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ABSTRACT

The Appalachian-Caledonide Orogen resulted in the collision of Laurentia, Baltica
and many peri-Gondwanan terranes, of which two share similar histories. The
Harlech Dome and St. Tudwal’s Peninsula, in North Wales, and the Meguma
Terrane of southern Nova Scotia, in Atlantic Canada, preserve similar sedimentary
successions of Cambrian age. U-Pb detrital zircon data from these regions show

a West African source in the Cambrian. In the Harlech Dome this is replaced by a
probable Ganderian source by the Tremadocian. Correlative rocks of the Lumsden
Dam Formation of the Meguma terrane lack this Ganderian signature. This
suggests North Wales was juxtaposed with the Monian Composite Terrane by this
time along the Menai Strait Fault System, which has a history of sinistral strike-
slip movement. This strike-slip tectonic regime could also account for the removal
of the Meguma Terrane from an original position adjacent to the Harlech Dome

and the basins’ divergent Ordovician histories.
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CHAPTER 1: INTRODUCTION

1.1 INTRODUCTION

Detrital zircon geochronology is a key tool used in unraveling the complex
histories of terrane interactions in ancient orogens (e.g., Dickinson 1974; Cawood
et al. 2007). Identifying potential source regions for basin sediments helps to
determine the basin’s proximity to surrounding terranes. The timing of terrane
juxtaposition can be determined by changes in the detrital zircon record through

time.

The Appalachian-Caledonide Orogen involved a series of geological events that
occurred from Early Ordovician to Middle Devonian time and resulting from the
collision of Laurentia, Baltica, and several peri-Gondwanan terranes, including
Ganderia, Avalonia, and the Meguma terrane of Nova Scotia (e.g., McKerrow et
al. 2000). Several tools have been used to help provide constraints on the tectonic
reconstructions of these terranes, including paleomagnetic data, faunal evidence
(e.g., Thompson et al. 2010; Cocks and Torsvik 2002), and provenance studies
(e.g., Barr et al. 2003; Waldron et al. 2009, 2011), but the timing of amalgamation
and the paleogeographic positions of terranes involved in the orogen are still

poorly constrained.

This study focuses on using detrital zircon analyses to provide insight into the
history of two terranes, the Meguma terrane of Nova Scotia and the Harlech
Dome succession in North Wales, for which Waldron et al. (2011) suggested a
correlation. In North Wales detrital zircon samples were collected from the Arfon
Basin and the northern Welsh Basin for comparison with samples collected from
the adjacent Monian Composite Terrane by Collins and Buchan (2004). An
additional detrital zircon sample was collected from the upper Halifax Group of
the Meguma terrane for further comparison. Chapter 1 includes an introduction to
the geologic setting and stratigraphy of the Meguma terrane and North Wales and

outlines the analytical methods used.
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Figure 1.1: Paleocontinental reconstruction prior to the opening of the Atlantic Ocean
showing the Components of the Appalachian-Caledonide orogen. Data
compiled from Knott et al. (1993), van Staal et al. (1998), Barnes et al.
(2007) Hibbard et al. (2007), and Waldron et al. (2011).



1.2 APPALACHIAN-CALEDONIDE OROGEN

The Appalachian-Caledonide Orogen is a Paleozoic orogen that resulted from

the closure of the Iapetus Ocean and the collision of Laurentia, Baltica, and peri-
Gondwanan terranes (e.g., van Staal 1998; McKerrow et al. 2000; Hibbard et al.
2007). The remnants of the orogen are found on either side of the Atlantic Ocean
from the southeastern United States of America to the Caledonides of the British

Isles, eastern Greenland, and Scandinavia (Fig. 1.1).

The deformed Laurentian margin forms a nearly continuous band along the entire
length of the orogen (Fig. 1.1). Adjacent to the Laurentian margin are remnants
of a peri-Laurentian microcontinent and peri-Laurentian arcs (Waldron and van
Staal 2001; Hibbard et al. 2007). Outboard of the Laurentian realm are a series

of less continuous peri-Gondwanan domains identified by Hibbard et al. (2007).
In Atlantic Canada, these consist of Ganderia, West Avalonia and the Meguma
terrane. Ganderia is found in New Brunswick, northern Cape Breton Island, Nova
Scotia, and central Newfoundland. West Avalonia spans northern Nova Scotia
and western Newfoundland. The Meguma terrane is only found in southern Nova
Scotia (Fig. 1.2).

In the British Caledonides the peri-Gondwanan realm roughly corresponds to
England, Wales, and the southeastern part of Ireland (Fig. 1.2). This entire region
is commonly referred to as ‘East’ Avalonia (e.g., Brenchley et al. 2006), but it
can be divided into multiple domains on multiple scales (e.g., Bluck et al. 1992).
The Leinster-Lakesman terrane is the northernmost terrane included in the peri-
Gondwanan realm and spans southern Ireland and northern England. The island
of Anglesey in North Wales, together with the most southeastern tip of Ireland,
makes up the narrow Monian-Rosslare terrane. To the south are the Welsh Basin,
Midland Platform, and Anglian Basin (Fig. 1.2).

Similarities identified between peri-Gondwanan terranes on either side of the
Atlantic have led to the correlation of several terranes. The Leinster-Lakesman
terrane and Monian-Rosslare terrane (Fig. 1.2) have been correlated with
Ganderia in Atlantic Canada (e.g., van Staal et al. 1996 and references therein,
1998) on the basis of lithological similarities. Avalonia is characterized by
Precambrian arc-related volcanic suites that are overlain by a lower Paleozoic

platformal sedimentary succession that contains Acado-Baltic fauna (Nance 1991;
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Figure 1.2: Terrane Map of the North America Appalachians and British Caledonides.
Abbreviations: Ag-Anglian Basin; Lk-Lakesman Terrane; Ln-Leinster
Terrane; MC-Monian Composite Terrane; MP-Midland Platform; MT-
Meguma Terrane; Rs-Rosslare Terrane; WB-Welsh Basin. Data compiled
from van Staal et al. (1998), Barnes et al. (2007) Hibbard et al. (2007) and
Waldron et al. (2011).

Nance and Murphy 1994). ‘East’ and ‘West’ Avalonia describe correlative parts of
this domain on the east and west side of the Atlantic Ocean (Fig. 1.2). Waldron et
al. (2011) have recognized lithostratigraphic and provenance similarities between
the early Cambrian to Tremadocian successions of the Meguma terrane and the
Harlech Dome in the Welsh Basin assigning both to the domain”Megumia” (Fig.
1.2). The work done in this study is designed to test and explore the implications
of that hypothesis.

The paleogeographic positions of several terranes involved in the Appalachian-
Caledonide Orogen are poorly constrained, but there is a consensus (e.g.,
Murphy et al. 2004; Hibbard et al. 2007) that many of them — including Avalonia,
Ganderia, and the Meguma terrane — originated along the Gondwanan margin.

However, the relative positions of even these terranes are poorly known.



1.3 NORTH WALES
1.3.1 Geologic Setting

North Wales can be divided into three Precambrian to Tremadocian zones

(Fig. 1.3), the Monian Composite Terrane, the Arfon Basin, and the Harlech Dome
of the Welsh Basin, all of which contain distinct lithostratigraphic successions
(Fig. 1.4).

The Monian Composite terrane (part of the Monian-Rosslare terrane) is located
on the island of Anglesey and the LIyn Peninsula (Fig. 1.3). It comprises three
discrete tectonic units, each bounded by faults and shear zones (Gibbons and
Horak 1990). These include the Monian Supergroup, the Coedana Complex,
and the Aethwy terrane (Fig. 1.3). The first of these, the Monian Supergroup, is
exposed on the northwestern part of the island and consists of an early Cambrian
to Tremadocian sedimentary succession discussed in further detail in section 1.3.2.
The second is the Precambrian Coedana Complex, which runs SW-NE through
the centre of the island. It consists of the Coedana granite and a suite of gneisses
that have been altered to hornfels in places (Gibbons 1983). The granite has
been dated at 613 + 4 Ma (Tucker and Pharaoh 1991). The third is the Aethwy
terrane, preserved in a thin slice in southeast Anglesey. It consists of metabasite
and metasedimentary rocks metamorphosed to blueschist facies (Gibbons 1987;
Gibbons and Horak 1990). These have produced “Ar/*’Ar dates of 580-590 Ma
and 550-560 Ma, which are interpreted to represent the time of respective

greenschist and blueschist metamorphic events (Dallmeyer and Gibbons 1987).

The Monian Composite terrane is bounded to the southeast by the Menai Strait
Fault System (Fig. 1.3). The NE-striking system contains a series of steep faults
and shear zones, most significantly the Berw, Dinorwic, and Aber-Dinlle faults,
that have a history of sinistral transcurrent movement (Gibbons and Horak 1990).
Gibbons (1987) suggested the existence of a terrane boundary along the Menai
Strait Fault System based on contrasts in basement characteristics on either side of

the fault system and the presence of an early ductile shear zone.

The southwestern extension of the Menai Strait Fault System in North Wales is
the LIyn Shear Zone (Fig. 1.3). In this region, the highest unit of the Monian
Supergroup is exposed to the north of the shear zone and to the south is the Sarn
Igneous Complex which produced a U-Pb date of 615 + 2 Ma (Hordak et al. 1996).
5
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Figure 1.3: Geological map of Wales (from British Geological Survey 2007).
Circled numbers indicate locations of columns shown in Fig. 1.4 and
1.5. Abbreviations: ADF-Aber-Dinlle Fault; BF-Bala Fault; BSZ-Berw
Shear Zone; CASZ-Central Anglesey Shear Zone; CSL-Church-Stretton
Lineament; DF-Dinowic Fault; LSZ-LIyn Shear Zone; LTFZ-Llyn Traffwll
Fault Zone; MSFS-Menai Strait Fault System; ND-Neath Disturbance;
PtL-Pontesford Lineament; SVD-Swansea Valley Disturbance; SVF-Seven
Valley Fault; TyL-Tywi Lineament; and WBFS-Welsh Borderland Fault
System.




Preserved to the south of the Dinorwic fault and between the Monian Composite
terrane and the Welsh Basin is the Precambrian to Cambrian volcano-sedimentary
succession of the Arfon Basin (Fig. 1.3). The relationship of these rocks with the
successions to the northwest and southeast is unknown. The faulted northwestern
contact with the Monian terrane hides the nature of the relationship of the Arfon
Basin with Monian rocks, and Ordovician cover conceals the southeastern
boundary between it and the Cambrian deposits of the Harlech Dome in the Welsh
Basin (Fig. 1.3).

The Welsh Basin contains a thick early Cambrian to early Devonian sedimentary
succession of both clastic metasedimentary and volcanic rocks described in more
detail in section 1.3.4. Little is known about the basin’s basement as there are
only small exposures of Neoproterozoic rocks around its borders (Fig. 1.3) and
within the Bryn-teg borehole in the Harlech Dome region (Allen and Jackson
1978; Mcllroy and Horak 2006).

1.3.2 Monian Supergroup

The Monian Supergroup (the bedded succession of Greenly 1919) consists

of early Cambrian to Tremadocian mainly sedimentary rocks that have been
metamorphosed to greenschist facies. Historically, these rocks were believed
to be Precambrian (e.g., Greenly 1919; Shackleton 1969), but paleontological
evidence indicates a Cambrian age for most of the succession (Muir et al. 1979;
Brenchley et al. 2006).

The Monian Supergroup as described by Gibbons and Ball (1991) is divided
into three groups. The South Stack Group, the lowest unit (Fig. 1.4), consists of
massive quartzite and quartzose turbiditic greywacke with minor slate (Greenly
1919). These rocks contain post-Neoproterozoic trace fossils Skolithos and

early Cambrian trace fossil Trichophycus (Muir et al. 1979). A detrital zircon
sample from the Holyhead formation of the South Stack Group produced an

age of 501 = 1 Ma, which has been interpreted by Collins and Buchan (2004) to
represent a maximum depositional age. The overlying New Harbour Group (Fig.
1.4) consists of pelite with subordinate serpentinite, gabbro, basalt, and chert
(Gibbons 1983). The Gwna Group (Fig. 1.4) is the youngest unit in the Monian
Supergroup. It has been described as a mélange that contains continental and

deep-water clasts including pillow lava, chert, sandstone, limestone, and granite



(Gibbons 1987). This unit was initially interpreted to be the result of tectonic
disruption by Greenly (1919) and was later described by Shackleton (1954, 1969,
1975) as a deformed olistostrome. There is little evidence to constrain the age
the New Harbour and Gwna Groups; however, Floian sedimentary rocks rest
unconformably over the Gwna Group providing a maximum depositional age for
this unit (Greenly 1919; Bates 1968).

The Ordovician record on the Monian Composite Terrane ranges from the
Dapingian to the late Sandbian (Rushton and Fortey 2000) and is not as complete
as the record on mainland Wales (Fig. 1.5). Ordovician rocks appear only as
outliers. They consist mainly of mudstone and there is no record of significant
volcanic activity (Bates 1972). Silurian (436 Ma) rocks on the Monian Composite
Terrane are only preserved in northern Anglesey (Parrish 1999). These rocks

rest above Darriwillian sedimentary rocks and are overlain by mid-Llandovery

graptolite-bearing slate (Greenly 1919).

1.3.3 Arfon Basin

The Arfon Basin is located to the northwest of the Welsh Basin and to the
southeast of the Monian Composite terrane along the Menai Strait Fault System
(Fig. 1.3). The northwestern boundary with the Monian Composite Terrane is
the Dinorwic Fault (Fig. 1.3) and the nature of the southwestern contact with the

Harlech Dome succession is hidden beneath Ordovician cover.

Arfon Group

At the base of the Arfon Basin is the approximately 4000 m thick Arfon Group
(Fig. 1.4) (Reedman et al. 1984). The lowest unit in the Afron Group, the Padarn
Tuff Formation, has been dated by Tucker and Pharaoh (1991) and Compston et
al. (2002) who reported U-Pb ages of 614 +2 Ma and 605 + 2 Ma respectively.

It comprises welded felsic ash flow tuffs. Its base is not exposed. Enveloped
within the Padarn Tuff is the Twt Hill Granite dated at 615 + 1.3 Ma (Schofield et

Figure 1.4: (next page) Stratigraphic columns showing Cambrian units of the northern
Welsh Basin, Arfon Basin, and Monian Composite Terrane. Data compiled
from Pharaoh and Carney (2000), Brenchley and Rawson (2006), Rushton
and Molyneux (2011). Abbreviations: ABF-Aber-Dinlle Fault; DG-Dorothea
Grit; DF-Dinorwic Fault; CPL-Cwm Pennant Lineament; and WBFS-Welsh
Borderland Fault System. Using time scale of Peng et al. (2012).
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Figure 1.5: (previous page) Stratigraphic columns showing Ordovician units of the
northern Welsh Basin, Arfon Basin, and Monian Composite Terrane. Data
from Rushton and Fortey (2000). Abbreviations for stratigraphical units
are from (Rushton and Howells 1999): CEi-Cwm Eigiau Formation; Dwf-
Dwyfach Formation; L1V-Llewelyn Volcanic Group; LVG-Llanbedrog
Volcanic Group; and the ULG-Upper Lodge Volcanic Formation. Other
abbreviations include ABF-Aber-Dinlle Fault; DF-Dinorwic Fault; CASZ-
Central Anglesey Shear Zone; CPL-Cwm Pennant Lineament; WBFS-Welsh
Borderland Fault System. Using time scale of Cooper and Sadler (2012).

al. 2008). The Tucker and Pharaoh (1991) age is consistent with a contemporary
relationship between the Padarn Tuff and the Twt Hill Granite; however, the
Compston et al. (2002) age is significantly younger. The granite’s relationship

with the Arfon sedimentary rocks is not known.

Unconformably overlying the Padarn Tuff (Fig. 1.4) are coarse to fine clastic
rocks with intercalated pyroclastic and mixed pyroclastic and clastic rocks
(Reedman et al. 1984). The only age control for the upper part of the Arfon
Group includes a U-Pb date of 573 + 1 Ma from tuff near the top of the Fachwan
Formation (Compston et al. 2002) and the presence of sponge spicules within
the Minfford formation (Fig. 1.4), which suggest a Cambrian age (Rushton and
Molyneux 2011).

Units above the Arfon Group

Overlying the Arfon Group is the Llanberis Slates Formation (Fig. 1.4). It
consists of mudstone, siltstone, and turbiditic sandstone (Crimes 1970). There

are several informally recognized sandstone units within the Llanberis Slates,
including the Dorothea Grit from which a detrital zircon sample was analyzed for
this study (see Chapter 2). The early Cambrian trilobite Pseudotops viola was
found stratigraphically above the Dorothea Grit indicating an early Cambrian
(Epoch 2) age, younger than 521 Ma in the timescale of Peng et al. (2012). Above
the Llanberis Slates, are sandstone with thin pelite beds overlain by silty mudstone
and laminated sandstone (Brenchley et al. 2006). The Marchlyn Formation (Fig.
1.4) has been interpreted as upper Cambrian (Furongian) based on the presence of

the trace fossil Cruziana semiplicata (Crimes 1970).

Affinities of the Arfon Basin

The origin of Arfon Basin succession is not known and it has not been definitively

linked with either the Monian Composite terrane or the Welsh Basin. Greenly
11



(1919, 1944, 1946) assigned several undated sedimentary and volcaniclastic

rock outliers in southern Anglesey to be correlatives to the Afron Group.
However, they rest unconformably upon the Penmynedd blueschists which

record metamorphism at c. 550 Ma (Dallmeyer and Gibbons 1987). Given the
573 + 1 Ma age of the Fachwen Formation, this correlation seems unlikely. Tucker
and Pharaoh (1991) suggested a link between the Coedana Granite and the Padarn
Tuff both of which have been dated at approximately 614 Ma. Reedman et al.
(1984) suggested a link between Greenly’s outliers in Anglesey to the Minfordd
Formation (Fig. 1.4) based on the presence of sponge spicules implying the Arfon
Group spanned both sides of the Dinorwic Fault. The Arfon Basin shares the
same Ordovician sedimentary cover succession as the Harlech Dome showing that

it was definitely in contact with the remainder of the Welsh Basin by Floian time.

1.3.4 Welsh Basin

The Welsh Basin preserves a thick sedimentary succession largely composed of
interleaved units of mudstone and coarse clastic turbidite deposits, with volcanic
intervals in the Ordovician. Woodcock (1990) divided the succession into three
megasequences, the Dyfed, Gwynedd and Powys Supergroups, each separated by

basin-wide unconformities.

Little is known about the nature of the Welsh Basin’s basement because of limited
exposure of Neoproterozoic rocks. In the Harlech Dome region, the Bryn-teg
Borehole (Fig. 1.3) penetrated into the Bryn-teg Volcanic Formation, which
consists mainly of andesites and tuffite (Allen and Jackson 1978). It is thought

to be Neoproterozoic, but there is no direct evidence for its age except that it is

overlain by early Cambrian rocks.
Dyfed Supergroup

The Dyfed Supergroup spans the early Cambrian to Tremadocian. In North Wales
it is only exposed in the Harlech Dome and St. Tudwal’s Peninsula regions (Fig.
1.3). It can be divided into the lower Harlech Grits Group and upper Mawddach
Group (Fig. 1.4).

At the base of the Harlech Grits Group is the Dolwen Formation. It is
characterized by greenish grey sandstone with interbedded pebbly sandstone
and siltstone (Allan and Jackson 1985). The Dolwen Formation yielded an

12



early Cambrian foraminiferan Platysolenites antiquissimus (Allen and Jackson
1978). Overlying this is the Llanbedr Formation, which consists of grey and
purple siltstone and mudstone with minor interbedded fine-grained sandstone
(Allen and Jackson 1985). The Llanbedr Formation is overlain by the Rhinog
Formation, which is characterized by coarse-grained pebbly sandstone. This

unit was sampled for detrital zircon work by Waldron et al. (2011). This is
followed by the Hafotty Formation, which is predominantly grey siltstone with
some interbedded sandstone and is enriched with manganese (Allen and Jackson
1985). The Barmouth Formation is similar to the Rhinog Formation and consists
of coarse-grained sandstone and siltstone (Allen and Jackson 1985). The highest
unit in the Harlech Grits Groups is the Gamlan Formation. It is characterized

by interbedded grey and purple siltstone and mudstone and also has manganese
enrichment (Allan and Jackson 1985). Mid-Cambrian (Drumian Stage) trilobites
have been identified in the uppermost beds of the Gamlan Formation (Allen et al.
1981). This unit was sampled as a part of this study (Chapter 2). The Harlech
Grits Group in the St. Tudwal’s Peninsula region includes the Hell’s Mouth,
Trwyn y Fulfran, and Cilan formations (Fig. 1.4), which have broad similarities to
the Rhinog, Hafotty, and Barmouth Formations of the Harlech Dome succession
(Young et al. 2009).

The Clogau Formation is the lowest unit in the Mawddach Group and is
characterized by black siltly mudstone (Allan et al. 1981). The unit contains
Cambrian (Stage 5) trilobites Tomagnostus fissus, Paradoxides hicksii, and
Eodiscus punctatus s.1. (Allen et al. 1981). The overlying Maentwrog Formation
consists of grey silty mudstone with thinly interbedded coarse siltstone and fine-
grained sandstone. It contains Cambrian, Paibian Stage Olenus Zone fauna (Allen
et al. 1981). These pass up into interbedded pale grey sandstone and grey silty
mudstone of the Ffestiniog Flags Formation (Allen et al. 1981). The presence of
Trilobites Homagnotus obesus in the lowest beds, Parabolinoides bucephalus in
the highest beds, and the Brachiopod Lingulella davisi (Allen et al. 1981) indicate
a Cambrian, Paibian to Stage 9 age according to the timescale of Peng et al.
(2012). Above the Festiniog Flags formations is the Dollegau Formation, which
comprises black siltstone and mudstone and contains Cambrian Furongian fauna
(Allen at el. 1981). This is supported by a volcaniclastic sandstone from this

unit that has been dated at 491 + 1 Ma (Davidek et al. 1998) and 489 + 0.6 Ma
(Landing et al. 2000). The Dol-cyn-afon Formation is the highest preserved unit

13
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in the Mawddach Group. It consists of grey siltstone and mudstone and contains
the Tremadocian graptolite Rhabdinopora flabelliformis (Allen and Jackson
1985). This unit was sampled as a part of this study (Chapter 2).

The succession on the St. Tudwal’s Peninsula records a similar Cambrian

record; however it is much thinner with only ~900 m preserved (Brenchley et

al. 2006) and it shows a shallowing event near the base of the Furongian marked
by a disconformity (Young et al. 2002). Figure 1.6 shows the transition from
dominantly laminated mudstones of the Nant-y-big Formation into the medium to
thickly interbedded sandstone and mudstone of the Maentwrog Formation at St.

Tudwal’s Peninsula.

Gwynedd Supergroup

The overlying Gwynedd Supergroup includes the majority of the Ordovician
record in North Wales (Fig. 1.5). Its base is marked by a sub-Floian unconformity
where the succession was deposited over gently folded and tilted Precambrian to
Tremadocian rocks. The oldest unit in the Gwynedd Supergroup is the Rhobell
Volcanics Group (Fig. 1.5). It is found only to the east of the Harlech Dome. The
group comprises Tremadocian basaltic lava, sandstone, conglomerate and minor
sedimentary breccia (Brenchley et al. 2006). The rest of the Gwynedd Supergroup
comprises mainly marine mudstone, siltstone, and sandstone interfingering with
volcanic deposits that range from the Floian until the mid-Katian (Rushton and
Howells 1998). The volcanics consist mainly of felsic tuffs with mixed basaltic
and rhyolitic lavas and are intercalated with minor sedimentary rocks (Rushton
and Howells 1998). The top of the Gwynedd Supergroup is marked by a unit

of black mudstone and minor limestone (Fig. 1.5) deposited over most of the
northern Welsh Basin (Rushton and Fortey 2000).

Powys Supergroup

The Powys Supergroup ranges from the late Katian to the Early Devonian.

Its base is marked by a diachronous unconformity. The basal units in North
Wales are characterized mainly by marine mudstone and argillaceous mudstone
(Brenchley et al. 2006) that contain late Katian fauna (Brenchley and Cullen
1984). During the Hirnantian, a glacio-eustatic fall in sea-level brought coarse
sediment into deep basins including the Conway Castle Grit (Rushton and

Fortey 2000) sampled in this study (Chapter 2). The overlying succession is
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dominated by mudstones and deep-water turbidites (Cherns et al. 2006). The top
of the Powys Supergroup is defined by the major unconformity attributed to the

Devonian Acadian orogeny.

1.4 MEGUMA TERRANE
1.4.1 Geologic Setting

The Meguma terrane is located in southern Nova Scotia to the south of the
Cobequid-Chedabucto fault zone, which separates it from the Avalon terrane to
the north (Fig. 1.7). It contains the thick (~13 km) Cambrian to Early Ordovician
Meguma Supergroup, and overlying Silurian to Devonian sedimentary and
volcanic rocks of the Rockville Notch Group (White et al. 2012) (Fig. 1.8). The
docking of the Meguma terrane to Laurentia in the Early Devonian to Early
Carboniferous Neoacadian orogeny (White et al. 2007; van Staal et al. 2009)
caused deformation and folded the succession into NE-SW-trending, upright,
subhorizonal folds with axial planar cleavage (Reynolds and Muecke 1978;
Henderson et al. 1986). Regional metamorphism ranges from greenschist

facies to amphibolite facies in southwest Nova Scotia (Reynolds et al. 1981;
Keppie and Muecke 1979). During the late Devonian a series of granitoids were
emplaced, including the South Mountain Batholith (Clarke and Halliday 1980),
which metamorphosed the metasedimentary rocks to hornblende-hornfels facies
(Jamieson et al. 2012). Southwestern Nova Scotia records a second greenschist
facies deformation event at c. 320 Ma (Culshaw and Reynolds 1997).

There is no exposure of basement rock anywhere in the Meguma terrane.
Basement xenoliths (Eberz et al. 1991) and Meguma granitoids (Clarke et al.
1988) produced Sm/Nd ratios that indicate deeper crustal material with a younger
residence age than the overlying Meguma Supergroup. U-Pb zircon and monazite
dates from basement xenoliths show a population of grains between 575-630 Ma
(Greenough et al. 1999) typical of Pan-African orogenic belts and Avalonia
(Krogh et al. 1988; Kerr et al. 1995; O’Brien et al. 1996; Murphy et al. 1997).
The upper intercept of a discordant zircon fraction is interpreted by Greenough

et al. (1999) to represent a Mesoproterozoic population, which is absent in lower
Meguma Supergroup sedimentary rocks (Krogh and Keppie 1990; Waldron et

al. 2009). Given this, some have proposed that the Meguma Supergroup was
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Figure 1.7: Geological map of the Meguma Terrane, Nova Scotia (after White 2010a).

deposited upon Avalonian crust and that West Avalonia and the Meguma terrane
were once parts of the same microcontinent (e.g., Keppie 1997; Keppie and
Krough 2000; Landing 2004; Murphy et al. 2004; Linnemann et al. 2012). Others
believe that the Cobequid-Chedabucto Shear Zone (Fig. 1.7), that separates the
two terranes, represents a structural contact where the Meguma terrane was

thrust over crust with Avalonia characteristics (e.g., Keppie and Dallmeyer 1987;
Waldron et al. 1989; Eberz et al. 1991; Clarke et al. 1997; Greenough et al. 1999).

Schenk (1983, 1997) suggested the Meguma Supergroup was deposited on a
continental embankment of the passive margin of Gondwana, but preliminary
whole-rock geochemistry has been interpreted to suggest deposition in an active
continental margin and/or an island arc setting, not a passive margin (White et
al. 2006). Waldron et al. (2009) proposed that the succession was deposited in a
rift or extensional environment that subsequently became inactive. This scenario
explains the upward transition from a relatively juvenile Avalonian/Pan-African
source to an older more diverse source region. It also accounts for the rapid
accumulation of the thick succession and the differences in the stratigraphic
succession (Waldron et al. 2009). The Chebogue Point Shear Zone (CPSZ)
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located in southwest Nova Scotia (Fig. 1.7) strikes N-S to NE-SW (White 2010b).
It cannot be traced farther east beyond its intersection with the South Mountain
Batholith. The CPSZ has been described as a tectono-stratigraphic boundary,
dividing the Meguma Supergroup into different, though correlative units at the
formation level, to the northwest and southeast of the shear zone (White 2010b).

1.4.2 Goldenville Group

The Goldenville Group (Fig. 1.8) is the lowest unit in the Meguma Supergroup.
The lower units are dominated by thick to medium-bedded metamorphosed
sand-rich turbidites with local metasiltstone and slate (Harris and Schenk

1975; Waldron and Jensen 1985). The High Head member of the Church Point
formation (Fig. 1.8) contains trace fossils, including Oldhamia, that are characteristic
of the early Cambrian (Gingras et al. 2011). These are consistent with detrital zircon
collected from Church Point formation (Fig. 1.8) that produced youngest ages of

544 + 18, 537 £ 15, and 529 + 19 Ma, providing a maximum depositional age close to
the Ediacaran-Terreneuvian boundary (Waldron et al. 2009).

In southwest Nova Scotia the massive metasandstones pass up into thin to
medium-bedded metasandstone and slate of the Government Point formation
including the Tancook Island member (Fig. 1.8). These units are less sand-rich
then the underlying New Harbor and Green Harbour formations (O’Brien 1985;
Waldron 1987; Waldron 1992). The Government Point formation yielded a middle
Cambrian Acado-Baltic Trilobite faunule (Pratt and Waldron 1991).

The uppermost units of the Goldenville Group (Fig. 1.8) are dominated by
metasiltstone and slate, with minor fine-grained metasandstone beds (White
2010b). To the southeast of the Chebogue Point Shear Zone these units are
characterized by manganese enrichment (White 2010b) and a diverse assemblage
of trace fossils including locally abundant Teichichnus. Cambrian Series 3 to
Furongian acritarchs have been identified in the Tupper Lake Brook formation
(White et al. 2012). These units were formerly part of the Halifax formation
(O’Brien 1986, 1988; Waldron 1992; Schenk 1995), but were later added to the
Goldenville Group by White (2010b).
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1.4.3 Halifax Group

The Halifax Group conformably overlies the Goldenville Group. At the base is
the Cunard Formation and its lateral equivalents, Acadia Brook, and North Alton
formations (Fig. 1.8). These units rest conformably over the Goldenville Group,
and are characterized by organic rich black slate and siltstone, and often contain
a significant amount of sulphide minerals. Acritarch assemblages found in the

North Alton formation indicate a Furongian depositional age (White et al. 2012).

The overlying Lumsden Dam formation and laterally equivalent Bluestone, Bear
River, and Feltzen formations (Fig. 1.8) are characterized by medium to dark grey
slate interlayered with cross-laminated metasiltstone and metasandstone. The
graptolite Rhabdinopora flabelliformis has been identified in the Lumsden Dam,
Feltzen, and Bear River formations indicating a Tremadocian depositional age.
Acritarch assemblages from the Lumsden Dam and Bear River formations are
also consistent with an early Tremadocian age (White et al. 2012). Because this
unit contains coarser-grained intervals it was chosen for sampling in this study. No

detrital zircon samples have previously been analyzed within the Halifax Group.

In the Wolfville region, higher parts of the Halifax Group are persevered. The
Elderkin Brook formation consists of light grey to red-brown diffusely laminated
slate with minor siltstone. It locally contains abundant trace fossils (White et al.
2012). It contains a late Tremadocian acritarch assemblage. The Hellgate Falls
formation is the highest unit in the Halifax Group (Fig. 1.8). It is characterized
by light to dark grey slate interbedded with siltstone and sandstone. It is highly
bioturbated and contains a late Tremadocian to Floian acritarch assemblage
(White et al. 2012).

1.4.4 Rockyville Notch Group

The Silurian to Lower Devonian Rockville Notch Group (formerly the Annapolis
Supergroup of Schenk 1995) is preserved on the northwest side of the CPSZ
and South Mountain Batholith (Fig. 1.7). The basal White Rock Formation
rests unconformably over the Halifax Group (Fig. 1.8). This unit contains a
diverse collection of rock types including metasedimentary rocks and both
silicic and mafic volcanic rocks (Crosby 1951; Smitheringale 1960; Taylor
1965; MacDonald et al. 2002). Felsic tuff at and near the base of the White
Rock Formation produced U-Pb ages of 442 + 4 Ma (Keppie and Krogh 2000)
20



and 438 = 3 Ma (MacDonald et al. 2002) placing the base of the unit close to

the Ordovician - Silurian boundary (~443 Ma). Vertebrate and crinoid remains
that are limited to the Ludlow and Pridoli have been identified in the upper part
of this unit in the Digby area (Bouyx et al. 1997). In the Wolfville region the
White Rock Formation is overlain by interbedded slate and siltstone (Ami 1900;
Smitheringale 1960; Taylor 1965) of the Kentville Formation (Fig. 1.8). This
unit contains late Silurian (Ludlovian) marine fossils (Smitheringale 1960, 1973;
Taylor 1965) making it equivalent to the top of the White Rock Formation to the
southwest. The youngest units in the Rockville Notch Group consist of marine
sedimentary and volcanic rocks (Smitheringale 1960, 1973; Taylor 1965) of the
New Canaan and Torbrook Formations (Fig. 1.8). These units contain Pridoli to
late Early Devonian fauna (Smitheringale 1960; Bouyx et al. 1997). Chemical
analysis of the volcanic rocks in the White Rock Formation are alkalic and have
been interpreted by MacDonald et al. (2002) to indicate a within-plate extensional

tectonic setting.

1.4.5 Intrusive Rocks

The intrusive rocks of the Meguma terrane can be grouped into older mafic sills

and younger granitoids.

In the northwestern part of the Meguma terrane two suites of sills are present
(Barr et al. 1983). Type I sills are found in the Goldenville and Halifax groups.
They are light grey, fine-grained and rarely exceed a thickness of 3 m (White

and Barr 2004). Peperitic textures and soft-sediment deformation that have

been interpreted as indicating they were emplaced penecontemporaneously with
sediment deposition (Barr et al. 1983; White et al. 1999; White and Barr 2004).
They have been folded with the Meguma Group rocks. These relationships, along
with their absence in the overlying Rockville Notch Group, indicate emplacement
between the late Neoproterozoic and Early Ordovician (White and Barr 2004).
Type II sills are less abundant and occur in both the Meguma Supergroup and the
overlying Rockville Notch Group. They are dark grey to black, coarse grained,
and are rarely less than 5 m thick. These sills do not exhibit any structures that
suggest penecontemporaneous emplacement and no folded Type 11 sills have
been observed. However, they are deformed and cleaved and are not present

in the South Mountain Batholith, suggesting that they were emplaced prior to

regional deformation, constraining their age from the Early to Middle Devonian
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(White and Barr 2004). Both sill types are theolitic to alkalic, the older suite
being slightly more alkalic, indicating emplacement in a continental, within-plate

extensional environment (Barr et al. 1983; White and Barr 2004).

Granitoid plutons intruding the Meguma Supergroup and Rockville Notch Group
metasedimentary rocks are a prominent feature of the Meguma terrane and
underlie approximately a third of southern Nova Scotia. Clarke et al. (1997) has
identified two types of granitoids plutons that occur in the Meguma terrane. The
central granitic plutons, including the South Mountain batholith, emplaced at

c. 372 Ma, were likely entirely crustally derived from the underlying Meguma
Supergroup rocks (Clarke et al. 1997). This complex has been interpreted to

be the result of crustal thickening related to the convergence of the Meguma
terrane with West Avalonia (Clarke et al. 1997). The slightly older (>376 Ma)
peripheral plutons have been interpreted by Clarke et al. (1997) to originate from
the intrusion of subduction-related magmas prior to the final emplacement of the

Meguma terrane.

1.4.6 Post-Devonian Stratigraphy

Unconformably overlying the Meguma terrane and Avalonia are the Late
Devonian to Carboniferous succession of the Maritimes Basin consisting of non-
marine clastics of the Horton Group, evaporates, carbonates, and minor clastic
sedimentary rocks of the Windsor Group (Gibling et al. 2008), and non-marine
fluvial deposits of the Mabou, Cumberland and Pictou groups. The mid-Triassic
to Early Jurassic Fundy Group unconformably overlies the Maritimes Basin and
comprises predominantly red continental clastics and tholeiitic basalt related to
the opening of the Atlantic Ocean (Hubert and Mertz 1984; Withjack et al. 1995).

1.4.7 Comparison with North Wales

Similarities between the Cambrian sedimentary successions of the Meguma
terrane and the North Wales succession in the Harlech Dome and St. Tudwal’s
Peninsula have been recognized by Waldron et al. (2011). Both areas record thick
early Cambrian continentally-derived sandstone turbidites, overlain by early to
middle Cambrian alternating mud-rich and sand-rich units in which manganese

is concentrated. The manganiferous interval is characterized in all regions by

a diverse assemblage of trace fossils, including locally abundant Teichichnus.

Above, the succession consists of anoxic, organic-rich turbidites, shallowing
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upwards into paler, early Ordovician mudstone and siltstone, which contain the

graptolite Rhabdinopora.

In addition to the stratigraphic similarities the two basins also have a similar
provenance. Detrital zircon analysis from the mid-Cambrian Rhinog Formation in
the Harlech Dome (Fig. 1.4) sampled by Waldron et al. (2011) displays a similar
range of ages as detrital zircon samples collected from the Goldenville group.
Both basins show distributions that are dominated by early Cambrian to Late
Neoproterozoic populations, a secondary 2.0 to 2.1 Ga population and a minor
Archean contribution (Krogh and Keppie 1990; Waldron et al. 2009; Waldron et
al. 2011).

In the Ordovician the basin histories diverge. The highest parts of the Nova Scotia
succession record shallowing conditions and shelf sedimentation extending into
the Early Ordovician. However, the Welsh basin successions are unconformably
overlain by Tremadocian volcanics, and then by Floian sandstones and younger

Ordovician volcanics.

1.5 METHODS
1.5.1 Sample Collection

Eleven samples were collected in the field as a part of this study, five of which
have results reported here. Of these five, one sample was collected from the
Tremadocian Lumsden Dam Formation of the Meguma terrane, and four samples
were collected from North Wales that span the Cambrian (Series 3) to the latest
Ordovician. Sample localities were selected based on rock type, stratigraphic
position, and proximity to known fossil occurrences to help best constrain the
timing of sediment deposition. Approximately 8 kg of material was collected

from the coarsest part of the sampled beds.

The sample from the Lumsden Dam Formation (NB027A) was chosen for
detrital zircon sampling because it would provide information for the provenance
of the Halifax Group. Previous detrital zircon studies in the Meguma terrane
have been on the Goldenville and Rockville Notch groups. The sample was
collected roughly 20 m below the horizon bearing the graptolite Rhabdinopora
flabelliformis.
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The Dol-cyn-afon Formation (sample NA041A) in the Welsh succession is

a contemporaneous unit to the Lumsden Dam Formation. It was chosen for
sampling because it provided an opportunity for further comparison between the
Welsh and Meguma succession. It is the youngest unit in the Mawddach Group
below the sub-Floian unconformity. The sample location was chosen based on its
proximity to a known fossil site of the graptolite Rhabdinopora flabelliformis and
a volcaniclastic sandstone bed dated at 491 + 1 Ma (Davidek et al. 1998).

The Conway Castle Grit (NA031A) was sampled to represent the latest
Ordovician record. It represents one of the first coarse sediment units above a late
Ordovician unconformity and although it only includes allochthonous Hirnantian
fauna, the underlying Deganwy Mudstone contains late Katian fauna (Brenchley
and Cullen 1984). Hirnantian graptolites in the overlying Gyffin Shales (Fig.

1.5) implying a probable Hirnantian age for the Conway Castle Grit (Rushton and
Fortey 2000).

Samples from the Gamlan Formation (MLO0O1A) and the Dorothea Grit
(MLO10A) were collected by Waldron and Schofield in August 2008. The mid-
Cambrian Gamlan Formation was collected for further comparison between the
Meguma Supergroup and the Harlech Dome succession. The Dorothea Grit
sample was taken to provide insight into the origin of the Arfon Basin. Age
Constraints on the Arfon Basin are poor. The sample was collected from the
highest coarse-grained unit within the Llanberis slates, which is known to contain
the trilobite Pseudatops viola near the top of the unit above the Dorothea Grit
(Howell and Stubblefield 1950).

Five additional units were sampled from the Welsh Basin but were not
analyzed. The Garth Grit (sample NA0O30A) was deposited in the Floian and
lies stratigraphically between the Dol-cyn-afon Formation and the Conway
Castle Grit. Samples from the Conway Castle Grit (NA031A) and Dol-cyn-
afon Formation (NA041A) produced similar results. The Garth Grit lies
stratigraphically between the two so it was not analyzed since it was likely to
produce the same results as the overlying and underlying units. A sample from
the Cwmcringly Formation (NA023A) is of similar age to the Conway Castle
Grit; however, it was collected from further south in Wales and was finer-
grained, so priority was given to the Conway Castle Grit, which was likely to

yield more zircons. Samples from the Nant Ffrancon Subgroup (NA032A),
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Maentwrog Formation (NA035A) and Ffestiniog Flags Formation (NA037A)
were also collected, but due to their fine-grained nature none yielded sufficient
detrital zircons. One additional Meguma Supergroup sample was collected from
the Cunard formation (NBO11A) to use for comparison with the Maentwrog
Formation in the Harlech Dome; however, since the Maentwrog Formation was

not analyzed, it was no longer a priority to be completed.

1.5.2 Sample Preparation

Samples MLOO1A and MLO10A were separated by Heather Clough and sample
NBO027A was separated by Hayley Pothier both at the University of Alberta.
Samples NAO31A and NA0O41A were separated at Dalhousie University by
Matthew Kliffer. Both procedures involved using a rock saw to cut the sample
into small pieces followed by reduction to sand-sized particles using a jaw crusher
and disk mill. A Wilfley table was then used to separate dense material, and the
dense fraction was then sieved to remove material greater than 210 um. The
sample was further reduced using a Frantz magnetic separator to remove magnetic
material. Heavy liquids separation was then used to remove material with a
density less than ~3.1 g/cm®. The specific gravity of zircon is 4.68 (Nesse 2000).
At the University of Alberta methylene iodide (3.30 - 3.33 g/cm?) was used. At
Dalhousie University sodium polytungstate (3.1 g/cm?) and methylene iodide

were used.

There are generally two protocols for the selection of zircon grains for analysis.
Gehrels and Dickinson (1995) and Samson et al. (2005) use a method where
grains are picked selectively to represent the greatest variety of colour and
morphology in an attempt to identify as many age populations as possible. This
method has an advantage in that it may pick up populations missed in random
sampling (Gehrels 2000); however, it may distort the relative abundance of ages.
To help eliminate the sampling bias inherited in the hand picking process, others
(e.g., McLennan et al. 2001) use a protocol that involves using a random selection
of grains. In this study, the zircon grains for sample MLOO1A (Gamlan Fm.) were
picked and mounted by hand by Heather Clough. For all other samples a random
sample of the separated grain fraction was used. Pyrite and other opaques minerals
were removed by hand picking.
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Figure 1.9: Graph illustrating the probability of missing an age component in the total

population based on the number of grains analyzed (from Dodson et al.
1988; Fedo et al. 2003). The number of grains that produced concordant
ages for each population sampled in this study is shown.

The grains were mounted in a synthetic resin mount. To avoid analyzing non-

zircon grains that may have ended up on the mount, zirconium elemental maps of

the mount surface were made using an electron microprobe or a scanning electron

microscope. Electron backscatter images were aslso collected for all samples
except MLOO1A. These images provide details of the internal structure of the

zircon grains including inclusions and zoning.
1.5.3 Instrumentation and Data Acquisition

LA-MC-ICP-MS

U-Pb dating was conducted using laser ablation multi-collector inductively
coupled plasma mass spectrometry (LA-MC-ICP-MS). The advantages of this

method for detrital zircon studies over Thermal Ionization Mass Spectrometry
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(TIMS) and Sensitive High Resolution Mass Spectrometer (SHRIMP) are
short analytical time and low cost while providing moderate spatial resolution,

accuracy, and precision (Chang et al. 2006).

The instrument used in data acquisition was a Nu Plasma MC-ICP-MS (Nu
Instruments, UK) coupled to a UP-213 Nd:YAG deep UV (213 nm) laser

ablation system (New Wave Research, USA), at the University of Alberta,
Radiogenic Isotope Facility. A beam diameter of 30 pm was used, except when
the °°Pb counts per second were elevated beyond the detector limit; then the
beam diameter was reduced to 20 pm. Each grain was ablated for approximately
70 seconds during which 30 one-second integrations of data were collected. Two
in-house standards were used. LH94-15 (1830 + 1 Ma) is a homogeneous calc-
alkaline enderbite (Ashton et al. 1999) and GJ1-32 (609 Ma) is of uncertain origin
(Simonetti et al. 2008). Two analyses of LH94-15 and either one or two analyses

of GJ1-32 were collected before and after runs of 10 analyses of unknowns.

It is important to obtain a high number of measurements in order to reduce the
probability of missing an age component in the total population (Dodson et al.
1988). Figure 1.9 illustrates this relationship. In this study between 120 and 200

grains were analyzed for each sample.

Data Reduction

Initial data calculations were performed using a spreadsheet written by

S.A. DuFrane (University of Alberta). Time-resolved signals were checked for
indications of core-rim features, zoning, or inclusions. When required, a portion
of the time-resolved signal was rejected in an attempt to achieve a stable flat
signal (Fig. 1.10). Unusual counts at the initial part of the signal were discarded
because they displayed elevated 2*°Pb/?**U and *’Pb/**Pb and ratios likely
resulting from lead contamination on the mount surface. All data are 2 standard

deviation filtered.

A combination of standards LH94-15 and GJ1-32 were used for normalizing the
ages of the unknown grains. Standard LH94-15 was used when the unnormalized
207Pb/?%PDb ratio of the grain was greater than the average observed 2°’Pb/?*°Pb
ratio of LH94-15. Standard GJ1-32 was used when the initial *’Pb/?*Pb ratio

of the grain was less than the average observed *’Pb/?%Pb ratio of GJ1-32.

Normalization was performed using a weighted combination of the two standards
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for grains with intermediate 2°’Pb/?%Pb ratios. Instrument drift during the day
resulted in variations in the isotopic ratios of the standards. To account for this,
the standard analyses were bracketed into different groupings representing periods
of consistency. These groupings of standards were then used to normalize grains

analyzed within the same interval.

Common-lead correction was applied when the average ***Pb counts per second
for a single grain analysis counts were elevated above background levels produced
by isobaric interference from mercury (***Hg) present in the Argon gas supply.

The two-stage evolution model of Stacey and Kramers (1975) was used in the
common lead correction. This model assumes that lead originally developed from
a primordial composition equal to that of the troilite lead of the Canyon Diablo
meteorite where 2*U/2*Pb = 7.19 and #**Th/**Pb = 32.21 starting at 4.57 Ga.

A second stage is then assumed to have started around 3.7 Ga as a result of a

differentiation process that altered conditions where the new assumed values were
28U/2%Pb = 9.74 and **Th/**Pb = 37.19.

U-PDb dating relies on the decay of #°U to **’Pb, with a half-life of 703.8 Ma, and
28U to 2°5Pb, with a half-life of 4.468 Ga (Jaffey et al. 1971). The ratios of these
two isotopic systems can be plotted on a concordia diagram, where concordia is a
curve where 2’Pb/*>U and 2%°Pb/>**U ages are equal. An age calculated from these
two isotopic systems can be considered concordant if it lies on the Concordia

curve within error. If it does not, then it is considered discordant.

Discordance was calculated using the formula below, which looks at the
difference between the observed °Pb/>8U ratio and the expected 2°°Pb/>*%U ratio
based on the 2’Pb/?*Pb age calculated from the observed >’Pb/**Pb ratio. Grains
with a calculated discordance of greater then 10% (or less than -10%) were not

included in interpretations.

9% discordance = (e 0.000155125 x 206Pb/207Pb age _ 1) - 206PH/238J ratio x 100

(G 0.000155125 = 206Pb/207Pb age _ 1)

Due to the difference in decay rate between the different uranium isotopes,
younger grains usually produce more precise 2°°Pb/?**U ages, and older grains
usually produce more precise 2’Pb/?%Pb ages. Given these factors, different

authors have used different filters to determine which age to report. McLennan
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et al. (2001) and Ireland (1992) used *’Pb/**Pb ages for grains greater than

800 Ma and **Pb/>*U ages for grains less than 800 Ma (where 800 Ma is an
arbitrary diving line) except when the *Pb/?**U age was younger than the age of
sedimentation. Collins and Buchan (2004) used a filter where if the 2°Pb/>8U

age was greater than 2005 Ma the 2’Pb/**Pb age was used; if the 2°°Pb/***U age
was less than 1250 Ma the 2°°Pb/?*®U was used; and if the 2*Pb/***U age lies
between 1250 Ma and 2005 Ma then the more precise age was used. Strachan et
al. (2007) and Waldron et al. (2009, 2011) used the most precise age calculated
from 2Pb/?%Pb and **Pb/**U. This roughly equates to using **Pb/>*U ages for
grains less than c. 1000 Ma and **"Pb/?%Pb ages for grains greater than ¢. 1000 Ma
(Strachan et al. 2007). This method was used for this study, because the majority
of the data reported from other studies, that are being used for comparison, did the

same.

Relative probability density plots describe the probability of any given detrital
age within a sample. The area under a portion of the curve between t1 and t2
represents the probability of a zircon having an age between t1 and t2. Isoplot3
(Ludwig 2003) was used to calculate ages and to produce concordia and relative

probability density plots.

1.6 PRESENTATION AND ORGANIZATION

This document has been prepared in a paper based thesis format, where chapters
2 and 3 are written as two separate papers for future journal presentation. As
a result of this arrangement there will be some repetition of information across

chapters.

Chapter 2 examines the results of four new detrital zircon samples collected from
the North Wales succession and discusses implication of those results on the
terrane interaction between East Avalonia and the Monian Composite Terrane

from the mid-Cambrian to the latest Ordovician.

In Chapter 3, the Lumsden Dam Formation of the Meguma Supergroup succession
is formally described and compared with the correlative Bluestone formation,

also of the Meguma Supergroup. A new detrital zircon sample from the Lumsden
Dam helps complete the detrital zircon record for the Meguma terrane as it is

the highest sampled horizon to date within the Meguma Supergroup. The new
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provenance data provides further comparison with the Welsh succession for which

Waldron et al. (2011) suggested a correlation.

Chapter 4 discusses the paleogeographic implications of the results and
summarizes the conclusions of this study.
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CHAPTER 2: DETRITAL ZIRCON GEOCHRONOLOGY OF
THE CAMBRIAN-ORDOVICIAN SUCCESSION OF NORTH
WALES

A version of this chapter will be submitted for publication
under the following authorship
Pothier, H., Waldron, J W.F., Schofield, D.I. and DuFrane, S.A.

2.1 INTRODUCTION

The ages of detrital zircon grains in clastic sedimentary rocks offer important
information about potential source regions for sedimentary basin fill and
variations in the record over time within a particular succession may reflect
changes in a basin’s proximity to different source areas. In this way, detrital
zircon can be used to help constrain paleogeographic positions and the timing of

terrane juxtaposition.

The Caledonide-Appalachian Orogen preserves evidence of a series of geological
events of Early Ordovician to Middle Devonian age that record closure of the
Iapetus Ocean and the collision of Laurentia, Baltica, and peri-Gondwanan
terranes (Harland and Gayer 1972; van Staal 1998; McKerrow et al. 2000;
Hibbard et al. 2007). The passive margin of Laurentia, and associated peri-
Laurentian terranes, span most of length of the eastern North America and

part of Greenland (Fig. 1.1). Outboard of this Laurentian realm is a mosaic

of terranes interpreted as a series of microcontinental blocks and arcs formed
along the northern (present day coordinates) margin of Gondwana (e.g., Hibbard
et al. 2007). These were classified by Hibbard et al. (2007) into several peri-
Gondwanan domains including Ganderia, Avalonia, and the Meguma terrane of
Nova Scotia (Fig. 1.1).

Several links have been made between peri-Gondwanan elements involved in

the Caledonide Orogen in the British Isles and Appalachian Orogen of Atlantic
Canada (Fig. 2.1). East and West Avalonia (Fig. 2.1) are generally characterized
by lower Paleozoic platformal sedimentary successions overlying Precambrian
arc-related volcanic suites (Nance 1991; Nance and Murphy 1994). The adjacent
Cambrian successions of the Harlech Dome within the Welsh Basin (Fig. 2.1),

previously regarded as part of Avalonia, and the Meguma terrane (Fig. 2.1)
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Figure 2.1: Terrane Map of the North America Appalachians and British Caledonides.
Abbreviations in alphabetical order are Ag-Anglian Basin; Lk-Lakesman
Terrane; Ln-Leinster Terrane; MC-Monian Composite Terrane; MP-Midland
Platform; MT-Meguma Terrane; Rs-Rosslare Terrane; WB-Welsh Basin.
Data compiled from van Staal et al. (1998), Barnes et al. (2007) Hibbard et
al. (2007) and Waldron et al. (2011).

of Nova Scotia have been linked by Waldron et al. (2011) in a new domain,
Megumia. The Monian Composite terrane and the Leinster-Lakesman terrane
(Fig. 2.1) have been correlated with the Ganderia domain of Newfoundland and

New Brunswick (e.g., van Staal et al. 1996 and references therein, 1998).

In discussing terrane interactions it is important to use a consistent timescale.
Where possible, we use the timescales of Gradstein et al. (2012) throughout this
paper. It should be noted that this includes a four-fold division of the Cambrian
as documented by Peng et al. (2012). We informally use ‘lower Cambrian’ to
include Series 1 (Terreneuvian) and 2 (unnamed); ‘middle Cambrian’ to include

Series 3 (unnamed); and ‘upper Cambrian’ to include Series 4 (Furongian).

The purpose of this paper is to investigate terrane interactions by examining the
detrital zircon record from four sandstone units sampled in North Wales spanning
the interval from the early Cambrian to the latest Ordovician in order (1) to
constrain the timing of the juxtaposition of the Welsh Basin with the Monian
Composite terrane along the Menai Strait Fault System; (2) to provide new insight
into the origin of the Arfon Basin, which lies along the fault system; and (3) to

determine whether North Wales came into contact with Laurentia during this time
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interval. We build on the results of Waldron et al. (2009, 2011) who suggested

a link between the early Cambrian to Tremadocian successions of the Harlech
Dome in North Wales and the Meguma terrane where both were derived from
sources in Gondwana. We conclude that North Wales was juxtaposed with the
Monian Composite terrane by the Tremadocian, and that Laurentian detritus is

not recorded in the latest Ordovician sediments, indicating that the Iapetus Ocean
remained open at least until the Silurian. The Cambrian detrital zircon record
from the Arfon Basin does not show definite links to either the Monian Composite
terrane or the Welsh Basin and Midland Platform, and may indicate that the basin

is a transported slice caught up in the fault system.

2.2 REGIONAL GEOLOGIC SETTING

Precambrian to Ordovician sedimentary basins of Wales display contrasting
histories across major NE-striking fault systems. Most notable are the Welsh
Borderland Fault System and the Menai Strait Fault System (Fig. 2.2). The
Welsh Borderland Fault System separates the lower Paleozoic Welsh Basin from
the Midland Platform to the east, and includes the long-lived Pontesford and
Tywi lineaments and the Church Stretton Fault Zone (Woodcock and Gibbons
1988) (Fig. 2.2). The Menai Strait Fault System separates the Welsh Basin to the
southeast from the Monian Composite terrane on Anglesey and the LIyn Peninsula
(Gibbons 1987). The system contains a series of steep NE-striking faults and
shear zones, most significantly the Berw, Dinorwic and Aber-Dinlle faults (Fig.
2.2). Gibbons (1987) suggested the existence of a terrane boundary along the
Menai Strait Fault System based on contrasts in basement characteristics on
either side of the fault system and the presence of a ductile shear zone that was
active from at least the early Cambrian to the late Carboniferous (Gibbons 1987).
Between the Monian Composite Terrane and the Welsh Basin, along the Menai
Straight Fault System, is the Arfon Basin. It contains a distinct Neoproterozoic
to Cambrian succession that has not been definitively linked to either the Harlech
Dome to the south nor to the Monian succession of Anglesey to the north
(Rushton and Molyneux 2011).
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Figure 2.2: Geological map of Wales (from British Geological Survey 2007).
Abbreviations in alphabetical order: ADF-Aber-Dinlle Fault; BF-Bala Fault;
BSZ-Berw Shear Zone; CSL-Church-Stretton Lineament; DF-Dinowic
Fault; LSZ-L1yn Shear Zone; MSFS-Menai Strait Fault System; PtL-
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TL-Tywi Lineament; and WBFS-Welsh Borderland Fault System. Numbers
refer to stratigraphic columns shown in Fig. 2.3 and 2.5.
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2.2.1 Welsh Basin

The sedimentary fill of the Welsh Basin ranges from the early Cambrian to Early
Devonian and has been divided into three megasequences, each separated by
basin-wide unconformities (Woodcock 1990). The Dyfed Supergroup, the lowest
of the three, spans the early Cambrian to the Tremadocian and is widely exposed
in the Harlech Dome in North Wales. Its base is interpreted as an unconformity
with underlying Precambrian basement (Allen and Jackson 1978) and its top is
marked by a sub-Floian unconformity (sub-Arenig unconformity of older time
scales), which spans both the Welsh Basin and the Monian terrane in Anglesey
(Ruston and Fortey 2000).

The Dyfed Supergroup succession in the Harlech Dome (Fig. 2.3) rests upon
interbedded sedimentary and volcaniclastic rocks, tuffs, and lavas of the Neo-
proterozoic Bryn-teg Volcanic Formation known only from the Bryn-teg
borehole (Fig. 2.4) (Allan and Jackson 1978). Above this, the Cambrian Harlech
Grits Group is characterized by course-grained psammite with interbedded
metasiltstone (Allen and Jackson 1985). Waldron et al. (2011) noted similarities
between the Harlech Dome succession and Meguma Supergroup of Nova Scotia.
The Rhinog Formation (Fig. 2.3), of the Harlech Grits Group, was sampled for
detrital zircon as a part of this comparison. The upper part of the Harlech Grits
Group contains mudstone, siltstone and sandstone with manganese-rich horizons
in the Hafotty and Gamlan formations (Allen and Jackson 1985) (Fig. 2.3). We
report new detrital zircon results from the Gamlan Formation. The overlying
Mawddach Group (Drumian to Tremadocian) consists of interbedded silty
mudstone and fine to coarse sandstone (Allen and Jackson 1985). We sampled the
highest unit in the group, the Dol-cyn-afon Formation (Fig. 2.3). The Mawddach
Group is unconformably overlain by the Tremadocian Rhobell Volcanic Group
(Allen and Jackson 1985), which contains basaltic lava, sandstone, conglomerate
and minor sedimentary breccia (Brenchley et al. 2006). A K-Ar age of

475 + 12 Ma from an amphibole separate has been interpreted by Beckinsale and
Rundle (1980) to represent the minimum extrusion age for the Rhobell Volcanic
Group. This succession is interpreted as subduction-related (Kokelaar et al. 1984,
1988).

The overlying Ordovician succession (Fig. 2.5), assigned to the Gwynedd

Supergroup of Woodcock (1990), consists mainly of marine mudstone, siltstone
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Figure 2.3: (previous page) Stratigraphic columns showing Cambrian units of the
northern Welsh Basin, Arfon Basin, and Monian Composite Terrane. Data
compiled from Pharaoh and Carney 2000; Brenchley and Rawson 2006;
Rushton and Molyneux 2011. Abbreviations: ABF-Aber-Dinlle Fault;
DEF-Dinorwic Fault; CPL-Cwm Pennant Lineament; and WBFS-Welsh
Borderland Fault System. Using time scale of Peng et al. (2012).

and sandstone, interfingering with volcanic deposits, that range from the Floian to
mid-Katian (Rushton and Howells 1998). The Aran, Llewelyn, Llanbedrog, and
Snowdon volcanic groups (Fig. 2.5) represent the main volcanic centres and span
the earliest Darriwillian to the early Katian (Allen and Jackson 1985; Rushton
and Howells 1998; Rushton and Fortey 2000). Katian black mudstone, above

the volcanics, is overlain unconformably by mudstone, siltstone and sandstone,
including the Conway Castle Grit sampled in this study, assigned to the basal
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Figure 2.4: Geological map of the Harlech Dome (from British Geological Survey 1982;
British Geological Survey 2013). Ordnance Survey National Grid reference
system.
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Figure 2.5: (previous page) Stratigraphic columns showing Ordovician units of the
Northern Welsh Basin, Arfon Basin, and Monian Composite Terrane. Data
from Rushton and Fortey (2000). Abbreviations for stratigraphical units
are from (Rushton and Howells 1999): CEi-Cwm Eigiau Formation; Dwf-
Dwyfach Formation; L1V-Llewelyn Volcanic Group; LVG-Llanbedrog
Volcanic Group; and the ULG-Upper Lodge Volcanic Formation. Other
abbreviations include ABF-Aber-Dinlle Fault; DF-Dinorwic Fault; CASZ-
Central Anglesey Shear Zone; CPL-Cwm Pennant Lineament; WBFS-Welsh
Borderland Fault System. Using time scale of Cooper and Sadler (2012).

units of the Powys Supergroup by Woodcock (1990). Ruston and Fortey (2000)
interpreted this Hirnantian influx of coarser sediment into deeper part of the Welsh
Basin as a result of a glacio-eustatic fall in sea-level. The overlying Silurian
record in central Wales consists of thick alternating oxic and anoxic mudstones
and deep-water turbidite sandstones that were deposited in sedimentary basins
bounded by active extensional faults (Cherns et al. 2006).

2.2.2 Arfon Basin

The Arfon Basin is located along the Menai Strait Fault System to the northwest
of the Harlech Dome (Fig. 2.2). The succession rests with an unconformity

or a paraconformity upon the Precambrian felsic ash flow tuffs of the Pardarn
Tuff Formation (Reedman et al. 1984) that has yielded U-Pb zircon ages of
604.7 + 1.6 Ma (Compston et al. 2002) and 614 &+ 2 Ma (Tucker and Pharaoh
1991). To the northwest, between the Aber-Dinlle and Dinorwic faults, the
Arfon Group comprises tuffite, sandstone and conglomerate of the Minfordd and
Bangor formations (Reedman et al. 1984) (Fig. 2.3). Sponge spicules present in
the Minfordd Formation suggest they are of Cambrian rather than Precambrian
age (Rushton and Molyneux 2011). Southeast of the Aber-Dinlle Fault the
Arfon Group consist of the Fachwen Formation and its lateral equivalents, the
Tryfan Grits, Cilgwyn Conglomerate, and Glog Grits (Rushton and Molyneux
2011). A welded ash-flow tuff within the Fachwen Formation produced an

age of 572.5 £ 1.2 Ma (Compston et al. 2002). The Twt Hill Granite dated at
615 + 1.3 Ma (Schofield et al. 2008) is enveloped within the Padarn Tuff, but its

relationship with the Arfon Group sedimentary rocks is not preserved.

Above the Arfon Group, the Llanberis Slates Formation (Fig. 2.3) is characterized
by silty mudstone with abundant turbiditic sandstone. The undated Dorothea Grit

lower in the succession sampled in this study is one of the formally recognized
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sandstone units (Morris and Fearnsides 1926). Above the Dorothea Grit, early
Cambrian (Series 2, from stage 3 to 4) trilobites are recorded (Howell and
Stubblefield 1950; Ruston and Molyneux 2011). The Llanberis Slates Formation
is overlain by the laterally equivalent sandstone-rich Bronllwyd Grit, Cymffyrch
Grit formations and the Marchllyn Formation. The nature of the contact of these
units with one another and the underlying Llanberis Slates is disputed (Brenchley
and Rawson 2006). This whole succession is overstepped by Floian sedimentary
rocks and shares the same overlying Ordovician succession as to the Harlech

Dome region (Fig. 2.5).
2.2.3 Monian Composite Terrane

The Cambrian record on Anglesey is exposed in the northern part of the island
(Fig. 2.2). The bedded succession was first described by Greenly (1919) and later
termed the Monian Supergroup by Shackleton (1975). It comprises predominantly
metasedimentary rocks that have been metamorphosed to low greenschist facies.
These rocks have historically been considered Precambrian (e.g., Greenly 1919;
Shackleton 1969); however, paleontological evidence (Muir et al. 1979) supports
a Cambrian age for the majority of the succession. The lowest unit, the South
Stack Group (Fig. 2.3), is characterized by massive quartzite and quartzose
turbiditic greywacke with subordinate slate (Greenly 1919). Detrital zircons
from this unit included a 522 + 6 Ma grain (late Terreneuvian in the timescale
of Peng et al. 2012) interpreted by Collins and Buchan (2004) as the maximum
depositional age. This is supported by the Phanerozoic trace fossil Skolithos sp.
and early Cambrian trace fossil Trichophycus found in the South Stack Group
(Muir et al. 1979). The overlying New Harbour Group is characterized by pelite
with subordinate serpentinite, gabbro, basalt, and chert (Gibbons 1983). The
youngest unit in the Monian Supergroup is the Gwna Group, also exposed on the
Llyn Peninsula, a mélange that contains both deep-water and continental clasts
including pillow lava, chert, sandstone, limestone, and granite (Gibbons 1987).
Greenly (1919) interpreted the unit to be the result of tectonic disruption, but
it was later described as a deformed olistostrome by Shackleton (1954, 1969,
1975). The age of these two upper units is poorly constrained; however, Floian
sedimentary rocks unconformably overlie the Gwna Group, indicating these rocks
are no younger than Tremadocian (Greenly 1919; Bates 1968). A number of
sedimentary rock outliers were identified by Greenly (1919) in southern Anglesey.
Their ages are unknown; however, the Careg Onen Beds contain sponge spicules
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(Greenly 1946) and have been correlated with the Minfordd Formation of the
Arfon Basin (Reedman et al.1984).

The Ordovician record in Anglesey (Fig. 2.5) appears as a series of outliers and
is less complete than in mainland Wales, ranging from the Dapingian to the late
Sandbian (Ruston and Fortey 2000). The facies differ from rocks of similar age
in the Welsh Basin (Neuman and Bates 1978) as they are mainly mudstone and
there is no evidence of significant volcanic activity (Bates 1972). Silurian rocks
in Anglesey only appear in the core of the Parys Mountain syncline within the
Carmel Head Thrust System in North Anglesey. The Parys Volcanic Group rests
above Darriwillian sediments, and rhyolites within this unit have been dated as
mid-Llandovery (Parrish 1999). Overlying these is mid-Llandovery graptolite-
bearing slate (Greenly 1919).

2.3 SAMPLE DESCRIPTIONS

Four samples were collected from sandstone horizons in North Wales that span the
Cambrian (Drumian Stage) to the latest Ordovician (Hirnantian), stratigraphically
above the previously sampled Rhinog Formation (Waldron et al. 2011) (Fig. 2.3).
Sample localities were selected based on rock type, stratigraphic position, and
proximity to known fossil occurrences to help best constrain the depositional age.

Petrographic images of the samples are found in Appendix A.

The Gamlan Formation is the highest unit of the Harlech Grits Group and is
between 230 and 360 m thick (Fig. 2.3). It is characterized by grey, green, and
purple interbedded siltstone and mudstone with thick beds of coarse-grained
sandstone. The upper half of the formation is manganiferous (Allen and Jackson
1985). Paradoxides hickii and Eodiscus puntatus s.l. have been identified in the
uppermost beds of the Gamlan Formation, placing the highest sediments in the
Tomagnostus fissus zone of the Cambrian Drumian Stage (Allen et al. 1981; Allen
and Jackson 1985). Typical Gamlan Formation occurs in the Barmouth area and
the best exposures are on the coastal section [SH 61826 15534]. It consists of
grey to greenish grey interbedded fine sandstone, siltstone, and mudstone. The
beds are medium to very thinly bedded and show graded bedding and parallel
laminations. Trace fossils are abundant, especially burrows. The unit is enriched
in manganese, particularly in sandy layers, and manganese carbonate concretions
are abundant. Sample ML001 was collected from the top of the Gamlan
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Formation near Ganllwyd along the Gamlan River [SH 72601 24306] where the
relationship with the overlying Clogau Formation is better exposed (Fig. 2.4).
Bedding at this location dips 51° to the east. The outcrop shows an upward
transition from mainly slate with very thin graded sandstone beds into medium
to very thickly bedded wacke with interbedded silty slate. These are overlain by
rust-weathered cleaved mudstone of the Clogau Formation. Sample MLO0O1 is

a moderately sorted, subrounded, muddy sandstone. Based on a visual estimate
it contains 43% quartz, 10% polycrystalline quartz, 15% potassium feldspar, 5%
chert, 3% plagioclase, 1% plutonic fragments, 1% chlorite and trace amounts of
mica, zircon, and opaque minerals. The matrix comprises 22% of the rock and

consists of chlorite, quartz, and white mica.

The Dol-cyn-afon Formation is the uppermost unit of the Mawddach Group
(Fig. 2.3) and is 490 to 900 m thick (Allen and Jackson 1985; Howells and
Smith 1997). It is characterized by grey mudstone and siltstone with minor
sandstone (Rushton and Howells 1998). A crystal-rich volcaniclastic sandstone
bed in the underlying Dolgellau Formation has been dated at 491 + 1 Ma
(Davidek et al. 1998), interpreted as the depositional age. The unit contains
the graptolite Rhabdinopora flabelliformis placing it in the earliest Ordovician
(Tremadocian). Sample NA041 was from the upper sandstone member of the
Dol-cyn-afon Formation. It was collected from roadside outcrop east of Criccieth
[SH 51060 38361] where beds dip 73° to the northwest (Fig. 2.4). The sample
was taken from the base of a bed 36 cm thick from an interval of medium

to thickly bedded fine sandstone that contains minor mudclasts, enveloped
within well-cleaved finely laminated mudstone. It is a light grey, subrounded,
moderately sorted, muddy sandstone. It is grain supported and has a weak
tectonic foliation defined by the alignment of mica in the matrix. It contains
39% quartz, 13% polycrystalline quartz, 7% chert, 7% potassium feldspar, 1%
plagioclase, 1% sedimentary rock fragments, 1% plutonic rock fragments and
trace amounts of rounded metamorphic rock fragments, chlorite, and opaque
minerals. The matrix makes up 29% of the rock and consists of chlorite, quartz

and white mica.

The Conway Castle Grit is 50 m thick and occurs near the base of the Powys
Supergroup (Fortey et al. 2000). It lies unconformably above the Deganwy
Mudstones and is overlain by the Gyffin Shales (Fig. 2.5). The Conway Castle

Grit contains only allochthonous Hirnantian fauna (Brenchley and Newall 1980);
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however, it has been correlated with units elsewhere of Hirnantian age. The
Deganwy Formation below contains late Katian fauna (Elles 1909; Brenchley

and Cullen 1984) and the Gyffin Shales above contain Hirnantian graptolites
(Monograptus gregarius zone of Elles 1909) (Rushton and Fortey 2000) implying
a probable Hirnantian age. Sample NA031 was collected from the Deganwy
Quarries in Deganwy [SH 78565 79060] (Fig. 2.6). The exposure contains 38 m
of section with dip around 65° to the south (Rushton et al. 2000). It consists of
thin to thickly bedded calcareous sandstone with minor siltstone and mudstone
interbeds. Graded bedding and mud clasts (up to 15 cm) are common. The
sample was collected from the base of a bed 23 cm thick, rich in carbonate
material. Clasts are well sorted and rounded and comprise 26% mudstone rock
fragments, 23% fossil fragments, 10% limeclasts, 4% peloids, 3% quartz, 3%
opaque minerals, 1% potasium feldspar, 1% volcanic rock fragments, and trace
amounts of metamorphic rock fragments, polycrystalline quartz, and chert. The
matrix comprises 17% of the rock. Both carbonate and quartz cements are present

and make up 8% of the rock.

The Llanberis Slates Formation (Fig. 2.3) is a succession of dominantly fine-
grained sediments with minor units of graded sandstone beds (including the
sampled unit, the Dorothea Grit) (Crimes 1970) within the Arfon Basin. The trace
fossil Teichichnus has been found within the Llanberis Slates Formation (Mcllroy
1998), which also contains the trilobite Pseudatops viola in the highest levels of
the unit above the Dorothea Grits (Howell and Stubblefield 1950). These early
Cambrian trilobites are assigned to the Strenuella sabulosa zone by Fletcher
(2006) approximately equivalent to the Australian Pararaia bunyerooensis zone
(Cambrian Series 2, Stage 3), between ~515 and 516 Ma in the Peng et al. (2012)
timescale. The Llanberis Slate Formation is also stratigraphically higher than the
Minffordd Formation which is believed to be Cambrian rather than Precambrian
because it contains sponge spicules (Rushton and Molyneux 2011), constraining
the age of the sampled horizon between 541 Ma and 515 Ma.

MLO10 was collected from the green, coarse-grained sandstone of the Dorothea
Grit in the Alexandra Quarry [SH 51834 56078] (Fig. 2.7). The sandstone
horizon is thin to very think bedded and is enveloped with red slate. The sample
is poorly sorted, subrounded, muddy sandstone. It contains approximately 49%
quartz, 10% polycrystalline quartz, 9% K-feldspar, 4% volcanic rock fragments,
3% plagioclase, 3% chert, 2% sedimentary rock fragments, 2% plutonic rock
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Figure 2.7: Geological map of the Arfon Basin (from British Geological Survey 1985,
1997, 2013). Ordnance Survey National Grid reference system.

fragments, and trace amounts of mica, chlorite, and opaque minerals. The matrix

comprises 12% of the rock and carbonate cement makes up 6%.

2.4 ANALYTICAL TECHNIQUES

Detrital zircons from the four sandstone samples were extracted, mounted,

imaged by electron backscatter, and dated using U-Pb laser ablation multicollector

inductively coupled plasma mass spectrometry (LA-MC-ICP-MS). Procedures
are modified from Simonetti et al. (2005). Between 120 and 200 grains were

analyzed from each sample using a nominal beam diameter of 30 pm except
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when count rates exceeded the capacity of the ion counters in which case the

spot size was reduced to a 20 um nominal beam diameter. A fraction of grains
from each sample was rejected when discordance values were elevated (>10%)

or when the 2Pb counts were below 10,000 cps. **Hg present in the argon gas
supply produced elevated **Pb counts ranging roughly between zero and 200

cps. Only in cases where 2*Pb counts were elevated above background levels was
the common-lead correction was applied using the two-stage evolution model of
Stacey and Kramers (1975). In those cases the ?*Pb counts inevitably included

an unpredictable background component; in most cases grains with elevated **Pb

gave discordant results even after common lead correction.

A combination of ?*’Pb/**°Pb or **°Pb/>*U ages are reported depending on which
result produced the lowest analytical error. The grains have been normalized
using a combination of in-house standards LH94-15 (1.83 Ga, Ashton et al. 1999)
and GJ1-32 (609 Ma, Simonetti et al. 2008). LH94-15 was used grains when

the 2°’"Pb/?*Pb ratio of the unknown was greater than average **’Pb/**°Pb ratio

of the standard LH94-15. GJ1-32 was used for grains when the **’Pb/?*Pb ratio
of the unknown was less than the average **’Pb/**°U ratio of the standard GJ1-

32. For grains with intermediate **’Pb/**°Pb ratios, normalization was carried out
using a weighted combination of the two standards and their proportional errors,
dependent on the *’Pb/?*°Pb ratio of the grain. Unless stated otherwise, all errors

are reported using 20.

2.5 DETRITAL ZIRCON ANALYSIS RESULTS

The results from the detrital zircon analyses are plotted in Figures 2.8 and 2.9.
The probability density plots (Fig. 2.9) describe the relative probability density

of the occurrence of any given detrital age. The Cambrian (Drumian Stage)
Gamlan Formation sample (ML001) shows a prominent early Cambrian cluster at
¢. 536 Ma and only a minor contribution of grains prior to the late Neoproterozoic.
The youngest cluster of grains contains a spread of ages from 462 + 60 to

718 + 34 Ma with the most prominent cluster at c. 536 Ma and a second smaller
peak at c. 700 Ma. In addition, there are two Mesoproterozoic grains (1238 + 12
and 1353 + 23 Ma), two Paleoproterozoic grains (1982 + 8 and 1985 + 10 Ma)
and one Neoarchean grain (2657 + 17 Ma). The early Cambrian to late

Neoproterozoic peak is typical of peri-Gondwanan basins, including the Meguma

58



a) MLO10A n=119 b) MLOOTA n=134
0.6 Dorothea Grit 064 Gamlan Formation

-}
® 04
~
o 1800
n- -
O
5 1400
0214000
0.0 ; ;
0 4
038
c) NAO41A n=150 d) NAO31A n=200

Dol-cyn-afon Formation > 064 Conway Castle Grit

0.4 4

206 Pb /238 u

0.2

05 07 09 11

T T T T
0 4 8 12 16 20
207py, /235, 207py, /235

0.0

Figure 2.8: U-Pb concordia plot of all of the detrital zircon data from the a) Dorothea
Grit, b) Gamlan Formation, ¢) Dol-cyn-afon Formation, and d) Conway
Castle Grit. Ellipses represent 2-sigma uncertainties.

terrane of Nova Scotia (Krogh and Keppie 1990; Waldron et al. 2009) and eastern
Avalonia (Murphy et al. 2004; Waldron et al. 2011), and reflects sources derived
from within the Avalonian Panafrican orogens (Murphy et al. 2004). Northwest
Africa is characterized by a lack of 1.0 to 1.7 Ga sources, so the Mesoproterozoic
grains may have been derived from a source in eastern Avalonia. Similar ages

are found within the early Cambrian Wrekin Quartzite (c. 535 Ma) (Murphy et

al. 2004) and the Malvern Complex paragneiss (Strachan et al. 2007). However,
grains of this age could have also been sourced from Amazonia (Litherland et al.
1985; Rowley and Pindell 1989). The West African (Eburnean) or Amazonian
cratons are the likely source of the c. 2.0 Ga and Archean populations (Rocci et al.
1991; Lerouge et al. 2006; Waldron et al. 2009, 2011).
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There is a wide distribution of detrital zircon ages within the Tremadocian Dol-
cyn-afon sample (NA041). The most prominent peak is centered at c. 580 Ma
and contains a spread of ages from 453 + 25 to 741 + 48 Ma (Fig. 2.9). There

is a significant Mesoproterozoic and Paleoproterozoic grain population with a
single grain at 967 = 56 Ma and clusters at c. 1125 — 1380 Ma, c. 1480 — 1620 Ma,
¢.1760 — 1900 Ma and c. 2000 — 2200 Ma. The sample also contains seven
Archean grains with ages between 2631 + 8 to 3397 + 7 Ma.

The Hirnantian Conway Castle Grit (sample NA031) yielded a pronounced
Ordovician peak at 447 Ma and minor peak at 491 Ma. It also contains a
population of late Neoproterozoic to early Paleozoic grains between 537 + 16 and
712 + 24 Ma. There is a significant Mesoproterozoic and Paleoproterozoic grain
population with one grain at 1019 + 31 Ma and clusters at ¢. 1040 — 1250, ¢. 1500
— 1680 Ma, and c. 2100 — 2200 Ma. The sample also contains five Archean
grains between 2675 = 9 and 2997 + 8 Ma. This sample also recorded a number
of discordant grains, most of which produced young Neoproterozoic to early

Paleozoic *°°Pb/**U ages.

Potential sources for the Mesoproterozoic ages in the Ordovician samples
include Mesoproterozoic crust along the margin of Amazonia (Litherland et al.
1985; Rowley and Pindell 1989), recycled material from the Malverns Complex
paragneiss in the Welsh Borderlands or the Coedana Complex paragneiss on
Anglesey (Fig. 2.9) (Strachan et al. 2007), or from sources within the Monian
Composite terrane or Leinster-Lakesman terrane (Collins and Buchan 2004;

Waldron et al. in preparation).

The results from the Cambrian Dorothea Grits sample (ML010) show a limited
source (Fig. 2.9). The largest population lies between 515 + 38 and 653 + 43 Ma
with the most prominent peak at c. 550 Ma. A single Mesoproterozoic grain
(1166 £ 42 Ma) and one Neoarchean grain at (2654 = 23 Ma) were also present.
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2.6 TECTONIC SIGNIFICANCE
2.6.1 Closure of the Iapetus Ocean

The closure of the Iapetus Ocean and the convergence of the Laurentian

margin and the peri-Gondwanan terranes would likely be recorded by an influx
of sediment from the newly adjacent source region. Laurentian detritus is
characterized by abundant 0.95 to 1.3 Ga ages reflecting derivation from the
Grenville orogen (e.g., Cawood et al. 2007; Waldron et al. 2008) and a significant
increase of detritus of this age has been interpreted to record the convergence of
Laurentia with other peri-Gondwanan terranes (Waldron et al. 2011; Waldron et
al. in preparation). Although there is a small cluster between 1.0 and 1.3 Ga in
the Ordovician samples, it is not the dominant age population as seen in other
units derived from Laurentian sources. This indicates that the Welsh Basin was
not in close proximity to Laurentia in the latest Ordovician, which is in agreement
with Soper and Woodcock (1990) and Cocks and Torsvik (2002) who suggest the

closure of the lapetus Ocean occurred in the late Llandovery to Wenlock Epoch.

2.6.2 Arfon Basin

The Arfon Basin has a distinct Cambrian stratigraphy and has yet to be
definitively linked to either the Harlech Dome succession or the Monian
Supergroup. Brenchley et al. (2006) suggested that the basin developed along the
SE margin of the Irish Sea platform in response to strike-slip movement along

the Menai Strait Fault System. Reedman et al. (1984) proposed a connection
between the Minffordd Formation and the outliers of the Careg Onen Beds in
southern Anglesey, but only on the basis of lithology and the presence on sponge
spicules (Fig. 2.3). Shackleton (1975) suggested that the basaltic material present
in the Minffordd Formation was derived from Gwna Group lavas; however, it

is now known that the Gwna Group is likely of the same age or younger than

the Minffordd Formation and therefore not a likely source. Tucker and Pharaoh
(1991) suggested a link between the Coedana Granite and the Padarn Tuff both of
which have been dated at approximately 614 Ma.

The similarities between the Harlech Dome and the Arfon Basin successions are
distant and few. Both Cambrian successions rest upon volcanic rocks. However

the Bryn-teg Volcanics Formation consists of andesite and dacite while the
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Arfon Group volcanic rocks are predominantly rhyolite and ash-flow tuff (Allan
and Jackson 1978). Despite their compositional differences, Allan and Jackson
(1978) proposed that a correlation may still exist based on the presence of rhyolite
pebbles in the base of the Dolwen Formation, which may have been derived

from a lateral equivalent, such as the Arfon Group, that was not preserved in the

location of the Bryn-teg borehole.

The detrital zircon age distribution of the Dorothea Grit does not reflect any
intrabasinal sources (Twt Hill Granite or Padarn Tuff) and it is different from
samples from both the Harlech Dome and the Monian Composite terrane. The
Dorothea Grit sample shows the same Neoproterozoic peak (c. 530 Ma) displayed
in the Gamlan and Rhinog formations; however, it is lacking the c. 2.0 Ga West
African population characteristic of the Harlech Dome and the Meguma terrane
(Waldron et al. 2009, 2011). A detrital zircon sample collected from the Wrekin
quartzite (c. 535 Ma) from the English Midlands in Shropshire (Murphy et

al. 2004) shows some similarities to the Dorothea Grit. The Wrekin quartzite
contains a more diverse grain population, but it does share the Neoproterozoic
grain population, contains one Mesoproterozoic grain (1198 Ma) and contains no

¢. 2.0 Ga zircons.

If the Arfon Basin was in close proximity to the Monian Composite Terrane
during the early Cambrian it is likely that the age distribution would reflect
sources found there. However, the limited age distribution found in the sample
suggests otherwise. The sample does not reflect any ages from the Coedana
granite (613 + 4 Ma) (Tucker and Pharaoh, 1991) or the Coedana Complex
paragneiss, which contain a range of detrital zircon ages from 852 + 27 to
2742 + 18 Ma (Strachan et al. 2007). It also lacks the significant Meso- and
Paleoproterozoic grain population found in the Holyhead and South Stack
formations in Anglesey (Collins and Buchan 2004) (Fig. 2.9).

A peak c. 550 Ma in the detrital zircon record is common in parts of Ganderia
and also within the east Avalonia; however, there are no known igneous bodies

in situ of this age in east Avalonia (Murphy et al. 2004). This suggests detritus
from an unseen body may have inundated the basins. West Avalonia is generally
characterized by a prominent c. 620 Ma peak, but 560 — 550 Ma rocks are present
(Barr et al. 2012).
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The stratigraphic and provenance differences between the Arfon Basin sediments
and the adjacent Monian Supergroup and Harlech Dome successions suggests
that this fault-bounded basin originated elsewhere in the peri-Gondwanan realm
and was emplaced into its current position during the amalgamation of the Welsh

Basin with the Monian Composite Terrane.

2.6.3 Cambrian — Ordovician tectonic events in the Welsh Basin

Harlech Dome: Cambrian

The age distribution of detrital zircon grains in the Gamlan Formation sample
exhibits a very similar distribution to that found in the underlying lower Cambrian
Rhinog Formation (Waldron et al. 2011) (Fig. 2.9). They both display a
prominent early Cambrian to late Neoproterozoic peak, minor peaks at ¢. 650 Ma
and c. 2.0 Ga, and both contain c. 2.6 Ga grains. These similarities suggest that
the source region for the Welsh Basin during the Cambrian Series 2 Drumian
remained nearly unchanged since the deposition of the Rhinog Formation in the
lower Cambrian. Waldron et al. (2009, 2011) suggested that the lower Harlech
Dome succession was deposited in a deep-sea rift basin between the Gondwanan

margin, near the West African craton, and Eastern Avalonia.

Tremadocian Events

In the Monian Composite Terrane major deformation and metamorphism to
greenschist facies is recorded by fabrics and folds trending roughly NE to SW
(Treagus et al. 2003; Treagus et al. 2013). The timing of this deformation is
constrained between the deposition of the Gwna Group, which is no older than

late Terreneuvian, and the Floian overstep sedimentary rocks.

During this general interval, in the Harlech dome, the Dol-cyn-afon Formation
records shallowing and an influx of diverse zircon suggesting a source similar

to Monian Composite Terrane. The region was tilted after the deposition of the
Dol-cyn-afon Formation but prior to eruption of the Rhobell Volcanics in the

late Tremadocian. The metamorphic grade and intensity of deformation is much
lower than the Monian Composite Terrane (Allen and Jackson 1985). Pre-Floian
sedimentary rocks in the Harlech Dome region are folded into NNE- to north
trending folds. A second episode of deformation occurred after the extrusion of

the Rhobell Volcanics Group, resulting in a second unconformity below the Floian
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cover. This deformation was accompanied by fracture reactivation and uplift
(Kokelaar 1988), which progressively diminishes to the southeast (Shackleton
1954).

Deformation of the Arfon succession is poorly known but occurred at low
metamorphic grade similar to the Harlech dome. Schofield et al (2008) suggested
a Rb-Sr isochron age of 491 + 12 Ma from the Twt Hill Granite was a deformation
age, which would be consistent with ‘Monian’ deformation in both the adjoining

terranes.

Another short-lived compressional event is recorded in the Northern Appalachian
in Atlantic Canada between 486 Ma and 479 Ma (van Staal et al. 1998). This
event resulted in the obduction of the Penobscot backarc basin ophiolites onto
Ganderia (Colman-Sadd et al. 1992; Zagorevski et al. 2010). Although the nature
of the deformation varies, the kinematic differences could be explained by an

overall sinistral transpressional setting and curvature in the plate boundary.

2.6.4 Late Ordovician History

The Hirnantian Conway Castle sample yielded similar results to the Tremadocian
Dol-cyn-afon sample (Fig. 2.9). They both have a prominent late Neoproterozoic
to early Cambrian zircon population, and clusters between c. 1000 — 1250 Ma,

c. 1500 — 1800 Ma and c. 2000 — 2200 Ma, as well as a spread of Archean grains.
This indicates that the source region for North Wales was the same throughout the

Ordovician.

2.6.5 Tectonic Model

During the Cambrian Period the detrital zircon record in the Harlech Dome
suggests it was deposited between Avalonia and the Gondwanan margin, likely
close to the West African craton. Waldron et al. (2011) proposed that it could have
been positioned in a rift system between East and West Avalonia. The Cambrian
detrital zircon record in the Arfon Basin suggests a slightly different source region
than the sedimentary rocks of the Harlech Dome and the Monian Supergroup of
the Monian Composite terrane. Movement along the Menai Strait Fault System
may have resulted in the formation of several small basins. The Arfon Basin

was likely one such basin, and was caught up in the fault system and emplaced

between the Monian Composite terrane and the Welsh Basin. The shared post-
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Tremadocian sedimentary succession across all three regions indicates that they
remained in generally the same configuration after this time and that they moved

as a coherent unit towards Laurentia.

Figures 2.10 and 2.11 illustrate possible terrane configurations based on these
assumptions, and are also consistent with the differences in lithostratigraphy and

provenance, and a sinistral strike-slip tectonic setting.

Figure 2.10a shows a paleocontinental reconstruction that places Avalonia

and Ganderia in their traditional (e.g., van Staal 2010) orientations relative

to the Gondwanan margin. Here the diverging Ordovician histories of the
Meguma terrane and the Welsh Basin are explained by sinistral movement

along a secondary fault cutting through Megumia that disconnects the basins.

To accommodate sinistral movement along the Menai Strait Fault System and
bring the Monian Composite terrane together with the Welsh Basin (Fig. 2.10b),
Ganderia must be positioned closer to West Africa; however this contradicts the
interpretation of many (e.g., van Staal et al. 2012; Pollock et al. 2009) who would

place Ganderia next to Amazonia and Avalonia closer to West Africa.

Figure 2.11a shows an alternative paleocontinental reconstruction that maintains
an Amazonian provenance for Ganderia and places Avalonia closer to West
Africa. To maintain sinistral movement along the Menai Strait Fault System
their orientations relative to the Gondwanan margin have been rotated roughly
180°. The separation of the Meguma terrane from the Welsh basin in this scenario
is also explained by sinistral movement along a fault that divides Megumia.

This brings the Welsh Basin and East Avalonia in contact with Ganderia. This

is followed by activation of a new fault, which juxtaposed both East and West

Avalonia with Ganderia.

The tectonic model illustrated in Figure 2.11 is the preferred scenario; however,
it requires significant clockwise rotation of the peri-Gondwanan terranes prior
to their accretion to the Laurentian margin. Waldron et al. (2011) proposed one
possible East Avalonia orientation that was rotated roughly 180° from its more
generally accepted orientation. There is some paleomagnetic evidence from
Britain that points to a clockwise rotation up to 85° (Torsvik 1993) interpreted to
have occurred during the late Carboniferous Variscan deformation, but possibly

reflecting an earlier rotation trend.
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2.7 CONCLUSIONS

The Cambrian successions of the Harlech Dome, Arfon Basin and Monian
Supergroup show contrasting detrital zircon distributions in addition to distinct
lithostratigraphic successions, suggesting that they were dispersed tectonic
fragments receiving sediment from different source regions along the Gondwanan
margin. Deformation in the Monian Composite Terrane suggests an overall
environment of sinistral transpression, which brought it together with the terranes
that now lie to the South. By the Tremadocian, the Welsh Basin began to see an
influx of ‘Monian’ detritus indicating that North Wales was juxtaposed with the
Monian composite terrane along the Menai Strait Fault System by this time. The
same overall sinistral movement could account for the removal of the Meguma
Terrane from an original position adjacent to the Harlech Dome. The shared post-
Floian cover between the Harlech Dome and Arfon basins indicates these two
regions were also located next to one another at this time. Derivation of sediment
from the Monian composite terrane into the Welsh Basin continued at least until
the Hirnantian, but the absence of Laurentian detritus indicates that collision with

Laurentia was Silurian or later.
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CHAPTER 3: PROVENANCE AND DEPOSITIONAL
ENVIRONMENT OF THE EARLY ORDOVICIAN CLASTIC
ROCKS OF THE MEGUMA TERRANE

A version of this chapter will be submitted for publication
under the following authorship
Pothier, H., Waldron, J W.F., White, C.E., and DuFrane, S.A.

3.1 INTRODUCTION

Clastic sedimentary rocks of the Meguma Terrane, the most outboard terrane of
the Canadian Appalachians, have no correlatives elsewhere in Atlantic Canada,
and their source has been the subject of disagreement. The terrane resided
along the northern margin of Gondwana during the Cambrian; however its exact
position along the margin relative to the West Africa and Amazonia, and to other

peri-Gondwanan terranes, remains uncertain (e.g., Schenk 1997; Waldron 2009).

The Meguma terrane takes its name from distinctive stratigraphic unit, named
the Meguma Series by Woodman (1902) and subsequently termed the Meguma
Group (Stevenson 1959) or Supergroup (Schenk 1995a, 1997). It comprises the
Cambrian to Early Ordovician Goldenville and Halifax Groups (Schenk 1995a;
White 2010b), which are overlain by the Silurian to Devonian Rockville Notch
Group, all of which are intruded by Devonian plutons (Clarke and Halliday
1980). Recent mapping of the Meguma terrane in Nova Scotia has led to the
identification and division of several mappable units within the Halifax and
Goldenville groups. In this paper we formally define the Lumsden Dam and
Bluestone formations of the upper Halifax Group in the Wolfvillle and Halifax
regions. Both units record similar sedimentological features, and the presence of
a mass transport deposit in the Bluestone Formation suggests they were deposited

in a slope environment.

Here we present the first detrital zircon data from the Halifax Group, which add
to previous provenance studies conducted in the Goldenville and Rockville Notch
groups (Krogh and Keppie 1990; Murphy et al. 2004b; Waldron et al. 2009).

The data show similar distributions to underlying units, and are consistent with a

primary West African source region with a minor input of Amazonian detritus.
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3.2 GEOLOGIC SETTING

The Meguma terrane is exposed south of the Cobequid-Chedabucto Shear Zone
in Nova Scotia (Fig. 3.1). It includes a thick (>13 km) Cambrian-Ordovician
sandstone-shale succession of the Meguma Supergroup and Silurian-Devonian
volcanic-sedimentary rocks of the Rockville Notch Group (White et al. 2012).
The units have been deformed into SW-NE trending folds formed during the
Middle Devonian Neoacadian orogeny (van Staal 2007; White et al. 2007), and
have been intruded by the South Mountain Batholith and other plutons during the
late Devonian (Clarke and Halliday 1980). Regional metamorphism is greenschist
facies with amphibolite facies in southwest and far east of Nova Scotia (Keppie
and Muecke 1979). Hornblende-hornfels facies contact metamorphism is present
around the South Mountain Batholith (Jamieson et al. 2012). Unconformably
overlying the Meguma terrane and adjacent Avalonia terrane are the Late
Devonian to Carboniferous successions of the Maritimes Basin and the Mid-
Triassic to Early Jurassic Fundy Group (Klein, 1962; Martel et al. 1993).

The Chebogue Point Shear Zone (CPSZ) is located in southwest Nova Scotia in
the Yarmouth region (Fig. 3.1). It strikes N-S to NE-SW (White 2010b) and has
not been traced east of its intersection with the South Mountain Batholith. White
(2010b) has described the CPSZ as a tectono-stratigraphic boundary, dividing the
Meguma Supergroup into the different, though correlative units at the formation
level, lying to the northwest and southeast of the shear zone and South Mountain
Batholith.

Basement characteristics such as age, deformation and composition normally
provide critical information about a terrane’s origin; however, there is no exposure
of Meguma terrane basement rocks anywhere in Nova Scotia. Sm/Nd studies

on Meguma granitoids (Clarke et al. 1988) and basement xenoliths (Eberz et

al. 1991) indicate that deeper crustal material has a younger residence age than

the overlying Meguma Supergroup. Greenough et al. (1999) dated zircons and
monazites from basement xenoliths, which showed a Pan-African — Avalonian
population (575-630 Ma), with a possible Mesoproterozoic grain population
defined by the upper intercepts of a discordant zircon fraction known to be lacking
in lower Meguma Supergroup sediments (Krogh and Keppie 1990; Waldron et

al. 2009). These data are interpreted by Greenough et al. (1999) as suggesting

that the Meguma succession rests upon a basement with similarities to adjacent
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Figure 3.1: Meguma terrane (after White 2010b) with inset map showing its location in the
northern Appalachian-Caledonide orogeny (after Hibbard et al. 2006). Boxes show
location of maps shown in Fig. 3.3 and 3.8. Numbers refer to stratigraphic columns
shown in Fig. 3.2.

Avalonia. It has been proposed that West Avalonia and the Meguma terrane once
formed a part of the same microcontinent and that the Meguma succession was
deposited on Avalonian crust (e.g., Keppie 1997; Landing 2004; Murphy et al.
2004a; Linnemann et al. 2012). Others believe the contact to be a structural thrust
fault contact (e.g., Eberz et al. 1991; Keppie and Dallmeyer 1987; Waldron et al.
1989; Greenough et al. 1999) at which the Meguma terrane was thrust over crust

with Avalonian characteristics.
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3.2.1 Goldenville Group

The Goldenville Group (Fig. 3.2) is the oldest unit in the Meguma terrane

and spans the early Cambrian (Terreneuvian) to the early Furongian (White

et al. 2012). It is primarily composed of thick-bedded metamorphosed sand-
rich turbidites with local interbedded siltstone and slate (Harris and Schenk
1975; Waldron and Jensen 1985). The highest part of the Goldenville Group

is characterized by manganese-rich slate and siltstone (Waldron 1992). The
Goldenville Group is estimated to have a thickness upwards of ¢. 8300 m (White
et al. 2012). The High Head member (Fig. 3.2) contains trace fossils, including
Oldhamia, that are characteristic of the early Cambrian (Gingras et al. 2011).
These are consistent with detrital zircon collected from Church Point formation
(Fig. 3.2) that produced youngest ages of 544 + 18, 537 £ 15 and 529 + 19 Ma,
providing a maximum depositional age close to the Ediacaran-Terreneuvian
boundary (Waldron et al. 2009). The Government Point formation (Fig. 3.2)
yielded a middle Cambrian Acado-Baltic Trilobite faunule (Pratt and Waldron
1991).

3.2.2 Halifax Group

The Halifax Group spans the Furongian to Lower Ordovician (Fig. 3.2) and

is generally much more fine grained than the underlying Goldenville Group
(White et al. 2012). The lowest unit in the Halifax Group as defined by White
(2010a) is the Cunard formation and its correlatives the Acadia Brook and North
Alton formations in the Bear River and Wolfville regions (Fig. 3.2). Strongly
cleaved, dark grey to black slates with thin metasiltstone and fine to medium-
grained metasandstone lenses and beds characterize this unit. It also contains
abundant sulfide minerals and weathers to a rusty-brown colour. An acritarch
assemblage sampled from the North Alton formation indicates a Furongian age
(Jiangshanian) (White et al. 2012). Above this are the correlative Lumsden Dam,
Bluestone, Feltzen and Bear River formations (Fig. 3.2). These units, which are
the focus of the remainder of the paper, are light-grey to dark-grey in colour and
comprise slate interlayered with cross-laminated metasiltstone and fine-grained
metasandstone. These units contain noticeably less pyrite and arsenopyrite than
the underlying formation. Tremadocian graptolite fossils have been preserved
in the Bear River, Feltzen and Lumsden Dam formations (White 2010a). The
highest units of the Halifax Group are preserved in the Wolfville region. The
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Elderkin Brook formation (Fig. 3.2) lies above the Lumsden Dam formation. It
consists of light grey to red-brown laminated slate and metamudstone and is
highly bioturbated. The uppermost unit, the Hellgate Falls formation (Fig. 3.2)
is light to dark grey slate interbedded with thick-bedded metasiltstone and
metasandstone. Acritarch assemblages in the Elderkin Brook and Hellgate Falls
formations indicate they were deposited in the late Tremadocian to Floian (White
etal. 2012).

3.2.3 Rockville Notch Group

The Silurian to Lower Devonian Rockville Notch Group (formally the Annapolis
Supergroup of Schenk 1995b) is preserved on the northwest side of the CPSZ
and South Mountain Batholith (Fig. 3.2). The basal White Rock Formation rests
unconformably over the Halifax Group (White 2010a). This unit comprises
shallow marine sedimentary rocks (Lane 1975, 1981; Bouyx et al. 1997) and rift-
related volcanic rocks (Schenk 1997; Keppie and Krogh 1999; MacDonald et al.
2002). A rhyolite dated near its base produced a U-Pb age of 442 + 4 Ma (Keppie
and Krogh 2000) and a felsic tuff in the Yarmouth area produced a similar age of
438 + 3 Ma (MacDonald et al. 2002). These are overlain by metasiltstone and
slate of the Kentville Formation (Smitheringale 1960; Taylor 1965). Graptolites
and microfossils reported in the unit (Smitheringale 1973; Bouyx et al. 1997)
identify it as upper Wenlock to lower Pridoli (Silurian). These are overlain by
Pridoli to late Lower Devonian (Smitheringale 1973; Bouyx et al. 1997) marine
sedimentary and volcanic rocks of the New Canaan and Torbrook formations
(Smitheringale 1960; Taylor 1965).

3.3 FORMAL DESCRIPTIONS

All subdivisions of the Halifax Group have hithero been informal. We here
formally define two of these units, the Bluestone and Lumsden Dam formations.
All coordinates based on Universal Transverse Mercator (UTM) projection, using
North American Datum 1983.

3.3.1 Bluestone Formation

The Bluestone Formation was first named by White et al. (2008) after the

Bluestone member of Jamieson et al. (2005). It is mappable in the Halifax
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region and is exposed in the core of a SW plunging syncline adjacent to Point
Pleasant Park and on the south side of the Northwest Arm (Fig. 3.3). The rocks
of the Bluestone formation are interbedded light grey to beige metasandstone
and metasiltstone with medium to dark grey slate and hornfels. The unit overlies
darker, more pyrite-rich slate of the Cunard Formation. Bedding is continuous
at the outcrop scale (several metres). Beds are graded and have sharp, flat bases,
with scour structures in places. Sandstone commonly appears massive to parallel
or cross-laminated; siltstone is most often cross-laminated, and slate exhibits
weak parallel to wavy laminae. The cross-laminae show unidirectional current
flow typically with a northward component and the ripples have sinuous crest
morphologies. Trough cross-laminations and climbing-ripple cross-laminations

are common (Fig. 3.4).

The Bluestone Formation lacks the abundant sulphide minerals present within
the underlying Cunard formation. It contains carbonate concretions that have
locally been metamorphosed to calc-silicates (Jamieson et al. 2005, 2012). The
concretions are usually associated with siltstone and sandstone horizons, which
also help to distinguish it from the underlying Cunard Formation. Much of

the Bluestone Formation lies within the contact aureole of the South Mountain
Batholith (Halifax Pluton), which has overprinted the regional greenschist facies
metamorphism with hornfels facies and annealed the slaty cleavage (Jamieson et
al. 2012).

The formation is here divided into four members: the Point Pleasant member,
the Black Rock Beach member, the Chain Rock member, and the Quarry Pond
member (following Jamieson and Waldron 2011) (Fig. 3.3).

The lowest, Point Pleasant member (approximately 295 m thick) is well exposed
inland and along the shoreline in the south end of Point Pleasant Park (Fig. 3.3).
It comprises thin to thickly bedded high-energy turbidite deposits and is the most
sand-rich member (Fig. 3.4ab, 3.5). Bouma divisions A though to E are common,
but partial Bouma sequences are also present, where the basal divisions are

missing or just divisions A and E are preserved.

The Black Rock Beach member is 68 m thick and is best exposed at Black Rock
Beach in the park (Fig. 3.3). The unit contains very thin to medium bedded low
energy turbidite deposits (Fig. 3.4c, 3.6). Bouma divisions C-E and D-E are

common.
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The Chain Rock member is 75 m thick and is more resistant to erosion than

the other members, forming the high ridge within the park (Fig. 3.3). Itis
characterized by bedding that is variably folded, discontinuous, or completely
disordered, where isolated blocks of siltstone and sandstone are found within

a featureless matrix (Fig. 3.4de). The deformation in this unit pre-dates the
development of the regional slaty cleavage, but post-dates the formation of the
carbonate concretions (Jamieson et al. 2011). On the coast of the Northwest
Arm, the contact with the underlying Black Rock Beach member is visible

[20T 445499E 4940918N]. A sharp contact that appears to be an erosional surface
where the Chain Rock member incises into the underlying unit up to 70 cm. Due
to the stratiform geometry and chaotic deformational style of the Chain Rock
member it can be interpreted as a downslope mass-transport deposit (Jamieson et
al. 2011).

The Quarry Pond member has a minimum thickness of 93 m. It is best exposed

in the railway cutting (Fig. 3.3) and also occurs as scattered outcrops within Point
Pleasant Park. This unit is very similar to the Black Rock Beach member as it
also consists of very thin to medium bedded low energy turbidite deposits where
Bouma divisions C-E and D-E are common (Fig. 3.4f). The Quarry Pond member
is the highest unit in the Formation, exposed in the core of the Point Pleasant

syncline; its top is not exposed.

The type-section for the Formation is located along the railway cutting shown in
Figure 3.3 and in adjacent Point Pleasant Park, where the Bluestone Formation
outcrops almost in entirety. The basal contact is exposed in the railroad cut

[20T 453021E 4942263N]. It is conformable and is defined at the lowest
appearance of fine-grained metasandstone beds (Point Pleasant Park member)
with carbonate concretions (Fig. 3.7). The highest part of the unit in the type
area occurs in the core of the Point Pleasant syncline. No overlying strata other
than Quaternary deposits are observed in the Halifax region where the Bluestone
Formation is the youngest exposed stratified unit; thus an upper stratigraphic
contact cannot be defined. The minimum thickness of the Bluestone formation is

estimated to be 531 m.

The age of the Bluestone Formation is not well constrained as no fossils have
been found in this area (White et al. 2008). However, based on its stratigraphic

position above the Cunard Formation, the Bluestone Formation has been
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Figure 3.4: Typical field appearances of the Bluestone formation a-b) Point Pleasant member,
c¢) Black Rock Beach member, d-e) Chain Rock member and f) Quarry Pond member.
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Figure 3.5: Detailed section of the Bluestone Formation Point Pleasant member.
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correlated with the Lumsden Dam, Bear River and Feltzen formations, which
contain graptolite and acritarch fossils of Tremadocian age (White et al. 2012).
This provides the best estimate for the age of the Bluestone Formation; however,

this assumes the contact is not diachronous.

3.3.2 Lumsden Dam Formation

The divisions of the Halifax Group in the Wolfville region including the Lumsden
Dam Formation, were first informally named by White (2010a). In the Wolfville
region, the Lumsden Dam Formation is exposed on the northwest limb of an
anticline (Fig. 3.8). Excellent exposure of the unit can be seen in the Black River
area, the best exposures being in an overflow channel located to the northwest of
the Lumsden Dam. This type section has roughly 200 m of continuous outcrop
(Fig. 3.9). The continuous outcrop terminates southward at the south end of

the channel cut [20T 389943E 986789N] and to the north it disappears under
vegetative cover [20T 389878E 4986982N]. Sedimentary structures were difficult
to decipher along the cliff edge of the channel, but were easily seen on adjacent
flat exposure. The remainder of the type section is defined in intermittent

exposure to the north and south of this well exposed section.

The Lumsden Dam Formation consists mainly of light-grey siltstone and dark-
grey mudstone with minor very fine-grained sandstone (Fig. 3.10). Graded

beds are prevalent throughout the section and are very thin (1-3 cm) to medium
(10-30 cm) bedded. Siltstone and sandstone beds are parallel laminated to cross-
laminated, while most mudstone layers contain thin parallel laminations of silt.
Thicker siltstone and sandstone beds are laterally continuous at the outcrop scale
(several metres), but thin (less than 2 cm) cross-laminated beds commonly appear
as lenses or semi-continuous and lenticular. Bed bases are sharp and flat with

some scouring.

The unit contains minor sulfide minerals (less than the North Alton Fm. below)
and it weathers to a rusty-brown. Rare, small (1-3 cm) carbonate concretions
are also found within the siltstone and sandstone beds. The section contains four
mafic sills that are parallel to bedding, which range from 90 to 120 cm thick.
They can be easily confused with thick sandstone beds, as they are fine-gained

and a medium grey colour (Fig. 3.11).
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Figure 3.8: Geological map of the Wolfville area (after White 2010a).

The boundary between the Lumsden Dam Formation and the underlying North
Alton formation is located along Jehill Davidson Road in Newtonville (Fig.

3.8). Intermittent exposure along the roadbed shows a change up section from
dominantly medium grey to black mudstone with locally abundant sulphides and
siltstone beds less than 10 cm thick, up to dominantly medium grey to greenish-
grey mudstone with siltstone and sandstone beds that reach thicknesses greater
than 10 cm. The boundary is placed at the lowest occurrence of a siltstone bed
thickness greater than 10 cm [20T 391089E 4986980N]. White et al. (2012) have
described the contact as gradational over an interval of 5 m in other parts of the
region.

The boundary between the Lumsden Dam formation and the overlying Elderkin
Brook formation is not visible along the east side of Black River Road, but can
be constrained within 62 m between UTM coordinates 20T 389838E 4987401N
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Figure 3.11: Typical field appearances of: a) Lumsden Dam Formation general view; b) graptolite
fossil in Lumsden Dam Formation; ¢) thinly interbedded siltstone and mudstone of the
Lumsden Dam Formation; d) Lumsden Dam Formation in contact with a Type I mafic
sill; e) finely laminated mudstone of the Elderkin Brook formation; and f) interbedded
siltstone and mudstone of the Hellgate Falls formation showing bioturbation

structures.
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and 20T 389815E 4987459N. Here there is a transition from the Lumsden Dam
Formation, which contains siltstone and thick cross-laminated sandstone, into
thick laminated mudstone with only minor siltstone. The boundary is placed at
the highest occurrence of a siltstone bed thicker than 2 cm. In the studied area the
Lumsden Dam Formation is estimated to be 550 m thick, although White (2010a)

suggested it could reach up to 1500 m thick in some areas.

The graptolite Rhabdinopora flabelliformis flabelliformis (Eichwald 1840) has
been identified (White et al. 2012) in beds near the middle of the Lumsden Dam
Formation (Fig. 3.11) and an acritarch assemblage from lower in the Formation

restricts the age of the Lumsden Dam formation to the mid-early Tremadocian
(White et al. 2012).

3.3.3 Elderkin Brook Formation

The Elderkin Brook formation conformably overlies the Lumsden Dam
Formation. It consists of diffusely to finely laminated, slightly disturbed, cleaved
mudstone (Fig. 3.11). Unlike the Lumsden Dam Formation this unit lacks cross-
laminated siltstone and sandstone beds. Its colour ranges from pale greenish
grey to medium grey, and it weathers to a purple-red colour in places. The unit is
mildly bioturbated and contains the trace fossils Phycodes sp. and large horizontal
looping forms (White et al. 2012). Acritarch and trace fossils within this unit
indicate a late Tremadocian age (White et al. 2012). The boundary between the
Elderkin Brook and Hellgate Falls formations can be seen just north of the north
end of the Lumsden Dam canal [20T 388972 4988539]. The boundary is placed
at the first appearance of light coloured sandstone lenses defining bedding. The

thickness is estimated to be 860 m in the studied area.

3.3.4 Hellgate Falls Formation

The Hellgate Falls formation is the highest unit in the Halifax Group and has

an estimated thickness of at least 1100 m (White 2010a). It consists of light

to dark grey laminated mudstone interbedded with light grey thin siltstone and
sandstone beds. Lenses of cross-laminated sandstone are common. Abundant
bioturbation textures and traces fossils also characterize this unit (Fig. 3.11).
Locally, black slate is found at the very top of the formation (White 2010a) and
is disconformably overlain by the Silurian White Rock Formation (White 2010a).
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The age of the Hellgate Falls formation in constrained by acritarch fossils, whose

ages range from the latest Tremadocian to Floian (White et al. 2012).

3.4 U-PB DETRITAL ZIRCON DATING

A sample for detrital zircon analysis was collected from the Lumsden

Dam Formation in the overflow channel of the small Lumsden Dam

[20T 0389877 4986952] approximately 20 m down-section from the
Rhabdinoporas flabelliformus graptolite locality (Fig. 3.9). The sample

was collected from a medium grey siltstone bed 8 cm thick. The grains are
subrounded and well sorted. The rock has a primary fabric defined by the
alignment of detrital mica grains and minor cleavage development is detectable.
Based on a visual estimate it contains 50% quartz, 12% potassium feldspar, 5%
detrital white mica, 3% polycrystalline quartz, 2% opaque minerals, and trace
amounts of plagioclase and zircon. The matrix makes up 19% of the rock and
consists of chlorite, white mica and biotite. 9% of the rock consists of calcite

cement. See Appendix A for thin section images.

The sample was crushed using a jaw crusher and disk mill, then passed over

a Wilfley table to isolate the heavy grain fraction. Franz and heavy liquid
separation were used to isolate the zircons. A random selection of zircons

was mounted and imaged by electron backscatter using a scanning electron
microscope. They were dated using U-Pb laser ablation multicollector inductively
coupled plasma mass spectrometry (LA-MC-ICP-MS) with a NuPlasma
instrument and UP213 laser ablation system from New Wave Research™,
Analytical protocol and data reduction were a modification of the procedure
outlined in Simonetti et al. (2005). A 30 um spot size was used except when
elevated 2%Pb cps “tripped” the ion counter. When this occurred, if possible the

grains were reanalyzed with a 20 um spot size.

Two standards were used to normalize the grain ages. Standard LH94-15 with a
U-Pb age of 1830 + 1Ma is a homogeneous calc-alkaline enderbite (Ashton et
al. 1999). Standard GJ1-32 with a U-Pb age of 609 Ma has an unknown source
(Simonetti et al. 2008). LH94-15 was used for all grains with un-normalized
207Pb/2%Pb ratios greater than the average observed *’Pb/*Pb value of LH94-15.
GJ1-32 was used for all grains with un-normalized >*’Pb/?*Pb ratios less than the
average observed 2’Pb/?%Pb ratio of GJ1-32. When the un-normalized >*’Pb/**Pb
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ratios fell between the average observed 2’Pb/?*Pb ratios of the two standards,
normalization was carried out using a weighted combination of the two standards

and their proportional errors, dependent on the >*’Pb/2%Pb ratio of the grain.

Minor amounts of ***Hg present in the argon gas supply led to slightly elevated
background counts at atomic mass 204 and therefore would have yielded invalid
ages if treated as common lead. Ages were not common-lead corrected unless
levels of 2**Pb were higher than background levels (when counts per second of
mass 204 were greater than 400). On peak zeros were collected before each set up
30 unknowns.

148 grains were analyzed from the sample; however, many analyses were
discarded due to low **Pb cps (less than 10,000). 37 grains recorded ages that
were between 90 and 110% concordant. The results are shown in Fig. 3.12.
Either the *’Pb/?*Pb or the *°Pb/***U age is reported depending on which result

produced the lowest analytical error. See Appendix B for analytical results.

The detrital zircon results for the Lumsden Dam formation show a prominent
Neoproterozoic peak centered at 633 Ma, defined by a cluster of ages (18
analyses) ranging from 560 to 728 Ma (Fig. 3.13). This cluster is separated by

a c. 150 Ma gap from an older Neoproterozoic grain group (3 analyses) and an

0.8

NB027A n=114
Lumsden Dam Formation

206 Pb /238 U

Figure 3.12: U/Pb concordia plot of detrital zircon data from the Lumsden Dam Formation
sample, with 2-sigma error ellipses.
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early Mesoproterozoic grain group (2 analyses) with peaks at c. 930 Ma and

c. 1080 Ma respectively. There were two of Mesoproterozoic age (1431 £+ 30 and
1774 + 64 Ma) and a significant Paleoproterozoic grain population with a cluster
(9 analyses) ranging in age from c. 1900 to 2100 Ma. The sample also contains
three Paleoproterozoic to Archean grains with ages 2405 + 12, 2610 + 14 and
2801 + 16 Ma.

The average zircon grain size was approximately 50 pm. Young grains were
generally euhedral to subherdral, and many exhibited oscillatory zoning. Old
grains were generally sub-rounded to rounded and showed more homogeneous
internal compositions with only weak zoning features (Fig. 3.14). Other features
present in the grain population included core-rim structures, inclusions and

fractures. These features typically were correlated with discordant ages.

3.5 DISCUSSION
3.5.1 Correlation

The Bluestone and Lumsden Dam formations have been correlated based on

their lithological similarities and their stratigraphic position above the Cunard
Formation and its lateral equivalent, the North Alton Formation (White 2010a).
The two units comprise interbedded sandstone and siltstone with medium to

dark grey mudstone and slate. The majority of beds exhibit vertical sequences

of sedimentary structures described in the Bouma sequence (Bouma 1962),
typical of turbidites. They are both dominantly low-energy turbidites that record
Bouma divisions Tb-Te and Tc-Te and contain high-energy turbidites that record
Bouma divisions Ta-e and Ta,e. Given these similarities there are also important
differences. The Bluestone Formation contains a higher proportion of high-
energy turbidites (Point Pleasant Park member) than the Lumsden Dam Formation
and the mass transport deposits in the Bluestone Formation (Chain Rock member)
are not present in the Lumsden Dam Formation. This difference can be attributed
to slightly different positions relative to the basin margin, either laterally, or
basinward. The slightly coarser Bluestone Formation may have been more
proximal than the Lumsden Dam formation. This agrees with paleocurrent data
that suggests a northwestward (present-day coordinates) flow direction, with the
source region to the SE and basin to the NW (Schenk 1970).

100



NB027-089 NB027-044 NB027-022 NB027-036

- S—

NB027-016 NB027-031

NB027-014 NB027-078

NB027-015 — NB027-045 NB027-057

20 um

20um »\,,;',; e

1099 Ma 1774 Ma 2048 Ma

NB027-053 NB027-011 NB027-033 NB027-054

.,’

20 um

2082 Ma 2104 Ma

Figure 3.14: Electron backscatter images of selected zircon grains from the Lumsden Dam
Formation. Ages are given in Ma. Circles represent the location of the grain sampled.

The Meguma Supergroup has been correlated with Cambrian to Tremadocian
succession in the Harlech Dome of North Wales (Waldron et al. 2011). Both
regions record thick early Cambrian continentally-derived sandstone turbidites,
overlain by early to middle Cambrian alternating mud-rich and sand-rich units
that are enriched in manganese. The manganiferous interval is characterized in
all regions by numerous trace fossils, including locally abundant Teichichnus.

Above, the succession consists of anoxic, organic-rich turbidites, shallowing
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upwards into paler, Tremadocian mudstone and siltstone of the Dol-cyn-afon
Formation. This unit has been correlated with the Bluestone and Lumsden Dam
formation of the Meguma terrane (Waldron et al. 2012; White et al. 2012) based

on its age and stratigraphic position.

3.5.2 Age

The Lumsden Dam Formation contains the graptolite Rhabdinopora flabelliformis
flabelliformis and an acritarch assemblage of Tremadocian age (White et al.
2012). No fossils have been discovered in the Bluestone Formation and attempts
to extract detrital zircons were unsuccessful; hence there is still no direct evidence
for the unit’s age. Its stratigraphic position above the Cunard formation and the
lithological similarities between it and the Lumsden Dam Formation suggests the
Bluestone Formation was also deposited during the Tremadocian. However, it

is possible that the top of the Cunard formation (and laterally equivalent units)

represents a diachronous surface.

3.5.3 Depositional Environment

Schenk (1983) suggested the Meguma succession was deposited along

the continental embankment of a passive margin; however, the bulk-rock
lithochemistry has been interpreted by White et al. (2006) to suggest deposition

in an active continental margin and/or an island arc setting, not a passive margin.
Waldron et al. (2009) proposed a rift or extensional environment that subsequently
became inactive. The latter explains the upward transition from a relatively
juvenile Avalonian and Pan-African source to an older more diverse source
region. It also explains the rapid accumulation of the ~13 km thick succession in
<60 million years and the differences in the stratigraphic succession on either side
of the CPSZ (Waldron et al. 2009).

The Goldenville Group is interpreted to represent a submarine, deep-sea fan
deposit related to turbidity currents and other types of sediment gravity flow
(e.g., Schenk 1971; Harris and Schenk 1976). The depositional environment
for the shaly Cunard Formation of the lower Halifax Group has generally been
interpreted as a mid- or upper-fan of a muddy deep-marine fan that prograded
over the Goldenville Group (Stow et al. 1984; Schenk 1971). Waldron (1987,
1992) attributed the abundance of graphite and sulfide minerals in the Cunard
Formation to anaerobic conditions on the seafloor. The Lumsden Dam and
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Bluestone formations record a succession of low to high-energy turbidite deposits.
The presence of a mass transport deposit in the Halifax area indicates that this unit
was likely deposited in a slope environment. The Elderkin Brook and Hellgate
Falls formations show a progression into a highly a bioturbated facies with
abundant trace fossils that lacks turbidictic structures. This suggests a transition
from a slope into an outer shelf environment by the late Tremadocian. These
observations agree with Schenk (1997) who interpreted the upper formations of
the Halifax Group to represent shoaling succession deposited between the upper

slope of a prodelta and a muddy outer shelf.

3.5.4 Provenance

The ages of detrital zircon grains in clastic sedimentary rocks offer important
information about potential source regions for sedimentary basin fill. This
method has been an essential tool in determining the paleogeographic positions
of many peri-Gondwanan terranes. Several detrital zircon studies (e.g., Waldron
et al. 2009; Barr et al. 2012) within the Meguma terrane and West Avalonia have
focused on distinguishing West African craton from Amazonian craton sources.
The West African craton is characterized by Paleoproterozoic rocks (2.0 to 2.2 Ga)
related to the Eburnean and Birimian orogens, and Archean rocks (Rocci et al.
1991; Lerouge et al. 2006). The Amazonian craton has Paleoproterozoic and
Archean sources, as well but also has extensive Mesoproterozoioc crust including
the Rio Negro belt (1.6 to 1.8 Ga) and the Rondonia-Sunsas belts (1.3 to 1.0 Ga)
(Litherland et al. 1985; Rowley and Pindell 1989). The lack of a Mesoproterozoic
grain population (c. 800 to 1700 Ma) has been considered an indicator of West
African rather than Amazonian provenance (e.g., Nance and Murphy 1996;

Linnemann et al. 2004).

Several detrital zircon samples have been analyzed from the Goldenville and
Rockville Notch groups (Krogh and Keppie 1990; Murphy et al. 2004b; Waldron
et al. 2009) (Fig. 3.13). Units sampled low in the Goldenville Group show a
restricted distribution with prominent late Neoproterozoic grain populations. A
Neoproterozoic to early Cambrian peak is common to many peri-Gondwanan
terranes including Avalonia (Barr et al. 2012) and Ganderia (Fyffe et al. 2009),
(Murphy et al. 2004b; Waldron et al. 2011) and reflects orogenic events that
occurred between c¢. 540 and 700 Ma along the Gondwanan margin (Nance et al.
1991).
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Later Goldenville Group samples contain a few Mesoproterozoic grains, a
significant population of grains between 2.0 and 2.2 Ga and a range of Archean
grains. These were interpreted by Krogh and Keppie (1990) and Waldron et al.
(2009) to indicate sources in West Africa. The detrital zircon sample collected
from the Lumsden Dam Formation shows a very similar distribution to the
sample from the Government Point formation in the upper Goldenville Group
(Fig. 3.13). In addition to the late Neoproterozoic peak it also contain a small
late Mesoproterozoic peak, 1.4 Ga and 1.75 Ga grains, a significant population
between 1.9 and 2.1 Ga, as well as 2.6 and 2.8 Ga Archean grains. The West
African craton is believed to be the main source region for the Goldenville Group
(e.g., Waldron et al. 2009; Krogh and Keppie 1990). The West African source
interpreted for the Goldenville Group appears to have continued to supply detritus

to the Meguma Terrane into the Ordovician.

3.5.5 Paleogeography

The Meguma terrane resided along the northern margin of Gondwana during

the Cambrian (e.g., Cocks and Torsvik 2002; Landing 2005); however, its exact
position, and whether it formed its own discrete terrane or was a part of West
Avalonia, are still subjects of controversy. Schenk (1970, 1981, 1997) and
Robinson et al. (1998) have suggested the sequence represents a continental
prism that formed off northwestern African margin, while others (e.g., Landing
2004; Murphy et al. 2004a) believed it formed on the margin of West Avalonia.
Some would place the Meguma terrane adjacent to the Amazonian craton (e.g.,
Keppie 1977; Linnemann 2012), and others closer to the West African craton
(e.g., Schenk 1997; Waldron et al. 2009). Waldron et al. (2009) suggested that the
succession was deposited in a rift system between East and West Avalonia and the
Gondwana margin. In the early stages of basin development the uplifted flanks
would supply the only source of sediment and later thermal subsidence permitted
for a more extensive source region including a minor influx from Mesoproterozoic
crust of Amazonia. This trend is reflected in éNd values that show a change from
a restricted juvenile source to a more diverse and isotopically evolved sources
(Waldron et al. 2009).

The Meguma Supergroup has been correlated with the Harlech Dome succession
in North Wales (Waldron et al. 2011). Both preserve similar sedimentary

successions of Cambrian age, displaying thick early Cambrian continentally-
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derived sandstone turbidites, overlain by early to middle Cambrian alternating
mud-rich and sand-rich units in which manganese is concentrated. Above,

the successions comprise anoxic, organic-rich turbidites, shallowing upward

into paler, Early Ordovician mudstone and siltstone that contain the graptolite
Rhabdinopora. In the Harlech Dome region, the Tremadocian is represented by
the mudstone-rich Dol-cyn-afon Formation and has previously been compared to
the Lumsden Dam Formation base on its age and fossil assemblage (Waldron et
al. 2011; White et al. 2012).

By the late Tremadocian the stratigraphic similarities between the Welsh Basin
and the Meguma terrane end and their histories diverge. The Lumsden Dam
Formation records slope conditions that transition into shelf sedimentation
recorded in the Elderkin Brook and Hellgate Falls formations. This is followed
by a period of non-deposition and/or erosion and is then overlain the Silurian
volcano-sedimentary succession of the Rockville Notch Group. In North Wales,
the Dol-cyn-afon Formation is unconformably overlain by late Tremadocian
volcanics followed by Floian sandstones and back-arc volcanic rocks through to

the late Ordovician.

Detrital zircon samples collected from Cambrian rocks (Rhinog and Gamlan
formations) in the Harlech Dome exhibit similar distribution (Fig. 3.15) to the
Cambrian Goldenville Group rocks indicating they too were likely sourced from
the Pan-African — Avalonian orogen and the West African craton (Waldron et al.
2011; Chapter 2). Three possible Cambrian scenarios have been suggested by
Waldron et al. (2011) to explain the similarities between the Harlech Dome and
the Meguma Supergroup, one of which suggested they were positioned in a rift
basin that formed between East and West Avalonia along the Gondwana margin
near the West African craton in the recently identified domain Megumia (Waldron
et al. 2011).

A new detrital zircon sample from the Dol-cyn-afon Formation (Chapter 2)
exhibits a prominent Neoproterozoic to Cambrian grain population with a peak
at c. 580 Ma; it contains a Mesoproterozoic and early Paleoproterzoic grain
population that is more abundant than in the Lumsden Dam sample, and a 1.9
to 2.1 Ga population is less prominent (Fig. 3.15). While the Lumsden Dam
Formation detrital zircon distribution confirms a consistent source region for

the Meguma Supergroup between the Cambrian, Series 3 to Tremadocian, the
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Dol-cyn-afon Formation detrital zircon distribution is more representative of the
Monian Composite terrane in North Wales (Fig. 2.9), which has been correlated
with Ganderia of Atlantic Canada (Collins and Buchan 2004).

The Monian Composite Terrane is separated from the Welsh basin along the NE-
SW striking Menai Strait Fault System, which represents a terrane boundary in
North Wales. The similarities between the Dol-cyn-afon Formation and Monian
detrital zircon distributions indicate the juxtaposition of the Monian Composite
Terrane with North Wales by the Tremadocian (Chapter 2). Consequently,

if the Welsh basin and the Meguma basin were in in close proximity in the
Tremadocian, the Lumsden Dam Formation should reflect the same Monian
source as the Dol-cyn-afon Formation, which it does not. These new observations
support the diverging Ordovician histories recorded for the two basins and
suggests that, if the two basins were contiguous in the Cambrian period, they had

parted by the Tremadocian.

Waldron et al. (2011) proposed two paleogeographic reconstructions that

would allow the Meguma terrane and the Welsh Basin to be adjacent during the
Cambrian. One suggests Megumia originated in a rift system located between
East and West Avalonia. The other suggests that the basin was located between
Avalonia and Gondwana, where East Avalonia was rotated roughly 180° from its

traditionally accepted orientation.

In these scenarios, a mechanism to accommodate the diverging histories of once
proximal basins would be strike-slip faulting. Late Precambrian subduction

and arc activity along the Gondwanan margin transitioned into a more stable
environment by the early Paleozoic, where sinistral transcurrent motion is thought
to have been prevalent (Nance et al. 1991). The Menai Strait Fault System
between the Monian Composite Terrane and Welsh basin was active between the
early Cambrian and late Carboniferous and is thought to have a major component
of sinistral strike-slip movement (Gibbons 1987; Gibbons and Horak 1990). If a
continuation of this fault system were to pass through Megumia, the left-lateral
migration and juxtaposition of the Monian Composite terrane with the Welsh
Basin could have displaced the Meguma terrane laterally along the Gondwana

margin.

Figure 3.16 shows one possible terrane configuration based on the assumption that

Megumia was located within a rift system between the East and West Avalonia.
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Figure 3.16: Possible paleogeographic reconstruction of the tectonic elements of the Gondwanan
margin in the Cambrian and Early Ordovician.

This model is consistent with a sinistral strike-slip tectonic setting, known for the
Menai Strait Fault System, and the traditional orientation of Avalonia relative to
the Gondwanan margin (e.g., Nance et al. 2008). However, this configuration
would require the Monian Composite Terrane, a probable piece of Ganderia,
originated closer to the West African craton, when most (e.g., Pollock et al. 2009;
van Staal et al. 2012) would position it along the Amazonian margin. Figure 3.17
shows an alternate configuration, which keeps Ganderia adjacent to Amazonia.

It is still consistent with a sinistral strike-slip tectonic setting; however, this
configuration requires that Avalonia, Ganderia, and the Meguma terrane be rotated

roughly 180° from their orientations in Figure 3.16a.
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3.6 CONCLUSIONS

1) The depositional environments of the Bluestone formation and the Lumsden

Dam formation of the Halifax Group represent slope related environments.

2) The detrital zircon results from the Lumsden Dam show similar results to the
Upper Goldenville Group Government Point formation, with age populations
consistent with a source region in the West African craton and possibly the

Amazonian craton.

3) Although the age and depositional environment for the Lumsden Dam
Formation and the Dol-cyn-afon Formation of the Harlech Dome are similar,
their difference in detrital zircon age populations suggests that the histories of
the basins diverge by the Tremadocian.
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4) A possible explanation for the diversification in detrital zircon ages within the
Meguma terrane succession, and the diverging histories of the Meguma terrane
and North Wales, could be left-lateral migration of the Meguma terrane parallel
to the margin of Gondwana along a strike-slip fault system that separated the

once adjacent basins by the Tremadocian.
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CHAPTER 4: DISCUSSION AND CONCLUSIONS

This chapter summarizes previous interpretations for the tectonic setting and the
position of Avalonia, Ganderia and the Meguma terrane along the Gondwanan
margin during the late Neoproterozoic to the Tremadocian. It discusses two new
tectonic models for the Gondwanan margin during the Cambrian to Tremadocian
based on the detrital zircon results from Chapters 2 and 3, and closes with
suggestions for future work that may provide further insight into the complex

histories of these tectonic domains.

4.1 PREVIOUS PALEOGEOGRAPHIC INTERPRETATIONS

While it is widely accepted that Avalonia, Ganderia and the Meguma terrane all
originated along the active continent margin of Gondwana (e.g., van Staal et al.
1996; Murphy et al. 2004; Thompson et al. 2007) their exact positions and relative
arrangement are still uncertain. In most recent reconstructions Ganderia is placed
along the Amazonian margin (e.g., van Staal et al. 1996; van Staal 2012) (Fig.
4.1). Major Mesoproterozoic detrital zircon populations of Ganderian basement
and Cambrian sedimentary rocks match source regions within Amazonia (e.g.,
van Staal et al. 1996; van Staal et al. 2012). Avalonia is commonly placed

near the boundary between Amazonia and West Africa (e.g., Nance et al. 2002;
van Staal and Hatcher 2010) (Fig. 4.2). Detrital zircon and Sm/Nd data from
West Avalonia have been interpreted by Satkoski et al. (2010) to indicate a
change in source region from the Amazonian craton in the Neoproterozoic to

the West African Craton by the early Cambrian. In many late Neoproterozoic
and Cambrian peri-Gondwanan terrane reconstructions, the Meguma terrane is
placed on the SE margin of West Avalonia and the Harlech Dome is placed in its
current configuration within East Avalonia (e.g., Murphy et al. 2004; Linnemann
et al. 2004). Given the lithostratigraphic and provenance similarities between the
Harlech Dome succession and the Meguma Supergroup, Waldron et al. (2011)
suggested three possible Cambrian paleogeographic reconstructions. In the first
(Fig. 4.3a), the two basins were widely separated along the Gondwanan margin
and underwent similar basin evolution histories. In the second (Fig. 4.3b), they
were part of a single basin and were deposited in a rift system that developed
between ‘East’ and ‘West’ Avalonia. In the third (Fig. 4.3c), they were deposited

in a single basin in a rift that developed between Avalonia and Gondwana, which
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Figure 4.1: Paleogeographic reconstruction of the Gondwanan margin at c. 500 Ma (from
van Staal et al. 2012). E=East Avalonia; W=West Avalonia.

involves the ~180° rotation of ‘East’ Avalonia relative to the Meguma terrane in

their present day orientation.

4.2 DEPOSITIONAL ENVIRONMENT AND PROVENANCE

Detrital zircons studies have been an essential tool in unraveling the
paleogeographic positions and evolution of terranes in ancient orogens. The
detrital zircon record in North Wales shows a change from a restricted source region
with age signatures characteristic of the West African craton in the mid-Cambrian
Gamlan Formation, to those more characteristic of the Monian Composite Terrane
by the Tremadocian Dol-cyn-afon Formation. The timing of this change also
corresponds with the Monian deformation event, which we interpret to reflect the

juxtaposition of North Wales with ‘Ganderia’. None of the North Wales samples,
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Figure 4.2: Paleogeographic reconstruction of the Gondwanan margin at 490 Ma (from
van Staal and Hatcher 2010). E=East Avalonia; W=West Avalonia.

including the late Ordovician sedimentary rock of the Conway Castle Grit, exhibit
a Laurentian source. This is in agreement with Soper and Woodcock (1990) and
Cocks and Torsvick (2002) who interpreted that the collision of Avalonia with
Laurentia occurred between 440 and 420 Ma. These data are further supported
by unpublished detrital zircon data from the English Lake District in the Leinster-
Lakesman terrane (Waldron et al. in prep. 2013), suggesting collision with

Laurentia by the Wenlock.

The Arfon Basin, located along the Menai Strait Fault System between North

Wales and the Monian Composite terrane, exhibits a distinctive detrital zircon
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Figure 4.3: Three plate reconstructions proposed by Waldron et al. (2011) for the location
of the Meguma terrane and North Wales in the early Cambrian.

signature. This suggests that it was neither part of East Avalonia nor the Monian
Composite Terrane and was likely a transported slice caught up in the fault

system.

The Meguma terrane exhibits similar Cambrian detrital zircon signatures to the
Harlech Dome in North Wales, which also reflects a dominantly West African
source region. The Tremadocian Lumsden Dam Formation of the Meguma
Supergroup, deposited in a slope-related environment, also shows a diversification
of detrital zircon ages as witnessed in the Welsh succession; however, the
Mesoproterozoic and Paleoproterozoic grain populations in the Dol-cyn-afon
Formation in North Wales are either absent or not as prominent in the Lumsden
Dam Formation. If the two basins were once in close proximity, this difference
would indicate separation by this time. This conclusion is consistent with their

divergent Ordovician and Silurian histories.
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4.3 TECTONIC MODELS
4.3.1 Late Neoproterozoic

During the Late Neoproterozoic (ca. 635 — 590 Ma) the active northern margin

of Gondwana was characterized by oblique sinistral convergence and subduction
(Nance et al. 2002; Murphy et al. 2004) and arc volcanism. Between 590 and

540 Ma subduction ceased and the Gondwanan margin underwent a transition
here from an arc to a platform setting. The diachronous end of arc volcanism and
the absence of a major collision event has been interpreted to reflect ridge-trench
collision along the Gondwanan margin and a shift to a transform plate boundary
(e.g., Murphy and Nance 1989; Keppie et al. 2000; Nance et al. 2002) and the
development of extensional or transtensional basins (e.g., Smith and Hiscott 1984;
Pauley 1990; Barr and White 1996; O’Brien et al. 1996). In East Avalonia and
Cadomia sinistral motion along major faults is thought to be associated with this
transition (e.g., Gibbons and Hordk 1996; Nance et al. 1991; Strachan et al. 1996).

4.3.2 Cambrian to Tremadocian

Most models of the Iapetus Ocean during the Cambrian period do not include
major strike-slip components (e.g., van Staal et al. 1998) and are dominated

by subduction and rifting. However, Nance (2002) suggests that the transform
fault along the Gondwana margin shifted inboard during the early Paleozoic,
causing oblique rifting and the transfer of the peri-Gondwanan terranes, including
Avalonia, Ganderia and the Meguma terrane, onto a formerly oceanic plate
between 510 and 480 Ma. The closure of the lapetus Ocean is thought to have
begun in the mid-Cambrian (van Staal et al. 1998). The cause for the onset of
closure is unknown. Van Staal et al. (2012) suggest it to be the result of far-
field stresses induced by slab pull and slab rollback, while Waldron et al. (2012)
proposed a Caribbean-style tectonics where a subduction zone migrated from an

adjacent external ocean to explain the initiation of ocean closure.

Our results show that the Welsh Basin was juxtaposed with ‘Ganderia’ along the
Menai Strait Fault System, which has a history of sinistral strike-slip movement
suggesting that strike-slip tectonics persisted along the Gondwanan margin into

the early Tremadocian. Strike-slip motion may also account for the diverging

122



histories recorded in the Meguma terrane and the Harlech Dome succession in the

Ordovician.

Contractional Deformation

Folding and uplift in North Wales occurred during the Monian deformation

and resulted in a basin-wide sub-Floian unconformity which extends across the
Menai Strait Fault System (Allen and Jackson 1985; Kokelaar 1988). The influx
of ‘Monian’ detritus in the Tremadocian precedes this event, indicating that this

event was likely caused the juxtaposition of the Welsh Basin with ‘Ganderia’.

Penobscotian deformation in the northern Appalachian also records a soft collision
event between 485 and 478 Ma (van Staal et al. 1998) that resulted from the
obduction of the Penobscot backarc basin ophiolites onto the Gander margin
(Colman-Sadd et al. 1992; Zagorevski et al. 2010).

Although the timing for the Monian and Penobscotian deformation events are
contemporaneous, the nature of the deformation varies. If these events are
related, then the different in kinematic setting could be caused by curvature of the
plate boundary leading to strike-slip movement in North Wales and a convergent
boundary at the Gander margin. Alternatively, both regions may have been in a

sinistral transpressional setting.

4.3.3 Paleogeography

The paleogeographic reconstruction illustrated in Figure 2.10 places Avalonia
and Ganderia in their traditional orientations relative to the Gondwanan margin.
However, given the sinistral strike-slip tectonic regime this would place Ganderia
adjacent to the West African Craton, when most believe it originated close to
Amazonia (e.g., van Staal et al. 2012). To account for the juxtaposition of the
Monian Composite Terrane and North Wales with Ganderia located adjacent

to Amazonia and Avalonia closer to West Africa, the motion along the Menai
Strait Fault System would have to have been dextral, which is inconsistent with
the interpretations of structures exposed in the fault system (Gibbons 1987).
Alternatively, if the Monian Composite Terrane and the Leinster-Lakesman
terrane formed a separate continental slice from Ganderia of Atlantic Canada it
could have resided closer to the West Africa in keeping with sinistral motion as
interpreted by Gibbons (1987, 1996).
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The reconstruction shown in Figure 2.11 places Avalonia and Ganderia in their
traditional locations relative to each other, but their orientations have been rotated
~180° for consistency with the sinistral strike-slip tectonic model. This model
requires significant clockwise rotation after the Monian — Penobscot event,

but before collision with Laurentia, in order to get Avalonia, Ganderia and the
Meguma terrane into their present-day orientations. This model is the preferred
scenario because it agrees with the current understanding of the origin and

positions of Avalonia, Ganderia and the Meguma terrane.

4.4 SUGGESTIONS FOR FUTURE WORK

To test whether the tectonic reconstruction outlined in Figure 2.11 is possible,
additional paleomagnetic data must be collected in order to identify if the rotation

necessary took place from the Early Ordovician to the mid-Silurian.

Further detrital zircon studies from the North Wales and the Meguma terrane
could provide insight into the link between the Meguma terrane and Harlech
Dome successions and to help complete the successions history. To further

test the correlation between the two successions a sample from the Dolwen
Formation at the base of the Harlech Dome succession could be compared to the
lower Goldenville detrital zircon distributions in the Meguma terrane. Samples
from the Furongian Maentwrog and Cunard formations would also be useful for
comparison if enough zircons could be extracted from the fine-grained units. In
the Meguma Supergroup, a diversification of zircon ages begins in the Cambrian
Series 3; however, the Gamlan Formation of similar age does not show this trend.
In addition, by analyzing the Maentwrog Formation it would better constrain

the timing of first sign of influx of detritus from the Monian Composite Terrane.
The Denbeigh Grits (Wenlock) are the first coarse-grained unit in the Silurian
succession of North Wales. Sampling this unit would help complete the North
Wales detrital zircon record, and also provide insight into timing of the first influx

of Laurentian detritus into the basin.

To provide further insight into the origin of the Arfon Basin, the Fachwen
Formation and the Marchlyn Formation, both of which have good age control,
should be sampled. These samples could yield useful information about the late

Neoproterozoic and late Cambrian source regions for the Arfon Basin and provide

124



further insight into its relationship with the Harlech Dome succession or Monian

Composite terrane by the Furongian.

Heavy mineral studies and paleocurrent analysis of the units that have been
sampled for detrital zircon analyses would also prove useful for identifying

different source regions.
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APPENDIX A: THIN SECTION PHOTOGRAPHS OF
SAMPLES

This appendix accompanies chapters 2 and 3 and shows examples of the thin
section views from the petrographic analysis done of the five samples analyzed in

this work.
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APPENDIX B: DETRITAL ZIRCON RESULT TABLES

This appendix accompanies chapters 2 and 3 and shows the LA-ICP-

MS analytical results of the five detrital zircon samples analyzed in this

work. Records that are grayed out in the unknown samples were not used in
interpretations because they did not meet the -10% to +10% discordance cut-
off. Records that are grayed out in the standards were not used for normalizing
the unknown data. Sample NAO31A (Conway Castle Grit) was analyzed on two

separate occassions. The results from both are listed separatly here.

Footnotes to data in tables:

1. cps = counts per second
2. 27Pp/23U calculated from 2°7Pb/?°°Pb and the natural 2*¥U/?*°U ratio of 137.88.

3. Quadratic combination of standard deviation of standards and standard error of

the single analysis.

4. p calculated using the equation below:

(zuvpb{a}su 26)2 4 (zmpb;zsau 20)3 ; (EDTPbﬂ{)l&Pb 20)2
207ph/235 206ph/2381] 207ph,/206Ph

2 x | 2%Pb/2¥U 20| x (2U7Pb/2"Pb 20
206ph/238]] 207ph/206Ph

5. Discordance calculated using the formula below:

9% discordance = (e 0.000155125 x 206Pb/207Pb age _ 1) - 206PH/238[J ratio x 100

(6 0.000155125 x 206Pb/207Pb age _ 1)
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