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Abstract

Autonomous driving, as a rapidly growing field, has received increasing attention from

the general society and the automotive industry over the last two decades. However,

road accidents involving autonomous vehicles have hindered societal acceptance and

deployment of this technology on roads. As self-driving decisions are powered by ar-

tificial intelligence approaches, intelligent driving systems must justify their actions,

particularly in critical traffic scenarios. Consequently, explainability of autonomous

driving has emerged as a vital research direction in the field.

This dissertation aims to develop explainable artificial intelligence techniques for au-

tonomous vehicles by approaching the existing issues from three essential aspects: in-

teractivity, robustness analysis, and time granularity of explanations. In this sense, I

first present a comprehensive overview of explainable artificial intelligence approaches

for autonomous vehicles and describe the research gaps in this direction. Second, I

introduce a visual question answering approach to explain autonomous driving ac-

tions in an interactive manner. Third, I propose a situation awareness framework

for autonomous vehicles backed by explanations and human-machine interfaces. Fi-

nally, I thoroughly investigate safety implications of explainable artificial intelligence

in end-to-end autonomous driving via critical case studies and an empirical analysis.

Overall, in pursuit of developing explainable artificial intelligence approaches for au-

tonomous vehicles, this dissertation highlights (1) how to build intelligible and inter-

active explanations, (2) critical challenges in building trustworthy interactive expla-

nations, and (3) how to leverage explanations in enhancing self-driving safety.
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Chapter 1

Introduction

Over the last two decades, the automotive industry has seen substantial developments

in the transition from manually operated vehicles to vehicles with varying levels of

automation. The DARPA Grand Challenge [261] and advancements in powerful arti-

ficial intelligence (AI) approaches, particularly in deep learning and computer vision

algorithms, have enabled the emergence of autonomous vehicles (AVs) and shaped

a new era in intelligent transportation systems (ITS). The potential benefits of AVs

are improved operational safety [182], reduced CO2 emissions [216], diminished trans-

portation costs [1], and reduced traffic density [93]. Intel’s report on the projected

benefits of AVs estimates that deployment of such vehicles on roads will result in a

reduction of 250 million hours of users’ commuting time per year and save more than

half a million lives from 2035 to 2045, just in the USA [156].

While two decades of progress and the potential impacts and benefits of AVs in every-

day life are promising, there is a major societal concern about the functional safety

of such vehicles. This issue, as a major drawback, originates mainly from reports

of recent traffic accidents with the presence of AVs, primarily owing to their opaque

decision-making [3, 87, 250, 294]. The issue is even exacerbated when the actual rea-

son leading to such road mishaps remains unknown. Moreover, except for the safety

issue, the “black-box” decision-making process also hinders resolving legal culpability

and accountability issues, as a consequence [38]. In this regard, explainable AI (XAI)

1



has emerged as a paradigm shift in the ongoing design and development of AVs and

necessitates a transparent intelligent driving system for this technology [3, 6, 16, 230].

Based on these critical issues, there are three crucial requirements for the success-

ful adoption of modern AVs by general society: safety, explainability, and regulatory

compliance [21]. The safety criterion refers to the acceptable and reliable performance

of AVs in interaction with stationary and dynamic objects in dynamic environments

and behaving appropriately in unpredictable driving conditions. The explainability1

theme concentrates on providing insights into real-time action decisions of AVs (e.g.,

Figure 1.1). Finally, regulatory compliance ensures that AVs, as a holistic system,

behave under traffic rules by meeting established safety standards and can justify

their temporal decision-making process as required by transportation jurisdictions.

However, it is also noteworthy to underscore that providing acceptable and faithful

explanations to relevant interaction partners in autonomous driving is considerably

challenging. First, people have various technical knowledge and backgrounds in AV

technology, and explanation format, content, and conveyance must consider this nu-

ance. Moreover, people’s various physical and cognitive abilities necessitate the design

of various types of automotive human-machine interfaces (HMIs) to ensure that expla-

nations are communicated considering individuals’ needs [15, 234, 258]. Furthermore,

as AV decisions are temporal, explanations must be delivered to relevant interaction

partners in a timely manner. Finally, explanations must be robust, context-aware,

and faithful, ensuring that they defend against potential adversarial attacks and in-

teractions. Overall, as people with various backgrounds and abilities are targets of

explanations, the construction mechanism of explanations must be human-centered.

1.1 Thesis Statement

The primary goal of this thesis is to develop XAI approaches that overcome funda-

mental problems of explanations for AVs — human interpretability, robustness,

1I will use the terms explainability and interpretability interchangeably.
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Figure 1.1: A canonical example of explanation conveyance in autonomous driving:
An AV presents a live natural language explanation of its real-time action to by-
standers. The image has been adapted and modified from the original source: [61].

and time granularity. Throughout the following chapters, I focus on presenting prin-

cipled and appropriate solutions toward this goal. In this sense, I explain the crucial

aspects of each problem in this section.

1.1.1 Human Interpretability of Explanations

AV explanations can be different in their form, content, and modality depending on

the recipients [20, 243]. For instance, ordinary passengers may be satisfied with a

simple, linguistic explanation of AV actions. However, a system engineer and an AI

scientist may need more informative and technically-rich explanations to understand

the current functionalities of the car, with the motivation to appropriately “debug”

the existing driving system as required. Furthermore, individuals may require dif-

ferent modalities of explanation communication, such as via vibrotactile, light, and

sound methods [236, 237]. Consequently, depending on stakeholders’ needs and pref-

erences, AV explanations must be interpretable and intelligible for targeted interaction

partners [15, 20, 200]. In this regard, human-interpretability of explanations can be

analyzed within the following research questions:
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What are appropriate and effective explanation delivery techniques with

human factors consideration? What are the potential challenges of deliv-

ering human-interpretable explanations to the general public?

1.1.2 Robustness of Explanations

Various studies have shown that machine learning (ML) explanations are fragile to

simple adversarial interactions or perturbation to model inputs [100, 280, 283]. As the

primary goal of explanations is to ensure user trust and disclose the decision-making

rationale of autonomous systems, the robustness of explanations is of paramount im-

portance in achieving this goal. Particularly, when humans directly interact with

such a system, the explanation model must understand conventional and adversarial

interactions and thereby present context-aware and faithful explanations.

In the context of autonomous driving, the robustness of explanations has significant

implications for user trust and safety. Consider an AV equipped with a conversational

user interface that enables passengers on board to ask questions to its HMI about the

vehicle’s present action or traffic situation. Assume in an actual right turn scenario

under a green light, a passenger asks the conversational user interface, ”Why is the

car turning to the left?” as an adversarial question. If the relevant HMI presents

a response like “ The car is turning to the left because...,” such an example shows

the issue with the weakness of the explanation model to detect tricky questions. On

the other hand, as a desideratum, the robust model can present an answer such as

“No, the car is turning to the right as the traffic light allows a right turn,” explaining

what the AV is doing and why it is doing so, denoting causal attribution. These

questions may be asked deliberately (i.e., to stress test the explanation model) or un-

intentionally (i.e., people with visual impairments may have difficulty perceiving the

traffic scene correctly) to test the trustworthiness of the vehicle, its action decisions,

and its awareness of the operational surroundings. Consequently, automotive HMIs

should not only provide conventional explanations but also defend against potential
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adversarial queries to ensure that explanations are robust, reflecting the vehicle’s ac-

tion decision-making process. Finally, from a safety perspective, robustness against

human adversarial questions can contribute to the development of safety and secu-

rity measures to detect, identify, and mitigate potential adversarial attacks on AVs.

Hence, the robustness perspective of explanations can be answered in the following

research questions:

Why is there a need for robust AV explanations? What are the implications

of the robustness of explanations for relevant interaction partners?

1.1.3 Time Granularity of Explanations

Except for the contents and forms of explanations, the timing mechanism of explana-

tions also deserves significant attention. As action decisions of AVs are time-critical,

relevant explanations, depending on the target recipients, must be delivered in the

allotted time interval. In general, the timing sensitivity of AV explanations can be

analyzed by answering the following three research questions:

Should explanations be delivered before action is chosen or after action

is performed? What is the appropriate lead time for a safe transition

from an automatic mode to a human takeover? Should explanations be

communicated to humans seamlessly or only in critical moments?

1.2 Key Contributions

The main goal of this dissertation is to present foundations of XAI for autonomous

driving in the realm of safety, transparency, and regulatory compliance backed by an-

alytical, empirical studies, and human factors consideration. Overall, the desiderata

for building such XAI approaches for AVs can be summarized as follows:

Desideratum 1: Interactive explanations that enable humans to ask questions to au-

tomotive HMI and be aware of an AV’s actions and traffic situations.
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Desideratum 2: Robust explanations that identify and defend against adversarial and

tricky interactions.

Desideratum 3: Temporally-sensitive explanations that are delivered within the al-

lotted time interval.

Desideratum 4: Faithful and informative explanations that can contribute to safety

of autonomous driving in real time or via a retrospective analysis.

I deal with the problems from three perspectives: problem definition, data, and eval-

uation of the proposed solution. My contributions consider these perspectives and

constitute essential factors and steps for developing explanation models for modern

AV technology and for both modular and end-to-end autonomous driving. Overall,

the main contributions of this dissertation can be summarized as follows:

• Comprehensive Overview of XAI Approaches for AVs: As explainability is

becoming an integral component of autonomous driving, there is an imminent need

to understand various reasons necessitating XAI-based AVs. To this end, I present

a comprehensive overview and classification of XAI approaches for AVs, describing

the current trends toward explainable autonomous driving systems (Chapter 3).

• Explaining Autonomous Driving Actions with Visual Question Answer-

ing: As a meaningful dialogue model between people on board and automotive

HMI, I propose the use of a visual question answering (VQA) approach to explain-

ing autonomous driving actions. In this sense, I train a reinforcement learning (RL)

agent to control the vehicle and generate a driving video. Further, I identify sce-

narios within several action categories (such as go straight, turn left, turn right),

convert the video to image sequences, and annotate the images with question-

answer (QA) pairs and causal attributions. The goal is that once the model is

trained with driving scenes and relevant QA pairs, it picks the correct answer out

of a multitude of candidates to the asked question about the action taken in an

unseen scene. The empirical results show that VQA is an effective approach to
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enable meaningful dialogues between AV and people on board (Chapter 4).

• Impact of Vision-Language Model-based Explanations on User Trust

and Situation Awareness in AVs: While the experiment described in Chapter

4 focuses on manually annotated data with selected action categories, real driving

scenarios are usually more complex and dynamic. Hence, automotive explanation

models must generalize to complicated scenarios and justify the vehicle’s decisions

with accurate causal reasoning. To this end, I present a general situation aware-

ness framework backed by HMI and explanations. To validate the framework, I

select critical traffic scenarios from a high-quality real-driving dataset and use a

multimodal transformer for the task of VQA. Different from the methodology in

Chapter 4, instead of manually annotating driving data with QA pairs, I rely on

the massive internal knowledge of a pretrained multimodal transformer and test

the transformer’s robustness against both conventional and adversarial questions.

I perform a user study in the empirical findings, show the implications of incor-

rect explanations in users’ perceived safety and feeling of comfort with an AV and

validate the findings with hypothesis testing (Chapter 6).

• Safety Implications of Explanations: As XAI is viewed as a promising paradigm

shift to resolve trust and accountability issues, I argue that real-time and retro-

spective explanations can also help improve safety of autonomous driving. For this

purpose, I identify critical scenarios that show the value of explanations from a

safety perspective, perform an empirical study, and present a detailed analysis of

the safety implications of XAI in end-to-end autonomous driving (Chapter 7).

1.3 Dissertation Outline

This dissertation is organized into nine chapters. After the introduction in Chapter

1, I present background information on AVs in terms of their design architecture

and safety in Chapter 2. Chapter 3 describes a comprehensive overview of various
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XAI approaches for AVs. Chapter 4 introduces a VQA framework for explaining RL-

controlled autonomous driving. Chapter 5 presents a paradigm shift toward massive

knowledge-based vision-language models applicable for explanation provision in AVs.

Motivated by the potential limitations of the VQA framework presented in Chapter

4 and the advantage of vision-language model-based VQA described in Chapter 5, I

propose a general situation awareness framework for AVs in Chapter 6 and validate

it via an empirical study and human evaluation. Afterward, Chapter 7 thoroughly

studies safety implications of explanations for end-to-end autonomous driving. Based

on the current industrial trends in the realm of safety and explainability, Chapter

8 envisions AV2.0 and describes potential challenges and a roadmap for this goal.

Finally, Chapter 9 summarizes the contributions of the dissertation and discusses

potential directions for future exploration.
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Chapter 2

Background

2.1 Introduction

This chapter presents background information on state-of-the-art AV technology. It

revisits key aspects of autonomous driving, such as safety, fundamental issues, and

regulation and standards. Afterward, the chapter describes the need for explanations

for AV technology from a multidisciplinary perspective.

2.2 Autonomous Driving at a Glance

AVs, also referred to as self-driving vehicles, are intelligent vehicles equipped with

advanced sensors, cameras, RADAR, LIDAR, GPS, and sophisticated learning algo-

rithms that enable them to navigate and operate without human intervention [28].

To discern, identify, and distinguish the objects in their operational surroundings,

these vehicles fuse information from a variety of sensors that help make real-time

driving decisions [40, 290]. The history of contemporary AVs goes back to 1988,

when ALVINN (Autonomous Land Vehicle In a Neural Network), the first neural

network-powered self-driving vehicle taking camera images with a laser range finder,

was able to produce control commands for the road-following task [213]. Current AVs

deployed on road networks have different levels of automation based on their in-vehicle

technologies and intelligent capabilities. SAE International has defined six levels of

autonomous driving [245]: Level 0 - No automation (a human driver is responsible
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Figure 2.1: Modular vs. end-to-end autonomous driving. In the modular pipeline, the
described operations are carried out subsequently to produce control commands, while
end-to-end driving directly inputs raw sensor data and produces control commands
as a unified task.

for all critical driving tasks); Level 1 - Driving assistance (a vehicle has automated

driving support such as acceleration/braking or steering, but the driver is respon-

sible for all other possible driving operations); Level 2 - Partial automation (Ad-

vanced Driving Assistance Systems (ADAS) operations such as steering and acceler-

ation/braking are available at this level); Level 3 - Conditional automation (a vehicle

has more advanced features such as object/obstacle detection and can carry out the

majority of driving operations); Level 4 - High automation (a vehicle can fulfill all

possible driving operations in a geofenced area); and Level 5 - Full automation (a

vehicle can perform all driving operations in any likely scenario, and no human inter-

vention is required) (see Table 2.1 for more details).

There are two main approaches to building autonomous driving systems in terms of

their AI-based learning architecture: modular and end-to-end pipelines [43, 294]. The

modular pipeline consists of four primary and interconnected modules, categorized as

perception, localization, planning, and control (Figure 2.1, a). The modular pipeline

leverages various sensor suites and algorithms for each module. While being com-

prised of standalone components makes the modular system more explainable and

debuggable, such an architecture propagates errors to the next component, and thus,

the overall pipeline error becomes cumulative [14, 43, 120].
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Table 2.1: SAE International-defined AV levels with examples: While Levels 0-2 are
human-supervised driving, Levels 3-5 are highly automated driving.

AVs level Description of the level Example vehicles

Level 0 A human driver is responsible
for all critical driving tasks such
as accelerating/braking, steering,
etc. Driver support may in-
clude blindspot warning, auto-
matic emergency braking, and
lane departure warning.

Kia Rio 2004, Honda 2005, and
other early and before 2000s’ ve-
hicles.

Level 1 The vehicle has automated driv-
ing support such as acceler-
ation/braking or steering, but
the driver is responsible for all
other possible driving operations.
Driver support may include lane
centering or adaptive cruise con-
trol.

The majority of the daily used
cars are in Level 1.

Level 2 ADAS operations, such as steer-
ing and acceleration/braking, are
available. Nevertheless, the hu-
man driver should monitor the
driving surroundings and take rel-
evant actions when needed.

Toyota Corolla 2018, Nissan Sen-
tra.

Level 3 The vehicle has more advanced
features such as object/obstacle
detection and can carry out most
driving operations. However, hu-
man supervision is still required to
take control of the car at any time.

The 2018 Audi A8 claimed to be
the first commercial autonomous
vehicle on Level 3 [226].

Level 4 The vehicle can fulfill all possible
driving operations under specific
conditions. The use of geofenc-
ing is required. Human supervi-
sion remains an option.

Alphabet’s Waymo cars claim
Level 4 automation [2].

Level 5 The vehicle can perform all driv-
ing operations in any likely sce-
nario, and no human intervention
is required. The Level 5 system
can drive the vehicle in all possi-
ble road conditions.

There is no Level 5 vehicle in the
current automotive industry.
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In contrast to the modular pipeline, end-to-end autonomous driving has recently

emerged as a paradigm shift in the design and development of AVs. End-to-end

autonomous driving takes the raw sensor data as visual input and yields a control

command for the vehicle (Figure 2.1, b) [43, 118, 257]. Particularly, recent break-

throughs in deep learning and computer vision algorithms, and the availability of rich

sensor devices along with enhanced safety benefits have been the primary reasons for

automotive researchers to leverage the end-to-end learning approach. The advantage

of the end-to-end pipeline over its counterpart is that it directly produces driving

actions by unifying perception, localization, planning, and control as one combined

ML task. Furthermore, computational efficiency is improved via shared backbones in

end-to-end learning, and in this way, potential information loss in intermediate layers

is also avoided [120, 137].

2.3 Safety of Autonomous Driving

This section outlines key safety components and requirements of state-of-the-art au-

tonomous driving technology. In this regard, the following subsections describe safety

of autonomous driving systems from the aspects of software safety, hardware reliabil-

ity, cybersecurity, human intervention in takeover situations, and fail-safe capability,

respectively.

2.3.1 Software Safety

The safety of the deployed software system in autonomous driving is one of the most

essential factors. As ML approaches play a pivotal role in enabling an automated

vehicle to make intelligent decisions, these approaches need to be safety-compliant

both theoretically and practically. The ISO 26262 standard has specifications to

which the ML-based software architecture must conform [129]. Part 6 of this standard,

known as V-model (Figure 2.2), is dedicated to product development at the software

level for road vehicles, and state-of-the-art autonomous driving must comply with
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Figure 2.2: V-model in ISO 26262. The figure drawn based on the content in [129].

these stringent safety standards. The ISO 26262 standard has also established a risk

classification system for the functional safety of automobiles, known as the Automo-

tive Software Integrity Level (ASIL). This system groups risks into four categories,

labeled A, B, C, and D [256]. ASIL A class indicates the lowest degree while ASIL

D class indicates the highest degree of hazard. The complexity and associated risks

with autonomous driving software deepen with respect to increasing SAE-defined au-

tomation levels, as a huge amount of computation happens on collected sensor data.

According to Salay et al. [231], there are four safety issues with characteristics of ML

on automotive software. The first one is the unstable behavior of a learning algo-

rithm: As learning models are generally trained with local optimization algorithms,

different training processes may yield different results on the same training dataset.

Secondly, incompleteness of training is another negative factor, as only using some

subset of input may not represent all safety-critical scenarios. Furthermore, despite

the so-called “error rate” metric being an outcome of the ML models, whether this

estimate is practically reliable remains unclear. Finally, the lack of interpretability

of models or explainability of decisions is another issue for any ML-based intelligent

driving system. The opaqueness of intelligent decision-making is a hindrance to safety

assurance as it becomes harder for a user or examiner to trust if the model is oper-

ating as expected. Here, we analyze the latter point and analytically and empirically

show that interpretable ML techniques have immense potential to improve safety of

autonomous driving.
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(a) Blind corner ahead (b) Disappearing lane markings and exiting

Figure 2.3: Potential takeover situations: (a) The blind corner ahead reduces an
autonomous vehicle’s perception ability, and (b) Autopilot perceives edge-markings
of an exit lane as the current lane (upper left), steers right and the car exits the road
incorrectly (upper right). The images have been adapted from [36].

2.3.2 Hardware Reliability

The reliability of autonomous driving systems depends on an appropriate combina-

tion of AI-powered software with hardware architecture. The physical architecture

of a driving system should have seamless integration with its operating software in

order to achieve reliable automated driving. ISO 26262 has defined functional safety

of hardware systems by outlining the safety compliance process from the design spec-

ification to the production stage in modern autonomous cars [129]. These principles

aim to identify and control hardware failure and prevent design faults in intelligent

driving systems. These hardware failures could be systematic faults, arising dur-

ing the design, development, and manufacturing stage, and random faults, occurring

during the operational lifetime of an autonomous car due to possible casual defects,

improper maintenance, and aging of hardware. Modern autonomous vehicles typically

have the following major hardware components: sensors, actuators, V2X1 communi-

cation interfaces, and control hardware [143]. Sensors, such as vision cameras, lidar,

radar, global positioning systems (GPS), and inertial measurement units (IMUs) en-

able an autonomous car to sense its operational environment dynamically and help
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support real-time decisions based on the information fused from these data sources

[290]. Actuators physically perform actions such as breaking, accelerating, and steer-

ing based on the obtained sensory information. Communication interface hardware

powers a self-driving car to potentially interact with other surrounding vehicles, road

users, and the infrastructure. Finally, control hardware ensures that a vehicle follows

its predefined rule with proper steering angle, braking, and acceleration. Advanced

driver-assistance systems (ADAS) are the most used control system in modern au-

tomated cars at present. So, as autonomous driving is a real-time decision-making

process, these hardware components and their systematic integration must deliver

low-latency, real-time, and high-speed data flow to the underlying ML software sys-

tem.

2.3.3 Cybersecurity

The security of driving systems is yet another essential aspect of safe autonomous

driving. ISO/SAE 21434 standard provides thorough guidelines and development

strategies for the cybersecurity management of road vehicles [128]. With increasing

reliance on big data, AI, and vehicular communication technologies, today’s state-of-

the-art autonomous vehicles are more prone to cyber-attacks. Such vulnerabilities,

in turn, can impact driving safety adversely and cause severe damage to road users,

such as passengers, pedestrians, and bystanders [212]. As two well-known examples

of cybersecurity issues, Tencent Keen Security Lab controlled susceptible features of

Tesla Models S, X, and BMW self-driving vehicles using remote attacks in their two

subsequent studies [39, 140]. These studies have disclosed that an attacker could have

easily controlled the mentioned self-driving cars both in parking and driving positions.

Such flaws are a significant hazard to users’ lives and demonstrate the need for more

robust measures against cyber hacking.
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2.3.4 Human Intervention in Takeover Situations

Autonomous cars may require takeover by backup drivers due to potential unexpected

scenarios such as adverse weather conditions, approached construction zones, missed

lane boundaries [183], and related issues in terms of software, hardware failures, and

cybersecurity issues, covered above (see Figure 2.3). Vehicular takeover situations also

become essential for highly automated driving at Level 3 and beyond. The transition

of control from a car’s intelligent driving system to the human operator happens in a

short time interval and consists of two primary steps: 1) an autonomous car makes a

takeover request (TOR), and a human driver should receive this request immediately

and take over the control of the steering wheel and pedals, and 2) the post-takeover

step, where the driver takes over the control of the car and manually performs the

decisive action safely as per the traffic scenario [122]. The time granularity of these

steps may vary from situation to situation, but the overall length of takeover cases is

usually a few seconds. Consequently, a human actor must dominate takeover situa-

tions in the allotted time interval; otherwise, collision or other serious consequences

may become inevitable. It is also necessary to specify that a self-driving car needs

to be supplied with a relevant user interface or dashboard to alert the human driver

on time and ensure a smooth transition from an autonomous mode to the human

takeover mode.

2.3.5 Fail-Safe Capability

While the transition to highly automated driving is a significant change in the in-

telligent capabilities of self-driving vehicles, the immense need to operate safely in

possible failure cases also escalates. A fail-safe is the ability of an automated car

to take control and bring it to a safe stop position in case the primary autonomous

functions fail or encounter an error and there is no backup driver in the vehicle [267].

The nature of failure may be hardware, software, or communication-related and in

general, such breakdowns can be classified into two groups: AV component-based
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failures and infrastructure-based failures [29, 224]. The fail-safe ability in these cases

can be achieved through a proper combination of sensor data, algorithms, and other

vehicular technologies aiming to discern and respond to potential dangers while in mo-

tion. State-of-the-art solutions against potential AVs failures include road segment-

based countermeasures (e.g., speed bumps, speed limit reduction pedestrian barriers),

intersection-based countermeasures (e.g., high-visibility crosswalks, split phase tim-

ings), and effective infrastructure countermeasures (e.g., highways without potholes,

well-maintained signs, and markings), in general [58]. In this sense, some studies

have leveraged the concept of formal verification for fail-safe motion planning of self-

driving vehicles [8, 208].

Overall, approaching an autonomous driving architecture as a holistic system, it is a

considerably challenging task to achieve acceptable driving safety in real time. Reli-

able integration of cyber-physical, software components, and sensor suites is vital to

accomplish safe autonomous driving and a fail-safe ability along the vehicle’s motion

trajectory (see Figure 2.4). Moreover, an AV must plan its trajectory considering the

rational and unexpected behavior of human actors [220, 228] and predict future states

of other dynamic objects [123] precisely to ensure safe driving in dynamic environ-
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ments. In general, the established definition of safe autonomous driving requires risk

minimization and assurance in seven key tasks namely, pedestrian detection, drowsy

driver detection, vehicle detection, road detection, lane detection, traffic sign detec-

tion, and collision avoidance, as identified by [192], and an intelligent driving system

must pass these safety checks while mapping sensor information to control commands.

2.4 Fundamental Issues

AI approaches, which are currently predominated by deep learning algorithms, have

brought considerable improvements to many essential components of autonomous

driving technology, including advances in perception, object detection, and planning.

With the increasing level of automation, the number of AVs deployed to road net-

works has proliferated significantly in many developed European countries, the US,

and Canada over the last decade [193]. However, the aforementioned road accidents

involving such cars have caused public skepticism, and many studies have attempted

to underscore the current limitations and issues with the design, development, and

deployment of AV technology. For example, Fleetwood [91] has investigated public

health and ethical issues arising with the use of autonomous driving. Their study

provides an in-depth analysis of the health issues, especially with the Trolley problem

examples [92, 136] (hitting a pedestrian on an icy road or a parked car; driving and

hitting five people or changing the direction of the steering wheel and hitting an in-

dividual, etc.). Some studies have directly focused on the concept of ethical crashing

(i.e., if crashing is inevitable, how to crash?) and the Trolley problem mentioned

above. For instance, the Moral Machine experiment [24], a well-known and hotly de-

bated experiment, investigates a general community’s preferences on applied Trolley

problems (inevitable accident scenarios with binary outcomes) and states that “these

preferences can contribute to developing global, socially acceptable principles for ma-

chine ethics.” However, further discussion on this issue condemns this opinion and

draws attention to the lack of safety principles [174], which force deeper consideration
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of such dilemmas [104]. Burton et al. [38] have identified three open problems in the

state-of-the-art development of autonomous systems. The first one is the semantic

gap that emerges when a thorough specification of the system is not provided to

manufacturers and designers. Another identified issue is the responsibility gap, which

arises when an accident happens, and the responsibility of either an autonomous sys-

tem or a human actor as the cause of this accident remains unresolved. Finally, there

is the question of who is responsible for compensating the injured during an accident,

which precipitates the third issue: the liability gap. Burton et al.’s study [38] also

reveals that the core of these issues is associated with domain complexity, system

complexity, and transferring more decision-making functions from human actors to

autonomous systems. Further studies include the outcomes of autonomous driving

technology on public health in an urban area [247], and ethical dilemmas with AVs

[180]. Overall, the key findings from these studies necessitate an understanding of the

causes of these issues and intrinsically give the stakeholders the right to ask “why”

questions.

2.5 Regulations and Standards

The issues and growing concerns caused by AI systems create the need to scrutinize

the regulation of this technology. As a result, public institutions have initiated regu-

latory frameworks to monitor the activities of data-driven systems at both a country

level and internationally. The focal points of these regulations are mainly to protect

the stakeholders’ rights and ensure they have control over their data. For example,

the General Data Protection Regulation (GDPR) of the European Union (EU) initi-

ated guidelines to promote the “right of an explanation” principle for users, enacted

in 2016 and taking effect in May 2018 [221]. Moreover, the EU has a specially de-

fined strategy on Guidelines of Trustworthy AI that has seven essential requirements,

namely 1) human agency, 2) technical robustness and safety, 3) privacy and data

governance, 4) transparency, 5) accountability, 6) diversity, non-discrimination, and

19



fairness, and 7) societal and environmental well-being; these principles are all to be

applied in AI-based product research and development [260].

Various organizations have recently proposed guidelines for the regulation of AVs to

monitor their compliance with law enforcement. NACTO’s (National Association of

City Transportation Officials) statement on automated vehicles proposes nine princi-

ples to shape a policy on the regulation of future-generation AVs [194]. NHTSA of

the US Department of Transportation has a specific federal guideline on automated

vehicle policy to improve traffic safety [195]. In March 2022, NHTSA announced that

automotive manufacturers would no longer have to equip fully autonomous cars with

manual control elements, such as a steering wheel and braking pedals in the USA

[68]. Canada [263], Germany [37], The UK [67], Australia [23], and Japan [4] have

also recently launched their regulations on autonomous driving technology.

While the regulations have been set out to ensure legislative norms and user demands

are met, some standards provide specifications to achieve a high safety level, qual-

ity assurance, efficiency, and environmentally friendly transportation systems. The

International Organization for Standardization (ISO) has adopted several standards

to define the relevant issues on automated driving. Examples include the ISO 21448

[126], which specifies situation awareness standards to maintain operational safety

under the “Safety of the Intended Functionality,” and the ISO 26262 [129] standard

defined for the safety of electrical and electronic systems in production passenger ve-

hicles, entitled as “Road vehicles – Functional safety.” Detailed documentation of the

legislation, regulation, and standardization of AVs can be viewed in [13].

2.6 Explanations in Autonomous Driving

2.6.1 The Need for Explanations

The need for explanations in autonomous driving arises from fundamental issues,

established regulations and standards covered in previous subsections, and cross-
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Figure 2.5: Cross-disciplinary factors necessitating explainability in autonomous driv-
ing

disciplinary views and opinions of society. At the highest level, the necessity of

explanations for AVs can be summarized in terms of four perspectives:

• Psychological perspective: Traffic accidents and safety concerns remain the main

cause of the need for XAI in autonomous driving from a psychological point of view

[200].

• Sociotechnical perspective: The design, development, and deployment of AVs should

be human-centered, reflecting the target audience’s needs, and taking their prior

opinions and expectations into account [71, 81].

• Philosophical perspective: Explaining AI decisions can provide descriptive informa-

tion about the causal history of actions performed, particularly in critical situations

[160, 188, 206].

• Legal perspective: It considers all the above-mentioned factors and incorporates

them into general regulatory compliance principles for AVs. A notable example is

GDPR’s requirements on explanation provision for end users [221].

Overall, we can conclude that the explainability of autonomous driving systems is an

expectation and a requirement from a multidisciplinary point of view.

2.6.2 Potential Benefits of Explanations for AVs

Considering these multi-dimensional perspectives, explainable autonomous driving

can bring the following benefits to the stakeholders:
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Figure 2.6: Taxonomy of the stakeholders in autonomous driving.

• Human-Centered Design: Getting the end users’ inputs, opinions, and anticipations

on the design and development of semi- or fully AVs can help with the acceptance

of this technology by the general community [125].

• Trustworthiness : Algorithmic assurance can build trust in human-autonomous sys-

tem relationships [130].

• Traceability : Explainable intelligent driving systems can help forensic analysts and

system auditors understand the entire decision-making process of an AV via a post-

trip analysis.

• Transparency and accountability : Explanations can help achieve accountability,

which can resolve the potential liability and responsibility gaps in foreseeable post-

accident investigations with the involvement of AVs as described by Burton et al.

[38]. For example, Mercedes-Benz has recently taken a promising step forward

and announced that the corporation will take legal responsibility for any accidents

that their self-driving systems are engaged in [63]. Mercedes’s declaration of legal

culpability is a significant milestone toward the accountability of AV technology.
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2.6.3 Explanation Recipients

The details, types, and delivery of explanations vary in accordance with users’ identi-

ties, technical background knowledge in autonomous driving, and their various func-

tional and cognitive abilities [15, 200]. For instance, a user having little technical

expertise on how AVs operate may be satisfied with a simple explanation of a relevant

decision/outcome. However, an autonomous systems engineer needs more informative

explanations to understand the current functionalities of the car, with the motivation

to appropriately “debug” the existing driving system as required. Therefore, the use

of domain knowledge and expertise of the explainee is essential to provide pertinent,

sufficiently informative, and intelligible explanations [157, 189]. Motivated by a target

audience definition of [16] and [200], we can distinguish four groups of stakeholders

from the perspective of explanation conveyance in autonomous driving, namely Group

1 - Road users, Group 2 - AV developers, Group 3 - Regulators and insurers, and

Group 4 - Executive management of automotive companies. Figure 2.6 provides the

identity of such stakeholders and their positions in the relevant classification.

2.6.4 Explanation Delivery Methods

As explainees are classified based on their domain knowledge and needs, explanations

and their design and evaluation techniques also vary depending on the context and

knowledge of the category of explainees. In fact, explanation construction is one of

the major challenges in current XAI research. Zablocki et al. [295] define four “W”

questions in XAI-based autonomous driving: 1) Who needs explanations? 2) Why

are explanations needed? 3) What kind of explanations can be generated? and 4)

When should explanations be delivered? In general, explanations in AI can be dis-

tinguished based on their derivation category and classification. Some of the early

practical studies have applied explanations to automated collaborative filtering sys-

tems [111] and knowledge-intensive case-based reasoning [227]. Another empirical

approach has attempted to derive explanations based on some intelligibility types
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[164] and used “why,” “why not,” “what if,” and “how to” type explanations for

causality filtering. Furthermore, Liao et al. [162] have interviewed twenty user in-

terface and design practitioners working in different areas of AI to understand users’

explanatory requirements. By doing so, they have attempted to find the gaps in the

interviewers’ products and developed a question bank: the authors represent users’

needs as questions so that users may potentially ask about the outcomes produced

by an AI system. Overall, the stakeholder needs-based explanation design can be

viewed as one of the promising approaches to effective delivery of explanation. An-

other popular approach to producing explanations is based on using psychological

tools from formal theories, according to the literature review of [272]. Depending on

the context and addressee, both explanation derivation methods confirm their useful-

ness. These explanation generation approaches can find alignment in their application

in autonomous driving; since autonomous driving involves people with diverse back-

grounds in society, relevant XAI design needs inherent adjustments to the context

problem.

Except for informational content, the effective communication of explanations is also

a key factor for good human-machine teaming [84]. In general, the conveyance of ex-

planations to end users is realized through a user interface (UX) or a human-machine

interface (HMI) [196]. For instance, an HMI may be an interface to alert the human

driver to take over the control of a vehicle in an emergent situation. Other poten-

tial examples are heads-up displays, voice interfaces, light signals, and vibrotactile

technology that explain the vehicle’s decision-making intentions and bring situation

awareness for people in the loop, as shown in [236].
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Chapter 3

Explainable Artificial Intelligence
Approaches for Autonomous
Driving: A Comprehensive
Overview

3.1 Introduction

This chapter presents a brief overview of frontier AI approaches - convolutional neu-

ral networks, recurrent neural networks, attention-based transformers, reinforcement

learning, and imitation learning, before reviewing relevant XAI techniques. These AI

techniques and their variations are dominant methods with empirical successes in the

development of learning software for state-of-the-art AVs. This chapter is primarily

based on the content in [20].

3.2 Artificial Intelligence for Autonomous Driving

3.2.1 Convolutional Neural Networks

Convolutional neural networks (CNN) are an AI architecture to process spatial in-

formation, such as images and videos [159]. As a powerful learning technique, CNNs

can detect discriminant visual features automatically from an input image and are

extensively used for pattern recognition, object classification and detection, and other

computer vision applications. CNNs can be regarded as universal nonlinear function
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Figure 3.1: An example of a CNN for object classification in a real-time traffic sce-
nario.

approximators. The input x of each layer in a CNNmodel consists of three dimensions:

width, height, and depth. A typical convolutional neural network is parameterized

by a weight vector consisting of a set of weights, W, between neurons and a set of

bias values, b:

θ = [W, b] (3.1)

During training, a variety of useful and high-level features are extracted in the con-

volution layer. Then a pooling layer is used to reduce the size of the acquired feature

map, to decrease computational costs. After that, the output of these steps is passed

to the fully connected layer where neurons, along with the weights and biases, are con-

nected with one another, and a nonlinear activation function is applied to the output

of the previous step. The network further makes a final prediction. Commonly used

activation functions with CNN are Sigmoid, Tanh, and ReLu, while ReLu is the most

preferred because of its relatively faster convergence. In the context of autonomous

driving, the role of CNN is indispensable for real-time scene understanding tasks,

such as object detection, identification, segmentation, and classification. A typical

example of CNN architecture for autonomous driving is shown in Figure 3.1.

While traditional CNNs have been successfully applied to numerous computer vision

problems, a limitation of this learning architecture is that it can solely process
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Euclidean spatial data [35, 222]. However, in real-world applications, there might

be a need to capture the spatial relationship between different elements necessitat-

ing the processing of non-Euclidean data. In this context, Graph CNNs (GCNNs)

[150] have emerged as an alternative to conventional CNNs and are capable of pro-

cessing any kind of non-grid data by representing elements in a graph structure. In

autonomous driving, traffic data such as road networks, traffic flow, and spatial re-

lationships among static and dynamic objects of such a network can be naturally

represented as graphs, and GCNNs can effectively capture the dependencies and in-

teractions among these elements. Moreover, as the driving environment is generally

dynamic and rapidly changing, an inherent structure of GCNN can allow it to adapt

to changes in the environment by dynamically updating the graph structure based

on the provided sensor inputs and contextual information. Overall, both traditional

CNNs and GCNNs and their augmented variations hold promise for dealing with a

variety of challenging vision problems in autonomous driving.

3.2.2 Recurrent Neural Networks

Recurrent neural networks (RNNs) are a deep learning architecture for processing

temporal and sequential data, such as time series, video, and natural language data

[108, 229]. RNNs have a feedback loop to iterate over time phases of sequential

data: the output of a previous time step becomes an input to the current step. While

iterating over the different time steps, recurrent networks can maintain internal states

that contain information about each time step; thus, RNN architectures leverage the
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concept of “memory,” which uses information from a previous input to yield output

in the next time step. A typical RNN architecture has three layers: input, hidden,

and output layers. The input layer consists of N units. A sequence of vectors of each

time step t denoted as {..., xt−1, xt, xt+1, ...} is the input of this layer. The input layer

is connected to a hidden layer where connections between the units are defined by

means of a weight matrix. The hidden units of a hidden layer connect with each other

through recurrent connections, and by such a structure, the hidden layer defines the

memory of the entire network, formulated as

ht = fH(ot), (3.2)

in which

ot = WIHxt +WHHht−1 + bh. (3.3)

The hidden layer is also connected to the output layer with weights WHO, and based

on such a network flow, the units of the output layer are calculated as follows:

yt = fO(WHOht + bo). (3.4)

Similar to CNNs, fO(·) is the hidden layer activation function, and bh is the bias

vector of units of the hidden layer.

A major issue with traditional RNNs is the so-called vanishing gradient problem aris-

ing during training: network weights might not be effectively updated if the network

is very deep. This may result in considerably small weight values that may reduce

the network’s learning ability and force RNNs to have a limited memory capacity.

To solve this problem, long short-term memory (LSTM) has been proposed as an

enhancement of RNN, which can handle sequential data more effectively and learn

better [114]. Compared to a simple RNN architecture, LSTM has “gates” that control

the flow of information through the network. Having the ability to preserve long-term
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memory and retain earlier information in sequence makes LSTMs more practical than

traditional RNNs. In general, both RNN and LSTM can be used to predict future

position, velocity, and other parameters of autonomous driving. Figure 3.2 shows a

structure of a typical RNN and LSTM.

3.2.3 Attention-based Transformers

Owing to their powerful representation capabilities, attention-based transformers have

recently revolutionized the fields of natural language processing (NLP) and computer

vision. While previous RNN-based encoder-decoder models powered the concept of

attention for NLP applications, such as neural machine translation, the Transformer

model introduces the self-attention mechanism that computes its input and output

representations without employing RNNs or convolutions [265]. Given a sequence of

items in various positions (e.g., words in a sentence), the representation of a sequence

is calculated by finding relations or interactions between items in such a sequence.

Let’s denote a sequence of n items (x1,x2, · · ·xn) by X ∈ Rn×d. Here, d is the

embedding dimension representing each item. Self-attention aims to capture the

interaction amongst all n items by encoding each item by using three learnable weight

matrices to transform Queries (WQ ∈ Rd×dq), Keys (WK ∈ Rd×dk) and Values (WV ∈

Rd×dv), in which dq = dk. Here, the input sequence X is first projected onto these

weight matrices to obtain Q = XWQ, K = XWK and V = XWV . The final output

Z ∈ Rn×dv of the self-attention layer is then calculated as follows:

Z = softmax

(︄
QKT√︁

dq

)︄
V (3.5)

For a given item, xn, in the sequence, the role of self-attention is to calculate the

dot-product of the query with all keys, where the softmax operator is further used

to get the attention scores. Each item, xn, eventually becomes the weighted sum

of all items in the sequence X, in which weights are given by the attention scores.

The structure of the original attention-based Transformer is shown in Figure 3.3.
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Figure 3.3: The network architecture of the original Transformer. Source: [265].

The impressive performance of the original attention-based Transformer model on

machine translation has further found its successful applications in vision, forming a

Vision Transformer [77]. The autonomous driving community has also further applied

augmented variations of Vision Transformer to sensor fusion [49, 215, 242], semantic

segmentation [45], point cloud recognition [155], and various object detection and

recognition tasks [5, 293]. Thus, as AVs aim to map real-time vision to relevant

action decisions, attention-based Transformer architectures have a huge potential to

solve challenging vision and other relevant autonomous driving-related tasks.

3.2.4 Reinforcement Learning

Reinforcement learning (RL) is a learning approach where an autonomous software

agent interacts with an operational environment and learns to improve its performance
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via such interactions [255]. RL is a powerful machine learning framework for making

real-time and sequential decisions. Generally, sequential decision-making problems

are formalized within a setting formally known as Markov decision processes (MDP).

An MDP comprises the following parameters:

• S - a set of states

• A - a set of actions

• T - a transition function

• R - a reward function

• γ - a discount factor defined as a fixed value in the (0, 1] interval.

In such a setting, selecting an action a ∈ A results in a new state s ∈ S with a

transition probability T (s, a, s′) ∈ (0, 1), and gives a reward R(s, a) to an agent. The

goal of an RL agent (i.e., a self-driving vehicle, in our case) is to discover the optimal

policy π∗ that results in the maximum expected sum of discounted reward:

π∗ = argmax
π

Eπ

{︄
H−1∑︂
k=0

γkrk+1 | s0 = s

}︄
⏞ ⏟⏟ ⏞

:=Vπ(s)

. (3.6)

An agent’s reward in starting from a state s taking action a by following a policy π

is formulated as an action-value function (or Q-function) and defined as follows:

Qπ(s, a) = Eπ

{︄
H−1∑︂
k=0

γkrk+1 | s0 = s, a0 = a

}︄
. (3.7)

Basically, the value function is a measure of how good it is for an agent to be in a

particular state [255]. The horizon H is the number of time steps in a given MDP. The

MDP setting for RL uses the Markov property: the current state transition depends

only on the previous state and previous action. But often, in real-world problems,

such as in autonomous driving, an agent might not be able to capture all information
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Figure 3.4: A diagram of reinforcement learning for autonomous driving.

and fail to observe all the states of the operational environment. In such a situation,

an agent’s interaction with the surroundings is constructed as a partially observable

MDP (POMDP). In the POMDP setting, states are replaced by observations [254].

Observations are generated by a latent state, which is not available to an agent in a

POMDP. The natural state for a POMDP setting is the distribution on the latent

state; this is called a belief state [255]. We can infer that a typical observation is

considerably less informative than a natural Markov state, St. So, depending on how

perception defines the traffic scenario and tasks, both MDP and POMDP can be used

for sequential decision-making in autonomous driving. A general diagram of RL for

autonomous driving is described in Figure 3.4.

3.2.5 Imitation Learning

Imitation learning (IL) is a learning approach mimicking human behavior [124]. Also

known as learning from demonstration, the agent learns from a dataset of demonstra-

tions of human experts’ behavior in contrast to an RL agent. The ultimate goal of

IL is that the agent imitates the actions of a human expert, and its learned policy πil

matches the human expert’s policy πh. There are two well-known types of IL:

1) Behaviour cloning (BC): In this category of IL, a model is trained in a supervised

learning manner using a trajectory of state-action pairs {(s0, a0, s1, a1, · · · )}. The goal

is to minimize the loss function that calculates how the IL agent’s actions are differ-

ent from an expert’s actions. The advantage of behavior cloning is that it is usually

simple and efficient and does not require specific reward shaping. On the other hand,

misleading correlations between input and output can affect the imitator’s learning
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ability seriously and lead to compounding errors.

2) Inverse Reinforcement Learning (IRL): Also referred to as Inverse Optimal Con-

trol (IOC), IRL learns an underlying reward function that the human expert aims

to maximize. Once the agent infers the expert’s reward function, the optimal policy

can then be learned via RL. Overall, empirical studies show that IRL can generalize

better than BC in unseen states [240]; however, it is computationally costly and more

intricate.

3.3 A Structure of the Literature Review

This section presents a comprehensive overview of XAI methods for AVs. In partic-

ular, I describe the classification of learning approaches in terms of vision, RL, IL,

feature importance scores, logic, and user study-based explanations for AVs.

3.3.1 Visual Explanations

As deep neural networks, often in augmented forms of CNNs, power the vision ability

of intelligent vehicles, understanding how CNNs capture real-time image segments

that lead to the particular behavior of a vehicle is a key concept to achieving vi-

sual explanations. In this regard, explainable CNN architectures have resulted in

adjustments to generate visual explanations. Zeiler and Fergus [296] use deconvolu-

tion layers to understand the internal representation of CNNs in their seminal work.

Hendricks et al. [110] propose a model concentrating on distinguished properties of

objects that explain the rationale for the predicted label. Zhou et al.’s [302] saliency

map architecture, class activation map (CAM), highlights the discriminative part of

an image to predict the label of the image. Moreover, Selvaraju et al. [239] propose

an augmented version of CAM, called Grad-CAM, that highlights the derivative of

CNN’s prediction with respect to its input. Further examples of backpropagation-

based methods include guided-backpropagation, [249], layer-wise relevance propaga-
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tion [158, 232], and DeepLift [244]. Babiker and Goebel [26, 27] have also shown that

heuristics-based Deep Visual Explanations (DVE) provide a justification for predic-

tions of a CNN.

Explaining autonomous driving decisions using visual techniques is also primarily mo-

tivated by these studies. Particularly, Bojarski et al.’s work [32] is the first explainable

vision approach for self-driving, where the authors propose a visualization method,

called VisualBackProp, showing which set of input pixels contributes to a predic-

tion made by CNNs. Their experiments conducted with the Udacity self-driving car

dataset on an end-to-end autonomous driving task show that the proposed technique

is a useful tool for debugging predictions of CNNs.

Similarly, Hofmarcher et al. [115] propose a semantic segmentation model imple-

mented as a pixel-wise classification that explains underlying real-time perception of

the environment. They evaluate the performance of their framework on Cityscapes

[53], a benchmark dataset for understanding street scenes. The framework outper-

forms other popular segmentation models such as ENet and SegNet with 59.8 per-class

mean intersection over union (IoU) and 84.3 per-category mean IoU. Interpretability

of the model is a plus for unexpected behaviors, allowing to debug the driving system

and understand the rationales for temporal decisions of a self-driving vehicle.

Kim and Canny [145] use a causal attention model on top of the saliency filtering that

indicates which input regions actually affect the steering control. Their experiments

are conducted on the driving datasets - Comma.ai [52], Udacity [264], and Hyundai

Center of Excellence in Integrated Vehicle Safety Systems and Control (HCE): This

model runs for nearly 16 hours to train CNNs end-to-end from images to steering an-

gles and apply causality filtering to find out which parts of images have high influence

in predictions (Figure 3.5). With this approach, the learned framework provides an

interpretable visualization of a vehicle’s actions. As an enhancement of this model,

Kim et al. [147] provide textual explanations in their further study. They produce

“intelligible explanations” on the action decisions of a self-driving vehicle using an
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Figure 3.5: End-to-end learning of steering angle commands from an input image.
Source: [145].

attention-based video-to-text mechanism and introduce a novel dataset called Berke-

ley DeepDrive-X (eXplanation) (BDD-X) that contains annotations for textual ex-

planations and descriptions.

Zeng et al.’s [298] architecture learns to drive an autonomous vehicle safely by fol-

lowing traffic rules, including interaction with road users, yielding, and traffic signals.

They use raw LIDAR data and an HD map to generate interpretable representations

as 3D detection of objects, anticipated future trajectories, and cost map visualizations.

3D detection instances provide descriptive information so that the model understands

the operational environment. Motion forecasting, measured as L1 and L2 distances,

explains whether erroneous actions are due to incorrect velocity or calculation of di-

rection. Finally, Cost Map visualization describes the traffic scene via a top-down

view. The architecture is evaluated on a large real-driving dataset consisting of 6,500

traffic scenarios with 1.4 million frames and collected across several cities in North

America, and measuring traffic rule violation, closeness to human trajectory, and col-

lision. The authors also carry out an ablation study and show the impact of different

overrides, input horizons, and training losses on end-to-end learning.

Xu et al. [285] propose object-induced actions with explanations for predictions of
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Table 3.1: Studies on visual explanations for AVs

Study Target audienceTask Algorithms/Methods Delivery format

Bojarski et al., [32], 2016 Pixel-based explanations of CNN
predictions

CNN Visual AV developers

Kim and Canny [145], 2017 Explaining behavior of a vehicle
controller using heat maps

CNN, LSTM Visual AV developers

Kim et al., [147], 2018 Generating textual explanations
on a vehicle’s control commands

CNN, S2VT, LSTM Visual and Textual All groups

Hofmarcher et al., [115], 2019 Visual scene understanding using
semantic segmentation

Enet, SqueezeNet 1.1, ELU Visual AV developers

Zeng et al., [298], 2019 End-to-end interpretable neural
motion planner

FaF, IntentNet Visual AV developers

Hu et al., [119], 2019 Interpretable probabilistic predic-
tion for autonomous driving

CVAE, Dynamic time warping,
LSTM

Visual AV developers

Xu et al., [285], 2020 Explaining object-induced action
decisions for autonomous vehicles

Faster R-CNN Visual All groups

Kim et al., [146], 2020 Advisable learning by internaliz-
ing observation-to-action rules

Mask R-CNN, LSTM Visual and Textual All groups

Li et al., [161], 2021 Risk object identification via
causal inference

InceptionResnet-V2, Mask R-
CNN, Deep SORT, RoIAlign

Textual All groups

Casas et al., [41], 2021 End-to-end model for mapless au-
tonomous driving

CoordConv Visual and Textual All groups

Kim et al., [148], 2021 Explainable and advisable model
for self-driving cars

DeepLab v3, Mask R-CNN,
LSTM

Textual All groups

Wang et al., [270], 2021 Enhancing automated driving
with human foresight

Gaze-based vehicle reference Visual Road users

Chitta et al., [48], 2021 Interpretable neural attention
fields for end-to-end driving

ResNet, MLP Visual AV developers

Dong et al., [74], 2021 Explainable autonomous driving
via an image transformer

ResNet-50, Mobilenet-v2, multi-
head self-attention

Textual All groups

Hanna et al., [101], 2021 Interpretable goal recognition in
the presence of occluded factors
for autonomous vehicles

Goal and Occluded Factor Infer-
ence, Monte Carlo Tree Search

Visual AV developers

Mankodiya et al., [177], 2021 XAI for trust management Random Forest, Decision Tree,
AdaBoost

Visual AV developers

Madhav and Tyagi, [175], 2022 Explainable navigational in-
telligence for trustworthy au-
tonomous driving

Grad-CAM, Lime Visual AV developers

Jing et al., [137], 2022 Interpretable action decision
making for autonomous driving

Faster R-CNN Visual and Textual All groups

Jacob et al., [134], 2022 Region-targeted counterfactual
explanations

GANs Visual AV developers

Zhang et al., [301], 2022 Interrelation modeling for ex-
plainable automated driving

Faster R-CNN, ResNet-50 Visual AV developers

Kolekar et al., [152], 2022 Traffic scene understanding via
U-Net and Grad-CAM

U-Net, GradCam Visual AV developers

Zemni et al., [297], 2023 Object-aware counterfactual ex-
planations

BlobGAN Visual AV developers

Itkina and Kochenderfer [131], 2023 Trajectory prediction via inter-
pretable self-aware neural net-
works

PostNet Visual AV developers

Feng et al., [88], 2023 Natural language explanations
via semantic scene understanding

DeepLabV3 Visual and textual All groups

Hu et al., [117], 2023 Interpretable trajectory predic-
tion and decision-making of AVs

LaneGCNN, ResNet Visual AV developers

Dong et al., [73], 2023 Describing traffic scenes in natu-
ral language via attention-based
transformer

CNN, LSTM, Transformer Visual and textual All groups

Atakishiyev et al., [17], 2023 Explaining autonomous driving
actions with visual question an-
swering

VGG-19, LSTM, DDPG Textual All groups

Echterhoff et al., [80], 2024 Leveraging concept bottlenecks
as visual features for predicting
control command and explana-
tions of a car and human behavior

Longformer, GPT 3.5 Visual and textual All groups

Feng and Sun [89], 2024 Interpreting self-driving decisions
and improving safety by paying
more attention to the regions that
are near the ego vehicle

Multilayer Perceptron,
Trajectory-guided Control
Prediction

Visual AV developers

Araluce et al., [14], 2024 Using driver attention for an
end-to-end explainable decision-
making from frontal images

ARAGAN, MobileNetV2 Visual AV developers
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an autonomous car. The authors introduce a new dataset called BDD-OIA, as an

extension of the BDD100K dataset [291]; this extension is annotated with 21 expla-

nation templates on a set of 4 actions. Their multi-task formulation for predicting

actions also improves the accuracy of action selection. The CNN architecture further

unifies reasoning on action-inducing objects and the context of scenes globally. The

empirical results of the study on the introduced BDD-OIA dataset show that the

explainability of the architecture also enhances action-inducing object recognition,

resulting in better self-driving.

In two respective studies, Kim et al., [146, 148] propose an approach that leverages

human advice to learn vehicle control (Figure 3.6). By sensing operational surround-

ings, the system is able to generate intelligible explanations of the action decisions

(For example, “Slowing down because the road is wet”). The proposed architec-

ture incorporates semantic segmentation with an attention mechanism that enriches

knowledge representation. Experiments performed on the BDD-X dataset show that

human advice with semantic segmentation and heat maps improves both the safety

and explainability of predictive actions of a self-driving vehicle.

As a more recent vision-to-text approach, Atakishiyev et al. [17] employ the visual

question answering (VQA) mechanism to explain autonomous driving actions. They

train an RL agent and generate driving data showing the self-driving car’s motion

from its field of view. They further convert this video to image sequences, man-

ually annotate the images with question-answer (QA) pairs, and encode questions

and images with LSTM and pre-trained VGG-19 [246], respectively. The experi-

mental results on five action categories show that VQA is a straightforward, effective,

and human-interpretable approach to justify autonomous driving actions. Leveraging

frontal images for interpretable decision-making has further been explored by subse-

quent studies as well [14, 73, 80].

While the mentioned studies focus on vision-based explanations of already obtained

predictions of the model, there have been some recent studies paying attention to
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Figure 3.6: Human advice to a vehicle for appropriate action. Source: [146].

counterfactual explanations. In the context of automated driving, counterfactual

analysis can be described with such an exemplary question: “Given the driving scene,

how can it be modified so that the vehicle keeps driving instead of stopping ?” In other

words, given the input, counterfactual analysis intends to figure out the distinguished

features in this input that cause the model to make a certain prediction by envisioning

modification of those features would cause the model to make a different prediction

(e.g., Figure 3.7). Thus, in this case, the predictions obtained by the existing model

and the imagined model become contrastive. As the application of counterfactual

intervention, Li et al. [161] present an approach to find out risk objects that result in

particular driving behavior. Their method, formalized as a Functional Causal Model

(FCM), shows that the random elimination of some objects from the scene changes

the driving decision to the contrastive prediction, such as from the “Stop” to “Go”

command. In further work, Jacob et al. [134] introduce the STEEX model that uses

a pre-trained generative model to produce counterfactual rationales by modifying

the style of the scene while retaining the structure of the driving scene. Finally, as

further enhancement of STEEX, Zemni et al. [297] propose a method called OCTET

that generates object-aware counterfactual explanations without depending on the

structural layout of the driving scene as backpropagation can optimize the spatial
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Figure 3.7: An example of a counterfactual explanation generated by STEEX. Graph-
ics credit: [134].

positions of the provided instances.

Overall, we observe a significant focus and trend in visual explanations of autonomous

driving systems, as such explanations provide an opportunity to better understand

how accurately a self-driving vehicle senses the operational environment. Table 3.1

summarizes vision-based explanations for AVs.

3.3.2 Reinforcement Learning-based Explanations

While RL has had tremendous success in many sequential decision-making problems,

including state-of-the-art autonomous driving tasks, explainable reinforcement learn-

ing (also known as explainable RL or XRL) is a considerably new, emergent research

area and has not been investigated in a broad context [112, 268]. As self-driving

is powered by real-time decision-making algorithms and explainability becomes an

essential component of this field, explainable RL for autonomous driving becomes a

promising topic of study. In this regard, we revisit propitious directions for explain-

able RL and provide their applicability for autonomous driving.

1) Explainable RL via Feature Importance: The feature importance (FI) concept

in explainable RL is derived from classical supervised learning problems. While in

supervised learning, the main input features that influence the model’s prediction

constitute FI scores, in the case of RL, this notion could be considered the state-

action mapping [187]. LIME, SHAP values, and DeepLift are potential examples of

such explanation provision techniques [268]. In the context of autonomous driving, FI
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scores could be used to provide justifications for individual actions (such as turning

left and accelerating) but are not generally capable of explaining the entire decisions

of an intelligent driving system.

2) Explainable RL via Policy-level Explanations: Understanding an agent’s long-

term behavior is also a motivation for explainability in RL. In this regard, [187]

proposes that policy-level explanations could be attained in three ways. Firstly, tran-

sition summarization could help understand which experiences have more influence

on an agent’s chosen action. In this way, one can interpret an agent’s behavior while

it explores. The second technique is to convert a learned RL policy into an inter-

pretable format, often considering a transformation from an RNN to a finite-state

machine (FSM). A third proposed approach is to extract state clusters. The idea

is to understand an agent’s actions by comparing selected actions in similar states.

Moreover, Guo et al. [98] have shown that time step importance can also be used

to obtain strategy-level explanations for an RL agent. Lastly, Kenny et al. [142]

have recently proposed that leveraging human-friendly prototypes with a case-based

reasoning technique (i.e., I am taking action “a” because this state is similar to the

previous prototypical state where I also performed “a.”) provides inherently produced

explanations for a self-driving car’s action.

3) Explainable RL via Reward-grounded Explanations: Another potential technique to

interpret an agent’s actions is to leverage a reward-based explanation, which is favored

for intrinsically interpretable RL. One approach to reward-grounded explanation is

reward decomposition. The main rationale behind this approach is to decompose the

reward value into meaningful types in order to compare chosen actions in terms of

such types [139]. Given C as a set of semantic reward types, the reward for a given

state can be defined as:

R(s, a) =
∑︂
c∈C

Rc(s, a) (3.8)

Similarly, the action-value function can be defined as follows:

40



Table 3.2: Studies on RL-based explanations for AVs

Study Target audienceTask Algorithms/Methods Delivery format

Pan et al., [204], 2019 Semantic predictive control for
explainable policy learning

LSTM, DDPG-SEG, DLA,
model-based RL

Visual AV developers

Chen et al., [42], 2021 Interpretable end-to-end au-
tonomous driving with latent
deep reinforcement learning

MaxEnt RL, DQN, DDPG, TD3
and SAC

Visual AV developers

Schmidt et al., [235], 2021 Interpretable and verifiably RL
for autonomoous driving learning

SafeVIPER, PPO Visual AV developers

Wang et al., [273], 2021 Learning interpretable end-to-
end vision-based motion planning
with optical flow distillation

IVMP, Optical flow Visual AV developers

Wang et al., [274], 2021 Uncovering interpretable internal
states of merging tasks at high-
way on-ramps for autonomous
driving decision-making

GMR, HMM Visual AV developers

Rjoub et al., [225], 2022 XAI-based federated deep RL for
autonomous driving

DQN, DQN-XAI, SHAP Visual AV developers

Hejase et al., [109], 2022 Interpretable state representation
for deep RL in autonomous driv-
ing

DDQN Visual AV developers

Paleja et al., [202], 2023 Interpretable continuous control
trees for autonomous driving

Differentiable Decision Trees,
SAC

Visual AV developers

Kenny et al., [142], 2023 Interpretable Deep RL with
Human-Friendly Prototypes for
autonomous driving

PW-Net, PPO, TD3 Visual AV developers

Yang et al., [288], 2023 Reward consistency for inter-
pretable feature discovery for au-
tonomous driving

PPO Visual AV developers

Lu et al., [171], 2024 Human-like cognitive maps for
enhancing interpretability of au-
tonomous driving

Successor Representations, Cog-
nitive Potential Field

Visual AV developers

Wang and Aouf [271], 2024 Explainable deep adversarial RL
for robust autonomous driving

PPO Visual AV developers

Qπ(s, a) =
∑︂
c∈C

Qπ
c (s, a) (3.9)

With this motivation, one can understand how established types of rewards con-

tribute to an agent’s actions. The concept of reward decomposition has recently been

used in several tasks, such as in Real-time Strategy games [10], a real-world medical

dataset, MIMIC III [30], and Atari and MuJoCo games [98]. In another reward-driven

interpretability technique, Yang et al. [288] have recently shown that reward consis-

tency can be leveraged to solve the gradient disconnection on reward-action mapping.

Based on these two proposals, we see that the reward mechanism by itself has good

potential for achieving interpretable RL approaches for autonomous driving.

4) Logic-based Explanations : Logic-based explanations in the context of RL refer

to the use of formal logic and a combination of neuro-symbolic approaches to interpret

decisions made by an RL agent. This direction is a very recent trend in the XRL
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Figure 3.8: RL-based interpretable end-to-end autonomous driving via a bird-eye
mask. Credit: [42]

literature. As far as I know, the only example of logic-based explanations in RL

for autonomous driving is Song et al.’s work [248], where the authors leverage dif-

ferentiable logic machine to learn an interpretable controller in lane changing and

intersection management scenarios.

5) Explainable RL via Saliency Maps : Similar to other learning paradigms, visu-

alization techniques can also make an RL process more interpretable. In this sense,

using saliency maps, also known as heatmaps, is one of the potential approaches for

explaining an RL agent’s decisions. Some well-known examples include the visual-

ization of Atari agents [97], where the authors visualize agents to understand the

evolvement of their underlying policy. Interestingly, the further work [22] suggests

that saliency maps can be thought of as an exploratory tool rather than an inter-

pretability tool in the case of Atari agents. Finally, as the last study of investigating

Atari agents with heatmaps, “what if” type counterfactual state explanations have

been proposed [198]. In general, saliency maps mostly provide subjective explana-

tions in RL, and more thorough studies are needed to draw strong explainability

conclusions with this technique [187, 268].

6) Explainable RL via Natural Language Explanations: Finally, another promising

approach to generating explanations on RL decisions is linguistic explanations con-
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veyed via a natural language. As covered in Section III.B, end users in autonomous

driving have different backgrounds and varying degrees of technical knowledge, so

explanation construction should take this factor into account. In this regard, natural

language explanations are viewed as the best form of explanation as this category of

explanations is simple, informative, intelligible, and can be understood by all con-

sumers. With that said, in the context of autonomous driving, explaining RL poli-

cies/actions in natural language has not been well-studied in the current literature.

Within the vision context, one of the prominent works is Kim et al.’s work, where

authors generate text-based causal explanations via an attention-based video-to-text

model [147]. Some further studies include providing descriptive information about

actions using natural language [73, 88, 134, 285]; however, these explanations are

mapped from visual inputs. As RL approaches are becoming more applicable to highly

autonomous driving, there is an immense need to generate human-understandable ex-

planations for the RL-based decision-making of AVs. Natural language explanations

of an RL agent’s actions have recently been studied for general sequential decision-

making problems [210]; however, to the best of our knowledge, the concept has not

been explored empirically yet in the context of autonomous driving. A summary of

RL-based explanations for AVs is provided in Table 3.2.

3.3.3 Imitation Learning-based Explanations

Similar to explaining RL-based autonomous driving, there have also been few studies

to explain IL-based agents in the field via techniques similar to RL-based explanations.

Cultrera et al. ’s work [60] is one of the preliminary studies in this context. The study

uses a conditional IL agent along with the attention model in the CARLA simulator

[76] to produce an explanation, describing the influence of distinctive parts of the

driving images on the predictions of the model.

Hu et al. [116] further introduce model-based IL (MILE) to learn a latent space in

the driving environment via high-resolution videos from demonstrations of an expert
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Table 3.3: Studies on IL-based explanations for AVs

Study Target audienceTask Algorithms/Methods Delivery format

Cultrera et al., [60], 2020 Explaining autonomous driving
by learning end-to-end visual at-
tention

CNN, IL Visual AV developers

Teng et al., [259], 2022 Interpretable imitation learning
for end-to-end autonomous driv-
ing

Bird’s Eye View model, IL Visual AV developers

Renz et al., [223], 2022 Explainable planning for au-
tonomous driving

BERT, GRU, IL Visual AV developers

Hu et al., [116], 2022 Model-based IL for autonomous
driving

IL Visual AV developers

Liu et al., [170], 2024 Interpretable generative adver-
sarial IL for autonomous driving

IL, Signal Temporal Logic Visual AV developers

in a simulation environment. The experiment shows that the proposed model can

predict feasible states and actions for an IL agent and present interpretability of driv-

ing decisions via a bird’s-eye-based semantic segmentation map.

Another bird’s eye view-based interpretation technique within IL for end-to-end driv-

ing has been developed by Teng et al. [259], as a two-stage model called Hierarchical

Interpretable Imitation Learning (HIIL). In the first stage, a bird’s eye view is pre-

sented to interpret the environment. After that, the latent features from the first

stage are acquired along with the steering angle from the Pure-Pursuit algorithm

[55]. In this manner, an agent’s actions are predicted in a simulation environment,

and the experimental results show that HIIL demonstrates enhanced interpretability

along with generalization in complex driving scenarios.

Moreover, Renz et al. [223] propose a transformer architecture, PlanT, based on

IL with an object-level representation of the input. By incorporating driving infor-

mation about other vehicles in the driving environment, and 360◦ field-of-view of a

self-driving vehicle, PlanT achieves superior performance and explains the self-driving

car’s decision-making rationale with visual cues in the simulation environment.

Finally, in the most recent work, Liu et al. [170] introduce a generative adversarial

network (GAN)-based IL approach combined with signal temporal logic (STL) and

test the applicability of the model in a simulator. The experiment collected in the

CARLA simulator shows that their IL model combined with STL is highly effective
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Table 3.4: Studies on feature importance-based explanations for AVs

Study Target audienceTask Algorithms/Methods Delivery format

Omeiza et al., [199], 2021 Generating tree-based explana-
tions with and without causal at-
tributions

Tree-based representation / User
study

Textual All groups

Brewitt et al., [33], 2021 Interpretable and verifiable goal
recognition with learned decision
trees for autonomous driving

Decision Tree Visual and Textual AV developers

Mankondiya et al., [177], 2021 XAI for trust management in au-
tonomous vehicles

Random Forest, Decision Tree,
AdaBoost

Visual AV developers

Cui et al., [59], 2022 Interpretation framework for au-
tonomous driving

Random Forest, SHAP Visual AV developers

Onyekpe et al., [201], 2022 AV positioning using SHAP SHAP, WhONet Visual and Textual AV developers

Almalioglu et al., [7], 2022 Vehicle position with deep learn-
ing

GRAMME, SHAP Visual AV developers

Ayoub et al., [25], 2022 Predicting driver takeover time in
conditional automated driving

XGBoost, SHAP Visual AV developers

Brewitt et al., [34], 2023 Interpretatable trees for goal
recognition in autonomous driv-
ing under occlusion

OGRIT, Decision Tree Visual AV developers

in adjusting rules to adapt the driving policy for unseen situations. Table 3.3 sum-

marizes the reviewed studies on IL-based explanations for AVs.

3.3.4 Feature Importance-based Explanations

Being inherently interpretable and easier to understand a prediction of a model,

feature importance scores have also been investigated for interpretability purposes

in autonomous driving. These studies primarily use decision tree-based metrics and

SHAP values [173] to quantify the contribution of each feature in predictions of a

driving model, thus providing a holistic understanding of how inputs influence an

autonomous car’s real-time actions. Decision trees have been proven to describe

the rationale semantically for each prediction made by a CNN architecture [300].

Omeiza et al. [199] use decision trees as a tree-based representation that generates

scenario-based explanations of different types by mapping observations to actions in

accordance with traffic rules. They use human evaluation in a variety of driving

scenarios and generate Why, Why Not, What If, and What explanations for driving

situations and empirically prove that the approach is effective for the intelligibility

and accountability goals of automated vehicles.

Brewitt et al. [33] introduce Goal Recognition with Interpretable Trees (GRIT) and

45



Figure 3.9: An interpretable decision tree for an exit-roundabout scenario as verifiable
goal recognition. Credit: [34]

its augmented version, OGRIT [34], leveraging decision trees trained from the trajec-

tory data of a self-driving car. Figure 3.9 from [34] shows an example of interpretable

decision tree for exit-roundabout goal type. The frameworks, tested on various driv-

ing scenarios are proven empirically verifiable for goal recognition using a satisfiability

modulo theories (SMT) solver [65].

Cui et al. [59] use Random Forest for the interpretability purpose on the autonomous

car-following task. They employ deep RL for the decision-making of an autonomous

car and employ SHAP values to simplify the feature space. Once the agent gener-

ates state-action pairs, Random Forest is applied to these pairs and experimental

results show the approach works effectively to explain behavior for the designated

car-following task. In a recent study, Random Forest has also been proven to de-

tect misbehaving vehicles in Vehicular Adhoc Networks (VANET) in Mankodiya et

al.’s work [177]. Thus, being computationally more transparent than traditional deep
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neural network architectures, decision trees and SHAP can explain a variety of au-

tonomous driving tasks with less computation. Table 3.4 summarizes the reviewed

studies on feature importance-based explanations for AVs.

3.3.5 Logic-based Explanations

While the interpretability of a deployed autonomous driving control model has been

the dominant direction for research, there have also been attempts to verify the safety

of self-driving vehicles with logical reasoning. In this regard, Corso and Kochenderfer

[54] present a technique to identify interpretable failures of autonomous cars. They

use signal temporal logic expressions to describe failure cases of an autonomous car

in an unprotected left turn and pedestrian crossing scenarios. For this purpose, the

authors use genetic programming to optimize signal temporal logic expressions that

acquire disturbances trajectories, causing a vehicle to fail in its decisive action. The

experimental results show that the proposed approach is effective for interpreting

safety validation of an autonomous car.

Suchan et al. [251] have developed an answer set programming-based abductive rea-

soning framework for online sensemaking for perception and control tasks. In its

essence, the framework integrates knowledge representation and computer vision in

an online manner to explain the dynamics of traffic scenes, particularly occlusion

scenarios. The authors demonstrate their method’s explainability and commonsen-

sical value with empirical study collected on the KITTI MOD [96] dataset and the

MOT benchmark [186]. Another experimental study leveraging the concept of an-

swer set programming has been carried out by Kothawade et al. [154]: they introduce

AUTO-DISCERN, a system that incorporates common sense reasoning with answer

set programming to automate explainable decision-making for self-driving vehicles.

They test their rules and show AUTO-DISCERN’s credibility in real-world scenarios,

such as lane changing and right turn operations, from the KITTI dataset. Table 3.5

summarizes the reviewed studies on logic-based explanations for AVs.
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Table 3.5: Studies on logic-based explanations for AVs

Study Target audienceTask Algorithms/Methods Delivery format

Suchan et al., [251], 2019 An answer set programming-
based abductive reasoning for vi-
sual sensemaking

Answer set programming,
YOLOv3, SSD, Faster R-CNN

Visual AV developers

Corso and Kochenderfer [54], 2020 Interpretable safety validation for
autonomous driving

Signal temporal logic Textual AV developers

DeCastro et al., [66], 2020 Interpreting policies via signal
temporal logic for autonomous
driving

Signal temporal logic, LSTM,
CVAE

Visual AV developers

Kothawade et al, [154], 2021 Explainable autonomous driving
using commonsense reasoning

ASP, s(CASP) Textual Road users

3.3.6 User Study-based Explanations

Some investigations involve users in case studies to understand the effective strate-

gies for explanation generation in autonomous driving tasks. The key idea of a user

study is that getting people’s input in designated driving tasks can help improve

the adequacy and quality of explanations in autonomous driving. Wiegand et al.

[282] perform a user study that identifies a mental model of users for determining

an effective practical implementation of an explanation interface. The main research

question here is to understand what components need to be visualized in a vehicle so

the user can comprehend the decisions of self-driving vehicles. The study discloses

that combining an expert mental model with a user mental model as a target men-

tal model enhances the drivers’ situation awareness. Furthermore, Wiegand et al.

[281] investigate situations in which explanations are needed and methods relevant to

these situations. They spot seventeen scenarios where a self-driving vehicle behaves

unexpectedly. Twenty-six participants are selected to validate these situations in the

CarMaker driving simulator to provide insights into drivers’ need for explanations.

As a result of the user study, the authors identify six groups to highlight the primary

concerns of drivers with these unexpected behaviors, namely emotion and evaluation,

interpretation and reason, the capability of a self-driving car, interaction, driving

forecasting, and request times for explanations.

Wang et al. [270] propose an approach that enables a human driver to provide scene

forecasting to an intelligent driving system using a purposeful gaze. They develop a
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Table 3.6: User study-based explanations for AVs

Study Target audienceTask Algorithms/Methods Delivery format

Wiegand et al., [282], 2019 Explaining driving behavior of
autonomous cars

User study Textual Backup drivers

Wiegand et al., [281], 2020 Understanding situations that a
driver needs explanations

User study Visual All groups

Wang et al., [270], 2021 Enhancing automated driving
with human foresight

User study Visual Backup drivers

Schneider et al., [237], 2021 UX for transparency in au-
tonomous driving

UEQ-S, AVAM (User study) Visual, Textual, Light All groups

Schneider et al., [236], 2021 Increasing UX through different
feedback modalities

UEQ-S (User study) Visual, Textual, Audio, Light, Vi-
bration

All groups

Shen et al., [243], 2022 Identifying which scenarios need
explanations in autonomous driv-
ing

Friedman test, Pearson correla-
tion, Point-Biserial Correlation

Visual Road users

Schneider et al., [238], 2023 The role explanatory information
in failure situations in highly au-
tonomous driving

UEQ-S, AVAM Visual, Textual All groups

Kim et al., [144], 2023 Timing perspective and mode of
explanations for road users in au-
tonomous driving

GradCam, Head-mounted dis-
play, Windshield display

Visual Road users

graphical user interface to understand the effect of human drivers on the prediction

and control of an intelligent vehicle. A simulator is used to test and verify three

driving situations where a human driver’s input can improve safety of self-driving.

Apart from these works, Schneider et al. involve human participants in their empirical

studies to understand the role of explanations for the public acceptance of AVs [236,

237]. They explore the role of explainability-supplied UX in AVs, provide driving-

related explanations to end users with different methods, such as textual, visual,

and lighting techniques, and conclude that providing context-aware explanations on

autonomous driving actions increases users’ trust in this technology. Their subsequent

study also confirms that driving explanations can help mitigate the negative impact

of AVs failures on users [238]. Finally, Kim et al.’s user study [144] confirms that

humans do not need explanations seamlessly, and presenting explanations only in

critical driving conditions is preferred to enjoy the trip with an autonomous car and

prevent information overload. Table 3.6 summarizes the reviewed user studies on XAI

for AVs.

A high-level overview of all these studies indicates driving explanations are generally

multi-modal, context-dependent, and task-specific. Moreover, end-to-end learning is
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gradually becoming more popular for highly autonomous decision-making owing to

powerful deep-learning approaches and overall safety and efficiency benefits. Based on

the insights from the state of the art, we can define explainable autonomous driving

as follows:

Explainable autonomous driving is a self-driving approach powered by a

compendium of AI techniques 1) ensuring an acceptable level of safety for

a vehicle’s real-time decisions, 2) providing explanatory information on

the action decisions in critical traffic scenarios in a timely manner, and

3) obeying all traffic rules established by the legal entities and regulators.

Driven by this definition and the state-of-the-art works above, in the subsequent

section I present a general and conceptual XAI framework for end-to-end autonomous

driving aligned with industrial trends and show the necessary components and steps

to achieve regulatory-compliant AVs in the next generation.

3.4 A Conceptual Framework for Explainable Au-

tonomous Driving

I propose a general framework in which methods for developing XAI, end-to-end learn-

ing, and safety components are combined to inform processes of regulatory principles.

Each of these components has a concrete role in our framework. In my recent study

[21], I have briefly described end-to-end learning for AVs. I extend the scope of that

work and describe the essential elements of end-to-end autonomous driving, and the

role of and potential challenges with explanations in such a setting. These individual

components are described as follows:

1. An end-to-end control component: Given all possible instances of envi-

ronment,

E = {e1, e2, ...en},

50



and a compendium of actions

A = {a1, a2, ...an},

an autonomous car can take, the overall role of a control system is to map the per-

ceived environment to corresponding actions:

C : E ↦→ A.

This mapping intends to ensure that a controller maps the environment to a rel-

evant action of an autonomous system. A control system C is an end-to-end control

system (eeC), if C is a total function that maps every instance of an environment

e ∈ E

to a relevant action

a ∈ A.

The most prevalent learning paradigms for end-to-end autonomous driving are RL

and IL [43]. Furthermore, differentiable learning has also recently emerged as an

end-to-end driving architecture: While the planning component is prioritized, this

learning pipeline optimizes several modules of the entire driving architecture (e.g.,

[120]). Overall, as described in Chapter 2, the end-to-end learning pipeline uses a

single deep neural network as a unified task to map the sensor model of the world to

real-time control commands of AVs.

2. A safety-regulatory compliance component: The role of the safety-regulatory

compliance component, srC, is to represent the function of a regulatory agency, one

of whose main roles is to verify the safety of any combination of eeC with autonomous

vehicle actions A:

srC = f(eeC,A).

This requirement could be as pragmatic as some inspection of individual vehicle

safety (for example, verifying basic safety functions of an individual vehicle for re-
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licensing). That said, this concept should be considered as a thorough compliance

testing of eeC components from vehicle manufacturers to certify their public safety

under international and/or national transportation guidelines such as [95] and [263].

The general principles for acceptable functional safety of road vehicles are defined

by the ISO 26262 standard [129]. According to this standard, there should be a

safety certification development with evidence-based rationales: the vehicle should be

able to meet the established functional safety requirement in its operational context.

Part 6 of the ISO 26262 standard [127] is dedicated to end-product development for

automotive applications within the software level. This guideline includes the design,

development, testing, and verification of software systems in automotive applications.

Based on these standards, there seem to be two fundamental approaches to confirming

regulatory compliance, which we label confirmation of compliance by “simulation,”

and confirmation of compliance by “verification.” These steps are aligned with my

observation regarding the role of XAI in confirming regulatory compliance. In the

case of the process of establishing regulatory compliance by simulation, the idea is

that a selected set of autonomous actions can be simulated, and then assessed to be

satisfactory. This approach is perhaps the most familiar, as it arises naturally from an

engineering development trajectory, where the accuracy of simulators determines the

quality of compliance (e.g., [138]). The confidence of the established compliance is a

function of the accuracy and coverage of the simulation. However, this compliance

process can be very expensive and prone to safety gaps, especially when consensus

on the properties and scope of a simulation is difficult to achieve. Thus, in general,

the simulation part can be considered a “driving school” for AVs: The designed and

developed learning software system should be tested rigorously in this phase before

such an autonomous system, as a holistic architecture, is deployed to a real vehicle in

the physical environment and real roads. The alternative, verification, is aligned with

the proposed framework and has significant foundational components established in

the discipline of proving software correctness, with a long history (e.g., [103]). The
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Figure 3.10: A diagram of the proposed explainable end-to-end autonomous driving
framework.

general idea is that offline simulation-based autonomous driving is validated on real

roads on real AVs via real sensor suites and a learning software stack by passing the

safety checks of regulatory compliance.

In addition to safety assurance, another critical requirement of AVs is their ability to

defend against adversarial attacks. The ISO/SAE 21434 standard has defined guide-

lines for cybersecurity risk management for road vehicles, and AVs must also comply

with these requirements [128]. As AVs increasingly rely on their automation ability,

it is vital that ML software of an intelligent driving system and built-in interfaces

can detect and defend against potential cyber-attacks of the broad spectrum, such as

electronic control units (ECU) attacks, in-vehicle network attacks, and automotive

key-related attacks [149, 217, 253].

We can expect that the potential evolution of the srC processes will ultimately rely on

the automation of regulatory compliance testing against all eeC systems. The com-

plexity of srC systems lies within the scope of the testing methods established in a le-

gal framework, where these methods are the basis for confirming a threshold of safety.

For instance, a regulatory agency may require at least 90% regulatory-compliant per-

formance of any particular eeC from N safety tests to be performed. However, as

a general requirement, this performance must meet ISO 26262 and ISO/SAE 21434

standards to ensure that an autonomous car’s decision-making procedure is aligned

with its underlying ML software: The safety features must pass critical checkpoints,

and the autonomous car has to have the ability to defend itself against foreseeable
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adversarial attacks.

3. An explanation component: This constituent of the framework provides un-

derstandable insights into real-time action decisions made by autonomous driving,

complying with and corresponding to an eeC and a srC. The explanation compo-

nent must justify how the autonomous car chooses actions along the trip and has to

be able to communicate these pieces of information to the relevant users both during

the journey and via a post-trip analysis. As analyzed in the reviewed studies, expla-

nations can be described in visual, textual, feature importance format or in hybrid,

multi-modal ways and conveyed via light, audio, vibrotactile, and in other forms de-

pending on the explainees’ needs and preferences.

Temporal granularity and conveyance of explanations: While the format and content

of explanations have been the primary focus of XAI research, it is noteworthy to un-

derscore that another important consideration, the time granularity of explanations,

has not been well-studied in the state of the art. In general, the timing perspective of

AV explanations can be analyzed within three questions: 1) Should explanations be

delivered before action is chosen or after action is performed? 2) What is the appro-

priate lead time for a safe transition from an automatic mode to a human takeover?

and 3) Should explanations be delivered seamlessly or only when it is required? We

analyze these nuances separately as follows:

1) Time to deliver explanations : Delivering timely explanations can help human

drivers/passengers react to emergent situations, such as takeover requests, appropri-

ately and prevent a potential danger in the vicinity. According to Koo et al.’s study

[153], it is favorable to convey explanations before a driving event is about to happen.

This concept has further been validated by Haspiel et al.’s user study, and human

judgment shows that explanations should be delivered before action is decided rather

than after it is performed [106]. This judgment makes sense as on-time communi-

cation of explanations can bring situation awareness for people on board and enable

them to monitor an autonomous car’s subsequent action. If the action to be per-
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formed soon is hazardous, a human driver or passenger can manually intervene in the

situation with such explanations and prevent potential danger ahead.

2) The impact of lead time on the safe transition from an automated mode to a human

takeover : Another important criterion is determining the amount of time needed to

alert human actors for a takeover request. In the user study measuring the impact

of 4 s vs. 7 s as the lead time on takeover alert, Huang and Pitts [121] show that a

shorter lead time leads to a faster transition to human-controlled mode but also lacks

the quality of takeover as lack of time may be stressful for a human actor in such

situations. A similar conclusion has been acquired by Mok et al. [191] in the case of

2, 5, and 8 s transition times. Wan and Xu [269] have further verified that an insuf-

ficient amount of lead time, such as 3 s, results in an impaired takeover performance,

and drivers perform better when enough time, such as more than 10 s, is allotted

for takeover requests. In general, it can be concluded that lead time for explaining

emergent situations to a human and transitioning control should happen within a few

seconds, while for non-critical situations, such as post-trip analysis, the amount of

time may be as long as needed.

3) All-time or only necessary explanations? : It is also important to consider that

humans need to enjoy their trips with AVs and get information from a vehicle when

it is necessary. This aspect also applies to the delivery of explanatory information

to end users. When the passengers/human drivers are provided with tons of infor-

mation during the trip, it can lead to mental overload for them [281]. Consequently,

it is generally favored that driving decisions and traffic scenes may be described to

humans on board when traffic conditions are critical, and people need to be alerted.

It is also noteworthy to specify that AVs must be equipped with need-based HMIs

to deliver explanations. There are some challenges with effective automotive HMI

design. First, people may have different choices or preferences for HMI (i.e., display

monitor, alert interface, etc.). Furthermore, users’ various cognitive and functional

abilities must be a crucial factor in the design of user interfaces [15]. For instance,
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people with visual or hearing impairments may need a customized HMI. Hence, au-

tomotive manufacturers must consider the diversity of users, contemplate the timing

perspective of HMI explanations in line with relevant actions, and reach a consensus

on the best practices with effective HMI design for AVs [234].

Based on the mentioned process steps and crucial elements, we see that achieving

the interpretability of self-driving models is challenging, necessitating integration of

those steps and cooperation between users and AVs. Consequently, while we argue

that transparent and highly autonomous driving is feasible, human factors must be a

vital consideration in the design and development of such systems. A simple graphi-

cal illustration of our proposed framework with its elements can be seen in Figure 3.10.

3.5 Research Gaps

As described in Chapter 3, AV explanations have been primarily investigated from al-

gorithmic perspectives and presented in various forms and contents. However, these

studies have a few general limitations. First, the reviewed literature does not put

enough emphasis on human factors. As AV explanations are intended for target

recipients, explanations must meet the users’ inherent expectations and prior opin-

ions from a sociotechnical perspective. In addition, these explanations are mainly

non-interactive and do not enable users to engage in follow-up queries in presented

information and judge real-time driving decisions. Finally, although the automotive

community has broadly investigated various forms and contents of explanations, time

granularity of explanations has not received considerable attention from researchers.

Hence, there is a need to investigate the mentioned concepts to improve the explain-

ability of autonomous driving systems. In this sense, in the following chapters, I

design a series of experiments and perform analytical studies to bridge the gaps be-

tween missing pieces. These experiments present interactive explanations between

humans and an AV, investigate the timing sensitivity of explanations for modular
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and end-do-end autonomous driving, and describe critical challenges in promoting a

human-centered approach to explainable autonomous driving research.
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Chapter 4

Explaining Autonomous Driving
Actions with Visual Question
Answering

This chapter presents my preliminary experiment on explaining autonomous driving

actions with a question-answering approach. Its content is primarily based on [17].

4.1 Introduction

When humans drive or are passengers on board, they inherently analyze real-time

and upcoming traffic scenes and think about relevant causal, temporal, and descrip-

tive questions, such as “Why is the car turning left?”, “What action will the car in

the left lane perform at the T-junction?” and “What is the speed of the vehicle in

front?”. Getting answers to such questions by any means helps us have a reliable and

safe trip. In the context of autonomous driving, this problem can be formulated as a

visual question answering (VQA) task so that an automotive user interface presents

answers to user questions on action decisions and traffic situations. In this sense,

I leverage the VQA mechanism to justify autonomous driving actions reflecting the

car’s decision-making in specific scenarios.

The framework is built as follows. I train an RL agent (i.e., an ego car) to operate

in an autonomous driving environment and record its decisions (actions) in corre-

spondence to the video frames (states). I then use a VQA system to justify actions
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of the autonomous car: the VQA framework inputs an image frame with a question

reflecting the action of the car in the scene and tries to predict the relevant answer

for such an action.

Overall, the main contributions of this experiment can be summarized as follows:

• I present a preliminary empirical study on explaining autonomous driving ac-

tions with a VQA approach.

• I show that connecting vision and natural language could rationalize an RL

agent’s decision-making in an intelligible way.

The following sections describe the details of the experimental design, empirical re-

sults, and analysis of these results.

4.2 Experimental Design and Methodology

The proposed framework is designed in three primary steps. First, I use a deep

RL agent to control an autonomous car in a simulation environment and collect a

driving video from its field of view (FoV). I then convert this recorded video to image

sequences at a uniform rate. Finally, I select five specific action categories in the

extracted driving frames and annotate them using question-answer pairs that justify

the car’s action in the scene (Table 4.1). The high-level description of the components

and overall architecture is provided in Figure 4.4. Given such a setup, the objective

of our architecture is to predict the correct answer to a posed question about an

autonomous car’s performed action in an unseen driving scene. The details of the

data collection, data annotation, and question-answering steps are described in the

following subsections.

4.3 Data Collection

To obtain driving data, I train an RL agent (i.e., a self-driving car) on the CARLA

simulator [76]. I use the DDPG algorithm [163] for the control of a self-driving car
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Town 1 Town 2
Figure 4.1: An aerial view of Town 1 and 2 on the CARLA simulator [76].

in a simulation environment. Control commands of automated driving have continu-

ous actions including braking, acceleration, and steering angle which themselves can

have a broad range of values as a representation. DDPG, as an augmented version

of the Deep Q-learning algorithm, is particularly well-adapted for continuous action

spaces and therefore is appropriate for driving control tasks. Furthermore, DDPG

uses experience replay, a memory storing the agent’s past experiences as state, action,

reward, next state quadruples (st, at, rt, st+1), out of which the algorithm can sample

randomly to train the agent. This ability to reuse samples makes DDPG a computa-

tionally efficient learning approach. Moreover, DDPG has an actor-critic architecture,

in which the actor learns an observation-to-action mapping, and the critic learns to

evaluate the quality of an agent’s chosen actions. DDPG also uses target networks -

the target actor network µ′, and target critic networks Q′. These networks are time-

delayed copies of their original networks that help stabilize the training process. The

parameters of target networks are updated as follows:

θQ
′ ← τθQ + (1− τ)θQ

′
(4.1)

θµ
′ ← τθµ + (1− τ)θµ

′
(4.2)
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where τ ≪ 1. For an effective action exploration, the term additive noise is usually

added to the exploration policy and action is selected accordingly:

at = µ(st|θµ) +Nt (4.3)

Such a learning technique enables the DDPG agent to learn a policy that maximizes

its expected reward while also considering the quality of the chosen actions.

RL Training Details: I generate driving data by training the agent on Town 1 within

CARLA. Town 1 (see Figure 4.1, a) is a map containing straight lines, left turns,

right turns, T-junctions, traffic lights, speed signs, and various stationary objects

around the curbs. I first use the A* motion planning algorithm [105] to generate a

route with an initial and final point of a motion trajectory inside the simulated town,

which shows consecutive waypoints linking these points. In our experiment, I set the

number of waypoints to 15. By default, the waypoints are referenced to the origin

point (0,0,0) in the map. To ensure that they are referenced to the dynamic position

of the self-driving car while in motion, I use Pérez-Gil et al.’s methodology [211] and

apply a transformation matrix to represent the state of the agent with these points,

the vehicle’s yaw angle, and its global position on the map as follows:

⎡⎢⎢⎢⎢⎢⎢⎣
cosϕc − sinϕc 0 Xc

sinϕc cosϕc 0 Yc

0 0 1 Zc

0 0 1 1

⎤⎥⎥⎥⎥⎥⎥⎦ (4.4)

The goal of the task is that the ego car follows this predefined route and reaches the

final destination by performing the relevant actions along its trip.

As seen from Figure 4.2, the agent acquires a driving vector ft= (vt, dt, ϕt) from the

simulation environment where these parameters reflect the vehicle’s velocity, lateral

distance, and yaw angle, respectively. Ideally, the goal of driving is to move on in the

direction of the lane as long as possible without lane departure and collisions. In this
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∙    - waypoints
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Figure 4.2: State space representation of the ego car in the driving environment. The
ideal driving state is that the vehicle follows the direction of the lane within the lane.

sense, the reward shaping can be conditioned for the vehicle’s 1) perfect longitudinal

direction, 2) deviation from the lane direction with yaw angle, and 3) lane departure

and collision. Based on these criteria, we adopt the relevant reward formulation from

Pérez-Gil et al. [211] for an ego car:

R =

⎧⎪⎨⎪⎩
−200 road departures or collisions,∑︁

t |vt cosϕt| − |vt sinϕt| − |vt| |dt| driving inside the lane,

100 arriving at the goal position.

(4.5)

Finally, action space is continuous and can receive values from the interval [-1,1]. By

defining this setting, I train the agent in Town 1. The training parameters of DDPG

can be seen in Table 4.2.

4.3.1 Data Annotation

Once obtaining the driving video with the DDPG agent, I select 5 action categories (go

straight, turn left, turn right, turn left at T-junction, and turn right at T-junction),

and extract consecutive frames uniformly (30 frames per second) for 5 video segments.

I then choose 10 frames from each segment. I especially ensure that these frames are

extracted from driving segments, where the car follows the predefined
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Table 4.1: Annotated question-answer pairs in our VQA framework

Action category Question Answer

Go straight Why is the car going
straight?

Because the road is clear.

Turn left Why is the car turning to
the left?

Because the road is bend-
ing to the left.

Turn left at T-junction Why is the car turning
left at T-junction?

Because there is no obsta-
cle on the right side and
turning left can be per-
formed safely.

Turn right Why is the car turning to
the right?

Because the road is bend-
ing to the right.

Turn right at T-junction Why is the car turning
right at T-junction?

Because there is no obsta-
cle on the left side and
turning right can be per-
formed safely.

route and perform the relevant action safely without lane departure or collision. I

distinguish left and right turns in the current line from left and right turns at T-

junction, as in the latter an ego car also has an alternative route. So, the training

data includes 5 action categories with 50 high-quality frames per category, denoting a

total of 250 driving scenes obtained from the recorded video. I manually annotate each

instance of the training data with a relevant question-answer (QA) pair (see Table

4.1). As test data, I select a collection of 100 frames from both Town 1 and Town 2

on the CARLA simulator, as the map of Town 2 is similar to Town 1. Similar to the

training data annotation, I select 20 frames for each action category and annotate

them with relevant QA pairs. The goal is to assess the generalization ability of the

employed VQA framework on these action categories in unseen traffic scenarios.

4.3.2 Question-Answering Framework

On the question-answering side, I fine-tune the original VQA framework [12] trained

on the MS COCO dataset [166]. At the highest level, the VQA model takes an
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Figure 4.3: Learning curve of DDPG in Town 1 with the specified parameters. The
proposed VQA framework is further fine-tuned on driving data collected here.

encoded driving image and a question embedding as input, to predict the answer (i.e.,

explanation) for a performed action in the scene. The model is composed of two neural

networks. The first one is a multilayer-feedforward network with 2 hidden layers each

containing 1000 hidden units and uses a tanh activation function. I apply the dropout

regularization with 0.5 in each layer. Finally, a long short-term memory (LSTM) [114]

followed by a softmax layer is employed to produce an answer for the asked question

about the driving action. On the image encoding part, I eliminate the output layer

and use the last hidden layer of the pre-trained VGG-19 architecture [246], producing

a 4096-dimensional feature vector. Further, a linear transformation is applied to make

the image features 1024-dimensional. The LSTM model for the question encoder has

2 hidden layers with 512 hidden units, and thus it is a 1024-dimensional vector, the

same as image features. An interesting aspect is the unification of the question and

image vectors from a mathematical perspective. Previous studies have generally either

preferred the concatenation or element-wise multiplication of these vectors, but [12]

have empirically shown that multiplying the image and question encoder usually
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Table 4.2: The training parameters of DDPG on CARLA

Actor
learning
rate

Critic
learning
rate

Target
network
hyper-
parameter

Replay
buffer size

Batch size Discount
factor

0.0001 0.001 0.001 100000 32 0.99

leads to a better representation. Consequently, given the image vector, Vi, and ques-

tion embedding Vq, the resulting vector passed to the fully connected layer of the

VQA pipeline is represented as their element-wise multiplication, as a fused feature

vector:

Vr = Vi × Vq (4.6)

I use the question and answer vocabularies of the original VQA framework, which

have sizes of more than 17K unique tokens and 1000 candidate answers (which are

either single tokens such as “yes,” “white,” or expressions consisting of two or more

strings such as “playing video game”), respectively, obtained by descriptions from

the MS COCO [166] images. I customize candidate answers by adding our answers

of 5 action questions to that answer vocabulary. The expectation is that the VQA

model picks the most correct answer with the highest softmax probability score out of

the 1K candidates for the asked “Why” question about the action within the driving

scene. Figure 4.4 describes the proposed framework: Driving video from the vehicle’s

field of view, collected from the CARLA simulator, is converted to image sequences

at a uniform rate. Furthermore, the fine-tuned VQA model inputs a driving scene

image and textual question reflecting an action in that scene and predicts the answer

for the asked question on this action out of the 1K possible answer set.
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Figure 4.4: A diagram of the proposed VQA architecture for autonomous driving.

4.3.3 Experimental Results

On the data collection side, I train the DDPG agent on the CARLA 0.9.11 version

in 500 episodes using a TensorFlow backend to get a driving video. As described

above, I use 250 frames from Town 1 for training our VQA network and evaluate its

performance on 100 frames collected from Town 1 and Town 2 (Figure 4.1). I use the

PyTorch backend for training and evaluating our VQA architecture. The experiments

have been performed on an NVIDIA RTX 3090 GPU machine with a 32 GB memory

size. All the frames have been set to have a size of 640 × 480 both in training and

test. As there are ground-truth answers (i.e., the ”Answer” column in Table 4.1) for

the asked question about an image, I compare the top prediction of our model on

the test data (i.e., an answer with the highest softmax probability score) with these

ground-truth answers. Thus, I use accuracy as an evaluation metric, which is defined

as follows:

Accuracy =
# frames with correct predictions

total number of test frames
(4.7)

Based on this evaluation criterion, the proposed VQA model predicted 80 correct

answers to the asked questions for 100 images. Hence, the accuracy of the prediction

is 0.8 or 80%.

Discussion: Except for turn left actions, the model predicts explanatory answers

correctly and confidently (i.e., see average softmax probabilities in Figure 4.6) for

66



Table 4.3: Number of correct predictions for each action category

Go straight Turn left Turn left at T-junction Turn right Turn right at T-junction Total

20/20 0/20 20/20 20/20 20/20 80/100

all remaining action classes. Interestingly, in the frames with turn-left scenarios, the

VQA framework primarily recognize these actions as turn right. In Figure 4.5, we

provide exemplary driving scenes for the five action categories. As seen, the model

was able to predict the highest probability scores for all actions in the scenes correctly,

except for the misclassified turn left action in the second image. This misclassification

could be due to ambiguity in the tested driving frames, the shape of curves in the

scene, and road conditions in the training data. Hence, it is important to increase

the size of the training data considering the shapes of road lanes and curves, lighting,

and other road objects to potentially improve the accuracy of the predictions of the

VQA network on driving actions.

Another implication of our work is that unifying computer vision with a natural

language provides an opportunity to explain temporal actions of an RL agent. As

explored in a recent study [210], explaining RL in sequential decision-making prob-

lems is an important and emerging topic, particularly when explanation receivers do

not have a technical background. As autonomous driving is a safety-critical applica-

tion area, justifying reinforcement learning-based decisions to end users with natural

language-based reasoning is an effective and easily understandable approach. In gen-

eral, an RL agent’s interaction with the environment as an MDP can be implemented

as model-free or model-based RL. A natural foundation for explainable reinforcement

learning (XRL) would be to provide reward or policy-based justifications for action

decisions. To this end, model-based RL is a promising approach to XRL as the agent

first tries to understand the world with prior knowledge and then develops a model

to represent this world, where the approach is called planning. The planning process

uses a model representation to generate a predicted future trajectory [255, 289].
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'Because the road is clear.' - 0.998 
'Because the road is bending to the left.' - 0.002 
'Because there is no obstacle on the left side and 
turning right can be performed safely.’ - 0.0002 
'Can' - 0.00002 
'Bending' - 0.00002 

’Because the road is bending to the right.' - 0.830 
‘Because the road is bending to the left.' - 0.044 
‘Orange' - 0.029 
'Because the road is clear.’ - 0.022 
'Can' - 0.007 

'Because there is no obstacle at the right side 
and turning left can be performed safely.' - 0.998 
'Blue' - 0.0007 
'Because the road is bending to the right.' - 0.0004 
'Brown' - 0.0002 
'Green' - 0.0001 

'Because the road is bending to the right.' 
- 0.836 
'Because the road is bending to the left.’ - 
0.060 
'Because road is clear.' - 0.016 
'Orange' - 0.014 
‘Can’ - 0.006 

'Because there is no obstacle on the left side 
and turning right  can be performed safely.' - 
0.995 
‘Because the road is clear' - 0.002 
‘Because the road is bending to the left.’ - 0.001 
‘Can' - 0.001 
'Obstacle' - 0.001

(1) (2) (3) (4) (5)
Why is the car going straight? Why is the car turning to the 

left?
Why is the car turning left  

at T-junction?
Why is the car turning to the 

right?
Why is the car turning right at T-

junction?

Figure 4.5: Example scenarios from an ego vehicle’s field of view on CARLA. During
the decision-making process of the agent, we are given visual signals and we ask
action-related questions and try to find an answer given the current state. The green
arrow shows the ego car’s chosen action and the white arrows indicate the other
route at T-junction scenarios. We show the top 5 answers predicted by our model.
The green-colored text shows the correct answer to the question for the performed
action of the car. Except for the turn left scenario, justifications for other actions are
predicted correctly by the model.

According to the model projection, an optimal action is decided at each planning

step, which provides a predicted state and a predicted reward. The predicted states

and rewards can be analyzed and visualized for the planned trajectory, thus providing

an explanation of why the agent favors the choice of a particular action at a specific

time step from an algorithmic perspective. However, as self-driving explanations are

mainly targeted at the general community, it is essential to ensure that explanations

delivered to the users are intelligible and informative for them. While [210] has at-

tempted to build an inherently explainable RL architecture, I build the explanations

independent of an agent’s decisions. I also acknowledge the need to be cautious about

providing explanations that are independent of an agent’s behavior; it is possible that

post-hoc explanations may not always reflect an agent’s actual decision-making pro-

cess. For example, in an actual left turn scenario, a model’s response to the question

“Why is the car turning to the right?” as ”Because the road is bending to the right.”

would be a hallucination of a VQA architecture. Consequently, it is important to

further investigate the topic of generating linguistic explanations for an RL agent’s

actions and evaluate such explanations with human adversarial examples as well.
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Figure 4.6: The average softmax probability scores for top predictions in each action
category.

Limitations of the experiment: Real roads are more complex and dynamic with

the presence of traffic lights, bystanders, passengers, other vehicles, and adverse

weather conditions. In the current version of our framework, the ego car only in-

teracts with the stationary environment and explains actions associated with such

interactions. Moreover, the dataset is small in size. Consequently, I use these lim-

itations as a motivation for further direction and overcome these issues with the

experiments presented in subsequent chapters.

Practical use cases: In practice, the VQA mechanism can be leveraged at least in

two ways on real autonomous cars. First, it can help passengers on board monitor

driving safety by “judging” the vehicle’s decisions. For instance, a user interface or

dashboard set up on a back seat may provide voice-to-text functionality, and a passen-

ger can observe driving surroundings, ask a question about the vehicle’s chosen action,

and get an answer. Such a feature can help monitor the reliability of self-driving and

instill trust in vehicle autonomy during the trip. Another practical application is to

retain a history of action-question-answer triplets (...at, qt, anst, at+1, qt+1, anst+1...)

and use it for forensic analysis in possible accident investigations with self-driving
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vehicles: Recorded explanatory log data can help understand why the self-driving

vehicle made a specific decision at a particular time just before being involved in an

accident.

4.4 Summary

This chapter has presented a preliminary study on explaining autonomous driving

actions with a VQA approach. I use driving data generated by an RL agent on the

CARLA simulator and develop the question-answering system as an explanatory ap-

proach to the agent’s decisions. The experimental results show that a simple and

straightforward VQA mechanism can help interpret the real-time decisions of an au-

tonomous car and also help understand its correct and incorrect decisions as safety

implications. The results also suggest that unifying VQA with RL-based decision-

making will likely do well for actions in a dynamic environment, provided that we

have rich training datasets. In this sense, in the subsequent chapters, I perform ex-

periments in more dynamic environments and describe opportunities and challenges

with knowledge-based QA models for capturing traffic dynamics.
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Chapter 5

Transition to Large Pretrained
Model-based Explanations: A
Paradigm Shift

5.1 Introduction

Pretrained large language models (LLMs) and vision-language models (VLMs) have

recently revolutionized NLP, robotics, and computer vision across many tasks. Pri-

marily based on BERT [70] and GPT [218] families, there has been a surge in building

general-purpose language models. These models are called Foundation Models where

their internal weights are further adjusted (i.e., “fine-tuned”) with a domain-specific

knowledge base for serving task-specific purposes. In this context, Foundation Mod-

els have been an area of interest for interpretable autonomous driving since the year

2023. The advantage of these models is their massive internal knowledge, which

has the potential to capture the semantics in dynamic environments and sequen-

tial decision-making problems. This feature is strongly relevant to interpreting au-

tonomous driving actions. The visual comprehension ability of Foundation Models

can help provide human-interpretable descriptions of traffic scenes and the behavior

of a self-driving vehicle. These pieces of information can be textual descriptions, vi-

sual explanations, or other forms of reasoning techniques, depending on the task.
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5.2 Large Language Model and Vision-Language

Model-based Explanations for Autonomous Ve-

hicles

The role of LLMs and VLMs in explainable autonomous driving has recently been in-

vestigated from several aspects [57, 303]. For example, the Talk2BEV [50] model has

incorporated a VLM into bird’s-eye view maps, enabling spatial and visual analysis

to predict unsafe traffic scenarios. In a similar work, DriveGPT4 [286] justifies an au-

tonomous car’s decisions via textual descriptions and responds to humans’ questions

in the same manner. The concept of question-answering as a human-machine inter-

action has been explored in two further models LingoQA [179] and VLAAD [205].

Other recent prominent large pretrained models for explainable autonomous driving

include LINGO-1 for producing live natural language explanations [277], Driving with

LLMs [44] and Drive Like a Human for context understanding [94], GPT-Driver for

interpretable motion planning [178], and DILU [279] and LanguageMPC [241] for

human-like decision-making.

Overall, generalization and emergent abilities of large pretrained models is a new

paradigm shift for combining vision, language, and action and providing interpretabil-

ity across many tasks in control problems. This success has resulted in the emergence

of a new topic termed Embodied AI where an agent learns and improves its per-

formance continually by interacting with the environment with its massive internal

knowledge [78, 275]. Perhaps there will be more work to improve the explainability

of Embodied AI in the context of autonomous driving as such models can capture the

semantics and temporal changes in traffic scenes. However, the current well-known

limitations of these large models (i.e., “hallucinations,” authoritative but factually

incorrect responses) can have dire consequences for driving safety in real, physical

environments, and damage user trust in AVs. Chapter 6 sheds more light on these

caveats and describes the implications of VLM-generated hallucinations on users’
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Table 5.1: Studies on large language models and vision-language models-based expla-
nations for AVs

Study Target audienceTask Algorithms/Methods Delivery format

Dewangan et al., [50], 2023 Language-augmented Bird’s-eye
View Maps for Autonomous Driv-
ing

GPT-4, GRIT Visual, Textual All groups

Xu et al., [286], 2023 VQA and natural language-based
explanations for autonomous
driving

LLAMA 2, CLIP Visual, Textual All groups

Marcu et al., [179], 2023 Video question answering for au-
tonomous driving

Vicuna-1.5-7B, GPT-4 Textual All groups

Chen et al., [44], 2023 Improving context understand-
ing in autonomous driving with
object-level vector modalities and
LLM

GPT 3.5, PPO Visual, Textual All groups

Fu et al., [94], 2023 Understanding traffic situations
in a closed loop

GPT 3.5 Textual All groups

Mao et al., [178], 2023 Interpretable motion planning as
language modeling

GPT 3.5 Textual Road users

Sha et al., [241], 2023 LLM as a decision-maker in com-
plex driving scenarios

ChatGPT, MPC Visual, Textual AV developers

Wayve Team [277], 2023 Providing live explanations in
natural language

Integrated vision, language and
action architecture

Textual All groups

Nie et al., [197], 2023 Interpretable reasoning in com-
plex driving situations in au-
tonomous driving

GPT-4, MLP, ViT-G/14 Textual All groups

Park et al., [205], 2024 Video question answering for traf-
fic scene understanding

Video-LLAMA, GPT-4 Textual All groups

Wen et al., [279], 2024 LLM-based knowledge-driven
approach for interpretable au-
tonomous driving

Out-of-box LLM Visual, Textual AV developers

Yuan et al., [292], 2024 Retrieval-augmented VLM for ex-
plainable autonomous driving

LanguageBind, MLP, Vicuna-1.5-
7B

Textual All groups

Chi et al., [46], 2024 GPT-aided explainable decisions
for autonomous vehicles

GPT, Graph of Thoughts Textual All groups

Atakishiyev et al., [19], 2024 Robustness of a transformer-
based VideoQA model against
human-adversarial questions and
its safety implications for self-
driving

Video-LLaVA Textual All groups

Duan et al., [79], 2024 Unifying imitation learning with
LLMs to enhance safety of end-
to-end driving

Vicuna LLM, Swin transformer Textual All groups

trust, perceived safety, and feeling of comfort with AVs. A summary of studies on

LLM and VLM-based explanation approaches for AVs is described in Table 5.1.
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Chapter 6

Incorporating Explanations into
Human-Machine Interfaces for
Trust and Situation Awareness in
Autonomous Vehicles

This chapter describes my situation awareness framework for autonomous driving. It

further presents an empirical study on this framework and validation of the results

with human judgment. The chapter is primarily based on [18].

6.1 Introduction

While XAI is becoming essential in designing and developing modern AVs, another

crucial factor is the effective delivery of these explanations to the users in the loop.

Consequently, automotive HMIs of various types must be built in to display driv-

ing information appropriately to users. I provide an example of such interaction

in Figure 6.1: Waymo’s self-driving vehicle provides explanatory information to the

pedestrians in front and the human drivers behind via a simple interface supplied on

top of the vehicle. While the pedestrians can interpret this information as “Waymo is

yielding to us and is not going to drive while we cross,” the human drivers at the rear

may perceive the intent signal in the back view as “Waymo is stopping because it is

yielding to the pedestrians crossing the road.” Such a simple explanation provision
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Yielding  

Pedestrian 
crossing 

signal communicated to the pedestrians crossing

signal communicated to the human drivers behind 

front view 

back view 

Figure 6.1: An example of explanation communication to the pedestrians (top) and
a human driver at the rear (down) by Waymo’s self-driving car via its external HMI.
The green bounding boxes have been manually added to indicate these signals. The
figure has been drawn based on the content in [11] and [276].

method shows that HMI can effectively describe traffic scenes to road users and help

them be aware of the self-driving car’s behavioral intention.

Considering the immense need for AI transparency and the role of HMI for possi-

ble control and self-driving monitoring, this chapter contributes a structure to the

combined role of XAI and HMI for trustworthy autonomous driving. By definition,

as XAI aims to provide interpretable models while maintaining good model perfor-

mance and enabling users to comprehend, trust, and manage the intelligent system,

we investigate all these aspects in our study. I specifically analyze the problem set-

ting with a “3W1H” approach: what information to deliver, when to deliver, whom

to deliver, and how to deliver explanations using a supplied user interface. In this

sense, I systematically review prior investigations and reveal the suggestions and the

practical recommendations derived from that literature. As a result, I incorporate

insights from these studies into a framework to improve situation awareness and trust

in AVs.

Overall, the contributions of this chapter are threefold:
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• An investigation of prior studies that explore XAI and HMI for autonomous

driving and identification of the best practices within the ”3W1H” approach;

• An HMI and XAI-guided situation awareness framework for autonomous driving

and experiment on the framework;

• A user study and validation of the experimental findings with human judgment.

6.2 The “3W1H” Aspects of Explanation Conveyance

to End Users

The design and use of human interfaces have been of interest to the automotive

community since the development of autonomous driving. Human-centric interactive

system design does not solely provide driving-related information to users but also can

help with meeting their individual needs during a trip with a self-driving vehicle [234,

238]. In this regard, there are several challenges in the communication of explanations

about driving decisions to end users. First, explanations should be relevant to a

user’s mental model: as user satisfaction is the target focus in the development of

autonomous driving systems, the content of explanations should meet their needs

[281]. Furthermore, which users (drivers, passengers, external observers) could benefit

from these explanations is another aspect of targeting explanations. In addition, the

timing mechanism of explanations is also an essential property of the user interface

to ensure that the self-driving vehicle’s actions or driving scenes are described within

appropriate time frames [281]. Finally, how explanations are delivered is also a crucial

factor in meeting users’ expectations. Considering these four-dimensional properties

of explanations in conjunction with HMI, I explore this topic systematically and

present the ”3W1H” approach.
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6.2.1 What?

What types of explanatory information are needed for road users? Explanations can

describe the stationary and dynamic objects in the scene and inform users of how

an autonomous vehicle perceives these objects during a journey [144]. An interactive

interface inside a self-driving vehicle can provide updates on traffic situations, weather

conditions, and offer customizable preferences (i.e., the temperature inside the vehicle

and individual options depending on the users’ needs). Moreover, the autonomous

car can share information outside to bystanders and other vehicles as a part of the

vehicle-to-vehicle (V2V) or vehicle-to-user (V2U) communications.

In addition, and as an ongoing research direction, practical XAI methods have recently

been explored to describe the rationale behind the decision-making process of AVs in a

human-interpretable format [20]. The critical aspect of explanation techniques is how

satisfactory these approaches are from the users’ perspective. In this context, users’

mental models must be considered: users may favor specific types of explanations

depending on the driving scenario. In general, it has been shown that explanations

are more related to traffic-related event cognition and describing the driving behavior

of AVs as an answer to the “What” question in this context [238].

6.2.2 When?

While a history of continuous action- and scene-explanation pairs can be recorded

for possible post-trip driving analysis and forensic investigations, it is noteworthy to

mention that users, particularly passengers and human drivers do not always need

explanations. According to Koo et al.’s study [153], seamlessly delivered explanations

can result in mental overload for human drivers in semi-autonomous driving and dis-

tract them from meeting their primary obligations. Instead, they can be alerted when

an autonomous mode decision is initiated, when driving conditions change substan-

tially, when takeover requests are made, and when sensor failure occurs. In another

user study, Haspiel et al. [106] have focused on the significance of timing for ex-
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planations, and their exploration concludes that human drivers favor explanations

just before action is decided rather than receiving explanations after the action is

performed. Avoiding a potentially overwhelming information flow also applies to ex-

planation provision for passengers. Kim et al.s’ [144] recent user study on a real road

with a wizard experimenter reveals that users favor explanations in critical and risky

traffic circumstances rather than having continuously presented behavioral informa-

tion. Similarly, Shen et al. [243] have also qualitatively validated the premise that

people favor explanations in near-crash and emergent situations.

6.2.3 Whom?

User categories encompass individuals who directly interact with a self-driving vehicle

(i.e., passengers and backup drivers) or are affected by its presence and operation on

roads [20]. Explanatory behavior can be conveyed to road users outside the vehicle

(i.e., bystanders, pedestrians, and cyclists) using language or intent signals as well as

shown in Figure 6.1 to ensure that individuals nearby remain aware of the behavior of

the autonomous vehicle while it operates. Moreover, people outside and adjacent to an

autonomous vehicle, such as bystanders, pedestrians at crosswalks, drivers operating

non-autonomous cars, and cyclists, may also expect behavioral information from an

autonomous car. Additionally, understanding decisions of a self-driving vehicle may

be a necessity for traffic enforcement officials [102] and emergency responders [169]. To

ensure operational safety, traffic enforcement personnel may carry out a compliance

check on the self-driving vehicle at some time and the vehicle may be requested to

provide some form of explanation on its motion. Furthermore, behavioral information

may be helpful for emergency responders for effective response to the accident and

emergency conditions caused by/with the presence of an autonomous car. Overall,

explanations should be conveyed to relevant interaction partners in critical times/

whenever needed while an autonomous car operates on roads.
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6.2.4 How?

Various studies have shown that users might have different preferences for receiving

explanations depending on their identity and traffic situation. For example, Faltaous

et al.s’ [86] user study in a simulation environment shows that providing multimodal

explanations with auditory, visual, and vibrotactile feedback is effective for potential

takeover requests in highly-urgent driving conditions. Furthermore, Schneider et al.

[236] have tested five various feedback techniques - light, audio, object visualization,

textual information, and vibration - in a virtual driving scene, and evaluate user

satisfaction with these explanation modalities. Their findings show that light or

object visualization is preferred more for proactive situations, while sound and light

are more favored for reactive scenarios. Interestingly, the users are not satisfied with

textual descriptions or sound-based feedback and even find the latter disturbing in

the long term. Detjen et al. [69] show that a planar heads-up display (pHUD) and

contact analog heads-up display (cHUD), as an augmented reality presenter, have been

liked by testers as an effective display technique in both low and highly automated

driving settings. In contrast, Dandekar et al. [62] have investigated an effective way of

conveying driving information to passengers while not distracting them from their in-

vehicle activities. The users’ feedback indicates that a colored light bar display and

windshield display are satisfactory interfaces and do not disturb them while being

immersed in non-driving related infotainment. Kim et al. [144] also conclude that

the semantic segmentation map of objects displayed via windshield display instills

trust in human participants in the behavior of an AV.

It is also noteworthy to state that automotive HMI design should consider humans’

varying physical and cognitive capabilities and be inclusive of everyone. Particularly,

people with some form of physical and cognitive impairment may need customized

user interfaces. In recent research, Arfini et al. [15] have presented theoretical and

pragmatic challenges in the effective interface design for people with some functional
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Table 6.1: The ”3W1H” aspects of explanation conveyance to autonomous driving
users based on the findings of prior studies

Dimension of explanation Description

What?
Decisions of an autonomous vehicle, traffic
scenes, and events

Whom?
Passengers, human drivers, people with
cognitive and physical impairments, remote
operators, bystanders, cyclists, traffic
enforcement officials, emergency responders

When?
Critical and emergent situations, takeover
scenarios, the time before an action is
performed

How?
Audio, visual, vibrotactile, text, heads-up
display, passenger intervening interface, haptic
feedback, braille interface

limitations. Autonomous vehicle users may have visual, hearing, mobility, and speech

impairments, and customized user interfaces may help them get explanatory infor-

mation on the vehicle’s actions and traffic situations. For instance, a braille interface

can help people with visual difficulties to acquire driving-related information from

the vehicle. Or a gesture recognition system may be implemented to track the user’s

hand movements and enable them to interact with the vehicular interface. Hence, in

general, we can summarize that no single type of HMI can meet the needs of all au-

tonomous car users due to their diverse cognitive and physical abilities and subjective

preferences.

While the ”3W1H” approach reveals a broad spectrum of explanation conveyance to

end users (see Table 6.1), the goal remains the same: bringing situation awareness to

people inside and outside of an autonomous car. In the next subsection, I present a

unified approach to a general situation awareness framework via XAI and HMI and

describe the implications of such a framework for people in the loop.
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6.3 A Unified Approach to Situation Awareness

Framework via Explainable AI and Human-

Machine Interfaces

The goal of an XAI system is to provide explanatory information on the system’s

particular decisions or behavior. According to the definition of the term, situation

awareness by Endsley [83], users in the loop must be aware of what particular decision

the AI system made, why it made that specific decision, and what decisions it will

make in the next similar state at a later time. The three concepts have been referred to

as perception, comprehension, and projection, and are viewed as indicators of situation

awareness in human-in-the-loop AI systems. Sanneman and Shah [233] have further

expanded that framework from an informativeness perspective. They correspond

the aforementioned concepts into three levels of explanations - Level 1, Level 2, and

Level 3 - for human-centered XAI systems, respectively. Here we adapt Sanneman and

Shah’s [233] framework to autonomous driving scenarios and describe the implications

of such a framework for self-driving vehicle users.

Given a traffic scenario s ∈ S, we denote a set of possible actions (i.e., go straight,

turn left, etc.) that may be taken by an autonomous car as

A = {a1, a2, ..., an}.

At each time step of motion of the car, an explanation interface may describe what

action the car is performing and why it is doing so. We can describe this particular

action as a ∈ A and the causal factor (i.e., traffic light, pedestrians crossing, etc.) that

made the car behave in that particular way as f ∈ F . The explanatory information

Ie for situation awareness can then be described via a combination of four elements :

the traffic scenario, chosen action, causal factor inducing that action, and explanation

delivery time:

Ie = (s, a, f, t) (6.1)

This explanation is communicated to autonomous car users using various built-in
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A = {a1, a2, . . . an} Ie = (s, a, f, t)

Action Explanation with implication

Description:

Reaction:

Inquiry:

Internal HMIs

touch screen  voice interface 

display monitor intent signal 

External HMIs

People inside People outside

Figure 6.2: The proposed situation awareness framework for inside and outside users
of an autonomous vehicle with XAI and representative HMIs

internal and external HMIs as needed. Depending on the interplay between the user

and the explanation, the information conveyed can be classified as interactive or non-

interactive, which can be stated as follows:

Ie =

{︄
interactive, if reactive or inquisitive

non-interactive, if descriptive

Now, let us define what we mean by descriptive, reactive, and inquisitive explanations

in this context:

1. Descriptive explanations: A user interface provides general information about

the action of the self-driving car and the scene it is moving through. The people inside

or outside become aware of the driving environment and behavior of the self-driving

vehicle without further interference.

2. Reactive explanations: The user interface invites the passenger or human

driver to react to an emerging situation. For passengers, this could be an emergency

override scenario where vehicular automation by design allows them to take control of

vehicles in case other outreach actors can not control the vehicle. For human drivers,

these are typically takeover requests, where the explanation interface communicates

upcoming emergent states, and the driver must take control of the vehicle from the

automated mode and manage the situation safely.

3. Inquisitive explanations: While descriptive and reactive explanations are al-
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ready well-known to the automotive community, to the best of my knowledge, inquisi-

tive explanations have not been investigated well in the current literature. Inquisitive

explanations refer to the explanations that users, such as passengers, can ask the

system to follow up on the previous response or to test the robustness of the inter-

active user interface. These questions can be anything related to the autonomous

vehicle’s decisions or traffic scene in general, but can also be “tricky” or adversarial

questions aiming to stress test the explanation interface. For instance, assume in an

actual right turn scenario under a green light, a passenger asks the conversational

user interface, ”Why is the car turning to the left?” as an adversarial question. In

this case, the user interface should provide an action-reflecting response like “No, the

car is turning to the right as the traffic light allows a right turn,” explaining what the

autonomous car is doing and why it is doing so. These questions may be asked de-

liberately or unintentionally (e.g., people with visual impairment may have difficulty

perceiving the scene correctly) to test the trustworthiness of the vehicle, its actions,

and its awareness of the surroundings. As a consequence, a human-machine interface

should not only provide conventional explanations but also defend against potential

adversarial queries to ensure that explanations are scene and action-reflecting. This

feature is an essential property of automotive HMI. The ability to provide correct ex-

planations can instill trust in users and encourage them to continue to use AVs. The

graphical description of this framework is shown in Figure 6.2. With this approach,

the proposed situation awareness framework may achieve Level 1 (chosen action) and

Level 2 explanations (explanation for the chosen action), i.e., perception and com-

prehension, as described by Sanneman and Shah [233]. The authors describe Level

3 explanations as “XAI for projection” and relate it to counterfactual analysis, such

as what an autonomous car will do if the driving scene changes in a certain way.

Perhaps in the context of autonomous driving, Level 1 and Level 2 explanations are

more essential for the users as they are more concerned about the actual scene the

vehicle is getting through. With that said, curiosity to assess automation ability and
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the reaction of the vehicle to further emergent driving conditions may necessitate

Level 3 explanations for foreseeable situation awareness as well.

6.4 Case Study: Interactive Dialogues between a

User and An Autonomous Vehicle

To validate our proposed framework, we perform an initial and simple empirical

study and use human judgment to evaluate the effectiveness of the framework on the

chosen traffic scenarios. As HMI can be both interactive and descriptive from an

explanation communication perspective, we choose to design interactive explanations

so that a user can prompt their question and expect context-aware information from

an explanation interface. We formalize this setting as a visual question answering

(VQA) problem. VQA is a learning task at the intersection of computer vision and

NLP that inputs an image i, a textual question q associated with the content of the

image, and predicts an answer a for the asked question. The problem can be more

precisely represented as a tuple of the specified parameters:

x = (i, q, a)

Most of the state-of-the-art VQA models input an image and question parameters,

then output a combined representation of vision and language r ∈ Rdr via a multi-

modal learning network f :

r = f(i, q)

Asking a question about the behavior of a vehicle is driven, at least partly, by human

intuition. Becoming aware of traffic events and a human driver’s decisions in the car

helps passengers on board understand ongoing situations and have a comfortable trip.

This intuition also can be related to asking meaningful questions to the conversational

HMI of an autonomous vehicle about the driving scenes. In my preliminary study,
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Action label: go straight Action label: turn rightAction label: go straight Action label: turn left Action label: turn right

Q: Briefly explain why the car is  
going straight in the scene.

A: The car is going straight because  
it is following the traffic light signals,  
which are green for the car at the  
moment. 

Q:  Briefly explain why the 
car is turning right in the scene.

A: The car is turning right in the scene 
because it is following the traffic light  
signals, which are green for the car at 
the moment. 

Q: Briefly explain why the car is  
going straight in the scene.
A: The car is going straight because 
it is in the middle lane of a highway  
with no other vehicles in the same 
lane, allowing it to maintain a straight 
trajectory and follow traffic rules.

Q: Briefly explain why the car is  
making a U-turn in the scene.

A: The car is making a U-turn  
because it is in the middle lane of a  
highway, and there is no other 
vehicle in the same lane, allowing it to 
change direction safely and efficiently.

Q: Briefly explain why the car is  
making a left turn in the scene.
A: The car is making a left turn at a 
green arrow traffic light, following  
traffic rules and ensuring safe and  
efficient movement through the  
intersection.

Q: Briefly explain why the car is  
making a right turn in the scene.
A: The car is making a right turn at a 
green arrow traffic light, following  
traffic rules and ensuring safe and  
efficient movement through the  
intersection.

Q: Briefly explain why the car is  
making a right turn in the scene.
A: The car is making a right turn at  
the intersection to follow traffic rules 
and avoid potential collisions with  
other vehicles or pedestrians.

Q: Briefly explain why the car is  
making a left turn in the scene.

A: The car is making a left turn at the  
intersection to follow traffic rules and 
ensure safe navigation through the  
busy urban environment. 

Q: Briefly explain why the car is  
making a right turn in the scene.
A: The car is making a right turn at  
the intersection because the traffic  
light is signaling it to do so, ensuring 
a smooth flow of traffic and avoiding 
potential accidents.

Q: Briefly explain why the car is  
making a left turn in the scene.
A: The car is making a left turn at the 
intersection because the traffic light  
is signaling it to do so, ensuring a  
smooth flow of traffic and avoiding 
potential accidents.

Figure 6.3: Our experiment on the five chosen traffic scenes from the BDD-A dataset
with the LLaVA multimodal transformer. While LLaVA seems to yield correct ex-
planations on conventional questions (top) with actual actions (blue-colored text) +
causal factors (green-colored text), it fails to generate factual explanations on the
adversarial questions (bottom). The bounding boxes have manually been added to
indicate causal factors inducing the chosen actions.

I have shown the applicability of question-answering-based reasoning to explain-

able autonomous driving [17]. A crucial aspect of such interaction is the delivery

of context-aware and action-reflecting explanations in a timely manner.

Experiment: Based on this motivation, I design the experiment as follows: I use

Large Language and Vision Assistant, LLaVA [168], as a multimodal learning frame-

work that inputs vision and textual query for describing driving scenes. LLaVA is a

multimodal transformer architecture built on top of the Vicuna LLM [47] and the pre-

trained CLIP visual encoder ViT-L/14 [219]. GivenXv, as an image, and Zv = g(Xv),

as a visual feature, LLaVA applies a trainable projection matrix W for converting

the visual feature, Zv, into language embedding tokens Hv as follows:

Hv = W · Zv, where Zv = g(Xv) (6.2)

I sample driving scenes from the real driving videos of the Berkeley DeepDrive Atten-

tion (BDD-A) dataset [284], and select five different scenarios shown in Figure 6.3.

I then consider two types - conventional and adversarial - questions for the actions

performed in these scenes. While the former is context-aware and action-reflecting,
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the adversarial question refers to asking an incorrect questions about actions, delib-

erately or unintentionally, to stress test the robustness of the explanation provision

model. The key idea with this test is that HMI must always communicate correct

explanations and defend against human adversarial questions by providing context-

aware information.

I present the explanations (i.e., responses) generated by LLaVA on the action-reflecting

and adversarial questions in Figure 6.3. As seen, the model generates reasonable

and human-interpretable explanations for conventional questions and justifies its re-

sponses. However, a tricky question easily confuses the model and makes it generate

an incorrect answer to the asked question. For instance, in the leftmost scene in Fig-

ure 6.3, the car moves straight because of the green light (i.e., inside the left bounding

box). Furthermore, there is a sign (i.e., inside the right bounding box) that prohibits

the car from making a right turn at that intersection. Ideally, when we ask that

adversarial question about the right turn, we might be satisfied with an explanation

like “No, the car is going straight, and no right turn is allowed in the scene as the

traffic signal prohibits it.” However, we observe that the model is flawed with such a

deliberate question and fails to present an adequate answer. The higher influence of

a textual question on a VQA model’s prediction is generally known as the language

prior problem. Therefore, the possibility of adversarial questions must be considered

in the construction mechanism of automotive VQA models, and relevant HMIs must

provide corrective and context-aware information against such questions.

We need to consider that an autonomous car is equipped with an interactive HMI so

that people inside the vehicle can ask such interactive questions at some point in the

trip with the vehicle. To understand the impact of the generated responses on the

users’ feeling of comfort and safety perception in autonomous driving, we conduct a

human study with the above experimental framework, considering them as passengers

of a vehicle.
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Phase 1:
Presenting driving scenes and QA pairs to the participants

Question: Do you consider the response 
generated for the action in the following  
scene to be correct?  

Provided: the action label and Q/A pair    
User answer choices: Yes/No/Not Sure

Phase 2:
Asking the participants to answer the 
generic questions following Phase 1 

Question 11: Would incorrect responses affect your  
perceived  feeling of safety of autonomous driving  
negatively?

Answer choices: Yes/No/Not Sure

Question 13: If you regularly get wrong responses 
to your asked questions, will it affect your feeling  
of comfort in autonomous driving and may result in 
not using an autonomous car at later times?

Answer choices:  
Will feel comfortable and will continue to use it. /  
Will not feel comfortable but will still continue to use it./ 
Will not feel comfortable and may stop using it.

Phase 3:
Analyzing results of the study

Statistical significance test and  
validating the hypothesis of whether 
the incorrectness of the explanations 
affects the users’ perception of safety 
and feeling of comfort in self-driving. 

Understanding users’ mental model with explanationsUsers’ judgement of  correctness of responses for each of the presented driving scenario Drawing a conclusion with the case study

Users are presented five driving scenes  
and are asked to judge the correctness  
of a response/explanation generated for  
a question in each scene

Question 12: As a passenger, would you prefer to get an 
explanation before or after an autonomous car makes a 
particular maneuver?

Answer choices: Before/After

Questions 1-10:

Figure 6.4: Design of the user study based on the experiment in Figure 6.3. The
participants judge the correctness of explanations for each of the five scenes presented.
After getting experience with explanations, they are asked two more questions on
their perceived safety and mental comfort with the role of explanations while using
an autonomous vehicle. Users’ responses are validated with a statistical significance
test to draw a conclusion with the case study.

6.4.1 Design of the User Study

I have performed a user study1 (see Figure 6.4) with 20 participants (10 males, 10

females) with an age range from 20 to 47 (average=28.65, standard deviation=6.03).

The participants are university students and employees in an industrial sector with

diverse technical backgrounds who drive or use public transportation regularly in

everyday life. I provide participants with an online questionnaire on the QA pairs

described in five scenes in Figure 6.3 in the first step. Once the participants finish

the assessment of the generated responses for the questions on the autonomous car’s

actions, they are further asked three generic questions: their perceived safety, feeling

of comfort with incorrect explanations, and timing preference. Overall, each respon-

dent answers thirteen questions in their 20- to 25-minute study engagement.

1The user study was conducted under the Research Ethics principles of the University of Alberta,
and all the participants were paid at an equal rate.
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6.4.2 Analysis of the Results

Phase 1: While analyzing the respondents’ judgment of the explanation correctness,

we see that most of them find explanations generated for conventional questions sat-

isfactory (see Table 6.2). While Scenario 1 and Scenario 3 explanations are assessed

as correct explanations by 100% and 95% of the users, they are skeptical about some

explanations in Scenario 2, 4, and 5, leading to 75%, 60%, and 60%, respectively.

On the other hand, the participants are more confident in judging the responses for

the adversarial questions, and 100% of them spot flawed explanations for that type

of question in Scenarios 1, 2, and 5. Just one and two of them are unsure about

the incorrectness of the responses to the adversarial questions in Scenario 3 and 4,

respectively. It turns out that detecting an incorrect answer to a question is easier

for humans, likely as a consequence of reasoning; While getting irrational responses

to a query, even at the beginning of a response, easily triggers a response of “No.”

Note that the users are usually firmer in judging every detail of a rationale to say

“Yes,” and autonomous driving explanations by such a judgment criterion are not an

exception.

Phase 2: After the participants complete Phase 1 and understand the role of expla-

nations in autonomous driving, I evaluate 1) their preference for time to deliver an

explanation and 2) how the faithfulness of explanations affects their mental model in

terms of their perceived safety and feeling of comfort in autonomous driving. 100%

of the participants have preferred to get an explanation before an AV makes a par-

ticular maneuver rather than having it after. Such a preference is reasonable as prior

explanations elucidate what an AV is going to do next and help users become aware

of the situation and monitor the safety of the subsequent action.

I perform simple hypothesis testing to evaluate the impact of incorrect explanations

on the users’ feeling of comfort and perceived safety in autonomous driving. As the

minimum percentage of “majority voting” in the users’ judgment of explanation
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(a) The participants’ responses to Question 11 (b) The participants’ responses to Question 13 

Figure 6.5: The participants’ responses to Question 11 and Question 13 in Fig 6.4 on
their perceived feeling of safety and comfort with incorrect explanations

correctness is 60% (see Table 6.2), I use this number in the validation of the users’

safety perception and feeling of comfort in our hypotheses. More specifically, I define

the following null and alternative hypotheses:

Null hypothesis on implication in perceived safety: Incorrectness of explanations will

affect 60% of the respondents negatively on their safety perception in autonomous

driving.

Alternative hypothesis (right-tailed): Incorrectness of explanations will affect more

than 60% of the respondents negatively on their safety perception in autonomous

driving.

I use the one-proportion Z-test method to validate our hypotheses. The one-proportion

Z-test is defined as follows:

Z =
p̂− p0√︂
p0(1−p0)

n

(6.3)

where p̂ is the sample proportion, p0 is hypothesized population size, and n is the

sample size. Given p̂=17
20
=0.85, p0=0.6, and n=20, putting these numbers into the

formula gives Z≈2.28. I consider a significance level of α=0.05. For the right-tailed

hypothesis, the critical Z-value is 1.645 [181], and our Z-value of ≈2.28 is greater than

the critical Z-score. So, I reject the null hypothesis and conclude that incorrectness

of explanations affects more than 60% of the participants negatively on their per-
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Table 6.2: The participants’ judgment of the correctness of explanations on the con-
ventional and adversarial question pairs for each scenario described in Figure 6.3.

Driving
scenario (left to

right)

Distribution of the
participants’ answers to the

conventional questions
(Yes/No/Not sure)

Distribution of the
participants’ answers to
the adversarial questions

(Yes/No/Not sure)

#1 20/0/0 0/20/0

#2 15/3/2 0/20/0

#3 19/0/1 0/19/1

#4 12/2/6 0/18/2

#5 12/4/4 0/20/0

ceived feeling of safety.

Similarly, we define the following null and alternative hypotheses for implications of

incorrect explanations on the participants’ feeling of comfort with an AV:

Null hypothesis on implication in the feeling of comfort: Incorrectness of explanations

will affect 60% of the respondents negatively on their feeling of comfort.

Alternative hypothesis (right-tailed): Incorrectness of explanations will affect more

than 60% of the respondents negatively on their feeling of comfort.

Referring to Figure 6.5(b), p̂=14
20
=0.7, p0=0.6, n=20, and a significance level of

α=0.05, we get a Z-score of ≈0.91, which is less than the critical Z-value, 1.645.

Hence, we fail to reject the null hypothesis as there is not enough evidence to suggest

that the proportion of the participants who think incorrect explanations affect their

feeling of comfort in an autonomous vehicle negatively is greater than 60%.

6.4.3 Limitations

The study is relatively small and has several limitations. First, I conduct the user

study via an online questionnaire, and I do not know how the participants’ answers

may change in case these questions are presented in simulated augmented reality or

real AVs. In addition, while I underscore the essence of considering people’s various
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cognitive and functional abilities for acquiring relevant messages from HMIs, this nu-

ance has not been addressed in the experiment and user study. Moreover, there is a

well-known Autonomous Vehicle Acceptance Model (AVAM) proposed by Hewitt et

al. [113] that assesses user acceptance of AVs with nine essential factors. Meanwhile,

interestingly, the AVAM model does not explicitly consider explainability as one of

those key factors. So, I argue that the AVAM model enhanced with the explainabil-

ity criterion would be a stronger acceptance model for AVs. Finally, a larger-scale

user study with different groups and more diverse scenarios can help draw stronger

conclusions with this work in the next phase of our research.

6.4.4 Findings of the Study

The main outcomes of this study are summarized as follows:

(1) Timing matters : Time to deliver an explanation is an essential feature for au-

tonomous driving users. Particularly, delivering prior and time-sensitive explanations

helps them understand the driving behavior of an AV and be aware of the vehicle’s

subsequent intention.

(2) Robustness matters : The experiment shows that even advanced explanation mod-

els may fail to provide adequate responses to human adversarial questions. Flawed

explanations may have a negative impact on the users’ feeling of safety and trust

in the automation ability of a self-driving car. Consequently, explanation interfaces

must always understand users’ conventional and deliberate questions, defend against

adversarial queries, and provide faithful explanations for effective and reliable human-

machine interaction.

(3) Inclusivity matters : Automotive HMIs should not only take people’s technical

backgrounds or digital literacy into account but also consider their various functional

and cognitive capabilities for communicating explanations to them. Hence, need-

based and customized HMIs must be a key aspect in fostering everyone-inclusive

autonomous driving and meeting general society’s expectations of this technology.

91



6.5 Summary

This chapter has presented a situation awareness framework for autonomous driv-

ing backed by HMI and explanations. The experiment and humans’ judgment of

experimental findings show that faithfulness in explanations is of paramount impor-

tance for users to understand driving situations, trust action decisions, and the safety

of self-driving vehicles. I believe that the experiment and human judgment of the

experimental results presented in this chapter can help enhance the transparency

and safety of this technology, inform effective automotive HMI design, and promote

everyone-inclusive autonomous driving.

92



Chapter 7

Safety Implications of Explainable
Artificial Intelligence in
End-to-End Autonomous Driving

7.1 Introduction

The end-to-end learning pipeline is gradually creating a paradigm shift in the ongoing

development of highly autonomous vehicles, largely due to advances in deep learning,

the availability of large-scale training datasets, and improvements in integrated sensor

devices. However, a lack of interpretability in real-time decisions with contemporary

learning methods impedes user trust and attenuates the widespread deployment and

commercialization of such vehicles. Moreover, the issue is exacerbated when these

cars are involved in or cause traffic accidents. Such drawback raises serious safety

concerns from societal and legal perspectives. Consequently, explainability in end-to-

end autonomous driving is essential to build trust in vehicular automation. However,

the safety and explainability aspects of end-to-end driving have generally been investi-

gated disjointly by researchers in today’s state of the art. This chapter aims to bridge

the gaps between these topics and seeks to answer the following research question:

When and how can explanations improve safety of end-to-end autonomous driving?

In this regard, I first revisit essential explanation concepts with respect to their safety

assurance in autonomous driving. Furthermore, I present three critical case studies
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and show the pivotal role of explanations in enhancing self-driving safety. Finally, I

describe insights from an empirical study and reveal potential value, limitations, and

caveats of practical explainable AI methods with respect to their safety assurance in

end-to-end autonomous driving.

7.2 Forms and Contents of Explanations

As described in the reviewed studies, various forms and contents of AV explanations

have been of interest to automotive researchers since the introduction of the prelim-

inary explainable autonomous driving models, such as VisualBackProp [32]. It is

noteworthy to underline that AV explanations may be universal, targeted at general

users, and specific, targeted at a particular group. That is why explanations be-

come valuable when they meet the needs and expectations of the relevant interaction

partners. This nuance specifically applies to the safety of autonomous driving as a

holistic system and users in the loop that can be affected by the action decisions of

an AV while it operates on the road. For instance, while a person with all functional

abilities may be satisfied with textual information presented in a display monitor, a

user with visual impairment in a pedestrian crosswalk will need a different format

of explanation, such as an external voice interface [18, 234]. In another example,

technically rich driving information or log data may be required for system engineers

for debugging in cases of post-trip analysis or accident investigations. Consequently,

the conveyance format and content of explanations have crucial safety implications

for people interacting with an AV both in real-time and in post-trip analysis.

7.3 Timing Sensitivity of Explanations

The time sensitivity of explanations is yet another essential factor from a safety per-

spective, as described in Chapter 3. Explanations, depending on the level and context

they are delivered, can have different time granularity in length, ranging from millisec-
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onds to seconds and sometimes to a longer interval. In general, the time granularity

of explanations in AVs could be grouped as follows from the time length perspective:

Immediate feedback (in milliseconds): Some explanations may have higher time sen-

sitivity and need to be delivered in the range of milliseconds. For instance, if an

autonomous car encounters a sudden obstacle or an unexpected object at a very near

distance, it should provide immediate feedback to the human passengers or backup

driver for a possible takeover or situation awareness. This feedback, accompanied

with a relevant explanation, could describe why the vehicle made a specific maneuver

or applied an emergency brake, for example.

Perceptual explanation (in seconds): Explanations for AV’s sensing of the operational

environment may have a slightly longer time allowance, typically in the range of sec-

onds. Examples may be the justifications for the vehicle’s detection of a pedestrian,

a stop sign, or another vehicle in its vicinity. In addition, perceptual explanations

within a range of seconds could be helpful for takeover requests, such as the blind

corner case described in Figure 2.3. In the experiments for a transition time between

4 s vs. 7 s for takeover situations, Huang and Pitts [121] have shown that a shorter

lead time leads to faster reaction but the poor quality of takeover. Hence, percep-

tual explanations with appropriate timing can bring situation awareness to people on

board.

Behavioral Explanation (seconds to minutes): These explanations may reflect the ra-

tionale behind route planning or a longer-term decision-making process. Behavioral

explanations may be provided in advance to inform passengers of upcoming changes

in the journey and help them understand the vehicle’s decision-making intentions.

Post-trip explanations (minutes, days, weeks, years): Once the autonomous car com-

pletes its journey, the explanation system can provide a detailed post-trip analysis,

explaining the entire decision-making processes from the initial point to the final des-

tination, highlighting critical events along the trip, and offer insights into how the

system performed and what can be improved. These explanations are particularly
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Figure 7.1: The time length of communicating explanations for on-time human, ve-
hicle reactions and situation awareness in autonomous driving

valuable in case an autonomous vehicle is involved in a traffic accident. Forensic

explanation in this context can help debug the autonomous controller, reveal if the

self-driving made a correct/incorrect decision just before the accident, and provide

further opportunities to improve the existing driving system.

In general, the choice of time granularity for explanations should take the urgency,

relevance, and potential impact of the information conveyed into account. Real-

time safety-critical information requires immediate explanations, while lower-priority,

longer-term decisions, and post-trip explanations can be communicated with a longer

time horizon. Figure 7.1 shows the timing sensitivity of explanations in this regard.

7.4 Credibility of Explanations

While explaining a variety of autonomous driving tasks has been studied from the

above-mentioned perspectives, another emerging important aspect is the credibility

of such explanations. In this sense, there is an imminent need for evaluating explana-

tions to ensure that explanations reflect the rationale behind the self-driving vehicle’s

decision-making [243]. Given that the stakeholders in autonomous driving may have

different backgrounds and technical knowledge regarding how real-time self-driving

decisions are made, explanation evaluation must take human factors into account.

Doshi-Velez and Kim [75] propose that, in general, the quality of explanations can be

evaluated in three levels for an explainable AI method with respect to the type of task

and required humans. In the application-level evaluation, performing an experiment
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Figure 7.2: Evaluation of explanations in highly automated driving with humans.
The figure has been drawn based on the study of [144].

with a domain expert on a real task is proposed. Furthermore, simple tasks, such

as the ones with a binary choice, are recommended for human-grounded evaluations.

Finally, given that human-grounded experiments may be time-consuming and costly,

the authors propose that the established definition of interpretability can be used

as a proxy to assess the quality of explanations, referred to as functionally-grounded

explanations.

Another perspective on evaluation methods for explanations is their objectiveness and

human-centricity, as identified by Vilone and Longo [266]. Objective evaluations are

referred to as techniques that use objective metrics to validate automated methods.

Human-centric evaluations, on the other hand, necessitate the involvement of end-

users and consider their judgment to measure the quality and validity of explanations.

Mohseni et al. [190] further extend these concepts to safety-critical applications and

show that end users’ mental model, explanation satisfaction, user trust, reliable HMI,

and computational measurements are valid approaches to gauge the correctness of

interpretability in critical tasks.

Finally, in a very recent work, Kim et al. [144] have investigated the role of on-road

explanations and evaluation approaches for them from timing and delivery-type per-

spectives in highly autonomous driving. They provide three types of explanations,

namely perception, attention, and perception+attention in a windshield display of a

vehicle, and evaluate explanations both in a laboratory setting and on actual roads.

The empirical findings of the study suggest that the vehicle’s perception state pro-
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vides enhanced situational awareness and passengers’ feeling of safe self-driving among

these three types. Moreover, risk-adaptive explanations were confirmed to be more

effective when driving-related information is overwhelming for passengers on board,

and such explanations also enhance passengers’ overall trust and perceived safety in

a self-driving vehicle. Figure 7.2 describes the key findings and implications of this

study. It turns out that the “what” and “why” facets of explanations provide more

value in critical scenarios for passengers as safety implications in highly autonomous

driving systems.

Safety-explainability trade-off in end-to-end driving. Relying on a unique

neural network makes end-to-end learning difficult from the interpretability aspect.

On the other hand, this learning paradigm has significant safety and efficiency ad-

vantages over its counterpart, as intermediate representations are optimized toward

the end task, and the computational efficiency and the overall pipeline simplicity are

improved substantially due to shared backbones [43]. Hence, currently, the auto-

motive industry has a great interest in leveraging the end-to-end driving approach

thanks to its improved safety and efficiency benefits [31, 172, 277, 278]. Motivated by

these benefits, it is also worth understanding how viable explainability methods can

enhance safety of end-to-end driving, leading to reliability and transparency benefits

in tandem.

7.5 Analytical Case Studies

Having covered the safety principles of autonomous driving in terms of forms, con-

tents, time granularity, and credibility of explanations, I combine these concepts

within real autonomous driving scenarios. In this sense, this section presents three

analytical studies and an experiment showing how XAI approaches can improve the

performance of end-to-end driving from a safety point of view, both in real-time and

via a retrospective analysis.
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7.5.1 Real-time Explanations for Safety Monitoring

Explanations provision can be in real-time or in a post-hoc manner, depending on

the task and application domain. In autonomous driving, as decisions are temporal

and safety-critical, real-time explanations of the automated vehicle decisions can help

the users (i.e., backup drivers and passengers) monitor driving safety and possibly

intervene in the situation in case the driving system malfunctions. In this context,

a self-driving vehicle must be equipped with the relevant user interface or dashboard

that conveys scene-based information to in-vehicle users, and possibly an emergency

control button, which passengers can use in case of unsafe actions. Such a user in-

terface has two main safety implications for end-users. First, information displayed

in the user interface can communicate situation awareness and help users trust the

vehicle. Furthermore, explanations can also help understand the intentions of a ve-

hicle in its decisions. An interesting study in this perspective has been carried out

by Schneider et al. [236]. The authors use multimodal explanation feedback using

light, sound, visual, vibration, and text formats to observe whether such techniques

make a positive user experience in their human study. They categorize the design of

explanations with the help of autonomous driving domain experts and researchers.

Based on this approach, it is concluded that driving scenario-based feedback can be

four types depending on how critical, reactive, and/or proactive the scenario is, and

three of them are illustrated in Figure 7.3:

1. Proactive non-critical scenarios : A self-driving vehicle does not perform a danger-

ous action and has enough time to react to a scene. The situations in the middle and

rightmost segments of Figure 7.3 are representatives of proactive non-critical scenar-

ios.

2. Proactive critical scenarios : This is when the situation is sufficiently hazardous,

and a vehicle is expected to act on time to avoid any potential danger or mishap.

3. Reactive non-critical scenarios : The vehicle should act immediately to avoid a
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Figure 7.3: Temporal evolution of three driving scenes and information conveyance
to passengers using visual and textual explanations at these scenes, based on the
autonomous vehicle’s closeness to the other vehicles in oncoming traffic. Graphics
credit: [236].

situation that does not imperil human lives. An example is the situation where an

animal runs across the road from an invisible place in front of the vehicle. In this

case, the vehicle must press the brake and prevent hitting.

4. Reactive critical scenarios : There is insufficient reaction time that high degree of

risk or danger for human life. An example is a situation in which another car appears

in oncoming traffic at a close distance. The vehicle should immediately brake to avoid

a potential collision. The leftmost image segment in Figure 7.3 is a relevant example.

These four categories of driving scenes show that real-time explanatory information

on driving scenes has significant safety implications for autonomous driving. Ex-

planations provide driving scenario-based information to the passengers and show

how an AV behaves in such circumstances. Moreover, they can also communicate

the vehicle’s existing limitations and issues and enable debugging and enhancing the

system.

7.5.2 Failure Detection with Explanations

An ability to explain incorrect actions or self-driving failures is another positive and

significant aspect of vehicle autonomy. The reasons for failures could originate from
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↦
Original speed limit Modified speed limit Causal effect of the adversarial attack at a testing site

Figure 7.4: A deliberate hack causes the 35-mph sign limit to be incorrectly perceived
as an 85-mph sign by Tesla’s ADAS at a testing site. The manually added red circles
show the speed limit perceived by the heads-up display and modified speed sign. The
figure has been drawn based on the content in [214].

individual or multiple sources, such as software bugs, sensor malfunctions, commu-

nication breakdown, poor roads, bad weather conditions, and adversarial machine

learning attacks, as specified in [58]. Foreseeing such potential safety threats is also

crucial in the design, development, and continual debugging of self-driving systems.

In particular, testing autonomous vehicles in their prototype stage can provide ample

opportunities to understand the functionalities and limitations of the driving system

and certify compliance with the V-model of the ISO 26262 standard. In this context,

McAfee researchers have conducted an experiment, termed model hacking, to test the

vision system of Tesla Model vehicles against adversarial attacks [214]. They made

some alterations to some traffic objects, such as the speed limit, to observe how the

perception system of a self-driving vehicle understands the modified image and acts

in the driving scene. For this purpose, the team deliberately modifies the speed limit

as shown in Figure 7.4: They added a black sticker to the middle of 3 in the speed

limit and tested Tesla Model S at a site to see how the heads-up display of the vehicle

reads the altered speed limit. As shown, the vehicle reads the 35-mph sign as an 85-

mph sign and accelerates once it approaches and passes the sign. Such misdetection,

particularly given that the difference between the modified and original speed limits

is substantially big, could have dire consequences in a real driving environment.
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With that said, even without a more careful look, an ordinary person may not un-

derstand why the car accelerate in this case, as the alteration in the speed limit is

quite deliberate and not easily visible. In this case, a more appropriate approach to

interpreting the vehicle’s decision is to acquire a causal explanation. In such scenar-

ios, both the real-time and post-hoc explanations can bring safety benefits as shown

below:

Real-time explanation: If the car provides a rationale for its decision on a dashboard

or user interface (such as “The speed limit is 85 mph, accelerating”) in real time while

approaching the speed sign, a passenger on board or a backup driver may understand

such a decision and possibly intervene in the situation by pressing the emergency stop

button and decreasing the speed. Timely communication of the malfunctions of the

vehicle to the users may help avoid potential dangers ahead.

Post-hoc explanation: In case the explanations are delivered in a post-hoc manner, a

history of action-explanation pairs could identify correct and incorrect actions. In the

provided example, producing the same textual explanation shown above would help

disclose that the vision system of a vehicle was not fully secure against adversarial

attacks. Such failures could further provide an opportunity to debug and improve the

driving system.

7.5.3 Solving the ”Molly Problem” with Explanations

As self-driving vehicles are becoming highly dependent on their automotive features,

several safety challenges evolve with increasing AI-based decisions. Road accidents

with such vehicles can trigger a variety of regulatory inspections from safety, engi-

neering, ethical, and liability perspectives. Notably, one of the most debatable issues

within such a context is the proper investigation of autonomous car-related collisions

and hitting where there are no eyewitnesses. In this sense, ADA Innovation Lab Lim-

ited and the Technical University of Munich researchers have formalized the “Molly

problem” (i.e., Figure 7.5), which addresses critical and ethical challenges when an
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Figure 7.5: The Molly problem: A self-driving vehicle hits a pedestrian and nobody
witnesses. Explainability of the self-driving decisions can help understand why the
car kept going and eventually hit the pedestrian at this scene.

unoccupied self-driving car hits a person with no eye witness in the scene [133]. The

Molly problem is stated as follows:

A young girl called Molly is crossing the road alone and is hit by an un-

occupied self-driving vehicle. There are no eye witnesses. What should

happen next?

Such a situation is considerably challenging, and the primary goal of the post-accident

inspection is to identify which part made a mistake: Was that a faulty decision made

by a self-driving car, or did Molly unexpectedly enter the driving zone and cause

the mishap? To cope with the issue, the research team has created a survey to get

public views on this problem to identify the main culprit of the road accident. 296

respondents aged between 18 and 73 years old were asked questions about the driving

software of the car and its impact on hitting [132]. 75% of these people favored

traveling in autonomous vehicles in general. According to the survey result, 97%

expected that the AI software of the car should be aware of the hitting, and 94% of

the respondents believed that the software should have stopped the car at the collision

area. Moreover, 94% thought that the car should have indicated a hazard signal to

bystanders on the scene. It turns out that a majority of societal views hold AVs
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Table 7.1: The Molly problem survey: Participants’ answers to the selected safety-
related queries. The table reproduced based on [132].

Query Expected Unsure Didn’t expect

AI software should be

aware of the collision.
97% 2% 1%

AI software should stop

the car at the collision area.
94% 4% 2%

AI software should indicate

a hazard to road users.
97% 2% 1%

are more responsible for such accidents (Table 7.1).

Such traffic accidents with implications from safety to liability necessitate the concept

of explainability of the driving system to a substantial degree. Given that nobody

witnesses the collision, it seems that only an accurately delivered history of action-

explanation log data could be helpful for forensic analysis and understanding of the

main cause of the mishap. Furthermore, as the collision process evolves over a short

period of time, I argue that explainability of the driving system may be analyzed over

three-time phases with the following questions:

Phase 1 - Before hitting: Did the self-driving vehicle follow the traffic rules (such as

the speed limit) on that road segment and detect the pedestrian before the collision?

If so, just before the collision, did the vehicle press the emergency brake even though

the hitting eventually became inevitable?

Phase 2 - At the hitting point: Once the accident occurred, did the vehicle “under-

stand” that it hit a person and come to a full stop accordingly, as an expected course

of action?

Phase 3 - After hitting: If the vehicle became aware of hitting, did it activate emer-

gency state functions such as reporting the accident to the regulatory bodies and

emergency service immediately?

Getting answers to these is vital for a proper post-accident inspection as providing
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convincing and intelligible rationales can help understand the “Why” inquiries time

by time. For instance, referring to Phase 2, the case where the car stopped once the

hitting happened would have had different legal implications than the not-stopping

scenario, which can help deal with the arising ethical, responsibility, liability, and

accountability issues, accordingly.

7.6 Experimental Investigation: Traffic Scene Un-

derstanding via a Video-Language Transformer

This subsection describes my experiment with video question answering (VideoQA)

applied to real-driving and simulation datasets, as an explanation provision method

in end-to-end driving. In this sense, I extend my recent work [17] on explaining au-

tonomous driving actions via a VQA mechanism. While my preliminary work focuses

on providing textual explanations for a visual scene in a stationary environment with

a single driving image, I expand the scope of that work, evaluate explanations in

dynamic environments with video-based driving scenes, and describe implications of

such explanations from a safety point of view. The key idea with VideoQA is that

an explanation must capture the semantics of the temporal changes in visual driving

scenes. I first sample six driving scenes from recorded driving videos of the SHIFT, a

simulation dataset [252], and BDD-A, a real-world driving dataset [284]. The lengths

of these scenarios vary from 4 seconds to 12 seconds. Then, I use the Video-LLaVA

[165] multimodal transformer as an explanation mechanism for the VideoQA task,

which takes a driving video and a question about the context of this video as input

and produces a response. Given XT, as a textual prompt, and XV, as visual signals,

the input signals are encoded and represented as a sequence of tokens based on Equa-

tion 7.1. After that, the model eventually attains multi-modal context understanding

and reasoning capabilities by maximizing the likelihood probability as per Equation

7.2.
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ZT = fT (XT) ,ZV = fP (fV (XV)) (7.1)

p (XA | XV,XT) =
L∏︂
i=1

pθ

(︂
X

[i]
A | ZV,Z

[1:i−1]
T

)︂
(7.2)

Here L indicates the length of the generated sequence XA, and θ denotes a trainable

parameter. This task, in its essence, can be considered as an interactive dialogue

between humans and a conversational user interface with the timing sensitivity con-

sideration, where people on board ask questions to the user interface to understand

the self-driving car’s actions and traffic scenes, particularly in critical moments.

In the experiment, I carefully select scenarios and ask purposeful questions to observe

how the explanation model responds to our question. Overall, safety implications of

action-explanation pairs can be analyzed in four ways:

1. Correct action, correct explanation: This case is a desideratum as the ultimate

goal of explainable autonomous driving is to choose and perform actions correctly and

provide action-reflecting and context-aware explanations as required by the safety-

regulatory compliance principles. Scenarios 1, 2, and 3 in Figure 7.6 may be deemed

as examples of such a category.

2. Correct action, incorrect explanation: The question-answer pair in Scenario 5 falls

into this category. When we ask an adversarial question as “Why is the car making a

left turn?”, the model is flawed and generates a falsified response of “The car is mak-

ing a left turn to avoid a collision with an oncoming traffic,” where the autonomous

car, in fact, performs a right turn. During the trip, users may ask incorrect questions

either unintentionally (i.e., visually impaired passengers) or intentionally/deliberately

(to test robustness of the explanation system). Accordingly, the explanation inter-

face must detect such questions and respond correctly. Failing to provide adequate

responses to adversarial questions may damage the users’ trust in the explanations

and even action decisions of a self-driving vehicle. A rigorous VideoQA model must
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4 seconds

Q: What is the car doing once it approaches the pedestrian? A: The car stops and the pedestrian crosses the street.


5 seconds

Q: Why is the car stopping at the scene? A: The car is stopping because the bicyclists are crossing the street.

4 seconds

Q: Why did the car change its lane to the right one at this scene? A: The car changed its lane to the right one because it was following the 

traffic rules and changing lanes to avoid any obstacles or to make a turn.
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Figure 7.6: The results of the experiment on the chosen scenarios from the BDD-
A dataset (recorded videos) with the Video-LLaVA multimodal transformer as an
explanation model. The model produces correct explanations for the conventional
questions on the actions of autonomous cars at the described scenes.

12 seconds

Q: What traffic light is observed? A: The video shows a red traffic light on the street. 

5 seconds

Q: Why is the car making a left turn? A: The car is making a left turn to avoid a collision with an oncoming traffic.

7 seconds

Q: Why did the car decide to move forward at the scene? A: The car decided to move forward because the traffic light turned green, 
indicating that it was safe to proceed.
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Figure 7.7: The results of the experiment on the chosen scenarios from the SHIFT
dataset (recorded videos) with the Video-LLaVA multimodal transformer as an ex-
planation model. Our deliberate questions confuse the model: In Scenarios 4 and
5, the model is influenced by tricky questions and generates incorrect responses. In
Scenario 6, the explanation model fails to provide an adequate response on why the
autonomous car kept going straight under the red light.
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not only provide action/scene-related explanations but also defend against adversar-

ial questions to ensure that the vehicular interface delivers an explanation of what

it perceives in the scene. Moreover, robustness against human adversarial questions

can contribute to the development of safety and security measures to capture and

mitigate foreseeable adversarial attacks on the perception system of AVs.

Another potential limitation of an explanation model could be its reasoning beyond

data. For instance, in Scenario 4 in Figure 7.7, there is no traffic light in the scene;

however, the model is influenced by another deliberate question and predicts a red

traffic light. Consequently, explanation systems, particularly large pre-trained mod-

els, must be constructed in a way that describes the visual scene as it is or just “fails”

safely by not delivering an explanation, thereby avoiding the presentation of a poten-

tially convincing but fictitious explanation.

3. Incorrect action, correct explanation: Explaining an incorrect action of an au-

tonomous car correctly can help detect errors with the existing driving system. We

relate this category to the fail-safe capability of AVs: When an AV detects its loss

of/limited automation ability, it can safely stop at the side of the road temporarily

and prevent potential hazards ahead. Likewise, when an AV does not stop at a red

traffic light, for the question “Why did the car continue to drive?” the explanation

system can help with corrective answer describing “It seems the car made a mistake

as it should have stopped as the red light was on.” Such a robust and context-aware

explanation can further help system engineers detect the issue/glitch with the per-

ception system of the AV.

4. Incorrect action, incorrect explanation: Finally, in the fourth case, the unsafe

behavior of an autonomous vehicle is accompanied by incorrect explanations. For

instance, referring to Scenario 6 in Figure 7.7, the AV keeps going under a red light,

and when a question is asked about its behavior, the explanation model generates

an incorrect response describing the light turning green (where it does not, actually).

This is the most undesirable situation as the AV performs an unsafe action and the

108



deep neural network
camera

lidar

radar

passengers and  
backup drivers

road users outside 
(with impairments)

auditors and  
accident inspectors

system engineers  
and AI scientists

live 
 explanations

post-hoc 
 explanations

• textual explanations 
• visual descriptions 
• hazard signals 
• intent signals 
• voice interfaces

• explanation logs 
• recorded driving data

Group 1 Group 2

Group 3 Group 4

end-to-end autonomous driving explanation conveyance in real-time and retrospectively using various methods safety implications for the engaged people

Explain to control

Explain to enhance

Explain to defend

Explain to comply

Explain to adapt

Group 1 and Group 3

Group 4

Group 4

Group 4

Group 2

Reinforcement learning
Imitation learning
End-to-end differentiable learning

Figure 7.8: A high-level and illustrative diagram of safety implications of explanations
for the engaged people in end-to-end autonomous driving

explanatory system cannot detect/describe it properly to carry out corrective mea-

sures. Failing to defend against such questions is a limitation of transformer-based

VideoQA models and hinders the applicability of these models as a reliable automo-

tive user interface.

Overall, based on the broad spectrum of analytical and empirical analyses throughout

the study, the value of explanations can be measured from the safety perspective at

least in five ways:

Explain to control : Real-time or live explanations may enable human drivers/passen-

gers on board to intervene and take control in critical scenarios that lead to effective

human-machine teaming and a safer trip.

Explain to enhance: Retrospective explanations may help detect system errors, sen-

sor malfunctions and enable to implement corrective measures that reduce the risk of

further accidents caused by the faulty behavior of an autonomous car.

Explain to defend : Explanations can assist in identifying vulnerabilities and security

flaws and developing robust cybersecurity measures to prevent malicious attacks on

the behavior of an autonomous car, as described in Experiment 1.

Explain to adapt : Explanations can facilitate continuous improvement. By under-

standing how the deployed driving system responds to various (especially rare and
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unseen) situations, system developers and engineers can refine the system through

adaptive learning and enhance safety features over time.

Explain to comply : AI transparency can ensure that a self-driving system’s decision-

making process aligns with established regulations, making it easier for authorities

to assess overall autonomous driving safety, and approve at least semi-autonomous

vehicles for widespread use by society.

To summarize, safety implications of explanations for relevant interaction partners in

end-to-end driving are described in Figure 7.8 with representative illustrations. While

these safety implications also apply to modular autonomous driving, it is noteworthy

to underline that end-to-end driving is a monolithic system directly mapping sensor

inputs to control outputs via RL, IL, or differentiable learning. On the other hand,

modular autonomous driving is a decomposed system consisting of several intercon-

nected modules, where modular systems need explainability both within individual

modules (such as perception and planning) and across module interactions. There-

fore, safety assurance of XAI approaches for modular autonomous driving is also a

promising direction for future exploration.

7.7 Summary

This chapter has presented an investigation of safety implications of XAI approaches

in end-to-end autonomous driving. Through critical case studies and empirical evi-

dence, I reveal the value of explanations in enhancing end-to-end driving safety and

show the potential advantages, limitations, and challenges of explanations for achiev-

ing this goal. I believe that the presented guidelines can help improve safety of

vehicular automation and build responsible, trustworthy, and publicly-acceptable au-

tonomous driving systems.
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Chapter 8

Toward Autonomous Vehicles 2.0:
Unifying Vision, Language, and
Action within Embodied AI for
Explainable End-to-End
Autonomous Driving

8.1 Introduction

More than three decades of research in autonomous driving, starting with ALVINN

in 1988 [213] and further succeeding with the DARPA Grand Challenge [261], has

achieved significant milestones with traditional AI software. However, recent break-

throughs in Foundation Models in terms of LLMs and VLMs motivate a transition

to next-generation AVs. This generation of AVs has been referred to as AV2.0 by

industry professionals [85, 107, 135]. The proposal is that the availability of inte-

grated sensor suites, computational resources (i.e., GPU, TPU), and deep learning

approaches can help AVs navigate via an end-to-end approach through adaptive learn-

ing, scaling, and generalization in complex driving environments. The ability to learn

continually through interaction with the environment rather than relying on static

datasets has resulted in the emergence of a new direction, labeled as “Embodied AI”

[78, 275], and AV2.0 research can move forward with such a learning approach. Uni-

fying vision, language, and action effectively within Embodied AI can enable an AV
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to navigate, interpret, and describe its high-level decisions in real-time. However,

the safety and explainability components of an end-end self-driving architecture must

overcome fundamental challenges in AI described below.

8.2 Safety Challenges with Autonomous Vehicles

2.0

The established guideline on core problems with AI safety [9] underscores five cru-

cial considerations: avoiding negative side effects, avoiding reward hacking, scalable

oversight, safe exploration, and robustness to distributional shift. I analyze the im-

plications of these problems for end-to-end autonomous driving as follows:

• Avoiding negative side effects: Autonomous driving is primarily associated

with the ability of a self-driving car to avoid accidents and maintain a safe distance

from stationary and dynamic objects along the planned motion trajectory. How-

ever, the scope of the problem is not limited to this feature. Consider a scenario

where an autonomous car interacts with another two vehicles, V1 and V2, at a

specific moment. While aiming to make safe temporal decisions by itself, the au-

tonomous car must also ensure that it does not implicitly enable V1 and V2 to cause

an accident at that road segment as a part of vehicle-to-vehicle (V2V) communi-

cation. According to [9], a potential solution to this problem could be to leverage

cooperative Inverse RL [99], where an autonomous system can cooperate with hu-

mans, and a human actor can always shut down the autonomous system in case

such a system exhibits undesirable behavior. In the context of autonomous driving,

this nuance can be related to an AV’s communication with a human-operated vehi-

cle or other remote operator monitoring an AV’s overall driving safety. One of the

prominent methods in this context is Sympathetic Cooperative Driving or Sym-

CoDrive paradigm [262], which trains agents not only to achieve safe driving for

themselves but also for human-controlled vehicles by promoting altruistic driving

112



Road testing

hand-crafted rules for 
 further enhancements

Perception Localization

Planning Control

AV1.0

VLAM models End-to-end learning

offline simulation
Road testing

• adaptive learning 
• continuous improvement

AV2.0

Pipeline design: modular
Interpretability consideration: low

Scalability: low
Human-in-the-loop aspect: low

Pipeline design: end-to-end
Interpretability consideration: high

Scalability: high
Human-in-the-loop aspect: high

human in the loop

Fail-safe ability: low Fail-safe ability: highImprovement methodology: rule-based Improvement methodology: adaptive

Figure 8.1: My approach to AV2.0 vs AV1.0, and potential advantages of AV2.0 over
AV1.0 in terms of its AI software stack, safety and explainability. The image of the
vehicle has been taken from Waymo’s media resources.

behavior in cooperative autonomous driving. As the deployment of AVs on roads

is a gradual process, synergy with human-operated vehicles is a viable approach for

socially aware and safe navigation.

• Avoiding reward hacking: Can we ensure that the end-to-end driving system

does not shape its dynamic reward function according to what it sees in less dy-

namic environments and still apply that reward shaping while transitioning to

highly dynamic environments? Particularly, as an embodied AI agent with adap-

tive learning and generalization ability in unseen environments, reward formulation

must account for long horizons ahead and should not adjust its goals for short-term

safe driving behavior. This topic has recently been well-investigated by Knox et al.

[151]. They propose that flaws in reward shaping for RL-controlled autonomous

driving can be identified by eight sanity checks : unsafe reward shaping, potential

mismatch between people and reward function’s preferences, undesired risk tol-

erance via indifference points, learnable loopholes, missing attributes, redundant

attributes, and trial-and-error reward design. The study discloses that such sanity

checks can capture flaws in reward shaping for autonomous driving that can also

exist in reward shaping for other tasks.

• Scalable oversight: Can humans measure whether AVs perform at a human level
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or better in general in all driving situations, where in specific moments, evaluating

the driving behavior of end-to-end driving may be difficult for humans due to

various reasons. While being outside of human override, temporarily (i.e., refer to

the Molly problem [133]), for various reasons, can we trust that AVs will behave

safely at that moment? Amodei et al. [9] report that a potential solution to this

problem may be semi-supervised RL: an agent can see its reward on a small subset

of episodes or times steps. While rewards from all episodes are used to evaluate

the agent’s performance, the agent can only use that subset of rewards to optimize

its performance under this setting.

• Safe exploration: Can an AV always make safe decisions when it has a binary

choice of actions in a specific time interval? For example, an autonomous car may

change its predefined route due to traffic congestion; however, the alternative route

may have dangerous potholes or other damaged infrastructure that may lead to

risky driving while attempting to save time on the trip.

• Robustness to distributional shift: A well-known problem with AVs is the dis-

tribution shift when transitioning from a simulation environment to actual roads.

For instance, autonomous driving with an impressive performance in a simulation

environment may not have the same performance in real-world deployment. While

open-loop training (i.e., learning passively from expert demonstrations) is relatively

fast and makes it possible to analyze a history of recorded driving data, the distribu-

tion shift is the key challenge emerging while transitioning to closed-loop training,

where learning happens through interaction with the operational environment in

real-time [51, 64, 299]. Filos et al. [90] have investigated this topic and proposed ro-

bust imitative planning, a technique for epistemic uncertainty-aware planning. The

key idea is that in case the model has great uncertainty in suggesting a safe course of

action, the model can achieve sample-efficient online adaptation by querying the ex-

pert driver for feedback. Through several experiments and state-of-the-art results,
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the authors also release CARNOVEL, a benchmark for evaluating the robustness of

driving agents with distribution shifts. Such a benchmark may be a significant part

of a robust solution for addressing out-of-distribution scenarios. That said, both

open-loop evaluation and closed-loop simulation are necessary to comprehensively

assess an AV’s on-road performance and ensure robustness to distributional shifts.

These problems reflect a broad spectrum of potential safety issues with end-to-end

AVs. However, I argue that the proposal misses yet another essential concept, namely

fail-safe ability. This concept has been investigated in some recent work [176, 207,

287]; however, the recent proposals of the next-generation AVs [85, 107, 135] do

not explicitly consider this functionality as an integral component of this technology.

Human drivers often have a rest once they feel tired on long trips, and a short rest may

help them feel mentally/physically better in the next phase of their driving. The same

example can applied to AVs as well. Due to internal reasons (e.g., temporary system

malfunction) or external factors (e.g., extremely adverse weather conditions), AVs

may need to pause their trip temporarily and prevent further high-stakes consequences

ahead. Such capability should not be considered a limitation of AVs; on the contrary,

it is an optimal design strategy that foresees potential issues due to any factors and

makes AVs behave safely by directing them to “have a short rest.”

8.3 Explainability Hurdles with Autonomous Ve-

hicles 2.0

The reviewed studies in Chapter 3 show a significant milestone in the explainability

of self-driving systems. However, there are still significant gaps and challenges to

achieving accurate and timely explanations in all phases of trips. For instance, as

of September 2023, it is reported that LINGO-1 exhibits roughly 60% performance

in its linguistic and VQA-based explanations compared to human-level performance

[277].
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Apart from informational content, the timing perspective of explanations, particularly

in terms of the lead time for emergent scenarios, perhaps using extensive scenario-

based evaluations or case-based reasoning, must be engineered appropriately. Further-

more, a well-known problem with large pre-trained models, hallucinations, is another

challenge in explanation delivery. Particularly, in QA models, the model must gen-

erate a response based on the joint question and scene-based semantics rather than

being influenced by the question itself, such as in the case of adversarial QAs. My

empirical study [19] on the latter shows that even advanced VLMs can fail to detect

the language bias in QA models and present incorrect explanations in case of human

adversarial questions. This issue, in turn, may damage user trust and can also have

negative safety implications for self-driving. So, I argue that large pre-trained mod-

els’ construction mechanisms can be adjusted and regulated with common sense and

human-defined concepts [141]. Hence, designing robust QA models deserves more

attention to enable meaningful and trustworthy dialogues between users and AVs.

These features are key for achieving effective human-AI alignment [84, 233], trust [6,

72], and public acceptance [82, 200] with AV2.0. I describe my approach to AV2.0

and its difference from AV1.0 in Figure 8.1.
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Chapter 9

Conclusions and Future Work

This chapter presents the main conclusions presented in the previous chapters. First, I

summarize the main contributions made toward the development of XAI approaches

for AVs, my primary goal in this thesis, and then discuss potential directions for

future exploration.

9.1 Summary of Contributions

This thesis focuses on the development of XAI approaches for AVs. Chapter 3 has

presented a comprehensive and systematic overview of explainability approaches for

modern autonomous driving. To this end, I have presented a survey of visual, RL-

based, IL-based, feature importance-based, logic-based, and user study-based expla-

nations for AVs. Going forward, Chapter 5 complements Chapter 3 by outlining the

most recent and emergent paradigm of LLM and VLM-based explanations for AVs.

Chapter 4 has introduced a VQA approach to explaining autonomous driving actions.

In this sense, I use deep RL to control an AV in a simulation environment, generate a

video from the vehicle’s field of view, convert this video to image sequences, annotate

actions in the scenes, and apply the VQA mechanism as an explanatory approach to

understand rationales for self-driving actions in unseen scenarios. The experimental

results show that VQA is an effective and human-interpretable technique to justify

driving actions.
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While the technique presented in Chapter 4 relies on human annotation to under-

stand autonomous driving actions, it is essential to emphasize that real autonomous

driving is a more challenging task with complex scenarios, and a QA system must

have the ability to describe driving actions and traffic scenes beyond annotated traf-

fic situations. Furthermore, humans may ask not only conventional questions about

driving but also tricky or adversarial queries either out of curiosity or due to their

visual impairment. To this end, Chapter 6 considers these nuances and presents a

VLM-based VQA experiment and user study to validate the empirical findings of the

experiment. The empirical evidence and critical analysis show that timing, robust-

ness, and inclusivity of explanations are key factors for users in building confidence

and achieving situation awareness with AVs.

Chapter 7 presents safety implications of XAI approaches for users in end-to-end

autonomous driving. As the end-to-end pipeline is toward replacing the traditional

modular pipeline but also lacks interpretability by design, it is of paramount im-

portance to investigate safety explainability in tandem in the realm of end-to-end

driving. In this regard, I present three analytical case studies and an experimental

study with a zero-shot VideoQA task for traffic scene understanding and disclose po-

tential value, limitations, and caveats of practical XAI methods with respect to their

safety assurance in end-to-end autonomous driving. Finally, Chapter 8 envisions op-

portunities and challenges with safety and explainability of end-to-end autonomous

driving within Embodied AI as a road map to the future of AV technology.

9.2 Future Directions

Thus far, autonomous driving researchers have made substantial contributions to

enhancing safety and transparency of AV technology. However, I trust that safe,

trustworthy, and explainable autonomous driving is still far away from being accept-

able by the general society. Here, I delineate crucial aspects to be considered for

future exploration:

118



• Human Factors: Humans’ varying levels of cognitive and functional capabilities

should be taken into consideration in building AV explanations.

• Consensus on Timing Perspective: Extensive case-based reasoning and scenario-

based evaluations should be performed for the communication of explanations in a

timely and effective manner.

• Robustness: Explanations should detect and defy adversarial interactions to en-

sure any forms of intentional or unintentional perturbations do not affect the be-

havior of an intelligent driving system.

• Explanations in Uncertainty: There is a need to present AV explanations with

a certain level of confidence in uncertainty.

• Explanations within Level 3 Situation Awareness: Explanation delivery can

be considered for the future projected behavior of an AV.

Below, I describe my perspective on these directions in detail.

9.2.1 Human Factors Consideration of Explanations

The existing literature and empirical studies presented in this thesis show that AV

explanations can be multi-modal, specific user-targeted, or universal. Furthermore,

people’s various needs and preferences are critical aspects for conveying explanations

effectively. These factors necessitate more user studies on AV explanations with

different groups. For instance, as a part of the technical perspective, it is essential to

understand whether all users have enough digital literacy to understand explanations

[258]. In another example, extensive case studies are needed to understand the best

practices with explanation delivery for people with visual and hearing impairments.

Finally, culture, gender, and age factors are other key nuances to be tested within user

studies. Given that AVs are eventually deployed on roads after meeting established

standards and regulatory principles, user studies within the mentioned dimensions
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can help automotive developers and manufacturers reach a consensus on effective

and timely communication of explanations as parts of these standards and regulatory

principles.

9.2.2 Reaching a Consensus on the Timing Perspective of
Explanation Communication

There are still no clearly defined standards on the timing mechanism of the expla-

nations conveyance. Our study in Chapter 6 and other related works with various

groups and age ranges reveal that an explanation must be delivered before action

is decided rather after it is already performed. Furthermore, studies also show that

explanations are only needed only when they are necessary to ensure driving and

traffic-related information does not cause mental overload for people, particularly for

onboard people. The key question remaining unsettled is the amount of time for

takeover situations. If the time is too short (such as 2 or 3 s) to alert backup drivers

or passengers of upcoming danger, it can be stressful for them to understand and

react to the situation appropriately. On the other hand, another critical situation

may evolve in longer intervals, such as 15-20 s, resulting in late and ineffective hu-

man intrusion into that scenario. So, I argue that extensive case-based reasoning and

scenario-based evaluations with users in the loop can help determine the best prac-

tices with the amount of takeover time. Hence, additional studies should be carried

out on the time granularity of AV explanations to reach a consensus on this concept.

9.2.3 Building Robust Explanations

Building robust interactive explanation models for AVs remains yet another chal-

lenging task. The experiments described in Chapter 6 and Chapter 8 disclose that

even advanced interactive explanation frameworks, particularly transformer-based

QA models, are prone to present falsified responses to human adversarial questions.

Meanwhile, the user study presented in Chapter 6 and empirical analysis presented
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in Chapter 8 reveal that incorrect interactive explanations have a negative impact on

users’ perceived safety, the feeling of control, and also on the safety of autonomous

driving actions, respectively. While transformed-based QA models are increasingly

deployed on AVs as conversational models, such issues can significantly damage users’

trust and negatively affect regulatory approval of this technology.

As a potential solution, I propose incorporating human-adversarial examples into the

training process for driving specific QA models. For instance, when a passenger on-

board asks the HMI, ”Why is the car turning to the left?” as an adversarial question

in an actual right turn scenario under a green light, the HMI should present an action-

reflecting response like “No, the car is turning to the right as the traffic light allows a

right turn,” explaining AV action with causal attribution. Regardless of whether such

questions are asked intentionally or unintentionally, the explanation models should

understand the joint semantics of question and scene and present context-aware re-

sponses. Consequently, pre-trained models must be regulatable by construction [141]

to ensure their inference process leverages human-defined concepts.

9.2.4 Explanations in Uncertainty

Despite substantial advancements in providing a variety of explanations for autonomous

driving, conveying the level of confidence to relevant interaction partners in such ex-

planations remains a significant challenge. This issue deepens in uncertainty in the

driving environment, such as in adverse weather conditions and situations with re-

duced visibility (e.g., dense fog, nighttime driving). Without carefully measuring

residual risks and environmental uncertainty, overconfident decisions may have dire

consequences for an AV and human actors at that traffic scene. Consequently, uncer-

tainty estimation is a vital problem in dealing with unforeseen events safely.

While quantifying uncertainty has recently been investigated by autonomous driving

researchers from several aspects, such as for statistical guarantees [185], and object
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detection [184, 209], providing relevant explanations with a certain level of confidence

under uncertainty relatively remains unexplored in state of the art. Only a few stud-

ies have attempted to investigate explainability within uncertainty, such as [203] and

[167]; however, the literature is scarce with relevant studies in general. Consequently,

as dynamic driving environments often come with considerable uncertainties, there is

an imminent need to justify AV actions with a certain level of confidence instead of

solely presenting deterministic explanations to people in the loop.

9.2.5 XAI within Level 3 Situation Awareness: Explanations
for Projected Events

Currently, AV explanations are primarily leveraged for post-event analysis and real-

time action justification and traffic scene understanding, which correspond to Level

1 and Level 2 situation awareness defined by [83], and further proposal from the

explainability perspective [233]. It is also interesting to project future AV states

and actions based on information currently perceived and comprehended, thereby

answering “what-if” questions. Thus, Level 3 explanations in the context of AVs can

provide descriptive information about the future projected behavior of an intelligent

driving system.

In conclusion, moving forward, I trust that the future of autonomous driving will be

shaped by its acceptable safety, transparency, and the rights and responsibilities of its

consumers. While these requirements are crucial and a part of today’s most recent

principles for regulated AI [56], I foresee that the listed directions will not solely

remain subjective statements but will be integral components and built-in features of

the next-generation, human-friendly AV technology.
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[51] F. Codevilla, E. Santana, A. M. López, and A. Gaidon, “Exploring the Lim-
itations of Behavior Cloning for Autonomous Driving,” in Proceedings of the
IEEE/CVF International Conference on Computer Vision, 2019, pp. 9329–
9338.

126

https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/


[52] Comma.AI, Public driving dataset, https://github.com/commaai/research,
Accessed online on Apr 1, 2024.

[53] M. Cordts et al., “The Cityscapes Dataset for Semantic Urban Scene Under-
standing,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2016, pp. 3213–3223.

[54] A. Corso and M. J. Kochenderfer, “Interpretable Safety Validation for Au-
tonomous Vehicles,” in 2020 IEEE 23rd International Conference on Intelli-
gent Transportation Systems (ITSC), IEEE, 2020, pp. 1–6.

[55] R. C. Coulter, Implementation of the Pure Pursuit Path Tracking Algorithm.
Carnegie Mellon University, The Robotics Institute, 1992.

[56] Council of the EU, Artificial intelligence (AI) act: Council gives final green
light to the first worldwide rules on AI, 2024. [Online]. Available: https ://
www.consilium.europa.eu/en/press/press- releases/2024/05/21/artificial-
intelligence-ai-act-council-gives-final-green-light-to-the-first-worldwide-rules-
on-ai/.

[57] C. Cui et al., “A Survey on Multimodal Large Language Models for Au-
tonomous Driving,” in Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision, 2024, pp. 958–979.

[58] J. Cui, L. S. Liew, G. Sabaliauskaite, and F. Zhou, “A review on safety failures,
security attacks, and available countermeasures for autonomous vehicles,” Ad
Hoc Networks, vol. 90, p. 101 823, 2019.

[59] Z. Cui, M. Li, Y. Huang, Y. Wang, and H. Chen, “An interpretation framework
for autonomous vehicles decision-making via SHAP and RF,” in 2022 6th CAA
International Conference on Vehicular Control and Intelligence (CVCI), IEEE,
2022, pp. 1–7.

[60] L. Cultrera, L. Seidenari, F. Becattini, P. Pala, and A. Del Bimbo, “Explaining
Autonomous Driving by Learning End-to-End Visual Attention,” in Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion Workshops, 2020, pp. 340–341.

[61] Daimler media, Autonomous concept car smart vision EQ fortwo: Welcome
to the future of car sharing, Accessed on March 10, 2024. [Online]. Available:
https://media.mbusa.com/releases/release-80848dccd3f3680a764667ad530987e9-
autonomous-concept-car-smart-vision-eq-fortwo.

[62] A. Dandekar, L.-A. Mathis, M. Berger, and B. Pfleging, “How to Display
Vehicle Information to Users of Automated Vehicles When Conducting Non-
Driving-Related Activities,” Proceedings of the ACM on Human-Computer In-
teraction, vol. 6, no. MHCI, pp. 1–22, 2022.

[63] David Mullen, Mercedes to accept legal responsibility for accidents involving
self-driving cars, 2022.

[64] P. De Haan, D. Jayaraman, and S. Levine, “Causal Confusion in Imitation
Learning,” Advances in Neural Information Processing Systems, vol. 32, 2019.

127

https://github.com/commaai/research
https://www.consilium.europa.eu/en/press/press-releases/2024/05/21/artificial-intelligence-ai-act-council-gives-final-green-light-to-the-first-worldwide-rules-on-ai/
https://www.consilium.europa.eu/en/press/press-releases/2024/05/21/artificial-intelligence-ai-act-council-gives-final-green-light-to-the-first-worldwide-rules-on-ai/
https://www.consilium.europa.eu/en/press/press-releases/2024/05/21/artificial-intelligence-ai-act-council-gives-final-green-light-to-the-first-worldwide-rules-on-ai/
https://www.consilium.europa.eu/en/press/press-releases/2024/05/21/artificial-intelligence-ai-act-council-gives-final-green-light-to-the-first-worldwide-rules-on-ai/
https://media.mbusa.com/releases/release-80848dccd3f3680a764667ad530987e9-autonomous-concept-car-smart-vision-eq-fortwo
https://media.mbusa.com/releases/release-80848dccd3f3680a764667ad530987e9-autonomous-concept-car-smart-vision-eq-fortwo


[65] L. De Moura and N. Bjørner, “Z3: An efficient SMT solver,” in Tools and
Algorithms for the Construction and Analysis of Systems: 14th International
Conference, TACAS 2008, Springer, 2008, pp. 337–340.
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