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Abstract 

Over the last few decades, the field of proteomics have developed rapidly owing to 

advancement in genomic and transcriptomic technologies contributing to compilation vast 

quantities of protein sequence libraries. Proteomics, the study of global protein composition in a 

biological system, have become priority within biological and health sciences for its capability to 

elucidate subtle complexity of protein biochemistry on a larger system-wide scale with relatively 

lower time cost. Vast protein sequence libraries coupled with advancement in mass spectrometry 

and liquid chromatography pushed mass-spectrometry based proteomics to the forefront of protein 

investigation in terms of protein identification and more recently protein quantification. 

Quantification in mass spectrometry is primarily focused on relative approaches where 

label-free comparative protein quantification has been popular recently compared to label-based 

methods due to its versatility of applications from simple study of individual proteins to complex 

samples covering wide range of sample types; purified proteins, cell lysates, biological fluids and 

tissue and organs. Several label-free quantification techniques have been developed to determine 

protein abundance. However, label-free quantification has several limitations that require 

optimization for its implementation. Issues such as data normalization, treatment of missing data 

and statistical approach and corrections are all active research areas. Thus, the best strategy for the 

execution of a label-free quantification analysis is yet to be finalized.  

Additionally, the focus on quantification by mass spectrometry have allowed for the 

development of several data acquisition methods each with their own advantages and 

disadvantages with respect to protein identification, quantification accuracy and sensitivity. 

Traditionally, proteomics experiments have focused on discovery based techniques, which tries to 
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maximize protein identification such as the data dependent acquisition (DDA). Later, several 

quantification-focused data acquisition methods were introduced such as selected reaction 

monitoring (SRM) and parallel reaction monitoring (PRM) that primarily quantifies protein based 

on prior knowledge of protein identification. More recently, a more hybrid approach that boasts 

excellent protein identification rate while retaining reproducible and sensitive quantification have 

been introduced, the data independent acquisition (DIA). 

The practicality and suitability of label-free quantification method to be applied in wide range 

of biological systems including clinical samples have lead it to become our lab’s choice for 

quantification method. Our group have worked to develop robust, reproducible and reliable 

approach towards label-free proteomics analyses. We have focused on sample specific 

normalization utilizing multiple data acquisition strategies for label-free proteomics studies over a 

wide range of biological systems. This thesis focuses on the application of our mass spectrometry 

based label-free quantification strategy for comparative proteomics analysis via multiple data 

acquisition methods in the characterization of: 

1. The proteomics changes in HEK293T cell cultures upon over expression of miR23~24 

miRNA cluster via data dependent acquisition. 

2. The proteomics differences between blood serum of Myasthenia Gravis patients and 

healthy control to identify potential biomarker candidates. Initial discovery was based on 

data dependent acquisition and further validation by targeted proteomics approach via 

parallel reaction monitoring. 

3. The differential expression of ribosomal proteins in mouse tissues and cell lines to 

investigate ribosomal proteins’ role in specialization and development of tissues. 

Ribosomal proteins are quantified primarily by parallel reaction monitoring method. 
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1 Chapter 1:  

Introduction to Proteomics 
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1.1 Overview of Proteomics 

Marc Wilkins of Macquarie University introduced the word ‘proteome’ in 1994. A 

portmanteau of protein and genome, proteome refers to the total composition and abundance of 

proteins expressed in any biological system(Wasinger et al., 1995; Wilkins et al., 1996). Proteins, 

encoded by the genome, are the major macromolecule in organisms, where all biological processes 

are carried out by or with the help of proteins (Feijó Delgado et al., 2013; Polakis & Bartley, 1966; 

Yamada & Sgarbieri, 2005). The fundamental of biology depends on the functions of proteins such 

as catalyzing metabolic reactions, providing structural integrity to cells, responding to stimuli, 

transporting molecule. Proteomics is a large-scale analysis of proteins involving but not limited to 

their structure, spatial distribution, temporal dynamics, response to stimuli in cell, tissue, or 

organisms under a set condition (Christoforou et al., 2016; Lindqvist et al., 2018; Marx, 2015; 

Rigbolt et al., 2011).    

Improvements in modern nucleotide sequencing techniques for both DNA and RNA as 

well as genome sequencing projects contributed to the field of genomics and transcriptomics 

enormous amounts of data with respect to protein-coding sequences (A. Bateman et al., 2015; 

Craig Venter et al., 2001; Leinonen et al., 2004). Proteomics, an interdisciplinary field, benefited 

massively from achievements in the field of genomic, which provided the blueprint of possible 

gene products compiled in expansive databases that are the focus of proteomic studies. While the 

genetic makeup of an organism determines the system’s proteome, it can’t predict the dynamics 

of proteome at any point in time. Even within a cell, as it progresses through its life cycle, distinct 

set of genes are expressed thus varying its proteome composition depending on spatial and 

temporal location, cell-cycle progression, epigenetic regulation, cell type, cellular metabolism and 
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energy demands and the cellular environment (Azimifar et al., 2014; Bartke et al., 2013; Geiger et 

al., 2012; Grünenfelder et al., 2001; Lindqvist et al., 2018; Ly et al., 2014; Marx, 2015; Minamoto 

et al., 1999; Rigbolt et al., 2011). Previously, protein quantities were always inferred from quantity 

of mRNA via RNA analysis. However, this was proven to be inaccurate as the correlation between 

mRNA amount and protein abundance is very poor (Edfors et al., 2016; Vogel & Marcotte, 2012). 

mRNAs are not always translated to protein and several factors affect the rate of protein translation 

from mRNAs such as mRNA half-life, cellular physiology, presence of specialized ribosomes 

(Wegler et al., 2020). Thus, its incredibly difficult to predict number of proteins translated per 

molecule of mRNA making mRNA quantification to predict protein abundance almost irrelevant. 

The complexity of the proteome is further increased by post-translational modification of proteins 

to further fine-tune their physiological activity and interactions with other biomolecules. Plenty of 

modifications on proteins has been discovered including but not limited to phosphorylation, 

ubiquitination, glycosylation, methylation, acetylation, oxidation or combination of modifications 

that alters the chemical and physical properties as well as the structures of proteins (Hirota et al., 

2003; Huddleston et al., 1993; Neubauer & Mann, 1999; Peng et al., 2003). This led to the creation 

of subfields in proteomics such as phosphoproteomics and glycoproteomics that study post-

translational modifications of proteins (Gruhler et al., 2005; Kaji et al., 2003; Qiu & Regnier, 2005; 

Y. Zhang et al., 2005). 

Proteomics, if well uncovered, promises great understanding of cellular and organismal 

physiology but there are great challenges needed to be overcome by scholars trying to study 

proteomics. One of the main challenges of proteomics is also the advantage proteomics have on 

genomics, the complexity of the proteome. Biological processes of a cell require differential gene 

expression leading to varying abundance of protein – some proteins are expressed in higher 
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quantities than others for any processes. Thus, in abundance alone, a proteome has a high dynamic 

range of proteins – in some cases proteome exhibits over 106-fold difference in protein 

quantities(Celis & Gromov, 1999). For example, serum proteome is considered the most complex 

proteome to study (Anderson et al., 2004). It contains highly abundant proteins such as albumin at 

a concentration of ~50mg/mL, other cytokines, immunoglobulins, and lipoproteins while other 

secreted proteins generally of interest often present in very low quantities – in femtomoles range 

(Thadikkaran et al., 2005). High abundant proteins often interfere during measurement of these 

proteins of interest. Limited and variable sample availability also limits proteomic studies. Unlike 

in genomics where samples can be conveniently amplified following the advances in DNA 

polymerase technologies, proteomics studies are lack sample amplification methodology thus had 

to depend on reproducible sample collection. Moreover, proteins, made from combinations of 20 

amino acids, can have high degree of variation in both chemical and physical properties 

introducing difficulties in solubilizing as well as managing sample degradation. Solubilizing 

proteins require careful consideration of pH, hydrophobicity, ionic strength of buffer to ensure 

maximum protein stability (Bodzon-Kulakowska et al., 2007).  

Historically, proteomics experiments had been incredibly tasking. Prior to 1980s, individual 

proteins were identified by first isolating proteins from complex mixtures through techniques often 

utilizing electrophoresis, most notably two-dimensional electrophoresis (2DE) (Ames & Nikaido, 

1976; Klose, 1975). 2DE separates proteins in mixtures based on their isoelectric point using 

isoelectric focusing (IEF) followed by their size via sodium dodecyl sulfate polyacrylamide gel 

electrophoresis (SDS-PAGE). Although there have been improvements in 2DE technologies, 

limitation remains. 2DE is very labor-intensive, has poor reproducibility, requires large amounts 

of sample, has limited dynamic range of protein detection and face difficulties resolving proteins 
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at extreme ends of size or isoelectric point scale (Alaoui-Jamali & Xu, 2006; Godovac-

Zimmermann & Brown, n.d.; Wilkins et al., 1999). Following 2DE, isolated proteins are 

chemically sequenced via N-terminal sequence degradation (Edman Degradation), developed by 

Pehr Edman in 1949 (EDMAN, 1949). This technique specifically labels the N-terminal residue 

of a peptide and cleaves it without disrupting peptide bonds of other residues. Following cleavage, 

the labelled residue are isolated and can be monitored through chromatography to determine the 

identity of the amino acid. Repeating this process, a peptide can be sequenced residue by residue 

and the resulting peptide sequence can be used for protein identification. In 1967, this process was 

automated, however multiple drawbacks persist; it is very labor and time intensive, requires large 

quantity of purified sample, and the method fails when peptides are longer than 50 amino acids 

(Edman & Begg, 1967; Niall, 1973). Additionally, when analysing eukaryotic proteins, this 

method collapses – most eukaryotic proteins have N-terminal acetylation, which interferes during 

the chemical labelling step of Edman Degradation. To circumvent this issue, proteins must be 

digested into peptides and purified before sequencing adding more steps and time needed to 

identify protein. The knowledge potential of proteomics far outweighs its challenges coupled with 

development in computer technologies allowed researcher to pursue faster and better methods of 

separation and identification entailing better signals, sensitivity and dynamic range of detection. 

For this proteomics community turned to liquid chromatography and mass spectrometry 

establishing mass spectrometry-based proteomics.                       

1.2 Mass Spectrometer 

Briefly, mass spectrometers are instruments that measures mass-to-charge ratios (m/z) of 

ions through an electric field. Mass determination of ions begins when vaporized ions are 
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accelerated to high velocity by electric field and then deflected by magnetic field – heavier ions 

are deflected less than lighter ions with identical charge in a constant electric and magnetic field. 

J.J Thomson and his student Francis William Aston developed the first mass spectrometer which 

led to the discovery of isotopes (Downard, 2007; S. J. J. T. O. M. F.R.S., 2009). This work inspired 

Arthur Jeffery Dempster to design his mass spectrometer in 1918 and in 1919 (Dempster, 1918; 

D.Sc., 2009), Aston developed his own design. Modern mass spectrometers still apply fundamental 

theories and principles of these initial mass spectrometer designs. Now, mass spectrometers are 

used widely in many different fields – environmental (pollutant determination, air and water 

quality, food contamination), geological (oil composition for petroleum industry, determination of 

rare earth metals in soil/ore), sports (dope test for athletes), forensic (drug metabolite 

determination), pharmaceutical (pharmacokinetics, drug metabolism), clinical (drug testing, 

hemoglobin analysis), biotechnology (proteins, lipids, polysaccharides analysis) (Mass 

Spectrometry Applications Areas | Thermo Fisher Scientific - CA, n.d.). Mass spectrometers are 

versatile largely due to its customizability where though the concepts stay the same; the parts can 

be adapted to handle different kinds of samples (solid, liquid, gas, simple or complex). There are 

three fundamental parts that builds a mass spectrometer – ion source, mass analyzer and detector. 

1.2.1 Ion Source 

Mass spectrometers only works with analytes in gaseous state; thus, ion source is 

responsible to ionizing molecules and introduce the resulting charged molecules to the mass 

spectrometer in an efficient manner. Many ionization techniques have been developed to handle 

variety of sample types – which can be separated into two groups, hard ionization and soft 

ionization (Kai et al., 2012; Kersten & Dorrestein, 2009; Steinmann & Ganzera, 2011; Watrous et 

al., 2010). Hard ionization techniques are methods that blasts sample analytes with high amount 
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of residual energy resulting in higher degree of analyte fragmentation (systematic dissociation of 

ions resulting in bond cleavages and stable fragment ions). In-source fragmentation often results 

in fragment ions with lower m/z than the parent ion and provides information on structural 

determination of unknown analytes. The most common hard ionization technique is electron 

ionization (EI), the earliest ionization method – developed by Arthur J. Dempster in 1918 

(Dempster, 1918). The process involves highly energetic electrons bombarding analytes to yield 

extensive fragmentation. However, this method is not preferred in proteomics as it is difficult to 

control ionisation efficiency and more importantly the inability to measure the molecular weight 

of intact analyte (Bhardwaj & Hanley, 2014). Soft ionization techniques developed few decades 

later helped to address this issue – only low energy imparted to analytes resulting in minimal to no 

fragmentation of analytes. Some examples of soft ionization techniques include chemical 

ionization (CI), atmospheric-pressure chemical ionization (APCI), matrix-assisted laser 

desorption/ionization (MALDI) and electrospray ionization (ESI) – MALDI and ESI being the 

most preferred techniques in proteomics (Carroll et al., 1974; Field, 1968; Karas et al., 1985; 

Yamashita & Fenn, 1984).  

1.2.1.1 Electrospray Ionization (ESI) 

ESI is a soft ionization technique that utilizes electrospray where high voltage is applied to 

liquid to produce aerosol. ESI, unlike MALDI, able to produce ions with multiple-charged ions, 
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thus expanding mass range of analyzer to detect molecules with mass difference of multiple orders 

of magnitude. First reported by John Fenn and Masamichi Yamashita in 1984, ESI ionizes analytes 

by first spraying analyte-solvent mixture into fine aerosol across a large potential difference 

(~3000V) (Yamashita & Fenn, 1984).  The tiny droplets will further evaporate leading to decrease 

in droplet size and increased charge concentration. Ultimately, the droplets will reach the Rayleigh 

limit – defined as when the electrostatic repulsion of like charges exceeds the liquid surface tension 

(L. R. F.R.S., 2009). Exceeding the Rayleigh limit, the droplets will undergo Coulombic explosion 

and form stable tiny droplets. Droplets will undergo Coulomb fission repeatedly until analytes are 

ionized and ejected into gaseous phase ready to be accelerated into the mass analyzer. In 1989, 

Fenn and his colleagues were able to ionize biomolecules as large as 76kDa through ESI (Fenn et 

al., 1989, 1990). Contribution in large biomolecule ionization both via MALDI and ESI for mass 

spectrometry led to Koichi Tanaka and John Fenn receiving a part in the 2002 Nobel Prize in 

Chemistry. 

Power Supply 
(2.5kV) 

-ve +ve 

Nebulizer  
(from 
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Figure 1-1 Electrospray Ionization 

Samples exiting through the nebulizer from the HPLC are subjected to high voltage current 

between the needle tip and mass spectrometer inlet facilitating droplet formation. Solvents rapidly 

evaporates from droplets, increasing its surface charge concentration and finally the droplets splits 

into individual charged ions which are accelerated in the electric field towards the mass analyzer. 
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1.2.2 Mass Analyzers 

Mass analyzers are simply the core of a mass spectrometer, responsible for resolving 

incoming ions by their m/z thus determining the mass of analyte (Jennings & Dolnikowski, 1990). 

All mass analyzers work by manipulating the motion charged particles through utilization of 

electric field, magnetic field, radio frequency (RF) and a combination of these methods. The 

physics governing the manipulation of the path of charged particles involves the Lorentz force law 

and Newton’s second law of motion;  

𝐹 = 𝑄(𝐸 + 𝑣 × 𝐵)(𝐿𝑜𝑟𝑒𝑛𝑡𝑧 𝐹𝑜𝑟𝑐𝑒 𝑙𝑎𝑤) 

         𝐹 = 𝑚𝑎 (Newton’s 2nd Law of Motion) 

When equated, the equations can be rearranged to represent force applied to an ion yielding: 

(
𝑚

𝑄
) 𝑎 = 𝐸 + 𝑣 × 𝐵 

where m is the mass of ion, Q is ion charge, a is acceleration of ion, E is electric field and v x B is 

the vector cross product involving velocity of ion and magnetic field (Introduction to Mass 

Analyzers : SHIMADZU (Shimadzu Corporation), n.d.). This differential equation complemented 

with ions’ initial state, fully explains the motion of ions in time and space in terms of mass over 

charge (m/Q). However, mass spectrometer data are presented as the dimensionless m/z, where z 

is the number of elementary charge (e) and can be calculated from:  

𝑧 = 𝑄/𝑒 

Although m/z is widely referred to as mass-to-charge ratio, it indicates the ratio of mass 

number (m) with the charge number (z) (Haag, 2016; Jennings & Dolnikowski, 1990). There are 

many different mass analyzers available with variety of methods to resolve ions based on their 
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m/z. Additionally, some analyzers are capable of trapping and storing ions thus increasing 

capability of mass analyzers in manipulating ions. Choice of mass analyzer during modelling an 

mass spectrometer for commercial productions involves certain factors including but not limited 

to; (i) analyzer’s detection range of m/z, (ii) resolving power of analyzer, (iii) compatibility of 

mass analyzer with ion source and (iv) limit of detection of the analyzer (Haag, 2016). Some of 

the commonly used mass analyzers include time-of-flight (TOF), quadrupole, ion trap and Fourier 

Transform analyzers (Orbitrap) (Haag, 2016). All mass analyzers have strengths and weaknesses 

and are never suitable for all types of applications. Labs usually have multiple different mass 

spectrometers that utilize different analyzer to achieve their measurement goals.  

 

1.2.2.1 Quadrupole Mass Analyzer 

A quadrupole mass analyzer commonly considered as “mass filter” for its ability to 

separate and filter ions based on its m/z (Miller & Denton, 1986). It consists of 4 cylindrical rods 

parallel to each other where opposite poles are electrically connected to each other with radio 

frequency (RF) potential (Figure 1-2). A direct current (DC) is then superimposed over RF 

potential to manipulate ion trajectories. Operation of quadrupoles involves manipulation of DC 

and RF potential, which results in stable and unstable trajectories along the applied current (Haag, 
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2016; March, 1997). Ions travelling through z-axis of a quadrupole encounter RF and DC potential 

causing them to oscillate. Based on the intensity of applied RF and DC potential, only certain ions 

with specific m/z will have stable trajectory along the quadrupole while other ions with unstable 

trajectories collide with the rods and filtered out, never reaching the detector. Thus, by varying the 

RF and DC potential, quadrupoles can be used to scan through or filter ions based on their m/z 

(Haag, 2016).  

Quadrupoles, aside from used as mass filter, do have other functions. They can be operated 

in RF-only mode, where only RF potential is applied while DC potential is reduced. In this mode, 

quadrupoles allows all ions to pass through, transforming it into an ion optic component used to 

transport ions to different part of instrument such as guiding ions from ion source to another 

analyzer. RF-only quadrupoles also act as collision cell for ion fragmentation via collision-induced 

dissociation (CID) (Hayes & Gross, 1990). By increasing RF potential and introducing an inert 

gas into the collision cell, ions within the cell will collide with the applied inert gas and fragment. 

Controlling the level of RF can vary the level of ion fragmentation in collision cell.  

One major advantage of quadrupole mass spectrometer is they are relatively cheaper and 

small, ideal for many laboratories. They are also very reliable for long period of times and require 

minimum maintenance making these mass spectrometers popular. They require minimum 

calibration as the electronics for quadrupole exhibit excellent stability over time. Quadrupoles have 

Figure 1-2 Quadrupole mass analyzer 

Ionized analytes entering into the analyzer are subjected to varying potential (RF) applied on the 

two pairs of quadrupoles with opposite polarity. Specific combination of frequency creates 

resonance and stable path for ions with desired m/z value (black trajectory) while other m/z value 

carrying ions are non-resonant, experience chaotic trajectory, and will hit the quadrupole thus 

never reaching the detector. 
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fast duty cycle and need continuous flux of ions making them excellent choice to pair with liquid 

chromatography (LC) equipments while less suitable with pulsed ionisation sources like MALDI 

(Arpino & Guiochon, 1979). Some disadvantages of quadrupole include limited mass range and 

poor resolution. This proves to be a problem when analyzing samples with large molecular weight 

that do not carry multiple charges and complex mixtures of compounds with similar masses.  

1.2.2.2 Orbitrap 

The Orbitrap is a modern variant of Kingdon ion trap first described by KH Kingdon in 

1923 as a way to generate and studying ion species (Kingdon, 1923). Orbitrap is made up of three 

main parts, two outer hollow concave-shaped electrodes separated by thin ring of dielectric 

material covering one inner spindle-like electrode (Figure 1-3) (Makarov, 2000). These uniquely 

shaped electrodes trap ions and leads to electrically induced oscillation of ions to orbit the central 

electrode that leads to detection of ion masses by Fourier Transformation.  
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A machined hole on one of the outer electrodes is where ion ‘packets’ are introduced 

tangentially into the orbitrap, in between the outer and inner electrodes (Haag, 2016). The electric 

field is increased by ramping up the voltage on the inner electrode as the ions enter the orbitrap 

causing them to bend and settle into a spiralling oscillation. Additionally, the ions also move back 

and forth along the axis of inner electrode which following the conical shape of electrodes, induces 

a harmonic axial oscillation of ions. The axial motion of ions is completely independent of their 

Outer 
Electrode 

Central 
Electrode 

Amplifier Detected 
Signal 

Figure 1-3 Orbitrap mass analyzer 

Orbitrap mass analyzer is made up of a spindle-shaped central electrode and a pair of bell-shaped 

outer electrodes surrounding it. Upon entering into the analyzer, ions spins around the central 

electrode forming harmonic oscillation along it where the frequency of the harmonic oscillation 

along the z-axis depends on the m/z of the ion. The outer electrodes are responsible for detecting 

the image current of the oscillating ions which then transformed by Fourier Transformation. 

Adapted from www.creative-proteomics.com 
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orbital motion around the inner electrode as well as any other initial parameters of the ions except 

their m/z. The angular frequency of the ions, ω is described as:  

ω = √
𝑘

𝑚 𝑧⁄
 

Where k is a force constant of the potential analogous to spring constant. Thus, ions with specific 

m/z will spread into rings along the inner electrode based on their angular frequency which can be 

measured to ultimately detect ion intensities based on m/z. 

Currently, orbitrap mass spectrometers are highly preferred for its high-resolution 

capabilities which is often several times higher than TOFs as well as for its mass accuracy. High 

resolving power of orbitraps are preserved better in higher m/z range thus making it ideal for 

analyzing large molecules like proteins. They are also small and low maintenance and since they 

do not use magnetic field, cryogenic refrigerants are not required, keeping operating cost low. 

Major cons for orbitraps is the trade-off of scan speed for its high resolution. During high-

resolution scans, ions oscillates in the orbitraps for much longer to resolve ions with small m/z 

difference. However, orbitraps mass spectrometers can be operated at multiple resolution setting 

thus allowing operators the freedom to prioritize scan speed or resolution.  

1.2.3 Mass Spectrum 

Mass spectrometers outputs its result as a mass spectrum; an intensity vs. m/z plot 

representing the distribution of ions in a sample by mass (Murray et al., 2013). As mentioned 

before, mass spectrometers measures m/z (mass to charge ratio) of ions distinct from individual 

ions’ mass. Ions that exist as two species, singly charged (+1) and doubly charged (+2) have the 

same molecular mass but the doubly charged species will have m/z that is half of the singly charged 
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ion. The tallest peak in any mass spectra is referred to as base peak and assigned an intensity of 

100. All other peaks are plotted relative to the base peak. Mass spectrometers historically possesses 

very high mass resolution and accuracy, allowing them to separate isotopic peaks (Downard, 

2007). Mass resolution is the ability to distinguish between two closely spaced peaks and can be 

calculated with the following equation (Figure 1-4A): 

 𝑅 =  
𝑚

∆𝑚𝐹𝑊𝐻𝑀
 

where resolution (R) of a peak of m/z is the average mass (m) divided by the width of the peak at 

50% peak height (full width at half maximum: ∆𝑚𝐹𝑊𝐻𝑀) (Murray et al., 2013; “Resolution,” 2014; 

Todd, 1991). Another parameter that often used interchangeably with resolution though carries a 

different meaning is resolving power. The International Union of Pure and Applied Chemistry’s 

(IUPAC) definition of resolving power is applied for two peaks of same height separated by small 

increment, where the ‘valley’ between them is no more than 10% maximum peak height 

(“Resolving Power in Mass Spectrometry,” 2008; Todd, 1991). Resolving power can be calculated 

by:  

𝑅𝑃 =
𝑚2

(𝑚2 − 𝑚1)
 

where resolving power (RP) is the heavier peak (m2) over the difference between heavier peak 

(m2) and lighter peak (m1) (Figure 1-4B). Additionally, the rule for valley determination must be 

stated for resolving power calculation.  

In mass spectrometry, mass accuracy (MA), often referred as mass error, is reported as 

parts per million (ppm) (Brenton & Godfrey, 2010). Mass accuracy is determined as the difference 
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between the measured mass or ‘exact mass’ (𝑚𝐸) of a monoisotopic ion and the theoretical ‘actual 

mass’ (𝑚𝐴) of the ion divided by the theoretical mass:  

𝑀𝐴(𝑝𝑝𝑚) =  
(𝑚𝐸 − 𝑚𝐴)

𝑚𝐴
× 106 

Current mass spectrometers can operate in a wide range of resolution depending on length of scan 

time. For example, orbitrap mass spectrometer with resolving power from 17500 (fast scan) to 

>100000 (slow scan), can easily separate isotopic peaks of an ion species (Eliuk & Makarov, 2015; 
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Figure 1-4 Mass resolution and resolving power 

A. Mass peak resolution is characterized by the ratio of the measured mass and the peak’s full width at 

half max (50% peak height). B. Resolving power is the ability to distinguish overlapping peaks where 

the peak valley is approximately 10% of the maximum intensity calculated by taking the ratio of the 

measured mass of the heavier peak and the mass difference between two peaks. 
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Q. Hu et al., 2005). Together with accepted mass accuracy of ±10ppm and high resolving power 

determination of mass and charge of an isotopic cluster is quite simple; two peaks in an isotopic 

cluster have a mass difference of one Dalton (Da) and the charge state will be the reciprocal of the 

measured difference of m/z of two adjacent peak in an isotopic cluster. 

   

1.3 Proteomics and Mass Spectrometers 

A wide variety of mass spectrometers are available due to the potential combinations of 

available ion sources, mass analyzers and detectors. A select few types of mass spectrometers are 

however predominant in the field of proteomics (Demartini, 2013). These include mass 

spectrometers with ion sources: MALDI, ESI and nanospray ionisation (NSI), and mass analyzers: 

Orbitrap, time-of-flight (TOF), triple quadrupoles (QqQ), and linear ion-traps.  Researchers choose 

the type of mass spectrometers required based on the need of the experiment and two fundamental 

proteomics approach are considered first: top-down versus bottom-up proteomics. 

Top-down proteomic approach involves analysis intact proteins to understand individual 

protein’s structure, post-translational modification and full characterization of proteoforms (all 

variation of the protein resulting from genetic variation, alternative splicing, and post-translational 

modifications) (Smith & Kelleher, 2013). This approach requires purified intact proteins directly 

injected into mass spectrometers for analysis (Kelleher, 2004; Toby et al., 2016). Though this 

method usually gives 100% sequence coverage, currently it is unable to analyse complex protein 

mixture thus rendering it unusable to answer many proteomics questions. MALDI-TOF 

instruments are the predominant choice for this approach.  
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Bottom-up proteomics (usually known as ‘shotgun’ approach) refer to a technique where 

proteins are first proteolytically digested before mass spectrometric analysis (Y. Zhang et al., 

2013).  Due to the complexity of the resulting proteolytically cleaved sample, this approach needs 

a better front-end separation: peptides mixture are simplified through chromatography prior to 

mass spectrometric analysis. Bottom-up proteomics is the most mature and widely used approach 

because of its versality in handling highly complex sample as well as the availability of 

bioinformatic tools for protein identification and characterization. Additionally, many quantitative 

techniques have been developed for bottom-up strategy such as mass tags, stable isotope labels for 

comparative proteomics to identify up- and down-regulated proteins. Several limitations exists for 

bottom-up proteomics and most importantly is the low sequence coverage of proteins where only 

a portion of information is obtained for any protein identifies (Y. Zhang et al., 2013).  Therefore, 

bottom-up strategy sacrifices proteoform information to achieve a better quantification of proteins. 

Since chromatographic separation is needed for this technique, mass spectrometers with ESI/NSI 

sources that can work in tandem with liquid chromatography are usually preferred as well as ion-

trapping mass-analyzers such as linear ion-traps and orbitraps (Y. Zhang et al., 2013). 

My work in this thesis were all done following bottom-up approach utilizing an ultra-

performance or high-performance liquid chromatograph (UPLC or HPLC) in tandem with NSI 

into an orbitrap or quadrupole/orbitrap combination mass spectrometer. Thus, only principles and 

theories regarding these instruments will be discussed. 

1.4  Sample Preparation for Mass spectrometry 

All bottom-up proteomic approach requires proteolytic cleavage of protein samples (Y. 

Zhang et al., 2013). Thus, following protein purification, samples are subjected to proteolytic 
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digestion prior to mass spectrometric analysis. This is most often performed by proteases with 

sequence specificity for charged residues such as trypsin, Lys-C, Arg-C, Glu-C, Asp-N, or Lys-N; 

which results in cleavage of the peptide backbone either preceding or following a charged amino 

acid (cleavage position is denoted by ‘C’ for C-terminal or ‘N’ for N-terminal of specified residue) 

(Giansanti et al., 2016). Utilization of proteases with specificity for charged residue guarantees the 

resulting peptide product to have at least a +2-charge following acidification. This allows for easier 

solvation of the peptides and thus increases efficiency during ionization. Researchers in the 

proteomics field regard trypsin as the best-suited protease for digestion of protein samples for mass 

spectrometric analysis (Giansanti et al., 2016; Y. Zhang et al., 2013). It exhibits excellent cleavage 

specificity to hydrolyze the peptide backbone following basic residues of lysine (K) and arginine 

(R), though it will not cleave if proline is the next residue following lysine or arginine. 

Trypsinization of proteins results in relatively short peptides with +2 charge when solubilized in 

acidic condition. Moreover, trypsin digested peptides are usually in the range of 700 Da to 1500 

Da, the ideal mass range for many mass analyzers. 

Prior to proteolytic digestion of protein samples for mass spectrometry, few important steps 

are necessary for preparing the sample. Proteins need to be denatured either by boiling or with the 

use of denaturing buffer. Disulfide bonds must be reduced with the use of reducing agents such as 

dithiothreitol (DTT), β-mercaptoethanol (BME) or tris (2-carboxyethyl) phosphine (TCEP) 

(Rogers & Bomgarden, 2016). The reduced sulfhydryl groups must be alkylated by iodoacetamide 

to prevent re-forming of disulfide bonds in the later stages of sample preparation (Sechi & Chait, 

1998). Following protection of sulfhydryl groups, proteins can be treated with trypsin for 

proteolysis. The entire process can be done in solution referred to as in-solution digestion. This 

method is relatively simple but denaturing buffers contains chaotropic agents, salts and detergents 
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that inactivate trypsin thus, samples must be desalted prior to addition of trypsin (Rogers & 

Bomgarden, 2016). In-solution digestion is best used when the sample to be analysed is relatively 

pure, i.e. purified proteins or organelles, proteins isolated from prior proteins separation steps. 

The in-gel digestion protocol first explained in 1996 is the most used method for sample 

preparation for mass spectrometry-based proteomics (Granvogl et al., 2007; Shevchenko et al., 

2006). It involves trapping proteins in a polyacrylamide gel and prepare the sample for mass 

spectrometry by reducing, alkylating, and digesting the proteins while trapped in the gel. 

Following digestion, the resulting peptides are extracted from gel pieces using organic solvent 

mixture. By trapping proteins in gels, buffer exchange and desalting become much easier to 

accomplish. Additionally, researchers usually separate proteins samples in gels by molecular 

weight via SDS-PAGE thus allowing highly complex samples to be analysed. However, peptide 

recovery rate from gels are usually not 100% which can affect downstream analysis.       

1.5  Data Acquisition by Mass Spectrometry 

Proteomics by mass spectrometry involves collection of huge amounts of data achieving 

near-complete proteome coverage in human and multiple other organisms. The type of data 

obtained through mass spectrometry heavily depends on the initial research question, often divided 

into two branches: qualitative or quantitative data.  

Qualitative data acquisition in MS, often referred to as survey-based proteomics or 

discovery proteomics is frequently used to obtain broad overview of proteins in a comparative 

analysis of various sample complexities ranging from extracted protein samples to tissue lysates 

(Faria et al., 2017). The strength of discovery proteomics lies in the ability to identify and sort out 

hundreds or even thousands of proteins in a any given biological states as well as comparing 
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multiple experimental conditions. Commonly, discovery-based proteomics are initiated without a 

well-formulated hypothesis and seldomly raises question about the changes of a specific protein 

of interest within the experimental conditions studied. Traditional qualitative proteomic 

experiments are designed to produce complex answer to a non-specific question, i.e. what are the 

proteins that might be up or down regulated with a change in an experimental condition. 

Historically, discovery-based proteomics data has always been acquired through data dependant 

acquisition (DDA) as it provides the best results for protein identification in samples from various 

complexity level (N. W. Bateman et al., 2014; Mann et al., 2001; Ong et al., 2002; Ross et al., 

2004). More recently, data independent acquisition (DIA) has been developed to be a more 

selective discovery-based acquisition method to transition from discovery-based proteomics 

towards targeted proteomics (Venable et al., 2004).     

Quantitative proteomics approaches, often referred to as targeted proteomics, are used for 

precise quantification of proteins of interest with high sensitivity and reproducibility. Targeted 

proteomics methods involves analysis of unique peptides of handful of proteins of interest in 

separate experimental conditions, quantified either through relative or absolute quantification with 

high sensitivity and specificity in samples with varying level of complexity (Faria et al., 2017). In 

contrast to qualitative proteomic approaches, which commonly lacks a well-defined hypothesis, 

targeted proteomics require a clear and specific hypothesis to be tested with its acquisition and 

analysis method decided before the beginning of experiment.  Since targeted proteomics is based 

on a specific hypothesis, in-depth knowledge of a protein of interest is necessary, from either 

literature, databases, or previous discovery-based proteomic experiments. Multiple Reaction 

Monitoring (MRM) was the initial targeted proteomic method developed for quantification of 

peptides in 1990 by Kusmierz et al (Kusmierz et al., 1990). Later, a more selective targeted method 
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for peptide quantification was developed, the parallel reaction monitoring (PRM) with better 

quantification capability than MRM (Gallien, Duriez, et al., 2012; Peterson et al., 2012; Schilling 

et al., 2015). 

1.5.1 Data Dependant Acquisition (DDA)  

Commonly referred as shotgun proteomics by the scientific community, DDA refers to a 

mode of data collection in tandem mass spectrometry. In DDA mode, which refers to a selection 

criterion of peptides for fragmentation, the mass spectrometer selects most intense peptide ions 

from the first stage of tandem mass spectrometry, fragments the ions and analyze them sequentially 

in the second stage of tandem mass spectrometry. Over the last two decades, liquid 

chromatography-tandem mass spectrometry (LC-MS/MS) running through DDA mode has been 

the fundamental pillar in the field of proteomics for the broad detection, identification, and relative 

quantification of thousands of proteins across various biological samples(Wolf-Yadlin et al., 

2016).  

DDA workflows often includes prior separation of enzymatically digested protein 

products, peptides, through high-performance liquid chromatography (HPLC) or nano liquid 

chromatography (nLC)(Wolf-Yadlin et al., 2016; Xu et al., 2013). HPLC and nLC delivers 

peptides into the mass spectrometer over a solvent gradient (from tens of minutes to a few hours), 

separating the peptides based on their physicochemical properties, thus reducing sample 

complexity, and increasing coverage. Data acquisition by DDA can be divided into 2 steps; the 

first is the MS1 scan and followed by MS2 scans. MS1 scans or full scan are scans that are 

responsible for identification of m/z of peptide ions injected into the mass spectrometer.  During 

full scan, the mass spectrometer allows all injected ions to pass through the mass filter and reach 

the mass analyzer for separation by m/z and the resulting data will be transformed into a mass 
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spectrum (Figure 1-5).  Parameter adjustment needed for a MS1 scan is quite limited, mass range 

and resolution. Mass range for a mass spectrometer highly depends on the type and capability of 

mass analyzer equipped in the mass spectrometer with most analyzers capable of detecting m/z 
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Figure 1-5 Data Acquisition Methods for Discovery Vs. Targeted Proteomics 

DDA uses a quadrupole as mass filter to isolate ions passing the TopN criteria for fragmentation 

in collision cell and followed by detection using a mass analyzer. DIA uses first quadrupole as 

wide window filter (~25m/z) allowing multiple precursor types through to collision cell for 

fragmentation and detection by an orbitrap mass analyzer. The instrument repeats the process by 

scanning the next 25m/z range until entire mass range is covered and peptides are identified during 

post-acquisition processing of spectra. In targeted proteomics, SRM/MRM uses first quadrupole 

to isolate user-defined precursor, second quadrupole for fragmentation and third quadrupole to 

isolate and detect user-defined fragment. PRM works similar to SRM but all the fragment ions 

from a user-defined precursor are measured in parallel via an orbitrap. 
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over a wide range while adjusting the resolution of a MS1 scan affects the time spent by the 

analyzer on a scan. MS2 scans are where peptide ions measured in the MS1 scan are fragmented 

in the mass spectrometer and the analyzer analyzes the resulting fragments’ m/z.  

1.5.1.1  Fragmentation 

Fragmentation of peptide ions is crucial for the tandem mass spectrometry application. 

Though many fragmentation methods are available, the most common method is collision-induced 

dissociation (CID) (Pitt, 2009; Sleno & Volmer, 2004). During CID, peptide ions are isolated and 

excited to higher kinetic energy before being collided with neutral gases such as helium, nitrogen, 

or argon, inducing fragmentation of peptide ions. 

Orbitrap-based mass spectrometers use a newer form of CID, referred to as ‘high energy 

collisional dissociation’ (HCD) where dissociation happens outside of the ion-trap (Perry et al., 

2008). Following full-scan, ions with a single m/z are filtered by front optics of the mass 

spectrometer and allowed to pass through to the C-trap. The ions are then accelerated into the HCD 

cell at high velocity inducing rapid fragmentation, then shuttled back to C-trap where they are 

injected into orbitrap for analysis.  

Fragmentation of peptides usually happens at characteristic sites; areas corresponding to 

higher surface area, the peptide backbone, which is made up of three types of atomic bonds, N-Cα, 

Cα-Co, and Co-N (Biemann, 1986; Hunt et al., 1986). The nomenclature of the fragment ions 

(daughter ions) following peptide fragmentation depends on site of fragmentation, location of ionic 

charge post-fragmentation and orientation of peptide fragment being read (N-terminus to C-

terminus or vice-versa) (Roepstorff & Fohlman, 1984). Depending on whether the charge in the N- or 

C-terminal ions is retained, A or X ions are produced when the peptide fragments break along the Cα-Co. 
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Similarly, dissociation of the peptide bond (Co-N) produces B and Y ions while fragmentation of 

N-Cα results in C and Z ion formation. Daughter ions are labelled with numbers indicating the 

number of residues in the fragment where the numbering originates from their respective terminus. 

Due to its rigid, massive, planar structure, the peptide bond (Co-N) is the site of fragmentation that occurs 

most frequently. Fragment ions produced from peptide bond fragmentation are also the most ideal 

fragments due to the B and Y ions retaining their relative amino acid compositional mass. B ions’ 

mass can be calculated by the sum of constituent neutral amino acid less the mass of an OH group 

(17 mass units) where the cleavage at the amide bond leaves the fragment retaining only the 

carbonyl group. Y ions’ mass is the sum of all constituent amino acid’s neutral mass plus one mass 

unit due to internal solvation of proton during fragmentation. Though in theory fragmentation 

results in two fragments, the analyzer will detect either B- or Y-ion because only one of the 

fragments will retain the charge while the other will rapidly decompose.  

1.5.2 Data Dependent Acquisition (Continued) 

“Data dependent” in DDA refers to a predetermined selection criteria of peptide ions for 

fragmentation during MS2 scans. Analysis of complex samples often result in multiple peptides 

ionized at the same time (Suna & Mayr, 2018). Attempting to fragment all the peptide ions 

observed in MS1 scan is not possible as this would overload the mass spectrometer and reduce its 

scan speed. Thus, peptide ions need to be selected for fragmentation by a predefined selection 

criterion to limit number of MS2 scans the mass spectrometer runs per MS1 scan. The criteria are 

abundance, signal intensity and charge state. Selection is made in real time by mass spectrometer 

software based on the current MS1 mass spectrum where newer mass spectrometers can select the 

10 – 40 most abundant peptides observed above a fixed signal intensity threshold (Suna & Mayr, 

2018; Xu et al., 2013). Charge state preselection is used to avoid analyzing contaminants. Shotgun 
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proteomics is mostly performed with peptides digested with trypsin, with preference to cleave the 

peptide bonds following arginine (R) and lysine (K). Thus, the resulting peptides, tryptic peptides, 

will always have a basic residue at the C-terminal end and in the acidic conditions the samples are 

prepared in, the N-terminal is always protonated to yield tryptic peptides of charge +2 at minimum. 

Charge state preselection can safely exclude singly charged ions and very highly charged ions (+5, 

+6, +7, +8 …) for shotgun proteomics as those will unlikely be tryptic peptides. Additionally, 

dynamic exclusion setting prevent repeated selection of the same peptide to increase number of 

peptide ion analyzed. Dynamic exclusion categorizes an ion previously selected in an exclusion 

list for a specified time ranging from 10 seconds to 30 seconds depending on the peptide 

chromatographic elution peak width and the level of identification coverage desired. Once the 

exclusion time is over, the ion can be selected for fragmentation once again. Excluding highly 

abundant peptides allows the mass spectrometer to fragment low abundant peptides thus vastly 

increasing identified protein count from a shotgun proteomics experiment. 

DDA is widely used for protein identification in proteomics studies across the world as it 

is very simple to set up with small number of parameters involved and often once set up in an MS 

it needs not be changed and thousands of shotgun proteomics experiment can be performed with 

the same set of parameters. Almost all mass spectrometers are equipped with DDA capability as 

the hardware requirement for DDA is minimal. DDA results are usually smaller, takes up little 

space on computer and due to wide availability of database, they are easier to analyze.  

Despite the preferential choice of DDA for proteomics analysis, DDA has several inherent 

flaws that limits its performance, the first being low reproducibility of peptide identification 

(Domon & Aebersold, 2010). DDA methods can collect thousands of fragment ion spectra in a 

typical LC-MS/MS analysis. However, tryptic peptides in any proteome digest far outnumbers the 
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analytical capacity of current DDA systems (that is the separation, detection, and identification of 

peptides) resulting in inability to perfectly sample a reproducible set of peptides in multiple 

replicate analysis of the same sample. For every replicate analysis, peptides are chosen by the 

DDA criteria, which in principle will analyse same peptides, but due to large pool of peptides with 

matching criteria and limited capacity of instruments, only fixed number of peptides can be 

analysed thus leading to a stochastic sampling of peptides and affecting reproducibility in DDA 

analysis. Additionally, DDA methods are set up to maximize identification rate of peptides, which 

leads to lower accuracy in peptide quantification. DDA features of TopN and dynamic exclusion 

maximizes protein identification by limiting the frequency of repeated peptide sampling. Though 

these are efficient for increasing protein identification, it lowers reproducibility of spectral 

counting and feature based quantification.        

1.5.3 Data Independent Acquisition (DIA) 

Data Independent Acquisition or DIA, first introduced by Venable et al. in 2004 refer to an 

MS data acquisition mode that continuously acquires fragment ion spectra (MS2) in an unbiased 

manner (independent of precursor ion information acquired from MS1 scans) (Venable et al., 

2004). DIA, is a hybrid method that was first explored to address the many limitations of DDA 

and targeted proteomics methods, SRM and PRM, while combining the advantages of discovery 

and targeted proteomics method. It is mainly implemented to obtain maximum protein 

identification, >1000s proteins, with high reproducibility and low variation in quantification. In 

the last decade, DIA has been developing rapidly to challenge the discovery capabilities of DDA 

and quantification capabilities of SRM and PRM. Many variation of DIA have been introduced 

over the past decade with differences in type of mass spectrometer used, methods set-up 
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parameters, and post-acquisition data analysis such as AIF, SWATH, MSX, SONAR, WiSIM, 

BoxCar DIA and many more (refer to review by Zhang et al. (2020)) (F. Zhang et al., 2020).  

One of the most commonly used DIA method is SWATH-MS (Sequential Window 

Acquisition of all Theoretical Mass Spectra), which was described by Gillet et al (2012) (Gillet et 

al., 2012). SWATH-MS requires the use of hybrid mass spectrometers capable of fast scanning, 

high resolution and accurate mass measurements, typically with a quaodrupole as first mass 

analyzer or selector and a TOF or Orbitrap as second mass analyzer. SWATH-MS and all other 

DIA methods analyze all peptides in a selected m/z window, typically between 400 m/z to 1200 

m/z, where more than 90% of tryptic peptides are found (Koopmans et al., 2018; Pino et al., 2020). 

Initially, data acquisition begins with MS1 scan to measure precursor population across the whole 

m/z range. Subsequently, in MS/MS mode, a precursor isolation window of 25m/z is set, beginning 

with 400 m/z to 425 m/z to isolate and fragment precursors (Figure 1-5). All precursors within the 

selected isolation window will be isolated, fragmented and the resulting fragments analyzed for 50 

– 100 ms. Precursor isolation window steps up by 25 m/z to 425 m/z – 450 m/z at the beginning 

of the next round of isolation for fragmentation. This process repeats several times until the 

isolation window steps through the whole mass range. A single cycle of MS1 followed by 

sequential MS2 scans usually takes 3s and cycles through the entire LC gradient. The resulting 

data, depending on sample complexity, will yield highly multiplexed and complex MS2 spectra 

with many co-eluting peptides co-fragmented in a single spectrum. Data analysis and subsequent 

protein identification by traditional genome-wide species-specific databases commonly used to 

process DDA data were not viable option for these complex MS2 spectra. Many new data-analysis 

tool emerged specifically for DIA data that are reliable and easy to use such as Spectranaut, 

OpenSWATH, EncyclopeDIA, Skyline, DIA-NN and more explained in detail by Zhang et al 
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(2020) (Bruderer et al., 2015; Demichev et al., 2019; Egertson et al., 2015; Röst et al., 2014; Searle 

et al., 2018). 

The major advantage of DIA is its exceptional performance in quantitative analyses of 

peptides of thousands of proteins with high quantitative reproducibility and accuracy. DIA 

methods are discovery in nature, similar to DDA, but without the sampling bias of the latter, since 

DIA samples all precursors in a sample without selection bias. Although, DDA has better protein 

identification rate than DIA, but that advantage have been reducing over the recent years. There 

are several reports demonstrating when same samples injected under same condition into same 

instrument with two data acquisition modes DDA and SWATH-MS/DIA, resulting data suggest 

SWATH-MS outperforms DDA in peptide identification and associated proteins as well as 

reproducibility of measurements (Bruderer et al., 2015; Kelstrup et al., 2018). Additionally, DDA 

methods usually require much higher amount of starting sample, in the range of 100 to 200 

micrograms of peptides for off-line pre-fractionation in order to maximize protein coverage. On 

the other hand, DIA mostly applied in single-shot analysis, requiring about 0.1 to 1 microgram 

peptides for proteomic analysis with much shorter LC-gradient than DDA (Gillet et al., 2012; Guo 

et al., 2015; Sun et al., 2020). This means DIA enjoys higher throughput capability and it is ideally 

suited for projects with large sample number with small sample volume that require accurate and 

reproducible quantification of major fraction of proteome in each sample. 

Despite of the versatility of DIA by excelling in both protein identification and 

quantification, there exist several limitation to this mode. DIA mode generates very large amount 

of data for each sample, which places high demand for computational resources in mass 

spectrometry facilities. Most importantly, these data are composed of highly complex multiplexed 

MS2 spectra originating form tens to hundreds of co-fragmented peptide precursors. These spectra 
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requires sophisticated analysis tools many of which are currently in their infancy to isolate 

fragments of individual precursors for identification and quantification. DDA data analysis 

pipelines have wealth of tools developed over the past two decades that not available for DIA 

mode to utilize (Bertsch et al., 2011; Cox & Mann, 2008; Deutsch et al., 2015; Keller et al., 2005). 

Furthermore, DIA has lower limit of quantification at mid-attomole to low femtomole range, which 

is better than DDA but still 3 to 10 fold less sensitive than specialized targeted proteomics methods, 

SRM or PRM measurements (Gillet et al., 2012; Liu et al., 2013; Schmidlin et al., 2016). Due to 

the complexity of performing DIA experiments, they tend to be more expensive than DDA 

experiments. This leaves researches to form proper research question and planning before 

embarking on the DIA route whereas DDA offers cheap and quick data for devising hypothesis 

thus becoming method of choice for discovery proteomics. 

1.5.4 Selected Reaction Monitoring (SRM) and Parallel Reaction 

Monitoring (PRM) 

Desiderio DM et al first introduced concept of targeted proteomics in 1983 by using 

isotopically labelled peptides as internal standard to measure peptide levels in biological sample 

(Desiderio & Kai, 1983). In 1990, Kusmierz et al coined the acronym MRM (multiple reaction 

monitoring) in his report of peptide quantification in human tissue extracts (Kusmierz et al., 1990). 

Currently, targeted proteomics approach are termed selected reaction monitoring, SRM (used 

interchangeably with MRM) focus in quantification of selected proteins in varying experimental 

conditions, either through relative or absolute quantification with high sensitivity and specificity 

(Catenacci et al., 2014). Parallel reaction monitoring (PRM) is a more recent variation of SRM 

with similar quantitative capability as SRM but with wider measurement dynamic range and high 

accuracy despite slower scan speed and sensitivity (Peterson et al., 2012). Data acquisition by 
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SRM requires specific mass spectrometers such as triple quadrupole (QQQ) or hybrid quadrupole-

linear ion trap (QTrap) (Hopfgartner et al., 2004). During SRM analysis on QQQ, the first 

quadrupole (Q1) acts as a mass filter and selects a predefined list of precursor ions to pass through 

it while other ions are filtered out (Figure 1-5). Selected precursor ions will reach second 

quadrupole (Q2), which serves as a collision cell to fragment ions. After fragmentation, the 

products are passed to third quadrupole (Q3) acting as mass filter similar to Q1 to allow only a 

predetermined list of fragment ions (also called as transitions) reach the detector for analysis. Peak 

area of each transition are integrated and used for quantification; either by relative or absolute 

quantification with the prior presence of spiked heavy isotope-labelled internal standard. PRM 

differ from SRM where PRM analysis are performed on hybrid quadrupole-Orbitrap (q-OT) and 

quadrupole time-of-flight (q-TOF) mass spectrometers. The orbitrap in q-OT replaces the Q3 of 

QQQ and this allows all transitions of precursor ions to be measured at the same time in the orbitrap 

mass analyzer (Figure 1-5).  

Any targeted proteomics experiment begins with identifying protein candidates for 

quantification depending on research question to be addressed by researchers. Then quantifiable 

peptides of proteins of interest will be selected where these peptides should be specific 

(proteotypic) and stoichiometric (quantotypic) to the protein of interest (Worboys et al., 2014). 

Proteotypic peptides are peptides that are always observed for a protein, unique to the given 

protein, regardless of their suitability for quantification. Proteotypic peptides usually fragment well 

in a mass spectrometer and confidently and consistently identified (Mallick et al., 2006). 

Quantotypic peptides are proteotypic peptides that are suitable for quantitative analysis. As such, 

all quantotypic peptides are proteotypic peptides but not all proteotypic peptides are quantotypic 

peptides. The key characteristic of a quantotypic peptide is its abundance must be stoichiometric 
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to the abundance of its originating protein. Common cause of concern for a peptide will be 

modification to its residue. Modified peptide will decrease the abundance of the unmodified 

peptide thus quantifying unmodified peptide will skew the data for protein quantification.  

Below is a list of criteria for selecting a good quantotypic peptide candidate for any protein of 

interest: 

1. Length of peptide: Preferred peptide length are usually between 8-25 amino acids. This 

ensures the m/z of peptide falls within mass range of mass spectrometer. 

2. Uniqueness: Peptide should be unique to the protein of interest. Duplicate peptides can 

skew the abundance of protein in the sample. Peptide uniqueness can be confirmed by 

performing a search on Basic Local Alignment Search Tool (BLAST).   

3. Miscleavage: Peptides digested using trypsin should be fully tryptic. They should not 

contain miscleavage sites as miscleavage can affect the abundance of the tryptic peptide 

with respect to protein abundance. However, presence of proline at the carboxylic side of 

lysine or arginine shown to produce reproducible miscleavage by trypsin. Thus, peptides 

with lysine or arginine followed by proline are suitable for quantification (Han & Higgs, 

2008).  Additionally, fragmentation at the N-terminal of proline in a peptide will result in 

very intense ion peak that can over lower the peak area distribution of other fragment ions 

from the same peptide (Breci et al., 2003). 

4. Ragged ends: Ragged ends are when tryptic peptides end with a series of ariginine or lysine, 

for example, KK, KR, RR, RK. These peptides should be avoided as they affect the 

abundance ratio of peptide to protein.  

5. Modification: Modification to peptide residue can alter the peptide cleavage pattern by 

proteolytic enzymes. Peptides containing amino acids prone to chemical modification 
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during sample preparation should be avoided if possible. For example, methionine and 

tryptophan are prone to oxidation, while glutamine and asparagine can undergo 

deamidation (Fröhlich & Arnold, 2011; Geiger & Clarke, 1987).  Additionally, other forms 

of post translational modification should be considered while choosing the peptide such as 

phosphorylation (Serine and threonine), or acetylation. However, it is very likely the choice 

of peptide is very limited, thus modified peptides can be considered if a consistent rate of 

modification is expected across samples (Fröhlich & Arnold, 2011). One exception is 

cysteine, where cysteine-containing peptides are consistently reduced and alkylated as part 

of standard procedure in proteomic sample preparation. 

6. Precursor charge: Each peptide can produce multiply charged precursor ion species upon 

ionization. The precursor ion with a charge state that show better fragmentation and 

provide measurements that are more sensitive should be selected. Often, doubly (+2) or 

triply (+3) charged precursors are preferred as they most likely fall into the instrument m/z 

range. The prevalent charge state of a peptide may differ based on their chemical 

environment (buffer type, concentration etc.) Histidine-containing peptides should be 

avoided because it can introduce multiple charges to precursor and product ions. For 

example, a histidine-containing tryptic peptide can be triply charge instead of doubly 

charged in acidic condition. Charge state of such peptides must be verified prior to selection 

for targeted analysis. 

7. Chromatographic peak: An ideal peptide’s chromatographic peak should have a narrow 

peak width and symmetrical shape. If multiple peptides are chosen for one protein, ideally 

they should have different retention times. 
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8. Signal Intensity: Choose peptide that can ionize efficiently and provide intense and stable 

signal. 

Quantotypic peptide candidates for proteins of interest can be obtained from prior discovery-

based experiments performed on similar sample on the same instrument. Additionally, there are 

many databases available that can aid in planning targeted experiments such as Global Proteome 

Machine (GPM), PeptideAtlas, or Human Proteinpedia (Beavis, 2006; Deutsch et al., 2008; Prasad 

et al., 2009). There are also computational algorithms available to predict quantotypic peptides 

such as PeptideSieve, enhanced signature peptide (ESP) predictor and peptide response predictor 

(PREGO) (Fusaro et al., 2009; Mallick et al., 2007; Searle et al., 2015). For SRM methods, suitable 

fragment ions must be selected as well during the method building process. 

Once candidate peptides are chosen, they can be tested for practice runs to finalize the correct 

set of peptides for a protein of interest. This is typically an iterative process to optimize list of 

precursor before the real data collection begins. For final data collection and quantification, a 

minimum of two peptides per protein should be measured, though more peptides are recommended 

in the case where there are discrepancy in quantitative result between the two chosen peptides 

(Rivers et al., 2007). 

For a good quantification, between 10-15 measurement points across the chromatographic 

elution profile of a precursor are needed. Considering a normal chromatographic peak has an 

elution width of approximately 30s, the cycle time must be optimized to 3s or less. Cycle time is 

defined as the time taken to cycle through the entire peptide list. Cycle time is determined by 

multiplying the number of precursors to the time taken to measure one precursor (transient time). 

Transient time can vary with the type of instrument and resolution settings for measurement. 

Lower resolution will give shorter transient time (Gallien, Duriez, et al., 2012). QQQ used in SRM 
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mode takes around 0.8-10ms per transition, with at least three transitions monitored for each 

precursor (Holčapek et al., 2012). While, q-OT mass spectrometer such as QExactive used in its 

lowest resolution mode (17500 at 200m/z) has a transient time of 64ms. Using the parameters of 

QExactive as an example we can calculate the ideal number of peptides for a PRM method. 

QExactive has a scan rate of 13 scans per second at its lowest resolution mode. For an ideal cycle 

time of 3s, QExactive can complete 39 low resolution scans. However, PRM methods often include 

one high-resolution full-scan at the beginning of the cycle, which will have a transient time of 

256ms at resolution of 70000 at 200m/z. Thus, there are ~2.7s of cycle time available for precursor 

measurements, which gives an ideal number of precursor of 35 percursors for every PRM method. 

To target large number of peptides in a single PRM method, a scheduled PRM method can be 

utilized. Scheduled PRM creates a scheduling time window for each precursors in the list thus the 

instrument will only measure the precursor at the specified time window (Gallien, Peterman, et al., 

2012). The time window can be determined with the knowledge of expected peptide retention time 

using either prior data or retention time predictor. Scheduled PRM approach can measure hundreds 

of precursors in a single analysis. However, extra attention should be put towards the number of 

concurrently eluting precursors in the selected time window. The number of concurrent precursors 

must be below the ideal limit of 35 precursors to ensure proper quantification of the 

chromatographic peak. Decreasing the size of time window and choosing peptides distributed 

across the elution gradient can decrease the number of concurrent precursors.   

Data analysis in SRM and PRM requires the integration of peak areas of selected fragment 

ions, which are summed to determine the abundance of peptides and extrapolated to determine 

protein abundance. Skyline is an open-source tool that is freely available for processing targeted 

proteomics data including SRM and PRM (MacLean et al., 2010). Skyline automatically processes 
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data once uploaded into it but the data must still be manually verified to determine any presence 

of interference in fragment ion peak as well as proper integration of peak area by the software.  

Targeted proteomics approaches, SRM and PRM, boasts very good quantification capability 

with a wide dynamic range (typically 4-5 orders of magnitude), low measurement of coefficients 

(below 10%) and low limit of detection in the range of femtomoles per milligram of protein 

(Addona et al., 2009; Gerber et al., 2003; Keshishian et al., 2009; H. Zhang et al., 2011). However, 

targeted approach are much harder to set up as lots of prior knowledge is required to build the data 

acquisition method. Additionally, SRM and PRM are time-intensive experiments, as they require 

extensive method optimization as well as complex post-data acquisition processing for 

identification and quantification of fragment ion chromatographic peaks (Liebler & Zimmerman, 

2013).     

1.6 Protein Quantification in Comparative Proteomics 

Mass spectrometers have proven to be excellent in qualitative protein analysis through 

protein identification. The next step in proteomics is moving form ‘what’ is in a sample to ‘what 

and how much’ is it in a sample. That brings about the development of quantitative proteomics in 

the field of mass spectrometers. However, mass spectrometers are intrinsically limited in terms of 

quantification due to the difficulties in converting the protein concentration injected into a mass 

spectrometer into MS-signal. Peptide ionization efficiency can vary between different peptides 

based on their physicochemical properties by many orders of magnitude (Muntel et al., 2015). 

Moreover, there is also variability during the generation of peptides from proteins due to different 

digestion efficiency and peptide solubility. Therefore, converting protein concentration into 

representative MS-signal are non-uniform and mostly unpredictable. The resulting MS-signal from 
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any analysis is only and indirect readout of protein abundance in a sample. Nevertheless, protein 

quantification is still possible from MS-signal is possible following development of quantification 

techniques to enable both relative and absolute quantification. Before protein abundance can be 

quantified, peptide signal from every sample must be quantified relatively and integrated to obtain 

ratio of protein in a sample (Bantscheff et al., 2007, 2012). Quantification of peptides relies on the 

idea that peptide chromatographic peak size is proportional to number of peptide ions detected in 

the instrument. Diffrerences in peptide ionization efficiency makes it not possible to compare MS-

signal of multiple peptides to determine their abundance. However, MS-signal of a peptide can be 

compared between multiple samples owing to same ionization efficiency expected for a peptide 

across different samples, the basis of relative quantification in proteomics (Bondarenko et al., 

2002; W. Wang et al., 2003). Absolute quantification in proteomics uses the same principle as 

relative quantification but peptides’ abundance are determined by comparing to the peak of a 

spiked-in labelled peptide with known concentration (Gerber et al., 2003). There are currently two 

branches of quantification methods available for researchers for protein quantification through 

mass spectrometry that are widely used; label-based quantification and label-free quantification. 

1.6.1 Label-based Quantification 

The major approach to protein quantification by mass spectrometry began with the reliance 

on stable-isotope labelling introduced by three independent laboratories in 1999 (Gygi et al., 1999; 

Oda et al., 1999; Paša-Tolic et al., 1999). As explained above, varying peptide ionization efficiency 

in mass spectrometers lead to difficulty in translating MS-signal to abundance. To address this 

issue, researchers started introducing labelled peptides into sample for quantification purpose 

driven by the stable isotope dilution theory. The theory implies that a stable isotope labeled peptide 

is chemically identical to its non-labeled counterpart, thus should behave in the same manner 
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during chromatography and ionization and yield distinct peaks due to the isotopic mass difference 

during mass spectrometry analysis. There are many approaches for labelling proteins/peptides for 

a label-based quantification, which includes; (i) metabolic labelling techniques such as stable 

isotope labelling of amino acids in cell culture (SILAC); (ii) chemical labelling techniques such as 

isotope-coded affinity tags (ICAT), isotope-coded protein labels (ICPL), isobaric tags for relative 

and absolute quantification (iTRAQ), tandem-mass-tags (TMT), N-terminal labelling, terminal-

amine isotopic labelling of substrates (TAILS); (iii) enzymatic labelling techniques such as 

incorporating heavy 18O during enzymatic digestion of peptides (Desiderio & Kai, 1983; Gygi et 

al., 1999; Kleifeld et al., 2011; Koehler et al., 2011; Ong et al., 2002; Ross et al., 2004; Schmidt 

et al., 2005; Thompson et al., 2003).   

General label-based experiments are conducted by labelling samples originating from 

different experimental condition with either heavy (2H, 13C, or 15N) or light (1H, 12C, or 14N) 

isotopes. Prior to mass spectrometric analysis, the labelled samples are mixed together for 

simultaneous analysis. Since the samples are chemically identical except for the mass difference 

due to the introduction of isotope, it is expected all chemical reaction in the sample should occur 

the same way between the two isotopes tagged groups (Aebersold & Mann, 2003; G. W. Becker, 

2008; Chahrour et al., 2015; Z. Zhang et al., 2014). This also applies the following 

chromatographic separation, with identical peptides from both heavy and light sample co-eluting 

from column, appearing in the same MS spectra, separated by the mass difference of the heavy 

and light isotope tags. This allows for direct comparison of peaks from two experimental 

conditions and can be quantified to reflect changes in protein abundance in samples. 

Although isotope-labelling techniques are very powerful and are considered the gold 

standard for protein quantification in mass spectrometry-based comparative proteomics, there 
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exists several caveats (G. W. Becker, 2008; Chahrour et al., 2015). The biggest issue with isotope 

labelling techniques is the increased level of sample handling required. The addition of chemical 

tags to proteomic samples adds further purification and recovery steps, thus resulting in reduction 

of starting material for analysis also increasing the time required to perform labelling experiments. 

Additionally, adding high amount of heavy isotope to a peptide can alter its hydrophobicity thus 

changing its chromatographic behaviour (Tanaka et al., 1986). Incomplete labelling reaction and 

ion fragmentation in MS/MS in chemical labelling experiment can result in loss of reporter ion 

thus introduce an extra level of complexity in data interpretation. Finally, another major hurdle for 

large scale labelling experiments is the reagents used to perform labelling are incredibly expensive, 

deterring their use in normal laboratory setting unless necessary. 

1.6.2 Label-Free Quantification 

Considering the negatives of label-based quantification techniques, a more robust and 

cheaper alternative is needed for mass-spectrometry based proteomic quantification. With the 

technological advancement of mass spectrometry and liquid chromatography, label-free 

quantification have been gaining traction among scientific community as an alternative to labeling 

techniques (Fabre et al., 2014; Wong & Cagney, 2010). Through careful experimental designs and 

control, such as automated sample handling, identical amount of starting material or protein 

concentration, same chromatographic gradient and various methods to ‘normalize’ peptide ion 

intensity between runs; label-free quantification can provide information regarding changes in 

protein abundance with respect to experimental conditions (Karpievitch et al., 2012; Ranjbar et al., 

2015; Välikangas et al., 2018). Label free quantification are based on two methods of converting 

MS-signal to protein abundance; spectral counting or peptide ion extracted chromatogram (al 
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Shweiki et al., 2017; Arike & Peil, 2014; Cox et al., 2014; Fabre et al., 2014; Nahnsen et al., 2013; 

Wong & Cagney, 2010; Zhu et al., 2010).  

Spectral counting is one of the easiest method of converting MS-signal to abundance, where 

the number of MS/MS fragment spectra observed for each peptide is tallied up to represent the 

protein abundance (Figure 1-6) (Arike & Peil, 2014; Nahnsen et al., 2013; Zhu et al., 2010). While 

it is a simple, easy to implement technique, it suffers from issues related to PSM assignment; ion 

suppression and degenerate peptides, which can lead to either under or over representation of 

peptide. Moreover, the commonly applied dynamic exclusion setting in DDA mode, used 

extensively for discovery proteomics, that excludes ions sampled previously from repeated 

fragmentation negatively affects the quantification accuracy (Old et al., 2005) . Spectral counting 

also relies on the basis of linearity of response across all proteins when in fact peptide spectral 

count is affected by its chromatographic behaviour (retention time, peak width, ion suppression by 

co-eluting peptides) leading to varying responses for different peptides. Nevertheless, the concept 

of counting spectra as a measure for quantification remain attractive and have led researchers to 

develop it further to the estimation of absolute protein abundance. Protein Abundance Index (PAI) 

introduced by Rappsilber et al. is a ratio of the number of observed peptides against all the possible 

tryptic peptides of a protein that is measurable on the mass range selected for the instrument used 

in the study (Rappsilber et al., 2002). The method was further developed to include the 

exponentially modified form (emPAI) to better correlate known protein amounts (Ishihama et al., 

2005). 
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Figure 1-6 Label Free Quantification: Extracted Ion Chromatogram (EIC) vs. Peptide Spectral 

Counting 

Extracted Ion Chromatogram (EIC) is a trace of precursor ion intensity obtained from MS1 scans 

over time (elution profile). The resulting curve is integrated to calculate the area under curve to 

represent the peptide’s abundance. Spectral counting refers to instances the instrument triggers MS2 

scan for a particular precursor. The frequency of MS2 scans for a precursor are compiled and reported 

as peptide spectral matches (PSM). 
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Currently, the most widely used technique is quantification based on extracted ion 

chromatogram (EIC) or MS1 based quantification. As peptides elutes from liquid chromatography 

column and ionized into the mass spectrometer, their intensity are recorded in the MS1 spectra and 

their identity can be determined from MS2 spectra upon fragmentation. Once a peptide is identified 

from the MS2 spectra, the corresponding MS1 signal for a given peptide (based on m/z) can be 

integrated from all MS1 spectra where the peptide was seen to obtain its chromatographic peak 

profile. The resulting peak is used to calculate ‘area under the curve’ as a measure of total number 

of ion for each peptide (Figure 1-6). The calculated area are then used to compare peptide 

abundance between samples by relative quantification (Bondarenko et al., 2002; Cox et al., 2014; 

W. Wang et al., 2003). Multiple peptide EICs from a same protein can be combined to reflect the 

overall protein abundance in a sample. However, as mentioned previously, peptides have different 

chromatographic behaviour and ionization efficiency, thus can affect the accuracy of protein 

quantification. One way to account for this issue is the ‘Top 3’ method employed by the program 

SEQUEST where protein abundance is determined by averaging the EIC of the three most intense 

unique peptides (Ahrné et al., 2013; Silva et al., 2006). Intensity based absolute quantification or 

IBAQ method is another alternative to ‘Top 3’ method, where total ion intensity for a protein is 

divided by the theoretical number of tryptic peptide for that protein with the length of 6 – 30 

residues (Ahrné et al., 2013; B et al., 2013; Schwanhüusser et al., 2011). In targeted proteomics, 

quantification are done by taking the area under the curve of fragment ions of a peptide, MS2 

signal. Since targeted proteomics does not employ dynamic exclusion like in DDA, peptides of 

interest are sampled continuously throughout their elution profile, thus summing up fragment ions 

peak areas to generate peptide abundance increases quantification accuracy. As mentioned earlier, 

Skyline can help to assign peaks (both MS1 and MS2 signal) for quantification of SRM or PRM 
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data automatically even though manual checking is required. Nevertheless, the use of MS2 signal 

for both identification and quantification greatly improves quantification accuracy by avoiding 

mis-assignment of m/z of peptide of interest that can affect MS1-signal based quantification. 

Protein relative quantification is performed by comparing the protein abundance of two 

different experimental groups, determined through either spectral counting or EIC. 

Conventionally, an average of protein abundance is used, obtained from averaging protein 

abundance from multiple replicates of same experimental group. Averaging abundance of 

biological replicates assumes that all samples were handled identically prior to data collection; 

however, this is not always the case. Mass spectrometric data collection are affected by drift in 

elution time of a peptide or the entire gradient and total decrease in ion intensity. The between run 

variability phenomena does increase the complexity of label-free experiment but researches 

address the issue by carefully standardizing the front-end procedures, such as (i) reproducibility of 

liquid chromatography separation,  (ii) stability of electrospray ionization, (iii) using 

computational resources for alignment and integration of multiple LC-MS runs for analysis, as 

well as normalizing the resulting data. To improve quantification accuracy, normalizing replicates 

data before protein abundance comparison has become standard procedure in recent times. Some 

normalization techniques utilized by our lab include spiking identical amount of standard protein 

in different sample, using a reference protein common in all samples that is known to be in constant 

abundance, or using a using the total ion current (TIC) which is the sum of EICs of all protein in 

the sample (Wilm, 2009). Our lab’s primary normalization method is to calculate protein 

abundance as a proportion of the TIC, and less frequently, we use reference protein normalization 

for studies with good candidate of reference proteins available. Normalization allows researchers 
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to minimize variation between biological replicates and reducing the impact of EIC of ‘0’ assigned 

to proteins in some replicates.   

1.7 Statistical Approach in Proteomic Data 

Interpretation 

Advances in modern mass spectrometry based proteomics analysis have significantly 

improved the rate of protein identification and quantification with proteomic analysis capable of 

identifying hundreds to thousands of proteins in a single sample. Majority of proteomics analysis 

are comparative in nature (cause and effect) where determination of differential expression of 

proteins level are crucial to infer important biological mechanisms as well as guide the future 

direction of a study. When a comparative proteomics study yields thousands of proteins, it 

becomes a difficult task to interpreting the resulting data and identifying proteins for further 

validations. Given the nature of validation experiments, which are high cost and labor intensive, a 

statistical analysis to choose and prioritize proteins of interest becomes an indispensable tool 

during proteomic data analysis. There are many statistical tests available to test datasets based on 

data size, conditions, parameters and number of comparisons. In comparative proteomics, the 

frequently used statistical tests are Student’s T test for two population comparisons and analysis 

of variance (ANOVA) for comparing two or more populations (ANOVA -- from Wolfram 

MathWorld, n.d.; Student’s t-Distribution -- from Wolfram MathWorld, n.d.). Below are brief 

introductions of these statistical tests as well as tests applied in this thesis.  
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1.7.1 T-test 

William Sealy Gosset first introduced T-test in 1908 under his pen name ‘Student’, hence 

known as Student’s T-test. The T-test follows the t-distribution and it is described as the method 

of testing theory of mean of sample from a normally distributed population where the standard 

deviation of the population is unknown. In simple terms, t-test is a method to determine the 

significance of differences between two different populations. There are three types of t-test, each 

for different types of populations; (i) paired (Student’s t-test), (ii) unpaired-homoscedastic, or 

unpaired-heteroscedastic (Welch’s t-test) (WELCH, 1947). Paired t-test assume both populations 

are equal where they fit normal distribution with equal variance. Meanwhile the second variant of 

t-test assumes the populations are different but with the measurement of both populations display 

equal variance. Finally, the unpaired-heteroscedastic t-test assumes unequal population and 

unequal variance which permits the highest level of ‘randomness’ of measurement among the three 

variants of t-test. T-tests calculates t-statistic value based on the means and variance between 

populations where the higher t-value represent greater difference in the measurement to the sample 

mean. Once the t-value has been determined, the p-value can be found from the table of values of 

t-distribution. If the calculated p-value is lower than chosen significance threshold (p<0.05), then 

the null hypothesis will be rejected and the measurement will be considered significant. 

1.7.2 Analysis of Variance (ANOVA) and Tukey’s Honest Significant 

Difference (HSD) Test 

Analysis of Variance (ANOVA) or in its basic form referred to as One-way ANOVA is the 

generalized version of two-sample t-test. ANOVA is used to determine the presence of significant 

difference between two or more groups, where both t-test and ANOVA will give same results for 

two-sample comparison (Analysis Of Variance (ANOVA) | Introduction, Types & Techniques, 
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n.d.). In ANOVA, measurement groups are compared for their variance between different groups 

and variance within a group. These two values are computed and the ratio of between group 

variability and within group variability are reported as the F-statistic value. If the calculated F-

value is higher than the F-critical value based of the chosen significance level (α=0.05), then the 

measurements are significantly different between each other. Although ANOVA can determine 

the presence of significance difference among groups, it has a limitation in determining the identity 

of the individual group that is significantly different from the others. Additional statistical tests 

referred to as post-hoc tests need to be used to further identify groups contributing to the 

differences among all groups. There are many post-hoc tests available such as Bonferroni 

correction, Fisher’s Least Significant Difference method, Scheffee method and Tukey’s Honest 

Significant Difference Test (HSD) where each of these test have their own strengths and 

weaknesses and can be applied based on the specific research question explored by a researcher 

(Bland & Altman, 1995; Haynes, 2013a, 2013b; Tukey, 1977). A summary of comparison between 

these tests can be found in a review written by Mary L. McHugh (McHugh, 2011). 

Tukey’s HSD first introduced by John Tukey, is a post-hoc test based on the studentized 

range distribution that uses pairwise comparisons to determine the presence of difference between 

the mean of all possible pairs of means. The Tukey test is the most used post hoc test that computes 

the ratio of the absolute value of difference between two means to the standard error of the mean 

determined through the ANOVA test. HSD assumes equal sample size however modification can 

be made to the equation to include unequal sample sizes and this modified method is referred to 

as the Tukey-Kramer method. 
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1.7.3 Multiple Testing Problem in Statistics 

Statistical tests help determine if a groups of measurements are different from each other 

due to a specific factor that are being tested. In statistics, a result is considered significant, if the 

null hypothesis, a statistical jargon that defines the relationship of variables being tested, is 

rejected.  Every time a statistical test is performed, four outcomes may occur, depending on the 

null hypothesis being found true or rejected by the statistical test. They are (i) a true null hypothesis 

is rejected (false positive, Type I error), (ii) a true null hypothesis not rejected (true negative), (iii) 

false null hypothesis is rejected (true positive), and (iv) false null hypothesis not rejected (false 

negative, Type II error) (Pounds & Morris, 2003). Therefore, there exist a probability a wrong 

inference drawn from a statistical test result but this can be controlled by carefully planning the 

experiment and setting a reasonable significance threshold (p-value<0.05). However, proteomics 

data, similar to other omics field data, require many statistical hypothesis tests to be calculated. In 

a proteomics dataset to identify differentially expressed proteins, researchers will conduct 

statistical tests on every identified proteins comparing thein mean expression levels across all 

experimental groups. Each statistical test have probability to introduce erroneous inference and 

when computed across thousands of proteins the error rate compounds to a huge number thus 

decreasing the power of the statistical test. Hence, this forms the crux of the multiple testing 

problem where the resulting p-values from several consecutive statistical tests increases the false 

positive rate associated with a p-value cut-off. P-values are often misinterpreted, as the probability 

the measurement being tested is false. In fact, p-value describes the measure of significance in 

terms of false positive rate. A false positive rate of 5% (p=0.05) means on average 5% of true 

negatives will be considered significant by random. In terms of protein comparison, a data set of 

1000 identified proteins compared at significance level of α=0.05, then a total of 5% or 50 proteins 
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will show significant difference by chance even if null hypothesis of no effect is true for all 1000 

proteins. Hence, it is much easier to choose a false positive result when choosing a significant 

result in experiments where multiple testing is involved.   

There are several methods that correct for multiple testing when deciding which results are 

statistically significant, referred to as ‘multiple testing procedures’ or ‘multiple comparison 

procedures’. Most common among the procedures is the Bonferroni Correction, which control the 

family-wise error rate (FWER), the probability of making one or more false positive error in a set 

of tests (Bland & Altman, 1995; Dunn, 1961). Another method which is more popular for 

biological experiments, is the false discovery rate (FDR) estimation introduced by Benjamini and 

Hochberg in 1995 (Benjamini & Hochberg, 1995). The FDR method works by determining a 

threshold of p-value above which only a determined proportion are false positive and the rest are 

true positive. The FDR defines the proportion of false positive can be expected in a set of 

significant results. For example, a FDR of 5% means among all results considered significant 

based on a selected significance threshold, 5% of these results are false positives. Storey and 

Tibshirani in 2001 redefined FDR as positive FDR (pFDR) and introduced the q-value to provide 

a measure of significance while automatically taking into account the simultaneous testing of 

thousands of measurements (Efron et al., 2011; Storey & Tibshirani, 2003). While the p-value cut-

off, as a measure of false positive rate, does not provide information on content of set of results 

considered significant. On the other hands, the q-value of pFDR estimates the probability of the 

presence of false positives in the set of results considered significant directly. 

 

 



 

 49  
 

  

 

 

 

 

 

 

2 Chapter 2:  

Comparative Proteomics of Differential 

Protein Abundance Upon Cellular 

Expression of Mir23~24 Cluster 

 

 

 

 



 

 50  
 

2.1 Contribution and Acknowledgement 

This chapter has been published as: 

Ramanaguru S. Piragasam, S. Faraz Hussain, Steven G. Chaulk, Zaeem A. Siddiqi, and Richard 

P. Fahlman. Label-free proteomic analysis reveals large dynamic changes to the cellular proteome 

upon expression of the miRNA-23a-27a-24-2 microRNA cluster. Biochemistry and Cell Biology. 

98(1): 61-69. https://doi.org/10.1139/bcb-2019-0014 

Dr. Steven Chaulk was responsible for cell culture work helped by Braden Millan as part of 

his summer work and RNA analysis. Dr. Faraz Hussain helped in the analysis of data in regards to 

functional proteome analysis. I was responsible for mass spectrometric sample preparations, data 

acquisition for both shotgun and PRM, and data analysis while study design was by Dr. Richard 

Fahlman and myself. 

 

 

 

 

 

 

https://doi.org/10.1139/bcb-2019-0014


 

 51  
 

2.2 Abstract 

In deciphering the regulatory networks of gene expression controlled by the small non-

coding RNAs known as microRNAs (miRNAs), a major challenge has been with the identification 

of the true mRNA targets by these RNAs within the context of the enormous numbers of predicted 

targets for each of these small RNAs. To facilitate the system-wide identification of miRNA 

targets, a variety of system wide methods, such as proteomics, have been implemented. Here we 

describe the utilization of quantitative label-free proteomics and bioinformatics to identify the 

most significant changes to the proteome upon expression of the miR-23a-27a-24-2 miRNA 

cluster. In light of recent work leading to the hypothesis that only the most pronounced regulatory 

events by miRNAs may be physiologically relevant, our data reveal that label-free analysis 

circumvents the limitations of proteomic labeling techniques that limit the maximum differences 

that can be quantified. The result of our analysis identifies a series of novel candidate targets that 

are reduced in abundance by more than an order of magnitude upon the expression of the miR-

23a-27a-24-2 cluster. 

 

 

 

 

 

 

 



 

 52  
 

2.3  Introduction 

For decades since their discovery (R. C. Lee et al., 1993), gene expression regulation by 

microRNAs (miRNAs) has been widely investigated with respect to their mechanisms of gene 

regulation and their networks of mRNA targets. A major mechanism of gene regulation by these 

small RNAs is their guiding of the RISC complex to target mRNAs by partial base pairing to target 

sequences within the mRNA sequence (Fabian & Sonenberg, 2012). As a result, to unravel the 

complexity of miRNA:mRNA regulation networks, numerous investigations have been pursued to 

identify the targets of individual miRNAs. A summation of many these investigations has been 

archived in the validated miRNA target database, miRTarBase (Chou et al., 2018). Despite this 

extensive archive of validated targets, the number of predicted miRNA targets by bioinformatic 

algorithms, as those utilized by TargetScan (Agarwal et al., 2015), far surpasses the number of 

validated targets. 

While bioinformatic tools have proven invaluable in the identification of potential miRNA 

targets, these targets still require experimental validation as target prediction algorithms predict 

many false positive identifications (Pinzón et al., 2017). In addition, we have an incomplete 

molecular understanding the targeting of mRNAs by miRNAs, for example miR-23a and miR-23b 

differ by a single nucleotide outside of their common seed region, and thus are predicted to have 

identical miRNA targets by bioinformatic analysis. On the other hand, laboratory experiments 

have revealed that in some instances these two miRNAs share targets, such as Pdcd4(X. Hu et al., 

2017), but other examples have revealed unique targets for these miRNAs (Li et al., 2016). 

Regarding the biological function of miRNAs, an underappreciated aspect is the occurrence 

of multiple miRNA in the primary miRNA transcript (pri-miRNA). While not all miRNAs 
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encoded in close proximity in the genome are transcribed as a cluster on a single pri-RNA 

transcript, many are (Chaulk et al., 2015). The forms of miRNA clusters include those encoded in 

the introns of coding mRNAs, such as the miR-17∼92 cluster (He et al., 2005) and those expressed 

from their own promoter, such as the miR-23a-27a-24-2 (miR-23∼24) cluster (Kong et al., 2010). 

This linked transcription of the miRNAs within a cluster dictates their coordinated expression. 

Mechanisms have been identified that can lead to differential miRNA maturation of the individual 

miRNA from the pri-miRNAs, for example differences in the maturation of the miRNA from the 

miR-17-92 cluster as a result of the folding of the pri-miRNA transcript (Chaulk et al., 2011; 

Chaulk, Xu, et al., 2014). Despite this, the miRNAs of a pri-miRNA transcript must be considered 

as a biological unit. For the miR-23∼24, synergistic functions between miR-23a, miR-27a, and 

miR-24-2 have been identified bioinformatically (Chhabra et al., 2010) and by comprehensive 

proteomic analysis (Ludwig et al., 2016). 

Overshadowing the rapid expansion in the literature regarding various miRNA:mRNA 

interactions, recent investigations and hypotheses are suggesting that much research on miRNA 

targeting maybe highly over interpreted (Seitz, 2017). Investigations have demonstrated that the 

often-reported small changes in gene expression, often under 2-fold, by miRNAs is often less than 

the variability observed in gene expression between individuals (Pinzón et al., 2017). As opposed 

to the large-scale changes in gene expression initially observed with the initial identification of 

miRNAs (R. C. Lee et al., 1993), it is suggested we may need to seriously reconsider the 

interpretation of small changes in mRNA regulation that is often reported (Seitz, 2017). 

In light of this issue regarding the importance of identifying the most significant changes in 

gene expression by miRNAs to identify the potentially most physiologically relevant 

miRNA:mRNA associations, we are investigating the utility of label-free proteomics to quantify 
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the most significant changes to the proteome upon miRNA expression. While proteomic labeling 

methods, such as iTraq isobaric tags, have been demonstrated to be of high utility to identify 

changes to the cellular proteome as a result of miRNA expression (Ludwig et al., 2016), the 

magnitude of changes are typically underestimated as a result of experimental artifacts, that are 

not widely discussed, that leads to a suppression of the quantified differences observed between 

samples (Saw et al., 2009; H. Wang et al., 2012). Here we report on the label-free quantification 

of the proteome changes that result upon the expression of the miR-23∼24 cluster, where previous 

reports using iTraq almost exclusively only observed changes of under 2-fold. 
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2.4  Materials and methods 

2.4.1 miR-23∼24 expression in cell culture 

To express the miR-23∼24 cluster, the genomic sequence including the 2 kb sequence 

downstream of the cluster was cloned into a pcDNA 3.1(+) vector. HEK293T cells obtained from 

ATCC were grown in Dulbecco’s modified Eagle medium (DMEM) supplemented with 10% fetal 

bovine serum. Transfection of the miR-23∼24 plasmid or empty vector control were performed 

using the calcium-phosphate-based method as described previously (Jordan et al., 1996) to a 

monolayer of cells in a 10 cm dish. Then, 48 h after transfection, the cells were lysed for either 

RNA or protein analysis as described below. 

2.4.2 RNA analysis 

Total RNA was isolated using TRIzol (Invitrogen) for Northern blot analysis as we have 

previously described (Chaulk et al., 2011; Chaulk, Lattanzi, et al., 2014). For Northern blot 

analysis, the following DNA probes purchased from IDT were used for each miRNA: miR-23a-

3P, 5′-GGAAATCCCTGGCAATGTGAT-3′; miR-27a-3P, 5′-

GCGGAACTTAGCCACTGTGAA-3′; miR-24-2-3P, 5′-CTGTTCCTGCTGAACTGAGCCA-3′. 

2.4.3 Proteomic analysis 

For proteomic analysis, the cells in a 10 cm dish were harvested 48 h after transfection by 

lysis in 150 μL denaturing lysis buffer [50 mm Tris (pH 6.8), 8% glycerol (v/v), 1% sodium 

dodecyl sulfate (SDS, w/v), 0.125% β-mercaptoethanol (v/v), 1 mmol/L PMSF, and 1 μg/mL of 

leupeptin]. To facilitate pipetting, the samples were then sonicated to shear the genomic DNA in 

the samples. Then, 30 μL of lysate of each sample was resolved by 10% SDS–PAGE and then 
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visualized with Coomassie Blue staining. Each lane was excised and subsequently cut into 14 

equal bands, where each band contains proteins from a different molecular weight range. Each gel 

fraction was subjected to in-gel tryptic digestion beginning with de-staining twice with 50:50 

100mM Ammonium bicarbonate (NH4HCO3)/acetonitrile. Once gel fractions are stainless, they 

are reduced with 10mM β-mercaptoethanol in 100 mM NH4HCO3 at 37oC for 1 hour followed by 

alkylation with 55mM iodoacetamide in 100 mM NH4HCO3 at 37oC for 1 hour. Gel pieces are 

dehydrated before the addition of trypsin (6 ng/uL) to cover the gel pieces overnight (~16 hours) 

at room temperature. Digested peptides are extracted through two extraction stages at 37oC for 30 

minutes; first with extraction buffer (97% water/ 2% acetonitrile/ 1% formic acid) and second 

extraction with 50:50 extraction buffer/acetonitrile. The resulting peptides were dried and 

resuspended in 60 μL of 0.2% formic acid in 5% acetonitrile (ACN). Digested peptides were 

analyzed by LC-MS/MS using a ThermoScientific Easy nLC-1000 in tandem with a Q-Exactive 

Orbitrap mass spectrometer. Each sample (5 μL) was resolved using a 120 min gradient [0%–45% 

Buffer B; Buffer A (0.2% formic acid in 5% ACN); Buffer B (0.2% formic acid in 100% ACN)] 

on a 2 cm Acclaim 100 PepMap Nanoviper C18 trapping column in tandem with a Thermo EASY-

Spray column (PepMap® RSLC, C18, 3 μm, 100 Å, 75 μm × 150 mm). For data-dependent 

analysis, full scans were acquired at 35000 resolution at a range of 400–200 m/z while 17500 

resolution was used for MS/MS scans. Only top 15 ions with +2 and +3 charges were selected for 

MS/MS with 10 s dynamic exclusion applied to prevent continuous reanalysis of abundant 

peptides. Following data acquisition, raw data files were compiled for each gel lane and searched 

with Proteome Discoverer 1.4’s SEQUEST search algorithm using the reviewed, non-

redundant homo sapiens complete proteome retrieved from UniProtKB. The search parameters 

and quantification were as previously described (Kramer et al., 2017). 
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2.4.4 Data analysis 

The false discovery rates (FDRs) for the identifications of the analyzed samples were as 

follows: “vector control” samples’ actual relaxed FDRs for individual peptides were 0.0438, 

0.0416, and 0.0430, while the actual strict FDRs were 0.0068, 0.0067, and 0.0067 for replicates 

1–3 respectively; “miR23∼24” samples’ actual relaxed FDRs were 0.0427, 0.0358, and 0.0394, 

while the actual strict FDRs were 0.0070, 0.0078, and 0.0070 for replicates 1–3 respectively. 

Subsequent analysis was carried out in Microsoft Excel. Extracted ion chromatogram (EIC) was 

used as a measure of protein abundance with only proteins with EIC > 0 in ≥1 sample were used 

for comparative data analysis. Relative total ion current (TIC) was calculated by summing the EIC 

for all the proteins identified in a sample. Then each proteins’ EIC were divided by TIC to obtain 

the “proportion of total” value per sample. To determine changes in abundance in two sample sets 

(miR-23∼24 vs. vector control), a 2-tailed, heteroscedastic Student’s t test was applied. 

Resulting p values were sorted and uploaded to the “q-value estimation for FDR control” web 

utility (qvalue.princeton.edu) (Storey & Tibshirani, 2003) to generate estimates of the FDR (q-

values). The complete set of proteomic data are provided in the Supplementary data, Table S12. 

Functional analysis of proteins with p < 0.01 were analyzed with Database for Annotation, 

Visualization, and Integrated Discovery (DAVID) version 6.8 (https://david.ncifcrf.gov/) (Huang 

et al., 2009) and enriched for Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway 

identifiers. Predicted miR23∼24 targets were obtained from TargetScanHuman version 7.2 

(http://www.targetscan.org/vert_72/) (Agarwal et al., 2015), whereas the validated miR23∼24 

targets were obtained from miRTarBase version 7.0 

(http://mirtarbase.mbc.nctu.edu.tw/php/index.php) (Chou et al., 2018). 
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 58  
 

2.4.5 Parallel reaction monitoring 

Proteins of interest were quantified via parallel reaction monitoring on a Q-Exactive 

Orbitrap mass spectrometer coupled with ThermoFisher Scientific Easy nLC-1000. Samples were 

prepared as described above with 40 μL lysate were resolved to approximately 30% of gel length 

by SDS–PAGE then subjected to in-gel trypsin digestion. The resulting samples were then 

combined to be analyzed in a single LC-MS/MS run. Multiple peptides per protein (Supplementary 

data, Table S22) were included for method building with acquisition beginning with a high-

resolution full scan (35000) followed by individual precursor isolation by quadrupole (isolation 

window 1.6 m/z), HCD fragmentation (NCE 27%) and analyzed by the orbitrap analyzed at 17500 

resolution. Raw data were imported and analyzed using Skyline software (MacLean et al., 2010). 

Peptides’ chromatographic peak identity were confirmed by importing Proteome Discoverer result 

files obtained from the PRM raw data to Skyline and aligning the peptide’s retention time to raw 

chromatogram. 
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2.5  Results 

2.5.1 MicroRNA cluster expression 

To investigate the miR-23∼24 cluster, the entire 2.2 kb sequence was cloned into a pcDNA 

vector. This plasmid or a vector control were transfected into HEK 293T cells and the total RNA 

from these cells were analyzed by Northern blot analysis for miR23a (Figure 2-1A). In addition, 

the total RNA from a HeLa cells and a series of breast-cancer derived cell lines was also analyzed 

for endogenous miR23a levels. As seen in Figure 2-1A, the expression of the miR-23∼24 cluster 

from the plasmid in HEK293T cells led to miR23a levels that are comparable to endogenous levels 

of the miRNA observed in MDA-MB-468 and MDA-MB-231 cells. As with the absence of 

detectable miR23a in HEK293T cells, miR27a and miR24-2 are only detectable in these cells upon 

transfection of the vector for miR-23∼24 expression (Figure 2-1B). 

2.5.2 Proteomic analysis 

To investigate the proteome-wide changes in cells upon expression of the miR-23∼24 

cluster, HEK293T cells were transfected with the miR-23∼24 expression vector or an empty vector 

control. Triplicate samples of the controls and the miR-23∼24 cluster expressing cells were then 

lysed and analyzed by Gel–LC-MS/MS. The analysis identified a total of 4349 proteins 

(Supplementary data, Table S1) that were quantified for their relative intensity by quantifying the 

EICs for the three most intense tryptic peptide observed for each protein and normalizing this data 

to the total ion current quantified for the sample. The triplicate relative EIC intensities of each 

protein were compared using individual Student t tests. The complete set of statistical comparisons 

of the normalized data are listed in the Supplementary data, Table S3.  
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Figure 2-1 Expression of the miR-23~24 cluster 

(A) Northern blot analysis for the expression of miR-23a in HEK 293T cells transfected with a 

plasmid to express the miR-23∼24 cluster or the vector control. Total RNA from the indicated 

cell lines were included for comparison of endogenous miR23a levels in these cell types.(B) 

Northern blot analysis for expression of miR23a, miR27a and miR24-2 in cells expressing 

miR23~24 cluster (+) or vector control (-).  
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The reproducibility of the label-free quantification is relatively high. The comparison of 

the quantified data from two individual control samples reveals only minimal run-to-run variability 

for proteins quantified below the relative ion intensity of 1 × 10−3 (Figure 2-2A), whereas the 

majority of the data exhibit reproducible quantification. In contrast, when the average relative ion 

intensities for the three replicate vector control samples are plotted against the average relative ion 

intensities of the miR-23∼24 expressing cells, an overall reduction in the levels of many proteins 

is observed with the number of proteins observed below the diagonal trendline (Figure 2-2B).  

For a more comprehensive comparison of the miR-23∼24 expressing and the vector control 

cells, including the statistical analysis between the datasets, the fold-change of each protein’s 

relative average ion intensities are depicted as a volcano plot in Figure 2-2C. Proteins uniquely 

observed in a single experimental condition were assigned a log2 value of ±10 to facilitate their 

visualization on the log scale plot. In this case, proteins only observed once or twice in a particular 

sample and absent in the other exhibit high p-values, whereas proteins repetitively observed in 

only a single experimental condition result in a low p-value; for example, Orc6 was uniquely 

observed in all three vector control samples but was not detected in any sample from the cells 

expressing miR-23∼24. 

Overall, the analysis again reveals an over-representation of down-regulated proteins upon 

miR-23∼24 cluster expression, as viewed by the asymmetry of the volcano plot with more proteins 

being observed to the left of the Y-axis. To query the quality of the data, a series of proteins often 

utilized as loading controls were analyzed for their relative extracted ion intensities. The ion 

intensities for Gapdh, ActB, GPI, and CFL1 are shown in Figure 2-2D, and none reveal an 

observable difference between the control cells or cells expressing the miR-23∼24 cluster. For 

comparison with these invariant protein controls, we plotted two histone proteins, Hist1H2BK  
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Figure 2-2 Label free proteomic analysis of cells expression the miR-23∼24 

cluster. 

A. The relative ion intensities for identified proteins from two biological replicates of control 

samples were plotted against each other to demonstrate the reproducibility of quantification and 

detection. B. The average relative ion intensities for proteins identified in the triplicate analysis of 

cells expressing the miR-23∼24 cluster or vector control cells were plotted to demonstrate the global 

changes observed in the cellular proteomes. C. Volcano plot of the data described in (B.), which 

includes the p-values determined for each protein quantified in the comparison of cells expressing 

the miR-23∼24 cluster or vector control cells. Selected proteins from the data set are individually 

labeled. D. Quantified data from selected proteins are plotted to demonstrate the variability between 

experimental conditions. Major control proteins do not exhibit significant differences between the 

cells types (dark grey, cells expressing the miR-23∼24 cluster; light grey, vector control cells), 

whereas H2AFX, a known target of miR24a, exhibits a nearly 10-fold reduction upon the expression 

of the miR-23∼24 cluster. E. Summation of the number of changes in protein expression observed 

at the indicated statistical cut-offs. 
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(Hist H2B type 1-K) and H2AFX (H2A histone family member X), where Hist1H2BK again 

exhibits no observable variation between samples, but a nearly 10-fold decrease is observed for 

H2AFX. H2AFX was predicted to be down-regulated upon expression of the miR-23∼24 cluster 

because it is a previously reported target for miR-24-2 (Srivastava et al., 2011). 

Figure 2-2E summarizes the observed number of up- and down-regulated proteins at p-

value cut-offs of 0.05, 0.01, and 0.001. As a result of the multiple testing problem when comparing 

large datasets (Storey & Tibshirani, 2003), the q-values for each of these p-value cut-offs were 

determined as an estimate of the false discovery rate. The corresponding q-values for these p-

values were 0.139, 0.099, and 0.094 respectively. 

2.5.3 Functional analysis of the altered proteome 

For a global analysis of the proteome-wide changes observed in the cells upon expression 

of the miR-23∼24 cluster, bioinformatic analysis was performed on the function of the proteins 

that exhibited a change in abundance. For this analysis, proteins that met the criteria of a p-value 

of <0.01 were analyzed. The proteins were analyzed with the DAVID functional annotation tool 

for KEGG pathway identifiers (Huang et al., 2009) to identify potential enrichments of functions 

for the proteins observed to change in abundance. As seen in Table 2-1, a series of functional 

groups were identified including ribosomes, RNA processing, and metabolic processes, including 

glutathione metabolism and oxidative phosphorylation. 
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2.5.4 Changes in ribosomal proteins 

With ribosomal proteins topping the list from the DAVID analysis, we took a closer look 

at all of the ribosomal proteins observed in the data. Figure 2-3A shows the quantification of 

ribosomal proteins observed in the control cells and cells expressing the miR-23∼24 cluster, where 

a general global down-regulation is observed, apart from a few ribosomal proteins such as RpsA 

and Rpl7L1. This observed general overall reduction in ribosomal proteins (which may reflect an 

overall reduction in ribosomes) upon miR-23∼24 cluster expression is consistent with the global 

reduction in the large number of proteins observed (Figure 2-2). 

 

 

 

 

 

 

Table 2-1 Pathway enrichment for proteins determined to change in abundance at 

a statistical cut-off of p < 0.01 
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2.5.5 Validation of changes in ribosomal protein abundance 

With our label-free shotgun proteomic analysis revealing large fold-changes in a number 

of proteins upon the expression of the miR-23∼24 cluster, some of these changes were validated 

by an alternative method. For this, we utilized the quantitative approach of parallel reaction 

monitoring (Gallien, Duriez, et al., 2012) to quantify the changes in abundance of select proteins. 

The data in Figure 2-3B, reveals the quantification of Rps8, Rps9, and GAPDH from both the 

initial three shotgun analyses and from three PRM analyses of the control cells and cells expressing 

miR-23∼24. Of methodological note, the PRM analysis was performed on whole cellular lysate 

and not lysates pre-fractionated by SDS–PAGE. As seen in Figure 2-3B, the data between the two 

analytical methods are in good agreement regarding the magnitudes of change in protein 

abundance. As predicted, the PRM data resulted in higher precision quantification of these 

changes. 

 

 

Figure 2-3 Global analysis and selected validation of ribosomal proteins. 

A. Analysis of all ribosomal proteins detected reveals an overall reduction in both small (left) and 

large (right) ribosomal subunit proteins upon expression of the miR-23∼24 cluster. In contrast to 

the global reduction in ribosomal proteins, the indicted ribosomal proteins exhibited increased 

abundance upon miRNA cluster expression. B. Validation of the large fold-changes observed upon 

expression of the miR-23∼24 cluster with the initial shotgun proteomic analysis by parallel 

reaction monitoring of the indicated proteins. 
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2.5.6 Comparison of proteomic data with miRNA predicted targets 

With the large-scale proteome changes observed upon miR-23∼24 cluster expression being 

a result of both direct targeting by miRNAs and indirect as a result of the miRNA targets regulating 

the expression of others, a comparison of the proteomic changes observed was made with both the 

predicted targets and validated targets listed in the Target Scan and miRTarBase bases. For this 

analysis the proteins that were observed to decrease or increase in abundance in the proteome 

datasets were determined whether they were targets in either of the databases. The complete 

comparison is listed in the Supplementary data (Table S4), but the summary of the data in Figure 

2-4 strikingly reveals a minimal overlap of the down-regulated proteins with the miRNA target 
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datasets. In addition, numerous proteins observed to increase in abundance are predicted to be 

targets of either miR23a, miR27a, or miR24-2. 

 

2.5.7 Top candidate targets of the miR-23∼24 cluster 

While many of the down-regulated proteins are likely a result of the indirect activity of the 

miRNAs within the miR-23∼24 cluster, the intersection of predicted targets and the down-

regulated proteins by proteomic analysis was used to identify candidate targets. While the 

overlapping still leads to a significant number of candidates, 89 with a p value of <0.05 (Figure 

2-4), we have also filtered the data for the largest magnitude change in abundance. Figure 

2-5 displays the quantified data for 11 proteins that were either only observed in the vector control 

cells or exhibited at least a 10-fold reduction in expression, while also exhibiting a p-value < 0.005. 

 

Figure 2-4 Overlap of predicted targets of miR-23∼24 with observed 

proteomic changes. 

Dark grey bars indicate the number of proteins identified to be targets of miR23a, miR27a, 

or miR24-2 in either TargetScan or miRTarBase. Light grey bars indicate the number of 

proteins observed to change in abundance, but are not predicted targets of any of the three 

miRNAs. The change in whether protein abundance increased or decreased in abundance 

upon miR-23∼24 expression is indicated. The changes in abundance are grouped according 

to the statistical confidence of the change in abundance observed. Of note is the lack of a 

significant correlation of proteins predicted to be targets of the miRNAs and them 

decreasing in abundance upon miRNA cluster expression. 
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Figure 2-5 Top candidate target genes for the miR-23∼24 cluster. 

The top candidate potential direct targets of the miRNAs from the miR-23∼24 cluster were 

identified by those were only detected in the control cells or exhibited a greater than 10-fold 

reduction upon miR-23∼24 expression. To minimize this list to the 11 proteins shown, only those 

with a p value <0.005 are displayed. **, Indicates that the protein was not detected in the cells 

expressing the miR-23∼24 cluster. 
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2.6  Discussion 

Here we have utilized the over-expression of the miR-23∼24 cluster in HEK 293T cells to 

demonstrate the utility of label-free proteomics to identify large-scale alterations to the cellular 

proteome. While the expression of genes from a CMV promoter in these cells can lead to 

artificially high levels of gene expression, in this model it is apparent from the miRNA expression 

analysis in Figure 2-1 that expression of the miR-23∼24 cluster leads to high levels of mature 

miRNAs but is comparable to levels observed endogenously in widely utilized breast cancer 

derived cells lines, such as MDA-MB-231 and MDA-MB-468 cells. These high levels may be 

relevant in some aspects of breast cancer, because the miR-23∼24 cluster has been linked to the 

progression of these diseases (Ell et al., 2014; Y. Wang et al., 2017). 

In light of a growing concern regarding the over-interpretation of small changes in gene 

expression often reported regarding mRNA targeting by miRNAs (Seitz, 2017), the identification 

of the most potent large-scale changes in gene regulation may be the most biologically relevant 

interactions. The potential questionable significance of modest changes in gene expression as a 

result of mRNA–miRNA interactions has been brought to question, and as a result, the variability 

observed in gene expression between individuals can overshadow these small changes (Pinzón et 

al., 2017). To identify the largest scale changes in protein expression upon the expression of the 

miR-23∼24 cluster, we have focused on label-free quantitative proteomics using the model system 

of HEK 293T cells, which do not express the miR-23∼24 cluster at detectable levels (Figure 2-1). 

While isotopic labeling methods, such as iTraq isobaric tags (Wiese et al., 2007), are 

widely considered to be superior for quantitative proteomics, technical issues regarding their 

limitation in detecting large differences in abundance is often overlooked (Saw et al., 2009; H. 
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Wang et al., 2012). The suppression of the differences quantified by these labeling methods is 

likely a result of contaminating co-eluting peptides into the collision cell of the mass spectrometer. 

While modern instruments have sufficient resolution to resolve nearly isobaric masses, they 

nonetheless suffer from poor resolving power for the isolation of parental ions for MS/MS 

fragmentation, which is typically conducted by quadrupole. As a result, multiple species may 

contaminate the collision cell and lead to contaminating reporter ions; an occurrence that will be 

more significant for low abundance peptides. This results in the compression of the data with lower 

fold-differences being observed between samples as has been previously reported with head-to-

head comparisons of iTraq and label-free proteomic analysis (Latosinska et al., 2015; Trinh et al., 

2013). For example, a previous study on the proteome changes upon miR-23∼24 cluster 

expression reported a maximal ∼2-fold change for the most significant protein alterations (Ludwig 

et al., 2016). In this previous work, Dhfr and Nolc1 were two of the more significant changes 

observed upon expression of the miR-23∼24 cluster, with reduced levels of protein of 

approximately 40% and 60% respectively. While these changes may be significant, our label-free 

quantification was unable to detect a significant reduction in these proteins. Our data revealed a 

reduction of ∼30% for both of these proteins through the variability between replicate analysis, 

which resulted in no statistically significant difference being observed (Supplementary data, Table 

S1). 

2.6.1 Proteomic analysis 

While label-free analysis may be insensitive to the quantification of small changes in 

protein abundance, the analysis of replicate data in Figure 2-2A reveals sufficient reproducible 

quantification between analysis. Between these replicates the overall r2 for all the data was 0.92. 

Nonetheless, the reproducibility between runs is not exact, with increasing variability for low 
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abundance proteins, and highlights the need for replicate analysis for reliable label-free proteomic 

analysis. 

The complete comparison of the proteomes of miR-23∼24 cluster expressing, or vector 

control cells lead to the identification and quantification of 4349 proteins (Supplementary data, 

Table S1) that range in over five orders of magnitude in abundance, as determined by their relative 

ion intensity (Figure 2-2). The comparison of protein abundance between the samples revealed a 

large-scale reduction in a large number of proteins. Careful analysis of the volcano plot in Figure 

2-2C reveals that a large number of proteins are observed to change in abundance by 10- to 100-

fold, even if excluding those proteins uniquely observed in one experimental condition. This is in 

stark contrast to the differences reported by iTraq analysis (Ludwig et al., 2016) and demonstrates 

the utility of label-free proteomic analysis for the quantification of large changes to the proteome. 

The statistical comparison of the quantified differences in the proteomes of the miR-23∼24 cluster 

expressing cells versus the vector control cells identified variations in large numbers of proteins at 

different levels of statistical confidence (Figure 2-2E). 

With the large numbers of changes in protein abundance determined, ∼750 at a p value of 

<0.05 and ∼200 at a p value of <0.01 (Figure 2-2E), a simple interpretation of the molecular 

pathways regulated by the miR-23∼24 cluster is not possible. Gene Ontology analysis of the 

proteins observed to change using a cut off of a p value <0.01, revealed an enrichment of the five 

KEGG groups listed in Table 2-1. While this list includes ribosomes, peroxisomes, splicing, and 

a few metabolic pathways, it is not entirely insightful regarding the specific molecular function of 

the miR-23∼24 cluster; however, it is in agreement with previous reports linking the miRNAs 

from this cluster to metabolism (Gao et al., 2009; Kelly et al., 2015). Surprisingly, within the 

groups of protein populating the functions listed in Table 2-1, most are not identified or predicted 
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targets of miR23a, miR27a, or miR24-2, with the exception of a couple proteins like Rpl19, which 

is a predicted target of miR27a (Chou et al., 2018). This lack of association suggests that many of 

the observed changes are a result of indirect effects of the activities of the miRNAs from the miR-

23∼24 cluster. The occurrence of the regulation of broad pathways by this cluster are not surprising 

given diverse impact of this miRNA cluster in cell differentiation (Cho et al., 2016; Kurkewich et 

al., 2017) and disease (Bang et al., 2012; Ell et al., 2014; Y. Wang et al., 2017). 

To further query the top group identified in Table 2-1, ribosomes, we then went on to 

investigate the data obtained from all the ribosomal proteins detected and not just those that met 

the statistical threshold of p < 0.01. This secondary analysis was revealing in that it is suggestive 

of a general global down-regulation of ribosomal proteins, with the exception of a few ribosomal 

proteins that are observed to increase in abundance (Figure 2-3). While the increase in abundance 

of select ribosomal proteins may at first be counter intuitive with regards to a model for a global 

down regulation in ribosome biogenesis, the individual increase in select ribosomal proteins may 

reflect their specific or alternative roles. For example, while RpsA is a known small ribosomal 

subunit protein (Malygin et al., 2011) it is also known to have extra-ribosomal functions as a 

laminin receptor (Scheiman et al., 2010) so its observed increase in abundance may be related to 

this function. 

2.6.2 Target identification 

While proteomics analysis reveals the global changes to the proteome upon expression of 

the miR-23∼24 cluster, it does not provide insight regarding which changes may be a direct result 

of miRNA targeting. Direct target identification and validation has demonstrated to be challenging, 

with current reports having to focus on one or two targets of a miRNA in a single study. For 
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example, a recent report on miR27a has identified both interleukin-10 and TGF-β-activated protein 

kinase 1 binding protein as targets of this miRNA (Hussain et al., 2018). A challenge in the 

identification of miRNA targets is that prediction algorithms, such as those used by TargetScan 

(Agarwal et al., 2015) predict enormous numbers of candidates, which needs to be validated on a 

case by case scenario as the success rate for identification can not be reliably estimated as a result 

of a lack of negative results being published in the literature. Within our own data set, the 

predictions almost appear random (Figure 2-4), which is in agreement with previous reports where 

minimal overlap of target prediction and proteomic changes are observed (T. Lee et al., 2015). 

When classifying the up- and down-regulated proteins observed upon miR-23∼24 expression, the 

percent of predicted targets in both groups are similar. This is not to say that these prediction 

algorithms are not of high utility, but one must be cautious regarding the interpretation of pure 

bioinformatic analysis of miRNA targeting (Chhabra et al., 2010). The utility of mRNA target 

prediction algorithms and bioinformatic analysis are of greatest utility when combined with 

biological data to identify key target candidates. For example, this cross-platform analysis was 

demonstrated successfully with the identification of the miR27a-calreticulin signaling axis 

(Colangelo et al., 2016). 

With our focus on identifying the most potent mRNA targets of the miRNAs derived from 

the miR-23∼24 cluster, our proteomics data was cross-correlated with the miRNA targets from 

miRTarBase (Chou et al., 2018) and TargetScan (Agarwal et al., 2015). As mentioned, the overlap 

of predicted miRNA targets and our quantified proteomic changes is marginal (Figure 2-4); of the 

448 down-regulated proteins, at a p value of <0.05, only 89 are predicted targets of either miR23a, 

miR27a, or miR24-2. As not all of the alterations to the proteome are likely to be a result of direct 

regulation by miRNAs, this finding is somewhat expected. In contrast to this, of the 307 proteins 
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observed to increase in abundance upon the expression of the miR-23∼24 cluster, 60 are predicted 

to be targets of one of the three miRNAs. At first glance the somewhat random occurrence of 

miRNA predicted targets and cellular changes to the proteome lead to what may be considered a 

poor result regarding the predictive power of identifying miRNA targets using these algorithms. 

Nonetheless, in combination with biological data the results are still very promising, because the 

intersection of the datasets reveals the most promising candidate genes targeted by the miRNAs 

from the miR-23∼24 cluster. 

In returning to the original question regarding the identification of candidate miRNA targets 

that lead to large reduction in expression by a miRNA, our data was cross-referenced with the 

miRTarBase and TargetScan databases for miRNA targets to identify proteins that met the 

following criteria. Proteins that either were reduced in abundance by at least 10-fold or were only 

detected in the vector control cells, exhibited a p value of <0.005 for the t test between the control 

and miR-23∼24 replicates, and were predicted to be targets of one of the three miRNAs. These 

very restrictive constraints lead to the identification of the 11 proteins listed in Figure 2-5. While 

most of these proteins, such as Orc6 have not been previously reported to be associated with any 

of the miRNAs from the cluster, grancalcin (GCA) has been reported previously to be regulated 

by miR27a (Schoolmeesters et al., 2009). For future investigations on this cluster, these proteins 

are top candidates for regulation. If the criteria are relaxed to a p value <0.01 for example, but 

keeping the criteria of the 10-fold change, the number of protein candidates jumps to 25 

(Supplementary data, Table S3). 
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2.7  Concluding remarks 

Here we report on the utilization of label-free proteomics to characterize the global changes 

to the cellular proteome upon the expression of the miR-23∼24 cluster and reveal the utility of this 

approach to identify the most promising potent targets of the miRNAs originating from this cluster. 

While label-free proteomics is traditionally not viewed to be as quantitative and more problematic 

than isotopic labeling techniques, such as iTraq, we demonstrate that it is of high utility in 

identifying the largest magnitude changes, which are desired for the identification of the most 

potent targets for miRNA regulation. While our analysis for identifying the most significant 

inhibition by miRNAs from the miR-23∼24 cluster revealed a previously identified target, our 

data reveals an additional series of previously unreported potential targets that exhibit reduced 

expression by over an order of magnitude upon expression of the miR-23∼24 cluster. This is in 

contrast to previous proteomic investigations on this cluster using iTraq labeling, which only 

reported on changes of less than 2-fold in protein abundance. 

 

2.8 Future Direction 

Our findings identified many previously unreported targets that exhibit reduced expression levels, 

several of them were downregulated by more than an order of magnitude. These targets needs to 

be investigated to determine if they are direct targets of the miR23~24 cluster or their reduced 

expression level is due to indirect effect of the overexpression of the cluster. The functional 

relevance of the targets could also uncover potential pathways or signaling network that could be 

affected by miR23~24 cluster. Since higher expression of this microRNAs have been shown to 
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mimic several breast cancer cell lines, these proteins that show great decrease in expression could 

be tested as potential biomarkers for breast cancer. There are still many unknowns related to 

microRNA activities and targeting in vivo that still needs to be investigated as our investigations 

into miR23~24 cluster overexpression have shown. Other microRNA clusters could also have 

similar behaviour that have been left unreported previously.  
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Potential Biomarker Identification 

Through Serum Proteomics for 
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3.2 Abstract 

Nonspecific symptoms and a lack of a universal molecular biomarker hinders timely 

diagnosis and treatment of the autoimmune disease Myasthenia Gravis (MG). Molecular diagnosis 

of MG by the presence of serum auto-antibodies is only confirmed in ~85% and ~50% of patients 

with generalized and ocular MG, respectively. Comparing the serum proteomes of MG patients to 

both healthy controls (HC) and patients with Rheumatoid Arthritis (RA) revealed that residual 

fibrinogen is universally detected in MG patient sera. Follow-up investigations quantifying the α-

, β-, and γ-subunits of fibrinogen in 79 individual sera (31 MG of various serotypes, 18 RA and 30 

HC) revealed fibrinogen to be highly specific for MG (p<0.00001), with an average higher 

abundance of >1000-fold over the control groups. Our unanticipated discovery of high levels of 

residual serum fibrinogen in all MG patients offers an unmatched opportunity in the diagnosis of 

MG. 
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3.3 Introduction 

Myasthenia gravis (MG) is a humoral autoimmune disorder in which autoantibodies 

directed against neuromuscular junctions (NMJ) proteins affect the electrical signal transmission 

across the NMJ resulting in variable weakness of voluntary muscles ranging from mild ocular 

and/or limb muscle weakness to fulminant life threatening myasthenic crises due to weakness of 

swallowing and breathing muscles (Gilhus et al., 2019).  As a result of the nonspecific symptoms, 

there still remains reported challenges concerning diagnosis in the emergency room (Abbott, 2010; 

Spillane et al., 2012) and in elderly populations with comorbid illness (Aarli, 2008; Kukulka et al., 

2019). 

The prevailing thought is that autoantibodies in MG are directed against the nicotinic 

acetylcholine receptor (AChR) at NMJ, which is observed in about 85% of patients (Vincent & 

Newsom-Davis, 1985). A smaller proportion of patients have autoantibodies against other NMJ 

proteins, including the muscle specific tyrosine kinase (MuSK) or low-density lipoprotein 

receptor-related protein 4 (LRP4) (Higuchi et al., 2011; Hoch et al., 2001). No antibodies can be 

detected in about 5-10 % of patients with generalized MG and about 50% with ocular MG, using 

the current assays (seronegative MG) though such patients manifest clinical features and 

therapeutic responses similar to those with detectable autoantibodies. Although relatively specific 

for the diagnosis and subgrouping of MG (Gilhus & Verschuuren, 2015), the serum level of anti-

AChR, anti-MuSK or anti-LRP4 antibodies do not correlate with the disease course or treatment 

outcomes. Limitations of these current molecular diagnostic methods are particularly exemplified 

with the number of seronegative patients with ocular form (Class I) of this disease (Peeler et al., 

2015). 
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The identification of robust serological biomarkers in MG has previously been attempted. 

In one study, the blood levels of proliferation-inducing ligand (APRIL) and several cytokines, such 

as IL-19, IL-20, IL-28A and IL-35, were found to be upregulated in the sera of MG patients as 

compared to controls (Uzawa et al., 2016). A second study has reported correlations between MG 

and the serum levels of matrix metalloproteinase 10 (MMP-10), transforming growth factor alpha 

(TGF-α) and receptor for advanced glycation end-products binding protein (protein S100-A12) 

(Molin et al., 2017). Most recently, high κ free light chain has been reported for seropositive and 

seronegative forms of MG (Wilf-Yarkoni et al., 2020). 

Although these studies provide promising results, the limited dynamic range (less than 2-

fold) of the proteins between controls and individuals with MG leads to significant challenges for 

their utility in robust diagnostic testing. Additionally, it is not clear whether the elevation of serum 

inflammatory proteins in MG patients is disease specific or represents a non-specific, general 

increase in the inflammatory mediators expected in autoimmune disease. Notably, patients with 

MG have increased risk of having another autoimmune disorder, with about 13-22% having a 

second autoimmune disorder (Fang et al., 2015; Nacu et al., 2015). In line with these challenges, 

a recent report has identified a panel of five serum metabolites, which include three 

lysophospholipids, glyceric acid and 12-ketodeoxycholic acid, that are reported to differentiate 

between MG and another autoimmune disease Rheumatoid arthritis (RA) (Blackmore et al., 2019). 

However, again the limited dynamic range of these metabolites, of less than 2-fold, impairs their 

utilization for diagnostic testing. 

To circumvent some of the current challenges in MG diagnosis, the present study aimed to 

identify serum proteomic biomarker that may be universally sensitive for all classes and serotypes 

of MG and exhibit specificity with regards to related diseases. To this end our study design 
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includes sera from a heterogeneous cohort of MG patients that was not only compared to a normal 

control group but also to a reference autoimmune disease, RA. The choice of RA as the reference 

autoimmune disease is based on the observation that like MG, RA also has a major humoral 

component, and the two diseases may co-exist in about 2-4% of MG patients (Mao et al., 2011; 

Thorlacius et al., 1989). We postulated that the comparison of the serological protein profiles from 

the two diseases and controls may potentially identify specific proteins in serum that are unique to 

MG. 
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3.4 Methods 

3.4.1 Ethics Approval.  

The sera samples for the current study were obtained from Canadian BioSample Repository 

(CBSR), collected and stored in a de-identified manner by Dr. Siddiqi’s MG study group. Approval 

to use the sera, to investigate potential biomarker(s), was obtained from the Research Ethics Board, 

University of Alberta (Project Title: Metabolomic Profiling of Serum in Myasthenia Gravis: Pilot 

Study, PRO00030698, 24th May 2012). 

3.4.2 Serum Samples.  

For the study three groups of samples were identified: Myasthenia gravis (MG), 

Rheumatoid Arthritis (RA) as a reference disease and normal controls. A total of 79 samples were 

recruited for the study: 31 MG, 18 RA and 30 controls. The demographics of the individuals are 

summarized in Table 3-1. MG and RA serostatus was confirmed with antibody testing for either 

anti-AChR/anti-MusSK (MG) or RA. RA patients were diagnosed in accordance with the 

American Rheumatology Association 1987 criteria (Arnett et al., 1988). To exclude the confounds 

of race, only Caucasian patients were included in this study. There were no smokers and no 

statistically significant differences between all groups from time of last meal or BMI. Further, 

patients had no history of any other autoimmune disease or thymoma. Finally, due to the nature of 

recruitment, patients were not required to fast. Clinical patients and healthy controls were enrolled 

in a prospective observational trial to obtain serum. MG and HC were collected within the same 

clinic. RA samples were collected in multiple clinics.  

For collection, blood samples were drawn from the antecubital vein using a 21 G needle 

and vacutainer red top no additive tubes (Becton Dickenson). 
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3.4.3 SDS-PAGE, Western Blot Analysis & ELISA. 

 SDS-PAGE loading buffers contained 100 mM of β-mercaptoethanol and 4% SDS. 5 µl 

of samples were resolved by 10% SDS-PAGE and either visualized by Coomassie R250 staining 

or transferred to a nitrocellulose membrane for Western blot analysis as previously described 

(Eldeeb & Fahlman, 2016). The membranes were then immunoblotted with either a mouse anti-

FGA antibody(A-6) (SC-166968; Santa Cruz Biotechnology) derived against residues 750-850 or 

a rabbit anti-FGA antibody (ab92572, Abcam) derived against residues 21-320. Secondary blotting 

was achieved with either goat anti-Mouse or donkey anti-Rabbit IRDye 680RD labeled antibodies 

(LI-COR). 

Coomassie stained gels and Western blots were visualized with a LiCOR Odyssey Fc 

system. 

Serum fibrinogen was quantified using an enzyme-linked immunosorbent assay (ELISA) 

was performed with a kit (ab208036, Abcam) following the manufacturer’s recommended 

procedure. 

3.4.4 Serum Protein Profile by Gel-LC-MS/MS.  

18 randomly selected samples, 6 from each group, were used for the initial shotgun 

proteomic analysis. Sample was resolved by 10% SDS-PAGE and visualized by Coomassie 

staining. Each lane was excised into 26 bands, then each band was subjected to in-gel tryptic 

digestion as previously described (Khan et al., 2015). The resulting digested peptides were vacuum 

dried and re-suspended in solvent A (5% Acetonitrile (ACN) in 0.2% formic acid) for LC-MS/MS 

analysis. LC-MS/MS analysis was performed on an Thermo Scientific EASY-nL 1000 system 

inline Q-Exactive Hybrid Quadrupole-Orbitrap Mass Spectrometer using identical parameters as 

previously described (Piragasam et al., 2020) with the alteration of running a 75 min gradient.  
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3.4.5 MS/MS Data Analysis. 

 Raw data files of MS/MS spectra for each sample were combined as searched with 

Proteome Discoverer 1.4.1.14 (Thermo Fisher Scientific, US) against the non-redundant and 

reviewed proteome of Homo sapiens retrieved from UniProt. The search parameters were as 

previously described (Kramer et al., 2017). All of the identified proteins from each sample along 

with their associated extracted ion intensities quantified for abundance are listed in Supplementary 

Tables 1 and 2. The MS proteomics data have been deposited to the ProteomeXchange Consortium 

via the PRIDE (Vizcaíno et al., 2014) repository with the dataset identifier PXD019633. 

3.4.6 Quantification and Statistical Analysis.  

EICs were used to quantify the protein abundance in individual samples, for which the 

values were subjected to normalization by the proportion to total ion current (TIC) as previously 

described (Kramer et al., 2017). One-way ANOVA was employed for comparative analysis of the 

three sample groups, using a statistical cut-off of a p<0.05. All the data used for statistical analysis 

is provided in Suplementary Table 3.  

3.4.7 Parallel Reaction Monitoring.  

Serum proteins were resolved by 8% SDS-PAGE then prepared for LC-MS/MS as 

described above. The resulting fractions from each sample were then pooled prior to LC-MS/MS 

analysis. Multiple peptides per protein (Table 3-2) were included for method building and final 

quantification using the Skyline software package (MacLean et al., 2010) were implemented as 

described previously (Piragasam et al., 2020). The raw quantified data from PRM analysis is 

provided in Supplemental Table 5. 
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3.5 Results  

3.5.1 Myasthenia Gravis Serum Proteome Profiling.  

To identify novel proteins in an unbiased manner that may be specifically associated with 

MG, a pilot study using a gel-based shotgun proteomics method (Gel-LC-MS/MS) was applied to 

the analysis of unadulterated serum samples collected from six healthy controls, six MG patients 

and six RA patients, as outlined in Figure 3-1A. As summarized by the Venn diagram in Figure 

3-1B, a total of 502 proteins were identified with the criteria of two or more quantifiable peptides 

per protein to limit the false discovery rate (FDR) of protein identifications. Within the MG group 

361 proteins were identified, while for the control and RA groups, 327 and 304 were identified 

respectively. Of these proteins, 212 were common to all groups whereas the number of unique and 

additionally shared numbers of proteins for each group are indicated in Figure 3-1B.  

 

Myasthenia Gravis n=31 

Average Age (years) 59.0 ± 23.9(range 19 – 93) 

Gender (M/F, %) 51.6% / 48.4% 

Average On-set Age 54.7(range 15 – 86) 

Early/Late On-set (%) 35.5% / 64.5% 

Disease Severity (MGFA)  

Class I 25.8% 

Class II 32.3% 

Class III 41.9% 

Control  n=30 

Average Age (years) 48.2 ± 17.1(range 21-86) 

Gender (M/F, %) 40/60 

Rheumatoid Arthritis n=18 

Average Age (years) 65.1 ± 11.7(range 36-81) 

Gender (M/F, %) 33.3/66.7 
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Table 3-1 Cohort Demographics 

Demographic information and clinical profiles of the three groups of individuals from which sera 

were collected for fibrinogen protein analysis. As per the Myasthenia Gravis Foundation of 

America (MGFA) classification, Class I represents purely ocular form of MG, Class II represents 

mild generalized MG and Class III describes moderately severe generalized MG. 

3.5.2 Identification of Proteins of Differential Abundance.  

The ratios of the average relative extracted ion intensity for each protein compared among 

all three test groups are shown in the tri-plot in Figure 3-1C.  The clustering of the data points in 

the centre of the graph reveals that the majority of average ion intensities for each protein is similar 

between all three groups, but that some proteins are higher in some of the groups with the data 

being closer to the triangle apex from the respective group. As some average ion intensities maybe 

biased as a result of highly variable measurements from individuals in a group, either from 

technical variability in quantification or true variability of a protein in an individual, all the data 

was analyzed using a one-way ANOVA to identify proteins that exhibit statistically significant 

differences between the MG, RA and control groups. The proteins that met the criteria of a p-value 

<0.05 are depicted as yellow circles in the tri-plot. While this cut-off may lead to false-positive 

identifications as a result of the multiple testing problem it does warrant further investigation of 

these identified proteins. 

The individual measurements of the 11 proteins that exhibited statistically significant 

differences between the MG, RA and control groups are summarized in the heat map shown in 

Figure 3-1D along with Apolipoprotein A1 (APOA1) and the constant region of immunoglobulin 

heavy chain (IGHG2) as controls. In addition, the corresponding ANOVA F-statistic and p-values 

are also listed for each protein. The data reveals that fibrinogen-α (FGA), fibrinogen-β (FGB), 

fibrinogen-γ (FGG), keratin, type II cytoskeletal 78 (KRT78), ribonuclease 4 (RNASE4) and 



 

 90  
 

prothrombin (F2) are consistently in higher abundance in MG serum. Serum 

paraoxonase/arylesterase 1 (PON1), L-lactate dehydrogenase B (LDHB), and sex hormone-

binding globulin (SHBG) are consistently high in RA sera, while complement C1q subcomponent 

subunit B (C1QB) and insulin-like growth factor-binding protein complex acid-labile subunit 

(IGFALS) are low in both MG and RA sera. 
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Figure 3-1 Clinical Proteomic Analysis of Myasthenia Gravis (MG) Patients. 

A. Schematic workflow for the label free proteomic analysis of serum collected from 6 MG 

patients, 6 control individuals and 6 with the related disease, Rheumatoid Arthritis (RA). B. Venn 

diagram summarizing the proteins identified and quantified among the three test groups. C. A 

three-way triplot of differential protein abundance observed between MG, control and RA 

samples. The log2 ratio of the normalized protein abundance was plotted to visualize differential 

amounts between the three groups. In this plot, proteins observed in higher abundance in one group 

over others are observed closer to the respective vertices. Proteins that exhibit reproducible 

differences as revealed by a one-way ANOVA analysis (p<0.05) are highlighted in yellow and 

labelled. D.  Heatmap representation of the abundance of statistically significant proteins with their 

respective calculated ANOVA F-statistic shown (p<0.05). In addition, two control proteins are 

shown for comparison. E. Validation of label-free quantification by investigating the variability of 

the measurements between groups for a series of serum proteins, including immunoglobulins 

(IGKC, IGLC2, IGHG3, IGHG2 & IGHG1); apolipoprotein A (APOA1, APOA2); serum albumin 

(ALB); and C4b-binding protein alpha chain (C4B). F. Relative average abundance level of 

fibrinogen-α (FGA), fibrinogen-β (FGB) and fibrinogen-γ (FGG) among all sample groups. 

 

 

3.5.3 High Fibrinogen in MG Sera. 

 To narrow our focus, proteins consistently exhibiting the largest observed differences were 

selected for further investigation. As a control for the quantification by extracted ion intensities, 

the relative extracted ion intensities for a series of control are shown in Figure 3-1E. The 

quantified data for the control proteins, including several immunoglobulins, apolipoproteins, 

albumin and C4b-binding protein alpha chain, reveal the spread in the quantified data for all three 

groups (MG, RA, and controls). For the proteins observed in differential abundance, all three 

fibrinogen subunits (FGA, FGB and FGG) exhibited the largest differential abundance in MG 
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patient sera. As seen in Figure 3-1E, the amounts of these fibrinogens were consistently higher in 

abundance by over an order of magnitude compared to controls (p<0.01) and were thus selected 

for further biochemical validation. 

 

3.5.4 Validation of High Fibrinogen in MG Patient Sera.  

To validate our observations of high serum fibrinogen levels in MG patients, serum 

samples from MG, RA and control individuals, were analyzed for Fibrinogen-α by immunoblotting 

(Figure 3-2). To ensure equal protein loading for analysis, samples were normalized to total 

protein loading as visualized by Coomassie Blue staining (Figure 3-2A upper panel). 

Immunoblotting for Fibrinogen-α (Figure 3-2A middle panel) reveals a very high protein amounts 

in MG sera, but is essentially undetectable in either the RA or control samples. The epitope for 

this anti-Fibrinogen-α antibody is mapped to the amino acid residues 750-850, so this large 

differential detection of Fibrinogen-α was further validated by using an anti-Fibrinogen-α antibody 

derived against the residues 21-320 (Figure 3-2A lower panel), that resulted in essentially the 

same results in high levels only being observed in sera from MG patients. This second antibody 

for the N-terminal region of fibrinogen did reveal altered apparent gel mobilities for Fibrinogen-

α, suggesting that proteolytic processing is occurring that was not apparent by the analysis with 

the C-terminal specific antibody. Of note, the C-terminal specific antibody was used in all 

additional immunoblotting experiments. 

This observed high abundance of fibrinogen is peculiar as to our knowledge there have 

been no previous reports of high fibrinogen in MG patients, nor is there any clotting disorder 

typically associated with the disease. As a result, we then investigated Fibrinogen-α amounts in 

the plasma of MG and controls by immunoblotting (Figure 3-2B). The analysis revealed no 
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significant difference in Fibrinogen-α in MG plasma when compared to a control sample. To 

investigate whether Fibrinogen-α was being removed during the collection and preparation of 

patient serum, both the plasma and serum of an MG patient and a control sample were analyzed 

simultaneously (Figure 3-2C). What is observed is that when analyzing plasma, the Fibrinogen-α 

in serum is undetectable as a result of the limited dynamic range of Western blotting. Only when 

analyzing serum alone, are we able to observe a high level of residual Fibrinogen-α in the serum 

of MG patients (Figure 3-2A). 

As a result of the limited dynamic range of detection by immunoblotting, we conducted an 

ELISA assay for total fibrinogen. Due to the large differences in fibrinogen detected, the MG 

serum samples required dilution in order for them to be on the same linear range of detection for 

the assay when comparing to control samples. The resulting data from the ELISA is shown in 

Figure 3-2D and like the proteomic analysis, reveals over an order of magnitude difference when 

comparing total fibrinogens in MG and control sera. 
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Figure 3-2 Immunochemistry Detection of Residual Fibrinogen in Serum. 

A. (Upper) Total protein loading of patient serum in a SDS-PAGE gel visualized by Coomassie 

staining. Analysis of the same protein loading of samples analyzed by Western blotting with anti-

Fibrinogen-α antibodies derived against the C-terminal 750-850 residues (middle) or the N-

terminal 21-320 residues (lower) of Fibrinogen-α. B. Western blot analysis for Fibrinogen-α in 

plasma does not reveal observable differences between MG or control samples. C. A comparative 

analysis of Fibrinogen-α in both plasma and serum samples from MG and control individuals 

reveals that the residual Fibrinogen-α observed in the sera of MG patients (A) is below the dynamic 

range of detection by Western blot analysis when compared to plasma Fibrinogen-α. D. ELISA 

was used to quantify the difference in total fibrinogen in MG or control serum samples. Of note, 

in order to compare MG and control samples by ELISA, the MG samples were diluted prior to 

analysis to achieve a signal in the linear response range for the method. The resulting dilution 

factor is incorporated in the normalized values presented. E. Stability of residual Fibrinogen-α 

after initial processing (T=0) was investigated by Western blot analysis after incubating the serum 

sample for an additional two hours at either 4 °C or room temperature.     

 

3.5.5 Residual Sera Fibrinogen is Stable at Low Temperature.  

To investigate the stability of the observed residual fibrinogen in the MG patient sera, the 

presence of fibrinogen was investigated upon prolonged incubations. Freshly thawed MG and 

control serum samples (T=0) were further incubated for 2 hours at either 4°C or at ambient room 

temperature (~20°C). Fibrinogen in the samples was then detected by immunoblotting with an 

anti- Fibrinogen-α antibody. As shown in Figure 3-2E the residual fibrinogen persisted at low 

temperature but was no longer detectable upon incubating at room temperature, indicating the 

transient nature of the residual serum fibrinogen. 
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3.5.6 Blinded Analysis of Residual Serum Fibrinogen Identifies MG 

Patients.  

Prior to investigating a large cohort of patients, a blinded study was initiated to verify 

whether the correlation of serum fibrinogen and MG held true with a new set of blinded samples. A 

total of 10 blinded sera samples (A-J) were obtained from the MG clinic and analyzed for 

Fibrinogen-α by Western blotting. The resulting analysis revealed protein bands corresponding to 

Fibrinogen-α for samples A, B, D, H and I (Figure 3-3). Unblinding of the clinical data revealed 

a 100% identification rate for MG patients from normal controls (patients C, E, F, G & J).  

 

 

 

 

 

 

Figure 3-3 Blinded Investigation of MG Serum Samples. 

Ten blinded clinical serum samples from either controls or MG patients (A-J) were analyzed by 

Western blot analysis for residual Fibrinogen-α with serum from a MG patient used as a control. 

The serum samples A, B, D, H and I all exhibited detectable Fibrinogen-α upon analysis which 

exactly corresponded to the five samples from patients with MG (*). 
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3.5.7 Cohort Analysis by Targeted Mass Spectrometry for Residual 

Serum Fibrinogen. 

 With the promising findings of the initial proteomic study with regards to the correlation 

of fibrinogens (Figure 3-1) and MG diagnosis along with the result of the blinded study with 

fibrinogen-α (Figure 3-3) we then conducted a validation study on a larger patient cohort 

consisting of sera from 31 MG patients (27 anti-AChR antibody positive, one anti-MuSK antibody 

positive, three seronegative), 18 from RA patients and 30 controls. The demographic information 

and clinical profiles for this cohort are outlined in Table 3-1.  

To circumvent the challenges of the limited dynamic range of detection observed for 

Western blot and ELISA assays, the serum samples were digested with trypsin and simultaneously 

analyzed for the tryptic peptides derived from fibrinogen-α, fibrinogen-β, fibrinogen-γ and serum 

albumin (as a control) by parallel reaction monitoring (PRM). For PRM analysis of the three 

peptides for fibrinogen-α, four peptides fibrinogen-β, and five fibrinogen-γ targeted for 

quantification are listed in Figure 3-4A. The four peptides for the serum albumin control are listed 

in the Table 3-2. For the present study, extracted ion chromatograms (EICs) of minimum five co-

eluting fragment ions were measured for the quantification for each peptide, while being verified 

by aligning the retention time with the precursor ion for the given peptide to eliminate any possible 

mass spectrometry artifacts and quality assurance of the identified fragment ions. Samples raw 

data for the EIC of the fibrinogen-α derived DSHSLTTNIMEILR peptide is shown in Figure 

3-4B. The quantified abundance of each protein was the sum of EICs of corresponding peptide 

fragment ions normalized to Serum Albumin (Figure 3-4C).  

The quantification of fibrinogen-α, -β and -γ in the 79 serum samples by PRM analysis, 

shown in the Beeswarm plots in Figure 3-4D, clearly reveals an essentially equally high 

abundance of all three fibrinogens in MG patient sera when contrasted to either control or RA 
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serum samples. Of note, the sera from three seronegative and one anti-MuSK MG patients were 

indistinguishable from the other MG patients with regards to all three fibrinogens. While the 

majority of control and RA samples exhibited a significantly lower abundance of the fibrinogens, 

few individuals did reveal high fibrinogen levels. Within the dynamic range of detection of about 

five orders of magnitude with the PRM analysis, the median values for the three fibrinogens in 

MG samples were 28 to 54-fold higher than the RA samples and 250 to 4000-fold higher than the 

control samples. The MG sera revealed about a 10-fold variation among individuals for the three 

fibrinogens, while the controls and RA sera exhibited about a 1000-fold variation. Nonetheless, 

one-way ANOVA analysis revealed high degrees of statistical confidence for fibrinogen-α, 

fibrinogen-β and fibrinogen-γ with p values of 1.4×10-6, 2.2×10-9 and 2.9×10-8, respectively. 

With the similar patterns of outliers for all the fibrinogens (Figure 3-4D), the correlations 

of fibrinogen-α, fibrinogen-β and fibrinogen-γ abundance in all patients was further investigated. 

Plotting fibrinogen-α abundance in an individual against either fibrinogen-β or fibrinogen-γ 

revealed significant multicollinearity among the proteins (Figure 3-4E). This lack of fibrinogens 

acting as independent variables is not surprising as they are all subunits of the larger fibrinogen 

complex. 

We also considered the possibility that the observed residual fibrinogen could potentially 

be a treatment effect and not the result of MG. The available clinical records of the MG cohort 

were investigated with respect to the current and past drugs used by individual patients. The 

diversity in the drug regiments of these individuals (Figure 3-5) and the occurrence of high 

residual fibrinogen in some controls and individuals with RA led us to conclude that these 

treatments are not the source of high residual fibrinogen.  
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Table 3-2 List of peptides and transition ions used for PRM based cohort study 

of 31 MG sera, 18 RA sera and 30 control sera. 

Accession Protein Description Peptides Transition Ion

GLIDEVNQDFTNR y10,y9,y8,y7,y6,y5,y4

DSHSLTTNIMEILR y7,y6,y5,y4,y3

GGSTSYGTGSETESPR y12,y11,y10,y9,y8,y7,y6,y5,y3

TVIGPDGHK y7,y6,y5,y4,y3

DNENVVNEYSSELEK y12,y11,y10,y9,y8,y7,y6,y5,y3

HQLYIDETVNSNIPTNLR y10,y9,y8,y7,y6,y5,y4,y3

QGFGNVATNTDGK y10,y9,y8,y7,y6,y5,y4,y3

EDGGGWWYNR y9,y8,y7,y6,y5,y4,y3

HGTDDGVVWMNWK y6,y5,y4,y3

DNCCILDER y7,y6,y5,y4,y3

YEASILTHDSSIR y10,y9,y8,y7,y6,y5,y4,y3

YLQEIYNSNNQK y10,y9,y8,y7,y6,y5,y4,y3

QSGLYFIKPLK y7,y6,y5,y4,y3

IHLISTQSAIPYALR y8,y7,y6,y5,y4,y3

ALVLIAFAQYLQQPFEDHVK y14,y12,y11,y10,y9,y8,y7,y5,y4,y3

LVNEVTEFAK y9,y8,y7,y6,y5,y4,y3

SLHTLFGDK y6,y5,y4,y3

EFNAETFTFHADICTLSEK y12,y11,y10,y9,y8,y7,y5,y4,y3

Fibrinogen gamma chain OS=Homo 

sapiens GN=FGG PE=1 SV=3 - 

[FIBG_HUMAN]

FIBRINOGEN-γP02679

AlbuminP02768
Serum albumin OS=Homo sapiens 

GN=ALB PE=1 SV=2 - [ALBU_HUMAN]

Fibrinogen alpha chain OS=Homo sapiens 

GN=FGA PE=1 SV=2 - [FIBA_HUMAN]
FIBRINOGEN-αP02671

Fibrinogen beta chain OS=Homo sapiens 

GN=FGB PE=1 SV=2 - [FIBB_HUMAN]
FIBRINOGEN-βP02675
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Figure 3-4 Targeted Proteomic Analysis of a Clinical Cohort 

(A) For Parallel Reaction Monitoring (PRM), the indicated tryptic peptides from each fibrinogen 

were used for quantification by targeted LC-MS/MS analysis. (B) The extracted ion 

chromatograms (EICs) of co-eluting fragment ions aligned with the retention time of the precursor 

ion were quantified. Different coloured traces correspond to different peaks of the isotopic cluster 

or different fragment ion for the parent or fragment ions respectively. (C) Bar diagrams reveal the 

quantification of the sum of the EICs for the tryptic peptides derived from either fibrinogen-α, 

fibrinogen-β and fibrinogen-γ for single individuals with Myasthenia gravis (MG), Rheumatoid 

arthritis (RA) or control. Individual colour represents the EIC for the individual peptide quantified. 

(D) Beeswarm plots of the EICs quantified for the three fibrinogens and albumin as control for 31 

MG patients, 18 RA patients and 30 controls. Individuals with undetectable levels of fibrinogen 

were assigned values at the threshold of detection. Within the MG cohort, of four patients negative 

for the anti-AChR autoantibody, one was positive for the anti-MuSK autoantibody (white circle) 

while three were double seronegative (red circles). (E) Linear regression analysis of fibrinogen-α, 

fibrinogen-β and fibrinogen-γ for all individuals reveals a high association for all the fibrinogens. 
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Figure 3-5 Prescription Drug Use of MG Patients 

To investigate a possible association of prescribed drugs to MG patients with the observed high 

serum fibrinogen, the drug regime of the patient cohort was investigated as a potential variable. 

The sunburst plot reveals the prescription drug use of all MG patients (a-af) in the cohort. 

Comparison of prescriptions revealed no universal treatment that may have been a potential source 

of the universally high serum fibrinogen observed in these patients. 
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3.6 Discussion  

Despite recent advances in the understanding and treatment of MG (Dalakas, 2019; Evoli 

et al., 2015; Gilhus, 2016; Gilhus et al., 2019), challenges remain with the timely diagnosis of this 

autoimmune disease as a result of its heterogeneous nature and often non-specific symptoms 

(Abbott, 2010; Spillane et al., 2012). A prior clinical study reported a greater than five-year delay 

in diagnosis of MG in 13% of patients (Beekman et al., 1997). Accurate diagnosis of MG remains 

challenging, more so in an emergency room setting, as MG patients may present with atypical 

symptoms mimicking other neurological conditions, particularly stroke, that like MG, can also 

cause double vision and/or limb weakness. For molecular testing, the occurrence of the multiple 

serotypes and seronegative patients leads to limitations in the sensitivity of detection of MG with 

molecular markers. 

To identify a potentially novel general serological marker for MG that may cover all 

isotypes, we conducted a three-way proteome profiling investigation of the sera of MG patients in 

comparison with both control individuals and those from a reference autoimmune disease, RA.  

Our initial pilot study on a limited number of patients revealed potential protein candidates that 

exhibited statistically significant enrichment for each test group (Figure 3-1) for which we believe 

are well representative of the test groups. For example, our data identified an increased abundance 

of the sex hormone-binding globulin (SHBG) in the sera of RA patients, a protein previously 

reported to exhibit a higher risk association for RA in women (Mirone et al., 1996; Qu et al., 2020). 

From our data, the proteins that exhibited the most striking degree of statistical confidence to be 

specifically associated with MG, were the three fibrinogen subunits (Figure 3-1) that were then 

chosen for further investigation. 
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The finding of the α-, β-, and γ-subunits of fibrinogens was unexpected as there are no 

known associations of MG with any coagulopathy, which one may envision with the detection of 

unreacted fibrinogen in sera (Kattula et al., 2017). Further investigations revealed that the 

fibrinogens detected in the sera of MG patients were truly residual, as the comparisons with plasma 

revealed normal fibrinogen-α levels and the reduction in fibrinogen-α levels during the generation 

of sera appear normal when contrasted to plasma (Figure 3-2) as a result in the limited dynamic 

range of detection. While the majority of fibrinogen is removed upon the preparation of serum, 

high residual amounts were constantly observed in MG patients in contrast to normal controls or 

RA patients. Quantitatively, the magnitude of the residual fibrinogen-α in MG sera was an order 

of magnitude higher in abundance as determined by mass spectrometry, Western blotting and 

ELISA (Figure 3-1 and Figure 3-2). While the observed high residual fibrinogen detected in sera 

prepared on ice, the fibrinogen was cleared upon incubation at ambient temperature (Figure 3-2E), 

suggesting that this hypocoagulability was not likely to occur in vivo. 

We investigated whether the high residual serum fibrinogen correlation to MG was a 

statistical anomaly or whether this association was repeatable in additional samples. Prior to 

investigating a larger patient cohort, a blinded study was conducted with randomized serum 

samples, where the detection of fibrinogen-α led to the 100% successful identification of MG 

patients (Figure 3-3). 

Based on the positive results of our blinded study, we analyzed a larger patient cohort by 

mass spectrometry using the quantitative PRM methods to quantify all three fibrinogens in sera 

(Figure 3-4). These analyses confirmed a high specific association of serum fibrinogens with MG 

when contrasted to controls or RA samples, although the correlation was not absolute as a few 

samples in the control and RA groups also exhibited high residual fibrinogen levels. The very large 
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variation observed in controls and RA samples indicates presence of residual serum fibrinogen is 

common occurrence in population. Nevertheless, residual serum fibrinogen levels observed in MG 

samples were elevated consistently among all samples measured and were significantly several 

fold higher than what is observered in control or RA samples. There were four samples of RA 

exhibiting similar level of residual serum fibrinogens to MG samples, which we speculate to be 

potentially an undiagnosed secondary autoimmune disease. Further investigation is necessary to 

understand the cause of elevated fibrinogen in the serum of these individiuals.   

The observation of high serum fibrinogen interfering with analysis in cases not attributed 

to dysglobulinemia, have been reported, but its origin was unknown (Lefèvre & Gillery, 1997). 

We queried whether the uniform observation of high serum fibrinogen may have been linked to 

the treatment of MG, as mentioned in the results. This does not appear to be the case due to the 

considerable diversity of pharmacological treatment of the MG cohort in addition to the detection 

of high fibrinogen in some non-MG individuals (Figure 3-5). Potential cross-reactivity of auto-

antibodies to fibrinogen may protect fibrinogen from activation, but this seems unlikely as it 

appears to occur with all serotypes. Interestingly, a previous proteome-wide screening for cross-

reactivity of autoantibodies in MG patients failed to report fibrinogen as a potential target (A. 

Becker et al., 2013). Nonetheless, other factors may bind fibrinogen and preclude its conversion 

to fibrin. Further lines of investigation will be required to elucidate the biochemical mechanisms 

resulting in the elevated residual serum fibrinogen levels.  

In summary, we have identified residual fibrinogen in all patients diagnosed with MG. This 

discovery was enabled by our combination of unbiased shotgun proteomics, Western blotting, 

ELISA and targeted mass spectrometry of unaltered serum. We found the presence of high serum 

fibrinogen levels to be highly sensitive to MG with specificities that appear to be superior to current 
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clinical testing methods. Additionally, high serum fibrinogen is also detected in all serotypes as 

well in the Class I patients (a purely ocular form of MG), indicating that residual serum testing 

may be more advantageous than current serological tests. We anticipate our findings to provide 

the foundation for a routine approach for clinical MG diagnosis.   

 

3.7 Future Direction 

A new clinical diagnostic tool for identifying Myasthenia Gravis in patients is necessary and 

residual serum fibrinogen can be used to develop low-costing diagnostic approach. Translating our 

finding to clinical application does involve huge amount of work of developing the device, and 

proving its utility in clinical settings through a clinical trial. Focusing on the basic sciences, the 

mechanism that leads to the presence of residual serum fibrinogen in MG patients are still needs 

to be investigated. We speculate the potential presence of auto-antibody in these individuals that 

prevents the cleavage of fibrinogen to fibrin by thrombin, thus leaving residual serum fibrinogen 

during blot clotting process. Another possibility is the presence of post-translational modification 

of fibrinogen in the vicinity of thrombin binding site that prevents proper activity of thrombin 

during fibrinogen proteolysis. Understanding the mechanism will allows us to further understand 

Myasthenia Gravis and its implication towards patient’s body. 
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4 Chapter 4:  

Proteomic Quantification of Ribosomal 

Proteins in Mice Tissues 
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4.2 Abstract 

Constitutive nature of ribosomes with no regulatory role in protein translation has been a 

well understood concept until recent findings uncovering heterogeneity in ribosome complexes 

fuelling interest into their impact towards protein expression. The new ribosomal heterogeneity 

idea uncovers various questions trying to understand the extent of heterogeneity in many aspects 

of ribosomes; its structural constituents, post-translational modification, and associated proteins. 

One factor of heterogeneity could be attributed to differential expression of individual ribosomal 

proteins that lead to potential specialization of tissues. We addressed this question through a label-

free proteomic quantification approach utilizing PRM to measure expression level of ribosomal 

proteins across multiple mice tissues. We observed seven small and thirteen large ribosomal 

proteins with significant change in abundance across measured samples of more than two fold 

difference at p<0.001 and p<0.05 respectively. Additionally we observed peptide absence for eS10 

in kidney and liver tissues that corresponds to potential expression of eS10 isoform.  
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4.3 Introduction 

The ribosome, a “molecular machine par excellence”, plays a substantial role as somewhat 

of an automaton in expression of genetic information (Frank, 2000; Sonenberg & Hinnebusch, 

2009). The orchestrated levels of regulatory specificity of protein expression has always intrigued 

researchers to better understand the embryo development, disease mechanism and progression, 

and other life processes. Extensive diversity of molecular instruments involved in the process 

controls the temporal and spatial precision of protein expression leading to specialized cellular role 

and behavior. Traditionally, the molecular machinery of ribosome in protein expression is 

considered to be playing a constitutive role rather than a regulatory one, with no contribution 

towards cellular diversity. 

Despite the constitutive role of ribosomes, recent findings have attributed towards the unique 

functionality of translational machinery driven from ribosomal heterogeneity. Rather having 

apparent passive functionality, the ribosome assembly is a complex combination of large and small 

subunits (such as in eukaryotes, 60S and 40S subunits respectively) while each of the subunit is an 

intricate architecture of ribosomal RNA (rRNA) and proteins.  The eukaryotic large subunit 

comprises of three rRNAs (28S, 5.8S and 5S) and approximately 45 proteins of which 27 are 

exclusive to eukaryotes while small subunit has 1 rRNA (i.e. 18S) in combination with ~32 

proteins of which 17 are exclusive. This complex assembly primarily attributes towards the 

heterogeneity of the ribosome exaggerated by the rRNA diversity, ribosomal proteins differential 

expression and post-translational modifications, and several molecular factors associated with 

ribosomal activity. The extent of variance in rRNA contributes to ribosomal heterogeneity that 

could have functional connotation, as rRNAs are transcribed from multiple ribosomal DNA copies. 
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Upon rRNA sequence data mapping, multiple differentially expressed tissue-specific rRNA alleles 

have been identified (Parks et al., 2018; Stults et al., 2008). Furthermore this variation is deepened 

with post-translational modification of more than 200 nucleotides of human rRNA, and among 

these modifications 2′-O-methyation is the most common (Roundtree et al., 2017).  The ribosomal 

heterogeneity is supplemented by the post-translational modification of ribosomal proteins (RP), 

as the most commonly reported are phosphorylation and ubiquitination (Simsek & Barna, 2017). 

The phosphorylation of eS6 has been reported as tissue specific (e.g., smaller pancreatic beta cells) 

and associated with glucose homeostasis in mice (Meyuhas, 2015). These posttranslational 

modifications may account for toxic or counter toxic roles to rescue biological functions, as 

observed in uS19 phosphorylation and Parkinson disease (Martin et al., 2014). 

This variation of protein content goes beyond ribosomal constitution and leads towards other 

ribosome-protein interactions. The association of pyruvate kinase with endoplasmic reticulum 

(ER) – ribosome in comparison with cytosolic ribosome has been explore in a recent study, sharpen 

the sub-cellular heterogeneity of ribosomes contributing towards cellular functions (Simsek et al., 

2017). 

The constitutively changing ribosomal composition and selective interaction may also wield 

more specialized activities specific to the tissues based on the dedicated needs. This could range 

from the ribosomal interaction with specific regulatory elements (e.g., internal ribosome entry sites 

or upstream open reading frames). Different studies have pointed variation in expression profile 

and tissue specific modification of ribosomal proteins, suggestive of diverse ribosomal protein 

profile based on tissue specificity (Williams & Sussex, 1995). Studies suggest not all protein 

components are in equimolar amounts pointing towards regulated translation of ribosomal proteins 

(Gupta & Warner, 2014). This study aims to explore the potential variation of ribosomal protein 
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profiles in association with tissue specificity as a suggestive role of ribosomes in tissues specific 

regulation. 
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4.4 Methods 

4.4.1 Tissue harvest, homogenization and ribosome preparation 

Tissue and cell lines homogenization and ribosome were prepared following the protocol 

available from Cold Spring Harbor Protocols and summarized below (Rivera et al., 2015). The 

harvested tissues were re-suspend in 2x volumes of Mammalian Ribosome Homogenization Buffer 

(MRHB) (50 mM Tris-HCL pH7.5, 5mM MgCl2, 25mM KCl, 0.2 M sucrose, prepared in MilliQ 

water and 0.22-µm filter sterilized) and homogenized. A final concentration of 0.7% NP-40 was 

added to the homogenate and homogenized further by repeated micropipeting on ice. To pellet out 

nuclei, suspension was centrifuged at 750g, 4C for 10 min. The supernatant centrifuged further at 

20,000g, 4C for 10 min to obtain a post-mitochondrial fraction (PMT). A 4M KCl solution was 

added to the PMT fraction at a volume of VKCl=PMTVol/14, while total volume should not exceed 

600 ul. The KCl- adjusted PMT fraction was layered over a 1 mL sucrose cushion. Tubes were 

subjected to ultracentrifugation at 250,000g, 4C for 2 hours.  A compact and translucent pellet of 

ribosome obtained and rinsed with cold dH2O. Pellets re-suspended in 100 ul of Tris-Cl buffer and 

the optical density of the ribosome suspension obtained with a spectrophotometer at 260 nm. An 

OD of 14 at 260mm corresponds to 500ug ribosomal proteins. 

4.4.2 Peptide preparation for LC MS/MS analysis 

A 100 ul solution of 1 mg (1000 μg) ribosome suspension, 45 μl 6 M Urea and 100 mM 

Tris was constituted. The reduction of the sample was achieved by adding 3 μl of the 100 mM 

beta-mercaptoethanol (β-MB) to a final concentration of 4.8 μM. The solution was incubated at 37 

°C for 1 hr. Alkylation was completed by 7 μl of 200 mM Iodoacetamide to a final concentration 

of 20 μM and incubated at 37 °C for 1 hr. Added 12 μl of 100 mM β-MB and incubated for 1 hr at 
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37 °C. To dilute the urea content, added 465 μl d-H2O. Added 50 μl of trypsin solution (20 μg/100 

μl) and incubated at 37 °C overnight. Next day, added 1 μl of Acetic acid. (Note: Expected final 

peptide conc. of 50 fmol/ μl for each protein.) 

4.4.3 Peptides and ions selection for PRM 

A skyline document was created and populated with mouse ribosomal proteins acquired 

from UniProt database (UniProt). Skyline peptide filter was applied on each protein sequence to 

identify potential quantifiable peptides with 8 - 25 amino acids in length. For each peptide, only 

precursor ions with +2 and +3 charge were selected for quantification while fragment ions were 

filtered to only include y-ions with +1 charge excluding y1 and y2 ions. The filtered peptides were 

screened for prior observations from preliminary shotgun analysis to further narrow down the 

peptide list to a minimum of two peptides per protein. Potential peptides for proteins with no prior 

observations were obtained from Peptide Atlas database (www.peptideatlas.org) chosen based on 

their ranking on peptide suitability score from the “predicted highly observable peptide” section. 

4.4.4 Proteomics sample preparation and data acquisition. 

Digested peptides were analyzed by LC‐MS/MS using a ThermoScientific Easy nLC‐1000 

in tandem with a Q‐Exactive Orbitrap mass spectrometer. Each sample (5µL) was resolved using 

a 44 minute gradient at 500nL/min (0-22% Buffer B; Buffer A : 0.2 formic acid in 5% ACN, 

Buffer B: 0.2% formic acid in ACN) on a 2 cm Acclaim 100 PepMap Nanoviper C18 trapping 

column in tandem with a New Objective PicoChip column ( REPROSIL-Pur, C18-AQ, 3µm, 

120Å, 105mm). For data acquisition, each duty cycle begins with full scan at 35000 resolution (at 

200 m/z) with target automatic gain control (AGC) at 3 x 106 and maximum injection time of 

200ms followed by PRM scans at 17500 resolution (at 200 m/z), an AGC value of 2 x 105 and 

https://www.uniprot.org/
http://www.peptideatlas.org/
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maximum fill time of 50ms with isolation window of 1.6 m/z. Fragmentation was performed with 

normalized collision energy of 27. 

 

4.4.5 Peptide selection and optimization 

A total of 210 peptides from 75 proteins were measured through three scheduled PRM 

injections per sample. Scheduled PRM method was set up with seven minute window with 

maximum 30 concurrent peptides to ensure 8-10 measurement points per LC peak per transition. 

A full list of selected ribosomal proteins and peptides, peptide position are presented in Table 4-1.  

4.4.6 Data Analysis 

Raw data were imported to Skyline software for peptide peak identification and integration 

(MacLean et al., 2010). 3-5 transition used in tandem with precursor retention time matching as 

well as mass error for peptide identification and most intense fragment ion used for quantification. 

Peptide, transition and integrated peak area information were exported to Excel for further 

analysis. Relative protein abundance was measured by summing peak areas for each measured 

peptide in a protein. Protein abundances were normalized by first calculating the relative Total Ion 

Current (TIC) for each sample and dividing each protein abundance to TIC to yield the “proportion 

of total” value per sample. Normalized protein abundance then averaged across replicates to derive 

the relative protein abundance. 

4.4.7 Statistical Analysis 

Statistical tests were manually calculated in Excel. One-way Analysis of Variance 

(ANOVA) was used to determine significance. p<0.05 were considered significant which 
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corresponds to F-value of 2.46 with degree of freedom (dfwithin= 18 and dfbetween=9). As post-hoc 

analysis, Tukey’s Honest Significantly Different (HSD) method was implemented for pair-wise 

comparison with p<0.05 considered significant corresponding to Critical Q value of 5.07. All 

samples were analyzed in triplicates (n=3) except for testis and EL4 cell line which had n=2.   

4.5 Results 

4.5.1 Peptide Selection and Optimization 

A total of 372 peptides were initially analyzed for 84 ribosomal proteins (Table 4-1). For 

screening of selected peptides, a combination of 519 (+2 / +3) precursor ions were analyzed for 

quality assurance. To establish a stringent screening, the quantification and quality assurance were 

based on successful peptide peak identification by skyline’s peak picking algorithm, retention time 

falling in the range of peptide retention time predictor, at least 3 co-eluting fragment ions for 

identification, as well as retention time matching from peptides identified from proteome 

discoverer. Based on selection criteria, a total of 210 peptides for 75 ribosomal proteins were 

shortlisted for further analysis, while  uS19, uS14, uL30L, uL16L, eL22L, eL32L, eL37, eL40 and 

eL41 failed to meet the criteria and/or undetectable during the initial analyses. 

4.5.2 PRM Data Analysis 

 

4.5.2.1 Small Ribosomal Proteins 

The change significance of small ribosomal proteins among the tissues and cell lines was 

analyzed by one-way ANOVA to identify the proteins changing among the group. A total of seven 

ribosomal proteins significant relative abundance with a p-value ≤ 0.001 were eS25, eS19, uS9, 



 

 117  
 

uS7, eS28, eS21, and eS31 with maximum fold change >2. The statistically significant ribosomal 

proteins are shown with maximum fold change in the Figure 4-1 with a p<0.001 are marked in 

pink. 

To identify the relative abundance based on significantly changing proteins, a Tukey’s 

Honest Significant Difference (HSD) analysis was performed. The Figure 4-1 shows the pairwise 

comparison of changing abundance among the tissues and the cell lines, as bar diagram 

demonstrate the abundance and the changing color pattern shows how many tissues are different 

with the significantly changing abundance. 

Among the 31 small ribosomal proteins quantified, three shown more than four fold change 

with a significance of p>0.05. These proteins includes eS21, eS31 and eS30 as shown in Figure 

4-3A. The eS31 seems to be a part of the core ribosomal domain while eS21 and eS30 are found 

associated with surface of the ribosomal structure of the as shown in Figure 4-3B. 
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Figure 4-1 Summary of Protein Quantification of Small Ribosomal Proteins. 

Relative protein abundance for each protein across multiple tissue and cell lines is represented with 

bar graph. Number of peptides quantified for each protein is stated within parentheses and volume 

of spheres for each protein represent their average proportion of total within sample. Statistical 

results from ANOVA and Tukey’s HSD are represented with different shades of maroon with the 

lightest colored bars indicates no significant pair-wise comparison identified with any tissue or 
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cell line while the darkest shaded bars indicate presence of more than 2 tissues or cell lines 

significantly different at p<0.05. 

 

4.5.2.2 Large Ribosomal Proteins 

The one-way ANOVA was also been recruited for the analysis of large ribosomal proteins 

to identify the variation among the cell lines and tissue samples. A total of 13 large ribosomal 

proteins shown more than four-fold change with a significance of p>0.05. The relative abundance 

based on significantly changing proteins is shown in Figure 4-3A to demonstrate the variability 

of large ribosomal proteins among the tissues and cell lines. The bar diagram demonstrate the 

abundance and the changing color pattern shows how many tissues are different with the 

significantly changing abundance. Among these proteins, eL22 and eL42 shown variability among 

one tissue, while uL6, uL16, uL14, eL36, eL29, eL30, eL33, eL39 and eL43 were differently 

expressed between more than two tissues. The large ribosomal proteins eL43, eL38, and uL14 

were found to be associated with core domain of the ribosome.  The other varying large ribosomal 

proteins were associated with different ribosomal regions. 
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Figure 4-2 Summary of Protein Quantification of Large Ribosomal Proteins 

Relative protein abundance for each protein across multiple tissue and cell lines is represented with 

bar graph. Number of peptides quantified for each protein is stated within parentheses and volume 

of spheres for each protein represent their average proportion of total within sample. Statistical 

results from ANOVA and Tukey’s HSD are represented with different shades of blue with the 

lightest colored bars indicates no significant pair-wise comparison identified with any tissue or 
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cell line while the darkest shaded bars indicate presence of more than 2 tissues or cell lines 

significantly different at p<0.05. 

 

4.5.3 Tissue Specific Ribosomal Protein Variation 

These variations among the tissues were different from in terms of up and down regulation 

of these proteins, as found to be differently associated. As shown in Figure 4-4, eL33 and eL43 

are down regulated in heart samples, while in brain tissues, eL14, uL5, uL3, eL38, uL14, eL33, 

eL43 and uL6 were down regulated. An upregulation of eS28, eS21 and eS19 was observed in 

brain samples (Figure 4-4). While looking more specifically at eL38 in contrast to brain tissues, 

it was found upregulated in liver cells, along with eL43, eL39 and eL21 (Figure 4-4). The 

downregulated RPs observed in liver tissues were, eS25, eL29 and eS31.   

4.5.4 Significantly Varying Ribosomal Proteins 

Among the varying ribosomal proteins, concentration among the tissue samples, eL33 and 

eL43 has been seen most significantly regulated RPs among all as each of these proteins appeared 

to be down regulated in three tissue samples (Brain, Heart, skeletal Muscles) while up regulated 

in testis tissue samples and 2 cell lines (EL4 and NIH3T3). The eL33 shown fold change > 8 with 

a p-value >0.001 while the eL43 has shown a fold change > 4 with a similar amplitude of 

significance. 

With a fold change > 4, uL14 was downregulated in two tissues (Brain and Skeletal 

muscles) and upregulated two cell lines (EL4 and NIH3T3) with a significance of p>0.001. Third 

most commonly varying ribosomal protein was eL38 as downregulated in NIH3T3 and Brain, and 

upregulated in two tissues (Spleen and Liver) with a fold change > 2 at a significance of p>0.001. 
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Next in the list, P1 and eL36 were witnessed varying among three samples with a fold change > 4, 

while eL14 and uL15 with a fold change > 2.  

 

Figure 4-3 Changes in Ribosomal Proteins 

A. and B. Plot showing maximum fold change between tissue calculated by dividing maximum 

with minimum relative abundance for each protein in small ribosomal proteins, RPS (A) or large 

ribosomal proteins, RPL (B) against the ANOVA F-value. Dark grey shaded area indicates 

insignificant protein changes at p<0.05. p-value cut-offs for 0.05, 0.01, and 0.001 are as indicated. 

Selected proteins from the data set are individually labelled. C. 80S human ribosome complex 

(PDB: 4V6X) shown without rRNA. RPLs are colored blue while RPSs are colored pink. Proteins 

with p<0.001 are colored in darker shade of blue and pink and individually labelled.      
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4.5.5 Tissues With Significant Ribosomal Proteins Variation 

Among the eight-tissue types, brain tissues showed significant variation in ribosomal 

protein abundance as eight ribosomal proteins were found downregulated while three were 

upregulated. The testis tissue shown most number of upregulated ribosomal proteins that is six in 

total, while three were downregulated attributing to nine ribosomal proteins with varying 

abundance.  The kidney tissues shown eight ribosomal proteins significantly varying among those 

four were upregulated and four were downregulated. The seven ribosomal proteins were observed 

significantly varying in liver (four upregulated, three downregulated) and skeletal muscles (two 

upregulated, five downregulated) tissue samples. (Figure 4-4) 

 



 

 124  
 

 

 



 

 125  
 

Figure 4-4 Specificity curve of ribosomal proteins across tissues and cell lines 

Protein levels for all ribosomal protein for each specified tissue or cell line were plotted against 

average protein level observed across all sample types studied. Proteins falling above the 

correlation line (black dotted line) are considered upregulated while downregulated proteins fall 

below correlation line. Proteins of interest with significant changes for each sample type are 

labelled and colored (dark blue = RPL, dark pink = RPS). 

 

4.5.6 Tissue Specific Isoform Variation 

This ribosomal protein variation was not limited to the concentration, while significant 

variation was observed in the tissue specific isoform of the ribosome. The eS10 has been observed 

with a varying isoform between different tissue and cell type. The eS10 isoform (Uniprot ID: 

Q3UW83) with a missing peptide “AEAGAGSATEFQFR” was specifically present in kidney, liver 

and NIH3T3, while eS10 present was present in other tissue and cell types (Figure 4-5).  
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Figure 4-5 eS10 Peptide Quantification Data 

Relative protein abundance for 3 quantified peptides of eS10 are shown for tissues and cell 

lines. “*” indicates undetected peptide. B. Overlapping fragment ion abundance curve for each 

peptide measured for eS10 in both Spleen and Liver sample indicating the absence of peptide 

“AEAGAGSATEFQFR” in liver. C. Sequence alignment of RPS10 and RPS10 isoform 

1(Uniprot ID: Q3UW83). Peptide sequences utilized for PRM analysis are indicated in boxes. 
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4.6 Discussion 

The control of translation is increasingly recognized as a major factor in determining 

protein levels in the cell. The ribosome — the cellular machine that mediates protein synthesis — 

is characteristically identified as ubiquitous and invariant during the translation process. The 

ribosomal proteins are known to be highly conserved and vastly expressed; presenting a static 

outlook that fits the fundamental role in protein synthesis. The recent studied the heterogeneity of 

ribosomal protein among different tissue types pointing towards differential role and possible 

regulatory effects.  Recent developments have made it clear that heterogeneous ribosome types 

can exist in different tissues, and more importantly, that these ribosomes can preferentially 

translate different subsets of mRNAs. 

However, ribosomal protein composition in tissues and cells and their role in translational 

regulations is poorly understood. We attempt to explore this by quantifying all ribosomal proteins 

(RPs) expressed in tissues to better understand the possibility of heterogeneity within ribosome 

complex composition that may contribute towards tissue specialization. Previous study attempting 

to quantify RPs successfully quantified 15 out of 80 (RPs) in mouse embryonic stem cells (mESC) 

utilizing selected reaction monitoring (SRM) (Shi et al., 2017). They managed to perform absolute 

quantification of these RPs through the addition of heavy-labelled peptide spiked into the samples; 

label-based quantification. High cost of labelling as well as difficulty in finding quantotypic 

peptide for RPs restricted the quantification of all RPs. We circumvent the challenge by utilizing 

our label-free quantification approach to quantify RPs via PRM. 

Initially, we listed 84 RPs obtained from Uniprot database for PRM based quantification 

for preliminary peptide selection through the measurement of 519 precursor ions. However, for 
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the final quantification we were able to finalize 210 peptides to quantify 75 RPs. Nine RPs were 

excluded from quantification due to the lack of suitable tryptic peptides or lack of detection during 

method optimization. Almost half of these proteins are paralogs of RPs, namely uL30L, uL16L, 

eL22L, and eL32L where they were undetected during data acquisition. Their lack of detection 

could be attributed to interference by their paralog counterparts. For example, eL22 has been 

shown to destabilize its paralog, eL22L1 through binding directly to it mRNA stem loop (O’Leary 

et al., 2013). Additionally, uL3 mRNA has been reported to have lower abundance compared to 

its paralog, uL3L selectively in human hearts and skeletal muscle while present in higher 

abundance in other parts of the body (Chaillou et al., 2014, 2016; Kirby et al., 2015). We have 

observed similar data in our measurement where uL3 shows lower abundance in heart and skeletal 

muscle compared to other tissues (Figure 4-2). 

  In Figure 4-1 and Figure 4-2, we have summarized the relative abundance of small and 

large RPs respectively. Out of 31 small RPs quantified, we observed 19 RPs with significant 

difference in abundance at p<0.05 against at least two tissues. Similarly, 19 RPs from 44 measured 

large RPs also showed significant difference in abundance against two or more tissue. This 

indicates that the constitution of ribosome complex do vary between tissues and cells contributed 

by the variation of abundance of a subset of RPs while majority of RPs do not show significant 

variation. The work done by Shi and group also indicates variation of RPs stoichiometry in 

polysome of mESCs where they identified six RPs were significantly substochiometric and four 

of them only present in 60% – 70%  of actively translating ribosome complex (Shi et al., 2017).  

 We explored the idea of the tissue specific expression of RPs by plotting average 

abundance of RPs against global average of RPs abundance as summarized in Figure 4-4. Several 

studies have showed RNA-based evidences of tissue-specific expression of RPs. One example is 
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testis and prostate where they have been shown to specifically express eS4Y2 than two other 

paralogs eS4Y1 and eS4X in humans. (Lopes et al., 2010). We have observed several RPs with 

significantly variable abundance in testis suggesting differential translation of mRNA in testis 

(Figure 4-1,Figure 4-2 and Figure 4-4). Additionally, we also noticed a higher number of RPs 

downregulated in brain with majority if them being large RPs. We speculate that these RPs are 

required in lower frequency in brains than in other tissues contributing to specialized nature of 

brain tissue.  

 We observed during our analysis that several peptides were not detected in all samples that 

encouraged us to focus on these missing peptides. Although some of these peptides were 

undetected due to missing data phenomenon (explained further in Chapter 5), we discovered one 

peptide, AEAGAGSATEFQFR, from eS10 was specifically missing from kidney and liver tissues 

as well as NIH3T3 cells (Figure 4-5). Further investigation revealed the potential expression of 

eS10 isoform-1, which we determined to be missing the peptide in its amino acid sequence. 

Nevertheless, further validation in the future is necessary for concluding the presence of eS10 

isoform 1 in these tissues though the prospect of protein isoform adding to the level of ribosome 

heterogeneity is  potentially novel.  

 There are innumerable possibilities that could lead to ribosomal heterogeneity and the 

finding in this study shows the heterogeneity arises among different tissue types pointing towards 

the role of heterogeneous ribosomes in molecular functionality. Though the notion of specialized 

ribosomes is in its infancy, it has conquered the fantasy of researchers, especially the idea of 

heterogeneity ascending from RP composition. Through this study, we aspire to serve a baseline 
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reference towards RPs abundance in ribosome complexes across tissues that can help future studies 

to focus on specific questions to unravel the complexity behind ribosome heterogeneity.  

4.7 Future Direction 

Our findings have provided foundational evidence of the presence of ribosomal heterogeneity 

among different tissues. There are numerous avenues yet to be explored to characterize ribosomal 

heterogeneity. We have to further investigate the possibility ribosome compositional heterogeneity 

during translation of specific transcript within tissues. Isolating polysomes through sucrose density 

gradient will allow to study ribosome complexes translating specific transcripts. Our approach 

focused on global differences in ribosomal proteins in tissues. However, tissues are made up of 

various cell types that could potentially have difference in their ribosomal composition. Global 

analysis of ribosomal proteins will overlook these differences that could be identified accurately 

with specific studies focusing of ribosome compositions in cells. Additionally, single-molecule 

imaging techniques such as Förster resonance energy transfer (FRET) can be implemented to 

directly visualize individual ribosomes in real-time, which can uncover information regarding their 

behaviour and activity. Finally, full characterization of heterogeneity is impossible without the 

usage of multiple techniques and instruments in combination.  
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Accension 
Number 

Old 
Nomenclature 

New 
Nomenclature 

Protein 
Description 

Protein 
Length 

Peptides 
Sequence 
Location 

Q6ZWV3 RPL10 uL16 
60S ribosomal 

protein L10 
214 

VHIGQVIMSIR 129 - 139 

LIPDGCGVK 190 - 198 

P53026 RPL10A uL1 
60S ribosomal 
protein L10a  

217 

DTLYEAVR 8 - 15 

YDAFLASESLIK 107 - 118 

ILGPGLNK 123 - 130 

Q9CXW4 RPL11 uL5 
60S ribosomal 

protein L11  
178 

VLEQLTGQTPVFSK 39 - 52 

IAVHCTVR 68 - 75 

YDGIILPGK 170 - 178 

P35979 RPL12 uL11 
60S ribosomal 

protein L12  
165 

CTGGEVGATSALAPK 17 - 31 

QAQIEVVPSASALIIK 68 - 83 

HSGNITFDEIVNIAR 100 - 114 

EILGTAQSVGCNVDGR 131 - 146 

P47963 RPL13 eL13 
60S ribosomal 

protein L13  
211 

GFSLEELR 75 - 82 

STESLQANVQR 106 - 116 

LATQLTGPVMPIR 146 - 158 

P19253 RPL13A uL13 
60S ribosomal 
protein L13a  

203 

CEGINISGNFYR 38 - 49 

VLDGIPPPYDK 104 - 114 

LAHEVGWK 141 - 148 

Q9CR57 RPL14 eL14 
60S ribosomal 

protein L14  
217 

VAYISFGPHAGK 12 - 23 

LVAIVDVIDQNR 24 - 35 

ALVDGPCTR 36 - 44 

AAIAAAAAAAAAK 148 - 160 

Q9CZM2 RPL15 eL15 
60S ribosomal 

protein L15  
204 

QLSALHR 32 - 38 

FFEVILIDPFHK 129 - 140 

NTLQLHR 196 - 202 

Q9CPR4 RPL17 uL22 
60S ribosomal 

protein L17  
184 

YSLDPENPTK 4 - 13 

QWGWTQGR 75 - 82 

GLDVDSLVIEHIQVNK 106 - 121 
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P35980 RPL18 eL18 
60S ribosomal 

protein L18  
188 

SQDIYLR 20 - 26 

TAVVVGTVTDDVR 79 - 91 

ILTFDQLALESPK 120 - 132 

P62717 RPL18A eL20 
60S ribosomal 
protein L18a  

176 

NFGIWLR 77 - 83 

DLTTAGAVTQCYR 99 - 111 

VEEIAAGK 129 - 136 

P84099 RPL19 eL19 
60S ribosomal 

protein L19  
196 

VWLDPNETNEIANANSR 22 - 38 

LLADQAEAR 154 - 162 

O09167 RPL21 eL21 
60S ribosomal 

protein L21  
160 

KGDIVDIK 36 - 43 

VYNVTQHAVGIIVNK 64 - 78 

P67984 RPL22 eL22 
60S ribosomal 

protein L22  
128 

AGNLGGGVVTIER 53 - 65 

ITVTSEVPFSK 70 - 80 

P62830 RPL23 uL14 
60S ribosomal 

protein L23  
140 

ISLGLPVGAVINCADNTGAK 16 - 35 

ECADLWPR 124 - 131 

P62751 RPL23A uL23 
60S ribosomal 
protein L23a  

156 

IEDNNTLVFIVDVK 90 - 103 

VNTLIRPDGEK 124 - 134 

LAPDYDALDVANK 140 - 152 

Q8BP67 RPL24 eL24 
60S ribosomal 

protein L24  
157 

VELCSFSGYK 3 - 12 

VFQFLNAK 28 - 35 

AITGASLADIMAK 81 - 93 

P61255 RPL26 uL24 
60S ribosomal 

protein L26  
145 

FNPFVTSDR 3 - 11 

DDEVQVVR 52 - 59 

YVIYIER 78 - 84 

P61358 RPL27 eL27 
60S ribosomal 

protein L27  
136 

VVLVLAGR 10 - 17 

YSVDIPLDK 85 - 93 

P14115 RPL27A uL15 
60S ribosomal 
protein L27a  

148 

NQSFCPTVNLDK 66 - 77 

LWTLVSEQTR 78 - 87 

TGVAPIIDVVR 95 - 105 

P41105 RPL28 eL28 
60S ribosomal 

protein L28  
137 

QTYSTEPNNLK 23 - 33 

YNGLIHR 40 - 46 
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TVGVEPAADGK 48 - 58 

P47915 RPL29 eL29 
60S ribosomal 

protein L29  
160 

ALVKPQAIKPK 74 - 84 

LAFIAHPK 94 - 101 

P27659 RPL3 uL3 
60S ribosomal 

protein L3  
403 

VACIGAWHPAR 251 - 261 

NNASTDYDLSDK 301 - 312 

FIDTTSK 367 - 373 

P62889 RPL30 eL30 
60S ribosomal 

protein L30  
115 

LVILANNCPALR 45 - 56 

TGVHHYSGNNIELGTACGK 69 - 87 

VCTLAIIDPGDSDIIR 91 - 106 

P62900 RPL31 eL31 
60S ribosomal 

protein L31  
125 

SAINEVVTR 15 - 23 

EYTINIHK 24 - 31 

LYTLVTYVPVTTFK 102 - 115 

P62911 RPL32 eL32 
60S ribosomal 

protein L32  
135 

GQILMPNIGYGSNK 51 - 64 

ELEVLLMCNK 84 - 93 

SYCAEIAHNVSSK 94 - 106 

Q9D1R9 RPL34 eL34 
60S ribosomal 

protein L34  
117 

LSYNTASNK 11 - 19 

IVYLYTK 30 - 36 

AFLIEEQK 94 - 101 

Q6ZWV7 RPL35 uL29 
60S ribosomal 

protein L35  
123 

QLDDLKVELSQLR 20 - 32 

VLTVINQTQK 57 - 66 

YKPLDLRPK 78 - 86 

O55142 RPL35A eL33 
60S ribosomal 
protein L35a  

110 

AIFAGYK 9 - 15 

DETEFYLGK 37 - 45 

DETEFYLGKR 37 - 46 

P47964 RPL36 eL36 
60S ribosomal 

protein L36  
105 

YPMAVGLNK 5 - 13 

EVCGFAPYER 46 - 55 

VGTHIR 77 - 82 

P83882 RPL36A eL42 
60S ribosomal 
protein L36a  

106 

DSLYAQGK 31 - 38 

LECVEPNCR 70 - 78 

HFELGGDK 90 - 97 
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P61514 RPL37A eL43 
60S ribosomal 
protein L37a  

92 

KIEISQHAK 28 - 36 

IEISQHAK 29 - 36 

YTCSFCGK 37 - 44 

TVAGGAWTYNTTSAVTVK 63 - 80 

Q9JJI8 RPL38 eL38 
60S ribosomal 

protein L38  
70 

DFLLTAR 10 - 16 

YLYTLVITDK 41 - 50 

QSLPPGLAVK 58 - 67 

P62892 RPL39 eL39 
60S ribosomal 

protein L39  
51 QNRPIPQWIR 19 - 28 

Q9D8E6 RPL4 uL4 
60S ribosomal 

protein L4  
419 

NVTLPAVFK 21 - 29 

IEEVPELPLVVEDK 144 - 157 

NIPGITLLNVSK 223 - 234 

P47962 RPL5 uL18 
60S ribosomal 

protein L5  
297 

DIICQIAYAR 59 - 68 

FPGYDSESK 180 - 188 

ENPVYEK 249 - 255 

P47911 RPL6 eL6 
60S ribosomal 

protein L6  
296 

SSITPGTVLIILTGR 150 - 164 

AVDLQILPK 260 - 268 

AVPQLQGYLR 271 - 280 

P14148 RPL7 uL30 
60S ribosomal 

protein L7  
270 

AGNFYVPAEPK 100 - 110 

IALTDNSLIAR 189 - 199 

TTHFVEGGDAGNR 246 - 258 

P12970 RPL7A eL8 
60S ribosomal 

protein L7a  
266 

VPPAINQFTQALDR 76 - 89 

HWGGNVLGPK 236 - 245 

P62918 RPL8 uL2 
60S ribosomal 

protein L8  
257 

AVDFAER 31 - 37 

AVVGVVAGGGR 164 - 174 

P51410 RPL9 uL6 
60S ribosomal 

protein L9  
192 

TILSNQTVDIPENVEITLK 3 - 21 

TGVACSVSQAQK 130 - 141 

DELILEGNDIELVSNSAALIQQATTVK 142 - 168 

P14869 RPLA0 uL10 317 
IIQLLDDYPK 17 - 26 

GHLENNPALEK 67 - 77 
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60S acidic 
ribosomal protein 

P0  

GNVGFVFTK 84 - 92 

TSFFQALGITTK 135 - 146 

P47955 RPLA1 P1 
60S acidic 

ribosomal protein 
P1  

114 
AAGVSVEPFWPGLFAK 34 - 49 

ALANVNIGSLICNVGAGGPAPAAGAAPAGGAAPSTAAAPAEEK 50 - 92 

P99027 RPLA2 P2 
60S acidic 

ribosomal protein 
P2  

115 

YVASYLLAALGGNSSPSAK 3 - 21 

ILDSVGIEADDDR 26 - 38 

NIEDVIAQGVGK 50 - 61 

P63325 RPS10 eS10 
40S ribosomal 

protein S10  
165 

IAIYELLFK 9 - 17 

HFYWYLTNEGIQYLR 66 - 80 

AEAGAGSATEFQFR 140 - 153 

P62281 RPS11 uS17 
40S ribosomal 

protein S11  
158 

VLLGETGK 23 - 30 

EAIEGTYIDK 49 - 58 

EAIEGTYIDKK 49 - 59 

CPFTGNVSIR 60 - 69 

P63323 RPS12 eS12 
40S ribosomal 

protein S12  
132 

TALIHDGLAR 24 - 33 

LGEWVGLCK 85 - 93 

DVIEEYFK 122 - 129 

P62301 RPS13 uS15 
40S ribosomal 

protein S13  
151 

SVPTWLK 21 - 27 

GLTPSQIGVILR 44 - 55 

LILIESR 115 - 121 

P62264 RPS14 uS11 
40S ribosomal 

protein S14  
151 

ELGITALHIK 87 - 96 

TPGPGAQSALR 107 - 117 

IEDVTPIPSDSTR 129 - 141 

P62245 RPS15A uS8 
40S ribosomal 
protein S15a  

130 

MNVLADALK 4 - 12 

HGYIGEFEIIDDHR 44 - 57 

IVVNLTGR 61 - 68 

FDVQLK 79 - 84 

P14131 RPS16 uS9 146 LLEPVLLLGK 51 - 60 
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40S ribosomal 
protein S16  

DILIQYDR 110 - 117 

P63276 RPS17 eS17 
40S ribosomal 

protein S17  
135 

VCEEIAIIPSK 34 - 44 

VCEEIAIIPSKK 34 - 45 

RDNYVPEVSALDQEIIEVDPDTK 81 - 103 

DNYVPEVSALDQEIIEVDPDTK 82 - 103 

P62270 RPS18 uS13 
40S ribosomal 

protein S18  
152 

AGELTEDEVER 56 - 66 

IPDWFLNR 79 - 86 

YSQVLANGLDNK 95 - 106 

Q9CZX8 RPS19 eS19 
40S ribosomal 

protein S19  
145 

DVNQQEFVR 8 - 16 

ELAPYDENWFYTR 44 - 56 

VLQALEGLK 103 - 111 

P25444 RPS2 uS5 
40S ribosomal 

protein S2  
293 

SLEEIYLFSLPIK 77 - 89 

GCTATLGNFAK 228 - 238 

ATFDAISK 239 - 246 

SPYQEFTDHLVK 264 - 275 

P60867 RPS20 uS10 
40S ribosomal 

protein S20  
119 

TPVEPEVAIHR 9 - 19 

VCADLIR 35 - 41 

LIDLHSPSEIVK 88 - 99 

Q9CQR2 RPS21 eS21 
40S ribosomal 

protein S21  
83 

DHASIQMNVAEVDR 28 - 41 

TYGICGAIR 52 - 60 

MGESDDSILR 62 - 71 

P62267 RPS23 uS12 
40S ribosomal 

protein S23  
143 

ANPFGGASHAK 38 - 48 

KGHAVGDIPGVR 108 - 119 

VANVSLLALYK 125 - 135 

P62849 RPS24 eS24 
40S ribosomal 

protein S24  
133 

QMVIDVLHPGK 22 - 32 

TTPDVIFVFGFR 50 - 61 

P62852 RPS25 eS25 
40S ribosomal 

protein S25  
125 

LITPAVVSER 67 - 76 

AALQELLSK 86 - 94 
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P62855 RPS26 eS26 
40S ribosomal 

protein S26  
115 NIVEAAAVR 43 - 51 

Q6ZWU9 RPS27 eS27 
40S ribosomal 

protein S27  
84 DLLHPSPEEEK 6 - 16 

P62983 RPS27A eS31 
Ubiquitin-40S 

ribosomal protein 
S27a  

156 CCLTYCFNKPEDK 144 - 156 

Q6ZWY3 RPS27L eS31L 
40S ribosomal 

protein S27-like  
84 DLLHPSLEEEK 6 - 16 

P62858 RPS28 eS28 
40S ribosomal 

protein S28  
69 

VEFMDDTSR 32 - 40 

EGDVLTLLESER 52 - 63 

P62908 RPS3 uS3 
40S ribosomal 

protein S3  
243 

ELAEDGYSGVEVR 28 - 40 

TEIIILATR 46 - 54 

FGFPEGSVELYAEK 77 - 90 

GCEVVVSGK 133 - 141 

P62862 RPS30 eS30 
40S ribosomal 

protein S30  
59 FVNVVPTFGK 42 - 51 

P97351 RPS3A eS1 
40S ribosomal 

protein S3a  
264 

LITEDVQGK 86 - 94 

EVQTNDLK 175 - 182 

P62702 RPS4X eS4 
40S ribosomal 
protein S4, X 

isoform 
263 

GIPHLVTHDAR 135 - 145 

LSNIFVIGK 222 - 230 

LTIAEER 246 - 252 

P97461 RPS5 uS7 
40S ribosomal 

protein S5  
204 

YLPHSAGR 48 - 55 

AQCPIVER 64 - 71 

VNQAIWLLCTGAR 147 - 159 

P62754 RPS6 eS6 
40S ribosomal 

protein S6  
249 

LNISFPATGCQK 3 - 14 

EEAAEYAK 204 - 211 

P62082 RPS7 eS7 
40S ribosomal 

protein S7  
194 

ELNITAAK 42 - 49 

KAIIIFVPVPQLK 58 - 70 

AIIIFVPVPQLK 59 - 70 

HVVFIAQR 91 - 98 
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TLTAVHDAILEDLVFPSEIVGK 121 - 142 

P62242 RPS8 eS8 
40S ribosomal 

protein S8  
208 

IIDVVYNASNNELVR 78 - 92 

NCIVLIDSTPYR 99 - 110 

ISSLLEEQFQQGK 158 - 170 

ADGYVLEGK 185 - 193 

Q6ZWN5 RPS9 uS4 
40S ribosomal 

protein S9  
194 

LIGEYGLR 31 - 38 

IGVLDEGK 84 - 91 

LDYILGLK 94 - 101 

P14206 RPSSA uS2 
40S ribosomal 

protein SA  
295 

AIVAIENPADVSVISSR 64 - 80 

FAAATGATPIAGR 90 - 102 

FTPGTFTNQIQAAFR 103 - 117 

ADHQPLTEASYVNLPTIALCNTDSPLR 129 - 155 

 

Table 4-1 List of Peptides of Ribosomal Proteins Quantified
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5 Chapter 5:  

Conclusion 
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This thesis tries to integrate two aspects of our lab’s focus on mass spectrometry based 

proteomics: (1) label-free protein quantification strategies that are reliable, reproducible, and 

robust; and (2) data acquisition methods that are either discovery or targeted in nature to analyze 

and quantify proteins from samples of various complexity, from purified cellular component 

extract to highly complex cell lysates.   

In Chapter 2, the usage of label-free protein quantification using primarily the DDA 

method to explore the proteomic changes in cells with overexpression of miR-23∼24 is described. 

A complete comparison of the proteomes of vector control cells or cells expressing the miR-23–

24 cluster was performed using DDA acquisition mode and the resulting chromatographic data 

were quantified by integrating the area under the curve of precursor ions (MS1). Protein 

abundances were normalized between replicates and treatment groups and compared for 

differential expression in a label-free manner. The analysis resulted in the identification and 

quantification of 4349 proteins, the abundance of which varied by over five orders of magnitude. 

Our data analysis to understand the most significant inhibition of miRNAs from the miR-2324 

cluster did identify previously known targets of the cluster as well as more potential targets that 

exhibit reduced expression by over an order of magnitude upon miR-2324 cluster expression. 

While label-free proteomics is traditionally not viewed to be as quantitative as and more 

problematic than isotopic labeling techniques, such as iTraq, we demonstrate that it is of high 

utility in identifying the largest magnitude changes, which are desired for the identification of the 

most potent targets for miRNA regulation. Our approach of utilizing label-free quantification 

coupled with normalization by representing protein abundances as a proportion of TIC allows us 

to increase data reproducibility and circumvent the disadvantages of using isotopic labeling 
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techniques that can suppress observed expression differences as revealed in previous proteomic 

investigations on this cluster using iTraq labeling, which only reported on changes of less than 2-

fold in protein abundance. 

 

 Chapter 3 discussed the proteomic comparison of human serum samples to identify novel 

proteins in an unbiased manner associated with Myasthenia gravis (MG). The first part of the study 

involved proteomic data collection through the DDA method using unadulterated human serum 

samples. We conducted a three way comparison between healthy controls, MG patients, and 

rheumatoid arthritis (RA) patients, used as a reference autoimmune disease, which identified a 

total of 502 proteins among all groups sampled. Among those proteins, 11 proteins showed a 

statistically significant difference between the control, MG, and RA groups. To further validate 

our finding, we utilized a targeted proteomics acquisition method, PRM, to reliably quantify the 

proteins exhibiting the largest differential abundance in our DDA analysis, FGA, FGB, and FGG. 

We analyzed a larger cohort of MG patient serum samples consisting of various subtypes (27 anti-

AChR antibody positive, one anti-MuSK antibody positive, three seronegatives, for a total of 31 

MG sera), compared against 18 from RA patients and 30 sera from the control group. Our PRM 

analysis showed fibrinogens were present in consistently higher abundance in MG patient sera 

compared to RA and control groups; 28 to 54-fold higher than the RA samples and 250 to 4000-

fold higher than the control samples. Meanwhile, no difference were observed in the abundance of 

fibrinogens was observed between the different subtypes of MG. Through utilizing two different 

acquisition method, DDA and PRM, we were able to initially identify potential novel proteins 

associated with MG as well as quantitatively determine the abundance differential of fibrinogen in 

MG patients’ sera. We found the presence of high serum fibrinogen levels to be highly sensitive 

to MG with specificities that appear to be superior to current clinical testing methods. Furthermore, 



 

 143  
 

high serum fibrinogen levels were found in all serotypes and in Class I patients (a form of MG that 

only affects the eyes), suggesting that residual serum testing might be more useful than the current 

serological tests. We believe that our findings will serve as the cornerstone of a consistent method 

for diagnosing clinical MG. 

 

 In Chapter 4, we explored the proteomic quantification of ribosomal proteins expressed in 

varying cells and tissue types to study the differences in ribosomal protein abundance in tissues. 

We performed a targeted proteomic analysis by PRM on purified ribosomal fractions from tissue 

lysates to quantify 75 ribosomal proteins from 210 peptides. The list of peptides were finalized 

from 379 peptides and 519 precursors from 84 proteins following repeated method optimization. 

Our resulting analysis were able to show that the ribosome complexes thought to be constitutive 

were indeed made up of several ribosomal proteins that are not expressed equally in all tissue. This 

further fuels the emerging notion of ribosomal heterogeneity that plays a role towards translational 

regulation providing an additional point of specification and specialization of tissues. We 

additionally discovered the small ribosomal protein, eS10 showed peptides absence in certain 

tissues. Further investigation uncovered the potential of an isoform of eS10 expressed in liver and 

kidney adding another level of heterogeneity to ribosome complexes.  

 

The comparison and relative quantification of proteins originating from various biological 

samples using our label-free proteomic technique is the main focus of this thesis. While the basic 

idea behind label-free quantification is by no means new (for reviews, see (Bantscheff et al., 2007, 

2012; Domon & Aebersold, 2006; Listgarten & Emili, 2005; Nahnsen et al., 2013), our method 

combines widely used individual protein quantification methods (Kramer et al., 2017, 2018; 

Piragasam et al., 2020) with a sample-specific normalization procedure for all observed proteins. 
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It has been suggested in the past that this technique may have issues when it comes to the 

prefractionation of proteins found in biological samples (Cox et al., 2014). Theoretically, different 

protein/peptide combinations in each sub-fraction may behave differently during chromatographic 

separation, producing results that are difficult to reproduce. To lessen this sub-fraction variation, 

however, a number of measures can be taken. Though quantification through label-free methods 

is not direct and more challenging compared to the direct comparison advantage of isotope labeling 

methods, label-free quantification has become more popular and adopted by the proteomics 

community in the last few years which can be attributed to the explosion of technological advances 

in mass spectrometry (increase in instrument sensitivity capable of accurate ion 

quantification)  and in computational performance in the past decade. The trend can be easily 

noticed by performing keyword searches in the PubMed database for both “label-free proteomics” 

and “isotope proteomics”, where at the time of writing this thesis, publications with the “label-free 

proteomics” keyword have almost tripled from 2015, 1726 in 2015 to 5160 currently. During the 

same period of time, the “isotope proteomics” keyword only showed an increase of approximately 

1.5 times, from 3676 in 2015 to 5739 currently. Our lab has repeatedly shown that reliable semi-

quantitative comparisons can be made that are verifiable when tested visually using 

immunoblotting techniques or through targeted proteomic quantification (see Chapters 2 and 3 and 

(McRae et al., 2020; Piragasam et al., 2020)). This has been accomplished by carefully controlling 

sample pre-fractionation, including how samples are fractionated, and subsequent front-end 

preparation for replicate samples, as well as careful normalization following data acquisition.  

 

Our aim of focusing on label-free quantification does come with challenges inherent to the 

approach that become apparent in the MS data analysis stage. The variations in the acquired data 

caused by systematic biases introduced during various stages of sample processing and data 
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generation are one of the challenges. The results of quantitative analysis might be skewed if these 

biases are not taken into consideration. Therefore, careful processing of data by accounting for 

common problems such as missing data and correcting for instrument variability are necessary.  

The method to properly handle missing value/data (MVs) in the field of proteomics have 

been explored for an extended period of time by many groups. Protein abundances below the 

instrument detection limit, the absence of proteins, sample loss during preparation, incorrect 

peptide cleavage during digestion, poor ionization efficiency, and poor peptide-spectrum matches 

are just a few of the biological and analytical factors that can cause MVs in LC-MS-based 

proteomics. Large datasets with MVs present a rather special problem because it is impossible for 

the user to know with absolute certainty whether a value is missing due to total absence or presence 

below the limit of detection (missing not at random; MNAR), or whether it is present but missing-

ness due to the accumulation of stochastic variability/error (missing at random; MAR, or missing 

completely at random; MCAR) (Karpievitch et al., 2012; Lazar et al., 2016; Rubin, 1976; Webb-

Robertson et al., 2015). In proteomics, MNAR may result from experimental effects such as (1) 

true presence/absence, (2) enzyme miscleavages, and (3) effects from instruments (dynamic range 

or limit of detection occurring when peptide measurements are low in abundance compared to 

background noise or constitute low ionization efficiency). MCAR can happen anywhere along the 

data distribution and is unaffected by the data or observed values. This kind of missingness results 

from inaccurate instrumentation or mistakes made during the preparation of experimental samples. 

Compared to MCAR, MAR covers a wider range of missing-ness and is typically conditionally 

dependent on the observed values. It usually occurs when a peptide sequence is incorrectly mapped 

or software errors resulting in misidentification of peptide in some samples creating MVs in other 

samples.  
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Real label-free proteomic datasets frequently include MVs in the 10–50% range (Albrecht 

et al., 2010; Lazar et al., 2016), typically existing as a mix of MCAR and MNAR. In order to deal 

with missing values, there are two options: either removing peptides or proteins from the analysis 

if there are not enough samples for them to be analyzed, or impute values in their place. For 

imputing values replacing MVs, several solutions have been developed. The most common 

solutions are to replace MVs with zeroes, the local minimum (LM) observed in a single sample, 

or the global minimum (GM) observed across all samples in the comparison (Lazar et al., 2016; 

Webb-Robertson et al., 2015). However, there is no single method that is fit-for-all or functions 

the best thus requiring case-by-case determination of suitable solution to handle MVs.  Maximum 

differentiation of protein abundances is made possible by the use of zeroes and GMs in imputation, 

but in datasets with high MV content, these techniques can introduce significant measurement 

errors and lower statistical power. Another shortcoming of inputting zeroes is that the following 

calculations and statistical analysis will be restricted by the division by zero problem. Inputting 

LMs to replace MVs can overcome problems encountered through the usage of zeroes and GMs. 

However, there are possibilities of introducing artificial differences in datasets as there may be 

significant differences in LMs between samples. This can lead to skewed statistical findings and a 

biased conclusion.  

Our approach for MV imputation in this thesis involves considering the dynamics of the 

data and analysis goal to determine a suitable solution. In Chapter 2, we used LMs imputation due 

to large number of proteins in the datasets as well as relatively small difference in LMs between 

the replicate samples. Zeroes were imputed for analysis in Chapter 3 where the data identified 

proteins with large dynamic range with several proteins of interest were mostly highly abundant. 

In Chapter 4, our targeted proteomic approach utilizing PRM is inherently better than DDA in 
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terms of the frequency of MVs observed(Gallien et al., 2015). Therefore, we focused on a 

combination of methods of addressing MVs, which are inputting zeros and removing peptides and 

fragments from analysis following identification of MVs.  

    My research has concentrated on creating effective, dependable, and repeatable methods 

for using mass spectrometry to carry out bottom-up label-free quantitative proteomics over the 

past few years. This thesis explores the utility of label-free proteomics quantification over a wide 

range biological functions that are applicable towards improvement of knowledge in laboratory 

settings and clinical diagnostic application by addressing various questions such as proteomic 

changes resulting from miRNAs, identifying biomarkers for neuromuscular disease, and 

identifying heterogeneity in ribosomal proteins. We also demonstrated the use of the technique on 

various samples with different characteristics and complexities, including whole cell lysates, 

fractionated tissue lysates, and human serum. Proteomic studies can now be performed at greater 

depth thanks to newer techniques and technologies, but their reliance on cutting-edge equipment 

can sometimes be a drawback. Nevertheless, the methods utilized in this thesis are practical can 

be applied to answer wide range of biological questions further assisted by the development in the 

field of proteomics.  

Finally, the fundamental purpose of research is to uncover knowledge that can benefit 

humans. Though not all research impact the progression of human civilization in similar level, the 

pursue of knowledge through research should always be preserved. Only then new discoveries 

leading to accumulation of knowledge can occur and further application of knowledge to enhance 

humanity can be pursued. One such opportunity emerged within our team. The results from our 

search for biomarker in characterizing Myasthenia Gravis uncovered several candidate proteins 

that are potentially useful as for identification of all types of the disease. Therefore, our team have 
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decided to develop a diagnostic device based on our findings in the hope of future 

commercialization. Our spin-off company, named Decipher MedTech Inc., has filed a patent based 

on our findings, and we are currently working on the production of the device. I am proud that the 

work described in this thesis will potentially benefit human life in the near future with the 

successful development of the diagnostic device for Myasthenia Gravis. 

 

5.1 Future of Quantitative Proteomics 

Quantitative proteomics is a rapidly evolving field that can potentially transform our grasp of 

disease progress and biological systems. It can be further enhanced with development in several 

key areas. One such is advancement in mass spectrometry technology. New mass spectrometers 

are constantly being developed and instruments with better sensitivity and resolution as well as 

throughput allows for enhancement in quantification accuracy and quality. Additionally, 

quantitative proteomics data can be integrated with other omics data, such as genomics, 

metabolomics, transcriptomics to provide better view and enhance understanding of biological 

systems. Muiltiple omics data integration can provide a more detailed insights into interactions of 

various molecules in a biological system, hence providing solutions to many unanswered question 

in the field of biology and medicine, such as identification of new disease biomarkers and 

therapeutic targets. Currently, quantitative proteomics require substantial sample preparation 

before data collection and data analysis. However, advancement in this area is occurring rapidly 

and a simplified workflow for protein quantification by mass spectrometry can materialize in the 

very near future. This will enable quantitative proteomics to be readily applied in clinical research 
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as well as medical setting where development of personalized medicine will be the focus in the 

next decade. 
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