
 
 
 
 

UAV Linear Model Predictive Control Using Computer Vision Algorithms 
 

by 
 

Christopher Conrad Surma 
  
  

 
 
 
 

A thesis submitted in partial fulfillment of the requirements for the degree of 
 
 

Master of Science 
 
 
 
 
 
 
 
 

Department of Mechanical Engineering 
University of Alberta 

 
 
 
 
 
 
 

  
 
 

© Christopher Conrad Surma, 2019 



Abstract

This thesis aims to develop a motion control strategy for an Unmanned Aerial Ve-

hicle (UAV) to execute a pursuit algorithm based on a vision based object detection

algorithm. This enables a pursuer UAV to follow a target UAV based on images

obtained from the onboard camera of the pursuer. The UAV pursuit algorithm is

implemented onto a commercially available Parrot AR.Drone 2.0 quadcopter. Two

motion control strategies considered for the UAV pursuit algorithm are a Propor-

tional Integral Derivative (PID) Control and a Linear Model Predictive Control

(LMPC). The performance of these two control strategies is evaluated based on

their performance responding to a step input in each input channel, and tracking a

figure-8 flight trajectory. A LMPC strategy was chosen to follow the target drone’s

trajectory estimated by a vision based object detection algorithm. In order to use

a LMPC strategy, a linear state space model was obtained and identified for the

Parrot AR.Drone 2.0. The vision based object detection algorithm used for our

application is YOLO v2, a single-layer convolutional network which identifies the

location of the target drone and returns a bounding box around it in the image

frame. Experimental testing proves the proposed UAV pursuit algorithm achieves

accurate detection of the target and successfully pursues it using the LMPC motion

controller.
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Chapter 1

Introduction

1.1 Motivation of Research

The primary objective of this thesis is to develop a UAV pursuit algorithm which
employs a closed-loop control strategy combined with a vision-based object detection
algorithm. The resulting design is implemented onto the commercially available
Parrot AR.Drone 2.0. The chosen vision based object detection algorithm, YOLO
v2, employs a single-layer convolutional neural network (CNN) to detect and locate a
target Parrot AR.Drone 2.0 in the image frame of the pursuer [2]. The performance
of YOLO v2 is volatile, and requires a pure white background and an absence of
any object besides the target drone to function optimally. The outputs of the vision
algorithm are used to estimate the trajectory of the target UAV relative to the
pursuer. This trajectory is tracked by the pursuer’s motion control system, which
needs to handle noise and outliers in the reference trajectory plus disturbances from
the environment. A Proportional Derivative Integral (PID) controller and a Linear
Model Predictive Controller (LMPC) are implemented and their performance is
assessed in hardware experiments.

Previous work on this project was carried out in [3] and [4]. The work in [3]
used a much simpler and less accurate vision-based algorithm, employed an overly
simplistic calculation of the target position, and implemented the target tracking as
an open-loop motion control which is unable to reject disturbances. The work in [4]
implemented vision-based detection and position estimation of the target drone, but
the resulting estimated trajectory was found to be insufficiently accurate based on
hardware testing. A secondary objective of this thesis thus became to obtain an
accurate estimation of the relative position of the target from the outputs of the
YOLO v2 vision algorithm.

1.2 Literature Review

1.2.1 Vicon Motion Capture System Applications

Vicon motion capture systems have been used extensively in biomechanical and
robotics applications. Examples of biomechanical applications that have used Vicon
motion capture include the performance assessment of a wearable motion sensing
suit [5], development of a methodology for tracking foot motions [6], and testing
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a machine learning algorithm designed for human emotion recognition [7]. In re-
gards to robotic applications, the Vicon motion capture system is typically used as
an external sensor in various vehicle control systems and algorithms. Vicon mo-
tion capture has been incorporated in quadcopter control used for radio frequency
source localization and tracking [8], indoor UAV flight [9], and autonomous obstacle
avoidance [10]. Substantial amounts of research have relied on the Vicon motion
capture system to measure vehicle position and orientation [11]. The existence of
substantial research relying on the Vicon motion capture system illustrates that it
is reliable and can provide an accurate measurement of pose of a vehicle.

In addition, the Vicon motion capture system has been used as a ground truth
for assessing computer vision algorithms and design of UAV systems. The paper
by [12] describes the design of a quadrotor Micro Air Vehicle (MAV) which used
computer vision algorithms to operate without the use of an external reference.
The computer vision algorithms estimated the position and orientation of the UAV.
The accuracy of the resulting poses was compared against the ground truth data
obtained from the Vicon motion capture system. A paper by [11] describes a vision-
based quadrotor MAV system capable of autonomous mapping and exploring of
unfamiliar environments using an on-board camera. The quantitative assessment
of the performance of these algorithms was performed by comparing the pose data
estimated by these algorithms against data obtained from the Vicon motion capture
system.

1.2.2 Control Systems Utilized in Flight Applications

Research into developing dynamics models and motion controllers for flight applica-
tions such as quadcopters and helicopters began to flourish during the mid 2000’s.
Quadcopter applications at this time consisted of using either a PID or LQR mo-
tion controller and an Inertial Measurement Unit (IMU) to control the position and
orientation of a quadcopter [13, 14, 15, 16, 17, 18]. A forerunner in this research
was a group from Stanford that developed STARMAC (Stanford Testbed of Au-
tonomous Rotorcraft for Multi-Agent Control) [19, 20]. STARMAC consisted of a
set of autonomous quadrotor drones that followed prescribed trajectories using GPS
and IMU information and a LQR motion controller [19]. Recent research has in-
volved quadcopters performing formation flight, aggressive acrobatics, autonomous
surveillance and path planning [21, 22, 23, 24, 25, 26, 27].

Model Predictive Control (MPC) algorithms began to be developed, simulated,
and implemented for helicopter applications during the mid 2000’s [28, 29, 30, 31].
Some notable researchers at the time were Dr. Hyounjin Kim and Dr. David
Shim from the University of California Berkeley that developed and implemented
nonlinear model predictive control algorithms into helicopter applications [30, 32].
In [32], they used a nonlinear model predictive controller to perform vision-based
target tracking and stabilization of a helicopter. Incorporating model predictive
controllers into quadcopter applications would begin during the early 2010’s.

Current research into quadcopter motion control consists of implementing model
predictive control algorithms for a variety of purposes. Examples of quadcopter ap-
plications that have implemented model predictive control algorithms include trajec-
tory tracking and object avoidance [33], pursuit of a ground vehicle [34], trajectory
tracking subject to aerodynamic disturbances [35], and picking up an object and
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placing it at a set location [36]. Model predictive motion controllers have been suc-
cessfully implemented into the Parrot AR.Drone 2.0 to perform collision avoidance
and trajectory tracking [33, 37, 38]. Model predictive controllers are becoming more
prevalent in quadcopter applications due to their ability to deal with the nonlinear
and multi-input multi-output (MIMO) dynamics of a quadcopter, take into account
the input constraints to avoid saturation of the actuators, plan an optimal path
based on future reference information, and be applied to systems that require fast
sampling rates [39, 40, 41]. This thesis will attempt to implement PID and LMPC
motion control using a commercial Parrot AR.Drone 2.0.

1.2.3 Object Detection and Active-Tracking Algorithms

During the mid 1990’s to late 2000’s, research into vision-based control of UAV ap-
plications began to be investigated. The vision based control of UAV applications
consisted of vision-based landing and pursuit. Examples of research conducted dur-
ing this time consisted of autonomous landing of a UAV [42], landing an UAV with a
vision based motion estimation method [43], and vision-based navigation of a UAV
in a GPS deprived environment [44]. Notably in [45], a vision-based landing and
mapping algorithm was successfully merged with a MPC-based flight controller for
a custom built UAV.

Research into vision based control of UAV applications continued into the 2010’s.
Vision-based object detection algorithms have used computer vision AR tags along-
side UAV motion controllers [46, 47, 48, 49, 50, 51]. Many of these applications
involve landing a target drone on a AR tag rather than using tags to perform target
tracking [47, 48, 50]. An example of research that performed target tracking of a
computer vision tag was shown in [52], where a Parrot AR.Drone 2.0 performed
target tracking of an AR tag and a SLAM system was implemented to follow a line
on the ground using a PID motion controller.

Besides tracking computer vision tags, vision based detection algorithms have
been used to perform target tracking of objects such as drones. In [53], a vision based
tracking system was used with a UAV to track and hover above an object. A vision
based detection algorithm was used to avoid and track aerial vehicles in a dynamic
environment using a PD motion controller [54]. A target following algorithm was
developed for the Parrot Ar.Drone 1.0 in [55]. The target following algorithm used
the color and image moment of the given target to determine its location [55].

The most recent generation of vision based object detection and tracking algo-
rithms employ machine learning algorithms. The DJI Phantom 4 Pro UAV contains
a Follow-Me mode that allows the UAV to follow the operator [56]. The Follow-Me
mode uses machine learning to identify an object using patterns, colors, position,
and scale of a specific object and stores temporary library of images of the object
as reference [57]. Research was conducted in UAV pursuit of a target drone in [58].
A pursuer UAV was capable of following a target UAV using a deep convolutional
neural network called VGG-M.

1.3 Outline of Thesis

This chapter provides the motivations for undertaking this research, a survey of
related literature, and an itemized statement of contributions.
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Chapter 2 is a summary of the hardware and software used for this research.
The features of the Parrot AR.Drone 2.0 quadcopter used for our experiments are
described. The details of the Vicon motion capture system used to provide state
information for the control system and a ground truth for verifying the performance
of the control and computer vision algorithms are given. A brief description of the
WiFi communication channel is provided.

The main piece of software described is the Robot Operating System (ROS),
an open-source environment providing communication and interfacing between the
UAVs, ground computer and the Vicon motion capture system. ROS provides access
to various libraries and packages used to develop and implement our control and
vision-based pursuit algorithms, including ardrone autonomy, tum simulator, and
vicon bridge which are described in detail.

Chapter 3 describes the principles of a Proportional Integral Derivative (PID)
control and a Linear Model Predictive Control (LMPC) and designs them for our
system. The mathematical tools used to describe the pose of an object in space and
its tracking error are discussed. A linear state space model of the Parrot AR.Drone
2.0 is derived and its parameters are identified.

Chapter 4 describes the vision-based object detection algorithm that was used in
this thesis. A procedure to estimate relative target position from monocular video is
discussed and implemented. The performance of the algorithm is extensively tested
and quantified in a series of experiments.

Chapter 5 describes the implementation of the motion control designs derived in
Chapter 3 on the Parrot AR.Drone 2.0. The experimental procedure to evaluate the
performance of each control system is given. The experimental results are analyzed
and the performance of each control system is assessed.

Chapter 6 covers the integration of the vision-based object detection algorithm
with the LMPC motion controller to create a vision-based pursuit algorithm. The
experimental procedure to evaluate the performance of the resulting system is dis-
cussed. The experimental results are analyzed and the performance of the system
is assessed.

Chapter 7 summarizes the results and findings of this thesis. The limitations of
the work performed are discussed and future research directions are suggested.

1.3.1 Statement of Contributions

The following are claimed as research contributions of this thesis:

• Two types of closed-loop motion control strategies, PID and LMPC, were writ-
ten in C++ and implemented under Robot Operating System (ROS). State
information is obtained from a Vicon motion capture system. The control
code is modularized such that the only information it requires is the reference
(desired) world position and yaw angle of the target Parrot AR.Drone 2.0
UAV.

• The dynamics model of the Parrot AR.Drone 2.0 used by the LMPC design,
originally proposed in [33], found to be inaccurate in experimental testing, was
corrected and re-identified

• The 3D relative position estimation from 2D bounding boxes proposed in[4]was
updated, its parameters were identified, and the resulting performance was
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assessed. The new algorithm was implemented in ROS and written in C++
code. The depth estimation method now uses a width-based calculation, which
is shown to outperform the previous area-based calculation.

• An extensive set of experimental hardware testing was performed to qual-
ify and assess the performance of the detection and tracking control system
designs.
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Chapter 2

Hardware and Software

2.1 Hardware Background

2.1.1 Parrot AR.Drone 2.0

The Parrot AR.Drone 2.0 is a small and lightweight quadrotor drone (see Figure 2.1)
designed for both indoor and outdoor flights. The design of the drone consists of
a propeller assembly, central unit and Styrofoam hull. The propeller assembly is
made up of carbon-fibre rods that support the motors and are connected to a plastic
fiber-reinforced central cross member [3]. The central unit contains the Lithium-
Polymer battery, onboard camera, inertial sensors, and processors. The Styrofoam
hull protects the body and shields the propellers against contact with obstacles [3].

Figure 2.1: Parrot AR.Drone 2.0

The Parrot AR.Drone 2.0 has a battery life of up to 18 minutes depending on
how aggressively the UAV is flown, a maximum range of 50 meters and has a 30 fps
HD camera that streams at 720p with a 92◦ diagonal wide-angle lens [59]. The drone
is equipped with 4 inrunner brushless DC motors running at 28 500 rpm [59]. The
Parrot AR.Drone 2.0 is a second generation drone that succeeds the original Parrot
AR.Drone. The camera quality of the Parrot AR.Drone 2.0 was improved from 480p
to 720p [60, 59]. The onboard sensors which include a gyroscope and accelerometer
were significantly improved. The Parrot AR.Drone 2.0 includes a magnetometer for
estimating yaw which is not included in the earlier generation.
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The rate gyro outputs raw signals consisting of the angular rates of the UAV
with respect to its frame in degrees/s, the acceleration of the IMU is measured in
g’s, and the magnetometer measures the magnetic field in the body-fixed frame.
Using the data from each of these sensors and a sensor fusion algorithm such as an
Extended Kalman Filter, the attitude and position of the Parrot AR.Drone 2.0 can
be estimated.

The onboard measurements are not used in this thesis due to the extensive work
required to fuse information from the onboard sensors to determine the position and
attitude of the UAV. In this case, we would need to implement the sensor fusion
and control code directly onboard of the drone which requires rewriting the firmware
and coding on a low-power processing platform. An alternative approach was used
to determine the position and attitude of the UAV and avoid tinkering with the
firmware. A Vicon motion capture system was used to determine the attitude and
position of the drone rather than the onboard sensors. The motion capture system
is described in Section 2.1.2. The Vicon motion capture system was chosen due
to being successfully applied in other research groups such as Dr. Raff D’Andrea
at ETHZ [25], Dr. Angela Schoellig’s Dynamic Systems Lab at the University of
Toronto, and Dr. Vijay Kumar’s group from the University of Pennsylvania. Future
work will involve developing an autonomous UAV which requires implementing a
complete sensor fusion, a simultaneous localization and mapping (SLAM) system,
and control architecture onboard of the UAV.

2.1.2 Vicon Motion Capture System

This section focuses on how a Vicon motion capture system can be used as a tool
to dynamically estimate the position and orientation of a vehicle or object and as
a verification tool to assess the performance of a motion controller, vision based
object detection algorithm, and a vision based pursuit algorithm. An investigation
of the Vicon motion capture system is necessary to determine whether the system
can act as a ground truth for the motion controller and verification tool.

2.1.2.1 Motion Capture System Description

Motion capture systems within our application are used to estimate the rigid body
position and orientation of objects, specifically UAVs. These systems are useful
for providing state information about the Parrot AR.Drone 2.0 which are used to
determine the state space model of the UAV and used in the controllers described
in Chapter 3 [61].

The Vicon motion capture system uses infrared cameras that strobe infrared light
which illuminates passive optical markers coated with a retroflective surface [61].
The Vicon motion capture system consists of 10 cameras that each record the mark-
ers. These cameras are used to triangulate the position of the markers in 3D space.
A marker that is seen by a camera appears as a cluster of illuminated pixels with a
black background. In order to triangulate the position of a marker, at least three
cameras must be capable of viewing the marker. The marker position information
is passed on to a central computer that runs a software called Tracker 3.

The Vicon motion capture system is capable of estimating the positions and
attitudes of rigid bodies, defined by their attached markers, in near real-time. The
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linear and angular velocity of the rigid body was obtained by performing numerical
differentiation on the rigid body estimated pose data combined with a simple low-
pass filter described in Section 3.2.3.

2.1.2.2 Vicon Motion Capture System Component Description

The main components of the Vicon motion capture system consist of Vero v2.2
cameras, PoE switch and a computer that runs the Tracker 3 software. Minor com-
ponents of the motion capture system consist of camera mounts, Ethernet cords, and
passive reflective markers. The primary sensing component of the motion capture
system are the Vero v2.2 cameras as shown in Figure 2.2.

Figure 2.2: Image of the Vero v2.2 camera

The Vero v2.2 infrared camera detects reflective markers and has onboard sen-
sors that detect the camera temperature and detect whether it has been shaken or
disturbed. The specifications of the Vero v2.2 cameras are outlined in Table 2.1 .
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Table 2.1: Vicon Vero v2.2 Specifications [1]

Camera Parameter Value

Resolution (MP) 2.2 (2048x1088)

Frame Rate FPS (Hz) 330

Lens 6-12 mm Varifocal

Minimum Wide FOV (HxV) 98.1 x 50.1

Camera Latency (ms) 3.6

Strobe Infrared

Shutter Type Global

Dimensions (HxWxD) (mm) 83 x 80 x 135

Weight (kg) 0.57

The software that processes the feed from the Vero v2.2 infrared cameras is the
Tracker 3 software. The Tracker 3 software is capable of processing data with a
latency of 1.5 ms and at more than 500 frames per second [62]. The software allows
the user to perform camera adjustments, system calibration, marker tracking, and
data export. In addition, the Tracker 3 software performs complex calculations of
determining the rigid body poses of tracked objects from 3D marker positions.The
rigid body pose data can be exported as .c3d files, .avi files, or .csv file [63]. In
addition, the data can be streamed to another computer via a ROS package called
ardrone autonomy described in Section 2.2.

2.1.2.3 Vicon Motion Capture System Calibration Process

The camera calibration process involves camera preparation, camera calibration,
and setting the volume origin which are detailed below.

Figure 2.3: Image of the Calibration Wand

The camera preparation involves focusing each camera to identify reflective
markers within the capture volume. Each camera’s video feed can be monitored
through the Tracker 3 software. For optimal performance, the reflective markers
need to be clearly visible to each camera. To achieve this, the focus, aperture and
focal length rings on each camera are manually adjusted.

Once the camera lenses are adjusted, further optimization of the camera settings
can be performed within the Tracker 3 software to improve marker recognition.
The gain, sensor threshold, and strobe intensity can be adjusted in the software
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to improve marker image brightness, determine minimum intensity thresholds, and
increase brightness of the strobe, respectively [63]. Once the cameras are focused,
the cameras are masked using the Tracker 3 software. When a camera is masked,
the Tracker 3 software removes stray reflections (such as reflections from the floor,
or other camera strobe lights) and improves the robustness of the camera calibra-
tion [64]. Each camera can be masked automatically or manually depending on user
preference.

The system calibration is performed with the Tracker 3 software. The camera
is calibrated by swinging the calibration wand through the capture volume. The
camera captures a user-defined number of frames, typically fifteen hundred. In order
to be considered a frame, the camera must capture all five markers of the calibration
wand. Once each camera has captured the specified number of frames, the software
performs calculations of the positions of each camera relative to each other and
determines the image and world error. The image error is root mean square error
in pixels which represents the difference between the 2D image of each marker on
the camera sensor and the 3D marker location back projected onto the camera
sensor while the world error is determined from the image error and the distance
of the camera to the center of the control volume in millimeters [mm] [63]. The
Tracker 3 software deems a calibration as good if the world error for each camera
is approximately 0.5 mm. If any of the cameras report a larger world error, the
calibration is considered poor and needs to be redone. Since the typical world error
reported by the Vicon motion capture system is approximately 0.5 mm, the error
from the Vicon motion capture system is considered to be negligible. Due to the
accuracy achieved by this system, the Vicon motion capture system is used as a
source of ground truth information.

The camera calibration calculates the relative poses of the cameras with respect
to each other. The calibration wand is then used to define the world frame of the
capture volume. The calibration wand contains five active LED markers that are
picked up by the cameras. The calibration wand is placed flat on the floor in the
desired position and orientation of the capture volume world frame [63]. After the
origin is set, the Vicon motion capture system is fully calibrated. Any motions by
the individual cameras, for instance due to vibrations, will require redoing the entire
calibration process.

2.1.3 Wi-Fi

The Parrot AR.Drone 2.0 employs Wi-Fi to communicate to a control device such
as a tablet computer or desktop computer. Since the drone is used in an indoor
setting, signal interference is low since the distance between the Wi-Fi transmitter
and receiver is small and unobstructed. When the drone is used in an outdoor
setting, the drone can only operate within a maximum range of 50 m [59] and
anything past that range will result in signal loss and/or packet loss due to the
AR.Drone 2.0 having a low powered antenna. Signal transmission can be interfered
in indoor and outdoor settings if large obstructions are present between the Wi-Fi
transmitter and receiver or if too many devices are sharing the Wi-Fi band.
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2.2 Software Background

2.2.1 OpenCV

OpenCV (Open source Computer Vision) is a cross-platform library of functions
that are used for real-time computer vision applications, written in C/C++ and
originally developed by Intel. This library was used to rectify the video feed from
the onboard camera of the Parrot AR.Drone 2.0.

2.2.2 CUDA

CUDA is a parallel computing platform developed by NVIDIA that allows running
computing applications on graphical processing units (GPUS) [65]. This computing
platform was used to run the machine learning framework described in Section 2.2.3
and the object detection algorithm described in Section 2.2.4 in parallel with the
motion controllers described in Chapter 3.

2.2.3 Darknet

Darknet is an open source machine learning framework that was written in C and
CUDA [66]. This machine learning framework was used to test and train an object
detection model described in Section 2.2.4. Additional details about Darknet can
be found in [66, 4].

2.2.4 YOLO v2

YOLO (You Only Look Once) v2 is an open source real time object detection system
that uses a convolutional neural network (CNN) [2]. YOLO v2 predicts the location
of an object in an image and produces a bounding box around that object within
the image frame. YOLO v2 considers object detection as a single regression problem
and determines the bounding box coordinates and class probabilities based off only
one pass through the image [2]. This vision based object detection algorithm is
used with conjunction with the motion controllers in Chapter 3 to pursue an object.
Additional details about YOLO v2 can be found in [2, 4].

2.2.5 Robot Operating System (ROS)

2.2.5.1 Description

The Robot Operating System (ROS) is an open-source environment running within
Linux designed for robotic applications [67]. It contains tools, libraries and services
that simplify developing complex robotic systems and communications between mul-
tiple processes. While most code for ROS is primarily written in C++ and Python,
Java, Lisp, and several other programming languages are also supported [68]. The
control algorithms described in this thesis were written in C++. Each new version
of ROS is compatible with specific versions of Linux. The version used in this re-
search was the ROS Kinetic Kame distribution that runs in Ubuntu 16.04 (Xenial
Xerus). ROS also supports a number of client libraries for C++ and Python. Client
libraries that were used include the tf library and the Eigen library. The tf library
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is used to keep track of coordinate frames of robots while the Eigen library is a C++
template library used for linear algebra.

ROS provides a software infrastructure that allows various modules to work with
each other and simplifies communication between them. A robotic system consists
of a web of programs called nodes sending messages via transmission lines called
topics to one another. Nodes are executable programs that receive and/or send
transmissions and perform some type of function. ROS topics transmit information
as messages which are classes of data such as IMU readings, 3D point clouds, or
velocity commands. These messages are organized and sent from a node via a
ROS topic. Topics that are sent from a node are published while topics that are
received by a node are subscribed. A node can publish any number of topics and can
subscribe any number of topics. A group of nodes can be spanned using a launch
file that specifies and configures a cluster of nodes and executes them. All ROS
programs are organized into packages which are coherent collection of files, that
include both executable and supporting files, which serve a singular purpose [68].
Several ROS packages, client libraries, and software were used throughout the course
of this research and are outlined further below. Additional information and details
on ROS can be found in [68, 67].

2.2.5.2 ardrone autonomy

ardrone autonomy is a ROS driver for the Parrot AR.Drone 1.0 and 2.0 quadro-
copter. This driver is based on the official AR-Drone SDK published by Parrot.
This ROS package was initially developed by Mani Monajjemi of Simon Fraser Uni-
versity. This driver allows the user to send commands to the drone, set configuration
parameters, and read information from the onboard sensors including the video cam-
eras. Two main functions of this driver that were essential in this research was the
capability to fly the drone through ROS and read the camera feed from the onboard
cameras. Commands can be sent to the drone that consist of landing, taking off,
and flying in a specific direction. Further details about the commands are given in
Chapter 3.

The Parrot AR.Drone 2.0 is equipped with two cameras: one camera pointing
forwards and one camera pointing downwards. This ROS driver will create and
publish two topics that will send camera feed information from both the front and
bottom cameras. The video feed from the onboard camera is rectified through a ROS
camera calibration module using OpenCV. Details on how to calibrate the cameras
can be found in Chapter 4. This rectified camera feed is essential to perform UAV
pursuit control which is further explored in Chapter 6.

2.2.5.3 tum simulator

This ROS package contains programs designed to simulate a Parrot AR.Drone 2.0
through a package called Gazebo. Gazebo is a robot physics simulator that is used
to quickly test algorithms, design robots, and train AI systems. Gazebo has been
previously used to test algorithms implemented on a Parrot AR.Drone 2.0 [69]. The
tum simulator package can simulate both the Parrot AR.Drone 2.0 and 1.0 but
has been optimized for the Parrot AR.Drone 2.0. It was used to quickly test and
design control algorithms, and tune the gains of the motion controllers. The gains
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of the controllers that were tuned in simulation were further adjusted when flying
the hardware Parrot AR.Drone 2.0.

2.2.5.4 vicon bridge

The vicon bridge package is a ROS module that streams data from a Vicon mo-
tion capture system. It supports multiple tracked rigid bodies. The vicon bridge

package initiates a connection with a host computer running Vicon Tracker. Vicon
data is transmitted to another computer as long as the other computer is on the
same subnet and the IP address or name of the host computer is known.

The vicon bridge package can be used to shift the frame pose of a rigid body
defined in Vicon Tracker. Typically, the tracker software will place the origin at the
geometric centre of the markers defining the body. Moving this origin in the tracker
software is a tedious procedure. By using the vicon bridge package, the tracked
body can be set on top of the world frame of the Vicon motion capture system,
and the body-fixed frame can be dynamically set to be aligned with this frame at a
specified offset above the floor.

vicon bridge is used to provide state information about the Parrot AR.Drone
2.0 used in motion control algorithms. In addition, it is used as a source of ground
truth data for validation experiments.

2.2.6 MATLAB

MATLAB is a numerical computing environment and programming language de-
veloped by MathWorks that is written in C, C++, and Java. It provides a large
variety of data visualization tools and directly handles matrix and vector mathe-
matical operations. MATLAB contains Simulink which is a graphical programming
environment used to model, simulate and analyze dynamical systems and develop
control systems for robotic applications [70]. MATLAB has tools for designing model
predictive controllers [71] and PID controllers [72]. In addition, MATLAB has tools
for running Simulink models and controllers on a Parrot AR.Drone 2.0 [73].

Despite MATLAB having convenient tools for developing control systems for
a Parrot AR.Drone 2.0, the PID and LMPC motion controller was developed di-
rectly in C++ and implemented in ROS. The disadvantage of this approach was
the large time investment spent in learning C++ and Python and implementing
PID and LMPC in ROS, and being unable to utilize convenient mathematical tools
provided by MATLAB. Conversely the advantage was developing literacy in C++
and Python, in-depth knowledge of how the algorithms work, lower computation
time and resource use, and the ability to integrate other ROS packages, libraries,
and software such as Darknet which may not be available with MATLAB. MATLAB
was thus mainly used to analyze results from experiments and create graphs and
schematics in this thesis.
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Chapter 3

UAV Control System

This chapter will discuss the design and mathematical principles behind two types of
control systems: Proportional Integral Derivative (PID) control and Linear Model
Predictive control (LMPC). Section 3.1 will discuss the mathematical tools needed
to describe the position and orientation of a rigid body in space. Section 3.2 will
describe the plant model of the Parrot AR.Drone 2.0 and how it was obtained.
Section 3.3 will describe an alternative way to define yaw which slightly alters the
plant model in Section 3.2. Section 3.4 will outline the mathematics and concepts
behind PID control while Section 3.5 will outline the mathematics and concepts
behind LMPC.

3.1 Mathematical Preliminaries

This section outlines the mathematical tools that were used to build a PID controller
described in Section 3.4 and a LMPC system described in Section 3.5. A majority
of this section is based off of work done in the Ph.D. thesis [74] and Mec E 651
lectures.

3.1.1 Rotation Matrix

The model of a rigid body in 3D space consists of making use of two coordinate
frames: a ground-fixed inertial navigation frame with basis vectors {n1, n2, n3} and
a body-fixed non-inertial body frame using basis vectors {b1, b2, b3}. These two
coordinate frames are orthonormal and follow the right-hand convention, i.e. b1 ×
b2 = b3 and n1×n2 = n3, where × denotes the R3 cross-product [74]. The navigation
frame is a stationary, inertial frame that serves as the datum that a rigid body will
orientate itself with respect to. The body frame is a moving, non-inertial frame
situated at the center of mass or geometric center of a rigid body. In order to
describe the orientation of a rigid body with respect to the navigation frame, the
body frame basis vectors can be expressed in terms of the navigation frame basis
vectors as

b1 = (b1 · n1)n1 + (b1 · n2)n2 + (b1 · n3)n3

b2 = (b2 · n1)n1 + (b2 · n2)n2 + (b2 · n3)n3

b3 = (b3 · n1)n1 + (b3 · n2)n2 + (b3 · n3)n3
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Concatenating b1, b2, and b3 into a matrix yields the following result.

R =

b1 · n1 b2 · n1 b3 · n1

b1 · n2 b2 · n2 b3 · n2

b1 · n3 b2 · n3 b3 · n3


R is known as the rotation matrix. The rotation matrix measures the orientation of
the rigid body relative to the navigation frame. As a body rotates, the entries of R
change with time which can be denoted as R = R(t).

The rotation matrix is an orthogonal matrix since the columns of R represent the
coordinates of bi in the navigation frame, and {b1, b2, b3}, are orthonormal. Since
R is an orthogonal matrix and {b1, b2, b3} obeys the right-handed convention, R
has the following properties: R−1 = RT and det(R) = +1. All rotation matrices
are a part of a subset of orthogonal matrices known as the special orthogonal group
SO(3). SO(3) is called the rotation group of R3 with R ∈ SO(3) encoding a rotation
between two orthonormal frames.

A rotation matrix can be used to determine coordinates of an object in different
frames. For a given point p in 3D space, we can describe that point relative to

either the navigation frame, pN =
[
pN,1 pN,2 pN,3

]T ∈ R3, or the body frame,

pB =
[
pB,1 pB,2 pB,3

]T ∈ R3. The relationship between the two coordinates can
be written as follows:pN,1pN,2

pN,3


︸ ︷︷ ︸

pN

=

b1 · n1 b2 · n1 b3 · n1

b1 · n2 b2 · n2 b3 · n2

b1 · n3 b2 · n3 b3 · n3


︸ ︷︷ ︸

R

pB,1pB,2
pB,3


︸ ︷︷ ︸

pB

Since a coordinate can be transformed between any two frames, this can be
extended to the case where there are multiple frames which leads to a composition
of rotation matrices. Consider a given point p and the frames N, A, and B as shown
in Figure 3.1.

Figure 3.1: Three Frame Diagram

Consider these three changes in coordinates between frames:

pN = RANpA (3.1a)

pA = RBApB (3.1b)

pN = RBNpB (3.1c)
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By substituting (3.1b) into (3.1a), and comparing it to (3.1c), we find

pN = RANR
B
ApB = RBNpB

Therefore, the B → N transformation is equivalent to the transformation B → A
followed by the transformation A → N . In addition, the inverse transformation
exists such that applying the inverse operation to B → A will yield A → B as
shown below:

pA = RBApB → pB =
(
RBA
)T
pA = RABpA

3.1.2 Euler Angles

As shown in [74], the rotation matrix R ∈ SO(3) can be surjectively parameterized
using only three numbers, which we choose as Euler angles. Euler angles are used in
a composition of rotations that express R ∈ SO(3) as a product of three elementary
rotations. Composition of rotations was discussed in Section 3.1.1. Consider these
three elementary rotations as described in Figure 3.2 each made with respect to
frame N .

Figure 3.2: Three Elementary Rotations about n1, n2, and n3

Using the definition of R from Section 3.1.1, each elementary rotation can be
described as :

R1(γ1) =

1 0 0
0 cos(γ1) − sin(γ1)
0 sin(γ1) cos(γ1)

 (3.2a)

R2(γ2) =

 cos(γ2) 0 sin(γ2)
0 1 0

− sin(γ2) 0 cos(γ2)

 (3.2b)

R3(γ3) =

cos(γ3) − sin(γ3) 0
sin(γ3) cos(γ3) 0

0 0 1

 (3.2c)

Each elementary rotation matrix belongs to SO(3). Composing the three rota-
tion matrices involves matrix multiplication which is not commutative. Therefore,
there exists many possible sequences of multiplying the three elementary matrices
together. A widely used sequence that is used in aerospace and for our application
is the roll-pitch-yaw sequence defined by

RBN = R3(ψ)R2(θ)R1(φ) (3.3)
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where roll φ, pitch θ, and yaw ψ are defined as the angle of rotation about the x,y,
and z axes, respectively. The difference between how this sequence is used for our
application compared to aerospace is that we do not use the north-east-down frame
of reference rather the north-west-up frame of reference. Substituting in Equations
(3.2a), (3.2b), and (3.2c) into (3.3) and performing the matrix multiplication yields
the following result.

RBN =

cθcψ sφsθcψ − cφsψ cφsθcψ + sφsψ
cθsψ sφsθsψ + cφcψ cφsθsψ − sφcψ
−sθ sφsθ cφcθ

 =

r11 r12 r13

r21 r22 r23

r31 r23 r33

 (3.4)

where c = cos() and s = sin(). The roll-pitch-yaw sequence is surjective but not
injective onto SO(3), and it’s a known fact that any three term parameterization of
SO(3) will contain singularities. Further details about singularities in Euler angles
are found in [74, 75]. Singularities will be avoided as long as the angles remain
within the following bounds.

−π
2
< θ <

π

2

−π < φ < π

−π < ψ < π

Within our application, the drone will not rotate past these bounds for roll and
pitch, however, the drone will rotate past the bounds set for yaw. The issues that
arise when the yaw is rotated past the bounds is caused by the periodicity of the
trigonometric function. The full rotation of the UAV is contained within the bounds
of [−π, π] where the two bounds −π and π coincide with each other. Therefore as
the UAV rotates past π in the counterclockwise direction, the yaw data retrieved
from the Vicon motion capture system will report a negative angle which coincides
with the rotation in the clockwise direction. This issue is addressed in Section 3.3.

3.1.3 Unit Quaternions

Unit quaternions are a parameterization of a 3D rotation using 4 variables. Informa-
tion about rotations of objects in ROS are reported as (unit) quaternions. Quater-
nions are used to determine the rotation matrix between the navigation frame and
the body frame, measure the rotation between two frames, and to obtain Euler
angles which are used in our control systems.

A quaternion r ∈ H is defined as

r = r0 + r1i + r2j + r3k

where (r0, r1, r2, r3) ∈ R4 and H is four-dimensional vector space over the reals
with the basis vectors (1, i, j, k) ∈ H. Another way to express a quaternion is as
r = (r0,

−→r ) where r0 ∈ R is the scalar component of the quaternion and −→r =
(r1, r2, r3) ∈ R3 is the vector component of the quaternion.

The rotation matrix can be obtained from quaternions and the details of de-
termining the rotation matrix from quaternions can be found in [74, 76]. The re-
lationship between quaternions and a rotation matrix is shown in the expression
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below.

R =

q2
0 + q2

1 − q2
2 − q2

3 2(q1q2 − q0q3) 2(q1q3 + q0q2)
2(q1q2 + q0q3) q2

0 − q2
1 + q2

2 − q2
3 2(q2q3 − q0q1)

2(q1q3 − q0q2) 2(q2q3 + q0q1) q2
0 − q2

1 − q2
2 + q2

3

 (3.5)

Further details about quaternions can be found in [74, 76].

3.2 Parrot AR.Drone 2.0 Control Model

3.2.1 Parrot AR.Drone 2.0 Internal Control Model Description

In order to implement a Linear Model Predictive motion controller for the Parrot
AR.Drone 2.0, the dynamics of the plant need to be known. The Parrot AR.Drone
2.0 is known to employ an internal controller to stabilize the attitude and velocity
of the vehicle. Details of this architecture are discussed in [60], however, the ac-
tual parameter values of the internal controller are not given. Several papers have
modelled the dynamics of the stabilized Parrot AR.Drone 2.0 [33, 77]. This thesis
will propose an alternative dynamics model of the stabilized Parrot AR.Drone 2.0
extended from [33].

The dynamics model of the Parrot AR.Drone 2.0 was conceived by considering
the UAV in 3D space as seen in Figure 3.3.

uψ

uz

uy

ux

zB

yB

xB

ψ

yW

zW

xW

W

B

Figure 3.3: Parrot AR.Drone 2.0 Vehicle Coordinate Frame

The subscript b refers to the body fixed frame of the UAV located at its center of
mass, and the subscript w refers to the global world coordinate frame which coincides
with the origin of the Vicon motion capture system. Therefore, xw,yw, and zw are
the coordinates of the UAV’s center of mass (CM) in the world coordinate frame
while xb, yb, and zb are the coordinates in the body fixed frame. The parameters φ,
θ, and ψ are the Euler angles of roll, pitch and yaw of the UAV’s body fixed frame,
respectively. The assumed dynamics model of the system consists of the following
first-order differential equations.

18



ẍb(t) = aα ẋb(t) + bα ux(t) (3.6a)

ÿb(t) = aβ ẏb(t) + bβ uy(t) (3.6b)

z̈b(t) = aγ żb(t) + bγ uz(t) (3.6c)

ψ̇(t) = aψ ψ(t) + bψ uψ(t) (3.6d)

The drone can be commanded to translate in every direction and can also rotate
about the zB axis as shown in Figure 3.3. The control inputs of the Parrot AR.Drone
2.0 consist of the decimal percentage of the maximum pitch and roll angles ux and
uy, respectively, the decimal percentage of the maximum vertical acceleration uz,
and the decimal percentage of the maximum rotational velocity uψ [77, 78]. The
control inputs are bounded as ux,y,z,ψ ∈ [−1, 1]. The parameters aα,β,γ,ψ and bα,β,γ,ψ
are identified from several experiments described in Section 3.2.2. It should be noted
that the entire system has 6 degrees of freedom and is being controlled by 4 control
inputs. This means that the system is underactuated.

The proposed dynamics model assumes that the transitional control inputs ux,y,z
directly affects the acceleration of the Parrot AR.Drone 2.0 along its body fixed
frame axes, and the control input uψ directly affects the angular velocity of the
Parrot AR.Drone 2.0. Previous research that have used the Parrot AR.Drone 2.0
have stated that the control input uz relates to the vertical velocity rather than the
vertical acceleration of the drone [33]. This thesis suggests that the control input uz
relates to the vertical acceleration of the drone which is supported by results shown
in Section 3.2.2.

In addition, this dynamics model assumes that the system is linear and that
the axes are decoupled from each other. This model structure has the advantage
of being simpler and easier to implement into a controller, however, may not accu-
rately represent the entirety of the system. The dynamics of the Parrot AR.Drone
2.0 are nonlinear as reinforced by the work done in [33, 77, 78], and future work
will investigate implementing a nonlinear controller for the Parrot AR.Drone 2.0.
Despite using a simplified dynamics model, Chapters 5 and 6 will show that motion
control of the Parrot AR.Drone 2.0 can be achieved.

Since the assumed dynamics model of the Parrot AR.Drone 2.0 is assumed to be
linear, a state space model can be determined. A state space model is a mathematical
representation of a physical system that consists of input, output and state variables
that are related by first-order differential equations. A continuous time state space
representation of a physical system can be written as

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)

where x(t) is the state vector, u(t) is the control input vector, y(t) is the output
vector, A is the state matrix, B is the input matrix, C is the output matrix, and D
is the feed forward matrix.

The state vector of the internal controller are found from Equations (3.6a),
(3.6b), (3.6c), and (3.6d). The state vector of the state space model is represented
by the following expression.

x(t) = [xb(t), yb(t), zb(t), ψ(t), ẋb(t), ẏb(t), żb(t)]
T (3.7)
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Where (xb(t), yb(t), zb(t)) is the position of the drone in coordinates of the body fixed
frame, (ẋb(t), ẏb(t), żb(t)) is the velocity of the drone in coordinates of the body fixed
frame, and ψ(t) is the yaw angle of the drone.

The entries of the control input vector consist of the four control inputs found
in Equations (3.6a), (3.6b), (3.6c), and (3.6d) and is represented by the following
expression

u(t) = [ux(t), uy(t), uz(t), uψ(t)] (3.8)

Using the state vector expressed in Equation (3.7) and the control input vector
expressed in Equation (3.8), the state space model can be constructed and is shown
in the expression below.

d

dt



xb(t)
yb(t)
zb(t)
ψ(t)
ẋb(t)
ẏb(t)
żb(t)


=



0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 aψ 0 0 0
0 0 0 0 aα 0 0
0 0 0 0 0 aβ 0
0 0 0 0 0 0 aγ





xb(t)
yb(t)
zb(t)
ψ(t)
ẋb(t)
ẏb(t)
żb(t)


+



0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 bψ
bα 0 0 0
0 bβ 0 0
0 0 bγ 0




ux
uy
uz
uψ



y(t) =



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1





xb(t)
yb(t)
zb(t)
ψ(t)
ẋb(t)
ẏb(t)
żb(t)


+



0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0




ux
uy
uz
uψ



3.2.2 Model Parameter Identification

The model parameters are determined by inputting a unit step into each control
channel, measuring the response of the drone, and calculating the associated model
parameters. The input command is sent to the drone via Wi-Fi. The step duration
is 2 s with the step amplitude at a value of either 1 or -1. The position of the drone
is found using the Vicon motion capture system, sampling at 100 Hz and the ROS
package vicon bridge. The ROS package vicon bridge publishes a ROS topic
called vicon/ARDrone/ARDrone which contains a tf ROS message. The tf ROS
message reports the position of the drone in the world frame and the quaternion of
the drone’s attitude. The rotation matrix can be obtained from the quaternion using
methods described in Section 3.1.3 and used to map the position from the world
frame to the body fixed frame. The drone velocity is determined by using a finite
difference method followed by windowing the data with a Hanning 55 dB window.
Experiments were run for each input channel to identify the model parameters. The
results from those experiments are shown in Figures 3.4, 3.5, 3.6,and 3.7. Note
that in the figures below, the control input signal is denoted by u, the filtered
measurement response is denoted by the subscript m, and the model prediction
response is denoted by the subscript p.
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Figure 3.4: Model Parametrization for the X-axis
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Figure 3.5: Model Parametrization for the Y-axis
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Figure 3.6: Model Parametrization for the Z-axis
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Figure 3.7: Model Parametrization for the Yaw rotation

The model parameters were found by a fitting a straight to the predicted and
measured parameters and averaging the values over a number of trails. The chosen
model parameters were determined to be aα = aβ = −0.705, aγ = −0.905, aψ = 0,
bα = bβ = 1.370, bγ = 0.755, and bψ = 0.7. For ẋb, ẏb, and żb, the results suggest
that the chosen model parameters will result in an accurate representation in the
real systems behaviour. From Figure 3.6, the data suggests that the control input

22



uz affects the acceleration rather than the velocity as suggested in [33]. In addition,
as seen in Figure 3.7, the yaw input uψ linearly affects the angular velocity in yaw
as proposed in [33] and is contrary to the yaw dynamics described in [77]. The
dynamics the Parrot AR.Drone are thus described as



ẋb(t)
ẏb(t)
żb(t)

ψ̇(t)
ẍb(t)
ÿb(t)
z̈b(t)


=



0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0
0 0 0 0 −0.705 0 0
0 0 0 0 0 −0.705 0
0 0 0 0 0 0 −0.905





xb(t)
yb(t)
zb(t)
ψ(t)
ẋb(t)
ẏb(t)
żb(t)


+



0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0.7

1.37 0 0 0
0 1.37 0 0
0 0 0.755 0




ux
uy
uz
uψ



3.2.3 Discrete Time Low-Pass Filter Description

Within our application, a low-pass filter is used to filter out noise in our velocity
estimates which are used in our LMPC motion controller. The velocity of the drone
is determined using a simple numerical differentiation which inherently results in
noisy data. The low-pass filter used in our application is a first-order filter. The
discretized version of the filter is derived from the transfer function in Equation (3.9),

G(s) =
Y (s)

U(s)
=

1

τs+ 1
(3.9)

where τ is the time constant in seconds, U(s) is the filter input and Y (s) is the filter
output, both in the s domain.

Rearranging Equation (3.9) such that the filter input is on the left-hand side
and the filter output is on the right-hand yields the following expression.

U(s) = τsY (s) + Y (s) (3.10)

Taking the inverse Laplace transform of Equation (3.10) yields the following first-
order differential equation in the time domain

u(t) = τ ẏ(t) + y(t) (3.11)

Take tk as a point in time indexed by k

u(tk) = τ ẏ(tk) + y(tk) (3.12)

We approximate the time derivative of the output by the following expression

ẏ(tk) =
y(tk)− y(tk−1)

∆t
(3.13)

Where ∆t = tk − tk−1. Substituting Equation (3.13) into Equation (3.12) and
rearranging such that y(tk) is on the left-hand side yields the following expression

y(tk) =
τ

τ + ∆t
y(tk−1) +

∆t

τ + ∆t
u(tk) (3.14)

This can be rewritten in the form

y(tk) = (1− cf )y(tk−1) + cfu(tk) (3.15)
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where the filter coefficient cf is expressed as

cf =
∆t

τ + ∆t

The filter input u(tk) for our application is the position of the drone along a body
frame vector at the current time tk, while y(tk−1) is the filtered velocity at the
previous time tk−1 along the same vector. The positions of the drone along all
three body-fixed axes needed to be filtered. In each case, the time constant τ was
determined by filtering a series of measured position data along all three directions
through MATLAB with different time constants and determining τ . The following
table shows the τ values used to filter the body frame positions along each axis.

Table 3.1: Low-Pass Filter Time Constants

Body Frame Velocity τ [s]

ẋb [m] 0.027

ẏb [m] 0.027

żb [m] 0.035

3.3 Geometric Tracking of Yaw

This section reproduces an approach suggested by Dr. Martin Barczyk [79] to
overcome the periodicity issue present in the Euler yaw angle by using Lie groups.
This method can be implemented in both PID and LMPC motion controllers.

3.3.1 Mathematical Background

Similar to a rotation matrix that represents rotations in R3, rotations in a plane
(R2) can be described by the rotation matrix

R(ψ) =

[
cos(ψ) − sin(ψ)
sin(ψ) cos(ψ)

]
(3.16)

Physically, for a point p = (x1, x2) in the cartesian plane and an angle ψ measured
counter-clockwise from the positive X axis in the cartesian plane, the product R(ψ)p
yields the point p rotated by angle ψ.

In the same way that a rotation matrix in R3×3 is a member of SO(3), the
rotation matrix in Equation (3.16) is an element of SO(2) which is the special
orthogonal group of matrices in R2×2. This can be written as R(ψ) ∈ SO(2), ψ ∈
R. Similarly to matrices found in SO(3), matrices in SO(2) have the following
properties:

R(ψ)−1 = R(ψ)T and detR(ψ) = +1

Using Equation (3.16), you can directly verify that for R1, R2 ∈ SO(2), R1R2 =
R2R1. This means that planar rotations are commutative. This is a difference from
three-dimensional rotations in SO(3) which are non-commutative.

SO(2) is a Lie group which is associated to a Lie algebra called so(2). Details
about Lie algebra and Lie groups can be found in [80] and [81]. The elements of
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so(2) are written as

so(2) 3 S2(δ) =

[
0 −ω
ω 0

]
, δ ∈ R

where by inspection S2(δ) is a skew-symmetric matrix which means that S2(δ)T =
−S2(δ). A Lie algebra like so(2) is also a vector space, and by inspection we see that
so(2) is a 1-dimensional space and therefore isomorphic to R. The linear, bijective,
and thus globally invertible mapping is

H : R→ so(2), H(δ) = S2(δ)

Any Lie group and its Lie algebra are connected by a locally invertible mapping. In
the case SO(2), the map so(2)→ SO(2) is the exponential

exp : so(2)→ SO(2), expS2(δ) = eS2(δ) (3.17)

While the inverse map SO(2)→ so(2) is called the logarithm

logSO(2)→ so(2), logR = S2(atan2(R21, R11)) (3.18)

Equation (3.17) states that taking the matrix exponential of the skew-symmetric
matrix S2 results in a planar rotation matrix. Conversely, Equation (3.18) states
that the rotation angle of an SO(2) matrix can be extracted and used to form the
corresponding so(2) entry.

Using Equation (3.16), the dynamics of R(ψ) ∈ SO(2) can be directly computed
to be

d

dt

[
cosψ − sinψ
sinψ cosψ

]
=

[
− sinψ(ψ̇) − cosψ(ψ̇)

cosψ(ψ̇) − sinψ(ψ̇)

]
=

[
cosψ − sinψ
sinψ cosψ

] [
0 −ψ̇
ψ̇ 0

]
=⇒ Ṙ = RS2(ψ̇)

3.3.2 Redefined Yaw Error

The error between desired and actual yaw angle is written as eψ = ψd − ψ. The
problem is that because ψd is obtained from an atan2 function, it exhibits jump
discontinuities of ±2π for a reference trajectory with sufficiently large turns. These
discontinuities transfer into eψ which may cause the closed-loop control system to
react violently and go unstable.

In order to address the issue of discontinuities, yaw error is redefined. Denoting
the desired yaw angle as ψd and actual (measured) yaw angle as ψ, and from the
SO(2) matrices Rd := R(ψd) and R := R(ψ), the error matrix can be redefined as

Re := RdR
T (3.19)

By construction, Re ∈ SO(2) and ψd = ψ =⇒ Rd = R =⇒ Re = I2×2 i.e. a zero
yaw error corresponds to an identity error matrix. Because of the commutativity of
SO(2), the error matrix can be equivalently written as Re = RTRd.

The rotation angle corresponding to Re is given by

εψ := H−1 [logRe] = atan2
(
R21
e , R

11
e

)
(3.20)

It can be directly verified that εψ physically represents ψd 	 ψ, the shorter of the
two angles between ψ to ψd on a circle. Thus εψ can be directly used for a PID-style
yaw control law.
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3.3.2.1 Application to Parrot AR.Drone 2.0 State Space Model

The redefined yaw error described in Section 3.3.2 can be applied to the state dy-
namics of the Parrot AR.Drone 2.0 which is used to derive the state space model.
As shown in Section 3.2.2, the yaw dynamics of the quadcopter UAV are modelled
as

ψ̇ = aψψ + bψuψ

The two constant parameters aψ and bψ were found in Section 3.2.2, and the pa-
rameter aψ = 0 which means that the yaw dynamics can be simplified to

ψ̇ = bψuψ

Note a positive yaw input uψ causes the yaw angle ψ of the quadcopter to increase,
and vice-versa.

For the LMPC controller, take εψ as a state of the system. As shown below, the
linearized dynamics of εψ are governed by

ε̇ψ = −bψuψ (3.21)

For practical implementation, the value of state εψ is calculated by employing Equa-
tion (3.19) and Equation (3.20) in sequence, where ψ is the measured yaw of the
drone, and ψd is the desired yaw of the drone. Then, by using εψ,d = 0 in the
reference trajectory of the closed-loop control system, the quadcopter’s yaw angle
ψ will track the desired value ψd generated by the trajectory generator. Therefore,
the Parrot AR.Drone 2.0 state space dynamics can be redefined as:



ẋb(t)
ẏb(t)
żb(t)
˙εψ(t)
ẍb(t)
ÿb(t)
z̈b(t)


=



0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0
0 0 0 0 −0.705 0 0
0 0 0 0 0 −0.705 0
0 0 0 0 0 0 −0.905





xb(t)
yb(t)
zb(t)
εψ(t)
ẋb(t)
ẏb(t)
żb(t)


+



0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −0.7

1.37 0 0 0
0 1.37 0 0
0 0 0.755 0



ux
uy
uz
uψ



To prove Equation (3.21), start with the SO(2) dynamics Ṙ = RS2(ψ̇), which
leads to

d

dt
[R] = RS2(bψuψ)

Transposing both sides,
d

dt

[
RT
]

= −S2(bψuψ)RT

Right-multiplying by Rd (taken as a constant, i.e. not a function of time)

d

dt

[
RTRd

]
= −S2(bψuψ)RTRd

Since Re = RdR
T = RTRd,

d

dt
[Re] = −S2(bψuψ)Re

Using Equation (3.17)

d

dt

[
eS2(εψ)

]
= −S2(bψuψ)eS2(εψ)
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Evaluating the time derivative,

S2(ε̇ψ)eS2(εψ) = −S2(bψuψ)eS2(εψ)

We now introduce linearizing approximations. The matrix exponential is defined as

eS2(εψ) = I + S2(εψ) +
1

2!
[S2(εψ)]2 + · · ·

but by assuming εψ < 1 (angular error ≤ 60◦), we can neglect ε2
ψ, ε

3
ψ, . . . as close to

zero. Thus
S2(ε̇ψ) (I + S2(εψ)) ≈ −S2(bψuψ) (I + S2(εψ))

which expands to

S2(ε̇ψ) + S2(ε̇ψ)S2(εψ) = −S2(bψuψ)− S2(bψuψ)S2(εψ)

The second and fourth terms above expand to quadratic (nonlinear) terms in ε̇ψεψ
and bψuψεψ respectively. In order to obtain a linear equation, we need to neglect
these. Assuming this holds, we have

S2(ε̇ψ) ≈ −S2(bψuψ)

And matching the arguments of S2 (equivalently applying H−1 to both sides) yields

ε̇ψ = −bψuψ

as claimed in (3.21).

3.4 Proportional Integral Derivative Control

A PID controller is a common type of controller employed in industry. A PID
controller is a feedback system that consists of manipulating an input variable up
until a state variable reaches a desired setpoint. The input of the controller is the
error e = r − x between the reference (also known as the setpoint), r, and the
measured state, x. The controller parameters are the proportional gain kp, the
integral gain ki, and the derivative gain kd. The control action u is computed as

u(t) = kpe+ ki

∫ t

0
e(τ)dτ + kd

de

dt

where u(t) is the sum of the proportional action, the integral action and the deriva-
tive action. The transfer function of the PID controller is given by

C(s) = kp +
ki
s

+ kds

The corresponding closed-loop is shown below:
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Figure 3.8: PID Closed Feedback System

Where C(s) is the transfer function of the PID controller and P (s) is the transfer
function of the plant. The proportional gain, kp, is related directly to the error
between the setpoint and the state variable. As described in [82], as the proportional
gain increases the response speed increases, however, the system also becomes more
oscillatory. Pure proportional control may have a steady state error to reference
step inputs. There are situations where a pure proportional control has no steady
state error such as in the case of a Type 1 plant. Errors associated with proportional
control can be eliminated using integral control. The integral gain, ki, as long as it is
nonzero will eliminate steady state step tracking error. The integral gain needs to be
tuned to eliminate step tracking error in a reasonable time without going unstable.
In order to ensure that the system response is damped, the derivative gain, kd is
used. Note that larger values of kd will result in a slower system response and will
amplify noise. In addition, the derivative control is cascaded with a low-pass filter
to prevent introducing impulses into the plant. The combination of all three actions
can result in a stable closed loop system that reaches the desired setpoint in an
appropriate amount of time.

3.5 Linear Model Predictive Control With Reference
Tracking

Model Predictive Control (MPC) is a class of control algorithms which compute
an input by utilizing a linear or nonlinear process model to optimize an open loop
quadratic cost function subject to constraints over a future time horizon [39]. All
classes of MPC have three common components as mentioned: a prediction model,
cost function, and constraints. MPC controllers model the future inputs that will
result in a system reaching a desired a reference state. The following schematic
illustrates this point.
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Figure 3.9: MPC Control Strategy

The predicted future outputs for a prediction horizon Np are predicted at each
instant tk using the prediction model up until the instant tk+p. The predicted
outputs depend on the previous inputs and outputs into the system as well as the
future control actions. The future control actions are calculated by optimizing a
cost function to keep the control process as close to the reference position xset and
considering constraints to the system. The control signal u at the time tk+1 is
obtained from the future control actions and sent to the plant of a system.

The MPC controller used in this thesis will not be subjected to constraints
and the addition of constraints is left for future work. The predication model and
cost function of the proposed linear model predictive controller are described in the
following sections.

3.5.1 Prediction Model

The prediction model is used to calculate the output of a process at future instants in
time. Some examples of prediction models are impulse responses, transfer functions
or state space representations. We are using the discrete-time formulation of an
MPC rather than the continuous time formulation. We are using the discrete form
of a MPC since the system that we are controlling obtains digital signals that sample
information at discrete points in time. Therefore, the continuous state space space
model described in Section 3.2.1 is converted into a discrete state space model using
techniques described in [83]. In this case, we consider the discrete state space model
of a dynamic system described as the following set of equations.

xk+1 = Axk +Buk (3.22)

yk = Cxk +Duk (3.23)

We will assume that the model predictive controller will be a full state feedback
controller or in other words C = I, where I is the identity matrix. This assumption
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is valid for systems where the full state can be measured which is for our case due
to the Vicon motion capture system. The goal for the control system is to minimize
the error, ek, between the desired reference trajectory,rk, and the current position
and yaw of the object, xk.

ek = rk − xk → 0 (3.24)

In order to ensure that the error reaches a steady state of approximately zero, an
integral control is required. This involves redefining the input as follows:

uk = 4uk + uk−1 (3.25)

Where the input, uk, is the sum of the the previous input, uk−1, and the difference
between the inputs, 4uk. Substituting Equation (3.25) into Equation (3.22) and
setting uk−1 as a state and 4u as the input, we form the following state model.[

xk+1

uk

]
=

[
A B
0 I

] [
xk
uk−1

]
+

[
B
I

]
4 uk (3.26)

yk =
[
C 0

] [ xk
uk−1

]
(3.27)

Equations (3.26) and (3.27) can be written as

x̃k+1 = Ax̃k +B 4 uk

yk = xk = Cx̃k

Where the matrices of the new state model are

A =

[
A B
0 I

]
, B =

[
B
I

]
, C =

[
C 0

]
and the new state vector is defined as

x̃k =

[
xk
uk−1

]
(3.28)

3.5.2 Cost Function

In order to obtain the optimum steps to approach a desired set-point value a cost
function as described below is used,

J =
1

2

N∑
k=0

[
eTt+kQet+k

]
+

1

2

N−1∑
k=0

[
∆uTt+kR∆ut+k

]
Note that the matrices Q and R represent weights used in the control system. The
matrix Q is a positive-definite matrix used to weigh the importance of the tracking
error, and R is a positive semi-definite matrix used to weight the importance of the
control input. Substituting (3.24) into the above equation and expanding out, we
find:

J =

N∑
k=0

1

2
rTt+kQrt+k︸ ︷︷ ︸
constant

− rTt+kQC̄x̃t+k +
1

2
x̃Tt+kC̄

TQC̄x̃t+k

+
1

2

N−1∑
k=0

[
∆uTt+kR∆ut+k

]
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With this idea in mind, consider the following vector representations:

r =


rt
rt+1

...
rt+N−1

 xt+1 =


x̃t+1

x̃t+2
...

x̃t+N

 ∆u =


∆ut

∆ut+1
...

∆ut+N−1


Therefore, using the above definitions, and substituting them into the cost function
described in the equation above, we find:

J =
1

2
xTt+1Qxt+1 − rTTxt+1 +

1

2
∆uTR∆u (3.29)

where the matrices Q, T , and R are defined as following:

Q =


C̃TQC̃ 0 · · · 0

0 C̃TQC̃ · · · 0
...

...
. . .

...

0 0 0 C̃TQC̃

T =


QC̃ 0 · · · 0

0 QC̃ · · · 0
...

...
. . .

...

0 0 0 QC̃

 R =


R 0 · · · 0
0 R · · · 0
...

...
. . .

...
0 0 0 R


Equation (3.29) depends on the state dynamics of the system for each future

time step and is described by the following expression:

xt+1 =


0 0 0 · · · 0

0 Ã 0 · · · 0
...

...
. . .

. . .
...

0 0 0 Ã 0

xt+1 +


B̃ 0 · · · 0

0 B̃ · · · 0
...

...
. . .

...

0 0 · · · B̃

∆u+


Ã
0
...
0

xt (3.30)

By rearranging Equation (3.30) such that the equation is expressed in terms of ∆u
and x̃t, we find the following:

x̃t+1 = Ãx̃t + B̃∆ut

x̃t+2 = Ãx̃t+1 + B̃∆ut+1 = Ã2x̃t + ÃB̃∆ut + B̃∆ut+1

x̃t+3 = Ãx̃t+2 + B̃∆ut+2 = Ã3x̃t + Ã2B̃∆ut + ÃB̃∆ut+1 + B̃∆ut+2

...

x̃t+N = Ãx̃t+N−1 + B̃∆ut+N−1 = ÃN x̃t + ÃN−1B̃∆ut + ÃN−2B̃∆ut+1 + · · ·+ B̃∆ut+N

Therefore, forming these results into matrix form, we obtain the following expres-
sion:

xt+1 = Axt +B∆u (3.31)

where the matrices A and B are defined as the following:

A =


Ã

Ã2

Ã3

...

ÃN

 B =


B̃ 0 0 · · · 0

ÃB̃ B̃ 0 · · · 0

Ã2B̃ ÃB̃ B̃ · · · 0
...

...
. . .

. . .
...

ÃN−1B̃ ÃN−2B̃ · · · ÃB̃ B̃


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Then substituting Equation (3.31) into Equation (3.29) yields the following results:

J =
1

2

(
Axt +B∆u

)T
Q
(
Axt +B∆u

)
− rTT

(
Axt +B∆u

)
J =

1

2
A
T
xTt Q B∆u+

1

2
A
T
xTt Q Axt︸ ︷︷ ︸

constant

+
1

2
B
T

∆uTQ Axt +
1

2
B
T

∆uTQ B∆u

− rTT Axt︸ ︷︷ ︸
constant

− rTT B∆u+
1

2
∆uTR∆u

J =
1

2
∆uT

(
B
T
Q B +R

)
∆u+

[
xTt rT

] [ATQ B

−T B

]
∆u

This finally leads to the following expression:

J =
1

2
∆uTG∆u+

[
xTt rT

]
H
T

∆u (3.32)

where the matrices G and H are defined as the following:

G = B
T
Q B +R H =

[
A
T
Q B −T B

]
In order to obtain the optimum path, the cost function needs to be minimized. This
is done by taking the Jacobian of the cost matrix and equating it zero to find the
minimum. This is represented in the following expression:

∇J = G∆u+H

[
xt
r

]
= 0 (3.33)

Rearranging Equation (3.33) such that ∆u is on the left-hand side yields the follow-
ing:

∆u = −G
−1
H

[
xt
r

]
(3.34)

Substituting Equation (3.34) into Equation (3.31) will solve for xt+1. Take the
first entry of xt+1 is the x̃t+1 term used for the future prediction of the state. As
described in Equation (3.28), the x̃t+1 term consists of the future prediction of the
state xt+1 and the input required to achieve the predicted state. Note that the
previous input is stored.
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Chapter 4

Vision-Based Detection
Tracking Algorithm

This chapter describes a method to estimate the relative position of an object in
the video frame from bounding box information. The bounding box information
was obtained from a vision based object detection algorithm called YOLO v2. The
performance of YOLO v2 for detecting the Parrot AR.Drone UAV was discussed in
the MSc thesis of Bingsheng Wei [4], however the proposed equations to estimate
the position of the target relative to the follower were found to perform poorly in
experimental testing. An updated approach to estimate position from a monocular
camera was suggested by Dr. Martin Barczyk in [84] and used in the present thesis.
This approach is outlined in Sections 4.1, 4.2, 4.3, and 4.4.

Section 4.1 describes the camera model used for the Parrot AR.Drone 2.0’s on-
board video camera. Section 4.2 outlines the imaging model that maps the object in
3D space to the 2D image plane. The camera calibration is described in Section 4.3.
The relative position estimation is derived in Section 4.4. Finally, Section 4.5 looks
into the performance of YOLO v2 in estimating the relative position of an object.

4.1 Camera Model

We assume that the physics of the monocular camera can be described by a thin
lens model. A thin lens model assumes that all rays that enter the lens parallel to
the optical axis intersect at a single focal point. The thin lens model assumes that
all rays that enter the lens through its optical center are undeflected. The following
diagram illustrates the thin lens model in 2D.
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Optical Axis
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f

Optical Center
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Figure 4.1: Thin Lens Model

The point p located at a distance Z from the lens is imaged onto a point p′

on the image plane located a distance z from the lens. The quantity f refers to
the focal length of the camera. The aperture determines the amount of rays that
pass through the lens. Using similar triangles in Figure 4.1 yields the fundamental
equation of the thin lens.

1

f
=

1

Z
+

1

z
(4.1)

This model can be further simplified by taking the aperture of the thin lens as
approaching zero. In this case, a ray can only pass onto the image plane through
the optical center of the lens. This type of thin lens model is referred to as the
pinhole camera model as shown in Figure 4.2.

CI

p

p′

f

Optical Axis

Image Plane

Optical Center

xC yC

zC

xI

yI

(X,Y, Z)

(x, y)

Figure 4.2: Pinhole Camera Model

In a pinhole camera model, the distance from the lens to the imaging plane is
the focal length of the camera since a ray that enters the lens along the optical axis
must pass through the focal point. From Figure 4.2, the frame C is the camera
lens-fixed reference frame whose origin is at the optical center of the thin lens while
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the frame I is on the image plane and has an origin that lies at the intersection of
the optical axis with the image plane.

Let (X,Y, Z) denote the coordinates of p with respect to frame C and let (x, y)
denote the coordinates of the point image p′ with respect to frame I. Using similar
triangles leads to the following expression for (x, y):

x = −f X
Z

y = −f Y
Z

(4.2)

The negative sign reflects the fact that the image is projected onto the image
plane, which in a digital camera corresponds to the CCD sensor array, is an upside-
down, mirror-flipped version of the scene in front of the camera. This is intrinsically
compensated in the firmware of the camera such that the reported image correctly
renders the scene. This effect can be mathematically modelled by assuming that
the image plane is in front of the lens as illustrated in Figure 4.3.

C I

p

p′

f

Optical Axis

Image Plane

Figure 4.3: Inverted Camera Model

By taking X,Y, Z as the coordinates of p with respect to frame C, coordinates
(x, y) of the point p′ on the image frame I can be rewritten as

x = f
X

Z
y = f

Y

Z
(4.3)

The above model is only used to obtain the sign correspondence between the 3D
world coordinates and the 2D image plane coordinates and does not represent the
physical setup of the camera.

4.2 Imaging Model

In Section 4.1 we obtained Equation (4.3) which maps the 3D point (X,Y, Z) to its
corresponding 2D point (x, y) in the image plane. This mapping can be written in
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homogeneous coordinates as shown in the following expression

xy
1

 =

fX/ZfY/Z
1

 = 1
Z

f 0 0 0
0 f 0 0
0 0 1 0



X
Y
Z
1

 = 1
Z

f 0 0
0 f 0
0 0 1


︸ ︷︷ ︸

Kf

1 0 0 0
0 1 0 0
0 0 1 0


︸ ︷︷ ︸

Π0


X
Y
Z
1

 (4.4)

Note that (X,Y, Z), (x, y), and f are given in units of meters [m]. Since a digital
camera is being used, the parameters of the model that transform the coordinates
and focal length from units of meters to units of pixels (px) need to be found. This
transformation can be performed with the following steps. The dimensions in meters
need to be transformed into px such that

xs = sxx

ys = syy (4.5)

where sx, sy are scaling factors in units of px/m. If sx = sy then the pixels are
square. The scaled coordinates are then transformed into the image frame I as

x′ = xs + cx

y′ = ys + cy (4.6)

where (cx, cy) are the coordinates of the optical axis with respect to the digital image
frame, I, in units of px. Combining the two transformations in Equation (4.5) and
Equation (4.6), we find x′y′

1

 =

sx 0 cx
0 sy cy
0 0 1


︸ ︷︷ ︸

Ks

xy
1

 (4.7)

Combining Equation (4.4) with Equation (4.7) yields the following expression

x′y′
1

 =
1

Z

sxf 0 cx
0 syf cy
0 0 1


︸ ︷︷ ︸

K

1 0 0 0
0 1 0 0
0 0 1 0


︸ ︷︷ ︸

Π0


X
Y
Z
1

 (4.8)

where K is the intrinsic camera matrix whose entries are determined by the optical
properties of the camera and are fixed. The matrix K is an upper triangular matrix
which means that it is invertible provided all of its diagonal entries are non-zero.
Note that we can define the focal lengths in the X- and Y-direction of the image
frame as fx = sxf and fy = syf , respectively, in units of px. In addition, we can
define a projection matrix P = KΠ0 such that

P =

fx 0 cx
0 fy cy
0 0 1


︸ ︷︷ ︸

K

1 0 0 0
0 1 0 0
0 0 1 0


︸ ︷︷ ︸

Π0

=

fx 0 cx 0
0 fy cy 0
0 0 1 0

 (4.9)
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4.3 Camera Calibration

The image model described in Section 4.2 is an idealized model that does not take
into account distortion effects which warp the image in a number of ways. The
Parrot AR.Drone 2.0 is equipped with an onboard wide angle monocular camera
that has a barrel distortion. A number of models are available to remove distortion
from an image. The default model used by the ROS image pipeline which employs
the OpenCV library is the plumb bob model [85]. This model inputs a distorted
image in image plane frame I coordinates (xd, yd) and outputs a corrected image in
the image plane frame I coordinates (x, y) by the following calculations

r2 = x2
d + y2

d

x = xd(1 + k1r
2 + k2r

4 + k3r
6) + 2p1xdyd + p2(r2 + 2x2

d)

y = yd(1 + k1r
2 + k2r

4 + k3r
6) + 2p2xdyd + p2(r2 + 2y2

d)

(4.10)

where k1, k2, k3 model the effect of the radial distortion created by a wide angle
lens, and p1, p2 model the tangential distortion created by the lens plane not being
perfectly parallel to the imaging plane. Since the distortion model is formulated in
I frame coordinates, both (x, y) and (xd, yd) are in SI units.

The parameters k1, k2, k3, p1, p2 in the distortion model can be found by per-
forming a camera calibration. The camera calibration is performed using a ROS
package called camera calibration that uses a OpenCV camera calibration mod-
ule [86]. This camera calibration involves employing a checkerboard with known
dimensions, taking a series of pictures of this checkerboard in different poses, and
performing model fitting to obtain numerical values for the calibration parameters.
The checkerboard can contain an arbitrary number ≥ 3 of squares with arbitrary
dimensions. In order to perform a better calibration, the checkerboard needs have
a large number of squares with larger dimensions. In this thesis, a 10 x 10 checker-
board with dimensions of 10 cm were used.

Once the camera calibration is found, the ROS image pipeline for both monocular
and stereo cameras can be conceptually described by the diagram below, based on
a diagram found in [87].
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Figure 4.4: Camera Calibration Schematic

For a monocular camera setup, ROS will read in the raw, distorted video reported
by the camera. This raw camera feed is transformed through the inverse of the in-
trinsic camera matrix K−1 to convert the distorted digital image coordinates (x′d, y

′
d)

into the normalized image plane frame I coordinates (xd, yd). These converted coor-
dinates (xd, yd) are run through the plumb bob distortion model in Equation (4.10)
with parameter values stored in matrix D which result in the corrected coordinates
(x, y) in the image plane frame I. These corrected pixel coordinates (x, y) represent
the projection of a 3D point pR onto the image plane frame. The 3D point pR is
determined from a 3D point p subjected to a rotation matrix RR and a translational
offset t. In a monocular camera the point pR represents a 3D point viewed by the
camera lens. We do not consider the point pL since this corresponds to the view of
p from the left camera which doesn’t exist in this case.

The corrected coordinates (x, y) are run through a rectification matrix R which
in the case of a monocular camera is an identity matrix. The final step is for
the post-rectification coordinates (xr, yr) to be run through the projection matrix
P , which for monocular cameras is P =

[
K ′ e3

]
where e3 = [0 0 1]T . This

yields (x′, y′) which is the undistorted version of the image captured by the onboard
camera. Further details about how to run a camera calibration for a stereo camera
set-up can be found in [87, 86].

Following the steps outlined in [86] will result in a calibration file which is stored
within a directory in ROS. An example of the .yaml file is shown in Appendix A.
This file contains the intrinsic camera matrix K, the distortion coefficients D, the
rectification matrix R, and the projection matrix P . Several camera calibrations
were performed and averaged out to obtain the calibration parameters which are
found in Appendix A. Note that the .yaml file contains two intrinsic matrices: the
camera matrix K and the projection matrix P . The camera matrix K describes
the intrinsic parameters of the camera if the distortion is not removed while the
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left-hand subset of the projection matrix P describes the intrinsic parameters of the
camera once the image correction has been applied.

4.4 Object Position Estimation from a Monocular Cam-
era

In order to estimate the position of an object relative to the pursuer UAV from
monocular camera images the following assumptions need to hold:

• A vision based object detection algorithm using a well-trained convolutional
neural network (CNN) provides accurate rectangular bounding boxes of the
target UAV.

• The physical dimensions of the target UAV are precisely known.

• The visible width and height of the target UAV stay approximately the same
for the duration of the experiment

The first assumption can be reasonably held as long as the vision based object
detection algorithm is sufficiently trained to provide accurate information. The
validity of this assumption is explored in [4]. The second assumption is reasonable
if the dimensions of the target UAV are well known. Therefore, our depth estimation
can not be used to detect distance of different drones and is restricted to the Parrot
AR.Drone 2.0. The third assumption is more restrictive, and requires that the
target UAV maintain a yaw angle close to 0 relative to the pursuer UAV and be
approximately level with it. An approach to removing this assumption would be
to train the CNN to classify different orientations of the target UAV, and use this
information to dynamically assign a visible width and height. However, this requires
additional work that is not covered in this thesis and is left for future work.

Within Equation (4.8), taking (x′, y′) as the pixel coordinates of the corrected
image and extracting parameters fx,fy,cx and cy from projection matrix P, the
following expressions are obtained

x′ = fx
X

Z
+ cx

y′ = fy
Y

Z
+ cy

(4.11)

YOLO v2 provides rectangular bounding box information in the form of the
vector (x′ul, y

′
ul, x

′
lr, y

′
lr), where (x′ul, y

′
ul) are the digital video frame coordinates of

the upper-left corner of the bounding box and (x′lr, y
′
lr) are the lower-right corner

coordinates of the bounding box, all in units of px. The width of the bounding box
is w′ = x′lr − x′ul and the height of the bounding box is h′ = y′lr − y′ul.

Let Xul and Xlr denote the camera lens fixed frame C coordinates of the points
in 3D space corresponding to the upper left and bottom right pixel of the bounding
box. Under the assumption that the target UAV has a small yaw angle with respect
to the pursuer UAV such that the yaw angle ψ is close to 0 radians, the following
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expression is found:

w′ = x′lr − x′ul

w′ = fx
Xlr

Z
+ cx − fx

Xul

Z
− cx

w′ =
fx
Z

(Xlr −Xul) (4.12)

Note that Xlr − Xul = W is the true frontal width of the target drone which is
known from its geometry. Rearranging Equation (4.12) such that the depth Zw
(determined using only width information) can be solved, the following equation is
found:

Zw = fx
W

w′
(4.13)

Using the same procedure as described above except with height information h′,
the depth Zh is determined using only height information.

h′ = y′lr − y′ul

h′ = fy
Ylr
Z

+ cy − fy
Yul
Z
− cy

h′ =
fy
Z

(Ylr − Yul) (4.14)

note that Ylr − Yul = H is the true frontal height of the target drone, which is
known. Rearranging Equation (4.14) such that we solve for the depth Zh, the
following expression is found:

Zh = fy
H

h′
(4.15)

The results from Equation (4.13) and Equation (4.15) should be identical. How-
ever in practice, the errors in the bounding box estimated dimensions w′ and h′ will
affect the computed depth, and since the resolution along the x′ and y′ directions
is typically different, these errors will not affect the depth estimation in the same
way. Two methods are proposed to mitigate this issue.

The first method is to calculate the geometric mean of Equation (4.13) and
Equation (4.15). The geometric mean x =

√
x1x2 is used instead of the arithmetic

mean x = (x1 + x2)/2 that is used in [4] to deal with the different numerical ranges
along the x′ and y′ directions. The resulting expression for Zg is

Zg =
√
ZwZh (4.16)

The second method is to completely discard the depth calculated by Equa-
tion (4.15) and only consider the depth calculated by Equation (4.13). This method
considers the fact that the width direction has twice the number of pixels than the
height direction (640 and 360, respectively). The larger number of pixels in the
width direction yields a larger pixel density in width which provides more accurate
estimations of depth and less sensitivity to random errors. Therefore the errors in
w′ have a smaller impact on the estimate of the depth Z than the errors in h′. In
addition, the width calculation is invariant to the target flying above or below the
level of the pursuer.
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Both of these methods are investigated and assessed in Section 4.5 and the
method that yields the minimum amount of error is used in the vision based pursuit
algorithm.

Once the value of Z is obtained, the (X,Y ) coordinates can be obtained. In-
verting Equation (4.11), we obtain the following expressions

X

Z
=
x′ − cx
fx

Y

Z
=
y′ − cy
fy

(4.17)

The digital image frame coordinates of the midpoint of the bounding box are ob-
tained using the following expressions

x′m =
x′ul + x′lr

2
y′m =

y′ul + y′lr
2

(4.18)

Combining Equation (4.17) and Equation (4.18), the coordinates of the midpoint of
the bounding box can be determined by the following expression

Xm = Z
x′m − cx
fx

Ym = Z
y′m − cy
fy

(4.19)

4.5 Bounding Box Vision Detection Algorithm Analysis

The performance and limitations of the bounding box vision detection algorithm
need to be understood in order to properly implement it into a pursuit algorithm.
An analysis of the performance of YOLO v2 compared to other vision based object
detection algorithms was done in [4]. YOLO v2 was found to be faster than other
vision-based object detection algorithms while still maintaining good performance.
However, YOLO v2 requires a white background to operate properly. Despite YOLO
v2’s limitations, it was chosen to perform position estimation of an object due to its
faster computation time.

The depth estimation of an object from a 2D bounding box was derived and the
RMS error of the estimated depth was approximately ±12.86 cm when the drone
translated purely axially relative to the pursuer[4]. The depth estimation in [4]
was determined by using a arithmetic mean of the two depth calculations found in
Equations (4.13) and (4.15). This method incorporates Zh which exhibits higher
errors than Zw due to the smaller resolution in height compared to width.

In order to prevent confusion between the global axes and the camera image
frame, the convention for global axes is based off of Figure 3.3 such that the global
X, Y, and Z axes are referred to as xw, yw, and zw, respectively. The depth of the
object is referred to as Z which is the Z-position of the object in the camera image
frame C as shown in Figure 4.2.

We wish to test depth estimations based on either a geometric mean or solely
the width based depth Zw. The mathematics behind these two methods were de-
scribed in Section 4.4. In order to evaluate the performance of these two alternative
methods, two tests are proposed.

The first test looks at the performance of YOLO v2 as the drone moves along
the global X-axis xW of the Vicon motion capture system. The global X-axis xW
and Y-axis yW are based off the global frame as shown in Figure 3.3. The target
drone will initially sit at a distance of approximately 2 m away from the pursuer
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drone along the global X-axis xW . The drone running YOLO v2 is systematically
moved from one relative X-position to another in increments of 0.5 m while holding
the global Y-position and yaw orientation roughly constant at 0 m and 0 radians,
respectively. This test is meant to provide insight on how the depth estimation
performs at various depths.

The second test looks at the performance of YOLO v2 as the drone moves along
the global Y-axis yW of the Vicon motion capture system as shown in Figure 3.3.
The pursuer drone will maintain a distance of approximately 2 m away along the
global X-axis from the target and move along yw from one position to another in
increments of 0.25 m while holding a constant yaw orientation. This second test is
meant to provide insight on the accuracy of the depth estimations when the drone
is not located parallel to the object.

These two tests will only provide insight on how depth estimation is affected
along xW and yW and which depth estimation method has better performance. These
two tests will not provide an in depth performance analysis of YOLO v2 and are
only meant to provide expectations on how the bounding box algorithm will perform
in hardware testing.

4.5.1 Depth Estimation Performance along the Global X-Axis

The first test consists of moving the pursuer drone along the global X-axis xW
while maintaining a Y-position of 0 m and a yaw orientation of 0 radians. The
pursuer drone begins at a position of 0.5 m away from the target and is moved
by increments of 0.5 m away from it. When the pursuer reaches its new relative
position, it holds this position for a duration of about 10 seconds. This is meant to
provide an adequate number of data samples to average the estimates of depth of
the object at that position. The position of the pursuer drone and the target drone
is obtained using the Vicon motion capture system. The following table outlines
the average depth error and the root mean square error which are calculated using
equations described in Appendix G.

Table 4.1: Relative Positions for Moving along the Global X-Axis

Relative Position [m]
Zw Zg

eZw [m] RMS [m] eZg [m] RMS [m]

0.5 m 0.053 0.003 0.184 0.003

1.0 m 0.031 0.003 0.083 0.004

1.5 m −0.041 0.004 0.099 0.010

2.0 m −0.009 0.008 0.116 0.007

2.5 m −0.017 0.013 0.069 0.007

3.0 m 0.033 0.017 0.092 0.013

Where Zw is the depth determined using the width-based depth estimation
method described in Section 4.4, Zg is the depth determined using the geomet-
ric average based depth estimation method, eZw is the average relative error for the
width-based depth estimation, and eZg is the average relative error for the geometric
average based depth estimation.
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These values were extracted from position data that is shown in plots in Ap-
pendix B. The average relative error from a distance of 0.5 m to 3.0 m appears to
be roughly 0.04 m for the width based depth estimation while the geometric average
based depth estimation had an average relative error of roughly 0.11 m. The results
from this test suggest that the width based depth estimation provides a better per-
formance for the pursuit algorithm as long as the pursuer drone remains parallel to
the target drone along the X-axis.

4.5.2 Depth Estimation Performance along the Global Y-axis

This test consists of moving the pursuer drone along the global Y-axis yW while
maintaining a X-position of 2 m and a yaw orientation of 0 radians. The drone
begins at a position of 0 m in the Y-axis and is moved by increments of 0.25 m to
the left and right from the object. When the drone running YOLO v2 is located at
its new relative position, it will maintain its position for a duration of 10 seconds.
The following table outlines the average relative error for each position and the root
mean square error.

Table 4.2: Relative Positions for Movements in the Global Y-axis

Relative Position [m]
Zw Zg

eZw [m] RMS [m] eZg [m] RMS [m]

-1.0 m −0.018 0.011 0.192 0.017

-0.75 m −0.013 0.009 0.223 0.005

-0.5 m −0.013 0.012 0.248 0.017

-0.25 m 0.043 0.008 0.203 0.015

0.0 m 0.016 0.007 0.153 0.017

0.25 m −0.082 0.007 0.109 0.005

0.5 m −0.219 0.009 −0.016 0.015

0.75 m −0.439 0.007 −0.267 0.017

1.0 m −0.270 0.005 −0.274 0.013

The column headings in Table 4.2 were defined in Section 4.5.1. The results
from Table 4.2 demonstrate some issues that arise when using the assumption that
the height and width of the 2D bounding box correspond to the physical dimensions
of the UAV. From −1.0 m to 0 m, the width based depth estimation provides an
accurate estimation of the depth of the object while the geometric average based
depth estimation reports large errors. However, when the pursuer drone moves in
the positive Y-direction, the relative error using the width based depth estimation
drastically increases. Upon observation and investigating the size of the bound-
ing boxes at these locations, the width and height of the bounding boxes did not
accurately encompass the target drone in the image frame. This resulted in large
errors in the width based depth estimation for the positions of 0.25 m and 1.0 m.
At the 0.5 m position, the inaccurate width and height of the bounding box co-
incidentally managed to provide a small relative error using the geometric depth
estimation. When the position moved to 1.0 m, the geometric depth estimation
resumed reporting a large error.
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4.5.3 Bounding Box Object Detection Performance Summary

In summary, the bounding box object detection algorithm YOLO v2 can be used
to determine the relative position of an object using 2D bounding box information,
however, it is important to determine how to estimate the depth of this object.
Based off of the results in Section 4.5.1 and 4.5.2, the width based depth estimation
was found to provide better performance based on experimental testing at varying
positions along the X (depth) and Y (lateral) axes.

In order to evaluate whether the performance of the width based depth estima-
tion in the two experiments is adequate, we need to understand the errors in depth
that result from having an inaccurate bounding box. The width based depth estima-
tion error per pixel is the error in depth associated with a single pixel deviation from
the theoretical width of the bounding box. The depth error per pixel is calculated
by determining the width of a bounding box at a specific depth as shown:

wi =
W fx
Zi

Where W and fx are described in Section 4.4,Zi is the depth of the object in meters,
and wi is the width of the bounding box that would achieve the depth Zi in pixels.
Let us consider the case if the width wi was a single pixel larger, then the new depth
that we would calculate is found to be:

Zi+1 =
W fx
wi + 1

The depth error can be determined by taking the difference between the new depth
Zi+1 and the original depth Zi and multiplying the difference by two to determine
the depth error for ±1 pixel as shown in the expression below:

∆Z = 2 (Zi − Zi+1)

The depth error per pixel increases the further away the object is located and
the predicted relationship is shown in Figure 4.5.
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Figure 4.5: Relationship between Depth Error per Pixel and Depth of Object

From Figure 4.5, the depth error per pixel at 2 m, is approximately 0.03 m/px.
The average relative error found in Section 4.5.1 was found to be roughly 0.04 m for
the width based depth estimation which indicates that the bounding box information
was accurate. In addition, the performance of the width based depth estimation
along the global Y-axis in Section 4.5.2 was also accurate up to a point. The results
in Section 4.5.2 show that if the YOLO v2 is not properly trained, large errors will
arise in the depth estimation the further the object is located. This is reinforced by
the calculations in Figure 4.5 which indicate that if object is located further away
then small errors in the bounding box will result in larger depth estimation errors.

It should be noted that a test along the global Z-axis zW and yaw rotation
was not conducted and is left for future work. However, despite not running tests
along the global Z-axis and yaw rotation, certain insights into the performance of the
bounding box algorithm can be obtained from the mathematical principles discussed
in Section 4.4. The width based depth estimations should not be adversely affected
to movement along the Z-axis as long as the target drone remains parallel to the
pursuer drone. However, the yaw rotations will have a large impact on the depth
estimation. For instance the Parrot AR.Drone 2.0 has a width and depth of 52 cm,
and a height of 13 cm. When it faces away from the target drone, its visible width
and height are known to be 52 cm by 13 cm. However if it yaws by 45◦, its visible
width changes to (522 + 522)1/2 = 73.5cm, a 41% increase which thus violates the
assumptions in Section 4.4 [84]. In light of this, the control algorithm will attempt
to keep the pursuer drone maintain the same Z-position and orientation as the target
drone.

It is important to note that the tests performed in Chapter 4 involved a static
pursuer drone, meaning motion blur did not occur. Motion blur is relevant since the
camera used has a low resolution and will be attempting to follow a moving target.
An investigation into the effects of motion blur and mitigating its error contribution
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is left for future work. However, the hardware testing in Chapter 6 involves both
the target and pursuer flying, and the full system is shown to perform well under
those conditions.
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Chapter 5

Control System Implementation
and Assessment

5.1 Modular Control System Design

5.1.1 Modular PID Design

The PID motion control is designed as a ROS node that subscribes ROS topics
related to the world position and orientation of the controlled drone and the desired
world position and yaw angle while publishing input commands to the driver of the
drone. This process is outlined in the following control diagram found in Figure 5.1.

PID Motion

Controller

VICON

AR.Drone
Setpoint

Generator

(xm)W

(xref )W u y

Figure 5.1: Modular PID Control Diagram

The desired state of the drone,(xref )W ,is published from a ROS node and consists
of the desired world position and yaw of the drone. The desired trajectories that
the drone performed for this thesis are outlined in Section 5.2. The current world
position of the drone,(xm)W , is measured by the Vicon motion capture system and
uses the ROS package vicon bridge as described in Section 2.2. The desired and
current pose are subscribed into a ROS node that performs PID motion control
and was written in C++. The mathematical principles of the PID controller were
described in Section 3.4. This PID controls the drone along the (x, y, z)b directions
relative to the body frame of the drone as well as the yaw angle ψ. This results in
tuning the gains Kp,Ki, and Kd for each direction and the yaw rotation to a total
of 12 gains that need to be tuned. The PID motion controller will determine the
control inputs, u, that are fed into the driver of the Parrot AR.Drone 2.0. This
driver is the ROS package ardrone autonomy as mentioned in Section 2.2.5.2 and is
used to communicate with the drone via WiFi. The drone will receive the command
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inputs and orientate and fly itself to a new pose, y. This new pose is measured by
the Vicon motion capture system and fed back into the PID motion controller.

5.1.2 Modular LMPC Design

The LMPC motion control is designed to be a ROS node that subscribes ROS topics
related to the world position and orientation of the controlled drone and the desired
world position and yaw angle while publishing commands to the driver of the drone.
This process is outlined in the following control diagram found in Figure 5.2.

LMPC

Controller

Setpoint

Generator

VICON

AR.Drone
y

(xm)W

(xref)W uc

Figure 5.2: Modular LMPC Control Diagram

This control diagram is similar to the control diagram for the PID controller
found in Figure 5.1. The major difference between these two controllers is that the
LMPC control system uses the state space model of the Parrot AR.Drone 2.0 as
described in Chapter 3 and controls both the position and velocity of the drone
with respect to the body frame of the drone and the yaw rotation of the drone.
Therefore, the desired state of the drone,(xref )W , is not just its pose but also its
velocity in each direction. Similarly, the current state of the drone,(xm)W ,is not just
the current pose of the drone but also includes the current velocity of the drone.
The Vicon motion capture system captures the pose of the drone which means that
the velocity is calculated using numerical methods and filtered using a simple real-
time low pass filter as described in Section 3.2.3. The LMPC motion controller thus
stores the previous pose information in order to calculate the velocity of the drone.
The LMPC motion controller will determine the optimum control inputs,u, that are
fed into the driver of the AR.Drone. These control inputs are stored in the LMPC
motion controller since the LMPC uses the previous control input to determine the
optimum control input to achieve the desired setpoint. The drone will receive the
command inputs and fly itself to a new pose,y. This new pose is determined by the
Vicon motion capture system and fed back into the LMPC motion controller.

5.2 Experimental Procedure

In order to properly assess the performance of both control systems, each will be
tested by having the Parrot AR.Drone perform two types of maneuvers. The first
test will involve how the drone responds to a reference that is a step input in each
direction and the yaw rotation. The second test will evaluate how each control sys-
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tem performs when all 6 degrees of freedom are changing when a drone is performing
a Figure-8 maneuver.

5.2.1 Step Responses

In order to evaluate the performance of each of the control systems, each system
will be subjected to a sequence of step reference inputs in each direction and the
yaw rotation axis. This experiment will assess the performance of the controller in
each direction and the yaw rotation, independently. The control system gains are
tuned for each direction to obtain the optimum performance. The sequence of steps
are described as

rx,y,z,ψ =


rlow, 30n ≤ t ≤ 15 + 30n,
rmid, 15 + 60n ≤ t ≤ 30 + 60n, n = 0, 1, 2...
rhigh, 45 + 60n ≤ t < 60 + 60n,

where t is time in seconds, and n is an integer value. The values for rlow, rmid, and
rhigh for each direction and yaw rotation is described in Table 5.1.

Table 5.1: Step Values for Each Direction and Yaw Rotation

Step Direction/Rotation rlow rmid rhigh
Global X-Direction, Xw [m] -1 0 1

Global Y-Direction, Yw [m] -1 0 -1

Global Z-Direction, Zw [m] 0.75 1.25 1.75

Global Yaw Rotation, ψw [rad] -1.57 0 1.57

5.2.2 Figure 8 Trajectory

The UAV will follow a figure 8 trajectory to assess how each control system handles
inputs along each direction and the yaw rotation all at once. These experiments
are meant to test the capability of the drone to perform intricate manoeuvres. The
gains will be tuned to obtain the optimum performance for each type of control
system.

The drone will start from an initial hover of [(x0)w, (y0)w, (z0)b] =
[
0 0 1

]
with an attitude of [φ0, θ0, ψ0] =

[
0 0 0

]
and follow a Figure-8 trajectory in space

that is described by the following parametric curves

(xref )w(t) = (lm/2)sin(4πt/tc)

(yref )w(t) = lM sin(2πt/tc)

(zref )w(t) = (h/2)sin(πt/tc) + zm

where (xref )w(t), (yref )w(t), and (zref )w(t) are the reference positions in the world
frame of reference with respect to time, lM and lm are the major and minor diameters
of each lobe in metres, respectively, h is the total vertical height of the trajectory,
zm is the hover position of the drone and height that the drone oscillates around, all
in metres, and tc is the time required to complete one full circuit in seconds. The
constants associated with the target trajectory are outlined in Table 5.2 below:
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Table 5.2: Figure-8 Trajectory Properties

Minor Diameter, lm [m] 1

Major Diameter, lM [m] 1.5

Vertical Height, h [m] 0.5

Initial Z-Position, zm [m] 2

Circuit Time, tc [s] 30

The reference yaw angle is found using the following expression

ψref (t) = atan2[(d/dt)(xref )w(t), (d/dt)(yref )b(t)]

which points the vehicle in the direction of travel, and where the time derivatives
can be determined analytically by differentiating the parametric curves.

5.3 PID Motion Controller Assessment

5.3.1 Step Response using a PID Motion Controller

The Parrot AR.Drone 2.0 performed a step response in each direction and in yaw
using a PID motion controller. The system was subjected to a sequence of step
reference inputs in one direction or rotation while holding all other directions and/or
rotation steady in a user-specified position. Each system was tuned to minimize
the rise time, Trise, and fall time, Tfall, and reach the reference step input. The
PID tuning parameters for the step responses are found in Appendix C. The step
responses for each direction and rotation are shown in Figures 5.3, 5.4, 5.5, and 5.6.
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Figure 5.3: Step Response in the X-axis using PID Control
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Figure 5.4: Step Response in the Y-axis using PID Control
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Figure 5.5: Step Response in the Z-axis using PID Control
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Figure 5.6: Step Response in Yaw using PID Control

In Figures 5.3, 5.4, 5.5, and 5.6, the parameter ((x, y, z, ψ)m)w denotes the
measured global position in either the X-,Y-, or Z-direction while the parameter
((x, y, z, ψ)ref )w denotes the desired global position in either X-,Y-, or Z-direction.
Figures that show how the system maintained a desired position in the other direc-
tions and/or in yaw can be found in Appendix C. The following tables summarizes
the performance of the drone in tracking a step response in each direction and in
yaw as well as the rise and fall time for each step response.
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Table 5.3: Performance Summary for Step Responses in Each Direction and Yaw

Parameter Reference Values Averaged Measured Values

Step Response along the Global X-Axis

xlow [m] −1 −1.0062± 0.0202

xmid [m] 0 0.0030± 0.0212

xhigh [m] 1 −1.0062± 0.0202

(ym)w [m] 0 −0.0035± 0.0643

(zm)w [m] 1 1.0063± 0.0214

(ψm)w [rad] 0 −0.0653± 0.0679

Step Response along the Global Y-Axis

ylow [m] −1 −1.0044± 0.0276

ymid [m] 0 −0.0032± 0.0357

yhigh [m] 1 0.9851± 0.0281

(xm)w [m] 0 0.0001± 0.0227

(zm)w [m] 1 0.9824± 0.0144

(ψm)w [rad] 0 −0.0400± 0.0723

Step Response along the Global Z-Axis

zlow [m] 0.75 0.7550± 0.0128

zmid [m] 1.25 1.2501± 0.0142

zhigh [m] 1.75 1.7467± 0.0161

(xm)w [m] 0 0.0062± 0.0337

(ym)w [m] 0 0.0058± 0.0686

(ψm)w [rad] 0 −0.0186± 0.0570

Step Response in Yaw

ψlow [rad] −1.571 −1.5834± 0.0061

ψmid [rad] 0 −0.0051± 0.0076

psihigh [rad] 1.571 1.5706± 0.0087

(xm)w [m] 0 −0.0038± 0.0838

(ym)w [m] 0 −0.0074± 0.0832

(zm)w [m] 1 0.9734± 0.0397

Table 5.4: Rise Time and Fall Time for Step Responses in Each Direction and Yaw

Step Response Trise [s] Tfall [s]

X-Direction 2.6233 3.1499

Y-Direction 3.4136 3.5102

Z-Direction 1.0233 0.9500

Yaw 1.8500 1.4200

Note that (x, y, z, ψ)low,mid,high denotes the step input in a direction or rotation
as well as whether the step input is the lowest, middle, or highest step value. The
reference values are the desired position or rotation of the system. The measured
values include the averaged steady state of the system and the standard deviation
from the averaged steady state. The rise time Trise and fall time Tfall is from the
initial time a system responds to the step input to the first time it takes the system
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to reach at least 5% of the reference value. These time values are not settling times
but rather an indication of how quickly the system attempts to reach steady state.

As seen from Table 5.3, the system was capable of closely tracking step input
along all four axes. The average steady state step response standard deviation in
the X- and Y- translation axes deviated approximately 0.02 m, and in yaw deviated
approximately 0.007 rads. The system was also capable of achieving the reference
position for the axes and/or rotation that were not subjected to a step input. How-
ever, the deviations in these other directions or rotation were larger compared to
the deviations in the steady state step input. This is apparent in the results of the
step response in yaw. From Table 5.3, the standard deviation of the steady state
in the off-axis directions is around 0.08 m. From Figure 5.6, it is observed that the
system reaches a step input in a relatively linear fashion and maintains a steady
state close to the reference value. The results from the step response experiment in
yaw suggest that the system can achieve an accurate steady state yaw, however, at
the expense of the performance of the system maintaining a position in the X- and
Y-direction.

With the current tuning setup, the rise time and fall time was the least in the
step response in the Z-direction and the most in the Y-direction. This suggests the
gains for the Y-direction may need to be changed to reduce the rise and fall time of
the step input response.

5.3.2 Figure 8 Trajectory Response

The Parrot AR.Drone 2.0 performed a Figure-8 maneuver using a PID controller.
The PID tuning parameters for performing a Figure-8 are shown in Appendix C.
The reference trajectory of the Parrot AR.Drone is shown in Section 5.2.2. Figure 5.7
shows a 3D representation of how the Parrot AR.Drone 2.0 followed the reference
trajectory, where (pref )W is the reference position with respect to the world frame
and (pm)W is the measured position with respect to the world frame.
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Figure 5.7: 3D plot of the Figure-8 Trajectory of the drone using PID Control

In order to evaluate the PID controller performance, the average tracking error
and root mean square error (RMS) is determined for each direction and for the yaw
orientation. The average tracking error and root mean square error are calculated
using equations described in Appendix G.The resulting values are given in Table 5.5.

Table 5.5: Average Tracking Error and RMS for PID Controlled Figure-8 Trajectory
Response

Parameter Average Tracking Error RMS Error

Position

Global X-Position [m] −0.0311 0.2022

Global Y-Position [m] −0.0178 0.1877

Global Z-Position [m] −0.0029 0.0280

Translational Velocity

Global X-Velocity [m/s] −0.0020 0.1498

Global Y-Velocity [m/s] 0.0077 0.1440

Global Z-Velocity [m/s] 0.0004 0.0743

Orientation

Global Yaw [rad] −0.0366 0.1887

The velocity of the UAV in each direction was determined using numerical dif-
ferentiation and filtered using a simple low pass filter described in Section 3.2.3.
The position tracking error suggests that the UAV flew on average in the same tra-
jectory as the reference trajectory,however the position and velocity RMS error in
the X- and Y-direction were large values of approximately 0.19 m and 0.14 m/s,
respectively. As shown in Figure 5.8 and in Figure 5.9, the UAV was unable to
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follow the reference trajectory when the reference trajectory was ascending to its
peak and descending from its peak.
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Figure 5.8: PID Figure-8 Trajectory Response in the X-axis
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Figure 5.9: PID Figure-8 Trajectory Response in the Y-axis

This point is further reinforced by the fact that the RMS error values in yaw
were roughly 0.1887 rads or approximately 11◦. This suggest that the system had
difficulty turning in the bends of the figure 8 trajectory. The larger RMS values are
likely due to the fact that the system is attempting to track a sinusoidal reference. In
order to get perfect asymptotic tracking, a model of the sinusoidal function needs to
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be embedded within the controller. However, this can’t be done, since the motion
controller does not know beforehand the dimensions and period of the Figure-8
trajectory. There is a limit to the performance that is achievable in this case.
Possible ways to reduce the RMS error is either tuning the controller to be more
aggressive or incorporating velocity control into the PID controller. The velocity
controller would consist of receiving reference velocities from a trajectory generator
and having the PID controller attempt to track the reference velocities. This would
be an inner-outer loop control with velocity loop as the outer control loop and the
position control as the inner control loop.

The position and velocity tracking error and RMS error in the Z-direction was
minimal since the reference trajectory for the Z-direction did not require the UAV
to perform an aggressive movement in the Z-direction.

5.4 LMPC Motion Controller Assessment

5.4.1 LMPC Step Response Assessment

The Parrot AR.Drone 2.0 performed a step response in each direction and in yaw
using a LMPC motion controller. The system was subjected to the same sequence
of step reference inputs as the PID motion controller. Similarly to the experiments
done for the PID controller,the system was tuned to minimize the rise time, Trise,
and fall time, Tfall, and track the reference step input. The LMPC tuning param-
eters for the step responses are found in Appendix D. The step responses for each
direction and rotation are shown in Figures 5.3, 5.4, 5.5, and 5.6.
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Figure 5.10: Step Response in the X-axis using LMPC Control
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Figure 5.11: Step Response in the Y-axis using LMPC Control
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Figure 5.12: Step Response in the Z-axis using LMPC Control
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Figure 5.13: Step Response in Yaw using LMPC Control

In Figures 5.10, 5.11, 5.12, and 5.13, the parameter ((x, y, z, ψ)m)w denotes the
measured global position in either the X-,Y-, or Z-direction while the parameter
((x, y, z, ψ)ref )w denotes the desired global position in either X-,Y-, or Z-direction.
Figures that show how the system maintained a desired position in the other direc-
tions and/or in yaw can be found in Appendix D. The following tables summarizes
the performance of the drone in tracking a step response in each direction and in
yaw as well as the rise and fall time for each step response.
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Table 5.6: LMPC Performance Summary for Step Responses in Each Direction and
Yaw

Parameter Reference Values Averaged Measured Values

Step Response along the Global X-Axis

xlow [m] −1 −0.9869± 0.0280

xmid [m] 0 0.0009± 0.0208

xhigh [m] 1 1.0146± 0.0208

(yw)s [m] 0 −0.0111± 0.0501

(zw)s [m] 1 1.0023± 0.0272

(ψw)s [rad] 0 −0.0307± 0.0596

Step Response along the Global Y-Axis

ylow [m] −1 −1.0055± 0.0293

ymid [m] 0 −0.0058± 0.0255

yhigh [m] 1 0.9852± 0.0249

(xw)s [m] 0 0.0122± 0.0365

(zw)s [m] 1 0.9931± 0.0238

(ψw)s [rad] 0 −0.0184± 0.0298

Step Response along the Global Z-Axis

zlow [m] 0.75 0.7533± 0.0089

zmid [m] 1.25 1.2496± 0.0130

zhigh [m] 1.75 1.7438± 0.0158

(xw)s [m] 0 0.0069± 0.0354

(yw)s [m] 0 −0.0079± 0.0238

(ψw)s [rad] 0 −0.0211± 0.0264

Step Response in Yaw

ψlow [rad] −1.571 −1.5962± 0.0319

ψmid [rad] 0 −0.0273± 0.0166

psihigh [rad] 1.571 1.5438± 0.0153

(xw)s [m] 0 −0.0016± 0.0845

(yw)s [m] 0 −0.0131± 0.0900

(zw)s [m] 1 1.0012± 0.0175

Table 5.7: Rise Time and Fall Time for Step Responses in Each Direction and Yaw

Step Response Trise [s] Tfall [s]

X-Direction 2.9567 3.4800

Y-Direction 3.5600 3.8566

Z-Direction 1.8233 2.3867

Yaw 2.0032 1.7100

The parameters in Figure 5.6 are the same parameters found in Figure 5.3 and
are described in Section 5.3.1. As seen from Table 5.6, the system was capable
of maintaining a steady state step input close to the reference values with little
deviation. The average steady state step input in each of the three axes deviated
approximately 0.02 m and in yaw deviated approximately 0.021 rads. These values
are close to values found in the PID motion controller experiments. These results
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suggest that the performance of the PID and LMPC controller are about the same.
However, the performance of the PID and LMPC controller can be improved with
more extensive tuning.

Similarly to the PD experiments, the system was capable of stabilizing the ref-
erence position for the axes and/or rotation that were not subjected to a step input.
However, the deviations in these other directions or rotation were larger compared
to the deviations in the steady state step input. Both the PID and LMPC mo-
tion controller had larger deviations in the X- and Y-directions in the yaw step
response. As seen from Table 5.6, the standard deviation of the steady state in the
X- and Y-direction is around 0.08−0.09 m. This experiment reinforce the idea that
the system can achieve an accurate steady state yaw, however, at the expense of
the performance of the system maintaining a position in the X- and Y-direction as
mentioned in Section 5.3.1.

5.4.2 Figure 8 Trajectory Response

The Parrot AR.Drone 2.0 performed exactly the same Figure-8 maneuver as de-
scribed in Section 5.2.2 except with a LMPC controller rather than a PID controller.
The LMPC tuning parameters for performing a Figure-8 are shown in Appendix D.
Figure 5.14 shows a 3D representation of how the Parrot AR.Drone followed the
reference trajectory. Similiarly to Figure 5.7, (pref )W is the reference position with
respect to the world frame and (pm)W is the measured position with respect to the
world frame.

Figure 5.14: 3D plot of the Figure-8 Trajectory of the drone using LMPC Control

In order to evaluate the LMPC controller performance, the average tracking
error and root mean square (RMS) error was determined for each direction and for
the yaw orientation. Their values are shown in Table 5.8.
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Table 5.8: Average Tracking Error and RMS for LMPC Controlled Figure-8 Trajec-
tory Response

Parameter Average Tracking Error RMS Error

Position

Global X-Position [m] −0.0060 0.1013

Global Y-Position [m] 0.0071 0.1344

Global Z-Position [m] −0.0009 0.0421

Translational Velocity

Global X-Velocity [m/s] 0.0014 0.0881

Global Y-Velocity [m/s] −0.0007 0.0955

Global Z-Velocity [m/s] 0.0003 0.0421

Orientation Tracking Error

Global Yaw [rad] 0.0099 0.1465

The position tracking error suggests that the UAV on average tracked the ref-
erence trajectory,however the position and velocity RMS error in the X- and Y-
direction were large with average values of approximately 0.09 m and 0.07 m/s,
respectively.As shown in Figure 5.8 and in Figure 5.9, the UAV experienced diffi-
culty following the reference trajectory when the reference trajectory was ascending
to its peak and descending from its peak.
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Figure 5.15: LMPC Figure-8 Trajectory Response in the X-axis
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Figure 5.16: LMPC Figure-8 Trajectory Response in the Y-axis

This point is further reinforced by the fact that the RMS error values in yaw were
roughly 0.1465 rads or approximately 8.4◦. Similarly to the case where a PID motion
controller was used, the system had difficulty tracking a sinusoidal reference and a
model of the sinusoidal reference needs to be incorporated into the controller in order
to perfectly track the Figure-8 maneuver. Overall, when comparing the results from
Table 5.5 to Table 5.8, the root mean square error in the X- and Y-direction and in
yaw are much lower for the LMPC motion controller compared to the PID motion
controller. This suggests that the LMPC motion controller in our case is better
than a PID motion controller for following a complex trajectory without any prior
knowledge of the trajectory. This result suggests that a LMPC controller would
perform well in the case that we are tracking a complex reference such as following
a target like a drone. However, the performance of both controllers can be improved
with extensive tuning with the possibility of the PID controller outperforming the
LMPC controller.

63



Chapter 6

Vision Based Pursuit Algorithm
Implementation and Assessment

This chapter describes the development of two vision based pursuit algorithms that
are based on the Vicon motion capture system and the bounding box object de-
tection algorithm from [4]. Section 6.1 describes how the pursuit algorithms were
written and implemented into ROS. Section 6.2 details how the pursuit algorithms
will be assessed. Section 6.3 details and compares the performance of the pursuit
algorithms.

6.1 Pursuit Algorithm Implementation

The pursuit algorithm consists of determining the relative position and orientation
of a target drone and moving the pursuer drone to track a global position and
orientation relative to this target drone. There are two versions of the pursuit
algorithms which are based on the Vicon motion capture system and the bounding
box object detection algorithm, respectively. The version of the pursuit algorithm
that uses the Vicon motion capture system is capable of determining the relative
position and orientation of the target drone. The pursuit algorithm that uses the
bounding box object detection algorithm is only capable of determining the relative
position of the target drone and can not obtain the orientation of the target drone.
The bounding box pursuit algorithm will only work if the assumption that both
the pursuer drone and target drone have the same global orientation holds. For
both pursuit algorithms, the desired velocity of the pursuer drone for each direction
is specified to be 0 m/s. This type of pursuit will emphasize maintaining a hover
position once the target drone has reached a hovering state rather than effectively
reacting to the movement of a target. This is due to the fact that the data that
is retrieved from the bounding box vision algorithm is noisy and can’t be used
to effectively to replicate the velocity of the target drone. Tracking the reference
velocity trajectory of the target drone which can be predicted from a kinematic
model could be done as future work.

In the case that we are using the Vicon motion capture system, the following
schematic in Figure 6.1 illustrates the situation where we have full information about
the position and orientation of the target and pursuer drone. In this schematic,
we are attempting to determine the desired global position and orientation of the
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pursuer drone.
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Figure 6.1: Coordinate Frames used in Vicon-based Pursuit Algorithm

In Figure 6.1 W is the world frame, P is the pursuer drone body frame, O is the
target drone body frame, and Pd is the desired body frame for the pursuer drone.
The vector (pWP )W is the position of the origin of the pursuer body frame relative to
the origin of the world frame in the basis of the world frame, the vector (pPO)P is the
position of the origin of the target body frame relative to the origin of the pursuer
body frame in the basis of the pursuer body frame, the vector (pWO )W is the position
of the origin of the target body frame relative to the origin of the world frame in
the basis of the world frame, and the vector (pOPd)O is the position of the origin of
the desired pursuer body frame relative to the origin of the target body frame in
the basis of the target body frame. The rotation matrix RPW maps the pursuer body
frame P to the world frame W , the rotation matrix ROW maps the target body frame
O to the world frame W , and the rotation matrix ROP maps the target body frame O

to the pursuer body frame P . The rotation matrix RPdO is equivalent to the identity
matrix since the desired body frame Pd has the same orientation as the target body
frame O.

The orientation of the desired pursuer body frame Pd is obtained from the rota-
tion matrix ROW . The pursuer drone is attempting to have the same orientation as
the target drone and the orientation of the target drone can be determined from the
Vicon motion capture system. Based off the schematic shown in Figure 6.1, there
are two methods to determine the desired vector (pWPd)W which is the position of the
origin of the desired pursuer body frame relative to the origin of the world frame in
the basis of the world frame.

The first method is to determine the desired world position based on the position
of the pursuer drone. This method is similar to the method used to determine
the desired global position for the bounding box pursuit algorithm which uses a
camera feed and vision based object detection algorithm to determine the relative
position of an object to the camera. The desired global position is determined using
mathematical principles described in Chapter 3 and is expressed by the following
equation.

(pWPd)W = (pWP )W +RPW (pPO)P +RPWR
O
P (pOPd)O (6.1)

The second method is to directly measure the world position of the target drone
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and add it to the desired reference position relative to the target body frame. This
is a simpler method but is only possible with the Vicon motion capture system,
which can directly determine the position of both the pursuer and target drone in
the world frame. In this case, the desired global position is determined by using the
following expression.

(pWPd)W = (pWO )W +ROW (pOPd)O (6.2)

The first method was used in order to adapt the Vicon pursuit algorithm to the
bounding box pursuit algorithm.

The bounding box pursuit algorithm differs from the Vicon pursuit algorithm by
the fact that that bounding box object detection algorithm is unable to determine
the orientation of an object. The bounding box pursuit algorithm uses YOLO v2
and the monocular camera feed from the pursuer drone to determine the relative
position of a target as described in Chapter 4. The schematic in Figure 6.2 illustrates
this idea.
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Figure 6.2: Coordinate Frames used in Bounding Box Pursuit Algorithm

Figure 6.2 is similar to Figure 6.1 except that we introduce a new frame C which
is the camera frame of the pursuer drone and the frame O no longer exists since
the YOLO v2 object detection algorithm does not provide orientation information.
Instead we have a point Oc which represents the center of a bounding box which we
assume coincides with the center of the target drone. In a similiar fashion as the
Vicon pursuit algorithm, we determine the desired position (pWPd)W based off the
schematic in Figure 6.2, which is expressed by the following equation.

(pWPd)W = (pWP )W +RPW (pPC)P +RPWR
C
P (pCOc)C − (pPdOc)W (6.3)

In both pursuit algorithms, the desired position, velocity, and orientation of the
pursuer drone is determined and the information is outputted into a ROS topic
that is fed into the LMPC motion controller. The control process of both pursuit
algorithms are the same except for the sensors that are being used in each system.
The control process of the Vicon pursuit algorithm can be generalized by the diagram
in Figure 6.3 while the control process of the bounding box pursuit algorithm is
shown in Figure 6.4.
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Figure 6.3: Control Process for Vicon Pursuit Algorithm
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Figure 6.4: Control Process for Bounding Box Pursuit Algorithm

The following parameters are equivalent in Figures 6.3 and 6.4: (xWPd)W is the
desired state of the origin of the pursuit drone body frame relative to the origin of the
global frame in the basis of the global frame, the parameter uc is the control input,
and parameters y is the state output that consists of the new pose and velocity of
the system. In Figure 6.3, the parameter (xOPd)O is the desired state of the origin of
the pursuit drone body frame relative to the origin of the target drone body frame
in the basis of the target drone body frame.In Figure 6.4, the parameter xbb is a
vector that contains the location of the bounding box in the image in units of pixels,
CP is the raw camera feed, the parameter (xOcPd )W is the desired offset between the
pursuer drone body frame and the point Oc which represents a 3D vector in space
that can be adjusted in real -time using a GUI. In Figure 6.3, the parameter (xOPd)O
is the desired state between the pursuer and target drone body frame and can be
adjusted in real-time using a GUI.

The setpoint generator subscribes to a topic published by the vicon bridge

node that is represented by the Vicon block. The vicon bridge node publishes a
ROS topic that contains information about the position and orientation of the target
drone. The Vicon block is a generalized representation of the vicon bridge ROS
package described in Chapter 2 that determines the position of the target and pur-
suer drone, and the relative position between the two drones for the Vicon pursuit
algorithm and determines only the pursuer drone position and orientation for the
bounding box pursuit algorithm. The world position of the pursuer drone is pub-
lished onto a /tf topic that is subscribed by the setpoint generator and the LMPC
controller. The setpoint generator subscribes to the /tf topic that contains the rel-
ative position of the pursuer drone relative to the target drone for the Vicon pursuit
algorithm. The setpoint generator block is a representation of a C++ code written
to calculate and publish the desired state of the pursuer drone in terms of global
coordinates. The desired state with respect to the world frame (xWPd)W is published
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into a custom message and subscribed by the LMPC Controller block. The LMPC
Controller block represented C++ code written to determine the command inputs
uc using (xWPd)W obtained from the setpoint generator and (xWP )W obtained from the
Vicon motion capture system. The LMPC Controller block stores previous control
inputs and positions which are used in the LMPC control algorithm and calculating
the velocity of the pursuer drone, respectively. The command inputs are fed into
the AR.Drone block that represents the ROS package ardrone autonomy which is a
driver for the Parrot AR.Drone 2.0. The AR.Drone block receives command inputs
and generates the state y. This state of the pursuer drone is determined by the
Vicon motion capture system and fed back into the control system. In the case of
the bounding box pursuit algorithm, the raw camera feed Cp which is published by
the AR.Drone Block is fed into the YOLO v2 block. The YOLO v2 block publishes
the bounding box data xbb which is fed into the setpoint generator block.

6.2 Pursuit Algorithm Assessment

The performance of the pursuit algorithms is assessed by having a pursuer drone fol-
low a target drone that is executing a complex circular trajectory. The target drone
will follow the trajectory using a LMPC motion controller whose tuning parameters
are shown in Appendix E. The pursuer drone will pursue the drone at a desired
relative position and orientation. The pursuer drone will attempt to maintain the
same attitude as the target drone and a relative position of (pOPD)O =

[
2 0 0

]
m with respect to the target drone body frame. This experiment is meant to test
the capability of the pursuer drone to follow a target drone performing arbitrary
manoeuvres. The gains will be tuned to obtain the optimum performance for each
control system. The performance of both pursuit algorithms in following the target
drone will be compared and analyzed. Note that each pursuit algorithm does not
include any prior knowledge about the trajectory of the target drone. The pursuer
drone will maintain a yaw orientation of 0 radians relative to the global frame and
with no kinematic model of the target drone will attempt to track a velocity of 0
m/s in each direction.

The target drone will fly a circular trajectory described by the following para-
metric curves and associated velocities:

xref (t) = rcos(2πt/tc) + xm (vx)ref (t) = −(2πr/tc)sin(2πt/tc)

yref (t) = 2rsin(2πt/tc) + ym (vy)ref (t) = (4πr/tc)cos(2πt/tc)

zref (t) = rsin(2πt/tc) + zm (vz)ref (t) = (2πr/tc)cos(2πt/tc)

where xref (t),yref (t), and zref (t) are the reference positions for the target drone
with respect to the world frame in meters [m], (vx)ref (t), (vy)ref (t), and (vz)ref (t)
are the reference velocities for the target drone with respect to the world frame in
meters per second [m/s], r is the radius of the circle that moves in the X-, Y-, and
Z-direction, xm, ym, zm is the location of the center of the circle and the height
that the drone will rotate about in meters, and tc is the time required to complete
one full circuit in seconds. The constants associated with the target trajectory and
velocity are outlined in Table 6.1 below:
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Table 6.1: Circular Parametric Curve Properties

Initial X-Position, xm [m] 1

Initial Y-Position, ym [m] 0

Initial Z-Position, zm [m] 1

Radius, r [m] 1

Circuit Time, tc [s] 20

The target drone will attempt to maintain an attitude of approximately

[(φW )ref , (θW )ref , (ψW )ref ] =
[
0 0 0

]
6.3 Pursuit Algorithm Performance

The pursuer drone followed a target drone performing the circular trajectory de-
scribed in Section 6.2 using both the Vicon pursuit algorithm and the bounding box
pursuit algorithm. The tuning parameters for the LMPC motion controllers used in
both pursuit algorithms for the target and pursuer drones are shown in Appendix E.
The results are shown by the 3D plots in Figure 6.5.

(a) Bounding Box Pursuit Algorithm (b) Vicon Pursuit Algorithm

Figure 6.5: 3D plot of Vision Based Pursuit of a Circular Trajectory

where (pWP )W is the position of the pursuer drone with respect to the world
frame and (pWO )W is the position of the target drone with respect to the world
frame. The performance of the pursuit algorithms is evaluated by determining the
relative tracking error and RMS error in the relative position of the pursuer drone
to the target drone. The average tracking error and RMS error for each direction
are shown in Table 6.2
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Table 6.2: Average Tracking Errors and RMS for the Pursuit Algorithms Flight
Performance

Relative Position [m]
Vicon Bounding Box

ev [m] RMS [m] ebb [m] RMS [m]

X-Position [m] −0.0162 0.1792 −0.0477 0.1456

Y-Position [m] 0.0224 0.2380 −0.0416 0.2421

Z-Position [m] 0.0042 0.0899 0.0096 0.1035

where ev is the average tracking error of the relative position between the target
and pursuer drone when using the Vicon pursuit algorithm and ebb is the average
tracking error of the relative position between the target and pursuer drone when
using the bounding box pursuit algorithm. On average the pursuer drone managed
to maintained a desired relative distance away from the target drone and track its
motion using both pursuit algorithms. There exists large deviations in the tracking
error in all three directions in each pursuit algorithms. These deviations possibly
arise from computational time delays in the closed-loop system or gain tuning. This
insight is derived from the fact that the behaviour of the relative position in all three
directions is oscillatory as shown in Figures 6.6, 6.7 and 6.8.
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(b) Vicon Pursuit Algorithm

Figure 6.6: Relative X-Position Performance
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(b) Vicon Pursuit Algorithm

Figure 6.7: Relative Y-Position Performance
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(b) Vicon Pursuit Algorithm

Figure 6.8: Relative X-Position Performance

These figures suggest that for both pursuit algorithms the gains associated with
each direction need to be tuned such that the pursuer drone acts more aggressively
in the Y-direction while maintaining stability. The oscillatory response seen in the
figures can be dampened by adding a kinematic model of the target drone. An
investigation into determining a motion model for the target drone is left for future
work.

The performance of the pursuit algorithm system is not optimum due to issues
that arise when using linear state space model that does not take into consideration
the inter-axis coupling, as well as disturbances acting on the system. A disturbance
that was apparent in experiments were wakes and gusts emitted by the target drone’s
rotary blades disturbing the pursuer drone and affecting its performance. As the
target drone increased in height, the pursuer drone located temporally below it was
affected by the gusts and wakes. This result suggested that the performance of the
pursuit algorithms is related to the proximity of the target drone to the pursuer
drone. The closer the pursuer drone is to the target drone, the more pronounced
are the disturbance effects from the gusts and wakes. The LMPC motion controller
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can be designed to be robust to the disturbances, however, at the cost of tracking
performance.

In spite of the issues that may contribute to a decline in performance, both
pursuit algorithms were capable of having a pursuer drone accurately follow a target
drone. The performance of both pursuit algorithms were similar suggesting that
given optimal conditions the bounding box pursuit algorithm is on par with the
Vicon pursuit algorithm. Both pursuit algorithms experienced similar issues which
indicates that issues present in the system are not due to the vision algorithm, but
rather an issue in the LMPC controller which can be addressed in future work.
Further details about the performance of both pursuit algorithms is outlined in
Appendix E and additional information about the evaluating the bounding box
pursuit algorithm is outlined in Appendix F .
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

This thesis was successful in developing a UAV pursuit algorithm that employs a
closed-loop control strategy combined with a vision-based object detection system.
The vision based pursuit algorithm allows a pursuer UAV to follow a target UAV
at a set standoff distance. The vision based pursuit algorithm incorporated either
a PID or LMPC closed-loop motion control and a vision based object detection
algorithm called YOLO v2.

The performance of the vision based object detection developed in [4] was as-
sessed. An alternative approach to calculate depth from a monocular camera was
devised and successfully implemented in order to improve the tracking performance
of the control system.

LMPC and PID motion controllers were developed and implemented on the
Parrot AR.Drone 2.0 to perform a variety of maneuvers such as a Figure-8 and a
circle trajectory. An uncoupled linear state model of the Parrot AR.Drone 2.0 was
devised for the LMPC motion controller. The LMPC motion controller was chosen
to be used in the pursuit algorithms due to having less gains to tune, achieving a
better performance in following a complex trajectory, and robustness.

A Vicon based pursuit algorithm was implemented and successfully demon-
strated a pursuer drone following a target drone. With the success of the Vicon
based pursuit algorithm, a vision bounding box pursuit algorithm was developed
and successfully implemented. Both pursuit algorithms succeeded in having a pur-
suer drone follow a target drone performing a complex trajectory. The performance
of the bounding box pursuit algorithm under optimal conditions had similar per-
formance to the Vicon pursuit algorithm. This suggests that vision based pursuit
relying on a computer vision algorithm like YOLO v2 can result in accurate perfor-
mance.

7.2 Limitations of Work

While the results of this thesis are promising, some limitations were found in both
the vision-based object detection algorithm and the UAV LMPC motion controller:

• The bounding box object detection algorithm only determines a 2D bounding
box that describes the location of the object in the image frame. This limits
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the type of motion control that can be developed since the orientation of the
object can not be determined. The bounding box pursuit algorithm can only
react and move to a specified distance and can’t track the orientation of the
object. This causes issues because as the target drone rotates, its projected
visible area changes and affects the depth estimation calculation.

• The performance of the Vicon and bounding box pursuit algorithm is predi-
cated on how well the LMPC motion controller was tuned. The current iter-
ation of the LMPC motion controller does not have the ability for real time
gain tuning, which makes finding gains a tedious and long process.

• The bounding box pursuit algorithm only works well if the target is over a
white background, since the YOLO v2 object detection algorithm has issues
tracking an object without a white background and is subject to false positive
detections.

• The LMPC motion controller is capable of tracking the position and yaw
orientation of the drone as well as the velocity. In the case that we are pursuing
a target, we set the desired velocity to 0 m/s since we do not know the motion
of the target. By determining a dynamics model of the target, the performance
of the pursuit algorithms could be improved.

• The pursuit algorithms contain time delays due to calculations associated with
the LMPC motion controller. Modeling this time delay within the LMPC
motion controller could improve the performance of the pursuit algorithms.

7.3 Future Work

Further work needs to be performed in order to iterate on the results that are
presented in this thesis. Most of the points that are discussed in section will focus
on addressing the limitations listed in Section 7.2.

The main work that needs to be performed is determining a method to ob-
tain 3D position and orientation of an object from vision data. This may consist
of developing a sophisticated vision based object detection algorithm that uses a
monocular camera feed or using alternative hardware such as stereo vision or Lidar.
There is currently research being done to determine 3D pose of an object from a
2D bounding box [88]. In addition, stereo vision could be used to determine the
3D pose of an object. In addition, future work can be done to train a network
to work around background noise and track a specific object despite the presence
of additional objects. If this future work is completed, this can lead to having a
pursuer drone effectively follow a target drone in 3D space without the need of a
white background.

The LMPC motion controller needs to be adjusted to take into consideration
time delays that may arise, and incorporating a motion model of the target drone.
An Extended Kalman filter needs to be incorporated to filter noise present in posi-
tion and orientation information from the Vicon motion capture system, bounding
box information from YOLO v2 and pursuer velocity calculated using numerical
differentiation. Additional time needs to be invested in tuning the LMPC controller
used for the bounding box pursuit algorithm.

74



Bibliography

[1] VICON. Vero. www.vicon.com/products/camera-systems/vero, 2019.

[2] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only
look once: Unified, real-time object detection. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 779–788, 2016.

[3] Pablo Martinez. Vision-based algorithms for uav mimicking control system.
Master’s thesis, University of Alberta, 2017.

[4] Bengsheng Wei. Evaluation of object detection algorithms for uav tracking.
Master’s thesis, University of Alberta, 2019.

[5] Yigit Menguc, Yong-Lae Park, Ernesto Martinez-Villalpando, Patrick Aubin,
Miriam Zisook, Leia Stirling, Robert J. Wood, and Conor J. Walsh. Soft
wearable motion sensing suit for lower limb biomechanics measurements. In
Proceeding of the IEEE International Conference on Robotics and Automation
(ICRA’13), pages 5289–5296, May 2013.

[6] Alberto Leardini, Maria Grazia Benedettiand L Berti, D Bettinelli, R Nativo,
and Sandro Giannini. Rear-foot, mid-foot and fore-foot motion during the
stance phase of gait. Gait and posture, 25:453–62, 04 2007.

[7] Asha Kapur, Ajay Kapur, Naznin Virji-Babul, George Tzanetakis, and Peter F.
Driessen. Gesture-based affective computing on motion capture data. In ACII,
2005.

[8] J. T. Isaacs, F. Quitin, L. R. Garca Carrillo, U. Madhow, and J. P. Hespanha.
Quadrotor control for rf source localization and tracking. In 2014 International
Conference on Unmanned Aircraft Systems (ICUAS), pages 244–252, May 2014.

[9] Shaima Al Habsi. Integration of a vicon camera system for indoor flight of a
parrot ar drone. In 2015 10th International Symposium on Mechatronics and
its Applications (ISMA), pages 1–6, Dec 2015.

[10] L. Heng, L. Meier, P. Tanskanen, F. Fraundorfer, and M. Pollefeys. Autonomous
obstacle avoidance and maneuvering on a vision-guided mav using on-board
processing. In 2011 IEEE International Conference on Robotics and Automa-
tion, pages 2472–2477, May 2011.

[11] F. Fraundorfer, L. Heng, D. Honegger, G. H. Lee, L. Meier, P. Tanskanen,
and M. Pollefeys. Vision-based autonomous mapping and exploration using

75



a quadrotor mav. In 2012 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 4557–4564, Oct 2012.

[12] Lorenz Meier, Petri Tanskanen, Friedrich Fraundorfer, and Marc Pollefeys. Pix-
hawk: A system for autonomous flight using onboard computer vision. In 2011
IEEE International Conference on Robotics and Automation, pages 2992–2997.
IEEE, 2011.

[13] Paul Pounds, Robert Mahony, and Peter Corke. Modelling and control of a
large quadrotor robot. Control Engineering Practice, 18(7):691–699, 2010.

[14] Paul Pounds, Robert Mahony, and Peter Corke. Modelling and control of
a quad-rotor robot. In Proceedings Australasian Conference on Robotics and
Automation 2006. Australian Robotics and Automation Association Inc., 2006.

[15] Tarek Hamel, Robert Mahony, Rogelio Lozano, and James Ostrowski. Dynamic
modelling and configuration stabilization for an x4-flyer. IFAC Proceedings
Volumes, 35(1):217–222, 2002.

[16] Samir Bouabdallah, Andre Noth, and Roland Siegwart. Pid vs lq control tech-
niques applied to an indoor micro quadrotor. In 2004 IEEE/RSJ International
Conference on Intelligent Robots and Systems, volume 3, pages 2451–2456.
IEEE, 2004.

[17] Kaan T Oner, Ertugrul Cetinsoy, Mustafa Unel, Mahmut F Aksit, Ilyas Kan-
demir, and Kayhan Gulez. Dynamic model and control of a new quadrotor
unmanned aerial vehicle with tilt-wing mechanism. World Academy of Science,
Engineering and Technology, 45, 2008.

[18] Ian D Cowling, James F Whidborne, and Alastair K Cooke. Optimal trajectory
planning and lqr control for a quadrotor uav. In International Conference on
Control, 2006.

[19] G. Hoffmann, D. G. Rajnarayan, S. L. Waslander, D. Dostal, J. S. Jang, and
C. J. Tomlin. The stanford testbed of autonomous rotorcraft for multi agent
control (starmac). In The 23rd Digital Avionics Systems Conference (IEEE
Cat. No.04CH37576), volume 2, pages 12.E.4–121, Oct 2004.

[20] Gabriel Hoffmann, Haomiao Huang, Steven Waslander, and Claire Tomlin.
Quadrotor helicopter flight dynamics and control: Theory and experiment.
In AIAA guidance, navigation and control conference and exhibit, page 6461,
2007.

[21] Martin Saska, Tomas Baca, Justin Thomas, Jan Chudoba, Libor Preucil, Tomas
Krajnik, Jan Faigl, Giuseppe Loianno, and Vijay Kumar. System for deploy-
ment of groups of unmanned micro aerial vehicles in gps-denied environments
using onboard visual relative localization. Autonomous Robots, 41(4):919–944,
2017.

[22] Yash Mulgaonkar, Gareth Cross, and Vijay Kumar. Design of small, safe and
robust quadrotor swarms. In 2015 IEEE international conference on robotics
and automation (ICRA), pages 2208–2215. IEEE, 2015.

76



[23] Giuseppe Loianno, Yash Mulgaonkar, Chris Brunner, Dheeraj Ahuja, Arvind
Ramanandan, Murali Chari, Serafin Diaz, and Vijay Kumar. A swarm of fly-
ing smartphones. In 2016 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 1681–1688. IEEE, 2016.

[24] Shupeng Lai, Kangli Wang, Hailong Qin, Jin Q Cui, and Ben M Chen. A robust
online path planning approach in cluttered environments for micro rotorcraft
drones. Control Theory and Technology, 14(1):83–96, 2016.

[25] Sergei Lupashin, Markus Hehn, Mark W Mueller, Angela P Schoellig, Michael
Sherback, and Raffaello D’Andrea. A platform for aerial robotics research and
demonstration: The flying machine arena. Mechatronics, 24(1):41–54, 2014.

[26] Myungsoo Jun and Raffaello DAndrea. Path planning for unmanned aerial
vehicles in uncertain and adversarial environments. In Cooperative control:
models, applications and algorithms, pages 95–110. Springer, 2003.

[27] Stefania Tonetti, Markus Hehn, Sergei Lupashin, and Raffaello D’Andrea. Dis-
tributed control of antenna array with formation of uavs. IFAC Proceedings
Volumes, 44(1):7848–7853, 2011.

[28] C. L. Castillo, W. Moreno, and K. P. Valavanis. Unmanned helicopter way-
point trajectory tracking using model predictive control. In 2007 Mediterranean
Conference on Control Automation, pages 1–8, June 2007.

[29] Hoam Chung and S Sastry. Autonomous helicopter formation using model
predictive control. In AIAA Guidance, Navigation, and Control Conference
and Exhibit, page 6066, 2006.

[30] H Jin Kim, David H Shim, and Shankar Sastry. Nonlinear model predictive
tracking control for rotorcraft-based unmanned aerial vehicles. In Proceedings
of the 2002 American Control Conference (IEEE Cat. No. CH37301), volume 5,
pages 3576–3581. IEEE, 2002.

[31] E. A. Wan and A. A. Bogdanov. Model predictive neural control with applica-
tions to a 6 dof helicopter model. In Proceedings of the 2001 American Control
Conference. (Cat. No.01CH37148), volume 1, pages 488–493 vol.1, June 2001.

[32] H Jin Kim and David H Shim. A flight control system for aerial robots: algo-
rithms and experiments. Control engineering practice, 11(12):1389–1400, 2003.

[33] J. Dentler, S. Kannan, M. A. O. Mendez, and H. Voos. A real-time model pre-
dictive position control with collision avoidance for commercial low-cost quadro-
tors. In 2016 IEEE Conference on Control Applications (CCA), pages 519–525,
Sep. 2016.

[34] Jaeseung Byun, Karan P Jain, Siddharth H Nair, Haoyun Xu, and Jiaming
Zha. Predictive control for chasing a ground vehicle using a uav. arXiv preprint
arXiv:1905.09396, 2019.

[35] Kostas Alexis, George Nikolakopoulos, and Anthony Tzes. On trajectory track-
ing model predictive control of an unmanned quadrotor helicopter subject to
aerodynamic disturbances. Asian Journal of Control, 16(1):209–224, 2014.

77



[36] G. Garimella and M. Kobilarov. Towards model-predictive control for aerial
pick-and-place. In 2015 IEEE International Conference on Robotics and Au-
tomation (ICRA), pages 4692–4697, May 2015.

[37] Jan Dentler, Somasundar Kannan, Miguel Angel Olivares Mendez, and Holger
Voos. A modularization approach for nonlinear model predictive control of
distributed fast systems. In 2016 24th mediterranean conference on control and
automation (MED), pages 292–297. IEEE, 2016.

[38] Mina Kamel, Michael Burri, and Roland Siegwart. Linear vs nonlinear mpc
for trajectory tracking applied to rotary wing micro aerial vehicles. IFAC-
PapersOnLine, 50(1):3463–3469, 2017.

[39] E.F. Camacho and C. Bordons. Model Predictive Control. Springer, 2004.

[40] Jay H. Lee. Model predictive control: Review of the three decades of devel-
opment. International Journal of Control, Automation and Systems, 9(3):415,
Jun 2011.

[41] Cunjia Liu, Wen-Hua Chen, and John Andrews. Piecewise constant model pre-
dictive control for autonomous helicopters. Robotics and Autonomous Systems,
59(7-8):571–579, 2011.

[42] S. Saripalli, J. F. Montgomery, and G. S. Sukhatme. Vision-based autonomous
landing of an unmanned aerial vehicle. In Proceedings 2002 IEEE Interna-
tional Conference on Robotics and Automation (Cat. No.02CH37292), vol-
ume 3, pages 2799–2804 vol.3, May 2002.

[43] Omid Shakernia, Yi Ma, T John Koo, and Shankar Sastry. Landing an un-
manned air vehicle: Vision based motion estimation and nonlinear control.
Asian journal of control, 1(3):128–145, 1999.

[44] M. Blosch, S. Weiss, D. Scaramuzza, and R. Siegwart. Vision based mav navi-
gation in unknown and unstructured environments. In 2010 IEEE International
Conference on Robotics and Automation, pages 21–28, May 2010.

[45] T. Templeton, D. H. Shim, C. Geyer, and S. S. Sastry. Autonomous vision-based
landing and terrain mapping using an mpc-controlled unmanned rotorcraft. In
Proceedings 2007 IEEE International Conference on Robotics and Automation,
pages 1349–1356, April 2007.

[46] A. Lawrence and A. Turchina. Tag tracking in ros. https://github.com
/ablarry91/ros-tag-tracking, 2014.

[47] C. Minhua and G. Jiangtao. Mobile robotics lab spring 2015 auto-
matic landing on a moving target. https://robotics.shanghaitech.edu.cn
/sites/default/files/files/robot-land-project20report.pdf, 2015.

[48] Anze Rezelj and Danijel Skocaj. Autonomous charging of a quadcopter on a
mobile platform. In Austrian Robotics Workshop, pages 65–66, 2015.

[49] Shannon Hood. Bird’s eye view: Cooperative exploration by ugv and uav.
Master’s thesis, University of South Carolina, 2017.

78



[50] Patrick Benavidez, Josue Lambert, Aldo Jaimes, and Mo Jamshidi. Landing of
an ardrone 2.0 quadcopter on a mobile base using fuzzy logic. In 2014 World
Automation Congress (WAC), pages 803–812. IEEE, 2014.

[51] Janis Tiemann and Christian Wietfeld. Scalable and precise multi-uav indoor
navigation using tdoa-based uwb localization. In 2017 International Conference
on Indoor Positioning and Indoor Navigation (IPIN), pages 1–7. IEEE, 2017.

[52] K Boudjit and Chevif Larbes. Detection and implementation autonomous tar-
get tracking with a quadrotor ar. drone. In 2015 12th International Conference
on Informatics in Control, Automation and Robotics, volume 2, pages 223–230.
IEEE, 2015.

[53] Syaril Azrad, Farid Kendoul, and Kenzo Nonami. Visual servoing of quadro-
tor micro-air vehicle using color-based tracking algorithm. Journal of System
Design and Dynamics, 4:255–268, 01 2010.

[54] Sungwook Cho, Sungsik Huh, David Hyunchul Shim, and Hyoung Sik Choi.
Vision-based detection and tracking of airborne obstacles in a cluttered envi-
ronment. Journal of Intelligent & Robotic Systems, 69(1-4):475–488, 2013.

[55] JeongWoon Kim, David Hyunchul Shim, and James R Morrison. Tablet pc-
based visual target-following system for quadrotors. Journal of Intelligent &
Robotic Systems, 74(1-2):85–95, 2014.

[56] DJI. Film like a pro: Dji drone activetrack with video tutorials. https://
store.dji.com/guides/film-like-a-pro-with-activetrack, 2017.

[57] Korey Smith. Dji phantom 4 released with machine learning.
https://myfirstdrone.com/blog/dji-phantom-4-released-with-machine-learning,
2016.

[58] Alexandre Bonnet and Moulay A Akhloufi. Uav pursuit using reinforcement
learning. In Unmanned Systems Technology XXI, volume 11021, page 1102109.
International Society for Optics and Photonics, 2019.

[59] Parrot. Technical specification. www.parrot.com/ca/drones/parrot-ardrone-
20-power-edition, 2019.

[60] Pierre-Jean Bristeau, François Callou, David Vissiere, and Nicolas Petit. The
navigation and control technology inside the ar. drone micro uav. IFAC Pro-
ceedings Volumes, 44(1):1477–1484, 2011.

[61] Myer Kutz. Handbook of Measurement in Science and Engineering, Volume 1.
John Wiley and Sons, 2013.

[62] VICON. Tracker 3. www.vicon.com/file/vicon/tracker-3-11042017-55587.pdf,
2019.

[63] VICON. Vicon tracker user guide. docs.vicon.com/display/Tracker37, 2016.

[64] VICON. Mask unwanted reflections. https://docs.vicon.com/display/Nexus25
/Mask+unwanted+reflections, 2019.

79



[65] NVIDIA. Cuda zone. www.developer.nvidia.com/cuda-zone, 2019.

[66] Joseph Redmon. Darknet: Open source neural networks in c. pjred-
die.com/darknet/, 2013–2016.

[67] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy
Leibs, Rob Wheeler, and Andrew Y Ng. Ros: an open-source robot operating
system. In ICRA workshop on open source software, volume 3, page 5. Kobe,
Japan, 2009.

[68] Jason M. O’Kane. A Gentle Introduction to ROS. Independently published,
2013.

[69] A. Chakrabarty, R. Morris, X. Bouyssounouse, and R. Hunt. Autonomous in-
door object tracking with the parrot ar.drone. In 2016 International Conference
on Unmanned Aircraft Systems, pages 25–30, June 2016.

[70] The MathWorks Inc. Simulink. https://www.mathworks.com/products/
simulink.html, 2019.

[71] The MathWorks Inc. Model predictive control toolbox. https://www.math-
works.com/products/mpc.html, 2019.

[72] The MathWorks Inc. Pid control with matlab and simulink. https://www
.mathworks.com/discovery/pid-control.html, 2019.

[73] The MathWorks Inc. Ar.drone 2.0 support from embedded coder. https://www.
mathworks.com/hardware-support/ar-drone.html, 2019. Accessed: 2019-05-30.

[74] Martin Barczyk. Nonlinear state estimation and modeling of a helicopter uav.
Master’s thesis, University of Alberta, 2012.

[75] M. H. Ang and V. D. Tourassis. Singularities of euler and roll-pitch-yaw rep-
resentations. IEEE Transactions on Aerospace and Electronic Systems, AES-
23(3):317–324, May 1987.

[76] J. B. Kuipers. Quaternions and Rotation Sequences: A Primer with Applica-
tions to Orbits, Aerospace, and Virtual Reality. Princeton University Press,
1999.

[77] MA Rosaldo-Serrano and E Aranda-Bricaire. Trajectory tracking for a
commercial quadrotor via time-varying backstepping. IFAC-PapersOnLine,
51(13):532–536, 2018.

[78] P. Vlez, N. Certad, and E. Ruiz. Trajectory generation and tracking using the
ar.drone 2.0 quadcopter uav. In 2015 12th Latin American Robotics Symposium
and 2015 3rd Brazilian Symposium on Robotics (LARS-SBR), pages 73–78, Oct
2015.

[79] Martin Barczyk. Geometric tracking of yaw. Private Communications, 2019.

[80] Andrew Baker. Matrix Groups: an Introduction to Lie Group Theory. Springer
London, 2002.

80



[81] John M Lee. Introduction to smooth manifolds. Springer, 2003.

[82] Karl J Astrom and Tore Hagglund. PID Controllers - Theory, Design, and
Tuning (2nd Edition). ISA, 1995.

[83] Jer-Nan Juang and Minh Q. Phan. Identification and Control of Mechanical
Systems. Cambridge University Press, 2001.

[84] Martin Barczyk. Monocular camera depth estimation. Private Communica-
tions, 2019.

[85] C Brown Duane. Close-range camera calibration. Photogramm. Eng, 37(8):855–
866, 1971.

[86] James Bowman and Patrick Mihelich. camera-calibration. wiki.ros.org/camera-
calibration, 2019.

[87] Kelvin Liu. image pipeline/camerainfo. wiki.ros.org/image pipeline/CameraInfo,
2016.

[88] Arsalan Mousavian, Dragomir Anguelov, John Flynn, and Jana Kosecka. 3d
bounding box estimation using deep learning and geometry. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pages
7074–7082, 2017.

81



Appendices

82



Appendix A

Parrot AR.Drone 2.0 Camera
Calibration File

image_width: 640

image_height: 360

camera_name: ardrone_front

camera_matrix: K

rows: 3

cols: 3

data: [572.7366231999233, 0, 319.5969119642032, 0,

↪→ 570.8044531287701, 157.8742799142208, 0, 0, 1]

distortion_model: plumb_bob

distortion_coefficients: D

rows: 1

cols: 5

data: [-0.5388475156926118, 0.2886187448441893,

↪→ 0.001056001496586167, -0.003164048988444699, 0]

rectification_matrix: R

rows: 3

cols: 3

data: [1, 0, 0, 0, 1, 0, 0, 0, 1]

projection_matrix: P

rows: 3

cols: 4

data: [462.7559204101562, 0, 315.6955710386646, 0, 0,

↪→ 536.928466796875, 155.340347346857, 0, 0, 0, 1, 0]
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Appendix B

Bounding Box Detection
Uncertainty Data

B.1 Bounding Box X-Position Test Data

Table B.1: Bounding Box X-Position Test Data Summary

Relative X-Position [m] eZw [m] eZgeom [m] XV icon [m] Duration te [s]

0.5 m 0.0528± 0.0025 0.1835± 0.0028 0.4948 12.1803

1.0 m 0.0309± 0.0028 0.0828± 0.0037 0.9923 10.9102

1.5 m −0.0409± 0.0042 0.0985± 0.0101 1.4935 10.1401

2.0 m −0.0094± 0.0077 0.1156± 0.0071 1.9823 14.1297

2.5 m −0.0165± 0.0126 0.0692± 0.0065 2.5013 10.8903

3.0 m 0.0330± 0.0170 0.0916± 0.0131 2.9945 10.8298
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Figure B.1: Depth Estimation Performance at a X-Position of 0.5 m
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Figure B.2: Depth Estimation Performance at a X-Position of 1.0 m
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Figure B.3: Depth Estimation Performance at a X-Position of 1.5 m
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Figure B.4: Depth Estimation Performance at a X-Position of 2.0 m
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Figure B.5: Depth Estimation Performance at a X-Position of 2.5 m
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Figure B.6: Depth Estimation Performance at a X-Position of 3.0 m

B.2 Bounding Box Y-Position Test Data

Table B.2: Bounding Box Y-Position Test Data Summary

Relative Y-Position [m] eZw [m] eZgeom [m] YV icon [m] Duration te [s]

-1.0 m −0.0175± 0.0114 0.1920± 0.0171 -1.0226 11.6199

-0.75 m −0.0125± 0.0093 0.2230± 0.0052 -0.7714 11.7498

-0.5 m −0.0130± 0.0123 0.2479± 0.0167 -0.5386 11.6303

-0.25 m 0.0432± 0.0083 0.2030± 0.0146 -0.2773 10.4501

0.0 m 0.0155± 0.0073 0.1531± 0.0166 0.0237 10.9696

0.25 m −0.0818± 0.0066 0.1087± 0.0054 0.2332 11.2899

0.5 m −0.2189± 0.0090 −0.0157± 0.0151 0.4777 10.4599

0.75 m −0.4393± 0.0073 −0.2673± 0.0172 0.7258 10.4483

1.0 m −0.2695± 0.0054 −0.2737± 0.0137 0.9495 11.3478
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Figure B.7: Depth Estimation Performance at a Y-Position of −1.0 m
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Figure B.8: Depth Estimation Performance at a Y-Position of −0.75 m
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Figure B.9: Depth Estimation Performance at a Y-Position of −0.5 m
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Figure B.10: Depth Estimation Performance at a Y-Position of −0.25 m
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Figure B.11: Depth Estimation Performance at a Y-Position of 0.0 m
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Figure B.12: Depth Estimation Performance at a Y-Position of 0.25 m
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Figure B.13: Depth Estimation Performance at a Y-Position of 0.50 m
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Figure B.14: Depth Estimation Performance at a Y-Position of 0.75 m
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Figure B.15: Depth Estimation Performance at a Y-Position of 1.00 m
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Appendix C

PID Assessment Data

C.1 PID Step Response

C.1.1 PID Step Response in the X-Axis

Table C.1: PID Parameters for Step Response in the X-axis

PID Tuning Gains

Position Gains Kp [ 1
m ] Ki [ 1

m∗s ] Kd [ sm ]

Body Frame X-Direction, XB 1.35 0.003 1.50

Body Frame Y-Direction, YB 1.00 0.010 0.50

Body Frame Z-Direction, ZB 1.00 0.010 0.50

Orientation Gains Kp [ 1
rad ] Ki [ 1

rad∗s ] Kd [ s
rad ]

Yaw Rotation, ψ 1.00 0.010 0.75

Additional PID Parameters

Frequency [Hz] 25
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Figure C.1: Global X-Position obtained from PID Step Response in the X-Axis
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Figure C.2: Global Y-Position obtained from PID Step Response in the X-Axis
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Figure C.3: Global Z-Position obtained from PID Step Response in the X-Axis
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Figure C.4: Yaw obtained from PID Step Response in the X-Axis
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C.1.2 PID Step Response in the Y-Axis

Table C.2: PID Parameters for Step Response in the Y-axis

PID Tuning Gains

Position Gains Kp [ 1
m ] Ki [ 1

m∗s ] Kd [ sm ]

Body Frame X-Direction, XB 1.35 0.003 1.50

Body Frame Y-Direction, YB 1.45 0.003 1.50

Body Frame Z-Direction, ZB 1.00 0.010 0.50

Orientation Gains Kp [ 1
rad ] Ki [ 1

rad∗s ] Kd [ s
rad ]

Yaw Rotation, ψ 1.00 0.010 0.75

Additional PID Parameters

Frequency [Hz] 25
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Figure C.5: Global X-Position obtained from PID Step Response in the Y-Axis
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Figure C.6: Global Y-Position obtained from PID Step Response in the Y-Axis
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Figure C.7: Global Z-Position obtained from PID Step Response in the Y-Axis
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Figure C.8: Yaw obtained from PID Step Response in the Y-Axis

C.1.3 PID Step Response in the Z-Axis

Table C.3: PID Parameters for Step Response in the Z-axis

PID Tuning Gains

Position Gains Kp [ 1
m ] Ki [ 1

m∗s ] Kd [ sm ]

Body Frame X-Direction, XB 1.00 0.010 0.50

Body Frame Y-Direction, YB 1.00 0.010 0.50

Body Frame Z-Direction, ZB 1.10 0.003 3.50

Orientation Gains Kp [ 1
rad ] Ki [ 1

rad∗s ] Kd [ s
rad ]

Yaw Rotation, ψ 1.00 0.010 0.75

Additional PID Parameters

Frequency [Hz] 25
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Figure C.9: Global X-Position obtained from PID Step Response in the Z-Axis
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Figure C.10: Global Y-Position obtained from PID Step Response in the Z-Axis
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Figure C.11: Global Z-Position obtained from PID Step Response in the Z-Axis
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Figure C.12: Yaw obtained from PID Step Response in the Z-Axis
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C.1.4 PID Step Response in Yaw Rotation

Table C.4: PID Parameters for Step Response in Yaw

PID Tuning Gains

Position Gains Kp [ 1
m ] Ki [ 1

m∗s ] Kd [ sm ]

Body Frame X-Direction, XB 1.00 0.010 0.50

Body Frame Y-Direction, YB 1.00 0.010 0.50

Body Frame Z-Direction, ZB 1.00 0.010 0.50

Orientation Gains Kp [ 1
rad ] Ki [ 1

rad∗s ] Kd [ s
rad ]

Yaw Rotation, ψ 0.10 0.007 8.50

Additional PID Parameters

Frequency [Hz] 25
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Figure C.13: Global X-Position obtained from PID Step Response in Yaw
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Figure C.14: Global Y-Position obtained from PID Step Response in Yaw
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Figure C.15: Global Z-Position obtained from PID Step Response in Yaw
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Figure C.16: Yaw obtained from PID Step Response in Yaw

C.2 PID Figure 8 Trajectory Response

Table C.5: PID Parameters for Step Response in the X-axis

PID Tuning Gains

Position Gains Kp [ 1
m ] Ki [ 1

m∗s ] Kd [ sm ]

Body Frame X-Direction, XB 1.35 0.003 1.50

Body Frame Y-Direction, YB 1.45 0.003 1.50

Body Frame Z-Direction, ZB 1.10 0.003 3.50

Orientation Gains Kp [ 1
rad ] Ki [ 1

rad∗s ] Kd [ s
rad ]

Yaw Rotation, ψ 0.10 0.007 8.50

Additional PID Parameters

Frequency [Hz] 25

103



Figure C.17: 3D plot of the PID Figure-8 Trajectory Response

0 10 20 30 40 50 60 70 80 90 100 110

Time [s]

-1.5

-1

-0.5

0

0.5

1

1.5

G
lo

b
a
l 
P

o
s
it
io

n
 [
m

]

Figure C.18: PID Figure-8 Trajectory Response in the X-axis
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Figure C.19: PID Figure-8 Trajectory Response in the Y-axis
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Figure C.20: PID Figure-8 Trajectory Response in the Z-axis
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Figure C.21: PID Figure-8 Trajectory Response in Yaw
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Figure C.22: PID Figure-8 Trajectory Response in Roll
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Figure C.23: PID Figure-8 Trajectory Response in Pitch
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Appendix D

LMPC Assessment Data

D.1 LMPC Step Response

D.1.1 LMPC Step Response in the X-Axis

Table D.1: LMPC Parameters for Step Response in the X-axis

LMPC Parameter Value

State Weights, Q (2.25, 2.25, 1.525, 5, 4.25, 4.25, 1.75)

Input Weights, R (1, 1, 1.25, 1)

Prediction Horizon, Np 30

Frequency, f [Hz] 25
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Figure D.1: Global X-Position obtained from LMPC Step Response in the X-Axis
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Figure D.2: Global Y-Position obtained from LMPC Step Response in the X-Axis
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Figure D.3: Global Z-Position obtained from LMPC Step Response in the X-Axis
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Figure D.4: Yaw obtained from LMPC Step Response in the X-Axis

D.1.2 LMPC Step Response in the Y-Axis

Table D.2: LMPC Parameters for Step Response in the Y-axis

Tuning Parameter Value

State Gain, Q (2.25, 2.25, 1.525, 5, 4.25, 4.25, 1.75)

Input Gain, R (1, 1, 1.25, 1)

Prediction Horizon, Np 30

Frequency, f [Hz] 25
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Figure D.5: Global X-Position obtained from LMPC Step Response in the Y-Axis
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Figure D.6: Global Y-Position obtained from LMPC Step Response in the Y-Axis
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Figure D.7: Global Z-Position obtained from LMPC Step Response in the Y-Axis

0 50 100 150

Time [s]

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

A
n
g
le

 [
ra

d
ia

n
s
]

Figure D.8: Yaw obtained from LMPC Step Response in the Y-Axis
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D.1.3 LMPC Step Response in the Z-Axis

Table D.3: LMPC Parameters for Step Response in the Z-axis

Tuning Parameter Value

State Gain, Q (2.25, 2.25, 3.25, 5, 4.25, 4.25, 1.75)

Input Gain, R (1, 1, 1.25, 1)

Prediction Horizon, Np 30

Frequency, f [Hz] 25
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Figure D.9: Global X-Position obtained from LMPC Step Response in the Z-Axis
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Figure D.10: Global Y-Position obtained from LMPC Step Response in the Z-Axis
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Figure D.11: Global Z-Position obtained from LMPC Step Response in the Z-Axis
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Figure D.12: Yaw obtained from LMPC Step Response in the Z-Axis

D.1.4 LMPC Step Response in Yaw Rotation

Table D.4: LMPC Parameters for Step Response in Yaw

Tuning Parameter Value

State Gain, Q (2.25, 2.25, 3.25, 7.5, 4.25, 4.25, 1.75)

Input Gain, R (1, 1, 1.25, 1)

Prediction Horizon, Np 30

Frequency, f [Hz] 25
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Figure D.13: Global X-Position obtained from LMPC Step Response in Yaw

0 50 100 150

Time [s]

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

G
lo

b
a
l 
P

o
s
it
io

n
 [
m

]

Figure D.14: Global Y-Position obtained from LMPC Step Response in Yaw
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Figure D.15: Global Z-Position obtained from LMPC Step Response in Yaw
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Figure D.16: Yaw obtained from LMPC Step Response in Yaw
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D.2 LMPC Figure 8 Trajectory Response

Table D.5: LMPC Parameters for Figure 8 Trajectory

Tuning Parameter Value

State Gain, Q (2.25, 2.25, 3.25, 7.5, 4.25, 4.25, 1.75)

Input Gain, R (1, 1, 1.25, 1)

Prediction Horizon, Np 30

Frequency, f [Hz] 25

Figure D.17: 3D plot of the LMPC Figure-8 Trajectory Response
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Figure D.18: LMPC Figure-8 Trajectory Response in the X-axis
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Figure D.19: LMPC Figure-8 Trajectory Response in the Y-axis
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Figure D.20: LMPC Figure-8 Trajectory Response in the Z-axis
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Figure D.21: LMPC Figure-8 Trajectory Response in Yaw
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Figure D.22: LMPC Figure-8 Trajectory Response in Roll
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Figure D.23: LMPC Figure-8 Trajectory Response in Pitch
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Appendix E

Pursuit Control Data

E.1 Vicon Pursuit Control Data

Table E.1: LMPC Properties and Tuning Parameters for Vicon Pursuit Algorithm

Properties Target Drone Pursuer Drone

State Gain, Q (3.25, 3.25, 3.25, 7.5, 5.25, 5.25, 1.75) (2.75, 3.15, 3.25, 7.5, 4.25, 3.75, 1.75)

Input Gain, R (1.25, 1.25, 1, 1.3) (1, 1, 1.25, 1.5)

Prediction Horizon, Np 30 30

Frequency, f [Hz] 25 25

Figure E.1: 3D plot of the Pursuit LMPC Motion Control using Vicon Pursuit
Algorithm
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Figure E.2: Relative X-Position using Vicon Pursuit Algorithm
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Figure E.3: Relative Y-Position using Vicon Pursuit Algorithm
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Figure E.4: Relative Z-Position using Vicon Pursuit Algorithm
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Figure E.5: Relative Yaw Rotation using Vicon Pursuit Algorithm
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Figure E.6: Global Drone X-Position using Vicon Pursuit Algorithm
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Figure E.7: Global Drone Y-Position using Vicon Pursuit Algorithm
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Figure E.8: Global Drone Z-Position using Vicon Pursuit Algorithm
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Figure E.9: Global Drone Yaw Rotation using Vicon Pursuit Algorithm
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E.2 Bounding Box Pursuit Data

Table E.2: LMPC Properties and Tuning Parameters for Bounding Box

Properties Target Drone Pursuer Drone

State Gain, Q (2.75, 3.15, 3.25, 7.5, 4.25, 3.75, 1.75) (3.25, 3.25, 3.25, 7.5, 5.25, 5.25, 1.75)

Input Gain, R (1, 1, 1.25, 1.5) (1.25, 1.25, 1, 1.3)

Prediction Horizon, Np 30 30

Frequency, f [Hz] 25 25

Figure E.10: 3D plot of the Circular Pursuit Motion using Bounding Box Pursuit
Algorithm
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Figure E.11: Relative X-Position using Bounding Box Pursuit Algorithm
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Figure E.12: Relative Y-Position using Bounding Box Pursuit Algorithm
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Figure E.13: Relative Z-Position using Bounding Box Pursuit Algorithm
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Figure E.14: Relative Yaw Rotation using Bounding Box Pursuit Algorithm
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Figure E.15: Global Drone X-Position using Bounding Box Pursuit Algorithm
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Figure E.16: Global Drone Y-Position using Bounding Box Pursuit Algorithm
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Figure E.17: Global Drone Z-Position using Bounding Box Pursuit Algorithm
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Figure E.18: Global Drone Yaw Rotation using Bounding Box Pursuit Algorithm
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Appendix F

Bounding Box Pursuit
Algorithm Step Performance

F.1 Step Evaluation of the Bounding Box Pursuit Al-
gorithm

The performance of the bounding box motion control algorithm is evaluated by
having a pursuer drone follow a target drone that is subjected to a step input in
each direction. The target drone performed a step response using a LMPC motion
controller. As shown in Chapter 5, the Parrot AR.Drone 2.0 is capable of performing
a step response. The LMPC motion controllers for the pursuer and target drone
are tuned for each direction to obtain the optimum performance. This evaluation
will assess the performance of the bounding box pursuit algorithm in each direction
independently. The step trajectory of the target drone is described by the following
expressions.

xx,y,z =


xlow, 30n ≤ t ≤ 15 + 30n,
xmid, 15 + 60n ≤ t ≤ 30 + 60n, n = 0, 1, 2...
xhigh, 45 + 60n ≤ t < 60 + 60n,

where t is time in seconds, and n is an integer value. The values for xlow, xmid, and
xhigh for each direction and yaw rotation is described in Table F.1.

Table F.1: Step Values for Each Direction and Yaw Rotation

Step Direction/Rotation xlow xmid xhigh
Global X-Direction, XW [m] -1 0 1

Global Y-Direction, YW [m] -1 0 -1

Global Z-Direction, ZW [m] 0.75 1.25 1.75

F.2 Bounding Box Pursuit Algorithm Step Response
Performance

Similarly to Sections 5.4.1 and 5.3.1 in Chapter 5, the target drone performed a
step response in each direction and in yaw using a LMPC motion controller while
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the pursuer drone replicates the motion of the target drone. The target drone was
subjected to a sequence of step reference inputs in one direction or rotation while
holding all other directions and/or rotation steady in a user-specified position. The
pursuer drone without knowing any prior knowledge of the movement of the target
drone attempts to replicate its motion. The global world positions of the pursuer
and target drone are shown in Figures F.1, F.2,and F.3.
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Figure F.1: Global World X-Position of the Pursuer and Target Drone
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Figure F.2: Global World Y-Position of the Pursuer and Target Drone
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Figure F.3: Global World Z-Position of the Pursuer and Target Drone

Figures F.1, F.2,and F.3 suggest that the pursuer drone followed the motion of
the target drone. The following table summarizes the performance of pursuer drone
in maintaining a relative distance from the target drone performing a step response.

Table F.2: Pursuer Drone Performance Summary for Tracking a Step Response

Parameter Average Tracking Error RMS Error

Step Response along the Global X-Axis

(xOP )O [m] −0.0134 0.2264

(yOP )O [m] 0.0266 0.1399

(zOP )O [m] −0.0019 0.0877

Step Response along the Global Y-Axis

(xOP )O [m] −0.0011 0.1153

(yOP )O [m] 0.0120 0.2669

(zOP )O [m] −0.0019 0.0801

Step Response along the Global Z-Axis

(xOP )O [m] −0.0409 0.1004

(yOP )O [m] 0.0440 0.1407

(zOP )O [m] −0.0081 0.1189

Based on the average tracking errors in each case being relatively small, the
pursuer drone was capable of following the target drone at a desired relative po-
sition away from the target drone. When the RMS errors in Table F.2 and Fig-
ures F.1, F.2,and F.3 are taken into consideration, the data suggest that the system
experienced significant noise in each case. This noise is arises from a number of
factors that involve the performance of YOLO v2, the presence of disturbances,
possible time delays, and camera feed drop outs.

From Table F.2, the RMS error in the relative X-direction and relative Y-
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direction were relatively high in the cases where the pursuer drone was following
a target drone performing a step response in the global X- and Y-direction, re-
spectively. The higher RMS errors in this case were due to the pursuer drone not
reacting quickly enough to the movement of the target drone. It was found that the
pursuer drone was capable of maintaining a reference distance away from the target
drone when it was hovering. The performance of the pursuer drone in reacting to
the target drone could be improved with tuning, developing a kinematic model of
the target drone, or considering the effects that time delay may have on the system.
Optimally tuning the system, developing a kinematic model of the target drone us-
ing the YOLO v2 object detection algorithm is left for future work, and exploring
the effects of time delay are left for future work.

It was observed during the course of the experiment, the gusts and wakes from the
target drone were disturbing the motion of the pursuer drone. These disturbances
appeared to have impacted the pursuer drone more when following the target drone
along the global X direction than when following the target drone along the global
Y direction. In addition, when the target drone flew above the pursuer drone, the
gusts emitted by the target drone disturbed the pursuer drone and swayed the drone
in the X- and Y-direction. These disturbances may partly explain the RMS errors
found in the directions that were set a constant reference value.

Another possible contributor to higher RMS errors is the inaccuracies in the
bounding box information. From Section 4.5.2, the lateral position estimation was
not perfect which introduces a systematic error into the system. This suggests that
the YOLO v2 can provide poor data that affects the performance of the control
system. In addition, as seen in Section, the further away the pursuer drone is to the
target drone, the errors in the bounding box information become exponential. Since
the position of the target drone is dependent on the depth estimation as shown
in Section 4.4, depth estimation from an inaccurate bounding box data leads to
poorer performance in pursuit algorithm. Future work could consist of training
YOLO v2 further or implementing a Extended Kalman Filter on the bounding box
information.

Despite the number of issues that are present within the system, the pursuit
drone is capable of maintaining a relative position away from a target drone per-
forming a step response.
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Appendix G

Experimental Error Equations

The performance of the motion controllers described in Chapter 3 are evaluated
based on their ability to follow a desired reference. A method to assess the motion
controllers’ ability to follow a desired reference is by determining the average tracking
error and the root mean square error.

The tracking error within the context of control is the difference between the
reference input state and the measured output state at a given time. The average
tracking error is found by averaging out the tracking error at each given time. The
average tracking error is calculated using Equation (G.1) as shown below.

eave =

∑N
k=1(xref − xm)

N
(G.1)

Where eave is the average tracking error, xref is the reference state, and xm is
the measured state.

The root mean square (RMS) error is the standard deviation of the tracking
error and measures the spread of the tracking error. The RMS error is calculated
using Equation (G.2) as shown below.

RMS =

√∑N
k=1(xref − xm)2

N
(G.2)
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