
Design and Evaluation of Stochastic Computing Neural
Networks for Machine Learning Applications

by

Yidong Liu

A thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Computer Engineering

Department of Electrical and Computer Engineering

University of Alberta

c© Yidong Liu, 2019

Abstract

Neural networks (NNs) are effective machine learning models that require sig-

nificant hardware and energy consumption in the computing process. To im-

plement NNs, stochastic computing (SC) has been considered to seek a trade-

off between hardware efficiency and computation performance. However, most

of the existing implementations are based on pre-training such that the weights

are predetermined for the neurons at different layers; therefore, these imple-

mentations lack the ability to update the values of network parameters.

In this research, we focus on the design and implementation of energy-

efficient SC NNs for both training and inference. Three types of neural net-

works are proposed, including a multi-layer perceptron (MLP), a deep belief

network (DBN), and a recurrent neural network (RNN).

Several circuit designs are proposed to improve the hardware efficiency and

performance of these networks. Using extended stochastic logic (ESL), the

computation range of SC is extended from fractional numbers to real values

determined by a binary representation. Reconfigurable computation units are

designed to implement different types of activation functions such as the tanh

function and the rectifier function. A triple modular redundancy (TMR) tech-

nique is employed for reducing the random fluctuations in SC. An SC divider

based on TMR and a binary search algorithm is proposed with progressive

precision for reducing the required sequence length. SC training components,

such as the gradient computation and layer weight updating circuits, are pro-

posed to implement learning algorithms, including the backward propagation

ii

in MLPs and the fast greedy learning algorithm in DBNs. An adaptive mo-

ment estimation (ADAM) circuit is designed to further improve the speed of

the training process.

The proposed SC networks are capable of solving the problems of clas-

sification of nonlinearly separable patterns. Incurring only a slight decrease

in accuracy, the proposed designs require significantly smaller area and lower

energy consumption compared to floating- and fixed-point implementations

at a similar processing speed. The proposed SC circuits can be adapted into

different types of NNs, so they are versatile for use in both the training and

inference processes. These results show the potential of SC design techniques

in machine learning applications.

iii

Preface

This dissertation presents the original work in the field of stochastic computing

(SC) neural networks (NNs) by Yidong Liu.

In Chapter 2, we survey the background and recent developments of SC

circuits that improve the hardware efficiency and computation speed of SC

NNs. This work has been drafted as Y.Liu, S.Liu, Y.Wang, F.Lombardi,

and J.Han, “A survey of stochastic computing neural networks for machine

learning applications.” I composed the article with S. Liu. Dr. J.Han pro-

vided suggestions on the structure of the survey and revised the manuscript.

Dr.Y.Wang assisted with the revision and provided valuable information on

the section of convolutional neural networks. Dr.F.Lombardi participated in

the discussion, provided suggestions to the structure of the survey, and helped

with the revision.

An SC multi-layer perceptron (MLP) is proposed in Chapter 3, by imple-

menting the backward propagation algorithm for updating the layer weights.

This design has been published as Y.Liu, S.Liu, Y.Wang, F.Lombardi, and

J.Han, “A stochastic computational multi-layer perceptron with backward

propagation,” IEEE Transactions on Computers, vol. 67, no. 9 (2018): 1273-

1286. I developed the circuit of the SC-MLP, carried out the simulations

and syntheses, and composed the article with S.Liu. Dr. J.Han provided the

original idea of utilizing SC circuits in the MLP and revised the manuscript.

Dr.F.Lombardi and Dr.Y.Wang participated in the discussion and assisted

with the revision.

Chapter 4 presents the design of an energy-efficient deep belief network

(DBN) with online learning capacity based on SC. This work has been pub-

lished as Y.Liu, Y.Wang, F.Lombardi, and J.Han, “An energy-efficient online-

iv

learning stochastic computational deep belief network,” IEEE Journal on Emerg-

ing and Selected Topics in Circuits and Systems, vol. 8, no. 3 (2018): 454-465.

I devised the design of the SC-DBN, did the simulation, evaluation and circuit

syntheses, and drafted the manuscript. Dr. J.Han provided suggestions to im-

prove the manuscript. Dr.Y.Wang attended the discussion and revised the

manuscript. Dr.F.Lombardi provided suggestions to the research and helped

revising the manuscript.

Finally, we proposed an energy-efficient and noise-tolerant long short-term

memory (LSTM) based SC recurrent neural network (RNN). This work com-

prises Chapter 5. It has been published as Y.Liu, L.Liu, F.Lombardi, and

J.Han, “An energy-efficient and noise-tolerant recurrent neural network using

stochastic computing.” IEEE Transactions on Very Large Scale Integration

Systems, vol. 27, no. 9 (2019): 2213-2221. I developed the SC-RNN design,

evaluated the hardware efficiency and drafted the manuscript. Dr. J.Han pro-

vided constructive suggestions on improving the quality of the article and

revised the manuscript. Dr.L.Liu and Dr.F.Lombardi participated in the

discussion and assisted with the revision of the manuscript.

v

To my beloved families

To my mentors

For teaching me everything I need to know for the research.

vi

Acknowledgements

I am grateful for the many wonderful people who guide, support and encourage

me.

I would like to express the deepest appreciation to my supervisor, Dr. Jie

Han: First of all, thank you very much for your generous guidance and sup-

port to my academic and personal development. I appreciate our constructive

and long-lasting chats and discussions. Your valuable suggestions, keen in-

sights, and professional pieces of advice guide my research direction. Your

comments on the writings are especially inspiring. I greatly appreciate your

assistance which allowed me to attend research conferences and provided me

with opportunities to collaborate with many great researchers.

I would like to deeply thank Dr.Fabrizio Lombardi for his participation

in the discussions on my research and for his great suggestions during the

preparation of papers.

I would like to give my special thanks to my supervisory committee mem-

bers, Dr.Bruce Cockburn and Dr.Witold Pedrycz, and my thesis and candi-

dacy committee members Dr. Jie Chen, Dr.Marek Reformat, and Dr.Warren

Gross. They provided valuable feedback and advice for my research topics.

Very special gratitude goes out to the Natural Sciences and Engineering

Research Council (NSERC) of Canada for providing funding for this work.

I would like to thank my co-authors, Dr.Leibo Liu, Dr.Yanzhi Wang, and

Siting Liu. Dr.Yanzhi Wang attended our discussions and gave inspiring ad-

vice and important information on many topics. Dr.Liu provided suggestions

for revising the manuscripts. Siting Liu assisted me in the development of the

SC-MLP and provided great help during the preparation of manuscripts.

Thanks to my colleagues, Honglan Jiang, Peican Zhu, Xiaogang Song, Mo-

vii

hammad Saeed Ansari, Anqi Jing, Yuanzhuo Qu, and Alexander Scholl. It was

fantastic to have the opportunity to work together with them for the majority

of my research.

I am also grateful to the following university staff members: Pinder Bains,

Wendy Barton, and Asha Rao for their unfailing support and assistance.

Most importantly, thanks to my dear families for their consistent love,

understanding, support, and patience.

viii

Table of Contents

List of Abbreviations xvi

1 Introduction 1
1.1 Motivation . 1
1.2 Objectives . 4
1.3 Dissertation Outline . 5

2 Review 6
2.1 Background . 6
2.2 Stochastic Computing Neurons 7

2.2.1 Overall structure . 7
2.2.2 Multipliers . 10
2.2.3 Adders . 11
2.2.4 Activation circuits . 13

2.3 SC Neural Networks . 15
2.3.1 Forward propagation circuits 17
2.3.2 BP circuits . 17
2.3.3 Neuron circuits for CNNs 19

2.4 Advances in SC Techniques in NNs 21
2.4.1 Computation range expansion 21
2.4.2 Efficient encoding . 23

2.5 Accuracy and Hardware Efficiency of SC NNs 27
2.5.1 Accuracy . 27
2.5.2 Hardware efficiency . 29

3 A Stochastic Computing Multi-layer Perceptron 34
3.1 SC-MLP Design . 36

3.1.1 Overall design . 36
3.1.2 Training algorithm . 37
3.1.3 Forward propagation component 39
3.1.4 Backward propagation component 48
3.1.5 LFSR sharing structure 48

3.2 Experiments . 51
3.2.1 Accuracy comparison 51
3.2.2 Hardware efficiency . 54

3.3 Conclusion . 56

4 A Stochastic Computing Deep Belief Network 57
4.1 Review . 59

4.1.1 The structure of DBNs 59
4.1.2 Adaptive moment estimation (ADAM) 61

4.2 Design of the SC-DBN . 62
4.2.1 Overall structure . 62

ix

4.2.2 Encoder-decoder design 64
4.2.3 Design of the reconfigurable A-SCAU 65
4.2.4 Immune-to-correlation feature 67
4.2.5 RNG sharing . 71
4.2.6 Design of ADAM circuits 72

4.3 Evaluation . 75
4.3.1 Accuracy . 75
4.3.2 Hardware efficiency for pre-trained implementations . . 77
4.3.3 Hardware efficiency for online learning 79
4.3.4 SC-DBN with the ADAM circuit 80

4.4 Conclusion . 80

5 A Stochastic Computing Recurrent Neural Network 82
5.1 Background . 83

5.1.1 Recurrent neural networks (RNNs) 83
5.1.2 Long-short term memory (LSTM) 84

5.2 SC-RNN Design . 86
5.2.1 Overall design . 86
5.2.2 Hybrid structure of the memory block 87

5.3 Experiments . 94
5.3.1 Reder grammar problems 94
5.3.2 Voice recognition: Japanese vowels 96
5.3.3 Voice recognition: TIMIT 98
5.3.4 Hardware efficiency . 99

5.4 Conclusion . 101

6 Conclusion and Discussion 102
6.1 Conclusion . 102
6.2 Comparison with Binarized/Quantized Neural Networks . . . 102
6.3 Future Work . 104

References 106

x

List of Tables

2.1 Accuracy Comparison of SC Networks 28

3.1 MSE of Stochastic Dividers in the Stabilized Phase 47
3.2 Accuracy of Network Models 53
3.3 Latency of Alternative Network Designs 56

4.1 MSEs of the A-SCAU (×10−3) 66
4.2 MSEs of the ADAM Circuits (×10−4) 75
4.3 Pre-trained Networks Accuracy Comparison 76
4.4 Hardware Efficiency (Inference) 78
4.5 Hardware Efficiency (Online Learning) 79
4.6 Hardware Efficiency of the SC-DBN with the ADAM Circuit . 80

5.1 Area Breakdown of the Cell Kernel (µm2) 94
5.2 Inference Accuracy Comparison for Reder Grammar Networks 95
5.3 Hardware Efficiency for the Reder Grammar Networks 96
5.4 Area Cost for the Japanese Vowel and TIMIT Networks 100
5.5 Energy Consumption for the Japanese Vowel and TIMIT Net-

works . 100
5.6 Latency for the Japanese Vowel and TIMIT Networks 100

6.1 Performance Comparison of Neural Networks 104

xi

List of Figures

2.1 The typical structure of a neuron in the human brain [102]. . . 6
2.2 The function of a neuron in ANNs [35]. 7
2.3 (a) A DPC, (b) a conventional PE [7], (c) a PE using flip-flops,

and (d) a conventional bipolar stochastic divider [7]. 8
2.4 A typical structure of the SC neuron. 10
2.5 (a) An SC multiplier for the unipolar representation. (b) An

SC multiplier for the bipolar representation [7]. 10
2.6 (a) An Original SC adder [7]. (b) An APC based SC adder. (c)

A TFF-based SC adder with pz = (px + py)/2 [55]. 12
2.7 Design of an AxPC with 8-bit input signals. In the full adders

(FAs), a and b are the input bits, ci is the carry-in bit, s is the
sum and co is the carry-out bit [60]. 12

2.8 State transition diagram of (a) a tanh circuit and (b) an expo-
nentiation circuit [7]. X indicates that the input bit is ‘1’ and X̄
indicates that the input bit is ‘0’. Y is the output bit. Assume
that the probabilities that are encoded in the input and output
sequences are x and y, and that the state number is N . One can
show that the circuits implement the functions y = tanh(N

2
x)

and y = e−2Gx, respectively, when N >> G. 13
2.9 Design of the Btanh circuit [6] [47]. Si, i = 1, 2, ..., D is the

input sequence, with a dimension of D. 14
2.10 Design of the SC ReLU circuit [65]. CMP represents a compara-

tor. x and y are the values encoded in the input and output
sequence in the bipolar representation. 15

2.11 Structure of an MLP. Ii is the ith neuron in the input layer,
Hp
j is the jth neuron in the pth hidden layer and Ok is the kth

neuron in the output layer. 16
2.12 (a) An APC-based neuron. (b) A MUX-based neuron [60]. The

dimension of the input sequences is n. The multipliers are im-
plemented in SC. 18

2.13 The computation circuits for the BP in MLPs [19]. (a) The error
signal generator, (b) the circuit computing the error in the BP,
(c) the gradient generator, and (d) the layer weight updater. o
is the output signal generated by the forward propagation. t
is the target label. ξ is the error signal. η is the intermediate
signal generated by the layers in the forward propagation. δ is
the gradient. w is the layer weight and weight is the difference
between the values of the previous and updated layer weights. i
and j are the indexes of the two neurons connected by the layer
weight. 19

xii

2.14 Structure of a CNN, consisting of convolutional layers, pooling
layers, fully connected layers, and an output layer [96]. 20

2.15 Design of (a) An average pooling circuit, implementing aout =
1
4

∑4
i=1 ai [60], (b) a counter-based max pooling circuit [86], and

(c) a tanh-based max pooling circuit, both implementing vmax =
max(v1, v2) [108]. 20

2.16 (a) An ESL multiplier, and (b) an ESL adder [11]. 22
2.17 (a) 0.75 in the unipolar representation and (b) an integral stochas-

tic representation of 1.5. 23
2.18 A hybrid neuron in the convolutional layer, using Sobol se-

quences for multiplication [21]. The ‘>’ symbols represent com-
parators. 24

2.19 An SNG based on FSM-MUX circuits [94]. 25
2.20 The principle of the BISC multiplication. (a) Reordering the

bits for the sequence w, (b) BISC multiplication, using a down
counter to cut off bits in sequence x [94]. Assume that the
sequence length is 16 bits, the down counter is initialized to an
integer for 16×p(w). p(w) is the probability of w and the width
of p(w) is 4-bit in the binary representation. 25

2.21 Multiplication in SQ encoding [58]. The sequences Pi (i =
1, 2, 3, 4.) encodes the values of {1/4, 1/2, 3/4, 1} in the unipo-
lar representation. X is a Bernoulli sequence. 26

2.22 Design of an analog-to-stochastic converter [55]. 27

3.1 The SC-MLP network. The xData RAM stores the input data,
the tData RAM stores the class labels, the layer weight reg
stores the weights and the output reg stores the classification
results generated by the forward propagation component. . . . 36

3.2 The ESL based neuron j in layer l in the forward propagation.
yl−1i is the input signal with dimension m, wlji is the layer weight
as in (2.6). ESL mul represents the ESL multiplier. 39

3.3 The conventional SC-based neuron. The circuit consists of an
SC multiplier array (XNOR gates), an APC and an up/down
counter implementing the FSM. 40

3.4 Simulation result of the SCAU, with the sequence length set to
1024 bits and the maximum state number Smax set to 64. (a)
The tanh function; (b) The clamped ReLU function. 42

3.5 Design of the TMR binary search based PE. Three counters
are used to compute the probabilities encoded in the stochastic
sequences generated by the three DPCs, i.e., DPC A, DPC B
and DPC C; COMP A, COMP B and COMP C are comparators. 43

3.6 Comparison of required sequence length for different PE designs
vs. probability values ranging from 0.01 to 1.00. 44

3.7 Design of the TMR and binary search based divider. 45
3.8 (a) Convergence of the TMR and binary search based divider,

conventional divider and the stepped velocity divider. The ar-
rows indicate the 2048-2048 phase configuration of the TMR
and binary search divider. (b) MSE comparison of the compu-
tation and stabilized phase with the 2048-2048 phase configu-
ration. 46

3.9 The backward propagation circuits for (a) a neuron at the out-
put layer and (b) a neuron at a hidden layer. The signals follow
the same definitions in (2.7) (2.8) (2.9) using ESL. 49

xiii

3.10 Learning curve of the SC-MLP application on MNIST, with a
16× parallelization and the sequence length set to 256 bits. . . 52

3.11 Inference error rate of the SC-MLP (with tanh as the activation
function) with sequence length changing from 32 bits to 2048
bits. 53

3.12 (a) Area and (b) energy consumption of different network appli-
cations on MNIST and SVHN. The sequence length of SC-MLP
is set to 256 bits for MNIST and 512 bits for SVHN; the bit-
width of the BNN and FxP network is set to 8; the bit-width
of the FP implementation is set to 32. 55

4.1 A DBN consisting of one input layer with D neurons, L hidden
layers with each layer consisting of Ei neurons (i = 1, 2, ..., L)
and one output layer with K neurons. 60

4.2 Design of the reconfigurable SC-DBN structure, with signals
following the same definitions in (4.2) to (4.7). 63

4.3 The system diagram of (a) an encoder; and (b) a decoder. The
signal definitions are the same as for (4.1) to (4.6). 64

4.4 Design of the A-SCAU, including an APC, an LAU, an RNG
and a comparator. The circuits in gray are implemented by or
for SC. 65

4.5 Search result of optimal approximation parameters for the sig-
moid function. The MSE is between the sigmoid and the output
of the LAU. 66

4.6 The simulation results of the A-SCAU for (a) the sigmoid func-
tion, (b) the ReLU function and (c) the pure line function. . . 67

4.7 An algorithmic flowchart for the LAU. T: a temporary variable
used to store the intermediate result in the computation. The
definitions of other signals are the same as for (4.15) and (4.17). 69

4.8 Circuit design of the LAU. CMP: comparator. <<: shift regis-
ter. The width of the output signal is set to m. The definitions
of the signals are the same as for (4.15) and (4.17). 70

4.9 Test circuit for the A-SCAU and the Btanh based sigmoid func-
tions. 70

4.10 Simulation results of the A-SCAU and the Btanh based sigmoid
circuit. Both use shared RNGs. 71

4.11 An SNG array in the encoder-decoder pair with an input dimen-
sion D and parallelization level q. CMP: comparator. Bi (i =
1, 2, ..., D) is the ith binary value of the input signal. sij is the
jth parallel stochastic output sequence of Bi (i = 1, 2, ..., D; j =
1, 2, ..., q). 72

4.12 Design of the ADAM circuits. (a) Moment vector updater, (b)
Power function circuit for computing βt1 and βt2. (c) The circuit
to compute pτ + (1 − p)

√
v̂t, τ = ε/p. All signals are encoded

in stochastic sequences in the bipolar representation, following
the same definitions as in (4.8). 73

4.13 Classification accuracy of different implementations of the DBN.
SC-DBN cfg1: the pre-trained SC-DBN; cfg2: SC-DBN with
256-bit sequences for learning; cfg3: SC-DBN with 128-bit se-
quences for learning. 77

5.1 Structure of an FCRNN, with the C nodes denoting neurons
in the concatenated input-feedback layer (C-layer) and the P
nodes denoting neurons in the processing layer (P-layer). . . . 84

xiv

5.2 Functions of a memory cell for LSTM-RNNs [26]. f is the acti-
vation function implementing the gates defined by (5.3). g and
h are activation functions defined by (5.8) and (5.10), respec-
tively. Il (l ∈ {cell, in, out, ϕ}) are the input signals of the cell
and gates. yin, yout and yϕ are the output signals generated by
the gate units. Ocell is the output signal of the cell. s represents
the internal state of the cell. The cell kernel is introduced in
the following section. 85

5.3 Structure of a multi-cell memory block in the SC RNN. The
multipliers are implemented by SC circuits. The approximate
SC activation unit (A-SCAU) implements the gate units. The
Btanh circuit implements the activation function g defined by
(5.8). The cell kernel updates the internal state and computes
the output of a cell. PE is the probability estimator that
converts stochastic sequences into binary values. SNG is the
stochastic number generator. The circuits in gray are imple-
mented by or for SC. The cell kernel is implemented by both
SC and binary circuits. 88

5.4 Design of the cell kernel, including an SC multiplier, an APC,
an SNG, an FSM for implementing the SC Btanh function and
an SPU for updating the internal state. Cout is the output
sequence, encoding the value of h(Scvk(t)). The circuits in gray
are implemented by or for SC. The internal design of the SPU
is shown in Fig. 5.6. 90

5.5 Algorithmic flowchart for the SPU. T, T’: temporary variables
used to store the intermediate results in the computation. The
definitions of other signals are the same as those in (5.16) and
(5.17). 91

5.6 Circuit design of the SPU. CMP: comparator. <<: left-shift
register. APC out is the output signal of the APC. The defini-
tions of the signals are the same as those in (5.16) and (5.17). 92

5.7 Design of the AxPC with nine input sequences. HA represents
the half adder and FA represents the full adder. 93

5.8 Symbol generating rules for the Reder grammar. 95
5.9 Inference accuracy of networks for the Japanese vowels dataset

with noise at different SNRs. 97
5.10 The inference accuracy of networks for the TIMIT dataset with

noise at different SNRs. 98

xv

List of Abbreviations

AdaGrad adaptive subgradient method.

ADAM adaptive moment estimation.

ADDIE adaptive digital element.

ADP area-delay product.

ANN artificial neural network.

APC accumulate parallel counter.

AQFP Adiabatic Quantum-Flux-Parametron.

A-SCAU approximate SC activation unit.

ASIC application-specific integrated circuit.

AxPC approximate parallel counter.

BISC binary-interfaced stochastic computing.

BNN binarized neural network.

BP backward propagation.

Btanh bounded random walking based tanh.

Caffe Convolutional Architecture for Fast Feature Embedding.

CIFAR Canadian Institute for Advanced Research.

CNN convolutional neural network.

CONV convolutional.

DBN deep belief network.

DCNN deep convolutional neural network.

DNN deep neural network.

DPC digital-to-probability converter.

ESL extended stochastic logic.

xvi

FA full adder.

FCRNN fully-connected recurrent neural network.

FFT Fast Fourier Transform.

FP floating point.

FP-32 32-bit floating-point.

FPmul floating-point multiplier.

FSM finite state machine.

FxP fixed point.

GDC gradient descent circuit.

LAU linear approximation unit.

LD low-discrepancy.

LDPC low-density parity check.

LFSM linear finite-state machine.

LFSR linear-feedback shift register.

LSTM long short-term memory.

MAC multiplier-accumulator.

MLP multi-layer perceptron.

MNIST Modified National Institute of Standards and Technology.

MSE mean squared error.

MUX multiplexer.

NISC new integral SC.

NN neural network.

OCR online character recognition.

PE probability estimator.

QNN quantized neural network.

RBM restricted Boltzmann machine.

ReLU rectified linear unit.

RNG random number generator.

RNN recurrent neural network.

xvii

RTRL real-time recurrent learning.

SC stochastic computing.

SCmul SC bipolar multiplier.

SC-QNN SC quantized NN.

SCAU SC activation unit.

SC NN SC neural network.

SNG stochastic number generator.

SNR signal-to-noise ratio.

SPU state processing unit.

SQ stochastic quantized.

Stanh stochastic tanh.

SVHN Street View House Numbers.

tanh hyperbolic tangent.

TFF T flip-flop.

TIMIT Texas Instruments, Massachusetts Institute of Technology.

TMR triple modular redundancy.

VHDL VHSIC Hardware Description Language.

VHSIC Very High Speed Integrated Circuit.

xviii

Chapter 1

Introduction

1.1 Motivation

In the early form of artificial neural networks (ANNs) and the more recently

developed deep neural networks (DNNs), neural networks (NNs) have widely

been used in many machine learning applications, such as feature extrac-

tion [74], classification [52], and system control [24]. They possess several

features such as the nonlinear characteristics, flexible configuration ability

and self-adaptability that make them convenient for machine learning applica-

tions [113]. Originally, NNs were inspired by simulating some functions of the

human brain and they modeled the way in which the brain performs a par-

ticular task or functions of interests [40]. A NN is implemented as a parallel

distributed processor consisting of simple processing units represented by neu-

rons. An ANN resembles the human brain by acquiring knowledge through a

training process and storing the knowledge in layer weights that are associated

with the interneuron connections.

There have been multiple types of NNs based on different structures and

learning algorithms. A multi-layer perceptron (MLP) is a type of ANNs in

which neurons are interconnected in several layers [35]. The MLP supports

gradient descent-based supervised learning, such as the backward propaga-

tion (BP) algorithm [35]. It can be used for the classification of nonlinearly

separable patterns which means the classes cannot be seperated by a single

line or hyperplane [103] [36]. A DNN is generally considered to contain more

than two nonlinear layers between the input and output layers [92]. As an

1

example, a deep belief network (DBN) is composed of multiple hidden layers,

with connections between neurons in different layers. A DBN dramatically

improves the performance of an MLP. By using a fast greedy learning algo-

rithm [38], a DBN can perform unsupervised learning and solve problems such

as object recognition [76], speech recognition [37] and the recognition of hand-

written characters. Compared to other NNs, convolutional neural networks

(CNNs) achieve a better performance in image-classification applications and

significantly reduce the memory required for storing layer weights by weight

sharing and pooling operations [96]. Recurrent neural networks (RNNs) are

widely used for solving time-related problems such as speech recognition [90].

The long short-term memory (LSTM) structure has been introduced to sig-

nificantly improve the accuracy of RNNs and has become one of the most

widely-used RNN structures [39].

Compared to software implementations, hardware implementations of NNs

offer the advantages of an inherently high degree of parallelism and fast pro-

cessing speed. Unfortunately, complex hardware is required because NNs can

involve thousands of neurons in a single layer, resulting in millions of parame-

ters that need to be adjusted to achieve high classification accuracy [52]. Since

a large NN can easily overfit the dataset, several techniques have been devel-

oped to solve the overfitting problem, including the use of weight noise [27],

Dropout [98], DropConnect [104], binarized neural networks (BNNs) [42], and

quantized neural networks (QNNs) [43] [10]. These techniques add noise to

the activation function or layer weights. Using these methods, large networks

generally achieve higher accuracy compared to small networks. Recently, NNs

have been implemented in FPGAs [79], graphics processing units [52], and

embedded systems [49]; however, it is still imperative to develop efficient de-

signs for implementing NNs with the lowest possible hardware cost and energy

consumption.

In contrast to conventional binary circuits, a stochastic computing (SC)

circuit achieves low hardware cost and power consumption with high fault

tolerance to computation and soft errors [88]. SC reduces the size of many

fundamental arithmetic circuits, such as adders, subtractors [7] [8] and mul-

2

tipliers [34] [3]. The sigmoid function, for example, the hyperbolic tangent

(tanh) and exponential functions can all be implemented by finite state ma-

chines (FSMs) [63]. These designs make it possible to implement SC NNs at

a significantly lower hardware cost by moderately sacrificing the computation

accuracy. In addition, SC uses stochastic sequences to encode real values. As

a result, it introduces stochasticity and thus noise into SC NNs. The noise

could potentially be utilized to solve the overfitting problem which improves

the accuracy in inference [81].

However, it is a challenge for an SC NN to achieve a computation latency

and energy consumption comparable with conventional designs due to the long

sequence length and the large number of stochastic number generators (SNGs)

required in the circuit. Additionally, most of the research on SC implementa-

tions has focused on the inference process; thus, the weights at different layers

of the neural networks are predetermined and cannot be updated during the

computation process.

The motivations for this research are summarized as follows.

1. Conventional SC designs require long sequence lengths to achieve ac-

ceptable computation accuracy. Moreover, they require a large number of

sequence generators to convert the binary values into stochastic sequences,

resulting in a large area cost and high energy consumption. Therefore, it is

important to improve the hardware efficiency of SC designs while maintaining

the computation accuracy.

2. The recent development of SC NNs shows that SC designs have been

useful in the implementation of multiple types of NNs. However, there lacks

a general design methodology for SC NNs. In this research, we attempted to

design highly reconfigurable SC components that can be utilized to implement

different types of NNs, thus improving the generality and versatility of SC

designs in NN applications.

3. Most research on SC NNs has focused on the inference process. How-

ever, there is a lack of designs for SC-based online learning. As adaptation is

one of the most important features in machine learning, we propose SC de-

signs that implement the training process, which helps us to gain an in-depth

3

understanding of the potential of SC in machine learning.

1.2 Objectives

Based on the above observations, the main objective of this research is to

design SC-based NNs that achieve high hardware efficiency and competitive

computation speed with online-learning abilities. Specifically, the following

research topics are addressed.

1. To improve the hardware efficiency, several SC components are pro-

posed to improve the computation accuracy with reduced sequence length.

SC circuits that are immune to signal correlations are proposed to improve

the sharing rate of SC components. Additionally, reconfigurable structures

are designed that reuse computation components in both the training and

inference processes, thus reducing the hardware cost.

2. Reconfigurable components are proposed to improve the flexibility of

SC NN designs. For example, a reconfigurable SC activation unit (SCAU)

is designed to implement different types of activation functions such as the

tanh and the rectifier function. The designs can also be adapted into different

types of NNs, such as DBNs and RNNs, offering a general solution to the

implementation of activation functions in SC NNs.

3. SC components are proposed to implement different learning algorithms,

including the BP algorithm in MLPs and the fast greedy learning algorithm in

DBNs. Therefore, the proposed SC NNs can perform SC-based online learning,

and achieve both low area cost and high energy efficiency.

The contributions of this work are summarized as follows:

1. Design of an SC MLP

An SC-MLP is proposed by implementing the backward propagation algo-

rithm for updating the layer weights. A triple modular redundancy (TMR)

technique is employed to reduce the random fluctuations in stochastic com-

putation. A probability estimator (PE) and a divider based on TMR and

a binary search algorithm are proposed with progressive precision to reduce

4

the required stochastic sequence length. Compared to a fixed point (FxP)

implementation, the SC-MLP consumes a smaller area and a lower energy

consumption with a similar processing speed and a slight drop of accuracy.

2. Design of an SC DBN

The design of an energy-efficient DBN is proposed with an online-learning

capacity based on stochastic computation. A reconfigurable structure is uti-

lized to implement the fast greedy learning algorithm and an adaptive moment

estimation (ADAM) circuit is designed to improve the speed of the training

process. The area cost and energy consumption of the proposed design are

lower than those of a pipelined 32-bit floating point (FP) (or an 8-bit FxP)

implementation.

3. Design of an SC RNN

We propose an energy-efficient and noise-tolerant LSTM-based RNN using SC.

A hybrid structure is developed that utilizes SC designs and binary circuits

to improve the hardware efficiency without a significant loss of accuracy. The

area and energy consumption of this design is significantly lower than those of

a 32-bit FP implementation, with a higher noise tolerance.

1.3 Dissertation Outline

This dissertation is organized as follows. The background and the recent

development of SC NNs are reviewed in Chapter 2. In Chapter 3, the SC-

MLP is proposed and evaluated. Chapter 4 presents the design of the SC-

DBN. In Chapter 5, we discuss the implementation of the SC-RNN. Finally, a

conclusion and discussion are given in Chapter 6.

5

Chapter 2

Review

2.1 Background

Neural networks (NNs) consist of neurons as structural constituents. It is

estimated that there are approximately 10 billion neurons in the human brain

[35]. Fig. 2.1 illustrates the typical structure of a neuron. In the neuron, the

cell body receives input signals from the dendrites connected to the synaptic

terminals controlled by other neurons. The signals are converted and encoded

as a series of brief voltage pulses known as spikes, and then passed to other

neurons through the axon. The human brain can be developed to adapt to the

surrounding environment by two mechanisms: the creation of new synaptic

connections between neurons and the modification of existing synapses, both

of which lead to changes in the structure and the parameters of the NN.

Based on the biological structure, the neuron in a NN is designed as an

information processing unit and is utilized as the fundamental unit in the

network. The function of the neuron is shown in Fig. 2.2. Assume that one of

Figure 2.1: The typical structure of a neuron in the human brain [102].

6

x1

xi

xm

wi

…
…

y

w1

wm

Figure 2.2: The function of a neuron in ANNs [35].

the m input signals of the neuron is denoted by xi, i = 1, 2, ..., m, and the

parameter of the neuron (given as a layer weight) is wi, i = 1, 2, ..., m. The

output of the neuron is generated by

y = φ(
m∑
i=1

wixi). (2.1)

where φ is the activation function. In stochastic computing (SC) NNs, there

are different types of widely used activation functions, including the tanh

function, sigmoid function and rectified linear unit (ReLU) function. Assuming

the input of the activation function is v, the activation functions are given by

φ(v) =

tanh(2v), tanh

1
1+exp(−v) , sigmoid

max(0, v). ReLU

(2.2)

Each of the functions can be used to solve nonlinear classification prob-

lems [7]. The ReLU is the dominant type of activation function in the state-

of-the-art NNs. Compared with the tanh and the sigmoid functions, the ReLU

function allows a network to obtain sparse representations by eliminating ran-

dom fluctuations.

2.2 Stochastic Computing Neurons

2.2.1 Overall structure

In stochastic computation [1] [5] [34], the presence of p 1’s in a random binary

bit stream of length q encodes the value p/q in the unipolar representation, or

the value (2p− q)/q in the bipolar representation. Thus, a stochastic sequence

7

encodes a real number in the closed interval [0, 1] in the unipolar represen-

tation, or a number in the closed interval [−1,+1] in the bipolar represen-

tation. Stochastic computation is generally executed on a bit-wise basis for

both combinational and sequential circuits. This can significantly reduce the

complexity of an arithmetic circuit. In generally, SC circuits reduce the area

cost of arithmetic circuits by sacrificing the computation speed, compared to

binary designs. SC has been widely used in a variety of applications, such as

low-density parity check (LDPC) decoding [29], image processing [61] [106],

digital filter design [12] [82] [105], and circuit reliability evaluation [30] [114].

A digital-to-probability converter (DPC), also referred to as a stochastic

number generator (SNG), is commonly used to convert a real number into a

stochastic sequence [105] [83]. It consists of a linear-feedback shift register

(LFSR) and a comparator (Fig. 2.3 (a)). Another important component used

in SC is the probability estimator (PE); the PE determines the probability

encoded by a specific stochastic sequence. A conventional PE (Fig. 2.3 (b))

consists of a counter and a DPC [7]. It first generates a stochastic sequence

using the DPC and then uses an up/down counter to compare the probabilities

(a) (b)

(c) (d)

Figure 2.3: (a) A DPC, (b) a conventional PE [7], (c) a PE using flip-flops,
and (d) a conventional bipolar stochastic divider [7].

8

encoded in the generated and input sequences. Subsequently, the PE adjusts

the probability encoded in the generated sequence by increasing (or decreasing)

the value in the counter if the probability encoded in the generated sequence

is smaller (or larger) than the value encoded in the input sequence. When

the same probability is obtained for the input and generated sequences, the

probability estimator records the binary value in the counter to estimate the

probability (Pest) that is encoded in the input sequence.

A different implementation of a PE using flip-flops is introduced in [80]. In

Fig. 2.3 (c), Nsto is the number of clock cycles (equal to the sequence length)

required for stochastic computation. In each cycle, the flip-flop-based PE

counts the number of 1’s in the input sequence to estimate the probability.

This PE requires less hardware than a conventional PE. However, it needs a

total of Nsto cycles for computation.

Fig. 2.3 (d) shows the implementation of a conventional bipolar stochastic

divider. This design is based on the same gradient descent algorithm used

in a conventional PE. In general, a conventional PE incurs a high latency

when the input probability is substantially different from the initial probability

of the generated sequence; this feature significantly decreases the speed of

computation. A stepped velocity algorithm is introduced in [7] to address

this problem. In the stepped velocity algorithm, the value of the counter is

processed in multiple steps, starting with 2N−1 and 2N−2 as the step size,

where N is the bit width of the counter. Each time, the step size is decreased

by half until it reaches 1. This binary search based algorithm significantly

reduces the sequence length; however, the errors due to random fluctuations

in the stochastic sequences may lead to an incorrect search direction. If an

incorrect direction occurs in an early step, it will result in a considerable loss of

accuracy. Therefore, in our research, a new design that uses TMR and a binary

search-based PE is proposed to shorten the sequence length and overcome the

accuracy loss in the stepped velocity algorithm.

As the fundamental unit in NNs, most SC neurons share a similar struc-

ture, as shown in Fig. 2.4. It consists of an array of SNGs, an SC arithmetic

circuit, and a PE. Consisting of an random number generator (RNG) and a

9

Figure 2.4: A typical structure of the SC neuron.

comparator, an SNG is used to convert a binary input into a stochastic se-

quence. The SC arithmetic circuit implements the function of the neuron.

According to (2.1) and (2.2), the SC neuron can be implemented by multipli-

ers, adders and activation circuits. These arithmetic circuits are required in

different types of NNs for inference [7] and can be implemented by different

SC designs, as introduced in the remainder of this section.

2.2.2 Multipliers

The multiplier is a fundamental computation circuit in neural networks. The

SC multiplier is implemented by an AND gate in the unipolar representation

and an XNOR gate in the bipolar representation, as shown in Fig. 2.5 [7]. The

SC multiplier significantly reduces the area by increasing the computation

time, compared to the conventional binary multipliers.

(a) (b)

Figure 2.5: (a) An SC multiplier for the unipolar representation. (b) An SC
multiplier for the bipolar representation [7].

10

2.2.3 Adders

The original SC adder is implemented by a 2-input multiplexer (MUX) with

the probability of the select signal set to 0.5, as shown in Fig. 2.6 (a) [88] [7].

The probability of the output signal is not affected by any correlation between

the input signals. So, the RNGs can be shared among the input signals to

reduce the hardware cost and energy consumption. However, the select signal

must be uncorrelated with the input signals, so additional RNGs are still

required. An SC adder tree can be implemented for multiple input signals.

The output of the SC adder is scaled by 0.5, thus reducing the resolution by

half. As a result, the output signals need to be re-normalized before the next

step of processing, therefore increasing the hardware of the adder tree.

An accumulate parallel counter (APC) based SC adder is introduced to

improve the performance and to circumvent the scaling problem (Fig. 2.6

(b)) [101]. In the APC-based SC adder, the 1’s in the D-dimensional in-

put sequences (Si, i = 1, 2, ..., D) are simply added up. The probability of

the output signal is only determined by the sum of the probabilities of the

input signals, thus the RNGs can be shared among the input signals without

losing the computation accuracy. Because no SNGs are required to generate

the select signals, the total cost of the design is lower than that of the original

SC adders for the same number of input signals. The processing speed of the

APC-based adder is higher than the original SC design because the computa-

tion is in parallel without the use of an adder tree. Note that the output of the

APC-based adder is in binary. The area of the design can further be reduced

by replacing the APC with an approximate parallel counter (AxPC), as shown

in Fig. 2.7. Compared to the APC, the first layer of the full adders (FAs) are

replaced by pairs of OR and AND gates to reduce the hardware cost.

A T flip-flop (TFF) based SC adder is introduced in [55], as shown in

Fig. 2.6 (c). Assume that the values encoded in the input and output sequences

in the unipolar representation are px, py, and pz. One can show that

pz =
px + py

2
. (2.3)

11

(a) (b)

(c)

Figure 2.6: (a) An Original SC adder [7]. (b) An APC based SC adder. (c) A
TFF-based SC adder with pz = (px + py)/2 [55].

Figure 2.7: Design of an AxPC with 8-bit input signals. In the full adders
(FAs), a and b are the input bits, ci is the carry-in bit, s is the sum and co is
the carry-out bit [60].

Compared to the conventional SC adder, this adder requires no additional

stochastic sequences for the select signal to the MUX, thus reducing the area

of the design.

12

2.2.4 Activation circuits

The activation functions in (2.2) are typically implemented using two different

methods: one is based on FSMs and the other using SC polynomial arithmetic

circuits.

FSM-based computational elements are introduced to implement multiple

activation functions with different state transition settings [7]. The design

includes a saturating counter with the state of the counter controlled in a

closed loop. The state transitions of the tanh and exponentiation circuits are

shown in Fig. 2.8.

A Btanh circuit is proposed in [6] [47] to improve the computation speed of

SC activation functions. The design of the Btanh circuit is shown in Fig. 2.9.

Instead of updating the state of every single bit in the input sequence, the

Btanh circuit adds up multiple bits from the input signals with an APC and

(a)

(b)

Figure 2.8: State transition diagram of (a) a tanh circuit and (b) an expo-
nentiation circuit [7]. X indicates that the input bit is ‘1’ and X̄ indicates
that the input bit is ‘0’. Y is the output bit. Assume that the probabilities
that are encoded in the input and output sequences are x and y, and that the
state number is N . One can show that the circuits implement the functions
y = tanh(N

2
x) and y = e−2Gx, respectively, when N >> G.

13

Figure 2.9: Design of the Btanh circuit [6] [47]. Si, i = 1, 2, ..., D is the input
sequence, with a dimension of D.

changes the state of the up/down-counter-based FSM in multiple steps within

each computation cycle [6] [47]. The algorithm significantly improves the com-

putation speed and obtains accurate results even when the sum of the proba-

bilities of input signals goes beyond [−1,+1].

An SC ReLU circuit is proposed in [65], as shown in Fig. 2.10. The input

to the circuit is accumulated and compared with half of the passed clock

cycles. The comparator output is used as the input and the control signal

of the multiplexer at the same time. If the accumulation result is smaller

than the reference number, the comparator outputs a ‘1’ and is selected by

the multiplexer as the output. Otherwise, the output is determined by the

Btanh circuit implemented by an up-down counter. The circuit ensures that

the value encoded in the output sequence is no less than 0.5 in the unipolar

representation or 0 in the bipolar representation. Therefore, assuming that

the values encoded in the input sequence and the output sequence are x and

y in the bipolar representation, the function of the circuit is given by

y = max(0, tanh(2x)). (2.4)

SC polynomial arithmetic circuits are also commonly used to implement

activation functions. The nonlinear activation functions are first expanded by

using a Taylor series or Bernstein polynomials [22]. A finite number of terms

are then computed by SC polynomial circuits [84].

Compared to the FSM method, an SC polynomial activation circuit is easier

to be reconfigured but with larger area. In a recent implementation [59], the

14

Up/down
counter

1

0

CMP

Clock cycle
counter

Shifter

Accumulator
x y

Figure 2.10: Design of the SC ReLU circuit [65]. CMP represents a compara-
tor. x and y are the values encoded in the input and output sequence in the
bipolar representation.

activation function is approximated by linear functions. The AxPC is utilized

in SC adders to reduce the area and power consumption.

2.3 SC Neural Networks

A typical NN includes one input layer, at least one hidden layer, and one

output layer (Fig. 2.11). Each layer consists of multiple neurons as the basic

computation units. One of the most widely-used learning algorithms is the

BP algorithm. This algorithm proceeds in two phases: forward propagation

and backward propagation [35]. The forward propagation phase generates

output signals based on the current inputs and layer weights. In the backward

propagation phase, error signals are first obtained from the output signals;

then the layer weights are updated using the error signals.

The BP algorithm is performed in multiple stages called epochs. In each

epoch, the NN is trained on the training dataset. Let ylj(n) be the output

signal of neuron j in layer l at epoch n, and let wlji(n) be the layer weight

between the neuron j at layer l and the neuron i in the previous layer l−1. In

the forward propagation phase, the output signal of the neuron is computed

as

ylj(n) = φ(vlj(n)), (2.5)

where φ is the activation function and vlj(n) is defined as

vlj(n) =
m∑
i=1

wljiy
l−1
i (n). (2.6)

15

In the BP phase, the layer weight wlji(n) is updated as

wlji(n+ 1) = wlji(n) + η∆wlji(n), (2.7)

where

∆wlji(n) = δlj(n) · yl−1i (n), (2.8)

η is the learning rate, and δlj(n) is the local gradient, defined as

δlj(n) =

{
(tj(n)− olj)φ′(vlj(n)), output layer;

φ′(vlj(n))
∑p

i=1 δ
l+1
i wl+1

ij (n), hidden layer.
(2.9)

In (2.9), tj(n) is the jth variable in the class label of a training sample. For

the neurons in the output layer, the local gradient is determined by the error

signal generated by tj(n)− olj. For the neurons in the hidden layers, the local

gradient is determined by the sum of δl+1
i wl+1

ij . In both cases, φ′(vlj(n)) is the

derivative of the activation function with respect to vlj(n).

After updating the layer weights in the backward propagation phase, the

forward propagation phase is repeated to generate the new error signals for

Figure 2.11: Structure of an MLP. Ii is the ith neuron in the input layer, Hp
j is

the jth neuron in the pth hidden layer and Ok is the kth neuron in the output
layer.

16

the next loop and the error signals are expected to be reduced at each itera-

tion. The forward and backward propagation processes are repeated until the

maximum allowed number of epochs is reached, or an early stopping criterion

is met [28].

Batch normalization has been used to accelerate the convergence by fix-

ing the means and variances of the layer inputs [44]. For a layer with a d-

dimensional input x = (x(1), x(2)...x(d)), each dimension is normalized inde-

pendently by

x̂(k) =
x(k) − E[x(k)]√

var[x(k)]
, k = 1, 2, ..., d. (2.10)

As per (2.10), the mean of the inputs is normalized to zero and the variance

is normalized to 1.

2.3.1 Forward propagation circuits

There are two types of SC neurons for the forward propagation: the APC- and

MUX-based neurons [60]. The structure of an APC-based neuron is shown

in Fig. 2.12 (a). It can be seen that the structure is similar to the Btanh

circuit. Simulation results show that the computation error of the APC-based

neuron slowly decreases while the area, power, and energy of the circuit linearly

increases as the input size grows [86]. The MUX-based neuron is introduced

in [60], as shown in Fig. 2.12 (b). This design achieves smaller area cost and

lower power consumption compared to the APC-based neuron. However, the

accuracy degradation is more significant as the size of the input signal increases

and longer bit streams are required for accuracy compensation.

2.3.2 BP circuits

The BP components are required for the training process. The arithmetic SC

circuits for the BP in MLPs are introduced in [8] and [19]. It is shown that

the BP circuit can be implemented using subtractors and multipliers.

In [19], the BP components implement the backward propagation phase in

four steps: the computation of the error signals in the output layer (Fig. 2.13

(a)); error signals in the hidden layer (Fig. 2.13 (b)); the local gradient (Fig. 2.13

17

(a)

(b)

Figure 2.12: (a) An APC-based neuron. (b) A MUX-based neuron [60]. The
dimension of the input sequences is n. The multipliers are implemented in SC.

(c)) and updated layer weights (Fig. 2.13 (d)). For the nth epoch, first, the

error signal in the output layer is generated by tj(n) − olj as in (2.9). The

error signal in the hidden layer is then computed by
∑p

i=1 δ
l+1
i wl+1

ij (n) and the

gradient is generated following (2.9). Finally, the layer weights are updated

following (2.7) and (2.8). The unipolar representation is usually considered

in the implementation, so it requires two output signals of the layer weight

updater to indicate if the value of the layer weight has increased or decreased.

Additionally, it requires four stochastic sequences to encode each gradient sig-

nal in the computation. In our research, the SC BP circuits are proposed to

simplify the computation process and expand the computation range using

extended stochastic logic (ESL) in the bipolar representation.

To reduce the sequence length in training, the implementation of the SC BP

circuits is further discussed in [70]. The training of a NN can be considered

to be an optimization problem for the weights in a NN, and the gradient

descent strategy is a simple but efficient method for the optimization by an

iterative addition of the gradients. In [70], the gradients of the training samples

are computed and accumulated by an SC gradient descent circuit (GDC).

Due to the cancelation of random deviations in the accumulation process, the

18

(a) (b)

(c) (d)

Figure 2.13: The computation circuits for the BP in MLPs [19]. (a) The error
signal generator, (b) the circuit computing the error in the BP, (c) the gradient
generator, and (d) the layer weight updater. o is the output signal generated
by the forward propagation. t is the target label. ξ is the error signal. η is
the intermediate signal generated by the layers in the forward propagation. δ
is the gradient. w is the layer weight and weight is the difference between the
values of the previous and updated layer weights. i and j are the indexes of
the two neurons connected by the layer weight.

sequence length used in the design can be aggressively reduced to achieve high

performance and high energy efficiency. The experimental results show that

with a stochastic “sequence” as short as one bit for each sample, the circuit

produces a training accuracy similar to its floating-point (FP) and fixed-point

(FxP) counterparts.

2.3.3 Neuron circuits for CNNs

A CNN consists of four types of layers: convolutional (CONV) layers, pooling

layers, fully connected layers and a softmax-based output layer (Fig. 2.14).

CONV layers consist of multiple sessions of feature maps, within which all

the neurons share the same set of weights. The computation in the CONV

layer is inner-product based [96]. Therefore, it can be implemented using SC

multipliers and adders. Similarly, the fully connected layers can be imple-

19

mented using SC forward propagation circuits.

The pooling layers are implemented for sub-sampling to reduce the com-

plexity of the computation. The most common strategies are average pooling

and max pooling.

In average pooling, the neuron computes the average probability of the

input sequences. It can be implemented by conventional SC adders because

the value encoded in the output sequence is the average of the values encoded

in the two input sequences. So, the average pooling circuit can be implemented

by an SC adder tree with each adder implemented by a MUX with the select

signal encoding a value of 0.5 in the unipolar representation, as shown in

Fig. 2.15 (a) [60].

Figure 2.14: Structure of a CNN, consisting of convolutional layers, pooling
layers, fully connected layers, and an output layer [96].

a1

a2

a3

a4

½

½

aout

MUX

MUX

MUX

(a) (b)

(c)

Figure 2.15: Design of (a) An average pooling circuit, implementing aout =
1
4

∑4
i=1 ai [60], (b) a counter-based max pooling circuit [86], and (c) a tanh-

based max pooling circuit, both implementing vmax = max(v1, v2) [108].

20

In the max pooling operation, the neuron computes the maximum proba-

bility of the input sequences. The design of a max pooling neuron is introduced

in [86], as shown in Fig. 2.15 (b). It assumes that the bit-stream encoding the

globally highest probability also has the highest probability for a certain seg-

ment of the stream because all 1’s are randomly distributed in the stochastic

bit-streams. So, instead of computing the number of 1’s in the entire bit-

streams, the circuit counts 1’s in a segment of the streams every time and

makes the comparison, thereby reducing the computation time. A tanh-based

max pooling circuit is proposed in [108], as shown in Fig. 2.15 (c). The tanh

circuit is implemented by an FSM following the state transition diagram in

Fig. 2.8 (a) with an enable (En) input. Assume that the input bits of v1 and

v2 are different, the state increases with v1 being ‘1’ and decreases with v1

being ‘0’. When the probability of v1 is higher than v2, the output of the tanh

circuit tends to be ‘1’ so v1 is selected as the vmax; otherwise v2 is selected.

2.4 Advances in SC Techniques in NNs

Several advances of SC techniques have been made with the development of SC

NNs, including improvements in expanding the computation range and efficient

encoding. Note that many of these designs are concurrent developments with

our project.

2.4.1 Computation range expansion

ESL

The computation range of the conventional SC is limited in [0, 1] in the unipo-

lar representation and [−1,+1] in the bipolar representation, which restricts

the usage of the SC circuits in certain NN applications. ESL is one of the

methods to overcome this drawback [11]. In ESL, a real number is encoded

as the ratio of two stochastic sequences using the bipolar representation. As-

sume that the two sequences encode the values of ph and pl in the bipolar

representation. Then a real number x is approximately given by the following

21

(a) (b)

Figure 2.16: (a) An ESL multiplier, and (b) an ESL adder [11].

quotient [11]:

x =
ph
pl
. (2.11)

By doing so, the computation range of SC is expanded to (−2N−1, 2N−1)

for a binary representation in N bits. Based on the definition of ESL, a mul-

tiplier in the bipolar representation can be implemented by two XNOR gates

(Fig. 2.16 (a)). To implement the ESL adder, assume that the addends (s1, s2)

are represented by sequences {S1h, S1l} and {S2h, S2l}, and the values encoded

in the sequences are {s1h, s1l} and {s2h, s2l} in the bipolar representation,

respectively. We then have

s1 + s2 =
s1h
s1l

+
s2h
s2l

=
s1h · s2l + s1l · s2h

s1l · s2l + 0
. (2.12)

Therefore, the ESL adder in the bipolar representation can be implemented

by three XNOR gates and two MUXes, as shown in Fig. 2.16 (b). An SC

divider is utilized to convert the ESL sequences into conventional SC sequences.

Note that in ESL, the random fluctuations in the divisor (i.e., pl in (2.11))

significantly reduce the accuracy of the value of x, so, it requires a relatively

long sequence length to achieve an acceptable computation accuracy.

Integral SC

The integral SC is another method to extend the computation range [6]. In

the integral SC, the real value is represented as the summation of the values

encoded by multiple binary stochastic sequences when it is beyond the range

22

Stochastic Stream X1: 1 0 1 0 1 1 1 1 (0.75)

Stochastic Stream X2: 1 1 1 0 1 0 1 1 (0.75)

(a)

+
X1

X2

Integral stochastic stream

S: 2 1 2 0 2 1 2 2 (12/8 = 1.50)

(b)

Figure 2.17: (a) 0.75 in the unipolar representation and (b) an integral stochas-
tic representation of 1.5.

of [−1,+1]. Fig. 2.17 shows an example of representing the value of 1.5 in the

integral SC in the unipolar representation. Compared to the ESL with the

fluctuations in the divisor, the integral SC requires a shorter sequence length,

thus achieving higher computation performance. However, it incurs a larger

area due to the more complex arithmetic circuits.

A simplified integral SC is introduced in [41]. The main idea is to generate

an integral sequence S∗ = s/n, where s is the target value and n is a positive

integer, and then set S = S∗×n for regenerating a sequence for computation.

Because the value encoded in the integral sequence is reduced by n times, this

method reduce the area of the circuit.

2.4.2 Efficient encoding

To maintain a high accuracy and reduce the sequence length, two types of

low-discrepancy (LD) sequences, Halton and Sobol sequences, have been used

to generate the stochastic bit streams [2] [69]. The use of LD sequences in

SC enables more accurate computation with a reduced sequence length com-

pared to the use of conventional LFSR-generated pseudo-random sequences.

Also, a stochastic multiplier using Sobol sequences takes roughly half of the se-

quence length required by Halton sequences to achieve a similar accuracy [68].

In [21], the Sobol sequence is used for the computation of the convolutional

layers of a CNN and, especially, the multiplications. In the neuron design in

Fig. 2.18, two Sobol sequence generators are used to produce random numbers

for stochastic sequence generation. For a better accuracy, the multiplications

are implemented using the unipolar stochastic circuit (i.e., the AND gates)

instead of the bipolar circuit. The products are then divided into the posi-

tives (+) and negatives (-) and set as the input signals for the APCs. The

23

Figure 2.18: A hybrid neuron in the convolutional layer, using Sobol sequences
for multiplication [21]. The ‘>’ symbols represent comparators.

accumulations are implemented using binary circuits for the positive and neg-

ative products, followed by a binary activation function circuit. This design is

tested for handwritten digit recognition, based on the LeNet-5 topology [54].

It shows that with a reduced sequence length, a similar or better classification

accuracy is obtained using this hybrid design with a higher energy efficiency,

compared to conventional SC implementations.

An improved SC encoding method is proposed in [94], as shown in Fig. 2.19.

Assume that a value x in [0, 1] is encoded in 4-bit FxP representation with

each bit being xi, i = 0, 1, 2, 3 . In this method, the weights (or probabilities)

of xi are set to {1/16, 1/8, 1/4, 1/2} by a 16-state FSM to generate a sequence

encoding x in the unipolar representation. Compared to the pseudo-random

sequences generated by conventional SNGs, the probability of this sequence is

more accurate because it is determined by the weights of the bits in the binary

representation.

A low-latency multiplication for the binary-interfaced stochastic computing

24

x30 x3x2 x3x1 x3x2 x3x0 x3x2 x3x1 x3x2

Selector FSM
with 16 states

Fixed-point binary

MSB

LSB

timex3

x2

x1

x0

1/2

1/4

1/8

1/16

Figure 2.19: An SNG based on FSM-MUX circuits [94].

SNG
Counter

x
w

0010100101001010

0000001111111111
xw0000000101001010 (0.25)2

(0.375)10

(0.625)10

(a)

Down
counter

CounterSNG xw
(0.375)10

x

w(0.625)10

(0.25)2

16 p(w)

001010 0101001010

Stop when DOWN
COUNTER reaches 0

(b)

Figure 2.20: The principle of the BISC multiplication. (a) Reordering the bits
for the sequence w, (b) BISC multiplication, using a down counter to cut off
bits in sequence x [94]. Assume that the sequence length is 16 bits, the down
counter is initialized to an integer for 16 × p(w). p(w) is the probability of w
and the width of p(w) is 4-bit in the binary representation.

(BISC) is proposed to improve the performance of the SC multiplier [95]. The

BISC multiplier uses counters to cut down the required number of bits in

stochastic sequences [94]. The principle of the design is shown in Fig. 2.20.

Note that in (a), compared with conventional SC sequences, the sequence

of w is reordered so that the 1’s are placed continuously at the beginning

of the bit stream (from the right to the left in Fig. 2.20 (a)). However, the

result of the multiplication is unchanged when the stochastic bit streams are

statistically uncorrelated after the reordering. It can be seen that the 0’s in

the stochastic sequence w and the corresponding bits in sequence x make no

contribution in the final outcome. Therefore, these bits can be skipped by

using a down counter, as shown in (b). The BISC multiplier significantly

reduces the sequence length with increased area, compared to conventional

25

1111 0000 0000 0000

1111 1111 0000 0000

1111 1111 1111 0000

1111 1111 1111 1111

1001 0101 1100 0101

P1

P2

P3

P4

X

1001 0000 0000 0000

1001 0101 0000 0000

1001 0101 1100 0000

1001 0101 1100 0101

Figure 2.21: Multiplication in SQ encoding [58]. The sequences Pi (i =
1, 2, 3, 4.) encodes the values of {1/4, 1/2, 3/4, 1} in the unipolar represen-
tation. X is a Bernoulli sequence.

SC designs.

The randomness of a stochastic sequence is further reduced by the stochas-

tic quantized (SQ) encoding in [58]. This method also uses continuous 1’s in

a sequence. Fig. 2.21 gives an example of SC multiplier using the SQ encod-

ing. The value encoded in the SQ sequence Pi, i = 1, 2, 3, 4, in the unipolar

representation is quantized to one value in {1/4, 1/2, 3/4, 1} using 2-bit quan-

tization. Assume the value encoded in the sequence X is x, it can be seen that

the values encoded in the output sequences are exactly {1/4x, 1/2x, 3/4x, x}.

The SQ sequences can be generated without using conventional SNGs. There-

fore, this method achieves higher computation accuracy and higher hardware

efficiency, compared to conventional SC designs. However, it is required that

X is a Bernoulli sequence; otherwise the computation accuracy can be signif-

icantly decreased. Nevertheless, the output sequences are no longer Bernoulli

sequences, which may influence the computations in the following stages.

In [55], a sequence generator is proposed based on analog circuits (Fig. 2.22).

This design utilizes an analog-to-stochastic converter [23] to replace the SNG

used in conventional SC circuits. A ramp-voltage signal is compared to an ana-

log signal from sensors to generate stochastic sequences. It shows the potential

of a hybrid design consisting of SC, binary and analog circuits.

26

Figure 2.22: Design of an analog-to-stochastic converter [55].

2.5 Accuracy and Hardware Efficiency of SC

NNs

Recently, SC designs have been proposed to implement multiple types of

NNs, including radial basis function NNs [46], MLPs [89] [47] [6], CNNs [66],

DBNs [91] and RNNs [112]. Note that most of these projects are concurrent

developments with our project.

2.5.1 Accuracy

Accuracies for inference in different SC NNs are reported in Table 2.1 for the

Modified National Institute of Standards and Technology (MNIST) dataset

[54]. If multiple configurations of a network are available in the technical

literature, the structure and the sequence length are selected such that they

achieve the highest inference accuracy for the MNIST dataset. The missing

information is represented by ‘–’ in the table.

Most of the SC NNs incur less than 1% degradation in the inference ac-

curacy for the MNIST dataset, compared to 32-bit FP implementations. The

SC CNNs utilize the most complex network structure and achieve the highest

inference accuracy (> 98%). The SC-DBNs and SC-MLPs produce similar

inference accuracy, between 94% and 99%, with a similar size of networks to

each other. Most of the SC NNs require no less than a 256-bit sequence length

to achieve an acceptable inference accuracy. However, the Sobol CNN [21], the

integral stochastic NN [6], and sign-magnitude SC (SM-SC) CNN [112] require

27

Table 2.1: Accuracy Comparison of SC Networks

Network Reference
Structure

Seq. length (bit)

Inference accuracy
for MNIST (%)

SC 32-bit FP

MLP
SC Btanh NN [47]

784-100-200-10
1024

97.59 97.77

SC-GDC [70]
784-128-128-10
1 (per gradient)

97.03 97.47

DBN

FPGA-DBN [91]
–

4096
94.1 94.2

Integral stochastic NN [6]
784-300-600-10

16
97.73 97.7

SC-RBM [57]
784-100-200-10

4096
97.86 98.0

FPGA-RBM [56]
784-100-200-10

1024
94.28 –

CNN

Budget-Driven
DCNN [60]

LeNet-5
256

98.00 –

HEIF [65]
LeNet-5

–
99.07 99.17

Sobol CNN [21]
LeNet-5

8
99.20 99.19

SC learning
system [87]

LeNet-5
32768

98.49 98.46

SC CNN [111]
LeNet-5

–
99.19 99.23

BISC CNN [94]
–
–

>99 >99

DPS CNN [93]
–
–

98.26 99.04

SM-SC
CNN [112]

–
32

98.9 98.9

Hybrid
SC-binary NN [55]

LeNet-5
256

99.06 99.11 (8-bit)

RNN
SM-SC

RNN [112]
–

1024
99 99

significantly shorter sequence lengths: 8 bits, 16 bits and 32 bits, respectively.

It indicates the advantages of Sobol sequences and the use of improved encod-

ing in SC NNs.

Implemented in Convolutional Architecture for Fast Feature Embedding

(Caffe), the design in [94] is evaluated on the Canadian Institute for Advanced

28

Research (CIFAR)-10 dataset [51] and attains an inference accuracy of ap-

proximately 80%. In [111], an SC-CNN is implemented based on a stochastic

ReLU function and tanh-based max pooling circuits. This network is tested

on the MNIST and CIFAR-10 datasets. For the MNIST dataset, it achieves

a similar inference accuracy as the FP design, based on the LeNet-5 struc-

ture. For the CIFAR-10 dataset, however, the inference accuracy is between

76.6% − 83.6%, or 1.0% − 7.2% lower than the FP implementation with the

same network structure. Most of the NNs in Table 2.1 do not include the SC

training components, except for the designs of [70] and [87]. These designs

achieve higher hardware efficiency in the training process.

2.5.2 Hardware efficiency

SC-MLPs

MLPs are among the earliest applications of SC NNs. In [8], based on the SC

arithmetic circuits, an SC-MLP is implemented to solve the problem of MICR

(Magnetic Ink Character Recognition) [75]. The computation is performed in

the bipolar representation so the circuits are simplified compared to the designs

in Fig. 2.13 [19]. The stochastic implementation achieves similar accuracy

compared to a deterministic FP system with a higher hardware efficiency.

An ESL based SC-MLP is introduced in [11]. This SC-MLP endures higher

noise levels compared to the binary design, showing the noise tolerance capac-

ity in SC designs.

In the SC NN in [47], the elimination of near-zero layer weights is used

to reduce the computation time. Additionally, an energy-efficient RNG [48]

is utilized to reduce the hardware cost of RNGs. Compared with a 9-bit

FxP design, the SC NN with SNGs increases energy consumption by 3.0×.

However, the SC NN without SNGs decreases the energy by 70.0%, compared

with the same FxP design. It suggests that the SNGs take a significant part of

the energy consumption of the SC circuits. Compared with a FxP design, the

SC-DNN without considering SNGs is 4.61× faster while the network including

SNGs is 1.53× slower.

29

In [6], an SC NN is implemented using integral SC designs. The FPGA

based design achieves negligible inference accuracy loss, or 2.3% higher mis-

classification error rate with 21.3% less energy and 33.9% less area compared

to an FP design.

The new integral SC (NISC)-based NN achieves 6%−64% smaller area for

different parameters in the tanh function [15]. The computation accuracy of

the activation function is similar to a conventional SC design when the input

is no larger than 0.6. Otherwise, it suffers a significantly higher accuracy loss.

In [70], the RNGs in the SC-GDC array can be shared so that only two

RNGs are used for the circuit implementing the gradient descent algorithm.

Due to the simple SC circuit and short sequence lengths, the signed SC-GDC

array consumes about 10% of the energy and 25% of the time of the 16-bit

FxP circuit and achieves about 55× of the throughput per area of the FxP

circuit.

SC-DBNs

DBNs are based on the fast greedy learning algorithm [38]. The design of

the SC-DBNs incorporates several improvements compared with SC-MLPs,

including the implementation of the reconfigurable network structure based

on the restricted Boltzmann machine (RBM) in SC.

Conventional SC adder/multipliers and an FSM-based tanh circuit are

utilized to implement an RBM based DNN in [57]. Based on this design, an

FPGA implementation classifies a standard handwritten input image about

700× faster than a software-based MATLAB implementation.

SC-CNNs

Recently, SC-CNNs have been proposed using different types of neurons in

the convolutional layers [60], including the APC- and MUX-based neurons.

By comparing the performances of these two implementations (based on the

LeNet-5 CNN), it is shown that the SC CNN using MUX-based neurons re-

quires a smaller hardware footprints but a longer sequence length, thus higher

energy consumption to achieve a similar inference accuracy, compared to the

30

APC-based counterpart. Therefore, the MUX-based design shows advantages

in area-constraint embedded systems while the APC-based design is more suit-

able for energy-constraint designs. Overall, this design achieves 33.48% higher

accuracy compared to conventional optimized designs and is 59.57% more ac-

curate than a non-optimized design.

The design is further optimized in [65]. The SC ReLU circuit (Fig. 2.10) is

utilized to implement the ReLU activation function. The hardware efficiency

of APC-based neurons is improved by replacing APCs with AxPCs (Fig. 2.7).

For the LeNet-5 network, this design achieves 99.07% in inference accuracy, a

0.1% degradation, but with 4.1×, 6.5× and 5.5× improvements in throughput,

area efficiency and energy efficiency compared to a previous design [86]. For the

AlexNet [52] implementation, the SC-CNN achieves a top-5 accuracy of 80.48%

on the ImageNet dataset [18] with significant improvement in throughput,

area, and energy, compared to other existing NN platforms [32] [14] [13].

An SC LeNet-5 network is implemented and tested on the MNIST dataset

in [21]. The Sobol sequence is utilized to improve the computation speed of SC

multipliers. This design achieves 19×−30× area reduction and energy saving,

compared to FxP designs in the convolutional layers. The design achieves

higher inference accuracy with significantly shorter computation cycles (3.1%−

12.5%) compared to the use of conventional stochastic sequences.

In another SC-CNN design [87], an XNOR-based inner product is utilized

to implement the convolutional layer. The multipliers are implemented by

XNOR gates and the adders are implemented by MUXes. The SC average

pooling circuits (Fig. 2.15 (a)) is utilized in the pooling layers and the acti-

vation function is set to tanh and is implemented by FSM circuits in CONV

layers and fully-connected layers. In [111], the SNGs are shared, so the energy

efficiency is improved by 5.3×−9.2×.

A BISC-based SC-CNN is implemented in [94]. The structure is similar to

the binary design introduced in [85]. It achieves 29 − 44% reduction in area-

delay product (ADP) compared to a FxP design. This design is also slightly

more energy-efficient (by 23− 29% for CIFAR-10 and 10% for MNIST).

An SC-CNN is implemented based on the improved SC encoding method

31

(Fig. 2.19) and BISC multipliers (Fig 2.20) in [94]. The down counters are

shared among different multipliers to achieve higher hardware efficiency with-

out accuracy degradation. With a similar structure to the binary design in-

troduced in [85], the proposed SC-CNN achieves 29 − 44% reduction in ADP

and higher energy efficiency (by 23−29% for CIFAR-10 and 10% for MNIST),

compared to an FxP design. In [93], the complexity of the network structure

is further increased to implement the AlexNet and GoogLeNet. The sequence

lengths (or precisions) are set differently depending on applications to achieve

high performances in ADPs. Overall, the SC-CNN achieves 34%−46% reduc-

tion in ADP, or 52%− 85% increase in operations-per-area with less than 1%

accuracy loss, compared to FP designs.

The SM-SC is introduced to improve the efficiency of the SC NN designs

[112]. An SC multiply-accumulate (SC-MAC) unit is proposed as the basic

computation circuit of the SC-CNN and LSTM. This design achieves 10×

improvement in accuracy in the MAC computation, and 32× improvement in

inference accuracy for the MNIST dataset, compared to conventional SC NNs.

The stochastic-binary neural network (SB-NN) proposed in [55] is based

on the LeNet-5 topology. The TFF-based adder (Fig. 2.6 (c)) is introduced to

improve computation accuracy as well as ignoring the auto-correlation in the

input sequences. The analog input data is converted into stochastic sequences

by the analog-to-stochastic converter (Fig. 2.22). The first CONV layer is

implemented by SC while other layers are implemented by binary designs,

forming an analog-SC-binary hybrid structure. In the simulations, the binary

part of the NN is retrained to compensate for the precision losses caused by

the SC circuits. As a result, the NN achieves a high inference accuracy, with

1.04% and 0.94% misclassification rates for 4-bit and 8-bit precisions. The area

of this design is similar to the binary design at 8-bit precision but is 2× larger

than the binary design at 4-bit precision. However, the energy consumption

of this SC NN is 81% and 10.2% of that of the 8-bit and 4-bit binary designs

due to the lower power consumption.

In [59], several types of NNs are implemented, including MLPs, DBNs, and

CNNs. The proposed SC-MLP achieves 50× area reduction and about 45×
32

power reduction compared to a binary design. These figures of merits are 31×

and 30× for the SC-CNN. However, with a 128-bit length, the design requires

higher energy than conventional binary implementations.

SC-RNNs

Recently, an SC LSTM-RNN is implemented in [112]. For the MNIST dataset,

this network achieves the same inference accuracy using 32-bit sequences (with

no parallelization) as the conventional SC design with 1024-bit sequences, thus

achieving 32× improvement in efficiency.

33

Chapter 3

A Stochastic Computing
Multi-layer Perceptron

A multi-layer perceptron (MLP) is a type of neural network (NN) in which

neurons are interconnected in several layers. It can solve problems such as

the approximation (or fitting) of functions and the classification of nonlinearly

separable patterns. Compared to a traditional software implementation, the

hardware implementation of an NN offers the advantages of an inherently high

degree of parallelization and faster training speed. Unfortunately, complex

hardware is likely required in an MLP system because thousands of neurons

are typically involved in solving problems such as classification [35] [103] [36].

In contrast to a conventional binary circuit design, a SC circuit requires a

low hardware complexity with a high fault tolerance to computation and soft

errors [88]. Such features make it feasible to implement a robust MLP at a

lower hardware cost.

Stochastic computing (SC) circuits have been used to implement the for-

ward propagation in deep neural networks for character recognition [47] [86]

[91]. However, the weights at different layers of the neural networks are pre-

determined and cannot be updated during the computation process. In this

chapter, a SC-MLP is proposed to overcome the above limitations. The pro-

posed design utilizes an SC activation unit (SCAU) based on accumulate par-

allel counters (APCs) and finite state machines (FSMs). Albeit using extended

stochastic logic (ESL), a hybrid SC network structure is introduced for an ef-

ficient implementation. To further reduce energy consumption, the designs of

34

a probability estimator (PE) and a stochastic divider are proposed using a

triple modular redundancy (TMR) and a binary search based algorithm with

progressive precision. This chapter makes the following contributions:

• A hybrid SC network structure: In this hybrid SC-MLP structure, ESL is

employed in the computation of the neurons within the input layer during

the forward propagation phase, as well as in the gradient computation

and layer weight updating during the backward propagation phase. The

other computations are implemented by using conventional SC to reduce

area and energy consumption without sacrificing classification accuracy.

• Reconfigurable activation functions: The SCAU can be reconfigured to

implement different types of activation functions such as the tanh and

the rectifier function. The adders and subtractors in the SCAU can be

replaced with shift registers and comparators to further reduce circuit

area and energy consumption.

• TMR-based probability estimator and divider: By utilizing a TMR vot-

ing structure in the PE and divider, the error due to stochastic fluctu-

ations in the binary search process is significantly reduced. Therefore,

the latency and energy consumption are also reduced. To the best of our

knowledge as well as our co-authors in [72], this is the first application

of TMR and a binary search algorithm in a stochastic circuit design.

• Efficient utilization of progressive precision in SC: The operation of the

perceptron is divided into a computation phase and a stabilized phase.

The initial part of the stochastic sequences that carry inaccurate statis-

tics during the computation phase is ignored, and only the latter part of

the sequences that carry more accurate statistics is used in the stabilized

phase. Therefore, the accuracy of the proposed design is significantly im-

proved with a higher energy efficiency.

• Implementation of the backward propagation algorithm: A backward

propagation module is designed to implement the learning algorithm in

35

the perceptron made of hybrid SC circuits using ESL and conventional

SC.

The proposed design is evaluated on the Modified National Institute of

Standards and Technology (MNIST) [54] and the Street View House Num-

bers (SVHN) [78] datasets. It achieves similar accuracy with lower area and

energy consumption compared to conventional floating point (FP) and fixed

point (FxP) implementations. These results show that the proposed design is

advantageous for implementations of machine learning algorithms in resource-

limited systems such as mobile and embedded systems.

The remainder of this chapter is organized as follows. Section 3.1 introduces

the proposed design. Section 3.2 shows the applications and simulation results.

Section 3.3 gives the conclusion. This part of work has been published in [72].

3.1 SC-MLP Design

3.1.1 Overall design

The proposed design of the SC-MLP circuit consists of five components: the

data RAM, the forward propagation component, the backward propagation

component, the layer weight register and the output register (Fig. 3.1).

xData RAM

tData RAM

Forward propagation component

Layer weight
reg

Y O

Output reg

Backward propagation component

Figure 3.1: The SC-MLP network. The xData RAM stores the input data,
the tData RAM stores the class labels, the layer weight reg stores the weights
and the output reg stores the classification results generated by the forward
propagation component.

36

The xData and tData RAMs store the input dataset and the class labels,

respectively. The forward propagation component generates output signals

based on the current datasets and layer weights in the training and inference

processes. The backward propagation component generates the error signals

by comparing the output signals with the desired class labels, then it adjusts

the layer weights in the training process. The layer weight register stores

the updated values of the layer weights and loads the values into the forward

and backward propagation components in the next epoch. The classification

results are stored in the output register for accuracy evaluation.

3.1.2 Training algorithm

The pseudo code of the SC-MLP training process is listed as follows.

Code 1: Training of an SC-MLP. φ(·) is the SC activation function, η

is the learning rate and L is the number of layers. The function ToESL(·)

specifies how to generate ESL sequences based on binary or conventional SC

sequences. ToConv(·) specifies how to generate the conventional SC sequences.

clamp(k, a, b) specifies how to restrict the parameter k into the given range

[a, b]. Grad(·) specifies how to compute the gradient and Update(·) specifies

how to update the layer weights. ToBinary(·) specifies how to convert ESL

sequences into conventional SC sequences then binary values.

Inputs: the input data a and the label d, the layer weight W t at epoch t

and the learning rate η.

Outputs: updated weights W t+1 at epoch t+ 1.

{1. Forward propagation}

for i = 1 to L

if i == 1

vi = ToConv(sum(ToESL(a) · ToESL(W t
i)));

yi = φ(vi);

else

yi = φ(sum(yi−1 · ToConv(W t
i)));

37

end for

{2. Backward propagation}

{2.1 Compute gradient}

for i = L downto 1

ysi = ToESL(yi);

vsi = ToESL(vi);

if i == L

gi = Grad(ToESL(d), ysi ,
∂φ
∂vsi

);

else

gi = Grad(gi+1, T oESL(W t
i+1),

∂φ
∂vsi

);

end for

{2.2 Update the layer weights}

for i = L downto 1

W t+1
i = Update(ToESL(W t

i), gi, ysi−1, η);

W t+1
i = clamp(ToBinary(W t+1

i), −1, 1);

end for

During the forward propagation, as the range of input data is not limited in

[−1,+1] after the batch normalization, the input data and the layer weights

are converted into ESL sequences to compute the sum-of-products in (2.6).

Then the results are converted to conventional SC sequences and sent to the

activation circuit. Because the output signals are restricted to the interval

[−1,+1] by tanh or [0,+1] by the clamped rectified linear unit (ReLU), con-

ventional SC sequences are used in the other layers. The batch normalization

is only used for the input dataset, because the outputs of the activation func-

tions can be shifted out of the conventional SC range due to small variances,

causing a loss of accuracy in the next step of the computation.

During the backward propagation, the SC-MLP uses ESL sequences to

ensure that the gradients are not limited by the range. The layer weights are

updated by the ESL sequences to increase accuracy. Once updated, the layer

weights are first converted into conventional SC sequences and then into binary

38

values. By this conversion, the layer weights are brought back to the interval

[−1,+1] in the bipolar representation and at the same time, a weight noise is

introduced into the network. It has been shown that by adding noise into the

weights of a network, overfitting could be reduced for improving accuracy [28].

No additional circuit is required for injecting noise into the network in this

way.

Only forward propagation is performed in inference. The backward prop-

agation component is disabled and the forward propagation component uses

the unaltered layer weights to compute the classification results.

3.1.3 Forward propagation component

In the forward propagation component, the neurons in the input layer use ESL

while the neurons in the other layers use conventional SC. The block diagrams

of the two types of neurons are shown in Fig. 3.2 and Fig. 3.3.

Stochastic computational activation unit (SCAU)

The proposed SCAU is based on the linear finite-state machine (LFSM) in-

troduced in [62] [4] [106]. The SCAU can approximate both tanh and the

clamped ReLU by changing the configuration of the FSM to meet different

learning requirements.

Figure 3.2: The ESL based neuron j in layer l in the forward propagation.
yl−1i is the input signal with dimension m, wlji is the layer weight as in (2.6).
ESL mul represents the ESL multiplier.

39

Figure 3.3: The conventional SC-based neuron. The circuit consists of an SC
multiplier array (XNOR gates), an APC and an up/down counter implement-
ing the FSM.

A design of the stochastic tanh (Stanh) function generator has been intro-

duced in [7] [106] [77]. The SC absolute function has been introduced in [62].

In [6] [47], a bounded random walking based tanh (Btanh) circuit has been

proposed as an improvement of the conventional Stanh circuit. The Btanh

circuit consists of an APC and a counter to implement the FSM for parallel

input sequences. Based on these designs, an SCAU is proposed to implement

different types of activations functions. The pseudo code for implementing the

clamped ReLU and the tanh function in SCAU is shown as following.

Code 2: Computation process of the SCAU. not(·) indicates the inverse

operation. SeqGen(p) indicates how to generate a stochastic sequence based on

the given probability p. clamp(k, a, b) specifies how to restrict the parameter

k into the given range [a, b].

Inputs: the sequence length m, the dimension of the input signals n, the

ith computation result of the APC Pc(i) and the state number of the FSM in

the SCAU Smax (Smax = 2, 4, 6...).

Outputs: updated state of FSM S and output sequence Y .

{1. State initialization}

Shalf = Smax/2;

S = Shalf ;

{2. State transition and output sequence generation}

40

for i = 1 to m

∆S = sign(2× Pc(i)− n);

S = clamp(S + ∆S, 1, Smax);

if implement the clamped ReLU function

if S ≥ Shalf

Y (i) = not(mod(S, 2));

else

Y (i) = SeqGen(0.5);

else if implement the tanh function

if S ≥ Shalf

Y (i) = 1;

else

Y (i) = 0;

end for

The proposed SCAU takes the input signals in parallel by using an APC

and an up/down counter. Without changing the structure of the circuit, the

SCAU can implement the clamped ReLU or the tanh function by reconfiguring

the output of the FSM. In the SCAU, SeqGen(·) is used to generate a sequence

for encoding the value as the lower bound of the clamped ReLU function. In

the simulation, the probability encoded in this sequence is set to 0.5, which

restricts the output to lie within [0, 1] in the bipolar representation.

In the SCAU, the SC multipliers compute the products of the input data

and the layer weights. The APC then counts the number of 1’s in the stochastic

sequences generated by the SC multipliers in parallel. In this way, the APC

converts the stochastic sequences into binary values, such that the SCAU

correctly obtains the computation results even if the sum-of-product exceeds

the range of [−1, +1] in (2.6). The simulation results are shown in Fig. 3.4.

In the SCAU, the current state S is determined by the sign function. The

mod function in the algorithm is implemented by checking the least significant

bit of S (Code 2). Therefore, all computations in the SCAU are implemented

41

(a) (b)

Figure 3.4: Simulation result of the SCAU, with the sequence length set to 1024
bits and the maximum state number Smax set to 64. (a) The tanh function;
(b) The clamped ReLU function.

by shifts and comparators without using adders or multipliers.

Binary search based PE

The conversion between binary numbers and stochastic sequences significantly

affects the accuracy and performance of an SC design. The conversion is usu-

ally done by a conventional PE (Fig. 2.3 (b)); however, the simulation results

show that a conventional design requires a rather long sequence to overcome

the accuracy loss when the probability of the input sequence is substantially

different from that encoded in the initial value of the counter, as presented

later in this section. This is mainly due to the fact that a conventional PE is

based on a linear search algorithm.

To accelerate the processing speed of a PE circuit, a binary search algo-

rithm is utilized to reduce the computational complexity from O(2N) in a

linear search algorithm to O(N) for a binary value of N bits. The design of

the new PE is shown in Fig. 3.5. The circuit is divided into two parts.

Part A consists of a base register, an increment value register and one

adder/subtractor module. It is designed to update and save the variable val-

ues in the binary search algorithm. The base value stored in the base register

represents the currently estimated probability of the input stochastic sequence,

while the increment value represents the difference between the currently es-

timated probability and the updated probability value.

Part B consists of three modules of DPCs, counters, comparators and a

voter in a TMR structure. Its function is to compare the currently estimated

42

Figure 3.5: Design of the TMR binary search based PE. Three counters
are used to compute the probabilities encoded in the stochastic sequences
generated by the three DPCs, i.e., DPC A, DPC B and DPC C; COMP A,
COMP B and COMP C are comparators.

probability and the observed probability of the input sequence and then decide

whether to increase or decrease the base value in Part A of the circuit.

For an N bit binary number, the initial base value is 2N−1 and the initial

increment is 2N−2. At the beginning of each binary search, the base value is

set for the DPCs (i.e. DPC A, DPC B and DPC C) and is converted into

three different stochastic sequences with the same probability. The probabil-

ity of the three stochastic sequences (as the currently estimated probability)

and the probability of the input sequence X are compared by the comparators

COMP A, COMP B and COMP C. Since the stochastic sequences are inde-

pendently generated, the TMR structure reduces fluctuation errors and im-

proves the decision accuracy, thereby reducing the required sequence length.

After comparison, the three comparators vote either to increase the base value

if the currently estimated probability is smaller than the observed probability,

or to decrease the base value if the currently estimated probability is larger

than the observed probability of the input sequence. If the two probabilities

are equal, then the base value remains unchanged. Finally, the increment value

is decreased by a factor of two, until it reaches 1.

The required sequence lengths for reaching the same computation accuracy

are compared for the proposed PE, the conventional PE and the flip-flop-

43

based PE. The simulation results are shown in Fig. 3.6 for 20-bits PEs. The

estimation stops when the error between the PE output and the expected

probability falls below 1 percent (the initial values of the conventional PE and

the proposed PE are set to 0.5). It can be seen that the required sequence

length for the conventional PE ranges from 400000 bits when the probability

is set to 0.5 (for the initial value of the counter in Fig. 2.3 (b)), to 7200000 bits

when the probability of the input sequence is set to 1.0 and 5300100 bits when

the probability is set to 0.1. These results indicate that the conventional PE

design requires relatively long sequences when the probability is substantially

different from the initial value encoded in the counter. As for the flip-flop based

PE, it requires Nsto cycles to convert the probability; therefore the sequence

length remains unchanged at 220 = 1048576 bits regardless of the probability

of the input sequences.

In contrast, the sequence length required by the proposed PE is stable

when the probability of the input sequences changes from 0.1 to 1.0, with

the smallest value of 91100 bits and the largest value of 108104 bits. The

average sequence length required by a conventional PE is 3958900 bits, while

Figure 3.6: Comparison of required sequence length for different PE designs
vs. probability values ranging from 0.01 to 1.00.

44

the average sequence length required by the proposed PE is 96939 bits. Thus,

the newly designed PE only requires 2.45 percent of the sequence length of a

conventional PE and 9.24 percent of that of the flip-flop based PE.

Binary search based stochastic divider

A divider is required to convert the ESL sequences into conventional stochastic

sequences as inputs to the activation circuit. Since a conventional stochastic

divider relies on similar principles as the PE, the TMR and binary search

based method is also applicable to the divider design, as shown in Fig. 3.7.

For an N -bit binary number, the initial base values of the counters are 2N−1

and the initial increments are 2N−2. The binary search continues with the

increment decreasing by a factor of 2 until reaching 1. The operation of the

stochastic divider is divided into two phases: a computation phase and a sta-

bilized phase. The divider is initialized at the beginning of the computation

phase and progressive precision is obtained during the computation. To evalu-

ate the progressive precision, the mean squared error (MSE) is independently

computed for each increment of 128 bits in the stochastic sequences. The

simulation results of different divider implementations are shown in Fig. 3.8

(a).

Compared to the stepped velocity divider, the proposed design has a faster

convergence speed and a higher accuracy. It shows that the TMR structure in

the proposed design effectively reduces fluctuation errors and improves the de-

cision accuracy of the binary search process. On average the proposed design

requires 2.1 percent of the sequence length for the conventional SC divider to

Figure 3.7: Design of the TMR and binary search based divider.

45

achieve the same accuracy. Hence, the proposed binary search based stochastic

divider incurs a significantly lower latency to reach a stabilized MSE. More-

over, it also achieves a higher accuracy during the stabilized phase. Since

the output value of the divider converges to the true quotient, the values in

the counters (in Fig. 3.7) change rather rapidly with a decreasing MSE dur-

ing the computation phase. The stabilized phase starts upon the convergence

of the divider’s output. Due to the convergence, the counter values remain

unchanged with a stable MSE during the stabilized phase.

Table 3.1 reports the MSEs at different phases for the three considered im-

plementations. Only the sequences used for the stabilized phase are considered

in the MSE computation. The proposed divider has the lowest MSE among

(a)

4096 bits

2048 bits 2048 bits

Computation phase Stabilized phase
41014.00MSE 410844.MSE

(b)

Figure 3.8: (a) Convergence of the TMR and binary search based divider,
conventional divider and the stepped velocity divider. The arrows indicate
the 2048-2048 phase configuration of the TMR and binary search divider. (b)
MSE comparison of the computation and stabilized phase with the 2048-2048
phase configuration.

46

the three designs at each phase configuration. The simulation results sug-

gest that the proposed divider requires at least 2048 bits for the computation

phase because an insufficient sequence length in the computation phase leads

to accuracy loss during the stabilized phase. Hence, the MSE of SC dividers

in the stabilized phase with the 1024-2048 phase configuration is higher than

the 2048-1024 phase configuration even though the total lengths of the two

sequences are the same. A longer sequence length in the stabilized phase does

not guarantee a higher accuracy due to the fluctuation errors in SC. The MSE

of the proposed divider reaches the smallest value when the sequence length

is set to 2560 bits, i.e. 2048 bits in the computation phase and 512 bits in the

stabilized phase.

Table 3.1: MSE of Stochastic Dividers in the Stabilized Phase

Computation
phase (bits)

Stabilized
phase
(bits)

Binary
Search

(×10−4)

Stepped
Velocity
(×10−4)

Conventional
(×10−4)

512 512 5.06 36.86 1755.74
1024 1024 5.22 18.37 1024.25
1024 2048 5.27 16.91 827.54
2048 512 4.09 11.59 517.84
2048 1024 4.62 13.52 534.82
2048 2048 4.84 14.51 476.84
4096 1024 4.18 12.87 269.16

Considering the classification accuracy, however, the 2048-2048 and 4096-

4096 (without parallelization) are chosen as the phase configuration for the

MNIST and SVHN. The MSE of the stepped velocity design is approximately

3× of that of the proposed design at the same phase configuration. A con-

ventional stochastic divider does not attain the same MSE value even when

utilizing 5× of the same sequence length.

The 2048-2048 phase configuration is shown in Fig. 3.8 (b). With this con-

figuration, 2048 bits are required in the computation phase and an additional

2048 bits are utilized in the stabilized phase. The MSE of the computation

phase is 289.3 percent of that of the stabilized phase. Hence, to improve ac-

curacy and energy efficiency, the sequences of 2048 bits in the computation

47

phase are ignored and only the additional 2048 bits in the stabilized phase are

used as the input signals to the activation circuit. To this end, the function

of the activation circuit is suspended during the computation phase and then

activated at the start of the stabilized phase. Therefore, the sequence length

of the ESL divider is 4096 bits in total, but the sequence length used for the

activation function is only 50 percent of it, i.e., 2048 bits, thereby improving

the accuracy of the SC-MLP.

In summary, with the proposed binary search algorithm, the newly designed

divider achieves a higher accuracy by utilizing a progressive precision with a

lower latency than the other stochastic designs in the literature.

3.1.4 Backward propagation component

In the backward propagation component, the circuit to compute the deriva-

tive of the activation functions, as in (2.9), and two different neurons for the

gradient calculation are implemented by ESL. As per (2.9), when the tanh

function is set as the activation function, we have

φ′(vlj(n)) = 2(1− tanh2(2 · vlj(n))),

= 2(1 + ylj(n))(1− ylj(n)).
(3.1)

It shows that the derivative of tanh can be implemented by one ESL sub-

tractor, one ESL adder and two ESL multipliers. In comparison, the derivative

of the clamped ReLU function yields 0 or 1 for the current input values.

According to (2.9), there are two different backward propagation neurons,

including neurons at output layers and neurons at hidden layers. The former

implements the function (dj(n)− olj)φ′(vlj(n)), while the latter implements the

function φ′(vlj(n))
∑

i δ
l+1
i wl+1

ij (n). Both neurons can be implemented by using

ESL subtractors, adders, multipliers and the derivative of activation functions.

The designs of the two types of neurons are shown in Fig. 3.9. The signals in

the designs are ESL sequences.

3.1.5 LFSR sharing structure

A structure using shared LFSRs is utilized to further reduce the circuit area

and power consumption. Within a neuron in the input layer, the sequences

48

(a)

(b)

Figure 3.9: The backward propagation circuits for (a) a neuron at the output
layer and (b) a neuron at a hidden layer. The signals follow the same definitions
in (2.7) (2.8) (2.9) using ESL.

for each ESL dividend and divisor are generated from different LFSRs in the

sequence generator. For the neurons in the input and hidden layers, input

sequences for each stochastic multiplier are generated from different LFSRs,

and so the computational accuracy is not compromised.

To reduce the hardware overhead, however, the LFSRs in the DPCs for

49

the input signals and the layer weights are all shared among different neurons

in the same layer. The design using shared LFSRs is also implemented in the

forward propagation circuit.

Because multipliers are one of the major components in the SC-MLP, the

effect of sharing LFSRs is estimated by considering the multiplier. The area

of a 32-bit floating-point multiplier (FPmul) is 2791 µm2, synthesized by the

Synopsys Design Compiler in an industrial 28-nm technology library. The area

of a conventional SC bipolar multiplier (SCmul), essentially an XNOR gate,

is 0.8 µm2 and the area of a 16-bit LFSR is 47 µm2. Assume that the FPmul

is combinational and the energy of the circuit linearly increases with the area,

the energy consumption of the FPmul is approximately proportional to 2791.

Assume that the sequence length for the SCmul is initially 4096 bits, it

is then decreased by 50 percent due to the use of progressive precision in the

divider design. Since each SCmul requires 2 LFSRs for generating the input

stochastic sequences, the energy consumption of the SCmul without sharing

the LFSRs is estimated to be proportional to

(0.8 + 2× 47)× (4096 cycles× 50%) = 1.94× 105, (3.2)

which is 69.6× of the energy consumption of the FPmul. In the LFSR sharing

structure, an LFSR is shared among all the neurons in the same layer. For a

5-layer network with the structure of 704-2048-2048-2048-10, the sharing ratio

is

r = (704 + 2048× 3 + 10)/5 = 1.37× 103. (3.3)

The energy consumption is estimated to be proportional to

(0.8 + 2× 47/r)× (4096 cycles× 50%) = 1778.8, (3.4)

which is only 63.7 percent of the energy consumption of the FPmul.

This analysis indicates that when the size of the network is large, the energy

consumption of the LFSR is negligible because of a large sharing ratio. This

resource sharing scheme reduces considerable area and power consumption of a

stochastic circuit without significantly affecting the accuracy of the computed

result.

50

3.2 Experiments

Two datasets, MNIST [54] and SVHN [78], are used to compare the perfor-

mance of the SC-MLP, a binarized neural network (BNN), and FxP and FP

MLPs with respect to accuracy, area and energy consumption.

MNIST consists of a training set with 60K samples and a testing set with

10K samples of 28 × 28 grayscale handwritten images labeled as ‘0’ to ‘9’.

In our experiment, the pixel values are scaled to [0, 1]. The neural network

structure for MNIST is set to 784-200-100-10, i.e. one input layer with 784

neurons, two hidden layers with 200 and 100 neurons and one output layer

with 10 neurons.

SVHN is a real-world image dataset consisting of 604K training samples

and 26K testing samples of 32×32 RGB images. The dataset contains pictures

of house numbers (from ‘0’ to ‘9’) from Google Street View images. In the

experiment, the dataset is first processed by edge detection and then converted

into grayscale images. Five pixels are removed from the left and right sides of

each image to reduce the distraction, so the size of the images is changed to

32 × 22. The pixel values of the images are also scaled to [0, 1]. The neural

network for SVHN is set to 704-2048-2048-2048-10 for all MLP models.

The modules of the SC-MLPs are implemented in both MATLAB and

VHSIC Hardware Description Language (VHDL). The results are compared

to ensure that both implementations generate the same or very similar results.

To speed up the simulation, the parallelization of the SC-MLP is set to 16×

with the sequence length varying from 32 to 2048 bits. A BNN, a FxP and a

FP network is implemented and compared to the proposed design with respect

to different metrics such as accuracy, area and energy consumption. The bit

width of the accurate layer weights in the BNN and the FxP MLP is set to 8

and the bit width of the FP implementation is 32.

3.2.1 Accuracy comparison

In each experiment, the neural network is trained by a 10-fold validation on

the training datasets. The last fold of the training data is used to compute the

51

validation error to check the early stopping condition if the current validation

error is at least 3.0 percent higher than the minimum validation error in history.

At the beginning of each experiment, the datasets are randomly divided into

10 folds and the layer weights are randomly initialized. Each experiment is

repeated for 10 times. The learning curve of the SC-MLP application on

MNIST is shown in Fig. 3.10, with a 16× parallelization and the sequence

length set to 256 bits. The accuracy of the SC-MLP is given by the average

of the testing accuracy at epoch 200 unless an early stop occurs. No early

stopping has been reported with a learning rate initialized to 0.01.

Fig. 3.11 shows the average testing error rates of the SC-MLP (with tanh

as the activation function) for different sequence lengths with a 16× paral-

lelization. The classification accuracy of MNIST improves rapidly from 73.54

to 97.95 percent when the sequence length increases from 32 bits to 256 bits

(before parallelization). However, it is not efficient to further improve the

accuracy by simply using longer sequences. The increase from 0.02 to 0.12

percent in accuracy by doubling the sequence length from 256 bits is in fact

rather modest. A similar pattern is also found for the classification accuracy

of SVHN, with a sequence length varying from 32 bits to 512 bits. Therefore,

256 bits for MNIST and 512 bits for SVHN are selected for comparison with

the other models. The comparison results for accuracy are listed in Table 3.2.

The SC-MLP with the batch normalization only for the input dataset is de-

Figure 3.10: Learning curve of the SC-MLP application on MNIST, with a
16× parallelization and the sequence length set to 256 bits.

52

Figure 3.11: Inference error rate of the SC-MLP (with tanh as the activation
function) with sequence length changing from 32 bits to 2048 bits.

noted as SC-MLP-A while the implementation with the batch normalization

for all layers is denoted as SC-MLP-B.

Table 3.2: Accuracy of Network Models

Model MNIST SVHN
SC-MLP-A (tanh) 97.95% 96.13%

SC-MLP-A (clamped ReLU) 97.92% 95.86%
SC-MLP-B (tanh) 93.67% 91.38%

SC-MLP-B (clamped ReLU) 93.32% 91.10%
BNN 97.55% 95.62%

FxP NN 98.10% 96.46%
FP NN 99.27% 97.47%

Integral stochastic NN [6] 97.73% -
SC Btanh NN [47] 97.59% -

As per the simulation results, the SC-MLP-A achieves a higher accuracy on

average compared to the BNN implementation and previous SC results. For

MNIST, the accuracy of the SC-MLP-A is lower than the FP implementation

by 1.32 percent and the FxP implementation by approximately 0.15 percent.

This difference is 1.34 and 0.33 percent for SVHN. There is no significant

difference between using tanh or the clamped ReLU as the activation function

in the SC-MLP. The tanh function achieves a slightly higher accuracy on

average, 0.03 percent higher for MNIST and 0.27 percent higher for SVHN.

53

The accuracy of the SC-MLP-A is 4.28-4.75 percent higher than the SC-

MLP-B. This occurs because in the SC-MLP-B, the outputs of the activation

functions are shifted out of the conventional SC range by the batch normaliza-

tion, which causes an inaccuracy in the computation of the SC-MLP. There-

fore, the batch normalization is eliminated in the hidden layers of the SC-MLP

to reduce this accuracy loss.

3.2.2 Hardware efficiency

The application-specific integrated circuit (ASIC) implementations for the dif-

ferent models are assessed with respect to area and energy consumption. The

models are implemented in VHDL and synthesized by the Synopsys Design

Compiler in ST’s 28-nm technology library. The results are shown in Fig. 3.12.

The synthesis results indicate that the SC-MLP requires the lowest area

and energy consumption for processing each data sample among the different

models. The area of the SC-MLP is from 80.7-87.1 percent of the BNN, from

40.7-45.5 percent of the FxP implementation and from 28.5-30.1 percent of

the FP implementation. The energy of the SC-MLP is from 71.9-93.1 percent

of the BNN, from 38.0-51.0 percent of the FxP implementation and from 18.9-

23.9 percent of the FP implementation.

As discussed, the batch normalization is eliminated in the hidden layers

in the SC-MLP. However, in the BNN, the batch normalization is included

and the layer weights are updated and then stored with full precision (8 bits)

at the end of the backward propagation. Therefore, the SC-MLP achieves a

slightly lower area and energy consumption compared to the BNN.

It is interesting to note that the area and energy consumption of the SC-

MLP for SVHN is even slightly lower than those of the FP implementation for

MNIST. As SVHN is a more complex dataset than MNIST, it indicates that

with similar hardware resources, the SC-MLP can potentially handle more

difficult classification problems than a FP implementation with appropriate

data pre-processing.

Table 3.3 shows the latency of the designs for the applications. For the

MNIST application, the sequence length of the SC-MLP for processing each

54

data sample is set to 256 bits after applying a 16× parallelization. By contrast,

the FxP and FP implementations require 262 and 392 clock cycles for process-

ing each sample. The latency of the SC-MLP for processing each sample is

2.27 µs when operating at the maximum frequency. It is 104.8 percent of that

of the FxP design (2.17 µs) and 66.6 percent of that of the FP design (3.42 µs).

For the SVHN application, the sequence length of the SC-MLP is set to 512

bits. The latency of the SC-MLP is 135.2 percent of that of the FxP imple-

mentation and 84.5 percent of that of the FP implementation. Although the

computation speed is in general a challenge for SC [34], the proposed design

shows no significant disadvantage in performance compared to binary designs.

(a)

(b)

Figure 3.12: (a) Area and (b) energy consumption of different network appli-
cations on MNIST and SVHN. The sequence length of SC-MLP is set to 256
bits for MNIST and 512 bits for SVHN; the bit-width of the BNN and FxP
network is set to 8; the bit-width of the FP implementation is set to 32.

55

Table 3.3: Latency of Alternative Network Designs

Network
Frequency

(MHz)
Cycle

(/sample)
Latency

(µs/sample)

MNIST
SC-MLP 112.4 256 2.27

FxP 120.5 262 2.17
FP 114.7 392 3.42

SVHN
SC-MLP 104.4 512 4.90

FxP 112.3 407 3.62
FP 108.7 630 5.80

3.3 Conclusion

In this chapter, an SC neural network is proposed as a novel design of an MLP.

A binary search based SC divider and a reconfigurable SCAU are proposed for

the forward and backward propagation components. Using a hybrid network

structure consisting of conventional SC and ESL circuits, the SC-MLP circuit

efficiently performs the complete backward propagation algorithm.

Compared to a fully-implemented ESL network, the hybrid network struc-

ture reduces the circuit area and energy consumption without loss in the

classification accuracy. An LFSR sharing scheme is utilized to improve the

energy efficiency of the stochastic circuit. By using the binary search based

PEs and dividers, the SC-MLP requires significantly shorter sequences than

conventional SC designs by achieving a progressive precision. The SCAU is

reconfigurable to perform different activation functions. It can process input

sequences in parallel, thus improving the flexibility and performance of the

design.

The simulation results show that the SC-MLP can solve classification prob-

lems by adjusting the network structure, implementing different activation

functions and modifying the layer weights. With a similar accuracy, the pro-

posed design achieves lower area and energy consumption compared to a BNN.

By incurring a slight decrease in accuracy, the SC-MLP offers considerable ad-

vantages in circuit area and energy consumption compared to FP and FxP

implementations with a similar performance.

56

Chapter 4

A Stochastic Computing Deep
Belief Network

As a type of deep neural network (DNN), a deep belief network (DBN) substan-

tially improves upon the performance of conventional artificial neural networks

(ANNs) such as an MLP [38]. A DBN can perform unsupervised learning and

solve nonlinearly separable pattern recognition problems such as the classi-

fication of objects [99], speech [17] and handwritten characters [16]. In the

training process of DBNs, the fast greedy learning algorithm is used to at-

tain a faster computation than the commonly-used gradient descent algorithm

and a higher network depth can be achieved in DBNs than in conventional

MLPs. The DBN can also process unlabeled samples in a dataset. However,

the size of a DBN and the number of parameters increase rapidly with the

complexity of a problem. A DBN requires a large memory for the weights due

to its low weight sharing rate. Therefore, it results in a lower performance for

image classification than deep convolutional neural networks (DCNNs) [45].

Recently, the depth of DBNs has been exceeded by long short-term memory

recurrent neural networks (LSTM-RNNs) which show significant advantages in

time-related problems, such as speech recognition and prediction [39]. Never-

theless, a DBN is useful due to its unsupervised learning ability. The relatively

easy-to-implement structure also makes it suitable as a platform to evaluate

the performance of new design techniques such as approximate computing

and stochastic computing (SC). On the other hand, an implementation of

large DBNs requires much hardware and a high energy consumption. Hence,

57

it is difficult to implement a machine learning algorithm using a DBN on a

resource-limited system such as a mobile device or an embedded system. It has

thus become imperative to develop efficient hardware design for implementing

a DBN at a small circuit area and low power consumption.

The recent resurgence of SC provides such an opportunity [88] [1]. How-

ever, the neural networks proposed in the literature are pre-trained to perform

the nonlinear classification in hardware. As a result, these networks are not

applicable to problems that require real-time or online learning.

In spite of the simple SC circuits, stochastic number generators (SNGs),

consisting of random number generators (RNGs) and comparators, incur rel-

atively large area and high power consumption [47] [6], thus reducing the

energy efficiency of an SC design. Moreover, because different types of activa-

tion functions are needed for various requirements in the training process, the

performance of SC-based DNNs is limited as it is difficult to reconfigure the

activation function without re-implementing the design.

In this chapter, an SC-DBN is proposed to overcome the above limitations.

An approximate SC activation unit (A-SCAU) is proposed to implement dif-

ferent types of activation functions such as the sigmoid, the rectified linear

unit (ReLU) and the pure line functions. In the SC-DBN, the use of RNGs is

shared among all neurons in the same layer. Therefore, the circuit area and

energy consumption are significantly reduced. The Modified National Insti-

tute of Standards and Technology (MNIST) dataset is used for the evaluation

of the proposed design. The SC-DBN is also presented with online learning

capacity. It makes the following novel contributions:

• A reconfigurable structure of the SC-DBN is proposed to implement the

fast greedy learning algorithm. The layer weights are adaptively updated

according to the learning samples, thus it is capable of performing real-

time online learning.

• The adaptive moment estimation (ADAM) algorithm is implemented in

SC circuits. The energy consumption and latency of the training process

are reduced by 74.8% and 65.2% compared to the SC-DBN without the

58

ADAM circuit.

• For both pre-trained and online learning implementations, the SC-DBN

achieves a smaller area, lower power and energy consumption with a sim-

ilar accuracy and computation speed compared to conventional pipelined

floating point (FP) and fixed-point (FxP) implementations.

The remainder of this chapter is organized as follows. Section 4.1 introduces

the background for the learning algorithms used in a DBN. Section 4.2 presents

the proposed design. Section 4.3 shows the application and simulation results.

Section 4.4 concludes the chapter. The work in this chapter has been published

in [73].

4.1 Review

4.1.1 The structure of DBNs

A DBN consists of one input layer, multiple hidden layers and one output

layer (Fig. 4.1). One of the most widely-used learning algorithms for a DBN is

the fast greedy learning algorithm [38]. In this algorithm, the training process

is divided into unsupervised and supervised phases. During the unsupervised

phase, each pair of layers in the network forms an encoder-decoder pair. The

layers are trained as restricted Boltzmann machines (RBMs) [100]. The neu-

rons in the encoder encode the input data, whereas the neurons in the decoder

decode the computed results. By comparing the decoded result with the orig-

inal input, the RBM adjusts the layer weights for each training process.

In the encoding process, assume that the input data are given by a row

vector X with D dimensions and the encoder in the current layer consists of E

neurons; xj is then the jth dimensional value inX, andW is the matrix of layer

weights with wij denoting the weight for xj and the ith neuron (i = 1, 2, ..., E).

Assume the output of the encoder is a row vector YE with E dimensions, the

computed result of the ith neuron in the encoder is given by

yei = ϕ(
D∑
j=1

xj · wij), i = 1, 2, ..., E, (4.1)

59

Figure 4.1: A DBN consisting of one input layer with D neurons, L hidden
layers with each layer consisting of Ei neurons (i = 1, 2, ..., L) and one
output layer with K neurons.

where ϕ(·) is the activation function [38].

The encoder computes the positive part of the difference in the updated

layer weight, as

δP = XTYE, (4.2)

where XT is the transpose of X.

The decoder is used to convert the output of the encoder YE back to a

D-dimensional signal, so it consists of D neurons. The output of the decoder

YD is computed from YE and the layer weight W T , the computed result of

the ith neuron in the decoder is given by

ydi = ϕ(
E∑
j=1

yej · wTij), (4.3)

where i = 1, 2, ..., D is the index to each neuron in the decoder and j =

1, 2, ..., E is the index to YE. Note that the layer weights W T are from the

transpose ofW . The decoded result YD is sent back to the encoder to generate

60

an encoded signal YE2 . The computed result of the kth signal in YE2 is given

by

ye2k = ϕ(
D∑
j=1

ydj · wkj), (4.4)

where k = 1, 2, ..., E. The decoder computes the negative part of the differ-

ence in the updated layer weight as

δN = Y T
DYE2 , (4.5)

where Y T
D is the transpose of YD. At the completion of this process, the layer

weights at epoch t are updated on the basis of the positive and negative parts

of the difference, i.e.

W (t) = µW (t− 1) + ε(δP − δN), (4.6)

where µ and ε are the learning rates, µ, ε ∈ (0, 1) [38]. This process is known

as the one-time Gibbs sampling. The Gibbs sampling is repeated until either

the maximum allowed number of samplings is reached, or the value of δP −δN
is lower than a pre-determined threshold [38].

After the unsupervised phase, the supervised phase is implemented to ad-

just the layer weights based on the backward propagation algorithm [35].

For inference, assume that the number of neurons in layer l − 1 and l are

M and E, wlij denotes the weight between neuron j in layer l − 1 and neuron

i in layer l. The output signal of neuron i in layer l at epoch t, yli(t), is given

by

yli(t) = ϕ(
M∑
j=1

yl−1j (t) · wlij), i = 1, 2, ..., E. (4.7)

4.1.2 Adaptive moment estimation (ADAM)

In a DBN, the backward propagation algorithm is performed in multiple

epochs. In each epoch, the network is trained on the training dataset. The

backward propagation requires multiple epochs for convergence, resulting in

high latency and energy consumption.

Recent research has shown that the stochastic optimization methods, (in-

cluding the adaptive subgradient method (AdaGrad) [20] and ADAM [50]) can

61

significantly reduce the number of epochs in the training process by adjust-

ing the learning rates, thereby improving the energy efficiency of the neural

networks.

Considering the computational complexity and overall performance, ADAM

is considered to be an improved stochastic optimization method. In ADAM,

assume α is a pre-determined step size, β1 ∈ [0, 1) and β2 ∈ [0, 1) are the

exponential decay rates and f(θ) is the loss function with parameter θ and gt

is the gradient. Let the moment vector mt, vt and the computation time step

t be initialized to 0. For each time step, the parameter θ is updated by:

t = t+ 1,
gt = 5θft(θt−1),
mt = β1 ·mt−1 + (1− β1) · gt,
vt = β2 · vt−1 + (1− β2) · g2t ,
m̂t = mt/(1− βt1),
v̂t = vt/(1− βt2),
θt = θt−1 − α · m̂t/(

√
v̂t + ε).

(4.8)

The typical parameter values are given by α = 0.001, β1 = 0.9, β2 = 0.999

and ε = 10−8 as recommended in [50].

4.2 Design of the SC-DBN

4.2.1 Overall structure

An SC-DBN structure is proposed to implement the learning and inference

processes. The number of neurons in each layer and the values of weights are

both reconfigurable in the proposed structure.

The proposed SC-DBN structure consists of six components: an encoder-

decoder pair, a layer weight updater, output converters, input converters,

weight buffers and data buffers (Fig. 4.2). The layer weights and internal

data are stored in buffers as binary values. The encoder-decoder pair and the

layer weight updater are based on SC designs. Every time a training process

begins, the binary values are converted into stochastic sequences by the out-

put converters. Then, the encoder-decoder pair reconfigures the structure of

the current layer and performs the fast greedy learning algorithm in SC cir-

cuits. Following the training process, the layer weights are updated by the

62

layer weight updater. As per (4.6), the layer weight updater is implemented

by SC adders, subtractors and multipliers. The updated layer weights are

then converted into binary values by the input converters and stored in the

weight buffers. At each epoch, the encoder processes all samples and stores

the intermediate results in the data buffers. For inference, the data buffers

store the output signals of the neurons in each layer. The SC-DBN computes

the output signals layer-by-layer based on the stored data.

In the Gibbs sampling process, the computation in the next encoder-

decoder pair pauses until the computation in the current pair is completed;

therefore, only one RBM is active and all the other RBMs are inactive dur-

ing the training process. It is highly inefficient to implement this process

layer-by-layer in hardware; so, the encoder-decoder pairs in the reconfigurable

SC-DBN structure are reused to implement each layer in the SC-DBN. There-

fore, it must be able to implement the largest layer in the network. That is,

the number of neurons in the encoder-decoder pair is the same as the num-

ber of neurons in the largest layer of the network. For example, 784 neurons

are needed in the encoder-decoder pair for the DBN with the configuration of

784-400-200-10; it would require 1394 neurons in a conventional structure.

Figure 4.2: Design of the reconfigurable SC-DBN structure, with signals fol-
lowing the same definitions in (4.2) to (4.7).

63

4.2.2 Encoder-decoder design

The designs of the encoder and decoder are shown in Fig. 4.3. An encoder

includes five components: two SNG arrays, two SC multiplier arrays and an

A-SCAU array (Fig. 4.3 (a)). The SNG arrays convert the binary input signals

and the layer weights to stochastic sequences.

(4.1) is implemented by an SC multiplier array and an A-SCAU array.

Another multiplier array is used to compute the positive part of the difference

in the updated layer weights as per (4.2). The MUX is used to select the input

signals to the SC multiplier array between the input data X and the output

signal YD of the decoder.

As per (4.3), (4.4) and (4.5), the structure of the decoder (Fig. 4.3 (b)) is

similar to that of the encoder. The transpose of the layer weight matrix is

computed by the decoder.

After the positive and negative parts of the difference are obtained, the

(a)

(b)

Figure 4.3: The system diagram of (a) an encoder; and (b) a decoder. The
signal definitions are the same as for (4.1) to (4.6).

64

Figure 4.4: Design of the A-SCAU, including an APC, an LAU, an RNG and
a comparator. The circuits in gray are implemented by or for SC.

layer weights are updated by the layer weight updater as per (4.6).

4.2.3 Design of the reconfigurable A-SCAU

The A-SCAU consists of an accumulative parallel counter (APC), a linear

approximation unit (LAU), an RNG and a comparator (Fig. 4.4). The D-

dimensional input sequences of the A-SCAU (Ki, i = 1, 2, ...D) are generated

by the SC multiplier arrays in Fig. 4.3. The A-SCAU first computes the sum

of the values encoded in the sequence Ki in the bipolar representation (ki),

following

x =
D∑
i=1

ki, i = 1, 2, ..., D. (4.9)

Sum x is given by the output of the APC and serves as the input to the

LAU. The LAU then computes different activation functions such as (2.2). An

activation function implemented by the LAU has the generalized form of

ψ(x) = min(1, max(p,
1

r
x+ s)), (4.10)

where p, r and s are parameters that can be configured to implement different

functions.

For the sigmoid function, for example, the output range is [0,+1]. If x = 0,

ψ(x) = ϕ(x) = 1/2. Therefore, p and s are set to 0 and 1/2, respectively, and

a search is conducted to find the optimal value of r. Fig. 4.5 shows the MSE

between the computed results by the sigmoid function and (4.10) when r varies

in [+2,+10] with a step size of 0.01. As can be seen, r = 5.27 leads to the

minimum MSE, 6.16 × 10−4, between ψ(x) and ϕ(x). The value of r is set

65

Figure 4.5: Search result of optimal approximation parameters for the sigmoid
function. The MSE is between the sigmoid and the output of the LAU.

to 4 to simplify the hardware implementation. Hence, the sigmoid function is

approximated by

ψ(x) = min(1, max(0,
1

4
x+

1

2
)). (4.11)

As a result, the sigmoid function is approximated by using the configuration

p = 0, r = 4 and s = 1/2 in the LAU.

The ReLU function can be directly implemented by the LAU with the

configuration p = 0, r = 1 and s = 0. The pure line function is implemented

by the configuration p = −1, r = 1 and s = 0.

Note that the LAU implements an approximate model of the sigmoid func-

tion but accurate models of the ReLU and pure line functions. Fig. 4.6 shows

the simulation results of the A-SCAU with different configurations of the LAU.

The range of the signal x in (4.9) is set to [−10,+10]. With a sequence length

of 4096 bits, the MSEs are 1.1 × 10−3, 6.1 × 10−4 and 8.9 × 10−4; the max-

imum errors are 0.076, 0.051 and 0.087 for the sigmoid, ReLU and pure line

functions. Table 4.1 shows the MSEs of the A-SCAU with different sequence

lengths and activation functions.

Table 4.1: MSEs of the A-SCAU (×10−3)

Sequence length
(bits)

512 1024 2048 4096

Sigmoid 7.41 2.81 2.08 1.10
ReLU 3.33 1.69 1.12 0.61

Pure line 4.58 1.41 1.32 0.89

66

(a)

(b)

(c)

Figure 4.6: The simulation results of the A-SCAU for (a) the sigmoid function,
(b) the ReLU function and (c) the pure line function.

4.2.4 Immune-to-correlation feature

As the core component in the A-SCAU, the LAU is implemented using a binary

circuit (Fig. 4.4). As a result, the accuracy of the LAU is not affected by the

correlations in the stochastic sequences.

In the A-SCAU, each input is implemented by a parallelization of q levels.

For D-dimensional input sequences Ki (i = 1, 2, ..., D), the APC converts every

qD-bit input combination into a binary vector of m bits as inputs to the LAU.

For the n-bit stochastic sequences, the APC outputs n m-bit binary integers

in series. Then, the LAU accumulates n cycles of the output from the APC

and updates the output. Let the jth binary integer generated by the APC be

67

cj and let ki and ki
′ be the ith values encoded in the sequence Ki in the bipolar

and unipolar representations (Fig. 4.4). Following the definition in (4.9), x can

be approximated by the output of the APC, as

x =
D∑
i=1

ki =
D∑
i=1

(2ki
′ − 1) ≈ 2

n∑
j=1

cj
n
−D. (4.12)

The range of ψ(x) is [0, 1] for the sigmoid and ReLU functions, and [−1, 1]

for the pure line function, encoded in the bipolar representation. Because

the SNG in the A-SCAU requires unsigned integers to generate stochastic

sequences, the LAU needs to produce an integer output for the value of ψ(x)

interpreted as the unipolar representation. This value is given by

ψ′(x) =
1

2
(ψ(x) + 1). (4.13)

For an m-bit LAU, the integer output, Ψ(x), is given by

Ψ(x) = (2m − 1)× ψ′(x) = (2m − 1)× (
ψ(x) + 1

2
). (4.14)

A stochastic sequence is then generated for Ψ(x) by the RNG and comparator

as the output of the A-SCAU.

Applying (4.10), (4.12) to (4.14), the output of the LAU is given by

Ψ(x) = (2m − 1)×

min(1, max(
p+ 1

2
,

2
∑n

j=1 cj + nr(s+ 1)− nD
2nr

)).
(4.15)

Define an internal signal T as

T = 2
n∑
j=1

cj + nr(s+ 1)− nD, (4.16)

(4.15) can be approximated by

Ψ(x) = (2m − 1)×min(1, max(
p+ 1

2
,
T

2nr
))

= min(2m − 1, max(
2m − 1

2
· (p+ 1),

2m − 1

2nr
· T)

≈ min(2m − 1, max(2m−1 · (p+ 1),
2m−1

nr
· T)).

(4.17)

68

Figure 4.7: An algorithmic flowchart for the LAU. T: a temporary variable
used to store the intermediate result in the computation. The definitions of
other signals are the same as for (4.15) and (4.17).

From (4.17), it can be seen that the output of the LAU can be one of the

three 3 different values: 2m − 1, 2m−1 · (p + 1) and 2m−1 · T/nr. The circuit

can be implemented by accumulators, subtractors, multipliers and dividers.

An algorithmic flowchart is shown in Fig. 4.7 and a circuit design is shown in

Fig. 4.8. In the SC implementation, the n is set to 16 and the parameter r is

set to a value in a power of 2 in both the SC and binary implementations, so

the multipliers and dividers are implemented by using shift registers. As the

internal signals encode unsigned integers, an additional comparator is used to

prevent the overflow in subtractions as well as to determine the final output.

Note that T in (4.16) is implemented by an accumulator, an adder, a subtractor

and shift registers, as shown in Fig. 4.8.

As per (4.15), the output of the LAU is only determined by the number of

1’s computed by the APC in the input sequences, regardless of the bit corre-

lations. Therefore, the computation accuracy of the A-SCAU is not affected

by the correlations due to the sharing of RNGs in the circuit.

69

Figure 4.8: Circuit design of the LAU. CMP: comparator. <<: shift register.
The width of the output signal is set to m. The definitions of the signals are
the same as for (4.15) and (4.17).

Figure 4.9: Test circuit for the A-SCAU and the Btanh based sigmoid func-
tions.

This immune-to-correlation feature makes it possible to dramatically re-

duce the number of RNGs in the circuit. Fig. 4.9 shows the test circuit for

comparing the proposed A-SCAU with the Btanh based sigmoid design. In

the simulation, sequences for D-dimensional input signals are generated by

70

Figure 4.10: Simulation results of the A-SCAU and the Btanh based sigmoid
circuit. Both use shared RNGs.

shared RNGs but different comparators. The parallelization is set to 16× and

sequence length is set to 256 bits, so in total 256 × 16 = 4096 bits for each

input. The simulation results of the A-SCAU and the Btanh based circuit are

shown in Fig. 4.10. As can be seen, the Btanh circuit does not produce correct

results, whereas the A-SCAU achieves a good accuracy.

4.2.5 RNG sharing

The SNG array in Fig. 4.3 is utilized for a parallel operation to reduce the

computation latency. The design also reduces the area and energy cost of the

encoder-decoder pair by sharing the RNGs. In the SNG array, each signal

in a D-dimensional input is converted into q parallel stochastic sequences to

reduce latency, see Fig. 4.11. As the A-SCAU is immune to the correlations

among input stochastic sequences, the RNGs are shared among parallel A-

SCAU components without loss of computation accuracy. The RNGs can not

only be shared among the signals in a single neuron, but also among all neurons

in the same layer. Therefore, the number of RNGs is changed to 1/D of those

required in a conventional design with the same level of parallelization but no

sharing structure. The RNGs are implemented using different initial seeds and

feedback polynomials to avoid generating correlated sequences, thus reducing

the autocorrelation in the output sequences.

71

Figure 4.11: An SNG array in the encoder-decoder pair with an input dimen-
sion D and parallelization level q. CMP: comparator. Bi (i = 1, 2, ..., D) is
the ith binary value of the input signal. sij is the jth parallel stochastic output
sequence of Bi (i = 1, 2, ..., D; j = 1, 2, ..., q).

Consider a 2-layer network with 784 neurons in the input layer and 100

neurons in the output layer; the dimension of the input signals, the output

signals and the layer weights are 784, 100, and 78400. Without considering

the parallelization, 79284 RNGs are required in a conventional design with no

sharing structure. In the proposed design, however, because the RNGs can be

shared among neurons, it only requires 3 RNGs to generate the input, output

and layer weight sequences, resulting in significant savings in area and energy

consumption.

4.2.6 Design of ADAM circuits

As per (4.8), the ADAM algorithm can be implemented by SC circuits, includ-

ing adders/subtractors, multipliers/dividers, square root and power function

circuits. The ADAM circuits are shown in Fig. 4.12.

The circuit in Fig. 4.12 (a) updates the moment vector mt. The updater for

mt is implemented by SC adders, subtractors and multipliers. Note that the

output is 0.25mt because two SC adders are connected in series. Therefore,

the scaling factor 0.25 is eliminated prior to the computation of m̂t in (4.8).

The updater for vt has a similar structure as for mt, with the computation of

g2t implemented by an XNOR gate and a D-flipflop (dashed in Fig. 4.12 (a)).

Fig. 4.12 (b) shows the power function circuit to compute βt. Assume the

sequence length is set to k bits and the value encoded in the input sequence is

set to β in the bipolar representation for each computation step t. The k-bit

72

(a)

(b)

(c)

Figure 4.12: Design of the ADAM circuits. (a) Moment vector updater, (b)
Power function circuit for computing βt1 and βt2. (c) The circuit to compute
pτ + (1 − p)

√
v̂t, τ = ε/p. All signals are encoded in stochastic sequences in

the bipolar representation, following the same definitions as in (4.8).

shift register is initialized to be all ones when t = 0. During computation, each

bit of the XNOR gate is stored in the LSB of the register and the register is

left-shifted. At the end of the computation in step t, the k-bit output sequence

is stored in the shift register and then is used to multiply the input sequence

encoding β in step t + 1. It can be seen that for each t, the value encoded

in the output sequence follows f(β) = βt in the bipolar representation. The

result is then used to update the value of m̂t and v̂t by following (4.8), using

an SC subtractor and a divider. For each computation with a sequence length

of 4096 bits and 16× parallelization, an array of 16 power function circuits is

73

implemented with k set to 256 bits.

Fig. 4.12 (c) shows the circuit computing the value of
√
v̂t+ε. It consists of

an SC square root circuit and an adder. The binary search algorithm [88] [72]

is utilized in the SC square root circuit to reduce the computation latency.

Assume that the values encoded in the input sequences are τ and v̂t in the

bipolar representation, the probability of the select signal in the MUX is p and

the value encoded in the output signal in the bipolar representation follows

h(v̂t, τ) = (1− p)
√
v̂t + pτ, p, τ > 0. (4.18)

When p is set to a small value close to 0, there exists

lim
p→0

h(v̂t, τ) =
√
v̂t + pτ, τ > 0. (4.19)

The value of pτ has the same role as ε in (4.8), leading to ε = pτ . For an

N -bit sequence, τmin = 2/N for the bipolar representation and the resolution

of the select signal is pmin = 1/N . As a result,

εmin =
2

N2
, (4.20)

which determines the minimum value of ε that can be implemented by using

N -bit sequences. For N = 4096 bits, εmin = 1.19 × 10−7 is used in the

design. With a shorter sequence length, the value of εmin is increased and the

performance of ADAM is reduced.

The MSEs of the ADAM circuits are listed in Table 4.2. In the simulation

of the power function, the value of β is set to 0.9 and the value of t is set to

31, which are the same as used in the SC-DBNs for the MNIST dataset. The

power function circuit has the highest MSE among the components, and the

change in the sequence length has no significant effect on the accuracy. The

MSEs of the square root and divider circuits are low because of the binary

search algorithm which improves both the computation accuracy and speed.

74

Table 4.2: MSEs of the ADAM Circuits (×10−4)

Sequence length
(bits)

256 512 1024 2048 4096

Moment vector
updater

0.18 0.20 0.35 0.06 0.06

Power function 8.74 8.51 8.26 8.35 7.90
Square root 38.0 11.1 4.1 1.7 1.3

Binary search
divider [72]

11.7 7.0 5.1 5.2 4.8

4.3 Evaluation

4.3.1 Accuracy

The SC-DBN is evaluated on the MNIST dataset [54] using the sigmoid func-

tion as the activation function. The samples are grayscale images with 28×28

pixels of 10 different handwritten characters labeled as ‘0’ to ‘9’. The structure

of the network is optimized by the pruning algorithm [33], consisting of one

input layer with 784 neurons, two hidden layers with 100 and 200 neurons, and

one output layer with 10 neurons. An 8-bit FxP and 32-bit FP implementation

with the same configuration are also evaluated on the dataset.

The SC-DBN is implemented with both pre-trained weights and online

learning. For the pre-trained networks, Table 4.3 shows the classification error

rates of the different implementations for inference. It can be seen that for

the SC-DBN, the classification accuracy improves rapidly when the sequence

length is under 256 bits, increasing from 89.9% (by 32 bits) to 98.9% (by

128 bits). Using 64-bit sequences (×16 parallelization), the proposed design

achieves a higher accuracy than the results in the literature [91] [47] [6] [56].

Note that most of the designs in the literature require a larger latency than the

proposed design (from 1024 bits to 4096 bits) except for the integral stochastic

implementation [6] and the hybrid stochastic-binary network [55]. The network

in [55] is based on SC CNN, so different from the other networks in Table 4.3.

Moreover, with a sequence no less than 128-bit, the SC-DBN achieves a higher

classification accuracy than an 8-bit FxP implementation, which is only 0.12%

to 0.37% lower than a 32-bit FP implementation.

75

Table 4.3: Pre-trained Networks Accuracy Comparison

Network Sequence length (bit) Accuracy (%)

SC-DBN
(16× parallelization)

32 89.90
64 97.78

128 98.90
256 99.15

8-bit FxP – 98.10
32-bit FP – 99.27

Integral stochastic NN [6] 16 97.73
Hybrid SC-binary NN [55] 256 99.06

SC Btanh NN [47] 1024 97.59
FPGA-RBM [56] 1024 94.28
FPGA-DBN [91] 4096 94.10

For the SC-DBN with online learning, the number of learning epochs is

initially set to 200. The sequence length varies from 64 to 256 bits for learning

and from 32 to 256 bits for inference, both with 16× parallelization. The

classification accuracy of the different implementations is shown in Fig. 4.13.

The classification accuracy rapidly improves by increasing the sequence

length for learning. For example, with a 32-bit sequence for inference, the

classification accuracy is improved from 51.50% to 78.60% when the sequence

length increases from 128 to 256 bits in the training process. Similarly, with

a 256-bit sequence for inference, the accuracy is improved from 83.46% to

98.55%. With 256-bit sequences for both learning and inference, the SC-DBN

achieves a higher accuracy than the 8-bit FxP implementation (98.10%), and

it is only 0.60% and 0.72% lower than the pre-trained SC-DBN and the FP

implementation results. This suggests that a 256-bit sequence for learning

is sufficient for this application. With this configuration, the online learn-

ing SC-DBN achieves an accuracy similar to the pre-trained implementations.

However, with a 64-bit sequence in training, the computation of the SC-DBN

fails and the accuracy for inference is around 10.00% (not shown in Fig. 4.13).

76

Figure 4.13: Classification accuracy of different implementations of the DBN.
SC-DBN cfg1: the pre-trained SC-DBN; cfg2: SC-DBN with 256-bit sequences
for learning; cfg3: SC-DBN with 128-bit sequences for learning.

4.3.2 Hardware efficiency for pre-trained implementa-
tions

ASIC implementations of the DBNs are assessed in area, power and energy

consumption using VHDL synthesized by the Synopsys Design Compiler with

ST’s 28-nm technology library. The sequence length of the SC-DBN is set to

128 and 256 bits with 16× parallelization. The conventional FP design is im-

plemented with and without pipelining. In the non-pipelined implementation,

it requires 1 clock cycle for the computation in each layer, resulting in 4 cycles

to process each sample. In the pipelined FP DBN, 6 clock cycles are required

for an adder, 4 cycles for a multiplier and 24 cycles for an activation function.

These numbers are 4, 4 and 10 for the pipelined FxP design.

In Table 4.4, the simulation results indicate that the SC-DBN requires the

smallest area and lowest power among the different implementations. With

256-bit sequences, the SC circuit takes 5.3%, 4.5%, 3.3% and 73.6% of the area,

power, energy consumption and latency (per sample) of the pipelined 32-bit FP

implementation. These figures of merit are 26.9%, 27.8%, 29.9% and 107.3%

when compared to the 8-bit FxP implementation. With 128-bit sequences, the

latency and energy cost of the SC-DBN is approximately reduced by 50%, while

incurring a loss of accuracy by only 0.25%. The proposed circuit takes 6.5%

and 6.1% of the area and power of the non-pipelined 32-bit FP implementation,

77

Table 4.4: Hardware Efficiency (Inference)

SC-DBN
8-bit
FxP

circuit

32-bit FP
circuit

(pipelined, non-pipelined)
Area

(µm2)
23345 86875 (437767, 357548)

Power
(mW)

1.12 4.01 (24.86, 18.32)

Frequency
(MHz)

134.7 167.3 (159.7, 90.2)

Cycle
(/sample)

128/256 296 (412, 4)

Latency
(µs/sample)

0.94/1.90 1.77 (2.580, 0.044)

Energy
(nJ/sample)

1.05/2.12 7.10 (64.14, 0.81)

with a 1.3× energy consumption and 21× latency. The high latency is a general

challenge for SC designs [1] [106].

Note that although the number of cycles to process a single sample is

significantly increased by pipelining (from 4 to 412), the total computation

latency is decreased because of the lower throughput. With a dataset of 10000

samples in the MNIST, the total computation latency of the pipelined FP

implementation is approximately 14.7% of that of the non-pipelined design.

To compare the proposed SC-DBN with other types of SC NN designs, we

considered an SC-DCNN [86] and performed simulation using the 28-nm tech-

nology library. With 256-bit sequences, the classification accuracy is 98.26%

on the MNIST dataset and the energy consumption is 281 nJ/sample, much

higher than that of the SC-DBN. The main reason for the higher energy con-

sumption in the SC-DCNN is the inherently higher computation complexity

of the DCNN required to achieve a high accuracy. However, the neurons in

the fully connected layers of the SC-DBN have more inputs than the neu-

rons in the convolutional layers of the SC-DCNN, so the inaccuracy in the SC

computation can be better mitigated inside the neurons, resulting in a better

performance in the SC-DBN.

78

4.3.3 Hardware efficiency for online learning

The area and energy consumption of the SC-DBN for online learning are re-

ported in Table 4.5. All the binary implementations are based on pipelined

circuits for their higher efficiency in total computation time. The proposed

encoder-decoder pair is reused in both the training and inference processes.

The back-propagation and learning control unit are implemented to perform

the backward propagation in the training process. Note that due to the com-

plex timing control of SC circuits and the conversion between stochastic se-

quences and binary integers, the learning control unit of the SC-DBN is twice

as large as that of the FxP and FP implementations.

The SC-DBN with online learning achieves the lowest area, which is only

29.3% and 5.5% of the FxP and FP implementations. The energy consumption

of the online learning is significantly increased from that for inference. In the

training process with 200 epochs, the SC-DBN takes 4.37 µJ to process each

sample. However, the SC-DBN still achieves the lowest energy consumption

among different implementations, which is 33.3% and 3.7% of the FxP and

FP implementations. The latency of the SC-DBN is 1.52 ms, approximately

110% and 80.9% of that of the FxP and FP implementation. Similar as for

the pre-trained implementations, the proposed design shows no significant dis-

advantage in performance compared to conventional binary designs.

Table 4.5: Hardware Efficiency (Online Learning)

SC-DBN
8-bit
FxP

circuit

32-bit
FP

circuit
Back-propagation circuit

area (µm2)
33150 116413 656651

Learning control unit
area (µm2)

3525 1785 1829

Total area (µm2) 60019 205072 1096247
Latency per epoch (µs) 7.60 6.92 9.43

Total latency
(200 epochs) (ms)

1.52 1.38 1.88

Energy per sample (µJ) 4.37 13.11 117.40

79

Table 4.6: Hardware Efficiency of the SC-DBN with the ADAM Circuit

ADAM area (µm2) 27181
Total area (µm2) 87200

Total latency
(31 epochs) (µs)

529.1

Energy per sample (µJ) 1.10

4.3.4 SC-DBN with the ADAM circuit

The ADAM improves the convergence speed of the backward propagation dur-

ing the training process [50], thus decreasing the energy consumption and la-

tency. With the ADAM circuit, the number of epochs in the training process

can be reduced from 200 to 31 without losing inference accuracy on the MNIST

dataset. However, the SC implementation of ADAM significantly increases the

area and power consumption of the backward propagation circuit and requires

extra computation cycles to update the learning rates. The total area and

energy consumption of the SC-DBN with the ADAM circuit is shown in Table

4.6.

Compared to Table 4.5, the area of the ADAM is comparable to that of

the back-propagation circuit in the SC-DBN. Therefore, the total area of the

SC-DBN is increased by 45.5%, from 60019 µm2 to 87200 µm2. The latency

in each epoch is increased by 8.53 µs due to the ADAM circuit. However, the

number of learning epochs is reduced by 84.5% (from 200 to 31), so the energy

consumption of processing each sample is reduced by 74.8%, i.e. from 4.37

µJ to 1.10 µJ per sample. The total latency of processing each sample is also

reduced by 65.2%, from 1.52 ms to 529.1 µs. Although the latency in a single

epoch and the area are increased, the SC-DBN with the ADAM circuit achieves

significant advantages in overall energy consumption and computation speed.

4.4 Conclusion

In this chapter, an SC-DBN is proposed to reduce the area and energy con-

sumption of DNNs. A reconfigurable structure is proposed to implement the

fast greedy learning algorithm and enable the sharing of hardware by reusing

80

the encoder-decoder pair. An ADAM circuit is utilized to improve the en-

ergy efficiency by significantly reducing the number of epochs in the training

process. An A-SCAU is reconfigurable to implement different activation func-

tions; it also leverages the shared use of RNGs among neurons in the same

layer, so significantly smaller area and lower energy consumption are required

for the proposed design. For both inference and training, the classification ac-

curacy of the SC-DBN is higher than that of a FxP design and slightly lower

than that of a FP design. Compared to the conventional binary implementa-

tions, the proposed design requires significantly smaller area and lower power.

The energy consumption of the SC-DBN is significantly lower than that of the

pipelined 32-bit FP design and slightly higher than the non-pipelined design.

81

Chapter 5

A Stochastic Computing
Recurrent Neural Network

Recurrent neural networks (RNNs) are widely used for solving prediction, ma-

chine translation, and speech recognition problems [90]. The long short-term

memory (LSTM) structure has been introduced to avoid catastrophic errors

in the computation process, so it leads to significant accuracy improvements

for RNNs [39]. Thus, it has become one of the most useful RNNs.

Recently, there have been multiple designs for improving the hardware

efficiency of an LSTM-RNN. A balance aware pruning algorithm has been in-

troduced to improve the parallel processing efficiency [31]. The Fast Fourier

Transform (FFT) and inverse FFT have also been utilized to reduce the com-

plexity of matrix multiplication in the LSTM [67]. A structured compression

technique has been utilized to compress the weight matrices [107]. However,

it still remains a challenge to implement an LSTM-RNN on resource-limited

systems, such as a mobile device or an embedded system due to the high

computational complexity, area cost, and power consumption.

In this chapter, an energy-efficient LSTM-RNN is proposed by leveraging

the hardware efficiency of SC circuits. A hybrid structure utilizing SC and

binary circuits are designed to improve the hardware efficiency and retain the

accuracy in inference. The LSTM memory block is implemented by binary

circuits and approximate parallel counter (AxPC) based SC circuits. To re-

duce the memory requirement, internal stochastic sequences are converted into

binary values for storage. Three datasets are used for the evaluation of the

82

RNN design: the Reder grammar [97], Japanese vowels [53] and Texas In-

struments, Massachusetts Institute of Technology (TIMIT) [25]. Simulation

results show that the proposed SC-RNN requires a significantly smaller area,

lower energy consumption in most cases, and at the same time, achieves a com-

parable accuracy and higher noise tolerance compared to conventional binary

implementations.

The remainder of this chapter is organized as follows. Section 5.1 introduces

the background for RNNs and LSTM. Section 5.2 presents the proposed design.

Section 5.3 shows the application and simulation results. Section 5.4 concludes

the chapter. The content of this chapter has been accepted as article [71].

5.1 Background

5.1.1 Recurrent neural networks (RNNs)

The structure of a typical fully-connected recurrent neural network (FCRNN)

is shown in Fig. 5.1 [109]. The FCRNN consists of two layers: a concate-

nated input-feedback layer (C-layer) and a processing layer (P-layer). If the

longest delay of an input is set to p and each delayed external signal is as-

signed to a neuron, p neurons results in total. Assume that the P-layer con-

sists of N neurons, the inputs of each neuron in the P-layer consist of N

dimensional feedback signals yq(t − 1), q = 1, 2, ..., N , p dimensional delayed

external signals s(t − j), j = 1, 2, ..., p and a bias. For the nth neuron in

the P-layer, the layer weights form a (N + p + 1) dimensional weight vector

Wn = [wn,1, wn,2, ..., wn,N+p+1].

The real-time recurrent learning (RTRL) algorithm is one of the most

widely used learning algorithms for RNNs [109]. In the RTRL, the inference

process is similar to that in a conventional multilayer perceptron. For the nth

neuron, the output is given by

yn(t) = Φ(vn(t)), n = 1, 2, ..., N, (5.1)

83

and

vn(t) =

N+p+1∑
l=1

wn,l(t) · ul(t), (5.2)

where Φ(·) is the activation function and ul(t) ∈ {y1(t−1), y2(t−1), ..., yN(t−

1), 1, s(t− 1), s(t− 2), ..., s(t− p)}, l = 1, 2, ..., N + p+ 1 [109].

5.1.2 Long-short term memory (LSTM)

The LSTM is one of the most widely-used learning algorithms for RNNs. Dif-

ferent from the FCRNN, it utilizes gate units to constrain the feedback signals,

so the gradient does not either quickly reduce or increase during the feedback

process [39], so the entire process is rather stable. It has been reported that the

LSTM achieves higher performance compared to conventional RNN learning

algorithms [39] [26].

In the LSTM-RNN, the neurons are implemented by memory blocks. A

single-cell memory block stores the current internal state and includes three

types of gate units: an input gate (in), an output gate (out) and a forget gate

(ϕ) (Fig. 5.2). We follow the algorithm introduced in [39] and [26]. The gate

Figure 5.1: Structure of an FCRNN, with the C nodes denoting neurons in the
concatenated input-feedback layer (C-layer) and the P nodes denoting neurons
in the processing layer (P-layer).

84

Figure 5.2: Functions of a memory cell for LSTM-RNNs [26]. f is the activa-
tion function implementing the gates defined by (5.3). g and h are activation
functions defined by (5.8) and (5.10), respectively. Il (l ∈ {cell, in, out, ϕ}) are
the input signals of the cell and gates. yin, yout and yϕ are the output signals
generated by the gate units. Ocell is the output signal of the cell. s represents
the internal state of the cell. The cell kernel is introduced in the following
section.

units implement the same activation function as

f(x) =
1

1 + e−x
, f(x) ∈ [0, 1]. (5.3)

Assume that k is the index of memory blocks, v is the index of cells in the

kth block, cvk is the vth cell in the kth block. wl (l ∈ {out, in, ϕ}) is the layer

weight. Il(t) (l ∈ {out, in, ϕ}) represents all the input signals connected to

the gates at time t, including the outputs from other cells and the feedback

signals from the gates in the cell. The gating signals of the input, output and

forget gates at time t are given by

yl(t) = f(zl(t)), l ∈ {out, in, ϕ}, (5.4)

where

zl(t) =
∑

wl · Il(t), l ∈ {out, in, ϕ}. (5.5)

85

The input signals of the cell are defined as Icell(t) and the layer weights are

defined as wcell, so

zcvk(t) =
∑

wcell · Icell(t). (5.6)

The internal state of the cell Scvk is determined by the input signals of the

cell, the input gate, the forget gate and the previous internal states:

Scvk(t) =

{
0 t = 0,

yϕk
(t) · Scvk(t− 1) + yink

(t) · g(zcvk(t)) t > 0,
(5.7)

where g(·) is defined as

g(x) =
4

1 + e−x
− 2 = 2 · tanh(

x

2
), g(x) ∈ [−2, 2]. (5.8)

The output signal of the cell Ocell in the hidden layer is computed through

the memory cell to the output gate. It is defined as Ocvk
(t) for cell cvk at time

t, and computed as

Ocvk
(t) = youtj(t) · h(Scvk(t)), (5.9)

where h(·) is the activation function defined as

h(x) = tanh(
x

2
), h(x) ∈ [−1, 1]. (5.10)

In Fig. 5.2, the function h, the internal state of the cell s and the mul-

tiplication are considered as the cell kernel for the convenience of hardware

implementation. The design of the cell kernel is introduced in the following

section.

5.2 SC-RNN Design

5.2.1 Overall design

In the proposed design, the computational components are implemented by a

hybrid structure consisting of SC and binary circuits. The inference data and

the network structure (weights) are stored in external memory elements. The

training is performed by utilizing MATLAB functions and the resulting layer

weights are saved in the memories. The inference process is implemented by

SC and binary circuits with the computed layer weights.

86

5.2.2 Hybrid structure of the memory block

The SC-RNN design is based on a multi-cell memory block [26]. The output

of the memory block is defined as the sum of the output of each memory cell

in the block. The structure of a multi-cell memory block is shown in Fig. 5.3.

The block includes p cells. The outputs of the input gates (yin) and forget

gates (yϕ) are shared among the cells in the same memory block, as shown in

Fig. 5.3. The input signals of different cells (Ikcell, k ∈ 1, 2, ..., p) are separated.

The gate units are implemented by the approximate SC activation unit (A-

SCAU) [73]. The activation function g in (5.8) is implemented by the Btanh

circuit [6] [47]. The values of the signals of the gates and the layer weights are

encoded by stochastic sequences in the bipolar representation. Note that the

probabilities encoded in the sequences for the input vectors (Iin, Iout, Iϕ, and

Ikcell, k ∈ 1, 2, ..., p) are the same as per the LSTM definition [26]. However,

the sequences are generated separately to reduce the correlation.

The cell kernel is utilized to update the value of the internal state Scvk in

(5.7) and compute the output signal of the cell following (5.9) and (5.10).

The probability estimator (PE) is utilized to convert the stochastic sequences

into binary values [72]. In the memory cell, the PE, the A-SCAU, the Btanh

function and the multiplication are implemented by SC circuits while the cell

kernel is designed using binary and SC methods. The variable q shown in

Fig. 5.3 is computed using binary adders. The register storing the value of q is

also used as the memory element of the intermediate computation result [95].

Thus, the system stores intermediate computation results in the binary for-

mat to reduce the required memory overhead instead of storing the stochastic

sequences. The binary results are then re-converted to stochastic sequences

by SNGs. The output signals of the memory block are used as inputs to the

other memory blocks, thus interacting with the internal states of the cells in

the other memory blocks.

87

wcell

wφ

yin

yφ

Icell

wcell wcell

…...

…...

…...

1 2 pIcell Icell

Iφ
A-SCAU

Cell
kernel

Cell
kernel

Cell
kernel

wout

yout

Ocell

Iout

q

+

…...

SNG

PE PE PE

Btanh Btanh Btanh

A-SCAU

A-SCAU
Iin

win

Memory cell

Input gate

forget gate

output gate

Figure 5.3: Structure of a multi-cell memory block in the SC RNN. The mul-
tipliers are implemented by SC circuits. The A-SCAU implements the gate
units. The Btanh circuit implements the activation function g defined by
(5.8). The cell kernel updates the internal state and computes the output of
a cell. PE is the probability estimator that converts stochastic sequences into
binary values. SNG is the stochastic number generator. The circuits in gray
are implemented by or for SC. The cell kernel is implemented by both SC and
binary circuits.

Gate units

As per (5.3), the gate units (including the input, output and forget gates) can

be implemented by an SC circuit for the sigmoid activation function. The

gate units are implemented by the A-SCAU in [73] (Fig. 5.3). The A-SCAU

is utilized to implement multiple types of activation functions and reduce at

the same time the hardware overhead. The design of the A-SCAU is shown in

Fig. 4.4. The linear approximation unit (LAU) implements multiple activation

functions with the generalized form of (4.10), where p, r and s are configurable

88

parameters. The sigmoid function (5.3) can be approximated by setting the

configuration to {p = 0, r = 4, s = 1/2}; the ReLU function can be imple-

mented by setting the configuration to {p = 0, r = 1, s = 0}. Because the

output of the LAU is determined by the sum of the probabilities of the input

stochastic sequences, the circuit is immune to correlations between the input

sequences. Therefore, the RNGs for generating the input sequences can be

shared among different neurons with no loss in computation accuracy. Be-

cause the RNGs are one of the most costly units in SC circuits [1], the sharing

strategy significantly reduces the hardware cost.

Cell kernel

The cell kernel in Fig. 5.3 updates the internal state and the output signal of

the cell. The SNG and multiplication are implemented for SC. The FSM is

utilized to implement SC Btanh function and generates the SC sequence as the

output signal. The accumulate parallel counter (APC) and state processing

unit (SPU) are based on binary circuits. According to (5.7), when t 6= 0, there

exists

Scvk(t) = yϕk
(t) · Scvk(t− 1) + yink

(t) · g(zcvk(t))

= yϕk
(t) · Scvk(t− 1) + yink

(t) · 2 · tanh(
zcvk(t)

2
)

= yϕk
(t) · Scvk(t− 1) + yink

(t) · tanh(
zcvk(t)

2
)

+ yink
(t) · tanh(

zcvk(t)

2
).

(5.11)

It shows that the internal state Scvk(t) can be computed by SC circuits with

the value of each addend in (5.11) restricted within [−1,+1]. The design for

the cell kernel is shown in Fig. 5.4.

In Fig. 5.4, to update Scvk(t), the signal y encodes the value of yϕk
(t) and is

multiplied with the signal encoding the value of Scvk(t−1) by the SC multiplier,

resulting in a signal x encoding the value of yϕk
(t)·Scvk(t−1) in the bipolar rep-

resentation. The signals z and z′ encode the same value of yink
(t) · tanh(

zcv
k
(t)

2
)

in the bipolar representation but they are independently generated. All the

signals are set as inputs of the APC.

89

The SPU is designed to compute the value of Scvk(t) at each step of the

updating process. It is implemented by binary circuits. The design of the SPU

is explained as follows. According to (5.11), the value of Scvk(t) is computed

by the sum of the values encoded by the signal x, z, and z′ shown in Fig. 5.4

in the bipolar representation. Assume that the number of the input signals is

D (here, D = 3) and that each input signal is parallelized to α folds, which

means that each input signal is generated by α synchronized SNGs with the

same probability. Assume that the number of 1’s in the jth sequence for the ith

signal is Qi,j after parallelization, the number of 1’s in the input sequences is

computed by the APC as
∑D

i=1

∑α
j=1Qi,j. For n-bit sequences and due to the

bipolar representation, the value of Scvk computed by the APC, S, is expected

to be

S =
1

α

D∑
i=1

α∑
j=1

(2
Qi,j

n
− 1). (5.12)

Note that the range of S is [−D,+D]. In the SPU design, the value of S

is considered to be clamped into [−1,+1] for the bipolar representation in SC.

Figure 5.4: Design of the cell kernel, including an SC multiplier, an APC,
an SNG, an FSM for implementing the SC Btanh function and an SPU for
updating the internal state. Cout is the output sequence, encoding the value
of h(Scvk(t)). The circuits in gray are implemented by or for SC. The internal
design of the SPU is shown in Fig. 5.6.

90

Figure 5.5: Algorithmic flowchart for the SPU. T, T’: temporary variables
used to store the intermediate results in the computation. The definitions of
other signals are the same as those in (5.16) and (5.17).

The clamped value, Sc, is given by

Sc =

−1, S 6 −1,
+1, S > +1,
S, others,

(5.13)

However, according to (5.9), the output of the network is not affected be-

cause it is only determined by the activation function h(Scvk(t)), which produces

a similar output value for the clamped input. Taking (5.12) into (5.13) gives

us

Sc =

−1, 2

∑D
i=1

∑α
j=1Qi,j + nα 6 nαD,

+1, 2
∑D

i=1

∑α
j=1Qi,j − nαD > nα.

S, others,

(5.14)

Let T = 2
∑D

i=1

∑α
j=1Qi,j + nα and T ′ = T − nαD, by scaling the value of

1
2
(Sc + 1) into an m-bit binary vector, the output of the SPU, SB, is obtained

as

SB =

0, T 6 nαD,

2m − 1, T ′ > 2nα,
SB
′, others,

(5.15)

91

where SB
′ is given by

SB
′ =
⌊
(2m − 1) · S+1

2

⌋
=
⌊
(2m−1)
2nα

(2
∑D

i=1

∑α
j=1Qi,j + nα(1−D))

⌋
.

(5.16)

SB is the integer approximation of Scvk(t), as shown in Fig. 5.4, and SB
′ is

approximated by

SB
′ =

⌊
(2m − 1) · 1

2nα
· T ′
⌋
≈
⌊

2m−1 · 1

nα
· T ′
⌋
. (5.17)

The algorithmic flowchart of the SPU is shown in Fig. 5.5. When n and

α are set to values in a power of 2, the multipliers and dividers in the SPU

can be implemented by shift registers. The computation circuit of T and T ′

is implemented by an accumulator, an adder, a subtractor and shift registers.

The circuit design is shown in Fig. 5.6.

The output of the cell (Cout in Fig. 5.4) is implemented by the Btanh

circuit [6] [47], which consists of an APC and an FSM in Fig. 5.4. The output

signal encodes the value of h(Scvk(t)) in the bipolar representation. The FSM

is implemented by an up-down counter following the algorithm in [6] [47]. The

Figure 5.6: Circuit design of the SPU. CMP: comparator. <<: left-shift
register. APC out is the output signal of the APC. The definitions of the
signals are the same as those in (5.16) and (5.17).

92

Figure 5.7: Design of the AxPC with nine input sequences. HA represents the
half adder and FA represents the full adder.

APC is reused between the SPU and the Btanh circuit, thus reducing the

hardware cost.

The APC can be replaced by an AxPC using a similar design method

in [86] to further reduce the hardware cost. Assume that there are nine input

sequences for the APC, the design of the AxPC is shown in Fig. 5.7.

Table 5.1 gives the detailed area breakdown of the cell kernel, including

three parallelization configurations: 1-fold (no parallelization), 4-fold, and 8-

fold parallelization. It means that each input signal is generated by 1, 4, and 8

synchronized SNGs with the same probability. By an 8-fold parallelization, for

example, a 256-bit sequence is implemented by eight 32-bit sequences (gener-

ated by independent SNGs) in parallel. The areas of the FSM, the accumulator

in the SPU, and the control unit of the cell kernel are listed separately, while

the areas of the other parts of the SPU are divided into combinational and

sequential circuits. The second column in the table represents the percentage

of the area of each component in the cell kernel. Note that the control unit of

the cell kernel requires 27.7% of the total area when there is no parallelization

due to the complex operations in the cell kernel and the SPU. This drops to

19.0% and 12.8% with 4-fold and 8-fold parallelization, respectively. As the

core of the LSTM, the cell kernel can be adjusted and utilized to implement

different types of LSTM models such as the convolutional LSTM network [110],

combined with the SC components in CNNs [66].

93

Table 5.1: Area Breakdown of the Cell Kernel (µm2)

Paral.
FSM
(%)

Accum.
(%)

Contr.
(%)

Combi.
(%)

Seque.
(%)

Total

1
214.3

(19.7%)
392.9

(36.1%)
301.6

(27.7%)
59.5

(5.5%)
119.1

(11.0%)
1087.4

4
357.2

(17.9%)
654.9

(33.1%)
377.0

(19.0%)
198.4

(10.0%)
396.9

(20.0%)
1984.4

8
535.8

(18.1%)
851.3

(28.8%)
377.0

(12.8%)
396.9
(13.4)

793.8
(26.9%)

2954.8

5.3 Experiments

The SC-RNN is utilized for the prediction of symbol generation using the Reder

grammar dataset [97], and speech recognition using the Japanese vowels [53]

and TIMIT datasets [25]. The performances of the SC-RNN and binary LSTM

RNNs are assessed with respect to accuracy, area, and energy consumption.

5.3.1 Reder grammar problems

The symbol generating rules for the Reder grammar is shown in Fig. 5.8. The

Reder grammar sequentially generates symbol strings from the left node by

following the edges and appending the associated symbols to the current string

until the right-most node is reached. Edges are randomly chosen by the prob-

ability of 50%. In inference, the networks read strings, one symbol at a time

to predict the next symbol.

Similarly to [26], 256 strings are randomly generated with an average length

of 16 as the testing dataset. The training of the RNN is implemented in binary

circuits by 10-fold validation, with each fold including 105 randomly generated

strings as training datasets. The LSTM is set into two different structures,

which, respectively, consist of three and four memory blocks with two and one

memory cells within each block. The inference circuits are implemented by

32-bit floating point (FP), 8-bit fixed point (FxP) and SC designs. Noise is

added in the computation process as soft errors (or flipping faults) with the

signal-to-noise ratio (SNR) computed by

94

Table 5.2: Inference Accuracy Comparison for Reder Grammar Networks

Method
Structure

(block, cell)
Length
(bits)

Acc (%)
(no noise)

Acc (%)
(10 dB
noise)

SC RNN

(3, 2)
32 21 0
64 73 30
128 100 85

(4, 1)
32 20 0
64 73 25
128 100 83

8-bit FxP (3, 2), (4, 1) n/a 100 60
32-bit FP (3, 2), (4, 1) n/a 100 60

SNR (dB) = 10 · log10(
Ps
Pn

), (5.18)

where Ps is the power of the signal and Pn is the power of noise. The inference

accuracy is shown in Table 5.2.

With no noise in the computation process, both the 8-bit FxP design and

the 32-bit FP design achieve 100% in inference accuracy for the (3, 2) and (4,

1) structures, respectively. For the SC design, a longer sequence length leads

to a higher precision, thus improving the computation accuracy. Therefore,

the inference accuracy of the SC-RNN increases with sequence length, from

21% to 100% when the sequence length varies from 32 to 128 bits. With 128

Figure 5.8: Symbol generating rules for the Reder grammar.

95

bits, the SC RNN achieves the same accuracy as any of the binary implemen-

tations in both considered structures. However, with an SNR of 10 dB in the

computation process, the inference accuracy of the SC-RNN is 85%, whereas

the accuracy of the binary designs is reduced to 60%. This result indicates

that the SC-RNN achieves a higher noise tolerance.

Table 5.3: Hardware Efficiency for the Reder Grammar Networks

Area
(µm2)

Power
(mW)

Latency
(µs/sample)

Energy
(nJ/sample)

SC-RNN
(4, 1)

513.0 0.025 1.34 0.034

SC-RNN
(3, 2)

568.0 0.031 1.45 0.045

FxP RNN
(4, 1)

1844.1 0.085 0.47 0.039

FxP RNN
(3, 2)

2011.1 0.093 0.53 0.049

FP RNN
(4, 1)

7380.1 0.419 1.12 0.47

FP RNN
(3, 2)

8662.7 0.491 1.17 0.57

5.3.2 Voice recognition: Japanese vowels

The Japanese vowels dataset includes nine male speakers uttering the Japanese

vowel /ae/ successively. Each instance consists of 12 features with the length

of 14 − 26 in time series. The training dataset includes 270 instances (30

utterances by nine speakers) and the testing dataset includes 370 instances

(24 − 88 utterances by the same nine speakers). In inference, each testing

sample is classified to the correct speaker, resulting in nine labels in total.

The network has a 12-120-9 structure, i.e., with 12 neurons in the input

layer, 120 LSTM neurons in the hidden layer, and nine neurons in the output

layer. The training process is performed by utilizing MATLAB functions, and

the inference process is performed in SC, 8-bit FxP, and 32-bit FP circuits,

respectively, for comparison. The sequence length of the SC implementation

for the Japanese vowel dataset is 256 bits prior to parallelization.

96

In inference, Gaussian white noise is added to the datasets and the com-

putation process to evaluate the noise tolerance of different implementations.

The inference accuracy is shown in Fig. 5.9. The simulation results with no

noise are plotted at an SNR of 20 dB for easier illustration and readability.

Two cases are considered in the experiment. For SC1 and Binary1 in the

first case, the Gaussian white noise is added in the computation process, but

no noise in the dataset. For the same SNR, the inference accuracy of the SC-

RNN is higher than that of the FP implementation, except for the noise-free

result. With no noise, the SC-RNN achieves a lower accuracy (93.8%) than

the FP design (94.9%). For an SNR of 5 dB, the accuracy of the FP design is

73.4%, whereas the accuracy of the SC-RNN is 86.6%.

For SC2 and Binary2 in the second case, a 5-dB noise is added to the

dataset, in addition to the noise in the computation process. The average

accuracy of Binary2 is higher than that of Binary1, indicating that the noise in

the training dataset improves the inference accuracy in the FP implementation

due to regularization [27] [98] [104]. The inference accuracy for SC2 (89.3 −

93.8%) is slightly higher than that for SC1. The inference accuracy for SC2

exceeds that for Binary2 when the SNR is lower than 12 dB. In both cases,

the noise in the computation process significantly affects the accuracy of the

FP circuit; therefore, the SC design achieves a higher noise tolerance than the

Figure 5.9: Inference accuracy of networks for the Japanese vowels dataset
with noise at different SNRs.

97

binary designs.

5.3.3 Voice recognition: TIMIT

The TIMIT dataset has been designed for the development and evaluation

of automatic speech recognition systems. TIMIT contains a total of 6300

sentences, ten sentences spoken by each of 630 speakers from eight major

dialect regions of the United States.

The training process of the network is performed by utilizing MATLAB

functions. For inference, both the SC and the binary circuits (32-bit FP and

8-bit FxP) are implemented for this network. The sequence length of the

SC-RNN is given by 256 bits prior to parallelization. The structure of the

network is given by 12-(250, 250)-(250, 250)-48, that is, the network consists

of one 12-neuron input layer, one 48-neuron output layer and 2 hidden layers

with 250 memory blocks and each memory block including eight cells.

Gaussian white noise is added to the computation process, with the SNR

varying from 5 to 15 dB. The results are shown in Fig. 5.10. The simulation

results with no noise are plotted at an SNR of 15 dB for easier illustration and

readability. With no noise, the highest accuracy of the FP implementation is

81.9%, similar to those in [31], [67], [28], and [64], while the accuracy of the

SC design is 10% lower. However, the SC design achieves a higher accuracy

Figure 5.10: The inference accuracy of networks for the TIMIT dataset with
noise at different SNRs.

98

when the SNR is lower than 12 dB. For an SNR of 5 dB, the accuracy of the

SC-RNN is 57%, which is more than 10% higher than the FP implementation

with the same SNR. The simulation results show that the SC design achieves a

significantly higher noise tolerance than the conventional FP implementation.

5.3.4 Hardware efficiency

ASIC designs of the SC-RNNs and binary Reder grammar networks were as-

sessed with respect to area and energy consumption for inference. All designs

use VHDL models synthesized by the Synopsys Design Compiler in ST’s 28-

nm technology library. The power consumption of the circuit is measured

by the synthesis tool. The computation time is computed by the working

frequency and computation cycles, and the energy is computed based on the

power and computation time. For the networks solving the Reder grammar

prediction problem, the sequence length of the SC-RNN is given by 128 bits,

with no accuracy loss compared to the binary designs. The results are given

in Table 5.3. The latency and energy consumption are obtained for processing

one sample through the network.

The synthesis results indicate that the proposed design requires lower area

and energy consumption compared to the 32-bit FP circuits. The (4, 1) net-

work achieves lower area and energy consumption than the (3, 2) network.

The area, power, and energy of the SC-RNN are, respectively, 6.6% − 7.0%,

6.0%−6.3% and 7.2%−7.9% of the FP design for different network configura-

tions. The computation latency of the SC-RNN is similar to the FP circuit due

to the parallelization. The area of the proposed design is 27.9%−28.2% of the

FxP design, with a longer computation latency (ranging between 2.7×−2.9×).

Overall, the energy of the SC-RNN is slightly lower at 87%− 92% of the 8-bit

FxP design.

The hardware requirement of the networks for the Japanese vowel and

TIMIT dataset is also found for inference and is given in Table 5.4 to 5.6. The

sequence length of the SC-RNN is given by 256 bits prior to parallelization.

The structure of the Japanese vowel is set as 12-120-9. The structures of the

TIMIT network are set as 12-(250, 250)-48, 12-(500, 500)-48, and 12-(250,

99

250)-(250, 250)-48. The SC networks are implemented with 4-fold and 8-fold

parallelization, represented by SC (4-fold) and SC (8-fold) in Table 5.4 to 5.4.

The SC RNNs operate at 200 MHz while the operating frequency of the FP

and FxP circuit is 100 MHz. The binary circuits are not pipelined.

Table 5.4: Area Cost for the Japanese Vowel and TIMIT Networks

Area
(×106 µm2)

Structure
SC

(4-fold)
SC

(8-fold)
FP FxP

12-120-9 0.35 0.56 16.6 4.68
12-(250, 250)-48 1.46 2.32 65.9 17.8
12-(500, 500)-48 3.52 5.80 212.8 59.6
12-(250, 250)-
(250, 250)-48

2.93 4.64 124.7 37.4

Table 5.5: Energy Consumption for the Japanese Vowel and TIMIT Networks

Energy
(µJ)

Structure
SC

(4-fold)
SC

(8-fold)
FP FxP

12-120-9 0.03 0.03 0.25 0.02
12-(250, 250)-48 0.12 0.13 1.23 0.12
12-(500, 500)-48 0.46 0.48 7.08 0.61
12-(250, 250)-
(250, 250)-48

0.31 0.34 3.48 0.28

Table 5.6: Latency for the Japanese Vowel and TIMIT Networks

Latency
(µs)

Structure
SC

(4-fold)
SC

(8-fold)
FP FxP

12-120-9 0.51 0.33 0.46 0.15
12-(250, 250)-48 1.03 0.65 0.58 0.17
12-(500, 500)-48 1.24 0.75 0.75 0.20
12-(250, 250)-
(250, 250)-48

1.67 1.05 0.86 0.25

The latency and energy consumption in Table 5.4 to 5.6 are obtained on

100

average for processing one sample through one neuron. The synthesis re-

sults indicate that with 4-fold parallelization, the SC-RNN incurs a lower area

(1.6%−2.3%) and smaller energy consumption (6.5%−11.2%) than the FP cir-

cuit for different network structures. These figures of merits are 5.9%− 8.2%

and 75.4% − 128.5% of that of the 8-bit FxP designs. The latency of the

proposed design is 2× of the FP implementation and 5× of the FxP imple-

mentation due to the long stochastic sequences. The proposed design achieves

significantly lower power consumption, but at a lower number of frames per

second due to the slower computation speed, compared to the designs in [107]

and [64]. However, the latency of the SC design can be further reduced by us-

ing a higher level of parallelization. For example, with an 8-fold parallelization

in the SC network, the energy consumption is almost identical but the com-

putation speed of the SC RNN is improved by 35.0%−39.5% with an increase

in area, compared to that of the SC network with a 4-fold parallelization.

5.4 Conclusion

In this chapter, an SC design is proposed to reduce the area and energy con-

sumption of RNNs. The circuits are implemented using SC for inference.

The proposed design requires significantly smaller area and lower energy con-

sumption in most cases at the cost of a higher latency compared to conven-

tional binary implementations. The SC-RNN shows significant advantages in

noise tolerance by achieving higher accuracy than binary designs when noise

is present in the computation process.

101

Chapter 6

Conclusion and Discussion

6.1 Conclusion

In this dissertation, multiple types of SC NNs have been proposed using ad-

vanced SC design techniques. The proposed SC NNs are capable of implement-

ing inference and different learning algorithms by reconfiguring the network

structures and the values of layer weights. The research shows the generality

and versatility of various SC circuit designs.

In general, compared to FP and FxP implementations, the SC NNs offer

considerable advantages in circuit area and energy consumption with compa-

rable accuracy and higher noise tolerance. With a higher degree of paralleliza-

tion, SC designs can achieve a similar performance as compared to conventional

binary designs. SC provides an alternative solution to NN implementations

with clear advantages in machine learning applications.

6.2 Comparison with Binarized/Quantized Neu-

ral Networks

Albeit with a different origin, SC NNs share the same design objectives with

some other types of NNs proposed to improve the hardware and energy ef-

ficiency. For example, binarized neural networks (BNNs) [42] and quantized

neural networks (QNNs) [43] have been proposed to obtain a tradeoff between

accuracy and energy consumption. In a BNN, the layer weights and the inter-

mediate computation results are converted from real values to +1 or −1. By

102

doing so, the multiplications can be eliminated and replaced with XNOR op-

erations. Moreover, the outputs of neurons are binarized and multiplied with

the binarized layer weights during the forward propagation. These signals

are also used to compute the local gradient, whereas the original real-valued

parameters are used for updating the layer weights [42].

Reference [108] shows that an SC NN and a BNN can be transformed into

each other without changing the computation accuracy. Moreover, the energy

consumptions of SC NNs and BNNs similarly increase (in the same order) with

the growth of the network size.

In our work [72], an SC-MLP and a BNN are implemented with the same

network structure and compared with respect to accuracy, area and energy

consumption. The SC-MLP achieves slightly higher inference accuracy. In

the BNN, batch normalization is performed and the layer weights are updated

and stored with full precision (i.e., 8 bits) at the end of the BP. The SC-MLP

consumes smaller area (80.7% − 87.1%) and lower energy (by approximately

20%) compared to the BNN.

Both SC NNs and BNNs achieve low hardware and power consumption

because of the simpler arithmetic circuits compared to FP NNs. SC NNs share

the use of hardware and adopt several sequence length reduction methods to

achieve low energy consumption. A higher degree of parallelism is also required

to achieve a low latency in SC designs. SC implementations achieve relatively

high noise tolerance compared to BNNs and FP NNs, whereas BNNs are better

optimized in the literature. Table 6.1 summarizes the performance comparison

between SC NNs, BNNs, and FP NNs.

Binarization, or in general, quantization, can be integrated with SC to

obtain a higher hardware efficiency. In the SC-quantized NN (SC-QNN) [58],

the layer weights are quantized into 2-bit to 4-bit representations and encoded

by stochastic quantized (SQ) bit-streams (Fig. 2.21). The SC-QNN achieves a

similar inference accuracy with 69×, 119×, and 10× smaller area, power, and

energy, respectively, compared to binary implementations. It shows that BNNs

and QNNs can be viewed as highly optimized SC NNs with 1-bit sequences or

sequences encoding quantized probabilities in the computation process. These

103

Table 6.1: Performance Comparison of Neural Networks

SC NNs BNNs FP NNs
Hardware

cost
low low high

Power
consumption

low low high

Energy
consumption

low
in most cases

low high

Latency high low high
Noise

tolerance
high low low

implementations expand the usage of SC techniques in hardware and energy

efficient NN designs.

6.3 Future Work

The proposed circuits could be integrated with designs in the literature to

implement SC CNNs in future research. For example, the A-SCAU could be

utilized to implement activation functions in convolutional layers and fully-

connected layers while average pooling layers could be implemented by MUX-

based SC adders. Additionally, ESL components could be used in SC CNNs

to improve the computation accuracy.

To further improve the energy efficiency and performance of the SC NNs,

low-discrepancy sequences [2] [69] could be used with the proposed designs

without reducing the computation accuracy. Concurrently, an SC gradient de-

scent circuit (GDC) has been developed to implement the learning algorithm

using single-bit sequences in so-called dynamic stochastic computing [70]. The

hardware and energy efficiency of SC circuits can be significantly improved by

the recently developed Adiabatic Quantum-Flux-Parametron (AQFP) technol-

ogy [9]. These new developments, when combined with the circuits presented

in this dissertation, could lead to very efficient NN designs for both training

and inference. Finally, a general design platform for NNs could be developed

based on SC circuits. This platform will include fundamental arithmetic cir-

cuits, such as the SC adders and the activation circuits for general neuron

104

design, and special circuits for various NN implementations, such as the max

and average pooling circuits used in the pooling layers of CNNs.

105

References

[1] Armin Alaghi and John P Hayes. Survey of stochastic computing. ACM
TECS, 12(2s):92, 2013.

[2] Armin Alaghi and John P Hayes. Fast and accurate computation using
stochastic circuits. In Proceedings of the Conference on Design, Au-
tomation & Test in Europe, page 76. European Design and Automation
Association, 2014.

[3] Armin Alaghi and John P Hayes. Dimension reduction in statistical
simulation of digital circuits. In Proceedings of the Symposium on Theory
of Modeling & Simulation: DEVS Integrative M&S Symposium, pages 1–
8, 2015.

[4] Armin Alaghi and John P Hayes. On the functions realized by stochastic
computing circuits. In Proceedings of the 25th Great Lakes Symposium
on VLSI, pages 331–336, 2015.

[5] Armin Alaghi, Weikang Qian, and John P Hayes. The promise and
challenge of stochastic computing. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 37(8):1515–1531, 2017.

[6] Arash Ardakani, François Leduc-Primeau, Naoya Onizawa, Takahiro
Hanyu, and Warren J Gross. VLSI implementation of deep neural net-
work using integral stochastic computing. IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, 2017.

[7] Bradley D Brown and Howard C Card. Stochastic neural computation. I.
computational elements. IEEE Transactions on Computers, 50(9):891–
905, 2001.

[8] Bradley D Brown and Howard C Card. Stochastic neural computa-
tion. II. soft competitive learning. IEEE Transactions on Computers,
50(9):906–920, 2001.

[9] Ruizhe Cai, Ao Ren, Olivia Chen, Ning Liu, Caiwen Ding, Xuehai
Qian, Jie Han, Wenhui Luo, Nobuyuki Yoshikawa, and Yanzhi Wang.
A stochastic-computing based deep learning framework using adiabatic
quantum-flux-parametron superconducting technology. In Proceedings
of the 46th International Symposium on Computer Architecture, pages
567–578. ACM, 2019.

[10] Zhaowei Cai, Xiaodong He, Jian Sun, and Nuno Vasconcelos. Deep learn-
ing with low precision by half-wave gaussian quantization. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 5918–5926, 2017.

106

[11] Vincent Canals, Antoni Morro, Antoni Oliver, Miquel L Alomar, and
Josep L Rosselló. A new stochastic computing methodology for efficient
neural network implementation. IEEE Transactions on Neural Networks
and Learning Systems, 27(3):551–564, 2016.

[12] Yun-Nan Chang and Keshab K Parhi. Architectures for digital filters
using stochastic computing. In 2013 IEEE International Conference on
Acoustics, Speech and Signal Processing, pages 2697–2701. IEEE, 2013.

[13] Yu-Hsin Chen, Tushar Krishna, Joel S Emer, and Vivienne Sze. Eye-
riss: An energy-efficient reconfigurable accelerator for deep convolutional
neural networks. IEEE Journal of Solid-State Circuits, 52(1):127–138,
2016.

[14] Yunji Chen, Tao Luo, Shaoli Liu, Shijin Zhang, Liqiang He, Jia Wang,
Ling Li, Tianshi Chen, Zhiwei Xu, Ninghui Sun, et al. Dadiannao:
A machine-learning supercomputer. In Proceedings of the 47th Annual
IEEE/ACM International Symposium on Microarchitecture, pages 609–
622. IEEE Computer Society, 2014.

[15] Shao-I Chu, Chen-En Hsieh, and Yu-Jung Huang. Design of FSM-based
function with reduced number of states in integral stochastic computing.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
2019.

[16] Dan Ciregan, Ueli Meier, and Jürgen Schmidhuber. Multi-column deep
neural networks for image classification. In IEEE Conf. on. Computer
Vision and Pattern Recognition (CVPR), pages 3642–3649, 2012.

[17] George E Dahl, Dong Yu, Li Deng, and Alex Acero. Context-dependent
pre-trained deep neural networks for large-vocabulary speech recogni-
tion. IEEE Transactions on Audio, Speech, and Language Processing,
20(1):30–42, 2012.

[18] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-
Fei. Imagenet: A large-scale hierarchical image database. In 2009 IEEE
conference on Computer Vision and Pattern Recognition, pages 248–255.
Ieee, 2009.

[19] Jeffery A Dickson, Robert D McLeod, and HC Card. Stochastic arith-
metic implementations of neural networks with in situ learning. In IEEE
International Conference on Neural Networks, pages 711–716. IEEE,
1993.

[20] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient meth-
ods for online learning and stochastic optimization. Journal of Machine
Learning Research, 12(Jul):2121–2159, 2011.

[21] S Rasoul Faraji, M Hassan Najafi, Bingzhe Li, Kia Bazargan, and
David J Lilja. Energy-efficient convolutional neural networks with de-
terministic bit-stream processing. In Design, Automation, and Test in
Europe (DATE), 2019.

[22] Rida T Farouki and VT Rajan. On the numerical condition of polynomi-
als in Bernstein form. Computer Aided Geometric Design, 4(3):191–216,
1987.

107

[23] David Fick, Gyouho Kim, Allan Wang, David Blaauw, and Dennis
Sylvester. Mixed-signal stochastic computation demonstrated in an im-
age sensor with integrated 2D edge detection and noise filtering. In
Proceedings of the IEEE 2014 Custom Integrated Circuits Conference,
pages 1–4. IEEE, 2014.

[24] Rafael Fierro and Frank L Lewis. Control of a nonholonomic mobile
robot using neural networks. IEEE Transactions on Neural Networks,
9(4):589–600, 1998.

[25] John S Garofolo. TIMIT acoustic phonetic continuous speech corpus.
Linguistic Data Consortium, 1993.

[26] F. A. Gers, J. Schmidhuber, and F. Cummins. Learning to forget: Con-
tinual prediction with LSTM. Neural Computation, 12(10):2451–2471,
2000.

[27] Alex Graves. Practical variational inference for neural networks. In
Advances in Neural Information Processing Systems, pages 2348–2356,
2011.

[28] Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. Speech
recognition with deep recurrent neural networks. In 2013 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing, pages
6645–6649. IEEE, 2013.

[29] Warren J Gross, Vincent C Gaudet, and Aaron Milner. Stochastic imple-
mentation of LDPC decoders. In Conference Record of the Thirty-Ninth
Asilomar Conference onSignals, Systems and Computers, 2005., pages
713–717. IEEE, 2005.

[30] Jie Han, Hao Chen, Jinghang Liang, Peican Zhu, Zhixi Yang, and
Fabrizio Lombardi. A stochastic computational approach for accurate
and efficient reliability evaluation. IEEE Transactions on Computers,
63(6):1336–1350, 2012.

[31] Song Han, Junlong Kang, Huizi Mao, Yiming Hu, Xin Li, Yubin Li,
Dongliang Xie, Hong Luo, Song Yao, Yu Wang, et al. Ese: Efficient
speech recognition engine with sparse LSTM on FPGA. In Proceedings
of the 2017 ACM/SIGDA International Symposium on FPGA, pages
75–84. ACM, 2017.

[32] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A
Horowitz, and William J Dally. EIE: efficient inference engine on com-
pressed deep neural network. In 2016 ACM/IEEE 43rd Annual Inter-
national Symposium on Computer Architecture (ISCA), pages 243–254.
IEEE, 2016.

[33] Song Han, Jeff Pool, John Tran, and William Dally. Learning both
weights and connections for efficient neural network. In Advances in
Neural Information Processing Systems, pages 1135–1143, 2015.

[34] John P Hayes. Introduction to stochastic computing and its chal-
lenges. In Proceedings of the 52nd Annual Design Automation Con-
ference, page 59. ACM, 2015.

108

[35] Simon S Haykin. Neural networks and learning machines, volume 3.
Pearson Upper Saddle River, NJ, USA:, 2009.

[36] Hiroomi Hikawa. A digital hardware pulse-mode neuron with piece-
wise linear activation function. IEEE Transactions on Neural Networks,
14(5):1028–1037, 2003.

[37] Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl, Abdel-rahman
Mohamed, Navdeep Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick
Nguyen, Tara N Sainath, et al. Deep neural networks for acoustic mod-
eling in speech recognition: The shared views of four research groups.
IEEE Signal Processing Magazine, 29(6):82–97, 2012.

[38] Geoffrey E Hinton, Simon Osindero, and Yee-Whye Teh. A fast learning
algorithm for deep belief nets. Neural Computation, 18(7):1527–1554,
2006.

[39] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory.
Neural Computation, 9(8):1735–1780, 1997.

[40] John J Hopfield. Neural networks and physical systems with emergent
collective computational abilities. Proceedings of the National Academy
of Sciences, 79(8):2554–2558, 1982.

[41] Ruofei Hu, Binren Tian, Shouyi Yin, and Shaojun Wei. Optimization of
softmax layer in deep neural network using integral stochastic computa-
tion. Journal of Low Power Electronics, 14(4):475–480, 2018.

[42] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and
Yoshua Bengio. Binarized neural networks. In Advances in Neural In-
formation Processing Systems, pages 4107–4115, 2016.

[43] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and
Yoshua Bengio. Quantized neural networks: Training neural networks
with low precision weights and activations. The Journal of Machine
Learning Research, 18(1):6869–6898, 2017.

[44] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift. arXiv preprint
arXiv:1502.03167, 2015.

[45] Shuiwang Ji, Wei Xu, Ming Yang, and Kai Yu. 3D convolutional neural
networks for human action recognition. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 35(1):221–231, 2013.

[46] Yuan Ji, Feng Ran, Cong Ma, and David J Lilja. A hardware implemen-
tation of a radial basis function neural network using stochastic logic. In
Proceedings of the 2015 Design, Automation & Test in Europe Confer-
ence & Exhibition, pages 880–883. EDA Consortium, 2015.

[47] Kyounghoon Kim, Jungki Kim, Joonsang Yu, Jungwoo Seo, Jongeun
Lee, and Kiyoung Choi. Dynamic energy-accuracy trade-off us-
ing stochastic computing in deep neural networks. In 2016 53nd
ACM/EDAC/IEEE Design Automation Conference (DAC), pages 1–6.
IEEE, 2016.

109

[48] Kyounghoon Kim, Jongeun Lee, and Kiyoung Choi. An energy-efficient
random number generator for stochastic circuits. In 2016 21st Asia and
South Pacific Design Automation Conference (ASP-DAC), pages 256–
261. IEEE, 2016.

[49] Yong-Deok Kim, Eunhyeok Park, Sungjoo Yoo, Taelim Choi, Lu Yang,
and Dongjun Shin. Compression of deep convolutional neural net-
works for fast and low power mobile applications. arXiv preprint
arXiv:1511.06530, 2015.

[50] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980, 2014.

[51] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of fea-
tures from tiny images. Technical report, Citeseer, 2009.

[52] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classi-
fication with deep convolutional neural networks. In Advances in Neural
Information Processing Systems, pages 1097–1105, 2012.

[53] Mineichi Kudo, Jun Toyama, and Masaru Shimbo. Multidimensional
curve classification using passing-through regions. Pattern Recognition
Letters, 20(11-13):1103–1111, 1999.

[54] Yann LeCun, Léon Bottou, Yoshua Bengio, Patrick Haffner, et al.
Gradient-based learning applied to document recognition. Proceedings
of the IEEE, 86(11):2278–2324, 1998.

[55] Vincent T Lee, Armin Alaghi, John P Hayes, Visvesh Sathe, and Luis
Ceze. Energy-efficient hybrid stochastic-binary neural networks for near-
sensor computing. In Proceedings of the Conference on Design, Automa-
tion & Test in Europe, pages 13–18. European Design and Automation
Association, 2017.

[56] Bingzhe Li, M Hassan Najafi, and David J Lilja. An FPGA implemen-
tation of a restricted Boltzmann machine classifier using stochastic bit
streams. In IEEE Conf. on. Application-specific Systems, Architectures
and Processors (ASAP), pages 68–69, 2015.

[57] Bingzhe Li, M Hassan Najafi, and David J Lilja. Using stochastic com-
puting to reduce the hardware requirements for a restricted Boltzmann
machine classifier. In Proceedings of the 2016 ACM/SIGDA Interna-
tional Symposium on Field-Programmable Gate Arrays, pages 36–41.
ACM, 2016.

[58] Bingzhe Li, M Hassan Najafi, Bo Yuan, and David J Lilja. Quantized
neural networks with new stochastic multipliers. In 2018 19th Interna-
tional Symposium on Quality Electronic Design (ISQED), pages 376–
382. IEEE, 2018.

[59] Bingzhe Li, Yaobin Qin, Bo Yuan, and David J Lilja. Neural network
classifiers using a hardware-based approximate activation function with
a hybrid stochastic multiplier. ACM Journal on Emerging Technologies
in Computing Systems (JETC), 15(1):12, 2019.

110

[60] Ji Li, Ao Ren, Zhe Li, Caiwen Ding, Bo Yuan, Qinru Qiu, and Yanzhi
Wang. Towards acceleration of deep convolutional neural networks us-
ing stochastic computing. In 2017 22nd Asia and South Pacific Design
Automation Conference (ASP-DAC), pages 115–120. IEEE, 2017.

[61] Peng Li and David J Lilja. Using stochastic computing to implement
digital image processing algorithms. In 2011 IEEE 29th International
Conference on Computer Design (ICCD), pages 154–161. IEEE, 2011.

[62] Peng Li, David J Lilja, Weikang Qian, Marc D Riedel, and Kia Bazargan.
Logical computation on stochastic bit streams with linear finite-state
machines. IEEE Transactions on Computers, 63(6):1474–1486, 2014.

[63] Peng Li, Weikang Qian, Marc D Riedel, Kia Bazargan, and David J
Lilja. The synthesis of linear finite state machine-based stochastic com-
putational elements. In 17th Asia and South Pacific Design Automation
Conference, pages 757–762. IEEE, 2012.

[64] Zhe Li, Caiwen Ding, Siyue Wang, Wujie Wen, Youwei Zhuo, Chang Liu,
Qinru Qiu, Wenyao Xu, Xue Lin, Xuehai Qian, et al. E-RNN: Design
optimization for efficient recurrent neural networks in FPGAs. arXiv
preprint arXiv:1812.07106, 2018.

[65] Zhe Li, Ji Li, Ao Ren, Ruizhe Cai, Caiwen Ding, Xuehai Qian, Jef-
frey Draper, Bo Yuan, Jian Tang, Qinru Qiu, et al. HEIF: Highly ef-
ficient stochastic computing based inference framework for deep neural
networks. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 2018.

[66] Zhe Li, Ao Ren, Ji Li, Qinru Qiu, Yanzhi Wang, and Bo Yuan. Dscnn:
Hardware-oriented optimization for stochastic computing based deep
convolutional neural networks. In 2016 IEEE 34th International Con-
ference on Computer Design (ICCD), pages 678–681. IEEE, 2016.

[67] Zhe Li, Shuo Wang, Caiwen Ding, Qinru Qiu, Yanzhi Wang, and Yun
Liang. Efficient recurrent neural networks using structured matrices in
FPGAs. arXiv preprint arXiv:1803.07661, 2018.

[68] Siting Liu and Jie Han. Energy efficient stochastic computing with Sobol
sequences. In Proceedings of the Conference on Design, Automation
& Test in Europe, pages 650–653. European Design and Automation
Association, 2017.

[69] Siting Liu and Jie Han. Toward energy-efficient stochastic circuits us-
ing parallel Sobol sequences. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 26(7):1326–1339, 2018.

[70] Siting Liu, Honglan Jiang, Leibo Liu, and Jie Han. Gradient descent us-
ing stochastic circuits for efficient training of learning machines. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Sys-
tems, 37(11):2530–2541, 2018.

[71] Yidong Liu, Leibo Liu, Fabrizio Lombardi, and Jie Han. An energy-
efficient and noise-tolerant recurrent neural network using stochastic
computing. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, 27(9):2213–2221, 2019.

111

[72] Yidong Liu, Siting Liu, Yanzhi Wang, Fabrizio Lombardi, and Jie Han.
A stochastic computational multi-layer perceptron with backward prop-
agation. IEEE Transactions on Computers, 67(9):1273–1286, 2018.

[73] Yidong Liu, Yanzhi Wang, Fabrizio Lombardi, and Jie Han. An energy-
efficient online-learning stochastic computational deep belief network.
IEEE Journal on Emerging and Selected Topics in Circuits and Systems,
8(3):454–465, 2018.

[74] Jianchang Mao and Anil K Jain. Artificial neural networks for feature ex-
traction and multivariate data projection. IEEE Transactions on Neural
Networks, 6(2):296–317, 1995.

[75] Shunji Mori, Hirobumi Nishida, and Hiromitsu Yamada. Optical Char-
acter Recognition. John Wiley & Sons, Inc., 1999.

[76] Vinod Nair and Geoffrey E Hinton. 3D object recognition with deep
belief nets. In Advances in Neural Information Processing Systems, pages
1339–1347, 2009.

[77] Ashkan Hosseinzadeh Namin, Karl Leboeuf, Roberto Muscedere,
Huapeng Wu, and Majid Ahmadi. Efficient hardware implementation
of the hyperbolic tangent sigmoid function. In 2009 IEEE International
Symposium on Circuits and Systems, pages 2117–2120. IEEE, 2009.

[78] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu,
and Andrew Y Ng. Reading digits in natural images with unsupervised
feature learning. In NIPS Workshop on Deep Learning and Unsupervised
Feature Learning, volume 2011, page 5, 2011.

[79] Amos R Omondi and Jagath Chandana Rajapakse. FPGA Implemen-
tations of Neural Networks, volume 365. Springer, 2006.

[80] Naoya Onizawa, Shunsuke Koshita, and Takahiro Hanyu. Scaled IIR
filter based on stochastic computation. In IEEE MWSCAS, pages 1–4,
2015.

[81] Genevieve B Orr and Klaus-Robert Müller. Neural Networks: Tricks of
the Trade. Springer, 2003.

[82] Keshab K Parhi and Yin Liu. Architectures for IIR digital filters us-
ing stochastic computing. In 2014 IEEE International Symposium on
Circuits and Systems (ISCAS), pages 373–376. IEEE, 2014.

[83] Weikang Qian, Xin Li, Marc D Riedel, Kia Bazargan, and David J
Lilja. An architecture for fault-tolerant computation with stochastic
logic. IEEE Transactions on Computers, 60(1):93–105, 2011.

[84] Weikang Qian and Marc D Riedel. The synthesis of robust polynomial
arithmetic with stochastic logic. In Proceedings of the 45th Annual De-
sign Automation Conference, pages 648–653. ACM, 2008.

[85] Atul Rahman, Jongeun Lee, and Kiyoung Choi. Efficient FPGA acceler-
ation of convolutional neural networks using logical-3D compute array.
In 2016 Design, Automation & Test in Europe Conference & Exhibition
(DATE), pages 1393–1398. IEEE, 2016.

112

[86] Ao Ren, Zhe Li, Caiwen Ding, Qinru Qiu, Yanzhi Wang, Ji Li, Xuehai
Qian, and Bo Yuan. Sc-dcnn: Highly-scalable deep convolutional neural
network using stochastic computing. ACM SIGOPS Operating Systems
Review, 51(2):405–418, 2017.

[87] Ao Ren, Zhe Li, Yanzhi Wang, Qinru Qiu, and Bo Yuan. Designing re-
configurable large-scale deep learning systems using stochastic comput-
ing. In 2016 IEEE International Conference on Rebooting Computing
(ICRC), pages 1–7. IEEE, 2016.

[88] Brian R.Gaines. Stochastic computing systems. In Advances in Infor-
mation Systems Science, pages 37–172. Springer, 1969.

[89] Josep L Rosselló, Vincent Canals, and Antoni Morro. Probabilistic-
based neural network implementation. In The 2012 International Joint
Conference on Neural Networks (IJCNN), pages 1–7. IEEE, 2012.

[90] Haşim Sak, Andrew Senior, and Françoise Beaufays. Long short-term
memory recurrent neural network architectures for large scale acoustic
modeling. In Fifteenth Annual Conference of the ISCA, 2014.

[91] Kayode Sanni, Guillaume Garreau, Jamal Lottier Molin, and Andreas G
Andreou. FPGA implementation of a deep belief network architecture
for character recognition using stochastic computation. In 2015 49th
Annual Conference on Information Sciences and Systems (CISS), pages
1–5. IEEE, 2015.

[92] Jürgen Schmidhuber. Deep learning in neural networks: An overview.
Neural Networks, 61:85–117, 2015.

[93] Hyeonuk Sim, Saken Kenzhegulov, and Jongeun Lee. Dps: Dynamic
precision scaling for stochastic computing-based deep neural networks. In
Proceedings of the 55th Annual Design Automation Conference, page 13.
ACM, 2018.

[94] Hyeonuk Sim and Jongeun Lee. A new stochastic computing multiplier
with application to deep convolutional neural networks. In 2017 54th
ACM/EDAC/IEEE Design Automation Conference (DAC), pages 1–6.
IEEE, 2017.

[95] Hyeonuk Sim, Dong Nguyen, Jongeun Lee, and Kiyoung Choi. Scalable
stochastic-computing accelerator for convolutional neural networks. In
2017 22nd Asia and South Pacific Design Automation Conference (ASP-
DAC), pages 696–701. IEEE, 2017.

[96] Patrice Y Simard, David Steinkraus, John C Platt, et al. Best practices
for convolutional neural networks applied to visual document analysis.
In International Conference on Document Analysis and Recognition, vol-
ume 3, pages 958–962, 2003.

[97] Anthony W Smith and David Zipser. Learning sequential structure with
the real-time recurrent learning algorithm. International Journal of Neu-
ral Systems, 1(02):125–131, 1989.

113

[98] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and
Ruslan Salakhutdinov. Dropout: A simple way to prevent neural net-
works from overfitting. The Journal of Machine Learning Research,
15(1):1929–1958, 2014.

[99] Christian Szegedy, Alexander Toshev, and Dumitru Erhan. Deep neu-
ral networks for object detection. In Advances in Neural Information
Processing Systems, pages 2553–2561, 2013.

[100] Yee Whye Teh and Geoffrey E Hinton. Rate-coded restricted Boltz-
mann machines for face recognition. In Advances in Neural Information
Processing Systems, pages 908–914, 2001.

[101] Pai-Shun Ting and John Patrick Hayes. Stochastic logic realization of
matrix operations. In 2014 17th Euromicro Conference on Digital System
Design, pages 356–364. IEEE, 2014.

[102] Gerard J Tortora and Bryan H Derrickson. Principles of Anatomy and
Physiology. John Wiley & Sons, 2008.

[103] Valle, Maurizio, Caviglia, Daniele D, and Giacomo M Bisio. An ex-
perimental analog VLSI neural network with on-chip back-propagation
learning. Analog Integrated Circuits and Signal Processing, 9(3):231–245,
1996.

[104] Li Wan, Matthew Zeiler, Sixin Zhang, Yann L Cun, and Rob Fergus.
Regularization of neural networks using dropconnect. In Proceedings of
the 30th International Conference on Machine Learning (ICML), pages
1058–1066, 2013.

[105] Ran Wang, Jie Han, Bruce F Cockburn, and Duncan G Elliott. Design,
evaluation and fault-tolerance analysis of stochastic FIR filters. Micro-
electronics Reliability, 57:111–127, 2016.

[106] Ran Wang, Jie Han, Bruce F Cockburn, and Duncan G Elliott. Stochas-
tic circuit design and performance evaluation of vector quantization for
different error measures. IEEE Transactions on Very Large Scale Inte-
gration (VLSI) Systems, 24(10):3169–3183, 2016.

[107] Shuo Wang, Zhe Li, Caiwen Ding, Bo Yuan, Qinru Qiu, Yanzhi
Wang, and Yun Liang. C-LSTM: Enabling efficient LSTM using struc-
tured compression techniques on FPGAs. In Proceedings of the 2018
ACM/SIGDA International Symposium on FPGAs, pages 11–20. ACM,
2018.

[108] Yanzhi Wang, Zheng Zhan, Jiayu Li, Jian Tang, Bo Yuan, Liang Zhao,
Wujie Wen, Siyue Wang, and Xue Lin. On the universal approximation
property and equivalence of stochastic computing-based neural networks
and binary neural networks. arXiv preprint arXiv:1803.05391, 2018.

[109] Ronald J Williams and David Zipser. A learning algorithm for con-
tinually running fully recurrent neural networks. Neural Computation,
1(2):270–280, 1989.

[110] Shi Xingjian, Zhourong Chen, Hao Wang, Dit-Yan Yeung, Wai-Kin
Wong, and Wang-chun Woo. Convolutional LSTM network: A machine
learning approach for precipitation nowcasting. In Advances in Neural
Information Processing Systems, pages 802–810, 2015.

114

[111] Joonsang Yu, Kyounghoon Kim, Jongeun Lee, and Kiyoung Choi. Accu-
rate and efficient stochastic computing hardware for convolutional neural
networks. In 2017 IEEE International Conference on Computer Design
(ICCD), pages 105–112. IEEE, 2017.

[112] Aidyn Zhakatayev, Sugil Lee, Hyeonuk Sim, and Jongeun Lee. Sign-
magnitude SC: getting 10X accuracy for free in stochastic computing for
deep neural networks. In 2018 55th ACM/ESDA/IEEE Design Automa-
tion Conference (DAC), pages 1–6. IEEE, 2018.

[113] Guoqiang Peter Zhang. Neural networks for classification: a survey.
IEEE Transactions on Systems, Man, and Cybernetics, Part C (Appli-
cations and Reviews), 30(4):451–462, 2000.

[114] Peican Zhu, Jie Han, Leibo Liu, and Fabrizio Lombardi. A stochastic
approach for the analysis of dynamic fault trees with spare gates under
probabilistic common cause failures. IEEE Transactions on Reliability,
64(3):878–892, 2015.

115

	List of Abbreviations
	Introduction
	Motivation
	Objectives
	Dissertation Outline

	Review
	Background
	Stochastic Computing Neurons
	Overall structure
	Multipliers
	Adders
	Activation circuits

	SC Neural Networks
	Forward propagation circuits
	BP circuits
	Neuron circuits for CNNs

	Advances in SC Techniques in NNs
	Computation range expansion
	Efficient encoding

	Accuracy and Hardware Efficiency of SC NNs
	Accuracy
	Hardware efficiency

	A Stochastic Computing Multi-layer Perceptron
	SC-MLP Design
	Overall design
	Training algorithm
	Forward propagation component
	Backward propagation component
	LFSR sharing structure

	Experiments
	Accuracy comparison
	Hardware efficiency

	Conclusion

	A Stochastic Computing Deep Belief Network
	Review
	The structure of DBNs
	Adaptive moment estimation (ADAM)

	Design of the SC-DBN
	Overall structure
	Encoder-decoder design
	Design of the reconfigurable A-SCAU
	Immune-to-correlation feature
	RNG sharing
	Design of ADAM circuits

	Evaluation
	Accuracy
	Hardware efficiency for pre-trained implementations
	Hardware efficiency for online learning
	SC-DBN with the ADAM circuit

	Conclusion

	A Stochastic Computing Recurrent Neural Network
	Background
	Recurrent neural networks (RNNs)
	Long-short term memory (LSTM)

	SC-RNN Design
	Overall design
	Hybrid structure of the memory block

	Experiments
	Reder grammar problems
	Voice recognition: Japanese vowels
	Voice recognition: TIMIT
	Hardware efficiency

	Conclusion

	Conclusion and Discussion
	Conclusion
	Comparison with Binarized/Quantized Neural Networks
	Future Work

	References

