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© CHAPTER. |

S e -, 'INTRODUCTION S

‘ Betause 'of ‘-the, generallty in  their mathematical
pPhs, haVeeproven to. abeg a} useful ‘abstractlon-‘

ol

structure,

wherever’- ~ete objects rand' blnary relatlons are dealt

fﬂﬁith.- The hape':aided ana1y=1s~‘ bloloqy,, chemlstry,

[

'-”.compdting o sc1ence, electrlcal 'and c1v1l venglneerlng,'

AY

operatlons,research llnguletlcs, soc1ology and many 7more;

gIhese ' uses‘. _f »graphs' requlre'_many graph theoretlcaL

'algorlthms. Consequently, 31nce “the: early 51xt1es,f a great

fjjdeal of effort has been dlrected tc produc1ng and analy51ng

. - l . »
,graph theoret;cal algorlthms. However, the graphs resultlng ,*

Q .
_ffom ‘many real llre problemc are often so large that the‘g

e

worst case complex1ty ,analy51s '1s .extremely p9551m1st1c.

"This. necessztates 'the development of more. eff1c1ent’andgf-
. . . . . gt 3

. - .. s e Y

economloal algorlthms. . . »';{3;,a I _'ffv'tf”f""

QB tackle thl° problem,‘three approaches have‘ commonly,
been used inelthep llterature.;.The flrst tegzoléue is to
A search fcr be iér algorlthms‘ wlth respect .to‘ t‘me. Ther :
second _ is to 1mprOVe thehc1rcu1t swltchlng speeds A
technologi ally. The thlrd way is via parallel proce551ng;€;%7'
thn‘ ] :;ar; parallel computers thCh _%;:’ capable of

per forming several 1ndependent pperatlons‘ concurrently "éf
designed (_whlch tradeoff the amount- of hardware ‘for ~
‘ coﬁputation“time; o S

>



S B . . ) o : . .

fIremendous progress has been made along the flrst"tuofy'l

- v B
llnes for the past two decades. Bpt optlmal alqorlthms can’

-n";‘

be. 1mprov d no more 1n the flrst approach yet may stlll be
) 8! _

'unwleldly for large graphs. And as 1mprovements ln swltchlng

'

LA

o

*w

'demaces 'andJ mlnlaturlzatlon .rapldly reach thelr phys1cal;7w
llMltS, 1t lS ev1dent that any 51gn1flcant 1mprQVementnplnf
‘tpr009551ng ' speed ‘mustv_be, obtalneﬁ by the "concurrent,‘

lproce551ng f.va -numbep"of Operatlons. _For Ethe fthird .

approach, | 'variauS' multlpleuprocessor systems have'ybeenj‘

.pfbposed-_and“ constructed.‘hAs ‘a result fof *the - recent

A o .

o

ihardware prlces, large—scale parallel computers wlth as many

4

"*ras 21“ to 216 procecsors have become fea51ble [33 40]

X

Slnce a; parallel _algorlthm| may ﬂBe?. obtalned p,by;.
7.recognlzlng vAthe*"inherent 'parallellsm,tof:Vac seguentlal
‘algorlthm, many people thlnk that parallel computatlons';are”
‘mere extenelonsr of segueutlal computatlons. Thls\lntultlon
.:flS not always correct ' Adoptlng ianv eff1c1ent 'sequentlal

ffalgorlthm, : such depth flrst search 'on fah parallel

3 A

"ycomputer 1s"clearly rfar from ‘optimal. d’Conversely . an .

‘0 . &n

' 'closure_ by matrlx multlpllcatlon, can lead to an efflcient
mffparallel algorlthm.' Moreover, to recognlze the“'inherent

parallellsm *'Qf{ many-a sequentlal algorlthms is. not'

ol

5revolution - of mlcroprocessors _and_‘thek steadlly dropplng‘V*

P

'1neff1clent seguentlal algorlthm, such ‘as flndlng trans1t;ve'

stralghtforward{ Therefore it is a. elgnlflcant and.importaptd'

problem to de31gn' effic1ent parallel algorlthmsv‘for' the

parallel: computersrh However, 1t is only recently that‘more?'

WL
e, ‘
" pa .
. - "“'-, .
1-“‘1"‘-



e S
H r,

o -

: theoretlcal algorlthms L2 12,;]?; JQ(.19G 21, 28 37]rc,“'

“the prOce551ng power_'isg optlmally utlllzed.; Also'5newvt:

_ chapter., In Sectlon JQIL ¢he cla551f1catlon of parallellsm,

‘In thls the51s,; we ,concentrate‘:omr' study ’omﬁ graphff

e

'r"theoretical algorlthms :w1th polynOmlal complex1t1es (L e.,'e~‘

time, processor and storage complex1t1es are bounded b .ai;'l

polynomlal in the s;ze of the problem) The ba51c 1dea 1s to

1dent1fy the most 1mportant parts of aﬁ algorlthm (1.e. most

- ’tlmeh’Or processor consumlng) vand~ put most effort amto

‘

opt1m121nq,those parts. Based on thlS 1dea,»fthe£ processor{”

bounds._‘mt’most ,of the ex1stlnq parallel graph algorltth'

:parallel algorlthmc_ for_; several /”ﬁraph 'problems“ﬁ;aEE?*

ﬁormulated. |

. _ y , A Fo
attentlon has been pald to the development of\parallel graphj-‘

- (see TablefJ) are 1mproved and 1n some cases, we show that\:

1 prepare 'forfithe dlccusclonsv-;m;gtﬁe tollowlng]'__

chapters,_the background material iSf descrlbed 'im' thlSit

,th theoretlcag\ model \.off' parallel ' computatlom. sandf

s

measurements _ f parallel compleY1ty 'arei rpreseﬁted,p

Y.

, Deflnltlons, and - representatlon sOf . graphs‘ are'*given cin
‘Section ,1,2., Prev1ous results are ‘briefly summarized. in
T g _ L e e

Section 1.3: “x;'";“e : S e



T e | . e '
SR _‘fv3e‘ ' "I o 3‘"‘,';;ﬁ’9' A:'IV‘Aﬁ. oy S
f""';{fl Mo&el and- Measurements Of. Parallel Computatlon _;'e'1 

Exlstlng pdkal&el comput:;s, such askamatrlxt compurer
- .ﬂILLIAC V}: prpellne computer CDC STAR tDO, assoc1atlve¥ -
.‘computer Goodyear STARAN, and‘fmuitlple processor‘ system!q ':g
© ! NIVAC IIIO are wldely dlfferent 1n thelr archltectures andﬁ.-
! ';h racterlstlcs._ m:us c1al» 1ssue of ACM Computlng Surveys 5
i’o'-;fEJSJ prov1ded ;;55 e cellent.==urvey -of-f these i parallel
‘ | | co puters*> Parallel computers have reen caregorlzed ‘in many ;f
? .*f”pproaches LS 16 42i( Broadly, they can be leSsafled by the {
) follow1nglcr1ter1a-f o -’».,._f.;~,, .v':‘;'hr':_“' --ff ;f ,viiT
o S S e T e e
. 'T,nuenerdl or spec1al purpose system.fux;?g "’f‘v - L o :
3; ’ ‘"Synchronous or asynchronous executlons of rhq operatlons.z,,‘
: S v‘
| ;_Bounded or unpounded parallellsmi Ihe former, also called o
. ” —paralleirsm or K-computatlon,‘refers to hav1ng a 3f1xed;1f” |
. Ag.j;_ mu ber of K proce5sers avallable whlle‘the Latter has an?'
"_;{“.t?' * :1nfl 1te number of processors‘avallable.r S >;v~-
. u, Singl .or. multlple rmstructlon streams.;“imU ih 'ffirsiufjf
‘caSe;f jl prcce Qors elther execute or. rgnore:the currept.f L.mf
‘Qk3j3 ; - .1nstruct'on broadcasted‘by the control unit, thouqh u51ng’ |
Sl : : ¢ ;
* 'drfferen data and dependlng on a. local on/off swltch ﬂi ff-ﬂ
Q‘ This-ls‘cf’led Slngle Instructlon' Stféam~nultlple‘ Data o
,ffai}f.> Sfream (SIMD) Im\the second case, processors may per}orm'é ‘(

o Y

21

dlfﬁerent nCtructlons yElelng the Multlple Instructlon:u'

3

‘1Stream Multlple Data Stream (HIMD) TheJ_terms» SIMD ‘and .’

- MIND are due, to Flynn [16] Y ~*y"; e
) From the 'class1f1cat10n, one cah easily observe that .
L : . ‘2, . . ; . . P N a
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parallellsm has been deflned on varlous levels ranqlng from
the Lit to the system level At a lower level, it may reter
to- arltbmetlc operatlons on the whole word ‘rather than on
one bit ‘at a»tlme. At a. higher level, cdlled the alqorlthm
%leyel lt may refer to parallel executlons of lndependent
statemente comp051nq _ the program. Flnally, at the hlghest

level 1t may refer to concurrent processes of two or more

conceptually dlStlnCt and . independent programs In’wbat

Follows, our attentlon is llmlted to algorlthm“ evel. ‘
Moreover, the structure and performance Qf an algorlthm
‘lell not solely depend on the problem atr hand but also
depend cn the advantages and llmltatlons of the computer. In
order to remove these restrlctlons and exp101x the inherent
; parallellsm, a morejflexible:and more pouerful_ theoretical
" model. is essential Awhichidis discussed in the following

Section.. L e . B

be 1.1 Model of Parallel Computation

‘A -number of models of parallel- computation .have been

-

proposed ‘by‘ varlcus authors [2, 11, 13, 19; 20, 27]. The

1deallzed model used in thlS the51s gs slmllar to Csanky's

model [13], whlch Ras been uldely used and which satisfies

the folloylng,atsumptlon5°

(1)2 An arbltrary number (generally bounded by a polynomlal

in the size of the .problem) of identical prOcessors and



'a sufficiently. large _vmemory accessible Ly each
processor are avairable. |

'12) ‘Instructions are alvays availableH for executlon as
required and. are neVer held up by the central control.
S%it. Processors are synchronized and all instructions
executed in rarallel are ident}cal (SIMD).

(3) Initially, tre input data is stored in the memory. At
ranf time, two prbcessors may. read 'from but nust not
write into the same memory locatlon slmultaneously.

(h) Each processor is capable of performiné any one of the’
aarithmetic, Eooleaq,and comparisog'operationsj At _any
tire,~ each Frocessor may fetch its Cperands from the
memory, perform an operation and store ‘the result,’in
the memory in one step called a tlme unlt.

(<) No ~memory .or data 'allgnment time penalties are .

incurred.

"In reality, all parallel_algorithms‘ﬁust deal with the
complex problems of data‘ﬁaripulatioh, storaqe;allocation,
memory interference and iaterprocessor communlcatlon. An
1deal lnterconDCctlon network fer- communlcatlons among the n‘
procecsors and memory should dlrectly link each processor to
every other Frocessor and memory, but this is far too costly,
for large n. To remedy this problenm, memory is partitioned
,1nto unlts and different res;ricted networks have been

proposed [38] whlch cause possibly 51qn1flcant communication

delays. For 1nctance, Gentleman [I8] pornted out ttat 1n the



two-dimensional ~rectaﬂgular vgrid netﬁork,' commhpication
.delay is the lirmiting factor for matrix manipulations.

| Neverrheless, in.some problems: these delays lcén be
-minimiZed Rby careful redistribation of data and re1ndex1hg
proeessors, withouat 51gn1f1eantly aﬁfKﬁtlng the ccmputatlon
time [1, 6, 25, 417.

The unhounded pEEallel algorithmslgpre§ehred"in rhe:
:forlouihg chapters can be transformed to ,proddce £hé “time
bounde - on 1the corresponding bounded. parallel algorithms.
This isvdemohstrared through an_exémﬁle*rin Section 3.1.3,
“which is to find the connected componentsjof ar undirected
grapﬁ, where both kounded and unbbﬁnded complexities . are
givehrf; Furrhermore, ir is::qﬁite easy 'tQ'_eitende‘the
algorithms preseeted here tohMIMD s&stems'and fhe preceSSOr 
 reqnirement may conseﬁuently'be reduced. 7Thus, weizeel that
algorithms‘developed under such an idealized model will be
;nfluegtiaiafrn creeting‘algerithms,for realizable paréllel\

computers.

l. 1.2 gggéuremenre_of Parallel Complexity j e
N :

The parallel time complexity of the computation is the

leasf namber -of tine unifs necessary to prddﬁce the result
rather than the total number of operatlons performed by all:.
processors,‘ Therefore the prOeessor regulrement is regqarded
as an importart rarameter. It is of 'cons1derable» practical

L4

interest to evaluate the effeCtivehess of parallelism. In
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order to neasure ‘the performance -of a ‘paraliél'falgorithm;‘

the size of the probleﬁ-(egg.} the~h0mbef‘of:nodes andjédges
of the gféph) has_ﬁeeh chgésﬁ,as_a parameter to de;efmine
the time, prdcesscr.dnd storage reguirements.\ |

| - Let T(2) be thé.nuﬁber of time units réquifed‘ bx ‘a

parallel algoriihm ‘using P 2 | processors. The §gg§ggg of

the P-processors computatdion over the corresponding’

uniprocessor computation is defiped as S(P) = T(1)yT(P) 2 |,

ahd the efficiency which-indicates t@e utilizatidn of the
processihg power' is defined as E(Hf = S(P)/P =< 1.

.. Our fifst okjective is the ,consfrutfion 'ofv,éfficient'
parallél graph ‘algorithms ideally:exhibiting linear (iu;Py.
‘speedup. This situatidﬁ is ';ealized‘ onli' ghén ‘éli‘ P
proqéssors are 'loadédA in each time-uhits..ﬁbieVer, linear
Speeduﬁ ‘is ‘seldom achiev;ble. In _pfactice, _the ’"fastﬂ
épeedup is S{(pP) = d(?/log Pj, which is écceptabie althouqgh
. less fﬁan lipear. For thoée ,e;isting parallel_'aigorithmsﬁ
.with nonlinear gpeedup;' our secdnd objective and the main
achievement of‘~this thesis . is 'the.-m;nimizé£ion° of the
piocesscf regﬁirement without incréasan the time complexity

by more than a ccnstant factor.

4

~
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An undlrected: grggh. G = (v, E) con51sts of a- flnlte,

‘

enon—empty set V of n elements called nodes and a set 'E of m

;uhordered'ﬁairs'of nodes called edges (v, w). (Vl El) 1s."

o -

‘a §gbgragh of & if:fVllg V and EI C E. a alrected graph
='(vv,'i) is deflned similarlyqa except that _edges areﬂ‘
‘orderedi'ba;rs of nodes; v is called the tail and w the‘hggd

s e

. of the edge (v,w). If (v;w) € E, nodes v and w are ggjggent

" and  edge (v,w) is 1nc1dent ‘On nodes v and w; whereas if
: PO : R Co B .

o

C(v,v). € E', v is.said to. be: adjacent to"u: vhile w is
adjaCent from; V, and‘ the dlrected edge (v W) is 1nc1dent

from v and to w. The adjacencx matrix of a- graph is 'ah- nxn

matrix,h:of‘D'S‘and l's, where the (1 ])—th element, A(l,]),
' ist 1 1f and only if thére:is an edge from node i to node ok
Thef‘ ght matrix of a melghted graph 1s'4ahu nxn matrix W
euCh«that W(i,3) = w(l j) if there is an edoe‘from node i to-
rode Je amdvﬁ(i,j) = c otherwlse, uhere w({i,j) is the welght
of edge fronm hode i to node 7, ‘and ¢ 1sgu ually 0 or oo whlchh

depends on the lnterpretatlon of the weight and. the problem

to be solved. The trans1t1ve closure an of : nxno adjacency :

matrlx A 1s deflned as A+A2+...‘and the reflex1ve traneltlve4

3

. R,
‘closure of A 1s defined as I+A" where 1 1s the 1dent1t1’

;

matrcix, i.e., I(i,i)'= |  and 1(1,]) = 0 for ib¢.j’}and

A2n  edge is called a, se;f-l oop 1f it begins and ‘ends. at

7~the same node. Two edges are said tc be pargllgl if they

-
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" Talso 'have the hsamev pair of 'end 'nodes (1n the case of'n

Y

‘dlrected graph, 1f they have the same dlrectlon). A g aph is

e

simple if 1t has ne1ther self loops nor parallel edges. Here_fu

{and hereafter,,the graphs under con51derat106: are 'Smele, .

handf the nodes in an 'n—node_»graphrare.labegded,wlthzthe
flntegers'. through n, 1'ea, ='{|,2,.;.,n} S vl
' } . . RO

cInca graph, a path of ‘lengt h n-l Hlth end901nts v and w”

??lS a seguenCe of nodes v.s (l),y(2),...,}4ﬂ{k=~w snch -that
ki P 2 . . » .
A h is 51mp_e if-

(y(l—l) y(l)) alS an edge for' I < i <vn.

(l),y(2),...,y(n) are distinbt nodes. A cycle 1s a i!mple‘

e

ipath ﬁrom v to v contalnlnq at least two . edges for dlrectgd

»graph and three edges for undlrected qraph._ A graph uhlch”d:-

)

contalns no cycle is called ac y llC. B

jG, is | connected 1f for every palr of dlStlnCt nodes

T V.w E WV, there 1s a path from v-to W (1.e., w is, sald to"hbe

!

feachakble from v) and from L] to Ve A connected component of

' éﬁls a nax1mal connected subgraph of G, 1. e., it 1is not» a

-

“subkgraph of any other connected subgraph of G.° D is. strong_yu

Zgonne ted Af every two nodes are mutually reachable' it is

/

reachable from the other and it is weakly connected if'

every’ two nodes are 301ned hy a path in which the dlrectlon

-of each edge 1s 1gnored. A stronqu connected componemt of D

“is a maxlmal'strongly -connected--suhgraph; ‘a unllatera111

ik

connected Scomponent ~a. ‘maximal unilaterally connected

subgraph and a,ueakly ’connected -component' is a maximal

~weakly connected subgraph. lhus, D is strangly, unilaterally
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or weakly Lconnected'fif ]and"‘only _ifkilt has exactly one

\

‘ _corresponding connected component.*D is’dlsconnected 1f >it

-

'1s/not even weakly connected.

}An undlrected acyyﬁlc graph is "C lled a forest.vA,f

-_connected forest is oalled a tree whach has a dlstlngnlshed

K

'node, Acalled ea wroot such that every node in the tree 1s

reacbable from the root~ A termlnallX (or 1nm§1ally) rooted

tggeh.is _ connected dlrected acycllc qrapm such tnat the

root has no, leav1ng (or enterlng) edges and other nodes have'

o

. exactly one leav1ng (or enterlng) edge. A p nnlng tLee of Gf;.

is an undlrected tree that,connects all nodes cin V;'fIn a

”vforest, ifv there is" a .path . from vV to w, then-vfis ~an

v'eff1C1e“CY of 'a " graph- algorlthm, ‘depends won»théAPEOPErvqk'

Syt

.ancestor of W and w,is a deSCendant of -v. Furthermore, if

(v w) € E? "then~v iS‘Called antlmnedlate ancestor of W and

“

W.ils an lmmedlate descendant of Ve

Throughout thlS the51s, unless spec1f1ed otherwlse, X

‘denotes the Smallest 1nteger 2 X (celllng), Lxd denotes the’

greatest 1ntegerfs X»'(flOO')' |V( denotes the cardlnallty

(or s1ze) of any set v and log n denotes rlog2n1.~

¥v

l{z,Q'Bepresentation of Graphs - o - T

Ir ‘a computer, the -graph ‘must be represented -in . a.

dlscrete ‘iaY- A Vaflety of. data 'itructures have';beenf -

[y
Mo

developed for th1c ulth respect to ,conventlonal QSeéuénfialf:«* S

“

A A SR g e

b’y P

eiectlon’?f tﬁe represehtatlon of the graph. ‘Amongiall "t he
é . - - ’ .

computers. The . convenlence of 1mplementatlon, as»uell asy the ..




knonn detad seructures 'ford‘rebcesentiﬁg,a graph G = (V,E) ; i
nhe:e‘vlvf'= nf'gha |E4r- n,»_ene 'fadjacéncy ;Hnanrin.;jis
.-pérticnlanlj(\\appropr;ate' cto.ybeiiadopted*_fo:i_unbounded
parallel computatlcn. This icvmafnlY’because'of ite, natuealil

stEUcture ‘uhlch prov1des a larqe amount of parallellsm in

e

matrlx manlpulatlons and hence the fundamental operatlons on o

sets can be done eff1c1ently by 51mply taklnq advantage» of
: ) > :
_the vmatr;; indices. For example, INSEBT edge, DELEiE edge,‘

UPDATE, UNION, FIND and NUMBER can be done in one tlme unlt

’while NINIMUN (flndlng.the mlnlmumﬂelemeut of‘the ;set)~ can

. [
Ie

"~ be done in O(log n) tlme' unxis whlch ‘is 1ndeed optlmal

.Moreover, lnltlallzatlon and rear n ion of an. adjacency

matrlx' requlrev O(J),Eand‘O(log n) tlme units respectlvely.m

~mFurtne§nore, the adjacency mafrix' is relatlvely easy to

v

o

;implementd and c¢an be converted to cther representatlons of

L\JJ

‘the-gtaph, SUCn astadjacency~llsts; or trees,biln 0(log n)@
Eine»”nnits;' In. contrast, convertrng adjacency llsts to an

adjacenc& mairix takesnlinear time. 4 N
The only weakness;-.of the' : adﬁaCencyv ,matrix

representation ‘lS its storaqe requlrements which are always

proportional to the square of the number of nodes lD) the

. graphvregardless'the numkter of edges in the graph{ For dense
'graphs,- {El = O(nZ),v the difference of storége'reQUinement

between_adjacency matrix and;other graph representations_ is
insignificant. For sparse graphs, |E| = 0 (n), ;he,diffe
L2 » R 5 Pe _ g e whe ELeTe

increases to 0(n). . .
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1.3 Previous Results
'Nith the- advent o‘ parallel computers most researcbes

for developlng and analy31q9 parallel algorlthms have ' been

-
fal

concentrated on numerlcal .appllcatlons. Hence, several

excellent surveys of numerical parallel algbrlthms have also'

,“4 -

‘“appeared._mlranker {29) summarized. thé  early work. in, the

o

late sixties, recently- Heller 207 'has'preSented'a more

“complete and up- to date collectlon of parallel algorlthms in

-
..

numerical llnear algebra, 'Ortega and Voigt ([32] gave a

bdetailed account ofipalgorithms. for solving differentlal

. } ¢
eqdationsLon vector computers, and Sameh' .and Kuck 136]

described dlrect ﬁarallel algorlthms for solv1ng systems of
llnear equatlons to a greater depth. >
- %

Alcng the growth of development of parallel algorlthms,

-nevertheless, graph problems have received little attentlon.

'The best known upper' tlme "and. processor\ bounds of the

3

'eX1st1ng parallel i.iph algorlthm Wthh are™ bounded'bj a
polynomiad, are displayed in’ATahle . l('?,Since matrix
multiplication  and sortingv} are the wuseful ‘tOOlS'.iD'

formulating parallel graph algorithms, .their . current best

upper tire and processor bounds are also included in Table

s

A

o
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Prohiem ,; T#me‘v;. Processor lPeET}t'

‘ - 1 . .
Sort n ElementC“ ‘70(109 n);nlog nu“; : 1[3“]1
'1F1nd the !1n1mum Element of ’O(log r):rn/log Liq ff:[37]:

.

|
la Set cf n E lements : AR I _ ! SRR A |
{ ' N Y | | “
lMulfiply 2.nxn‘Matrices_ - lO(loq n)lnzaal/loq n ILIOJI
o4 I I
lFlnd the Irancltlve Closure lO(loan)lnrh/log n1' |[37]r
Jof an Undirected oraph G. i , i _ | .
| [ | - o
|F1nd the Trancltlve Closure *‘lO(loan)an-ar/log n {10734
|of a Dlrected Grath D . R I . | ' |
| o o IR
jFind All-Pai:s Shortest pAtp |O(1og2n)|n2rn/log Dy 1[37]|
Lo S | [ LT
|Find an Absolute Sink |O(log n) | n2 'j{l9]{
b e o -
leerify Bipartite»Graph fO(logzn)l " n3 |{19Jj
B L B o
{Find a ‘Spanning Iree of G- |
l |
JFlnd the Mlnlmum Spannlng o
ITrees of G - |
I
A

{ ,
O(log2n)lnrn/log o "[37][
y . .

0(1092n) | nrr/log n o I[379]
| i | |

R

|Components of D

I N e | R SR )
IFind the Connected Components . O(logEn)l rn/log n1 (£ 377
et 6 S| . ,l;_ - SR
[Find the Blconnected . _"lO(ldﬁzn)lnzrn/log na |3 71
{Compcnents of : ' . | L
| : '1 o t N w»l
IFind the Brldge Connectegd ' lO(logan)l n2rlog o, ({377
IComnronents of g . B | [ A '
l | : I
- {Pind the Hedkly Ccnnected , {0 (log2n) | n3 i£2]
~]Components of D , | i I
s | : |
IFind the Strongly C@nnected | n3 {2 ]
1 |

R

|

.
| . l '
1F1nd-the Domlnators of p |O(log n)llog n(n3- 81)‘[37]
| : i A
kFind a Cycle of g v ‘ IO(logzn)ll_ n2 ' 'l{37]|
f . . ' , r [ o I
IFind a Cycle Basis of G lO(logzn)l - n3 ' |[37]l
[ - [

[

__l

. _ |
IFind the Shortest Cycle of p O(loqzn)lnzrn/log n1 [[37]]

~Table l: Summary of prev1ou$ Lesults on graph problenms
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CHAPTER 2 . .

. °
v,
.

LCWEE BOUNDS ANE BASIC ALGORITHMS.

A.. =

_As an 1mmedlate consequence of our moael of - unboundedj
parallel computatlon, the max1mum parallellsm 1= achlevable;

when the steps of a computatlon are completely 1ndependent

‘ 1.e.,. all' operands' aref avallable at. the same tlme. Since -

v .

each processor uses only 'unary“or blnary operatlons,_,a

~.

.s;mple lower bound on the ccmputatlon time can be concluded

4

a
v

below.

L__gg 2 omputlng a functlon 1n ‘n steps on a.‘sinq1e

A
processor can be accompllshed in one step on n processors if

and only 1f the operands of each step are 1ndependent.- \

Proof : The;pr00f is trlv;al,_ A,' o , a0

o N . . . : vie
- : '

+The ’independencY‘ of operands, however, may'mot,alwaYSp

'exist One example»is to compute A(n) = a(l)@ai2)a...@a(m);

"

"where ® is any acsocxatlve ‘binary operatlon.”Thls problem 1s'

]

the 51mplest lnstance of comhlnlnq n 1nputs 1nto “one output..*

A(n) can’ be' computed in 109.3[ t;me,gunlts 7w1th Ln/2J

processors by using - ‘recursiVe doubllng,pdi.er, repeatedly’

separbte $each' computatlon _lnto “two lndependent parts ofﬂ

equal ‘siz€ which are ‘then computed in parallel ThlS method'

R

"is acbually a parallel Verslon of lelde—and-conquer whlch



 can  be fe?fésenf?d"Bi*"f‘ blnary ‘tree, called blnafl
computattion . tféé'y ih' thchk the rbot Corresponds i the

.']:esul‘t,' .t"he termi'n"al‘icaes correspond to the 1nput operands,

vfthe 1nternal nqdes c

helght (depth)' bﬁ_ thé"tree;'COr;esponds fo'ﬁheinhmberfoﬁ?'”f

'parallel operatlonc performed,

The foLlowlng facts are 1mmed1ate trom a- blrary tree.

e
v

Ldmpma_2.2: AAbinéry_ﬁree'uith‘depth i - 1 has at most"

4

. ’
v e ' L ' -
oo " Lemma_.2.3: - A binary tree Witk .ln, nodes has depth at
cleast 1og Wy - e, \\\\\\

2

fihesé"factS"lead to_ﬁthc' foilowing well known slower

bound Afo:} co&putlng ‘A (n) Hlth unbounded parallellsm whlch

.

has 'been'_referred 7to 'as ‘the - fan-ln argument. TIt was _”7'

“generallzed to the case with-K- processors avallable by‘Munro

Vgand Paterson [30] “>-._- ‘;J""-

i,

Le ggg 2{4 (fan-in argument): At least flog nq parailég

operations are required to ccmpute ‘a result which depends on
' “ g .; v . . . . . :

n arguments.,

| Ve i
C' RS : B ‘i

Theorem 2.5 : Suppose the computation of d . single.

. element Q Trequires g.2 1 binary arithmetic operations. .Then

- . . o - . . .

the shortest comfputation of Q with K processors is at least

spond to the‘ 0perat;ons‘ aqd the»

S



d‘r(g+1}2i))Kafi tlme unlts 1f q 21 and lOé(Qfl):btheryiSe,
. where i = 1og K."-' u;' .

A

A e
I

17

R
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Desplte its s1mp11C1ty,'Theorem 2:5 is " very impertant

o

“because ,it' allowc»hthe translatlon of complexity“theOrems* -

NS

'_from sequentlal ccmputatlons toj?arallel computations. Based

> o

on the fan -in argument, Arjomandl [2] showed”that'the‘ lower‘

;tlme bound on - verlfylng connect1v1ty in an n- node undlrectedo

'graph G 715 log(n—q)—l waile th ',lower tlne bounds on

1
w.verlfylng“sﬁrong, unllateral and weak conn%ctlvity 'lnﬁ’an.
B Lo W FE

.n- noﬂe, dlrected graghe D aree 1og(n 3)—';" log(n 5)-1 and”

flog(n 4)-1 respeotlvely; Also, Savage {?7 p.115-120] provedfilo'

. that 'the lower tlme bounds on determlnlng bloonnect1v1ty,j

7nr1dge oonnectlv1ty, mlnlmum spannlng trees and a cycle in

T

..u,;[and' a domlnator and a cycle in D are all 2log n ulth at

7most a constant dlfference.“

o Intu1t1vely,. ip order 'to determlne varicus' .graph

hproperties, in the worst' case, all entrles in .the,;f**

o

v*correspondlng ad acency matrlx of the graph (1 e..all edges

',_1n the graph) have to ‘be examlned. For~ many classes of graph”ﬁ“’“””

: propertles, varlous researchers, namely Best et al. L8],
: |

:Holt and Relngold {22], Klrkpatrlck [2&], and Rlvest and

ZVulllemln [35] have shown seguentlal lower time bounds of at‘,

R . 4

“least 0(n2) Henoe,' the ’ parallel lower tlme bound iof_

A

log n? 5_2109 n follows 1mmed1ate1y from the fan—in‘argument

:'whlch glves a good estlmate.»
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f2 2 Basxc Alqorlthms,“i o :' : D 3hf%_

:M;multlpllcatlou algorlthm.

. : _. ' ‘ i " . o
2.2 Comgutation of,Ajn)

&

£

7 . . bS] v

Computatlon of 'A(n)“= a(l)@a(2)o...0a?n) vandv‘matrix.gu-7

£l

7,mult1pllcat10n_ haye been the bottlenecks 1n solv1pg most of

P -

‘the graph problems, where fehcisj any . aSSOC1at1ve blnary_

LN

requ1rementc on these two bottléneckS¢'will subctantlally#"“

reducer the overall ‘time ° and proce§59r frequlrements. In
B . ’ . . . R ‘. ".‘(" . . . ’

. - : Lo v
P . .

computlng A(n).. In Sectlon 2 2 2 previouc results on matrlx'

hmultlpllcatlon and. its appllcatlons are dlscussed Moreover,

(Y

‘we w111 pOlnt out that the processor nound of many ex1st1ng

e

”vgraph algorlthms, whlch are based on matrlx multlpllcatlon,

cad. pé reduced 51mply by \using the current best matrlx

-

¥

K

: In the precedlnq sectlon, ve have shown that A(n) 'ish

4

cx

_number-“of‘oprocessors worklng at any level are 1dle at the

-

7iSectlon. 2. 2.| we fpresént two, optimal algorithms  for
. o - op

uslng recur51vc doubllng. By 1nspectlon, the ‘maximum'’ number

computation tree. in: the 'subseguent levels, half ‘of thef

next level. As a’ result “at the ‘last level-- only aonec

pProcessor . is -uorkingu' Clearly; if '"tn/ys procescors.are

@

time unit ’ (i.e e. flrst level takes 2 time units instead of

' -_’v ) A\ 5

'available, the computatlon t1me of A(n) only 1ncreases 'one.:

o
]

_operatlon.; Iherefore reductions.‘ofv‘time and. processor» B

icomputable 1n log n’ tlme unlts with- ‘at .most Ln/2J processors,-

of prOcessors merely occurs at the flrst level of the Llnary','

s

-



one time unit). . This 'indicates that it 1is not -always:

deSirable\ to reduce the ‘computation time to an absolute

minimum. Having' in mind our second objective, . namely
processor optimization; it is natural to -ask:
(A)  vwhether viser atilization of processors can’ te

»

crganized so that %he. procesbot requirement can . be

minimized without affecting the 0 (log n) tinme bound

.significantly?

In . practice, a related "question, which. has received

nuch attéhtion, is addressed as follows:

(B) Given P ‘processors, at most howzmany time urnits are

neéaed to compute A (n)?

AL answer to (A) can be oktained }ty interpolating
different P into (B). Thus, we concentrate our &dttention on

. s Q
tackling (B). : :

‘For a problem of size n, suppose there exists an
algorithm using t time units, P processors and q operations.

In "order. to transform the existing algorithm into one that

requires a smaller number of K processors, two principles,

B3

namely algorithm decomposition and ELfoblem decomposition due

bl <>

to Hyafil and Kung [23], are introduced. 1The didea‘of*

’

algorithm decomposition is td decompose each step i of the

éxisting algorithm into rq(i)/Kq substeps so that each of

_them can be done in one time unit with K processors, where

uq(i) i§'the.numberlpf,ope;apidns in step i. Hence, the total

Eo

o

'timé‘IUiSquuhded,és foli§Q; [§j:;' T e e L

¥ e

| , : ' . 19



t ’ 2 ‘
2 rq (1) /K4 < t+ (g-t) /K where

HoIv ek
f
i¥e

g (1)
i=1

The 1idea of Froblem decomposition is to partition the

-

problem into suktproklems so that each of them cah be ‘solved -

by the .existing a;gorithm'ﬁith~K procésSors;fBased.on this

'

\//’“’fdea, Savage {37 p.17] develcped an algorithm for finding

the nminimum of n elements in less than 2foq n time with

rh/1log ng proceésors, which is, ‘in fact, the Ltest answer to

(A) .

e

" To answer (BE),, we construct two different algorithms

below which basically Simulate the'hinary? computation tree

-

based on the above stated principles. The first, named

. Algorithm A(m) 1, incorporates‘algotithm decomposition with a

circular Jueue which is used to store the pterands. It+<is a .

variant of Hellgr‘s associative fan-in ' algorithm {20].

* Assume that input‘bbéranGS'are stored in a circular gqueue of

size n and K prccessors are available.

4
Algorithm ‘A(n) | T

" ~

while- more- than cne .operand in the circular queue do

e B s e on e g o e e > e e e
! - -

Fetch two opérands from the -dircular ~queue “to' each

prdé%ésdr and £fill uap as many pfo¢eséofS‘as-ééséibié,~f

execute the specified ® operation, -and then - store the

results to the end of. the circular queue.

Under the * assumption of cur model of parallel

M.chomputatiqn,.step 2_c§n be.done in one time unit. The total -

§



[y

5 - »

21

tlme requlrement T for computlng A(n) is equal to the number

of i

rec;uc
reduc
can
final
If K

If K

-

PR

’Tz

equiv

glve

|
g

i= 1lo

ﬂW

teratlons of step 2. At each iteration,'K operands a
ed. After to/K4 - | iterat&ons, Ktn/K+ - K operaods a
€d and only Iy ; n + K - Kln/KJ' operands remain wﬁi
be done .in another log(n + r) time units to produoe't
result. Thus, )
< tns24, T = tngKs - 1 + 1og(K+n—KLn/K{)
2 ln/2J( \T =‘loq n
in order to show these .time <bounds are inde
aleot to the lcwer time bounds shown in Theorem 2.5,
the follow1ng lemna. ‘
;gggg+21§;.11,= T2 for all_n*ﬁ%ere
r(n-Zf)/K1 + 1 %3; ' S & h;f‘2v2i
loq.n - ' . ?1; . ophervise
ln/}{ - 1.+ log(K+rj _‘ff'fj' o iflih)ij.ewk
T S
g K and 0 < r =,n-ktn/KJ*¥iK{f"h ’ | e e
Egggiﬁ-sinoe 28> g 3 2?/2' ST
n-|o<;%ie '
 ’2K:> - > ;:;NNN:Z‘MTM%;;Mih/zJ'

re
re
ch

he

ed

we

Therefore there are only three ma jor cases to con51der based

on th

Case

Case

E=D

e range dlfferences.
1z n-1 < 2% apd tny2i S K. o o

. ,.,:_L'_ SR mmogee AT oA T ERmas e oo ’ I i T - ’iﬁ. - v-\. ‘:, .~-
I1 = T2 P,log‘nu;w LT L : o : : .

2: ‘—1,>-2i-and tn/24 <K

2x21 > 2K 2 2wmp24 2 21



s

. lCasez.2br B/K'# t

==>" i+]1 = log K + 1 = loq n and K 2 n-21 >
~ - : - '

Hemce ' T1 = ((n-2i)/Ky + i = | + logn - I

log n

T= T2

Cdse 3: n-1 2 21, wns24 > K and 0 < r =’h-K1h/KJ'<‘K"

" There are. two D1nor cases té conéider based on whether K is .
power of 2. Two~suhcasés arisé vheﬁ'éonsidefing Qhether n is’
a2 multiple of K. |
Case 3.1: K = 21

Case 3.la: n/K = t = integer

¢
==>  (n/Kq = n/Kd = t and £ = 0
Hence T1 .= r (D-K) /K4 +'i'=_t - 1+ i o
.and T2 = }p/KJA- I+ log(K) = t - | + i .
" Case 3.fbf‘h/Ké¥ £.1  a" . S . - e
==> ks b l,anﬁ X >,r >0 .
~=c;\ . cg(K+r)(—>l'+ log K i.l + i

'H€ﬂcéf JTI = r(n K)/K1< ,5' rn/K1ﬁ- +'+»f7fftn/KJ‘+ i

’ahd"‘ﬂ&TZf%;tp/KJ'— l + log(K+r) oK 4+ 4
A

'7,,.

S cage 3,27 20 > K> u/z o> 2ioki 2i/2 <K

CéSé_B;Qa:"n/K' t

U ==> /Ky = /Kb = toand = 0

~

Hence  Ti.= r(n-2i)/K, + i

F(=K) /Ka + ((K=20)/Ke + i = ¢ = 14 i

and | T2 =.tngKd.- Lo+ log(K) =t - | + i
- BBt L0g(K) =t - 0 i

- - e - R

==> rn/K1 = (n-0)/K + 1 = Ltn/K4 + 1 and K >r > 0

Since  2x2% > ZK'> K+r  ==> i+l > log (K+r)



if - Ker > 2i

==> fk+r 21 < K and log(K+r) = i+l

| T2 = tn/K4 -1 + ]_.og (K+r) = Ln/K_)_ + i
if "K¢r <21 . . B : o '

==> 2i-g-r < K and log(K+r) =

f

"
d L}
N
=
(S
I

+
.

ghen Tl = (n-K-= r)/K1'+ r(K+r-2i)/K1‘+ i
T2 = Lln/K4 - ) + loq(K+r) = Lpn/K4 - 1 + 1
' .8 . : ' ' i ‘
Having shown Tl = T2 .in all cases, the proof is completed.

O

Heﬁcé, iﬁ.bothlcases,»the e;act:minlmgm nhmber of timev
‘ﬁnifs' arer achieved and‘lthus ﬁhe time béunds bé Algorithm'
Akn)l apevtight. o LT .8 |
The éecord named Algorlthm . 4(n) 2, is a generallzed
ver51on of Savage's partltlon method for flndlng the pinimum

of n elements [37 E. 17 ].

Alg_rltbm Aiélg

le if K 2 tn/24 then use recursive doubling to compute A(n).
_2. Partition the. proktlem, A{n),' into K subproblens,

'S(l),S(Z),...,S(K), of tn/K4 operands each and

N

-0 <r = n—Ktn/KJ4 £ K operands remain. For Jexample,
L] ' .

S([)-=_a(l)@a(Z)e...Oa{ln/KJ). Assign one processor to

o

T_each S(i) and then combute all S (i) in parallel
3. Use recursive doubllng tc compute A(n) wlth all S(l) and

the‘r remaining operands as input.



If K 2 Ln/2{,:elearly step 1 can be done 1n log n 'time ,

ot e

units * by using recur51Je doubllng w;th'eot* most_«Ln/Q{E;;Qy:
processots.'If K S‘»ln/2J and 0 <r <'Ki.1n step 2, each . of
the K “ppocessors Compote S(1) ,seguentlally in ‘ét mbst:&f

tn/K4~1 time units, whereas step 3 tan be done in log(R+r)

time dnits with at most K-1.2 (K+r)/2 processors by u51ng S

Lecursive doubling.vHence the 'total time requ1rement is
. _ ’ 3 A .
tn/KJ4-1+1og (K+r). In;wbotthcases, the same time bounds as
Algorithp A(n) ! are achieved. Thus we have establisked . the

following theorem.

Theoren 2.1: Given K processors; Alqorlthm A(n)l or
A{n)2 computes A(n) in l-1)/E(J"—_l/+ log(K+r) ,tlme “units _if

tn/24 > K and log n  time units Vif'”Lﬁszfs'x,{twhe:e%,iui

r = n - Ktn/K4. Moreover, the time hodnds in both cases. .are’

'Eyv substitutinggh='}n/log'n{ and @ :»Min.iato’Theorem‘
2.7, " v obtain _T(P) = Qlog‘n - loglog n - 1 with
S(2) = (n-1)/(2log n*loqlog n-1)  and. F(P) e.d(l), which is
basically Savage!'s ‘esult. ‘By. intefpola£ingb different' K's
'ihto- fheorem 2,7, one can easily verlfy that K-—-ro/logfnw

is minimal subject to the.sonstzalnt of O(log n) tlme unltsou_

Al B
~ e A . srerzy o o

Therefore 1t is the best ansuer to (A) Also, thlS resultewwwumffif

7cau ~be dlrectly applred to reduce the proeessor regulrement

e of uoldschlager' Algotlthm for flndlng the;gabspigtehjg;pgv ﬁf{”'” ot




(i,e.;}{hode"has‘ih4de§fée n'?”l*ahdjodt?degree~0) 19] fram .
d.hz“to?ﬁ}nyidg“n; .Hlth the; same time (1 e., S
R RN
"ﬂ':-"' S : A i
| 2_.'2.'2.,‘M'atr'i-;c"“f‘lfmlti‘plic‘a’”tio.nt T
R Multlplylng 2 ,pra matrlces in our model of unbounded _

' ‘parallel eomputatlon by the "h;gh schoolﬂ-method uhch can.f’ff;f;“f

;fﬁiﬂ.redarded sl computlng i vector infer, PrOdUCtS dpes

’b

parallel takes O(log n) tlme unlts wlth  §3 processors :dfi_

s1multaneouC- read is allowed. Comblnlng Algorlthm A(n)l orv@,-“
A(n)2 w1th the hlgh SthOl method - the" processor bound‘vcan ' -

'bel lowered_ to nzrn/log n1Q Csanky [|3] developed the flrst7¢'

parallel version of - Strassen's."matrlx multlpllcatlon
'laloorifhm [39] Wthh runs .in- O(log n) tine units with n2-s81

processors. Recently, a morel general. parallel version of

Straésen‘s algorlthm, whlch runs 1n O(n2 81/P) time unlts

- w1th P < n2 Bl/lcg n processors, S(P) = P” and E(P) = O(IJ,
has "been constructed by Chandra [Id] A practical‘advantaqe
of Chandra s algorlthm is free of memory confllct. | \
| Furman {17] and Munro {31] 1ndependently obserfed that
the transitive closuse. pfv_an nxn Boolean matrlx A can be
f - accompllshed by matrlx ‘ .
:VM"kﬁb"and» Qéﬁéorresﬁohdlngly.
an Ofnzhé;;;sequentlal algorlthh whlch eSSentlally regu;resuéfééﬁ;ﬁég

'fﬁone' matrlx muitlplloatlon.- By squarlngma log I tlmé _ the*‘
Tl oL el T i
- Ly ;‘p - . ‘_q. . .’,"’T ...:. T e e B ecag a L o ‘ -
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,transitive closure of ‘A can he computed.di O(logzn) time
_units .;ith n3 processocs u51ng the high school method [21],
‘d,;_and 1n O(n2 8i(iog n)/p) time unltS"Hlth P. <. n2-81/loqg n
proceesor SLP) f-O(P) dan 'E(P) = O(l) nsing Chandra's

‘eparallel btrassen'_ algorithm [IO].» The speedup-wand‘>its

"efficiency over f the l,best sequential aigorithn ‘a;ei
VS(P) (P/logfn)f and - E(P) = O(I/log n). Employing. high
:E$A;wd'<“<hholffneihodkétoiicompute traESitive closure, uoldschlager,'

” tiOJ verified bipartiteness and Arjcmandi {2] determined thef

;'.connected components in (logzn) time units- Wlth ' n3
‘processors. The prccessor reguirements for both problemv Qén
‘be decreased to n2. 81/log n if’ Chandra's algorithm lS used

Analogously, the log n(n3 81) prccessor requirement cf

” T Savage's' .O(logzn) algocithm “for finding dominators
- [37 - 70- 71] can be 1mpxoyedu‘co n3-8i/log’n By - using
Chandra's algorithm.‘ - o |

If & is a.symmetric matcik, fbe‘problem ogﬂfinding ihe

'transitive closure reduces co identifying .itsvvconnected
components and was effic1ently <olved by Savage [37 p.SO] in‘V

O(logzn) time units with nrn/log n, processors, The
p B

processor reguirement of her method 1ndeed,:can be 'further'
reduced  to nrn/logzn1.wfw9 wil%ﬁ discnss the"detailsdin_i
if'iii%iéalffiéi{replaCing . and Min uith x aﬁd + 1n performing inner

A...‘., . . R

e o el TS o7 Do e - . oA -

P matrlx’ :H'ethod to find the aIl pairs ehortest path of

;_'z;';b“_a ,‘_,‘ s‘ '\. & AL Tu f" S "o o. "'"4 ""

',G 1f ‘no negative cycles are present. Savage [37 p.LOA 109]

-\.. ‘_ [;_‘..,‘ cre

-

b e e s e ome e e . B . : e

4 ¥ ST T A

3f product’denoted @, Eackhouse 'a' Carre [u] extended _ghéiﬁﬂ



..........

presented an O(ioanr:'algorlthm for this problem withi -
2rn/log nq prodessors. She then uﬁed 'it to deVelop
O(logzn) algorlthm for determlnlng the shortest cycle 1n ‘an

n- Dode dlrected graph u51ng nzrn/lcg Dy processors.,However,_

"iif Chandra‘s ;“algorlthm, ;s, ,empioyed~ . ~the- processor:

i{frequrrements of“the above two problems can both ‘be. lowered'”""‘?"'

) to nz. Bf/log' ~n‘.- P S "t ] — . .. ‘-:.- ,::-;-“4"" » ..»V-h‘“» “"‘.i;
Furthermore, Lawler‘_.[2E”p$9ljﬂ"'p5iu£ed'j out.” .that"

b?]qetectlng the ?éélstenue of neqatlve cycles or. flndlng the

Toa.

length of the shortest cycle' becone a by-product of -the

-‘matrix- multlplrcatlon method For detectlng the ex1stence of

: .negatlve cycles ih3uan n—nod& weaqhted qraph“oG:"after

'sguaring the weigHt matrix W .ofvfG; log n 'times, _if the.

o

sDinimun  of the diagonal. elements,of;theHresultant Qeight-

metrix’is negative,j negarive» cycle exists, Tbe ‘parallel

- reélization,-Alqorlthm NEG CﬁCLE - presenreq_be;owg,fm#‘m,.fza~?
Algorithm NEG,CYCLE
comment: find the tranSLtlve closure of- the welght matrlx
y ‘W by Chandra's algorithr.
l. for 1—I untll Icg n do w <— Mln{W oW}
|

2. 1if Mln{W(l 1)|V1}<O then return 'Negatlve cycle!

else return 'No negative cycle!

:Step ”l_{of -Algorithm NEG CYCLE - can te ‘computed in

-O('og n(n2 81)/P) tlme unlts 91th P < n2 8l/log N pProcCessors

-;by uslnp Chandrahs:argarlthm;.yhlle;stepwg can te determineu‘

. - SN N
- . : . s B



R

- Hence;_ Atheil’fotél ’ tlme ahd

'f For: flndlng the length of

'squarlng ‘the adjacency matrlx

value of the dlagonal elemenxs of -

matrix 1s» thef length of,the’chortest cycle.

s -

obtalned.

.,gni{s. with raf;5m65tg %QAQ{'

ELO

.’”_

the sh
log-n

the

Cand proceSsor bounds " as detectlng

-2

cessor bounds ére

-

‘O(log_n(n?-Gi)/P) ‘and P < n2 Ql/log n. respectlvely.

ortest cycle" afrer

28

processors.

e

tlmes, the smallest

resultant

adjacency

The same tlme

ey

negatlve .cycle T are
s\
~
{
&
.
L3
.
.“’V he

s}



CHABER 3. .t

Cmwls etmm - TSOWE - GRAPH CONNECTIVITY, PROBLENS ™ . 7 ™7

In thlS chapter, ve conSLder problems deallhq Hlth the

connect1v1t1es 1n graphs. It has Deen snoun in Sectlon ) I

. - . e» e

'“ané¢ Table_ 1 _that the louer and upper tlme‘ bounds on.:

.- verifying different connectivities in graphs"are O(loqlny

~and 0(log2n) respectively.. If & grach is disconnected, it is .

o oor

-

E)

desirable  to identify"all the corresponging connecpedﬁ.

fcomponents. By deflnltlon, a qraph é-‘is ‘tonnecfed‘-if and -

o

. ornly if there ‘eXists exactly one connected component in G

Whence, verlfylng connectlvlty in G becomes a consequence of

- .

flndlng ‘fhé Qiorrespondlng connected components.' Be51desﬂ

. e
boe s

Algorlthm UNI.CON and Algorlthm ACYCLIC which are merely

.forp,verifylng urilateralv;connect1v1ty iand . acycllcness,

o . b

;algorlthms presented 1n thls chapter are malnly focused on:’

Protlems  in- undireétedm and darected qraphs are’ dlscussed

separately in Sections 3. and 3.2. . _“" BRI Q

the prob;ems of .finding dlfferent connected component51'5



- ol

IR uijl“_lndlng Connetted tomponents of- Unilrected Sraphs

LN
"Ji*%;ﬁi?“ii Based on- hlgh SuhOOl method to'-compute the* refleiive
N \" .
R trancltlve ”ulOSUIG -of. an’ nxn patrix in O(logzn) tlme unlts
'on‘n d procecsors,‘ Arjonandl v[QJn solved dtne' problem ;Qf L
;_ ‘ .ﬁxndlng) the . wCDne%ted componenfs‘;of an o= nqde unalrected‘f;Ti
1'_ta&§raph in O(logzn) time’ unlts on n3. probessors vblcb _,anf7béf'
lowered ’ tb.. n2 a1/log n 'processo:s“,by‘ using Chgnd:a's

o pqrallel 'St;assen'é a;gorithn;usLater, - Hirschberg ~[21] -

reduced  the processor reqUirement'no.nz”while'maintaininq.
o e R RN B - ‘
4 . “the 0(lcg2n) time ‘units. Recently, Savage [37 p.49] has

-

impnoved,elhel-ptote$so; - bound of Hirechberg's"methcd,to

,ﬁtpxlbg3n1gr£ey§:e;gging ip_shogfthat;thisupnoeessot¥?bbund-,

8

:jf:“LJn%w}éct,u'qen ‘even- furtherdbe 1n;coved tO - nrn/logznq wlthf;
Alinear speednp and efflpleney O(I) hlrschherq [ ralqcrlthml
.,ngvfﬁ~lb ﬁlrstly descnnied 1n°Sect10n 3.1.I and - the'corref
—“Miff£i§f algorltnmnrgrg-dlsbussed 1n Sectlon 3.1;.ikf~ .inpronedv”.““
. >algor1thm is’ presented 1n Sectlon 3.!.3 ﬁnd 1ts appllcaalons
:igqﬁ; “fare’ mentlonedwdn Sectlon 3.1 Qr: ejét“f'.:’;"{. =S ‘{,;;T¥\”
. . -, / _ s
34d.l ueneral leschberg s, Algorlthm ) .

In general leschberg'c Algorlthm CONNECT (see Flgure

). for flndlng connected components of ‘an undlrected graph G

* T

;Can Le- 1nterpreted as follow ‘uf""'f"’_n"”w““

: v

' . '
, : \ i
’

. Step 1. (Unlform Smallest Inc1dent Node Selectlon). For each~

node 1, selegt the "mlnlmum" edge (1,3) where node j
N , o e

“s;of")A



.L\ .

ALGORITHM'CONNECT

b

"2

begino

-¥x

do -

cogment:nxn array A is the input adjacency matrlx;ﬁ,
m@Connegted components are labelled by the smallest .
‘node 'lakel in “thémselves. - Vector -.B..of.size Do e

stores the output S.t. D(n) 1nd1cate< to.’ yhlch

connected component node «x belongs. .

begin D(x) <— x

C(x) <— Mln{y¢x|A(x y)—l}

Vx s t. F1ag(x)-0 do D(x) < LLD(x)]
ex do n_“ I 7".-
begln A[x D(x)] <— 7
' ' ALD(x),x] <—— 1

fend. »

Vx do 1f D(x)#x thenyFlag(x) <— 0

¥x s.t. Flag(x)—O do . - -k

T C(x) <— Mln{D(y)¢D(x)|A(x,y)—1} 1f none then D(k)

end-

end

¥x s.t. Flag(x)-l do '
C (x) <—— Mln{C(y)¢D(x)|A(x y)*l} if- none then D(x)

Figu:e'l; leSchberq's Alqoclthm CONNECT for Flndlng the

Connected Componentcl

-

D

. I':]‘a'g(x) <_ L
end '
for i = | until log n do. .o o o L
_begin ¥x s. t. ‘Flag (x): =0, 80, o ae e - SRR A
T begln D(x) <~ Min{t (x),D[C(x)]} S B
- _ for 4 = | until log n do , ' R
tegin C(x) <~--C{C(x)]. ST s e et
| CDlx) <ompiee) ) L e
. 1endrﬂ"*“"_' o vqs,' . . "



- has the smallestl

'1nc1dent upcn node

connected' by tne

(Isolated nodes, nOt 1nc1dent to any edges selectedp

node label among all the nodes

i. The group of nodes_ that are

selected edges deflnes a forest.

. S0 far, are regarded as trees wlth one node.)

32

.Step 2. (Path CompreSS1on) _ Identlfy the vtreesf ‘leesy,. .

contract each tree

. which is actually

. .tree. Repeat steps °

to a 51ngle node called center

the smallest labellea node

I and' 2 with the graph

defined by the centers as nodes untll there is no

edge in the mew graph. : ’

(Clean-U@);_j%n;s

Tafter any step 2.

optional step mayl'be, elecuted

" - N - aaalt s

It 51mpllf1es future cog!Ltatlons

.)’)7 by deleting superfluous edges ) Delete" all

unselected‘ edges

with both endpoints ik the same

©

center. For each pair of centers «<connected by @more

thahn ’one unselected edges, dele¢e all but | the-

- "apinimum" of sych
. centers.

S
2

A gggg_loop is a termlnally rooted tree whlch ‘has an .

'addltlonal edge 901ng,from

>

edges ccnnecting the _ pair  of,

the roct to one ©of its ancestors. -

a

Thus, in a tree-loop, the number of nodes 1s egual to the

number of dlrected edges.

. . .. ‘a : " : . . )
In stepll, the Uniform Smallest Incident Node Selection

basdcally- defines a spanning- forest of at nmost tn/24 .

>

tree-loops each having at least twc nodes. Each isolated

L

Lo
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‘"nocde, not incident ﬁb any node ,SQ» far, is a connécted
compopent. It wili remain isoiated' in the subseguenf
proces;es and may belconsidered inactive, i.e., no>prqcessqr
is required tc f;rform any further operation for the
isolated node. The trick in step | is the smallest-labelled
incident node selecfiﬁh rule - a symhetric relation - which
'éssukgs that the spallest-latelled node (cénter) of _each:
tree 1is 1in the ‘loop and the immediéte déscendanf of the
o Center is also the immediate ancestcr of the Cénter. Whence
the lcop is assured torbe of length tﬁo. Path compressiof'in
step 2 is the crux of this algorithm. At each iteration,‘the
immediafé descendants of all .the nodes are ‘connected to
their inmmediate ancestors. Hence, the minimum length'Apath
im—> .is shorter by a factor 6f two. In other wordé,APath
Compression éan akso be viewed as relabelling nodes on the
common fath with £he éenter label. This technique is uSed to
"bring toééther" nodes on a common path to the center. Since-
the longelt possible path 1is of ‘léngth n-1, at pmost
log (n-1) iterations is required. A new gfaph is n&w
nestahlished ﬁith at most tn/2z! non-isolated nodes (éenters).
The ©process 'will be repeated until all the centers are

determined to be either connected or isolated. Henc¢e, the

P

algorithm cortectly finds the connected compbnqg%%fi#ﬁany
andirected graph. The foregpinq r?asoninq is ‘s ﬁmégized in
. the following. éegéenpe, of lemmas where detail
can be foﬂnd";?iﬁ\{;"l*]: ?“1 ' e

« . . »

and prOofs'

»3
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" lemma 3.| The smallest-latelled node (center) in a

) tree loop, d@flnea by the Jnlform :mdllest Incident Node

Sel ctlon, w1ll Le %n the loop, and thp loop Hlll te of - 51ze

4 TR s "

__‘tuo.uA

Leggg_j_g' ALl thé& \qodes .in the tree-loop can te

relabelled by the <center laﬁél in at- -most log(n-.l)

iterations.

lemma_3.3: After each iteration of éteps I and %/;g}ihe

Py

general Hirschberg's algorithm, the number of centers within

each connected component will decrease ty at least half in

&

those com?onepts that have more than one center.

i

On  the unkounded parallel computation model, finding

fhe swallest kncident node by recursive dBubling, and path )

compression can be computed in J(log mn) time with ntn/24 and
. prccessors respectively. 'Since the size of the graph
(actually the number of nonfisolated nodes) is reduced Lty at
least half after each iteration, the ©process will te
repeated at no3t lcg n times. Thus the'algorithm requires at

most 0(log2n) time units with nti/24 processors.

o

3102 Correbtlons of-Hirschberq‘s Algorithm

—— e S S —.

“In [21], leschberg presented a parallel algorithm for
flndlng the connected componentg (see Figure 1, Algorithm

CONNECT). Three vectors of size n are used to implement Path

a

L}



Compression: vectcr Flag indicateS'fhe current nodes in the
new grapﬂ; vector D stores the‘current lakel of the nodes;
'end_ vector C eoints to the. immediate deecendant of each
;noée. Any at?empt to follow- the aIgorithm "as descrlbed maY”
produce incorrect results. The purpose of tkis section'is to
point out the ' mistakes ‘in V{fgﬁmberq 's algorlthm and tao -
offer“an eliernative which will always produce . correct |
'intermediate and final results.

To demonstrate - the problem in Hirschberg's Algorithm
CONNECT, we considef.a simple illustration involving the
. undirected graph 4G depieted in‘figufe é(a). Klthough the
intermedi;te”results.from execﬁting lines 4 and 5 of step 2
in Algofithm CONNECT differ depending on whether these lines
are exeeuted 1n ceries+ or in parallel, the correctness of
the whole algorlthm is not affected. Therefore we cah assune
that all instructigns at each step will te executed in

parallel as long as no write conflict existst+.

.

+ If Algorlthm CONNECT is executed Ilne by line, at the end
of the first iteration, .the same <contradiction - loop of

- length 3 -° is also fqund While at the end of the second
iterfation, node 3 and node 5 are relabelled to 2 1nstead of -

the. ~&orrect value | whlch however, are relabelled to 1 in
the last iteration. : : :

t+ Step 4 must be executed in series, otherwise write
conflict may occur. -
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Steps 4-7 do not affect the iesulf.in'thevoutpup vector D

s N

At the end of 'the first iteration, the selected

incident node for each center in the new graph G' is
in vector C which defines a tree—ioop,as shown in

z(c)ﬂ Surprisingly,wa lcop of length three - is found

‘céntradicts Lepma 3.). Consequently, at the- ‘énd

i

_second itefation, node 1 and node 6 are 'relabelled

stored

Figure

which

-

to 2

instead of the correct value | while at the end of the last

iteration, two connected components are reported in the

o

of the



N el ’ A o R “ ' ..;...-...’
t T 2 LTI e et s e w o

-foutput veCtor D whereas the correct result is ‘ore connectedA
component. The correct tree loop of u' 'is depicted in Figure
‘c(d) -The essertlal problem in the- alqorlthm lies 1n step 7

whereln ‘ C(x) .’ls lncorrectly ~found.  due ‘to‘ the

mlslnterpretatlon cf the unselected edges or the centers..io-"“'

.correct thls prqtlem,lthe followlng modlflcatlon of Qteps 6
and 7 is suggested. (1 e., uelete 'Flag(x)=0' fron. step 6 so'>
vthat the smallest unselected node directly indident‘upon
”-,egéh éenten;is'incluued; andvreplace 'Alx,y)zlilinestep 74bf

'D(y)=D(x)'.)

ﬁtf_ﬁx-do

C(n) <—~.M1n{D(y)¢D(x)|A(x,y)—l} if hone then D(x)
7'{ ¥x 's.t. Flag(x)—l do ) o |

C(x) <4— NjJT{C(Y)#D(X)ID(Y)=D(X)} if none-then_D(x)

,In step 7', ncdes nelongino to the current Centers are
identified by checking their. current node label hith'the
center label, arnd consequently step 4 can be elimineted.

A minor error is also found in step I when finding the
smallest-labelled -1nc1dent node for each node which is
1n1t1ally 1solated. To be con51stent w1th the 'rest of the
alqorithm in handllng arn 1solated node, the value of node x
is a551gneu to C(x). Therefore llne 3 in step I.is'_modlfled
‘as follows: |

C(x) <— Min {y#x1A(x,y)=1} ‘i‘f none then D (x)

-

Yy



b

3.1.3 Modified Hirschberg's é;goritgg ' B ,

In - Hirschberg's Algorithm CCNNECT, the n2 processor

requirement is-contributed solely by ‘finding the smallest

A

~incident ~node < (steps t, 6 and 7). Therefore reducxng the,

processor requirement 1in these steps may substantlally
reduce the overall processor fequirement. Finding the

Smailest'ihcident node is equlvalent to flndlnq the micimun

B -

'pf n elements which <can be done in Llog n - loaloq n -1

.time gnits with rn/log nqy precessors by Theorenm 207. Baséd

on this peéﬁlt; .Sayage, {SJqplua] .peducea_:theﬂPEOCGSSOE

requirement of Hirschberg's élgorithm to nen/log Dy with

-efficienﬁj Qﬁl/log n).

A question ncw arises néturally: can {hé efficiency be
ré&ﬁCéd to J(1)? That is, can the ﬁrocessér requirement ke
reduced ”éy anothér f&ctd:'_bf log n?i The aﬁéwer to this
question turns cut to be a favoﬁﬁablé one when the optional
Clean Ugp step, siated in qénetal Hirschberg's algorithm, is
executed to guarantee the Eeductlon cf non-isolated nodes by
at least a factor of two afteﬁ_eakh iteration. -

| To achieve the desired processor reduction in finding
the smallest incident node, the strategy of optimization 1s
applied in two dlffe:ent mannerﬂ. for the first 1teration
wthh has the largest’ problem s1ze n, minimiie the fprocessor

reguirement P (n) subject  to (logzn) time; for the

sul sequent iterations, minimize the time subject to P(n)

processors. S5Since the "Min" cperation is birpary associative,

by Theorem 2.7, the smallest incident node can be determined



: -
in less than zlcg n time unlts Hlth rn/log Iq procescor It

‘is cbV1ous that nc more than 21og2n time unlts are regulred
by using . rn/log2n1 pLoceSsorq.\Sﬁence,v for n nodes,
. P(k) rn/log2n1 _pfocessorc are requ1red From ‘the Qecond‘
1teratlon onwards, the worst case tlme requlrement for each
‘,subsequént‘ ité;at;on,can also be c§lculat§d by Theorem 2. 7.
As desired, ﬁihé‘ Worst ‘case total. winme- forl all log n
biterations‘ tehaiQSVOYldg2nj. A more detail andlysis wiil‘bé
discussed after the modified  Hits¢hberg‘S .algofithm‘ is
presented. )
Baseéf énl the above stated c£rategy of optlmlzatlon,
Algorlthm CONNECT is modlfled to Algorlthm HOD CONNECT as
.shown in Fiqgure 2. With recpect te the corrected Algorlthm
.CONNECT 1in Seéticn 3.l52, the modifications are discuséed as
" follows:
. - - ~
1. Observe that in‘Algorithm‘CCQNECI( the ﬁumbér'of times to
find the smallest incident nddewis?log n + | which ié\one
mofe than the theoretiéal wofst case. Indeed,} thé Jdast
oné is virtual work which can be elimirated by sligltly
rearranging the order.of instrdctions, i1.e., move steps
€' and 7' in corrected Algorithm CONNECT up to the
beginning ¢f the first ‘for-lbop (before step 2) and
'fdelege the third line of step 1. (The corresponding .steps
in»Aléofithm Mob}CONNICT‘are steps 2 and 3. j
2. The adjacency matrlx is updated by performing loqlcal OR

-

between the selected columns (step 8). Since vector Flag

o



|

--A;gp;;tnm;ﬁon_CcNNECT

.begin’ commemt:Flag(x)=1" indicates’ node ' x is a current
center and - column = x stores. the updated
information. B

" ¥x do comment: Initialization - >
beg¥n D (x) <= x : oo
Flag (x) <— 1
- €nd - ‘
for i=V until lcg n. do
begin 30lnent' Uniform Smallest Incident Node@Selectlon'
Y s.t. Flag(y)=1 do

C(x) <— Wln{D(Y)#D(X)lA(X:Y)—‘}
if none then D(x)
¥X s, td Flag(x)—l do

'begin C (x) <—— Aln{(C(y)#D(x)ID(y)-D(x)}
_ "if none then D (x) '
4 ‘1f C(x)=D(x) then. Flag(x) <— 0
. comment: Path Conmpression
£ D(x) <— Mln[D(X),uLC(X) 13-
: for j=1 antil log(n—l) do
6 begin C(x) <— C[{C (x) ] '
D(x) <— D[C(x)]
) end , s S
end -
7 ¥x s.t. flag(x) 0 do D(x) <— D{D(x)]
conient' Clean Up (by column contractlon)
-8 ¥x,y s.t. y=D(y) do
¥z s.t. Flag(z)=1 do
A(X,y) <— OR{A(xX,2)(D(z)=D(y)}
9 ¥x do 1f D(x)#x then Flag(x) <— 0
€nd . , Iy .
end
4

Figure 3: Modified Hirschberg's Algcrithm

N

has been designed .to indicate the current centers, its

values can "be -used as addresses of columns in the

subsequent assignement so that only those columns whereé

‘the appropriate value of Flag is 1 will be fetched. Thus,

”

for Llndlng ‘the smallest: 1hc1dent ‘node, - phecking

condition '"Flag(y) 5 12 in step 2 of Xﬁqopith@



_MCD. CONNECT w11l assure ‘the desired "breblem._'Size '

reductlon (i. e., 'feduCtion of number of'COIUmns) and
',eonsequently achieve the de51red tlme reductlon.

'3._If the whole corpnected component has merged to ~a"single'

' center (1.e.,3 the center wlll re 1solated), that center .

wlll not be conC1dered in the. succeedlng ;teratlons ~by
haying~its flag set to zero at step 4. |

In o:dem‘to prove that these mcdificatiomns to Algqrithm
'  CONNECf"pfedmce':fhe-mdesired proeessoc meducfion, a few

?

definitions and lemnas are needed. : S

‘Let Mi»be‘tbe smallest element among the k selected.

elements, {Ml,M2,...,Hk},' from a vector V of size n.. To
{ N .

"merge" the K selected elements means
-V(m.) <— OP{V(Mj)‘#OI I<j<k}'

where op can be Min or loglcal OR whlch depends on Using the
¥
1ndex or the content of V.

Given a vectbh'of n eléments, if at least 2'and at ‘most

n elements are "merged" to form a new element, then the size
, e , : : ; _ ;

of the vector is reduced to at least ome and at  most ‘tns2J

accordingly. Such a "merge"_is‘cailed §§£ink.

’

e Lgmgg_é;ﬂ:' Given K 7processors, performing a shrink
operaticn‘ on a vector V. of size n requires. et_ most
/Ky - 1 + log K time units if tn/24 > K end loe n time
anits if tn/24 < K. | S

3 . . . .
Proof: Performing a shrink -operation on V can ' be

'thought of " as partitionimg v into o groups,



{9 (1) ,9(2),. - . g )} and petfor[ﬁi.ng, "mérgel' \Si‘m u‘_]_taneo‘u'sly
on all, n groups. Clearly, the parallel compﬁthioﬁS to

ﬂgetgeﬁvn elements is a- binaryv computation -tree 4wh;ch-
requires n—W o§eratioﬁs &internal nodes)'in‘tbtal} LétFT bé'
}therfimé“ to ;grink 'V; K}ibe ghe. number of pfocesso;s
avaiiabref’ . 1 r

Case |I: %No pdrtition, i:e.zialL n element; afe—"merqed" fo
foﬁ%:afsingle déw elémenti This can' be sél?eéj.opkimallf tyv
usingi'Aigorithﬁ'A(DYT or,;(h)é in Section 2.2.1. Hencé? thé’
L\\'ﬁime'bodnd follows directly froﬁ Eﬁeorem 2.7,.i.éq7

- Lo

C(tn/Ke < 1+ log(Ker) iE tns¥s > K B
N ’ log n T if tn/24 < K
Uwhere\o S r =n - Kltn/K3 < K. : "

4 . B ]
- Case 2: W is'paqtitioned into m groups. It can be considered

as splittihg"\an\xn—leaf binary computation tree into m
. r“——""/“\,\\ -

: . N N ’ . T ’ ’
smaller binary - cemputation subtrees. Because of the

splitting, the ind¥pendence tegween subtrees increases “the

 pafallelism while the total nuaber of:intebna; nodes is

deéreased. The total humber of:opgrations is the sum of +the

interﬁal nodes of all binary.EOmputatlon subtrees, i.e., -
1GCH 1=1 +71a(2) [= 1 *euue Jq(m) =1 = n-n.

Case 25: K 2z Ln/2{._'AsSign Lig(iyi/s 24 proceSsors to group

g(i) and £hén execute all groups in p;réllel wﬁich vtékes

,Ngai{lqglg(i)l for 1 <1 £ m < log n time units. The total

numbér” of processors required are as follows.
Nt @ _ .



hvig

Lig (i) 1/2¢ < tny2d.
1 T

=

ug’

Case’2bi K < tn 24, _Align the m groups of e‘leméntc as shown

in Flgure 4 and partltlon the elements into K sets,,each of

/K4 elements, exeept that the last sets has n - (K—])rn/KT

1

~elements. ' . R

. . X .
gh g2} g(3) ) g(m)
<= —=><- ><{—>< cas —=>{—>
x...xlx...xlxxx...xlxrx...xx...x|X' ese K| XAXsiaeoX
I | ' 1 ' B | l .
<—k->|<—k->|<e~k—s>b< ——k— > “oe A <—T—>
« where-k = (n/Ky elements ,
r'=n - (K-1) ¢n/Ky €elements-
. ! . . b}
' TFigure 4: Partigion, of m Groups into K Sets
.&»

Assion one'processor to each of the K sets to 5eompute

.

tme results in that sq} if all the elements in a set belong .
¢

to +he same Qtoup,ﬁﬁ
- eﬁ.lk"* -
{the elements in a segiﬁ.“iongs to se

groups, then b answerlm, one for

each

veral

ﬁ%fwer will result from that set. I1E

groups, - say ,b

‘group, will te

. _ - B <% . K ;:
obtained. If b > 2, atfleast b - 2 answers are final results

and at most 2 answers in each set will be

'comblned Wwith

answers in other sets tg give the final result (the first

‘and the last set have one answer). For example, (see Figure

4), sets | apd 2 have one answer, set 3 has 2 answers. and

set 4 has 3 answers while one of them is the-

~

o

final | result.

]

l% -
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It i1s obvious that no more than rn/K1-—'l,t;me“units are

vy o
needed fcr computing answers in each set. = ’ Lo ’

let us assume that¥n(i) answers will be combined to

give "the result of q(i).\XIn Figuire 4, n(l) =3, n(2) = 2

and n(3) = O.);Aésign Ln(ij}EJ éﬁoCessops to each étdqp to
compute - the result of fhat éroup. Since the suﬁ of all n(i)
is l;ss than or’ équal‘?to 2K - 2, the total nﬁmber of
PLOoCessors required wiil be iess ;han K. Each g(i{ will take
ﬂanqther log n(i) < log K timé units to obtain the final
result.?Thus, the total‘timekrequirement is no  m5re than
/Ky - 1 + log k “time . qng£é. It 1is clear that £his time
requirement is ét most one time unit from optimal.(i.e., the
correspondinéhcase in (Ij).ﬁf _ | 0.
¥v '. .

Theorem 2.7 and Lemma 3.4 give an.upper bound .on the
paralié&v time gonplexity for computing ai result of n
elements and results of groups bf n elements. Since' t he
'*Min' operation in sSteps 2 and a,land,'OR' opefation in step
é of Algorithm ~M0D.CONNECT are aséoéiative binary

operations, Theorem 2.7 and Lemma 3.4 qibe an upper bLound oun

the total number of time units spent in these steps.

u N
7
Vi

emma_3.5: Given K rrocessors, 'ster 7 in Algorithnm

MCD.CCNNECT takes at most T time units where
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0(logzn) | if K

> ntn/24
T = Q(nz/ﬁ + log nlog K) - . 1f n- 2 K < ntp/24
0 (n2/K) if 0 < K < n.

Proof: As tentioned earlier (Lemmas 3.1-3.3), further
iterations’ot stepsv2—8 merge ceqters; Step ' 9 eliminates
those mergéd nodes ﬁhich are no.longer centers ty getfing
their flgqs to zeré. By Lemha 3.3, the number oOf cénters
Cflagged ‘elements) ISy, | in each connected comporent
decreases by a factor of at least two atter each iteration
until the <connected compopent is represented by a single
cernter. Moreovéc, if the whole connected componentﬂ has
merged -to a single center (i.e., the center will be
" isolated), +that center will not be <considered in the
sSucceeding iteraticns by having its flag set to zero at,step
4. Thus, we have'n f{f‘ged eleﬁents at the first iteration
and have at most ih/QiJsglagged elements after i iterations.
At step 2, in «crder to compute all C(x), p = WK/n-
PLOCESSOrLS are assigned to each x to computé the minimum
valqe among at most lél elementé; Since 'Min' is an
aséociative binary opecatioh,. we can apply Theorem 2.7 to‘

evaluate thke time cémplexity.

Case_1: K 2 ntn/24, we have

log_n-1 )
2 log(n/21) = 0(log2n).
i=0 -
gggg_gz n £ K < nln/ZJ implies | £ p'= LK/pd <"'tn/2J

processors can be a551gned to compute each C(x). Since | S|

is reduced by at least half after each iteration, S| is at

<
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t

most 2p after t = log n - tlog p! iterations. Thus we have
'Fil ' ] - ~ log_n-1| o
2 (s(tn/214) /pq - | + log p) + 2 log(n/2%)
i=D ) . .. 1=t K
< 2n//nd4 o+ thgiK/nJ + (];ogLK/n-f)2

IA

d(n2/K + log hlog K).

v

Case 3: 0 < K < n. implies that Qmiy K C(x) can be computed

in pafallel with cne processor each. This takes [S| - 1 time

units. For n C(x), the same computation is repreated no more

than rn/K4 times. Thus, we have

log;n—l o
> (tn/214 - 1) en/Kg
i=0 -
< -}“2‘r.1rn/K-. < 0(n2/K). 0
_gggg_ng: Given K écocéssors, step‘ 3 in“ algorithm
MOL.CCNNECT takes at most T time units where
. O(logzn) . | ' v if K 2 ntn/24
T = O(nz)K + log2n) | if n < K < ntony24
O(ﬁZ/K) ; if 0 < K < n.

Proof: Since the number of flaggéd elements
by at least half after each iteration, the

processors assigned to compute C({x) can be double

v

is reduced
number of

after each

iteration. For the first iteration, p = LK/n! processors are

aSSigned to compute each C(x). After i iterations, (2t)p

processors can ke assigned for each C(x). Thus, we have

Case 1: K 2 ntn/24 implies p = lK}nJ 2 Lpn/24 processors can

v be assigned to compute each C(x).
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log_n-1 ,
2 log n = 0(logz2nm).
i=0 - ,
Case 2: n <K< ntn/24 implies 1 £ p = WY/nd < Lpy2a

pProcessors are assigned to compute each C(x) for  the first

iteration. ' After t = log_n - log p + 1| iterations,
;th 2 Ln/24 processors can .be assigﬁed to each C(x). Thus,
. We have
t-1 . .w log_n-1
2 (rn/(21p) - 1 + log(2ip)) + 2 log n
i= ‘ i=t

< f2n/%/nd, +'logvn15g n + log2n

< O0(n2/K + log2n).

Case 3: b‘< K <.n implies only K C(x) can be coiputéd in
parallel with‘ CLe processor for each C(x) which takes
n/21 - | time units.for itération_i. The sane computation

must te repredted r(n/2i)/K1'time units.’ Thus," we have

log_n-1 . . :
> (/21 = 1) ¢(n/2') /K4 = 2n¢2n/K-
1=0 , ‘ .
< 0(n2/K). 0
Lefma_3.7: Given K processors, step 8 in Alqgorithm

MOD.CCNNECT takes at most T time units where

$ 0(log2n) ' if K 2 ntn/24
T = {0(ng/K + log nlog K) " if n £ K < ntn/2d
0(n2/K) ’ 1f 0 < K < n.

r

raof: After sets of centers are merged in steps 5 and

-

6, the adjacency information among the centers is updated in

sfep 8, i.e. center x and center Y are connected by setting

o~
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A(x,y) to .1, if therefeiis an edqev joininq uone of the

. nodes mefged into x‘tO‘one"of:the podes merged into y. 1In
steo 8, those columns z in . the adjacency matrix A
corresponding .so those nodes‘z, “which are merged to center
y, are 'OR' together to glve tbe new column Y. Since 'OR' is
T an associative binary operation and groups jof c¢clumns are
*QF? together' to single colomns which correspond to:thei
new-formed centers, Lemma 3.u'can be applied to derive the
time bound for step 8. There.aggxgm£oﬂs in A and these rows

of elements are considered in parallel. As what»is done foo
step 2, ©p = LK/nd processors are assignea fo eachvrow X to
compute A(x,y). During the first iteration, p processors are
ass}gned for each rcw to deal with n elements; and for each
sdcceeding iteration, the.nUmber of elements to Le deelt by
toe psprocessors iz at most half of the number i  the
previows‘iterstion. Thus, aprlying the saﬁe kind of analysis
as 1in, the proof of Lemma 3.5, we derive the same tinme bound
as stated in Lemma 2.5. O

&

Theorem 3.8: Algorithm MOD.CONNECT finds the conrnected
components of an undirected grarh with n nodes in time’
O(n2/K + log?n) using K processors.

g__ f: The tirme and proce sor xequirements are listed
in Table 2. From Takle 2, K processors sozfice to determine
the connected components of an undlrected graph w1th I nodes

in tlme 0(n2/K + lcg2n). ' ' 0

\

N\
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A
Step - JTotal Time : Processors .
casel ' case2 -t . . case3 casel case2’ case3
1 0 (n/K) a(Ny; : -0 K n n
2 0 (n2/K) 0 (n2/K+lognlogK) 0 (log2n) K nk  n2
3 0(n2/K) Jd(n2/K+log2n) - 0 {log=n) K nkK nz’
4 0 (n/K) Jd(log n) 0 (log n) K n n
5 0 (n/K) J(log n) -, "0(log n) K n n
€ ~-0(nlogn/K) 0 (log2n)- 0 (Log2n) K n n
7 0 (n/K) - 0(log n) * 0(log n) K . n
8 J0(n2/K) O (n2/K+lognlogK) .0 (Log2n) K nkK n2
S K n - n

0 (n/K) J(log ') - 0(log n).-

where casel:0 < K < n »
case2:n £ K < ntn/24
case3:K 2 ntn/24

: : o ! _ _ _ - :
Table 2: Totalrﬁime'and Processor Kequirements for Alogrithm.
M0D. CONNECT .

As a by-product of Theorem 3.8, we have the following

Y

result.

)
-

Corollary 3.9: Given n,rn/log2n, Jbrocessors, Algorithm

H0D.CCNNECT determines the connected components of an

”

undirected graph with n nodes in time O(logfn).

From Table 2, Algorithm MCD.CCNNECT takes T(Il) = 0(n2)

[t}

J(log2n) time units with 1 and p'= nen/log2n,

processors respectively. " Hence, the speédup and the

-

efficiency of Algorithm MOD.CONNECT are S{p) = 0(n2/1log2n)

and E(p) 7O(f). This is the best result that uses the least

"number of processors to find the ccnnected components of an
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undifectéd graph in time 5(logzn). The pfevious results
[37 p;QS] needg. Drn/lcg n4y processors té-achfeve the same
time bouhd. |

It»;s of interest to compare  the timé and pfocessor

complexities of Algorithm  MOD.CONNECT with the time

'complexity: of ‘the - corresronding - efficient Sequential

‘algorith Consider a »gréph G = (V,E) where IVI = n and

~g~

IET = m. If Gf:;fépnse, ile. m'=‘0(n2), the best sequential

alggfzzg; for this problem requires Tfl)u= O(m+n) = O(n?),

time {U43], This is Lkecause any qlgorithm,will, in the worst

case,.‘have  fo look at ‘all of the edges. 1heretore thef

speedup andlits efflClency of Algorlthm MGD. CONNECT over the
best sequential algorlthm also are - 0(n2/10g2n) and Oﬁ&)

respectively.‘ On the other-'hahd, if G is sparse, i.e.

n = O(n),n then T(])vf 0(n) ‘and S(P)~=\O(n/loq2n; | and

E(P). = O(I/n). Thls 1mplles a lot of "waste ef the proce551ng

power to achleve the speedup of O(n/logzn)

“
Remarké on Aigorithm MOD. CONNECT:

l. On avérége, Ait» is profltable ~to detect the earliest
termlnatlon of Algorlthm MCD CCNNECT especially when the
graph is dense..One of thg Stopping criteria is when no -
center is ‘"perged" in .the Current:  iterétion. The
realizétion is suggeéfedvbeld?:

Insert step 1.5 'lLast  <~— n' into step | and the
following two steps at the end of the first for-loop.

10 Now <— Sum{Flag (x) | 1$x<n}



II if. Last Now. then DTOP else Last {— Nou

Lo

e

In total, step 1.5 and step 11 regulre | ard -at most
log n time  units reSpectively by using Ohe processor;
whereas step. 10 requires at nmost log2n time units by

using tn/24 fprocessors.

When implementing the Clean Up step, one can contract the

o .

rowsv instead of the column~ of the adjaceney matrix. It
will end up with the same time and processor tounds as
Algorlthm MCD.CONNECT. Furthermore, rows and columns can

be-contracted.one aftér the other to gain more tinme

e

reduction " for the next contraction and finding the

smallest incident node from the second 1teratlon onwards.

=y

fHowever, the tradeoff betueen spendirg mor time on each

Clean Up step and less tlme cn subsequent iterations is

insignificant.

3.1.4 ggpllcatlons of Alqorlthm MOD. CQNN

Ihe followlng paragraphs give krief descrlptlons of how

Algorlthm MCL. CCNNECT is applied to other related problems, '

suchk as finding all spanning trees; finding the minimum.

spanning tree and the transitive closure of an undirected
graph; 'they are intended simply to show the modification of
Algorithm MCD.CCNNECT accordlneg and hence,, merely the

complex1t1es of the addltlonal and modlfled steps are,given.

3

>
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. .Spanning Trees g . . -

‘blconneCted bomponents o u;*fhe firsc step is - genL

wn
u

>l

& <

a

= .Generafing Call™ spanning trees of a connected,
undirected graph G has played an important role in many

parallel graph pxogéﬁgs._ for instahce,_ in - finding the

e oy . - i

ap

all spanning trees of " [37‘ﬁ 63 GMJ Con51der what happe@-
in Algorithm MOC.CCNNECT. The algorlthm bas1cally generété% b
a spanning tree for each. connected éomponent by using"
uni form depth-first sggrch. Howevér, théiﬁédges in eachi
spanning ltgee are not re;orded. This can be efficiently

implementéd by using'three vectors Col, Héadggnd Tail whgre

Head(x), ,Tail(x) € V and the set {Head(x),'Te‘iil(x)»ll-‘la’g(x)#l.

for 1<x<n} is the set of edges in all spanning trees..”Alsoq

o

.the column contraction in Algorithm MOD.CONNECT will destroy

the .correct colurn indices. As a result, the selected edges

L]

can nct be correctly represented by the matrix indices. To
, , ..

remedy this problem, the _adjacency matrix is modified Ly

resetting the‘connected edgés“infeach row i of ‘A with the
correspbnd;ng,column ingices'and substituting 'Min' for 'OE'
in step B:h-The realization of the modified Algorithm
MOD.CCNNECT, -called Algorithm SPFAN.TREE, is shown in Figure

3

5.

Resetting a (step"#e) requires J(log2n) time units with
rn2/1092n, processors; initializing Head and‘Tail (éteps Ic
and 1d), and updating Head (step 3d) reguire 0(1) time units

with n processors; updating Col and Tail (steps 2b ‘and 3\

require at most. J(log2n) time units with nrn/log2n,

A



- Algorithm SPAN. TREE

1a
1b
1c
1d
1e

2a
2t

3a
3b
3c
3d

5
6-
6a
6b

Z\d‘
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beggh

-¥x do comment: Initialization

begin D (x) <— x

Flag (x) <— 1
Head (x)" <— 0
Tail(x) <—- 0
1if A(x,y)f1 then A (x,y) <— y

H

end A .
for i=1 until log o do

begim comment: Unifornm Smallest Incident Node Selection
¥x,¥Y s.t.{D(y)#D(x) AND Flag(y)=1 AND A (x,y)#0}do

begin C(x) <— Min {D(y)} if none then D(x)

Col(x) <— Hin{yiD(y)=C(x)}

.. -end
¥x s.t. Flag(x)=1 do

begin ¥y S.t. {D(y)=D (x) AND‘C(y)#D(x)} do.A

begin C(x) <—— Min {C(y)}

Tail (x) <— Min{y|C(y)=C(x)}

_ Head (x) <— Al Tail
. " .;.'ﬁ”‘

end : Sy
if C(x)=D(x) themn Flag(x
comnent: Path Compressio

o D(x) <— Min{D (x),D[C (x)

-

r

(x),Col(Tail(x)) ]

)

n

it

for j=1 antil log(n-1) do

begin C(x) <— C[C ¢x) ]
' D(x) <—— D{C(x)]

. end T

end

<— 0

" ¥x s.t. Flag (x)=0 - do D (x) <-- D[D(x) ]

comment: Clean Up (by column ¢
¥x,Yy s.t. y=D(y) do
¥z s.t. Flag(z)=1 do ‘
A(x,y) <— Min{A (x,z)#0]
. " ¥x do if D(x)#x then Flag(x) <
end
end

D(2)=D(y)} -,

ontraction)

N

~Figure 5: Algdérithm SPAN.TREE

w
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' Processors. Hence, the changes do not affect the upper tinme
. . o . . I .

~ .

“and ptﬁcessorf.bbundsw of Algorithm-MOD.CCNNECT'(Corollary

- 3.9) and thus Algqrithm' SPAN;TREE generatés all spanning

trees of G in 0(log2n) time units with Den/log2n,

processors.

©

SRS N | - ~/

Minimum Spanning Tree

Given a Jeighted, connected and undirected graph G, it
. ‘. . . . ! . ¢L
is often of interest to determipe a spanning tree of minimum

fotal edge weight, i.e., such that the sum of the weights of
all edges in the tree is @inimum. Such a tree is called a
miﬁimum spanning tree :(ﬂ§2).‘ In [281], JLe§itt and Kautz
implemented Sqllin's algorithm {7 p.189] or their cellular‘
array and yielded the firgf parallel algorithm for

determining MST. By using a transitive closure algorithm to

-

‘find'the sSfanning treeé; Csanky [f3] produced an 0 (log3n)

algorithm with.'dz-éi érocessors. By modifying Algdtithm
CONNECT to find spanning trees, Savaget[37'p.u2-u5] reduced
the time to O(logzn)‘ vith ngp/log nq pfocessors. The
processcr bcound of her methodkcan further be impro?ed to
nrn)logzn1 s employing/Algorithm SPAN.TREE with a similar
modification in selecﬁing Smalles£ incident node. That 1is,

node j is selccted to be the smallest incident node for node

‘:iﬁ 1if edge (i,7j) has the minimum weighr among all the edgfs

‘emanating crom node i. Moreover, if there 1is a tie, then

selec® che edge with smallest node lakel as before. This
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smallest;'incident .node - in Algprithm  SPAN.TREE. This is

surmarized in the corollary below.

-

Corocllary 3.19:.The.MST”6i a weighted, conﬁected and

undirected .graph with n nodes can Ee determined in 0(log2n)

v

-

tire units by using nen/log2p4 processors.

/

. i

. , ' I
-Transitive Closure_of Undirected Graphs

% 2
Once }he connected components cf an undirected'graph‘ G\ ((

are found, the .transitive closure” X" of G can be easily .

obtained with~an'adaitional comparison, i.e., A" (i,3j) = 1 if

/

and only if i and j belong to the same connected component.

L

This aéﬁitibnal compaﬁisqh.c n be -done in logZ3r time units
.bf asing rn2/log2n; proéeésbrs?’;¥nc€,QWith ihis ‘additidnal
step, ‘Algorithnm HCD.CONNECT finds the transitiyé closure of
an undirected graph with g nodes in O(logzn) time units by
using n,en/log2n, processors. This impﬁoves on Savaée'é
0 (log2n) algdrithm with nrn/log h1 proce;sors [37 p.50 7.

Thus, we have the following corocllary.

Corollary 3. tl:- The transitive Closure of an ©Dnxn

symmetric Boolean matrix can be determined inib(quzn) time

units using nen/log2n, processors.

" Z¥This meEHbﬂ;y;unforﬁunately, can not be extended fo -

uce the processor bound for the problem of finding

pre

&

ali-pairs shortest paths.
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3.2 Some Coggectigity'Ptoblems in_Directed Grapis

In directed -graphs;, the propecties invqivmné naths,
cycles, and connectivity become more.vcomplicated “‘than .in',f
‘undirected graphs because of t edge orientations. In lhis
- Section, we. turn our attention to directed graphs and ‘see

whethef~_we‘ can get good upper bcunds for the problems of'

-flndlng dlfferent connected components.

\ »
Eggkly Co ected Components

Ine weakly connected Corponents of a directed graph are
eas1ly obtalned Dy 1gnor1ng the edge dlrectlons and remov1nq
dupllcate edges, and then u<1ng Algorlthm MOD.CGNNECI to
flnd\ the connectedﬁfcomponents'of the resulfing undlrecred

qraph._Ihe conver51on of the aojacency matrix can te done 1q

P il

logzn tlme units ulth‘vnz/logznq processors. Thus, finding
weakly .connected components -¢f an n-npode dlrected graph‘
takes at @most (logzn) xlme' unlts with nrn/logznq-
processors. The al@ﬂrlthm is as tollows- |

ﬁfm

Kﬁgorlthm HEAK g

-

. ¥i,3  A(i,q) <-— A(L,3) OR A(§,i) |
? : :
2. Find the connected components by;Algor%thmAHOD.CONNECT :

Strongly gonnectedfComponents;

Now consider- the Froblem of strongly connected
components of a directed graph with n nodes. Based orn matrix

multiplication for compuating the reflexive transitive
. = 4 - o

\
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closure am" of- ad]acency matrlx a, Arjomandl t2] presented an
. d\‘ .
algorlthm for flndlng the strcngly connected components of

‘pr0cgssors and 2n2 + 0 storage. By u51ng Chandra's parallel

Strassen's algorlthm to compute<'k", ve propose a ‘new

Aigorithm' STRONo.CON below which reqw1res 0(log n(n=2- 81)/P)

rR, .
time units w1th_ P <-ne. 81,s1o09g n processors and n2 + n

1

storage.

Algorithm_STRONG.CON

. . .
. l..Pind A", the reflexive transitive closure of A. '
2.0 A" (i, 5) <—~'Am<i,j) AND A"(3,i) .
3. Index (i) <— the position of the first nonzero entry in -

- LOoW 1 ° _ K.

\

- 'In: Algorithm STRONG.CON, A reguires n2 storage.

Employing Chandra's algorithm to compute av takes

O(logﬂn(n2~81)/P)”:iﬁtime units \\ with P < nziél/log n

processors. Since row i of :A marks all the reachable'Apairs

of nodes fronm node i, step 2 only removes the mark of the
'nonmutually reactable palrs of nodec from A  which takes onen

tire anit w1€% - n2 PLOCESSOES. Step - 3 uses the

- smallest labelled node in each strongly connected components

to identify the corresponding comyonents whlch takes log n

~

time units w1th n2 processors and n extra storage. A(Notice

that due to the symmetry-;of,’Aﬂ, steps ‘2 and 3 can te

‘performed only on the ‘lower triangular matrix of A" without

an nfnode.directed graph in- O(loan)tlme unltS' thh n3

v

S
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affecting the result.) Hence, the total time  is
J0(log n(nz2-81) /p) time units with P £ n2.81,/]1og n

processors. The result is summarized as\follous.

Corcllary 3.12: Algorithm STEKCNG.CON determines the

strongly connected components of an n-node directed graph in

. 0(log n(n2-81)/p) time - units using P < n2-8i/jog

pLocessors. : <

3

Unilateral Connectivity

In the <case of finding ' the unilaterally connected

components of an n-node directéq graph’ G, Arjomandi [Bj
éhowed that the anumber of uniiaterally connected components
can ngW‘exponentiélly with n. It iMlies either exponential
time OCL-processcrs are requirea for any parallel algorithm
,(otherwise.the open question P = NP would be settled.) which
is . beyond the scope of this thesis. Ne§erthele3§; if the
problen iéllimited to verify hnilateral connectivity, we
construct a paralilel algorithm below which solves this
problem in J(log n(n2?81)/P) tinme ﬁnits with P £ n2:81/30g n

pProcessors.

. Find A", the reflexive transitive closure of A,
2. A"(i,j) <— A"(i,j) OR AU (j,i)
3. if A" (i,j)=1 ¥i,j then return® 'Unilaterally connected!

else return 'Non-unilaterally connected!
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Step | computes ;ll the reachable nodes from all ﬁodes}?
which <can be done in J(log n(n2-51)/P) timéﬁuhits,ﬁifh
'P.s'n2581/lpg n processors using Chandra's ”algorithm. By
definitiodf‘if“%“is unilaterally connected, fﬁere must_be at
least one path between each pair of nodes. This is siﬁulated
ip steps 2 and 3 using one andl2log n time units, and n2 and
tn2 /24 processorslgéspectively |

Hence, Algorithm UNi.CON takes 0(log n(n2-81) /P) time

units with P < n2:81/1og n processors.

Acyclicness .

L3

The problem of verify;ng acyclicness of a difécted
graph G can be reduced td‘computing the transitive closure
A" of G. If all the diagonal elements of A" are =zero, it
implies that there exists no cycle in G. The algorithm is as

follows.

Algorithm Acyclic

4
1. Find'A", the transitive closure of G
2. if Av(i,i)=0 ¥i then returmn 'Acyclic'
else returﬂ 'Cycl;c‘
Step 1 can be dome in 0(lcg n(n2-81)/pP) time units

’

: Z
using P < n2-81/]log -n processors. Step 2 takes log n tinme

units with tn/2! processors. Hence, Algorithm Acyclic takes |

0(log n(n2.81)/p) usinb P £ n2-81/]cg n processsors.

/

/7 )
s



. CHAPTER 4

AN CONCLUSION. "

4 .

. At
It has been demonstrated that un@gr an jdealized model

of parallel gpmpntétion, grarh problems can Le solved

efficiently bylrepresenting graphs as adjacency  matrices.

Two optimal élqorifhms were presented for computatinq_
A(n) = a(l)ea(Z)e..lsé(n), whose time bounds were proven to
be equal to thé} theoretical lower time boun%:—:; both
bodnded and unbounded parallelisq, where @ is any

associative binary operation. This result, fogether with the.

exploitation og‘ the rgaucibi}ity qﬁ-thé&;roblem size by‘at ~
least half after each iteratiaon, f;cilitateg the rgduction
of p;oce§scr requirements .by a factor cf {og‘g Sver the
existingiglgorgthms for a set of graph prokblems that'c;ﬁ be "

reduced +to the protblenm of finding ‘the contected components

of an n-node undirect . graph. Moreover, the mumigf\ of

processors needed to*\exetute each algorithm is ortimally

utilized (i.e., E(P) = O(1})).

>

In general, the technlque developed in Section 3.1.3

for "achieving the Frocessor reduptlon mentloned above can be

!

applied analogously to red:;e the processér requlrement for

any parallel algorlthm in whlch the problem 512e ks reduced

by at least half after each iteration. Eurthermore, if a

problem's xsize can be reduced by a factor of the square root
- J -

of n after each ‘iteration, O(login) time requirement can ke

v
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improved to O(logi—ln) by a similar tecbnigue where i > lf‘
An algorithnm POossessing this Froperty still awaits discovery
however.

AS poiﬁteﬁ cut in Section 2.2.2, the  processor
requirements of many existing pardllél graph algofithms weré
shown to bpe reducible by choosing the current best matrix
multiplication algorithm (i.e. Chandr@'s~parallei veésﬁon of
Strassen's algorithnm). By. using Chandra' algorlthm to
corpute <the tran51t1ve closure of an n- node dlrecteé graph,
- efficient paralle] algorithms were formulated for deggctinq
the existence of: negative cycles (in Section 4.2.2), finding
the strongly . Connected ‘Components,. verifying unilateral
connectivity and acyclicness (in Section 3.2), each using
J(log n(né-el)/P) time units with P < nz-al/log n
processors, s(2y = 0(P/log n) angd E(P) = 0(l/log n).

Ihe'construction ©f an 0O(log n) para;lei algorithm for
matrix hultiplicdtion using less than 0(rn2-81/]10g n)
prqcessors remaiﬁs an open problgm‘ whose sclution would
imply improvements on thé CoLresponding sequential algorithm
and many other matrix oriented problenms. N

The results in[ this thesis shoulgd Erovide a Lbetter
undgrstanding of‘the relationship of .programs to machine

organization offering ney insights into the design of

pPractical parallel computers, ¢
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