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ABSTRACT

This thesis presents a study of the second-order effects
in reinforced concrete frames.

The load-deformation response of reinforced concrete
sway frames was obtained using realistic moment - axial load -
curvature diagrams and the concepts of column deflection curves
and sway subassemblages. The results of this analysis were used
to study the applicability of the moment magnifier and PA - methods
of analysis. |

The parameters which have been studied include deflect-
jons at ultfmate load and service load, second-order moments,
stability effects and the effective stiffnesses of reinforced

“concrete columns and beams.

Both the moment magnifier method and PA - method were
found to be applicable to material failures, but neither is satis-
factory when dealing with stability failures. Approximate
methods have been established to predict the failure mode.

Deflections were found to exceed current code pres-
cribed values in most cases. Stability failures exhibited the

largest deflections.
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CHAPTER 1
INTRODUCTION

In recent years the use of slender buildings and
building components has become very common, and from a structural
point of view this’trend has made it necessary to consider certain
aspects of structural behaviour that are not important when
members and structures have a low height to width ratio.

Of particular interest in the analysis of building
frames are the deflections produced by the lateral loads. These
deflections can be relatively large when the building has a 1arge
height to width ratio. The axial loads acting in the columns will
produce additional moments and forces in the structure when acting
through the lateral displacement of the columns. When these
effects are taken into account in the structural analysié of the
bui]dihg, the analysis is referred to as a "second-order analysis."
Fig. 1.1 (a) shows a simple frame acted upon by a lateral load Q
and vertical loads P applied at the top of the columns. The de-
formed shape of the frame is shown in Fig. 1.1 (b). From this
figure it is seen that when the structure has deflected laterally
the vertical Toad P will also contribute to the lateral sway oflthe
frame. When the frame has reached its final deflected position the
axial load produces a sway moment PxA which is commonly referred
to as the "Pa-moment”. ‘

The purpose of this thesis is to study the effect of the
PA-moments on the behaviour of reinforced concrete frames. A compu-

ter analysis is used to generate the load-deformation behaviour of the
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analytical model and the results of this analysis are used to study
the applicability of current design methods and a proposed method
of second-order analysis.

The general theory which forms the basis of the compufer
analysis is presented in Chapter III. Moment-axial load-curvature
curves are generated to establish the load-deformation behaviour
of the member cross-section and the concepts of column deflection
curves and sway subassemblages are also presented.

Chapter IV presents the analytical model used in the
computer analysis and load-deformation curves of the model.

These curves were computed using the concepts presented in Chapter
III. The significance of the def1ectibn indices obtained in the
analysis is discussed and effective elastic column stiffnesses are
presented. Finally, the use of the sway subassemblage concept in
frame analysis is discussed. An extensive set of sway subassemblage
charts are presented in Appendix A.

Effective elastic EI values for reinforced concrete beams
are studied in Chapter V and recommended design values of flexural
stiffness are presented.

Chapter VI is devoted to the discussion of stability
problems in multi-story frames. Results from current methods of
second-order analysis are compared to the results obtained in the
computer analysis. An alternate method of analysis is also pro-

posed and its applicability and limitations are discussed.



CHAPTER II
REVIEW OF CURRENT METHODS OF SECOND-ORDER ANALYSIS OF BUILDING FRAMES

2.1 Introduction

The importance of a realistic second-order analysis has
become evident in recent years due to the use of smaller load
factors and more slender compression members in building frames.
Deflection limits based on serviceability requirements have
become an important design criterion in current building codes and
inmany cases are a governing factor in the design of tall buildings.

Although 1large deflections frequently do not affect the
strength of beams or low structures, this is not so in frames which
are free to sway under lateral loads. The lateral deflections give
rise to additional moments and may produce a significant reduction
in the load carrying capacity of the structure. It is, therefore,
essential that these second-order effects can be computed in order
to establish a rational design procedure, and considerable research
has been carried out in recent years to improve existing methods and
to develop new methods of accounting for second-order effects. |

Due to the complexity in carrying out an exact second-
order analysis, approximate methods of various types have been dev-
eloped for design office use. Most building codes suggest design
methods for compression members which are of a semi-empirical

nature or are based on approximate theorectical solutions.

2.2 Approaches to Frame Stability Problems in Building Codes

There are two main methods of considering the stability

of concrete columns and frames in use to-day. One is the moment

4



(1,2,3) and the other is

magnifier method presented in ACI 318-71
the complementary moment method adopted by the CEB (Comité Européen
du Beton)(4’5),

In the moment magnifier method the moments obtained from
a first-order analysis are multiplied by a magnification factor
which is a function of the ratio of the applied axial load to the
critical load of the column. To account for the end restraints on
columns in rigid frames an effective length factor k is introduced.
The restrained column is then replaced by a pin-ended column of
length k1 which is designed for the applied axial load and the
magnified moment. Nomographs (2) obtained from an elastic solution
may be used to determine k for columns which are assumed to be
either free to sway or fully braced. The accuracy of the method |
depends to a large extent on the accuracy of the relative values of
column to beam stiffness. The ACI Code provides expressions to
compute the column stiffness as a function of the stiffness of the
gross concrete section Ech’ and the stiffness of the reinforcement
ESIS. The variation in stiffness due to the axial load is not in-
cluded. |

The CEB method, which has been adopted in one form or
ahother by many European countries, accounts for second-order
effects by adding a complementary moment to the first order moment.
The CEB Recommendations present a simplified method for computing
the complementary moment which is given as a function of the effect-

ive length and approximate expréssions for the curvature. The

effect of rotational end restraint on the column is accounted for in



“a manner similar to that in the moment magnifier method. The
actual column is replaced by an equivalent pin-ended column of
Tength k1 which is then used to determine the complementary moment.
The effective length factor is assumed to be obtained from a linear
elastic analysis and is therefore subject to the same assumptions
as used in establishing beam and column stiffnesses. No specific
method is suggested in the CEB recommendations for evaluating k.
The calculation of effective lengths is discussed more

fully in Section 6.3 of this thesis.

2.3 Iterative Procedures

Several authors have suggested the use of iterative pro-
cedures, often referred to as P-A methods, to carry out second-

(6’7’8’9’10). The basic idea behind these

order frame analysis
procedurés is that the moments produced by the total vertical load
P, acting through a lateral deflection 4 at a certain level in a .
building may be replaced by equivalent lateral shears applied at
floor levels.

The equivalent shears are computed from the deflections
 obtained in a first order analysis and added to the applied
1atéra1 loads. This process is repeated until the deflections in one
cycle agree, within specified 1imits, with the deflections obtained
in the previous cycle.

A rapid convergence of the process is essential to make
it féasib]e for design office use, thus no more than three iterations

should be necessary. When the axial load has a value close to the

critical load the convergence tends to become very slow.



K. Aas-dakobsen(]]) has proposed a finite element approach
to solve for secon-order effects under lincar-elastic conditions. The

stiffness matrix [K] is assumed to be the sum of two stiffness matrices

[K;] and [Ky] where [K;] is the first order stiffness matrix and [Ko]

is the non-linear second-order stiffness matrix. The matrix [Ko] is

obtained through an iteration procedure. When unit displacements are -

~applied to the member the axial load required to maintain équi]ibrium is

unknown and can only be obtained by trial and error. Aas-Jakobsen
suggests that the axial load be set equal to zero in the first cycle.
From the first order forces obtained in the first cycle an equivalent

axial load can be computed and used in the second cycle. The process

' is'repeated until the axial load found in one cycle is close

to the value computed in the previous cycle. Aas-Jakobsen
states that the process will usually converge rapidly so

that two cycles are generally sufficient.

2.4 Non - Linear Apalysis

The majority of today's structures are designed

- using a straight line force - deformation relationship. The

validity of such an assumption depends largely on the degree to

which non-linearities affect the distribution of forces. The

moment in continous beams are relatively insensitive to the
value of EI used unless the relative EI changes during the
loading history. Building codes usually specify EI values that
will give results on the conservative side. On the other hand,
in second-order analysis where the actual lateral deflections

are important, a reasonably good approximation to the actual
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load-deformation curve is necessary to properly predict the
effect of lateral deflections.

Structural analysis based on a load-deformation curve
which is approximated by a non-linear smooth curve or by several
straight lines are usually referred to as "non-linear analysis".

Due to the difficulty in representing the load-
deformation curve of reinforced concrete cross-sections by an
analytical expression, straight line approximations have been
suggested (12). It has been found that three straight lines are
sufficient to give results close to test results (13’14’15).

Fig. 2.1 shows some typical straight line moment-curvature dia-
grams for various members and loading conditions. The point;
C,YT,YC and F represent cracking of concrete in tension, yielding

~ of the tension reinforcement, yielding of the compression rein-
forcement and failure due to crushing of the concrete, respectively.

The region o-c represents the uncracked state. When
cracking has occurred, region C-YT, there is a loss of stiffness
but the member is still behaving elastically. There is a further
reduction in stiffness after yielding of the reinforcement in
YT-F, and the member no longer behaves elastically.

A non-linear analysis of complex structures requires
considerable computation and its use will usually not be justified
inkpractice. ‘Hence, it is desirable, in the case of reinforced
concrete structures, to find elastic stiffnesses that lead to
acceptable results or to find other ways of carrying out the
structural analysis. Both techniques are explored more fully

later in this thesis. Section 4.5 in Chapter IV presents an
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investigation into effective EI values for reinforced concrete
columns and in Chapter V the same problem is considered for rein-
forced concretevbeams. Chapter IV also presents the development
of an alternate method of analysis as applied to reinforced con-
crete structures.

Breen (16) used a numerical integration process to
compute the relationship between end moment and end rotation for
reinforced concrete members taking into account the non-linearity
of the moment-axial load-curvature diagram. By plotting the
individual beam and column moment-rotation curves on the same
graph he showed that the moment-rotation curve of a frame joint
could be established and from these curves the loading capacity

of the frame was predicted.

2.5 The Sway Subassemblage Concept

A semi-graphical method for designing girders and
beam columns in rigidly jointed unbraced frames has been proposed
by Daniels and Lu (17).

The procedure starts by analyzing a frame whose members
have been selected in a preliminary analysis. Each story is
subdivided into a number of sway subassemblages consisting of a
column and one or two adjacent beams, depending on whether the
column under consideration is an exterior or interior column.

To trace the load-deformation behavior of each sub-
assemblage a set of restrained columns design charts is used.
These are non-dimensional plots of lateral load against lateral

deflection of half a column for varjous values of end restraint,

slenderness ratio  and axial load and include the effect of
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lateral deflections on the load carrying capacity of the column.
When the load-deflection curve has been established

for each of the subassemblages in a story for a given axial load

level, the curves are combined to give the overall 1oad—def1ectfon

curve for that story for that axial load level. The lateral

load at which the slope of the curve for the story becomes

negative corresponds to instability of the story. In this

manner the load-deflection relationships of a story may be deter-

- mined without prior design of other parts of the frame.

In Chapter III the development of sway subassemblage

charts for reinforced concrete columns will be discussed in more

detail.



CHAPTER TI1II

DEVELOPMENT OF COLUMN DEFLECTION CURVES AND SWAY SUBASSEMBLAGE
'CHARTS FOR REINFORCED CONCRETE COLUMNS

3.1 Introduction

In the analysis of a building for lateral loads each

. story of the frame can be divided into a series of subassemblages
each consisting of a half column and adjoining beams. The sub-
assemblages can be analyzed separately and their individual
lateral load-deflection curves superimposed to obtain an

overall lateral load-deflection curve for the story. Sway
subassemblage charts consisting of a series of restrained column -
curves for various degrees of end restraint have been developed
to aid in the analysis of structural steel subassemblages as
described in Section 2.6. The development of such charts for
reinforced concrete columns will be discussed in this chapter.
The properties and use of these charts and curves will be dis-
cussed in Chapter IV.

The sway subassemblage charts and restrained column
curves are developed using Column Deflection Curves, usually
referred to as CDC curves. A CDC curve is a plot of the deflected
shape of a column subjected to a given axial load with a given
slope at the point where the moment equals zero. Such a curve may
be used to represent the deflected shape of a beam-column having the
same axial load, but different end conditions, which may vary from
hinged to fully fixed. If a family of such curves exists
for a certain axial load it is possible to determine the

relationship between the applied Tateral load and the corres-

12



ponding lateral deflection that must exist for the system to
be in equilibrium under given end restraints.
In order to compute a CDC curve it is necessary to
know the response of the column cross section to external
~ loads, which, in this case, is conveniently represented by
Moment-Axial Load-Curvature curves (hereafter referred to as
M-P-¢ curves). The shape of these curves is a function of
material properties, geometry and external loads.
The steps involved in establishing the sway subassem-
blage charts may be summarized as follows:
1. Determine material stress-strain relationships,
2. Compute the M-P-¢ curve for the cross-section
for a given axial load,
3. Generate a family of CDC curves for the given
axial load,
4. Compute the sway subassemblage charts for the
given axial load and various values of end
restraint.

Each of these steps will be discussed more fully in the

fdllowing sections.

3.2 Material Properties

3.2.1 Stress-Strain Curves for Concrete

The stress-strain relationships assumed for concrete in

compression and tension are shown in Fig. 3.1(a). The compression

curve is similar to the one proposed by Hognestad (18).

13
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The non-linear part of the compression curve is given

by Equation (3.1) and the stress-strain relationship for concrete

in tension is represented by Equation (3.2) (19):

f;:rzz-g]_{gf (3.1)
fc Fo o
_:t_ = 2 FE € 3 ' (3.2)
i Fult] [Cult
where
€o =Ef§.
Ec

The value of the modulus of elasticity of concrete has

been taken as

5

Ec = 18 x 10” + 500 fc psi

The compressive strength of concrete loaded in flexure;

fc’ was assumed to be 85 percent of the strength of control cylinders

and under the same loading conditions the ultimate strain was taken

as 0.004.

1
The split cylinder strength ft is assumed to be equal
to 7.0 /4:-and the ultimate tensile strain, €41¢2 May be expressed as

28,JE,.

3.2.2 Reinforcing Steel Stress-Strain Curve

Only reinforcing steel with fy = 60000 psi has been

considered in this study and the assumed stress-strain curve for this

15



study and the assumed stress-strain curve for this steel is

shown in Fig. 3.1(b). It consists of three parts; the initial
elastic region, a flat yield plateau and a strain hardening
region. The length of the flat plateau has been assumed slightly
longer than what is usually indicated by tests. The effect of
this is to overestimate somewhat the def]ections at ultimate.
This in turn results in an overestimate of the second order
moments and therefore tends to be conservative. The slope of

the strain hardening portion was based on the average value from

a number of available stress-strain curves.

»}'3 Moment-Axial Load-Curvature Relationships

3.3.1 Calculation of M-P-¢ Curves

The computation of the M-P-¢ curves is based on the
following assumptions:

a) Plane sections remain plane.

b) The stress-strain diagram of concrete
is as described in section 3.2.1.

c) The concrete is assumed to crush when the
strain in the extreme compression
fibre reaches 0.004.

d) The concrete cracks when the tensile strain
exceeds the ultimate tensile strain,

e) The stress-strain diagram for steel is as
described in Section 3.2.2 and shown in Fig. 3.1 (b).

For a given axial load the moment-curvature relationship can be

computed using a trial and error procedure to find the neutral axis.

16
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This process is rather tedious for hand calculations and a computer

- program (20)

was therefore used.

The program can handle any shape of section provided

there is bending about one axis only, and includes the effect of

tensile stresses in the concrete and strain hardening in the rein-

forcement.

The basic steps in the computations are as follows:

Divide the cross section into a number of elements

of sufficiently small size such that the variations
in strain across the element is relatively small.
Assume a small value of the curvature and a position
of the neutral axis.

Compute strains, stresses and forces for each element.
Check if the forces acting on the cross section are in
equilibrium. If they are not, choose a new position of
the neutral axis and repeat.

When équi]ibrium has been established, compute the
internal moment.

Repeat 1 through 5 for increasing values of curvature
until the ultimate concrete strain in compression has

been reached.

3.3.2:\\The Effect of Various Parameters on the M-P-¢ Curve

The major variables affecting the shape of the M-P-¢ curves

include:

a.

b.

C.

The axial load ratio Pu/Po (or Pu/Pb)

The steel percentage, p
]

Material strengths, fc

[ f
y.
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d. Cover ratio, vy

e. Shape and size of cross-section

f. Distribution of reinforcement over the

cross-section.

Only axial load, shape of cross-section and distribution
of reinforcement will be considered here.

Fig. 3.2 shows four curves computed for the same columns
with four different values of axial load.

As the axial load is increased the failure made changes
from ductile failure, shown by point 4 in this figure, to brittle
failure,point 11. The increase in axial load also delays the opening
of cracks on the tension side of the column. Initiation of cracking
occurred at points 1,5 and just above 8. The heavily loaded columns
experience little reduction in stiffness until the compression steel
yields at 8 and 10. Yielding of the tension steel occurs at 2
while 6 represents yielding of the compression steel followed by
cracking of the concrete. Points 3,7,9 and 11 represent points of
maximum moment capacity for P/P  equal to 0.2, 0.4, 0.6 and 0.8
respectively.

In Fig. 3.3 the M-P-4 relationship has been plotted for
the three different types of column for the same axial load ratio. |
The cross-sectional properties are given in Figure 4.1. ATl three
columns had the same total steel percentage and the same cover.

A1l sections show practically the same amount of rotation capacity

at ultimate but the moment capacities are reduced considerably for



type 2 and type 3 due tg?ghg,1g§§,eﬁfjcient placing of the v/
reinforcement. Some of the reduction for type 3 is also due to
less efficient distribution of the concrete.

Distributing the reinforcement over the cross-section is séen

(Fig. 3.3. ) to produce a much smoother transition from the elastic

_to the inelastic range.

3.4 Column Deflection Curves

3.4.1 Introduction

In 1910 von Karman used CDC's to determine the strength

(21). Chwalla generalized

(22),

of beam-columns with small eccentricities
von Karman's work in 1934 to include other loading conditions

Since then several investigators have expanded Chwalla's basic

" ideas in various directions (23 to 29).

The basis of the use of CDC's as applied in this thesis
was established by Ojalvo(zq).

-3.4.2 Basic Relationships of Column Deflection Curves

A typical beam-column under applied loads is shown in
Fig. 3.4(a). The equilibrium equations of this member may be
established in the usual manner from statics, and the external
moment at any cross section a distance x from the left hand end is:

E
where Vy is the deflection at distance x and g is the end moment

M. =M [1+1’i (3-1)}+ PV, (3.3)

ratio, positive for double curvature.
The external moment must equal the internal moment. Thus:

) (3.4)

Mo = My = (o) = f(-v

E X
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or:

M [1 +% (3-1)] PPV = (V) (3.5)
where f(¢), etc. means a function of ¢, etc.

However, a different approach may be used to express
equilibrium. The system of forces in Fig. 3.4(a) may be replaced by
~ a single force F as shown in Fig. 3.4(b).

The direction of the force is defined by the angle y such
that

Fa = M and Fb = gM,
and in general

M = Fv = f(-v') (3.6)

Summation of moments about A and B taking counterclockwise
moments as positive yields, respectively,

F1(mt1) sin (-y) = -M (3.7)
and

Fmi[sin (-y)]= eM ~ (3.8)
Combining Eqns. (3.7) and (3.8) gives the point of intersection

between the line of action of F and the 1line AB,

me B
v T8 | (3.9)
To satisfy the axial load requirement it is necessary that
=P (3.10)
Cosy

and by combining Eqns. (3.8),(3.9) and (3.10) the angle y may be

determined from

tan y = (1+8)M" (3.11)
[
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Thus Egns. (3.9),(3.10) and (3.11) define completely the
magnitude, location and direction of F, and the equilibrium equation
is now Equation (3.6).

To obtain the deflected shape of the beam-column it is
necessary to integrate Equation (3.6), and the M-P-¢ curves form’the
basis for this integration. The process does not have to be confined
to the section AB, but may be carried beyond these points. This is
illustrated in Fig. 3.5 where the curve has been extended to intersect
the Tine of action of F. The beam-column AB is a part of this half
wavelength whose length and initial angle are LCDC and o s respect-
ively. Just as the portion AB of the CDC represents the equilibrium
of the beam-column under discussion, so another portion of the CDC
is the shape of another beam-column. Thus any one CDC can give
information about an infinite number of beam-columns with various
end conditions. Fig. 3.6 shows some examples of how the CDC may be
used to represent various types of beam-columns. Column AB is hinged
at A and has applied moment at B. CD is bent in double curvature with
end moments of equal magnitude and EF is a column bent in single

curvature with unequal end moments.

3.4.3 Assumptions in the CDC Calculations

‘Since the M-P-¢ curves form the basis for CDC calculations
it follows that the CDC's are subject to the same assumptions which
were used in developing the load-deformation response of the cross
section.

Furthermore, it is common to assume that the equivalent
axia1 force F is equal to the actual axial load Pu' From Egn. (3.10)

it is clear that this assumption holds for small values of y. However,

25



FIG. 3.6 CDC'S REPRESENTING VARIOUS TYPES OF BEAM-COLUMNS
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Eqn. (3.11) indicates that for a beam-column of Tength 1 and end
moments M and gM, tan y may become large for small values of axial
load and non-zero values of (1 + g). If the end moments are equal
~ and opposite (g= - 1, single curvature) y = 0, F = P and the solution
is always exact. But as the ratio of end moments increases to a max-
imum of + 1, i.e. perfect double curvature, tan y increases to a
maximum of 2M/P1 The worst situation arises for a short column
with a Tow axial load and a maximum moment equal to the ultimate
moment. Consider the values from Table 4.1 for a load ratio of
0.2 and a slenderness ratio 1/h-=70. From Eqns. (3.11) and (3.10)
it is found that

F=1.04pP
Thus by using F = 0,2P 1in the analysis the column has in fact
been analyzed for an axial load which is less than the actual value.
In this case the discrepancy is only about 47 but for shorter
columns and for smaller axial load the error would be more severe.
For practical purpoées, however, this is not likely to be a serious
problem since most columns will not have a combination of P/PO and

1/h within the critical range.

3.4.4 Calculation of CDC Curves

The basic principles underlying the concept of column
deflection curves were outlined in Section 3.4.2. In this section the
equations required to compute the shape of the CDC curve will be pre-
sented.

To account for the distribution of cracking along the
member it is necessary to divide the curve into a number of segments.

The length of the segment should be such that the degree of cracking

27



is nearly constant within the segment. Galambos(Bo)has suggested
that a segment length equal to 4r will give good results for
steel members. A somewhat shorter length would probably be appro-
priate for reinforced concrete members since 4r generally exceeds
the thickness of the column. In the calculations reported in this
thesis the segment length was arbitrarily chosen as 5 inches.

A typical segment of a CDC curve is shown in Fig. 3.7.
If the segment is short it may be assumed that the curve is a
circular arc. The radius of the j'th segment is then 1/¢j.

From the geometry of Fig. 3.7 the following relationships

may be established (ignoring second-order terms such as @ ¢

2 2y.
o and ¢1).
V1=bd-Cd
bd = a061
610
angle dac = % 1
ac:G1

- § ‘ 2
cd 61¢112
The deflection and the angle of the tangent at the end of the first

segment may now be written as

a6y - (af¢1/2) (3.12)

V1
and
(3.13)

ay = ag = 014y

And in general at the end of the j'th segment
2

§:°¢;
Ve = Vo o s g8 - —bed (3.14)
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SEGMENT OF COLUMN DEFLECTION CURVE
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s = O

37 %17 % (3.15)
The values of vj and oy are now used to determine Vi and e
The first step in the calculations is to determine a
value of o and 6. The length need not be the same for all segments
but usually is for convenience. The value of ¢ may be determined

from the M-P-¢ diagram when the moment has been determined. This

 moment is taken as the mean moment in the segment and the general

expression for the mean moment in the j'th segment is

- P
Mg = PVi-1 * 7 959541 (3.16)

By entering the M-P-¢ curve with the value of Mmj the
curvature of the j'th segment may be determined.

Due to the difficulty in obtaining a relatively simple
analytical expression for the M-P-¢ diagram, this curve was approxi-

mated by a number of straight lines. A high degree of accuracy may

be obtained by using a sufficient number of Tines. A typical example

of such an approximation is shown in Fig. 3.8.

If it is assumed that Mi < Mmj < Mi+1’ where the subscript i refers
to the i'th point on the M-P-¢ curve, then the curvature corres-
ponding to Mmj is given

by

M =M,
L= LN .
by = 05 F [MHI-MJ [(bﬂ'l ¢1} (3.17)

The value of ¢mj is now substituted for ¢j into Eqns. (3.14) and

(3.15) to compute the deflection and the slope of the tangent, res-

pectively, at the end of the j'th segment.
The computations may be terminated when one quarter of the

curve has been computed since the curve is symmetrical. When Mmj
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reaches the moment capacity of the cross section the above equations
are no longer valid because they do not account for angular dis-

continuity at the hinge.

3.4.5 Comparison of CDC Calculations with Test Results
The theoretical calculations have been compared to tests

(16) (31). The CDC's corresponding

carried out by Breen and Chang
to failure of the columns are plotted with the test results in
Fig. 3.9 and Fig. 3.10.

The test specimens had heavy end brackets and hence the
section properties were not uniform along the length of the member.
To get a meaningful comparison it was necessary to ignore the end
brackets and measure deflections from the line joining the ends of
the actual column. This part of the member is represented on the
CDC by the distance AB. The test results were plotted using AB as
the horizontal axis allowing for the deflection at the end of the
bracket. |

The maximum deflections from the CDC calculations are
about four percent below Breen's test result and about ten percent
above Chang's result. Thus the deflected shape of these columns

was predicted with reasonable accuracy from the column deflection

curve.
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- 3.5 Sway Subassemblage Charts

3.5.1 Basic Equations

The basic ideas behind the subassemblage concept were intro-
duced in Section 2.6, and the tools required to apply the concept,
i.e. M-P-¢ diagrams and CDC curves, were presented in Sections 3.3

and 3.4, respectively. It is clear from those discussions that

- considerable computational work is required if this method is used

from first principles and that it would be quite unsuitable for
hand calculations. A more practical approach is to develop stan-
dard design curves which are applicable to a large number of cases.
Such curves have been developed to aid in the design of steel

structures(17).

A multi-story frame is shown in Fig. 3.11(a). The sub-
assemblage consisting of ihe n'th floor girders between column lines B
and D and half of the column in line C between floors n and n+l is shown
in Fig. 3.11(b). A point of contraflexure has been assumed at mid-

height of the column.

The model is acted upon by a lateral load

n
Qn = A ? H, (3.18)

Where a» is a column shear distribution factor, the axial
load Pn which is the sum of all vertical loads acting on column Tine
C above level n and the moment Mn-l which is produced by the column
shears above the n'th floor. A further simplification has been
made in Fig. 3.11(c) where M. represents the total restraining
action supplied by the girders. The angle o is the rotation of

the joint and y is the angle between the chord and a tangent to the
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upper end of the column curve. vy is determined from the CDC curves

and at the end of the j'th element it is given by equation (3.19).

v
Y (3.19)
The moment at the upper end of the column is given by the
equilibrium Equation (3.20).

Q1 A '
=_n_n _n (3.20)
My=—2 *Ph3

Equilibrium of moments at the upper end requires that

Moo= Mo+ M (3.21)
The moment Mn~1 may be expressed as
1 A
_ n-1 n-1 (3.22)
M-1 = Qo1 72 Puar 2

Since Q,_; < Q, and P, <P, the value of M__, will always be
smaller than Mn unless An—l is appreciably greater than Ay
Normally, &, > A _; and M__, may be assumed to be equal to M .
This assumption will then be conservative.
Equation (3.20) may be rewritten as
M. = 2Mn (3.23)

The relationship between the rotations y, 6 and An/]n

is found from the geometry of Fig. 3.11(c) and is given by

=6 + v (3.24)

=3
:—1 =

If the restraining action provided by the beams is assumed to be
linear the restraining moment may be expressed as

M. = KoM, (3.25)
where K is the beam stiffness and Mu is the ultimate moment

capacity of the column.
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3.5.2 Procedure for Computing Subassemblage Curves

The computations for a given subassemblage curve start
by specifying a value of the axial load and the restraining function.
For vario&s values of 6 the restraining moment is calculated from
Equation (3.25) and the moment at the top of the column is deter—k
mined from Equation (3.23). When the rotation y has been found,
usually from a CDC analysis, the story deflection is determined
from Equation (3.24). The lateral load which is compatibie with
the joint rotation and the forces acting on the column is found
from Equation (3.20). |

The results can conveniently be plotted in a non-dimen-
sional form of lateral load against story deflection. To accomp-
lish this Equation (3.20) is written in the form given by Eqn.(3.26)
and inn/ZMu is plotted against An/1n. |

A
LR
M -P [1 ] n (3.26)
n n '

Ty L n

2 M, M

itn

u
A computer program was written to generate the restrained
column curves and a description of this program is presented in

Appendix B. The properties and use of these curves are discussed

in Chapter IV.



- CHAPTER IV
VRESTRAINED COLUMN CURVES FOR REINFORCED CONCRETE COLUMNS

4.1 Introduction

The load deformation response of a-sway subassemblage
can be described by means of restrained column curves which represent
the load-deformation characteristics of a column having a given
rotational end restraint. The load-deflection relationship of a
subassemblage at any given stage of loading is obtained from the
. restrained column curve corresponding to the same end restraint as
that provided by the beams of the subassemblage. Section 4.7
describes in more detail how restrained column curves are used to
obtain the complete load-deformation response of a sway subassemblage.

The general theory relating to restrained column curves
and sway subassemblages was presented in Section 3.5. In this chapter
the theory will be used to generate restrained column curves for
reinforced concrete columns. The series of curves, contained in

Appendix A were generated by the computer program in Appendix B.

4.2 The Analytical Model and Variables Studied

To study the general properties of subassemblage charts
for reinforced concrete members and to provide comparison with other
design methods, charts were generated for three columns:

Type 1. square column with reinforcement in two faces,
Type 2. square column with reinforcement distributed in
all four faces,
Type 3. circular column with reinforcement distributed along

the circumference.
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The column cross-sections are shdwn in Fig. 4.1 along with the mater-
~ial properties.

The subassemblage considered in this analysis is shown in
Fig. 4.2(a). The springs at the ends of the beam and the column re-
present the net restraint provided by the frame which the subassemblage
is assumed to be a part of. It will be assumed that the stiffness of
'the springs is such that the members are bent in double curvature |
with a point of contraflexure in the middle. Thus the model may be
represented by Fig. 4.2(b).

It will be assumed that no upper column frames into the
béam-column jbint. Hence, Equation (3.23) may be modified to read.

M. =M ~ ‘ (4.1)

The equilibrium equation for the column may be written down
~ from Fig. 4.2(c)
M=QL + Pa, | (4.2)

and in non-dimensional form

: ’ A
%=M-4ﬂL (4.3)
My My

The lateral load vs. lateral deformation re]ationship;may»be
traced by plotting QL/Mu against aA/L. o

‘The model was analysed for five values of beam stiffness K.
(see Equatfon (3.25)): 100, 200, 400, 600, and infinity. The vaiﬁes of
K derived in Section 5.3 for a representative T-beam and flat p1ates

are about 500 - 2000 and 50 - 140, respectively, when combined with the

P 1co10mns‘shown in Fig; 4.1.

Eight values of the slenderness ratio 1/h were USed,‘Varying

from 5 to 40 in steps of 5.
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The complete set of charts obtained from this analysis is presented
in Appendix A. A total of 146 charts are presented for 690 indivi-
dual combinations of length, shape and end restraint.

The coordinates of the linearized M-P-¢ diagrams used

in the analysis are given in Tables 4.1, 4.2 and 4.3.

4.3 Basic Properties of Subassemblage Curves

Some typical results from the analysis are shown in
Figs. 4.3 and 4.4, and the moment curvature diagram used in the calcu-
lations of these curves is shown in Fig. 4.5.

The line ab in Fig. 4.3 represents the locus of columns
failing as a result of material failure, due to reaching the cross-
sectional capacity at the top of the column. This line slopes be-
cause the PA moments reduce the lateral load capacity. Lines parallel
to ab’give the capacity of the subassemblage when a plastic hinge
forms in the beams prior to the column reaching its capacity. Thus
the capacity of the subassemblage is limited by the Tine cd when
the restraining capacity of the beams is 0.75 Mu'

The point A in Figs. 4.3 and 4.4 corresponds approximately to
point 1 on the M-P-¢ curve shown in Fig. 3.2. This is the point
where the column starts to crack and there is a loss of stiffness,
but it continues to behave elastically.

While the short column in Fig. 4.3 reaches its ultimate
capacity with a corresponding maximum value of Q]/’Mu the longer
column in Fig. 4.4 exhibits material failure under a lateral load
which is less than its load carrying capacity. The practical Timit

of this column is reached on the line mn. For any increase in load
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o Axial load ratio, PU/P”

g’g 0.1 0.2 0.3 0.4 0.5 0.6 | 0.7 0.8
IMoment | 226.5 |315.0 |360.0 |410.0 {410.0 |290.0 {210.0 |155.0
Hox10% | 0.071 {0.100 |0.120 |0.147 |0.158 [0.123 | 0.093 |0.085
Moment | 616.0 |555.0 |392.5 [453.0 |490.0 |[450.0 |330.0 |203.0
2| 4x10% | 0.424 |0.310 |0.136 |0.163 |0.193 |0.197 | 0.162 | 0.114
Moment | 630.0 |667.0 {496.0 | 490.0 |589.0 |530.0 |387.0 |259.0
31 4x10% | 0.790 |0.416 |0.218 | 0.186 | 0.270 | 0.246 | 0.197 | 0.153
Moment | 643.0 |740.0 |587.0 | 563.0 | 652.0 |562.0 |434.0 |296.0
41 ox10% | 1.190 |0.491 |0.295 | 0.245 | 0.329 | 0.269 | 0.288 | 0.182
Moment | 671.0 |749.0 |663.0 | 663.0 | 665.0 |[574.0 | 447.0 | 299.0
5| ox10° | 1.880 |0.557 | 0.365 | 0.341 | 0.377 | 0.326 | 0.296 | 0.200
Moment 759.0 | 784.0 | 735.0 | 672.0 300.0

,_.6 4>x103 0.710 [ 0.500 | 0.424 | 0.464 0.212
Moment '| 768.0 | 801.0 | 754.0

1 px10® 0.876 | 0.525 | 0.533
Moment '828.0 | 766.0
8| 4x10° 0.592 | 0.647

Units: moment is inch-kips, curvature is 1/inch.

TABLE 4.1

Coordinates for linearized M-P-¢ diagrams for Type 1 column.
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Point
No.

Axial

load ratio, Pu/Po

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Moment
$x10°

210.0
0.069

210.0
0.069

290.0
0.102

250.0
0.094

210.0
0.086

170.0
0.077

120.0
0.063

80.0
0.050

Moment
¢x103

234.0
0.108

290.0
0.098

380.0
0.148

330.0
0.126

330.0
0.139

290.0
0.137

200.0
0.107

140.0
0.090

Moment
¢x103

271.0
0.155

423.0
0.243

445.0
0.214

415.0
0.166

410.0
0.177

370.0
0.180

280.0
0.155

180.0
0.119

Moment
¢x103

416.0
0.318

479.0
0.308

516.0
0.293

440.0
0.188

468.0
0.208

410.0
0.203

338.0
0.196

200.0

0.162

Moment
¢x103

508.0
0.422

557.0
0.404

572.0
0.365

504.0
0.245

500.0
0.237

450.0
0.230

382.0
0.232

254.0
0.185

Moment
¢x103

522.0
0.546

618.0
0.489

668.0
0.513

538.0
0.285

532.0
0.277:

495.0
0.268

403.0
0.288

262.0
0.204

Moment
¢x103

556.0
0.610

639.0
0.581

693.0
0.580

578.0
0.342

571.0
0.333

509.0
0.317

410.0
0.332

267.0
0.235

Moment

x103

562.0
0.677

666.0
0.733

628.0
0.420

588.0
0.414

517.0
0.447

270.0
0.269

Moment
¢x103

592.0
1.077

556.0

0.553 "

600.0
0.543

10

Moment
¢x103

594.0
1.136

664.0
0.668

11

Moment
$x10°

597.0
1.410

Units:

moment

is inch-kips, curvature is 1/inch.

TABLE 4.2

Coordinates for linearized M-P-¢ diagrams for Type 2 column.
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i Point

Axial

Toad Effjo’ Pu/P0

0.1

0.2

0.3

0.4

0.5

0.6

- i No.

Moment
¢g103

135.0
0.072

130.0
0.069

223.0

0.129

140.0
0.079

150.0
0.099

90.0
0.053

Moment
ox10°

168.0
0.118

184.0
0.103

303.0
0.220

220.0
0.134

210.0
0.151

130.0
0.09]

Moment
¢x103

236.0
0.227

237.0
0.166

337.0
0.268

273.0
0.172

250.0
0.187

170.0
0.132

Moment
x10°

280.0
0.300

260.0
0.196

369.0
0.323

364.0
0.292

290.0
0.228

210.0
0.174

Moment
¢x103

383.0
0.468

316.0
0.285

414.0
0.411

400.0
0.356

319.0
0.262

240.0
0.219

Moment
¢x103

416.0
0.579

362.0
0.363

460.0
0.516

428.0
0.420

334.0
0.285

257.0
0.232

e

Moment
w¢x103

439.0
0.731

416.0
0.467

497.0
0.637

442.0
0.470

340.0
0.300

267.0

0.250

Moment
¢X]03

452.0
0.862

453.0
0.540

507.0
0.707

463.0
0.557

356.0
0.356

283.0

0.285

Moment
¢x103

458.0
0.947

477.0
0.630

508.0
0.772

478.0
0.670

367.0
0.467

290.0
0.325

Moment
¢x103

460.0
1.089

487.0
0.691

n

Moment
+x103

500.0
0.908

368.0
0.532

294.0

0.362 |

296.0
0.436

Units:

TABLE 4.3

moment is inch-kips, curvature is 1/inch.

Coordinates for linearized M-P-4 diagrams for Type 3 column.
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beyond this Tine the column and beam structures represented become
unstable in a sidesway mode.The line mn will therefore be considered
an instability failure condition. The line of instability corresponds
to a point slightly above point 2 on the M-P-¢ curve. This type of
instability occurs because equilibrium between external and internal
forces is no longer possible due to the P-A moments and the reduction
in member stiffness with increasing moments.

In the balance of this report the type of failure described
by Fig. 4.3 will be referred to as a "material failure" while that
corresponding to Fig. 4.4 will be called a "stability failure".
Because the distinction between the two is difficult in some cases,
the name stability failure has been reserved in this report for
structures in which the moment at which the structure becomes un-
stable is more than five percent below the moment capacity of the
cross-section.

The effect of slenderness and second-order effects is
evident from the comparison of Figs. 4.3 and 4.4. For K=100
- the P-A moments account for about two percent of the failure
moment for the short column and about 31 percent for the long column.
For infinite beam restraint the values are 0.6 and 21 percent

respectively.

4.4 Normalized Subassemblage Charts

One of the major difficulties in any attempt to develop a
standard set of sway subassemblage charts for reinforced concrete
columns is the wide variation in the M-P-¢ curves due to variations
in geometrical properties, steel percentage, axial load and material

properties. As a result, each particular cross-section has a unique



set of charts which cannot be applied to any other cross-section.
This puts‘severe limitations on the use of the subassemblage concept
for reinforced concrete structures since extensive calculations would
have to be carried out for each case. |

An attempt was made to develop a nofmalized version of the
M~P-¢ curves which would apply to a wide range of columns, but

insufficient accuracy was attained for the methods tried.

4.5 Deflections

Few building codes specify limits on the deflection index‘
A/1. In North America the National Building Code of Canada(32)
is the only one to do so and the 1imit is set at 1/500 at service
loads both for the story rotation and for the buildings as a whole.
The same 1imit has been suggested by ACI Committee 435 "Allowable

33). When code prescribed values do not exist, values

Def]ections"(
ranging from 1/300 to 1/1000 have been used in practice, depending
on the type of building and the judgement of the engineer.

A rigorous deflection analysis for concrete structures
requires a considerable amount of computation and as a result approx-
imate methods are usually preferred.

However, the subassemblage analysis provides a better eéti—

mate if a realistic M-P-¢ curve is used. The deflections obtained

from the subassemblage charts have been used for comparison with the

- deflection Timits accepted in practice and to study the relationship

between loading, deflections, geometry and mode of failure.

Service load conditions were considered for two cases based

on Equations (4.4) and (4.5)



]

U=1.4D + 1.7L (4.4)

U=0.75 (1.4D + 1.7L + 1.7W) (4.5)

]

where D,L and W are dead Toads, live loads and wind loads, respect-
fve1y. These equations are identical to bquations (9.1) and
(9.2) in ACI 318-71.

The two cases considered were:

1. Maximum service load based on Equation (4.4)

with L/D=5.0
and 2. Minimum service load based on Equation (4.5)
with L/D=0.2

The service load was assumed to be given by Equation (4.6)

PS =D+ L (4.6)

From these relationships the axial service loads are
equal to 0.61Pu and O.92Pu for case 1 and 2, respectively. The
corresponding load factors for lateral loads are 1.7 and 1.275.
Thus the service lateral loads were taken as 1/1.7 and 1/1.275 times
the maximum QL/Mu value for the ultimate load case.

In figs. 4.5 through 4.14 the lateral load-deflection
curves for ultimate loading conditions have been plotted for
10 cases in addition to similar curves for the two axial loads
corresponding to the maximum and minimum service load conditions.
The service lateral loads have been obtained by dividing the lateral
load by the appropriate load factors and the service load deflections
were obtained from the appropriate load-deflection curve. The results
are presented numerically in Table 4.4. The curves plotted in Figs.
4.5 through 4.14 were chosen to study the effect that the shape of the

cross-section, the slenderness and the beam restraint have on deflect-
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QL/Mu

1.00

0.75

050

0.25

1 i I i

Ultimate axial load

Material failure ——=— Maximum service axial load

|

— - Minimum service axial load

001

002

003 004 005 006
AVAR

TIED COLUMN-BARS IN 4 FACES

vc\vo = 0.4 ¢/h =10 K=o

FIG. 4.10 COMPARISON OF DEFLECTIONS AT SERVICE AND ULTIMATE LOAD
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Type of [« | AR
loading|w 5 1/h=10 1/h=30
Q. -
=0 K=100 | K= K=100 | K=
11 0.0161] 0.0061| 0.0157 | 0.0126
Ultimate] 2| 0.0157| 0.0058| unstable| 0.0106
3] 0.0171 0.0071| unstable| 0.0097
11 0.0115] 0.0041| 0.0056 | 0.0066
Service
load, 2! 0.0110] 0.0037| unstable| 0.0061
case 2
31 0.0116 0.0044| unstable| 0.0058
1| 0.0078| 0.0027| 0.0017 | 0.0034
Service
Toad, 2| 0.0072| 0.0023| unstable{ 0.0028
case 1
3| 0.0076] 0.0029| unstable| 0.0022
TABLE 4.4

Deflection index for ultimate and service load

conditions for loads corresponding to Pu/Po=O‘4
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ions.

It can be seen from these figures that the shape of the cross-
section has little effect on the deflections. The slenderness ratio
is important for service load deflections and is also significant for
ultimate deflections for strong beam-weak column combinations. As
expected the deflections increase with reductions of the beam stiff-
ness. This effect is more pronounced for material failures than for
stability failures.

A1l the deflection indices obtained in the analysis are
shown graphically in Figs. 4.15 through 4.22. A total of 690 cases
were studied, 217 of which were stability failures. A stability
failure was assumed to occur when the moment at which the structure
became unstable was more than five percent below the moment capacity
of the column.

Deflection indices at ultimate (Fig. 4.15, 4.18) showed
wide variation with results ranging from about 1/700 to 1/30.

The results for the two service load conditions
(Fig. 4.16, 4.17) gave a somewhat more narrow distribution with
values between 1/760 and 1/50 for case 2 and 1/820 to 1/70 for
case 1. The service load deflections may vary from about 10 to 80
percent of the ultimate deflections depending on the shape of the
load deflection diagram and the service load condition. If the
curve is very steep the service load deflections will reach the
upper limit; in the case of large ultimate deflections the value
will be closer to the lower limit. Material failures will normally
have relatively small deflections while stability failures exhibit

much larger deformations at ultimate. Typical examples are shown



NUMBER OF CASES

120

80

40

[~

-

0.01 0.02
A/L

0.03

0.04

FIG. 4.15 DISTRIBUTION OF DEFLECTION INDICES AT

ULTIMATE LOAD
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NUMBER OF CASES

100 150 200
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-

-
L
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0.01 0.02 0.03 0.04
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FIG. 4.16 DISTRIBUTION OF DEFLECTION INDICES FOR
MAXIMUM SERVICE LOADS
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NUMBER OF CASES

100 150 200 250 300

50

AL

FIG. 4.17 DISTRIBUTION OF DEFLECTION INDICES FOR
MINIMUM SERVICE LOAD
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in Figs. 4.5 through 4.14.

Structures failing as a result of material failure were
found to have service load deflections of about 1/3 to 2/3 of the
ultimate deflection: If the loading condition corresponds to mini-
mum service load the values will be in the Tower range, say 1/3
to 1/2, with weak beam-strong column combinations giving the higher
values. For maximum service loads the values range from 1/2 to 2/3
‘of the ultimate deflection.

In Figs. 4.20 through 4.22 the computed values have Leen
compared to allowable values of A/L of 1/500 and 1/250 for service
load and ultimate load, respectively. For all three cases on]y’a
small percentage of the results falls below the specified limits.
Thus, for the columns considered, deflections would 1ikely be the
governing design criterion rather than strength.

Stability failures usually occur at relatively large
deflections. Fig. 4.19 shows that no stability failures occurred
for A/L less than 1/200. For allowable values below this figure
the design would be governed by deflections or strength. This
1imit is used to set limits on the applicability of the Pa type

of analysis in Section 6.43.

_ To investigate a possible relationship between defiection,
loading and slenderness ratio the deflection index at ultimate was
plotted against slenderness ratio for various values of axial load,
Fig. 4.23 through 4.25. These plots show that the relationship bet-
ween slenderness ratio and deflection index is close to being a
straight line for relatively small values of kl/r. For higher

values of k1/r the results become more scattered and the deflection
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NUMBER OF CASES

120.00 180.00 240.00 300.00 360.00
]

60.00

' e e —
.00 2.00 3.00 4.00

.00

.00

DEFLECTION LIMIT
COMPUTED DEFLECTION -

FIG. 4.20 COMPARISON OF COMPUTED DEFLECTIONS WITH
DEFLECTION LIMIT OF 1/500 MAXIMUM SERVICE
LOAD
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FIG. 4.21 COMPARISON OF COMPUTED DEFLECTIONS WITH
DEFLECTION LIMIT OF 1/500 MINIMUM SERVICE

LOAD.
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NUMBER OF CASES

120.00 180.00 240.00 300.00 360.0C
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FIG. 4.22 COMPARISON OF COMPUTED DEFLECTIONS WITH
DEFLECTION LIMIT OF 1/250 ULTIMATE LOAD
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index reaches values which would normally be unacceptable in design.
A straight line relationship between kl/r and’(a/l)u was therefore
chosen such that it would give a reasonably good estimate of small
deflection indices.

The following empirical equation was taken to represent
the deflection index at ultimate as a function of the slenderness

ratio of the column and the axial load:

& - SR (4.7)
u 10

This equation has been plotted in Fig. 4.23 through 4.25
for PU/PO equal to 0.1, 0.4 and 0.7.

4.6 Column Stiffness Analysis

It was previously pointed out that the member stiffness
is probably the most important parameter in any second-order analysis.
A linear-elastic analysis will yield good results if the assumed stiff-
ness is close to the effective elastic stiffness for the particular
point in the load-deflection diagram being considered.

Before determining an equivalent linear-elastic value of
EI a desicision must be made as to what point on the load-deflection
diagram should be used since the stiffness depends on the magnitude
of the load and the loading history of the structure.

If the coordinates of a point on the load-deflection curve
are known, the equivalent stiffness may be computed from the following
equations, derived from Fig. 4.2 using standard elastic formulae.

The equivalent column stiffness is given by
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o
(LI)C = '*T‘m_:)* (4.8)
3(A - 5
3K,
(E1) |
where K = b (4.9)
b Lb
From Equation (3.25)
M = KoM = 3CED, 0 (4.10)
r u Lb :
. = EM_l_‘_ (4 11)
. Kb 3 .

The moment M is given by Equation (4.2).

Fig. 4.26 shows a typical load-deflection diagram. If
this structure had been loaded up to point B the elastic load-deforma-
tion relationship corresponding to failure would be given by the line
0B. If, on the other hand, the allowable or ultimate deflections
1imit the ultimate load on the structure to that corresponding to
point A the ultimate deflection would be By rather than Ay given by the
EI based on line 0B. This overestimate will result in a corresponding
overestimate of the P-A moments, in this idealized case of about 60
percent. Similarly, if a point below A is chosen for computing the
equivalent stiffness, an unsafe estimate of deflections and second-order
moments will result.

The discrepancies pointed out above will normally be severe
only for structures exhibiting a very ductile behaviour. For a load-
deformation characteristic such as that shown in Fig. 4.6 only minor
errors wou]d occur.

It will be appreciated from the above discussion that choos-

ing the correct point on the load-deflection diagram to define EI will
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depend on several factors and becomes a complex matter. The point corr-
esponding to the maximum value of QL/Mu was therefore chosen to be used
in the calculations. This will always give conservative estimates of
both first and second-order deflections.

The computed effective l1inear-elastic stiffness values have
been plotted against slenderness ratio in the form pf scatter diagrams
in Figs. 4.27 through 4.32. A comparison with values computed from ACI
318-71 equations (10-7) and (10-8) shows that only a small number of the
computed results are below the ACI values, and that for a large number of
cases the code equations give extremely conservative results. The few
cases where the effective EI is smaller than that computed from the ACI
equations corresponded to low values of Pu/Po' For Pu/Po < 0.2 the most
conservative of the ACI equations gives the best estimate of EI.

In the case of stability failures the columns tend to have ra-
ther high stiffness because the curvature at failure is relatively small
and thusithe effect of cracking is less severe. High EI values were also
* found to occur for material failures when the axial load was fairly ciose
to the balanced load. |

It should be noted that the ACI Moment Magnifier procedure treats
stability failures as material failures. To do this it is necessary for
the EI value for use in the ACI procedure to be based on the point of in-
| tersection of the load deflection curves with the sloping curve represent-
ing the cross-sectional strength. Thus, in the case shown in Fig. 4.4,
“the efféétive EI corresponding to the maximum value of QL/Mu (points a-
| Tong line mn) will be considerably larger than the EI corresponding to

the eventual failure of the section (points along line ab).

4.7 Use of Sway Subassemblage Diagrams in Frame Analysis
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The response of a story subjected to lateral loads and gravi-
 ty loads can be determined by superposition of the response of each in-
dividual column in the story. In order to establish the column resp-
onse the story is subdivided into a number of subassemblages as out-
lined in Section 2.6 and the load-deformation characteristics of each
subassemblage is’determined using the restrained column curves.

A typical subassemblage of an interior column in a single
story frame is shown in Fig. 4.33(a). The restraining action provided
by the beams is KleMu for beam AB and KzeMu for beam BC. The restrained
column curves relevant to this subassemblage are shown in Fig. 4.33(b).

Line o-d is the restrained column curve for a column restrained by
both beams, 1ine o-f l and o-e ' are for the same column restrained
only by beam AB or only be beam BC, respectively. The 1ines m-n and
p-q correspond to the formation of plastic hinges in beam BC and beam
AB respectively.
| The load-deflection curve for the subassehb]age has been con-
structed in Fig. 4.33(c). Initially, the load-deformation response is
given by the line Oa which is parallel to Oa ' in Fig. 4.33(b). At 'a’
a plastic hinge forms in beam AB and a further increase in load is re-
sisted only by the beam BC. The line ab is parallel to the line b c
in Fig. 4.33(b). At 'b' a plastic hinge is formed in the beam BC as
well and the structure becomes unstable. Thus the ultimate load capa-
city of this subassemblage is given by point b.

If either one or both of the beams had a moment capacity equal
to or greater than that of the column the load-deflection curve would

reach the upper inclined line. If neither beam developed hinges the load

[
deflection curve would be given by oa d , and if only the weaker beam
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developed a hinge the 1ine ab would be replaced by b c e .
When the load-deflection curve has been constructed for all
subassemblages in a story the total shear resistance may be determined

by a graphical super-position of the individual load-deflection

- curves.

In a multi-story frame the overturning moment produced by the
column above must be considered (see Section 3.5.1 and Fig. 3.11).
If restrained column curves based on the model in Fig. 4.2 are to be
used for a multi-story frame a modification must be made to the beam
stiffness K. From Equations (3.23), (3.25) and (4.1) the following
two expressions for the joint rotation o are obtained for a single-

story and a multi-story frame respectively:

8 = R;ﬂ (4.12)
u
oM M
0= ol = (4.13)

Thus, for a multi-story structure the sway subassemblage load-deflect-
ion curves should be based on restrained column curves corresponding
to a beam stiffness of one half of the actual beam stiffness.
References 17,34 and 35 present design examples and design
aids for the design of multi-story steel structures by the subass-
emblage method. These design curves differ from those presented here
in that they are based on the assumption that an upper column frames
into the joint and thus, if the curves are used fok a single story
frame the curve corresponding to a beam twice as stiff as the actual

beam should be used to determine the load-deflection response.



CHAPTER V
'EFFECTIVE STIFFNESS OF REINFORCED CONCRETE BEAMS

5.1 Introduction

No firmly established method exists for computing the effective
Stiffness of reinforced concrete beams. Various approximate methods
are used in practice, some of which sacrifice accuracy for simplicity.

However, a reasonable accuracy in the estimate of the restrain-
ing action of the beams is essential in any second-order analysis and
some guidelines are therefore required for its computation.

In this chapter the effective stiffness of reinforced concrete
~ beams will be studied for various loading conditions and loading in-
tensities. An attempt will be made to establish some simple rules

which may be used in second-order analysis.

5.2 Method of Analysis

A cracked reinforced concrete beam behaves as a beam having a
varying moment of inertia along its length. The effective moment of
inertia at any section of the beam is a function of the bending moment
at the section and may also depend on the loading history of the struct-
ure.

To account for the effect of the change in bending moment along the
beam the beam was divided into a number of small segments such that
the bending moment in each segment is approximately constant. Thus it
is assumed that the distribution of cracks is uniform throughout each

segment.

If the moment-curvature relationship of the cross-section is
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known the stiffness of a segment having a certain bending moment‘is
easily obtained as the slope of the moment-curvature diagram at the
point being considered. To simplify the computation of the slope, the
‘M-¢ curve was approximated by a number of straight lines as prev-
jously outlined in Section 3.4.4.

The moment capacity of the cross-section was assumed to
be reached when the tension steel yielded, thus ignoring the effect
of strain hardening. This assumption gave failure moments in close
agreement with values obtained from standard design formulae for
COmputing ultimate moments.

The moment in each segment was assumed to be the mean of
the moments at the ends of the segment and from the M-¢ curve the
stiffness, EI, corresponding to the mean moment was determined. The
f1exibility coefficents were obtained by loading the beam with the
M/EI diagram corresponding to unit end moments and applying the con-
jugate beam theorems to compute the resulting end rotations. The
rotational stiffness coefficients were then established by inverting
the flexibility matrix.

It should be noted that the distribution of moments was a
function of the distribution of stiffnesses which in turn were a
function of the distribution of moments. An iteration procedure was
required to reach a distribution of moments and stiffnesses which
were compatible with the applied loads. The rotational stiffnesses
were calculated based on the final distribution of stiffnesses.

It was found that the redistribution of moments did not
cause significant changes in the stiffness values. This could also

‘be anticipated by considering the idealized shape of the M-¢ curve
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since only elements which initially had a moment value close to
points of discontinuity would have its stiffness affected by a
change in moment. The idealized M-¢ curves have only one or two
points of discontinuity and as a result bn]y the stiffnesses of a
few elements are affected by the redistribution of moments.

Effective stiffness values were computed for three
loading conditions:

1. gravity load only.
| 2. lateral load only.
3. gravity load and lateral load combined.
Each case was investigated for various values of load intensity.

The load intensity may conveniently be expressed as a
function of the end segment moment capacity. In the case of gravity
load the beam was assumed to have fixed ends and the nominal
fixed-end moment MGM may be expressed as
wlg

MGM=—-T2-= nMu (5.1)
where w is the uniformly distributed 1oad on the beam, ]b is the
length of the beam, Mu is the moment capacity of the end segment
and n is a coefficient which may have values between zero and one.

The end moments, MSM’ caused by lateral loads can be
written as

Moy = 1 M, (5.2)

where u is a coefficient varying between zero and one.

For combined loads the applied end moment at the most
heavily loaded end is given by

OMGM + MSM) = - (ﬂ +U )MU (5-3)

and at the other end



» (MGM - Ms,w) = (T\ - M)Mu (5-4)
assuming counterclockwise moments to be positive and the lateral

- load to be applied from left to right.

5.3 Effective Stiffness of T-Beams and Rectangular Slabs

Two different shapes of cross-section were considered in
 the analysis, a T-section and a rectangu]af flat slab section
(Figs. 5.1 and 5.2).

The T-section had a total depth of 22.5 inches and a web
width of 13 inches. The flange was 4.5 inches deep and 78 inches
wide. The effective span was 25 feet. The slab was 12 inches wide,v
| 7 .5 inches deep and had an effective span of 18 feet.

Both members were symmetrically reinforced about the
centre line and were divided into two end sections and a middle
section. All three sections had equal amounts of top and bottom
reinforcement, the ends being more heavily reinforced than the
middle. The details of the cross-sections are shown in Fig. 5.1
and Fig. 5.2.

Typical M-¢ diagrams obtained for the T-section and the
slab aré shown in Figs. 5.3 through 5.5. Fig. 5.3 shows the response
of the T-section when loaded such that the flange is in compression

while in Fig. 5.4 the flange is loaded in tension. The latter case

shows a large and sudden drop in moment capacity as cracks develop in-

the flange. However, this is an artificial equilibrium condition
which shows up in the computations because the moment capacity is
computed from predetermined increments in the curvature. The transi-

tion line from the point of cracking to the point TY was used in the
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computations. Fig. 5.3 shows a similar decrease in stiffness after
the initiation of cracking, but the transfer is much smoother. The
M-¢ response of the slab shown in Fig. 5.5 is similar to that of
the T-section with the flange in compression.

A few trial calculations were carried out to investigate
what lehgth of segments should be used to attain sufficient accuracy.
It was found that for a given length of segment the accuracy was
dependent upon the type of loading, and the largest inaccuracies
seemed to occur for combined gravity and lateral loads. If high
accuracy is sought a fairly short segment length should be used.

In these calculations 40 segments were used for the
T-beam and 72 segments for the slab.

‘The results of the calculations have been plotted in
Fig. 5.6 for the T beam section and Fig. 5.7 for the slab section.
Considering the members under pure gravity load (Figs. 5.6a and
5.7a) shows clearly the reduction in stiffness as the load intensity
is increased and the cracked zpnes extend. '
The T-beam is seen to keep 95 percent of its uncracked, untransformed
stiffness EC Ig, for values of n below 0.5. For higher loads the
stiffness is reduced rapidly and for n = 0.9 it has dropped to 46
percent of the uncracked stiffness.

The effects of cracking become evident at fairly low load
levels for the slab and once the first cracks have opened up there
is a rapid decrease in stiffness. However, as the load intensity is
increased the rate of stiffness reduction is reduced. When the moment
at the ends has reached 90 percent of the capacity of the end segment

the stiffness has dropped to 53 percent of the uncracked stiffness.
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In a second-order analysis the beam will be loaded
according to load case 3. The variation in stiffness for various
“combinations of fixed end moment and sway moment is shown in Fig.
5.6(c),(d) and Fig. 5.7(c),(d) for two values of load intensity.
The plots show only small variations in stiffness with variations
in the ratio n/u. For very small values of n/yp, say below 1.0,
corresponding to high lateral load moments and small gravity load
moments it would be more appropriate to use value from load case 2,
i.e. sway moments only, as shown in Fig. 5.6(b) and Fig. 5.7(b).

As one would expect, reducing the load intensity (n+u) results in
higher stiffness values, although for the slab this increase is
negligible. In practice one would expect to find values of (n+u)
in the range 0.75 to 0.90 and the results presented herein suggest
that values of (EI)b between 0.5 and 0.6 times ECIg may be used for
this type of loading condition if n/u is greater than 1.0.

The steel percentage will of course affect the stiffness
of the member to some extent. This maybe taken into account by
expressing (EI)b as

(E1), = E, (al  +nI.) (5.5)

g
where a is a coefficient, n is the modular ratio of steel and con-
crete and IS is the moment of inertia of the reinforcement about the
neutral axis of the gross concrete section.

For load case 3 and n/p‘greater than 1.0 the value of the
. coefficient l'a' may be taken as 0.2 for the T-beam and 0.15 for the
slab. For a modular ratio of 8 this gives the stiffness values
» 0.496ECIg for the T-beam and 0.53E_I_ for the slab.

cg
The effective moment of inertia of T-sections is often
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expressed in terms of the moment of inertia of the web alone, IW‘
In this case the ratio Ig/Iw is equal to 2.0 and the effective (EI)b
is therefore between 1.0 and 1.2 times Ech’ This is somewhat

(36)

lower than a commonly accepted assumption that (EI)b=2(ECIw)

and higher than a method assuming the effective flange width equal

to twice the web width(37).

2(ECIW) is equivalent to an effective
‘flange width of about tﬁree times the web width.

The stiffness parameter K, used in the sway subassemblage
analysis, may be computed for these beams by using Equation (4.11).
The moment capacity of the column, Mu will be assumed to vary between
828 k-in and 300 k-in (Type 1 column, see Fig. 4.1 and Table 4.1).
The T-section will then have K values varying from about 500 to
about 2000 before cracking and only about one half of these values
after cracking. For the slab the values vary between 50 and

140 before cracking and again about one half of these values after

cracking.



CHAPTER VI
ANALYSIS OF MULTI-STORY FRAMES FOR STABILITY EFFECTS

6.1 Introduction

There are two types of stability failures that may be
encountered in a frame analysis. One is known as "bifurcation of
equilibrium,” or buckling, and occurs when the applied axial
load reaches the critical buckling load. The other type is referred
to as "instability through disturbance of equilibrium" and occurs
becadse equilibrium between external and internal forces cannot be
achieved due to such things as imperfections and reduction in stiff-
ness. This type of instability occurs for an axial load smaller
than the bifurcation load of the member. In sway frames where the
members exhibit a load-deformation response as shown in Fig. 6.13(a),
Sidesway instability will occur before the ultimate moment has been
reached. When instability occurs, a small increment in the lateral
load produces additional Pa moments, which in turn cause additidnal
deflections. Because the applied moment is a function of the lateral
deflection and because the stiffness decreases with increasing
moments, the required internal moment resistance is not achieved.

The Pa effect is, therefore, a key parameter which must be considered
in the analysis of sway permitted frames.

Modern building codes attempt to predict stability failures
by means of simple approximate methods. The accuracy of these methods
may be quite good in some cases, while in others they are highly in-
accurate but generally conservative.

A rigorous stability analysis of reinforced concrete frames
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is a rather complicated matter due to such things as the non-linear
load-deformation relationships of concrete columns and beams and the
effect of the steel percentage and axial loads on ihe member stiffness.
A general method which would give good accuracy in all cases would |
have to consider the effect of these variables, resulting in a very
complicated procedure.

The subassemblage procedure provides a good method for
predicting instability and the results from such an analysis will be

used as a basis for comparison when investigating the applicability of

current procedures for second-order analysis.

6.2 Sway Preventing Action in Frames

Prior to embarking on the design of columns in a frame
by traditional means it is necessary to determine whether the frame
’is braced or unbraced since the behaviour of these two types of frames
differs greatly. The problem is how much lateral restraint is re-
quired to allow a frame to be designed as a braced frame.

The ACI Code Commentary(z) states that the bracing elements
(shear walls, trusses, etc.) should have a lateral stiffness of at least
six times the lateral stiffnesses of all the columns in the story being
considered. This requirement may not apply equally well to a]l,struct;
ures, however.

A more rational evaluation of the sway preventing action in

(38,39)  1pe analytical model used by

frames has been presented by Lay
Lay is shown in Fig. 6.1. The end conditions of the column are repres-
ented by the rotational stiffness coefficients kA and kB’ and the trans-

lational stiffness coefficient ks' The restraining actions at the end
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of the member can

MA = kA
MB = kB
QB B ks

be written as

£
T %A

im
[ L]

og

m

|

5 (&)

—
[a]

The equilibrium equation is

Pa=M +MB+QBL

A

MA and MB may be determined from the slope-deflection equations

and substituted into Equation 6.4.

The solution is then:

S

= (

) - s(1+c)

2+s(1-c) (1

B
2
" (1)

(6.1)

(6.2)

(6.3)

(6.4)

(6.5)

where PC is the buckling load, s and ¢ are the standard slope-deflect-

ion coefficients modified for axial load and are given by Equations

(6.6) and (6.7)

- 1-ucotu (4

S
tan %-- 2
c=ucscu -1
1 -cotu
u = m/—FT/PE
o o nEl
E ]2

Lay(39) suggested three ways to use Equation (6.5) to investi-

(6.6)

(6.7)

(6.8)

5

gate the sway stiffness necessary to ensure sway prevented action in
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frames:
| 1. An exact evaluation of kS using Equation (6.5)
2. If the numerator of Equation (6.5) is positive and
kA and kB are both positive, which is always the cése
if P/PE < 1.0, the lateral stiffness necessary to allow
the column to reach its no-sway buck]fng load may be

approximated by:

(6.10)

-

<

This will give a conservative value of the critical kS brovided the
rotational end restraints are positive. Negative end restraints will
rarely occur in ordinary building frames due to the low axial load
usually carried by the beams. Thus, this will be conservative provided
‘that the numerator is positive, i.e.

2+ s(1-c)(.'.<i_ +E§) g (6.11)

If the required Tateral restraint exists according to Equa-

tion (6.5) or Equations (6.10) and (6.11) the effective length factor may
be determined from the nomograph for braced frames. When doing so,
Trahair's method(40) (Equation (6.21), Section 6.3.2) should be used to
determine the parameter y. Because the frame is braced the effective
lengths will be less than the actual lengths.

3. The buckling Toad may be approximated by Equation (6.10)
without any further checks if the effective length is not
taken less than the actual length.

The derivation of these stiffness criteria was based on a

Tinear-elastic load-deformation relationship.
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(41)

Telwar and Cohn have suggested four bracing criteria

for tall buildings containing shear walls:
1. To limit the deflections at service load to a value

of 1/500th of the story height they proposed that:

P .
crz 200 ., (6.12)

where Pcr is the critical load for the entire structure and Q and P

are lateral and vertical service loads.
2. A stability criterion to ensure that the frame could

be designed for gravity loads only was the basis of Equation (6.13):

P

-~ 220 (6.13)
3. They also proposed that

ﬁ:

pCY‘

S X

(6.14)

Hv
[ew]
[52]

where ch is the critical load for the wall standing on its own.
4. The fourth criterion was intended to prevent excessive
moments due to unsymmetrical loading and for a pseudoelastic frame

was expressed by Equation (6.15)

P = Max (—,?—)(}-?(—C—) @ (6.15)
c .
where i is the story under consideration (counting from the top),
h is the story height, kc is the EI/h for the column in the story
carrying the greatest shear and Of and Q% are the shears on the
frame and the column, respectively. The third and fourth criteria

are based on assumptions about desirable behaviour and may fail to



109

recognize the entire spectrum from fully braced structures through

structures free to sway.

One or more of the criteria presented in this section may
be used to evaluate the sway preventing action of the bracing
elements in a frame before a method of analysis is decided upon.

A further study of the sway preventing action in frames

is presented in Section 6.4.2.

6.3 Effective Length Factor Method

6.3.1 Introduction

Traditionally the effect of frame action has been
_accounted for in column design by means of effective length factors.
This method has been described in Section 2.2. In this section the
results obtained from this method will be compared to those obtained
in the subassemblage analysis. Three factors are of prime interest;
the effective length factor itself, the magnitude of the amplified
moment and the mode of failure. |

"6.3.2 Some Remarks on the Effective Length Concept

In both the ACI column design method(l)and the CEB column
design method (4) there are two very important parameters involved in
determining the second-order effects, namely the stiffness, EI (or
curvature in CEB), and the effective length factor k. The latter is
a function of EI since it depends on the ratio of the sum of the
stiffnesses of the columns framing into a joint to the sum of stiff-
nesses of all the beams framing into the same joint. This may be

expressed as
z(EI/])C

p = 51577773 (6.16)
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This expression is an approximation to enable the effective length
nomographs to be used for irregular frame lay-outs.

Lay(39) has investigated the validity of this approximation
and from an elastic slope-deflection analysis he developed the follow-

ing expression for the relative stiffness parameter

T (EI/])dC
v = (EI) Ju (EI) (6.17)
X + vl (== /
where (EI/1),. is the stiffness of the column being designed,
%%‘= §i%:gl-for braced frames (6{18a)
%%’= éﬁ%igl-for sway frames (6.18b)

s and ¢ are the slope-deflection stiffness coefficients including
axial load effects as defined in Section 6.2.

Once the end stiffness ratios are computed the effective
Tength factor, k, can be obtained from nomographs presented in
Reference 2 or from approximate equations such as those given by
Fur]ong(42) or in the British Standard Code of Practice CP110(43).

An examination of the nomographs shows that the value of k is
reduced as the value of ¢ is reduced, which in turn implies that the
critical load of the column is increased. Thus it follows that the
discrepancy between Equation (6.16) and Equation (6.17) will result
in an unsafe estimate only when

o< (6.19)
which will occur when

Ju El El
4 e (5= (6.20)
z{JO(T—)mJ (5

mc
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where the subscript mc refers to the upper column framing into the
joint.

From Equation (6.18) it can be seen that this can only occur
for braced frames and substitution of Equation (6.6.) into Equation
(6.18a) shows that a second condition is that u (Equation 6.8) must
be greater than n. Thus, Equation (6.16) will lead to a safe estimate
of k in braced frames if P < PE‘

To simplify the use of Equation (6.17) Lay suggests that an
| approximate method developed by Trahair(41) may be used. This method

approximates Equation (6.17) by the following expression

El
! ( TJ column being designed (6.21)

2(1—5%)(§10 all other members

The term (l—P/PE) approximates the effect of axial load on the member
stiffness and will normally be significant only for the columns since
the beams usually have negligible axial load.

Although Equation (6.16) will give conservative results
for sway frames Lay(39) suggests that the modified Equation (6.21)
be used since there are considerable economic advantages to be gained
from it.

(44), MacGregor, Breen and Pfrang(3)and, Spring-

Rosenblueth
field and Adams(45) have pointed out shortcomings in the effective
length concept in dealing with sway frames where the columns in a parti-
cular story have widely varying effective length factors. The extreme
case of a pin-ended column supported by a sway frame occurs frequently.
The nomographs suggest that the pin-ended column will not be able to

carry any vertical Toad since k = = because sway can occur, and there-

fore Pcr = (0 for the hinged member. Some modification of the method
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must therefore be considered where ¢ is very large for both ends of
the member or where y varies widely between columns in a frame.

The 1971 ACI Code attempts to treat this case by replacing
the P/Pcr term in the moment magnifier equation by the term ZP/EPcr
whose variations in effective length is recognized by treating the
entire story as a unit(1’3).

6.3.3 Comparison of Results from the Moment Magnifier Method and the

Subassemblage Analysis

The accepted practical procedure for determining the effect-

2,46,16,34)

ive length factor, k, is to use the nomographs ( mentioned

in Section 6.3.2. The magnified moment, according to ACI 318-71,
is then given by

M2 C

(6.22)

m

C
]_..
nz(EI)C

}where Mb is the magnified moment, M2 is the first-order moment and
Cm is an equivalent moment factor.

Equation (6.22) may be rearranged to give an expression for
the effective length factor k, and using the subassemblage model

in Fig. 4.2 it can be written as:

= — < 1 - i G (6.23)

Thus, the results from the subassemblage analysis may be
used to compute the effective Tength factor which would have to be
used in Equation (6.22) to give the correct second-order moment.
| The quantity y needed to find the value of k from the nomo-
“graphs is defined by Equationb(6.16) with the denominator of the

equation determined from Equation (4.10). The parameter (EI)C was
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calculated according to Section 4.5,

In this case there is no upper column framing into the
joint and thus Equation (6.16) is in agreement with Trahair's
method, Equation'(6.21).

The quantity Cm will be taken as 1.0 in this derivation
according to ACI 318-71 rather than the value of 0.85 as given by an
elastic analysis for the sway case. This gives values of k somewhat
below the correct value. Cm is a function of the first-order deflec-
tion and since this is not known due to the non-linearity of the load-
deflection curve, a precise value of Cm is difficult to obtain for
reinforced concrete columns.

In Fig. 6.2 the effective length factors obtained from the
nomographs and from the subassemblage analysis have been plotted against
relative stiffness. The two curves show fairly good agreement, with
the nomographs giving the higher values. The maximum percentage dis—'
crepancy between the two curves is about seven percent and occurs for
Tow values of k. This percentage decreases with increasing k and for
values of k about 3.5 the error is only one percent. If the correct
value of Cm had been used, the effect would have been to bring the
~ two curves closer together, which indicates that the nomographs
predict quite well the length of the equivalent pin-ended column.

Figures 6.3 through 6.10 show the relationship between the
short column interaction diagram (1/h=0), an interaction diagram
for material or stability failure, taken as Point 1 in Fig. 6.13 (a)
or (b) and a design interaction diagram based on the moment-magnifier
procedure using Eqn.(6.22)and either the effective EI from Eqn(4.8) or
the EI from ACI Eqn.(10-7). Results are plotted for values of end
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restraint Kb = » and Kb =1x 107 k-in, a value close to the Towest
practical limit for beam stiffness, and various slenderness ratios.
,A11 plots are for a tied column with bars in two faces (Type 1 column).
For 1/h greater than about 20 the failure line lies inside
the interaction diagram indicating stability failures. Interaction
aiagrams based on the moment magnifier equation using the effective
“EI correspond reasonably well to the failure interaction diagram as
they should,since the effective EI values were derived from Point 1
in Fig. 6.13(a) or (b). If design were based on the use of this
interaction diagram, the design would require Tess steel than
actually necessary. If, on the other hand, design were based on the
’ momenf magnifier and the ACI EI value, the design interaction diagram

lies outside the cross-sectional interaction diagram indicating that

’} more reinforcement is required than actually needed. Thus the ACI

Code procedure predicts the second order moments well for short

columns (Figs. 6.3 and 6.7) but tends to overestimate the moments for

slender columns.

6.4 Iterative P-A Procedure

6.4.1 General Principles

The basic principles of the P-A method were outlined in
Section 2.4. This section will be devoted to a more detailed investi-
gation of the method and its application in the design of building
'frames (47).

Fig. 6.11 shows a diagram of a column in the i'th
story of a frame carrying both lateral and vertical Toads. The deflec-

tion A is computed ignoring the effect of Pn‘ From equilibrium

requirements the additional shears produced by the axial load acting
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through a deflection A may be written as

Y

v, = T;ﬂ-(A - ) (6.24)

n+l n

where Vn = additional shear in story n due to axial Toads,
an = sum of column axial Toad in story n, ]n = height
of story n,

A A= deflection of floor level n + 1 and n respectively.

n+l,
The net additional sway force at level n due to axial loads is given by

Q, =V -V (6.25)

This force is now added to the applied lateral load at level n and a
first order analysis is again carried out. The deflections obtained
in that analysis are substituted into Egn. (6.24) to give a new set
of story shears which in turn are used to compute a new set of addi-
tional sway forces. The process is repeated until the moments or
deflections in one cylce are only slightly larger than those of the
previous cycle.

The rate of convergence of the iteration process could.
be used as an indication as to the possibility of a stability
failure occurring. Some results from the P-aA analysis are shown in
Tables 6.1 and 6.2, where A is the deflection in the i'th cycle
and Ag is the final second-order deflection as obtained in the sub-
assemblage analysis. The short column interaction diagrams and the
failure curves for these columns are shown in Figs. 6.3 through 6.10.
The iteration process is seen to converge slowly for stability failures
and it appears that if the process converges within five iterations

there is no danger of a stability failure occurring.



Effective (EI)C ACI Egqn. (10-7)
Jh— E)_l_l_ _E_U_ f&_i ﬁf_ No.of A5 _Ai No.of
cr| o U Ai_ cycles| Ay As  |cycles
G660 T 070 (7,003 [ 3 1009 [T.063 | 3
0.189| 0.2| 1.031 |1.008| 3 |1.035 |0.954 | 3
0.270| 0.3| 1.018 |1.007 | 4 |1.020 |0.872| 4
0.360| 0.4] 1.035 |1.019| 4 | 1.043 |0.891 | 4
101 9.451| 0.5 1.025 [1.022| 5 |1.035 [0.853 | 5
0.542| 0.6 1.047 |1.057| 5 | 1.037 {0.839| 6
0.652| 0.7| 1.049 |1.095| 6 | 1.045 [0.868 | 7
0.777] 0.8| 1.047 |1.175| 8 | 1.045 |0.986 | 9
0.268] 0.1] 1.049 |1.014] 3 |1.014 [0.949| 4
0.506| 0.2| 1.029 |1.028| 5 | 1.037 |0.908 | 5
20\ o.764] 0.3] 1.082 |1.097| 7 | 1.045 |0.813] 8
0.848| 0.4] 1.044 |1.235] 10 | 1.050 [0.105| 32
(E1/1), = 7 1b-in?
TABLE 6.1

Results from the PA iteration procedure.
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Effective (EI)C ACI Eqn. (10-7)
1] p | ,
h FE ﬁﬂ ﬁi fj-No. of | 2§ 2¢ | No. of .
cr Ay 4 Aj cycles,i i1 A cycles,i

0.054 | 0.1 |1.047 [1.000] 2 [1.082 [1.137] 3

0.081 | 0.2 | 1.006 |1.000] 3 |1.006 |0.885] 3

0.117 | 0.3 | 1.005 |1.040| 3 [1.007 |0.876] 3

0.143 ] 0.4 | 1.016 |1.0000 3 [1.024 |0.767] 3

10 10,173 0.5 1.023 |1.006] 3 |1.036 |0.731] 3

0.205 | 0.6 | 1.033 |1.007] 3 [1.050 |0.733] 3

0.255| 0.7 | 1.045 [1.021] 3 [1.019 |0.776] 4

0.324 | 0.8 | 1.019 [1.008] 4 |1.027 |0.880] 4

0.200| 0.1 1.025 [1.004/ 3 |1.016 |1.288] 3

0.266 | 0.2 | 1.046 [1.012] 3 [1.015 |0.841] 4

0.379 | 0.3 | 1.028 [1.0150 4 [1.043 |0.778] 4

0.480 | 0.4 | 1.050 [1.039 4 |[1.044 |0.667] 5

20 19567 | 0.5|1.034 [1.037] 5 |1.036 |0.508] 7

0.709 | 0.6 | 1.039 |1.064 6 |1.046 |0.436] 9

0.713| 0.7 | 1.042 |1.165] 9 |[1.050 |0.386] 15
(€1/1), = 5.0x10 1b-in®

TABLE 6.2

Results from the PaA iteration procedure.
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Tables 6.1 and 6.2 also show how the deflections and the
rate of convergence is affected by using EI values computed from ACI
Equation (10-7). Because the Code equation underestimates the stiff-
ness in most cases the deflections are overestimated and the ratio
Af/Ai is therefore less than one. The rate of convergence is seen
to decrease with increasing Pu/Pcr’ and as a result, using a smaller
value of EI will reduce the rate of convergence.

6.4.2 Direct Solution

The process described in Section 6.4.1 may be expressed in
a more convenient form. Let Q1 and Ay represent the applied lateral
load and the corresponding first order deflection, respectively.
Also, let the appropriate axial load be P, the deflection caused
by a unit lateral load be kS and let Qi (i=2,3,--») be the sum of
the applied and additional lateral loads in the i'th cycle.

Then the iteration process may be expressed in the follow-

ing manner:
1st iteration: A1=k501 (6.26)
. Lo _ _ P
2nd iteration: Az—k Q2—k 01(1+Tks) (6.27)
3rd fteration: a3k 05k 0, (1+hk + (1)) (6. 28)
L agmkQymkQy (14K + (] '

~and the general term for the i th iteration is

i-2 i-1 .

N e L R T R T (6.29)

This is a geometric series which converges if %—ks<1.0, and in that

case the sum of the infinite series is

1 _ 1

B = ~P: (6.30)
l_TkS 1__ 1
QT
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And since stl=A the process converges to the final second-order

1
deflection A2.

-1 (6.31)

Equation (6.31) is identical to the equations proposed by

(10) and Go1dberg(7) and shows that the second-order

Fey(g), Parme
deflections may be computed directly from the results of a first-
order analysis in the case of a straight Tine moment-curvature
relationship. If a non-linear M-P-¢ curve is approximated by a number
of straight lines, Equation (6.31) may still be used if the lateral
load is applied in increments to allow for appropriate adjustments
of the EI value with increasing moment.

The obvious advantage of using Equation (6.31) rather than
the actual iteration process is that only two first order analyses
are required to obtain the second-order moments and forces in an
elastic structure.

The accuracy of Equation (6.31) may be studied by considering
Fig. 6.12. This figure shows interaction diagrams obtained from:
a) the actual iteration process, b) using Equation (6.31) and c) the

subassemblage analysis. The iteration process was carried out using

 both the effective EI and ACI equation (10-7). The results from

Equation (6.31) were obtained using the effective EI.

It can be seen that the use of Equation (6.31), with the
correct EI, gives results identical to those obtained in the sub-
assemblage analysis while the iteration procedure gives smaller

moments. The moments from the P-A analysis were lower because the
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P-A calculation converges on the correct answer from below and
the convergence criterion normally used in the iteration process
was that the deflections obtained from two successive iterations
should agree to within a certain Timit, in this case five percent.
When the iteration process is slow, the deflections obtained from two
s&ccessive cycles do not differ very much, but they may still be
inaccurate compared to the correct final deflection. This is shown in
Table 6.1 where, for Pu/Po=O'4 and 1/h=20, the error is about 23 per-
cent. Howevér, this type of inaccuracy will not occur when the process
converges rapidly.

In Section 6.4.1 it was suggested that the rate of convergence
- could be used as a check on whether a stability failure is imminent.
To enable this criterion to be used with Equation (6.31) it is nece-
ssary to express the convergence check in a different form. If the
iteration process is considered to have converged when the deflection
in the i'th cycle is within five percent of the final deflection,

this condition can be expressed by Equation (6.32),

1
Q
| 1 o < 1.05 (6.32)
P P i-1
ST LN N
Equation (6.32) may be rearranged to read
P ii <
(7) kg = 0.05 (6.33)

Thus, the number of iterations required to achieve five percent

accuracy is given by
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j= oL (6.34)
()
Tog
o7
For the particular case where i is not to exceed five, Equation (6.35)

must be satisfied.

"U
>
—
A

0.55 (6.35)

=

Equation (6.35) shows that the deflections obtained in the first-
- order analysis may be used to check on stability failures, and if
. Equation (6.35) is not satisfied, the member stiffnesses may be
- modified until the first-order analysis gives acceptable results
~ before proceeding with the calculation of the final second-order
deflections and stress resultants.
Alternately, the check on the iteration process may also
be based on the convergence of the moments rather than the deflections,
and the convergence criterion may be expressed és

Ql] * PAZ <

m = 1.05

(6.36)

By substituting for by and b from Equations (6.31) and (6.29) in

Equation (6.36) it reduces to

PA i+l

(5—%) 2 0.05 (6.37)
1 .

When i = 0, Equation (6.37) is identical to Equation (6.13), and

thus defines the values of PAI/Qll for which a second-order ana-

lysis may be ommitted. With i = 1 it becomes
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o
o>

(6.38)

s
A

0.22

=

In this case sufficiently accurate moments will be obtained by
adding PA1 to the first-order moments and the second-order deflect-
ion L need not be computed. For values of PAI/QI] greater than
0.22 the second-order deflections must be computed and are easiTy
obtained from Equation (6.31).

6.4.3 The Effect of Sidesway Instability on the Accuracy of The

PA Analysis
Methods currently used to predict stability failures

only consider the bifurcation load which is independent of the
lateral load. However, when stability failure may occur as a
result of a reduction in member stiffness, the magnitude of
the lateral load becomes an important parameter.

A typical load-deflection diagram for a slender column
whose load carrying capacity has been sharply reduced due to a red-
uction in member stiffness is shown in Fig. 6.13(a). This column is
stable if the lateral load is less than Ql' If the applied lateral
load is between Q1 and Q2 the design may be unsafe. This will always
be the case in a P A analysis since the second-order moment will be

-Tess than Mu but greater than the actual failure moment. For the
typical case of a stability failure shown in Fig. 6.5 this would mean
that the second-order moment lies between the failure curve and the
short column interaction diagram, and since it is less than Mu the
column would normally be considered adequate.

Fig. 6.13(b) shows a typical load-deflection diagram for

a material failure. In this case the lateral load carrying capacity
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FIG. 6.13 TYPICAL LOAD-DEFLECTION DIAGRAMS
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is governed by the moment capacity of the cross-section and cannot
be overestimated unless the lateral stiffness is assumed greater
“than the slope of the line 0-1. The same conclusion can be drawn
from Fig. 6.3 where the failure curve and the short column inter-
action diagram coincide.

An unsafe design does not necessarily arise for stability
failures in the moment magnifier method, even if the lateral load is
between Q1 and 02 fn Fig. 6.13(a), since the moment magnifier is a
- function of Pu/Pcr‘ If Pu/Pcr is large enough the magnified moment
will be greater than Mu and a column with a larger moment capacity
is required. This may help in two ways to produce a safe design;
’first1y, the new column may change the failure mode from a stability
failure to a material failure; secondly, the new lateral load carry-
ing capacity Q1 may be greater than the applied load. However, there
is at present no simple method to investigate this type of stability
failure and the correct‘failure mode is normally not known to the |
designer.

If the lateral load carrying capacity could be predicted
by the use of subassemblage charts, for example, the mode of failure
would also be known. This will normally involve rather extensive
computations which makes this method unsuitable for design. This is
doubly true because the lateral load carrying capacity depends on
many variables which makes it difficult to establish simple empirical
expréssions or general charts.

6.4.4 Deflection Limits to Prevent Sway Stability Failures

Rather than attempting to predict accurately the lateral

load at which instability occurs, it is simpler to define certain



Timits which will indicate when a sidesway instability failure is
likely to occur. Such criteria may be established as a relationship
between slenderness ratio, axial Toad and deflection index.

Fig. 6.14 is a plot of slenderness ratio against the
deflection index for stability failure for all the columns studied
in this thesis. It includes data for 217 separate cases involving
three column cross sections, five slenderness ratios and five differ-
ent end restraints. The A/L values plotted correspond to the value
s, in Fig. 6.13(a). This was divided by the real length L of the
column rather than the effective length kL since sway indices for
buildings are generally expressed as A/L. Data for columns dev-
eloping material failure, as shown in Fig. 6.13(b), have not been
included in this figure. It is seen that the following relationships

~may be used to define values of slenderness ratio and deflection

index for which stability failures did not occur:

Ay < kL kL >
(‘L‘)u = Tgooor °r - 90 (6.39)
and (&) £ 0.005 for -";L < 90 (6.40)

u

Equations (6.39) and (6.40) have been plotted in Fig. 6.14. The
scatter diagram also indicates that for a given slenderness ratio
there is an upper Tlimit of A/L above which no stability failures
occurred. However, in these cases the deflections would by far exceed
acceptable Timits and they have therefore not been included.

Equations (6.39) and (6.40) are based on the effective
stiffness values computed from the subassemblage analysis. In practice

the correct effective stiffness is seldom known and thus the effectivev
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length factor k is subject to errors. Also, difficulties may arise
in defining k if it is not obvious whether the frame is free to
sway or is braced.

An alternate approach is to express slenderness by the
ratio 1/h rather than k1/r. Values of (A/L)u for which stability
failures were not observed may in this case be established from
Fig. 6.15, which is a plot of ultimate deflections against 1/h for
217 stability failures and is expressed analytically by Equation
(6.41).

tv

(s _1__ for-}]— 22 (6.41)

For 1/h < 22 Equation (6.40) still applies.

Similar criteria may also be based on service load
deflections. Figs. 6.16 and 6.17 show plots of minimum and maximum
service load deflections, respectively, plotted against 1/h for
the 217 cases of stability failures. These plots show that no stabi-
lity failures were observed with deflection indices below 1/300
for minimum service loads and 1/250 for maximum service loads.

To consider the effect of the axial load, Pu/Po was
plotted against the smallest value of slenderness ratio and
deflection index at which a stability failure occurred. These plots
are shown in Fig. 6.18 and Fig. 6.19, respectively.

Based on these plots the following empirical expressions
were chosen to define regions where no stability failures were ob-
served:

p
kL < _ u
£ 590 - 50 p (6.42)
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(&) £ ;00009 + 0.0035 (6.43)
5§~- 0.035

 These equations have also been plotted in Figs. 6.18 and 6.19. For the

columns studied, columns having kL/r or (A/L)u falling below these

curves developed material failure rather than stability failure.
Equations (6.42) and (6.43) may be combined to give a plot of

slenderness ratio against deflection index as shown in Fig. 6.20. The

condition that will have to be satisfied to ensure a material failure may

then be expressed as

Ay 5 _0.00095

ﬁ 3 - + 0.0035 (6.44)
1.765 - 0.02(5,

L)

A column with a given kL/r and Pu/Po value will be stable if its
(A/L)u is restricted to less than the value given by Equation (6.44).
Within the range covered by Eqn. (6.44), Equation (6.44) is less conser-
vative than Equations (6.39) and (6.40). If Equation (6.44) is not satis-
fied Equations (6.42) and (6.43) may be checked to see if one of them is
satisfied.

The results on which Equation (6.44) is based do not include
‘values of Pu/PO less than 0.1 or greater than 0.8. It is particularly
important that the equation is not used for Pu/PO<0.1 due to the asympto-
tic nature of the curve.

The practical significance of Equations (6.39) to (6.44) 1is that
the P-A approximation to the second-order frame analysis can be used for
frames having a/L values at ultimate which are less than the values given
by these equations. Based on Fig. 6.14 and Equations (6.39) and (6.40),
the P-A analysis can be used safely for frames having sway deflection in-

dices a/L less than 0.005, or 1/200, at ultimate or sway indices less than
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1/300 at service loads. While this conclusion has only been checked
for three particular column cross-sections in sway frames, the prop-
‘erties of sway subassemblage curves suggest that similar limits could

be used for the design of all practical column cross-sections.

6.5 Determining the Maximum Moment in Beam-Columns in

Sway Frames

The methods of second-order analysis of sway frames dis-
cussed in previous sections will give the values of the end moments
acting on the columns. These moments are not always the maximum
- moments in the columns and it is necessary to investigate when the
end moment is the maximum moment. To do so the moment produced by
the axial load as a result of the column not being straight must be
included. This can be done by considering the standard differential
equation for a beam-column.

Referring to Fig. 6.21(a) the equation for the moment in

the column can be written as

pA
- - _pp 4y
MX Mi + Py EI dx2 (6.45)

where Mi is the moment at the section ignoring the axial load.

By putting q2 = P/EI the equation can be written

2 M.
a7y . 2, = _ 1
. tay I (6.46)

Differentiating Equation (6.46) twice and substituting dZMX/dx2 for
(d4y/dx4)EI and Mx for (dzy/dxz)EI it takes the form

Y d2m,
X 2 i
v AR L e
dx dx"™ .

(6.47)
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and the final solution for the moment at any cross-section is

(6.48)

singx +(M1/M2) sin (g1 - gx)
Mx - M2 sin ql

M, and M., are the numerically smaller and larger end moments, resp-

1 2
tively. The ratio MI/MZ is negative for double curvature and posi-
tive for single curvature.

Fig. 6.21(b) through 6.21(e) shows various shapes of
the moment diagram that may occur in a beam-column. From these
diagrams it is clear that if the maximum moment occurs at the end

of the member the slope of the moment diagram must be positive at

the end. Thus

de . :
x=1
x=0
Differentiating Equation (6.48) and putting x=1 gives
> Ml .
cos ql = g~ , (6.50)
2
for x=0 Equation (6.49) becomes
< M2
cos ql = g= (6.51)
1

Equation (6.51) is clearly satisfied for positive M2/M1. In the case
of double curvature the equation may be satisfied for M2/M1 = - 1 but
cannot be satisfied for MZ/Ml <-1. This is true mathematically,
because the cosine is always greater than minus one and physically
because the axial load would exceed the critical buckling load.

Thus, if Equation (6.50) is satisfied the maximum moment will occur
at one end of the member.

If the maximum moment occurs between the endé of the beam-



column its location is obtained by setting Equation (6.49) equal to
zero, which yields M

2
i - oS ql

.1 e
tan gx = T al (6.52)

The solution of Equation (6.52) should always be an angle between
zero and m, and may be substituted into Equation (6.48) to obtain

the maximum moment.

It has been suggested (35) that when the column end moments
include the PA moments the moment magnifier concept based on a sway
prevented condition may be used to determine the maximum moment.

If the moment magnifier turns out to be Tess than one the maximum

moment is assumed to occur at the end.

According to ACI 318-71 the maximum moment is given by

Equation (6.53), omitting the capacity reduction factor:

M= M, Co | (6.53)
P
u
1 - P
cr
s (6.54)
where Cm = 0.6+ 0.4 =—= 0.4 .
2

In a sway frame, with similar Co]umns which are equally loaded,

the value of the applied axial load must be less than the critical
Joad based on a sway permitted condition and if Pcr is evaluated on
the basis of a sway prevented situation the maximum value of the

magnifier (for a given Cm) occurs when

|©
©
[}
S wn

|

(6.55

o

-
-
S T

c
c

b

where Pci and Pcr are critical loads computed on the basis of sway
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permitted and sway prevented conditions, respectively. For a given
’co1umn with given end restraints the right hand side of Lquation
(6.55) depends only on the effective length factors, and by using the
nomographs to determine the effective length factors for various
values of end restraint it was found that the maximum value
Pci /Pce can have is about 0.35. If this value is substituted into
Equation (6.53) it is found that the magnifier is less than one for all
Ml/M2 less than 0.125, thus indijcating that the maximum moment occurs
at the end for smaller values of Ml/MZ' If the applied axial load is
only one half of the critical load Pc?’ no magnification would be
required for Ml/MZ less than about 0.55.

A comparison between Equations (6.48) and (6.53) may be
obtained by assuming values of end restraint and the ratio of applied

“axial load to the actual critical load. Then the parameter gl may

be computed as follows:

2 _Tu (6.56)
qQ“ = .
2
SEE EIZ (6.57)
K1)
o PU
ql = ¥’ T (6.58)
PCY‘

The range of MI/MZ values for which the maximum moment occurs at the
end is determined from Equation (6.50), and the magnification factor
is calculated from Equations (6.52) and (6.48) for cases where the
maximum moment occurs between the ends of the column.

Figs. 6.22 and 6.23 show how the moment magnifier varies

.with the moment ratio MI/MZ for various values of end restraint and
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the ratio Pu/PC: In all cases the restraint has been assumed to be
the same at both ends of the column. The ratio pu/Pcr in Equation
(6.53) was computed in two different ways: a) Pcr = Pc? and b)

Pcr = PE’ where PE is the Euler load. The plots show clearly that
b

oy 1N Equation (6.52) underestimates the moment

the use of Pcr =P
‘magnifier considerably compared to the more accurate solution ob-
tained from Equation (6.48). This is due to the fact pointed out
before, that the ratio PU/PCS will always be Tow in sway frames.

A much better approximation is obtained when Pcr = PE’ except when

the column to beam stiffness ratio is very low and P/Pci is very high,
in which case it tends to give results on the high side. A typical
example of this is shown for Pu/Pci = 0.9 in Fig. 6.22(a) where
Equation (6.53) is seen to overestimate the moment magnification by

a large amount.

An alternate approximate method may be used to give a better
estimate of the moment magnifier. First, Equation (6.50) is used to
determine whether the maximum moment occurs at the end of the column.
If a magnification is required. the straight line approximation shown
in Fig. 6.24 may be used. This approach will always give reasonably
conservative values of the magnification factor.

The coordinates of points A and B are easily computed for a
given value of gql. The abscissa of point A is simply, from Equation
(6.50), equal to cos ql, and the ordinate of point B can be shown
from Equations (6.52) and (6.48) to be sec(géo. Thus the maximum

moment may be expressed by Equation (6.59).
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1
a7 " 1
cos%— My
Muax = Mo| T Cos ql (ME" cos g1) + 1 (6.59)

In practice the moment magnifier equation with Pcr = PE
will yield good results in most cases. Only when the effective
length factor in the sway permitted condition is close to one, say
less than about 1.15, will it be preferable to use Equation (6.59).

The discussion of this section has been based on the assump-
tion that the frame is free to sway such that the columns bend in
double curvature. If there is significant lateral restraint provided
by bracing elements the deflected shape of the columns will approach
single curvature. Thus it is appropriate to evaluate Pcr ih Equation
(6.53) on the basis of the sway prevented nomoéraphs. Since, in
practice, there is no such thing as a completely braced or unbraced
frame some judgment must be exercised in each case as to which nomo-
graph should be used to evaluate the effective length factor. The

bracing criteria of Sections 6.2 and 6.4.2 may be of some assistance

in determining the degree of bracing present.



CHAPTER VII

SUMMARY AND CONCLUSIONS

7.1 Summary

In this thesis the second-order analysis of reinforced
concrete frames has been investigated.

An analytical model based on the sway subassemblage
concept was used to study the load deformation response for 690
combinations of column length, column cross-sections, eight column
lengths and five beam stiffnesses were included in the investigation.

The main parameters studied were deflection indices,
member stiffnesses, stability parameters and second-order moments.

A computer analysis base on the concepts of column
deflection curves and sway subassemblages was carried out using
fea]istic stress-strain diagrams for steel and concrete and taking
into account the variation in stiffness along bhe member caused by
cracking.

The current method of second-order analysis prescribed
in ACI Code (318-71) and an iterative Pa-analysis have been compared
to the computer analysis to determine their applicability and
limitations.

The deflections obtained from the computer analysis were
used to establish criteria for predicting stability failures. These
criteria are also the practical limits for the use of the simplified

design procedures currently in use.
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7.2 Conclusions

This study has only considered three column cross-sections
and only one value of concrete and steel strength. However, since a
fairly wide range of shapes of M-P-¢ diagrams was used, the results
should apply to a wide range of column cross-sections and material
strengths. ’

The analysis showed that the column deflection curve and
sway subassemblage concepts may be used td dbtain the load-
deformation response of reinforced concrete frames. However, the‘
amount of work involved in this kind of anlysis would in most cases
make it unsuitable from a practical point of view.

The deflection analysis of Section 4.5 showed that the
ultimate deflections corresponding to sway failures are relatively
large and that in all but a very few cases exceeded current code
 deflection limits. Stability failures experienced the largest !
deflections and none of the 217 cases occurred at a deflection
index smaller than 1/200. This indicates that if currently accepted
deflection limits are satisfied the structure will exhibit a
material failure. Section 6.4.3 presénts some approximate methods
which can be used to predict the failure mode.

Service load deflections were also found to exceed values
specified in most building codes. For high load factors (minimum
service load) service load deflections varied between one third and
one half of the ultimate deflection and for $mall load factors
(maximum service load) they varied between one half and two thirds.
Fquation (4.7) may be used to estimate the ultimate deflection.

The moment magnifier and PA methods of analysis were both



found to be applicable for material failures, but in the case of
stability failures they may produce unsafe designs if the value of
(1 is greater than that corresponding to line 0-3 in Fig. 6.13(a).
.In Section 6.4.2 some criteria were established for the use of the
Pa-method, and if they are satisfied the structure will exhibit

a material failure. By expressing the Pa iteration procedure in

the form of a geometric series it was found that if Pa;/Qy1 is less
than 0.05 the effecf of the axial load may be ignored altogether
and if Pa;/Q,1 is between 0.05 and 0.22 only the effect of the first
order deflections need be included. For values greater than 0.22 a
second-order analysis is required.

The stiffness analysis of reinforced concrete beams showed
that the effective stiffness may be assumed to be between 0.5 and
0.6 times ECIg. When, in the case of T-sections, the stiffness was
expressed in terms of the moment of inertia of the web, values of the

effective stiffness were found to be between 1.0 and 1.2 times ECIW.
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APPENDIX A

RESTRAINED COLUMN CURVES

A.1 Introduction

The restrained column curves presented in this section
have been prepared for five different values of the beam stiffness
parameter K. From left to right the curves are for K‘= », K = 600,
K = 400, K = 200 and K = 100, respectively. Where there are fewer
: Athan five curves on the chart, those corresponding to low values
of beam stiffness are missing, indicating an unstable structure
for those cases. Thus, if a chart contains three curves they
correspond to values of K of =, 600 and 400. For K equal to 200
and 100 the structure bacame unstable at a very small value of

lateral load.
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APPENDIX B
COMPUTER PROGRAMS

B.1 Beam Stiffness Program

B.1.1 General Description

This program is written in FORTRAN and
computes the effective elastic stiffnéss of reinforced
¢oncrete beams under gravity load, Lateral load and a
combination of the two. The variation in stiffness
a10ng the member is taken into account by dividing the
kbeam into a number of short segments which are all of the
}same length. The moment in each segment is taken as the |
Mean‘of the moments at the ends of the segment. The EI
~ value of the segment is then determined from the moment-
curvature diagram of the cross-section.

‘ When this process has been carried out

, ’fOr all segments the beam is loaded by the M/EI diagram

&and'the conjugate beam theorem is used to compute the
flexibility coefficients. The rotational stiffneSs
coefficients are then determined by inverting the
~flexibility matrix.
A | The beam is assumed to be divided into
'fhree sections, two end sections and a middle section,

and the cross-sectional properties are assumed to be the

Bl



~ same within any one section.

When the beam carries gravity load the
moments produced by these loads are computed assuming

fixed ends.

B.1.2 Input Data

The program can handle any type of
moment-curvature diagram with a positive slope. However,
’non—linear curves must be approximated by a series of
straight lines and the coordinates at all points where a
change in slope 6ccurs must‘be read in. _The number of
points must not exceed 99. The coordinates of the origin

are not read in.

The load intensity is specified as a
fraction of the moment capacity of the end segment.  For
gravity loads this fraction is given by the ratio wlg/IZMu
‘where w is the uniformly distributed load, ]b is the
length of the beam and Mu is the moment capacity of the
end segment. For lateral loads it is given by the ratio
of the sway moment to the ultimate moment of the end
-segment. When the beam is carrying both gravify load
’ and lateral load the sum of the two ratios must not exceed
1.0.

A1l units are in pounds and inches.



The following input parameters are required:

w—
.

[S2 N T 7 I N

10.
11.

Type of loading.

Number of load cases

Gravity load.

Lateral load

Number of segments. A1l segments
are of the same 1engfh.

Number of segments in left hand
end section.

Number of segments in middle section;
Number of segments in right hand
end section.

Number of points on M-¢ curves,
EI for gross cbncrete section.
Moment and curvature coordinates

of M-¢ curves,

A detailed description of the input data required

starts on the next page.
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- Card
Column

Name used
in Program

2-80

CASE

DATA DESCRIPTION

Type of loading. for gravity
load only, 2 for lateral

load only and 3 for combined
loading.

Blank

I

FORTRAN
Format

1-2
3-80

Number of load cases. NBETA
10.
Blank

12

1.80

Ratio of fixed end moment
capacity of end segment.
Omit if CASE=2. Number of

entries equals NBETA. Combine

on new card if NBETA >8.

8F

10.

0

1-80

BETA(I)

Ratio of sway moment to
moment capacity of end
segment. Number of entries
equals NBETA. Omit if
LCASE=1 . Continue on new
card if NBETA>8.

8F

10

.0

1-5

6-10

11-15

16-20

21-80

NSEG
NSEG
NSEG2

NSEG3

Number of segments which the
beam has been divided into.

Number of segments in left
hand end section. ’

Number of segments in middle
section.

Number of segments in right
hand end section.

Blank

I5

I5

I5

I5




FCard

5

21-80

same Number of cards=
number of points on curve.

Blank

Name used DATA DESCRIPTION FORTRAN
Column in Program Format
1-5 NP(IJ) Number of points on M-¢ 15
' curve for positive bending
in left hand end section.
6-10 NP(IJ) Same as above; but for I5
negative bending.
11-80 -- Blank
1-5 NP(IJ) Number of points on M-¢ 15
curve for positive bending
in middle section.
6-10 NP(IJ) Same as above, but for I5
negative bending.
11-80 -- Blank
1-5 NP(I,Jd) Number of points on M-¢ I5
curve for positive bending
in right hand end section.
6-10 NP(I,d) Same as above, but for I5
negative bending.
- 11-80 -- Blank
1-15 ECIG EI for gross concrete F15.5
section.
16-80 -- Blank
1-10 EM Moment coordinate of point F10.0
on M-¢ curve for positive :
bending. Left hand end
section.
11-20 PHI Curvature coordinate for F10.0
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'B.1.3 Output

The program prints out the stiffness matrix
ﬁnd the stiffness coefficients. It also prints out the eff;
ective elastic EI value for each end of the beam. The units

are pounds and inches.

B.1.4 Listing of Program

A listing of the computer program starts on the

next page.



DIMENSIOM NP{97220) v BETA(L10)sEM{99424158)2PHI(99:251410
1SMI99¢10) s THETAL{2:2) s TH{99:20)+F1(99,20),542,2),51(2.2)

5
6
7 CDIMERGTION GMU99,10) » ALPHALLG)
) DIMERSTCRTETITY0 19y~ ~ 7 777
9

C #*%s

19 C 8% { CASFE=13 GRAVITY LOAD ONLY

i3 C *#8 LCASE LATERAL LDRAD ONLY

12 C w*% LCASE=3: GRAVITY LDAD AND LATI RAL LUAD CUMBINED

13 C *¥%

AT T T T READ IS VGO T TLCASE T T T T T T T
15 FEAD(S+ 903 NUETA

IF(LCASE«LDQ.2) GG TO 1

C #3*

C #%% PEAD PATIO GF F.E.Me TO ULTIMATE MOMENT (OrF 8D SEGMUNY

[ T3

T R AGTS YO0 Y LA P RHA T Y s TETINBETA ™ 7777 7 707w o s e e e T

Ir{LL.CASE«EQ.1 )Y 6O TH 2

C *3%

C ey AEAD PATIO OF SEAY MOMCNY TO ULTIMATE MOGMENT OF CND SEGMENT

C *%xx

5 C %% HOTE THAT ALPHAIL)I#RETA{L) MUST HBE LESS UR EQUAL TU 1.0

g3 L ¥¥Y T T TS T T s e e -

7 1 READ(Se7u4) (BETACT) o132} 2N TA)

28 2 READ{S+900) NSUGeNSEGE NSEG24NSEGE

29 - C *ue

kY7 C #e% HEAD Nide GF POLLTS ON M=-PHT CURVES, NP(I.J4).

31 C #%% | IS THE SEGMLNY NUMBER,. .
) TR AT JET T REFERS YOO THE M=PHIT CUPVE FUOR POSTYIVE "BENDTRG T
’ 33 C %=*& =2 RFEFERSG TO THE M~PHI CURVE FOR NEGATIVE SENDING.

34 C *¥a

" 35 T KOURT=O0

36 READIS+90C) (RP{1.J)sd=142)

37 AL 90) (NPINSLGI L od ) ed=1e2)

3G METIGTGHNGEGI#T - I o T T T e

39 READ(5,9006) (NP{Nsd)sJ=142])

42 D73 37 1=2.N3EGH

a1 oo NP({I+1)1=NP{1.+1)

“2 39 MNP(1e2)=1iP{142)

43 N=NSEGL+2

L1 NN=NSEGTHRSTG2 T

(3 DU 40 I=nNsNN

46 HPCT s 1) =NPIN=141)

AT 40 NP(1.2)=NPIN=1,2)

43 NMNTNNEZ

49 DU 41 [=MNNNNSES

3 NS UVENPIRNFIVI) T — T

51 41 NP{1+2)=NPINN+1,2)

52 READ(S5,913) ECIG

53 C ¥

56 C *%% PEAD M~PHI COORDINATES (MOMENTS IN LB-IN)

2% C 5%

——sG g ~OU—FIEE V2 Ealonts - e - -

57 NPL=NP(1 +J)

53 DO 3 K=isNPIL

59 3 READIS+904) EM{19JsK)}PHITIeJaK)}

60 DO 42 1=2.NSEGL

61l DO 42 JU=l.2
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121

DO 81 L=1,.NBETA

62 NPLaNP(1.J) e e
o3 DO 42 K=loNPY
.13 EMULs JeKI=ZEM{ 14 J,K)
65 42 PHI(T o) eK)I=PHI(]+sJeK)
66 D0 43 U=1,.2
67 NPL=NITINSEGI+14J)
LY DO™83 "K=T NPT
69 43 READ(S,9068) EMINSEGI+14JsKIsPHIINSEGLI4+14J4K) :
72 DO 48 [=NNN
71 BN 44 J=1.2
T2 NPL=NP{L )
73 DO a4 K=l.NPI1
TE ER(IVIVKITEMINSEGT# T3 7VKY
75 A4 PHIC(I JyK)=PHI{NSEGI®]lsJ,K)
75 00 a5 J=1.2
77 NPL=NPINSTG~NSEGI+] +J)
748 DO 45 Xzl
79 45 PEAD(D+904) EMINSEG-NSTGI+1eJeK) o PHI(NSLG-NSEGI+
TTTRYTTTTT T T NP ERSIGIANSELO$2T e e T e
-1 DC a6 1=MN24NSEG
a2 DO An y=1.2
33 NPLZNP(],+J)
8s D0 46 K=1.NP]
-1-3 EM( 1o JiKI=EMINSEGIPNSEGR241 4J,K)
AT TN ST FHE T ST X Y RPHTINSECTHNSEGZ ¥ IRy
a7 C w%s
da C *9% READ LENGTH OF DLAM (BL) IN INCHES
39 C *es
33 READED«202) BL
»l WRITE(o+921)
TURETTITTTTT I ORI TE(G,9072) - o - - B ""
93 WRITE (6«905)LCASE
94 IF{LCASELLN.2) GO TU 31 '
.95 WRIYT{O:027)
Yo WRITE(5:907) (ALPHA(1)sI=1eNIETA)
ar IF(LCASE.EQ.1) GO TO 38
9% ST WRITTEIGE79) 0
¥ WRITE(6,907) (BETA(L) 4121 JNBETA)
100 38 WRITE(6,.,923)8L
101 WRITE(6H.904) NSEG
102 WRITE(G,9148)ECIG
103 WRETE(G912)
TOw wTTELOTIINT
105 WRITECE +923)
106 WRITE(G.911)
107 SLGLEOL/NSEG
108 X=0e
109 IF{LCASELEQ.2) GO TO 4
TErYTTTTT D SCKETINDFTA T m——— -
111 X=0.0
112 NPLENP(]1.42)
113 GLEI2.CPALOHAIK ISEM{ L ,2,NP L}/ (3L w02)
11e GMLI=-GL3L*e2/12,
115 X=X+ SEGL
~t1e —-tH} - & 1 =1 INSEG: : e s e e e e
137 GM2ZGL*( O+ 0RBLEX~CLE#2- 6, URX$$2) /12,0
113 GMUI oK)= (GMI#GM2)I/2,0
t19 X=X+ SEGL
120 S GMI=GM2
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122 Bl WRITE(G,9311 G L)sGMINSEGL)

123 4 IF(LCASE<FO.1) GO TH 6

12 K=tif (1 42)

125 DU 7 L=1 .ANBETA

126 Xz SEGL

127 SME=HETALLI®EM(L 424K
TYZETTTT T BO Y TETGNSLG -

129 SMZ=HBETA(LISEM( T 42:K)%((2,0%({0L~X)/BLI~140)

130 SMEI,L)I=(SML1+4SM2)/2.0

131 T SMI=SM2

132 T X=X+SEGL

133 IF(LCASE+GT.1, GU TO 9
T DT IO R VY RBC AT

13% DO 10 1=1+NSEG

136 10 THMOL,LI=GM{L.L)

137 o GO TO 14

138 9 IF (LCASE.EO0.3) GO 7O 11

139 00 12 1=14+NSEG

TRO CO T2 T2TIyNDETR

141 12 TH{L+J)=SM(1+Jd)

142 GO TN 14
- 143 “* 311 DO 13 I=1.NSEG

144 DO 13 J=1 o HIETA

1895 13 TMUL v JJI=GMUT Ul +SM{L )
-y 4G T wEw R U R [

167 C *#% CUMPUTE EI FOR EACH ELEMENT

148 C #s4

149 T 61 M0

150 14 IF (LCASE.GT1} GU TU 13

153 00 16 LalJNUETA . .
e 374 DO TG TEIYNSEG "~ " T — e

153 FEYS

154 IF(TMOT L) aGT o040 ) J=t

19% TFOADGETMES L) T 0T M dal}) GO TR &7

156 H1=NP(] +J)

157 IFCETMUTIoLI~EM(L0doNLI)aGT 100} GU TO 200

S8 Mt e -

159 EL{LoL)=EMIT o de ) /7PHT(L v J0l)

160 GO TO 16

163 T 200 EL(1.L3=0,.00000000000001 -

162 WRITE (69331 1,BETAIL) JALPHA(L)

163 GO TO 16

ICW I AR Y4

165 19 IFUABS{TM(TI,L))«GTLEM{I+sJeN)) GU TO 18

166 ETCI sl ) ={EMEToJo NI=LM{L g B oN=1)1I/7(PHICTIsJWNI-PHI{TsJeN~1))
167 o GO 10 1o

168 18 N=N+l

169 IF(N«GT«N1} GO TO 203

sV GUTTUTTY

171 203 E1({1,1L.)=0.000000000001

172 16 CONTINUE

173 GO TO 34

174 15 DO 21 L=1,NBETA

175 |, D0 21 I=1.NSEG

Ty T4 —

177 IF(TM(I +L)eGTo04) J=1

178 NI=NP(14Jd)

179 : IF(ITMIIGL)I~EMII s JsN1 D) eGT410.0) GO TO 201

180 M=l -

181 IF(ABSITMII +L)) «GTeEMIT sdol)) GO TO 22



182
183
184 201
18%
1do
187 22

EL{IL)SEMIToJs1)/PHI(T U1
GO TO 21
E1(1.L}=0400000000000001
WRITE(64933) 1+BETA(L Py ALPHA(L)
GO TO 21

N=2

B10

TS T T R TIFIABS ITMI TV L GT R ENTITUINT T GU T 24

189 ET(I WL SIEM{T o JoNI~EM{T g JoN=1))/7(PHI(T s U NI=PHI{ 1, JoeN=1})
190 G0 YO 21
191 24 N=aN+1
192 EF{N.GT«N1) GO TD 202
193 GO YO 23
IR T e TET U TG LY E DT Y OY00 00 0000 0T
198 21 CONT INUE
196 34 CONTINUL
197 IF{KODUNT.EQ.0) GO YO 72 T *“
198 BO 71 L=1yNdETA
199 00 71 1=1eNSEG
4" A% TS GT I Oy T UG ET=TtiatTss Ty
2014 71 COMTINUE
202 T2 CONTINUE
203 KOUNTZKOUNTY #1 e - -
204 CALL ANCOL(SEGLET/NBETAINSEGe TMiLCASE 4 GL 4 SMaGM o BL s ALPMA NP,
205 1 EM) .
206 DO 7O LEITNTIETA ™™™
207 DO 70 1=1.NSCG
V8 PO TR WYL P CT L)
209 IF(KOUNT LY &%) GO YO of
P K C &2
2:1 C #20

—RIETTTTTCT R

COMRUTE OVERALL BEAM STIFFNUSS USING CONJUGATE HEAM METHOD

a3 C 2o
2la C %2 UNIT MOGMLNT AT LEFT END (1)
215 C #%% - - -
216 00 29 L=1.M
217 THETA(141)20,0
21y THLYALZTT Y =000 e T
219 THETA(L2):0 40
220 THETA{142)=0.0
221 XES5CGL/2.0 -
222 DO 26 I=1«NSFG
223 THETALL L ISTHETA( o1 )40 {IBL=X)/70L ) 002 ) &(SEGL/ETIC T L))
22N THET A ST T T A2y Y= (L = XY 7 O U7 U Y YR CSEGLZF T L Ly Yy~ -
225 26 X=X+S50GL
226 [ L4
227 C #8% UHIT MUMENT AT RIGHT END (2)
Y- C eode
22% X=SEGL/ 2.0
2N TOU T I BT ENGEG T S e e T e e - -
231 THETA(Z « 2)STHETALZ o214+ (X/7BL) 092 ) & (SEGL/ET( 1,11
232 THETA(L1s2)=THETA(L 42 )~ (X/BL ) *{BL=X)/BLIS(SEGL/ETI (1))
233 27 X=x+SEGL
23a ODEY=THETA( 11 }#THETA(24,2)~THETA(Z2 1 ) *THETA( 1 ,2)
239 S{1 «d)=THETAI 2.2 )/DET
RO L 2 Y Em T HE T AL P Y OB T e e -t s i e -
237 S(2,s1)=~THETA{2.1)/0ET
238 S{2,2¥=THETACL L II/DET
239 O 28 1=1.2
242 0O 28 J=i.2

2al . 23
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242 wWPITE(Gs225)
263 IF(LCASEL «£EQel) GU YO 37
244 IF(LCASE.EN.3) GO TO 46
245 WRITE(OLFIB)HETA(L)
246 GU TO 30
247 36 PA =ALPHA(L)/BETA(L)
L) TRITEISIIDITA™ T
249 GO 10 30
250 37 WRITE(6+920)ALI'HALL)
T2z 30 WRITE(O6.,909) ({S11,d)ed=1+2)41=1,42)
252 WRITE(6. 912}
253 WRITE(G,916) "(S1(1sd)ed=lsc)el=nl,2)
24 WRLTE(G $FRP)~ — T e
255 SLOVAxS(141)%BL/4O
256 WRITE(t+7249)SL0OVA
257 SLOVA=S(2.2)4BL/4.0
258 29 WRITE(6,930)SLOVS
259 DO 50 L=1,NIETA
250 WRITEUETY1Z)
201 ARITE(64907) OETA(L)
262 WRITEC(E 4931) (GMIT4L)»I=14NSLG)
263 WRITE(G,932)
264 WATTE(Ge931) (E1(T4L)s1=14NSEG)
265 50 CONTINUE
256 CACLEXTY
267 20 WRITE(OG.:917)1+BETA(L ) d
266 IF{MeGT 1) GO TO 34
© 269 © 900 FONMAT(1613)
270 901 FURMAT(I1)
273 902 FORMAT(FI0.,0) )
TTRYETT TGO FOKMMAY (T 2) T v s e e e
273 904 FNHMAT(BF10.0)
27s ON% FORMAT(IHDSX ' TYPE JOF LUADING m=',12)
2715 9GO0T FORMAT(JHO5X,10FR.2)
276 Q08 FORMAT(IHOS5X 2" BEAM IS DIVIDED INTO *,13,% SEGMENTS?)
2r7 909 FORMAT(1H0 %X +1P2E1544)
Ty 9ID FOVMAT(THOVSXTTSWAY MOMENT RATIOSIT ) -
279 911 FORMAT(LIHOSXs*ROTATIONAL STIFFNESS CUEFFICIENTS:Y)
2680 912 FOOMAT(1HL)
281 913 FUORMAT(FIS.5)
282 P18 FORMATOIHO X P CIGR? oF 1%Sel e ® LU=IN®®R)
283 915 FURMAT(1r0,5X " STIFFNESS CNEFFICIENTS EXPRESSED AS K=SL/L1:%)
R g T T FORMAT O THO G SX T TPRETS 9 )
285 917 FORMAT (1H1 45X ¢! THE MOMENT IN SEGMENT NJe's13,¢ IS GREATER THEN THE
286 TULTIMATE MOMENY OF THE SEGMENT, BETA2%,F442,'BENDING CODE=*,12)
267 918 FORMAT(1HO,SX*BETA =¢,F%5,2) '
248 919 FORMAT(IHO 15X o' F eEaMo/SWAY MOMENT =¢,Fb,2)
289 920 FORMAT(IHO5X e *ALPHA =% ,F5,2)
2RO g R 1 TOPMAT T I MO ST T TR P U T Y
291 922 FOPMAT(6X,? ~mmmww —-—t)
292 923 FORMAT(LIHO+SXe* THE LENGTH OF THIS BEAM IS *,FS5el.* IN')
293 924 FOPMAT(S5X,'0 U T P U T7)
29 225 FOMMAT(SX ¥ mmmmmm—wm—w? )
295 926 FOPMAT(IHO)
TR T2 T T ORMAT T IH O TSR T P TETM T RATIOS ) m—
297 926 FOPMATLIHO, 10X 4?LEFT END? y1PEL1%5)
298 929 FORMAT{IMO+SX o &FFECTIVF ELASTIC €1 VALURSI®)
299 930 FORMAT(IHD.10X¢*RIGHT END?IPELD5)
3900 931 FORMAT(1r0+1PBE10.2)

303

932 FORMAT(//777)
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OF ELEMENT?® ,13¢% IS5 ZERU FOR SETA =',

332 233 FUPMAY(IHO'3Xv'STxFFNESS

103 o2 AND ALPHAT! (F§,2)

30a $TOP

305 END

306 SUBROUTINE ANCOL{SEGLsET NBETAINSEGs TMeLCASE «GL + SMeGMa Bl 3 ALPHA NP

307 1+ EM)

Ny DIMENSTONTACPHATIU Y SNPIISTIO T EMEG9, 2518

309 DIMENSION SMU99 4101, TM{99520) £ (994201 +GM(99410)

no DIMUNSION FEM{S54%0)

311 DIMENSION AD(S50) XBARIBO) 4PI30) eMY{SC),IY(50)

3z PEAL MY,LIV

313 C *2% COMPUTE CLNTQOXD OF ANALOGOUS COLUMN, AREA AND LOAD
b 2 £ Zuaaiaannd CO™Z LTIy NIETA v

315 XeSEGL/240

316 AxQ .0

nz B=0.0

313 C=0.0

319 NPLaN{14.2)

Y T T L TS U AL PHA L Y FERT T I NPT Y 7 IO R Ty

an 00 | I=1 N3EG
322 AzA+ZEGL/ZEI(L.L)
323 Br3e 4 IEGL/ET (1 WL
3za C2CH{CLARM(BL-X)ESUGL/{2,0%CI(T4L) )}
325 I X=2X+4506L
YT XBAT(LF B K
azxr AG(L)=A
328 RPIL)=C
329 WRITE(6,102) XOARILYILAD(L 1. P(L)
330 102 FUKMATI1MH0«SX41P3F1043)
3N 2 CunTinuL
SRR RN COMPU T MY AN Y s s s i e g
333 DU 3 Lal NUETA
334 .
335 -
T
hE N4 NPL=aNP(L .25
13 GLETZ O FAUPHATOYRENTTVZ NPT Y7 TAU##2)
339 DU 4 1=1.NSEG
3ac AL=AA+ (GLAXK (AL ~X)/2.0) ®{ X~XDAT(LYIZET(T L)
343 BR=UBASECLYEILO0/(ET(TLI%12,0) + SEGL*{X~XBARILII®*2/ET1(1,.L)
362 4 X=X+SFGL
343 MY (L)=AA
R LT T b & T € 1 B-7 H B R e e e e,
3a5 3 CONTINUE
340 C #&% CUMDPUTE FIXED END MUMENTS
a7 DD % L=l aNBETA
348 FEMLGLI=PILIZAO(LY#MY(LIR(~XBARILIIZLIY(L)
349 s FcM(Z-L)‘?(L)/AO(L)+MY(L)#(BL—XBAR(L’)/XY(L)
R I 2l A B T B o A
51 & WARITE(GL 100 FLM{L L) JFEM{2WLY
3s2 IF(LCASELED.2) GU TO 12
353 DO 7 L=l NIETA
353 GM1=0.,
355 X=KFGL
TR AR ABS (FEME T LU N et - S e i e
357 AB2BAES{FEM(24L))
353 NPLENP(1.2)
359 . =« GL=12,0¢ALPHA(LISEM(1 ,2,NPL)/(ULE%2)
360 DO 8 [=1,NSES

3o}

CGMI=SLEX (L ~X) /2.0




« e, A

M T L) (CMIAGMZ 17200~ (ALY (AHZ~AB1 ) #(X-SEGL/R0 /DL )

Jo2

363 XzX +SEGL -
364 8 GM1=GM2

369 7 CONTINUE

366 1F(LCASEWLLO.3) GO TO 10
lo7 D0 9 L=14NBETA

369 THhioTd TINSEG

209 Q TM(I L)=GMLET L)

70 GO TO 12

3an 10 DO 11 L=1.NUIETA

372 ‘ 00 11 1=1.NSEG

373 11 TMOTLL)=SMET,LLYI+GMITL)
ITa TZ CONTINUE 7

375 101 FURMAT (1HC +5X ¢ IP2E10.3)
are RETURN

arr END
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B.2 Restrained Column Curves and CDC Program

B.2.1 General Description

The program is written in the FORTRAN
programming language.

The first part of the program generates
a set of Column Deflection Curves for a given axial load
and all the geometrical data of the curves are stored.

In the second part of the program the data
of the Column Deflection Curves are used to compute restrain-
ed column curves for five values of beam restraint.

When the first two parts have been carried
out for all values of axial load specified, the program
goes on to compute effective elastic EI values, effective
length factors and the ratio of the total end moment and the

PA-moment.

B.2.2 Input Data

The program can handle any type of M-P-y
diagram with a positive slope. However, non-linear curves
must be approximated by a series of straight lines and the
coordinates of all points where a change in slope occurs
must be read in. The last point on M-P-¢ curves terminating
with a negative slope is taken as the point of zero slope.
The number of such points must not exceed 24 per curve. The
coordinates of the origin are not read in.

Two service load conditions may be analysed
wi;h each ultimate load case. The Toad ratios are read in

using an implied DO-loop and the sequence must be as follows:
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ultimate
load case 1 maximum service load

minimum service load

ultimate
load case 2 maximum service load

minimum service load

and so on. Thus,fields 1,4,7 etc. are reserved for ult-

imate loads, 2,5,8 etc. are reserved for maximum service

load and minimum service load are entered in fields 3,6,9
etc. The subscripts for ultimate load are then (1+3n), for
maximum service loads the subscripts are (2+3n) and for min-
imum service load (3+3n) where n is an integer ranging from
one to the number of load cases entered. If, for a particular
Aload case, values for one or two of the three load ratios are
not to be entered the appropriate fields should be Teft blank
and the input parameters START,END,and STEP should be givén
values such that the program does not use these load ratios
during execution. START, END and STEP specify the subscripts
of the load ratios to be used during execution of the prog-
ram. If eight load cases are to be investigated there can be
as many as 24 load ratios. To get the results for ultimate
load for load cases one through four START must be equal to
one, END must be equal to (1+3x4)-3=10, and STEP equals
three. The program_will then use the load ratios given the
subscripts 1,4,7 and 10. If only mimimum service loads were
to be investigated the values would be 3,(3+3x4)-3=12 and 3;

respectively.



If the load factors are different from 1.70

and 1.275 lines 115 and 113 must be changed accordingly.

Listed below is an outline of the input

data required.

1.

O W N Y Ot N

Parameters to specify for which axial loads the
computations are to be carried out.

CDC parameters: initial angle, angle increment
and segment length.

Column properties: type of column, material prop-

erties, steel percentage and cover,.

. Number of M-P-¢ curves.
. Number of points on M-P-¢ curves.

. Axial load ratios.

Moment coordinates of all M-P-¢ curves.

Curvature coordinates of all M-P-¢ curVes.

. Gross area of concrete cross-section.

Values of beam restraints.

A detailed description of the input data

required begins on the next page.
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