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ABSTRACT

Bitumen and heavy oil resources in Alberta are located in unconsolidated sediments
displaying the characteristics of cohesionless soils. Cyclic steam stimulation in these

deposits leads to hydraulic fractures and material dilation or contrection.

Recognizing the nonlinear nature of the formation deformation, a project was car-
ried out to develop a coupled three-dimensicnal thermal numerical model including elasto-
plastic geomechanics. Two models were eventually implemented. A fully finite element
model, the natural choice, was unable to solve satisfactorily the complex nature of ther-
mal multiphase flow in a porous medium. A coupled finite element deformation model
and finite difference flow model was successful in modelling flows, heat transfer, and

formation deformation.

The coupled finite difference/finite element model was run for different cases of grid
size and injected steam slug size, to observe the different material responses. It was found

that lower degrees of coupling provide useful information at considerably lower computing

cost.

The results indicate that the material disturbances should be included to model oil

recovery processes in these unconsolidated sands.
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Chapter |

INTRODUCTION

The recovery of heavy oil and bitumen from unconsolidated siliclastic sediments is considerable
in central and eastern Alberta, western Saskatchewan, and elsewhere, particulerly in the U.S.A. und
Venezuela, While production has been established from these sediments for many decades, the degree
of understanding of the reservoir mechanics giving rise to the production has varied considerably. In
certain instances, the ability to predict a reasonably accurate production response to a given injection
strategy has been poor, Lack of confidence in predictive ability, in turn, leads to the downgrading
or outright cancellation of oil recovery projects, where an economic return might instead have been
possible. This reflects a natural fear of making a large capital investment in what turns out to be

an unprofitable venture.

One component missing from the conventional reservoir engineering analysis of these uncon-
solidated formations is the inclusion of geomechanical behaviour to a greater degree than usually
consideved in parameters such as pore compressibility. In the particular instance of thermal recovery
of bitumen from the Athabasca oil sand by steam injection, the economic return depends mainiy on
the rate of mohilisation and subsequent recovery of bitumen in the sand. The rate of mobilisation
of bitumen is clearly a function of the areal distribution of the injected heat energy—the wider the
baetter, provided sufficient heat is available. The recovery of mobilised bitumen is thereafter primar-
ily dependent on gravity drainage, hence on the combined vertical and horizontal conductivitics of
the porous medium in the zone of mobilised bitumen.

The injection of steam or another hot fluid into a formation saturated with essentially immobile
bitumen can take place only through the parting or fracturing of the tar sand. This situation persists
until the injected fluids reach a nearby well or a pressure sink such as an aquifer. The formation
must be parted to inject steam in a classic cyclic steam stimulation process, unless communication
to the nearby sink is established by some other means, e.g., through a layer containing mobile water.
In each injection cycle one would hogpe that the parting was made in & relatively cool bitumen zone,
where the heating would be most beneficial. The parting orientation and position is a function of
several parameters—local ones such as lithology, pore pressure, local concentrations in total stress,
material properties, and the far field effects of the regional principal stresses. The inclusion of all
these effects should lead to a useful prediction of the distribution of heat and hence the rate ot
bitumen recovery. Usually, the variation in lithology is rarely known in detail, and when it is, it

overwhelms our ability to include such fine detail. This information can only be incorporated on



some averaged level, Pore pressures usually can be calculated with confidence, using the now classical
tools of reservoir simulation. The incorporation of the local and regional stresses beyond that of
pore compressibility remains only a recent development. Pore compressibility, used in traditional
reservoir simulation, generalizes the matrix response to changes in effective stress by providing

porosity change as a function of pore pressure.

The unconsolidated sands exhibit significantly different behaviour from that of typical cemented
sandstone and limestones, which are characterised by elastic behaviour, linear and non-linear. The
key differences are those of failure followed by irrecoverable strains and the phenomenon of dilation
associated with shear deformation. These phenomena are the result of the interaction of individual
grains grating against and riding up on top of each other to accommodate the applied loads. Both
phenomena have significant consequences—the high possibility of a limiting load, and the disruption
of the material (abric so that it is dilated and most likely has enhanced permesbility. The dilation
ultimately must increase the compressibility of the material because of the evolution of gases from
solution. If the material is sheared then the pore compressibility will also change. Note that the
appearance of even a 5% gas saturation in a shallow oil reservoir (p; = 1.4 MPa) can cause an

increase of more than 20-fold in the effective compressibility.



Chapter II

REVIEW OF LITERATURE

The topics covered in this research can be classified broadly as the application of finite elements
to multiphase, thermal fluid flow, and the incorporation of geomechanics in traditional numerical
thermal reservoir models, with particular emphasis on the behaviour of oil sands. Accordingly, the
literature review has been divided into three sections: finite elements applied to multiphase flow,
the material behaviour of oil sands, and the inclusion of geomechanics in current reservoir modelling

technology. The section on il sand material behaviour also constitutes a general description.

2.1 Application of finite elements to mulitiphase flow problems

The finite element method has been used successfully in solid mechanics and single-phase
potential flow for many years. However, the method has been extended to multiphase flow only
with differing degrees of success. Nevertheless, in the past decade, the conditions for successful
finite-element simulation of multiphase flow in porous media have been coming to light. Two arcas
have been predominant—that of oil and water flow and that of steam and water flow. That is, in
petroleum and geothermal reservoir simulation. A review of the most pertinent literature to the
application of the finite element method to immiscible multiphase flow in porous media is made over

the next few pages. The review is divided into two sections—isothermal and thermal flow.

2.1.1 Literature survey for isothermal flow

The first clear attemjt to use the finite element method for fluid flow in porous media that
appeared in the petroleum literature was in 1968, by Javandel and Witherspoon. They formed a
variational principle for the flow of a single fluid through an isotropic, homogeneous porous medium.
The numerical solutions were compared with the Theis (analytical exponential integral) solution for
infinite, bounded and layered radial systems with either constant terminal rate or pressure constraints

and were found to be good.

In 1969, Cavendish et al. applied the Galerkin principle to the two-dimensional elliptic partial
differential equation describing the flow of a single fluid. Bilinear Hermitian functions were used to
approximate the pressure distribution and pressure gradients in rectangular elements. Wells were

introduced as point sources or sinks to form non-smooth subspaces. More accurate approximations



to the pressures around wells were made by adding basis functions, such as an analytical radial
solution, to the element. The workers concluded that their application of Galerkin’s method was

more accurate and computationally more efficient than the finite difference method.

Zienkiewicz and Parekh (1970) investigated the solution to transient field problems in two and
three dimensions by isoparametric finite elements. The physical example given was the transient heat
conduction problem with mixed boundary conditions. The workers applied the Galerkin principle
to write the weighted residual equation which was then solved for four examples using linear and
quadratic isoparametric elements in two and three dimensions. The examples compared well with
the analytical solutions.

The first multiphase problem to be solved by the application of Galerkin's method was pre-
sented by McMicheel and Thomas in 1973. The workers analyzed three-phase flow in a two-
dimensional domain subdivided into linear finite elements. Reportedly, no difficulties were encoun-
tered in finding the solution at each time step. The evaluation of all the reservoir properties at each
quadrature point for numerical integration appeared to obviate the need for upstream weighting
for numerical stability. This result is not in accordance with later studies of the multiphase flow
problem by the finite element method.

Huyakorn and Pinder (1977a) applied a weighted residual method to the two-phase flow prob-
lem in one and two dimensions. This formulation required asymmetric weighting functions which
degenerated to the basis function when all nodes in an element “vere accorded equal influence. Oth-
erwise, upstream nodes were given more weighting in the asymmetric scheme. Such an asymmetric
scheme is known as the Petrov-Galerkin method. In addition, the influence of the accumulation
terms at neighbouring nodes was removed by lumping the element mass matrix to give a more
stable solution. A two-dimensional example of a five-spot was used to show that grid orientation
effects were negligible in this solution scheme. In 1978 Huyakorn and Pinder further explained the
asymmetric weighting functions, and the conditions for their derivatives to be valid. The results
using the asymmetric weighting scheme were compared with other upstream weighting schemes for
the finite element method. The Newton-Raphson and fully-implicit chord slope incremental methods
were compared as means of linearizing the original equations, Both methods proved stable at large
time step values,

The use of higher order approximation functions, rather than upstream weighting, was chosen
by Spivak et al. (1977) for a two-dimensional, two-phase flow problem. The Galerkin procedure
was successfully applied to the IMPES formulation of the governing equations in the presence of

favourable and unfavourable mobility ratios. Numerical dispersion at the front was less in both cases



than with finite differences. Subsequently, a semi-implicit linearization of the saturation equation was
employed to improve solution stability. The approximation to the pressure solution was augmented
by logarithmic functions in the vicinity of point sources and sinks. Grid orientation effects were not
observed when the mesh for a quarter five-spot was rotated 45°. A three point (in one dimension)
Gaussian quadrature scheme was used to evaluate the integral expressions. No improvement in the
solution was observed when higher order quadrature schemes were used. In 1977 Hayes, et al,, also
discussed the approximation to the pressure solution around a well. An improvement was obtained

by locally adding a logarithmic distribution around the singularity.

Wilson and Casinder (1978) studied the problems arising from the application of Galerkin’s
method to the two-phase problem, when cubic Hermitian functions are used to approximate the
primary variables, Welis were represented by point sources and sinks. The mass matrix was lumped
for solution stability. The solution to the Buckley-Leverett problem could be improved either by using
a constant pseudo-capillary pressure gradient or by adding upstream weighting to the quadrature
points. A modified fractional flow curve was also required.

Lewis et al. (1978) applied the Galerkin method to the two-phase problem in two dimensions.
The problem was reformulated in terms of the half-sum and half-difference of the wetting and non-
wetting phase potentials. A predictor-corrector method was then used to solve the problem in the
time domain. Solution surging, or oscillations, were noticed near the shock in the Buckley-Leverett
example. Mesh refinement at the front reduced the surging, as did lumping the mass matrix.

However, mass matrix lumping reduced the accuracy of the solution.

In 1979, Dalen presented a simplified finite element model for gas or water-oil flow, using linear
triangular elements. The mass matrix was lumped for stability. A methed for using the mobilities
at upstream nodes in the element flow matrix was incorporated into the Galerkin scheme. The
model was applied successfully to a two-dimensional example of a waterflood. In that case the grid

orientation effect was considered to be comparatively small.

White et al. (1981) took the same approach as Lewis, et al., (1978), but used an upstream
Gauss quadrature scheme. This was achieved by bringing the mobilities into the integral and using
the values at upstream Gauss points. The scheme was not successful in certain finite elements of
the five-spot example. The reformulation of the problem in terms of half-sums and half-differences

of the two phase potentials decoupled the primary variables. This permitted a large reduction in
the amount of work required to soilve the equation set.

Allen and Pinder (1983) used orthogonal collocation to solve the one-dimensional convective-



dispersion transport equation. Upstream weighting of the collocation points was necessary to find
the correct (analytical) solution in the Buckley-Leverett case. Upstream weighting was achieved by
adding a quartic term to the Hermite cubics, which resulted in an asymmetric interpolation scheme,

Also in 1983, Mohsen and Pinder investigated one-dimensional collocation with finite elements
in order to solve the Buckley-Leverett problem. Hermite cubic polynomials were used everywhere
but at the front, where the variables were interpolated in one or two adaptive elements by Hermite

quintics. The asymmetric interpolation scheme was used to weight the upstream collocation points.

Allen (1984a) discussed the validity of using upwinding (upstream weighting) in the finite ele-
ment method. Upwinding was required when centered schemes failed to “impose proper uniqueness
criteria,” Cauchy problems such as the Buckley-Leverett problem might only possess weak solutions
(solutions satisfying only the integral form of the defining equation, thereby admitting the possibility
that the solution may not be sufficiently differentiable to satisfy the defining equation everywhere).
In that case, the correct shock (front) requires the weakest solution to depend continuously and
stably on the initial data.

Chavant ot al, (1984) used mixed finite elements to investigate two-dimensional, two-phase
incompressibi. fow. The flow equations were formulated in terms of a global pressure and a reduced
saturation. The global pressure was approximated by a constant function, and the reduced saturation
by a linear functicn. Upwinding of the solution equation was introduced at the upwind boundary in

the form of a Godunov saturation. The simulated quarter five-spot examples gave good resuits.

Cohen (1985) compared several finite element methods by applying them to one- and two-
dimensional surfactant/polymer simulators. He considered the Petrov-Galerkin, the standard up-
wind and th. negative-dispersion methods. Linear and bilinear approximation functions were used,
with analytical and 2x2 Gaussian integration. In all the examples the Petrov-Galerkin formulation
provided sharper fronts. The standard upwind method (using upstream quadrature points) dispersed
the front considerably. The addition of negative dispersion to the standard Galerkin formulation pro-
vided a solution between the other two methods. Straightforward application of Galerkin's method

yielded a sharp front with oscillations in the downstream solution.

Guibrandsen and Wille (1985) applied the Galerkin method directly to two-dimensional, two-
phase flow. The Newton-Raphson method was used to linearize the weighted residual form, which
was approximated in time by backward Euler differences, The spatial domain was divided into
rectangles and approximated by bilinear functions, A sharper front was noticed when the capillary

pressure was not simply a constant function of saturation, but oscillations in the solution still



occurred downstream of the [ront. However, no serious solution instability occurred. An interesting

example was the displacement of oil through a reservoir with a sinusoidally-shaped cross-section.

Ewing (1989) proposed mixed elements solving for pressure and velocity as being most appro-
priate for miscible and immiscible two-phase reservoir flow problems. Velocity was chosen as the
primary variable to ensure that it remains a smooth function in space, despite step changes in reser-
voir properties governing flow. Higher order functions were considered useful if they were modified
in the region of sources or sinks. Operator splitting is advocated to excise the purely hyperbolic
portion of the equation, whi %1 can develop shock solutions. This portion is solved in time using the
method of characteristics. The paper is a review of previous work done separately on each of the
main sections,

2.1.2 Literature survey for thermal flow

Faust and Mercer {1976) investigated the solutions to the geothermal problem using finite
difference and finite element methods. Water only and water/steam systems with zero capillary
pressure were considered in an areal model. Phase change in a vloc or element was forced to oceur
at the end of a time step for greater solution stability. Oscillations in the finite element solution to the
two-phase problem occurred. No upstream weighting scheme was employed in the two-dimensional,
linear and quadratic, isoparametric quadrilateral finite elements. Newton-Raphson iteration was not
successful when applied to the finite element method approximation to the two-phase problem.

Huyakorn and Pinder (1977b) introduced asymmetric weighting functions for convective terms
to form a Petrov-Galerkin scheme for the two-phase geothermal problem. The asymmetric weighting
functions provided extra influence from upstream nodes in linear triangles and quadrilaterals. The
mass matrix was lumped to improve the solution stability. A novel scheme to evaluate the derivatives

of non-linear coefficients at & node during a phase change was presented.

Aktan and Farouq Ali (1978) applied Galerkin's method to the flow of hot water in a two-
dimensional model using linear triangles. The mass and energy balances (in p,, and T") wer solved
in a cyclic iteration to a given tolerance. Changes in the principal stresses in the formstion were
then evaluated using thermoelastic theory for plane strain. Gravitational and capillary forces were

not included in the analysis. The study was aimed at the evaluation of stresses in the system.

Voss (1978) applied the mixed Galerkin/Petrov-Galerkin method to two-phase geothennal flow
in one- to three-dimensional, linear, isoparametric elements. The governing equations were developed

by volume averaging point conservation equations, The weighted residual form of the equations were



then solved for incremental change in p,, and h. An inverse iterative scheme was provided for those

nodal solutions crossing the phase boundaries which did not restrict the time step size.

Karaharoglu et al, (1985) developed a fully-coupled finite element solution for hot water flow
in a two-dimensional deforming reservoir. The mixed Galerkin/Petrov-Galerkin method was used to
define the weighted residual form. Asymmetric weighting functions were applied to the convective

terms only. The time domain was discretized into linear finite clements.

Lewis et al. (1985) used the Galerkin method to find the weighted residual forms of the water
flow and energy equations in two dimensions. Bilinear elements were used to model hot water
flooding for thermal oil recovery. Linear and higher order infinite elements modelled the heat losses
from the reservoir in all directions. Artificial diffusion was introduced along streamlines to negate
any grid orientation effects. The solutions were found efficiently at the end of each time step using

an alternating direction solution algorithm.

2.2 Description of the geomechanical behaviour of oil sands

The geomechanical study of the oil sands of Alberta is eflectively the study of the soil mechanics
of a dense sand. This conclusion was not widely accepted until the completion of a series of research
programs at the University of Alberta Civil Engineering department in the late 1970s and early 1980s
under the direction of Drs. Morgenstern and Scott. In particular, the perception of bitumen as a
cementing material was widely held until the last decade, as many geologists and petroleum engineers
failed to recognise that their core samples had undergone expansion of the sand (soil) matrix due
to pressure relief and gas evolution. It is now recognised that the oil sands must be considered a
particulate material, for which the behaviour can be described by an appropriate stress-strain model.
In particular, the description of the essence of oil sand behaviour as a o-¢ material — through the

Mohr-Coulomb parameters of cohesion ¢ and angle of internal friction ¢ — is now common.

The behaviour of soils taken to failure has been studied for over a century, although the most
notable advances have been made since the second world war, The study of soil mechanics is therafore
pertinent to the behaviour of oil sands during bitumen recovery schemes, where loadings are changed
because of the application of temperature increases and pore pressure changes. There are several
good books on soil mechanics which are requisite reading for anybody interested in understanding
how sands will react to these loads and how this might affect the bitumen recovery scheme (e.g.,
Wood, 1990). Some of the basic geomechanical concepts are brought out in this section.

Athabasca and Cold Lake oil sand geomechanical behaviour has been the object of significant
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Figure 2-1
Fabric of granular assemblies (adspted from Dusseault and Morgenstern, 1978)

study since the mid-1970s. Dusseault (1977) showed that the Athabasca oil sands had an extremely
stiff structure (i.e., a large modulus of elasticity) in the undisturbed state, accompanied by a large
degree of dilation when loaded to failure and subsequent yield. Agar (1984) examined the stross-
strain behaviour for different stress paths and at elevated pressures and temperatures. Kosar (1989)
continued this work and noted some essential differences in the geomechanical behaviour between

the oil sands of Athabasca and Cold Lake. These differences were discussed by Kosar et al. (1987).

In the case of the Athabasca oil sand the investigators noted the very high initial elastic
(Young's) modulus of the confined and undisturbed material. This was attributed to its extreme
compactness providing extensive grain-to-grain contact so that the stifiness of the sand skeleton is
close to that of the grains themselves. This grain orientation is compared to ideal and rounded sand
grains in Figure 2-1. The angularity of the Athabasca sand grains also illustrates why significant
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Figure 2-2

Athabasca oil sand peak and residual strengths illustrating curved
Mohr-Coulomb envelope behaviour (adapted from Dusseault and Morgenstern, 1978)

dilation can be expected as the sand is sheared. The results of a typical direct shear box test by
Dusseault are presented in Figure 2-2. The Mohr-Coulomb failure envelope on this shear-stress
vs. normal-stress diagram is seen to be curved, indicating different mobilized strengths at failure,
and possibly different modes of failure, under different levels of effective stress. The friction angle,
an indicator of the slope of the Mohr-Coulomb failure envelope, varies considerably as the eflective
confining stress is increased. The residual (post-failure) friction angle for Athabasca oil sand was
considerably less than the initial values. The extrapolation of the peak strength curve to the shear
stress axis gives the impression of an apparent cohesion, the idea of which is only dispelled by data

points taken at low values of normal stress,

In contrast, the Cold Lake sand was less stiff, and underwent little loss of strength after the
initial yield. The dilatant behaviour exhibited by the two oil sands also differed. Cold Lake oil sand
did not exhibit the dilatant behaviour of the Athabasca oil sand; instead, it displayed contractile
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Comparison of behaviour of Athabasca and Cold Lake cil sands under
confined drained compression tests (adapted from Kosar, Scott and Morgenstern, 1987}

behaviour throughout the triaxial confining stress path. As a result, the change in pore pressure
during undrained testing of Cold Lake sand remained fairly constant as the degree of axial strain was
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increased. In the case of Athabasca oil sand, the increase in volume was apparent due to the sharp
decrease in pore pressure. The net confining stress at failure is thus affected in different ways for
each of the two oil sands. Figure 3 illustrates the differences in geomechanical behaviour of the two
types of sand. The differences in behaviour are explained in terms of the different mineralogy. The
Cold Lake deposit has a greater proportion of weaker minerals than the highly siliceous Athabasca
sand. These weaker minerals are prone to crushing at the levels of deviatoris stress considered by

the investigators.

At ambient temperatures of the in-situ oil sands, no measurable cohesion was observed (Duss-
cault, 1977). However, at high stresses the altered Mohr-Couivmb failure envelope gives the im-
pression that positive cohesion exists (see Figure 2). This is only an apparent cohesion because, as
noted, failure at lower stresses clearly indicated that there was no cohesive strength. Agar (1984) did
note the development of low levels of cohesion in baked samples of Athabasca oil sand. Conversely,
the increase in susceptibility to failure of individual grains due to an increase in temperature was
marked for Cold Lake oil sand.

The main difficulty in describing the behaviour of the oil sand over a wide range of stresses
lies in the post-failure behaviour where irrecoverable strains occur, and the development of dilation
or positive volumetric strains. Dusseault and Morgenstern (1978) showed that the Mohr-Coulomb
failure envelope ic not a straight line through the origin, which would be typical of a particulate
material with only intergranular failure where the grains slide against each other with a measur-
able [riction. A failure envelope wkich is curved indicates that an additional failure mechanism is
occurring —intragranular failure where individual grains are sheared. This is common behaviour of
systems where grain breaking occurs at the higher levels of stress (Vesic and Clough, 1968, and
Feda, 1982). This is consistent with the observations of Dusseault, where the (actually cohesion-
Jess) material has an apparent cohesion intercept at higher normal stresses. This behaviour could
be reproduced mathematically by the expedient of making the cohesion and the friction angle a
function of normal stress. The failure envelope then represents that of an altered material, raising
the question of what the envelope should be for a system unloaded subsequent to failure. More
sophisticated methods also exist as part of a larger constitutive modelling approach.

Modelling the oil sand behaviour must include the two significant features other than failure
— irrecoverable strains and dilatancy. A suitable model must account for the deformation history
of the material, particularly if the stresses are to be cycled through loading and unloading. 'fhe
clastoplastic formulation incorporates all these features naturally. The relation between stress and

strain is modified using a yield surface, essentially a function defined by the material properties and
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Schematic illustration of elastic, plastic collapse and plastic expansive
strain components (for two yield surfaces) in drained triaxial compression test
(adapted from Lade and Nelson, 1984)

the stress and strain history.

Most previous work in this field has used variants of elasticity theory to model the stress-strain
relationship of oil sands (see, for example, Agar et al., 1987, Vaziri, 1988, and Settari et al., 1989).

Increasing the order of elasticity—hyperelasticity (making it non-linear)—cannot, alone, describe

the effect of shear stress on the volumetric strain (dilatioz) or the effect of the stress path (Feda,

1982). The elastic stress-strain relation is improved, however, by writing it in the incremental form

of the hypoelastic constitutive equations

Ads (2.1)
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where do and de are respectively the vectors of increments of stress and strain, and A is the hypoe-
lastic material behaviour matrix. This model works for a monotonically increasing load but cannot
predict the irrecoverable strains observed on unloading, It does, however, describe well the elastic
portion of the stress-strain behaviour. The hypoelastic model can be augmented with a relationship
for volumetric strain as a function of axial strain. Previous research has included this modcl (Agar
et al., 1987) bizt was unsuccessful, in that form, at describing the dilatant volume changes observed
after about 0.5% axial strain for Athabasca oil sand. A more complete argument for the choice for
oil sands of an elastoplastic model over a hypoelastic model with extensions for dilation can be found
in Wan et al. (1989).
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Figure 2-5

Yield and plastic potential surfaces for plastic expansive increments
(adapted from Lade and MNelson, 1984)

The appropriate model for a complete description of oil sand behaviour is the elastoplastic
one, combining elasticity with incremental plasticity. This model will generate the appropriate
plastic strains and the accompanying dilation. An idealized response of a sand to & drained triaxial
compression test (Lade and Nelson, 1984) is shown in Figure 2-4. The total strain increment, de;;,

is made of an elastic component, def;, and a plastic component, a'.efj.

degs = def; + del; (2.2)



It can be seen in Figure 2-4 that the unloading path results only in the recovery of elastic strains,
while the plastic strains, by definition, remain irrecoverable. Increased straining also causes the

dilation evident in the plot of volumetric strain vs. axial strain.

space diagonal
77 (0,=0,=0,)

Mahr-Coulomb
Drucker-Pragar

Figure 2-6

Three-dimensional representation of Mohr-Coulomb and Drucker-Prager
yield surfaces in principal stress space (adapted from Owen and Hinton, 1982)

The initial yield surface is defined in terms of the material properties and the stress and strain
history. Once the stress locus arrives at the yield surface it may not pass through it, and plastic
straining is initiated. The subsequent yield surface may further change as a result of the plastic
straining, expanding in a manner defined by the hardening law. The strain directions are given as
normal to a second surface called the plastic potential, as shown in Figure 2-5. The simplest situation
is where the yield and plastic surfaces coincide and the increment of strain is thus also normal to the
yield surface—termed associated ; lasticity. The direction of the plastic streins controls the values of
the volumetric strain, and the assumption of associated plasticity can lead to too great a predicted
dilation. In that case, a plastic potential surface can be defined apart from the yield surface—so-
called non-associated plasticity—which will provide volumetric strains in closer agreement with the
experimental evidence. The plastic potential surface still passes through the same point in the stress
space where the yielding is occurring (on the yield surface). Usually the plastic potential surface is
described by the same function as the yield surface but with one or more parameters taking modified
values to fit the experimental resuits.
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Two-dimensional m-plane (space diagonal normal to page) represeniation of
Mohr-Coulomb and Drucker-Prager yield surfaces (adapted from Owen and Hinton, 1982)

The yield surface may remain static, coincident with the initial yield surface, or it may move
away from it. The latter behaviour is known as hardening. Simple hardening models in use today are
confined to an isotropic expansion of the yield surface, and a translation of the entire yield surface

known as kinematic hardening.

The Mohr-Coulomb yield surface in three-dimensional space is illustrated in Figures 2-6 and
2-7. This is a preferred model for soils and rocks, exhibiting different yield strengths in compression
and tension. The Drucker-Prager yield surface also shown in Figures 2-6 and 2-7 is an approximation
to the Mohr-Coulomb surface in one of the two failure modes—tension or compression. Both models
feature isotropic hardening with higher stresses, as can be seen in the widening neck of the yield

surfaces.

2.3 The inclusion of geomechanical behaviour in reservoir models

Geertsma (1957) combined the previous work of Biot (1941) and Gassman (1951) to develop

the equations of poroelasticity in a more straightforward manner. He clearly defines and relates
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the rock bulk and pore compressibilities, and describes the boundary conditions and procedure to
determine the correct parameters defining the compressibilities. The procedures are divided into
different sets of parameters for the three lithological types of sandstone, shale, and limestone. The

paper is notable for the clarity of the presentation of poroelasticity as it is applied to petroleum
engineering.

Geertsma (1966) reviewed the applications of poroelasticity in petroleum engineering. An
analogy is presented between poroelastic and thermoelastic theory, to take advantage of the many
solutions under different boundary conditions that have already been published for the thermoelastic
theory. The concept of the nucleus of strain for volume elements is described. This concept is applied
to the phenomenon of reservoir compaction and subsidence to calculate surface displacements for
the examples of pore pressure depletion (leading to subsidence) and to reservoir heating (leading
to uplift). Geertsma also discusses borehole stress and pressure solutions, and the different rock
mechanics problems of hydraulic fracturing in impermeable and permeable formations. In hydraulic
fracturing he analyses the degree of rock expansion in a permeable formation due to leak off using

the nucleus of strain theory, and concludes that it is not significant.

Raghavan (1972) derived the one-dimensional consolidation expression coupled with fluid flow,
and compares it to the earlier work of the geomechanical scientist Terzhaghi. The general solution is
obtained from the partial differential equations describing the flow of fluid and material displacement
using a transform to convert it to an ordinary differential equation. Raghavan has prepared a
significant review of literature to that time, and stresses the importance cn the final solution of
keeping the mass flux (v,) in the formulation. The influence of pressure sensitive rock properties is

shown on previously published well test analyses.

Finol and Farouq Ali (1975) presented a two-phase, two-dimensional flow model using finite
differences which included the effects of compaction on fluid flow and the prediction of subsidence.
The problem was formulated in two discretized equations for oil and water flow, and one analytical
equation for poroelasticity which was numerically integrated. The variation of permeability as well
as porosity was considered in the analyses of the effect of compaction on ultimate recoveries. The

investigators concluded that ultimate recoveries of oil increased with compaction.

Closmann and Phocas (1978) showed that, given time to heat enough rock mass, a principal
stress regime preferring vertical fractures (o, = o1, i.e., in a compression-positive stress regime, the
least principal stress is the lesser horizontal stress) could be rotated so that horizontal fractures would
be formed preferentially. The heating caused volumetric thermal expansions. These expansions could

be accommodated vertically by translation of the overlying free surface, but set up horizontal loads
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through the elastic reaction, thus causing greater horizontal stresses. No pore pressure distribution
was included in the analysis, but the paper clearly showed the ultimate effect of heat transfer from

the fracture to the surrounding rock.

Rattia (1980) studied the effect of compaction in a three-dimensional steam simulator. Com-
paction was included by replacing the pore compressibilities by the terms described by Geertsma
(1957), which include a compaction coefficient. By varying the value of the compaction coefficient,
he was able to conclude that an increase in oil recovery accompanied an increase in compaction

coefficient, and that compaction enhanced cyclic steam stimulation more than it did steam flooding.

The cause and significance of principal stress rotation, such as the one described by Closmann
and Phocas, was further investigated by Dusseault and Simmons (1982). In a numerical study of
McMurray Formation sands the authors showed that an appropriate distribution of pore pressure
gradients around a [racture could alter locally the direction of the minimum principal stress. In this
case, the leak-off of fluid constitutes a loading on the material with effects similar to the previously

described thermoelastic straining.

Ito (1984) appears to have been the first to recognize and implement the dispersed and
widespread nature of matrix deformation in the oil sands in numerical reservoir simulation. He
had no predictive model to help him quantify the effects, but was able to choose appropriate params-
eters by history matching field data. Ito varied porosity between the initial value and a maximum
— described by a multiplication factor (1.04 in the examples given) — as a function of pressure,
betwaen a given pair of pressures. He also increased the mobility of the injected fluid by two orders
of magnitude during the first injection period, and by 20 at other times. This allowed him to model
microchannels, as he termed them, dispersed high-permeability streaks created by the deformation
of the oil sand. It also enabled him to aroid large changes in porosity that were required in con-
temporary simulation studies to permit the injection volumes of steam observed in the field. Lastly,
a super-upstream weighting factor was employed to disperse energy further, as would be expected
from the presence of microchannels, while ensuring that the finite difference blocks did not respond
with an increase in temperature as quickly as they would without the super-upstream weighting.
While Ito could history match field data, he had no way of defining the deformed region or the

number and size of the microchannels.

Vaziri (1988) coupled thermal single-phase flow to a non-linear elastic model, with the solution
formulated in two-dimensional finite elements by combining the force equilibrium equations with
Darcy’s law. He was able to model the effect of a second, gas, phase by including its compressibility

in the definition of the bulk modulus (inverse compressibility). The quantity of gas as a separate
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phase was found using a Henry’s law coefficient. As an example, Vaziri examined the case of the
response near a wellbore to repeated injection, soak, and production cycles, predicting stresses,

radial displacernents and pore pre-sures radially away from the wellbore.

Schrefler and Simoni (1988) inves‘igated the flow of water in a partially unsaturated soil by
considering the gas phase (air) to be at constant pressure. Gas solubility was included, but capillary
pressure was neglected, The authors used a Crank-Nicholson discretization of the time derivatives

and quadratic isoparametric finite elements to solve the example of a one-dimensional outflow from
a consolidating column.

Settari et as. (1989) described a new model to quantify leak-off rates from fracture faces in oil
sands. The model incorporates a failure eriterion from which the amount of dilation is calculated.
The isotropic bulk compressibility is found from a non-linear empirical curve as a function of effective
confining stress (effective stress). The elastic properties (Young’s modulus and Poisson's ratio) are
modified as a function of stress and failure. As part of the model implementation, various parametric
analyses were performed using a linear elastic fracture model (LEFM) simulator. It was noted that
the fracture length in the LEFM models was strongly dependent on fracture leak-off rates — a result
to be expected because this factor mostly controls the pressure distribution in the fracture awny
from the wellbore. Thus the thrust of the work was to improve the analysis of leak-off from the
fracture face using material failure. Stress and flow are solved sequentially, such that the stress
solution lags behind one time step in a staggered formulation. The stress and fluid flow models are
coupled via the bulk compressibility term, cy. This term is kept updated at the n + 1 time level
by making it a function of minimum effective stress, o/, = min(o=, 0y, o)™ — a'p*+!. Failure was
applied as an instantaneous one-time increment of deformatior, arbitrarily assigned a value of 1% or
2%, along with an arbitrary constant increase in permeability. The staggered scheme is claimed to
be accurate and convergent. The authors acknowledge the plastic nature of the real deformations,
and present their analysis only as an approximation. The new leak-off model is used to generate
leak-off rates which are parametrized using a hydraulic diffusivity term 50m away from the well,
which is in turn used to govern leak-off in the LEFM simulator. Only two-phase isothermal flow
with a one-dimensional stress analysis is considered here.

Settari (1988), referring to the work of Settari et al. (1989) which was originally presented
earlier in 1988, described some of the features of leak-off into oil sands from a fracture face. High
leak-off rates which are non-linear due to oil sand deformation is given as the cause of shorter
fracture lengths than could be predicted using conventional LEFM simulators. Behaviour at the
fracture tip was modified to account for the high viscosity of the bitumen, which dissipates the
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stress concentrations typically found there, and the impact of loose sand carried from the failed
zone on the fracture face to the fracture tip where it packs off like a proppant bank. Sensitivity
tests on history matches of reported minifrac tests investigated modifications increasing the effective
permeability for leak-off by one order of magnitude, increasing the system compressibility by a factor
of two, removing all the tip effects, and increasing the formation stiffness (E) by a factor of two.

These changes zll affected the [racture closure time.

Dusseault and Rothenburg (1988) reviewed the effect of thermal loading and pore pressure
changes around a wellbore on dilation and permeability. The authors describe the physical pro-
cess of deformation in terms of particulate media, noting earlier work (Mori and Tamura, 1986) on
permeability changes in slightly permeable systems (sand grouted with cement). They draw conclu-
sions that effective water permeability would increase one or two orders of magnitude with dilation
as the thickness of the water film coating the grains would increese by a factor of two. While the
resultant change in effective permeability is likely, the analysis overlooks the fact that bitumen is
more compressible than water and that gas is more likely to fill the pore volume newly created by
the dilation. The authors continue to document the changes likely from shear failure, including the
localization of shear, and the growth of the shear zone from the edge of a hydraulic fracture due to

the altered stress state and the increased pore pressures.

Settari (1989) extends the modelling efforts of Settari (1988) and Settari et al. (1989) to thermal
flow. The approach is the same: material properties are varied non-linearly as a function of minimum
effective stress, and the solid and fluid models are coupled through the bulk compressibility. The
staggered formulation is convergent and accurate. A one-dimensional analysis of leak-off from a
fracture is presented and compared to a similar analysis using linear elastic properties. The non-
linear response is shown to give a completely different pressure distribution, and is described as the

eflect of shear failure of the oil sand.

Xikui-Li (1990) et al. studied the interaction of two-phase immiscible flow with the porcus
medium. The model is based on the mass conservation equations as a function of intrinsic phase
velocities and the solid and liquid equilibrium equations for a unit element of porous medium. The
cquations are discretized using finite elements, with a quadratic scheme for the time domain. The
derived linear system of equations are then analysed for stability, requiring that the non-wetting
fluid density be less that that of the wetting fluid. Example calculations in plane strain are given

for a loaded vertical column, and a water injection case where a fracture face is loaded.

Fung (1990) described a control-volume finite element (CVFE) approach for coupled isothermal
two-phase fluid flow and solid behaviour. The material follows a hyperbolic stress-strain law and
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dilatancy model (Rowe's stress dilatancy theorem) described by Agar (1984). The paper covers the
assembly of the equations and the formulation in CVFEs in two dimensions. The model is verified
by analysing the one-dimensional consolidation problem and comparing it to the analytical Biot
solution. A two-dimensional fracture loading example is given with the presentation of stress and

fluid flow changes in time. The approach appears to give robust and accurate solutions, but is
limited to non-plastic material behaviour.

Scott et al. (1991) discussed tests on oil sands under various different conditions of shear stress
to determine the permeability to water in native bitumen-saturated and extracted cores. All cores
were prepared rigorously to avoid sample disturbance due to gas evolution. A large body of literature

is reviewed covering permeability changes in isotropic and anisotropic loading conditions.

Schrefler and Simoni (1991) prepared the equations describing two-phase Row in a deforming
porous medium — a linear momentum balance for the whole multiphase system (gas, water, and
solid), and continuity equations for solid plus water and solid plus gas. Auxiliary equations included
water saturation as a function of capillary pressure, the saturation constraint (S, + S, = 1), and
the effective stress equation. Three combinations of solution variables were considered: (u,pw, pc),
(4, Pwy pg), 8nd (u,py, Sw). Inertial and some convective terms were dropped in the formulation,
and staggered and monolithic (simultaneous) solution schemes were tried. The best convergence waos
found using the combination of (u, pw, py) while testing using one-dimensional consolidation, linear

one-dimensional finite elements, and linear elastic solid behaviour,

Beattie et al. (1991) described the implementation of two essential modifications to a numerical
thermal reservoir simulator to account for deformation and hysteresis of relative permesbility. The
authors note that the “spongy rock™ approaches of contemporary simulation studies (using a large
and constant pore compressibility one to two orders of magnitude greater than the measured valucs)
leads to results conflicting with field data. The use of unrealistically high compressibilities caused the
simulation pressures to steadily increase in time, while field data indicate that the injection pressure
eventually levels off. In Cold Lake surface uplifts up to 45 ¢m had been noted, and in mature project
areas (Leming pilot) a residual uplift of up to 15 cm had been recorded. A deformation model to
account for the observed uplifts was devised, using two values of pore compressibility for increasing
pressures, and two values for decreasing pressures. A common elastic value exists for both pressure
paths, while the pore compressibility value for dilating sand was greater than that for a recompacting
sand, where the dilatation recompaction initiation pressures were found using a model described in
Agar (1984). The authors stress that the full integrated solution to the pore compressibility equation
should te used to predict porosities as a function of pressure change. An exponential permeability
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function
K ULyys E — o;
k’v' = kOlu exp[ ) 1- ¢° ] (2.3)

was chosen to give smooth departures when the dilation pressure was traversed. A high value (100
to 500) of K1 was chosen for those blocks labelled as fracture blocks, which were activated for
pressures above a predetermined failure pressure. Again, the exponential nature of the permeability
relation ensured a smooth change in permeability which would not upset the convergence properties
of the scheme. Relative permeability hysteresis was found to be important to match the water-oil
ratios, and was applied to the water and oil only. This led to more dilation deeper inte the formation.
The hysteresis model ensured the oil-water relative permeabilities stayed closer to the drainage curve
by using a slow scan function to the imbibition curve. The model is a useful implementation but
the pore compressibility term is only pore pressure dependent, not load dependent. This will lead
to errors at distances away from the wellbore, which are more pronounced after some heating has

taken place.

Denbina et al, (1991) applied the mode] described by Beattie et al. to analyse the key reservoir
drive mechanisms in the early cycles of steam stimulation at Cold Lake. Data from the mature
Leming pilot project showed that there was overinjection of water {more injected than produced) in
the first two cyclic steam stimulation cycles, while there was underinjection during the subsequent

cycles. The authors considered the relative effects . ” 2 four mechanisms:
(i) formation compaction;

(ii) solution gas;

(iii) liquid expansion;

(iv) gravity drainage;

A fractured layer was identified, and four cycles timed by limiting pressures were simulated.
As a single contributor, formation compaction was the most significant factor (> 60%) in all cycles.
Solution gas was the second most important, but when combined with formation compaction it
accounted for more than 80% of the recovery mechanism. Liquid expansion had a relatively minor
role. Gravity drainage grew in importance with later cycles, presumably because of the growth of
the steam chamber.

2.4 Comments

None of the models reviewed use plasticity to describe the material behaviour. The most
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common oil recovery mechanism — cyclic steam stimulation — imposes cyclic loads on the reservoir.
This type of behaviour cannot adequately be modelled using non-linear elasticity, as the accurnulation
of irreversible strains is not accounted for. Thermal reservoir modelling with geomechanics, such as
that by Beattie et al., does not include the effect of loads distributed through the porous medium,
A dilatory response comes from the net effective stress state, not merely the change in pore fluid
pressure, The thermal loads are a key aspect in any simulation of the geomechanical response. These

deficiencies in the current state of modelling are incentives for further research.
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STATEMENT OF THE PROBLEM

Since J. Geertsma’s landmark paper on the subject in 1957, the petroleurn industry has realised
the importance of and included rock mechanics as a component of reservoir mechanics and fracture
stimulation design. In the last decade the industry has recognised that, in some cases, the behaviour
of the rock or soil containing the hydrocarbon can dominate and control the recovery process. This
is nowhere more true than in the thermal recovery of bitumen and heavy oil from the unconsolidated
oil sands and heavy oil sands of Alberta. The objective of this study is to present the first model
which combines a classical reservoir flow model with a state-of-the-art soil stress and strain model. In
this manner, reservoir fluid mechanics, heat transfer mechanics, and geomechanics are permiited to
interact in three dimensions as is the real situation in the thermal recovery schemes in the Athabasca

oil sands and elsewhere,

3.1 Statement of the problem

The object of this research is to develop and demonstrate an effective three-dimensional thermal
numerical reservoir simulator which incorporates the concomitant changes in stress and strain of an
elastoplastic soil to hot fluid injection, such that the problem is coupled via changes in porosity and
(absolute) permeability.

This objective requires the design of

a) appropriate coupled equations in three dimensions of multiphase flow, heat transfer, and solid

displacements, in a form suitable for numerical solution;
b) = practical scheme to solve the coupled equations; and
c) a computer program to implement the solution.

Once the program has been developed, the model would be able to represent the events oc-
curring as a result of hot fluid injection into unconsolidated {uncemented) sand bodies containing
oil, heavy oil, or bitumen. The model will have to be able to calculate the accumulation of irrecov-
erable (plastic) strains, the distribution of stresses, volumetric strain, displacements, fluid pressure,
temperature, and fluid saturations. This information will then lend itself to the prediction of oil
recoveries from hot or cold fluid fluid injection into reservoirs where the geomechanical response is

an important factor in the mechanics of recovery.
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Chapter IV

DERIVATION OF THE MATHEMATICAL MODEL

The mathematical model of the physical processes occurring in three-phase flow with heat
transport and solid deformations is given in this chapter. The object was to incorporate all the
essential aspects of the physics while making appropriate simplifying assumptions. The aim has also
been to present the mathematical model as a formulation suitable for numerical solution by both
the finite element and finite difference methods.

The chapter is divided into three sections. The first describes the development of the flow
and heat equations on their own. In the second section the geomechanical model is developed and
coupled to the primary variables chosen for the flow and heat equations. Finally, physical property

correlations are presented as continuous polynomials for use in forming the cocfficients arising in the

constitutive equations.

4.1 Flow equation development: constitutive equations for heat and mass transfer

The equation set for thermal fluid flow includes four primary variables (Sy,So,pw and T).
This set of constitutive equations provides unique values of the pertinent unknowns, and permits
the presence of a solution gas in the bitumen, or a co-injected gas with the steam. These cquations
are developed without coupling to the geomechanical model so that the finite element model of the
flow behaviour can be investigated independently. The coupling is detailed in the next chapter, and

in fact leads to minor modifications of the following equations.

4.1.1 Flow equations

The general molar balance for a mixed oleic, gaseous and aqueous phase system (subscripts o,
v, and w, respectively) can be expressed by (Burgess, 1978, modified):

V- [$(ZioPomVoSo + ZiwPumViwSu + Yiv pomVuSy)] + -‘% [#(ZioPomSo + TiwPumSw + YivPvmSu)] = 0.
(4.1)

where the subscript i = w, b, g lor the water, bitumen and gas components, respectively. Sece the
Nomenclature for further explanation of the symbols. Molar balances for the various components

are given below by assuming that

25



a) bitumen does not exist in the aqueous and gaseous phases;
b) water does not exist in the oleic phase;
c) gas does not exist in the aqueous phase.

In other words, certain mole fractions are zero:
Tow = Ybv = Two = Tgw =0.
Thus we have the molar balance for bitumen:
o 8
* ($TpoPormn Vo So) + E(‘ﬁszomso) =0.

Molar balance for water:

]
a' [‘f’(zwpwmvwsw + yquuvaSu)l + ﬁ[ﬁs(xwpwmsw + ywvﬂumsu)] =0.

Molar balance for gas:

a
V. [¢(2goLom VoSo + YguPumVeSy)] + E[Gb(xnopamsa + YguPumSy)] = 0.

where: .
meoles of bitumen A

= ‘total moles in oleic phase
= fm

Pom + Rco.-Pgm
= —tm

Pom(l + R:o.-) '
__ total moles of oil per unit volume of bitumen
Pom = associated volume L
_ P+ Rao.-PE
T 14 Ry,
Ru.. = Rso%f‘
= Ryo el

Po. Py

_ standard volumes of gas
~ one standard volume of bitumen" J

Tho

Furthermore
Tuw + z’w = 1-0,

zgg +=b° = 1.0,

Yuw + Y = 1.0,
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(4.2)

(4.3)

(4.4)

(1.5)

(4.6)

(4.7)
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and by Dalton’s law, #wy = Pyat/Pw. The molar density, p.. of component ¢, is related to the mass
density by gl = pc/Me.

On converting the molar densities to mass densities, and substituting for the mole fractions,

we can rewrite the equations in more familiar terms. After multiplying through by M, the cquation

for bitumen becomes

- . a,..
V' (¢hsvoSo) + a(ﬁbpbso) =0. (4.8)
where
By = —2 (4.9)
1+ Rlo.-

After multiplying through by M., the equation for water becomes

- a
V. [¢(Pwvwsw + auyquuVuSu)] + E[¢(PWSW + auywupusv)] =0. (4.10)
where
. Mypu
Gy = M,
v 4.11
= Mypw ( )
P=ZRT

After multiplying through by M, the equation for gas becomes

- . Pi ] .
V. [‘b(Rn.-PgVoSo + ﬁuygupuvusu)] + 'a_t'[‘#(Rla.-PgSc + ﬁu?}gu.ousu)] =0, (4'12)
where 2
ﬁg = _9_'
1+ Ry,
M,p, (4.13)
an e BV
ﬂ') Mg .

The equations for each component can now be expanded in terms of Sy, So, pw and T with the

use of the following information. The intrinsic phase velocity is found from Darcy’s relationship:

A

Vi =Ek'(vpi + pig) (4.14)

where the subseript ¢ = w, 0, v for the water, oil and vapour phases, respectively, and the following
constraints can be imposed:
chw = pg "Pw )

{4.15)
Peows = Po — Pus;

Sy +So+Su=1.




The zero value for the gas-water capillary pressure is only assumed here.

Products of non-linear terms AB in the equations are expanded after the first order approxi-

mation of Nolen and Berry (1972) to form expressions containing only one non-linear term:
AVTIpYHl = gv¥ipgy L AvBYT - AYBY. (4.16)

where the superscript v represents a value at the old iteration level, a constant, and v + 1 is the

current iteration level at which the terms act as non-linear coefficients.

The use of these constraints and expansions yields three equations in the following suitabla
form for discretization by the finite element method.

The water equation:

8Sy 8.5',

a2y 4,2 9w

% +A4-—-+AES 4+ AgS, + V- (A7-Vpu) + V- Ag+ 4g=0. (4.17)

+ As— T

The bitumen equation:

8Ss . Opw o OT

B>+ B +Ba-67+34s,+6.(135-6pw)+6-(Bs-v“s,,)+€-137+35=o. (4.18)

The gas equation:

Sy

as,
Cigp T

—+C2 )

+csa§;" +Camgy T | CiSu+CsSot ¥+ (Cr-Vpu)+ V- (Co- ¥8,) + V- Co + Cro =
(. 19)
These equations are coupled with the formation displacements in the next section, and the resulting

coefficients are fully developed in Appendix A,

4.1.2 Energy equalion

The point conservation equation for energy, assuming kinetic energy and kinetic energy changes

are small compared to those of the internal energy, U, is given by (Bird et al, 1961):
8
5PV + V. (evU)+V-q—p(v-g)+ V- (pv) + V- (r-v)=0. (4.20)

Assuming that the viscous dissipation term V. (r - v) is negligible, and recasting the problem in

terms of enthalpy, this equation becomes

2 (o) + 9 (voh) = 22 49— plv ) =0, (4.21)

after putting k= U + p/p.
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Volume averaging of the point conservation equation for energy is required because we are
dealing with a multiphasic medium comprising rack, water, vapour and bitumen. This follows from
the definitions given by Gray and O'Neill (1976) for an additive quantity w distributed between two

phases « and 8. These are as follows. The phase average of w in  is

1
(wa) = jv wadV. (4.22)
The intrinsic phase average in a is
W= f wadV., (1.23)
Va v

Derivatives of averaged quantities are found using the transport theorem of Whitaker (1973) is

Owa\ _ Olwa) 1 490
( at > = _3¢ -— V An‘ WQWQ 'nadS. (i'gl)

Furthermore, the modified averaging theorem of Gray (1975) is

(Vie) = £aV{wa)® + f NadadS. (4.25)

Aas

where Ayp is the ares of the a-§ interface;
W, is the velocity of the a-f interface in the volume V;
ng is the unit normal vector along the -8 interface, outward from the a-phase;
Wq is the deviation of w, from its imrinsic phase average (Gray, 1975), and

Wa = Wa — (Wa)® = 0 at a point within any but the a-phase,

The point conservation equation for energy can be volume averaged. On applying the jump
energy balance (Slattery, 1972)

1
Xy ] [oeha(vi = W) = pihj(vs — W) = (i = p)w ~ (@i = q)] ' miydS =0,  (4.26)
if Sy
where i, 7 vary as the three phases, to the volume averaged equation one obtains:

% [(1-8)pmtim +¢Z; Siotu] +9 [ —¢)pmm.,+¢; Sipehivi| - % [(1-¢)pm+o Zj sini

+V- [(1 ~$)am+9) Si'-'li] - [(1 ~ $)omVm + 6D Sgpi\’i] -g=0. (4.27)
i i
If we use Fourier’s heat conduction law,

q = - VT, (4.28;
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and assume complete and instantancous thermal equilibrium, Ty = T, then we can put
v. [(1 ~d)am+¢Y Si‘li] = ~V- (xVT), (4.29)
i

where 5 = (1 — ¢)xm + ¢¥Sm;.

Now, pm is the hydrostatic stress in the medium, thus, using the tension-positive convention

and using the cffective stress relation with pore pressure as a positive quantity,
Tk
Pm =3~ +Pu (4.30)

If the total stress T (see §4.2.1) is assumed to remain constant, then any change in effective stress

occurs only as a result of a change in the water phase pressure, and

8m  Opw
o - ot (4.31)

As a result, p, can be set equal to p,, in Equation (4.27).

On applying the constraints given for the flow equations and the expansion of non-linear
products given by Nolen and Berry (1972), an energy equation suitable for discretization is found

in the following form:

Dl%wz%‘ﬂwa-"’a—f+D.su,+Dsso+Ds-€S°+D7-V“7pw+Ds-Y7"1‘+V-(DoVT)+Dw =0. (432)

This equation is coupled with the formation displacements in the next section, and, as for the fluid

flows, the resulting coefficients are fully developed in Appendix A.

4.2 Derivation of the solid equations and coupling

The geomechanical moci] is derived using the same starting point as the classic equations of
poroelasticity (Biot, 1941 and 1855). The effect of thermal expansion is introduced early in the
analysis. The geomechanical model is of relatively simple form, compared to the fluid model, and
is discretized in the following subsection. The discretization process allows one to separate the
material behaviour into one matrix, so that ar: alternative material model can be used as required.
This approach is merely one of convenience in the formulation, and is not a necessary condition. In
this case, an elastoplastic constitutive equation is needed, and the incorporation of this behaviour
is discussed.
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The solid equations include strong coupling to the pore pressure and temperature. Further
coupling of the primery variables through their respective equations is made possible by the analysis

of the derivative of porosity with respect to time in the flow equations.

4.2.1 Geomechanical model

The following follows the method of Huyakorn and Pinder (1983) with the addition of thermal

expansion. The geomechanical model is governed by the equilibrium equation

g—f-x‘: + Fi=0. (4.33)
where 7;; is the total stress tensor, negative in compression, and F; is the body force per unit volume,
(Note the summation convention over repeated subseripts for values of i,j = 1,2,3.) The total stress
7 is separated into the Terzaghi effective stress ¢’ and the pore pressure p. As the grains are water-
wet (i.e., the grain surface is completely surrounded by water, and the grains are not exposed to
the pressures in other phases which might be present), the pore pressure is equivalent to the water

phase pressure pu,:

Tij = 04y ~ &' Pubiy. (4.34)

In this expression, pore pressure must be a negative quantity to be consistant with the tension-
positive convention being used for stress. The Biot constant o' accounts [or the difference in com-
pressibilities between the soil skeleton and the individual grains, in the relation o’ = 1 — (ca/cs)
where c, is the grain compressibility and ¢, is the bulk compressibility of the skeleton. If the grains
are considered incompressible, as will be the case later in this analysis, o' can be taken as one. 4y,

is the Kronecker delta.

After an elapsed time ¢, an increment of effective stress is added to the initial cflcctive stress

o
oly = of + Doy (4.35)
An elastoplastic material model is considered at a later stage in the equation development. The

constitutive stress-strain relationship for a linear elastic isotropic medium is:

AO‘:J- = 2GAey; + ADekxbiz. {4.36)
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where G and A are Lamé’s constants related to Young’s modulus and Poisson’s ratio by:

-_£
T2+’
_ Ev
T (+v)(1-2v)

(shear modulus) &
(4.37)
A

The strain increment Ae includes the initial strain — the strain caused by a change in temperature
AT,
Agyy =€y — E?j. {4.38)

where e?j = aAT'6; (there are no shear strains associated with thermal dilation). The initial strain is
actually subtracted from the total strain, of which Ae is only the elastic component. It is convenient,
however, to include the initial strain at this point. Equations (4.33) to (4.38) are combined to obtain:

dof® Beis — %) B(es —€%)  Opu
Bz, + F +2G 72; A om0 Bz, 0. (4.39)

For small deformation theory, the strain tensor is related to the displacement vector u; by

10w Sy
Eij = 5 (-8?; + 82;) . (4.40)

Thus we obtain a governing equation for the solid skeleton:

dal A%y 8y 8%y 8% 3
il TR - A B s} | \ 3 _ 35 _ Puw =0, .
5z, ""G(az,az, 283,) A+ O = A, "B O (4D
where
9e); _ 8(alTéy) _ 8(aAT)
83;, 8:, 8z¢ (4 .42)
Bel; _ 3(3aAT)
az';' a:l.‘i

with the boundary conditions of prescribed displacements w; = U on boundary portion 'y, and

prescribed surface tractions 7;3n; = Sy on boundary portion T',.

Approximate p,,, u: and T using a trial function Ny(z;):

Bz, t) = Ny(z;)pa(t) (4.43a)
Si(zy,t) = Nolz)u,(t) b J=1,2,....,n (4.43b)
T(z;,t) = Na(z;)Ta(t) (4.43c)

Apply the weighted residual method to Equation (4.41) with the Galerkin choice of weighting func-
tion, W: = Ny, I =1,2,...,n, assuming G, A and « are constant and AT* = 7 — Tp, and integrate
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by parts over the domain £ to obtain:

f[GBN1(8m+3uj) dN; 04y ON;, aN;

o v v e e )
dzy \Bz; = Oz +'\8:r‘ ozy Bz‘p (G+3A)T]

Bui o 8u,,
_.[PN[[ (8 z; azi) + 4\8—513 - pbiy — a2G + 3.\)T5.',' + Uij]nj dar

= jn N;F df j ONy a;‘} (4.14)

Use Equations (4.35), (4.36), (4.37), (4.41), and (4.42) to obtain:

Tij —U‘j'f'c (au{ an) 8uk

o + oz, +'\5_5U pbyy —~ (2G + 3f\)af‘6i,. (1.40)
Insert Equation (4.44), the approximations (4.42a), (4.42b), and (4.42c) into Equation (4.43) and

use the Cauchy condition S; = 7;n; on ', to obtain:

8Ny r8N; N, ON; ON, 3N[
f{G Oz, (3:3 iy + Bz; t"j’) +A 8z, Oz, Y = NJ

- N;S;dl"

f NI.F.i f -a;hr—['a‘j dfl. (‘1-45)

['PJ +a(2G + SA)TJ] } 0

The region § is subdivided into m finite elements §1° and Equation (4.45) becomes:
i Ny t8N; N, IdN; 8N, aN,
Z{fn. {03;( dz; ws E:i—uj") +A Oz; 8:.':, Ui N" [p; +a(2G+ 3'\)?"'] }

e=]
= aNg
- | NiSidl} = NiF, d - ol dQ (4.46)
fr;" } ez.;{n-' ae 075 }

If two additional equations are added to solve for T and p,, the following form of equilibrium equation
is realized:

m m
S o[H (xa} =2 {Re}" (4.47)
eml em=l
where

f Uy r Rip )

uzs Rz,
{XJ}G =4 Uy L and {R[}e = < R:“ > .

pJ Ry

\ TJ F. LRS’ J
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It can be noted that the element stiffness matrix [Hs]° contains the element stiffness matrix and
other partitioned clements:
. [[E] ! [An]
[Hu] =| ===4—-==1. {4.48)
[AIJ]T : (=f1]
[Ar4] contains the coefficients of the pore pressure and temperature terms. [K 1) corresponds to the

conventional stiffiness matrix in structural analysis (Zienkiewicz 1977). Thus:

[K1s)® = fn [8:)7[D) [B/] 4. (4.49)
where the matrix [D] contains only material dependent parameters—the constitutive elasticity ma-
trix relating stress and strain—and the matrix [B] relates strain to nodal displacements:

{e} = [Bs]){us} (4.50a)
{o'} = [D]{e - €} + {"}. (4.50b)
The constitutive matrix [D] can be modified to allow for different material properties, including
clastoplastic.
This analysis can be extended to an elastoplastic material by forming the elastoplasticity matrix
[Dep]- A yield condition defines the elastic limit:

F({a"}) = 0. (4.51)

where 7 is a scalar function of {¢'} and o} is an initial yield stress.

A flow rule to determine the plastic strain increments is derived from a plastic potential G:
G aG
Pl — — = — 5
{de?} dA{ Ba} dé’{ o } {4.52)

where d2P is the effective plastic strain increment. A material hardening or softening rule may be

required:
F({c'}) =&'(k"). (4.53)

where k* is a hardening parameter. For a stationary yield surface 5'(k*) is a constant. It can then
be shown {Owen and Hinton, 1982) that

{do’} = [Dep) {de — dc®}. (4.54)



where

ooy [ 1ZY o)
10,1 = (0] (1 - {5} T | (435)
8o fo

4.2.2 Flow equalions coupled Lo matriz molion

To couple the solid and and fluid terms, one makes use of the relationship between the actual
bulk velocity and the relative bulk velocity of each fluid, which differ in amount by the solid velocity
components. The relative bulk velocity is that bulk velocity relative to the rock matrix, viz., the
Darcy velocity, V. The actual bulk velocity is the Darcy velocity plus the rock matrix velocity,
which is ocbserved from a static frame of reference in which the motion of the rock is apparent. The

actual bulk velocity is a macroscopic velocity, taken as the actual velocity, va, divided by the total
are. available for flow. Thus sne can write

Va
Vg = E + v, {456)

The relative bulk velocity V, is the Darey velocity in the differential form of the flow equation

Vu = —Auk . (Vpa + pag). (‘1.57)

This form of v, is put into the flow equations presented in §4.1.1. As the rock matrix velocity
v, expresses the rate of change of the displacement components (v, w,v) = (uy, uz, u3) with time,
it constitutes three of the primary variables, After Huyakorn and Pinder (1983), the solid phase
continuity equation

9- 1= @)orvil + 2l(1 - Slor] =0. (458)

is used to eliminate the time derivative of porosity, 8¢/3t, from the flow equations with the substi-
tution

ggl%%.+ﬁ.v,=3—f+¢v-v,. (4.59)

Assumptions are made that the solid grains are incompressible and that substantial time deriva-
tives 'gi pertaining to v,, can be approximated by partial time derivatives. The three flow equations
are formulated now in Sy, So,Pw, T, u;,u2 and uz and are given in Appendix A. The solid phase

velocities appear during volume averaging of the point conservation equation. The modified encrgy
equation is also given in Appendix A.
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4.3 Parametrization of fluid and rock properties

Fluid and rock properties are commonly found during computer program execution by table
look-ups. However, polynomial interpolation is necessary to make effective use of vector and paralilel
computers because the table look-up and interpolation is inefficient for many points, even if a single-
point evaluation is quicker this way (Dubois, 1982). Non-constant rock and fluid properties have
therefore been implemented as polynomials covering the entire range of anticipated pressures and

temperatures.

In all cases, the appropriate polynomial approximations were found by multiple regression
which both minimized the F-test value and maximized the regression correlation coefficient, Most of
the data were tabulated in the literature. However, enthalpies for Athabasca bitumen were generated
using published TBP and SG data (Logie et al., 1978}, and “PROCESS", a program by Simulation
Sciences, Inc. for analyzing petroleum processing problems. The results for low pressures were in
good agreement with enthalpies derived from empirical heat capacities to 300°C by Smith-Magowan
et al. (1982), and were thus considered accurate. Tangentiel derivatives of properties and of their

products are found as required by numerical approximation.

The biggest group of properties required for thermal reservoir simulation are those of saturated
steam. The existing polynomials available in the literature are of restricted range and generally
discontinuous, so a new set of interpolation polynomials are presented here and in Tortike and Farouq
Ali (1989). The objective of the new work was that the polynomials should describe the behaviour
of the steam properties to a sufficient degree of accuracy with changing pressure and temperature
within the entire saturation envelope. The polynomials should be continuous and they should
involve simple integer powers of the independent variable. Integer powers are efficient arithmetic
operations, unlike the evaluation of transcendental functions, which implicitly includes fractional
exponents, Transcendental functions take an order of magnitude more effort to evaluate than basic
arithmetic operations on a computer. This efficiency is useful particularly in microcomputers. Simple
polynomials can be most effectively evaluated using the Horner expansion (Knuth, 1981).

The data were tabulated in Perry and Green (1984) for saturated water substance. The
property values were corroborated by the tables published by Cooper and Le Fevre (1975). The
correlations were developed by polynomial regression, using the correlation coefficient and the resid-
uals to judge the suitability of each correlation. Two transcendental evaluations are required for
the saturation temperature and for the vapour density, and the evaluation of a square root for the

specific enthalpy of vaporization. The polynomials all have integer powers.
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Correlations are presented first for saturated steam condensate, then for saturated stearm.
Note that the use of temperature as the correlation variable results in simpler expressions than
in many previously published works. If pressure is required as vhe independent varinble in these
correlations, then the evaluation of temperature from Equation (4.69) is very accurate and suitable

for determining all the other properties.

The maximum and mean absolute residuals from using the correlations on the original data, ex-
pressed as percentages of the true values, are reported for the properties. The correlation coeflicients
are reported for the regression variables, which are sometimes transformations of the properties. The
suitability of the new polynomials under particular conditions can be assessed using the residual plots

in Appendix B.

A summary of the polynomial approximations is provided below, and more details regarding
the degree of approximation are provided in Appendix C. Units of variables are given only the first
time that they appear below.

4.3.1 Steam condensale

Viscosity, Pas, valid for 273.15K < T < 645K maximum absolute residual = 2.87%, mcan
absolute residual = 1.07%, and r? = 0.99994,

27.1038 235275 + 1.01425 x 107 _ 217342 x 10° 1.86935 x 10!!

ae = ~00123274 + — = T T + 5 . {4.60)

Thermal conductivity, W m~! K-!, valid for 273.15K < T < 645K, maximum absoiute
residual = 4.58%, mean absolute residual == 0.46%, and r? = 0,99857.

kise = 3.51153 — 0.04436027T + 2.41233 x 107472 — 6.05099 x 10~7T2
+ 7.22766 x 10~1974 — 3,37136 x 1071375, (4.61)

Density, kg m=3, valid for 273.15K < T < 640K, maximum absolute residual = 1.87%, mean
absolute residual = 0.22%, and r? = 0.99977. N.B. all the absolute residuals are less than 1% for
273.15K < T < 620K,

Pec = 3786.31 —37.2487T +0.196246T2 — 5.04708 x 10~T> + 6.29368 x 10~7T* — 3,08480 x 10~1°7°,
(4.62)

Specific enthalpy, kJ kg~!, valid for 273.15K <€ T < 645K, maximum absolute residual =
2.93%, mean absolute residual = 0.52%, and r? = 0,99994. N.B. ail the absolute residuals are less
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than 1% for 305K < T < 645 K.

h,e = 23665.2 — 366.232T + 2.26952T% — 0.007503657° + 1.30241 x 107574
- 1.22103 x 10~87S + 4.70878 x 10~12T6, (4.63)

4.3.2 Steam vapour

Viscosity, Pa.s, valid for 273.15K £ T < 645K, maximum absolute residual = 6.41%, mean
absolute residual = 1.59%, and r? = 0.99542. Note that the errors are worst at the extremities of

the range.

oy = —5.46807 x 10™4 + 6.89490 x 10~67 — 3.39999 x 10~372 4 8.20842 x 101173
—9.97060 x 10~ 174 +4,71014 x 1071775, {4.64)

Thermal conductivity, W m~! K~! valid for 273.15 K < T' < 645K, maximum absolute residual
= 7.56%, mean absolute residual = 2.63%, and r? = 0.99709. Note that the errors are worst at the

extremities of the range.

kney = —2.35787 + 0.0207426T — 1.46888 x 10747 4 3,57767 x 10~ 7T°
—4.29764 x 10~197% 4 2.04511 x 1071375, (4.65)

Density, kg m=3, valid for 273.15K < T < 645K, maximum absolute residual = 7.71%, mean
absolute residual = 1.29%, and r? = 0.99996 on In p,,. Note that one can find the steam density
using the real gas formula p = pM/(z2RT), assuming that the z-factor has been evaluated already.

In gy = —93.7072 + 0.833941T — 0.0032080972 + 6.57652 x 10~%7° — 6.93747 x 10T
+2.97203 x 10-13T5, (4.66)

Specific enthalpy, k3 kg=!, valid for 273.15K < T < 640K, maximum absolute residual =
0.50%, mean absolute residual = 0.08%, and r? = 0.99920.

hey = ~22026.9 + 365.317T — 2.25837T2 + 0.0073742073 — 1.33437 x 107574
+1.26013 x 10737 — 4,96880 x 10~12T5, (4.67)
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4.3.3 Steam vapour and condensate

Specific enthalpy of vaporization (latent heat), kI kg~!, valid for 273.15K < T < 645K,
maximum absolute residual = 5.68%, mean absolute residual = 0.40%, and r? = 0.99594 on L2,
Note that all the absolute residuals are less than 1% for 273.15K < T < 620K.

L,= (7184500 + 11048.6T — 88.405072 +- 0.1625617° — 1.21377 x m-“T‘)i (4.68)

Saturation temperature, K, valid for 0.611kPa < p < 22.12MPa, maximum absolute residunl =

0.11%, mean absolute residual = 0.03%, and r? = 1,00000. Note that the pressure range corresponds
to 273.15K € T £ 647.3K.

T = 280.034 — 14.0856 In p + 1.38075(In p)2 — 0.101806(In p)* + 0.0190017(In p)*. (4.60)

Saturation pressure, kPa, valid for 280K < T < 647.3 K, maximum absolute residual = 3.22%,
mean absolute residual = 0.49%, and r? = 1.00000 on ,/p. Note that all the absolute residuals are
less than 1% for 320K < T < 647.3K.

p= (-175.776 + 2.29272T - 0011395372 4 2.62780 x 10573 — 2,73726 x 10~874

+1.13816 x 10-“7'-") (4.70)

4.3.4 Bitumen

Enthalpy, J kg™, obtained from data generated by the Simulation Science “PROCESS” pro-
gram.

hy = a+bT + cT% + dp +ep*. (4.71)
273K < T < 625K and 0.1MPa<p <21 MPa

4.3.5 Gas (methane)

Solution gas ratio, vol/vol, taken from Svrcek and Mehrotra (1982). A suitable multiple
regression was chosen with some extrapolation.

E

R.°=a+bp+cT

(4.72)
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Viscosity, Pa.s {Perry and Green, 1984)

g =a+bT. (4.73)
250K < T < 600K

Thermal conductivity, W m~! K~! (Peny and Green, 1984)

Ky = a+bT + T2 (4.74)
250K < T < 600K

Enthalpy, J kg~! (Perry and Green, 1984). Several multiple regressions were investigated:

hg = a+bT +cp + dpT. (4.75)
250K < T < 500K and 0.1MPa < p < 30MPa

for which r? = 0.996.

4.3.6 Rock matrix

The properties of the oil sand fabric were found as a compoesite of six chemical components:

calcite, aragonite, quartz, pyrite, albite and microcline. The individual constituent properties are

found in Touloukian et al.{1970) and can be combined using the appropriate average.

Density, kg m~3

= po(l +ar (T - To)); (4.76a)

6
Po= Z Pivi- (4.76b)
f=1

where % is the volume fraction of component £,

Coefficient of thermal expansion, K-!

[
or = Z aTv. (4.77)
tm]



Thermal conductivity, W m™! K~!

x =[] . (4.78)
im]
Heat capacity, J kg~! K~}
6 6
%=T26‘+ZG{. ('1'79)

i=1 {ml

4.3.7 Rock-fluid properties

The relative permeability data for Athabasca tar sand was taken from Tortike (1984):

krg = a + bSg + ¢S} + dS3, (4.80n)
kew =@+ bSy + ¢S +dS3, (4.80b)
k., =@ +bSy + cS3 + dS3, + S, + £S5, (4.80c)
kr,, = a +bSe + cS7 + dS3, {4.80d)
P, =a+bS, +cS2 +dSz!, (4.80¢)

Three phase oil relative permeabilities are calculated from Stone’s modified method II (Aziz and
Settari, 1973), which is given below:

kro = Kracu [(km + )y 20 = (ki + k,,)] . (1.81)

where

krm(swc) = krog(SL = 1) = Krocw
4.3.8 Gas law deviation factors, =

The original Redlich-Kwong equation of state can be formulated as & cubic equation of state

in z (Ruid et al., 1977). A value for z can be then found using Cardano’s formula for solving a cubic
polynounial.

P-4 (A* =B B")2-A"B* =0 {4.82)

where

-_nopr o_gbp!'
A = T2 and B =

r



and /3
1 249 -1
Q°=___—9x21/3-1 and = 3

It is recognized that steam is a polar compound and therefore there will be some error in the

prediction of z for the methane-steam mixtures.

4.3.9 Mizture properties

The mixing rules for the Redlich-Kwong equation of state are (Reid et al,, 1977)

2
A= (ZwA;"’) ; (4.832)

\ o4
By, =Y usBy; (4.83b)
3

The gaseous phase (vapour) in the model is composed of methane and steam. The densities for pure
methane and the vapour can be found from z

pM

p=1. (4.84)

The thermal conductivity of the binary-composition vapour can be found from the Brokaw empirical
method (Reid et al., 1977), where

#m = grp + (1 —g)xr;

KL = Y181 + YK, (4.85)
1
lon n

KR K1 K2
The value of ¢ is arbitrarily set to 0.5. The viscosity of the vapour mixture can be estimated using

Chapman-Enskog kinetic theory (Reid et al., 1977), so that for a binary mixture at low pressure:

g + Yops2
n+pdz wt+nda

Bm = (4.86)

The interaction parameters ¢4 can be found using the approximation of Herning and Zipperer (Reid

et al., 1977)
MY 1
@iy = (E) = (4.87)

The oleic phase is composed of methane dissolved in various concentrations in the bitumen.

The thermal conductivity of this mixture can be found using a power law relation described by
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Vredeveld (Reid et al., 1977):
K, = W K] + waKy. (4.88)

where wy is the mass fraction of component ¢ in the mixture, and r is set to =2if 1 < = <2, The

K1
mass [raction is easily obtained {rom the mole fraction as

T M
= . 4.89
o (1 =z )Mz + . M, (1.89)

Svreek and Mehrotra (1982) have investigated the viscosity of bitumen containing dissolved
methane, They present their results in the Walther-type equation:

log o [log10{1)] = —7.515w, + 0.78872 — 0.0044717T.. (4.90)

where w, is the mass fraction of methane in the mixture, 4 is in mPa.s, and the temperature T is
in *C.



Chapter V

DISCRETIZATION AND SOLUTION OF THE EQUATIONS —
COUPLED MATHEMATICAL MODEL FOR FINITE ELEMENTS

The mathematical model derived in the first two sections of Chapter IV is a set of partial
differential equations which cannot be solved analytically. Furthermore, there are strongly non-
linear coefficients in the equations, which imply that not only must the equations be prepared for
numerical solution, but there must be applied a method of linearization to the resultant system of
equations. In this work the method of weighted residuals with Petrov-Galerkin weighting functions
has been applied to the original equations of Chapter IV to prepare them for solution by the finite
clement method. The discretizations have been performed separately in the two solution domains of
space, £, and time, t. A continuous solution is found in the space domain, while a marching scheme
provides the solution in the temporal domain. The discretizations in both domains are brought
together to be linearized by the Newton-Raphson method. Certain details of the linearization are
examined closely to help the final implementation of the solution as a computer program. The
implementation was never able to provide a satisfactory convergent solution, which is discussed in
the final section of this chapter.

5.1 Spatial integration of a general non-linear partial differential equation

The basic method for spatial integration of a general linear partial differential equation can be
found in Voss (1978) and in Zienkiewicz and Morgan (1983). Here the development is shown for the
particular differential equations developed in the previous chapter. Index notation is used where it
is more compact, and it may be assumed whenever a summation symbol is not present. Appendix C

should be consulted for more information on the method of weighted residuals and finite elements.

Consider the region of three-dimensional space, 2, bounded by the closed curve T', and a
governing equation

D(Y(Q. ) = 0. (5.1)

where D is some non-linear operator and 3 is some unknown function in  and time. The bound-
ary conditions are included in this expression. We can introduce a typical non-linear coefficient,
C(§,¢, ), which is dependent on space, time and . Suppose there exists a set of independent trial

functions, N;(f2). This set of trial, or basis, functions can be used to approximate the variation of

44



C{Q,¢,¥) and ¥{Q2,¢t) in the region 2. Then we can use N;(f2}:j =1,2,3,... ,n as a set of basis
functions in terms of which C(f,¢, ¥} and ¥(Q,¢t) can be approximated in space:

WO, t) = $(82) = () N;(). (5.2)

C( L, ¥) = C(,4,9) = e5(t, %) N;(Q). (5.3)
where the variable with the hat is an approximation to the true value of the function.

Now the weighted residual statement is:
f RW(Q)d = / D(H(, L)Wi(Q) d2 = 0. (5.4)
n n

The question arises as to what terms are contained under the non-linear differential operator
D. Development of the flow and heat transfer equations in the previous chapter, also given in

Appendix A, showed that the following seven specimen terms appear:

V. AQ, ¢, )R, L) (5.50)
B(%, w)%; (5.5b)
C(8, ¢, 9)v(Q, 8); (5.5¢)

. [B(n. L) - (R, :)] ; (5.5d)
E(Q,t, ) - V(0 t); (5.5¢)
F(Q,t,9); (5.50)
V.-G, ¢, 9). (5.5¢)

Each term can be approximated using the trial functions N;(v) as in Equations (5.2) and (5.3).
Each term will fall under the integral of the weighted residual statement given in Equation (5.4),
after being multiplied by the weighting function, W;(£2). Each term can be integrated separately in
the order they appeared in Equations (5.5a8) to (5.5g) , and will appear as follows:

[ a0 M@ N @W ) 0 = e [ I Wean (5.6)
[ o) 2L nymwie an = 248, [ wovwian (57)
1] Q

[ et BN 4N QW) = 0 | utiswan. (5.8)
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Before expanding the next term in terms of the approximation, we must use QGreen’s lemma to

extract the boundary integral. Green’s lemma in three dimensions is (Zienkiewicz, 1977):

fnqsﬁwn=-j;€¢¢dn+j;¢¢ﬁdr. (5.9)
Thus we can write:
[ 9-1B@sw) - Fu@ i@ ao = [(B-%0)-awiar - [ (B-90)- Wida
n r [ 4] -
=.[r(13-€7¢)-ﬁW;dP-—j;(&;Nk-tp,V—'N,)-ﬁV;dQ

= f (B Fg) - AW; dT" — ysap : f NN, YW, d (5.10)
r 1]

/n Eult, ) NK(D) - ()TN (Q)Wi(R2) I = 5 - j; NN W, 9. (5.11)
[ seung@m@ =g, [ N (5.12)
n n
[aen-In@wian=g- [ Inwan (513)
n f

All the subscripts i, j, and k vary from 1 to n, and repeated subscripts indicate summation.
Now all the coefficients of 1; and %J- can be separately collected, as can all the remaining terms,
to be represented in three, general, non-linear coefficients:

Sl 93(0) + Dug, ) 2 + Rty = (5.4

where the repeated subscripts here indicate summation. This is just a rearrangement of the weighted
residual statement of Equation (4.4) using the seven typical non-linear terms arising from the gov-

erning equations of the previous chapter.

In the Galerkin approach, the weighting functions W;(f2) appearing in the seven typical terms
would be set equal to the trial functions N;(€2). A variation is the Petrov-Galerkin method, where
some weighting functions conform to the Galerkin approach, but others have different valu=s from
the trial functions.

5.1.1 Upwinding and the Petrov-Galerkin method

A convection equation can be represented by (Voss, 1978):

‘;—'f +7.- V=0 (5.15)



The solution to this equation at any point in space is influenced by events upstream. ‘Thus, a
ce tered-in-space approximation is unlikely to be accurate. The Galerkin method assigns equal
influence from surrounding nodes on a given node, which will inadequately describe a convective
term. In a mixed equation, containing convective and non-convective terms, the exclusive use of the
Galerkin weighting functions with convective terms will be inaccurate. Instead, a separate set of
weighting functions can be chosen for the convective terms which attribute more influence to those
nodes upstream of the point in question. Determining where is upstream and downstream of o point
is done by local inspection of the velocity term. The process of ascribing more influence to upstream
nodes is called upstream weighting, or simply, upwinding.

Typical convective terms are 7+ Vi and V- &, where ¢ is the property being convected with a
velocity v. The convective term is not always immediately obvious, such as when the velocity is not
explicitly found in the expression. The asymmetric weighting function chosen to facilitate upwinding
is described in Appendix C. The mixed use of the trial functions as the weighting functions, and
asymmetric weighting functions, together in the same weighted residual statement is referred to as

the Petrov-Galerkin choice of weighting functions.

5,1.2 Choice of finite elements

Two different finite elements have been chosen for this work. There is an eight-noded brick
element, the L8 element, and a six-noded triangular prism element, the L6 element. The clements
and their isoparametric coordinates are illustrated in Figure 5-1. Both elements are linear clements,
i.e., they implement linear interpolation functions for the degrees of reedom—hence the L in L6
and L8. Both types of element are isoparametric, which means that the element geometry and
the approximated variables are represented by the same basis functions. Furthermore, it permits
solutions to be found within a local coordinate system, convenient for the numerical integration,
which are mapped to the global coordinate system by the linear functions used for interpolation,
This improves the spatial discretization because we no longer rely on regular geometries to represent
curved boundaries or to implement a locally-refined mesh. Refer to Appendix C for more detailed
information about element mapping and numerical integration.

Two element geometries are provided by the L6 and L8 finite elements. Normally, different
finite elements are used to provide trial functions of a higher degree. The purpose here is to provide
flexibility when defining the geometry of possible formation parting planes. The triangular prism
element allows a potential inclining parting plane to be represented in the mesh. It does this in

conjunction with the brick elements which are also non-regular in the global coordinate system. The
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L6 element

Figure 5-1

Finite elements used by FESPS,

L6 elements also can improve mesh resolution easily.

5.2 General numerical solution of the equations

The equations for the molar balances, the energy balance, and the displacements have been
posed in a manner suitable for discretization. The equations are now discretized in space using the
method of weighted residuals to yield an equation for a finite element. The element equation is
then discretized in space according to the general scheme described in Appendix C. The resulting
general equation is then ready to be solved for a given set of initial and boundary conditions. It
is, however, a non-linear equation and must be linearized to facilitate the solution. The Newton-
Raphson methed is used to linearize the general equation posed as 9t = 0. The coefficient matrix of
this set of linear equations is the Jacobian matrix—a matrix of derivatives of the function 9. The
derivatives are first reduced to selected components and then formed numerically. The reduction
step requires algebraic manipulation and reduces the computational requirements. The following

sections cover this material in detail.

5.3 Application of the method of weighted residuals and expansion by trial functions

The method of weighted residuals (MWR) is applied to each physical equation. The polynomial

order of the basis [unctions can be reduced using finite subdomains for a given solution accuracy



at specified points. The basis functions are only required to be continuous in certnin subdomains—
finite elements—so that the approximations are piecewise continuous in the entire solution domain.
Thus we arrive at individual element equations for each degree of freedom. The integrated terms
arising from application of the MWR and piecewise continuous basis functions must be expressed

in terms of the basis functions and nodal values. The nodes define the element geometry and the
prtynomial order of the basis functions.

Thus the physical equations have been discretized in space. The degrees of freedom as functions
of time and space are reduced to terms which vary at each node only as a function of time, while
the basis functions vary with space. The following pages show how each term falling under the
integration can be expanded, for each physical equation and a given element.

Note the following convention on the use of indices:
&) H,I,J, K = [1..nnodes) are used as nodal indices (nnodes = 8);
b) 1,7,k = [1..3] are used as spatial dimension indices;

¢) &, 8,7 = [1..ndof] are used to indicate particular degrees of freedom or physical equations
(water, bitumen, gas, energy, displacements).



5.3.1 Walter equalion

Expansion of integrals by term:

') / AlaszldQ ZaSwJ E Alxj NKNJN] d0.

K
i [ mfENa= Zag‘” S oy [ NieNabNrdo,
-] K‘l
i) f Aaa’imm 28”"” 3 dse _[ Ny NNy dfd.
w [ A Nidft = DRI [ sty aa
J=1 K= “

ﬂ

n
v) f AsSuNrd =3 Su, 3 Asy _[ NiNsNrdf.
Q= -]

J-l K

v) [ AdSoNidn= 35,3 A f NiNsNyde.
o J=1 K=]

vid) jn. 9. (E}.Gp.,,) W dQ =j; (A‘,-Vp,.,) Wy - idB

_prJZ}hx fNKVNJVW[d.Q

Jm] K=l

viii) fn. v. jaW; dQ} = Z Aa., f ﬁN;W;dﬂ

Jm=1
iz) f AgNy dt = ZA,,, f NyN;do.
e J=1
8 aN
2 [ Aog(¥-aNda= Eza“‘*zf@m [ N

=] Juml K=
Where any continuous primary variable ¥(Q, ¢) is a function of time ¢ and space £; the value of

a primary variable at a node J is (¢), a function of time only; the trial function N1(2) a function
ol' spa.ce only; n = 8 is the number of nodal values; i = u; = (u1, u2, u3) is the displacement vector;

'8" is the velocity of the solid matrix; and i is the normal to the boundary surface T'.



5.3.2 Bitumen (oil) equalion

Expansion of integrals by term:

i) f Bl 85" i

J=]

£ Bue [,
n K:
i) f 32 8” KZ f N NNy dst.
=

Ny NyNp d.

Jm1
i) st—Nxdﬂ Zg-q:— fNKNJNldS].
J L]
=3 )Y Buy f NiN; Ny dge,
Jm K=l
v) (B_v. \?pw) ' dQ2 = / (35 \7p.,.) W;-AdB

-3 pur Y Bey AT

J=l K=l
i) [ v. (E's-ﬁs,) w,an:f (56.65,) W;-RdB
7 B

—ZS.,_,ZB;,, f N VN, VW, dQ,
Jaxl K=1

vid) f 9. Bwida=Y By, f VNI W; d0.
Jm]

vili) / BaN;d=3" By, f NyN; o,
J=1

iz) Bg (v" )N dQ = 239, NKaN’N,dn.
Bt

im] Jui K=l
Where any continuous primary variable ¥((2, ¢) is a function of time ¢ and space §; the value of

a primary variable at a node J is #(t), a function of time only; the trial function N;(£?) a function
of space only; n = 8 is the number of nodal values; 4 = u; = (u;, u2, ua) is the displacement vector;

%“-E is the velocity of the solid matrix; and 11 is the normal to the boundary surface I".
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5.3.3 Gas equalion

Expansion of integrals by term:

i [Clas‘”N;dﬂ Zas“'Lcle Ny NNy d2.
=l K=l

i) f c,as"mdn Zas"" 202,.[ NiNyN;dd.

Il'-l
8Pw_,
11i) C'g N[dﬂ z: e ZCSK NKN;N;dn
J 1 K-l
. Ty
iv) / o pa=3 3 ¢, / Ny NNy do.
i ot J-l at K=1
v) f CoSuN1d =Y Su, S Cox f Ny NNy det.
ae J’-l x-1
w) [ CeSuNidn= 35, 3 Ca [ NeNabzan.
ne J=l K=l

vid) jn. 2 (67 - ep..,) Wy d = j; (c':’T .ep..,) W, -AdB

-Zp,,,,zc,,, f Ny VN, VW, a0,
J=1 K=

viii) fn. 9. (c”, : 65.,) Wy dft = j; (E'“a -63,) W, -#idB
-gs,, 2:5‘3,( : fn‘ Ny ON, W, d62
iz) fm 9. CoWrd =36, j IN; W, d.

Jml

z) /Cledﬂ Ecxox/ N;N;dQ.
a J=1

i) [cu (F- DNy = Zza“‘JZc:u,,f Nic TN a2

=1 Jml K=l
Where any continuous primary variable ¥(Q2, t) is a function of time ¢ and space £; the value of

a primary variable at a node J is ¥;(t), a function of time only; the trial function N;(Q) a function
of space only; n = 8 is the number of nodal values; & = u; = (uy, uz, u3) is the displacement vector;
24 i5 the velocity of the solid matrix; and i is the normal to the boundary surface T.



5.3.4 Energy equalion

Expansion by term:

0 [ bENian

Z
Jm=

i) .Dg Z
J=
Z
J=

K=l

- Dy, f Ny N3N d.
i o,
1 K=
n
iii) f -—N, Z fNKN_,N,dn.
K=

n n
) f DiSuNid2 =Y Su, 3 Day f NiNsN; .

NgNyNpdQ.

JII K-l
%) .[n DsSuN1d=3" ., 3" Do [ Nt an
* J-:I K=1

vi) / DepuNrd =3 pu, 3 Do f NN N; d.
Jml K=l

vi) [ Br-Vswran= 3 50, By f N TN, W, do

Jﬂl K-l

vitd) f Br-FpuWi 2= "pu, 3 D - f NN Wy d.

J-l K-l
iz) 139 VIW;d = ET,ZD’, f Ny ON; W, dQ.
Jal K=l e

z) j 9. (Dw¥T) Nrda = j; (Dw¥T) N, -7dB
—ZT;Zﬁ;oK'/ NKVNJ VN;dQ

J=1 K=l
. 8 3 aN
xi) f Du-a—(V ANrdd = ZZ m, Z Dll.xf NK——JNI“’-Q
a i-lJ’—l Km)
y _ du
zii) L Brz- 3Ny = Z % S~ D f NicNy Ny do.
. =l K=l
zidi) /‘; DiswelNrd=3" Disye, / NNy dfd.
zv) [ DugWidn= 3 Disg, [ NWrao.
* Jm1

Where any continuous primary variable y(£2, ¢) is a function of time ¢ and space £2; the value of
a primary variable at a node J is 9(t), a function of time only; the trial function ¥,(Q) a function
of space only; n = 8 is the number of nodal values; & = u; = (uy, u2, u3) is the displacement vector;

%";—' is the velocity of the solid matrix; and 7 is the normal to the boundary surface I".
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5.4 The element equation

The spatially-discretized element equation can be written as an agglomeration of the physical
equations in matrix form as follows, where the superscript o is the equation type (water, bitumen,
gas, energy), and 8 indicates to which variable the 8 x 3 coefficient submatrix belongs:

I}
Bn?=s}’f¢5+9?5’9§§+ﬁ?=0- (5.16)

This equation is in indicial notation as described at the start of this section, so that it can be
expanded as

(Y rSi SR SB Si S SIE SHY [ Suws)

o} 5% ST SB Si SE Si5 SH| | S.,

m3 | |sy s sB sp s sE SH| | s

smi o=\ S s sp S s SH|({ T L+

ms | |s SP SP sp sE sy ST | w

omé | |58 s sH sy s sE sf| | w,

(m7)  Lspp spp s sy sB s ST L, )
Dy DI} D) D§ DF Di$ DJI 'ﬂiﬁ (Fi
o# D D DY DF D OL||%| |#
Dy, DB DF DY DF DE DF|| B F}
Dfy Dfi Df Df§ Dff Dy Dil|q % (+(Ffg=0 (1I7)
Df, DY D§ Dy DfS DY D | G F}
D§y D DY DY DF DE DF| | e F}
.o DR DB pp DFE DI DRl L) LA

where I,J = [1..8], the nodal points; thus each entry S}"f, D?f is an 8 x 8 submatrix, while each
subvector 1,05, %ﬂ, F¥ contains eight elements for each o, 8 = [1..7].

a
Note that we have moved the ¢§ and %bf’- terms to the right hand side of their coefficients.
Most of the terms on the previous pages are vector-dyad dot products, whereas Equation (5.17)

contains dyad-vector dot products. To make the terms equivalent, the 8 x 8 submatrices must be
transposed:

T
sgpul =3 [sed]
A T
0889 _ 0%) [ s
Dis at ot [D”] ’
The transposed coefficients S?¥ and D% are presented on the following pages.

(5.18)



5.4.1 Row I: Waler equalion

Cocflicients for cach term in this equation:

Su,
So,

Puw, |

(517 = As f NNy Ny d.
*

[S2]T = Aex f Ny NyN; d.
[ ¥

[3}3 T = -A?.TK :f NRVNJW, dql.
0

[s1]” =o.
[s135]" =0
[si5)" =0
[s13]" =

[DH]T = Aux fn. Ny NNy .
[DB]T = Az fn_ NycNsN; df.
[DB]T = As fn. NNy Ny d.
(D)7 = Ad f NiNyNyd2.
[Df5)" = A,o,f NxaN"N;dﬂ
[D#5]" = Amxf NxaN"N; ds.

[D5]" = Auox f NxaN"N;dﬂ

F}:L(;f-,-va) W;-ﬁd[‘+;fg,-f vN_,W;dﬂ-i-Ag,j NN dQ.
13 Q1=
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5.4.2 Row 2: Bitumen (oil} equation

Coefficients for each term in this equation:

Sw; !
Sa, !

Pus '
TJ:
Uy, -
Uz, .

uz, .

08w, .

ot

8S,, .

at

ot
aTy
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5.4.3 Row 3: Gus equalion

Coefficients for each term in this equation:

Su, !
S, !

Pu, :
T

[S?}]T=05~L NNy Npdi.
[S73 T= Caxf NKNJN!dQ—ésx :/ N GN, VW dQ.
o o

(887 = -Cry : fn N ON W,

$74 T-o
IJ
[s35)T =o.
538 T2 0.
1J
(s =0

(03] = Cux fn NiNyNpdo.
(DB = Cas /‘; _NiNsNydo.
[DB)T = Cay jn NgN;Npdf
[D?f:]r = Cux fn- NgN;N;dQ.
[D?'."!]T =Clx jn. NK%%%M dqQd.
(D37 = Cuax [ NuGp2tiido.

" aN;
[DFF]" =Cuy .[n- Nk 323 N;dQ.

A=/ (5-,-%,,,) W+ [ (55-65,) W, . Adr
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5.4.4 Row 4: Energy equalion

Coefficients for each term in this equation:

Suy
So, :
Pu, :

T:

[S,‘}]T = Dy, -/;. N NyN; dQ.

[3?3 T= szf NiNyNpdQd + 137, . NKfINJW; dQ
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(517 = Dex [ NicNsNi+ Da- [ NN Wy a0
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5.4.5 Row & x-direction displacement

Uy,
ug,

U3, .

Coefficients for each term in this equation:

st =
Su =

aNy

SH=- f [a(2G + 3A)]ﬁNJ ésl.

e ax[
535:  see the structural stiffness matrix.
5%: see the structural stifiness matrix.

5. see the structural stiffness matrix.

Al D¥ =0, A=[.7]

Fls BN’ o} dﬂ / N Fy dt = f N18, dl.

ne 3::,

Note that on the surface traction boundary

Sl = Tiyn;-

Only the body force component in the z-direction, F3, is non-zero. This is the gravitational accel-

eration vector.
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5.4.6 Row 6: y-direction displacement

Cocfficients for each term in this equation:

Su,: S=

S.,: SE=o0.
e o[ P

Ty: SH=- f (a(2G +3X)] 5 N FoNsdn
uy,: S5 see the structural stlﬁn matrix.
ug,:  S%5: see the structural stiffness matrix.
ua,: S§7: see the structural stifiness matrix.

Al D¥ =0, p=[.7]

Fy: FG / aN’a‘;,dﬂ—j Nszdﬂ—j NiSadl.
. 8:::1 (e re

Note that on the surface traction boundary
Sa = myn;.

Only the body force component in the z-direction, F3, is non-zero. This is the gravitational accel-

eration vector.
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5.4.7 Row 7: z-direction displacement

Coeflicients {or each term in this equation:

SWJ: S'J—
SOJ: SIJ':O

anN
Puw, S[J = _f INJ

Ty: SH= /[a(2G+3A)]aN'NJdQ.

u,: S5 see the structural stiffiness matrix.
uz, :  S]%  ser the structural stiffness matrix.
us,: S]}: see the structural stiffness matrix.

Al D¥=0, B=[.7]

aNr .

Fr: F,T 3 a‘ajdﬂ .[N[Fadﬂ erSadf'.
ne UZ;

Note that on the surface traction boundary
Sa = Tasnj.

Only the body force component in the z-direction, F3, is non-zero. This is the gravitational accel-

eration vector.



5.5 Structural stiffness matrix

The block of submatrices
515 Si5 St
s§ 8§ Ssh (5.19)
573 Si5 Sh

is defined as structural stiffness matrix. This is given by

[K14]® = jn (81" (D] (8] ém. (5.20)

where [D) contains only material dependent parameters—the constitutive elasticity matrix rclating

stress and strain—and [B] relates strain to nodal displacements. For clastoplastic material behaviour
the constitutive matrix is formed [rom:

P peyT )
(D] = 2} [m (%) (S+ el )] . a2

5.6 A general time integration method for differential equations using finite elements

Given a spatially integrated general system of equations arising from any non-lincar partial
differential equation:

S, 050 + Dy )2 + R(wy =0 (522)

where the subscripts 1,j vary over the element nodes (1..nnodes]. This can be written more simply
as:
d
Siits + D.-,-—:;i +Fi=0. (5.22)
where 1; are nodal values of Sy, S,, pu, T, and the displacements u; in our problem.

We can follow the approach of Zienkiewicz and Morgan {1983) but using non-linear coeflicients

instead of linear. We approximate the time variable by linear finite elements. This is illustrated in
Figure 5-2.

We can then approximate ¢ by

Py = Z Y7 Nen. (5.23)

m=l

where ¢* Is the value of the approximation 113, at time node m.
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Nodes 0 2 3 4
B & e ——i & &
t, t, t, t, t, i
Element @ @ @ @ @

Figure 5-2

Linear finite elements of time.

We use the same shape functions Ny, for all elements to represent the variation of each com-
ponent of 1. Nm is a scalar quantity and we have chosen a linzar polynomial. Consider the nth

element, surrounded by nodes at ¢ = ¢, and ¢ = ty41:
by = YPNT + 93N, (5.24)

because all the other trial functions are zero within element n. This can be shown diagrammatically

as in Figure 5-3.
1 | n n | 1
N" NIH-I
0 0 —> 1
ty @ e
Figure 5-3

Linear finite elements of time.
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Now, the element basis functions are described as:

,‘ —

Ny =1-T, diNy =—1;

dt Aty (5.25)
=T, .‘.i_IY_"z'*-_l = 1. -
nl = dt At
where the local coordinate T is defined as

t - tn = g0
T= Aty and Abp = tngpy = ln. (5.26)

In other words, T varies between 0 and 1 from ¢t = ¢, to tny1.

Apply the technique of weighted residuals over all time elements:
f(Dii + Siyth; + E)W, dt, where n=012,... (5.27)

Considering only those weighting functions Wy, such that:
W, =0, t<tyand it > ta {5.28)
then the integral becomes

/ (Dq%’- + Sij¥hy + F;)Wndt, where n=0,12,... (5.29)
0

This integral extends only over element n. Use Equation (5.24) to replace 5, and use Equation
(5.25) to obtain Equation(5.29). (Note that Dy;, Si; and F; are functions of time):

j {Dij(ta+AtaT) mj +Si5(tn+ At T (1 =T)+ 9} T T} We dT+ f [Fi(ta+AtaT)|Wn dT" = 0.

{5.30)
where At, = o1 — tn and AyY? = ¢?T! — ¢7, On expansion, Equation (5.30) becomes:
* i =Y f

1 1
[—AIT' f Dij(l‘-n + Aty T)Wn dT + .[Sij(tn + At T)TW, dT] ?,b;'H

1

[Atn !Dij(ha'*‘ﬁtuT)W dT+jS.,(t,,+AtnT)(1 _T)W ﬂ‘]¢1

+fF.—(z,.+At,.T)w,.dT=0. (5.31)



We thus have a two-level time stepping scheme. Now, if Dyy, Si; and F; are smooth [unctions

in time, we can use the same interpolation function as that used for ;!

[{ta + Ttatn) % fPNR(T) + [ NG (T)
="A-T)+/T). 0<T<l (5.32)

where N™ is a trial function within element n. Then Equation (5.30) becornes:

1
AyY?
f{[D;;(l-T)+D;}“T] Af: + (S = T) + SFHTINEQ = T) + 95 T)}Wa dT
0

1
+ f [F3Q - T)+ FH'T|WadT = 0. (5.33)
0
The second term in the first integrand is expanded as:
YIST(1 = 2T+ T2) + ¢St H(T - T?) + P+ ISH(T - T?) + YrHisyiT?

Thus we have:

Ay? f ! 1
. ( r,fw,.dnw;;frwna)a,s;;ngwndr
o 0 o

1
+ (ST + SR+ — 2534)) j TW, dT
0
1
+ (33¢? - SEH\D; - Sa¢;+l +Sa+l‘¢;+1)fT2WndT
0
1 1
+nfwndr+AF;fTw“ﬂ~=o. (5.3)
[+] [+]

Dividing through by fol W, dt and noting that AS™ = §™*! — S*, and similarly for the other terms,
Equation (5.34) becomes:

n Ay}
(D + 'TnAD:})EL + STYT + (ST AU} + ASHYT) + A ASHAYT + F + mAF] = 0. (5.35)

where
b TWadr

_ o T*W,dr
Jo Wadr

and A, = .
T [IW,dT
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We now take point collocation at T = # for each element, for 0 £ ¢ < 1. That means tuking

W, =6(T —0) forn=0,1,2,..., where §(z — 4) is the Dirac delta function with the properties:

0, ifz#8
6(:—0){

oo, ifz=40.

z>0
f C(z)b(z - ) dz = G(§).
=<8
Weshall alsouse for0 <8 < 1t :
f Wadl' =1,
0
1
f TW,dT = 8;
0

1
/ T3W, dT = 8.
1]

to obtain:
A n
0D+ (1 —0) DY =L+ ST} +0(AST Y} + SHAY]) +0 ASHAYF +HOF! +(1-0)F7} = 0. (5.36)
n

This can be simplified to form the final time discretized equation below:

Ay

(DY + aAD:;)A—t: + (ST, + 0AST) (Y] + 0AYT) + (FF +0AF) = 0. (5.37)

where AQ™ = g7+ — gn,

5.6.1 Obtaining finite difference approzimations from the time discretized equation

If we choose suitable collocation points within the time element, the following finite difference

schemes are duplicated:

6=0 : forward difference (Euler) scheme;
0=1 : central difference (Crank-Nicholson) scherne;
f=1 : backward difference scheme.

if @ = 2/, an approximation to the Galerkin solution is obtained. The Galerkin condition is

Wn=Nois
=T
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Then v, and A, are

bt { fo =--/—=2'
=T TR

2
An = %T’I‘?_%:% (# )

It is interesting to note that, in the linear problem, the choice of the collocation point 0 = %

leads exactly to the Galerkin solution for the linear problem,

5.6.2 Application of the time discretized equation

Recall the time discretized equation:

uﬂ"
(52" + 005" WE" + 08" + (D" + aAD""")—L— + (7" + OAFET).

where AS™ = §n+! — S, Let this equation be represented by
me = 0. (5.38)

where O is evaluated at node {, ¥ are the primary variables, and o and S cycle through the equation
(or variable) numbers: from 1to 4 or from 1 to 7. Then the Newton-Kantorovich method can be
applied to linearize Equation (5.38):

amg

ol (5.39)

where the derivative is taken with respect to 1}, a primary variable of type v and at node number
h.

5.6.3 Comparison with Voss’s total integration method (TIM)

To evaluate the derivatives numerically, only four shifts have to be made, in addition to the
evaluation of the equations at the new iteration level. Therefore five evaluations of the properties
and other variables must be made. In Voss's TIM, a chord slope method, nine evaluations are
required in addition to the value at the start of the time step, although iteration convergence is
improved if the correct chord is chosen. However, there is no guarantee that the chord chosen does
speed up convergence, and there is always the possibility of a flow reversal. This would be a change

in the direction of saturation or pressure change which could ruin the convergence. Convergence in
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Newton's method is more tolerant of flow reversals over the time step. Nevertheless, the algorithm

mnust still incorporate a check for flow direction after each Newton-Raphson iteration.

5.7 Application of the Newton-Raphson method

The general equation discretized in space and time is given for one finite element by

= (S28" + 0AS Y WA" + 0045 + (D" +9AD°"“)A£J +(Fe™ + 0AFP™)

=0 (5.40)

where AS™ = §"t+1 . 8", and similarly for the other terms. Time level n is the old time level and
time level (n+ 1) is the new one. M, is the equation evaluated at nodal point I, ¢ are the primary

variables, and & and S cycle through the equation (or variable) numbers: from 1 to 4 or from 1 to 7.

Equation (5.40) can be written in a shorter form:

n
me = 528"y + D‘*"’M’g + F{. (5.11)
n

where

)s"ﬂ" + as"""*" (5.42)

and similarly for the other terms.

Equation (5.2) is non-linear due to the dependence of the coefficients at the (n + 1) time level
on the primary variables. The equations can be linearized by application of a suitable method,
and the Newton-Raphson method is a common and suitable method in this case. The mcthod was
originally designed for functions of a single variable but can be successfully extended to functions of
many independent variables. This particular application is also known as the Newton-Kantorovich
method (Bronstein and Semendyayev, 1985). Application of the Newton-Raphson method to our
problem gives rise to the following:



64

where the derivative is taken with respect to ¥}, a primary variable of type v and at node number

H. The derivative can be formed numerically by forward-differencing:

M7 (UL + AyL) - M) (5.44)
Ay, ' '

where the amount At} is known as the shift, and M$(y]; + A¢];) is known as the shifted variable.

The two non-linear products 577 'a,bg' and (D34 ’A¢§“)/ Aty occurring on the right-hand side
of Equation (5.2) require further study for the purpose of forming derivatives. Purely n-level terms
are constant so, if identified, they can be discerded when forming the derivatives, perhaps saving
some arithmetic. Each of the terms could be expanded into five simpler terms at time level (n+ 1).
It turns out. that approximately three times as much computational effort is required to form the
derivative from the expansions than from the original terms. However, the Ff'™ terms can be dropped

when forming the derivative. Thus we can write

ooz _ aony’
A5
L = e (5.48)

where "
=538'yh +D7§'Af 4oFp(ntY), (5.46)

™

Although full expansion of the non-linear products does not result in saving arithmetic, selective
expansion is desirable. Inspection of the definitions of the coefficients S, D, F also revenls work

savings. This is elaborated in the following section.

5.8 Algebraic reduction of the derivatives

Two methods are available for reducing the amount of work to form the derivatives in the
Newton-Raphson Jacobian matrix. One is the reduction of the non-linear products by partially
evaluating the derivatives analytically, the other is by understanding the definitions of the coefficients

S, D, F. These methods can be combined to save a substantial amount of computational effort.

5.8.1 Derivatives of the coefficients S, D, F

Consider a typical coefficient at time level (n+ 1), S, say, fora=1, 8=1:

St = Z Asy f Ng [NoNAT d. 1,0 =[l.n). (5.47)
K=1
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The integral in this equation is independent of the variables %%, v # 5,6, 7 (the displacements). The
dependence on the displacements can be ignored for the moment. The presence of the multiplier
As, i8 significant because it is by definition only affected by events at node K. Therefore, on taking
the derivative of this expression with respect to a variable at node H, we only have a contribution

to the derivative from node K = H. Thus

BAse _ OlAse)s (548)

By oy
where 84 is the Kronecker delta, so that

051) _, 9(Asx)

vy oYk

In other words, the right-hand-side expression in Equation (5.47) need only be evaluated for K = H,

S j; NeNoNqT d0. 1,0 =L (5.49)

and there is only one term in the summation for each value of H. This is an important conclusion not
merely because we do not need to sum over all X = [1..n]. It also permits us to evaluate derivatives
at all the nodes by shifting a primary variable at all the nodes at the same time. If As,., was a
function of the degree of {reedom at other nodes K # H, then each node would have to be shifted
in turn to evaluate a derivative with respect to ¥};. As all the properties must be re-evaluated alter
each shift, there is consequently a factor of eight saving in the amount of work to be done in finding

the properties and determining the derivatives. The saving is therefore very substantial.

Note that the definitions of D2% and F{* are very similar to that of 577, and that the derivatives
will be formed similarly also. In particular, for Ff*:

8Ff _ d(as)

S = B f NN a2 I=[l.n). (5.50)

5.8.2 Derivatives of the non-linear products

It was discussed earlier that a full expansion of the non-linear products to eliminate purely n-
level terms was ineffective. Further inspection of the products shows that the terms can be reduced
to forms requiring less work to evaluate numerically. The two non-linear products, in the short

notation, are

seFy8  and D“'"A:: (5.51)
Starting with the first term, we can partially evaluate the derivatives using the usual rules for
products:
D_ (gos' " asas’ ,,:a;b"'
30T, (S? ) Bl S + ST ETA (5.52)



Now,

asy _ @ n (n1)
1-8)S28" 10577
5y}, 3,'(,” [( )Sts +05y; ]
5(“+1)
aqﬂ [os, ]
{n+1)
asgy
= 5.53
KZE .
We also know that, in general,
5280 _ (ak) f Ni [Ny Ny|T da. (5.54)
n-
Thus
(n+1)
a8y B(ax) / T
= Ny [NsNg]* dQ
o0 = 89% Jo. "IN
a
= ﬁ'ﬁﬁmﬂ'xu- (5.55)
Iy

where Y ;s represents the integral in Equation (5.54). This follows from the work in the previous
subsection.

From Equation (5.52), and using the definition for 11:"?’ following [rom Equation (5.3),

=657y . (5.56)

Again, the 1i-level term was constant and could be eliminated. The primary variables arc orthogonal
to each other so the value of the derivative is one for the same nodal point and type of degree of
freedom, and zero for the rest. This condition is represented by the double-6 notation above. The

term S§} is numerically equal to S}'f', but its use is governed by the different indices.

Thus we can write for the derivative of the first non-linear product

9 ases™ty
ET5A (S?f ”J’g') =0—g7 8:/:" =y + 057y (8.57a)
8Saﬂ(u+l) 1)
= 0——%’-’-"#:;— [(1 - 9)1!:5“ + 01[13(n+ ]
H

+ [9(1 —0)ST" + g25en ] (5.57b)
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+1)

(n+ .
Note that there is now only one derivative to be evaluated in the expression: that of S“B . This

is evaluated numerically.

The derivative of the second non-linear expression follows by a similar analysis to that of the

first term: n , , an
L\ At a¢,,. At,, At OYL

D,“f' is derived in the same manner as S“p —as the sum over the element nodes of products of a

variable coefficient at each node and a constant integrand, thus

ap® 8
TJ’?;_ -5 [~ o)s38" + 6038

p(n-H)]

(n+ 1)]

8
=57 [6
aDaﬂ(n-I-l)

T A

aé;ff) f Ny [NsNp)T do2

3(0K) .
34’3 SuTkes. (5.59)

=8

Now, because Ay J“ = ¢9"‘*" - 1,(:3", the second term in Equation (5.58) is given by

aavy _ i
R Br.b"
= §y67. (5.60)

Therefore the derivative of the second non-linear product becomes

n apintl)
7 (D"p'wg )-980 Al +D” 510657

ayp \7 At L Atn | At
aDaﬁ(’H'l) A!ﬁ q-yf
—Wr At,., + == Atn (5.61a)
8Dt pys”

=4

S — At A [(1 - 0)D" +-9D V] (5.61b)
H

Note that, as in the expansion of the derivative of the first non-linear term, there is now only one
1
derivative to be evaluated in the expression: that of D"" (nt ).

Analysis of the derivatives has yielded algebraic expressions that appear simpler to evaluate

than the original forms. The amount of work to evaluate the derivative has been determined in each
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case, and these expansions require about one-half the number of operations needed by the original

forms.

5.9 Implementation of the discretized equations as a finite element computer program

The finite elements used for this work are described completely in Appendix C. A full de-
scription of the implementation of the finite element program is given in Appendix D. Flow charts
are provided to help describe the model. A practical well model with many of the options used in
current finite difference models has been incorporated into the finite clement scheme, described in
Appendix D. The other major portions of the program are outlined: forming the (Newton-Raphson)
Jacobian matrix, assembling the set of global equations, and renumbering the global mesh. Em-
phasis has been placed on the implementation of these algorithms for vector processing, commonly
used to improve the time taken to perform the calculations. This has resulted in the development
of a specialized Gaussian linear equation solver, and the use of pseudo-descriptors — a method of
FORTRAN programming for vectors. Further description of the finite element program is found in
the user manual contained in Appendix J.

5.10 Discussion

The finite element scheme developed here is a fully implicit approach which has not been
presented before in the literature. The scheme describes a formal approach for assembling the
equations of conservation of heat and mass in flow through a porous medium, and its subscquent
coupling to a displacement model. The benefit of the totally finite element approach lies in the
coincidence of the meshes for heat and fuid flow and the solid displacements, providing for complete

compatibility of the solution domains.

It turns out that the approach is possibly not suitable for the solution of highly non-linear
problems of this type. The model was only able to run two or three small timesteps before the
pressure solutions began to diverge. This behaviour severely restricts the usefulness of the computer
program. The development of the equations is exploited in developing the combined finite clement
and finite difference model in later chapters. The contribution of this work lies in the description of

the finite element approach to this problem and presenting the difficulty of pursuing this route for

a coupled solution. The novel material includes

(a) the description and preparation of the equations;
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(b) the discretization in space of the equations;

{c) the diseretization in time of the non-lincar partial differential equations;

(d) the algebraic reductions of the derivatives used in the linearization schere;

{¢) the development of new correlations of physical properties of steam, water, and bitumen;
(f) the implementation of & practical well model for finite element reservoir simulation;

(¢) the development of many new programming techniques to make the program run faster, c.g.,
the vectorized approach to the linear equation solver and the general use of arithmetic through

pscudo-descriptors.

The formulation has been checked for errors and none was found, so the conclusion is that the
method is not suitable for this class of problem. This is despite the use of upwinding techniques.
However, the detailed formulation presented will be a groundwork for future discretization attempts

using finite clement methods. It is possible that the choice of time integrution led to an unstable

[ormulation.



Chapter V1

FINITE DIFFERENCE - FINITE ELEMENT APPROACH
TO THE COUPLED MODEL

The large overhead in a fully finite element approach to the coupled problem of thermal {luid
flow and solid deformation suggests that alternative approaches to the problem would be worthwhile
to investigate. The natural progress of petroleum reservoir numerical simulation has been with finite
difference rather than finite element discretization. However, finite differences have not been very
successful for plastic deformation problems (e.g., Pyrah, 1987). A practical approach would be to
combine solutions from a mixed discretization of finite differences and finite elements, even il'it 1acks

the aesthetic aspects of & purely finite element scheme.

In this chapter two numerical models are described: a highly implicit finite difference thermal
reservoir simulator, and a finite element elastoplastic solid model incorporating incremental plasticity
theory. Various degrees of coupling are proposed to provide analyses of differing degrees of complexity
commensurate with the computing resources required to run the models. Detailed information

regarding the discretizations is given in Appendices E and F.

6.1 A finite difference thermal fuid-solid coupled model

The starting point for the model is the equations of continuity and accumulation for fluid flow
and heat transport. The constitutive equations for fow — a molar balance — were alrendy presented

in Chapter IV, one for each component:
o ad . .
v. (9" Z: Il'aPaVnSa) + a (95 Z i'iapasa) =0 (G.1)
a=o,w,g am=ao,uwg

There are two components in a dead oil system, where no gas exists except for water vapour. In order

to model a three phase system (oil-water-steam) a third equation for the vapour-liquid equilibrium

of saturated water vapour is used:
T = f(p) (6.2)

Neglecting the contribution of the kinetic energy, potential energy, and viscous dissipation terms,
the constitutive equation for heat transport can also be shown to be equal to (Abou-Kassem et .,

75
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1986)

Vol . ZiabaVaSaHa+ (1 -d:)ﬁ,.v..H..] + V- (kaT)

aso,w,g

+ % [¢ Z ZiapaSaHa + (1 - ¢)b-He| =0. (6.3)

amo,u,g

Given the assumption of a dead oil system, the equations can be rewritten in terms of mass
densities as there is only one component per phase. Furthermore, as the finite differerice method
requires mass conservation within a specified element of volume, source terms can be added to the
equations. One ends up with the following lour equations:

1. Energy equation:

Vel S pavaSaHa+(1- ¢)p.-v.-Hr] + V- (kaT) — g, — aiy

amo,ug

+<"?E [¢ > p,saH.,+(1—¢)err]=0- (6.4)

a=o,u,g

where g} is the rate of heat loss to the surrounding formations and ¢} is the rate of production of
enthalpv,

2. Water equation:

T 1B (uvaSu + 247555)] — Gapu = G300 + o5 #(puSu + 5S;)] = 0. (6:5)

3. Qil equation:
- . F; )
V- (#peVoSo) = a0 + E[‘?(Pcso} =0. (6.6)

where g;,, g3, and g; are respectively the rates of production of water, steam, and oil.
4. VLE equation

T = f(py). (6.7)

The fluid velocities, va, in these equations comprise two parts: the fluid velocity, Va, with
respect to the rock or soil skeleton, and the rock or soil velocity, vy, with respect to a fixed reference
point. As was shown in Chapter 1V, this relation can be expressed by writing the microscopic
velocity of a fluid phase o relative to the fixed frame of reference:

Va
Vo = ?S-,: 4 Ve {6.8)



or
Va = ¢Sa(va = vr) {6.9)
where V, is the Darcy (bulk macroscopic) fluid velocity with respect to the soil skeleton, and v, is

the microscopic soil velocity. The Darcy velocity is given by

Va = Ak (Vpa + pag) (6.10)

The heat and flow equations can now be rewritten as:

1. Energy equation:

6' Z Pa(va + ¢Savr)Hu +(1- ¢)prrHr] + 6' (khT) - QL = 'ﬁi

aw=o,uw,g

8
+E [¢ Z PaSafla+ (1 - ¢)PrHr] =0. (6.11)

a=o,u,g

2. Water equation:

a
V- [pw(Vw + 65uVe) + po( Vg + $5,v:)] — q0pw — 4500 + F [#lpwSw + pgSe) = 0.  (6.12)

3. Cil equation:
= a
V-[0o(Vo + #Sove)] ~ a200 + TBT(¢p°S°) =0. (6.13)

All three equations can now be expanded so that the terms containing soil velacities can be separated
out. The time rate of change of porosity is actually related to the solid velocity (see later sections),
and is considered to be a “solid” term. The [ollowing sections extract the solid terms from cach

equation and expand them so that they can be incorporated in the finite difference discretization.

6.2 Solid terms in the heat equation

The solid terms are considered separately for the convection and accumulation portions of the

equation.

6.2.1 Conveclion terms

The general convection term of the heat equation is given by:

\Z [ Z Pa(Va + ¢Save)Ha + (1 — $)prve Hy (6.14)

=o,uhg
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T'wo Lerms contributed by the solid phase can be identified as:

f?‘-( > p¢.¢sav,Ha) + V- [(1 = $)prvrHyl (6.15)

amo,w,g

These terms can be cach further expanded to give three new terms, by selective differentiaticn. For

the first term one can write

¢v,-9( > p,s,H..) (6.16a)

a=o.w,g
¢ ( S paSaH,,.) Vov, (6.16b)
omo,u.g
( Z PaSaHu) Vr - ‘-7¢ {6.16¢c)
awow, g
and the second term:
(1 = $)v, - VprHy) (6.17a)
(1 - ¢)PrHrv' Vy (6.17b)
- peHev, - Vo (6.17c)

It should also be noted that the term p,H, can be expanded in terms of the specific heat capacity

of the rock, assuming cpr is constant in the range of AT,

prHy = prepe AT (6.18)

6.2.2 Accumulation terms

The general accumulation term in the heat equation is given by
a
E [¢ E PnSaHa + (l - ¢)PPHV] (6-19)
a=o,w,g

The two main terms contributed by the solid matrix to this expression are:

8 8
3¢ [ — dder ] + a_;” ,paSaHa—ai':i (6.20)

Traditionally, %’:—s is taken care of through a lumped parameter known as pore compressibility. This

is essentially the calculated elastic response of the matrix to a given change in confining stress,
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resulting from a change in the pore pressure. It will now be handled directly from the calculated

volumetric strains.

The first term is now expanded into two further terms:

(1~ ) oo Hy) = oy (6:21)

The term including the time derivative of ;, H, can be expanded considering Equation (G.18), as-
suming that ¢, is a constant and that the solid grains are incompressible. The latter assumption
implies that p, is constant with changing pressure, a common assumption in soil and rock mechanics
(Huyakorn and Pinder, 1987). The individual solid grains change volume with a change in temper-

ature, which can be accounted for using the isobaric bulk coefficient of thermal expansion (assumed

constant), where

=]
I
& -
3le

o I
3e

]
|

(6.22)

A first order expansion of the derivative with respect to T yields the following expression relating p
to some relerence value po(Tp).

p = po{l - aAT) (6.23)
This approximation is now differentiated with respect to T to find:

dp _ "
Fr = —poe (6.24)

Thus cne can write:

8 aH,
(1-¢)§(p,m) (1-9) [pr ;: +H, "’:;’;]
dp, 8T
-¢) [.or + He—z a;' az]
= (1 - ¢)(prcpr - H,-.ofa)ﬁ (6.25)

The term containing the time derivative of porosity, %?, can be expanded using the expression
for porosity terms found in §6.4.1. A direct method is found as

9 _ 1-¢ (6 — aAT)
a 1+¢, At

(6.26)
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A general expression for porosity as a function of some reference value ¢o(po, To) is also presented

from §6.4.1:
1 +€L\+l
where e?*! is the incremental volumetric strain since the departure from the initial condition of ¢y.

Whence one can solve the difference expression

s+l _ 4n
%‘f ~ qu?' (6.28)

6.3 Solid terms in the fluid flow equations

The solid terms are considered separately for the convection and accumulation portions of the

equation,

6.3.1 Conveclion terms

The general convection term in any of the fluid equations is given by:
V' [pa(Va + ¢Savr)). (6.29)

where a is the phase in question. There are two such terms in the water equation (one cach for
water and gas) and one in the oil equation. The term contributed by the solid phase is identifiable
as:

V- (¢PaSavy). (6.30)

This space derivative can be expanded to

V- (8PaSaVe) = ¢Vr - W(paSa) + $paSa¥- Vr + paSavy - Vo. (6.31)
Each of these terms can now be found as follows. The first term is

#Vr - V(PaSa) = ¢ [0:82(0aSa) + tyAy{PaSa) + V:As(paSa)] (6.32)

where Az, Ay, A, are the appropriate difference operators. The second term is

Ae,
At

$PaSaV: Ve = $paSa (6.33)
where the expansion of V. v, is given in a later section. The third term is given by

PaSaVr - Vo = paSa(vzBzd + uyAyd +v,0,8) {5.34)
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where the expansion is as before with difference operators.

6.3.2 Accumulation terms

The general accurmzlation term for phase « in the flow equations is

a%(m.sa) (6.35)

There are two such terms in the water equation (one each for water and gas) and one in the oil

equation. The term is simply expanded as

;%(qbpasn) = ¢'g'£(9asa) + paSn.% (6.36)
This second term is effectively a solid term, as the change in porosity is a function of the volumetric
strain. Traditionally in reservoir simulation it is handled through n pore compressibility Lerm which
relates change in pressure to change in porosity. The pore compressibility is sometimes confused
with the bulk rock compressibility, a point discussed by Geertsma (1957} and reviewed by Settari
(1989). A rigorous definition of change in porosity as a function of volumetric strain can be derived

as shown later in §6.4.1, from which an equivalent pore compressibility term can be extracted.

6.4 Evaluatjon of the solid terms

The solid coupling terms were presented in the preceding section. The question remains how

the expressions to evaluate them were obtained. These are presented here.

6.4.1 Porosily terms

The definition of porosity is

V-V
=0 (6.37)

where V, is the bulk volume of the rock and V; is the rock (matrix) volume. After some change

in pore pressure and temperature to (p, T} from the initial conditions of ¢o{po, To), incurring an



increment of volumetric strain &y, one obtains a new porosity,

_ (ot Vee) = (Ve + AVA)

Wb + Vigy
1 [ +e)Ws = (Ve +AW)
T 14g, W
1 W=V AV,
1+e.,[ Vi e~ V.,]

1 AV
R

¢

where AV, = Vie, was implied. The change in rock volume can be attributed entirely to thermal

expansion if the rock grains are considered incomyressible.

AV, = Via(T - Tp) (6.39)
Furthermore,
Vb - Vf —- 1 i _Y:
Ve T W
= ¢p — 1 (6.40)

Using these last two relationships in Equation (6.38), one obtains

1
¢= m[% + 6y — (1 = ¢o)a(T — Tv)] (6.41)
For small changes in porosity, the derivative with respect to time can be found using the forward
difference
3 -t
at = At
1 ¢o+ey—(1—¢o)aAT — ¢a(l +&)
- 14+ Ey At
_l1—¢pey—aAT
T 146, At (8.42)
where AT =T —~Tp.
6.4.2 Relating pore compressibility to malerial changes
Pore compressibility is rigorously defined as:
189
=_-=F 6.43
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Note that this is not the same as the bulk rock compressibility, or the individual grain compressibil-
ities which are considered negligible in this work. The appropriate integration, assuming cg to be

constant over the interval, leads to the following expression for porosity:

¢ = g exp®*(P—r0) (6.44)
A first order approximation to this expression is given by

¢ = ¢o[l + cyAp (6.45)

where Ap = p — po. This expression can now be compared to the carlier expression for porosity,
Equation (6.41), and solved for cg:

(1 — do)(Ley — aAT)
Cp =

(1+ Aey)doAp (6.46)

Beattic et al. (1991) pointed out that for relatively large deformations the first order approximation
for the pore compressibility as a function of pressure would be inaccurate, Accordingly, an expression

for cy obtained from the full solution is given by

In [¢o + Agy - (1 - ¢o)aAT]
do(l 4+ Aey)

Cop = Ap

(6.47)

6.4.3 Relaling dilation to changes in permeability

Amyx, Bass and Whiting {1960) presented an expression {or permeability as the Kozeny cqua-
tion, from the analysis of a bundle of capillaries:
¢

k= (6.48)

<3

where kz =2 5 is the Kozeny constant (actually a function of the shape factor and tortuosity of the

porous medium), and S, is the specific surface area (per unit volume of pore space):

Sp

"
<>

(6.42)

The Kozeny relation is not necessarily the best approach to finding an expression for perme-
ability, but it provides a means to examine the relation between the deformation of a rock skeleton
and changes in the permeability. It will be incorporated in the model as the relation between

changes in volumetric strain and permeability, but the model will not be restricted to this particular
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relationship. A real study would demand laboratory determination of the changes in permeability

associated with deformation of the sand.

Consider & change in conditions from ko, Spy, As, 8% (Po, 7o) to some arbitrary <tute {(r,T).
There will be a change in the bulk volume and the cumulative volume of the individual grains.
There will also be change in the surface area of the grains. The changes in grain volume and arca
are assumed to result only from thermal expansion or contraction, so that the grains are considered
to be incompressible. The change in surface area can be found by considering the grains to be

spherical and calculating the change in the radius as a result of thermal expansion or contraction:
: s -
AA, = ngmr aAT (6.50)

where the grains are assumed to have a uniform and constant initial radius r and there are n grains

per unit volume of pore space. The increment of specific surface area AA, will be denoted by 8:
A, = A, (14 8) (6.51)

The 8 term will be carried through the analysis, but is not actually considered in the final imple-
mentation, as it is assumed that 8 can be neglected because of the lesser order of change compared

to the change in volume. The change in volume can be represented by
AV, = V.aAT (6.52)

where V, is the rock grain volume. Therefore any change in rock bulk volume, less the thermal

expansion term, will represent a change in the void volume:

AV, = AV - AV, (6.53)
Thus the new porosity will be given by
_ Va4 (AV - AV ]
o= T (6.54)
The new value of Sy, is given by
_ Ak(l+8) e
Sp = VT (AV = AV (6.55)
Thus the ratio of the new to original permeability is given by
E_$5%
ko~ 0 S?
Vi+ AW A2(1+ 02§ |V V32 '



Now, the change in bulk volume is found directly from the volumetric strain:

AVb = Equ
Hence one can write
ic_ _ (V,,-{-AV,,):3 _V_b
ko~ Va(l+ey)(1+B)2 V3
1 1 (v,, + Av,,)”
U U+PE Y

Now, expanding the change in pore volume:

AV, = AV - AV,
=e,Vh ~ (Vs - V,)aAT

Therefore,
Vo + AVp = V(1 + aAT) + Vi(ey — aAT)
and,
YL =(l4+aAT)+ ———
V. (14 aAT) %
_ e+ alAT{(¢g — 1) + o
$o
€ aAT(1 — ¢p)
=14 -
%o %o

Use this resuit in the expression for the change in permeability;

& _ aAT(1 - ¢0)]°
£=P+m % ]
ko (1 +eu)(1+B8)2

(6.57)

(6.58)

(6.59)

(6.60)

(6.61)

(6.62)

which includes the thermal effects. If one assumes that change in grain surface area is small compared

to the volumetric changes, the expression simplifies to

[1 5 =AT(1 -qso)]’

L
kO 14,

(6.63)
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Ignoring the thermal effects entirely leads to the following relatively trivial expression:

3
1+ 5
* (__‘L)_ (6.64)
ko 1+¢e,
K % :
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Figure 6-1

Permesbility ratio as a function of volumetric strain according to Kozeny-Poiseuille model.

This expression is a first attempt at systematically incorporating volumetric strains into the
(absolute) permeability. The relation between changes in permeability as a function of volumetric
strain and porosity, calculated from Equation (6.64), is shown graphically in Figure 6-1. In a sand
body with a normal distribution of sand grain sizes, however, the permeability could go down with
increasing deformation. This would be due to the mobilization of the smaller particles and their

subsequent bridging and plugging of pore throats.
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6.4.4 Fuvaluation of the space derivative terms

Various space derivatives must be evaluated to complete the solid terms. The term V- v, is

found directly as follows:

- 8 8 @8

Veve= (-8— 3;'5) < (vz, vy, v2)
D 8u 00 0 Bu
T8z ot By dt Bz Bt

at(aal:Jf%: ‘?L)

== (exx +eyy + €24)

= 2 [Tx(ess)
_ Bey

T8t

. Qe

T At

(6.65)

Other terms must be evaluated using finite differences. Where possible, central differences are

used, where the first derivative u’(z) with respect to z is found as

(6.66)

and
Aryyy = — L (6.67)
In other words, Az, is the distance between the current and neighbouring block centres. A similur

approach is taken with the y and z directions. On boundaries, the appropriate forward or backward

difference formulation must be used:

w(z)m ST H (6.684)
+d
w(z) = "L;—:“;‘ (6.68b)

6.5 A finite element model for evaluating elastoplastic deformations

The development of the elastoplastic finite element model PLAST-PT3 is described more fully

in Appendix F. The main outlinc of the model is provided here, as well as some detailed descriptions
of novel features.
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6.5.1 Formulalion and statement of the equalions of equilibrium

By convention in continuum mechanics, stresses are positive when in tension and negative when
in compression. The convention in applied geomechanics is to reverse this notation, as the majority
of stresses in this field are in compression. This work will retain the tension-positive convention of
continuum mechanics due to the extensive algebra used. Furthermore, tensor (Einstein) notation is

used extensively.

Figure 6-2

Forces acting on an arbitrary body.

Effective stress is given by

U;j =0y + &isp (6.69)

where the Biot parameter o’ has been dropped as it is considered to be equal to one in systems with
incompressible particles. (See assumption in earlier sections.) Consider now an arbitrary body £,
shown in Figure 6-2, subject to boundary tractions T; on some portion of the surface T', internal body
forces F;, and a resultant stress field oy; and strains (5. In any system, energy must be conserved,

and in the absence of any other energy equivalents, there must be an equivalence of internal and
external work, which can be stated as

j; 01384 d = f Fibud+ f Ty6uy dT (6.70)
1 r
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where Su; are the displacements arising from the applied londs. This statement can be rewritten in

terms of effective stress
aij = oy ~ bijp (6.71)
Whence:
f 056605 dQ = f Fibu dQ + j Tibu; dT’ +f Fibi5pbei; d (6.72)
a s r n

These equations can be recast in vector form, using the symmetric nature of the stress and strain

tensors. Given the full form of the stress tensor

Gzz Ozy Oz
gy =\lopr Oy oy (6.73)

Cix Ozy Ozz
and that ozy = Oyz, Oys = T4y, and 4z = 04, then the vector form is given by
= T
a= (a'=::|°'w|°'xn°'ynau|a:y) (6.74)

The vector form ol the strain tensor is found similarly. Note the relationship between stress and
strain;

g'=C¢ (6.75)
where C is the constitutive matrix, and the strains are related to the nodal displacements i:
e~ Li (6.76)
where L is the matrix of space derivative operators. The Kronecker delta is written as:
&;=m=(1,1,1,0,0,0)7 (6.77)

The equilibrium equation can now be written in vector notation as

fz’:5§dﬂ=_[£-6.udﬂ+j1‘.-ﬁgdl‘+/m5§dﬂ (6.78)
'y} 43 r [+

Now make the following substitutions for the incremental displacements and strains. For a finite

element, the displacements can be approximated by the product of the shape functions and the
incremental displacements at the nodes:

du ~ Néit (6.79)
and

be ~ Bba (6.80)
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where B is the matrix of space derivatives of shape functions, B = LN. On insertion of these terms,

Equation (6.78) becomes
fC:B:ﬁBJﬁdQ=fE-ﬁ&ﬁdﬂ+f$-ﬂ6ﬁdl"+[pm_36ﬁdﬂ (6.81)
n 0 r n
The values of §u are arbitrary and may be cancelled through Equation (6.81), giving

U BTCBdn]ﬁ=jﬁTf_dn+fﬂTzdr+mepdn (6.82)
fl n r i

which is an effective stress formulation of the equilibrium equations. This can also be expressed as

the equilibrium of named loads:

[K] & = {Fioay} + { Firaction} + { Fpore} (6.83)

Thermal expansion is incorporated as an initial strain, generating the stress counterpart, an
initial stress:
20 =Cg (6.84)

Thus the total eflective stress is given by
o' =gy + A’ (6.85)
and one can define a new load term for the initial strain:
Fy, b5 = j; 2,B6ad0 (6.86)

or
Fop= / BTgyd0 (6.87)
1}

which is part of the sum on the left-hand side of Equation (6.82). Thus, the equilibrium equation

becomes
(K] = {Frody} + {Firaction} + {Fpore} = {Fou} (6.88)

The incorporation of plasticity into the stiffness matrix [K] is discussed in detail in Appendix F.

6.5.2 Smoothing data to mesh nodes

Most parameter values in a finite element model are found at the Gauss quadrature points
so that the integrals can be evaluated. The only variables found at the nodes are the primary

solutior variables, the displacements (u,v,w). However, other parameters are required to quantify
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the behaviour of the deformed structure, such as the stress tensor, volumectric strain, and effective
plastic strain, and to relate them to the fluid model. In particular, the principal stresses and their
directions are of interest as they indicate when and where a hydraulic parting might occur, and its
orientation. Two methods were investigated for smoothing values at the Gauss (quadrature) points

to the mesh nodes: a global and a local scheme.

Both smoothing approaches treat the problem as one of finding an approximation to a known

function, ¢. Let the approximation be 4‘5, then the residual over the domain € can be written as

Ra=¢-¢ (6.89)

The weighted residual statement (see Appendix C) can then be written, such that

f wz(qb-&)dnsf WeRad®
[¢] 0
=0 (6.90)

Let the approximation be made from a combination of trial functions Ny, and constant parameters

@, the latter chosen to optimize the approximation, i.e., minimize the residual:

p=dp=amNm, m=1,...,.M (6.91)

Note that index notation is used, and repeated indices indicate summation is to take place. Inserting

this approximation:

Lw¢(¢—$)M=sz(¢—%Nm)m

=0 (6.92)
On rearrangement, this becomes:
f Wit Ny d2 = f W d2 (6.93)
n fl
or, simply,
é a= i (6.94)
where

k¢m=-/nW£Nmm
(@) = (a1, 83,... ,am) (6.95)

f:=j‘;Wz¢dﬂ



Let ¢ represent the smooth curve, surface, etc., of values of g, €,, or &. These values are
only actually known at discrete positions — coinciding with the quadrature points used for the solid
model integrations. If the same quadrature scheme is chosen for solving this new approximation
problem, the problem can be solved because the function ¢ is known at these points. Whence the

right-hand side of the equation can be found, and thus the values of a.,, which can be nodal values.

This scheme has been shown for s single domain. For the global smoothing approach, the
usual discretization into subdomains and approximations by piecewise trial functions, and element

assembly, can be made:

E E
S [ WenNnan =} [ Wepan (6.96)

e=1 c=1

The choice of weighting function W, is important because only a limited number of data points
are known on the surface being fitted. The known points would ideally coincide with the positions
of the required quadrature points. The main choices — point collocation, subdomain collocation,
Galerkin method, and least squares method — are described in Zienkiewicz and Morgan (1983). The
Galerkin method was chosen because of the use of one function for both interpolation and weighting

and the resultant symmetry in the coefficient matrix. The assignment W, = N, is made; thus

2 (6.97)

fo= fn Negp a2

This method has coefficients requiring straightforward integration over the domain §1. The values of
am found are the nodal values of g, €y, or ¢, satisfying the weighted residual statement. The least
squares approach returns the same values, as is the result reported by Hinton and Campbell (1974),
who bypassed the weighted residual statement.

Tests on the global smoothing method showed that it gives quite unrealistic values at the
boundary nodes, requiring some correction. Instead, a series of local approximations can be made,
and the average value at each node can be taken. The approach, using the weighted residual
statement and the Galerkin method, remains the same. However, the approximation is now confined
to each element, which is solved for in each case, rather than an assembly of elements. Now one

must solve every element equation separately:

=

a=/

The solution of this system of equations is trivial for a single elemant, compared to an assembled

system. In the linear brick (L8) elements used in this study, an 8 x 8 linear equation system is solved



93

for. The values found for a given node from surrounding elements are then averaged to yield the
final interpolated value.

6.5.3 Reported results

The elastoplastic finite element model PLAST-PT3 is a displacement formulation, in which the
displacements are the unknowns to be solved for. However, the solution requires the calculation
of stresses and strains at the quadrature (integration) points within each element, with residual
force computations to ensure that the stress state remains within or on the plastic yield surluce.
Thus a great deal more information about the material state is actually available. In particular, the

following parameters are found as a routine part of the calculation at the quadrature points:
(i) the eflective stress vector, g’;
(ii) the strain vector, €;

(iif) the effective plastic strain, &p;

(iv) the Lode angle, 6.

Furthermore, the reactions & are found at the fixed nodes.

Moreover, the magnitude and directions of the principal stress vectors can be calculated from

the stress tensor, and the volumetric strain is found from the strain tensor simply as

Ey =& = TI.'(Eij) (5.98)

The parameters listed above are found by default at the quadrature points, but they can be inter-
polated to the nodes (which coincide with the finite difference block centres in the coupled model)
using the smoothing techniques discussed in the previous section.

The Lode angle, &, based on the parameter described by Lode (1926), is a measure of the value
of the intermediate principal stress relative to the minor and major principal stresses (Naylor, 1978),
i.e., as the intermediate stress varies linearly from o9 = 03 t0 a9 = &y, & varies linearly from +30°

to —30°. The Lode angle is found explicitly from the expression:

oy —202+403
V3(o1 —a3)

tand = (6.99)

It can also be found in terms of the deviatoric stress invariants (see Appendix ), which is compu-
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tationally much simpler than finding the principal stresses:

sin30 = —= (6.100)

The Lode angle is used as a stress invariant when describing the yield surface, but is also useful
when tracking the stress state of a point in the material. The change in # from +30° to ~30° is
usually an indication of principal stress rotation, which to determine otherwise would require the

extensive calculations of the principal stresses.

A stress ratio, K, is defined in two-dimensional stress analysis as the ratio of horizontal to
vertical stresses, viz.,

Ko= 22 (6.101)

This is a useful definition for the initial stress state as the principal stress directions will coincide
with the z and z axes. A three-dimensional version of K, can be defined as

K, = LHmee (6.102)
oy

where ay_,, = max{oy,,on,), and is the smaller of the two values, given the tension-positive

convention of continuum mechanics, so long as a compressive stress field prevails. If the system goes

into tension, the statement about the relative size of the two horizontal stresses is no longer true.

A hydraulic fracture or parting in an vil sand is a tensile failure of the material. The parting

plane will orient itself such that it is normal to the least principal stress.
Now, assuming that the system remains in a compressive stress regime,
(i) K, <1 indicates oy, ..| < |ov], i.e., that a vertical parting is anticipated.

(i) K, > 1 indicates |ov| < |og....|, i.e., that a horizontal parting is possible, provided that
lov] < |oy,...| is also true.

If this information is combined with the Lode angle and knowledge of the initial stress state,
one can determine whether the intermediate stress is the vertical stress or one of the horizontal
stresses. If the horizontal stresses are initially equal and the minor principal stresses (o2 = o3) then
the Lode angle will be +30° and K, will have a value less than one. If the stress state changes
due to the accumulation of axisymmetric horizontal loads, then the horizontal stresses will become
the major principal stresses (o2 = o), the Lode angle will become —30°, and K, will have a value
greater than one. By observing the Lode angle, one has verified that the vertical stress has become

the minor principal stress. These statements can be summarized as:



If the horizontal stresses are equal, then, if

(i) K, <1 and & = +30°, then oy, = oy, = 03 = 03 and a vertical hydraulic parting is most
likely;

(ii) Ko > 1 and 8 = —30°, then oy, = oy, = o3 = ¢, and a horizontal hydraulic parting is most
likely.

This presentation of data is useful because it avoids one having to evaluate the principal stresses
directly, and because one is normally only interested in whether the parting will be horizontal or

vertical, for the purpose of steam stimulation operations. It is predicated on two assumptions, not
always true, that

(i) the horizontal stresses are equal; and
(ii) the vertical and horizontal stress directions coincide with the principal stresses.

If it is suspected that the principal stresses will not be aligned with horizontal and vertica)
planes, then it will be necessary to evaluate them explicitly to be certain of their relative values
and directions. If only the values of the principal stresses are required, then they can be found by

solving the characteristic polynomial formed by the stress invariants (e.g., Mase, 1970)
3 2 - .
ot ~ho*~lhwo~-I3=0 {(6.103)

This cubic equation is easily solved using Cardan’s method (e.g., Bronstein and Semendyayev, 1985).
If the directions are required, then an eigenvector calculation must be made. This is most eusily
done using one of the EISPACK routines available from IMSL, or in the case of this work, the NSWC
mathematical library {(Morris, 1990). The problem now arises of presenting this information without
confusing the reader. There are three direction components and one magnitude for each principal
stress. In two dimensions, this information is best presented as an arrow with the correct orientation
on the paper and a length proporticnal to the stress magnitude. In three dimensions the task is
much more difficult without the latest specialized software and hardware. This work presents a
method not seen previously for providing a quick look interpretation of the principal stresses. In
this work, we are particularly interested in which principal stress is closest to the vertical, and the

tilt with respect to the vertical of the defining plane of this principal stress.

To find the principal stress closest to the vertical, take the dot product of the first principal
stress eigenvector A = (az,ay, @;) with the unit vector in the z-direction, k=(0,0,1):

Ak =141 [k cosa, (6.104)



96

where @ is the angle made between the two vectors. Whence

1 Oy

+,/a2 + a2 + a?

0 = cos” (6.105)
Note that this expression does not guarantee a unique direction for the eigenvector because of the
two solutions to the square root. This calculation is repeated with the two other eigenvectors B
and €. The value of @ closest to zero is the one closest to the z-direction. It is better to find the
value of cos § closest to one, to avoid evaluation of the cosine. This calculation can be repeated with
the xz-direction, after which the direction of the remaining eigenvector can be inferred because it is
normal to the plane specified by the previous two eigenvectors in three dimensions. The principal
stress information is then provided as the values of each of the principal stresses, followed by two

sats of ordered pairs of numbers;

1. the principal stress number closest to the z-direction, and the cosine of the angle between it

and the z-direction; and

2. the principal stress number closest to the z-direction, and the cosine of the angle between it

and the z-direction.

Then the numerical output can be scanned quickly to see which direction is closest to which
principal stress, and statements about probable parting planes can be made quickly. A cautionary
note should be made about the eigenvector calculations — it is possible to generate the conjugate
direction rather than the true direction from the eigenvector routines. In other words, there is no
guarantee of correctness of gica. It is therefore necessary to monitor changes in the principal stresses

and to interpret sudden reversals of direction carefully.

8.6 Coupling schemes between the models

Various options exist for coupling the solid and fluid models. For each variation, it is stipulated
that the block centres in the finite difference model coincide with the mesh nodes in the finite element

model. The options are broadly as follows:

1. The models are explicitly coupled at the level of the Newton-Raphson linearization steps of
the fluid model, where the increments of pressure, temperature, and saturation, are applied as
loads to the material. The material response as &, and v, is then supplied to the Auid model
for solving the next Newton-Raphson iteration. The problem has converged to a solution when

the fluid model converges. A stricter convergence requires the solid response to be found to
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this last (converged) iteration, and the fluid model rechecked for convergence. Two different
approaches are possible in this method:

a) the solid terms are evaluated directly and mostly added to the right-hand-side vector in
the equations; and,

b) a pore compressibility term is found which replaces the pore compressibility used in the
original finite difference model, while the remaining sclid terms are added to the right-
hand-side vector in the equations.

The second approach contains a greater degree of impiicitness in the solution, but might induce
too great changes.

2. The models can be run in a staggered mode, where the solid model provides information to the
fluid model with a lag of one time step. Thus the fluid model incorporates solid paramaters
which reflect changes to the distribution of pressure, temperature, and saturation at the pre-
vious time. The solution can also be found by incorporating a pore compressibility derivative
with respect to pressure, which is found from the preceding time step, and is used to predict

the pore compressibility in the current time step.

3. The models are run so there is no feedback to the fluid model, and one sees the uncoupled

response of the solid model to the changes in pressure, temperature, and saturations.

6.6.1 Explicit coupling in Newlon-Raphson iterations

The finite element model is explicitly fully coupled to the finite difference thermal fluid model,
This is achieved by stepping through the models at the Newton-Raphson iteration level of the finite
difference model. First, a satisfactory solution is found for the finite difference model, without
calling for the solid solution. Thus the finite difference model will select an appropriate time step
which provides convergence. At that time, the successful time step is re-rum, but now, after cach
successive Newton-Raphson iteration, the increments of pressure, temperature, and bulk density are
applied as loads to the finite element model. The resultant solid velocity v, and the volumetric
strain &, = Tr{e;;) are returned to the finite difference model to generate the solid coupling terms.
Thus the solid model lags behind the fiuid model by one Newton-Raphson iteration. Strict coupled
convergence is considered to have been achieved when the fluid model has converged on two successive
Newton-Raphson iterations, confirming that the last increment of load had a negligible effect on the
material. It is also permissible to pass over the confirmatory iteration. If coupled convergence is not

achieved within the allotted number of Newton-Raphson iteration steps, the time step size is reduced
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Coupling models at level of Newton-Raphson iterations.
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and the problem re-run for the new, stnaller, time step. Figure 6-3 is a flow chart illustrating the
procedural logic of the coupled problem (see the next section for a description of the subroutines

used in this program).

Due to the irreversible nature of accumulated plastic strain, it is important to ensure that
the loads applied each (fluid) Newton-Raphson iteration step do not change direction significantly.
The Newton-Raphson linearisation scheme is a tangent search method, and it is possible for the
true (fluid) solution to be overshot so that subsequent iterations push the incremental solution
vectors in the other direction. Overshoot of the solution can be controlled by retarding the size of
the increr. ital solution vectors-—achieved using under-relaxation. If overshoot is recopgnized as a

problem, under-relaxation can be applied during a specified number of the early iterations,

Several options are available to adjust the method. One is to hold the solid velocity terms at the

values from the previous time step, another is not to update them after the first n Newton-Raphson
itcrations.

A bigger variation on this method permits the solid response to be more implicitly coupled
to the fluid model, and, in theory, be a more stable formulation. The approach here is to take the
terms containing the time derivative of porosity, and treat them as in the classic finite difference
reservoir simulator formulations, viz., with a pore compressibility term. Thus one can write, for the

first order approximation of the pore compressibility relation,

% _ 993
3t~ dpdt
_9 o
=% [$0(1 +csp)] 57
_ dcy Op
= (docs +09) 32 5% (6.106)
or, for the full pore compressibility relation,
% 8¢9
at Odpot

= aip [soexpcess)] %%

a dp
= (cslrp) 95 axnlcsdp)| P
& [C,p exp +Ap 5 exp 5

=¢ (% + Ap%:g) % (6.107)

Note the difference between the two results, The above analysis put the pore compressibility as

a function of pressure. This refutes the assumption that pore compressibility is a constant when
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integrating the equation defining it. This inconsistency can be resolved by considering pressure
dependency when integrating. A relation with pressure can be assumed, lacking any experimental

information. Assume, then, a linear function of pressure for the pore compressibility:

cp = ap (6.108)
Integrating,
P1 &1
f apdp = j L (6.109)
Po % 9
whence,
a 1
3 (plz _p02) =ln% (6.110)
and,
¢ =do exp(am(p{“-pé) (6.111)

from which we extract a value of a and then cy, using the relation between volumetric strain, thermel

expansion, and porosity change. At present, this has not been implemented in the model.

When using the pore compressibility coupling formulation, the changing values of pore com-
pressibility over each time step require that the porosity be found in an incremental manner from

time step to time step, rather than from some arbitrary base value, i.e,,
g™t1 = g expled™ AP (6.112)

where A™p = p™+1—p", Pore compressibility is found from A", and A™T, and therefore represents

an average value for the time step. The derivative

_8£= n4l n41 n g_c_ﬁ

) (6.113)
n41

is approximated as

Arp
= "1 (253%1 ~ c3) (6.114)

% n, A"
5 o n4-1 (c:-i-l +A )

When the fluid solution is found for the first sequence of the time step, the previously found
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values of volumetric strain are projected using the approximation:

B¢
E:+l = E: + a—:

Ar-le
~ e+ T AT

n n—
ny Euw =&

1
=€) + T2 (" ") (6.115)

v in—¢n

This approximation ensures that a smooth change in g, is felt in the initial solution for pressure.

An approximation using a user-input value of pore compressibility is made for the first iteration of

the first time step.

6.6.2 Staggered coupling (solid solution lagging)

A simplified solution scaeme is propesed where the solid solution is made to lag behind the
heat and fluid solution by one time step. Its principal advantage is that only one call need be made
to the solid program per time step. The values of Ae, are then always at the previous time level.
The influence of the solid solution can be extended to the n+1 time level by culculating a new pore
compressibility from the time-lagged solution for volumetric strain, and then forming a numerical

derivative )
8cy _ S3—Cy
E - - pn—l

This derivative can then be used to make pore compressibility a pressure-dependent variable when

{6.116)

solving for pressures, saturations, and temperatures at the n 4 1 time level,

6.6.3 No feedback to fluid model

The simplest level of coupling is to remove any feedback from the solid model into the [inite
difference thermal fluid model. This form of analysis is useful for gauging the extent and degree of
plastic deformation as a result of hot fluid injection. While they do not influence the fluid solution,
the results permit conclusions to be drawn and inferences made about the likely outcome of hot fiuid
injection into such a material.

6.7 Description of subroutines in coupled finite-difference and finite element models

The subroutines constituting the implementation of the two models are described here. The
fluid model is a proprietary model and full source code may not be given. However, aduquate

description is given considering the equations and the purpose of the routines.



6.7.1 Solid model roulines

The following subroutines describe the impilementation of the finite element elastoplastic solid

model. The file in which the subroutine appears follows the subroutine name in brackets.

ALGOR (algor.f)

This subroutine sets the equation resolution index, which governs whether the element stiffness

matrix is updated.

BMATPS (bmatps.f)

This subroutine evaluates the strain-displacement matrix, 5.
CHCKRST (restarts.f)

This subroutine checks to see whether the restart data is consistent with the main data file.
CHECKQO (check0.f)

This subroutine checks the initial control data for valid ranges.
CHECK1 (check1.f)

‘This subroutine checks the main control data for valid ranges.

CHECK2 (check2.f)

This subroutine checks the remainder of the input data.

CONVER (conver.f)

This subroutine checks for convergence of the iteration process.

DBE (dbe.f)

‘This subroutine returns the product DB.

DIMEN (dimen.f)

This subroutine presets variables assnciated with dynamic dimensioning.
DIR3D (pstress.f)

This subroutine provides abbreviated directional information from the eigenvectors eigv(), with

respect to each of the z- and z-directions in tur..

ECHO (echo.f)
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If data errors have been detected by subroutines CHECK1, CHECK?2, or CHECK3, this subroutine

reads and writes out the remaining data cards.

ELGLOB (faceinfo.f)

This subroutine returns the local (element) node number from the global node numbers.
FACES (faceinfo.f)

This subroutine returns the element face number defined by the local nodes supplied.
FECHEK (fdcpl.f)

This subroutine equates PLAST-PT3 convergence to a global variable.

FEFDINIT (fdcpl.f)

This subroutine initialises related parameters common to both FE and FD modules in program.
FEREADY (fdcpl.f)

This subroutine initialises applied loads to zero and to revert values if required.
FLOWPL (Rowpl.f)

This subroutine evaluates the plastic stress-strain constitut.ive'D vector.

front (front.f)

This subroutine undertakes equation solution by the frontal method.

GAUSSQ (gaussq.f)

This subroutine sets up the gauss-legendre integration constants for 3-D L8 and L6 elements.
INCREM (increm.f)

This subroutine increments the applied loading,

INIPLST (plinit.f)

This subroutine initialises variables for PLAST-PT3.

INITST (initst.f)

This subroutine calculates the equivalent nodal forces for the cumnulative initial stresses.
INPUT (input.f)

This subroutine accepts most of the input data, plus any initial stresses.
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INVAR (invar.f)

This subroutine evaluates the stress invariants and the current value of the yield function.
JACOB3 (jacobd.f)

This subroutine evaluates the Jacobian matrix and the Cartesian shape function derivatives.
LCLAVG (leclavg.f)

This subroutine prepares and calls for the solution of nodal averages using Galerkin method — local

averaging only.

LINEAR (linear.f)

This subroutine evaluates stresses and strains assuming linear elastic behaviour.

LOADPS]1 (loadpsl.f)

This subroutine evaluates the consistent nodal forces for each element — initial loadings.
LOADPS2 (loadps2.f)

This subroutine evaluates the consistent nodal forces for each element — incremental loadings.
MODPS (modps.f)

This subroutine evaluates the elastic constitutive D matrix.

NEWLOAD (newload.f)

This subroutine sets up the values of change in pore pressure, temperature, and bulk density, for a

given instant in time.
NODEXY (nodexy.f)

This subroutine interpolates the mid-side nodes of straight sides of elements and the central node

of 9 noded elements.

OUTPUT (output.f)

This subroutine outputs displacements, reactions and stresses.
PLASTPTS (plastpt3.f)

This is the main controlling routine of the finite element program.

PRSTIN (restarts.f)
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This subroutine reads the current variables from the restart fle according to the appropriate time

step number,
PRSTOUT (restarts.f)
This subroutine prints the current variables to the restart fle.

DIR3D (pstrcic.f)

This subroutine provides abbreviated directional information f{rom the eigenvectors eigv(), with

respect to each of the z- and z-directions in turn.

PSTPREP (pstrspr.f)

This subroutine returns the principal stresses and their vectors.
RESIDU (residu.f)

This subroutine reduces the stresses to the yield surface and evaluates the equivalent nodal forces.

SFR3 (sfr3.f)

This subroutine evaluates shape functions and their derivatives for L8 linear brick elements and L6

linear triangular prism elements (both 3-D).

SJACOBS3 (sjacob3.f)

This subroutine evaluates the surface multiplier for Gauss integration, equivalent to the Jacobian
for 3-D integration.

STIFFP (stifip.f}
This subroutine evaluates the stifiness matrix for each element in turn,

TOFD (fdcpl.f)

This subroutine converts parameters from the FE model to ordering that the FD model uses. It

passes the latest values in volumetric strain and displacement velocities.

TOFE (fdepi.f)

This subroutine converts parameters from the FD model to ordering that the FE model uscs. It

passes the latest changes in temperature, pressure, and density.

TOFEI (fdcpl.f)

This subroutine converts parameters from FD model to ordering that the FE model uses. It passes
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the initial values in temperature, pressure, and density. Note that an initial density was used for

the initial stress calculations, so that this is altered for use with PLAST-PT3.

V2MAX (loadps2.f)

This subroutine finds the maximum absolute value of a 2-D array.

VITABLE (newload.f)

Routine to write out the reservoir parameters for perusal (integer version).

VTABLE (newload.f)

Routine to write out the reservoir parameters for perusal (real version).

YTELDF (yieldf.f)

This subroutine evaluates the flow (rule) vector for three dimensions.

ZERO (zero.f)

This subroutine initialises various arrays to zero.

ZEROEYV (fdcpl.f)

This subroutine zeros the volumetric strain vector before applying loads from injection or production.
A small number of function subroutines are used in the finite element model:
INSET (faceinfo.f)

This function tells whether the input vector I,, is equal to the set {I1,2,3,[4}.
INSUBD (pstrspr.f)

This function checks whether the point IPOIN is in the fluid flow subdomain; location ILOC is the

permutation vector index.

6.7.2 Fluid model routines
The following subroutines describe the implementation of the finite difference thermal fluid
model. The file in which the subroutine appears follows the subroutine name in brackets.
CALCNEW (couplings.f)

This subroutine calculates the new terms used in the fluid model when it is coupled to the solid

model.
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CALCOEF (calcoef.f)

This subroutine prepares the coefficient matrix and constant vector for the primary variable solu-
tions.

CLCTRANS (couplings.f)

This subroutine prepares the constant part of the transmissibility term using the permeability mod.

ifications.

CPLOUT (couplings.f)

This subroutine prints out coupling parameters for debugging.

DOMOLI (smfa.units.f)

This subroutine makes a molar quantity out of a mass-based one.

DTUPDATE (updates.f)

This subroutine updates variables preparatory to performing & new time step.

FDFESPS (fdfesps.f)

" This is the main program header, and invokes the type of simulation requested by the user.

FELOADS (couplings.f}

This subroutine prepares the changes in pressure, temperature and bulk density to be used as loads

in the finite element model.
FELODS! (couplings.f)

This subroutine prepares the first set of changes in pressure and bulk density to be used as loads
in the finite element model. The initial temperature field is the departure point for temperature

changes, so it is not applied as a separate load during initialization.
FEPOUT (couplings.f)

This subroutine prints out pore compressibility data.

FEPRICT (coupiings.f)

This subroutine projects &, and v, values from the previous time step.
FIZPROP (couplings.f)

This subroutine calculates the new terms used as basic properties (porosity, absolute permeability).
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GOPLAST (sim3d3p.f)

This subroutine executes PLAST-PT3 for latest Newton-Raphson iteration.
INICOEF (initial.f)

This subroutine calculates the heat loss to the overburden,

INITL! (initial.f)

This is a parameter initialisation routine run once at the start of the simulation.
INITL2 (initial.f)

This is a parameter initialisation routine run once at the start of a new time step.
INPUT!I (ins.f)

This routine reads in the main data for the fluid model.

INPUT? (ins.f)

This routine reads in well data for the fluid model.

INUSER (smfa_units.f)

This routine reads in user defined input units and sets up the vector of constants to convert them
to internal (SI) units.

IOUSER (smfa-w.iits.f)
This routine controls the units routines and prints the final table.
NRUPDATE (updates.f)

This subroutine does NR iteration check, followed by updating or reverting for a repeat series of

cycles.

OUTCUP (outs.f)

This subroutine outputs coupled data at the same times as does QUTS2.
OUTS!1 (outs.f)

This subroutine cutputs the initial report at the start of the simulation.
OUTS?2 (outs.f)

This subroutine outputs reports at user defined times.
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QUTUSER (smfa_units.f)

This routine reads in user defined output units and sets up the vector of constants to convert them
to internal {SI) units.

PRJCTN (sim3d3p.f)

This routine controls the prediction of approximations to solid parameters at start of a time step,
SETFEFD ({couplings.f)

This subroutine sets shared values for the solid and fluid models.

SIM3D3P (sim3d3p.f)

This subroutine starts the entire simulation,

SIMCTL (sim3d3p.f)

This subroutine controls the entire simulation for every time step.

SMFUNITS (smfa_units.f)

This subroutine converts unit scales from pure S.I. to those originally used in SIM3D3P.
STRTPLST (sim3d3p.f)

This subroutine starts PLAST-PT3 by initialising all stresses and reactions.



Chapter VII

PREPARATION AND ANALYSIS OF DATA:
PRE- AND POST-PROCESSING

A basic problem with the interpretation of data is the appropriate presentation for analysis.
Arranging the data for convenient access and graphing is of the utmost importance, and where
possible, the use of animation permits the overview of a sequence of events in a short time. The
presentation of three-dimensional data has the additional problem of portraying a third dimension
on a planar display. Several tools have been developed to aid in the preparation and analysis of data

from the numerical models described in this thesis.

(i) A grid generation program, grid, assists in describing the three-dimensional mesh for the finite
element program, giving a convenient method for describing element connectivities (incidence
matrices), nodal fixities (prescribed displacements), and the permutation vector describing the

position of the fluid flow domain in the global mesh.

(i) An element connectivity program, create._conns, processes the three-dimensional finite ele-
ment grid to produce polygon vertex sets which can be input into a three-dimensional display

program such as Mathematica.

(iii) A program, dvar, processes pressure and temperature data from the fluid low model prepara-
tory to input to the solid mode! ss loads.

(iv) A post-processing program for the main output file from the finite element model, postp,

extracts user-specified data from otherwise unwieldy files (frequently in excess of 50 Mbytes).

(v) A program, conprep, processes data summarized from either the solid model by postp or
directly from one of the output files from the fluid flow model. The data is stored to the public

domain HDF file format for later use.

(vi) A program, conslice, takes three-dimensional HDF data and extracts a slice or plane of values,
saving either to an ASCII table or to another HDF file, or both,

(vii) Two public domain programs, fp2hdf and Image3, are used to generate raster images of the
planar data from the files made by conalice, and then to create animated sequences of the

raster images,

110
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7.1 Using the pre-processing routines

The pre-processing program, grid, is required to generate the finite element mesh for PLAST-
PT3. If the flow model is run separately from the solid model, then the output file IPLAST from the

flow model must be pre-processed by dvar to provide suitable input to PLAST-PT3. The preparation
of data for and the use of these programs is discussed below.

7.2 grid

grid is s FORTRAN?? program [lor finite element generation. The program is compiled by Sun
277 using the following command:
$77 -u -g -£68881 -o grid grid.t

The grid program can generate 3-dimensional rectilinear meshes using 8-noded brick clements. The
output information includes the element connectivity matrix (relating element nodes to global node
numbering) complete with identification of element material, the coordinates of the nodes, a table of
nodal fixities (constraints on displacements in any combination of the z-, y-, and z-directions), and
the permutation vector identifying a specified subdomain where the flow: model operates. Totals in

all categories are also provided as comments. The data can be used directly with PLAST-PT3 us
input.

The grid program is simple to run, using only standard input and output:
grid < grid.input > grid.output

A typical input file for grid generation is as follows:

conment character
mesh generation

X, ¥, = number of nodes
8 8 14

# coordinates of first node
# x y z
0.0 0.0 -535.4
#
# x-lengths from the start position
40.0 40.0 4.0 10.0 20.0 40.0 100.0
#
# y-lengths from the start positicn
40.0 40.0 4.0 10.0 20.0 40.0 100.0



#
# z-lengths from the start position
40.0 20.0 10.0 4.0 3.7 3.7 4.0 10.0 20.0 40.0 80.0 150.0 150.0
#
# plane in which nodes are numbered (x,y,z) == (1,2,3)
3
#

*

start node numbering in which direction (x,y,z) == (1,2,3)
1

#

# fixities are additive: only worry about those acting on vwhole faca!

# fixities can oxist om all six outside facea of domain. Note the

# fixity code (bbb) where b = 0 or 1, and corresponds to positioms (xyz).
#
#

x+ plane fixities
100 0,0 0.0 0.0
# x- plane fixities
100 0.0 0.0 0.0
#
# y+ plane fixities
010 0.0 0.0 0.0
# y- plane fixities
010 0.0 0,0 0.0
#
# z+ plane fixities (top surface is free surface)
c00 0.0 0,0 0.0
# z- plane tfixities
001 0,0 0,0 0.0

number of supplementary material types to associate with elements
(i.0., above dofault number 1, which the main body takes)
2
numbering is by element in the same (x,y,z) directions as for the nodes
note that the numbers can overwrite previous definitions
# matno xmin, xmax, ymin, ymax, zmin, zmax
2 1 7 1 7 7 13
3 1 7 1 7 1 4

*

#* %

%* *

subdomain origin in globzl domain
xmin, ymin, zmin
1 1 7
extent of subdomain, relative to global domain
note that we chose z +ve upwards, opposite to typical reservoir
simulator for which the permutation vecter is intended
snx, sny, snz
3 3 -3

*

2 u B Y
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7.3 dvar

When running the fluid flow and solid models separately, the output from SIM3D3P can be
processed to give loads that PLAST-PT3 can read as input. The condensed output file IPLAST
generated by SIM3D3P can be processed by dvar to give the changes in pore pressure and temperature
for each time step, which are then used as loads. Note that at the zeroth time step, there is an initial
pore pressure loading to be applied, while there is a zero temperature field to be imposed (initial
temperature). The units are also changed to kPa and °C, which are required by PLAST-PT3. dvar
can also generate tables of data with coordinate information, information which must be supplicd
in the header file.

dvar takes one file as input: the output file IPLAST from SIM3D3P with a header prepended
to it. Only the short header will be described. Two important lines at the end of the header inform

the program which data are present in the file, and which data should be processed. dvar is simply
invoked using standard input and output:

dvar < data > dpdt_output

A typical header segment is as follows:

start with comment character

PROBLEM: 0: de incremental valuas between each time stap
1: do total change since start.

COLS: 1: sort data into cols with (x,y,z) coordinates

UCONV: 0: do no units conversion

UCONV: 1: do default units conversion

problem, cols, uconv

0, 0,1

LCE N B R

# start of data from FDFESPS

# Started analysis on Wed Jun 26 13:35:31 1991

#

# all data written out as NX, NY, NZ

5 5 3

#

#

# read in:

#p T 8¢ Sw Sg denb phi kfact
1 2 3 4 5 0 0 0

# write out:

#p T Se Sw 8g denb phi kfact
1 2 0 0 0 0 0 0

#
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7.4 crealte_conns

create_conns is a C program to create (z,y) connectivity lists from the element connectivity
matrix. The purpose is to re-describe the original matrix connectivity list in terms of either the
clement edges (lines) or faces (quadrilaterals). The program produces the minimum set of objects
required to draw the domain with the element boundaries, either as a complete set with internal
clements, or merely the exterior faces, This information can then be input to a program capable of
generating three-dimensional images for fast processing into such an image. The procedure will be
described for using Mathematica®, a commercially-available program. create_conns requires two
input files if only the exterior surface need be rendered, or one if the entire domain will be described.
In both cases an input file will be required with information defining the problem and the element
connectivity matrix, and is supplied as standard input. The second file, if required, is a list of nodal
coordinates and is read in using a file name given in the first data file. The order of the output

reflects the order of the elements of the original input file.

The program is normally invoked directly:

create.conns < my.input > my_output

The main input file takes the following format:
1. ‘debug’
This optional word indicates that visual feedback is provided as the elements are processed, in
the form of a dot every ten elements that are passed through.
2. data_type
data_type = ‘line’: generate connectivities as lines joining the element vertices to define
the element edges.
data_type = ‘poly’: generate connectivities as quadrilaterals defining the element faces.
3. data.type coord.fname xface yface zfaca xmin xmax ymin ymax zmin zmax
Place a ‘#' at the start of this line if it is desired that the entire domain, including the interior
elements, be rendered.
data_type = ‘limits’: generate data only for the exterior {aces of the domain.
xface yface zface: these data indicate which faces will be defined in each of the z,y,2
directions. One flag is provided for each coordinate:
xface = O: negative z-direction,
xface = 1: positive z-direction,
xface > 1: both x-directions,

xmin xmax ymin ymax zmin zmax: these data indicate the limiting values in each of the z,y, z



directions, being the extremes in the negative and positive directions for each coordinate.
xface yface zface: these data indicate which faces will be defined in each of the x,y, =
directions. One flag is provided for each coordinate:

4, i mat ni n2 n3 né¢ n6 n6 n7 n8
This is the list of element incidence matrices where i is the element number, mat is the material
ID number (superfluous, any integer will do), and n1 to n8 are the global defining node numbers

for the element. There will be as many lines of data as there are elements constituting the

domain.

If the file of nodal coordinate data is required, it takes the simple form of :

1. x_coord y_coord z_ccord

where the nodes are implicitly nvmbered sequentially.

7.4.1 Using Mathematica(R) with »ulput from creale_conns

Mathematica has powerful drawing capabilities, and can easily render a three-dimensional
object that is adequately defined. The object can then be viewed from any desired angle and
distance using the interactive tools available in the application, and can be exported as an EPS file
for annotation and embellishment before using it as an illustration. The output from create.cons
is used with the same file of nodal coordinates mentioned in the previous section. The following set

of Mathematica command lines will input the required data and draw the solid body:

xyz = ReadList ["nodal_coords”, {Number,Number,Number}];
connpoly = ReadList ["test_ext_polys",
{Number, Number, Number, Number}] ;

graphpoly = Table[ Polygon[{xyz[[ conupoly[[i,1]] 11,
xyz[[ connpoly[[i,2]] 11, xyz[[ comnpoly(fi,3]] 11,
xyz[[ connpoly[[i,4]] 11 } 1, {i, Length[coanpolyl}];
polydiagram = Uraphics3D[ {graphpoly} ]
SetOptions[Graphics3D, Shading->Falsa, Boxed->Falsa]
Show[ polydiagram ]

7.5 Using the Post Processing Routines

The post-processing programs postp, conprep, conslice, and fp2hdf, plus the Image3 pro-
gram for the Macintosh, are required for the appropriate analysis of output from PLAST-PT3 and
SIM3D3P. The preparation of data for and the use of these programs is discussed below.
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7.6 postp

postp is a C program 0 extract data from the main output file generated by PLAST-PT3. The
program is compiled using the following command:

gee -0 -g -o postp poestp.c

The amount and type of data extracted from the main output file is governed by a short header
file which is prepended to the main output file. On a Unix system this is easily achieved by the
following pipelined command:

cat beader_file main.data | postp > result_file

A typical header file is as follows:

TYPE METHOD (integer codes)

VARIABLE_SOUGHT (character data, e.g., displacement)

OTHER_CODES (integer codes, such as: the number of nodes or Gauss points, the node or element

numbers, the time step number, ranges to be ignored.)

No comment markers are currently supported. The currently supported options are listed in

the following subsections. The marker | is used to denote the binary OR operator.

The following is a list of the routines other than main which are called in the program:
searchl1()

search12()

search2()

search3()

search4()

search61()

search62()

search71{)

search72()

The first digit at the end of the routine name corresponds to the TYPE number, and the second
digit corresponds to the METHOD number. The formats of the data files are now explained for each
TYPE number.

7.6.1 TYPE=1

Presents displacements or reactions at specified nodes for every time step. The directions of
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the data depend on the METHOD chosen. dx, dy, and dz data are presented f{or one specified node
if METHOD = 1. Only one of the three directions is presented if METHOD = 2, but for several node
numbers specified in ascending order. Example header files are:

11

displacements|reactions

NODE.NO

12

displacements|reactions

x|y|z-direction

NDATA

NODENO_1

NODEND.2

7.6.2 TYPE=2

Presents effective plastic strain &,, volumetric strain &,, the stress components oy, gyy, or
@1, Or Lode angle @ at selected Gauss points and elements at each time step. Only METHOD = 2 is
permitted. An example header file is:

21

EPS|Ev|Sxx|Syy|Szz|Lode

NDATA

ELEM NO_1 GAUSS_PT.1

ELEMND_2 GAUSS.PT.2

ELEM_NO_3 GAUSS_PT.3

7.6.3 TYPE=3

This type will generate an echo of all the output data for a specified time step. The method is
necessary but irrelevant. An example header file is:

31
TIMESTEP_NO
7.6.4 TYPE =4

Presents, for all time steps, all non-zero values of &, (for METHOD = 1) or negative values of the

stress ratio K, (for METHOD = 2). A specified number NRANGE of groups of elements can be excluded
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from the report, and must be specified in ascending order. Each group is identified by the range MIN
to MAX. Thus the growth of the sheared zone can be identified, or the development of either vertical
or horizontal positive (tensile) stresses. The number of expected Gauss points must be provided
(generally eight). An example header file is:

4 12

NGAUS

NRANGE

MIN[0] MAX[O]

MIN[1] MAX[1]

MIN[2] MAX([2]

MIN [NRANGE] MAX[NRANCE]

7.6.5 TYPE=5

Presents, for all time steps, all tensile (positive) stresses. A specified number, NRANGE, of groups
of elements can be excluded from the report, and must be specified in ascending order. Each grcup
is identified by the range MIN to MAX, Thus the development of positive (tensile) stresses can be
identified. The number of expected Gauss points must be provided (generally eight). The METHOD
identifier is necessary but irrelevant in this case. An example header file is:

51

NGAUS

NRANGE

MIN[O] MAX[O]

MIN[1] MAX[1]

MIN[2] MAX[2]

MIN[NRANGE] MAX[NRANGE]

7.6.6 TYPE=6

Presents all values of one variable within one time step. Nodal variables such as displacements
and reactions are generated for METHOD = 1, and values at Gauss points such as &, €u, Ozz, Ty,
G4z, OF Lode angle @ for METHOD = 2. In the latter case, the number of Gauss points to be reported
must be specified after the time step number. Example header files are:

61

Displacements|Reactions
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TIMESTEP.ND

62
EPS|Ev|Sxx|Syy|Szz|Lode
TIMESTEP_NO NCAUSS_PTS

7.6.7T TYPE =7

Presents all values of one variable for all time steps up to a specified time step. Nodal varinbles
such as displacements and reactions are generated for METHOD = 1, and values at Gauss points such
a3 &, €y, Ozz, Oyy, Ta3, OF Lode angle & for METHOD = 2, In the latter case, the number of Gauss
points to be reported must be specified after the time step number. Example header files are:

71

Displacements|Reactions

TIMESTEP.NO

T2

EPS|Ev|Sxx{Syy|Szz|Lode

TIMESTEP_NC NGAUSS_PTS

7.7 conprep

conprep is 8 FORTRANT77 program to create an HDF (hierarchical data format) file from
either the PLAST-PT3 data, via the postp program, or from the IPLAST or SPLAST output files

from SIM3D3P, the reservoir simulator. conprep is a multi-purpose program:

(a) it will generate a 3D HDF file from the output created from postp (typically TYPE = 7 and
METHOD = 1 or 2) for a specified subdomain, and for all time steps;

(b) it will generate a 3D HDF file from the output file IPLAST created from SIM3D3P, for a specified
subdomain, and for all time steps. The data presented can be in terms of the actual values,

changes over a time step, or the cumulative change since the start of the time steps;

(c) preparation of tables of data from postp output. The program can generate data according to
several options:

(i) a table of nodal data with 1,5,k coordinates;
(if) a table of nodal data with z,y,z coordinates;

(iii) a table of Gauss point data with r,y,z coordinates;
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The program will only process one value of data in space, and when considering displacements or

reactions, the z, y, or z direction of the variable must be selected.

File Subroutine
conprep.f conprep
coninit
datmat.f ndatmat
edatmat
ioutils.f getemnmt
echocmmt
getstring
odats.f nodals
elems
loctable
ptnodl.{ ptnodt
pstnodl
sdsprep.f findMaxMin3
sdsprep
setup.f setgpos
setgeomn
getcods
sfr3.f sfr3
Table 7-1

Source files and routines constituting CONPREP

Data can be extracted on a plane or along a line, and then tabulated. 3D data can be extracted
only when creating the HDF file. The hierarchical data format is a versatile binary storage scheme for
scientific data placed in the public domain by the National Center for Supercomputer Applications,
University of Illinois at Urbana-Champaign, IL, U.S.A, commonly referred to as the NCSA. A group
of floating point data, called a scientific data set (SDS), is combined as an HDF file, to which more
SDSs can be appended. This is used to add data for each time step from a simulation. Various

visualisation tools are available which require HDF files as input. The format is also convenient



and compact for general storage and extractions. The details of the HDF support are available by

anonymous ftp from the Internet archive site zaphod.ncsa.ujuc.edu [128.174.20.50].

The table of data generated by conprep is a matrix suitable for input into contouring programs

which cannot resolve data in a simple (z,y, 2) column format, which is also produced.

The program consists of the files and subroutines listed in Table 7-1. The program can be
easily compiled on a Unix system by typing make prep in the presence of the source files and the
supplied makafile. The program is run two slightly different ways, depending on whether the output
being processed comes from PLAST-PT3 or SIM3D3P. Both cases require a shell script to start the

process.

7.7.1 Scripts MKSDS and MKSDSRUN: for PLAST-PT3 oulputl
This script is run using the command:
mksds postp.hdr plast.out conprepl.hdr conprep2.hdr coords grid rows.cols SDSfile
The script parameters are explained below,
(i) postp.hdr is the header file for the postp program (TYPE = 7 and METHOD = 1 or 2).
(ii) plast.out is the main data file output from PLAST-PT3.

(iii) conprepl.hdr is the first part of the control data for conprep. The type of information

depends on whether one is extracting nodal or Gauss point (element) data.
(iv) conprep2.hdr contains data for labelling and initialising the HDF file.
(v) coords is a fiiz of nodal coordinate data in the form NODEND, X, Y, Z.

(vi) grid is a file containing different connectivity data, depending on whether cne has nodal or
element data.

{a) Nodal data, The table is a connectivity table relating (i, 7, k) locations to node numbers.
Node numbers are read in such that the left-hand index varies fastest, i.e., 1, then j, and
lastly k.

(b) Element data. Two sets of data are required. First, a connectivity table relating (i, j, k)
numbering of elements to element number, read in in the same manner as for node
numbers. Second, an incidence matrix defining the local node number in each element in

terms of the global node numbering, in the form ELEM. X0, NODE.1, ..., NODE.8,



(vii) rous.cols is a short file containing the number of rows and columns of numeric data output

from postp in each time step.
(viii) SDSfile is the name of the SDS file to be created and written to.

If a constant PLAST-PT3 output file is used, and postp and conprep header files have been
set up, a simpler script can be used:

mksdsrun elem|node xx

where xx is the data of interest (e.g., K,, displacements, etc.) and either NODE or ELEM is specified.
This seript simply invokes the other script, nksds,

7.7.2 Preparing the header files for conprep

It is already assumed that the main PLAST-PT3 output file has been postprocessed using
postp, to generate single value data for all points and time steps {(using TYPE = 7 and METHOD = 1

or 2). The examples are divided into nodal and element data.

(1) conprepi for nodal data. Comment lines are permitted, where the comment character appears
in the first position in the file, (typically, ‘#’). Four lines of data must appear in the following
order:

1. TYPE, SDSFLAG, EORN (integer)

TYPE = 0: only generating a table of locations, e.g., z, y, z.

TYPE = 1: obtaining data as well as locations.

SDSFLAG < 0: no $DS file.

SDSFLAG = 0: new SDS file.

SDSFLAG = 1: old SDS file with new attributes and labels.

SDSFLAG = 2: add data with existing attributes and labels. (Usually SDSFLAG <= 0, no HDF

file or a new one.)

EORN = 1: nodal data.

2. IMIN, IMAX, JMIN, JMAX, KMIN, KMAX (integer)

Gives ranges of nodes defining subdomain of dataset cutput from postp. One pair must be
equal to define a plane, and two pairs must be equal to define a line. If an SDS file is being generated,
the IMIN, JMIN, KMIN values are used to annotate the file, providing a reference frame for offsets
in future requests for data from the file.

3. XSCALE, YSCALE, ZSCALE, VSCALE (real)

The first three factors modify the values of the scales, and VSCALE modifies the values of the
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data.

4. NCHOICE, NDIR (integer)
NCHOICE = 1: print nodal coordinates as (i,7,k).
NCHOICE = 2: print nodal coordinates as (z,y,z).
NDIR = 1: choice of z-direction for data.
NDIR = 2: choice of y-direction for data.
NDIR = 3: choice of z-direction for data.

(2) conprepl for element data. Comment lines are permitted, where the comment character
appears in the first position in the file, (typically, ‘#’). Five lines of data must appear in the
following order, followed by NGAUS lines of Gauss point coordinates.

1. TYPE, SDSFLAG, EORN (integer)

TYPE = 0: only generating a table of locations, e.g., z, ¥, 2.

TYPE = 1: obtaining data as well as locations.

SDSFLAG < 0: no SDS file.

SDSFLAG = 0: new SDS file.

SDSFLAG = 1: old SDS file with new attributes and labels.

SDSFLAG = 2: add data with existing attributes and labels. {Usually SDSFLAG <= 0, no lDF

file or a new one.)

EORN = 2: element data.

2. IMIN, IMAX, JMIN, JMAX, KMIN, KMAX (integer)

Gives ranges of nodes defining subdomain of dataset output from postp. One pair must be
equal to define a plane, and two pairs must be equal to define a line. If an SDS file is being generated,
the IMIN, JMIN, KMIN values are used to annotate the file, providing a reference frame for offscts
in future requests for data from the file.

3. XSCALE, YSCALE, 2ZSCALE, VSCALE (real)

The first three factors modify the values of the scales, and VSCALE modifies the values of the
data.

4. GLYR1, GLYR2, GLYR3 (integer)

Assuming a 2 x 2 x 2 integration scheme, these values indicate the upper or lower Gauss points

in the 4, j, and k directions respectively. These values are ignored when 3D data is being

extracted.
GLYRn = 1: lower layer in direction n.
GLYRn = 2: upper layer in direction n.
5. NGAUS (integer)
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This is the number of Gauss points in any element (8).
6. GP_NUM, XI, ETA, ZETA
NCAUS lines with the Gauss point number and local (element) coordinates.

(3) conprep2 — second and final header file for both nodal and element data. Comment lines are
permitted. This file contains the label information used by the HDF files. The entry of data is
governed by the first non-comment line in the data, All text data is limited to a maximum of
258 characters. The first line contains data for the logical array LABELS(4).

If LABELS(1) is true, then three lines of text information are expected:

1, data label;

2. data units;

3. data format for ocutput, e.g., G16.5.
The remaining three array entries in LABELS refer to the character data for each of the axes or
dimensions of the data. LABELS(2), LABELS(3), LABELS(4) respectively indi.ate the pres-
ence of threc lines each of data for each axis direction (z,y,2). This data is given on three
lines for each case:

1. axis {dimension} label;

2. axis units;

3. axis format for output, e.g,, G16.5.
The data labels are modified by the program according to information generated by postp,
yielding information for this output on the type of data, the time step number, and the simu-

lation time.

7.7.3 Scripts MKSDSPT and MKSDSPTRUN: for SIMSPSD output

This script is run using the command:

mksds iplast|splast conprepl.hdr conprep2.hdr coords var.num SDSfile
The script parameters are explained below.

(i) iplast|splast are the output files produced by SIM3D3P, slightly modified at the start with
a permutation table and option flags. iplast contains pressure, temperature, fluid saturation,
porosity, bulk density, and permeability modifier data for each time step. splast contains
principal stress values and the principal stress number closest to the z- and z-axes respectively,

and their actual proximities (as cosine of the angle).

(ii) conprepl.hdr is the first part of the control data for conprep. The type of information depends



on whether one is extracting nodal or Gauss point {element) data—this data is always nodal
from SIM3D3P.

(iii} conprep2.hdr contains data for labelling and initialising the HDF (ile.

{iv) coords is a file of nodal coordinate data in the form NODENG, X, Y, Z. Explained in the
previous section.

{v) var.num is the identification number of the variable being extracted. The current sclection of

variables is shown in Table 7-2,

var._num EORN=3 EORN=4
1 pressures (p) major principal stresses (o)
2 temperatures {T') intermediate principal stresses (o)
3 oil saturations (S,) minor principal stresses (o3)
4 water saturations {S,) (40) principal stress no. aligned closest to z-axis

(41) actual proximity as cosine of angle Lo z-axis
5 gas saturations (S;) (50) principal stress no. aligned closest to z-axis

{(51) actual proximity as cosine of angle to z-axis
bulk densities (ppuix)

7 porosities {¢)
8 permeability ratios (%)

Table 7-2

Selecting data from the IPLAST and SPLAST files

(vi) SDSfile the name of the SDS file to be created and written to.

If a constant IPLAST or SPLAST output file is used, and the conprep header files have been
set up, a simpler script can be used:

mksdsptrun var_num var_name

where var_nun is the identification number of the variable, as above, and var_name is the preferred
name for that variable (e.g., pressure, prs, dP, dP_cum), and is used as a subscript on the output
files. This script simply invokes the other seript, mkadspt.
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7.7.4 Preparing the IPLAST file for conprep

The IPLAST and SPLAST files generated by SIM3D3P must be slightly modified. The data
must appear in the following order:
1. UCONV, DCUM, DRSEP (integer)
UCONV > 0: perform default units conversion on data.
DCUM « O: return absolute values.
DCUM = 1: return changes over the last time step.
DCUM > 1: return curnulative change since the first time step.
DRSEP = O: retum'principal stress numbers only.
DRSEP » 0: return cosines of angles only.
2. NX, NY, NZ (integer)
NX, NY, NZ are the ranges in the z-, -, and z-directions respectively, These are output by
SIM3D3P automatically.
. K, PERMUT(I) (integer)
K: node number of the permutation vector entry, 1 £ I < (ngz #ny *ny).

(2]

PERMUT: permutation vector relating the fluid and heat flow subdomain to the solid model for
which the coordinate data was generated. The permutation vector is available in the output
from grids, the grid generation program. This line is repeated nz « ny, + 1y times.

. TISVAR(1), IISVAR(2), IISVAR(3), IISVAR(4), IISVAR(E), (integer)
IISVAR > 0: indicates the inclusion of this variable in the following data set, using the identi-

o

fication scheme outlined in the earlier subsection. This is automatically produced by SIM3D3P.
. TIM (real)
This is the simulation time for the following data sets, which constitute the bulk of the IPLAST
or SPLAST file.
. DATA (real)
Each data set is written as a vector [rom SIM3D3P using the ordering (((p(i, J, k),1 = 1,nz),

tn

(=73

j = 1,ny),k = 1,nz). Any node number can be then found from an (1,7, k) reference through
the expression (k — 1) « ny nz + (j — 1) #nz +i. Note that the principal stress direction data
is written as (o;, cosa), where i is the principal stress number with its direction closest to the
z-axis (varnum = 4) or z-axis (varnum = §), and a is the angle it makes with the respective

axis.



7.7.5 Preparing the header files for conprep

(1) conprepi header file. As all the variables for SIM3D3F are found at the nodes corresponding to

the block centres or point centres, depending on the type of finite difference grid, only one form
of the conprepl header file is necessary. Comment lines are permitted, where the comment

character appears in the first position in the file, (typically, ‘#"). Four lines of data must appear
in the following order:

1. TYPE, SDSFLAG, EORN (integer)

TYPE = 0: only generating a table of locations, e.g., z, y, z.

TYPE = 1: obtaining data as well as locations.

SDSFLAG < 0: no SDS file.

SDSFLAG = 0: new SDS file.

SDSFLAG = 1: old SDS file with new attributes and labels.

SDSFLAG = 2: add data with existing attributes and labels. (Usually SDSFLAG <= 0, no HDF
file or a new one.)

EORN = 3; IPLAST data.

EORN = 4: SPLAST data.

2. IMIN, IMAX, JMIN, JMAX, KMIN, KMAX (integer)

These parameters indicate the ranges of nodes defining subdomain of dataset output from

postp. One pair must be equal to define a plane, and two pairs must be equal to define a line. If an
SDS file is being generated, the IMIN, JMIN, KMIN values are used to annotate the file, providing a
reference frame for offsets in future requests for data from the file.

3. XSCALE, YSCALE, ZSCALE, VSCALE (real)

data.

The first three factors modify the values of the scales, and VSCALE modifies the values of the

4. NCHOICE, NDIR (integer)

(2)

NCHOICE = 1: print nodal coordinates as (i,j,k).
NCHOICE = 2: print nodal coordinates as (z,y,z).
NDIR = 1: choice of z-direction for data.
NDIR = 2: choice of y-direction for data.
NDIR = 3: choice of z-direction for data,

conprep2 — second and final header file for all data. Comment lines are permitted. This file
contains the label information used by the HDF files. The entry of data is governed by the first

non-comment line in the data. All text data is limited to a maximum of 256 characters. The
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first line contains data for the logical array LABELS(4).
If LABELS(1) is true, then three lines of text information are expected:

1. data label;

2. data units;

3. data format for output, e.g., G16.5.
The remaining three array entries in LABELS refer to the character data for each of the axes or
dimensions of the data. LABELS(2), LABELS(3), LABELS(4) respectively indicate the pres-
ence of three lines each of data for each axis direction (z,y,z). This data is given on three
lines for each case:

1. axis (dimension) label;

2. axis units;

3. axis format for output, e.g., G16.5.
The data labels are modified by the program according to information generated by postp,
yielding information for this output on the type of data, the time step number, and the simu-

lation time.

7.8 conslice

conslice is a FORTRANT7 program to extract information from a 3D SDS file (generated by
conprep) generating new SDS files or a table. It is normally used to obtain values lying in a plane
and saving them as an SDS (HDF) file. conslica does this for every scientific data group (SDG) (i.e.,
every time step) in the 3D file, saving the data from each SDC to & separate datafile output.nnn,

where nnn is the time step number including leading zeros.

The program consists of the files and subroutines listed in Table 7-3. The pregram can be
casily compiled on a Unix system by typing make prep in the presence of the source files and the
supplied makefile. The program is run using a simple shell script, invoked as [ollows:
mkslice data file 3D.SDS_source 2D_SDS_output

The script parameters are explained in detail below. A higher level script invoking mkslice also
exists, which will extract n datasets for n different time steps.
mknslice type data.hdr data.tail 3D.SDS.pretix 2D.SDS.output tstep(s)

The files data.hdr and data.tail are simply the first and second halves, respectively, of data_file
used with mkslice. The data file is split at the DTSTEP entry, which is omitted. The type is the
suffix used to identify the input 3D SDS file, e.g., EPS. tatep(s) is a list of time step numbers at
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File Subroutine

conslice.f conslice

ioutils.{ getemmt
echocmmt
getstring

sdslice.{ findMaxMin2
sdslice
writeslice

setslice.f setgeom

Table 7-3

Source files and routines constituting CONSLICE

which tables are required.

(i) data_file is the controlling data used to select a given slice of data in the SDS source file.
This information uses the same coordinate system originally used to generate the 3D 5DS file.
(Offset coordinate values are stored in the 3D SDS file to indicate the coordinate origin when

data from a subvolume are saved into the file.) The data file format is very simple.

(i) 3D_SDS_source is the name of the SDS file containing one 3D data group for each time step,
complete with annotation, labels and scales.

(iti) 2D_SDS_output is the prefix of the names of the 2D SDS files to which the slice data will
be written, one file for each time step. Normally, one specifies a directory in which the files
can accumulate, e.g., tmp/sdsfile., to which the time step number will be appended as a

three-digit sequence.

7.8.1 conslice data file

This data file is quite simple as all the information for element or nodal data has been already
prepared by conprep and stored in the 3D SDS file. Comment lines are permitted, where the
comment character appears in the first position in the file, (typically, ‘#’). Six lines of data must
appear in the following order:

1. JOB, EORN, NCHOICE (integer)
JOB = 1: writing new SDS files.
JOB = 2: writing out a table of data at the specified time step.
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EORN = i:indicates that the data being read is nodal.

EORN = 2: indicates that the data being read is element.

NCHOICE = 1: print nodal coordinates as (i,j,k).

NCHOICE = 2: print nodal coordinates as (z,y,z).

2. DTSTEP (integer)

This is the maximum time step number to be considered. This value is used to generate any
data table. This number considers that the first time step is number zero, giving the same numbering
scheme used in the original simulation.

3. IMIN, IMAX, JMIN, JMAX, KMIN, KMAX (integer)

These parameters indicate the ranges of nodes defining subdomain of dataset output from
postp. One pair must be equal to define a plane, and two pairs must be equal to define a line.
4. GLYR1, GLYR2, GLYR3 (integer)

Assuming a 2 x 2 x 2 integration scheme, these values indicate the upper or lower Gauss points

in the 1, 7, and k directions, respectively.

GLYRn = 1: lower layer in direction n,
GLYRn = 2: upper layer in direction n.
5. XSCALE, YSCALE, ZSCALE, VSCALE (real)

Factors to modify values of the scales and the data (VSCALE).
6. LIMFLAG, (integes)MAXLIM, MINLIM (real)

LIMFLAG = 0: find local maximum and minimum for each time step and store these values

with the pertinent time step.

LIMFLAG = 1: find global meaximum and minimum across all time steps and store these values

with each time step,

LIMFLAG = 2: find global maximum and minimum across all time steps, compare these values

to MAXLIM and MINLIM, and store with each time step the most extreme maximum and minimum

of the four values,

MAXLIM: value used as the global maximum unless the actual global maximum for all the time

steps is larger.

MINLIM: value used as the global minimum unless the actual global minimum for all the time

steps is smaller.

7.8.2 Hints

The choice of LIMFLAG is important. [n the subsequent rasterisation process, the raster values

are found by scaling the data values within the range of minimum and maximum values stored for
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that time step. For meaningful comparisons values of LIMFLAC = 1 or 2 are tae most useful.

7.9 fp2hdf

The NCSA utility £p2hdt is used to convert the individual SDS files, generated for cach time
step by conalice, into raster images, concatenated into one HDF file. The maximum and minimum
values stored in each SDS file are used to calculate the raster values. An 8-bit raster scheme is used,
giving 256 different values (0-255). Two end values are reserved, giving only 254 values in practice.
All data values are therefore scaled as:

U = Umin

Umazr = Umin

where Upqyter is the raster value, v is the data value, and vmaz and vmin are the maximum and

minimum: values respectively of the dataset. Conversely, a raster value can generate thz actual

values as

VUmax = Umin

254
The following command will generate the raster HDF file:

VU = Umin + Uraster X

fp2hdf ‘tmp/sda.files.’ -r -i ax ny

where nx and ny are the number of pixels desired in each direction. The -r indicates that a raster file
is to be generated. The -i option causes bilinear interpolation to be invoked to create the number of
pixels. 300 is a typical value. It is preferable to maintain the same aspect ratio as for the extracted

data. Once the raster file has been generated, the SDS source files can be removed.

7.10 Image3

Once the raster image file has been generated and transferred to a colour Macintosh, the
Inage3 program can be invoked (preferably on a Macintosh with 4 Mb or more RAM). The file must
be transferred as a binary file. The raster image file is opened as a group. The groups then appear
in a scrolling list. A selection of the groups can be made and then opened as a group from the
panel displaying the scrolling list. If there is insufficient memory it will have to be donc with the
from disk option. The animation can now proceed. Different palettes offer different perspectives
on the data being animated. Absolute values are better shown using a unique range of colours, ¢.g.,

the rainbow palette. Relative values, i.e., changes, are better illustrated using the complex palettes
such as fire.
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7.11 Summary

1. Process the main PLAST-PT3 output file using postp.

2. Use conprep to extract all data prepared by poscp to form a 3D SDS (HDF) file.

3. Process the 3D HDF file as desired, using conslice to create a 2D SDS file for each time step.
4. Generate a raster image file from all the 2D SDS files using £p2hd?.

5. Transfer the raster image file to the Macintosh using a binary transfer, open as a group in

Image3, and animate,



Chapter VIII

APPLICATION OF THE MODELS

The coupled finite-difference finite-element models have been tested using several of the for-

mulations discussed in Chapter VI, The combinations chosen were:
(i) Three runs based on no feedback to fluid model, studying the effects of
a) grid refinement in the fluid model; and
b) injected steam slug size.
(ii) One run based on the staggered formulation.
(iii) One run based on the fully coupled formulation.

The resources required to make each run are considerable. Timesharing constraints meant that
the average run would take from two to three weeks to complete, even on the University of Alberta’s
Convex C210 supercomputer, while several additional days or weeks were required for short runs
to determine appropriate control parameters (convergence criteria, iteration limits, compressibility
multipliers). On one of the latest RISC workstations offered by the major computer manufucturers,
with sufficient core memory, a run should take no more than two or three days — on the assumption

that the computer is dedicated to this task alone. This aspect is discussed further at the end of the
chapter.

The no-feedback runs are sufficient to gauge the effect of changing the operational paramcters
(e.g., steam slug size) and the degree of grid refinement in the thermal model on the material
response. The fine grid case with the lower steam slug size (lower injection rate for the fixed injection
period) was then chosen for comparison using the two different coupled formulations: staggered and
flly coupled.

8.1 Verification of the solid model

The implementation of the solid model was verified using an example problem from Smith and
Griffiths (1982) p. 236. In this example, a cube of material held in an isotropic (confining) stress
of —20 kPa is subjected to a prescribed downward displacement over its top face. The cube is fixed
with respect to to vertical movements on its bottom face, and two adjoining side faces are fixed with

respect to the directions normal to them. These constraints allow the material to extrude from two
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Vertical displacements applied 1o top faces such that plastic
delormatiueg occurs. Faces defined by —x, —y, and -z directions
not permittad to move in the respective direction.
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Figure 8-1
1x1x8and 1x1x4 grids used to investigate the effect of grid refinement
on the linear brick element, held in an isotropic confining stress field.

unrestrained and adjoining faces, once plastic yielding occurs. The cube is represented by a single
linear finite element (8-noded brick). The test was duplicated using two more grids, a1 x 1 x4 and
a 1l x 1 x 8, as shown in Figure 8-1. Although the new meshes no longer form cubes, the problem
remains the same due to the axial nature of the loading. The tests were made for a Mohr-Coulomb
material with angle of internal friction ¢ = 30° and cohesion ¢ = 0, i.e., cohesionless, and elastic
properties E = 2 MPa, and v = 0.3. As the load is applied axially, the principal stresses in the
unrestrained directions remain constant and equal to the isotropic confining stress, ~20 kPa. The

axial stress, o, builds up to the maximum permitted for a Mohr-Coulomb material under these
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Water compressibility 4,35 x 1097 kPa-!

Coefficient of thermal expansion of water 0.882 x 10793 K~}
Oil compressibility 7.25 x 10797 kPa~!
Coefficient of thermal expansion of oil 0.90 x 10703 K~}
Rock compressibility 4.35 x 10797 kPa~!
Specific heat of oil 942.0 kJ/kmol-K
Thermal conductivity of the formation 1.757 kW/m-K
Thermal conductivity of adjacent formations 1.466 kW/m-K
Matrix initial density 2643 kg/m?
Rock matrix specific heat 0.837 kJ/kmol-K
Thermal diffusivity of adjacent formations 1.0323 m?/s
Table 8-1

General properties of formation fiuids and rock matrix

conditions, -60 kPa (i.e, confining), and remains constant at this value under further axial loading.
The same limiting stresses were found for cach mesh, while some difference was noted in the values
of the displacements and the extent of the plastic zones {as indicated by a positive effective plastic
strain). The difference in extent of plastic yield is explained by the greater density of Gauss points
at which it is found, which will better resolve the limits of yielding in the body. ‘The distribution of

displacements in the body reflects this difference in resolution of plastic strain.

8.2 Choice of material properties and stress distribution

A selection ol material properties has been made to ensure that the model can be tested without
the problem being so difficult as to ebscure the interpretation of the results. Accordingly, the madel
reservoir is given the typical fuid properties of a heavy oil reservoir in eastern Alberta and western
Saskatchewan. As a result, the oil is actually mobile at the initial conditions, aithough that mobility
is restricted. The lithological sequence is, however, taken from the Athabasca region of Alberta, und
the solid material properties are taken from published data on this region. The regional stresses have
been implemented according to a new model which incorporates published field data but permits
a varying horizontal stress gradient to be generated from only a few points. This is necessary to

account for horizontal stress changes near the surface,

The same properties and conditions have been used for all the runs to permit comparison.



136

The only variation has been in the steam slug size (i.e., in injection rate) and grid size, and in the

coupled formulation,

8.2.1 Fluid properties

The general volumetric, thermal, and heat transport properties of the reservoir fluids and the

rock matrix are given in Table 8-1,

Initial density of oil 2.243 kmol/m?
Initial water density $.590 kmol/m?3
Molar mass of oil 450.0 kg/kmol
Formation temperature 23.3°C
Separator pressure 101 kPa
Separator temperature 26.7 °C

Table 8-2
General properties of produced fluids

T°C  Swe Sjc Sorw Sery  Syr Furo  kocw Kgro PoukPa Pay,kPa
233 2000 .0000 .2110 .0900 .0000 .1636 1.0000 .1700  6.895  6.895

Table 8-3

Data for temperature dependent endpoints

The properties of the produced fluids are given in Table 8-2. The relative permeability and
capillary pressure data is given in Tables 8-3 and 8-4. Note that the imnbibition curve is provided for
the oil-water capillary pressure. The general rock and fluid properties at the start of each simulation
are given in Table 8-5. There was a small amount of mobile water (S,; = 0.23) at the start of each

simulation.

8.2.2 Material properties

The material properties are listed in Table 8-6. The oil sand zone — the only zone in which

fluid pressures and temperature changes were applied, apart from neighbouring elements — was



Table 8-5

General rock and fiuid properties

Water Data QOil Data
S krw Erow Pew, kPa St krg Krog Peg, kl’a
.20000 .0c000 1.0000 0000 .29000 17000 .00000 10.342
.25000 01020 .76900 .0000 .39500 .11200 02940 7.281
.29400 .01680 72410 .0000 43300 .10220 04610 6.178
35700 02750 .62060 .0000 51500 .08550 .08830 3,785
.41400 04240 .50400 .0000 .56900 07610 11720 2.213
49000 06650 37140 .0000 .61400 .06540 .14330 0.903
.55700 .09700 .30290 0000 .66300 .05000 17640 -.524
.63000 11480 .15550 .0000 .71900 03720 21700 —2.158
.67300 12590 .09560 .0000 75000 .02850 .22550 -3.061
71900 13810 05760 .0000 80500 .01950 20190 —~4.661
78900 .16360 .00000 .0000 .85000 .01210 33730 =597
1.00000 25000 .00000 .0000 .89900 00260 51690 ~7.398
1.00000 .00000 1.00000 -10.342
Table 8--4
Relative permeability data
Initial absolute permeability, & 2.9 um?
Initial porosity, ¢ 31%
Initial oil saturation, S 0.77
Irreducible water saturation, Swirr 0.20
Residual oil saturation to water, Sorw 0.211
Residual oil saturation to gas, Sorg 0.09
Initial pressure 1380 kPa
Initial temperature 23.3°C

assigned representative values for the geomechanical properties of Athabasca oil sand. Values were
taken from Dusseault and Simmons (1982), Kosar et al. (1987), and Agar et al. (1987). The only
exceptional value is the initial material density, which should be closer to 2000 kg/m? for the oil
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Property Underburden Oil Sand Overburden
Elastic Moduius £ 30 GPa 2.2 GPa 1 GPa
Poisson ratio v 0.3 0.3 0.3

Friction angle ¢ 28° 30° 25°

Cohesion intercept ¢ 24 MPa 0Pa 100 kPa
Material density p, 2600 kg/m3 2500 kg/m3 2500 kg/m3
Cocflicient of bulk thermal expansion a, 5x 105 K™} 5% 1075 K} 5x 105 K~}

Table 3-8

Material properties

sand, but was kept at ca. 2500 kg/m® for all the zones in order to make the initial stress distribution

simpler.

Linear regression of the volume change data vs. temperature reported in Kosar et al. (1987)
gave a value of bulk thermal expansion a, = 4.5 x 107% K~'. Prats (1982) suggests values of
1141 % 105 K~ for sandstone and 84 x 10-5 K~ for limestone. A value of 5 x 1075 K~ was
used for all the rocks. It is critical that this value be more accurate for the oil sand than for the
other two formation types because the increase in horizontal loading which contributes to oil sand
yielding (shear failure) comes entirely from thermal expansion. Yielding in the other two formations

is not going to affect the outcome of the simulations significantly.

All elements below the oil sand horizon were treated as an underlying limestone with the
properties reported from physical testing at the University of Alberta (Chalaturnyk, 1990). The
cohesion value was obtained from the reported value of the uniaxial compressive strength, o, which
can be related to the cohesion by (e.g., Brady and Brown, 1985, p. 107)

2ccos ¢
T—sing {8.1)

Te =

The reported value of o, was between 70 and 80 MPa, which, for the higher value, and an angle of
internal friction ¢ = 28°, gives a value of cohesion ¢ = 24 MPa. Typical values for o, given in Hoek
and Brown (1980), p. 141, for intact limestone vary between 47 and 164 MPa, so the value used in

this work is reasonable.

The balance of the material, the overburden, was considered to have the material properties

used by Dusseault and Simmons (1982), in addition to the thermal expansion coefficient value
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descriv { earlier in Table 8-6.

8.2.3 Stress distribution

Depth, m

250 | -- 8h

- Sy

<750 <

1000 A

40000
Siress, kPa

Figure 8-2

Horizontal and vertical stress gradients displaying opposing magnitudes
at shallower and greater depths.

Initial stresses in the program are specified in their principal axes using a stress variation
vith depth chosen to satisfy the local conditions. In most reported cases in hydrocarbon-bearing
sedimentary basins, it has been established that the horizontal principal stresses constitute the major
and intermediate principal stresses for shallow depths. At deeper levels, the vertical stress is first
the intermediate and then the major principal stress. This is why hydraulic fracturing usually will
induce horizontal fracture planes at shallow depths, while vertical fracture planes occur at depths

below some critical interval. This behaviour is observed, for example, in the Athabasca tar sands
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{Dusseault, 1977b). The critical interval extends several hundred metres, in which the major and
minor principal stresses are too close together to permit the statement that one or other plane is
preferred for o hydraulic fracture to form in. 1f, however, the shallowest depth at which oy =0} is

known, then the following simple relationships, developed for this work, can be used:

OH, =a-+ez (8.2a)

c
oy =2 (b 1T dz") (8.2b)

where
(i) z is the depth below surface.
(i) e represents the average major horizontal stress gradient, assumed constant with depth.

(iii) b is the vertical stress gradient with depth, found for deep levels at a constant value which is

greater than the horizontal stress gradient.
(iv) cis an excess gradient parameter to make oy < gy, at shallow depths.

(v) dis a matching parameter to ensure that the model satisfies the cross-over depth, z., where
gy, = oy. d is calculated by equating Equations (8.2a} and (8.2b) at z = z,. The following

expression is found for d:
_a—2(b—-e~c)
 22[ae(b—¢) -]

(8.3)

(vi) n is an acceleration parameter to bring the vertical stress gradient oy /z to a (relatively)
constant value at depths below the cross-over depth. Higher values ol n satisfy this requirement

as the cross-over depth approaches the surface.

(vii) ais a constant parameter to permit the application of a hydrostatic stress at the surface. All
shear stresses must be zero at the free surface unless the material has a cohesive strength;

hence, a = 0 for soils.

Typical values for some of these parameters are found in Woodland and Bell (1989). E.g.,

Ezl 22 25 kPa/m

OHy __
el 15 kPa/m (8.4)

74
CH,

=13tc 1.6
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Furthermore, Dusseault (1977b) suggests ov = oy, at about 300 m, and oy = gy, at about 500
m, for the Athabasca area. Approximating this as z; = 450 m, and combining the values from

Woodland and Bell (1982) with a =0, ¢ = 15, and n = 2, gives the relation shown in Figure 8-2.

The cross-over of the stress magnitudes can be explained by the presence of less well consoli-
dated sediments near the surface with a lower bulk density than the more deeply buried sediments.
This can be accounted for to some degree by reducing the dunsity of the finite elements near and
at the surface, but the initial stress model is required to bring the finite element model initial state
in line with the regional values. In fact, unless a non-uniform material density distribution is taken
into account, such a distribution can cause difficulties under the initial stress method during the
initial material settlement in the finite element model. There is also bound to be some horizontal
stress relief near the surface, which will reduce the horizontal stress gradient, although not in a
manner which affects fracture orientation at reasonable depths (e.g., greater than 200 m). This has
not been taken into account in this model, but the omission will not affect the results below the
aforementioned reasonable depth, The relationship is purely parametric, but achieves the aim of

giving a realistic variation of stresses with depth.

The model studies presented in this thesis use, for simplicity, only the linear relationship of
horizontal stress with depth. It is assumed that the horizontal stress field is isotropic, and that
the correct vertical stress distribution is found by the initial equilibration the finite clement model.
The vertical stress is then initially only a function of the material density. Using the overburden
density of 2500 kg/m?3, and an initial stress ratio of 0.7 (e.g., see Dusseault and Simmons, 1982), a
horizontal stress gradient of —17 kPa/m is suitable. Using the parameters described in this section,

this is rendered as a =b=c=d = 0 and e = —~17. The cross-over point is assumed to be at the

surlace.

8.3 Fluid model discretizations and operating conditions

Two fluid model discretizations and two steam slug sizes were used to investigate how the
model would react to varying these parameters, and to look for any new insight the results might
yield. It was impractical to look at more parameters to vary, given thc long times required to
obtain the results. In all cases, a cartesian geometry was used which defined one-quarter of the arex
influenced by a single steam stimulation (injection, soak, and production well). Constant periods of
injection, soak, and production were stipulated, so varying the steam injection rate is equivalent to
varying the steam slug size.
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View of simulation domain indicating heated and pressurized zone (3 x 3 x 3 discretization).
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The choice of grid for the fluid model — the diseretization — influences the choice of grid in
the finite element model. A number of elements must surround the heated and pressurized zone,
enough to be able to absorb the induced strains and react in a reasonable approximation to an
infinite surrounding medium. This is satisfied by strains at the fixed boundary which produce a
reaction which is commensurate with the average elastic properties of the undisturbed formations
under the existing conditions of stress. Vertically, the surface represents a boundary free to move up
and down, so the discretization below the heated and pressurized zone is not so crucial as the lateral
surroundings. The discretization in the horizontal plane is generally configured using elements which
grow in size by no more than a factor of about two. The final mesh can be generated casily using

the grid program described in Chapter VII.

Figure 8-4

View of heated zone and the immediately surrounding elements (3 x 3 x 3 discretization).

Injection points with node numbers indicated by arrows; element numbers in lozenges.

8.3.1 3 x 3 x 3 fiuid model discretization

This coarse grid was the first used when developing the coupled model. A3 x3x3 (zxy x 2)
finite difference discretization was used to model the domain of heat and fluid flow. Each finite
difference block was 40 m by 40 m by 3.7 m; hence, the total grid measured 120 m by 120 m by 11.1
m (393 ft by 393 {t by 36 ft high). This zone, simulated in the finite difference model, is rendered
as a 3 x 3 X 3 node system in the finite element mesh, where the nodal values of temperature
and pressure corresponded to the block average values given by the finite difference model. This

means that the heated region represented by finite elements is a consistent subvolume of the finite



domain, with the same aspect ratio, a result of joining a block-centered to a mesh-centered grid.
"This is not a completely rigorous treatment of the corresponding volumes, but is considered adequate
for the purposes of the study. A point-centered finite difference grid would be better choice because
it could represent the geometric boundaries exactly on the rectilinear finite element mesh. It would,
however, be no better for those blocks not on the boundary of the domain. Properties gencrated by
the finite element results are averaged to the mesh nodes before being used in the finite difference

model, ens: -ing consistency with the finite difference blocks.

The entire heated and pressurized zone was then surrounded by a buffer of elements 4 m (13
ft) thick, in which the applied changes in pressures and temperature varied linearly to zero at the
external nodes of this buffer region. This behaviour is a result of the application of the finite element
method. The arrangement is illustrated in Figure 8-4, where the shaded region indicates the heated
and pressurized zone. The three nodes indicated by arrows correspond to the three injection well
block centres used in the finite difference simulation. In the finite element mesh the 3 x 3 x 3 nodes
of the heated and pressurized zone effectively become 2 x 2 x 2 elements. These elements were now
fitted into the 7 x 7 x 13 element structure shown in Figure 8-3. The finite element grid extends
horizontally 254 m in each (x and y) direction, while rhe vertical extent is clearly marked in Figure
8-3. The two layers containing the heated and pressurized zone were given representative values for
the gcomechanical properties of Athabasca oil sand. All elements below this horizon were treated as
an underlying limestone, and all those above the horizon are treated as the overburden, extending
455 m (1490 ft) to the free surface. It will be noticed that two different geological areas have been
juxtaposed to create the simulation domain. The purpose of the simulations was not to emulate
some specific region, but rather to illustrate the behaviour of the reservoir sand skeleton and how it

might affect the fluid and heat fluxes.

8.3.2 5 x 5 x 3 fluid model discretization

This model discretization was chosen to investigate the effect of increasing the mesh density.
The incorporation of the § x 5 x 3 finite difference blocks into the finite element mesh is as described
in the previous subsection. The finite element mesh in this case is 9 x 9 x 14, illustrated in Figure 8-3,
where the improvement in refinement over the coarser mesh all lies in the heated and pressurized
zone. The block sizes in the finite difference mesh are all equal, 24 m by 24 m by 3.7 m, and the total
size remains the same as for the 3 x 3 x 3 example. The finite element buffer zone is laterally larger
than for the coarse grid — in (his case it is equal to the block size of 24 m. This is illustrated in
Figure 8-6. The finite element grid extends horizontally 420 m in each (z and y) direction, while the
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vertical extent remains the same as in the previous example. The extra lateral extent is an attempt
to ensure that the number of elements displaying plastic behaviour remains small as a percentage

of the total number of elements.

Figure 8-6

View of heated zone and the immediately surrounding elements (5 x 5 x 3 discretization).

Injection points with node numbers indicated by arrows; element numbers in lozenges.

8.3.3 Fluid model operaling conditions

A constant programme of steam injection, soak, and production was considered for each sim-
ulation. The schedule is shown in Table 8-7. The higher injection rate was 23.8 m3/d (150 bpd)
of 70% quality steam at 3450 kPa (500 psia). The lower injection rate was 15.9 m3/d (10C bpd)
of steamn at the same conditions. The soak period is when the well is shut in, neither injecting nor
producing. The production is assumed to come from reducing the bottomhole well pressure to 101
kPa (1 atm), i.e., by pumping the well. A productivity index of 57.65 rm®/d/MPa (2.5 rb/d/psi)
was assigned to the well during this period. The injection rates and production indices must be
muitiplied by four to get the actual values for the well, as only one quarter of the injection area is
under consideration due to symmetry.



Cycle Operation Duration (days) Cumulative days
1 Inject 30 30
1 Soak 5 35
1 Produce %0 125
2 Inject 30 155
2 Soak 5 160
2 Produce 90 250
3 Inject 30 280
3 Soak & 285
3 Produce 90 375
Table 8-7

Well operation schedule
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8.4 Results for 3 x 3 x 3 fluid domain with higlh injection rate

Results are presented for the high-rate case in the 3 x 3 x 3 grid. Element and node numbers
which are referred to are i“entified in Figure 8-3, Gauss point positions within elements are identified
in Figure 8-8. The simulation took 99 time steps to reach 405 days of simulation time. The same
number of time steps was used to find the solid model solution. The variation in pressure and
temperature with simulation time at the selected nodes 257, 265, and 321 is shown in Figures 8-9
and 8-10, respectively. Nodes 257 and 321 are wellbore nodes, while node 265 is one of the nodes

immediately adjacent to the bottom wellbore node, 257.
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local node numbering.
Figure 8-8
View of 2 X 2 x 2 Gauss quadrature points inside 8-noded brick elements.

Clearly, big increases in pressure and temperature occur during the three injection cycles with

some decline during the soak and production periods. Material behaviour beside these three nodes
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Profile of temperature (average block values) with simulation time at

selected nodes near wellbore (3 x 3 x 3 Auid domain).

144



will be presented. Stress-strain behaviour is actually calculated in the finite element model at the
GCauss quadrature (integration) points in each element. Three Gauss points from elements 187, 204,
and 246 (sce Figure 8-3) were chosen such that they were the ones closest to the nodes reported in
Figures 8-9 and 8-10. The data points are organized in the next five diagrams so as to correspond to
the nodes considered for the pressure and temperature profiles. The nodes and their closest Gauss
points will be referred to interchangeably in the following text. Five main quantities are reported:
effective plastic strain d&p, volumetric strain €,, stress ratio X, vertical stress g4;, and Lode angle
. These quantities have all been defined in a previous chapter, but K, will be reviewed. Values of

minor principal stress and its orientation are also reported, as is the porosity of the formation.

The stress ratio, K,, reports the ratio of the major horizontal stress to the vertical stress. Note
that in the tension-positive stress definition, it is actually the minimum compressive horizontal stress
by magnitude (minloy,,on,]). Values less than one indicate that a hydraulic fracture or parting is
most likely to be vertical, while values greater than one indicate that a horizontal parting is more
likely. The vertical stresses at the selected Gauss points can be combined with the stress ratio to

postulate the initiation of hydraulic fractures,

Figure 8-11 illustrates the growth in plastic strain at the three Gauss points. The trend [ollows
the injection cycles closely, but plastic straining does not begin until the simulation is into the second
injection cycle. The bottom well node shows the greatest degree of plastic strain. This is because
of the higher vertical stress at the deeper point, comnbined with the high temperature and pressure
changes at the injection point. The points which have yielded tend to accumulate more strain than
any surrounding points until the stresses have been sufficiently disturbed farther away. Figure 8-12
illustrates the increase in volumetric strain as injection continues. Initially, the volumetric strain
increase is due to elastic relief as the pore pressure builds up, with some fall-off during the pressure
decreases accompanying the soak and production periods. Thus the values for bath injection points
(elements 197 and 246) are initially very close, while in the second and third production cycles,
a gap opens up between the two points, probably because of the greater amount of plastic strain
occurring at the lower node. The final degree of volumetric strain at the end of the simulation is
not much over 0.6%, which would not cause much permeability enhancemnent. However, the plastic
straining can be a very local phenomenon, and this low value highlights the coarse nature of the

finite element mesh used, spreading a larger amount of local strain over a greater volume.

Figure 8-13 illustrates the change in the stress ratio at each of the selected Gauss points. The
values reflect the pressure gradients between the nodes, the distributed loading caused by the change

in temperature over the time step, and the degree of accumulated plastic deformation. The nodes
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at the wellbore quickly move to values of K, above one during the first injection cycle, indicating
that a horizontal orientation would be preferred in the event of a (tensile) hydraulic fracture, (ov
must be the minimum principal stress by magnitude if K, > 1.) The condition at the neighbouring
Gauss point, in element 204, differs in that the stress ratio does not go above one until the third
injection cycle. This corresponds to the increase in volumetric strain at this point which can be seen
in Figure 8-12, The degree of disturbance in K, at the two injection nodes as a result of changing
pressure and temperature is clearly illustrated by comparison with the pressure and temperature
profiles. Figure 8~14 complements the information given in Figure 8-13, The vertical stresses for the
selected Gauss points are shown to vary considerably with the changing pressure and temperature.
Compressive stresses are considered to be negative in continuum mechanics, so the values of o,, must
move to zero or positive (tension) values to cause a {racture. The results indicate that this never
happens at these points during the simulation. The response at the neighbouring node, indicated
by element 204, is particularly interesting. By the end of the third injection cycle the magnitude of
the vertical stress at this point appears to have decreased the most. This is mirrored in the plot of
stress ratio vs. time at the same point in Figure 8-13. It would appear that this related as much
to the neighbouring events of deformation as to the changing values of pressure and temperature.
For example, the third injection cycle also corresponds to the significant increase in effective plastic
strain at the bottom wellbore node. From the existing trend, it is likely that the point would have
moved into tension in a fourth injection cycle (just begun at end of the study), thereby indicating

that a horizontal parting had occurred,

The next illustration, Figure 8-15, shows the Lode angle, @, varving with time. It clearly
illustrates the rotation of the principal stresses by moving from +30° to —30° very quickly. The

intermediate values indicate that the intermediate principal stress has changed relative to the major

and minor principal stresses.

The issue of principal stress rotation causes problems in acquiring relevant information on
material behaviour. Classical geomechanical testing of a sand assumes an undisturbed sample at
the outset of a triaxial compression test, excluding specific tests for heterogeneous materials. Foccing
the material to yield by following a certain stress path induces new heterogeneity into the material
as grains slide over each other in preferred directions. Moreover, grain crushing might occur, and
localized zones of disturbance appear. It is not reasonable to then suppose that the application
of a subsequent loading path, highly deviated from the original, can be modelled using the same
material parameters derived from the original loading of the undisturbed sample. This problem has

been considered very recently by Pietruszczak and Krucinski (1989), but is beyond th: scope of most
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current work. The treatment of these changes has been neglected in this work, and ean therefore be

considered a limitation.

On the same page, Figure 8-16 illustrates the variation of minor principal effective stress {in
the compression-positive sense} with time at the same selected nodes as the earlier pressure nnd
temperature profiles. This value was obtained from stresses approximated at the nodes using the
schemne described in §5.5.2. The results illustrate the problem of extrapolating the solu ions to the
boundary from only one set of element points, as is the case at the corner nodes where steam injection
takes place. The stresses at the Gauss point (as in the vertical stress reported in Figure 8-14) are the
most aceurate values within the element, insofar as the error is minimized at the quadrature points,
The Gauss points can be shown to be the optimum sampling locations for stresses (Zienkiewicz,
1977). The variation of o3 at node 257, the bottom injection point, indicates that a tensile parting
stress occurs shortly after the start of the third injection cycle. This value is found by extrapolating
the variation in stress within the element to the node. Obviously, the material cannot support
positive (tensile) stresses and the value is an artifact of the mesh size and the lack of contribution

from neighbouring elements. 1°  other two nodes have values which are in accord with the Causs

point results presented for the vertical effective stresses.

Two mote figures illustrate the behaviour of the principal stresses at the nodes, found fram the
eigenvector solutions to the stress characteristic polynomial. Figure 8-17 indicates which principal
stress is closest in orientation to the vertical axis. This is of interest because a horizontal parting
is known to be the most effective for heating a sand saturated with an immobile oil. All the nodes
start out with the major principal stress being aligned with the vertical axis. In the firet injection
period, both the well injection nodes rotate the principal stresses so that the vertical axis coincides
with the minor principal stress, The principal stress rotation occurs later at the neighbouring nodes,
occurring in the second injection cycle at node 265. As a parting will orient itsell normal to the
least principal stress, these results indicate that the conditions for a horizontal hydraulic parting
are induced by the injection of steam, The actual proximity of the closest principal stress to the
vertical axis is indicated in Figure 8~18, where the cosine of the angle Letween the closest principal
stress and the z-axis is presented. The principal stress and vertical axes coincide at the two injection
nodes, while there is some rotation of the principal stresses away from the geometric axes at the
neighbouring node until the start of the third injection cycle. The principal cause of the stress

rotation is the induced straining from heating the formation.

The variation in porosity near the wellbore is presented in Figure 8-19. The variation is

identical to the change in pressure shown in Figure 8-9 because the porosity is a lincar function
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of pressure in the uncoupled model. As such, the illustration is unremarkable exccpt for later
comparison with the coupled studies. This is the classic treatment of rock matrix compressibility in

petroleum reservoir simulation.



8.5 Results for 5 x 5 x 3 fluid domain with high injection rate

Results are presented for the high-rate case (uncoupled) in the 5 x5x 3 grid. Element and node
numbers which are referred to are identified in Figure 8-5. Gauss point positions within elements
are identified in Figure 8-7, The simulation took 160 time steps to reach 405 days of simulation
time. The same number of time steps was used to find the solid model soluticn. The variation in
pressure and temperature with simulation time at the selected nodes 325, 334, and 406 is shown in
Figures 8-19 and 8-20, respectively. Nodes 325 and 406 are wellbore nodes, while node 334 is one

of the nodes immediately adjacent to the bottom wellbore node, 325.

Clearly, big increases in pressure and temperature occur during the three injection cycles with
some decline during the soak and production periods. As before, material behaviour beside these
three nodes will be presented. Three Gauss points from elements 257, 321, and 265 (see Figure 8-5)
were chosen such that they were the ones closest to the nodes reported in Figures 8-19 and 8-20.
The data points are organized in the next five diagrams so as to correspond to the nodes considered
for the pressure and temperature profiles. The nodes and their closest Gauss points will be referred
to interchangeably in the following text. The same terms reported for the 3 x 3 x 3 fluid domain

study will be presented in this section.

Figure 8-21 illustrates the growth in plastic strain at the three Gauss points. The trend initially
follows the injection cycles closely, although plastic straining does not begin until the simulation is
into the second injection cycle. The bottom well node shows the greatest degree of plastic strain. The
amount of plastic strain becomes excessive after the onset of the third injection cycle. Small strain
analysis should be restricted to (extensional) deformations of not much more than 5%, although the
error associated with exceeding this suggested limit is only 15% at an engineering strain value of
40% (Annigeri et al., 1985, comparing logarithmic to engineering strain in extensions). The large
values reported here arise because the stresses at plastic Gauss points have not been permitted to be
reduced back to the yield surface. The zero hardening parameter of the material properties chosen
for the oil sand make it necessary to iterate the solid solution many more times than for a material
with a positive hardening parameter. (See Appendix F, §F.2.5.) Each iteration is an attempt to
reduce the excess trial stress back to the yield surface, which is the confining boundary for stresses
in the material, to the so-called contact stress. A maximum of 20 iterations was permitted for each
load step in the solid model, where perhaps several thousand were necessary in some instances.
The low maximum is necessary so that the computer time required does not become inordinately
large. In this case, the solid results are only marginally useful after about half way through the

third injection cycle. The stress reduction algorithm used is the simple one reported in Owen and
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Hinton (1982). Better approaches are available to reduce the excess stresses to the yield surface,
but the simple stress reduction algorithm is still useful in these simulations, where the objective is

to demonstrate the [easibility of making coupled reservoir simulation and geotechnica! studivs.

Figure 8-22 illustrates the variation in volumetric strain as injection continues. The flat re-
sponse near the middle injection point (element number 321} after the second production cycle
commences is probably due to the excessive plastic strain reported earliecr. The most nnomalous
value is that of the decline of £, at the bottom injection point (element 257) during the second
production cycle. This is connected with the large (negative) vertical stresses at the same time,

which probably also arise due to the incomplete plastic solution at points in the mesh.

Figure 8-23 illustrates the change in the stress ratio at each of the selected Gauss points. As
before, the nodes at the wellbore quickly move to values of K, above one during the first injection
cycle, indicating that a horizontal orientation would be preferred in the event of a {tensile) hydraulic
fracture. The condition at the neighbouring Gauss point, in element 265, differs in that the stress
ratio does not go above one until the third injection cycle. The results become doubtful during Lhe
second production cycle due to the incomplete plastic solution, where high vertical and horizontul
stresses remain unresolved. Nevertheless, this information will be presented because some insight
into events still can be extracted. This behaviour of the stress ratio corresponds to the decrease in
volumetric strain at the same point which can be seen in Figure 8-22. Figure 8-24 complements
the information given in Figure 8-23. The vertical stresses for the selected Gauss points closest to
the injection nodes display extreme values at a point half way through the second injection cycle.

These values are attributed to the unresolved stress state,

The next illustration, Figure 8-25, shows the Lode angle, &, varyiny with time. It clearly
illustrates the rotation of the principal stresses during the first injection cycle by moving from +:10°
to —~30° very quickly. The unresolved stress state hall way through the second injection period

manilests itself as a change in the Lode angle to values close to zero, which represents a state of

pure shear.

On the same page, Figure 8-26 illustrates the variation of minor principal effective stress (in
the compression-positive sense) with time at the same selected nodes as the earlier pressure and
temperature profiles. These values, as before, were obtained [rom stresses approximated at the
nodes using the scheme described in §6.5.2. The problem of extrapolating the solutions to the
boundary {rom only one set of element points is exacerbated by the large stress gradients existing in
the elements with unresolved stresses. This shows up in the saw-tooth outline of the approximated

minor principal stress at node 325 during the second injection cycle. However, the carly time data
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is still useful, and it can be scen that o3 at the node goes into tension during the first production
cycle, indicating that the conditions for a hydraulic fracture have been met. Comparing this with
the stress ratio, or the principal stress number in the later diagram, a horizontal parting would vecur

because the least principal stress coincides with the vertical axis.

Two more figures illustrate the behaviour of the principal stresses at the nodes, found [rom the
eigenvector solutions to the stress characteristic polynomial. Figure 8-27 indicates which principal
stress is closest in orientation to the vertical axis. All the nodes start out with the major principal
stress being aligned with the vertical axis. In the first injection period, all the nod»s under con-
sideration rotate the principal stresses so that the vertical axis coincides with the minor principal
stress. The neighbouring node has principal stress rotation in the first injection period, which did

not occur in the 3 x 3 x 3 mesh until the second injection period.

The actual proximity of the closest principal stress to the vertical axis is indicated in Figure
8-28. The neighbouring node (334) and the middle injection node spend about 100 days cach with
the least principal stress rotated at approximately 45° to the vertical.
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Change in porosity, ¢, with simulation time
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The porosities near the wellbore, presented in Figure 8-29, reflect only the changes in {poie)
pressure. The unresolved stress state cannot aflect the porosity in the uncoupled formulation. A

coupled analysis, with porosity a function of volumetric strain would be different.
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2.6 Results for 5 x 5 % 3 fluid domein with low injection rate

Results are presented for the low-rate case (uncoupled) in the 5 x 5 x 3 grid. Element and node
numbers which are referred to are identified in Figure 8-5. Gauss point positions within elements
are identified in Figure 8-7. The simulation tock 111 time steps to reach 405 days of simulation
time. The same number of time steps was used to find the solid model solution. The variation in
pressure and temperature with simulation time at the selected nodes 325, 334, and 406 is shown in
Figures 8-30 and 8-31, respectively. Nodes 325 and 406 are wellbore nodes, while node 334 is one
of the nodes immediately adjacent to the bottom wellbore node, 325.

As expected, changes in pressure and temperature occur similarly to the high-rate case in the
same grid, but with lower peaks due to the smaller siug of injected steam. As before, material
behaviour beside these three nodes will be presented. Three Gauss points from elements 257, 321,
and 265 (see Figure 8-5) were chosen such that they were the ones closest to the nodes to the nodes
reported in Figures 8-30 and 8-31, respectively. The data points are organized in the next five
diagrams so as to correspond to the nodes considered for the pressure and temperature profiles. The
nodes and their closest Gauss points will be referred to interchangeably in the following text. The

same terms reported for the previous fluid domain studies will be presented in this section.

Figure 8-32 illustrates the growth in plastic strain at the three Gauss points. The trend follows
the injection cycles closely, although plastic straining does not begin until the simulation is into the
second injection cycle. The bottom well node shows the greatest degree of plastic strain, until the
onset of the fourth injection cycle when the values at the neighbouring node 265 become larger. As
will be seen later, insufficient iteration to resolve the excess stresses becomes a problem in the third
injection cycle. The error is not sufficient to lead to large (erroneous) plastic strains until late in
the simulation, after the start of the fourth injection pericd. The finer mesh appears to give a lower
overall plastic strain than for the 3 x 3 x 3 case, where the effective plastic strain is larger in the
bottom injection element, and where there is a bigger gap between the effective plastic strain in the
middle and bottom elements. This is probably due to the more even distribution of thermal and

pore pressure loads from the fluid model,

Figure 8-33 illustrates the variation in volumetric strain as injection continues. This responds
in the expected fashion until about half way through the third injection cycle, where a sudden
decrease in volumetric strain in the bottom element 257 is associated with the unresolved high

stresses.

Figure 8-34 illustrates the change in the stress ratio at each of the selected Gauss points. As
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Figure 8-31

Profile of temperature (average block values) with simulation time at
selected nodes near wellbore (5 x 5 x 3 fluid domain; low rate).
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Growth of effective plastic strain with simulation time at
selected Gausa points near the wellbore (5 x 5 x 3 fluid domain; low rate).
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Figure 8-33
Growth of volumetric strain with simulation time at
selected Gauss points near the wellbore (5 x 5 x 3 fluid domain; low rate).
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Figure 8-34
Change in stress ratio, K,, with simulation time at
selected Gauss points near the wellbore (5 x 5 x 3 fluid domain; low rate).
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before, the nodes at ihe wellbore quickly move to values of K, above one during the first injection
cycle, indicating that a horizontal orientation would be preferred in the event of a (tensile) hydraulic
{racture. As in the high-rate case in the same mesh, the neighbouring Gauss point, in element 265,
differs from the 3 x 3x3 mesh results in that the stress ratio does not go above one until the third
injection cycle. As the solid model resuits are satisfactory until the third injection cycle, the data
to that point yield some insight. The high peak at the end of the first injection period reflects the
higher well block temperatures caused by a smaller block than for the 3 x 3 X 3 mesh.

The decrease in the stress ratic occurring in the wellbore region during the third injection
period corresponds tu the increase in vertical stress at the same time. This is illustrated in Figure
8-35, and is clearly seen at about 250 days. Again, this change is attributed to the unresolved stress

state.

The next illustration, Figure 8-36, shows the Lode angle, g, varying with time. It clearly
illustrates the rotation of the principal stresses during the first injection cycle by moving from +30°
to —30° very quickly. The unresolved stress state starts in the middle of the third injection period,

and the Lode angle once again moves to values close to zero.

On the same page, Figure 8-37 illustrates the variation of minor principal effective stress (in
the compression-positive sense) with time at the same selected nodes as the earlier pressure and
temperature profiles. These values, as before, were obtained from stresses approximated at the
nodes using the scheme described in §6.6.2. The results show that, unlike in the high-rate case, &
tensile stress state is not achieved in the first injection period. 'The high saw-tooth values of the
extrapolated least principal stress, beginning in the second injection cycle, are probably due only to
the presence of large stress gradients in the bottom element, exaggerated t.)y linear extrapolation to

the nodes.

The principal stress numbers closest to the vertical, and the angles between them and the
vertical, are given in Figures 8-38 and 8-39. The middle element Gauss point indicates that, during
the third production period, the major principal stress is closest to the vertical. The cosine data
also indicates that the same principal stress is inclined at 45° to the vertical at this point.

The porosities near the wellbore, presented in Figure 8-40, again, reflect only the changes in
(pore) pressure. The unresolved stress state late in the simulation cannot affect the porosity in the

uncoupled formulation.
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8.7 Results for 3 x 3 x 3 Auid domain with high injection rate and staggered coupling

Results are presented for the high-rate case in the 3 x 3 x 3 grid, using the staggered coupling
with the pore compressibility formulation. Element and node numbers which are referred to are
identified in Figure 8-3. Gauss point positions within elements are identified in Figure 8-7. The
simulation tock 106 time steps to reach 254 days of simulation time (two full steam injection cycles).
The variation in pressure and temperature with simulation time at the selected nodes 257, 265, and
321 is shown in Figures 841 and 842, respectively. Nodes 257 and 321 aie wellbore nodes, while
node 265 is one of the nodes immediately adjacent to the bottom wellbore node, 257.

These results should be compared to the uncoupled 3 x 3 x 3 case, Figures (8-8) to (8-18).
The peak pressures at the end of the first injection period are higher, due to the different effective
pore compressibilities. More interestingly, the pressures during the second production cycle do not
display the same drop seen in the uncoupled runs. The pressure meintenance begins at about
150 days, following a short decline during the soak period. Consideration of cther results, such as
volumetric strain, vertical stresses, and the porosities, suggests that this phenomenon is explained
by an increase in stress which compacts the formation. The increase in stress occurs at the well
injection nodes, and is the result of unresolved excess stresses. However, there is no evidence that
unresolved excess stresses exist at the element neighbouring the well injection element, and Figure
8-41 clearly indicates that the pressure in the neighbouring element is also maintained quite high
during the second preduction cycle, This is partly be due to the pressure response in the well
elements, through which a pressure gradient must be maintained for flow (hence the higher pressure
than in the well elements). It is also observed that the volumetric strain in the neighbouring element
is steadily increasing during the same period, a result of changing pore pressure and temperature
distribution during this period. The temperature response is similar in form to the uncoupled case,
as is expected—the temperature distribution will only be altered by changes in flow paths, or by the
retention of hot fluids when flow is restricted. It is then noted that the temperatures in this case
are all higher than in the uncoupled case, probably due to less convection of heat into the formation

because of the different pressure response.

As before, material behaviour beside these three nodes will be presented. Three Gauss points
from elements 197, 204, and 246 (see Figure 8-3) were chosen such that they were the ones closest
to the nodes reported in Figures 8-41 and 8-42. The data points are organized in the next five
diagrams so as to correspond to the nodes considered for the pressure and temperature profiles, The
nodes and their closest Gauss points will be referred to interchangeably in the following text. The

same terms reported for the previous fluid domain studies will be presented in this section.
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Profile of temperature (average block values) with simulation time at
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Figure 8-43

Growth of effective plastic strain with simulation time at
selected Gauss points near the wellbore (3 x 3 x 3 fluid domain; high rate).
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Growth of volumetric strain with simulation time at
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Figure 8-43 illustrates the growth in plastic strain at the three Gauss points. The trend {oliows
the injection cycles closely, although plastic straining does not begin until the simulation is into the
second injection cycle. The bottom well Gauss point shows the greatest degree of plastic strain, The
values at the neighbouring element Gauss point 204 are zero throughout the time of the simulation,
indicating that the response at that node is purely elastic. All the values are similar in magnitude
to those seen in the uncoupled case, The inadequate resolution of the excess stresses back to the

yield surface does not significantly aflect the effective plastic strain, as it was mostly accumulated
during the injection period.

Figure 8-44 illustrates the variation in volumetric strain as injection continues, The response
mirrors the variation in vertical stress reported later. The sudden drop in &, half way through
the second injection period corresponds to the sudden increases in vertical stress at the same time.
However, the response during the second production period is more varied. The volumetric strain
continues to decline in the bottom well element, reflecting the continued but more gentle decline
in vertical stress (an increase in its magnitude). The volumetric strain at the middle well element

remains more or less constant, while the value at the neighbouring element 204 increases stcadily.

Figure 8-45 illustrates the change in the stress ratio at each of the selected Gauss points, The
sharp decline in stress ratio during the second injection period reflects the increasing vertical stress
magnitude at the same time, due to insufficient reduction of the excess stresses. The values stay
greater than one at all locations, once the value of one has been attained. The first peak in K, at
the end of the first injection period is unlike that of the uncoupled case with the same mesh, but

is not unlike that in the high-rate 5 x 5 x 3 case. This reflects the higher temperatures in the well
elements, discussed earlier.

The vertical stress response, illustrated in Figure 8-46, has already been discussed in conjunc-
tion with the previous parameters,

The Lode angle, 8, shown in Figure 8-47, follows a similar path to that in the uncoupled runs,
The values at the points close to the injection nodes indicate principal stress rotation occurring
during the first injection period. The neighbouring point in element 204 moves more slowly towards
the rotated state. The two points by the injection nodes move to values close to zero about half way

through the second injection period, further evidence of unresolved excess stresses.

On the same page, Figure 8-48 illustrates the variation of minor principal effective stress (in
the compression-positive sense} with time at the same selected nodes as the earlier pressure and

temperature profiles. These values, as before, were obtained from stresses approximated at the
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nodes using the scheme described in §6.5.2. The values for the bottom well node become anomalous
at 140 days, with a large positive spike followed by oscillation to extremes. This is a result of the
poor reduction of excess sf:rms in that element. The values at the middle injection element arc not
so severe, although the increase (in magnitude) at 140 days is also a sign that some cxcess stress
still exists. Excluding the anomalous values at node 257, the least principal stresses plotted do not

go into tension during the simulation period.

The principal stress numbers closest to the vertical, and the angles between them and the
vertical, are given in Figures 8-49 and 8-50. Principal stress rotation occurs in the order discussed
with the Lode angle. At all times, the principal stress at the bottom wellbore node 257 coincides
with the vertical axis. The middle well node deviates from this about half way through the second
injection period, moving to the angle of 45° to the vertical. Node 265, neighbouring the bottom well
node, also moves to the 45° angle in the second injection cycle. This might be a response to the
excess stress in the wellbore elements.

In the coupled runs, the porosities are calculated directly from the volumetric strains and the
thermal expansions. Thus the values reflect directly the interaction between the fluid and solid
models. As is expected, the porosity values, presented in Figure 8-51, have a similar profile to
the volumetric strain curves, with some exaggeration of the differences between the nodes. The
permeabilities, related by a cubic expression to the volumetric strains and porosities, change at the
selected nodes as shown in Figure 8-52. The relative shape of each curve is closest to the variation in
porosity, and reaches a high point of four during the second injection cycle. This has a corresponding

effect on the block transmissibilities, and on the injection pressures.
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8.8 Results for 3 x 3 x 3 fluid domain with low injection rate and full coupling

Results are presented for the low-rate case in the 3 x 3 x 3 grid, using the full coupling.
Element and node numbers which are referred to are identified in Figure 8-3. Gauss point positions
within elements are identified in Figure 8-7. The simulation took 85 time steps to reach 106 days
of simulation time (one full steam injection cycle). The solution diverged at this time, and further
progress was not possible. The variation in pressure and temperature with simulation time at the
selected nodes 257, 265, and 321 is shown in Figures 8-53 and 8-54, respectively, Nodes 257 and 321

are wellbore nodes, while node 265 is one of the nodes immediately adjacent to the bottom wellbore
node, 257,

These results should be compared to the uncoupled 3 x 3 x 3 (high rate) case, and to the the
staggered case (high rate). While the injection rate for this case is less than that for the other two

coarse grid scenarios, one can still consider and interpret the progress of changes.

The peak pressure at the end of the first injection period is even more pronounced than for when
the staggered coupling was used. This can be ascribed to the lower effective pore compressibility
of the system. It is also noted that the difference in pressure between the neighbouring node 265
and the well nodes is much less in the two coupled runs than for the uncoupled cases. This can be
explained by the increase in absolute permeability accompanying the injection of stearn. There is
also a greater drawdown at the well nodes than in the previous examples. Here the explanation also
hinges on the values of volumetric strain, which will be seen to be smaller for this example. The low

pressures at the end of the first production period probably contributed to the eventual divergence
of the solution.

The temperature response is similar in form to the uncoupled case, as is expected—the tem-
perature distribution will only be altered by changes in flow paths, or by the retention of hot fluids
when flow is restricted. It is then noted that the temperatures in this case are all lower than in the

uncoupled case, reflecting the lower injection rate used in the coupled run.

As before, material behaviour beside these three nodes will be presented. Three Gauss points
from elements 197, 204, and 246 (see Figure 8-3) were chosen such that they were the ones closest
to the nodes reported in Figures 8-53 and 8-54. The data points are organized in the next five
diagrams so as to correspond to the nodes considered for the pressure and temperature profiles. The
nodes and their closest Gauss points will be referred to interchangeably in the following text. The

same terms reported for the previous fluid domain studies will be presented in this section.

No effective plastic strain was noted in the previous examples until the second injection period.
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Figure 8-54

Profile of temperature {average block values) with simulation time at
selected nodes near wellbore (3 x 3 x 3 fluid domain; low rate).
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Figure 8-55

Growth of volumetric strain with simulation time at
selected Gauss points near the wellbore (3 x 3 x 3 fluid domain; low rate).

As expected in a run terminated before entering the second injection period, no plastic strain was
cbserved in this case. Figure 8-55 illustrates the variation in volumetric strain. [t can be scen that

the volumetric strain is lower than for the uncoupled case, and is mostly due to the lower injection
rate used for this run.

Figure 8-56 illustrates the change in the stress ratio at each of the selected Gauss points.
The two coupled runs display a different response at the neighbouring Gauss point {element 204),
compared to the uncoupled run. In this run the difference is very noticable, where the stress ratio
K. actually decreases during the first injection period, in contrast to the uncoupled run where
it increases slightly. The change in K, can only happen as a result of a reduction in the major
horizontal stress or an increase in the vertical stress. The vertical stress response, seen in Figure
8-57, shows that the vertical stress (magnitude) at this Gauss point decreases more than in the

uncoupled runs. It is probable that the lower injection rate of the coupled run, resulting in a lower
thermal loading, is the main reason for this behaviour.
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Change in vertical stress with simulaticn time at
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Change in Lode angle, 8, with simulation time at

selected Gauss points near the wellbore (3 x 3 % 3 fluid domain; low rate).
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Change in least principal stress, 3, with simulation time
at selected nodes near the wellbore (3 x 3 x 3 fluid domain; low rate).
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Change in the angle of the principal stress oriented closest to the

z-axis at selected nodes near the wellbore (3 x 3 x 3 fluid domain; low rate).
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The Lode angle, 8, shown in Figure 8-58, complamcnts the changes in the stress ratio, Principal
stress rotation, evidenced by a change in the Lode angle from +30° to —30°, occurs only at the Gauss
points close to the well nodes used as an illustration. This is mirrored in the stress ratio figure, where

the values at these points become greater than one. The stresses at the neighbouring point remain
unrotated.

On the same page, Figure 8-59 illustrates the variation of minor principal effective stress (in
the compression-positive sense) with time at the same selected nodes as the earlier pressure and
temperature profiles. These values, as before, were obtained from stresses approximated at the
nodes using the schemne described in §6.5.2. It is clearly seen in this diagram that the smallest minor
principal stress (by magnitude) is at the neighbouring point, rather than directly adjacent to the well
nodes. Using the information given in Figures 8-60 and 8-61, the principal stress numbers closest
*o the vertical, and the angles between them and the vertical, it can be seen that the neighbouring
point has the major principal stress most closely oriented to the vertical axis, and that it is almost

vertical. A vertical parting plane is then the preferred orientation if the point should attain zero
effective stress,

The porosity values, presented in Figure 8-62, and the permeability ratics, shown in Figure
8-63, have a similar profile to the volumetric strain curves, again with some exaggeration of the
differences between the nodes. These variations, as a result of the volumetric strain response, alter

the response of the reservoir to steam injection compared to the uncoupled analysis.
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Change in porosity, ¢, with simulation time
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8.9 Discussion

The numerical experiments chosen were intended to investigate the effects of changing im-
portant parameters on the differences encountered when using the coupled formulations, and to
demonstrate the implementation of the coupled formulations. The most important result has been
to demonstrate that the coupled runs are feasible, but are difficult and costly to perform. There are
also stability problems, which were partly resolved, and the problem of obtaining stress solutions
which had been reduced back to the yield surfaces from the excess trial values. As in most coupled
problems, the amount of work to be done increases with the amount of coupling required. The stag-

gered formulation is the simplest level of coupling, and if it gives realistic solutions, is the obvious
candidate for further study.

8.10 Comparison of methods

Severai individual parameters have been prepared in more detail for discussion: the production
data, the plastic zone, the volumetric strain, and the vertical effective stresses, The production data
is considered for all the runs. For the rest of the comparison, only the staggered coupled run
(R333STAG) is compared with the two uncoupled runs operating at the higher rate (R333HR and
R553HR). The contours for the 3 x 3 x 3 fluid model grid are taken from the bottom layer of Gauss
points in the lower layer of elements in a 3 x 3 areal slice taken from the injection corner. The
contours for the 5 x 5 x 3 fluid model grid are similarly taken from a 5 x 5 areal slice. Data is taken
at 155 days, at the end of the second injection period for all the runs.

8.10.1 Produclion data

Some production parameters have been chosen to highlight differences and similarities between
the simulations. The first diagram, Figure 8-64, illustrates the cumulative steam injection in barrcls
of cold water equivalent (cwe)., All the wells were injection-rate specified, so unless a wellbore
exceeded a specified pressure, the cumulative volumes injected should be the same between different

simulations at the same injection rate. The two lines underscore this, and the difference between
the two rates is clear,

Figure 865 illustrates the cil production rate with simulation time for each case. Production is
confined to specified cycles, and the rate increases with each successive cycle for the three considered
here. Of the two coupled runs, there is only enough data from the staggered coupling to be able to

make any comparison with t*ie uncoupled cases. The 3 x 3 x 3 runs have similar profiles during the
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production periods, but with some subtle differences. The finer 5 x 5 x 5 grid makes a more realistic
production curve, with high initial rates and rapid declines during the course of the production
period. The staggered run produces oil a little slower than the uncoupled counterpart in both the
cycles for which there is data. Water production, shown in Figure 8-86, is higher in the (staggered)
coupled model. Presumably the more mobile water can flow faster in the enhanced (absolute)
permeability caused by the dilation, proportionately higher than the oil can. The mobile water is

mostly steam condensate.
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Figure 8-88

Profile of oil-steam rutio during simulations.

The cumulative oil production, shown in Figure 8-67 in % pore volumes, indicates that the
staggered run only had a slightly different oil recovery compared to that from the uncoupled run.
The fine mesh simulations give better recoveries than the others because of the different rates of
mobilisation of bitumen between the finer and coarser grids. Given that the injection rates are
constant, it is not surprising that the oil-steam ratios, plotted in Figure 8-68 reflect the figures for

cumulative oil production.
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Profile of oil production rates during simulations.
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Profile of cumulative oil production during simulations.
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Figure 8-89
Contours of effective plastic strain (%) in R553HR from basal layer of Gauss points in heated zone.

8.10.2 Comparison of plastic zone sizes

The effective plastic strain is an indicator of plastic deformation, and therefore the boundary
between zero and positive plastic strain is the boundary between plastic and elastic analysis, where
the strains can accurnulate differently from even non-linear elastic behaviour. In the two coarse grid
simulations (both high rate, one with staggered coupling and one uncoupled), the only yielded Gauss
point at this time and in the layer being considered, was the cne nearest the well injection node.
Only the contour map for the fine grid simulation (uncoupled, high rate) is presented in Figure 8-69.
Yielding has occurred in more than one-quarter of the area, reflecting the better distribution of fluid
pressure and temperature in the finer grid. A maximum value of 2.2% is at the corner Gauss point

(contouring is based on a grid of the Gauss point data). The plastic zone is areally symmetrical.

8.10.3 Comparisen of volumetric strains

The variation of volumetric strain with time impinges directly on the the fluid response, as

porosity and permeability are functions of these strains in the coupled formulations. Contours at
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Contours of volumetric strain (%) in the high rate simulations from basel layer of Gauss points in heated zone.

the end of the second injection period in the high rate simulations are presented in Figure 8-70. The
most striking item is that the contours for the uncoupled run R333HR and the staggered coupling
run R333STAG are very similar. It would appear that running the coupled model has no advantage
at this point, certainly if this were the only variable of interest. The volumetric strain contours in

the fine grid simulations are much better delineated. While larger volumetric strains are noted at
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Contours of vertical stress (MPa) in the high rate simulations from basal layer of Gauss points in heated zone.

the wellbore, the values fall off with distance from the wellbore more quickly than for the coarser

grid studies.

8.10.4 Comparison of vertical stresses

The vertical stresses, in conjunction with other information such as the three-dimensiona!

stress ratio K, are important indicators of potential tensile hydraulic partings. As the injection
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of steam proceeds in a formation containing virtually immobile oil, the location and orientation
of partings will govern the speed at which the oil is mobilized and produced, The distribution of
vertical stresses in the bottom layer of Gauss points in the heated zone is presented for the three
high-rate simulations in Figure 8-71. (Note that they are given in the tension-positive convention.}
The distribution of vertical stress for the two coarse grid cases (one uncoupled, one coupled) is no
longer nearly identical, as it was for the volumetric strain. The near wellbore stresses are higher
for the coupled case, indicating that a coupled formulation will be necessary for a better prediction
of where tensile partings might occur. The fine grid case gives a better resolution of the areal
distribution of vertical stress. It can be seen that a low region (in magnitude) in the vertical stress
occurs at some distance diagonally from the wellbore region, rather than at the wellbore. This has

been noted before at later times in the coarse grid simulations by Tortike and Farouq Ali (1991).

8.11 Making the coupled runs

The coupled formulations presented i1z Chapter VII include using a pore compressibility term
to enhance the implicitness of the fluid model solution. This approach causes fast divergence in the
fully coupled case, although it was more stable for the staggered solution method. Many coupled
s were attempted, and most of them would diverge after only a few hours or days of simulation
time. In the end, the coarse nature of the mesh required that multipliers be used to increase the
volumetric strain used to calculate the porosity and peimeabilities. The multiplier was used to
convert the pore compressibility term from that back calculated from the solid material response in
the uncoupled runs (ca. 3 x 10~° psi™!) to that value used in the uncoupled formulations (0.0001
psi~!) — a factor of about 30. This made the comparisons easier as the initial pressure response
was closer to the original uncoupled response, so that changes as a result of the coupling were more

appatent.

The fully coupled run could not be made without adjusting it so that the solid velocity compo-
nents remained constant at the values found after the first one or two Newton-Raphson iterations.
This stabilized the solution considerably. Taking out what are implicit porosity terms in classical
reservoir simulation to put them into the residual (the right-hand side of the equations) also makes
the solution less stable, but was not such a big problem as the changes were less dramatic than
in the solid velocities. The pore compressibility approach, which attempts to restore the implicit
porosity terms using using the volumetric strains from the previous time step, failed to work at all
in the fully coupled case. This is because the pore volume change is no longer only a function of

the pore pressure in the block (and, implicitly, the neighbouring blocks), but is a function of the



distribution of stresses throughout the entire body, which are transmitted at the speed of sound:
hence the stress response to a pore pressure change cannot be considered a transient phenomenon.
Therefore a change in stress at one corner of the body has an immediate effect on a position at the
other corner (a finite distance away). Induced loads can then lead to changes in volumetric strain
opposite to that deduced from the local change in pore pressure. Thus the implicit formulation leads
to projections of porosity (a consequence of the Newton-Raphson formulation) which are more in

error than allowing the porosity to lag one iteration (by placing the porosity terms into the residual).

It should also be noted that the staggered run should give the same answers as the fully coupled
run if the tirne steps are short enough. At some point while reducing the time step size, the fully-
coupled method will find a solution effectively within one Newton-Raphson iteration of the fluid flow
model. When this occurs, the method is identical to the staggered scheme.

8.12 Stress reduction calculations

The reduction of stress to the yield surface is required because, by definition, the material
cannot exist at stress states outside of the yield surface. The mode] finds stress states salisfying
this condition by adjusting excess trial stresses, found by elastic projections) everywhere until the
constraint is met. The approach used by Owen and Hinton (1982) is effective but can be slow.
Typical mesh requirements are that the plastic zone be a small portion of the entire grid (< 10%-~
15%), and that loads be applied in small steps (e.g, < 5% of the total applied load). This allows
the stresses to equilibrate throughout the entire body, through a redistribution of the excess stress
in elastic space. The elastic space must absorb the excess energy existing as a result of reducing
the stresses to the yield surface, If the stresses are not brought back to points on or within the
yield surface, excess stresses are observed in the body with unreasonable strains and displacements

in the same region. A better choice of stress reduction algorithm is then required, or lots of time or
comnputing power.

8.13 Stress sampling points

Interpolation of stresses to the nodes is usually safe to do, although the values are not considered
to be as accurate as at the optimal sampling points at the Gauss quadrature locations. Large errors
can and do occur on the boundaries of the model, where the approximation procedure allows locally
large gradients to give an unreasonably high answer. Values on the boundary should be compared
to neighbouring Gauss points, and perhaps assigned values from these Gauss points.
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8.14 Usefuiness of the runs less than fuily coupled

The uncoupled runs have been more useful than simply for base case studies. The stress and
strain responses in the results presented here have been well within the same orders of magnitude
observed for the coupled cases. As noticed earlier, there will be differences in the flow rates because
of the modification of permeability with volumetric strain. It is also seen that the vertical stress
distributions in the first two periods do not vary much. However, there is a significant difference
between thg stress ratio values. More differences do occur farther away from the wellbore, as can be
seen in the contours discussed earlier. The uncoupled runs will continue to be useful to gauge the
order of magnitude of the material response, which can be a guide to preparing the coupled model.
This study indicates that the level of coupling achieved with the staggered formulation is good, and
is considerably less costly to run than the fully coupled case.

8.15 Computer time required to make runs

The computer time required to make these runs has been described as excessive. The coupled
models cannot be considered production versions. However, certain computational bottlenecks have
been identified and can be modified to permit the completion of coupled runs in several hours or
less, instead of several days. The excessive run times can be attributed entirely to the calculations

in the geomechanical model.

First, the frontal solution method used by the program is not efficient for current comput-
ing facilities, The frontal solver assembles the global equations by processing the elements in a
predetermined order. As global equations become complete, the steps for forward elimination are
performed, so that it is complete by the time the the equations are prepared for the last elemen:.
Backward substitution for the solutions to the variables then proceeds as is normal in linear equation
solvers. The combined process of global equation assembly and forward elimination, while effective
in minimizing core storage, combines inefficient use of computer floating point arithmetic and a sole
choice of linear equation solver — Gaussian elimination. Working with short vectors in FORTRAN
DO loops is inefficient on modern workstations, and the generally piecemeal approach of the frontal
solver consists entirely of this kind of operation. The frontal solver should be replaced by a two-step
process of the complete assembly of the global stifiness matrix followed by the invocation of & suit-
able linear equation solver. The equation solver might be an iterative method with the appropriate

choice of preconditioning and acceleration.
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The second significant computational bottleneck is the explicit evaluation of stress for the
stiffness matrix. This causes a large increase in the number of iterations required to reduce the
excess trial stress (found by calculating the elastic stress response) to the yield surface. An implicit

treatment of the stresses would enable a converged solution to be found more quickly, reducing the
amount of computer time required.

Both these improvements can be implemented given time and effort. It was not done for this
work because of limitations of time.

8.16 Assumptions and limitations inherent in the models

All the models described in this work contain implied as well as explicitly stated assumptions,
which place bounds on the applicability of the models. In most cases, explicitly stated assumptions
have been justified in the text, and the implication of the limitation discussed. In this section some
of the wider implications are discussed, with some review, where important, of previously mentioned

assumptions.

Obtaining material parameters is at least as difficult as measuring multiphase flow propertics.
It goes without saying that a lack of appropriate data values will alter the outcome of the simulation.

8.16.1 Fluid and heat flow model

The biggest limitation of the fluid low model is that it is a dead oil model. The cffect of
gas evolution in the reservoir will be significant in terms of overall stiffness of the sand. It is also
significant because it may create a mobile gas saturation through which steam can penetrate. These
effects will not be modelled by the current simulator described in this work.

8.16.2 Geomechanical model

The principal limitation of the geomechanical model lies in the assumption of enginecring
(small) strain. Small strain analysis uses the undeformed length of the body to normalize the

measure of strain. As a result, for strains greater than about 5%, there is an increasing error in the
strain solution.

The use of constant elastic parameters limits the applicability of the geomechanical model. No
scheme is incorporated into the model to account for stress dependent values of E or ». However,

hardening behaviour of the yield surface can be included.
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Gridding a domain for plastic deformation analysis requires that the mesh be sufliciently large
to redistribute and accommodate the excess strain energy transferred by elements with stress states
on the yield point. A rule of thumb suggests that the mesh be sufficiently large so that no more
than 10% to 15% of the elements are in the plastic region during the analysis.

The current geomechanical model cannot incorporate planes of weakness without using actual
finite elements. In many formations shale streaks may be observed, which could cause displacements
beyond the capabilities of the model. There is a general inadequacy in stress-strain constitutive
modelling of soils when dealing with material which has been has been subjected to several load
paths due to the rotation of principal stresses. The elastic and plastic parameters can be considered

to have changed once principal stress rotation has occurred and the material is unloaded.

B.17 Validation of the models

The individual components of the finite difference/finite element coupled model were tested in
their own right. The finite element model was tested using an axial loading example from Smith
and Griffiths (1988), and was described earlier. The finite difference model was a production model
used by Dr. Farouq Ali. After all the changes were made to the finite difference model, the program
was tested by repeating a cyclic steam stimulation study. All the tests reproduced the original
results exactly. This level of verification was considered adequate for the study, given the stated
goals. Nevertheless, it is necessary to consider ways in which this complex model can be verified for

production use. Field and laboratory conditions can be considered.

8.17.1 Laboratory verification

Two types of physical modelling could be prepared for testing the coupled numerical model.
Standard drained and undrained tests in triaxial apparatus should be reproducible. Investigation
of more complex processes would require appropriately designed models which would be able to
display thermal and pore pressure gradients for the duration of the test. A two-dimensional model
of one-quarter of the area covered by one steam injection well (injection in one corner of a square)
could be designed which included strain gauges in the sand, along with pressure and temperature
transducers,

8.17.2 Verificalion using field data

Full scale verification of this model is probably impossible at the moment. History matching

single wellbore pressures, temperatures, and bitumen and water flow rates, does not guarantee a



unique result. However, the model will ensure that the extent and degree of formation disturbance
is quantified so that this information can be included in further reservoir modelling studies. Limited
verification can be made by observing and matching surface uplift or compaction surrounding the
wellbore, as well as comparing the extent of yielded material (from shear [ailure) to observations
in surrounding wellbores, be they observation, injection or production wells. Stress and strain
information from the wellbore cannot be included because of the local response by the formation to

the presence of the wellbore and the fluid pressures in it, not accounted for in this model.



Chapter IX

CONCLUSIONS

Several numerical approaches for coupling oil reservoir fluid response and elastoplastic for-
ration deformation have been considered. The first approach, a fully finite element formulation,
was found to be too unstable to be useful. The second approach, a combination of finite element
modelling of solid behaviour and finite difference modeiling of thermal fluld flow, was found to be
successful and useful. In particular, the following contributions can be identified and conclusions

drawn:

i) this study has achieved the goal set out in Chapter III to develop a three-dimensional thermal
numerical reservoir simulator incorporating the concomitant changes in stress and strain of an

elastoplastic soil to hot fluid injection;

ii) this is the first implementation of non-linear, plastic behaviour in multiphase reservoir simu-

lation using rigorous concepts of incremental plasticity;

iti) this is the first implementation of a three-dimensional multiphase reservoir model to observe

the likely effects of principal stress rotation on potential parting planes;

iv) this study provides methods for quick appraisal and interpretation of three-dimensional stress
results using simple two-dimensional plots;

v) the study demonstrates the rotation of principal stresses at orientations other than at the
horizontal or vertical.

There are many recommendations for further research in this area. The more important ones are:

i) to find an implicit coupling term suitable for plastic formulations which incorporates the effects
of stress changes;

ii) to investigate the effects of the presence of a solution gas in the oil;
iii) to implement a faster excess trial stress reduction algorithm;
iv) to increase the order of element for the finite element model;

v) to apply the model to existing field data, and to conduct laboratory tests which can be used

for verification;

vi) to implement fracture-matrix interaction beyond the prediction of fracture initiation.
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Appendix A

COUPLED FLOW AND SOLID EQUATIONS

The following set of Row equations are used in the i‘nite element formulation. The primary
variables (Sw, So, Pu, T) 2re solved for at the latest time level. The iterative solution allows the
non-linear terms to be evaluated at the last iteration solved, Terms at the previous time level are

denoted by the superscript ¥, and are constants, not variables. See the Nomenclature and Chapter

IV for further explanation of symbols used.
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A.1 Water equation

The equation for water can be written as

a8 a(v.
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A.2 Bitumen equation

The equation for bitumen can be written as
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A.3 Gas equation

The equation for gas can be written as
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_ |+ f B(yguBu) 8pu” | 8yubBy) BT 3(V W’  1-¢8p 0T
Cs= [¢( B O + 9T ot ) + YouBy + o T 3 ) {A.27)
_ 85, _ a(ywﬂU)) 8pu* 85y a(ywﬂU)
Cs-(ap,., T AR "‘('51*‘ ) B
. a9-w)"  1-98p, 0T .
(Pg —yguﬂv)( 5 T or 9T Ot )] (A.28)
Cr = =k(fgAo + yguBurv) (A.29)
a.Pc
Cs = —kpyde 5= (A.30)
Co= "'k(ﬁgAapo + ywﬁuAuPu) ‘B (A.31)

Cro= (8%, .,.S;)[qb% %:ai?w_wg B(yaTEﬂu) N wﬂv(a(z,;u) . 1;¢%§§ )]

v apwyapg 8Pg 6‘(\7‘ u)y 1- ¢o6p,. ar*
-5 [¢ 8t dp, +¢3t 3T + 5 5 + o T B (A.32)
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Ch1 = pgSy + ¥gubu(1 = Si, = S5) (A.33)



A.4 Energy equation

The equation for energy can be written as

Dlaas;o +Dzog;“ +D, % 57 + DaSw+ DsSo + Depu + Dz - VS, + Dg - Vpu + Dy - V1
+v'(D10VT)+Dua(z;u) + D5 - g:l+Dlﬂ—D {A34)
where
8P¢ow v
Ds=—¢’( Cow WS) (A.35)
a y O Sh, " W/ ,
Da-(1-¢)pr37"'—¢+¢(swpwa"“’ + Spgt + (1= 84— SDpug ) (A.36)
v, Ohu o Gk v _ quy, 9
= (1 Ol T + 6 St T2 + St T2 + (1= 55 - S BT)
~ ¢ 8pr '
S8l 4 SYP..) (AST
+ o 5T Pu + ) (A37)
_ [8pu*( Ohy _ Oh,\  OT*( Ohy _ Ok,
De-¢_ e (Pwapw "Puapw)+*3-£- (Pwﬁ-ﬂuﬁ)] (A.38)

_[9u”f ke h,\  8T"( 8h,  Oh,
D=2 (”%"’"a:)"w(‘*ﬁ"’“ﬁ)]

8P... 85," 8(9-u)° 1 8, 8T" ,
— 35, Bt - P, (1~ ¢)( & TnaTa ) (A.39)

—(1-¢) [a(v w)° 1‘_%%1{- ] (A.40)
a 4 v v
D, = -k[p,,\, a;;___ (g - E%V"‘" - %’;,—"VT )] (Ad1)

8 8 Bhy . OPer. e
Da=—k-{zpu\i 25 Vol + (-&%m 1)g+§—?-VT"] FpP e e a§ vs} (A42)

oh, 3h; 8h, . AP,
Dg = —k- { piA (-—Vp:; + —mg) S Podoga vs"} (A.43)
9 ; M\ BT aT aT
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Dyp=-x (A.dd)
Dll = ‘_(1 - ¢)(P:} + Sv C.u) (A'ds)
Dy = —(1 - ¢)org (A.46)
D= Dl3nc + Dlac (A.47)
_ 0P, 85, " v e (V- u)” 1 8p, 8T"
D13Nc = ¢ BS at - (l - ¢)(p + S, PC.-)[ br aT 6t ]
3pw” ( av 3hw v, Sho v _ avy, O
_'¢ It (SwPWa + Sopoap + (1 - S -5 )Pua )
aTv v h‘" v ah" v v ah’"
b (s pugs + Stpogs + (1= S = Sh)owgp a'r) (A.48)

8 i} 8h 8h
Dise =[S pik (B20pt o+ G597 917 ) o0 (Bhe vpur+ zvr) 95
i

+g-k- (29?)\{)8 (A49)

and NC=non-convective and C=convective.



Appendix B

STATISTICAL ANALYSES OF ROCK AND FLUID PROPERTIES

The development of correlations for physical properties of water, steam, bitumen, oil, and rock

is presented in this Appendix. The biggest group of properties are those of saturated steam, which
are presented first.

B.1 Correlations for saturated steam properties

Current methods for the determination of saturated steam properties include looking up and
interpolating in steam tables, and the use of discontinuous polynomial approximations to the exper-
imental data, with heavy computational overhead over restricted regions of the saturation cnvelope.
This appendix presents a complete suite of properties as functions of simple continuous polynomiuls

throughout almost the entire saturation envelope.

Stearmn properties as a function of saturation pressure and temperature are essentiul for thermal
reservoir simulation and other analyses. The properties are found in a computer program either
by interpolation of steam table data or by using existing interpolation polynomials. The existing
polynomials are of restricted range and generally discontinuous, This work offers a complete suite
of steam properties as functions of continuous, simple polynomials throughout almost the entire
saturation envelope—to within 7 K [13°F] or 1.85 MPa [270 psi] of the critical point of steam.
Derivatives of the polynomials can be evaluated analytically.

Polynomial interpolation is necessary to make effective use of vector and parallel computers
because the table look-up and interpolation is inefficient for many points, even if a single-point
evaluation is quicker this way (Dubois, 1982). It must be emphasized that all the correlations are

invalid outside of the steam saturation envelope.

B.1.1 Development of correlations

The objective of the work was that the polynomizls should describe the behaviour of the stecam
properties to a sufficient degree of accuracy with changing pressure and temperature within the entire
saturation envelope. The polynomials should be continuous and they should involve simple integer
powers of the independent variable. Integer powers are efficient arithmetic operations, unlike the
evaluation of transcendental functions, which implicitly includes fractional exponents. Transcenden-

tal functions take an order of magnitude more effort to evaluate than basic arithmetic operations
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on s computer. This efficiency is useful particularly in microcomputers. Simple polynomials can be

most effectively evaluated using the Horner expansion (Knuth, 1981).

The data were tabulated in Perry and Green (1984) for saturated water substance. The
property values were corroborated by the tables published by Cooper and Le Fevre (1975). The
correlations were developed by polynomial regression, using the correlation coefficient and the resid-
uals to judge the suitability of each correlation. Two transcendentsi evaluations are required for
the saturation temperature and for the vapour density, and the evaluation of a square root for the

specific enthalpy of vaporization. The polynomials all have integer powers.

The correlations are presented jointly in derived S.I. and U.S. units, where version (a) of
the equation is in S.I. units, and version (b) in U.S. units. Ali temperatures used as independent
variables in the correlations are in K [°R], and pressures similarly used are in kPa [psial. The
coefficients were developed separately for each unit system, so that the residuals are identical for
each pair of approximations. Correlations are presented first for saturated steam condensate, then
for saturated stearn. Note that the use of temperature as the correlation variable results in simpler
expressions than in many previously published works. If pressure is required as the independent
variable in these correlations, then the evaluation of temperature from Equation (B.10) is very

accurate and suitable for determining all the other properties.

B.1.2 Discussion of error

The maximum and mean absolute residuals from using the correlations on the original data, ex-
pressed as percentages of the true values, are reported for the properties. The correlation coefficients
are reported for the regression variables, which are sometimes transformations of the properties. The
suitability of the new polynomials under particular conditions can be assessed using the residual plots
in Figures (B-1) to (B~11), which correspond to each equation of the same number. The correlations
have been compared to the most recently published work, and the comparison is fully documented
in Tortike and Farouq Ali (1989).

B.1.3 Steam condensate

Viscosity, Pa.s [cp], valid for 273.15K < T' £ 645K [492°R < T < 1161°R], maximum absolute
residual = 2.87%, mean absolute residual = 1.07%, and r? = 0.99994.

27.1038  23527.5 + 1.01425 x 107 _ 217342 x 10° + 1.86935 x 10!

0w = —0-012
H 214+ — T T T T

. (B.1a)
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oo = ~12.3274 + 48786.8  7.62292 x 107 . 5:91509 x 1019 228157 x 10'3 4 3:58226 1015
e " T T? T3 T4 T* '
(B.1b)

Thermal conductivity, W m~! K-! [Btu lh~! ft=! °R™}], valid for 273.15K < T < 645K,
[492°R < T < 1161°R}, maximum absolute residual = 4.58%, mean absolute residual = 0,46%, and
r? = 0.99857.

khase = 3.51153 — 0.04436027T + 2.41233 x 107472 — 6.05099 x 10773
+7.22766 x 107197* - 3.37136 x 1071375, (B.2n)

knee = 2.02892 — 0.01423947 + 4.30191 x 10572 — 5.99485 x 10~873
+3.97811 x 10~ 17 - 1.03089 x 10~'47%, (B.2b)

Density, kg m=2 [Ibm ft=3), valid for 273.15K < T < 640K, {492°R < T < 1152°R}, maximum
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absolute residual = 1.87%, mean absolute residual = 0.22%, and r? = 0.99977. N.B. all the absolute
residuals are less than 1% for 273.15K < T < 620K [492°R < T < 1116°R).

Pac = 3786.31 ~37.2487T +0.196246T2 —5.04708 x 10~4T3 + 6.29368 x 10~ 7T+ —3.08480 x 10~ 1°T%,
(B.32)

Pec = 236.372—1.29187T+0.003781257°2 — 5.40258 x 10573 +3.74277x 10~°T"% —1.01916 x 10~ 1375,
(B.3b)

Specific enthalpy, kJ kg=! [Btulbm~1], valid for 273.15K < T < 645K, [492°R < T < 1161°R],
maximum absolute residual = 2.93%, mean absolute residual = 0.52%, and r? = 0,99994. N.B. all
the absoluts residuals are less than 1% for 305K < T' < 845K [549°R < T < 1161°R).

sc = 23665.2 — 366.232T - 2.26052T% — 0.007303657° + 1.30241 x 10~574
—1.22103 x 107875 4. 4.70878 x 10”1275, (B.4a)
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he. = 10174.2 — 87.4729T -+ 0.301147T2 — 538409 x 10~*7> 4 5.33392 x 10~77%
—~2.77814 x 107197 4 5,95201 x 10~1T°, (B.4b)

B.1.4 Steam vapour

Viscosity, Pa.s [cp], valid for 273.15K € T < 645K, [492°R < T £ 1161°R], maximum
absolute residual = 6.41%, mean absolute residual = 1.59%, and r? = 0.99542, Note that the errors

are worst at the extremities of the range.

Hey = —5.46807 x 1074 + 6.89490 x 10~5T — 3.39999 x 10~%7? 4 8.20842 x 10~ 1173
—9.97060 x 10~1T* + 4,71914 x 10~17T%, (B.5a)

fay = —0.546807 4 3.83050 x 10~3T — 1.04938 x 107572 + 1.42201 x 107273
—9.49798 x 10127 + 2.49747 x 10~'5T5. (B.5b)
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Plot of residuals from the correlation of A, with T.

Thermal conductivity, W m~! K~} [Btu hr~! ft~! °R™!), valid for 273.16K < T < 645K,
[192°R € T < 1161°R}, maximum absolute residual = 7.56%, mean absolute residual = 2.63%, and
12 = 0,99709. Note that the errors are worst at the extremities of the range.

kn,y = —2.35787 + 0,0297429T — 1.46888 x 10472 4 3.57767 x 10~7T°
—4.29764 x 10~1°T* 4 2.04511 x 10~13T5. (B.6a)

kppy = —1.36235 + 9.54729 x 10737 — 2.61945 x 107572 4 3.54448 x 107873
—2.36542 x 10~117% + 6.25351 x 1071575, (B.6b)

Density, kg m=3 [ibm ft=3), valid for 273.15K < T < 845K, [492°R < T < 1161°R], maximum
absolute residual = 7.71%, mean absolute residual = 1.29%, and r? = 0.99996 on In p,,. Note that
one can find the steam density using the real gas formula p = pM/(zRT') assuming that the z-factor
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Plot of residuals from the correlation of u,. with T.
has been evaluated already.

In p,, = —93.7072 + 0.8339417 — 0.00320809T2 + 6.57652 x 10~5T2 — 6.93747 x 10~
+2.97203 x 10~1275, (B.7a)

In pyy = —96.4809 + 0.4633017" — 9.90153 x 107472 4 1.12766 x 10572 — 6.60862 x 10~ 107
+ 1.57286 x 10~13TS, (B.7b)

Specific enthalpy, k] kg~! [Btu lbm"‘], valid for 273.15K < T < 640K, [492°R < T" < 1152° R,
maximum absolute residual = 0.50%, mean absolute residual = 0.08%, and r? = 0.99920.

hyy = =22026.9 + 365.317T ~ 2.25837T2 4 0.00737420T2 — 1.33437 x 10574
+ 1.26913 x 107375 — 4.96880 x 10~'2TS. (B.8a)
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Plot of residuals from the correlation of ky,. with T.

h,, = —9469.85 + 87.2545T — 0,2996687" + 5.43610 x 10~4TS — 5.46484 x 10~7T*
+2.88759 x 107107 — 6,28068 x 10~'4T%, (B.8b)

B.1.5 Steam vapour and condensale

Specific enthalpy of vaporization (latent heat), kJ kg=! [Btu Ibm~!}, valid for 273.15K <
T < 645K, [492°R < T < 1161°R], maximum absolute residual = 5.68%, mean absolute residual
= 0.40%, and r? = 0.99994 on L2. Note that all the absolute residuals are less than 1% for
273.15K < T < 620K [492°R £ T < 1116°R].

L,= (7184500 + 11048.67" — 88.40507°2 + 0.1625617° — 1.21377 x 10-‘1") i. (B.9a)

L, = (1.:27940 +1134.53T — 5.04327T2 + 5.15204 x 10~37% — 2.13711 x 10-51*) ' (pob)

Saturation temperature, K [°R], valid for 0.611kPa < p £ 22.12MPa, [0.080psia € p <
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Figure B-7
Plot of residuals from the correlation of p,, with T.

3208.2 psia), meximum absolute residual = 0.11%, mean absolute residual = 0.03%, and r?

1.00000. Note that the pressure range corresponds to 273.15K < T < 647.3K [91.7°R < T €
1165.1°R).

n

T = 280,034 — 14.0856 Inp 4 1.38075(In p)? — 0.101806(In p)* + 0.0190017(In p)*. (B.102)
T = 561.435 + 33.8866 In p + 2.18893(In p)° + 0.0808998(In p)° -+ 0.0342030(Inp)*.  (B.10b)

Saturation pressure, kPa [psia}, valid for 280K < T < 647.3K, [504°R < T < 1165.1°R),
maximum absolute residual = 3.22%, mean absolute residual = 0.49%, and r? = 1.00000 on /5. Note
that all the absolute residuals are less than 1% for 320K < T < 647.3K [576°R < T < 1165.1°R).

p= (—175.776 +2.20272T — 0.01139537°2 4 2,62780 x 10~5T° —~ 2.73726 x 10874
2

+1.13816 x 10-“1‘5) (B.11a)

p= (-66.9421 + 0.485086T — 1.33944 x 107372 4 1.71599 x 10~873 — 9.93039 x 10~107*
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Figure B-8
Plot of residuals from the correlation of A,y with T'.

2
+2.20394 x 10-‘376) . (B.11b)

B.1.6 Conclusions — properties of saturated steam

A new set of functional correlations has been developed to predict the physical properties of
saturated steam. The correlations are valid virtually throughout the steam saturation envelope
except in the immediate vicinity of the critical point. The new correlations have the following

advantages over previously published work:

1. a continuous and numerically-efficient polynomial for each property throughout almost the
entire steam saturation envelope, for which continuous numerical or analytical derivatives can

be found;
2. suitable for vector pipeline and parallel processors, and convenient for computer spreadsheets;

3. a complete selection of steam properties with the choice of derived S.I. or U.S. units, each
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Plot of residuals from the correlation of L, with T

correlation found separately in its own unit system.

The purpose of the correlations is to eliminate the need for different correlations over several
smaller ranges, and to minimize the use of transcendental functions {which implicitly include non-
integer exponents). The correlations have been compared with the previously most comprehensive
set of steam property correlations in the petroleum engineering literature, and were found to have
errors of similar magnitude in the restricted region of validity of the previous set.

It is of interest to note one of the first polynomial approximations for steam ccndensate viscos-
ity, that by Gottfried (1965). The errors in this approximation are shown in Figure B-12. While the
errors are much worse at the extremities of the range than in the correlation given here, Gottfried's

correlation works well in the middle of the range and is useful because of its simple form:

12424 -T -3
e = 65T — 6aza * 10 (B12)

The viscosity is given here in Pa.s and the temperature in K.
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Plot of residuals from the correlation of T with p.

B.1.7 Bitumen

Enthalpy, J kg~!, obtained from data generated by the Simulation Science “PROCESS" pro-

gram.

hy = a+ bT + cT'? + dp + ep°. (B.13)
273K < T < 625K and 0.1MPa<p<21MPa

The correlation information is shown in Figure B-13.

B.1.8 Gas (methane)

Solution gas ratio, vol/vol, data taken from Svrcek and Mehrotra (1982). A suitable multiple

regression was chosen with some extrapolation.

R,=a+bp+ c% \B.14)
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Plot of residuals from the correlation of p with T

The correlation information is shown in Figure B-14.

Viscosily, Pa.s (data taken from Perry and Green, 1984)

by =a+bT. {B.13)
BOK < T <600K

The correlation information is shown in Figure B-15.

Thermal conductivily, W m~! K~! (data taken from Perry and Green, 1984)

kg =a+bT + cT?. (B.16)
250K < T < 600K

The correlation information is shown in Figure B-186.

Enthalpy, J kg~! (data taken from Perry and Green, 1984). Several multiple regressions were
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Figure B-13

Enthalpy of Athabasca bitumen as a function of temperature under saturated conditions.
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Solubility of methane in Athabasca bitumen as a function of temperature and pressure.

investigated, and the lollowing correlation was chosen:

hy = a + bT + cp + dpT.
250K < T <500K and 0.1MPa<p<30MPa

for which r? = 0.996. The correlation information is shown in Figure B-17.

(B.17)
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B.1.9 Rock-fluid properties

The relative permeability data for Athabasea tar sand was taken from Tortike (1984):

keyg = a+bS; + cS7 +dS3, (B.18a)
krw =a 4 bS, + cS2 + dS3, (B.18b)
kreo = +bSy + cS;, + dS], + €5, + /S, (B.18c)
kr,, =@+ bSy +cS? +dS}, (B.18d)
P, =a+bSu+cS3 +dS3}, (B.18e)

The correlation information i

s shown in Figures B-18, B-19, B-20, and B-21.
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Thermal conductivity of methane as a function of temperature.
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Enthalpy of methane as a function of temperature and pressure.
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Gas-liquid relative permeabilities.
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Oil-water relative permeabilities.
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Water-oil relative permeabilities.
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Appendix C

THE METHOD OF WEIGHTED RESIDUALS AND FINITE ELEMENTS

Some extra material is included because of the general unfamiliarity of the petroleum engincer-
ing profession with the subject. Sections C.1 to C.5 are condensed from Zienkiewicz and Morgan

(1983), Chapters 2, 3, 4 and 5, but can be found elsewhere. The remainder of the appendix is more
directly related to the topic of the thesis.

C.1 Approximation of functions

The topic is introduced by describing the approximation of a function ¢ with a trial function,
also known as a basis or shape function. Once an approximation for ¢ has been found within a given
region {2, an approximate value for ¢ can be evaluated for every point within . This is in contrast

to the finite difference method, where the values of ¢ are sought at a finite number of points within
Q.

Suppose that the function ¢ must also satisfy certain boundary conditions on the curve I’
enclosing the region Q, then the approximations ought to satisfy these boundary conditions exactly.
This requirement is frequently needed for the solution of differential equations. Find a function ¥
which has the same values as ¢ on T, i.e,, %] = ¢, and find a set of independent trial functions
Nm{m=1,2,3,..., M} such that Np,|; = 0, then ¢ can be approximrted by ¢ in 2 while satisfying
the boundary conditions:

M
¢n=9+ 3 amlm. (C.1)

mml
where am{m = 1,2,3,... , M} are parameters suitably chosen to optimize the approximation. Note

that, by definition, $|r = ¢|p. If the set of trial functions is increased so that M — oo, then
the approximation should improve so as to adequately represent ¢, This property is known as the

completeness requirement. The question now arises of how to choose the appropriate values of a,,.

C.2 Method of weighted residuals

The error, or residual, from the approximation to Equation (C.1) is defined by

Rap=¢-4¢. (C2)

246



247

so that Rq is a function within the domain 2. The object is to minimize Rq, in a general manner over
0. This is done by requiring that a number of integrals of the residual, each weighted differently, be

zero, Thus we have the weighted residual statement
sz(¢-$)dﬂ=fW¢Rndn=o. £=1,2,3,... .M. (C.3)
n o]

W,{€=1,2,3,...,M} is a set of independent weighting functions. Thus the completeness require-
ment will be met if Equation (C.3) is satisfied as M — o0.

Several choices may be made for the weighting function, but the Galerkin method is most
common. This method requires that the trial functions, used to approximate the function ¢, be

used as the weighting function, so Wy = N,

C.3 Approximation to the solution of linear partial differential equations

Consider a general partial differential equaion:
Al¢p)=Lo+p=0 inQ (C.4)

where £ is a linear differential operator and p is independent of ¢. Equation (C.4) must be solved
subject to the boundary conditions,

B(¢)=Mp+r=0 onT. (C35)

where 90t is a linear differential operator and r is independent of ¢, and can represent Dirichlet,
Neuman and mixed {Cauchy) boundary conditions simultaneously. One can use the techniques

outlined at the beginning to construct an approximation  to the true solution ¢:

M
p=d=v+ ) amNm. (C.1)
mml

The function ¢ and the trial functions N,, are chosen so that

Mo = —r
onT,. (C.6)
MNa=0 m=12,..., M

Now the boundary conditions are are automatically satisfied for all a,,. Actual derivatives are found
by differentiation of the approximation:
8 0 8¢ &  ONm
~ 20 +

Pl Pl A M T (en
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and similerly for higher order derivatives, Note that because the approximation automatically

satisfies the boundary conditions, it is only nccessary that ¢ approximately satisfies Equation (C.4 )
. . M

Ro=A@)= Lé+p=2L¢ + (L amENm) +p. (C.8)
m=l

"The method of weighted residuals can be applicd to make ¢ a satisfactory npproximation to ¢ by

choosing an appropriate sct of weighting functions W, and requiring

M
.[n WeRq d = fn W, {s¢+ (Z am.eNm) + p} dft = 0. (C.9)

ms=]

There are M unknowns a,,, and by applying this equation for £=1,2,... , M we have the set of M
linear equations

Kemam = fe. (C.10)

where the repeated subscripts indicate summation and

Kim = f WeENad 1< (gm)< M. (C.11u)
[ ¢

f,=_f w,pdn-f WeLydd. 1<€< M. (C.11b)
n 9]

There is also the case where the approximation function ¢ is constructed so that there is no

functional term 1 to automatically solve the boundary conditions:

M
pmd=3" amNm. (C.12)

m=1

Now one must satisly the residuals from the approximations to the solution in the domain € and on
the boundary I

Rao=A(@)=2L¢+p inQ. (C.13a)
Rr=B(¢)=Mé+r onT. (C.13b)
end the weighted residual statement becomes
[ WandQ'{"] Wngdl" =0, (C14)
1] r

where W, and W, represent two sets of independent weighting functions, cach of which is not

necessarily independent of the other set. Again, as M ~+ 0o, the approximation ¢ tends to the exact
solution ¢.
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In some circumstances it is possible to avoid the approximation of the boundary derivatives
which would otherwise be difficult without going to a large value of M. The first term of Equation
{C.14) is given by

/nngndn sfnw, (I:q's-;-p) . (C.15)

of which the first part can often be rcarranged (e.g., by integration by parts) to obtain the form
f WeLhdQt = f (EW) (D) dn + f WeEddr. (C.16)
n n r

where €, D and € are linear differential operators with orders of differentiation lower than that
of the original differential operator £. This expression is called the weak form of this particular
weighted residual statement.

By judicious choice of the boundary weighting function W, in Equation (C.14 ), the last term
in the saine equation might cancel with the last term in Equation (C.16). A boundary conditicn
which is amenable to this treatment is called natural Natural boundary conditions are a subset of
the Neumnan conditions, which are boundary conditions on derivatives. The resultant lower orders

of differentiation of the trial functions confers benefits which will be apparent in the next section,

C.4 The finite element method and piecewise-defined trial functions

Thus far it was implicit that the trial functions in the approximation were expressions valid
everywhere in the domain {2, and that the integrals were evaluated throughout §2. It is possible,
instead, to divide the domain §2 into nonoverlapping subdomains or elements Q2° and then construct
the approximation in a piecewise manner over each subdomain. Thus the approximation is only
necessarily continuous within each subdomain, and a different set; of trial functions Ny, can be used
in each of the subdomains £1°. The definite integrals arising from the weighted residual statement

are found by summing the integrals over each subdemain:

B
f WeRad2 =Y f W, R d; (C.17a)
[} cml i
E
f WeRrdT =Y / W,Rp dT". (C.17b)
r em] re

where 35 Q¢ = Q and T/, I'® =T, The domain has been subdivided into £ elements. Sum-
mations involving I'* are only relevant where a portion of the boundary I" lies on a subdomain
Qe



The advantage of this approach is that subdomains of regular and simple shape are chosen,
with trial functions [ound in a repeatable manner over the elements. Thus, a region of complex
shape can be reduced to a collection of simpler geometries which can be handled easily. The sets of
trial functions are alsc chosen to be zero outside of & given subdomain,

The derivatives of the piecewise-continuous trial functions will be necessary for the solution of
partial differential equations, so certain continuity requirements must be met. The next question is
how does a shape function behave at the junction of two elements? If it is discontinuous, then the
derivative will be infinite, causing the integral to be most likely indeterminate, Therefore, to ensure
continuity, trial functions should be chosen that do not have infinite derivatives in the integral terms
of Equation (C.14). Thus if s is the highest order of derivative in an integral in the weighted residual
statement, the trial function should have derivatives which are continuous to the order of at least
(2 = 1). This is referred to as functions which show C*~! continuity. This continuity requirement

is also applicable to the weighting functions W,. However, an exception is made for the Dirac delta
function.

It was shown that the weak formulation of a weighted residual statement, e.g., Equation
(C.186), contained lower order derivatives than the original formulation, e.g., Equation {C.14). Thus
the weak formulation will require less strict continuity from the trial functions, i.c., a lower order
of continuity. This is cbviously an advantage. Note, though, that the weak formulation took
the weighting functions under one of the differential operators, thus requiring that the weighting
functions meet a certain order of continuity. As the trial functions have already been specified to
meet the required continuity, the Galerkin method of setting W, = N, is often convenient as € and
D are usually operators involving the same order of differentiation. It should be stressed that while

this is true in the majority of cases, it is not always so.

C.5 Mapping and isoparametric elements

The problem with spatial integration is that the evaluation of the integral becomes too complex
for all but the simplest element geometries. This restriction could be removed by confining the
integration to a simple shape with a local coordinate basis (£, i, {) which is then mapped to the more
complex domain in the global coordinate system (z, y, z) where the solution is required. A mapping,
by definition, describes a one-to-one relationship between each point in the (£, , ) coordinate system
to a uniquely corresponding point in the (z, y, 2) coordinate system. An example is given in Figure

C-1 of a linear mapping between a square element with a local coordinate system (7, ¢) originating
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Figure C-1
Example of a linear mapping between local and global coordinate systems.

at th- -entre of the element, and an arbitrary quadrilateral in the global (z,y) space.

The mapping is given by a functional relationship, in general,

z= fl(EnﬂlC);
y=fal& ) (C.18)
= f.’l(es ™ C)’

Given a mapping, a trial function can be chosen within the local (§,7,¢) coordinate system
to satisfy the interelement continuity. The functional variation over the global element in (z,y, 2)
space is automatically covered through the mapping functions, as is the continuity in the (z,y, z)

space,

Transformation rules must be applied to many terms in the integrals from the weighted residual
statement, because the domain of interest is the glotal (z,y, 2) space. Two areas must be covered:
spatial derivatives and the variables of integration, both of which are part of the (z,y,z) space.
Spatial derivatives of functions described in the local coordinate svstem are found in the (z,y, z)

space using the Jacobian matrix of the transformation, J. This is found using the chain rule on the
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[]

trial function, N§(£,n,¢), in the local element:

BN; _oNzdz  ONpdy  ONpd:
8 ~ 8z 8 By 86 ' 8z B¢’
8N; ONgdz  ONgdy  ONjoz,
ONg _ON;ds  BNpdy  ONgo:
8 ~ 6z 8 ' 8y 9 ' 0z o(

N e
AW

_aﬁL =] —331- . (C.20)

This can be written as

QD

aN: N
' 57
The left-hand side of this expression is easily found, as is the Jacobian matrix. Thus an expression

for the spatial derivatives in the (z,y, z) space is found, provided that J is not singular,

an; Ny
i

=31y anNe (C.21)

The variables and limits of integration must be changed to [acilitate evaluation of the integral.
It can be shown that

dzdydz = |J| dE dnd(. (C.22)

where |J| is the determinant of the Jacobian of the transformation. Typically, the local coordi-

nate system is defined to give integration limits of —1 and -1, which is convenient for numerical

quadrature.

A convenient form of mapping is the parametric kind, where the mapping function is similar

to the trial functions. The mapping function can then be written in terms of N§(€,n,¢) where

z = Ngz¢;
y= Newei (C.23)
z= Niz,.

and the summation is over repeated indices, and z,, 3, and z; represent known values at specified
points. Thus the mepping will have the same continuity as the shape function. In this case, where the
mapping and shape functions are identical, the mapping is called isoparametric and finite elements

using this mapping are called isoparametric finite elements. Limitations do exist on the mapping.
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For example, interior angles of a quadrilateral should not exceed 180°, as was stipulated in Figure
C-1.

C.6 Upwinding

The weighting functions in the weighted residual statement must be changed when more influ-
ence must be assigned to upstream nodes. A separate, asymmetric weighting function will be used
which is built from a one-dimensional analogue. Convective and non-convective operators can be

separated out in the weighted residual statment, thus:
[ DoctWida+ [ meiw; da=o. (C.24)
) n
where W' represents the set of asymmetric weighting functions, and the subscripts ¢ and ne mean
convective and non-convective, respectively.

The one-dimensional analogue of the asymmetric weighting function will be a quadratic func-
tion, as outlined by Huyakorn (1976). Figure C-2 illustrates the z-coordinate divided into a finite
element, defined by two nodes separated by a distance A.

Figure C-2

Asymmetric weighting functions in a one dimensional element.




The function is found by adjusting the trial function:

Wi(z) = N(=) - F(z);

1@ =M@+ F@EEy g<zen (C.25)

2 =z
F(z) =ar +b-h- +c

where F(z) is a piecewise-defined quadratic function, and a, b, and ¢ are undetermined coellicients,
k is the distance between the nodes, and x is measured from node 1. The function F(z) is chosen
such that F(0) = F(h) = 0, so that the weighting function always equals the trial function at the
nodes. This constraint reduces the number of undetermined coefficients in F(z) to one: a = - Zf3,
as ¢=0and b= —a. Then,

z? .
F(z) = 3a (-h—2 - %) . (C.26)
Thus the one-dimensional weighting functions become:
2
We(z) = Ni(z) + 30% - 3:::%;
(C.27)
2
W3 (z) = Na(z) - 30% + 30%.

For the case of linear one-dimensional trial functions,

z z

Nl—l—z, NQ—I'I'E.
the difference between the asymmetric weighting functions and the linear trial functions can be scen
in Figure C-3 for a = 1.

When a is positive, more weighting is given to the upstream portion of the line segment. In

fact, fora=1:
%

Wi(z)dz=h zi1<z<z

Bt (C.28)
Wiz)de =0 z;<z < x4y

z
Thus, any property multiplied by W; and integrated from i to i + 1 will be weighted less than in the
same integration from ¢ — 1 to 4.

C.6.1 Asymmetric weighting functions for linear quadrilateral elements

The weighting function can be found at a node by taking the appropriate product of the

one-dimensional weighting functions. This is also the approach taken for a three-dimensional brick
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Figure C-3

Linear trial functions in one dimensional element.

element. A damping factor is required for each side, analogous to the parameter a in the one-
dimensional prototype. This is illustrated in Figure C~4.

Example functions in the local £, space are:

W (€, n) = Gi(E, ) Hi(n, B2); }
WS.(E! ’7) = 02(61 al)Hﬁ(ﬂi ﬁl);

where the functions G, Gz, H,, and Hj are derived directly from the one-dimensional weighting
functions in Equation (C.25). For example,

(C.29)

T

Gy =1-2 430y 30, % (C.30)
PTE TR T TNy ‘
This must then be rewritten in terms of £(z), where

=&+1
T

&y

C.6.2 Asymmelric weighting functions for linear triangular elements

Again, this follows the approach taken for the one-dimensional example. The asymmetric
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a,

Figure C—4

Weighting parameters in quadrilateral element.

weighting functions are of the form
W, =Ni+Fi=Li+F.

where L, is the set of trial functions within a triongular element. The weighting functions are

shown in Figure C-5.

The F; are quadratic functions satisfying the following:

(a) 2?,,1 F=1 sum of weighting functions equals unity.
(b) Fi(Li=0)=0; F; =0 at the side opposite node .

(¢) |Fi(Ls =0)i =3ayLeli; (i#7#k).

The condition (c) ensures compatibility along the sides common to the triangular and quadrilateral
elements. Huyakorn (1976) suggested that the following equations be used, which do satisfy the
three conditions (a), (b), and (c):

Fy = 3(aglsly — aslal,);
Fa =3(asly Ly — ay LaLa); (C.31)
Fy = 3{a1L2la — azly L3).
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Figure C-5
Weighting parameters in triangular element.

C.7 Shape and weighting functions of trilinear brick elements

The trilinear element used in FESPS is the same one described by Voss (1978). It is also
relerred to as the L8 element because of the linear trial functions and the eight nodes characterizing
the element. A triangular prism element is also used and is described in the next section. The
trilinear brick element is quite commeon in the finite element literature, which resulted, for example,
in the development of specific quadrature rules for this geometry. The L8 element is illustrated in
Figure C-8

Note the local coordinate system (£,1,¢) which is centered on the centre of the element. The
faces of the element are defined by a unit displacement in each direction of each of the coordi-
nates. The traditional anti-clockwise numbering of the nodes is maintained. The weighting function
parameters have directions analogous to the quadrilateral elements discussed in the previous sec-
tion. The eight trilinear interpolation, or trial, functions are formed by the product of three linear

one-dimensional interpolation functions. A typical linear trial function set is illustrated in Figure
C-7.

In general, the linear trial function in the £-direction can be written
1
Nf = S(1+€6). (C.32)

where the subscript i refers to the node number, and & is the value of £ at node i. The node numbers
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Figure C-8

L8 brick element with local coordinates and weighting directions.

increase in the direction of the £-coordinate, Thus
1
£ 21— £\
Nl - 2(1 E)!
1
Nj = (1+6);
The trilinear interpolation functions are found as the product of the linear trial functions, thus

N; = NENPN§

= 51+ EE)(1 + (1 + GG (C.33)

where i varies from 1 to 8. The nodal values of &, 7, and ¢ are shown in Figure C-6 and arc given
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Figure C-7
Linear trial functions for £-coordinate.
below:
& ={(-1,+1,+1,-1,-1,41, 41, =1);
H= (-11 —11 +1’ +1| —1, "1: '+'11 +1); (0.34)

G=(-1,-1,-1,-1,4+1,+1,+1,+1).
The derivatives of the trilinear interpolation functions are found to have a similar general form:

Ny, = Ba_lz_, = %(1 +nm)(1 +¢G);

Moy = T = 21+ 660(1+ € (c35)

83—12!' = %(1 + E6)(1 + mm);

Ni.‘ =

The L8-element asymmetric weighting functions are constructed from the two-dimensional
analogue: the quadrilateral element. The weighting parameters are shown in Figure C-6. The
three-dimensional functions are then constructed as products of the one-dimensional asymmetric

functions, just as for the quadrilateral element. This follows the approach of Voss (1978). For
example, at node 1:

Wi = Gi{§, an)Hi(m B2) 11 (6 11). (C.36)
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The one-dimensional asymmetric function G can be expanded as

2
G1(€.G1)=1-%+3&1%—3ﬂ1%
_q_£E+1 E+2+1 E+1
=1 —"2 +3G1[ 1 5
_1-¢ (1-8(1+§)
=g Tt
= Nf - 3y NENE.

Similarly, the other two one-dimensional asymmetric functions can found:

Hi(n, B2) = Ny - 36Ny NJ;
I{¢,m) = N§ - 37 N{NS;

The other asymmetric weighting functions can be developed in a similar manner, leading 1o
the complete set of eight:

WT = (Nf - 3a, N{NY(NT ~ 3B, NPND)(NE — 37 NENS) )
W3 = (N§ + 3 N{NS)(NY — 38 NP NJ)(N§ — 3mN§ N§)
W3 = (N3 + 3aaN{ NE)(NJ + 3B NI N7 ) (NS — 3w NENS)
Wi = (N = 3aaNfNS)(NY + 3B N NJ)(NS — 3% NENS)
W = (V§ ~ 3agNENS)(N] — 38N]ND)(NS + 3nENS) [
Wg = (Nf + 3aaNENF)(NY — 38 NTNJ)(NS + 31N NS)

W3 = (N5 + 3y NENSY(NJ + 38 NI NJ) (NS + 31aN§NS)

W5 = (NI — 3aa NENS)(N] + 3BLN] NZY(NS + 3 NS NS) |

(C.37)

The directions of the weighting parameters a, 8, and v are important. For example, the one-

dimensicnal element and the direction from node 1 to node 2. Then a positive value of a will;
a) decrease the value of W), (except at the nodes), and
b) increase the value of W2 (except at the nodes).
The asymmetric weighting functions have a general equation form

W; = g |0+660+ 6300 8] [0 mgaq -] [+ 660+ 63t - 2]
(C.38)
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where &, 7, and (; are found as before. The values of «y, §;, and 4; nre related to the edges of the

finite element and can be deduced from Figure C-8. They are also given below.

oy = (o, a1, &z, az, a3, a3, a4, ag);
Bi= (ﬁ?rﬁhﬁhﬂmﬁh B3, Ba, Ba); (C.39)
Vi = (V0720 735 Y V1 Y2018 Ya)e

The spatial derivatives of the upstream weighting functions must be evaluated by constraining
the upstream weighting parameter values. Huyakorn and Nilkuha (1976) showed that for a satisfac-
tory solution the upstream parameters in the directions other than that of differentiation variable

must be set to zero:

W (o, Bis ) _ W (4,0,0) )
% B o '
aw.(“i:ﬁh'ﬁ) - aw‘(olﬂ‘t 0}
i B = —i o ;o (C.40)
W (e, Bi, %) —= aW“(ol 0, 'Ti)
a¢ 3 ")

Therelore, the general form of Equation (C.38) can be used to form the derivatives of the asymmetric
weighting functions:

2‘;‘% = £~ 304)(1 +mm)(1 + G
88lq‘ = %(1 ~ 38m)(1 + £6)(1 + CGi); . (C.41)

L = 4131 +60C1 +7m |

The only remaining task is to decide on the sign convention for the values of the upstream weighting
parameters, This is done by inspection of the velocity term along the edge, which in practice means
& comparison of the potentials at adjacent nodes. If the velocity is in the same direction as the
defined direction of the upstream weighting parameter, then the parameter takes a positive sign. If
the velocity is in the other direction, then the parameter takes a negative sign. If the velocity is
zero, there is no convection locally and the weighting parameter along that edge is zero. The values

chosen for the weighting parameters will influence the degree of upstreamn weighting, and & value of
1 is sufficient.

C.8 Coordinate transformation and the jacobian matrix

Any local coordinate is transformed into the global coordinate system within the finite element



by the relation

x = Nyzy;
v= N (C.23)
z = Niz;

where Ny is the set of shape functions, which, in the isoparametric formulation, is identical to the
set of trial functions, and =, %, and z are the global coordinate values at each of the nodes i. The

transformation for the set of derivatives of any function ¢(z,y, z) was given in Equations (C.19) to
(C.22).

The Jacobian matrix of the transformation is, in index notation,

TS yrE. £
D= 1Zm ¥m 2m (C.42)
Ty U g
where each of the elements of the Jacobian matrix is found by differentiating the shape functions,

e.g.,
AN;

T = '-;,?zi

This calculation has been designed to take advantage of a pipelined vector processor such
as the CDC Cyber 205. The Jacobian matrix of transformation is found for all finite elements
simultaneously. The solution to the set of equations

o
e
—a’g’- =gy L (c.21)
NG aNg
Oz 'azL
is then found quickly using an efficient vector implementation of Cramer’s Rule. The transformation

in & given direction is thus effectively found for each element simultaneously.

anNy

C.9 Gaussian quadrature

Gaussian quadrature is one of the most efficient methods of numerical integration, requiring
fewer points to integrate exactly a given polynomial than many other schemes. The integrands
formed by the weighted residual statments with isoparametric elements are generaily polynomials
of indetermirate order because of the calculation of the inverse of the Jacobian of transformation.

The transformation entails diviston by a polynomial. Thus the order of, or number of points for,
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Gaussian quadrature to integrate the expressions exactly is also indeterminate. Then the choice of

the order of the quadrature is limited by the available computational resources.

Gaussian quadrature will integrate exactly a polynomial of order n = 2m — 1, where m is the
order of integration, i.e., the number of quadrature points. Litegration in more than one dimension is
achieved by using the quadrature scheme over each of the basis vectors. Thus a 3-point rule in three
dimensions requires 3x 3x 3 = 27 quadrature points. Tables of quadrature points are provided in the
literature for a given order of numerical integration in one dimension, assuming that the coordinate
varies from —1 to +1. Various sets of integration points have also been found for specific shapes and
coordinate systems, with the general intent of minimizing the number of points required to irtegrate
exactly a polynomial of given degree. This is advantageous because the integrand, often containing
many terms, must be re-evaluated at each quadrature point. Various integration rules have been
provided for the L8 and L6 elements used in FESPS.

The Gauss quadrature points for one-dimensional isoparametric coordinates varying from -1 to
+1 are taken from Abramowitz and Stegun (1965). There is also a weighting factor associated with
each quadrature peint, which is also supplied in the literature. All the coordinates and weighting

factors are reproduced here for completeness.

C.9.1 Inlegration rules for L8 brick elements

Two integration rules are provided:

i} An order 2 scheme (2 x 2 x 2 = 8 points), which will integrate exactly a polynomisl of the form
T cijkziy? z* subject to 1,j, k < 3, i.e., a complete cubic plus assorted higher order terms.

ii) A 14-point rule by Irons (1971) which will integrate exactly a complete quintic polynomial:
3 eijxziyd 25 subject to i+ 7+ k £ 5. A 27-point rule (order 3) would be necessary otherwise
to integrate a complete quintic plus assorted higher order terms (i, j, k < 5).

The 2-point Gauss quadrature rule in one dimension is extended to three dimensions by tak-
ing the product of the quadrature point weightings. Thus the 2-point rule, for which %z; =
+0.577350269189626 and the weighting is W; = 1.000 (Abramowitz and Stegun, 1965), provides
eight quadrature points in three dimensions, specifically, in a cube with sides of length 2 and a

coordinate origin in the centre. The specific arrangment of coordinates is shown in Table C-1.

The 14-point rule devised by Irons (1971) for 8-noded brick elements is described by the



£ i ¢ W,
1 0.577350269189626 0.577350269189626 0.577350269189626 1.000000000000000
2 =0.577350269189626 0.577350269189626 0.577350269189626 1.000000000000000
3 0.577350269189626 —~0.577350269189626 0.577350269189626 1,000000000000000
4 =0.577350269189626 —0.577350269189626 0.577350269189626 1.000000000000000
5 0.577350269189626 0.577350269189626 —0.577350269189626 1.000000000000000
6 —0.577350269189626 0.5773502691896256 ~0.577350269189626 1.000000000000000
7 0.577350269189626 -0.577350269189626 —0.577350269189626 1.000000000000000
8 -0.577350269189626 --0.577350269189626 -0.577350269189626 1.000000000000000
Table C-1
Gauss points and weightings for 2-point rule in L8 elements.

following quadrature formula:

+1
] f S(6,1,€) dE dndC = Bg[f(~b,0,0) + £(5,0,0) + £(0, =b,0) + £(0,5,0) + £(0,0, =b) + £(0,0,5)]
-]

+ Cs[f(—c, —c, =) + fc, —¢, =c) + f(e,c,—c) + fle, ¢, )

+ f(—e,—¢,0) + f(—¢c, ¢, —c} + flc, —c,¢) + f(~c,¢,¢)] (C.43)
where
Bg = 0.886426593
Cs = 0.335180055
(C.44)

¢
b= 0.795822426
c=0.758786911

C.9.2 Integration rules for L6 triangular prism elements

Again, two integration rules are provided:

i) An order 2 quadrature scheme (2 x 2 x 2 = 8 points), which will integrate exactly a polynomial
of the form ¥ cijez’y/z* subject to 4, j,k < 3, i.e., a complete cubic plus assorted higher order
terms.

ii) A scheme based on a 7-point scheme for triangular elements and an order 2 scheme for one

dimension. The 7-point scheme is from Cowper (1973), and, combined with the 2-point scheme



wy we ¢ W,

i 0.577350269189626 0.577350269189626 0.577350269189626  1.000000000000000
2  —0.577350269189626 0.577350269189626 0.577350269189626 1,000000000000000
3 0.57735N269189626 —0.577350269189626 0.577350269189626  1.000000000000000
4  =0.577350269189626 ~—0.577350269189626 0.577350269189626  1.000000000000000
5 0.577350269189626 0.577350269189626 -—0.577350269189626 1.000000000000000
6 —0.577350269189626 0.577350269189626 —0.577350269189626  1.000000000000000
7 0.577350269189626 —0.577350269189626 —0.577350269180626 1.000000000000000
8 —0.577350269189626 —0.577350260189626 —0.577350269189626 1.000000000000000

Table C-2
Gauss points and weightings for 8-point rule in L§ clemcents.

along the isoparametric coordinatz, forms a 14-point scheme which exactly integrates an in-

complete quintic polynomial: ¥~ e;;xx'y’z* subject toi+j +k <5and j < 3.

The quadrature formulae for the triangular prism element are found by combining the fortnula
for the linear strain triangle and one isoparametric coordinate. The 8-point formula is found by
combining the 4-point formula for a linear strain triangle (Cowper, 1973) and the 2-point formula

for a single isoparametric coordinate. The combined rule can then be made as tabulated in Tuble
C-2,

un Wy ¢ Wi
1 3 i 3 0.225
2 L B B 0.132394152788506
3 B ay B 0.132394152788506
1 B B a 0.132394152788506
5 ag Ba B 0.125939180544827
6 B2 a; B 0.1259391805441827
7 B Ba ag 0.125939180544827
Table C-3

Gauss points and weightings for 7-point rule in a linear triangle.

A suitable 14-point rule is found by combining the 7-point rule for a lincar strain triangle
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(Cowper, 1973) with the 2-point rule for the isoparametric coordinate. The coordinates and wecights
listed in Table C~3 are used with each of the two quadrature points for the isoparametric coordinate.

The values of the coordinates are given by:
ay = 0.059715871789770 )
B = 0.470142064105115

? (C.45)
ag = 0.797426985353087

B2 = 0.101286507323456 )

C.10 Triangular Prism Elements

The triangular prism element, or L6 element, is constructed from one isoparametric coordinate
and two sets of areal coordinates for linear triangles. The linear triangle is one of the original finite
clements, see, for example, Cook (1981). The element is depicte? in Figure C-8, and the trial

functions are given by:

wy 1
w p=[G]" ¢z . (C.46)
wy y

where 11 1

Cl=|=1 =z2 z3

n mn s
wy, wy, and ws are referred to as areal coordinates. The coordinates are called areal because they are
formed by the ratio of areas formed by drawing lines from the vertices to the point in the element,
divided by the total area, A, of the triangle. Thus wy = A1/A, ete. There are actually only two
independent coordinates because w; + w2 + 13 = 1. A redundant coordinate can be chosen, e.g.,

wa.
wy=1-w; —ws. (C4T)
Each of the areal coordinates w; varies linearly from 0 all along the side opposite the vertex i, to 1

at the vertex i. Each intermediate value lies on a line parallel to the side defined by w; = 0. Note

that the areal coordinates are automatically isoparametric.

We construct a three-dimensional triangular prism element using the linear triangle and an

isoparametric coordinate {. The triangular surfaces of the prism are defined by { = +1 (nodes 1, 2,
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Figure C-8

The linear triangle.

and 3) and by ¢ = -1 (nodes 4, 5, and 6). The trial function associated with the {-coordinate is:

N ]

Nf=z(1+¢) i=1,2,3
(C.48)

Nf==(1-¢) i=4,5,6;

Therefore the trial functions for the three-dimensional triangular prism are formed by the product



of N§ with the arcal coordinates:

Ni=3(1+0) 1
Nz = 22(1+¢)
N3=L:E;_ﬂ(1+0
N4=%(1—-c) }
Ny = (1= ¢)

Ne= =922 ¢) |

The triangular prism element is illustrated in Figure C-9.

‘I'he derivatives required are:
3!1)11 Bun’ 3( .

form as there was for the L8 elements. Thus:

aN 1 \
a; =3 +0
N _ .
g |
o _ wy
¢ 2’ )
N, ) 3
Fwy O
ON; 1
3o =50 |
% — ﬂ'
¢ 2" )
ON; _ 1
Eiu—? = -5(1+¢);
oN; _ 1
e = 31+
IN3 _ 1—w —wy,
a2z
8Ny _ 1
By = 301~ 6
Ny _ .
g = O
ONs _ _w
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(C.49)

The derivatives can be formed directly from the L6 element shape functions, but there is no general

(C.50a)

(C.50b)

(C.50c)

(C.50d)
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Figure C-9

L6 triangular prism clement with local isoparametric coordinate and weighting directions.

ONs _ 0.

dwy

aNs 1, o
oy 5(1=¢); (C.50¢)
oM _ws

ac 2




Ty -5 =¢)

ONg 1 . e
T = _5(1 - (C.500)
aNE 1 - w) =Wy

a¢ 2 !

C.11 Asymmetric Weighting Functions for the Trigngular Prism Elements

Asymmetric weighting functions for linear triangular elements were developed by Huyakorn
(197G), and are shown in Equation (C.31).

Fy = 3(aowyw; — agupun );
F; = 3(azw wp — ayunwa); {C.31)

F3 = 3{aywptn — agunws).

The weighting parameter directions were illustrated in Figure C~5. The weighting parameters on

the triangular surface defined by nodes 4, 5, and 6 are found similarly:

Fy = 3(fawawy — Pawaun);
Fs = 3(Bsunws — frwswa); (C.51)
Fg = 3(B1waw; — Bawyws).

The weighting parameters 81, B2, and §3 were illustrated in Figure C-9. The asymmetric weighting

functions for the isoparametric coordinate are the same as for the L8 brick element, viz.:

Gi= 3 - 2n(1-7) =123
7 1 "
1—¢ 3 (C.52)
Gi=—7=+1%-a(l - 7?) i=4,5,6;

‘The asymmetric weighting functions for the L6 element are then formed from the product of the
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asymmetric weighting functions for the lincar triangle and the isoparametric coordinate. Thus

. [1+¢ 3 ]
wl = [wl + 3(02"-"-’;!1:”'1I - 03w2wl)l 5 < - "{“fl(l - .72) : }
- ' 'I + 3 , 3
Wz = IWQ + 3(03W1w2 - alw:lw'z)] —2_.£ - :I"Y'z(l _ ,.',2) :
. 7 :1 + 3 " .
W3 = [ws + 3{aywows — aqwywy)| _.?..C. - Z.m(l - L
L Al .
r : (C.53)
. 1-— 3 1
Wy = [wy + 3(Baunwy — Bawaw, ) _2.5 + E.h(l -
. [1-¢ 3 2]
We = [wz + 3(Bawnwz — Biwaw)) 5t 2=
. [1 — 3 ]
Wg = [ua + 3(B1uwpws — Bawius)| __2_C + o - 'r’)] ;
L J

where wg = 1 = wy — ws.

The spatial derivatives of the upstream weighting functions must be evaluated by constraining

the upstream weighting parameter values, as in the case of the L8 elements. Thus we have:

WS (e, B, %) _ OWL(0,0,%)

a¢ B a
awi'(ahﬁil'ri) - awl'(ailoro)_ s P A,
B, = B ; i=1,23. {C.540)
W (e, Biw)  OWi(«,0,0)
3w2 - au}2 !
3Ws‘(0i-s,ﬁi-3.'n—a) _ aw;(0,0, 7,-,3)‘
a¢ B a¢ '
oW (i3, Bi-3,%i-3) _ OWi(0,8:-3,0) i=4.56 (C.54b)
awl awl ' 1 .
IW? (-3, Bi-3,7vi-3) _ dWi(0,Bi-3,0)
c'Jwg - ale '

Thus the derivatives can be formed directly from the asymmetric weighting functions shown in

Equation {C.53). The derivatives are shown below in the ordered fashion used for veclor processor



caleulation. Zero terms are left in to illustrate betier the vector structure.

awy
e
oWy
Buy
W3
3101
oW
Bwy
awe
Bw,
oW
duy

awy
Bun
awy
dws
aws
awz
awy
Bwa
awg
Buwa
oWy
Bwy

_1+¢
=320

1
%C[D + 0arp(1 — 2un ) + 3wa(as + ay)];

= -1-;—([—1 - 3az(1 — 2w) + 3un(ay — a2)j;
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Appendix D

DEVELOPMENT OF THE FULLY COUPLED FINITE ELEMENT
PROGRAM FESPS

The development of the computer program is the third major stage in the solution of the
problem defined for this study, It is also the most time-consuming. An overview of the model
program is given first, with subsequent explanation of the component parts, or modules, and the
major subroutines constituting the modules. Implementation of the boundary conditions, the well
model, as a module, [ollows the ovcrview, Program flow and algorithms are explained using flow
charts and so-called pseudocode. Flow charts graphically illustrate the sequence of instructions.
Pseudocode represents the sequence of instructions as a series of instructions that might be read by
a less pedantic computer language comniler than exists today. Numerical computational efliciency is
an important aspect of a large computer program. The implementation of the creation of the set of
linear equation coefficients and the solution of the equations is given. Space is given to the problem
of renumbering the degrees of freedom to reduce the size of the coefficient matrix of the sct of lincar
equations to be solved. Some aspects of the specific implementation of the algorithms on a vector

computer, the CDC Cyber 205, are given where they differ from that of a conventional, sequential,
computer.

D.1 Overview of the model

An overview of the program flow is provided by the chart in Figure D-1. The main program
is called FESPS, an acronym for Finite Element Steam Parting Simulator. The renumbering pre-
processor is called RENUM. Most of the items in the flow diagram are modules which can be tested

independently with their own data. The rest of this chapter briefly describes the program flow

following the flow diagram.

D.1.1 Renumbering preprocessor

The RENUM preprocessor, fully described in §D.9, processes the geon.etric connectivity data
between the finite elements and the mesh nodes, and the distribution of the degrees of freedom (S,
Soy py T). The degrees of freedom are numbered by RENUM to minimize the bandwidth of the
coefficient matrix using the supplied connectivity data. The degree of freedom numbering is written
to a file as the steering array that later will be used by FESPS to fill the Jacobian matrix for the
linear equation solver. This output file is used, unchanged, as input to FESPS.

273



274

presmsssseasnae module

preprocess to find optimal initializations:
DOF ordering: generue variables
comresponding sicering and
xRy descriptors
This is the stant of the
main sequence.,
h 4
G e
module:
intcgrands and
transformations
This is the start of the
Newton-Raghson sequence,
propertes module:
caleulate Muid and
rock propertics and
their derivatives

< > il well module:
ealculate well

{lows

Figure D-1

Overview of FESPS program flow.
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D.1.2 [/0 module

Three files are provided as input to FESPS. Only one is supplied directly by the user. The
other two are the steering array information, provided as the output file from RENUM, and the
restart file, generated on a previous simulation. The restart file is unnecessary if it is not to be used.
The user-supplied input file is simplificd by the use of keywords and unlimited user comments, A
variety of units are supported, referred to by name in the input fle, including SI and variations, and
common US units. The user then supplies the usual geometric data and initial values of the primary
variables. Finally, printing parameters and well information are specified. Errors while the input

files are read will cause the program to abort with quite specific information about where and why

the error occurred.

D.1.3 Initializalions

Two main functions are supported in this module: initislization of undefined variables and
the assignment of vector descriptors. All the undefined variables are set to zero. Fluid pressures
and solution-gas ratios can be found from a calculation of fluid equilibrium, il requested. Vector
descriptors are used on the CDC Cyber 205 computer to refer to portions of arrays and often

considerably improve the computational performance. The deseriptors also simplily the program
code, inaking it easier for someone to follow.

D.1.4 Single time step solution

The simulation proper starts here. All the integrals are formed at the Gauss quadrature points,
which are different for each of the two element types L8 and L6. The integrals are then evaluated
using the Gauss quadrature rules for the respective slements. The program now enters the Newton-
Raphson iteration sequence that linearizes the problem. The derivatives are found numerically using
a scheme which has been simplified as much as possible by suitable algebraic analysis. The fluid and
rock properties, and certain derivatives, are found at this point to be used in forming the coefficients.
Next, well flows are calculated. The coefficients are formed from this information and distributed
into the stiffiness (coefficient) matrix and the right-hand side constant vector. The coefficients are

distributed according to the the optimal degree of {reedom ordering found by RENUM,

The primary variables are shifted in turn, each time repeating the sequence outlined in the
previous paragraph, incrementally forming the derivatives in the correct places in the stiffness matrix.
Once the stiffness matrix has been completed the set of equations is solved using the vectorized lincar

equation solver STAIRWAY. The equations are now tested for convergence. The system is iterated
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until convergence occurs and the solution found for the current time step, or a preset limit on the
number of iterations is exceeded, If the Newton-Raphson iteration fails, it is repeated with a different

time step value.

Upon the successful completion of the solution to the new time level the input file will be read
if the simulation time corresponds to the time at which the new information was to become active,
New well information, printing controls, or time step control information may be read. The new
time step is now calculated using supplied parameters and the norms of the vectors of change in the

primary variables. A material balance is also evaluated using an integral form for finite elements.

Any printing or writing to a restart file is done at this point. If the simulation is not at an

end, it continues for anather time step.

D.2 Description of the modularity of the program

The model exists in various modules. The purpose was to break down the problem into portions
each of which could be adequately managed by one person. Each 1. odule would be designed to be
plugged into the model with little effort at the interface, while permitting the developer to test or

improve the module on its own with given data. The modules are

(i) the integration routines;

(i1} the well model;

(iii) the equations and the Newton-Raphson method;

(iv) the vectorized linear solver, DSTAIR;

(v) the input/output module;

(vi) the main program with initialization code and service routines;
(vii) the node renumbering preprocessor, RENUM.

The following sections cover each module in some detail. The associated flow charts use ANSI

symbols, with a bold outline to those symbols which are expanded in subsequent diagrams.

D.3 Integration module

This module finds the necessary integrands for each finite element, evaluated at each Gauss
quadrature point. The necessary integral for each element is then found by summing the weighted
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Figure D-2

Overview of integration control subroutine.
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D.3.1 INTCTL

The flowchart in Figure D-2 illustrates the formation of the integration terms in the formu-
lation. The Gauss quadrature points for numerical integration must first be found for each of the
L8 and L6 element types. Then the shape or trial functions and their de-ivatives must be found for
cach element, followed by evaluation of the asymmetric weighting functiuns and their derivatives.
Once this information is available, each of the integrals can be calculated using Gauss-Legendre

quadrature, in the forms required to construct the coefficient matrix.

D.3.2 SHAPEFCN

The calculation of the shape functions is quite simple because they are independent of position
in the global coordinate system. This is shown in Figure D~3. They need only be calculated for each
type of element. The integration module is, however, highly vectorized. Thus the shape functions
must be presented as vectors for each Gauss point containing the function values repeated for each
clement. As more than one kind of element is present, the function values are ordered according to
the element numbering in the mesh. The final vector is formed using a pseudo-bitmask with vectors

of shape functions from each of the element types.

D.3.3 DERIVS

The derivatives of the shape functions with respect to the local (element) coordinate system
are found much the same way as the shape functions themselves. However, the V terms required for
the integrals are derivatives with respect to the global coordinate system. Thus the shape [unction
derivatives must also be transformed into derivatives with respect to the global coordinates. The

procedure is outlined in Figure D-4.

D.3.4 TRANSFRM

The transformation subroutines convert derivatives with respect to a local coordinate system
into derivatives with respect to the global coordinate system. This is made quite simply using the
inverse Jacobian of transformation. The code has been highly vectorized and uses a form of Cramer’s

rule for this purpose. The problem to be solved is:

¢|:l: ¢!E
dy = [F] ¢’m
¢i8 ‘nbic
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Figure D-3

Overview of celculation of shape functions.

where [T') is the inverse of the Jacobian of transformation [J), i.e.
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Figure D—4

Overview of calculation of shape function derivatives.
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Overview of calculation of coordinate transformations.




Note the use of Einstein notation for derivatives, where

_ 0z
Z,E = a—E.
and likewise with the other terms. The Jacobian of transformation must be found lor every element.

This procedure is illustrated in Figure D-5.

D.4 The well model

The well model provides values for certain integrals (fluxes) appearing in the general equation
term F2. The Jacobian terms are found by element for all elements at once. This requires that
the fluxes be calculated and partitioned between nodes and elements. Thus nodes shared by two or
more elements have flux contributions from each element. Every well is considered to exist along
the edges of elements. Each edge is referred to as a line segment and is defined by the nodes at
each end numbered in the global sense. The length of each line segment can be calculated {rom
the coordinates of the defining nodes. The line segment is considered to be an independent entity
and to have elements associated with it—in reality, the elements which share the line segment as an
edge., No more than four brick elements are likely to share an edge, but there will be an additional
element for each brick element replaced by two triangular prism elements. Four support nodes are
defined for each element associated with a line segment. These nodes are used to supply information
about pressures around the well. The support nodes comprise two pairs, each pair being the two
neighbouring nodes to a node defining the line segment, numbered in the global sense, within the
associated element and not on the line segment. Each associated elemnent is also ascribed a fractional
constant which describes the effective portion of radial drainage provided by the element as a fraction
of a circle. This constant can also be used to increase or decrease the influence of the element on the
flow to or from the specified line segment, e.g., set it to zero to remove the element as a producing
or injection horizon. The well, then, is defined by its line segments which have associated elements

and support nodes.

The well type indicates how the well should perform. Each well is initially assigned a given
type indicated by a number:

1. pressure-specified total fluid production well;
2. bitumen rate-specified production well;

4. water rate-specified production well;



5. water and gas pressure-specified injection well;
6. water and gas rate-specified injection well;

9, shut-in well.

Types 3, 7, 8, and 10 are currently unused. A specified pressure or rate is required lor the weil,
according to its type, and a wellbore radius. An injection well additionally requires information
about the mass fraction of water—liquid and steam—in the injection stream, and the steam quality.

A gas or vapour rate-specified production well has not been included,

Wells normally operate subject to a constraint. The model provides the following types of
constraint:

1. maximum bitumen well rate;

2. maximum gas well rate;

3. maximum water well rate;

4. maximum well GOR;

5. maximum well WOR;

6. maximum pressure at a node (py});
7. minimum pressure at a node (p.).

If & constraint is violated, that constraint temporarily redefines the well type. Violations of
the GOR and WOR constraints cause the well to be shut in, while the other constraints force the
well to take on that type, e.g., if the maximum water rate was exceeded, the constraint value would
define the rate for a water rate-specified well type. The constraint that a production well cannot

take fluids and that an injection well cannot produce fluids is automatically enforced.

The contributions to production or injection from each element are stored according to the
well, line segment, and associated element. The well routines are called by JACOBCTL, and the
contributions are brought into the set of linear equations by a call to the routine GETFIH. The

element contributions are distributed equally between the two nodes defining the line segment.

D.4.1 Implementation of rate-specified wells

Rate-specified wells are easiest to implement because of the finite element formulation. The

F§ term requires the mass flux integrated over the boundary, which is equivalent to the contribution
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to the well rate from a given element. The productivity index for steady-state flow in each element
associated with each line segment and the sum of the indices are found first. At the same time, the
nodal pressures on the line segment are checked for compliance with the maximum and minimum
pressure constraints. If the pressure constraints are violated the well is converted into a pressure-
specified one. Otherwise, the rate for each phase is apportioned among the elements associated with
each line segment according to the productivity index of each element. The rates are stored for
summation into the well rate, and also converted to mc.s rates for the finite element equation. Only
one phase rate was specified: the other phase rates must be found. The gas rate is calculated from
the gas in solution in the bitumen and the gas portion of the vapour phase, The total enthalpy and
the combined enthalpies of the liquid water and steam are found for each associated element. The
water and steam enthalpies are required to find the produced steam quality in the well. The mass
rates of steam and liquid water are combined into one and represented by the equivalent volume rate
of liquid water. Once the well rate for each component has been established, they can be compared to
the constraints to check for violations, If there has been a viclation, the well calculation is repeated

using the appropriate well type. This might occur several times until all the constraints are satisfied.

The rate-specified injection well differs from the production well in several respects other than
the sign of the flow rate. The only constraints are on pressure. The productivity index is found
using the average, total, mobility. The specified rate includes the cold water equivalent of steam,
and is partitioned according to the specified mass fraction and sieam quality.

D.4.2 Implementation of pressure-specified wells

Pressure-specified well types calculate the flow rate contributions from each element using the
steady-state radial low equation. The pressure in an associated element at radius r {rom each line
segment is found from the average of the pressures at, and the distances to, the four support nodes
in that element. The mass rates for each component of flow can then be found for the finite element
equation, and the equivalent volumetric rates found for the well. The well rate for each component
can be checked against the specified constraints, and a new calculation made if any constraint is
violated.

The choice of steady-state or pseudo-steady-state conditions to represent flow in the element
to a wellbore is arbitrary here, but really is a function of the recovery process. A cyclic stimulation
project would be better represented by pseudo-steady-state conditions, especially in the blowdown
period, whereas a continuous injection process would be better represented by steady-state condi-
tions.
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D.5 Outline of well calculations

The well calculations start in the routine THEWELLS. This routine cyeles through all the possible
wells checking for active ones. If a well is active, all the injection or production informution about
that well is generated in the following sequence, Note that all elements refer to those associated with
a line segment of a well. In the pseudocode algebra, the C-language binary operator a += b is used,
and has the literal meaning “increment a by amount 4". This is normally rendered in FORTRAN by

the statement a = a + b. Similarly, C-style comments are used, which are enclosed in the symbols
LR TA

The general sequence of calculation for any one well is as follows.

find all the formation volume factors and enthalpies at the line segment nodes;

sat all the well rataes to zero;
set all the element contributions to zero;
find the partial productivity indices for all elements

associated with every line segment:

_ 2wkhf
" InTh,—-05

/* k=(kz +ky)/2; f= traction »/

/* r = average distance to all four support nodes =/

JO

start injection or production calculation depending on type of wall;

store nodal contributions per element.
The sequence of the well rate calculation depends on the type of well:
+ 8 pressure-specified production well;
e a rate-specified production well;
¢ 1 pressure-specified injection well;
e a rate-specified injection well;

Each case will now be discussed.

D.5.1 Pressure-specified production well

The calculation sequence is as follows.
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for each lipe segment
average the following properties over the pair of defining nodes:
dos Pudus Pvdus Ky By pgs pos Mg, T
/* note: mass fraction of gas in vapour my = (Myy,)/M, =/

/* note: mass fraction of steam in vapour m, = (Myy.)/M, */

{or each associated element

find the contribution to the flow rate from

cil(bitumen + gas);
@ = MJ°(pw — p) i = < water(liquid);
vapour(steam + gas).
/* note: py, is the wellbore radius =/
/* note: p is the average p from the support nodes */

/% note: r is the average r to the support nodes =/

/% calculate: =»/
0il volumetric rate g, = A,J°;
water mass rate Thy = puwAuw/;
vapour mass rate iy = pyA,J;
steam mass rate M, = M,My;
gas Dass rate in vapour fhg, = mymy;
surface oil (bitumen) rate Q= g,/Bo;
bituzmen rate ¢, = QpB5;
gas mass rate in solution in cil "y, = Qupo — @Ps;
total gas mass rata mhg = Ty + g, ;
add element contribution to wall oil rate wgo += QJp;
add element contribution to well gas rate wqg += tiy/pg,,.;
add element contribution to well water (liquid + steam) rate
wqw += (The + 1,)/pw,. i
enthalpy production from water e = thehs + thuwhw;
total enthalpy production from produced fluids hr = thyhs + mghy + hus;
add element contribution to well water enthalpy rate wquwe += ilw.;
add element contribution to well total enthalpy rate wge += hes
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combine water and steam flow ratas rhy = My, + m,;
end loop on associated olements;

end loop on line segments defining the well;

check for violations of the following constraints:
fluid injection, GOR, WOR, wqw, wqg and wqo;

D.5.2 Rate-specified production well (oil}

There is a slight difference in the cases of oil and water-rate specified wells. Thus the separate

entries. All properties cited are the averages of the two nodes defining a given line segment. The

calculation sequence is as follows.

set the total well oil (bitumen) rate wgo = —~specified rate rale;

/* negative values indicate production s/
check all pressures on line segments for violation of the pressure constraints;
set Jp =0;
for each line segment

for each associated element
increment Jp 4= J"A/by;

/* find the total productivity index of the well s/

for each line segment
for each associated element

proxate the production according to the productivity index

Ao 1
== o0 __
Qs = —rate x J B, 7r

/* caleulate: =/
oil volumetric rate g, = QuB,;
water mass rate my = Qu(B,/A0)Mupuw;
vapour molar rate fi, = Qu(Bo/Ao)Au(pv/M,);
steam mass rate m, = Myy,ny;
gas mass rate in vapour r,, = M,y.n,;

0ii mass rate 1, = Gop,;
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bitumen mass rate Tty = Qups,.;
total gas mass rate my =, + (th, — my);
add element coatribution to well gas rate wqg +=m,/p,,.;
add element contribution to well water (liquid + steam) rata
wqw += (hw + M)/ pu,. ;
enthalpy production from water fz..,, = 1m,h, + hyhy:
total enthalpy production from produced fluids ivr = mphy + rhghy +ftw,;
add element contribution to well water enthalpy rate wqwe 4= ilw,;
add element contribution to well total enthalpy rate wge += hr;
conbine water and steam flow rates rhy, =t 4 h,;
end lcop on associated elements;

end loop on line segments defining the well;

check for violations of the following comstraints:
GOR, WOR, wquw;

D.5.3 Rate-specified production well (water)

This type of well specifies the amount of liquid water produced, but wgw includes steam
measured as the cold water equivalent (cwe). All properties cited are the averages of the two nodes

defining a given line segment. The calculation sequence is as follows.

check ull pressures on line segments for violation of the pressure constraints;
sot Jp=0;
for each line segment
for each associated element
increment Jp += J°A,/by;
/* find the total productivity index of the well =/

for each line segment
for each associated element

prorate the liquid water production according to the productivity index

a1

Qu=-—rate x J B.Tr



/« calculate: */
oil volumetric rate g, = Qu(Bu/Iu)Ao:
vapour melar rate 7, = Qu(Buw/Auw)A{p/My);
surface bitumen rate Q= q,/B,;
steam mass rate 1, = Myy,n.;
gas mass rate in vapour mi,, = Myy,n.;
liquid water mass rate thy = Qupuw,.;
add element contribution to well oil (bitumen) rate wgo += Qy;
bituren mass rate 7y = Qups,,;
oil mass rate 1, = ¢,p0;
total gas mass rate my =1y, + (thy —mMy);
add element contribution to well gas rate wqg -+=my/py,.;
enthalpy production from water Ay, = th.hs + Thwhe;
total enthalpy production from produced fluids f'vr = thphy + Tghy + i:w,;
add element contrihution to well water enthalpy rate wqwe += il.w,;
add element contribution to well total enthalpy rate wge += hr;
combine water and steam flow rates thy = my + M,
add element contribution to well water (liquid + steam) rate
wqw += (M +M4)/ pu,y s
/* specified rate was only for liquid water »/
end loop on associated elements;

end loop on line segments defining the wall;

check for violations of the following constraints:
GOR, WOR, wqo;

D.5.4 Pressure-specified injection well

Injection wells have the following parameters specified additionally: m,,, the mass fraction of
water (steam plus liquid) in the feed, and z,,, the steam quality. Note the following relationships:

_ moles of steam + gas Yty
Pme = Volume of gas + volume of steam Ja Vi
-y mg
Mo ¥ L

Pm, Pm, Pm,



290

1
=>y.=[——--—y‘-’-]pm.

Pm, pm.

= P = T ' (D.1)

Pmy

The total flow rate gr is related to the total molar rate 72, by

r=qu+q@+q

. oy n, n
= Fiyygg |—— + —— + —-
iad p’“w Pﬂ'l.l pﬂ‘g

The calculation sequence is as follows.
/* calculate: =/
M/ My

/* number of moles of water + steam */

M:

moles of injected gas ng=1—ny;

= T2 _ .
Vo = NwTos + ﬂg'
/* gas as mole fraction of vapour */
stoam as mole fraction of vapour y, =1 —1y;;

apparent molar mass of vapour M, = Myy, + Mgy,;

for each line segment
find the average the following properties over the pair of defining nodes:
total average mobility A¢ = Ap+ Aw -+ Ag;
molar density of water pm, = pu/Mw;
molar density of gas pm, = pg/My;
molar demsity of vapour pm, = pv/My;
molar density of steam---see Equation (0.1);
volume of the mole fraction of water vm_ = nw(l = Zws)/Pm,;
volume of the mole fraction of steam Um, = NuwTuwe/Pm.;

volume of the mole fraction of gas vnm, =ng/pm,;

for aach associated eloment
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find the total flow rate

_ Ar2mhf(pw - p)
~ InTfp, —0.5)

/* a total possible rate using the total mobility =/

total molar rate fir = qr/(Vm, +¥m, +tm,);
liquid water molar rate ny = firtm,Pm,;
stean molar rate i, = Artm,Pm,:
total gas molar rate 7, = fiTUm,Pm, i
liquid water mass rate thy = fiyMy;
steam nass rate m, = A,M,:
total gas mass rate 7, = A M,;
add element contribution to well water (liquid + steam) rate

wqw += (Thw + M4)/Pu,. i
add element contribution to well gas rate wgg +=rthy/py,.:
enthalpy injection from water ﬁw, = thyhs + Mohw;
total enthalpy production from produced fluids hp = ghy Py
add element contribution to well water enthalpy rate wque += s ;
add element contribution to well total enthalpy rate wge += ft»p;
combine water and steam flow rates fhy = MMy +M,;

end loop on associated elements;

end loop on line segments defining the well;

check for violations of the following constraints:

production, wqu;

D.5.5 Rate-specified injection well

This type of well specifies the amount of water injected, as a liquid and as steam measured as
the cold water equivalent (cwe). All properties cited are the averages of the two nodes defining a
given line segment. The calculation sequence is as follows.

chaeck all pressures on line segments for violation of the pressure cons'raints;
set Jp =0;

for each line segment
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for each associated element
increment Jp += J°{(As/bo) + (Aw/bw) + (Au/bu)};
/* find the total productivity index of the well =/

/*= calculate: */

e = e/ Mo,
M-w T M,
/* moles of injected water + steam »/
moles of injected gas ny=1-—1y;
moles of injected liquid water 7y, = ny,(l — Tyw,):
molaes of injected steam T, = RyeTws:
/* gas as mole fraction of vapour */
steam as mole fraction of vapour y,=1-—y,;

apparent molar mass of vapour M, = Muy. + Mpy,;

for sach line segment
for each associated element
sot the ¢il rate to zero ri, =0;

f£ind the total molar rate:

A A A
g, R
nr nuuMw' Jr

/* calculate: =/

liquid water molar rate fg, = firfy;

stean molar rate 1, = firn,;

gas molar rate ny =nrn;

liquid water mass rate ray = fiuMy;

steam mass rate th, = n,M,;

total gas mass rate my = n M;;

add element coutribution to well water (liquid + steam) rate
wqu += (rhy + 174)/ Pu,;

add element contribution to well gas rate wqy +=thy/py,.;

enthalpy injection from water Ay, =m,h, + Myhw;
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total enthalpy production from produced fluids hp = tiighg + fus
add element contribution to well water enthalpy rate wqwe += i;w,;
add element comtribution to well total enthalpy rate wqe -+= b
combine water and stecam flow rates i, = iy + mh,;

oend loop on associated olements;

end loop on line segments defining the wall;

/* no other constraint violations to check for =/

D.6 Forming Jacobian derivatives: implementation

It was shown in §4.9.2 that a typical derivative is given by

a5 ek
gﬂ; = 3, SunTkis. (D.2)

Note that this derivative is a three-dimensional matrix because there are three subscripts. The
Kronecker delta signifies that only one value of K need be used in the contraction because all
terms for which X' # H are multiplied by zero, To avoid storing this large data structure, one
notes that the derivative appears in the Jacobian as part of an inner product with the vector
qb‘j’ =(l1- 0)1[:3" +9\b§(n+1), resulting in the term

ax)
Y

SeuTkrs 'Jlg’- (D.3)

The result of this expression is actually a two-dimensional matrix. Each column in the matrix
represents one value of H, while each row represents one value of /, Thus the derivative cun be built
for each value of H in turn by forming the inner product with the right-hand side term in equation

(D.2), and storing it in column H of the data structure holding Equation (D.3).

The formation of terms containing derivatives of D}"f D) 4 identical to the previous example.
Derivatives of F#*"*1) do not occur in inner products, but have one less dimension than the previous

two examples. Therefore they can also be found by entering terms into the Hth column.

D.7 Forming the Jacobian matrix: pseudocode

The analyses of the previous section have shown that the function derivative MY (O],



necessary for the Newton-Raphson linearization can be formed from the following three derivatives:

asp™™®  apg™"  aFpnty
oyl ' L ayy

(0.3)

Together with the specifics outlined previously for forming these derivatives, there is enough infor-

mation to write the pseudocode describing the formation of the Jacobian matrix.

The pseudocode for forming the Newton-Raphson Jacobian matrix is presented here. The code
is presented once for the unshifted pass, and once for the shifted pass where the properties have

been found for one set of shifted variables. Note the following extra definition:
™
gt _ AYS
¥, = Y (D.4)

Comments are in the style of the C programming language: /* a comment */. All subscripted
variables are vectors or matrices. References to actual program vector variables have subscripts

with square brackets, e.g. Afi/.

D.7.1 Unshified pass

This is the first of two passes to form the Jacobian matrix. This pass will find and disperse
all those parts of the derivatives which are not themselves derivatives, and fill the right-hand side

vector. The unshifted components of the constituent derivatives are also found.

find properties;

find well parameters;

sat gsm, rhs, and temprhs vectors to zero;

form ﬁ' and vj;f” for all S variables;

initialize all the level-n storage to zero, for all [ variables;

loop over a = 1,ndflype equations /* ndfiype = 3,4 oxr 7 »/
/* call the appropriate a equation routine /
set all the sdgama vectors to zero;
get the subcoetficients for the o equation;
form Ffu("*1); /« this also initializes sdfih »/
if still at level-n then /* i.e. first nowton iteration »/
store ), Ffy" x(1-8) in fivin[a]; /* n8-long vector */



store —fluln[al in temprhs;
subtract 6FF™tY) from temprhs;

loop over 8= 1,ndftype /* variables, to form M? »/
locp over H =1l,nnodes /+ nnodes = 8 (nodas) »/
fornm S'j'fH(”H); /% nbf-long vector +/
add BRS}'};‘B("H) to sdgamaly = S); /* nb4-long vector =/
if still at level-n then
add (1-6)SP8," to sluinla,B;
torm 528,48’ and add vo sdfi[HI;

subtract BS',“_?H("H)V;?' from temprhs;

form Df’fH(ﬂ“); /* nb{=long vector »/
add AL;_D}'};‘G(“H) to sdgamaly=P1; /* néf-long vector ¢/

if atill at level-n then
add (1-6)D%," to divinla,8];

form .D?f,f("ﬂ)#g” and add to sdfih{H];

1
subtract GD}'fH(n+ )11/3" from temprhs;

end loop on H;

subtract (1 - 0)S75 m'l,l:glr + (1~ O)D?fn¢§" fron temprhs;
/* =M% at end of all g +/
end loop on f;

loop over <y =1,ndftype /+ derivative variables #/
add sdgamala,v] +6(1-0) ,H"+-(13'£1D?;}“ - a57x sdfih
to temporary storage;
/% sdgamala, ] =925ﬂﬂ("+l) + -:T"D?}”(““) ./
/* note that F{" is not in the derivative =/
disperse (add) the temporary storage into gsm
according to dof numbering;
disperse temprhs to rhs according to dof numbering;

ond loop con «v;

ond loop on «.
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D.7.2 Shifted pass
The right-hand side vector is now complete. We only need to complete the derivatives in M¥.

loop over = l,ndflype /+ shift for each derivative =/
shift ¢ — ¢] + Ay7;
find properties;
find well parameters;

loop over a = l,ndftype /* equations =/
torn F,("*'); /* this also initializes sdfik »/
loop over § = 1,ndftype /* variables, to form MJ =/
loop over H = 1,nnodes /*» nnodes = 8 (nodes) =/
form S?f,,("ﬂ); /% n6{-long vector */

form S}’fH(nﬂ)\bg’ and add to sdfih(H];

form D}”f”(nH) ; /* nb{-long vector =/

form D?futﬂﬂ)xbg" and add to sdfh[H];
end loop on H;
end loop on f;
put -‘)wa.ldﬁh into temporary storage;
disperse (add) the temporary storage into gsm
according to dof numbering;

end loop on «;

end loop on ¥,

D.7.3 Noles

This code outline is a trade-off between storage and recomputation and between storage and
dispersal. A more compact scheme would be to store all the n + 1 level variables S and D, but this
would double the storage used for the n-level variables S and D. There is considerable overhead

associated with accessing the data for large problems with many nodes.
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D.8 Forming the global equations

The general linearized equation given in Equation (7.4) is:
OMT
8y

This equation is only for one finite element in the domain being modelled. As nodes frequently are

shared by more than one element,, there is coupling of degrees of freedom through compatability—the

condition that the value of a degree of freedom, at a node shared by more than one finite clement,

AY) = —M5.

must be the same for each element. The element equations must be assembled to form a set of global
equations dealing with global degree of freedom only. The coefficient matrix for this set of equations
is known as the global stiffness matrix (GSM). It is called a stiffness matrix because of the analogy
with the matrix methods used for structural analysis before finite elements were well established.
The global assemnbly involves scattering the ESM terms into the GSM and the element right-hand
side vector terms into the global right-hand side vector. The dispersal of terms must account for

the storage scheme used by the linear solver.

The solution scheme uses the Gaussian solver STAIRWAY., The coefficient matrix is stored
in a vector in column order, and stores only data between the bounds of the first and last non-
zero elements in the column, plus any elements to satisfy the stairway requirement. The stairway
requirement is that there are no re-entrant rows or columns-—the profile always resembles a set of

(sometimes uneven) stairs. A locator vector is needed to identily the element positions:

e loc[2%j] gives the row number of the first non-zero element in column j, which is the first stored

element from the column;

o locj2%j-1] gives the starting position of column j in the GSM vector.

Thus we can find any element a;; in Afsizea/, where sizea is the length of A, from
loc.ina = loc[2%j~1] + (i - locf2%])
= a3 = Aflocin_a)
D.8.1 Scattering the ESM terms lo the GSM

A generic term in the ESM is
aMm¢§
-k
H
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The Jacobian subroutines return one of these terms for all elements at the completion of each stage
of the calculations. It is an nnodesxnnodes (eflectively an 8 x 8) submatrix repeated nelem times.

The generic term provides the following information:
a indicates the equation type;
I indicates the node number of the degree of freedom;
« indicates the type of degree of freedom (S, So, puw, T, €tc.);
H indicates the node number of the multiplying degree of freedom (of type ).
The position of each element from this ESM term in the GSM will be governed by the following.

a) The equation to which it belongs (by global degree of freedom)—the row number in the GSM.
This is the same as the global identification of the degree of freedom type a, the local node
number [, and the element number. The degree of freedom type and the local node number
are given by the element equation. Each element sharing a node will contribute an equation
for each global degree of freedom at that node, and the equations will be summed for the entry
into the global equation set.

b) the-global degree of freedom by which it is being multiplied—the column number in the GSM.
This is the same as the global identification of the degree of freedom type -, the local node
number H, and the element number. The degree of freedom type and the local node number

are given by the element equation.

With this information the global degree of freedom number can be found from the element-
ordered steering array. The steering array is a table with row entries for the local node and element
numbers, and column entries for the degree of freedom type. Scattering data into the right-hand

side vector is simpler than for the GSM—only the equation (row) number is needed.

D.8.2 Pseudocode Lo scatler Lo GSM

One block of data is passed to be scattered. It is stored as in Eqn. (A.5) in blocks of constant

H, comprising nelem groups of nnodes local node data.

/* subroutine gsmfil »/

given a, -y, and the block of ESM data:

loop over H =1,nnodes /* local columns =/



loop over elem=1,nelem /» element numbars =/
find the GSM column from v and H;
if the DOF does not exist (=0), go to the next element;

loop over I =1,nnodes
find the GSM row from « and /;
it the DOF does not exist (=0), go to the next [;
find the destination in GSM vector gsm from the locator vector,
GSM row, and GSM column;
increment the destination element by the current element
(trom H, elem, I) from the ESM block of data;
end loop on [;
end loop on elem;

end loop on H;

D.8.3 Pscudocode to scatter to RHS vector

One block of data is passed to be scattered. It ‘s stored as nelem blocks of nnedes local node
data.

/* subroutine gsmfill »/
given a and the block of ESM data:
loop over elem=1,nelem /* element numbers */
loop over I =1,nnodes
find the RHS row rhsrow from a and /:
if the DOF does not exist (=0), go to the next [;
increment rhsfrhsrow/ by the current element (elem, [) from
the ESM block of data;
end loop on I;

end loop on elem;

D.9 Global mesh numbering and the RENUM preprocessor

Due to the mixed (L6 plus L8) element formulation and the ability to approximate irregular
boundaries inherent in the finite element method, the best nodal numbering strategy is not immedi-
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ately obvious. Poor numbering strategies result in global stiffness matrices which have large profiles

and bandwidths. These measures are defined by:

matrix bandwidth B = maxb;
i<N

N (D.5)
profile. P=) 4
fas]
where b; is the number of columns containing elements of interest (probably non-zero values) in row

1, counting from the main diagonal. B is sometimes called the matrix half-bandwidth.

Another contributing factor to the values of B and P is that the nodes may have different degree
of freedom (unknowns to be solved for), varying from one to four for the fluid model alone. Systems
of linear equations whose coefficient matrices have large bandwidths or profiles require more work
for solution. A common reordering scheme for 5- or 7-point finite difference systems is the so-called
D4 reordering of Price and Coats (1974). That is a particular scheme for systems with penta- and
septadiagonal coefficient matrices. The coefficient matrices arising from the finite element method
do not, in general, exhibit such conveniently predictable structures. Instead, a general resequencing

program is used which can emphasize minimizing either the profile or the bandwidth.

The core of the program is the ACM TOMS (Association for Computing Machinery Trausactions
on Mathematical Software) Algorithm 582, produced by Lewis (1982a) for structurally symmetric
matrices. This is an extremely efficient implementation of both the Gibbs-Poole-Stockmeyer (Gibbs
et al., 1976) and and the Gibbs-King (Gibbs, 1976) algorithms. (Henceforth referred to as the
GPSGK, or core, routine.) The GPS algorithm emphasizes bandwidth reduction, and is a particular
implementation of the reverse Cuthill-McKee (1969) algorithm. The GK algorithm emphasizes
profile reduction. These are all graph-directed minimal degree methods. The assumptions are
that the matrix is structurally symmetric and that diagonal pivoting {symmetric row and column
interchanges) does not produce numerical instability (Lewis, 1982b). Lewis's contribution has been
to improve substantially the data structures used to represent level structures for the graph of the
matrix. The development of these algorithms has been coordinated by the US National Aeronautics
and Space Administration (NASA) for use with the NASTRAN finite element program (Everstine,
1979).

The preprocessor RENUM controls all the operations prior to and after the resequencing cal-
culations, and passes all the necessary information to the resequencing routines. RENUM first takes
pertinent information about the elements and their nodes, and the variable number of degrees of

freedom for each node, and creates a steering array. The steering array interrelates all this infor-
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mation and gives all the degrees of freedom a global numbering. It can then be used to gencrate
a structural template of the non-zero elements in the global stiffness matrix from the individual
contributions from the elemental stifiness matrices, This predicted matrix is then reordered into the
Harwell storage scheme for sparse matrices, by storing only the non-zero elements by column. Two
integer vectors of the column start offsets (a cumulative tally of elements) and the row indices for
the non-zero elements are also generated. This can then be passed directly to the GPSGK routine,
along with the choice of algorithm (GPS or GK) to be used.

The core routine returns a reordered index and its inverse, as well as information on the new
bandwidth and profile. RENUM then uses the reordering index to transform the original steering array
and recalculate the global stiffness matrix structure as a check. Two integer locator vectors are also
generated at this stage for the DSTAIR vectorized Gaussian elimination routine. All the necessary
information is stored in a file to be read in by FESPS. This information includes the steering array,

the reordered index and its inverse, and the DSTAIR locator vector {which constitutes a profile of the
coefficient matrix).

At this point the user would need only run FESPS with the original numbering scheme and
the extra data file from the RENUM preprocessor. All reordering takes place inside FESPS and all
data is passed back to the user in the original global numbering system via the inverse index. Both
reduction methods should be tried, and the better reordering selected.

An arbitrary mesh is shown in Figure D6, consisting of 91 degrees of freedom over 35 nodes
and 16 elements. There are eight L8 elements and eight L6 elements. Note that the L8 elements
are deformed into trapezoids in the example. Three degrees of freedom per node are used except for

the end faces of the element numbers 1, 5, 9, 10, 4, 8, 12, and 16, which have only two degrees of
freedom per node,

The following results were obtained from RENUM:

numbering bandwidth profile
original 49 2231
After profile reduction (GK) 44 2247
After bandwidth reduction (GPS) 39 2221

The improvement in the global stiffness matrix bandwidth is apparent.

The main program in FESPS needs uses the element-ordered steering array generated by RENUM
to scatter data from the ESM to the GSM. The steering array has column entries corresponding to

the type of degree of freedom, and row entries by element number and local node number. The
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Figure D-6

Test geometry for bandwidth reduction example.

row entries are in groups of elements, with nnodes local nodes for each element. The absence of a
particular type of degree of freedom at a local node is denoted by a global degree of freedom value

of zero,

D.10 Vector arithmetic

This section discusses the mechanics of programming the project. Particular emphasis is laid
on the use of the Cyber 205 vector processor because even trivial algorithms must be reworked to

take full advantage of the vector pipeline.

The inner product of a matrix and a scalar, a;z;, where subscripts i,j = [1..n], is usually
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evaluated s
11T + 81222+ * - + G1pZn

81Ty 4+ G232+ - - + GopTh (0.6)

Gn1T1 + an2T3 + ¢« -+ Gpnn

This calculation is inefficient for pipeline processors because it requires n — 1 summations n — 1

times. Instead, we redo the calculation so that there are only n — 1 summations:

as 312 Cin
an a2 aon
Zit+{ . pF2tocFS L 2T (b.7)
Qnl Gn?2 Gnn
This can also be written as
81Tt + G222 + -+ + + GinTn. (D.8)

Thus this operation is the addition of n products of a vector and a scalar. There are n — 1 such
additions of the general form vy 4 vgs, where v, and vy are vectors, and s is a scalar. This general

form is an example of an even more general expression referred to as a linked triad. A linked trind

is represented by

(operand; ) operator, (operandy) operatory (operand;) ,

where two operands must either both be vectors or both be scalars, and the third operand is not
the same type as the other pair. The operands must be different and one of the basic arithmetic
operations of addition, subraction, multiplication, and division. A linked triad is the most efficient
operation on a vector processor that can work in parallel with its unused scalar functional units,
Thus this form is sought when designing algorithms for vector arithmetic. In our example, v,

represents the solution so far for j = [1..J — 1], and vy represents a;;z ;.

Generally, the longer the vector, the more effective the vector processor is. The subscripts i
and 7 only vary from 1 to nnodea (= 8 usually) so the vector length is quite small. The calculation
a5 typically is repeated for each finite element, so we can write our problem to incorporate all
the elements in long vectors:

an=} + {23 + -« - + afazn. (D.9)

where e signifies the element number. Thus af; is a;; repeated for every element e = [1..nelen|, and
a7, x5 Is evaluated as:
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1 a1
¢ fah‘ \ 7 rz%‘ 3 e [ 21171 Y
1 1 1 .1
02) I G211
e=1 { T} ¢ S
\ ﬂ}u / \ 3§ / \ ﬂ,],'uﬂ:% /
( a}y ) (23 it
2 2 2
a3 I azyTq
e=2 W . P L < . .
{ { . y = ¢ * > . (D'lo)
Ldﬁ;& 53?4 l.d?“:l?%J
-] {1 -3
an zf a1 Ty
[-3 [ -4
a3 z{ 21T
e = nelem . . .
\ y. L / \ & e /
aq, 1 Qn1 2]

Note that only a dyadic product is formed in this example—each pair of numbers is multiplied
together. It is not an inner product. Thus the z; values must be duplicated to fill the subvectors

prior to multiplication. This arithmetic leads to the following choice of storage for a;;:

(afy) = ({af): (az), (afa)s .. -0 {afn) ) - (D.11)

where af; has been laid out as a series of row vectors, each n X nelen long (i varies from 1 to n, for

all elements ¢ = [l..nelex)).

Special muitiplicative routines are now required to form the various required products. If there

is o third index, k, then we string the vectors together for every k = [1..n]:

{af) =  (afj)s (afpahs -0 (@fsn) ) - (D.12)

in a similar fashion to Equation {D.11).

D.10.1 Multiplicaiion routines

Certain products arise in the calculations, especially for the Jacobian construction, which are

resolved by special routines. These calculations are for;
\. ayTkri6uk, i.e., a dyadic multiplication and no summation;

2. ayT by, ie., a dyadic multiplication and no summation;



3. a1y, i.e., an inner product,

These routines are now described.

D.10.2 Multiplying subroutine XMULT64

This routine evaluates the expression ayT 16 i for a given value of K, where the integral is
stored as described in §A.1. To form the product, the K'th term for every finite element in the vector
ay must first be extracted. The multipliers af are formed as in Equation (A.5) by duplicating the
a§, values to fill the multiplier vector. This vector is then multiplied with the integral Ty ;s for the
particular value of XK. KMULT64 actually cycles through each value of J to form the product,

D.10.3 Multiplying subroutine JMULT64

This routine completely evaluates the expression a; Y sréys. The Jth term in the vector ay
is extracted and then duplicated to form the multiplying vector in Equation (A.5). The product is
now formed for that value of J. This is repeated for every J = [l..nnodes).

D.10.4 Mulliplying subrouline DOTJ64

This routine forms the inner product a;T ;. The method is similar to that of the routine
JMULT64, except that the products formed are added together for all J = [l..nnodes].

D.11 Vectorized linear solver DSTAIR

An effective linear equation solver for general use was needed for FESPS. The expected coel-
ficient matrices would be positive-definite and asymmetric with a symmetric structure and jagged
profile. Additionally, an arrangement for mixed elements and degrees of freedom required a generat
form of storage such as a linear array. The solver would not provide pivoting or scaling of the

equations, but would check for zero pivots.

No vectorized linear solvers meeting these criteria existed at the Cyber 205 site when this thesis
was first begun. As a result, a general Gaussian solver that would be highly efficient on a vector

computer was designed. This solver has the subroutine name DSTAIR, reflecting the profile of the
coefficient matrix.

DSTAIR is a column-storage solver, where the columns of the coefficient matrix are stored

successively in a vector. The starting position of each column in the vector and its row identity as
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the first non-zero clement in that column are stored in an index vector of length 2N + 1, where N
is the number of unknowns. A staircase profile is necessary to avoid computational difficulty during

the forward elimination step.

Efficient software on a vector computer must take advantage of the pipeline processors, On
the Cyber 205, the fastest arithmetic is achieved by combining one vector operation with one scalar
operation over three operands in a sequence called a linked triad, described in §5.7. In the forward
climination stage of Gaussian elimination the linked triad is implemented at each step using outer
products, Gentzsch {1984) describes this in detail, but it can be summarized as the implementation
of a forward elimination step as a columnwise rather than the usual rowwise operation. This is
illustrated in Equations (5.7) and (5.8). During each step information is also stored to operate
on the residual vectors during iterative improvement. The working storage used [or each step is

allocated dynamically during the run.

On completion of forward elimination the upper triangular matrix can be shuffled backwards
to release storage in the original coefficient matrix vector. This free storage is used to hoid the
residual and the incremental solutions for iterative improvement. The backward substitution stage
is implemented as a series of linked triads where the solution vector is upgraded at each step by the

dyadic addition of a column of numbers.

If iterative improvement or a single residual vector is required the criginal coefficient matrix
must be stored before performing the forward elimination. This can be muitiplied in a columnwise
manner with the solution vector to obtain the residual with the original right-hand-side vector. The
residual is reformed with the stored forward elimination data and then the back substitution stage
can proceed as before, The indicated relative error (Rice, 1983) controls the amount of iterative
improvement. This is given by the norm of the increment of solution divided by the norm of the

previous solution. Intrinsic vector functions in CDC FORTRAN obtain the norms of the vectors,

The comparative performance of DSTAIR as a Gaussian solver has been reported by Tortike
and Farouq Ali (1987). Several commercial, general linear-equation solving routines have been made
available for research use on the Cyber 205 in Calgary, but do not exhibit the ability to iteratively
improve the solution while maintaining high computational speeds. DSTAIR equals the best solvers

in all other measures, and is superior to the remaining solvers.
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D.12 Auxiliary equations

D.12.1 The material balance

The flow equations are equations of mass conservation. This [act allows a simple check to be
performed on the behaviour of the method of discretization in time. The material balance in its

simplest form is that, over the domain {¢ with boundaries I, component { is conserved:

dmy .
2+ pugiy =0, (D.13)

This equation can be integrated over the timestep used in the time discretization, i.c., time interval

Aty = v+l —¢m,
‘ﬂ+l

(mytt -m?n)+_[ Pigip dt = 0. (D.14)

Thus the change in mass of component i over timestep At, should be equal to the time integral
of the boundary fluxes over the same time integral. If the mass changes are not equal it indicates
the presence of an inconsistancy in the time discretization procedure. The inconsistency might be
a function of the size of the time step. The integral | At Pl dt is evaluated numerically using the

same method used for the main set of conservation equations:

fm Qic A = Atnp; [(1 - 0)gl +0g0F!] . (D.15)

See the section on time integration. The density of the produced fluid p,; is constant for produced
volumes at a reference condition. The material balance can also be expressed as the ratio
net mass throughput over At, Aty pi [(1 - 0)qP. + oq‘.':;*"]
= -1 (D.16)

net change in mass over time interval At, _ mpt! - mp.

In the finite element formulation, the masses in the numerator of Equation (0.16) are weighted
approximations. The density is known for the production terms, which are also known exactly for

the element. Thus, the equation also includes some error from the weighted approximations in the

numerator.

The masses of the components bitumen, gas, and water are found by integrating the pertinent
saturations over the problem domain, As there are only piecewise continuous approximations to the
variables, the integral over the whole domain is represented by the sum of the integrals over the
subdomains, or finite elements.
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Bitumen:
f [¢1+R:o ]S = Z,[ [ 1+R,,, ] o dil. (D.17)
Gas:
fn [(#Buyg)Sy + (95 Rao, )So} d2 =D L [(88uy5)S; + (#05Rao,)So] d2. (D.18)
Water:

| @awis+ @oasiaa=3 [ (@aw)s,+ GpiSd0. (019)

The energy balance has the same form as the mass balance, but note that the net energy throughput
must include heat losses to the surrounding formations as well as the well production and injection.
The energy content of the domain is made by summing the enthalpy x mass products for each
component, including the rock. If the phase densities and enthalpies are known, the enthalpy x mass

products can be found for each phase:

[n [($ho0e)So + ($hupa)So + (Shuup)Sun + (1 ~ B)m)im] 42
=3 fn_ [($hopo)So + ($hupv)Su + ($hwpuw)Sw + (1 = ¢)pmthm] d2. (D.20)

Note that the solid matrix enthalpy is used as the primary variable for integration. It is a function
of temperature only, so it is more appropriate to use than the (1 — ¢) term.

The current pore volume can be estimated by assuming that the porosity varies smoothly over

each element, then it simply evaluated as

fn¢dn=¥ [ gan
=¢:Z/w Nydn (D.21)

The integrals can be evaluated using the basis functions so that, in general, if § = S(2,¢) and
A= A(, ¢, §), then

] A(R,2,5)S(Q,£) dQ? = f LEAJ(z S)N;(ﬂ)] Lis,(c)zv,(n)] do
=1

= S;AJ/ NyNpd2
n.
= StAsT s (D.22)
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This is the same approach used to derive the spatial approximation to the original flow equations.

Thus it can be considered to be consistent with the original problem discretization.

D.13 Implementation of pseudo-descriptors

Much of the initial programming of FESPS was done for the CDC Cyber 205 vector processor—
in particular, the integration module, the properties module, the linear solver, and the Jacobian
module. The rationale behind this approach was that the large problem to be solved required n
fost computer with large amounts of virtual memory, so the program should be designed for the
computer right from the start. The essential features of this programming include the use of datu
rearangement to take advantage of the vector pipelines, and the use of the Cyber FORTRAN200
programming language—nparticularly the descriptor data type. The descriptor data type uses the
same araunt of storage as a real scalar variable, but refers to a vector of given length. The descriptors
are assign:d to any variable, and the assignment statement includes the length of the vector being
described. Typically, a descriptor is assigned to various portions of vectors or arrays defined during
compilation, or it may be assigned storage dynamically during run time. The descriptors are defined
with a base type (real, integer, etc.) which must be compatible with the vectors to which they
are assigned., The advantage of using a descriptor lies in its compact notation for a vector, and
in the fact that it can be used directly in arithmetic statements or passed as an argument to a
subprogram. Thus the presence of many do-loops is circumvented. The other vector extensions to
ANSI FORTRANT7 (F77) present in Cyber FORTRAN200 include an explicit vector notation, a(s;n),
which can be used in arithmetic statements and is analogous to a descriptor describing the same
vector start s and length n. There are vector equivalents of all the standard intrinsic functions, and
several other vector functions to facilitate the rearrangement of vector data or to compute things
such as the inner product of two vectors. The vector functions take descriptors or explicit vector
notation as arguments, and provide the fastest way to evaluate the subprograms described by the
functions. The vector functions are conveniently named with the first three letters being either Q8V

for functions returning vector values, or Q8S for functions returning scalar values.

The further development of the FESPS program was hindered by the relatively primitive state
of software development tools available on the Cyber 205, and the cumbersome access to the machine
in Calgary. As a result, further development of the program modules was carried out to conform to
ANSI FORTRANT77 so that the more advanced software development tools available on modern Unix
workstations could be taken advantage of. While this was successful, the modules already developed

could not be integrated with the new code to be compiled under an ANSI FORTRAN77 compiler
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and run as a complete program. The modules written for the Cyber 205 would have had to have
been completely rewritten to be compiled in ANSI FORTRANT7, and, because of the extensive use of
descriptors, rewriting the code would be a difficult task as the original form of the programs would

be compieteiy lost.

In order to retain the compactness of the Cyber FORTRAN200 descriptor notation, a method
was devised of implementing a comparable data type in the ANSI FORTRAN77 environment. All
other vector FORTRAN extensions could be emulated by subprograms, or, in the case of explicit

vector notation, unravelled using do-loops.

The method is as follows: all variables of FORTRAN200 type descriptor are changed to type
double complex (complex*16). Vector information from master vectors defined in the main program
is stored in the variable as follows:

z={rrr.xxx, iii.yyy)
where
rrr is the location of the start of the vector, pointed to by z, within a master vector;
iii is the length of the vector pointed to by z;
xxx is the master vector number;

yyy is the data type {O=real, 1=integer, 2=bit or logical).

The master vectors are in common blocks as a single integer followed by the master vector, as
in the following example:
integer kx
real*8 xv(xvlength)

common /xvi/ kx, xv

The integer stores the current length of the vector assigned. In this work, only 2 sets of master
veetors are used for each type of real, integer, and bit (or logical): no. 1 is for specific assignments;
no. 2 is for dynamic allocation which can be freed. Assignment routines are provided for each base
type (real, integer, and logical) and for dynamic temporary storage which can be freed. Standard
assignments cannot be freed because the book-keeping required would be too great.

The new descriptor implementation, referred to as pseudo-descriptors, combined with the em-
ulation routines, permits code written in Cyber FORTRAN200 to be converted quickly and to retain
the original structure. The latter advantage is important because there is less likely to be a mistake
when converting a given algorithm. The converted code can also be run on the Cyber 205 and

because it retains the structure of the vector algorithms used, the original vector performance is
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retained—at least most of it, there are a couple of overheads in subroutine calls, However, arrays of

two or more dimensions have not been supported in this work.

An emulation module comprising the glue routines to make this ail work together has been
written and tested, although all the Cyber FORTRAN200 Q8Vxoxx and Q8Sxxx functions have not, as
yet, been incorporated because the emulation routines were only written as they were encountered in
the original source code. All arithmetic must be carried out via subroutine calls, as must bit vector
testing, and the assignments. Linked triads are provided for by calling a routine with operator
information, as are vector where statements. The Q8Vxxx and Q8Sxxx calls completed so far are
implemented using exactly the same argument order and types as given in the Cyber FORTRAN200
manual. The Q8Vxxx functions are implemented, however, as subroutines. Specific FORTRAN200
code is embedded in all the subroutines and functions, so one can either comment out the scalar code
and activate the vector code, or keep two sets of the glue routines: one specifically for FORTRANTY,
and one specifically for the Cyber 205,

The conversion is not painless because one must alter every line involving a descriptor or other
vector fortran syntax, but the replacements are highly mnemonic, and generally replace just one
line. However, the general structure of the source is not at all changed, and the operation should
not take very long, particularly with editors supporting regular expressions and macros. The code
has so far only been tested in an {77 environment on a Sun 3/160; the Cyber 205 equivalent is a
straightforward line in each case,

The implementation of pseudo-descriptors has turned out to be very useful. The type is very
compact and makes otherwise long and tortuous source code more understandable as the do-loops
are unravelled, and length information need not be passed to subroutines. The pseudo-descriptors
can be considered useful in any ANSI FORTRAN77 program where vectors are extensively used and
particularly where subroutines are an essential feature.

D.14 Pseudo-descriptor subroutines

The following subroutines perform arithmetic operations on pseudo-descriptors. The subscript
r refers to the version requiring real arguments, i refers to integer arguments, and b tc logical
(bit) arguments. It is understood here that the explanations given refer to the values of the vectors
described by the descriptors. This is also indicated by the notation descriptor->vector. All the

operations assume double precision variables (realss).

a) Descriptor-descriptor arithmetic operations (result, a, and b are descriptors):
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multr (product, a, b): product->vec = a->vec * b->vec;
pulti (product, a, b): product->vec = a->vec * b->vec;
divr (quotient, a, b): quotient->vec = a->vec / b->vec;
divi (quotient, a, b): quotient->vec = a->vac / b->vec;
addr (sum, a, b): sum-»vac = a=>vac + b->vac;

addi (sum, a, b): sum~d>vec = a->vec + b->vec;

subr {diff, =a, b): diff-dvec = a=d>vec - b->vec;

subi (diff, a, b): diff->vec = a=>vac - b->vac;

b) Descriptor-scalar arithmetic operations (result, a are descriptors; b is 2 scalar):
smultr (product, a, b): product->vaec = a->vec * b;
smulti (product, a, b): product->vec = a->vec * b;
sdivr (quotient, b, a): quotient->vec = a->vec / b;
sdivi (quotient, a, b): quotient->vec = a->vec / b;
saddr (sum, a, b): sum=>vec = a-Dvec + b;
saddi (sum, : b): sum~>vec = a-d>vec + b;

ssubr (diff, a, b): diff->vec = a->vac - b;

subrs (diff, b, a): diff->vec = b - a->vec;
ssubi (diff, a, b): diff->vec = a-d>vec - b
subis (diff, b, a): diff->vec = b - a-Dvac;
¢) Descriptor-descriptor manipulations (object and x are descriptors; of£set is an integer):
vvsetr (object, x): object->vec = x->vec;
vvseti (object, x): object->vec = x->vec;
vvsotb (object, x): object-dvec = x=>vec;
vvofsetr (cbject, x, offset): object=>vec(+offset) = x;

vvoiseti (object, x, offset): object->vec(+offset) = x;

vvoisetd (object, x, offset): object->vec{+cffmet) = x;
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d) Descriptor-scalar arithmetic operations (objact is a descriptor; x is o scalar):
vsgsetr (object, x): object-d>vec = x;
vaseti (object, x): object->vec = x;
vssetb (object, x): object-dvec = x;

e) Descriptor-vector manipulations up to length of descriptor operand (object is a descriptor; x

is a vector):
pvsetr (object, x): object->vec = x;
pvseti (object, x)}: object->vec = x;
pvaetb (object, x): object-dvec = x;

f) Vector-descriptor manipulations up to length of descriptor operand (object is a vector; x is a

descriptor):
vpsetr (object, x): object = x-dvac;
vpseti (object, x): object = x->vec;
vpsetb (cbject, x): object = x->vac;

g) Manipulations of elements of a descriptor (object is a descriptor; Loc is an integer, value is
a scalar):

setvalr (object, loc, value): object->vec(loc) = value;
setvali (object, loc, value): objact=>vec(loc) = value;
reals8 function getvalr {object, loc): getvalr = object->vec(loc);

integer function getvali (object, loc): getvali = object->vac(loc);

D.15 Cyber FORTRAN20Q functions and their emulations
a) Scalar functions corresponding to intrinsic vector functions and Q8Sxxx functions in Cyber
FORTRAN200;
integer function qislen (v): gB8slen(v);
integer function qlscat (v): g8scat(v);

real*8 function qlsmaxr (v): gB8smax(v);
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integer function qismaxi (v): g8amax(v);
integer function gqsmaxloc (v): qB8smaxi(v);
real*8 function qisdot (u, v): q8sdot(u;v);

b) Descriptor functions corresponding to intrinsic vector operations and Q8Vxxx functions in
Cyber FORTRAN200:

qivemprs (v, cv, u): g8vcmprs(v,cv;u);
qivetrl (v, cv, u): qBvctrl(v,cv;u);
qivgathp (v, period, times, u): qBvgathp(v, seriod,times;u);
qivgathr (v, index, u): qBvgathr(v,index;u);
qivmerg (vi, v2, cv, u): q8vmerg(vi,v2,cviu);
qivmko (al, a2, u): q8vmko (al,a2;u);
qlvmkz (at, a2, u): q8vmkz (al,a2;u);
qlvscatp (v, peried, times, u): qB8vacatp(v,period,times;u);
qivscatr (v, index, u): q8vscatr(v,index;u);
qivxpnd (v, cv, w): g8vxpad(v,cv;u);
qivexp (v, u): vexp(v;u);
qivleg (v, u): vleg(v;u);
qivabs (v, u): vabs(v;u);
powr (u, v, exponent): u = v#sexponent (exponent scalar);
spour (u, v, exponent): u = y*eexponent (v scalar);
c) Descriptor i/o utilities:

vurite (output, format, x): write the contents of =->vec to logical output unit out-

put according to the character string format;

vread (imput, format, x): read the contents of x->vec from logical input unit input
according to the character string format;

bwrita (output, *, x): write the contents of x->vec to logical output unit output in

binary format; a write error causes the execution to continue at statement label »;
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bread (input, *, *, x, reqlen): read the contents of x->vec from logical input unit
input in binary format; a read error causes the execution to continue at the first statement

label *, an end-of-file error at the second statement label »;

d) Linked triad emulations to obtain benefits of Cyber 205. The emulation routines emulate the
following expressions, noting that the subseript r is for real arguments, and subscript i is for

integer arguments, and that a and b are scalars for sav and that only a is a scalar for svv
brace = 1: zxesult = (a [op] b) [op] ¢
brace = 2: result = a [op] (b [op] ¢)
ssvr (result, a, opl, b, op2, ¢, brace);
ssvi (result, a, opl, b, op2, c, brace);
svvr (result, a, opl, b, op2, ¢, brace);
svvi (result, a, opl, b, op2, ¢, brace);
e) Assigning pseudo-descriptors.

rassign (desc, length, vec): assign a pseudo-descriptor to a real vector of length

length, master vector no. vec;

iassign (desc, length, vec): assign a pseudo-descriptor to an integer vector of length
length, master vector no. vec;

bassign (desc, length, vec): assign a pseudo-descriptor to a logical {bit) vector of
length length, master vector no. vec;

assover (desc, length, samedesc, offset): assign a pseudo-descriptor to a portion

of another pseudo-descriptor’s vector, offset by offset and of length length;

dynamic (desc, length, vectype): assign dynamic storage of type vectype (O=real,
1=integer, 2=slogical) and length length;
free: free all dynamic storage.
f) Creating logical vectors by comparing one pseudo-descriptor with another. The test is a valid
FORTRAN logical comparison mnemonic: eq, ne, 1t, le, gt, or ge. In the vstest version,

y is a scalar, otherwise all the arguments other than the test is a pseudo-descriptor. The

subscripts r, i, and b are respectively the real, integer and logical versions.

vstestr (result, x, test, y);
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vetesti {(result, x, test, y);
vetestb (result, x, test, y);
vvtestr (result, x, test, y);
vvtesti (result, x, test, y);
vvtestb (result, x, test, y);

g) The following routines emulate the vector statement where (cv) u = vin Cyber FORTRAN-
200 as follows. The first routine applies to all pseudo-descriptors, while the last three compare
a pseudo-descriptor, u, with a scalar v, the appropriate suffix r, i, and b for real, integer, and

logical respectively.
wherev (cv, u, v);
wheresr (cv, u, vr);
wheresi (cv, u, vi);

wherest (cv, u, vb);



Appendix E

A HIGHLY-IMPLICIT FINITE DIFFERENCE STEAM MODEL (DEAD OIL)
SIM3D3P

This appendix outlines the formulation of a finite difference steam simulator based on the model
described by Ferrer et al, (1980). The original simulator program was developed by S.M. Farouq
Ali, who has tested and used it over the years. The program was then modified to accommodate
the coupling to the finite element model, and was tested as a stand-alone simulator to ensure that
it still functioned like the original code.

The following difference equations are used for the steam injection model, where steam is the

only gas present, but first note the following abbreviations:

§f =+t —m (E.1a)
AQ) = Az() + Ay() + Ax() (E.lb)
Molar balance for oil
AIT(8ps = 1082)] - 4305 = A-6(8p055) (E2)
Molar balance for water
ATw(Apw — TwAZ) + Ty(Ap; — 1,A2)] — qup% — 4505 = %6 [#(pwSw + £5S5)] (E.3)

Energy balance
Vi
ATy Ap| + ATAT]| - g —afy = Kza[‘#(ﬁuswuw + pgSgUy + poSolo) + (1 - ¢)(pC,,),-T] (EA)
Vapour-Liquid (steam-condensate} Equilibrium

T = f(py) (E.5)

We will expand the accumulation terms and iterate on the respective variables (p, T"). The trans-

missibility terms (at n + 1) are expanded in time, as in the semi-implicit method.

317
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E.1 Expansion of the equations (accumuluation terms)

It is assumed that p is a function of p and T. The subscript , indicates a derivative with

respect to p, and f‘ f“*" the latest iterate, For example

Bk,
kro_q,, as': (E's)
Furthermore, the [ollowing expansion is defined:
8f = JR6T + fEép+ ff = [~ = ST - T™) = f3(0* = P™) (E.T)
Thus one obtains,
6p = ppbp + préT (E.8)
Y= ot J(TH - T + S (™ - 17 (E.9)
8(¢pS) = "1™ — p" — pr(T¢ ~ T™) — pp(p® — P™)] + ¢ 1" 165
+ (3" 1S™pr8T + ¢"15" pp + p" S dicy )bp (E.10)
Also,
b6(gpSU) = U™*'5(¢pS) + (¢p5)“*—-6T
— Uu+l¢n+lsn [.0 —P —p'r(Tt - Tn) - Pp(P‘ _pn)]
+ ¢n+1uﬂ+lsnpr -+ (quS)"%] 8T + ¢"+1p"+lU"+153
+ U™ (g™t pg + p* S dic)op (E.11)

Note the following, for f = f(p, T). (We are expanding f™*! with respect to the iteration level.)

14
et —f.'.l"x _f..+: + 6T‘+ -g—il 5pt (E.12)
Note that
gi—f_,- = ﬁf evaluated at T"+!
Thus,
¢ 8_{ 41 ) af t, P
f" = fn-l-l + (Tn-rl Tn-H.) -+ g (pn+l. —pﬂ-H.)

=f+ fr(T"“ - T+ fip™ - 59 (E.13)
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Therefore,

6 = [ ="
= S4B T+ [ - -
- K™+ T - fi™ + [
= SHT + ffbp+ 1 = " - f4(T* = T™) - [0 - ") (E14)

where §T' = T™+! — T™ and §p = p"+! — p™. Here, 7™*! and p™*! are rcally the new iterates of

. 41 4l
T™+! and pntl, viz, Tot | prosl,

E.2 Energy balance:
Consider the energy balance equation first:

8[p(poSolo + puSuwlu + psSeUs) + (1 — ¢)(pCp)+ T}
= ¢"TIUPHS Moy = oy = pgr (T = T™) = py, (° = ™))

+[¢"+1 > Unt'Shpmp+46" Y p&%%ﬂ(l-qb"“)(ﬂcr)r] 6T

mao,w,g m=o,w,g

+¢n+llp;l+lu;:+1 —p:"'lU;"H]JSg +¢"+1[P::+1U3+1 _p:+1U;|+1]55-w

+ {¢"+1 Z Ut Sppm, + dice Z PmSmURF! = (pC,),T"] }61’ (E.15)

m=o,u,g mmo,w.g

Convection terms:
Tudp= D TmHn(APm —1md2) (E.16)

m=o,u,g

Consider the term T, Hy(Ap, — 1oA2):

Case (i) No gas in the upstream block {w.r.t. a given phase); implicit in p, T', and S.

[ToHo(Apo ~ 1 A2))**! = [To Ho(Apo ~ 1AZ)| + T, H Abp
+(Ap;T! = 742) (T,,“ H,.6T + H;‘T%kros_ .ss.,,)
= [ToHo{OPo = Yo2)]™ + TP H Abp
+(ApttY — 4o AT H , 6T
+(app*! -%A:)H:Tﬁk,m 55w (E.17)

Notice that the time expansion is in saturation and temperature. Tﬁ:- is the constant part of the

transmissibility which is at n.
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Consider the term Ty Hu(Apw — 1wl z):

Case (i) No gas in the upstream block w.r.t. the water phase.

[TwHu(Bpw — yudz)]*
= [Ty Hu(APw = Tul2)|" + T2 HIASp + (AP5T — Y A2)T ) Huy 6T
—TPHDAP, 65w+ (ApSH - -ywAz)H,L‘TpZ‘"k:.w&Sw
= Ty Hu(Apw — TuAZ)|™ + (Ap2T! — 1 A2) T Hyu 6T
+ (AR — YA H "T%k:masw ~TPHDAP. 6S,+TJHIASp  (E.18)

u

Tubdp= Y. (TmHun(Apm — 1md2)]" + Y (8pm = 1mA2)* TaHmy | 6T

meo,w meo,w

+ [T 3 (At _7mAz)H,’,‘,£—:kms.] 65w

mmo,u

—TPHRAP,, 65, + ( > mH:,:) Abp (E.19)

m=o,w
Case (ii) Gas is present in the upstream (w.r.t. a particular phase) block. The convective term for

a particular phase is obtained implicitly in S, Sw, and p.
Consider the term T, Ho(Ap, — Y,Az):

[ToHo(APo - 'foAz)]n+l = [ToHo(APa - 'ToAz)]u + H:G[Ta(APa - 70A2)]
= [ToHo(Apo — 1o AZ)]" )
+ BT — vt (22) Ky 85,

n
+ HM(ApM*! — 7, A2)T (::—") ko5, 08w+ HIT A8 (E20)
(-]

Consider the term T, Hy (Apw — Yol 2):

[TwHuw(Apw - 'Y'WA")]".{”1 = [TwHuw(Apw — Y2)]" + Hy(Tu(Apw — Twdz)]
= [TwHuw(Apw = YuAz)]™ + H3(ApDT! — vy AZ)T (%‘:—-) LA
- HJTJA{PL 6Su) + H3T  Abp (E.21)
Consider the term Ty Hy(Apg — v,A2):

[Ty Hg(Apg — ‘YgAz)]"“ = [TgHg(APy - 1Az + H," 5[‘1}(Ap9 - 'YaA")]



n
= (T3 Hy(8py = 1820 + HO5™ - maayT (22) k85,
g
+ HPT] AP 6S,) + HATP Abp (E.22)

Thus,

Tudp= Y [TnHn(APm"' = maz) +| > (Ap"m“—vmmmﬂm,i-rm] 6T

m=o,u, m=o,w
L1 [}

+| Y Hp(Apn! ~ 4mA)T (L";-‘) k,,,,,,ic,,] 68, + HI TP AP, 65,)

m=0.2

+ 65, z HI (AP — v A2)T (-ﬁl:‘—) krms, it + Z HrTRASp  (E.23)

m=o,w meoo,unLg
T AT = Tc(ml'i'ai—lJTi-—l —Tin —o6T) (E.24)
qu = Z ImPmm (E.25)
meo,w,g

If free gas is present, the enthalpies are treated explicitly in T

=g+ Y. PmHASGM (E.26)
m=ou,g
‘F::+1 =g+ Pl [,\:‘6;) + (Pt - Puy}ms,, 55,,,] 1 mE=Euw,g (B.27)
¢+l =g 4 PI [,\:5,, + (B5*! = Pun) Do, 85 + Aag, 55,)] (E.28)
gptt =g} +PI [)«’,‘ép + (05! = Pu)Ags, 639] (E.29)
gitt= Y pnHpgn +PI ( > Amnfm, H,,.,) bp
m=o,w,g m=o,w.g

+ PI {Z PHRPE = pu)rmg, 685+ 3 PHEGN = Puy)dms, 65w | (E.30)

m=o,g m=o,w

If free gas is not present, q; = 0, and the enthalpies are treated implicitly in T

G =ah+ D AmHR gt Y pRamHme ST (E31)

moow meo,w

=q?f+( > p;q;Hm-.-) §T+PL DY ppRHRF'AL6p

m=o,u m=o,w

+ PI ( 3y p;H::,“A,,.,_) 65w (E.32)

mmo,w
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If water is absent, Sy, = 0.

G =g+ D PhimHme6T+PL 37 A HOF LGP

mmo,g meto.g
+PI ( > p;H::,“,\,,.,,) &S, (E.33)
meoo,g

Finally, the energy balance can be written as follows:

A{ Z (TmHm(APm - 7,,.&:)]} T+ A [ Z (Apit! - 'ymAz)T,I,‘,Hm,.iTm] 5T

mso,u,g =g,ulg

[ n
FA| S HAAPE —tmADT (z—"m‘) krms, ac_] 65, + A [H7 TP AP, 55,)]

Lm=o,g

1 n
+A| S HL(ApN - ymA)T (-53) km,_,a.,,] 554
L=, u

+a| ¥ H::,T;',:Mp] + A{T.A(Ty +i76T) - A[HITDA(PL, 650)}

LM=o,un g

~ D PmHndn - ( 2 P'.:.QL‘.HM) 76T — Pl [Z PrmHm (P! _Pwt)/\ms,iGiW] 65q

meo,u,g m=ou m=o,g

- Pl [ Yo PmHRP R = Pus)Ams, iaia-] 55,

m=a,g

_ Pl [ Y nHL —pm.)r\ms_,iwic] 55y

m=o,w

-PI [ > enHR (! -pw.)Am,,iwir] Sy

mmo,w

- PI ( > ,\:,,p;H::,) iciwbp—PI D AnphHElinbp —qf — afT

mmo 0,9 mmo,w,g
Ve | n
= -A%{¢ +1U:+ls;l+1 [P: - p’” - p,.'.(q’l - Tm) - Pnp(Pg‘ —p;)]
aU,
HB 3 URHShpme+4° 3 mSagr + (1= 6™ eColloT

mmo,uw,g m=ow,g

+ ¢n+1 [p;l+lU';a+l -'P:+‘U:+1] 633 + ¢u+l [Pz'H'U:;'H - p:HU:"'l] 63,_,,

+(«i>"+1 > U:*‘S?upm,+¢icr[ > P&SQU&“-(pCp)-—T“DEP} (E.34)

m=o,w,g =o,ul,g



The above equation can be written as

4 4
Y Cupj=Ri+) ATi;Ap)

(12.35)

Je1 J=1
where
p1=96T {E.36n)
p2 =88, (E.36h)
pa = 65y (E.36¢)
py = 0p (E.36d)
and,
Vi' 41 +1 n n aUm ntl
Cus=22 (™" 2 URV'Shpme+¢" 3. AnSmpr + (1= 6" )(eCy)r
mmo,u,pg m=g,ung
+ ( Z p:‘,,q,',‘,Hm.,.) ir+a (E.370)
momo,w
v
Ciz = Kbt_¢n+1(p;|+lU:+1 _ p:+1U;‘+l)
+PI [ z P:u‘t)‘ms, (P:a+1 - puwy)(igiw Hy, + "G*'TH;H)] {E.37b)
m=0,9
Vi
Ci3 = A_‘;¢n+l(P:lu+1U'1;+1 - p:-t-lu;\-i-l)
+PI [ Y Pmdms, (! = pu)iciw Hp + iaiTH:.“)] (E.37c)
maoo,w
Vi .
Cu=7% {¢"“ Y Unt'Shpm, +dice [ D PnSmUnt! - (pcp)rr"] }
m=o,w,g mao,uw,g
+ PI [( Z A;p:,H,’;) iciw + Z ARl HM Vi {E.37d)
meo.u,.g m=ou,g
and,
Ri=4 [ z TnHm(Bpm - 'TmAz)n]
m=o,u,g
Vi
- 28NS [of = 0] = por (T4 = T7) = g, (f - 7})]
+A(T.AT™) - )" phHman —ai (E.38)

m=o,w
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and,

Ty = Z (BppF! ~ YmA2) TR HinpiT,, + Teir (E.392)
mwmow

Ta= 3 HA(OpN' — YmA2)T (h) krms, icn + H}TNPL (E.39b)
m=o,g Hm

n

Tiz= 3y Ha(AphH = ymA2)T ("—"') krms, bwm — HoTPL (E.39c)
m=o,Ww Pm

Tu= . HATH (E.39d)
m=o,u,g

E.3 Molar balance for water

The molar balance for water can be expanded as:

v Vi
K::J[c&(pwsw +2,5;)] = A—: {qs“*‘s:[p: = py = per (T =T") = pg, (p; = p2)]

+ @t g ESy + gL Sy + 47 Y Shome 6T

m=u,g

+ (45"“ > Shpm, +dicr 3 P.?.S,’,i))ﬁp} (E.10)

mau,g m=w,g

Writing the difference terms,

AlTu(Apw = Yo AZ)M! = A[TW(Apy — Twl2)]™ + A[TE Abpy)
+ A[(Apw = YwA2)T18TY) (E.4la)
= AlTo(APw ~ TwB )" + AP Abpy] — AITAP. 554)]

Cow

+A {(Apu, — wlAzZ)™H + (ﬁ) k:_wss,.,] (EA1b)
Similarly,

ATy (Apg — ‘Yxa*'3°=)]“+l = A[Ty(bpy ~ 1, A2)" + A[T;‘A‘SP]"'

A[T] AP 85)] + Af(Apy — A2) + A [(?)" k'm,asg] (E.41b)
g

Also,

P+ = (qupu)™ + o600 (E.A20)
kﬂ n

= q0pD + puPl (—-':' 65w (P! = pun) + "—':6p) (E42b)
M Hw

(Qupw



and

k» kn
g@Pe)"t = q7p] + py - Puy) + —26p
( )u+1 n n+ PI ;965 (pn-H )+#9‘6

g g

Thus the water molar balance equation becomes

Vigntl Vo™ k!
b¢ ( Z Pmr) 6T + [ bzt ' +p:P]( ot _Pws)%] 639
Hg

muwg

+

BT g1 4 pZPI

2] s,

k“
[ ¢ D Shom, e Y p:,:s;:)+P1 > p.::;':,ﬂ] 5p
m=w,g m

msu,g m=u,g

= -2 {# T bh= o= eI = T = 5, =)

meut,g

+A [ > [Tm{Apm — 'rmAz)]“]

m=w,g

- > gron+A [(Apg - 1 A)"IT (%) kf-gJSg]

mauw,g

+ TP 05+ & [(0p —rutey T (22) ko,

Hw

- A[TPA(PL 6Su)] + A [ > T,::Mp] }

mmw,g

Now define the following terms:

and

4\n+1
021 - A Z S!::p""r
mﬂwm
Vod™ ™ 1 1
Caa=—4; ;H' +Pl(p;* -Pw.) P keg
Crs = _“” oo+ PIEL! - pw,)p—':"k:.w

Cza—m (‘ﬁ"“ Z Snpm, +ice > P"S")+PI Z Pm"—

mow, g m=uw,g m=w,g

Ty =

T = (Ap;*! — 4} A2)T (ﬁf) Ky +TPPL

T = (Ap3H =72 A2)T (ﬂ)" +T2P,
w w y'tl.l'

w ey
Tu= ). Tm

mmw,g

(EA3)

(E.44)

(E.454)
(E.45b)
{E.45¢)

(E.15d)

(F.46a)
(E.46b)
(E.46c)

(E.16a)
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and
Ry = —%{cﬁ"“[s;‘(p: — 1) = por(T¢ = T™) = pg, (6° ")

> anon} (E47

meau,g

+4 Z Tr:(APm'YmAz)n‘l -

m=w,g
E.4 Molar balance for oil
Consider each term:
8(¢peSo) = ™+ a0 (=08, — 6Su) + "F 1S por 6T + (™15 0o, + 9357 bicr)6p  (E48)
Now, expanding,

A[Ty(Ap, - 'YGAZ)]WH = A[T,(Ap, —7.42)]" + Al(Ap, - TOAZ)“+16T01 + A[T;‘Aﬁpl (E.49a)
= A[T,(Ap, — 1.A2)]" + A[T," Adp)

k
+A [(Ap, ToB2)™! + ( ) (g’;"’ o 55, g o 6Su,)] (E.49b)
and
A" ok Bkyro ]
(0Po)**! = q5'p5 + poPI (’:‘"’) &p + PI (::_) o+l —puy) ( 65, + + %55, o8 ) (E.50)
Q (-]
Thus,
Cay = 2o gnt1 S™p (E.51
3 = —¢ o Por .51a)
Caz = =2 ¢n+l n+l L pl (Pﬂ) (p“'“ pw.)ak"'ﬂ (E.51b)
Css =~ g™ g3+ 4 PI (") (o2 -m.)a"' o (E.510)
Ho
Vb n+lon n nk:"o =
Cy = E(é S2po, + pRrSPdic) + Plp] (E.51d)
and
Ry = A[T(Ap,1A2)]" — 45 0 (E.52)

E.5 Water-steam equilibrium ratio
This relationship can be discretized as follows:

Pyt =pg + 5 (T = T¢) (E.53)



and,

8py =p; —py + P (T =T+ T = T)
=pl-pP+pL 6T +p. (T" - TY

Now,
6T = T bp, — T4, (6 = p") + T¢ = "
therefore,
6T -T, 6p~T, P, 68, =T - T" ~T,,(v* - p")

whence,

Ca=1

042 = —T‘:’P‘:..

Cipa=0

Cu= -Tf,
and

R4=T¢-T“~Tfp(pl"p")

The temperature differences can be written as

™ - T* =T*-T" +T,,(6p+ F., 65, - p{ + p})

or,
T =T+ T, (p; —p; + 6p+ P.,_65;)
but,
Trtl = ¢ 4 T,,(_p;“ - pj)
Thus,

E.6 Heat losses to overburden

(I2.54)

(E.55)

(12.56)

(E.572)
(E.57b)
(E.37¢)
(E57d)

(E.58)

(E.59)

(E 60)

(E.61)

(E.62)

Heat losses are calculated using the one-dimensional diffusivity equation in the vertical direction

only:
T 1
22~ «

ar
7

(E.63)



where the thermal diffusivity a = -P%-p" and the following initial and boundary conditions apply:

T(z,t=0)=T, (E.64a)
T(z=0,t)=T.(¢) {E.64b)
T(z =00, t)=T, (E.64c)

The instantancous heat loss rate is found by integrating and applying the boundary conditions to

find

ar .
qL(t) = ~xA F (E.63)
s=0

A suitable solution to this is now found by applying the theorem of superposition. Details can be
found in Abou-Kassem (1981).

E.7 Solution of the equations

Variable substitution is employed to ensure maxirium stability. At all stages three equations
are solved for three unknowns. If gas (i.e., steam) and water are present, temperature is no longer an
unknown and is replaced by a pressure-gas saturation equation — Equation (E.60). If either the gas
or water phase is absent, then either unknown S; or Sy, is replaced by T'. Thus, this procedure treats

rigorously the cases of gas or water phase disappearance, due to repressurization or vaporization.

The final equations are:

D Cuypi=Ri+ > ATylps), i=1,4 (E.66)

F=1,4 =14
where

i =1 is the energy balance;

1 = 2 is the molar balance [or water;

i = 3 is the molar balance [or oil;

i = 4 is the steam-water equilibrium ratio.

These four equations in four unknowns are reduced to three equations in three unknowns in the

following three cases:
(1) §>0,5, >0,

(2) Sp = O,Sw > 0;
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(3) S, > 0,5, =0.

For the first case, the energy equation transmissibilities are explicit in temperature, and using
Equation (E.60), 6T is eliminated from the first equation of the system equations given in Equation
(E.66). For the second case, Sy = 0,865, = =5}, and the equilibrium equation does not apply, so
that the three unknowns are 6T, 6S,,, ép.

In matrix notation, this becomes

€ p = R+A(T Ap) (E.67)
3x33x1 3Ixl Ix33x1

The system of equations is solved by a direct solution method. The matrices C, T, and the vector
R contain (n + 1)-level terms. Thus iteration is necessary. Before the first iteration, all coeflicents
arc evaluated at the end of the previous time step. New iterates of T"+!, S3+!, §7+! and p"*! are
calculated, and so forth. Convergence criteria are that the max §p < &, and max 6T < er. For most

cases two or three iterations are adequate.

E.8 Adding solid coupling terms to the formulation

The new terms are introduced and expanded in Chapter V1. However, the specifics of their
incorporation into the finite difference fluid and heat flow model are outlined here. The encrgy

equation has tl.e most terms and will be considered separately

E.8.1 Adding lerms to energy equation

A sequence of modifications can be listed as follows:

(i) Eliminate the original pore compressibility term, é¢c., from Equations (E.15), (E.34), and
(E.37), from where it was incorporated into the term C,q4.

(ii) Add the convective terms contributed from each fluid phase and the rock matrix to R,.

(iil) Subtract the accumulation terms contributed from each fluid phase and the rock matrix from
R,.

Two of the accumulation terms can be incorporated implicitly by adding Equation (6.25) to term

C11. In fact, the first of the two terms, (1—¢)pncp,_, is part of the original finite difference formulation.
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E.8.2 Adding terms Lo the flow equalions

Modifications to the two flow equations involve fewer terms, but are otherwise essentially the
sume as for the energy equation. Redundant pore compressibility terms, ¢;c,, are removed [rom the
expressions for Cy¢ and Caq. Convective terms are added to R; and R3, and accumulation terms

subtracted from R and Rj.

In all cases (energy and Row equations), if the pore compressibility coupling terms are used,
then the corresponding terms replace the original ¢;c, terms in the finite difference model, and are

not added to the R;, R, and Rj terms.



Appendix F

EQUATIONS DEFINING SOLID MODEL FOR FINITE ELEMENT ANALYSIS

The essential components of three-dimensional elastoplastic material behaviour are given here,
along with the required aspects of geomechanics to be able to formulate the finite element model.
The model is based on the two-dimensional computer code published by Owen and Hinton (1982},

and has been extended to three-dimensions. Alterations and additions have also been made in the

areas of

(i) the residual force calculations;

(ii) the principal stress calculations and the directions;
(iil) the types of loadings permitted;
{(iv) the control of the entire program;

(v) the Gauss integration scheme;

(vi) the finite element types.

F.1 Geomechanics conventions

Definitions in continuum and geomechanics are given in this section so thet the subsequent
sections can be written with an economy of symbols. The definitions are given mostly in index
notation at first because of the tensorial nature of the problem. Subsequently, the notation is
changed to the vector form commonly used in applied modelling in this area, and all quantities are

given expressions which can be evaluated in the vector form.

An essential axiom in continuum mechanics is that stresses are positive in tension, and negative

in compression. Thus, in the definition of (compressive) effective stress given by
o'=sg—u (F.1)

the pore pressure, u, must be a negative quantity. Thus, to keep pore pressures as positive quantitics,
the following definition must be used:

d=c+u e
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The deviatoric stress is defined by

Tkk
3{, = a’u -—_ 6‘1—3—
=043 = 6ij0m
where
_oy+oa+o3

Om = 3

F.1.1 Sireas invariants

{Compiled by Wong, 1989.) Given the characteristic polynomial

03—110‘2—1'20'—]3:0
The stress invariants Iy, Iz, and I3, can be found as:

h=oy+02+03
=0z + 0yt 0,
=30m

=0y

Iy = =(o102 + 0203 + 0301)

(oy05 — guioyy)

83| -

Iy= %(Uijajkaki)
Or Oz Oz
=%y % Tus
Tzzx Oys O3
= (010203)
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{F.3a)
(F.3b)

(F.4)

(F.5)

(F.6a)
(F.6b)
(I*.6¢)
(F.6d)

{F.7a)
(F.7b)

{F.8a)

(F.8b)

(F.8c)

Note that various authors (Mase, 1970, p. 51, Frederick and Chang, 1965, p. 51) use the

following form of the characteristic polynomial:

P -he*+ho-L=0

(F.9)



whence the second stress invariant is given by
1
= §(dﬁﬂjj + 0i;05i)
F.1.2 Deviatoric stress invarianis
The characteristic polynomial in this case is given by

—Ja—J3=0
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(1.10)

(F.11)

The deviatoric stress invariants can be found [rom this characterictic polynomial. The first deviatorie

stress invariant does exist as an analogue of the first stress invariant:
Ji=814+848=0
The second deviatoric stress invariant can take many forms:

Ja = —(s182 + 8283 + 8381)
= 13 s
= 59585

I
_T+h

- %[(33 +52 482) +2(02, + 02, +o2)]

= %(sf +383 +83)

= % [(o1 = 02)2 + {02 = 03)% + (03 — 01)¥]

= % [(02 =0y} + (oy = 04)* +(0: — 02)? +6(c2, + 02 + 0 %))

1
J3 = -j 3.'_-,' .sjgsk,»

1
gsi + 53 + )
= 010203

= 51?(21,3 + 90, Iy + 2715)

F.1.3 Octahedral stress invariants

(Compiled by Wong, 1989.) These are defined by
I

Toct =0 =

3

(F.12)

(F.13a)
(F.13b)
(F.13¢)
(F.13d)
(F.13c)
(F.131)

(F.13g}

(F.lan)
(F.14b)
(F.14¢)
(F.14d)

(F.15)
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Toct = §J2

The common soil mechanics parameters p, g, are given by

F.1.4 Principal stress relations

Principal stresses can be found from

Oi=0m— ;-cr,, sin(8 + g(i - 2)7)

where
3
Uq = 3J2 = 7—5‘?9(_;

The Lode angle, 8, is defined by
oy~ 209 + 03

tanéd =
V3(o1 — a3)
or, equivalently, by
3V3 A

sin3¢ = _T(—J;T;
The Lode angle is related to the original Lode parameter, T, by

= —3tand
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(F.16)

(F.17)

(F.18)

(F.19)

(F.20)

(F.21)

(F.22)

(F.23)

More principal stress relationships can be found by inspecting the characteristic polynomial

for deviatoric stresses:

s — Jog—=Ja =0
where
1
Jg = -2- = S{ij.'
1
J3= 35495k

whence, in terms of cosines,

_ Ja 2 .
35—2\f 3 cos[c:+§1r(:-l)]

= V27, cOS [a + éw(i - l)]

(F.24)

(F.25)

(F.26)

(F.27a)

(F.27b)
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where

V2Jy

cosda = o2 (17.28)
Toct
or, in terms of sines,
sin(8 + &)

5 =2 % sin(8) {1°.29)
sin(6 + %)

Normal and deviatoric principal stresses are related by
I .
0'.'=3|‘+'3-=8i+0'm (1°.30)

F.1.5 Dsrivalives of stress invariants

Given (Mase, 1970, p. 188)
9ay; ‘e
aa" = bipdsq (F.31)
Pq
Then, for the first stress invariant (Mase, p28):

8! aO"' .
?E‘ = ?9?,: = Bipbiq = bpq (F.32)

i.e., the identity matrix (1,1,1,0,0,0). The derivative of the second stress invariant can be found
as:

ol 0 (1
P " o 3(@iid55 = 04505)

1

= 5 ipbia0ss + 0iibspbiq — 201580p65]
1

= 3 [bpalo33 + 0id) — 205]

= ~(0pq = bpgl1) = = (045 — 6i;0ux) (F.33)

The derivative of the third stress invariant is;

2% = 52 [touomon)
8g ~ oy, |37 HIIKOH

1

=3 [6ipB5q0 1k ni + i3 8ipOkqOii + Ci5C 1kbpbig)
1

=3 [7akokp + TipTei + T4j0 s}

= Oqilip = Ok kj (F:M)
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F.1.6 Derivalives of deviatoric siress invariants

The derivative of the first deviatoric stress invariant is trivial:

=0 (F.35)

82 _ 9 ls;;sq
dg  dopg |2
ds
= 3‘.’3.%

2 Tik
= 8455 [0 = 855"

iepb
= 85 [5¢p5sq = b ”3 “]

= Spq = S5 (1".36)

The derivative of the third deviatoric stress invariant is:

8k 8 1
2 [
= % [(ai,.s,., - 6":"') sjm + 8ig (6,,,5,“, - af’f") o + 54555k (6,;,,6.-.; - 6"‘5")]
= % [3.,;‘3.,-,, - é%';siksu + SipSqi — 6—;'—.9‘;3“ + 8¢584p — Eglsgjs,-g]
= % [Sqmp + 8ipSqi + Sgj85p — g@w?-’z]
= % {33gk3kp — 26pq 2]
= sixsh; — %6.-,42 (F.37)

See also Hill (1950) p. 34, Eqn. 22'.

F. 1.7 Principal siress values and directions

The eigenvalues A and eigenvectors z of a matrix 4 satisfy

|28

z=Az (F.38)



That is,
(A= Dz =0

BRY)

(1.39)

If z is a basis vector, then z? + 22 + 23 = 1. Consider the vector equation (Frederick and Chang,

1965, p. 54)

(o435 = 8isA)ny =0

and the constraint nyn; = 1. Thus

(oz — Ay + ozyn2 + 024n3 =0
Tyt + (oy — A)na + opanz =0
nf+ni+ni=1

Therelore,

— —(ozyn2 + 0z,n3)
™= Oz — A

From Equation (F.43),

_(Uzyn2 + Ozsn3)
0’: - A

Ty + (aﬂ' = ’\)nﬁ + OysMy = 0

b

where
G = Ozy0z; — (02 — Aoy,

= —03, = (02 = Aoy - A)

Solving finally for n3 in niny =1,

I+ (5) nd+nd =1

Thus,

= sign of A

R, =

n? =
where
d=2 + (%)2 +1

-(%a:y + a:l)
C= —
0: -— A

(F.10)

(F.41)
(F.42)
(F.43)

(F.44)

(F.45)

(F.46)

(F.AT7)
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whence ng and ny can be found as

ny = %n;; (F.48)

_ _(a 72 +U'x=ﬂ3) -
n = TO’; — )\) (F.dg)

This analysis does not define the direction of the vector on the axis (ny,n2,na), because of the square

root evaluation of na.

F.2 Elastoplastic numerical formulation

This section follows the approach of Owen and Hinton (1982) for three dimensions, but does
not impose the assumption of associated plasticity until the general case has been cvaluated. In

building the elastoplastic formulation, a few definitions and propositions must be introduced.

F.2.1 Yield crilerion

First, a yield criterion must be proposed:

floy) = k{x) (F.50)

where f is a function of stress and k is a function of the so-called hardening parameter «. Plastic
deformation is considered independent of hydrostatic stress, thus the yield criterion can be written

in terms of the deviatoric stress invariants
f(J2, J3) = k(x) (F.51)

where the deviatoric stress of; = 0yj — 36(;0kk-

F.2.2 Work or strain hardening

It is postulated that the degree of work hardening is a function of the total plastic work, Wp,

only.

k=W, (F.52)

where

W, = f oz (deiz), (F.53)
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One can measui¢ total plastic deformation as the effective, gerneralised or equivalent plastic strain

(EPS), defined incrementally in the following tensorinl expression:

déy = Jg {(dé‘u),, (dEi.i),,} : (F.54)

If the yielding is independent of hydrostatic stress, then (de;;), = 0 and then the plastic strains are
all deviatoric strains, i.e., (dsﬁj)P = (dei;),. Thus,

2y = \[2{(6t), (et} (°59

Thus one can define the hardening parameter as

K=¢, (F.56)

where £, is a result of integrating d&, over the strain path. This result is known as strain hardening.

Plastic or elastic material behaviour can now be differentiated by inspection of the value of f:

(i) plastic behaviour is indicated by f =k,

(ii) elastic behaviour is indicated by f < k,
The result f > k is physically impossible. At the plastic state, f = &, the incremental change in the
yield function due to incremental stress change is

a =
df = 3_}.'.@‘3 (FD?)

where

(i} if df < 0, there is elastic unloading and the yield point is inside the yield surfuce;

(ii) if df = 0, there is neutral loading, with the stress point on the yield surface, which can be
interpreted as plastic loading for a perfectly plastic material, k = 0;

(iif) if df > O, there is plastic loading for a strain-hardening material, with the stress point on the
yield surface.

F.2.3 The elastoplastic stress-strain relation

The total strain can be broken into the constituent elastic and plastic strains:

deiy = (de.-,)e + (dE.'j)p (F.58)
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where o’
iF (1 —_— 2V)
(deyy), = T +F

It is assumed that the plastic strain increment is proportional to the stress gradient of the so-called

bysdair (F.59)

plastic potential, Q, such that

(deis), = d,\g% (F.60)

where d) is a scalar constant of proportionality known as the plastic multiplier. Equation (F.60) is

known as a flow rule because it governs plastic flow aflter yielding.

A
U1-£1

>
20, /2t

Figure F-1

Yield and plastic potential surfaces for plastic expansive increments
(adepted from Lade and Nelson, 1984)

The plastic potential Q must be a function of the deviatoric stress invariants Jy and Ja, but is
as yet indeterminate in its most general form. It is interpreted graphically in Figure F-1.

[t can be postulated that [ = Q, which is known as the associated theory of plasticity. In

which case,
(dess), = AL (F.61)
P 30‘.',' )
This is known also as the normality condition because -:a—f is a vector directed normal to the
i

yicld surface, at the stress point under consideration.
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F.2.4 Finding the hardening parameter Jrom the uniazial yield test

The hardening law k = k(x) can be expressed in terms of effcctive stress & o« Jy. Thus, for a
strain hardening material, using Equation (F.58),

& = H(g,) (F.62)

The effective stress & is analogous to €y, and is given by

& = V3 (J)?
=J%%Mﬁ (1.63)

Differentiating Equation (F.62),

i e

For the uniaxial case, ¢; = o, and 03 = g3 = 0, thus & = o. If the plastic strain increment is
in the direction of loading and is dep, then (dg1)p = dep. As plastic straining is assumed to be
incompressible, Poisson's ratio = 0.5, whence (dea)p = (dea)p = —jdep. Thus, the effective plustic
strain becomes

dfp = \/g {(dﬁi.f),, (dEu)p}‘}

=dg, (F.65)
Thus,
do
' = e—
H (gp) - dEp
_ do
" de —de,
_ 1
T _de
de do
Er
= (F.66)
1_Er
E

where E is the elastic tangent modulus %, and Ep is the tangent modulus at a point, % Thus

one can obtain H’ experimentally from the uniaxial test.



F.2.5 Mairiz formulation

Rewrite the yield function as

[{g) = k(x)

From the work herdening hypothensis, Equations (F.52) and (F.53),

ds =gldg,

Alternatively, from the strain-hardening hypothesis, Equation (F.57),

dr = de,

(F.67)

(F.68)

(F.69)

where o is the stress vector, and x is a hardening parameter governing the growth of the yicld

surface.

Rearranging Equation (F.66),

F(g,x) = f(g) ~ k(x) =0

Differentiating Equation (F.70), one obtains

8F , . 8F
dF = o-dg + odn =0

This can be rewritten as
dF = aTdg - AdA=0

where
aF
T e —
1 8F
A=-Tmd

(F.70)

(T.r1)

(F.72)

(F.73)

(F.74)

Here, g is known as the flow vector. The following three relations can be used to generate the

equation [or an increment of strain:

deiy = (dei;), + (deyy),

do;} 1-2v
(dey), = 5o+ L2

a
(dey)y = g

Oijdokx

(F.75)
(F.76)

(F.77)



Whence,

doj; (1 -2v) aQ
s - BT Lkl ¥ 2 —_—
deiy = o + o Sijdoek + dABa.,

This expression for de;; can be written in vector form as
de = D]z + A5
Premultiply Equation (F.79) by gT[D] to obtain
g"[D}ds = gTdg + ngD]dAz—g
Now using the result from Equation (F.72), a¥do = Ad), this becomes
a7 (D]de = AdA+ QT[D]dA%g-

This can now be rearranged to solve for A;

= 1 T
where

aQ
=2

Putting Equation (F.82) into Equation (F.79)
1

= [D1-! T
de = [D]"'dg + A+QT[DIL’E [Dldeb

This form can now be solved for do:

dz = {IP) - 5 ori Plel | e
= [Deplde

Now, as D] is symmetric,
a”[D] = [D]a)”
This can be used to define
d" = a" (D]
Thus,
d={Dla
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(F.79)

(F.80)

(F.81)

(F.82)

(F.83)

(F.84)

(F.85)
(F .86)

(F.87)

{F.88a)

(F.88b)



uns
d" = |[Dla]” = a"[D]” = a"[D] (F.89)
Similarly, define,
a7 =b"[D] (F.90a)
d" = [DJb (F.90b)

Now, use Equations (F.90) and (F.88) in (F.85) and (F.86), to form

ad

{Dep] = [D] - A+ G

(F.91)
which is the final matrix form of the elastoplastic constitutive matrix,

F.2.6 Determining the value of A

The work hardening hypothesis can be used in this analysis, which is more general than the

strain hardening hypothesis used earlier in this section,
de = gng,, (F.92)

A yielding criterion can be obtained from the von Mises postulate that yielding occurs when the

second deviatoric stress invariant J; reaches a critical value, or

(J2)} = K(x) (F.93)
but,
g = V3{(J)} = vV3k(x) (F.94)
Thus, one can write the uniaxial yield stress
oy = V3k (F.95)
One can also write Equation (F.70) as
F(g,r) = f(g) — oy(x) (F.96)
Furthermore, using Equation (F.74),
A= -%g—id’:

dx (F.87)
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which can be written because oy = f(x) only. Rearrange the normality condition in Equation (1°.92)
to get

£ %
=gTdMp
=d\bTg (F.08)
8Q .
where b = et From Equation (F.64), one obtains
dz _doy _ ., .
Z " E " H (F.99)

But, for the uniaxial case, the effective stress and strain are given by ¢ = & = oy and de, = dép.
Thus,

dx =oyds,

=d\ e (.100)

Euler’s theorem on homogenous functions states that if f(z) is homogenous and of degree n, then

of
E-g—nf (F.101)
Thus, from Equation (F.96),
% g oy =d%s (F.102)
da
Comparing this result to Equation (F.100),
oyde, =d\b'g (F.100)

For associated plasticity, a = b, which gives for the last two results,
o’ydé’p = dAO‘y (F.]03)
which will lead directly to the equivalence of A and H’. Alternatively, from Equation (F.97),

A dx

iao‘y
d\ 9x
doy

= (F.104)

i

and from Equation (F.100),
de = dXpTe (F.99)



These results are used in Equation (F.104) to obtain

_Ldoy
A= —=EdbTs
do T

=—0b'0c

=d\e
Rearranging, one obtains
_dg
= oy

If Equation (F.105), is solved for A, using Equation (F.106),

But, from (F.84), for uniaxial stress,

Whence, the relation between A and H',

% =] l

oy
whence, for associated plasticity,

A=H
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(F.105)

(F.106)

(F.107)

(F.108)

(F.109)

(F.110)

(F.111)

(F.112)

Thus, only the plastic strain derivative of the yield stress is required to incorporate the harden-
ing parameter into the matrix formulation of elastoplasticity. If needed, Equation (F.110) provides

the general relationship for non-associated plasticity.



F.3 Evaluation of key quantities in elastoplastic formulation

The preceding section outlined the elastoplastic numerical formulation. Many of the quantities

were referred to in general algebraic terms. These will now be explained in quantifiable terms that

can be implemented in a computer code.

F.3.1 Elastoplastic matiriz

The standard form of the elastoplastic stiffness matrix is given by

DE . B_G . a_F R DE
'gg 9 .8c.' (F.113)
L .pE. L
H+ Bg : D= 35
or, in the more familiar index notation,
ac aF
D(Jsmn da : Dgl'l do
o I F.114)
3F 5 OC (
B+ o Disniggy

Write the stress tensor as a vector of six components because of the symmetry of the stress tensor.
a= {Uznayna'n'rxwfynfxz} (F.115a)
= {o11,922,033, 023,031,012} (F.115b)

The yield function used in this work was that of the Mohr-Coulomb model. This model is

given in terms of the stress invariants I, Ja, and 8, where

9=_-l-sin'1 _%ia_ (F.116)
3 2 J!
2
The Mohr-Coulomb yield function can be written in terms of the stress invariants as:
F ll sin ¢ + (J5)3 (cosa ! sinosian\)
3 V3 (F.117)
= cCos¢

F.3.2 Derivatives of yield function with respect to g

Expand the derivative of the yield function with respect to the stress vector in terms of deriva-
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tives with respect to I, (Jq)i, and &:

r OF

g’ = =

dg
8Fa3l, 8F B8(h)} arag

=B_AE+_-T¢9(J3) _8g + BO-BE (F.118)

Some of these derivatives have already been derived in their tensor form. It will be necessary to

convert them to an (z,y, z) form. Start with ﬁg
a9 o 8(sin 39)
o 8(sin3d) bz

1 3(sin3®)

~ 3cos3d 9o (F.119)
This is further expanded as
d(sin30) _ 8(sin30) 8(Ja)? | B(sin38) 8(Ja) (F.120)
. ~ d) Oz d(J3) 0o '
Referring to the equation for § as a stress invariant,
an_ V3 s o
sindf = 2 (Jg)i (F.121)
Differentiating with respect to (Jg)i,
d(sin39) _ _3\/5 -3J;
8(J2)* 2 (J)
93 J3
=GP (F.122)
and differentiating with respect to Js,
sin38) 33 ( 1 )
= - F.123
a(J3) 2 \(J)? ( )
whence
@ _ 1 -3v3[ 1 a(k)_ 3% 8(J)} (F.124)
8z  3cos38 2 |(J)% 9z (J2)? g )
Other terms in (F.118) are
ar 1
51—1 = §Sln¢ (F.125)
aF
= cos 073 ~ —= tan dsin¢) (F.126)

V3
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Now, break down the flow vector a into the components

g =Cia) + Cagg + Cagy (1°.127)
where
a1
9T=a—gl ={1,1,1,0,0,0) (K.128)

as was found earlier. The second component is given by

r_ (L)

_An}an

- an ag

__1 o ,
-2(_]2) Bz (F.129)

Therefore,

1
2'27' = m {82, 8y, 85, 28y5, 28,3, 23::;;) (F.130)

Finally,

=22 (F.131)
This can bc expanded by using the tensor value of the detivative and manipulating the result

aJ. 2
—6—3- = S(gskj - 56“,‘.]2 (F132)

Expand the terms for o; = o131, 0y = 022, and ¢, = o033, by subtracting J, expanded, adding
J literally, and adding %Jf(: 0). Expand the terms for oy; = 023, 0,z = 03;, and 0z = 04y,
by adding and subtracting s:0y:, 8y@.z, 8;0y respectively to the terms, and noting that J; =

8z + 8y + §; = 0. Whence, one can obtain,

aJ3 Ja Ja J.
Tg- = {(3‘,3,—1'3,%-?) » (3:3._1-3:"'?) 1 (8=3y—'r3y+?2) )

ATryTas — 82Tys ), 2(TayTys — 8yTas )y 2TeaTys — 8e7yz)}  (F.133)

The scalar coefficients are given by:

@
]

G =

Q

Ty
flay
a)—

sing (F.134)
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and

_ 8F(J,6)
SFTRAT

_OF(J2) , OF(8) 86
IS LI AT
_8F(J;) tan309F(6)
P VAL BT

(F.135)

where,
ar (o)

220 — (s (~sing - Tz cososing) (F.136)

V3

and

90 1 0(sindf)
8(J)t  3c0s30 5(J)}
= 1 9/3 )
~ 3c0s38 2 (J3)?
33 ks 1 1
T2 (I () os 0
_ sin38 1
~ Tcos30 (J)Y
tan 39

= - F.137
(J2)t ( )

whence,

tan 38

Cy =cosf (1 - %cosasinqs) - (J’g)i (—sina- —%cosasinqb) W

J_(tan36-ta.n8)]

=cosf [(l + tan ftan 39) + sin¢ 7 (F.138)

The last scalar coelficient is given by

arF(p) a6

Co=—25 3(Ja)

(F.139)
where

38 _ 1 3(sin39)
3(Js) _ 3cos36 Js
_ 1 =33 1
T 3cos39 2 (Jy)4
___ V3 1
= T % (F.140)




Whence
. 1 -3 1
Cr = (J) (= - i —_
3 = (Ja)2(—sing ﬁoowsmé)mcmso
v3sin 8 + cos §sin .
= 273 ¢0s 30 2 (F.141)

F.3.3 Elastic constilulive matriz D,
The elastic constitutive matrix relates stress to strain as
oK = DKMSM (1‘1.142)

For an isotropic elastic medium, the elastic constitutive matrix D is given by {(e.g., Mase, 1970),

[ (A+ 2u) A A 0 0 07
A (A +2u) A 0 0
A A (A+2u) 0 O
Dim = #) (F.143)
0 0 0 s 00
0 0 0 0 p O
L 0 0 0 0 0 ul
The elastic stress-strain relation can alternatively be written in the tensor form
Oij = Abigean + 2uei; (F.144)
and the Lamé constant A and the shear modulus i = G are given by
E
= — F.145
A= 5T o) (F.145a)
Ev 2uy =
= = F.145b
AT o0 T (F.145b)

F.3.4 Sirain-displacement matriz

The strain vector is related to the displacements through the strain-displacement matrix, L,
(e.g., Smith and Griffiths, 1988),

im
]
It~
e

(F.146)



which can be fully written as

(eay [£ 0 07
& 0 ?% ol
€x 0 0 8-8—
[Tl # gL
/7] aa; g Iz
. 7zy / L a‘i ‘a; 0 N
Furthermore, the B matrix is related to L as
B=_LN; (F.148)

Thus, for three degrees of freedom and 8-noded elements, B is a 6 x 24 matrix.

F.3.5 Determinants using stresses in vector form

The third deviatoric stress invariant is given in index notation by

J3 = %81,8_,’&8“ (F.l‘ig)
This can be expanded as the determinant

21y 812 N3
1
35if%ikSk = 821 S22 S23

331 832 3313
= 311(922833 — 523832) — s12(s21933 — 831923) + S13(S21 932 — s225m)  (F.150)
Writing the deviatoric stresses in the following vector form, noting the symmetry of the stress tensor,

&= {811,322, 533, 923, 821, 812) (F.151)

the value of J; can be found in terms of the vector entries,

3ssssin = s(D[s(2)s(3) - s(5)5(4)

—3(6)([(6)s(3) — 5(5)s(4)] + 5(5)[s(6)s(4) — 5(2)s(5)]  (F.152)
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F.3.6 Evaluation of effective plastic strain
The current yield stress can be found from
oy = H'dz, (F.153)
Normally, the d&;, term is found from the expression in Equation (F.107),

_ds

d&
P oy

(F.107)

However, for a cohesionless material (¢ = 0), and the Mohr-Coulomb failure criterion in explicit

form:
(o1 — 03) = 2ccos9 — (o] + o3)sing {IF.154)

material failure will occur at zero effective stress &. For this set of conditions, then, Equation
(F.107) cannot be evaluated. Instead, it is necessary to evaluate dé, explicitly, viz. expand the

tensor expression defining it:

2 i . es
de, = \/;{(ds;,.)P( ), (F.153)
To evaluate this, the tensor product e;;¢,; will be expanded, making use of the symmetric nature of
the strain tensor
gijeis = (€ + €5 + €3) + 2(e] + 6% + 3) (F.156)
By definition,
af
(dE‘J)P - d'\E.Tj
=dAa (F.157)

Thus, using the expansion in Equation (F.156), and the equivalence between the tensor and vector

forms shown earlier,

2
dép = ‘/;dA af +af + af +2(al + a2 +ad) (F.158)

F.4 Incorporating loads into the formulation

Loads can be self-weight (gravity), pore pressure changes, temperature changes, and constant
stress loads. They are incorporated as nodal forces, applied so that the finite element model can
equilibrate the forces in the structure. The convention in soil mechanics of u for pore pressure and
F for loads will be used in this section.



354

F.4.1 Graevity loadings

Let gravity always be acting in the negative z-direction, i.e., (Hinton and Owen, 1977, p. 146):

§=1(0,0,-9) (F.159)

The foree due to gravity, dG, acting on an elemental volume 49 is

dG = pgdQ) (F.160)

Breaking this down into the directional components:

dG =0
dGy =0 (F.161)
dG; = —pgdfd

One can use the principal of virtual work and apply the virtual displacements u*, v°, w* respectively

in the z,y, z directions. Whence the equivalent nodal forces are:
Frut=0
FV‘U‘ =0 (F.162)

F,‘w'=f —Nw® pgdQ
f1*

Using the principle of virtual work, this statement holds true for all u*, v*, w*, whence, assuming p

is constant in the element,

F=i 0
Fy b= 0 (F.163)
F., j; ~(pg)Ni d2

To incorporate a spatial variation in density, consider the principle of virtual work applied to

a load at a point &, in & one-dimensional system, which yields

Fow* = FNi(E)w* (F.164)

or, simply

Fy, = FuNi(£p) (F.165)



For gravity loading, the increment. of load

dFy, = dF,Ni(§)
= ~(pg)dAN(&) (1".166)

Integrating the work expression,
f dF, w" = F,w*
fie
= fn —(pg)Niw* d

= [ oesNew" (F.167)

where the following approximation [or p was used:

p = psNy (F.168)

Thus the load vector for a system of spatially varying density is

Fr, 0
Fy p = 0 (F.169)
F“ - L gp_,-N jN( dQ

The product p;N; will therefore have to be found at each quadrature point.

F.4.2 Pore pressure loads

Changes in pore pressure are treated as an external loadin; and are considered to be a dis-

tributed body force with local intensity (force/unit volume) (Naylor, 1978)
= =V (Au) (F.170)

Using the same principle of virtual work as for gravity loading, one obtains

3 AN
Fu==-] 5o dud? (F.171)

Approximate the pore pressure distribution using trial functions,

Au = NjAuy (F.172)
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whence the load vector due to ch.iges in pore pressure:

F, — Joo B (Nyu;) A2
Fyo 3 =4 = Joo B (NsAuy) dO2 (F.173)
Fa, — Joo % (NjAuy) dQ

F.4.3 Thermal loads

Changes in temperature are accommodated by the use of equilibrium equations obtained

through the principle of virtual work, in particular (Hinton and Owen, 1977, p. 18)

F =~ j BT d0 (F.174)
ae
and
g=D(Bs -£" +2°% (F.175)
The initial strains are given by (Timoshenko and Goodier, 1982, p. 456)
e = aAT (F.176}
while the angular distortions

Wiews =0 (F.177)

because free thermal expansion does not produce angular distortion in an isotropic material. The

initial stress corresponding to these strains are now evaluated from
of = Dyyed (F.178)

These inital stresses can now be converted into equivalent nodal loads through Equation (0.173):

Fz,

Fut=- [ Bifedn (F.179)
Fe,

The change in temperature must be found at the quadrature points to integrate this expression.

Thus the approximation

AT = N;Ty (F.180)



is used. [By] is the matrix of derivatives of the shape functions, viz.,

- AN; -
w00
o koo
B4} ° ) %% (I".181)
= 8N, BN, "
o &M
F
o
z z
oN aN g
5 T )
The transpose of [By), [B(]7, is therefore,
N, AN, ON.
LV
BT=| 0o Zt o Gt o (F.182)
aN; 9Ny &8N
° o oz O
The initial stress vector is given by
¢® = (08,095,090, 78,72, 72,)" (F.183)
Thus the product [B;)T¢? is given by
Falob+ it + Gy,
BT = | 3o + Gire | BNizo, (F.184)
ot Ytrg+ G,

F.4.4 Constant siress loading

This is a simple case of distributed loads, described for two dimensions in Hinton and Owen
(1977), p. 150 and p. 18. These loads are the type imposed by the regional tectonic stresses, which
lie in the horizontal plane. Thus, they lie in the z-y plane, rotated by some angle, o, 0 < a < 90°,
These horizontal stresses are the principal values, therefore normal to each other. It is easily shown,

using the principle of virtual work, that as

dF; = Sydl’ (F.185)
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where T' is the arbitrary surface boundary, and Sz is the horizontal stress loading. Whence

F. = f NS, dr
rI

F, = [ NS, dT (F.186)
e

F, = f NS, dT
e

where the vertical loading S, is optional. If the actual regional principal stresses are rotated in the

z-y plane by the angle a, then the z and y stresses are related to these regional stresses by

Sz cosa —sina | [ Sy,
= (F.187)
Sy sina cos o Sy,

where Sy, is defined as the regional stress in the z-y plane acting at angle o from the z-axis. The
only remaining issue is the implementation of the side integrations. This done using two or threce
point Gaussian integration, ensuring that the appropriate element side is identified with the correct

isoparametric coordinate value,

Figure F-2

Local face tangent vectors on side of element.

The area for the integration must be calculated. Consider the arbitrary side being loaded,
defined by £ = 41, as shown in Figure F~-2. The face tangent vectors, 7\, 72 are given by (Cook,
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1981), in this case,

7y = (Jg1i + Jaoj + Jagk)dy (F.1884)
T3 = (Jayi + Jagf + Jask)d¢ (F.188b)

where Jj; are the elements of the Jacobian of transformation. Now, if £= & x &, then the length

(magnitude) of £ is equal to the area of the parallelogram formed by @ and & (Kreysig, p. 270
Furthermore,

|ax5]= V@ 8)E-5) - @52 (F.189)
Thus,
S
dl' = |Jzy Jog Jos|d(dn
Jan Jaz Jm
= Sd(dn (F.190)

S can be found using rows k and £ from the three-dimensional Jacobian matrix of transformation,
where k,£ indicate the local coordinates in which the surface lies.

S = {[(row k) - (row &)][(row ) - (row £)] - [(row k) - (row &)]*}? (F.191)

F.4.5 Accommodating the initial siresses

The stresses must be calculated, and the resulting nodal loads and reactions at fixed nodes
found. When applying a regional stress field the values are calculated as:

[ Ozz )

(F.192)

. Tzv /
If the stresses to be considered are confined to a vertical principal stress and two lying in the
horizontal plane, then o, = g4, and 7y = 7,z = 0. Thus, only o, and oy, must be resolved into

Oyys Osxy 2Nd 72y, This resolution can be simply done by specifying the angle between one of the

horizontal principal stresses and che z-axis. This corresponds to a rotation, —a, to the o (z) axis.



360

Generalizing to a stress vector on a plane inclined between the z and y axes, vesolved into normal

and shear stress components on the plane, the rotation formulae are (Nash, 1977):

Op = a,-;cr, =~ ;-a, €08 2ar + 7y sin 2 (F.193a)

0z —0
=Y

sin 2a + 7xy cos 2 (F.193b)

As we are rotating from the horizontal principal stresses, in this rotation o, = oyy and 7 = gz,
oz = OH,, Oy = OH,, and 7z = 0. The final reactions and displacements satisfying this initial
stress regime can be calculated by the finite element program. The vector containing the total
displacements can then be set to zero.

The nodal loads F*® corresponding to the initial stress are found from

Fo = - [ BTt dn (F.194)
nl

which has the same form as for the thermal loads,



Appendix G

SAMPLE DATA FOR USE WITH PLAST-PT3

This data was used for the staggered run described in Chapter VIIL
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# This is the comment character
# Dabugging flags
#1234567890
FFFFFFFFFF
#
# Title (100 chars)
3-D ELASTO-PLASTIC PROBLEM: Mohr-Coulomb, L8 elements FOR Staggered run
# ppoin, nelem, ntype, nmats, ngaus, nalgo, ncrit, nstre

896 637 4 3 8 2 3 6
# nvfix, nincs(1), nines(2), incval (kN) (negative for mo inc. data), kPa
428 1 1 5.0eb 2.0e3
#
# Loads applied as a user option:
# 0: stresses applied globally & reaction loads evaluated
# 1: stresses applied as trial velues & no reaction loads evaluated
¥ 2: stresses applied as trial values & reaction loads evaluated
#
# Number of printing flags used, dp, dt as trial stresses?
# npflag stflag(1.2.3) tstep ratflag rolax rixflag rlxatre
9 0 0 1 -1 -1 1.5 2 5
#
# Output provided on Mon Apr 30 23:16:45 1990
#
# nelem nmats mnode nfix
# 637 3 896 428
#
# Total number of elements = 637
# Total number of material types = 3
#
# Elem Material 1 2 3 4 5 6 7 8
1 3 1 2 10 9 65 66 T4 73
2 3 2 3 11 10 €6 67 75 74
3 3 3 4 12 11 67 68 76 75
4 3 4 5 13 12 68 69 77 76
B 3 g ] 14 13 69 70 78 77
6 3 6 T 15 14 70 71 79 78
7 3 7 8 16 15 71 72 80 79
8 3 8 10 18 17 73 T4 82 81
9 3 10 11 19 18 74 75 a3 82
10 3 11 12 20 19 75 76 84 83
11 3 12 13 21 20 76 77 85 84
12 3 13 14 22 21 7 78 86 85
13 3 14 15 23 22 78 79 a7 86
14 3 15 16 24 23 79 80 a8 87
15 3 17 18 26 25 81 82 90 89
16 3 18 19 27 26 82 a3 91 90
17 3 19 20 28 27 83 84 92 91
i8 3 20 21 29 28 84 85 93 92
19 3 21 22 30 29 8b 86 94 93
20 3 22 23 31 30 86 87 95 84
21 3 23 24 32 a1 87 88 96 95



22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
a7
38
39
40
41
42
43

45
46
47
48
49
50
51
B2
63

13
56
57
58
59
60
61
82
€3

€5
66
67
68
69
T0
(4}
T2

umwwmmummmmumuuwmmummuwmmmmwmwmwumuwumuuuwmwuummmuu

25
26
27
28
29
30
31
33
34
35
36
37
38
39
41
42
43

45
46
47
49
&0
51
52
B3

-1
65
66
67
68
€9
70
71
73
74
75
76

78
79
81
82
83

85
86
87
89
90

72

34
35
36
37
38
39
40
42
43

46
46
47
48
50
B1
B2
53

56
E6
68
59
€0
61
62
63

74
75
76

78
79
80
82
83

85
86
87
88
90
91
92
93
94
95
96
98
99

33

35
36
37
38
39
41
42
43

45
46
47
49

50

51
52
83

55
57
58
B9
€0
61
62
63
73
74
75
76

78
79
81
82
83

85
86
87
89
90
91
92
93
94
95
97
98

88

90

91

92

93

94

95

97

98

99
100
101
102
103
105
106
107
108
109
110
111
113
114
115
116
117
118
119
129
130
131
132
133
134
136
137
138
138
140
141
142
143
146
146
147
148
149
i50
161
153
154

90
91
92
93

95

96

98

99
100
101
102
103
104
106
107
108
109
110
111
112
114
115
116
117
118
119
120
130
in
132
133
134
136
136
138
139
140
141
142
143
144
146
147
148
149
180
151
152
1654
185

98

99
100
101
102
103
104
106
107
108
109
110
111
112
114
115
116
117
118
119
120
122
123
124
126
126
127
128
138
139
140
141
142
143
144
146
147
148
148
150
151
152
154
185
156
167
158
159
160
162
163

a7

98

99
100
101
102
103
108
106
107
108
109
110
111
113
114
115
116
117
118
119
121
122
123
124
125
126
127
137
138
139
140
141
142
143
145
146
147
148
149
150
161
153
164
166
166
157
168
159
161
162
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73
T4
75
76
77
78
79
80
81
82
83
84
86
86
ar
B8
89
80
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
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-467.7
~457.7
-467.7
-457.7
-467.7
-457.7
~457.7
-467.7
=-457.7
-467.7
-457.7
-457.7
-4B7.7
-457.7
-467.7
-457.7
-457.7
-457.7
-457.7
-4567.7
-457.7
-457.7
-457.7
-487.7
-457.7
=-467.7
-457.7
-457.7
~457.7
-467.7
-467.7
=457.7
=-4567.7
-457.7
-457.7
-457.7
-454.0
-454.0
-454.0
-454.0
-454.0
-454.0
-454.0
-454.0
=-454.0
-454.0
-454.0
-454.0
-454.0
-454.0
-454.0
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400 264.0 40.0 -454.0
401 0.0 80.0 -454.0
402 40.0 80.0 -4B4.0
403 80.0 80.0 -454.0
404 84.0 80.0 -454.0
406 54.0 80.0 -45.0
406 114.0 80.0 -4B4.0
407 154.0 80.0 -454.0
408 254.0 80.0 -4B4.0
409 c.0 84.0 =-454.0
410 2:,.0 84.0 -454.0
411 80.0 84.0 -454.0
412 84.0 B4.0 -454.0
413 94.0 84.0 -454.0
414 114.0 84.0 -4B4.0
415 1B64.0 84.0 -454.0
416 254.0 84.0 -454.0
417 0.0 94.0 -454.0
418 40.0 94.0 -454.0
419 80.0 94.0 -454.0
420 84.0 94.0 -45%.0
421 94.0 94.0 -454.0
422 114.0 94.0 =-454.0
423 154.0 94.0 -454.0
424 284.0 94.0 -454.0
426 0.0 114.0 -4B54.0
426 40.0 114.0 -454.0
427 80.0 114.0 -454.0
428 84.0 114.0 -464.0
429 94.0 114.0 -454.0
430 114.0 1314.0 -4%4.0
431 154.0 114.0 -454.0
432 254.0 114.0 -454.0
433 0.0 154.0 -454.0
434 40.0 154.0 -454.0
436 80.0 154.0 -454.0
436 84.0 154.0 -454.0
437 94.0 154.0 -454.0
438 114.0 164.0 -454.0
439 154.0 154.0 -454.0
440 254.0 154.0 -454.0
441 0.0 254.0 -454.0
442 40.0 2654.0 -454.0
443 80.0 254.0 -454.0
444 84.0 254.0 -454.0
445 94.0 264.0 -454.0
446 114.¢ 254.0 -454.0
447 154.0 254.0 -454.0
448 254.0 254.0 -454.0
449 0.0 0.0 =-450.0
450 40.0 0.0 -450.0
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451 80.0 0.0 =-450.0
452 84.0 0.0 -450.0
453 94.0 0.0 -4B0.0
454 114.0 0.0 -450.0
466 154.0 0.0 =-450.0
486 264.0 0.0 -450.0
457 0.0 40.0 -450.0
468 40.0 40.0 -450.0
459 80.0 40.0 -450.0
460 84.0 40.0 -450.0
461 94.0 40.0 -460.0
462 114.0 40.0 -450.0
463 1564.0 40.0 =-450.0
464 254.0 40.0 -450.0
465 0.0 80.0 -450.0
466 40.0 80.0 -450.0
467 80.0 80.0 -450.0
468 84.0 80.0 =450.0
469 94.0 80.0 =~450.0
470 114.0 80.0 -450.0
471 154.0 80.0 -450.0
472 254.0 80.0 -450.0
473 0.0 84.0 -450.0
474 40.0 84,0 -450.0
475 80.0 84.0 -450.0
476 84.0 84.0 -450.0
477 94.0 83.0 -450.0
478 114.0 84.0 -450.0
479 154.0 84.0 -450.0
480 254.0 B4.0 -450.0
481 0.0 94.0 -450.0
482 40.0 94.0 -450.0
483 80.0 94.0 =450.0
484 84.0 94.0 -450.0
485 94.0 94.0 ~450.0
486 114.0 94.0 -450.0
487 1B4.0 94.0 =450.0
488 254.0 94.0 -450.0
489 0.0 114.0 -450.0
490 40.0 114.0 -450.0
491 80.0 114.0 -450.0
492 84.0 114.0 -450.0
493 94.0 114.0 -450.0
494 114.0 114.0 -450.0
496 154.0 114.0 =-450.0
496 254.0 114.0 -450.0
497 0.0 154.0 -450.0
498 40.0 154.0 -450.0
499 80.0 154.0 ~-450.0
500 84.0 154.0 -450.0C
501 84.0 154.0 -450.0
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114.0 154.0 =-450.0

502

-450.0
-450.0
-450.0
-450.0
-450.0
-450.0

164.0
184.0
284.0

[« o =

23°

- N

.

503
504
505

-450.0
-450.0
-450.0
=450.0
=-440.0

0.0
0.0
0.0

284.0
254.0
254.0
254.0
254.0
254.0
254.0

-440.0

40.0

514
515
516
517
B18
B19
520
521

~-440.0

80.0

=-440.0

0.0
¢.0

B4.0

=-440.0

94.0
114.0
184.0
264.0

=440.0

0.0
0.0
0.0

40.0

-440.0

-440.0

-440.0

0.0
40.0

-440.0

40.0

522
523
524
b25

40.0 =-440.0

80.0

40.0 -440.0

.0

529
B33

84.0 =-440.0

114.0

.0
.0

94.0

154.0

254.0

543

~440.0

=440.0

0.0
40.0

545

-440.0

94.0

846

=-440.0

80.0 94.0

547

~440.0

94.0

.0

94.0
114.0

b48

~440.0

54.0

549

-440.0
-440.0

94.0

550

-440.0
-440.0

94.0
94.0

184.0
254.0

561
652
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0.0 114.0 ~440.0

563

554 40.0 114.0 ~-440.0

B&b
BE6

-440.0

114.0

80.0

-440.0

114.0

84.0

94.0 114.0 -440.0

114.0

557

-440.0

114.0

bE8
5E9

~440.0

114.0

154.0

860 254.0 114.0 -440.0

661
562

154.0 -440.0

0.0
40.0

=440.0

154.0

-420.0
-420.0
-420.0
-420.0
-420.0
-420.0

0.0
0.0
0.0
0.0
0.0

40.0
80.0
84.0
94.0
114.0

BT1
575
576
b78
b79
580
581
582
583

0.0
0.0

-420.0
=-420.0
«420.0

.

584

40.0

000

2B °

-

40.0

588
586
587
588

-420.0
«420.0
-420.0
-420.0
-420.0
-420.0
=-420.0
-420.0

40.0
40.0
40.0
40.0
40.0
40.0
40.0

84.0
94.0
114.0
164.0
254.0

80.0

589
590
591
592

80.0

0.0
40.0

893
B94
595
596

-420.0
-420.0
-420.0
-420.0
-420.0
=-420.0
-420.0
-420.0
-420.0

.0
.0
0

80.0
80.0
80.0
80.0
80.0
80.0
80.0

84.0
94.0
114.0
.0
40.0
80.0

80.0

597
598
599
600
601
602
603
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604 84.0 84.0 -420.0
606 94.0 84.0 -420.0
606 114.0 84.0 -420.0
607 154.0 84.0 -420.0
€08 264.0 84.0 ~420.0
609 0.0 94.0 -420.0
610 40.0 94.0 -420.0
611 80.0 94.0 -420.0
612 84.0 94.0 -420.0
613 94.0 94.0 -420.0
614 114.0 94.0 -420.0
616 154.0 94.0 =-420.0
616 254.0 94.0 -420.0
617 0.0 114.0 -420.0
618 40.0 114.0 -420.0
€19 80.0 114.0 -420.0
620 84.0 114.0 -420.0
621 94.0 114.0 -420.0
622 114.0 114.0 -420.0

623 154.0 114.0 -420.0
624 254.0 114.0 -420.0
625 0.0 154.0 =-420.0
626 40,0 154.0 -420.0
627 80.0 154.0 =-420.0
628 84.0 154.0 -420.0
629 94.0 154.0 -420.0

630 114.0 154.0 -420.0
631 154.0 164.0 -420.0
632 264.0 1B4.0 -420.0
633 0.0 254.0 -420.0
€34 40.0 254.0 -~420.0
636 80.0 254.0 -420.0
636 84,0 264.0 -420.0
637 94.0 264.0 -420.0
638 114.0 234.0 -420.0
639 154.0 254.0 -420.0
640 254.0 264.0 -420.0
641 0.¢ 0.0 -380.0
642 40.0 0.0 ~-380.0
643 80.0 0.0 =380.0
644 84.0 0.0 -380.0
645 94.0 0.0 -380.0
646 114.0 c.0 =380.0
647 154.0 0.0 -380.0
648 254.0 0.0 -380.0
649 0.0 40.0 -380.0
650 40.0 40.0 -380.0
651 80.0 40.0 -380.0
652 84.0 40.0 -380.0
653 94.0 40.0 -380.0
654 114.0 40.0 -380.0
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666 154.0 40,0 -380.0
656 254.0 40.0 -380.0
657 0.0 80.0 -380.0
658 40.0 80.0 =380.0
659 80.0 80.0 -380.0
660 84.0 80.0 -380.0
661 94.0 80.0 -380.0
€62 114.0 80.0 =380.0
€63 154.0 80.0 -380.0
664 254.0 80.0 -380.0
666 0.0 84.0 -380.0
€66 40.0 84.0 -380.0
667 80.0 B4.0 -380.0
668 84.0 84.0 -380.0
669 94.0 84.0 =-380.0
670 114.0 84.0 -380.0
671 154.0 84.0 -380.0
672 2854.0 84.0 -380.0
673 0.0 94.0 -380.0
674 40.0 94.0 =-380.0
675 80.0 94.0 -380.0
676 84.0 54.0 -380.0
677 94.0 94.0 -380.0
678 114.0 84.0 -380.0
679 154.0 94.0 -380.0
680 254.0 94.0 -380.0
681 0.0 114.0 =-380.0
€82 40.0 114.0 -380.0
683 80.0 114.0 -~380.0
684 84.0 114.0 -380.0
685 94.0 114.0 -380.0
686 114.0 114.0 -380.0
687 154,0 114.0 -380.0
688 2654.0 114.0 =-380.0
689 0.0 154.0 -380.0
€90 40.0 154.0 -380.0
691 80.0 154.0 -380.0
692 84.0 1B4.0 -380.0
693 94.0 184.0 -380.0
694 114.0 154.0 -380.0
695 154.0 154.0 -380.0
696 264.0 154.0 -3B0.0
697 0.0 254.0 -380.0
698 40.0 254.0 =380.0
699 80.0 254.0 -380.0
700 84.0 254.0 -380.0
701 94.0 254.0 -380.0
702 114.0 254.0 -3BO.O
703 164.0 254.0 -380.0
704 254.0 254.0 -380.0
705 0.0 0.0 -300.0
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~300.0
-300.0
=300.0
~300.0
-300.0
-300.0
-300.0

0.0
0.0

40.0

706
707
708
709

0.0

84.

0.0
0.0

94.0
114.0

710
711

0.0
0.0
40.0

154.0

254.0

712
713
714
716
716
T17

=300.0
-300.0

0.0
40.0

40.0

40,0 =-300.0

80.0

40.0 -300.0
-300.0
=300.0

40.0

b 8

9
114.0

40.0

718

=300.0
=300.0
=-300.0
-300.0

40.0
40.0

154.0
254.0

719
720
721

80.0

0.0
40.0

80.0

722

723
724

40.0 94.0 =300.0

738
738

94.0 -300.0

80.0

-300.0
-300.0
=300.0

94.0

.0

94.0
114.0

740
741

94.0

94.0

T42

=300.0
~-300.0

94.0
94.0

254.0

154.0

743
T44
745
746

114.0 -300.0
-300.0

0.0
40.0

114.0

-300.0
«300.0

114.0
114.0

.0

80.0
94.0
114.0

747
748

-300.0

114.0

749

=-300.0
=300.0

114.0

114.0
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-300.0
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=-150.0
-180.0
-150.0
-150.0
-150.0
-150.0
-150.0
~160.0
~150.0
-150.0
-150.0
-160.0
-150.0
-150.0
-150.0
-150.0
~«150.0
-160.0
-150.0
-180.0
-150.0
-180.0
-150.0
-1580.0
-150.0
-160.¢
-150.0
-150.0
-150.0
-180.0
-180.0
-150.0
-180.0
-160.0
-180.0
-150.0
-180.0
-150.0
-180.0
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808 254.0 94.0 =150.0
809 0.0 114.0 -150.0
810  40.0 114.0 -150.0
811 80.0 114.0 =-150.0
812 B4.0 114.0 -150.0
813 94.0 114.0 -150.0
B14 114.0 114.0 -160.0
816 154.0 114.0 -150.0
816 264.0 114.0 -150.0
817 0.0 154.0 -150.0
818 40,0 154.0 -160.0
819 80.0 154.0 -160.0
820 84.0 154.0 ~150.0
821 94.0 154.0 -150.0
822 114.0 154.0 =-150.0
823 164.0 154.0 -150.0
824 254.0 154.0 -150.0
825 0.0 254.0 ~150.0
826  40.0 254.0 =-150.0
827 80.0 254.0 -150.0
828 84.0 264.0 -150.0
829 94.0 254.0 -150.0
830 114.0 254.0 -150.0
831 1654.0 254.0 =-150.0
832 264.0 254.0 <~150.0
233 0.0 0.0 0.0
834  40.0 0.0 0.0
836  80.0 0.0 0.0
836 84.0 0.0 0.0
837 94.0 0.0 0.0
838 114.0 0.0 0.0
839 154.0 0.0 0.0
840 264.0 0.0 0.0
841 0.0  40.0 0.0
842 40.0  40.0 0.0
843 80.0 40.0 0.0
844 84.0  40.0 0.0
845 94.0  40.0 0.0
846 114.0  40.0 0.0
847 154.0  40.0 0.0
848 254.0  40.0 0.0
849 0.0 80.0 0.0
850  40.0  80.0 0.0
851 80.0  80.0 0.0
852 84.0 80.0 0.0
853 94.0 80.0 0.0
854 114.0 80.0 0.0
856 154.0  80.0 0.0
B56 284.0  80.0 0.0
857 0.0 84.0 0.0
868 40.0 84.0 0.0
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# Maximum number of fixities =

# Noda
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OO~ nHsON

Code
111
011
011
011
011
011
011
111
101

b 4
0.000000
0.000000
0. 000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000

428

464

4
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000

z
0. 000000
0.000000
0. 000000
0.000000
0.000000
0.000000
¢.000000
0.000000
0.000000

J92



10
11
12
13
14
15
16
17
is
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
5O
51
52
63

56
56
57
58
59
€0

001
001
001
001
001
001
101
i01
001
001
001
001
001
001
101
101
001
001
001
Q01
001
001
101
101
001
001
001
001
001
001
101
101
001
001
001
001
001
001
101
101
001
001
001
001
001
001
101
i1l

o011

011
01t

0.000000
0.000000
©.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
©.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0., 000000
0.000000
0.002000
0.000000
0.000000
0.000000
0. 000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000009
0.000000
0.000000
0.000000
0.000000

0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
Q.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
©.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
¢. 000000

0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
©.000000
0.000000
0.000000
0. 000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
©.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
Q.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
©.000000
0.000000
0.000000
0.000000
G. 000000
0.000000
0.000000
0.000000
Q.000000
0.000000
0.000000
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61
62
63

65
€6
67
68
€9
70
1
72
73
80
81
88
89
96
97
104
105
112
113
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
136
136
137
144
145
182
153
160
161
168
169
i7é
i

011
011
011
111
110
010
010
010
010
010
010
110
100
100
100
100
100
100
100
100
100
100
100
100
110
010
010
010
010
010
010
110
110
010
010
010
010
010
010
110
100
100
100
100
100
100
100
100
100
100
100

0.000000
0. 000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
Q.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.00J000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
Q.000000
0.000000
0.000000
0.000000
0.000000

0.000000
©.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0. 000000
0.000000
0.000000
0.000000
0.000000
0. 000000
0.000000
0.000000
0.00000C
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0,000000
0.000000
0.000000
0.000000
©. 000000
0.000000

0.000000
0.000000
0.000000
0. 000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.020000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
©.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0,000000
0.000000
0.000000
©.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0. 000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
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184
185
186
187
188
189
190
191
192
193
194
196
196
197
198
199
200
201
208
205
216
217
224
225
232
233
240
241
248
249
250
261
282
2563
254
255
256
257
268
259
260
261
262
263
264
265
272
273
280
281
288

100
110
010
010
010
010
010
010
110
110
010
010
010
010
010
010
110
100
100
100
100
100
100
100
100
100
100
100
100
110
010
010
010
010
010
010
110
110
010
010
010
010
010
010
110
100
100
100
100
100
100

0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.002000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
©.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000

0.000000
0.000000
0.000000
0., 000000
0.000000
0.000000
©.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0. 000000
0.000000
0.008000
0.000000
0.000000
0.000000
0.000000
0.00Q0000
0.000000
0.000000
0.009000
0.000000
0.000000
0. 000000
0.000000
0.000000
Q. 000000
0.000000
0.000000
0.000000
0, 000000
0.000000
0.000000
0.000000
0.000000
0. 000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000

0.000000
0.000000
0.000000
0.000000
0.000000
0. 000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0. 000000
0, 000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0. 000000
0.000000
0. 000000
0.000000
0.000000
0.000000
0.000000
0.000000
¢.000000
0.000000
0.000000
0. 000000
0.000000
0.000000
0.000000
0.000000
0.000000
©.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000



289
296
297
304
306
312
313
314
315
aie
317
318
319
320
321
322
323
324
326
326
327
328
329
336
337
344
345
362
363
360
361
368
369
376
arr
ars
379
380
381
382
383
384
386
386
387
388
389
390
391
392
393

100
100
100
100
100
100
110
010
010
010
010
010
010
110
110
010
010
010
010
010
010
110
100
100
100
100
100
100
100
100
100
100
100
100
110
010
010
010
010
010
010
110
110
010
010
010
010
010
010
110
100

0.000000
0.000000
0.000000
0.000000
0,000000
0,000000
0.000000
0,000000
0.000000
0.000000
0,000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0,000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
©.000000
0.000000
0.000000
0.000000

0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0. 000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
©.000000
0.000000
0.000000
0. 000000
0.000000
0.000000
0.000000
0.000000
¢.000000
0.000000
0.000000
0.000000
0.00C000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000

©.000000
0.000000
0.000000
0. 000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
©.000000
0.000000
0.000000
0. 000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
€. 000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
©.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
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400
401
408
409
416
417
424
426
432
433
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
464
465
472
473
480
481
488
489
496
497

505
506
5O7
508
509
510
511
512
513
514
B15
516

100
100
100
100
100
100
100
100
100
100
100
110
010
010
010
010
010
010
110
110
010
010
010
010
010
010
110
100
100
100
100
100
100
100
100
100
100
100
100
110
010
010
010
010
010
010
110
110
010
010
010

0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000"
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0. 000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000

0.000000
0.000000
0.000000
©.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
©.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
Q.,000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
©.000000
0.000000
0.000000
0.000000
0.000000
0.000000
Q.000000
0.000000
0.000000
0.000000
0.000000
©.000000

0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0. 000000
¢.000000
0.000000
0,000000
0.000000
0.000000
0.000000
0.000000
0.000000
Q,000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0, 000000
0.000000
©.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.00C000
0.000000
0.000000
0.000000
0.000000
0.000000
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B17
518
519
520
521
528
529
536
537
544
545
562
563
560
561
568
569
570
571
b72
673
574
575
576
577
578
579
580
581
582
583

585
592
593
600
601
608
609
616
617
624
625
632
633
634
€35
636
637
638
639

010
010
010
110
100
100
100
100
100
100
100
100
100
100
100
100
110
010
010
010
010
010
010
110
110
010
010
010
010
010
010
110
100
100
100
100
100
100
100
100
100
100
100
100
110
010
010
010
010
010
010

0.000000
0. 000000
0.000000
0.000000
0.000000
Q.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
¢. 000000
0.000000
0.000000
0. 000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
¢.000000
0.000000
0.000000
0.000000
0.000000
0. 000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000

0.000000
0.000000
0.000000
0.000000
0.000000
0.000900
0.000000
0.000000
0.000000
¢.000000
0.000000
0.000000
0.000000
©.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0. 000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0,000000
0.000000
0.000000
0.000000
0.000000
0.000000
0, 000000
0.000000
0.000000
0.000000
0.000000
0.000000

0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
¢. 000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0. 000000
0.000000
0.000000
0.000000
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640
641
642
643

645
646
647
648
649
656
657
664
666
672
673
680
681
688
689
696
€97
698
699
700
701
702
703
704
708
706
707
708
709
T10
711
712
713
720
721
728
729
736
737
744
746
762
753
760
T61
762

110
110
010
010
010
010
010
010
110
100
100
100
100
100
100
100
100
100
100
100
100
110
010
010
010
010
010
010
110
110
010
010
010
010
010
010
110
100
100
100
100
100
100
100
100
100
100
100
100
110
010

0.000000
0.000000
0.000000
0.000000
0.000000
©.000000
0. 000000
0,000000
0.000000
0.000000
©.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
©.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
©.000000
0.000000
0.000000
0.000000
©.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000

0.000000
0.000000
0.000000
0,000000
0.000000
0.000000
0.000000
0.000000
0.,000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
©.000000
0.000000
0.000000
0,000000
0.000000
0.000000
0.000000
0.000000
0.000000
©.0Q00000
0.000000
0.000000
Q.000000
0.000000
0.000000
0.,000000
0.000000
0.000000
©.000000
0.000000
0. 000000
0.000000
¢.Q0c000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000

0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
©.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0,000000
0.000000
0.000000
0.000000
0.000000
0.000000
©.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0,000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
9.000000
0.000000
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763
764
765
766
767
768
769
770
Ki$!
772
773
774
775
776
7T
784
785
792
793
800
801
808
809
816
817
824
825
826
827
828
829
830
a31
832
833

836
836
837
838
839
840
841
848
849
856
857
864
865
872
873

010
010
010
010
010
110
110
010
010
010
010
010
010
110
100
100
100
100
100
100
100
100
100
100
100
100
110
010
010
010
010
010
010
110
110
010
010
010
010
010
010
110
100
100
100
100
100
100
100
100
100

0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0. 000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
©.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.9Q00000
0.000000
0.000000
0.000000
0. 000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000

0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0. 000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
Q.000000
0, 000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0. 000000

Q.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0. 000000
0.000000
0.000000
0,000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0. 000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0. 000000
0.000000
0.000000
0.000000
0.000000
¢.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0. 000000
0.000000
0.000000
0.000000
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880 100 0.000000 0.000000 0.000000
881 100 0.000000 0.000000 0.000000
8e8 100 0.000000 0.000000 0.000000
889 110 0.000000 0.000000 ©.000000
890 010 0.000000 0.000000 ©,000000
891 010 9.000000 0.000000 0,000000
892 010 0.000000 ©.000000 0.000000
893 010 0.000000 0.000000 0.000000
894 010 0.000000 0.000000 0.000000
895 010 0.000000 ©.000000 0.000000
896 110 0.000000 0,000000 0.000000
#
#
# Material value identifier
# 0il sand
1
# All stresses are in kPa
# 1 2 3 4 5 6 7 8 9
# Young Poisson Dilativn Matden Uniax(cohesion) Hard Phi Eps Alpha
2,206 0.3 0.0 2.5 0.0 0.0 30.0 2.0 5.0e-b

#
# overburden (shale and till):

# small cohesion, medium E, medium friction, small hardening

2
1.0e6 0.3 0.0 2.5 100.0
#
# underlying limestone: high cohesion, high E, low friction, zero hardening
3
30.0e6 0.3 0.0 2.6 24.0e3
#
# Initial stress flag
# istres
1
#
REGIONAL PRINCIPAL STRESS FIELD
# alpha, sdz, A, B, C, E, hratio, top,
0.0 0.0 0.0 -17.0 0.0 0.0 1.0 0.0
#
#
# Loading information: a title for each one.
# digrav, ipled, isurt
1 0 0
¥
GRAVITATIONAL BODY FORCES AND PORE PRESSURE LOADS
.81
#
# this is for the initial loading
#
1
1.0 0.1 20 Q11101000
001101 0¢0CO0

1.0 25.0 2.0 5.Qe-B

0.0 28,0 2.0 4.,0e-5

x-over
0.0
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#
#CONSTANT SURFACE LOADS
# nsurf, alpha, sngaus

# 1 0.0 2
#j, elen#, 1ni, 1n2, 1n3, ln4, sdhl, adh2, sdz
#1 7 26 30 31 32 00.0 00.0 -20.0a3
#
# load increment parameters (ninc of them)
#
# use for next lnincs incraements
# facto, toler, miter, pflags(i..6,1)...Next lina ptlags(1..6,2)
#
# this is for the main loading
#
1
1.0 0.1 20 010 0 00O0CO0 O
0010001 11



Appendix H

SAMPLE DATA FOR USE WITH SIM3D3P

This data was used for the staggered run described in Chapter VIIL
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#% Two lines of title material
ABC1 = CYCLIC STEAM STIMULATION= NO BOTTOM WATER
10 ACRE SPACING = 11 M (36 FT) OIL ZONE * 3X3X3 GRID * 150 bpd inj rate
#
# NX, NY, NZ, IHTG, ITEMAX, IESC, NRTIPO, NSWO, NSGO, NTEMP, NTVO, IMBDR
3 3 3 1 9000 0 1 12 13 1 5 0

# underrelaxation factors.
# URFACI: underrelaxation factor for first URFACN N-R iterations
# ASOFT. 1: Ev multipliex
# 2: Vr multiplier
# 3: Ev/Vr predictor underrelaxation
# 4: Kfact multiplier (if zero, Kfact not used [==1])
# §: Pseudo=-Cr (if > 0, use this to implicitly couple problem)
# 6: porosity multiplier
# urfaci, urfacn, asoft(1), (2), (3), (4}, (6), (6), User_Cr
0.0, 0, 30.0, 1.0, 1.0, 1.0, -1.0e6, 1.0 3.0e-6
# tolerance and iteration limits for MIXED formulation
# portol mixmxit
1.00-4, 3
# NR iteration tolerances: epsdt, epsdsv, epsadp

# 0.1, 0.05, 0.1 (SMFA used these for dT and dp).
0.1, 0,05, 0.5

#
# CWP, CWT, cop, COoT, CR, HSPO, HCN, HCNOB
.000003  .00049 .000006  .0005 .0001 225. 42.3 35.3
# ,000003 .00048 .000005  .0QQ0b 3.0e-6 225. 42.3 35.3
# DENMA, HSPMA, DIF
i65. 0.20 0.96
#
# TVIST, VISOT, VISWT, VIS_stean
75.0 1275.0 0.92 0.0095
90.0 560.0 0.78 0.0102
150.0 80.¢ 0.435 0.0115
275.0 12.8 ¢.211 0.0127
575.0 1.29 0.111 0.0138
#
# DDINI, DWINI, MWTO, . .o
0.1350 3.49 480.0 0.00000277 11546.82
#
# TEMF, PSURF, TSURF
74. 14.7 80.
#
# SET (L) #1
# SWT(L,I),PCWOT(L,I),KRWT(L,I),KROWT(L,I)
0.20 0.0 0.0 1.0
0.28 0.0 0.0102 0.769
0.294¢ 0.0 0.0168 0.7241
0.387 0.0 0.0275 0.6206
0.414 0.0 0.0424 0.504
0.490 0.0 0.0665 0.3714
0.567 0.0 0.097 0.3029



0.630 0.0 0.1148 0.15666
0.673 0.0 0.1269 0.09566
0.719 0.0 0.1381 0.0576
0.789 0.0 0.1636 0.0
1.0 0.0 0.250 0.0
#
# SET (L) #1
# SLT(L,I),PCGUT(L,I).KRDGT(L,I),KRGT(L,I)
0.29 i.6 0.0 0.17
0.395 1.0663 0.0294 0.112
0.433 0.8968 0,0461 0.1022
0.B15 0,5493 0.0883 0.0865
0.569 0.,3211 0.1172 0.0761
0.614 0.1310 0.1433 0.0654
0.663 -0.0761 0.17640 0.05
0.719 =0.3127 0.2170 0.0372
0.75 -0.4437 0.2285 0.0285
0.806 =~0.68761 0,291% 0.0195
0.85 -0.8662 0.3373 0.0121
0.899 =1.0732 0.5169 0.0026
1.00 -1.500 1.0 0.0
#
# TEMPT, SWCT, SCCT, SORWT, SORGT, SCRT, KRWROT, KROCWT, KRGROT, PCWT, PCGT
74.0 0.2 0.0 0.211 0.09 0.0 0.1636 1.0 0.7 1.0 1.0
#
# OSRMN, QOLINM, TOTIM
0.1 10.0 1100.0
# DELX(I)
130.0 130.¢ 130.0
# DELY(I)
130.0 130.0 130.0
# DELZ(I)
12.0 12.0 12.0
# DIPX, DIPY, ZINIC
0.0 0.0 1800.0
#
# KX, KY, KZ, PHI (For each layer).
2.0 2.0 2.0 0.31
2.0 2.0 2.0 0.31
2.0 2.0 2.0 0.31
#
# 11, I2, J1, Jz, Ki, K2
i 3 1 3 1 3
# ZINIC, PINIC, ZWoc, Z50¢, PCWOC, PCGOC
1800. 1B0. 0.6 0.0 -100.4 =100,
V] 0 0 0 0 0 BLANK11
o o 0 0 0 0 BLANK12
0 0 0 0 0 0 BLANK13
0O 0 O 0.0, 0.0, 0.0, 0.0, 0.0 BLANK
# I1, I2, J1, J2, Ki, K2, Isi
0 0 0 o 0 0 1
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# LAYER, PX, TX, SWX, SGX
1 200. T4. 0.23 0.0 INIT.
2 200. T4. 0.23 0.0 INIT.
3 200. 74. 0,23 0.0 INIT.
#
# Well Data info from below here
#
# TCAMB, DT, DTi, DSMX, DPMX, DTPMX, DTMAX, DTMIN
20. 0.0 0.5 20. 20, 20, 0.005
# I01, I02
1 1
# NR iteration toleranras: epsdt, epsdsw, eopsdp
0.1, 0.05, 0.6
# INDQ,IPOZ0,IQVAP, MNITN,MXI1N
0 1 0 2 10
# I, 1Ip, JP, KPi, KP2, IND:1,INDP2,ITASA,KBOMB
1 1 i 1 3 0 2 0 1
# WI, PWF, PINY, X TINY
150, Q. 500. 0.7 0.0
0
#
3s. 0.0 0.5 20, 20. 20. 0.005
i 1
# NR iteration tolerances: epsdt, epsdsw, epsdp
0.1, 0.05, 0.5
0 1 0 2 10
1 1 i 1 3 0 2 0 1
0. 0. 500. 0.7 0.0
o
#
126, 0.0 0.0 20, 20. 20. 0,005
i 1
# NR iteration tolerances: epsdt, epsdsw, epsdp
0.1, 0.05, 1.0
0 1 0 2 10
1 1 i 1 3 1 0 1
2.5 0. 500, 0.7 0.0
0
#
185. 0.0 0.0 20. 20. 20. 0.005
1 1
# NR iteration tolerances: epsdt, epsdsw, epsdp
0.1, 0.05, 1.0
0 1 0 2 10
1 1 1 1 3 0 2 0 1
1E0. 0. 500. 0.7 0.0
0
#
160, 0.0 0.0 20. 20. 20. 0.005
1 1
# NR iteration tolerances: apsdt, epedow, epsdp



0.1, 0.05, 1.0
6o 1t o0 2 10

1 1 1 1 3 0 2 0
0. 0. 500, 0.7 0.0
0
#
250, 0.0 0.0 0.01 20.
1 1
# NR iteration tolerances: epsdt, eopadsw,
0.1, 0.06, 1.0
0 i 0 2 10
1 1 1 i 3 0 | 0
2.5 0. 500. 0.7 0.0
o]
#
280. 0.0 0.0 0.01 20.
1 i

# NR iteration tolerances: epsdt, epsdaw,
0.1, 0.05, 1.0
0 1 o 2 10

1 1 1 1 3 0 2 0
150. 0. 500. 0.7 0.0
0
#
286. 0.0 0.0 0.01 20.
1 1

# NR iteration tolerances: epsdt, epadsw,
0.1, 0.05, 1.0
0 1 0 2 10

1 ! 1 1 3 0 2 0
0. 0. B0O. 0.7 0.0
0
#
a7s. 0.0 0.0 0.01 20.
1 1
# NR iteration tolerances: epsdt, epsdsw,
0.1, 0.06, 1.0
0 1 0 2 10
1 1 1 1 3 0 1 0
2.5 0. 500. 0.7 0.0
0
#
405. 0.0 0.0 0.01 20,
1 i

# NR iteration tolerances: epsdt, epsdsw,
0.1, 0.05, 1.0
0 1 0 2 10
1 1 1 1 3 0 2 0
150, 0. 500. 0.7 0.0
0
#

20.

apsadp

20.

epsdp

20.

apsdp

20.

epsdp

20.

epsdp

20,

20,

20,

20.

20.

0.008

0.005

0.005

0.005

0.005

407



Appendix 1

USER MANUAL FOR FESPS

This appendix is a user manual for preparing data sets to be used with FESPS. Two data files
are used in a normal run, but one of these is supplied by the preprocessor RENUM. A restart file
might also be used if the simulation is to restart from a given time. Running RENUM is part of the
data preparation for FESPS, so a separate section is devoted to setting up the input file for RENU:A.
Keywords are used as much as possible to avoid cryptic controls. A schematic of how input is
provided to FESPS is given in Figure I-1.

Most of the data are read in as free format and this must be assumed unless stated otherwise,
Thus, all numbers must be separated by spaces and, or, commas. All text must start in column
number one of the file; this includes text data and keywords. Comment lines are permitted anywhere
in the files with a few exceptions. The terms “card” and “line” are used interchangeably. A line
is a line of data terminated with a carriage return. Variable names and other text that is taken
from the program appear in typewriter type. The type of a variable will usually be indicated in
round brackets (like this). The variable type character will be abbreviated as char. Keywords
will be distinguished in the text by the use of italics. A range is indicated in the style of Pascal by
joining the end points together by two dots, e.g., 1..n. Symbolic data sets outlining the input data
file structures are given at the end of each section. Use these while going through the explanations.
Example problems contain actual data.

I.1 Preprocessor RENUM

1.1,1 Description

RENUM generates a steering array for an optimal numbering of the degrees of freedom de-
pendent on the connectivity array. It does not renumber the nodes, but reumbers the degrees of
freedom instead. Typically, there are four to seven degrees of freedom per node — S Sor Pun T
and three displacements. It also provides a template for the solver, based on this information. The
user neither sees nor cares about the steering array and permutation index. They only matter while
the coefficient matrix is being filled, and when the unknown variables have been solved for and the
program extracts the degrees of freedom in groups of the degree of freedom type — Su, So,Pu T,
etc. — which are now appropriately ordered by node or element.

408
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User data

a) general information
b} connectivity array
¢) DOF per node information

GPS-GK statistics
file

») permutation vector

b) steering arrsy

¢) STAIRWAY
template

a)  control parameters and
general information
governing the simulation

|

FESPS

/

b) initial values of the
variables

Yy
simulator output
with time

/

¢) open-ended well, print, and
time step data

Figure J-1
Outline of user input to run FESPS.

[.1.2 Data for RENUM

The data are read in three groups:

a) general information;

b) the connectivity array for elements and nodes;

c) the DOF steering array data.
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a) There are four cards with the general information. The first card defines the comment
character (char=1), which will be the first character appearing in the file. A typical choice would
be a ‘4' or a ‘#’, The second card must contain the key (chare4) for the type of minimization
to be performed: bandwidth or profile minimization. Write these explicitly as banduwidth or profile
minimization in the file from column one. The third card contains the title of the run (integer=80).
The fourth card contains the defining parameters of the problem. The four cards are:

# a sample comment character

a title line

profile minimization

nelem, npts, nnodes

nelem is the number of elements in the mesh; npts is the number of nodes or points in the mesh;

nnodes is the maximum number of nodes per element, which is currently eight in FESPS.

b) There are nelem cards for the connectivity array which defines how the mesh is divided into
elements—one card for each element definition:
k, nodel, node2, node3, noded, nodeb, nodeS, node7, node8
k is the element number, and the nodel, ... are the local node numbers expressed in the global node
numbering scheme. Note that the global scheme is the one chosen by the user, and has nothing to do
with the optimal ordering schemes. The values of node7 and node8 are set to zero for L6 clements.

The elements must appear in ascending order to help the user detect missing data.

c¢) The degree of freedom numbering section indicates which degrees of freedom are active at
which node. A numbering code for the degrees of freedom must be implemented: 1 = §,,, 2 = So,
3=py,, 4=T,5=1u, 6 =v, 7=w. Ifa given degree of freedom will potentially be on and off
during a run (e.g. when a well node changes from a rate to a pressure specification), leave it in the
set. The data are entered in groups. The first card indicates the number of groups, ngroups, and
the maximum degrees of freedom allowed per node, mxdfpn, both type integer. The number of
groups is for the user’s benefit and the rest of the data are keyword-controlled. The keyword for a
group (char#3) is group, and exceptions to the group appear before the next group. The input of
data are terminated by the keyword end. Each keyword must appear on its own card. A group of

nodes are initialized with two cards:

i) nodel, node2, ndofpn
nodel and node2 respectively are the start and end nodes of the range of the group; ndofpn
is the number of degrees of freedom per node in this range.

ii) vhichdof(1..ndofpn)
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This is the list of the degrees of freedom in ascending order.

If the user wishes to specify exceptions to the group definition, he can follow the previous group
cards with one card for each exception. The exceptions are terminated by the signal for a new group
or the end keyword. Each exception is defined by a card containing the following information:
nodeno, nodinf(1..mxdfpn)
nodeno is the node number to be changed, and must lie between nodel and node2; nodinf is the
list of degrees of freedom for the exception; nxdfpn digits must appear—pad non-existent degrees of
freedom with zeros. The exceptions must appear in ascending order of nodeno and must be nodes
that fall within the range of the group. Anything else will generate an error. This date could be all

provided within separate groups, but the exceptions are more compact to write.

1.2 Symbolic data set for RENUM

# first character in file is comment character

# wherever it appears in the first column it defines a comment line
# bandwidth minimization

# (we chose profile minimization)

profile minimizaticn

this line is the title of the run

nelam, npts, nnodes

# now need nelem cards for the connectivity array, kel..nelem
k, nodel, node2, node3, node4, node5, node6, node7, node8
# indicate the expacted numbexr of groups defining the dof
# and the maximum permitted number of dof per node
ngroups, mxdipn

# this is a group---indicated by keyword

Eroup

nodel, node2, ndofpn

whichdof (1. .ndofpn)

# any exceptions follow, terminated by any keyword
nodeno, nodeinf (1..mxdfpn)

nodeno, nodeinf(1..mxdfpn)

# N.B. pad out nodeinf with zeros for non-existent DOF

# because each node must have an equal no. of DOF

# next group

group

nodel, node2, ndofpn

whichdof(1. .ndofpn)

# no exceptions this time

# terminate the input

end of input
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1.3 Main program FESPS

FESPS requires wwo input files—one suppiied by the RENUM preprocessor and one supplied by
the user. This section describes how to set up the file supplied by the user. It must be consistent
with the data used to run the preprocessor RENUM. To enforce this, the connectivity array used
by RENUM is echoed to the file it supplies to FESPS. The user does not supply it directly. If the
user wishes to alter the connectivity array, he is forced to rerun RENUM with a new input file. The
user should never alter the output of RENUM, except to add comments. The output is written to

text file only for the convenience of transfer between different computers and for the user to sec the

statistics of the minimization.
The user data are supplied in three main groups with partial use of keywords:

a) control parameters and general information governing the simuiation;

b} initial values of the variables;

¢) well, print, and time step data (open-ended).

1.3.1 Control parameters and general information

The first character in the file (line one, column one) defines the comment character. A typical
choice would be a ‘#’ or a *»’, Thus the first line is always a comment. Various control data follow
the comment definition. Three cards appear first: a title for the simulation up to 80 characters long
{char+80) and basic information for the run. Thus the first four cards in the file will look like:

# a sample comment character

a title line

strtstep, npts, nelem, mxdofpn, totdof, ngaus

idof (1), idof(2), idof(3), idof(4), idof(5), idof(6), idof(7)

strtstep is the time step at which to start the simulation. A new simulation requires strtstep = 0.
A restart record file must be supplied if the simulation is to start at any positive value. A negative
value causes the data to be checked but no simulation to be run. npts is the number of nodes in the
mesh; nelen is the number of elements in the mesh; maxdofpn is the maximum number of degrees
of freedom permitted per node; totdof is the total number of degrees of freedom in the problem;
ngaus (14) is the number of Gauss quadrature points chosen to evaluate the integrals. Some of these
values can be obtained from the output from RENUM, and are designed to check the input files
against each other. All of them are integers, If the problem defirition is larger than the compilation
parameters, the program will abort at this time. If the problem must still be run, those parts of the
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source code containing parameter values will have to be recompiled. The problem definition must
also agree with the values in the RENUM output file. On the fourth card, enter information about
which degrees of freedom are active for this run by typing its value (1...7) or a zero if it is not.
Eg., 1,2,3,0,0,0,0 implies an isothermal run. The number of degrees of freedom recognized is
controlled by mxdofpn

The user’s choice of units must now be defined using a set of key numbers (integer and
keywords (char*10). These choices define which units are used for subsequent input and output.
The st card must have one of input units or default units starting in the first column. If the default
units are chosen, the SI option will be chosen for input and output. Otherwise, at least one input
unit must be specified using key numbers and keywords. Up to sixteen units can be defined. Any
units not mentioned in this table will be derived from this set. The variable is identified by a number
and its units by a keyword. The keyword must appear on the next uncommented card and start in

the first column. A keynumber of zero terminates the current set of unit definitions.

The keywords are self-explanatory, and are listed in Table I-1. Any units not specified by
the user will be set to the default SI unit. The input units must be followed by the output units
specifications. How they will be defined is controlled by the keywords same units as input, or oulput
units if they are to be specified. These must begin in the first column. It is helpful tc identify
the key number by appending a description to the line, as only one field is read from the line, For
example,
input units
keynumber - description
keyword
same units as input
If output units are to be specified use the same key numbers and key words as given in Table I-1.
It is helpful to identify the variables in the input file using comments. Note that all Btu used are
[nternational Table values.

Several cards of control data now follow. First are the controls for time step growth and
saturation overshoot. Typical values are given in parenthesis during the explanation. See also the
paper by Grabowski et al, 1979.
pnorm, tnorm, satnorm, dispnorm, dampdt, satcon, theta
poorm (0.5 MPa), tnorm (30 K), satnorm (0.2) , and dispnorm (1 mm) are the norms controlling
time step growth; dampdt (1.25) is the growth relaxation factor; theta (0.5} is the collocation point

distance for the time discretization; satcon (10~%) is the saturation overshoot tolerance above which
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key number

variables

end of current units definition

time

pressure

temperature

absolute permeabilities

length

densities

viscosities

volumes

Table I-1

valid keywords for units

sacs
days
hours
mins

psia

deg C
deg R
deg F
m2
-um?2
darcy
md

o

co
faot
kg/m3
g/en3
1bm/USgal
lba/1t3
Pa.s
nPa.s
cp
m3
dm3
USgal
3
bbl

Key numbers and words for user-specified units.
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key number

9

10

11

12

13

14

15

16

17

variables

energy

mass

thermal conductivity

well volumes

well rates

displacements

stresses

solution gas ratio

well energy rates

valid keywords for units

J

kJ

MJ

Btu

kg

g

1bm

W/ (n.X)
xW/ (m.K)
Btu/h-ft-F
n3

dm3
USgal
££3

bbl
n3/8
dm3/s
m3/d
Usgal/d
££3/d
bbhl/d
m

nm

feot
inches
Pa

MPa
peia
sm3/sm3
vol/vol
scf/bbl
J/s
Ml/d
xJ/d
Ml/s
kl/s
Btu/d

Table I-1. Key numbers and words for user-specified units (cont.).
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a time step must be repeated. satnorm can take a maximum value of 0.3, which permits a change

of up to three times the previous value.

A card with the times for the simulation comes next.
endtime, dtmax, rstrtint, rstflag
endtime is the end time of the simulation (real); dtmax is the maximum number of time steps
(real); rstrtint is the interval in time steps between writing restart records (integer) > U;
rstflag indicates whether or not to write a restart record at the same time as detailed output is

printed (integer). A value of one for rstflag enforces the writing of the record.

Four cards follow with data in the same order as described next, with typical values following

in parenthesis:

i) tols(1..9)
These are the tolerances (real) for:
. pressure convergence for water density calculations (1.0 kPa);
. convergence for z-factor calculations (10~5);
. the ¢ parameter for S, (1074);
. the convergence of the Newton-Raphson saturation solution (0.002);

1

2

3

4

5. the convergence of the Newton-Raphson pressure solution (1 kPa);

8. the convergence of the Newton-Raphson temperature solution (0.5 K);

7. the convergence of the Newton-Raphson displacement solution (0.01 mm);

8. the convergence of the function residual for Newton-Raphson method (0.001).

9. the relative convergence of each variable in the linear solver compared to its Newton-

Raphson convergence tolerance {0.001).

ii) shifts(1..5)
These are the shifts (real) for the formation of numerical derivatives:
. derivatives in the properties routines with respect to pressure (10 kPa);
. derivatives in the properties routines with respect to temperature (1 K);

1
2
3. derivatives in the Jacobian (s*iffness) matrix with respect to saturations (10~%);
4. derivatives in the Jacobian (stiffness) matrix with respect to p, (10 Pa);

5

. derivatives in the Jacobian (stiffness) matrix with respect to T (103).

iii) itex(1..4)
These are the iteration controls (integer):

1. maximum iterations for z-factor calculations (10);
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2. maximum iterations for the Newton-Raphson scheme (5);
3, maximum number of repeated time steps (5).

4. maximum number of linear solver iterations (0).

iv) perturb(1..4)
These are the perturbation values of Sy, So; Pu» and 7', respectively, expressed in fraction pore

volume, Pa, or K, per day.

Note that the shifts should be three or four orders of magnitude smaller than the tolerances.
The number of iterations requestad for the linear solver DSTAIR controls the method of solution.
An entry of zero iterations indicates that no iterative improvement is to be found nor is a residual
to be calculated. Requesting one or more iterations indicates that the residual is to be found
and convergence determined using the product of the relative tolerance and the Newton-Raphson

convergence tolerance.

The control parameters section is completed by specifying the level of debugging required. This
is all keyword controlled (char=10), and they are self-explanatory. Note that the section must be

terminated with the end keyword. The current list of possible options is given in Table -2,

1.3.2 Initial values of variables

After the various controls have been set, the file produced by RENUM is read in. Then FESPS
continues to read from the user input file and initializes the variables. This section is keyword
controlled (char*5) and most of the data are read by a common subroutine RESIN. This subroutine
has its own keyword controls (char+3) and allows the mesh data to be read in groups of individual
data or & single value for a range, or any combination of these. Data are read for the current variable
until an end key is provided. The keywords in RESIN are:

one

ind

end

Only three characters are significant. These are abbreviations for one value for entire range,
individual data for range, and end of data. The end keyword helps avoid confusion. Data are emered
on two lines with the key and range of mesh nodes:
key
start, end, wvalue

The value is only necessary when key is one and then this value is assigned to the variable for the
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keyword

and debugging

bitmakr
gauss info
gauss wts

tri coords

shape fcns

shape drv

jac shapel

jac shape2

jac wtgsi

jac wtgs2

utg w

wtg okg

potl w
potl okg

wtg fecn w
wtg fen og
wtg drv w
wtg drv og

description

end of debugging information

bit vectors from bitmakr

gauss points and weightings from gaussq
gauss weightings only from gaussq

triplicate coordinate sets and bitprsm9 struc-
tures

shape functions from shapesl8

shape function derivatives from shapeslB
large information set from transformations of
shape function derivatives in derivsl8s

small information set [rom transformations of
derivsl8

large information set from transformations of
weighting function derivatives

small information set from transformations of
weighting function derivatives

L8 and L6 weighting parameters for water

L8 and L6 weighting parameters for oil and gas

potentials for water for weighting functions

potentials for oil and gas for weighting functions

weighting functions for water
weighting functions for oil and gas
weighting function derivatives for water

weighting function derivatives for oil and gas

Table 1-2
Key words for debugging options.
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keyword description

int S3 integral S1 (SN1N1N)

int 82 integral 2 (SN1DN1DW)

int 83 integral S3 (SW1DN)

int S4 integral 84 (SN1IN)

int S5 integral S5 (SW1N)

int S6 integral 56 (SN1DN1W})

int S7 integral S7 (SN1DN2DN)

test input echo of input

input variables immediate echo of input

well inputs well input information

z-factors data from z-factor calcula-
tions

subroutine anncuncements give announcement of entry
into each subroutine

well calculations data from well calculations

pointer integers for wells list vector pointers for well

parameter storage

DSTAIR printing print info. during DSTAIR
calculations

DSTAIR iterative improvement info. on iterative improve-
ment

DSTAIR relative error monitor relative error

DSTAIR resource usage monitor usage of computer
resources

Table I-2. Key words for debugging options {cont.).

inclusive range of start to end, both integers. If key is ind then one value must be provided for
each node in the inclusive range. The values are read in free format extending over as many lines
as required. No comment lines are permitted within the data, though. If key signals the end of the
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data, no range is necessary.

Exceptions to this form of input are (1) the coordinates of the nodal locations, (2) the initial

pressures, (3) the initial bubble point pressures, (4) the convective term muitipliers, and (5) the
capillary pressure data.

(1) The nodal coordinates are read in for each node with its (z, y, z) coordinates. The nodes must
be entered in ascending order. This is enforced to help prevent one from accidentally missing
nodes, A reference depth for the z-coordinate must be entered first.
rafarence depth
node, X, ¥, Z

Note that the z-direction is positive upwards.

(2) The pressures can either be initialized using equilibrium from a given datum, or be specified
individually as in the previous description of RESIN. If equilibrium initialization is chosen, the
following data must be provided:

datum, pdatum, tdatum, goc, woc

datunm is the depth of the datum measured positive downwards; likewise goc and woc are
the depths to the gas-oil and water-oil contacts; pdatum and tdatum are the pressure and
temperature respectively at the datum. If there is no actual GOC or WOC in the reservoir,
locate them somewhere outside of the intervul of interest. Note that although the program

works with a positive-upwards z-coordinate, the points are given as positive depths from the

surface.

(3) Theinitial bubble point pressures of the oil can be set equal to the initial node pressure or equal
to some single value. In the latter case it is assumed that the entire domain is undersaturated.
Where permeabilities are set equal to the ratio of the permeability in another direction, the

multiplying factor for the new set of permeabilities is put on the line following the keyword.

(4) The convective term multipliers. These terms are used for debugging, and are not required.
They are entered as required for each of the equations — oil, water, gas, and energy — four

terms per equation, except for 24 for the energy equation.

(5) The capillary pressure terms. There are default values as described in the section on rock and
fluid properties, or these terms can be entered as:

Swi, Sor, epsilon, a, b, ¢, d, m

The keywords specifying the variable to be initialized and the method to use are given in
Table I-3. Unless otherwise stated, all keywords start in column one of the data file and are in lower
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keyword

nodes
tomperatura
pressure

equilibrium

sato
satw
porosity

bpp
specified

caed
capi
x~permeability
y-permeability
z-parmeability
kx=y
kxwy
ky=x
ky=z
kz=x
kz=y

ond

description

enter nodal locations
enter temperature data
enter temperature data

if it follows the pressure keyword, use equi-

libriurn initialization for pressures. If it fol-
lows the bubble point pressure keyword, use
equilibrium initialization for the initial bubble
point pressures

enter oil saturation data

enter water saturation data

ente? porosity data

enter bubble point pressure information

if it follows bpp keyword, set the initial bubble
point. pressure to the following specified value

enter convective term multipliers
enter capillary pressure terms
enter z-permeability data
enter y-permeability data
enter z-permeability data
setky = f xky

set kz = f % ky

set ky = f %X ke

set ky = f x ky

set ky = f x ks

set ky= [ x ky

end of data

Table I-3
Key words for initialization of variables.
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case type. Data are read until the end keyword is encountered. The end of this data section is also
the end of the static definitions.

1.3.3 Well, print, and control data

The tail of the user data file is composed of information governing wells, time of printing, and
time step controls. As with the other sections, it is keyword controlled. The data will be used only
when the specified simulation time is reached. If the current time is greater than or equal to the
specified time, the data are read to the next keyword, where the time is again checked. At the start
of a simulation, the current time is zero. When the current time is less than the specified time, the
remaining data are not read until the simulation time reaches the specified time. Thus new well,
print, or control data can be added to a restarted simulation. Simulations with common first parts
in time need not be run from the start in this case. Situations might include difficulty converging to
& soluticn at a particular time, or altering a well specification. The data can be added in any order
of the three main groups, but it will initially only be read to the first group where the time it is to
be used is greater than the current simulation time. The rest of the data will only be read as the
simulation time becomes equal to the time to be used: nextinfo.

A group of data always begins with two cards:
datatype
nextinfo

datatype is a keyword for the type of data: well, print, control, or an end sequence. nextinto is
the activation time in the time input units when the group of data is to be used. Groups of data
can be appended as required. The four data types are discussed in turn.

Four or more dashes indicate the end of all data. It is not necessary but can be considered a

statemnent of data termination.

well data

The actual data follow the activation time. At least one card is necessary to define the type
of well, and several more to define the geometry.

i) woum, type, spec, rw, per?

wnuz is the number identifying the well, an integer ranging from 1 to maxwells. type is the
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type of well (integer), and must be one of
1. total fluid pressure specified production well;
bitumen rate specified production well;
(gas rate specified production well;)
. water rate specified production well;
. water and gas pressure specified injection well;

water and gas rate specified injection well;

© o oa W N

. shut in well;

Numbers other than those listed above are invalid; spec is the specified pressure or rate of
the well, depending on the choice of type; rv is the wellbore radius; pert indicates whether the
well will have a new geometry. If the well is being shut in, no further data are required. If it is
an injection well, the mass fraction of water in the injected stream and the steam quality must be
provided (real):
wsplit(1), wspliz(2)

The mass fraction of the water is 1.0000 if no gas is being co-injected. The well name (char*64)
follows on the next line:
wellid

Several constraints (zreal) must now be specified on one line:

ii) con(1), con(2), con(3), con(4), con(B), ¢on(6), con(7)
where the indices are
1. maximum oil rate;
. maximum gas rate;

. maximum water rate;

2

3

4. maximum gas-oil ratio;

5. maximum water-oil ratio;

6. maximum wellbore pressure;
7

. minimum wellbore pressure;

If a constraint is made negative, it will be ignored. If the well has been previously defined, no
more information is required. The next card contains the name of the well (char=64)
wallname
If it is & new well or if paxf = 1, the position and geometry of the well must be specified according
to the following:

iii) nlsegs



424

nlsegs is the number of line segments (element edges) which constitute the well. For each line
segment, certain information must be provided (all integer):

iv) lsegno, lnelem, nl, n2

lsagno is the line segment number; lnelen is the number of elements associated with the line
segment; n1 and n2 are the global node numbers defining the line segment. For each element,
the following information is required:

xk, olem, frac, sl11, s12, 821, =22

kk is the count of the current line providing element information for the current line segment,
ranging from 1 to lnelen; elem is the element number in the mesh; frac is the {ractional
contribution of this element to the flow (8/2r); s11 and s12 are global node numbers of the
support nodes in the upper flow plane, s21 and 822 are the node numbers in the lower flow
plane. This is illustrated in Figure [-2,

wellbore

Figure I-2

Well definition in an L8 finite element

printing data

Again, the data follow the activation time, which appears on its own line. Only one line of
data is required:
nextout, timeint, stepint, dtnext

nextout is the time at which the simulation information will be written to cutput (real); timeint



is the simulation time interval between subsequent writes to output (real); stepint is the interval
in time stcps between subsequent writes to output (integer); dtumext is the value to be used for
the next time step (real). Setting any of these values to zero or negative will cause the program to

ignore them.

control data

One line of data is required to follow the activation time:
endtime, endstep, dtmax, rstrtint, rstilag
ondtime is the end of the simulation time (real); endstep is the maximum number of time steps
allowed in the simulation (integer); dtmax is the maximum permitted time step size (real); rartint
is the interval in time steps between writing restart records; ratflag is set to 1 if restart records are
to be written at the same time as output is written. Otherwise set it equal to zero. It is essential

that all these data be provided with the correct values, They will never be ignored.
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1.4 Symbolic data set for FESPS

# first character in file is comment character

# wherever it appears in the first column it defines a comment line
This line is the title of the zun

strtatep, npts, nelem, mxdofpn, totdof, ngaus

# program will now abort if it needs to be recompiled

#DOF: Sw So Pw T U V W

idof (1), idof(2), idof£(3), idof(4)}, idof(5), idof(6), idof(7)
# now define the units

input units

# some example units (see table in user manual): watch the case,
# putting the description after the key number saves space.

1 - time

days

2 - pressure

kPa

7 = viscosities

nPa.s

13 - woll rataes

dm3/s

15 - stressaes

MPa

# finished defining input units

same units for output units

# self-explanatory

# time step control variables

pnorm, tnorm, satnorm, dispnorm, dampdt, satcom, theta
endtime, dtmax, ratrtint, rstflag

# the required tolerances

tols(1), tols(2), tols(3), tols(4), tol=(E), tols(6), tols(7),
tols(8), tols(9)

# the required shifts

shifts(1), shifts(2), shifts(3), shifts(4), shifts(5)

# the required iteration controls

iter(1), iter(2), iter(3), iter(4)

#perturbation values (gradients wrt time) as input unit per day (eg, Pa/day)
perturb(1), perturb(2), perturb(3), perturb(4)

# debugging information

vall inputs

well calculations

end debugging

# self-explanatory

#

# the next section deals with initial values of variables

# nodal coordinates: need npts entries, node=l1..npts

nodes (data)

rotdepth

node, X, ¥, 2

# otc....
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temperatures

# use standard RESIN method for one value satisfying entire range
one

start, end, value

and

#

pressuraes

equilibrium

datum, pdatum, tdatum, goc, woc
#

sato

one

start, end, value

ond

#

satw

one

starg, end, value

end

#

porosity

one

start, ead, value

end

#

bpp

specified

value

# one value spacified for bpp
#

capillary pressure data for oil and water
# Pc_ow = a + bSus + cSws"2 + d/(eps + Sus); Sus = (Sw - Swi)/(1-8wi)

Swi, Sor, epsilon, a, b, c, d, m
#

cmod ### convective multipliers (not required)
vater

1.0, 1.0

1.0, 1.0

0il

1.0, 1.0

1.0, 1.0

gas

1.0, 1.0

1.0, 1.0

end of convective multipliers

#

x~permeabilitiaes

ind

start, end

valuel, value2, value3d
value4, valueb



# etc...

one

start, end

# one can enter as many ranges as one likes

end

ky=x

factor

kz=x

factor

# sat all permeabilities equal to x-permeabilities

# end of static definitions

¥

# no the well, print, and control data

waell data

0.0

# well data to be used at time 0, i.e., the start of the simulation
# define well spacifications and constraints

wnum, type, spec, rv, peris

# weplit(i), woplit(2)

# the above two nmeeded if it is an injection well

my well name

con(1), con(2), con(3), con(4), con(B), con(6}, con(7)

# if this well has not previously been defined the following data must
# be provided

nlsegs

# need nlsegs of the following groups (1lsegno=1..nlsegs)
lsegno, lnelem, nl, n2

# need lnelem cards describing the associated elements (kk=1,,1lnelem)
kk, olem, frac, sil, sl2, s21, 822

# etc....

#

# new type of data

printing data

0.0

nextout, timeint, stepint, dtnext

# new type of data

control data

0.0

endtine, endstep, dtmax, ratrtint, rstilag

# another well specification, active at a later time
woell data

100.0

wowm, type, spec, IV

con(1), con{2), con(3), con(4), con(5), con(6), con(7)
#

printing data

100.0

nextout, timeint, stepint, dtnext

#

# wo don’t need the following, but it informs FESPS that there
# will be no more data to be read (only four dashes actually needed)
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