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Abstract 

Appropriate scale-up provides a critical link between fine-scale heterogeneity 

descriptions and coarse-scale models used for transport modeling, which is 

essential for planning and management of subsurface reservoirs. A significant 

challenge in subsurface flow and transport modeling is to develop scale-

appropriate parameters to represent physical heterogeneities that impact solute 

migration and flow response. Another challenge is to construct reservoir models 

that would capture the uncertainties stemming from incomplete data (often 

gathered over different scales) and loss of information or smoothing due to 

averaging.  

Fine-scale models contain detailed descriptions of reservoir properties, but 

these models can be too computationally demanding and are not practically 

feasible for routine reservoir simulation. Coarse-scale models often offer a viable 

alternative that could decrease computational demand substantially. However, the 

increased grid-block size in the coarse scale model leads to an increase in 

numerical (or artificial) dispersion, which stems from the truncation error from 

most numerical discretization schemes and is directly proportional to grid-block 

size. The main issue with numerical dispersion when examining scale-up 

characteristics is that it tends to overwhelm the physical (or actual) dispersion.  

Alternative transport modeling schemes, such as the Lagrangian (particle-

tracking) methods, are widely adopted in simulating solute transport in porous 

media. Its primary advantage over typical numerical discretization methods (e.g., 

finite volume) is the absence of numerical dispersion and potential computational 
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efficiency. More importantly, certain particle-tracking methods are capable of 

modeling this type of anomalous behavior of transport. 

In this research, a new particle-tracking method is developed for 

simulating probabilistic (or random) transition time steps and multi-phase 

immiscible flow. This is further integrated in a novel hierarchical framework for 

scale-up of reservoir and transport model parameters including porosity, 

dispersivity, and multi-phase flow functions (e.g., relative permeability and 

capillary pressure). A key feature of the developed particle-tracking formulation 

is the employment of kernel estimator for computing concentration and saturation 

distribution, which has greatly improved the overall computational efficiency by 

reducing the number of particles needed to achieve a consistent distribution.  

The developed particle-tracking method for both probabilistic transition 

time steps and multi-phase immiscible flow is validated against the analytical 

solution and is demonstrated to alleviate numerical dispersion when compared 

against common numerical discretization (e.g., finite difference) methods. 

Predictions obtained from the coarse-scale models constructed according to the 

developed workflow are shown to be more consistent with the fine-scale model.    
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“Try and fail, but don’t fail to try.” 

 Stephen Kaggwa 

 

“If you want to go fast, go alone. If you want to go far, go together.” 

 African Proverb 

 

"Certain things catch your eye, but pursue only those that capture the heart." 

 Ancient Indian Proverb                     
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1 

 

Chapter 1: Introduction 

 

Accurate predictions of flow and transport in natural porous media are crucial in 

management of valuable subsurface resources including water aquifers and 

hydrocarbon reservoirs. These predictions are usually assessed with uncertainty 

due to (1) underlying heterogeneity or spatial variation in rock and transport 

properties, (2) conditioning data, and (3) the sub-scale heterogeneity. This 

uncertainty, though, can be reduced by improved geophysical (e.g., seismic), core, 

well log, pressure test, and tracer test data, cannot be entirely eliminated. 

Reservoir models are typically constructed and subjected to flow and transport 

simulation to capture the aforementioned uncertainties. Although fine-scale 

models could capture detailed description of the heterogeneity, simulation with 

these models can be computationally demanding. A commonly-adopted 

alternative is to replace these fine-scale models with a coarser grid or asset of 

coarse-scale (scaled-up) models. During this process of coarsening, a number of 

transport properties (e.g., dispersivity and multiphase flow functions), along with 

reservoir properties (e.g., porosity and absolute permeability), must be scaled-up 

accordingly. Properly scaled-up models should not only honor the conditioning 

data, but they should retain the uncertainties due to large-scale and sub-scale 

heterogeneities. 

For modeling solute transport in single-phase, one of the most important 

transport properties to be scaled-up is dispersivity. Transport of passive solute in 

porous media is generally controlled by one or more of the following physical 



 

2 

 

processes: (1) advection or convection, (2) diffusion, and (3) mechanical 

dispersion. Addition to these processes, capillary pressure also controls the 

transport in multiphase immiscible flow. In advection transport process, particles 

are simply carried by the average velocity of the fluid. Diffusion is a spreading 

process caused by the random molecular motion (Brownian motion) and 

collisions of the particles among themselves; this process occurs as long as a 

concentration gradient exists, even if the fluid is at rest, and is described by Fick’s 

law. Third type of transport process is mechanical (kinetic) dispersion, which is a 

spreading or mixing phenomenon caused by the microscopic velocity variations in 

the pore spaces with respect to average pore fluid velocity. It is, therefore, 

dependent on the variation in the pore size/geometry distribution and is present 

only if there is flow. Macroscopically, mechanical dispersion process is similar to 

the diffusion process and is described mathematically in similar fashion as 

diffusion. It is practically impossible to separate the effects of mechanical 

dispersion and molecular diffusion. Hence the collective spreading due to both 

effects is usually referred to as hydrodynamic dispersion (Pickens and Grisak 

1981a). In addition to mechanical dispersion and molecular diffusion, dispersion 

also occurs due to capillary pressure difference in multiphase immiscible flow. 

Dispersivity is a scale-dependent property of permeable media. It increases with 

increasing distance (or traveled distance) of investigation (Gelhar et al. 1979; 

Pickens and Grisak 1981a, 1981b), volume of sample (Arya et al. 1988; Gelhar et 

al. 1992; John et al. 2010), traveled time (Binning and Celia 2002) and 

heterogeneity (Adepoju et al. 2013). Heterogeneity is also a scale-dependent 
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property. Reservoir recovery performance depends on dispersion and 

heterogeneities; therefore, it is often observed that oil recovery decreases with 

increasing scale. The scale-dependent behavior of dispersivity is usually described 

as non-Fickian, anomalous, or non-Gaussian (Berkowitz et al. 2000; John 2008), 

characterized by early breakthrough and long (or heavy) tailed effluent histories at 

the late times. The advection-dispersion equation (ADE) is commonly adopted to 

model the solute transport in porous media at the representative elementary 

volume (REV) scale. However, several issues have been raised regarding the 

validity of the classical ADE in representing both Fickian and non-Fickian 

characteristics.  

Dispersivity at the coarse scale can be computed by matching the recovery 

responses (e.g, breakthrough behavior) obtained from transport simulation 

between the coarse- and fine-scale models. The process of coarsening tends to 

homogenize the underlying heterogeneity; as a result, both local velocity 

variations and dispersion are reduced. Unfortunately, traditional numerical 

discretization techniques (finite volume and finite element) for transport 

simulation are prone to numerical dispersion, which tends to increase with grid-

block size and would often overwhelm physical dispersion. Numerical dispersion 

also smears mixing fronts similar to physical dispersion and increases the 

apparent level of dispersion in the reservoir.  

For flow involving multiphase immiscible phases, relationships between 

relative permeability, capillary pressure and saturation must be incorporated. 

These functions are often determined experimentally using core samples and 



 

4 

 

should be adjusted to the appropriate modeling scale.  Scaling of these multiphase 

flow functions remains an ongoing research topic in the literature. Steady-state 

methods with the assumption of capillary equilibrium for small length-scales and 

slow rates and viscous-dominated flow for large length-scales or fast rates are 

commonly adopted. However, the main disadvantage associated with this method 

is that it is also prone to numerical dispersion (Pickup and Stephen 2000). 

Lagrangian method such as random walk plus particle tracking (RW+PT), 

offers interesting solution alternative to Eulerian methods mainly due to grid-free 

approach and capability of eliminating numerical dispersion (Salamon et al. 2006; 

John et al. 2010; Jha et al. 2011). In contrast to Eulerian methods, the transport 

equation is not solved on a fixed grid but using a large number of representative 

particles to approximate both advection and dispersion. Its computational 

requirement is also less in comparison to numerical based simulators, since 

particles move independently and parallel computing formulation is favorable. 

Particle tracking can also be applied in the absence of diffusion (i.e., shock front) 

with no limits on the mesh size (Jha et al. 2009) and when flow is strongly 

advection dominant (Hoteit et al. 2002). It can be formulated to account for non-

Fickian characteristics that are not captured in the ADE. 

 

1.1 Physical and Numerical Modeling Aspects of Flow and Transport   

In porous media, complex physical phenomena often occur over widely varying 

scales from the pore level (in the order of a few micro meters) to the field level (in 
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the order of kilometers). Below, physical and numerical modeling aspects of flow 

and transport at pore scale and Darcy or continuum scale are discussed. 

 

1.1.1 Description of the Physical Processes at the Pore Scale  

A porous medium is a two-phase disordered material in which one phase is solid 

and another phase is a connected void space (pore bodies and pore throats). 

Distribution of the solid and the void are critical for flow and transport. The pore 

structure is characterized by parameters such as specific surface area, tortuosity, 

surface asperity, pore size/geometry, and grain size.  

 

1.1.1.1 Momentum Transport 

Fluid flow in porous media is governed by the conservation of mass, momentum, 

and energy.  When fluid flows through porous media, friction force is developed 

between solid interface and the fluid. The fundamental equation governing the 

motion of fluid in a porous medium at the pore scale is described by the 

momentum balance equation. Together with the mass balance equation, the 

system of equations is known as Navier-Stokes equations. It is defined as Eq. 

(1.1) for an incompressible fluid (Bird et al. 1960):  
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where ρ is the density, u is the velocity, t is the time, p is the pressure, μ is the 

dynamic viscosity, and g is the gravitational acceleration. The Navier-Stokes 

equations can describe the temporal and spatial evolution of a viscous fluid in the 
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void space of a medium at the pore-scale. Other general forms of the equation can 

be used to describe the flow of a compressible fluid. These equations can be 

solved by applying the appropriate initial and boundary conditions at the solid 

interface (e.g. no-slip), and the velocity and pressure field in the pore-space can 

be determined. Modeling at this scale takes into account detailed geometry and 

connectivity in the pore spaces. 

In case of two-phase immiscible flow, both fluids are governed by the 

Navier-Stokes equation with additional capillary force along the interface, that is: 

2,1;))))((( 



ip

t
i
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u

 (1.2) 

where fГ is the capillary force which is defined as: 

  nf   (1.3) 

where τ  is the tension coefficient between two fluids, κ is the local curvature of 

the interface, δГ is the Dirac delta function that localizes the surface tension force 

to point load on the interface, and nГ as the unit normal to the interface.  

 

1.1.1.2 Mass Transport 

In porous media, solute is generally considered to be transported by one or more 

of the following physical processes: 

 Advection or Convection 

 Molecular Diffusion 

 Mechanical Dispersion 
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Advection: Advection or convection is solute transport caused by the bulk 

movement of flowing fluid. If no other process exists, the solute particles are 

simply moved at average fluid velocity. 

Diffusion: The transport of a solute from a region of higher concentration to 

a region of lower concentration is known as molecular diffusion. Diffusion takes 

place as long as a concentration gradient exists, even if the fluid is at rest. That is, 

it is independent of fluid velocity. This is a very slow process of solute transport. 

Diffusive flux is generally described by Fick’s first law: 

CDmJ  (1.4) 

where J is the solute flux, C is the concentration of the solute and Dm the 

coefficient of molecular diffusion. The mass transfer of a non-reactive solute is 

governed by the advection-diffusion equation (Saaltink et al. 1998): 
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where Dm is molecular diffusion coefficient, V(X) is the pore-scale velocity, and 

C(X, t) is the solute concentration. 

Mechanical Dispersion: Mechanical dispersion in porous media is a 

spreading or mixing phenomenon caused by variability in the microscopic 

velocities through pores (or pore-scale velocity gradients)  in the medium (Taylor 

1953). These velocity variations are the results of (1) velocity gradient in pore 

throats in the direction transverse to flow varying from zero velocity near the 

solid-void interface due to friction on pore walls to a maximum at the pore center, 

(2) variations in pore sizes, and (3) variations in path length (Fig. 1.1). Therefore, 

solute advances faster along the pore centre than the near-wall region; it also 
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moves through larger pores faster; finally, varying grain distribution also 

introduces tortuous flow paths for the solute particles. 

Velocity variations in the pore space contribute to a difference in solute 

concentration along flow paths and across different flow paths, which, when 

combined with molecular diffusion, result in additional mixing termed mechanical 

dispersion. Mixing that occurs along the direction of fluid flow is termed 

longitudinal dispersion, whereas mixing that occurs normal to the direction of 

fluid flow is termed transverse dispersion. Transverse dispersion is considered to 

be the result of the split of flow paths (Fig. 1.2).  

Hydrodynamic Dispersion: Since molecular diffusion cannot be separated 

from mechanical dispersion in flowing subsurface flow, the two are combined 

into a parameter called hydrodynamic dispersion coefficient, D. In a one-

dimensional system, hydrodynamic dispersion is defined as (Fetter 2000): 

mL DvD   (1.6) 

where αL is the longitudinal dispersivity, v is the average linear velocity, and Dm is 

the effective diffusion coefficient. 

Peclet Number: The dimensionless measure of the degree of advective to 

dispersive transport is the Peclet number: 

D

vL

fluxDispersive

fluxAdvective
NPe   (1.7) 

where L is the characteristic length scale. NPe is typically greater than one when 

the system length scale is larger than the micrometer scale. At small scales, 

diffusion contributes much more effectively to solute transfer.  
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In multiphase immiscible flow, one of the important parameters is 

capillary pressure (Pc). It is inherently a pore-scale phenomenon and is defined at 

equilibrium as the difference in pressure across a curved interface separating two 

immiscible fluids, expressed as: 

  
eff

wnwc
R

PPP
 cos2

  (1.8) 

where Pnw is the non-wetting phase pressure at an interface, Pw is the wetting 

phase pressure at an interface, Reff is the effective radius of the interface, σ is the 

surface tension between wetting and non-wetting fluid phases, and θ is the contact 

angle.      

Pore-scale modeling directly accounts for the fundamental physical 

processes that govern the fluid flow and mass transport occurring at the smallest 

scale. It is often employed to simulate experimental set-up and to understand 

detailed microscopic processes and transport mechanisms. Despite its advantages, 

pore-level modeling remains challenging because of a number of limitations: (1) 

uncertainties in  the detailed description of the complex pore geometries at the 

field scale and (2) high computational costs of simulating flow/transport at the 

pore-scale resolution for large-scale response prediction. 

 

1.1.2 Modeling at the Darcy or Continuum Scale 

Unlike the pore scale, the continuum or macroscopic (ranges from 10
−2

 to 10
0
m) 

does not require microscopic details of pores. In other words, detailed 

descriptions of pores are ignored and employ the volume averaged laws such as 

Darcy’s law where the porous medium is considered as macroscopically uniform 
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continuum. The scale of the continuum medium is defined by the concept of 

representative elementary volume (REV) (Bear 1972). From the statistical 

perspective, this is the scale at which the sub-scale variance of an effective (i.e., 

averaged) property becomes negligible. In other words, an effective macroscopic 

property can be defined by averaging its microscopic values below this REV. 

Most of the laboratory experiments are conducted at this scale to obtain required 

parameters and hence it is widely used for modeling in porous media.  

 

1.1.2.1 Momentum Transport 

Darcy’s law describes the flow of a fluid through porous media at macroscopic 

scale. It was originally proposed as an empirical relation based on experimental 

observations; however, it can also be derived from the general momentum balance 

under certain conditions (e.g., near-zero Reynolds number flow). The Darcy’s 

equation (Bear 1972) is described as:    

)),((
)(

),( gX
X

Xq 


 tp
K

t  (1.9) 

where q(X, t) is the specific discharge or volumetric flow rate per unit cross 

section area of porous medium perpendicular to the direction of flow, μ is the 

viscosity, and p is the fluid pressure along the flow path. The proportionality 

constant K(X) is the coefficient of permeability. Here negative sign implies that 

flow is along the direction of decreasing gradient. 

It is usually considered valid for sufficiently low flow where the Reynolds 

number (ratio of inertial forces to viscous forces) as defined for a porous medium 

is less than one, which is the case for most subsurface flows. Darcy’s law is a 



 

11 

 

macroscopic approach to the study of flow in porous media and in this equation, 

all the interaction between the fluid and the porous structure is lumped into a 

single parameter permeability K. It is important to highlight that on a microscopic 

pore-scale level, there is no such thing as permeability exist. When there is 

multiphase flow, the most general form of the Darcy equation is described as: 

)( gpu jjjj  


 (1.10) 

where 
ju


is the Darcy velocity of phase j, jrjj kK 


  is the mobility, g  is the 

acceleration due to gravity, kr is the relative permeability, and ρ is the density of 

the fluid.   

 

1.1.2.2 Mass Transport 

In general, the transport of a solute in a porous medium is described by the 

advection-dispersion equation. Assuming a macroscopically homogeneous porous 

medium, the advection-dispersion equation on a representative elementary 

volume (REV) is described by a mass balance equation. Here the key assumption 

is that dispersion can be represented by an expression analogous to Fick’s law of 

diffusion. At the macroscopic scale (or REV) the transport phenomena is 

governed by the advection-dispersion equation (Lichtner and Kang 2007): 
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where ϕ(X) is the porosity at position X, c(X, t) is the bulk or macroscale 

concentration, q(X, t) is the  Darcy velocity,  D(X, t) is the macroscopic dispersion 

tensor, which integrates the impact of the heterogeneous pore structure and pore 

velocity on the dispersive solute flux, L and T represent the longitudinal and 

transverse dispersivity, respectively;i,j is the Kronecker symbol; D
d
 is the 

molecular diffusion coefficient, and i,j is the tortuosity tensor. This equation (Eq. 

1.11) is usually referred to as the classical or Fickian model of solute transport in 

porous media. Here effects of diffusion and dispersion are combined into a single 

tensor called hydrodynamic dispersion coefficient. 

In multiphase immiscible flow, capillary pressure is defined at the macro-

scale by the following empirical relationship: 

 )( wcwnw SPPP   (1.13) 

where for a given elementary representative volume (REV), P
nw

 is the average 

non-wetting phase pressure, P
w
 is the average wetting phase pressure, P

c 
is the 

macroscopic capillary pressure, and S
w
 is wetting phase saturation. This approach 

assumes that P
c
 is a function of saturation only if rock-type is fixed; other pore-

scale properties, such as interfacial configuration, interfacial curvature, contact 

angle, and pore morphology are ignored. All the pore-scale properties tend to be 

lumped into S
w
 without consideration of their individual effects. 

The capillary pressure can also be described by the dimensionless 

Leverett J-function as:  


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kSP
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where Pc  is the capillary pressure in pascal, Sw is the water saturation measured 

as a fraction, ϕ is the porosity, k is the permeability (m
2
), θ is the contact angle, 

and γ is the surface tension (N/m). The Leverett J-function plays an important role 

because it is used to extrapolate the capillary pressure data for a given rock which 

is similar to other rocks but differing porosity, permeability, and wetting 

properties.     

Darcy- or continuum-scale approach is widely used to model the flow and 

transport in porous media. However, the main difficulty with this approach is the 

requirement of accurate values of the macroscopic parameters such as 

permeability, dispersion coefficients, capillary pressure, relative permeability etc. 

which depend on the pore structure and pore-level physical processes. 

Furthermore, this approach does not take into account the pore geometries 

explicitly. 

 

1.2 Problem Statement 

It is often impractical to subject detailed fine-scale geological models to 

numerical flow and transport simulation due to its computational costs. Coarse-

scale models should be constructed via proper scale-up of the relevant reservoir 

and transport properties. Scale-up of transport properties involve estimation of 

large-scale average quantities that capture the fine-scale (sub-grid unresolved) 

heterogeneities and their associated uncertainties. 

Traditional numerical discretization schemes are prone to errors due to 

numerical dispersion, grid dependencies and orientation, and inaccuracy in flux 
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calculations in heterogeneous porous media with capillary pressure. Particle-

tracking based approach, which is grid-free and capable of eliminating numerical 

dispersion (Jha et al. 2011), provides a viable alternative for detailed transport 

modeling. Its integration with a statistical scale-up workflow would allow fine-

scale physics of single-phase transport and multi-phase flow in porous media to 

be translated into coarse-scale level (Tyagi et al. 2008) in a practical manner. It is 

assumed that Darcy-scale applies in this work. 

The Fokker-Planck-Kolmogorov equation (FPKE) is basic equation to 

derive Particle-tracking based approach which is defined as: 
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where P(x, t) is the probability density for a particle to be at location x at time t. 

The similarity of the classical ADE and FPKE can be evident by replacing P(x, t) 

= C(x, t), A(x) = q(x, t), and ½ B(x) = D(x, t).   

 

1.3 Research Objectives 

In this thesis, scale-up/upscaling of flow and transport is addressed in porous 

media. For transport simulation, particle tracking techniques are employed. The 

principal objective of this work is to develop a particle-tracking approach to scale-

up transport properties and multiphase flow function. To accomplish this 

objective, other sub-objectives are development of particle-tracking tool for 

probabilistic time step and multiphase immiscible flow.     
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In order to address the problems regarding scale-up/upscaling in single and multi-

phase transport problems, the following objectives are completed in procedural 

order: 

 

1. Assessing the impact of subscale heterogeneities in 2- and 3-D 

heterogeneous reservoirs  

First, a multi-scale workflow is developed to scale-up effective dispersivities and 

reservoir attributes (porosity and permeability) to the transport modeling scale 

that takes into account of sub-scale variability. Next, effective transport 

parameters and reservoir attributes are populated in the coarse-scale model. A 

RWPT formulation RW3D-MRMT (Fernàndez-Garcia et al. 2005; Salamon et al. 

2006; Fernàndez-Garcia and Sanchez-Vila 2011) is incorporated. The goal is to 

quantify the subscale heterogeneities and their associated uncertainties on 

transport during scale-up.  

 

1.1 Coupling with large-scale heterogeneities  

The effects of large-scale heterogeneity are studied. A combination of smaller-

scale variability (residuals) and large-scale variability (deterministic trend), is 

considered.  

 

1.2 Modeling of sub-grid heterogeneities with probabilistic transit time 

distribution  

The RWPT formulation RW3D-MRMT is modified to account probabilistic 

transit time distribution. The results of modified code are validated against 

analytical solution. 
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2. Stochastic modeling of multi-phase (two phase) flow 

The RWPT formulation RW3D-MRMT is modified to simulate phase saturations. 

This model is coupled with the continuity equation in an IMPES (implicit 

pressure, explicit saturation) fashion. To construct concentration from particles 

distribution, kernel functions are used. In addition, ideas of superposition adopted 

from the convolution-based particle tracking (CBPT) method are used to compute 

responses for a continuous injection from a single instantaneous point source. 

 

3. Scale-up of multi-phase flow functions (Cp and Kr functions) in 

heterogeneous reservoirs  

Scaling characteristics of capillary pressure and relative permeability functions 

with fluid saturations are studied. To scale-up multi-phase flow functions, a 

procedure similar to the one in objective (1) is implemented. To scale-up the 

functions, developed particle-tracking algorithm in objective (2) is used to avoid 

the numerical (or artificial) dispersion. 

  

1.4 Thesis Outline   

The thesis consists of seven chapters.  

Chapter 1: A general introduction of the governing equations for flow and 

transport modeling at different scales are described. A problem statement is 

introduced. A set of research objectives pertinent to this thesis are explained.  

Chapter 2: A workflow to scale-up reservoir attributes (porosity and permeability) 

and effective dispersivities is introduced. In particular, uncertainty due to sub-
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scale heterogeneities (i.e., sub-scale variability) is quantified in the developed 

procedure.  

Chapter 3: The workflow in Chapter 2 is extended such that large-scale variability 

(deterministic trend) is also considered.  

Chapter 4: The workflow in Chapter 2 is extended to handle the modeling of 

residual variability, which occurs below the fine-scale model resolution, with 

probabilistic transit time distribution.  

Chapter 5:  It presents a multi-scale framework for solute transport which 

accounts for sub-scale variability, large-scale variability, and variability below the 

fine-scale. It essentially integrates the elements from Chapters to 4 into a single 

hierarchical framework. 

Chapter 6: It presents a novel particle-tracking method to model multi-phase 

immiscible flow. Various new aspects, in comparison to existing works in the 

literature, are incorporated. Moreover, the method is also incorporated in a scale-

up procedure (similar to that in Chapter 2) to compute effective multi-phase flow 

functions at the coarse scale.  

Chapter 7: It summarizes the contributions of the thesis with conclusions, along 

with suggestions for future research on this topic. 

 

 

 

 

 



 

18 

 

References  

Adepoju, O. O., Lake, L. W., & Johns, R. T. (2013). Investigation of anisotropic 

mixing in miscible displacements. SPE Reservoir Evaluation & 

Engineering, 16(01), 85-96. 

Arya, A., Hewett, T. A., Larson, R. L., & Lake, L. W. (1988). Dispersion and 

reservoir heterogeneity. SPE Reservoir Eng, 3(1), (pp. 139-148). 

Bear, J. (1972). Dynamics of fluids in porous media. New York: Elsevier. 

Berkowitz, B., Scher, H., & Silliman, S. E. (2000). Anomalous transport in 

laboratory-scale, heterogeneous porous media. Water Resour Res, 36(1), 

(pp. 149-158). 

Binning, P., & Celia, M. A. (2002). A forward particle tracking Eulerian–

Lagrangian localized adjoint method for solution of the contaminant 

transport equation in three dimensions. Adv Water Resour, 25(2), (pp. 147-

157). 

Bird, R. B., Stewart, W. E., & Lightfoot, E. N. (1960). Transport phenomena. 

Madison, USA: John Wiley & Sons. 

Fernàndez-Garcia, D., & Sanchez-Vila, X. (2011). Optimal reconstruction of 

concentrations, gradients and reaction rates from particle distributions. J 

Contam Hydrol, (120-121), (pp. 99-114). 

Fernàndez-Garcia, D., Illangasekare, T. H., & Rajaram, H. (2005). Differences in 

the scale-dependence of dispersivity estimated from temporal and spatial 



 

19 

 

moments in chemically and physically heterogeneous porous media. Adv 

Water Resour, 28(7), (pp. 745-759). 

Fetter, C. W. (2000). Applied hydrogeology. Prentice hall. 

Gelhar, L. W., Gutjahr, A. L., & Naff, R. L. (1979). Stochastic analysis of 

macrodispersion in a stratified aquifer. Water Resources Research, 15(6), 

1387-1397. 

Gelhar, L. W., Welty, C., & Rehfeldt, K. R. (1992). A critical review of data on 

field-scale dispersion in aquifers. Water Resour Res, 28(7), (pp. 1955-

1974). 

Hoteit, H., Mose, R., Younes, A., Lehmann, F., & Ackerer, P. (2002). Three-

dimensional modeling of mass transfer in porous media using the mixed 

hybrid finite elements and the random-walk methods. Math Geol, 34(4), 

435-456. 

Jha, R. K., Bryant, S., & Lake, L. W. (2011). Effect of diffusion on dispersion. 

SPE J, 16(1), (pp. 65-77). 

Jha, R. K., John, A., Bryant, S. L., & Lake, L. W. (2009). Flow reversal and 

mixing. SPE J, 14(1), (pp. 41-49). 

John, A. K. (2008). Dispersion in Large Scale Permeable Media (Dissertation). 

University of Texas at Austin. 

John, A. K., Lake, L. W., Bryant, S., & Jennings, J. W. (2010). Investigation of 

mixing in field-scale miscible displacements using particle-tracking 



 

20 

 

simulations of tracer floods with flow reversal. SPE J, 15(3), (pp. 598-

609). 

Lichtner, P. C., & Kang, Q. (2007). Upscaling pore-scale reactive transport 

equations using a multiscale continuum formulation. Water Resour. Res, 

43, W12S15. 

Pickens, J. F., & Grisak, G. E. (1981a). Scale-dependent dispersion in a stratified 

granular aquifer. Water Resources Research, 17(4), 1191-1211. 

Pickens, J. F., & Grisak, G. E. (1981b). Modeling of scale-dependent dispersion 

in hydrogeologic systems. Water Resources Research, 17(6), 1701-1711. 

Pickup, G. E., & Stephen, K. D. (2000). An assessment of steady-state scale-up 

for small-scale geological models. Pet Geosci, 6 (3), 203-210. 

Saaltink, M. W., Ayora, C., & Carrera, J. (1998). A mathematical formulation for 

reactive transport that eliminates mineral concentrations. Water Resour. 

Res, 34 (7), 1649–1657. 

Salamon, P., Fernàndez-Garcia, D., & Gómez-Hernández, J. J. (2006). A review 

and numerical assessment of the random walk particle tracking method. 

Journal of contaminant hydrology, 87(3), (pp. 277-305). 

Taylor, G. (1953). Dispersion of soluble matter in solvent flowing slowly through 

a tube. In Proceedings of the Royal Society of London A: Mathematical, 

Physical and Engineering Sciences, (pp. 186-203). 



 

21 

 

Tyagi, M., Jenny, P., & Tchelepi, H. A. (2008). A Lagrangian, stochastic 

modeling framework for multi-phase flow in porous media. J Comput 

Phys, 227(13), 6696-6714. 

 

              

 

 

 

 

 

 

 

 

 

 



 

22 

 

 

Figure 1.1: Factors causing pore-scale longitudinal dispersion (adopted from 

Fetter 2000). 

 

 

Figure 1.2: Flow paths in a porous medium that cause transverse dispersion 

(adopted from Fetter 2000). 
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Chapter 2: Modeling Impacts of Subscale  

Heterogeneities on Dispersive Solute  

Transport in Subsurface Systems
1
 

 

2.1 Introduction 

Dispersion in porous media results from the interplay between convective 

spreading and diffusion (Perkins and Johnston, 1963). Convective spreading 

occurs because of variations in path lengths and solute particles following 

different streamlines (Jha et al. 2011). Diffusion, on the other hand, is the process 

whereby random motion of solute particles involved in a net movement 

corresponding to the concentration gradient and is described by Fick’s law. It is 

enhanced by additional mixing caused by concentration gradients as a result of 

uneven fluid velocities (Aronofsky and Heller 1957). Presence of local velocity 

gradients due to multi-scale heterogeneous rock properties can enhance mixing 

(Lake 1989).  

It has been extensively reported in the literature that dispersivity increases 

with distance (Gelhar et al. 1992; Fleurant and Van Der Lee 2001) and time 

(Binning and Celia 2002). This scale-dependent behavior is usually described as 

non-Fickian, anomalous, or non-Gaussian (Berkowitz et al. 2000; John 2008), 

characterized by early breakthrough and long- or heavy-tailed effluent histories at 

the late times. Heavy-tailed nature of break through concentration profiles (BTCs) 

                                                 
1
 A version of this chapter has been published in Journal of Contaminant Hydrology, 2015, 182: 

63-77 (A version of this chapter was also presented at IAMG-2017 conference, New Delhi, India, 

Oct 17-20). 
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has been also observed under convergent radial flow around injectors and 

producers (Pedretti et al. 2014). Under converging flow, heavy-tailed behavior of 

transport heavily depends on the vertical architecture and connectivity pattern 

between the injecting and producing locations. Jha et al. (2011) observed that 

diffusion is an important element in Fickian transport because it helps to ensure 

that movement of solute particles are independent and random (particles are 

moving from regions of low-velocity to high-velocity and vice versa). In case of 

realistic parabolic velocity profile in pore throat (similar to flow between two 

parallel plates), the velocities of particles near the porous material surface are not 

independent (due to no-slip boundary conditions at the solid surfaces) and in the 

absence of diffusion, solute particles near the low velocity region cannot move 

into main flow stream. In other words, without diffusion, each solute particle 

would follow the same streamline without interacting with particles from other 

stream lines. The randomness introduced by diffusion has allowed particles near 

the solid porous material with low velocity to switch between different 

streamlines and acquire independent velocity. 

At the reservoir or field scale, non-Fickian behavior can be explained by 

both large-scale heterogeneity and unresolved sub-scale heterogeneities. Gylling 

et al. (1999), Becker and Shapiro (2003), and Gouze et al. (2008) attributed non-

Fickian dispersion to long-range spatial correlation of geological features (e.g., 

increase in correlation in the permeability field), resulting in velocities to be 

correlated over large distances. A common example would be fractured 

formations with dual porous systems (Bijeljic et al. 2013). Non-Fickian dispersion 
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may also be explained by the temporal correlations of the solute motion due to 

mass transfers in small-scale geological structures (Dentz et al. 2004; Le Borgne 

and Gouze 2008). As noted by Le Borgne and Gouze (2008), it is most probable 

that both spatial correlations controlled by large-scale structures and temporal 

correlations controlled by small-scale structures lead to non-Fickian transport in 

some heterogeneous reservoirs. Since heterogeneity varies as a function of scales, 

description of dispersion must account for impacts of heterogeneity and scale 

(Arya et al. 1988; Gelhar et al. 1992; Mahadevan et al. 2003; Berkowitz et al. 

2006; Jha et al. 2009; John et al. 2010; Jha et al. 2011).  

Several studies (Aronofsky and Heller 1957; Scheidegger 1988; Berkowitz 

et al. 2006; Jha et al. 2011) discussed the specific issues about applicability of 

classical advection-dispersion equation (ADE) for modeling transport behavior of 

both Fickian and non-Fickian characteristics. The existence of preferential flow 

paths was clearly shown in laboratory-scale systems (Hoffman et al. 1996; 

Oswald et al.1997). Some experimental studies also revealed systematic deviation 

between experimental BTCs and ADE predictions.  Levy and Berkowitz (2003) 

also measured the BTCs in homogeneous meter-length flow cells and observed 

non-Fickian dispersion behavior in terms of early-time and late-time arrivals 

(tails). The classical ADE formulation is not suitable for modeling non-Fickian 

transport because dispersion is modeled as a sum of diffusion and convective 

spreading, which act independently from each other, ignoring the mixing 

introduced by the interaction of these two mechanisms.      
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Another issue in the solute transport modeling is the numerical dispersion 

(artificial dispersion). Numerical dispersion is the result of truncation error and 

generally overwhelms physical dispersion (Lantz 1971; Fanchi 1983; Haajizadeh 

et al. 1999, Binning and Celia 2002). Many numerical schemes generate 

significant numerical dispersion and, therefore, lead to an overestimation of 

transverse mixing. Although numerical dispersion could be partially decreased by 

choosing proper discretization scheme (e.g., mesh size and time steps) and 

incorporating higher–order approximation, it still poses a significant challenge 

when used to analyze effects of physical dispersion. Advection dominated 

problems often suffer from numerical dispersion and numerical oscillations 

(instabilities) (Zheng and Bennett 2002; Salamon et al. 2006a, Hoteit et al. 2002, 

Fleurant and Van Der Lee 2001). These problems could be solved by selecting 

higher grid resolution and small time steps. These numerical problems can also be 

alleviated by choosing appropriate numerical scheme and better flux 

approximations, resulting in long executions times even with the CPUs available 

these days   (Liu et al. 2004; Salamon et al. 2006a). Alternative method of solving 

partial differential equation (ADE) is particle tracking (Lagrangian method) based 

approach. Particle tracking is a grid-free approach capable of eliminating 

numerical dispersion (Salamon et al. 2006a; Jha et al. 2009; John et al. 2010). Its 

computational requirement is also less as compared to FD/FV/FE-based 

simulator, since particles move independently and parallel computing formulation 

is favorable.  
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Particle tracking formulations can be classified into a number of 

categories: (1) random walk particle tracking (RWPT) or classical random walk 

(CRW); and (2) continuous time random walk (CTRW). In RWPT, each transit 

time step  is considered as discrete, constant, and deterministic whereas 

transition length vector  is independent and identically distributed (i.i.d) random 

variables with zero mean and unit variance (Salamon et al. 2006a). In CTRW, 

each and  are random variables following a probability density function 

where both  and are independent, stationary stochastic 

processes (Srinivasan et al. 2010).  

Different approaches were described in the literature for representing sub-

scale effects in coarse-scale continuum flow simulations. Barker and Fayers 

(1994) introduced pseudo (effective) coefficients, referred to as -factors, in the 

flux terms of the transport equation to relate compositions of fluids leaving a grid 

block to the average compositions within the grid block. Efendiev et al. (2000) 

derived expressions for calculating equivalent parameters two-phase dispersion 

tensor (Dij) from volume-averaged equations. Berentsen et al. (2007) derives a 

pre-asymptotic one-dimensional upscaled model for the transverse averaged tracer 

concentration and generalizes dispersion tensors that may vary as a function of the 

transverse direction. The transverse mixing term in the two-dimensional 

governing equation is spectrally decomposed into its corresponding eigen values 

and eigen vectors, which are combined into an effective relaxation equation that 

describes both the short- and long-time behavior of dispersion for the Taylor flux, 

to model multi-scale dispersive flux.  
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Cortis et al. (2004) modeled the unresolved sub-scale heterogeneities 

using the memory functions in CTRW, while the large-scale behavior is treated 

deterministically. Parameters of the transition rate probability, , t1, t2, are 

assigned to each facies (sub-region). Small-scale heterogeneities are mapped on 

the distribution of local transit times into a space-dependent memory term M(u; 

x), which gives rise to anomalous dispersion, while the effect of deterministic 

macroscopic heterogeneities are additionally included into the drift and flux 

terms: (x) and (x) (Cortis et al. 2004; Berkowitz et al. 2006).  Fernàndez-

Garcia et al. (2009) studied the upscaling of mass transfer. Several formulations 

of the memory function are used in their multi-rate mass transfer model as the 

constitutive transport equation at the large scale. 

The aforementioned works addressed the issue of upscaling, which 

involves computation of an equivalent parameter at the coarse scale by averaging 

response evaluated with a particular realization of fine-scale heterogeneity 

(Christie 2001). This process differs from scale-up, which refers to relating 

phenomena observable at one scale to another scale (Leung and Srinivasan 2011). 

Scale-up involves not only computing the equivalent parameter at the larger scale 

by upscaling, but it also entails transferring the uncertainty of sub-scale 

heterogeneity into the uncertainty (variability) in the large-scale equivalent 

parameters (Leung and Srinivasan 2012). In other words, parameters can be 

scaled-up, if we are able to upscale multiple realizations encompassing the 

uncertainty due to change in scale. 
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In this work, the term “fine-scale” refers to a length scale over which 

detailed description about heterogeneity is available. In particular, the discussion 

here focuses on heterogeneity description defined at the Darcy scale, or the 

representative elementary volume (REV) of the pore-scale. An example of a fine-

scale model is one constructed from petrophysical log measurement available at a 

resolution of approximately 0.1m. A field-scale model at this resolution is 

generally impractical for numerical flow and transport modeling due to its large 

number of grid cells. A common alternative approach would be performing the 

numerical simulation over a coarser mesh (e.g., 5-10 m), which is referred to as 

the “coarse-scale” or the “transport-modeling-scale”. Description of rock (e.g., 

porosity) and flow-related properties (e.g., dispersivities) at this coarse scale 

should be established through the aforementioned scale-up procedure. It is 

important that the fine-scale heterogeneity and its associated uncertainties be 

captured when scaling up models to the coarser, transport-modeling scale. In 

other words, “sub-scale” variability, which is occurring below the chosen 

transport-modeling scale, should be appropriately accounted for.              

This work describes an approach to quantify the uncertainties in reservoir 

attributes and dispersivity introduced by scale-up. A new unified multi-scale 

workflow to scale-up effective dispersivities and reservoir attributes (porosity and 

permeability) in a consistent manner that takes into account sub-scale variability. 

It facilitates the construction of a suite of coarse-scale realizations using the 

transport modeling mesh that capture the fine-scale variability (at the sub-grid 

level) in rock properties (porosity and permeability) and transport properties 
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(longitudinal and transverse dispersivities). To scale-up rock properties, volume 

variance is computed corresponding to a given spatial correlation model inferred 

at the fine scale; volume variance refers to the uncertainty introduced when the 

volume support of the geo-modeling scale is less than the representative 

elementary volume scale of the attribute to be modeled (Lake and Srinivasan 

2004; Leung and Srinivasan 2011); numerous sets of “conditioning data” are then 

sampled at the hard data (well) locations from probability distributions whose 

mean is the block average of the actual measured values and the variance is the 

variance of block mean. The term “conditioning data” refers to local data that is 

reproduced at the well locations in geostatistical simulations (Pyrcz and Deutsch 

2014). Stochastic simulations are subsequently performed to generate multiple 

realizations at the transport modeling scale. Next, to scale-up dispersivities, 

multiple sub-grid geostatistical realizations depicting detailed fine-scale 

heterogeneities and of the same physical sizes as the transport modelling grid 

block is subjected to RWPT simulation. Effective longitudinal and transverse 

dispersivities are determined simultaneously by matching the corresponding 

breakthrough concentration history for each realization with an equivalent 

medium consisting of averaged homogeneous rock properties. Aggregating results 

derived with all realizations, we generate probability distributions of scaled-up 

dispersivities conditional to particular averaged rock properties, from which 

values representative of the transport modeling scale are randomly drawn. 

The significance of capturing directly the sub-scale variability 

(uncertainty) in heterogeneity during scale-up of transport properties is 
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emphasized. A procedure is presented to model solute transport at coarse scale 

that is capable of capturing uncertainty in multi-scale heterogeneous models. 

Quantifying the uncertainty due to unresolved sub-grid heterogeneities would 

assist us in assessing the scaling characteristics of dispersion. Sub-scale 

variability in input dispersivities and rock properties are accounted for directly in 

the large-scale models.  

This chapter is organized as the following: first, the governing equations 

for flow and transport modeling, as well as the particle-tracking formulation, are 

presented. Next, the proposed scale-up strategies are discussed in detail. Finally, 

application with a synthetic reservoir model is illustrated in a case study. 

   

2.2 Flow and Transport Modeling in Porous Media 

In this section, mathematical formulation of the flow and transport modeling 

equations are presented. This is followed by a discussion of the particle-tracking 

approach. 

Conservation of mass for a solute component in a single-phase fluid 

system in a porous medium over the REV of the pore scale can be described by 

the continuum advection-dispersion equation (ADE) (Bear 1979) 
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where C(x, t)is solute concentration in mass per unit pore volume, which is a 

function of spatial coordinates (x) and time (t), u


 is the Darcy  velocity obtained 

from the solution of the steady-state flow  Eq. (2.2),  is the differential operator, 

and D


 is the dispersion tensor (Bear 1979) that can be expressed in component 

notation (Binning and Celia 2002)  

,
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where
ji  is the Kronecker symbol, 

L and
T represent the longitudinal and 

transverse dispersivity, respectively. D
d
 is the molecular diffusion coefficient, 

ji
  

is the tortuosity tensor, and iu is component of the u


along the i
th 

direction. The 

velocity is calculated using Darcy equation as 
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where V


is the average pore or interstitial velocity, k


is the permeability tensor, 

 is the fluid viscosity, h is the hydraulic head, K  is the hydraulic conductivity, 

and  is the porosity. 

The solute component can also be modeled discretely by representing it 

with a large number of small particles of mass mi, where the summation over all 

particles re-establishes the total solute mass. The transport of these particles can 

be simulated using the particle tracking approaches such as RWPT. Over a given 
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time step or transit time, individual particles are advanced according to a drift 

term representing advection movement plus a random Brownian motion term 

representing diffusion/dispersion. Position of a particle at the new time level 

(t+t) can be written as (Tompson and Gelhar 1990; LaBolle et al. 1996; Hassan 

and Mohamed 2003) 
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where Xp, Yp, and Zp are the position of a particle in x, y, and z coordinates, 

respectively.t is the time step, and zi is a random number with zero mean and 

unit variance. Vi refers to the individual component of the velocity vector. Itô 

(1951) demonstrated that the particle density distribution ),,,( tZYXf PPP
, 

defined as the probability of finding a particle within a given interval

      PPPPPPPPP dZZZdYYYdXXX  ,,,,, at given time, obtained from Eq. 

(2.6) fulfills, in the limit of large number of particles and an infinitesimal step 

size, the Fokker-Planck equation 

  ,: 









fDfu

t

f


  (2.7) 



 

34 

 

where f is particle density function; colon refers to the outer product resulting 

from multiplication of two tensors with dimension n  
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Eqs. 2.1 & 2.7 are identical. To establish the analogy between them, Kinzelbach 

(1986) modified the velocity as 
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and substitute Eq. (2.9) into Eq. (2.1) to give Eq. (2.10), which is equivalent to 

Eq. (2.7) 
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In this work, a RWPT formulation called RW3D-MRMT (Fernàndez-

Garcia et al. 2005; Salamon et al. 2006a, 2006b; Fernàndez-Garcia and Sanchez-

Vila 2011) is applied. This formulation has been applied successfully to solve a 

number of field-scale transport problems (Salamon et al. 2007; Riva et al. 2008). 

It is capable of simulating advection, dispersion/diffusion, and simple first-order 

mass transfer as well as reactive multi-rate mass transfer with both regular or 

irregular grid geometry. It utilizes a hybrid scheme consisting of linear 

interpolation for velocities and tri/bilinear interpolation for the dispersion tensor. 

Readers should refer to the aforementioned references for additional details. 
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2.3 Scale-up Methodology 

Theory and mathematical formulation of scale-up procedures are discussed. 

Procedures for constructing models of reservoir properties are presented followed 

by computation of effective dispersivities at the transport modeling (coarse) scale. 

Implementation details of the proposed multi-scale approach are also explained. 

  

2.3.1 Scale-up of Reservoir Attributes 

 Scale-up of reservoir static properties is often performed for two reasons. First, 

measurements are usually available from different sources and scales; second, 

volume support for the transport modeling scale is typically much larger than that 

of the measured scale. These changes in scale or volume support lead to 

additional uncertainty in the scaled-up models due to averaging of sub-scale 

heterogeneity. This uncertainty is referred to as sub-scale variability (Fig. 2.1). 

Most reservoir attributes are modeled as random variables because of the 

significant uncertainty associated with them. Since the average of a set of 

outcomes of a random variable is also a random variable, the spatial volume 

average of that attribute is also a random variable. The variance of mean of the 

attribute is a measure of the variability of the volume average (spatial average) at 

that particular volume support or scale V. Over short length scales, that variance is 

likely to be large and decreasing as V increases.  This variance would eventually 

reach a constant negative unit slope on a log-log plot. A constant negative slope 

indicates that the volume support has reached the representative elementary 

volume (REV), a scale beyond which the sub-scale variability becomes 
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negligible. This negative slope can be derived from the law of large numbers: the 

sample variance is equal to the fine-scale variance divided by the number of 

samples; at scales larger than the REV, each sample is considered independent 

from each other (Leung and Srinivasan 2011). Let Z be a continuous Gaussian 

random variable with a variance of 2
; for given autocorrelation model corr, the 

variance of its linear average ( Z ) over a volume V can be computed according to 

Lake and Srinivasan (2004) by integrating over all possible lag distance within 

V 
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As V approaches zero, the variance of mean becomes the population mean 

at the point scale. It can be deduced from the above equation that (1) as the 

correlation length of heterogeneity increases, REV becomes larger and (2) for a 

given length scale, the variance of the mean increases with correlation length (Fig. 

2.2).The general procedure for calculating the variance of the mean and the REV 

scale is to infer and model the variogram using data at the point support and then 

compute the variance of mean numerically by summing the model  
corr

over all 

possible lag distances within V according to equation (2.11).  

When the model length scale is smaller than the measurement REV, 

additional variance due to sub-scale variability must be accounted for when 

assigning data values to the model. First, the variance of mean is calculated 

corresponding to a particular length scale and for a particular spatial correlation 

length. This variance characterizes the uncertainty in property value for that 

particular length scale. When modeling is performed at a conditioning data 
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location using the support volume of the modeling grid, the uncertainty in the 

conditioning value is obtained by (1) sampling from probability distributions 

whose mean is the block-average of the actual measured values and the variance 

is the variance of block mean using spatially correlated probability values and (2) 

generating multiple sets of conditioning data. Uncertainty due to scale-up is 

accounted for by estimating a Gaussian-type likelihood function for the averaged 

conditioning data and performing parametric bootstrapping of this likelihood to 

assess uncertainty related to the conditioning data. Bootstrapping is a statistical 

resampling procedure for calculating uncertainty by using Monte Carlo 

simulation, where data is resampled from the same distribution with replacement 

(Pyrcz and Deutsch 2014). Using a linearly-averaged scaled-up semi-variogram  

(Journel and Hujbregts 1978), conditional simulation is performed on all sets of 

conditioning data in order to establish the uncertainty estimates at locations away 

from conditioning data (Leung and Srinivasan 2011).  is defined mathematically 

as in Eq. (2.12), but it is often estimated numerically by discretizing the two 

volume supports (V, V´), respectively, into n and n´ numbers of regularly-spaced 

points, and simply averaging the point-scale variogram values . 

     .h
1

,
1

,
1 1

 











n

i

n

j

ij

V V
nn

vdvdvv
VV

VV   (2.12) 

The uncertainty in attribute value at any location away from the data 

location is compounded due to both sparse data and uncertainty in conditioning 

data. The work flow described in Leung and Srinivasan (2011) is followed: 

1. Calculate  using the fine-scale data. 
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2. Calculate variance of mean using the 3D point-scale variogram from Step 

#1 and Equation (2.11). 

3. Compute scaled-up variogram  at the coarse scale using Equation (2.12). 

4. Sample multiple sets of scaled-up conditioning data values from 

distributions whose mean is the block-average of the actual measured 

values and the variance is the variance of the mean calculated in Step #2. 

5. Perform conditional simulation at the coarse scale using the scaled-up 

variogram from Step #3 and scaled-up histogram (mean = fine-scale 

global mean; variance = variance of mean) using one sampled set of 

conditioning data. 

6. Repeat Step #5 for other sets of conditioning data obtained in Step #4. 

In this study, porosity and permeability k are the two rock properties to be 

modeled. The aforementioned procedure is used to compute scaled-up porosity 

values, which are assigned to individual grid blocks of the coarse-scale transport 

modeling mesh. Permeability is assumed to follow a log-normal distribution and 

can be related to the collocated porosity value as k = a×b, where a and b are 

empirical constants. This assumption would imply that linearly averaging is also 

valid in the transformed space of (k/a)
 1/b

; therefore k is estimated from ϕ using 

the same empirical relation, assuming the transform relationship is invariant with 

scale (Leung and Srinivasan 2011). In principle, permeability can be scaled up in 

the same fashion as for the transport parameters, as explained in the next section, 

particularly if a simple correlation with porosity is unattainable. 
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2.3.2 Scale-up of Dispersivity 

The procedure for constructing models of effective dispersivities at the modeling 

(coarse) scale is explained next. Variability at the sub-scale introduces uncertainty 

in transport-related attributes such as dispersivities at the coarse scale. It is this 

uncertainty that contributes to non-Fickian behavior. It is true that if all the fine-

scale heterogeneities are modeled explicitly, any local (within grid cell) mixing 

would be represented by a Fickian model (John, 2008, Li et al. 2011). Although 

large-scale non-stationarities (trends) would also contribute to non-Fickian 

behavior, they can be modeled explicitly at the transport modeling scale and, 

hence, be readily combined with the proposed method. The underlying basis is 

that the temporal correlations of small-scale structures due to heterogeneities in 

the “sub-regions”, as described by Dentz et al. (2004), can be represented by 

probability distributions of effective dispersivities calibrated using a series of 

fine-scale RWPT simulations. Therefore, by modeling the fine-scale 

heterogeneity explicitly, a single effective dispersivity value can be calibrated for 

that particular heterogeneity arrangement. Repeating this calibration process over 

numerous realizations would allow us to derive a distribution of effective 

dispersivities, and by sampling from these distributions, pre-asymptotic transport 

behavior (John 2008) due to uncertainty in small-scale structures can be modeled. 

It is important to point out that a Fickian model is employed here, as the effect of 

sub-scale variability is taken into account by sampling from the calibrated 

probability distributions of effective dispersivities. 
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Multiple sub-grid geostatistical realizations depicting the underlying fine-

scale heterogeneity arrangements and of the same physical sizes of the transport 

modelling mesh are subjected to RWPT simulation. Effective longitudinal (L
*
) 

and transverse dispersivities (T
*
) are determined simultaneously by matching the 

corresponding breakthrough concentration history for each realization with an 

equivalent medium consisting of averaged homogeneous properties. In other 

words, for a particular fine-scale heterogeneity arrangement, its breakthrough 

concentration history (BTC) is compared against that of an equivalent 

homogeneous model based on the root mean square error or RMSE (Nash and 

Sutcliffe, 1970). 
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The effective dispersivities L
*
and T

*
 are obtained in an optimization 

procedure (e.g., simulated annealing) such that the RMSE is minimized. 

Aggregating results derived with all realizations, a conditional probability 

distribution of scaled-up dispersivities P(L
*
| ) and P(T

*
| ) are established. 

For each coarse-scale model constructed in the previous section, effective 

dispersivity values are sampled from the probability distributions and assigned to 

individual grid blocks of the transport modeling mesh. However, it is expected 

that effective dispersivities should be correlated to porosity and/or permeability 

distribution; since permeability is computed directly from collocated porosity 

value, as discussed in the previous section, effective dispersivities should be 

sampled from the conditional probability distributions of P(L
*
| ) and P(T

*
| ). 
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These distributions are established by identifying a number of bins (nb) to the 

histogram of ; a set of ns sub-grid realizations of ~ N( b ,2
) are generated 

using the fine-scale variogram , where the notation N denotes the Gaussian or 

normal distribution with b representing the porosity corresponding to a particular 

bin. Aggregating the results of L
*
and T

*
 estimated from ns× ns models would 

yield the required P(L
*
| ) and P(T

*
| ). 

The steps involved can be described as follow. 

1. Assign nb bins to the histogram of . 

2. For a given bin, perform unconditional sequential Gaussian simulation to 

construct ns sub-grid porosity models of  ~ N( b , 2
) using fine-scale 

variogram . Permeability is computed from the collocated porosity value 

using the empirical relation k = a×b.  

3. Construct an equivalent homogeneous model corresponding to each of the 

ns sub-grid porosity models obtained from #2. Since porosity is averaged 

linearly, it is postulated that linearly averaging is also valid in the 

transformed space of (k/a)
 1/b

; therefore k  is estimated from   using the 

same empirical relation, assuming the transform relationship is invariant 

with scale (Leung and Srinivasan 2011).   

4. Compute hydraulic head and velocity distributions with the appropriate 

boundary conditions at steady state using Eq. (2.2) and Eq. (2.4), 

respectively, for ns heterogeneous models and ns homogeneous models 
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generated in #2-3. Particle-based transport modeling is performed to 

simulate the solute transport. 

5. The effective dispersivities L
*
and T

*
 are obtained in an optimization 

scheme such that the mismatch in breakthrough concentration profile 

between the heterogeneous model and the equivalent homogeneous model 

(Eq. 2.13) is minimized. 

6. Steps 1 to 5 are repeated for other bins in #1. 

7. Probability distributions of P(L
*
| ) and P(T

*
| ) [i.e., P(L

*
|

i ) and 

P(T
*
|

i ) for i = 1…nb] are obtained by aggregating the scaled-up values 

of αL
*
and αT

*
 for all nbns models.  

8. For each coarse-scale model constructed in the previous section, L
*
and 

T
*
 are assigned to individual grid blocks by sampling from the 

probability distributions P(L
*
| ) and P(T

*
| ). 

The scale-up procedures are implemented in a multi-scale based workflow 

shown in Fig. 2.3 to construct models of porosity, permeability, and effective 

dispersivities at the transport modeling scale. A case study is discussed in the next 

section to illustrate the impacts of incorporating sub-scale variability. 

 

2.4 Case Study 

Consider a synthetic 2D domain that is 500m×500m with two wells as shown in 

Fig. 2.4(A). In theory, the true model is always unknown; however, values of rock 

properties at wells can be inferred quantitatively from physical measurements. In 

this example, porosity values at a resolution of 1 m are extracted at the well 
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locations. A “true” 500 × 500 model with Δx = Δy = 1 m is assumed to be known. 

Porosity distribution follows the histogram and variogram model as shown in Fig. 

2.5(A) and Fig. 2.6(A), respectively. Permeability (k in md) value is related to 

porosity as 25000 × 2 
and ranges from 81.0 to 3058.4 md (mean = 1566.1 md), 

while  ranges from 0.05 to 0.35 (mean = 0.25). Longitudinal dispersivity L at 1-

m volume support is set to be 0.5 m, with transverse dispersivity T = 0.1 × L 

(Perkins and Johnston 1963; Gelhar et al. 1992).  

Instead of generating a suite of equi-probable realizations at a fine-scale of 

1 m and subjecting each to transport modeling, which could be overwhelming 

because of the incurred computational costs, a suite of coarse-scale 50 × 50 

models with Δx = Δy = 10 m (Fig. 2.4B). Therefore, the objectives of this study 

are to: (1) construct a suite of coarse-scale models of porosity and permeability 

that takes into account (a) uncertainty in reservoir heterogeneity at the modeling 

scale and (b) variability introduced by scale-up of reservoir attributes from fine-

(measurement) scale to coarse-(modeling) scale; and (2) perform particle-tracking 

simulation using the entire suite of coarse-scale models to capture the response 

uncertainty.  

Variance of mean is calculated corresponding to a volume support of 10 m 

×10 m, and its value is approximately 0.9 based on  and Eq. (2.11). The averaged 

variogram  is calculated according to Eq. (2.12), and the results are shown in 

Fig. 2.6(B). Ten sets of conditioning data of are sampled at well locations from 

normal distributions whose mean is the block-average of the actual measured 

values and the variance is the variance of the mean using Monte Carlo simulation. 
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Conditional sequential Gaussian simulations (SGSIM), as implemented in GSLIB 

(Deutsch and Journel 1998), are performed according to  and scaled-up 

histogram Fig. 2.5(B); ten realizations are simulated corresponding to each 

conditioning data set. Finally, a total of 100 realizations of scaled-up porosity 

distribution are obtained, and one of those realizations is shown in Fig. 2.7(B). 

Porosity distribution for the true model is also in Fig. 2.7(A). 

To scale-up dispersivities, a fine-scale sub-grid 10 × 10 model with Δx = 

Δy = 1 m Fig. 2.4(C) is considered. Three (nb = 3) bins corresponding to   = 0.1, 

0.2, and 0.3 are selected from the histogram in Fig. 2.5(B). Fifty (ns = 50) sub-

grid porosity models are simulated by unconditional sequential Gaussian 

simulation for each bin (Fig. 2.8), and one randomly selected model 

corresponding to  = 0.25 is shown in Fig. 2.7(C). As expected, its corresponding 

histogram, as shown in Fig. 2.5(C), is the same as fine-scale histogram shown in 

Fig. 2.5(A). For each sub-grid model, a pair of injector and producer is placed 

diagonally across the domain (Fig. 2.4C). Steady-state hydraulic head and 

velocity distributions are computed based on finite difference approximation of 

Eqs. (2.2) and (2.4). Particle-tracking simulation is performed where effective 

dispersivities are estimated as described in the methodology section. The 

reduction in RMSE is shown in Fig. 2.9(A). The error is usually reduced below an 

acceptable tolerance level with fewer than 100 iterations with a very fast 

simulated annealing (VFSA) scheme (Li et al. 2004). Also shown in Fig. 2.9(B) is 

a comparison of breakthrough profiles obtained from sub-grid models. After the 

optimization procedure is performed, the response from the equivalent 
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homogeneous model matches well with the actual fine-scale heterogeneous 

model. Non-Fickian BTC is observable even in the homogeneous case; this is 

because the impacts of convergent radial flow around injectors and producers are 

particularly overwhelming in these small sub-grid models. This type of non-

Fickian behavior is not observable in other 1D homogeneous model. A sensitivity 

analysis regarding boundary conditions with different configurations of the 

injector and producer placement, and the differences are negligible. Probability 

distributions of L
*
and T

*
corresponding to  = 0.25 are shown in Fig. 2.10(A & 

B). 

For each of the 100 coarse-scale models of porosity and permeability 

generated previously, values of L
*
and T

*
are drawn from these probability 

distributions, and they are subjected to particle-tracking simulation to predict 

solute (tracer) transport at the field scale and to assess the uncertainty due to sub-

scale heterogeneity and variability. Results of cumulative mass (∫ṁdt/mo) flux at 

the outlet are shown in Fig. 2.11, where ṁ and mo refer to outlet mass flow rate 

and total mass injected, respectively. It is clear that the true fine-scale response 

(denoted by the red curve) is captured within the uncertainties exhibited by the 

coarse-scale models successfully. In addition, certain features that are commonly 

associated with non-Fickian transport, including heavy-tailed non-Gaussian 

breakthrough concentration profile and early breakthrough, are observed with the 

full scale-up scenario; the true fine-scale model, on the other hand, exhibits the 

more typical Fickian breakthrough characteristics.  
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In order to assess the impacts of the proposed scale-up procedure in 

uncertainties of coarse-scale recovery response, two additional scenarios are 

investigated. In the first case, neither scale-up of reservoir attribute nor scale-up 

of dispersivities is performed. In other words, fine-scale values (, k, L, and T) 

are used directly in the coarse-scale models, which are then subjected to particle-

tracking modeling. The results are shown in Fig. 2.11. It is clear that the 

uncertainties demonstrated by the no scale-up scenarios are much more subdued. 

The fully scale-up models are more successful in approximating the true response 

in terms of the first and mean particle arrival times, despite the significant 

variability in the last particle arrival time (tailing behavior). It is observed in other 

cases where dispersivity values are increased from those used in this study, the 

coarse-scale models without scale-up would often fail to encompass the response 

from the true fine-scale model. In the second case, reservoir attributes are scaled 

up according to the prescribed method, while scale-up of dispersivities is ignored. 

In other words, properly scaled-up values of   and k  are used together with fine-

scale values of L, and T. Particle-tracking results are shown in Fig. 2.12. The 

standard deviations of particle arrival times for these two cases are much lower 

than the fully scale-up case. 

Another case is considered, where scale-up values of porosity and 

permeability are used, and constant values of L
*
and T

*
drawn from the 

calibrated conditional probability distributions are assigned to the entire domain.  

Simulation results of the 100 coarse-scale models are shown in Fig. 2.13. It is 

interesting to note that the uncertainties exhibited by the coarse-scale models are 
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larger than the results shown in Fig. 2.11, where spatially-varying L
*
and T

*
 

values are assigned according to the proposed procedure, despite that both sets of 

coarse-scale models have successfully captured the response from the true fine-

scale model. It appears that assigning constant L
*
and T

*
 values everywhere 

would exaggerate the uncertainties (i.e., higher standard deviation in particle 

arrival times) in the ensuing coarse-scale transport response because the sub-scale 

uncertainty in L
*
and T

*
 is not properly sampled. To verify this hypothesis, the 

corresponding particle distributions at a few snapshots of time for a randomly-

selected coarse-scale model are compared with the true fine-scale response in Fig. 

2.14. It is noted that the particle distribution for the fully scale-up models is more 

closely approximating the distribution obtained with the true fine-scale model.  In 

particular, when only constant L
*
and T

*
 are assigned, the particle plume is less 

dispersed, especially along the transverse direction, and this tendency becomes 

more pronounced with time; hence, the resultant BTC does not necessarily exhibit 

the long-tailed characteristics as observed in the spatially-varying L
*
and T

*
 

case. This is also supported by Fig. 2.13, which shows that the last particle arrives 

sooner in cases with constant L
* 
and T

*
, exhibiting less tailing characteristics.         

Finally, the computational requirement involved in this study is stated in 

Table 2.1. A high-performance computing (HPC) Linux-based computing 

environment (Jasper cluster provided by WestGrid and Compute/Calcul Canada), 

consisting of 240 nodes with Xeon X5675 processors, 12 cores (2 x 6) and 24 GB 

of memory, and 160 nodes with Xeon L5420 processors, 8 cores (2 x 4) and 16 

GB of memory, was employed for the velocity and transport calculations. Jasper 
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uses an InfiniBand interconnect.  The X5675 nodes are connected at 40 Gbit/s, 

with a 1:1 blocking factor, which is the fastest interconnect currently in WestGrid. 

The L5420 nodes are connected at 20 Gbit/s, with a 2:1 blocking factor. As shown 

in Table 1, the costs for transport calculations are much higher than that for the 

velocity calculations, despite that they are being carried out with the HPC 

platform with parallel computing capabilities. It is important to highlight that in 

real field applications, data is typically scarce and available at a volume support 

that differs from the modeling scale; therefore, capturing these uncertainties in a 

suite of fine-scale realizations and subjecting them to transport modeling are 

impractical due to the formidable computational costs. The ability to construct 

coarse-scale models that reflect the sub-grid heterogeneities is crucial.  

 

2.5 Conclusions 

1. In this chapter, we propose a new unified multi-scale workflow to scale-up 

effective dispersivities and reservoir attributes (porosity and permeability) in a 

consistent manner that takes into account of sub-scale variability. Conditional 

probability distributions of averaged (effective) quantities representative of 

the transport modeling scale are established; Monte Carlo simulations are 

performed to sample from these distributions. 

2. Certain features commonly associated with non-Fickian transport including 

heavy-tailed non-Gaussian breakthrough concentration profile and early 

breakthrough, are observed with the ADE model where subscale variability is 
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integrated by assigning spatially-varying dispersivities that are sampled from 

the calibrated conditional probability distributions.  

3. The fully scaled-up models, constructed based on the proposed procedure, are 

capable of capturing the fine-scale variability in transport modeling. 

Furthermore, ignoring the spatial variability in scaled-up effective 

dispersivities could not properly capture the effects of sub-scale variability, 

causing the overall uncertainty in the final recovery response to be 

overestimated.  

4. The proposed method can be combined with large-scale trend model to 

integrate sub-scale heterogeneities and large-scale geologic structures that are 

both contributing to non-Fickian transport behavior at field scale. 
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Figure 2.1: Illustration of concept of sub-scale variability. 

 

 

Figure 2.2: Variance of mean as a function of correlation length (amax = 

maximum range of continuity and amin = minimum range of continuity) and 

averaging scale. 
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Figure 2.3: Workflow for scale-up of reservoir properties and effective 

dispersivities. 

 
 

 

Figure 2.4: Setup for (A) fine-scale model, (B) coarse-scale model, and (C) sub-

grid model. 
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Figure 2.5: Histogram plot of Porosity of (A) fine-scale model, (B) coarse-scale 

model, and (C) sub-grid model. 
 

 

Figure 2.6: Variogram plot of (A) fine-scale model and (B) coarser-scale model. 

Blue: direction of minimum anisotropy; red: direction of maximum anisotropy. 

 

 

Figure 2.7: Porosity distribution at various scales: (A) fine-scale model, (B) 

coarse-scale model, and (C) sub-grid model. 
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Figure 2.8: Distribution of effective dispersivities values with different bin-mean.  

( ). 

 

 

Figure 2.9: Left: Reduction in RMSE. Right: Comparison of breakthrough 

response obtained from the heterogeneous model and homogeneous models 

(before and after the minimization procedure). 
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Figure 2.10: Conditional probability distribution P(L
*
| ) and P(T

*
| ) of 

effective dispersivities (αL
*
and αT

*
) corresponding to  = 0.25. 

 

 

Figure 2.11: Normalized cumulative mass flux profiles for fully scaled-up 

models (blue) and models without scale-up of reservoir attributes and 

dispersivities (orange). Red and black curves correspond to the true fine-scale true 

model and the Gaussian plume, respectively. 
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Figure 2.12: Normalized cumulative mass flux profiles for fully scaled-up 

models (blue) and the models where reservoir attributes are scaled up according to 

the prescribed method, while scale-up of dispersivities is ignored (orange). Red 

and black curves correspond to the true fine-scale model and the Gaussian plume, 

respectively. 

 

 

Figure 2.13: Normalized cumulative mass flux profiles for fully scaled-up 

models (blue) and  fully scaled-up models but with constant L
* 

and T
*
 (orange). 

Red and black curves correspond to the true fine-scale model and the Gaussian 

plume, respectively. 
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Figure 2.14: Particle distribution at various snapshots of time. 1
st
 row: true fine-

scale model; 2
nd

 row: fully scaled-up model but with constant L
* 

and T
*
; and 3

rd
 

row: fully scaled-up model. 

 

Table 2.1: Compilation of computational time 
 

   

Computational time using 

Jasper cluster 

 

  

Number of runs 
(Velocity + Transport) 

Calculations 
Remarks 

1) 

 Fine-scale model                       

(500×500 with 

1×1m grid size) 

1 
(175 sec + 1800 sec) = 

1975 sec 

 

2) 

 Sub-grid model                       

(10×10 with 1×1m 

grid size) 

(50 heterogeneous 

models  

+ 50 homogeneous 

models) x 3     

levels 

(300 sec + 180 sec) x 3 = 

1440 sec 

Calculation of P(αL*|

 ) and P(αT*| ) 

with100 iterations in 

VFSA using parallel 

computing scheme 

3) 

 Coarse-scale 

model                       

(50×50 with 

10×10m grid size) 

100 
(200 sec + 1224 sec) x 

100 = 14240 sec 
Fully scaled-up model 
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Chapter 3: Statistical Framework for Scale-Up of 

 Dispersivity in Multi-Scale  

Heterogeneous Media
2
  

 

3.1 Introduction 

Dispersion or mixing in subsurface flow stems from the interaction between 

convective spreading, diffusion and mechanical dispersion (Dullien 2012).  It is 

well established that dispersivity or dispersion increases with scale, travelled 

distance (Gelhar et al. 1992; Fleurant and Van Der Lee 2001) and elapsed time 

(Binning and Celia 2002). This scale-dependent behavior is usually depicted as 

anomalous or non-Fickian (Berkowitz et al. 2000; John 2008), characterized by an 

invariant concentration peak, early breakthrough, and a long-tailed effluent 

profile. Though near wellbore flow may introduce anomalous behavior (Pedretti 

et al. 2014), most non-Fickian features originate from multi-scale heterogeneities 

(Le Borgne and Gouze 2008): large-scale trends (Gylling et al. 1999; Becker and 

Shapiro 2003; Gouze et al. 2008) and sub-scale variability (Dentz et al. 2004). 

Given heterogeneity varies with scales, it seems reasonable that dispersion would 

also be scale dependent (Mahadevan et al. 2003; Berkowitz et al. 2006; John et al. 

2010; Jha et al. 2011; Bijeljic et al. 2013). 

However, to capture non-Fickian characteristics is not trivial. First of all, 

fully isolating physical dispersion from numerical (artificial) dispersion is 

difficult (Lantz 1971; Fanchi 1983; Binning and Celia 2002), even by means of 

                                                 
2
A version of this chapter is published in Environmental Earth Sciences Journal. 
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higher-order approximations. A viable alternative is the particle-tracking 

approach, which does not require discretization or a mesh and is free of numerical 

dispersion (Salamon et al. 2006a; John et al. 2010). Two classes of formulations 

are commonly adopted: random-walk particle-tracking (RWPT) and continuous-

time random-walk (CTRW). In RWPT, each transit time step  = t is considered 

as deterministic, constant and discrete, whereas transition length vector  is an 

i.i.d (independent and identically-distributed) random variable with  unit variance 

and zero mean (Salamon et al. 2006a). RWPT predictions resemble those 

obtained with the classical advection-dispersion equation (ADE). Many early 

works, such as Aronofsky and Heller (1957) and Scheidegger (1959) have 

highlighted the problems of modeling both non-Fickian and Fickian 

characteristics with ADE. Systematic deviation between experimental 

breakthrough concentration (BTC) profiles and ADE predictions are observed by 

Levy and Berkowitz (2003). In case of the Fickian transport, incorrect spatial 

distribution of volume-averaged concentration is obtained for a Dirichlet 

boundary, if the resident concentration, Cr (x, t), form of the ADE is used for 

pulse injection. Instead, flux-averaged concentration can be correctly estimated 

using the flux-weighted concentration, Cf (x, t), form of the ADE for a Dirichlet 

boundary (Kreft and Zuber 1978; Parker 1984; Parker and Genuchten, 1984). In 

the case of non-Fickian transport, the classical ADE formulation fails to model 

the scale-dependent dispersion/mixing, unless effects of detailed heterogeneities 

below the transport modeling scale are properly integrated (Di Donato et al. 2003; 

John 2008; Li et al. 2011). In CTRW, and are independent, stationary random 
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variables that follow a joint probability density function: 

st(Srinivasan et al. 2010). A space-dependent memory function

);(
~

xuM  is formulated to model any unresolved heterogeneities below the 

modeling scale. To represent non-stationary trend, different transition-time 

probability distributions (parameterized by , t1, t2) are assigned to various 

regions in the domain and be included deterministically in the drift and flux 

terms: D(x) and q(x) (Berkowitz et al. 2006). Alternative formulations of the 

memory function may incorporate the multi-rate mass transfer model (Fernàndez-

Garcia et al. 2009). 

Irrespective to the choice of simulation technique, transport modeling is 

often performed at a scale that is coarser than the finest resolution of 

heterogeneity. Different methods have been proposed for representing effects of 

heterogeneity/variability below the transport modeling scale. In this chapter, the 

phrase “fine scale” refers to a volume scale over which spatial heterogeneity at 

the Darcy scale is precisely described. For instance, the resolution of a fine-scale 

model may be comparable to that of the petrophysical log measurement 

(approximately 0.1 m × 0.1 m × 0.1 m). Performing numerical transport modeling 

at the fine-scale resolution would be impractical. Typical mesh for numerical 

simulation is often much coarser (e.g., 1-10 m), which is referred to as the 

“transport modeling scale” or “coarse scale” here.  

Two main groups of techniques for scaling up dispersivity are: 1) 

stochastic perturbation or ensemble averaging and 2) volume averaging. In the 

ensemble averaging framework, an effective dispersivity is estimated from the 



 

68 

 

ensemble moments that describe the displacement of a solute plume (Gelhar and 

Axness 1983; Gelhar 1986; Neuman et al. 1987; Kitanidis 1988; Dagan 1989; 

Neuman and Zhang 1990; Rubin 2003). Expressions for effective dispersivity can 

be derived for different permeability covariance structures (Rubin et al. 1999). In 

the Lagrangian framework, the displacement moments can be evaluated from the 

displacement of a single particle over many realizations (Rubin et al. 1999; Wang 

and Kitanidis 1999) or the displacement of many particles over a single 

realization (Salamon et al. 2006a). The stochastic method is often limited to 

permeability distribution that is well defined. In the volume averaging framework, 

spatial averaging (spatial moments), instead of ensemble averaging (moments of 

the statistical distribution), is employed. An important requirement is that the 

length scale of heterogeneities must be much smaller than the averaging volume 

(i.e., a representative elementary volume (REV) for the heterogeneity length scale 

must be defined) (Leung and Srinivasan 2016). Therefore, periodic media is often 

used (Kitanidis 1992). In theory, if the restriction on the heterogeneity length 

scale is satisfied, both volume averaging and stochastic perturbation would yield 

the same results (Wang and Kitanidis 1999).  

Therefore, the objective of this work is to devise a robust workflow, which 

is capable of handling a diverse range of heterogeneity distribution, for the scale-

up of reservoir attributes (porosity and permeability) and dispersivities. It utilizes 

the concept of variance of mean (Leung and Srinivasan 2011). Instead of 

imposing that the averaging scale must be larger than the length scale of local 

heterogeneity, the idea is to transfer the uncertainty introduced during averaging 
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of reservoir attributes into the uncertainty in the effective parameters (Leung and 

Srinivasan 2012). This variance of mean can be computed directly from data or 

corresponding to a particular spatial correlation model; hence, there is no 

restriction on the type of heterogeneity distribution.  

This workflow is an extension to the one presented in Vishal and Leung 

(2015), in which the effect of large-scale non-stationarity is completely neglected. 

Various aspects of the workflow have been modified: to scale up rock properties, 

each random variable is decomposed into the sum of a trend (available at the same 

resolution of the transport modeling scale) and a residual component. The 

workflow is revised to generate multiple realizations of the residual component at 

the transport modeling scale. Next, to scale up dispersivities, multiple 

geostatistical realizations of the same physical size as the transport modeling grid 

block is generated to describe the spatial heterogeneity (both trend plus residual) 

within the modeling block. Each realization is subjected to particle-tracking 

simulation. Effective longitudinal and transverse dispersivities are estimated by 

minimizing the difference in effluent history for each realization and that of an 

equivalent medium consisting of averaged homogeneous rock properties. 

Aggregating with the effective dispersivities for all realizations, probability 

distributions of effective dispersivities conditional to particular averaged rock 

properties are constructed. The rationale for adopting a Fickian RWPT model is 

that Fickian models can describe anomalous transport if detailed heterogeneities 

below the transport modeling scale is accounted for (Di Donato et al. 2003; John 

2008; Li et al. 2011).  John (2008) has explained that if all local heterogeneity 
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within a grid cell is modeled explicitly, Fickian transport is valid and a single 

value of effective dispersivity is computed based on that particular heterogeneity 

arrangement. Therefore, the idea is to represent uncertainties in small-scale 

heterogeneous structures, which contributes to non-Fickian behavior, with 

probability distributions of effective dispersivities.  

An important contribution is that it offers a quantitative framework to 

scale up both rock and flow-related properties. The method is flexible in handling 

the diverse range of heterogeneity distribution, which may exhibit multi-scale 

characteristics. The amount of numerical dispersion is minimal, since the particle-

tracking transport modeling step is free of numerical dispersion. This approach 

reinforces the notion that deterministic conditioning data does not exist in 

reservoir modeling. 

In this chapter, first, background information and governing equations 

pertinent to particle-tracking transport modeling are summarized. Next, the scale-

up methodology is explained. This is followed by a case study involving a 

synthetic reservoir model. Finally, impact on uncertainties in transport response 

due to heterogeneities at different levels is analyzed. 

 

3.2 Flow and Transport Modeling in Porous Media 

Transport of a solute component in a single-phase incompressible fluid flow can 

be represented by the ADE (advection-dispersion equation) (Bear 1979): 

    .0



CC

t

C
Du  (3.1) 
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The above equation represents the conservation of mass at the Darcy scale. C(x,t) 

is the solute concentration, which is defined as the mass per unit pore volume, 

with t and x denoting the temporal and spatial coordinates, respectively. The 

dispersion tensor, D, is described by Bear (1979) and Binning and Celia (2002):  

,
||

)(|| ji

dji

TLjiTji D
uu

 
u

uD  (3.2) 

where L and T represent the longitudinal and transverse dispersivity, 

respectively;i,j is the Kronecker symbol; D
d
 is the molecular diffusion 

coefficient; i,j is the tortuosity tensor; u is the Darcy velocity, which is obtained 

from the momentum balance in Eq. (3.3): 

,;
μ

ρg
h

k
KKu   (3.3) 

where k is the permeability tensor,  and ρ refer to the fluid viscosity and density, 

respectively, g is gravitational constant, h is the hydraulic head, and K is the 

hydraulic conductivity. The Darcy velocity is related to the average pore or 

interstitial velocity (V) via Eq. (3.4), where   is the porosity: 

.


u
V   (3.4) 

In this work, an isotropic K is assumed (i.e., K = k), which is further 

assumed to be empirically correlated with porosity (ϕ) according to Eq. (3.5) 

(Deutsch 2010): 
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where ko is the value for k when ϕ = 0, and ϕc is a critical porosity above which the 

exponent function is almost flat; a1 and a2 are empirical constants.  

In a particle-tracking framework, the total mass of a solute component is 

represented by with a large number of particles with mass mi. At the new time 

step (t+t), the position of a particle is given by Eq. (3.6), which incorporates a 

drift term (i.e., advection) and a random Brownian motion term (i.e., 

diffusion/dispersion) (Tompson and Gelhar 1990; LaBolle et al. 1996; Hassan and 

Mohamed 2003): 

 

DBB DVA

ξBA

2,

)()].([)]([)(





T

pppp tttttttt xxxx
 (3.6) 

where xp is the position of particle at time tt is the time step, and ξ is a random 

number with zero mean and unit variance. V refers to the velocity vector. 

According to Itô (1951), the particle density distribution f (xp, t) obtained from 

Eq. (3.6) fulfills, in the limit of an infinitesimally step size and infinitely large 

number of particles, the Fokker-Planck equation, which is equivalent to Eq. (3.1) 

(Kinzelbach 1986): 

   .: ff
t

f
Du 




 (3.7) 

A RWPT implementation called RW3D-MRMT (Fernàndez-Garcia et al. 

2005; Salamon et al. 2006a, 2006b; Salamon et al. 2007; Riva et al. 2008; 

Fernàndez-Garcia and Sanchez-Vila 2011) is applied for simulation of solute 

transport. 
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3.3 Method 

A multi-scale workflow is presented to construct models of reservoir properties 

and effective dispersivities at the transport modeling (coarse) scale.  

 

3.3.1 Scale-Up of Reservoir Properties 

Scale-up is often performed because the volume support for data or measurement 

is smaller than the modeling scale. Averaging of heterogeneity below the 

transport modeling scale would lead to uncertainty, which is referred to as sub-

scale variability. It is common to model reservoir attributes (such as porosity) as 

random variables, and the average over realizations/outcomes of a random 

variable would also be a random variable. In fact, the corresponding variance of 

mean is representative of the variability of the spatial average (i.e., sub-scale 

variability) at that particular volume scale V. This variance is large over very short 

length scales, but it starts decreasing as V increases, provided that the variable is 

stationary. This variance reaches a constant negative unit slope on a log-log plot 

of variance versus volume scale when V ≥ REV (Bear 1979). For V > REV, sub-

scale variability is considered negligible (Leung and Srinivasan 2011). 

However, heterogeneity in petrophysical properties would often vary with 

length scales (Neuman 1994; Schulze-Makuch and Cherkauer 1998; Schulze‐

Makuch et al. 1999; Lake and Srinivasan 2004). Their multivariate statistics 

would tend to exhibit non-stationarity, characterized by ever-increasing variability 

with scale. As a result, its variance of mean would also increase with scale, and 

the determination of REV is impossible. The modeling of such variables is 
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facilitated by decomposing its variability into the sum of a non-stationary trend 

and fine-scale stationary residual. It is assumed that the trend component is 

defined at the transport modeling scale (i.e., no scale-up is necessary). Assuming 

that the residual is a scalar continuous random variable (Z), its spatial mean Z  

over a volume support V is defined as: 





/1

)(
1









  dVZ

V
Z

bV
b

 (3.8) 

The variance of mean or Var( Z ) can be computed directly from the 

spatial averages of Z for different sizes of V according to Eq. (3.8). Alternatively, 

without any explicit assumption of the multivariate distribution, Var( Z ) can be 

obtained by applying a particular averaging window and computing the variance 

in the spatial mean. Different averaging schemes corresponding to different 

values of the exponent ω are possible. If Z is a Gaussian random variable with a 

variance σ
2
, with a multivariate distribution described by a second-order 

stationary spatial correlation function ρcorr, Var( Z ) can be computed by 

integrating ρcorr over all possible lag distance within V with Eq. (3.9), assuming 

linear averaging (i.e., ω = 1) applies (Lake and Srinivasan 2004): 
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When model length scale is smaller than the REV, additional variance due 

to sub-scale variability must be accounted for. Given that the volume support for 

the conditioning data is typically much less than that of the modeling scale, sub-

scale variability in the conditioning value should be captured by sampling 
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multiple sets of conditioning data via bootstrapping (Leung and Srinivasan 2011). 

A plausible implementation is based on parametric bootstrapping of a likelihood 

function (whose variance is the variance of mean and the mean is the 

blockaverage of the actual measured values). For a Gaussian random variable, a 

Gaussian likelihood function is proposed. Finally, using a linearly-averaged semi-

variogram  for a Gaussian random variable (Journel and Hujbregts 1978), 

conditional simulation is performed on all sets of conditioning data (Leung and 

Srinivasan 2011).  , as defined in Eq. (3.10), can be estimated numerically by 

averaging the point-scale variogram values  at various regularly-spaced points in 

two support volumes V and V´. 
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),(   (3.10)                           

In the presence of non-stationarity, the following decomposition is 

adopted:  

     xxx RT ZZZ  , where  xTZ  and ZR(x) refer to the trend and residual, 

respectively. The overbar denotes a quantity defined at the coarse scale. The 

procedure is summarized as follows:  

1. Estimate ZR(x) and  xTZ  at conditioning locations. 

2. Estimate γR. Compute Var(
RZ ) and R based on Eqs. 3.9 and 3.10. 

3. Draw multiple realizations of conditioning data of ZR(x) via bootstrapping. 

For example, a Gaussian likelihood function, whose mean is block average 

of the actual measured values and the variance is the variance of mean 

calculated in Step #2, can be adopted. 
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4. Construct realizations of  xRZ via sequential simulation for each 

conditioning data set from step #3: R is obtained from Step #2; coarse-

scale histogram is formulated with variance = Var(
RZ ) and mean = fine-

scale global mean of ZR. 

5. Construct realizations of  xTZ . 

6. Reconstruct realizations of      xxx RT ZZZ   by combining the 

results from Steps #4 and 5.  

7. Repeat Steps #4 to 6 for other conditioning data sets obtained in Step #3. 

Porosity is modeled following the prescribed approach. Absolute permeability is 

assumed to be correlated with porosity by Eq. (3.5) across all scales. It should be 

emphasized that Steps #2-4 and #7 are similar to the original procedure in Vishal 

and Leung (2015).  

 

3.3.2. Scale-Up of Transport Properties  

Multiple geostatistical realizations of the same physical size as the transport 

modeling grid block are generated to describe the spatial heterogeneity below the 

modeling scale. Each realization is subjected to particle-tracking simulation. 

Effective longitudinal (L
*
) and transverse (T

*
) dispersivities are estimated 

simultaneously by minimizing the difference in effluent profile for each 

realization and that of an equivalent average medium. The difference, which is 

measured in terms of root mean square error, or RMSE, according to Eq. (3.11) 

(Nash and Sutcliffe 1970), is minimized using a non-linear regression scheme. 
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where T and R refer to the trend and residual component at the coarse scale, 

respectively. In order to adopt the original procedure in Vishal and Leung (2015) 

for multi-scale heterogeneous formations, a few modifications are proposed. For 

each of the realizations of  from section 3.3.1, values of L
*
and T

*
are drawn 

from the probability distributions of )},(|{ TRLP  
and )},(|{ TRTP  

. To 

establish these probability distributions, the histograms of R and T are divided 

to a number of bins nbR and nbT, respectively. For each of nbR × nbT bin 

combinations, a set of ns sub-grid realizations of  are constructed such that  = 

R + T . Aggregating the results of L
*
and T

*
 estimated from all ns realizations 

would yield )},(|{ TRLP  
and )},(|{ TRTP  

for that particular bin 

combination. The revised work plan can be described as follow:  

1. Assign nbR bins and nbT bins to the histograms of R and T , respectively. 

A total of nbR × nbT bin combinations are possible. 

2. For a particular bin combination, perform unconditional sequential 

simulation to sample ns sub-grid realizations of R. If R follows Gaussian 

statistics, sub-grid realizations of ),(~ 2

RbRR N  can be constructed using 

the fine-scale variogram of γR. ),( 2

RbRN   denotes a Gaussian model with 

mean = 
R of the corresponding bin (i.e., bR ) and  variance = 2

R .  are 

constructed as  = R + T . Corresponding permeability value at each 
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location is computed according to Eq. (3.5). It is assumed that this 

relationship is scale invariant. 

3. For each ns sub-grid realization of  obtained in Step #2, construct an 

equivalent homogeneous model.  

4. Simulate velocity and solute transport by employing appropriate initial 

and boundary conditions for all ns heterogeneous models and ns 

homogeneous models constructed in Steps #2-3, respectively. Particle-

based technique is used for transport modeling.  

5. Estimate the effective dispersivities L
*
and T

*
 by minimizing the RMSE 

in Eq. (3.11) for all ns sub-grid realizations. 

6. Steps #2-5 are repeated for all bin combinations to construct

)},(|{ TRLP  
and )},(|{ TRTP  

. 

7. For each of the coarse-scale models from section 3.3.1, assign effective 

dispersivities at each location by sampling from )},(|{ TRLP  
and

)},(|{ TRTP  
. 

The workflow for sections 3.3.1 and 3.3.2 are illustrated in Fig. 3.1. If the random 

variable does not follow Gaussian statistics, other sequential techniques for 

simulating continuous variables can be applied to generate the sub-grid and 

coarse-scale models. Instead of formulating γR and R , alternative multivariate 

statistics description can be adopted. Therefore, this proposed workflow is 

general, in the sense, that no explicit assumption of the multivariate distribution is 

required. 
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3.4 Case Study 

A synthetic 2D domain with 1000 × 1000 blocks (Δx = Δy = 2 m) is considered. 

The “true” 1000 × 1000 model is assumed to be known, and there are a total of 18 

wells, as shown in Fig. 3.2(A). It is further assumed that porosity values at a scale 

of 2 m are available from physical measurements at the well locations. The 

corresponding histogram and anisotropic variogram are shown in Fig. 3.3 and Fig. 

3.4, respectively. Permeability (in md) is assumed to be correlated with porosity 

according to Eq. (3.5) (k0 = 0.01, ϕc = 0.35, a1 = 3.667, and a2 = 4.151). The "true” 

model of ϕ, as well as its respective trend and residual components, are shown in 

Fig. 3.5. Longitudinal dispersivity L is set to be 0.2 m, and the transverse 

dispersivity T = 0.1 ×L (Perkins and Johnston 1963; Gelhar et al. 1992). 

Performing transport simulation using many equi-probable realizations of 

porosity and permeability at the 2-m scale could be infeasible because of the high 

computational demands. An alternative is to construct a suite of coarse-scale 50 × 

50 models with Δx = Δy = 40 m (Fig. 3.2B). The scale-up procedure described in 

section 3.3.1 is adopted to assign   and k . Ten realizations of the trend 

component are generated with the conditioning data of  T  at the well locations. 

Regarding the residual component, Var(
R ) corresponding to a volume support of 

40 m ×40 m is estimated to be approximately 0.599 according to Eq. (3.9). The 

coarse-scale histograms and variograms are presented in Fig. 3.6 and Fig. 3.7, 

respectively. Next, at each well location, ten sets of conditioning data of are 

sampled. Sequential Gaussian simulation or SGSIM (Deutsch and Journel 1998) 

is performed using the coarse-scale histograms and variograms to generate one 
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realization R  corresponding to each of the 10 sets of conditioning data of 
R . As 

a result, a total of 10 realizations of R . In the end, combining the 10 realizations 

of T and 10 realizations of R , a total of 10 × 10 = 100 realizations of   are 

obtained, and an example is shown in Fig. 3.8.   

The procedure described in section 3.3.2 is subsequently adopted to scale 

up dispersivities. A detailed 20 × 20 sub-grid domain with Δx = Δy = 2 m is 

considered (Fig. 3.2C). As illustrated in Fig. 3.9, three bins (nbR = 3) 

corresponding to R  = 0.05, 0.075, 0.1 and three bins (nbT = 3) corresponding to 

T = 0.05, 0.15, 0.25 are selected. For each of the bin combinations, 50 sub-grid 

realizations (ns = 50) of  are constructed by unconditional SGSIM (i.e., a total of 

ns × nbR × nbT = 450 sub-grid realizations are generated). An example is illustrated 

in Fig. 3.9, where a randomly-selected realization corresponding to R = 0.1 is 

combined with three different values of T to construct three sub-grid realizations 

of . Next, particle-tracking modeling is facilitated by placing three pairs of 

injector and producer along the edges of the sub-grid domain (Fig. 3.2C). 

Probability distributions of L
*
and T

*
 for all possible combination of nbR and nbT 

are shown in Fig. 3.10. For each of the 100 coarse-scale models of porosity and 

permeability (e.g., Fig. 3.8), values of L
*
and T

*
 are assigned to each location by 

sampling from the calibrated probability distributions. Each of the 100 models is 

subjected to particle-tracking simulation. At t = 0, 1 × 10
4
 particles of equal mass 

are injected uniformly along the left edge of the domain. The ensuing 
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breakthrough concentration profiles between the coarse-scale models and the true 

fine-scale model are analyzed. 

 

3.5 Results and Discussions 

Among all the sub-grid realizations involved in this case study, four types of 

breakthrough characteristics are observed (Fig. 3.11). The corresponding 

reduction in RMSE during the estimation of effective dispersivities (L
*
and T

*
) is 

shown in Fig. 3.12. Approximately 100 iterations are needed before the error 

would diminish below a certain prescribed tolerance using the very fast simulated 

annealing scheme (Li et al. 2004). Multiple peaks are observed in several of these 

breakthrough profiles (e.g., type A and B) due to the significant variation in flow 

paths (and transit times) (Leibundgut et al. 2011). Since a single set of fine-scale 

dispersivity values has been assigned, it is unlikely to reproduce the multi-peaked 

feature. It has also been widely acknowledged that classical ADE, CTRW, or 

mobile-immobile fluid model (Toride et al. 1993; Field and Pinsky 2000; Cortis 

and Berkowitz 2005; Leij et al. 2012) may fail to capture similar multi-peaked 

feature, unless different mass transfer models (e.g., dispersivity) are assigned to 

regions with distinct flow behavior.  Alternative models such as the multi-

dispersion model (MDM) (Käss 1998), multi-flow multi-dispersion model 

(Leibundgut et al. 2011), weighted sum advection–dispersion equation (WSADE), 

or dual-advection dispersion equation (DADE) (Field and Leij 2012) can be 

considered to model the multi-peaked behavior. 
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The objective of this study is to quantify the uncertainty in solute transport 

as a result of both sub-scale variability and non-stationarity trend. The intent is to 

demonstrate that the coupling of both length scales of heterogeneity is important 

to modeling non-Fickian behavior at the transport modeling scale. Results of the 

cumulative mass flux (∫ṁdt/mo), where mo and ṁ refer to the total injected mass 

and outlet mass flow rate, respectively, and the instantaneous mass flux are 

presented in Fig. 3.13(A) and Fig. 3.14(A), respectively.  

Firstly, in comparison to Vishal and Leung (2015), which ignored large-

scale non-stationarity, the non-Fickian characteristics exhibited in the transport 

response here is dramatically more pronounced. Secondly, the true response 

(black in color) of the fine-scale model is completely captured by the responses of 

the coarse-scale models (red in color). Heavy-tailed effluent profile, multi-modal 

breakthrough, and early breakthrough are observed in both sets of responses, 

suggesting that non-Fickian characteristics can be captured when both large-scale 

non-stationarity and sub-scale variability are incorporated. The results support the 

conclusion that despite the difficulty in reproducing the multi-peaked 

breakthrough histories for some sub-grid realizations during the estimation of 

L
*
and T

*
, the complex non-Fickian behavior can still be captured in the coarse-

scale models because the modeling workflow incorporates both the non-stationary 

trend and the probability distributions of )},(|{ TRLP  
 and )},(|{ TRTP    , 

which effectively represent the sub-scale variability. 

Three additional cases are considered next to understand the various 

aspects of this scale-up procedure. In the first case, scale-up is completely 
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ignored: fine-scale values (, k, L, and T) are assigned in the coarse-scale 

models. The results are shown in Fig. 3.13(B) and Fig. 3.14(B). There appears to 

be a systematic delay in particle arrival time, as compared to the true model, 

during both the early and late times.  

In the second case, only scale-up of rock properties (i.e., porosity and 

permeability) is performed, while fine-scale dispersivity values are assigned in the 

coarse-scale models. The results, as shown in Fig. 3.13(C) and Fig. 3.14(C), 

suggest that the uncertainty encompassed by the coarse-scale models has captured 

the fine-scale response; however, as compared to Fig. 3.13(A), it is clear that 

there is a systematic delay in particle arrival time.  

The last case is the same as the original fully scaled-up case, except that a 

single set of L
*
and T

*
 value is assigned uniformly across the entire domain. 

Larger uncertainties are demonstrated by the coarse-scale models in Fig. 3.13(D) 

and Fig. 3.14(D), in comparison to Fig. 3.13(A) and Fig. 3.14(A), despite that 

both sets of coarse-scale models have sufficiently captured the fine-scale 

response. It appears that by assigning the same L
*
and T

*
 values everywhere and 

not randomizing the sub-scale variability spatially would exaggerate the 

uncertainties in particle movement in the coarse-scale models and delay the 

particle arrival time. In the end, it is concluded from Fig. 3.13 that the fully 

scaled-up case (A) offers the most reasonable representation of uncertainty around 

the true case in both early and late times. It can be also observed that the fully 

scale-up modes show greater uncertainties at the late time compare to other 

scenarios.   
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Next, the relative influence of sub-scale variability and non-stationary 

trend on the overall uncertainty in transport response is investigated. To this end, 

a single trend model is considered, but its relative contribution is varied. In 

particular, three scenarios with different combination of trend and residual 

components are tested: (1) 0% residual and 100% trend; (2) 25% residual and 

75% trend and (3) 75% residual and 25% trend. The results are compared in Fig. 

3.15. As expected, in the absence of any residual component (i.e., 100% trend), 

the coarse-scale model should reproduce the true fine-scale model exactly, since 

(1) no additional uncertainty is introduced due to scale-up and (2) the adopted 

particle-tracking technique is free of numerical dispersion. However, as the 

residual component becomes more dominant, the associated sub-scale variability 

would also increase, which, in turn, amplifies the uncertainty in the ensuing 

coarse-scale transport response (left column). An important message is that since 

the decision of stationarity is often subjective in most practical subsurface 

modeling applications (even after all conditioning data is honored), this decision 

has significant ramification in how sub-scale variability is subsequently 

represented at the transport modeling scale and how it might impact the fidelity of 

the ensuing coarse-scale models.   

The computational time involved is compared in Table 3.1. A Linux-based 

computing cluster, which is available on the WestGrid, is used (Vishal and Leung 

2015). As expected, computational requirement for transport modeling generally 

overwhelms that for the velocity computations. In practice, scarce data 
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compounded with varying volume support renders transport modeling involving 

fine-scale realizations to be generally impractical. 

 

3.6 Conclusion 

1. A novel multi-scale workflow based on the volume variance concept is 

proposed to facilitate scale-up of both reservoir attributes and effective 

dispersivities in a systematic manner that incorporates both sub-scale 

variability and large-scale non-stationary trend. The main idea is to construct 

conditional probability distributions of effective dispersivities at the transport 

modeling scale that would capture the sub-scale variability. 

2. Although a covariance-based Gaussian model was adopted in the case study, 

the method does not require any explicit assumption regarding the 

multivariate distribution of the heterogeneity. The variance of mean 

calculation and the bootstrapping step can be carried out by applying a 

particular averaging window and computing the statistics pertinent to the 

spatial mean. Any sequential technique for simulating continuous variables 

can be adopted subsequently to generate the sub-grid and coarse-scale models.  

3. The results confirm that multi-scale heterogeneities contribute to anomalous 

transport. Non-Fickian features, such as heavy-tailed multi-peaked effluent 

history and early breakthrough, are observed. The rationale for adopting a 

Fickian RWPT transport model is that Fickian models can describe anomalous 

transport if uncertainty in multi-scale heterogeneities is properly integrated. 

This is accomplished by calibrating and sampling from a distribution of 
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effective dispersivity based on the Fickian model over numerous sub-grid 

realizations of heterogeneity. 

4.   In comparison to our previous study that neglected large-scale non-

stationarity, the non-Fickian characteristics modeled in this work is 

dramatically more pronounced. 

5. The decision of stationarity has significant impact on how sub-scale 

variability is subsequently represented at the transport modeling scale. In the 

absence of sub-scale variability, coarse-scale models that are generated with 

the proposed algorithm are identical to the fine-scale model re-gridded on a 

coarse mesh. As the contribution of the residual component becomes more 

dominant, the associated sub-scale variability would also increase, which, in 

turn, amplifies the uncertainty in the ensuing coarse-scale transport response. 

6. It is recommended that other transport models can be employed to simulate 

the multi-modal effluent profiles of the sub-grid models. 
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Figure 3.1: Workflow to scale up reservoir properties and transport properties.  

 

 

Figure 3.2: Boundary conditions and model set-up for (A) true fine-scale, (B) 

coarse-scale and (C) sub-grid models used in the case study. 
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Figure 3.3: Histogram of porosity  which is decomposed into a sum of 

residual component (
R in A) and trend component (

T in B), at the fine scale. 

 

 

Figure 3.4: Anisotropic variogram of porosity (), which is decomposed into a 

sum of residual component (
R  in A) and trend component (

T in B), at the fine 

scale.  

 

 

Figure 3.5: Distribution of porosity (), which is decomposed into a sum of 

residual component (
R in A) and trend component (

T in B), for the true fine-

scale model. 
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Figure 3.6: Histogram of porosity ( ), which is decomposed into a sum of 

residual component (
R in A) and trend component (

T in B), at the coarse scale 

or transport modeling scale. 

 

 

Figure 3.7: Variogram of porosity ( ), which is decomposed into a sum of 

residual component (
R in A) and trend component (

T in B), at the coarse scale 

or transport modeling scale. 

 

 

Figure 3.8: Distribution of porosity ( ), which is decomposed into a sum of 

residual component (
R in A and trend component (

T in B), for one realization at 

the coarse scale or transport modeling scale. 
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Figure 3.9: Left: a randomly-selected realization of R corresponding to R = 0.1 

(top) and the corresponding histogram (bottom). Right: this realization is 

subsequently combined with three different values of T  to generate three sub-

grid realizations of  such that = R + T . Histograms corresponding to each 

model of are also shown. 
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Figure 3.10: Probability distributions of effective dispersivities for different bin 

combinations of R (0.05, 0.075, and 0.1) and T (0.05, 0.15, and 0.25). 
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Figure 3.11: Comparison of breakthrough effluent histories between the 

heterogeneous and equivalent homogeneous sub-grid models. Four possible 

scenarios are shown. 
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Figure 3.12: Reduction in RMSE corresponding to the four breakthrough effluent 

histories in Fig. 3.11. 
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Figure 3.13: Normalized cumulative flux profiles for: (A) fully scale-up models, 

(B) models where no scale-up is performed, (C) models where reservoir attributes 

are scaled up, but scale-up of dispersivities is omitted, and (D) fully scaled-up 

models but with constant L
* 

and T
*
. The black curve corresponds to the true 

fine-scale model. 
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 Figure 3.14: Normalized instantaneous flux profiles for: (A) fully scale-up 

models, (B) models where no scale-up is performed, (C) models where reservoir 

attributes are scaled up, but scale-up of dispersivities is omitted, and (D) fully 

scaled-up models but with constantL
* 

and T
*
. The black curve corresponds to 

the true fine-scale model. 
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Figure 3.15: Normalized cumulative mass flux profiles (left) and histograms of 

R and T  (middle and right) for: (A) 0% residual and 100% trend, (B) 25% 

residual and 75% trend, (C) 75% residual and 25% trend. The blue curve 

corresponds to the true fine-scale model. 
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Table 3.1: Computational time demand 

 

   

Computational time 

 

  

Number of runs 
(Velocity + Transport) 

Calculations 
Remarks 

1) 

 Fine-scale model                       

(1000×1000 with 

2×2m grid size) 

1 
(540 sec + 1084 sec) = 

1624 sec 

 

2) 

 Sub-grid model                       

(20×20 with 2×2m 

grid size) 

(50 heterogeneous 

models  

+ 50 homogeneous 

models) x 9     

levels 

(350 sec + 560 sec) x 9 = 

8190 sec 

Calculation of P(αL*| ) 

and P(αT*| ) with100 

iterations using parallel 

computing scheme 

3) 

 Coarse-scale 

model                       

(50×50 with 

40×40m grid size) 

100 
(50 sec + 1057 sec) x 100 

= 110700 sec 
Fully scaled-up model 
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Chapter 4: Statistical Scale-Up of 3D Particle-Tracking 

Simulation for Non-Fickian Dispersive 

 Solute Transport Modeling
3
 

 

4.1 Introduction 

Prediction of flow and mass transport in practical subsurface applications is often 

uncertain due to the lack of conditioning data and heterogeneity spanning over 

multiple scales. This uncertainty poses a number of challenges for numerical 

simulation. First, simulation should be conducted using numerous realizations of 

reservoir properties. Next, even if detailed description of the heterogeneity is 

available, conducting flow simulations on these types of fine-scale models 

requires much computational effort. A viable option is to utilize low-resolution 

coarsened models. As a result, both reservoir and flow/transport attributes must be 

scaled up properly. In addition, the loss of information due to this coarsening 

procedure must be quantified. 

A number of transport modeling methods are available. One option to 

model solute transport in single-phase miscible system, including convection and 

spreading (diffusion and dispersion), is the Fickian advection-dispersion/diffusion 

equation (ADE). Pore-level mixing, as described in Dentz et al. (2011), is not 

considered here. Conventional discretization techniques (e.g., finite difference) 

may suffer various computational restrictions including artificial dispersion and 

                                                 
3
 A version of this chapter has been submitted to Stochastic Environmental Research and Risk 

Assessment journal for publication (A version of this chapter was also presented at, Geostatistics 

Valencia 2016, Spain). 
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inaccurate predictions at high Péclet number (Pulloor Kuttanikkad 2009). A 

widely-adopted alternative is the random walk particle tracking (RWPT) 

approach, which is generally free from most discretization effects (Benson et al. 

2017).  

RWPT predictions resemble those obtained by the ADE, whose derivation 

involves several assumptions that lead to a classical Gaussian/Fickian transport 

behavior (Berkowitz et al. 2006): (1) it assumes the existence of a representative 

elementary volume (REV), that is, the medium is homogeneous or, at least, is 

described by local, averaged properties; (2) the spatial and temporal variation of 

the velocity field is constant inside the REV; (3) Darcy’s law applies; (4) solute 

transport can be split into advection part and hydrodynamic dispersion part; and 

(5) dispersion follows the Fick’s law. These assumptions essentially ignore any 

heterogeneity with a length scale that is smaller than the support volume on which 

the ADE parameters are defined. Many previous studies have examined the 

application and potential limitations of the ADE. For example, the resident 

concentration, Cr (X, t), form of the ADE gives incorrect volume-averaged 

concentration, if Dirichlet boundary condition is combined for pulse injection. 

However, flux-weighted concentration, Cf (X, t), form of the ADE gives correct 

flux-averaged concentration for Dirichlet boundary condition (Kreft and Zuber 

1978; Parker 1984; Parker and Genuchten 1984). 

However, anomalous (or non-Fickian) behavior, which is characterized by 

long-tailed effluent history and early breakthrough, is often observed in 

heterogeneous media, rendering the presence of dispersion to be scale dependent 
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(Gelhar et al. 1992). This dependency on scale is widely concluded to be the 

outcome of preferential flow paths due to multi-scale heterogeneity; examples 

include trapping of solute particles in microscopic stagnant pores or diffusion-

dominated regions (Neretnieks et al. 1982) and dramatic difference in 

permeability in fractured formations (Berkowitz and Scher 1997; Geiger et al. 

2010). Moreover, boundary conditions such as convergent radial flow around 

sources may also introduce anomalous behavior (Pedretti et al. 2014).  

The main challenge with using the classical deterministic ADE to capture 

anomalous behavior is that unresolved heterogeneities is not properly captured 

(Jha et al. 2011). It does not account for any additional spreading that has taken 

place due to unresolved heterogeneity below the volume scale of the ADE model. 

It is true that the ADE should reflect anomalous behavior correctly if 

heterogeneities are characterized explicitly at all scales (Li et al. 2011). In order to 

incorporate the uncertainty in heterogeneity distribution and its effect on solute 

transport,  the classical ADE can be generalized to derive non-local formulations 

in space and/or time following a stochastic framework; examples include the 

fractional ADE (fADE), multiple-rate mass transfer (MRMT), and the 

continuous-time random walk (CTRW) approach (Berkowitz and Scher 1995; 

Haggerty and Gorelick 1995; Metzler and Klafter 2000), which are based on the 

generalized master equation (Kenkre et al. 1973), or the particle-tracking method 

that is based on the generalized Langevin equation (Srinivasan et al. 2010). For 

this particular study, the latter approach is implemented. It is essentially a hybrid 

particle-based CTRW formulation, where the transit time step, instead of being 
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deterministic of fixed duration (as in RWPT), is sampled from a probability 

density distribution. No specific assumption (e.g., stationarity) regarding the 

distributions of the transition length and time is needed (Srinivasan et al. 2010). 

This formulation, as compared to CTRW, offers a convenient alternative to 

incorporate force fields and other boundary conditions (Metzler and Klafter 

2000). 

Beyond the choice of transport modeling method, the next step for 

performing coarse-scale simulations is to scale up the relevant transport 

properties. The above discussion assumes that transport modeling is performed at 

the finest resolution of heterogeneity (any unresolved heterogeneities below this 

scale will be incorporated in the formulation of the probabilistic transition time). 

However, transport modeling is often performed at a scale that is coarser than the 

finest resolution of heterogeneity. Two modeling scales are referred to in this 

chapter: 

 “Fine scale” denotes a scale over which detailed model of heterogeneity is 

defined (typically on the order of centimeter, over which core and log 

measurements are available).  

 “Coarse scale” denotes the transport modeling scale, over which numerical 

flow and transport simulation is performed (typically on the order of meter).  

A number of techniques have been described in the literature for computing the 

effective coarse-scale dispersivity, and these techniques can be generally 

classified into two groups: (1) ensemble averaging or stochastic perturbation 

(based on ensemble moments) and (2) volume averaging (based on spatial 
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moments). In the ensemble averaging framework, an effective dispersivity is 

estimated from statistical moments (Gelhar 1986; Kitanidis 1988; Dagan 1989; 

Neuman and Zhang 1990; Rubin 2003). This method is useful provided that 

permeability distribution (e.g., covariance structure) can be well defined (Rubin et 

al. 1999). In the volume averaging framework, spatial moments, instead of 

ensemble moments, are employed. An important requirement is that a 

representative elementary volume (REV) for the heterogeneity length scale must 

be defined (Leung and Srinivasan 2016). Therefore, periodic media is often used 

(Kitanidis 1992). In theory, if the restriction on the heterogeneity length scale and 

the assumption of ergodicity are satisfied, both techniques are essentially 

equivalent (Wang and Kitanids 1999). 

In this work, a statistical workflow is devised to facilitate the 

representation of uncertainty as a result of scale-up in coarse-scale models. The 

general workflow is an extension to the one presented in Vishal and Leung (2015; 

2017); however, this work offers two important improvements. First, to account 

for any heterogeneity below the fine scale, a hybrid particle-based CTRW 

formulation is implemented such that the transition time is drawn randomly from 

a distribution. Certain elements of the proposed method are similar to many 

existing hierarchical CTRW formulations for modeling multi-scale 

heterogeneities. However, the main difference is that it does not impose any 

specific length scale requirement regarding the sub-grid heterogeneity. For 

instance, it is assumed in Cortis et al. (2004) that, other than the unresolved 

heterogeneity below the fine scale, any additional heterogeneity is exhibited at a 
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scale much larger than the transport modeling scale. A rigorous hierarchical 

procedure was also presented in Rhodes et al. (2008) to scale up the transition 

time distribution sequentially over multiple scales; a deterministic distribution is 

achieved after every upscaling step, which is valid where there is a distinct 

separation of heterogeneity length scales. The method proposed here aims to 

capture the effects of heterogeneity at the intermediate scale, which is often 

comparable to the transport modeling scale. In particular, it couples the scale-up 

workflows for both reservoir and transport parameters. 

Though some preliminary results have been included in Vishal and Leung 

(2017), the modeling procedure has not been fully validated and was limited to 

2D.  In this work, a comprehensive comparison with the analytical solution and 

CTRW is presented. In addition, the effect of gravity in a 3D model is examined. 

The method may handle a diverse range of heterogeneity distribution, in that it 

does not invoke any explicit assumption regarding the multivariate distribution of 

the heterogeneity; it utilizes the theory of volume variance (Lake and Srinivasan 

2004), which can be computed directly from data or a given variogram () model. 

Without imposing that the averaging scale must be larger than the length scale of 

local heterogeneity, the idea is to quantify and transfer the uncertainty in scale-up 

into the variability exhibited by the coarse-scale models (Leung and Srinivasan 

2011, 2012). The main contribution is that it offers a hierarchical approach, such 

that heterogeneity at multiple scales is properly represented to the transport 

modeling scale. The significance of capturing directly the uncertainty in effective 

transport properties is examined. 



 

114 

 

The organization of this chapter is as follows: mathematical detail of the 

particle-based CTRW formulation is outlined. Next, the proposed scale-up 

method and a synthetic case study are described. They are followed by 

discussions and conclusions. 

 

4.2 Particle-Based CTRW Formulation 

The Fickian-based ADE is described by Eq. (4.1) (Bear 1979): 
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 (4.1) 

 c(X, t) denotes the  solute concentration as a function of spatial coordinates (X) 

and time (t). V is the superficial velocity, and D denotes the dispersion tensor. The 

velocity field is calculated according to the continuity equation, Eq. (4.2), for a 

steady-state incompressible system and the Darcy law, which is shown in Eq. 

(4.3): 

.0 V   (4.2) 

).( g
k

V 


 p  (4.3) 

k, μ, and  p denote  the permeability, viscosity, and pressure, respectively. To 

solve this set of equations in the particle-tracking framework, representative 

walkers (particles) of identical mass are injected; over a specified time step (Δt), 

the displacement of each particle is computed by the sum of a drift term 

(advection) and a dispersion/diffusion term (according to Eq. 4.4) (Delay et al. 

2005):  
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Xp(t) is the particle position at time t; ξ is an independent random normal 

deviate with a zero mean and a variance of one. The key difference between 

RWPT and CTRW lies in the distribution of t. In this work, a hybrid formulation 

was proposed by Srinivasan et al. (2010) based on the Langevin equation, in 

which t is assumed to be random (stochastic): 
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 (4.5) 

Transition length, ξ, and transition time, η, are sampled from their joint 

probability density function (pdf). In the above framework, time steps are 

sampled from transition time pdf and implicitly incorporated. The general 

modeling framework is adopted from a popular and well established random-walk 

particle-tracking algorithm called RW3D-MRMT (Fernàndez-Garcia et al. 2005; 

Salamon et al. 2006a, 2006b; Fernàndez-Garcia and Sanchez-Vila 2011; Salamon 

et al. 2007; Riva et al. 2008). Given that RW3D-MRMT is not compatible with 

probabilistic time steps, to sample random time steps, TPL distribution, which 

requires three parameters β, t1, and t2 to define, is included in the modified version 

of the RW3D-MRMT code in this work. Since β, t1, and t2 command the transport 

migration and are expected to vary spatially, they are treated in the same fashion 

as in the case for dispersivity, which is a location- or cell-dependent variable. 

With the use of random time steps, this hybrid formulation is identical to the 

general CTRW formulation. The main Fokker-Planck with memory equation 
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(FPME) is presented below, whose equivalency with the classical Generalized 

Master has been established by Berkowitz et al. (2002). The transition position 

(X) and transition (or waiting) times (t) are coupled by a joint pdf, ψ(X, t): 

 ,),(~(),(~)(
~

)(),(~ scscsMcscs o XDXVXX    (4.6) 

The tilde “~”denotes the Laplace space, and co(X) refers to the initial 

condition. D and V are the dispersion tensor and the transport velocity, 

respectively. They are defined by the second and first moments of the transition 

length, p(X), which is often assumed to be Gaussian: 
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vi is the component of V along direction i. t1 is the lower cut-off time. )(
~

sM is the 

memory function, which is the key for representing any unresolved heterogeneity 

below the model resolution: 
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Eq. (4.6) is obtained by decoupling the joint probability density function ψ(X, t) 

with the Laplace transform: 

).(~)(),(~ sps  XX   (4.9) 

)(~ s  is the Laplace transform of the pdf of the transition time, φ(t). The 

formulation of φ(t) represents the heart of the CTRW method, as it is used to 

calculate the memory equation and characterizes the nature of the solute transport. 
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Possible choices for φ(t) may include the truncated power law (TPL) model (Eq. 

4.10), and  the modified exponential model (Eq. 4.11) (Cortis et al. 2004). 
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The exponent β controls the migration of the transport particles; t2 is the 

upper cut-off time, and Г is the incomplete Gamma function (Dentz et al. 2004; 

Cortis et al. 2004). The TPL model, which is parameterized by β, t1, and t2, is quite 

versatile for characterizing a wide range of transport behavior. For example, the 

TPL converges to the asymptotic model for large value of t2. On the other hand, β 

controls the transition between non-Fickian to Fickian behavior, and, as a result, it 

varies as a function of heterogeneity. Three regimes of transport can be 

characterized based on β values. When β > 2, the TPL-CTRW model is reduced to 

the ADE. It yields the classical Fickian behavior, which can also be achieved with 

the exponential model, where the center of mass travels at the mean fluid velocity 

(Margolin et al. 2003; Gao et al. 2009). For 1 < β < 2, the center of mass travels 

with a constant velocity, but the breakthrough profiles are asymmetric with heavy 

tails at late times; as β increases, the breakthrough profiles become less dispersed. 

For 0 < β < 1, the breakthrough profiles display the most anomalous 

characteristics. It should be noted that non-Fickian behavior is observed for t1 ≤ t 

≤ t2 and 0 < β < 2, but the transport behavior becomes Fickian again for t ≥ t2.  
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This hybrid particle-based CTRW model is validated against the general 

CTRW method. For a 1D porous medium with homogeneous properties and the 

following conditions (Kreft  and Zuber 1978): 

Boundary conditions: .0),(and),0( 11  tLXcctXc o  (4.12) 

Initial conditions: .0)0,( 1 tXc  (4.13) 

The analytical solution for the flux-average concentration (cf) in the Laplace form 

is: 
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DL = αLv is the longitudinal dispersion coefficient, where αL denotes the 

longitudinal dispersivity. Solutions of the particle-tracking model are verified 

against Eq. (4.14), as implemented in the CTRW MATLAB toolbox (Cortis and 

Berkowitz 2005; Cortis et al. 2010). A total of 10
4
 particles with fluid velocity (v) 

= 0.0342 km/yr; αL = 0.5 km; αT = 0 km (since, it is 1D model); t1 = 2.84  10
-2

 

yr, t2 = 4.44  10
4
 yr; β = 1.35 are used. The ensuing break-through profiles 

corresponding to the Fickian model using Eq. (4.11) and the non-Fickian model 

using Eq. (4.10) are compared in Fig. 4.1. To test the particle-tracking 

formulation with the TPL model in higher dimensions, numerous layering 

configurations are examined in Fig. 4.2. 

Next, sensitivity of the TPL parameters (β, t1, and t2) on the anomalous 

behavior is examined. Fig. 4.3 presents the temporal flux-weighted mass profiles 

and the corresponding cumulative profiles for several values of β. As expected, as 

β decreases, the temporal mass profiles exhibit longer tail and later breakthrough. 
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To compare with the analytical solution of ADE, the spatial volume-averaged 

mass profiles for several values of β are compared with the exponential model and 

the ADE method in Fig. 4.4. The results confirm that the exponential and ADE 

models are analogous. In addition, the concentration at the inlet, X1 = L = 0, 

increases with decreasing β, corresponding to larger residence times in a boundary 

cell. The consequence of larger residence time is that a particle is transported at a 

slower rate and taking longer to reach the outlet; as a result, more tailing 

characteristic can be observed as β decreases. 

    

4.3 Construction of Coarse-Scale Models 

Mathematical formulation of a multi-scale workflow for constructing models of 

reservoir properties and effective dispersivities and truncated power law 

parameters β
*
, t1

*
, and t2

*
 at the transport modeling (coarse) scale for particle-

tracking simulation is presented next.  

 

4.3.1 Coarse-Scale Reservoir Properties 

Sub-scale variability refers to the uncertainty introduced due to the averaging of 

heterogeneous properties at the modeling scale. Reservoir attributes, such as 

porosity and permeability, are typically modeled as random variables; therefore, 

their spatial averages are also random variables. In this chapter, only distributions 

with first and second moments are considered. The variance of mean for a certain 

attribute represents the variability of its spatial average at that particular spatial 

volume V. This variance would decrease with increasing V, if the multivariate 
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distribution of this attribute is stationary. In fact, the log-log plot of this variance 

as a function of V would reach a constant negative unit slope, where V ≥ REV, 

indicating that sub-scale variability is no longer important (Bear 1979). For a 

scalar continuous random variable (Z), the corresponding spatial mean Z  over a 

volume support V is defined as: 


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There is no need to invoke any explicit assumption of the multivariate 

distribution of Z; the spatial averages of Z for different sizes of V can be 

calculated according to Eq. (4.15) using an averaging window of different sizes, 

and the variance in the spatial mean is readily computed. In fact, different choice 

of ω would result in different averaging schemes; for example, ω = 1 corresponds 

to an arithmetic average, whereas ω = -1 for harmonic average. In the special case 

of Z following a Gaussian distribution with a variance σ
2
 and a second-order 

stationary spatial correlation function ρcorr, one can integrate ρcorr over all lag 

distances () within V according to Eq. (4.16) (Lake and Srinivasan 2004), which 

assumes that linear averaging (i.e., ω = 1) applies. 
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 is the position vector that is to be integrated over the entire averaging volume of 

V. In most cases, the volume support for the conditioning data is less than that of 

the modeling scale, bootstrapping is used to sample multiple sets of conditioning 

data, in order to represent the sub-scale variability (Leung and Srinivasan 2011). 
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For instance, a parametric bootstrapping scheme can be formulated to sample 

from a distribution, whose mean is the average of measured data values over the 

coarse-scale volume and the variance being the variance of mean. If Gaussian 

statistics is applicable, a Gaussian distribution can be assumed. In such cases, 

conditional simulation can be performed using a linearly-averaged  according to 

Eq. (4.17) (Journel and Hujbregts 1978). V and V´ refer to the two support 

volumes, and Eq. (4.17) can be approximated numerically from the point-scale 

values of  at various regularly-spaced intervals, where hij is the lag distance 

between locations i and j.   
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A statistical scale-up procedure from Leung and Srinivasan (2011) is 

adopted to construct realizations of Z(x) at the model scale.  

1. Estimate  . Compute Var( Z ) and  based on Eqs. (16) and (17). 

2. Apply parametric bootstrapping to sample multiple conditioning data sets 

of  xZ  at the coarse scale. For instance, a Gaussian function can be used, 

where the mean is the average of measured data values over the coarse-

scale block, while the variance is equal to the variance of mean. 

3. For each of the conditioning data sets, perform conditional simulation and 

construct realizations of  xZ at the modeling scale using  and the 

coarse-scale histogram, whose mean is the same as the global mean of 

 xZ , but the variance is equal to Var( Z ). 
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If the random variable does not follow Gaussian statistics, other sequential 

techniques for simulating continuous variables can be applied to generate the 

coarse-scale models. Instead of the variogram formulation, alternative 

multivariate statistics description can be adopted. In this chapter, absolute 

permeability (k) is assumed to be precisely correlated to porosity: k = a × ϕ
b
, (a 

and b are calibrated constants). Therefore, linearly averaging is also applicable 

with the following transform: (k/a)
1/b

; the implication is that the correlation is 

scale invariant. In principle, a flow-based procedure, as described in the next 

section, can also be employed to scale up permeability. 

 

4.3.2 Coarse-Scale Parameterization of Transition Time Distribution 

The idea is to represent sub-scale variability in effective transport parameters with 

probability distributions. A modification is introduced to the workflow originally 

presented in Vishal and Leung (2015). The main limitation of the previous work 

is that an ADE-based RWPT transport model in 2D was used, such that the 

workflow was suitable for scaling up effective dispersivities only. Therefore, the 

objective here is to extend the procedure to construct parameters of the coarse-

scale transition time distributions (i.e., β
*
, t1

*
, t2

*
) in 3D. The steps are described 

as follow: 

1. Divide the histogram of  into nb bins. 

2. For each bin, generate ns unconditional sub-grid realizations of  . If  

follows Gaussian statistics, variogram γ, together with a histogram 

consisting of mean = b  and variance = 2  can be used.  
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3. For each of the ns sub-grid models, create an averaged homogeneous 

model.  

4. Simulate flow and transport for all models from the last two steps.   

5. Estimate β
*
, t1

*
 and t2

*
 by minimizing the mismatch in effluent history 

between the sub-grid models in step #2 and the equivalent averaged 

models in step #3.  

6. Collect the results for all bins to construct }|{ *

iP  , }|{
*

1 itP  , and 

}|{
*

2 itP   for i = 1,…,nb.  

7. Values of β
*
, t1

*
 and t2

*
 are assigned to each coarse-scale model 

constructed in section 4.3.1. At each location, sample β
*
, t1

*
 and t2

*
 from

}|{ * P , }|{
*

1 tP , and }|{
*

2 tP , respectively. 

The workflow for sections 4.3.1 and 4.3.2 are illustrated in Fig. 4.5. Once 

again, if the random variable does not follow Gaussian statistics, alternative 

multivariate statistics description can be adopted to construct the sub-grid 

realizations. 

 

4.4 Case Study 

A synthetic three-dimensional model of size 500 m × 500 m × 15 m (Δx = Δy = 

Δz = 1 m) is considered. In this example, it is assumed that the “true” 500 m × 

500 m × 15 m model is known. Two wells, which are perforated in layers 6 

(numbering starts from the top) through 10, are place at the opposite corners 

diagonally. It is assumed that fine-scale porosity (ϕ) values at a resolution of 1 m 

are extracted from physical measurements at the well locations, and ϕ ~ N(0.25, 
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0.07). The corresponding histogram and anisotropic (spherical) variograms are 

shown in Fig. 4.6(A) and Fig. 4.7(A), respectively. The true model of ϕ at the fine 

scale is also shown in Fig. 4.8(A). ϕ ranges from 0.05 to 0.35 (with a global mean 

of 0.25). As mentioned in section 4.3.1, k (md) is modeled as 25,000 × ϕ
2
 (it 

ranges between 81 mD and 3060 mD, with a mean of 1570 mD). In addition, 

longitudinal dispersivity αL is set to be 1.0 m, with horizontal transverse 

dispersivity αT = 0.1 × αL and vertical transverse dispersivity αV = 0.01 × αL 

(Perkins and Johnston 1963; Gelhar et al. 1992). To define the anomalous 

transport, the TPL model is used: , t1, and t2 are set to be 4 yr, 10
4
 yr, and 1.25, 

respectively. 

Considering that a model of 500 × 500 × 15 would be too computationally 

inefficient, a set of 50 × 50 ×3 models (Δx = Δy = 10 m and Δz = 5 m) will be 

constructed. The workflow described in section 4.3.1 is adopted to scale up 

porosity and permeability. A normalized variance of mean of 0.66 is obtained 

based on Eq. (4.15), and  are calculated based on Eq. (4.16). The corresponding 

coarse-scale histograms and variograms are presented in Fig. 4.6(B) and Fig. 

4.7(B), respectively. Next, 10 sets of conditioning data of are sampled 

according to step #2 in section 4.3.1. Conditional sequential Gaussian simulation 

(Deutsch and Journel 1998) is implemented to generate 10 realizations of  for 

each conditioning data set, as described in step #3 in section 4.3.1. In the end, a 

total of 10 × 10 = 100 realizations of  are available. As an example, a randomly-

selected realization is shown in Fig. 4.8(B). Comparing Fig. 4.8(B) with Fig. 
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4.8(A), the coarse-scale realization is much smoother, since Var( ) < Var(ϕ) and 

the ranges in the  model are larger than those in . 

The workflow described in section 4.3.2 is implemented to scale-up t1, t2, 

and β. The histogram in Fig. 4.6(B) is divided into three bins, corresponding to   

= 0.15, 0.25, and 0.35. Fifty sub-grid (10 × 10 × 5 with Δx = Δy = Δz = 1 m) 

realizations are constructed for each bin. A sample realization corresponding to 

= 0.25 is shown in Fig. 4.8(C); its histogram is also shown in Fig. 4.6(C). As 

expected, the statistics of this sub-grid model should be identical to those of the 

fine-scale model. Next, each sub-grid realization is subjected to particle-tracking 

modeling: an injector and a producer are placed diagonally across the domain. 

Effective parameters of β
*
, t1

*
 and t2

*
 are estimated by minimizing the differences 

in the breakthrough concentration profiles, as shown in Fig. 4.9, using a very fast 

simulated annealing (VFSA) scheme (Li et al. 2004). Fig. 4.10 confirms that it is 

impossible to match the effluent history of the heterogeneous model with an 

equivalent sub-grid homogeneous model, if a Fickian RWPT transport model is 

used (i.e., using a constant transition time and tuning only effective dispersivities 

*
). This conclusion corroborates with those in Ferreira and Pinto (2014 and 

2015), who also reported that the classical ADE model does not capture the long 

tail of the breakthrough profile at late times. Finally, probability distributions of 

β
*
, t1

*
, and t2

*
 are established. An example corresponding to bin-mean  = 0.25 is 

shown in Fig. 4.11 (3rd row). Three additional cases are also considered: (1) only 

scale-up of β is considered,  (2) only scale-up of β and t1 are considered, and (3) 

scale-up of L, T and V are considered for Fickian model (constant transition 
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time). The objective is to assess the sensitivity of coarse-scale model predictions 

to the scale-up of different parameters. Therefore, the corresponding probability 

distributions are also shown in Fig. 4.11. 

  

4.5 Results and Discussions 

The workflow presented in the previous sections has facilitated the model 

construction for all four coarse-scale parameters: α
*
 β

*
, t1

*
 and t2

*
. However, 

theses parameters are conventionally estimated from effluent histories indirectly; 

this inverse problem is inherently ill-posed, and the sensitivity of these parameters 

is not clearly defined, allowing all four parameters and the type of model (ADE 

vs. CTRW) to be arbitrarily adjusted to achieve a match with any given effluent 

profile (e.g., Cortis et al. 2010). Therefore, four separate sets of coarse-scale 

models are constructed to examine the effectiveness of the proposed method in 

the scale-up of different variables. To facilitate the comparison among different 

cases, effluent histories for all four scenarios are compared in Fig. 4.12 and Fig. 

4.13.  

In Case A, the coarse-scale reservoir properties are computed according to 

section 4.3.1, while the scale-up procedure in section 4.3.2 is applied to compute 

effective dispersivities (L
*
, T

*
 and V

*
). This case mimics a Fickian RWPT 

model, since a constant transition time for transport evolution is assumed. This 

transport model does not account for the unresolved heterogeneity which is 

occurred below the fine scale. The results of this scenario are shown in Fig. 

4.12(A) and Fig. 4.13(A). Case A serves to illustrate the impact of β, t1, and t2 on 



 

127 

 

transport. The true response in the subplot for this case corresponds to the fine-

scale solution with L, T and V.  

Next, coarse-scale reservoir and transport properties are computed 

according to the methods in sections 4.3.1 and 4.3.2. Three scenarios (Cases B-D) 

are set up to assess the sensitivity of coarse-scale model predictions to the scale-

up of different parameters, and the results are compared in Fig. 4.12 and Fig. 4.13. 

In Case B, only coarse-scale values of β are computed, while fine-scale L, T, 

V, t1, and t2 values are employed. The results are shown in Fig. 4.12(B) and Fig. 

4.13(B). Case C is similar to the Case B, but both coarse-scale β
*
 and t1

*
 are 

considered (fine-scale L, T,V, and t2 values are used). Finally, in Case D, 

coarse-scale values for all three parameters β
*
, t1

*
, and t2

*
 (with fine-scale L, 

T,V) are used. It is encouraging to observe that the true response of the fine-

scale model is completely bracketed by the responses of the coarse-scale models. 

Common non-Fickian signatures, including early peak and heavy-tailed 

concentration profile, are highly noticeable in both sets of responses, due to both 

sub-grid variability and unresolved heterogeneity below the fine scale. As 

expected, there is no well-defined relationship between β, t1
 
and t2, However, it 

appears that β is sensitive to sub-grid heterogeneity, and its variability increases 

with scale (β
*
 ranges between 1.1747 and 1.2830, as compared to β = 1.25). The 

other two parameters, t1
*
 and t2

*
, appear to increase with β

*
. To compare the 

difference in spatial particle distribution, the corresponding profiles for all 4 cases 

at 250, 500, and 750 days are compared in Fig. 4.14. Far more spread is observed 

in the transport evolution when a non-Fickian model is employed: for instance, 
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unlike the non-Fickian model, distinct clusters of particle distribution are 

observed at various time levels if Fickian transport is assumed.   

The computational time for this example is documented in Table 4.1. A 

Linux-based high-performance computing facility managed by WestGrid is 

employed. It consists of 240 nodes with Xeon X5675 processors [12 cores (2 x 6) 

and 24 GB of memory] and 160 nodes with Xeon L5420 processors [8 cores (2 x 

4) and 16 GB of memory]. As expected, computational requirement for transport 

modeling generally far exceeds that for the velocity computations. In practice, 

scarce data compounded with varying volume support renders transport modeling 

using numerous fine-scale realizations rather impossible. Therefore, the presented 

approach offers a comprehensive framework for performing coarse-scale particle-

tracking simulations that reflect heterogeneities at multiple scales.  

 

4.6 Conclusion 

1. A new multi-scale particle-tracking model is formulated. A hybrid particle-

tracking model, which utilizes a stochastic transition time function, similar to 

that of CTRW formulation, is formulated. It accounts for unresolved sub-grid 

heterogeneities smaller than the fine-scale level. A statistical procedure has 

been presented to estimate conditional probability distributions of effective 

reservoir variables, dispersivity and parameterization of transition time 

distribution at any coarse scale. The method enables sub-scale variability to be 

properly represented in the coarse-scale models.  



 

129 

 

2. The method does not assume a distinct separation of heterogeneity length 

scales. It can be used when the transport modeling scale is comparable to the 

length scale of heterogeneity at the sub-grid level. A coupled scale-up 

workflow for modeling reservoir and transport parameters is presented. 

3. A special example involving the covariance-based Gaussian model was 

adopted in the case study. Responses from the coarse-scale models are 

bracketing the fine-scale results. Many of the anomalous characteristics 

associated with multi-scale heterogeneities, including early breakthrough, 

spread-out plume and heavy-tailed effluent profile, are captured. This study 

has not revealed a clear relationship between β
*
, t1

* 
and t2

*
; it is clear, 

however, that β is a function of sub-grid heterogeneity and its variability 

increases with scale. The other parameters, t1
*
 and t2

*
, also seem to increase 

with β
*
. 

4. It is widely accepted that non-Fickian behavior originates from multi-scale 

heterogeneous rock properties. The results confirm that accounting for both 

unresolved heterogeneities below the fine scale and the sub-scale variability 

due to averaging or scale up is necessary for modeling non-Fickian 

characteristics. 
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Figure 4.1: Comparison of particle-tracking approach (blue) with the CTRW 

method (red): Top – temporal flux-weighted mass profile at X1 = L = 15.2 km: (A) 

non-Fickian model based on Eq. (4.10) and (B) Fickian model based on Eq. 

(4.11); bottom: spatial flux-weighted mass profile at t = 100 yr: (C) non-Fickian 

model based on Eq. (4.10) and (D) Fickian model Eq. (4.11). 
 

 

Figure 4.2: Temporal flux-weighted mass profile at X1 = L = 16.0 km when 

stratified porous media is: (A) parallel and (B) perpendicular to the layered porous 

medium. 
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Figure 4.3: (A) Temporal flux-weighted mass profile and (B) temporal flux-

weighted cumulative mass profile at X1 = L = 15.2 km for several values of β. 

 

 

Figure 4.4: Spatial volume-averaged mass profile at (A) t = 100 yr and (B) t = 

500 yr. 
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Figure 4.5: Workflow to scale up reservoir properties and transport properties. 

 

 

Figure 4.6: Histogram of porosity (A) fine-scale model, (B) coarse-scale model, 

and (C) sub-grid model. 
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Figure 4.7: Variograms of (A) fine-scale model and (B) coarser-scale model. 

Red: horizontal maximum; blue: horizontal minimum; green: vertical direction. 

 

 

Figure 4.8: Distribution of porosity: (A) fine-scale model, (B) coarse-scale 

model, and (C) sub-grid model. 
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Figure 4.9: (A) Comparison of breakthrough effluent histories between the 

heterogeneous and the equivalent homogeneous sub-grid models (B) Reduction in 

error over iterations. 

 

 

Figure 4.10: Breakthrough effluent history of the original heterogeneous model 

cannot be matched with an equivalent homogeneous sub-grid model, if a Fickian 

RWPT is used instead. 
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Figure 4.11: Distribution of effective values of β
*
 (top), β

*
 and t1

*
 (2

nd
 row), β

*
, 

t1
*
, and t2

*
 (3

rd
 row) for non-Fickian model, and αL

*
, αT

*
, and αV

*
 (bottom) for 

Fickian model, considering a selected bin-mean of  = 0.25. 
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Figure 4.12: Normalized effluent profiles of cumulative mass flux for the four 

sets of coarse-scale models with different effective transport parameters: (A) 

Fickian model with L
*
, T

*
, and V

*
, (B) non-Fickian model with β

*
, (C) non-

Fickian model with β
*
 and t1

*
, (D) non-Fickian model with β

*
, t1

*
, and t2

*
. The 

blue curve corresponds to the true fine-scale model. 
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Figure 4.13: Normalized effluent profiles of instantaneous mass flux for the four 

sets of coarse-scale models with different effective transport parameters: (A) 

Fickian model with L
*
, T

*
, and V

*
, (B) non-Fickian model with β

*
, (C) non-

Fickian model with β
*
 and t1

*
, (D) non-Fickian model with β

*
, t1

*
, and t2

*
. The 

blue curve corresponds to the true fine-scale model. 

 

 

Figure 4.14: Particle distribution for coarse-scale models at 250, 500, and 750 

days.  
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Table 4.1: Computational time 

 

   

Simulation time for 

Jasper cluster 

 

  

Number of 

simulations run 

(Velocity + Transport) 

Calculations 

Comments 

1) 

 Fine-scale or 

true model                       

(500×500×15 

with 1×1×1m 

grid size) 

1 

(2025 sec + 250 sec) = 

2275 sec 

 

2) 

 Sub-grid model                       

(10×10×5 with 

1×1×1m grid 

size) 

(50 heterogeneous 

models  

+ 50 

homogeneous 

models) x 3     

levels 

(370 sec + 520 sec) x 3 

= 2670 sec 

Calculation of P(β*|

 ) with100 

iterations in VFSA 

using parallel 

computing scheme 

3) 

 Coarse-scale 

model                       

(50×50×3 with 

10×10×5m grid 

size) 

100 

(1250 sec + 280 sec) x 

100 = 153000 sec 

Fully scaled-up 

model 
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Chapter 5: A Multi-Scale Particle-Tracking 

Framework for Dispersive Solute 

Transport Modeling
4
 

 

5.1 Introduction 

It has been widely reported that dispersivity increases with travel distance (Gelhar 

et al. 1992; Fleurant and Van Der Lee 2001) and time (Binning and Celia 2002). 

This scale-dependent characteristic has contributed to non-Fickian, anomalous, or 

non-Gaussian (Berkowitz et al. 2000; John 2008) transport behavior, including an 

early breakthrough, a slow moving concentration peak, and a heavy-tailed effluent 

profile in the late times. Though near-well radial flow may introduce non-Fickian 

behavior (Pedretti et al. 2014), most non-Fickian features stem from multi-scale 

heterogeneities (Berkowitz et al. 2006; Le Borgne and Gouze 2008; Bijeljic et al. 

2013): large-scale trends (Gylling et al. 1999; Becker and Shapiro 2003) and 

small-scale variability (Dentz et al. 2004).  

Representing non-Fickian behavior, however, in solute transport modeling 

is not trivial. Many grid-based discretization schemes entail significant numerical 

dispersion (Lantz 1971; Fanchi 1983; Haajizadeh et al. 1999, Binning and Celia 

2002). Though numerical dispersion can be alleviated by incorporating higher-

order approximations, it cannot be eliminated completely when modeling physical 

dispersion. Boso et al. (2013) compared five popular schemes, including both 

                                                 
4
 A version of this chapter has been submitted to Computational Geosciences journal for 

publication. 
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grid-based and grid-free Lagrangian particle-tracking methods, and reaffirmed 

that the grid-based schemes would overestimate mixing because of spurious 

numerical dispersion, while particle-tracking schemes are free of numerical 

dispersion. Two types of particle-tracking formulations are available (Lichtner et 

al. 2002; Fernàndez-Garcia and Sanchez-Vila 2011; Benson et al. 2017). In 

random-walk particle tracking (RWPT), a deterministic transit time step ( = t) 

is considered, whereas the transition vector, is a normally-distributed random 

variable with zero mean and unit variance (Salamon et al. 2006a; Srinivasan et al. 

2010; Pedretti and Fernàndez-Garcia 2013). RWPT predictions resemble those 

obtained by the Fickian advection-dispersion equation (ADE), since it involves 

equilibrium at the local scale; this assumption ignores any heterogeneity with a 

length scale that is smaller than the support volume on which the ADE parameters 

are defined. Many previous studies have examined the application and potential 

limitations of the ADE in both Fickian and non-Fickian transport modeling 

(Aronofsky and Heller 1957; Scheidegger 1959; Levy and Berkowitz 2003; 

Berkowitz et al. 2006; Neuman and Tartakovsky 2009; Jha et al. 2011). 

Alternative non-local formulations, including multi-rate mass transfer models 

(MRMT) (Haggerty and Gorelick 1995), memory functions (Carrera et al. 1998), 

fractional advection-dispersion equations (fADE) (Benson et al. 2000), and 

continuous time random walk (CTRW) (Berkowitz et al. 2006), were introduced. 

In CTRW, and are random variables characterized by a joint probability 

density function, no specific assumption (e.g., stationarity) regarding the 

distributions of and is needed (Srinivasan et al. 2010).  Non-stationary trend 
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can be represented in the drift and flux terms, D(x) and q(x), by assigning 

different distribution of to distinct regions in the domain (Cortis et al. 2004; 

Berkowitz et al. 2006). Unresolved heterogeneities (below the modeling scale) 

that may contribute to the non-Fickian behavior are modeled using a space-

dependent memory function, M(u;x) (Fernàndez-Garcia et al. 2009). A hybrid 

particle-based CTRW formulation, which is capable of handling non-Fickian 

behavior of transport in porous media, was developed by Srinivasan et al. (2010). 

It is based on the generalized Langevin equations (Fogedby 1994; Kleinhans and 

Friedrich 2007), where for each step, instead of being deterministic of fixed 

duration, is sampled from a probability density distribution. This method, as 

compared to CTRW, offers a convenient alternative to incorporate force fields 

and other boundary conditions (Metzler and Klafter 2000). A version of this 

hybrid particle-based CTRW formulation is adopted in this study. 

The above discussion assumes that transport modeling is performed at the 

finest resolution of heterogeneity (any unresolved heterogeneities below this scale 

will be incorporated in the formulation of ). However, transport modeling is 

often performed at a scale that is coarser than the finest resolution of 

heterogeneity. Therefore, scale-up of the probability distribution of  should be 

considered. Two modeling scales, as illustrated in Fig. 5.1, are referred to in this 

chapter:  

 “Fine scale” refers to a length scale over which the detailed description about 

heterogeneity is prescribed (typically on the order of centimeter, over which 



 

149 

 

core and log measurements are available); structures that are smaller than this 

scale can be captured through the probabilistic distribution of ;  

 “Coarse scale” refers to the transport modeling scale, over which numerical 

flow and transport simulation is performed (typically on the order of meter). 

To construct a model at the coarse scale, it is important to account for 

heterogeneity corresponding to a number of length scales: (1) non-stationarity 

(trend), which is assumed to be defined at the same resolution of the transport 

modeling scale and (2) sub-scale variability that captures the smoothing of 

fine-scale heterogeneity and the associated uncertainties. 

Different approaches are available for computing effective transport parameters at 

the coarse scale, particularly in the subject of dispersion modeling. In the 

ensemble averaging framework, an effective dispersivity is estimated from the 

ensemble moments (moments of the statistical distribution) describing the 

displacement of a solute plume (Gelhar and Axness 1983; Dagan 1982, 1984, 

1987, 1989; Gelhar 1986; Neuman et al. 1987; Kitanidis 1988; Neuman and 

Zhang 1990; Rubin 2003; Berentsen et al. 2007). This method is useful provided 

that permeability distribution (e.g., covariance structure) can be well defined. In 

the volume averaging framework, spatial moments, instead of ensemble moments, 

are employed (Efendiev et al. 2000). It is assumed that the length scale of 

heterogeneity is much smaller than the averaging volume (Leung and Srinivasan 

2016). In theory, if the restriction on the heterogeneity length scale is satisfied, 

both volume averaging and stochastic perturbation would yield the same results 

(Kitanidis 1992; Wang and Kitanids 1999).  
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This work describes a new unified particle-tracking workflow that 

incorporates scale-up of effective dispersion and reservoir attributes (porosity and 

permeability) in a consistent manner. Solute transport is simulated following the 

particle-based CTRW formulation (Srinivasan et al. 2010), with the transition 

time () distribution being parameterized in accordance to the truncated power-

law (t1, t2 and β): t1 = the median waiting time; t2 = the cut-off time after which 

Fickian transport is observed; β = exponent controlling the extent of anomalous 

behavior. Instead of computing effective dispersivities, this work examines the 

scale-up of t1, t2 and β. The method is flexible that it does not invoke any explicit 

assumption regarding the multivariate distribution of the heterogeneity; it utilizes 

the theory of volume variance (Lake and Srinivasan 2004). Without imposing that 

the averaging scale must be larger than the length scale of local heterogeneity, the 

idea is to quantify and transfer the uncertainty in scale-up into the variability 

exhibited by the coarse-scale models (Leung and Srinivasan 2011, 2012). The 

volume variance can be computed directly from data or corresponding to a 

particular spatial correlation model.  

The general workflow is based on that presented in Vishal and Leung 

(2015). However, this work offers two important improvements. First, non-

stationary trend (available on the same resolution of the transport modeling scale) 

is considered. Second, heterogeneity below the fine scale is captured with the use 

of probabilistic distribution of the transition time (). To scale up rock properties, 

each random variable is modeled as the sum of a trend and a residual. Multiple 

realizations of the residual at the transport modeling scale are sampled. Next, to 
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scale up t1, t2, and β, a set of models depicting detailed the heterogeneities at the 

fine scale and of the same physical size as the transport modeling grid block is 

subjected to particle-based CTRW simulation. Effective t1, t2, and β (t1
*
, t2

*
, and 

β
*
) are estimated by matching the corresponding effluent history for each model 

with an equivalent medium consisting of averaged homogeneous rock properties. 

Conditional probability distributions of t1
*
, t2

*
, and β

*
 are constructed. The 

significance of capturing directly the uncertainty in effective transport properties 

is investigated. The main contribution of this work is that it offers a hierarchical 

approach, such that heterogeneity at multiple scales are properly represented 

during the scale-up of t1, t2, β and other reservoir attributes to the transport 

modeling scale.  

This chapter is organized as follows. In section 5.2, the governing 

equations for flow and transport, including the relevant particle-tracking methods, 

are described. In section 5.3, the proposed method is presented. A synthetic case 

study is discussed in sections 5.4 and 5.5. Conclusions are summarized in section 

5.6. 

 

5.2 Governing Equations of Flow and Transport in Porous Media 

Transport of a solute in single phase at the Darcy scale can be described by the 

Fickian-based advection-dispersion equation (ADE) (Bear 1979): 

    ,0
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C
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where C(x,t) is the volumetric concentration of the solute, which is a function of 

position (x) and time (t). D is the local-scale dispersion coefficient tensor 

(Binning and Celia 2002):  

,
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where T and L represent the transverse and longitudinal dispersivities, 

respectively; D
d
 is the effective molecular diffusion coefficient; i,j is the 

tortuosity tensor; u is the superficial velocity (Eq. 5.3), which is constant for the 

steady-state flow of an incompressible fluid. Its component along the i
th 

direction 

is denoted by iu . It is related to the interstitial velocity according to Eq. (5.4). 

;;
μ

ρg
h

k
KKu   (5.3) 

,


u
V 

S

q
 (5.4) 

where V and q refer to the interstitial velocity and volumetric flow rate, 

respectively. S is the cross-section area, k is the permeability tensor,  is the fluid 

viscosity, h is the hydraulic head, K is the hydraulic conductivity tensor,    is the 

porosity, ρ is the fluid density, and g is gravitational constant.  

To implement these governing equations in a conservative Lagrangian 

particle-tracking framework, the total mass of the injected solute component (mo) 

is divided into a large number (Np) of independent small particles with m = mo / 

Np. Each particle is advanced by successive jumps, with each jump composed of a 

drift component representing advection and a Brownian component representing 
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dispersion. For the RWPT method, the location of a particle at the new time level 

(t+t) is computed following the Fokker-Plank approach (Kinzelbach and Uffink 

1991) that demonstrates the equivalence between Eq. (5.1) and the following 

stochastic differential equations (Tompson and Gelhar 1990; LaBolle et al. 1996; 

Hassan and Mohamed 2003): 
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where xp is the coordinate vector of the particle at time t and the transition length 

(ξ) is a vector of normally distributed independent random numbers with zero 

mean and unit variance. B is the velocity-dependent dispersion displacement 

matrix, and A is the drift vector incorporating effects of the flow field and the 

divergence of D (Lichtner et al. 2002). The time step t is deterministically 

known and constant for all particles. Srinivasan et al. (2010) proposed a hybrid 

particle-based CTRW formulation, in which the RWPT framework is modified 

with the transition time being stochastic and varying among particles: 
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The ξ and τ are spatial and temporal random series which are distributed 

according to the joint transition displacement and time distribution ψ(ξ, τ). It is 

often assumed that ψ(ξ, τ) is mutually uncorrelated in space and time, such that 

ψ(ξ, τ) = st. The space function sis assumed to be Gaussian, whereas 
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time function t can be characterized by the truncated power law (TPL) 

distribution: 
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Г is the incomplete Gamma function. Eq. (5.7) is parameterized using the 

variables β, t1 and t2, which depend on the underlying heterogeneity. In this work, 

a RWPT formulation called RW3D-MRMT (Fernàndez-Garciaet al. 2005; 

Salamon et al. 2006a, 2006b; Fernàndez-Garciaand Sanchez-Vila 2011; Salamon 

et al. 2007; Riva et al. 2008) is modified according to Eq. (5.6) to incorporate the 

stochastic time step. The modified formulation has validated against 1-D and 2-D 

analytical solution and other CTRW algorithms (Vishal and Leung 2017). 

 

5.3 A Multi-Scale Particle-Tracking Approach 

Mathematical formulation of a multi-scale workflow for constructing models of 

reservoir properties and effective truncated power law parameters β
*
, t1

*
, and t2

*
 at 

the transport modeling (coarse) scale for particle-tracking simulation is presented 

next.  

 

5.3.1 Modeling of Reservoir Properties 

Averaging of heterogeneity below the modeling resolution would introduce 

uncertainty in the ensuing models. This uncertainty is referred to as sub-scale 

variability. Given that reservoir attributes, including porosity and permeability, 

are modeled as random variables, their spatial averages are also random variables. 
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The variance of mean of the attribute is a measure of the variability of the spatial 

average at that particular spatial volume V. Assuming stationarity, this variance 

would decrease with increasing V. In fact, this variance would reach a constant 

negative unit slope on a log-log plot against V, when the volume support is greater 

than or equal to the representative elementary volume (REV), a scale beyond 

which the sub-scale variability becomes negligible (Bear 1979). However, 

multivariate statistics of petrophysical properties would often exhibit non-

stationarity and scale dependency (Neuman 1994; Schulze-Makuch and 

Cherkauer 1998; Schulze‐Makuch et al. 1999). For such cases, a stabilized 

negative unit slop representative of the REV cannot be easily observed. 

The modeling of such variables is facilitated by decomposing its 

variability into the sum of a non-stationary trend and a stationary residual. The 

trend component is assumed to be available at the transport modeling scale (this 

assumption is justified given that non-stationarity is generally inferred over a 

scale much larger than that for the transport model). Assuming that the residual is 

a scalar continuous random variable (Z), the corresponding spatial mean Z  over a 

volume support V is defined as: 




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The variance of mean or Var( Z ) can be computed directly from the 

spatial averages of Z for different sizes of V according to Eq. (5.9), without 

invoking any explicit assumption of the multivariate distribution of Z; an 

averaging window can be assigned and the variance in the spatial mean is 
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computed. In fact, different averaging schemes can be employed depending on the 

choice of ω. If Z is a Gaussian random variable with a variance σ
2
, with a 

multivariate distribution described by a second-order stationary spatial correlation 

function ρcorr, Var( Z ) can also be computed by integrating ρcorr over all possible 

lag distance within V with Eq. (5.9) (Lake and Srinivasan 2004): 
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Eq. (5.9) assumes that linear averaging (i.e., ω = 1) applies. When the 

volume support for the conditioning data is less than that of the modeling scale, 

sub-scale variability can be represented by sampling multiple sets of conditioning 

data via bootstrapping (Leung and Srinivasan 2011). Parametric bootstrapping of 

a likelihood function (whose mean is the block-average of the actual measured 

values and the variance is the variance of mean) can be adopted. For a Gaussian 

random variable, a Gaussian likelihood function can be assumed; in addition, an 

average semi-variogram   (Journel and Hujbregts 1978) can be computed, 

facilitating conditional simulation to be performed on all sets of conditioning data 

(Leung and Srinivasan 2011).  corresponding to two support volumes V and V´ 

is defined according to Eq. (5.10); it can be approximated numerically by 

averaging the point-scale values of  at various regularly-spaced points.   
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A procedure, which is an extension to that presented in Leung and 

Srinivasan (2011), is adopted to construct realizations of Z(x) at the model scale. 
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It is assumed that Z(x) =  xTZ  +  xRZ , where  xTZ  and  xRZ refer to the trend 

and the residual, respectively: 

1. Compute  xRZ at conditioning locations:  xRZ = Z(x) –  xTZ . 

2. Estimate γR. Compute Var( RZ ) and R based on Eqs. 9 and 10. 

3. Draw multiple sets of coarse-scale conditioning data values of RZ  via 

bootstrapping. For instance, a Gaussian likelihood function, whose mean 

and the variance are block-average of the actual measured values and the 

variance of mean calculated in Step #2 can be adopted. 

4. Perform conditional simulation and construct realizations of  xRZ at the 

modeling scale using the R from Step #2 and coarse-scale histogram 

[mean = fine-scale global mean of  xRZ ; variance = Var( RZ )] for one set 

of the conditioning data from step #3.  

5. Reconstruct realizations of Z (x) =  xTZ  +  xRZ .  

6. Repeat steps #4 and 5 for other conditioning data sets obtained in Step #3. 

It is assumed that permeability is correlated with porosity as k = a ×b, 

where a and b are empirical constants. It is also assumed that this 

relationship is scale invariant. 

 

5.3.2 Modeling of Effective Transition Time Distribution 

Vishal and Leung (2015) proposed a work flow to represents sub-scale variability 

in transport parameter (e.g., effective dispersivity) with probability distributions. 

However, their work did not incorporate any non-stationary trend; furthermore, an 
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ADE-based RWPT transport modeling tool was used, ignoring any unresolved 

heterogeneities below the fine scale. Hence, to account for multi-scale 

heterogeneity, a more general workflow is proposed here. First, multiple high-

resolution (sub-grid) realizations depicting the detailed fine-scale heterogeneity 

arrangement and of the same physical size of the transport modeling grid cell are 

constructed. Each realization is subjected to particle-tracking simulation. Next, an 

averaged homogeneous model with uniform properties is constructed. Truncated 

power law parameters (β
*
, t1

*
 and t2

*
) of the homogeneous model are adjusted by 

minimizing the difference in effluent concentration profiles between the 

homogeneous model and the high-resolution model, which is defined in terms of 

the root mean square error or RMSE in Eq. (5.11) (Nash and Sutcliffe 1970), with 

a nonlinear regression scheme. 
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where 
 ii tt

C
1

  is the average concentration over the time interval between ti-1 

and ti. N is the number of time steps. The adjusted values are considered as 

effective values corresponding to that particular sub-grid realization. The steps 

can be outlined as follow:  

1. Assign nbR bins and nbT bins to the histograms of 
R and 

T , respectively. 

A total of nbR × nbT bin combinations are possible. 

2. For a given bin combination, perform unconditional simulation to generate 

ns sub-grid realizations of R. If R is assumed to be Gaussian, variogram 
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γR, together with a histogram consisting of mean = 
bR  and variance = 2

R  

can be used. Finally,  is re-constructed as the sum of R and 
T .  

3. Construct an equivalent homogeneous model corresponding to each model 

from Step #2.  

4. Simulate velocity and solute transport using all ns set of heterogeneous 

and homogeneous models constructed in Steps #2-3. Particle-based 

technique (Eqs. 6-7) is used for transport modeling. Estimate β
*
, t1

*
 and t2

*
 

for all ns sub-grid realizations. 

5. Repeat Steps #2-4 to construct )},(|{ *

TRP   )},(|{
*

1 TRtP  and

)},(|{
*

2 TRtP  . 

6. For each coarse-scale model constructed in section 5.3.1, at each location, 

sample β
*
, t1

*
 and t2

*
 from )},(|{ *

TRP  , )},(|{
*

1 TRtP  and

)},(|{
*

2 TRtP  . 

The workflow for sections 5.3.1 and 5.3.2 are illustrated in Fig. 5.2. For non-

Gaussian continuous variables, other multivariate statistics description can be 

adopted to generate the sub-grid realizations (Steps #2-3) and the coarse-scale 

models (section 5.3.1), instead of computing γR and R . Therefore, the overall 

workflow is rather flexible and is not restricted to particular forms of the 

multivariate distribution. 
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5.4 Case Study 

The proposed approach is illustrated with a synthetic case study involving a 2000 

m × 2000 m domain along the 2-D x-y plan. It is assumed that the “true” fine-

scale (1000 × 1000) model of porosity and permeability at a resolution of Δx = Δy 

= 2 m is known. However, it is often impractical to perform transport modeling 

with the fine-scale model; instead, a suite of coarsened 100 × 100 models with Δx 

= Δy = 20 m (Fig. 5.3B) are used. The proposed method is applied to generate 

these coarse-scale models, and the results are compared to those obtained with the 

fine-scale model. It is supposed that a total of 18 wells are placed along the 

opposite sides of the domain (Fig. 5.3A). Porosity values at a resolution of 2 m 

are extracted from petrophysical log/core analysis, and they are considered as 

conditioning data. As mentioned in section 5.3.1, a scale-invariant relationship 

between permeability (in mD) and porosity is adopted: (k = 25000ϕ
2
). The 

histogram and variogram corresponding to  R and 
T are presented in Fig. 5.4 

and Fig. 5.5, respectively. The "true” model of ϕ, as well as its respective trend 

and residual components, are shown in Fig. 5.6. Fine-scale transport parameters 

are assumed to be known (e.g., from laboratory measurements): longitudinal 

dispersivity or L = 2.0 m, while transverse dispersivity or T = 0.1 × L (Perkins 

and Johnston 1963; Gelhar et al. 1992). Parameters of the TPL model, t1, t2 and β 

are set to be 4 years, 10
4 

years and 1.25, respectively. 

The procedure described in section 5.3.1 is adopted to model coarse-scale 

porosity and permeability distributions. Var( RZ ) corresponding to a volume 

support of 20 m × 20 m is approximately 0.9 according to Eq. (5.9). The coarse-
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scale histograms and variograms (
R calculated from γR with Eq. 5.10) are 

presented in Fig. 5.7and Fig. 5.8, respectively. Conditional sequential Gaussian 

simulations (SGSIM), as implemented in GSLIB (Deutsch and Journel 1998), are 

performed to generate 10 realizations of 
R and 

TR   for each of the 10 

conditioning data sets. As a result, a total of 10 × 10 = 100 realizations of scaled-

up distribution of   are obtained. A randomly-selected realization is shown in 

Fig. 5.9.  

The scale-up procedure presented in section 5.3.2 is implemented to 

compute β
*
, t1

*
 and t2

*
. Three bins for the residual component (i.e., nbR = 3) 

corresponding to R  = 0.05, 0.075, 0.1 and three bins for the trend component 

(i.e., nbT = 3) corresponding to T = 0.05, 0.15, 0.25 are selected. For each of the 

bin combinations, 50 unconditional sub-grid realizations (ns = 50) of  are 

constructed. The domain of a 10 × 10 sub-grid realization (Δx = Δy = 2 m) is 

illustrated in Fig. 5.3(C). Fig. 5.10 illustrates how a randomly-selected realization 

corresponding to R = 0.1 is combined with three different values of T to 

construct three sub-grid realizations of . This procedure would yield a total of ns 

× nbR × nbT = 450 sub-grid realizations, and corresponding to each realization, an 

equivalent average model with homogeneous properties is generated. Next, 

particle-tracking modeling is facilitated by placing three pairs of injector and 

producer along the opposite sides of the domain (Fig. 5.3C). Fig. 5.11(A) shows a 

comparison of breakthrough effluent histories between the heterogeneous and the 

equivalent homogeneous sub-grid models. As shown in Fig. 5.11(B), the RMSE is 

reduced below a certain pre-defined tolerance in fewer than 100 iterations using 
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an implementation of the very fast simulated annealing (VFSA) scheme (Li et al. 

2004). )},(|{ *

TRP   )},(|{
*

1 TRtP  and )},(|{
*

2 TRtP   for R = 0.1 and T = 

0.15 are shown in Fig. 5.12.  

Two additional cases are tested: (1) only scale-up of β is considered and 

(2) only scale-up of β and t1 are considered. The objective is to assess the 

sensitivity of coarse-scale model predictions to the scale-up of different 

parameters. Therefore, the corresponding probability distributions are also shown 

in Fig. 5.12.  

 

5.5 Results and Discussions  

The workflow presented thus far facilitates all 3 parameters, β
*
, t1

*
 and t2

*
, to be 

estimated at the coarse scale. However, β, t1
 
and t2

 
are typically estimated from 

effluent histories indirectly; this inverse problem in inherently ill-posed, but the 

sensitivity of these parameters is not clearly defined. All three parameters and the 

type of model (ADE vs. CTRW) can be arbitrarily adjusted to match a given 

effluent profile, such as the 1D toolbox developed by Cortis et al. (2010).  

Four sets of coarse-scale models are constructed to examine the scale-up 

procedure, as well as the impact of heterogeneity at different scales. To facilitate 

the comparison among different cases, effluent histories corresponding to these 

four sets of coarse-scale models are shown in Fig. 5.13 and Fig. 5.14.  

In Case A, the scale-up procedure in section 5.3.2 is applied to compute 

effective dispersivities (L
*
 and T

*
), instead of t1

*
, t2

*
 and β

*
. The results of Case 

A are shown in Fig. 5.13(A) and Fig. 5.14(A). The results reaffirm that if fine-
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scale values of t1, t2 and β are assigned (without scale-up), the coarse-scale 

response would likely be overly smoothened (becoming more Gaussian or 

Fickian) by scaling up of L and T instead. This is evidenced by an increased 

variability among the cumulative mass flux profiles for Case A, as compared to 

other Cases (B-D), in Fig. 5.13. There are also more profiles in Fig. 5.14(A) that 

are exhibiting earlier peak arrival when compared with the true case.  

Next, three scenarios (Cases B-D) are set up to assess the sensitivity of 

coarse-scale model predictions to the scale-up of different parameters. In Case B, 

only coarse-scale values of β are computed, while fine-scale L, T, t1 and t2 

values are employed. The results are shown in Fig. 5.13(B) and Fig. 5.14(B). Case 

C is the same as Case B, except for that the coarse-scale values for both β and t1 

are considered (fine-scale L, T and t2 values are used). The results are shown in 

Fig. 5.13(C). In Case D, coarse-scale values of all three parameters, β, t1, and t2, 

are considered (fine-scale L and T values are used). The results are shown in 

Fig. 5.13(D). It is observed that the true response (blue in color) of true fine-scale 

model is completely captured by the responses of the coarse-scale models (orange 

in color) from all three cases. As expected, there is no well-defined relationship 

between β, t1
 
and t2, However, it is clear that β is a function of sub-grid 

heterogeneity, and its variability increases with scale (β
*
 ranges between 1.18 and 

1.32, as compared to β = 1.25). The other two parameters, t1
*
 and t2

*
, appear to 

increase with β
*
. 

With the implementation of the particle-based CTRW transport model, 

non-Fickian characteristics, such as early breakthrough and heavy-tailed effluent 
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history profile is easily observed. The particle distribution and resident 

concentration (volume-averaged concentration) at 1500 days are also presented in 

Fig. 5.15. It is clear that transport evolution with a non-Fickian model has resulted 

in a much wider spread. This non-Fickian feature results from the coupling of 

non-stationary trend, unresolved heterogeneity below the fine scale, as well the 

sub-scale variability introduced during scale-up to the transport modeling scale.  

The computational requirement is examined in Table 5.1. A high-performance 

Linux-based computing environment is employed for the velocity and transport 

calculations. It consists of 240 nodes with Xeon X5675 processors [12 cores (2 x 

6) and 24 GB of memory] and 160 nodes with Xeon L5420 processors 8 cores (2 

x 4) and 16 GB of memory]. The X5675 nodes are connected at 40 Gbit/s, with a 

1:1 blocking factor, while the L5420 nodes are connected at 20 Gbit/s, with a 2:1 

blocking factor. Similar to the observations in Vishal and Leung (2015), 

significant savings in computational requirement can be realized with the coarse-

scale models Therefore, the ability to construct coarse-scale models that capture 

the impacts of multi-scale heterogeneities in transport response is crucial.  

 

5.6 Conclusions 

1.  A new unified multi-scale particle-tracking framework was developed. The 

methodology was formulated to facilitate the scale-up of truncated power law 

parameters (waiting time, cut-off time, and exponent) and reservoir attributes 

(porosity and permeability) for dispersive solute transport in single-phase 

flow. Heterogeneity spanning over multiple scales, including non-stationary 
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trend, unresolved heterogeneity below the fine scale, as well the sub-scale 

variability introduced during scale-up is incorporated. 

2. First, to capture unresolved heterogeneity below the fine scale, a particle-

based non-Fickian transport model, which utilizes a stochastic transition time 

function, is adopted. Next, to incorporate non-stationary trend, which is 

defined at the same resolution of the transport modeling scale, is employed. 

Finally, to calibrate the sub-scale variability introduced due to the change in 

volume support between the transport modeling scale and the fine scale, a 

numerical procedure is presented to establish the probability distributions of 

effective (coarse-scale) transition time distributions conditional to the 

averaged reservoir properties at the transport modeling scale.  

3. It is not necessary to assume any specific multivariate distribution of the 

heterogeneity. The variance of mean and the bootstrapping can be 

implemented using a certain averaging window and computing the statistics 

pertinent to the spatial mean. Any sequential simulation technique for 

continuous variables can be adopted to generate the sub-grid and coarse-scale 

models of reservoir attributes.   

4. A special example involving the covariance-based Gaussian model was 

adopted in the case study. Predictions from the coarse-scale models are 

capable of capturing the “true” fine-scale response. Many of the anomalous 

characteristics associated with multi-scale heterogeneities, including early 

breakthrough, spread-out plume and heavy-tailed effluent profile, are 

captured. 
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Figure 5.1: Schematic illustrating the difference between fine scale and coarse 

scale. 

 

 
 

Figure 5.2: Workflow to scale up reservoir properties and transport properties.  
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Figure 5.3: Boundary conditions and configuration for the (A) fine-scale model, 

(B) coarse-scale model and (C) sub-grid model used in the case study. 

 

 
 

Figure 5.4: Histogram of fine-scale porosity  which is decomposed into a sum 

of residual component (left) and trend component (middle). 

 

 
Figure 5.5: Variogram of fine-scale porosity () (right); variogram of the trend 

component (middle); variogram of the residual component (left). 
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Figure 5.6: Distribution of porosity (), which is decomposed into a sum of 

residual component (left) and trend component (middle), for the true fine-scale 

model. 
 

 

 
Figure 5.7: Histogram of coarse-scale porosity ( ), which is decomposed into a 

sum of residual component (left) and trend component (middle). 
 

 
Figure 5.8: Variogram of coarse-scale porosity ( ) (right); variogram of the 

trend component (middle); variogram of the residual component (left). 
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Figure 5.9: Distribution of porosity ( ), which is decomposed into a sum of 

residual component (left) and trend component (middle), for one realization of the 

coarse-scale model. 

 

 
 

Figure 5.10: Histogram and a randomly-selected realization of R corresponding 

to R = 0.1 (top). It is subsequently combined with three different values of T  to 

generate three realizations of  such that = R +
T  (bottom). The corresponding 

histogram is shown on top of each realization of .  
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Figure 5.11: (A) Comparison of breakthrough effluent histories between the 

heterogeneous and equivalent homogeneous sub-grid models. (B) Reduction in 

RMSE over iterations.  

 

 
 

Figure 5.12: Distribution of effective values of β
*
 (top), β

*
 and t1

*
 (middle), β

*
, 

t1
*
, and t2

*
 (bottom) for a selected bin combination of R = 0.1 and T = 0.15. 
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Figure 5.13: Normalized effluent profiles of cumulative mass flux for the four 

sets of coarse-scale models with different effective transport parameters: (A) L
*
 

and T
*
, (B) β

*
, (C) β

*
 and t1

*
, and (D) β

*
, t1

*
 and t2

*
. The blue curve corresponds 

to the true fine-scale model. 
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Figure 5.14: Normalized effluent profiles of instantaneous mass flux for the four 

sets of coarse-scale models with different effective transport parameters: (A) L
*
 

and T
*
, (B) β

*
, (C) β

*
 and t1

*
, and (D) β

*
, t1

*
 and t2

*
. The blue curve corresponds 

to the true fine-scale model.  
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Figure 5.15: Particle distribution (left) and the corresponding resident 

concentration profile (right) at 1500 days.  
 

Table 5.1: Compilation of computational time 

 

   

Computational time using 

Jasper cluster 

 

  

Number of runs 
(Velocity + Transport) 

Calculations 
Remarks 

1) 

 Fine-scale model                       

(1000×1000 with 

2×2m grid size) 

1 
(540 sec + 1200 sec) = 

1740 sec 

 

2) 

 Sub-grid model                       

(10×10 with 2×2m 

grid size) 

(50 heterogeneous 

models  

+ 50 homogeneous 

models) x 9     

levels 

(345 sec + 570 sec) x 9 = 

8235 sec 

Calculation of P(αL*|

 ) and P(αT*| ) 

with100 iterations in 

VFSA using parallel 

computing scheme 

3) 

 Coarse-scale 

model                       

(100×100 with 

20×20m grid size) 

100 
(45 sec + 1065 sec) x 100 

= 111000 sec 
Fully scaled-up model 
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Chapter 6: A Novel Framework for Integration of Random-Walk  

Particle-Tracking Simulation in Subsurface  

Multi-Phase Immiscible Flow Modeling
5
  

 

6.1 Introduction 

The problem of single- or multi- phase flow in porous media is of great interest in 

hydrogeological or petroleum engineering because of a variety of applications, 

such as subsurface remediation of organic contaminants, carbon dioxide 

sequestration in geological formations, and oil or gas recovery from hydrocarbon 

reservoirs. 

The governing equations pertinent to mass, momentum and energy 

balances are generally described by a set of partial differential equations (PDEs). 

Since analytical solution methods often invoke many stringent assumptions (e.g., 

homogeneous properties and simple initial/boundary conditions), numerical 

methods could provide reliable approximate solution to the complex governing 

PDEs. Numerical methods to solve the PDEs can be categorized into Eulerian, 

Lagrangian and mixed Eulerian-Lagrangian (Zheng and Bennett 2002). Eulerian 

approach models fluid (e.g. tracer, pollutant) motion by focusing on specific 

locations in the space through which the fluid flows as time passes, while 

Lagrangian approach follows an individual particle as it moves through space and 

time. In other words, Eulerian method considers fluid in a collective sense, while 

Lagrangian method assumes fluid as a bunch of particles. Common Eulerian-

                                                 
5
A version of this chapter will be submitted to a journal for publication. 
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based approaches are finite-difference (FD), finite-element (FE), and finite 

volume (FV). In the FD method, derivative functions are approximated by the 

Taylor series State variable, namely saturation and composition, are taken to be 

constant within a computational grid cell, whereas pressure is calculated at a fixed 

location (i.e., grid-cell center) or as an average cell pressure. Despite its ease of 

implementation in 3D, the FD technique has some significant disadvantages, 

including numerical dispersion (artificial dispersion), grid orientation effects, 

inaccuracy in flux calculations in heterogeneous media with capillary pressure 

contrast, and incompatibility with unstructured grids (Firoozabadi and Hoteit 

2007). In the FV approach, the governing equations are integrated over a 

particular control volume (i.e., grid cell), which is more suited for unstructured 

grids. It still suffers from numerical dispersion, grid orientation effects and, to a 

lesser extent, flux calculation for complex problems such as fractured reservoirs. 

In the FE approach, the unknown variables, such as saturation or concentration, 

are approximated by using known test functions, which can be linear or higher-

order polynomial expansions in terms of unknown variables at appropriate 

geometric locations (nodes) for certain grid elements; the spatial interpolation of 

variables within a given cell or element helps to alleviate numerical dispersion to 

some extent. FD/FV solution methods are implemented in common subsurface 

flow simulators, due to its flexibility for integrating well models and coupling 

with complex phase behavior calculations. Higher-order schemes are often needed 

to suppress numerical dispersion. However, in most cases, numerical dispersion 
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still overwhelms physical dispersion (spreading of saturation/concentration front 

due to heterogeneities and velocity variations).  

Lagrangian method, which is commonly referred to as particle tracking, 

offers viable grid-free solution alternative to the Eulerian framework. Its primary 

advantage is the absence of numerical dispersion. It can model shocks 

corresponding to a hyperbolic PDE with no limits on the mesh size (Delay et al. 

2005; Salamon et al. 2006a).In particle-tracking method, the injected mass or 

volume is represented by a group of particles, and each particle represents a 

physical mass/volume. These particles are migrated according to the velocity field 

(convection) and the dispersion/diffusion (Brownian motion). Particle 

distribution, instead of concentration/phase-saturation, is computed. Particle-

tracking methods have been adopted successfully in hydrology/hydrogeology to 

simulate passive solute transport (Tompson and Gelhar 1990; Hassan and 

Mohamed, 2003) and reactive solute transport (Tompson and Gelhar, 1990) in 

single-phase flow. Tyagi et al. (2008) developed a novel stochastic particle 

method to model nonlinear immiscible multi-phase incompressible flow. Particle 

concentration or phase saturation is obtained by counting the number of particles 

over the control volume. However, large number of particles would be needed per 

grid block to avoid statistical bias; hence, computational efficiency of their 

proposed approach is compromised. Therefore, one of the objectives of this paper 

is to improve the accuracy of phase saturation estimation with dramatically fewer 

particles via the kernel methods. 
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Another issue commonly encountered in numerical transport modeling is 

that the model scale is generally much larger than the scale at which 

measurements are attained (e.g., logging measurements ~ decimeter scale; core 

measurements ~ centimeter scale). Generally speaking, transport modeling is 

often performed at a scale that is coarser than the finest resolution of 

heterogeneity. In this paper, two scales, in particular, are specified: (1) “Fine 

scale” describes a length scale over which detailed description about 

heterogeneity is available; (2) “Coarse scale” refers to the numerical transport 

modeling scale (e.g., 1-10 m). Many previous works have explored the topic of 

multi-phase flow upscaling. For flow-based upscaling, both steady-state and 

unsteady-state (dynamic) methods were proposed (Johnson et al. 1959; Saad et 

al. 1995; Pickup and Stephen 2000). A set of selection criteria of specific 

upscaling techniques for different heterogeneity characteristics and dominant 

forces can be found in Pickup et al. (2005).  

These aforementioned techniques aim to identify an “equivalent” value 

such that the fine-scale response is reproduced. They are employed with the 

assumption that a single deterministic “upscaled” value would be obtained, which 

essentially neglects any uncertainty originated from the smoothening due to the 

averaging process. In the end, to construct a model at the coarse scale, it is 

important to account for the sub-scale variability that captures the smoothing of 

fine-scale heterogeneity and the associated uncertainties. There are two major 

approaches for analysing the scale-up of transport properties and the associated 

uncertainties: stochastic perturbation (or ensemble averaging) and the volume 
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averaging methods. Ensemble averaging considers the initial conditions, boundary 

conditions, pressure, flux, and transport parameters as random variables, and their 

ensemble or moment statistics are then used to obtain effective parameters at the 

coarse scale. This approach is applicable if the permeability distribution (e.g., 

covariance structure) can be well defined (Rubin et al. 1999). On the other hand, 

the volume averaging technique performs spatial averaging to the fine scale 

equations and formulates scaled-up equations that involve effective parameters. 

An example for two-phase flow can be found in Durlofsky (1998). Spatial 

average of the fine scale saturation equation to describe saturation distribution at 

the coarse scale; however, the complex formulation and assumptions may render 

the practical application of this approach challenging. An important requirement 

for the volume averaging is the separation of heterogeneity length scales. In other 

words, the size of a coarse-scale grid block should be larger than or equal to the 

representative elementary volume (REV) corresponding to the sub-grid 

heterogeneity (Leung and Srinivasan 2016). In theory, if the restriction on the 

heterogeneity length scale and the assumption of ergodicity are satisfied, both 

methods are equivalent (Wang and Kitanidis 1999). 

In this work, a statistical workflow is devised to facilitate the 

quantification of uncertainty due to averaging in coarse-scale models. Though a 

similar workflow has been published in Vishal and Leung (2015; 2017), the 

technique has never been applied to scale up multi-phase flow functions. In order 

to isolate the impact of numerical dispersion, a particle-tracking transport model 

is employed to simulate immiscible flow. The method is formulated after Tyagi et 
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al. (2008), but new elements are incorporated to alleviate some of the existing 

limitations. For example, instead of employing a large number of particles 

(10,000-50,000 particles per grid) to minimize errors due to biases, the kernel 

method is proposed to reconstruct the concentration/saturation from particle 

distributions directly. The proposed approach is validated against analytical and 

conventional numerical simulation predictions.  This particle-tracking tool is 

subsequently used to compute coarse-scale multi-phase flow functions, which can 

be considered readily as input to any commercial simulator. The main 

contribution of this work is that it offers a systematic workflow to compute multi-

phase flow functions at any desired coarse/transport-modelling scale. Instead of 

deriving a deterministic upscaled value, conditional probability distributions of 

the multi-phase flow functions are calibrated, and a sampling procedure is utilized 

to properly quantify the uncertainty due to scale-up. The improved multi-phase 

particle-tracking formulation is also novel. It should be noted that, in this work, 

only the flow of two immiscible and incompressible fluids is considered, while 

the effect of gravity is neglected. The particle-tracking method, however, can be 

readily extended to incorporate gravity effect in the velocity computation. 

Although capillary pressure is assumed to be close to zero (𝑃𝑐 ≈ 0) in the case 

study, the same scale-up workflow can be adopted to compute the coarse-scale 

capillary pressure function. 

This chapter is organized as follows: first, mathematical detail of the 

particle-tracking formulation is summarized for both the single-phase miscible 

flow and multi-phase immiscible flow. Next, the proposed particle-tracking 
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method is validated against analytical solution, as well as with numerical 

simulation predictions. Finally, the method is integrated into a statistical scale-up 

procedure to model key reservoir properties, multi-phase flow functions (relative 

permeability and capillary pressure) at the coarse scale. In the end, a case study is 

presented, which is followed by discussions and conclusions. 

  

6.2. Methodology 

 

6.2.1 Random Walk Formulation for Single-phase and Multi-phase Flow 

In this section, mathematical formulation of the particle-tracking technique is first 

presented for single-phase flow. Its analogy to the multi-phase immiscible flow 

formulation is then noted. Alternatives for estimating solute concentration or 

phase saturation from the ensuing particle distribution are also discussed. 

 

6.2.1.1 Formulation for Single-Phase Miscible Flow 

Mass balance corresponding to solute transport in a subsurface reservoir/aquifer is 

described by the classical Fickian-based ADE (Bear 1979), as shown in Eq. (6.1): 

,)),(),(()),(),((
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tCttCt
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XXVXXD

X





 (6.1) 

in which C(X, t) is the volumetric local solute concentration at location X and 

time t, V(X, t) is the pore velocity vector, and D(X, t) denotes the dispersion 

tensor. The velocity field is calculated according to the continuity equation in Eq. 

(6.2) and the Darcy’s law in Eq. (6.3) for incompressible flow conditions: 
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p is the pressure, K is the absolute permeability tensor, ϕ is the porosity, and μ the 

fluid dynamic viscosity. In this work, an isotropic K is assumed (i.e., K = k), and 

it is empirically correlated with porosity (ϕ) according to Eq. (6.4) (Deutsch 

2010): 
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In the particle-tracking framework, solution of the ADE is approximated 

according to Eq. [5] (Delay et al. 2005): 
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Xp(t) is the particle position at time t; ξ is an independent normally distributed 

random vector with a mean of zero and a standard deviation of one. 

 

6.2.1.2 Formulation for Multi-Phase Flow 

The mass balance equation for each fluid phase (subscript i) is mathematically 

analogous to Eq. (6.6) (Bear 1972& 1979; Bolster et al. 2009): 
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Despite its appeared similarity with the ADE equation, the above equation is 

highly nonlinear, since the drift V{X,Si(X, t)}, as well as the dispersion coefficient 

D{X,Si(X, t)}, are functions of phase saturation, Si(X, t). The velocity field is 

calculated by combining the continuity equation in Eq. (6.7) and the Darcy’s law 

in Eqs. (6.8)- (6.9): 
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where ui(X, t) and pi(X, t) are  the superficial flow velocity and pressure of phase 

i; kri(X, Si) and λi (X, Si) the relative permeability and mobility of phase i, 

respectively. Individual phase pressures, pi(X, t), are coupled as:  
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 (6.10) 

under the following constraint regarding Si(X, t):  
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1




n

i

i tS X  (6.11) 

pc(X, Si) is the capillary pressure, and n is the total number of phases. Each phase 

is represented by a large number of computational particles (Fig.6.1), and the 

particle’s position at the new time level (t+t) can be obtained according to Eq. 

(6.12) (Tyagi et al. 2008): 
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where
i

pX represents the position of a given particle of phase i. A flow chart 

explaining the computational steps is shown in the Fig.2. In this work, Eq. (6.12) 

is implemented by modifying a popular random-walk particle-tracking 

formulation called RW3D-MRMT (Fernàndez-Garcia et al. 2005; Salamon et al. 
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2006a, 2006b; Fernàndez-Garcia and Sanchez-Vila 2011; Salamon et al. 2007; 

Riva et al. 2008), which was originally developed to model solute transport in 

single-phase flow systems. A few significant modifications must be made to the 

RW3D-MRMT code. Firstly, a kernel estimator is used to calculate phase 

saturation at the end of each time step. Next, the particle-tracking simulation, 

which represents the transport calculation, must be coupled with the flow 

calculation to compute the velocity field. An implicit-pressure explicit-saturation 

(IMPES) scheme is followed. Both phase saturation and velocity are updated after 

every time step. The resultant code is now suitable for modelling two-phase 

immiscible flow, and the results are validated against analytical solution and those 

obtained from conventional FD/FV schemes, as implemented in commercial 

simulators. 

 

6.2.1.3 Construction of Concentration from Particle Distributions 

Eq. (6.12) provides the discrete particle displacement (or position). To obtain the 

corresponding phase saturation, the collective positions of nearby particles must 

be considered. This is represented by the density of moving particles at a 

particular instance of time over the underlying computational grid from which the 

flow solution is obtained. Even though the particle-tracking simulation is grid free 

on its own, interpretation of concentration/phase-saturation of spatially distributed 

particles may invoke grid definitions or other smoothing methods, such as the 

Kernel functions. 
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The simplest way to construct concentration/saturation from particle 

distribution is the arithmetic averaging technique or the box kernel method 

(Fernàndez-Garcia and Sanchez-Vila 2011). In this method, the domain is 

discretized in space (for residual concentration) and/or time (for flux 

concentration); the number of particles corresponding a given support (cell) 

volume is counted. The residual concentration C(X, t) in single-phase flow is 

defined as: 
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where m is the mass associated with each particle, and N is the number of solute 

particles in the cell volume V(X). An analogous expression for phase saturation in 

multi-phase flow is: 
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where v
i
 is volume of the particle of phase i. It should be obvious that the 

accuracy of this approximation depends on the discretization scheme: limited 

number of particles in a small support volume would lead to noisy fluctuations, 

whereas oversized support would result in excessive smoothing. Fernàndez-

Garcia and Sanchez-Vila (2011) proposed the use of Kernel density estimator f 

(u), which is based on a sample {u1,…,un} in the form of: 
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where K is the kernel function and h is a smoothing parameter and u is the point 

where density is to be estimated. The choice for K could be any kernel function 
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such as the Triangle, Eq. (6.16), and the Gaussian (Hong 2010), Eq. (6.17), 

models for optimal smoothing: 
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Kernel density functions essentially establish the spatial distribution of 

concentration/saturation as a weighted average of discrete particle locations the 

associated mass/volume of each particle. The mass/volume of particle is a 

measure of its region of influence. Kernel functions are usually symmetric density 

functions, whose size and shape is parametrised on the basis of smoothing 

parameter h. It is worthwhile to note that kernel density estimation is a standard 

non-parametric technique of constructing histogram from unknown distributions. 

Because of its non-parametric nature, it is capable of producing multimode 

distributions. Moreover, it is also capable of producing non-Fickian nature of 

solute transport, such as the tailing characteristic.   

 

6.2.2 Validation of Particle-Tracking Model in 1-D and 2-D 

6.2.2.1 1-D model 

In this section, we verify the simulation algorithm results against the analytical 

Buckley-Leverett (B-L) theory, which is based on the method of characteristics 

and a commercial numerical simulator (Eclipse black-oil 2011). To facilitate the 

comparison with the B-L solution, a 1-D domain [0, 20 m] with two phases (oil 

(o) and water (w)) is considered. The domain contains irreducible water 

saturation Swr at t = 0: 
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.)0,( 1 wrStXS   (6.18) 

Capillary pressure and the diffusion terms are assumed to be zero, and the 

following boundary condition is prescribed at the inlet: 

,1),0( 1 orStXS   (6.19) 

where Sor is the irreducible oil saturation. To compute the total flux, water is 

injected at a constant rate of 0.216 m/day and a producer operating under 

constant pressure, same as reservoir pressure, is introduced. Other relevant 

model parameters and the relative permeability functions are summarized in 

Table 6.1 and Fig. 6.3, respectively. The resultant distributions of water and oil 

particles at t = 0 day, t = 10 day, and t = 20 day are shown in Fig. 6.4. The 

computed water phase saturation (Sw) after t = 10 days and t = 20 days obtained 

via the proposed particle-tracking method are compared against the B-Land 

simulator solutions in Fig. 6.5. It is clear that good agreement is obtained; 

despite that higher-order approximation schemes are implemented in the 

commercial flow simulators, numerical dispersion, as evidenced by spreading of 

the saturation front, is still obvious. On the contrary, the front’s position and 

structure as predicted by the proposed particle-tracking formulation resembles 

the B-L computations more closely. 

 

6.2.2.2 2-D model 

A quarter-five-spot configuration of size 30 m × 30 m is considered. Same initial 

condition as in the above 1-D case is imposed. Once again, capillarity effect is 

neglected here. To compute the total flux, water is injected at a constant rate of 
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2.0 m/day at the bottom-left corner of the model, whereas a producer operating 

under constant pressure, same as the initial reservoir pressure, at the top-right 

corner of the model. The relative permeability functions are illustrated in Fig. 

6.3. Initial (t = 0 day) distribution of oil and water particles is shown in Fig. 6.6. 

First, a homogeneous domain is considered with absolute permeability of 

100 mD and porosity of 0.2. The corresponding particle distributions of the oil 

and water phases after t = 10 days are shown in Fig. 6.7 (left). The computed 

water phase saturation (Sw) after t = 10 days (obtained via the kernel smoothing 

technique) is compared against the simulation predictions in Fig. 6.7 (right), 

which shows good consistency in the results. 

Next, a heterogeneous domain is considered. Its porosity distribution is 

shown in Fig. 6.8. Permeability is empirically correlated with porosity by Eq. 

(6.4). The corresponding particle distributions of the oil and water phases after t 

= 10 days are demonstrated in Fig. 6.9. The computed Sw profiles obtained from 

the both particle-tracking method and the numerical simulation are compared in 

Fig. 6.10. Once again, good agreement with the numerical solution is observed. 

 

6.2.3 Scale-up Methodology 

Theory and mathematical formulation for constructing a multi-scale workflow are 

discussed. The workflow for constructing models of reservoir properties is 

presented, which is followed by the computation of effective, or ‘pseudo’, multi-

phase flow functions, such as relative permeability and capillary pressure (pc), at 

the transport modeling (coarse) scale.  
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6.2.3.1 Scale-up of Reservoir Attributes 

Scale-up of reservoir static properties, such as porosity and permeability, is often 

performed because of disparity in scale among measured data from different 

sources, and volume support for the transport modeling scale is typically much 

larger than that of the measurement scale. These change in scale or volume 

support lead to additional uncertainty in the scaled-up models due to averaging of 

sub-scale heterogeneity. The variance of mean is a measure of the variability in 

spatial average over a volume support of V. Let Z be a continuous Gaussian 

random variable with a variance of 2
; for given autocorrelation model corr, the 

variance of its linear average ( Z ) can be computed according to Lake and 

Srinivasan (2004): 
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)(ZVar approaches the mean of fine-scale Z in the limit of V becoming zero. The 

procedure presented in Leung and Srinivasan (2011) or Vishal and Leung (2015) 

is implemented to construct realizations of reservoir attributes at the transport 

modeling scale. For the sake of completeness, the steps are repeated here: 

1. Calculate fine-scale variogramwhich is directly related to corr. 

2. Calculate )(ZVar using Eq. (6.20). 

3. Compute average variogram  at the coarse scale using Eq. (6.21) 

(Journel and Hujbregts 1978): 
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where n and n´ refer to the numbers of regularly-spaced points in the two 

averaging volumes of V, V´. 

4. Sample multiple sets of coarse-scale conditioning data values from 

distributions whose mean is the block-average of the actual measured 

values and the variance is )(ZVar . 

5. For each sampled conditioning data set from step 4, perform conditional 

simulation at the coarse scale using  and scaled-up histogram (mean = 

fine-scale global mean; variance = )(ZVar ). 

6. Repeat step 5 for remaining conditioning data sets. 

In this chapter, the aforementioned procedure is used to compute scaled-up 

porosity values, which are assigned to individual grid blocks of the coarse-scale 

transport modeling mesh. Permeability is assumed to follow a log-normal 

distribution and can be related to the collocated porosity value as Eq. (6.4). 

 

6.2.3.2 Scale-up of Multi-Phase Flow Functions 

Power-law relationships are commonly adopted to parameterize the oil and water 

relative permeabilities. In this paper, the Brooks and Corey model, which are 

widely implemented in commercial simulators, is employed (Brooks and Corey 

1964; Corey 1977, Wang et al. 2009): 
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where Swn3 is defined as 
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Parameters, such as water relative permeability at residual oil saturation (Krwmax), 

oil relative permeability at connate water saturation (Kromax), exponent of relative 

permeability curve of water (woexp), exponent of relative permeability curve of oil 

(owexp), exponent of capillary pressure (pcowexp), critical, connate, or endpoint 

saturation of water (Swi), and irreducible or end point saturation of oil (Soi), are 

empirical parameters; they are tuned according to experimental measurements and 

can be used directly in the fine-scale models. To scale up these parameters to the 

coarse scale, a workflow previously presented in Vishal and Leung (2015), 

adopted. The previous work was applied successfully to scale up effective 

dispersivities for solute transport in single-phase flow. Therefore, this paper 

extends the procedure to compute coarse-scale transport parameters for multi-

phase immiscible flow. The idea is to construct probability distributions of 

effective coarse-scale parameters (e.g.,
maxrwK , maxroK , expow , expwo ,

exppcow , wiS , 

and oiS ) that are conditional to  and k based on fine-scale simulation results that 

depict detailed sub-grid heterogeneity. The steps of the revised workflow are 

described as follow: 

1. Divide the histogram of   into nb bins. 
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2. For each bin, generate ns unconditional sub-grid realizations of  . In the 

case of Gaussian statistics, fine-scale variogram γ, together with a 

histogram consisting of mean = b  and variance = 
2 , can be used.For 

each of the ns sub-grid models, compute an equivalent homogeneous 

model via linear averaging. 

3. Multi-phase particle-tracking simulation is performed on the detailed and 

averaged models generated in step 2. 

4. Estimate maxrwK , maxroK , expow , expwo ,
exppcow , wiS , and oiS  by 

minimizing the mismatch in effluent history between the two sets of 

models from step 3. A non-linear regression scheme with the following 

objective function (f) is implemented: 
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where j is data type (e.g., volumetric flow rate or pressure of each phase); 

N is time step, and w(j, N) is a user-defined weight (the default value of w 

= 1.0) for the j
th

 data type at time step N, and σ is the weight normalization 

factor. Several common options for  are the standard deviation or a 

predefined percentage of the data mean (Wang et al. 2009).  

5. Gather the results corresponding to bin i (i = 1… nb) and construct

}|{ imaxrwKP  , }|{ imaxroKP  , }|{ iexpowP  , }|{ iexpwoP  , }|{ iexppcwoP  ,

}|{ iwiSP  , and }|{ ioiSP  for i =1, … , nb. Repeat for all bins. 
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6. Use the conditional probability distributions derived from step 5 to assign 

coarse-scale values. At each location of the coarse grid, sample maxrwK , 

maxroK , expow , expwo ,
exppcow , wiS , and oiS from }|{ imaxrwKP  ,

}|{ imaxroKP  , }|{ iexpowP  , }|{ iexpwoP  , }|{ iexppcwoP  , }|{ iwiSP  , and 

}|{ ioiSP  , respectively. 

A schematic of this scale-up procedure is shown in Fig. 6.11. 

 

6.3. Case Study 

A 2-D domain with 60 × 60 blocks (Δx = Δy = 1 m) and two wells as shown in 

Fig. 6.12 (A) is considered. For this synthetic example, it is assumed that the 

“true” fine-scale model 60 × 60 is also known here. 

To construct scaled-up models of reservoir attributes, fine-scale porosity 

values at a resolution of 1 m × 1 m are extracted at the well locations; these are 

considered as fine-scale conditioning data. The corresponding histogram and 

anisotropic variogram model are shown in Fig. 6.13(A) and Fig. 6.14(A), 

respectively. Eq. (6.4) is used to populate k (k0 = 0.01, ϕc = 0.35, a1 = 3.667, and 

a2 = 4.151), whereas water- and oil- relative permeability functions are modelled 

using Eq. (6.21) and Eq. (6.22) (Krwmax = 0.2, Kromax = 0.8, woexp = owexp = 2.0, Swi 

= Soi = 0.2), respectively. As mentioned previously, capillary pressure effect is 

neglected. Longitudinal dispersivity L is set to be 0.01 m, with transverse 

dispersivity T = 0.1 × L (Perkins and Johnston 1963; Gelhar et al. 1992). 
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Following the proposed method, a suite of coarse-scale 10 × 10 models with Δx = 

Δy = 6 m, as shown in Fig. 6.12(B), is constructed.  

For the volume support of 6 m × 6 m, )(ZVar is approximately 0.86. 

Results of scaled-up histogram and   are shown in Fig. 6.13(B) and Fig. 6.14(B), 

respectively. Ten sets of coarse-scale conditioning data of are sampled at well 

locations, and conditional sequential Gaussian simulation (SGSIM), as 

implemented in GSLIB (Deutsch and Journel 1998). Ten realizations are 

simulated corresponding to each conditioning data set. Therefore, a total of 100 

realizations of scaled-up porosity models are obtained, and a randomly-selected 

realization is presented in Fig. 6.15(B), which can be compared against the “true” 

fine-scale model in Fig. 6.15(A). 

To obtain the effective relative permeability functions, the procedure 

detailed in section 6.2.3.2 is followed. First, a fine-scale sub-grid 6m× 6 m model 

with Δx = Δy = 1 m, as shown in Fig. 6.12(C), is considered. The histogram in 

Fig. 6.13(B) is divided into nb = 3 bins corresponding to   = 0.1, 0.2, and 0.3. 

Fifty (ns = 50) sub-grid porosity models are simulated by unconditional sequential 

Gaussian simulation for each bin; one of those realizations for = 0.25 is shown 

in Fig. 6.15(C). As expected, the histogram for this sub-grid model, as shown in 

Fig. 6.13(C), should resemble that in Fig. 6.13(A). For each sub-grid model, an 

injector and a producer are placed diagonally across the domain. For the sake of 

brevity, in this study, only maxrwK , maxroK are considered, other parameters(i.e., 

expow , expwo ,
exppcow , wiS , and oiS ) are assumed to be the same as the fine scale 
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values. The reduction in objective function Eq. (6.26) is shown in Fig. 6.16(B). 

The error is usually reduced below an acceptable tolerance level with fewer than 

20 iterations when a very fast simulated annealing (VFSA) scheme is 

implemented (Li et al. 2004). Also shown in Fig. 6.16(A) is the comparison of 

water saturation profiles at the production well for one particular realization of the 

sub-grid model. 

Bivariate distributions of maxrwK  and maxroK as functions of  are 

constructed. An example corresponding to  = 0.25 are shown in Fig. 6.18. For 

each of the 100 coarse-scale models of porosity and permeability generated 

previously, a cloud transform procedure is adopted to sample values of 
maxrwK  

and 
maxroK (Kolbjørnsen, and Abrahamsen 2005): a value of maxrwK is drawn from

}|{ max irwKP  , and a value of maxroK is drawn }|{ max iroKP   conditioned to the 

drawn
maxrwK value. The effective relative permeability functions and the coarse-

scale reservoir models are subjected to traditional numerical simulation. 

Predictions of oil and water rates at the production well are shown in Fig. 6.18. It 

is clear that the “true” fine-scale response is captured within the uncertainties 

exhibited by the coarse-scale models sufficiently. 

 

6.4. Results and Discussions 

As mentioned earlier, the objective of this study is to develop a particle-tracking 

model suitable for solving the saturation transport equation, which can be readily 

integrated in a statistical scale-up procedure to compute coarse-scale (i.e., 
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effective) multi-phase flow functions. Though the particle-tracking method is 

primarily formulated after Tyagi et al. (2008), new elements are incorporated to 

enhance the computational efficiency. In particular, the kernel method is 

implemented to reconstruct the concentration/saturation from particle 

distributions directly, which alleviates the burden of utilizing an enormous 

amount of particles. 

To estimate the kernel density at any specified locations, various non-

parametric kernel functions are adopted. The Gaussian kernel function is 

incorporated for the 1-D example. For the 2-D case, an automatic and adaptive 

bivariate density estimator is incorporated based on the estimation of marginal 

and conditional densities (Simonoff 1995).This method has some advantages over 

the bivariate Gaussian kernel estimator, where the level of smoothing does not 

depend on the local features of the density distribution. Results in both 1-D and 2-

D demonstrate the validity of the proposed particle-tracking model and its 

potential for removing artificial dispersion when estimating effective multi-phase 

flow functions. 

 

6.5. Conclusions 

1. A new particle-tracking method, where the kernel technique is implemented to 

reconstruct the concentration/saturation from particle distributions directly, is 

developed to solve the nonlinear transport equation of two immiscible phases. 

The method is coupled with the continuity equation in an IMPES (implicit 

pressure, explicit saturation) fashion to simulate phase saturation. The 
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proposed method has been validated against analytical and finite-difference 

predictions. 

2. The phase concentration/saturation is constructed from the particles 

distribution using the non-parametric kernel estimator. The bivariate Gaussian 

kernel estimator, as well as an automatic and adaptive bivariate density 

estimator based on the estimation of marginal and conditional density 

distributions, have been adopted. The kernel technique helps to avoid 

statistical bias with a reduced number of particles. This aspect represents a 

significant improvement to the overall computational efficiency, when 

comparing to other existing formulations that entail the use of a large number 

of particles. 

3. The particle-tracking model is integrated into a new workflow to scale up 

effective multi-phase flow functions. The main contribution is that this 

workflow takes into account the sub-scale variability explicitly. Conditional 

probability distributions of effective functions at the transport modeling scale 

are established; cloud transform and Monte Carlo simulation techniques are 

performed to sample from these distributions. 

4. As shown in the case study, the uncertainties exhibited by the coarse-scale 

models, which are constructed in accordance to the proposed procedure, are 

consistent with the response obtained from the fine-scale model. 

5. Extension to 3-D models and effect of gravity will be investigated in future 

work. 
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Table 6.1: Parameters used for the particle-tracking model validation 

 

General parameters Value Unit 

Independent intrinsic permeability (K) 1.00E-13 m
2
 

Porosity (ϕ) 1.0   

Irreducible oil saturation (Soi) 0.2   

Irreducible water saturation (Swi) 0.2   

Oil relative permeability (Kro) Fig. 3   

Water relative permeability (Krw) Fig. 3   

Non-wetting fluid (oil) viscosity (μo) 0.0005 Pa*s 

Wetting fluid (water) viscosity(μw) 0.001 Pa*s 

Reservoir initial pressure 2.00E+07 Pa 

Capillary pressure (Pc) 0.00E+00 Pa 

Water injection rate 0.216 m/day 

Eclipse parameters 
 

  

Number of grid cell in X direction 100   

Grid cell size in X direction 0.2 m 

Grid cell size in Y direction 1.0 m 

Particle tracking parameters 
 

  

Number of grid cell in X direction 20.0   

Grid cell size in X direction 1.0 m 

Grid cell size in Y direction 1.0 m 

Time step size 1.0 day 

Number of oil particles per grid cell 

(uniformly) 100   

Number of water particle injected per time 

step 100   
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Figure 6.1: Particle representation of a system with two phases: oil (green) and 

water (blue). 

 

 

Figure 6.2: Flow chart of the particle-tracking scheme for modeling two-phase 

immiscible flow. 



 

215 

 

 

Figure 6.3: Water-oil relative permeability functions used for the particle-

tracking model validation. 

 

 

Figure 6.4: 1-D Validation: Distribution of water (blue) and oil (green) particles 

at t = 0 day (top), t = 10 days (middle), and t = 20 day (bottom). 
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Figure 6.5: 1-D Validation: Water saturation profile at: (A) t = 10 day and (B) t = 

20 day. 

 

 
 

Figure 6.6: 2-D Validation for Homogeneous Reservoir: Distribution of water 

(blue) and oil (green) particles at t = 0 day (left), t = 10 days (right). 

 

 

Figure 6.7: 2-D Validation for Homogeneous Reservoir: Water saturation profile 

by (A) particle method and (B) numerical simulation at t = 10 day. 
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Figure 6.8: 2-D Validation for Heterogeneous Reservoir: Porosity distribution. 

 

 

Figure 6.9: 2-D Validation for Heterogeneous Reservoir: Distribution of water 

(blue) and oil (green) particles at t = 0 day (left) and t = 10 day (right). 

 

 

Figure 6.10: 2-D Validation for Heterogeneous Reservoir: Comparison of water 

saturation profiles at t = 10 day obtained by (A) proposed particle-tracking 

method and (B) numerical simulation. 
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Figure 6.11: Schematic of the optimization procedure. 

 

 

Figure 6.12: Model setup for (A) fine-scale, (B) coarse-scale, and (C) sub-grid. 
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Figure 6.13: Histogram of porosity of (A) fine-scale model, (B) coarse-scale 

model, and (C) sub-grid model. 

 

 

Figure 6.14: Variogram of porosity for (A) fine-scale model and (B) coarse-scale 

model. Red: direction of maximum anisotropy; blue: direction of minimum 

anisotropy. 

 

 

Figure 6.15: Distribution of porosity: (A) fine-scale model, (B) coarse-scale 

model, and (C) sub-grid model. 
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Figure 6.16: (A) Water saturation profile at producer in the sub-grid model and 

(B) reduction in objective function according to Eq. (6.26). 

 

 

 

Figure 6.17: Histograms of 
maxrwK  and 

maxroK  corresponding to = 0.25. 
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Figure 6.18: (A) Oil production rate and (B) water cut at the production well of 

the “true” fine-scale model (black) and coarse-scale models (orange). 
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Chapter 7: Conclusions & Recommendations for Future Work 

 

7.1 Conclusions 

  Particle-tracking based techniques, which are free of numerical 

dispersion, is an appropriate tool for studying scaling of dynamic 

transport-related properties. 

 As opposed to the scaling characteristics of static properties such as 

porosity, dynamic transport-/flow-related properties may increase with 

scale, and the associated uncertainties may increase or decrease with scale, 

depending on the underlying heterogeneity distribution. 

 Ignoring the spatial variability in scaled-up effective dispersivities could 

not properly capture the effects of sub-scale variability, causing the overall 

uncertainty in the final recovery response to be overestimated. Apart from 

the sub-scale heterogeneity, the large-scale and sub-fine-scale (sub-grid) 

heterogeneity also play an important role in both flow-transport modeling 

and scale-up because the non-Fickian features such as heavy-tailed multi-

peaked effluent history and early breakthrough are dramatically more 

pronounced. 

 The purposed particle tracking algorithm to model non-Gaussian transport 

behavior shows good agreement with the analytical solution. 

 Also, the purposed particle tracking algorithm to model multi-phase 

immiscible flow shows good agreement with the analytical and finite-

difference predictions.       
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  7.2 Contributions 

 A new framework is proposed to scale-up dispersivities for single phase 

flow as well as multiphase function for multiphase immiscible flow using 

particle tracking transport. Combining statistical scale-up with particle-

tracking transport modeling for flow-based upscaling is novel. The 

proposed method allows uncertainty due to sub-scale variability, large-

scale variability, and variability below the fine-scale variability to be 

captured. 

 In comparison to other existing scale-up procedures, three key novelties of 

this work are: (1) effects of numerical dispersion is controlled or 

eliminated; (2) steady-state assumptions are not required; (3) the method is 

flexible to handle a wide range of multivariate distribution of 

heterogeneous variables.  

 A new stochastic particle-tracking transport modeling tool is developed. It 

facilitates the modeling of solute and phase transport in single- and 

multiple-phase flows. It is flexible to handle continuous injection, multiple 

sources and non-Fickian behavior. 

7.3 Recommendations for Future Work 

The particle-tracking method is a more accurate way to model transport 

phenomenon alternative to the numerical methods because it is free from 

numerical dispersion and does not require discretization. Moreover, incorporation 

of this method in scale-up procedure gives additional benefit. There are a number 

of suggestions on which further research is recommended: 
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 The particle-tracking method can be easily extended to model transport in 

fractured porous media in single-phase flow. 

 The particle-tracking method can also be easily extended to model 

miscible displacement process in heterogeneous porous media as well as 

in fractured porous media. 

 The particle-tracking method should be extended to model transport in 

transient flow. 

 Convolution technique can be incorporated with particle-tracking method 

to model continuous injection process as well as the multi-injection point 

process. 

 The presented particle-tracking approach to model multi-phase immiscible 

flow ignores the capillary pressure effect. Its addition to the approach 

would be great improvement to the particle-tracking method. 

 Upscaling of transport using particle tracking in facies scale-up would be 

good study to address real field problem. 

 The particle-tracking method could be used in subsurface reservoir 

characterization. 

 

 

 

 

 

 



 

225 

 

Bibliography  

Adepoju, O. O., Lake, L. W., & Johns, R. T. (2013). Investigation of anisotropic 

mixing in miscible displacements. SPE Reservoir Evaluation & 

Engineering, 16(01), 85-96. 

Aronofsky, J. S., & Heller, J. P. (1957). A diffusion model to explain mixing of 

flowing miscible fluids in porous media. Trans AIME, 210(12), (pp. 345-

349). 

Arya, A., Hewett, T. A., Larson, R. L., & Lake, L. W. (1988). Dispersion and 

reservoir heterogeneity. SPE Reservoir Eng, 3(1), (pp. 139-148). 

Barker, J. W., & Fayers, F. J. (1994). Transport coefficients for compositional 

simulation with coarse grids in heterogeneous media. SPE Adv Technol 

Ser, 2(2), 103-112. 

Bear, J. (1972). Dynamics of fluids in porous media. New York: Elsevier. 

Bear, J. (1979). Hydraulics of groundwater. New York: McGraw-Hill. 

Becker, M. W., & Shapiro, A. M. (2003). Interpreting tracer breakthrough tailing 

from different forced-gradient tracer experiment configurations in 

fractured bedrock. Water Resour Res, 39(1), 1024. 

Benson, D. A., Aquino, T., Bolster, D., Engdahl, N., Henri, C. V., & Fernàndez-

Garcia, D. (2017). A comparison of Eulerian and Lagrangian transport and 

non-linear reaction algorithms. Advances in Water Resources, 99, 15-37. 

Benson, D. A., Wheatcraft, S. W., & Meerschaert, M. M. (2000). Application of a 

fractional advection-dispersion equation. Water Resources Research, 

36(6), 1403-1412. 



 

226 

 

Berentsen, C. W., Van Kruijsdijk, C. P., & Verlaan, M. L. (2007). Upscaling, 

relaxation and reversibility of dispersive flow in stratified porous media. 

Transport Porous Med, 68(2), (pp. 187-218). 

Berkowitz, B., & Scher, H. (1995). On characterization of anomalous dispersion 

in porous and fractured media. Water Resour. Res., 31(6), 1461–1466. 

Berkowitz, B., & Scher, H. (1997). Anomalous transport in random fracture 

networks. Physical review letters, 79, 4038–4041. 

Berkowitz, B., Cortis, A., Dentz, M., & Scher, H. (2006). Modeling non-Fickian 

transport in geological formations as a continuous time random walk. 

Reviews of Geophysics, 44(2). 

Berkowitz, B., Klafter, J., Metzler, R., & Scher, H. (2002). Physical pictures of 

transport in heterogeneous media: Advection-dispersion, random-walk, 

and fractional derivative formulations. Water Resources Research, 38(10). 

Berkowitz, B., Scher, H., & Silliman, S. E. (2000). Anomalous transport in 

laboratory-scale, heterogeneous porous media. Water Resour Res, 36(1), 

(pp. 149-158). 

Bijeljic, B., Raeini, A., Mostaghimi, P., & Blunt, M. J. (2013). Predictions of non-

Fickian solute transport in different classes of porous media using direct 

simulation on pore-scale images. Physical Review E, 87(1), 013011. 

Binning, P., & Celia, M. A. (2002). A forward particle tracking Eulerian–

Lagrangian localized adjoint method for solution of the contaminant 

transport equation in three dimensions. Adv Water Resour, 25(2), (pp. 147-

157). 



 

227 

 

Bird, R. B., Stewart, W. E., & Lightfoot, E. N. (1960). Transport phenomena. 

Madison, USA: John Wiley & Sons. 

Bolster, D., Dentz, M., & Carrera, J. (2009). Effective two-phase flow in 

heterogeneous media under temporal pressure fluctuations. Water Resour 

Res(45). 

Boso, F., Bellin, A., & Dumbser, M. (2013). Numerical simulations of solute 

transport in highly heterogeneous formations: A comparison of alternative 

numerical schemes. Advances in Water Resources, 52, 178-189. 

Brooks, R. J., & Corey, A. T. (1964). Hydraulic properties of porous media. 

Colorado State University: Hydrology and Water Resources Program. 

Carrera, J., Sánchez-Vila, X., Benet, I., Medina, A., Galarza, G., & Guimerà, J. 

(1998). On matrix diffusion: formulations, solution methods and 

qualitative effects. Hydrogeology Journal, 6(1), 178-190. 

Christie, M. A. (2001). Flow in porous media — scale up of multiphase flow. 

Current Opinion in Colloid & Interface Science, 6(3), (pp. 236-241). 

Corey, A. T. (1977). Mechanics of heterogeneous fluids in porous media. Fort 

Collins, Colorado, USA: Water Resources Publications. 

Cortis, A., & Berkowitz, B. (2005). Computing “anomalous” contaminant 

transport in porous media: the CTRW MATLAB toolbox. Ground Water, 

43(6), (pp. 947-950). 

Cortis, A., & Berkowitz, B. (2005). Computing “anomalous” contaminant 

transport in porous media: The CTRW MATLAB toolbox. Ground Water, 

43 (6), 947-950. 



 

228 

 

Cortis, A., Emmanuel, S., Rubin, S., Willbrand, K., & Berkowitz, B. (2010). The 

CTRW Matlab toolbox v3.1: a practical user’s guide. Retrieved from 

http://www.weizmann.ac.il/ESER/People/Brian/CTRW. 

Cortis, A., Gallo, C., Scher, H., & Berkowitz, B. (2004). Numerical simulation of 

non-Fickian transport in geological formations with multiple-scale 

heterogeneities. Water Resour Res, 40(4). 

Dagan, G. (1982). Stochastic modeling of groundwater flow by unconditional and 

conditional probabilities: 1. Conditional simulation and the direct problem. 

Water Resources Research, 18(4), 813-833. 

Dagan, G. (1984). Solute transport in heterogeneous porous formations. Journal 

of fluid mechanics, 145, 151-177. 

Dagan, G. (1987). Theory of solute transport by groundwater. Annual review of 

fluid mechanics, 19 (1), 183-213. 

Dagan, G. (1989). Flow and transport in porous formations. New-York: Springer-

Verlag. 

Delay, F., Ackerer, P., & Danquigny, C. (2005). Simulating solute transport in 

porous or fractured formations using random walk particle tracking. 

Vadose Zone Journal, 4(2), (pp. 360-379). 

Dentz, M., Cortis, A., Scher, H., & Berkowitz, B. (2004). Time behavior of solute 

transport in heterogeneous media: transition from anomalous to normal 

transport. Advances in Water Resources, 27(2), (pp. 155-173). 

Deutsch, C. V. (2010). Estimation of vertical permeability in the McMurray 

Formation. Journal of Canadian Petroleum Technology, 49 (12), 10-18. 



 

229 

 

Deutsch, C. V., & Journel, A. G. (1998). Geostatistical software library and users 

guide. New York: Oxford university press. 

Di Donato, G., Obi, E. O., & Blunt, M. J. (2003). nomalous transport in 

heterogeneous media demonstrated by streamline-based simulation. 

Geophys. Res. Lett., 30(12). 

Dullien, F. A. (2012). Porous media: fluid transport and pore structure. New 

York : Academic press. 

Durlofsky, L. J. (1998). Coarse scale models of two phase flow in heterogeneous 

reservoirs: Volume averaged equations and their relationship to existing 

upscaling techniques. Computat Geosci, 2 (2), 73-92. 

Efendiev, Y., Durlofsky, L. J., & Lee, S. H. (2000). Modeling of subgrid effects 

in coarse-scale simulations of transport in heterogeneous porous media. 

Water Resour Res, 36(8), (pp. 2031-2041). 

Fanchi, J. R. (1983). Multidimensional numerical dispersion. SPE J, 23(1), (pp. 

143-151). 

Fernàndez-Garcia, D., & Sanchez-Vila, X. (2011). Optimal reconstruction of 

concentrations, gradients and reaction rates from particle distributions. J 

Contam Hydrol, (120-121), (pp. 99-114). 

Fernàndez-Garcia, D., Illangasekare, T. H., & Rajaram, H. (2005). Differences in 

the scale-dependence of dispersivity estimated from temporal and spatial 

moments in chemically and physically heterogeneous porous media. Adv 

Water Resour, 28(7), (pp. 745-759). 



 

230 

 

Fernàndez-Garcia, D., Llerar-Meza, G., & Gómez-Hernández, J. J. (2009). 

Upscaling transport with mass transfer models: Mean behavior and 

propagation of uncertainty. Water Resour Res, 45(10). 

Ferreira, J. A., & Pinto, L. (2014). Non-Fickian tracer transport in porous media. 

Proceedings of the 14th International Conference on Computational and 

Mathematical Methods in Science and Engineering (pp. 543-554). Rota 

(Cádiz), Spain: CMMSE. 

Ferreira, J. A., & Pinto, L. (2015). An integro‐differential model for non‐Fickian 

tracer transport in porous media: validation and numerical simulation. 

Mathematical Methods in the Applied Sciences. 

Fetter, C. W. (2000). Applied hydrogeology. Prentice hall. 

Field, M. S., & Leij, F. J. (2012). Solute transport in solution conduits exhibiting 

multi-peaked breakthrough curves. Journal of hydrology, 440, 26-35. 

Field, M. S., & Pinsky, P. F. (2000). A two-region nonequilibrium model for 

solute transport in solution conduits in karstic aquifers. Journal of 

Contaminant Hydrology, 44 (3), 329-351. 

Firoozabadi, A., & Hoteit, H. (2007). Numerical simulation of complex reservoir 

problems and the need for a different line of attack. Society of Petroleum 

Engineers, 3 (03), 17-19. 

Fleurant, C., & Van Der Lee, J. (2001). A stochastic model of transport in three-

dimensional porous media. Math Geol, 33(4), (pp. 449-474). 

Fogedby, H. C. (1994). Langevin equations for continuous time Lévy flights. 

Physical Review E, 50, 1657. 



 

231 

 

Gao, G., Zhan, H., Feng, S., Huang, G., & Mao, X. (2009). Comparison of 

alternative models for simulating anomalous solute transport in a large 

heterogeneous soil column. Journal of hydrology, 377(3), (pp. 391-404). 

Geiger, S., Cortis, A., & Birkholzer, J. T. (2010). Upscaling solute transport in 

naturally fractured porous media with the continuous time random walk 

method. Water Resources Research, 46(12). 

Gelhar, L. W. (1986). Stochastic subsurface hydrology from theory to 

applications. Water Resources Research, 22(9s), 135S–145S. 

Gelhar, L. W., & Axness, C. L. (1983). Three-dimensional stochastic analysis of 

macrodispersion in aquifers. Water Resour.Res, 19 (1), 161-180. 

Gelhar, L. W., Gutjahr, A. L., & Naff, R. L. (1979). Stochastic analysis of 

macrodispersion in a stratified aquifer. Water Resources Research, 15(6), 

1387-1397. 

Gelhar, L. W., Welty, C., & Rehfeldt, K. R. (1992). A critical review of data on 

field-scale dispersion in aquifers. Water Resour Res, 28(7), (pp. 1955-

1974). 

Gouze, P., Le Borgne, T., Leprovost, R., Lods, G., Poidras, T., & Pezard, P. 

(2008). Non-Fickian dispersion in porous media: 1. multiscale 

measurements using single-well injection withdrawal tracer tests. Water 

Resour Res, 44(6). 

Gylling, B., Moreno, L., & Neretnieks, I. (1999). The channel network model—A 

tool for transport simulations in fractured media. Ground Water, 37(3), 

(pp. 367-375). 



 

232 

 

Haajizadeh, M., Fayers, F. J., Cockin, A. P., Roffey, M., & Bond, D. J. (1999). 

On the importance of dispersion and heterogeneity in the compositional 

simulation of miscible gas processes. In SPE Asia Pacific Improved Oil 

Recovery Conference. Kuala Lumpur, Malaysia: Society of Petroleum 

Engineers. 

Haggerty, R., & Gorelick, S. M. (1995). Multiple-rate mass transfer for modeling 

diffusion and surface reactions in media with pore-scale heterogeneity. 

Water Resources Research, 31(10), 2383-2400. 

Hassan, A. E., & Mohamed, M. M. (2003). On using particle tracking methods to 

simulate transport in single-continuum and dual continua porous media. J 

Hydrol, 275(3), (pp. 242-260). 

Hoffman, F., Ronen, D., & Pearl, Z. (1996). Evaluation of flow characteristics of 

a sand column using magnetic resonance imaging. J Contam Hydrol, 

22(1), 95-107. 

Hong, S. (2010). Multivariate analysis of diverse data for improved geostatistical 

reservoir modeling. Ph.D. Thesis, University of Alberta, Edmonton, 

Canada. 

Hoteit, H., Mose, R., Younes, A., Lehmann, F., & Ackerer, P. (2002). Three-

dimensional modeling of mass transfer in porous media using the mixed 

hybrid finite elements and the random-walk methods. Math Geol, 34(4), 

435-456. 

Itô, K. (1951). On stochastic differential equations (Vol. 4). Rhode Island, Rhode 

Island: Mem. Am. Math Soc. 



 

233 

 

Jha, R. K., Bryant, S., & Lake, L. W. (2011). Effect of diffusion on dispersion. 

SPE J, 16(1), (pp. 65-77). 

Jha, R. K., John, A., Bryant, S. L., & Lake, L. W. (2009). Flow reversal and 

mixing. SPE J, 14(1), (pp. 41-49). 

John, A. K. (2008). Dispersion in Large Scale Permeable Media (Dissertation). 

University of Texas at Austin. 

John, A. K., Lake, L. W., Bryant, S., & Jennings, J. W. (2010). Investigation of 

mixing in field-scale miscible displacements using particle-tracking 

simulations of tracer floods with flow reversal. SPE J, 15(3), (pp. 598-

609). 

Johnson, E. F., Bossler , D. P., & Naumann, V. O. (1959). Calculation of relative 

permeability from displacement experiments. SPE, Vol. 216, 370-372. 

Journel, A. G., & Huijbregts, C. J. (1978). Mining geostatistics. London: 

Academic press. 

Käss, W. (1998). Tracing Technique in Geohydrology. Rotterdam, The 

Netherlands: A.A. Balkema. 

Kenkre, V. M., Montroll, E. W., & Shlesinger, M. F. (1973). Generalized master 

equations for continuous-time random walks. ournal of Statistical Physics, 

9(1), 45-50. 

Kinzelbach, W. (1986). Groundwater modelling: an introduction with sample 

programs in BASIC (Vol. 25). New York: Elsevier. 

Kinzelbach, W., & Uffink, G. (1991). The random walk method and extensions in 

groundwater modelling. In J. Bear, & M. Y. Corapcioglu, Transport 



 

234 

 

Processes in Porous Media (pp. 761-787). The Netherlands: Kluwer 

Academic Publishers. 

Kitanidis, P. K. (1988). Prediction by the method of moments of transport in a 

heterogeneous formation. Journal of Hydrology, 102(1), 453-473. 

Kitanidis, P. K. (1988). Prediction by the method of moments of transport in a 

heterogeneous formation. Journal of Hydrology, 102(1), 453-473. 

Kitanidis, P. K. (1992). Analysis of macrodispersion through volume-averaging: 

Moment equations. Stochastic Hydrology and Hydraulics, 6(1), 5-25. 

Kleinhans, D., & Friedrich, R. (2007). Continuous-time random walks: 

Simulation of continuous trajectories. Physical Review E, 76, 061102/1–6. 

Kolbjørnsen, O., & Abrahamsen, P. (2005). Theory of the cloud transform for 

applications. Geostatistics Banff 2004, 45-54. 

Kreft, A., & Zuber, A. (1978). On the physical meaning of the dispersion equation 

and its solutions for different initial and boundary conditions. Chemical 

Engineering Science(33(11)), 1471-1480. 

Kreft, A., & Zuber, A. (1978). On the physical meaning of the dispersion equation 

and its solutions for different initial and boundary conditions. Chemical 

Engineering Science, 33(11), (pp. 1471-1480). 

LaBolle, E. M., Fogg, G. E., & Tompson, A. F. (1996). Random-walk simulation 

of transport in heterogeneous porous media: Local mass-conservation 

problem and implementation methods. Water Resour Res, 32(3), (pp. 583-

593). 

Lake, L. W. (1989). Enhanced oil recovery. New Jersey: Prentice Hall. 



 

235 

 

Lake, L. W., & Srinivasan, S. (2004). Statistical scale-up of reservoir properties: 

Concepts and applications. J Pet Sci Eng, 44(1), (pp. 27-39). 

Lantz, R. B. (1971). Quantitative evaluation of numerical diffusion (truncation 

error). Society of Petroleum Engineers Journal, 11(03), (pp. 315-320). 

Le Borgne, T., & Gouze, P. (2008). Non-Fickian dispersion in porous media: 2. 

Model validation from measurements at different scales. Water Resour 

Res, 44(6). 

Leibundgut, C., Maloszewski, P., & Külls, C. (2011). Tracers in hydrology. 

Chichester, U. K: Wiley-Blackwell. 

Leij, F. J., Toride, N., Field, M. S., & Sciortino, A. (2012). Solute transport in 

dual‐permeability porous media. Water Resources Research, 48(4). 

Leung, J. Y., & Srinivasan, S. (2011). Analysis of uncertainty introduced by 

scaleup of reservoir attributes and flow response in heterogeneous 

reservoirs. SPE J, 16(3), (pp. 713-724). 

Leung, J. Y., & Srinivasan, S. (2012). Scale-up of mass transfer and recovery 

performance in heterogeneous reservoirs. J Pet Sci Eng, (86-87), (pp. 71-

86). 

Leung, J. Y., & Srinivasan, S. (2016). Effects of reservoir heterogeneity on 

scaling of effective mass transfer coefficient for solute transport. J Contam 

Hydrol, 192, (pp.181-193). 

Levy, M., & Berkowitz, B. (2003). Measurement and analysis of non-fickian 

dispersion in heterogeneous porous media. J Contam Hydrol, 64(3), (pp. 

203-226). 



 

236 

 

Li, L., Zhou, H., & Gómez-Hernández, J. J. (2011). A comparative study of three-

dimensional hydraulic conductivity upscaling at the macro-dispersion 

experiment (MADE) site, Columbus Air Force Base, Mississippi (USA). 

Journal of Hydrology, 404(3), (pp. 278-293). 

Li, L., Zhou, H., & Gómez-Hernández, J. J. (2011). A comparative study of three-

dimensional hydraulic conductivity upscaling at the macro-dispersion 

experiment (MADE) site, Columbus Air Force Base, Mississippi (USA). J 

Hydrol, 404(3), (pp. 278-293). 

Li, X., Koike, T., & Pathmathevan, M. (2004). A very fast simulated re-annealing 

(VFSA) approach for land data assimilation. Comput Geosci, 30(3), (pp. 

239-248). 

Lichtner, P. C., & Kang, Q. (2007). Upscaling pore-scale reactive transport 

equations using a multiscale continuum formulation. Water Resour. Res, 

43, W12S15. 

Lichtner, P. C., Kelkar, S., & Robinson, B. (2002). New form of dispersion tensor 

for axisymmetric porous media with implementation in particle tracking. 

Water Resources Research, 38(8). 

Mahadevan, J., Lake, L. W., & Johns, R. T. (2003). Estimation of true dispersivity 

in field-scale permeable media. SPE J, 8(3), (pp. 272-279). 

Margolin, G., Dentz, M., & Berkowitz, B. (2003). Continuous time random walk 

and multirate mass transfer modeling of sorption. Chemical physics, 

295(1), (pp. 71-80). 



 

237 

 

Metzler, R., & Klafter, J. (2000). The random walk’s guide to anomalous 

diffusion: a fractional dynamics approach. Physics Reports, 339, 1–77. 

Nash, J., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual 

models part I—A discussion of principles. Journal of hydrology, 10(3), 

(pp. 282-290). 

Neretnieks, I., Eriksen, T., & Tähtinen, P. (1982). Tracer movement in a single 

fissure in granitic rock: Some experimental results and their interpretation. 

Water resources research, 18(4), 849-858. 

Neuman, S. P. (1994). Generalized scaling of permeabilities: Validation and 

effect of support scale. Geophysical Research Letters, 21(5), (pp. 349-

352). 

Neuman, S. P., & Tartakovsky, D. M. (2009). Perspective on theories of non-

Fickian transport in heterogeneous media. Advances in Water Resources, 

32(5), 670-680. 

Neuman, S. P., & Zhang, Y. K. (1990). A quasi‐linear theory of non‐Fickian and 

Fickian subsurface dispersion: 1. Theoretical analysis with application to 

isotropic media. Water Resources Research, 26(5), 887-902. 

Neuman, S. P., Winter, C. L., & Newman, C. M. (1987). Stochastic theory of 

field‐scale Fickian dispersion in anisotropic porous media. Water 

Resources Research, 23(3), 453-466. 

Oswald, S., Kinzelbach, W., Greiner, A., & Brix, G. (1997). Observation of flow 

and transport processes in artificial porous media via magnetic resonance 

imaging in three dimensions. Geoderma, 80(3), 417-429. 



 

238 

 

Parker, J. C. (1984). Analysis of solute transport in column tracer studies. Soil 

Science Society of America Journal(48(4)), 719-724. 

Parker, J. C., & Genuchten, M. T. (1984). Flux‐averaged and volume‐averaged 

concentrations in continuum approaches to solute transport. Water 

Resources Research(20(7)), 866-872. 

Pedretti, D., & Fernàndez-Garcia, D. (2013). An automatic locally-adaptive 

method to estimate heavily-tailed breakthrough curves from particle 

distributions. Advances in Water Resources, 59, 52-65. 

Pedretti, D., Fernàndez-Garcia, D., Sanchez-Vila, X., Bolster, D., & Benson, D. 

A. (2014). Apparent directional mass-transfer capacity coefficients in 

three-dimensional anisotropic heterogeneous aquifers under radial 

convergent transport. Water Resour Res, 50(2), (pp. 1205-1224). 

Perkins, T. K., & Johnston, O. C. (1963). A review of diffusion and dispersion in 

porous media. SPE J, 3(01), (pp. 70-84). 

Pickens, J. F., & Grisak, G. E. (1981a). Scale-dependent dispersion in a stratified 

granular aquifer. Water Resources Research, 17(4), 1191-1211. 

Pickens, J. F., & Grisak, G. E. (1981b). Modeling of scale-dependent dispersion 

in hydrogeologic systems. Water Resources Research, 17(6), 1701-1711. 

Pickup, G. E., & Stephen, K. D. (2000). An assessment of steady-state scale-up 

for small-scale geological models. Pet Geosci, 6 (3), 203-210. 

Pickup, G. E., Stephen, K. D., Ma, J., Zhang, P., & Clark, J. D. (2005). Multi-

stage upscaling: Selection of suitable methods. Transport Porous Med, 58 

(1-2), 191-216. 



 

239 

 

Pulloor Kuttanikkad, S. (2009). Pore-scale Direct Numerical Simulation of Flow 

and Transport in Porous Media (Dissertation). Heidelberg University, 

Germany. 

Pyrcz, M. J., & Deutsch, C. V. (2014). Geostatistical reservoir modeling. New 

York: Oxford university press. 

Riva, M., Guadagnini, A., Fernandez-Garcia, D., Sanchez-Vila, X., & Ptak, T. 

(2008). Relative importance of geostatistical and transport models in 

describing heavily tailed breakthrough curves at the Lauswiesen site. J 

Contam Hydrol, 101(1), (pp. 1-13 ). 

Rubin, Y. (2003). Applied stochastic hydrogeology. Oxford University Press, 

Oxford: UK. 

Rubin, Y., Sun, A., Maxwell, R., & Bellin, A. (1999). The concept of block-

effective macrodispersivity and a unified approach for grid-scale-and 

plume-scale-dependent transport. Journal of Fluid Mechanics, 395, 161-

180. 

Saad, N., Cullick, A. S., & Honarpour, M. M. (1995). Effective relative 

permeability in scale-up and simulation. In Low Permeability Reservoirs 

Symposium (pp. 451-464). Denver, Colorado: Society of Petroleum 

Engineers. 

Saaltink, M. W., Ayora, C., & Carrera, J. (1998). A mathematical formulation for 

reactive transport that eliminates mineral concentrations. Water Resour. 

Res, 34 (7), 1649–1657. 



 

240 

 

Salamon, P., Fernàndez-Garcia, D., & Gómez-Hernández, J. J. (2006). A review 

and numerical assessment of the random walk particle tracking method. 

Journal of contaminant hydrology, 87(3), (pp. 277-305). 

Salamon, P., Fernàndez-Garcia, D., & Gómez-Hernández, J. J. (2006a). A review 

and numerical assessment of the random walk particle tracking method. 

Journal of contaminant hydrology, 87(3), (pp. 277-305). 

Salamon, P., Fernàndez-Garcia, D., & Gómez-Hernández, J. J. (2006b). Modeling 

mass transfer processes using random walk particle tracking. Water 

Resour Res, 42(11). 

Salamon, P., Fernandez-Garcia, D., & Gómez-Hernández, J. J. (2007). Modeling 

tracer transport at the MADE site: the importance of heterogeneity. Water 

resources research, 43(8). 

Scheidegger, A. E. (1959). An evaluation of the accuracy of the diffusivity 

equation for describing miscible displacement in porous media. Proc. 

Theory Fluid Flow Porous Media Conf, (pp. 101-116). 

Schlumberger Information Solutions. (2011). Eclipse reservoir 

simulator:Reference manual and technical description.  

Schulze-Makuch, D., & Cherkauer, D. S. (1998). Variations in hydraulic 

conductivity with scale of measurement during aquifer tests in 

heterogeneous, porous carbonate rocks. Hydrogeology Journal, 6(2), (pp. 

204-215). 



 

241 

 

Schulze-Makuch, D., Carlson, D. A., Cherkauer, D. S., & Malik, P. (1999). Scale 

dependency of hydraulic conductivity in heterogeneous media. Ground 

Water, 37(6), (pp. 904-919). 

Simonoff, J. S. (1995). A simple, automatic and adaptive bivariate density 

estimator based on conditional densities. Statistics and Computing, 5 (3), 

245-252. 

Srinivasan, G., Tartakovsky, D. M., Dentz, M., Viswanathan, H., Berkowitz, B., 

& Robinson, B. A. (2010). Random walk particle tracking simulations of 

non-Fickian transport in heterogeneous media. Journal of Computational 

Physics, 229(11), (pp. 4304-4314). 

Taylor, G. (1953). Dispersion of soluble matter in solvent flowing slowly through 

a tube. In Proceedings of the Royal Society of London A: Mathematical, 

Physical and Engineering Sciences, (pp. 186-203). 

Tompson, A. F., & Gelhar, L. W. (1990). Numerical simulation of solute transport 

in three-dimensional, randomly heterogeneous porous media. Water 

Resour Res, 26(10), (pp. 2541-2562). 

Toride, N., Leij, F. J., & Genuchten, M. T. (1993). A comprehensive set of 

analytical solutions for nonequilibrium solute transport with first-order 

decay and zero-order production. Water Resources Research, 29 (7), 

2167-2182. 

Tyagi, M., Jenny, P., & Tchelepi, H. A. (2008). A Lagrangian, stochastic 

modeling framework for multi-phase flow in porous media. J Comput 

Phys, 227(13), 6696-6714. 



 

242 

 

Vishal, V., & Leung, J. Y. (2017). Statistical Scale-Up of Dispersive Transport in 

Heterogeneous Reservoir. In Geostatistics Valencia 2016, ( pp. 733-743 ). 

Springer International Publishing. 

Vishal, V., & Leung, J. Y. (2015). Modeling impacts of subscale heterogeneities 

on dispersive solute transport in subsurface systems. Journal of 

contaminant hydrology, 182, (pp. 63-77). 

Vishal, V., & Leung, J. Y. (2017). Statistical scale-up of dispersive transport in 

heterogeneous reservoir. In In Geostatistics Valencia 2016 (pp. 733-743). 

Springer International Publishing. 

Wang, J., & Kitanidis, P. K. (1999). Analysis of macrodispersion through volume 

averaging: comparison with stochastic theory. Environmental Research 

and Risk Assessment, 13(1-2), 66-84. 

Wang, K., Killough, J. E., & Sepehrnoori, K. (2009). A new upscaling method of 

relative permeability curves for reservoir simulation. SPE Annual 

Technical Conference and Exhibition. Orleans, Louisiana: Society of 

Petroleum Engineers. 

Zheng, C., & Bennett, G. D. (2002). Applied contaminant transport modeling 

(Vol. 2). New York: Wiley-Interscience. 

 

 


