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Abstract

Problems involving the behavior of piezoelectric solids receive a considerable amount of
attention in the current scientific and engineering literature as the need for developments
in micro electro-mechanical systems and their applications increases. It is well known that
all piezoelectric materials are anisotropic which makes any analysis of the equations of
piezoelectricity (equilibrium or motion) very difficult. This leads to the lack of the
development of the corresponding mechanical-mathematical models that are present in
classical isotropic elasticity.

The o bjective o f this work is t o study t he b oundary v alue problems for two ¢ ases of
deformation in linear piezoelectricity: anti-plane shear and generalized plane strain states.
Although both anti-plane shear and generalized plane strain are two-dimensional models
they have a variety of practical applications. For example, the problems of static torsion,
or torsional vibrations, reduce to the state of anti-plane shear; the case of general loading
applied to the generators of a cylindrical body with arbitrary cross-section can be
described by equations of the generalized plane strain. It is shown, however, that not all
the piezoelectric materials can obey the state of anti-plane shear. The conditions on
material properties necessary for the anti-plane shear to exist are mentioned.

The present work gives complete treatment of three fundamental boundary value
problems: Dirichlet, Neumann and mixed the case of equations of equilibrium and
Dirichlet and Neumann for the equations of steady state vibrations of a piezoelectric body.

Our tool for the analysis is an analytical technique known as the boundary integral
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equation method: boundary value problems stated in bounded or unbounded domains are
reduced to corresponding systems of singular integral equations stated on the boundary.
We show that Fredholm theorems on existence of solutions can be applied to the systems
of singular integral equations. The question of uniqueness of solutions of the boundary
value problems is also examined for the case of an unbounded do main (problems of
equilibrium and steady state vibrations) and the conditions for which the uniqueness of
solutions is guaranteed are derived. The analytical solutions for the boundary value

problems are given in the form of the single and double layer potentials.
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Chapter 1

Introduction

The phenomenon of piezoelectricity can be described as a generation of electric
polarization due to applied pressure. It was discovered in 1880 by brothers
Pierre and Jacques Curie in the laboratory of mineralogy, at the University of
Paris-Sorbonne. In 1881 W.G. Hankel introduced the term ”piezoelectricity”
that was readily accepted in scientific circles. The word is derived from the
Greek piezein, which means to squeeze or press [12].

After discovery of piezoelectric phenomenon by the brothers Curie the equa-
tions of piezoelectricity became available in Voigt’s book ” Lehrbuch der Kristall-
physik” first published in 1910. W. Voigt formulated thermodynamic potentials
for mechanical, electric and thermal interactions for crystals and derived the
constitutive relations for direct and converse piezoelectric effects. The theory

of linear piezoelectricity is based on the idea of coupling of the quazi-static
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electric field and the dynamic mechanical motion in polarizable dielectrics (not
magnetizable). In the development of the theory it was assumed that the re-
lations between strain and stress are linear for electromechanical interactions.
This assumption was confirmed experimentally for a variety of crystals except
ferroelectrics [12]. The first publications on the applications of piezoelectricity
and the development of the theory of vibrations in piezoelectric solids began to
appear in the early part of the twentieth century [10, 11].

Among the publications on the theory of piezoelectricity the book ” Piezo-
electricity” by W.G. Cady should be noted. The author gave the development
of the theory of the piezo resonator, the investigation of physical properties of
Rochelle Salt and Seignette electrics and their applications, also, some results
on crystal vibrations. Another work on the theory of vibrations in piezoelec-
tricity is H.F. Tiersten’s book ”Linear piezoelectric plate vibrations” published
in 1969. In this work systematic development of the general form of differen-
tial equations of motion and boundary conditions from fundamental continuum
concepts are given and some problems on plate vibrations are considered.

Modern developments of micro-electric-mechanical systems, miniaturized
power sources and other devices, such as piezomotors, renewed the interest
in the fundamental theory of linear piezoelectric materials, their applications
[9, 17, 19, 22, 47, 50] and the development of new piezoelectric materials

[8, 21, 25, 28]. The use of piezoelectric materials in micro power systems pro-
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duces significant advantages due to their light weight, superior energy conver-
sion efficiency and energy density [66]. One class of problems that are currently
being investigated is related to the fracture of piezoelectric solids, including
functionally graded piezoelectric materials [2, 39, 40, 56, 57, 65]. In [4]-[7] the
problems of the effect of electro-mechanical coupling on the decay of Saint-
Venant end effects in static linear piezoelectricity for the state of anti-plane
shear are studied for different classes of piezoelectric materials. It should be
noted that the majority of publications on the subject of piezoelectricity are
written from the practical point of view, using both analytical and numerical
techniques. Very few publications deal with the mathematical formulations
and solutions of boundary value problems arising in the theory of piezoelectric-
ity. It is well known that all piezoelectric materials are necessarily anisotropic
which makes any analysis of the governing equations (equilibrium or motion)
extremely difficult. This leads to the lack of the development of the correspond-
ing mechanical-mathematical models that are available in the classical isotropic
elasticity [44, 55, 80]. In most works the boundary value problems in classical
elasticity deal with either two-dimensional or simple three-dimensional models.
The work of V.D. Kupradze ”Three-Dimensional Problems of Mathematical
Theory of Elasticity and Thermoelasticity” provided a complete treatment of
the three-dimensional boundary value problems arising in statics, problems of

stationary oscillations, dynamic problems in the classical elasticity, thermoe-
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lasticity and couple-stress elasticity. Here boundary value problems are solved
by means of the theory of singular integral equations, employing the method of
potentials. In [68]-[71], [15] this approach was applied to some problems in the
classical plane elasticity and micropolar elasticity. The same method was used
by D. Iesan to formulate uniqueness and existence theorems for the generalized
plane strain state in the linear static piezoelectricity for the piezoelectric mate-
rial possessing cubic 43m symmetry [27]. This analysis though overlooks some
differentiability properties of the solutions of the integral equations.
Anti-plane shear deformation is one of the simplest classes of deformations
that a solid body can undergo. In the classical theory of elasticity the state of
anti-plane shear in an arbitrary cylindrical body corresponds to the case when
the only non-zero component of mechanical displacement is the anti-plane com-
ponent, parallel to the generators of the cylinder, which is independent of the
out-of-plane coordinate. In the linear theory of piezoelectricity the anti-plane
shear is the state when the mechanical displacement vector takes the same
form as in the purely elastic case and is accompanied by the presence of two
in-plane components of an electric field vector, independent of the out-of-plane
coordinate whereas the third, anti-plane component of the electric field vector,
vanishes. Let us now assume that the cylindrical body is subjected to the sur-
face stresses that act in the plane normal to the generators of the cylinder, i.e.

the stress vector component t3 is zero with z3 being the axis parallel to the gen-
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erators, and do not vary along the generators. In this case, an isotropic body
would experience plane deformation, i.e. the displacement along the generators
vanishes or is constant, while two in-plane components of the displacement are
independent of the out-of-plane coordinate. For an anisotropic body, however,
we cannot assume that the third component of the displacement vanishes as we
would have overdetermined system of governing equations. Therefore we can
only expect all the displacement components to be independent of the third
coordinate due to the form of the boundary conditions and the deformation
is then called generalized plane deformation [37]. In the context of piezoelec-
tricity, the generalized plane strain state corresponds to the case when all the
field quantities: three displacement components and electric potential, are in-
dependent of the out-of-plane coordinate [27]. Although both anti-plane shear
and generalized plane strain mathematically are two-dimensional models they
have a variety of applications. For example, the problems that reduce to the
state of anti-plane shear are those of static torsion, or torsional vibrations of
the cylindrical piezoelectric body [30]; the case of a general load applied to the
generators of a cylindrical body with arbitrary cross-section can be described
by equations of the generalized plane strain. The governing equations for the
state of anti-plane shear were established in different constitutive theories, for
example, in nonlinear elasticity [24], static piezoelectricity [4]-[7], micropolar

elasticity [61, 62]. The state of the generalized plane strain was only studied
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for the cubic 43m in the context of the static linear piezoelectricity [27]. Here,
the governing equations decouple into in-plane and anti-plane systems. Conse-
quently, no attention is paid to purely anti-plane deformations for piezoelectric
materials with more general symmetry properties. Since a variety of piezoelec-
tric devices operate on resonant frequencies such as piezoelectric transformers,
actuators, resonators and etc [12, 20, 72] the investigation of the nature of
steady-state vibrations is also of great importance.

The objective of the present work is to formulate and solve rigorously the
fundamental Dirichlet, Neumann and mixed boundary value problems for the
anti-plane shear state in the static theory of piezoelectricity, and Dirichlet and
Neumann boundary value problems for steady-state vibrations in piezoelectric
generalized plane strain. Our tool for the analysis is an analytical technique
known as the boundary integral equation method. The advantage of this tech-
nique is that it allows us to establish the existence of the solutions of the
boundary value problems, so that numerical procedures can be applied to solve
particular problems arising in the context of the anti-plane and generalized
plane strain states in linear piezoelectricity. Boundary value problems for the
static anti-plane shear state are considered for the piezoelectric materials of
rather general symmetry, tetragonal 4 class. The choice of this more general
symmetry type is motivated by the variety of newly developed piezoelectric

materials that exhibit tetragonal symmetry (8, 21, 25, 28, 88]. The solutions
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of these problems have applications in different areas where the models of anti-
plane shear are applicable [24]. The problems of steady-state vibrations are
considered for hexagonal 6mm class (for the case of the unbounded domain)
and tetragonal 4 class (for bounded domain).

The thesis is organized as follows. In Chapter 2 we give a brief description
of the quasi-static approach and derivation of the general form of the equa-
tions of motion for arbitrary piezoelectric solids. In Chapter 3 we derive the
equations for the static anti-plane shear state of linear piezoelectricity and for-
mulate fundamental boundary value problems. Also, we mention the conditions
on material properties of the piezoelectric body that must be met for the body
to undergo the state of anti-plane shear. Using the boundary integral equation
method, we prove existence and uniqueness theorems for the solutions of bound-
ary value problems. We give closed form solutions of Dirichlet and Neumann
boundary value problems in the form of single and double layer potentials.

In Chapter 4 we derive the equations of steady state vibrations of piezo-
electric solids. The Dirichlet and Neumann boundary value problems for the
unbounded domain are considered for the hexagonal 6mm symmetry class. In
vibration problems for the unbounded domain we establish the radiation, or
so-called Sommerfeld conditions, to guarantee the uniqueness of the solution.
The case of the bounded domain is considered for the tetragonal 4 piezoelec-

tric material. We prove the existence of the solutions for the resonance and
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non-resonarnce cases.
In Chapter 5 we give a brief summary of the obtained results and make

suggestions for possible directions of future work.
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Chapter 2

The basic equations of linear

piezoelectricity

In this chapter we will give the fundamental equations of motion for the linear
piezoelectric continuum and corresponding boundary conditions. We will also
define anti-plane shear and generalized plane strain states in piezoelectricity
and formulate the boundary value problems for certain symmetry classes that
will be studied in the present work.

In what follows Greek indices take the values 1, 2, the convention of the
summation over repeated indices is understood, M, «,, is the space of (m x n)-
matrices, I is the identity element in M, «,, a superscript T indicates matrix
transposition and (...),o = 9(...)/0zo . For A € My, xn we denote the m-th

row as A(y) and n-th column as A" Also, if X is a space of scalar functions
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and v is a matrix, v € X means that every component of v belongs to X. The
notation v € C*(9) indicates that a function v belongs to the space of a-times
continuously differentiable functions on S. If a function v defined on S is such
that

lv(z) — v(y)| < Clz — y|* forallz,ye S

for arbitrary C = const and « € (0, 1}, then it is said to be Holder continuous
on S [14]; . We will denote a space of Holder continuous on S functions with
an index o by C%(S) and by C1*(S) a space of functions on S whose first
derivatives belong to C%*(S).

The derivation of the equations for the theory of linear piezoelectricity is
based on the idea of coupling the quazi-static electric field and the dynamic
mechanical motion in polarizable dielectrics (not magnetizable). To give an
idea of the quasi-static approach used to derive governing equations for the
theory of linear piezoelectricity we will first briefly mention several important
concepts from the purely electromagnetic considerations.

One of the consequences of Maxwell’s equations is Poynting’s theorem [79]

which gives us that for an arbitrary volume V bounded by a surface 9V

L (E-D+M.B)dvz—/

n-hds—/ E-JdV.  (2.1)
ar Jy v v

Here £, D, M, B, n, h = ZE X M, J € M3x1 denote respectively, the electric
field, electric displacement, magnetic field, magnetic flux vector, outward nor-

mal to the surface 0V, Poynting’s energy flux and current; ¢ denotes the speed

10
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of light in vacuum. We will define the term

UZI%(E.DWLM-B)

as the time rate of change of electromagnetic energy. The Poynting’s theorem
now can be interpreted as follows: the time rate of change of internal electro-
magnetic energy in an arbitrary volume is equal to negative of the rate of flow
of electromagnetic energy through the surface enclosing the volume minus the
rate of dissipation of electric energy by thermal means inside the volume. If we

introduce the vector potential A € M3y such that
B; = &k Ak,
and scalar potential ¢ such that
1.
Ep=—¢r — —Ax,
c
Poynting’s energy flux vector components become (for details see [79})

D; 1 -
h;, =¢ (E + Ji> - Z;eijkAij. (2.2)

The assumption on the electric potential ¢ made to make a quasi-static approx-

imation is that for each component ¢ ; the following condition is satisfied:

A

C

<L bl - (2.3)

The assumption (2.3) is valid when the electromagnetic waves uncouple from

the elastic waves, and also when acoustic wavelengths are shorter than the

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



electromagnetic wavelengths of the same frequency. Also, since we consider

only polarizable dielectrics we can set
M=J=0.

This will allow us to assume that the magnetic portion of Poynting’s energy

flux vector is negligible and, therefore, we can assume A in the form

_¢D
h=" (2.4)

Also, components of the electric field F; are now defined simply by

Ei=—9, (2.5)

The equations (2.4) and (2.5) are the major consequences of the electrostatic ap-
proximation and will be used to derive the constitutive relations for polarizable
dielectric medium. Now, with the use of (2.4), we can formulate the principle of

energy conservation in an arbitrary volume occupied by a piezoelectric material

%/V (%pu‘ju‘j + U) dv = /av (t34i; — njoD;) ds, (2.6)
where u;j, t; are, respectively, components of displacement and stress vector.
The equality (2.6) states that change in total energy, kinetic and internal, is
the rate at which work is done by the traction forces acting across 8V minus
the flux of electric energy out through oV.

By applying the divergence theorem to (2.6) we obtain the rate of change

of internal energy U
U = (riji — pily) U5 + Tijit; — ¢Dii — ¢ Di.

12
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Here 7;; are components of the stress tensor. Now, from the equations of motion

from linear elasticity (in the absence of external forces)
Tiji — pli; =0
and the charge conservation equation (in the absence of external charge)
Di; =0
we obtain the rate of change of internal energy
U = 7t ; — ¢:Ds. (2.7)
Next, we introduce the electric enthalpy function H
H=U+¢;D;. (2.8)
If we differentiate (2.8) with respect to time, together with (2.7), we have
H = 15U ; + Did, (2.9)

$o we can assume that enthalpy H = H(u;;, ¢ ;). Now, for the H we obtain

oH o0H

1= Guy o+ g%

which together with (2.9) produces the identity

OH \ . 0H
(Tij - 8'U/i,j> Uy, j + (Dz a¢ ) ¢z -

Since the above identity must hold for arbitrary u; ; and qbl we have that

oH o0H
o D, = .
6u,~,j ’ ! 8(}5,1'

(2.10)

Tij; =

13
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We assume the enthalpy function H in the form [79]

1 1
H= icijklui,juk,t + ekij P kUi — §6ij¢,z’¢,j, (2.11)

where Cijui, ekij, € are, respectively, elastic, piezoelectric and dielectric con-

stants such that
Cijt = Ckiij = Cikij,
€kij = Ckji,
€ij = €4

In a similar way as in [79], from (2.10) and (2.11) we obtain the constitutive

relations of linear piezoelectricity

Ti; = Cikiukl+ ekij@k,
(2.12)
D; = epuk — €xdk-

Now, substitution of 7;; from (2.12) into the equation of motion for a linearly

elastic medium
Tijj = Pl — fi
and D; from (2.12) into the charge equation

D;;=q

produces the equations that govern the behavior of a linearly piezoelectric con-

tinuum
Cijkiuk,ji + exsj®k; = pls — fi,
(2.13)
€iklUkil — €kPik = g
14
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By f; we denote the components of the body force and by ¢ the external charge.
The equations (2.13) are accompanied by the set of mechanical and electrical
boundary conditions. In the present work we will be dealing with several types
of boundary conditions. First, we consider the boundary conditions when the
displacement vector components and electric potential are prescribed on the
boundary. The boundary value problem for the equations (2.13) accompanied
by the this type of boundary conditions we will refer to as the Dirichlet bound-
ary value problem. If the traction vector and surface charge are prescribed on
the boundary we will have the Neumann boundary value problem. The last
case of boundary conditions that we will consider is when Dirichlet boundary
conditions are given on one portion of the boundary and Neumann conditions
on the remaining portion of the boundary. The equations (2.13) together with
this type of boundary conditions we will refer to as the mixed boundary value

problem.

15
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Chapter 3

Anti-plane shear state in

linear piezoelectricity

3.1 Governing equations and boundary conditions

The anti-plane shear state will be considered in the frame of the static theory,
i.e. all the field quantities are independent of time. Let Q be an infinite cylinder
Q = {x € R3: (21,22) € S} where S is a simply-connected domain of R?
such that its boundary 8S is C?-curve. Let Q be occupied by a homogeneous
linearly piezoelectric material. The lateral surfaces of the cylinder are loaded
as shown in the Figure 3.1. As in [4] we define a state of anti-plane shear for

the piezoelectric body by requiring that the components of the displacement

16
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vector and the electric potential take the form:

( up = 0,
Uy = 0,

\ (3.1.1)
uz = ug(z1,T2),
¢ = (f)(-'lll,xz), Y T1,T2 € S.

\

If we now substitute (3.1.1) back into the governing equations (2.13) we obtain

Cia3ﬁu3,aﬂ+euia¢,ua = —fs,
(3.1.2)

—€ryiqU3 ya T 5aﬂ¢,a,@ q inS.

Figure 3.1: Piezoelectric cylinder under an anti-plane shear loading

17
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We note here that now we have two unknowns but the number of the equa-
tions remains four, i.e. the system (3.1.2) is overdetermined, in general. Con-
sequently, an arbitrary piezoelectric body will not, in general, sustain an anti-
plane shear state (ug, ¢). The same is true for the purely mechanical problem
[24]. However, as in [4], it can be shown that a sufficient condition for a non-

trivial state of anti-plane shear to exist is given by

Crads =0, €vya =0. (3.1.3)

The conditions (3.1.3) imply that we consider only those piezoelectric materials
in which there is no in-plane stress produced, i.e. 71, T12, To2 are zero, by
anti-plane shear strains €13, €93 and in-plane components of the electric field
FE; and E».

In this case the equations of equilibrium become

C3a3[3“3,aﬂ + ey3a¢,ua = —f3
(3.1.4)
—€43aU3 yor + 6&ﬂ¢,a,8 = q, in §.
The appropriate boundary conditions for (3.1.4) are given by [4]
(CSaSﬁU&H + eu3a¢,u)na = t; (Ila m?) s
—(ey3aU3,y — €639 8)Na = D*(z1,22) on 885, (3.1.5)
in the case of the Neumann problem, and by
uzy = ug(zl, 22)
(3.1.6)
o = ¢*(r1,2z2) onadSs,
18
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in the case of the Dirichlet problem. Here D*, t3, u3, ¢* are prescribed functions
on 0S5 and n, are the components of the outward unit normal n to 5.

To write the mixed boundary conditions we divide 85 into two (for simplic-
ity) arcs 851 and 8S; with common endpoints a and b. The case when 95 is
divided into more than two parts is relatively straightforward and proceeds as
in [33]. As in [33], the set x = {a, b} is included in 851, so that 05, is taken as
an open arc and 85 as a closed one. Let us introduce the differential ” stress”

operator T' = T(0z,n) which describes Neumann type boundary conditions:

CBaSﬂgﬁna €u3aluNa
T =T(0z,n)=
_373a§'yna faﬂé‘ﬂna

By £, we denote %. Let us denote by u = u(z) € Maxi such that u(z) =

(us(z), ¢(z))T. Now mixed boundary conditions become:

u(z) = u*(z) z €05
(3.1.7)
Tu(z) = t*(z) z € 053

Let us introduce the differential operator L = L(dx) corresponding to the

equations (3.1.4):

CSaSﬁfagﬂ ev3alvéa
L=L(dz) = (3.1.8)

_673a€’y£a Eaﬂgagﬂ

In the particular case of tetragonal crystal symmetry 4 the differential operator

19
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L becomes

Cu(é2+€3)  es(€8 — &3) + 2e146162

—e15(67 — €3) — 2e146162 (&3 + &3)
(3.1.9)
and the ”"stress” operator T takes the form
T =Ty(dz,n) =
Cys(n1&1 + noéa) e15(n1€1 — n2éa) + e1a(n2és +n1éa) :
| —es(mién —male) —ena(maby +m2a)  e(mby + n2br) |
(3.1.10)

where

Cu = C3131 = Caa3,

€14 €132 = €231, €15 = €131 = —€232,

€ = €1 = €2.

For the cubic 43m crystal class the operators L and T take the form [27]:

( Cu(E3+€23)  2e14616

L=Lg, (9z) = , (3.1.11)

—2e1461&2  (E+ &) |

Cag(mér +n2&2)  ens(naés +méa)

T =Ty, (3z,n) = , (3.112)

I —e14(m281 +n2b2) (M + npba) |

20
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where

Csa = C3131 = C3232,
€14 = €132 = €231, e131 = eaz2 =10,
€ = €11 = €29.

For convenience, we introduce the following notations for the system of equa-

tions (3.1.4):

Allag = C3a3p
A2 = €a3p
A21aﬂ = —€a34
(3.1.13)
A22aﬁ = €up
ui(z1,22) = wuz(x1,x2)
ug(z1,z2) = ¢(x1,72)

Now we can write the operator L(dz) for both cases of material symmetry as:

L(9z) = {Axpapbalp}-
Similarly, for the stress operator T'(dz,n) we have
T(0z,n) = {Axpapésnal-
Let S* be the bounded domain enclosed by 85. Also, we define S~ as following

$~ = lim (Tg\S%),

R—o0
where T is a circle in R? of sufficiently large raduis R. By §* and S~ we will
denote ST|JAS and S~ |J8S, respectively, i.e. regions containing ST or S,

respectively, together with the boundary 85S.

21
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Remark 1 The following assertions are true for both tetragonal 4 and cubic

43m classes:

(1) L(0x) is elliptic if C4q and € are of the same sign. Henceforth, we assume

that Cyy, € are both positive.
(2) The internal energy takes the form [79]:

Uu, u) = C3a3pU,U,o + €039,59 a5 (3.1.14)

and, specifically for both classes, we have
Ulu,w) = S Cuud + ) + eldh + 6%),

and U(u,u) = 0 if and only if

uw=(u, )] = (w1, u2)T = (e1, ¢2)7, (3.1.15)
where ¢y are arbitrary constants.

(3) Asin [14], we can show that (Betti Formula) ifu € C?(S+) N C" (§+) NMaxi
is a solution of the system (3.1.4) (with the absence of body force and ez-

ternal charge) in St then:

2/ U(u,u)dA = ul Tuds,
S+ as

and

LaﬂuﬁdA:/ T,pupds.
S+ as

22
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We can also establish the Reciprocity Relation: ifu, v € C2(ST)NC! (§+) NMasxa
then

/ (vTLu — uT Lv)dA = / (WTTu — uT'Tv)ds.
St 08

3.2 Fundamental and singular solutions

In this section we will construct matrices of fundamental and singular solutions.
In the classical elasticity theory the fundamental solutions correspond to the
displacement field due to the force applied at a point. These are known as
Kelvin point-load solutions. In piezoelectricity, where the field quantities are
the displacement vector and the electric potential, the fundamental solutions
correspond to the displacement field and electric potential due to the point-
wise applied force and the electric charge. One of the important properties
of fundamental solutions for the application of the boundary integral equation
method is that they satisfy the governing equations. This will be used to
construct the single and double layer potentials in Section 3.5. To find the
matrix of fundamental solutions we will use the Galerkin representation of the
solution.

We introduce L*(0zx) € Maxa, the transposed matrix of cofactors of L(dz),

such that

Lf\,u = B)\u76€7§67
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where the coeflicients B),ys are

Bllfy& = €45,
Bigys = —ey35,
! h (3.2.1)
Bo1ys = eyss,
Baoys = Csa3s-
Clearly, we can write
2
LL* = Z AmuaﬁBAp75€a£[i£7£6 = Jeadet L. (322)

pu=1
We are looking for the Galerkin representation of the solution of the system

(3.1.4) in the form

u(z) = L"g,

where g € May1. Substitute now u(z) into the equation

L(0z)u(z) = —d,

where d € Moy is such that first we take d; to be equal §(z — y), Dirac

distribution, and ds equal to 0, and then d; = 0 and d» = é(z — y). We obtain

L(8z)L*(0x)g = det L(dz)g = —d.

Clearly, first we can take g; to be equal to some function ¢ = ¥(z,y) and
g2 = 0, and then take g; = 0, g2 = §(z — y). Thus we now have to solve one
equation:

det L(0z)y(z,y) = —é(z — y),

24
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which will give us the matrix of fundamental solutions I'(z, y) such that
L(z,y) = L*(0z)y(z,y). (3:2.3)
From [38] we find that the unknown function ¥(z,y) is given by

4
Y(z,y) = —ia Z(—l)jdjajz log o}, (3.2.4)
j=1

where

1

= Green G @)+ @-w) =1l

d; is the cofactor of ag-’ in the determinant D, divided by D, where D is given

by
a3 o o 1

a3 a2 ay 1

Wl
I

a3 a3 o3

3 2
oy oy ag 1

and «; are the roots of the characteristic equation corresponding to the dif-
ferential operator L(8x). In the case of cubic symmetry 43m we have the

characteristic equation for the operator L(dx)
eCyqa® + (2eCyq + 462)Oé2 +eCyqa =0

and the roots are found to be

b Vb2 —4 b+ V2 —4 2eCyq + 4€2,
a2 =i\ ——————, o034=—i{/————, where b= ——"—7=.
2 ’ 2 6C44
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The corresponding characteristic equation for L(8z) in the case of tetragonal 4

symmetry becomes

€Caa(0? + 1)2 + (e15(a? — 1) - 2814a)2 =0

with roots
oy 2T —4p? —4(12 4+ 1) oy = 2T V=42 —4(12 +1)
12 2(0=1) ’ 34 21 + 1) ’
where

€
l = v/Cyqe, p=1

€15

We note here that in both cases a1 2 are complex conjugate of a3 4; the function
¢(z,y) is a real-valued function. Now, the substitution of the function ¥ (z,y)
given by (3.2.4) into the equation (3.2.3) gives us the components of the matrix
of fundamental solutions

Dyu(z,y) = Z':;,ézl B/\MJ% = (3.2.5)
= Y4 Y2 s ai(~1Yd;Bynsal P (210g 0 + 3).

Next, we introduce the matrix of singular solutions D = D(z, y)
D(z,y) = (T(9z,n)I(y,2))".

Following the procedure similar to the one used [27] we will make some trans-
formations to write D(z,y) in the more convenient form. First, we write the

components of the matrix 7'(dz, n) in the form

2
0
T (Oz,n) = E A,wag—axﬂna.
pu=1
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Now we can write

2
T(0z,n) TV (z,y) = Y~ Agpaplunpna = (3.2.6)

u=1

4 2
. 1
I 2ai(—l)deB,\u,Yga6_(ﬁ+7+5);Awaﬁna-

2
j=1 p=1~,6=1 J

Bearing in mind (3.2.2) we recall that the characteristic equation can be written

(A is not summed) as follows

2 2

D0 D AvmuwsBuinsa® ¢
#=1B,vy,6=1

Or, we can write

2 2

Z Z AlulﬁBly.'yéa7—(V+ﬂ+7+5)+
p=1B,vv,0=1

2 2

+Z Z A1#2ﬂ31u15a6_(u+ﬂ+7+5) =0.
“=1 ﬁﬂ/i‘Y)é:l
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So we have

2 2
Z Z AlulﬁB1ﬂ75a7_(V+ﬂ+7+5) _
p':1 ﬁ:V7776=1
2 2
B Z Z Alﬂ?ﬁBluvéae_(”+ﬂ+7+5). (3.2.7)
u=1p,vy,0=1

Substitution of (3.2.7) into (3.2.6) produces

4 2 2
T (82, )TV (z,y) = ZZ Z ( w18 By WA

7=1 p=14,6=1

;o1
+Anp2ﬂB/\y75046‘(V+'6+’Y+6)) QG’i(—l)]d]’—’na =
gj

4 2 2
= ZZ Z (Anme)\MaaG'("*ﬂﬂH)_

J=1p=1~,5=1

- . o1
—0j A1 Bayiysa® (”+ﬁ+7+6)) 2ai(—1)’d, —Ta =
j

4 2 2
» 1
E E E numB,\MaaG (v+B+7+6) (n1 — ajn2)2az(—1)1dj?. (3.2.8)

Following [33, 27] we write
logo; =log Z - L1og L 4 Inr (3.2.9)
goj; = log pn 5 g p ) 2.
where
o=i(z1—y1)+ (22— y2), rP=(z1-y)*+ (22 —p2)%

Having noticed that

1 Ologo;
(n1 - a]ng)a—j = 751_
we can write
ilo o _ (i—a;)r?dlnr
sy o ooj ong
28
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Finally, (3.2.6) becomes

1 | — a)r? )
Dix(z,y) = T(H)(8an()a;y) ZR [3nr <(z a;)r ;1;> nr}’

o0 ong

(3.2.10)

where coefficients R’, are given by

2 2
j . j 6—(B+y+dé
Ri/\ = 20/&(—1)]dj Z Z An,ulﬂB/\p.l,Haj ('6 " )

#=1pBy,6=1

Remark 2 We note here that the columns of I'(x,y) and D(z,y) are solutions
of the system (3.1.4) for allz € R? : x # y and for the normal vector n € Max

independent of x. To see this, first we recall that
L(0z)(z,y) = L(8z)L*(8z)y(x,y) = I det L(dz)¢(z,y) = 0.
Using the definition of the matriz D(z,y) we find
L(0z)D(z,y) = L(9z) (T(8y)T(z,y))" = L(92)I" (z,y)T" (y,n) =

= Lag(92) ((-1) T, (z,) ) (~1) 7T, (8, n) =
= (~ 124D Lo (82)Tpy 2, y)(~1) T, 8y, m) =
= (1)@ L 5(02) L, (02) (2, y) (—1) T 0y, m) =

= (=) e+ 5 det L(8z)w(z, y)(-1) " TOT,5(8y, n) = 0.
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3.3 Representation formulae for the bounded domain

Now we are in a position to derive the representation formulae for the solutions
of (3.1.4) for the interior domain. We will use these results in Section 3.5 to

investigate the behavior of the single and double layer potentials in ST and its

boundary 0S.

Theorem 3 (Representation formulae) If u € C2(ST)NC (ST) is a solution

of the homogeneous system (3.1.4), then

( Lou(z) , zeST,
| E@nT@uw) - Danutldst) = jru@) , = eos,
0, zesS,

where
4 .
I,=-2iry R
=1

Proof. Let 0,6 be a disk lying inside St with the centre at z = (z1, z2)
and with sufficiently small radius 6. Applying Reciprocity relation (Remark 1)
in S\ 0,4 taking each time v be equal to the columns of the matrix I'(z, )

and bearing in mind Remark 2 we obtain
0= /8 . [0 (2, )T Dy, n)uly) — Dy (2, y)uly)] ds(y) -

- [ [t @ Ty muw - Due vuw)] dstw)

where 0o 5 is the boundary of o, 5. From (3.2.5) we conclude that

27
lim T (2, y)T(8y, n)u(y)ds(y) = lim/ IndM18df = M lim §1nd = 0.
§—0 8045 6—0 Jg 6—0
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Let us now consider the second integral over 8o, 5. We can write
| Dueuutidst) = [ Do s)(s) - ula)dst)+
Oz,8 Jz,6

+u(z) /a Dy (. 3)ds(y).

From (3.2.8) we see that each component of D(z,y) is O(3) for y € do,.

Since u € C%*(S*|J8S) and ds(y) is O(6) then for y € 8o, s we have

) 1 )
Dy (@,4)(u(y) — u(s)ds(y) = limg Mo | 36ds(y) = Mo Jim 5 =,

90,5 0035

here M;, j =1, ...,4 are arbitrary constants. Thus we obtain that

i [ Dy (e puds) = u@) fim [ Do, 1)dsty) = Lyuta).
—0 80y.s 6—0 0045

Using the results established in [14], the components of the matrix I, are cal-

culated to be

I _iRj/ 81nr+ (i—aj)r?  \ dlnr ds(y) = —2i iRj
w(’“i)_j:l ™ Joo, s | 052 oa; =) on, | VYT mjzl o

For the case when z € 35 the same procedure is applied for the domain S*\ 7, s,

where 6,5 is the part of 0, s lying inside S*. Thus, instead of do, s we will
have its part 85,5 in ST. It was shown [23] that in the case of a Lyapunov
curve S the length of 96, s is 7.

For x € §~ the result follows directly with the use of Remark 2.
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3.4 Representation formulae for the unbounded do-
main
We recall that we define S~ as follows
§7 = lim (Tr\ SH).

To establish the representation formulae in an unbounded domain, as in The-
orem 3, we will apply the Reciprocity relation in S~. However, in this case,
instead of the boundary 0.5 we will have 05| JOI'g and the integral over dT'g
becomes divergent as R — oo. Thus, the representation of the solution of
boundary value problems for (3.1.4) in the unbounded domain requires the
restriction of the behavior of the solution when z = (zj, x2)T approaches in-
finity. To this end we want to define a special class of functions A of vectors

u(y) € Max1 whose asymptotic expansion in polar coordinates (r, #) has a form

Ua(r,0) = r‘l(aga) cosf — aga) sinf — bega)(sinG + pj cos )+
+ bega)qf- cosf) + O(r~2)

(@) (@)

where a; , © = 1..3, are arbitrary constants; p;, g; are real and imaginary

parts, respectively, of a; and

1
 sin6? + 2p;jsinfcosf + (p? + q3)cos 6%

M;
Let A be the set of vectors u(y) € Moy defined as

A:{ﬂ:&:u+uo; ue A, wup: E(uo,u0)=0}.
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Let y be a fixed point and let |2| — co. In this case

Iw—yllwl) |z — yl
1nx—y=ln<— =In|z|+ In =
==yl B SRR

2 2 _
In|z| + 1ln o+ lyl” — 2(2,9) =In|z|+1In(1+¢),
2 ||
lyl* +2(z, y) 1
where e= LT 20V oy,
2P &

From (3.2.9) we conclude that logo; = O(ln|z — y|). Similarly, for |z| — co we

ool

By making use of these results we can write asymptotic properties for the

write

components of matrices I'(z, y) and D(z, y):

Lose)=Onfa), D) =0(g). (42

The following assertions hold for the solutions of boundary value problems

for (3.1.4) in the case of an unbounded domain.

Remark 4 As in Remark 1, it can be shown that the Betti formula holds in

the case of an unbounded domain:

Ifue C?N(S™)C (S7)N A is a solution of (3.1.4) then

U(u,u)dA:—/ uwl'Tu  ds.

S- as

Proof. We can write

O:/ wI'LudA = lim {/ uTLudA—/ uTLudA} =
- R—oo L JTp S+
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= lim {/ uTTuds—2/ U(u,u)dA}—/ uTTuds+2/ U(u,u)dA =
R—oo | Jary Tr a8 S+
= —2/ U(u, u)dA—/ ul Tuds,
_ as

since u € A and therefore the integral

/ uTTuds
8Tg

vanishes as R — oo which completes the proof.

Theorem 5 (Representation formula for an unbounded domain)

Ifue C?N(S7)CYHS )N A is a solution of the equations (3.1.4) then

;

Lywu(z), zesS,
- /8 MW@ T00u) - D@ )| dsw) = { Lue),  ceos,
0, z €St
\

Proof. Following the classical procedure [14], for z € S~ we apply the reci-

procity relation in Tg \ S*:

0= — fus [T (2, 5)T(9y, n)uly) — Diwy(a, y)u(y)] ds(y)+
+  Jor,, (0% (2, y)T(8y, n)u(y) — Dywy(z, y)u(y)] ds(y).
Using the relations (3.4.2) we conclude that for the second intergal an asymp-
totic estimate
0 (% In R)
holds and therefore, as R — oo, the integral over 0I'g vanishes. We must note

here that the first integral changes its sign since the normal n = (ny,n2)7 is an
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outward normal. Now the results follow by utilizing calculations and arguments

given in the proof of Theorem 3.

3.5 Single and double layer potentials

In this section we define the single and the double layer potentials and in-
vestigate their behavior in domains ST, S~ and on the boundary 8S. The
properties of the single and the double layer potentials are essential as they are
the key concept of the boundary integral equation method. We will see that
the definitions of the single and the double layer potentials and their behavior
on the boundary 85 make it possible to reduce the boundary value problems in
St and S~ to the corresponding systems of singular integral equations on the

boundary 05. We construct the single layer potential V¢ in the form

V(z) = /3 . Iz, y)e(y)ds(y)
and double layer potential W

We(w) = [ D)eisy)
with the density ¢ € May;.

Theorem 6 If ¢ € C(0S) then Vy(z) and Wo(z) are analytic and satisfy

(3.1.4) in S*T(S7).

Proof. To prove the second assertion we recall Remark 2. Analyticity is

examined in the classical way as in [51].
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Theorem 7 If ¢ € C(9S) then

1. Wpe A

2. Vyp e Aif and only if

/as wds = 0. (3.5.1)

Proof. The proof of the first part of the assertion is obtained using Remark
2 and the definitions of the single and double layer potentials. For the proof of

the second part, first, we write

1 .
logo; = log (zq, — yaj) =3 In|zg, — yaj]2 +iArgo; =

1 [Ta; — Yo 12| Ta; |? ) 1 1 '
= 5 In ( a; leZIQ & + ZArgO'j = aln l,’],‘aj|2 + 5 In (1 + 5ozj) + ZAI‘gO'j,
(3.5.2)
where
2
Yo -2 (z S Yo
To, = Q511 + zo, Yo; = 0411 + 0, €y = | Jl ( a; aJ)_

|5”aj|2

We see that when [z4;| ~ |z| — 0o the value of &, is sufficiently small, so we

can apply the well known formula (for small €)

1 1
In(14¢)=¢- 552 + 553 + O(e*).

to obtain the expansion for In (1 + &4;) (for small e, i.e. when [z4,| ~ |z| —

o0). When [z4;| — oo the value of &,, tends to zero. For the A-component of
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the single layer potential we now have:

V(,O)‘(l') = /as F)\u(x7y)¢l—t(y)ds(y) =

where Viy(z) € A. Thus we see that Vo(z) is in the class A if and only if we
require

/ w(y)ds(y) = 0.
a8

The result for the double layer potential follows from expansion of W(z) when

|Za,| ~ || — oo using the relation (3.4.1).

Theorem 8 1. If p € C(8S) then Vi € CO*(R2).

2. If p € CY%(88) for a € (0,1], then Wy has C1P-extensions (W)t and

(W)™ to St and S, respectively, with 3 € (0,1).

Wyt W, z e ST,
(p =

Lo+ Wop, €8S,

( ) W, €S,
Wep)™ =

Lo+ Wop, z€88S.

3. If p € C%%(3S) then Vi € CL¥(R?) for o € (0,1) and

T(Vy), z e ST,
T(Ve)" =

Lo+ T (Vop), z€dS,
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B T (Ve), reST,
T(Vy) =
—3Lop + T (Vop), €35,

4. T(We)t =T (Wg)~ on dS.

Here Wyy and Vo denote the double layer potential and single layer po-
tential, respectively, for z € 05, 73 denote components of the unit tangent to

0S.

Proof. To prove the assertion 1 from (3.2.5) we conclude that the kernel of
the potential Vi

k(z,y) ~ O(lnr).

The required result now follows from [14]. For parts 2,4, bearing in mind

(3.2.10) we write
4
We = ZRj {vf(x) + (i — aj)p(z) + zw(x)} ,

Jj=4

where

V@)= [ Faretdst),

wie) = [ Tetdso).

p(z) = /d : (;%) aalgyrw(y)dS(y)

The proof now follows from [14]. To prove 3 we can write [33]

T (Vi) = T(0,n) (V) = T(0x,m) | Tie,n)ew)ds(y) =
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= [ T@smT vedsy) =

as
- /8 #70) [T(0n 1)) + T(Oy, mT(a,)] ds(y) -

- [ ST )ds() =

oS
- /a e [T(0,n) + T(6y, W], y)ds(y)-

- [ ey mre )l euds)

oS
We can see that the last integral is a double-layer potential, so we can write

T(Vy) =

-/ #70) [T(0z, ) + Ty W@ 0)ds(y) - Welo).  (35.3)

We can show that the first integral is a continuous term. We recall that

P8 = (ma(x) - ayma(a)-
Similarly,
8812—?;)]' = —(n1(y) — ajn2(y)).

Thus, using (3.2.8) we can write that

[Tn(al', TL) + Tn(ama n)] F(A) (iL‘, y) =
2 2 . 1
= Z Z Z AnﬂlﬂB)\#,yga6_(V+ﬂ+7+6)Q(Li(—l)]dj;><

M

7=1 p=1%,0=1

x [n1(z) — ni(y) + (n2(y) — n2(x))oy] -
Since 88 is a C2-curve we can conclude that the first term in (3.5.3) is contin-

uous, which completes the proof.
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3.6 Fundamental boundary value problems: unique-

ness and existence of regular solutions

In this section we state the fundamental boundary value problems for the equa-
tions of equilibrium (3.1.4). Then we prove the uniqueness theorem for solu-
tions of the Dirichlet, Neumann and mixed boundary value problems. Using
the properties of the single and the double layer potentials (see Theorem 8)
we reduce boundary value problems to the corresponding systems of singular
integral equations for which the Fredholm Alternative holds. This allows us to
prove the existence of the solutions of systems of singular integral equations and
thus to show that the fundamental boundary value problems are well posed.

Let functions P(z), Q(z), R(z), S(z) € C(8S)[)Max1 be prescribed on
the boundary 9S. The first component of the vector P(z) (and R(z)) gives
the value of the displacement component uz on the boundary 4S. The second
component of P(z) (and R(z)) gives the electric potential ¢ on 85. The first
component of Q(x) (and S(z)) prescribes the stress vector component 3 on the
boundary 0.5 and the second component of Q(z) (and S(z)) gives the value of
the electric charge on 95.

We shall state the interior and exterior Dirichlet and Neumann boundary

value problems:
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Find u € C2(S*) N CL(ST) | Max1 satisfying (3.1.4) in St such that
u |ps= P(z). (D)
Find u € C2(S*) N CL(S") N Max1 satisfying (3.1.4) in S such that
Tu |as= Q(2). (N)
Find v € C2(S7)NCY (S~ ) NANMa2x1 satisfying (3.1.4) in S~ such that
u |gs= R(z). \ (D7)
Find u € C?(S7)NCHS )N AN Max satisfying (3.1.4) in S~ such that
Tu |as= S(x). (N7)

For the mixed boundary value problems we have the following formulations for

the bounded domain:

Find v € C2 (S*) N C! (ST \ x) satisfying (3.1.4) in ST such that

L(oz)v(z) = 0, z €St

v(z) Bt (x), z € 85, (M)
T(0z)v(z) = C*(z), x € 05y,
where B, C € My, are prescribed on 057 and 35s, respectively. In the similar

way we formulate mixed boundary value problems for the unbounded domain:

Find v € 02 (S7) N C (S~ \ x) N A* satisfying (3.1.4) in S~ such that
v(x) = B (z), x € 051,
(M)
T(0zx)v(z) = C(z), z € 082,
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where functions B*(z) and C*(z) are prescribed on 851 and 955 respectively.

It would be more convenient for us to have homogeneous Dirichlet con-
ditions. Later in this section we will assume the solutions of the boundary
value problems (M ") and (M ™) of the certain form such that the homogeneous
Dirichlet conditions will be satisfied automatically. Here we will follow the pro-
cedure used in [33] to reduce problems (M*) and (M ™) to the problems with
simpler boundary conditions. Let ®(z) € C? (S*) N C!' (§*) be the (known)
solution of a related Dirichlet problem for the equation (3.1.4) such that on
95, its values coincide with B* (z). Let u(x) = v(z) — ®(x). Then for the new
unknown function u(z) we have the following problem:

(M*) Find u € C?(ST)NC* (S*\ x) satisfying (3.1.4) in S* such that
u(z) = 0, z € 05, (3.6.1)

T(@z)u(z) = f(z), €8Sy, (3.6.2)
where f =C —T® € Myy.
Similarly, for the exterior problem we have:
(M~) Find u € C?(57) N C! (§~\ x) N A* satisfying (3.1.4) in S~ such
that
u(z) = 0, z €091, (3.6.3)
T(3z)u(z) = q(z), €8S, (3.6.4)

where g € Moy, is prescribed on 8S5;. In view of the asymptotic behavior of
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the matrix T'(z,y) we pose the exterior problem (M ™) in A* to allow as large

a set of admissible matrix functions as possible.

Theorem 9 Each of the problems (D%), (D7), (N7), (M™*), (M~) has at
most one solution. Any two solutions of (NT) differ by a (2 x 1)-matriz of the

form (8.1.15).

Proof. The proof is conducted using classical techniques [14] by making
use of the Betti formulae established above. Let us first show the proof for
the Dirichlet problem for the bounded domain. We assume that there are two
solutions of (DT) u(M(z) and u®(z):

L(@z)uM(z) = 0, L(0z)u®(z) = 0,
u(z) = P(a), u®(z) = P(a),
here by L(0z) we denote the differential operator for (3.1.4) for both tetragonal
4 and cubic 43m symmetry. Next, we introduce some function w(z) € Moy
such that w(z) = u(®) —u®. Obviously, w(z) solves the homogeneous Dirichlet

problem for L(dz), i.e.

w(z) = 0 ondS.

From Betti formula (see Remark 1) we find

/ U(w,w)dV = 0.
S+
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Since the internal energy U(w, w) is a positive quadratic form we conclude that
U(w,w)=0
and, consequently,
w(z) = (c1,c2)? =,

where ¢ € May; and c, are arbitrary constants. Since w(z) € C1(S)

li = =0,
xeS+lE§;eaSw(x) w(y)

or,

lim c=0,
zeSt—yedS

which is possible only if w(z) = 0, £ € S*. Thus we obtained that u()(z) =
u®(z). Using the same procedure we can prove the uniqueness of the solution

for mixed problem (M ™). For the case of (N1) we have
w(z)=c
and the boundary condition
T(0z,n)w(z)=0

from which we conclude that solutions w()(z) and u(?(z) can differ by arbi-
trary constant vector ¢ = (¢, c2)T. In other words, the solution of (3.1.4) for
the bounded domain with Neumann boundary conditions is determined up to

some arbitrary constant vector ¢ which denotes free body translation in the
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z3-direction and constant electric potential. However, it should be noted that
in the case of the Neumann boundary value problem shear strain components
€13, €23 and components of the electric field E; and E, are uniquely determined
even though the displacement ug and the electric potential are not unique.

Solutions u(z) of (D7), (N7), (M) are unique as long as they are, re-
spectively, in classes A, A, A (this will allow us to use Betti formula for an
unbounded domain).

Now we are in the position to reduce boundary value problems to the corre-
sponding integral equations. Since the single layer potential V(z) and double
layer potential Wy(x) solve the equations (3.1.4) we may seek solutions of (D)
and (D7) in the form of extensions (W (z))* and (We(z)) ™, respectively, with
¢ € CH*(9S), the solutions of (N*) and (N ™) in the form of single layer poten-
tial with the density ¢ € C%*(8S). Using the results of Theorem 8, Dirichlet
and Neumann boundary value problems (for bounded and unbounded domains)

are now reduced to the corresponding singular integral equations:

L+ /a D )e)ds(y) = P() (D)
ot /a Dl v)p(v)ds(y) = R(z) - o, (D)
g /8 T, )¢ (v)ds(v) = Q). (W)
—Slupt /a T, )e(y)ds(y) = P(a) (V)

for £ € 05 with unknown density function ¢.The vector ug € Mgy is of the

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



form (3.1.15). We denote the corresponding homogeneous equations by (D),

(DO_)’ (N0+)7 (NO_)'

Theorem 10 If P(z) € C1%(dS), a € (0,1), then any solution ¢ € C¥*(89)
of (D%) belongs to class CV*(8S). A similar result holds for (D™) if R(z) €

L (85).
Proof. We recall that integral equation (D) is

> T (Y2 ) B ) s + g Laelo) = Pl

= as | Osy 00; on,
(3.6.5)
Introducing complex variables z = x; + iz2 and { = y; + iys we write
9] d¢ 0 0
75, og (¢ — z)dsy = {8sy n|¢ —z| + Zc’)sya} dsy
0 .0
= {8—81}1n|x— Y +z%ln|x - yl} dsy,
thus, we have
7] dg .0
8—£y1n[x—y|dsy ==z —za—nylnlx—yl. (3.6.6)

On the basis of the relation (3.6.6) we can rewrite the integral operator of (3.6.5)

as the sum of a singular part and a weakly singular part

4
SRS + K¥) () + g Lp(z) = P(z),
j=1

where K®p and K"y are given by

o= [ FO% - [ (CE200) S sy,

)
(—=z o0;
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We conduct the regularization process [54] by applying another singular oper-
ator, say, M given by
M=k +2r,
2
such that the reduced integral equation becomes of Fredholm type

4 . 2
SR {KSKW + K+ (G
j=1

e 7r2)} ©(z) = MP(z).

Bearing in mind results established in Theorem 8, as in [14], we conclude that
K% maps Ch%(9S) into C1*(8S). Since C1*(9S) is invariant under K° [14],

we obtain the required result.

Theorem 11 The Fredholm Alternative holds for (DT), (N™) and for (N'7T),

(D7) in the real dual system (C*%, C%*), « € (0,1), with the bilinear form

(o, ¥) = /8 . o'y ds, (3.6.7)

Proof. We denote by D, N the integral operators from the corresponding

integral equations. Recalling that D(z,y) = (T(0y)I'(y,z))T we can write for
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any ¢, ¥ € C%*(89)

(Do, ¥) = fos fos D@ v)e@)ds)]” v(z)ds(z) =

= s Uns(T(@y)T(y, 2))To(y)ds(y)]” ¢(z)ds(z) =

= Jos®" [Jas T(OW)I(y, 2)¥(z)ds(z)] ds(y) =

= (p, N9).

Due to the symmetry of the bilinear form (3.6.7), we have

(N, ¥) = (», DY),

which means that A and D are mutually adjoint in the given dual system. We
shall now show that the index p [54, 14]

1 det(31,1 — Tik(z, 2))
= — |arg -
27 det(3 1,1 + mik(z, 2))

P
as

of the equation DT written in terms of complex variables is zero. In our case

4

k(z,0) =Y (RI) (I + (2 — Qk¥(2,0)),

j=1

consequently, k(z, z) = 2;21 (R?) I and

4 4
det <—%wa - iw; (R?) I) = det (Z (R?) (im — ml)) =0.

Jj=1

Thus, for D' we find that p = 0. Hence we deduce that the Fredholm Alter-

native holds for the operator D in the complex dual system (C%% C%%) with
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bilinear form (3.6.7), and hence it holds [54] in the real dual system (C%*, C%%).

Similarly, we obtain corresponding results for D~ and A'.

Theorem 12 1. The problem (Dy) has precisely two linearly independent

CY_solutions.

2. The interior Dirichlet problem (D) has a unique solution for any P(x) €
CY*, o € (0,1). This solution can be represented in the form of W with

the density ¢ € CH*(8S).

3. The exterior Neumann problem (N ™) has a unique solution for any S(z) €

C%(88), a € (0,1), if and only if

/ udSds = 0, (3.6.8)
as

where up is of the form (3.1.15). This solution can be represented in the

form of Vi with ¢ € C%*(8S).

4. The interior Neumann problem (N7T) is soluble for any Q € C%*(dS),
a € (0,1), if and only if

/ ul Qds =0, (3.6.9)
as

where ug is of the form (3.1.15). The solution, unique up to a 2 X 1-

matriz u of the form (3.1.15), can be represented in the form of V. with

the density o € C%*(9S).
5. The exterior Dirichlet problem (D) has a unique solution R(x) € C%(9S).
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This solution can be represented as the sum of W with the density

¢ € CY*(8S) and a particular vector ug of the form (8.1.15).

Proof. The proof of assertions 1, 2, 3, 4 follows the procedure used in [14].
To prove the assertion 5 let {f®} and {g°} be systems of linearly independent
solutions of D~ and A%, respectively. We assume that {f*} and {g°} are

biorthonormalized [34], i.e.
(fa’ gﬁ) = 5&[3;

where 0,5 is Kronecker’s delta. To satisfy the condition of solubility
(¢°, R—up) =0
we express ug as a linear combination of f*
ug = co f®
with coefficients ¢, in the form

caz/ (¢®)T Rds.
as

In this case we will have

(gﬁ,R—ug):/asgﬁT(R—caf")d.s:/ (ca — ca)ds = 0.

oS
Remark 13 The conditions (3.6.8), (3.6.9) express zero resultant force and

charge acting on 0S.
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We turn our attention now to the boundary value problems with mixed
boundary conditions. Mixed boundary conditions appear in the problems re-
lated to the modeling of cracks in piezoelectric materials [39, 56]. Consider first

the interior mixed problem (M™). We seek the solution in the form

u(@) = Vp(z) = /8  [Nay) - B e(u)ds(s), (3.6.10)

where ¢ € Msy1 is some unknown matrix density and the matrix H(z,y) €

Mo is constructed as follows. Let {21 be a bounded domain with C2—b0undary

0 such that
(1) St c 04 (11) 085y C (iii) 085 C 0f).

The columns of the matrix H(z,y) are such that

L(ax)H(o’)(x,y) =90, Tz €Qq,
H@)(z,y) = T (z,y), z €0
From the existence result for the interior Dirichlet problem, it is clear that
H®)(z,y) exist uniquely for each y € 85y in the class C2(Q1) N CY(Q1). In
fact, for each y, H(®) take form of a double layer potential. Suppose that the
unknown density ¢ from (3.6.10) is of the class H*(8S2) [84], i.e. ¢ is Holder-
continuous on 9Ss but may admit ’weak singularities’ near the endpoints ¥.
Proceeding as in [84], using properties of the single layer potential for the anti-
plane shear state and the definition of the matrix H(z,y), we find that u(zx)

from (3.6.10) satisfies the continuity conditions of the problem (M), equations
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(3.1.4) in S* and the displacement condition (3.6.1) on 85;. The remaining
boundary condition (3.6.2) leads to the following system of singular integral

equations over the open arc 85s:
1
~3lp(@)+ [ T2, y)eds(y)-
95,

-/  T(O)H(z, )e(0)ds(o) = £(2) (3.6.11)
The first integral on the left-hand side of (3.6.11) must be interpreted in the
sense of principal value while the second is a Fredholm integral. It is clear that
u(z) from (3.6.10) will be the unique solution of (M) provided (3.6.11) yields

a solution ¢ € H*(9S2) for sufficiently smooth boundary data f.

Lemma 14 The homogeneous system (3.6.11)° from (3.6.11) has only the triv-

ial solution in the space H*(0S2).

Proof. Let wo € H*(9S,) be asolution of (3.6.11)°. Then Vy(x) from (3.6.10)
solves the homogeneous problem (M*)?. Theorem 2 now yields Vipg(z) = 0,
z € St. The continuity of a single layer potential (Theorem 8) gives that
Vo) = 0, ¢ € 0S. Furthermore, using the boundary value of H(z,y),
Voo(z) = 0, z € 092;. Hence Vi = 0 on the boundary of the bounded
domain Q; \ S*. By the uniqueness result for the interior Dirichlet problem,
Vo(z) =0,z € 1\ ST so that the jump relations arising from the application

of the T-operator to a single layer potential yield

(TV o)t - (TVwo)” =po=0 on dS,
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which completes the proof.

In [84], Vekua developed a theory of solvability for systems of singular inte-
gral equations with discontinuous coefficients. To see that this theory applies
to our system, we rewrite (3.6.11) as a system with discontinuous coefficients

over the closed curve 4S. For z € 85,

/ T(9)T(z, y)pds(y) =
0S5y

4
; Olnr (i—oa)r? )\ dlnr
= E R’ J — =
c /352 [ 08z + ( 00; Z) ong, ] ds(y)

J=1

S [, B [ koot

J=1

where { = y; + iya € 052, z = z1 + izg € 05, k(z,€) is a Fredholm kernel.

Now we can rewrite (3.6.11) in the form

A(2)p(2) + B(?)/a (&) d§+/ Clz, €)p(€)de = f(z2), =€ S, (3.6.12)

T Jas € — 2

or
i K(z,¢)

AR+ |

=355 ge = g(z),  z €08,

where

K(z,£) = B(z,§) + mi(§ — 2)C(2,€),  z €08,

13, z € 631, 0, zZ € 651,
Az) = B(z) =
—3L,, z €05y R, 2z €08y
0, zor &€ 08y

k(z,8) — [T(0z)T(z,y)](2,€) , =zor& €Sy,
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and

0, z €05,
9(z) =
f(2), =z €095

It is clear that A and K are Holder continuous everywhere on 8.5 except perhaps

at the points of x where they have discontinuities of the first kind [84].

Lemma 15 The Fredholm alternative holds for the system (3.6.12) and its ad-

joint or associated system in the space H*(0S).

Proof. According to Vekua [84] Noether’s theorems are valid for the system
(3.6.12). Furthermore, proceeding as in [14], calculation shows that the index of
the singular integral operator from (3.6.12) is zero so that Noether’s theorems
reduce to Fredholm theorems. Finally, the endpoints ¢ and b are shown to
be 7special” [84] so that any solution of equation (3.6.12) with g € H*(9S) is

necessarily of the same class [84].

Theorem 16 The mized problem (M) is unigquely solvable for any f € H*(9S2).
The solution is given by (3.6.10) with ¢ € H*(0S2) obtained from the system

(3.6.11).

Proof. Using Lemma 14, we see that the homogeneous system (3.6.12)° has
only the trivial solution in H*(8S). Hence, since Fredholm theorems apply (by
Lemma 15), the associated homogeneous system has also only the trivial solu-

tion in H*(9S) and (3.6.12) is uniquely solvable in H*(dS) for any g € H*(9S).
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This means that the system (3.6.11) is uniquely solvable in H*(0S2) whenever
the boundary data f € H*(8S:). Consequently, the unique (by Theorem 9)
solution of (M™) with f € H*(8Ss) is given by (3.6.10) with ¢ € H*(dS2)
obtained from the system (3.6.11).

In case of the exterior mixed problem, the asymptotic behavior of the matrix

I'(x,y) requires that we seek the solution in the form [68§]

u(z) = Veg(a) = /3 _ [P9) - MO@)F ¥, 1)] plw)ds(y), (3613)

where ¢ € Mj3x1 is unknown density function and M € My is given by

4 2

oo . j — 6
o = Map(z) = 2azz Z (—l)deBag,ﬂ;a? O inr,
J=17,6=1

where r = |z|. The matrix F7 is given by

01

It can be verified that LM> = 0 in R? \ {0}. The matrix ¥ = ¥(z,y) is
constructed using a procedure similar to that used to construct the matrix H
for (M™). That is, let Q3 be an infinite domain with closed C2-boundary 6
such that

(i) ST C Oy (ii) 08y C 2y (iii) 051 C 09y (iV) {0} ¢ Q2.

The columns ¥(®)(z, %) are such that
L(0z)¥(®(z,y) =0, T € Qy,

\Il(a)(xa y) = g(a)(l,7 y)a T < aQ?a
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where G(® € May2 is given by G (z, y) = T'(z,y) — M*°(z)FT. The existence
result for the exterior Dirichlet problem guarantees that columns ¥(®)(z,y)
exist uniquely for each y € S, in the class C2(23) N C* () N A*. In fact, for
each y, \I/(O‘)(x, y) take the form of the sum of an double layer potential and a
matrix of the form (3.1.15).

The fact that with ¢ € H*(8S2), u from (3.6.13) satisfies the continuity
conditions of the problem (M ™), equations (3.1.4) in S~ and the displacement
condition (3.6.3) on 85 follows as in the case of (M™) using the properties of
M and V¥ described above and the smoothness properties of the single layer
potential (Section 3.5). The fact that u(z) = Vgp(x) € A* follows from the

fact that, as |z| — oo [15],
[ @) - M@ F e wasty) =
88,

— M™() /a _ FTe(y)ds(y) +uo - M(z) /a  FT(u)ds(y) = o € A
Also,

/ Uz, y)p(y)ds(y) = / T (2, y)pa(y)ds(y) € A",
852

0S5y

since, as noted above, ¥(®)(z,y) € A* for each y. Hence, u(z) = Vep(z) € A*.
As in the case of the problem (M™), the remaining boundary condition (3.6.4)
leads to the following system of singular integral equations over the open arc
085:

%Iwwr /352 T(0z)T(x, y)p(y)ds(y)—
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- /as T(Ox)[¥(x,y) + M (x)FTlp(y)ds(y) = ¢(z), x€dSs. (3.6.14)

Consequently, u(x) from (3.6.13) will be the unique solution of (M™) provided

(3.6.14) yields a solution ¢ € H*(0S2) whenever ¢ € H*(952).

Lemma 17 The homogeneous system (3.6.14)° from (3.6.14) has only the triv-

ial solution in the space H*(0S).

Proof. Let ¢y € H*(0S2) be a solution of (3.6.14)°. Then Vgy(z) from
(3.6.13) solves the homogeneous problem (M ~)%. Theorem 9 now yields Vepo(z) =
0, z € S™. Proceeding as in the proof of Lemma 14, we find that Vgpo(z) =0,

z € N2\ S~ so that
(TVegpo)™ — (TVepo)™ = wo = 0 on 8S,,
which completes the proof.

Theorem 18 The mized problem (M™) is uniquely solvable for any q € H*(0S2).
The solution is given by (3.6.13) with ¢ € H*(0S2) obtained from the system

(3.6.14).

Proof. The system (3.6.14) is similar to the system (3.6.11). Following
the steps leading to the system (3.6.12), we can rewrite (3.6.14) as a system
with discontinuous coefficients over the closed curve 9S. As in the proof of
Lemma 15, the index of the resulting system over 9.5 is shown to be zero and

the end points a and b to be special [84]. Vekua’s theory again shows that
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NoGether’s theorems reduce to the Fredholm alternative in the space H*(9S).
Using Lemma 6 and the Fredholm alternative, the associated homogeneous
system has only the trivial solution in H*(8S). Hence, the system (3.6.14) is
uniquely (Theorem 9) solvable in H*(95S) for any ¢ € H*(8S>) and this solution
is given by (3.6.13) with ¢ € H*(9S3).

Thus, in this chapter we investigated problem of static equilibrium of a
prismatic piezoelectric body for different types of boundary conditions. We
established the uniqueness and existence of the solutions and found analytical

solutions in the form of single and double layer potentials.
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Chapter 4

Steady-state vibrations in the
case of generalized

plane-strain piezoelectricity

For the piezoelectric applications the problems of steady state vibrations, i.e.
when all the transient considerations can be ignored, are of great interest [12,
79]. In this chapter we look at the problems of steady-state vibrations for a
more general class of deformation, namely, generalized plane strain. Using the
boundary integral equation method we investigate uniqueness and existence of
the solutions for both bounded and unbounded domains. For the case of an
unbounded domain we will derive radiation conditions, or so-called Sommerfeld

conditions, to guarantee the uniqueness of the solution. As the solution is not
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unique for the case of a bounded domain we consider only the solubility of the

problems for different frequencies.

4.1 Governing equations for the generalized plane

strain state in linear piezoelectricity

Suppose, the cylindrical body € is subjected to the stress and electric field on
its lateral surface lying in the plane perpendicular to the axis of the cylinder,

as shown in the Figure 4.1.

Figure 4.1: Piezoelectric cylinder in the generalized plane strain state
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In the state of generalized plane strain the displacement vector components

and electric potential are assumed in the form [27, 37]:

U; = Ui(l'l,-’EQ,t), (ZS = ¢(-T17 T2, t)

The equations of motion and charge equation in the case of plane piezoelectricity

are given by [27]:

Ciakﬂuk,aﬁ + euia¢,ua = pi; — fi,
(4.1.1)

"e'yiaui,'ya'*'faﬁ(b,aﬁ = —q,

Here we note that in the charge equation there are no terms containing
derivatives with respect to time due to the quasi-static approximation. So, as in
[29], we conclude that time in the electric potential ¢(x) is just a parameter, the
consequence of a time-dependent displacement field. The boundary conditions

are specified similarly as in the case of anti-plane shear. Thus we have

(Ciakﬂuk,ﬂ + euia‘b,u)”a = t: (l‘) )
(4.1.2)
—(eyiatty — €ag®g)a = D*(z) on 98,
in the case of the Neumann problem, and
ui(z) = ui(z),
(4.1.3)

¢(z) = ¢"(z) onds,

in the case of the Dirichlet problem. Here D*, t¥, u}, ¢* are prescribed functions

on 0S. We assume that the vector F' = (f1, fa, f3,9)T of external force and

charge is a periodic function of time, i.e.

F=FWcoswt + FP sin wt,
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where w, the frequency of oscillation, is real number. Then it is natural to

expect the displacement components and electric potential to be of the form

ui(z,t) = Re(u(z)e ™), wi(z)= u(l)(x) + iu£2)(a¢),

i

$(z,t) = Re(p(z)e ™), ¢(z) =¢W(z) +i¢P(z), z = (x1,2).

(4.1.4)
Substitution of (4.1.4) into (4.1.1) gives
C’iakﬁuk,aﬁ + euiad’,ua + pw2ui = 0,
(4.1.5)
—€yiaWiya T 6aﬁ¢,aﬁ = 0.

Equations (4.1.5) represent the governing system of equations describing steady-
state vibrations in the context of (generalized) plane strain state in the theory
of linear piezoelectricity. We will consider first the hexagonal piezoelectric ma-
terial as in this case the analysis is simpler. In the particular case of a hexagonal

material (6mm) the system (4.1.5) becomes

dr10x2

2 2 2
Cll%?ull + 066%? + (011 — 066)6—UL + pw2u1 = 0,

2 2 2
(Cn — 066)8.2—13].;2 + 01166—;? + 066%? + pw211,2 = 0,

(4.1.6)
CuNug + e15N\o + pw2u3 = 0,

esNuz — eA¢g = 0,

where
Ci1 = Cui, Cyq =C3131 = Csa3,
Ce6 = Cl212 = Cra21 = Cor12 = Co121,
€15 = €231 = €132, €= €11 = €22.
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We see that system (4.1.6) consists of a purely elastic part with respect to
the in-plane displacement components u; and uz and a second part describing
piezoelectric coupling between the out-of-plane displacement component u3 and
the electric potential ¢. This means we can decouple the system (4.1.6) and
examine each part separately. In fact, using simple transformations the first
two equations of (4.1.6) can be written in a form similar to that describing the

equations for steady-state vibrations of a classical isotropic elastic medium:
(C11 — Cge)grad div u(z) + CesAu(z) + pwu(z) =0, (4.1.7)

where u(z) = (u1(z), ua(z))?. The equations of steady-state vibrations (4.1.7)

can be also written in the form

6mm (07)u(z) = 0,

where L, .. (0z) is differential operator given by
C11€] + Cee€3 + puw? —(Cn1 — Cgp)61&2
Lgmm(0z) = . (4.1.8)

—(C11 — Ce6)&1&2 C11&3 + Ce6€? + pw?

The first two boundary conditions from (4.1.2) which accompany equations
(4.1.7), for the particular case of a transversely isotropic material, can also be
written in a form similar to that of classical isotropic elasticity:

ou(zx)

2Css +n-(C1 — QCGG)V . u(z) + Cggn X (V X u(x)) = t*(x), (4.1.9)

T(8z,n)u(z) = t*(z),
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where

Crié&ing + Ceeéana —(Ch1 — Cep)2m1
T(9z,n) = . (41.10)

—(Cn — Ceg)é1n2 Cr1éamn2 + Cee1m

Here n = (n1(x),n2(x))T is an outward normal to the boundary 8S. The
remaining part of (4.1.6), simply reduces to the Helmholtz equation for the

displacement us(z) and Poisson’s equation for electric potential ¢(x):

Au;;(l‘) + k2U3($L') = 0,
(4.1.11)
Ag(z) = f,
where
k2 — Epwz - _ €15pw2 (x)
Cuse + €2’ €Caa + €3

Let us now consider the equations of steady state vibrations (4.1.5) for the

materials with tetragonal 4 symmetry:

Ox10z2

Cn 7+ Cie (—z 20 ) + C’12—2l + 20663z13$2 + pw?u; = 0,

2

2
Cie (68;? ~ 2508 — 54 ) +2C66 55 811312 + 012# + Cn %+ pwug = 0,

T2

62 62 82 82

044(’(:?1? + a—uga) + 615(55? - Wd)) + 2614m% + prU;; = 0,
9%u
Ox

7 2
2

i
—615(6_;:? -

82
2 ) —26146:018.22 + € (W+ ¢) = 0.

(4.1.12)

We also note that equations (4.1.12) decouple into two systems which can be

studied separately. So, we write the equations using the differential operator L:
Liz(0z) 0

0 Lz’;(az)
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where L) 3(0z) is given by
LI,Z(Bx) =
C1&d +2C1661& + Croéd + pw?  Cre€l + 2Ces6162 — Ci663

Ci6€? + 2Ce66162 — Cr6&2 Cr2€? — 2C166162 + C1iés + pw?
(4.1.13)

and L, 3(9z) is given by

Cu(E + &) +pw?  e15(63 — €3) + 2146160
Lz,&(ax) =

—e15(63 — &63) — 2ensé1la (614 E3)
(4.1.14)

Remark 19 Let u(z) denote a vector u(z) = (uy(z), ua(x), uz(x), #(z))*. Sim-
tlarly as in the Section 3.1 it can be shown that the following assertions are valid.

Let ST =8+U58s.
1. Foru,v € C?(S)N CY(S) N Myx1 the following equality holds

/ [vT Lu — uTLv] dA = / [UTTu - uTTv] ds. (4.1.15)
S+ oS

Here L = L(0x) is a differential operator for equations (4.1.6) or ({.1.12),
T = T(0z) is a "stress”-operator for the boundary value problems with

Neumann-type boundary conditions, defined by (4.1.2).

2. The internal energy density U(u,u) for the case of transversely isotropic

material 6mm, given by

Cn

C
U(u,u) = ﬁ(ul’z + u2’1)2 + 5

Ces
2 (u11 + ’uz,z)2 - Tu1’1u2’2+

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Cyy
+ (g +ugo) +

€

2

is a positive quadratic form if and only if
Cllv 0667 0447 €>0.
The internal energy density U(u, u) in the case of tetragonal 4 symmetry,

written in terms of strain tensor components €ij = %(ui,j + uj,i) and

electric field components F,
1
Ulu,u) = 5011(531 + €2,) + 2C16511€12 + Croe11820 + 2C66E50—

1
—2C16€22€12 + 2044(6%3 + 633) + §E(E12 + E22),
1§ a positive quadratic form if the matriz

Cii  2C Ci2 0 0 0 0
2C46 Cee —2C16 0 0 0 0

Cia 2016 Cui 0 0 0 0

0 0 0 2C4 0 0 O
0 0 0 0 2C4 0 0
0 0 0 0 0 2¢ 0
0 0 0 0 0 0 3e

is positive definite. This condition will also guarantee the ellipticity of

equations (4.1.6) and equations (4.1.12).
In addition, we have that:
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3. U(u,u) =0 if and only if

U, = axz+ 1,
U9 = —azry -+ Ccg,
(4.1.16)
uz = C3,
¢ = c

where a, c;, j = 1,2,3,4 are arbitrary constants. These represent the most

general form of the rigid displacement and the constant electric potential.

4.2 Radiation conditions and uniqueness theorem

For vibrations problems involving an infinite domain we need to establish so-
called ’radiation conditions’ which prescribe the behavior of the various field
quantities at infinity. These conditions are required to establish the necessary
uniqueness results for the corresponding boundary value problems. As a result
of the decomposition of the system (4.1.6), we can again consider the various
components of the solution vector (u1, ug, us, @) separately. Firstly, since uz(z)
satisfies the plane Helmholtz equation, the radiation condition, or so-called

Sommerfeld condition, assumes the form [81]

ug(z) = O (\/i;) L lim ( 5“835‘”) - iku;;(:c)) —0. (4.2.1)

For the electric potential ¢(x), we can simply assume that ¢(z) is bounded in
the region S~ = R%\S. To derive radiation conditions of the solution of the

system (4.1.9) we follow the procedure for the decomposition of the solution as
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in [32]. That is, we represent the vector u(z) as a sum of its potential u(”(z)

and solenoidal u(*) (x) components:
(») 1 - ®) 1 -
uP(z) = —Egrad div u(z), u(z) = Fgrad div u(z) + u(z)
1 1

which therefore satisfy the following equations

Au®) (z) + k3uP)(z) = 0,
vxulP)(z) = 0,

(4.2.2)
Aul) (z) + k3u)(z) = 0,
v-ul(z) = 0.

Thus for u®)(z) and u(9)(z) we have the following estimates

u®)(z) = O <%> . lim V7 (%’i(—x) — iku® (a:)) —0, (4.2.3a)

u(z) =0 (%) , Jim v (% - ik2u<s>(x)) =0,  (4.2.3b)

where

2 2
k2 — &, k2 — ﬂ,
17 o 27 Cge

r=/(z1—y1)% + (22 — 92)?
for (z1,22) € S7, (y1,42) € 8S. We note here that k2, k? and k3 are positive
(see Remark 19).

Let R be the cylindrical coordinate of the point z = (z1,z2) € S~, Ry €

Mayx1 be the unit vector of the radius vector of z. Following the procedure

used in [32] it can be shown that:
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If u = u® + u® € C2(S~) N C(5~) such that it satisfies (4.1.7) in S and

conditions (4.2.3a) and (4.2.3b) then the following estimates are true

P (x) _  oulP(z) R ~3/2
“Bza = R bz. TORTYT),
2 ok bea T Ol (4.2.4)
(s) u(s) T —_
ot~ BGgE 4 o
8“5381)Lz($) — ikou®) (r) = O(R_3/2),
v -u®)(z) —ikiRy - uP(z) = O(R™3/?),
(4.2.6)
V x ul)(z) — ikaRy x ul®(z) = O(R™3/?),
Tu(p) (.72) - icllk]_u(p) (ZII) = O(R_3/2),
(4.2.7)
Tul®) (z) — iCepkoul®(z) = O(R™3/?),
u® - u® = 0(R7?), a®.uP =0O(R™?). (4.2.8)

We can now prove the following result concerning the uniqueness of the solution
for the corresponding exterior Dirichlet and Neumann-type boundary value
problems for the theory of generalized plane strain of a linear piezoelectric

medium:

Theorem 20 Ifu € C?(S™)NCY(S™) such that u satisfies (4.1.7) in S~, con-

ditions (4.2.3a) and (4.2.3b) and either of the homogeneous boundary conditions

1) u(z)

2) Tu(z) = 0 ondS (Newmann Problem),

0 on &S (Dirichlet Problem),

then u is identically zero.
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Proof. We apply (4.1.15) in the domain Cr N S~, where Cr is a circle of
sufficiently large radius R, to the solution u and @, the complex conjugate of u

and then consider the limit when R — oo:
/ (uTLa — a¥ Lu)dA = / WwT'Ta — @' Tu)ds — / (wT'Ta — al Tu)ds.
CRrNS— 9CR 88

Integrals over S~ and @S vanish since u solves (4.1.7) and satisfies one of the
homogeneous boundary conditions. As for the integral over 9Cgr we apply the

procedure used in [34] and estimates (4.2.4)-(4.2.8) to obtain that as R — oo

/ (uTTa — @ Tu)ds = 2ik,Cy, / |u®)?ds+
9Cr dCgr

+2ikyCe / |u(®2ds + 2i(k1C11 + k2Ces) / Re(u®@)ds = 0. (4.2.9)
oCr 6Cr

Since k1, k2 > 0, with the help of Rellich’s lemma, [73] we conclude that u® =0
and u® = 0 which completes the proof.

Using standard methods [14], Theorem 20 can now be used to establish
that under the conditions of Theorem 20, any solution of either the Dirichlet
or Neumann problem for the system (4.1.7), and hence for the system (4.1.6),

is necessarily unique.

4.3 Fundamental and singular solutions

The fundamental solutions of the governing equations are required for the appli-
cation of the boundary integral method which is used later to establish results

on existence of solution. First, we find the matrix of fundamental solutions for
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the equations (4.1.6) describing steady-state vibrations for material with hexag-
onal symmetry 6mm. Utilizing the decomposition of the system (4.1.6) we note
that the fundamental solutions of the two-dimensional Laplace and Helmholtz
operators, together with the representation formulae and smoothness properties
of the solutions of the corresponding differential equations are well-documented
and can be found, for example, in [81, 86]. For the operator L(dz) appearing

in (4.1.7), the Galerkin representation of the solution of the system
L(oz)u(z) = —d(z — y), (4.3.1)

where L(0z) is given by (4.1.8), produces the matrix of fundamental solutions

in the form
[(z,y) = L*(0z)¢(z, y). (4.3.2)

Here L*(9zx) is transposed matrix of cofactors of L(8z) and ¢(z, y) is the func-

tion which solves the equation
L(0z)L*(0x)y(z,y) = det L(8z)y(z,y) = —(z — y). (4.3.3)
In our case

puw? pw? 9 2
det L = 011066(A+ 'C—)(A‘f' -)= 011C66(A+k1)(A+k2)
11 Céee

and ¥(zx,y) is found to be

Y(z,y) = (H®P (kar) — HO (k).

1
4011066(k% — k%)
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Here Hél) is Hankel function of the first kind of order zero {1]. We need to
examine the behavior of matrices I'(z, y) and D(z,y) when r — 0 in order to
establish boundary properties of integral potentials which we will consider later.

From [1] we have the expansion for Hél)(kar) forr — 0

12

1) — 2,1 2 _1221
Hy (kor) =1+ - ln2 + 71_(1 4kar ) Inkqyr.

Hence, as r — 0, the function ¢(z, y) takes the form

= —In—=+ — (kir“Inkir — 1 .
Y(z,y) 4011066(1(?% — k%) {ﬂ nk1 + o ( 1riInkr — kar nkzr)

By application of L*(dz) to the function ¥ (z,y) we obtain elements of the

matrix I'(z, y) as = approaches y:

212 1 —u1)2
Tiaz,y) = (Mgrcﬁ%%) (k3Inkgr — k2 Inkir) + £ (( (2}663122) + ((1}1111}2) ) +

+ flla f11€C2(R2),

Zo—1s)2 32
Too(e,y) = (E5E58) (Blnkor — kP lnkrr) + 4 (2320 + Gw))

+ T, Tg € C?(R?),

Cu -G - - .
Tys(,9) = Cor(z, ) = (4;1011022) (1 y%xz y2) + T, Tup € CA(RY).

Together with the matrix of fundamental solutions I'(z, y) we consider the ma-

trix of singular solutions D(z,y) = (T(dy,n)T(z,y))T with components (as
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z — y) given by

Du(z,y) =
+ 471Ceg +

+ 9 Inr

+ 3 ((Zl—y1)2 n1n2(Ces —C11)

(C2,~C2 )nina

+ 211,% (Cun% +Cesn%)
4nCe6C11

4nCh1 +

Bs(?y) Inr (

2n1n2(Cr11n2+Ceen?)

n1n2(Ces—C11)2(n%~ng) +
47C11Ces

In(y)

—4n2n2(CZ+C})—2C11Ces(n3+n3)? +
4wCe6C11

72 4nChy 47Ceg

9s(y)

47\’011

+ 2 (z1-y1)(z2—y2) ((Cllnf-%Csen%) _ (Cnn%-I»Csang)_f_

ds(y) 2 47Ce6

o 2 ~ ~
+ %) +Dn, Du e CY(R?),

Dia(z,y) =
+

_|_

D21(xay) =
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(Cf1 —Cgﬁ)nznl

+ (12:2?;2)2 n1n2(Cﬁe—C11)) +

- 2n'f’n1n2((,‘11—(}66) _ 27"2]”%((:11_066)

as‘?y) Inr (

((166~Cll)(Cesn%+011n%)(n%—n%) +
4nCe6C11

47Cg6C11 47 Ceg 47 C1q

81y p ((Coo=Cu)(Cosni+Crund)2mmny _ [OFy ~ClyJmams
an(y) 47Ce6C11 4mCe6C11

nlnz(Cll—Ces)(?ng—l) _ nlng(Cll—Cﬁs)@nf—l) +
471’011 477066

8 (mi—yn)(@a—ye) (nin2(C11-Ces)  n1m2(C11-Ces)
As(y) r2 47Cegg 4A7C11

(C11—Cés)%n1na + i)
4mCe6C11 0

(m1-91)* ("1"2 (011_066)2) T
s(y) 12 4nCsg

as?y) ($2T—2y2) (nlnzifglzcaﬁ)) + D12, D1z € CY(R?),

47Ce6C11 47C11

0 (_%:Cfl )n3
3S(y) 1nT ( + 47!’066

(Ce6—C11)(Ceni +C11n3) (n—nf) n
4mCeeC11

_ (CQH—Cﬁzﬁ)nznl
4rCe6C11

kil ln,r,((Ces—C11)(Csen%+011ﬂ%)2n1n2
on(y) 4mCesC11

nlng(Cu—Cee)(2n%—1) _ n1n2(011—056)(2n§—1) +
4rCh1 47 Cgg

8 (r1—y1)(@a—y2) {n1n2(C11-Ces) _ n1na(Ci11—Cess)
3s(y) T2 47Ch1 47Cge

(C11—Ce)?nin2) _ 8 (z1-y1)? [ n3(C11—Cés) +
4nCe6C11 9s(y) T2 4nCgg

zo—y2)? [ nZ - ~ ~
38?31)( 2riy2) (_2(4(1/':0—56;6)) + Dg1, Dy € CHR?),
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_ 8 (Cgﬁ—(f?l)nlnz 2n1n2(('11n +C66n1)
D22($7 y) - as(y) lnT ( 477066011 + 4'"011 +

+ 2n1 (('11n2+066n1) n1ng(Ces ~Cr1)? (”1""3) 4

47Ceg 47C11C66
P —4n2n2(C%,+C% ) —2C11Ce6 (n2+n2)?
+ an(y) Inr ( 41Ce6C11 +
+ 3 _ (z1=y1)? mina(Cee—C11) _ (z2—y2)% n1na(Ces—Ci1) +
As(y) r2 47Ceg T2 4rC11

4 0 (E1mu)(ze-w) (C11n2+Cesn3) (011n2+066"1)+
9s(y) T2 4nCee 47C11

- TCe=Cul) | Dy, Dy e C'(R?).
We also need to consider the behavior of matrices I'(z,y) and D(z,y) when
r — oo which will be used to establish a representation theorem. So we note
here that for the matrix of fundamental solutions I'(z, y) we can similarly define
potential and solenoidal components I'P(z, y) and I'*(z, y) whose columns satisfy

conditions similar to (4.2.3a) and (4.2.3b) and which have representation similar

to that used in [34]. That is:
r = kQ—g(A + B3I, y) = ke (O + k) L*(0z)y = L <“9’”>(A + k)Y,
s = (A + k) (z,y) = (A + k3 L*(0x)y = kz—f(A + k2)9.
Thus we will have

L*(0x)HS (kor)
4C11Cee(k3 — k3)’

L*(0x)HV (kyr)
4C11Ce6(k2 — k2)’

Fp(xay): Fs(x’y):

For r — oc we have the following approximation for Hél)(kr) [1]

Hél)(kr) = \/ 2 exp’kr—l- (4.3.4)

Using (4.3.4) it can be shown that conditions similar to (4.2.4)-(4.2.8) are valid

for the columns of the matrices I'’(z,y) and I'*(z,y). The method used in
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Section 4.3 to find fundamental solutions can not be applied to system (4.1.12)
as the roots of the characteristic equation for the differential operator L§ (0x)
describing governing equations (4.1.12) are not easily found. However, it is
possible to establish the behavior of fundamental solutions near the boundary.

We will call matrices I'*(z, y, w) € Max2 satisfying the equation
Lo(82)T%(z,y,w) = =8(x — y)I (4.3.5)

the matrices of fundamental solutions for operators Ly(0z). By é(z — y) we
denote the Dirac distribution. Applying to (4.3.5) Fourier transformation F;_.¢

we obtain
[La(f)]f‘a(ng) =1,

or, equivalently,

T(¢, w) adj(La(€)), (4.3.6)

1
 det Ly (€)

where I'%(¢, w) = Fp—e[[*(z, y,w)]. From (4.3.6) it follows now that

Pa("ﬂ’ Y, w) = f{—w a‘d.](LOt(f)) .

1
det Lo(€)

In [58] two-dimensional steady-state oscillation problems of anisotropic elastic-
ity are investigated for the most general case of anisotropic material. Since the
system described by the differential operator (4.1.13) is a particular case of the
equations considered in [38], the results on properties of fundamental solutions
from [58] are applied immediately. The equations defined by (4.1.14) have es-

sentially the same properties as (4.1.13) so we can expect that both matrices
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of fundamental solutions I'*(z, y, w) possess the following properties

T (@, y,w) = O(lnz —yl), W)

Zr (@, y0) = Oz —yl), |sl>1.

The matrix I'(z,y,w) € Muyxs of fundamental solutions for (4.1.12) for the
particular case of materials with tetragonal 4 symmetry can be written in the
form

'(z,y,w) 0O
F(I’ y’ w) =

0 TI'*(z,y,w)

Together with the matrix of fundamental solutions I'(z, y,w) we consider the

matrix of singular solutions

D(z,y,n) = (T(8y, n)[(y, z,w))T. (4.3.8)

4.4 Representation theorems

Here, similarly as in Sections 3.3, 3.4, we formulate representation theorems
that will be used later to establish properties of the single and the double layer

potentials in the case of steady-state vibrations.

Theorem 21 Ifu € C?(S~) N CY(S-), satisfying (4.2.3a) and (4.2.3b), is a

solution of (4.1.7) then u(z) can be represented by the equation

lu(z), ze€S7,
— -/65 [[(z,y)T(dy,n)u — uTT(ay,n)F(x,y)] ds(y) = 1Lu(z), = e€ds,
0, res.
(4.4.1)
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Here elements of I, € Maxo are given by

—4nin3(C% + C})) — 2C11Ce6(nf + nd)?
4mCe6C11 ’

Iin=1Ic00=

I _ (Ce6—C11)(Cesnf+C11nd)2nang  (C}—CZ)nans
caf = 41Ce6C11 4rCesC11

n1"2(0114—7rcc'6161)(2"f;—1) _ nlng(Cn;rCc'%f:i)(?ng‘—l), for a # B.
Proof. We apply equality (4.1.15) in the domain S\ C(z, ), where C(z, €)

is a circular disk with a center z € S and sufficiently small radius &, in which

we take v = I'(®)(z, ). Using classical techniques [14, 34], for the solution u(z)

of the system (4.1.7) we have

Lu(z), z€b,

| M@y mu =TT @ T (@) ds) = { rate), @ o

0, z € R?\ S.
(4.4.2)

We now apply (4.1.15) in the domain Cg NS~ and then consider the limit when
R — o0. For x € Cgr N S~ we will have
Tau(z) = — [ [[(z,9)T(8y, n)u— uIT(dy, n)[(z, y)] ds(y)+

+  Jacy (@, 9)T(0y, n)u—uT(dy, )T (z, )] ds(y).

Next, using the procedure similar to the one used in the proof of Theorem
20, estimates (4.2.4)-(4.2.8) and similar estimates for the columns of matrices
I'(x,y) and I'°(x,y) we show that when R — oo the integral taken over dCg
vanishes. The cases when x € 85 and x € S are treated similarly (see for exam-
ple the proof of representation theorems for static anti-plane shear in Chapter
3).
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We need also to establish the representation theorem for the solutions of the
steady-state vibrations for tetragonal 4 symmetry. Using classical techniques
[34, 14] and the estimates of matrices of fundamental solutions in case of 4 we

have the integral representation of a regular vector u(z) in a bounded domain:

Theorem 22 Ifu € C?(S*)NCY(SY) is a solutions of (4.1.12) then it can be
represented by the equation
u(z), =z¢€ ST,

/BS’ [F($, Y, w)T(By, n)u - UTT(ay, n)F(ya €, w)] d’s(y) = %u(z), (S 85,

{ 0, reS.

Similarly, the representation formula for the solution of (4.1.12) in an un-
bounded domain S~ = R?/8* can be derived. Using estimates for the behavior
of matrices of fundamental solutions at infinity derived for plane anisotropic
elasticity in [58] and the fact that both systems defined by operators (4.1.13)
and (4.1.14) possess the same properties we have the following representation

theorem for the solutions of (4.1.12) in an unbounded domain for the tetragonal

symmetry 4:

Theorem 23 If u € C2(S7) N CY(S) is a solution of (4.1.12) and satisfy the

radiation conditions [58] then u(x) can be represented by the equation

u(x), xS,
- [ M) T @ nu— Oy w5 )] dsw) = Ju(e), @ eos,

0, re S,
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4.5 Static Green’s tensors for Neumann and Dirich-
let problems

As in [34] we will use static Green’s tensors to establish the existence of a dis-
crete spectrum of eigenfrequencies for Dirichlet and Neumann boundary value
problems for the equations (4.1.12). This will be important in the proof of the
solvability of homogeneous and inhomogeneous integral equations for the cor-
responding boundary value problems for the equations (4.1.12) and, therefore,
the existence of the solutions of the Dirichlet and Neumann boundary value
problems for the equations of steady-state vibrations (4.1.12).

Static Green’s tensor of the Dirichlet problem, i.e. Green’s tensor for the

system (4.1.12) with w = 0, is a matrix G?(z, y) such that

LY02)GP(z,y) = 0, zeSt, z#y
GP(r,y) = 0, z€dS yeSt,
(4.5.1)
GD(SL',y) = F(:v,y)—vl(a?,y), $GS+7

where vy (z,y) € C?(S+) N C1(S™) is a solution of the equation
LY (8z)vi(z,y) =0.

L°(9z) is obtained by taking w = 0 in L(dx) and I'(z,y) is the matrix of
fundamental solutions for L%(8z). Thus, to find GP(z,y) we have to construct

the matrix of fundamental solutions for the operator L°(0x) and solve the
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following Dirichlet problem to find the appropriate v1(z, y):

Lo Bz)vi(z,y) = 0 ze€ST,
(4.5.2)
’Ul(x,y) = F(l’,y), z € 08S.

The operator L°(dx) can be written in the form

where L(dx) denote static operators obtained by taking w = 0 in L,(dz).

Also we can write the matrix I'(z, y) in the form

I'(z,y) 0
r(xay) =
0 T?z,y)

where the matrix I'!(x, y) is the matrix of fundamental solutions for L(dx),

given by the following equation (for details see [33, 27]):
I'(z,y) = LY (0x)p(z, y). (4.5.3)

Here L{*(dx) is transposed matrix of cofactors of LY(dz) and the function
Y(x,y) is given by (3.2.4) with

1
C1C2 — C%’

a =

and o; are the roots of the characteristic equation corresponding to the differ-

ential operator L}(dz) given by

1
Ea‘l + b1a® + bea?® + bga + by =0,
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with coeflicients

by = 2C12C16 — 4C16Ce6 — 2C11C16,
by = C% +2C% + C% +4C,

by = 2C11C16 —4C16C66 — 2C12C16,
by = 1=0C110C12-C%.

a

From (4.5.3) we obtain components of the matrix of fundamental solutions
I'(z,y)

Th(z,y) = iaYj_i(—-1)d;(Ci20? — 2Ci6a; + C11)(2logo; + 1),
I(z,y) = ia Zﬁzl(—l)jdj(Cuan +2C16a; + Ci2)(2logo; + 1),
Tl(z,y) = —ia 2:?:1(—1)jdj(0160z]2 + 2Cs0; — Ci6)(2logo; + 1),

I(z,y) = Thl(z,y).
(4.5.4)

The matrix of fundamental solutions I'?(z, y) for LJ(dz) was found in Section
3.2. For the proof of the existence of the solution of (4.5.2) we refer to [33]
for the operator L{(dx) and to the Section 3.6 for the operator L. Thus, the
existence of the static Green’s tensor GP(z,y) is proved.

The static Green’s tensors for the Neumann problem GV (z,y) for (4.1.12)

we will construct as follows [34]:

LGN(z,y) = Yo, Fia,y), zeSt, zy,
T(0z)GN(z,y) = 0, z€8S yeSt, (4.5.5)

GN(x’y) = H(J"7 y) - ’UQ(.'L',y), TE S+7
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where vo(x,y) € C2(S*) N C1(S7) is a solution of the equation
L°(dz)va(z,y) = 0.

In (4.5.5) the vector F*(z,y) = f*(x)* f*(y) is the *-product of vectors defined
as follows

{FEFE 1585 £ 15 £5 1Y
and {f* 2=1 is a set of linearly independent vectors

1= (a,0,0,0),

f2 = (0,e,0,0),

3 = (0,0, c3,0), (4.5.6)

A = (0,0,0,cq),

3 = (es72,—c571,0,0).
Every solution u(z) = (u1(z), uz(z), us(z), #(x))7 of the form (4.1.16) of the
homogeneous static Neumann problem can be represented as a linear combina-
tion of {f*}3_,. Since the coefficients a, c¢j, j = 1, ..., 4 are arbitrary they can
be chosen so that the set f*, k = 1,...,5 is orthonormalized in S*. As in [34],

we can locate the coordinate system in the center of gravity of the cross section

and put
1 .
¢ = T J =1,..4,
5 = ——iee
5 Iz, g

where m is a "mass” of the cross-section S*, I, are moments of inertia of SV,

then the set (4.5.6) we be orthonormalized, i.e. the following conditions are
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/ F*fldA = ! kl=1..5
S+

We take matrix II(z,y) in the form [34]:

O(z,y) = § T(2,y)— 3 Ther FH(@) * fsr Ty, ) F5()dE
— 3Y0 S D=, ) FHOE * fE(y)+
+ I 0 SH@) [T W) for [ge FREOT(E ) fm(v)dEdv.
(4.5.7)
Since
Lo(87) f*(z) =0,
and

Lo(82) /S T, OMQds = -2/ w), ze ST

it is easy to see that for z #£ y
5
Lo(@x)(z,y) = ) _ f*(2)  F*(y)-
k=1

To find the columns of the matrix va(z, y) we have to solve the following bound-
ary value problem
Lo@z)w(z,y) = 0, z,ye ST,
T(0z, n)véj)(z, y) = T(0z,n)[IY(z,y), =z e ds.
From the Section 3.6 and [33] for the solubility of this problem it is necessary
and sufficient that

/ (T(az,n)n(”‘)(z,y)) fE(2)ds(z) =0, k=1,.5, j=1,.4. (4.58)
as
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We should show that this condition is fulfilled by the choice of the matrix

(z,vy). Since T(dz,n)f5(z) =0, k =1, ...5, we can write

T8z, )TV (z,y) = % (92, )T (z,y) (4.5.9)

Y2 T(9z,n) [gr D(z,y) fH(€) fE(y)dé.

Nl

We can now write (4.5.8) in the following way

Jos  (T(0z,n)T0(z,y)) f7(x)ds(x)~

—  That Js+ Jos (T(0z, )T (z,9) f5(€)) J7(2) ff(y)ds(z)dE =0,

(4.5.10)

Since
(T(@z, W) (2, ) £4©)) £ (2) = (T (@2, M. ) (@) 4(©)
and from representation formula (Section 4.4)
k 1 T ck
ff(x) = -§/ [T(0y,n)T(y,x)]" f*(y)ds(y), z€S, k=1,..5 (4.5.11)
as

the second term of the equality (4.5.10) assumes the form

: k k
2 FHOFHEdE S ()

A

And since the set {f*}3_, is orthonormalized in S+, this integral is equal to
fT(y). The substitution of (4.5.11) back into (4.5.10) gives the identity. Thus

the condition (4.5.8) is fulfilled. We note here that

GP(z,y) = [GP o)), GN(zy) = [V o).
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Since Green’s tensors possess all the properties of the fundamental solutions we

can rewrite the representation formulae as follows:

u(@) = [o5 [GP(2,y) (T(0y. muly)) — (T(y, )G (y, z)) w(y)] ds(y)—

—  Js+ GP(z,y)Lo(8y)u(y)dy;
(4.5.12)

uwz) = [o5 [GN(z,y) (T (Y, n)uly)) — (T 0y, n)GN(y, z)) u(y)] ds(y)+

+ o w(y) Spoy ) * fE()dy — for GP(z,y)Lo(By)u(y)dy.
(4.5.13)

It can be shown [34] that the solutions of the homogeneous Dirichlet and Neu-

mann problems for (4.1.12) can be represented as solutions of integral equations

u(z) — w? /S+ G(z,y)u(y)dy=0, =zeSt, (4.5.14)

where G(z,y) denotes GP(z, y) in the case of the Dirichlet problem and GV (z, )
in the case of the Neumann problem. These results follow from the repre-
sentation formulae (4.5.12) and (4.5.13) and the properties of Green’s tensors
GP(z,y) and GN(z,y). The equations (4.5.14) are Fredholm’s homogeneous
equations with symmetrical kernels in L2(S+). In accordance with the Hilbert-
Schmidt theorem follows the existence of a discrete spectrum of real eigenvalues
of the parameter w? for which the equations (4.5.15) have non-zero solutions

[34]. Thus, the following theorems are valid [34]:

Theorem 24 The homogeneous Dirichlet boundary value problem for (4.1.12)

has a discrete spectrum of eigenfrequencies which are eigenvalues of the integral
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equation
u(e) - [ Gl putr)dy=0.
S+
These frequencies are positive.
Theorem 25 The homogeneous Neumann boundary value problem for L(dx)

has a discrete spectrum of real eigenfrequencies which are eigenvalues of the

integral equation
u(e) - [ GV )uts)y o

These frequencies are non-negative and w = 0 is an eigenvalue of the fifth rank

and the corresponding eigenvectors are vectors of the form (4.1.16).

4.6 Single and double layer potentials

The question of existence of the solution of the corresponding Dirichlet and
Neumann-type boundary value problems is answered using the boundary in-
tegral equation method. To this end, we construct the single layer potential

Ve € Moy in the form

V(z) = /9 T n)ew)ds(y)

and the double layer potential Wy € May,

We(z) = BSD(E, y)e(y)ds(y)
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with density ¢ € Moyx1. The matrices of fundamental and singular solutions
are taken accordingly for each class of piezoelectric materials. The potentials

have the following properties.

Theorem 26 1. If ¢ € C(0S) then Vi and Wy are analytic and sat-
isfy equations (4.1.9) in the case of tetragonal class 6mm and equations

(4.1.12) in the case of tetragonal class 4 in S(S7).
2. For Wy(z) the estimates similar to ({.2.4)-(4.2.8) are valid.

3. For V(z) the estimates similar to ({.2.4)-(4.2.8) are valid if and only if

/ wds =0
as

4. If o € C(0S) then Vp € CO*(R?).

5. If p € CH*(8S) for a € (0,1], then Wy has CYP-extensions (W)t and

(W)™ to S and S, respectively, with 8 € (0,1).

W) W, x €S,
Sp ==
.o+ Wop, €8S,
W, eSS,
(We)™ =

1o+ Wop, z€dS.

6. If o € CO(8S) then Vy € CY*(R2) for a € (0,1) and
T(Vy), res,
T(Ve)" =
~3lep + T (Vop), = €8S,
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T (Vy), zeST,
T(Vy) =

slep +T (Vop), z €88,

T =T(8z,n).
7. T(Wp)t =T (We)~ on dS.

Here Wye and Vyp denote the values of the double layer and single layer
potentials, respectively, for z € 85. The matrix I, is given in the statement of
the Theorem 21 for the case of the hexagonal piezoelectric material 6mm and
is defined by the particular form of the fundamental solutions for the case of
tetragonal piezoelectric material 4 . The proof is conducted analogously to the

one of the Theorem 8.

4.7 Dirichlet and Neumann boundary value prob-
lems: existence of regular solutions

Consider now the exterior Dirichlet and Neumann boundary value problems for
the system (4.1.11). For the corresponding existence results, we first note that
the existence of solution for the exterior Dirichlet and Neumann problems is
considered in [75] for Poisson’s equation (¢(x)) and in [86] for the Helmholtz
equation (uz(z)). Hence, it remains to prove the existence of solution to the
corresponding boundary value problems for the system (4.1.9). Following stan-

dard techniques (see, for example, [14, 33]), using Theorem 26, we apply the
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boundary integral equation method and seek solutions of the exterior Dirichlet
problem in the form (W)™, with ¢ € C1*(8S) and the solution of the exterior
Neumann problem in the form V¢ with ¢ € C%*(8S). We can then reduce
the Dirichlet boundary value problem to the corresponding system of singular

integral equations

1 =u*(z)—u )
310 + | Dl s)eu)dsty) = (@) — o (o)

Similarly, for the Neumann problem, we obtain the system

1

~51ep(2) +/f)ST(awan)F(iv,y)sﬁ(y)dS(y): t*(x), N7)

In each case, x € 95, p(z) is an unknown density function and the vector ug has
components ugq of the form (4.1.16). Thus the problems are reduced to finding
solutions of these systems of singular integral equations. As in Section 3.6 we
can show that in each case, the systems are each uniquely solvable so that the
corresponding potentials (with density function supplied by the corresponding
system of integral equations) form the unique solutions of the Dirichlet and
Neumann boundary value problems.

Similarly, for the Dirichlet and Neumann boundary value problems for the
equations (4.1.12) for the bounded domain we apply the boundary integral
equation method and seek solutions of interior and exterior Dirichlet problems
in the form of (Wy)* respectively, with ¢ € C*(8S) and the solution of

the exterior Neumann problem in the form V¢ with ¢ € C%%(8S). Using
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results from Theorem 26 we reduce the Dirichlet boundary value problems to

the corresponding system of singular integral equations:
1 . +
29t [ D(z,y,w)p(y)ds(y) = v (2), (DT)

1 =u* () — ug,. -
390+ [ Dle.y.w)eu)dst) = v () =, (o)

Here by u? (x) and u* (z) we denote respectively boundary values of u(z) =
(ur(z), uz(x), ug(z), $(x))T for interior and exterior Dirichlet problems. The

interior and exterior Neumann boundary value problems are reduced to equa-

tions:
1 . N
5<p+/ T(0z,n)T(z,y,w)p(y)ds(y) = t4(z), V)
as
1 * -
_iw(x)+/ T(8z,n)T(z, y,w)e(y)ds(y) = t- (). N7)
PA)

Here by % (x) and t* (z) we denote boundary values of T'(0z, n)u(z) for interior
and exterior Neumann problems for (4.1.12) respectively. In each case, z € 95,
@(z) is an unknown density function and the vector ug has components of the
form (4.1.16). Thus the problems are reduced to finding solutions of these
systems of singular integral equations. Due to the properties of the matrices
of fundamental and singular solutions described the Section 4.3 we conclude
that integral equations (D*), (D~), (M), (N7) are of the kind considered in
Section 3.6, therefore the Fredholm theorems are valid.

We now will study the integral equations for homogeneous external Dirichlet
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(Dy ) and Neumann (N") problems for which the following theorems are valid

[34]:

Theorem 27 The necessary and sufficient condition for the equation

39)+ [ _Dieyw)ewis) =0, = cos (D)

2 coincides with one of

to have a nontrivial solution is that the parameter w
the eigenfrequencies of the homogeneous Neumann boundary value problem for
(4.1.12) (N§). If w? is a v-fold eigenfrequency of this problem, then the in-

tegral equation (Dy ) has v linearly independent solutions, coinciding with the

boundary values of the eigenfunctions of (NS')

Proof. First we will prove the necessity: let (Dy) have a nontrivial solution.

2

We must show that in this case w* is an eigenfrequency of the problem N(;L .

2

Let us assume the opposite: w* is not an eigenfrequency of NSL . Since, by

our assumption, equation (D; ) has a nontrivial solution, its associate equation

3o+ | T0m 0@ vw)p)dsy) =0, )

also admits a nontrivial solution ¢(z). If we now consider a single-layer potential
Vo(z), £ € ST we see that it solves (N;) (see Theorem 26). But since w? is

not, by assumption, an eigenfrequency of this problem we obtain that

Vo(z) =0, ze€St. (4.7.1)

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Due to continuity of the single-layer potential (see Theorem 26) and the behav-

ior at infinity, by uniqueness theorem, we obtain that
Vo(z) =0, z€8. (4.7.2)

From (4.7.1) and (4.7.2) it follows that ¢(y) = 0, y € 05, which contradicts
with the assumption made above.

Now we will prove sufficiency: let w be a v-fold eigenfrequency of NJ“ and
wk, k = 1,...,v, be the corresponding linearly independent solutions. It will
be shown that the boundary values v*, k = 1, ..., v are linearly independent.

Suppose that they are not, i.e.

v

chvk(y) =0, yeds.

k=1
Consider

v
w(z) = chwk(x), ze st
k=1

According to the assumption, w(z) solves L(9z)w(z) = 0 and T(8z)w(z) = 0,
u =0 for x € 3S. But then by representation theorem (see Section 3) we have

that w(x) = 0 for z € ST, which is the contradiction with linear independence

of w*, k=1, ..., 9. From representation theorem for £ € 95 we obtain

3@ == [ @Oy Iz vHw)ds)

Therefore integral equation (D) has at least v linearly independent solutions

v*(z). We will show that (Dy ) has only v linearly independent solutions: we

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



will assume the opposite and let the number of solutions y be greater than v.
Then its adjoint equation N0+ also has p solutions w*, k = 1,...,u. Let us
construct single layer potentials Vw*, k = 1,..., u. Clearly, they are linearly
independent as w*, k = 1, ..., u and are solutions of ./\/0+ which, however, admits
only v linearly independent solutions. Consequently, ¢ = v which completes

the proof.

Theorem 28 The necessary and sufficient condition for the equation

~30@)+ [ T0z00Eyw)ew)dsw) =0 vy
as

2 coincides with one of

to have a nontrivial solution is that the parameter w
the eigenfrequencies of homogeneous Dirichlet boundary value problem (Dg). If
w? is a v-fold eigenfrequency of this problem, then the internal equation Ny)
has v linearly independent solutions, coinciding with the boundary values of

the vectors obtained by application of operator T(8z,n) to the solutions of the

problem (D).

The proof is analogous to the one of the Theorem 27.
Let us now turn our attention to the investigation of inhomogeneous internal
problems. In case of Dirichlet problem for the equations (4.1.12), according to

Theorem 26, we look the solution in the form:

ua)= | Dlaywlelidst) + 5 [T LTS
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The corresponding integral equation for ¢(z) will be

30+ [ Danweds) = wi(e)— 3 [ Twww)Fud. (@

According to Theorem 28, the discrete set of the values of w? will be charac-
teristic for (D). For all other values of w? the problem is solved directly and
solution is in the form (4.7.3). If w? is an eigenvalue then, according to Theorem
28, it is also an eigenfrequency of the homogeneous Dirichlet boundary value
problem (D). The conditions of solubility of (D*) take the form (see Section

3.6):

* k 1 k =
[ @@t -3 [ [ Teunareetouase =0, @y

where ¥* k = 1,...,v, is a complete system of solutions of the associated
homogeneous equation (A ). Now, according to Theorem 28, 1* coincide
with the boundary values of the application of the operator T'(dz,n) to the
eigenvectors which are solutions u*, k = 1, ..., v, of the homogeneous Dirichlet

problem (D{). So, we can rewrite conditions (4.7.4) as follows:

[ @) (1) ast) - 5 [ [ Tena)re) (1), dyaste) o
(4.7.5)

We also have that

% fas{ fs+ Nz, y,w)F(y)dy } (Tu())pds(§) =

=3 Js+ { JosT(@y,@)(Tu(€))uds(€) } Fly)dy.

(4.7.6)
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From representation formula, since uf(z) = 0 (see the proof of Theorem 27),

we find that

Hy) = / T(€,,w) (Tu(€)), ds(€), y € S*.
o8

This together with (4.7.5) gives

/E)S (I (Tuk> ds — /S+ FiyuF(y)dy=0, k=1,.. v (4.7.7)

Setting each time either F(y) = 0 or u* = 0 the conditions (4.7.7) become

/ ul (Tuk) ds =0, (4.7.8)
o8
and
/ Fiy)u*(y)dy=0, k=1,..,v (4.7.9)
S+

In case of inhomogeneous Neumann boundary value problem, from Theorem

26, we seek the solution in the form

1
u@) = [ T@polw@ds®)+; [ TewoF@d.
o5 2 Js+
For the density function 9 (x), from Theorem 26, we obtain integral equation

V(@)+  [5s T(0z,n)0(z,y,w)d(y)ds(y) = t3 ()

-1 for T(8z,n)T(z,y,w)F(y)dy.

If w? is not an eigenfrequency than the problem is solved directly for an arbi-

NT)

trary right-hand side. If w? is an eigenfrequency then the following solubility

conditions must be satisfied:
fag J)‘P y)dS‘( )

~1 Jos {Js+ TOE, ML, y, w)F(y)dy} o*(2)ds(€) =0, k=1,..,v,
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where ¢*, k = 1,...,v, is a complete system of solutions of the associated

homogeneous equation

1
390+ [ Day,w)ew)dsty) = .
as
In the similar way as in the case of inhomogeneous Dirichlet problem we arrive

to following resonance conditions

/8 RGEGEGE /S @Gy =0, k=1..v  (4710)
Here, by v*, k = 1,...,v, we denote the boundary values of eigensolutions of
internal homogeneous Neumann problem (Ng).

The condition (4.7.8) can be interpreted as following: in case of internal
inhomogeneous Dirichlet boundary value problem the mechanical displacement
with components u;, i = 1, 2, 3 may have a critical value only if on the boundary
mechanical displacement is orthogonal to the stresses induced by eigenoscilla-
tions of the same frequency and the integral taken over S of the product of
the electric potential given on the boundary and the surface charge produced
by eigenoscillations vanishes.

The conditions (4.7.9), similarly, state that the external forces may have
resonant oscillation frequency only if they are orthogonal to the displacements
produced in the body by the eigenoscillations of the same eigenfrequency and
the integral taken over the cross-section S of the product of applied external
charge and electric potential produced by eigenoscillations vanishes.

The conditions (4.7.10) are interpreted similarly.
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Chapter 5

Conclusions and suggestions

for future work

The rigorous mathematical analysis of boundary value problems in the theory
of piezoelectricity has remained absent form the literature with the exception
of the work by D. Iesan [27], in which the author used the boundary inte-
gral equation method to prove the existence of the solutions of boundary value
problems for the state of generalized plane strain. Here, however, certain differ-
ential properties of the solutions were overlooked. The rigorous analysis of the
fundamental boundary value problems arising from the anti-plane shear state
in linear piezoelectricity has remained absent until recently. The objective of
the present work has been to give the complete treatment of several boundary

value problems in the theory of linear piezoelectricity. We considered two types
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of deformations in piezoelectric solids: anti-plane shear and generalized plane
strain. Anti-plane shear state was considered in the frame of static theory only,
for rather general class of piezoelectric materials with tetragonal 4 symmetry.
The problems of steady-state vibrations were considered for the state of gen-
eralized plane strain state for hexagonal 6mm and tetragonal 4 piezoelectric

materials. The following are the results that have been obtained:

1. We formulated Dirichlet, Neumann and mixed boundary value problems.
We proved the uniqueness theorem and using boundary integral equation
method showed that solutions exist and gave the analytical solutions in
the form of integral potentials. Also, we gave the analytical expressions

for the fundamental solutions.

2. For the problem of steady-state vibrations of the unbounded domain we
derived the radiation conditions to provide the uniqueness of the solutions
of Dirichlet and Neumann boundary value problems. The existence of the
solutions of the problems of steady state vibrations is established using
the boundary integral equation method in the same way as for the static
problems. We also provided the fundamental solutions for the system of

governing equations for the hexagonal 6mm class of piezoelectric material.

3. For the steady-state vibrations in the bounded domain we showed that
the discrete spectrum of eigenfrequencies exists for homogeneous Dirich-

let and Neumann boundary value problems. The conditions of solubility
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of the non-homogeneous Dirichlet and Neumann boundary value prob-

2 coincides with one of

lems are given for the case when the parameter w
the eigenfrequencies of the homogeneous boundary value problems. The

solutions are given in the form of integral potentials.

Thus, we showed that the fundamental boundary value problems arising
from the states of anti-plane shear and generalized plane strain are well posed
so that numerical procedures can be applied to solve particular problems in the
context of anti-plane shear and generalized plane strain states.

As an extension of the present work the method of generalized Fourier se-
ries [34] can be used to find the unknown density of the integral potentials to
solve several problems arising in the theory of piezoelectricity, for example, the
problems of static torsion of cylindrical piezoelectric body for different types of
cross-section. The objective of this analysis is to investigate the effects of the
anisotropy and the electro-mechanical coupling and compare with the solutions
obtained in the classical isotropic elasticity.

Another rapidly growing direction in piezoelectricity and its applications is
the development of piezoelectric composites [52, 74, 82] and functionally graded
piezoelectric materials [39, 65]. The problems arising in this area would include
nonhomogeneous piezoelectric media, contact and transmission problems. In
[34] several contact problems for nonhomogeneous elastic medium are inves-

tigated. The anisotropy of piezoelectric materials makes the analysis of the
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analogous problems in piezoelectricity extremely challenging. Thus another
possible direction of future work would be to attempt to apply the method
used in [34] to the investigation of the contact problems arising in the context

of anti-plane and plane piezoelectricity.

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Bibliography

[1] M. Abramovitz, I. A. Stegun, Handbook of mathematical functions with
formulas, graphs, and mathematical tables, U.S. Govt. Print. Off., Wash-

ington, D.C., 1970.

2] E. Baesu, Antiplane fracture in a prestressed and prepolarized piezoelectric
b

crystal, IMA J. of Appl. Math., 66 (2001), 499-508.

[3] S. Basrour, L. Robert, P. Delobelle, Measurement of residual stresses in
a plate using test and a dynamic technique: application to electroplated

nickel coatings, Materials Science and Engineering, A 288 (2000), 160-163.

[4] Borrelli, A. Horgan, C.O and Patria, M.C. , Saint-Venant end effects in
anti-plane shear for classes of linear piezoelectric materials, Journal of

Elasticity, 64, , 217-236 (2001).

[6] Borrelli, A. Horgan, C.O and Patria, M.C., Saint-Venant’s principle for
anti-plane shear deformations of linear piezoelectric materials, SIAM Jour-

nal on Applied Mathematics, 62, 6 , 2027 - 2044 (2002).

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[6] Borrelli, A. Horgan, C.O and Patria, M.C., End effects for pre-stressed
and pre-polarized piezoelectric solids in anti-plane shear, Zeitschrift fur

Angewandte Mathematik und Physik (ZAMP), 54, 797 - 806 (2003).

[7] Borrelli, A. Horgan, C.O and Patria, M.C., Exponential decay of end effects
in anti-plane shear for functionally graded piezoelectric materials, Proc. R.

Soc. Lond. A, 460 (2004), 1193 - 1212.

[8] T. Bove, W. Wolny, E. Ringgaard, A. Pedersen, New piezoceramic PZT-
PNN material for medical diagnostics applications, J. of the European Ce-

ramic Society, 21 (2001), 1469-1472.

[9] M. Brissaud, S. Ledren, P. Gonnard, Modeling of a cantilever non-
symmetric piezoelectric bimorph, J. Micromech. Microeng., 13 (2003), 832-

844.
[10] W.G. Cady, The piezoelectric resonator, Proc. I. R. E., 12 (1924), 805-816.

[11] W.G. Cady, A shear mode of Crystal Vibration (abst), Phys. Rev. Vol. 29

(1927), p. 617.

[12] W.G. Cady, Piezoelectricity, Vol. 1, Vol. 2, Dover Publications, New York,

1964.

[13] C. Constanda, Some comments on the integration of certain systems of par-
tial differential equations in continuum mechanics, J. Appl. Math. Phys.,

29 (1978), 835-839.

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[14] C. Constanda, A mathematical Analysis of Bending of Plates with Trans-

verse Shear Deformation, Longman Scientific & Technical, Harlow, 1990.

[15] C. Constanda, The boundary integral equation method in plane elasticity.

Proc. Amer. Math. Soc., 123, (1995), 3385-3396.

[16] C. Constanda, Radiation conditions and uniqueness for stationary oscilla-

tions in elastic plates, Proc. Amer. Math. Soc., 126 (1998), 827-834.

[17] M. Denda, J. Lua, Development of the boundary element method for 2D

piezoelectricity, Composites, Part B 30 (1999), 699-707.

[18] A.C. Eringen, G.A. Maugin, FElectrodynamics of continua, Vol. 1, Vol. 2,

Springer-Verlag, New York, 1990.

[19] D. Fang, Z.-K. Zhang, A.K. Soh, K.L. Lee, Fracture criteria of piezoelectric

ceramics with defects, Mechanics of Materials, 36 (2004), 917-928.

[20] M. France, D. Dubet, S. Kuzmic, L. Petit, Electronic and software control

for rotary piezomotor, Sensors and Actuators, A 121, (2005), 462-471.

[21] Y. Guo, K. Kakimoto, H. Ohsato, Dielectric and piezoelectric properties of
lead-free (Nag 5Ko.5)NbO3—SrTiOg ceramics, Solid State Communications,

129, 2004, 279-284.

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[22] Y.H. Guan, T.C. Lim, W.S. Shepard, Jr., Experimental study on active
vibration control of a gearbox system, J. Sound and Vibration, 282 (2005),

713-733.

[23] N.M. Gunter, Potential Theory, Frederick Ungar Publishing Co., New

York, 1967.

[24] C.O. Horgan, Anti-plane shear deformation in linear and non-linear solid

mechanics, SIAM Review, 37 (1995), 53-81.

[25] Y.-D. Hou, M.-K. Zhu, Z.-S. Tian, H. Yan, Structure and electrical prop-
erties of PMZN-PZT quaternary ceramics for piezoelectric transformers,

Sens. Actuators, A 116 (2004), 455-460.

[26] D. Iesan, Existence theorems in the theory of micropolar elasticity, Int. J.

Engng Sci., 8 (1970), 777-791.

[27] D. Iesan, Plane strain problems in piezoelectricity, Int. J. Engng Sci., 25,

(1987), 1511-1523.

(28] S. Jayanthi, T.R.N. Kutti, Extended phase homogeneity and electrical
properties of barium calcium titanate prepared by the wet chemical meth-

ods, Material Science and Engineering, B 110 (2004), 202-212.

[29] N.M. Khutoryansky, H. Sosa, Dynamic representation formulas and fun-
damental solutions for piezoelectricity, Int. J. Solids Structures, 32 (1995),

3307-3325.

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[30] J.O. Kim, O.S. Kwon, Vibration characteristics of piezoelectric torsional

transducers, J. of Sound and Vibration, 264 (2003), 453-473.

[31] G.A. Korn, Manual of Mathematics by G.A. Korn and T.M. Korn, Mc-

Graw Hill, New York, 1967.

[32] V.D. Kupradze, Progress in solid mechanics, Vol. 3, North-Holland Pub-

lishing Company, Amsterdam, 1963.

[33] V.D. Kupradze, Potential Methods in the Theory of Elasticity, Israel Pro-

gram for Scientific Translations, Jerusalem, 1965.

[34] V.D. Kupradze, Three-Dimensional Problems of Mathematical Theory of

Elasticity and Thermoelasticity, North-Holland, Amsterdam, 1979.

[35] P.K. Kythe, Fundamental solutions for differential operators and applica-

tions, Birkhduser, Boston, 1996.

[36] J.S. Lee, L.Z. Jiang, A boundary integral formulation and 2D fundamental
solutions for piezoelectric media, Mechanics Research Communications, 21

(1994), 47-54.

[37] S.G. Lekhnitskii Theory of elasticity of an anisotropic body, Holden-Day,

Inc., San-Francisco, 1963.

[38] E.E. Levi, Sulle equazione lineari totalmente ellitiche alle derivati parziali.

Rend. Circ. Mat. Palermo 24, 1907, 275-317.

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[39] C. Li, G.J. Weng, Antiplane crack problem in functionally graded piezo-

electric materials, J. of Appied Mechanics, 69, 2002, 481-488.

[40] X.-F. Li, Transient response of a piezoelectric material with a semi-infinite

crack under impact loads, Int. J. of Fracture, 111 (2001), 119-130.

[41] E. Lioubimova, P. Schiavone, Integral solutions of boundary value prob-
lems of anti-plane piezoelectricity, Math. Mech. Solids, (accepted for pub-

lishing).

[42] E. Lioubimova, P. Schiavone, On the solution of mixed problems in linear

anti-plane piezoelectricity, J. Elasticity, 77 (2004), 1-12.

[43] E. Lioubimova, P. Schiavone, Steady-state vibrations of an unbounded
linear piezoelectric medium, J. Appl. Math. Phys. (ZAMP) (accepted for

publishing).

[44] A.E.H. Love, A treatise on the mathematical theory of elasticity, Dover

publications, New York, 1944.

[45] E. Lyubimova, P. Schiavone, Steady-state vibrations for the state of gener-
alized plane strain in linear piezoelectric medium, J. Engng Sci. (submit-

ted)

[46] S.A. Meguid and X. Zhao, The interface crack problem of bonded piezo-
electric and elastic half-space under transient electromechanical loads, J.

Appl. Mech., 69, (2002), 244-253.

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[47] N. Meidinger, Detection of propagation directions of plane waves in the
low and medium frequency ranges for purely propagating stationary fields,

Aerospace Science and Technology, 1 (1999), 21-28.

(48] R.B. Meyer, Piezoelectric effect in liquid crystals, Physical Review Letters,

22 (1969), 918-921.

[49] T.M. Michelitsch, V.M. Levin, H. Gao, Dynamic potentials and Green’s
functions of a quasi-plane piezoelectric medium with inclusion, Proc. R.

Soc. Lond., A 458 (2002), 2393-2415.

[50] B.-K. Min, G. O’Neal, Y. Koren, Z. Pasek, A smart boring tool for process

control, Mechatronics, 12 (2002), 1097-1114.

[51] C. Miranda, Partial Differential Equations of Elliptic Type, Springer-

Verlag, Berlin, 1970.

[52] J.A. Mitchell, J.N. Reddy, A refined hybrid plate theory for composite
laminates with piezoelectric laminae, Int. J. Solids Structures, 32 (1995),

2345-2367.

(53] R. Muller-Fiedler, V. Knoblauch, Reliability aspects of microsensors and
micromechatronic actuators for automotive applications, Microelectronics

Reliability, 43 (2003), 1085-1097.

[54] N.I. Muskhelishvili, Singular Integral Equations, Noordhoff, Groningen,

1953.

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[65] N.I. Muskhelishvili, Some basic problems of the mathematical theory of

elasticity, Noordhoff, Groningen, 1953.

[56] F. Narita, Y. Shindo, Dynamic anti-plane shear of a cracked piezoelectric

ceramic, Theoret. Appl. Fract. Mech., 29 (1998), 169-180.

[67] F. Narita, Y. Shindo, Scattering of anti-plane shear waves by a finite crack

in piezoelectric laminates, Acta Mechanica, 134 (1999), 27-43.

[68] D. Natroshvili, Two-dimensional steady-state oscillation problems of

anisotropic elasticity, Georgian Mathematical Journal, 3 (1996), 239-262.

[59] D.F. Nelson, Electric, optic, and acoustic interactions in dielectrics, John

Wiley & Sons, New York, 1979.

[60] Nye, J.F., Physical Properties of Crystals, The Clarendon Press, Oxford,

1957.

[61] S. Potapenko, Propagation of torsional waves in a linear unbounded

Cosserat continuum, Applied Mathematics Letters, 18 (2005), 935-940.

[62] S. Potapenko, P. Schiavone, A. Mioduchowki, On the solution of mixed
problems in anti-plane micropolar elasticity, Mathematics and Mechanics

of Solids, 8 (2003), 151-160.

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[63] K.O. Prakah-Asante, K.C. Craig, Active control of wave-type vibration
energy for improved structural reliability, Applied Acoustics, 46 (1995),

175-195.

[64] J. van Randeraat, R.E. Setterington, Piezoelectric Ceramics, Mullard, Lon-

don, 1974.

[65] J.N. Reddy, Z.-Q. Cheng, Three-dimensional solutions of smart function-

ally graded plates, J. Appl. Mech., 68 (2001), 234-241.

[66] C. D. Richards, M. J. Anderson, D. F. Bahr, R.F. Richards, Efficiency
of energy conversion for devices containing a piezoelectric component, J.

Micromech. Microeng., 14 (2004), 717-721.

[67] M. Romeo, Electromagnetoelastic waves at piezoelectric interfaces, Int. J.

Engng Sci., 42 (2004), 753-768.

[68] P. Schiavone, Mixed problems in the theory of bending of elastic plates
with transverse shear deformation, Q. JI Mech. Appl. Math., 50 (1997),

239-249.

[69] P. Schiavone, Integral equation methods in plane asymmetric elasticity, J.

of Elasticity, 43 (1996), 31-43.

[70] P.Schiavone, C.Q. Ru, On the exterior mixed problem in plane elasticity.

Math. Mech. Solids, 1 (1996), 335-341.

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[71] P. Schiavone C.Q. Ru, Integral equation methods in plane-strain elasticity
with boundary reinforcement, Proc. R. Soc. Lond., A 454 (1998), 2223 -

2242.

[72] K. Schmidt, C. Dierieck, J.P. Lafaut, E. Vermeulen and M. Eleskens, De-
scription of a Mossbauer Spectrometer using a piezoelectric bar, Nuclear

Instruments and methods, 81 (1970), 211-213.

[73] V.I. Smirnov A course of higher mathematics, Vol. 4, Pergamon Press,

Oxford, New York, 1964.

[74] W.A. Smith, Composite piezoelectric materials for medical ultrasonic

transducers- a review, IEEE, (1986), 249-256.

[75] S.L. Sobolev Partial differential equations of mathematical physics, Perga-

mon Press Ltd., New York, 1964.

[76] S.E. Stanzl-Tschegg, H.R. Mayer and E.K.Tschegg, High frequency

method for torsion fatigue testing, Ultrasonics, 31 (1992), 275-280.

[77] G.R. Thomson, C. Constanda, Representation theorems for the solutions
of high-frequency harmonic oscillations in elastic plates, Appl. Math. Lett.,

11 (1998), 55-59.

[78] H.F. Tiersten, A development of the equations of electromagnetism in ma-

terial continua, Springer-Verlag, New York, 1930.

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[79] H.F. Tiersten, Linear Piezoelectric Plate Vibrations, Plenum Press, New

York, 1969.

[80] S. Timoshenko, J.N. Goodier Theory of elasticity, McGraw-Hill book com-

pany, Inc., New-York, 1951.

[81] A.N. Tychonov, A.A. Samarski Partial differential equations of mathemat-
ical physics, Vol 1, Vol. 2, Holden-Day, Inc., San Francisco, London, Ams-

terdam, 1964.

[82] H.S. Tzou, Y.Bao, Modeling of thick anisotropic composite triclinic piezo-

electric shell transducer laminates, Smart Mater. Struct., 3 (1994), 285-292.

[83] A.O. Vatul’yan, A.N. Solov’yev, A new formulation of the boundary inte-
gral equations of the first kind in electroelasticity, J. Appl. Maths Mechs,

63 (1999), 969-976.

[84] N.P. Vekua, Systems of Singular Integral Equations, Noordhoff, Groningen,

1967.

(85] W. Voigt, Lehrbuch der Kristallphysik, B.G. Teubner, Leipzig, 1928.

[86] V.S. Vladimirov, Equations of mathematical physics, Marcel Dekker, INC.,

New York, 1971.

111

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[87] X. Wang, S. Yu, Transient response of a rack in piezoelectric strip subjected
to the mechanical and electrical impact: mode-III problem, Int. J. Sol.

Struct., 37 (2000), 5795-5808.

[88] S. Zhang, C.A. Randal, T.R. Shrout, Dielectric, piezoelectric and elastic
properties of tetragonal BiScO3—PbTiOg single crystal with single domain,

Solid State Commaunications, 131 (2004), 41-45.

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



