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Low efficiency of P fersiizer can leed 10 excess input costs for the producer and %
depletion of the Earth's supply of P ore deposits. This study wes conducted t0 determine
the fate of P fertilizer within the fertiizer zone in the 3e8s0n of spplication. A gresnhouse
and Paddockwood (Derk Gray Chemozem) solls 10 determine the efficiency of 32 uptaie by
bertey and the distance of P movement from the fersliaer pelist sits. The uptshe of 32p by
however, when the granule of MAP fersiizer wes pleced inside & volume of pest or swaw
the uptske efficiency of 32P by berey incressed. Also, the eficlency of P uptake wes
grestly affected by the position of the band of MAP fersliser. Desp bands 10 cm desp hed
significansly lower uptake of 32P then bends locsted 2cm beside and 2cm below the seed

fortiizer. Five mg P/g 50l wes sdded % the two solls and equilbrated for 2 monthe; the soll
wicaickum phosphet were the minersls cenveling HaPO4" sctivity in soll soltion. The
loss avelisbis soll P fractions with ¥me. However, mest of the added P remeing in the
readily avelishls Resin-P fraction.

in the soll environment affectsd by MAP fersliser added 19 Breton and Paddeckwesd
sompios. the Ca phoshet minerels contrel the HaPO4™ astivity and the sdded P remeine
readily svelisble.
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1.0 _insroducsion

orthophosphete sbeorpeion into the slant cocurs st H § %0 7 and therefore H2P04 2 is the

most avsilsble form ot P for the plant.

orgenic phosphetss. Nucisic acids were found 10 be ss effective ss mOnOpPotessiun

Mdﬁo“-ﬂmnlﬂhﬁiﬁmnmﬂ
VMMGthﬁiﬂﬂdﬂﬂJ‘lh:mdlmﬂ-

would contein 1 10 4 hg Pihe. This valus ls considershly lower then the ¢ " of

plants, P has & vital role in plant groweh.

motaboliom of carbonstes. This energy is stored in adenseine & and i s (ADP




FIGURE 1.1 - Removed because of copyright restriction.

11, The ofect of soktion pH on lonc forms of



m“fbﬂwﬂlﬁl“ﬂﬂFhﬁrﬂ.ﬂF“hhh
meny of which hove iminnd avelishility %0 plents. The major factor sffecting the supply of
sslstive incrense in plant svalishis P.
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humus and other organic metwrisis. The Pi content of thess solls is frequently higher then
that of Po. M occurs in combinations with elements snd cloy minerals. Pi forms speringly
soluble %0 very inscluble complenss with iron, sluminum, and ceicium. And the cley
phosphete compiexes are generally insclubls. The mejor processes of the P cycle are
adsorption onto inorgenic minersie, uptske by plomts and microbiel tumover thwough
immobilization and minersiization. This waneformetion of soll P forms occurs under the
balence of steedy state conditions.

in this thesis the netursl processes of the P cycle were studied 10 dovelop an
understanding of the fate of fersilizer P once added %0 the soll. By studying both soll sohstion
and solid phase cheracteristics resulling frem the reactions of solls with P fertilisers, the
nature of the fate of added P could be determined.

&e__LITERATURE REVIEW

2.1 ___Fhoschorus cvcis in the soll
2.1.1. insroducsion

Phosphorus (P) ecours in soll in meny different ferms. These different forms of soll P
are componants of the soll P cycls; depictions of the soll P cycle such ss Figure 2.1 simply
mode! the wansformetions of sell P between these @iferent forms. In order 10 beteer
understand the sell P cycle, the ferms of soll P will be discussed siong with pessibie
wansformation mecheniems.
2.1.2. Sclid shese P

21.2.1. COeassic P
mmmamm-bmwtxnn."q“

cultivated Alberten selis contain 70-80 a9 Po o' soll (Msiensls, 1908). Only 80 - 70% of
the Po forms have boon identified (MeGl and Cale, 1981; Stowert and Molersher, 1982).
Festers complisating Po






esters (Anderson, 1980) with a significant portion of polyphosphate compounds containing
& small but important lshile
pool of soll P (Jenkinson

make up most of the Po in soll flleck, 1908). Since the plant doss not affect phoaghem,
Wis ion enters im0 orgenic combination largely unsiiered. Thus the P in IP, phospholipids

and nucisic acids is found ss phosphate (Alexander, 1977). P comgprising wp 0 80% of

sohuble iren But Ast with erganis caben (Alowander ot af, 1974). These complenss &re Mmere
eause (P breshdown Sweugh daghosphoryistion by stiasting 8 ghesphste group sdissent %
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the fres hydroxyl provided thet it is not sterically sttached as an axisl group (Wrving and
Cosgrove, 1971). The activity of piwisse is reduced by IP retention by Fe and Al complenss
in acid conditions snd retention by cleys in neutral conditions (Alexander, 1977).

M“Mmh‘mm“md.dﬂﬂmm
joined by phosphate ester briiges. A nirogen bese is then sttached 10 sach suger moleculs.
The evidence for the existence of nuclsic scids in soll is indirect. The presence of nuclsic
ﬂ“ha“hh“ﬂ“““%hdﬁiﬂm
muaondmmmdmmm-dm.
scosunting for § - 10% of Po, and subsequently brohen dewn. Mineraiizstion procesds by
n“Md““ﬂMW”dﬂm
from the products genersted by the depolymerising enzymes (Alexander, 1977).

Phospholipids are esters of fatty scids containing P and compriss 1% of Po. The
concentrations of lipid P were highly correlsted with Pt and soll orgenic carbon in a study in
Seskatchowen (Helstesd and Mciercher, 1978). it hes boon shown thet sciinomycesss are
e majer organioms responsibie for decomposiiien of phospholipids in soll organic metser.
MhMM.OMMQIhhMWh“
populstions (Alesander, 1977). Howewer, phospholipids mey siso be adeorbed 1 ol
conetituents (MGl and Cele, 1981). The impertance of this group of P compounds in
wr.mmummumummn
falsly rapid in the soll system.

Other esters that eriginste from the breshudown of bacteris! coll wells tend 0 be
stsbio in solls. I addfiien, other 28 yot unidensified compenents mey be fermed by
micreblsl sstion (Alsssnder, 1977).

Stutios of Po minesulinstion in soll are net Numereus beosuse of the uncerisingy of
idontifying the erigin of M, sines both Po and M forms coswr smuhancously. Baslly seluble
Po eon b0 converted 1o M relstively quishly by phosphomse ensymes (Cole ot ol 1977).



Thess enzymes are relessed into the soll by microbes and plant roots (Taralder and Jungk,
1987; Tersider and Classen, 1968). The chesrvation thet Po is more verisble in soll orgenic
motser then sre N and S (Delel, 1977) suggests thet Po mey be stabllized by mechenisme
other then those stabilizing orgenic metwr in genersl. The biclogical activity thet reguistes
the simultansous mineralization and immobilization of P is sffected by svelisbie C, avelisble
nutrients, temperature, weter content and soll chemicsl factors such ss pH.

Carbon from growing roots and desd plents is 3 major source of energy for
microbes. The belance betwesn minersiizaien and immebilisstion of P during organic metser
breskdown depends on the C:P ratio of the substrate being uiliized by the microorgeniems
(Whits, 1981). Cheuhen et o (1979,1981) determined thet the rate of residue
wmumdrmmuummuﬁ
C:P ratio of the residue.

The amount and type of casbon sowrce in the soll affects the rate of P
immobilizstion. Celhicss preduces @ lower amount of energy when decomposing and
therefere will decompose st 8 slower rate then simple sugers. However, celivices
decomposiion has 8 higher capecity %0 immebllise P (Singh ot al, 1908); becsuse funge!
mm-nmmmhmwm.tmi
sssimiiste 16 - 20% more carben than bectaris and sctinomycetss snd therelere use more N
and P. Nevertheless, slower decomposiion of coliiess mesns 8 slower rate of P
immebilisstion thus lseving lerger ameunts of avellshie P during inkisl growth when plants
ﬁmumnwmmnaaiﬂ. Readlly ouidizable
carbonacssus compounds proved harmiul 19 the growing plarts beosuse they rapidly
immebiliss very high amounts of svelishie P dwing inkis) stages of growth. Caliess and
orude fiber, bath caslly svelishio 10 farmers in the form of ¢rep wastss, iniiste 8 slow rate
of P immobiisstion Sut he preeses continues for 8 long pesied of time.

When fordiner P is added with esluisss, 88 - 00% of the sdded P wes found in M
forms (Chovhen ot oi, 1981). The addiien of P fertiser without 8 erben Substrate



followed by incubstion doss not significandly asler the Po content of soll and the added P
remeing in inorgenic forms. Readily plant svellsbis P wes grestly incressed by sddition of
fersiizer P. But when cerbon was added with the fersiizer P, the increase in lsbile P indices
were as grest as when P fertliizer was sdded slone (Chauhen et al, 1981).

mmuumanmmmmm
mmdrmunmmmmm
Cole, 1981). The Po level is known 10 be directly relsted 10 the concentration of other
humus constituents. The P content of humus is 0.3 10 1.0% and § 10 20% of the C and N
concentration, respectively (Alexander, 1977). However, Spiers and MGl (1979) detected
mmhMMﬂhwdﬂ.S“CMnﬂM“m
of P.

mmmdrhmmbmnmwm
sdoquete svelishie moisture levels (Abbott, 1978). Sessons! fluctustions of Po heve been
cbeerved in cultivetsd solls (Dormesr, 1972), where soll Po incresses Over winesr and
decresses in spring. Compbell ot &l (1904) chesrved several significant flucustions of Pt
during the growing seescn, which are corelsted o sir tempersture and soll moisture.

Soll organiems function over a wide range of weter contents (Wilson snd Griffin,
um.mmumuu.mwommwa
Weter contonts. Campbell (1873, 1970) found peshs in microblel activity sfier rainfell,
indicsting thet wetting and drying afiects both mineralisstion and immobilizssion.

hh““hMUm‘Mhﬂ*mm
diversity decresses with decressing pM (Tae, 1908). Mingralizstion of Po incressed with
7ises In soll pH but minerafizstion of erganis easbon and total N doss net. These same pi
Mamhuunwnauumdwm
*ﬁ“l.“h““ﬂb“ﬂdm

P“h‘hl”d“““m The complex
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jont in nearly all naturally occurring phosphates. The crystal structures

The Berfinits group s homosw

The Apstite group hes an insuler struchure consisting of columns of Ca and O stoms
apethe is given by Koy et of (1904). From strucewal and composiionsl studies of neswal
An entonsive listing of spetts subgreups is given by Keaidier (1987).
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phase of carbonetites. Francolite is the primery marine phosphete in sedimentary rock.
environmant adjecent 10 plant roots. in more humid regions, where acidity is & consequence
of soll formesion and development, apstites disscive rapidly, relessing their phosphetes it
chronosequence & decreass in Ca-P but did not find & corre ing incresss in AP or Fe-P
90 plants.
insoluble inorgenic phosphates are known 10 be solubliized by different geners of
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phase of carbonstites. Francolite is the primery marine phosphate in sedimentary rock.
Delhiss mekes up the minersl matwer of fossll bone; and i

altered limestone (Lindsay and Viek, 1977).

and Fe or Al an octshedral position. The third position is filled from a group of a lerge

mmh“dlvkmdawﬂvd“mﬂ%“mi
mmduﬂohoﬂnmﬁhmﬂmn

soll solution (Tiessen and Swewert, 1983). Most of the P enters Fe and Al minerals by
substituting for silicate. W.W“Milﬂhﬂdhﬂ“dl

with incressing soll age. hﬂ.?”m“nﬂﬂmﬂﬁﬁﬁhﬂﬂ
to plents.
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concenwration of caicium and P in the soll solution (MacKay et al, 1986).

The use of phoaghets solubliity diagrams hes become well established for describing
P mineral sokibllity in the soll environment (Aslyng, 1954; Lindsay et al, 1959; Lindesy and
Moreno, 1960; Rai and Lindsay, 1975). Sokublity diagrams are constructed by including ion
sctivities in 3 minerals’ equilib: .m reaction. The isclines are pilotted as the reletionship
between pH2PO4 and pH.

Solubiity ieclines sre perticularly usshdl for determining reletive stabilities of
phosphete compounds in solls at verious pH veluss. A supersseurated sokution indicates

P lovels.

For e purpoes of ssssssing soll P, solubliity product isolines can be excellent tools in
determining the kind of P compound thet influences P in the soll sohsion and possihly

Fertliners con bo supplied 0 the sell In mineral form; lergely ss
phosphate (MAPF) and = m phosphate (MCP). As dissohusion of weter-sshuble
rosidues rempining ot epplication sliies of MCP fordilaers. Lot &t of (1960) placed MCP
cantonts and found thet frem 20 - 34% of the applied

oronuins in fhve salls &t we malehs
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P remeined s brushits. With time thess resction products of brushite chenge ®
octacsicium phosphste (OCP) fLeihr and Brown, 1958; Bell and Black, 1970b). The soll
property most widely used 10 predict the ulkimete resaction products is soll pH, recognizing
that pH is itself 3 reflection of degres of westhering, minersis present, exchengesble
cations, and a8 mukitude of other factors.

The solubliisies of P fertiiizer resction products have sieo been described by solubllity
disgrams. These crystaliine minersis are generally much more soluble then the primery P
minerals. The more soluble resction products are more likely 10 be a source of P for plants
then selectively sdeorbed P. Since lsblle phosphete and crystaliine phosphete cosuist in
equilibrium: Lablle P - Sokution P - Crystaliine P.

2.1.2.3. Adeorbed P
Pmmmuuheudnlmammd-pc

varisble cherge. ron and sluminum oxides, amorphous cley minerals and organic metser al
have surfaces thet sliow H* and OH™ 10 determine the surface chergs. Wheress, cryetaliine
mmmmommmmmm
These secondary cley minersis interact through cations held tightly 10 plateliks surfaces.
Hydroxyosuides of Fo and Al are smphoteric, having either negetive, nevirsl or
poshive charge depanding upon pH. As the pH in the soll decressss, the edge hydrexvi
groups become HOH groups. By caiculsting the number of hwdroxyls relessed weugh
mmcummmumdm.nmn“-u
dus %0 8 binuciesr cosrdination of gheaphete lons with two Al stoms. Therefere & is well
wuwmhummmudum-m
hwydrouyl resction (Perfitt &t 8, 1978; Geldberg and Sposieo, 1908). The result of this
mmunmu-mmmmt&tu
m.m-n“o“*“hm.ﬂwm
mumwm-—udmmwwm
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with 8 four-dayer model. The innerma
ions of this second layer differ not only in their affinity for the surface but in thelr mesn
ions (eg: Ne *, CI") bound 10 surface groups. The fourth lever is the diffuse layer.

their specific swrface ut 10 their shape; hecause shape is relsted 0 the reletive axwemt of
adeorption velus of phosphete on gosthiess is sbout 2.5 umal P m™2 (Goldberg and Sposho,
1967).

onto kaolinke is & result of the replacement of specifically adeorbed water molecules at the
woter melscule rather then & hydronyl group. since the pH of the solwtion did et

meq of enshangeshie AVI00p sell when compistaly hydrelvesd mey fix wp to 102 gpm of P
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P sdeorption (Appelt et al, 1538).
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Polyphosphetes form several ionic species in solution. The HaP207 and the HP207
ions sre the predominant polyphosphete species in solution in the pH rangs of most solls.
Polyphosphetes sre metsstable in solls and hydrolyse 1 orthophosphate.

Phosphete ions, ions peirs, and complenss sre present in soll solution, but the
orthophoephetes are the most stable forms. The pH dependancy of orthophosphate apeciss
sllows for the csiculstion of the sctivity of any one of the orhwophosphoric acid species
when the P concentration in solution is known (Figure 1.1). Phoaphats combines with meny
of the d&i- and wivelent cations 10 form ions peirs and complexss. Whenever ionic aceivisies
are caicuisted from total P in schaion, these ion peirs and complexss must be considered. P
is sbeorbed by plants lergely as primery and secondery phosphate ions (H2PO4 and HPO,),
which sre present in solution.

&1.2.2. Fhoschese concenteation resuired by slenta

Maintainence of adequate concentrations of orthophosphats ions in soll solution is
ossontisl 0 plant growth. Clsssen and Burber (1974) use kinetics 10 depict 3 plents
dependence upon the P concentration in soll schation. The required phosphete concentration
in soll solution depends primerfly on the crop speocies and the level of production desired.
Tiedale ot ol (1905) list o range of phosphete concenirations required for the growth of o
veristy of crops, ranging frem 0.003 19 0.3 ppm, with whest requiring 0.01 % 0.03 ppm.
Also, the eptimum ghosphete concentration veriss with the stage of growth and the
Ocouence of swess.

Maintsinence of adequete phosphete cencentration in soll solution depends en the
solid phase P entering inte sslviien % replece the amounts withdrawn by plent uptehe.
There ase owe @iierent thewies explaining the relationship betwesn solid end solution phese
P. The firat describes the quantity (Q) of sell P e the ameunt of P in the selid ghese thet
8015 88 8 reserve and the inssnslty M) refers 1 the shosphete concenvation of soll sshaien.
The sosond theery dupiots an oquilibrum reastion bstwesn soll sslution P and twe lovels of
solid P, e sbils and nen-lshils vastions Barvew, 19000). The labils soll P is the readlly
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movement of non-labille P 1 lablle P,

schaion composition.

2212 3 for Aascaing loos
ore siment shways Co? * >MgZ ¥ 5K * ala® Dot ot o, 1967). Speshe &t of (19830
magnesium.
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Whils the exchange complex is the sowce for the basic cations, metal ions B
of Al and Fe in the fertiliaer schation. As ail these ions enter solution, their resction with the

) valuts changs. The construstion of hese swves requires the eslouintion of




formetion. To ceiculste these ion activities in ¥ presence of mulicherged ione, an

order of incressing solublity, are: Hydraxyepsties BHAP), Cag(PO4)30H; whisiockits (W),
and Grushits (), CsHPO4'2H20. In sddiion 0 these crysisfine forme there s an

ics, 88 can be
Knowisdge of nuciestion rate in addiion 10 Superssturation, S00m %0 be required to

Sommedynamissly stble. Bnuhits owes i widhr Gosumenss 3 ks higher Ausiestion fts,
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the Brusl e crystals precipitass, the amerphous phese disscives st » raee which is relsted
Therefore, the caicium phosphetes which precipitaes first in solutions of high 1
superssturstion veluss of HAP. Abhone ot ol (1968) also found thet no major chenges

e latther. At pH>@, brushie is unstable with respect 10 OCP; the wansformetion telus
place in & fow hours, but is weuslly preceded by an induciion period which mey amount %
ond that & s & hydvous Wisslokem ghosphote (CogiPOq)a'wi20). ACP is sise thought of s
prociphuted from sotutions containing Mg. ACP ls motasteble over the whole H range snd




occurvence of domaing of other phases fLundeger ot al, 1988). For example, 88 ACP
jon of

and nuciestion are sfiected by the phosphatic species which is dominant at the pH of the

Theretore, the sumereus choorvations that brushite is & vishie phese Moy be vased ® the
Mg?* ion cancentration In hess systems.
when phosphete selutions sve added 10 soll o ool SUNEINR. Merens, Brown and Osbeme
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(1960) found thet, st 25 C, brushiss hydrolysed 10 OCP in soll solutions with 8 pH value of
6.38 or higher and thet this hydrolysis resction incressed with incressing pH. They found
HAP in the soll even sftr 44 wesks. This hydvioysis of brushits %0 OCP was noted w0 be
o of Mg of 10°3M. In the presence

of soll schaion Mg, struvie and newberyite precipitste in addition 0 brushiss (Bell and

Khasavwneh ot ol (1974) found that when P fertlizers were bended at a rame of
1.5 w 2om from %he bend. When Bell and Black (19700) pleced 2.28 g MAP on wp of 8

Howowver very fow ressarchers heve been shis w0 estsblish the pressnce of
of P retention adjacent %0 the fertiliser pefiet and 60% ot 8 distance of 16mm.
2.2.1.7. Bale Ie sell P snle

When & P fersliser is adéed %0 soll, s complex sequence of resctions fellows. Theee

portisies. Tharsfare, he ste ot which the sell P oyale retums 0 steady 90000 sendiviens



%0 the crop and its rooting patter, the concenration and closenses of ferdiizer 10 the seed,
svelishie for @ longer period of tme. Band plecement decresses the soll surfece &es In

:——nﬂﬂﬂm-ﬁj-ﬁﬂnhﬁ“d“ A




as
of root-fertiizer contact is optimized and fixation minimized.
plecement in the effective rooting zone generally results in greater efficiency of P use
(Young et al, 1985; Engelstad and Terman, 1980). Slight et al (1984) also concluded that

PMents take up P when it is in solution; in 8 dry climete seed placed P may not eneer
solution and ¥ws would not be avelisble 10 the plent. Herspisk and Beston (1988) found
thet under dry condiions, whest fesponess are greatest when all of the fertiizer P is desp-
content allowing P 1 remain in solution longer. McConnel et ol (1986) aleo found deep
bends 15cm desp %0 be the most efficient depth for P fertiizer uptaks.
reserves rise over time. Wager ot o (1908) found thet & single brosdcest application of 40
ke P he'! inoressed vields for § years and inoressed average visld and P uptake similer
et of snnusl seed placed spplications of 10 and 20 kg P he'!. This indiceses o single
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Particle size of P fertiizer granules influsnces the utilization efficiency of applied P by
affecting the distribution of P within the band and by determining the effective surface ares
of the fertilizer granule.The distribution of fertilizer P within the band, whether continuous or
discontinuous, is shown 10 be an important factor in the efficiency of applied P (Anghinoni
and Berber, 1980; Sieight ot al, 1984). The effective surface ares of 8 fertilizer granule is
releted 10 the resciivity of P with the soll Ximer and Webb, 1968).

it is widely recognized that the optimum distribution of P granules has 10 be weighed
sgainst the rame of P fixstion. Distribution of pelists within 8 bend influences contact of
roots with fertiizer P (Barber, 1974). Nonuniform distribution of fertilizer P within a bend
sffects root contact and thus yvield (Suryker, 1974). Whils it has been shown thet the total
P needs of a plant can be met by 8 single root (Kisss! and Raglend, 1987), i is desiresbile %
have more roots expossd 10 svellsbie P (Siryer et al, 1974). When fertiizer perticies are not
pleced in a continuous bend the number of root fertilizer contacts have 10 iNCresse 10 sttsin
the same yield (Eghbell snd Sander, 1908).

Numerous investigators heve reported incresses in eerly crop response with an
incresss in granule size of weter soluble P fertiizers v - applied at 8 low rate 10 acid solls.
For weter soluble P fertiiser granuies up 10 Gmm diss. .or, effectivenses is relsted % the
smount of weser soluble P per granule which in turn determines the volume of soll sflected
by P (Tayier and Termen, 1984; Semple and Tayior, 1964). Crop responss 10 lerger granules
depends on the prebability of roots finding the very fow diffusion zones at 3 given rate of P
applicstion (Moreno, 1968; ven Burg, 1963).

Granulstion or banding of ceiolum phosphates hes ittle or nO agronemic Sdventege
for sikaling solls. The lscs! soidification near MAP fordiiser 8 NH4-N is nlvified mey
incresse svalishility of P. Schutions, suspensions and selid P ferdlisers hoving similer
schbiities snd when similarly plssed in on sBuline soll ot & given P rew, show eimiler
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avallsbility w0 crops. P solubliity effects related %0 granule size in general wend to be

Particie size of P fertilizer significamly sffects messured crop perameters only on

very low in avelisbie P where vield responess w0 applied P were high.

be anslyeed by menkering the ion concentrations in soll schuion before and shur the
peried.
wnshe of 32p by hertey. Orgunis amendments will slee be used in an sttempt % reduse the




associetion wes tahen from @ fisld which hes received spproximetsly 15 kg P he™' for 38
samples (Ap horizon) of each of thees solis were collacted from O-15cm depth, air dried and

and replecoment of enchengesble smmonium with sedium ions (Chapmen, 1808).
cxvestant (Meieague, 1978). The extvested AQ and DCS sslutions were ansiveed for AL fo




trestments %0 permi 8 clesr idertificstion of the minersis present (De Kimpe, 1978). The x-
3 were prepered using Cok radistion at 50 kv and 25mA, and st 8 scan

speed of 1920 min"!.

Ouring the first pert of the experiment plastic pans were set up in the gree

dotarmine the effect of @ierent fersiiser granule slass and methods of sppfication on P
within the soll. Sloved soll meterisls were placed in each of the 30cm fength) by
N by 20om (height) pene. Esch pan wes an experimentsl unit. MAIZP ferviiser
bends were pleced 2cm below and 2om % the side of the seed row. The locstions of
by badtoy. The MAP forsiiser wes added ot @ rate of 20 by ha™? (ar 0.509 MAP per™).
K280 and MigNO3 were added 0 the sell surfase of ofl westments ot & rate of 20 and 80
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Code fortilizer gramies for amendment/
graule (g) per pot seed row(cm) encabemont

M - i = ) - ; - = —

SolutioaP . - 2 .

0.01g* 0.01 50 2 .

o.10g® 0.10 5 2

0.s0g* 0.50 1 2 .

Straw?® 0.10 5 2 Straw

Peat® 0.10 s 2 Pent

Ohitw o5 » o ;

0.s0g%* 0.50 1 10 .

7 Indicase trestments appiied 0 Brewm sodl only. .
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@gested (Olesn snd Sommers, 1962) and messurement of 32P uptake wes conducted with
Afver the third harvest, soll cores Gcm in diameter were remaved for construcsion of

placoments. The soll cores were sir-drisd in the lshorastory, impregneted with epoxy resin

ae7e).

forsiizer plocoment slteiO-1om, 2-4cm and §-7cmi). Each 2cm diemeter core was then
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and 3.4 show the Kep valuse caicuinted st 25C for sslected P and cloy minersls considered

obtain the sotwation index (B value flog IAPAKep). $1<0, 81=0, and $1>0 In legarithimic
o, 198N,
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by the General Linsar Modals program of SAS (19885).
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4.1.1 insroduction

Both the Breton and Paddockwood solis were developed on glecisl ¥ perent
meterisls. However, the geographical distance between sites suggests the glecisl il perent
moterisls probebly criginated from different bedrock formetions. The geographical location
of the two solis, on the fringes of the boresl forest, would generate similer environmental
condisions responsible for soll formetion. The soll properties reflecting from the perent
meterial and environmental condisions can grestly affect the way added P rescts with the
soll.

4.1.2 Soll Missrciopy
The minerciogy of the cley and sk fractions of ¥he two solls is very similer (Table

€.1, Appondix ). Smectte is the dominant cloy minersl of both solls. The minerclogy of
the cley and sik frections is similer dispite the distance betwesn the two sampling sies.

The most important cheracteristics of the minerelogy of the soll cley fraction thet
relate 10 added P are the ion euchenge porperties. The ion exchange propertiss of soll cleys
vary with the minersl cryetal strvcaws. Smectite minersls heve o lerge CEC of
spprosimatsly 110 omet (+) hg-1 Borchardt, 1877). This high CEC is 8 result of the
dominant pi-independent charge sssesiotnd with smestis minerels. The enchengs cemplex
of omecthe minsrels sllows mest monoveilont and divelent cations % b complensly
enchangeshie ot ol pH velues. A list of the mechenioms invelved in the exchengs resclions
of smestite minerels is eutiingd In Table 4.2.

Miss hes 8 low CEC relative 10 smecthe slay minerais becouse the interiayer estions
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TABLE 4.1. Minerology of the clay (<2um) and silt (2-20 um)
fractions of the Paddockwood and Breton soils.

Soil Fraction HNinerology in order of decreasing

abundance

Paddockwood Clay
8ilt
Breton Clay
8ilt

Smectite, mica, kaolinite, quartz,
chlorite

Quartsz, feldspar

Smectite, mica, kaolinte, quarts,
chlorite

Quartsz feldspar
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- = — L ————

Type of Reaction

C‘2+' K+, NH4+
Hiot
Nat

from exchange

C s, replaced
bymuggiu

Cation exchangs, hydrolysis, and
dissolution of smectite
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Karamides, 1977).
kaolinite is a result of low pH indep

Pt AN i Fron 1 - 83

velues.

omoit+) he'!) then e Brewn semple (14.5 omeli+) he''), and & slse hes higher
The Broton sompies have mush higher valuss of DCB end AO exwractabie AL Fo and

Mn then the



41

TABLE 4.3. Extractable Fe, Al and Mn of
Experimental Soils.

Treatmsat Al Pe Xn

DCs 0.067 0.42 0.029
A0 0.086 0.24 0.029
DCs 0.10 0.62 0.066
] 0.13 0.44 0.080




Plote 4.1.
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The fertiizer history of the two solis previous 10 the time of sampling is quine
ditferent. The application of 15 kg P he’! annually 10 the Peddockwood sample sie for the

Whrough & two month period (Tebls 4.5 and 4.8). The concenrations of Ca2*, Mg?* ene
Na' incressed ot the seme relstive rate and then stsbillzed nesr the same reletive
concentrations.

The incresss and subsequent swbllssion of Co*2, Mg*2 and Ne* lon
concenurations mey be the result of their dominance on the enchenge complex of the twe
cxperimontal solis (Tebles 4.5 and 4.6). Therefors, thelr ion concentration in soll sohaion is

complex. We can then use these equiliirium values 1 determine the effect of MAP feriliaer
sddition % soll.

COnsenirations.
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4.2.1 Scheion Semi-Seswated with MAP Ferslizer
The cherscesristics of a solution satursted with MAP fertilizer are presented in Table

4.7. The pH of a solution ssturated with MAP fertiizer is 3.5 when equilibrium with the
dissolution constant of HaPO4 is attained with an inkisl concentration of 2.9 M. The pore
water extracted from the experimental solls one hour sfeer the application of the low rate of
P fertlizer (Tables 4.5 and 4.6) has cheracteristics similer 10 the solution sstursted with
MAP fortliizer. The pH of the extracted pore water (Tables 4.5 and 4.6) wes slightly higher
and the PO4 and NMH4 concentrations were lower then the solution ssturated with MAP

fertilizer.

4.2.2._Push of iocs iote Sell Seheien
The addlion of MAP % soll coused & wnique and consistent chenge in the lonic

concentrations in the soll pore weter. The EC of soll pore weter drametically incressed with
the sddition of MAP fertllicer (Tables 4.5 and 4.6). The increses in EC of the pore weter
reflected incresses in the ion concentration of sl slements in addition %0 the components of
the fertiiaer sohstion, ammonium and phesphats. One hour after the sddition of the low rae
of MAP fertiliser the ion concentrations were generally two 10 ¥wes times higher than in the
control sell solution (Tables 4.8 and 4.0). The ien concentrations of the besic cations and
silics were slightly higher sfter the high rate of additien of MAP fertiizer. However, the ion
concontrations of ren, mengsness and sluminum were substantislly higher afeer the
atdiion of MAP fertiiiner at the high rate ss compered 10 the low rate (Table 4.8).

Soth compenents of MAP feriiiser sslution, ammenium snd phosphate, dosresss %
similer lovels ot diiferent relstive rates after their addition ®» he soll. One howr after
oddiion, ammenium lon consontretion wes approuimensly ene helf of the phosphete len
concentetion. This rapid dosrense in ammenium isn concentration ssincides with the lon
fush ime ool sshntion after the sddision of MAP fordiingr. The ammenium ion sotwretes the
onshangs complen, dosreasing its soll sslvtion conssntration, snd then relssses the
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TABLE 4.7. Characteristics of Saturated MAP Fertilizer

Solution
Property MAP Solution Value
pH 3.5 ’ o
PO4 (mol/L) 2.9
NHq (mol/L) 2.9

Source: Sample et al., IN Khasawneh et al., Eds., The Role
of Phosphorus in Agriculture, p. 275. Nadison, Wis.; ASA,
1980.
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One month sfter the addision of MAP fertiizer st the low rate the EC of the sol
solutions decressed to0 and levelied off sround 6 dS m!. The decresse in EC reflected
decresses in concentrations of all lons except sulfsts.
with time sfter the initiel flush caused by whe addision of MAP fertiizer st the low rate
(Tables 4.5 and 4.6). These two ions reach sn equilibrium concentration which is below the
control equilibrium concentration (Tables 4.5 and 4.6). The remeinder of the cations in soll

Afwer the high rate of MAP fertiizer wes added 10 the soll, the soll soluion wes
dominsted by smmonium and phosphets 10 such and extent thet only minor chenges in ion

0 sloo quite similer sfar two menthe of oquilbration. However, sfeer ane menth of




two whole units higher then at 2 months (Tabie 4.4).
fertilizer. The soil solution values of calcium and magnesium

fertilizer (Table 4.4).

aifeifs trestments (Table 4.4).

phosphate level in soll solution of the alfsifs westment was half thet of the non-eifalfs
MAP fertilizer.
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yellow, cleer (10Y 8/8) after one and two months of eqguilitration, respectively.

1970s). Similar resuits heve been detecsed here (Tables 4.5 and 4.6). The possible sources

soll 88 8 compiete unit mey not be grestly affected by the low pH dus 0 the bulffering
capecity of cloys and orgenic metser (Bavow and Shew, 1978). However, within the
vicinity of sohnions contsining MAP feriliser, the low pH hes & grest influence on soll
properties which may grestly affect the fate of added P.

in sddition © low pi, the high concentration of ammonium ion in the schuions
88 emmenium 2000000 sotwation (> 7.0) use high ammenium ion 08
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The amwnonium lons in solutions containing MAP fertiizer will affect the ¢

cations on the exchenge complex in & similar manner.

The high exchange properties of amn
0 be repleced with added fentliser ammonium. Therelore, the exchenge complex of

An example may indicte the amount of enchengeshie catien thet ceuld be released
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The low Al ion concentration, undatectad in ofl other pore water extractions both bafore and

Al 8i, Fe, Mg, Na, O, H and K concentrations are directly affected by changes in the

ns of 85, Fe, and Mn would also be in

sohstion because they e retsined st the surfece of cley minersis. The enchange complex

of reastions. Soll selution phosphate con be tied wp in an aey of P miners! presiphietion
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4.5 and 4.6). The enchengeshis cations would be expectsd 10 have higher concenwations

Ca L'! trom ene howr 10 twe menthe sher the adiiien of the low rate of MAP feriiser
(Tebles 4.5 and 4.0), shout 43 mmel PO4 L°! could be tisd up as dicaicium phosphets.

ARy e inhisl ion fash resuliing from the sdditien of MAP ferdiiner, the iens Fe,
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ﬂm ahrated
in soll sohution Mmoves towards amorphous silice equilibrium (pH,810,4 = 3.1) suppory
fram 7 0 4 (Schwertmann and Tavier, 1977).

slica accumuistes 38 an intermediote in supe

sddiion of MAP fortiinw s very low in comparisen 1 the decresss in Ca isn consentration

of the Nigh rete of MAP fortilaer indients o prossnce of o lerge sowes of $ese lans whish
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it of chamicsl ractions betwasn sell

minerals to G soll asluion phosphato consantation of both samples indisste that similer
ST0000000 890 Sotuwing In cash sample.
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Fgwe 4.5. Phosphote minersl stability diagrams for Breton sample equilibrated st field












MAP fertilizer in both solls (Figures 4.5 10 4.8). The supersatursted condidon of the

The similarity in the dynamics of the ion concentrations in soll solution is
remarkable considering the P fertilizer history of the two soll materisis. The solubllity

ood sample site for the 36 yeers prior 10 sampling does not seem 10 have
sffectad the menner in which the soll reacts with added P.

“mmmmm-iubmﬁwﬁhﬂnﬂ“ﬂ




The effects of the aifalfa amended to the soll samples during equilibration can mainly

(aifalfa meal) will slweys couse 8 rise in pH which is due %0 an sccumulstion of ammonie.

of microbisl demend. The deaminstion of amino-ecids with N minersiizetion relessss
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nder, 1977).

of the solution became siigivly alkaline, and the iron content in solution decressed. They
The lower iron and manganees values in soll solution one month after the addition of

The removal of phosphate from soll solution after MAP addition to soll with an

sehution. For example the phosphate in soll sclution smeunted 10 81% of Pt in the Brewn
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somple one hour sfwer the addhion of MAP fertliizer and decressed %0 9% at two month.
The phosphete in soll sclution amounted %0 47% of Pt

in the Paddockwood sample one hour sfter the addision of MAP fertilizer and decressed %
17% at two months. Therefore, %0 understand the fate of added P in the soll it is necessary
0 study the soll P distribution in sddition 10 soll solution dynemics.

The Pt of each soll wes anslyzed by 8 sequentisl extraction procedure (O'Helloran et
al, 1967). The sequentisl extraction procedure sttempts 0 duplicate the effect 8 growing
plent would heve on the system by repestedly deplesting the soll solution of Pi. This
tchnique iscistes the wverious components of the soll P cycle according 0 their
bicsveilebility Roberts and Swewart, 1987).

The extractants involved in this fractionstion procedure are: snion exchenge resin
ipH 8.2), 0.5M NeHCOS pH 8.2), 0.1M NeOH (pH 8.0), 1.0M HCI (pH 3.0) and H2804-
H202 digestion. The sequentiel extraction precedure divides soll Pt into sither five or seven
fractions; two of the extractable fractions, 0.5M NeMHCO3 and 0.1M NaOH can be divided
further imo inorgenic and orgenic components.

in the fractionstion procedure esch extractant is responsible for extracting different
fraciions of soll P (Roberts and Swewert, 1967). Resin- extractable P (Resin-P) is the most
plant svellable form of Pt &k coneiets of the P minerais brushite and OCP, and slso the M
thet is adeorbed 0 %he surface of ssequionides and corbonstes. NeMCO3 extractsble P
(Sicasd-P) is considered to cansist of readily plant svellshis M, slightly lsss svellsbie forme of
the same components extracted by Resin-P and of esslly mineralizshie Po fraction. NeOH
outvectshis P (NeON-P) ramoves both the Ml component sessciotnd with amerphous end
cryetaling Al and Fe, and the Po compensnt assecisted with stshis ergenic ferms. The NCI
orestshis P HCHP eoncists of siabie Co-bound P, ususlly cherscterinsd by HAP. Minglly,



soll pore water was extracted from. Afwr complete n of soll P fracsions,

Paddockwood samples. This decresss in Resin-P with time after the eddision of MAP

mmh-ﬂmmmm: porresponding decresss in

were generslly grenser then decresses in Resin-P. Therelore, phosphete thet wes leeving
ﬂmwmﬁﬂuﬁﬁ“ﬂrmhﬂmnnﬂMﬂ
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Pi

The amount of soll solution P in the Resin-P fraction after the addition of MAP
of MAP fersilizer, soll schstion phosphete virtually equals Resin-P (Table 4.9). However, one

from Teble 4.5) soll whils the amount of Resin-P decressed by sbout 1300 4g P o°! sol
(Tabls 4.9).

wansformations between soll P fractions dwring equilibration were similer 10 Westments

oshution phasphate in Resin-P srengly decrensed with tme (Tabie 4.9). Fer cxample ene
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TABLE 4.9 Soil solution phosphate expressed as a
tage of the Resin-P fraction after the

percen
addition of the low rate of MAP fertilizer

Sample 1hr 30 days 60 days
$

Breton 90 32 19

Breton with

alfalfa 60 é s

Paddockwood 76 66 28
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hour afser the 2ddition of MAP fertilizer, soll solution phosphets amounts %0 60% of Resin-P;
after one month this valus is 6% and sfter two monthe this valus is 8%. Over the two
month durstion of the equiibration experiment, Y1 smount of soll solution phosphete in the
Broton sample with sifalfa amendment decressed by sbout 1674 »p P o' 208 while the

amount of Resin-P decressed by sbout 522 pg P o”! soll (Table 4.9).

differences do exist. For example, there is no messured decresse in Resin-P, however the
soll solution phosphete concentration decresses with time.

The amount of soll solution phoaghste in Aeein-P afer the sdditon of MAP fersizer
1 the Paddockwood semple aiso decresses with time (Table 4.9). For example one hour
ofter the addition of MAP fertiizer, soll schstion phosphets smounts 10 76% of Resin-P; after
one month this vaiue is 06% and sfer two months this valus is 28%. Over the two month
durstion of the equilbration experiment, the amount of soll sohuion phosphete in the
Paddockwood semple decressed by shout 1426 g P ¢! sou, shout one helf of the Breson
velue (Table 4.9). A decresse of Resin-P over this period is ot detecsed.

4.4.3.1 insroduction

Translormetions of P between fractions afeer the sdditien of MAP fenlliaer follow



movement of soll sohsion P v other P fractions ¥wough precipi

found thet afier both five 1 eight years of addition of P ferdiizer 10 two Saskatchewer

The majority of added P in o Braten sample ramaing in the readily svallshie Resin-P
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uptake for the two months.

The incresse of NaOH-Po in the Breton sampies sfter the addition of MAP ferlizer is
the result of complex resctions. The Breton sample hes low Carbon content, 30 the
generation of 600 »g P g™ soll is uniikely. Theretore, the incresse in NeOH-Po is probebly
not actusl Po. The NaOH-Po incresss is probebly the result of sslective adsorpeion of P

mnmwﬁﬁ_ﬂhﬁiﬁn-—ﬂ“ﬁﬂ
is therefere thaly the resukt of adeerption of P 1 Al Ma and Fo erganiss.
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out of soll sclution is not associsted with » decreses is Resin-P. The low decresss in Resin-

content of esch component of the soll P cycle mey reduce the movement of added P sway




within fractions of the greenhouss samples is generally similar to the equiliration &

Large amounts of NeOH-P were found in Breton and Paddockwood semples under
both experimental condisions. NeOH-P socounted for approximetely 20%. of Paddockwood
Pt and 33% of Breton Pt in the gresnhouse soll semples. Wager et o (1908) messured
relotively smell amounts of fersiissr P recoversble by NeOH in Waskade solls wheress
NeOH-P scoounted for 36% of fersiizer P remaining in & Sutheriend soll afeer five yeers.
Therefore, veluse obtained in this experiment are similer 10 those veluss sttained sfeer long




After twes monthe of barley growth,

is similar %0 valuss found in the equilibrated samples and % values found by Wager et al

Afwr thwes monthe of berley growth 75% of the P remeining in Peddockwood
decresse in Resin-P in the Paddockwood sampies of the equilibration study.

s sbout P ransformation




TABLE 4.10. Greonhouse s0il P fractions after P wddition aad 3 months of berley growth.
T ——— Sk of MAP facilbrac pallestey— -

E‘uﬂﬂn
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similerities in P minersl solublity disgrams on' on P fractionstion velues Figures 4.5 and
4.0 and Tabies 4.8 and 4.10),

high quantiiiss of P must be present because of low detaction limits of EDX. Much of the
diswrbution of added P thet is present in low concentrations in the sei, could not be
deteceed.

The concentration of adeorbed P in % per g soll would normelly be 20 low thet &
would not be detected by the EDX. Howewver, the P on the awrface of an ron/menganess
nodule in Plate 4.2 hes concentration high ensugh % be detscnd.

P minersl crystals hove besn found in soll thin sections within & tom radius of 0.10p

odjssent %o soll minerels (Flates 4.3 0 4.8).
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Plete 4.2. Depictions of nodules in Paddockwood sample thin sections nesr the application







Plate 4.3. Dniﬂuuﬂmnm*lﬁmmﬁm
site of MAP ferdizer: (2) The sssocistion of ceicium with added phos
phoaphate accumylations in voids of the sall marix;










Plate 4.6. m“mmmdﬁﬁu
ﬁmﬁhmmmmnnﬂﬁmm -




Plste 4.8. continued: (c) in plene light O; (@ with filters under cross poleriaed Bght (frame
longth = 0.Smm).




resembis gypsum (Plste 4.5). These OCP and Brushite minerals are located in voids left by

4.4.7. Discussion of Thin Section Evidence

The thin section evidence clearly showed detectable P sccumulstions %0 be more
properties themesives.
ferdiiser in the gresnhouss, @id et previde any evidence of P acc . Soate P
in the Peddockwosd sample.

The concistion beotwesn the disvhution of frastions In the grewnhouse and
oquilbration sampies s vory gosd. A geed reistionship slse enists between the sl thin



92
from equilibration soll dets.

definissly contribute 10 the Resin-P fraction.

become more stable and revert 10 the HCH-P fraction.

1.8 %0 2 om frem 8 0.609 MAP peliee. The soll that the added P moves through is & pached
greenhouse soll with feliric as described in Table 4.11. Therefore, 8 large amount of added
Soll and Black (19700).

stisched Swough anion sdserption or grecipheted 88 swrfece cests of Fe or Mn phoaghete
M will give rise 10 high anion enshangs capesity Sossuse of the pH dupandent chergs of the
NaOMN-P fvestien.
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TABLE 4.11. Hicremorphological description of potted gresnhouse soll samples at depthe frem 1 te &
(= ™

- H granic
Tyee; Ratri-granoidic porphyric//porphyric

Desccintion: Dominant fabric type is sstri-grascidis porpyric with cenmsa sstri-perphyris
!:ith. ll.n -t 'r_m: —1:- nrm fres ﬂ.!— n 2.6— -un i- AVerage of l._ m

m-:ue Fﬁyrte !lbﬂ.e are -l.-l mt. Voids are m&;ﬁ a! grm inlil ﬂ“) H:- e
mmiien, irregular, orthe veghs (10%) and compriss of I3%/unit velums of soil. ﬁﬂ.&-‘ velids are also
prosant in a fow areas.

mii nlas =
_m

(L) h-. im. ql-:;gnl. -—pmm: i-in-i ﬁnl lllﬂ i_ﬁim -i
mﬂg amm- -;:nu ﬁl.i-. -ij.e-e o -u -::u.
Blamms fabsin: Meninant fabrie typs is silasspie. Nodules aleos have silasepis fabris.

f T Granie
IYERL Natri-gramoidic perphyric

Ieancistiant Peninant fabrisz type is matri-graseidis porphyrie with froquint setri-grensidis and
jenstis-pacphyris fabric. Sise of grancidis wits very fres O.4em ¢ 1.008 with average of 0.0
dianster. The grancidic waits are senpessd of selil plasss with froguent quarts and foldepar graise.
Sanss of fragueidis pocphyriz fabris sre slee present. Veids ssngriss A of asll valuis and M 2 MR
above the ssad rev. Fine t» sedisn irregular erthe veghe aze freguent with & fow interpaiel aese jeist

m”"-

LaakRER: (i) Conmen dissyets spherisal snidi (ﬁ]ﬂ_ﬂuﬂﬂ“i_jﬂﬂﬂ

chary bundery and Laseller fabrie. “lﬁihi@lﬁl-ﬁﬁl-ﬁ“ﬂ“dli
dissster. (ii) Very fow dissreds, reskanpuler, siagle arth protuln . .




factors that could most essily be adjusted 10 increase the efficiency of P fertilizer on a

The majority of the added P remeined in the Resin-P form (Table 4.10). Significant

d@iNerence in the HCI-P and Residusl-P fractions.

The efficlency of uptshe by berisy frem esch granule sise of MAP fersiiser wes
messwed. The sehution farm of MAP hed higher P uptshs from the Breton soll sample sfter
One Month then ether grenvie slse Westments (Tabis 4.12). This westment probebly hed the
9restent dlaribution of P and wes therefore the mast svalisble for the early growsh of



TABLE 4.12. umﬂnuﬂr l:hghi-n-imnﬂﬂh 24, P

28 59 123 2.1 sS4 12.3
25 58 115 20 61 11.9
25 6.1 119 23 és 12.6
1.5 [ % ] 123 1.7 ¥ 10.9
22 &) 121 10 72 133
23 7.1 14.2 2.7 1 ] 138
07 49 8.0
o9 55 2.2
) L ¥ ] 39 L ¥ ]
!ﬁ*lﬂlﬁiﬂnl_dﬂﬁgﬂmﬂm“
sdded ot rates of 20 and 30 kplha, seapectively.

Fentliiner was dissslived waler and sdied 25 & band.
mﬁﬂlﬂgﬁuhﬂm

“an p




“The large 0.50g peliet had significantly lower uptake of added P afser the first month
of berley growth on both soll sampiles then the other granule size westments (Tabile 4.15).
The nerrow distribution of MAP fertiizer in this westment was probably responeible for the
low uptake of sdded P. By the end of the second month the P uptake from the 0.50g
granule size trestment wes similer 10 restments of other granule sizes. By the end of the
third month the uptake of added P from the 0.509 granule size trestment wes the same ss
the other granule size trestments for the Breton sample but was significantly higher then the
other granule size trestments for the Paddockwood sample.

4.5.2. Discussion of she Effect of Geanule Sice of MAP Fentilizar on Phoschorus Unsake sod

mmuummurmummn
restments indicete the same resctions are occurring nesr the fertitzer pelist regardises of
the size. One might expect, that with a lerger surface ares, more P of the smeller size
wrestment would become fixed. However, since the mejority of added P remeins in the plent
avalishble Resin-P form, no difference in crop P uptsie is detected betwesn granule size
westments.

P uptshe by berisy wes generally unafiecssd by the granuls sise of MAP forsiiner.
Differences that enisted sfer the first menth were gone afeer the second menth In mest
0800s. The lowering of the @iWeronse In uptshe of added P from the solls shows the
bufiering offect the soll P oyele hes. The selwtion form of MAP hed significantly higher
wtshe of added P from the Breton sompls sfer ene menth. This is grabebly e result of
%o grester initisl P dlovibution resuhing frem sohstion spplication. The sbesnce of any
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19688).
fractions in the soll neer the deep banded pelists is similar 10 that neer the of the shallow

hﬁFﬂﬂﬂﬁdlﬂ.nmﬁﬁhﬂﬁﬂﬁm




TABLE 4.13. Barley harvast weights of dry shoot material from Braton and
hiﬂ#—qﬂuﬁ:*-—.

s _““hﬁﬂﬁﬂﬂ“




potentisl then the surrounding soll at fleld capecity causing weter 10 move towards the

uptake.

5.0 Conciusion

conclusions were dravwn:
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of sdded phasphete with soll ions result in the production of P mineral precipitatss. The
caicium phosphete minerals Brushite, OCP and TCP form adjecent 1o soll minersls in voids

4) The granule sise of MAP fersiiser applied ot & rate of 20 kg P ha™! has 2 minime! effect
O the efficiency of P uptshe. The lerger surface ares and wider diswribusion of the smalier
sise (0.019) fertiizer granues and of the sclution forme of MAP fersitaer result in higher
inkis! uptshe of added P. ersely the emell surface eres and poor disribution of the
16799 10.509) fortiloer granule resuhs in low initis) uptshs of added P. These eflects ety
100004 for the first manth Becouse by ¥he 20cond Mmonth the P uptahe wes similar for of sise
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minerals.
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