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Abstract

Problems involving the behavior o f piezoelectric solids receive a considerable amount of 

attention in the current scientific and engineering literature as the need for developments 

in micro electro-mechanical systems and their applications increases. It is well known that 

all piezoelectric materials are anisotropic which makes any analysis o f the equations o f 

piezoelectricity (equilibrium or motion) very difficult. This leads to the lack o f the 

development o f the corresponding mechanical-mathematical models that are present in 

classical isotropic elasticity.

The o bjective o f  this w ork is t o s tudy t he b oundary v alue p roblems f  or two c ases o f 

deformation in linear piezoelectricity: anti-plane shear and generalized plane strain states. 

Although both anti-plane shear and generalized plane strain are two-dimensional models 

they have a variety o f practical applications. For example, the problems o f static torsion, 

or torsional vibrations, reduce to the state of anti-plane shear; the case o f general loading 

applied to the generators o f a cylindrical body with arbitrary cross-section can be 

described by equations o f the generalized plane strain. It is shown, however, that not all 

the piezoelectric materials can obey the state o f anti-plane shear. The conditions on 

material properties necessary for the anti-plane shear to exist are mentioned.

The present work gives complete treatment o f three fundamental boundary value 

problems: Dirichlet, Neumann and mixed the case o f equations o f equilibrium and 

Dirichlet and Neumann for the equations o f steady state vibrations o f a piezoelectric body. 

Our tool for the analysis is an analytical technique known as the boundary integral
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equation method: boundary value problems stated in bounded or unbounded domains are 

reduced to corresponding systems o f singular integral equations stated on the boundary. 

We show that Fredholm theorems on existence o f solutions can be applied to the systems 

o f singular integral equations. The question o f uniqueness o f solutions o f  the boundary 

value problems is also examined for the case o f an unbounded do main (problems o f 

equilibrium and steady state vibrations) and the conditions for which the uniqueness of 

solutions is guaranteed are derived. The analytical solutions for the boundary value 

problems are given in the form o f the single and double layer potentials.
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Chapter 1

Introduction

The phenom enon of piezoelectricity can be described as a generation of electric 

polarization due to  applied pressure. I t was discovered in 1880 by brothers 

P ierre and Jacques Curie in the laboratory  of mineralogy, a t the  University of 

Paris-Sorbonne. In  1881 W .G . Hankel introduced the  term  ’’piezoelectricity” 

th a t was readily accepted in scientific circles. T he word is derived from the 

Greek piezein, which means to  squeeze or press [12].

After discovery of piezoelectric phenom enon by the  brothers Curie the equa­

tions of piezoelectricity became available in Voigt’s book ” Lehrbuch der K ristall- 

physik” first published in 1910. W . Voigt form ulated therm odynam ic potentials 

for mechanical, electric and therm al interactions for crystals and derived the 

constitu tive relations for direct and converse piezoelectric effects. T he theory 

of linear piezoelectricity is based on the  idea of coupling of the  quazi-static

1
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electric field and the  dynam ic mechanical m otion in polarizable dielectrics (not 

m agnetizable). In the development of the theory  it was assum ed th a t  the re­

lations between s tra in  and stress are linear for electrom echanical interactions. 

T his assum ption was confirmed experim entally for a variety of crystals except 

ferroelectrics [12]. The first publications on the  applications of piezoelectricity 

and the  development of the theory  of vibrations in piezoelectric solids began to  

appear in the  early p art of the tw entieth  century [10, 11].

Among the publications on the  theory of piezoelectricity the book ’’Piezo­

electricity” by W .G. Cady should be noted. The au tho r gave the  development 

of the theory of the piezo resonator, the investigation of physical properties of 

Rochelle Salt and Seignette electrics and their applications, also, some results 

on crystal vibrations. A nother work on the theory  of vibrations in piezoelec­

tric ity  is H .F. T iersten’s book ’’Linear piezoelectric p late  v ibrations” published 

in 1969. In th is work system atic development of the general form of differen­

tia l equations of m otion and boundary conditions from fundam ental continuum  

concepts are given and some problem s on plate  vibrations are considered.

M odern developments of m icro-electric-mechanical systems, m iniaturized 

power sources and other devices, such as piezom otors, renewed the interest 

in the  fundam ental theory of linear piezoelectric m aterials, their applications 

[9, 17, 19, 22, 47, 50] and the development of new piezoelectric m aterials 

[8, 21, 25, 28]. T he use of piezoelectric m aterials in micro power system s pro-

2
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duces significant advantages due to  their light weight, superior energy conver­

sion efficiency and energy density [66]. One class of problems th a t are currently 

being investigated is related  to  the  fracture of piezoelectric solids, including 

functionally graded piezoelectric m aterials [2, 39, 40, 56, 57, 65]. In  [4]-[7] the 

problem s of the  effect of electro-m echanical coupling on the  decay of Saint- 

Venant end effects in s tatic  linear piezoelectricity for the s ta te  of anti-plane 

shear are studied for different classes of piezoelectric m aterials. It should be 

noted th a t the  m ajority  of publications on the subject of piezoelectricity are 

w ritten  from the  practical point of view, using bo th  analytical and numerical 

techniques. Very few publications deal w ith  the  m athem atical form ulations 

and solutions of boundary value problem s arising in the  theory of piezoelectric­

ity. It is well known th a t all piezoelectric m aterials are necessarily anisotropic 

which makes any analysis of the governing equations (equilibrium  or m otion) 

extrem ely difficult. This leads to  the lack of the development of the correspond­

ing m echanical-m athem atical models th a t  are available in the  classical isotropic 

elasticity  [44, 55, 80]. In most works the  boundary value problem s in classical 

elasticity  deal w ith either two-dimensional or simple three-dim ensional models. 

T he work of V.D. K upradze ’’Three-Dim ensional Problem s of M athem atical 

Theory of E lasticity  and Therm oelasticity” provided a complete trea tm en t of 

the  three-dim ensional boundary value problem s arising in statics, problem s of 

s ta tionary  oscillations, dynam ic problem s in the classical elasticity, therm oe-

3
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lasticity  and couple-stress elasticity. Here boundary value problem s are solved 

by means of the  theory  of singular integral equations, employing the  m ethod of 

potentials. In  [68]-[71], [15] this approach was applied to  some problem s in the 

classical plane elasticity  and m icropolar elasticity. The same m ethod was used 

by D. Iesan to  form ulate uniqueness and existence theorem s for the  generalized 

plane stra in  s ta te  in the linear sta tic  piezoelectricity for the  piezoelectric m ate­

rial possessing cubic 43m sym m etry [27]. This analysis though overlooks some 

differentiability properties of the  solutions of the  integral equations.

A nti-plane shear deform ation is one of the  sim plest classes of deform ations 

th a t  a solid body can undergo. In  the  classical theory  of elasticity  th e  s ta te  of 

anti-plane shear in an  arb itra ry  cylindrical body corresponds to  the case when 

the  only non-zero com ponent of mechanical displacem ent is the anti-plane com­

ponent, parallel to  the  generators of the cylinder, which is independent of the 

out-of-plane coordinate. In th e  linear theory  of piezoelectricity the  anti-plane 

shear is the s ta te  when the  mechanical displacem ent vector takes the same 

form as in the  purely elastic case and is accom panied by the  presence of two 

in-plane com ponents of an  electric field vector, independent of the out-of-plane 

coordinate whereas the  th ird , anti-plane com ponent of the electric field vector, 

vanishes. Let us now assum e th a t the cylindrical body is subjected to  the  sur­

face stresses th a t  act in the  plane norm al to  the  generators of the cylinder, i.e. 

the stress vector com ponent t3 is zero w ith x 3 being the  axis parallel to  the  gen-

4
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erators, and do not vary along the generators. In  th is case, an  isotropic body 

would experience plane deform ation, i.e. the displacement along the  generators 

vanishes or is constant, while two in-plane com ponents of the displacem ent are 

independent of the  out-of-plane coordinate. For an  anisotropic body, however, 

we cannot assum e th a t the th ird  com ponent of the displacement vanishes as we 

would have overdeter m ined system  of governing equations. Therefore we can 

only expect all the displacement com ponents to  be independent of the  th ird  

coordinate due to  the form of the  boundary conditions and the deform ation 

is th en  called generalized plane deform ation [37]. In  th e  context of piezoelec­

tricity, the  generalized plane stra in  s ta te  corresponds to  the  case when all the 

field quantities: th ree displacement com ponents and electric poten tial, are in­

dependent of the  out-of-plane coordinate [27]. A lthough bo th  anti-plane shear 

and generalized plane s tra in  m athem atically  are two-dimensional models they 

have a variety of applications. For example, the  problem s th a t reduce to  the 

s ta te  of anti-plane shear are those of s ta tic  torsion, or torsional vibrations of 

the  cylindrical piezoelectric body [30]; the  case of a general load applied to  the 

generators of a cylindrical body w ith arb itra ry  cross-section can be described 

by equations of the  generalized plane strain . The governing equations for the 

s ta te  of anti-plane shear were established in different constitutive theories, for 

example, in nonlinear elasticity [24], s ta tic  piezoelectricity [4]-[7], m icropolar 

elasticity  [61, 62]. T he s ta te  of the  generalized plane strain  was only studied

5
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for the cubic 43m in the context of the sta tic  linear piezoelectricity [27]. Here, 

the  governing equations decouple into in-plane and anti-plane systems. Conse­

quently, no a tten tio n  is paid to  purely anti-plane deform ations for piezoelectric 

m aterials w ith  more general sym m etry properties. Since a variety of piezoelec­

tric  devices operate on resonant frequencies such as piezoelectric transform ers, 

ac tuators, resonators and etc [12, 20, 72] the  investigation of the natu re  of 

steady-sta te  vibrations is also of great im portance.

The objective of the  present work is to  form ulate and solve rigorously the 

fundam ental Dirichlet, Neum ann and mixed boundary value problem s for the 

anti-plane shear s ta te  in the sta tic  theory  of piezoelectricity, and Dirichlet and 

N eum ann boundary value problem s for s teady-sta te  vibrations in piezoelectric 

generalized plane strain . O ur tool for the analysis is an analytical technique 

known as the  boundary integral equation m ethod. The advantage of this tech­

nique is th a t  it allows us to  establish the  existence of the  solutions of the 

boundary value problems, so th a t num erical procedures can be applied to  solve 

particu lar problem s arising in the context of the  anti-plane and generalized 

plane s tra in  states in linear piezoelectricity. B oundary value problem s for the 

sta tic  anti-plane shear s ta te  are considered for the  piezoelectric m aterials of 

ra th e r general symmetry, te tragonal 4 class. T he choice of th is more general 

sym m etry type is m otivated by the variety of newly developed piezoelectric 

m aterials th a t  exhibit tetragonal sym m etry [8, 21, 25, 28, 88]. The solutions

6
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of these problem s have applications in different areas where the  models of an ti­

plane shear are applicable [24], The problem s of steady-sta te  vibrations are 

considered for hexagonal 6m m  class (for the case of the unbounded dom ain) 

and te tragonal 4 class (for bounded dom ain).

The thesis is organized as follows. In C hapter 2 we give a brief description 

of the  quasi-static approach and derivation of the  general form of the equa­

tions of m otion for arb itra ry  piezoelectric solids. In  C hapter 3 we derive the 

equations for the sta tic  anti-plane shear s ta te  of linear piezoelectricity and for­

m ulate fundam ental boundary value problems. Also, we m ention the  conditions 

on m aterial properties of the piezoelectric body th a t m ust be m et for the  body 

to  undergo the s ta te  of anti-plane shear. Using the  boundary integral equation 

m ethod, we prove existence and uniqueness theorem s for the solutions of bound­

ary value problems. We give closed form solutions of D irichlet and N eum ann 

boundary value problem s in the form of single and double layer potentials.

In C hapter 4 we derive the equations of steady s ta te  vibrations of piezo­

electric solids. T he D irichlet and N eum ann boundary value problem s for the 

unbounded dom ain are considered for the hexagonal 6m m  sym m etry class. In 

vibration  problem s for the  unbounded dom ain we establish the  radiation, or 

so-called Sommerfeld conditions, to  guarantee the uniqueness of the  solution. 

T he case of the bounded dom ain is considered for the tetragonal 4 piezoelec­

tric  m aterial. We prove the existence of the solutions for the  resonance and

7
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non-resonance cases.

In C hapter 5 we give a  brief sum m ary of the obtained results and make 

suggestions for possible directions of future work.
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Chapter 2

The basic equations of linear 

piezoelectricity

In this chapter we will give the fundam ental equations of m otion for the linear 

piezoelectric continuum  and corresponding boundary conditions. We will also 

define anti-plane shear and generalized plane s tra in  states in piezoelectricity 

and form ulate the  boundary value problem s for certain  sym m etry classes th a t 

will be studied in the  present work.

In w hat follows Greek indices take the  values 1, 2, the convention of the 

sum m ation over repeated  indices is understood, A i m xn is the space of (to x  n ) -  

m atrices, I  is the  identity  element in A4nxn , a superscript T  indicates m atrix  

transposition  and (,..),Q=  d { . . . ) /d xa . For A  6  A 4 m x n  we denote the  m -th  

row as j4(m) and n -th  column as A^n\  Also, if A  is a space of scalar functions

9
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and v  is a m atrix , v G X  m eans th a t every com ponent of v  belongs to  X .  The 

no ta tion  v G C a ( S ) indicates th a t a function v belongs to  the  space of a-tim es 

continuously differentiable functions on S.  If a function v defined on S  is such 

th a t

\v(x) — v(y)\ < C\x  — y\a for all x, y G S

for a rb itra ry  C  =  const  and a  G (0,1], then  it is said to  be Holder continuous 

on S  [14]; . We will denote a space of Holder continuous on S  functions w ith 

an  index a  by C 0,a(S)  and by C 1,a(S)  a space of functions on S  whose first 

derivatives belong to  C ° ,a(S).

The derivation of the  equations for the theory  of linear piezoelectricity is 

based on the  idea of coupling the  quazi-static electric field and the  dynam ic 

m echanical m otion in polarizable dielectrics (not m agnetizable). To give an 

idea of the  quasi-static approach used to  derive governing equations for the 

theory  of linear piezoelectricity we will first briefly m ention several im portan t 

concepts from the purely electrom agnetic considerations.

One of the  consequences of M axwell’s equations is Poynting’s theorem  [79] 

which gives us th a t for an  arb itra ry  volume V  bounded by a surface d V

~  j  ( E  ■ D  + M  ■ B^ j d V  = -  J  n - h d s -  J  E -  JdV.  (2.1)

Here E ,  D,  M ,  B,  n, h = E  x M ,  J  G -Ad3 Xi denote respectively, the  electric 

field, electric displacement, m agnetic field, m agnetic flux vector, outw ard nor­

m al to  the surface d V ,  Poynting’s energy flux and current; c denotes the speed

10
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of light in  vacuum . W e will define th e  te rm

• 1
u —  ( e - d  +  m - b )

47T v /

as th e  tim e  ra te  of change of electrom agnetic  energy. T he P o y n tin g ’s theorem  

now can  be in te rp re ted  as follows: th e  tim e ra te  of change of in tern a l e lec tro­

m agnetic  energy in  an  a rb itra ry  volum e is equal to  negative of th e  ra te  of flow 

of e lec trom agnetic  energy th ro u g h  th e  surface enclosing th e  volum e m inus th e  

ra te  of d issip a tio n  of electric energy by th erm a l m eans inside th e  volum e. If we 

in tro d u ce  th e  vector p o ten tia l A  €  AT-sx 1 such th a t

Bi  — £ijkAk,j

an d  scalar p o ten tia l cj) such th a t

Ek —  (f> k ~ A.ki
c

P o y n tin g ’s energy flux vector com ponents becom e (for deta ils  see [79])

hi — <f> ~  -^e - i j kA jM k-  (2-2)

T h e  assum ption  on th e  electric p o ten tia l <f> m ade to  m ake a  q u asi-s ta tic  approx­

im atio n  is th a t  for each com ponent (f>ti th e  following condition  is satisfied:

(2 -3 )

T h e  assum ption  (2.3) is valid  w hen th e  electrom agnetic  waves uncouple from  

th e  elastic  waves, an d  also w hen acoustic w avelengths are sh o rte r th a n  th e

11
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electrom agnetic wavelengths of the  same frequency. Also, since we consider 

only polarizable dielectrics we can set

M  = J  =  0.

This will allow us to  assume th a t the m agnetic portion  of Poynting’s energy 

flux vector is negligible and, therefore, we can assum e h in the  form

h = ^ R .  (2 .4 )
4tt  ̂ '

Also, com ponents of the electric field Ei  are now defined sim ply by

Ei =  (2.5)

The equations (2.4) and (2.5) are the m ajor consequences of the electrostatic ap­

proxim ation and will be used to  derive the  constitu tive relations for polarizable 

dielectric medium. Now, w ith the  use of (2.4), we can form ulate the principle of 

energy conservation in an  a rb itra ry  volume occupied by a  piezoelectric m aterial

Wt Jv (\p,djdj + U) dV = Jdv (tj7lj ~ Uĵ j) dS’

where uj ,  tj  are, respectively, com ponents of displacement and stress vector. 

The equality (2.6) sta tes th a t change in to ta l energy, kinetic and internal, is 

the  ra te  a t which work is done by the trac tio n  forces acting across d V  minus 

the flux of electric energy out through d V.

By applying the  divergence theorem  to  (2.6) we obtain  the  ra te  of change 

of in ternal energy U

U (Ai4 P^j*) ^ j  (̂) {E){.

12
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Here are com ponents of the stress tensor. Now, from the equations of m otion

from linear elasticity (in the absence of external forces)

and the charge conservation equation (in the absence of external charge)

Di,i =  0

we obtain  the  ra te  of change of internal energy

U — Tijilij 4 >,ibi- (^*^)

Next, we introduce the  electric enthalpy function H

H  = U -f- (j>tiDi- (^*$)

If we differentiate (2.8) w ith  respect to  tim e, together w ith (2.7), we have

H  TijUij D i ^ i ,  (2.9)

so we can assume th a t  enthalpy H  = H ( u tj ,  <f>ij). Now, for the  H  we obtain

• 8 H  . d H  ,
d u itj  d<pti

which together w ith  (2.9) produces the identity

d H  \  . /  d H \  .
Tij d u it j) Ui’j  + {

Since the above identity  m ust hold for a rb itra ry  Uij  and <pA we have th a t

d H  d H  ,
=  D '  =  ^ '  <2 ' 1 0 >

13
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We assume the enthalpy function H  in the form [79]

77 =  ^ - f -  efcij(f))k' iH, j  ^ , (^*77)

where Cijki, ekij, eij are, respectively, elastic, piezoelectric and dielectric con­

stan ts  such th a t

C%jkl =  Cfc/ij Cikij ,

& k i j  =  &k j i i

e i j  =  e j i  •

In  a sim ilar way as in [79], from (2.10) and (2.11) we obtain  the  constitutive 

relations of linear piezoelectricity

T~ij =  C i j k l U k J  " t "

(2 .12)

7-7* ~  ^ikl^kjl

Now, substitu tion  of Ty from (2.12) into the equation of m otion for a linearly 

elastic medium

—  P  '^i ~  f i

and Di  from (2.12) into the  charge equation

7 \ * =  Q

produces the  equations th a t govern the  behavior of a  linearly piezoelectric con­

tinuum

C i j k l ' U ' k j l  “ b  ^ k i j t p i k j  =  p U i  ~  f i ,
(2.13)

&ikl'Uk,il £iktp,ik = Q-

14
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By fi  we denote the  com ponents of the body force and by q the  external charge. 

The equations (2.13) are accom panied by the  set of mechanical and electrical 

boundary conditions. In the  present work we will be dealing w ith  several types 

of boundary conditions. F irst, we consider the  boundary conditions when the 

displacem ent vector com ponents and electric po ten tial are prescribed on the 

boundary. T he boundary value problem  for the equations (2.13) accompanied 

by the  this type of boundary conditions we will refer to  as the  Dirichlet bound­

ary  value problem. If the trac tio n  vector and surface charge are prescribed on 

the  boundary we will have the  N eum ann boundary value problem . The last 

case of boundary conditions th a t  we will consider is when D irichlet boundary 

conditions are given on one portion  of the boundary and N eum ann conditions 

on the  rem aining portion of the boundary. T he equations (2.13) together w ith 

this type of boundary  conditions we will refer to  as the  mixed boundary value 

problem.

15
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Chapter 3

Anti-plane shear state in 

linear piezoelectricity

3.1 G overning equations and boundary conditions

T he anti-plane shear s ta te  will be considered in the  frame of the  sta tic  theory,

i.e. all the field quantities are independent of tim e. Let fi be an  infinite cylinder 

fi =  {x € R 3 : ( x i , X 2 ) £  *5} where S' is a simply-connected dom ain of R 2 

such th a t its boundary d S  is C 2-curve. Let fi be occupied by a homogeneous 

linearly piezoelectric m aterial. The lateral surfaces of the cylinder are loaded 

as shown in the  Figure 3.1. As in [4] we define a s ta te  of anti-plane shear for 

the  piezoelectric body by requiring th a t the com ponents of the  displacem ent

16
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vector and the electric potential take the form:

(3.1.1)

u i  =  0 ,

u 2  =  0,

«3 =  u 3(x  i , x 2),

<p = <t>(x i , x 2), V x i , x 2 e S .

If we now substitu te  (3.1.1) back into the governing equations (2.13) we obtain

Cta3/3^3,a/3 3“ S-uiafi,ua = fs-t

€"yia'U'3,'yoc "b Q in S.

(3.1.2)

Figure 3.1: Piezoelectric cylinder under an  anti-plane shear loading

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



We note here th a t now we have two unknowns bu t the num ber of the  equa­

tions rem ains four, i.e. the system  (3.1.2) is overdeterm ined, in general. Con­

sequently, an  arb itra ry  piezoelectric body will not, in general, sustain  an an ti­

plane shear s ta te  (1 1 3 , <p). The same is tru e  for the purely m echanical problem  

[24], However, as in [4], it can be shown th a t a sufficient condition for a non­

triv ial s ta te  of anti-plane shear to  exist is given by

in which there is no in-plane stress produced, i.e. t \ \ ,  t \2 , t 22 are zero, by 

anti-plane shear strains £1 3 , £ 2 3  and in-plane com ponents of the electric field 

E \  and if2 .

In  this case the equations of equilibrium  become

E -y a S  (3 — b? & isya  — fi- (3.1.3)

The conditions (3.1.3) im ply th a t we consider only those piezoelectric m aterials

(3.1.4)

^73a^3,7a 4“ — Qi la  S.

The appropriate boundary conditions for (3.1.4) are given by [4]

(C3a3/3?i3,/3 4“ &i/3a4>,i')Tla — 3̂ (*̂ 1 ? %2 ) ?

- ( e 7 3Qa 3 .7  -  eQ/30,/3)na =  D*(x i , x2) on dS,  (3.1.5)

in the case of the Neum ann problem, and by

(3.1.6)

18
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in the  case of the Dirichlet problem. Here <p* are prescribed functions

on OS  and n a are the com ponents of the  outw ard unit norm al n  to  dS .

To w rite the mixed boundary conditions we divide d S  into two (for simplic­

ity) arcs d S \  and d S 2  w ith  common endpoints a and b. T he case when d S  is 

divided into more th an  two parts  is relatively straightforw ard and proceeds as 

in [33]. As in [33], the  set x  =  {a, b} is included in d S \ ,  so th a t  d S 2  is taken as 

an  open arc and d S i  as a closed one. Let us introduce the differential ’’stress” 

operator T  =  T ( d x , n ) which describes N eum ann type boundary conditions:

T  =  T ( d x ,  n)
f '.'So.'S. )’s .) > &v3a.£,vHoL

7̂-3 o ̂ (7

By we denote —j .  Let us denote by u = u(x') G A D xi such th a t  u(x)  =
OXcx

(us(x),  <f)(x))T . Now mixed boundary conditions become:

(3.1.7)
u(x)  = u*(x) x  G d S \

T u (x )  =  t*(x) x  £  d S 2

Let us introduce the  differential operator L  = L (d x )  corresponding to  the 

equations (3.1.4):

L  =  L ( d x ) = (3.1.8)
LiinS.An 6i/3a£is£a

£a/3^a^0

In the p articu lar case of te tragonal crystal sym m etry 4 the differential operator

19
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L  becomes

L  = L ^ d x )  =
0 4 4 (8 + 8 )

~ el < 8  -  8 ) -  2ei4£ l6

6 1 5 ( ^ 1  ~  8 ) +  2 e u 6 6  

<8 +  8 )
(3.1.9)

and th e  ’’stress” operator T  takes the  form

T  = T^(dx,  n)  =

6 4 4 ( 7 1 1 6  +  7 1 2 6 ) ei5(n iCi _  ^ 2 6 ) +  6 1 4 (712^1 +  7 ii6 )

—615(7116 -  77,26) -  £14(77-2̂ 1 +  77.26) £(7116 +  77.26)

(3.1.10)

where

C 4 4  =  C 3 1 3 1  =  C 3 2 3 2 ,

e i4  =  e i3 2  =  e 2 3 i ,  e i s  =  e i 3 i  =  —e23 2 ,

e =  e n  =  £2 2 -

For the  cubic 43777 crystal class the operators L  and T  take the  form [27]:

L  = L 4Z m(dx

T  = T43 m(d x ’n ) =

0 4 4 ( 8  +  8 )  2ei46 6

- 2 e i 4£i£2 e (6  +  £2)

6 4 4 ( 7 1 1 6  +  7726) ei4(772^l +  t i i 6 )

-eu(772^i +  77,2 6 ) e ( « i6  +  77-2 6 )

(3.1.11)

(3.1.12)

20
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where

C44 =  C3131 =  C3232,

e i 4 =  e i 32 =  e 23 i ,  6431 =  e 232 =  0 ,

£ =  £ 1 1 =  £22-

For convenience, we introduce the  following notations for the system  of equa­

tions (3.1.4):

A n a/3 = Csa3p

A \2af5 =  ec*3/3

A 2la/3 ~  ^a3/3

A 22a0 =  ^a/3

u i ( x l , x 2) = U3(X1,X2)

u 2 ( x 1 , x 2) = <f>(x 1 ,X2)

(3.1.13)

Now we can w rite the  operator L ( d x ) for bo th  cases of m aterial sym m etry as:

L [ d x ) =  '

Similarly, for the stress operator T ( d x ,  n ) we have

T ( d x , n )  = {Axf^ptpria}.

Let S + be the bounded dom ain enclosed by dS .  Also, we define S ~  as following

S -  =  lim (rR \  s +) ,
R —*00

where FR is a circle in R 2 of sufficiently large raduis R.  By 5 + and S ~  we will 

denote 5 + |J<9S' and S ~ { J d S ,  respectively, i.e. regions containing S + or S~ ,  

respectively, together w ith  the boundary dS.

21
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R e m a rk  1 The following assertions are true for  both tetragonal 4 and cubic 

43m  classes:

(1) L ( d x ) is elliptic i f  Cm ande are of  the same sign. Henceforth, we assume 

that C4 4 , e are both positive.

(2) The internal energy takes the fo rm  [79]:

U(u,  u) C^a2 pÛ pU^a -f- (3.1.14)

and, specifically for  both classes, we have

U(u,  u ) =  +  u22) +  +  0 22),

and U (u , u) =  0 i f  and only if

u  =  (u , <])T = (u 1 , u 2)T =  (ci, c2)T , (3.1.15)

where ca are arbitrary constants.

(3) A s  in [If], we can show that (Bett i  Formula) i f u  £  C 2 ( S ~*“) f) C 1(5'+ ) f ] A 4 2x 

is a solution of  the system (3.1.4) (with the absence of  body force and ex­

ternal charge) in S + then:

and

2 /  U ( u , u ) d A  =  /  uT Tuds,  
J S +  J d S

I I i t . ,  (I A — I Tapupds.  
J S +  J d S

22
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We can also establish the Reciprocity Relation: i fu ,  v £  C 2 ( S + ) f')C '1(S'+ ) f ) M 2  

then

f ( v t L u  — u T L v ) d A  =  f ( v t T u  — u r Tv)ds .
JS+ JdS

3.2 Fundam ental and singular solutions

In this section we will construct m atrices of fundam ental and singular solutions.

In  the  classical elasticity  theory the  fundam ental solutions correspond to  the 

displacement field due to  the force applied a t a point. These are known as 

Kelvin point-load solutions. In piezoelectricity, where the field quantities are 

the  displacem ent vector and the electric potential, the fundam ental solutions 

correspond to  the  displacement field and electric po ten tial due to  the point- 

wise applied force and the electric charge. One of the  im portan t properties 

of fundam ental solutions for the application of the boundary integral equation 

m ethod is th a t  they satisfy the governing equations. This will be used to  

construct the single and double layer potentials in Section 3.5. To find the 

m atrix  of fundam ental solutions we will use the Galerkin representation of the 

solution.

We introduce L * (d x ) £ M. 2 x 2 , the transposed m atrix  of cofactors of L(dx) ,  

such th a t

^A ,n =  -®A/i7c5̂ 7̂ 5)

23
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where the coefficients B x^S  are

— CyS 5

B l2y5 =  ^735

$ 21̂ 5 =  ^73

-B227 5 = Qi-fss ■

Clearly, we can w rite

2

BL  =  ^  ) ■^KfiafjBx^jS^a^fi^'f^S =  ^nxdctL. (3.2.2)
M=1

We are looking for the  Galerkin representation of the solution of the system

(3.1.4) in the  form

u ( x ) =  L*g ,

where g £  A f2 xi- S ubstitu te  now u(x)  into the equation

L ( d x ) u ( x ) =  —d,

where d £  .A ^x i is such th a t first we take rij to  be equal 5(x — y).  Dirac 

d istribution, and c?2 equal to  0, and then  d\  =  0 and d 2  = S(x — y).  We obtain

L(d x) L* (dx )g  =  det L{dx)g  = —d.

Clearly, first we can take g\ to  be equal to  some function ip = ip{x. y)  and 

5 2  =  0, and then  take g\  = 0 ,  <72 =  d(x — y).  Thus we now have to  solve one 

equation:

det L(dx) ip(x,  y) =  —5(x — y ),

24
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which will give us the  m atrix  of fundam ental solutions r(ai, y) such th a t

(3.2.3)

From  [38] we find th a t  the unknown function ip(x, y)  is given by

4

ip(x,y)  = ~ ia  ^ { - l y d j c r ]  log aj,  
j =l

where

(3.2.4)

a =
47t eG44

aj  = o c j ( x i - y i )  + (x 2 - y 2 ), j  =  !,•••, 4;

D  =

dj is the cofactor of a j  in the determ inant D,  divided by D,  where D  is given 

by

a f  a \  ol\ 1

a 2 «2 1

«3 a 3  «3 1

a 2  a 2  0 4  1

and aj  are the roots of the  characteristic equation corresponding to  the dif­

ferential operator L(dx) .  In the  case of cubic sym m etry 43m we have the 

characteristic equation for the  operator L ( d x )

e C ^ a 4 +  (2eC44 +  4e^)o;^ -|- eC*44 — 0

and the roots are found to  be

. b ± y / b 2~ ^ 4
<*1,2 =  * 1 / ----------   , <*3,4

. / b ±  y/b2  — 4 ze<^44 -+- ‘iaiA
—i \  ----------------- , where b =  -

2eC*44 -(- 4e?
eG44

25
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T he corresponding characteristic equation for L(d x)  in the case of te tragonal 4 

sym m etry becomes

eC4 4 (a 2  +  l ) 2 +  (e i5 (a2 -  1) -  2 e u a )2 =  0

w ith  roots

- 2 i n  ±  y J - A y 2  -  A(l2  +  1) 2i y  ±  \ / —Ay 2  -  4 (I2  +  1)
^"1)2 r)/7 7 a 3,4 Q / I  . 7

2 { l - i )  2  (l + i)

where

l = ^/C^~c, i x = — -
eis

We note here th a t in bo th  cases a.\y are complex conjugate of Q3 4 ; the function 

i[)(x,y) is a real-valued function. Now, the  substitu tion  of the  function ip(x, y ) 

given by (3.2.4) into the equation (3.2.3) gives us the com ponents of the m atrix  

of fundam ental solutions

^ \ f i { x , y )  =  E 7)<5=1 dx-ydxs ~
(3.2.5)

=  E y = i E ? , i = 1 a * ( - l ) j ^ 5 AM75a ^ “ (7+,5)(2logOj +  3).

Next, we introduce the  m atrix  of singular solutions D  = D(x ,  y)

D(x ,  y) =  (T ( d x , n ) T ( y , x ))T.

Following the procedure sim ilar to  the one used [27] we will make some tran s­

form ations to  w rite D ( x , y ) in the more convenient form. F irst, we w rite the 

com ponents of the m atrix  T ( d x ,  n) in the form

TKfi (dx ,  n) =  'y ] A.Kp.a(i Tl-n ■
fj,=l 0

26
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Now we can write

2

T K( d x , n ) r W { x , y ) - £  A Kna0 ^'nX,0 '̂ l'a — (3.2.6)
H= 1

4 2 2E E E  2 a i(- iyd j Bx̂ sa 6- ^ ^ —AK̂ n a.
j = l  f i ~  1 7 ,(5 = 1  3

Bearing in m ind (3.2.2) we recall th a t  the characteristic equation can be w ritten

(A is not summed) as follows

5 2  Y 1  =  0,
^=1 P,iy,j,6 =l

or, we can w rite

5 2  5 2  A ±»i0BXtll5a 7- ^ +^ +
fi=1 / 3, 1̂ 7 ,<5 = 1  

2 2 

+E E
f i=1 { 3 ,v ,7,5=1
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So we have

E E All.wBl„s<*^’- (-+|3+',+‘, =
ji,v,  7 ,(5=1

“E E
l i = 1 /3,!/,7,i5=1

Substitu tion  of (3.2.7) into (3.2.6) produces

T« ( ^ n ) r (A)( ^ y )  =  E E  E  0 4 KfllffBx^ySOt  ̂ 0  1  )_(_
j = 1 /z = l  7 ,5 = 1

+>1, , 2 / 3 ^ o 6- ^ + ^ + ' 5))  2 a i ( - l ) ^ i ^ - n 0AC/X,

4 2 2

= EE E (̂ wSA„d»6-("+‘,+"+{)-
j = l  /J = l  7 ,5 = 1

- a j A ^ p B x ^ - ^ + i + s ) )  2 ai (—i y d j — n 0

'  CT-i
4 2 2= EE E A ^ p B x ^ c f - ^ + i + s )  -  QJ-n2 )2 a * ( - iy 'd j — .

j = l  ^ = 1  7 ,5 = 1

Following [33, 27] we write

i a i  1 , alog^ j =  log -  -  log -  +  ln r , 
a 2  a

where

a  =  i ( x i -  yi )  +  (x 2  -  y2), r 2  = (Xl -  t/i ) 2 + (x 2  -  y2f  

Having noticed th a t

1 d  log (7 j
j n 2) —  =  —^------

CTj dSr.
(n i -  Oijn2) —  =  

7 3

we can write

d <jj (i — a A r 2  91ni 
~k~~ log —7  =dsx a  crcrj d n x

28
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Finally, (3.2.6) becomes

D \ k ( x , y) =  T iK)( d x , n ) T W (x ,y )  = ^ T R i x
j =i

where coefficients RjkX are given by

2 2

4 r <91nr / (i — a y )r2 <91nr
<9,s,,: V o'er,- )  d n x

(3.2.10)

6— ( / 3+ 7 + < 5)

K \  =  2 a i ( - l ) Jdj ^  J 2  A ^ W B ^ W aj
/3,7,(5=1

R e m a rk  2 IFe note here that the columns o f T ( x , y )  and D ( x , y )  are solutions 

of  the system  (3.1.4) for  all x  £  K2 : x  ^  y  and for  the normal vector n  £ A42xl  

independent of  x .  To see this, f irst we recall that

L (d x ) T (x ,  y) =  L{dx)L* (d x ) f i ( x , y) = I  det L(dx) ip(x,  y) =  0.

Using the definition of  the matrix D ( x , y )  we find

L ( d x ) D ( x ,  y) = L (d x)  (T (dy)T(x ,  y ) f  =  L {d x )T T ( x , y ) T T (d y ,n )  =

X0 (dx)  ( ( - l ) ^ r 0 1 {x , y ) )  ( - 1  ) ^ +5 % s (d y ,n )  =

= { - l ) { a + w ) L ay{dx )T 0 1 { x , y ) { - l ) ^ T lS{dy ,n)  = 

(-;L)(“+2 7 +i )La/3 (dx)L*Pl( d x ) f i ( x , y ) ( - l ) ^ +s% s (d y ,n )  = 

■■ ( - l ) (a+27+1)^ 7 d e t L ( 5 x ) ^ ( x ,y ) ( - l ) ^ +5)T ^ (5 y ,n )  =  0.
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3.3 R epresentation  form ulae for the bounded dom ain

Now we are in a position to  derive the  representation formulae for the  solutions 

of (3.1.4) for the  interior domain. We will use these results in Section 3.5 to  

investigate the behavior of the single and double layer potentials in S ( and its 

boundary dS.

T h e o re m  3 (Representation formulae) I f  u  G C 2 ( S +) f ) C 1 (S’-1-) is a solution 

of  the homogeneous system  (3.1.4), then

[  [r (z , y)T( dy)u{ y)  -  D(x ,  y)u(y) \ds(y)  
J d S

I uu{x)  

i Iu u(x)  

0,

x  £  S +, 

x  £  dS,  

1 6  5 ' ,

where

I u =  - 2
1=1

P ro o f .  Let aXts be a disk lying inside 5 + w ith  the centre a t x  =  (x i,X 2 ) 

and w ith  sufficiently sm all radius 5. Applying Reciprocity re la tion  (Rem ark 1) 

in S + \  aXts taking each tim e v  be equal to  the columns of the  m atrix  r(x ,  y) 

and bearing in m ind R em ark 2 we obtain

0 =  f  [ r W (x, y) T (d y ,  n ) u ( y ) -  D { ) (x, y ) u (y )] ds (y )~
Jas  L J

-  [  T M ( x , y ) T ( d y , n ) u ( y ) - D {lx)(x ,y)u{y)  ds(y),
Jd^x.s

where d a Xts is the  boundary of aXt$. From (3.2.5) we conclude th a t

lim
<5—>0

[  T ^ ( x ,  y ) T ( d y ,  n)u(y)ds(y)  =  lim [  \n5M\8dd  =  M 2  li
Jdax,s <5̂ 0 Jo 6-

lim 5 In <5 =  0. 
0
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Let us now consider the  second integral over d o x$.  We can w rite

/  D M ( x , y ) u ( y ) d s ( y ) =  D ^ ( x , y ) ( u ( y )  -  u(x ) )ds (y )+
&&x,5 d & x ,5

+u(x)  /  D M (x,y)ds (y) .
x,S

From  (3.2.8) we see th a t  each com ponent of D ( x , y) is 0 ( | )  for y £ da Xj§- 

Since u £ C ° ’a ( S + ( J d S)  and ds(y)  is 0 (5 ) then  for y £ d a X:s we have

[  D(n)(x ,y) (u(y)  -  u(x) )ds(y)  =  lim M 3 [  \ d d s (y )  =  M4 l im 5 =  0,
Jd<rSlS W  S^O J d(Tx S S 6 ^ 0

here Mj,  j  =  1 ,..., 4 are a rb itra ry  constants. Thus we obtain  th a t

/  y)u{y)ds{y) = u(x)  lim /  D M (x, y)ds(y)  = I ^ u i x ) .
Jd<Tx,& Jd<Tx,s

lim
(5—>o

Using the  results established in [14], the com ponents of the m atrix  Iu are cal­

culated to  be

r ni  f  T d h ir  { (i -  a j ) r 2  \  <91nrl 7 7  •

^  ~  " L Zti 7 d ^  + 7  (y) “  ~  §  *»'

For the case when x  £ d S  the same procedure is applied for the  dom ain S +\ d xj .  

where dXts is the  p art of aXts lying inside S +. Thus, instead of daXts we will 

have its p a r t d d x s in S +. It was shown [23] th a t in the case of a  Lyapunov 

curve d S  the  length of d d x$ is nS.

For x  £ S ~  the  result follows directly w ith the use of R em ark 2.
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3.4 R epresentation  form ulae for the unbounded do­

m ain

We recall th a t  we define S ~  as follows

5 “ =  lim (TR \  S+)  .
R—>00

To establish the  representation  formulae in an  unbounded dom ain, as in The­

orem 3, we will apply the  Reciprocity relation in S ~ . However, in this case, 

instead of the boundary d S  we will have d S  |J  c)Tr and the integral over OTr  

becomes divergent as R  —> 0 0 . Thus, the  representation of the  solution of 

boundary value problem s for (3.1.4) in the  unbounded dom ain requires the 

restric tion  of the behavior of the solution when x  =  (.xq, xq)7 approaches in­

finity. To th is end we w ant to  define a special class of functions A  of vectors 

u(y) £ M . 2 x 1 whose asym ptotic expansion in po lar coordinates (r, 9) has a form

u a (r,ff) = r ~ 1 ( a ^  cos# — sin#  — M j b ^ ^ s m O  + pj  cos 8 ) +

+  M j b ^ q j  cos 9) +  0 ( r -2 )

where a\a\ b \ a\  i =  1..3, are arb itra ry  constants; pj,  qj are real and im aginary 

parts , respectively, of a .j and

M  =  1_________________
J sin 92  +  2p j  sin 9 cos 9 + { p 2- +  q ? ) cos 6 2

Let A  be the  set of vectors u{y) £  M 2 xi  defined as

A  = {u : u  = u  +  uo; u £ A ,  u 0  : E ( u o , u o ) = 0 } .
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From  (3.2.9) we conclude th a t lo g <tj = 0 ( \ n \ x  — y\).  Similarly, for \x\ -> o o w e  

write

<3A1)

By m aking use of these results we can w rite asym ptotic properties for the 

com ponents of m atrices T ( x , y )  and D ( x , y ):

Bap{x, y) = 0  (In | z | ) , D a/3 (x, y) = O  . (3.4.2)

The following assertions hold for the solutions of boundary value problems 

for (3.1.4) in the  case of an  unbounded domain.

R e m a r k  4  A s  in Remark 1, it can be shown that the Bett i  formula holds in 

the case of  an unbounded domain:

/ / u  G C 2 p) (S ~ ) C l (S ~ ) P| A  is a solution of  (3.1.4) then

I  U ( u , u ) d A = — j  u 7 T u  
JS-  JdS

ds.

P ro o f .  We can write

0 =  /  uT L u d A  =  lim  < /  u TL u d A  — /  uT L u d A  > =
J s -  R^ ° °  l J r R Js+ J>rR
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=  lim i I u t T uds  — 2 f  U(u,  u )d A  \  — f  ut T u d s  +  2 /  U ( u ,u )d A  
I JarR JrR J Jas Js+

= —2 f  U ( u , u ) d A — j uTTuds ,
Js-  Jas

since u £ A  and therefore the integral

I  uT T u d s  
JarR

vanishes as R  —> oo which completes the proof.

T h e o re m  5 (Representation formula for  an unbounded domain)  

I f u £ C 2 f] (S~) C l ( S  ) P |-4  is a solution of  the equations (3.1.4) then

-  [  I t M { x , y ) T ( d y ) u ( y ) - D M (x ,y )u (y )  ds(y) = 
J dS

Iu1 {Au (x )  ̂ x e S  >

\ l w^ )u {x ) ,  x  G dS,

0, x  G S +.

P ro o f .  Following the classical procedure [14], for x  G S~  we apply the reci­

procity  relation in T# \  S +:

° =  -  Jd s [TM(x>y)T (dy^n)u( y ) - Diu)(x ŷ)u(y)]ds(y)+

+  fa r R y )T (d y ,  n)u{y)  -  D ^ ( x ,  y ) u (y )] ds(y).

Using the relations (3.4.2) we conclude th a t  for the  second intergal an  asym p­

to tic  estim ate

o ( i l  UR

holds and therefore, as R  —> oo, the integral over dV r  vanishes. We m ust note

here th a t the  first integral changes its sign since the norm al n  — (n i, ri2 )T is an
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outw ard norm al. Now the  results follow by utilizing calculations and argum ents 

given in the proof of Theorem  3.

3.5 Single and double layer potentials

In this section we define the  single and the double layer po tentials and in­

vestigate their behavior in dom ains S + , S ~  and on the boundary dS .  The 

properties of the  single and the double layer po tentials are essential as they are 

the  key concept of the boundary integral equation m ethod. We will see th a t 

the  definitions of the single and the double layer potentials and their behavior 

on the  boundary d S  make it possible to  reduce the  boundary value problem s in 

S + and S ~  to  the corresponding systems of singular integral equations on the 

boundary dS.  We construct the  single layer po ten tial V p  in the  form

w ith  the density p> €  A^2 xi-

T h e o re m  6 I f  ip £  C{dS )  then V !p(x )  and W p ( x )  are analytic and satisfy

P ro o f .  To prove the second assertion we recall Rem ark 2. A nalyticity  is 

exam ined in the classical way as in [51].

T{x,y) ip(y)ds(y)

and double layer po ten tial Wp>

D(x,y) ip{y)ds(y)

(3.1.4) in S +(S~) .
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T h e o re m  7 I f  (p £  C ( d S ) then

1. W ip e A

2. V(p S A  i f  and only if

f  (pds =  0. (3.5.1)
JdS

P ro o f .  T he proof of the first p a rt of the assertion is obtained using Rem ark 

2 and the  definitions of the single and double layer potentials. For the proof of 

the second p art, first, we w rite

log crj =  log (x aj -  ya j ) =  i  In \xaj -  yaj |2 +  iAxgcrj =

=  \  In ^  ^  ^  j  +  *Argcjj =  ^  In \xa j \ 2  +  i  In (1 +  ea j ) +  iArgcr,-,

(3.5.2)

where

I Vet 12 — 2 (xa . , ya .)
x aj = a j x 1 +  x 2, yaj = otjV\ +  2/2 , £aj =  —  ----- ,----- ^ -----  ■

| %OLj |

We see th a t when \xQj\ ~  |x| —» oo the  value of eaj is sufficiently small, so we 

can apply the well known formula (for small e)

l n ( l  + £) = £ - I £2 +  I £3 +  0 ( £4).

to  ob tain  the expansion for l n ( l  +  eQj) (f°r  sm all eE, i.e. when \xaj \ ~  \x\ —> 

oo). W hen \xa j \ —> oo the  value of eQ. tends to  zero. For the  A-component of
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the single layer potential we now have:

V i p \ ( x ) =  T x ^ ( x , y ) ^ ( y ) d s ( y )  = 
JdS

4 2

1 1 1  ‘J a i ( - i y d :jB \ lJllSa j  il+d) r I n \xa j \ 2  j  <p^(y)ds{y) 
„ a—-\ L  J d S

+  V<px(x)
j=1 7 ,/3 = l

where V p \ ( x )  £  A .  Thus we see th a t  Vip(x)  is in the class A  if and only if we

require

/  <P{y)ds(y) =  0. 
JdS

The result for the  double layer po ten tial follows from expansion of Wip(x)  when 

\xaA ~  |x| —> oo using the  relation  (3.4.1).

T h e o re m  8 1. I f  ip €  C ( d S ) then V p  £ C 0,“ (M2)

2. I f  p  £  C i,a(dS)  for  a  £ (0,1], then W p  has C 1,13-extensions ( W p ) + and 

( W p ) ~  to S + and S  , respectively, with 0  £ (0 ,1).

{ W p ) + =
W p ,  x  £ S +,

- ^ I u P  + Wop,  x  £  dS,

(w <py
W<p, x  £  S  ,

\ lu ,p  +  W 0 p,  X £ ds.

I f  p E  C°'a (dS)  then V p  £ C'1,Q!(M2) for  a  £  (0 ,1) and

T ( V p ) + =
T ( V p ) , x  £ S +,

^ I wp  + T ( V 0 p),  x  £ dS,
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T(V<p),  x e S ~ ,
t (v <p ) - =  ;

-T^Iuip+ T  (Volf), x e d s ,

4. T  (Wtp) = T  (W<p)~ o n d S .

Here Wqp  and Vq<p denote the double layer potential and single layer po­

ten tial, respectively, for x  E d S ,  T/3 denote com ponents of the un it tangent to  

dS.

P ro o f. To prove the  assertion 1 from (3.2.5) we conclude th a t  the  kernel of 

the po ten tial Vip

k ( x , y ) O (ln r) .

The required result now follows from [14]. For p arts  2,4, bearing in mind

(3.2.10) we write

4

£
j = 4

where

v H x )  =

Wip = x)  +  (i — aj )p (x )  +  i w ( x ) ^  ,

= [  ~ v ( y ) d s (v)iJdS ° sy

w(x)  = -  f  ^ L , p { y ) d s ( y ) ,  
JdS OKy

p ( x ]=L  ( £ )  ^ v (p)d‘ (i,)'J3 /  w,vy

T he proof now follows from [14]. To prove 3 we can w rite [33]

T(V<p) = T ( d x , n )  (Vip) = T ( d x , n )  [  T(x ,y) ip(y)ds(y)  =
J d S
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=  f  T (d x ,n )T (x , y ) i p (y )d s (y )  =
JdS

= f  lPT { y ) [ T ( d x ,n ) T ( x , y )  + T ( d y , n ) T ( x , y ) } d s ( y ) -  
JdS

~  f  lfiT ( y ) T { d y ,n ) r ( x , y ) d s ( y )  =
JdS

= [  <f{y)T [ T ( d x , n ) +  T ( d y , n ) ] T ( x , y ) d s ( y ) -  
JdS

~  [  [T (9y ,n )T (x ,y )}T (p(y)ds(y).
JdS

We can see th a t the  last integral is a double-layer potential, so we can write

T ( W )  =

= [  <pT ( y ) [ T ( d x ,n )  + T ( d y , n ) ] r ( x , y ) d s ( y ) - W < p ( x ) .  (3.5.3)
JdS

We can show th a t the  first integral is a continuous term . We recall th a t

d  log Oj
=  (n i(x ) -  a j n 2 (x)).

ds(x)

Similarly,

- l0g<7j =  ~{n\ {y)  ~  a 3 n 2 {y)).ds(y)

Thus, using (3.2.8) we can w rite th a t

[TK(dx,  n) + TK( d x , n)] T(A)(x, y)

4  2 2

j=1 n=l 7 ,5 = 1  <7j"

x [ni(x) -  m ( y )  + (n 2 (y) -  ^ ( x ) ) ^ - ]  .

Since d S  is a C 2-curve we can conclude th a t  the first term  in (3.5.3) is contin­

uous, which completes the proof.
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3.6 Fundam ental boundary value problems: unique­

ness and existence o f regular solutions

In th is section we s ta te  the fundam ental boundary value problems for the equa­

tions of equilibrium  (3.1.4). T hen we prove the uniqueness theorem  for solu­

tions of the  Dirichlet, Neum ann and mixed boundary value problems. Using 

the properties of the  single and the double layer potentials (see Theorem  8 ) 

we reduce boundary value problem s to  the corresponding system s of singular 

integral equations for which the Fredholm  A lternative holds. This allows us to  

prove the  existence of the  solutions of system s of singular integral equations and 

thus to  show th a t the fundam ental boundary value problem s are well posed.

Let functions P ( x ), Q ( x ), R ( x ), S(x )  G C (d S )  f ] M 2 xi  be prescribed on 

the  boundary dS.  The first com ponent of the  vector P(x') (and R(x ))  gives 

the value of the  displacem ent com ponent U3 on the boundary dS .  T he second 

com ponent of P (x )  (and R (x ))  gives the electric po ten tial <f> on d S .  The first 

com ponent of Q(x)  (and S’(x)) prescribes the  stress vector com ponent £3 on the 

boundary d S  and the  second com ponent of Q(x)  (and S(x ) )  gives the value of 

the electric charge on dS.

We shall s ta te  the interior and exterior D irichlet and Neum ann boundary 

value problems:
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Find u £  C 2 (5'+ ) P |C 1 ( 5 + ) f \ M 2 xi  satisfying (3.1.4) in S + such th a t

u 195= P(x) .  (D +)

Find  u £  C 2 ( S +) f )C '1 (S,+) f l - ^ x i  satisfying (3.1.4) in S + such th a t

T u  \ds= Q ( x ). (N+)

Find  u £ C 2 (S~)  PICK S' ) n ^ H - ^ x i  satisfying (3.1.4) in S~  such th a t

u  |a s=  R{ x ) .  ( D ~ )

F ind u £ C 2 (S~)  p)C '1 (S' ) 0 -4 0 ^ 2 x 1 satisfying (3.1.4) in S ~  such th a t

T u  |a s =  S(x ) .  (N ~)

For the mixed boundary value problem s we have the following form ulations for 

the  bounded domain:

F ind v £ C 2  ( S +) n  C 1 ( 5 + \  x )  satisfying (3.1.4) in S + such th a t

L ( d x )v (x )  =  0, x  £ S +

v(x)  — B +(x ), x  £  d S \

T ( d x ) v ( x )  =  C +(x), x  £  d S 2 i

where B , C  £  .A/pxi are prescribed on d S \  and d.S’2 , respectively. In the  sim ilar 

way we form ulate mixed boundary value problem s for the unbounded domain: 

F ind v £  C 2  (S ~ ) n  C 1 ( 5 _ \  x )  H A* satisfying (3.1.4) in S~  such th a t

v(x)  = B ~ ( x ), x  £  d S  1 ,
(M-)

T { d x ) v { x ) =  C ~(x ) ,  1  6  3 5 2 ,
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where functions B ± (x)  and C ± (x) are prescribed on dS \  and dS ' 2  respectively.

I t would be more convenient for us to  have homogeneous Dirichlet con­

ditions. L ater in th is section we will assume the solutions of the  boundary 

value problem s ( M  f ) and (M ~ )  of the  certain  form such th a t the homogeneous 

Dirichlet conditions will be satisfied autom atically. Here we will follow the pro­

cedure used in [33] to  reduce problem s (M +) and ( M ~ )  to  the  problem s w ith 

sim pler boundary conditions. Let $ (x ) G C 2 (S’"1") fl C 1 ( 5 + ) be the (known) 

solution of a related  Dirichlet problem  for the equation (3.1.4) such th a t  on 

d S  1 its  values coincide w ith B +(x).  Let u{x) = v(x)  — 3>(x). T hen  for the  new 

unknown function u ( x ) we have the following problem:

(M + ) F ind u  G C 2  (S + ) fl C 1 ( 5 + \  \ )  satisfying (3.1.4) in S + such th a t

u(x)  =  0, x  6  d S \ ,  (3.6.1)

T ( d x ) u (x )  = f ( x ) ,  x  e  d S ^, (3.6.2)

where f  = C  — T4> e

Similarly, for the  exterior problem  we have:

(M “ ) F ind  u  £ C 2 (S~)  fl C 1 ( 5 ” \  x )  n  A*  satisfying (3.1.4) in S  such 

th a t

u(x)  =  0, x  € dS\ ,  (3.6.3)

T ( d x ) u (x )  =  q(x),  x  G d S 2 , (3.6.4)

where q £  A4 '2 xi is prescribed on d S 2 - In view of the  asym ptotic behavior of
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the m atrix  r(a:, y) we pose the exterior problem  (A4 ) in A*  to  allow as large 

a set of adm issible m atrix  functions as possible.

T h e o re m  9 Each of  the problems (D +), (D ~ ), (N ~ ), (M +), ( M ~ )  has at 

most  one solution. A n y  two solutions of  ( N +) differ by a (2 x I) -matr ix of  the 

fo rm  (3.1.15).

P ro o f. The proof is conducted using classical techniques [14] by m aking 

use of the  B etti formulae established above. Let us first show the proof for 

the Dirichlet problem  for the bounded domain. We assume th a t  there are two 

solutions of (D +) u ( D ( x)  and u( 2 )(x):

L { d x ) u <A \ x )  =  0, L(d x ) u ( 2 \ x )  =  0,

u ^ ( x )  = P(x ) ,  u^2 \ x )  =  P(x) ,

here by L ( d x ) we denote the  differential operator for (3.1.4) for bo th  tetragonal 

4 and cubic 43m symmetry. Next, we introduce some function w(x)  £  A4 ' 2xl  

such th a t w(x)  = u ^ 1 '1 — u^2\  Obviously, w(x)  solves the  homogeneous Dirichlet 

problem  for L(dx) ,  i.e.

L ( d x ) w ( x ) =  0 in S'-1-

w(x)  =  0 on dS.

Prom B etti form ula (see R em ark 1) we find

/  U ( w , w ) d V  =  0.
Js+
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Since the internal energy U(w,  w) is a positive quadratic  form we conclude th a t

U(w,  w) =  0

and, consequently,

w(x)  =  (c i ,c 2 ) 7 =  c, 

where c G - M 2 x i  and ca are a rb itra ry  constants. Since w(x)  G C 1 ( S  1)

lim w ( x ) = w { y )  =  0 ,
t£S+—>yEdS

or,

lim c =  0 ,
x £ S ' +  — *y £ dS

which is possible only if w(x)  =  0, x  G S +. Thus we obtained th a t  

u( 2 \ x ) .  Using the  same procedure we can prove the  uniqueness of the  solution 

for mixed problem  (M + ). For the case of (N + ) we have

w(x)  = c

and the  boundary condition

T ( d x , n)w(x )  =  0

from which we conclude th a t solutions and u^2 \ x )  can differ by arbi­

tra ry  constant vector c =  (ci, c2 ) 7 . In o ther words, the solution of (3.1.4) for 

the  bounded dom ain w ith Neum ann boundary conditions is determ ined up to  

some a rb itra ry  constant vector c which denotes free body transla tion  in the
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^ -d ire c tio n  and constant electric potential. However, it should be noted  th a t 

in the case of the  Neum ann boundary value problem  shear s tra in  com ponents 

£1 3 ) £23 and com ponents of the electric field E \  and E 2  are uniquely determ ined 

even though the  displacement U3  and the electric po ten tial are not unique.

Solutions u ( x ) of (D~) ,  (N ~ ) ,  (M ~ ) are unique as long as they  are, re­

spectively, in classes A ,  A ,  A  (this will allow us to  use B etti form ula for an

unbounded dom ain).

Now we are in the position to  reduce boundary value problems to  the corre­

sponding integral equations. Since the  single layer po ten tial V  tp(x) and double 

layer po ten tial W(p(x)  solve the  equations (3.1.4) we m ay seek solutions of ( D +) 

and (D ~ ) in the form of extensions {W'-f{x))+ and { W  tp{x))~, respectively, w ith 

<~p £ C 1 ,a(dS) ,  the solutions of (Ar+) and (N ~ )  in the  form of single layer po ten­

tia l w ith  the  density (j> £ C 0 ,a(dS) .  Using the  results of Theorem  8 , D irichlet 

and Neum ann boundary value problem s (for bounded and unbounded domains) 

are now reduced to  the  corresponding singular integral equations:

~ \ Iu V +  [  D(x ,y) ip{y)ds(y) = P(x ) ,  (P + )
1 JdS

[  D(x ,  y)tp(y)ds(y) = R(x )  — u 0, (V~)
1  J d S

\ lw<P+ [  T(dx)T(x,y)<fi(y)ds(y) = Q(x),  (A/'+ )
2 J d S

~ 7;Iu<P+ [  T{dx)T (x ,y) tp(y)ds(y)  = P(x ) ,  (JV~)
4  J d S

for x  £ d S  w ith  unknown density function yxThe vector uq £ A4 2 xi is of the
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form (3.1.15). We denote the  corresponding homogeneous equations by (£\j~), 

(2?0" ) , (A/-+), (W0- ) .

T h e o re m  10 I f  P (x )  £ C 1 ,a(dS) ,  a  £  (0 ,1 ), then any solution p  £  C 0 ,a(dS)  

of  (X)+) belongs to class C^'a {dS).  A  similar result holds for  (T>~) i f  R (x )  £ 

C ^ i d S ) .

P ro o f .  We recall th a t  integral equation (V + ) is 

4 ,. r o , /  /  • n 2

T . R i  f
j=i J 9S

d l n r  f  (i — a A r  
-R— +  I  -------~ ------- *os,.

3 In r
3n,,

(3.6.5)

Introducing complex variables z  = x \  + i x 2  and C =  2/1  +  *2/2 we write

TTT loS (C -  = 7^7  = ( 7TT ln 1C ~ A  +  i ^ - 6  \ dsvds. £ — z  { ds.

thus, we have

J L h \ x - „ \ ds,  = A £ - - i J L l a ] x _ y]. (3.6.6)

On the basis of the relation (3.6.6) we can rew rite the integral operato r of (3.6.5) 

as the sum  of a singular p a rt and a weakly singular p a rt

4 1

5 ]  R i  [Ks +  K w] p{z)  +  - I ulp(z) = P(z) ,  
j = 1

where K sip and K wip are given by 

p ( ( ) d (
K sp  = (  

Jdas z
K w<p

- L
\i — o.j)r“ d \ n r

as \  acrj  
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We conduct the regularization process [54] by applying another singular oper­

ator, say, M  given by

M  — K s +  y / ,

such th a t the  reduced integral equation becomes of Fredholm type

| K SK W + l- ^ K w +  ( y  -  7T2)}  <p(z) = M P ( z ) .

Bearing in m ind results established in Theorem  8 , as in [14], we conclude th a t 

K w m aps C 1 ,a(dS)  into C l 'a {dS).  Since C 1,a( d S ) is invariant under K s [14], 

we obtain  the  required result.

T h e o re m  1 1  The Fredholm Alternative holds for  (T>+ ), (Af~)  and for  (A/’+ ), 

(T>~) in the real dual system (C°’a , C 0,a) , a  € (0 , 1 ), with the bilinear form

((p,ip)= I  ipT 'ip dsy (3.6.7)
J d S

P ro o f .  We denote by T>, J\f the  integral operators from the corresponding 

integral equations. Recalling th a t D ( x , y )  = ( T ( d y ) T ( y , x ) ) T we can w rite for
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any tp, ip £ C °’a (dS)

rp

(V<p,i/>) = f a s [fg s D(x ,y ) i p (y )ds (y )] ip{x)ds(x) =

= Ids [IdS(T (dy)r (ŷ  x))T<p(y)ds(y)]TH x)dsix) =

=  JdS VT  [ / a s  T(d y)T(y ,  x)il>(x)ds(x)] ds{y) =

=

Due to  the  sym m etry of the bilinear form (3.6.7), we have

(Aftp, ip) = (ip,T>rp),

which m eans th a t A f  and V  are m utually  adjoint in the  given dual system . We 

shall now show th a t the  index p [54, 14]

2 n
arg

d e t( \ l wI  — irik(z, z)) 

d e t(^ /a;7 +  nik( z ,  z)) ds

of the equation T>+ w ritten  in term s of complex variables is zero. In our case

4

k(z ,0  = J 2 ( Rj) ( I + (z - 0 k w(z ,0 ) ,
j = 1

consequently, k(z,  z) = ( & )  I  and

det 2 ^ ^  ~~ *7r 5 -/ ^  =  ~  =  0 -

Thus, for V + we find th a t p =  0. Hence we deduce th a t the  Fredholm  A lter­

native holds for the operator T> in the complex dual system  (C 0,a, C 0,a) w ith
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bilinear form (3.6.7), and hence it holds [54] in the real dual system  (C °’“ , C °,a). 

Similarly, we ob tain  corresponding results for T>~ and J\f+.

T h e o re m  12 1. The problem (D q ) has precisely two linearly independent

C ° ’a -solutions.

2. The interior Dirichlet problem (D +) has a unique solution for  any P (x )  G 

C 1,a, a  G ( 0 ,1 ) .  This solution can be represented in the fo rm  o f W p  with 

the density ip G C l 'a (dS) .

3. The exterior Neumann problem (N ~ ) has a unique solution for  any S{x)  G 

C ° ,a(dS) ,  a  G ( 0 ,1 ) ,  i f  and only i f

I  u])Sds =  0, (3.6.8)
JdS

where uo is of  the form (3.1.15). This solution can be represented in the 

fo rm o fV ip  with G C 0 ,a(dS) .

4- The interior Neumann problem (N + ) is soluble for  any Q  G C°'a (dS) ,  

a  G ( 0 ,1 ) ,  i f  and only i f

/  u l Q d s  =  0, (3.6.9)
JdS

where uq is of  the fo rm  (3.1.15). The solution, unique up to a 2 x 1 -

matrix u  o f  the fo rm (3.1.15), can be represented in the fo rm  of  Vip with

the density ip G C 0 ,a(dS) .

5. The exterior Dirichlet problem (D~) has a unique solution R (x )  G C l,a{dS).
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This solution can be represented as the sum of  Wip with the density 

e  C l 'a (dS)  and a particular vector uq of the form (3.1.15).

P ro o f .  The proof of assertions 1, 2, 3, 4 follows the  procedure used in [14]. 

To prove the  assertion 5 let { / “ } and {g13} be system s of linearly independent 

solutions of T>~ and J\f+, respectively. We assume th a t { / “ } and {g/3} are 

biorthonorm alized [34], i.e.

( / “ , / )  =  <w,

where Sa/s is Kronecker’s delta. To satisfy the  condition of solubility

(gp , R - u 0) =  0 

we express uq as a linear com bination of f a

uo = caf a

w ith  coefficients ca in the form

ca = [  (gP)T Rds.
JdS

In th is case we will have

( g P , R - u 0) =  [  gpT (R  -  caf a )ds =  [  (ca -  ca)ds =  0 .
JdS JdS

R e m a rk  13 The conditions (3.6.8), (3.6.9) express zero resultant force and 

charge acting on dS .
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We tu rn  our a tten tio n  now to  the boundary value problem s w ith  mixed 

boundary  conditions. M ixed boundary conditions appear in the  problem s re­

lated  to  the  modeling of cracks in piezoelectric m aterials [39, 56]. Consider first 

the  interior mixed problem  (A4+). We seek the  solution in the form

u(x) = Vip(x) =  [  [r(x, y) -  H ( x ,  y)\ ip{y)ds{y),  (3.6.10)
JdS2

where y> G A4 2xi is some unknown m atrix  density and the m atrix  H ( x ,  y) G 

y d 2 x2 is constructed as follows. Let U\ be a bounded dom ain w ith C,2-boundary 

such th a t

(i) 5 +  C fii (h) d S 2  C fii (hi) d S i  C  d f h .

T he columns of the  m atrix  H ( x , y ) are such th a t

L ( d x ) H ^ a\ x ,  y) =  0, x  e  fix,

H^a\ x , y )  = T^a\ x , y ) ,  x  G dCli.

From  the  existence result for the  interior D irichlet problem, it is clear th a t 

H^a\ x , y )  exist uniquely for each y  G d S 2  in the class C 2 (f t i)  fl C 1 (f2i). In 

fact, for each y, take form of a double layer potential. Suppose th a t the 

unknown density ip from (3.6.10) is of the  class H * ( d S 2) [84], i.e. <p is Holder- 

continuous on d S 2  bu t m ay adm it ’weak singularities’ near th e  endpoints %. 

Proceeding as in [84], using properties of the single layer po ten tial for the an ti­

plane shear s ta te  and the  definition of the m atrix  H ( x , y ) ,  we find th a t u(x)  

from (3.6.10) satisfies the continuity  conditions of the  problem  (A4+ ), equations
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(3.1.4) in S + and the  displacement condition (3.6.1) on d S \ . T he rem aining 

boundary condition (3.6.2) leads to  the  following system  of singular integral 

equations over the  open arc dSV-

-  T (d x )H (x ,y ) ip ( y )ds (y )  = f ( x ) .  (3.6.11)
JdS2

T he first integral on the left-hand side of (3.6.11) m ust be in terpreted  in the 

sense of principal value while the second is a Fredholm  integral. It is clear th a t

ial solution in the space H * ( d S 2 )-

P ro o f .  Let <po G H * ( d S 2 ) be a solution of (3.6.11)°. T hen Vipo(x) from (3.6.10)

x  G S +. The continuity  of a single layer po ten tial (Theorem  8) gives th a t 

Vipa(x) =  0, x  G d S .  Furtherm ore, using the boundary value of H ( x , y ) ,  

Vpo(x )  =  0, x  G <901 . Hence Vpo  =  0 on the  boundary of the bounded 

dom ain Oi \  S +. By the uniqueness result for the interior D irichlet problem, 

Vipo(x) =  0, 'X G O; \  ,S'+ so th a t the  jum p relations arising from the application 

of the T -operator to  a  single layer po ten tial yield

u{x)  from (3.6.10) will be the  unique solution of (A4+ ) provided (3.6.11) yields

a solution tp G H * ( d S 2 ) for sufficiently sm ooth boundary d a ta  / .

L e m m a  14 The homogeneous system (3.6.11)° f rom  (3.6.11) has only the triv-

solves the homogeneous problem  (A4+ )°. Theorem  2 now yields Vpo(x )  =  0,

(TVip0)+ -  (T Vpo )  =<Po = 0 on d S 2
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which completes the proof.

In [84], Vekua developed a theory  of solvability for systems of singular inte­

gral equations w ith  discontinuous coefficients. To see th a t th is theory  applies 

to  our system, we rew rite (3.6.11) as a system  w ith  discontinuous coefficients 

over the closed curve dS.  For x  £  dS^

where £ =  y\  +  iy% £  d S 2 , z  = x i +  i x 2 £ is a Fredholm  kernel.

Now we can rew rite (3.6.11) in the form

d£ +  [  fc (z ,£M £)d£
J d S 2

rf£ +  [  c ( z , t ) ' p ( O d t  = f ( z ) ,
JdS

z  £  dS,  (3.6.12)

or

where

K ( z ,  £) =  B (z ,  £) +  7u (£  -  z)C(z ,  £), z £ dS,

A(z )  =

0 2  or £ £ d S i
C ( z , 0 = {

k (z > £) -  [T(<9x)r(x, 2/)] (2 , £) , 2  or £ £ <9S2,
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It is clear th a t  A  and K  are Holder continuous everywhere on d S  except perhaps 

a t the points of x  where they have discontinuities of the  first kind [84].

L e m m a  15 The Fredholm alternative holds for  the system  (3.6.12) and its ad­

jo int  or associated sys tem in the space H*(dS) .

P ro o f .  According to  Vekua [84] N oether’s theorem s are valid for the  system

(3.6.12). Furtherm ore, proceeding as in [14], calculation shows th a t the  index of 

the singular integral operator from (3.6.12) is zero so th a t N oether’s theorem s 

reduce to  Fredholm  theorem s. Finally, the endpoints a and h are shown to 

be ’’special” [84] so th a t any solution of equation (3.6.12) w ith  g £ H * ( d S ) is 

necessarily of the same class [84].

T h e o re m  16 The mixed problem (A t+ ) is uniquely solvable for  any f  £ H*(dS' 2 ) 

The solution is given by (3.6.10) with £ H*{dSf)  obtained from the system

(3.6.11).

P ro o f .  Using Lemma 14, we see th a t  the  homogeneous system  (3.6.12)° has 

only the  triv ial solution in H* (dS) .  Hence, since Fredholm theorem s apply (by 

Lem m a 15), the associated homogeneous system  has also only the triv ia l solu­

tion  in H * ( d S ) and (3.6.12) is uniquely solvable in H * ( d S ) for any g £  H* (dS) .
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This means th a t  the system  (3.6.11) is uniquely solvable in H * ( d S 2 ) whenever 

the boundary d a ta  /  G H*{ dS 2 ). Consequently, the unique (by Theorem  9) 

solution of (.M + ) w ith  /  G H*{ dS 2 ) is given by (3.6.10) w ith p  G H * ( d S 2 ) 

obtained from the  system  (3.6.11).

In case of the exterior mixed problem, the  asym ptotic behavior of the  m atrix  

T(x, y) requires th a t  we seek the  solution in the  form [6 8 ]

u(x)  =  VEp(x )  =  [  [r(z , y) -  M O0{ x ) J : T  -  ^ ( x ,  y)] p(y )ds(y) ,  (3.6.13)
JdS2

where p  G M-zxi  is unknown density function and M °°  G -M2 x2 is given by 

=  M % [ x )  = 2at £  £  ( - l ) j d . B ^ a 4̂  Inr,
j = 1 7,5=1

where r  =  |x |. T he m atrix  J~ l is given by

/  \
1 0

1 ° V
It can be verified th a t L M °°  =  0 in R 2  \  {0}. The m atrix  ^  =  \k(a:,y)  is 

constructed  using a procedure sim ilar to  th a t  used to  construct the m atrix  H  

for ( M +). T h a t is, let !22 be an  infinite dom ain w ith  closed ^ -b o u n d a ry  <9122 

such th a t

(i) S~  C 0 , 2  (ii) d S 2  C 122 (hi) 9 S \  C 3122 (iv) {0} ^  1 2 2-

The columns \E<̂ a \ x , y )  are such that

L { d x ) ^ a\ x ,  y) — 0, x  G H2 ,

* (a) ( s , y )  =  £ ( “ ) (* ,  y ) ,  x  g 9 1 2 2,
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where £ A i 2 x 2  is given by Q^a\ x ,  y)  =  T(x, y) — M°°{x)JrT. T he existence 

result for the  exterior D irichlet problem  guarantees th a t columns ^ ^ a\ x , y )  

exist uniquely for each y  £  d S 2  in the class C 2 (Cl2) H fl A*.  In  fact, for

each y, (x, y) take the  form of the  sum  of an  double layer po ten tial and a 

m atrix  of the  form (3.1.15).

The fact th a t  w ith  ip £ H * ( d S 2), u  from (3.6.13) satisfies the  continuity 

conditions of the  problem  ( M ~ ) ,  equations (3.1.4) in S~  and the  displacement 

condition (3.6.3) on d S \  follows as in the  case of (A4+ ) using the properties of 

M °°  and T  described above and the smoothness properties of the single layer 

po ten tial (Section 3.5). T he fact th a t  u(x)  = V ^ p (x )  £ A*  follows from the 

fact th a t, as \x\ —> oo [15],

[  [T(x, y) -  M ° ° { x ) F T]ip(y)ds(y) =
J d S 2

=  M °°(x) [  F T <p(y)ds(y) + u 0 -  M°° (x )  [  f Tp(y)ds(y)  = u 0  £  A.  
J d S 2 J d S 2

Also,

[  ^ ( x , y ) i p ( y ) d s ( y ) =  [  ^ a\ x , y ) i p a (y)ds(y)  £  A *,
J d S 2 J d S 2

since, as noted above, \I>(Q)(;r, y) £ A* for each y. Hence, u{x) = Ve p {x ) £ A*.  

As in the case of the  problem  (Ad+), the  rem aining boundary condition (3.6.4) 

leads to  the  following system  of singular integral equations over the  open arc 

d S 2:

f T(dx)T(x ,y)<p{y)ds{y)-  
Z  J d s 2
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-  T(dx)['£>(x,y) + M oc(x)J:T}(p(y)ds(y) = q(x),  x  £  d S 2. (3.6.14)
JdS2

Consequently, u ( x ) from (3.6.13) will be the unique solution of { M ~ )  provided 

(3.6.14) yields a solution G H * ( d S 2) whenever q G H * (d S 2).

L e m m a  17 The homogeneous system (3.6.14)° f rom  (3.6.14) has only the triv­

ial solution in the space H * ( d S 2).

P ro o f .  Let <po G H * ( d S 2) be a solution of (3.6.14)°. Then VEip(x) from

(3.6.13) solves the  homogeneous problem  Theorem  9 now yields V e T o ( x ) 

0, x  G S~ .  Proceeding as in the proof of Lemma 14, we find th a t Ve<Po{x) =  0, 

x  G Cl2  \  S~  so th a t

(TVEipo)+ -  (T V Eipo)~ =  (fio =  0 on d S 2,

which completes the proof.

T h e o re m  18 The mixed problem ( M ~ )  is uniquely solvable for  any q G H * (d S 2) 

The solution is given by (3.6.13) with y> G H * ( d S 2) obtained from the system

(3.6.14).

P ro o f .  The system  (3.6.14) is sim ilar to  the  system  (3.6.11). Following 

the  steps leading to  the  system  (3.6.12), we can rew rite (3.6.14) as a system  

w ith  discontinuous coefficients over the closed curve OS. As in the proof of 

Lemma 15, the index of the resulting system  over d S  is shown to  be zero and 

the  end points a and b to  be special [84], Vekua’s theory again shows th a t
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N oether’s theorem s reduce to  the  Fredholm  alternative in the  space H*(dS) .  

Using Lem m a 6  and the  Fredholm  alternative, the  associated homogeneous 

system  has only the triv ial solution in H*(dS) .  Hence, the system  (3.6.14) is 

uniquely (Theorem  9) solvable in H * ( d S ) for any q  E  H * ( d S 2 ) and this solution 

is given by (3.6.13) w ith  ip E H * ( d S 2)-

Thus, in th is chapter we investigated problem  of sta tic  equilibrium  of a 

prism atic piezoelectric body for different types of boundary conditions. We 

established the  uniqueness and existence of the solutions and found analytical 

solutions in the form of single and double layer potentials.
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Chapter 4

Steady-state vibrations in the  

case of generalized  

plane-strain piezoelectricity

For the piezoelectric applications the  problem s of steady s ta te  vibrations, i.e. 

when all the transien t considerations can be ignored, are of great interest [1 2 , 

79]. In  this chapter we look a t the problem s of steady-sta te  vibrations for a 

more general class of deform ation, namely, generalized plane strain . Using the 

boundary integral equation m ethod we investigate uniqueness and existence of 

the solutions for b o th  bounded and unbounded domains. For the  case of an 

unbounded dom ain we will derive rad ia tion  conditions, or so-called Sommerfeld 

conditions, to  guarantee the  uniqueness of the  solution. As the solution is not
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unique for the case of a bounded dom ain we consider only the solubility of the 

problem s for different frequencies.

4.1 Governing equations for th e generalized plane 

strain sta te  in linear p iezoelectricity

Suppose, the  cylindrical body $7 is subjected to  the stress and electric field on 

its lateral surface lying in the plane perpendicular to  the axis of the cylinder, 

as shown in the  Figure 4.1.

F igure 4.1: Piezoelectric cylinder in the generalized plane s tra in  s ta te
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In the s ta te  of generalized plane stra in  the  displacement vector com ponents 

and electric po ten tial are assum ed in the  form [27, 37]:

Ui = U i ( x i , X 2 , t) ,  <j> =  4>(xi, x 2, t).

T he equations of m otion and charge equation in the  case of plane piezoelectricity 

are given by [27]:

C iakB 'U 'k,otB  €-l/iCt4* ,VOL   P U i -  f i ,
(4.1.1)

C7 icWi,7a 4“ =

Here we note th a t in the charge equation there are no term s containing

derivatives w ith  respect to  tim e due to  the quasi-static approxim ation. So, as in

[29], we conclude th a t tim e in the electric po ten tial <f>(x) is ju s t a param eter, the

consequence of a tim e-dependent displacement field. The boundary conditions

are specified sim ilarly as in the  case of anti-plane shear. Thus we have

{{CiotkfiUkfi T  =  t  ̂ ( x ) ,
(4.1.2)

— (e7 jQu 7  -  ea0 <t>,0 )na =  D * ( x ) on dS,  

in the case of the Neum ann problem , and

Ui(x) = u*(x),
(4.1.3)

<f>(x) = <fi*(x) on dS,

in the  case of the Dirichlet problem. Here 4>* are prescribed functions

on dS .  We assume th a t the vector F  =  ( / i ,  f i ,  i'3 , q)T of external force and 

charge is a periodic function of tim e, i.e.

F  =  F ^  costot +  F ^  sinw t,
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where u ,  the  frequency of oscillation, is real num ber. Then it is na tu ra l to  

expect the  displacem ent com ponents and electric potential to  be of the form

U i ( x , t )  =  Re ( u i ( x ) e ~ lult) ,  U i ( x )  =  u-^(x) +  i u \ 2\ x ) ,

<j>(x,t) =  R e(^ (x )e_*‘Jt), <f>(x) = <f>^(x) +  i<jft\x),  x  = ( x i , X 2 )-

(4.1.4)

Substitu tion  of (4.1.4) into (4.1.1) gives

C'iak(3'UJk )a@ "h T P ^  O5

(4.1.5)

^7 tQ^i,7 Q: +  €a/3&,ocf3 b.

Equations (4.1.5) represent the governing system  of equations describing steady- 

s ta te  vibrations in the context of (generalized) plane stra in  s ta te  in the theory 

of linear piezoelectricity. We will consider first the hexagonal piezoelectric m a­

terial as in this case the  analysis is simpler. In the  particu lar case of a hexagonal 

m aterial (6 m m )  the system  (4.1.5) becomes

C „ ^  + CM̂ + ( C „ - C i 6) ^ ; + ^ V  -  0, 

( C u - c M)!f e  + c 11̂ + c « ^  + ^ « 2 = 0,

C44AU3 +  ei5  A 0 +  p u j 2U z  =  0,

e i5 A u 3 — eAcp =  0 ,

where

C ii =  C u n ,  C44 =  C3131 =  C3232,

C 66 =  C1212 =  C 122I =  C2112 =  C 212I,

eis =  ^231 =  ei32, e =  e n  =  £2 2 -
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We see th a t  system  (4.1.6) consists of a purely elastic p a r t w ith  respect to 

the  in-plane displacement com ponents u\  and U2  and a second p art describing 

piezoelectric coupling between the out-of-plane displacement com ponent it,3 and 

the  electric po ten tial 0. This means we can decouple the system  (4.1.6) and 

examine each p a rt separately. In fact, using simple transform ations the first 

two equations of (4.1.6) can be w ritten  in a form sim ilar to  th a t  describing the 

equations for s teady-sta te  vibrations of a classical isotropic elastic medium:

(C n  -  C ^ g r a d  div u(x)  + C§§/ \u(x)  +  poj2 u(x)  =  0, (4-1-7)

where u{x) = {u\ (x) ,  U2 (x) )T . The equations of steady-sta te  vibrations (4.1.7) 

can be also w ritten  in the form

L6mm(dx )u ix ) = 0,
where L^rnrn(dx)  is differential operator given by

C 'll^l +  CWl2 +  P^ 2  ~ ( C i i  -  C66)£l£2 

— (C ll -  C66)£l£2 C ll^ l +  ^66^1 +  pco2

J6mm(dx) = (4.1.8)

The first two boundary conditions from (4.1.2) which accom pany equations 

(4.1.7), for the particu lar case of a transversely isotropic m aterial, can also be 

w ritten  in a form sim ilar to  th a t  of classical isotropic elasticity:

2 ( 7 * 6 6 +  n  ■ (C n  -  2C66)V • u(x)  +  C m n  x (V x u(x)) = t*(x),  (4.1.9)

or

T ( d x ,  n)u(x)  = t*(x),
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where

T ( d x , n ) = (4.1.10)
Clli lTli  +  C66^2«2 —(C ll -  C,66)^2«l

— (C ll — C66)Cln 2 Cii£2«2 +  Cqq^iUi 

Here n  = ( n \ ( x ) , n 2 {x))T is an  outw ard norm al to  the boundary  d S .  The

rem aining p art of (4.1.6), simply reduces to  the  Helmholtz equation for the

displacem ent us(x)  and Poisson’s equation for electric potential <f>(x):

A u 3 (x) + k 2 u 3 (x) =  0,

A 4>(x) = f ,

(4.1.11)

where

k 2  =
epu) eis pu>

I T ’ f  =  — TT2-U3W -C446 + efg CC44 T 645

Let us now consider the  equations of steady s ta te  vibrations (4.1.5) for the

m aterials w ith  te tragonal 4 sym m etry:

Cn̂  + Cl6( ^  + 2d ^ k ~ ^ )+Cl2̂ +2C66d § +  =  0,

~  2  ~  ^ ) + 2 C 6 6 & ^ ^ +  c i 2 ^ f +  Cn ^ f +  p v 2 u 2  =  0, 

C44( ^ f  + I ? )  + eis(f4  “  §4  ̂+ 2ei49^ fe  + pu;2u3 = ° ’

(4.1.12)

We also note th a t  equations (4.1.12) decouple into two system s which can be 

studied separately. So, we w rite the equations using the differential operator L:

L  i$ [dx )  0

0 L 2> g(dx)

m d x )  =
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where Ly ^f dx)  is given by

L h i (dx) =

CnH + 2Ci6̂ 1̂ 2 + Cl2̂ 2 + P 2̂ Cl6̂ 1 + 2(766̂ 1̂ 2 — Cl6̂ 2

Cl6 l̂ + 2(766̂ 1̂ 2 -  1̂6̂ 2 Cl2Cl ~ 2Ci6 l̂^2 + Cll^I + P^
(4.1.13)

and L 2  i ( d x ) is given by

(744(?i +  £2) +  P̂ 2 e i5(£i -  £2) +  2eu^i^2

-ei5(£i _  £2) “  2 e i4£i£2 ^(^1+^2)
(4.1.14)

L 2 i ( d x )  =

R e m a rk  19 L e tu (x )  denote avec toru (x )  = (ui (x) ,  U2 (x), u 3 (x), f>(x))T . S im ­

ilarly as in the Section 3.1 it can be shown that the following assertions are valid. 

Let S + = S + U dS .

1. For u, v  G C 2 (S)  D C l (S)  (7 -M4 Xi the following equality holds

I  [vT L u  — u TLv] d A  =  I  [v t T u  — u t T v ] ds. (4.1.15)
JS+ JdS

Here L  = L ( d x ) is a differential operator for  equations (4-1.6) or (4-1.12), 

T  =  T ( d x )  is a ’’stress”-operator for  the boundary value problems with 

Neumann-type boundary conditions, defined by (4-1.2).

2. The internal energy density U (u , u ) fo r  the case of  transversely isotropic 

material  6m m ,  given by

Tr, \ C m ,  . 2 . C n  2 Cm
U(U,U) — - ^ - (U i t2 + U2tl) +  -^ ~ (« 1 ,1  +  U2,2) ----- 2“  ̂ 1,1^2,2 +
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is a positive quadratic fo rm i f  and only i f

C n.C eo , ^44, e >  0.

The internal energy density U{u, u) in the case of  tetragonal 4 symmetry,  

written in terms of  strain tensor components +  uj,i) and

electric field components E a

U(u, u)  =  - C n ( £ n  +  £2 2 ) +  2 C i6^ ii£ i2 +  C i2 £ n £ 2 2  +

— 2 C i6 £2 2 £ 12 +  2 C4 4 (ef 3  +  £2 3 ) +  

is a positive quadratic fo rm  i f  the matrix

( \
C n 2 C i 6 Cl2 0 0 0 0

2C16 c 6 6 —2 C 1 6 0 0 0 0

C 1 2 —2 C16 C n 0 0 0 0

0 0 0 2 C 4 4 0 0 0

0 0 0 0 2 C4 4 0 0

0 0 0 0 0 5e 0

0 0 0 0 0 0 h  j

is positive definite. This condition will also guarantee the ellipticity of  

equations (4.1.6) and equations (4.1.12).

In  addition, we have that:
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3. U (u , u) =  0 i f  and only if

u i  =  a x 2  + ci,

U2  = - a x  i +  C2 ,
(4.1.16)

u3 = c3,

<t> =  c4,

where a, Cj, j  =  1 ,2 ,3 ,4  are arbitrary constants. These represent the most  

general form of  the rigid displacement and the constant electric potential.

4.2 R adiation  conditions and uniqueness theorem

For vibrations problem s involving an infinite dom ain we need to  establish so- 

called ’rad ia tion  conditions’ which prescribe the  behavior of the  various field 

quantities at infinity. These conditions are required to  establish the  necessary 

uniqueness results for the  corresponding boundary  value problems. As a result 

of the decomposition of the system  (4.1.6), we can again consider the various 

com ponents of the solution vector (u i, 112, M3 , <j>) separately. Firstly, since 11,3 (x) 

satisfies the plane Helmholtz equation, the rad ia tion  condition, or so-called 

Sommerfeld condition, assumes the  form [81]

u3(x) =  O  , fim -  i k u 3 (x )^  =  0. (4.2.1)

For the  electric po ten tial we can simply assum e th a t  4>{x) is bounded in 

the  region S ~  =  M2\S ’. To derive rad ia tion  conditions of the  solution of the 

system  (4.1.9) we follow the procedure for the  decom position of the  solution as
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in [32]. T h a t is, we represent the  vector u(x)  as a sum of its po ten tial u^p\ x )  

and solenoidal u ^  (x) components:

u(p\ x )  =  - - i g r a d  div u(x) ,  u^s\ x )  =  -^ g ra d  div u ( x ) +  u(x)

which therefore satisfy the following equations

AuW fa:) +  k \ u ^ \ x )  =  0,

(4.2.2)
V x u(p\ x )  =  0,

A u ^  (x) + k 2 u ^  (x) =  0,

V • (x) =  0.

Thus for v,(p\ x ) and u^s\ x )  we have the following estim ates

u^p\ x )  = O ( - i= ')  , lim y/r \ ^ U ^  — ik\u^p\ x )  ) =  0, (4.2.3a)
V v r  /  r^ °°  \  u'r )

u (s)(x) =  O ( ^ j  , -  **W s>(x)j =  0, (4.2.3b)

where

kl =  7T-> kl = r =  V (xi -  y\)2 + (x2 -  2/2)2W i t>66

for ( x \ , X 2 ) G S~ ,  (2 /1 , 2/2) £ dS .  We note here th a t  k 2, k \  and k \  are positive 

(see R em ark 19).

Let R  be the cylindrical coordinate of the point x  — ( x i , X 2) G S ~ ,  Rq G 

^ d 2 xi be the  unit vector of the  radius vector of x.  Following the procedure 

used in [32] it can be shown th a t:
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If u  =  G C 2(5  ) r C 1(S  ) such th a t it satisfies (4.1.7) in S' and

conditions (4.2.3a) and (4.2.3b) then  the following estim ates are true

d « ( p ) ( x )  _  d u ( p ) ( x )  O R  . q ( t> - 3 / 2 \  
d x a d R  d x Q V

d u ( 3~>(x) _  d u M ( x )  OR . q ,  p - 3 / 2 -' 
3xa 9K 9xa 1 h

^ ^ - t f c i u ( p ) ( x )  =  0 ( R ~ 3/ 2).

(4.2.4)

(4.2.5)

(4.2.6)

(4.2.7)

=  o (r ~v 2),

V • u(p)(a:) — ik \Ro  ■ u^p\ x )  =  0 ( R ~3/ 2),

V x u(s\ x )  — i k 2 Ro x u(s)(x) =  0 (f?~ 3/ 2),

r« (P )(x ) - i C n ^ u W ^ )  =  o ( i ? - 3/2), 

Tu^s\ x ) - i C m k 2 u ^ \ x )  = 0 { R ~ 3/2), 

uW • =  0 ( R ~ 2), u (s) ■ v W  = 0 ( R ~ 2). (4.2.8)

We can now prove the  following result concerning the  uniqueness of the  solution 

for the corresponding exterior Dirichlet and N eum ann-type boundary value 

problem s for the theory  of generalized plane s tra in  of a linear piezoelectric 

medium:

T h e o re m  20 I f u  G C 2 (S~)  D C 1 (S~)  such that u satisfies (4.1.7) in S ~ , con­

ditions (4.2.3a) and (4.2.36) and either of  the homogeneous boundary conditions

1) u(x) =  0 on d S  (Dirichlet Problem),

2) T u ( x ) =  0 on d S  (Neumann Problem),  

then u is identically zero.
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P ro o f .  We apply (4.1.15) in the  dom ain C r  D S ~ ,  where Cr  is a  circle of 

sufficiently large radius R,  to  the  solution u  and u,  the complex conjugate of u  

and then  consider the  lim it when R  —> oo:

f (uT L u  —  u T L u ) d A  =  I  (u t T u  —  u TT u ) d s  — J (u t T u  — u T T u ) d s .
J C R n S -  JdCR JdS

Integrals over S ~  and d S  vanish since u  solves (4.1.7) and satisfies one of the

homogeneous boundary conditions. As for the  integral over 8 C r  we apply the

procedure used in [34] and estim ates (4.2.4)-(4.2.8) to  ob tain  th a t  as R  —» oo

[  (u t T u  — u T T u ) d s  =  2 i k \ C u  f  \ u ^ \ 2d s +
JdCR JdCR

+ 2 i k 2C m  [  \ u ^ \ 2d s  +  2 i ( k 1C u  + k 2C m ) [  R e(u (p)u (s))ds =  0. (4.2.9)
JacR JdcR

Since k i , k 2  > 0, w ith  the help of Rellich’s lem m a [73] we conclude th a t =  0 

and u (*) = 0  which com pletes the proof.

Using standard  m ethods [14], Theorem  20 can now be used to  establish 

th a t under the conditions of Theorem  20, any solution of either the  Dirichlet 

or N eum ann problem  for the  system  (4.1.7), and hence for the system  (4.1.6), 

is necessarily unique.

4.3 Fundam ental and singular solutions

T he fundam ental solutions of the  governing equations are required for the  appli­

cation of the boundary integral m ethod which is used later to  establish  results 

on existence of solution. F irst, we find the m atrix  of fundam ental solutions for
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the  equations (4.1.6) describing steady-sta te  vibrations for m aterial w ith  hexag­

onal sym m etry 6m m .  U tilizing the decomposition of the  system  (4.1.6) we note 

th a t  the  fundam ental solutions of the  two-dimensional Laplace and Helmholtz 

operators, together w ith  the representation formulae and smoothness properties 

of the  solutions of the  corresponding differential equations are well-documented 

and can be found, for example, in [81, 86]. For the operator L(d x)  appearing 

in (4.1.7), the G alerkin representation of the solution of the system

L(d x )u{x )  =  — 5{x — y),  (4.3.1)

where L ( d x ) is given by (4.1.8), produces the m atrix  of fundam ental solutions 

in the form

T(x, y ) =  L*(dx)i()(x, y). (4.3.2)

Here L*(dx)  is transposed m atrix  of cofactors of L (d x)  and i/>(x, y) is the func­

tion  which solves the  equation

L(dx)L*(dx) ip(x ,  y) =  det L(dx) tp(x,  y) =  — 5{x — y).  (4.3.3)

In  our case

2 2
det L  =  C 'nC 66(A  +  ~ —)(A  +  ^ —) =  C n C ^ A  +  k \ ) (  A  +  k%)

L n  C-66

and ip(x,y)  is found to  be

^  =  4c ^ F 4 ) (" “‘, ( b r )  “  < ) { h i r ) y
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Here is Hankel function of the  first kind of order zero [1]. We need to  

examine the  behavior of m atrices T(x, y) and D(x ,  y ) when r  —> 0 in order to 

establish boundary properties of integral potentials which we will consider later. 

From [1] we have the expansion for H o ' \ k ar) for r —> 0

H o \ k ar) =  1 +  — ln ^  +  — (1 -  j k 2 ar 2 )\-nkar .
7T  2 7T  4

Hence, as r  —► 0, the function y) takes the  form

^  v) =  4C „C be(t; -  kl) {  f ln |  +  S  ^ ln hir ~ ^ ^  '

By application of L*(d x ) to  the  function ip(x, y)  we obtain  elem ents of the 

m atrix  r ( x ,  y) as x  approaches y:

r n ( x , y )  = ( Z c n c Z )  (k 2 ^ k 2 r  -  k \  l n k\ r )  +  ±  ( {% 6vf  +  ( +

+ f n, f n eC2(R2),

r 22(x ,y )  =  (^2 ln k 2 T ~  k \  ln k\ r )  +  ^  )  +

+  f 22, f 22 <E C 2(E 2),

ri2(*,y) = r21(x,y) = ^ 6e)(xi ~ Vl)i2X2 ~ m) + f 12l f 12 e c 2(m2).
47 r C n G 66  r z

Together w ith  the  m atrix  of fundam ental solutions T(x, y) we consider the  m a­

trix  of singular solutions D ( x , y )  = ( T ( d y , n ) T ( x , y ) ) r  w ith  com ponents (as
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x —> y)  given by

D n ( x , y )

D \ 2 {?,y)

D 2 1  (x ,y )

+

+

d  1 f  ( C f i f i  ^ ' n  ) n i n 2 1 2 n 2 ( C n n 2 + C 667i | )
0 s ( j / )  V  ^ C e e C n  4 7 r C u  “ t

2 n ir i2 (C1! 1 n f + 0 6 6 t i | ) , n i n 2 (C 6 6 - C i l ) 2 (» i - 7 i | )  N ,
47vC qq A'kC w C qq J

a 1 /  -4n^n|(Cg6+C12i)-2CnC66(rtf+ra )̂2\
3 n ( y )  m r  V  47t C 66 C i i  J  • + ■

d  ( ( x i —y \)2 7 1 1 7 1 2 ( 0 6 6 - O n )  . ( a ^ 2  — £ / 2 )2 T t i n 2 ( C a 6 — C n j ' N  1 
as(y) y r2  477(7x1 7̂  47rCg6 )

. d  ( x i - y i ) ( x 2- y 2 )  ( (Cnwi+Csenl) _  (Cnrtf+C66»|) ,
d s ( y )  47r C n  47r C ' g g

+ 711712(066
4ttCi

ds (y )
1 /  (C2̂ Cfift)n2Wl 2ti2tii 712 (Oi 1 066)   2n2n2 (On (766) >
m r   ̂ 47rC66Cn ~ 47rC66 47rCn +

(<766-C'ii)(C66n^+(7ii7i2)(7i^-7i2) , 
477066(71! ' +

a 1 _ „ /  ((766-C’l 1)(C66n2 +Ci 17t2)2nin2 _  (O?, -CgB)n2ni
d n ( y )  y  4 7 7 C 6 6 C 1 1  4 7 7 C 6 6 C 1 1

)» l " 2 ( C l l - g 6 6 ) ( 2 n 2 - l )  _  r a i 7i 2 ( C ' l l - C ,66 ) ( 2 n 2 - l )  .
4 7 7 C n  477<766 '

a  (xi—yi)(x2 ~y2 ) f  711712  ( O i l - 0 6 6 )  _  71 1 7 1 2  ( C l l - C ^ )  _  

ds(y) r 2 y 477C66 477Ch

(C l l- (7 66)2ni7t2 \  d { X l - y i ) 2 ( " 1 712 (O n  ~ C 66)2 A I
477066 0 n  )  ds(y) r 5 ^  477066 J

■ ^ ( ^ g n - C 6 6 ) - |  +  ^ i 2 )  ^ 1 2 e C l ( E 2 ) ;

_ a 1 / ' ( C ' f i f i - C ? l ) 7 l 2  I 2 7 t2 711712 ( O n — Q 6 6 )  2 7 1 ^ ( 0 1 1 - 0 6 6 ) .

9 s ( y )  111 f  ^  4 7 7 C 6 6 C 1 1  4 7 7 C 1 1  4 7 7 C 6 6

, ( 0 6 6 - 0 n ) ( 0 6 6 7 l2+ 0 n 7 l | ) ( n | - 7 l f )  \  ,
^  4 7 7 0 6 6  O n  )  ^

I a  1 A C ,6 6 - C ll l ) ( 0 6 6 7 I 2 + 0 l l 7 1 ^ ) 2 7 1 l 7 1 2  ( O 2 ! - Q 2 f i ) 7 t 2 711

dn(y) y  477C 6 6 O 11 477O 6 6 O 11

_  7 1 1 712 (O il — 0 6 6  )  (2 n 2 — 1) _  711 712 (O il C q q  )  ( 2 t i 2  1) \

4 7 7 0 u  477C 66  J

, a (xi-yi)(x2 -V2 ) ( 711712 ( 0 l l - 0 6 6 )  _  7 1 l 7 1 2 ( 0 l l - 0 6 6 )

' ds\y) r 2 ^  477O 11 477066

. ( 0 n - 0 66 )27ti7i2 \  _  d (xi-yi)2 ( T i^ O ii-O e e )  A ,
477C 6 6 O 11 J ds(y) r 3 ^  4 7 7 0 6 6  J

^ t o a ) !  + D 2U D 2 i G C 1 (R2),ds (y )  r*
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y) =  In r

, 2nf (Cnn^+C66nf) , nin2 (C6 6 -C n )2 (n^-nl)\  ,
“T 4ttC66 47rC11C66 ^

g  1 /  ^w1 w2 (<̂ 6 6 + (̂ ll l  ) 2 6 ’l lC’66 (?<-( V ui))2 )  I
+  dn(y )  m r \  4nC66C n  J  +

I d  (  ( % 1 - y i ) 2 n i n 2 (Cgg—C n )  _  (X2 —I/2 ) 2  m » 2  (£-66—C l l ) \  I
ds (y )  y  47tC66 r2 47r C n  y

I 5  ( a : i - j / l ) ( x 2 - j /2 )  /  ( ^ 1 1 ^ 2 + ^ 6 6 ^ 1 ) _  ( ^ 1 1 ^ 1 + ^ 6 6 ^ )  I
d s (y )  y  471(766 4 ttC i i

(^66= g ^ ) + JD22, D ^ e C y M 2).47t(7ii

We also need to  consider the behavior of m atrices F (x ,y )  and D ( x , y )  when 

r —> 0 0  which will be used to  establish a representation  theorem . So we note 

here th a t for the  m atrix  of fundam ental solutions r(a;, y) we can sim ilarly define 

po ten tial and solenoidal com ponents Tp(x, y)  and rs(x, y) whose columns satisfy 

conditions sim ilar to  (4.2.3a) and (4.2.3b) and which have representation sim ilar 

to  th a t  used in [34]. T h a t is:

rp = Mhpi (A + k22)r(x ,y) = ^ ! (A + k22)L*(dx)^ = ^ § l ( A  + k22^ ,

=  ^ | ( A  +  fcf)r(x,?/) =  ^ ^ { A  + k 1 ) L * ( d x ) ^ =  +

Thus we will have

L ' ( d x ) H ^ \ k i r )  _  L - ( d x ) H ^ ( h T )
K ' V) i C u C m i k l  -  it?)' M  ’"  ~  4C„C66(t? -  *?)'

For r  —> oo we have the  following approxim ation for HgVj(kr)  [1]

H ^ ( k r )  = \ — ex p ikr + . . . .  (4.3.4)
V 7T r

Using (4.3.4) it can be shown th a t conditions sim ilar to  (4.2.4)-(4.2.8) are valid 

for the columns of the m atrices rp(:r,y) and Ts (:r,y). T he m ethod used in
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Section 4.3 to  find fundam ental solutions can not be applied to  system  (4.1.12) 

as the roots of the  characteristic equation for the differential operator L' f idx)  

describing governing equations (4.1.12) are not easily found. However, it is 

possible to  establish the behavior of fundam ental solutions near the boundary. 

We will call m atrices T a (x,y,u>) £  M . 2 % 2  satisfying the equation

L a ( d x ) r a (x, y,u>) =  - S ( x  -  y ) I  (4.3.5)

the  m atrices of fundam ental solutions for operators L a {dx).  By S(x — y) we 

denote the  Dirac d istribution. Applying to  (4.3.5) Fourier t r a n s f o r m a t i o n ^ ^  

we obtain

[ l a ( 0 ] f  “ (£,<*;) =  / ,

or, equivalently,

f “ K ' “ ) = d < « ■ «

where f Q(£,u;) =  ,Fx^ £ [ r a (x, y,u>)\. From  (4.3.6) it follows now th a t

Ta { x , y , u ) = F i - -ad j(L Q(£))
det £<*(£)

In [58] two-dim ensional steady-sta te  oscillation problem s of anisotropic elastic­

ity  are investigated for the m ost general case of anisotropic m aterial. Since the 

system  described by the differential operator (4.1.13) is a p articu lar case of the 

equations considered in [58], the results on properties of fundam ental solutions 

from [58] are applied immediately. The equations defined by (4.1.14) have es­

sentially the  same properties as (4.1.13) so we can expect th a t  bo th  m atrices
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(4.3.7)

of fundam ental solutions Ta (x,y,u>) possess the  following properties 

T $ { x , y , u )  =  0(lrL |a: — y|),

£ ^ r {̂ ( x , y , u j )  =  0 { \ x - y \ \ K\), |k| >  1.

T he m atrix  T(x ,y ,u))  £  M aya of fundam ental solutions for (4.1.12) for the

p articu lar case of m aterials w ith  te tragonal 4 sym m etry can be w ritten  in the

form

T l ( x , y , w )  0

0 T 2(x ,y ,w )

Together w ith  the m atrix  of fundam ental solutions T(x, y, u>) we consider the 

m atrix  of singular solutions

r  ( x , y , u )  =

D(x ,  y, n ) =  (T(dy ,  n ) T ( y , x, lu)) t . (4.3.8)

4.4 R epresentation  theorem s

Here, sim ilarly as in Sections 3.3, 3.4, we form ulate representation theorem s 

th a t will be used la ter to  establish properties of the single and the  double layer 

potentials in the case of steady-sta te  vibrations.

T h e o re m  21 I f  u £  C 2 (S~)  n  C 1(5 ~ ), satisfying (4-2.3a) and (4-2.3b), is a

solution of  (4.1.7) then u(x) can be represented by the equation
/

I cu(x),  x  £ S~,

~ f gs  [r (x > v) T (d y ,  n )u  -  u T T(d y ,  n)T{x,  y)] ds(y) =  < \ l cu{x),  x  £ dS,

0, x  £ S.

(4.4.1)
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Here elem ents of Ic £ A^2x2 are given by

4 , 11 =  4,22 =
- 4 n \ n l { C l &  +  C f x )  -  2 C ,n C ,6 6 ( n f  + n:2 \ 2

47rCfifiC-66^11

^  _  ( C 6 6 - C i i ) ( C 6 6 n ^ + C i i n 2 ) 2 n c « n f l  ( C , 2 , - C | f i ) n a n , 3
ic’Q/3 ~  4 7 r C 6 6 C i i  4 7 r C 6 6 C n

n i n 2 ( C n - C 6 6 ) ( 2 n 2 - l )  „ 1 „ 2 ( C U - C 6 6 ) ( 2 r l 2 - 1)  , _ _ _ _ _  ,  *
4wCn 4t.-c66 > j o r a ^ p .

P ro o f .  We apply equality (4.1.15) in the dom ain S  \  C ( x , e), where C (x, e)

is a circular disk w ith  a center x  £ S  and sufficiently small radius e, in which

we take v — r^“ )(x, y). Using classical techniques [14, 34], for the  solution u(x)

of the system  (4.1.7) we have

[  [r(x , y) T(dy ,  n)u  -  u T T (d y ,  n)T(x ,  y)} ds (y ) =  <
JdS

I cu(x),  x  £  S,

\ I cu ( x ), x  £  dS,

0, x  £ IR2 \  S.  

(4.4.2)

We now apply (4.1.15) in the  dom ain C r D S  and then  consider the  lim it when

R  —> oo. For x  £ C r  D S ~  we will have

I cu(x )  = -  f gs  [r(x, y) T(dy ,  n )u  -  uT T (d y ,  n)T(x ,  y)} ds(y) +

+  IdCR [r (x ’ y )T (d V> n )u ~  u TT (d y ,  n)T(x ,  y)\ ds(y).

Next, using the procedure sim ilar to  the  one used in the proof of Theorem

20, estim ates (4.2.4)-(4.2.8) and sim ilar estim ates for the columns of m atrices 

Tp(x, y) and Ts (x, y) we show th a t  when R  —> oo the  integral taken over OCr 

vanishes. T he cases when x  £ d S  and x  £  S  are trea ted  sim ilarly (see for exam­

ple the proof of representation theorem s for sta tic  anti-plane shear in C hapter

3).
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We need also to  establish the representation theorem  for the solutions of the 

steady-sta te  vibrations for te tragonal 4 symmetry. Using classical techniques 

[34, 14] and the  estim ates of m atrices of fundam ental solutions in case of 4 we 

have the integral representation of a regular vector u ( x ) in a bounded domain:

T h e o re m  22 I f  u  G C72(5 + ) PI C'1( 5 +) is a solutions of  (4.1.12) then it can be 

represented by the equation
/

u(x) ,  x  G S +,

/  [ r ( x , y , o j ) T ( d y , n ) u - u T T ( d y , n ) T ( y , x , u ) ] d s { y )  = \u { x ) ,  x  G dS,
Jds 2

0, x  G S ~ .

Similarly, the representation formula for the solution of (4.1.12) in an  un­

bounded dom ain S ~  = M ?/S+ can be derived. Using estim ates for the  behavior 

of m atrices of fundam ental solutions a t infinity derived for plane anisotropic 

elasticity  in [58] and the  fact th a t  bo th  system s defined by operators (4.1.13) 

and (4.1.14) possess the same properties we have the following representation 

theorem  for the solutions of (4.1.12) in  an  unbounded dom ain for the tetragonal 

sym m etry 4:

T h e o re m  23 I f  u  G C 2(S  ) n  C 1 (S) is a solution of  (4.1.12) and satisfy the 

radiation conditions [58] then u(x)  can be represented by the equation

u(x),

[  [ r (x , y, uj)T(dy,  n )u  -  u T T (d y ,  n)T(y ,  x,  w)] ds(y) =
JdS

x  G 5+, 

^u { x ), x  G d S ,

0, x  G S
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4.5 S tatic G reen’s tensors for N eum ann and Dirich­

let problem s

As in [34] we will use sta tic  G reen’s tensors to  establish the existence of a dis­

crete spectrum  of eigenfrequencies for Dirichlet and Neum ann boundary value 

problem s for the  equations (4.1.12). This will be im portan t in the  proof of the 

solvability of homogeneous and inhomogeneous integral equations for the cor­

responding boundary value problem s for the  equations (4.1.12) and, therefore, 

th e  existence of th e  solutions of the  Dirichlet and Neum ann boundary  value 

problem s for the  equations of s teady-sta te  vibrations (4.1.12).

S ta tic  G reen’s tensor of the  Dirichlet problem, i.e. G reen’s tensor for the 

system  (4.1.12) w ith u> — 0, is a m atrix  G D(x, y) such th a t

L ° ( d x ) G D(x ,y )  =  0, x  £ S +, x ^ y  

G D(x ,y )  =  0, x  £ d S  y E S + ,
(4.5.1)

G D{x,y)  =  T ( x , y ) - v \ { x , y ) ,  x  £ S +,

where vi (x ,  y) £  C 2(5 +) fl C'1(5 + ) is a solution of the equation

L a(d x )v i ( x , y )  =  0.

L ° ( d x ) is obtained by taking u> =  0 in L(d x)  and T (x , y )  is the m atrix  of 

fundam ental solutions for L°(dx) .  Thus, to  find G D(x, y) we have to  construct 

the  m atrix  of fundam ental solutions for the  operator L ° ( d x ) and solve the
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following Dirichlet problem  to  find the appropriate V \ ( x ,  y ) :

L°(d x )v i (x ,  y) =  0 x G S +,

v i ( x , y )  =  T(x, y), x e d S .  

T he operator L°(dx)  can be w ritten  in the form

(4.5.2)

L° =
L \  0 

0 L \

where L°a (dx)  denote sta tic  operators obtained by taking to =  0 in L a (dx) 

Also we can w rite the m atrix  T(x, y ) in the form

T (x ,y )
rx(x,y) 0

0 T 2 (x ,y )

where the  m atrix  T 1 {x ,y)  is the  m atrix  of fundam ental solutions for L (((dx),  

given by the following equation (for details see [33, 27]):

r l {x ,y)  = L®*(dx)ip(x, y). (4.5.3)

Here L±*(dx) is transposed m atrix  of cofactors of L {{(dx)  and the  function 

ip(x,y)  is given by (3.2.4) w ith

1
a =  — -

C'u C i 2 - C iy

and cij are the  roots of the characteristic equation corresponding to  the  differ­

ential operator L \ ( d x )  given by

—a 4  +  &io:3 +  6 2 0 2 +  b^a +  6 4  =  0 , 
a

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



with coefficients

bi =  2C i2Ci6 — 4Ci6C66 — 2C nC i6 ,

62  =  C f  1 +  2 C 26 +  C'f2  + 4Cg6,

63  =  2 C n C i e  — 4 C i e C e 6  — 2 C u C i e ,

b4 =  1 = Cn C12 -  c f6.

From  (4.5.3) we ob tain  com ponents of the  m atrix  of fundam ental solutions 

F 1(a;, y)

=  i a ^ =1( - l ) j dj (C i2a ; | - 2 C i 6 a j  +  C 'ii)(21ogai  +  l) ,

r2 20 ,2 /)  =  i a Y % =i ( - l ¥ d j { C n a ?  + 2Ci6a j  + Ci2)(2\ogcrj  + l) ,

r i2(x >2/) =  - i a Y l 4 j= i ( - 1 ):’dj ( C i 6 0 ‘' j + 2 C66a j  -  C i 6 ) ( 2 logaj  + I),

r 2iC r,2/) =  r [ 2(x ,y ).

(4.5.4)

T he m atrix  of fundam ental solutions r 2(x, y) for I ^ { d x )  was found in Section

3.2. For the proof of the existence of the  solution of (4.5.2) we refer to  [33]

for the operator L \ ( d x )  and to  the Section 3.6 for the  operator L®- Thus, the 

existence of the  sta tic  G reen’s tensor G D(x ,y )  is proved.

The sta tic  G reen’s tensors for the Neum ann problem  G N ( x , y ) for (4.1.12) 

we will construct as follows [34]:

L ° G N (x ,y )  = Y ? j = i F k (x i y ) ’ x e S +, x ^ y ,

T ( d x ) G N (x, y) =  0, x € d S  y  G S +, (4 -5-5)

G N (x, y) -  U (x , y )  -  v 2 ( x , y) ,  x  G S +,
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where v 2 (x ,y )  G C 2 ( S +) fl C'1(5M~) is a solution of the equation

L°{dx )v 2 ( x ,y )  =  0.

In  (4.5.5) the vector ^ ( x ,  y ) =  f k{x)* f k (y) is the  ^-product of vectors defined 

as follows

and { / fc} |=1 is a set of linearly independent vectors

/ 1 =  (clt 0 ,0 ,0 ),

f  =  (0, c2, 0 ,0 ),

f  =  (0 ,0 ,c 3,0 ), (4 -5-6)

/ 4 =  (0,0, 0, c4),

/ 5 =  (C5 X2 , - c 5x i ,0 ,0 ) .

Every solution u(x)  =  ( u i ( x ) , u 2 (x ) , u s (x ) , (f>(x))T of the form (4.1.16) of the 

homogeneous sta tic  Neum ann problem  can be represented as a linear combina­

tion  of { f k} \ =i- Since the coefficients a, Cj, j  =  1, ...,4  are a rb itra ry  they  can 

be chosen so th a t the set f k , k =  1 ,..., 5 is orthonorm alized in S’"1". As in [34], 

we can locate the coordinate system  in the  center of gravity  of the  cross section 

and put

CJ =  J =

5  + I x 2 '

where m  is a ’’m ass” of the cross-section S +, I Xa are mom ents of inertia  of S +, 

then  the set (4.5.6) we be orthonorm alized, i.e. the  following conditions are
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/  f k f ldA  =  « 
J s +

k , l ,  =  1 , 5 .

met:
/

0 , k  I,

1 , k = I,

We take m atrix  II(:r, y ) in the  form [34]:

n  ( x , y ) =  \  T ( x , y ) - ± ' £ l = i f k (x ) * J s + r (y ’O f k( O dt,

-  h ^ l = i l s + n x ^ ) f k(0 ^ * f k (y)+

+  3  Efc,r=i f k(x ) * / r (y) fs+ Ss+ / fc( 0 r (C, v ) f r {v)d£,dv.
(4.5.7)

Since

and

L0( 9 x ) / fc(x) =  0,

L 0 (dx) [  r ( x , 0 / fcm = - 2 / * ( x ) ,
J s +

it is easy to  see th a t for x  ^  y

5

L0(9x)n(x,  y) = J2 fk(x ) * / fc(2/)‘
f c = l

To find the columns of the m atrix  ^2 (2:, y) we have to  solve the following bound­

ary  value problem

L 0 ( d x ) v ! f \ x , y )  =  0, x  , y € S +,

T{dx ,r i )v 2 \ x , y )  =  T { d x , n ) I L ^ \ x , y ) ,  x  g dS.

From  the  Section 3.6 and [33] for the  solubility of th is problem  it is necessary 

and sufficient th a t

J ^ ^ { r ( d z , n ) ' n S ol\ z , y ) sj  f k {z)ds{z) =  0, £: =  ! ,.. .5 , j  =  l , . . .4 .  (4.5.8)
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We should show th a t this condition is fulfilled by the  choice of the m atrix  

II(x , y).  Since T ( d x , n ) f k(x) =  0, k =  1, ...5, we can write

T ( d x ,  n ) U ^ \ x ,  y) =  \  T ( d x , n ) T ^ \ x , y )
(4.5.9)

-  \  E t i  T ( d x , n ) f s + r ( x , y ) f k(Z ) t f ( y )d t .

We can now w rite (4.5.8) in the following way

f gs (T (dx ,  n ) r W ( x ,  y)) f r { x ) d s ( x ) -

~  E L i  Js + l a s  (T (d x > n)T{x,  y ) f k(£)) f r ( x ) f k(y)ds(x)d£ =  0,

(r  =  1, ...5).

(4.5.10)

Since

( T ( d x , n ) T ( x , y ) f k( 0 )  f ( x )  =  (T(dx ,  n)T(x ,  0 )  f  (x ) f k ( 0

and from representation formula (Section 4.4)

f k {x) = - \ (  [T (d y ,n )T (y ,x )] T f k{y)ds{y), x  <E S, k =  1, ...5, (4.5.11) 
4 Jas

the second term  of the equality (4.5.10) assumes the  form

2 E  /  n o f H o d t f H v ) -  
t i Js+

And since the set { / fc} |=1 is orthonorm alized in S +, th is integral is equal to  

f [ ( y ) .  The substitu tion  of (4.5.11) back into (4.5.10) gives the  identity. Thus 

the  condition (4.5.8) is fulfilled. We note here th a t

G d (x , y) = [GD (y, x)]T , G N (x, y) =  [<GN (y , x)]T .
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Since G reen’s tensors possess all the  properties of the  fundam ental solutions we 

can rew rite the representation formulae as follows:

u (x ) = f a s  [G ° ( x ’ y ) (T (d y ’ n )u (y)) -  (T (% - n ) G D(y, x) ) u ( y )] ds(y )~

~  I s +  G ° ( x ’ y ) L o(dy)u(y)dy,
(4.5.12)

u (x ) =  f a s  [ G N ( X ’ y) (T idy ,  n )u (y)) -  (T (^y. n ) G N (y, x) )  u(y)} ds(y)+

+  f s +  u (y) E L i  f k (y) * f k (x )dV -  f s +  G ° ( x > y)Lo{dy)u(y)dy.
(4.5.13)

It can be shown [34] th a t  the solutions of the  homogeneous Dirichlet and Neu­

m ann problem s for (4.1.12) can be represented as solutions of integral equations

u(x)  — (J2  j G ( x , y ) u ( y )d y  =  0, x G S +, (4.5.14)
J s +

where G(x,  y) denotes G D(x, y) in the  case of the  D irichlet problem  and G N (x, y) 

in the case of the  Neum ann problem. These results follow from the  repre­

sentation  formulae (4.5.12) and (4.5.13) and the  properties of G reen’s tensors 

G D( x , y ) and G N (x ,y ) .  T he equations (4.5.14) are Fredholm ’s homogeneous 

equations w ith  sym m etrical kernels in L 2 ( S +). In accordance w ith  the  Hilbert- 

Schmidt theorem  follows the  existence of a discrete spectrum  of real eigenvalues 

of the param eter oj2  for which the equations (4.5.15) have non-zero solutions 

[34]. Thus, the following theorem s are valid [34]:

T h e o re m  24 The homogeneous D ir ich le t  boundary value prob lem  f o r  (4.1.12) 

has a d iscre te  spec tru m  o f  eigenfrequencies which are eigenvalues o f  the integral
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equation

u ( x ) - lo2 [  G ° ( x , y ) u ( y ) d y  =  0.
Js+

These frequencies are positive.

T h e o re m  25 The homogeneous Neumann  boundary value problem for  L (dx)  

has a discrete spectrum of  real eigenfrequencies which are eigenvalues of  the 

integral equation

u ( x ) - uj 2 [  G N (x ,y )u (y ) d y  =  0.
Js+

These frequencies are non-negative and oj =  0 is an eigenvalue of  the fifth rank 

and the corresponding eigenvectors are vectors of  the form (4.1.16).

4.6 Single and double layer potentials

The question of existence of the  solution of the corresponding Dirichlet and 

N eum ann-type boundary value problem s is answered using the boundary  in­

tegral equation m ethod. To th is end, we construct the  single layer po tential 

V<pe M . 2 x\  in the form

V ip { x )=  T(x,y)<p(y)ds(y)
Jas

and the double layer po ten tial Wtp €  M . 2 ^ 1

W<p(x)= D(x,y)<p(y)ds(y)
J d S
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w ith  density <p G M-iy  i- T he m atrices of fundam ental and singular solutions 

are taken  accordingly for each class of piezoelectric m aterials. The potentials 

have the following properties.

T h e o re m  26 1. I f  ip G C (d S )  then Vip and Wip are analytic and sat­

isfy equations (4-1-9) in the case of  tetragonal class 6m m  and equations 

(4-1-12) in the case of  tetragonal class 4 in S ( S ~ ) .

2. For Wip(x) the estimates similar to (4-2-4)-(4-2-8) are valid.

3. ForVtp(x )  the estimates similar to (4-2-4)-(4-2-8) are valid i f  and only i f

/ ■JdS
(pds =  0

4- I f i p e  C ( d S ) then V<p G C°'a {R2).

5. I f  <p £ C 1 ,a(dS)  for  a  G (0,1], then W<p has C 1,13-extensions (Wq))+ and 

(Wip) to S  and S  , respectively, with (3 G (0,1).

Wtp, x  G S,
(W<p) + =

h l cip +  Wqv,  x  G dS,

(W tp y
W<p, x  G S  ,

- \ l cF +  Wotp, x  G dS.

6 . I f< pe  C ° ’a (dS)  then V p  £ C ^ a {R?) for  a  G (0,1) and

T ( V t p ) ,  x  G S,

- 7j l ctp+ T  (V0 (p), x  G dS,
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T  (V ip ) , x £ S ~ ,
T  {Vip)~ =  < 

\ l cip + T  (VQip) , X  G dS,

T  = T (d x ,  n ).

7 . r ( w v ) + =  r ( w v ) “  0715 5 -

Here Wo^p and Vop denote the  values of the  double layer and single layer 

potentials, respectively, for x  E d S .  T he m atrix  I c is given in the sta tem ent of 

the  Theorem  21 for the case of the  hexagonal piezoelectric m aterial 6m m  and 

is defined by the particu lar form of the fundam ental solutions for the  case of 

te tragonal piezoelectric m ateria l 4 . T he proof is conducted analogously to  the 

one of the  Theorem  8.

4.7  D irichlet and N eum ann boundary value prob­

lems: ex istence o f regular solutions

Consider now the exterior Dirichlet and Neum ann boundary value problem s for 

the system  (4.1.11). For the corresponding existence results, we first note th a t 

the  existence of solution for the  exterior Dirichlet and Neum ann problem s is 

considered in [75] for Poisson’s equation (<f>(x)) and in [86] for the  Helmholtz 

equation (u^ix)).  Hence, it rem ains to  prove the  existence of solution to  the 

corresponding boundary value problem s for the  system  (4.1.9). Following s tan ­

dard  techniques (see, for example, [14, 33]), using Theorem  26, we apply the

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



boundary integral equation m ethod and seek solutions of the  exterior D irichlet 

problem  in the form (W<p)~, w ith  <p G C 1 ,a(dS )  and the  solution of the  exterior 

Neum ann problem  in the  form Vip w ith  tp E C 0 ,a(dS) .  We can then  reduce 

the  Dirichlet boundary value problem  to  the corresponding system  of singular 

integral equations

~ I c<p(x) + I  D (x ,  y)ifi(y)ds(y) =  u*(x) -  u 0, (£>“ ).
1  JdS

Similarly, for the Neum ann problem , we obtain  the system

- \ l cip{x) + [  T (d x ,n )T (x ,y ) ip (y )d s (y )  = t*(x),  (A/"- )
4 JdS

In  each case, x  E d S .  <p(x) is an  unknown density function and the  vector uq has 

com ponents uoa of the  form (4.1.16). Thus the problem s are reduced to  finding 

solutions of these system s of singular integral equations. As in Section 3.6 we 

can show th a t in each case, the  system s are each uniquely solvable so th a t the 

corresponding potentials (w ith density function supplied by the corresponding 

system  of integral equations) form the  unique solutions of the  D irichlet and 

N eum ann boundary value problems.

Similarly, for the  Dirichlet and Neum ann boundary value problem s for the 

equations (4.1.12) for the  bounded dom ain we apply the boundary integral 

equation m ethod and seek solutions of interior and exterior Dirichlet problem s 

in the  form of (Wip)*' respectively, w ith <p G C 1 ,a(dS)  and the solution of 

the exterior N eum ann problem  in the form V(p w ith  tp G C°'a (dS) .  Using
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results from Theorem 26 we reduce the Dirichlet boundary value problems to

the corresponding system of singular integral equations:

~\<P+ [  D(x,y ,u j)ip(y)ds{y) = u*+{x), (V +)
4 JdS

^<p(x)+ [  D (x ,y ,u j)(p(y)ds(y) = u * _ ( x ) - u 0,- (T>~)
1  JdS

Here by u*+(x) and u*_(x) we denote respectively boundary values of u(x) — 

(u i(x ), U2 (x), U3 (x), cf>(x))T for interior and exterior D irichlet problems. The 

interior and exterior Neum ann boundary value problem s are reduced to  equa­

tions:

[  T (9x ,n )T{x ,y ,o j) ip (y)ds{y) = t*+(x), {Af+)
* JdS

- \ y { x ) +  [  T (d x ,  n )T(x , y,tu)ip(y)ds(y) = t*_(x). (J\f~)
1  Jas

Here by t*+{x) and t*_ (x) we denote boundary values of T (d x ,  n )u (x )  for interior 

and exterior Neum ann problem s for (4.1.12) respectively. In  each case, x  £ dS ,  

<p(x) is an  unknown density function and the  vector uq has com ponents of the 

form (4.1.16). Thus the  problems are reduced to  finding solutions of these 

system s of singular integral equations. Due to  the  properties of the  m atrices 

of fundam ental and singular solutions described the  Section 4.3 we conclude 

th a t  integral equations (X>+ ), (T>~), (A/”+), (TV- ) are of the kind considered in 

Section 3.6, therefore the Fredholm theorem s are valid.

We now will study the  integral equations for homogeneous external Dirichlet
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( T >0 ) and Neumann (J \f0 ) problems for which the following theorems are valid 

[34]:

T h e o rem  27 The necessary and sufficient condition fo r  the equation

\ t {x ) + [  D (x ,y ,u )< f(y )ds(y )  =  0, x £ dS,  (V q)
4 JdS

to have a nontrivial solution is that the parameter ui2  coincides with one of  

the eigenfrequencies of the homogeneous Neum ann boundary value problem for  

(4-1.12) (Nq ). I f  to2  is a u-fold eigenfrequency of this problem, then the in ­

tegral equation (T>jf) has v  linearly independent solutions, coinciding with the

boundary values of the eigenfunctions o f ( N q ) .

P ro o f. First we will prove the necessity: let (Dq ) have a nontrivial solution. 

We must show that in this case lo2 is an eigenfrequency of the problem N q .

Let us assume the opposite: oj2 is not an eigenfrequency of N q . Since, by 

our assumption, equation ( D f ) has a nontrivial solution, its associate equation

\ v +  [  T (d x ,n )T (x ,y ,u j) ip (y )d s (y )  = 0, (W0+ )
z JdS

also admits a nontrivial solution <p(x). If we now consider a single-layer potential 

Vip(x), x  e  S'+ we see that it solves ( N q ) (see Theorem 26). But since oj2 is 

not, by assumption, an eigenfrequency of this problem we obtain that

Vip(x) =  0, x  e  S +. (4-7.1)
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Due to continuity  of the  single-layer po ten tial (see Theorem  26) and the behav­

ior at infinity, by uniqueness theorem , we obtain  th a t

V<p(x) =  0, x  £ S~ .  (4.7.2)

From (4.7.1) and (4.7.2) it follows th a t y>(y) =  0, y  £ d S ,  which contradicts 

w ith  the assum ption m ade above.

Now we will prove sufficiency: let oj be a i'-fold eigenfrequency of N q and 

w k, k =  1, be the  corresponding linearly independent solutions. I t will 

be shown th a t the  boundary values v k , k =  are linearly independent.

Suppose th a t  they  are not, i.e.

V

' ^ 2 c kv k(y) =  0, y  £  dS.
k =1

Consider
V

w (x)  =  ^  ckWk(x), x  £  S +. 
k =l

According to  the assum ption, w (x)  solves L (d x )w (x )  — 0 and T (d x )w (x )  =  0, 

u  =  0 for x  £  dS .  B ut then  by representation theorem  (see Section 3) we have 

th a t  w (x)  = 0  for x  G S +, which is the contradiction  w ith linear independence 

of w k, k =  1 ,..., 5. From  representation theorem  for x  6 OS we obtain

^ v k (x) = -  f  [T (dy ,n )T (y ,x ,o j)]T v k (y)ds(y).
A JdS

Therefore integral equation (T>q ) has a t least v  linearly independent solutions 

■uk(x). We will show th a t  (X>g ) has only u linearly independent solutions: we
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will assum e the opposite and let the num ber of solutions p, be greater th an  v. 

T hen  its  adjoint equation A/g~ also has p  solutions w k, k  =  1 , p.  Let us 

construct single layer po tentials V w k, k  =  1 , /i. Clearly, they are linearly 

independent as w k, k  =  1 , p  and are solutions of A/q" which, however, adm its 

only v  linearly independent solutions. Consequently, p  = u which completes 

the  proof.

T h e o re m  28 The necessary and sufficient condition for  the equation

- ^ 0 ) + /  T (dx ,n )T (x ,y ,o j) (p (y )d s(y )  =  0 (A/'0“ )
z JdS

to have a nontrivial solution is that the parameter u) 2  coincides with one of 

the eigenfrequencies of homogeneous Dirichlet boundary value problem (Dq ). I f  

la2 is a n-fold eigenfrequency of this problem, then the internal equation (A/q~) 

has v  linearly independent solutions, coinciding with the boundary values of 

the vectors obtained by application of operator T ( d x , n ) to the solutions of the 

problem  (Dq-).

The proof is analogous to  the one of the Theorem  27.

Let us now tu rn  our a tten tio n  to  the investigation of inhomogeneous internal 

problems. In  case of Dirichlet problem  for the  equations (4.1.12), according to  

Theorem  26, we look the  solution in the  form:

u ( x ) = f  D { x ,y ,u ) ! p { y ) d s { y ) + \  j  T (x ,y ,o j)F (y )d y .  (4.7.3)
JdS z Js+
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The corresponding integral equation for <p(x) will be

\ < P +  [  D ( x , y , u > ) < p ( y ) d s ( y )  =  u*+ ( x )  -  ^  f  T ( x , y , u ) F ( y ) d y .  ( V + ) 
1 JdS z Js+

According to  Theorem  28, the discrete set of the values of ul2  will be charac­

teristic for ( T >+ ) .  For all o ther values of o j 2  the  problem  is solved directly and 

solution is in the  form (4.7.3). If to2 is an eigenvalue then, according to  Theorem  

28, it is also an  eigenfrequency of the homogeneous Dirichlet boundary value 

problem  (Z3(j ). T he conditions of solubility of (T>+) take the form (see Section 

3.6):

/  u*+ { ^ k ( ^ ) d s ( y ) - ^  f  (  r ( £ , y , u j ) F ( y ) i p k ( O d y d s ( O = 0 ,  (4.7.4) 
JdS z JdS JS+

where ipk, k  =  l , . . . , i / ,  is a com plete system  of solutions of the associated

homogeneous equation (A/Jf). Now, according to  Theorem  28, ipk coincide

w ith  the  boundary values of the  application of the operator T (d x ,  n) to  the

eigenvectors which are solutions u k , k =  1 ,..., v, of the homogeneous Dirichlet

problem (D q“). So, we can rewrite conditions (4.7.4) as follows:

J a s < ( 0  (■T u k ( 0 ) b d s ( y ) - \ j  J  T ^ y ^ ) F { y )  ( T u k ( O ) b d y d s ( O  =  0 .

(4.7.5)

We also have th a t

i S a s i  f s +  T ( x , y , u ) F ( y ) d y } ( T u ( Z ) ) bd s ( £ )  =
(4.7.6)

=  \  f s +  (  f d S T ( x ' y i ° J) ( T u ( 0 ) b d s ( 0  } F ( y ) d y .
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From representation formula, since u k (x) =  0 (see the proof of Theorem  27), 

we find th a t

Ids

This together w ith  (4.7.5) gives

u k( y ) =  [  r( t ,y ,u> )(T u{Z))b ds(t) ,  y 
JdS

e  S +.

[  u \ ( T u k) d s -  [  F (y )u k(y)dy =  0, k  =  1 , (4.7.7) 
JdS v ' Js+

Setting each tim e either F ( y ) =  0 or u*+ =  0 the conditions (4.7.7) become

[  u*+ ( T u k)  ds =  0, (4.7.8)
Jas   ̂ '

and

f  F (y )u k (y)dy =  0, k = l , . . . , v .  (4.7.9)
Js+

In  case of inhomogeneous Neum ann boundary value problem, from Theorem  

26, we seek the  solution in the  form

u ( x ) =  [  T{x,y,uj)'ip(y)ds(y) + ^  I  T (x ,y ,u ;)F (y )d y .
JdS 4 Js +

For the  density function ip(x), from Theorem  26, we obtain  integral equation 

\ ip{x)+  f gs T (d x ,n )T (x ,y ,u j) ip (y )d s (y )  = t*+(x)
(A f + )

~h fs+ T ( d x ,n )T (x ,y ,u j )F (y )d y .

If l j 2  is not an  eigenfrequency th an  the  problem  is solved directly for an  arbi­

tra ry  right-hand side. If u 2  is an eigenfrequency then  the following solubility 

conditions m ust be satisfied:

f gs t*+ {y)<pk(y)ds{y)~

Ids  { f s + T (d t ’n )r (Z’y ’uj)F (y)dy } (p k ( z ) d s ( 0  =  °, k =  i , •••,*',
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where <-pk . k =  is a com plete system  of solutions of the  associated

homogeneous equation

In  the  sim ilar way as in the case of inhomogeneous Dirichlet problem  we arrive 

to  following resonance conditions

Here, by v k, k =  1 , za we denote the  boundary  values of eigensolutions of 

internal homogeneous Neum ann problem  ( Nq ).

T he condition (4.7.8) can be in terpreted  as following: in case of internal 

inhomogeneous Dirichlet boundary value problem  the  mechanical displacement 

w ith  com ponents rq, i =  1 ,2 ,3  m ay have a critical value only if on the  boundary 

mechanical displacem ent is orthogonal to  the  stresses induced by eigenoscilla- 

tions of the same frequency and the integral taken over d S  of the product of 

the  electric po ten tial given on the  boundary and the  surface charge produced 

by eigenoscillations vanishes.

The conditions (4.7.9), similarly, s ta te  th a t  the external forces m ay have 

resonant oscillation frequency only if they are orthogonal to  the  displacements 

produced in the body by the eigenoscillations of the  sam e eigenfrequency and 

the  integral taken over the cross-section ,5'+ of the product of applied external 

charge and electric po ten tial produced by eigenoscillations vanishes.

The conditions (4.7.10) are in terpreted  similarly.

/  f ( 0 v>c( 0 d s ( 0 +  [  F (y ) v k (y)dy =  0, k =  1,..
Jas Js+

(4.7.10)
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Chapter 5

Conclusions and suggestions 

for future work

The rigorous m athem atical analysis of boundary value problem s in the theory 

of piezoelectricity has rem ained absent form the  lite ra tu re  w ith  the exception 

of the  work by D. Iesan [27], in which the au tho r used the  boundary inte­

gral equation m ethod to  prove the existence of the solutions of boundary value 

problem s for th e  s ta te  of generalized plane strain . Here, however, certain  differ­

ential properties of the solutions were overlooked. The rigorous analysis of the 

fundam ental boundary value problem s arising from the  anti-plane shear s ta te  

in linear piezoelectricity has rem ained absent until recently. The objective of 

the  present work has been to  give the  complete trea tm en t of several boundary 

value problem s in the  theory  of linear piezoelectricity. We considered two types
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of deform ations in piezoelectric solids: anti-plane shear and generalized plane 

strain . A nti-plane shear s ta te  was considered in the frame of s ta tic  theory  only, 

for ra th e r general class of piezoelectric m aterials w ith  te tragonal 4 symmetry. 

T he problem s of s teady-sta te  vibrations were considered for the s ta te  of gen­

eralized plane s tra in  s ta te  for hexagonal 6m m  and tetragonal 4 piezoelectric 

m aterials. The following are the results th a t  have been obtained:

1. We form ulated Dirichlet, Neum ann and mixed boundary value problems. 

We proved the uniqueness theorem  and using boundary integral equation 

m ethod showed th a t  solutions exist and gave the  analytical solutions in 

the  form of integral potentials. Also, we gave the  analytical expressions 

for the  fundam ental solutions.

2. For the problem  of steady-sta te  vibrations of the  unbounded dom ain we 

derived the  rad ia tion  conditions to  provide the uniqueness of the  solutions 

of Dirichlet and N eum ann boundary value problems. The existence of the 

solutions of the problem s of steady s ta te  vibrations is established using 

the  boundary integral equation m ethod in the same way as for the sta tic  

problems. We also provided the fundam ental solutions for the system  of 

governing equations for the hexagonal 6m m  class of piezoelectric m aterial.

3. For the steady-sta te  vibrations in the bounded dom ain we showed th a t 

the  discrete spectrum  of eigenfrequencies exists for homogeneous Dirich­

let and Neum ann boundary value problems. The conditions of solubility
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of the non-homogeneous Dirichlet and N eum ann boundary value prob­

lems are given for the  case when the param eter lj2 coincides w ith one of 

the eigenfrequencies of the homogeneous boundary value problems. The 

solutions are given in the  form of integral potentials.

Thus, we showed th a t  the  fundam ental boundary value problem s arising 

from the  sta tes of anti-plane shear and generalized plane s tra in  are well posed 

so th a t num erical procedures can be applied to  solve particu lar problem s in the 

context of anti-plane shear and generalized plane s tra in  states.

As an  extension of the  present work the  m ethod of generalized Fourier se­

ries [34] can be used to  find the unknown density of the integral po tentials to  

solve several problem s arising in the theory  of piezoelectricity, for example, the 

problem s of s ta tic  torsion of cylindrical piezoelectric body for different types of 

cross-section. T he objective of this analysis is to  investigate the effects of the 

anisotropy and the  electro-m echanical coupling and com pare w ith  the  solutions 

obtained in the classical isotropic elasticity.

Another rapidly growing direction in piezoelectricity and its applications is 

the development of piezoelectric composites [52, 74, 82] and functionally graded 

piezoelectric m aterials [39, 65]. The problem s arising in this area would include 

nonhomogeneous piezoelectric media, contact and transm ission problems. In

[34] several contact problem s for nonhomogeneous elastic m edium  are inves­

tigated . The anisotropy of piezoelectric m aterials makes the analysis of the
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analogous problem s in piezoelectricity extrem ely challenging. Thus another 

possible direction of fu ture work would be to  a ttem p t to  apply the m ethod 

used in [34] to  the  investigation of the  contact problem s arising in the  context 

of anti-plane and plane piezoelectricity.
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