Nutritional support for critically ill children (Review)

This is a reprint of a Cochrane review, prepared and maintained by The Cochrane Collaboration and published in The Cochrane Library 2009, Issue 2

http://www.thecochranelibrary.com
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Header</td>
<td>1</td>
</tr>
<tr>
<td>Abstract</td>
<td>1</td>
</tr>
<tr>
<td>Plain Language Summary</td>
<td>2</td>
</tr>
<tr>
<td>Background</td>
<td>2</td>
</tr>
<tr>
<td>Objectives</td>
<td>3</td>
</tr>
<tr>
<td>Methods</td>
<td>4</td>
</tr>
<tr>
<td>Results</td>
<td>5</td>
</tr>
<tr>
<td>Figure 1</td>
<td>6</td>
</tr>
<tr>
<td>Discussion</td>
<td>7</td>
</tr>
<tr>
<td>Authors’ Conclusions</td>
<td>7</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>8</td>
</tr>
<tr>
<td>References</td>
<td>8</td>
</tr>
<tr>
<td>Characteristics of Studies</td>
<td>12</td>
</tr>
<tr>
<td>Data and Analyses</td>
<td>15</td>
</tr>
<tr>
<td>Appendices</td>
<td>15</td>
</tr>
<tr>
<td>History</td>
<td>25</td>
</tr>
<tr>
<td>Contributions of Authors</td>
<td>25</td>
</tr>
<tr>
<td>Declarations of Interest</td>
<td>26</td>
</tr>
<tr>
<td>Sources of Support</td>
<td>26</td>
</tr>
<tr>
<td>Differences Between Protocol and Review</td>
<td>26</td>
</tr>
<tr>
<td>Index Terms</td>
<td>26</td>
</tr>
</tbody>
</table>
Nutritional support for critically ill children

Ari Joffe1, Natalie Anton1, Laurance Lequier1, Ben Vandermeer2, Lisa Tjosvold3, Bodil Larsen4, Lisa Hartling5

1 Department of Pediatrics, Division of Pediatric Intensive Care, University of Alberta and Stollery Children's Hospital, Edmonton, Canada. 2 Department of Pediatrics, Alberta Research Centre for Child Health Evidence & University of Alberta Evidence-based Practice Centre, Edmonton, Canada. 3 Alberta Research Centre for Child Health Evidence, University of Alberta, Edmonton, Canada. 4 Nutrition Service, Stollery Children's Hospital, Edmonton, Canada. 5 University of Alberta, Evidence-based Practice Centre, Edmonton, Canada.

Contact address: Ari Joffe, Department of Pediatrics, Division of Pediatric Intensive Care, University of Alberta and Stollery Children's Hospital, Office 3A3.07, 8440-112 St, Edmonton, Alberta, T6G 2B7, Canada. ajoffe@cha.ab.ca.

Editorial group: Cochrane Anaesthesia Group.

Review content assessed as up-to-date: 15 February 2007.

ABSTRACT

Background

Nutritional support in the critically ill child has not been well investigated and is a controversial topic within paediatric intensive care. There are no clear guidelines as to the best form or timing of nutrition in critically ill infants and children.

Objectives

To assess the impact of enteral and total parenteral nutrition on clinically important outcomes for critically ill children.

Search methods

We searched: the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 2007, Issue 1); Ovid MEDLINE (1966 to February 2007); Ovid EMBASE (1988 to February 2007); OVID Evidence-Based Medicine Reviews; ISI Web of Science - Science Citation Index Expanded (1965 to February 2007); WebSPIRS Biological Abstracts (1969 to February 2007); and WebSPIRS CAB Abstracts (1972 to February 2007). We also searched trial registries; reviewed reference lists of all potentially relevant studies; handsearched relevant conference proceedings; and contacted experts in the area and manufacturers of enteral and parenteral nutrition products. We did not limit the search by language or publication status.

Selection criteria

We included studies if they were randomized controlled trials; involved paediatric patients, aged one day to 18 years of age, cared for in a paediatric intensive care unit setting (PICU) and received nutrition within the first seven days of admission; and reported data for at least one of the pre-specified outcomes (30-day or PICU mortality; length of stay in PICU or hospital; number of ventilator days; and morbid complications, such as nosocomial infections). We excluded studies if they only reported nutritional outcomes, quality of life assessments, or economic implications. Furthermore, other areas of paediatric nutrition, such as immunonutrition and different routes of delivering enteral nutrition, were not addressed in this review.

Data collection and analysis

Two authors independently screened searches, applied inclusion criteria, and performed quality assessments. We resolved discrepancies through discussion and consensus. One author extracted data and a second checked data for accuracy and completeness.
Main results

Only one trial was identified as relevant. Seventy-seven children in intensive care with burns involving > 25% of the total body surface area were randomized to either enteral nutrition within 24 hours or after at least 48 hours. No statistically significant differences were observed for mortality, sepsis, ventilator days, length of stay, unexpected adverse events, resting energy expenditure, nitrogen balance, or albumin levels. The trial was assessed as of low methodological quality (based on the Jadad scale) with an unclear risk of bias.

Authors’ conclusions

There was only one randomized trial relevant to the review question. Research is urgently needed to identify best practices regarding the timing and forms of nutrition for critically ill infants and children.

PLAIN LANGUAGE SUMMARY

Nutrition for critically ill children in paediatric intensive care units

There is little evidence to support or refute the need to provide nutrition to critically ill children in a paediatric intensive care unit during the first week of their critical illness.

Giving nutrition in the form of tube feeding (enteral) or intravenous feeding (parenteral) is often considered a priority during critical illness in children. There are reasons to think this may not necessarily be true. During critical illness the body’s metabolism is changed and the need for calories is reduced. There are known side effects from giving too much nutrition, such as delays in being able to take the child off a respiratory ventilator, liver problems, and worsened inflammation. We found only one small randomized controlled trial that compared early feeding (within 24 hours of injury) with conventional feeding (after at least 48 hours). The study showed no differences between the groups for any of the outcomes examined. Further research in this area is urgently needed to help guide optimal treatment of children with critical illness.

BACKGROUND

Nutritional support in the critically ill child has not been well investigated and is a controversial topic in paediatric critical care medicine. There are no clear guidelines for the optimal timing and forms of nutritional support in these children. There are several lines of evidence that suggest further investigation is required into whether any form of nutritional support is beneficial in the first week of critical illness in children, and these are discussed below.

We defined nutritional support as the provision of energy in the form of glucose, protein, or lipid to provide calories and substrate for metabolism. Some would define metabolic support as provision of these calories at basal metabolic rate, without any intention of supporting anabolic activities such as growth or activities of daily living. Accordingly, metabolic support is a form of nutritional support. For the purposes of this review, we defined critical illness as any illness requiring admission to a paediatric intensive care unit.

Metabolism during critical illness

Critical illness often results in altered cellular energy metabolism (Fink 2001; Joffe 2001; Mizock 1984; Protti 2006). Although the mechanisms and exact alterations are poorly understood, it is clear that protein catabolism and mitochondrial dysfunctions with metabolic suppression can occur (Joffe 2001; Mizock 1984). The suggestion that an increased metabolic rate occurs in adults with critical illness has been questioned (Miles 2006). Similarly, the measured metabolic rates in children with critical illness is most often at or below predicted basal metabolic rate in the first week of illness (Avitzur 2003; Briassoulis 2000; Framson 2007; Jacisk 2001; Letton 1995; Martinez 2004; Oosterveld 2006; White 2000); anabolism (with growth) does not occur (Chwals 1994).

Underfeeding and overfeeding during critical illness

Overfeeding has important adverse effects during critical illness (Chwals 1994; Zaloga 1994). Excess carbohydrate intake can increase carbon dioxide production and impede ventilator weaning (Chwals 1994). Excess protein does not prevent catabolism and can even increase catabolism of body protein (Chwals 1994; Shew 1999; Stroud 2007). High calorific intake can increase fat deposition, including in the liver (Chwals 1994; Hart 2002; Zaloga 1994).
1994). In animal models, lower caloric goals were associated with weight loss and improved survival from critical illness (Alexander 1989; Yamazaki 1986). Some adult human studies suggest that underfeeding during critical illness is associated with improved survival and reduced length of stay in hospital (Ash 2005; Boitano 2006; Dickerson 2002; Jeejeebhoy 2004; Krishnan 2003). This is compatible with the finding in many types of animals that a 30% to 50% restriction of calories increased their lifespan and resistance to diseases of aging and oxidative damage (with similar pathophysiology to critical illness inflammatory cascades) (Bordone 2005).

Adult nutritional trials during critical illness

There have been several systematic reviews of nutritional support in critically ill adults. Koretz et al found no compelling evidence that enteral nutrition improved outcomes in critically ill adults when compared to no treatment or parenteral nutrition (Koretz 2007a; Koretz 2007). Koretz found no evidence that parenteral nutrition had an effect on clinical outcomes compared to not providing artificial nutrition (Koretz 2007b). A consensus statement published by the American Society for Parenteral and Enteral Nutrition, in 1997, wrote that “although it has been assumed that nutrition support is clinically beneficial in this [critically ill] patient population, this hypothesis has not been tested by well-designed clinical trials...” (Klein 1997). This was reaffirmed, in 2002, with the statement that “It appears reasonable to recommend that some form of supplemental nutritional support be started after 5 to 10 days of fasting in patients who are likely to remain unable to eat for an additional week or more” (ASPEN 2002). Canadian researchers have published systematic reviews showing that parenteral nutrition was associated with more infectious complications than with enteral nutrition (Gramlich 2004); parenteral nutrition did not improve clinically important outcomes compared to standard care (Heyland 1998a); and combined parenteral and enteral nutrition did not improve clinically important outcomes in critically ill adults compared to enteral nutrition alone (Dhaliwal 2004). Others have found poor evidence that early enteral nutrition is better than early parenteral nutrition (Peter 2005; Simpson 2005), although this is controversial (Heyland 2003). Part of the reason for controversy is that many of the trials were not of optimal quality (Preiser 2003). “The point at which ‘safe’ starvation ends and malnutrition-related complications begin has yet to be defined” (Preiser 2003).

Surrogate outcomes

Many clinicians have assumed that early nutritional support is required for critically ill children and adults. Malnutrition is associated with poor outcomes and nutritional support can improve surrogate nutritional outcomes, such as immune function, wound healing, and measured proteins (Briassoulis 2001; Heyland 1998b). In adult studies, however, there is a poor concordance between nutritional markers and clinical outcomes (Koretz 2005). Although it seems intuitive that providing nutrition will be of benefit, because malnutrition is harmful, it does not necessarily follow that nutritional support during the first week of illness improves a critically ill patient’s outcome.

Paediatric differences

The American Society for Parenteral and Enteral Nutrition states, from 1997 and 2002, were that no randomized controlled trials of nutritional support in children with critical illness had been found (ASPEN 2002; Klein 1997). The nutritional needs of children with critical illness may be different from adults in many ways; in terms of underlying metabolism and growth, underlying illness and co-morbidities, pre-existing energy reserves (particularly in young infants), and responses to critical illness. It would be ideal to have studies specific to children to guide nutritional support in critically ill children.

For these reasons, a systematic review is needed to identify any randomized controlled trials of nutritional support during the first week of illness in critically ill children. Evidence is needed to provide clear guidelines for how and when to initiate feedings in children requiring intensive care. We did not include premature or low birth weight neonates as their care is in a neonatal intensive care unit and their needs are very likely to be different from infants and children during the first week of critical illness.

Objectives

The objective of this review was to assess the impact of enteral and parenteral nutrition given in the first week of illness on clinically important outcomes in critically ill children. There were two primary hypotheses:

1. the mortality rate of critically ill children fed enterally or parenterally is different to that of children who are given no nutrition;
2. the mortality rate of critically ill children fed enterally is different to that of children fed parenterally.

We planned to conduct subgroup analyses, pending available data, to examine whether the treatment effect was altered by:

a. age (infants less than one year versus children greater than or equal to one-year old);
b. type of patient (medical where purpose of admission to intensive care unit (ICU) is for medical illness (without surgical intervention immediately prior to admission) versus surgical where purpose of admission to ICU is for postoperative care or care after trauma).

The following secondary hypotheses were also proposed (a priori), pending other clinical trials becoming available, to examine nutrition more distinctly:

3. the mortality rate is different in children who are given enteral nutrition alone versus enteral and parenteral combined;
4. the mortality rate is different in children who are given both enteral feeds and parenteral nutrition versus no nutrition.

METHODS

Criteria for considering studies for this review

Types of studies
We planned to include randomized controlled trials (RCTs), completed or ongoing.

Types of participants
We planned to include trials of paediatric patients, aged one day to 18 years, that were cared for in a paediatric intensive care setting and who received nutrition within the first seven days of admission. We also planned to include studies involving both paediatric and adult participants if data were separately available for paediatric cases cared for in a paediatric intensive care unit (PICU). Studies were to be excluded if participants were primarily adults.

We planned to analyse those patients aged less than one year separately from children who were older than one year, if such data were available, given that infants are believed to have higher nutritional requirements compared to older children. Furthermore, medical patients are often studied separately from surgical, critically ill patients (including trauma patients). If there were no studies that differentiated medical from surgical patients, we planned to group these patients in the analysis.

Types of interventions
Patients must have been randomized to receive either:
1. enteral feeding versus no feeding;
2. total parenteral nutrition versus no feeding;
3. enteral versus total parenteral nutrition;
4. enteral versus enteral with supplemental parenteral nutrition.

Other areas of paediatric nutrition, such as immunonutrition versus normal nutrition and different routes of delivering enteral nutrition, were not addressed in this review.

Types of outcome measures
Primary outcome:
1. 30-day mortality. If this was not available, then paediatric intensive care unit (PICU) mortality.

Secondary outcomes:
1. length of stay in the PICU;
2. length of stay in hospital;
3. number of days on the ventilator;
4. morbid complications including nosocomial infections.

We were not interested in nutritional outcomes. Data for quality of life assessments and economic implications were to be extracted if reported in studies meeting all other criteria.

Search methods for identification of studies

We searched the following bibliographic databases: the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 2007, Issue 1); Ovid MEDLINE (1966 to February 2007); Ovid EMBASE (1988 to February 2007); OVID Evidence-Based Medicine Reviews (includes Cochrane Database of Systematic Reviews, CENTRAL, ACP Journal Club, and Database of Abstracts of Reviews of Effectiveness (DARE)); ISI Web of Science - Science Citation Index Expanded (1965 to February 2007); WebSPIRS Bi-ological Abstracts (1969 to February 2007); and WebSPIRS CAB Abstracts (1972 to February 2007). We also searched the following trial registries: ClinicalTrials.gov; CenterWatch Clinical Trials Listing Service; Current Controlled Trials; GlaxoSmithKline Clinical Trial Register; National Clinical Trials Registry and the National Research Register (all found at www.ualberta.ca/ARCHE/litsearch.html#trials).

We reviewed reference lists of all potentially relevant studies; hand-searched relevant conference proceedings: British Association for Parenteral and Enteral Nutrition (2005 to 2007), European Society of Parenteral and Enteral Nutrition (2005 to 2007), and American Society of Parenteral and Enteral Nutrition (2005 to 2007); and contacted primary authors and experts in the area (n = 5), and manufacturers of enteral (n = 5) and parenteral (n = 2) nutritional products.

We did not limit the search by language or publication status. The search strategies are in Appendix 1.

Data collection and analysis

Study selection
The selection of studies involved two steps. First, two authors (AJ, NA) independently screened the search results to identify citations with potential relevance. Second, we obtained the full text of selected articles. Two authors (AJ, NA) independently decided on trial inclusion using a standard form with predetermined eligibility criteria.

Assessment of quality
Two authors (NA, LH) planned to independently assess the methodological quality of all included studies using the Jadad 5-point scale (Jadad 1996). To the best of our knowledge, the Jadad scale is the only quality assessment tool that has been validated. It incorporates components that are directly related to the control of bias including randomization (0 to 2 points), double blinding (0 to 2 points), and reporting of withdrawals and dropouts (0 to 1

Nutritional support for critically ill children (Review)
Copyright © 2009 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.
We planned to provide overall quality scores according to the Jadad scale. In addition, we planned to describe and display the quality information by individual component (that is generation of random sequence; blinding, loss to follow up, and allocation concealment (Schulz 1995)). Each component was to be classified as adequate, inadequate, unclear, or not used. We planned to examine the effect of methodological quality through sensitivity analyses, as described in the ‘Data analysis’ section below. In addition, we planned to record whether or not the studies used an intention-to-treat analysis and their funding sources. We also assessed risk of bias using the new Cochrane risk of bias tool, released in February 2008.

Data extraction
Two authors (NA, LL, or BV) planned to extract data from each study and resolve discrepancies through discussion and by referring to the original paper. We planned to request unpublished data from authors, when necessary. We developed a standard form to describe the following characteristics of the study (design, method of randomization, withdrawals or dropouts); participants (age, gender); test intervention (type, dose, route of administration, timing and duration of therapy, co-interventions); control intervention (agent and dose); outcomes (types of outcome measures, timing of outcomes, adverse effects); and results.

Data analysis
We planned to conduct separate analyses for the four comparisons: enteral feeding versus standard care; total parenteral nutrition versus standard care; enteral versus total parenteral nutrition; and enteral versus enteral with supplemental parenteral nutrition. We planned to express dichotomous data (for example mortality) as relative risks (RR) and to calculate an overall RR with 95% confidence intervals (CI). We planned to express complications as risk differences, due to low event numbers. We planned to derive the number needed to treat (NNT) for dichotomous data to help clarify the degree of benefit for a range of baseline risks. We planned to convert continuous data to the mean difference and calculate an overall weighted mean difference (with 95% CI). We planned to summarize time-to-event data (for example length of stay in hospital, number of days on a ventilator) by the log hazards ratio (Parmar 1998) and to calculate an overall log hazards ratio. We planned to calculate results using a random-effects model. We planned to quantify heterogeneity using the I² statistic (Higgins 2002). The I² statistic estimates the per cent variability due to between-study differences. If a sufficient number of trials were included in the study, we planned to assess possible sources of heterogeneity for the primary outcome using either subgroup or sensitivity analyses, or both. We identified the following clinical subgroups: age (infants less than one year, children equal to or greater than one-year old); and surgical patients (purpose of admission to PICU for postoperative care or care after trauma) versus medical patients (purpose of admission to PICU for medical illness without surgical intervention prior to admission). The subgroup for age was based on the fact that infants are at higher risk of catabolism and are generally fed more aggressively than older children. Infants may have less nutritional reserve than older children; a physiology that demonstrates rapid changes over the first year of life; different admission diagnoses and co-morbidities to older children; and accordingly they are typically managed differently from a clinical perspective. The subgroup of surgical versus medical patients was based on inherent differences between these populations and the precedence in the literature for examining these populations separately (Heyland 1998a; Heyland 2001; Marik 2001). If a study did not provide the data or results by age, or had a different age categorization to that used in this review, we planned to contact authors for additional data for the subgroups of interest. We planned to conduct the following sensitivity analyses: methodological quality of included trials; intention-to-treat status; and funding source (medical or pharmaceutical companies versus other). We also planned to calculate fixed-effect model estimates as a sensitivity analysis.

We planned to test for asymmetry: visually using the funnel plot, and quantitatively (with the rank correlation test (Begg 1994), the trim and fill method (Duval 2000), or weighted regression (Egger 1997)) depending on the number of trials included in the review. One source of asymmetry is publication bias.

RESULTS

Description of studies
See: Characteristics of included studies; Characteristics of excluded studies.

Our search identified 3070 studies; an additional 42 potentially relevant studies were identified through contacts with experts in the area. Following screening, 24 studies were identified as potentially relevant (see Figure 1). Upon closer review all but one of the studies were excluded, for the following reasons: different routes of delivering enteral nutrition compared (gastric versus small bowel feeding (Meert 2004); continuous versus intermittent gastric feeding (Horn 2003); immune-enhancing formula versus standard formula (Alberda 2005; Albers 2005; Barbosa 1999; Briassoulis 2005; Briassoulis 2005b; Briassoulis 2006; Gottschlich 1990; Marin 2006; Papadopoulou 2000); two regimens of early combined enteral and parenteral nutrition compared (Alexander 1980); only surrogate nutritional markers as outcomes (Chaloupceky 1994); study population was primarily adult (Hadley 1986; Hausmann 1985; Kolacinski 1993; Peng 2001; Suchner 1996; Young 1987); study population was premature neonates or newborn infants in the neonatal intensive care unit (Black 1981; Tyson 2005); and study population was not critically ill children (that is children not cared for in a PICU) (Marin 1999; Pillo-Blocka 2004).
Only one relevant trial was identified. Seventy-seven children in an intensive care unit because of burns involving more than 25% of their total body surface area were randomized to enteral nutrition within 24 hours or conventional care (that is no tube feeding or oral diet for at least 48 hours) (Gottschlich 2002). Children were eligible for the study if they were older than three years and were admitted within 24 hours of the injury. Five children were excluded from the study (three protocol violations, two transferred to another hospital) leaving 36 children in each group. Children were followed up for four weeks from entry into the study. The outcomes reported are detailed in the ‘Characteristics of included studies’ table.

Risk of bias in included studies
The methodological quality of the one relevant study was low, based on the Jadad scale. The study scored two out of five points: one point for being randomized and one point for adequate generation of the randomization sequence. The study was not double-blinded; losses to follow up were not adequately described; and allocation concealment was unclear. The authors did not perform an intention-to-treat analysis. The authors described their funding source, which was not related to industry. We also assessed the study using the ‘risk of bias’ tool. The study was assessed as at low risk of bias for mortality, based on the following domains: sequence generation, blinding, incomplete outcome data, selective outcome reporting, and ‘other sources of bias’. Overall, the study was assessed as at unclear risk of bias because allocation concealment was not described.

Effects of interventions
Feeding started at a mean of 15.6 hours (SE 1) in the early intervention group compared to 48.5 hours (SE 0.4) in the control group. The study groups showed no statistically significant differences in the following outcomes: mortality (early, n = 4 (11%) versus control, n = 3 (8%); P = 0.99); sepsis (early, n = 17 (47%) versus control, n = 21 (58%); P = 0.23); ventilator days (early, mean 24.5 days (SE 4.6) versus control, mean 22.5 days (SE 4.2); P = 0.75); hospital length of stay (early, mean 54.8 days (SE 5.9) versus control, mean 54.8 days (SE 6.6); P = 0.96); and unexpected adverse events (early, 8 (22%) versus control, 3 (8%); P = 0.19). Furthermore, there were no differences between groups in weekly measurements of resting energy expenditure, nitrogen
DISCUSSION

Nutritional support in children in the paediatric intensive care unit is considered important by most intensivists (van der Kuip 2004). Nevertheless, there is limited data on which to base optimal practice for nutritional support during the first week of critical illness in these children. Although it seems almost intuitively obvious that nutritional support early during critical illness would be of benefit, this has not been demonstrated in adults or children (Way 2007).

There are reasons to question the dogma that nutritional support during the first week of critical illness is a priority. These reasons include that metabolism and mitochondrial function are altered during critical illness (Fink 2001; Mizock 1984); calorie restriction has been beneficial in animal models of critical illness (Alexander 1989), and possibly in adults with critical illness (Ash 2005; Krishnan 2003); overfeeding is associated with adverse effects (Chwals 1994; Zaloga 1994); many trials in adults have given unclear evidence of benefit from early nutritional support in critical illness (Koretz 2007a; Koretz 2007; Koretz 2007b); and surrogate nutritional outcomes may not be adequate to confirm a benefit on meaningful clinical outcomes from nutritional support (Heyland 1998b; Koretz 2005). Further, it has been found that in early critical illness children do not experience hypermetabolism (Framson 2007), and energy expenditure is close to or below calculated basal metabolic rate (Briassoulis 2000; Jacsik 2001; Martinez 2004; Oosterveld 2006; White 2000). Protein catabolism during this time cannot be averted by aggressive nutritional support, and anabolism with growth cannot be induced (Chwals 1994; Shew 1999).

Therefore, we conducted this systematic review of the evidence for nutritional support during the first week of critical illness in children. With our exhaustive search strategy we found only one small, randomized controlled trial that met our criteria (Gottschlich 2002). This trial evaluated early enteral feeding (that is within 24 hours of injury) versus conventional feeding (that is feeding withheld for at least 48 hours) among children with burns over 25% of their body surface area. The study found no differences between groups in clinically important outcomes including infection, length of stay, and mortality.

We found eight trials of an immune-enhancing formula versus a standard formula for feeding critically ill children, without consistent benefit on clinically important outcomes. This was, however, not a systematic review of immune-enhancing formulae in critically ill children. It would be of interest to conduct a systematic review of immune-enhancing formulae in paediatric critical illness. The immune-enhancing components may best be considered as pharmacologic interventions, rather than nutritional support, in which case they should be studied separately from the need for nutritional support (Heyland 2006). One trial of gastric versus small-bowel feeding found that more calories were provided in the small bowel-fed group, with trends toward increased mortality, ventilator days, intensive care unit days, and hospital days in the small-bowel-fed group (Meert 2004).

Randomized controlled trials are needed to help guide optimal nutritional support of critically ill children during the first week of critical illness. We found little evidence to support or refute the suggested need for nutritional support in these children. While more research is needed, there are a number of challenges that researchers face in this area. These include the small number of children available for study, fewer funding opportunities for non-pharmacological nutritional interventions, and ethical concerns related to experimental protocols among this critically ill population. Further, methodological challenges exist, including difficulty in blinding due to the nature of the intervention, heterogeneity of the patient population (comorbidities, admission diagnosis, age), and the large sample size required to show a change because of the low mortality rate in paediatric intensive care. Nevertheless, future multicentre trials are urgently needed. These must ensure methodological rigour by examining potential risks for bias at the design stage (for example in blinding outcome assessors or using objective outcomes, such as organ dysfunction scores, that are less prone to biased assessments or reporting).

AUTHORS’ CONCLUSIONS

Implications for practice

Only one small randomized controlled trial was identified. This review does not provide evidence for or against the need for nutritional support in children during the first week of critical illness; nor does it provide evidence for or against the optimal route of nutritional support in children during the first week of critical illness. Further evidence from randomized controlled trials is needed to support statements regarding the importance or lack of importance of early nutritional support in critically ill children.

Implications for research

Research is needed to guide nutritional support in critically ill children (excluding premature or low birth weight neonates). We suggest that randomized trials of nutritional support in critically ill children during the first week of critical illness should include a control arm in which no nutritional support is administered or hypocaloric goals (below basal metabolic rate) for nutritional support are used.
ACKNOWLEDGEMENTS

We would like to thank John Carlisle (content editor), Alison Avennell, Reinout Mildner, Diane Yorke (peer reviewers) and Ann E. Fonfa (Cochrane Consumer Network) for their help and editorial advice during the preparation of this review.

We would like to thank John Carlisle, Alison Avenell, Leo Celi, and Ann Møller for their help and editorial advice during the preparation of the protocol for the review. We would also like to thank Ellen Crumley for contributions to the protocol and initial searches and Iveta Simera for translation of a study written in Czechoslovakian.

REFERENCES

References to studies included in this review

Gottschlich 2002 [published data only]

References to studies excluded from this review

Alberda 2005 [published data only]

Albers 2005 [published data only]

Alexander 1980 [published data only]

Barbosa 1999 [published data only]

Black 1981 [published data only]

Briassoulis 2005 [published data only]

Briassoulis 2005b [published data only]

Briassoulis 2006 [published data only]

Chaloupecky 1994 [published data only]

Gottschlich 1990 [published data only]

Hadley 1986 [published data only]
Hadley MN, Grahn TW, Harrington T, Schiller WR, McDermott MK, Puillilco DB. Nutritional support and neurotrauma: a critical review of early nutrition in forty five

Hausmann 1985 *(published data only)*

Horn 2003 *(published data only)*

Kolacinski 1993 *(published data only)*

Marin 1999 *(published data only)*

Marin 2006 *(published data only)*

Meert 2004 *(published data only)*

Papadopoulou 2000 *(published data only)*

Peng 2001 *(published data only)*

Pillo-Blocka 2004 *(published data only)*

Suchner 1996 *(published data only)*

Tyson 2005 *(published data only)*

Young 1987 *(published data only)*

Additional references

Alexander 1989

Ash 2005

ASPEN 2002

Avitzur 2003

Begg 1994

Boitano 2006

Bordone 2005

Briassoulis 2000

Briassoulis 2001

Chwals 1994

Dhaliwal 2004

Dickerson 2002

Duval 2000

Egger 1997

Fink 2001
Fink MP. Cytopathic hypoxia: Mitochondrial dysfunction as mechanism contributing to organ dysfunction in sepsis. Critical Care Clinics 2001;17:219–37. [PUBMED: 11219231]

Framson 2007

Gramlich 2004

Hart 2002

Heyland 1998a

Heyland 1998b

Heyland 2001

Heyland 2003

Heyland 2006

Higgins 2002

Jaccik 2001

Jadad 1996

Jeejeebhoy 2004

Joffe 2001

Klein 1997

Koretz 2005
Koretz RL. Nutrition society symposium on ‘end points in clinical nutrition trials’: death, morbidity and economics are the only end points for trials. Proceedings of the Nutrition Society 2005;64:277–84.

Koretz 2007
Koretz 2007a

Korenz 2007b

Krishnan 2003

Letton 1995

Marik 2004
Marik PE, Zaloga GP. Early enteral nutrition in acutely ill patients: a systematic review. Critical Care Medicine 2001;29(12):2264–70. [PUBMED: 11801821]

Martinez 2004

Miles 2006

Mizock 1984

Oosterveld 2006

Parmar 1998

Peter 2005

Preiser 2003

Protti 2006
Protti A, Singer M. Bench to bedside review: potential strategies to protect or reverse mitochondrial dysfunction in sepsis-induced organ failure. Critical Care 2006;10(228); 1–7. [PUBMED: 16953900]

Schulz 1995

Shew 1999

Simpson 2005

Strowd 2007

van der Kuip 2004

Way 2007

White 2000

Yamazaki 1986

Zaloga 1994

* Indicates the major publication for the study
Characteristics of Studies

Characteristics of included studies [ordered by study ID]

Gottschlich 2002

<table>
<thead>
<tr>
<th>Methods</th>
<th>Randomized trial using random numbers table; no blinding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participants</td>
<td>77 children over a 10-year period; inclusion criteria: greater than 3-years old; burns to greater than 25% total body surface area; admitted within 24 hours after burn</td>
</tr>
<tr>
<td>Interventions</td>
<td>Early enteral feeding beginning within 24 hours of injury versus conventional treatment (tube feeding and oral diet withheld for at least 48 hours after injury); all children received routine clinical management based on published practices and supervised by one physician to ensure uniformity of care</td>
</tr>
<tr>
<td>Outcomes</td>
<td>The following outcomes were reported weekly for four weeks: metabolic rate, caloric intake, anabolism indices (nitrogen balance, 3-methylhistidine); hormone levels (insulin, glucagon, cortisol, gastrin, epinephrine, norepinephrine, dopamine, T₃, T₄); clinical nutrition (albumin, transferrin, pre-albumin, retinol-binding protein, glucose). Clinical outcome data included: incidence of sepsis and wound infection; number of patients requiring parenteral nutrition, experiencing diarrhea, or requiring growth hormone; days on tube feed; number of diarrhoea days; days receiving antibiotics; ventilator days; number of surgeries; unexpected adverse events (bowel necrosis, acute respiratory distress syndrome, renal failure, multisystem organ failure, death); medical and wound length of stay; discharge weight. Primary outcome was not specified; no sample size calculation reported</td>
</tr>
<tr>
<td>Notes</td>
<td>Jadad score=2; generation of randomization sequence=adequate; double-blinding=inadequate; losses to follow up=not described; allocation concealment=unclear; intention-to-treat analysis not performed; funding source: Shriners of North America</td>
</tr>
</tbody>
</table>

Risk of bias

<table>
<thead>
<tr>
<th>Item</th>
<th>Authors’ judgement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adequate sequence generation?</td>
<td>Yes</td>
<td>Random numbers table.</td>
</tr>
<tr>
<td>Allocation concealment?</td>
<td>Unclear</td>
<td>No description.</td>
</tr>
<tr>
<td>Blinding? All outcomes</td>
<td>Yes</td>
<td>For mortality.</td>
</tr>
<tr>
<td>Incomplete outcome data addressed?</td>
<td>Yes</td>
<td>Five patients excluded from analysis; reasons described (3 protocol violations, 2 transferred to another hospital). Exclusions unlikely to change the results</td>
</tr>
<tr>
<td>Free of selective reporting?</td>
<td>Yes</td>
<td>All outcomes listed in the methods section appear in the results section of the pub-</td>
</tr>
</tbody>
</table>
Characteristics of excluded studies *(ordered by study ID)*

<table>
<thead>
<tr>
<th>Study</th>
<th>Reason for exclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alberda 2005</td>
<td>Comparison: immune-enhancing versus standard formula</td>
</tr>
<tr>
<td>Albers 2005</td>
<td>Comparison: immune-enhancing versus standard formula</td>
</tr>
<tr>
<td>Alexander 1980</td>
<td>Comparison: two forms of early combined enteral and parenteral nutrition</td>
</tr>
<tr>
<td>Barbosa 1999</td>
<td>Comparison: immune-enhancing versus standard formula</td>
</tr>
<tr>
<td>Black 1981</td>
<td>Study population: premature neonates or newborns in the neonatal intensive care unit</td>
</tr>
<tr>
<td>Briassoulis 2005</td>
<td>Comparison: immune-enhancing versus standard formula</td>
</tr>
<tr>
<td>Briassoulis 2005b</td>
<td>Comparison: immune-enhancing versus standard formula</td>
</tr>
<tr>
<td>Briassoulis 2006</td>
<td>Comparison: immune-enhancing versus standard formula</td>
</tr>
<tr>
<td>Chaloupecky 1994</td>
<td>Outcomes: only surrogate nutritional markers</td>
</tr>
<tr>
<td>Gottschlich 1990</td>
<td>Comparison: immune-enhancing versus standard formula</td>
</tr>
<tr>
<td>Hadley 1986</td>
<td>Study population: predominantly adults</td>
</tr>
<tr>
<td>Hausmann 1985</td>
<td>Study population: predominantly adults</td>
</tr>
<tr>
<td>Horn 2003</td>
<td>Comparison: two routes of delivering enteral nutrition (continuous versus intermittent gastric feeding)</td>
</tr>
<tr>
<td>Kolacinski 1993</td>
<td>Study population: predominantly adults</td>
</tr>
<tr>
<td>Marin 1999</td>
<td>Study population: children not in PICU</td>
</tr>
<tr>
<td>Marin 2006</td>
<td>Comparison: immune-enhancing versus standard formula</td>
</tr>
<tr>
<td>Meert 2004</td>
<td>Comparison: two routes of delivering enteral nutrition (gastric versus small bowel feeding)</td>
</tr>
</tbody>
</table>
(Continued)

<table>
<thead>
<tr>
<th>Study</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Papadopoulou 2000</td>
<td>Comparison: immune-enhancing versus standard formula</td>
</tr>
<tr>
<td>Peng 2001</td>
<td>Study population: predominantly adults</td>
</tr>
<tr>
<td>Pillo-Blocka 2004</td>
<td>Study population: children not in PICU</td>
</tr>
<tr>
<td>Suchner 1996</td>
<td>Study population: predominantly adults</td>
</tr>
<tr>
<td>Tyson 2005</td>
<td>Study population: premature neonates or newborns in the neonatal intensive care unit</td>
</tr>
<tr>
<td>Young 1987</td>
<td>Study population: predominantly adults</td>
</tr>
</tbody>
</table>
DATA AND ANALYSES

This review has no analyses.

APPENDICES

Appendix 1. Search Strategies

Ovid MEDLINE(R) <1950 to February Week 1 2007>

#1. ((artificial$ or enteric$ or naso-gastric$ or nasogastric$ or nose$ or tube$ or ng or intravenous$ or iv$ or parenteral$ or enteral$ or jejunal$ or naso-jejunal$ or nasojejunal$) adj5 (nutrition$ or feed$ or food$ or refeed$ or re-feed$ or refed$ or re-fed$ or fasting or fasts or immunonutrition$ or immuno-nutrition$ or diet$ or hyperalimentation$ or alimentation$ or fluid$ or liquid$)).mp.
#2. tpn.ti,ab.
#3. food intake/
#4. infant nutrition/
#5. child nutrition/
#6. diet/
#7. exp parenteral nutrition, total/
#8. intravenous feeding/
#9. feeding methods/
#10. or/1-9
#11. (picu or icu).mp.
#12. ((critical$ or intensive$) adj5 (care$ or ill$)).mp.
#13. exp intensive care units, pediatric/
#14. or/11-13
#15. #10 and #14
#16. child/
#17. infant/
#18. adolescence/
#19. exp infant, newborn/
#20. exp child, preschool/
#21. or/16-20
#22. (pediatric or paediatric).tw.
#23. (child$ or newborn$ or adolescen$ or infant$).tw.
#24. preschool$.tw.
#25. teen$.tw.
#26. kindergarten$.tw.
#27. elementary school$.tw.
#28. nursery school$.tw.
#29. youth$.tw.
#30. (baby$ or babies$).tw.
#31. schoolchild$.tw.
#32. toddler$.tw.
#33. or/22-32
#34. 21 or 33
#35. 15 and 34
#36. "neonatal intensive care".ti.
#37. "very low birth weight".ti.
#38. (preterm or prematur$).ti.
#39. or/36-38
Nutritional support for critically ill children (Review)

EMBASE <1988 to 2007 Week 06>
Date searched: 15 February 2007

#40. #35 not #39
#41. clinical trial.pt.
#42. randomi?ed.ti,ab.
#43. placebo.ti,ab.
#44. dt.fs.
#45. randomly.ti,ab.
#46. trial.ti,ab.
#47. groups.ti,ab.
#48. or/41-47
#49. animals/
#50. humans/
#51. #49 not (#49 and #50)
#52. #48 not #51
#53. #40 and #52
EBM Reviews - Cochrane Database of Systematic Reviews, ACP Journal Club, Database of Abstracts of Reviews of Effects
Issue 4, 2006

EBM Reviews - Cochrane Central Register of Controlled Trials Issue 4, 2006

Date searched: 16th February 2007

#1. (artificial$ or enteric$ or noso-gastric$ or nasal-gastric$ or nose$ or tube$ or ng or intravenous$ or iv$ or parenteral$ or enteral$ or jejunal$ or naso-jejunal$ or nasojejunal$) adj5 (nutrition$ or feed$ or food$ or refeed$ or re-feed$ or re-fed$ or fasting or fasts or immuno-nutrition$ or immuno-nutrition$ or diet$ or hyperalimentation$ or alimentation$ or fluid$ or liquid$).mp.
#2. tpn.ti,ab.
#3. food intake.sh.
#4. infant nutrition.sh.
#5. child nutrition/
#6. diet.sh.
#7. parenteral nutrition, total.sh.
#8. food intake.sh.
#9. intravenous feeding.sh.
#10. feeding methods/
#11. or/1-10
#12. (picu or icu or nicu).mp.
#13. ((critical$ or intensive$) adj5 (care$ or ill$)).mp.
#14. intensive care units, pediatric/
#15. or/12-14
#16. and/11,15
#17. child/
#18. infant/
#19. adolescence/
#20. infant, newborn/
#21. child, preschool/
#22. or/17-21
#23. (pediatric$ or paediatric$ or child$ or newborn$ or adolescent$ or infant$ or preschool$ or pre-school$ or teen$ or kindergarten$ or elementary school$ or nursery school$ or youth$ or baby$ or babies$ or neonat$ or schoolchild$ or toddler$).tw.
#24. #22 or #23
#25. #16 and #24

EBM Reviews - Cochrane Database of Systematic Reviews, ACP Journal Club, Database of Abstracts of Reviews of Effects
Issue 4, 2006

Date searched: 13th February 2007

#1. (artificial$ or enteric$ or naso-gastric$ or nasogastric$ or nose$ or tube$ or ng or intravenous$ or iv$ or parenteral$ or enteral$ or jejunal$ or naso-jejunal$ or nasojejunal$) adj5 (nutrition$ or feed$ or food$ or refeed$ or re-feed$ or re-fed$ or fasting or fasts or immuno-nutrition$ or immuno-nutrition$ or diet$ or hyperalimentation$ or alimentation$ or fluid$ or liquid$).mp.
#2. tpn.ti,ab.
#3. food intake.sh.
#4. infant nutrition.sh.
#5. child nutrition/
#6. diet.sh.
#7. parenteral nutrition, total.sh.
#8. food intake.sh.
#9. intravenous feeding.sh.
#10. feeding methods/
#11. or/1-10
#12. (picu or icu or nicu).mp.
#13. ((critical$ or intensive$) adj5 (care$ or ill$)).mp.
#14. intensive care units, pediatric/
#15. or/12-14
#16. and/11,15
#17. child/
#18. infant/
#19. adolescence/
#20. infant, newborn/
#21. child, preschool/
#22. or/17-21
#23. (pediatric$ or paediatric$ or child$ or newborn$ or adolescent$ or infant$ or preschool$ or pre-school$ or teen$ or kindergarten$ or elementary school$ or nursery school$ or youth$ or baby$ or babies$ or neonat$ or schoolchild$ or toddler$).tw.
#24. #22 or #23
#25. #16 and #24
#12. ([(artificial$ or enteric$ or naso-gastric$ or nasogastric$ or nose$ or tube$ or ng or intravenous$ or iv$ or parenteral$ or enteral$ or jejunal$ or naso-jejunal$ or nasojejunal$) adj5 (nutrition$ or feed$ or food$ or refed$ or re-feed$ or re-fed$ or re fed$ or fasting or or fasts or immunonutrition$ or immuno-nutrition$ or diet$ or hyperalimentation$ or alimentation$ or fluid$ or liquid$)].mp.
#13. or/1-12
#14. exp Intensive Care/
#15. exp intensive care units, pediatric/
#16. (picu or icu).mp.
#17. ((critical$ or intensive$) adj5 (care$ or ill$)).mp.
#18. or/14-17
#19. child/
#20. exp child, preschool/
#21. infant/
#22. exp infant, newborn/
#23. Adolescent/
#24. (pediatric$ or paediatric$ or child$ or neonat$ or newborn$ or adolescent$ or infant$ or preschool$ or pre-school$ or teen$ or kindergarden$ or elementary school$ or nursery school$ or youth$ or baby$ or babies$ or schoolchild$ or toddler$).mp.
#25. or/19-24
#26. #13 and #18 and #25
#28. “very low birth weight”.ti.
#29. (preterm or prematur$).ti.
#30. or/27-29
#31. #26 not #30

Web Of Science <1900 to 2007>
Date of Search: 15th February 2007
#1 TS=((critical$ or intensive$) SAME (care$ or ill$))
#2 TS=(PICU OR ICU OR NICU)
#3 TS=(pediatric* or paediatric* or child* or newborn* or neonat* or adolescent* or infant* or preschool* or pre-school* or teen* or kindergarden* or elementary school* or nursery school* or youth* or baby* or babies* or schoolchild* or toddler*)
#4 TS=(PARENTERAL NUTRITION OR Intravenous Feeding OR Food Intake OR Child Nutrition OR Infant Nutrition OR DIET OR tpn)
#5 TS=(naso gastric* or nasogastric* or nose* or tube* or ng or intravenous* or iv or parenteral* or enteral* or jejunal* or nasojejunal* or artificial* or enteric*)
#6 TS=(nutrition* or feed* or food* or refed* or re-feed* or re fed* or fasting or or fasts or immunonutrition* or immunonutrition* or diet* or hyperalimentation* or alimentation* or fluid* or liquid*)
#7 (#1 OR #2) AND #3 AND (#4 OR #5 OR #6)

BIOSIS Previews <1969 to 2007>
Date of Search: 16th February 2007
#1 TS=((critical$ or intensive$) SAME (care$ or ill$))
#2 TS=(PICU OR ICU)
#3 TS=(pediatric* or paediatric* or child* or newborn* or adolescent* or infant* or preschool* or pre-school* or teen* or kindergarden* or elementary school* or nursery school* or youth* or baby* or babies* or schoolchild* or toddler*)
#4 TS=(PARENTERAL NUTRITION OR Intravenous Feeding OR Food Intake OR Child Nutrition OR Infant Nutrition OR DIET OR tpn)
#5 TS=(naso gastric* or nasogastric* or nose* or tube* or ng or intravenous* or iv or parenteral* or enteral* or jejunal* or nasojejunal* or artificial* or enteric*)
#6 TS=(nutrition* or feed* or food* or refed* or re-feed* or re fed* or fasting or or fasts or immunonutrition* or immunonutrition* or diet* or hyperalimentation* or alimentation* or fluid* or liquid*)
#7 (#1 OR #2) AND #3 AND (#4 OR #5 OR #6)
Appendix 2. Inclusion Form

Please assess each study with reference to the criteria below. Place a check mark beside the statement that best describes the study. A study will be excluded even if has only one "NO" answer.

Reviewer ________________________________

Reference number ________________

STUDY DESIGN:
1. Was the study a randomized controlled trial? Yes[] No[]

POPULATION:
2. Was the population studied children/youth (age 1 day to 18 years) that are cared for in a paediatric intensive care setting and who receive nutrition within the first seven days of admission? [Studies that involve both paediatric and adult participants will be included.]
 Yes[] No[]

INTERVENTIONS:
3. Were patients randomized during the first week of admission to receive either:
 a) enteral feeding versus no feeding;
 b) total parenteral nutrition versus no feeding;
 c) enteral versus total parenteral nutrition;
 Yes [] No[]
d) enteral versus enteral with supplemental parenteral nutrition.

[This review will not address other areas of paediatric nutrition, such as Immunonutrition versus normal nutrition, or different routes of delivering enteral nutrition.]

OUTCOME S:
4. Are data reported for one of the following outcomes: Yes[] No[]
 - 30-day mortality or PICU mortality []
 - length of stay in PICU []
 - length of stay in hospital []
 - number of days on ventilator []
 - morbid complications, including nosocomial infections []

DECISION:
Should this study be included in this systematic review?

Yes [] (questions 1-4 must ALL be answered “Yes”)
No [] (any of questions 1-4 answered with “No”)
Unsure [] (will need to be reviewed and decided by consensus)

If disagreement; final consensus decision: Yes[] No []
Reason:

Appendix 3. Data Extraction Form

The Cochrane Anaesthesia Review Group 02.01
APPENDIX IV, DATA EXTRACTION FORM
<table>
<thead>
<tr>
<th>Metric</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allocation was not concealed (e.g. quasi-randomized)</td>
<td>0</td>
</tr>
<tr>
<td>Allocation concealment was not stated or was unclear</td>
<td>1</td>
</tr>
<tr>
<td>Disclosure of allocation was a possibility</td>
<td>2</td>
</tr>
<tr>
<td>Allocation was concealed (e.g. numbered, sealed opaque envelopes drawn NON consecutively)</td>
<td>3</td>
</tr>
<tr>
<td>Inclusion and exclusion criteria were not clearly defined in the text</td>
<td>0</td>
</tr>
<tr>
<td>Inclusion and exclusion criteria were clearly defined in the text</td>
<td>1</td>
</tr>
<tr>
<td>Outcomes of patients who withdrew or were excluded after allocation were NEITHER detailed separately NOR included in an intention to treat</td>
<td>0</td>
</tr>
<tr>
<td>Outcomes of patients who withdrew or were excluded after allocation were EITHER detailed separately OR included in an intention to treat analysis OR the text stated there were no withdrawals</td>
<td>1</td>
</tr>
<tr>
<td>Treatment and control groups were NOT adequately described at entry</td>
<td>0</td>
</tr>
<tr>
<td>Treatment and control groups were adequately described at entry</td>
<td>1</td>
</tr>
<tr>
<td>A minimum of 4 admission details were described (e.g. age, sex, mobility, type of surgery, ASA grade, function score, mental test score)</td>
<td>1</td>
</tr>
<tr>
<td>The text stated that the care programmes other than trial options were NOT identical</td>
<td>0</td>
</tr>
<tr>
<td>The text stated that the care programmes other than trial options were identical</td>
<td>1</td>
</tr>
<tr>
<td>Outcome measures were NOT clearly defined in the text</td>
<td>0</td>
</tr>
<tr>
<td>Outcome measures were clearly defined in the text</td>
<td>1</td>
</tr>
<tr>
<td>Outcome assessors were NOT blind to the allocation of patients</td>
<td>0</td>
</tr>
<tr>
<td>Outcome assessors were blind to the allocation of patients</td>
<td>1</td>
</tr>
</tbody>
</table>
The timing of the measurement of the outcomes was NOT appropriate | 0

The timing of the measurement of the outcomes was appropriate | 1

TOTAL NUMBER OF POINTS: / 10

METHODS:

<table>
<thead>
<tr>
<th>Subject - Blinded</th>
<th>Yes</th>
<th>No</th>
<th>Unclear</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physician - Blinded</td>
<td>Yes</td>
<td>No</td>
<td>Unclear</td>
</tr>
</tbody>
</table>

Intention-to-treat analysis:

<table>
<thead>
<tr>
<th>Planned</th>
<th>Yes</th>
<th>No</th>
<th>Unclear</th>
</tr>
</thead>
<tbody>
<tr>
<td>Performed</td>
<td>Yes</td>
<td>No</td>
<td>Unclear</td>
</tr>
</tbody>
</table>

Method of randomization:

PARTICIPANTS:

<table>
<thead>
<tr>
<th>Number of eligible participants</th>
<th>Number enrolled in study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of males:</td>
<td>Number of females:</td>
</tr>
<tr>
<td>Age of participants:</td>
<td>Type of patients:</td>
</tr>
</tbody>
</table>

Specify: < 1 yr | >= 1 yr | no stratification

Severity of illness:

<table>
<thead>
<tr>
<th>INTERVENTION</th>
<th>Intervention</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study Group 1:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study Group 2:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study Group 3:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study Group 4:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

COMMENT ON TREATMENT:
(Continued)

<table>
<thead>
<tr>
<th>Withdrawals:</th>
<th>Yes</th>
<th>No</th>
<th>Unclear</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indicate number by group:</td>
<td>study group 1</td>
<td>study group 2</td>
<td>study group 3</td>
</tr>
</tbody>
</table>

Indicate reasons for withdrawals:

<table>
<thead>
<tr>
<th>OUT-COMES:</th>
<th>Study Group 1</th>
<th>Study Group 2</th>
<th>Study Group 3</th>
<th>Study Group 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(specify units and measures, e.g. mean, SD, SE median, range, IQR)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30-day mortality (n, %)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PICU Mortality (n, %)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOS in PICU (days)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOS in hospital (days)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ventilator days (days)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Infected (n, %)

<table>
<thead>
<tr>
<th>Study Group 1</th>
<th>Study Group 2</th>
<th>Study Group 3</th>
<th>Study Group 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Other complications (list)

<table>
<thead>
<tr>
<th>Study Group 1</th>
<th>Study Group 2</th>
<th>Study Group 3</th>
<th>Study Group 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Side effects (list)

<table>
<thead>
<tr>
<th>Study Group 1</th>
<th>Study Group 2</th>
<th>Study Group 3</th>
<th>Study Group 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Was a time to event analysis performed:

- **No**: no
- **Yes**: yes

If yes:

List outcomes:

<table>
<thead>
<tr>
<th>Study Group 1</th>
<th>Study Group 2</th>
<th>Study Group 3</th>
<th>Study Group 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Are data available for individual cases:

- **No**: no
- **Yes**: yes

CHANGES IN PROTOCOL:

CONTACT WITH AUTHOR:

OTHER COMMENTS ON THIS STUDY:

SUBGROUPS:

Age <1 year

<table>
<thead>
<tr>
<th>Study Group 1</th>
<th>Study Group 2</th>
<th>Study Group 3</th>
<th>Study Group 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>30-day mortality (n, %)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PICU mortality (n, %)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Age ≥ 1 year

<table>
<thead>
<tr>
<th>Study Group 1</th>
<th>Study Group 2</th>
<th>Study Group 3</th>
<th>Study Group 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>30-day mortality (n, %)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PICU mortality (n, %)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Medical patients

<table>
<thead>
<tr>
<th>Study Group 1</th>
<th>Study Group 2</th>
<th>Study Group 3</th>
<th>Study Group 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
(Continued)

<table>
<thead>
<tr>
<th></th>
<th>Study Group 1</th>
<th>Study Group 2</th>
<th>Study Group 3</th>
<th>Study Group 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>30-day mortality (n, %)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PICU mortality (n, %)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HISTORY

Protocol first published: Issue 1, 2005
Review first published: Issue 2, 2009

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>11 December 2007</td>
<td>Amended</td>
<td>Converted to new review format.</td>
</tr>
</tbody>
</table>

CONTRIBUTIONS OF AUTHORS

Conceiving the review: Ari Joffe (AJ)
Co-ordinating the review: AJ, Lisa Hartling (LH)
Undertaking manual searches: AJ
Screening search results: AJ, Natalie Anton (NA)
Organizing retrieval of papers: Lisa Tjosvold (LT), AJ
Screening retrieved papers against inclusion criteria: AJ, NA
Appraising quality of papers: LH, NA
Abstracting data from papers: AJ, LH, NA
Writing the review: AJ, NA, LH, Ben Vandermeer (BV), Laurance Lequier (LL), Bodil Larsen (BL)
Guarantor for the review (one author): AJ
Person responsible for reading and checking review before submission: AJ, LH
DECLARATIONS OF INTEREST
None known

SOURCES OF SUPPORT
Internal sources
- Alberta Research Centre for Child Health Evidence (ARCHE), University of Alberta, Edmonton, Canada.

External sources
- Alberta Heritage Foundation for Medical Research, Canada.

DIFFERENCES BETWEEN PROTOCOL AND REVIEW
Background updated

INDEX TERMS
Medical Subject Headings (MeSH)
Burns [complications]; Critical Illness [∗therapy]; Enteral Nutrition [∗methods]; Intensive Care Units, Pediatric; Randomized Controlled Trials as Topic

MeSH check words
Child; Humans; Infant