
University of Alberta

Direction-Splitting Schemes For Particulate Flows

by

John William Keating

A thesis submitted to the Faculty of Graduate Studies and Research

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Applied Mathematics

Department of Mathematical and Statistical Sciences

c© John William Keating

Fall 2013

Edmonton, Alberta, Canada

Permission is hereby granted to the University of Alberta Libraries to reproduce

single copies of this thesis and to lend or sell such copies for private, scholarly or

scientific research purposes only. Where the thesis is converted to, or otherwise

made available in digital form, the University of Alberta will advise potential users

of the thesis of these terms.

The author reserves all other publication and other rights in association with the

copyright in the thesis and, except as herein before provided, neither the thesis nor

any substantial portion thereof may be printed or otherwise reproduced in any

material form whatsoever without the author’s prior written permission.

Abstract

This thesis introduces a new temporally second-order accurate direction-splitting

scheme for implicitly solving parabolic or elliptic partial differential equations in

complex-shaped domains. While some other splitting schemes can be unstable in

such domains, numerical evidence suggests that the new splitting scheme is un-

conditionally stable even when using non-commutative spatial operators. The new

direction-splitting scheme is combined with other splitting schemes to produce an

efficient numerical method for solving the incompressible Navier–Stokes equations.

Finite differences using staggered grids and sharp boundary-fitting is used to achieve

second-order spatial accuracy. The numerical method is extended to perform direct

numerical simulations of particulate flows where each rigid particle is used as Dirich-

let boundary conditions for the Navier–Stokes equations, and forces on each particle

are computed by performing surface integrals of the fluid stress. The method is val-

idated by reproducing experimental results, reproducing numerical results of other

independent authors, and demonstrating second-order convergence on manufactured

solutions. Particle collisions are handled using a dry viscoelastic soft-sphere model

with sub-time stepping. An additional model based on lubrication theory is proposed

and shown to agree with experiments of submerged collisions. The complete numer-

ical method is suitable for parallel computing. Weak scaling results of a 3D fluidized

bed simulation containing two million particles suggests that flows containing one

billion particles could be computed on today’s supercomputers.

Acknowledgements

I would like to thank both of my PhD supervisors, John Bowman and especially

Peter Minev, for their time, direction, and financial support. I would also like to

thank the Department of Mathematical and Statistical Sciences at the University of

Alberta for providing me with teaching experience and financial support. Finally, I

would like to thank my wife, Rebecca, for her input on my research and for looking

after our trorg while I focused on writing this thesis.

Contents

1 Introduction 1

1.1 Literature Review . 3

2 Model Derivation 7

2.1 Nondimensionalization . 8

3 Spatial Operators 12

3.1 Laplace Operator ∇2u . 14

3.2 Advection Operator u · ∇u . 17

3.3 Pressure Gradient ∇p . 19

3.3.1 Explicit Pressure Extrapolation 19

3.4 Divergence Operator ∇ · u . 20

3.4.1 Boundary Fitted Finite Difference Approximation 23

3.4.2 Boundary Fitted Finite Volume Approximation 25

3.5 Spatial Operators Using Ghost Cells 27

4 Discretizations For Incompressible Navier–Stokes Equations 28

4.1 Pressure-Correction Projection Methods 30

4.1.1 Chorin–Temam Scheme . 31

4.1.2 Incremental Scheme . 32

4.1.3 Rotational Scheme . 33

4.1.4 Computational Formulation 35

4.1.5 Perturbation Analysis Of The Stokes Equations 36

4.1.6 Direction Factorized Pressure “Projection” 39

4.2 Discretizations of the Momentum Equation 40

4.2.1 BDF1 Splitting . 41

4.2.2 Douglas Splitting . 42

4.2.3 Modified Douglas Splitting . 45

4.2.4 BDF2 Splitting . 53

4.3 Advection Terms . 54

4.4 Complete Navier–Stokes Scheme . 56

5 Convergence Rates Of The Numerical Schemes 58

5.1 Diffusion Equation . 59

5.1.1 Spatial Convergence . 60

5.1.2 Temporal Convergence . 61

5.1.3 Stability . 62

5.2 Unsteady Stokes Equations . 63

5.2.1 Spatial Convergence . 63

5.2.2 Temporal Convergence . 66

5.2.3 Stability . 66

5.2.4 Comparing Values Of Rotational Parameter χ 67

5.3 Navier–Stokes Equations . 73

6 Discretization Of ODEs For Rigid Objects 76

6.1 Time Discretization . 76

6.2 Object Orientations . 79

6.3 Surface Integral Discretization . 79

6.4 Interpolation-Free Surface Integral 85

6.5 A simple collision model . 89

6.5.1 Galilean Cannon . 91

7 A Lubrication-Based Collision Model 94

7.1 Lubricating Fluid . 96

7.2 Equation Of State . 97

7.3 Fluid Viscosity . 100

7.4 Solid Compressibility . 102

7.5 Object Motion . 104

7.6 Nondimensionalization . 104

7.7 Solution Method . 106

7.8 Can Solid On Solid Contact Occur? 108

7.9 Spatial Discretization . 109

7.10 Time Discretization . 111

7.11 Comparison To Experiments . 112

7.12 Comparison Of Arbitrary Parameters 115

7.13 Two Sphere Collision . 117

8 A Direction Splitting Fictitious Domain Method 119

8.1 FDM Convergence Rates . 123

8.2 Momentum Conservation . 123

9 Validation Of Schemes On Realistic Flows 127

9.1 Sedimentation Of A Single 3D Ball, Re=4.1 127

9.2 Migration Of A Ball In A 3D Pipe, Re ≈ 26.7 129

9.3 Migration Of A Disc In A Channel, Re ≈ 26.7 131

9.4 Vortex Street Behind 2D Disc, Re=100 136

9.5 Large Buoyant Disc In 2D, Re ≈ 747 140

9.6 Three Falling Discs In 2D, Re=100 140

10 DNS Of A 3D Fluidized Bed 144

10.1 Parallel Scalability . 151

11 Conclusions 155

11.1 Future Work . 156

Bibliography 158

A Taylor–Couette Flow 166

B Pressure Projection With Variable Density 168

C Implementation Details 170

C.1 Solving Tridiagonal Linear Systems 171

C.2 Moving Rigid Objects . 173

C.3 Other Miscellaneous Optimizations 175

C.4 3D Viewer . 175

List of Tables

5.1 Spatial convergence for the 3D diffusion equation. 60

5.2 Spatial convergence for Taylor–Couette p = 0 diffusion equation. . . . 61

5.3 Temporal convergence for the 3D diffusion equation. 61

5.4 Oscillatory behaviour of modified Douglas error 62

5.5 Spatial convergence for 3D Stokes equations 64

5.6 Spatial convergence for Stokes Taylor–Couette 69

5.7 Spatial convergence for Stokes Taylor–Couette, small ∆t 70

5.8 Spatial convergence for Stokes Taylor–Couette, fitted divergence . . . 70

5.9 Temporal convergence for 3D Stokes 71

5.10 Comparing different values of χ for 3D Stokes 72

5.11 Spatial convergence for Navier–Stokes Taylor–Couette 74

5.12 Temporal convergence for 3D Navier–Stokes 75

6.1 Accuracy surface integral with boundary fitted interpolation 84

6.2 Accuracy surface integral on Taylor–Couette 84

6.3 Comparison of Midpoint and Simpson’s rules 88

6.4 Accuracy surface integral using interpolation-free method 88

8.1 Spatial convergence for FDM Navier–Stokes Taylor–Couette 124

8.2 Temporal convergence for FDM Navier–Stokes Taylor–Couette 126

9.1 Maximum vertical speed of a 3D sedimenting ball 129

9.2 Convergence results for a ball in 3D Poiseuille flow 132

9.3 Results of other authors for a ball in 3D Poiseuille flow 132

9.4 Convergence results for the 2D buoyant disc test 142

9.5 Convergence results for the three falling discs test 143

List of Figures

3.1 A 2D and 3D MAC grid cell . 13

3.2 A grid of 2D MAC cells . 13

3.3 Boundary intersections of a three-point finite difference stencil 15

3.4 Layout of velocity grid nodes centered around ui,j+ 1
2
. 17

3.5 A grid line through the u and p points of the MAC grid. 19

3.6 Finite difference divergence stencils 21

3.7 Finite difference divergence stencils around a disc 22

3.8 Finite volume divergence situations 25

4.1 Stability regions for explicit Adams–Bashforth methods 54

4.2 Fluid domain Ωf embedded in a box domain Ω 56

6.1 Spherical grid for surface integral calculation 80

6.2 Boundary fitted interpolation in 2D 82

6.3 Irregularly shaped spherical surface grid 86

6.4 Grid lines intersecting a spherical surface belt 86

6.5 Sequence of pictures showing the Galilean cannon simulation. 92

6.6 Galilean cannon at impact . 93

7.1 Object colliding with wall . 95

7.2 Different equations of state . 99

7.3 Viscosity Models µ = µ(ρ) . 101

7.4 Spring force (p) vs. compression distance (ξ) 103

7.5 Time evolution of a high-impact collision 113

7.6 Comparison of numerical collision solutions to experimental data . . . 114

7.7 Comparison of different domain lengths 116

7.8 Two spheres colliding . 117

9.1 Ball in a 3D Poiseuille pipe flow. 130

9.2 Time evolution of a ball in 3D Poiseuille flow 133

9.3 Time evolution of a disc in 2D Poiseuille flow, high resolution 134

9.4 Time evolution of a disc in 2D Poiseuille flow, low resolution 135

9.5 Von Karman vortex street in the wake of a disc in 2D 137

9.6 Drag and Lift coefficients on a disc 138

9.7 Drag and Lift coefficients compared to a benchmark 139

9.8 Two examples of 2D fluid flows containing rigid objects. 140

10.1 A fluidized bed in 2D containing a small number of particles. 145

10.2 Resolution of fluidized bed simulations 146

10.3 3D fluidized bed simulation of 14000 spheres 147

10.4 Large 3D fluidized bed simulation, initial condition 148

10.5 Large 3D fluidized bed simulation, mid simulation 149

10.6 Large 3D fluidized bed simulation, surface snapshot 150

10.7 Parallel scalability for 3D problem using up to 512 CPU cores. 153

A.1 Taylor–Couette flow between two solid cylinders. 167

1

Chapter 1

Introduction

Fluid flows are important parts of many different scientific and engineering disci-

plines, from aircraft design to the study of the earth’s core, and from nuclear reactors

to weather prediction. In order to know the outcome of a fluid flow, experiments can

sometimes be performed. However, often performing an experiment is too costly, too

difficult, or simply impossible. In this case, one must use a mathematical model of

some kind. One such model that agrees very well with experiments is the Navier–

Stokes equations. The problem, however, is that the Navier–Stokes equations are

practically impossible to solve analytically in all but the most simple situations. In

fact, the well-posedness of the 3D Navier–Stokes equations is one of the most impor-

tant open problems in mathematics. Therefore, with the availability of fast comput-

ers, an excellent method for predicting fluid flows is to approximate solutions of the

Navier–Stokes equations numerically. The field of Computational Fluid Dynamics

(CFD) includes the design and use of computer methods to solve the Navier–Stokes

equations, and the field of Numerical Analysis involves the design and study of these

methods.

The work in this thesis is a mixture of CFD and Numerical Analysis. We are not

interested in solving a single specific fluid problem, but rather we are interested in

designing improved computer methods that can be used to solve a wide range of fluid

problems. Specifically, we introduce some “direction splitting” innovations to reduce

computer resources while also incorporating any required boundary-fitting to increase

accuracy. The work in this thesis applies not only to the Navier–Stokes equations, but

to other partial differential equations as well. We will, however, focus our attention on

Direct Numerical Simulations (DNS) of the incompressible Navier–Stokes equations

2

in a complex-shaped domain, and in particular, fluid flows containing solid particles,

i.e., particulate flows. Most fluids are incompressible to high accuracy in almost all

situations, and even slow moving gases can often be treated as incompressible. DNS

means that when we solve the Navier–Stokes equations, any turbulence in the flow

must be resolved with finer numerical resolution rather than approximated with a

turbulence model. Also, DNS in the context of particulate flows means that the

shape of each individual particle and surrounding fluid must be sufficiently resolved

by the spatial grid, rather than approximating particles as points or treating clouds

of particles using statistics. Treating each solid particle individually poses some

numerical difficulties when these particles are predicted to collide, and we also spend

some time on this issue.

Often the presence of solid particles in a fluid flow changes the behaviour of the

flow, for example, the particles may form clumps or the flow may form plumes, etc.

As a result of using DNS, the numerical methods in this thesis could be used to

determine the properties such flows in order to construct non-DNS models, or in

some cases, real problems could be solved using the DNS itself. Some examples of

real particulate flow applications include industrial mixing or sedimentation, washing

of food grains, combustion of powders, erosion, and transport of pollutants.

This thesis is organized as follows. In the remainder of this introduction, we

review some literature related to direction splitting and numerical methods for par-

ticulate flows. In Chapter 2, we present the set of equations that govern particulate

flows, and perform the standard nondimensionalization. In Chapter 3, we discuss

all of the spatial operators that appear in the Navier–Stokes equations, and also

the corresponding discretizations used for the numerical methods in the thesis. In

Chapter 4, we discuss numerical methods for solving incompressible Navier–Stokes,

including innovations of direction-splitting for use in complex-shaped domains. In

Chapter 5, we demonstrate the stability and accuracy of the new direction-splitting

methods when solving equations in complex-shaped domains. In Chapter 6, we dis-

cuss the equations of motion of submerged solid particles and present discretizations

of these equations. In Chapter 7, we discuss particle collisions in more detail and

present a model that could be used to resolve collisions with higher accuracy on

small scales. In Chapters 8 and 9, we compare the numerical schemes in this thesis

to other numerical schemes and experimental results of real fluid flow problems. In

Chapter 10 we demonstrate the power of the new methods in this thesis to solve

large problems using direct numerical simulation.

3

1.1 Literature Review

Because of their efficiency for solving high dimensional problems, direction splitting

methods have been widely used in the past to solve parabolic and elliptic Partial

Differential Equations (PDEs). These methods are called “alternating-direction-

implicit” methods in North America, and “fractional-step” or “locally-one-dimensional”

methods in Russia. The first direction-splitting method was introduced by Peace-

man and Rachford [54] in 1955 for two-dimensional (2D) problems, and later in 1959

and 1962, Yanenko [72] and Douglas [20] extended these ideas for 3D problems. The

Russian school of numerical analysis contributed significantly to the development of

direction-splitting methods, which is summarized in the review paper by Mitchell [50]

or the more recent book [59] by Samarskii, Matus, and Vabishchevich. Direction-

splitting methods have recently been abandoned in favor of multigrid methods, how-

ever, Guermond and Minev [27] recently proposed a direction-splitting scheme for

approximating the incompressibility constraint for the incompressible Navier–Stokes

equations. When a direction-splitting scheme is also used for the Navier–Stokes

momentum equation, the complete scheme involves only one-dimensional problems

that can be solved using a direct solver, and this can be more efficient than multi-

grid methods in a parallel-computing environment, especially for complex-shaped

time-dependent domains.

However, the generally accepted opinion is still that direction-splitting methods

are applicable only to problems in simple-shaped domains, such as a rectangular box.

This thesis contains some new modifications of direction-splitting methods which (by

numerical evidence only) are applicable to domains of any shape.

The primary difficulty of solving particulate flows numerically is that the fluid

domain Ωf has a very complex time-dependent shape. This is because each solid

particle is essentially a “hole” in the fluid domain. There are two major approaches

for solving Navier–Stokes in such a domain. The first approach is to discretize the

complex-shaped domain directly. The second approach is to extend the problem

from the original complex-shaped domain Ωf to a larger, simple-shaped domain Ω,

and methods which use this approach are called Fictitious Domain Methods (FDM).

This allows the problem to be discretized on the same grid at all time levels, which

is computationally cheaper.

By far the most popular and easy to implement is the FDM approach. In this

case, the original boundary conditions on the original boundary ∂Ωf must somehow

4

be enforced on the fictitious fluid in Ω \ Ωf which is inside the larger domain Ω.

One FDM approach of imposing internal boundary conditions is to introduce

a Dirac-measure force in the fluid momentum equations in the fictitious regions.

Peskin [55], [56] introduced this idea in his immersed boundary method (IBM) by

coupling individual grid points together using an elastic force to give the fictitious

fluid viscoelastic properties. When using finite volumes on a staggered grid, Kim et

al. [43] presented an IBM which has improved accuracy in complex-shaped domains

by using a mass-source term. The IBM has also been used to simulate moving solid

particles by approximating the solid as a fluid bound together with springs and

tethers, for example, [23].

Another FDM approach of imposing these internal boundary conditions is to

use penalty terms which enforce the desired constraints. For example, the Dirichlet

boundary condition u = C(x) can be imposed on the boundary ∂Ωf by adding the

extra term 1
ε

(u− C(x)) to the equations in Ω \ Ωf , where ε is a small parameter.

This L2 penalty procedure generates the Brinkman equations, which are analyzed in

the context of FDM by Angot [2]. Another example of a FDM using this type of

penalty procedure is given in [17]. A stronger H1 penalty procedure can be obtained

by setting the fluid viscosity to a large value µ = 1
ε

in the fictitious region Ω \ Ωf in

order to force rigid motion there. However, this produces spatially dependent viscous

terms with a huge jump discontinuity that causes severe time step restrictions for

any explicit scheme. In this case, an implicit formulation is required, such as [3].

Yet another FDM approach of imposing internal boundary conditions is to use a

side constraint (Lagrange multiplier) to the fluid equations in the extended domain Ω.

This approach requires the solution of a saddle-point problem, and the idea has been

developed by Glowinski and co-workers [24], [25]. As shown by Patankar [53], it

is possible to reformulate the side constraints as a series of explicit steps applying

only to the fictitious fluid Ω \ Ωf rather than the entire domain Ω. The explicit

formulation is quite popular and variations of it are used in [62], [68], [70], [6], and

[5], the main differences between each of these being the way in which the density

jump from fluid to solid is handled, and whether or not iterations are performed in

order to enforce the constraints on Ω \ Ωf .

A common problem for all FDM, which generally do not perform boundary-fitting

of the grid to Ωf , is that the spatial accuracy is usually only first order. Maury

explains this fact in the introduction of [10]. In order to recover second-order spatial

accuracy in FDM methods, a boundary-fitted sub-problem is typically solved, as in

5

[75] or [10].

In recent years, a wide variety of numerical schemes based on the Lattice-Boltzmann

Method (LBM) have also been used to solve particulate flow problems. Being a fully

explicit scheme, the LBM is straightforward to optimize for parallel computing, and

such implementations have been used to solve very large problems - for example [26],

which efficiently utilized 294912 processor cores. The LBM has some advantages

simulating compressible flows at very high Reynolds numbers (denoted Re), but it

also has several disadvantages when it is used to approximate the unsteady incom-

pressible Navier–Stokes equations. The LBM is a relaxation method which converges

to the solution of Navier–Stokes only when the diffusion time scale is not too large

compared to the advection time scale [14]. According to [22], the LBM should use a

small time step ∆t ∼ Reh2 to handle viscous effects correctly, where h is the spatial

grid step. For particulate flows, the local Reynolds number is not usually very large,

so this is a severe time step restriction. Also, since the LBM is known to have error

proportional to the square of a computational Mach number
√

3∆t|u|/h, this im-

poses another strict CFL-type time step restriction of the form ∆t� h/|u|. Finally,

the LBM does a poor job of enforcing incompressibility unless ∆t is very small (see

Section 4.1.5 of this thesis for more discussion).

An alternative to FDM and LBM methods is to solve the Navier–Stokes equations

in the complex-shaped domain Ωf directly using a grid that conforms to the boundary

∂Ωf at all times. One example of this technique is the Arbitrary-Lagrangian-Eulerian

method of [37], which uses a finite-element discretization on a moving mesh. When-

ever the mesh becomes too distorted, it needs to be recreated from scratch and the

solution needs to be projected onto the new mesh. Another example is the Element-

Free-Galerkin method of [74], which uses a node-based finite-element discretization

rather than a mesh-based discretization. In this case, finite-element basis functions

are constructed at run time using node points, and the nodes can be moved, created,

or deleted as the domain changes shape. With these methods, forces on submerged

boundaries are typically computed directly using surface integrals, and grid refine-

ment can be performed around each object. These methods are very accurate but

computationally expensive when Ωf changes significantly in time, as in particulate

flows.

Another method of discretizing the complex-shaped domain Ωf directly is to use

the method of “ghost cells”. In this case, a fixed Cartesian grid is used to discretize

Ωf and additional ghost cells are included outside Ωf near the boundary such that

6

the smooth solution of u in this extended domain satisfies the boundary conditions

on ∂Ωf to high spatial accuracy. Examples of such methods are [48] and [51], both

of which are second-order spatially accurate. The main challenge of these methods

is choosing appropriate values for the ghost cells in the multi-dimensional case. The

multi-dimensional equations are typically solved using multigrid techniques.

All numerical methods that deal with moving objects must somehow prevent the

objects from overlapping. Most examples in the literature prevent overlap by intro-

ducing a short-range repulsive force to keep the objects apart, as in [24]. However,

there are examples (such as [74]) where no ranged force is used. In this case, colli-

sions are typically resolved using either a hard-sphere model such as [69], a thin-fluid

layer lubrication model such as [49], or by allowing the objects to deform elastically

(soft-sphere model). The review [19] compares hard and soft sphere models for the

specific problem of fluidized beds.

7

Chapter 2

Model Derivation

We are interested in modeling the flow of many solid, rigid objects which are sus-

pended in a viscous incompressible Newtonian fluid. For simplicity, we will assume

that the solid objects are uniform density spheres and that the fluid has constant

density and constant viscosity; however, the ideas in this thesis could be extended to

relax these assumptions. In Cartesian coordinates, the fluid occupying a domain Ωf

is modeled by the Navier–Stokes equations, which consist of the momentum equation,

ρf

(
∂u

∂t
+ u · ∇u

)
︸ ︷︷ ︸

density × Eulerian acceleration

= −∇p︸ ︷︷ ︸
force due to pressure

+ µ∇2u︸ ︷︷ ︸
force due to viscosity

+ ρfgeg︸ ︷︷ ︸
force due to gravity

, (2.1)

together with the incompressibility constraint,

∇ · u = 0, (2.2)

where p is the total pressure, ρf is the fluid density, µ is the dynamic viscosity,

g = 9.8m/s2 is the acceleration due to gravity, and eg = (0, 0,−1) is the unit vector

in the direction of gravity.

The equations of motion of the ith solid object occupying the domain Ωi, i =

1, . . . , N , are given by the relation between the object’s velocity Ui and center of

mass position Xi,

Ui =
dXi

dt
, (2.3)

8

the object’s momentum equation,

Mi
dUi

dt︸ ︷︷ ︸
mass × acceleration

= Migeg︸ ︷︷ ︸
force due to gravity

+

∫
∂Ωi

σ · n dS

︸ ︷︷ ︸
force due to fluid

, (2.4)

where Mi = ρiVi is the mass of the ith object, ρi is its density, Vi = 4
3
πr3

i is its

volume, ri is its radius, n is the unit normal pointing out of the object, σ = −pδ +

µ(∇u + (∇u)T) is the stress tensor of the fluid, and δ is the Kronecker delta tensor

(identity matrix). Finally, there is the object’s angular momentum equation,

Ii
dωi
dt︸ ︷︷ ︸

moment of inertia × angular acceleration

=

∫
∂Ωi

(x−Xi)× (σ · n) dS

︸ ︷︷ ︸
torque due to fluid

, (2.5)

where Ii = 2
5
Mir

2
i δ is the inertia tensor of the ith solid spherical object. The fluid

stress forces in equations (2.4) and (2.5) are discussed in [37], and the equations of

rigid body dynamics can be found in books on classical mechanics such as [64].

The fluid in Ωf must satisfy homogeneous Dirichlet (no flux, no slip) boundary

conditions on the boundaries of all of the object domains Ωi. On the external bound-

ary of Ωf , either periodic, Dirichlet, or Neumann boundary conditions can be used,

depending on the problem.

2.1 Nondimensionalization

We first choose a characteristic length Lc and velocity Uc, and we nondimensionalize

the above equations by choosing new variables (indicated by a tilde):

x̃ =
x

Lc
, ũ =

u

Uc
, t̃ =

Uc
Lc

t, p̃ =
1

ρfU2
c

(p+ ρfgLcz̃) (2.6)

With these scalings, the inverse relations are

x = Lcx̃, u = Ucũ, t =
Lc
Uc

t̃, p = ρfU
2
c p̃− ρfgLcz̃, (2.7)

9

and the derivative relations are

∂

∂t
=
Uc
Lc

∂

∂t̃
and ∇ :=

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
=

1

Lc

(
∂

∂x̃
,
∂

∂ỹ
,
∂

∂z̃

)
=:

1

Lc
∇̃. (2.8)

Note that p is a total pressure and p̃ is a dynamic pressure. Writing the Navier–Stokes

momentum equation (2.1) in terms of the new variables yields

ρfU
2
c

Lc

(
∂ũ

∂t̃
+ ũ · ∇̃ũ

)
= −ρfU

2
c

Lc
∇̃p̃−������

ρfg∇̃(−z̃) +
µUc
L2
c

∇̃2ũ +����ρfgeg. (2.9)

Then, dividing out constants we get

∂ũ

∂t̃
+ ũ · ∇̃ũ = −∇̃p̃+

1

Re
∇̃2ũ, (2.10)

where Re =
ρfUcLc

µ
is the Reynolds number. A very high Reynolds number indicates

that the flow will contain turbulence.

The incompressibility constraint (2.2) can be written in terms of the new variables

as
Uc
Lc
∇̃ · ũ = 0, which is just ∇̃ · ũ = 0. (2.11)

Writing the object position equation (2.3) in terms of the new variables yields

UcŨi = Lc
Uc
Lc

dX̃i

dt̃
, which is just Ũi =

dX̃i

dt̃
. (2.12)

Writing the object momentum equation (2.4) in terms of the new variables yields

ρfL
3
cM̃i

U2
c

Lc

dŨi

dt̃
= ρfL

3
cM̃igeg +

∫
∂̃Ωi

σ̃ · nL2
c d̃S, (2.13)

where M̃i and σ̃ are defined from

Mi = ρiVi = ρfL
3
c

(
ρi
ρf
Ṽi

)
= ρfL

3
cM̃i, (2.14)

10

σ̃ =
(
−ρfU2

c p̃+ ρfgLcz̃
)
δ +

Uc
Lc
µ
(
∇̃ũ + (∇̃ũ)T

)
. (2.15)

By dividing out constants and defining the Froude number Fr = U2
c

gLc
, we can rewrite

(2.13) and (2.15) as

M̃i
dŨi

dt̃
=
M̃i

Fr
eg +

∫
∂̃Ωi

[(
−p̃+

1

Fr
z̃

)
δ +

1

Re

(
∇̃ũ + (∇̃ũ)T

)]
· n d̃S. (2.16)

Using Gauss’s divergence theorem,

∫
∂̃Ωi

(z̃δ) · n d̃S =

∫
Ω̃i

∇̃ · (z̃δ) d̃V =

0, 0,

∫
Ω̃i

∂

∂z̃
z̃ d̃V

 =
(

0, 0, Ṽi

)
= −Ṽieg. (2.17)

Therefore, (2.16) can finally be written as

M̃i
dŨi

dt̃
=
M̃i

Fr

(
1− ρf

ρi

)
eg +

∫
∂̃Ωi

[
−p̃δ +

1

Re

(
∇̃ũ + (∇̃ũ)T

)]
· n d̃S. (2.18)

Writing the angular momentum equation (2.5) in terms of the new variables yields

ρfL
5
c Ĩi
U2
c

L2
c

dωi

dt̃
=

∫
∂̃Ωi

Lc(x̃− X̃i)× (σ̃ · n)L2
c d̃S, (2.19)

where σ̃ is given by (2.15) and

Ii =
2

5
Vir

2
i ρiδ = ρfL

5
c

(
2

5
Ṽir̃i

2 ρi
ρf
δ

)
= ρfL

5
c Ĩi. (2.20)

Note that for a sphere, x̃ − X̃i = r̃in, and n × (δ · n) = n × n = 0, so the pressure

terms in the stress do not contribute to the angular momentum equation. Therefore,

11

after dividing out constants, (2.19) and (2.15) finally simplifies to

Ĩi
dωi

dt̃
=

∫
∂̃Ωi

(x̃− X̃i)×
[

1

Re

(
∇̃ũ + (∇̃ũ)T

)
· n
]
d̃S. (2.21)

We now drop the tildes from the nondimensionalized variables and summarize the

nondimensionalized equations that we will eventually solve:

∂u

∂t
+ u · ∇u = −∇p+

1

Re
∇2u,

∇ · u = 0,
(2.22)

Ui =
dXi

dt
, (2.23)

Mi
dUi

dt
=
Mi

Fr

(
1− ρf

ρi

)
eg +

∫
∂Ωi

[
−pδ +

1

Re

(
∇u + (∇u)T

)]
· n dS. (2.24)

Ii
dωi
dt

=

∫
∂Ωi

(x−Xi)×
[

1

Re

(
∇u + (∇u)T

)
· n
]
dS. (2.25)

Note: In some cases we may be interested in the unsteady Stokes equations,

∂u

∂t
= −∇p+

1

Re
∇2u,

∇ · u = 0,
(2.26)

which are obtained from (2.22) by omitting the advection terms u · ∇u. We will

also refer to the unsteady Stokes equations in this thesis as just the Stokes equations

since the time derivative will always be present.

12

Chapter 3

Spatial Operators

In this thesis we will use finite differences and the well known Marker And Cell

(MAC) grid, which is a structured grid of rectangular cells. Since using collocated

grids for the velocity and pressure is well known to produce unstable discretizations,

the MAC discretization uses staggered grids for each component of the velocity and

the pressure. Figure 3.1 shows what a MAC cell looks like in 2D and 3D. The ve-

locity is always stored on the cell faces in the center if the face, and the pressure is

always stored in the volumetric center of the cell. A MAC cell can have different

widths in each direction, denoted hx, hy, hz in 3D such that the volume of the MAC

cell is hxhyhz. If the cell is a cube, then we simply call the cell width h and it has

volume h3. A grid of MAC cells is called a “uniform grid” if all cells are identical,

even if hx 6= hy 6= hz. A uniform grid of 2D MAC cells is shown in Figure 3.2,

where we can see that a curved boundary must be approximated as a “stair-step”

and any given MAC cell is considered completely on one side of the boundary or

the other side. However, we can also consider separately the grid points involving

each velocity component (u, v, w), and the lines connecting these points are called

grid lines. Curved boundaries can be intersected with these grid lines as in Figure 3.2.

Throughout this thesis, we will sometimes use the notation ∂xf and fx to mean
∂f
∂x

. This should not be confused with the notation fi, which means the ith spatial

point of the discretization of f , nor the notation fn which means f at time step n.

In the remainder of this chapter, we will discuss several finite difference discretiza-

tions of spatial operators.

13

z

u

u vv

w

w

p

y

x

uu

v

v

p

yx

Figure 3.1: 2D MAC cell (left) where the velocity is u = (u, v), and a 3D MAC cell
(right), where the fluid velocity is u = (u, v, w).

point

pointu

v

pointp

boundary intersectionu

boundary intersectionv

Figure 3.2: A 2D grid of 4× 3 = 12 MAC cells in the presence of a curved boundary.
The shaded cells are considered to be on the “solid” side of the boundary, and the
white cells are considered to be on the “fluid” side. Horizontal grid lines connecting
the u velocity points are shown with dotted lines, and vertical grid lines connecting
the v velocity points are shown with dashed lines. Vertical grid lines connecting the
u points and horizontal grid lines connecting the v points are shown with solid black
lines. The solid black lines also define the MAC cell boundaries.

14

3.1 Laplace Operator ∇2u

In this section we consider discretizations of the first and second spatial derivatives

of the velocity. The first derivatives are included for completeness, but we are mostly

interested in the second derivatives because the diffusion operator in Navier–Stokes

(assuming constant viscosity, a Newtonian fluid, and Cartesian coordinates) is the

Laplacian,

∇2u =

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
u. (3.1)

Since spatial derivatives of the velocity are computed the same in all directions, we

consider the x direction only. Consider three subsequent velocity grid nodes ui−1,

ui, ui+1 located at corresponding points xi−1, xi, xi+1 on a grid line as in Figure 3.3a.

Let hi−1 = xi − xi−1 and hi = xi+1 − xi. The standard three-point finite difference

approximations of first and second derivatives at the point xi are(
∂u

∂x

)
i

≈ 1

hi−1 + hi

[
hi
hi−1

(ui − ui−1) +
hi−1

hi
(ui+1 − ui)

]
, (3.2)

(
∂2u

∂x2

)
i

≈ 2

hi−1 + hi

[
ui+1 − ui

hi
− ui − ui−1

hi−1

]
. (3.3)

The first derivative stencil is second-order spatially accurate on any grid, and the

second derivative stencil is second-order spatially accurate if the grid is at least

quasi-uniform (see [47], Theorem 2.1).

Now, consider Figure 3.3b where point xi−1 is a solid point, i.e., a “ghost point”

outside the computational domain of the fluid. In this case, denote the point where

the grid line intersects the solid boundary by xbL, denote the velocity value at this

point by ubL, and let γL = xi − xbL. Using the standard stencil (3.2) or (3.3) in this

situation effectively moves the domain boundary from the point xbL to the point xi−1,

resulting in a loss of accuracy. In order to maintain second-order spatial accuracy of

the stencil, we adjust the ghost point of the stencil such that it correctly approximates

the boundary condition. More precisely, in Figure 3.3b, ubL can be approximated by

the linear interpolation

ubL =
γL
hi−1

ui−1 +
hi−1 − γL
hi−1

ui. (3.4)

15

hihi-1

hihi-1

b)

c)

hihi-1

d)
γ
R

γ
L

hihi-1

a) ui-1 ui ui+1

ui-1 ui ui+1

ui-1 ui ui+1

ui-1 ui ui+1

γ
L

γ
R

ubL

ubL

ubR

ubR

Figure 3.3: Boundary intersections of a three-point finite difference stencil. The
shaded zones are solid and the white zones are fluid.

16

Substituting ui−1 from (3.4) into (3.2) and (3.3) gives the boundary fitted stencils(
∂u

∂x

)
i

≈ 1

hi−1 + hi

[−hi
γL

ubL +

(
hi
γL
− hi−1

hi

)
ui +

hi−1

hi
ui+1

]
, (3.5)

(
∂2u

∂x2

)
i

≈ 2

hi−1 + hi

[
1

γL
ubL −

(
1

γL
+

1

hi

)
ui +

1

hi
ui+1

]
. (3.6)

Similarly, in Figure 3.3c, ubR can be approximated by the linear interpolation

ubR =
γR
hi
ui+1 +

hi − γR
hi

ui, (3.7)

and substituting ui+1 from (3.7) into (3.2) and (3.3) gives the boundary fitted stencils(
∂u

∂x

)
i

≈ 1

hi−1 + hi

[−hi
hi−1

ui−1 +

(
hi
hi−1

− hi−1

γR

)
ui +

hi−1

γR
ubR

]
, (3.8)

(
∂2u

∂x2

)
i

≈ 2

hi−1 + hi

[
1

hi−1

ui−1 −
(

1

hi−1

+
1

γR

)
ui +

1

γR
ubR

]
. (3.9)

Finally, in Figure 3.3d, the boundary fitted first and second derivative stencils are(
∂u

∂x

)
i

≈ 1

hi−1 + hi

[−hi
γL

ubL +

(
hi
γL
− hi−1

γR

)
ui +

hi−1

γR
ubR

]
, (3.10)

(
∂2u

∂x2

)
i

≈ 2

hi−1 + hi

[
1

γL
ubL −

(
1

γL
+

1

γR

)
ui +

1

γR
ubR

]
. (3.11)

Since the interpolations (3.4) and (3.7) are spatially second-order accurate and (3.2)

and (3.3) are spatially second-order accurate stencils, the above boundary fitted

stencils are also spatially second-order accurate. To avoid division by zero in practice,

we consider the point xi to be inside the solid if γL or γR is smaller than h/10000.

The discrete boundary fitted operators (3.6), (3.9), (3.11) are non-commutative

in general, i.e., δxxδyyu 6= δyyδxxu, where δxx represents the discrete operator for ∂2

∂x2 .

However, the negative of the discrete boundary fitted operators (−δxxu) are still

positive definite (see Lemma 3.2 of [4]), which is important for stability. There are

also other ways to construct boundary fitted stencils (see Section 2.3 of [4]); however,

the above method achieves the best accuracy and stability of all the stencils we tested.

17

x i- ,j

i,j+

1
2

u ui+1,j+i-1,j+u

vi- ,j+11
2

vi+ ,j+11
2

x i+ ,j1
2

1
2

1
2

1
2

i,j-u 1
2

i,j+u 3
2

Figure 3.4: Layout of velocity grid nodes centered around ui,j+ 1
2
.

3.2 Advection Operator u · ∇u

The advection operator in Cartesian coordinates is defined as

u · ∇u =
(
(u, v, w) · (∂x, ∂y, ∂z)

)
(u, v, w)

= (uux + vuy + wuz, uvx + vvy + wvz, uwx + vwy + wwz) .
(3.12)

By examining Figure 3.4, we can determine a second-order finite difference stencil

for this operator. The term uux can be approximated by

(uux)i,j+ 1
2
≈ ui,j+ 1

2

(
∂u

∂x

)
i,j+ 1

2

, (3.13)

where
(
∂u
∂x

)
i,j+ 1

2

is given by (3.2). The term vuy can be approximated similarly by

(vuy)i,j+ 1
2
≈ (vinterpolated)

(
∂u

∂y

)
i,j+ 1

2

, (3.14)

18

but in this case v is not available at the point xi, yj+ 1
2

so we need to interpolate the

surrounding points vi− 1
2
,j, vi− 1

2
,j+1, vi+ 1

2
,j, vi+ 1

2
,j+1 in 2D in order to get vinterpolated

at the point xi, yj+ 1
2
. In 3D, the interpolation involves eight points instead of four.

The other advection terms are computed similarly.

All numerical results (see Section 5.3) indicate that second-order accuracy is

achieved even without boundary fitting the advection operator. It is not entirely

clear why the ∂xx operators in Section 3.1 require boundary fitting but the advection

operator does not, however, we can speculate why this is the case. One reason could

be that the advection operator is only a first derivative, so it requires less regularity

of the field to which it is applied. Therefore, a continuous extension of the velocity

field beyond the domain boundary (which is the case for all problems we are inter-

ested in) may be sufficient regularity to control the error associated with using the

discrete advection operator without boundary fitting. Also, the advection operator

acts along characteristics of the flow (in the upstream direction) and the character-

istics do not intersect the boundary due to the no-flux solid boundary condition.

Another reason could be that very close to the boundary, the ∂xx operators (which

represent viscous effects) become completely dominant and therefore the error in

the advection term becomes insignificant. It is possible that there exists problems

for which the advection operator must be fitted to the domain boundary, but we

have not encountered such problems. We do not perform boundary fitting of the

advection operator in this thesis, however, it could be done by using the boundary

fitted first derivative approximations in Section 3.1 together with a boundary fitted

interpolation as in Section 6.3.

19

hihi-1

u i+p i u1
2

p i+1u i- 12i-1

Figure 3.5: A grid line through the u and p points of the MAC grid.

3.3 Pressure Gradient ∇p
For the MAC grid, we are interested in computing ∇p =

(
∂p
∂x
, ∂p
∂y
, ∂p
∂z

)
at points

of the grid where the velocity is stored. In particular, px is computed at the u grid

points, py at v grid points, and pz at w grid points. By examining Figure 3.5, we

can determine a stencil representing the first derivative of the pressure p evaluated

at the ui velocity point, (
∂p

∂x

)
i

≈
pi+ 1

2
− pi− 1

2

1
2

(hi−1 + hi)
. (3.15)

If the MAC grid is uniform then hi−1 = hi, and the difference is second-order accu-

rate. The other components of the pressure gradient are computed similarly.

3.3.1 Explicit Pressure Extrapolation

For complex-shaped fluid domains Ωf embedded in a larger box domain Ω, there

are two problems with the pressure at the boundary ∂Ωf . First, consider the case

of a time-dependent complex-shaped Ωf , for example, a particulate flow where the

moving solid particles are not part of Ωf . Since the pressure is not generally mean-

ingful outside Ωf , meaningless pressure values at some grid points outside Ωf may

become part of Ωf on the next time step when Ωf changes shape. Second, even if Ωf

does not change in time, there are velocity grid points in Ωf that are close enough to

∂Ωf that the discrete pressure gradient (3.15) will reference a pressure point which is

outside Ωf . Therefore, we must make sure that the pressure at grid points just out-

side Ωf has meaningful values. A simple solution is to extrapolate the pressure from

inside Ωf to a few grid points outside Ωf . Using a constant extrapolation is roughly

equivalent to a homogeneous Neumann boundary condition ∂p
∂n

= ∇p · n|∂Ωf = 0 for

the pressure. Using a linear extrapolation is roughly equivalent to a “free” boundary

condition ∂2p
∂n2 = 0 for the pressure.

For simplicity, we use a constant extrapolation, which can be implemented in the

20

following way for MAC grids. Call a MAC cell a “solid cell” if its pressure point is

outside Ωf and a “fluid cell” if its pressure point is inside Ωf . Figure 3.7 on page 22

shows a disc in 2D with surrounding cells labeled as either solid or fluid using this

definition. If a solid cell has at least one fluid cell neighbour, we average the pressure

in all surrounding fluid cells and prescribe this average pressure value at the given

solid cell. This extends the fluid pressure into the first layer of solid cells outside Ωf .

A similar procedure is repeated once more to extrapolate one layer deeper into the

solid, and this seems to be sufficient. Since the above constant extrapolation is O(h),

it could be better to use a linear extrapolation (which would be O(h2)), however,

we did not investigate this. Figure 9.5 on page 137 shows this explicit pressure

extrapolation procedure in use when solving for the flow behind a 2D disc.

3.4 Divergence Operator ∇ · u
The divergence operator is defined as ∇ · u = ∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
. One advantage of the

MAC grid is that the divergence evaluated at pressure points can be computed using

a second-order accurate stencil even when the grid is non-uniform. By inspection of

Figure 3.6a, we can determine the following “standard” finite difference stencil for

the divergence in 2D,

(∇ · u)i+ 1
2
,j+ 1

2
≈
ui+1,j+ 1

2
− ui,j+ 1

2

xi+1 − xi
+
vi+ 1

2
,j+1 − vi+ 1

2
,j

yj+1 − yj
. (3.16)

The divergence operator (3.16) is O(h2) accurate in the maximum norm for any

domain that aligns with the MAC cell boundaries. However, for complex-shaped

domains that do not align with cell boundaries, (3.16) reduces to O(1) in cells which

are intersected by the fluid domain boundary ∂Ωf . This is because the velocity

field is only guaranteed to be continuous across ∂Ωf . In this case, numerical results

(Section 5.2.1) indicate that the divergence must be boundary-fitted in order to

maintain second-order spatial accuracy of the velocity field. Because the pressure

gradient and the divergence are closely related (see the beginning of Chapter 4), it has

proven difficult to obtain a boundary-fitted discrete divergence operator that works

well in all situations. Therefore, we consider in this section two different options,

each with their own advantages and disadvantages.

21

i+ ,j+1
2

1
2

up
i+1,j+

ui,j+

vi+ ,j+1

v

1
2

1
2

i+ ,j1
2

1
2

solid cell

i+ ,j+1
2

1
2

up
i+1,j+

ui,j+

vi+ ,j+1

v

ub

1
2

1
2

i+ ,j1
2

1
2

vb

ub

i+ ,j+1
2

1
2

up
i+1,j+

ui,j+

vi+ ,j+1

1
2

1
2

vi+ ,j1
2

1
2

a)

b)

c)
fluid cell

fluid cell

fluid cell

(divergence = 0)

ʺstandardʺ divergence
stencil used when cell is
completely in the fluid

ʺshrunkʺ divergence
stencil used when cell is
intersected by solid

ʺexpandedʺ divergence
stencil used when
neighbour cell is a solid cell

Figure 3.6: Different situations for computing the divergence with finite differences.

22

F

F

F

F F F F

F

F

S

F F

F

SS

S

Figure 3.7: A 2D sample grid around a disc showing the divergence stencils in each
MAC cell. Each box is a MAC cell, and the dots are the pressure points at the
centroids of each cell. Each cell is labeled as F for “fluid cell” or S for “solid cell”
based on whether the pressure point in the middle of the cell is inside the fluid or
the solid, respectively.

23

3.4.1 Boundary Fitted Finite Difference Approximation

In this section, we consider fitting the standard divergence stencil (3.16) to the

domain Ωf in the spirit of finite differences. We again use the notation of “fluid cell”

and “solid cell” as in Section 3.3.1. First, the divergence is set to zero in all “solid

cells” because the rigid body velocity field inside a solid object has zero divergence.

Second, in each “fluid cell” that does not share a face with any “solid cell”, the

standard difference (3.16) is used. In all remaining “fluid cells” that share one or

more faces with a “solid cell”, the divergence stencil is either shrunk or extended to

fit the boundary in the direction orthogonal to these faces. Figure 3.7 shows how the

divergence stencils would be fitted to a circular disc in 2D, and examples of shrunk

and expanded stencils are illustrated in Figure 3.6b and Figure 3.6c respectively.

The resulting approximation using the shrunk stencil in Figure 3.6b is given by

(∇ · u)i+ 1
2
,j+ 1

2
≈
(
ub − ui,j+ 1

2

xb − xi
+
vi+ 1

2
,j+1 − vb

yj+1 − yb

)
β, (3.17)

and the resulting approximation using the extended stencil in Figure 3.6c is given

by

(∇ · u)i+ 1
2
,j+ 1

2
≈
(
ub − ui,j+ 1

2

xb − xi
+
vi+ 1

2
,j+1 − vi+ 1

2
,j

yj+1 − yj

)
β, (3.18)

where ub and vb are the known values of the velocity on the solid surface where the

grid line intersects it, xb and yb are the coordinates of the points corresponding to

ub and vb, and β ≤ 1 is a scaling factor required for stability. The need for such a

scaling can be understood in two ways. First, it makes sense that the divergence in

the MAC cell should be scaled by the fluid volume fraction of the cell. In particular,

this scaling would exist if we computed the divergence by subdividing into many

smaller cells, since many of the smaller cells would be completely inside the solid

and would have zero divergence. Second, since a solid obeys rigid motion (A.4), it

is always true for the example in Figure 3.6b that ub = ui+1,j+ 1
2

and vb = vi+ 1
2
,j

(similarly for w in 3D). If we now consider a square MAC cell where where both xb
and yb are equidistant from xi+ 1

2
,j+ 1

2
, then (3.17) can be written as

(∇ · u)i+ 1
2
,j+ 1

2
≈
(
ui+1,j+ 1

2
− ui,j+ 1

2

h
+
vi+ 1

2
,j+1 − vi+ 1

2
,j

h

)
h

d
β, (3.19)

24

where h = xi+1 − xi = yj+1 − yj and d = xb − xi = yj+1 − yb. Equation (3.19) is

exactly the standard divergence (3.16) multiplied by h
d
β. Since we know that scaling

the standard divergence by a value > 1 does not typically produce a stable scheme,

this suggests the need for β ≤ d
h
, at least in this case. Inspired by this example, we

choose the cell-dependent scaling factors

β = min

{
1,

1

2

(
∆x

hx
+

∆y

hy

)}
, β = min

{
1,

1

3

(
∆x

hx
+

∆y

hy
+

∆z

hz

)}
, (3.20)

in 2D and 3D respectively, where ∆x, ∆y, ∆z are the divergence stencil widths

used in that cell, and hx, hy, hz are the MAC cell dimensions. For example, both

stencils (3.17) and (3.18) have ∆x = xb−xi and hx = xi+1−xi. Numerical evidence

suggests that this choice of β is always stable. While scaling the divergence by a

somewhat arbitrary factor β appears questionable, it is valid to scale the divergence

by any constant ≤ 1 because we will show later, for example equation (4.49), that

the divergence is already scaled by a penalty parameter and thus β simply changes

this penalty parameter.

The divergence as computed above sometimes “skips over” a velocity node as

in Figure 3.6c where ui+1,j+ 1
2

is skipped when computing ub − ui,j+ 1
2
. In some rare

cases this can destabilize the scheme, so the skipped velocity node ui+1,j+ 1
2

needs to

be set to the linear interpolation between ub and ui,j+ 1
2
. Alternatively, a variant of

the divergence operator can be used that does not skip over nodes, and in this case

ub − ui,j+ 1
2

is replaced by ui+1,j+ 1
2
− ui,j+ 1

2
.

The discrete divergence operator in this section does not satisfy the discrete

integration by parts formula (i.e, summation by parts), so summing the divergence

over all cells in the domain does not in general give zero. Therefore, the pressure

extrapolation in Section 3.3.1 should be used in order to remove any artificial pressure

gradient across the domain boundary caused by a drift of the average pressure in the

fluid domain.

The divergence operator in this section was tested numerically to be O(h2) accu-

rate in the maximum norm for any domain that aligns with the MAC cell boundaries,

and otherwise it reduces to O(h) in the maximum norm and O(h
3
2) in the L2 norm.

25

ui+1,j+12

ui+1,j-12

yj+14

ui+1,j+12

ui+1,j-12

ui+1,j+12

ui+1,j-12

ui+1,j+12

ui+1,j-12

ui+1,j+12

ui+1,j-12

yj

yj+14

yj+34

yj+1

a) b) c) d) e)

Figure 3.8: Different types of intersections that can occur when computing the flux
through a cell face. The velocity is always interpolated at the midpoints (white dots).

3.4.2 Boundary Fitted Finite Volume Approximation

In this section, we consider fitting the standard divergence stencil (3.16) to the

domain Ωf by using a finite volume formulation. We will only consider the 2D

operator here, but the 3D operator can be constructed similarly. Consider the 2D

MAC cell in Figure 3.6a, and assume that the entire cell is in Ωf . The finite volume

formulation of an operator is obtained by integrating the operator over the cell and

then dividing by the cell volume,

∇ · u ≈ 1

hxhy

∫
∇ · u dV =

1

hxhy

∫
u · n dA, (3.21)

after using Gauss’s divergence theorem. Thus, we need to compute fluxes u·n through

all four faces of the cell. Since the flux through one face can be approximated by the

velocity at the midpoint on that face multiplied by the face area, we have

1

hxhy

∫
u · n dA ≈ 1

hxhy

(
ui+1,j+ 1

2
hy − ui,j+ 1

2
hy + vi+ 1

2
,j+1hx − vi+ 1

2
,jhx

)
, (3.22)

26

which simplifies to the standard finite difference stencil (3.16). We now consider a

similar approximation of the flux through one cell face which works more naturally

when the cell face is intersected by ∂Ωf . Consider Figure 3.8a which shows one MAC

cell face. Previously, we computed the flux through this face as ui+1,j+ 1
2
hy, but this

time we will compute the flux through the face in two parts — the lower half of the

face from yj to yj+ 1
2
, and the upper half of the face from yj+ 1

2
to yj+1. This is done

to ensure that the face-center velocity ui+1,j+ 1
2

maintains a dominant role in the flux,

which is required for stability. The flux through both lower and upper halves are

computed similarly, so we will consider only the lower half. If there is no boundary

intersection of the lower half face as in Figure 3.8a, then the flux through the lower

half is computed as 1
2
ui+1,j+ 1

4
hy, where 1

2
hy is the length of the half face and ui+1,j+ 1

4

is the velocity at the midpoint yj+ 1
4

of the half face. This midpoint velocity is ob-

tained as the linear interpolation ui+1,j+ 1
4

= 1
4
ui+1,j− 1

2
+ 3

4
ui+1,j+ 1

2
. Therefore, the flux

through the entire cell face (both halves) is
(

1
8
ui+1,j− 1

2
+ 6

8
ui+1,j+ 1

2
+ 1

8
ui+1,j+ 3

2

)
hy

instead of ui+1,j+ 1
2
hy. If one or more solid objects intersects the lower half face as in

Figure 3.8 b,c,d,e, then several fluxes may need to be computed, but in every case

the velocity at the midpoint of the line segments are used, and these velocities are

obtained by interpolating between either the known velocity on the object bound-

aries (gray dots) or the velocities of the background grid (black dots), whichever are

closer. Also, if the solid objects are moving then their velocity (but not their angular

velocity) contributes to the flux.

The divergence operator in this section was tested numerically to be O(h2) accu-

rate in the maximum norm for box domains using uniform grids, and for complex-

shaped domains it reduces to O(h) in the maximum norm and O(h
3
2) in the L2 norm.

This divergence operator is quite a bit more complicated (and costs more CPU time)

than the finite difference divergence in Section 3.4.1, however it has some advantages.

First, by construction it always satisfies the summation by parts formula, and this

may enhance stability and other energy-related properties. Second, it is a “smooth”

operator, meaning that when Ωf changes shape by a small amount, the operator only

changes a small amount. This also enhances stability and tends to improve accuracy

in practice. However, one disadvantage is that the discrete divergence will in general

be nonzero inside MAC cells that have all of their velocity nodes inside a solid, and

this can create some difficulty with the pressure. In order to avoid these difficulties,

the pressure extrapolation in Section 3.3.1 should be used. Alternatively, the pres-

27

sure gradient operator could be modified in other ways, but we do not explore other

ways in this thesis.

3.5 Spatial Operators Using Ghost Cells

Similar to how the one-dimensional diffusion operators were fitted to the boundary

in Section 3.1 by choosing an appropriate value for the “ghost point”, it may also be

possible to fit multi-dimensional operators (like the divergence) to the boundary in

a similar way. However, when considering the divergence operator, computing first

derivatives by using a boundary-condition-satisfying ghost point in one dimension as

in Section 3.1 produces exactly the divergence stencil of Section 3.4.1 but without the

β factor. The “ghost cell” method used in [51] appears to be stable and second-order

accurate, however, the method cannot directly be applied in our case because we

perform direction splitting of the pressure equation (discussed later in Section 4.1.6),

and this does not easily allow Neumann boundary conditions to be imposed on

surfaces that are not parallel to a coordinate plane. Nonetheless, extending the

velocity field can be shown to work on the Taylor–Couette flow in Appendix A

by extending the analytical solution in Ωf to all points outside Ωf . In this case,

all of the non-boundary-fitted operators are second-order accurate everywhere and

the resulting solution is also second-order accurate. However, when the analytical

solution is unknown, it is difficult to obtain a smooth extension of the velocity field

that produces a stable and consistent numerical scheme overall.

28

Chapter 4

Discretizations For Incompressible

Navier–Stokes Equations

In this chapter, we consider solving the incompressible Navier–Stokes equations

(2.22). There are three terms of interest in the Navier–Stokes equations: the ad-

vection term u · ∇u, the pressure gradient term ∇p, and the diffusion term 1
Re
∇2u.

The advection and diffusion terms may either be treated explicitly (at time level n)

or implicitly (at time level n+ 1). Explicit terms are simple and efficient to compute

but they impose time step restrictions to maintain numerical stability. In contrast,

implicit terms are more difficult and costly to compute but they allow larger time

steps.

Treating the advection terms implicitly is very difficult because one must solve

for un+1 in an equation of the form

un+1 − un

∆t
+ un+1 · ∇un+1 = f , (4.1)

which is nonlinear in un+1. Therefore, one must resort to root finding methods such

as Newton-Raphson, which is difficult for multi-dimensional problems. Treating

advection terms explicitly imposes the well known Courant-Friedrichs-Lewy (CFL)

condition which restricts the time step ∆t ≤ Ch/|u|, where h is the MAC cell width

and C is a constant usually on the order of 1. Note, however, that (4.1) is a transport

equation and therefore it doesn’t make a lot of sense to use time steps so large that

fluid skips over multiple grid cells in a single time step. Thus, advection terms are

29

usually treated explicitly when solving the Navier–Stokes equations.

If the Reynolds number is very large, then the flow has structure at extremely

small spatial scales that cannot be resolved, and in this case turbulence modeling

must be used. However, in this thesis we are interested in flows that can be fully

resolved by direct numerical simulation (DNS). Therefore, the diffusion terms must

be treated implicitly in order to avoid the potentially severe ∆t ∼ Reh2 time step

restriction.

The pressure gradient term is somewhat different than the other terms. In partic-

ular, for the incompressible Navier–Stokes equations, the pressure is just a Lagrange

multiplier that enforces the side constraint ∇ · u = 0 on the momentum equation.

The pressure still has physical meaning as a dynamic pressure, but since there is no

time-derivative of the pressure in any of the equations, the pressure cannot simply

be advanced in time like the velocity. One can always introduce a fictitious time

derivative of the pressure, as in the “artificial compressibility” approximation

∇ · u = −δ∂p
∂t
, (4.2)

where the artificial compressibility parameter δ should be small to correctly ap-

proximate unsteady incompressible flows. For stability, the time step must satisfy

∆t ≤ Cδ
1
2h due to high frequency sound waves created by the scheme (see [15]). The

stability restriction with δ � 1 is more severe than the CFL condition. In particu-

lar, if one chooses δ = ∆t then ∆t ≤ C∆t
1
2h ⇒ ∆t ≤ C2h2. Thus, we will not use

explicit methods for computing the pressure in incompressible flows.

With explicit advection, implicit diffusion, and implicit pressure, we are thus

interested in solving the incompressible Navier–Stokes equations in a form such as

un+1 − un

∆t
+ un · ∇un = −∇pn+1 +

1

Re
∇2un+1, ∇ · un+1 = 0. (4.3)

To solve (4.3) directly, one can write it in matrix form,[
I − 1

Re
∇2 ∇

∇· 0

][
un+1

pn+1

]
=

[
−un · ∇un

0

]
, (4.4)

where u and p are huge vectors containing all of the spatially discrete unknowns, I is

the identity matrix, ∇2 is the matrix form of the Laplacian operator, ∇ is the matrix

30

form of the gradient operator, ∇· is the matrix form of the divergence operator, and

0 is the zero matrix (or the zero vector). Since ∇· is the transpose of the ∇ operator,

the above matrix equation can be written as[
A BT

B 0

][
u

p

]
=

[
f

g

]
, (4.5)

where A = I − 1
Re
∇2 is symmetric and positive definite. Matrix equations of this

form are called saddle point problems because the solution is always a saddle point

of the Lagrangian

L(u, p) =
1

2
uTAu− fTu+ (Bu− g)Tp. (4.6)

An overview of saddle point problems can be found in [9]. Saddle-point problems

are difficult to solve efficiently because a saddle point is intuitively more difficult

to find than a minimum. More concretely, the zero in the lower right corner of the

matrix prevents direct methods (Gaussian Elimination) due to pivoting and memory

requirements, and the matrix typically has poor spectral properties which makes

it difficult for iterative solvers. Therefore, we need a different approach to solve

equation (4.3).

4.1 Pressure-Correction Projection Methods

Pressure-correction projection methods aim to approximate the original incompress-

ible Navier–Stokes equations (2.22) by using operator splitting to decouple the in-

compressibility constraint from the momentum equation. The momentum equation

is solved first without the incompressibility constraint (or with an explicitly pre-

dicted pressure), and then the resulting velocity field is “projected” onto a function

space which satisfies the incompressibility condition. Projection schemes are com-

putationally cheaper than solving the full saddle-point problem (4.4). An excellent

overview of projection methods can be found in [31]. For the discussion of pressure

projection methods in this section, we include the advection terms and the time level

at which they should be discretized, but we will not actually discretize the advec-

tion terms since this will be discussed in Section 4.3. We begin by discussing the

original Chorin–Temam projection scheme, which is a first-order accurate scheme.

31

We then discuss second-order projection schemes called “incremental” schemes. We

also include discussion of a “rotational” formulation which improves accuracy of all

projection schemes. We then discuss a more efficient “computational” formulation of

the projection schemes, and we perform an analysis of the accuracy in this context.

Finally, we discuss a recently introduced direction-factorized scheme, which is what

we will ultimately use in this thesis.

4.1.1 Chorin–Temam Scheme

The simplest projection method was originally proposed by Chorin [16] and also

independently by Temam [65]:

ũn+1 − un

∆t
+ ũn · ∇ũn =

1

Re
∇2ũn+1, ũn+1

∣∣
∂Ω

= 0, (4.7)

un+1 − ũn+1

∆t
= −∇pn+1, (4.8)

∇ · un+1 = 0, un+1 · n
∣∣
∂Ω

= 0. (4.9)

The above scheme loosely resembles the original Navier–Stokes equations if one con-

siders the sum of (4.7) and (4.8). The intermediate velocity ũn+1 is the solution

to the momentum equation (4.7) neglecting the pressure contribution, which means

that ũn+1 is not divergence free, but it has the correct “no flux, no slip” boundary

condition. Equations (4.8) and (4.9) can be regarded as the projection step, which

can be understood as decomposing ũn+1 ∈ L2 into a divergence free part un+1 and

an irrotational part ∇pn+1 as in the Helmholtz decomposition theorem. The final

velocity un+1 obtained from (4.8) is divergence free, but it may have nonzero tan-

gential component on ∂Ω. The projection step can be reformulated by taking the

divergence of (4.8) and using (4.9) to give

0−∇ · ũn+1

∆t
= −∇ · ∇pn+1, ⇒ ∇ · ũn+1

∆t
= ∇2pn+1. (4.10)

To use the Chorin–Temam scheme in practice, one solves (4.7) implicitly to obtain

ũn+1, then one solves the Poisson problem (4.10) for pn+1 using boundary condi-

tions ∇pn+1 · n
∣∣
∂Ω

= 0, and finally one uses (4.8) to obtain un+1. The artificially

imposed boundary condition ∇pn+1 ·n
∣∣
∂Ω

= 0 creates increased error in an exponen-

32

tially decaying boundary layer around ∂Ω (see [58]). The Chorin–Temam scheme as

presented above has the following time step error estimates according to [31]:

‖ũ− uexact‖L∞(0,T ;L2(Ω)) + ‖u− uexact‖L∞(0,T ;L2(Ω)) ≤ C∆t,

‖ũ− uexact‖L∞(0,T ;H1(Ω)) + ‖p− pexact‖L∞(0,T ;L2(Ω)) ≤ C∆t
1
2 ,

(4.11)

where ‖·‖L∞(0,T ;L2(Ω)) means the maximum over all time steps of the L2 spatial error,

‖ · ‖L∞(0,T ;H1(Ω)) means the maximum over all time steps of the H1 spatial error, and

‖ ·‖L2(0,T ;L2(Ω)) means the discrete L2 norm over all time steps of the L2 spatial error:

‖f‖L2(0,T ;L2(Ω)) =

√√√√∆t
N∑
n=0

‖fn‖2
L2 , (4.12)

where fn is a field at time step n.

4.1.2 Incremental Scheme

One can increase the time accuracy of the Chorin–Temam scheme in Section 4.1.1

by including an explicitly predicted pressure in the momentum equation to reduce

the splitting error. The Crank–Nicolson incremental scheme is

ũn+1 − un

∆t
+ ũn+ 1

2 · ∇ũn+ 1
2 =

1

Re
∇2 ũn+1 + ũn

2
−∇pn− 1

2 , (4.13)

un+1 − ũn+1

∆t
= −∇

(
pn+ 1

2 − pn− 1
2

)
, (4.14)

∇ · un+1 = 0, (4.15)

where if we take the sum of (4.13) and (4.14), the pressure predictor pn−
1
2 can-

cels out and all terms are approximated at the n + 1
2

time level so that the time

derivative centered around n+ 1
2

is formally second order accurate. The incremental

scheme is named because the projection step (4.14) includes the time-increment of

the pressure rather than the pressure itself, as in the Chorin–Temam scheme. A non-

incremental scheme in Crank–Nicolson form can be obtained by setting pn−
1
2 to zero

in (4.13), (4.14). The boundary conditions and solution procedure are identical for

33

the incremental scheme as for the Chorin–Temam scheme, except that the Poisson

problem (similar to (4.10)) involves the pressure increment rather than the pressure.

In particular, the incremental scheme artificially imposes the boundary condition

∇
(
pn+ 1

2 − pn− 1
2

)
· n
∣∣
∂Ω

= 0, which implies ∇pn+ 1
2 · n

∣∣
∂Ω

is constant in time. The

incremental scheme as presented above has the following time step error estimates

according to [31]:

‖ũ− uexact‖L2(0,T ;L2(Ω)) + ‖u− uexact‖L2(0,T ;L2(Ω)) ≤ C∆t2,

‖ũ− uexact‖L∞(0,T ;H1(Ω)) + ‖p− pexact‖L∞(0,T ;L2(Ω)) ≤ C∆t,
(4.16)

where the above norms are explained in Section 4.1.1.

4.1.3 Rotational Scheme

In order to reduce the error associated with the artificial pressure boundary condition

∇p·n
∣∣
∂Ω

= 0 as explained in Section 4.1.1, one can reformulate any projection scheme

into a so-called “rotational” form by including an additional term in the projection

step as originally proposed in [66]. The rotational version of the incremental scheme

of Section 4.1.2 is:

ũn+1 − un

∆t
+ ũn+ 1

2 · ∇ũn+ 1
2 =

1

Re
∇2 ũn+1 + ũn

2
−∇pn− 1

2 , (4.17)

un+1 − ũn+1

∆t
= −∇

(
pn+ 1

2 − pn− 1
2 +

χ

Re
∇ · ũ

n+1 + ũn

2

)
, (4.18)

∇ · un+1 = 0, (4.19)

where (4.18) contains the additional term χ
Re
∇
(
∇ · ũn+1+ũn

2

)
, and χ = 1. The

rotational scheme is named as such because the vector identity

∇2F = ∇(∇ · F)−∇× (∇× F) (4.20)

is used to decompose the diffusion term, and the∇(∇·F) component is the additional

term that appears in the projection step, where F = 1
2

(ũn+1 + ũn). The rotational

scheme can be intuitively understood as follows. First, take ∇ × (∇×) of equation

34

(4.18) and make use of the vector identity ∇× (∇f) = 0 ∀f to obtain

−∇×
(
∇× ũn+1

)
= −∇×

(
∇× un+1

)
. (4.21)

Then add ∇ (∇ · un+1) (which is zero by (4.19)) to the right-hand side of (4.21) and

use (4.20) to get

−∇×
(
∇× ũn+1

)
= ∇2un+1. (4.22)

Next, taking the sum of (4.17) and (4.18), canceling out ũn+1 and pn−
1
2 , and omitting

the advection terms to be concise, we get

un+1 − un

∆t
=

1

Re
∇2 ũn+1 + ũn

2
−∇

(
pn+ 1

2 +
1

Re
∇ · ũ

n+1 + ũn

2

)
. (4.23)

Using (4.20) to decompose the Laplacian term in (4.23) yields

un+1 − un

∆t
= − 1

Re
∇×

(
∇× ũn+1 + ũn

2

)
−∇

(
pn+ 1

2

)
, (4.24)

and then we can use (4.22) (which is true at time level n as well) to get

un+1 − un

∆t
=

1

Re
∇2 un+1 + un

2
−∇pn+ 1

2 , (4.25)

which, together (4.19), is the Crank–Nicolson discretization for the incompressible

unsteady Stokes equations without operator splitting the pressure term. Thus, the

rotational pressure projection scheme (4.17)–(4.19) implies the equivalent scheme

without operator splitting for the pressure, but with slightly different boundary con-

ditions. The advantage of the rotational scheme vs. the standard incremental scheme

can be seen by taking () ·n
∣∣
∂Ω

of (4.24) and applying the velocity boundary condition

u · n
∣∣
∂Ω

= 0 to show that the artificial pressure boundary condition is

∇pn+ 1
2 · n

∣∣
∂Ω

= − 1

Re
∇×

(
∇× ũn+1 + ũn

2

)
· n
∣∣
∂Ω
. (4.26)

This artificial boundary condition for the pressure contains the velocity as well, so

it doesn’t directly constrain the pressure unlike the artificial boundary condition

∇pn+ 1
2 · n

∣∣
∂Ω

= 0 imposed by the standard incremental scheme in Section 4.1.2.

35

The rotational incremental scheme (4.17)–(4.19) has the following time step error

estimates according to [31]:

‖ũ− uexact‖L2(0,T ;L2(Ω)) + ‖u− uexact‖L2(0,T ;L2(Ω)) ≤ C∆t2,

‖ũ− uexact‖L2(0,T ;H1(Ω)) + ‖u− uexact‖L2(0,T ;H1(Ω)) + ‖p− pexact‖L2(0,T ;L2(Ω)) ≤ C∆t
3
2 ,

(4.27)

where the above norms are explained in Section 4.1.1. Compared to the non-

rotational schemes, the rotational scheme has a higher-order error estimate for the

pressure. The rotational scheme error estimates in [31] are proven for a BDF2 for-

mulation rather than a Crank–Nicolson formulation, but a similar estimate can most

likely be proven for the Crank–Nicolson formulation.

Note: The parameter χ in (4.18) can be set to any real number between 0 and

1, where χ = 0 gives the incremental scheme in standard form, χ = 1 gives the the

incremental scheme in rotational form, and χ ∈ (0, 1) gives a combination of the two.

4.1.4 Computational Formulation

As discussed in Section 4.1.1 and also in [58] and [31], the end-of-step velocity un+1

given by (4.18) is divergence free, but in general it has a nonzero tangential compo-

nent on the domain boundary, i.e., some error in the form of “slip” at the boundary.

The intermediate-step velocity ũn+1 given by (4.17) is not divergence free but it

satisfies the correct no-slip boundary conditions. While there are some arguments

for preferring the divergence free solution u, this solution is only discrete divergence

free, and the discrete divergence is usually only O(h2) at best. Finally, we can see

from (4.27) that both u and ũ satisfy the same accuracy estimate. Therefore, it is

still correct to view ũ as “the velocity” rather than u. We will adopt this viewpoint,

which allows a computationally cheaper formulation where the velocity u can be

completely eliminated from the equations (4.17)–(4.19), as follows. First, define

φn+ 1
2 = pn+ 1

2 − pn− 1
2 +

χ

Re
∇ · ũ

n+1 + ũn

2
, (4.28)

and write (4.18) at time level n to get

un − ũn

∆t
= −∇φn− 1

2 . (4.29)

36

Then add (4.29) to (4.17) to get

ũn+1 − ũn

∆t
+ ũn+ 1

2 · ∇ũn+ 1
2 =

1

Re
∇2 ũn+1 + ũn

2
−∇

(
pn−

1
2 + φn−

1
2

)
. (4.30)

Finally, taking the divergence of (4.18) and substituting equations (4.19) and (4.28)

yields
∇ · ũn+1

∆t
= ∇2φn+ 1

2 . (4.31)

The computational formulation consists of the two equations (4.30) and (4.31) to-

gether with the definition of φ from (4.28). Given ũn, ũn−1, pn−
1
2 , pn−

3
2 , one can

obtain φn−
1
2 from (4.28). Advancing to the next time step involves computing ũn+1,

φn+ 1
2 , pn+ 1

2 by first solving for ũn+1 in (4.30), then solving the Poisson problem (4.31)

for φn+ 1
2 , and finally obtaining pn+ 1

2 from (4.28).

4.1.5 Perturbation Analysis Of The Stokes Equations

Starting from (4.28), (4.30), (4.31), we omit the advection terms and consider the

time-discretized unsteady Stokes equations:

ũn+1 − ũn

∆t
=

1

Re
∇2 ũn+1 + ũn

2
−∇

(
pn−

1
2 + φn−

1
2

)
, (4.32)

∇ · ũn+1

∆t
= ∇2φn+ 1

2 , (4.33)

φn+ 1
2 = pn+ 1

2 − pn− 1
2 +

χ

Re
∇ · ũ

n+1 + ũn

2
. (4.34)

We now take the average of (4.33) and itself written at the previous time level, and

we write each variable as a Taylor expansion about the n+ 1
2

time level,

∇ · ũ
n+1 + ũn

2
=

1

2
∆t∇2

(
φn+ 1

2 + φn−
1
2

)
, (4.35)

∇ ·
(
ũn+ 1

2 +O(∆t2)
)

=
1

2
∆t∇2

(
φn+ 1

2 + φn+ 1
2 −∆t

∂φ

∂t

n+ 1
2

+O(∆t2)

)
, (4.36)

∇ · ũn+ 1
2 = ∆t∇2φn+ 1

2 +O(∆t2). (4.37)

37

Again writing each variable as a Taylor expansion about the n+ 1
2

time level, (4.34)

can be written as

φn+ 1
2 = ∆t

∂p

∂t

n+ 1
2

+O(∆t2) +
χ

Re
∇ ·
(
ũn+ 1

2 +O(∆t2)
)

= ∆t
∂p

∂t

n+ 1
2

+
χ

Re
∇ · ũn+ 1

2 +O(∆t2). (4.38)

We can also Taylor expand the pressure derivative in (4.38) about the n + 3
2

time

level, and substitute equation (4.37) to replace the divergence term,

φn+ 1
2 = ∆t

(
∂p

∂t

n+ 3
2

+O(∆t)

)
+

χ

Re

(
∆t∇2φn+ 1

2 +O(∆t2)
)

+O(∆t2)

= ∆t
∂p

∂t

n+ 3
2

+
χ

Re
∆t∇2φn+ 1

2 +O(∆t2). (4.39)

Equation (4.39) written at the previous time level is

φn−
1
2 = ∆t

∂p

∂t

n+ 1
2

+
χ

Re
∆t∇2φn−

1
2 +O(∆t2). (4.40)

Substituting (4.40) into itself yields

φn−
1
2 = ∆t

∂p

∂t

n+ 1
2

+
χ

Re
∆t∇2

(
∆t
∂p

∂t

n+ 1
2

+
χ

Re
∆t∇2φn−

1
2 +O(∆t2)

)
+O(∆t2)

= ∆t
∂p

∂t

n+ 1
2

+O(∆t2). (4.41)

We now consider (4.32) and again write each variable (except φn−
1
2) as a Taylor

expansion about the n+ 1
2

time level,

∂ũ

∂t

n+ 1
2

=
1

Re
∇2ũn+ 1

2 −∇
(
pn+ 1

2 −∆t
∂p

∂t

n+ 1
2

+ φn−
1
2

)
+O(∆t2) (4.42)

38

Substituting φn−
1
2 from (4.41) into (4.42) cancels out the pressure derivative to yield

∂ũ

∂t

n+ 1
2

=
1

Re
∇2ũn+ 1

2 −∇pn+ 1
2 +O(∆t2). (4.43)

If we now define ε := ∆t and drop all terms containing ε2 or higher while taking

the limit ε→ 0 in equations (4.43), (4.37), (4.38), we obtain the following singularly

perturbed form of the unsteady Stokes equations:

∂uε
∂t

=
1

Re
∇2uε −∇pε, (4.44)

∇ · uε = ε∇2φε, (4.45)

φε = ε
∂pε
∂t

+
χ

Re
∇ · uε. (4.46)

According to [34], the compressibility error of (4.44)–(4.46) satisfies the estimate

‖∇ · uε‖L∞(0,T ;L2(Ω)) ≤ C∆t
3
2 , (4.47)

where the above norm is explained in Section 4.1.1. Equations (4.44)–(4.46) are an

O(∆t2) perturbation of the incompressibility constraint ∇ · u = 0. This is easier to

see if χ = 0, because then we can eliminate φε from (4.44)–(4.46) (remembering that

ε = ∆t) to get

∂uε
∂t

=
1

Re
∇2uε −∇pε, (4.48)

∇ · uε = ∆t2∇2∂pε
∂t
. (4.49)

This O(∆t2) perturbation is much better than the penalty formulation ∇ · u =

−∆t p or the artificial compressibility formulation ∇ · u = −∆t∂p
∂t

, which are both

only O(∆t) perturbations. All of these formulations are better than the Lattice-

Boltzmann method (LBM) which is inherently a method for compressible flow. Even

when the LBM is improved to approximate incompressible flow, the incompressibility

constraint is still only approximated as ∇ · u = −∆t
h
∂p
∂t

(see [36]). As an illustration

of the huge difference between the LBM and our pressure projection method (4.49),

suppose that we want to refine the resolution of a given simulation by halving ∆t

and halving h. The LBM would not gain any improvement to the incompressibility

39

constraint due to the factor ∆t/h, however the pressure projection method (4.49)

would become more incompressible by a factor of four due to the factor ∆t2.

4.1.6 Direction Factorized Pressure “Projection”

A new deviation from the traditional projection paradigm was proposed in [29], in

which ∇2 in (4.45) is replaced by a more general operator. As shown in [29], if an

operator A with domain D(A) and bilinear form a(p, q) :=
∫

Ω
qAp dx satisfies the

following properties:

a(p, q) = a(q, p), ∀ p, q ∈ D(A)

‖∇ · q‖2
L2 ≤ a(q, q), ∀ q ∈ D(A),

(4.50)

then (4.44)–(4.46), with ∇2 in (4.45) replaced by (−A), is stable and consistent

with the unsteady Stokes equations. A relatively efficient choice for A is given by

A := (1 − ∂xx)(1 − ∂yy)(1 − ∂zz), where A has homogeneous Neumann boundary

conditions if the velocity has Dirichlet boundary conditions, and vise-versa. This

choice of A satisfies properties (4.50) provided that the domain Ω is a parallelepiped

(see Lemma 2.2 in [29]). With this choice, (4.45) becomes

∇ · u = −∆t(1− ∂xx)(1− ∂yy)(1− ∂zz)φ, (4.51)

which is identical to

(1− ∂xx)θ = − 1

∆t
∇ · u,

(1− ∂yy)ψ = θ,

(1− ∂zz)φ = ψ,

(4.52)

where θ and ψ are temporary intermediate variables. Equation (4.52) is a computa-

tionally cheap set of one-dimensional problems where φ can be solved for directly, for

example, using the Thomas algorithm for tridiagonal matrices. This allows for a par-

allel implementation of the incompressibility constraint that uses reduced communi-

cation between CPU cores (see [28] for details). Without the direction factorization,

one must solve the computationally expensive three-dimensional Poisson problem

(4.45) for φ, which is typically done using iterative solvers for sparse matrices.

The unsteady Stokes equations (4.32)–(4.34) with the direction factorized pres-

40

sure “projection” as explained above are:

ũn+1 − ũn

∆t
=

1

Re
∇2 ũn+1 + ũn

2
−∇

(
pn−

1
2 + φn−

1
2

)
, (4.53)

∇ · ũn+1

∆t
= −(1− ∂xx)(1− ∂yy)(1− ∂zz)φn+ 1

2 , (4.54)

φn+ 1
2 = pn+ 1

2 − pn− 1
2 +

χ

Re
∇ · ũ

n+1 + ũn

2
, (4.55)

and (4.53)–(4.55) have been proven to be unconditionally stable for χ = 0 in simple-

shaped domains (see Theorem 4.2 of [29]). According to [30], these equations are

proven to be at least O(∆t3/2) accurate in time for the velocity in the L2(Ω) norm.

Several other error bounds are included in [30], but a proof of O(∆t2) accuracy does

not currently exist, despite the fact that all numerical results indicate it is the case.

Also in [30], it is demonstrated numerically that the scheme (4.53)–(4.55) has error

no worse than twice that of the same scheme where the pressure Poisson problem

(4.45) is solved without direction splitting.

This concludes the discussion of pressure projection schemes. The scheme that

we use in this thesis is given by (4.53)–(4.55), however we will also perform direction-

splitting of the momentum equation (4.53), as explained in the following sections.

4.2 Discretizations of the Momentum Equation

In this section, we will consider solving for un+1 in the momentum equation

un+1 − un

∆t
+ u · ∇u = −∇p+

1

Re
∇2un+1, (4.56)

where the terms p and u · ∇u are assumed to be known from previous time levels,

as in (4.30). The problem then boils down to solving the implicit diffusion equation(
1− ∆t

Re
∇2

)
un+1

∆t
=

un

∆t
+ fn+ 1

2 , (4.57)

where fn+ 1
2 = −u·∇u−∇p is some known right-hand side vector evaluated at the n+

1
2

time level. Solving equation (4.57) involves computing
(
1− ∆t

Re
∇2
)−1
(

un

∆t
+ fn+ 1

2

)
,

which is computationally expensive for three-dimensional problems, and one must

41

typically use iterative solvers for sparse matrices. An alternative is to use direction

splitting, or ADI (Alternating Direction Implicit) methods. We now present four

different splitting methods: A simple splitting based on the first-order backward

difference (BDF1), a second-order splitting based on the Crank–Nicolson formulation

called Douglas splitting, a new second-order accurate “modified Douglas” splitting,

and a splitting based on the second-order backward difference (BDF2). The new

“modified Douglas” splitting is what we will use in this thesis.

4.2.1 BDF1 Splitting

A simple splitting scheme that approximates (4.57) is(
1− ∆t

Re
∂xx

)(
1− ∆t

Re
∂yy

)(
1− ∆t

Re
∂zz

)
un+1

∆t
=

un

∆t
+ fn+ 1

2 , (4.58)

which when expanded yields

un+1 − un

∆t
=

1

Re
∇2un+1 + fn+ 1

2 − ∆t

Re2

(
un+1
xxyy + un+1

xxzz + un+1
yyzz

)
+

∆t2

Re3 un+1
xxyyzz. (4.59)

We can see that the factorized operator approximates the momentum equation with

two error terms, ∆t
Re2

(
un+1
xxyy + un+1

xxzz + un+1
yyzz

)
and ∆t2

Re3 un+1
xxyyzz. Since we are considering

viscous flow, it is reasonable to assume that the spatial derivatives of u are bounded

in the fluid domain Ωf . Therefore, the leading error term is of order ∆t, and this

method cannot be better than first-order accurate in time. Note: all splitting schemes

discussed in this thesis work in both two and three dimensions, where the 2D version

can be obtained in the obvious way by omitting the last factor
(
1− ∆t

Re
∂zz
)

in (4.58).

42

4.2.2 Douglas Splitting

An O(∆t2) accurate splitting scheme due to Douglas [20] is(
1− ∆t

2Re
∂xx

)(
1− ∆t

2Re
∂yy

)(
1− ∆t

2Re
∂zz

)(
un+1 − un

∆t

)
=

1

Re
∇2un + fn+ 1

2 ,

(4.60)

which when expanded yields

un+1 − un

∆t
=

1

Re
∇2

(
un+1 + un

2

)
+ fn+ 1

2

− ∆t2

4Re2 (∂xxyy + ∂xxzz + ∂yyzz)

(
un+1 − un

∆t

)
+

∆t3

8Re3∂xxyyzz

(
un+1 − un

∆t

)
.

(4.61)

The Douglas splitting scheme is an approximation to the Crank–Nicolson form of

the diffusion equation,

un+1 − un

∆t
=

1

Re
∇2

(
un+1 + un

2

)
+ fn+ 1

2 , (4.62)

which we also use in (4.13), (4.30). If we assume bounded spatial derivatives, then the

leading error term in (4.61) is of order ∆t2 because the term
(

un+1−un
∆t

)
approximates

∂u
∂t

which is an acceleration and therefore must be bounded for any realistic flow.

Furthermore, on steady flows, ∂u
∂t
→ 0 and the splitting error eventually vanishes

completely. Similar to (4.52), the Douglas splitting (4.60) can be written as:(
ξn+1 − un

∆t

)
=

1

Re
∇2un + fn+ 1

2 ,(
1− ∆t

2Re
∂xx

)(
ηn+1 − un

∆t

)
=

(
ξn+1 − un

∆t

)
,(

1− ∆t

2Re
∂yy

)(
ζn+1 − un

∆t

)
=

(
ηn+1 − un

∆t

)
,(

1− ∆t

2Re
∂zz

)(
un+1 − un

∆t

)
=

(
ζn+1 − un

∆t

)
,

(4.63)

where
(
ξn+1−un

∆t

)
,
(
ηn+1−un

∆t

)
,
(
ζn+1−un

∆t

)
are intermediate expressions defined by

introducing temporary variables ξn+1,ηn+1, ζn+1. By rearranging some terms, (4.63)

43

can also be written as

ξn+1 − un

∆t
=

1

Re
∇2un + fn+ 1

2 ,

ηn+1 − ξn+1

∆t
=

1

2Re
∂xx
(
ηn+1 − un

)
,

ζn+1 − ηn+1

∆t
=

1

2Re
∂yy
(
ζn+1 − un

)
,

un+1 − ζn+1

∆t
=

1

2Re
∂zz
(
un+1 − un

)
.

(4.64)

However, the previous form (4.63) is more efficient numerically because the solution

of each one-dimensional problem is exactly the right-hand side of the next problem.

Proof of stability in 2D

As given in Section 2.2.3 of [60], there is a proof that the Douglas splitting (4.60)

(in 2D only) is unconditionally stable for the diffusion equation even if the spatial

operators in the diffusion terms do not commute. For reference, we present here the

same proof as in [60]. Define the operators

A1 = − 1
Re
∂xx, A2 = − 1

Re
∂yy, A = A1 + A2,

B1 =
(
1 + ∆t

2
A1

)
, B2 =

(
1 + ∆t

2
A2

)
,

(4.65)

which we will assume are positive operators (and thus have inverses) but not nec-

essarily commutative operators. The 2D Douglas splitting with a forcing term f is

B1B2

(
un+1 − un

∆t

)
= −Aun + fn+ 1

2 , (4.66)

or equivalently,

B1B2u
n+1 = B1B2u

n −∆tAun + ∆tfn+ 1
2 . (4.67)

Multiplying by the inverse of B1 yields

B2u
n+1 = B−1

1 (B1B2 −∆tA) un + ∆tB−1
1 fn+ 1

2 , (4.68)

44

and the operator (B1B2 −∆tA) can be expanded as

(B1B2 −∆tA) =
[(

1 + ∆t
2
A1 + ∆t

2
A2 + ∆t2

4
A1A2

)
−∆t (A1 + A2)

]
=
[
1− ∆t

2
A1 − ∆t

2
A2 + ∆t2

4
A1A2

]
=
(
1− ∆t

2
A1

) (
1− ∆t

2
A2

)
. (4.69)

Combining (4.68) and (4.69), we get

B2u
n+1 = B−1

1

(
1− ∆t

2
A1

) (
1− ∆t

2
A2

)
un + ∆tB−1

1 fn+ 1
2

= B−1
1

(
1− ∆t

2
A1

)︸ ︷︷ ︸
C1

(
1− ∆t

2
A2

)
B−1

2︸ ︷︷ ︸
C2

B2u
n + ∆tB−1

1 fn+ 1
2 . (4.70)

Taking a norm (e.g. L2 norm) of (4.70) and using the property of operator norms

‖Lx‖ ≤ ‖L‖‖x‖ for a linear operator L, we get

‖B2u
n+1‖ ≤ ‖C1‖‖C2‖‖B2u

n‖+ ∆t‖B−1
1 fn+ 1

2‖. (4.71)

We can now use Kellogg’s lemma, which says that for any nonnegative operator L,

‖ (1 + L)−1 (1− L) ‖ ≤ 1. (4.72)

Kellogg’s lemma is the operator equivalent of the property
∣∣1−x

1+x

∣∣ ≤ 1 for all scalar

x ≥ 0. The operators C1 and C2 defined by (4.70) satisfy Kellogg’s lemma (noting

that A2 and B2 commute). Therefore, (4.71) implies

‖B2u
n+1‖ ≤ ‖B2u

n‖+ ∆t‖B−1
1 fn+ 1

2‖, (4.73)

and summing (4.73) from n = 0, ..., N causes telescoping cancellation and gives

‖B2u
N+1‖ ≤ ‖B2u

0‖+ ∆t
N∑
n=0

‖B−1
1 fn+ 1

2‖, (4.74)

which is proof of stability in the norm ‖B2(·)‖ = ‖
(
1 + ∆t

2
A2

)
(·)‖, and also in

the standard norm ‖(·)‖ since A2 is a positive operator and therefore ‖uN+1‖ ≤
‖
(
1 + ∆t

2
A2

)
uN+1‖.

45

The above proof guarantees that the Douglas scheme is stable for any domain

geometry and for any positive diffusion operators. However, the proof does not work

in 3D, and our numerical testing (see Section 5.1.3) indicates that the Douglas split-

ting can be unstable when using non-commutative operators such as (3.6) in 3D. The

Douglas scheme has been proven stable in 3D only in simple-shaped (parallelepiped)

domains when at least two of the diffusion operators commute.

4.2.3 Modified Douglas Splitting

In order to address the stability issue of the Douglas splitting scheme in 3D, we

invented a new “modified Douglas” splitting scheme,

ξn+1 − un

∆t
=

1

Re

(
∂xx η

n + ∂yy ζ
n + ∂zzu

n
)

+ fn+ 1
2 ,

ηn+1 − ξn+1

∆t
=

1

2Re
∂xx

(
ηn+1 − ηn

)
,

ζn+1 − ηn+1

∆t
=

1

2Re
∂yy

(
ζn+1 − ζn

)
,

un+1 − ζn+1

∆t
=

1

2Re
∂zz
(
un+1 − un

)
.

(4.75)

where if the boxed variables are replaced by un then the original Douglas scheme

(4.64) is recovered. The motivation for making the above modification is the fol-

lowing. Operators such as (3.6) can be non-commutative and lopsided because of

the term (ubL − ui)/γL when γL is small. In the original Douglas scheme (4.64), the

end-of-step field un+1 is obtained by inverting the potentially non-commutative and

lopsided operator
(
1− ∆t

2Re
∂zz
)
, so the un+1 field is guaranteed to be “smooth” with

respect to this operator in the z direction, i.e., (ubL − ui)/γL is controlled in some

sense. However, un+1 does not in general have the same degree of discrete regularity

in the x and y directions because these directions are not treated implicitly at the

last step when solving the z directional problem. If γL is small, then applying an ex-

plicit operator containing the term (ubL−ui)/γL to a field where ubL and ui differ by

moderate amount will generate an extremely large value. To prevent this situation,

the modified Douglas scheme (4.75) pairs each explicit time level n operator with

the sub-step field that was computed with the matching implicit operator. While we

could not obtain a proof of unconditionally stability of the modified Douglas scheme,

46

numerical evidence suggests that it is always stable for the diffusion equation (see

Section 5.1.3). More discussion of the modified Douglas scheme, and how it relates

to a class of schemes known in the Russian literature as “vectorial additive schemes”,

can be found in [4].

The modified Douglas scheme is second order consistent in time, which can be

seen by eliminating the intermediate variables ξ,η, ζ as follows. First, sum together

all four equations of (4.75) to obtain

un+1 − un

∆t
=

1

2Re

[
∂xx

(
ηn+1 + ηn

)
+ ∂yy

(
ζn+1 + ζn

)
+ ∂zz

(
un+1 + un

)]
+fn+ 1

2 .

(4.76)

For the remainder of this algebra we drop the box notation because it will cease to

have meaning. Solving the third equation of (4.75) for ηn+1 yields

ηn+1 = ζn+1 − ∆t

2Re
∂yy
(
ζn+1 − ζn

)
. (4.77)

Adding (4.77) to itself written at the previous time level is

ηn+1 + ηn = ζn+1 + ζn − ∆t

2Re
∂yy
(
ζn+1 − ζn−1

)
, (4.78)

which can be substituted into (4.76) to eliminate η, giving

un+1 − un

∆t
=

1

2Re

[
∂xx
(
ζn+1 + ζn

)
− ∆t

2Re
∂xxyy

(
ζn+1 − ζn−1

)
+ ∂yy

(
ζn+1 + ζn

)
+ ∂zz

(
un+1 + un

)]
+ fn+ 1

2 .

(4.79)

Solving the fourth equation of (4.75) for ζn+1 yields

ζn+1 = un+1 − ∆t

2Re
∂zz
(
un+1 − un

)
, (4.80)

and (4.80) together with itself written at two previous time levels can be used to

47

produce the following two equations:

ζn+1 + ζn = un+1 + un − ∆t

2Re
∂zz
(
un+1 − un−1

)
,

ζn+1 − ζn−1 = un+1 − un−1 − ∆t

2Re
∂zz
(
un+1 − un−1 − un + un−2

)
.

(4.81)

Finally, we can eliminate ζ by substituting (4.81) into (4.79) to get

un+1 − un

∆t
=

1

2Re

[
∂xx

(
un+1 + un − ∆t

2Re
∂zz
(
un+1 − un−1

))
− ∆t

2Re
∂xxyy

(
un+1 − un−1 − ∆t

2Re
∂zz
(
un+1 − un−1 − un + un−2

))
+ ∂yy

(
un+1 + un − ∆t

2Re
∂zz
(
un+1 − un−1

))
+ ∂zz

(
un+1 + un

)]
+ fn+ 1

2 ,

(4.82)

which simplifies to

un+1 − un

∆t
=

1

Re
∇2

(
un+1 + un

2

)
− ∆t2

2Re2 (∂xxyy + ∂xxzz + ∂yyzz)

(
un+1 − un−1

2∆t

)
+

∆t4

4Re3∂xxyyzz

[
1

2∆t

(
un+1 − un

∆t
− un−1 − un−2

∆t

)]
+ fn+ 1

2 ,

(4.83)

which we can see is an approximation to the Crank–Nicolson form of the diffusion

equation (4.62). If we assume bounded spatial derivatives, then the leading error

term is of order ∆t2 since the term
(

un+1−un−1

2∆t

)
is a “leapfrog” approximation to

∂u
∂t

, which is an acceleration and therefore must be bounded for any realistic flow.

The next error term is of order ∆t4 since the term
[

1
2∆t

(
un+1−un

∆t
− un−1−un−2

∆t

)]
is an

approximation to ∂2u
∂t2

, which is again a physical quantity that is typically bounded.

Comparing (4.83) to (4.61), we can see that the leading error term of the modified

Douglas scheme is twice as big as the leading error term of the original Douglas

scheme, but they are both O(∆t2).

By re-arranging some terms in (4.75), we can get the computational form of the

48

modified Douglas scheme,

ξn+1 = un + ∆t

[
1

Re

(
∂xx η

n + ∂yy ζ
n + ∂zzu

n
)

+ fn+ 1
2

]
,(

1− ∆t

2Re
∂xx

)
ηn+1 = ξn+1 − ∆t

2Re
∂xx η

n ,(
1− ∆t

2Re
∂yy

)
ζn+1 = ηn+1 − ∆t

2Re
∂yy ζ

n ,(
1− ∆t

2Re
∂zz

)
un+1 = ζn+1 − ∆t

2Re
∂zzu

n.

(4.84)

Compared to the original Douglas scheme in its computational form (4.63), the

computational form of the modified Douglas scheme is about 5% less efficient due

to the additional loops required for the right-hand side. Also, six additional storage

vectors are required in 3D for the terms ηnxx, ζ
n
yy. However, unlike (4.63) which

computes un+1 − un, the computational form (4.84) computes un+1 directly, which

has several advantages. The first is that un is not needed to recover un+1 at the final

step, so the memory of un can be used to store temporary variables such as the tri-

diagonal matrix associated with solving the implicit one-dimensional problems. This

allows a memory savings equivalent to three vectors, which means that the modified

Douglas scheme really only requires three additional vectors of storage, not six. Also,

the whole point of the modified Douglas scheme is to be able to use boundary fitted

stencils, and the number of modified stencils that need to be stored at a time is

significantly reduced if ηnxx, ζ
n
yy,u

n
zz are stored. In fact, when grid stencils are stored

rather than recomputed (which can be expensive), the formulation (4.84) is actually

more memory efficient than the formulation (4.63). The second advantage of the

computational form (4.84) is that for problems where the shape of the fluid domain

changes in time (which is the case for particulate flows), boundary conditions for

the implicit one-dimensional problems are much easier to specify for the Eulerian

velocity un+1 than for the Eulerian velocity time-difference un+1 − un. Even for a

boundary that moves with constant velocity, we cannot simply impose the Eulerian

condition un+1 − un = 0 because each grid point may be outside Ωf at time level n

but inside Ωf at time level n+ 1 (and vise versa).

The factorization order in which the operators ∂xx, ∂yy, ∂zz appear in (4.84) is

arbitrary — it is equally valid to solve the one directional problems in the y direction

49

first, then the x direction, then the z direction, for example. In practice, it is best

to solve for u = (u, v, w) such that the x direction problem for u is solved last, the y

direction problem for v is solved last, and the z direction problem for w is solved last.

This has two benefits: First, because the implicit problem for u in the x direction is

solved last, u will be smoother in the x direction for computing ux, which is required

for the divergence. A similar property is also true for the terms vy and wz in the

divergence. Second, in the context of the MAC grid, it allows easier enforcement

of most boundary conditions on the end-of-step velocity field. For example, solving

for w in the z direction last allows direct enforcement of boundary conditions of the

form w
∣∣
z=0,L

= 0 or ∂w
∂z

∣∣
z=0,L

= 0 on the final solution.

When the associated spatial operators are time-dependent, the modified Douglas

scheme is stable (by extensive numerical evidence only) in the following form,

ξn+1 = un + ∆t

[
1

Re

(
∂nxx η

n + ∂nyy ζ
n + ∂nzzu

n
)

+ fn+ 1
2

]
,(

1− ∆t

2Re
∂n+1
xx

)
ηn+1 = ξn+1 − ∆t

2Re
∂nxx η

n ,(
1− ∆t

2Re
∂n+1
yy

)
ζn+1 = ηn+1 − ∆t

2Re
∂nyy ζ

n ,(
1− ∆t

2Re
∂n+1
zz

)
un+1 = ζn+1 − ∆t

2Re
∂nzzu

n,

(4.85)

where ∂n indicates the spatial operator at time level n, and again the boxed variables

can be replaced by un to obtain the original Douglas scheme. For time-dependent

spatial operators, it becomes difficult to argue rigorously that the Douglas or modified

Douglas splitting schemes maintain O(∆t2) accuracy because (4.85) cannot be put

into the form (4.83) without involving terms such as ∂n+1
zz un where the time level

of the spatial operator does not match the time level of the field, and the error

associated with these terms is unclear. The BDF1 splitting (4.58) does not suffer

from the same issue since spatial operators are only applied to fields at time level

n + 1. Therefore, the modified Douglas splitting (4.85) can be shown to be at

least consistent by comparing numerical solutions to those obtained using the BDF1

splitting. Numerical results in Section 9.1 confirm that the modified Douglas and

BDF1 splitting converge to the same solution. In fact, the modified Douglas scheme

converges faster, suggesting better than O(∆t) even when Ωf is time dependent.

50

Stability of Modified Douglas Splitting

No proof of stability exists for either the modified or original Douglas schemes in 3D

if the diffusion operators do not commute. In this section, we prove stability of the

modified Douglas splitting (4.83) in the special case where Ωf = Ω is a 2D or 3D box

domain with homogeneous Dirichlet boundary conditions on ∂Ω, zero right-hand side

forcing term f , and we will assume that the diffusion operators commute. We use

the standard notation 〈a, b〉 =
∫
Ω

ab dx for the L2 inner product with corresponding

norm ‖a‖ =
√
〈a, a〉. We will make use of the identity

2〈a, a− b〉 = ‖a‖2 + ‖a− b‖2 − ‖b‖2, (4.86)

which can be proven as follows:

2〈a, a− b〉 =

∫
(2a)(a− b) dx

=

∫
(a− b)2 dx−

∫
(a− b)2 dx +

∫
(2a)(a− b) dx

=

∫
(a− b)2 dx +

∫
(a+ b)(a− b) dx

=

∫
(a− b)2 dx +

∫
a2 dx−

∫
b2 dx

= ‖a− b‖2 + ‖a‖2 − ‖b‖2 �

(4.87)

Since all vector components of (4.83) are decoupled, it is sufficient to prove stability

for u instead of u. To be concise in writing down many terms, we will denote

derivatives using subscript notation. For example, we will allow the derivative ∂u
∂y

to

be denoted by either uy or ux2 , where (x, y, z) = (x1, x2, x3). We will also use the

notation xi, where xi=0 mod 3 = x, xi=1 mod 3 = y, and xi=2 mod 3 = z.

A useful property of box domains Ω = [0, 1]3 with u = 0 on the boundary is

that the tangential derivatives on the boundary are zero, i.e., uy = uz = 0 whenever

x = 0, 1, ux = uz = 0 whenever y = 0, 1, and ux = uy = 0 whenever z = 0, 1.

Combined with the assumption that all spatial derivatives commute, the following

integration-by-parts formulas hold:

51

Integration-by-parts formula 1:

〈u, vxixi〉 = uvxi
∣∣
xi=0,1

− 〈uxi , vxi〉 = −〈uxi , vxi〉, (4.88)

Integration-by-parts formula 2:

〈u, vxixixi+1xi+1
〉 = 〈u, vxixi+1xi+1xi〉 = uvxixi+1xi+1

∣∣
xi=0,1

− 〈uxi , vxixi+1xi+1
〉

= −〈uxi , vxixi+1xi+1
〉 = −uxivxixi+1

∣∣
xi+1=0,1

+ 〈uxixi+1
, vxixi+1

〉
= 〈uxixi+1

, vxixi+1
〉, (4.89)

Integration-by-parts formula 3:

〈u, vxxyyzz〉 = 〈u, vxyzzyx〉 = uvxyzzy
∣∣
x=0,1

− 〈ux, vxyzzy〉 = −〈ux, vxyzzy〉
= −uxvxyzz

∣∣
y=0,1

+ 〈uxy, vxyzz〉 = 〈uxy, vxyzz〉
= uxyvxyz

∣∣
z=0,1

− 〈uxyz, vxyz〉 = −〈uxyz, vxyz〉. (4.90)

The modified Douglas scheme (4.83) multiplied by ∆t and written using the uxi
notation is

un+1 − un =
∆t

2Re

3∑
i=1

(
un+1
xixi

+ unxixi
)
− ∆t2

4Re2

3∑
i=1

(
un+1 − un−1

)
xixixi+1xi+1

+
∆t3

8Re3

[(
un+1 − un

)
−
(
un−1 − un−2

)]
xxyyzz

.

(4.91)

Applying the inner product 〈un+1 − un, (·)〉 to (4.91) yields

‖un+1 − un‖2 =
∆t

2Re

3∑
i=1

〈un+1 − un,
(
un+1 + un

)
xixi
〉 (4.92)

− ∆t2

4Re2

3∑
i=1

〈un+1 − un,
(
un+1 − un + un − un−1

)
xixixi+1xi+1

〉 (4.93)

+
∆t3

8Re3 〈un+1 − un,
[(
un+1 − un

)
−
(
un−1 − un−2

)]
xxyyzz

〉. (4.94)

52

Applying the integrations by parts formulas (4.88)–(4.90) to lines (4.92)–(4.94) re-

spectively, we get

‖un+1−un‖2 = − ∆t

2Re

3∑
i=1

〈un+1
xi
− unxi , un+1

xi
+ unxi〉

− ∆t2

4Re2

3∑
i=1

〈un+1
xixi+1

− unxixi+1
,
(
un+1
xixi+1

− unxixi+1

)
+
(
unxixi+1

− un−1
xixi+1

)
〉

− ∆t3

8Re3 〈un+1
xyz − unxyz,

(
un+1
xyz − unxyz

)
−
(
un−1
xyz − un−2

xyz

)
〉. (4.95)

Then, using 〈a− b, a+ b〉 = ‖a‖2 − ‖b‖2 and the identity (4.86), we have

‖un+1 − un‖2 = − ∆t

2Re

3∑
i=1

(
‖un+1

xi
‖2 − ‖unxi‖2

)
(4.96)

− ∆t2

8Re2

3∑
i=1

(
‖un+1

xixi+1
− unxixi+1

‖2 + ‖un+1
xixi+1

− un−1
xixi+1

‖2 − ‖unxixi+1
− un−1

xixi+1
‖2
)

− ∆t3

16Re3

(
‖un+1

xyz − unxyz‖2 + ‖
(
un+1
xyz − unxyz

)
−
(
un−1
xyz − un−2

xyz

)
‖2 − ‖un−1

xyz − un−2
xyz ‖2

)
.

If we sum equation (4.96) from n = 0, ..., N , several terms disappear in a telescoping

sum and we get

N∑
n=0

‖un+1 − un‖2 +
∆t

2Re

3∑
i=1

‖uN+1
xi
‖2

+
∆t2

8Re2

3∑
i=1

(
‖uN+1

xixi+1
− uNxixi+1

‖2 +
N∑
n=0

‖un+1
xixi+1

− un−1
xixi+1

‖2

)

+
∆t3

16Re3

(
‖uN+1

xyz − uNxyz‖2 + ‖uNxyz − uN−1
xyz ‖2 +

N∑
n=0

‖
(
un+1
xyz − unxyz

)
−
(
un−1
xyz − un−2

xyz

)
‖2

)

=
∆t

2Re

3∑
i=1

‖u0
xi
‖2 +

∆t2

8Re2

3∑
i=1

‖u0
xixi+1

− u−1
xixi+1

‖2

+
∆t3

16Re3

(
‖u0

xyz − u−1
xyz‖2 + ‖u−1

xyz − u−2
xyz‖2

)
.

(4.97)

53

The stability estimate (4.97) bounds several norms of u on the left hand side by

the initial conditions u0, u−1, u−2 on the right-hand side. Although (4.97) does

not explicitly bound ‖uN+1‖, ‖uN+1‖ is still bounded by initial conditions because

‖uN+1‖2 − ‖u0‖2 .
N∑
n=0

‖un+1 − un‖2 for the same reason that |aN+1| − |a0| ≤
N∑
n=0

|an+1 − an| for a sequence of real numbers an. Also, the definition of stabil-

ity requires only that for all time steps N , there exists a constant CN (which can

depend on N) such that ‖uN‖ ≤ CN‖u0‖. Since the modified Douglas scheme is both

stable and consistent, the Lax equivalence theorem implies that it is also convergent.

Note: The original Douglas splitting (4.61) can be proven stable with the same

assumptions as above using a similar proof. The only significant differences are that

one applies the inner product 〈un+1, (·)〉 instead of 〈un+1 − un, (·)〉, and as a result

one also obtains an explicit bound on ‖uN+1‖.

4.2.4 BDF2 Splitting

It is straightforward to change the original Douglas splitting from Crank–Nicolson

to some other linear multistep method. For example,(
1− 2∆t

3Re
∂xx

)(
1− 2∆t

3Re
∂yy

)(
1− 2∆t

3Re
∂zz

)(3
2
un+1 − 4

2
un + 1

2
un−1

∆t

)
=

1

Re
∇2

(
4

3
un − 1

3
un−1

)
+ fn+1

(4.98)

is an O(∆t2) splitting based on the BDF2 (second-order backward difference) time

discretization. Just as the original Douglas scheme was modified in Section 4.2.3,

so to could the BDF2 splitting be modified in the same way. However, we do not

use this splitting because it requires an extra velocity time level to be stored and

differentiated, which is a significant cost. If one is considering the BDF2 formulation,

then one should also consider the “vectorial additive schemes” referred to in [4], since

these schemes are similar in complexity to the BDF2 splitting and some of them

have been proven to be stable in complex-shaped domains with non-commutative

operators.

54

Figure 4.1: Stability regions in the complex plane for the 1st, 2nd, and 3rd order
Adams–Bashforth methods when applied to the linear advection problem u′ = λu for
complex valued λ. The 1st order scheme has the largest stability region, |1+∆tλ| ≤ 1.
The 3rd order scheme has the smallest stability region. The maximum CFL number
is approximately half the width of the stability region measured along the real axis.

4.3 Advection Terms

In this section, we consider time discretizations of the advection terms that appears

in the Crank–Nicolson form of the Navier–Stokes equations (4.30). In particular,

for time derivative un+1−un
∆t

, we wish to approximate un+ 1
2 · ∇un+ 1

2 . Usually a fully

explicit approximation based only on the velocities un,un−1,un−2, etc. is used for

the advection terms, as explained in the beginning of this chapter. Such methods are

called Adams–Bashforth methods, which are a subset of linear multistep methods.

Since the diffusion and pressure terms are only accurate to second order in time,

it makes sense to use the second order Adams–Bashforth method, which uses the

second order extrapolation

un+ 1
2 · ∇un+ 1

2 ≈ 3

2
un · ∇un − 1

2
un−1 · ∇un−1. (4.99)

However, the first or third order Adams–Bashforth method could also be used. The

first-, second-, and third-order methods impose the approximate CFL time step

55

restrictions ∆t ≤ 1.0h/|u|, ∆t ≤ 0.5h/|u|, and ∆t ≤ 0.3h/|u| respectively. This

can be seen by examining the well known stability regions of the Adams–Bashforth

methods for the linear advection equation in Figure 4.1. For a given velocity field

u = (u, v, w), we will sometimes refer to an approximate “CFL number”, which we

define as

CFL number = max
Ωf

{
u

∆t

hx
, v

∆t

hy
, w

∆t

hz

}
. (4.100)

For the second order Adams–Bashforth discretization, the scheme may become un-

stable if the CFL number rises significantly above 0.5.

Instead of a fully explicit scheme for the advection, a partially implicit discretiza-

tion can be used, such as the second-order approximation

un+ 1
2 · ∇un+ 1

2 ≈ 1

2
un · ∇un+1 +

1

2
un+1 · ∇un. (4.101)

This can be proven to be second-order accurate in time by using a Taylor expansion

about the n+ 1
2

time level:

un · ∇un+1 =

(
un+ 1

2 − ∆t

2
u
n+ 1

2
t +O(∆t2)

)
· ∇
(

un+ 1
2 +

∆t

2
u
n+ 1

2
t +O(∆t2)

)
= un+ 1

2 · ∇un+ 1
2 +

∆t

2
un+ 1

2 · ∇u
n+ 1

2
t − ∆t

2
u
n+ 1

2
t · ∇un+ 1

2 +O(∆t2),

(4.102)

un+1 · ∇un =

(
un+ 1

2 +
∆t

2
u
n+ 1

2
t +O(∆t2)

)
· ∇
(

un+ 1
2 − ∆t

2
u
n+ 1

2
t +O(∆t2)

)
= un+ 1

2 · ∇un+ 1
2 − ∆t

2
un+ 1

2 · ∇u
n+ 1

2
t +

∆t

2
u
n+ 1

2
t · ∇un+ 1

2 +O(∆t2).

(4.103)

We can now see that all terms of order ∆t cancel out when taking the sum of (4.102)

and (4.103). The partially implicit formulation (4.101) has two advantages. The

first is that compared to (4.99), we can save memory by not needing to store un−1.

The second is that numerical testing indicates (4.101) maintains stability for CFL

numbers several times larger than (4.99). Also, since the partially implicit terms are

linear in un+1, the operator for un+1 can be inverted by solving a variable-coefficient

tridiagonal linear system in each dimension. This can be incorporated naturally into

our numerical scheme since we are already solving variable-coefficient tridiagonal

56

Ω f Ω

∂Ωf

Figure 4.2: Complex-shaped fluid domain Ωf (gray region) embedded in a simple
box domain Ω (gray region ∪ white regions). The boundary ∂Ωf is indicated.

linear systems for the boundary-fitted diffusion operators. Therefore, the implicit

advection operator (4.101) should be preferred whenever boundary fitted diffusion

operators are used. For all of the numerical results in this thesis, however, we use

the second-order Adams–Bashforth scheme.

4.4 Complete Navier–Stokes Scheme

In this section, we combine the splitting methods discussed in this chapter to produce

a complete scheme for solving the incompressible Navier–Stokes equations (2.22) in

a domain of a complex time-dependent shape. For numerical calculation, we embed

the complex-shaped domain Ωf within a larger rectangular domain Ω = [0, X] ×
[0, Y]× [0, Z], as in Figure 4.2. We use the direction-factorized pressure “projection”

scheme (4.53)–(4.55) together with the modified Douglas splitting (4.85), and we

use the explicit second-order Adams–Bashforth time-discretization of the advection

terms given by (4.99). The momentum equation is solved only in the fluid domain Ωf

using boundary conditions on ∂Ωf , but the pressure is extended and solved in the

entire box domain Ω in order to guarantee that the properties (4.50) are satisfied. The

scheme can use either the standard or boundary-fitted spatial operators in Chapter 3,

and this makes the scheme either O(h) or O(h2) accurate respectively. The complete

scheme is given as follows:

57

Initial Conditions: Given an initial velocity field u0 and initial pressure field p0,

set u−1 = u0 = u0, set p−
1
2 = p0, and set φ−

1
2 = 0. Then for all n = 0..N ,

Pressure predictor: The pressure at time n+ 1
2

is predicted in Ω as

p∗,n+ 1
2 = pn−

1
2 + φn−

1
2 . (4.104)

Velocity update: Solve for un+1 in Ωn+1
f using

ξn+1 = un + ∆t

[
−∇p∗,n+ 1

2 −
(

3

2
un · ∇un − 1

2
un−1 · ∇un−1

)
+

1

Re

(
∂nxx η

n + ∂nyy ζ
n + ∂nzzu

n
)

+ fn+ 1
2

]
,(

1− ∆t

2Re
∂n+1
xx

)
ηn+1 = ξn+1 − ∆t

2Re
∂nxx η

n ,(
1− ∆t

2Re
∂n+1
yy

)
ζn+1 = ηn+1 − ∆t

2Re
∂nyy ζ

n ,(
1− ∆t

2Re
∂n+1
zz

)
un+1 = ζn+1 − ∆t

2Re
∂nzzu

n,

(4.105)

where boundary conditions on ∂Ωn+1
f are used for each one-dimensional problem.

Incompressibility penalty step: Solve for φn+ 1
2 in Ω using

(1− ∂xx)θ = − 1

∆t
∇ · un+1,

(1− ∂yy)ψ = θ,

(1− ∂zz)φn+ 1
2 = ψ,

(4.106)

where Neumann/Dirichlet boundary conditions are used on ∂Ω whenever the velocity

has Dirichlet/Neumann boundary conditions, respectively.

Pressure update: The pressure at time n+ 1
2

is corrected in Ω to be

pn+ 1
2 = pn−

1
2 + φn+ 1

2 − χ

2Re
∇ · (un+1 + un). (4.107)

The above scheme has the usual CFL time step restriction for the Navier–Stokes

equations, and if χ = 0 then numerical evidence suggests that the scheme is uncon-

ditionally stable for the Stokes equations.

58

Chapter 5

Convergence Rates Of The

Numerical Schemes

In this chapter, we use the following discrete spatial norms based on the cell centers

x i+ 1
2
, j+ 1

2
, k+ 1

2
for uniform MAC grids:

‖p‖L∞(Ω) = max
i,j,k

∣∣∣p i+ 1
2
, j+ 1

2
, k+ 1

2

∣∣∣ , ‖p‖L2(Ω) =

√∑
i,j,k

Vijkp2
i+ 1

2
, j+ 1

2
, k+ 1

2

, (5.1)

‖u‖L∞(Ω) = max
i,j,k
‖u i+ 1

2
, j+ 1

2
, k+ 1

2
‖, ‖u‖L2(Ω) =

√∑
i,j,k

Vijk‖u i+ 1
2
, j+ 1

2
, k+ 1

2
‖2,

(5.2)

where Vijk is the volume of the MAC cell with centroid x i+ 1
2
, j+ 1

2
, k+ 1

2
and ‖ · ‖ is a

vector norm at the cell centroid. We define ‖ · ‖ by

‖ui+ 1
2
,j+ 1

2
,k+ 1

2
‖ =

√(|u−|+ |u+|
2

)2

+

(|v−|+ |v+|
2

)2

+

(|w−|+ |w+|
2

)2

, (5.3)

u− = u i, j+ 1
2
, k+ 1

2
, u+ = u i+1, j+ 1

2
, k+ 1

2
,

v− = v i+ 1
2
, j, k+ 1

2
, v+ = v i+ 1

2
, j+1, k+ 1

2
,

w− = w i+ 1
2
, j+ 1

2
, k , w+ = w i+ 1

2
, j+ 1

2
, k+1 .

(5.4)

59

The above norms are taken over the entire extended domain Ω, i.e., the set of discrete

points over which the norm is computed is exactly the set of all MAC cell centers.

We also define similar norms on a subset of these points:

Define ‖p‖L∞(Ωf) and ‖p‖L2(Ωf) to be identical to (5.1) except that if a given MAC

cell has all of its velocity nodes (four in 2D, six in 3D) outside Ωf , then the point at

the center of that MAC cell is excluded when calculating the norm.

Define ‖p‖L∞(Ωf\∂Ωf) and ‖p‖L2(Ωf\∂Ωf) to be identical to (5.1) except that if a given

MAC cell has any of its velocity nodes outside Ωf , then the point at the center of

that MAC cell is excluded when calculating the norm.

Note: Since the discrete divergence is stored at pressure points, it uses the same

norm as the pressure. Also, any norm involving a pressure field is computed only

after subtracting off the average value from each field involved.

While it could be useful to compute time-based norms analogous to the semi-

discrete norms used at the end of Section 4.1.1, we do not do this. In particular, we

simply compute the spatial error “instantaneously” at a particular time step rather

than an average spatial error over a specified time interval.

5.1 Diffusion Equation

In this section, we present numerical results that show that the modified Douglas

scheme (4.84) is second-order accurate in both time and space when solving the

diffusion equation (heat equation),

∂u

∂t
= ∇2u+ f, (5.5)

in a complex-shaped domain where the discrete non-commutative boundary-fitted

spatial operators (3.6) are used. All tests use a uniform MAC grid where h is the

width of each MAC cell.

60

5.1.1 Spatial Convergence

To show spatial accuracy, we choose the domain Ωf to be a cube [0, 1]× [0, 1]× [0, 1]

with a spherical hole of radius 0.25 removed from the center of the cube. We use a

manufactured solution,
uexact = sin(x) sin(y + z),

f = 3 sin(x) sin(y + z),
(5.6)

which is an exact solution of the 3D diffusion equation (5.5). The numerical so-

lution u is initialized to uexact at t = 0, and uexact is used as boundary conditions

throughout the simulation. The solver is run with ∆t = 0.1 for t ∈ [0, 100], and

the error at t = 100 using various grid resolutions are presented in Table 5.1. The

results clearly indicate a second-order spatial convergence rate. The convergence

rate between two grid resolutions h1, h2 with associated errors e1, e2 is defined as

log(e1/e2)/ log(h1/h2), where h2 < h1.

h ‖u− uexact‖L2(Ω) rate ‖u− uexact‖L∞(Ω) rate
1/10 3.172e-04 7.608e-04
1/20 8.560e-05 1.89 2.113e-04 1.85
1/40 2.131e-05 2.01 5.547e-05 1.93
1/80 5.347e-06 1.99 1.420e-05 1.97
1/160 1.336e-06 2.00 3.714e-06 1.94

Table 5.1: Spatial convergence for the 3D diffusion equation.

Since the manufactured solution (5.6) is smooth across the domain boundary, we

also check spatial accuracy on a problem whose solution is not smooth across the

boundary of the domain. One such problem is the 2D Taylor–Couette laminar flow

(See Appendix A). If we prescribe the pressure p to be identically zero everywhere

for all time, then the Stokes equations (2.26) become a vectorial diffusion equation

with analytical solution uexact given in Appendix A, and the source term f in (5.5)

is zero. We solve this problem with R1 = 0.25, R2 = 0.5, ω1 = 1, ω2 = −1, Re = 1,

and both cylinders centered in the domain [0, 1]× [0, 1]. Boundary fitted stencils are

used to fit the fluid domain to the inner and outer cylinders. The numerical solution

u is initialized to uexact at t = 0, and the solver is run using ∆t = 0.1 for t ∈ [0, 100].

The error at t = 100 using various grid resolutions are presented in Table 5.2, and

the results clearly indicate second-order spatial convergence.

61

h ‖u− uexact‖L2(Ω) rate ‖u− uexact‖L∞(Ω) rate
1/10 3.159e-03 7.624e-03
1/20 1.020e-03 1.63 3.298e-03 1.21
1/40 2.556e-04 2.00 1.144e-03 1.53
1/80 6.312e-05 2.02 3.352e-04 1.77
1/160 1.559e-05 2.02 9.032e-05 1.89
1/320 3.847e-06 2.02 2.317e-05 1.96
1/640 9.545e-07 2.01 5.672e-06 2.03

Table 5.2: Spatial convergence for Taylor–Couette p = 0 diffusion equation.

5.1.2 Temporal Convergence

To show time accuracy, we solve the problem (5.5) in the same domain (cube with

spherical hole) as in the previous section, and we use the manufactured solution

uexact = sin(x+t) sin(y+z) with source term f = [cos(x+ t) + 3 sin(x+ t)] sin(y+z).

A uniform grid resolution h = 1/128 and various time step sizes are used to solve the

problem for t ∈ [0, 10]. Table 5.3 shows the error at t = 10, and the results indicate

at least second-order temporal convergence.

∆t ‖u− uexact‖L2(Ω) rate ‖u− uexact‖L∞(Ω) rate
1/2 5.480e-02 1.293e-01
1/4 1.879e-02 1.54 5.609e-02 1.20
1/8 4.006e-03 2.23 1.345e-02 2.06
1/16 9.047e-04 2.15 3.396e-03 1.99
1/32 2.135e-04 2.08 8.383e-04 2.02
1/64 4.998e-05 2.10 1.953e-04 2.10
1/128 1.018e-05 2.30 4.289e-05 2.19
1/256 1.812e-06 2.49 7.539e-06 2.51

Table 5.3: Temporal convergence for the 3D diffusion equation.

One property of the modified Douglas scheme is a time step scale oscillatory be-

haviour of very small magnitude. Table 5.4 shows how the error typically changes

each time step when using the modified Douglas and original Douglas schemes to

resolve the manufactured solution (5.6) without boundary fitted operators. Though

62

the actual error is the same for both schemes, the oscillatory behaviour of the modi-

fied Douglas scheme significantly increases the time taken to reach a strict numerical

steady state. However, the oscillatory behaviour goes away if one uses a sufficiently

small time step, and then the modified Douglas scheme reaches a steady state at the

exact same rate as the original Douglas scheme.

Modified Douglas Original Douglas
t ‖u− uexact‖L2(Ω) change ‖u− uexact‖L2(Ω) change

1.0 2.94948e-06 -7.6362e-07 3.33613e-06 7.1455e-09
1.1 3.69249e-06 7.4301e-07 3.34202e-06 5.8883e-09
1.2 3.00163e-06 -6.9086e-07 3.34697e-06 4.9485e-09
1.3 3.67540e-06 6.7376e-07 3.35120e-06 4.2263e-09
...
10.0 3.28438e-06 -2.4287e-07 3.39872e-06 7.7024e-11
10.1 3.52611e-06 2.4172e-07 3.39879e-06 7.5509e-11
10.2 3.28574e-06 -2.4036e-07 3.39887e-06 7.4038e-11
10.3 3.52499e-06 2.3924e-07 3.39894e-06 7.2609e-11
...
100.0 3.37154e-06 -7.2026e-08 3.40537e-06 6.1098e-13
100.1 3.44352e-06 7.1982e-08 3.40537e-06 6.0961e-13
100.2 3.37158e-06 -7.1943e-08 3.40537e-06 6.0825e-13
100.3 3.44348e-06 7.1899e-08 3.40537e-06 6.0689e-13

Table 5.4: Evolution of the error using ∆t = 0.1 for the modified Douglas and
original Douglas schemes. The oscillatory behaviour of the modified Douglas scheme
still exists if one uses ∆t = 0.001 but dissapears for ∆t ≤ 0.0001. The actual error
for both schemes is the same.

5.1.3 Stability

By extensive numerical testing, the modified Douglas scheme (4.84) seems to be

unconditionally stable in both 2D and 3D when solving the diffusion equation (5.5)

when using boundary-fitted operators (3.6) in a domain of any shape. However, there

are situations where the original Douglas scheme (4.63) is unstable even though

the modified Douglas scheme is stable. For example, consider (5.5), (5.6) in the

domain with spherical hole as above. If we choose h = 1/162, ∆t = 0.1, then the

63

original Douglas scheme blows up exponentially (error magnified by 1.04 per time

step starting after only 15 time steps) but the modified Douglas scheme shows no

signs of instability even after thousands of time steps and even when using a wide

variety of time steps. It is not completely clear what causes the instability of the

original Douglas scheme since using ∆t = 0.01 or ∆t = 10 both stabilize the scheme

but using ∆t = 1 still magnifies the error by 1.01 every time step. Also, changing

the grid resolution to h = 1/161 stabilizes the original Douglas scheme even though

the minimum stencil γ in (3.6) is 10−5 for h = 1/161 and 2 × 10−5 for h = 1/162.

The instabilities that we found suggest that the commutativity of spatial operators

is necessary for the original Douglas scheme to be unconditionally stable in 3D when

solving the diffusion equation. No numerical evidence was found that the original

Douglas scheme is unstable in 2D, even when using stencils with γ ∼ 10−10. This

makes sense because the original Douglas scheme has been proven to be stable in

2D even with non-commutative operators (see Section 4.2.2). Also, no instability

was found for the original Douglas splitting when solving the diffusion equation in

complex-shaped domains that align perfectly with the MAC cell walls. In other

words, it appears from numerical evidence that the original Douglas scheme is stable

unless boundary-fitted spatial operators are used.

5.2 Unsteady Stokes Equations

5.2.1 Spatial Convergence

In this section, we use the scheme of Section 4.4 (with χ = 0) to solve the unsteady

Stokes equations (2.26) for the same complex-shaped domain in Section 5.1.1 (cube

with spherical hole in the middle). We use the boundary fitted spatial operators

(3.6), but we use the standard divergence stencil (3.16).

To show spatial accuracy, we use the 3D manufactured solution

u = sin(x) sin(y + z), fu = cos(x+ y + z) + 3 sin(x) sin(y + z)

v = − cos(x) cos(y + z), fv = cos(x+ y + z)− 3 cos(x) cos(y + z)

w = 2 cos(x) cos(y + z), fw = cos(x+ y + z) + 6 cos(x) cos(y + z)

p = sin(x+ y + z),

(5.7)

which is an exact solution of the Stokes equations (2.26) with right-hand-side source

64

term f = (fu, fv, fw). We use time step ∆t = 0.001 and run simulations for t ∈ [0, 1].

The error at t = 1 for the velocity and pressure are presented in Table 5.5. Similar

convergence results using a larger time step are shown in Tables 6,7 of [4]. The

spatial accuracy of the velocity and pressure are clearly second-order accurate.

h ‖u− uexact‖L2(Ω) rate ‖u− uexact‖L∞(Ω) rate
1/8 7.817e-04 2.419e-03
1/16 2.362e-04 1.73 8.148e-04 1.57
1/32 6.347e-05 1.90 2.275e-04 1.84
1/64 1.620e-05 1.97 5.997e-05 1.92
1/128 4.080e-06 1.99 1.581e-05 1.92

h ‖∇ · u‖L2(Ω) rate ‖∇ · u‖L∞(Ω) rate
1/8 6.925e-04 3.510e-03
1/16 7.341e-04 -0.08 7.338e-03 -1.06
1/32 3.466e-04 1.08 5.098e-03 0.53
1/64 1.281e-04 1.44 3.002e-03 0.76
1/128 4.644e-05 1.46 1.507e-03 0.99

h ‖p− pexact‖L2(Ωf) rate ‖p− pexact‖L∞(Ωf) rate

1/8 4.291e-02 1.415e-01
1/16 1.303e-02 1.72 6.929e-02 1.03
1/32 3.541e-03 1.88 2.866e-02 1.27
1/64 9.126e-04 1.96 9.080e-03 1.66
1/128 2.294e-04 1.99 2.486e-03 1.87

Table 5.5: Spatial convergence for manufactured solution of 3D Stokes equations.

Again, we also test spatial convergence on a non-smooth field using the Taylor–

Couette solution to the unsteady Stokes equations given in Appendix A. We use

Re = 1, R1 = 0.25, R2 = 0.5, ω1 = 1, ω2 = −1, and both cylinders are centered

in the domain [0, 1]× [0, 1]. We use the boundary fitted spatial operators (3.6), but

we use the standard divergence stencil (3.16). Using initial conditions equal to the

exact solution, we use the scheme of Section 4.4 (with χ = 0) to run simulations

for t ∈ [0, 1] using ∆t = 0.001. Table 5.6 shows the spatial error for the velocity

and pressure at t = 1. The velocity shows second-order spatial convergence, and

the pressure seems to converge at an even higher rate, probably because the exact

65

solution of the pressure is p = 0, which is not spatially dependent. The divergence in

Ω does not converge in the maximum norm because the standard divergence stencil

(3.16) is O(1) spatially accurate on ∂Ωf due to the jump discontinuity of the velocity

derivative there (see Appendix A). However, the divergence in Ω does converge in

the L2 norm because the set of MAC cells which are intersected by ∂Ωf is small

compared to all of the cells in the domain. Also, we can see that the divergence

converges in the maximum norm in the domain Ωf \ ∂Ωf .

The abnormal error values for the h = 1/10 grid in Table 5.6 occur because

the smoothing behaviour of the pressure “projection” step (4.106) with χ = 0 is

reduced when ∆t� h (or for any ∆t if χ > 0). In this case, the discrete divergence

is forced to zero on a cell-by-cell basis by the incremental scheme (Section 4.1.2),

and any error in the divergence is transferred directly to the pressure. This raises

the question of whether it is even meaningful to talk about the divergence on time-

independent flows, since for ∆t� h the divergence approaches zero to floating point

precision. However, for χ = 0 and ∆t ∼ h, the divergence does not approach zero

to floating point precision even after 100 million time steps (this is true when using

the original Douglas splitting as well). Therefore, it is still meaningful to talk about

the divergence on steady flows.

Table 5.7 shows the result of running the identical simulation as in Table 5.6 but

using ∆t � h. In this case, the discrete divergence approaches floating point zero,

but the pressure no longer converges in the maximum norm. Also, because of the

O(1) pressure error on ∂Ωf , the velocity convergence rate is reduced to about O(h
3
4)

in the maximum norm and O(h
5
4) in the L2 norm (higher resolution tests also agree).

This can be fixed by using a boundary-fitted divergence operator such as the one

described in Sections 3.4.1 or 3.4.2. Table 5.8 shows the same simulation as that of

Table 5.7, but using the boundary fitted divergence of Section 3.4.1 instead of the

standard divergence stencil (3.16). We can see that the error for all variables in all

norms decreases significantly, and the velocity is restored to O(h2) accuracy (also

confirmed by higher resolution tests).

66

5.2.2 Temporal Convergence

To show temporal accuracy of the scheme of Section 4.4 (with χ = 0), we use the

3D manufactured solution

u = sin(x+ t) sin(y + z),

v = − cos(x+ t) cos(y + z),

w = 2 cos(x+ t) cos(y + z),

p = sin[(x+ y + z) cos(t)],

fu = sin(y + z)[cos(x+ t) + 3 sin(x+ t)] + cos[(x+ y + z) cos(t)] cos(t),

fv = cos(y + z)[sin(x+ t)− 3 cos(x+ t)] + cos[(x+ y + z) cos(t)] cos(t),

fw = cos(y + z)[−2 sin(x+ t) + 6 cos(x+ t)] + cos[(x+ y + z) cos(t)] cos(t),

(5.8)

which is an exact solution of the unsteady Stokes equations (2.26) with right-hand-

side source term f = (fu, fv, fw). The domain is again the cube with spherical hole

as in Section 5.1.1, and we use the boundary fitted spatial operators (3.6) together

with the standard divergence stencil (3.16). We use grid resolution h = 1/128 and

run simulations for t ∈ [0, 1] with various time step sizes. The error at t = 1 for

the velocity and pressure are presented in Table 5.9. The temporal convergence

of the velocity is approximately 1.8 order and the pressure is approximately 1.5

order. Similar convergence results are shown in Tables 8,9 of [4], though there the

manufactured pressure solution is time independent.

5.2.3 Stability

The stability of the scheme of Section 4.4 (using χ = 0, boundary fitted diffusion

operators (3.6), and the standard divergence stencil (3.16)) was tested extensively

on both 2D and 3D solutions in various complex-shaped domains with time steps

ranging from ∆t = 10−8 to ∆t = 106, grids ranging from 3×3 to 1000×1000 in 2D and

3×3×3 to 200×200×200 in 3D, and Reynolds numbers from Re = 10−6 to Re = 108.

Even after many thousands of time steps, the scheme always remained stable. This

suggests that the scheme of Section 4.4 (using χ = 0) is unconditionally stable for

the unsteady Stokes equations in 2D and 3D in any shape of domain. However,

when resolving time-dependent flows where ∆t
Re

is large, the accuracy is certainly

questionable since the error terms of (4.83) could be dominant. Nonetheless, the

67

scheme is still stable. For example, using a ridiculous Re = 10−12 together with

∆t = 10−6 is stable even after 100 million time steps, however the pressure error is

very large.

5.2.4 Comparing Values Of Rotational Parameter χ

In this section, we investigate using different values of the rotational parameter χ

as explained in Section 4.1.3. With the combination of MAC spatial discretization,

Crank–Nicolson formulation, solving for the pressure in the entire extended domain

Ω, and discrete divergence that we use in this thesis, the scheme of Section 4.4 is

only conditionally stable for χ > 0 in both 2D and 3D. Extensive numerical testing

indicates that for the Stokes equations in 2D or 3D, the scheme is stable whenever

∆t ≤ C
Re

χ
h2, (5.9)

where C is a constant that depends on the shape of the domain but does not de-

pend on the size of the domain nor the velocity or pressure fields (magnitude, time-

dependence, spatial derivatives, etc.). Violating (5.9) produces an instability that

begins with the pressure (sometimes a “checkerboard” and sometimes a domain-scale

oscillation). The restriction (5.9) is true regardless of the shape of the domain, re-

gardless of whether boundary-fitted spatial operators are used or not, and regardless

of whether the original Douglas (4.63) or modified Douglas (4.84) splitting is used.

The only exceptions are that if Ωf is a 2D box domain then the scheme appears

stable for any ∆t, and if Ωf is a 3D box domain and the original Douglas splitting

is used, then again the scheme is stable for any ∆t. One interesting example is that

for χ = 1, ∆t = 10, h = 1/100, the scheme is unstable on the Taylor–Couette ge-

ometry even when using the original Douglas splitting without any boundary-fitted

spatial operators. This is interesting because the original Douglas splitting is proven

(see Section 4.2.2) to be unconditionally stable in any shaped domain for the diffu-

sion equation. This suggests that modifying the relationship between the discrete

divergence and pressure could stabilize the scheme for any ∆t and χ > 0.

Typical values of the constant C in (5.9) are C = 3000 in 2D and C = 2 in

3D. Changing the domain shape, spatial operators, or momentum splitting method

improves the constant by no more than a factor of 10 or so. For complex-shaped

domains, the discrete domain shape depends on h and thus the constant C changes

68

with h, and the h2 dependence in (5.9) is not clear until the domain shape is well

resolved. While a time step restriction like ∆t ≤ h2 is usually very bad, (5.9) is not

so bad because one can always choose χ such that the scheme is stable for any time

step size. In particular, choosing χ = 0 is always stable.

Despite the stability restriction (5.9), it is still worthwhile to choose the largest

χ that is stable. This is because the error for the pressure and divergence of the

rotational incremental scheme (4.27) is O(∆t
3
2), but the error for the standard in-

cremental scheme (4.16) is O(∆t). The rotational scheme also performs better in

practice, which can be demonstrated via an example where we solve the 3D Stokes

equations for time-dependent manufactured solution (5.8) adjusted to Re = 100. We

use a complex-shaped fluid domain involving a cube, a pipe, and 3 holes. Specifically,

Ωf is defined as

([0, 1]× [0, 1]× [0, 1]) ∩
(
‖(x, y)− (1

2
, 1

2
)‖ ≤ 11

20

)
∩
(
‖(x, y, z)− (1

2
, 1

2
, 1

2
)‖ ≥ 1

5

)
∩
(
‖(x, y, z)− (1

4
, 1

4
, 11

20
)‖ ≥ 1

10

)
∩
(
‖(x, y, z)− (1

2
, 17

20
, 1

4
)‖ ≥ 1

10

)
.

(5.10)

The boundary fitted diffusion operators (3.6) and boundary fitted divergence oper-

ators of Section (3.4.1) are used. Ωf is embedded in the unit cube Ω and a uniform

spatial grid with h = 1/64 is used. Time-representative errors at t = 1 when using

various values of χ are presented in Table 5.10. Also in the table are results for the

same situations but in a simple unit box domain using two different time steps. The

table shows that choosing a larger χ reduces the error in situations where reducing

the time step also reduces the error, i.e., if the spatial error is not dominant.

69

h ‖u− uexact‖L2(Ω) rate ‖u− uexact‖L∞(Ω) rate
1/10 9.419e-03 2.137e-02
1/20 2.005e-03 2.23 5.664e-03 1.92
1/40 4.200e-04 2.25 1.645e-03 1.78
1/80 8.841e-05 2.25 4.202e-04 1.97
1/160 2.222e-05 1.99 9.699e-05 2.12
1/320 5.031e-06 2.14 2.281e-05 2.09
1/640 1.166e-06 2.11 5.713e-06 2.00

h ‖∇ · u‖L2(Ω) rate ‖∇ · u‖L∞(Ω) rate
1/10 2.782e-04 6.066e-04
1/20 6.067e-02 -7.77 2.701e-01 -8.80
1/40 4.911e-02 0.31 4.292e-01 -0.67
1/80 2.306e-02 1.09 3.116e-01 0.46
1/160 2.233e-02 0.05 5.016e-01 -0.69
1/320 1.579e-02 0.50 4.423e-01 0.18
1/640 1.093e-02 0.53 5.524e-01 -0.32

h ‖∇ · u‖L2(Ωf\∂Ωf) rate ‖∇ · u‖L∞(Ωf\∂Ωf) rate

1/10 3.665e-04 6.066e-04
1/20 4.970e-02 -7.08 1.725e-01 -8.15
1/40 2.293e-02 1.12 9.670e-02 0.83
1/80 6.540e-03 1.81 2.380e-02 2.02
1/160 2.640e-03 1.31 7.872e-03 1.60
1/320 5.946e-04 2.15 2.146e-03 1.88
1/640 1.175e-04 2.34 1.284e-03 0.74

h ‖p− pexact‖L2(Ωf) rate ‖p− pexact‖L∞(Ωf) rate

1/10 5.601e-01 1.850e+00
1/20 2.040e-01 1.46 1.128e+00 0.71
1/40 3.560e-02 2.52 2.426e-01 2.22
1/80 6.733e-03 2.40 4.497e-02 2.43
1/160 2.269e-03 1.57 1.103e-02 2.03
1/320 4.841e-04 2.23 2.513e-03 2.13
1/640 9.233e-05 2.39 5.405e-04 2.22

Table 5.6: Spatial convergence when solving the Stokes equations for the Taylor–
Couette flow. The standard divergence stencil and ∆t = 0.001 are used. This table
shows second-order spatial accuracy of the velocity and pressure.

70

h ‖u− uexact‖L2(Ω) rate ‖u− uexact‖L∞(Ω) rate ‖∇ · u‖L∞(Ω)

1/10 9.425e-03 2.138e-02 1.998e-15
1/20 3.542e-03 1.41 1.372e-02 0.64 6.106e-15
1/40 1.201e-03 1.56 8.024e-03 0.77 3.053e-14
1/80 2.713e-04 2.15 2.831e-03 1.50 9.104e-14
1/160 1.394e-04 0.96 1.759e-03 0.69 2.741e-05

h ‖p− pexact‖L2(Ωf) rate ‖p− pexact‖L∞(Ωf) rate

1/10 5.605e-01 1.852e+00
1/20 4.929e-01 0.19 3.170e+00 -0.78
1/40 3.699e-01 0.41 3.676e+00 -0.21
1/80 1.449e-01 1.35 2.541e+00 0.53
1/160 1.819e-01 -0.33 5.254e+00 -1.05

Table 5.7: Spatial convergence when solving the Stokes equations for the Taylor–
Couette flow. The standard divergence stencil and ∆t = 0.000001 are used, showing
that the small time step produces zero divergence to floating point precision, but the
O(1) error in the divergence at the boundary Ωf is transferred to the pressure.

h ‖u− uexact‖L2(Ω) rate ‖u− uexact‖L∞(Ω) rate ‖∇ · u‖L∞(Ω)

1/10 2.874e-03 6.003e-03 1.332e-15
1/20 1.546e-03 0.90 5.128e-03 0.23 3.220e-15
1/40 3.534e-04 2.13 1.088e-03 2.24 1.132e-14
1/80 1.139e-04 1.63 3.820e-04 1.51 6.206e-14
1/160 2.081e-05 2.45 9.997e-05 1.93 2.428e-13

h ‖p− pexact‖L2(Ωf) rate ‖p− pexact‖L∞(Ωf) rate

1/10 1.219e-01 4.018e-01
1/20 6.141e-02 0.99 2.630e-01 0.61
1/40 2.113e-02 1.54 1.379e-01 0.93
1/80 8.556e-03 1.30 1.265e-01 0.12
1/160 2.364e-03 1.86 5.678e-02 1.16

Table 5.8: Spatial convergence when solving the Stokes equations for the Taylor–
Couette flow using ∆t = 0.000001 and the boundary-fitted divergence of Section
3.4.1. The accuracy is improved compared to when non-boundary-fitted divergence
was used in Table 5.7. Using the divergence of Section 3.4.2 produces similar results.

71

∆t ‖u− uexact‖L2(Ω) rate ‖u− uexact‖L∞(Ω) rate
1/4 3.166e-02 8.403e-02
1/8 1.008e-02 1.65 2.812e-02 1.58
1/16 4.610e-03 1.13 1.379e-02 1.03
1/32 2.661e-03 0.79 7.025e-03 0.97
1/64 1.079e-03 1.30 2.328e-03 1.59
1/128 3.243e-04 1.73 6.526e-04 1.84
1/256 9.504e-05 1.77 2.346e-04 1.48
1/512 2.666e-05 1.83 9.349e-05 1.33
1/1024 7.947e-06 1.75 4.034e-05 1.21

∆t ‖∇ · u‖L2(Ω) rate ‖∇ · u‖L∞(Ω) rate
1/4 1.039e-01 5.663e-01
1/8 4.425e-02 1.23 3.273e-01 0.79
1/16 2.607e-02 0.76 1.641e-01 1.00
1/32 1.531e-02 0.77 8.373e-02 0.97
1/64 7.272e-03 1.07 3.245e-02 1.37
1/128 2.912e-03 1.32 1.726e-02 0.91
1/256 1.135e-03 1.36 9.356e-03 0.88
1/512 4.335e-04 1.39 4.556e-03 1.04
1/1024 1.614e-04 1.43 1.965e-03 1.21

∆t ‖p− pexact‖L2(Ωf) rate ‖p− pexact‖L∞(Ωf) rate

1/4 1.812e-001 8.505e-001
1/8 1.760e-001 0.04 8.437e-001 0.01
1/16 1.225e-001 0.52 6.476e-001 0.38
1/32 6.907e-002 0.83 3.812e-001 0.76
1/64 2.781e-002 1.31 1.769e-001 1.11
1/128 8.715e-003 1.67 6.273e-002 1.50
1/256 2.912e-003 1.58 2.193e-002 1.52
1/512 1.019e-003 1.52 1.186e-002 0.89
1/1024 3.993e-004 1.35 7.012e-003 0.76

Table 5.9: Temporal convergence when solving the 3D Stokes equations (χ = 0) using
a manufactured solution in a complex-shaped domain. For ∆t ≤ 1/1024, spatial
error and possibly ∆t� h “standard divergence stencil” error shows up. Otherwise,
this table shows that the velocity convergence rate is approximately O(∆t1.8) and
the pressure convergence rate is approximately O(∆t1.5). The theoretical estimates
(4.16) are O(∆t2) and O(∆t) for the velocity and pressure.

72

Unit Box Domain ∆t = 0.01:
χ ‖u− uexact‖L2(Ω) ‖u− uexact‖L∞(Ω) ‖p− pexact‖L2(Ωf) ‖p− pexact‖L∞(Ωf)

0.0 8.58e-04 4.68e-03 3.76e-04 6.30e-03
0.1 6.93e-04 2.75e-03 2.92e-04 3.68e-03
1.0 5.28e-04 2.23e-03 1.90e-04 5.91e-03

χ ‖∇ · u‖L2(Ω) ‖∇ · u‖L∞(Ω)

0.0 1.53e-02 1.17e-01
0.1 8.92e-03 9.18e-02
1.0 4.27e-03 7.54e-02

Unit Box Domain ∆t = 0.001:
χ ‖u− uexact‖L2(Ω) ‖u− uexact‖L∞(Ω) ‖p− pexact‖L2(Ωf) ‖p− pexact‖L∞(Ωf)

0.0 1.53e-05 2.49e-04 1.10e-05 7.86e-04
0.1 1.39e-05 6.40e-05 6.77e-06 2.65e-04
1.0 1.34e-05 3.85e-05 5.82e-06 1.94e-04

χ ‖∇ · u‖L2(Ω) ‖∇ · u‖L∞(Ω)

0.0 3.55e-04 1.59e-02
0.1 1.29e-04 3.10e-03
1.0 7.55e-05 1.94e-03

Complex Domain (5.10) ∆t = 0.01:
χ ‖u− uexact‖L2(Ω) ‖u− uexact‖L∞(Ω) ‖p− pexact‖L2(Ωf) ‖p− pexact‖L∞(Ωf)

0.0 9.03e-04 4.09e-03 6.89e-04 1.06e-02
0.1 7.01e-04 2.65e-03 6.10e-04 8.86e-03
1.0 5.38e-04 1.92e-03 5.64e-04 8.20e-03

χ ‖∇ · u‖L2(Ω) ‖∇ · u‖L∞(Ω) ‖∇ · u‖L2(Ωf\∂Ωf) ‖∇ · u‖L∞(Ωf\∂Ωf)

0.0 2.04e-02 1.78e-01 2.05e-02 1.78e-01
0.1 9.89e-03 1.09e-01 9.98e-03 1.09e-01
1.0 4.37e-03 6.16e-02 4.54e-03 5.88e-02

Table 5.10: This table shows the error when solving the 3D Stokes equations with
different values of the rotational parameter χ. Choosing a larger χ always reduces
the error unless the time step is small and the error is mostly spatial. In this table,
the accuracy improvement between χ = 0 and χ = 0.1 is almost the same as the
accuracy improvement between χ = 0.1 and χ = 1. Thus, even a small nonzero χ is
worthwhile for improving the accuracy of the numerical scheme.

73

5.3 Navier–Stokes Equations

In this section, we solve the full Navier–Stokes equations (2.22) using the scheme

of Section 4.4. We choose χ = 1 and use the boundary fitted diffusion (3.6) and

divergence (Section 3.4.1) operators.

We start by demonstrating that even for Reynolds number 1000, the advection

operator does not need to be boundary fitted to produce an O(h2) accurate velocity

in complex-shaped domains. We consider again the Taylor–Couette flow R1 = 0.25,

R2 = 0.5, ω1 = 1, ω2 = −1 as in Appendix A. The time step ∆t = 0.001 is used and

each simulation is run from t = 0 until a numerical steady state is reached, which

is on the order of t = 100. Table 5.11 shows that the velocity convergence rate is

clearly O(h2) even in the maximum norm.

Next we show that if the domain shape Ωf is time-dependent, the scheme of

Section 4.4 (again with χ = 1 and boundary fitted spatial operators) solves the 3D

Navier–Stokes equations with second-order accuracy in both time and space. We

use the manufactured Stokes solution (5.8) adjusted for Re = 100, and we add an

additional right-hand-side source term

gu = sin(x+ t) cos(x+ t),

gv = sin(y + z) cos(y + z),

gw = −2 sin(y + z) cos(y + z)

(5.11)

in order to obtain an exact solution for the Navier–Stokes equations. We use a

domain Ωf which is defined as the unit cube with a moving spherical hole,

Ωf = [0, 1]3 ∩
(
‖(x, y, z)− (1

2
, 1

2
, 1

2
)− 1

5
(sin(t), cos(t), sin(t))‖ ≥ 1

4

)
. (5.12)

The analytical solution is used as boundary conditions on ∂Ωf , i.e., on the walls

of the cube and for all points inside the spherical hole. When the CFL condition

is present, it is difficult to choose situations that have insignificant spatial error.

Therefore, we show convergence by refining both ∆t and h together. Table 5.12

shows representative error at t = 1. We can see that in the L2 norm, the velocity

converges as O(h2+∆t2) and the pressure converges as O(h
3
2 +∆t

3
2). The convergence

rates are only slightly less in the maximum norm.

74

h ‖u− uexact‖L2(Ω) rate ‖u− uexact‖L∞(Ω) rate
1/20 7.804e-02 2.254e-01
1/40 4.574e-03 4.09 2.582e-02 3.13
1/80 1.104e-03 2.05 7.473e-03 1.79
1/160 2.335e-04 2.24 2.881e-03 1.38
1/320 5.517e-05 2.08 7.370e-04 1.97
1/640 1.354e-05 2.03 1.902e-04 1.95
1/1280 3.246e-06 2.06 4.793e-05 1.99

h ‖∇ · u‖L2(Ω) rate ‖∇ · u‖L∞(Ω) rate
1/20 1.102e-02 3.903e-02
1/40 3.475e-03 1.67 1.970e-02 0.99
1/80 1.248e-03 1.48 9.094e-03 1.12
1/160 4.227e-04 1.56 3.243e-03 1.49
1/320 1.058e-04 2.00 8.754e-04 1.89
1/640 2.940e-05 1.85 2.451e-04 1.84
1/1280 6.911e-06 2.09 5.784e-05 2.08

h ‖p− pexact‖L2(Ωf) rate ‖p− pexact‖L∞(Ωf) rate

1/20 7.525e-03 3.109e-02
1/40 1.291e-03 2.54 8.467e-03 1.88
1/80 4.656e-04 1.47 4.570e-03 0.89
1/160 1.673e-04 1.48 2.505e-03 0.87
1/320 5.556e-05 1.59 1.208e-03 1.05
1/640 2.015e-05 1.46 6.219e-04 0.96
1/1280 7.299e-06 1.46 3.066e-04 1.02

Table 5.11: Spatial convergence when solving the Navier–Stokes equations (χ = 1)
on the Taylor–Couette flow. A 10x10 grid was insufficient for stability at Re = 1000.
The CFL number on the h = 1/1280 grid is about 0.64. The velocity is clearly second-
order accurate in space even in the maximum norm. The pressure convergence rate
is O(h3/2) in the L2 norm and O(h) in the maximum norm. Since the analytical
pressure solution (A.2) for Taylor–Couette is spatially dependent for Navier–Stokes

(unlike for Stokes), this explains why the pressure is O(h
3
2) in this table but appears

to be higher order for the Stokes equations in Table 5.6.

75

h ∆t ‖u− uexact‖L2(Ω) rate ‖u− uexact‖L∞(Ω) rate
1/5 1/25 1.791e-02 6.252e-02
1/10 1/50 4.128e-03 2.12 2.429e-02 1.36
1/20 1/100 8.952e-04 2.20 8.984e-03 1.44
1/40 1/200 1.943e-04 2.20 2.380e-03 1.92
1/80 1/400 4.807e-05 2.02 8.441e-04 1.50
1/160 1/800 1.236e-05 1.96 2.103e-04 2.01
1/320 1/1600 3.638e-06 1.76 5.557e-05 1.92

h ∆t ‖∇ · u‖L2(Ω) rate ‖∇ · u‖L∞(Ω) rate
1/5 1/25 1.052e-01 6.943e-01
1/10 1/50 6.126e-02 0.78 8.518e-01 -0.29
1/20 1/100 1.346e-02 2.19 2.498e-01 1.77
1/40 1/200 4.439e-03 1.60 3.194e-01 -0.35
1/80 1/400 1.423e-03 1.64 1.819e-01 0.81
1/160 1/800 4.589e-04 1.63 9.680e-02 0.91
1/320 1/1600 1.781e-04 1.37 5.642e-02 0.78

h ∆t ‖p− pexact‖L2(Ωf) rate ‖p− pexact‖L∞(Ωf) rate

1/5 1/25 1.433e-02 7.571e-02
1/10 1/50 4.262e-03 1.75 4.137e-02 0.87
1/20 1/100 1.489e-03 1.52 2.061e-02 1.01
1/40 1/200 4.852e-04 1.62 9.670e-03 1.09
1/80 1/400 1.700e-04 1.51 5.231e-03 0.89
1/160 1/800 6.096e-05 1.48 2.531e-03 1.05
1/320 1/1600 2.130e-05 1.52 1.258e-03 1.01

Table 5.12: Convergence rates in both time and space when solving the Navier–Stokes
equations (χ = 1) in a time-dependent complex-shaped domain using boundary-fitted
spatial operators. In the L2 norm, the velocity converges as O(h2 + ∆t2) and the

pressure converges as O(h
3
2 + ∆t

3
2). The convergence rates are only slightly less in

the maximum norm. The CFL number ranges from 0.2 to 0.4.

76

Chapter 6

Discretization Of ODEs For Rigid

Objects

In this chapter, we consider discretizing the equations of motion of the rigid objects

given by the ordinary differential equations (ODEs) in equations (2.23), (2.24), (2.25).

The discretization of the object ODEs works together with the Navier–Stokes scheme

of Section 4.4 in order to solve the coupled problem of a fluid containing rigid objects,

(2.22)–(2.25). The complete scheme is referred to in this thesis as the “direct scheme

with boundary fitting”, because the rigid objects are treated directly as rigid objects,

and the fluid equations are solved with Dirichlet boundary conditions on the object

surfaces, using boundary-fitted spatial operators.

6.1 Time Discretization

Equations (2.23), (2.24), (2.25) can be discretized in time in the following way. First,

we assume that we know the position Xn
i , velocity Un

i , and angular velocity ωni of

the ith object at time level n, and we also know the fluid velocity un and pressure

pn−
1
2 as output from the Navier–Stokes solver in Section 4.4. The goal is to obtain

the object positions Xn+1
i , velocities Un+1

i , and angular velocities ωn+1
i at time level

n+ 1. We start by approximating the fluid stress tensor at time level n as

σn = −1

2

(
pn−

1
2 + p∗,n+ 1

2

)
δ +

1

Re
(∇un + (∇un)T), (6.1)

77

where the pressure predictor p∗,n+ 1
2 is computed from (4.104) and pn is the midpoint

approximation 1
2

(
pn−

1
2 + p∗,n+ 1

2

)
. The force on the ith object at time level n is

defined as

Fn
i =

∫
∂Ωni

σn · n dA+ Fcol,i,j, (6.2)

which is the sum of the force due to the fluid stress and an object-on-object collision

force Fcol,i,j, which will be discussed later. Similarly, the torque on the ith object due

to the fluid stress at time level n is defined as

Tn
i =

∫
∂Ωni

(x−Xn
i)× (σn · n) dA, (6.3)

however no object-on-object collision torque is included (also discussed later). The

force and torque require calculation of surface integrals, but this will be discussed

in the next section. Assuming for now that the force and torque are known at time

levels n and n− 1, the linear momentum ODE (2.24) can be approximated as

Mi

(
Un+1
i −Un

i

∆t

)
=
Mi

Fr

(
1− ρf

ρi

)
eg +

3

2
Fn
i −

1

2
Fn−1
i , (6.4)

and the angular momentum ODE (2.25) can be approximated as

Ii

(
ωn+1
i − ωni

∆t

)
=

3

2
Tn
i −

1

2
Tn−1
i , (6.5)

both of which are second-order Adams–Bashforth discretizations similar to (4.99).

Finally, the object position equation (2.23) can be approximated by

Xn+1
i −Xn

i

∆t
=

1

2
(Un+1

i + Un
i). (6.6)

The discretizations (6.4) and (6.5) are both fully explicit steps, and they impose

a stability restriction on the time step which depends on the minimum object radius

rmin. For the explicit step (6.4), we require ∆t ≤ CrminhRe and for the explicit step

(6.5), we require ∆t ≤ Cr2
minhRe. The r2

min restriction occurs because the moment

of inertia I and the torque T are respectively proportional to r5
i and r3

i in equa-

78

tion (6.5), which means that (6.5) is similar to solving an ODE of the form dω
dt
∼ 1

r2 .

This restriction can be severe if the Reynolds number or the object radius is very

small. In such cases one may have to perform iterations to simulate an implicit

discretization, or use a small time step. An alternative is to use a fictitious domain

method (FDM) such as in Chapter 8, which does not have such a stability restriction

because (6.4) and (6.5) are incorporated implicitly in the momentum equation for

the fluid. However, at small Reynolds numbers, the accuracy of the FDM suffers

severely, even for objects with large radius.

Using a pressure projection scheme for solving Navier–Stokes together with the ex-

plicit discretizations (6.4), (6.5) for the object ODEs can be unconditionally unstable

if any of the objects are less dense than the fluid. This is explained in [37, p. 433]

using a heuristic argument based on the “added mass effect”. After the publication

of this instability, explicit discretizations of the rigid object ODEs were widely aban-

doned. However, a flow that contains solid objects can be interpreted as a variable

density flow where there is a density discontinuity at the object boundaries. The

Navier–Stokes equations in this situation are discussed in Appendix B. Following an

idea proposed in [32] for modification of pressure projection schemes for flows with

variable density, we discovered how to stabilize our scheme for any object density.

In particular, the factor

ηmin = min

{
1,min

i

{
ρi
ρf

}}
(6.7)

simply needs to be included as a scaling for the divergence in the pressure projection

step. This is valid to do because as described in equation (4.49), the divergence is

already scaled by a penalty parameter so ηmin just changes the penalty parameter.

The stability and optimality of such formulations is analyzed in [33]. Performing

this scaling avoids the need to solve the difficult pressure Poisson problem (B.6) that

contains a discontinuous density coefficient. To be concrete, the “incompressibility

penalty step” (4.106) needs to be replaced with

(1− ∂xx)θ = −ηmin

∆t
∇ · un+1,

(1− ∂yy)ψ = θ,

(1− ∂zz)φn+ 1
2 = ψ,

(6.8)

79

but nothing else from Section 4.4 is changed at all. The numerical results in Sec-

tion 9.5 confirm that the numerical scheme with this modification is stable even when

objects are lighter than the fluid.

This completes the time discretization of the object ODEs. The newly computed

time level n + 1 object positions Xn+1
i define the fluid domain Ωn+1

f , and when

using the Navier–Stokes solver in Section 4.4 to solve for the fluid velocity un+1,

the object velocities Un+1
i , and angular velocities ωn+1

i are imposed as Dirichlet

boundary conditions on the fluid domain Ωn+1
f .

6.2 Object Orientations

Since all the rigid objects in this thesis are spheres, the orientation of each object

is irrelevant. However, it is still useful to compute the orientation of each object

for visualization purposes, for example, as shown in Figure 10.3. Therefore, we keep

track of the local coordinate system x̂, ŷ, ẑ, that defines the orientation of each

object. In practice, ẑ is not stored since ẑ = x̂× ŷ.

After obtaining ωn+1
i from (6.5), the local coordinate system of each object is

updated by computing a rotation matrix representing a rotation of ∆t‖ωn+1
i ‖ radians

around the axis ωn+1
i /‖ωn+1

i ‖, and multiplying x̂, ŷ, ẑ by this matrix every time step.

It is well known that the vectors x̂, ŷ, ẑ need to be orthonormalized every so often

due to buildup of floating point errors.

6.3 Surface Integral Discretization

In this section, we describe how to compute the surface integrals of the fluid stress

that appear in (6.2) and (6.3). The integration is discretized on the sphere using a

surface grid formed between parallels and meridians such that the surface areas of all

surface grid cells are approximately equal and each octant of the sphere contains an

equal number of cells (see Figure 6.1). These symmetry properties seem to drastically

improve the accuracy of the integral, since the integrand typically contains terms

with large magnitudes that cancel each other out. A midpoint quadrature is used to

approximate the integral on each surface grid cell.

Since the fluid pressure has been extended into the solid sphere using the proce-

dure in Section 3.3.1, the pressure at the midpoint of each surface grid cell is simply

80

x,y,z x,y+h,z x,y+2h,z

x+h,y,z

x+2h,y,z

x,y,z+h

x,y,z+2h

x

y

z

Figure 6.1: Sample surface grid on one octant of a sphere. Also shown is the midpoint
of a spherical grid cell and the one-sided three-point finite difference stencils that
would be used to approximate velocity derivatives in each of the x, y, and z directions.

81

approximated using the standard trilinear interpolation of the MAC grid pressure

points. However, computing the velocity derivatives that appear in the stress ten-

sor (6.1) at the midpoint of the surface grid is non-trivial. In particular, using any

points of the MAC grid that lie outside Ωf to compute these derivatives leads to an

O(1) approximation of the stress. This is because the velocity field in the extended

domain Ω is only continuous across the boundary ∂Ωf , so points outside Ωf are only

O(h) accurate extrapolations of the velocity in Ωf , i.e., ui = ui,exact +O(h). If these

O(h) accurate points are then used in a first-order finite difference with a perfectly

accurate point ui+1,exact in the fluid,

∂u

∂x
≈ ui+1,exact − (ui,exact +O(h))

h
=
ui+1,exact − ui,exact

h
+O(1). (6.9)

Numerical testing verifies that this error is indeed O(1), and also that it significantly

impacts the overall accuracy of the surface integral.

Note: This O(1) error argument also applies to the advection terms which are essen-

tially first derivatives of the velocity, however, numerical results (Section 5.3) show

that advection error of this type has minimal impact on the accuracy of the scheme

as a whole.

In order to use only Ωf points for calculating velocity derivatives, we use one-sided

finite differences, which means that three points must be used to obtain an O(h2)

accurate approximation of the first derivative. As shown in Figure 6.1, these three

points consist of the known surface velocity at (x, y, z) and two additional points

inside the fluid. The velocity at these two fluid points is unknown since these two

points are not necessarily nodes of the MAC grid. Therefore, we need to approx-

imate the velocity at these points using an interpolation which must not reference

any points outside Ωf . Ideally, we would like an O(h3) (quadratic) interpolation so

that using the interpolated points in a first-order difference would be O(h2) accu-

rate. However, it is difficult to construct a stable interpolation of this type because

quadratic interpolations can produce unbounded values.

We instead construct a boundary-fitted linear interpolation, which is explained

in Figure 6.2. This boundary-fitted interpolation has been numerically verified as

O(h2) accurate. By using an O(h2) accurate interpolation for the velocity, the overall

local accuracy of the stress approximation cannot be higher than O(h) due to (6.9).

Therefore, a two-point O(h) finite difference stencil could be used instead of the

82

solid

fluid

ui,j+1

ua

ub

ui+1,j+1

ui+1,jui,j

ud

ue

uc

up

Figure 6.2: An example boundary fitted interpolation in 2D. Suppose up is the
velocity at a point which requires interpolation. ub and ue are known values of u
on the object surface, ua is the linear interpolation between ui,j and ui,j+1, uc is
the linear interpolation between ui,j+1 and ui+1,j+1, and ud is the linear interpolation
between ue and ui+1,j+1. The final approximation for up is computed by averaging the
values of the horizontal linear interpolation between ua and ud and the vertical linear
interpolation between ub and uc. A similar procedure is used for linearly interpolating
the velocity near an object boundary in 3D. In this case, the 2D procedure can be
used to interpolate the velocity on cell faces and then the final result is obtained by
interpolating these face values.

83

three-point stencil when approximating the velocity derivatives in the stress, and the

asymptotic order would not change. Table 6.1 shows the error when computing the

force and torque on the surface of a sphere in 3D when the velocity and pressure

fields everywhere in Ω are given by

u = x+ x2y + y4z3,

v = x4y3z2,

w = (x+ y)2(x+ z)2(y + z)2,

p = z + xyz + x2y,

(6.10)

and the Reynolds number is 100. We can see from the table that the surface integral

is O(h2) accurate when computing the pressure contribution to the force, however

it is only O(h) accurate when computing the velocity contributions to the force and

torque, as we expect from the above discussion. However, in real fluid flows, the flow

field tends to have some symmetry properties around the objects. In this case, the

three-point stencils often yield more accurate results because the symmetric fields

allows some error cancellation. Table 6.2 compares the two-point and three-point

stencils by computing the torque on the surface of a 2D disc in a Taylor–Couette

flow as in Appendix A. In this highly symmetric flow, the three-point stencils produce

significantly less error, beginning with with almost 20 times less error on coarse grids

and also converging faster than O(h). For this reason, we always use the three-point

stencils for the velocity derivatives when computing the fluid stress.

84

Pressure Force Velocity Force Torque
h error conv. rate error conv. rate error conv. rate
1/24 1.783e-04 3.602e-03 1.672e-04
1/48 4.925e-05 1.86 1.753e-03 1.04 8.424e-05 0.99
1/96 1.229e-05 2.00 8.709e-04 1.01 4.287e-05 0.97
1/192 3.073e-06 2.00 4.348e-04 1.00 2.184e-05 0.97
1/384 7.785e-07 1.98 2.158e-04 1.01 1.082e-05 1.01

Table 6.1: Error when computing the surface force and torque on a sphere in 3D using
three-point stencils for the velocity derivatives. This table shows the error contribu-
tions in the force vector due to the velocity and pressure integrals separately. Each
row of this table contains the average error when placing the sphere at 100 random
locations in the domain. This shows that symmetry of the grid is not relevant.

two-point stencils three-point stencils
h error conv. rate error conv. rate
1/24 2.216e-03 1.378e-04
1/48 1.112e-03 0.99 2.496e-05 2.46
1/96 5.585e-04 0.99 9.044e-06 1.46
1/192 2.788e-04 1.00 2.716e-06 1.74
1/384 1.394e-04 1.00 1.458e-06 0.90
1/768 6.967e-05 1.00 5.518e-07 1.40
1/1536 3.484e-05 1.00 2.355e-07 1.23
1/3072 1.742e-05 1.00 1.126e-07 1.06
1/6144 8.709e-06 1.00 5.438e-08 1.05

Table 6.2: Error when computing the surface torque on the inner cylinder of a
Taylor–Couette flow with R1 = 0.25, R2 = 0.5, ω1 = 1, ω2 = −1, Re = 100. Each
row contains the average error when placing the cylinders at 1000 random locations
in the domain to demonstrate that symmetry of the grid is not relevant. The torque
error converges as O(h1.4) when using the three-point stencils and it converges as
O(h) when using the two-point stencils. The force error is not shown in this table,
but the two-point and three-point stencils produce nearly identical error for the force,
which converges consistently as O(h1.5) in both cases.

85

6.4 Interpolation-Free Surface Integral

In this section, we consider an alternative surface integral discretization that can

be used instead of the discretization in Section 6.3. Since the surface integral of

Section 6.3 suffers reduced accuracy due to finite differencing an interpolated field,

here we construct a method which does not use any interpolation at all. Consider

the x component of the fluid force σ · n in 3D, which is given by

Fx =

[
1

Re

(
∂u

∂x
+
∂u

∂x

)
− p
]
nx +

[
1

Re

(
∂u

∂y
+
∂v

∂x

)]
ny +

[
1

Re

(
∂u

∂z
+
∂w

∂x

)]
nz,

where n = (nx, ny, nz) is the unit normal pointing out of the sphere, and u = (u, v, w)

is the fluid velocity. The surface integral of each term must be computed separately

because each term uses different grid points of the MAC grid.

Consider the term ∂v
∂x

, for example. In this case, we consider only the v MAC grid

points, and we intersect the object with the lines of this grid that are parallel to the

x axis. By dividing the sphere first into “belts” and then into cells, each grid line

intersection point on the sphere is placed in the approximate middle of an irregularly-

shaped surface grid cell, as in Figure 6.3. Figure 6.4 shows how the x direction grid

lines intersect one belt. At each point where these grid lines intersect the object,

the velocity derivative ∂v
∂x

is computed using a one-sided three-point finite difference

using points along a single grid line, and therefore no interpolation is needed. As

an example, consider calculation of ∂v
∂x

evaluated at the “right intersection point” in

Figure 6.4. In this case, the three-point finite difference stencil is computed using the

“right intersection point” and the points i+ 5 and i+ 6 along the second to bottom

grid line in the figure. For the same derivative evaluated at the “left intersection

point”, the finite difference stencil would use points i, i+1, and the “left intersection

point”. The point i + 2 is “too close” to the boundary so it needs to be skipped in

order to maintain stability. Numerical testing indicates that skipping points closer

to the boundary than h/4 is sufficient for stability.

Finally, the area of each surface grid cell is computed analytically and the integral

is approximated using either the midpoint rule or Simpson’s rule. A similar procedure

is done for each term of σ · n to obtain the complete surface force.

Because the surface grid is determined by where each grid line happens to intersect

the object, the size of the largest surface grid cell (and thus the accuracy of the

integral) is influenced by the shape of the object’s surface. For a line integral around

86

Figure 6.3: An irregularly shaped surface grid on a sphere. The dashed lines divide
the sphere into belts, and the dotted lines divide the belts into cells. The x direction
grid lines are perpendicular to the plane of the page and appear as solid dots.

left intersection point right intersection point

i+1 i+2 i+5 i+6i

solid object

Figure 6.4: x direction grid lines intersecting a single belt (or a disc in 2D). The grid
lines run left to right and intersect the belt at the gray dots. The black dots are
the points of the MAC grid along the grid lines where the relevant variable is stored
(for example, the v velocity component). The short dotted lines denote surface cell
boundaries such that each gray dot is near the middle of each cell.

87

a disc in 2D, it can be shown that reducing h by a factor of 2 will on average reduce

the arc length of the largest segment on the circumference of the disc (denoted by

smax) by a factor of only
√

2. Since the error when integrating along a curve of length

s is O(s3) using the midpoint rule and O(s5) using Simpson’s rule, this suggests the

integration is O(h
3
2) accurate using the midpoint rule and O(h

5
2) accurate using

Simpson’s rule. Table 6.3 confirms the O(h
3
2) and O(h

5
2) convergence rates in 2D.

Note: The error of the midpoint and Simpson’s rules are respectively O(s2) and

O(s4) if the curve length is constant.

Table 6.4 shows the results of re-calculating the force and torque on a sphere in

3D as originally done in Table 6.1, but this time using the interpolation-free surface

integral discretization of this section with three-point stencils and the midpoint rule.

The table confirms O(h
3
2) convergence, as we expect. This strongly suggests that

using the interpolation-free surface integral with Simpson’s rule would produce a

fully O(h2) discretization.

Despite the increased asymptotic order, however, the interpolation-free method

almost always performs worse in practice. This likely occurs for several reasons.

First, since surface integrals only use a few grid points near the surface boundary, it

is possible that increased error around boundaries (particularly for the non-rotational

χ = 0 scheme) can reduce accuracy when calculating the surface stress. The inter-

polation method in Section 6.3 may reduce the effects of this localized boundary

error by smoothing out local bumps, while the “interpolation-free” calculation does

not have this property. Also, the method in Section 6.3 has a high degree of spatial

symmetry in the operator, while the interpolation-free method lacks symmetry in

the layout of the surface grid, and also each term of the stress is computed on a

completely different grid (because the MAC grid is staggered). The torque is partic-

ularly vulnerable to these undesirable properties, which can be seen by comparing

the torque error in Tables 6.1 and 6.4. Even though the interpolation-free method

converges at a faster rate, the initial error on coarse grids is much larger, and it

takes too many grid refinements for the interpolation-free method to actually be-

come better. However, for numerical schemes that use a non-staggered grid, the

interpolation-free surface integral could be significantly better, especially when used

with Simpson’s rule.

88

Midpoint rule Simpson’s rule
h smax rate error rate error rate
1 3.1416 2.07e+00 5.22e-01
1/2 1.6029 0.971 1.21e+00 0.778 2.47e-01 1.081
1/4 1.0610 0.595 5.14e-01 1.236 5.22e-02 2.242
1/8 0.7309 0.538 1.98e-01 1.372 9.75e-03 2.419
1/16 0.5107 0.517 7.33e-02 1.436 1.76e-03 2.468
1/32 0.3591 0.508 2.67e-02 1.460 3.16e-04 2.481
1/64 0.2532 0.504 9.57e-03 1.477 5.63e-05 2.488
1/128 0.1788 0.502 3.43e-03 1.483 9.97e-06 2.496
1/256 0.1263 0.501 1.21e-03 1.496 1.77e-06 2.492
1/512 0.0893 0.500 4.32e-04 1.492 3.12e-07 2.505
1/1024 0.0631 0.500 1.53e-04 1.494 5.55e-08 2.492
1/2048 0.0446 0.500 5.43e-05 1.498 9.90e-09 2.487
1/4096 0.0316 0.500 1.92e-05 1.497 1.71e-09 2.538
1/8192 0.0223 0.500 6.80e-06 1.499 3.02e-10 2.500

Table 6.3: Spatial convergence of midpoint rule vs. Simpson’s rule for a line integral
of the scalar field f(x, y) = 1+x+x2 around a disc of diameter 2 in 2D. The number
of grid points across the disc diameter in each direction is N = 2/h, and smax is the
maximum arc segment on the circumference. Each row of this table is the average of
100 tests using small perturbations of disc position and diameter in order to eliminate
any grid alignment effects.

force vector (p) force vector (u) torque vector
h error conv. rate error conv. rate error conv. rate
1/24 1.783e-04 3.790e-03 1.015e-03
1/48 4.925e-05 1.86 1.450e-03 1.39 3.984e-04 1.35
1/96 1.229e-05 2.00 5.388e-04 1.43 1.472e-04 1.44
1/192 3.073e-06 2.00 1.981e-04 1.44 5.483e-05 1.42
1/384 7.785e-07 1.98 7.113e-05 1.48 1.979e-05 1.47

Table 6.4: Error when computing the surface force and torque on a sphere in 3D
using three-point stencils for the velocity derivatives exactly as in Table 6.1, except
here we use the “interpolation free” discretization with the midpoint rule. Again,
each table row contains the average error when placing the sphere at the same 100
random locations in the domain.

89

6.5 A simple collision model

Whenever there is at least one moving rigid object, the object may collide with the

domain walls or other objects. When finite space and time resolutions are used, the

object position update step (6.6) will occasionally predict object positions Xn+1
i such

that one or more objects overlaps the domain walls or other objects. This is clearly

unphysical, and can also introduce numerical instability in some cases. The difficulty

with object collisions is that they typically take place over extremely small time and

spatial scales. It is completely impractical to fully resolve these small scales when the

scales over which the simulation must be performed are much larger in comparison.

Therefore, a collision “subgrid” model of some kind is required to prevent objects

from overlapping. In Chapter 7, we present an accurate subgrid model for submerged

collisions based on lubrication theory. In this section, we consider a simple “dry”

collision model that does not directly incorporate fluid effects at small scales.

Here we use a “soft-sphere” collision model, which means that the objects are

allowed to compress slightly when they collide. With this assumption, the time-scale

of an object collision is increased, however, it is still small compared to the time

scale of the overall fluid flow. A summary of various soft-sphere impact models (in

the absence of fluid) is given in [63]. Two good models for modeling dry collisions

are the “viscoelastic model” and the “elastic-plastic” model. The viscoelastic model

is essentially a spring-dashpot model adjusted for Hertzian elasticity of spheres in-

stead of linear springs. Elastic-plastic models are similar but instead of including

a damping term, the spring stiffness changes in time (see Section 7.4). Denote the

normal-direction repulsive acceleration acting on object i due to collision with object

j by Ai,j. We use the viscoelastic model, which is given by

Ai,j =

(
Mj

Mi +Mj

)√
x

(
kx+ γ

dx

dt

)
, (6.11)

where x is the “overlap” distance of spheres i and j measured along the line con-

necting the sphere centroids and assuming both spheres are uncompressed. The

parameter k is an elastic stiffness parameter of the spheres, and the parameter γ is a

damping parameter which affects energy loss during the collision. Note that if object

i has infinite mass Mi (such as a wall), then the collision acceleration (6.11) is zero.

The above collision model is incorporated into the “direct scheme with boundary

fitting” by using sub-time steps to resolve the collisions. Let ∆τ be the sub-step

90

size, ∆t be the regular time step size, and denote a variable f at time n∆t + m∆τ

by fn+m∆τ
∆t . The linear object momentum equation (6.4) is advanced in time using

sub-stepping as

Mi

(
U
n+(m+1) ∆τ

∆t
i −U

n+m∆τ
∆t

i

∆τ

)
=
Mi

Fr

(
1− ρf

ρi

)
eg +

3

2
Fn
i −

1

2
Fn−1
i +

N∑
j=1

MiAi,j,

(6.12)

where Un+1
i is obtained when m = ∆t

∆τ
. In other words, between each completely

coupled “fluid + rigid objects” time step ∆t, we solve the rigid object ODEs with a

much smaller time step in order to resolve “dry” collisions. This is consistent because

by reducing ∆t, one eventually recovers all fluid effects of the collision. However, for

large ∆t, some fluid effects may be missed by resolving the “dry” collisions only. In

this case, one can combine this “dry” collision model with a “wet” model as explained

in Chapter 7.

Since each sphere using the soft-sphere model is allowed to compress, we enforce

a strict “no-overlap” rule for the uncompressed objects by treating each object (for

the purpose of computing the overlap distance only) as if it has a radius R+ ε, where

we set ε to be the MAC cell width h. This is required because the surface integral

methods do not work if the object is not completely surrounded by fluid. Again, this

is consistent because the true size of the objects is recovered when h→ 0.

Since a thin gap of fluid is always maintained between colliding objects, the

surface integral procedure resolves significant torque transfer during a collision and

therefore we do not use sub-stepping of the object angular momentum equation 6.5.

However, this could easily be incorporated into the scheme.

Note: Using about 100 sub-steps seems sufficient to maintain stability with a

large k ≈ 106 so that the objects are significantly rigid and do not overlap even

when colliding with large velocities. However, it becomes important to have an

efficient parallel code implementation of this sub-stepping that uses non-blocking

communication, otherwise the sub-stepping may be expensive in a parallel computing

environment (see Section 10.1).

91

6.5.1 Galilean Cannon

In this section, we check the robustness of the collision model in Section 6.5 by sim-

ulating a “Galilean Cannon”, which is similar to a “Newton’s Cradle”. A “Galilean

Cannon” is a situation where several balls of different sizes are dropped in a stacked

configuration with the smallest ball on top. When the balls hit the floor, most of

the rebound momentum of the group of balls is transferred to the smallest ball, and

it appears to be fired upwards like a cannon ball. The purpose of this test is not to

quantitatively verify correctness of the numerical scheme, but rather to demonstrate

prevention of object overlap even in high-impact collision situations. A Galilean

Cannon is often used as a physics toy to demonstrate the principles of conservation

of momentum, and the “Galilean Cannon” Wikipedia article describes its qualitative

behaviour.

Figure 6.5 shows a simulation of a 2D Galilean cannon in a domain [0, 20]× [0, 40]

using three discs of radius 1/2, 1, 2, each with a relative density ρdisc/ρf = 7.78,

which is the equivalent of steel in water. We use Re = 10, Fr = 0.1, ∆t = 1/4000,

h = 1/10, modified Douglas splitting with boundary-fitted spatial operators, χ = 1,

and viscoelastic collision parameters k = 107, γ = 0, using 100 sub-time steps. The

maximum CFL number is 0.33 which occurs at impact when fluid is squished out

to the sides. Figure 6.6 shows a zoomed-in snapshot of the three discs immediately

after collision with the floor. The simulation is successful in preventing any overlap of

the discs and maintaining stability in this high-impact collision. Also, qualitatively

correct results are produced, for example, the small disc is fired upwards as expected.

92

Figure 6.5: Sequence of pictures showing the Galilean cannon simulation.

93

Figure 6.6: Three discs of the Galilean cannon simulation immediately after hitting
the floor. In this figure, the u and v velocity components are shown on the MAC cell
faces as they are represented numerically rather than showing a cell-center average
velocity. The rigid body velocity field inside each object is also shown.

94

Chapter 7

A Lubrication-Based Collision

Model

The collision model in Section 6.5 is sufficient for preventing object overlap and

approximating submerged object collisions. However, the model in Section 6.5 uses

sub time steps which assume that the fluid stress is constant over these sub-steps.

Also, there are some dynamics of submerged collisions that only appear when using

finely resolved numerical grids and small time step sizes. Since it is impractical to

use such fine grids and small time steps on a large problem, we investigate in this

chapter a model that could be incorporated to “fill in” any missing dynamics of

submerged collisions when the time and spatial scales between objects are not fully

resolved. In particular, we design a high-accuracy method for resolving submerged

collisions over small time and spatial scales. The intent is that the high-accuracy

method could be used by itself to determine the outcome of a wide range of different

collision situations, and these results could all be stored as data in a table. When a

collision is predicted using a more simplistic model such as the model of Section 6.5,

we could “look up” results of the closest matching collision situation in this data

table and incorporate the outcome of the collision rather than trying to fully resolve

the collision at run-time. The most simple example of tabulated data that could

be generated is a mapping from approach velocity to rebound velocity, computed

over the exact distance which the simple collision model does not resolve. This

is an improvement over using experimentally measured rebound ratios (coefficients

of restitution) because the simple collision model and the associated Navier–Stokes

solver already resolves some of the viscous loss upon approach and rebound, so using

95

h(r,t)

ξ(r,t)

r=0 r=0.4Rr=-0.4R

s(r)

ε(t)

Deformed
object surface

Undeformed
object surface

Rigid wall

r

z

θ

Figure 7.1: Object colliding with wall

the experimental rebound ratio would count these losses twice. Combining the high-

accuracy collision model in this chapter with the numerical scheme in the rest of this

thesis is a topic for future work, and all the numerical results in this thesis do not

use the model in this chapter, except of course for the results in this chapter itself.

Readers who are not interested in accurate object collisions can skip this chapter

entirely.

We now discuss a high-accuracy method for resolving submerged collisions over

small time and spatial scales. Consider Figure 7.1, where a solid, soft sphere of

radius R collides with a rigid wall while everything is submerged in a fluid. It is

useful to use a cylindrical coordinate system where z is the direction normal to the

wall along which the sphere approaches, and r, θ are the coordinates in the plane

of the wall. Since both the sphere and the wall have cylindrical symmetry, it is

reasonable to assume that if no variable depends on the θ coordinate initially, then it

will remain so for all time. Although making this assumption rules out the possibility

of waves or turbulence in the θ direction, it greatly simplifies the model. With these

assumptions, the three-dimensional fluid velocity has the form

u(r, z, t) = u(r, z, t)r̂(θ) + w(r, z, t)ẑ. (7.1)

The shape of the sphere is given by

s(r) = R−
√
R2 − r2, (7.2)

96

where R is the radius of the sphere. The position of the sphere as it moves toward

or away from the wall is given by ε(t) such that the center of the sphere is located

at ε+R. The sphere may deform as it approaches the wall, and we denote the local

deformation of the sphere by ξ(r, t). The thickness of the gap between the sphere

and the wall, h(r, t), is completely determined by existing variables,

h(r, t) = ε(t) + s(r) + ξ(r, t). (7.3)

Since this collision model is intended to be used as a subgrid model, we are only

interested in what happens when the sphere is very close to the wall. In particular,

we assume a small aspect ratio h/R � 1. In order for this assumption to be true

for all r, we also need to restrict the domain of r. If we choose r ∈ [0, 0.4R] then

the variation in h due to curvature of the sphere s(r) is restricted to about 0.083R

according to (7.2). This somewhat arbitrary choice of 0.4R will be shown to be

reasonable in Section 7.12.

7.1 Lubricating Fluid

Between the sphere and the wall (see Figure 7.1) is a thin film of viscous Newtonian

fluid. Since collisions can involve large pressure changes, the fluid is treated as

compressible using a realistically small amount of compressibility for fluids such

as water. In cylindrical polar coordinates with the assumption (7.1), the fluid is

governed by the continuity equation,

∂ρ

∂t
+

1

r

∂

∂r
(rρu) +

∂

∂z
(ρw) = 0,

the ẑ component of the Navier–Stokes equation,

∂w

∂t
+ u

∂w

∂r
+ w

∂w

∂z
= −1

ρ

∂p

∂z
+

1

ρ

(
1

r

∂

∂r

(
rµ
∂w

∂r

)
+

∂

∂z

(
µ
∂w

∂z

))
,

the r̂ component of the Navier–Stokes equation,

∂u

∂t
+ u

∂u

∂r
+ w

∂u

∂z
= −1

ρ

∂p

∂r
+

1

ρ

(
1

r

∂

∂r

(
rµ
∂u

∂r

)
+

∂

∂z

(
µ
∂u

∂z

)
− µu

r2

)
,

97

and an equation of state, which we will discuss in Section 7.2. In the above, ρ is

the fluid density, µ is the dynamic viscosity of the fluid, and p is the fluid pressure.

Since the gap thickness h is small, the Reynolds number based on this length scale is

small. It is also reasonable to assume that fluid properties p, µ, ρ, do not change sig-

nificantly across the gap, since the gap is small. The three approximations h/R� 1,

small Reynolds number, and ∂p
∂z

= ∂ρ
∂z

= ∂µ
∂z

= 0 are collectively called the “lubrica-

tion approximation”. With these assumptions, one can integrate the continuity and

Navier–Stokes equations from z = 0 to z = h, and this removes the z coordinate from

the equations and introduces the variable h. After performing this integration (see

[35, ch.7] or [7]), one obtains a two-dimensional equation for the transport of mass,

which is called the Reynolds lubrication equation. According to [45], the Reynolds

lubrication equation (without the assumption (7.1)) is

∂

∂t
(hρ) = ∇ ·

(
ρh3

12µ
∇p− 1

2
ρh (vobj + vwall)

)
, (7.4)

where vobj is the boundary condition shear velocity at the surface of the spherical

object and vwall is the boundary condition shear velocity at the surface of the wall.

For simplicity and to be consistent with our assumption (7.1), we set vwall = vobj = 0

(the nonzero case is a task for future work). After expanding the divergence operator

in (7.4) in plane polar coordinates and setting the θ derivatives to zero, we get

∂

∂t
(hρ) =

1

r

∂

∂r

(
rρh3

12µ

∂p

∂r

)
, (7.5)

which is the basis of the collision model in this chapter.

7.2 Equation Of State

The thermodynamic variables of a single phase pure substance are the pressure p,

density ρ, temperature T , internal energy per unit mass e, enthalpy per unit mass

h, and entropy per unit mass s. Given any two independent pieces of information

involving these six variables, the values of all six variables can be uniquely deter-

mined. For example, if p and T are known, then we can determine ρ by a relation

of the form ρ = ρ(p, T). Since the only thermodynamic variables that appear in our

equation (7.5) are the pressure p and density ρ, we will choose a simplified equation

98

of state,

ρ = ρ(p,X) (7.6)

where X is an expression involving the four thermodynamic variables {T, e, h, s}, and

X is assumed to be constant. By making an assumption of this form, our equation

of state reduces to ρ = ρ(p) for a particular choice of the expression X, and we

avoid having to include temperature and heat transfer in our equations. This seems

reasonable because an object collision occurs over very short times and therefore heat

transfer is not likely important.

Our lubricating fluid will initially be liquid water at normal atmospheric con-

ditions. However, during the process of a collision, the liquid is first exposed to

extremely high pressures on impact, but also extremely low pressures on rebound.

The possibility that a submerged collision may cause cavitation in the surround-

ing liquid has been experimentally demonstrated by [44]. Therefore, we allow our

lubricating fluid to be one of these two possibilities:

1. Compressed liquid, which means a liquid that isn’t about to vaporize.

2. Saturated liquid-vapor mixture, which means an equilibrium of liquid at its

vaporization (boiling) point mixed with vapor at its condensation point.

For our purposes, it is unnecessary to include other possibilities such as superheated

vapor, saturated liquid-vapor-ice mixture, or saturated vapor-ice mixture. We also

ignore any surface tension effects which could exist in cavitation bubbles if some of

the fluid vaporizes. Accurate experimental data for the thermodynamic properties of

water (see [38], [13]) exists for each separate phase, and this data can be interpreted

as a function using interpolation. The experimental data exists in the form ρL(p,X)

for compressed liquid, and for saturated liquid and saturated vapor, the data exists

in the two-part form ρsatL(p), XsatL(p) and ρsatV(p), XsatV(p) respectively. Given

pressure p and an additional thermodynamic property X, we define our equation of

state (7.6) as

ρ =


ρL(p,X) if p,X is in the domain of ρL(p,X)

qρsatV(p) + (1− q)ρsatL(p) if p is in the domain of ρsatL(p) and

∃ “quality” q ∈ [0, 1] such that

X = qXsatV(p) + (1− q)XsatL(p)

99

10−3

10−2

10−1

100

101

102

103
ρ
(k
g/
m

3
)

611.7 1000 2000 2339
p (Pascals)

piecewise linear fit

arctan fit

ρ(p, T = 293.15 K)

ρ(p, h = 86000 J/kg)

ρ(p, u = 83800 J/kg)

ρ(p, s = 296.6 J/kg/K)

0

100

200

300

400

500

600

700

800

900

1000

ρ
(k
g/
m

3
)

2290 2300 2310 2320 2330 2340 2350 2360 2370 2380 2390
p (Pascals)

piecewise linear fit

arctan fit

ρ(p, T = 293.15 K)

ρ(p, h = 86000 J/kg)

ρ(p, u = 83800 J/kg)

ρ(p, s = 296.6 J/kg/K)

Figure 7.2: Equations of State ρ = ρ(p). The bottom figure is zoomed in around
p = 2339, the saturation pressure when cavitation occurs. For higher p values, the
fluid is in compressed liquid state and ρ changes very slowly with increasing p.

100

In practice, the above definition is well defined and chooses a unique value of ρ given

p and X, with two known exceptions. First, if X is chosen to be temperature, i.e.,

ρ = ρ(p, T), then when p = psat (the saturation pressure at temperature T), there

is insufficient information to uniquely determine ρ. However, the temperature is

certainly not constant during a collision so we do not choose X to be temperature.

Second, if p = pT (the triple point pressure), then p and X are again insufficient to

uniquely determine ρ. However, the triple point pressure of water is 611.7 Pascals,

and the pressure never drops this low even in high-impact collisions. Both of these

cases can be seen as jump discontinuities in Figure 7.2 which shows four different

equations of state ρ = ρ(p,X) with the same atmospheric conditions but different

thermodynamic properties X chosen to be constant. We can see in the figure that ρ =

ρ(p, T) has a jump discontinuity at p = 2339 Pascals (the saturation pressure when

T = 293.15◦K), and the other three equations of state have a jump discontinuity at

the triple point p = 611.7 Pascals.

It turns out that choosing ρ = ρ(p, h), ρ = ρ(p, e), ρ = ρ(p, s), or even one of

the two approximate curve fits in Figure 7.2 all give the same macroscopic collision

result. However, choosing something completely different (for example, an ideal gas

equation of state) changes the outcome of the collision. Therefore, we define our

equation of state

ρ = ρ(p) (7.7)

as the “piecewise linear fit” in Figure 7.2. The exact form of this curve fit is not

important provided it qualitatively matches the data.

7.3 Fluid Viscosity

During the process of a collision, the pressure may change by a large amount and

therefore the fluid viscosity µ is not necessarily constant. Accurate experimental

data [39] for the viscosity of water exists in the form µ = µ(ρ, T). Figure 7.3

shows the experimental data µ = µ(ρ) for liquid water at three different constant

temperatures. For ρ < 998.0 kg/m3, water exists as a mixture of vapor and liquid,

and it is difficult to find the viscosity of such a mixture in the literature. Also,

the experimental data does not exist for extremely high pressures and densities.

We must therefore approximate and extrapolate the data. Figure 7.3 shows two

piecewise linear approximations/extrapolations, “Approx 1” and “Approx 2”. It

101

0.000

0.001

0.002

0.003

0.004
µ
(k
g/
m
/s
)

0 200 400 600 800 1000 1200

ρ (kg/m3)

Approx 1

Approx 2

µ(ρ, T = 273.15◦K)

µ(ρ, T = 293.15◦K)

µ(ρ, T = 303.15◦K)

Figure 7.3: Experimental data for µ = µ(ρ) for liquid water at three different constant
temperatures. Also included are two piecewise linear curve fits “Approx 1” and
“Approx 2”.

is probably more realistic for µ to drop quickly when the fluid starts to cavitate

for ρ < 998.0 kg/m3, however, this presents a more CPU time consuming problem

because µ appears in the denominator in (7.5). Testing indicates that both “Approx

1” and “Approx 2” produce the same macroscopic collision result, but “Approx 1”

allows larger time steps. We therefore choose

µ = µ(ρ) (7.8)

to be “Approx 1” in Figure 7.3. Again, the exact form of this curve fit is not

important provided it qualitatively matches the data.

102

7.4 Solid Compressibility

Although the solid sphere should be very rigid, under large pressures a small amount

of compressibility will occur. We model the compressibility of the sphere by allowing

the position of the sphere’s surface to compress like a spring in the z direction by

an amount ξ(r, t) (see Figure 7.1). We wish to choose a spring model that has a

physical basis, leads to efficient numerical implementation, and contains parameters

for which there exist experimental data. A good choice is an elastic-plastic piecewise

linear spring law similar to [46, p. 138]. The model is essentially Hooke’s law

“p = kξ” but with two different spring constants depending on the time history of

the spring’s state:

p =

{
k1ξ if ξ ≥ ξmax

k2ξ + ξmax (k1 − k2) if ξ < ξmax

, (7.9)

where

ξmax(r, t) = max
τ<t

ξ(r, τ)

is the maximum spring compression to-date. Note that if k1 = k2, then we get

Hooke’s law which is perfectly elastic. With k2 > k1, however, the spring does not

rebound all the way to its original position. This models a partially plastic compres-

sion. Consider Figure 7.4 where, as in a typical collision, the spring is compressed

using spring constant k1 from ξ = 0 to its maximum compression at ξ = ξ1. On

rebound, ξ < ξmax = ξ1 and spring constant k2 is used. Finally, the spring settles at

its new equilibrium state, ξ = ξ2. The total energy absorbed by the spring during

this process can be computed as the area bounded by the solid lines in Figure 7.4,

Elost =

∫
p dξ =

∫ ξ1

0

k1ξ dξ +

∫ ξ2

ξ1

k2ξ + ξ1 (k1 − k2) dξ

= · · · = 1

2
k1ξ

2
1

(
1− k1

k2

)
(7.10)

where in the above calculation, we have omitted some algebra and made use of the

fact that ξ2 = ξ1

(
1− k1

k2

)
, which can be derived from Figure 7.4. If there is no fluid,

all of the incoming object’s kinetic energy will be transferred to the spring when

103

ξ

p

p=k ξ

ξ1ξ2

1

p=k ξ + ξ (k -k)12 21

Figure 7.4: Spring force (p) vs. compression distance (ξ)

ξ = ξ1, so the object’s initial kinetic energy is

Ein =
1

2
k1ξ

2
1 . (7.11)

We can now relate the parameters k1, k2 in our spring model to experimentally mea-

sured parameters. Young’s modulus E is defined by F = E
L

∆L for a material of

length L with force F compressing it a distance ∆L. Equation (7.9) suggests that

we take

k1 =
E

R
, (7.12)

where the radius of the sphere R takes the role of L and ξ takes the role of ∆L.

When there is no fluid, the dry coefficient of restitution edry is defined by edry = Vout

Vin

where Vin is the magnitude of the incoming, pre-collision velocity of the sphere and

Vout is the magnitude of the outgoing, post-collision velocity of the sphere. Thus,

e2
dry =

V 2
out

V 2
in

=
1
2
MV 2

out
1
2
MV 2

in

=
Ein − Elost

Ein

=

1
2
k1ξ

2
1 − 1

2
k1ξ

2
1

(
1− k1

k2

)
1
2
k1ξ2

1

=
k1

k2

, (7.13)

104

where Ein is given by (7.11) and Elost is given by (7.10). Therefore, we choose

k2 =
k1

e2
dry

. (7.14)

Our spring model is now defined by Young’s modulus and the coefficient of restitution

for dry collisions, for which experimental data exists (see [42], [41]). It turns out to

be more useful to express ξ as a function of p, so we finally invert (7.9) to get

ξ =

{
p
k1

if p ≥ pmax

p−pmax

k2
+ pmax

k1
if p < pmax

, (7.15)

where k1, k2 are given by (7.12), (7.14), and

pmax(r, t) = max
τ<t

p(r, τ).

7.5 Object Motion

Since the sphere is solid and we expect it not to deform a large amount compared to

its radius, the center of mass of the sphere can be taken to be ε+R (see Figure 7.1).

The motion of the sphere obeys Newton’s second law,

∂2ε

∂t2
=

1

M

∫∫
(p− p0) dA, (7.16)

whereM is the mass of the sphere, p is the fluid pressure, p0 is the “ambient pressure”,

and the integral is carried out over the surface of the sphere. Since the pressure p in

the domain does not depend on z, it is sufficient to perform the integration over the

2-D disc beneath the sphere.

7.6 Nondimensionalization

Our full set of seven equations for the seven variables p, ρ, µ, ξ, h, s, ε are (7.2), (7.3),

(7.5), (7.7), (7.8), (7.15), and (7.16), together with the initial and boundary condi-

105

tions

ε(t = 0) = ε0,
dε

dt
(t = 0) = −ε̇0, p(r, t = 0) = p0,

∂p

∂r
(r = 0, t) = 0, p(r = 0.4R, t) = p0,

where ε0 is the initial separation distance between the sphere and the wall, and ε̇0 is

the initial speed of the sphere.

Let the dimensional variables and constants in our equations thus far be denoted

by a ĥat. We choose new nondimensional variables using the scalings

(r̂, ĥ, ε̂, ξ̂) = R̂(r, h, ε, ξ)

ρ̂ = ρ̂0ρ, µ̂ = µ̂0µ,

t̂ =
R̂

ˆ̇ε0
t,

(p̂, p̂0, ˆpmax) =
12 ˆ̇ε0µ̂0

R̂
(p, p0, pmax),

where ρ̂0 and µ̂0 are the ambient density and viscosity associated with the ambi-

ent pressure p̂0 through equations (7.7) and (7.8). Using these scalings, our seven

equations transform into

s(r) = 1−
√

1− r2, h(r, t) = ε(t) + s(r) + ξ(r, t), (7.17)

ξ =

{
p
k1

if p ≥ pmax

p−pmax

k2
+ pmax

k1
if p < pmax

, (7.18)

ρ = ρ(p), µ = µ(ρ), (7.19)

∂

∂t
(hρ) =

1

r

∂

∂r

(
rρh3

µ

∂p

∂r

)
, (7.20)

∂2ε

∂t2
=

1

M

∫∫
(p− p0) dA, (7.21)

106

where the new nondimensional parameters M , k1, k2 are

M =
M̂ ˆ̇ε0

12R̂2µ̂0

, k1 =
ER̂

12 ˆ̇ε0µ̂0

, k2 =
k1

e2
dry

, (7.22)

and our nondimensional initial and boundary conditions are

ε(t = 0) = ε0,
dε

dt
(t = 0) = −1, p(r, t = 0) = p0,

∂p

∂r
(r = 0, t) = 0, p(r = 0.4, t) = p0.

7.7 Solution Method

We are interested in solving the equations (7.17)–(7.21) numerically. However, a

more elegant formulation can be obtained if we first perform some manipulations.

Let ε̇(t) = dε
dt

(t) and differentiate (7.17) with respect to t to get

∂h

∂t
= ε̇+

∂ξ

∂t
. (7.23)

Also, differentiate (7.18) with respect to t to get

∂ξ

∂t
=

{
1
k1

∂p
∂t

if p ≥ pmax

1
k2

∂p
∂t

if p < pmax

,

which for simplicity we will denote by

∂ξ

∂t
=

1

kp

∂p

∂t
, (7.24)

where kp is either k1 or k2 as appropriate. Combining (7.23) and (7.24) gives

∂h

∂t
= ε̇+

1

kp

∂p

∂t
. (7.25)

107

We also need to differentiate (7.19) with respect to t using the chain rule to get

∂ρ

∂t
=
dρ

dp

∂p

∂t
. (7.26)

We then write (7.20) using the product rule as

ρ
∂h

∂t
+ h

∂ρ

∂t
=

1

r

∂

∂r

(
rρh3

µ

∂p

∂r

)
, (7.27)

and substitute (7.25) and (7.26) to get

ρ

(
ε̇+

1

kp

∂p

∂t

)
+ h

dρ

dp

∂p

∂t
=

1

r

∂

∂r

(
rρh3

µ

∂p

∂r

)
,

which we finally re-arrange as

∂p

∂t
=

1
r
∂
∂r

(
rρh3

µ
∂p
∂r

)
− ρε̇

ρ
kp

+ hdρ
dp

.

Our system of equations (7.17)–(7.21) can now be solved in the much more natural

format,

∂

∂t

 p

ε

ε̇

 =


1
r
∂
∂r

(
rρh3

µ
∂p
∂r

)
−ρε̇(

ρ
kp

+h dρ
dp

)
ε̇

1
M

∫∫
(p− p0) dA

 , (7.28)

together with the relations (7.17)–(7.19). Given ε, ε̇, p, pmax at time t (where pmax = p

at t = 0), we can get ε, ε̇, p, pmax at time t+ ∆t as follows:

1. Use (7.18) to get ξ at time t from p, pmax at time t.

2. Use (7.17) to get h at time t from ξ, ε at time t.

3. Use (7.19) to get ρ at time t from p at time t.

4. Use (7.19) to get µ at time t from ρ at time t.

5. Integrate (7.28) forward in time by ∆t to get ε, ε̇, p at time t+ ∆t.

6. Update pmax at each grid point as appropriate.

108

7.8 Can Solid On Solid Contact Occur?

One result from ODE theory is that “fixed points” can split the domain into invariant

regions. More precisely, suppose x(t) = (x1(t), .., xn(t)) obeys the system of ODEs
dx
dt

= f(x, t), where f(x, t) = (f1(x, t), .., fn(x, t)) is Lipshitz continuous. Then

xi(t = 0) > 0 and fi(x1, .., xi−1, 0, xi+1, .., xn, t) = 0 ⇒ xi > 0 ∀ t. (7.29)

Thus, to show that h will remain positive for all time (no solid on solid contact), it

is sufficient to show that ∂h
∂t

∣∣
h=0

= 0. If the fluid is incompressible (ρ = constant),

then the lubrication equation (7.20) becomes

∂h

∂t
=

1

r

∂

∂r

(
rh3

µ

∂p

∂r

)
,

which can be re-written using the product rule as

∂h

∂t
= h3 1

r

∂

∂r

(
r

µ

∂p

∂r

)
+ 3h2∂h

∂r

(
1

µ

∂p

∂r

)
.

We can see that as long as µ 6= 0 and all spatial derivatives are bounded, ∂h
∂t

∣∣
h=0

= 0,

and from (7.29) that means h remains positive for all time. This means that contact

cannot occur for an incompressible fluid (with bounded spatial derivatives) regardless

of elasticity model or forcing on the sphere.

We now consider the time derivative of h in our model if ρ is not constant, i.e.,

a compressible fluid. Using (7.25) and (7.26), we can write

∂ρ

∂t
= kp

dρ

dp

(
∂h

∂t
− ε̇
)
,

which we then sub into (7.27) and re-arrange to get

∂h

∂t
=

1
r
∂
∂r

(
rρh3

µ
∂p
∂r

)
+ hkpε̇

dρ
dp

ρ+ hkp
dρ
dp

.

109

Then using the product rule, we have

∂h

∂t
=
h3 1

r
∂
∂r

(
rρ
µ
∂p
∂r

)
+ 3h2 ∂h

∂r

(
ρ
µ
∂p
∂r

)
+ hkpε̇

dρ
dp

ρ+ hkp
dρ
dp

.

As long as µ 6= 0, ρ 6= 0, dρ
dp

is bounded, and all spatial derivatives are bounded,

it follows that ∂h
∂t

∣∣
h=0

= 0. We can again conclude from (7.29) that h will remain

positive (no solid on solid contact) for all time regardless of what forcing function

ε(t) is given. Numerical testing confirms this “no contact” result (provided sufficient

spatial resolution is used), even for heavy objects traveling very fast toward the wall.

However, [7] indicates that when the sphere and wall are considered to be completely

rigid, solid on solid contact can occur.

7.9 Spatial Discretization

We discretize (7.28) spatially in the radial coordinate r by using a uniform grid of

one-dimensional cells where the values of the variables p, ρ, h are stored at the center

of each grid cell. The first grid point is located at r = 1
2
∆r, where ∆r is the width

of the one-dimensional cells.

Let subscript i denote evaluation at r = i∆r, and let f = ρh3

µ
. A finite volume

discretization for the expression 1
r
∂
∂r

(
rf ∂p

∂r

)
that appears in (7.28) can be obtained

by integrating the expression over the area of a ring and dividing by the area of that

ring: [
1

r

∂

∂r

(
rf
∂p

∂r

)]
i+ 1

2

≈
∫ 2π

0

∫ (i+1)∆r

i∆r
1
r
∂
∂r

(
rf ∂p

∂r

)
r dr dθ

πr2
i+1 − πr2

i

≈ 2π
∫ (i+1)∆r

i∆r
∂
∂r

(
rf ∂p

∂r

)
dr

πr2
i+1 − πr2

i

≈
2
[
rf ∂p

∂r

]
i+1
− 2

[
rf ∂p

∂r

]
i

r2
i+1 − r2

i

. (7.30)

For the expression
[
rf ∂p

∂r

]
, we use the midpoint approximation and a centered finite

110

difference, [
rf
∂p

∂r

]
i

≈ ri

(
fi+ 1

2
+ fi− 1

2

2

)(
pi+ 1

2
− pi− 1

2

∆r

)
, (7.31)

which is second-order accurate. The combination of (7.30) and (7.31) produces the

discretization[
1

r

∂

∂r

(
rf
∂p

∂r

)]
i+ 1

2

≈ (7.32)

ri+1

(
fi+ 3

2
+ fi+ 1

2

)(
pi+ 3

2
− pi+ 1

2

)
− ri

(
fi+ 1

2
+ fi− 1

2

)(
pi+ 1

2
− pi− 1

2

)
∆r
(
r2
i+1 − r2

i

) ,

which is second-order accurate. The total mass in the domain is
∫

(ρh) dA integrated

over the 2D domain area r ≤ 0.4R. The stencil (7.32) conserves total mass in the

domain in the discrete sense because

d

dt

∑
(ρh) ∆A =

N−1∑
i=0

∂

∂t
(ρh)i+ 1

2

(
πr2

i+1 − πr2
i

)
using equation (7.20) =

N−1∑
i=0

[
1

r

∂

∂r

(
rf
∂p

∂r

)]
i+ 1

2

(
πr2

i+1 − πr2
i

)
using equation (7.30) =

N−1∑
i=0

2π

([
rf
∂p

∂r

]
i+1

−
[
rf
∂p

∂r

]
i

)
= 2π

([
rf
∂p

∂r

]
N

−
[
rf
∂p

∂r

]
0

)
= 2π

[
rf
∂p

∂r

]
N

,

which is a telescoping sum where the only term remaining represents mass flux

through the boundary of the domain at r = 0.4R.

The area integral appearing as the last component in (7.28) is computed using a

Riemann sum based on ring areas πr2
i+1 − πr2

i :∫∫
(p− p0) dA ≈

N−1∑
i=0

(p− p0)i+ 1
2

(
πr2

i+1 − πr2
i

)
.

111

7.10 Time Discretization

Let superscripts denote time, and let u = (p, ε, ε̇) = (p0, p1, ..., pN−1, ε, ε̇) be the

vector of variables that we need to solve for in (7.28). Equation (7.28) is stiff because

p changes very rapidly compared to ε. Therefore, we must use an implicit scheme to

avoid being forced to use an unreasonably small time step for the entire simulation.

A fully implicit scheme could be used to solve for un+1 in

un+1 − un

∆t
= F(un+1),

where F is the (nonlinear) function of u = (p, ε, ε̇) given by (7.28). Therefore,

iterative root-finding methods like Newton-Raphson would need to be used. Instead,

we choose a semi-implicit scheme, which means that F is linearized about time level

n so that solving for un+1 becomes a linear algebra problem,

un+1 − un

∆t
= F(un) + J

(
un+1 − un

)
,

where J = ∂F
∂u

(un) is the Jacobian matrix of F evaluated at un. As our time stepping

scheme, we use an embedded fourth order A-stable semi-implicit Rosenbrock method

with an adaptive time step, as in [57]. A-stable is sometimes called “stiffly stable”

and means that the scheme is stable for any time step size (provided the ODE being

solved is stable). By using a semi-implicit scheme, we need to compute the Jacobian

of the right-hand side of (7.28), and then at each time step we need to solve several

algebraic systems of the form (I − J)un+1 = b. For the F given by (7.28), the

Jacobian has the form

J =



X X X X

X X X X X

X X X X X

X X X X X

X X X X X

X X X X

X X

X X X X X X X X


,

112

and these algebraic systems can be solved in O(N) time using Gaussian elimination.

However, since the above matrix is a strange form, a custom Gaussian elimination

routine was written in C++ specifically for solving linear systems where the matrix

has the above form. For our problem, it is possible to encounter a zero pivot. In this

case, the offending row can be swapped with the row immediately below it, which

doesn’t spoil the O(N) solution time.

The error introduced in u from one time step to the next is computed by compar-

ing the fourth-order solution to the third-order solution which is also obtained from

the embedded scheme. If the error is too large or the solution is unphysical (p < 0

for example), then the time step is reduced and the step is recalculated.

Figure 7.5 shows numerical results of a high-impact collision where a 20cm diam-

eter steel ball traveling at 1m/s collides with a rigid wall while submerged in water

at atmospheric conditions. The nondimensional parameters of this simulation are

M = 266250, k1 = 1.55 × 1012, edry = 0.97. In order to resolve this high-impact

collision, 10000 grid cells were needed. The maximum pressure during impact is

8143 atmospheres, and the minimum pressure during rebound is 0.022 atmospheres

(2229.6 Pascals), which is below the cavitation pressure (2339 Pascals) of the fluid.

We can see from the figure that the smallest time steps are required during object re-

bound - in particular, the smallest time step used was 3.5×10−16, which is extremely

small compared to the entire simulation length of about 0.04 time units. Adaptive

time stepping is therefore essential.

7.11 Comparison To Experiments

When comparing macroscopic collision results, it is convenient to compare the wet

(submerged collision) coefficient of restitution ewet to the Stokes number St. Here,

ewet is defined to be the ratio of the post-collision velocity to the pre-collision velocity.

The Stokes number represents the ratio of the sphere’s inertia to the viscous strength

of the fluid, and it is defined (see [18]) by

St =
MV

6πµR2
,

where M is the mass of the sphere, V is the initial velocity of the sphere, R is

the radius of the sphere, and µ is the fluid viscosity at ambient conditions. In

113

−2

−1

0

1

2

3

4

0.19 0.2 0.21 0.22
t

Saturation Pressure

ǫ̇

ǫ

h|r=0

log10(p)|r=0

1
5
log10(

1
∆t
)

Figure 7.5: High-impact collision involving a 20cm diameter steel ball traveling un-
derwater at 1m/s towards a rigid wall. The distances ε and h are measured in units of
R/100. The pressure at r = 0 is measured as multiples of the atmospheric pressure,
but the logarithm of this value is drawn in the graph. The saturation pressure below
which the fluid vaporizes is indicated. The time step size is also indicated using a
logarithm.

114

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

e w
et
/e
d
ry

101 102 103

St

Figure 7.6: Comparison of our numerical solutions (solid red curve connecting tiny
points) to experimental data for spheres of various materials impacting various walls.
Also shown are two theoretical predictions by [18] (dashed line) and [8] (solid line). In
our simulations, we use steel spheres with edry = 0.97, density 7780 kg/m3, Young’s
modulus of 190 GPa, radius R = 6.35 mm, and water at atmospheric conditions as
lubricating fluid. In order to produce a range of Stokes numbers, we vary the initial
velocity of the spheres from 0.0008 to 0.2m/s2.

115

our nondimensionalization from Section 7.6, the parameter M in equation (7.22) is

related to the Stokes number by St = 2
π
M .

Figure 7.6 is a comparison of our model predictions with all sorts of experimental

results from [41, Fig. 12]. We can see that our model agrees with the experiments

very well except at low Stokes numbers, where the experiments show on average a

higher rebound velocity than our model predicts. One explanation for this difference

is that at low Stokes number, the wall has an effect on the colliding object at larger

distances, and the lubrication assumption of our model isn’t valid at large distances.

It is also possible that a more rigorous comparison of results should consider more

parameters than just coefficient of restitution vs. Stokes number.

7.12 Comparison Of Arbitrary Parameters

There are two parameters in our model that are chosen somewhat arbitrarily – the

initial distance of the object from the wall ε0 (which we have been arbitrarily taking

to be 0.2R), and the domain size as a fraction of the sphere’s radius (which we have

been arbitrarily taking to be 0.4R). It is therefore important to know if these two

parameters affect our solution in a large way.

First we check the effect of domain size. An inspection of the pressure field during

a typical numerical simulation (not shown here) indicates that all fluid properties

beyond 0.3R are very close to ambient conditions at all times, so restricting our

domain to 0.4R seems reasonable. Figure 7.7 shows the coefficient of restitution vs

Stokes number for identical collisions but using different domain sizes. We can see

that there is some effect, but not a lot. On one hand we want to choose a small

domain size so the sphere’s curvature doesn’t violate the lubrication approximation

(as explained at the beginning of this chapter), but on the other hand we want to

include as much of the sphere as possible. Figure 7.7 indicates that 0.4R seems to

be a reasonable balance between 0.3R and R.

Next, we check the effect of initial gap thickness ε0. Figure 7.7 shows the co-

efficient of restitution vs Stokes number for identical collisions but using different

values of ε0. We can see that again, there is some effect, but not a lot. On one hand,

we should choose a small ε0 so the lubrication approximation is valid, but on the

other hand, choosing ε0 too small is surely leaving out some drag on the sphere that

would happen farther away than ε0. Figure 7.7 indicates that choosing ε0 = 0.2R

116

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
e w

et

101 102 103

Stokes number

rmax = 0.3R

rmax = 0.4R

rmax = 0.5R

rmax = 1.0R

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

e w
et

101 102 103

Stokes number

ǫ0 = 0.04R

ǫ0 = 0.2R

ǫ0 = 1.0R

Figure 7.7: Comparison of different domain lengths (top), and different initial gap
thicknesses (bottom).

117

h(r,t)

ξ (r,t)
s (r)

ε(t)

Actual sphere 1 surface

Undeformed
sphere 1 surface

r

z

θ
Actual sphere 2 surfaces (r)

ξ (r,t)

Undeformed sphere 2 surface

1

2
2

1

Figure 7.8: Two spheres colliding

does not leave out considerable drag, even though [41, p. 339] provides experimental

evidence that a colliding sphere is affected by the wall as far away as 0.5R. Also, if

this collision model is used as a subgrid model in a larger scale code, the larger scale

code would already resolve the effects that occur at large distances.

7.13 Two Sphere Collision

The lubrication collision model in this chapter can easily be extend for two spheres

colliding with each other instead of a single sphere colliding with a wall. Consider

Figure 7.8, where we now have two spheres with masses M1, M2, radii R1, R2, center

of mass positions x1, x2, and spring laws ξ1, ξ2. In this case we have

s(r) = s1(r) + s2(r) = R1 −
√
R2

1 − r2 +R2 −
√
R2

2 − r2,

ξ = ξ1 + ξ2 =


p
k1,1

+ p
k1,2

if p ≥ pmax(
p−pmax

k2,1
+ pmax

k1,1

)
+
(
p−pmax

k2,2
+ pmax

k1,2

)
if p < pmax

,

where k1,i = Ei
Ri

, k2,i =
k1,i

e2dry,i
, Ei is Young’s modulus for the material in sphere i, and

edry,i is the experimental coefficient of restitution for sphere i bouncing off a rigid

wall. With these definitions, h(r, t) = ε(t) + s(r) + ξ(r, t) as before. Newton’s second

118

law for two spheres traveling directly toward or away from each other is

∂2x1

∂t2
=

1

M1

∫∫
(p− p0) dA,

∂2x2

∂t2
= − 1

M2

∫∫
(p− p0) dA.

Since ε = |x1 − x2| −R1 −R2, this gives us

∂2ε

∂t2
=

(
1

M1

+
1

M2

)∫∫
(p− p0) dA.

The lubrication equation (7.5) and the two equations of state ρ = ρ(p), µ = µ(ρ) are

the same as in the sphere-wall case. Our initial conditions for two spheres are also

the same, ε0 being the initial distance from one sphere’s surface to the other sphere’s

surface, and ε̇0 = |V1 − V2| being the relative speed at which the two spheres are

approaching each other along the line connecting them. We can see that if M2 →∞,

R2 →∞, and ξ2 → 0 then we recover our original sphere-wall equations.

119

Chapter 8

A Direction Splitting Fictitious

Domain Method

In Chapter 6, we provided a discretization of the rigid object ODEs that when

coupled with the Navier–Stokes solver in Section 4.4, forms a complete scheme for

solving the coupled problem of fluid flows containing rigid objects. In this section,

we provide an alternative Fictitious Domain Method (FDM) for solving the coupled

problem that we will compare with the more “direct” method. The FDM that we

construct below is similar to the FDM of [68], however, here we use the direction

splitting Navier–Stokes solver in Section 4.4, and we use finite differences instead of

the finite element approach of [68].

The idea behind all FDM is to embed a complicated fluid domain Ωf inside a

simple box domain Ω, and then treat the entire domain Ω as fluid subject to rigid

motion constraints in the “solid” parts of the domain Ω \ Ωf . This can be justified

briefly in the following way. Using Gauss’s divergence theorem to rewrite the surface

integral in the object linear momentum equation (2.24) as a volume integral, we

obtain
dUi

dt
=

1

Fr

(
1− ρf

ρi

)
eg +

1

Vi

ρf
ρi

∫
Ωi

∇ · σ dx, (8.1)

where we have used the definition Mi = Vi
ρi
ρf

, where Vi is the volume of Ωi. Note:

Mi is M̃i from (2.14), where we have since dropped the tilde. The divergence of the

120

stress can be written as

∇ · σ = ∇ ·
[
−pδ +

1

Re

(
∇u + (∇u)T

)]
= −∇p · δ − p∇ · δ +

1

Re

(
∇ · (∇u) +∇ (∇ · u)

)
= −∇p+

1

Re
∇2u, (8.2)

since δ is a constant and ∇ · u = 0 from the incompressibility constraint. In the

Lagrangian (object-following) reference frame, the object velocity Ui is always equal

to the volume-averaged pointwise velocity in the object domain Ωi. Similarly, in the

Eulerian (non-object following) reference frame, the velocity field u inside the object

domain Ωi must satisfy

1

Vi

∫
Ωi

Du

Dt
dx =

dUi

dt
, where

Du

Dt
=
∂u

∂t
+ u · ∇u. (8.3)

By combining (8.1), (8.2), (8.3), we have

1

Vi

∫
Ωi

(
∂u

∂t
+ u · ∇u

)
dx =

1

Fr

(
1− ρf

ρi

)
eg +

1

Vi

ρf
ρi

∫
Ωi

−∇p+
1

Re
∇2u dx, (8.4)

which is exactly the volume averaged Navier–Stokes equations (2.22) with a density

scaling factor on the force terms and an additional buoyancy term. A similar volume-

averaged equation holds for the angular momentum of the object. Therefore, the

Navier–Stokes equations can be solved everywhere (even in Ω\Ωf), and then volume

averages can be used to recover the original object motion equations. For a more

complete derivation of the FDM, see [68].

The FDM numerical scheme (assuming no object collisions) can be summarized

as follows:

Step 1: Update object positions according to

Xn+1
i −Xn

i

∆t
=

3

2
Un
i −

1

2
Un−1
i , (8.5)

where Xi is the centroid position of the ith object and Ui is its velocity.

121

Step 2: Predict the pressure in Ω using (4.104).

Step 3: Solve the Navier–Stokes momentum equation in Ω using (4.105) or its

original Douglas splitting equivalent. No boundary fitted spatial operators are used

since Ωf is a box domain. Since the Navier–Stokes equations are solved with con-

stant density and viscosity, the original Douglas splitting (4.63) will be stable and is

actually preferred over the modified Douglas splitting (4.84) in this specialized case

due to reduced memory requirements, reduced CPU usage, and reduced splitting

error. However, the modified Douglas splitting also works.

Step 4: Compute the average linear and angular velocities uavg, ωavg of the fluid

inside each Ωi,

Viu
n+1
avg,i =

∫
Ωi

un+1 dx, (8.6)

Iv,i ω
n+1
avg,i =

∫
Ωi

(
x−Xn+1

i

)
×
(
un+1 − un+1

avg,i

)
dx, (8.7)

where Vi is the volume of Ωi and Iv,i = 2
5
Vir

2
i δ is the volume moment. On a uniform

MAC grid, an example discretization of the x component of (8.6) and of the z

component of (8.7) is∑
xn,i

1

 uavg,i =
∑
xn,i

u, (8.8)

∑
xm,i

x2 +
∑
xn,i

y2

 ωavg,i =
∑
xm,i

x(v − vavg,i)−
∑
xn,i

y(u− uavg,i), (8.9)

where xn,i and xm,i are respectively all u and v MAC grid points that lie inside Ωi,

and the coordinates x, y are measured relative to the object’s centroid Xn+1
i .

Step 5: Update each object velocity Ui and angular velocity ωi such that ob-

ject i receives a net change in momentum equal to the net change in average fluid

momentum in Ωi over the same time interval. This is accomplished using

Un+1
i = Un

i +
ρf
ρi

(
un+1

avg,i −Un
i

)
+

∆t

Fr

(
1− ρf

ρi

)
eg, (8.10)

122

ωn+1
i = ωni +

ρf
ρi

(
ωn+1

avg,i − ωni
)
. (8.11)

Step 6: Prescribe the fluid velocity field inside each Ωi to be the rigid motion

defined by Un+1
i and ωn+1

i ,

un+1 = Un+1
i + ωn+1

i ×
(
x−Xn+1

i

)
for all x ∈ Ωi. (8.12)

In the context of the MAC grid, this means that whenever a u grid node lies inside

Ωi, the u component of (8.12) is prescribed there. A similar procedure is done for

the v and w grid nodes.

Step 7: Solve the incompressibility penalty step exactly as in (4.106).

Step 8: Perform the pressure update exactly as in (4.107).

This completes the loop of time discretization. The FDM presented above (with

χ = 0 and using the divergence scaling factor ηmin given by (6.7)) is unconditionally

stable for the unsteady Stokes equations. If the original Douglas splitting is used,

then the FDM also appears to be unconditionally stable for χ = 1. In either case,

the rigid motion constraint (Step 6) must be performed after solving the momentum

equation (Step 3) but before computing the divergence in Step 7. Enforcing Step 6 af-

ter computing the divergence in Step 7 produces an unconditionally unstable scheme.

As explained by Patankar [53], a FDM which imposes the rigid constraint explic-

itly (as in Steps 4-6 above) should ideally perform iterations of Steps 2–8 in order to

avoid error in the form of “slip” at the fluid-solid interface, particularly when ρf/ρi
is not close to unity. This error appears because the end-of-step velocity field is the

result of applying the discontinuous operation (8.12) to selected areas of an other-

wise smooth solution that comes from solving the momentum equation. To perform

iterations that converge to the proper “no-slip” condition, one needs to store the

correction uStep 6 − uStep 3, where uStep 6 is the “end-of-step” velocity field produced

after Step 6 and uStep 3 is the “intermediate” velocity field produced after Step 3.

This correction then needs to be applied in the momentum equation on the next

iteration, with the appropriate density scaling. Since we do not perform iterations

of this type, a small time step is required in order to reduce this “slip” error. In

the limit as ∆t → 0, this error disappears completely. Because the divergence is

123

computed on the end-of-step field which contains the “slip” error, the magnitude of

the discrete divergence is poorly controlled at the fluid-solid boundary. Numerical

results (see Section 9.5) confirm this effect.

8.1 FDM Convergence Rates

In this section, we test the spatial and temporal convergence rates of the FDM by

solving Navier–Stokes for the Taylor–Couette problem in Appendix A with R1 =

0.25, R2 = 0.5, ω1 = 1, ω2 = −1, Re = 1, χ = 1. This means that the FDM must

enforce the rigid motion constraint in both the inner and outer cylinders. To test

spatial convergence, we use various uniform grid resolutions with ∆t = 10−7, and

we run each simulation until a numerical steady state has been reached. The error

presented in Table 8.1 shows that the velocity is O(h0.8) accurate in the L2 norm

and O(h0.64) accurate in the maximum norm, and the pressure is O(h0.6) accurate in

the L2 norm but does not converge at all in the maximum norm (due to “slip” error

transferred from the divergence, as explained in the previous section). The temporal

convergence is shown in Table 8.2 using the same Taylor–Couette simulation with

h = 1/320 and various time step sizes, again running each simulation until a steady

state has been reached. The velocity is O(∆t0.55) accurate in the L2 norm and

O(∆t0.75) accurate in the maximum norm. The pressure is O(∆t0.85) accurate in

both norms. Since all of these convergence rates are relatively poor, it could be

worthwhile to improve the spatial accuracy of the volume integrals (8.8), (8.9) by

using local grid refinement as in in [62], and also reduce the “slip” error by performing

iterations as in [6]. However, the FDM as it exists here is still consistent and can be

used for comparison with other methods.

8.2 Momentum Conservation

Numerical testing indicates that the FDM performs significantly better when momen-

tum is accurately conserved by Steps 4,5,6 (given by equations (8.6)–(8.12)). We now

describe what we mean by this “momentum conservation” property. First, assume

for simplicity that ρf = ρi so that Step 5 simplifies to Un+1
i = un+1

avg,i, ω
n+1
i = ωn+1

avg,i,

124

h ‖u− uexact‖L2(Ω) rate ‖u− uexact‖L∞(Ω) rate ‖∇ · u‖L∞(Ω)

1/10 2.465e-02 6.569e-02 2.498e-15
1/20 1.722e-02 0.52 4.967e-02 0.40 6.217e-15
1/40 9.435e-03 0.87 3.357e-02 0.56 1.749e-14
1/80 6.519e-03 0.53 2.527e-02 0.41 1.332e-14
1/160 2.855e-03 1.19 1.254e-02 1.01 1.776e-14
1/320 1.683e-03 0.76 7.041e-03 0.83 4.139e-12

h ‖p− pexact‖L2(Ωf) rate ‖p− pexact‖L∞(Ωf) rate

1/10 1.3150e+00 5.777e+00
1/20 7.5131e-01 0.81 4.563e+00 0.34
1/40 5.8171e-01 0.37 5.190e+00 -0.19
1/80 3.1941e-01 0.86 4.651e+00 0.16
1/160 3.1910e-01 0.00 8.051e+00 -0.79
1/320 1.8079e-01 0.82 6.750e+00 0.25

Table 8.1: Spatial convergence of the FDM when solving the Navier–Stokes equations
for the Taylor–Couette flow using Re = 1 and ∆t = 10−7. Each simulation was run
long enough to reach a strict numerical steady state. Since χ = 1, the divergence is
zero to floating point precision at steady state.

and Step 6 simplifies to

un+1
Step 6 = un+1

avg,i + ωn+1
avg,i ×

(
x−Xn+1

i

)
for all x ∈ Ωi. (8.13)

Again we distinguish un+1
Step 6 to be the final velocity field after Step 6 is applied and

un+1
Step 3 is the intermediate velocity field before Step 3 is applied. Define (ui,ωi) (u)

to be the “Step 4” operator which accepts a velocity field u as input and computes

average the momentum values uavg,i, ωavg,i as output. Then the “momentum con-

servation” property is the following:

ui(u
n+1
Step 3) = ui(u

n+1
Step 6) (8.14)

ωi(u
n+1
Step 3) = ωi(u

n+1
Step 6) (8.15)

In other words, the application of Step 6 to the velocity field should not change the

volume averaged momentum as computed by Step 4. This property is always true

125

in the limit h → 0, however, the overall accuracy of the FDM can be significantly

improved by simply improving the accuracy to which this property is satisfied when

the spatial resolution is finite.

It can be shown that grid-pointwise imposition of (8.12) paired with (8.8) satisfies

(8.14) to floating point precision. However, (8.9) satisfies (8.15) exactly only when

the object’s centroid Xi is also the discrete centroid of all grid points contained

within the object. For a uniform MAC grid, this is only true when each coordinate

of Xi independently lies on MAC cell faces or MAC cell centers.

To test the “discrete momentum conservation” idea of this section, we can dis-

cretize the position of the objects so that

Xdiscrete ∈
{

(x, y, z)
∣∣∣ x = N1

h

2
, y = N2

h

2
, z = N3

h

2

}
, (8.16)

where N1, N2, N3 are integers and h is the MAC cell width. For the equation of

motion (8.5), we still use the real (non-discrete) position Xi. However, for imposition

of the rigid constraints (8.6)–(8.12), we use the discretized position Xdiscrete, which

is defined to be the closest discretized position to the real position. Discretizing

the position may sound weird, but many numerical schemes do this already without

calling it as such. For example, any scheme which uses a uniform grid and does not

perform boundary-fitting essentially discretizes the object boundary to a set of grid-

aligned positions. In either case, the schemes are consistent because when h → 0,

the discrete position approaches a real-valued position.

In this thesis, the FDM which is used by default is the regular (not position-

discretized) version. The position-discretized FDM is only used in Section 9.3 where

it is compared to the regular FDM.

126

∆t ‖u− uexact‖L2(Ω) rate ‖u− uexact‖L∞(Ω) rate
1/200 1.237e-01 1.659e+00
1/400 8.033e-02 0.62 9.027e-01 0.88
1/800 5.351e-02 0.59 4.973e-01 0.86
1/1600 3.635e-02 0.56 2.748e-01 0.86
1/3200 2.496e-02 0.54 1.546e-01 0.83
1/6400 1.721e-02 0.54 9.170e-02 0.75
1/12800 1.186e-02 0.54 5.673e-02 0.69
1/25600 8.184e-03 0.54 3.587e-02 0.66
1/51200 5.684e-03 0.53 2.321e-02 0.63
1/102400 4.036e-03 0.49 1.566e-02 0.57
1/204800 2.997e-03 0.43 1.129e-02 0.47

∆t ‖p− pexact‖L2(Ωf) rate ‖p− pexact‖L∞(Ωf) rate

1/200 6.603e+01 1.901e+03
1/400 3.572e+01 0.89 1.000e+03 0.93
1/800 1.903e+01 0.91 5.310e+02 0.91
1/1600 1.005e+01 0.92 2.770e+02 0.94
1/3200 5.290e+00 0.93 1.456e+02 0.93
1/6400 2.804e+00 0.92 7.805e+01 0.90
1/12800 1.519e+00 0.88 4.301e+01 0.86
1/25600 8.600e-01 0.82 2.609e+01 0.72
1/51200 5.238e-01 0.72 1.723e+01 0.60
1/102400 3.530e-01 0.57 1.235e+01 0.48
1/204800 2.666e-01 0.41 9.684e+00 0.35

Table 8.2: Temporal convergence of the FDM when solving Navier–Stokes for the
Taylor–Couette flow using Re = 1, χ = 1, and h = 1/320. Each simulation was run
long enough to reach a strict numerical steady state. In this case, the divergence is
zero to floating point precision so it is not shown.

127

Chapter 9

Validation Of Schemes On

Realistic Flows

In this chapter, we validate and compare the two numerical schemes in this the-

sis by applying them to realistic fluid problems that contain solid objects in the

flow. The first scheme is the “direct scheme with boundary fitting” which solves

Navier–Stokes only in the fluid domain Ωf using boundary-fitted spatial operators

and Dirichlet boundary conditions on ∂Ωf , and the fluid forces on each solid object

are computed directly using surface integrals as in Chapter 6. The second scheme is

the FDM of Chapter 8, which solves Navier–Stokes in the entire extended domain Ω

and imposes rigid motion within the “solid” domains Ωi by using volume averages

of the fluid quantities. Both schemes use the direction splitting Navier–Stokes solver

in Section 4.4. Since the convergence rates of the boundary fitting scheme in Sec-

tion 5.3 are much better than the FDM convergence rates in Section 8.1, we expect

the boundary fitting scheme to also outperform the FDM on realistic flow problems.

As a benchmark, numerical and experimental results of other independent authors

are also included.

9.1 Sedimentation Of A Single 3D Ball, Re=4.1

In this section, we use the numerical schemes in this thesis to compute the terminal

velocity of a single 3D ball as it falls in a rectangular tank. The results of such a

situation are well documented both experimentally and numerically in the literature

128

(see [12]). The parameters that we use are exactly the same as in [12]: Re = 4.1,Fr =

0.024, and the ball has a density ratio ρball/ρf = 1.16. Using the diameter of the

ball as a characteristic length, the size of the container is 20/3 × 20/3 × 32/3 and

the initial position of the ball is (10/3, 10/3, 8). The terminal velocity of the ball in

an infinite fluid is used as a characteristic velocity.

In addition to the two numerical methods in this thesis, we also compare against

results computed with a finite element fictitious domain method (FE-FDM) which

does not use any direction splitting. The FE-FDM (as described in [68]) employs

P2 − P1 finite elements to discretize the flow equations, so for a pure flow problem

(without solid objects), the FE-FDM is expected to be third-order accurate in space.

This accuracy comes at a cost in both CPU time and memory requirements, and we

were not able to easily run the FE-FDM code on spatial grids that required more

than 24GB of memory (Note the “N/A” entries in Table 9.1). The volume integrals

of the FE-FDM are performed using high-order Gauss quadratures. The FE-FDM

uses a mesh of tetrahedral elements that is formed by subdividing a uniform grid of

hexahedral cubes into five tetrahedra per cube. Therefore, the number of grid nodes

for the velocity in a given direction is equal to twice the number of hexahedral cubes

in this direction, plus one. We consider h to be the minimum distance between two

grid nodes when performing comparisons with MAC discretizations.

The numerical results for the maximum instantaneous velocity of the falling ball

using all three methods are presented in table 9.1. The “direct scheme with boundary

fitting” is the clear winner for fast convergence, particularly when three-point stencils

are used for the velocity derivatives in the fluid stress (see Section 6.3). Even on the

coarsest grid which has only 3.75 MAC cells across the ball diameter, the “direct

scheme with boundary fitting” still correctly computes the terminal velocity to within

5% error. The various FDM schemes all perform similarly, though the FE-FDM

of [68] does not suffer as much as the FDM in this thesis when ∆t is large. In

terms of CPU and memory efficiency, the “direct scheme with boundary fitting”

requires about twice as much CPU and memory as the FDM of this thesis, however

it performs significantly better than the FDM even if the FDM uses half the time

step size. In either case, both of the methods in this thesis require less CPU and

less memory than the FE-FDM because of direction splitting. The experimentally

measured value according to [12] is 0.953, which is only 1.8% different from 0.97,

our most accurate numerical result. Since the velocity we report is the maximum

instantaneous velocity over the entire simulation, this is very good agreement.

129

Since the rotational scheme (see Section 4.1.3) primarily corrects error around

fluid domain boundaries, the value of χ has a significant effect on the accuracy of the

surface integral and therefore the velocity of the falling ball. All of the simulations

in table 9.1 use χ = 1 except for the FE-FDM. Consider the entry in table 9.1 under

column MD3 and row h = 8/60. If we run the identical simulation again with χ = 0,

we get 0.943 instead of 0.990. However, running yet again with χ = 0 but using a

smaller ∆t = 1/600 instead of ∆t = 1/60, we get 0.985 and recover almost all of the

error from using χ = 0.

h ∆t FE-FDM FDM FDM∆t BDF1 BDF1∆t MD2 MD3
16/60 1/30 1.167 1.308 1.212 0.988 1.003 1.140 1.000
8/60 1/60 1.084 1.132 1.059 0.981 0.993 1.057 0.990
4/60 1/120 1.057 1.072 1.018 0.962 0.975 1.011 0.974
2/60 1/240 N/A 1.038 0.995 0.961 0.970 0.990 0.971
1/60 1/480 N/A 1.017 0.984 0.960 0.969 0.980 0.970

Table 9.1: Maximum vertical speed of a 3D sedimenting ball.
The FE-FDM column presents the results of the FE-FDM of [68].
The FDM column presents the results of the FDM in Chapter 8 of this thesis.
The FDM∆t column uses the identical method as the FDM column but the time step
is 16 times smaller than the listed value. For example, ∆t = 1/7680 in the last row.
The BDF1 and BDF1∆t columns present the results of the “direct scheme with
boundary fitting” using BDF1 splitting as in Section 4.2.1 and using three-point
stencils for the velocity derivatives in the fluid stress as in Section 6.3.
The BDF1∆t column uses a time step 10 times smaller than the listed value.
The MD2 and MD3 columns present the results of the “direct scheme with boundary
fitting” using modified Douglas splitting as in Section 4.2.3 and either two-point
stencils (MD2) or three-point stencils (MD3) for the fluid stress.
The experimentally measured velocity according to [12] is 0.953.

9.2 Migration Of A Ball In A 3D Pipe, Re ≈ 26.7

As discovered experimentally by [61], a neutrally buoyant ball in a 3D Poiseuille

flow (see Figure 9.1) tends to migrate to an equilibrium position approximately 0.6

cylinder radii away from the axis of the cylinder where the fluid forces on the ball

130

x

y

z

10

R=2.5

r=0.375
d

Figure 9.1: Ball in a 3D Poiseuille pipe flow.

are balanced. This flow is also well documented numerically (see [52], [73], [68]) and

therefore we use it as another validation test in 3D. We consider the same setting as

in [52]: a cylindrical pipe of radius 2.5 and length 10 contains a fluid with viscosity

µ = 1 and density ρf = 1, and the neutrally buoyant ball in the pipe has radius 0.375,

as in Figure 9.1. A parabolic profile with maximum velocity of 20 is prescribed at

the inlet of the pipe, and the approximately stress free condition p = 0 and ∂u
∂z

= 0

is prescribed at the outlet. Based on the diameter of the ball and the maximum

flow velocity, the Reynolds number is 80/3. In order to avoid the ball exiting the

computation domain, we use a “ball following” coordinate system given by

x̃ = x−

0, 0,

t∫
0

C(s) ds

 , (9.1)

where C(t) = dz
dt

is the z component of the velocity of the ball. In the new coordinate

system,

dz̃

dt
=
dz

dt
− d

dt

t∫
0

C(s) ds = C(t)− C(t) = 0 (9.2)

so the ball has fixed z̃ coordinate. The velocity time derivative appearing in the

Navier–Stokes momentum equation (2.22) must be transformed according to

∂u(x, t)

∂t

∣∣∣∣
x=const

=
∂ũ(x̃, t)

∂t

∣∣∣∣
x=const

=
∂ũ(x̃, t)

∂t

∣∣∣∣
x̃=const

+

(
∂x̃

∂t

∣∣∣∣
x=const

· ∇̃
)

ũ(x̃, t),

131

where ∂x̃
∂t

∣∣
x=const

= (0, 0,−C(t)). With this transformation, the momentum equation

written in the x̃ coordinates (and dropping the tilde) becomes

∂u

∂t
+ (u− (0, 0, C(t))) · ∇u = −∇p+

1

Re
∇2u. (9.3)

Two different numerical simulations are carried out - one with the ball initially

located at radial position d/R = 0.2, and one with the initial position d/R = 0.75.

Because the proper initial condition for the fluid is unknown, the ball’s position is

fixed for a short time at the beginning of the simulation so that the parabolic flow

profile has time to adjust to the new geometry that includes the ball. Figure 9.2 shows

the time evolution of the ball’s position d/R. Table 9.2 shows the detailed results of

our simulations using the “direct scheme with boundary fitting”, and Table 9.3 shows

the results of other authors using a variety of methods. Even at coarse resolutions,

our results agree with the results of other authors, all of which predict an equilibrium

position of about d/R = 0.6. Our higher resolution results agree very well with the

Arbitrary Lagrangian-Eulerian method of [73] which the authors of [52] use as their

benchmark result.

9.3 Migration Of A Disc In A Channel, Re ≈ 26.7

In this section, we perform the 2D analog of the test in Section 9.2, i.e., we find

the equilibrium position of a migrating disc in a channel rather than a ball in a

pipe. All parameters are identical to those in Section 9.2 other than the dimension

of the problem and the initial release positions of the disc, which are now d0/R =

0.4 and d0/R = 0.5. From numerical testing, the disc should migrate towards an

equilibrium position of about d/R = 0.45. The purpose of this test is to compare the

convergence properties of some variants of the methods in this thesis: The “direct

scheme with boundary fitting” using the interpolation surface integral of Section 6.3,

the “direct scheme with boundary fitting” using the interpolation-free surface integral

of Section 6.4, the FDM of Chapter 8, and the FDM with the discrete momentum

conserving property in Section 8.2. Figure 9.3 shows the time evolution of the disc

as computed by all four methods using a high grid resolution. Figure 9.4 shows the

same simulations but using a lower grid resolution. For determining the equilibrium

position of the disc, we can conclude from the figures that the interpolation surface

132

h ∆t CPU d0/R d/R speed ang. vel. ‖∇ · u‖L∞(Ω)

1/10 1/500 0.3
0.2 0.58897 12.640 4.5008 1.8e-04
0.75 0.59269 12.562 4.5330 2.9e+00

1/15 1/750 0.9
0.2 0.59594 12.491 4.5912 2.1e-05
0.75 0.59611 12.486 4.5925 1.9e-05

1/20 1/1000 2.0
0.2 0.59517 12.501 4.5870 4.6e-05
0.75 0.59638 12.472 4.5905 3.5e-05

1/25 1/1250 4.0
0.2 0.59696 12.462 4.6213 6.8e-07
0.75 0.59905 12.412 4.6367 1.2e-04

1/30 1/1500 7.1
0.2 0.59955 12.403 4.6338 4.1e-06
0.75 0.60115 12.364 4.6458 1.2e-03

1/35 1/1750 11.4
0.2 0.60135 12.361 4.6594 2.8e-05
0.75 0.60137 12.360 4.6596 4.9e-05

1/40 1/2000 17.3
0.2 0.60135 12.362 4.6531 3.7e-06
0.75 0.60146 12.359 4.6539 4.3e-05

Table 9.2: Results for the ball in 3D Poiseuille flow. The initial position of the ball
is d0/R. The position and velocities of the ball and the divergence of the fluid are
presented again at t = 50.0. CPU time is measured in seconds per time step using
one Intel Xeon processor at 2.4 GHz.

Distributed Lagrange Multiplier FDM of [52]
Num. Velocity Nodes ∆t CPU d0/R d/R speed ang. vel.

2.16× 106 (uniform) 1/1000 74
0.75 0.60582 12.237 4.6286
0.2 0.60579 12.235 4.6359

Arbitrary Lagrangian-Eulerian method of [73]
Num. Velocity Nodes ∆t CPU d0/R d/R speed ang. vel.

1.46× 105 N/A N/A
0.75 0.60108 12.364 4.6513
0.2 0.60108 12.364 4.6513

Non Lagrange Multiplier FDM of [68]
Num. Velocity Nodes ∆t CPU d0/R d/R speed ang. vel.

1.07× 106 (non uniform) 1/200 190
0.75 0.6139 12.1806 4.7790
0.2 0.6106 12.2585 4.7574

Table 9.3: Results of other authors for the ball in 3D Poiseuille flow. CPU times are
the author’s published values scaled down to approximate a 2.4GHz CPU.

133

0.2

0.3

0.4

0.5

0.6

0.7

0 10 20 30 40
Figure 9.2: Time evolution of the ball’s position d/R in the 3D Poiseuille flow. The
vertical axis is d/R and the horizontal axis is time. The solid lines are our numerical
simulations corresponding to Table 9.2, and the black dots indicate our h = 1/40
simulation. The two dashed lines are the Distributed Lagrange Multiplier results of
[52] which are in approximate agreement with our results.

134

0.395

0.4

0.405

0.41

0.415

0.42

0.425

0.43

0.435

0.44

0.445

0.45

0.455

0.46

0.465

0.47

0.475

0.48

0.485

0.49

0.495

0.5

0.505

d
/R

0 10 20 30 40
t

FDM-Discrete

FDM-Regular

Surf-InterpFree

Surf-Regular

Figure 9.3: Time evolution of a disc in 2D Poiseuille flow using high resolution h =
1/200 and ∆t = 1/5000. The regular surface integral method bounds the equilibrium
position by 0.44985 ≤ d/R ≤ 0.44995. The interpolation-free surface integral method
only bounds the equilibrium position accurate to two decimal places. The regular
FDM has significant error in comparison to both surface integral methods. The
coordinate-discretized FDM shows a significant improvement over the regular FDM
and seems to follow the solution of the surface integral methods. Both FDM methods
have an oscillatory behaviour that comes from not fitting the boundary of the disc.

135

0.395

0.4

0.405

0.41

0.415

0.42

0.425

0.43

0.435

0.44

0.445

0.45

0.455

0.46

0.465

0.47

0.475

0.48

0.485

0.49

0.495

0.5

0.505

d
/R

0 10 20 30 40
t

Solution

FDM-Discrete

FDM-Regular

Surf-InterpFree

Surf-Regular

Figure 9.4: Time evolution of a disc in 2D Poiseuille flow using a lower resolution
h = 1/20 and ∆t = 1/1000. The high resolution surface integral method is used
as a reference solution. The low resolution surface integral method still looks rea-
sonably accurate. However, the interpolation-free surface integral method now has
significant error especially when the disc is released from d/R = 0.5. The regular
FDM is terrible at this resolution. The coordinate-discretized FDM is again a sig-
nificant improvement over the regular FDM. Both FDM methods have oscillations
of significant magnitude at this lower resolution.

136

integral method is clearly the most accurate, followed by the interpolation-free surface

integral method and the FDM with discrete momentum conservation, and the regular

FDM performs significantly worse than the other three methods.

9.4 Vortex Street Behind 2D Disc, Re=100

It is well known that the wake behind a circular cylinder produces a “von Karman

vortex street”. This flow has been studied extensively in the literature - see for

example [21]. In this section, we validate the “direct scheme with boundary fitting”

by performing the same simulation as in [21]. The domain is [0, 32] × [0, 16], and a

disc of diameter 1 is fixed at the position (8, 8.01), where the y position is perturbed

from the center of the domain in order to quickly destabilize the flow. Dirichlet

boundary conditions with velocity (u, v) = (1, 0) are prescribed on the bottom, top,

and left boundaries. The approximately stress free condition p = 0 and ∂u
∂x

= 0 is

prescribed at the right boundary. Based on the diameter of the disc and the velocity

uc = 1, the Reynolds number is 100. We simulate this flow using uniform grids of

several different resolutions all of which have a maximum CFL number of 0.34:

h = 1/12.5 ∆t = 1/50

h = 1/25 ∆t = 1/100

h = 1/50 ∆t = 1/200

h = 1/100 ∆t = 1/400

h = 1/200 ∆t = 1/800

(9.4)

Figure 9.5 shows a picture of the disc and the vortex street appearing in the wake.

Figure 9.6 shows the drag coefficient CD and lift coefficient CL of the disc as a

function of time, where these coefficients are defined by

CD =
Fx

1
2
ρfu2

cA
, CL =

Fy
1
2
ρfu2

cA
, (9.5)

where (Fx, Fy) is the force on the disc, A is a reference “area” which in 2D is the

diameter of the disc, and ρf = 1 in our case. Figure 9.7 shows the drag and lift coeffi-

cients compared with the “fine mesh” Q2-Q1 (third-order) finite element benchmark

results of [21, Fig. 6,7]. Our results for the drag and lift on the disc match the

benchmark very well.

137

Figure 9.5: Top figure shows the entire computational domain for the “von Karman
vortex street” test. The bottom figure shows a close-up of the disc shedding a
vortex. In the bottom figure, each colored arrow represents one MAC cell using the
grid resolution h = 1/25. Red colored arrows indicate fast moving fluid and blue
colored arrows indicate slow moving fluid. White background indicates high pressure
and black indicates low pressure. The disc is defined by the thin pink circle, not the
set of gray cells inside the disc. The pressure has been explicitly extended inside the
solid to a depth of 2 MAC cells using the procedure in Section 3.3.1.

138

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

0 50 100 150 200 250
t

CD, low-medium resolutions

CL, low-medium resolutions

CD, high resolution h = 1/200

CL, high resolution h = 1/200

Figure 9.6: Drag and Lift coefficients as a function of time for the disc in the “von
Karman vortex street” test. This graph shows the results of five simulations using
the grid resolutions (9.4). The graphs for the three higher resolution simulations
are very close and on this graph they appear to be drawn on top of each other. A
close-up view as in Figure 9.7 shows that they differ by a small amount.

139

1.4

1.41

1.42

1.43

CD

150 160 170 180 190 200 210 220 230 240 250

−0.4

−0.2

0

0.2

0.4

CL

150 160 170 180 190 200 210 220 230 240 250
t

Figure 9.7: The top two figures show close-ups of the data in Figure 9.6 using the
h = 1/50, h = 1/100, and h = 1/200 simulations. The bottom figures are the
benchmark results of [21]. Our results agree that two vortices are shed every 5.8
time units. Our CL is almost identical to the benchmark, and our CD is very close.
The top figure indicates that grid refinements beyond h = 1/200 (blue graph) will
reduce Cd slightly and match the benchmark exactly.

140

a) b)

Figure 9.8: Two examples of 2D fluid flows containing rigid objects.

9.5 Large Buoyant Disc In 2D, Re ≈ 747

In this section, we consider Figure 9.8a, where a disc of relative density ρdisc/ρf =

1/4 and diameter 1 rises vertically due to buoyancy (Fr=4321/5000) from an ini-

tial position of (2500/4321, 2500/4321) in a rectangular domain [0, 5000/4321] ×
[0, 10000/4321]. The Reynolds number is (4321)2/25000 ≈ 747. The purpose of

this test is to demonstrate stability and accuracy of the numerical scheme in a situ-

ation where the solid object is significantly less dense than the fluid. In particular,

the stabilizing factor ηmin given by equation (6.7) is required for stability of this test.

Table 9.4 shows numerical results of this simulation using the “direct scheme with

boundary fitting” and the FDM in this thesis. As a comparison of accuracy, we can

see from Table 9.4 that the “direct scheme with boundary fitting” converges with far

fewer time step and spatial grid refinements than the FDM.

9.6 Three Falling Discs In 2D, Re=100

In this section, we consider Figure 9.8b, where three sedimenting discs interact with

each other (without collisions) as they fall to the floor. The purpose of this test

is to demonstrate that the “direct scheme with boundary fitting” also converges

much faster than the FDM in more complicated situations involving multiple objects

traveling in curved paths. The three discs each have unit diameter and the domain is

141

a 2D box of size [0, 5]×[0, 7.5]. The relative density of all three discs is ρdisc/ρf = 1.1,

the Froude number is Fr = 0.1, and the initial positions of the disc centroids are

(5/2, 6.75), (5/3, 5.625), and (10/3, 5.625). The middle disc falls straight down due

to symmetry, and it pushes the other two discs out of the way without actually

touching them. Table 9.5 shows results of this simulation using the “direct scheme

with boundary fitting” and the FDM in this thesis. The results again show that the

“direct scheme with boundary fitting” is accurate even with coarse spatial resolutions

and large time steps. The FDM scheme requires many refinements in both space and

time in order to produce a similar result.

142

Direct Scheme with Boundary Fitting
h ∆t v ‖∇ · u‖L∞(Ω)

800/34568 1/50 0.096284 4.40
400/34568 1/100 0.095116 3.73
200/34568 1/200 0.094849 1.72
100/34568 1/400 0.094714 0.75
50/34568 1/800 0.094695 0.37
25/34568 1/1600 0.094692 0.19

25/34568 1/6400 0.094694 0.17

Fictitious Domain Method
h ∆t v ‖∇ · u‖L∞(Ω)

800/34568 1/50 0.106755 42.2
400/34568 1/100 0.108302 63.1
200/34568 1/200 0.103837 28.7
100/34568 1/400 0.099415 39.4
50/34568 1/800 0.097917 57.3
25/34568 1/1600 0.097004 83.2

800/34568 1/800 0.102700 7.6
400/34568 1/1600 0.104604 8.0
200/34568 1/3200 0.100745 10.0
100/34568 1/6400 0.096921 11.8
50/34568 1/12800 0.095954 16.5
25/34568 1/25600 0.095505 20.4

Table 9.4: Numerical results for the 2D buoyant disc test. This table presents the
vertical velocity v of the disc and the maximum norm of the divergence, both of which
are averaged over the time interval [5.0, 6.0]. We can see that the “direct scheme with
boundary fitting” has converged in the fifth decimal place. This is because spatial
error usually dominates the scheme, and for this problem the disc is spatially well
resolved. Also, reducing the time step of the “direct scheme with boundary fitting”
does not change the result, so this solution can be taken as correct to at least four
or five decimal places. Even after using several more grid and time step refinements,
the FDM has converged only to the second decimal place.

143

Direct Scheme with Boundary Fitting
h ∆t ωz y v

1/8 1/20 -0.0831 0.9317 -0.7194
1/16 1/40 -0.1029 0.7199 -0.7038
1/32 1/80 -0.0999 0.7212 -0.7104
1/64 1/160 -0.0961 0.7045 -0.7107
1/128 1/320 -0.0939 0.7021 -0.7125
1/256 1/640 -0.0927 0.7008 -0.7129
1/512 1/1280 -0.0921 0.7007 -0.7132
1/1024 1/2560 -0.0918 0.7015 -0.7137

Fictitious Domain Method
h ∆t ωz y v

1/8 1/20 -0.1471 0.9763 -0.6920
1/16 1/40 -0.0862 0.6088 -0.6637
1/32 1/80 -0.0725 0.5762 -0.6303
1/64 1/160 -0.0795 0.6069 -0.6575
1/128 1/320 -0.0840 0.6367 -0.6805
1/256 1/640 -0.0868 0.6568 -0.6928
1/512 1/1280 -0.0885 0.6705 -0.7000
1/1024 1/2560 -0.0895 0.6803 -0.7047

1/8 1/320 -0.1892 0.6049 -0.6818
1/16 1/640 -0.1047 0.5625 -0.5740
1/32 1/1280 -0.0854 0.6220 -0.6708
1/64 1/2560 -0.0884 0.6294 -0.6779
1/128 1/5120 -0.0893 0.6708 -0.7006
1/256 1/10240 -0.0903 0.6825 -0.7062
1/512 1/20480 -0.0908 0.6914 -0.7099

1/1024 1/10240 -0.0905 0.6916 -0.7097

Table 9.5: Numerical results for the three falling discs test. This table includes the
angular velocity ωz of the rightmost disc, the vertical position y of the middle disc,
and the vertical velocity v of the middle disc. All quantities are averaged over the
time interval [9.75, 10.0] which is a few time units before the middle disc hits the
floor. Both the FDM and the “direct scheme with boundary fitting” suggest that
the exact solution accurate to two decimal places is v = −0.71, and ωz = −0.09.
However, the “direct scheme with boundary fitting” achieves this result at a very
coarse resolution compared to the FDM.

144

Chapter 10

DNS Of A 3D Fluidized Bed

In this chapter, we demonstrate the ability of the “direct scheme with boundary

fitting” to solve very large problems. In particular, we simulate a fluidized bed,

which is a container full of a large number of solid particles suspended in an upward

flowing fluid as in Figure 10.1. Fluidized beds have many industrial applications

for mixing, washing, or combustion of particles. We use “no-flux, no-slip” boundary

conditions on the walls of the container and an upward flowing velocity of magni-

tude 1 as the Dirichlet boundary condition on the floor. The roof of the domain

is the approximate stress-free condition p = 0 and ∂u
∂z

= 0. We use the modified

Douglas splitting and boundary-fitted spatial operators for diffusion and divergence.

We choose χ = 1, h = 1/5, ∆t = 1/80, and collision model parameters k = 105,

γ = 100. The Reynolds number based on the particle diameter is 10, the Froude

number is 1, and the relative particle density is ρp/ρf = 7.78 (steel in water). We run

two simulations, one containing 14000 spheres in the domain [0, 44]× [0, 44]× [0, 44]

solved using 1 CPU, and another simulation containing 2.2 million spheres in the

domain [0, 259.2]× [0, 259.2]× [0, 172.8] solved using 144 Xeon X5675 CPU cores and

205GB of distributed memory, which takes 18 seconds per time step. Both simula-

tions are identical resolution, just different problem sizes. The initial condition of

the spheres is a slightly perturbed Cartesian configuration with substantial spacing

between each sphere so that the fluid can flow through the particles at the beginning

of the simulation rather than forcing the entire group of spheres to the ceiling and

causing them to “plug” the only outflow from the domain. Figure 10.2 shows the ini-

tial condition of the spherical particles along with a reference plane of the MAC grid

to show spatial resolution. The spheres (diameter 1) have 5 MAC cells across their

145

Figure 10.1: A fluidized bed in 2D containing a small number of particles.

diameter and contain 65 MAC cells by volume. The results of the 3D sedimenting

ball simulation in Table 9.1 (column BF3) demonstrate that 5 MAC cells across the

diameter is sufficient to resolve each object and the surrounding flow with less than

5% error. Figure 10.3 shows a picture of the 14000 sphere simulation, showing several

plumes of fluid that bubbles up from below, which is a known feature of fluidized

beds. Figures 10.4, 10.5 and 10.6 show pictures of the 2.2 million sphere simulation.

Violent plumes can again be seen on the surface of the bed of suspended particles.

146

Figure 10.2: Initial position of spheres and a reference plane of the MAC grid.

147

Figure 10.3: 3D fluidized bed simulation of 14000 spheres showing a typical config-
uration of the system. In this picture there are three plumes of fluid bubbling up
from below and locally raising the surface height of the bed.

148

Figure 10.4: Initial condition of the 3D fluidized bed simulation of 2.2 million spheres.

149

Figure 10.5: Mid-simulation of the 3D fluidized bed containing 2.2 million spheres.

150

Figure 10.6: Surface of the 3D fluidized bed containing 2.2 million spheres.

151

10.1 Parallel Scalability

When measuring the parallel scalability of a given computer code, we are usually

interested to know if the code is CPU bound or memory bound. CPU bound code

typically does extensive work on small or medium amounts of data, and memory

bound code typically does small amounts of work on large amounts of data. Strong

scaling and weak scaling are two frequently used measures of how well a computer

code utilizes different numbers of CPU cores. Strong scaling measures the efficiency

of a CPU bound code to divide a fixed problem size into smaller parts using many

CPU cores, where each CPU has a reduced workload. The strong parallel efficiency

using N CPU cores is defined as T1/(NTN), where T1 is the time taken to solve the

problem on 1 CPU core, and TN is the time taken to solve the exact same problem

using N CPU cores. Weak scaling measures the efficiency of a memory bound code

to solve larger problems by keeping the workload per CPU fixed, and increasing the

problem size when additional CPUs are used. The weak parallel efficiency using N

CPU cores is defined as T1/TN , where T1 is the time taken to solve problem size 1

using 1 CPU core, and TN is the time taken to solve problem size N using N CPU

cores.

Figure 10.7 shows the strong and weak parallel efficiency of the “direct scheme

with boundary fitting” tested on 1, 8, 64, 216, and 512 CPU cores. All scaling

results were performed on a Compute Canada WestGrid [71] cluster of 2.5GHz Intel

Xeon L5420 CPU cores, 2GB DDR2 RAM per core, 8 cores per node, and each node

connected via a 20GB/s network. The CPU scaling results were calculated using the

real time taken to simulate 50 time steps.

For the strong scaling test, the problem size was 432x432x432 grid cells and

108000 solid objects, all of which takes approximately 12GB of RAM. The reduction

in strong scaling efficiency at more than 200 CPU cores occurs because the 108000

solid objects in the simulation are distributed across all processors, and the objects

must be communicated at each of the 100 soft-sphere collision sub-steps as in equation

(6.12) that were used for this test. For the 512 CPU test, about 50% of the real time is

spent communicating object positions and velocities between processors at these sub

time steps. Thus, the strong scaling efficiency decline at more than 200 CPU cores

is somewhat artificial for two reasons. First, if the sub time step communication

is consuming all of the simulation time, then one can simply reduce the number

of sub time steps per time step. Second, for a fixed problem size of only 108000

152

solid objects, there is sufficient memory to simply store all the solid objects on each

processor, and then each processor can compute its own collision forces which requires

no communication at all during the sub time steps.

Since we are primarily interested in solving huge problems, our code is memory

bound and weak scaling is the relevant measure. For the weak scaling test, we

use the same parameters as the strong scaling test except that the problem size is

equal to 204x204x204 grid cells and 13000 solid objects per CPU, which takes about

1.4GB of RAM per CPU. This results in a problem size of 1632x1632x1632 grid cells

and 6,656,000 solid objects when scaled up to 512 CPU cores. Figure 10.7 shows a

significant drop in efficiency going from 1 to 8 CPUs, but this is largely due to the

fact that 1 CPU core using only 1.4GB of RAM does not need to share the memory

bandwidth or cache utilization on its cluster node (which contains another 7 idle

CPUs). We can see from Figure 10.7 that there is very little reduction in parallel

efficiency after all 8 CPU cores on a node are used. Eventually the parallel efficiency

of the code must decline, of course, but Figure 10.7 suggests that this limit is far

away. In particular, since we use direction splitting, all CPU communication is either

“neighbour-to-neighbour” or in one dimension only. This means that communication

costs should increase roughly as the cubed root of the problem size, and Figure 10.7

suggests that thousands of CPU cores could be utilized with high enough efficiency

to solve problems containing one billion solid objects.

Our numerical method compares very well to other large parallel simulations in

the literature. For example, the simulations of [26] utilized 294912 processor cores

and 50TB of memory to simulate 264 million objects. While we do not have access

to such a large computer, we can compare resource usage. Since our method utilizes

144 CPU cores and 205GB of memory to simulate 2.2 million objects, simple scaling

suggests that with 294912 cores and 410 TB of memory we would be able to simulate

4.5 billion objects. One can also speculate that the computer code of [26] is optimized

to a higher level than the computer code used for this thesis, judging simply by the

fact that [26] is published in a computer science journal and the fact that any code

which is allowed to run on such a large computer should be heavily optimized. Also

keep in mind that the method of [26] is a fully explicit lattice-Boltzmann scheme, and

our method solves Navier–Stokes with second-order accuracy using implicit methods.

While it is relatively easy to make any fully explicit scheme parallelize well, the ability

to perform large parallel direct numerical simulations using an implicit method is

non-existent (or very rare) in the literature.

153

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ar
al
le
l
E
ffi
ci
en
cy

1 8 64 512
Total number of CPU cores used

Strong scaling

Weak scaling

Figure 10.7: Parallel scalability for 3D problem using up to 512 CPU cores.

154

It is also worthwhile mentioning that a quick literature search can uncover a

large number of works where the authors have been able to simulate large numbers

of particles without using direct numerical simulation. For example, the recent work

of [40] utilizes graphics processing units (GPUs) as well as CPUs in order to simulate

25 million particles using an ordinary desktop computer. However, in this case the

particles are treated as points and the spatial resolution of the fluid is only one grid

point for every 10 particles. Numerical models such as [40] rely on experimentally

measured parameters in order to match similar experiments, and this is not direct

numerical simulation. [11] is another recent example of a “volume average” type

numerical model which is capable of simulating a large number of particles, but again

the fluid is resolved using a very coarse grid that is much larger than the particle

scale, and again this is not direct numerical simulation. If no fluid is included at all

(particles only) then up to 100 billion particle systems have been computed by [1].

It is interesting to know what kinds of problems could actually be solved using

direct numerical simulation. According to [67], an industrial-sized fluidized bed

typically has a volume of between 2 and 200 cubic meters, and it usually contains

millimeter-sized particles. Therefore, such a fluidized bed would contain 1 to 200

billion particles, depending on the shape of the particles and the void fraction. It

seems plausible that all of the particles in a small industrial fluidized bed could be

resolved using a scheme similar to the one in this thesis with today’s supercomputers,

however, the larger industrial fluidized beds would be a stretch for any fully resolved

direct numerical simulation.

155

Chapter 11

Conclusions

In this thesis, we discussed several different direction-splitting schemes in the context

of using boundary-fitted spatial operators for complex-shaped domains. In order to

address stability issues associated with some splitting schemes in these situations, we

introduced a new “modified Douglas” direction-splitting scheme. Numerical evidence

suggests that this new splitting scheme is unconditionally stable for the diffusion

equation. Using the “modified Douglas” scheme combined with a direction-splitting

scheme for the incompressibility constraint, we constructed a fully second-order accu-

rate scheme for solving the Navier–Stokes equations in 3D complex-shaped domains.

Based on the direction-splitting scheme for solving Navier–Stokes in complex-

shaped domains, we created a numerical method for direct numerical simulation of

particulate flows. The fluid forces on the particles are computed using boundary-

fitted surface integrals of the fluid stress. The method as a whole was demonstrated

to be second-order accurate in both time and space. The method was also validated

on a number of real fluid flow problems and shown to agree well with experimental

results and numerical results of other authors.

A second method for direct numerical simulation of particulate flows was also

constructed using the direction-splitting Navier–Stokes scheme combined with a fic-

titious domain approach. Although the fictitious domain method is not as accurate

as the second-order method, we discussed how it could be improved by using it-

erations at each time-step and by improving the accuracy of the volume integrals,

particularly for conserving momentum.

For dealing with particle collisions, we introduced two different models. The first

model was a simple dry soft-sphere viscoelastic model and the second model was an

156

elastic-plastic model based on lubrication theory. We showed that the lubrication

theory model agrees with experiments of submerged collisions, and we explained how

such a model could be incorporated into the larger scale numerical scheme.

Finally, we demonstrated the efficiency and scalability of the numerical methods

of this thesis by performing DNS of a 3D fluidized bed containing 2.2 million spherical

particles. Parallel scaling results indicated that the numerical scheme could be used

to simulate fluid flows containing one billion particles.

11.1 Future Work

There are several areas of future work for this thesis. The most natural and immedi-

ate extension is to complete the work of submerged collision modeling by performing

quantitative tests of the viscoelastic collision model in Section 6.5. If the model is

determined to be insufficiently accurate, then the subgrid collision model described in

Chapter 7 could be incorporated. Furthermore, angular momentum transfer between

particles during a collision may also require subgrid modeling.

Another useful task for future work is to extend the numerical scheme to include

solid objects (particles) of non-spherical shape. This task is straightforward in theory,

however, the primary difficulty involves writing more parallel-CPU computer code to

perform surface integrals. Also, the numerical scheme could be extended to work for

“particles” of time-dependent shape, such as gas bubbles. This is a more complicated

task but should still be possible under the current framework.

Although this thesis contains a lot of work related to boundary-fitting the discrete

divergence operator, the options presented in Sections 3.4.1 or 3.4.2 can likely be

improved. In particular, some local accuracy could be lost near object boundaries,

and more numerical testing could be done in this area. Numerical results on coarse

grids are affected by the way in which the discrete divergence is boundary fitted.

Since this thesis ends with a demonstration of ability to solve large problems, a

natural place for future work is to simply use the method to solve large problems.

For example, some statistics could be generated for fluidized beds or sedimentation

problems. However, before performing very large simulations, the scheme should be

tested on smaller problems and verified to be quantitatively correct, for example,

does the fluidized bed have the correct height? Also, for such simulations it could be

useful to first modify the scheme to use an adaptive time step and/or use the implicit

157

advection (4.101) in order to avoid violating the CFL condition halfway through a

simulation involving thousands of CPU cores.

Finally, since the numerical scheme in this thesis involves many features that

are relatively new, it would be useful to perform more quantitative comparisons

against benchmark numerical or experimental results. With a sufficiently accurate

benchmark, more grid convergence studies could be performed to verify convergence

rates on complicated flow problems.

158

Bibliography

[1] N. Allsopp, G. Ruocco, and A. Fratalocchi. Molecular dynamics beyonds the lim-

its: Massive scaling on 72 racks of a bluegene/p and supercooled glass dynamics

of a 1 billion particles system. Journal of Computational Physics, 231:3432–

3445, 2012.

[2] P. Angot. Analysis of singular perturbations on the Brinkman problem for

fictitious domain models of viscous flows. Mathematical Methods in the Applied

Sciences, 22(16):1395–1412, 1999.

[3] P. Angot, J.-P. Caltagirone, and P. Fabrie. A fast vector penalty-projection

method for incompressible non-homogeneous or multiphase navier-stokes prob-

lems. Applied Mathematics Letters, 25:1681–1688, 2012.

[4] P. Angot, J. Keating, and P. Minev. A direction splitting algorithm for incom-

pressible flow in complex geometries. Computer Methods in Applied Mechanics

and Engineering, 117:111–120, 2012.

[5] S. V. Apte and J. R. Finn. A variable-density fictitious domain method for

particulate flows with broad range of particle-fluid density ratios. Journal of

Computational Physics, 243:109–129, 2013.

[6] S. V. Apte, M. Martin, and N. A. Patankar. A numerical method for fully

resolved simulation (FRS) of rigid particle-flow interactions in complex flows.

Journal of Computational Physics, 228:2712–2738, 2009.

[7] N. J. Balmforth, C. Cawthorn, and R. V. Craster. Contact in a viscous fluid.

Part 2. A compressible fluid and an elastic solid. Journal of Fluid Mechanics,

646:339–361, 2010.

159

[8] G. Barnocky and R. H. Davis. Elastohydrodynamic collision and rebound of

spheres: Experimental verification. Physics of Fluids, 31:1324–1329, 1988.

[9] M. Benzi, G. H. Golub, and J. Liesen. Numerical solution of saddle point

problems. Acta Numerica, pages 1–137, 2005.

[10] S. Bertoluzza, M. Ismail, and B. Maury. Analysis of the fully discrete fat bound-

ary method. Numerische Mathematik, 118(1):49–77, 2011.

[11] J. Capecelatro and O. Desjardins. An euler-lagrange strategy for simulating

particle-laden flows. Journal of Computational Physics, 238:1–31, 2013.

[12] A. Cate, C. Nieuwstad, J. Derksen, and H. V. den Akker. Particle imaging

velocimetry experiments and lattice-Boltzmann simulations on a single sphere

settling under gravity. Physics of Fluids, 14:4012, 2002.

[13] Y. A. Cengel, R. H. Turner, and J. M. Cimbala. Fundamentals of Thermal-Fluid

Sciences. McGraw-Hill Higher Education, 3rd edition, 2008.

[14] S. Chen and G. D. Doolen. Lattice Boltzmann method for fluid flows. Annual

Review Fluid Mechanics, 30:329–364, 1998.

[15] A. Chorin. A numerical method for solving incompressible viscous flow problems.

Journal of Computational Physics, 2:12–26, 1967.

[16] A. Chorin. Numerical solution of the Navier-Stokes equations. Mathematics of

Computation, 22:745–762, 1968.

[17] M. Coquerelle and G. H. Cottet. A vortex level set method for the two-way

coupling of an incompressible fluid with colliding rigid bodies. Journal of Com-

putational Physics, 227:9121–9137, 2008.

[18] R. H. Davis, J.-M. Serayssol, and E. J. Hinch. The elastohydrodynamic collision

of two spheres. Journal of Fluid Mechanics, 163:479–497, 1986.

[19] N. Deen, M. V. S. Annaland, M. V. der Hoef, and J. Kuipers. Review of discrete

particle modeling of fluidized beds. Chemical Engineering Science, 62(1-2):28–

44, 2007.

160

[20] J. Douglas, Jr. Alternating direction methods for three space variables. Nu-

merische Mathematik, 4:41–63, 1962.

[21] M. S. Engelman and M.-A. Jamnia. Transient flow past a circular cylinder: a

benchmark solution. International Journal for Numerical Methods in Fluids,

11:985–1000, 1990.

[22] Z.-G. Feng and E. E. Michaelides. Proteus: a direct forcing method in the

simulations of particulate flows. Journal of Computational Physics, 202:20–51,

2005.

[23] S. Ghosh and J. M. Stockie. Numerical simulations of particle sedimentation

using the immersed boundary method. Submitted to Journal of Computational

Physics, April 2013.

[24] R. Glowinski, T. Pan, T. Hesla, and D. Joseph. A distributed Lagrange mul-

tiplier/fictitious domain method for particulate flows. International Journal of

Multiphase Flow, 25:755, 1999.

[25] R. Glowinski, T. Pan, T. Hesla, D. Joseph, and J. Periaux. A fictitious domain

approach to the direct numerical simulation of incompressible viscous flow past

moving rigid bodies: Application to particulate flow. Journal of Computational

Physics, 169:363, 2001.

[26] J. Götz, K. Iglberger, M. Stürmer, and U. Rüde. Direct numerical simula-

tion of particulate flows on 294912 processor cores. In Proceedings of the 2010

ACM/IEEE International Conference for High Performance Computing, Net-

working, Storage and Analysis, SC ’10, pages 1–11, Washington, DC, USA, 2010.

IEEE Computer Society.

[27] J. Guermond and P. Minev. A new class of fractional step techniques for the in-

compressible Navier–Stokes equations using direction splitting. Comptes Rendus

Mathematique, 348:581–585, 2010.

[28] J. Guermond and P. Minev. Start-up flow in a three-dimensional lid-driven cav-

ity by means of a massively parallel direction splitting algorithm. International

Journal for Numerical Methods in Fluids, 68:856–871, 2012.

161

[29] J.-L. Guermond and P. Minev. A new class of splitting methods for the incom-

pressible Navier–Stokes equations using direction splitting. Computer Methods

in Applied Mechanics and Engineering, 200:2083–2093, 2011.

[30] J.-L. Guermond, P. Minev, and A. Salgado. Convergence analysis of a class of

massively parallel direction splitting algorithms for the Navier-Stokes equations

in simple domains. Mathematics of Computation, 81:1951–1977, 2012.

[31] J.-L. Guermond, P. Minev, and J. Shen. An overview of projection methods for

incompressible flows. Computer Methods in Applied Mechanics and Engineering,

195:6011–6054, 2006.

[32] J.-L. Guermond and A. Salgado. A splitting method for incompressible flows

with variable density based on a pressure poisson equation. Journal of Compu-

tational Physics, 228(8):2834 – 2846, 2009.

[33] J.-L. Guermond and A. Salgado. Error analysis of a fractional time-stepping

technique for incompressible flows with variable density. SIAM Journal on Nu-

merical Analysis, 49(3):917 – 944, 2011.

[34] J.-L. Guermond and J. Shen. On the error estimates for the rotational pressure-

correction projection methods. Mathematics of Computation, 73(248):1719–

1737, 2003.

[35] B. J. Hamrock, S. R. Schmid, and B. O. Jacobson. Fundamentals of Fluid Film

Lubrication. CRC Press 2004, 2004.

[36] X. He and L.-S. Luo. Lattice Boltzmann model for the incompressible navier-

stokes equation. Journal of Statistical Physics, 88:927–944, 1997.

[37] H. H. Hu, N. Patankar, and M. Zhu. Direct numerical simulations of fluid-

solid systems using the arbitrary Lagrangian-Eulerian technique. Journal of

Computational Physics, 169:427–462, 2001.

[38] I.A.P.W.S. Revised release on the IAPWS industrial formulation 1997 for the

thermodynamic properties of water and steam. International Association for

the Properties of Water and Steam, 2007.

162

[39] I.A.P.W.S. Release on the IAPWS formulation 2008 for the viscosity of ordinary

water substance. International Association for the Properties of Water and

Steam, 2008.

[40] D. Jajcevic, E. Siegmann, C. Radeke, and J. G. Khinast. Large-scale cfd-dem

simulations of fluidized granular systems. Chemical Engineering Science, 98:298–

310, 2013.

[41] G. Joseph, R. Zenit, M. Hunt, and A. Rosenwinkel. Particle-wall collisions in a

viscous fluid. Journal of Fluid mechanics, 433:329–346, 2001.

[42] A. A. Kantak and R. H. Davis. Oblique collisions and rebound of spheres from

a wetted surface. Journal of Fluid mechanics, 509:63–81, 2004.

[43] J. Kim, D. Kim, and H. Choi. An immersed-boundary finite volume method for

simulations of flow in complex geometries. Journal of Computational Physics,

171:132–150, 2001.

[44] H. Kleine, S. Tepper, K. Takehara, T. Etoh, and K. Hiraki. Cavitation in-

duced by low-speed underwater impact. 26th International Symposium on Shock

Waves, pages 895–900, 2009.

[45] T. A. Laursen, E. J. Kim, and B. Yang. Recent extensions of mortar-based

contact formulations: Lubrication modeling and parallel implementations. IU-

TAM Symposium on Multiscale Problems in Multibody System Contacts, pages

123–146, 2006.

[46] S. Luding. Contact models for very loose granular materials. IUTAM Symposium

on Multiscale Problems in Multibody System Contacts, pages 135–150, 2006.

[47] T. Manteuffel and A. White, Jr. The numerical solution of second-order

boundary value problems on nonuniform meshes. Mathematics of Computation,

47(176):511–535, 1986.

[48] S. Marella, S. Krishnan, H. Liu, and H. Udaykumar. Sharp interface carte-

sian grid method I: An easily implemented technique for 3D moving boundary

computations. Journal of Computational Physics, 210:1–31, 2005.

163

[49] B. Maury. A many-body lubrication model. Comptes Rendus de l’Académie des

Sciences - Series I - Mathematics, 325(9):1053–1058, 1997.

[50] A. Mitchell. Splitting methods in partial differential equations. Abhandlungen

aus dem Mathematischen Seminar der Universität Hamburg, 36(1):45–56, 1971.

[51] R. Mittal, H. Dong, M. Bozkurttas, F. Najjar, A. Vargas, and A. von Loebbecke.

A versatile sharp interface immersed boundary method for incompressible flows

with complex boundaries. Journal of Computational Physics, 227:4825–4852,

2008.

[52] T.-W. Pan and R. Glowinski. Direct simulation of the motion of neutrally buoy-

ant balls in a three-dimensional Poiseuille flow. Comptes Rendus Mécanique,

333:884, 2005.

[53] N. Patankar. A formulation for fast computations of rigid particulate flows.

Center for Turbulence Research, Annual Research Briefs, pages 185–196, 2001.

[54] D. Peaceman and H. Rachford, Jr. The numerical solution of parabolic and

elliptic differential equations. Journal of the Society for Industrial and Applied

Mathematics, 3(1):28–41, 1955.

[55] C. Peskin. Numerical analysis of blood flow in the heart. Journal of Computa-

tional Physics, 25:220, 1977.

[56] C. S. Peskin. The immersed boundary method. Acta Numerica, 11:479–517,

2002.

[57] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical

Recipes: The Art of Scientific Computing. Cambridge University Press, 3rd

edition, 2007.

[58] R. Rannacher. On Chorin’s projection method for the incompressible Navier-

Stokes equations. Lecture Notes in Mathematics, vol. 1530, 1992.

[59] A. Samarskii, P. Matus, and Vabishchevich. Difference schemes with operator

factors. In M. Hazewinkel, editor, Mathemativs and Its Applications, v. 546.

Kluwer Academic Publishers, Dordrecht/Boston/London, 2002.

164

[60] A. Samarskii and A. Vabishchevich. Additive schemes for problems of Mathe-

matical Physics (in Russian). Nauka, Moskva, 1999.

[61] G. Segré and A. Silberberg. Behaviour of macroscopic rigid spheres in Poiseuille

flow Part 2. Experimental results and interpretation. Journal of Fluid Mechan-

ics, 14:136–157, 1962.

[62] N. Sharma and N. Patankar. A fast computation technique for the direct nu-

merical simulation of rigid particulate flows. Journal of Computational Physics,

205:439–457, 2005.

[63] A. B. Stevens and C. M. Hrenya. Comparison of soft-sphere models to mea-

surements of collision properties during normal impacts. Powder Technology,

154:99–109, 2005.

[64] J. R. Taylor. Classical mechanics. University Science Books, 2005.

[65] R. Temam. Sur l’approximation de la solution des équations de Navier-Stokes

par la méthode des pas fractionnaires II. Archive for Rational Mechanics and

Analysis, 33:377–385, 1969.

[66] L. Timmermans, P. Minev, and F. V. D. Vosse. An approximate projection

scheme for incompressible flow using spectral elements. International Journal

for Numerical Methods in Fluids, 22:673–688, 1996.

[67] M. van der Hoef, M. van Sint Annaland, N. Deen, and J. Kuipers. Numerical

simulation of dense gas-solid fluidized beds: A multiscale modeling strategy.

Annual Review of Fluid Mechanics, 40:47–70, 2008.

[68] C. Veeramani, P. Minev, and K. Nandakumar. A fictitious domain formulation

for flows with rigid particles: A non-Lagrange multiplier version. Journal of

Computational Physics, 224:867–879, 2007.

[69] C. Veeramani, P. Minev, and K. Nandakumar. Collision modeling between tro

non-Brownian particles in multiphase flow. International Journal of Thermal

Sciences, 48:226–233, 2009.

165

[70] D. Wan and S. Turek. An efficient multigrid-FEM method for the simulation of

solid-liquid two phase flows. Journal of Computational and Applied Mathemat-

ics, 203:561–580, 2007.

[71] Westgrid. http://www.westgrid.ca, 2013.

[72] N. N. Yanenko. On a method for solving the multi-dimensional heat equation

(in Russian). Doklady Akademii Nauk SSSR, 125:1207–1210, 1959.

[73] B. Yang, J. Wang, D. Joseph, H. Hu, T. Pan, and R. Glowinski. Migration of a

sphere in a tube flow. Journal of Fluid mechanics, 540:109, 2005.

[74] C. You, X. Wang, H. Qi, R. Yang, and D. Xu. Direct numerical simulation of

particle collisions in two-phase flows with a meshless method. Chemical Engi-

neering Science, 63:3474–3484, 2008.

[75] Z. Zhang and A. Prosperetti. A second-order method for three-dimensional

particle simulation. Journal of Computational Physics, 210:292–324, 2005.

http://www.westgrid.ca

166

Appendix A

Taylor–Couette Flow

The 2D Taylor–Couette laminar flow between two concentric rotating cylinders (de-

picted in Figure A.1) has a well known analytical solution to the incompressible

Navier–Stokes equations (2.22). When written in 2D polar coordinates, the steady-

state solution in Ωf between the two cylinders of radius R1 and R2 rotating at angular

velocities ω1 and ω2 is

vr = 0, vθ = ar +
b

r
, a =

ω2R
2
2 − ω1R

2
1

R2
2 −R2

1

, b =
(ω1 − ω2)R2

1R
2
2

R2
2 −R2

1

, (A.1)

p =
a2r2

2
+ 2ab ln r − b2

2r2
, (A.2)

where vr is the component of the velocity in the radial direction and vθ is the com-

ponent of the velocity in the θ direction. The velocity (u, v) in Cartesian coordinates

is

u = −yvθ/r, v = xvθ/r. (A.3)

We can embed the fluid domain Ωf into a larger box domain Ω. Outside the fluid

domain, i.e., in Ω\Ωf , the velocity field represents rigid rotation of the solid cylinders,

vr = 0, vθ = ωr. (A.4)

The regularity of this analytical solution is C∞ in Ωf , C
∞ in Ω \Ωf , but only C0 in

Ω. In other words, the first derivative of the velocity has a jump discontinuity across

the fluid domain boundary ∂Ωf .

167

Fluid

Solid

Figure A.1: Taylor–Couette flow between two solid cylinders.

The Taylor–Couette velocity solution (A.1) can also be used as a solution for the

Stokes equations or the diffusion equation. In particular, (A.1) satisfies the diffusion

equation (5.5) exactly. Therefore, (A.1) together with the zero pressure field p = 0

satisfies the Stokes equations (2.26).

168

Appendix B

Pressure Projection With Variable

Density

If a fluid is incompressible but the density is not constant, then the variable-density

incompressible Navier–Stokes equations are:

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+ µ∇2u, (B.1)

∇ · u = 0, (B.2)

∂ρ

∂t
+∇ · (ρu) = 0, (B.3)

where µ is the viscosity and ρ is the density and the new equation (B.3) is the

density transport equation. Similar to the Chorin and Temam pressure projection

in Section 4.1.1, one can split (B.1) into

ũn+1 − un

∆t
+ ũn · ∇ũn =

µ

ρn+1
∇2ũn+1, (B.4)

un+1 − ũn+1

∆t
= − 1

ρn+1
∇pn+1. (B.5)

169

Taking the divergence of (B.5) and applying (B.2) gives the following variable coef-

ficient Poisson problem for pn+1,

∇ · ũn+1

∆t
= ∇ ·

(
1

ρn+1
∇pn+1

)
, (B.6)

which is more difficult than the equivalent problem when the density is constant,

∇ · ũn+1

∆t
=

1

ρ
∇ ·
(
∇pn+1

)
=

1

ρ
∇2pn+1. (B.7)

170

Appendix C

Implementation Details

In this chapter, we briefly review some of the features of the computer code that was

written along with this thesis. Designing, writing, testing, and debugging code took

about 2/3 of my time during the last three years. However, at least half of this time

was spent writing code for variants of the numerical scheme that have since been

abandoned and we will not discuss any of these variants.

The code is written in C++, although almost all of the code is essentially C code.

None of the C++ standard library is used, no “exception throwing”, no “virtual

functions”, etc., since most of these constructs reduce the execution speed of the

code. No third-party libraries are used, and all of the code was written from scratch

(by me). This makes the code very portable, and it compiles and runs “problem

free” on Linux, Microsoft windows, Mac OS, supercomputing clusters, etc. The code

can be stopped and restarted by saving and loading the entire state from disk, and

there are several compile-time parameters that can be adjusted to balance execution

speed, memory usage, floating-point accuracy, and error checking. Detailed CPU

timing and memory usage statistics are recorded, as well as flow statistics such as

CFL number and the magnitude of the divergence.

The code can solve the diffusion equation, Stokes equations, or Navier–Stokes

equations with arbitrary right-hand-side forcing function, and most combinations of

Dirichlet, Neumann, or periodic boundary conditions are supported. Almost all of

the numerical scheme variants listed in this thesis are supported, for example, BDF1

or Douglas or modified Douglas splitting, non-incremental or incremental pressure

correction, and standard (χ = 0) or rotational (χ > 0) forms. Non-uniform grids are

supported in most of the code.

171

C.1 Solving Tridiagonal Linear Systems

Since both the velocity and pressure require solving tridiagonal linear systems, it
is important to efficiently utilize all CPUs to solve these systems quickly. For con-
creteness, suppose we have three CPUs and we want to solve the following 13x13
tridiagonal linear system (with possible corner entries for periodic domains):

b0 d0 q1

a0 b c

a b c

a b c0

e0 b1 d1

a1 b c

a b c

a b c1

e1 b2 d2

a2 b c

a b c

a b c2

q2 e2 b3





x0

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

x12



=



f0

f1

f2

f3

f4

f5

f6

f7

f8

f9

f10

f11

f12



(C.1)

By simply re-ordering matrix rows and re-ordering the unknowns x0 − x12 as they
appear in vector form, one can write the matrix equation (C.1) as:

b c a0

a b c

a b c0

b c a1

a b c

a b c1

b c a2

a b c

a b c2

d0 b0 q1

e0 d1 b1

e1 d2 b2

e2 q2 b3





x1

x2

x3

x5

x6

x7

x9

x10

x11

x0

x4

x8

x12



=



f1

f2

f3

f5

f6

f7

f9

f10

f11

f0

f4

f8

f12



(C.2)

172

The matrix equation (C.2) is in block-tridiagonal form, with possible corner en-

tries in the lower right block. We denote the blocks of (C.2) by A B

C D


 X

Y

 =

 F

G

 , (C.3)

which is the same as

AX +BY = F, (C.4)

CX +DY = G. (C.5)

This linear system can be solved for the unknown vectors X and Y by using the Schur

complement method. First, X = A−1(F −BY) can be obtained from (C.4) and then

substituted into (C.5) to get CA−1(F −BY)+DY = G. Then terms involving Y are

isolated on the left hand side to obtain (D − CA−1B)Y = G− CA−1F . Denote the

Schur complement matrix by S = (D−CA−1B) and denote the right-hand-side vector

by R = G−CA−1F . The vectors G and F contain finite-difference operators for the

advection and explicit Laplacian (if the tridiagonal problem is for the momentum

equation of Navier–Stokes) or finite-difference operators for the divergence (if the

tridiagonal problem is for the pressure projection). In either case, these operators

have stencil widths of several grid points, so on CPU boundaries the operators must

be decomposed into parts. Since the advection operator is nonlinear, it cannot

be decomposed as easily and some grid point values must be communicated in a

neighbour-to-neighbour fashion beforehand. This is done using non-blocking MPI

“ready” sends, and much of this communication is hidden while performing other

calculations. Using the decomposed operators, each CPU computes a part of the

Schur complement right-hand-side vector R and also a part of the Schur complement

matrix S. Four floating point values for S and two floating point values for R are

constructed by each CPU and sent to a single “master” CPU in order to assemble the

linear system SY = R. This communication is performed using the MPI “gather”

routine, which blocks until all CPUs have called it. The master CPU inverts SY = R

to obtain Y (where S is always tridiagonal in our case) and two floating point values

of Y are sent back to each CPU using the MPI “scatter” routine, which blocks again

173

until all CPUs have called it. After each CPU receives the necessary parts of Y , the

solution X = A−1(F −BY) can be obtained for the remaining unknowns by solving

only local tridiagonal linear systems.

In order to efficiently solve a local tridiagonal linear system, the code contains

several different routines that are all optimized for different situations. For example,

solving Ax = F , Ay = G, Az = H for the three unknown vectors x, y, z can be

done about 30% faster by solving the single matrix problem A(x, y, z) = (F,G,H).

In situations where this can’t be done but the same matrix still needs to be inverted

more than once, the code optimizes the matrix on the first pass so that on the second

problem, most of the work has already been done. This is similar to an LU factor-

ization with some additional floating-point specific optimizations.

All of the communication for the parallel tridiagonal solver is done in one dimen-

sion only, but it is done for the entire perpendicular “area”. In other words, on a

computer with 1000 CPU cores that solves a 3D problem using 10× 10× 10 CPUs,

each communication would involve only 10 CPUs but 100 CPUs would be performing

this communication at the same time. In this case, the Schur complement problem

SY = R associated with each tridiagonal problem contains only 10+1=11 unknowns.

Even on machines with millions of CPU cores, SY = R is a small problem that can

be solved serially without any significant penalty. Also, in cases where the shape of

the domain Ωf is time-independent, the code supports the option to precompute and

store the Schur complement matrix, which means that the communication required

for solving tridiagonal systems in parallel is reduced from six floating-point values

per grid line to two floating-point values per grid line.

C.2 Moving Rigid Objects

There are two ways to store moving rigid objects (particles) in computer memory on

a computer system with many CPU cores. The first option is to redundantly store

all particles on the shared memory associated with each CPU, and the second option

is to distribute storage of the particles between the CPUs.

In the case where all particles are stored redundantly, each CPU can compute

all collision sub-steps (see Section 6.5) without requiring any communication with

other CPUs. However, all CPUs must still synchronize their objects every regular

174

time step otherwise floating-point inconsistencies can eventually cause each CPU to

believe the objects exist at different positions, and this causes numerical instability.

In the case where the particle storage is distributed between CPUs, a given CPU

is only aware of a small subset of particles at any given time. Each particle is always

“owned” by exactly one CPU, but it may be visible by several CPUs if the particle is

near a CPU boundary. Each CPU maintains a dynamic list of owned particles as well

as a list of nearby “visible” particles that reside on adjacent CPUs. These lists need

to be updated occasionally via neighbour-to-neighbour CPU communication, and

some attributes of the particles (for example the velocity and position) need to be

communicated during every collision sub-step in order for collisions to be properly

identified and resolved. This communication is accomplished using non-blocking

MPI “ready” sends and some of the communication is hidden while performing other

calculations.

In order to efficiently identify pair-wise particle collisions, each CPU sorts all

visible particles into buckets so that checking all particle pairs is done in O(N) time

rather than O(N2) time, where N is the number of particles.

In order to compute the fluid forces on each object, a surface integral must be

computed as in Section 6.3. This is nontrivial to do in parallel because each velocity

derivative in the fluid stress is a three-point stencil involving two fluid points that

must be interpolated in a boundary-fitted way, but there is no guarantee that any of

the grid points required by this complicated operation even exist on the CPU that

needs to compute it. In order to handle this issue, the code abstracts the concept of

a grid point such that grid points which do not exist on the processor can still be

treated in the usual way. By exploiting linearity of operators, we can set the value

at these “abstracted” grid points to zero, and then the complete surface integral

works out to be the direct sum of what each CPU computes. However, care must

still be taken to make sure that only one CPU contributes certain terms, otherwise

they end up being counted more than once. Also, care must be taken to ensure that

important floating-point conditional statements follow the same branch on every

CPU. If not, the direct sum of the result computed by each CPU may be nonsense.

All communication for the surface integrals is performed using non-blocking MPI

“ready” sends.

175

C.3 Other Miscellaneous Optimizations

The code for the numerical scheme also contains many optimizations to reduce mem-

ory requirements and execution speed. For example, if two large-memory variables

are never required at the same time, then these variables are stored at overlapping

memory locations in order to reduce overall memory consumption. This trick reduces

the overall memory usage by about 25%.

Cache efficiency is a big part of code speed on modern computers, and all loops

in the code traverse multidimensional arrays in the cache-optimal order, with a few

exceptions. Since tridiagonal linear systems need to be solved in each direction, only

one of these directions can be cache-optimal, and traversing multidimensional arrays

in the other two directions uses a large stride which hurts cache efficiency. In most of

these cases, the code uses loop blocking / loop tiling to enhance cache performance.

In order to efficiently build the tridiagonal matrices for one-dimensional boundary-

fitted operators, one must be able to efficiently determine intersection points of grid

lines with a large number of particles. The code performs this task by assigning a

number to each grid point which indicates whether or not the point is inside a parti-

cle, and if so, which particle. By looping over all particles and using bounding boxes

to limit the number of grid points that need to be checked per particle, the process

of marking each grid point is performed optimally in O(N + M) time, where N is

the total number of grid points and M is the total number of particles. When the

matrix for a given grid line is constructed, grid points are are traversed along the line

and the precomputed mapping of grid points to particles allows boundary-fitting to

be performed in O(1) time for each point, which means the matrix is built in O(N)

time, and the entire process takes O(N +M) time, which is optimal.

The code also contains a substantial quantity of micro-optimizations. For exam-

ple, inner-most loops use lookup tables for sin() and cos(), floating point divisions

are precomputed, etc.

C.4 3D Viewer

When dealing with vector and scalar fields in many dimensions, clear and accurate

data visualization is important. Therefore, I developed two visualization methods.

The first is a simple “ascii art” drawing that the numerical code can output in order

to precisely identify which grid nodes are considered fluid or solid. The second is

176

a 3D OpenGL-based visualization tool (3D Viewer) for viewing 2D or 3D velocity

fields, pressure fields, and solid objects specifically in the context of the MAC grid.

The 3D Viewer is interactive and allows the user to navigate the numerical data

and view it from any angle or position. Zooming out allows at-a-glance visualization

of macroscopic features of the flow fields, and zooming in shows numerical detail

right down to individual grid points. The grid point accurate “zoom in” capability

is extremely useful for identifying problems with the numerical scheme or bugs in

the code. In particular, this tool allowed me to identify subtle implementation spe-

cific issues that would have otherwise gone unnoticed and ended up decreasing the

accuracy of the scheme.

Using the 3D Viewer, each time step can be viewed as one of many “frames”

that can be played forwards, backwards, or paused. The 3D Viewer can also output

image sequences which can then be compiled by a third-party tool (such as ffmpeg)

into videos. Several pictures in this thesis are screen-captures using the 3D Viewer

tool, for example, Figures 9.5, 10.2, 10.3, 10.6.

	Introduction
	Literature Review

	Model Derivation
	Nondimensionalization

	Spatial Operators
	Laplace Operator 2u
	Advection Operator uu
	Pressure Gradient p
	Explicit Pressure Extrapolation

	Divergence Operator u
	Boundary Fitted Finite Difference Approximation
	Boundary Fitted Finite Volume Approximation

	Spatial Operators Using Ghost Cells

	Discretizations For Incompressible Navier–Stokes Equations
	Pressure-Correction Projection Methods
	Chorin–Temam Scheme
	Incremental Scheme
	Rotational Scheme
	Computational Formulation
	Perturbation Analysis Of The Stokes Equations
	Direction Factorized Pressure ``Projection''

	Discretizations of the Momentum Equation
	BDF1 Splitting
	Douglas Splitting
	Modified Douglas Splitting
	BDF2 Splitting

	Advection Terms
	Complete Navier–Stokes Scheme

	Convergence Rates Of The Numerical Schemes
	Diffusion Equation
	Spatial Convergence
	Temporal Convergence
	Stability

	Unsteady Stokes Equations
	Spatial Convergence
	Temporal Convergence
	Stability
	Comparing Values Of Rotational Parameter

	Navier–Stokes Equations

	Discretization Of ODEs For Rigid Objects
	Time Discretization
	Object Orientations
	Surface Integral Discretization
	Interpolation-Free Surface Integral
	A simple collision model
	Galilean Cannon

	A Lubrication-Based Collision Model
	Lubricating Fluid
	Equation Of State
	Fluid Viscosity
	Solid Compressibility
	Object Motion
	Nondimensionalization
	Solution Method
	Can Solid On Solid Contact Occur?
	Spatial Discretization
	Time Discretization
	Comparison To Experiments
	Comparison Of Arbitrary Parameters
	Two Sphere Collision

	A Direction Splitting Fictitious Domain Method
	FDM Convergence Rates
	Momentum Conservation

	Validation Of Schemes On Realistic Flows
	Sedimentation Of A Single 3D Ball, Re=4.1
	Migration Of A Ball In A 3D Pipe, Re 26.7
	Migration Of A Disc In A Channel, Re 26.7
	Vortex Street Behind 2D Disc, Re=100
	Large Buoyant Disc In 2D, Re 747
	Three Falling Discs In 2D, Re=100

	DNS Of A 3D Fluidized Bed
	Parallel Scalability

	Conclusions
	Future Work

	Bibliography
	Taylor–Couette Flow
	Pressure Projection With Variable Density
	Implementation Details
	Solving Tridiagonal Linear Systems
	Moving Rigid Objects
	Other Miscellaneous Optimizations
	3D Viewer

