University of Alberta

Heuristic Techniques for Very Fast Solution of the

Mesh Spare Capacity Placement (SCP) Problem

by
4

Vipul Rawat

A thesis submitted to the Faculty of Graduate Studics
and Research in partial fulfillment of the requircments

for the degree of Master of Science.

Department of Electrical and Computer Engineering

Edmonton, Alberta
Fall, 1996

N fLib
B+l

Acquisitions and

Biblintheque nationale
du Canada

Direction des acquisitions et

Bibliographic Services Branch des services bibliographiques

395 Wellington Street
Ottawa, Ontano
K1A ON4 K1A ON4

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, loan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced withrut
his/her permission.

335, rue Wellington
Ottawa (Ontario)

Your tile votre télérence

Our le Nolre référeice

L’'auteur a accordé une licence
irrévocable et non exclusive
permettant & la Bibliothéque
nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de sa these
de quelque maniére et sous
queique forme que ce soit pour
mettre des exemplaires de cette
thése a la disposition des
personnes intéressées.

L’auteur conserve la propriété du
droit d’auteur qui protege sa
thése. Ni la thése ni des extraits
substantiels de celle-ci ne
doivent étre imprimés ou
autrement reproduits sans son
autorisation.

ISBN 0-512-18316-5

University of Alberta

Library Release Form

Name of Author: Vipul Rawat

Title of Thesis: Heuristic Techniques for Very Fast
Solution of the Mesh Spare Capacity
Placement (SCP) Problem

Degree: Master of Science

Year this Degree Granted: 1996

Permission is hereby granted to thie University of Alberta Library to reproduce single cop-
ies of this thesis and to lend or sell such copies for private, scholarly, or scientific research

purposes only.

The author reserves all other publication and other rights in association with the
copyright in the thesis, and except as hereinbefore provided, neither the thesis nor any

substantial portion thereof r - be printed or otherwise reproduced in any material from

[
C-06, Old Colony

whatever without the author s prior written permission.

Pilani, Rajasthan
India 333 031

Date:) ﬁbf/y\/)/' /994

Hare Krishna Hare Krishna Krishna Krishna Hare Hare

Hare Rama Hare Rama Rama Rama Hare Hare

University of Alberta

Faculty of Graduate Studies and Research

The undersigned certify that they have read, and recommend to the

Faculty of Graduate Studies and Research for acceptance, a thesis entitled

Heuristic Techniques for Very Fast Solution of the Mesh Spare Capacity

Placement (SCP) Problem submitted by Vipul Rawat in partial fulfillment

of the requirements for the degree of Master of Science.

Date: %ﬂ 2/ 7
J

[l

W. D. Grover

Olla &.02. G
M. H MacGregor a“/
4, |

A /// \ /
DLV A

\

Bruce C()ck_bu}n

Pawé(Gburzynski

Dedicated to my family and friends

Abstract

In the design of cost-optimized mesh-restorable networks, we .h 1o explore

new span additions. In the limji, O(N?) new spans could !« added to achieve a fully con-
nected mesh architecture, where N is t. » number of nodes in the network. To test all poss:
bilities, fast spare capacity placement (SCP) tools are needed because each span Idition
has a network-wide influence on the network survivability plan. Available SCP tools are
too complex to be considered for this purpose.

This thesis comprises a study of several original SCP heuristics for identifying
the best new span additions in a network. The two main principles considered are called
max-latching and network reduction. The max-latching heuristics are based on the concept
of placing spares by spreading the unrestorable working capacity of each span on its pre-
defined restoration routes and then latching the maximum spare capacity values forced on
each span. The network reduction heuristics reduce the network’s size through low com-
plexity network reduction algorithms. This is followed by SCP for the reduced network
through the max-latching heuristics. The reduced network is then expanded to specify the
SCP solution for the full network. Our results show that network reduction combined with
max-latching is much faster and almost as capacity efficient as integer programming (IP)

for the same problem.

Acknowledgements
I thank Dr. W. D. Grover and Dr. M. H. MacGregor for supervising this research

nr o ject. | alse thank Dr. W, D. Grover for financial support.

I thank TRLabs for providing resources both financial and material for the
research.

Finally, I would like to thank Ashish Duggal, Demetrios Stamatelakis, Jim Slevin-
sky, Rainer Iraschko, Danny Li, Ping Wan, and Winnie Tsang for creating a joyful envi-

ronment for this research.

Table of Contents

1 Introduction and Backgroundccoeeviiiiiiiinncniniiciinieinne e 1
1.1 Problem INtroductionc.ccciuirimeirceeiieneineneeeneee it eseassenns 2
1.2 Research ODJECTIVE ..ocveiiecerriieeiiirieircreesree sttt e s ee s ra s eeee e 3
1.3 Mesh Restorable Transport Networksccooviiviviinniniinniinnen 4

1.3.1 The NetWOrK ..occeiiiieiiciiic et 4
1.3.2 Span and Path Restorationcccvamniniinninniinnen, 4
1.3.3 Restoration as a Routing Problem ..., 6
i 4.4 {outing Criteria for Span Restorationcoeeececivvinnenniennne 6
1.4 spar Capacity Placement (SCP) for Mesh Restorable Networks 8
£.1 Complexity »f the Optimum SCP Problemcccooniiievincnnnnies 8
+ 7 Performance ¢ -iteria for SCP Algorithmscecvviiinininnnnne 9
1.4 C.] COMPLELILY oottt et 9
1.4 2.2 Network Restorabilitycccocvecemeveerunneniniccciennnecnennnes 9
1.4.2.3 Capacity EffiCiencycccvirinniiiriiincnnnnininninncnnn 10
}.3 Formulation of the Optimum SCP Problemccccconvvviinninnnnnnn 10
I 4.3.1 Cutsets Based LP Formulationc..cccceovniininnicnninennns 10
1.4.3.2 Flow-Assignment Based 1P Formulationcceocveenniane. 13
1.4.4 Prior Work on SCP Heuristicscocccuimninniinniniiininninennnncnennne. 14
1.5 OULHNE ...coereeeeceecnere ettt et sse st saer e s sbe e ssbesresrbrstessasasnssannsases 16
2 Max-latching HEUTISHCSoccvviiiniivintnniiniiniiinctie e 17
2.1 Restoration Routeset for the Max-latching Heuristicscccccovvviniins 18
2.1.1 COMPIEXKILY .evererrrcrriirnnieeisinenineeit st e b nans 22
2.2 Network Restorability Computationccevevveiiiiiinnnnrenesnenieninnienns 23
2.3 Order-Independent Max-latching Heuristicsccoevivivrivnnniennnnnnane. 23
2.3.1 Complexity of HeuristicOcoceuivminnnevinnninieneinnininniennnnnns 26
2.4 Order-Dependent Max-latching Heuristicsc.cocvvevemnveinienncnicninnnnn 26
2.4.1 Alternative Principles for Choosing Span Sequences 29

2.4.1.1 Time CompleXityccocvvmrvriiinmrnicirininnenerestnese s 30

2.5 Characteristics of the Max-latching Heuristicsccccoeevnvneenicinnniennnne. 31

2.5.1 Redundancy - Hop limit CharaCteristiCscceeverereveseereceinnsnanee 32

2.5.1.1 Ger~ral Characteristics of the Max-latching Principle33

2.5.2 Execution Time as a Function of Hop Limit ..o 42

2.5.3 Memory Usage as a Function of Hop Limitcceccovriiinecnnnn 43

2.6 Comparison of HEUTISHCS ..cevviiieiiiineinenireencnsn 44

2.6.1 Capacity EffiCiency ..ot 44

2.6.2 Execution Time and Memory Usageccociiiierivinncinininnneceranens 49

2.6.3 CONCIUSIONSeeivrercecrieirisenert sttt s te s e e sse e e nsenes 50

2.7 Design Tightening to Reduce Excess Redundancyccoceoceciinnnnnnnan 51
2.7.1 Performance of Max-latching Heuristics with Design

TIZRLENINE cocvveiceriririirir ettt st 52

2.8 Software Implementationccccimererieniieciinnniieenense s 57

2.9 SUMIMATY .ocoieieerirreneesisssiiesees roarssessnsssessesssestessisssssssnsesssssssassesasssssssns 58

Network Reduction and EXpansion ..., 61

3.1 Fixed Topology Identification and Substitutioncccecsverevinenvrscnennne 62

3.1.1 SCP Calculation for Subtopologiescevivveerineiniennirisieseniinnene 64

3.1.2 Network EXpansioncceeeieeieenineninnenieiiseeesenosse 68

3.1.3 Limitations of Fixed Topology Identification and Substitution69

3.2 A Greedy Method for Successive Chain-wise Reduction 70

3.2.1 Overall Greedy Reduction Algorithmcceveviminniiveniicinninnens 74

3.2.2 Representing Reduced Spansccocevveniiieenennnnniiseiinnn 76

3.2.2.1 Restoration Equivalent Modelccouvveviiniiinennininene. 77

3.2.2.2 Non-linearity in Reduced Spansccccveevnicenninincanens 79

3.2.3 Operations on Reduced Spanscccovrvnievieninenccnenncnsnescnins 80

3.2.3.1 INCTe@siNg Sgq wevvvvreerinmivnenseninnsissssssnsniississsisenessssees 80

3.2.3.2 Decreasing Weq w.cueurmciuisiiinimnisnninssneisssssssssssssenssssnns 82

3.2.4 Two Greedy Heuristics for Chain-wise Successive Network
REAUCHION .ccoviiiiiriienisnensinsnesssinnesersiisessesiesssesoee 4
3.2.5 SCP for Identified Chainsccccerennerrivnsiiiesniinnncnninsesenenssreannas &7

3.2.5.1 Substitution of Restoration Equivalent Model 93

3.2.6 Network EXpansionccoccvvvirieninieeiceen i 98

3.2.7 COMPIEXILY ..covverrieneiirriretiienentee et setesete et 98

3.2.8 Performance and Test Resultsc..ccccocooiiiiiiiiviin e, 98
3.2.9 ConClUSIONS ...ovevvieiee et ot et 161
3.3 A Backtracking Method 101
3.3.1 Network EXPansioncc.ccoceiieiiiiiiiie i sreesceesee e stes e 109
3.4 Software Implementationcocecceereririerinrreersienirineeieeereeeeee s ene e 11
3.5 SUIMMATY ..ociiiiiiiiiinencneriterie s resestereeeesesseeraaseeanaese s aeseeessesssensassassnnsnssases 12
4 Max-latching Heuristics And Network Reductioncccceveeevereenccienieneninns I14
4.1 Experimental Results Without Design Tighteningcccoevevvcenieennnn. 114
4.2 Experimental Results With Design Tighteningc.ccocovveevmvenriennnnen, 118
4.3 CONCIUSIONS ...vtiieiiiiereiireceineeeeeierereteeet e st e sseenas e e sr e e et e st e e e rannneane 120
5 Case Study of Network Topology Optimizationcceceeenrceiricrersinnnenen. 121
5.1 Experimental ReSUltsc.cccoveviiimriiiierencerereninrsverrcrescesesesncesnsnnns 122
5.2 CONCIUSIONSuovrrirvieriierissusrinnensenrnsnesinsscsmssesassesssesneseseseessonessseensensenes 126
6 SUMMArY Of THESIS ..ccveeviierrirrericriereeniinnserstrisseseese e svaseree e e ssaessn et e s nnasasases 128
6.1 FUtUre WOTK ...oovriiniiiiiiiciericcicninirsciscseisoste st eeseereseesssontesnsasoneens 131
BiblIOZIaPRY ..vcoveiuiiiivunrnenissiineeseminiemnneressiessinencoismosnessnissossaessonssssessessessssersssassens 132

Appendix A Test NEtWOIKScccoviriirineieiemincciieneceeienseessseesncsessenns 136

List of Tables

2-1
2-2
2-3
2-4
2-5

2-6

2-7

2-8
29
2-10
2-11

2-12
3-1
3-2 (a)
3-2(b)
3-3
3-4
3-5
3-6
37

3-8
4-1

Events for finding restoration routes for span 7ccccvevivieneneninnennes 2l
Networks Investigatedcccoviniiiininiiiinis cnieeisneniessee s 32
Redundancy vs. hop limit for the four test networkscooveevenicnnecnenn 33
Range of Region II for the considered heuristicscccc.cocvveinenniiinnns 47

Comparison of HeuristicC1 and HeuristicC2 with IP at practical

hOP LIMIS oo 48
Comparison of HeuristicC1 and HeuristicC2 results with those

of IP using large hop limits ..ot 48
Comparison of HeuristicA2 and HeuristicB1 with IP at practical

hOP HIMILS eerviiiiiiinicteritte s s 49
Execution time for heuristics at practical hop limitscccoeveverenienneene. 50
Comparison of heuristics after DT with IP at practical hop limits 55
Comparison of heuristics after DT with IP using large hop limits 56

Decrease in redundancy for HeuristicA2, HeuristicC1, and

HeuristicC2 after DT ..ottt s snsnesiessesneseenns 56
Execution times for DT ..., 57
An example showing representation of Seq_rel for a chain 95
An example showing representation of Weq_rel for a chain 97
An example showing representation of Seq_rel for a chainc....c.c.... 97
Test networks for network reductioncouiieninineneienennnncennnecinen 99
Comparison between NRG1 and NRG2ooiveniivininininiiniiniinnns 99
Comparison of NRG1 and NRG2 With IPcoeviinmrirnncniiinenccinenenns 160
Network reduction gain for Netl, Net2, Net3, and Net4ccoecvereinnn. 100
An example showing a limitation of non-linear span representation

fOr BACKIACKING «..vovvveeiieeieisrerenieruisistncr sttt esasaesssnsse st esessnssaasasnsas 104
An example showing representation of Rearrange_rel for a chain v 109
Comparison of NRRBT2-HeuristicA2 and NRRBT2-HeuristicC1

with IP at practical hop HMitsccceveviverenrincnnnininienininesenesnsiestneaeses 117

Comparison of NRRBT2-HeuristicA2 and NRRBT2-HeuristicC1

4-6

5-1
5-2 (a)
5-2 (b)
53
5-4
5-5

with IP using large hop limits ..ot 117

Execution times for some combinations, IP. HeuristicA2, and

HEUTISHCC T oottt ettt 11N
Redundancy of combined network reduction - max-latching heuristics

at practical hop limits after design tighteningc.oooooviniviien e, T
Comparison of NRRBT2-HeuristicA2 and NRRBT2-HeuristicC1

(after DT) With IP TESULILS ...oovevieeiiiiie e s e 119
Execution times for combination (1), IP, HeuristicA2, and

HeuriSticCl ..ot eeerees e et ener e 19
IP results for six new span additionsccccecveeiviierieecn e, 122
Heuristic results for six new »pan additionsccccoveeeieeceiicesieveeenecnnne. 123
Heuristic results for six new span additionsc.ccceeieveereeiecviie e e 124
Ranking of spans on the basis of the number of linkscccooccvvvenennnnne 124
Ranking of spans on the basis of real distancesccocovevivcncinnicnnene. 125
Execution time for the heuriSticsccccovervierniinerneie e 125

EXecution time fOr IPeeeecviiiiiiiiieieeeeeeeeee ettt eee e e e e e e e 126

List of Figures

I-1 The network reduction approach for tast SCP ..o 3
-2 Span and path Testoration ... s
1-3 Cutsets between nodes 1 and 2 ..o e 7
1-4 Description of the elements of constraint Setoocoveiiicniniicninn 12
2-1 Organization of the restoration routeset of a Spanc.cccecevniiiinnnnis 19
2-2 An example of backtracking algorithm for finding restoration routes 21
2-3 Search tree generated during backtrackingeoveonnccniininnin 22
2-4 An example of an order-independent max-latching heuristic 25
2-5 An example of an order-dependent max-latching heuristicc..ccoeveus 28
2-6 Ideal redundancy - hop limit characteristics for Netlccooviiiiniiens 32
2-7 Redundancy vs. hop limit for Net]cccovivininiieninnennn cvererneenaes 34
2-8 Redundancy vs. hop Iimit for Net2 ..., 34
2-9 Redundancy vs. hop limit for Net3 ..., 35
2-10 Redundancy vs. hop limit for Netd ..o 35
2-11 Average number of spans used per span for restoration as a function

of hop limit for Net2...........cceuenene: eeerteeteseeessesietssest e et e s s eRr e e R s aeaes 36
2-12 Average restoration path length as a function of hop limit for Net2 37
2-13 Over-restorability vs. hop limit for Net2ocvvveeerniinninrinienseininnnesnn: 38

2-14 Comparison of the modified and the original hop limit characteristics

FOF NEE2 L.iiiriicienrenerieennescresteie it sas s s be st s s e stssas e st sassatsbesnnsnsnssosssns 38
2-15 (a) Redundancy vs. hop limit for diree scalings of the same working

capacity distribution, for Net4 bresseestesasstassesisesternesbrearennaies 40

2-15 (b) Redundancy vs. hop limit for two scalings of the same working

capacity distribution, for Net4cccvvmrminniinieniieeiencns 40
2-16 General redundancy vs. hop limit curves for max-latching heuristics 41
2-17 Execution time vs. hop limit for Heuristic0 in case of Net4 43
2-18 Memory usage vs. hop limit for Net4cccvvevnevmnninicenninnenniinncnnns 44
2-19 Comparison of order dependent heuristics for Netlocoevevereiiininnicncinnen, 45

2-20 Comparison of order dependent heuristics for Net2cccoeoivicicvniiicinens 46

2-21
2-22
2-23
2-24
2-25
2-26
3-1

3-2

3-3
3-4

3-5
3-6

3-7

3-8
39
3-10
3-11

3-12

3-13

3-14

3-15

3-16

3-17

Comparison of order dependent heuristics for Net3cooovviieeiiinnnnnnn, 46

Comparison of order dependent heuristics for Netdcccveveveeriennnnnn. 47
Comparison of heuristics with and without DT for Netlcc......... 53
Comparison of heuristics with and without DT for Net2ccccccveune.... sS4
Comparison of heuristics with and without DT for Net3ccccouue.. 54
Comparison of heuristics with and without DT for Net455
The predefined set of SUbtOPOIOZIEScoovevuermiiiiiirinriernieseeeeee e 63

Example of a subtopology (between 1-2) having a high degree of

internal CoNNECHIVILYocccieriieriniiceecic et 64
A chain SUBIOPOIOZY «...eocueeeiiieiircr ettt 64
A simple four node isolated subtopology connected to the remaining

NEtWOork at NOAES 1-2covuiiieiiiiiicinricicten et st sae e e 65
Final SCP internal design of the 4-node (1-2) subtopologycccccuenuen. 67

An example of a subtopology whose SCP can be reduced to solving
a system Of three CONSIIANLScocceeinireniireerriineerseneeseseessseereeeseessesssnnens 68

An example of a subtopology whose SCP involves solving

interrelated CUtSEt EQUALIONScc.eeceervieeiecreeenereeeinoenneresesneeneereseasnessens 70
Chain-reducible subtopologies in Netlccccoviniciivviinicncnncnnnnenn. 71
Chain-reducible subtopologies in Net2cccocvimiievniniicnennincinnnnn, 71
A greedy method for chain-wise successive network reduction 72

An example showing the importance of minimizing W, at cach

] 1 (- OO OO TP 73
Overall greedy algorithmcccccocvmivniiiiciniii s 75
A simple SUBLOPOIOZY ...cocvevririinmiiriniiiciiiiiiic e 76
A TYPE4 reduced Spancconinvnnniicnininininesene s 77

HNlustrating the non-linearity in S¢, of reduced spans as spares are

An example illustrating NRG1 and NRG2 greedy heuristicsu... 85

3-18
3-19
3-20
3-21
3-22
3-23

3-24

3-25

3-26

A-10

An example showing SCP of a chain ..., 87

An example of the case (d) of SCP calculation Stepccocvviviieinne 92
An example for non-linear span representationcoeceeereieiiniinisnens 95
An example showing the need for non-linear span representation 96
An example of backtracking for network reductioncooecvvirininnns 103

An example for showing limitations of non-linear span representation

of complexity O(N) for backtrackingeeevevveicoeniiicnnnininninninnnn. 105
An example showing rearrangement of spare Capacitycoeeeieeenrinne. 107
An easy method for avoiding rearrangement at Stat€ Q|oecveeririinincnes 108
An ¢xample showing rearrangement during network expansion 110
Redundancy vs. hop limit for Netl ... 115
Redundancy vs. hop limit for Net2covvvinininininenccniiinns 115
Redundancy vs. hop limit for Netdccccovivinninininninnnnne. 116
Six new span additions for Netdccceerervinienecencnoncnncsinne 122
NELT coovtiireeer e et sreres e erentesee st sre st s s b st e e a e be st s e s s b e aesna s e e s suonesanesssatas 137
NEIZ cnvireeererieenresreeeresssteresesrte st ses s s be b b s bssnaens iossestaresstsssssesnssssanssiss 138
L= SO OO U OO OOP IO PP 139
INELA c.veivierecrenterieieererrsre e srerssesacenot e ts b st e s bbb s sbe s s e R e s assbsnsaasssn s nteanntsbabes 140
NELS coeereirieeiererreesesesse s esiessesistossesstesessnesessassrasssssanessstsorssnasassnssssnsentostesess 141
NEIO .vecverreerererieiesterrriesesrerssesaeetestesssssss st bassbesesaesessssssssstsssssssssastasessssssnes 142
INELT cereeteeieecneieeeseses st sess e besa et bs sasbnesaaa s ne e st b e s ae e sassssasstenesatsarais 143
Net8 and NEtO.......oi ittt serssessssssssssssssssrssssessessse 144
NELTO oottt sa e st r e s b e b e e ek s s bs s g e nera e saaseeuns st susnass 145
NELIT ottt cae s steee e saeostsessabossssrnebssanerasensabansasbasssnsassassesnasssans 146

Symbols and Abbreviations

d A constant network-wide node degree.
dave The average node degree of the network.
DCA The direct cutsets algorithm.

DCS Digital crossconnect system.

DT Design tightening.

H Hop limit

ICH Iterated Cutsets Heuristics.

IP Integer program.

KSP k-shortest path algorithm.

LP Linear program.

N Number of nodes in the network.

NP The set of problems that a non-deterministic algorithm can solve in

polynomial time.

NRGl1 Network reduction greedy heuristic which maximizes S,,.
NRG2 Network reduction greedy heuristic which minimizes W,,,.
NRRBTI Network reduction restricted backtracking heuristic which

maximizes S,.
NRRBT2 Network reduction restricted backtracking heuristic which

minimizes W,,.

0; State i of chain-wise network reduction.

r; Reduced span i.

R, The restorability of the network.

Ry, The restorability of span i.

Rearrange _rel Relations for rearranging spare links in a chain.

S The number of spans in the network.

So Spare capacity on the span joining the end nodes of a chain.
S; Span having maximum working capacity in a chain

S, Span having maximum working capacity in a chain after S;.

Seq

S e

Seq(chain)
Seq(chains)
Seq_rel
SCP

SLPA

SP-ring

Wo.efr
Wey
W,
w2,

Weq(chain)
Weq(chains)
Wejj(chain)
w, ﬁ(chains)
Weq_rel

W,

i

Wmar

Spare capacity equivalent,

Spare capacity equivelent of S;.

Spare capacity equivalent of a chain.

Spare capacity equivelent of parallel chains.
Relations for increasing S, (chain).

Spare capacity placement.
Spare Link Placement Algorithm.
Shared protection ring.

Th~ number of spare links on span i.

Total spare capacity of a chain.
The maximum number of working links on a span in the network.

Working capacity of a span joining the end niodes of a chain.
Effective working capacity of the span joining the end nodes of a
chain.

Working capacity equivalent.

Working capacity of span S;.

Working capacity of span 5.

Working capacity equivalent of a chain.

Working capacity equivalent of parallel chains.

Effective working equivalent of a chain.

Effective working equivelent of parallel chains.

Relations for decreasing Weq(chain).

The working link capacities vector, the number of working links on
span I.

The maximum working capacity on a span in the network.

Glossary

Non-linear spans: Spans whose spare capacity equivalent increases non-linearly with

- \are capacity.
«-z2] span: An original span of the network.
Reduced network: The network obtained by running the network reduction algorithm.

Reduced span: A span which represents a subtopology or a combination of spans belong-

ing to a subtopology in the network.

Restoration equivalent model (W,,,S,,): Representation of a subtopology by a reduced

span with working and spare capacity equivalents.

Span: Logical connection between two adjacent nodes in a network through which carrier

signals flow.

Spare equivalent (S,,): Spare capacity offered by a span to the rest of the network.

Working equivalent (W,,): The amount of restoration capacity which a span requires from

the rest of the network.

1 Introduction and Background

The issue of public network integrity is of prime importance in today’s telecom-
munications networks [1 - 3]. High capacity fiber-optic transmission systems (FOTS)
form the backbone of today's telecommunications transport networks and are highly sus-
ceptible to cuts {4,5). According to some availability analyses [6,7], for the 200 span Tele-
com Canada network with an unavailability of 0.096% per span, the probability of a single
span failure per year over all spans is as high as 15.86%. The probability of two or more
simultaneous independent span failures is 1.6% per year. Survivability against single span
cuts is therefore very important. Traffic carried by the failed spans is restored through
diversely routed spare transmission capacity in the network. This restoration must be done
within two seconds in order to avoid dropping the calls associated with the lost carrier sig-
nal {2,9].

Over the past decade, significant effort has been put into cartic ;ility restora-
tion research and advanced methods have evolved. Restoration methods based on digital
crossconnect systems (DCS) offer the prospect of transport networks that are restorable
within one or two seconds [2,3,10-13]. These methods exploit the mesh-like topology of
real transport networks by sharing the spare capacity of the network for the restoration of
every span in the network. Since spare capacity is not dedicated for restoration of any sin-
gle span, the routing plan for the failed span is determined at the time of failure. The net-
works that result are called mesh-restorable networks.

Mesh-restorable networks are more capacity efficient than their shared protection
ring (SP-ring) and 1+1 diverse protection counte: arts. This difference can be a factor of
three to six for typical networks [3]. Fully restorable mesh networks can approach a limit-
ing redundancy of /(d,,, -1), where dgy, is the average node degree of the network [8],
while the minimum redundancy for SP-ring and 1+1 diverse systems is 100% [3,8]. Mesh
networks are also inherently more flexible in that traffic need not be accurately forecast.
These networks are less sensitive to service growth and have the potential for automated
service provisioning, traffic adaptation, and network surveillance [17,18]. The restoration
response times for SP-rings and 141 diverse protection approaches are on the order of 50

msec, but the advantages of mesh-restorable networks make them a potential choice for

future survivable network architectures.

Two main research areas in mesh-restorable networks are fast and efficient mech-
anisms for restoring failures, and cost minimization through optimized placement of spare
capacity in the network. This thesis deals with the placement of spare capacity for restora-

tion of a single span failure in mesh-restorable networks.

1.1 Problem Introduction
Our aim in the present work is to efficiently address the problem of adding new

spans between some node pairs of an existing mesh network. In the limit, O(N?) new span
candidates could be considered, where N is the m. ~er of nodes in the network. The most
efficient approach is to optimize the network topology and its working and spare capacity
placement simultaneously, but this is a very difficult problem to solve. Another potential
approach is to optimize working and spare capacity simultaneously for each potential new
span addition, and then select the most economical design option.

A relatively simple approach is io consider topology optimization, working
capacity placement, and spare capacity placement as separate sub-problems. This would
involve four steps: (1) listing a set of potential new span additions; (2) routing working
paths after each potential span addition; (3) generating the spare capacity placement
design for the network topology obtained in (1) with the working capacity placement of
(2); and then (4) calculating the total network cost associated with the new design.

However, the currently availat': spare capacity placement (SCP) algorithms for
mesh restorable transport networks are computationally complex. To test many potential
span additions, fast spare capacity and working capacity placement tools are needed. Low
complexity working path routing algorithms based on shortest path routing are already
available but low complexity spare capacity placement approaches are not. Furthermore,
for this problem it is not required in practice that the SCP results be strictly optimal: fast

and reasonably accurate SCP solutions are needed.

1.2 Research Objective

The mandate of this thesis is to explore different approaches for designing fast
SCP heuristics with near-optimal spare capacity placement results. The main motivation is
to develop a fast method to identify 1 few potential new span additions for designing effi-
cient mesh restorable networks. The best-ranked of these potential spans can then be ana-
lysed in detail using integer programming (IP).

The main approach followed in this thesis for designing fast SCP heuristics is
based on the following hypothesis: the execution time of SCP algorithms depends on net-
work size. It could therefore be reduced by reducing the network, doing SCP for the
reduced network, and then expanding the reduced network’s SCP solution to specify the

full network’s SCP solution, as outlined in Figure 1-1.

Input:
network topology
with fixed working
capacity placement | e ~pyr REDUCTION | Reduced network
——— > STAGE
G(w,s) G (w,s)
SPARE CAPACITY
G'(w,s) PLACEMENT FOR
complete net- | THE REDUCED
work reduc- NETWORK
- tion case
G (w,s)
-
Output: NETWORK EXPANSION |eg¢— ———
input network with STAGE Reduced network
complete SCP (after SCP)
design G™(w,s)

Figure 1-1: The network reduction approach for fast SCP

In Figure 1-1, the network G(w,s), with fixed working capacity placement w and

a null or initial default spare placement s, is first reduced to G (w,s) through network

reduction. SCP of G*(w,s) is then done, and the network obtained after the SCP is

G"(w,s). The network G**(w,s) is then expanded to the original network G***(w,s) which

specifies the complete SCP design for the network G(w,s). In some cases the network

G'(ws) is a completely reduced network (i.e., a network consisting of only two meta-

nodes and a meta-span joining them), and in such cases G*(w.s) is directly expanded to

G"**(w,s) for generating a complete SCP solution.

The SCP of the reduced network, G*(w,s), may be done through heuristics based
on the max-latching heuristics developed in this thesis, or by conventional IP methods.
Max-latching heuristics involve three steps: (1) finding a suitable set of topologically fea-
sible restoration routes for each span in the network; (2) evenly spreading the unrestored
working capacity of each failed span onto its corresponding restoration routes; (3) latching
the maximum spare capacity values obtained for each span to generate the SCP design for
the network. This thesis tests these fast SCP heuristics against integer programming for

identifying potential new span additions in a network.

1.3 Mesh Restorable Transport Networks
1.3.1 The Network

The carrier transport network is comprised of nodes and spans. Nodes are
equipped with digital crossconnect systems (DCS), with the capability to switch carrier
signals automatically. Spans are the logical connections between two adjacent nodes
through which carrier signal(s) flow. A span consists of many links, where a link is an
individual bi-directional DS-3 or STS-n carrier signal. In general, a link is the smallest
unit of capacity which the DCS at a node manages. Links are of two types for restoration
purposes: working links and spare links. Working links carry live traffic, while spare links
are not in service though they are fully operational. Spare links are used for restoration of
failed working links. Spans concatenated together form a route, and links concatenated
together form a path. The logical length of a route is the number of spans present in it, and

the real length is the sum of real distances of all its spans.

1.3.2 Span and Path Restoration
Span restoration re-routes failed working units over a set of replacement paths
between the two end nodes of the failed span. Path restoration re-routes the failed work-

ing units over a set of replacement paths between each source and destination affected by

the failure. Figure 1-2 shows an example in which the failure of span CD affects two
working routes: A to F and K to G. Span restoration finds replacement path segments
between nodes C and D, whereas path restoration finds end-to-end replacement paths for

the demand pairs A-F and K-G.

Origin 1 _Destination 1

Origin 2

(b) Span restoration

<)

Cx-

(c) Path restoration
Nodes selected fi smeems End to end = = = Failed span
re(s)torsaie'i%: cled for traffic path

Figure 1-2: Span and path restoration

Path restoration can be more capacity efficient than span restoration as it spreads
the replacement paths over a larger portion of the network, increasing the alternatives

available for making efficient use of the network’s spare capacity. However, path restora-

tion is more complex to implement than span restoration as it may involve finding replace-
ment paths for several source-destination pairs at once. Indeed the SCP problem for path
restorable networks has only recently been solved [28].

This thesis is limited in scope to span-restorable networks. Future work may be

able to extend the fast heuristics developed here to path-restorable netw orks.

1.3.3 Restoration as a Routing Problem

Restoration of the failed span’s werking links involves substitution of link dis-
joint replacement paths between the end nodes of the failed span. Each span muay bear
many parallel links and each link bears a carrier signal. A carrier signal completely fills a
link and its corresponding replacement path in space, time, and frequency. Thus, one res-
toration path is dedicated completely for restoration of one failed link at a time. The resto-
ration paths for a failure must therefore be mutually link disjoint throughout, i.e., there is
no sharing ~f Lizks between any two restoration paths for the same failure. Formulation of
the routing w1 for span restoration is discussed in detail elsewhere {2, 3].

1.ie ~oating required for restoration is different from conventional packet routing
in packet data networks and call routing in alternate-routing call networks [2, 3]. For res-
toration, each link is treated as a separate entity, therefore the transport network is a multi-
graph. On the other hand, packet data networks and alternate-routing call networks treat a
span as a single entity by routing packets and calls nondisjointly over spans; these routing
processes operate on simple graphs. There are many attributes by which restoration rout-
ing differs from packet and call routing (2, 3]; however, for this thesis, multi-graph net-
work representations and link disjoint routing are the important distinctions from packet

and call routing.

1.3.4 Routing Criteria for Span Restoration

The maximum flow between two nodes in a transpor’. network is given by the
capacity of the minimum cutset between the source and target node. A cutset is any set of
spans which, if removed from the network, divide the network into two disconnected sub-
graphs. In our context the flow associated with any cutset is the sum of the spare capacities

on its spans, excluding the spare capacity of the failed span. Figure 1-3 shows the cutsets

between nodes 1 and 2; the maximum flow after the failure of span 1-2 is the minimum of

the spare capacities of the three cutsets, i.¢., the minimum of s5y3+524, S23+534, and s, 3.

ey

523

$12 ‘

$24

Figure 1-3: Cutsets between nodes 1 and 2

The maximum flow between the two nodes is determined by the min-cut max-
flow theorem [19]. Restoration routing based on the max-flow theorem is optimal as the
maximum flow calculation determines the maximum number of restoration paths availa-

ble for any routing mechanism. The worst case time complexity for computing maximum

flow is 0(N3). N being the number of nodes in the network {19]. In addition, the maximum
flow calculation does not directly yield the restoration pathset that will yield the predicted
maximum flow. This must be found with a secondary computation.

Available DCS-based distributed mesh restoration methods [2,10,11,13] tend to
closely emulate or reproduce the pathset generated by a k-shortest path (KSP) algorithm
[2,12] although they do not operate algorithmically in the same manner as centralized
algorithms for these problems. A classic KSP algorithm generates a pathset by selecting
the shortest path, then the next shortest path that is link disjoint from the first, then the
third shortest path that is link disjoint from the first two paths, and so on, until k paths are
identified. The worst case complexity of finding k-shortest paths using Dijkstra’s shortest
path algorithm [20] is O(k - N - log (N)) [8, 29]. KSP, therefore, is computationally sim-
pler than maximum flow and yields a detailed pathset ready for deployment. One issue
therefore becomes: what is the restoration capacity penalty if KSP is used instead of max-
imum flow? Previous work concludes that KSP restoration capacity is more than 99.9% of

that from maximum flow in typical networks, and that this slight difference is due to a

generalized trap topology [21]. The chances of occurrence of such a trap topology are low.
Furthermore, when excess spare capacity arising from provisioning large modules is con-
sidered, there is expected to be virtually no penalty in practice arising from the use of KSP
as opposed to maximum flow. KSP is therefore an effective and practical routing model

for span restoration.

1.4 Spare Capacity Placement (SCP) for Mesh Restorable Networks

This section discusses the optimum SCP for mesh survivable networks, and sum-
marizes some of the algorithms available. The issue which the SCP problem addresses is:
Given a restoration algorithm or a restoration routing reference criterion such as KSP,
what placement of spare capacity ensures a target level of restorability with a global min-

imum of spare capacity?

1.4.1 Complexity of the Optimum SCP Problem

In general, minimum total capacity is the aim of an SCP algorithm. The problem
of optimum SCP for mesh-restorable networks is complicated because the spare capacity
on one span can contribute to the survivability of many other spans, and the protection any
span contributes to any other span depends on the spare capacity of all other spans. Direct
search among all permutations for fully restorable networks is clearly infeasible in even
the smallest problem of interest.

Some recent work has shown that the problem of finding a Hamiltonian cycle in a
graph is polynomiaily reducible to the optimum SCP for a mesh-restorable network with
one unit of working capacity on each span [8]. The problem of deciding whether there is a
Hamiltonian cycle in a graph is known to be NP-complete; therefore, the problem of opti-
mum SCP for mesh survivable networks is believed to be NP-hard (the set of problems at
least as hard as NP-complete problems). NP-complete problems are the ones for which we
suspect no algorithms exist that can guarantee their solution in polynomial time [22]. An
exact solution to optimum SCP therefore, cannot be guaranteed in polynemial time. Most
of the existing SCP algorithms and the approaches considered in this thesis aim for near-

optimal SCP designs.

1.4.2 Performance Criteria for SCP Algorithms
Complexity, network restorability and capacity efficiency are the main perform-

arce criteria for SCP algorithms.

1.4.2.1 Complexity
The complexity of an algorithm is a measure of the execution time, memory, <tc.
it needs, as a function of the problem size. Complexity can be determined empirically or
theoretically. Empirical analysis is used to predict the average case behaviour of the algo-
rithm by running it on a suitable number of problem instances and observing the running
time. Theoretical analysis can often be used to determine worst case behaviour. In prac-
tice, complexity is expressed in a notation which provides an upper bound to complexity
within a multiplicative constant. Mathematically:
g(n) = 0(f(n)) (L.
means that there exist constants C and ng such that
lg (m)| < Cf(n) (1.2)
for all n 2 n. Here fin) is a specific mathematical function of n such that a positive real
multiple of f{n) exceeds the amount of resources consumed by the given algorithm. » is
the problem: size, and n) is the threshold value for the problem size beyond which equa-
tions (1.1) and (1.2) are valid. For example, if the time complexity of algorithm A is pro-
portional to its problem size for n greater than some threshold ny, then the complexity of
algorithm A is O(n).
For fast SCP, time complexity is of primary concern. Therefore, this thesis
emphasizes and seeks low-order worst case time complexity approaches for solving SCp

while retaining reasonable or manageable space complexity.

1.4.2.2 Network Restorability
Restorability is the most important requirement imposed upon SCP algorithms.
Restorability of a span is the fraction of its working links restored. For the failure of span

i, if k; is the number of available link disjoint restoration paths and w; is the number of

working links on the span before failure, the restorability of an individual span Ry; is

defined as:

min (w, kl.)
= —_— (1.

W
vy

s

The overall nenvork restorability, R,, is the ratio of the total number of working

links restored in the network to the total working capacity of the network. 1t is expressed

as:

S S
z min (w, k) z Rm. W,

R, =1=1— = (1.4)

) ’
Z“i 2%

{=] =]

where S is the number of spans in the network. The target network restorability for all the

approaches in this thesis is 100%.

1.4.2.3 Capacity Efficiency

The capacity efficiency of a design is reflected in its redundancy:

S
ZS.-

Redundancy = ';—’— (1.5)

2w

=l
where w; and s; are the working and spare capacities on span /, and S is the number of
spans in the network. Note that comparing network spare capacity designs on the basis of

redundancy is only meaningful if ZWi is constant across the alternatives considered. This

will be the norm in the following work.

1.4.3 Formulation of the Optimum SCP Problem
1.4.3.1 Cutset Based LP Formulation

Most approaches to solving the optimum SCP problem aim at minimizing the
total spare capacity in the network while achieving a target restorability level. The SCP

problem can be stated as [8]:

S
min 2 Sj (1.6)
j=
subject to:

R =Lw20520 Vie (0..5) (1.7)

n
O0<L<]
where S is the number of spans in the network; s; and w; are the number of spare and work-
ing links on span i; L is the desired restorability level; and R, is network restorability. The
constraint on network restorability can be written as a vector of constraint relationships
pertaining to the restorability of each span individually:
k;2L-w, Vie (0...5) (1.8)

where k; is the number of restoration paths available for span i. The min-cut max-flow the-

orem states that the number of restoration paths available for a span is dictated by the min-

cut associated with it. Therefore, in order to satisfy the above equation, the spare capacity

of each cut associated with span i must be greater than or equal to L - w;. The cutset con-

straints can be expressed as a linear program (LP) or integer linear program (IP). The IP

formulation for the SCP problem in terms of cutsets can be stated as [8}:

S
min 2 sj
j=1
subject to:
C.s2w*.L (1.9
5; Wj->-0 Vje (0...5) (1.10)

The above equation is presented in an expanded form in Figure 1-4. C is the N xS
cutset matrix of the network, where N, is the number of cutsets used in the solution, and §

is the number of spans in the network. C consists of cutsets corresponding to the failure of
each span. Each row of C represents a cutset, and each column represents a span. The

spans in the cutset are represented by 1's and those absent are representc:! by O’s.sisa

vector of length S, and each element s; represents the spare capacity on a span. w'is a

. . . * .
length N, vector of working capacity, where each w; in w appears as many times as there
are cutsets for constraining the restoration capacity of span i. w; appears as the j-th ele-

* . . - . -
ment of w if the j-th row of C represents a cutset constraint for ensuring flow tor w;.

*
C S w
* e - - =
ey
82
_________ . . > L]
N, cutset . Wi n oceurrences
constraints| n cutset constraints 5 of wiinw
for span i) w;
$
| S
v L _ I
<¢— Sspans —p

Figure 1-4: Description of the elements of constraint sct

An important consideration in this formulation is that the number of cutsets N,. in
a network grows exponentially with the network size N. In a fully connected network, the
maximum number of cutsets is 0(2N). Of these 2N combinations, half of the combinations
are not distinct as each assignment is repeated twice. Also, in two cases, one of the sub-
networks is devoid of nodes. Therefore, the maximum number of cutsets is (2N-1 -1, but
this is still O(2").

The above approach is called the direct cutsets algorithm (DCA) [8]. DCA
involves finding all the cutsets of the network to form the constraint set for LP, minimizing

total spare capacity in the network and then rounding off the real-valued spare capacities

obtained after the LP run. The complexity associated with the first step is 02N}, as 012Y)

iterations are needed to find all the constraints. Therefore, this step alone makes DCA

exponential in time complexity. The simplex method is a well known method to solve the
LP problem, and its worst case complexity is also exponential. Some methods for solving
LP problems in polynomial time are available [22] but these methods are very complex.
The complexity of rounding the real-valued spare capacity for each span is negligible as

compared to that of generating the constraint set. The complexity associated with this step

isO(S - N3), where N is due to max-flow [15], which must be run S times. IP can be used
instead of LP in step 2 and 3 but it is NP-hard. Therefore, the complexity of the DCA algo-
rithm is exponential, and this complies with the NP-hard nature of the optimum SCP prob-

lem.

1.4.3.2 Flow-Assignment Based IP Formulation

‘The constraint set for LP or IP-based SCP approaches can also be specified in
terms of flow constraints that are based on a suitable subset of all distinct topologically
feasible or “eligible” restoration routes. Such approaches involve two main steps. First all
distinct restoration routes must be found for each span failure, subject to a suitable hop
limit, distance limit, or other practical criterion for defining “eligible” routes. The con-
straint set is then generated based on these routes such that each span failure is fully
restorable under the aggregate flow assignment to each of the eligible routes. Then IP is
run to satisfy this constraint set with a minimum total spare capacity in the network. Lin-
ear programming can be used instead of integer programming to find a lower bound, but
may involve fractional, unrealizable flow assignments on routes. An IP formulation using
the flow assignment approach for 100% span restorable network was first reported by
Herzberg [24] and developed further by Iraschko et al. [25].

The complexity of this formulation is exponential as the complexity of finding all

distinct restoration routes for all failed spans and solving the IP are both exponential.

0(2°) distinct restoration routes are possible in a network of S spns. A suitable hop limit
can be used to limit the size of the restoration routeset for all spans [24]. Limiting the
number of restoration routes for each failed span also reduces the number of constraints
and variables for the IP problem, and in most cases this reduces the execution time of IP.

The complexity of finding all restoration routes for S spans, up to a hop limit of H, is

13

O(S(da\,‘g -1H) [24]. In addition, solving the IP is exponential, and therefore the worst
case complexity of this approach is also exponential. However, this approach does yield
details of the actual paths used to restore each span failure, which is helpful when evaluat-

ing the performance of mesh restoration algorithms.

1.4.4 Prior Work on SCP Heuristics

Since optimum SCP for mesh survivable networks is NP-hard, there is no poly-
nomial time algorithm which can guarantee an optimal solution. Therefore, heuristic
approaches which have polynomial complexity and generate near-optimal solutions have
been considered for solving the SCP problem. Over the past eight years, significant effort
has been put into designing heuristics for generating near-optimum SCP designs. This sec-
tion summarizes some of the available heuristic approaches.

The Iterated Cutset Heuristics (ICH) formulates SCP as an LP problem subject to
constraints based on a subset of cutsets of the network [8,13,23]. The initial constraint set
for ICH consists of only the incident cutsets of every node. An LP is executed for SCP,
subject to this constraint set. If the resulting network is not fully restorable, one bottleneck
cutset for each unrestored span is identified and added to the previous constraint set. The
LP is then executed with the augmented constraint system. After a few iterations, the net-
work typically becomes fully restorable with a near-optimal SCP solution.

The three primary components of ICH are executing the LP, augmenting the con-
straint set, and iterating these two steps. The execution time of the LP is dependent upon
the number of constraints. ICH starts with a constraint set of size O(S). At each subsequent
step, at most S additional constraints are added, representing the case where none of the

spans were restorable, and all these constraints can have no more than S spans. Therefore,
the size of the constraint set for iteration i is O(iSZ). In general, only a few iterations are

needed to achieve full restorability for typical networks and the SCP results are very close

to the optimal values [8,23]. In the worst case, 0(2N) iterations are needed to generate a
fully restorable SCP design. Thus, the worst case complexity of ICH is exponential.
The Spare Link Placement Algorithm (SLPA) is a greedy algorithm which makes

successive improvements in maximizing restorability with minimum additional redun-

14

dancy by adding, subtracting and redistributing spare capacity [8, 14, 23). It consists of
two phases: forward synthesis and design tightening. The objective of forward synthesis is
{0 attain a target restorability with the minimum total spare capacity. It does so by adding
one link (add_1), a combination of two links (add_2) or one full restoration path
(add_path) in a way that maximizes network restorability. At each step, the operation
involving the least number of links is preferred, i.e., add_1 is preferred over add_2, which
is preferred over add_path. Design tightening is used to remove redundant spare capacity
from the network through three steps: add0_subl, add1_sub2, and add2_sub3, where
addn_subn+1 involves adding n spare capacity links and removing n+/ links from the net-
work.

Three variants of SLPA implementations were developed and characterized
[8,23]. These are SLPA Dijkstra, SLPA short, and SLPA path-table. SLPA Dijkstra and
SLPA path-table perform all the forward synthesis and design tightening operations dis-
cussed above, while SLPA short omits the add2_sub3 operations. For a typical 60-node
120-span network, SLPA may require up to one million calculations of network restorabil-
ity [8]. SLPA Dijkstra uses a binary min-heap implementation of Dijkstra’s shortest path
algorithm of O(N - log (N)) complexity [8,29], to find the k-shortest restoration paths for
evaluating network restorability. SLPA path-table speeds up the restorability calculations
by maintaining a pre-processed path-table which contains all topologically possible resto-
ration paths between pairs of nodes in the network. Only the restoration paths with length
less than or equal to a specified hop limit are included in the path-table.

The worst case complexities of SLPA Dijkstra, SLPA short, and SLPA path-table

are O(W?- §° - N-log (N)), O(W* . 5> N .log (N)), and O(W - S’ -d,,, """) respec-
tively [8], where W, S, and N are the number of working links, number of spans, and

number of nodés respectively. SLPA path-table requires O(S- RPL -d,, axRPL) memory

locations to store the path-table in the manner outlined [8]. SLPA Dijkstra and SLPA path-
table, on average place 5% more spare capacity than their ICH counterparts, while SLPA
short places 2% more spare capacity than SLPA Dijkstra and SLPA path-table as it does
not use add2_sub3 [8].

All the SCP heuristics available in the literature, to our knowledge, aim at achiev-

15

ing a near-optimal solution, and are still computationally time-consuming for the large, up
to 200 node networks we would now like to work on. The primary aim of this thesis is
therefore to design a fast SCP algorithm for use in identifying potential new span addi-

tions in the network. The existing SCP approaches are too complex to be used for testing

O(N?) span additions in the network in a reasonable time.

1.5 Outline

Chapter 2 presents the max-latching SCP heuristics. In its introductory sections,
the chapter discusses the idea of max-latching, the restoration routeset, and the classifica-
tion cf max-latching heuristics. The chapter then outlines the general characteristics of
redundancy, execution time, and memory usage as a function of H for all max-latching
heuristics. Six heuristics are analysed in terms of complexity, capacity efliciency, and exe-
cution time. These heuristics are also compared with IP. An extra step of design tightening
for improving the capacity efficiency of these heuristics is also considered, and the capac-

ity efficiency obtained after this step is also compared with IP.

Chapter 3 presents O(N?) complexity network reduction and expansion algo-
rithms which are meant to improve the execution times for the max-latching SCP heuris-
tics. The chapter discusses three methods for network reduction. These are fixed topology
identification and substitution, greedy reduction and backtracking. All these methods
reduce subtopologies that are common in real transport networks and whose efficient SCP
can be done through these algorithms.

Chapter 4 combines the network reduction methods with the max-latching heu-
ristics. These combinations are then compared with individual max-latching heuristics and
with IP.

Chapter 5 presents an example of ranking new span addition candidates in opti-
mizing a network’s topology. Some max-latching heuristics and combined network reduc-
tion - max-latching heuristics are used to identify the best span from a set of potential
spans. The relative ranking of the potential spans is also ccmpared with that of IP.

Chapter 6 summarizes the results.

2 Max-latching SCP Heuristics

This chapter explores max-latching heuristics for spare capacity placement in
mesh restorable networks. These heuristics are based on the idea of restoring the network
through spreading each span’s working capacity individually over its restoration routeset,
generating a set of spare values, s;, implied by each span cut individually, and then “latch-
ing” the single maximum spare capacity value generated for each span over this series of
single-span restoration assessments.

Several max-latching heuristics can be designed following this basic principle
depending on the manner in which routing for a span is done given the s; values forced by
prior test spans. The restoration routeset considered for each span consists of all distinct,
topologically feasible restoration routes with maximum length limited by a specified hop
limit. The required restoration capacity of a failed span is spread evenly over its restora-
tion routes. The routes in a routeset for each span are sorted by the number of hops, to
emulate the KSP restoration routeset. The unrestorable capacity of a failed span is the dif-
ference between its working capacity and the aumber of restoration paths available
through the spare capacity in the network after the span’s failure. Max-latching heuristics
will choose spans one by one in some specified or random order. If each span uses spare
capacity that has been placed for the restoration of previously failed spans, then the order
in which spans are chosen by the heuristic affects the final SCP design of the network.
These are called order-dependent heuristics. Heuristics that neglect the spare capacity
present in the network while placing spares for a span are independent of the order irn
which spans are tested.

The performance of the max-latching heuristics depends in part on the hop nant
used to delimit the length of routes in the restoration routeset of each span. Variaticns in
network redundancy, execution time, and memory usage as a function of hrp Pt A
observed and analysed for some metropolitan area and long distance networks to charac-
terize the max-latching heuristics.

Max-latching heuristics will achieve 100% resturability, but result in some excess
spare capacity in the network. The capacity efficiency of the SCP designs obtained from

max-latching heuristics can be improved by selectively removing excess spare capacity

from these designs while maintaining full network restorability. This step is called design
tightening (DT) and is conceptually the same procedure as was the part of the SLPA algo-
rithm described in Section 1.4.4. This chapter also compares the capacity efficiency results
for max-latching heuristics with and without design tightening.

The next two sections discuss the generation and organization of the restoration
routeset and the methods for computing network restorability. The concepts developed in

these sections serve as background for this chapter.

2.1 Restoration Routeset for the Max-latching Heuristics

The restoration routeset used for the max-latching heuristics consisrs of «ib dis-
tinct, loop-free routes with lengths less than or equal to the specified hop limiz. 7', rhis
type of routeset is chosen because it consists of a large number of routes prosiag the
required route diversity for spreading the working capacity of a failed span as evenly as
possible. Figure 2-1 presents the data structure we will use for representing the restoration
routeset of a span. The restoration routes for each span are arranged by increasing length,
and simple arrays of pointers are used for storing these routes. For example, in Figure 2-1,
the first route contains only spans 1 and 3.

The problem of iinding all distinct, loop free routes involves a search through a
combinatorial space. The brute force approach would be to try all possible combinations
of spans, and check whether they form a feasible route. This is highly inefficient. Efficient

search techniques are needed which avoid examining the cases that are not valid. One effi-

cient search technique for this problem is called backtracking.

18

spans ——p

1 3

-4——— Eachrow is a distinct
restoration route

4——— Each box represents a single span

-¢— routcs

-4——— Restoration route of
length five (five spans)

Figure 2-1: Organization of the restoration routeset of a span

Backtracking is essentially a depth-first search technique, with bounding func-
tions to determine when to stop searciing down a particular branch. The solution to a gen-

eral backtracking search must be expressible as an n-tuple (x;, xp,......, X,), where the x; are
chosen from some finite set U,. The basic idea is to build up the solution vector one com-
ponent at a time, and test whether the vector being formed has any chance of success. The
major advantage of this method is that if the partial vector (x;, X;,......, X,) cannot lead to a
solution, then ail the vectors descending from it can be ignored.

In our problem of finding all distinct restoration routes for a given span, x; is the

i-th span in a route, U, is the set of spans incident with the same node as x; and x;_;, and n

is the number of spans in a route, n < H . The network is viewed as a graph with nodes as
vertices and spans as edgcs. Spans and nodes are arranged in the form of an adjacency list,
and the restoration routes are found by traversing the adjacency list. The solution vector is
built one x; at a time, starting with x;, where x, is a span incident on either node adjacent
to the failed span. The starting node is called the source node and the other node of the

failed span is the destination node. After the addition of span x;, the length of the vector is

tested, and loops are checked for. The length of the vector must be less than H if it does

not represent a complete restoration route. The partial route is loop-free if no .x; appears

twice. If any of these conditions are violated, then x; is dropped, and the scarch backtracks
to another branch by choosing one of the other possibilities in U, . If all the possibilitics in
U, have been tested, then the algorithm backtracks to the node common to x;.; and x; ;.
drops x;_;, retains the remaining (xp......, x;.5) elements, and tests the remaining possibili-
ties in U, _,. If all the possibilities in U; |, have been exhausted, then the algorithm
backtracks to the node common to x; ; and x;_3.

The algorithm returns a solution vector if a restoration path is formed by the addi-

tion of x;. It then searches through the other spans in U, while retaining the vector (xj......

x;.7). If all the spans in U, have been tried, the algorithm backtracks to the node common

to spans x;_; and x; ;. The search continues until all the potential possibilities have been
tested.

Figures 2-2 and 2-3 and Table 2-1 present an example to iltustrate how back-
tracking is used for finding restoration routes for span 7. Table 2-1 summarises all the
events that occur during the search and Figure 2-3 presents the search tree. In Figure 2-3,
edges represent span numbers and node numbers represent the order in which the graph is
traversed. Nodes labelled “B” in Figure 2-3 are the nodes at which the algorithm back-
tracks.

Let the source node be 1 and the destination node be 2. The backtracking algo-

rithm starts the search at the source node. Only span O can be chosen for U,,. The search

then moves to node 3. At node 3, there are three spans in U;: spans 1, 2, and 4. The algo-

rithm picks one of these at random. If span 1 is chosen, then a restoration route (0,1) is
formed. The search then backtracks to node 3 and chooses one of spans 2 and 4. If span 4
is picked, the search reaches rode 5, where two choices exist. If span 3 is chosen, then a
loop consisting of spans 2, 3, and 4 is formed. Therefore, this branch is discarded. The
only choice left at node 5 is span 5, which results in the restoration route (0,4,5,6). The

search then backtracks to node 6, then to node S, and finally to node 3, as all the choices at

20

nodes 6 and S have been tried. At node 3, the only choice left is span 2. One of the routes
through span 2 ends up in a loop, while the other forms restoration route (0,2,3,5,6). The

search finally backtracks to node 1 and ends there.

Figure 2-2: An example of backtracking algorithm for finding restoration routes

Table 2-1: Events for finding restoration routes for span 7

Path Restoration route Comment
formed
0-1 0-1 Backtrack to node 3
0-4-3-2 X Backtrack to node 5
0-4-5-6 0-4-5-6 Backtrack to node 3
0-2-3-4 X Backtrack to node 5
0-2-3-5-6 0-2-3-5-6 Backtrack to node 1

21

Figure 2-3: Search tree generated during backtracking

2.1.1 Complexity

The number of restoration routes for a span depends on the average node degree,
network topology, and the hop limit used to restrict the lengths of the routes. Consider the
case where all the nodes in the network have the same degree, d. There are (d-/) possible
initial choices for all restoration routes in the search tree. At each level down the search

tree, the number of possibilities increases exponentially by a factor of (d-/). Therefore,

with a hop limit of H, there are (d-/)” choices. In the worst case, all the nodes are tra-

versed. This condition occurs above some minimum hop limit /). The maximum number

of routes possible is O(dang), where d_,.., is the average node degree. Therefore, the worst

avg
. . . . , H .
case complexity of finding the restoration routeset for all spans is O(S - H - davg)ina

network with S spans, provided H 2 H;. Storing the routeset in the manner outlined above

. H .
requires O(S-H - d) space, where each route requires at most H bytes of storage.

avg

22

2.2 Network Restorability Computation
There are two simple methods for computing network restorability, R,,. They both

involve calculating each span’s restorability R, ; (equation 1.4). The most complex step in

the R, ; calculation is in finding the restoration paths. Note that the restoration pathset is
not the same as the routeset. A pathset is realized using the routes of a routeset, where a
single route can host more than one path.

One choice is to use k-shortest paths for computing Ry ; [8]. The restoration paths
given an s; assignment can be found with O (N - log (N)) complexity by using Dijkstra’s
algorithm. Computing R, is of O (S- N - log (N)) complexity in this case.

Alternatively, the restoration routeset for each span can be used for finding all
available restoration paths for each span. In the worst case, all O(dang) restoration routes
are checked for each span. The maximum length of each route is H, therefore the com-
plexity of calculating Ry is O(H - d,,, ") so that calculating Ry, is O(S - H-d,,,"). Real
transport networks have d,,,, between 2.5 and 4.5, and the restoration paths have hop lim-
its penerally greater than 4. Therefore, this method is more complex than the one based on
Dijkstra’s algorithm.

In this work, network restorability is used only for finding span-order sequences

for some order-dependent heuristics and for design tightening, and is calculated using

Dijkstra’s algorithm.

2.3 Order-Independent Max-latching Heuristics

These heuristics place spare capacity by spreading the lost working capacity of
each failed span evenly over its restoration routes, without considering the restoration
paths already available through the spare capacity placed for other spans. The maximum
spare capacity attained on each span, after placing spares for all spans, is latched as the
design value s; for that span. Since spare capacity placement for the restoration of each
span is independent of every other span, the order in which spans are chosen for restora-

tion does not affect the final SCP design in these approaches.

23

The order independent heuristic, Heuristic0, arbitrarily chooses spans according
to their numbering in the network. Each span is made restorable by assigning one unit of
spare capacity to all its available restoration routes starting with the shortest route, and
iterating until the span is fully restored. The spare capacity on each span in the network is
set to the maximum of its previous spare capacity, and the value found by placing spares
for span i.

Figure 2-4 presents an example of HeuristicO and illustrates the max-latching
concept in general. Figure 2-4(a) shows a network with working and spare capacities on
each span in the format (working, spare). Three restoration routes are available for the res-
toration of each span, except span 1-3 which has four restoration routes. Span 0-1 has
seven units of working capacity which can be restored by the three routes shown in Figure
2-4(b). Route 0-2-1 carries three paths, while routes 0-2-3-1 and 0-2-4-3-1 carry only two
paths. Note that the flow assignments are nominally levelled over the eligible routes but
that equal whole numbers on each route are not always feasible. Figure 2-4(c) presents the
spare capacity on each span after placing spares for span 0-1. Figure 2-4(d) shows the res-
toration routing for spz. 2-4, which involves placing two paths on routes 2-3-4 and 2-1-3-
4, and one path on route 2-0-1-3-4. Fizure 2-4(e) shows the SCP for restoration of span 2-
4. The spare capacity on each span in Figure 2-4(f) is the maximum of the spare capacity
on the corresponding spans in Figure 2-4(c) and Figure 2-4(e). Figures 2-4(g) and 2-4(h)
show the restoration routing and SCP for span 2-3, and Figure 2-4(i) shows the state of
network after the SCP of all three spans. In summary, each span in turn is allowed to

“force” the s; values that it requires in isolation for its restoration. A complete SCP design

is the maximum of the s; values forced on every span.

24

(¢) Network after placing spares for
span 0-1

(d) Restoration routing for span 2-4

“.D 5N (5.0

@47) 5~ (52)

span 2-4

(h) SCP for restoration of span 2-3

(1) Netwc:k after placing spares for

span 2-3

Legend:
1 unit of spare capacity
2 units of spare capacity
wemmesee 3 units of spare capacity

(x,y) - x working; y spare

Figure 2-4: An example of an order- independent max-latching heuristic

25

SCP designs obtained through order-independent heuristics are expected to be
less capacity-efficient than order-dependent heuristics as these heuristics neglect the exist-
ing spare capacity in the network while placing spares for each span. This thesis, there-
fore, uses an order-independent heuristic primarily only for the development and

illustration of max-latching concepts, and then concentrates on order-dependent heuristics.

2.3.1 Complexity of Heuristic0

The complexity of finding the restoration routeset for § spans, subject to a hop

limitH,is O(S-H -d "), where dm.gH is the maximum number of restoration routes of

up to H hops. The restoration routeset for each span is found only once, and routing and
SCP for all spans is done after the restoration routeset has been found. In the worst case,
all restoration routes for all spans are involved in restoration. Therefore, the complexity of
evenly spreading working demand on the restoration routes for one span is O(dm._&,H).
After placing spares for each span, the maximum spare capacity on every span in the net-
work is latched. The complexity of max-latching the spare capacity values on S spans is

0(S). Therefore the overall complexity of HeuristicO is O(S- H - d H)

avg

2.4 Order-Dependent Max-latchi . 3 Heuristics

Unlike order-independent heuristics, ovder-dependent heuristics force new spares
only for the portion of the working capacity on each span that remains unrestorable after
considering the spares previously placed in the network. That is, the sparing for each span
is affected by the spare capacity that has been forced by previous spans. Therefore the
order in which spans are treated affects the final SCP design. The following steps are fol-
lowed for each span i

Step 1: Find the number of available restoration paths, NAPaths), using the current
spare capacity in the network for each route j, starting with the shortest
route.

Step 2: Find the remaining unrestored working capacity, Wunrest;, where

26

Wunrest, = wi-—ZNAPathsj.
J

Step 3: Find the number of paths, NPaths;, placed on each route j by evenly spread-
ing the original working capacity, w;.
Step 4: Spread Wunrest; on all the restoration routes, starting with the shortest
route, in the following way:
WHILE (Wunrest; > 0)
IF(NAPaths ;< NPaths j)
Begin
Add Minimum(Wunrest;, (NPaths; - NAPaths;)) paths to route j;
Decrement Wunrest; by Minimum(Wunrest;, (NPaths - NAPaths;));
End
ELSE increment j;
END WHILE;
Step 5: Latch the maximum spare capacity values forced on each span in the net-
work.
Consider an example in which w; is 6, the number of restoration routes is 3, and NAPaths;
for the three routes are 3, 2, and 0. For this case, Wunrest; is 1 and NPaths; for each route

is 2. Therefore, routes 1 and 2 already carry at least as many paths as they would be given

by spreading the pathset for this failure. Hence, Wunrest; is added to the last route.

Figure 2-5 repeats the example of Figure 2-4 for the case of an order-dependent
max-latching heuristic. Here span 0-1 is spared first, followed by span 2-4, and span 2-3.
There is no spare capacity in the network initially. Figure 2-5(b) shows the restoration
paths for span 0-1, and Figure 2-5(c) shows the corresponding s; values. For the sparing of
span 2-4, two paths are already feasible using route 2-3-4, so only three units of working
capacity are unrestorable. These are made restorable through forcing new s; values on the
two routes shown in Figure 2-5(d). The maximum spare capacity on each span after plac-
ing spares for span 2-4 is latched, and is shown in Figure 2-5(f). Figure 2-5(g) shows all
six restoration routes (dotted lines) available for the restoration of span 2-3 through the

previously placed spare capacity. Figure 2-5(h) presents the SCP for span 2-3, and Figure

27

@9 7y

6.0
(6.0
3

(a) Initial network

@7 N _(5.2)

(c) Network after sparing for span 0-1

(d) Restoration routing for span 2-4

(4,1))—(5.0)

D4 3y (5.2) @

(f) Network after placing spares
for span 2-4

(g) Restoration routing for span 2-3

4D N (5.2)

(h) SCP for restoration of span 2-3

47 5y (52)

(i) Network after placing spares
for span 2-3

Legend:

1 unit of spare capacity
2 units of spare capacity
wmmmemes 3 units of spare capacity

= == m = Feasible restoration paths
given preceding s; state

(x,y) - x working; y spare

Figure 2-5: An example of an order- dependent max-latching heuristic

28

2-5(i) shows the max-latching results for each span, after latching the spare capacities on
each span in Figure 2-5(f) and 2-5(h). The overall SCP result obtained in this example
uses one less unit of spare capacity than HeuristicO (see Figure 2-4).

The SCP of order-dependent heuristics depends not only on the working capacity
distribution but also on the order in which spans are chosen for restoration. For a network
consisting of S spans, S! distinct span-order sequences are possible. Therefore it is not fea-
sible in practice to test all possible sequences. For example, in a small network with 23
spans, if testing each sequence takes 0.1 seconds, then it will take 8. 192 e+11 years to test
just 1% of the total number of sequences. In addition, there is no guarantee that the type of
sequence which is best for one particular working capacity distribution is also best for all
other working capacity distributions. We therefore explore a limited number of sequences
based on reasoned strategies to try to find those that result in the most capacity-efficient

design.

2.4.1 Alternative P ° ciples for Choosing Span Sequences
Several heuristics can be designed to determine the order in which spans should

be chosen for placing spares. These can be put into three classes:
(1) Class A: Spans are ordered from greatest to least contribution towards network restor-
ability R,,. Three subclasses are possible:

(1) Al: The sequence is found by failing each span individually, and calculating R,

for its SCP alone.

(2) A2: This sequence consists of spans ordered from greatest to least working

capacities. In general, spans with high working capacities have a greater contribu-

tion towards R,, than spans with lower working capacity.

(3) A3: This sequence is determined by iteration as the SCP plan is developed. At

each iteration, the span which contributes the greatest increase in R,, is chosen, and

its sparing is allowed to force the s; values in the network under design. Iterations

are performed until the network becomes 100% restorable.
The heuristics associated with sequences Al, A2, and A3 are denoted HeuristicAl,

HeuristicA2, and HeuristicA3, respectively.

29

(2) Class B: Spans are ordered by how much they individually force R, but only the
sequence of increasing working capacity is considered. This is the converse of A2, and is
named B1.
(3) Class C: These sequences have the first one or two spans pre-specified, while the rest
of the spans in the sequence are named in randoin order. The heuristics associated with
this class try more than one simply obtained partly random sequence, and select the least
redundant SCP design attained through these sequences. The two heuristics considered
are:
(a) C1: This heuristic tries S sequences with the first span distinct in each sequence.
The rest of the (S-1) spans are chosen in random order.
(b) C2: This heuristic considers S * (S-1) sequences with each sequence having the
first two spans distinct from the other sequences. The order of the rest of the (5-2)

spans is random.

2.4.1.1 Time Complexity
Unlike Heuristic0, finding the span restoration sequence in order-dependent heu-

ristics can be very complex. The complexity associated with finding available restoration

paths for each span is O(S-H-d, H), which is also the same as the complexity for

ve
spreading unrestored working capacity on the restoration routes.
The complexity of finding sequences Al and A3 depends on that of the R,, com-

putation. For A1, the contribution to R, for each span is computed only once, therefore the

overall complexity of finding this sequence is O(SZ-N-log (N)). In the case of
HeuristicA1, finding available restoration paths and spreading the unrestored working

capacity for each span has the maximum complexity among all steps, therefore the com-

plexity of HeuristicAl is O(S-H -d, "),

avg

The complexity for selecting a span for sparing in each iteration for A3 is

O(S.H.dang). In the worst case, S iterations are performed for finding the A3

sequence, therefore the complexity associated with HeuristicA3 is O(SH-d Y vg”).

30

The complexity of finding sequences A2 and B2, through the quicksort algorithm

is O(SZ). Therefore, HeuristicA2 and HeuristicB2 are of O(S-H - d R H) complexity.

ve
HeuristicC1 and HeuristicC2 involve O(S) and O($?) iterations respectively. The
complexity of these heuristics is dominated by finding the available restoration paths and

spreading the unrestored working of each span. Therefore, the complexity of HeuristicC1

is O(S2 -H-d H). and of HeuristicC2 is O(S3 -H. dang).

avg

2.5 Characteristics of the Max-latching Principle

Considerable insight about the performance of the max-latching heuristics is
attained by studying how they depend on the hop limit used to specify the restoration
routeset for each span in the network. This section explores the dependency of redun-
dancy, execution time, and memory usage on hop limit for each of the max-latching heu-
ristics considered in this thesis. We use HeuristicO as an example for max-latching
heuristics but the ideas developed here are valid for the other max-latching heuristics.

For testing the max-latching heuristics, four networks (Appendix A) were chosen
on the basis of three parameters: (1) network average node degree (d,,). where the degree
of a node is the number of spans incident on it; (2) size of the network, measure by the
number of nodes and spans present in the network; (3) the range of the minimum restora-
tion path length available for all spans in the network. Table 2-2 presents these details for
the test networks.

Netl is a metropolitan area network, and it is a common example quoted in the
literature. Net2 is another metropolitan area model based on a Canadian city. Net3 and

Net4 are long haul networks.

31

Table 2-2: Networks Investigated

Range of
minimum Total
Networks davg Number Number restoration numbgr of
of spans of nodes working
path length links
for all spans)
Netl 3.733 23 11 2t02 1252
Net2 3.1 31 20 2t03 4112
Net3 3.93 59 30 Yto 4 27702
Net4 3.057 [81 53 2107 2389

2.5.1 Redundancy - Hop limit Characteristics
The ideal behaviour of redundancy as a function of hop limit for all max-latching
heuristics is that of the flow-based IP formulation. Figure 2-6 shows ideal redundancy vs.

hop limit characteristics for Net2, obtained by the reference IP formulation described later.

0.65

0.45 5
Hop limit, H
Figure 2-6: Ideal redundancy - hop limit characteristics for Netl

Redundancy decreases monotonically with increasing hop limit because more

paths enable a more efficient SCP solution. In effect, the sharing of the network’s spare

32

capacity improves with hop limit as longer paths allow more spans to take part in the res-
toration of other spans in the network.

Although sharing of spare capacity increases with hop limit, effective sharing or
overlapping of forced s; values for max-latching he_ristics may actually increase,
decrease, or remain constant with hop limit. Effective sharing of the network’s srare
capacity is the measure of minimum total spare capacity needed to achieve full restorabil-
ity, and it is maximum in the case of optimum SCP designs. For the IP formulation, effec-

tive sharing increases monotonically with hop limit. This is the ideal reference behaviour.

2.5.1.1 General Characteristics of the Max-latching Principle

Figures 2-7 to 2-10 present graphs of the actual design redundancy vs. hop limit
for HeuristicO, for Netl, Net2, Net3, and Net4 respectively. The redundancy in each case
decreases initially with an increase in hop limit, then remains minimum or near-minimum
up to some higher hop limit value, and then in most cases increases with further increase
in hop limit, finally saturating at high hop limit values. Based on this observation, the
graphs can be classified into four main regions:
(1) Region I: Initial region in which redundancy decreases with hop limit.
(2) Region II: Region in which redundancy is minimum or close to the minimum value.
(3) Region III: Region after region II in which redundancy increases with hop limit.
(4) Region IV: Region in which redundancy remains constant with an increase in hop
lis. it
Regions I to IV for the four test networks are shown in Table 2-3. The behaviour of Net4
is ditferent from that of the other test networks as its redundancy decreases monotonicaily
with hop limit.

Table 2-3: Redundancy vs. hop limit for the four test networks

Networks Region 1 Region II Region III | RegionIV

Netl 2,3 45 6,7,8 >8
Net2 4,5 6,7 8-16 >16
Net3 4,5 6,7 8-11 >11

Net4 7.8 >8 X >13

33

10

111

||||||||||||||||||||||||||||||||||||||

H<t

0.75
0.60

Kouepunpoy

Figure 2-7: Redundancy vs. hop limit for Netl

16

Kouepunpay

Hop limit

Figure 2-8: Redundancy vs. hop limit for Net2

34

10

|||||||||||||||||||||||||||||||||||||||

115
110 ¢

Louepunpay

Hop limit
Figure 2-9: Redundancy vs. hop limit for Net3

13 15

11

Hop limit

1.35
1.30
25
1.20 +

Kouepunpay

1.15 5

Figure 2-10:Redundancy vs. hop limit for Net4

35

By diagnosing the reasons for these behaviours, we gain understanding of the
meax-latching principle, which will later be reflected in our use of practical max-latching
heuristics. In region 1. the restoration of each span is highly localized due to short restora-
tion paths. Each span depends on very few other spans for its restoration, which forces the
spans in the network to have excessively high spare capacities. As the restriction on hop
limit is eased, the working capacity on each span is spread over more spans in the net-
work. Therefore, the spare capacity on each span contributes to the restoration of a larger
number of spans than before. This increases the sharing of the network's spare capacity so
that network redundancy decreases with an increase in hop limit in this region. As a diag-
nostic, Figure 2-11 shows the increase in the average number of spans taking part in the
restoration of a span as a function of hop limit for Net2. This is duc to a1 increase in the
average restoration path length with hop limit, as presented in Figure 2-12 for Net2. Aver-
age restoration path length is the total length of all the paths used in restoration of all spans

divided by the total working capacity of the network.

W
o
T

Region |

]
[«

Average number of spans used per span
=

1

16

04

OO0k

Hop limiv

Figure 2-11: Average number of spans used per span for restoration
as a function of hop limit for Net2

36

o) o fl

Average restoration path length

H

24 3 12 16 20
Hop limit

Figure 2-12: Average restoration path length as a function of hop limit for Net2

In region II the redundancy is minimum or near-minimum. In this region the
effective sharing of the spare capacity in the network is maximum. In general, this region
is confined to either a single hop limit value, or a range of two to three hop limit values.
For ideal cases this region extends up to infinity. This can be thought of as the characteris-
tic range in which restoration routes travel away from a failed span. In this region, the
forced s; values for ezch span are most generally similar to each other. In other words, the
restoration pathsets have some general maximum interference, commonality, and reuse
amongst themselves at the region II hop limits.

In region 111, each span is forcing too far away from itself to efficiently “overlap”
with the forced s; values of other spans, and this contributes towards the over-restorability
of the network. Over-restorability of a network is the ratio of the maximum number of res-
toration paths available for all the spans in the network to the total working capacity of the
network. Figure 2-13 shows over-restorability as a function of hop limit for Net2. Note

that redundancy and over-restorability follow the same trend in this region.

37

2.6

ng * N
o N BN

Over-restorability

p—
(¢ 2]

1.6

Redundancy
o o

—
.

1.0

L : ; o D -
. 1. 1 e 1V

B : : P b

L}] /

' : / X

' . / .

X ' / '
o . ' / DR

. X Y .

. e X

' i '
B ' T X
-7 .
4 8 R ¥ 16

Hop limit

Figure 2-13: Over-restorability vs. hop limit for Net2

Region 11
S R original T
high capacity limit applied
4 8 12 16

Hop limit

Figure 2-14: Comparison of the modified and the original hop limit
characteristics for Net2

38

The redundancy in region 1II, for the cases which have high excess redundancy,
can be decreased in general by restricting spans with high working capacities from using
long restoration routes. Figure 2-14 presents a graph of redundancy vs. hop limit for Net2
where we restrict the top ten working capacity spans from using restoration routes of
length greater than six hops. It is evident from Figure 2-14 that the high excess redun-
dancy in this region was due to the spans which had high working capacities spreading
and forcing more widely than desired.

Region IV is the saturation region in which there is no increase in redundancy
with hop limit. This region occurs after the working capacity on every span has been
spread to the maximum extent possible, such that the new routes added to the pathset by
further increasing the hop limit are never contributors to the maximum forced s; values.

The effective sharing of the network’s spare capacity also depends on the distri-
bution of working capacity in the network. Two different working capacity distributions
were tried on Net4, and Figure 2-15(a) and 2-15(b) display graphs of redundancy vs. hop

limit for these distributions. Each distribution was observed for different scalings of w;.

The first distribution is (1a) that used in Figure 2-10; (1b) that used in Figure 2-10 with the
working capacity of each span multiplied by 10; (lc) Figure 2-10 distribution with the
working capacity of each span multiplied by 100. The second distribution is random, and

is comprised of two scalings of w;. In (2a) the total working capacity is nearly ten times of

that in (1a), and in (2b) the total working capacity is nearly 100 times of that in (1a).

39

1.30 |

oy

g125 .

el

=4

-

B

%4
120 b i
L15 g 10 15 20

Hop limit

Figure 2-15(a): Redundancy vs. hop, limit for three scalings of the same
working capaciiy distribution, for Nét4

24 . —

g
W
T
1

== S

N
(¥
—

Redundancy
NN
o —

T T

1 i

—
O

T T

1

1.8 |]
17 i
1.6 5 10 15 20

Hop limit

Figure 2-15(b): Redundancy vs. hop limit for two scalings of the same
working c.pacity distribution, for Net4

It is evident from Figures 2-15(a) and 2-15(b) that redundancy of the SCP
designs generated through max-latching methods depends more on the working capacity
distribution than on the total working capacity in the network, because there is very little
change in the curves for different scalings of the same distribution, while there are large
differences between distributions.

Figure 2-16 presents a general graph of redundancy vs. hop limit for max-latch-
ing heuristics. Redundancy as a function of hop limit falls in the region between the two
extreme curves a-d and b-c. The nature of the graph depends on the working capacity dis-
tribution and the max-latching heuristics used for SCP. Span order dependent heuristics
differ from HeuristicO only in that they consider restoration paths already available in the
network befrre restoring each span. Therefore, SCP by these heuristics also depends on
the working capacity distribution in the network. Hence the general nature of the depend-

ence of redundancy on hop limit for these heuristics is expected to be the same as that of

HeuristicO.
|
|
{
{
) |
> f c
= |
_g a
2 |
{g’ [
o f
i
b I
|
d
|
]

Hop limit —»

Figure 2-16: General redundancy vs. hop limit curves for max-latching heuristics

41

2.5.2 Execution Time as a Function of Hop Limit

The time complexity of the max-latching heuristics depends on:

(1) Generating the complete restoration routeset for all spans in the network. For a net-

work of § spans, the complexity of finding a restoration routeset with hop limit H is

os-H-d, ")

(2) Finding the order in which spans are made restorable. The complexity of this step
depends on the individual heuristic. For HeuristicO the order is fixed, and therefore the

complexity of this step is O(]).

(3) Making each span restorable by placing spare capacity on its restoration routes. The

. . . H . .
complexity of this step is O(S-H -d g) asin the worst case all restoration routes are

traversed.

(4) Max-latching the spare capacities on each span in the network, after the SCP for cach

span. This step is of O(S) complexity.

The time complexity of a max-latching heuristic depends on steps 2 and 3, and is at least

H . . R C e
O(S-H-d avg). Hence the execution time of all max-latching heuristics increases expo-

nentially with hop limit. Figure 2-17 shows the graph of execution time vs. hop limit for
HeuristicO in the case of Net4, which validates this prediction. Therefore, it is imperative
to consider only small hop limit values for fast SCP heuristics. This is not a problem in
practice as in most practical cases a hop limit of 10 would be an upper limit to managea-

bility. And in many other networks H = S or 6 will be fully adequate.

42

80.0

3 600 | .

=1

[=}

[¥]

2

[F)

E a0t -

=

S

‘5 4

o

ey

@200 | -
003) 15 20

Hop limit

Figure 2-17: Execution time vs. hop limit for HeuristicO in case of Net4

2.5.3 Memory Usage as a Function of Hop Limit

The memory used by one restoration route is at most H bytes, hence the space

required by O(dang) restoration routes of a span is O(H - d A). For a network of S

avg

. . H .
spans, this approach requires O(S-H - d avg) memory locations to store the routeset.

This restricts fast SCI* heuristics to small hop limit values. Figure 2-18 shows memory

usage as a fucction of hep limit for Netd.

43

30000

: /

2 20000 +]
S

]

[

P

]

-

g 10000]
(5]

=

1
05 10 s 20

Hop limit
Figure 2-18: Memory usage vs. hop limit for Net4

2.6 Comparison of the Heuristics

Capacity efficiency, execution time, and memory usage all depend on the hop
limit chosen for the restoration routeset for all spans in the network. Execution time and
memory usage increase exponentially with hop limit, as established in sections 2.5.2 and
2.5.3. Therefore, for fast SCP heuristics, unnecessarily high hop limits should be avoided.
The results for HeuristicO in section 2.5 show that the minimum or near-minimum redun-
dancy region usually starts within three hops of the minimum hop limit. The minimum hop
limit is the value at which the corresponding restoration routeset guarantees 100% restora-
bility. This section presents the graphs of redundancy vs. hop limit for the order-dependent

heuristics in case of the four test networks, along with execution times and memory usage.

2.6.1 Capacity Efficiency

The graphs of redundancy vs. hop limit for all six heuristics are shown in Figures
2-19 to 2.22. It is evident from these graphs that the best sequence belongs neither to class
A nor to class B. HeuristicC2 performed the hest in all four cases, followed by

HeuristicC1. HeuristicC2 tried S * (S-1) sequences, and chose the result corresponding to
the least redundant SCP design. The first five spans of the best sequence among these S *
(S-1) sequences were different in each case. Therefore a sequence that performs well for
one hop limit will not necessarily do so for other hop limits. A collection of sequences
considered together are more likely to perform better at all hop limit values than a single
sequence. Figures 2-19 to 2-22 also show less dependence of HeuristicCl and HeuristicC2
on working capacity distribution than the single sequence heuristics. Ideally redundancy
decreases with hop limit. Any deviation from the ideal reflects the effects of sequence

dependence on the working capacity distribution and network topology

HeuristicAl .
HeuristicA2
weoe FHlEUriSCA3
HeuristicB1 | -
= HeuristicC1 .
HeuristicC2 -

0.75 +

Redundancy
15
o
W

0.55 1

0453 K 6 8 10
Hop limit
Figure 2-19: Conuparison of order dependent heuristics for Netl

45

1.35

1.25

L HeuristicA3

HeuristicAl:
HeuristicA2 |

HeuristicB1 -
HeuristicC1 :
HeuristicC2

LIS~
§
<
=
=
B
e 1.05 3
0.95 i
IP
084 8 1 16
Hop limit
Figure 2-20: Comparison of order dependent heuristics for Net2
e s HeuristicA)
1.40 HeuristicA2:)
X HeursiticA3:
1.30 . o——— HeuristicB1 ; i
] . a——= HeuristicCl .
: HeuristicC2.
»1.20
g
£
3 1.10 |- —_—
5
“ I
1.00 - N
0.90 i
. . R
0.80

. 10
Hop limit

Figure 2-21: Comparison of order dependent heuristics for Net3

1.35 T e T
X HeuristicAl:

HeuristicA 2!
HeuristicA3:

o—— HeuristicB1
HeuristicC1 .
HeuristicC2"

1.25

Redundancy
O

1.05

T
1

0% Hop limit
Figure 2-22: Comparison of order dependent heuristics for Net4

All the sequences considered exhibit the general redundancy - hop limit charac-

teristics of max-latching heuristics discussed in section 2.5. Table 2-4 presents the range

of region II for all the heuristics in all the test networks. Region II is defined by the range

of hop limits over which redundancy values are minimum. In most cases, region II starts

within three hops of the minimum hop limit needed for 100% restoration. Therefore, small

hop limit values can be used effectively with these heuristics.

Table 2-4: Range of region II for the considered heuristics

Min.
Network | Hop Al A2 A3 Bl C1 C2
limit
Netl 2 >8 >5 >3 >3 >3 >3
Net2 4 6-9 6-7 6 >6 >5 >5
Net3 4 6-8 6-9 5-6 6-8 >5 >5
Net4 7 >8 >11 11 -12 >9 >10 >9

HeuristicC1 and HeuristicC2 are of special interest as they are more capacity-

efficient, and seem to be less sensitive to the working capacity distribution than the other

47

heuristics. Tables 2-5 and 2-6 compare the region II redundancy values of these two heu-
ristics with respect to IP. IP results were arrived at by first generating a flow-assignment
based constraint set using all distinct routes up to the specified hop limit and then mini-
mizing the total spare capacity using CPLEX 3.0 ™ optimization software. In Table 2-5,
IP results were obtained for region II hop limits. These hop limits are practical from the
implementation point of view because long restoration routes cannot be used in real time

restoration. Table 2-6 uses large hop limits for IP. The hop limits used for Netl, Net2,

Net3, and Net4 are 10, 20, 9, and 16 respectively.

Table 2-5: Comparison of HeuristicC1 and HeuristicC2 with IP at practical hop limits

HeuristicC1 HeuristicC2
% %
Hop IP redun-

Network . . Excess Excess
limit dancy IZZ?]‘;H' redun- %Z?‘l;n' redun-

y dancy y dancy
w.rt. IP wrt 1P

Netl 6 0.4992 0.589 17.99 0.585 17.18
Net2 6 0.919 1.008 9.68 0.998 8.6
Net3 6 0.899 1.110 23.47 1.089 21.13
Net4 11 0.993 1.124 13.19 1.110 11.78

Table 2-6: Comparison of HeuristicC1 and HeuristicC2 results with those of IP using

large hop limits

HeuristicC1 HeuristicC2
N K IP redun- % Excess % Excess

etwor dancy Redun- redun- Redun- redun-
dancy dancy dancy dancy

w.r.t. IP w.r.t, IP
Netl 0.4992 0.589 17.99 0.585 17.18
[Net2 0.875 1.008 15.2 0.998 14.06
Net3 0.841 1.110 31.98 1.089 29.49
Net4 0.963 1.124 16.71 1.110 15.26

According to Table 2-5, for region II hop limits, the SCP results of HeuristicCl
and HeuristicC2 are within 25% of those of IP at practical hop limits. Also, the redun-
danc: for HeuristicC1 and HeuristicC2 are within 2% of each other. In Table 2-6 the
redundancy for these heuristics for Netl, Net2, and Net3 are still within 20% of the IP
while that of Net3 is within 32% of the IP using large hop limits. The capacity efficiency
of these designs can be improved through design tightening. This is discussed in section
2.7.

Among the heuristics, HeuristicA2 and HeuristicB1 are of least complexity.
Table 2-7 compares redundancy for these heuristics with that of IP for practical hop limits.

The redundancy for these heuristics is greater than those of HeuristicC1 and HeuristicC2.

Table 2-7: Comparison of HeuristicA2 and HeuristicB1 with IP at practical hop limits

HeuristicA2 HeuristicB1
% %
Hop IP redun-
Network . Excess Excess
limit dancy 132‘:;“- redun- %Z?;n- redun-
y dancy y dancy
w.r.t. IP w.r.t. [P
Netl 6 0.4992 0.589 17.99 0.626 25.4
Net2 6 0.919 1.016 10.55 1.063 15.67
Net3 6 0.899 1.18 31.25 1.15 27.92
Net4 11 0.993 1.152 16.01 1.144 15.2

2.6.2 Execution Time and Memor:’ Usage

The execution time of all the heuristics increases exponentially with hop limit.
The minimum redundancy region, region II, of the redundancy - hop limit graph starts at
practical hop limit values. Table 2-8 presents execution times corresponding to a region Il
hop limit value. Execution times (CPU seconds) for ali these cases was measured on a 150
MHz DEC Alpha 3000 ™ workstation with 40Mb main memory and 406Mb of swap
space.

HeuristicA2 and HeuristicA 1 are the fastest, while HeuristicA3 and HeuristicC2

49

are the slowest. For .mall networks like Netl and Net2, all heuristics took less than 40
seconds but for large networks like Net3 and Net4, HeuristicA3 and HeuristicC2 took over
20 minutes. Therefore, HeuristicA3 and HeuristicC2 are not well suited as fast SCP tools
for large networks. On the other hand, all other heuristics took less than 40 seconds, hence

these heuristics could be useful for fast SCP applications.

Table 2-8: Ex~ciiiea ime for heuristics at practical hop limits

Network II;{ :lll)t Execuliml time (sec)
Al A2 A3 BI Cl C2
Netl 6 3.74 0.5 12.9 0.5 2.10 36.75
Net2 6 2.74 0.21 14.2 0.26 1.18 15
Net3 6 116 | 097 | 121 199 | 1102 | 451 |
Net4 11 24.23 2.92 1300 | 3.02 338 1800 .

Memory usage of all the heuristics is dominated by the memory required for stor-
ing the restoration routeset. For the hop limit values in Tables 2-7 and 2-8, the maximum

memory usage for all test networks was found to be less than 1Mb.

2.6.3 Conclusions

Six order-dependent heuristics based on three classes of sequences were tested on
four test networks. The dependence of redundancy on hop limit for all heuristics was sim-
ilar to that of the general characteristics of max-latching. All heuristics attained their indi-
vidual minimum or near-minimum redundancy values at hop limits within four hops of the
minimum.

The best sequence for all the test n=tworks belonged to Class C. Within this class
of heuristics, however, the sequence that performed tie best at one hop limit for a network
did not do so at other hop limits. This makes it difficult to genecralize about a single best
max-latching span ordering principle.

Class C heuristics were observed to be less dependent than classes A or B on the

working capacity distribution and network topology. Graphs of redundancy vs. hop limit

50

for class C heuristics were observed to be near-monotonically decreasing in all cases. Fur-
thermore, these heuristics were the most capacity-efficient of all those considered. On the
other hand, the heuristics based on class A and class B sequences showed high depend-
ence on the working capacity distribution as their results were sometimes highly suscepti-
ble to hop limit.

In class C, HeuristicC2 was found to be 2% less redundant than HeuristicC1 but
it is too complex to be used as a fast SCP heuristic for large networks. HeuristicC1 was
observed to take less than 40 seconds for a large 53 node network. Therefore it is a poten-
tial heuristic for fast SCP.

Redundancy for HeuristicCl and HeuristicC2 was within 25% of that of IP for
practical hop limits without any further processing to remove excess redundancy. The
redundancy for these heuristics was also compared with that of IP using large hop limits

and was found to be within 20% for Netl, Net2 and Net4, and within 32% for Net3.

2.7 Design Tightening to Reduce Excess Redundancy

Design tightening improves the capacity efficiency of an SCP design by eliminat-

ing and, in some cases, rearranging spare capacity in the network while maintaining full

network restorability. Simple eliminations of spare caj ‘mvolve removing spare
capacity from a span where possible without decreasiny rrangement of spare
capacity in the network involves replacing spares on n spa. tituting m (m < n)
spares on other spans, while maintaining 100% restorability. , -vious work has used

add(n)_sub(n+1) type rearrangements [8], where n units of spare capacity are added and
(n+1) are removed from the network. add(n)_sub(n+1) involves o(st2n-!)) computations
of K,, [8). Apart from add0_sub], all other rearrangements are too complex to be practical
for fast SCP. For example, if one calculation of R,, takes 0.1 seconds, then add1_sub2 will

take nearly 3.47 hours for a 50 node network, while add0_sub! will take 5 seconds. There-
fore, only add0_subl type simple eliminations of spare capacity are considered here.
AddO_subl removes surplus spare capacity from the network where possible

without decreasing R, R, is calculated after each such step. The overall complexity of

removing excess spare capacity from the whole network using add0_subl is

51

2
O(w, .S +N-log (N)), where w,,,. is the maximum number of working links on a

span.

In general, max-latching methods may place surplus sparing on uny given span.
AddO_subl finds the exact number of surplus spare links on a span. The maximum spare
capacity on each span can be w,,,,. Thc number of iterations needed per span to find the
exact number of surplus spare links is log(w,,,,) in the worst case. Thus, the complexity of

tightening a network through addO_subl using Dijkstra’s algorithm is

O(Sz~log(w) -N-log (N)).

max

2.7.1 Performance of Max-latching heuristics with Design Tightening

Figures 2-23 to 2-26 are graphs of redundancy vs. hop limit for HeuristicA2,
HeuristicC1, and HeuristicC2, along with those obtained after add0O_subl type design
tightening.

For Netl, Net3, and Netd, for all the heuristics, the redundancy obtained after
design tightening is nearly the same for all hop limits. Also, the redundancy values
obtained for all heuristics after design tightening are quite close to each other. For Net2,
the graphs of redundancy vs. hop limit for HeuristicC1 and HeuristicC2 have nearly the
same behaviour, while that of HeuristicA2 shows a gradual inciease with hop limit. This is
because of high redundancy at high hop limits for HeuristicA2. addO_subl is not able to
remove all excess spare capacity at high hop limits due to a high degree of sharing of the
network’s spare capacity for restoration among all spans. To further detect and remove
excess redundancy add1_sub2 searches, etc., are needed but not warranted as a practical
matter.

The fraction of excess spare capacity in the network that can be removed by
add0_subl eliminations depends on the extent of sharing of the network’s sparc capucity.
If sharing is low, then the chance of removing excess spare capacity from a given span
without affecting the restorability of the other spans in the network is high. If sharing is
high, it is less likely that spare capacity can be removed from a span without affecting the

restorability of all the dependent spans.

52

At low hop li:2its, the sharing of spare capacity is low. Therefore, most of the sur-
plus spare capacity units can be eliminated through add0_sub1 eliminations. At high hop
limits, the degree of sharing is high, and therefore add0_sub] eliminations are not able to
remove some of the redundant spare capacity units. In Figures 2-23 to 2-26, redundancy at
low hop limits after design tightening is minimum or very close to minimum. At high hop
limits, if the redundancy is higher than that of low hop limits, then the redundancy after
design tightening is also expected to be higher than that of low hop limits, as for

HeuristicA2 for Net2.

0.78 + HeuristicA2 b
HeuristicC1
073 L HeuristicC2 :
T .= = HeuristicA2(DT) .
\ L a = HeuristicC1(DT) :
0.68 | ¢ woow HeutisticC2(DT) ;- 4

Redundancy
o
[o)}
LIS}
T

0.58 -
I
0.53 ,‘ e :"" g B e - - - -
‘f P
0.48 3 4 3 g 10
Hop limit

Figure 2-23: Comparison of heuristics with and without DT for Netl

53

Redundancy

Redundancy

: HeuristicA2 :
125 + ¢ HeuristicCl : 4
; HeuristicC2 : 1
Lo = HeuristicA2(DT): ./‘\/-/’ 4
fa a HeuristicC1(DT)
115 | = HeuristicC2(DT) ; :
1.05
e
095r _ s 3 -
T 1P
0.85 3 12 16
Hop limit
Figure 2-24: Comparison of heuristics with and without DT for Net2
1.40 | P T HouristicAZ .
, heuristicC1 :
1.30 - =—— HeuristicC2 c
‘o o HeuristicA2(DT) .
' = HeuristicC1(DT) .
_______ = HeuristicC2(DT) : -
!
.___:,
@ . ®
| 4
0.80 5 8 T

Hop limit

Figure 2-25: Comparison of heuristics with and without DT for Net3

54

1 . e o HeuristicA2 |
: HeuristicCl ;
1.25 1 HeuristicC2 i
1 s = HeuristicA2(DT)
g L a « HeuristicC1(DT) '
' -« HeuristicC2(DT) .
o TN T e NN
21.15 F 3
2
=]
e
(3] 3
(™4
1.05 + 4
P
L3 - o o
C.-. T LYY p— - Eiataame o : : ::
............. i]
0.95 5 9 11 13 s
Hop limit

Figure 2-26: Comparison of heuristics with and without DT for Net4

Design tightening, in the case of the large networks Net3 and Net4, increased the
capacity efficiency of all the heuristics. Tables 2-9 and 2-10 compare redundancy for
HeuristicA2, HeuristicCl and HeuristicC2 obtained after DT with that of IP. Table 2-9
uses practical hop limits for IP and all three heuristics. Table 2-10 compares the redun-
dancy for these heuristics with those of IP using large hop limits. IP values for Tables 2-9

and 2-10 are the same as those in Tables 2-5 and 2-6 respectively.

Table 2-9: Comparison of heuristics after DT with IP at practical hop limits

HeuristicA2 HeuristicCl1 HeuristicC2

Hop IP % % %

Network limit redun- Redun Excess Redun Excess Redun Excess
dancy | dancy redun- | dancy redun- | dancy redun-

dancy dancy dancy

w.r.t IP w.r.t IP w.r.tIP

Netl 6 [0.4992 | 0.532 6.57 0.53 6.17 0.533 6.77
Net2 6 0919 | 0.93 1.2 0.922 0.32 0.921 0.22
Net3 6 0.899 | 0.975 8.45 0.951 5.78 0.947 5.34
Net4 11 0.993 | 1.014 2.1 1.004 1.11 1.005 1.21

55

Table 2-10: Comparison of heuristics after DT with those of IP using large hop limits

HeuristicA 2 HeuristicC1 HeuristicC2
IP T % %
Network | redun- Redun- Excess Redun- Excess Redun- Excess
dancy | 4.0 redun- danc redun- danc redun-
y dancy y dancy y dancy
w.r.tIP w.r.t IP w.rt IP
Netl 0.4992 0.532 6.57 0.53 6.17 0.533 6.77
Net2 0.875 0.93 6.28 0.922 5.37 0.921 5.26
Net3 0.841 0.975 15.93 0.951 13.08 0.947 12.6
Net4 0.963 1.014 5.3 1.004 4,25 1.005 4.36

Table 2-9 shows an improvement in redundancy after design tightening for all
three heuristics. All heuristics are within 9% of the IP results. Also the results for Netl,
Net2, and Net3 are within 7% of those of IP using large hop limits, while those of Net3 are
within 16% as shown in Table 2-10. The results for HeuristicA2 are close to that of
HeuristicC1 and HeuristicC2, therefore the improvement in capacity efficiency in its case
is even more than that of HeuristicC1 and HeuristicC2. Table 2-11 shows percentage gain

in redundancy after design tightening for all three heuristics.

Table 2-11: Decrease in redundancy for HeuristicA2, HeuristicCl, and HeuristicC2

after DT
HeuristicA2 | HeuristicCl HeuristicC2
Network % decrease % decrease % decrease
after DT after DT after DT

Netl 11.132 11.132 9.75
Net2 10.41 9.327 8.36
Net3 21.52 16.72 14.99
Net4 14.85 12.251 10.45

The time taken by the add0_subl design tightener for HeuristicA2, HeuristicCl,

and HeuristicC2 designs was found to be nearly the same in all cases. The execution time

56

was also observed to be independent of the hop limit used by the max-latching heuristics.

Table 2-12 presents the execution times at practical hop limits for all three heuristics and

IP.
Table 2-12: Execution times for DT
IP
Network ll;lmoE)t Helxizstic Hetgilstic Hetgizstic gene(r)z;tion CPLr‘ii(TM

(sec) (sec) (sec) csc;r:s(t;::;t (sec)
Netl 6 223 2.18 2.56 1.6 10.05
Net2 6 4.09 4.13 36 0.8 1.00
Net3 6 70.2 67.55 78.+ 3.5 45
Net4 11 43.47 45.67 49.6 6.83 226

For all three heuristics, design tightening took less than 80 seconds. Therefore,

design tightening can be used with max-latching heuristics for fast and efficient SCP.

2.8 Software Implementation

All the max-latching heuristics are coded using the “C” programming language.
The code consists of a separate routine for finding the restoration routeset and for each
heuristic. The executable version of this code is started by typing scp at the UNIX prompt.
The command line arguments for this tool are:

scp { input network file with fixed w; }

{ output network file to hold final 5; assignments }

{ max-latching heuristics used }

{ hop limit for the max-latching heuristics }

{ output log file name }
The output network file contains the final SCP design, and the output log file contains
information about the final network design, including the number of spare, working, and

total links, total real distance, redundancy, hop limit, and the best and the worst sequences

57

in case of HeuristicC1 and HeuristicC2.

2.9 Summary

This chapter introduced and explored some heuristics for fast SCP based on the
“max-latching” principle. All the heuristics involve three main steps: (1) generation of the
restoration routeset consisting of all distinct, topologically eligible, restoration routes for
each span; {2) spreading the unrestorable working capacity of each span over its restora-
tion routes to force the networks s; values; (3) latching the maximum spare capacity values
on each span. Two types of max-latching heuristics - order independent and order depend-
ent - were discussed. These two types of heuristic differ from each other at step (2). This
chapter discussed order-independent heuristics for conceptual development only, while
order-depend<nt heuristics were discussed in detail, as they are more capacity-efticient.

Three classes of order-dependent max-latching heuristics were considered. Class
A heuristics (HeuristicA1, HeuristicA2, and HeuristicA3) place spares for spans in
decreasing order of their contribution towards network restorability, while class B
(HeuristicB1) sorts spans by increasing working capacity. Class C heuristics (HeuristicC1
and HeuristicC2) use a group of partially random sequences as opposed to only one
sequence. HeuristicC1 uses S sequences with the first span distinct in each sequence,
while HeuristicC2 uses S * (S-1) sequences with the first two spans distinct in each
sequence. In all cases the minimum or near-minimum redundancy was observed within
four hops of the minimum possible hop limit value.

Three performance parameters: redundancy, execution time, and memory usage,
were studied at different hop limit values for four transport networks. In the ideal case,
redundancy decreases monotonically with hop limit but for max-latching heuristics, the
variation in redundancy with hop limit deviated from ideal at high hop linnt values. There-
fore, a general graph of redundancy vs. hop limit for max-latching heuristics was devel-

oped.

The time complexity for steps (1) and (3) is O(S-H-d o) and

avg

O(S-H-d d) respectively. The complexity of step (2) depends on the complexity of

avg

58

finding the span order. For heuristics in which steps (1) and (3) dominate the time com-
plexity, execution time increases exponentially with hop limit. Memory usage for all max-

latching heuristics is dominated by the memory occupied by the restoration routeset.

Using the simple storage scheme outlined, O(S-H-d ang) memory locations are

required to store the routeset.

The dependence of redundancy on hop limit characteristics for max-latching heu-
ristics is a function of the order in which spans are restored and of the working capacity
distribution in the network. For some working capacity distributions, redundancy
decreases monotonically with hop limit, while for others it first decreases and then
increases monotonically.

The graphs of redundancy vs. hop limit for all the heuristics showed that class C
gives the best results. Also, class A and B sequences were dependent on the working
capacity distribution of the network. On the other hand, class C heuristics were more
capacity-efficient and less working capacity distribution dependent than the other two

classes. HeuristicC2 was the most capacity efficient followed by HeuristicCl.

In class A, HeuristicA2 has the least complexity, O(S-H -d_, gH), where S, H,

and d,

avg are the number of spans, hop limit, and average node degree, respectively.

HeuristicB1 has the same complexity as HeuristicA2, while HeuristicC1 and HeuristicC2

H) and Of S3 -H-d H) respectively. HeuristicC2 is

have complexities O(S2 -H-d avg

avg
too complex to be considered for fast SCP.

The redundancy values of SCP designs obtained for practical hop limit values for
HeuristicA2, HeuristicB1, HeuristicC1, and HeuristicC2 were compared with those of IP.
The results of HeuristicC1 and HeuristicC2 were within 23% of those of IP using practical
hop limits for all cases, while HeuristicA2 and HeuristicB1 were within 32%. The redun-
dancy results for HeuristicC1 and HeuristicC2 were also compared with those of IP using
large hop limits and were found to be within 20% for all networks except Net3. For Net3,
the results were within 32%. The redundancy for all class A and class B heuristics were
very high, therefore these heuristics cannot be considered for SCP.

Design tighteaing, which involves simple elimination of surplus spare capacity

59

from the SCP designs while maintaining 100% restorability, was used to improve the
capacity efficiency of the SCP designs. Designs from heuristics HeuristicA2, HeuristicC1,
and HeuristicC2 were tightened. The results at practical hop limits for all three heuristics
were within 2% of each other.

At practical hop limits, after design tightening, the redundancy values for
HeuristicA2, HeuristicCl and HeuristicC2 were within 9% of those of IP using practical
hop limits. The redundancy results for these heuristics were also compared with those of
IP using large hop limits and werc found to be within 7% of IP for Netl, Net2, and Netd

while for Net3 the results were within 16%.

The complexity of design tightening is O(s log (w,) - N-log (N)), where
N is the number of nodes and w,,, is the maximum working capacity on a span in the net-

work. Therefore, design tightening can be used for fast and efficient SCP, especially with

HeuristicA2, HeuristicB1, and HeuristicCl.

3 Network Reduction and Expansion

This chapter discusses O(N?) complexity approaches for network reduction and
expansion, where N is the number of nodes in the network. These approaches are used to
~peed up the execution of SCP algorithms. Figure 1-1 shows how the network reduction
and expansion stages can be used in conjunction with a SCP algorithm.

The problem for network reduction can be stated as: Given a network, is it possi-

ble 1o redwce it to the maximum extent possible, such that the worst case complexity of the

algorithm sed for reduction is 0(N2), and the total spare capacity of the reduced portion
of the ner -ork is close to optimal?

This chapter considers three approaches for network reduction. These are (i) fixed
topoln.y identification and substitution, (ii) greedy reduction, and (iii) backtracking. All
the spproaches involve three main steps: (1) identification of subtopologies; (2) SCP for

ne identified subtopology; (3) reduction of the subtopology by replacing it with a reduced
span having equivalent spare and working capacities as viewed from the remaining sur-
rounding network.

Fixed topology identification and substitution icentifies and reduces predefined,
fixed (canonical) subtopologies in the network. All subtopologies are identified and
reduced in a single step. On the other hand, greedy reduction and backtracking are more
general approaches as these identify and reduce a large range of subtopologies in multiple
steps. In each step, a subtopology of the network consisting of a chain is identified and
reduced. A chain is a concatenation of degree two nodes. This chapter presents the fixed
topology identification and substitution for conceptual completeness and emphasizes
greedy reduction and backtracking in detail.

The second step, spare capacity placement for the subtopology, is different for the
fixed topology method than for the other two. A fixed topology can be spared by solving a
fixed system of constraints. The chain subtopologies dealt with by greedy reduction and
backtracking, on the other hand, appear in a wide variety of forms and require an algorith-
mic approach to sparing.

After the SCP of the reduced network, the spare and working capacity eqaivalents

of some reduced spans may change. The network expansion stage modifies the SCP of

61

these subtopologies to accommodate the changes in spare and working capacity cquiva-
lents. This stage is different in detail for all three approaches.

This chapter is organized into five sections. Sections 3.1, 3.2, and 3.3 discuss
fixed-topology identification and substitution, greedy reduction, and backtracking respec-
tively. Section 3.4 specifies how the heusistics are run, while section 3.5 summarises the

chapter.

3.1 Fixed Topology Identification and Substitution

Fixed tupology identification and substitution identifies and reduces a predefined
set of sut.iopologies. The predefined set of subtopologies are those common in real trans-
port networks, and for which an efficient SCP can be done through elementary equations.

The most complex step in this method is that of directly identifying whole sub-
tezologies of given predefined forms. The identification algorithm visits each node, and
looks for any predefined subtopology around that node. If a subtopology is identitied, it is
immediately reduced to an equivalent span.

All the subtopologies considered in this work have at most two nodes connecting
them to the rest of the network. These two end nodes have degree of more than 2. The
complexity of identifying a subtopology at a given node in the network is O(N) because in
the worst case O(N) nodes are checked for identifying a subtopology in its proximity.

Figure 3-1 shows the predefined set of fixed subtopologies, consisting of a chain,
two four node topologies, and some five node subtopologies. The end nodes of the sub-
topologies, nodes 1 and 2, may be adjacent. The subtopologies may also have only onc
node connecting them to the network.

For subtopologies with high overall connectivity, only an IP can guarantee an
optimal SCP as all the cutset constraints must be solved simultaneously. Fortunately these
subtopologies are not very common in real transport networks. For example, none of the
four test networks contains the subtopology of Figure 3-2, which is the complete graph of
four nodes named K4. The chances of occurrence of higher order subtopologies such as

K5 or K6 are even lower. Therefore, only K4 is considered.

62

(d) - (g): five node subtopologies

Figure 3-1: The predefined set of subtopologies

63

Figure 3-2: Example of a subtopology (between 1-2) having
a high degree of internal connectivity

3.1.1 SCP Calculations for Subtopologic:s
The chain is the simplest subtopology. Figure 3-3 shows a chain consisting of

three spans with w; working links and s; spare links. For 100% restoration, the spare

capacities on spans 1, 2, and 3 are given by:

s, 2max (wz, w3) (3-1)
s22max(wl, wi) (3-2)
sy 2max (w, w,) (3-3)
Figure 3-3: A chain subtopology
For a chain of n spans, the above equations can be extended to:
s;2max (wj) forij=1lton andi#j (3-4)

The SCP of the other subtopologies involves solving a system of equations. The

64

main objective is to minimize the total spare capacity of a subtopology. The secondary
objectives are to minimize the working capacity equivalent, We,, and to maximize its
spare capacity equivalent, S,,. The S, of a subtopology is the spare capacity offered by it
1o the rest of the network between the end nodes connecting it io the rest of the network.

Its W, is the working capacity not restored internally by the subtopology. The SCP equa-
tions are solved such that after SCP a subtopology is 100% restorable if W,,, working links
are made restorable by spares in the rest of the network.

For example, consider the simple four node network of Figure 3-4. If this subto-
pology is allowed to depend on the rest of the network for restoration of some of its work-

ing links then only cutsets 1, 2, and 3 need to be considered.

Figure 3-4: A simple four node subtopology connected
to the remaining network at nodes 1 and 2

The working and spare capacities on each span are w;; and s;;, where i and j are the

end nodes of a span. The equations for full restorability considering cutsets 1, 2, and 3 are:

Cutset 1:
5142 Woy 3.5)
5942 Wiy 3.6)
Cutset 2:
Sj3t Sy 2wy (3.7)

65

St Sy 2 W3 1.8

Syt S22 W3 (29
Cutset 3:

S13F 853 2 Wy, .10

S13t S94 2 Wy (3.1H

Syt Spq 2 W3 (3.1

The equations for cutsets 2 and 3 can be rewritten by combining (3.7) with (3.10), (3.8)

with (3.11), and (3.9) with (3.12):

Si3t Sy 2max (wy,, Way) (3.13)
Sy3+ min(Sy, 514) 2wy, (3.14)
Sy3+Min(Syy S34) 2W 3 3.1%

The S, and Weq of the subtopology in Fig. 3-4, viewed between nodes | and 2 are:

Seq = 8§, +Min(s 4 Sy3+ Min (8, 53,)) (3.16)

Weq = ma.\'(AwU) forij=1twS5 andi#j (3.17)

where Aw, i is the working capacity of span i-j that is not internally restorable within the
subnet.

Now let w;y = 10, w3 = 100, w3 = 150, wy, = 100, and w34 = 50. Equations
(3.5) ard (3.6) give the minimum values for s,4 and s34 as 50 and 100 respectively. Substi-

tuting the w,-j’s into equations (3.13) to (3.15), we get:

s13+s23250 (3.13a)
S5 min sy, S34) 2150 (3.14a)
s23+min(s24, Sy4) 2 100 (3.15a)

The approach we use is to incrementally increase the values of one variable or a combina-
tion of variables so that all constraints are satisfied while using the minimum total number
of spares. The best variable or combination of variables is chosen at each step. In cases

where there are several equally good possibilitics, the choices which also increase the S,

66

of the subtopology are considered. If many such possibilities exist for increasing Seq, then

the choice that benefits mostly the constraints requiring the maximum spare capacity is
preferred over others as doing so may eventually require fewer spares. It is very likely that
in the process of satisfying these constraints, any constraints requiring less spare capacity
will also be satisfied.

For example, combinations of 5,3 with 5,3, and s;3 with 554 can be used to
increase the S, of Figure 3-4. Of these two combinations, the latter appears in equation
(3.14a) which requires the maximum spare capacity among all constraints. Therefore the
values of 5,3 and s,4 are increased to 50 and 100 respectively, and all three constraints are
satisfied. Recall that cutset 1 dictates s,,2 100 and s,, > 50. Figure 3-5 shows the final
sjj values. The S, of the subtopology is 50 (equation 3.16). The results of this case-spe-
cific SCP formulation were tested for all 4! possible relative rankings of w;; values in the

subtopology of Figure 3-5 and were found to be optimal.

Figure 3-5: Final SCP internal design of the 4-node (1-2) subtopology

Figure 3-6 shows an example of a subtopology whose SCP can be solved by sat-
isfying the constraints from a single cutset. Figu-e 3-6(a) shows all the cutsets that need to
be solved for SCP, while Figure 3-6(b) shows the flow-equivalent single cutset representa-

tion. In this system of constraints, each variable s;; appears in all but one constraint. There-

fore. any set of constraints can be satisfied by incrementing the values of at most two

67

variables which appear in all unsatisfied constraints.

3a
Cw) max(w y,w
max(wys,W1s), mi:‘(s“’ S 2-‘))‘
min(sys,s 15) 23734

W12:512

(a) Cutsets for subtopology (b) Single cutset representation

Figure 3-6: An example of a subtopology whose SCP can be reduced to
solving a system of three constraints

This method can also be used to solve a system of constraints determined by
more than one cutset, but the SCP for such cases may not be optimal. This is because the
sharing of variables among the constraints is low. Hence the values of many variables
must be increased as opposed to at most two variables. For example, in the case of the
thre~ constraints given by equations (3.18) to (3.20), there are no variables common to
two constraints. To satisfy all three constraints simultaneously, the values of at lcast three
variables must be increased. For this case, 27 such combinations ure possible, and there-

fore it is hard to find a combination of increments which eventually leads to an efficient

result.
S Sy tSs32w, (3.18)
Sp+ S5+ sg2w, (3.19)
S7+Sg+ 8592w, (3.20)

3.1.2 Network Expansion
Network expansion is done after the network has been reduced and spared. Dur-
ing the sparing of the reduced network, a reduced span may be required to supply more

spares to the network than placed during reduction. The network expansion stage modifies

68

the SCP of the subtopology represented by such a span, increasing its S, to the required
value.

A simple method to increase the S, of a subtopology is to increase the S, asso-
ciated with its shortest route, for example route 1-2 in Figure 3-5. A general network
expansion routine was devised to increase the S, of the shortest route for all subtopolo-
gies.

A more advanced approach in network expansion is to consider reducing W,
while increasing S,,. The implenientation of this approach is subtopology specific. A
reduction in W,, may make some spare capacity redundant elsewhere in the network. This

increases the subsequent gain from design tightening.

3.1.3 Limitations of Fixed Topology Identification and Substitution

The complexity of fixed topology identification and substitution depends on the
complexity of identifying subtopologies. The complexity of identifying a single subtopo: -
ogy at a given node is O(N) because in the worst case O(N) nodes around every node in

the network are checked for identifying a subtopology in its proximity. The identification

algorithm searches all N nodcs in the network, therefore its complexity is O(N?). How-
ever, it is difficuit to implement an identification algorithm that identifies all target sub-
topologies in the network especially if there is a large number of fixed subtopologies to
consider.

An efficient and practical SCP for subtopologies is limited to those whose SCP is
reducible :o0 solving a systcm of constraints where each constraint arises from only a sin-
gle cutset. For other cases, an efficient SCP cannot be guaranteed. A large number of sub-
topologies do not fall in this category, such as the subtopology of Figure 3-7. In addition,
each subtopology has a specific SCP. Therefore, the implementation becomes difficult as

the size of the predefined set of subtopologies increases.

69

Figure 3-7: An example of a subtopology whose SCP involves solving
interrelated cutset equations

3.2 A Greedy Method for Successive Chain-wise Reduction

In real transport networks, subtopologies consisting of chains of degree 2 nodes
are reasonably common. For example, Netl contains three and Net2 contains four signifi-
cant chain-reducible subtopologies, as shown in Figures 3-8 and 3-9. Therefore, identifica-
tion and reduction of these chain subtopologies is a potential approach for network
reduction.

Large optimization problems can sometimes be solved by breaking them into
small manageable sub-problems or stages and solving them in a certain order. At each
stage a large number of feasible solutions are possible. The greedy method works by pick-
ing the optimum solution at each stage. For example the forward synthesis (FS) phase of
the SLPA algorithm [8] is “‘greedy”. The practical advantage of greedy algorithms is that
they are usually straightforward, easy to understand and easy to code. Their main disad-
vantage is that there is no guarantee that making locally optimal improvements at cach

stage will yield a globally optimal solution.

70

Figure 3-9: Chain-reducible subtopologies in Net2

71

The greedy method can be used to reduce and place spares for all subtopologies
that consist of chains. Let P be the problem of placing spares for a subtopology consisting
of chains. Problem P can be broken into a series of subproblems (Qy). Q;...... @), where Q;
identifies a part of the subtopology and places spares for it. In order to solve ;. the output
of Q;; is needed. Figure 3-10 shows how subtopologies can be collapsed through a series

of reductions.

(b) substitution of restoration equivalent
model and reduction of Q,

A -
(i — ;ﬁ)
/A 2 "‘\
(c) substitution of restoration equivalent| (d) substitution of restoration equivalent
model and reduction of Q, model

Figure 3-10: A greedy method for chain-wise successive network reduction

In Figure 3-10(a), state Q, involves reduction of the subtopology formed by span
2 and the chain of spans 0 and 1. Reduced span ry is the subtopology’s restoration equiva-
lent model. The result is a simiiar subtopology consisting of span 3 and the chain of spans
rp and 4 (Figure 3-10(b)). Reducing the chain in state @, is therefore similar to reducing
the chain in state Q. Also, Q; depends on the iesults of Q; and can be dealt with only
after Q. Reduced span r; represents the restoration equivalent mode! of the topology con-

sidered in state Q;. After reducing the chain in state Q,, @, is reduced (Figure 3-10(c,).

72

The greedy method is used to find the SCP for each state by optimizing three

parameters. These are the total spare capacity, 7, of the chain of Q;, the working capacity

equivalent, W,

eq Of Qiv and the spare capacity cquivalent, S,., of Q;. At each state, T is

minimized. After finding the minimum total sparing, we maximize the S, of the chain and
minimize its W, because a reduced span with a higher S, value can contribute more

towards the restoration of the rest of the external network, and a reduced span with a lower

Wey requires less support from the rest of the network. The example presented in Figure 3-
11 shows the need for minimizing W,,. Reduced span ry in Figure 3-11 forces spans 0, 1,
and 2 to have 100 spare links. If the W,, of ry can be reduced then the sparing of spans 0,

1, and 2 can also be reduced.

10,108 10,1C0

Figure 3-11: An example showing the importance of minimizing W, at each state

After minimizing 7, we cannot always increase S, and decrease W, simult:se-
ously. The optimal solution at state Q; is somewhere between the maximum S, and muni-
mum W,, designs but this solution can be known only in soyne subsequent state. In such
cases, the optimum solution at state Q; can be realized only by backtracking from some
state Q;,; (j>0) to Q;, and re-working the SCP from state Q; and onwards. The backtrack-

ing approach is very complex and is discussed in detail in Sec. 3.3. The greedy approach

in such cases is to maximize S, or minimize W,,. This thesis discusses two greedy heuris-

tics, NRG1 and NRG2. When we must choose between S, and W,

2 NRG1 always maxi-

mizes S,, while NRG2 always minimizes the W,, of a chain. The primary objective of

both these heuristics is to minimize T at each state Q.

73

3.2.1 Overall Greedy Reduction Algorithm
Each step of reduction involves three main operations:
(1) Identification of a chain and the span joining its end nodes (if present).
(2) SCP for the identified chain.
(3) Substitution of a restoration equivalent model! for the reduced span representing

this chain, previously identified parallel chains, and the span joining the end nodes.

Networks may have several chain-reducible subtopologies that can be collapsed through
the greedy method. Each of these subtopologies is reduced separately. Figure 3-12 shows
the overall algorithm and its interface with the max-latching heuristics for SCP of the
reduced network. The method first picks an arbitrary node of degree two. It then attempts
to reduce the subtopology associated with this node. A subtopology is reduced in a loop of
n steps (Qp,.... @,), and each iteration of this loop starts in state Q;. Spans belonging to
reduced subtopologies are removed from the network and the spare capacity assigned to
these spans is stored. The nodes belonging exclusively to these subtopologies are also
removed from the network. The reduced network is obtained after the network reduction
algorithm has gone through all the nodes. This reduced network is then passed on to the
max-latching SCP heuristics for its SCP. During the SCP of the reduced network, the S,
of some reduced spans may change. The network expansion stage is used to reflect these
changes while expanding the reduced network back to its original form. In some cases the
network reduction algorithm reduces the whole network to a single span, and for these
cases the network expansion stage simply outputs the SCP design achieved during reduc-

tion.

74

Subtopology reduction

Reduction of
state Q; of a
subtopology

[Substitution of restoration
equivalent model

Generate data structures for
the reduced network

SCP of the reduced network
by max-latching heuristics

r Network Expansion J

Figure 3-12: Overall greedy algorithm

75

3.2.2 Representing Reduced Spans
Reduced spans represent at least one chain and a span joining the end nodes of

the chains, if one is present. Depending on whether there are reduced or real spans in the
chain, and whether the end nodes of the chain are adjacent to cach other at their interface
to the surrounding network, the reduced spans are of four types:
1. TYPEL: this reduced span consists of only one chain, and the end nodes of the

chain are adjacent to each other. In Figure 3-13 the span formed is TYPEI

if the end nodes O and 1 are adjacent. The chain can have reduced as well

as real spans.

Figure 3-13: A simple subtopology

2. TYPE2: this reduced span consists of only one chain of real spans, and the end
nodes of the chain are not adjacent to each other. e.g., Figure 3-13 shows a
TYPE2 subtopology if spans 1, 2, and 3 are reai and nodes 0 and 1 are not
adjacent.

3. TYPE3: this reduced span consists of only one chain which contains at least one
reduced span. The end nodes of the chain are not adjacent to each other. In
Figure 3-13 if at least one of spans 1,2, or 3 is a reduced span, and the end
nodes O and 1 are not adjacent, then the subtopology is TYPE3.

4. TYPE4: this reduced span consists of more than one chain in parallel with each
chain having the same end nodes. The end nodes may or may not be adja-

cent to each other as shown in Figure 3-14.

76

Real spans are also called TYPEO.

chain #0
W..,S

eq* eq
> (O g (O~

chain #1

Figure 3-14: A TYPE4 reduced span

3.2.2.1 Restoration Equivalent Model
The restoration equivalent model of a reduced span is made up of two parameters

Seq and W,,. In the case of a TYPE1 reduced span, the end nodes of the chain are con-

nected by a real span. The restoration equivalent model for the reduced span plus the span

connecting the end nodes is:

Seq = S,q (chain) + 8, (3.21)

W, = max W,, (chain) - Sp, Wy - S, (chain)) (3.22)
where S is the spare capacity and W, is the working capacity of the span joining the end
nodes of the chain. Seq(chain) and Weyf chain) are the spare and working equivalents of the
chain, and are determined by:

Seq(chain) = min (s;) i=1,...,n (3.23)

Weq(chain) = max(w;) i=1..,n (3.24)
where n is the number of spans in the chain. Equations (3.23) and (3.24) also give the Seq

and the W, of TYPE2 and TYPE3 spans. The W, in equation (3.22) can be expressed as:

Weq = max(Weff(chain), WO,eff) (3.25)

ki

where W,g(chain) is the effective working equivalent for the chain and Wy . is the effec-
tive working equivalent for the spa; joining the end nodes of the chain. The eftective
working equivalents W,g(chain) and W, .4 are the internally unrestored portion of the
working equivalents W, (chain) and W

Weﬂ.(chain) = W(,q (chain) -8 (3.20)

Wo e = Wo— S, (chain) (3.27)

In case of a TYPE4 reduced span, more than one chain is present in parallel and
the common end nodes of the chains may or may not be adjacent. The restoration equiva-
lent model is:

ne

Seq = 2 S, (chain), (3.28)
iml
ne
Weq = max ch(chain)l.— 2 ch(('hain)j (3.29)
j=1
jzi

where nc is the number of chains i1 the TYPE4 span. Equation (3.29) can also be

expressed as:

Weq = max(chf(c‘hain),.) (3.30)

where W, g(chain); is the effective working equi. Jent of chain .
If the end nodes of the chains are adjacent then the restoration equivalent model

including the connecting span becomes:

Seq = ch(chains) +5, (3.31)
ch = max(Weq(chains) =Sy W(,—ch(chain.s')) (3.32)
or Weq = max(Weff(Cha,'ns),Wo’cﬂ.) (3.33)

where S is the spare capacity and W) is the working capacity, Wy; v is the working capac-
ity equivalent of the span joining the end nodes of the chains, and W, chains) is the work-

ing capacity equivalent of the chains.

78

3.2.2.2 Non-linearity in Reduced Spans

Obviously the S, of real spans increases linearly as actual spare Hinks are added
to the span. But this is not true in general for reduced spans because of serial imerrelation-
ships between spans which may mean that adding spares 10 a span increases Spq up toa
point, until a botileneck arises somewhere else clamping the eftect of further additions to
the first span considered. Consider the chain shown in Figure 3-15. The &, of the chain is
30 as drawn but it can be increased up to 50 by adding 20 units of spare capacity on span
0. After the S, of the chain has been raised to 50, three units of spare capacity are needed
for each unit increase in S,4. The behaviour of S, as additional spare links, X, arc invested

is given by the following equations:

Seq =30+X 0<X<20 (3.34)
S,, = S0+ L&;ZQJ 20 <X (3.35)
e ';0,5()
1 ;
50,30
0
0

Figure 3-15: Illustrating the non-linearity in S

eq Of reduced spans as
spares are added

Also, unlike real spans, the W, of reduced spans may decrease with the addition
of spare capacity. Consider the subtopology in Figure 3-16. This subtopology can be rep-
resented by a TYPE] span and its W, as drawn is 50 (equation 3.22). The W, chain) and
Wo,eff from equations (3.26) anc (3.27) are 50 and 10 respectively. Therefore, the W‘,q of
50 for this reduced span is due to Wejj-(chain) (equation 3.25). Wef/chain) can be decreased

by one unit down to a value of 10 for each unit increase in span 3's spare capacity. After

this, a further decrease in W, is possible only by adding two spare capacity units: one

each on spans 0 and 3. Therefore, the W, of some reduced spans can be decreased by add-

79

ing spares that make the network intemnally self- restorable, and this decrease is non-linear.

The behaviour of W, for the subtopology of Figure 3-16 1s given by:
ey £ >

W, =50-X X<40 (3.36)
W,, = max| 10-L’_‘;2:49J,0\) 0<x (3.37)
) A /
TN 30,50 S
COGD
/
50,30 \10 s
0 2
N 46,0
N 3 N3
e >

Figure 3-16: Illustrating non-linearity in W, of reduced spans as spares
are added

The non-linear representation of the span includes not only W, and S, but also

the information about how W, is decreased and 5, is increased.

3.2.3 Operations on Reduced Spans
Three types of operations can be performed on reduced spans. These operations

are increasing S, decreasing W,,, and removing spare capacity. The greedy method uses

only the first two operations. Removing spare capacity from reduced spans is used in the

backtracking method discussed later.

3.2.3.1 Increasing S,

The S,, of a particular ~duced span RSPAN is increased in increments of one
through spare capacity addition. While increasing the S,, of RSPAN. the possibility of
decreasing its W, is also analysed. If the number of spare links needed to increase the S,

of a span is the same as that required to simultaneously decrease its W,

o then the W, is

also decreased. The steps involved in increasing the S, of RSPAN depend on its type:

80

(a) TYPEI
The S, of this span can be increased by adding one link to the span joining the end nodes
of its chain. §,, can also be increased by decreasing W0 the decision 1o do so is made
only when this can be done by adding one spare link. The steps for decreasing the W, ola
TYPE] span are discussed in the next section,
(b) TYPE2
Two steps are involved in increasing the S, of this type of span:
(1) Find the set of all spans, U, in the chain whose spare capacity is the minimum in
the chain. The size of this set is also the number of spares needed to increase the S,

of RSPAN by 1.

1

(2) Increase the spare capacities of all spans in U by 1,
Consider the subtopology in Figure 3-15. The reduced span representing this chain is of
TYPE2 with an S, of 30. The S,q of this span can be increased by incrementing the spare
capacity of span 0.
(¢c) TYPE3
The steps involved in increasing S, are:
(1) Find the set of all spans, U, in the chain whose spare capacity is the minimum in
the chain.
(2) Find the total spare capacity, 7'}, needed to increase the S, of all spans in U.
(3) Let U, be the set of all spans in U having W,,, equal to the W, of RSPAN. If any
of the spans in U, is real or if the W, of a reduced span in U, cannot be decreased
then T} is set to infinitv, else the total spare capacity, T, needed to decrease the W,
of U; while increasing their S, is found. Let 7; be the spare capacity needed to
increase the S, of the spar- 1 {U - U;}.
(4) if T,+Tj is equal to T; then decrease the W, of U; while increasing its S,,, and
increase the S,, of {U - U, }, else increase the S, of U.
(d) TYPE4
The S, of a TYPE4 span that consists of a span joining the end nodes of its parallel chains

is increased differently from one that has no such span. If there is a span joining the end

81

nodes, S, can be increased by increasing . Seq can also be increased by decreasing W,
this is done if it is possible to - so by adding one spare link. The steps for decreasing the
W, for this case are discussed in the next section.

In case of a TYPE4 span which has no span joining its end nodges, first the mini-

mum number of spares needed to increase its S, is found. Then the possibility of reducing

W,

ey

is analysed. First, all chains whose W,g(chain) is less than the W,, of RSPAN are
checked. If any of these chains requires the same number of spares to increase S,(chain)
as is required to increase the S,, of RSPAN then S, (chain) is increased. This will

decrease the W, , of RSPAN.,

eq

3.2.3.2 Decreasing W,,

As for S

¢ the W, of RSPAN is decreased one unit at a time. W, is decreased

only through the addition of spare capacity which may also increase S, The steps
involved in decreasing the W,,, of RSPAN depend on its type:
(a) TYPE1

Depending on the values of Wg(chain) and Wy .4 there are three cases (see equation
3.25):
(1) Weg(chain) > Wy ¢ Sp is increased to decrease Wy chain).
(2) We(chain) < Wy o5 S, of the chain is increased to decrease the W .
(3) Wpgfchain) = Wy ¢ Either:
(i) Find the number of spares needed to decrease the Weq of the chain while
increasing its S, or
(ii) Find the number of spares needed to increase Sy and the S, of the chain.
If the number of spares needed for (i) is less than (ii) then it is implemented else (ii)
is implemented. The S, of RSPAN increases by 2 units if (ii) is chosen.
(b) TYPE2
The W, of a TYPE2 span cannot be decreased because it consists only of real spans.
(c) TYPE3
The W, of this RSPAN can be decreased only when tie W, of all the spans in the chain

82

which have their W,,, equal to the W, of RSPAN can be reduced. If any of these spans is
real then W,,, cannot be decreased. The steps involved are:

(1) Find the set U of reduced spans having W,,, equal to RSPAN's W, .

(2) Decrease the W, of all spans in U.
(d) TYPE4
The W, of a TYPE4 span having a span joining its end nodes is determined using equa-
tion (3.33). Depending on the values of W, g(chains) and Wy, .. there are three cases:

(1) Weglchains) > Wy 2 Sp1s increased.

(2) Wgfchains) < W o0 The S, of the chain requiring the minimum spare capac-

ity among all the parallel chains is increased.

(3) Wg(chains) = Wy, Three subcases must be checked:

(1) Find the number of spares needed to increase S; and the S, of a chain

having its W,g(chain) equal to the W,, of RSPAN. If more than one such chain

exists then choose the chain that requires the minimnm spare capacity of all
such chains.
(ii) Of all chains having W,g(chain) less than the W,,, of RSPAN, find the one
requiring the minimum number of spares to increase S,
(iii) Find the number of spares needed to simultaneously increase the S, and
decrease the W, of a chain having W,g(chain) equal to the W,,, of RSPAN. If
more than one such chain exists then choose the chain which requires the
minimum spare capacity among all such chains.
The option requiring the minimum spare capacity is chosen. In case of a tie (i)
is preferred as the S,, of RSPAN increases by 2 units in this case.
The W,, of a TYPE4 span which does not have a span joining its end nodes is given by
equation (3.30) and it can be decreased in the following ways:
(1) If there is more than one chain with W,g(chain) equal to the W,, of RSPAN, then
find the minimum number of spares needed to increase the S,,, of two such chains.

(2) Of all chains with W,g(chain) less than the W, of RSPAN, find the one requiring

the minimum number of spares to increase S,

83

(3) Find the number of spares needed to simultaneously increase the S, and
decrease the W, of a chain having W, equal 1o the W,, of RSPAN. If more than one

such chain exists then choose the chain that needs the minimum number of spares.
Out of these three. the option requiring the minimum number of spares is chosen. In case

of a tie, (1) is preferred over (2) and (3) as Seq increases by 2 units in case of (1).

3.2.4 Two Greedy Heuristics for Chain-wise Saccessive Network i .eduction
This section presents an example to illustrate and contrast two greedy heuristics
yr chain-wise successive network reduction, NRG1, NRG2 (see Figure 3-17). The pri-

mary aim of these heuristics is to minimize the total spare capacity, 7, at every state Q;.
After minimizing T, these heuristics try to simultaneously maximize S,, and minimize W,,
of the subnetwork ~f state Q;. Because it is not always possible to do so, NRG1 maximizes
Seq While NRG2 minimizes W,

State Q in Figure 3-17(a) involves identification of chain 1, SCP of the spans in

chain 1, and substitution of the restoration equivalent model for the topology formed by
chain | and span 3. Equation (3-4) is used to find the spare capacities on the spans, and

equations (3-21) to (3-22) are used to find the S,, and W,, for the reduced span ry. After
the substitution of span ry, chain 2 is formed which gives rise to state Q; (Figure 3-17(b)).
In state Q; the algorithm first minimizes the total spare capacity of chain 2. In

chain 2, reduced span rj has the maximum W,,, thus setting the spares on all other spans

eq
in the chain. Hence, the total spare capacity chain 2 can be decreased if the W,, of span ry

can be decreased.

At the same time, the S, of span ryp must be increased to 60 (equation 3-4) for
100% restorability of chain 2. While increasing the S, of span ry, the possibility of simul-
taneously reducing its W,,, is also considered. In order to reduce its W,, by one, three units

of spare capacity are needed, and in doing so three units of spare capacity are saved in
chain 2, one each on spans 4, 5, and 6. No additional spare capacity is needed to do this.

The other option is to increase the S, of ry by putting spare capacity on span 3, but doing

so does not decrease the W, of ry, so this option is not as good as the previous one. Hence,

84

chain 2 can be made restorable with minimum sparing by reducing the W, of ry to 140.

The result is shown in Figure 3-17(c).

Q

180,20 -
L)} N

(a) State Qg (b) State Q: substitution of restoration
equivalent model of chain #1 and span 3

Q

(c) State Q: sparing for chain #2

Figure 3-17: An example illustrating NRG1 and NRG2 greedy heuristics

85

/ 0
100, 2 chain #1 \ 20,100

e 2000
™

60,100 chain #2

6 100.100

50.100
ry

i (d) NRG1: maximizing Seq

20,140
D

/
10,140/ 2 chain #1 6\ 20,140

60,60

r

(e) NRG2: minimizing Weq

Figure 3-17: An example illustrating NRG1 and NRG2 greedy heuristics (cont’d)

Both greedy heuristics now try to simultaneously maximize the S,, and minimize

the W, of chain 2. If spare capacity is now assigned to all the spans in chain 2 using equa-
tion (3-4), then the Seq of the chain becomes 60, by equation (3-21). The Seq of the chain
can be increased to 100 by decreasing the W, of ry to 100. This operation involves no

additional spare capacity. The SCP design is shown in Figure 3-17(d) which is also the

maximum S, design generated by NRGI. Reduced span r; is the restoration equivalent

86

1

Q. NRG2 tries to minimize the W of the chain but at the cost
of decreasing ~ S, The .unimum W, design is obtained by further reducing span ry)'s
W,, 10 60; this 1 fuces the S, of the design to 60 as shown in Figure 3-17(e). Both NRG1

and NRG2 use the sanie total sparing in this case, and in fact many designs with the same

total spare capacity are possible between these two designs.

3.2.5 SCP for Identified Chains
The first step in each iteration of the greedy algorithm is identification of the
longest chain present in state Q;. If TYPE2 and TYPE3 reduced spans are present in the
chain, they are expanded into the spans they represent. This simplifies the algorithm, as
only TY Pku. 1YPL.]1, and TYPE4 spans must be dealt with in the next two steps.
The e step s to place spares for each chain found by the identification step.
Eaw o - isused for this nurpose. The SCP for the chain is actually decided by only
sans. ! . be the set of sp ns in the chain. Let S; be the span having the maximum
working equivalent i 7/, and let £, be the span having the maximum working equivalent
i {U-S;}. Tk nthe pare capacity of all the spans in the chain, except §;. is equal to the
W,y of §;. and that of §; is equal to the W, of S;. For example, S is span 1 and S; is span

2 for the chain in Figure 3-18.

20,60

Figure 3-18: An example showing SCP of a chain.

Based on whether S; and S, are real or reduced, four cases are possible:
(a) Both S; and S, are real.

(b) S; is real and S, is reduced.

87

(c) S, is reduced and S5 is real.

(d) Both S; and S, are reduced.
The algorithm is different foi cach case. In case (a) the SCP for the chain’s spans is direct.
In the other cases the possibility of reducing w/ eq and erq is checked before assigning
spare capacity to the chain’s spans. The first priority is always minimizing the total spare
capacity of the chain and this is done by reducing w! eq and/or w2 eq 1f the spare capacity
required to do so is less than the spare capacity needed to accommodate their equivalent
working capacities.
(a) §; and S, are real
Since §; and §; are real, their W, cannot be reduced. Spare capacity is assigned directly to
the chain’s spans using equation (3-4). The SCP for this case is same for both NRG1 and
NRG2.
(b) S, is real and S, is reduced
The algorithm for this case involves thre steps. In step 1, the spare equivalents of all the
spans in the chain, except §;, are made equal to w! eq DY using equation (3-4), if they are

less than that. Since this may reduce erq, in step 2, S, is chosen again from {U-§,}. In

step 3, the spare capacity of S;, st eq 1S made equal to erq if it is less than that. Since the
W,, of the chain cannot be reduced in this case, the SCP is the same for both NRG1 and
NRG2.

(c) S, is reduced and S is real

The SCP for this case is done in three steps:

(1) assign spare capacity to all the chain’s spans except S; and S;, and make their S,
equal to W? eq if they are less than this.

(2) reduce W/ eq DY assigning spare capacity to S;. This is done by first finding the
amount of spare capacity, n;, needed to reduce w! eq Dy 1 and then finding the
amount of spare capacity, n,, saved in the chain if w! eq 18 reduced. If the cost of

reducing w! eq is less than or equal to the benefit obtained, n; < n, , then we do so.

88

There is a difference between NRG1 and NRG2 if n| = n, and st oy I8 greater than
or equal to W? eq*

In NRGI, Wleq is reduced further only when Sll.q is greater than or equal
chq' NRG?2? only reduces W](,q when doing so reduces the overall W, of the
reduced span formed from the present chain. This is becaur ¢ the S, of the chain
also decreases when its W, 15 doc aned due d unconditionally if a

TYPE? reduced span is formed as the overall W . of this span is same as that of’ S

For TYPE1 and TYPE4 reduced spans W/ ¢q 18 reduced only until the W, of the
present chain is greater than or equal to the W, of the reduced span. If a TYPEIL
reduced span is formed then W, is reduced only when Wy chain) is greater than
Wy o In case of a TYPE4 span, W 4(chain) of this chain is reduced only when it is
more than the Weff(chain) of the other chains and Wo',,ff(if present).

y

(3) assign spare capacity to all spans in the chain. Make the S, of all spans except S,
equal to w! eq if they are less.

(d) Both S, and S, are reduced spans
In this case, both W/ eq and w2 eq are variable. Therefore, assigning spare capacity directly
to the spans in the chain may not give the minimum total spare capacity solution for the
chain. Let U be the set of all spans in the chain. Let U; be the set of S; and the spans in the
chain having W, = w! eq- Let U3 be the set consisting of S and the spans in the chain
having W, = erq. A span in U, forces the spare capacity of all other spans in the chain.
If there is more than 1 span in U, then they also force each other’s spare capacities.
Therefore, we decrease the W, of spans in U, if the number of spares needed to do so is
less than the number of spares saved.

After decreasing the W, of spans in U}, the W, of spans in U, is decreased. The
spans in U, force the spare capacity of the spans in U; only when U, consists of the single

span S;. The W,, of spans in U, is decreased only when doing so requires less than the

number of spares saved by increasing the S’ eq"

89

Spare capacity is assigned to all the spans in the chain only if the W, of neither
the spans in U, nor the spans in U, can be decreased. The SCP for this case is done in three

steps; the first two steps first minimize the total spare capacity of the chain. then

simultancously maximize its S,, and minimize its W, and are the same for both NRGI
and NRG2. If possible, the third step also maximizes the S,, and minimizes the W,,
simultaneously. and then either maximizes the S,, or minimizes the W, of the chain. This
step is different for NRG1 and NRG2.

(1) reduction of the W, of spans in U : Spare capacity in the chain is saved on spans in
{U-U,} and also on spans in U, as spans in U; force each other’s spare capacities.
The W, of cach span in U, is reduced until the number of spares (n;) needed to
reduce it by one is greater than the number of spares (n,) saved in the chain.

If n; is equal to n; then the S, of the chain is maximized and W, is minimized

simultaneously. The S, of the chain is maximum when the S, of all spans in U is

q
equal to or greater than w! eq'

After decreasing the W, of U;’s spans by 1, the W, of other spans in the chain may

become equal to w! eq- If any of these spans are real then the algorithm moves to step

(3) for direct assignment of spare capacity. If none of these spans are real then they

are included in U, and step (1) is repeated until reduction of the W, o7 the spans in
U, is no longer of benefit.

Consider the subtopology presented in Figure 3-19 which consists of two TYPE1
spans with restoration equivalent models (W,,,S,,) of (100,10) and (170,30) (Figure

3-19(b)). Therefore, S, is the (170,30) span, and S, is the (100,10) span. Here, n; is
1 because 1 unit of spare capacity is needed to reduce w! eq and 1 is also 1. Also,

s! eq 18 less than its w! e therefore its w! eq 18 reduced to 150 (Figure 3-19(c)).
Further reduction in this step is not done as n; is 2 and n, is 1.

(2) reduction of the W, of spans in U;: This step is followed if U, consists of only S;.
The spans in U, force the spare capacity of spans in U; in this case. The W, of each

span in U, is reduced until doing so reduces the total spare capacity in the chain.

While reducing the W, of the spans in U, the W, of other spans in the chain may
become equal to the W, of the spans in U». If any of these spans is real step (3 is
followed, else these spans are included in U and siep (2) is repeated.

For example. in Figure 3-19(d). one spare is needed to reduce W:«w/ by 1. and

one spare is saved in the chain. but S",q of 50 is less than W:‘,q of 100. Theiefore

2 . . : N 2 . S
W“(,q is reduced to 90 (Figure 3-19(d)). A further decrease in W".q 18 not beneticisl
2 . .
as 2 spares are needed to decrease W=, and only one spare is needed to merease

Slcq. Figure 3-19(e) shows the restoration equivalent inodel of the subtopologics
reduced in Figure 3-19(d).

(3) assignment of spare capaciry: In this step NRGI wnd NRG2 differ. After steps 1 and
2, the total spare capacity of the chain has been minimized.

If any of the spans in U, is real then the W, of the chain cannot be reduced. and

eq
therefore spare capacity is directly assigned to all spans in the chain through
equation (3-4). If none of the spans in U, is real and U, consists of more than one
span, then in NRG1, spare capacity is directly assigned to all spans in the chain

because a further decrease in the W, of U, also decreases the S, of the chain. In

eq
NRG2, the W, of U, is decreased only when doing so decreases the overall W, of

the reduced span formed after reducing the chain, the span juining its end nodes (if
present), and the previously reduced parallel chains (if present).

For the other cases, the number of spare capacity units, n;, needed o reduce the

w! ¢ Dy one, and the number of spare capacity units, n,, saved in the chain by doing
so are found. In NRG1, if the S’ eq 18 1ess than w! eq and 1f ny is less than or equal to
(ny+1), then w! eq 1s reduced. This is done to maximize the S, and minimize the
W, of the chain and is repeated until s! eq Decomes equal to w! eq OF w! ey DECOMICS

equal to erq. In NRG2, W/ eq 18 reduced until it becomes equal to chq if the cost

of reducing it is less than or equal to the benefit obtained, n, < n,. If n; = n, then

w! eq is reduced only when doing so reduces the overall W,,, of the reduced span

91

(3>

20./10/
4
10,2
0
/

(a) Initial sub-topology

110,0

S;
100,10

(b) Substitution of restoration equivalent
models ry and r;

2000 L3 X 3050

~

S
150,50

(e) Substitution of restoration equivalent

(f) Step 3: spare capacity assignment:

models rp and 1) decrease the W, of S
20,20 _ @
O
\
10,20\ 110,90
0
/ rp ~

(g) Step 3: spare capacity assignment

(h) Substitution of restoration equivalent
model for the entire sub-topology

Figure 3-19: An example of the case (d) of SCP calculation step

92

formed after reducing the chain and span joining its end nodes. Once the reduction
of W/ eq 1 complete, spare capacity is assigned 10 all spans in the chain using
equation (3-4).

For example, in Figure 3-19(f) both NRG! and NRG2 reduce w! eq 0 110 because
doing so maximizes the S,, and minimizes the W, of the chain. st eq Decomes 90.

Further reduction in W, is not beneficial as n; is 2 and n, is 1. Therefore, spare
capacity is assigned to §; and S, using equation (3-4), as shown in Figure 3-19(g).
The final restoration equivalent medel of chain consisting of §; and 5 and the span

joining its end nodes is shown in Figure 3-19(h).

3.2.5.1 Substitution of Restoration Equivalent Model
After the SCP calculation, an identified subtopology is replaced by its restoration
equivalent model. The aim of this step is to represent reduced spans in a way that makes
increasing their S,, and decreasing their W, as simple as for real spar<, i.c., of O(1). If the
complexity of increasing W,, and decreasing S,, of a reduced span is O(/) then the
complexity of the substitution module is O(N). To make the operations on a reduced span
of complexity O(1), the reduced spans can be represented as non-linear spans. The reduced
spans can be represented as non-linear spans with O(N) complexity, therefore this does not
increase the overall complexity of the heuristics. The non-linear representation contains
information about the individual chains represented by the span as well as overall
information about the reduced span.
In case of a TYPE1 reduced span, there is a span joining the end nodes. In a
TYPE4 span more than one chain is present, and the span joining the ¢nd nodes of the
chains may be present. This is taken care of in the overall representation of a reduced span,
which includes:
(1) number of chains in the topology,
(2) end nodes of the chain,
(3) span number of the real span connecting the end nodes (if present),

(4) effective working equivalent of the chain(s), W chains),

93

(5) spare equivalent, S,

(6) working equivalent, W,

(7) type of the reduced span, and

(8) effective working cquivalent, Wy ¢ of the real span joining the end nodcs.

Each chain of the subtopology is represented by:

(1) the number of spans in the chain and their span numbers,

v

(2) spare equivalent, .Seq,
(3) working equivalent, W,
(4) type of the chain,
(5) effective W, of the chain, Wgchain),
(6) relations for increasing the Seq of the chain (Seq_rel). Each relation includes the
“Howing fields:
(a) change in Seq,
(b) change in W,
(c) number of spare capacity units added for a unit increase in S, and the spans

on which the spares are added,

(d) upper and lower limits on the Seq of the chain (SegL and SeqU),

(e) upper and lower limits on the W, of the chain (WeqL and Weql)),
These relations include the variation in the chain’s S, from its present value until
the S, is infinite, INF. INF for a network is taken to be the maximum working

capacity present on the spans of the original network.

(7) relations for decreasing the W, of the chain (Weq_rel). These fields are the same
as for Seq_rel. These relations cover the decrease in the chain’s W, from its
present value until it becomes zero or equal to the W, of any real span in the

chain.

The relations in Seq_rel represent an increase of S, through the addition of spare
capacity only. The rel: tions in Weg_rel represent the decrease of W,, through spare

capacity addition only. Spare capacity is not re-arranged in the chain as it makes span

representation very complex and difficult to implement.

94

Consider the example subtopology shown in Figure 3-20, which consists of only
one chain and the span joining the end nodes of the chain. A TYPE! reduced span is
formed, and the S,,; and the W, of the reduced span are calculated using equations (3.21)
and (3.22) to be 90 and 10 respectively. The S,;. W,o, W g(chain) and W, of the chain
are 10, 20, 20, and 90 respectively. Since the chain consists of all real spans, its W,,, cannot
be reduced but its S, can be increased. The relation Seq_rel for the chain is shown in Table

3-1. The symbol ‘X’ is used to represent a *don't care” situation.

chain #0

restoration equivalent
model

T 90,10

TYPEI

20,10

Figure 3-20: An example for non-linear span representation

Table 3-1: An example showing representation of Seq_rel for a chain

Number of Spans
Seq Weq spare whose spare
change | change | capacity Weql | WeqU capacity is SeqL. | SeqU
units added increased
1 0 1 X X 1 10 20
! 0 2 X | X 1,2 20 | INF

Now consider the subtopology in Figure 3-21. State Q, in Figure 3-21(a) involves
reduction of the subtopology of Figure 3-20. After the reduction of the chain in state Qy), a
chain is formed consisting of spans 3, 4, and ry (Figure 3-21(b)). Span rj has the maximum
We, in this chain, followed by span 4. Therefore, Q,’s SCP follows case (c) of the SCP
calculation with S; as ry and S, as span 4. The first step is to make the spare equivalents of

ro and span 3 equal to 40. While increasing the S, of ry, the feasibility of reducing its W,

95

is also determined. Span ry’s W,, can be reduced by increasing the S,, of its chain, as its
W, fchain) is less than its W o4 From the Seq_rel of span r, the S, of the chain can be

increased to 20, in steps of one, by adding 1 spare on span 1, and thereafter by adding two

units, one each on spans 1 and 2. If the W, of ry is reduced, then two spare capacity units
are saved in the chain of Q;. Therefore, while increasing the S, of rg to 40, its W, is
reduced to 60 (Figure 3-21(c)). In Figure 3-21(d), the W, of span r is decreased further to
increase the S, and decrease the W, of the chain in Q,. The S, of the chain of Qbecomes
50. Figure 3-21(e) shows the restoration equivalent model obtained after the reduction of

the chain in state Q,.

Fo
20,0
3 Ql

40,0
(3) _100s 4
(b) substitution of restoration equivalent

model

(c) SCP for Q, (d) SCP for Q;: maximizing Seq and
minimizing We,

50,50
ry

(e) substitution of restoration equivalent model of Q

Figure 3-21: An example showing the need for non-linear span representation

96

Span r; is TYPE! and has W, S,... W g(chain), and Wy, efrof 50, 50,50, 0, and 0
e ectively. The W, of chain of r; is dominated by span ry, therefore it < an be reduced to
40, The W, of ry is decreased by increasing the S,, of its chain. The non-linear
representation of span ry is used in forming the Weq_rel and Seq_rel for span r. For the
Lea_rel calculation, all three spans in the chain have 50 spares, therefore the Seq Of the
'+ 1vcan be increased only by increasing the spare capacit- on all three spans. Table 3-2(a)

. -ents Weq_rel and Table 3-2(b) represents Seq_rel for span r,.

Table 3-2(a): An example showing representation of Weq_rel for a chain

number of spans
Seq Weq spare whose spare ,
change | change capacity Weql. | WeqU capacity is Seql. SeqU
units added increased
0 -1 2 40 50 1,2 X X
1 -1 4 40 50 1,2,3,4 50 60

Table 3-2(b): An example showing representation of Seq_rel for a chain

number of spans
Se W, spare whose spare
q eq
change | change | capacity Weql. | WeqU capacity is Seql. | SeqU
units added increased
1 0 3 X X 0,3,4 50 INF

The complexity of creating a non-linear representation of a reduced span is O(N),
where N is the number of nodes in the original network, but the coinplexity of accessing
this reduced span is O(1). Therefore, in the SCP calculation step, decreasing the W, and
increasing the S, of a reduced span are O(/). This reduces the worst case complexity of

the SCP calculation to O(N).

97

3.2.6 Network Expansion

SCP of the reduced network may require an S, on a reduced span that is larger
than the value obtained during network reduction. Network expansion corrects such cases
by adding spares. After increasing the S, of all such reduced spans, network expansion
generates a complete SCP solution for the original network.

The complexity of increasing the S, of a reduced span using the non-linear span
representation is O(/). In the worst case O(S) reduced spans exist in a reduced network, and

therefore the complexity of network expansion is O(S).

3.2.7 Complexity

The network reduction algorithm involves several calls of the greedy algorithm
inside an O(N) loop. The greedy algorithm consists of three steps: identification, SCP
calculation, and substitution of the restoration equivalent model. The complexity of each
of these steps with the non-linear span representation is O(N). Since none of the modules
is inside any other module, the worst case complexity of the network red - . n algorithm
is O(N?),

The complexity of network expansion is O(S), therefore the overall complexity of

network reduction and expansion is O(N?).

3.2.8 Performance and Test Results

The performance parameters for network reduction algorithms are capacity
efficiency, execution time, and network reduction gain. Network reduction gain is the
percentage of the original nodes and spans removed from the network. Seven networks
having sizes ranging from 7 to 20 nodes were cho :n to compare NRG1, NRG2, and IP.
Table 3-3 presents some parameters of these networks. Table 3-4 compares NRG1 with
NRG2, while Table 3-5 compares both of the . heuristics with IP.

98

Table 3-3: Test network for network reduction

-
. Number of
- AF AT, - - s 2y
Network Number of | Number of Average working
nodes spans node degree .
links
Net5 10 15 3 920
Net6 15 20 2.67 850
Net7 15 19 2.53 650
Net8 17 23 2.7 1250
Net9 17 23 2.7 950
Net10 20 32 3.2 1930
Netll 7 11 3.14 500
Table 3-4 Comparisor{ between NRG1 and NRG2
NRG1 NRG2 NRGI NRG2
Network number of number of . execution
. . execution .
spare links | spare links . time
time (Sec)
(Sec)
NetS 1140 1020 0.69 0.70
Net6 1170 1110 0.4 0.4
Net7 1110 1070 0.31 0.3
Net8 1790 1790 1.23 1.19
Net9 1300 1330 0.59 0.56
Netl0 2040 2010 1.58 1.56
Netl1 490 490 0.26 0.26

99

Table 3-5: Comparison of NRG1 and NRG2 with IP

P IP NRGI1 NRG2
Network number of execution % excess % excess
are links time redundancy | redundancy
SP (Sec) w.rt. IP w.rt. IP
Net5 950 13 20 7.3
Net6 1110 11 5.4 0
Net7 1070 9 37 0
Net$ 1760 12 1.7 1.7
Net9 1300 12 0 2.3
Net10 1950 39 4.6 4.6
Netll 440 11 11.3 11.3

The results in Table 3-4 and 3-5 show that both heuristics are very fast and that
network capacity for NRG2, in most cases, is within 10% of the optimum. NRG1 is up to

20% from the optimum. Notably, when add0_subl design tightening was used to tighten

the SCP designs of Net5 to Netl 1, no capacity was removed.

Table 3-6 presents the network reduction gain for NRG1 and NRG2 operating on

Netl, Net2, Net3, and Net4. The results show that for some networks reduction gain can be

as high as 50%.

Table 3-6: Network reduction gain for Netl, Net2, Net3, and Net4

Number Number % %
Number | Number o.f spans ot'~ nodes redlfctxon redlfctlon
Network of spans | of node in the in the in in
P | reduced reduced number number
network network of spans of nodes
Netl 24 11 15 7 37.5 36.36
Net2 31 20 17 10 45.16 50
Net3 59 30 57 28 3.4 6.67
Net4 81 53 47 28 41.97 47.16

3.2.9 Conclusions

Two greedy heuristics, NRG1 and NRG2, were developed and implemented
based on chain-wise reduction principles. Network reduction gain for these heuristics can
be up to 50%. The time complexity of NRG1 and MRG2 using a non-linear span represen-
tation is O(N?). Execution time for NRG1 and NRG2 was less than 2 seconds for all seven
test networks, which is 10 times faster than that of IP.,

The SCP results of NRG2 we.e found to be within 10% of the optimum for six of
the seven test networks, while those from NRG1 were more than 10% greater than the
optimum in many cases. Execution time for both these approaches was nearly the same.
Therefore, NRG2 is a better heuristic than NRG1.

The addO_sub]1 design tightener was not able to find excess capacity in any of the
designs from either NRG1 or NRG2. This shows that both heuristics are efficient spare

placers.

3.3 A Backtracking Method

The greedy chain-wise reduction does not guarantee an optimum SCP solution.
This is because the SCP calculated at state Q; can affect the SCP at some later state Q.
‘The SCP at state Q; is locally optimum but at state Q, it is not. One way to overcome this
problem is to backtrack to state Q; and start all over again from there. Thus, to tind an opti-
mum solution we can consider a backtracking method. Here a subtopology is reduced
until the total spare capacity of the subtopology is optimum. If this is not true at any state,
the method backtracks to the earlier state which made the solution non-optimal and starts
again from that state.

Consider the example shown in Figure 3-22. Q, Q;, 05, and Q; are four states.
The SCP at state Q) in Figure 3-22(a) is done using equation (3-4), which is followed by
substitution of the restoration equivalent model, ry (Figure 3-22(b)). Equations (3.21) to
(3.24) are used in the calculation of the restoration equivalent model at each state. Figure
3-22(c) shows the SCP for state Q; and Figure 3-22(d) shows the substitution of Q,’s res-

toration equivalent model, r;. At state @ (Figure 3-22(d)), the W,,, of span r, is maximum

101

which forces the other spans in the chain to have high spare capacities. The W,, of span r;
is reduced to 50 as this also maximizes the S,, of the chain consisting of r; and span 9.
Figure 3-22(e) shows the SCP for state Q5. Figure 3-22(f) presents Q,'s restoration equiv-
alent model, r,. In Figure 3-22(f), r, forces the spare capacity on span 8 to 50. The high
W,, of r, is due to r; which has a high W, inherited from ry. In order to protect one work-
ing link on ry, one spare link must be placed on spans ¢, 6, 8, and either of 7 or 9. but only
three units of spare capacity were needed at state Q; (Figure 3-22(b)) to reduce the W, of
rp by 1. Therefore, the SCP at state Q; is not optimum due to the decision made at state
Q- The algorithm undoes the previous SCP from state Q) onwards, backiracks to state
Qg reduces the Weq of ry to 10 (Figure 3-22(g)), and starts again from there.

In practice, it is very difficult to keep track of when > backtrack, and to deter-

mine the extent to which the W, of an earlier state must be reduced. Also. it is difficult to

undo the SCP. Furthermore, non-linear span representations for backtracking must include

all possible relations for increasing S,, and decreasing W,,. Many of these relations

involve rearrangement (deletion and addition) of spare capacity in a chain. In some cases,
these relations are interdependent. Therefore, it is not possible to guarantee an exact non-

linear span representation for states /; with O(N) complexity. Figure 3-23 presents an

example showing the limitations of non-linear span representations. Table 3-7 shows all

possible relations for decreasing the W,, of r; of Figure 3-23(d). The first relation in Table
3-7 involves a rearrangement where all three relations are interdependent. If r;’s W, is
decreased by one using the first relation then the S, of r;’s chain becomes 49. The third

relation is no longer exact as its SeqL and SeqU have changed to 49 and 69 respectively.
Hence the third relation must be re-derived. This increases the complexity of the non-lin-

ear span representation.

102

(b) Substitution of restoration equivalent
model for subtopology of Qg

(d) Substitution of restoration equivalent
model for subtopology of Q

(e) SCP for state Q,

QD q,

50,50

(f) Substitution of restoration equivalent
model for subtopology of Q,

Figure 3-22: An example of backtracking for network reduction

103

(g) SCP for state Qg

(h) Substitution of restoration equivalent
model for subtopology of Qg

Figure 3-22: An example of backtracking for network reduction (cont’d)

Table 3-7: An =xample showing a limitation of non-linear span representation for back-

tracking
-
Number Spans Spans
S W of whose whose
b q " €q spare | WeqL | WeqU | spare spare | SeqL | SeqU
change | Change | apacity capacity | capacity
units is is
added increased | decreased
-1 -1 1 30 50 1,2,3 4,6 30 50
0 -1 3 30 50 1,2,3 - X X
1 -1 5 30 50 1,2,3,46 - 50 70

104

5() 50 ,/"

20,0 /
/6

5

0,0

10,0

\
(a) SCP for state Q) (b) substitution of restoration cqulval
model for subtopologyQ,

50,50

(c) SCP for state Q, (d) substitution of restoration equivalent
model for subtopology of Q,

Figure 3-23: An example for showing limitations of non-linear span representation
of complexity O(N) for backtracking

Restricted backtracking for network reduction performs only two successive
chain-wise reductions. The non-linear span representation used up to Q, is exact, and is of
O(N) complexity as it involves no rearrangement. The reduced span obtained after reduc-
ing state @, of each subtopology is marked. TYPE]1 and TYPE4 reduced spans arc
debarred from further reduction, while TYPE2 and TYPE3 spans are first expanded and
then used if they are part of a chain.

Network reduction using restricted backtracking is nearly the same as that of the
greedy method, except that backtracking sometimes involves rearrangement of spare
capacity. Like the greedy method, the primary aim of restricted backtracking is to mini-
mize total spare capacity and the secondary objective is either to maximize Seq OF Mini-

mize W,,. Depending on the secondary objective, two heuristics are possible: NRRBT

105

which maximizes S, and NRRBT2 which minimizes W,,.
The identification step for restricted backtracking identifies the longest chain

present in states Qg and Q,. If TYPE2 and TYPE3 spans are present in a chain, they are
expanded to form a bigger chain. If a marked TYPE1 or TYPE4 span is identified in a

chain then that chain is not treated further. The identification step also undoes the SCP

from state Q, for all marked TYPES3 reduced spans. This is done to avoid the possibility of

rearrangement (discussed later) during the SCP calculation.
Figure 3-24 presents an example showing rearrangement of spare capacity in a
chain during its SCP, and Figure 3-25 shows how such a rearrangement possibility can be

avoided. The purpose of rearrangement is to minimize total spare capacity, maximize S,
and minimize W, of the subtopology.

The SCP of the chain for each state uses equation (3-4). In Figure 3-24, spans ry,
r;, ry, and r3 are reduced spans found using equations (3.21) to (3.24). These represent the
restoration equivalent models for chains in @y, Q;, Qp’ and Q,’ respectively. Figure 3-

24(f) shows the SCP and Figure 3-25(g) shows the restoration equivalent model. In Figure
3-24(f), the W, and S, of the chain in Q;" are 30. The overall W, of the chain and span 8

is 120. This can be decreased by increasing the S, of the chain. This is done by removing
two spare links, one each from span 0 and 7 (ry and r,), and putting them on spans 3 and 4.
This step is shown in Figure 3-24(h). The final W, and S, values after rearrangement are

both 75 (Figure 3-24(i)). Total spare capacity values for the greedy algorithm and

restricted backtracking are the same for this example.

106

Q

Qo
50,1 00;2 100,50

p Tolanor D et
, 100,50 3
‘ A 2003 w00 A
3)

(b) substitution of restoration equivalent
model for subtopology of Q

(d) Substitution of restoration equivalent
model of chain and SCP of Q'

Q/ Qy

20303 30,30

(e) Substitution of restoration equivalent | (f) Expansion of Q, and SCP for Q,’
model for subtopology of Qqy’

r3 ; l
% 120,30

(g) Substitution of restoration equivalent model for subtopology of Q,’

Figure 3-24: An example showing rearrangement of spare capacity

107

r
%‘ 75,75

(h) rearrangement of spare capacity (i) substitution of restoration equivalen:
in chain of Q;’ model for subtopology of Q;’

|

Figure 3-24: An example showing rearrangement of spare capacity (cont’d)

The possibility of rearrangement at state Q; arises only when at least one TYPE3
span is a part of Q,’s chain, and a TYPE1 or TYPE4 reduced span is formed after reduc-
tion of Q,. The rearrangement can be avoided during the S_P of the chain by undoing the
SCP of the TYPE3 reduced spans’ Q; state while expanding TYPE3 chains. After this the
SCP calculation for NRRBT1 and NRRBT?2 is the same as that of their greedy counter-

parts.
For example, Figure 3-25(a) shows the result of undoing the SCP of Figure 3-
25(c) while expanding span r; of Figure 3-25(e). The SCP for Figure 3-25(a) uses case (d)

of the SCP calculation, and Figure 3-25(b) shows the result.

(a) Expanding chain of Q, and undoing (b) SCP for Q,’
SCP done at state Q;

Figure 3-25: An easy method for avoiding rearrangement at state Q;

108

Substitution of the restoration equivalent model is also nearly the same as for the
greedy method. Since reduction is done just up to state Q. only a non-linear representa-
tion of state Q) is required. Apart from Seq_rel and Weq rel. the non-linear span represen-
tation includes relations for rearrangement, Rearrange_rel. Rearrange rel consists of
operations on reduced spans in state Q;. The operations are recorded in sich a way that

they can be used for undoing some or all of the previous SCP operations on a reduced

span.
For example, in Figure 3-21(c) the S, of) is increased from 10 to 40 while the
W,, is reduced from 90 to 60. Rearrange_rel for ry's chain corresponding to this step is

shown in Table 3-8. The SCP of Figure 3-21(c) can be undone by executing the relation

which lies in the chain’s Seq range. For example the S, of the chain can be decreased to 39

by removing spare links from spans 1 and 2. Rearrange_rel is used during identification

and network expansion.

Table 3-8: An example showing representation of Rearrange_rel for a chain

Number Spans
Seq Weq | of spare , whose spare
. L | W i Seal.
change | change | capacity Weq eqU capacity eql | SeqU
units must be
added decreased
1 0 1 X X 1 10 | 20
i 0 2 X X 12 20 | 40

3.3.1 Network Expansion

The operation of increasing S,q during expansion is the same as for the greedy
method except that in some cases rearrangement is used to increase the S, and decrease
the W, of a rc<luced span. For all unmarked reduced spans (those obtained after the reduc-
tion of Qp), S, is increased. Marked spans are rearranged if this is feasible.

Consider the example presented in Figure 3-26. The subtopology of Figure 3-
26(a) is the same as that of Figure 3-24 except that it has one less span. Figure 3-26(b)

shows state Q; which is obtained in the same way as Q," in Figure 3-24(f). After the
reduction of state Q;, a TYPE! reduced span, r3, is formed with a W,, and S, of 120 and

30 respectively. Let the required value of S, for r3 be 70.

Qo
Q
restoration equivalent
Q
restoration equivalent
model
80,70 (7
o rs
(c) SCP during network expansion for backtracking method, with rearrangement

Figure 3-26: An example showing rearrangement during network expansion

110

The S, of r; can be increased if one unit of spare capacity is taken from spans r;
and r, and one unit is placed on spans 3, 4, and 8 (Figure 3-26(c)). This operation
increases the W,,, of spans ry and rj by 1 but the overall W, of r; decreases as Wy . is
greater than We(chain). W,, and S,, after SCP are 80 and 70. Therefore, the above rear-
rangement decreases the W, of r3 while increasing its S,,.

Rearrangement is possible only for TYPE1 and TYPE4 spans. It is done if the
number of spares required is less than or equal to number of spares required to increase the

Seq of a reduced span. If rearrangement is not feasible, the S, of a reduced span is

increased as in case of the greedy method.

3.4 Software Implementation

Both the greedy and restricted backtracking heuristics are coded using the “C™
programming language. The code is written in a modular fashion and consists of three
main modules for network reduction, namely identification of subtopologies, SCP calcula-
tion and substitution of the restoration equivalent model, and network expansion.

The executable version of the code for these heuristics and their interface with
the max-latching heuristics is started by typing nre at the UNIX prompt. The command
line arguments for this tool are:

nre {input network file with fixed w; }

{ outfile network file to hold final s; assignments }

{ network reduction heuristics: 0 for greedy and 1 for backtracking }

{ type of network reduction heuristics: 0 for maximizing S, and 1 for

minimizing W, }

{ max-latching heuristics used }

{ hop limit for the max-latching heuristics }

{ output log file }
The output network file gives the final SCP design, and the output log file contains the
information about the final network, such as the number of spare, working, and total links,

total real distance, redundancy, and hop limit.

il

3.5 Summary

The objective of this chapter is to document capacity-efficient methods of O(N?)
complexity for network reduction and expansion. The three methods considered were
fixed topology identification and substitution, greedy, and restricted backtracking. All
these methods involve three main steps: (1) identification of subtopologies, (2) SCP for an
identified subtopology, and (3) reduction of the subtopology by substituting its restoration
equivalent model.

Fixed topology identification and substitution identifies and reduces a predefined
set of subtopologies in a network. The predefined set consists of snbtopologies that are
common in real transport networks and whose SCP can be done efficiently through solv-
ing simple cutset equations. The results were optimal only for subtopologies whose SCP is
reducible to solving equations associated with a single cutset.

Fixed topology identification and substitution is not practical as it is very difficult
to identify all chain-reducible subtopologies in the network as they occur in a large range
of shapes and sizes. Also, efficient SCP for all such subtopologies cannot be done. There-
fore, the fixed topology identification and substitution method is not generally useful for
network reduction.

On the other hand, the greedy and backtracking reduction methods identify and
reduce a chain-reducible subtopology in multiple steps. In each step, a chain and the span
joining its end nodes are identified and reduced. While placing spares for the chain, the
primary objective is to minimize the total spare capacity in the chain, and the secondary

objectives are to maximize the S,, and minimize the W, of the chain. In some cases itis
not possible to simultaneously maximize S, and minimize W,,. For these cases either S,
is maximized or W, is minimized. In the greedy method the heuristic NRG1 maximizes
the S,, of the chain, while NRG2 minimizes the W, of the chain and span joining the end

nodes of the chain. The restricted backtracking counterparts for NRG1 and NRG2 are
NRRBTI1 and NRRBT?2 respectively. SCP and network expansion for restricted back-
tracking are the same as for the greedy method, except in cases that require rearrangement.

Results for NRG1 and NRG2 were observed for seven test networks ranging in

size from 7 to 20 nodes. The results for NRG2 were within 10% of the optimum in nearly

12

all cases while those from NRG1 were sometimes more than 10% greater than the opti-
mum. This shows that NRG2 is more capacity efficient than NRG1.
The purpose of the backtracking method for chain-wise successive reduction is to

achieve an optimal SCP. It was observed that backtracking could be implemented with

O(N?) complexity for cases requiring only up to two successive chain-wise reductions.
This is adequate for most real transport networks.

Network reduction gain, that is the reduction in number of nodes and spans, was
observed to be over 35% for Netl, Net2, and Net4, for both the greedy and restricted
backtracking methods. Therefore, these are two potential approaches for network reduc-

tion.

113

4 Max-latching Heuristics And Network Reduction

This chapter examines the combination of network reduction with max-latching
heuristics to improve the execution time of spare capacity placement. All combinations of
greedy and restricted backtracking with HeuristicA2 and HeuristicC1 have been consid-
ered. HeuristicA2 has been chosen as it has the lowest complexity of all the max-latching
heuristics, while HeuristicC1 is the second most capacity-efficient heuristic. HeuristicC2,
though the most capacity-efficient, is not considered as it is very complex. Netl, Net2, and
Net4 have been chosen as test networks because they display reduction gains greater than
35%. All the combinations are compared with each other in capacity efficiency and execu-
tion time. The capacity efficiency for these combinations. with and without design tighten-
ing, is also compared with that for IP at both practical and large hop limits. We will
number the combinations examined as follows:

(1) NRRBT1 and HeuristicA2
(2) NRRBT2 and HeuristicA2
(3) NRGI and HeuristicA2
(4) NRG2 and HeuristicA2
(5) NRRBT!1 and HeuristicC1
(6) NRRBT2 and HeuristicC1
(7) NRG1 and HeuristicC1
(8) NRG2 and HeuristicCl.

4.1 Experimental Results Without Design Tightening

Figure 4-1 shows the graph of redundancy vs. hop limit for comubinations (1), (2),
(4), (5), (6), and (8). For Netl, identical redundancies are obtained with either HeuristicA2
or HeuristicC1 and NRRBT1 and NRGI1.

For Net2, all combinations involving HeuristicA2 have exactly the same :~un-
dancy values at all hop limits. A similar trend is also exhibited by HeuristicC1 c v via-
tions. For comparison, Figure 4-2 presents the graphs of redundancy vs. hop limit for

HeuristicA2 and HeuristicC1 alone, and combinations (1) and (5).

114

0.70 5 -— (4) i
a----a(5)

- a——a(6) _

0.65 e (®) 3

: *——+HeurislicA25]
. = HeuristicCl.

Redundancy
=)
toN
(=]

055 L 00 el e . .k
1P

050 L vonoe e |

0.45 % 5 . _ . ‘?

Hop limit >
Figure 4-1: Redundancy vs. hop limit for Netl

123 | ;== : i

Redundancy

Hop limit
Figure 4-2: Redundancy vs. hop limit for Net2

For Net4, combinations (1) and (3), (2) and (4), (5) and (7), and (6) and (8) have

exactly identical redundancy values at all hop limits. Figure 4-3 shows the graphs of

115

redundancy vs. hop limit for (1), (2), (5), (6), HeuristicA2, and HeuristicC1.

35—
4 hulii - (2)
L a——a (5) :
1.25 e - (6) T
1 : HeuristicA2
o \\ Z HeuristicCl ; |
2 TN e LT
'é 1.15 + - ~ i
.8 e
O m e S
[~4 o= \ g R < T
—— -
(1) and (2)
1os | b -
(5) and (6)
IP
0.95 7 8 11 T2

? Hop limit 10
Figure 4-3: Redundancy vs. hop limit for Net4

Figures 4-1 to 4-3 show that all eight combined network reduction - max-latching
heuristics exhibit similar characteristics. Also, the redundancy results for all combinations
are more capacity efficient than Heus:.ticA2 and HeuristicC1 alone. This is because of
efficient network reduction. Also, the redundancy for all combined heuristics saturated at
lower hop limits than their pure max-latching counterparts.

Figures 4-1 to 4-3 show that combinations (2) and (6) which use NRRBT2 are the
most capacity efficient, followed by NRRBT1 (combinations (1) and (5)). The combina-
tions involving NRG1 and NRG2 are also as capacity efficient as their backtracking coun-
terparts except for Netl. Furthermore, the combinations of HeuristicC1 are more capacity
efficient than those of HeuristicA2.

Table 4-1 compares the redundancy for combinations involving NRRBT2 with
those of IP for practical hop limits. Table 4-2 compares the redundancy for combinations
using NRRBT2 with those from IP at large hop limits. The redundancy of NRRTBT2-
HeuristicA2 is within 17% of IP using large hop limits, while NRRBT2-HeuristicCl, is
within 13% of the optimum. Also, for practical hop limits the redundancy values of both

these combinations are within 11% of the optimum.

116

Table 4-1: Comparison of NRRBT2-HeuristicA2 and NRRBT2-HeuristicC1 with IP at

practical hop limits

NRRBT2-HeuristicA2 | NRRBT2-HeuristicCl
IP -
Network HOP redun- % excess % excess
limit redun- redun-
dancy danc redundancy danc redundancy
y w.rt P y w.rt [P
Netl 6 0.4992 0.553 10.77 0.553 10.77
Net2 6 0.919 1.017 10.66 0.988 7.51
Net4 11 0.993 1.105 11.28 1.078 8.56

Table 4-2: Comparison of NRRBT2-HeuristicA2 and NRRBT2-Hecuristic C1 with IP
using large hop limits

NRRBT2-HeuristicA2 NRRBT2-HeuristicCl
Network d Ig % excess % excess
redundancy redundancy | redundancy | redundancy | redundancy
w.r.t IP w.r.t IP
el 0.4992 0.553 10.77 0.553 10.77
Net2 0.875 1.017 16.23 0.988 1291
Net4 0.963 1.105 14.75 1.078 11.94

Table 4-3 presents the execution times for combinations (1), (3), (5), (7) and 1P
for the hop limits used in Table 4-1. The execution times for combinations (2), (4), (6),
and (8) are the same as those of (1), (3), (5), and (7), respectively. The execution times of
all four combinations and the individual heuristics are of th¢ same order for Netl and
Net2. Also, all combinations ran more quickly than their pure max-latching counterparts
for the large network, Net4. For HeuristicC1, the execution time for Netl decreased by a
factor of 6. NRRBT2-HeuristicCl1 is nearly 50 times faster than IP.

17

Table 4-3: Execution times for some combinations, IP, HeuristicA2, and HeuristicC]

IP |

constraint (1) 3) (&) N A2 C1
Network set rlul; (sec) | (sec) | (sec) | (sec) | (sec) | (sec)
generation (sec)
(sec)
Netl 1.6 1005 | 042 | 0.49 0.7 0.61 0.5 2.10
Net2 0.8 1 0.20 1.12 | 0.69 1.22 0.21 1.18
Net4 6.83 226 0.92 1.11 4.8 5.1 2.92 33.8

The combinations based on NRG1 and NRG2 took a little longer than those based
on NRRBT!1 and NRRBT?2, as they use non-linear span representations for all successive
chazin-wise reductions. On the other hand, combinations using NRRBT! and NRRBT?2 are

the f.«stest as these involve non-linear span representations only for the first reduction step.

4.2 Experimental Results With Design Tightening

Table 4-4 presents the redund-ncy results at practical hop limits for all combina-
tions, HeuristicA2, and HeuristicC1 after design tightening. The redundancy for all eight
combinations were within 2% of each other at all hop limits for Netl and Net3. For Net2,
this trend was observed only for practical hop limits. The results show that all combina-
tions are equally good in case of Net2 and Net4, while combinations using NRRBT2 are
the best for Netl. Furthermore, the best results among all combinations are within 1% of

those for the individual heuristics.

Table 4-4: Redundancy of combined network reduction - max-latching heuristics at
practical hop limits after design tightening

Hop

Network limit M| D |IG]|G | D] G A2 C1

Netl 6 |.544 | 534 | 544 | 543 | 544 | 534 | 544 | 543 | 532 | .53

Net2 6 |.931|.931|.931|.931].929|.929|.929 | .929 | .93 922

Net4 11 | 101101 }101]1.01/.997|.997 | .997 | .997 | 1.014 | 1.004

118

Table 4-5 compares the best results from Table 4-4 with IP results at both practi-
cal and large hop limits. The practical hop limits for IP are the sa.ue as those used in Tuble
4-4. The combinations chosen are NRRBT2-HeuristicA2 and NRRBT2-HeuristicC1. All
the results of Table 4-5 are within 7% of the IP results. Table 4-6 presents the execution
times for tightening the SCP designs for combination (1), HeuristicA2, HeuristicC1, and
IP. The execution times for combination (1). HeuristicA2 and HeuristicC1 are roughly the

same, and typically about 25% of those of IP.

Table 4-5: Comparison of NRRBT2-HeursiticA2 and NRRBT2-HeuristicC1 (after DT)
with IP results

IP redundancy NRxBT2-HeuristicA2 NRRBT2-HeuristicC1
% excess % excess T excess e excess
N K at at redun- redun- redun- redun-
etwor. practical | large dancy dancy dancy dancy
hop hop wrt IP w.rt IP w.r.t [P w.r.t [P
limits limits | (practical | (large hop | (practical | (large hop
hop limits) limits) hop limits) limits)
Netl 0.4992 | 0.4992 6.97 6.97 6.97 6.97
Net2 0.919 0.875 1.3 6.4 1.09 6.17
Net4 0.992 0.963 1.71 49 0.4 3.53

Table 4-6: Execution times for combination (1), IP, HeuristicA2, and HeuristicCl

IP With design tightening B
Network hl-t' z?t con:::rtaint IP 1) Heuristic | Heuristic
generation run (sec) .f\2 C !
(sec) (sec) (sec) (sec)
Netl 6 1.6 10.05 | 2.38 2.23 2.18
Net2 6 0.8 1 431 4.09 4.13 N
Net4 11 6.83 226 | 49.71 43.47 45.67 1

119

4.3 Conclusions

All eight combinations of the greedy and restricted backtracking network reduc-
tion algorithms with HeuristicA2, and HeuristicCl were considered. All combinations
were found to be more capacity efficient than max-latching alone for Netl, Net2, and
Net4. The redundancy for all combinations was within 17% of the IP results at large hop
limits and within 12% of IP results at practical hop limits. Furthermore, these combina-
tions were twice as fast as HeuristicA2 and over six times faster than HeuristicC1 for the
large network, Net4. For small networks, the execution times for all combinations and the
individual heuristics were of the same order. Among all eight combinations, the combina-
tions of NRRBT2 were the fastest and the most capacity efficient. The redundancy results
after design tightening for all combinations, HeuristicA2, HeuristicC1 were within 3% of

each other. All the redundancy results were within 7% of the optimum.

120

S Case Study of Network Topology Optimization

This chapter presents an example of the application of the fast SCP heuristics to
identify the best new span additions in a network. The problem addressed is: Given a set
of new span candidates. is their relative ranking the same from the max-latching and com-
bined network reduction - max-latching heuristics as from IP? If so, we can quickly rank
many alternatives using fast SCP, and then invest the time required to precisely quantify
the benefits of the best candidates by using IP.

The approach followed in this chapter is to add a new span, route the working
demand over the geographically shortest routes for all demand pairs in the modified net-
work, and perform SCP for the modified network.

Working demand is spread equally over all shortest routes if more than one short-
est route exists for a demand pair. This method was implemented previously [30] with
O(D - N -log (N)) complexity using Dijkstra’s shortest-path algorithm, where D is the
number of demand pairs. Although for designing a fully restorable mesh network, shortest
path routing does not always result in strictly minimum total capacity, it is found to be
very close to optimal routing. The minimum total capacity has actually been observed to
occur with route lengths of 1.0 t~ 1.2 times longer than shortest path routing when jointly
optimizing working and spar. capacity in a mesh-restorable network design [27].

The test case considered here is the set of six new span suggestions for Net4
shown in Figure 5-1 by dotted lines. HeuristicA2, HeuristicC1, NRRBT2-HeuristicA2,
NRRBT?2-HeuristicC1, HeuristicA2 with DT, and NRRBT2-HeuristicA2 with DT have
been considered for the SCP. The beneficial impact of each new span candidate is ranked
by the reduction in number of links (working + spare), and total real distance. The ranking
of all six spans is compared to that of IP. The execution times for all the heuristics and [P

have also been compared.

121

Figure 5-1: Six new span additions for Net4
5.1 Experimental Results

Table 5-1 presents the number of links (working + spare) and total real distance

for IP. The objective function for IP-logical is to minimize the total spare capacity, while

122

for IP-real the total real distance is minimized. The hop limit used for IP is 11,

Table 5-1: IP results for six new span additions

IP-logical IP-real
Spans no. of links t((;it;la;ecil no. of links t((;lt:ltld:;‘il
23-79 3766 1108730 3864 1092056
39-115 3980 1153098 4077 1135027
62-113 4047 1165133 4113 1146326
3-9 4047 1172707 4135 1155794
23-115 4050 1189921 4161 1160864
3-53 4054 1180622 4161 1160864

The ranking for IP-logical shows that spans 62-113, 3-9, 23-115, and 3-53 are
very close to each other in number of links, but designs with spans 23-79 and 39-115 use
over 66 links less. Thereforc. spans 23-79 and 39-115 are the most beneficial. This is also
true for IP-real.

Tables 5-2(a) and 5-2(b) present the number of links and total real distance for the

heuristics. The hop limit used for all cas<.. is 11.

Table 5-2(a): Heuristic results for six new span additions

HeuristicA2 };e::}ggiz HeuristicA2 (DT)
Spans
no. of total real no. of total real no. of total real
links distance links distance links distance

23-79 4046 1169970 4024 1169095 3801 1093882
39-115 4286 1238049 4221 1186000 4079 1142567
62-113 4371 1256512 4232 1202933 4084 1151723

39 4337 1262055 4304 1224405 4120 1156549
23-115 4415 1287196 4322 1258329 4137 1169927
3-53 4377 1269739 4314 1246414 4106 1161384

123

Table 5-2(b): Heuristic results for six new span additions

NRRBT2- HeuristicC1 NRRBT2-
HeuristicA2 (DT) HeuristicCl
Spans
no. of total real no. of total real no. of total real
links distance links distance links distance

23-79 3846 1098583 4009 1162202 3934 1140214
39-115 4081 1140947 4239 1229015 4182 1183376
62-113 4082 1154012 4273 1237669 4212 1190367

3-9 4140 1166661 4307 1242262 4257 1204010
23-115 4141 1175752 4330 1263238 4256 1228138
3-53 4142 1170031 4348 1267345 4251 1217590

Table 5-3 ranks the spans for the heuristics and IP-logical on the basis of number

of links. Table 5-4 ranks the spans in terms of total real distance for the heuristics and IP-

real.
Table 5-3: Ranking of spans on the basis of the number of links
spans | A2 | NRROT2 | A2(DT) N%Tl?) c1 | NRRET2 loIgI:(-:al
23-79 1 i 1 1 1 1 1
39-115 2 2 2 2 2 2 2
62-113 3 3 3 3 3 3 3
39 3 4 4 4 4 6 3
23-115 6 6 6 5 5 S 5
3-53 | 3 5 5 6 6 4 6

124

Tabie 5-4: Ranking of spans on the basis of real distances

Spans A2 NSRA];T‘? A2(DT) N§2R(g,l;.2) Cl Nl%lzfiTZ IP-real
23-79 1 1 1 1 1 1 1
39-115 2 2 2 2 2 2 2
62-113 3 3 3 3 3 3
3-9 4 4 4 4 4 4 4
3-53 5 5 5 5 6 N] 5
23-115 6 6 6 6 S 6 5

The rankings in Tables 5-3 and 5-4 show that all heuristics follow the IP-logical

rankings for the top three spans, and follow IP-real for the top four spans. Most of the heu-

ristics have the same span rankings as that of IP-logical and IP-real for all six spans.

Table 5-5 presents the execution times for the heuristics, while Table 5-6 does so

for IP-logical and IP-real.

Table 5-5: Execution time for the heuristics

P [L P
(sec) (sec) (sec)
23-79 4.60 171 102.23 50.49 9.55
39-115 429 173 112.08 43.19 9.00
62-113 433 1.6 113.84 45.63 9.17
3.9 427 1.62 99.61 46.26 9.48
23-115 3.75 1.46 97.18 39.31 8.76
3.53 3.97 1.55 10021 42.47 9.29
Total 25.23 9.67 625.15 267.35 52.25

125

Table 5-6: Execution time for IP

IP

Spans con:;rtaim IP-logic%l IP-real o
gencration | LTS | e
23-79 9.387 3841 4774
39-115 7.871 94 2715

62-113 8.767 263 139

3-9 8.515 4549 3529
23-115 7.84 84 2866
3-53 7.93 78 2550
Total 50.31 8909 16573

Tables 5-5 and 5-6 show that HeuristicA2, NRRBT2-HeuristicA2, and NRRBT2-
HeuristicC1 took less thar e minute to rank all six spans while IP-logical and IP-real

took nearly 2.5 and 4.6 hours respectively.

5.2 Conclusions

Six new span additions were tested for Net4 and were ranked on the basis of total
number of links (working + spare) and total real distance for IP, HeuristicA2, HeuristicCl,
NRRBT2-HeuristicA2, NRRBT2-HeuristicC1, HeuristicA2 with DT, and NRRBT2-
HeuristicA2 with DT. IP with objective functions of minimizing spare capacity (IP-logi-
cal) and minimizing total real distance (IP-real) was used as a benchmark. The rankings
for the heuristics were compared to those from IP. Rankings from the heuristics based on
the number of links agreed with the top 3 from IP-logical, and with the top 4 IP-real rank-
ings. The rankings for most of the heuristics agreed with those of IP-logical and IP-real for
all six spans.

The least capacity efficient method, HeuristicA2 generated a design with 16%
more redundancy than IP. Nevertheless, its rankings agreed with those of IP-logical and

126

IP-real for all six spans. This shows that the max-latching heuristics can accurately rank
span additions even if their SCP results are not precise.

The benefit of using these heuristics is that they execute over 10 times faster than
IP-logical and 25 times faster than IP-real. The fastest heuristic took less than 10 seconds
for ranking all spans while IP-logical and IP-real took nearly 2.5 and 4.6 hours respec-

tively.

127

6 Summary

This thesis explored some heuristics for fast and efficient spare capacity place-
ment (SCP) for mesh-restorable networks. One of the main motivations for developing
these heuristics is to identify the most beneficial potential span additions in a network.
Available SCP approaches are too cc.mplex to be used for this purpose. The identified
spans can be analysed in detail using an exact IP cost formulation of the network design
problem. We also think a very fast SCP heuristic will have general uses in on-line opera-
tional and planning systems.

Chapter 2 discussed max-latching heuristics for fast SCP. These heuristics are
based on the simple idea of spreading the unrestorable working capacity of each span onto
its pre-defined restoration routes, and then latching the maximum spare capacity values on
each span. The routeset for each span consists of distinct, loop-free, topologically feasible
restoration routes with length restricted by a specified hop limit, H. The performance of
the max-latching heuristics was found to depend on the order in which spans are spared,
hop limit, and working capacity distribution. The general variation of redundancy, execu-
tion time and memory usage &s a function of hop limit was developed. Heuristics whose
SCP results depend on the order in which spans are spared were discussed in detail.

In practice, S! span order sequences and working capacity distributions are possi-
ble, where S is the number of spans. Therefore, it is not feasible to test all sequences to
find the best one. Hence three classes of heuristics were considered. Class A heur "ics
(HeuristicA 1, HeuristicA2, and HeuristicA3) place spares for spans in decreasing order of
their contribution towards network restorability. The Class B heuristic (HeuristicB1) place
spares for spans sequenced by increasing working capacity. Class C heuristics
(HeuristicC1 and HeuristicC2) tried several as opposed to only one sequence. HeuristicC1
tried S sequences with the first span distinct in each sequence, while HeuristicC2 tried S *
(S-1) sequences with the first two spans distinct in each sequence. Four real transport net-
works were chosen as test cases. For all heuristics the minimum or near-minimum redun-
dancy was observed within four hops of the minimum possible hop limit value.
Furthermore, the graphs of redundancy vs. hop limit for all the heuristics showed that

class C heuristics were the most capacity-efficient and least working capacity distribution

128

dependent. HeuristicC2 was the most capacity-efficient followed by HeuristicC1.

HeuristicA2 and HeuristicB1 have complexities of O(S - H - d . RH), where S, H,

and d,,,,, are number of spans, hop limit, and average node degree, respectively. These are

the least complex heuristics. HeuristicCl and HeuristicC2 have complexities

o(S*.H.d ang) and O(s H. d,, gH). respectively. HeuristicC2 is too complex to be

considered for fast SCP.

The redundancies for HeuristicA2 and HeuristicB1 were within 30% of IP for
practical hop limits, while those of HeuristicC1 and HeuristicC2 were within 25%. A
design tightening procedure, add0_subl, involving simple elimination of surplus spare
capacity from the SCP designs while maintaining 100% restor ...y was used to improve
the capacity efficiency of the SCP designs. Designs produced using HeuristicA2,
HeuristicC1, and HeuristicC2 were thereby tightened. The results at practical hop limits

for all three heuristics were within 2% of each other, and within 10% of IP. The complex-

ity of the add0O_sub1 design tightener is Of s%. log (w,) -N-log (N)), where N is the

max

number of nodes and w,,,,, is the maximum working capacity in the network.

Chapter 3 presented network reduction approaches of O(N?) complexity to
improve the execution time and capacity efficiency of the max-latching heuristics. Three
methods were considered: fixed topology identification and substitution, greedy, and back-
tracking. These methods aim at reducing subtopologies which are common in real net-
works and whose efficient SCP can be done simply. It has been observed that chain-
reducible subtopologies occur in a vast range of ;' :uos and sizcsy .2 real transport net-
works. The SCP of chain-reducible subtopologies can & " - il ly.

Fixed topology identification and substitution identifies anc reduces a pre-defined
set of subtopologies in a single step. Its implementation is subtopology-specific and, there-
fore, it is difficult to identify and reduce a large number of subtopologies. On the other
hand, the greedy and backtracking methods reduce subtopologies in multiple steps. In
each step a chain and the span joining its end nodes are identified and reduced. All sub-
topologies consisting of chains can be reduced through such multiple reduction steps.

While doing the SCP for the identified chain, the primary objective is to minimize the total

129

spare capacity in the chain, and the secondary objectives are to maximize the spare capac-
ity equivalent (S,,) and minimize the working capacity equivalent (W) of the chain. In
some cases it is not possible to simultaneously maximize S,, and minimize W,,. For these
cases either S, is maximized or W, is minimized. The greedy heuristic NRG1 maximizes
Seq while NRG2 minimizes W,,. The backtracking counterprts for NRG1 and NRG?2 are

NRRBT1 and NRRBT2 respectively.
The backtracking method generates an optimal SCP for a subtopology, and can

be implemented with O(N?) complexity for subtopologies requiring one or two successive
chain-wise reductions. This is adequate for real transport networks. The percentage reduc-
tion in number of spans or nodes through NRG1, NRG2, NRRBT1, and NRRBT?Z for
three real transport networks was observed to be over 35%.

Chapter 4 presented the execution time and capacity efficiency results for
HeuristicA2, HeuristicCl, and their combinations with NRG1, NRG2, NKRBT1, and
NRRBT?2. The results showed that the combined network reduction - max-latching heuris-
tics were faster and more capacity-efficient than their individual max-latching counter-
parts. Among all these heuristics, combinations using NRRBT2 were the fastest and the
most capacity-efficient. The results for these heuristics were also compared after design
tightening and were within 3% of each other. The 1edundancy of all the combined heuris-
tics at practical hop limits before tightening was within 12% of IP. After tightening, the
results were all within 7% of IP.

Chapter 5 presented an example of network topology optimization. Six new span
additi ‘ns were tested as candidates for addition to a large existing network. Two IP tab-
leaus with the objective functions of minimizing total spare capacity (IP-logical) and min-
imizing total real distance (IP-real), were used as benchmarks. The heuristics considered
were HeuristicA2, HeuristicCl, NRRBT2-HeuristicA2, NRRBT2-HeuristicCl,
HeuristicA2 with design tightening, and NRRBT2-HeuristicA2 with design tightening.
The rankings of spans on the basis of number of links (working + spare) for these heuris-
tics agreed with the top 3 IP-logical rankings, while rankings based on real distances
agreed with the top 4 IP-real rankings. The rankings of most of the heuristics agreed with
those of IP-logical and IP-real for all six spans. This shows that the max-latching heuris-

130

tics can be used to identify the most beneficial spans in a network even if their redundancy
is much greater than from IP.

The execution times for all heuristics were 14 times less than IP-logical and 26
times less than IP-real. Among all the heuristics HeuristicA2 was the least efficient. The
redundancy for it was 16% of IP for the original network, but its rankings agreed with IP-
logical and IP-real rankings for all six spans.

In closing, this thesis has contributed a number of new insights, techniques, and
options for fast SCP and it has specifically characterized variations of max-latching and
combined network reduction - max-latching heuristics for fast SCP. If required, the capac-

ity efficiency of these heuristics can be improved using the add0_subl design tightener.

6.1 Future Work

This thesis identified the two simple concepts of max-latching and network
reduction for fast SCP in mesh-restorable networks. The work done in implementing these
concepts is a good starting point for future research in fast SCP heuristic design.

Many fast and efficient SCP heuristics can be designed using the max-latching
and network reduction concepts. SCP was observed to be dependent on the order in which
spans were spared, the working capacity distribution of the network, network topology,
average node degree, and hop limit. A detailed analysis supported by experimental results
is needed to identify the dependence of the best span sequence on working capacity distri-
bution, network topology, average node degree, and hop limit. With this analysis, it may

be possible to predict the cases in which a given max-latching heuristic will perform best.

131

Bibliography

1. McDonald, J. C., “* Public network integrity - avoiding a crisis in trust,” IEEFE Journal

on Selected Areas in Communications, Vol. 12, No. 1, pp. 5-12, January 1994.

2. Grover, W. D., Selfhealing networks - A distributed algorithm for k-shortest link disjoint
paths in a multi-graph with applicatio::: in realtime network restoration, Ph.D. Disserta-

tion, Department of Elecirical Engineerir.~ University of Alberta, Fall 1989.

3. Grover, W. D., Chapter 11 of Telecommunications Network Management Into the 21st
Century, IEEE Press, 1994, pp. 337-413, edited by S. Aidarous and T. Plevyak.

4. Nellist, J. G., “*Fiber optic system availability,” Proc. FiberSat Conf., Vancouver, BC,
Canada, pp. 367-372, 1986.

5. Saul, D. F,, “Constructing Telecom Canada’s coast to coast fiber optic network,” Proc.

IEEE Globecom’86, pp. 1684-1688, 1986.

6. Grover, W. D., “Influence of selfhealing & scavenging technology on network availabil-

ity planning,” Telecom Canada Report CR 89-16-04, February, 1990.
7. Krten, O. J., " Hypothetical reference digital path for dynamic network architecture -
availability considerations,” Telecom Canada/BNR Report OCTL87-0002 P 87-02B, Feb-

ruary 1988.

8. Venables, B. D., Algorithms for the spare capacity design of mesh restorable networks,

M.Sc. Thesis, Department of Electrical Engineering, University of Alberta, Fall 1992,

9. Sosnosky, J., “Service applications for SONET DCS distributed restoration,” IEEE
Journal on Selected Areas in Communications, Vol. 12, No. 1, pp. 59-68, January 1994.

132

10. Grover. W. D., ** The selfhealing network: A fast distributed restoration technioue for
networks using digital cross-connect machines,” Proc. IEEE Globecom'8”, pp. 1000-
1095, 1987.

11. Yang, C. H. and Hasegawa, S., "FITNESS: Failure immunization technology for net-

work service survivability,” Proc. IEEE Globecom’88, pp. 1549-1554, 1988,

12. Grover, W. D., Venables, B. D.. Sandham. J. H. and Milne, A. F., * Performance stud-
ies of a selfhealing network protocol in Telecom Canada long haul networks™. Proc. IEELE

Globecom’ 90, pp. 452-458, 1990.

13. Sakauchi, H., Nashimura. Y. and Hasegawa S., A self-healing nctw ik with an eco-

nomical spare-channel assignment.” Proc. IEEE Globecom’ 90, pp 438-443, 1990,

14. Grover, W. D., Bilodeau, T. D., and Venables, B. D., ** Near optimal spare capacity
planning in a mesh-restorable network,” Proc. IEEE Globecom'91, pp. 2007-2012, 1991,

15. Sakauchi, H., Okanoue, Y., Hasegawa, S., “Spare-channel design schemes for self-
healing networks,” IEICE Trans. Communications, Vol. E75-B, No. 7, pp. 624-633, July
1992.

16. Grover, W. D., “Case studies of restorable ring, mesh and mesh-arc hybrid networks,”

Proc. IEEE Globecom’92, pp. 633-638, December 1992.

17. MacGregor, M. H., The Self-traffic Engineering Network, PhD thesis, Department of
Computer Science, University of Alberta, Fall 1991.

18. MacGregor, M. H,, Grover, W. D., and Maydel. !;. M., “The self-traffic engineering

network,” Canadian J. Electrical and Computer Engineering, Vol. 18, No. 2, pp. 47-57,
1993,

133

19. Gibbons, A., Algorithmic Graph Theory, Cambridge, MA, Cambridge University
Press, 1985.

20. Dijkstra, E. W, “A note on two problems in connection with graphs,” Numerische

Math. Vol. 1, pp. 269-271, 1959.

21. Dunn, D. A., Grover, W. D., and MacGregor, M. H., *“Comparision of k-shortest paths
and maximum-flow routing for network facility restoration,” IEEE J-SAC Integrity of

Public Telecommunications Networks, Vol. 12, No. 1, pp. 88-99, January 1994.

21. Garey, M.R., and Johnson, D. S., Computers and Intractability- A Guide to the Theory
of NP-Completeness, W. H. Freeman & Co., 1979

22. Khachiyan, L. G., A polynomial algorithm in linear programming,” Soviet Mathe-
matica Doklady, 20. pp. 191-194, 1979.

23. Venableé. B. D., Grover, W. D., and MacGregor, M. H., “Two strategies for spare
capacity placement in mesh restorable networks,” Proc. IEEE ICC’93, pp. 267-271, May

1993.

24. Herzberg, Meir, and Bye, S. J., * An optimal spare-capacity assignment model for sur-

vivable networks with hop limits,” IEEE Globecom’94, pp. 1-6, 1994.

25. Iraschko, R. R., MacGregor, M. H., and Grover, W. D., “ Optimal Capacity Placement
for Path Restoration in Mesh Survivable Networks,” Proc. ICC’ 96, pp. 1568 - 1574, 1996.

26. Dunn, D. A., Grover, W. D., and MacGregor, M. H., “Development and use of a ran-
dom network synthesis tool with controlled connectivity statistics,” TRLabs WP-90-10,

August 1990.

27. Grover, W. D,, Bilodeau, T., and Venables, B. D., “Near optimal synthesis of a mesh

134

restorable network™, Telecom Canada Report CR-90-16-01, 1991.

28. Iraschko, R. R., Path Restorable Nenvorks, PhD Thesis dissertation in preparation for

Fall 1996 defense, Department of Electrical Engineering. University of Alberta.

29. MacGregor, M. H., and Grover, W. D., “Optimized k-shortest paths algorithm for facil-
ity restoration,” Software-Practice and Experience, VOL. 24(9), pp. 823-834, 1994,

30. Slevinsky, J. B., Grover, W. D., and MacGregor, M. H., ""An algorithm for survivable

network design employing multiple self-healing rings,” IEEE Globecom'93, pp. 1568 -
1573, 1993.

135

APPENDIX A: TEST NETWORKS

136

14

A-2: Net2

138

A-S: NetS

A-6: Net6

142

)
4

)
=/

A-7: Net7

143

{2

\N
2\

\Z

A-8: Net8 and Net9

144

A-9: Net10

145

A-10: Netll

146

