performance decreased to 91.25% when either the averaged GO or initial
G3 measures were added to the data set. The initial G3 value is used rather
than the average of the initial and final, but it should not giffer much from
what an averaged value would be since F3 does not change very much from

head to tail position. The APP scores reflect a finer measurs of fit than the

9 The seff-traisied classificationis a method of screening the data for measurement error.
Since the recording conditions were less than optimal, doubt as to the accuracy of the formant
measures may have arisen. The high rate of identification by the pattern recognition model
reduces any such doubt.
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overall percent correct classification, because an APP score is a continuous
variable. As shown in Table 4.1 below, there is actually an increase in
performance (from 0.8656 to 0.8694 and 0.8754, respactively) when a
“normalizing” [or rather an additional intrinsic factor) measure (GO, or G3) is
additionally provided. Moreover, G3iis slightly more helpful than GO. ("G
before a number indicates the natural log of the formant frequency value).
What appears as an improvement by the addition of the extra factor in the
maximum likelihood classification is not corroborated in the less biased
Jackknife method of classification,!® where it appears that the addition of

either of the extra variables lowers classification performance.

Table 4.1:Seli-trained data_and listeners classification scoras

Maximum Likelihood Jackknife mathod

Parameters % Comect AvgAPPi % Comect AvgAPPi
G1iG1f, Gai.G2t 92.5 0.8656 85 0.8070
G1i,G1f, G21,621, G3i 91.25 0.8754 83.7 0.8015
GILG1f, G2i.G2f, Goav__ 91.25 (0.8694 82.5 0.7907
Lisieners % Correct

Mixed 93.81

Blocked 94.19

The combination of this study's data set and that of NA (1986) make
up the combined data set. It includes the same five parameters as above for

180 vowels: the 100 NA (1986) adult vowels plus the 80 “Hillcrest”

10The Jackknite method was used in NA 1986. Rtis a lass positively biased classification
method so its resulis are therefore more reliable or honest than those from other methods(i.e.
the R-method of resubstitution). The testis a cross-validation of sorts (Hand,1981).



adolescent vowels. It is seen that more “power of separation” is attributed to
GO (avgAPPi =0.8158) than to G3 (avgAPPi =C.7678) in the combined data
set. The improvement that seems to be aftributed to the inclusion of GO may
just be a reflection of its utility for the adult vowels. In a training run of the NA
(1986) data set alone, GO was seen to improve avgAPPi from 0.91 to 0.95,
although it may be an oversimplification to separate the effects of each data
set in that way. The centroids are custom-calculated on the means for the
categories over all the vowels in the training set, and the classification of
adolescent data shows a slight improvement itself with the inclusion of GO
(0.8656 to 0.8694 avgAPPi ).

Tahbla 4.2: Combined data set (self-frained)
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Paramelers % Comect AvgAPPI
G1i,G11,G2i,G2f 83.89 0.7678
G1i,G11,G2i,G2f,G3i 85 0.7883
G1i,G11,G2i,G2f,Goav 88.33 0.8158

The most unbiased test of the Hillcrest data is by cross-validation with
the independent training set. The training set used is the data set from NA
(1986). From the avgAPPi scores in Table 4.1 and 4.2 it is evident that GO
or G3 aid identification by the algorithm. Now, from cross-validated
measures of resolution (see Table 4.3) it is credible that GO (avgAPPi =

0.607) is more helpful than G3 (avgAPPi = 0.588)
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Table 4 3: Cross-validated classification scores

Parameters % Comect AvgAPPi
G1i,G1,G2i,Gef 57.5 {0.557)
G1,G11,G2iG2f, G3i 62.5 (0.588)
G1i,G11,G2i,G21,G0 63.8 {0.607)

It is not known how GO is used to aid separation of the vowels. The
offects of either a direct or indirect use of the intrinsic parameter are not
distinguished here. The effects of a third possibility, of a mere difference in
intrinsic pitch 1! (Lehiste,1970), which could also be responsible for the
improvement in separation, are not distinguishable from these classification
rates either. If it were the case that intrinsic pitch differences help distinguish
vowsls that overlap in two-dimensional spacs, there would be no need for a
normalization explanation. G1 and G2 would not have to be rescaled, by the
use of GO. A simple three dimensional solution would be all that was
required. On the other hand, since most neighboring vowels in the G1 by G2
space do not differ appreciably in GO, compared to inter-speaker
differences, a normalization explanation seems warranted.

In ANH (1982, p. 983), it was found that, for gated vowels, an
improvement in identification by the statistical model involving normalized
formant measures resulted that was roughly parallel to the improvement of
listeners' identification rates in blocked (versus mixed) speaker conditior. it
was decided to conduct a similar set of tests on the current data. To

calculate the normalized formant values for a token, the mean G1 value for

114t intrinsic pitch differences exist between vowel categories there may be an apparent
advantage to using F( in the disciminant analysis. The analysis will show if there was an
improvement in classitication with the addition of FO, but it will not distinguish how it is that FO
helped.



the particular speaker across all of his vowels is subtracted from each of his
vowels’ G1 values and his mean G2 value is subtracted from each of his
vowels’ G2 values. The calculation, for each speaker, is represented in the

following equation:

Ngxy= Gxy-(Z9xi)/10, where
x= formant number 1 or 2
y=i or f, where,

i=initial , f = final

Results

The self-trained normalized data was identified 86.25% correctly. In a
cross-validated run the normalized data was 72.5% correctly identified,
which is better than even the best unnormalized group of parameters in
cross-validation mode (G1,G2,and G0), but still not anywhere near the
accuracy of identification which listeners’ demonstrate.

Table 4.4: Classification rates of normalized and blocked speaker dala
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Normalized data % carrect AvgAPPi
Self trained 96.25 0.930
Jackknife 95 0.905
Cross-validated 72.5 0.711

Pooled listeners

Blocked condition 94.19

The jackknife classification results are comparable to the listeners’ rates of
identification in the blocked condition (see Table 4.4).



Table 4.5: Summary table:

Percent correct and (AvgAPPi scores )

38

Sealf- Jackknife NA (1986) Combined x-validated
Model* trained data dataset {from NA)
| 92.5(0.866) 85(0.807) [97(0.91) 83(0.768) 57.5(0.557)
I 91.25(0.875) |83.7(0.802) [97(0.92) 85(0.788) 62.5(0.588)
1l 91.25(0.869) 82.5(0.791) {98(0.95) 88(0.816) 63.8(0.607)
1% 96.25(0.930) | 95(0.905) [99(0.98) 72.5(0.711)
Listeners YCorrect
Mixed §3.81%
Blocked 94.19%
* Model types:
model | = first two formants [G1.G2]
model li=1+F3 [G1.G2,G3]
model il=11 + FO [G1,G2,G0)
made! V= “CLIH2"(Nearey 1978) [MG1InG2]
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Level Two comparison:
Degree of Correspondence between
STATISTICAL RESOLUTION and IDENTIFICATION BY LISTENERS

Wheather the information used by the algorithm bears any
resemblance to that used by listeners can only be demonstrated by a further
comparison. The analysis comparing predictions and observations used in
NA (1986} is closely followed. It is expected that if the measures are closely
related to the perceptual parameters the APPi scores will be closely
correlated to the identification profiles. Product-moment correlations are
calculated for observed listener and predicted response profiles for
individual tokens. In ANH (1982) the amount of association between the
perceptual and APPi values was measured, and it was assumed that if the
measures were closely related to the perceptual parameters, then the APP;
scores would be closely correlated with the correct identification rates by
listener. Although in the ANH study the correlation was only of the correct
responses “a posterion probability of group membership for the intended
category” (Spearman rank correlation), in the NA paper the comparison was
of the entire profile of responses (Pearson correlation). In ANH (for gated
vowels) there was a tendency for higher correlations betwe _ ., listener
identification data (LID) from the random condition and the APPi analyse~,
on unnormalized measures, while the blocked condition LID data tended to
be more highly correlated with the APPi analyses on normalized measures
(see Table V in ANH, 1532, p. 984). In this study the attempt was mads to
provids a condition in which the effects of normalization would be apparent.
Following ANH, a range-normalizing condition was simulated by presenting

vowels blocked by speaker. In that study it was found that the normalized
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modsels' APPi profiles_paralleled the listeners’ blocked speaker response
pattern batter than did unnormalized models' profiles.

Confusion matrices are a graphical index of the correspondence
between two profiles. Observed and Predicted profiles are piotted in a
confusion matrix in figure 4.1. Listener identifications are averaged over all
listeners into one “observed™ profile for each listening condition (vowel

tokens are not averaged as was done in NA, 1986). A pradiction profile is

calculated from the APPi scores of each algorithm.
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Figura 4.1: Confusion matrices comparing APPi pradicted scores {front white bars) with
listener condition profiles (shadow dark bars). Matrices on the left are G1G2G3 against
random condition. Matrices on the right are nG1nG2 against blocked listener conditior:.
Shown only are the first 10 vowel {okens, the first 10 rows of eighty-row profiles.

Following NA (1986), araw correlation test (Pearson product-moment) is
used as an index of the visual “goodness ot fit” (NA, 1986, appendix,

p.1306). !t is calculated over the 80 token, 800 cell matrices. The model



types are determined by the measurements and/or treatment of them prior to
analysis. The raw correlation test compares the following four models:
Model 1: G1i, Gif, G2i, G2f
Model 11: G1i, G1f, G2i, G2f+G0
Model Il : G1i, Gif, G2i, G2f+G3
Model IV : nG1i, nG1f, nG2i nG2f

A raw correlation test was run on the normalized and unnormalized
models against the listening conditions. The APPi scores of the
discriminant analysis are compared with the total response profile of the
listeners. The profile shows more than just the binary right or wrong
classification, (height of the bars ¢~ the diagonal of the confusion matrix) It
is the complete information about the rate at which a token is categorized as
a member of each vowel category. Following the terminology of ANH (1982)
and NA (1986), APP scores are the model’s classification predictions and
listeners' rasponse profiles are obsarvations. APP scores are like the
responses in that there are APP scores available for every category for each
token. “Complets information about the identification of a token is available
only from a response profile” (NA, 1986, p.1301). APP scores are easily
compared with response profiles since, like response profiles, they have
s-xores for each response category. They are directly compared, at the cell
to cell lavel.

The assumption is made, from the findings of ANH (1982}, that the
normalized model (Modsl IV} corresponds to blockead listeners, and the
unnormalized minimal two formant model (Model 1 ) corresponds to a
random condition (see confusion matrices Fig 4.1). Based on the first level

comparison, comparing percent correct and the AvgAPPi scores from the
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discriminant analysis the choices for matching are not unsupported, but the
level of comparison is quite superficial.

The r value of the raw correlation is a better indication of
corraspondence than just comparing the percent correct identification scores
of a prediction and an observation. If both the prediction and the
observation were wrong, but the mistakes were entirely of a different sort, the
difference would not be reflected at that level of comparison. it is reflected,
however, in a correlation test.

Which model best correlates with the random condition? Which model
best correlates with the blocked condition? The unnormalized models' APP
scores were slightly better correlated with listaners’' random responses
(0.854 and 0.948) than they were with ihe listeners' blocked responses
(0.951 and 0.944), see Table 4.6 below.
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Table 4.6: Raw Correlation tests ( p<.001)

Random profile | Blocked profile

Self-trained
N Gii,G1f,G2i,G2t 0.954 0.951
1) G1i,G1£,G2i,G21,G3 0.955 0.953
111y G1i,G1f,G2i,G2f,G0 0.948 0.944
V) nG1i,nG1f,nG2i,nG2f 0.974 0.978
Cross-validated
Xv -l 0.607 0.604
Xv -l 0.637 0.633
Xv-l1l 0.628 0.626
Xv-IV 0.732 0.732

The normalized APP profile (Model IV) was better correlated with the
blocked response profile (0.978) than with the mixed response profile
(0.974); the correlation results support the choice of representative models
for each of the experimental conditions. The blocked-speaker condition is
best represented by a formant range normalization model.

While the blocked condition is slightly more highly correlated with the
normalized model than the random condition, the random condition profile
is also most highly correlated with the normalized model (Model V) of all the
models tested. That is, both conditions are best correlated with the
normalized model. This might be an indication that listeners are not only
able to normalize when the speakers are blocked (formant range
information) but also in a mixed speaker condition. On the other hand, the

high correlation of the random’condition with the ::ormalized modesl may Fe




due partly to the larger diagonal elements. Both the normalized mode! and
the listeners classified at high rates of accuracy, 96% and 94% respectively.

The correlation is expected to be high for that reason alone.

Level Three comparison:

Changes in the response profiles

The correlation tests are a way of quantitatively describing similar
patterns. In addition to scanning the similarity of patterns between the
listeners' two concitions and the two APP predictions (G1G2 vs. nG1nG2)
as represented in the confusion matrix bar plots, a difference correlation
describes similar patterns of change in @ pair of profiles. Was a change that
occurred from the random to the blocked condition observations also seen
in the unnormalized to the normalized APP predictions? From inspection of
the confusion matrices: Fourteen vowels exhibited a marked change (of at
least 10%) from listenirg condition A to listening condition B (whera A is the
mixed condition and B is the blocked condition). Eleven of those cells were
common to the set of cells that showed a change from prediction matrix A to
prediction matrix B (where A is the unnormalized model and B is the
normalized model). Many more vowels (61) had changed response patterns
in the algorithmic APPs, since there was much more room for improvement,
and the magnitude of change was usually larger than that seen acress the
listener profiles for the same reason. The direction of change is also
consistent in the two comparisons. Nine of the twelve wers categorized
more correctly, while two were more poorly classified. The direction of
change, whether it was better or worse, is not important, only that whatever

direction of change occurred between the listener profiles is the same
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direction of change reflected in the APP profiles. The «riteria for a "marked
change” was different for observations and predictions: for observation:, a
marked change was at least 10 percent, while for predictions it meant at
least 8 percent. The higher criteria for listeners’ profiles was used in order to
avoid reporting the behavior of a single listener. Since the responses from
one out of twelve listeners constitutes slightly more than 8 perzent of the total
responses, 10 percent was chosen as a conservative criterion. The
magnitude of changes across cells in this comparison is measured by the
difference correlation test.

The difference correlation compares the change in a profile across
two listening conditions with the change in a profile across two models’
predictions. It is a token by token count, that looks at every cell in the 800
cell confusion matrix. The differences for the cells in a pair of matrices are
correlated with those difference values for the corresponding cells in
another pair of matrices. One pair of matrices is the observed listeners
responses, the other is the pair of APP predictions for models correlated (by
the raw correlation above) to those listening conditions. “If the model
reflects listeners' performance in a detailed way, [it is expected] that
changes in listeners’ response profiles for the same token in different
conditions would be reflected in changes in APP scores in the
corresponding canditions” (NA, 1986, p. 1302).

The changs (i.e. improvement or worsening} from one condition to
the next is compared to the change across prediction profiles. Model Il is
used as the unnormalized model in this test rather than the minimal Model |,
as it was slightly better correlated with the random condition (r = 0.955 as
compared to --0.954). Moreover, the difference in the correlations is greater

when the cross-validated profiles were used: Model Il and Model | have
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scores with the random condition of 0.637 and 0.607, respectively. The
listeners in the blocked condition did better than the listeners in the random
condition and Model IV did better than Model I, but was the change across
listening conditions similar to the change from Modsl | to Model IV? To test
the significance of the relation between the change across a pair of profiles
(listeners) and the change across another pair profiles (APP), correlation
analysis was performed between the differences in observed and predicted
scores for all pairs of conditions.

This correlation is again a cell by cell analysis. But gach cell in a
profile is paired this time with the corrasponding cell in another profile. So
there are four response profiles to consider. Two are the listeners' profiles
and two are the predicted rasponses. Each prediction is matched with the
observed profile that it best correlated with (level 2). Because the direction
of the change is of the essence, this test is concerned with improvemsnt for
a token. For a high correlation to occur the cells that show improvement
across listening profiles should also show improvement across the observed
profiles and the celis that worsen across the listening profiles should also
worsen across the observed profiles. The difference correlation is
represented by the following equations:

Yv,tz UDav,t, - Llva,t and &/,t = APP avit APva,t ,.where,
v =vowel category index,

t = token index,

APPav,t = a posteriori probability for Model IV,

LIDav,t - listeners' i.d. rate in blocked listening condition,
APva,t = a posteriori probability for Model II,

LIva = listeners' i.d. rate in random listening condition



The difference correlation value calculated for th and th= 0.275

The differance correlation between blocked-to-random observed and
Model IV to Model Il predicted gave an r-value 0.275 (p < .05)'2. The value
seems low, but in fact is quite good considering the only place where there
was roor for change was if there had been any error to begin with for a
token, and the correct identification scores were very high. Randomization
(correlation) tests provide a nonparametric method of testing the
significance of the relationship between pradictions and observations.
The ~omplete set of predicted and observed responses can be observed as

four confusion matrices for each speaker.

Summary

In summary, three levels of analysis with a statistical model verify
what was hinted but not proved sigrificant with only the human listeners’
percent correct scores. That is, the statistical model shows that the
improvemant in the blocked condition is due to the availability of formant
range information. The first level comparison showed that the addition: of
gither GO or G3 ( in a cross-validated run) is helpful in separating categories,
but not as effective as a CLIH normalization of the formant frequency values.
The second level comparison showed that the response profile from the
speaker-blocked condition is better correlated with the normalized model’s
prediction profile than unnormalized models’ prediction. Likewise, the
response profile from the mixed speaker condition is better correlated with

the unnormalized (than the normalized) models' predictions. Moreover, it

12For an idea of the range of correlation encountered in such analyses, consider the
Spearman rank comelation coefficients from ditference correlations tested in ANH (1982):
(0.106. to 0.322] and [-0.039 to 0.260] (Full isolated vowels Table VI, ANH1382, p. 984).
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has been demonstrated that the improvement in classification from a
speaker-mixed to a speaker-blocked condition is paralleled by a change in
predictions of a model given unnormalized formant frequency information
and the predictions of the same model given CLIH-normalized frequency
information. Although the resuits of the parceptual test (in the preceding
chapter) did not show a significant imprc7zement in the blocked (over the
mixed) condition, the comparisons above seem to suggest that there is
indeed formant range normalization taking place in the blocked speaker
condition, and that the lack of a significant difference in listeners' results

(over the two conditions) may have been due to a ceiling effect.



Chapter 5

Conclusion and Discussion

The most salient characteristics of vowel quality (F1 and F2) show
variation graphically as overlap of vowsl categories. Adolescent voices
show acoustic variation in formant fraquencies where there is yet little
gender disiinction of fundamental frequency, leaving the most obvious
normalizing factor, FO, unavailable for listeners' use. lIdentification of
adolescent vowaels by listeners is not hindered, however, by the lack of
correlation between the two independent sources. The perceptual test in
Chapter 2 shows that listeners identified the vowels in a mixed speaker
condition and a blocked speaker condition with very high rates of
identification. At a first approximation, the rates of identification did not differ
significantly for the two listening conditions, even though there was a slight
improvement in the expected direction. This unexpected negative result is
countered by the positive finding in Chapter 3, that changes in response
profiles {from mixed to blocked) are correlated in a manner consistent with
CLIH normalization.

A problem remains with respect to the cross-validated classification
rates of the pattern recognition model. It was shown that the addition of
either FO or F3 information to the F1 and F2 valuss improved classification
rates. Self-trained on only intrinsic information, the model classifies vowels
very well (92%). When extrinsic information is added {in the form of
normalized formant frequencies) the automatic classification is improved |
(96%) and even exceeds the identification rate of human listeners (94%).
This, together with the results from the difference correlation tests, indicates

that the extrinsic information is important for vowel perception, though not
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exclusively so. When the model was trained on the independent vowel data
set of 100 adult vowels, the recognition rates of adolescent vowsls was
noticeably reduced. While FO was quite helpful in the model's identification
of adult vewaels, it was less so for adolescant vowels. F3 was mors helpful
than FO in the identification of self-trained adolescent vowels. The problem
that remains is the failure of the cross-validation classification of adolescent
vowels with the adult data (rates 57 % to 72%) when the same cross-
validating data set has been used to classify other adult vowels more
successfully, i.e., the adult vowels of Andruski {1990) were classified 81 4%
correctly and vowels from ANH (1982) were classified at much higher rates
than even 80 %. Coarticulation.effects may be the cause of the discrepancy.
The vowels had been produced in a /hVd/ context and although that is
usually considered & "neutral” context, the late vowel measures may yet
have been influenced by the final /d/. Self-training however, produced
successful classifications very close to the listeners rates of classification. It
would seem then that the model lacks the ability to generalize from isolates
vowel measures to vowel measures from a consonantal context. The model
wili have to be given more information about the effects of consonantal
context before it will be able to cross-validate vowels from different
environments. Andruski found the classification of context vowsls (57.8%)
to be considerably worse than that of isolated vowels (81 4%)13. The
81.4% with the Andruski vowels in consonantal context is comparable to the
74 %, with the Hillcrest vowels. Therefore it seems that consonantal context

offects may be the cause of the poor cross-validation of the Hillcrest vowels.

13 The consonantal context in Andruski {1990) was /bVb/.
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A future study including a comparison of isolated vowels and vowels in
context for adolescerit speakers is needad.

Human rates of identification under conditions of speaker blocking
are best approached by a normalization of formant frequencies. It is shown
that a good model of listeners' categorization behavior is calculated by
CLIH-type normalization. Normalization formula CLIH2 uses independent
speaker factors on each of the two lovrest formant frequencies. It
categorized natural vowel measures with an accuracy of 95% (jackknife
method), better than any unnormalized model of the same data. An
identification rate of 95% is also very close to the listeners' identification rate
(94.2%). The biggest puzzle is how listeners were able to do as well as
they did in the mixed speaker condition (93.8%).

The salient parameters of perception of natural vowels have been
determined. To determine how they are used specifically, a more sensitive
algorithm modslling listeners' vowel categorization has to be developed.
Such an algorithm might include parameters for speaker characteristics to
specify speaker gender and/or identity. For now though, this investigation
suggests that the intrinsic factors F0 and F3 lend themselves to setting a
perceptual vowel space in which the more variable F1 and F2 can be judged
for vowel quality. The indirect use of intrinsic information should be
incorporated as a step in the process of perception which permits the
adjustment of parameter weightings according to speaker identity.

If the speaker normalizing scale factor is indeed a consequence of a
speaker identification, that speaker identity information has to be available
to the listeners even in a single syllable. The speaker characteristics
responsible for this accurate mapping of formant space, that contribute so

generously to the scale factor, may be the same ones that are used

51



52

sacondarily to cue speaker sex. Formant frequency differences were
anough to allow listeners 10 accurately perceive speaker gender in FO-
neutralizad speech (Coleman, 1973, 1976). Formant frequency differences
are found in preadolescent vowels of boys and giris that are much greater
than the FO differences. Gender differences in intonation patterns
(Tielen,1989), spectral tilt, and even glottal waveform shape (Carrell, 1984,
Klatt & Klatt, 1989) exist, none of which were addressed in the present study.
Johnson's and Carrell's studies have shown that speaker identification can
be attributed to cues such as these. The speaker scale factor may not
necessarily be determined solely on a gender basis. It certainly may be
more specific than that. It would take a series of further tests to convincingly
demonstrate the link between speaker identification and vowel perception.
To begin with it would be necessary to procure general size and gender
percepts from listeners as they identify vowels. Then those impressions of
speaker would have to be shown to influsnce the categorization of the
vowels. Even if listeners do formulate an impression of speaker size and/or
gender, it would be difficult to know where to begin quantifying such
impressions, for | suspect an identity perception is more complex than binary
gender (male speaker/female speaker) and size (big speaker/small speaker)

alternatives.
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Appendix

The following is a sample graphic display of the signal analysis from
which the acoustic measurements were taken. Time values (ms) are shown
in the bottommosi line of numbers. Pitch values (Hz) are preceded by a plus
(+) sign. The frequency values (Hz) of formant candidates are displayed
with amplitude and bandwidth'information as follows: a pound (#) indicates
a high amplitude and an equal (=) sign indicates a middle level amplitude;

bandwidth is indicated by the approximate location (in the frequency scale)

of amplitude characters.
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