Structural Engineering Report 130

BEHAVIOUR AND ULTIMATE
STRENGTH OF TRANSVERSELY
LOADED CONTINUOUS

STEEL PLATES

by
~ KURT P. RATZLAFF
D. J. LAURIE KENNEDY

NOVEMBER, 1885




99.
100.
lel.
102.
103.

104.

105.
106.
107.
108.
109.
110.
111.
112.

113.

RECENT STRUCTURAL ENGINEERING REPORTS ‘

Department of Civil Engineering

University of Alberta

Behavior of Restrained Masonry Beams by R. Lee, J. Longworth and
J. Warwaruk, October 1981.

Stiffened Plate Analysis by the Hybrid Stress Finite Element
Method by M.M. Hrabok and T.M. Hrudey, October 1981.

Hybslab - A Finite Element Program for Stiffened Plate Analysis by
M.M. Hrabok and T.M. Hrudey, November 1981.

Fatigue Strength of Trusses Made From Rectangular Hollow Sections
by R.B. Ogle and G.L. Kulak, November 1981.

Local Buckling of Thin-Walled Tubular Steel Members by
M.J. Stephens, G.L. Kulak and C.J. Montgomery, February 1982.

Test Methods for Evaluating Mechanical Properties of Waferboard:
A Preliminary Study by M. MacIntosh and J. Longworth, May
1982.

Fatigue Strength of Two Steel Details by K.A. Baker and
G.L. Kulak, October 1982.

Designing Floor Systems for Dynamic Responee by C.M. Matthews,
C.J. Montgomery and D.W. Murray, October 1982.

Analysis of Steel Plate Shear Walls by L. Jane Thorburn,
G.L. Kulak, and C.J. Montgomery, May 1983.

Analysis of Shells of Revolution by N. Hernandez and
S.H. Simmonds, August 1983.

Tests of Reinforced Concrete Deep Beams by D.M. Rogowsky,
J.G. MacGregor and S.Y. Ong, September 1983.

Shear Strength of Deep Reinforced Concrete Comtinuous Beams by .
D.M. Rogowsky and J.G. MacGregor, September 1983.

Drilled-In Inserts in Masonry Construction by M.A. Hatzinikolas,
R. Lee, J. Longworth and J. Warwaruk, October 1983.

Ultimate Strength of Timber Beam Columme by T.M. Olatunji and
J. Longworth, November 1983.

Lateral Coal Pressures in a Mass Flow Silo by A.B.B. Smith and
S.H. Simmonds, November 1983.

]



114.
115.
116.
117.
118.
119.

120.

121.
122.
123,
124,
125.
126.

127.

128.
129.

130.

Experimental Study of Steel Plate Shear Walls by‘P.A. Timler and
G.L. Kulak, November 1983. :

End Conmnection Effects on the Strength of Conerete Filled HSS
Colums by S.J. Kennedy and J.G. MacGregor, April 1984.

Reinforeced Conerete Column Design Program by C-K. Leung and
S.H. Simmonds, April 1984.

Deflections of Two-way Slabs under Construction Loading by
C. Graham and A. Scanlon, August 1984.

Effective Lengths of Laterally Unsupported Steel Beams by
C.D. Schmitke and D.J.L. Kennedy, October 1984.

Flexural and Shear Behaviour of Large Diameter Steel Tubes by
R.W. Bailey and G.L. Kulak, November 1984.

Conerete Masonry Prism Response due to Loads Parallel and
Perpendicular to Bed Joints by R. Lee, J. Longworth and
J. Warwaruk.

Standardized Flexible End Plate Conmnections for Steel Beams by
G.J. Kriviak and D.J.L. Kennedy, December 1984.

The Effects of Restrained Shrinkage on Concrete Slabs by
K.S5.S. Tam and A. Scanlon, December 1984.

Prestressed Concrete Beams with Large Rectangular Web Openings by
T. do M.J. Alves and A. Scanlon, December 1984.

Tests on Eccentrically Loaded Fillet Welds by G.L. Kulak and
P.A. Timler, December 1984.

Analysis of Field Measured Deflections Scotia Place Office Tower
by A. Scanlon and E. Ho, December 1984.

Ultimate Behaviour of Continuous Deep Reinforced Concrete Beams by
D.R. Ricketts and J.G. MacGregor, January 1985.

The Interaction of Masonry Veneer and Steel Studs in Curtain Wall
Construction by W.M. McGinley, J. Warwaruk, J. Longworth and
M. Hatzinikolas, May 1985.

Evaluation of Existing Bridge Structure by Nondestructive Test
Methods by L. Mikhailovsky and A. Scanlon, May 1985.

Finite Element Modelling of Buried Structures by D.K. Playdon and
S.H. Simmonds, October 1985.

Behaviour and Ultimate Strength of Transversely Loaded Continuous

Steel Plates by K.P. Ratzlaff and D.J.L. Kennedy, November
1985.




STRUCTURAL ENGINEERING REPORT 130

BEHAVIOUR AND ULTIMATE STRENGTH OF TRANSVERSELY LOADED
| CONTINUOUS STEEL PLATES
by
Kurt P. Ratzlaff
and
D. J. Laurie Kennedy

Department of Civil Engineering
University of Alberta
Edmonton, Alberta
Canada, T66G 2G7

November, 1985




ABSTRACT

An initially flat rectangular steel plate, clamped on
all four sides against rotation and translation, displays
three modes of behaviour as the intensity of a uniform
transverse load increases. These modes are described as
elastic flexural-membrane behaviour, inelastic
flexural-membrane action and inelastic membrane action.

For a long narrow plate, elastic flexural-membrane
action exists up to the load causing yielding of the extreme
fibres along the long edges on the loaded face. Subsequent
plastic hinge formation along the long edges reduces the
stiffness. Inelastic flexural-membrane action ends with
complete yielding in tension along the long edges. The plate
then acts essentially as a membrane straining inelastically
as yielding gradually progresses from both edges toward the
centre. A lower bound to this behaviour is obtained by
assumming that Poisson's ratio is the elastic value and the
maximum membrane stress is the yield stress. A higher lower
bound is obtained by using the plastic value of Poisson's
ratio. An analysis culminating with inelastic membrane
~action taking into account the stress-strain relationship
beyond yielding is proposed. This analysis shows that the
load deflection curve gradually moves above the lower bounds
because the edge forces can exceed yield.

A finite element program modelling uniaxial plane
strain conditions, the inelastic Poisson's ratio and the
stress-strain behaviour to failure gave a load-deflection
response closely following the three predicted regions of

behaviour. Two failure criteria related to local edge

ii



conditions have been established; a limiting tensile strain
dde to bending and tension and the edge shear resistance.
The behaviour and failure loads have been confirmed by two
tests. Strain measurements taken during the tests
substantiate in general the predicted behaviour.
Implications for using the ultimate strength of
continuous steel plates for the design of offshore
~ structures for oil exploration and production in the Arctic

are presented.
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1. INTRODUCTION

1.1 Scope and Objectives

The overall objective of this research is to provide
analyses that predict accurately the load-deflection
response of transversely loaded continuous steel plates,
including the failure mode and load, and to confirm the
analyses by test. In this work only long plates with aspect

ratios approaching zero have been considered.

1.2 General

In the design of flat plate floors the limit of
structural usefulness is generally considered to be the
flexural strength of the plate system. In some cases the
flexural strength may be even limited to that based on
elastic behaviour, neglecting the considerable strength
beyond first yield until a failure mechanism develops.
Classical yield-line theory determines this.latter load
carrying capacity. Such limits are irrelevant for any system
in which the deflections are not critical and in which the
increase in strength due to membrane action can be
considered.

Membrane action develops as the plate deforms and
transverse loads are carried by in-plane tensile stresses.
The two-way membrane action in a plate is analogous to the
one-way action of a cable supporting transverse loads.

Furthermore, for steel plates that are continuous over a



rectangular grid of beams and stiffeners, such as in a
caisson type structure, full advantage can be taken of the
ductility of the steel and the increased load carrying
capacity of the membrane in the inelastic range. The load
carrying capacity may be many times that predicted on the
basis of flexural action alone and still provide any desired
level of safety.

Some of the structures that have been designed or
proposed for oil exploration and production in the Arctic
Ocean consist of steel caissons formed from continuous
plating supported laterally by a rectangular grid of
stiffeners, beams and girders. Interior rectangular plate
panels are continuous over the supports on all four edges
and can therefore be modelled as being restrained against
rotation and translation along all edges. Under the action
of floe ice the steel plates are subjected to enormous
forces. The economic design of such structures requires,
therefore, that the full strength of the plates be
mobilized. Before design procedures can be developed for
this and other applications a comprehensive method of
analysis is needed to describe the complete behaviour of tﬁe
plates into the inelastic range, including the failure mode
and load.

An extensive literature survey has been carried out and
relevant experimental data have been reviewed. Based on this
review and an examination of the limits of behaviour, a

method of analysis is proposed that considers inelastic



membrane behaviour. Two failure criteria have been
-established and the results of two computer simulations
using a finite element method are reported. The results of

two tests on plates subjected to fluid pressure and with an

aspect ratio of 1/3, are reported.



2. LITERATURE REVIEW

2.1 General

Literature on continuous steel plates acted upon by
transverse loads has been primarily concerned with
closed-form mathematical solutions to define precisely the
elastic and elasto-plastic load-deflection response and with
.permanent inelastic deformations. The inelastic deformations
6f a steel plate ship hull, for example, either due to
normal operations or collisions, remains an important design
criterion for naval architects. However, the complexities
involved in modelling mathematically inelastic plate
behaviour has prohibited exactness among the numerous
solutions proposed because of the introduction of
simplifying assumptions. The result is that designers of
flat plate structures have to estimate behaviour and
~deformations and, presumeably, ultimate strengths.

Generally, an inelastic large deflection analysis must
include:

| (i) both elastic and inelastic material properties,

(ii) changing plate geometry with loading, including

(iii) elastic and inelastic deflections, and

(iv) load type and location.

Differential equations describing the large deflection
elastic behaviour of uniformly transversely loaded clamped
rectangular flat steel plates of any aspect ratio were first

derived by von Karman in 1910. Earlier, Boobnoff (1902) had



 determined the exact solution for an infinitely long plate
tone with an aspect ratio, width/length, of zero).
For an infinitely long flat plate the von Karman

equations, when shear deformations are neglected, reduce to

[2.1]

I Q
o}
€
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Qu
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Furthermore, -if the term containing the membrane force N, in
[2.1]) is neglected, the eguation reduces to the elastic
small deflection equation of Lagrange. Some approximate
solutions to the large deflection equations of von Karman
for rectangular plates were first presented by Way (1938),
Levy (1942) used a Fourier series method to solve the same
equations for a plate with an aspect ratio of 1. To the
‘author's knowledge, no closed-form solution to the complete
von Karman equations exists for a plate with an aspect ratio
other than zero. Approximate solutions abound for the
inelastic behaviour of transversely loaded plates when the
plate material is assumed to exhibit elasto-plastic
behaviour. These solutions are generally considered too
mathematically rigorous for use in design.

In the design of continuous plating supported by a
rectangular grid of beams and stiffeners it may be assumed
'that the entire resistance to lateral loads results from

flexural action only. This analysis may be further limited



to elastic behaviour and is considered valid to use for
design only if it is necessary to limit deflections and
ensure elastic behaviour of the plate. Although plates yith
a large span to thickness ratio, say 100, have negligible
bending resistance they can carry large transverse loads
primarily through membrame action.

For a strip of flat plate one unit wide as shown in
Fig. 2.1, taken from a plate with an aspect ratio of zero,
when the stress-strain relationship is assumed to be
elasto-plastic as shown in Fig. 2.2 the uniform transverse

collapse load as given by numerous authors is

The strip is fixed rotationally at the edges but one edge
may move towards the other.

If it is assumed, according to the maximum principal
strain theory, that yielding occurs when the étrain reaches
the uniaxial yield strain and considering the fact that the
plate strip is two-dimensional, resulting in a biaxial
stress or uniaxial plane strain condition (Lay, 1982), the

- fully plastic moment per unit width is determined to be

[2.3] Mp = L



Figure 2.1 Transversely loaded plate in flexure

15 | ———
1.0
M
My
0.5 r
O | 1 1 1
o) | 2 3 4

P/ by

Figure 2.2 Elasto-plastic moment-curvature relationship



The maximum principal strain yield criterion gives,
under a condition of biaxial tension, an equivalent yield
stress equal to oy/(1—v2). This criterion gives a yield
strength 2 percent higher than that using the von Mises
maximum energy of distortion theory when Poisson's ratio, »,
is equal to 0.3. For structural steels, an appropriate value
of Poisson's ratio in the elastic range is about 0.3
(Clarkson, 1956; Lay, 1982). Once yielding occurs, and
significant portions of the cross-section at the hinge
locations have been strained inelastically, the appropriate
value of Poisson's ratio to be used is P o the inelastic
value. The inelastic value is commonly taken as 0.5,
implying that zero volume change occurs in the yielding
process, which is consistent with the fact that yielding
occurs because of shear distortions. Therefore, substituting
[2.3] in [2.2] and using the appropriate inelastic value of
Poisson's ratio, the critical uniform transverse load

causing a collapse mechanism is found to be

4 0 h2
[2.4] qQ. = yz)

The respective upper and lower bound uniformly
distributed collapse load for a rigidly clamped rectangular

plate given by Jones (1976) and numerous other authors are



48 Mp

[2.5] Q. =
L2(,/3 + g2 - §)?

and

[2.6]  q, = 1B(1+ 4%

respectively, where f is equal to the aspect ratio,
width/length. With B equal to zero, [2.5] and [2.6] are
identical and equal to [2.2].

The load-deflection behaviour based on the flexural
analysis described above, for a plate with L/h equal to 80
band an aspect ratio of zero, as presented in Fig. 2.3. in
" nondimensionalized form, consists of three straight lines.
The first portion gives the flexural deflection ;ntil hinges
form at the edges. The second portion, with 1/5 the slope,
gives the increasing deformation occuring as the plate
deflects with zero rotational restraint and constant moment

at the edges. When the collapse load, Qe» is reached, a

mechanism has formed and the plate deflects without limit.
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3 : T T T
L/h = 80, h=30mm
€y = 0.0015, E=200,000 MPa
2 L. -
q
q. Midspan hinge forms
| F -
Edge hinges form
O - 1 | 1
0 | 2 3

Wmax /b

Figure 2.3 Load-deflection behaviour in flexure
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Figure 2.4 Free body diagram of plate with full edge

restraint
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2.2 Timoshenko (1940)

Timoshenko considered a strip of an infinitely long
plate with an aspect ratio of zero as shown in Fig. 2.4. The
edges are restrained rotationally and translationally and
upon the application of load give rise there to bending
moments Mo and membrane forces S. The midspan or maximum
deflection, also shown in Fig. 2.4, is wmax while the
deflection at any position x along the plate length is w. At
any cross-section of the uniformly loaded plate the bending

moment is

[2.7] M(x) = %(Lx - x2) - Sw + Mo

Under uniaxial plane strain conditions, the moment-curvature

relationship for the rectangular cross-section is

where D is equal to the flexural rigidity, Eh3/12(1—v2).

Substituting [2.8] in [2.7] results in

(2.9 S LS L G-k . M
dx D 2D D
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With the boundary conditions:

(1) g% = 0 (at x = 0 and x = L/2)
(ii) w = 0 (at x = 0)
‘the solution to [2.9] is
[2.10] w = qL4 [ cosh [U(1 - 2x/L] _ 1]
16u3D tanh U cosh U
2
gL 2
+ —Z-(LX‘X)
8U°D

where the membrane stress parameter, U, is given as

_ SL
[2.11] U = i

The deflections given by [2.10] are, as would be expected, a
function of the membrane force, S. If the deflections are
assumed to be small relative to the width of the plate, L,
the extension of the centreline of the loaded strip can be

taken as
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L/2
2
[2.12] A= f [$] ax
0

Assuming that the average membrane strain is A/L, the

membrane force at the edges becomes

[2.13] S = —-—)\-E-:-ll-—z—-
L(1 - »%)

By differentiating [2.10) with respect to x and substituting
the result into [2.12], the following expression for

computing U is found:

2,8

Eh L 81 _ 27 27
[2.14] 28 z - 7 6 M-
gL (1 -v») 16U tanh U 16U sinh U  4U
9

+
8U

U in [2.14] may be found by trial and error for a given load
g and L/h ratio. The corresponding deflections are then

determined using [2.10]. The resulting load-deflection
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response from the analysis presented above for a plate with
L/h=49.4, where h = 0.93 mm, is shown in Fig. 2.5 as curve
E. The uniformly distributed load q has been
nondimensionalized by dividing by the collapse load q, given
by [2.4] and the maximum deflection W __  has been
nondimensionalized by dividing by the plate thickness, h. In
determining g, Poisson's ratio was taken as 0.3 as is
appropriate for steel in the elastic range.

The limit to Timoshenko's elastic analysis occurs when
yielding begins at an extreme fibre in the plate, point A’
on curve E of Fig. 2.5. This yielding occurs in tension at
the edges on the loaded side of the plate where the bending
moments are a maximum and where the tensile membrane force,
S, causes additional tensile stresses. In the presence of
the tensile membrane stresses the moment at first yield is
less than My. If the moment-curvature relationship of the
plate is assumed to be bilinear, up to the fully plastic
moment Mp as shown in Fig. 2.2, the hinge at the edge of the
plate forms fully and instantaneously at a moment less than
the fully plastic moment due to the presence of tensile
membrane forces, but at a moment greater’than that
corresponding to first yield with tensile forces present.
The greater moment and resulting load carrying capacity
corresponds to point A in Fig. 2.5 that lies considerably
above point A' on curve E.

Also shown in Fig. 2.5 are the test results of Young

(1959) for a plate with an aspect ratio of 1/3 and an L/h of
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49.4. It is expected that the central, or maximum deflection
of a plate with this aspect ratio would not be significantly
different from that for a plate with an aspect ratio of zero
(Clarkson, 1956; Hooke, 1970). Young's test results indicate
- that it is valid to consider the moment-curvature
relationship to be elasto-plastic in Timoshenko's analysis
as the results follow curve E to point A where the analysis
assumes that hinges form instantaneously at the edges.
Beyond point A the experimental data show that the stiffness
of the plate deteriorates significantly and markedly.

The load-deflection response due to flexural action
alone, shown in Fig. 2.5 as curve F, lies below that
considering both flexural and membrane action, as would be
expected. Where the load and corresponding deflection are
approximately zero the slope of curves E and F are nearly
identical. However, with increased loading, curve E lies
above curve F showing that with membrane forces, for a given
deflection, the load carrying capacity is increased. It is
expected that a greater increase in capacity would exist for
plates having relatively larger L/h ratios, that is membrane
action becomes relatively more important.

Timoshenko's elastic solution is the same as that
obtained by the analytical perturbation method of Chien and
Yeh (1957) as also used by Hooke (1969), when applied to the
von Karman equations, applicable to plates with any aspect
ratio, but used here for an aspect ratio of zero. Numerous

other authors, both of textbooks and papers, have as well
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presented numerical elastic and elasto-plastic solutions for
transversely loaded plates taking into account both flexural
and membrane behaviour. Timoshenko's closed-form solution
for infinitely long plates confirms the iterative and
numerical solutions proposed by others for plates with
aspect ratios other than zero, up to the load corresponding

to edge hinge formation.

2.3 Clarkson (1956)

The analysis presented by Clarkson considered both the
elastic and inelastic performance of a transversely loaded,
rigidly clamped, initially flat plate. Clarkson selected the
convenient power series solution of Chien (1947) to solve
the von Karman equations, applicable to plates of any aspect
ratio, but used by him for an infinitely long plate with an
aspect ratio of zero. The material was assumed to be
‘homogeneous and isotropic with Hookean characteristics up to
yield, with a modulus of elasticity modified by dividing by
1-»2 to take into account the biaxial stress field. Using
the von Mises-Hencky yield criterion for the equivalent

stress,

[2.15] 0 = [ o 2, o - 0,0, + 37

yielding, in the principal direction of a biaxial stress
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state, was taken to occur at a stress equal to

[2.16] o, = 9 / [1 - » + 92]1/2

This criterion, based on the maximum distortion energy
theory, gives a tensile yield strength two percent higher
than that using the maximum principal strain theory when
Poisson's ragio is taken as 0.3. Clarkson assumed that
Poisson's ratio remained constant at a value of 0.3
throughout the elastic and plastic ranges and that the usual
bending theory of thin plates remained valid over the
load-deflection range considered. Three different solution
methods were established that covered the range between edge
hinge and midspan hinge formation. In the first method,
termed the complete elasto-plastic method, the change of
slope across the elasto-plastic zone of a hinge was found by
finite difference integration. In Clarkson's "corner yield"
method the width of the elasto-plastic strips at the edges,
which develop as load is increased, are ignored. Hinge
formation is assumed to occur when yielding is experienced
in the extreme tension fibres next to the loaded face at
plate boundaries and at the unloaded face at midspan. The
third, or 'plastic-hinge' method assumes instantaneous full
plastic hinge formation only after plasticity has spread

throughout the complete thickness of the plate. All of these
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methods gave load deflection responses that were somewhat
stiffer than the test results of Young (1959) and appear
inapplicable when membrane action dominates.

Clarkson performed tests on 229 mm square plates with
an L/h of 72. The plates did not, however, exhibit
significant membrane action or increasing stiffness.
Although Clarkson attempted to fix the edges of the plates,
it is believed that there was a lack of membrane restraint.
The results do, however, verify, up to the point just prior
to midspan hinge formation, the extended elastic analysis of
Timoshenko and Woinowsky-Krieger (1959) and the approximate
plastic analysis of Jones and Walters (1971) for a plate
with an aspect ratio of 1.

Clarkson presented design curves based on limiting the
permanent deformation of the plate. The transverse load was
restricted to that causing a plastic hinge to form at
midspan or to that causing the membrane tension to reach

two-thirds of the yield stress.

2.4 Young (1959)

Young (1959) investigated, both mathematically and
experimentally, long rectangular plates (aspect ratio
approaching zero), clamped at the edges and subject to
uniform transverse loads, for the purpose of developing a
plastic design method for ship plating. With shear and
strain-hardening effects neglected, Young extended

Timoshenko's elastic solution for infinitely long flat
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plates beyond the formation of hinges at the edges to
midspan hinge formation. In this region of behaviour the
analysis assumed that:

(i) the material had elasto-plastic stress-strain
characteristics,

(ii) partial fixity existed at the edges for the
increment of load beyond the formation of the edge hinges,

(iii) the moment capacity deteriorated at the edge as
membrane forces increased,

(iv) the. load carrying capacity increased until the
edge and centreljne moments were equal, and

(v) yielding of the material occurred when the
effective stress corresponded to that given by [2.16].

The solution is iterative.

Young aléo presented an analysis for the
load-deflection behaviour beyond midspan hinge formation
based on various assumptions about the middle surface
strains at the plastic hinge locations - which are
apparently related to the membrane forces - and considered
the equilibrium of the membrane with both edge and midspan
hinges present. Unfortunately, as shown in Fig. 2.6, the
curve resulting from this analysis does not pass through the
point representing hinge formation at midspan found from the
iterative analysis. No explanation for this anomaly was
given,

Young also proposed a final limiting load-deflection

relationship that is reached when the entire cross-section
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of the plate is yielded in tension and no flexural action

remains. As shown in Fig. 2.6 this relationship 'is given by

[2.17] — =

" Young did not consider the increasing inclination of the
membrane force at the edge as the membrane deflects nor
strain-hardening of the material. An effective Poisson's
ratio of 0.5 was used in this analysis.

The test values of Young shown in Fig. 2.6 agree well
with Timoshenko's analysis, curve E, up to point A but do
not coincide with the analyses that predict the load and
deflection corresponding to midspan hinge formation. They
do, however, finally approach the limiting straight line

given by [2.17].

2.5 Hooke (1970)

By using the Marguerre (1938) and von Karman equations
for initially deflected plates and flat plates respectively,
Hooke developed solutions similar to those of Nylander
(1951) for the post-elastic load-deflection behaviour of
uniformly transversely loaded rectangular plates, clamped at
all four edges. The solutions were an extension to that of
Clarkson (1956) who initially considered only infinitly long

flat plates. Good agreement exists between Hooke's analysis
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and the test results of Hooke and Rawlings (1969) for plates
having aspect ratios less than 1/3. For plates having aspect
ratios greater than about 1/3 the load-deflection test
results of Hooke and Rawlings, and Clarkson, fall
considerably above Hooke's analysis and below his extended

elastic solution.

2.6 Fully Yielded Flexural-Membrane Behaviour

Kennedy and Hafez (1984) studied the behaviour of end
plate connections for steel beams in which the connection
consists simply of a rectangular steel plate welded at right
anglesAto the beam web and then bolted to a supporting
member. Some refinements to their analysis and further
design applications were presented by Kriviak and Kennedy
(1985). When the end of the beam rotates, the top of the end
plate is pulled transversely away from the supporting
member. In analysing this portion of the end plate
connection a 'T-section' was considered as shown in Figq.
2.7. Starting with the premise that plastic hinges due to
flexural action had already formed a mechanism (which
appears valid for the small L/h ratios of 11 and 22 in the

end plates), the expression derived for the applied force is

£S ) 4Mp

= Y -
[2.18] T Mp tan® a + cos” a
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Figure 2.7 Free body diagram of T-section
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Figure 2.8 Load-deflection behaviour when fully yielded in

flexure
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This expreésion would be valid for a rectangular plate of
zero aspect ratio, provided that the fully plastic moment is
computed taking into account the uniaxial plane strain
conditions.

Assuming that a uniform transverse load, q, rather than
a line load, T, is acting on the mechanism that is fully
yielded in flexure and that L is equal to 24, a summation of

forces in the y direction gives

[2.19] g = (28 sin a)/L + (2V cos a)/L

Summing moments about one end of the plate gives

[2.20]) M = VL/(4 cos a) - qﬁ2/16

Rearanging [2.20] in terms of V and replacing V in [2.19]

with this expression gives

[2.21] q = (25 sin a)/L - (8M cos? a)/L2 + (g cos? a)/4

The coexisting axial load and moment is assumed to be given

by
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[2.22] M = Mp [1 - (s/sy)zl

By replacing the expression for M of [2.22] in [2.21] and
then partially differentiating this new expression with
respect to S and setting the result equal to zero,
equivalent to stating that the load is carried by the
stiffest path, i.e. the membrane force S, the membrane force

is found to be

2

[2.23] s = (LSy sin a)/8Mp

Substituting this expression and that for M of [2.22] in

[2.21] gives

2

[2.24] q = 16Mp/L2 + (Sy sin? a)/4Mp

Furthermore, dividing [2.24) by the critical load of [2.4]
results in the following nondimensional expression relating

load to maximum deflection:
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1

[2.25] — = 1 4 [w"‘a"] p

[1 + 4(wmax/L)2]

To obtain [2.25], sin a was replaced by using the following

expression:

[2.26] tan a = zwmax/L

Expression [2.25] is plotted in Fig. 2.7 as curve Y. It
starts with zero deflection at the collapse load as was
assumed in the analysis, and becomes tangent to curve Mi
derived in Chapter 3 which describes the limiting load for
full membrane action when tensile yielding of the
cross-section has occured. As curve Y is based on full
vyielding of the cross-section, first in flexure and then in
tension, it must represent an upper-bound to the true

behaviour.

2.7 Summary
The uniform transverse flexural collapse load,
generally used as a strength criterion in the design of flat

plate structures does not reflect the true strength inherent
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in continuous plating. As plate deflections increase,
membrane forces develop and the overall plate strength
increases. Continuous plate that is designed without
deflection limits can resist transverse loads many times
that predicted by elastic, elasto-plastic and plastic
mechanism analyses.

The elastic solution of Timoshenko for the
load-deflection behaviour of plates having aspect ratios
approaching zero has been validated by tests, even when
extended up to complete plastic hinge formation at the plate
edges. However, no analytical solution appears adeqguate to
define the behaviour after edge hinge formation and prior to
complete yielding of the plate cross-section in tension.
Solutions available for the inelastic behaviour of plates
having aspect ratios other than zero do not predict well the
load-deflection behaviour. Young's limiting curve for
inelastic membrane behaviour is in reasonable agreement with
his test results. By assuming that plastic hinges due to
flexural action have formed a mechanism and that the
material behaves elasto-plastically, an upper bound to thé
true load-deflection behaviour has been established as an
extension of the work of Kennedy and Hafez. Strain-hardening
effects have generally been neglected by previous authors
and no ultimate strength predictions and failure criteria
have been established. Furthermore, methods of providing
adequate restraint such that the membrane forces can be

developed in a flat plate structure have not been discussed.



3. NEW METHOD OF ANALYSIS

3.1 Introduction

In the literature reviewed on the analysis of
continuous rectangular steel plates subjected to transverse
loads, both the contribution to strength by the flexural
action and the membrane action have been considered. Lower
and upper bounds to the true behaviour may, however, be
established simply by neglecting either the bending or

flexural resistance of the plate and considering the other.

3.2 Membrane Analysis Without Strain-Hardening

For a given deflection, a plate acting as a membrane
and with bending resistance is stronger than one without
bending resistance. As a corollary, for a given transverse
load a plate with bending resistance would have less
deflection. Consider a plate of zero aspect ratio, no
flexural resistance, clamped against translation at the
edges and of width L subject to a uniformly distributed load

q. From the free body diagram of a unit width of such a

plate, shown in Fig. 3.1, by statics,
[3.1] q = —ZPW_—
x(L - x)

The maximum deflection at x equal to L/2 is

29
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The membrane force S is a maximum at the edge of the plate

and is

2
[3.3] s = ‘/Pz + [ $]

Combining [3.2] and [3.3] gives

8w

= max
4 2
Y+ (aw__ L)

[3.4] q

The slope of the membrane from [3.1] is

and using [3.2],

31



4wmax
[3.6] x - 2 (L - 2x)
L

By assuming relatively small deflections, i.e. neglecting
the square of differentials, the elongation of the half

length of the midsurface of the membrane from [2.12] and

[3.6], is
L/2
2
16W
[3.7] A = f——‘%—"-— [L? - axL + 4x%] ax
L
0
and
8wmax2
[3.8] A = —==
3L

The closed-form solution of [3.8] is more convenient than

that found using the exact expression,

32
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[3.9] [[[%}]2+ 1]1/3 1]dx

>
1]

which can only be evaluated by using a binomial expansion.
In fact, [3.7] and [3.8] results when only the first term of
/L

is as much as 0.10, the extension, A, is 2.3% less by [3.9]

a binomial expansion is used to evaluate [3.9]. When wmax

than by [3.7]. At this deflection the corresponding, strain
is 0.0267, approximately 18 times the yield strain for a
steel of yield strength of 300 MPa and beyond the
strain-hardening strain of common structural steels used in
Canada. Assuming that the deflection of the uniformly
transversely loaded membrane results solely from uniform
‘straining and that [3.8] is a valid approximation,_the mean

value of the strain is

[3.10] € =

[ e ]

w oo

When the plate is behaving elastically, the strains are
small and the assumption of uniform strain is reasonable as

the difference between the minimum axial force in the
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membrane at the midspan and the maximum at the edge is
likely to be less than part of 1 percent. Recognizing the
uniaxial plane strain condition, the corresponding maximum

membrane force is

[3.11] s = %[wmax] (Eh

Substituting [3.11) in [3.4], the elastic load-deflection

relationship of the transversely loaded membrane is

3

]Eh 1
L (1 - v2)‘JkL2 +

[3.12] q = —

aw_ )2
max

This equation shows that the load carried varies as the cube
of the deflection if the ratio wmax/L is small.

Nondimensionalizing [3.12] by dividing by d. gives

16 W 3 2)

q
[3.13] —_ = max

q 2 2
o 3hL% (1 - » )VF
y 1 + (4wma

E (1 -
( vp

/L)2

X
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Equation [3.13] is plotted in Fig. 3.2 as curve M, . Below
and to the right of this curve, because no plate can be more
flexible than a membrane with no flectural resistance, is an
inadmissable domain. In [3.13] the value of Poisson's ratio
used to determine the load g is the elastic value, » (taken
here to be equal to 0.3), because the membrane is behaving
eléstically. To determine the collapse load, i because the
steel will have yielded significantly in bending, Poisson's
ratio is taken as vp=0.5, consistent with the hypothesis, as
stated previously, that in plastic straining no volume
change occurs.

Equations [3.12] and [3.13] are valid only to the load
when the maximum membrane force, S, at the edge reaches the
25,
assuming a state of biaxial stress exists in the membrane

yield force. This maximum value of S is oyh/(l-v

and that yielding occurs as predicted by the maximum
principal strain theory. The deflection corresponding to

full membrane yielding at the edges from [3.11] is

30
[3.14] (wmax)y L ‘/_x

u
&

~
()

184
m

Point B on Fig. 3.2 corresponds to the deflection given by

[3.14]. With further loading beyond point B, yielding
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progresses from the edges towards the centre.

Assuming for the moment that the behaviour is not
affected by changes in Poisson's ratio due to yielding, the
membrane is capable of carrying an increased load even when
the maximum stress at the edge remains at the yield level
because of the increased angle of inclination at the edges
that results through further deflection. This increased
deflection results from the increased straining beyond the
yield strain that gradually progresses from the edges
towards the centre, until the entire membrane is strained
beyond the yield strain and into the strain-hardening
region. When the membrane is fully yielded from edge to
edge, the membrane force, a maximum at the edge, will exceed
the yield force. Notwithstanding this, if it is assumed that
the maximum membrane force given by [3.11] is equal to the
yield force, and nondimensionalizing [3.4] by the collapse

load, o g gives

2
q W (1 - »2) 1
[3.15]  — -= z_[ “‘a"] 2

h 2
(-5 gy, (aw__ /L)?

Plotted in Fig. 3.2 as curve M., [3.15] deviates only
slightly from a straight line because of the sqguare-root
term containing the ratio wmax/L' However, if for any zone

that has yielded a Poisson's ratio of 0.5 is used, [3.15]
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becomes

[3.16] q - 2[wma"] !

In Fig. 3.2, [3.16] shown as curve N deviates from Young's
linear relationship, [2.16], by the square-root term. Loads
given by [3.16] only apply after yielding has progressed to
the centre. Tﬁerefore, after a membrane is loaded beyond the
point at which yielding occurs at the edge (point B of Fig.
3.2) the load-deflection path would be expected to gradually
migrate from that given by [3.15] to that given by [3.16].
Now, considering that when the membrane is fully yielded
from edge to edge, that the maximum membrane force at the
edge will exceed the yield force, the load-deflection path
éould therefore eventually lie even above curve N when

strain-hardening is taken into account.

3.3 Permissible Domain of Behaviour

The analyses presented and those reviewed in the
literature form a permissible domain of behaviour, as shown
in Fig. 3.3, for a plate of zero aspect ratio and an L/h of
57.1. Curve F gives the load-deflection response assuming
that flexural action only occurs. If membrane action occurs

in the plate as well, the load-deflection response must lie
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above curve F. Curve Me describes the response when membrane
action only exists and the behaviour is elastic. This curve
reaches a limiting value at péint B when full yielding of
the cross-section in tension occurs. Beyond point B, curve
Mi,'based on a lower limit to Poisson's ratio of 0.3 in the
inelastic range and an elasto-plastic stress-strain curve
(no strain-hardening), describes inelastic membrane
behaviour with deflections increasing as the result of
inelastic strains.

The load-deflection response of a real infinitely long
continuous plate should not lie below any of these curves.
Where one of these curves lies below an other it is shown as
a dashed line.

Again ignoring strain-hardening, curve N is based on an
inelastic Poisson's ratio of 0.5. Hence, to the right of
point B, that is for relatively large deflections, the
load-deflection response, without considering
strain-hardening, should lie in the shaded area between
curves N and Mi and beyond curve Me as extended through
point B

The curve presuming full yielding of the cross-section,
first in flexure and then in tension, based on Kennedy and
Hafez (1984),is shown as curve Y in Fig. 3.3. Apart from
considerations of the change in Poisson's ratio or
strain-hardening, this curve represents an upper limit to

any load-deflection response.
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The elastic flexural membrane response derived by
Timoshenko (1940) is shown in Fig. 3.3 as curve E extended
to point A, as validated by test, based on the assumption
that the moment-curvature relationship is elasto-plastic.
Curve E is extended as an upper bound, assuming continued
flexural and membrane load carrying capacity beyond the
yield value, to intersect curve Y. Therefore, to the left of
point B the real behaviour of a transversely loaded flat
plate would be expected to lie within the shaded area
bounded by curves F and Me providing the lower limit, and by
curves E and Y providing the upper limit. When
strain-hardening is considered, the real load-deflection
curve to the right of point B would be expected to lie

eventually above curve N.

3.3.1 Postulated Behaviour Without Strain-Hardening

As derived by Timoshenko and corroborated by test the
initial load-deflection response is elastic flexural
membrane action as given by curve E, up to point A in
Fig.3.3. Beyond this point, increasing tensile straining
gradually obliterates the bending stresses until the
limiting condition of full tensile yielding of the plate
occurs at point B which is the limit of curve M, describing
elastic membrane behaviour.

A curve can easily be constructed between points A and
B recognizing that the load-carrying contribution of

flexural action gradually disappears between these two
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points. Such a curve, assuming that the flexural
contribution decreases parabolically, consistent with the
interaction relationship between axial force and moment for
a rectangular section, is drawn in Fig. 3.3 and labelled
curve R. The flexural contribution has been taken to be the
difference between the ordinate of point A on curve E and
the ordinate of point C on the membrane curve, Me' directly
below it. This simplified analysis contains two
counteracting assumptions:

(i) A parabolic decrement applied over the entire range
from A to B is strictly only true if the axial load at point
A were zero. Such is not the case and therefore the curve -
from A to B, based on this assumption, would tend to be too
high.

(ii) While the moment developed at the edge is
decreasing there is an increasing moment at midspan.
Therefore, the curve would be too low. This assumption
counteracts that given above.

To the left of point B flexural and membrane action
coexist. To the right of point B, there is no flexural
action and the load-deflection response would be expected to
gradually move from curve M, towards curve N as yielding
progresses from the edges towards the centre and more and

more of the membrane has an inelastic Poisson's ratio.
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3.3.2 Significance of Strain-Hardening

Strain-hardening comes into play in two different ways.
When plastic hinges rotate through significant angles,
strain-hardening is likely to occur in the extreme fibres.
Galambos et al. (1978) show that the mean test to predicted
ratio of the fully plastic moment for W shapes is 1.12. This
increase of 12% is probably chiefly due to strain-hardening.
For plates of rectangular cross-section the effect would be
expected to be less. The most important effect of strains
greater than strain-hardening is the increased tensile
capacity of the plate associated with such strains coupled
with the increased deflections that result, thus providing
more efficient membrane action. Therefore, to the right of
point B the real load-deflection curve would be expected to
lie eventually above curve N based on an elasto-plastic
stress-strain curve. Provided local effects do not dominate,
the steel is finally strained to the ultimate, at least in

some portions of the membrane.

3.4 Membrane Analysis Beyond Strain-Hardening

The load-deflection response of a plate of zero aspect
ratio subject to fluid pressure, as opposed to a uniform
transverse load, can easily be determined when the plate
acts purely as a membrane. For a given pressure, the
membrane force is constant across the short dimension, L.
Corresponding values of the membrane stress and strain are

obtained from the stress-strain curve of the plate material.



44

The strain determines the total extended length of the
membrane and the deflected shape is circular. Because the
strain in the long dimension is zero, biaxial tension exists
and the effectiye stress in the membrane is increased by
1/(1-v2) times.

Stang et al. (1946) derive, corroborated by
experimental evidence, that Poisson's ratio in the inelastic

range or beyond initial yielding is

[3.17] v =

where & is equai to the volume change occuring prior to
yielding and e the engineering strain beyond yielding.
Equation [3.17] is plotted in Fig. 3.4 for the 1ineafized
uniaxial stress-strain curve of Fig. 3.5 and assuming an
elastic Poisson's ratio of 0.3 to calculate 6.

Curve U of Fig. 3.6 gives the nondimensional
load-deflection curve for a plate of zero aspect ratio
subjected to fluid pressure and having the uniaxial
stress-strain characteristics given in Fig. 3.5. The kink in
the curve at wmax/h of about 8.2 marks the onset of
strain—hardenina of the material. Between point B and the
onset of strain-hardening, curve U gradually climbs above
curve M. as a result of the gradually increasing value of

Poisson's ratio as given by [3.17]. Also shown on Fig. 3.6
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is curve V that is derived based on the same assumptions as
used for curve U but with the maximum stress set equal to
the yield stress. The difference between curves U and V is
therefore attributable to the increase in>strength of the
material following strain-hardening.

The difference between curves V and N, both based on a
maximum uniaxial tensile stress of Oy' is attributable to
the difference in loading. Curve N is for a uniform
transversé load and curve V is drawn for a membrane loaded
by fluid pressure. Without other effects it would be
expected that curve U would extend upward until the ultimate

strength of the material in biaxial tension was reached.

3.5 Experimental Verification

Plotted in Fig. 3.7 are test results of Young (1959)
for a plate having an aspect ratio of 1/3 and an L/h of
57.1. These data are in reasonable agreement with curves E
and R for a zero aspect ratio. Hooke (1970) showed that it
was valid to compare the maximum deflection determined
experimentally for plates with an aspect ratio of less than
1/2 to the analytical value for plates of zero aspect ratio.
Above and to the right of point B, the experimental results
gradually move from curve M. to N and as proposed previously
and even slightly exceed it.

In Fig. 3.8 similar curves, for a plate with an L/h of
49.4, are compared with the test results of Young, again for

a plate with an aspect ratio of 1/3. The test results are in
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reasonable agreement with the postulated behaviour, although
falling below curve M;. It is possible that inward movement
of the edges of the blate resulted in increased deflections
at the higher load levels. Although the experimental results
tend to follow a portion of the extension of curve M, to the
left of point B, and above curve R, this must be considered
‘a coincidence as curve M. is not valid to the left of point

B where flexural action contributes to the plate strength.



4. EDGE EFFECTS AND ULTIMATE STRENGTH ANALYSES

4.1 Introduction

All the relationships describing pure membrane action
(curves Mi’ N, U, and V of Fig. 3.6) are based on the common
assumption of considering the plate to have zero thickness.
However, to accomodate the relatively large deformatiéns the
plate of finite thickness must bend at the edges to achieve
the membrane edge slope required. Significant transverse
shears also exist at the edges even though no transverse
shears exist when the plate acts solely as a membrane. These
effects may limit the load that can be carried by the plate.

The deformations that the plate undergoes are also
affected by the edge conditions. Away from the edges the
membrane is relatively stiff. At the edges the plate is
subjected to both flexural and shear stresses in addition to
membrane stresses. Though this zone is of limited ektent,
its flexural and shearing deformations may have a not

insignificant effect on the total deflection of the plate.
4.2 Local Bending

4.2.1 Uniform Transverse Loading

Fig. 4.1 illustrates the edge conditions of a plate of
span L. When the deflection of the membrane is relatively
small as shown in Case I the eccentricity of the membrane

force S about the intersection of the edge and the
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midsurface, point O, is also relatively small. With further
loading more extensive bending is required at the edge and a
larger eccentricity of the force results as shown in case
I1. Thus, with increased deflections even though the plate
is acting essentially as a membrane, the moment at the edge
is re-established. This local bending phenomenon is
non-trivial when the curvature or strains are large. The
largest strains exist at the edge of the plate on the loaded
face, point K, where tensile strains due to bénding and
membrane action are additive. A proposed failure criterion
is that failure or rupture occurs when the strain at point K
reaches the ultimate strain, €, in biaxial tension.
Assuming that the strain distribution at the
cross-section through points O and K is linear with an
average axial strain, o’ equal to that due to the axial
force Po (see Fig. 4.2), when the maximum strain due to
bending and axial forces equals e, at point K, the radius of

curvature is

[4.1] p. =

Considering the free body diagram of a unit width of
plate at its edge shown in Fig. 4.2, at point A, a small
distance from the edge, the bending moment is zero.

Therefore, beyond A, towards the centre, only membrane



Figure 4.2 Free body diagram of plate at edge
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action occurs. The angle of the membrane, 6, at A is the
membrane edge inclination or more simply the edge
inclination. Assuming that the centreline of the deformed
plate shape between O and A can be described by a cubic
function, the minimum radius of curvature corresponding to
the maximum bendiné strains at the plate edge is by

geometry,

p i =

d cos 6
[4.2] min -2

McDermott et al. (1974) also used a cubic function to
describe the geometry with curvature ranging from zero at
point A to a maximum value at the plate edge, when analyzing
hull damage from ship collisions.

From geometry, the eccentricity, e, of the maximum

membrane force, S, is

.2
_ d sin” 6

Summing moments about point O and considering centreline

dimensions, the moment at the edge is



[4.4] Mo = Se + q d Sin ]

The axial force, Po, is

[4.5] Po = S cos 6

Setting Pnin ©f [4.2] equal to p. of [4.1], gives
h(1 + €_)

[4.6] a = P

cos 6 (eu-ep)

Substituting [4.6] in [4.3] gives

2

h si 6 (1 +
sin ( ep)

[4.7] e =

3 cos 8 (eu—ep)

Further substitution of [4.6]) and [4.7] in [4.4], gives
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Sh sin 6 (1+ep) qh2 tan?

+
_ _ 2
3 cos @ (eu ep) 2(eu ep)

2
6 (1+e_)
[4.8] Mo = p

Under uniaxial plane strain conditions for a unit width of
plate, the maximum membrane force corresponding to uniaxial

stress-strain condition (o ,es), based on the maximum

s
principal strain theory, is

[4.9] S —

Substituting [4.9] in [4.8] gives

ashz sin’ @ (1+e )

[4.10] Mo = 2)

3 cos 6 (1-vs (eu—ep)

qh2 tan? 6 (1+ep)2

2 (eu—ep)z

and the same substitution in [4.5]gives
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osh cos 6

[4.11] PO = ———
(1 - us)

The coexisting axial load and moment under ultimate
conditions at the edge as given by the interaction equation

for rectangular sections are

[4.12] 3—3 v [2271 = 1

Because the strains are exceptionally large, Mu is taken as
auh2/4(1-vp2) and Pu is taken as auh/(1—vp2). Substituting

Mo and Po of [4.10] and [4.11] respectively in [4.12] gives

. 2 2
o 4 sin© 6 (1+e ) (1-v_°)
131 [ 2] | e_P_ |
u 3 cos 6 (eu—ep)(1-vS )
. 2q tan? 6 (1?vp2)(1+ep)2
o, (eu-ep)z
2 2.2
o (1~»_°%)
+ [._S] -———%COS 6 = 1
o (1-»_°)
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This equation is based on the material properties of the

p’ Vg and Vp'

Two further equations relating the membrane stress,

plate 0g10,s € €

u u’
lateral load and edge inclination are found by considering
the equilibrium conditions of the central portion of the
deformed plate acting as a membrane and extending from point
A, as identified in Fig. 4.2 to the similarly located point
A', on the opposite side as shown in Fig. 4.3. The deflected
shape of the membrane is parabolic. Using [3.6] with [3.10]

gives

[4.14] tan 8 = (6 es)1/2

and from [3.4]

2 ash sin @
[4.15] q =

(L - 24 sin 8)(1 - vsz)

Equations [4.13], [4.14], and [4.15] are solved iteratively
as follows:

(i) For an assumed value of e  find o  from the
stress-strain curve of the plate material.

(ii) Compute the edge inclination 6 and the lateral

load q from [4.14] and [4.15].
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(iii) Substitute the values of e, q and 6 and relevant
material properties in [4.13] and iterate using a new value
of € until [4.13] is satisfied. The maximum deflection of

the membrane is found by rearranging [3.10] and is

_ _ . 1/2
[4.16] Woax = (L 2d sin 9)(3es/8)

Thus, the maximum uniform transverse load and corresponding
deflection as limited by local bending at the edges is

obtained.

4.2.2 Fluid Pressure Loading

Fig. 4.4 shows a free body diagram of one-half of a
membrane strip extending from point A, as identified in Fig.
4.2, to the centreline when the membrane is loaded by fluid
pressure. The deflected shape is circular and the following

two relationships can be derived:

sin 8 _ L :
[4.17] = = BT es)
- 1/2
[4.18] W = (L/2 -d sin gy L1~ cos 6)

(1 + cos 6)1/2
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L/2 - dsin 8

Figure 4.4 Free body diagram of membrane under fluid

pressure
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where 6§ is expressed in degrees. Neglecting the weight of
the fluid under pressure, a reasonable assumption when the
pressure becomes large, the pressure per unit width is
equivalent to that given by [4.15]). When considering a
membrane subject to fluid pressure, the free body diagram of
Fig. 4.2 should be modified to include a lateral load due to
this pressure acting over the vertical distance from point O
to point A and, as well, the weight of the fluid within
these limits. The moments of these forces are relatively
small and can be neglected. Again, equations [4.13], [4.15]
and [4.17) can be solved iteratively. With the maximum
deflection determined from [4.18], the maximum fluid
pressure as limited by local bending at the edges is

obtained.

4.2.3 Special Considerations

For both loading cases of uniform transverse load and
fluid pressure the distance from the edge to point A of Figqg.
4.2, where only membrane stresses exist, d sin 6, is
typically only about 2% of the span, L, of the plate.

In [4.13] and [4.15] careful attention must be paid to
the values used for Poisson's ratio in the inelastic range
and to the maximum strain that can be sustained at the edge.
Fig. 3.4 shows that for the strains in the likely range of 3
to 8%, Poisson's ratio varies only between 0.47 and 0.48 for
a steel having the stress-strain characteristics shown in

Fig. 3.5.
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Where maximum straining occurs at the edge the strain
gradient is extremely high and therefore the maximum
attainable strain should be based on a gauge length
approaching zero. Determination of this strain and the
corresponding value of Poisson's ratio are given in the

section on ancillary tests in Chapter 6.

4.3 Shear Failure

The maximum transverse load that can be carried may be
limited by the shear capacity of the plate. For both uniform
transverse or fluid pressure loading (neglecting the weight
of the fluid), the shear per unit width at the edges of a
plate having én aspect ratio approaching zero, is equal to
gL/2. Setting this equal to the ultimate shear capacity Tuh

gives

[4.19] q L

Metal forming operations show; when a plate is fully
restrained in bending and tension at the edges and subject
to a sufficiently large hydraulic pressure, that it will
shear at the edges similar to the shearing of a
high-strength pre-tensioned bolt in a lap joint. CSA
Standard CAN3 S16.1-MB4, Steel Structures for Buildings -

Limit State Design (CSA, 1984) gives the ultimate shear
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resistance of such a high-strength bolt as 0.60 AbFu, as
determined experimentally. Based on this evidence it would
appear reasonable, as an extension of the

von Mises-Huber-Hencky yield criterion to ultimate strength
conditions, to take the ultimate strength Ty in these

circumstances as au//§ or 0.577 o, .



5. FINITE ELEMENT ANALYSES

5.1 Program and Model

The ADINA finite element program (ADINA, 1981) which
allows for geometric and material nonlinearities, was used
to predict the behaviour of transversely loaded plates of
zero aspect ratio.

Fié. 5.1 shows the two-dimensional through-thickness
mesh used with 116 elements and 449 nodes for the half width
of the plate. All edge elements were linked to the support
as all boundary nodes were fixed against translation and
rotation. The model therefore did not allow
through-thickness straining to occur at the edge.

The plates modelled had an L/h of either 80 or 103 and
also had different material properties. The von Mises-Hencky .
yield criterion for a condition of plane strain was used.
Strains were determined at the 2x2 Gaussian integration
points of the quadratic serendipity elements. The maximum

deflection at the midspan, W was taken as the deflection

max’
of the midheight node. The uniformly distributed load was
applied in increments of 0.1 or 0.2 times the collapse load,
Q- with the smaller load increments applied in regions of

inelastic behaviour.

67
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5.2 Elasto-plastic Analysis

An elasto-plastic finite element analysis was first
carried out assuming that the steel had a bilinear uniaxial
stress-strain curve although the ADINA program has the
capability of modelling a more complex curve. Two
elasto-plastic material models were considered. The first,
used for the plate model with an L/h ratio equal to 80 was
aSsumed to have a modulus of elasticity of 200,000 MPa and a
yield strain of 0.0015. The second, used for the model with
L/h equal to 103 and with a stress-strain curve as shown in
Fig. 3.5 where is also given the experimental results, was
assumed to have a modulus of elasticity of 197,100 MPa and a
yield strain of 0.0014. In both cases, Poisson's ratio was
taken to be 0.3 in the elastic range and 0.5 in the
inelastic range.

The resulting nondimensional load-deflection curves for
the two plates are shown in Fig. 5.2 and Fig. 5.3
respectively along with load-deflection curves derived
analytically. Curve N models inelastic membrane behaviour
with the maximum stress equal to the yield stress and an
effective Poisson's ratio of 0.5.

The elasto-plastic finite element results are in
reasonable agreement with the postulated behaviour but two
differences are evident. First, the slope of the
load-deflection curve decreases when deflections exceed
about 3h and the finite element results for large

deflections fall below both curves N and Mi. This is



UTewop Teanotaeyaq

70

y, XU

sisA|puy "3°4
o1so|d -0ysp|3

lllllllllll
lllllllllllll

bdW 000002 = 3 7]
sl000="%
wwoe =y ‘08 =4/" 7]

PUB S3TNS31 3uUawWaT® a3tur3 or3iserd-o3serd z*'¢ ainbig




71

sosiTeue juswaTs 93TUTJ JO S3ITNS3Y £°G aanbig

Yy XoWm
b2 22 02 8 9 b 21 0 8 9 b 2 0
| I I I I | O
= b
- 8
- 2l
— 9|
siskjouy ‘334
d1ysoyd -04s0|3 4 o0z W
b
4 b2
- 82
'V'34 panosdwi
-1 2¢
bdW 001261 = 3
o P - 9¢
1000 = "»
B ww/p1=y ‘eol=ys7 1 OP
| ) Pl . L \ ] I - ] 1 bb



72

attributed to the fact that, with the bilinear stress-strain
curve assumed, the maximum force developable (at the edge)
is limited to the yield force. Thus with increasing
deflections and therefore increasing edge slope, the
horizontal component of the force in the edge row of
elements and in all other rows of elements mﬁst become less.
Considering a free body diagram of one half of the plate
width, L, the rate of increase of the applied load can
decrease when the rate of change of the product of the
increasing maximum deflection and the decreasing horizontal
component of the membrane force decreases. Second, the
finite element curve predicts a greater deflection for point
B. In this method, the stiffness matrix determined for a
given deflection is used to establish the next increment of
deflection corresponding to the next increment of'load. To
the left of point B, because the stiffness of the membrane
is increasing with increasing deflection, the computational
procedure underestimates the stiffness for the next
increment and hence tends to give larger deflections (this
of course can be somewhat compensated for by reducing the
load increments).

The elasto-plastic finite element results for the plate
having an L/h of 103 are similar to those found for the
plate with an L/h of 80 but with different material
properties. The elasto-plastic finite element predictions
follow the previously established hypothesis along curve R,

fall below point B, do not rise as high as curve N and
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eventually fall below curve M.. In addition to arguments
previously presented, the limited number of elements used
through the thickness at the edges may not allow yielding to
progress gradually enough through this thickness.

By comparing Figures 5.2 and 5.3 with Figures 3.7 and
3.8, the correspondence between the elasto-plastic finite
element analyses and two of Young's test results can be
established. The four are in agreement up to point B. Beyond
point B, Young's results move to correspond to curve N while
the finite element results fall below curves N and M. as has

been discussed.

5.3 Improved Analysis

A second finite element analysis, identical to that
described in section 5.2 but using the linearized
stess-strain curve of Fig. 3.5 but now plotted as a true
stress—-strain curve as shown in Fig. 5.4 to model the
material, was used to predict the load-deflection response
of a uniformly transversely loaded plate with L/h eqgual to
103 and zero aspect ratio. To accommodate the use of a true
stress-strain material model and large plate displacements,
an updated Lagrangian formulation was used in this analysis.
Fig. 5.3 shows the resulting nondimensional load-deflection
curve and also the results of the simpler elasto-plastic
finite element analysis.

In Fig. 5.5 is shown the deflected two-dimensional

through-thickness mesh from this analysis when the
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Figure 5.5 Deflected finite element mesh at q/q = 30
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nondimensional uniform transverse load is egual to 30, From
Fig. 5.3 it is seen that the improved analysis gives a
load-deflection curve beyond point B that lies considerably
above that for the elasto-plastic analysis. The curve also
climbs above curve N as the analysis allows the tensile
stress at the edge of the plate to exceed the yield stress.
The improved analysis therefore confirms the hypothesis
that, with strain-hardening of the material, the load-
deflection behaviour exceeds curve N which is based on a
maximum membrane force equal to the yield force and an
effective inelastic Poisson's ratio of 0.5.

Examining the results of this analysis suggests that
some refinement of the mesh is in order. At the centreline
the refined mesh was used because in early stages of loading
before membrane action developes significant bending moments
exist there. At the edge, however, as established in the
section on local bending and as corroborated by test, a
severe strain gradient exists through the thickness. The use
of even more than 4 layers of elements in this location and
extending to about 2% of the span from the edge would be in

order.



6. EXPERIMENTAL PROGRAM

6.1 General

To verify the various hypotheégs put forward, and as
pilot tests for large scale tests to follow, two tests were
conducted on 1.47 mm thick hot-rolled steel plates 152 mm
wide and 456 mm long, having a width to thickness ratio,
L/h, of 103 and an aspect ratio of 1/3. The tests were
conducted at room temperature, approximately 20 C. With this
aspect ratio the central portion of the plate panel should
be in a uniaxial plane strain condition with zero strain in
the long direction and zero stress through the thickness.

The plates were fully restrained on all four sides against

rotation and translation and were subject to fluid pressure.

6.2 Test Set-up and Procedure

Fig. 6.1 shows a partial cross-section of the test
set-up. The 16 mm diameter bolts were pre-tightened.
Translational resistance at the edges of the specimen was
provided by spot-welding the 6 mm x 6 mm bar to the test
plate. Silicone sealant spread below this restraining bar
and between the specimen and the 25 mm thick base plate
provided an effective seal. The base plate and specimen make
up a self-contained loading system. |

Fluid pressure was monitored by a pressure transducer
online between the test set-up and the hand actuated pump.

Deflections of the test plate normal to the original surface

77
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Figure 6.1 Partial cross-section of test apparatus
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were measured at several locations using LVDT's (linearly
vvariable displacement transducers) that were calibrated just
prior to testing. Fig. 6.2 shows the calibration curves with
a central linear range. Electrical resistance strain gauges
were mounted on both the inner and outer surface of the test
plate. The locations of these gauges and the LVDT's for both
tests are shown in Fig. 6.3 and Fig. 6.4. Several of the
strain gauges, particularly those mounted across the width
of the central portion of the plate were capable of
measuring strains in excess of 20%. The lead wires for the
strain gauges mounted on the inner surface of the specimen
were lead through a conical hole in the base plate which was
then filled with epoxy resin. This proved effective and no
leakage occurred here. All data were recorded using a data
acquisition system through which the signals are
conditioned, converted from analog to digital form and
stored on disk or tape. With this recording equipment a

large number of virtually simultaneous readings were taken.

6.3 Ancillary Tests

Six plate coupons with a width of about 30 mm, the full
plate thickness of 1.47 mm and a gauge length of 75 mm were
tested in uniaxial tension to determine the stress-strain
characterisitics of the steel plate. A typical stress-strain
curve for a coupon taken parallel to the width of the plate
test specimen is given in Fig. 3.5. Table 6.1 gives

statistical data from 4 such tests. The other two tests were
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done on coupons cut perpendicular to the plate width.

Table 6.1 Tensile coupon test results

Test E 0y €st €¢
1 203,100 279 0.018 0.36
2 192,800 264 0.017 0.26
3 201,600 266 0.016 0.31
4 191,000 272 0.018 0.26

Mean 197,100 270 0.017 0.30
v 0.031 0.025 0.019 0.016

To establish local straining charateristics, for use in
the local bending analysis and where the test plate is
heavily strained, a tensile coupon 1.47 mm thick by 29.15 mm
wide was loaded to failure and the strain at failure
measured over a series of gauge lengths varying from 100 to
5 mm. The cross-sectional dimensions of the failed specimen
at the failure location were 0.51 mm thick and 22.8 mm wide.
The variation of fracture strain with gauge length is given
in Fig. 6.5 and fitting a ninth order polynomial to the
curve gives a maximum strain when extrapolated to zero gauge
length of 139%. McGregor (1940) verified by test that the

true or natural strain is
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Figure 6.5 Variation of fracture strain with gauge length
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[6.1] €e; = 4n (Ao/Ai)

Hosford and Caddell (1983) suggest that the maximum strain
in a plate under biaxial tension (as is the case here) is

egual to the natural strain at failure:

[6.2] €eg = 4n (Ao/Af)

By using [6.2] with the test measurements the failure strain
is calculated to be 131%. This is in.good agreement with the
result obtained by the extrapolation in Fig. 6.5 and is
considered to be the more valid result. The ratio of the
change in thickness of the tensile coupon at the fracture
location to the original thickness divided by the
longitudinal strain of 1.31 gives a value for Poisson's

ratio at failure of 0.50,.
6.4 Test Behaviour and Observations

6.4.1 Overall Behaviour
In Fig. 6.6 are plotted load-deflection curves for the
two tests nondimensionalized by dividing the deflection by

the plate thickness and by dividing the pressure by the
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transverse load per unit area causing a plastic mechanism to
form in a similar plate with zero aspect ratio. Although
test 2 failed at a lower load than test 1, both
load-deflection responses are in good agreement.

On four occasions during test 1, oil was observed
leaking from the test set-up; At these times, corresponding

to a W x/h of approximately 8, 9, 12 and 15, the load was

a
reduced or removed and the bolts were further tightened.
Upon removal of the load, no noticeable decrease in
deflections was observed and the plate appeared to retain
its "pillow-like" shape. When the fluid pressure was
reapplied the load-deflection response traced in reverse the
unloading behaviour until the previous maximum load had been
reached. Increased loading resulted in a load—deflection
behaviour that was simply an extension of that found prior
to unloading. The load-deflection behaviour between points 1
and 2 in Fig. 6.5 illustrates the case where the pressure
was completely removed and then reapplied. In test 2 the
bolts were initially tightened substantially more than in
test 1 and no oil leaks were observed. Each of the tests
were conducted over a period of approximately 4 hours.

For both tests, plate deformations became visually
apparent soon after a nondimensional deflection of about 8
had been exceeded. The bulging of the plate specimens was
considerable at the higher load levels. Fig. 6.7, a
photograph of the test set-up just after the plate in test 1

failed, shows the "pillowing” effect. At failure, oil
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spurted out over a length of about 80 mm at the edge along
the mid-length of one of the long sides. Subsequent
examination revealed that the plate had been sheared in this
location. Fig. 6.8, an end-on view of the failed plate of
test 1 shows the large deflections that have occurred. The
maximum deflection is approximately one-sixth of the span.
In the four corners, reverse curvature occurs and is most
pronounced on a 45 line running through the corner.
Examination of specimen 2 after failure showed that some of
the spot welds fastening the plate to the restraining bar
had failed. In effect therefore specimen 2 did not fail, but
rather the restraining device. Measurements of the
cross-section at the middle of the long edges, after
failure, for both tests showed that the local flexural and
shear deformations there were about equal to the plate
thickness. These deflections are those between the edge and

point A on Fig. 4.2.

6.4.2 Gauge Measurements

The specimen in test 1 failed at a nondimensional load
of 28.6 and a nondimensional deflection of 15.1, equivalent
to a fluid pressure of 3850 kPa and a deflection of 22.2 mm
respectively. In test 2, when the restraining device failed
the maximum nondimensional load and deformation were 25.9
and 14.1 respectively which are equivalent to 3490 kPa and
21.1 mm. Fig. 6.6 shows that the two tests have

load-deflection curves that agree closely.
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6.8 Failed specimen of Test 1
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Figure



91

In both tests a number of electrical resistance strain
gauges were mounted on the steel plate specimen to determine
the variation of strain during loading. Gauges A-1, A-2,
A-3, A-4, A-6, A-7, A-8 and A-9 of test 1 and gauges B-1,
B-2, B-3, B-6, B-8, and B-9 of test 2, located as shown in
Fig. 6.3 and Fig. 6.4 respectively, measured strains across
the width and were located within the central third of the
plate length. The load-strain response of these gauges is
shown in Fig. 6.9, Fig. 6.10 and Fig. 6.11. The general
behaviour of these gauges is the same although the initial
rate of change of strain with load for gauges A-1, A-2, A-3
and A-4 is less than that for the remainder. Beyond a
nondimensional load of approximately 8 the strain in all the
gauges increases rapidly at a similar rate. The strains at a
nondimensional load level of 8 correspond to strains in the
yield plateau (ey € est) as may be determined from
Fig.6.9, Fig. 6.10 and Fig. 6.11. It would be expected that
with yielding the strains would tend to increase much more
rapidly with load. From Fig. 6.6 it is seen that at a load
level of about 8 the nondimensionalized deflection value
based on curve U of slightly greater than 4 lies between
point B where the membrane is just fully yielded in tension
and the point, wmax/h = 8.2, corresponding to the attainment
of the strain-hardening strain. Before reaching the yield
plateau the rate of increase of strains exhibited by gauges
mounted on the loaded side is much less than for gauges

mounted on the unloaded side as can be seen by comparing
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Fig. 6.9 to Fig. 6.10 and Fig. 6.11. The reason for this is
not apparent.

From Fig. 6.6 the nondimensionalized load when
strain-hardening is reached (est = 0.017) is 16.2. Based on
the geometry of the test and this mean value of the strain
at the mid-thickness of the plate, the strain on the outside
surface would be 0.0201 and that on the inner surface,
0.0140. From Fig. 6.9 and 6.10, the outer surface strains at
this load level are determined on the average to be 0.023
and the inner surface strains 0.015. These measured strains
are in reasonable agreement with those predicted from the
geometry and serve to confirm that the plate is being
deformed into a circular shape. In the first test, the
gauges A in Fig. 6.9 and 6.10 generally failed at about the
onset of strain-hardening. In the second test where some
high-elongation gauges were used, as shown in Fig. 6.11,
strains in the gauges continue to increase at about the same
rate beyond the beginning of strain-hardening as before.

The average maximum strain recorded in test 2 (gauge
B-2 and B-3) at a nondimensionalized load of 25.9 was 0.047.
The computed nondimensionalized deflection for this strain
is 13.8 whereas that measured as shown in Fig. 6.6 was 14.1.
Tﬁese are in reasonable agreement.

A basic assumption of the analyses presented is that
the central one-third of the test specimens would be
subjected to a uniaxial plane strain condition, that is,

that the longitudinal strains would be zero. From Fig. 6.12,



96

T ] i I
B Legend 7
8—=8 Gauge B-4 ;
30 - e —° Gauge B-5 _
a——a Gauge B-7 :
66— Gauge B-I2 ‘
225 |- n
3 5L ]
Ac
75 |- —
0 : 1
-0004 0.0 0.004

Strain (mm/mm)

Figure 6.12 Test 2 strain gauge results

0.008



97

longitudinal gauges B-4, B-5 and B-7 indicate on the average
a tensile strain, at the nondimensionalized failure load of
25.9, of 0.045. These strains are about 9.7% of the strains
in the transverse direction and indicate that not only is
the plate being prevented from contracting in the
longitudinal direction (the Poisson effect) but that tensile
strains are being developed longitudinally and therefore
that some load is being carried in that direction.

The results of the strain readings of gauge B-12 given
in Fig. 6.12 are typical of those gauges mounted on the
unloaded face in the corners at 45°to the long axis of the
specimen. Compressive strains existed there throughout the
_test, consistent with the concave upward curvature present

in the corners.

6.5 Comparisons of Results with Analytical Predictions

6.5.1 Membrane and Ultimate Strength Analyses

Curve U in Fig. 6.5 gives the predicted load-deflection
curve based on the complete stress-strain curve of the
material to failure. On this curve are marked the limiting
loads as determined by the maximum strain and shear
criteria. For this plate the lower value of nondimensional
load of 29.5 (shear limit), equivalent to 3960 kPa, governs
and gives a test to predicted ratio of 0.97 for test 1.
Comparing the predicted maximum deflections by curve U with

the values of both tests in the upper ranges gives a test to
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predicted ratio of 1.16. Curve U does not however take into
account the flexural and shear deformations that occur
adjacent to the edges. Curve U' shown in Fig. 6.6 is derived
from curve U to take the observed edge deformation into
account based on the assumption that this deformation,
observed to be equal to the thickness of the plate, is
proportional to the transverse load. Using the corrected
curve U', the ratio of the test to predicted deflections

near failure is 1.08.

6.5.2 Finite Element Analysis

The results of the finite element analysis (F.E.A.)
based on the linearized stress-strain curve are plotted in
Fig. 6.6 along with the test results. This curve although
drawn for a uniform lateral pressure corroborates reasonably
well the test results for the plate loaded with fluid
pressure. At a nondimensional load of 28 the F.E.A.
deflection is only 85% of the value of test 1. Although not
definitely established the reason for the increased
stiffness of the F.E.A. appears to be associated with the
boundary conditions of the model. Up to the shear limit the
F.E.A. results do however follow quite closely the simple.
analysis of curve U based on the stress-strain curve beyond
strain-hardening. In particular, the F.E.A. shows the same
kink in the load-deflection behaviour at the predicted onset
of strain-hardening at a Wmax/h approximately equal to 8.2.

The F.E.A. failure criterion was a maximum strain of 1.32
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and the curve terminates close to the maximum strain limit
of curve U. No shear criterion limit was modelled in the

F.E.A.

6.5.3 Deformations

After the failure in test 2, the edge slope of the
plate at the mid-length of the long sides was measured to be
31. Edge slopes of 29.3°and 30.5°were determined from the
local bending analysis corresponding to strain measurements
from gauges B-2 and B-3 of 0.045 and 0.049 taken just prior
to failure. These strain measurements therefore confirm
those predicted by the local bending analysis.

The deflection measurements provided by the 2 LVDT's
confirmed within 2%, under fluid pressure loading, (when the
central portion of the plate is behaving essentially as an
inelastic membrane) that the shape across the width at the

middle of the long sides is circular.

6.6 Summary

The load-deflection curves for the two tests agree
closely. The membrane analysis taking into account the
portion of the stress-strain curve beyond the beginning of
strain-hardening is in good agreement with the test results.
For this plate the shear failure criferion governs and gives
a test-to-predicted load ratio of 0.97. By taking into
account the flexural and shear deformations at the edge the

ratio of test-to-predicted deflection at failure is 1.08.
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The maximum deflection at failure was found to be greater
than one-sixth of the plate width.

The results of the F.E.A. based on the linearized
complete stress—-strain curve follow closely the simple
analysis of curve U also based on the stress-strain curve
beyond strain-hardening. The maximum load predicted by the
F.E.A. based on an ultimate local strain of 1.32 was close
‘to the maximum strain failure limit of curve U based on the
same strain. No shear criterion was modelled. At the onset
of strain-hardening, the F.E.A. shows the same kink in the
load-deflection behaviour at wmax/h equal to 8.2 as shown by
the test results and the inelastic membrane curve U.

Strain gauges within the central third of the length of
the plate that measured strains across the width exhibited
éimilar behaviour. Relatively small longitudinal strain
measurements were recorded. Predicted edge slopes of the
plate at the middle of the long sides at failure were in
good agreement with those obtained from strain measurements.

Prior to failure, unloading results in a near elastic
load-deflection path that is retraced upon reloading until a

load greater than that acting prior to unloading acts.



7. DESIGN APPLICATION

It appears that the full strength of continuous steel
plates loaded transversely could be utilized in designing
offshore oil exploration and production structures for use
in the Arctic. Under these circumstances the plates would be
designed to carry the factored loads at the ultimate limit
state in accordance with the criteria established herein.
The plates would be analyzed for whatever distribution of
ice loads is considered feasible. A number of other limit
states or conditions would have to be examined and, if
critical, satisfied. These conditions include the fatigue
behaviour, the response under different loading conditions
‘and the anchorage of the plates around the periphery so that
the membrane forces can be developed. The designer should
also be satisfied that the deflections under service loads
would be acceptable.

Assuming that the plate thickness has been selected
based on membrane action to sustain the factored transverse
loads when the factored resistance, based on either the
shear failure criterion or the maximum strain criterion, has
been reached, the designer would check the deflections at
specified load levels. These deflections are expected to be
appreciable and must be considered to be acceptable for the
intended structure. For the plates tested, with a width to
thickness ratio of about 100, the maximum deflection at
ultimate load was approximately one-sixth of the width.

Assuming that the load factor consistent with the maximum

101
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load was, say, 1.5, from Fig. 6.6 the deflection
corresponding to the specified load is determined to be
about one-tenth of the span. It is suggested that
deflections of this order of magnitude would be acceptable
for offshore o0il exploration and production structures in
the Arctic. The structure would have the safety level
required and the deflections would not affect its
serviceability. In determining the strength of the
supporting frames or ribs, the deflected shape of the plate
as shown in Fig. 7.1 would of course have to be taken into
account.

To examine the question of fatigue loading consider the
load-deformation response of Fig. 6.6. Points 1 to 2 and
points 3 to 4 show the behaviour of the membrane on
unloading. On reloading these paths are retraced. If a
certain load, say that represented by point 1 has been
reached and then removed, further cycles of loading to the
same or a lesser level would simply cause cycling between
points 2 and 1. If on the other hand the maximum load on a
subsequent cycle was intermediate to points 1 and 3, cycling
would occur on a line through this point at about the same
slope as the line joining points 1 and 2. It is anticipated
that a significant number of cycles of loading displaying
this essentialiy élastic behaviour could be withstood before
fatigue cracking would ensue. It is further anticipated that
the number of cycles of extreme loading that a caisson type

structure used for oil production in the Arctic, when
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designed at ultimate against ice forces with a return period
of, say, 100 years, would not be sufficient to cause fatigue
failure.

The deflected shape of an individual plate panel is
directly related to the distribution of loads to which it
has been subjected. If, therefore, a panel is subjected to a
loading pattern different from that which first occurred, a
new inelastic deflected shape would be developed as shown by
McDermott et al. (1974) provided the second load is
sufficiently large. The panel simply adapts to the new
loading conditions. The variation in loading on a panel is
therefore seen not to be a problem. As a matter of fact the
permanent deformations that have occured can be used
directly to determine the intensity of the forces to which
plate panels of the structure have been subjected. The
structure itself becomes a conglomeration of virtually
indestructable ice load measuring devices. The deflected
shapes provide a significant clue to the distribution of
load. Therefore, when subject to ice forces, the steel
plates forming the skin of a caisson type structure would
- act as load measuring devices. It would be necessary only to
record the deflected shapes. Yearly observations would
enable the operator to catalogue the forces to which the
structure has been-subjected, thus accumulating a body of
statistical data.

The total transverse load applied to the steel plates

or panels must eventually be transferred by the supporting
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ribs and framing members to the ground. These members
therefore must sustain the loads as they would in a more
conventional design. The membrane behaviour requires, in
addifion, that the tensile forces developed in the panel be
anchored éround the periphery of a series of panels. Such
anchorage can be provided by framing members acting in the
plane of the plate. One solution that appears feasible would
be to form box beams around the periphery as shown in Fig.
7.1. The tensile membrane forces subject the box beams to
lateral bending moments and considering the tensile forces
developed in the orthogonal direction the box beams would
also be subject to compressive forces.

To utilize the ultimate capacity of plates, i.e. the
inelastic membrane action, implies that such behaviour will
occur at the low ambienf temperatures that can be expected
in the Arctic. While the plates are subject to extensive
straining they are relatively thin and should not have
significant discontinuities or stress raisers. Tests of
plates under cold temperatures would delineate the
suitability of currently available steels in this
application.

The use of the full strength of continuous steel plates
as developed with inelastic membrane action has further
applications in any circumstances where the significant
deformations that do develop are not of importance. Other
applications could include structures for storing materials

such as tanks, bins and hoppers.



8. SUMMARY AND CONCLUSIONS

8.1 Summary and Conclusions

An extensive literature search has not revealed that
satisfactory solutions exist for the load-deflection
response of transversely loaded continuous steel plates
beyond the elastic limit when taking into account both
flexural and membrane action. Many elastic solutions for
the load-deflection response of plates having varying
aspect ratios are available. Some inelastic solutions of
limited appplicability are also available. The inelastic
solutions, extensions of Timoshenko's (1940) elastic
solution, include those of Clarkson (1956), Chien and
Yeh (1956) and Hooke (1969,1970), among others, and are

either closed-form or iterative.

Experimental data, limited in the inelastic range of
behaviour, show that the elastic solutions for the
load-deflection response of plates of any aspect ratio
can be considered valid to the point where a fully
plastic hinge in the presence of axial force has formed
at the edges of the plate. Without considering
strain-hardening, this finding validates the assumption
of using a bilinear moment-curvature relationship to

model the flexural behaviour of a steel plate.
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By considering relationships describing limiting
behavioural modes of transversely loaded continuous
steel plates, the domain in which the load-deflection
response lies is established. The first portion of the
domain governs the behaviour until full yielding occurs
in tension along the long edges. The second portion,
governing the behaviour when inelastic membrane action
occurs, is based on an elasto-plastic stress-strain
relationship. Within this domain the plate first behaves
in a combined flexural membrane mode, until plastic
hinges form at the edges of the long sides. This hinge
formation results in decreased stiffness. With further
loading flexural membrane action continues but flexural
action is eventually obliterated when the entire
cross—-section is yielded in tension. Additional
transverse load can then be applied to the plate as
deflections increase due to increased axial straining.
The analysis, verified by test, predicts the behaviour
to the point where the membrane is fully yielded in
tension. Beyond this point, the analysis gives the
domain in which the load-deflection response lies, as
Poisson's ratio increases from the elastic to the
inelastic value and strains greater than the
strain-hardening strain develop in the membrane. The
analysis, as substantiated by the available experimental
results of others and test data reported here, shows

that a continuous flat plate subjected to uniform
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transverse loads and fluid pressure, when membrane
action is considered, can carry a transverse locad many
times that determined on the basis of flexural action

only.

An analysis culminating with inelastic membrane
behaviour and taking into account the stress-strain
curve beyond the beginning of strain-hardening gives a
load-deflection response lying within the behavioural
domain to the point where the straining beyond the yield

strain plays a role.

Edge effects, that give rise to local bending and
shearing stresses, limit the load that can be carried’
and increase the deflections slightly. Two failure
criteria based on edge effects, one related to maximum
tensile straining and the other to shear loading, have

been developed.

Two finite element analyses have been performed on an
infinitely long continuous steel plate model. The first
analysis is based on an elasto-plastic stress-strain
relationShip for the steel and the other considers the
complete stress-strain curve to failure. Both analyses .
follow closely the predicted behaviour to the load
corresponding to complete yielding of the membrane in

tension at the edges. Beyond this the analysis based on
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the complete stress-strain curve gives a load-deglection
response that corresponds well with the membrane
analysis predictions that include strain-hardening and
also is in reasonable agreement with the test data. Some
modifications to the finite element mesh and to the
manner in which the boundaries are modelled is

suggested.

Two tests were conducted on 1.47 mm thick steel plates
with an aspect ratio of 1/3 and a width to thickness
ratio of 103. The plates were clamped against rotation

and translation at all four edges and subjected to fluid

pressure. Edge-shear failure occurred in one plate at a

pressure of 3850 kPa, that is at 28.6 times that of the
simple plastic flexural analysis and is 0.97 of that
predicted. The average failure deflection is 1.08 times
that predicted using the inelastic membrane analysis. In
the second test the edge restraint failed. Even when
significant inelastic membrane deflections have occurred

the unloading and reloading response is nearly elastic.

The behaviour, assuming that inelastic membrane action

fully predominates, is well substantiated by the tests.

Strain measurements taken on the steel plates tested are

consistent with the behaviour described herein.
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It appears that the inelastic membrane strength of
continuous steel plates loaded transversely could be
utilized in designing the skin plates of caisson-type
offshore structures for use in the Arctic. The
significant plate deflections that can occur would have
to be considered to be acceptable. It is anticipated
that a significaht number of cycles of loading could be
withstood and therefore that fatigue would not be a
problem. Changing the loading patterns would not unduelyA
influence the overall behaviour. To utilize the membrane
action requires proper design of framing members and
steels selected would have to be appropriate for use in

the Arctic.

When the load-deflection response is known the plates
forming the skin of a caisson type structure can be

utilized as load measuring devices.
Areas of Future Work

The analyses presented are limited to plates of zero
aspect ratio and should be extended to plates with other

aspect ratios.

A number of refinements to the finite element analyses
are suggested. These include increasing the number of

elements used near the plate edge and changing the



boundary conditions at the fixed edge to model more
closely the real conditions that would exist there. A
three-dimensional finite element analysis is recommended

for analyzing plates with aspect ratios other than zero.

A comprehensive test program on transversely loaded
plates with well defined material properties and

boundary conditions should be conducted. These tests

‘'should be of substantial scale. Parameters to be

investigated include the aspect ratio and the length to

thickness ratio.

Further knowledge of the behaviour under cyclic loading
and the behaviour under low temperature conditions would

be valuable.

Research is needed to determine the effect of the
deflected shape of the plate on the strength and

behaviour of supporting frames or ribs.

Framing methods need to be developed to ensure that the
plates are anchored sufficiently such that they may

behave as inelastic members.
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