

Security Audit of NoSQL DBMS

ISSM-581: Research Methods III

Spring 2021

Supraja Kairoju (skairoju@student.concordia.ab.ca)

Rouheen Sultana (rsultan1@student.concordia.ab.ca)

Priyanka Danidharia (pdanidha@student.concordia.ab.ca)

Research Project

Submitted to the Faculty of Graduate Studies

Concordia University of Edmonton

In Partial Fulfilment of the

Requirements of ISSM-581 course

Concordia University of Edmonton

FACULTY OF GRADUTE STUDIES

Edmonton, Alberta

Advisor: Dr Sergey Butakov (sergey.butakov@concordia.ab.ca)

Department of Information Systems Security and Assurance Management

Concordia University of Edmonton,

Edmonton T5B 4E4, Alberta, Canada

1

Security Audit of NoSQL DBMS

Supraja Kairoju

Rouheen Sultana

Priyanka Danidharia

Approved:

Sergey Butakov [Original Approval on File]

Sergey Butakov Date: June 23, 2021

Primary Supervisor

Patrick Kamau [Original Approval on File]

Patrick Kamau, PhD, MCIC, PChem. Date: June 23, 2021

Dean, Faculty of Graduate Studies

2

Table of Contents

LIST OF TABLES .. 3

LIST OF FIGURES .. 4

I. INTRODUCTION .. 5

II. LITERATURE REVIEW .. 6

A. NOSQL .. 6

B. RISKS ASSOCIATED WITH NOSQL ... 6

1) Risks associated with Data at Rest .. 6

2) Risks Associated with Data in Motion .. 7

3) Risks associated with Data in Use ... 7

III. SECURITY AUDIT .. 8

1) Security Audit for MongoDB .. 9

2) Security Audit for Redis .. 10

3) Security Audit of CouchDB .. 11

IV. DISCUSSION .. 14

V. CONCLUSION ... 14

VI. REFERENCES .. 15

3

List of Tables

Table 1: Referred Database Versions ..9

Table 2: Availability Of Security Controls In Nosql Dbms ..14

4

List of Figures

Fig. 1: Open Ports found in MongoDB ...10

Fig. 2: Hashed password in CouchDB ..12

Fig. 3: Users created in the CouchDB ..12

5

Security Audit of NoSQL DBMS

Supraja Kairoju (skairoju@student.concordia.ab.ca)

Rouheen Sultana (rsultan1@student.concordia.ab.ca)

Priyanka Danidharia (pdanidha@student.concordia.ab.ca)

Abstract – The necessity to store extensive volumes of data

as the information produced increases exponentially. An

increasing number of businesses have embraced different

types of non-relational databases in recent years, generally

referred to as NoSQL databases. Security auditing

procedures for these new technologies ought to be in place

for minimizing the potential negative impacts from the risks

associated with them. The purpose of this study is to

undertake security audit on such NoSQL databases while

considering the specific risks associated with them. Major

findings regarding the identified security controls in

NoSQL databases namely MongoDB, Redis and CouchDB

are discussed, saving considerable amount of time for the

database users. This enables the database developers to

focus on strengthening their weaknesses when one of the

NoSQL flavors is chosen. All in all, this research provides a

security guideline for the organizations implementing

NoSQL and aids the developer of these databases to identify

relevant security risks.

Keywords—Databases, NoSQL DBMS, Auditing, Security

Audit, Security Assessment

I. INTRODUCTION

An extensible and fully featured data storage solutions are
one of the major needs for virtually any business. With the
evolving nature of technology, databases migrated from local to
cloud implementations with the latter providing essential
benefits of availability, server management, scalability, agility,
collaboration, and accessibility [1]. Speed of the development
and pressure to push products to the market also be one of the
many reasons for which bugs are introduced [2], which implies
the protection of the application with appropriate security
controls and compliance to already established security
frameworks, becomes paramount. This research, therefore,
focuses on the implementing appropriate controls of the
database security paradigm, specifically NoSQL.

Auditing is required to evaluate the effectiveness of certain
prevention controls for protection of the underlying database as
it allows for tracking and understanding of how the documents
are used, as well as insight into any threats of exploitation or

breaches. If the threats have been discovered, appropriate
proactive solutions or reactive solutions or both, must be
enforced to ensure that the database is safe from attack. Three
NoSQL database management systems (DBMS), namely,
MongoDB, Redis and CouchDB have been used in this research
project to execute checklist-based audit to find associated
security risks, inclusively providing and implementing
remediate solutions to ensure the database flavor's security to
provide reasonable assurance. This checklist-based framework
can then be utilized as a base for regular audit purposes and for
future research.

With the steadily increasing generation of data, the need for
storage and analysis of these massive data has increased
exponentially. New requirements in storage and analysis
capacity facilitate shifting from traditional SQL to novel NoSQL
to databases. Data industry trying to keep up with the demands
and sometimes data security, which is vital to any organization,
is being ignored. To ensure reasonable security of a database,
compliance measures must be implemented to achieve
assurance and to reduce future costs. The aim of this research is
to discuss about several security shortcomings in NoSQL
databases, their solutions and lastly, provide a checklist on how
to ensure proper compliance with audit frameworks such as,
analyze the levels of security these databases provide to ensure
reasonable assurance, and develop a checklist-based framework
to comply with some management systems, analyze subject
discussion revolves around the levels of security these databases
provide to ensure reasonable assurance, and develop a checklist-
based framework to comply with some well-known audit
frameworks, which can then be utilized for regular audit
purposes and establishing assurance.

The need for storing as well as securing data has been
exponentially increasing over the last two decades. Regular
audits have become the steppingstone for maintaining database
quality, compliance with privacy regulations and protection
against data breaches [3]. Ensuring proper accountability,
investigation of internal suspicious activity and gathering
relevant information are some other use cases where an audit is
a must [4]. Recent alarming breaches due to various reasons, for
example 3 out of 7 in [5] were data breaches, or
misconfigurations in [6] [7] - have intensified the need to
establish essential audit controls and procedures in place, as well
as other defences, to protect organizations from upcoming

6

breaches. However, according to the authors’ knowledge, there
is no generic security audit or overall security audit
methodologies published for NoSQL Databases. Hence, this
research paper shall provide some detailed insights on
MongoDB, Redis and CouchDB vulnerabilities, and their
security audits to achieve assurance goals related to security,
availability, and compliance in these databases.

II. LITERATURE REVIEW

A. NoSQL

NoSQL databases were developed by global leading IT
companies, with sole purpose of satisfying the need of databases
coping up with increasing data processing requirements and Big
Data technologies. For Big data flexibility is one of the most
essential characteristics for a database, for which dynamic
schema of NoSQL is perfect. Some of the major benefits of
using NoSQL databases for large amount of data is 1) they offer
predictive analysis. An example of this is data from various
social media sites such as Facebook, Twitter, Instagram, etc. 2)
NoSQL databases can perform well and give better, larger, and
powerful results if needed as they are horizontally scalable [8]
[9]. These advantages of working with NoSQL gives them extra
edge in comparison to RDBMS and makes them more preferable
choice for especially big data applications. Following are some
features of NoSQL which proves to be extra beneficiary for
security audit [10] [11]:

• Management of large data at high speed is easy and
more efficient with the scale-out of the architecture of
NoSQL.

• NoSQL works well and supports stored unstructured
data, semi-structured data, and structured data equally.

• It's less complex to enable easy updates on schemas and
their fields.

• NoSQL uses the cloud to its extent and delivers zero
downtime.

• Due to the advanced features of NoSQL, it requires very
little extract, transform, and load.

• Ability to handle change and adapt to it.

• No legacy code means support for old hardware
platforms is not required.

• No demand to separate the data warehouse system and
shipping a large amount of data over the network for
locally combined analysis.

• User is free to select vendor as per requirement without
any rules binding them. Some of the vendors available
are IBM, Microsoft, and Oracle.

However, NoSQL is an emerging technology, that does not

have enough material to understand its issues and increase

awareness. Using these databases sometimes can cause a lot of

problems related to security management, Data Consistency,

Scalability (not completely scalable in all situations) etc. This

research provides a list of few such problems and some

recommendations to mitigate them. Also, a security audit is

made to identify, assess, and implement key security controls

in NoSQL Databases, that would help the new or existing

NoSQL Database users to predict the risk against respective

databases and to majorly focus on the protection of controls

which are at higher risk.

B. Risks Associated with NoSQL

The biggest risk in the use of NoSQL is regarding security.

Authentication and encryption both are very weak within its

vanilla implementation. Other shortcomings include weak

password storage, insufficiency of encryption support for the

data files, fragility to injection and DOS attacks.

Communication between server and client is, by default, in plain

text format without any encryption or security layers.

Furthermore, data at rest is also unencrypted making NoSQL

unsuitable for use of external encryption tools like LDAP,

Kerberos etc. [12] [13] [14] [15].

In addition to not always well-developed security features to

external threats, NoSQL DBMSs also have internal

shortcomings which result in data management risks such as the

technology lacks a stable user base in comparison to relational

databases which implies less overall stability than RDBMS.

NoSQL also lacks deep analytic support, compatibility with

hybrid clouds and support to transactional functions for the use

in financial systems. Moreover, NoSQL databases support

consistency and scalability but they do not support strict

conformance to the Atomicity, Consistency, Isolation, and

Durability (ACID) properties of a database. All these risks and

shortcomings sometime makes companies reluctant to adopt

NoSQL DBMS in major projects. The risks associated with

NoSQL are categorized according to three states of data: i) Data

in use ii) Data in motion and iii) Data at rest [16] [13] [14] [15].

1) Risks associated with Data at Rest

i) Weak Authentication and Encryption in NoSQL

DBMS

Most certified NoSQL databases only have a simple access

control feature, while others do not have one at all. Without any

credentials or restrictions in place, this lack of protection leaves

an open vulnerability to hostile access. Using default

authorization credentials is a common mistake made by big data

users. Therefore, vulnerabilities like an absence of proper

authorization functionalities, access controls, segregation of

user roles, are created. By design, search engines and significant

in-memory key-value solutions have this issue [17] [18] [19]

[20].

 To overcome this, several defense-in-depth strategies

must be implemented. For example, the user must build a

RESTful API around the database solution and applying access

tokens as user credentials for the Web API clients [19] [20] [17]

[18]. Native authentication features can also be leveraged for

solving these issues. Modern NoSQL solutions also lack built

in encryption storage engines, data integrity functionality,

encryption aggregate functions, and store texts plainly which

imposes too many security risks. Solution to mitigate this is to

7

develop a transparent encryption application layer [18] [19]

[20].

CouchDB has an admin user (e.g., root user or super user or

administrator) that can do anything and everything while

installing CouchDB. For successful starting up CouchDB it is

must to create an admin user by default. To quickly authenticate

CouchDB simple methods like basic authentication (method for

a http user agent) is preferred. The biggest disadvantage of using

basic authentication is it requires sending user credentials for

each request which can easily damage operation performance

(as for every request CouchDB computes the password hash)

and this makes CouchDB vulnerable to strong credential abuse

attacks. Setting up SSL for improvement of all types of

authentication methods’ security is recommended to resolve this

issue [21].

ii) Weak Password Storage

MongoDB's password storage system is insecure. The

password storage form is an MD5 hash of the string "username:

mongo: password," which is effortlessly obtainable from the

admin data-files, meaning that if an attacker obtains the MD5

hash, he or she will have access to the database's actual

password. The encryption key does not shift and remains

constant for all users. As a result, the encryption becomes less

secure. Redis also has a password storage system that isn't very

safe. Since Redis' password is set in plain text and the number

of password attempts is not rate restricted or limited in any sort,

brute force attacks are a major threat. The admin user or

authentication is disabled by default in Cassandra, and

password storage is similarly insecure. Solution for

MongoDB’s weak password storage is to store hashed

password using Bcrypt or Node.js or Mongoose (software for

hashed password generation) for security [12] [22] [23].

2) Risks Associated with Data in Motion

i) Denial of Service Attacks

In their network code, some NoSQL database servers use a

Thread-Per-Client model. The NoSQL project suggests using

various types of connection pooling because every link requires

the NoSQL server to begin with a new thread (The network's

TCP overhead is also considered in). An attacker can prevent a

NoSQL server from incorporating new client connection

requests by forcing it to offer all its resources to forge link

attempts. An invader's only requirement is details such as the

IP addresses of cluster members. The sniffers are used by the

attacker to get information from the network. Since the current

approach does not allow for indirect connections, any link that

is opened without transmitting data requires a thread and a file-

descriptor that cannot be launched [17].

ii) Quick access to ports that are open

Many of the NoSQL servers, according to a report, are exposed

to the internet and can be easily used by the hackers. Someone

once looked for open servers on the Internet/24 and discovered

48, which is a huge security risk. For instance, Cassandra uses

port 8888 as its default port. If Cassandra server's port is known

by hackers and a sufficient link is established, the Cassandra

server can be stuck and shut down. However, Since Cassandra

uses the Thrift Protocol, it creates one thread for each client,

and since it lacks a time-out function for passive clients, the

connection pool of Cassandra can quickly become occupied,

causing it to crash [12].

iii) Lack of IP Binding

NoSQL databases are set to be publicly available, such as All

data in MongoDB is stored on a public IP address and is

available to the public. By default, Redis is open to the public,

and whoever looks for its open port number: 6379 will be able

to view the Redis server info. Both databases include the use of

firewalls to protect the IP binding. This will restrict which

entities can connect to the server and how the database can be

used. It is recommended that application servers have access to

the database. For Instance, Applications hosted on a cloud

platform such as Azure or AWS, may use security groups to

bind links to public IP addresses and ports. When other service

providers are opted, ‘ip_tables' should be used to secure it. Only

IP addresses that can access the servers and retrieve data from

the database will be stored in these tables [12].

3) Risks associated with Data in Use

i) Injection Attacks

MongoDB is the most common NoSQL database that is

exposed to injection attacks. MongoDB makes heavy use of

JavaScript on the server side to improve performance, and as a

result, it is often vulnerable to injection attacks. The internal

operator of MongoDB "$where," which was intended to be

implemented as a search query like SQL's "where" clause, can

also filter data using sophisticated JavaScript functions. The

CQL works under Thrift and at the RPC level, so it is not

vulnerable to SQL injection. While Aniello et al. indicated

Cassandra has little weakness, those were not the CQL's

findings. Since the Redis protocol does not support string

escape, it is not at risk to injection attacks when used with a

standard client library [12].

ii) Lack of proper authorization

An important issue attracting auditor focus is - data integrity,

which is a set of significant evaluations of completeness,

authorization, consistency of data, accuracy of data, and

accurate authorization - is a liability for NoSQL. To exemplify,

in pre-existing settings, authorization check is disabled in

MongoDB. However, MongoDB uses a role-based approach

which allows different types of solutions as users can be

authorized on pre-database level. On the other hand,

authorization in Cassandra is pre-approved for all the clients

without any regards of credentials. Unlike traditional RDBMS,

Cassandra is a schema-less database, which explains the

improper data models. According to Apache official manual of

Cassandra, if Cassandra Authorizer is determined, then the

administrator can be allowed to have advanced privileges

8

including AUTHORIZE, ALTER, SELECT, DROP, CREATE,

MODIFY, on any resources (TABLE, KEYSPACE, ALL

KEYSPACES) to a determined user, implementing CQL

(Cassandra Query Language) statements. As for Redis, the

password storage method lacks proper security and protection.

Since there are no restrictions or rate limit on the number of

password trials and password is saved in clear text, Redis faces

major threats from brute force attacks [17] [20] [24].

iii) Risks and technical challenges associated with

migrating from SQL to NoSQL technology

While achieving high performance and high scalability NoSQL

sacrifices one or more of the following properties: atomicity,

consistency, isolation, and durability. ACID properties can

guarantee correctness of data based on the features such as

triggers, constraints setup, keys, and triggers which is a lost

cause in NoSQL. Majority of NoSQL solutions (except for

Raven DB) do not offer any transactions or atomic multi-

document writes. Normally NoSQL databases lack security

control such as foreign key, which is used by SQL databases for

consistency control as well as validation of the database state.

Other shortcomings of NoSQL include absence of stored

procedures (in most of NoSQL Databases), and lack of triggers.

Furthermore, while moving from SQL to NoSQL, a user must

identify most fit NoSQL model for subject data, as direct

mapping is not feasible. NoSQL databases support importing

CSV dumps or JSON dumps, which makes the data migration

easier as once the identification of data model is achieved only

thing remains is exporting data to independent formats such as

CSV. Such shortcomings make moving data SQL to NoSQL

troublesome, hence the user must weigh all advantages and

disadvantages before reaching to such a decision [25] [26] [27]

[28].

iv) Poor support for transactional functions:

The two core design parameters which play primal part in

NoSQL databases are i) faster key lookups and ii) operations

which are atomic at the row level and not spanning the records.

Due to these properties databases can be fragmented

successfully (as there should never be spanning multiple

machines in any kind of operation) and makes building scale

out architectures easier. Characteristics like these makes the

NoSQL more compatible to writing heavy workloads and faster

rendering of webpages. Financial data is likely to be small in

comparison to large web companies’ data. Making scale out

less important for finance sector. Moreover, financial data tends

to be partitioned well because of which replica placement

becomes more explicit [29] [30].

v) Compromised Clients

Clients accessing NoSQL databases may be in direct contact of

resource managers or various nodes. Access from a single

compromised location and malicious data can put the entire

system at risk and compromise the security of data. In absence

of central management security, protection of the clients, nodes

and the name servers become tough [17].

Where relational databases offer more stability because of

“seniority”, they are a poor choice for large data or big data

analysis. Contrastingly, NoSQL provides scalability, speed,

schema-less approach, and support to big data applications

along with risks and limitations as mentioned above.

This paper provides a broad overview on NoSQL databases

risks and shortcomings; and tries to develop an audit checklist

which can act as a basis for evolving research in the promising

areas mentioned above and detailed research on the effects,

usability, security, cost and comparison of different

technologies used for security audit, can be undertaken to

improve these technologies for the betterment of Information

Security community as a whole.

III. SECURITY AUDIT

Database auditing includes observing the actions of database

users and its characteristics to be aware. Auditing is frequently

set up by database administrators and consultants for security

reasons, for example, to ensure that those without the

permission to access information do not access it. There are

various types of audits which includes, Statement auditing,

privilege auditing, schema object auditing, fine grained

auditing and complete system auditing. Information audit

comes under the systems audit category. Audit which is based

and related to only the elements of Information System is called

Information Audit. This fact makes the information audit

excluded from the group of rest of the audits. The information

audit's purpose is to give a process for recognizing, evaluating,

and managing information resources to fully exploit

information's strategic potential. The information audit should

provide strategic direction and guidelines for the management

of an organization's information resources considering its

strategic purpose [31] [32] [33].

In this paper Information audit is used as a tool for identifying

risks associated with NoSQL databases and their mitigations.

Information audit is used as a first step towards development of

more useful and less risk holding use of NoSQL databases.

Information Audit has discreet procedures, which are used for

achievement of certain objectives with specific tools.

Processes, objectives, procedures, international regulations and

components related to this are established by the global

association for IT - ISACA (Information System Audit and

Control Association) [32] [33].

Normally any type of databases and their strengths are

measured with help of different frameworks such as ISO 38500,

COBIT, ITIL, Calder-Moir IT Governance framework etc.

These governance frameworks enable organizations to manage

their IT risks effectively and ensure that the activities associated

with information and technology are aligned with their overall

9

business objectives. Universal standards for IT governance and

rules are called COBIT (Control Objectives for Information and

Related Technology). In this paper COBIT framework is used

for conducting audit of diverse NoSQL databases and

measuring their impact on major IT framework characteristics.

COBIT has defined seven important characteristics for any

information framework: [32] [33]

• Availability – the information must be available at

any time during the decision process.

• Integrity – the content and accuracy of the data must

be in accordance with the rules and expectations of the

organization.

• Confidentiality – the information must be provided

only to users whom they are intended to be delivered.

• Reliability – the information must relate to the

specific decision-making process that is served.

• Efficiency – the information must be provided with

the lowest consumption of resources.

• Effectiveness – the information must be relevant,

accurate and timely provided for decision making.

• Compliance – the logical structure of information and

its concrete values must reflect the actual level of

processes it characterizes.

These seven characteristics of information according to COBIT

standard are important elements for the final analysis of IT

audit. In this paper five (availability, integrity, confidentiality,

reliability, and efficiency) of the seven characteristics are

studied for three diverse NoSQL databases: Mongo DB,

REDIS, and Couch DB. All risks and their impact on the

NoSQL database are mapped with reference to these five

characteristics [32] [33]. We have referred below versions of

these databases to assess the security controls.

NoSQL Database Version

MongoDB 4.4

Redis 6.2

CouchDB 3.1.1
Table 1: Referred Database versions

1) Security Audit for MongoDB

i) Check for default usernames and passwords

Consider a scenario where a vanilla instance of MongoDB

has been installed and is to be configured the coming business

days. In the meantime, an attacker gets access to the open ports

of the database within the organization. For availability,

accessing the instance will not directly affect the availability for

the users of the database, but because of the motivation of the

attacker. Confidentiality is immediately breached and the

Reliability of the database/the group managing the database

will be affected the most if the attacker can gain administrative

access. Attackers could modify the entire database, if needed,

which affects Integrity rating. Lastly, efficiency is not affected

at all, because according to performance indicators attackers are

using minimal resources within the database system.

ii) Verify encryption of data at rest:

For verifying data-at-rest encryption, it is assumed that the

attacker has gained access to the enterprise/atlas database and

not the master key (as it is stored in a different but a key

management solution). Encryption of data at rest is not included

in the free versions, but in the enterprise and the atlas versions.

Confidentiality, Availability and ultimately, Reliability are

affected the least currently, as there are nil vulnerabilities found

which could be exploited. Efficiency follows next, as due to

heavy decryption of data, users can experience latency between

10%-20%. If the user has large amount of data writes/data,

performance impacts can be high compared to read-only usage.

After introduction of WiredTiger, performance impacts

decreased more [Source]. For Integrity, if the attacker has read

access and can perform a known-plaintext attack, or if the

attacker has write access, attacker can modify the encrypted text

into gibberish and corrupt user’s data. Using non-repeated texts

can thwart the known-plaintext attack, but the damage is more

severe if user’s data can be overwritten [34].

iii) Review database authorization and permissions

granted to all users

Incorrect permission assignment can lead to nightmares for

system administrators. Unless a vulnerability affecting

permission model of Mongo DB is found, the reliability stands

at maximum (0). Misconfigurations can lead to availability of

non-essential processes for a user as well as not providing

processes to a requesting user, which affects the availability

characteristic. For the worst-case scenario of access to

administrative processes given to a normal user, confidentiality

of the data provided by the process is easily breached.

Efficiency is affected when there are a large number of users

requesting access to the database with a complex authorization

model. Lastly, integrity depends on the modify/write access of

the user, which can be of maximum impact if normal user has

administrative rights.

iv) Security against quick attacks on open ports

Several systems are victims of unauthorized access where

open ports are utilized. MongoDB has ports 27017 and 27018

https://info.townsendsecurity.com/mongodb-encryption-key-management-definitive-guide

10

in use for its internal processes, which can be scanned and if,

for example, default or insecure credentials are utilized in the

system, the characteristics might be heavily affected depending

on the motivation of the attacker. Versions of MongoDB before

2.6.0 allowed remote unauthenticated connections, which lead

to a spike in ransomware attacks for MongoDB, leading to the

issue being rectified later [35] [36] [37] [38].

Fig. 1: Open Ports found in MongoDB

v) Security against DoS Attacks

Attackers using DoS attacks try to find vulnerabilities

which disrupt the service availability for other users. There are

several vulnerabilities discovered causing DoS attacks within

the class CWE-400, including CVE-2015-4411, CVE-2016-

3104, CVE-2014-8964 and CVE-2020-7926. These attacks are

presented when multiple (in hundreds or thousands of) specially

crafted queries are provided to the server, which then uses its

resources to establish the query results, causing disruption of

services for other legitimate users. For example, in CVE-2015-

4411, while viewing the source code, characters ‘^’ and ‘$’ are

used to start and terminate the Regular expression (instead of

‘\A’ and ‘\z’), which causes the regex engine to validate the

entire input string, even if the input is valid only up till a

newline character [39] [40] [41] [42] [43].

/^[0-9a-f]{24}$/ [44] validates the string till character

24 and approves even if there are invalid characters present

thereon. Network filtering solutions such as firewalls and IPSs,

strict access controls, dedicated user accounts for databases,

and keeping updated versions of software are most common

ways to avoid DoS attacks [44].

vi) Injection attacks

Injection attacks are steadily increasing within NoSQL

paradigm. As with SQL injections, it is possible to gain access

to a user account or administrative account if crafted queries are

used. Various payloads are provided here:

PayloadsAllTheThings. The documentation explicitly states

that while utilizing several operations like mapReduce,

$function, $where and $accumulator, using JavaScript can be

an avenue for injection attacks.

Similar defense in depth strategies exist for protecting

MongoDB against injection attacks, including but not limited

to, frequent updates, least privileged access control, avoiding

using Javascript at all if possible or using filters for vulnerable

queries amongst others [45] [46].

2) Security Audit for Redis

i) Review weak password storage in Redis DB

Passwords are stored and transferred in plain text in Redis.

The password is compromised if an attacker can listen in on the

Redis server and the client. Similarly, if an attacker gains access

to a Redis server's redis.conf configuration file, the password is

stored in plain text and can be retrieved easily [47].

ii) Check for default username and passwords:

In Redis, the host is localhost, the default port is 6379, and

there is no password by default if using a local instance [48].

Prior to Redis 6, Redis could only recognize AUTH

password> is the one-argument form of the command. This

form simply verifies the password entered with requirepass. If

the password provided via AUTH matches the password in the

configuration file, the server responds with the OK status code

and begins receiving instructions. Otherwise, the client will

receive an error message and will need to use a new password

[48] [49].

Redis 6 has developed ACL commands where password is

checked across the usernames using the command: AUTH

<username> <password>. Then the command confirms the

users and their passwords set in the redis.conf file to provide

access to the server [49].

Because of Redis' fast performance, it is possible to test

many passwords in a short period of time, thus, to prevent this

attack make sure to create a strong and long password. The

ACL GENPASS command is an effective technique to create

strong passwords [49].

iii) Review database authorization and permissions

granted to all users:

Password-based authentication or role-based access

control are required for all Redis Cloud databases. One can

define many users with fine-grained authorization features

using role-based access control [50] [48].

To use role-based access control (RBAC), a Redis Cloud

database supporting version 6.0.0 and above are needed [48].

The ACL command in open source Redis can be used to

create users and assign Permissions to users. Open source Redis

does not support generic roles [48].

If Redis is exposed, it is insecure, because Redis' security

paradigm requires that only authorized and trustworthy clients

have access to it. Unfortunately, this is insufficient. External

clients can easily snoop into the Redis server and retrieve the

desired data [50].

iv) Verify database as well as its users' authentication:

Redis does not seek to provide Access Control, but it does

provide a minor layer of authentication that may be activated or

removed via the redis.conf file. Unauthenticated clients will be

denied access to Redis if the authorization layer is enabled. A

client can authenticate themselves by using the AUTH

command followed by the password [49].

https://cwe.mitre.org/data/definitions/400.html
https://www.cvedetails.com/cve/CVE-2015-4411/
https://www.cvedetails.com/cve/CVE-2016-3104/
https://www.cvedetails.com/cve/CVE-2016-3104/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-8964
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-7926
https://github.com/swisskyrepo/PayloadsAllTheThings/tree/master/NoSQL%20Injection
https://www.rapid7.com/blog/post/2016/07/28/pentesting-in-the-real-world-going-bananas-with-mongodb/

11

The password is set in clear text in the redis.conf file by the

system administrator. It needs to be strong enough to eliminate

the chances of brute force attacks [49].

The authentication layer's goal is to create a redundancy

layer that can be enabled or disabled. If firewalling or any other

measure developed to protect Redis from external attackers

fails, an external client will still be unable to access the Redis

instance without knowing the authentication password [49].

Because the AUTH command, like all other Redis

commands, is sent unencrypted, it is vulnerable to

eavesdropping by an attacker with sufficient network access

[49].

v) Verify encryption of data at rest:

Data on the network (data in motion) and data on disc (data

at rest) are both encrypted by Redis Enterprise[51]. With a

single checkbox, Redis Enterprise VPC also supports

encryption at rest. Using transparent filesystem encryption

capabilities available on Linux OS, administrators can encrypt

data at rest in Redis Enterprise Software. The Enterprise version

of Redis uses AWS Management console, that consists of

ElastiCache navigation dashboard. In the cluster panel, if the

attributes for encryption at rest and encryption in motion are

unchecked by the administrator, the data is both stored and

transmitted unencrypted causing the highest risk to the data. In

the open-source version of Redis, the encryption of data is by

default at both rest and in motion [49] [48].

vi) Review data migration from SQL to NoSQL:

Using ApsaraDB for Redis' pipeline feature, users can

easily transfer data from ApsaraDB RDS for MySQL or on-

premises MySQL databases to ApsaraDB for Redis[54].

ApsaraDB for Redis is used as a cache service between

applications and databases to extend the capabilities of typical

relational databases in one of the most common use cases. This

benefits the ecosystem as well. Hot data is stored in ApsaraDB

for Redis. ApsaraDB for Redis allows applications to

immediately retrieve current data. To utilize ApsaraDB for

Redis as a cache, users must first send data to ApsaraDB for

Redis from a relational database. Tables from a relational

database cannot be immediately transferred to the ApsaraDB

for Redis database, which stores data in a key-value structure

[50].

vii) Ensure/Verify security against quick attacks on open

ports:

Allowing the open ports on internet to access a

misconfigured service could allow an attacker to gain a

foothold on the server, in addition to exposing the data. Attacks

on Redis have been carried out that add an attacker's SSH key

to the authorized keys file of the Redis user, enabling the

attacker SSH access [48] [47] [49].

viii) IP Binding Security

Redis, by default is configured to be accessed by all

addresses (#bind 127.0.0.1). Multiple addresses con be

configured using command # bind 127.0.0.1 newip.

Configuring multiple addresses means that this address can be

accessed by other applications, not the address of the

application service. For instance, Application A, B, C, D, is

deployed in the intranet environment, they need to use Redis

service (The application service and Redis service are in the

same intranet). When the Redis service starts, it will use the

internal network address where the own server is located that

gets exposed [48].

Application A, B, C, D, can be used to access the Redis

service, if these applications are not configured, an exception

will be given, “Could not connect to Redis at

192.1.17.61:6379: Connection refused” [48].

After the setting, access can be control by allowing only

the machines on the intranet can access the Redis service.

but, if any other machine in the intranet is invaded, then the

Redis server is also insecure. It can be made secure by adding a

password to the Redis server. Password should be set/modified

in redis.conf file and then the machine should be restarted [48]

[49].

ix) Ensure/Verify security against DOS attacks:

An attacker can launch a certain type of attack from the

outside, even if they do not have access to the instance. The

ability to input data into Redis that causes pathological (worst

case) algorithm complexity on data structures defined inside

Redis internals is an example of such an attack [50].

For example, an attacker could send a series of strings

known to hash to the same bucket into a hash table using a web

form to convert the O(1) expected time (average time) to the

O(N) worst case, consuming more CPU than expected and

resulting in a Denial of Service [50].

Redis uses a per-execution pseudo-random seed to the hash

function to prevent this specific attack [50].

The qsort algorithm is used by Redis to implement the

SORT command. Because the algorithm is currently not

randomized, a quadratic worst-case behavior can be induced by

carefully picking the proper set of inputs [50].

x) Verify security against Injection attacks:

Because the Redis protocol has no conception of string

escaping, injection using a standard client library is difficult in

most cases. The protocol is binary safe and use prefixed-length

strings [50].

3) Security Audit of CouchDB

i) Review weak password storage in NoSQL DB

CouchDB does not save the plain-text password anywhere,

it rewrites the plain-text passwords using a hashing algorithm,

so they are hashed [51]. Whenever a user is created, password

gets hashed right away in local.ini file [51]. Even if the stored

hash enters the hands of an attacker, recovering the plain-text

password from the hash is currently too inconvenient i.e., it will

cost a lot of money and effort.

12

Fig. 2: Hashed password in CouchDB

ii) Check for default username and passwords

An admin user (e.g., an administrator, a super user, or root)

in CouchDB can do anything with the database. Everyone is an

administrator by default. Additionally, individual admin users

with a username and password can be created [51]. CouchDB

can be compromised with Brute Force attack with default

username admin and with an easily guessable password, as the

number of login attempts is not limited. To implement standard

password management, it is recommended to follow below

procedures:

o While creating user account the strength of password

should be estimated to enforce strong passwords.

o Incorrect login attempts must be limited to 3 or 4 and

account should be locked after that.

o Inactive accounts after a certain period must be

deactivated automatically.

iii) Review database authorization and permissions

granted to all users

Each user in CouchDB has been categorized into either

admin or a member. Database's protection in this is determined

by the security object, which is a JSON document made up of

two components: "admins" and "members," each of which is an

object with two more components: "names" and "roles," the

values of which are arrays [51].

The ability to build design documents (view definitions

and other specific formulas, as well as standard fields and blobs,

are all contained in these special documents) and alter a

database protection object is added to such permissions by a

named list of privileges called "admins" [51]. “admin” and

“adminuser1” were created as admins.

Permissions to build, edit, read, and delete documents in

the database are granted by a named collection of privileges

known as "members." “mem1” and “mem2” users were created

as members.

Fig. 3: Users created in the CouchDB

iv) Verify database as well as its users' authentication

CouchDB administrators are declared inside the config file

whereas the regular users are stored in a separate authenticated

database also known as System Database. This database

contains all the registered users as JSON documents and is

named as ‘_users’ by default. Unlike other databases only

administrators can access the documents in the System

Database, can do changes and can execute design functions. It

is verified that the regular users can access and do changes only

to the documents they have created.

v) Verify encryption of data at rest (Assumption: Access

is violated)

The ability to encrypt a database (partition) on disk is

important in some highly sensitive application domains. In

CouchDB, database encryption is not supported [52].

vi) Review data migration from SQL to NoSQL

SQL Server and CouchDB are extremely different

technologies. There is no one-to-one migration path available

because neither SQL nor CouchDB has similar features of the

other. It is not so easy to migrate data from MySQL to

CouchDB because MySQL is a relational database that has

been normalized to at a minimum third normal form and

preferably further, the other CouchDB is a document based

datastore that is not relational and is not normalized. So, there

is no natural correspondence between elements in either that

could apply a generalized algorithm to perform an export. One

possible way is to map the schema of the MySQL to the

document of CouchDB and write an SQL query to export to text

and then can be imported to CouchDB [51]. There are few third-

party tools available to migrate data automatically from SQL

server to CouchDB, it converts the data in tabular form to JSON

Format that would fit to CouchDB systems schema [53].

vii) Check IP Binding Security

To make any requests to CouchDB, by default it listens

only to local host or loopback IP address i.e., 127.0.0.1. It will

be open to public when the system public IP address is bind to

the database, but the database access will be restricted only to

admins (admin credentials must be included along with the

public IP address) [51].

viii) Ensure/Verify security against quick attacks on open

ports

Latest version of CouchDB by default listens to port

number 5984 for http and 6984 for https. Any other random

ports that are open and listening to all the interfaces can be

Erlang VM’s distribution port that is used in clustered mode of

CouchDB to connect to another CouchDB node to form a

cluster. Port Number 4369 is usually used as Erlang Port

mapper daemon (epmd) which plays major role to achieve

cluster installation. It is used to find other CouchDB nodes, so

all servers can communicate to each other on this port. Risk on

exposing this port to internet or any untrusted network can be

protected by the Erlang cookie – monster in this NoSQL

database [54] [54].

ix) Ensure/Verify security against DOS attacks

CouchDB is vulnerable to Denial-of-Service (DOS) attacks

[55]. All networked servers are subject to denial-of-service

attacks. Such attacks can be reported to the Apache Software

13

Foundation through a private security mailing list to address the

issue [51].

x) Verify security against Injection attacks

CouchDB is vulnerable to script injection. CouchDB enables

the ability to run JavaScript in the database engine to conduct

complex queries or transactions, such as map reduce, is a

typical feature of NoSQL databases. If un-escaped or

inadequately escaped user input makes its way to the query,

JavaScript execution exposes a severe attack surface [56].

The authors consider the previous marking balanced score table

as an inappropriate system for the current research due to

various reasons. The previous paper focuses on building a tool

for streamlining output of various audit software whereas this

focuses on building a checklist-based framework on

risks/threats of NoSQL flavors, which is a major difference in

the implementation of the score table for Databases. The

previous research considers SQL databases and not NoSQL,

whereas this research considers the latter. Furthermore, the

measurement guide does not specify a baseline score or a

baseline implementation of related applications for guiding an

organization to fill the characteristic table, making the values

for the audit checklist to be relative to the individual’s

experience, opinions, and bias. Moreover, the research doesn’t

consider the limitations of the company as to how a score is

obtained. Mistakes made by inexperienced or veteran

developers or bugs introduced by implementing patches can

introduce several variants of vulnerabilities. These

vulnerabilities can then be exploited by using various TTPs.

These scenarios are partially examined in the current study

according to the authors’ best knowledge. Lastly, this research

provides recommendations or plausible solutions, wherever

applicable.

Grading Scale used:

Weak - The attacker can impact the data characteristic in a

severe manner. For example, using default administrative

credentials can lead to severe consequences on confidentiality,

reliability and availability of the database.

Medium - The attacker can achieve breach of data

characteristic with high effects in some scenarios while low in

other, depending on the access they have, motivations/intent

and capabilities. For example, using default credentials to gain

access in a database can lead to little to no availability

problems, unless there is a restriction of one-user-X-machine

access, or the attacker introduces a database encryptor and/or

removes database access for the user.

Strong - There is a low effect of attack on the data characteristic

in the researched scenarios. For example, for most of described

vulnerabilities, only the attacker and other users access the

database simultaneously, similar to any other scenario where

same number of legitimate users with the compromised user

access the database.

The research considers only some situations, and it is not

exhaustive.

14

NoSQL Security Controls
Availability of the controls in the NoSQL DBMS’s

MongoDB Redis CouchDB

Review weak password storage in NoSQL DB Weak Weak Strong

Check for default username and passwords Weak Strong Weak

Review database authorization and permissions granted to all users Weak Weak Weak

Verify database as well as its users' authentication Not Assessed Weak Weak

Verify encryption of data at rest Weak Strong NA

Review data migration from SQL to NoSQL Medium Medium Weak

Check IP binding security Medium Medium Weak

Ensure/Verify security against quick attacks on open ports Weak Weak Medium

Ensure/Verify security against DOS attacks Weak Medium Weak

Verify security against Injection attacks Weak Not Assessed Weak

Check support for transactional functions in NoSQL database Not Assessed Not Assessed Not Assessed

Table 2: Availability of security controls in NoSQL DBMS

IV. DISCUSSION

This research has been performed based on the specified

versions of Redis, CouchDB and MongoDB. This paper

shows the audit of various security controls that could impact

the performance of the NoSQL databases. The table in the

section III. illustrates that with the default settings, the

NoSQL databases are vulnerable and do not provide any

security to the users and their data storage.

However, some DB’s provide plugins that can enhance the

security of the DB, for instance, Redis provides ‘protected

mode’ to secure the connections to its server from external

devices, but this mode can also be stopped by using stop

command. Likewise, the other NoSQL DB could also be

snooped in by different types of attacks.

This research could help the developers, users, auditors,

and the researchers of NoSQL DBMS to focus on the various

default controls that are vulnerable to attacks and try to verify

all the controls to secure the datasets and improve security

aspect along with the high-performance.

V. CONCLUSION

Security audit becomes of primary importance for an

organization possessing substantial (and sometimes valuable)

amount of data. This paper approaches the auditing problem

from a perspective of risk-based NoSQL audit, by identifying

several security risks associated with NoSQL databases and

their possible controls. Three database types were considered:

MongoDB, CouchDB and Redis for their adherence to

various security controls based on commonly faced risks and

conjecture, and some recommendations are suggested for the

associated risks. Furthermore, this paper focuses on

providing recommendations based on risks and

vulnerabilities specific to NoSQL databases, for which very

few studies exist, implying for its usage as a baseline or a

guideline for future research. Few of the derived security

controls prospectively can become candidates that determine

the audit standard of the default NoSQL databases.

Proposed security audit can aid businesses implementing

NoSQL as a part of their security stack on various operational

levels and can also be used by database developers and

administrators in identifying security concerns connected

with NoSQL implementations.

15

VI. REFERENCES

[1] Akingbade, "Cloud Storage problems, benefits and

solutions provided by Data," International Journal of

Engineering and Innovative Technology, vol. 5, pp. 70-

77, 2016.

[2] G. R. Gema Rodríguez-Pérez, A. Serebrenik, A. Z. M.

Germán and J. Gonzalez-Barahona, "How bugs are

born: a model to identify how bugs are introduced in

software components," 4 Feb 2020. [Online].

Available:

https://link.springer.com/article/10.1007/s10664-019-

09781-y. [Accessed May 2021].

[3] Lineup Systems | Industry Analysis, "3 Reasons You

Should Audit Your Database Regularly," Lineup, 24

March 2020. [Online]. Available:

https://www.lineup.com/newsroom/industry-

analysis/database-audit. [Accessed May 2021].

[4] DataSunrise, "Why You Need a Database Audit Trail,"

DataSunrise, [Online]. Available:

https://www.datasunrise.com/blog/professional-

info/why-you-need-a-database-audit-trail/. [Accessed

May 2021].

[5] D. Bisson, "7 Data Breaches Caused by Human Error:

Did Encryption Play a Role?," Venafi, 15 October

2020. [Online]. Available:

https://www.venafi.com/blog/7-data-breaches-caused-

human-error-did-encryption-play-role. [Accessed May

2021].

[6] C. Bradford, "7 Most Infamous Cloud Security

Breaches," StorageCraft: an Arcserve Company,

[Online]. Available: https://blog.storagecraft.com/7-

infamous-cloud-security-breaches/. [Accessed May

2021].

[7] M. Korolov, "Cloud security configuration errors put

data at risk; new tools can help," CSO, 29 Jan 2018.

[Online]. Available:

https://www.csoonline.com/article/3251605/cloud-

security-configuration-errors-put-data-at-risk-new-

tools-can-help.html. [Accessed May 2021].

[8] H. Kaur, "SQL vs NoSQL: Which one is better to

use?," September 2020. [Online]. Available:

https://www.geeksforgeeks.org/sql-vs-nosql-which-

one-is-better-to-use/.

[9] C. Tozzi, "The Limitations of NoSQL Database

Storage: Why NoSQL’s Not Perfect," May 2016.

[Online]. Available:

https://www.channelfutures.com/cloud-2/the-

limitations-of-nosql-database-storage-why-nosqls-not-

perfect.

[10] A. Fowler, "10 Advantages of NoSQL over RDBMS,"

dummies, [Online]. Available:

//www.dummies.com/programming/big-data/10-

advantages-of-nosql-over-rdbms/.. [Accessed March

2021].

[11] "Advantages of NoSQL Databases," mongoDB,

[Online]. Available:

https://www.mongodb.com/nosql-

explained/advantages. [Accessed March 2021].

[12] U. Saxena and S. Sachdeva, "An Insightful View on

Security and Performance of NoSQL Databases," in

International Conference on Recent Developments in

Science, Engineering and Technology, Springer,

Singapore, 2017.

[13] Aarti, "Advantages and Disadvantages of NoSql:-," 27

May 2020. [Online]. Available:

https://aartiy734.medium.com/advantages-and-

disadvantages-of-nosql-2b285ba64b96. [Accessed Jan

2021].

[14] H. Mackin, G. Perez and C. C. Tappert, "Adopting

NoSQL Databases Using a Quality Attribute

Framework and Risks Analysis," in y SCITEPRESS –

Science and Technology Publications, Lda, New York,

2016.

[15] L. Olivera, "Everything you need to know about

NoSQL databases," DEV, 4 Jun 2019. [Online].

Available: https://dev.to/lmolivera/everything-you-

need-to-know-about-nosql-databases-3o3h#dis.

[Accessed March 2021].

[16] Microsoft, "Security Monitoring and Attack

Detection," 5 November 2014. [Online]. Available:

https://docs.microsoft.com/en-us/previous-

versions/tn-

archive/cc875806(v=technet.10)?redirectedfrom=MS

DN.

[17] K. Ahmad, M. S. Alam and N. I. Udzir, "Security of

NoSQL Database Against Intruders," Recent Patents

on Engineering, 21 June 2018.

[18] T. Karavasilev and E. Somova, "Overcoming the

Security Issues of NoSQL Databases," © Journal of the

Technical University - Sofia, vol. 24, no. “Fundamental

Sciences and Applications”, May 2018.

[19] E. Sahafizadeh and M. A. Nematbakhsh, "A Survey on

Security Issues in Big Data and NoSQL," Advances in

Computer Science : an International Journal, vol. 4,

no. 4, p. 5, 2015.

[20] A. Zahid, R. Masood and A. Shibli, "Security of

sharded NoSQL databases: A comparative analysis," in

Conference on Information Assurance and Cyber

Security (CIACS), Rawalpindi, Pakistan, 2014.

[21] Apache Software Foundation, "Apache CouchDB,"

Feb 2021. [Online]. Available:

https://docs.couchdb.org/en/latest/api/server/authn.ht

ml#authentication.

[22] P. Aggarwal and R. Rani, "Security Issues and User

Authentication in MongoDB," in Elsevier, Patiala,

India, 2014.

16

[23] "Store Passwords In MongoDB With Node.js,

Mongoose, & Bcrypt," Coder Rocket Fuel, 30 Aug

2020. [Online]. Available:

https://coderrocketfuel.com/article/store-passwords-

in-mongodb-with-node-js-mongoose-and-bcrypt.

[Accessed March 2021].

[24] K. Magee, "IT Auditing and Controls – Database

Technology and Controls," INFOSEC, 2 July 2011.

[Online]. Available:

https://resources.infosecinstitute.com/certification/itac

-database/. [Accessed March 2021].

[25] J. Himango, "DZone > Database Zone > The Biggest

Challenges of Moving to NoSQL," 20 Sep 2017.

[Online]. Available: https://dzone.com/articles/the-

biggest-challenges-of-moving-to-nosql. [Accessed

Feb 2021].

[26] J. Lewkowicz, "The move from RDBMS to NoSQL

requires optimizing over time," SDTimes, 19 Nov

2020. [Online]. Available:

https://sdtimes.com/data/the-move-from-rdbms-to-

nosql-requires-optimizing-over-time/. [Accessed

March 2021].

[27] F. Oliveira, A. Oliveira and B. Alturas, "Migration of

Relational Databases to NoSQL - Methods of

Analysis," in 7th International Conference on

Humanand Social Sciences, Barcelona: Richmann

Publishing, 2018.

[28] C. Vithalani, "Project 4 - SQL to NoSQL migration,"

2016.

[29] S. Severance, "StackExchange: Quantitative Finance,"

Dec 2011. [Online]. Available:

https://quant.stackexchange.com/questions/1392/usag

e-of-nosql-storage-in-finance. [Accessed Jan 2021].

[30] C. Tozzi, "The Limitations of NoSQL Database

Storage: Why NoSQL’s Not Perfect," Channel Futures,

31 May 2016. [Online]. Available:

https://www.channelfutures.com/cloud-2/the-

limitations-of-nosql-database-storage-why-nosqls-not-

perfect. [Accessed March 2021].

[31] I. RUS, "Technologies And Methods For Auditing

Databases," Procedia: Economics and Finance, pp.

991-999, 2015.

[32] "Control Objective for IT-related Technology

(CobIT)," Hendershett Consulting Inc. , [Online].

Available: https://hci-

itil.com/COBIT/cobit_overview.html. [Accessed May

2021].

[33] COBIT Steering Committee and the IT Governance

Institute, "COBIT Framework 3rd Edition," July 2000.

[Online]. Available:

http://www.nekodasuke.jp/cism/COBIT/COBIT3_3_f

ramewrk.pdf. [Accessed May 2021].

[34] Townsend Security, "The definitive guide to Mongodb

encryption & key management," Townsend Security,

[Online]. Available:

https://info.townsendsecurity.com/mongodb-

encryption-key-management-definitive-guide.

[Accessed May 2021].

[35] T. Kadlec, "The MongoDB hack and the importance of

secure defaults," snyk, 10 Jan 2017. [Online].

Available: https://snyk.io/blog/mongodb-hack-and-

secure-defaults/. [Accessed May 2021].

[36] D. Riley, "Ransomware targeting MongoDB databases

threatens to report victims for GDPR breach,"

SiliconAngle, 2 Jul 2020. [Online]. Available:

https://siliconangle.com/2020/07/02/ransomware-

targeting-mongodb-databases-threatens-report-

victims-gdpr-breach/. [Accessed May 2021].

[37] D. Ottenheimer, "Update: How to Avoid a Malicious

Attack That Ransoms Your Data," MongoDB

Documentation, 7 Sep 2017. [Online]. Available:

https://www.mongodb.com/blog/post/update-how-to-

avoid-a-malicious-attack-that-ransoms-your-data.

[Accessed May 2021].

[38] B. Brenner, "Thousands of MongoDB databases

compromised and held to ransom," NakedSecurity, 11

Jan 2017. [Online]. Available:

https://nakedsecurity.sophos.com/2017/01/11/thousan

ds-of-mongodb-databases-compromised-and-held-to-

ransom/. [Accessed May 2021].

[39] CVE, "CVE-2020-7926," CVE Org., [Online].

Available: https://cve.mitre.org/cgi-

bin/cvename.cgi?name=CVE-2020-7926. [Accessed

May 2021].

[40] CVE List, "CVE-2014-8964," CVE Org, [Online].

Available: https://cve.mitre.org/cgi-

bin/cvename.cgi?name=CVE-2014-8964. [Accessed

May 2021].

[41] CVE List, "CVE-2016-3104," CVE Org., [Online].

Available: https://www.cvedetails.com/cve/CVE-

2016-3104/. [Accessed May 2021].

[42] CVE List, "CVE-2015-4411," CVE Org, [Online].

Available: https://www.cvedetails.com/cve/CVE-

2015-4411/. [Accessed May 2021].

[43] CWE Definitions, "CWE-400: Uncontrolled Resource

Consumption," CWE: Common Weakness

Enumeration, [Online]. Available:

https://cwe.mitre.org/data/definitions/400.html.

[Accessed May 2021].

[44] "mongodb: Comparing changes," GitHub, [Online].

Available: https://github.com/mongodb/bson-

ruby/compare/7446d7c6764dfda8dc4480ce16d5c023e

74be5ca...28f34978a85b689a4480b4d343389bf48865

22e7. [Accessed May 2021].

[45] L. Johnson, "Presenting in the Real World: Bananas

with MongoDB," Rapid7, 28 Jul 2016. [Online].

Available:

rapid7.com/blog/post/2016/07/28/pentesting-in-the-

17

real-world-going-bananas-with-mongodb/. [Accessed

May 2021].

[46] "PayloadsAllTheThings/NoSQL Injection/," GitHub,

[Online]. Available:

https://github.com/swisskyrepo/PayloadsAllTheThing

s/tree/master/NoSQL%20Injection. [Accessed May

2021].

[47] J. Nelson, Mastering Redis, Mumbai: Packt

Publishing, 2016.

[48] Redislabs, "Redis," [Online]. Available:

https://redis.io/topics/security.

[49] Redislabs, "Redis," 2015. [Online]. Available:

https://redis.io/commands/auth.

[50] B. Cihan, "Securing Redis with Redis Enterprise for

Compliance Requirements," Jan 2018. [Online].

Available: https://redislabs.com/blog/securing-redis-

with-redis-enterprise-for-compliance-requirements/.

[51] Apache CouchDB, 2020. [Online]. Available:

https://docs.couchdb.org.

[52] QuABaseBD, "CouchDB Security Features," Feb

2015. [Online]. Available:

https://quabase.sei.cmu.edu/mediawiki/index.php/Cou

chDB_Security_Features.

[53] Safe Sotware, "Migrate Data from SQL Server to

CouchDB," 2021. [Online]. Available:

https://www.safe.com/convert/sql-server/couchdb/.

[54] Apache CouchDB, 2021. [Online]. Available:

https://docs.couchdb.org/en/latest/setup/cluster.html.

[55] S. Gadhiraju , "Assessing the vulnerabilities and

securing MongoDB and Cassandra databases,"

Culminating Projects in Information Assurance, 2020.

[Online]. Available:

https://repository.stcloudstate.edu/msia_etds/107.

[56] A. Ron, A. Shulman-Peleg and E. Bronshtein, "No

SQL, No Injection? Examining NoSQL Security,"

2015.

