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Abstract

Games have been used as a testbed for artificial intelligence research since the

earliest conceptions of computing itself. The twin goals of defeating human pro-

fessional players at games, and of solving games outright by creating an optimal

computer agent, have helped to drive practical research in this field. Deep Blue

defeating Kasparov at chess and Chinook solving the game of checkers serve as

milestone events in the popular understanding of artificial intelligence. However,

imperfect information games present new challenges and require new research. The

Abstraction-Solving-Translation procedure for approaching such games involves

abstracting a game down to a tractable size, solving the abstract game to produce a

strong abstract strategy, and translating its decisions into the real game as needed.

Related challenges include principled evaluation of the resulting computer agents,

and using opponent models to improve in-game performance against imperfect ad-

versaries. The papers presented in this thesis encompass the complete end-to-end

task of creating strong agents for extremely large games by using the Abstraction-

Solving-Translation procedure, and we present a body of research that has made

contributions to each step of this task. We use the game of poker as a testbed do-

main to validate our research, and present two milestone accomplishments reached

as a result: the first victory of a computer agent over human professionals in a

meaningful poker match, and the first solution to any imperfect information game

played competitively by humans.
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Preface

This thesis is a work written by myself, Michael Bradley Johanson. In a paper-based
thesis, each chapter consists of a previously published paper, which was written in
collaboration with my coauthors. Each chapter will begin with a brief introduction
that places the paper in context among the other papers, and identifies my contribu-
tions to the work.

Journal papers must also be described in this preface. Chapter 9 of this the-
sis has been published as M. Bowling, N. Burch, M. Johanson, and O. Tammelin,
“Heads-up Limit Texas Hold’em is Solved”, Science, vol. 347, number 6218, 145–
149, January 2015. Tammelin invented the CFR+ algorithm and streaming com-
pression technique used in the paper. Our implementation of CFR+, designed for
high performance clusters, was written and tested by Burch and myself. I was re-
sponsible for tuning parameters to find an acceptable three-way tradeoff between
solution quality, disk and RAM memory required, and computation time. I also ran
the three-month long computation and collected the empirical results. Bowling led
our decade-long effort to solve the game and was responsible for composing the
manuscript. Burch and I assisted with editing and formatting.
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Losing is Fun!

– Traditional Dwarf Fortress encouragement
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Chapter 1

Introduction

The creation of artificially intelligent game-playing computer programs has been a
motivating goal and a research testbed throughout the history of computing science
and artificial intelligence. In the earliest days of the study of computation, Babbage
wrote out the plans for his Analytical Engine, and then sought a test domain in
which to demonstrate its power. He decided on “games of purely intellectual skill”,
such as tic-tac-toe, checkers, and chess [6, p. 465]. While his contemporaries
believed that human reason was required to play these games of skill, Babbage
realized that computational power alone would allow for game-tree search capable
of playing such games optimally1.

Alan Turing, a father of both computing science and artificial intelligence, was
also intrigued by games and game-playing programs. Before the creation of the
first computers, he had designed an algorithm for playing chess, which he would
execute by hand in games against friends [42, p. 44]. Later, in his description of
the Turing test for investigating whether or not an entity should be considered to
be intelligent, he offered chess problems as an example of questions that might be
asked [98].

John von Neumann, a pioneer in game theory and computing science, also stud-
ied this connection between games, intelligence, and computation. His earlier work
in game theory sought to use games and mathematically sound strategies as a model
for understanding real-life behaviours. And while game theory can be used to for-
malize “perfect information” games such as chess and checkers, as considered by
both Babbage and Turing, von Neumann was more interested in understanding “im-
perfect information” games such as poker, which involve deceptive actions such as
bluffing. In a conversation recounted by Bronowski, von Neumann noted this dis-
tinction [20]: “Real life is not like that. Real life consists of bluffing, of little tactics
of deception, of asking yourself what is the other man going to think I mean to
do. And that is what games are about in my theory.” After launching the field of
game theory and connecting it to the mathematical framework of linear program-

1Babbage also realized the entertainment and financial possibilities of creating an “automaton”
for such games. In the pages following his description of game tree search, he presented detailed
plans for a travelling exhibition, and wondered if it might help him acquire the funds necessary to
complete his Analytical Engine.
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ming, von Neumann devoted his attention to the study of computation, becoming a
founding father of the nascent field of computing science.

While these early pioneers saw the potential of computing for producing “in-
telligent” behaviour, the necessary computational hardware did not yet exist to re-
alize their dreams. This deficiency has now been addressed: powerful desktop
computers are ubiquitous and inexpensive, researchers have access to increasingly
powerful supercomputers and custom hardware, and individual programmers can
rent time on clusters such as Amazon Web Services (AWS). Combined with al-
gorithmic advances for efficiently using computation to reason about decisions in
ever-larger problem domains, it is now possible to create computer programs that
can outperform humans in these “games of purely intellectual skill”. Researchers
and programmers now race to be the first to create programs capable of defeat-
ing human champions in games, and the resulting victories have served as mile-
stone events in the popular understanding of artificial intelligence: the checkers-
playing program Chinook becoming the first program to win a world championship
against humans [86], IBM’s Deep Blue achieving its famous victory over Kasparov
in chess [43], and IBM’s Watson defeating Jennings and Rutter on Jeopardy! [29].
Computers have also surpassed human champions at other games such as backgam-
mon [96], othello [22], and Scrabble [88]. Today, this line of research continues in
efforts to create superhuman programs for poker, go, Starcraft, billiards, Robocup
(robot soccer), classic Atari 2600 games, and many others, including the General
Game Playing challenge [31], in which programs must play arbitrary and novel
games after being given the rules just before a match begins, without intervention
by their human programmers.

The connection between the earlier work by Babbage, Turing and von Neumann
to this modern research effort is central to the study of artificial intelligence. We
aspire to create general programs that can reason about their environment and
the other agents sharing it, and make decisions so as to achieve their goals, just
as human intelligence allows each of us to plan, act, negotiate, and succeed in our
own lives.

When we aspire to create artificially intelligent agents for complex real world
tasks, games provide a tractable gradient that we can follow towards this goal: a
series of increasingly complex domains in which state-of-the-art techniques are in-
applicable or intractable, requiring us to develop and evaluate new approaches. The
challenges provided by games can scale in many dimensions. Games can increase in
size, such as in the number of decision points and actions that players must consider.
They can have perfect information such that all players can observe the exact game
state, or introduce imperfect information such that some actions that take place are
not observable by one or more players. They can have only deterministic actions,
or introduce stochastic elements that make the state transitions unpredictable. A
player’s utility at the end of the game might be a simple win-lose-or-tie outcome,
or might be a continuous value that the player aims to maximize. And finally, the
other agents in a game can affect its difficulty in many ways. Are there no other
agents sharing the space, or one, or many? Are they adversarial or cooperative?
How capable are they at planning and executing their own actions to achieve their
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goals?
As computers have now surpassed human performance in a number of perfect

information, deterministic, two-player, zero-sum games, such as chess and check-
ers, and a small number of games with other qualities such as backgammon and
Scrabble, we are now in an exciting period when researchers are following this gra-
dient along several dimensions towards more complex games, and developing new
artificial intelligence techniques capable of handling their larger scales and novel
qualities. As we continue to expand our efforts into new and diverse challenges, we
are approaching the scope of real world problems in which agents – by which term
we refer to robots, computer programs, or people – must cope with many forms of
uncertainty: uncertainty about the other agents acting in the domain such as their
number, motivations, or abilities; uncertainty about the world due to their imper-
fect senses and knowledge; and uncertainty about how the future will unfold due
to stochastic events. Further, real-world tasks rarely have the win-lose-or-tie out-
comes, and instead may have real-valued outcomes such as maximizing an expected
income, or minimizing risk, or minimizing the time or financial cost to achieve a
goal.

In this thesis, we will explore the practical and theoretical challenges involved in
creating strong computer agents for the large and complex games that humans find
challenging and enjoyable. This work is built upon the mathematical foundation of
game theory.

1.1 Game Theory
Game theory, developed by John von Neumann, studies the interaction of agents in
a shared environment. While the term “game” brings to mind recreational games
played for entertainment and friendly competition, in this setting it also refers
to models of serious interactions such as auctions, negotiations, homeland secu-
rity [92], and cold war politics [69].

Game theory investigates the question: given knowledge about a domain (e.g.
its rules and goals), how should a rational agent act so as to maximize its utility,
and what behaviour can be expected of other rational agents? Game theory pro-
vides several answers to this question, called solution concepts, which depend on
what information is known or assumed about the other agents in the space. For ex-
ample, if the behaviour of the other agents is completely known a priori, then game
theory suggests that a perfectly rational agent should use a best response strategy,
which exploits this knowledge of the other agents so as to attain the highest pos-
sible expected utility. If nothing is known about the other agents, but we wish to
perform well under the assumption that they are each perfectly rational, then game
theory may suggest the use of a Nash equilibrium strategy, in which each agent
simultaneously uses a best response to the other agents in the game. In the case
of two-player zero-sum games, a Nash equilibrium strategy (in this setting equiv-
alent to a minimax strategy, and also called an optimal strategy) is particularly
compelling. In this setting, a Nash equilibrium is guaranteed to do no worse than
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tie (on expectation) against any opponent, including a worst-case opponent who
knows every detail of the strategy a priori, and has unlimited computational power
with which to compute a best response. Computing a Nash equilibrium is called
solving a game: this technical term is used in exactly the same sense that one might
“solve” a mathematical equation, such as by “solving for x”.

The Nash equilibrium concept is particularly compelling as the foundation of a
strong computer agent. In the two-player zero-sum setting, such a strategy would
be guaranteed not to lose against any human or computer adversary, and may win
by a small amount if the opponent is flawed. In practice, our ability to construct
computer agents that use Nash equilibrium strategies is limited by our ability to
solve large games. Fortunately, there are well-known algorithms for computing or
approximating Nash equilibrium strategies in two-player zero sum games, and they
can be precomputed without requiring any a priori knowledge about the opponent.

Over time, as we have discovered new and more efficient algorithms for solving
games, we have increased the size of game that can be tractably solved. Many
simple games, such as tic-tac-toe or rock-paper-scissors, can be solved in one’s
head through simple reasoning. Some small games, such as Kuhn poker (a three-
card, one-bet poker game) [60], can be solved algebraically on paper. As we begin
to consider larger games, we very quickly need to rely on powerful computational
hardware and efficient algorithms to perform this reasoning for us. For example,
a slightly larger “toy” poker game called Leduc hold’em (a six-card, two-round,
four-bet poker game) [90] is easily solvable using modern algorithms and trivial
hardware, but would be intractable using the algorithms known to von Neumann
even with modern hardware.

In Figure 1.1, we examine our ability to solve ever-larger games over time by
considering the imperfect information and stochastic game of poker, which has been
a common research testbed for artificial intelligence researchers for more than fif-
teen years [12; 13; 89; 35], particularly after the founding of the Annual Com-
puter Poker Competition (ACPC) in 2006 [65], and of interest to game theo-
rists since von Neumann’s seminal work in 1947 [100]. This figure presents the
sizes of the largest-known poker games solved over time. The shaded regions indi-
cate three families of game-solving algorithms: sequence-form linear programming
(SFLP), Counterfactual Regret Minimization (CFR), and a recent extension of CFR
known as CFR+. Over the last ten years, through algorithmic advances and the
use of increasingly powerful computational hardware, there has been a seven or-
der of magnitude increase in the size of imperfect information game that can be
tractably solved. The first labelled datapoint, Rhode Island hold’em, is a synthetic
game2 first solved by Gilpin and Sandholm using sequence-form linear program-
ming [35]. Ten years later, my colleagues and I have now solved heads-up limit
Texas hold’em (HULHE), the simplest form of poker played by humans for high

2We will use the term “toy” to refer to games of trivial size, and “synthetic” to refer to games
invented by researchers as a problem testbed. Tic-tac-toe is a trivial game played by humans and is
thus a toy game but not a synthetic one; Rhode Island hold’em, created by Shi and Littman [89] as a
research testbed with 106 decision points, is a synthetic game but not a toy game. A “human-scale”
game is a nontrivial game that is played competitively by humans.
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Figure 1.1: The increasing sizes of solved imperfect information games over time.

stakes3, and the first imperfect information game played competitively by humans
to be solved [17]. The unlabelled datapoints in Figure 1.1 are synthetic, simplified
versions of HULHE, solved by researchers in an attempt to create strong HULHE
strategies.

In addition to heads-up limit Texas hold’em, a small number of perfect in-
formation games played by humans have been solved, such as checkers [85] and
awari [82]. However, solving such human-scale games has thus far required not
only efficient algorithms and powerful computational hardware, but also consider-
able engineering effort. And while this combination has allowed us to solve perfect
information games as large as checkers with 1020 decision points, or imperfect in-
formation games as large as heads-up limit Texas hold’em poker with 1013 strate-
gically distinct decision points – an effort that required 900 CPU-years of com-
putation – many other games played by humans are far, far larger. For example,
the natural next variant of poker to consider after heads-up limit Texas hold’em is
heads-up no-limit Texas hold’em, in which the players may make bets of any size
instead of a fixed size. However, the no-limit variant, as played by researchers in
the Annual Computer Poker Competition, has 10160 strategically distinct decision
points [48, Table 6]. Solving this complete game directly appears entirely infeasible
at this time4.

3In fact, HULHE was the variant of poker played in the highest-stakes poker cash games ever
played, in a series of matches between the banker Andy Beal and a team of poker pros. Their series
of matches was described by Michael Craig in his book, “The Professor, the Banker, and the Suicide
King: Inside the Richest Poker Game of All Time” [27].

4Indeed, even simply recording a strategy for this game by representing the probability of each
action with one byte would require 5 × 10135 yottabytes of storage [48, p. 12]. Of course, this
immense size represents a brute-force approach by representing each action individually, and does
not preclude the future development of a lossy approximation that is sufficiently close to optimal, or
an alternate (perhaps functional) representation of a strategy that may require far less storage.
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Figure 1.2: The Abstraction-Solving-Translation procedure. The numbers before
each label indicate the chapters in which that arc will be discussed.

1.2 The Abstraction-Solving-Translation Procedure
Fortunately, it is not necessary to exactly solve a game in order to make good de-
cisions or exceed human capabilities, or even to closely approximate optimal be-
haviour. In perfect information games such as chess, algorithms such as α − β
search can consider only the current subgame that the player is in, and search many
moves ahead by using a heuristic function to evaluate non-terminal nodes. While
the use of a heuristic to explore a bounded horizon may mean that the program
plays suboptimally, a fast, accurate heuristic and deep search may still be sufficient
for superhuman performance.

In imperfect information games such as poker, it is much more difficult to rea-
son about small subgames in this way and still obtain strong strategies. Instead,
the dominant approach is to use the Abstraction-Solving-Translation procedure
shown in Figure 1.2, which we will now explain, starting from the top left corner.
If the game is too large to be tractably solved using the best available algorithms
and computational hardware (an attempt to follow the downwards arc), then an al-
ternative is to simplify the problem by creating a smaller, but strategically similar,
abstract game. One way this is done is by finding decision points in the real game5

5For clarity, the term “real game” specifies the game defined by the rules, from which an abstract
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that are similar, and merging them together in the abstract game, so that a player in
the abstract game cannot distinguish them. We then use game theoretic algorithms
to solve this abstract game, creating an abstract game strategy. Once computed,
an agent can use this abstract strategy to play the real game, by translating portions
of the abstract strategy back into the real game as needed. This approach has a long
history in the computer poker community and is used by most of the top competi-
tors in that domain [89; 11; 36; 46]. As Aumann describes, it is also the dominant
approach for applying game theoretic reasoning to economics problems [5]: “The
method of von Neumann and Morgenstern has become the archetype of later appli-
cations of game theory. One takes an economic problem, formulates it as a game,
finds the game-theoretic solution, then translates the solution back into economic
terms.”

Under this paradigm we can increase the strength of our decision-making in
two ways, involving both theoretical research and practical engineering. First, by
developing new game solving algorithms that are more efficient in both space and
time, we become able to solve larger, finer-grained abstract games that require less
merging of decision points and thus are better models of the real game. Second,
by developing new abstraction and translation techniques that preserve more of
the strategically important structure during the abstraction process, we can also
create abstract games that are better models of the real game. In practice, solving
these “bigger” and “better” abstract games results in abstract strategies that are less
suboptimal in the real game.6

To measure the progress that is being made, we must have some method of
evaluating the agents that are created. There are two evaluation techniques that
are commonly used: (1) observing an agent compete in games against humans or
other computer agents, and (2) objectively measuring its suboptimality in the real
game. Each of these evaluation methods, in-game performance and worst-case per-
formance, offer distinct and useful feedback but present challenges that must be
addressed through research and careful engineering. For example, all games have
variance in their outcomes, and a large number of observed games may be nec-
essary to obtain a statistically significant measurement of one player’s edge over
another. In high-variance games such as poker, humans may be unwilling to play
the millions of games required to discern a small skill difference between two play-
ers. However, by exploiting properties of the game or our knowledge of a computer
agent’s strategy, we can compute lower variance, unbiased estimates of this differ-
ence. Likewise, measuring an agent’s worst-case performance tells us how subopti-
mal it is compared to a Nash equilibrium strategy. This is a far easier computational
task than computing a Nash equilibrium, and so may be feasible even when solv-
ing the game is infeasible. In HULHE, a direct, naive attempt to do so using the
standard expectimax algorithm may still take decades of CPU time. By exploit-

game is derived.
6While this connection between better abstractions and stronger strategies is intuitive and useful

in practice, it is unfortunately not supported by any theory. In fact, counter-examples called “abstrac-
tion pathologies” [103] have been discovered, where even a strict improvement to an abstraction can
result in greater suboptimality in the real game. We will discuss these effects in Chapters 2 through 5.
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ing knowledge of the game’s structure, we can make this worst-case performance
computation tractable and even convenient, and thus obtain a precise and objective
measure of our agent’s performance.

One final aspect of creating a strong computer agent is to consider what infor-
mation is known about the other agents. While a Nash equilibrium strategy is a
robust “defensive” strategy that is useful against any opponent, it will not take ad-
vantage of knowledge about the other agents in order to improve its performance.
For example, we may have some a priori information about an adversary, such as
observations of their earlier behaviour that demonstrates flaws or tendencies. We
can use this information during the solving process to create a counter-strategy
for our agent that will perform much better than a Nash equilibrium would. Al-
ternatively, our agent might observe the other agents while interacting with them,
and choose to change its strategy at runtime in order to improve its performance.
However, deviating from a Nash equilibrium strategy also risks lower performance,
if the agent’s beliefs about the opponent are inaccurate. By learning about the
other agents and using this knowledge, our agent can begin to trade off between
minimizing risk and maximizing utility by using a robust counter-strategy. Fortu-
nately this tradeoff is not necessarily linear, and it is possible to greatly improve an
agent’s expected performance in exchange for only a small penalty to its worst-case
performance.

1.3 An Overview of This Thesis
In this paper-based thesis, we will explore the end-to-end task of creating strong
game-playing agents through the Abstraction-Solving-Translation procedure. My
contributions to this field form a cohesive body of work that has advanced the state-
of-the-art in each of the steps listed above:

• Two new game solving algorithms, PCS-CFR and CFR-BR, that offer both
efficiency and qualitative improvements over earlier algorithms.

• State-space abstraction techniques that create effective models of large games,
and evaluation techniques for objectively measuring the quality of an abstrac-
tion.

• An unbiased and low-variance online evaluation technique for evaluating an
agent’s performance against competitors.

• An efficient worst-case analysis algorithm for precisely measuring an agent’s
suboptimality as compared to a Nash equilibrium.

• Online and offline techniques for modelling other agents, creating counter-
strategies to use against them, and choosing which counter-strategy to use.

In the poker domain, my research has contributed to the first meaningful victory
of a computer program over top human poker professionals [75], and to our solv-
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ing of the game of heads-up limit Texas hold’em, the first human-scale imperfect
information game to be essentially solved [17].

Each of these steps – abstraction and translation, game solving, evaluating in-
game performance, evaluating worst-case performance, opponent modelling, and
online adaptation – represents a significant problem area that has been the subject
of research by myself, my colleagues at the University of Alberta, and by my fellow
researchers around the world. Each chapter of this paper-based thesis will consist of
one of my previously published research papers that explores one or more of these
problem areas. The arc labels in Figure 1.2 indicate the chapters that discuss each
task. My research papers presented in this thesis are:

• Accelerating Best Response Calculation in Large Extensive Games [53].
IJCAI, 2011. Presented in Chapter 2.

• Efficient Nash Equilibrium Approximation through Monte Carlo Coun-
terfactual Regret Minimization [50]. AAMAS, 2012. Presented in Chap-
ter 3.

• Finding Optimal Abstract Strategies in Extensive-Form Games [49]. AAAI,
2012. Presented in Chapter 4.

• Evaluating State-Space Abstractions in Extensive-Form Games [52]. AA-
MAS, 2013. Presented in Chapter 5.

• Data Biased Robust Counter Strategies [51]. AISTATS, 2009. Presented
in Chapter 6.

• Strategy Evaluation in Extensive Games with Importance Sampling [19].
ICML, 2008. Presented in Chapter 7.

• Heads-up Limit Hold’em Poker is Solved [17]. Science, 2015. Presented
in Chapter 9.

In addition to these published works, Chapter 8 will present an analysis of the
2007 and 2008 Man-vs-Machine Poker Championships. In these events our poker-
playing agent “Polaris” competed against human poker pros, narrowly losing in
2007 and narrowly winning in 2008. The victory in 2008 marked the first time that
a poker-playing computer defeated human professionals in a meaningful competi-
tion. While the raw results of the competitions were not statistically significant, the
postgame analysis technique developed in Chapter 7 allows us to derive an unbiased
low-variance estimate of Polaris’ performance. For the first time, we will present an
analysis of the 2007 and 2008 competitions using this technique, and demonstrate
that Polaris earned its victory.

Throughout this thesis, the ideas presented will be validated using the game of
poker as a testbed domain. Poker is the canonical game of imperfect information,
and is famous for its themes of bluffing, deception, and psychological trickery and
insight, which are not typically considered “computer-like” qualities. The game is
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appealing to us for the same reasons that it was appealing to von Neumann: by
introducing imperfect information, stochastic outcomes, one or more adversaries of
varying skill, and an emphasis on maximizing winnings, poker represents steps in
several dimensions along the gradient towards real-life domains. To validate the
progress of our research in the poker domain, we will use many methods: compar-
isons against other computer agents in the Annual Computer Poker Competition,
comparisons against human experts in the 2007 and 2008 Man-vs-Machine Poker
Championships, objective measurements of our agents’ suboptimality as compared
to a Nash equilibrium, and finally, our ability to solve an ever-larger series of games,
culminating in our solution to heads-up limit Texas hold’em poker.
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When we use the Abstraction-Solving-Translation method to approximate an
optimal Nash equilibrium strategy, the natural question to ask is: how close of an
approximation is it? Errors can be introduced into a strategy from many sources,
such as the lossy abstraction and translation methods that make the computation
tractable, the lack of theoretical guarantees on real-game performance when solv-
ing an abstract game, the use of a game solving algorithm that is stopped before an
optimal strategy is reached, software errors, and so on. Calculating the suboptimal-
ity of a strategy allows us to measure these effects, and by measuring suboptimality
over time, we can evaluate the progress of our research.

Exploitability is the metric by which we measure this approximation. In a two-
player zero-sum game, Nash equilibria are typified by being unexploitable: they
can do no worse than tie, on expectation, against any adversary. Given an arbitrary
strategy, we can measure its suboptimality by measuring how much it will lose, on
expectation, against a worst-case “best response” opponent strategy. This evalua-
tion method lets us measure suboptimality even when a Nash equilibrium cannot
itself be tractably computed.1

However, computing a best response to an arbitrary strategy can be a chal-
lenging computational task in nontrivial games. The smallest human-scale poker
game of heads-up limit Texas hold’em was the inaugural game used in the Annual
Computer Poker Competition, and has been the primary research domain used by
researchers until recently. However, it was only in 2011 that my colleagues and
I developed the first algorithm capable of tractably computing best responses for
arbitrary strategies in large extensive form games such as HULHE, called “Accel-
erated Best Response”. This came long after the first game theoretic agent PsOpti
was developed in 2003 [11], the first CFR strategies were computed in 2007 [110],
or Polaris’ victory over human professionals in 2008 [75]. While all of these ear-
lier agents were intended to approximate Nash equilibria, and the later strategies
defeated earlier ones in one-on-one play, their suboptimality was unknown until
our technique was developed and it was unclear whether exploitability was actually
decreasing over time.

With the development of Accelerated Best Response, we were able for the first
time to evaluate the progress of our research over the previous five years. Addi-
tionally, by collaborating with our colleagues in the Annual Computer Poker Com-
petition, we evaluated many of the 2010 ACPC agents to evaluate the community
as a whole. Our experiments demonstrated that consistent progress towards ap-
proximating a Nash equilibrium had in fact been made, although even our human
professional calibre agent Polaris was shockingly exploitable by human standards.

After its development, the algorithm also guided the next five years of research
up to the present as it allowed us to evaluate abstraction techniques, measure the
convergence rate of new game solving algorithms, and investigate a new form of
“abstraction pathology” in which convergence in an abstract game can produce sub-

1If we already know a Nash equilibrium strategy, then we might use other metrics that more
directly compare the strategies, such as by comparing the action probabilities at each information
set. However, this approach is fraught with difficulties: what if multiple equilibria exist, how similar
are strategies where one takes an action that the other never does, and so on.
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optimal behaviour in the real game. The algorithm also contributed vital insights
towards the development of new game solving techniques. The key contribution of
the algorithm is a traversal of the game’s public states, during which we consider the
large vectors of private states that each player can be in. This public tree traversal
was used to form the PCS-CFR [50], CFR-BR [49], CFR-D [21], and CFR+ [95]
game solving algorithms, which offer improved efficiency and qualitative differ-
ences over the base CFR game solving algorithm. PCS-CFR, CFR-BR, and CFR+
will be presented in Chapters 3, 4, and 9 respectively.

Author’s contributions. Zinkevich and Waugh are responsible for the fast vector-
based terminal node evaluation that reduces the O(n2) operation to O(n). I am
responsible for the application of this trick to our large extensive form games. I
designed and implemented the algorithm, and collected and interpreted all of the
empirical results. Computing the exploitability of the ACPC agents required the
assistance of the agents’ programmers (Andersen, Byrnes, Ciucu, Ganzfried, and
Lin), who worked with me to run the experiment. The paper was principally written
by myself and Bowling, with assistance from Waugh and Zinkevich.
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Michael Johanson (johanson@ualberta.ca)
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Abstract:
One fundamental evaluation criteria of an AI technique is its performance in the
worst-case. For static strategies in extensive games, this can be computed using a
best response computation. Conventionally, this requires a full game tree traversal.
For very large games, such as poker, that traversal is infeasible to perform on mod-
ern hardware. In this paper, we detail a general technique for best response com-
putations that can often avoid a full game tree traversal. Additionally, our method
is specifically well-suited for parallel environments. We apply this approach to
computing the worst-case performance of a number of strategies in heads-up limit
Texas hold’em, which, prior to this work, was not possible. We explore these re-
sults thoroughly as they provide insight into the effects of abstraction on worst-case
performance in large imperfect information games. This is a topic that has received
much attention, but could not previously be examined outside of toy domains.

2.1 Introduction
Extensive games are a powerful framework for modelling sequential stochastic
multi-agent interactions. They encompass both perfect and imperfect information
games allowing work on extensive games to impact a diverse array of applications.

To evaluate an extensive game strategy, there are typically two options. The
first option is to acquire a number of strategies and use an appropriately structured
tournament. This is, by far, the most common option in the AI community, and is
used by the Annual Computer Poker Competition, the Trading Agent Competition,
RoboCup, the General Game Playing competition, SAT and Planning competitions,
and so on. While the tournament structure will ultimately declare a winner, it is not
always clear how to interpret the results. That is, which strategy is indeed the best
when the results are noisy, have intransitivities, or there are multiple evaluation
criteria?

The second option is to compute or bound the worst-case performance of a strat-
egy. Good worst-case performance suggests a strategy is robust to the choices of the
other players. In zero-sum games, the worst-case performance takes on additional

2The paper presented in this chapter originally appeared at the Twenty-Second International Joint
Conference on Artificial Intelligence (IJCAI-11). Copyright 2011 International Joint Conferences on
Artificial Intelligence. M. Johanson, K. Waugh, M. Bowling, and M. Zinkevich. Accelerating best
response calculation in large extensive games. Proceedings of the Twenty-Second International Joint
Conference on Artificial Intelligence, 258–265, 2011.

3The Appendix has additional results related to this paper.
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importance, as it is intimately tied to the Nash equilibrium concept. A strategy’s
worst-case performance can be computed using a best response calculation, a funda-
mental computation in game theory. Conventionally, the best response computation
begins by examining each state once to compute the value of every outcome, fol-
lowed by a pass over the strategy space to determine the optimal counter-strategy.
For many games, this is infeasible with modern hardware, despite requiring only
a single traversal of the game. For example, two-player limit Texas hold’em has
9.17 × 1017 game states, which would require ten years to examine even if one
could process three billion states per second.

Since best response computation has been thought to be intractable for two-
player limit Texas hold’em, evaluation has focused on competitions instead. The
Annual Computer Poker Competition holds an instant runoff tournament for vari-
ants of Texas hold’em poker. Historically, top entrants to this tournament have
aimed to approximate Nash equilibrium strategies using increasingly finer abstrac-
tions and efficient equilibrium-finding techniques. More accurate solutions to ever
finer abstractions were thought to improve worst-case performance and result in
stronger tournament performance. While tournament results suggested this was
happening, recent work shows that finer abstractions give no guarantee of improv-
ing worst-case performance [103]. This finding was demonstrated on a toy domain
where best-response computations were feasible. To date, no one has measured the
worst-case performance of a single non-trivial strategy in any of the competition
events.

In this paper, we describe general techniques for accelerating best response cal-
culations. The method uses the structure of information and utilities to avoid a full
game tree traversal, while also being well-suited to parallel computation. As a result
we are able for the first time to compute the worst-case performance of non-trivial
strategies in two-player limit Texas hold’em. After introducing these innovations,
we use our technique to empirically answer a number of open questions related to
abstraction and equilibrium approximation. We show that in practice finer poker
abstractions do produce better equilibrium approximations, but better worst-case
performance does not always result in better performance in a tournament. These
conclusions are drawn from evaluating the worst-case performance of over three
dozen strategies involving ten total CPU years of computation.

2.2 Background
We begin with a brief description of an extensive game; a formal definition can be
found in [76, Ch. 11]. An extensive game is a natural model of interaction between
players in an environment. A history h ∈ H is the sequence of actions taken by all
of the players, including the chance player whose actions represent random events
such as card deals or dice rolls. A player function P (h) determines which player
is next to act. Taking an action a in a history h produces a new history ha. A subset
of all histories are terminal histories. At a terminal history z, the game is over
and the players are assigned utilities according to a utility function, where ui(z)
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is the utility for player i. If there are two players and the utilities sum to 0 (so
u1(z) = −u2(z) for all z), then we say the game is zero-sum. An extensive game
can be intuitively thought of as a game tree, where each history is a game state and
actions by the players cause transitions to new histories.

In games of imperfect information, some of the actions by the players, or
chance, may not be fully revealed. One example is the game of poker, in which
chance deals private cards face-down to each player, and these cards determine the
utilities at the end of the game. To represent such cases, we use information sets
to group indistinguishable histories. If player 1 cannot see player 2’s cards, for
example, then all of the histories that are differentiated only by player 2’s cards are
in the same information set for player 1. When a player is to choose an action, their
choice only depends on the information set, not the underlying history.

A strategy for a player i, σi ∈ Σi, is a function that assigns a probability
distribution over the actions to each information set I . When player i must select
an action at I , they sample an action from the probability distribution σi(I). Note
that in games such as poker where the agents alternate positions after each game,
an agent will have one strategy to use in each position. A player has a specified
position in the game, while an agent has a strategy for every position in the game.

A strategy profile, σ ∈ Σ, consists of a strategy for each player. We use σ−i
to refer to all of the strategies in σ except for σi. As a strategy profile defines the
probability distribution over actions for all of the non-chance players, it is sufficient
to determine the expected utility for each player, denoted ui(σ). Similarly, we
define ui(σ1, σ2) = ui(σ1 ∪ σ2).

A best response is the optimal strategy for player i to use against the opponent
profile σ−i. It is defined as

bi(σ−i) = argmax
σ′i∈Σi

ui(σ−i, σ
′
i). (2.1)

The value of the best response, ui(bi(σ−i), σ−i), is how much utility the best re-
sponse will receive on expectation. In two player games, this value is also useful
as a worst-case evaluation of the strategy σi, as ui(σi, b−i(σi)) is a lower bound on
player i’s utility on expectation.

Two-player zero-sum games have a game value, vi, that is the lower bound
on the utility of an optimal player in position i. In this case, we use the term
exploitability to refer to the difference

εi(σi) = vi − ui(σi, b−i(σi)). (2.2)

The exploitability of a strategy is thus how much additional utility is lost to a worst-
case adversary by playing σi, instead of a strategy that achieves the game’s value.
A strategy is unexploitable, or optimal, if this difference is zero.

In large two player zero-sum games such as poker, the value of the game is
unknown and is intractable to compute; however, if the players alternate positions,
then the value of a pair of games is zero. If an agent plays according to profile σ
then its exploitability is

ε(σ) =
u2(σ1, b2(σ1)) + u1(b1(σ2), σ2)

2
. (2.3)
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Figure 2.1: Four trees for the game of 1-Card Poker.

A Nash equilibrium is a strategy profile σ that has the property that no player
can benefit by unilaterally deviating.

Definition 1 σ is a Nash Equilibrium if

ui(σ) ≥ ui(σ−i ∪ σ′i), ∀i ∈ N,∀σ′i ∈ Σi. (2.4)

In two player zero-sum games, a Nash equilibrium is unexploitable: against any
opponent the strategy will win no less than the value of the game. However, in
large games it may be intractable to compute such a strategy. In such cases, an
aligned goal is to attempt to approximate an equilibrium with a low exploitability
strategy, thus bounding its worst-case performance. Various abstraction and equi-
librium computation methods have been applied to making what were hoped to be
good equilibrium approximations. While many of these have been applied to build-
ing strategies for two-player limit Texas hold’em, it has been previously infeasible
to evaluate their worst-case performance in such a large domain.

2.3 Conventional Best Response
Conventionally, a best response can be easily computed through a recursive tree
walk that visits each game state once. To illustrate this algorithm, we will refer to
Figure 2.1, which presents four views of the simple game of 1-Card Poker. Consider
the diagram labelled “Game Tree”, which represents the exact state of the game.
The game begins at the root, where the white circle nodes represent chance privately
giving one card to Player 1. The children, black circles, represent chance privately
giving one card to Player 2. Descending through the tree, the white and black
squares represent players 1 and 2 respectively making public betting actions, before
arriving at the terminal nodes, represented by triangles.

Since there is private information in this game, each player has a different view
of the game, which is represented by the “P1 Information Set Tree” and “P2 Infor-
mation Set Tree” diagrams. In these diagrams, the private information provided to
the opponent by chance is unknown, and so the black and white circles for the op-
ponent have only one child. Each node in these trees represents a set of game states
that the player cannot distinguish. For example, if Player 1 reaches the terminal
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node labelled ‘A’ in their information set tree, they cannot determine whether they
are in the game tree node labelled ‘A,X’ or ‘A,Y’, as these nodes are distinguished
only by the opponent’s private information, while all of the public actions leading
to these nodes are identical.

Consider computing a best response from Player 2’s perspective. We will do
a recursive tree walk over their information set tree. At a terminal node, such as
the one labelled ‘X’, we must consider all of the game states that the game could
actually be in: ‘A,X’ or ‘B,X’. Specifically, we need to know the probability that
the opponent would reach the nodes ‘A’ and ‘B’ in their tree, according to their
strategy being used at their earlier decision points and chance’s strategy; we will
call this vector of probabilities the reach probabilities. Given these probabilities,
we can compute the unnormalized value for us reaching ‘X’ to be the sum over the
indistinguishable game states of each game state’s utility times that game state’s
reach probability. We then return this value during our tree walk. Recursing back
through our choice nodes, the black squares, we will pick the highest valued action
to create our best response strategy, and return the value of this action. At opponent
choice nodes and chance nodes, the white squares and circles, we simply return
the sum of the child values. When we return to the root, the returned value is the
value of the best response to the opponent’s strategy. Performing this computation
from each position gives us both best response values, and thus by Equation 2.3,
the exploitability of the strategy.

Note that there is an obvious enhancement to this algorithm. Instead of recom-
puting the opponent’s vector of reach probabilities at each terminal node, during our
recursive tree walk we can pass forward a vector containing the product of prob-
abilities of the earlier actions in the tree. This allows us to query the opponent’s
strategy once for each of its earlier actions and reuse the strategy’s action probabil-
ity at all of its descendent terminal nodes. In large domains, the opponent’s strategy
might be many gigabytes and be stored on disk or otherwise have a nontrivial cost
to do such queries, and it is important to take advantage of opportunities to cache
and reuse these computed values. Thus, our recursive tree walk will pass forward a
vector of reach probabilities for the states in an information set, and return the value
for reaching an information set.

2.4 Accelerated Best Response
The conventional best-response computation visits each game state exactly once,
and is thus seemingly efficient. However, in large games such as Texas hold’em
poker, with 1018 states, having to visit each state once makes the computation in-
tractable. In this section, we will show four ways that this conventional algorithm
can be accelerated: (1) traversing a different type of tree, which allows more oppor-
tunities for caching and reusing information; (2) using properties of the game’s util-
ities to efficiently evaluate terminal nodes of the public tree; (3) use game-specific
isomorphisms to further reduce the size of the expanded tree; (4) solving indepen-
dent sections of this new tree in parallel.

18



Public State Tree. We begin by presenting the heart of the accelerated best re-
sponse algorithm.

Definition 2 (Public State) We call a partition of the histories, P , a public parti-
tion and P ∈ P a public state if

• no two histories in the same information set are in different public states (i.e.,
if information is public, all players know it)

• two histories in different public states have no descendants in the same public
state (i.e., it forms a tree), and

• no public state contains both terminal and non-terminal histories (we call a
public state with terminal histories a terminal public state).

Informally, a public state is defined by all of the information that both players know,
or equivalently, what the game looks like to an observer that knows no private in-
formation. Like the histories, it forms a tree that we can traverse. Though it is not
provided by an extensive game’s description, it is trivial to come up with a valid
public information partition, and many games have a natural notion of public in-
formation. Following our earlier example of 1-Card Poker, Figure 2.1 shows an
example of the public tree, beside the much larger game tree.

In our earlier example illustrating the conventional algorithm, we used Fig-
ure 2.1 to describe that when we are at terminal node X, we do not know if the
opponent is at node A or B, and so we must compute the reach probabilities for the
opponent and chance reaching each of these states. However, there is an important
opportunity to reuse these probabilities; just as we cannot distinguish between their
private states, the opponent cannot distinguish if we are at node X or node Y, and
so the reach probabilities are identical when we are in either state.

The public tree provides a structured way to reuse these computed probabili-
ties. Every node in the public tree represents a set of game states that cannot be
distinguished by an outside observer, and also partitions the information sets for the
players. Instead of finding a best response by walking over the information set tree,
as in the conventional algorithm, we will instead recursively walk the much smaller
public tree. When we reach a terminal node such as the one labelled “A,B,X,Y” in
Figure 2.1, we know that player 1 could be in nodes A or B as viewed by player
2, and that player 2 could be in nodes X or Y as viewed by player 1. From player
2’s perspective, we can calculate the vector of player 1’s reach probabilities for A
and B once, and reuse these probabilities when computing the value for both X and
Y. Instead of passing forward a vector of reach probabilities and returning a single
value for the one information set being considered, as we do in the conventional
algorithm, we will instead pass forward a vector of reach probabilities and return
a vector of values, one for each of our information sets in the public state. At our
decision nodes, we will pick the best action for each information set by recursing
to get a vector of values for each action, and return a vector where each entry is the
max of that entry across the action value vectors. At opponent decision nodes and
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chance nodes, we will recurse to find the child value vectors, and return the vector
sum of these vectors. At terminal nodes, the value for each information set can be
found by evaluating each one at a time, as in the conventional algorithm, although
later we will present a faster technique that produces the same values.

Thus, the public tree walk performs exactly the same computations as the con-
ventional algorithm, and only the order of these computations has changed so that
we can more efficiently reuse the queries to the opponent’s strategy. In a game
like Texas hold’em where each player has up to 1326 information sets in each pub-
lic state, this allows us to avoid 1325 unnecessary strategy queries. As previously
mentioned, if querying the opponent’s strategy is nontrivial and forms a bottleneck
in the computation, the speed advantage is substantial, as it may do as little as 1

1326

times as much work. In practice, we estimate that this change may have resulted in
a 110 times speedup.

Efficient Terminal Node Evaluation. The second way to accelerate the calcu-
lation involves improving the terminal public state utility calculation by exploiting
domain specific properties of the game. When reaching terminal public states dur-
ing the traversal, we have a vector of probabilities for the opponent reaching that
public state with each of their information sets, and need to compute the value of
each of our information sets. A naive approach is to consider each pair of informa-
tion sets in the public state. This is an O(n2) computation, assuming n information
sets per player. However, games of interest typically have structure in their pay-
offs. Very often this structure can allow anO(n) computation at the terminal nodes,
particularly when the distribution over the players’ information sets are (nearly)
independent.

Example 1. Suppose the players’ information sets are factorable and only some
of the factors affect the utilities at any particular public state. For example, in a
negotiation game, a player may have information that affects the utility of many
different negotiated outcomes, but only the information associated with the actual
negotiated outcome affects that public state’s utility. If the number of relevant infor-
mation sets is only O(

√
n) and the information sets are independently distributed,

then the O(n2) computation can be done in only O(n) time.
Example 2. Suppose the players’ information sets make independent and addi-

tive contributions to the best-response player’s utility. For example, consider a game
where goods are being distributed and the players have independent estimates for a
good’s true value. If the player’s utility is the true value of the acquired goods, then
each player’s estimate is making an independent contribution. In such a situation,
the expected opponent’s contribution can be first computed independently of the
best-response player’s information set, allowing the whole utility calculation to be
completed in O(n) time.

Example 3. Suppose we can sort each players’ information sets by “rank”, and
the utility only depends upon the relative ordering of the players’ ranks. This is
exactly the situation that occurs in poker. For the moment, let us assume the dis-
tribution of the players’ ranks are independent. In this case, evaluating each of our
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information sets requires only O(n) work. We know that our weakest information
set will be weaker than some of the opponent’s hands, equal to some, and better
than some. We keep indices into the opponent’s ordered list of information sets to
mark where these changes occur. To evaluate our information set, we only need to
know the total probability of the opponent’s information sets in these three sections.
After we evaluate one of our information sets and move to a stronger one, we just
adjust these two indices up one step in rank.

This approach can be used in cases where the players’ hidden information is in-
dependent. However, even if the information sets are dependent, as in poker where
one player holding a card excludes other players from holding it, we may still be
able to do an O(n) evaluation. We will use the game of Texas hold’em as an exam-
ple. In this game, a 52-card deck is used, five cards are revealed, and each player
holds two cards. We proceed as before, and evaluate each of our (47 choose 2) pos-
sible hands, considering all (47 choose 2) hands for the opponent. However, some
of the opponent’s hands are not possible, as their cards overlap with ours. Using
the inclusion-exclusion principle, when computing the total probability of hands
better and worse than ours, we subtract the total probability of opponent hands that
include either of our cards. The opponent hand that uses both of our cards has
then been incorrectly subtracted twice, so we correct by adding its probability back
again. This O(n) procedure results in exactly the same value as the straightforward
O(n2) evaluation. In games such as poker, the ordering of the information sets may
not be known until the final action by the chance player is revealed. In such cases,
the information sets must be sorted after this occurs, resulting in an O(n log n)
sorting procedure followed by the O(n) terminal node evaluation. However, the
O(n log n) sorting cost can be paid once and amortized over all of the terminal node
evaluations following the final chance event, reducing its cost in practice. In Texas
hold’em, this O(n log n) evaluation runs 7.7 times faster than the straightforward
O(n2) evaluation.

Game-Specific Isomorphisms. The third way to accelerate the calculation de-
pends on leveraging known properties of a strategy. In some games, there may be
actions or events that are strategically equivalent. This is true in many card games,
where the rank of a card, but not its suit, indicates strength. For example, a 2♥
may be equivalent to a 2♠, at least until additional cards are revealed; if the chance
player later reveals a 3♠, 2♠ may then be stronger than a 2♥. We call such sets of
equivalent chance actions isomorphic, and choose one arbitrarily to be canonical.
If the domain has this property and if the strategy being evaluated is the same for
every member of each set of isomorphic histories, then the size of the public state
tree can be greatly reduced by only considering canonical actions. On returning
through a chance node during the tree walk, the utility of a canonical action must
be weighted by the number of isomorphic states it represents. In Texas hold’em,
this reduction results in a public state tree 21.5 times smaller than the full game.
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Parallel Computation. The fourth and final way in which we accelerate the cal-
culation is to choose subtrees of the public tree that can be solved independently.
We rely on the fact that the graph of public states forms a tree, as required by Def-
inition 2, and computing a value vector at a public state requires only the vector
of probabilities for the opponent to reach this public state and computations on the
subtree of public states descendent from it. Given this, any two public states where
one is not descendent from the other will share no descendents and thus have no
computations in common, and so can be solved in parallel. For example, when
reaching a public chance event during a public tree walk, all of the children could
be solved in parallel and the value vector returned as normal once each subtree
computation has finished.

In Texas hold’em poker, one natural choice of a set of independent subgames to
solve in parallel is at the start of the second round, called the “flop”. There are 7
nonterminal action sequences in the first round and 1755 canonical public chance
events at the start of the flop, resulting in 12,285 independent subgames for each
position, and 24,570 subgames total. Using the accelerated best response technique
described above, each subgame requires approximately 4.5 minutes on average to
solve, resulting in a 76 CPU-day sequential computation. Since these subgames are
independent, a linear speedup can be achieved by using 72 processors to solve the
set of subgames in just over a day. When all of the subgames are complete, walking
the small tree from the root to the start of the subgames requires less than a minute
to complete.

The four methods described above provide orthogonal speed enhancements over the
conventional best response algorithm. By combining them, we can now compute
the value of a best response in just over a day, in a domain where the computation
was previously considered intractable.

2.5 Application to Texas Hold’em Poker
Our new ability to calculate the exploitability of strategies in large extensive games
allows us to answer open questions about abstraction and approximate equilibria
which have been raised by the computer poker community. The Annual Computer
Poker Competition, which was started in 2006, has popularized poker as a chal-
lenging testbed for artificial intelligence research. Annually, over two dozen poker-
playing programs are submitted to the competition. Although many approaches are
used, the most popular technique is to approximate an unexploitable Nash equi-
librium strategy. However, the smallest and most popular variant of poker in the
competition, heads-up Limit Texas hold’em, has 9.17 ∗ 1017 game states, rendering
the computation of an exact solution intractable. Instead, a compromise is made
that is common to many large domains in artificial intelligence: a smaller abstract
game is constructed and solved, and the resulting abstract strategy is used in the
real game.

With this approach, the competitors have made substantial progress in discov-
ering more efficient game solving techniques, such as Counterfactual Regret Min-
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imization [110] and the Excessive Gap Technique [41]. More efficient algorithms
and more powerful hardware has allowed for larger, finer-grained abstractions to be
solved. These new abstractions have involved imperfect recall and a focus on public
information [104], and k-means-clustering-based approaches that better model the
real game [39]. This line of work has been motivated by an intuition that larger,
finer-grained abstractions will produce less exploitable strategies.

Unfortunately, recent work has shown this intuition to be unreliable. In a toy
poker game, counterexamples were found where refining an abstraction to a finer-
grained one produced strategies that were dramatically more exploitable [103].
These abstraction pathologies, if present in Texas hold’em, could result in highly
exploitable agents. As the best response calculation was until now intractable, their
possible effect has been unknown.

In the next section, we will present results from our best response technique in
two-player limit Texas hold’em. In particular, we aim to answer three key questions
from the computer poker community. First, how exploitable are the competition’s
approximations to equilibrium strategies? Second, is progress being made towards
the goal of producing an unexploitable strategy? Third, do abstraction pathologies
play a large role in Texas hold’em? In addition, we will raise new issues related to
abstraction and equilibria that these experiments have revealed.

2.6 Results in the Texas Hold’em Domain
We will begin by presenting the exploitability of several trivial Texas hold’em
agents, shown in Table 2.1, to give context to later results. All of our results are
presented in milli-big-blinds per game (mbb/g) won by the best response (or mil-
liblinds), where a milli-big-blind is 0.001 big blinds, the unit of the largest ante
in Texas hold’em.4 Note that the exploitability values presented are precise to
within floating-point inaccuracies. The “Always Fold” agent always chooses the
fold action to surrender the game. Thus, its exploitability is trivially calculable to be
750 mbb/g without our analysis. However, the exploitability of the “Always-Call”,
“Always-Raise”, and “50% Call 50% Raise” agents are not trivially computable.
The exploitability of “Always-Raise” has been independently computed [71] and
matches our result after changing units, but to our knowledge, our analysis is the
first for “Always-Call” and “50% Call 50% Raise”. For comparison, a rule-of-
thumb used by human poker professionals is that a strong player should aim to win
at least 50 mbb/g.

4In older papers [110; 54], the unit “milli-small-bets per game (mb/g)” was used. In heads-up
limit Texas hold’em, a small bet is equal in size to a big blind, and so milli-small-bets and milli-
big-blinds are equivalent. This paper adopted the milli-blind unit (mb/g) for consistency with other
games (such as no-limit poker) where blinds are used but bet sizes are not specified. In later papers,
the milli-blind unit (mb/g) was disambiguated to milli-big-blind (mbb/g). In this chapter, we have
adjusted the original paper’s mb/g units to mbb/g, for consistency with the other papers presented in
this thesis.
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Agent Name Exploitability (mbb/g)
Always-Fold 750
Always-Call 1163.48
Always-Raise 3697.69
50% Call, 50% Raise 2406.55

Table 2.1: Exploitability of four trivial Texas Hold’em Poker agents. Exploitability
is measured in milli-big-blinds per game lost to a best response.

Name vs (4) Exploitability (mbb/g)
(1) Hyperborean.IRO -3 ± 2 135.427
(2) Hyperborean.TBR -1 ± 4 141.363
(3) GGValuta -7 ± 2 237.330
(4) Rockhopper 0 300.032
(5) GS6.IRO -37 ± 6 318.465
(6) PULPO -9 ± 2 399.387
(7) Littlerock -77 ± 5 421.850

Table 2.2: Agents from the 2010 Computer Poker Competition. The “vs (4)” col-
umn shows the performance and 95% confidence interval against the top-ranked
agent in the competition. The “Exploitability” column shows the expected loss to
a best response in milli-big-blinds per game. Extended results are available in the
Appendix as Tables 11.1 and 11.2.

Computer Poker Competition Results. The Annual Computer Poker Competi-
tion is a driving force behind recent research into equilibrium-finding and abstrac-
tion techniques. However, due to the computational complexity of computing a best
response using conventional techniques, the worst-case performance of the agents
was unknown. With the cooperation of the agents’ authors, we have used our tech-
nique to calculate the exact exploitability of some of the agents that competed in
the 2010 ACPC. These results are presented in Table 2.2. A complete table of the
agents’ relative performance can be found on the competition’s website [44].

From Table 2.2, we see that there is a wide range in exploitability between these
agents, even though the first five appear to be similar from the tournament results.
This suggests that while this one-on-one performance gives us a bound on the ex-
ploitability of a strategy, it does not indicate how far away from optimal a strategy
is. Note that the PULPO strategy is not explicitly attempting to approximate an
unexploitable strategy as the other agents are; it uses a pure strategy that gives up
exploitability in return for better one-on-one performance against weak opponents.
In fact, PULPO was the winner of the 2010 Bankroll event, in which agents attempt
to maximize their utility against the other competitors. If the goal is to create an
agent that performs well against other agents, having the lowest exploitability is not
sufficient to distinguish a strategy from its competitors, or to win the competition.
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Figure 2.2: Exploitability of the University of Alberta’s competition strategies over
a four year span.
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Figure 2.4: Four different abstraction techniques as the size of the abstraction
varies.

Abstraction Pathologies. As we mentioned in Section 2.5, toy domains have
shown that increasing one’s abstraction size (even strictly refining an abstraction)
does not guarantee an improvement, or even no change, in worst-case performance.
Instead, examples in these domains show that even strict refinements can result in
more exploitable strategies. With the accelerated best response technique, we can
now for the first time explore this phenomenon in a large domain. In Figure 2.2, we
present an analysis of the University of Alberta Computer Poker Research Group’s
entries into the Annual Computer Poker Competition and two Man-vs-Machine
competitions over a period of four years. Over time, improvements in the imple-
mentation of our game solving algorithm [110] and access to new hardware have
allowed for larger abstractions to be created and solved. This increased abstraction
size has also allowed for more complex abstraction techniques that use new domain
features. In turn, this has led to a consistent decrease in the exploitability of the
strategies.

In Figure 2.3, we consider increasing sizes of abstractions generated by one par-
ticular abstraction methodology (Percentile Hand Strength) using the Counterfac-
tual Regret Minimization algorithm [110] to solve the abstraction. At each chance
node, the possible outcomes are ranked according to the Expected Hand Strength
Squared (E[HS2]) metric and divided equally into a number of buckets. For the
larger 10-5x2 and 12-6x2 bucket abstractions, the hands were first divided into 5
and 6 buckets respectively according to the E[HS2] metric then each was further
split into 2 buckets according to the E[HS] metric. This means that we have two
examples of strict refinement as described by [103]: 10-5x2 is a strict refinement of
5, and 12-6x2 is a strict refinement of 6. In the chart, we see that increasing the size
of the abstraction provides a consistent, albeit small improvement.
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Name Abs. Size Tilt % Exploitability (mbb/g)
Pink 266m 0,0,0,0 235.294
Orange 266m 7,0,0,7 227.457
Peach 266m 0,0,0,7 228.325
Red 115m 0,-7,0,0 257.231
Green 115m 0,-7,0,-7 263.702
Reference 115m 0,0,0,0 266.797

Table 2.3: Analysis of the 5 component strategies in the “Polaris” agent that com-
peted in the 2008 Man Machine Poker Championship. “Tilt %” shows the percent
added to a player’s payoff when they win a showdown, lose a showdown, fold, or
win due to their opponent folding. “Exploitability” is calculated in the unmodified
game.

Finally, in Figure 2.4, we show the results of varying the abstraction size for four
different abstraction techniques. The “PR Perc. E[HS2]” abstraction technique has
perfect recall and uses the Percentile Hand Strength technique as described in [110].
The “IR Public Perc. E[HS2]” abstraction technique uses imperfect recall and pub-
lic information as described in [104]. The two “k-Means” abstraction families also
use imperfect recall and the same public buckets, and also use a k-means-clustering
technique based on a player’s hand’s expected value and its potential to improve. In
all four cases, increasing the abstraction size results in lower exploitability.

From Figures 2.2, 2.3 and 2.4, it appears that the abstraction pathologies en-
countered in small games do not appear to be common in the types and sizes of
abstractions used in limit Texas hold’em. In these experiments, using one abstrac-
tion technique and solving increasingly larger games results in consistent decreases
in exploitability. While diminishing returns affect the result, this decline appears
predictable.

Tilting the payoffs. While Nash equilibrium approximations are robust against
any opponent, they do not exploit all of the mistakes made by their opponents. Hu-
man domain knowledge in poker suggests that an “aggressive” strategy that chooses
betting options more frequently, while making an exploitable mistake, may per-
form better against weak opponents. In 2008’s Man-vs-Machine competition, the
Polaris agent included off-equilibrium aggressive strategies that were created by
running the counterfactual regret minimization algorithm on a variety of non-zero-
sum games that asymmetrically increased the payoff for the winner or decreased
the penalty for the loser. We refer to such slight modifications as tilting the game,
and the resulting strategy as a tilt. Table 2.3 shows the five colour-named compo-
nent strategies used in Polaris, along with the percent modification to the payoffs
for when a player wins a showdown, loses a showdown, loses by folding, and wins
by the opponent folding. Thus, the “Orange” agent believes it gets 7% more when-
ever it wins, and pays the normal penalty when it loses. “Pink” was an unmodified
equilibrium; “Red” and “Green” used a smaller abstraction, and so an equilibrium
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Figure 2.5: Exploitability of strategies when a bonus is added to the winner’s utility.

in their space is listed for comparison.
Surprisingly, the resulting strategies were each slightly less exploitable in the

untilted real game than “Pink”, the abstract equilibrium. To further investigate this
effect, we used the “Orange” tilt, which affects only the winner’s payoffs, and var-
ied the modification from -25% to 25% in one of our smaller new abstractions. The
results of this experiment are shown in Figure 2.5. An equilibrium in this abstrac-
tion (at 0%) is exploitable for 267.235 mbb/g, while a tilt of 4% reaches 261.219
mbb/g and 7% reaches 261.425 mbb/g. One possible explanation is that the change
in the resulting strategies masks some of the errors caused by the abstraction pro-
cess. This is a surprising result that warrants further study.

Overfitting. Recall that the most popular approach in this domain is to minimize
exploitability in an abstract game as a proxy for minimizing exploitability in the full
game. Consider the counterfactual regret minimization algorithm for solving these
abstract games, a popular choice among competitors. The technique iteratively im-
proves its approximate solution, eventually converging to an unexploitable strategy
in the abstract game. While we know that the exploitability is falling in the abstract
game as the iterations increase, Figure 2.6 shows the exploitability in the full game
for two equal-sized abstractions, as the number of iterations increases. We see that
the sequence of generated strategies rapidly reduce exploitability initially, but then
show a slow and steady increase in worst-case performance, all the while abstract
game exploitability is decreasing. This is essentially a form of overfitting, in which
the strategy’s performance continues to improve in the training domain while be-
coming worse in its testing domain. The implications of this phenomenon deserves
considerable further study.

In summary, the results that we have presented show that the poker community
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Figure 2.6: Exploitability of strategies after selected iterations of the solution tech-
nique.

has made consistent progress towards the goal of producing an unexploitable poker
agent. While the least exploitable agent found so far is exploitable for 135 mbb/g,
more than 2.5 times a professional’s goal of 50 mbb/g, it is unlikely that an adver-
sary that does not know the complete strategy a priori would be able to achieve this
value. Before this work, researchers had few options to evaluate new abstraction
techniques and domain features. Now, continued progress towards the goal can be
measured, providing feedback to the abstraction process.

2.7 Conclusion
In this paper, we have presented a new technique that accelerates the best response
calculation used to evaluate strategies in extensive games. Through this technique,
we have evaluated state-of-the-art agents in the poker domain and benchmarked
the community’s progress towards the goal of producing an unexploitable poker
agent. Our results show that there has been consistent progress towards this goal as
the community discovers more efficient game solving algorithms, new abstraction
techniques, and gains access to more powerful hardware. Although recent results
have shown that no useful guarantees exist with the community’s approach, we have
now demonstrated that progress has been made.
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The Abstraction-Solving-Translation procedure allows us to compute strong
strategies for games that are too large to solve directly. However, the time and
memory efficiency of our game solving algorithm remains critically important. The
ability to tractably solve larger games allows us to use a finer-grained abstraction
that is a better model of the real game. While there are no theoretical guarantees
on improved performance, in practice larger and finer-grained strategies tend to be
less exploitable and perform better in one-on-one play than their smaller, coarser
cousins.

Guided by this intuition, the Annual Computer Poker Competition has helped to
drive research into developing ever-more-efficient game solving algorithms. Start-
ing in 2006, the sequence-form linear programming technique [80; 58] was used
to solve coarse abstractions of subgames of heads-up limit Texas holdem, which
were then merged into a complete abstract strategy. In 2007, the development of
the more memory efficient Range of Skill [108] and Excessive Gap Technique [34;
41] algorithms allowed for larger four-round abstract games to be solved, and the
resulting strategies had improved in-game performance.

Later in 2007, Zinkevich, Bowling, Piccione and myself introduced the Coun-
terfactual Regret Minimization (CFR) algorithm [110], which has become the state-
of-the-art technique for solving large imperfect information games. CFR is a set of
self-play algorithms in which strategies are repeatedly played against each other,
and then updated at each information set to minimize regret: the difference in util-
ity between the actions chosen in earlier games, and the best action in hindsight. In
the limit, the average strategy used by the players converges to a Nash equilibrium.
CFR requires memory equal to twice that needed to store a strategy profile (for the
“current” and “average” strategy profiles), and converges quickly and predictably
towards a Nash equilibrium.

A subset of the CFR family, called Monte Carlo CFR (MCCFR) [62], allows
for the use of sampling techniques while training a strategy. Instead of performing
complete and precise updates during each iteration, MCCFR algorithms perform
very fast and noisy updates and require many more iterations, but converge faster
overall. This use of sampling is also critically important for solving abstract games,
as it allows us to avoid traversing the complete real game tree on each iteration,
where even one iteration may be intractable.

In this chapter’s paper, we present the Public Chance Sampling CFR (PCS) al-
gorithm. PCS was developed immediately after the Accelerated Best Response al-
gorithm, and combines that algorithm’s public tree traversal and fast terminal node
evaluation with MCCFR’s sampling techniques. The result is an algorithm that
converges faster than the earlier CFR and MCCFR variants in games that involve
a mix of public and private information, such as the public board cards and private
hole cards found in poker games. In addition, PCS also became a transitional step
toward descendant algorithms that offered efficiency and qualitative improvements,
such as CFR-BR [49] and CFR+ [94; 17; 95], which will be discussed in Chapters 4
and 9 respectively. Another descendant, CFR-D [21], is the first imperfect informa-
tion game solving algorithm that uses decomposition while retaining convergence
guarantees.
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Abstract:
Recently, there has been considerable progress towards algorithms for approximat-
ing Nash equilibrium strategies in extensive games. One such algorithm, Counter-
factual Regret Minimization (CFR), has proven to be effective in two-player zero-
sum poker domains. While the basic algorithm is iterative and performs a full game
traversal on each iteration, sampling based approaches are possible. For instance,
chance-sampled CFR considers just a single chance outcome per traversal, result-
ing in faster but less precise iterations. While more iterations are required, chance-
sampled CFR requires less time overall to converge. In this work, we present new
sampling techniques that consider sets of chance outcomes during each traversal to
produce slower, more accurate iterations. By sampling only the public chance out-
comes seen by all players, we take advantage of the imperfect information structure
of the game to (i) avoid recomputation of strategy probabilities, and (ii) achieve
an algorithmic speed improvement, performing O(n2) work at terminal nodes in
O(n) time. We demonstrate that this new CFR update converges more quickly than
chance-sampled CFR in the large domains of poker and Bluff.

3.1 Introduction
Extensive games are an intuitive formalism for modelling interactions between
agents in a sequential decision making setting. One solution concept in such do-
mains is a Nash equilibrium. In two-player zero-sum domains, this is equivalent to a
minimax strategy, which minimizes each agent’s expected worst-case performance.
For games of moderate size, such a strategy can be found using linear program-
ming [58]. For larger games, techniques such as Counterfactual Regret Minimiza-
tion (CFR) [110] and the Excessive Gap Technique [41] require less memory than
linear programming and are capable of finding an equilibrium in games (also known
as solving a game) with up to 1012 game states.

CFR is an iterative procedure that resembles self-play. On each iteration, CFR
performs a full game tree traversal and updates its entire strategy profile to mini-
mize regret at each decision. Theoretical bounds suggest that the procedure takes

1The paper presented in this chapter originally appeared at the Eleventh International Confer-
ence on Autonomous Agents and Multiagent Systems (AAMAS-12). Copyright 2012 International
Foundation for Autonomous Agents and Multiagent Systems. M. Johanson, N. Bard, M. Lanctot, R.
Gibson, and M. Bowling. Efficient Nash Equilibrium Approximation through Monte Carlo Counter-
factual Regret Minimization. Proceedings of the Eleventh International Conference on Autonomous
Agents and Multiagent Systems (AAMAS-12), 837-844, 2012.
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a number of iterations at most quadratic in the size of a player’s strategy [110,
Theorem 4]. Thus, as we consider larger games, not only are more iterations re-
quired to converge, but each traversal becomes more time consuming. A variant
known as Chance-Sampled (CS) CFR [62; 110] samples one set of chance out-
comes per iteration and traverses only the corresponding portion of the game tree.
Compared to the basic algorithm, this sampling procedure results in faster but less
precise strategy updates. In large games, the drastic reduction in per-iteration time
cost outweighs the increased number of iterations required for convergence to an
optimal strategy.

While CS considers only a single set of chance outcomes per iteration, recent
work [53] towards fast best-response computation has shown that tree traversal and
evaluation can be accelerated by simultaneously considering sets of information
sets for each player. This allows for the caching and reuse of computed values,
and also allows a fast terminal node evaluation in which O(n2) work can often be
done in O(n) time. While best response calculation in large games was previously
considered intractable, the new technique was shown to perform the computation
in just over one day [53].

In this paper, we apply this new tree traversal to CFR, resulting in three new
sampling variants: Self-Public Chance Sampling (SPCS), Opponent-Public Chance
Sampling (OPCS), and Public Chance Sampling (PCS). The new techniques re-
verse the previous trend in that they advocate less sampling: a small number of
slow iterations, each updating a large number of information sets, yielding precise
strategy updates while reusing computed values. In particular, PCS takes advantage
of the computation reuse and fast terminal node evaluation used in accelerating the
best response computation. We will prove the convergence of the new techniques,
investigate their qualities, and demonstrate empirically that PCS converges more
quickly to an equilibrium than CS in both poker and the game of Bluff.

3.2 Background
An extensive game is a general model of sequential decision-making with imper-
fect information. Extensive games consist primarily of a game tree whose nodes
correspond to histories (sequences) of actions h ∈ H . Each non-terminal history,
h, has an associated player P (h) ∈ N ∪ {c} (where N is the set of players and c
denotes chance) that selects an action a ∈ A(h) at that history h. When P (h) = c,
fc(a|h) is the (fixed) probability of chance generating action a at h. We call h a pre-
fix of history h′, written h v h′, if h′ begins with the sequence h. Each terminal
history z ∈ Z ⊂ H has associated utilities for each player i, ui(z). In imperfect
information games, histories are partitioned into information sets I ∈ Ii repre-
senting different game states that player i cannot distinguish between. For example,
in poker, player i does not see the opponents’ private cards, and thus all histories
differing only in the private cards dealt to the opponents are in the same information
set for player i. For histories h, h′ ∈ I , the actions available at h and h′ must be the
same, and we denote this action set by A(I). We also assume perfect recall that
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guarantees players always remember information that was revealed to them and the
order in which it was revealed.

A strategy for player i, σi, is a function that maps each I ∈ Ii to a probability
distribution over A(I). We denote Σi as the set of all strategies for player i. A
strategy profile is a vector of strategies σ = (σ1, . . . , σ|N |), one for each player.
We let σ−i refer to the strategies in σ excluding σi.

Let πσ(h) be the probability of history h occurring if all players choose actions
according to σ. We can decompose

πσ(h) =
∏
i∈N

πσi (h)
∏
h′avh
P (h′)=c

fc(a|h′)

into each player’s and chance’s contribution to this probability. Here, πσi (h) is the
contribution from player i when playing according to σi. Let πσ−i(h) be the product
of all players’ contribution (including chance) except that of player i. Furthermore,
let πσ(h, h′) be the probability of history h′ occurring, given h has occurred with
πσi (h, h′), and πσ−i(h, h

′) defined similarly.
Given a strategy profile, σ, we define a player’s best response as a strategy

that maximizes their expected payoff, assuming all other players play according to
σ. The best-response value for player i is the value of that strategy, bi(σ−i) =
maxσ′i∈Σi

ui(σ
′
i, σ−i). A strategy profile σ is an ε-Nash equilibrium if no player

can deviate from σ and gain more than ε; i.e. ui(σ) + ε ≥ maxσ′i∈Σi
ui(σ

′
i, σ−i) for

all i ∈ N . If ε = 0, then σ is a Nash equilibrium and every player is playing a best
response.

In this paper, we will focus on two-player zero-sum games: N = {1, 2} and
u1(z) = −u2(z) for all z ∈ Z. In this case, the exploitability of σ, εσ = (b1(σ2) +
b2(σ1))/2, measures how much σ loses to a worst case opponent when players
alternate positions. A Nash equilibrium has an exploitability of 0.

Lastly, define C = {h ∈ H : P (h) = c} to be the set of all histories where
it is chance’s turn to act. We will assume that C can be partitioned into three sets
with respect to player i: Si, Oi, and P . Each set contains the histories h whose
actions a ∈ A(h), or chance events, are observable only by player i (Si), only
by player i’s opponent (Oi), or by both players (P). We refer to chance events
occurring at h ∈ Si ∪ Oi as private and to chance events occurring at h ∈ P as
public. In addition, we assume that the actions available to the players throughout
the game are independent of the private chance events. These two assumptions
hold for a large class of games, including poker as well as any Bayesian game with
observable actions [76] (e.g. , Bluff or negotiation games); furthermore, games can
often be modified by adding additional chance actions to satisfy the property.

3.2.1 Counterfactual Regret Minimization
Counterfactual Regret Minimization (CFR) resembles a self-play algorithm where
we iteratively obtain strategy profiles σt based on regret values accumulated through-
out previous trials. At each information set I ∈ Ii, the expected value for player
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i at I under the current strategy is computed, assuming player i plays to reach I .
This expectation is the counterfactual value for player i,

vi(σ, I) =
∑
z∈ZI

ui(z)πσ−i(z[I])πσ(z[I], z),

where ZI is the set of terminal histories passing through I and z[I] is the prefix
of z contained in I . For each action a ∈ A(I), these values determine the coun-
terfactual regrets at iteration t, rti(I, a) = vi(σ

t
(I→a), I) − vi(σt, I), where σ(I→a)

is the profile σ except at I , action a is always taken. The regret rti(I, a) measures
how much player i would rather play action a at I than play σt. The counterfac-
tual regrets are accumulated and σt is updated by applying regret matching [40;
110] to the accumulated regrets. Regret matching is a regret minimizer; i.e. , over
time, the average of the counterfactual regrets approaches 0. Minimizing counter-
factual regret at each information set minimizes the average overall regret [110,
Theorem 3], defined by

RT
i = max

σ′∈Σi

1

T

T∑
t=1

(
ui(σ

′, σt−i)− ui(σti , σt−i)
)
.

It is well-known that in a two-player zero-sum game, minimizing average over-
all regret implies that the average profile σT is an approximate equilibrium. CFR
produces an ε-Nash equilibrium in O(|H||Ii|/ε2) time [110, Theorem 4].

Rather than computing the exact counterfactual values on every iteration, one
can instead sample the values using Monte Carlo CFR (MCCFR) [62]. Chance-
sampled (CS) CFR [110] is an instance of MCCFR that considers just a single set
of chance outcomes per iteration. In general, letQ be a set of subsets, or blocks, of
the terminal histories Z such that the union of all blocks spans Z. For CS, Q is the
partition of Z where two histories belong to the same block if and only if no two
chance events differ. In addition, a probability distribution overQ is required and a
block Q ∈ Q is sampled on each iteration, giving us the sampled counterfactual
value for player i,

ṽi(σ, I) =
∑

z∈ZI∩Q

ui(z)πσ−i(z[I])πσ(z[I], z)/q(z),

where q(z) is the probability that z was sampled. In CS, we sample the blocks
according to the likelihood of the chance events occurring, so that

q(z) =
∏
havz
h∈C

fc(a|h).

The counterfactual regrets are then measured according to these sampled values,
as opposed to “vanilla CFR” that uses the true values vi(σ, I). Sampling reduces
enumeration to the smaller subset Q rather than all of Z, decreasing the amount of
time required per iteration. For a fixed ε, CS requires more iterations than vanilla
CFR to obtain an ε-Nash equilibrium; however, the overall computing time for CS
is lower in poker games [109, Appendix A.5.2].
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3.2.2 Accelerated Traversal and Evaluation
A recent paper describes how to accelerate the computation of the best response
value in large extensive form games [53]. This technique traverses a game’s public
tree, which represents the state of the game visible to all players. The authors
observe that each player’s strategy must be independent of the other player’s private
information. As such, a player’s action probabilities can be computed just once
while considering the opponent’s entire set of possible private states in one traversal.

In addition, the authors describe an efficient terminal node evaluation that con-
siders a range of n information sets for each player in tandem. If the game’s payoffs
exhibit structure, then it may be possible to exploit this structure and reduce a naive
O(n2) computation to O(n). Examples of structured payoffs include games where
utilities are affected by only certain factors within the players’ information sets,
such as in a negotiation game, and games where information sets can be ranked
from weakest to strongest, such as in poker. This algorithmic speedup is not being
used in any of the previously published equilibrium solvers. In Section 3.3, we de-
scribe how to use these ideas to produce a new equilibrium solver that outperforms
the current state of the art.

3.2.3 Domains: Poker and Bluff
The Game of Poker Our main poker game of interest is heads-up (i.e. , two-
player) limit Texas hold’em poker, or simply Texas hold’em. The game uses a
standard 52 card deck and consists of 4 betting rounds. In the first round, the pre-
flop, each player is dealt two private cards. For subsequent rounds – in order, the
flop, turn, and river – public community cards are revealed (3 at the flop and 1 at
each of the turn and river). During each round, players sequentially take one of three
actions: fold (forfeit the game), call (match the previous bet), or raise (increase the
bet). There is a maximum of 4 raises per round, each with a fixed size, where the
size is doubled on the final two rounds. If neither player folds, then the player with
the highest ranked poker hand wins all of the bets.

Texas hold’em contains approximately 3.2 × 1014 information sets. The large
size of the game makes an equilibrium computation intractable for all known al-
gorithms; CFR would require more than ten petabytes of RAM and hundreds of
CPU-years of computation. A common approach is to use state-space abstraction
to produce a similar game of a tractable size by merging information sets or restrict-
ing the action space [39]. In Section 3.4, we consider several abstractions of Texas
hold’em and two new variants of Texas hold’em that are small enough to compute
equilibrium solutions using CFR without abstraction. The first new variant is [2-1]
hold’em. The game is identical to Texas hold’em, except consists of only the first
two betting rounds, the pre-flop and flop, and only one raise is allowed per round.
This reduces the size of the game to 16 million information sets. Similarly, [2-4]
hold’em has just two rounds, but the full four raises are allowed per round, result-
ing in 94 million information sets in total. In both [2-1] hold’em and [2-4] hold’em,
the size of a raise doubles from the pre-flop to the flop.
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Figure 3.1: Relationship between MCCFR variants

The Game of Bluff Bluff, also known as Liar’s Dice, Dudo, and Perudo, is a
dice-bidding game. In our version, Bluff(D1,D2), each die has six sides with faces
1 to 5 and a star: ?. Each player i rolls Di of these dice and looks at them without
showing them to their opponent. On each round, players alternate by bidding on
the outcome of all dice in play until one player claims that the other is bluffing (i.e.
, claims that the bid does not hold). A bid consists of a quantity of dice and a face
value. A face of ? is considered “wild” and counts as matching any other face. For
example, the bid 2-5 represents the claim that there are at least two dice with a face
of 5 or ? among both players’ dice. To place a new bid, the player must increase
either the quantity or face value of the current bid; in addition, lowering the face is
allowed if the quantity is increased. The player calling bluff wins the round if the
opponent’s last bid is incorrect, and loses otherwise. The losing player removes one
of their dice from the game and a new round begins, starting with the player who
won the previous round. When a player has no more dice left, they have lost the
game. A utility of +1 is given for a win and −1 for a loss.

In this paper, we restrict ourselves to the case where D1 = D2 = 2, a game
containing 352 million information sets. Note that since Bluff(2,2) is a multi-round
game, the expected values of Bluff(1,1) are precomputed for payoffs at the leaves
of Bluff(2,1), which is then solved for leaf payoffs in the full Bluff(2,2) game.

3.3 New Monte Carlo CFR Variants
Before presenting our new CFR update rules, we will begin by providing a more
practical description of chance-sampled CFR. On each iteration, we start by sam-
pling all of chance’s actions: the public chance events visible to each player, as
well as the private chance events that are visible to only a subset of the players.

39



In poker, this corresponds to randomly choosing the public cards revealed to the
players, and the private cards that each player is dealt. In the game of Bluff, there
are no public chance events, and only private chance events are sampled for each
player. Next, we recursively traverse the portion of the game tree that is reachable
given the sampled chance events, and explore all of the players’ actions. On the way
from the root to the leaves, we pass forward two scalar values: the probability that
each player would take actions to reach their respective information sets, given their
current strategy and their private information. On the way back from the leaves to
the root, we return a single scalar value: the sampled counterfactual value ṽi(σ, I)
for player i. At each choice node for player i, these values are all that is needed to
calculate the regret for each action and update the strategy. Note that at a terminal
node z ∈ Z, it takes O(1) work to determine the utility for player i, ui(z).

We will now describe three different methods of sampling chance events that
have slower iterations, but do more work on each iteration. Figure 3.1 shows the
relationship between CS and these three new variants, all of which belong to the
MCCFR family [62] of update rules.

Opponent-Public Chance Sampling Consider a variation on CS, where instead
of sampling at every chance node, we sample an action for just the opponent’s
chance and the public chance events while enumerating all of the possible outcomes
at our private chance events. We will call this variant Opponent-Public Chance
Sampling (OPCS). This can be formalized within the MCCFR framework by letting
Q be the partition of Z such that two histories fall into the same block if and only if
the actions taken at opponent and public chance events match. The probability that
z is sampled is then

q(z) =
∏
havz

h∈Oi∪P

fc(a|h).

Naively, we could use the same recursive tree walk that we used for CS to per-
form this update, by doing one tree walk for each of our private chance outcomes
in turn. However, this update allows us to traverse the sampled portion of the game
tree in a much more efficient way. Since our opponent does not observe our pri-
vate chance events, their strategy and choice of actions, given their single sampled
chance event, cannot depend on which information set we are in. This means that
we can update all of our information sets that are consistent with the current game
state and the sampled public chance events at the same time, thus amortizing the
cost of walking the tree over many updates. This can be achieved by a new re-
cursive tree walk that passes forwards a vector for us (our probability of reaching
the current game state with each of our private chance outcomes) and a scalar for
the opponent (their probability of reaching the current game state with their single
sampled private chance outcome), and returns a vector of values (our counterfactual
value for each of our private chance outcomes).

At terminal nodes, we must evaluate n possible game states, each consisting of
a different private chance outcome for us and one chance outcome for the opponent.
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This requires O(n) time. In comparison to CS, each iteration of OPCS is slower,
but performs more work by updating a much larger number of information sets.

Self-Public Chance Sampling In OPCS, we enumerate over all of our possible
private chance outcomes. Alternatively, we can instead enumerate over all of our
opponent’s private chance outcomes while sampling our own private chance out-
comes and the public chance outcomes. We will call this variant Self-Public Chance
Sampling (SPCS). This can similarly be formalized by defining Q to be the parti-
tion of Z that separates histories into different blocks whenever the actions taken at
our private or public chance events differ, where

q(z) =
∏
havz
h∈Si∪P

fc(a|h)

is the probability of sampling terminal history z.
As in OPCS, we can use an efficient recursive tree walk to perform this update.

Since we cannot observe the opponent’s private chance events, our strategy and
choice of actions cannot depend on which information set they are in. Thus, when
computing our counterfactual value, we will consider every possible private chance
outcome for our opponent. Doing so forms a more accurate estimate of the true
counterfactual value for our sampled outcome, compared to the noisy estimate CS
and OPCS obtain through one sampled opponent private chance outcome. The
SPCS tree walk passes forward a scalar for ourselves (the probability of reaching the
current game state with our single chance outcome) and a vector for the opponent
(their probabilities of reaching the current game state with each of their private
chance outcomes), and returns a scalar (the counterfactual value for our sampled
outcome).

At terminal nodes, we must evaluate up to n possible game states, formed by
our single chance outcome and up to n possible chance outcomes for the opponent.
This requiresO(n) time. In comparison to CS, each iteration is slower and performs
the same number of updates to the strategy, but each update is based off of much
more precise estimates.

Public Chance Sampling We will now introduce the core contribution of this
work, called Public Chance Sampling (PCS), that combines the advantages of both
of the previous two updates, while taking advantage of efficient terminal node eval-
uation to keep the time cost per iteration inO(n). In PCS, we sample only the public
chance events, and consider all possible private chance events for ourself and for
the opponent. In other words, we define Q to be the partition of Z that separates
histories into different blocks whenever the actions taken at a public chance event
differ, where

q(z) =
∏
havz
h∈P

fc(a|h)

is the probability of sampling z ∈ Z.
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PCS relies on the property that neither us nor our opponent can observe the
other’s private chance events, and so the action probabilities for each remain the
same across the other’s private information. Thus, we can perform a CFR update
through a recursive tree walk with the following structure. On the way from the root
to the leaves, we will pass forwards two vectors: one containing the probabilities of
us and one containing the probabilities of the opponent reaching the current game
state, for each player’s n possible private chance outcomes. On the way back, we
will return a vector containing the counterfactual value for each of our n information
sets.

At the terminal nodes, we seemingly have an O(n2) computation, as for each
of our n information sets, we must consider all n of the opponent’s possible private
outcomes in order to compute our utility for that information set. However, if the
payoffs at terminal nodes are structured in some way, we can often reduce this to an
O(n) evaluation that returns exactly the same value as the O(n2) evaluation [53].
Doing so gives PCS the advantage of both SPCS (accurate strategy updates) and
OPCS (many strategy updates) for the same evaluation cost of either.

3.3.1 Algorithm
The three new chance-sampling variants, along with CS, are shown in Algorithm 1.
The WalkTree function traverses down the game tree by recursively concatenating
actions, starting with the empty history h = ∅, and updates player i’s regrets and
average strategy on the way back up. Two vectors are maintained, one for player
i, ~πi, and one for the opponent, ~π−i. These vectors keep track of the probabilities
of reaching each information set consistent with the current history h, with each
element corresponding to a different private chance outcome for that player. In
CS, both vectors have length one (i.e. , are scalars). In OPCS, ~π−i has length
one because the opponent’s private chance events are being sampled. Similarly, in
SPCS, ~πi has length one.

When the current sequence h is a terminal history (line 6), the utility is com-
puted and returned. At line 7, ~fc,i(h) and ~fc,−i(h) are the vectors corresponding to
the probability distribution over player i’s and the opponent’s private chance out-
comes, respectively, and � represents element-wise vector multiplication. Again,
one or both vectors may have length one depending on the selected variant, in which
case the single element is always 1. For OPCS and PCS, ~ui is a vector containing a
utility for each of player i’s private outcomes; for SPCS and CS, ~ui is a length one
vector corresponding to the utility for player i’s sampled private outcome. PCS uses
theO(n2) toO(n) algorithmic improvement to compute ~ui, which will be described
in Section 3.3.2.

Chance events are handled by lines 8 to 14. When one of the four conditions at
line 8 holds, we are at a chance event that is to be sampled; otherwise, we consider
all possible chance events at h. In the latter case, we must take a dummy action (line
12) simply to continue traversing the tree. This action has no effect on the remainder
of the tree walk due to our assumption that player actions are independent of private
chance events.
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Algorithm 1 PCS Algorithm
1: Require: a variant v ∈ {CS,OPCS,SPCS,PCS}.
2: Initialize regret tables: ∀I, rI [a]← 0.
3: Initialize cumulative strategy tables: ∀I, sI [a]← 0.
4:
5: function WALKTREE(history h, player i, reach probability ~πi, reach probability ~π−i)
6: if h ∈ Z then
7: return ~fc,i(h)� ~ui

(
h | ~π−i � ~fc,−i(h)

)
8: else if


(v = PCS and h ∈ P) or
(v = SPCS and h ∈ Si ∪ P) or
(v = OPCS and h ∈ Oi ∪ P) or
(v = CS and h ∈ C)

 then

9: Sample outcome a ∈ A(h) with probability σc(a|h)
10: return WALKTREE(ha, i, ~πi, ~π−i)
11: else if h ∈ C then
12: Select dummy outcome a ∈ A(h)
13: return WALKTREE(ha, i, ~πi, ~π−i)
14: end if
15: ~I ← lookupInfosets(h)
16: ~u← ~0
17: ~σ ← regretMatching(~I)
18: for each action a ∈ A(h) do
19: if P (h) = i then
20: ~π′i ← ~σ[a]� ~πi
21: ~u′ ←WALKTREE(ha, i, ~π′i, ~π−i)
22: ~m[a]← ~u′

23: ~u← ~u+ ~σ[a]� ~u′
24: else
25: ~π′−i ← ~σ[a]� ~π−i
26: ~u′ ←WALKTREE(ha, i, ~πi, ~π′−i)
27: ~u← ~u+ ~u′

28: end if
29: end for
30: if P (h) = i then
31: for I ∈ ~I do
32: for a ∈ A(I) do
33: rI [a]← rI [a] +m[a][I]− u[I]
34: sI [a]← sI [a] + πi[I]σ[a][I]
35: end for
36: end for
37: end if
38: return ~u
39: end function
40:
41: function SOLVE
42: for t ∈ {1, 2, 3, · · · } do
43: for i ∈ N do WALKTREE(∅, i, ~1, ~1)
44: end for
45: end for
46: end function
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Lines 15 to 38 handle the cases where h is a decision node for one of the play-
ers. First, lookupInfosets(h) retrieves all of the information sets consistent with h
and the current player P (h)’s range of possible private outcomes, whether sampled
(|~I| = 1) or not. Next, at line 17, regret matching [40; 110] determines the current
strategy ~σ, a vector of action probabilities for each retrieved information set (and
thus, in general, a vector of vectors). Regret matching assigns action probabilities
according to

σ[a][I] =

{
r+
I [a]/

∑
b∈A(I) r

+
I [b] if

∑
b∈A(I) r

+
I [b] > 0

1/|A(I)| otherwise,

where r+
I [a] = max{rI [a], 0}. We then iterate over each action a ∈ A(h), recur-

sively obtaining the expected utilities for a at each information set (line 21 or 26).
When P (h) = i, these utilities are stored (line 22) and used to update the regret at
each information set (line 33), while the current strategy ~σ weights both the returned
expected utility at h (line 23) and the average strategy update (line 34). Note that at
line 27, we do not weight ~u′ by ~σ[a] since the opponent’s reaching probabilities are
already factored into the utility computation (line 7).

After iterating over the outer loop of Solve() (line 42) for many iterations,
an ε-Nash equilibrium is obtained from the accumulated strategies: σ̄(I, a) =
sI [a]/

∑
b∈A(I) sI [b].

3.3.2 Efficient Terminal Node Evaluation
We now describe how PCS computes a vector of expected utilities ~ui(h | ~π−i) at
line 7 for player i’s n private outcomes in O(n) time. As we have already noted,
Johanson et al. [53] gave a detailed description for how to do this in poker. In this
section, we will describe an efficient terminal node evaluation for Bluff(D1, D2).

Every game ends with one player calling bluff, and the payoffs (+1 or −1) are
determined solely by whether or not the last bid holds. Let x-y be the last such bid.
We now must discriminate between cases where there are less than and where there
are at least x dice showing face y or ?.

At the terminal history h, we have a vector of reach probabilities ~π−i for each
of the opponent’s n possible dice rolls. Let ~X−i be a vector of length D−i + 1,
where the element X−i[j] (0 ≤ j ≤ D−i) equals the probability of the opponent
reaching h with exactly j dice showing face y or ?. ~X−i is constructed in O(n)
time by iterating over each element of ~π−i, adding the probability to the appropriate
entry of ~X−i at each step. We can then compute the expected utility for player i
with exactly j of his or her dice showing face y or ?. If player i called bluff, this
expected utility is

Ui[j] =

x−j−1∑
`=0

(+1) ·X−i[`] +

D−i∑
`=x−j

(−1) ·X−i[`];

if the opponent called bluff, the expected utility is −Ui[j]. Constructing ~Ui takes
O(n) time. Finally, we iterate over all k ∈ {1, ..., n} and set ui[k] = Ui[xk], where
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xk is the number of dice showing face y or ? in player i’s kth private outcome. In
total, the process takes 3O(n) = O(n) time.

3.3.3 Theoretical Analysis
CS, OPCS, SPCS, and PCS all belong to the MCCFR family of algorithms. As such,
we can apply the general results for MCCFR to obtain a probabilistic bound on the
average overall regret for CS and our new algorithms. Recall that in a two-player
zero-sum game, minimizing average overall regret produces an ε-Nash equilibrium.
The proof of Theorem 1 is in the appendix.

Theorem 1 For any p ∈ (0, 1], when using CS, OPCS, SPCS, or PCS, with proba-
bility at least 1− p, the average overall regret for player i is bounded by

RT
i ≤

(
1 +

2
√
p

)
∆u,iMi

√
Ai√

T
,

where Mi is a property of the game satisfying√
|Ii| ≤Mi ≤ |Ii|, ∆u,i = maxz,z′|ui(z)− ui(z′)|, and Ai = maxI∈Ii |A(I)|.

3.4 Results
The efficacy of these new updates are examined through an empirical analysis in
both poker and Bluff. We begin the analysis by examining the performance of CS,
SPCS, OPCS and PCS in two small games, [2-1] hold’em and [2-4] hold’em. We
will then present the performance of CS and PCS in a set of Texas hold’em abstract
games, to investigate their usefulness under the conditions of the Annual Computer
Poker Competition. Finally, we will apply CS and PCS to the Bluff domain.

Poker [2-1] hold’em and [2-4] hold’em are games that are small enough to be
tractably solved using all four of the CFR variants we are investigating: CS, SPCS,
OPCS and PCS. As discussed in Section 3.3, SPCS, OPCS and PCS all perform
O(n) work at each terminal state, and are thus of comparable speed. However,
all three require more time per iteration than CS, and to converge faster than CS,
the advantage of each approach (more precise updates, more work per iteration, or
both) must overcome this speed penalty.

Figure 3.2 shows the convergence of CS, OPCS, SPCS and PCS towards an
optimal strategy in these small hold’em variants. We see that SPCS and OPCS
converge slower than CS; the difference in speed is too great for the higher quality
iterations. However, we find that PCS converges much more quickly than CS in
these small games.

While [2-1] hold’em and [2-4] hold’em can be tractably solved using CFR,
solving the much larger game of Texas hold’em is intractable. A common procedure
used by competitors in the Annual Computer Poker Competition is to use a state-
space abstraction technique to produce a smaller, similar game that can be tractably
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Figure 3.2: Log-log graphs displaying convergence of best response values over
time for different CFR update methods in two small unabstracted hold’em like
poker games. Best response values are in milli-big-blinds per game (mbb/g). Each
curve shows the average performance over five independent runs.

46



solved, and the resulting abstract strategy can then be used to select actions in
the original game. The abstract strategy is an ε-Nash equilibrium in the abstract
game, and we can measure its rate of convergence by calculating a best response
within the abstract game. A critical choice in this procedure is the granularity of the
abstraction. In practice, larger and finer-grained abstractions take longer to solve,
but result in better approximations to a Nash equilibrium [53].

In Figure 3.3, we apply the CS and PCS algorithms to four sizes of abstract
Texas hold’em games. The abstraction technique used in each is PercentileE[HS2],
as described in [110], which merges information sets together if the chance events
assign similar strength to a player’s hand. An n-bucket abstraction branches the
chance outcomes into n categories on each round.

In the smallest abstract game in Figure 3.3a, we find that CS converges more
quickly than PCS. As we increase the abstraction granularity through Figures 3.3b,
3.3c and 3.3d, however, we find that PCS matches and then surpasses CS in the rate
of convergence. In each of these games, the chance sampling component samples
outcomes in the real game and then maps this outcome to its abstract game equiva-
lent. When a small abstraction is used, this means that many of the information sets
being updated by PCS in one iteration will share the same bucket, and some of the
benefit of updating many information sets at once is lost. In larger abstract games,
this effect is diminished and PCS is of more use.

In the Annual Computer Poker Competition, many competitors submit entries
that are the result of running CFR on very large abstract games. Computing a best
response within such abstractions, as we did in Figure 3.3, is often infeasible (as
many competitors use abstractions with imperfect recall). In these circumstances,
we can instead evaluate a strategy based on its performance in actual games against
a fixed opponent. We can use this approach to evaluate the strategies generated by
CS and PCS at each time step, to investigate how PCS and CS compare in very
large games.2

The results of this experiment are presented in Figure 3.4. The opponent in each
match is Hyperborean 2010.IRO, which took third place in the 2010 Annual Com-
puter Poker Competition’s heads-up limit Texas hold’em instant runoff event. The
y-axis shows the average performance in milli-big-blinds per game (mbb/g) over a
10-million hand match of duplicate poker, and the results are accurate to ±1 mbb/g
(so the difference in curves is statistically significant). The abstraction used for CS
and PCS in this experiment uses imperfect recall and has 880 million information
sets, and is similar to but slightly larger than Hyperborean’s abstraction, which con-
tains 798 million information sets. At each time step, the strategies produced by
PCS perform better against Hyperborean than those produced by CS. Consider the
horizontal difference between points on the curves, as this indicates the additional
amount of time CS requires to achieve the same performance as PCS. As the com-
petition’s winner is decided based on one-on-one performance, this result suggests

2Another possible evaluation metric is to compute the real-game exploitability of the strategies.
However, the overfitting effect described in [53] makes the results unclear, as a strategy can become
more exploitable in the real game as it approaches an equilibrium in the abstract game.
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Figure 3.3: Log-log graphs displaying convergence of abstract best response values
over time for different CFR update methods in two perfect recall abstractions of
heads-up limit Texas hold’em poker. Best response values are in milli-big-blinds
per game (mbb/g). Each curve shows the average performance over five indepen-
dent runs.

that PCS is an effective choice for creating competition strategies.

Bluff Bluff(2,2) is small enough that no abstraction is required. Unlike poker,
all of the dice rolls are private and there are no public chance events. In this do-
main, one iteration of PCS is equivalent to a full iteration of vanilla CFR (i.e. ,
no sampling). However, the reordering of the computation and the fast terminal
node evaluation allows PCS to perform the iteration more efficiently than vanilla
CFR. Figure 3.5 shows the convergence rates of CS and PCS in Bluff on a log-log
scale. We notice that PCS converges towards equilibrium significantly faster than
CS does. As noted earlier, PCS has two speed advantages: the fast terminal node
evaluation, and the ability to reuse the opponent’s probabilities of reaching an in-
formation set for many of our own updates. By comparison, vanilla CFR would
traverse the action space 441 times to do the work of 1 PCS traversal. Similar to
Figure 3.4 in the poker experiments, we can also compare the performance of CS
and PCS strategies against a fixed opponent: an ε-Nash equilibrium for Bluff(2,2).
This experiment is presented in Figure 3.6, and the fixed opponent is the final data
point of the PCS line; the results are similar if the final CS data point is used. This
result shows that PCS is also more efficient than CS at producing effective strategies
for one-on-one matches.
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Figure 3.4: Performance of CS and PCS strategies in a large abstraction against a
fixed, strong opponent.
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Figure 3.6: Performance of CS and PCS strategies against an ε-Nash equilibrium in
Bluff(2,2)

3.5 Conclusion
Chance Sampled CFR is a state-of-the-art iterative algorithm for approximating
Nash equilibria in extensive form games. In this work, we presented three new
CFR variants that perform less sampling than the standard approach. They perform
slower but more efficient and precise iterations. We empirically demonstrated that
Public Chance Sampling converges faster than Chance Sampling on large games,
resulting in a more efficient equilibrium approximation algorithm demonstrated
across multiple domains. Future work will look to tighten the theoretical bounds on
the new algorithms to prove that they can outperform Chance Sampling.
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3.6 Appendix
Proof of Theorem 1 Let ~ai be a subsequence of a history such that it contains
only player i’s actions in that history, and let ~Ai be the set of all such subsequences.
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Let Ii(~ai) be the set of all information sets where player i’s action sequence up
to that information set is ~ai. Without loss of generality, assume i = 1. Let D =
C,O1 ∪ P ,S1 ∪ P , or P depending on whether we are using CS, OPCS, SPCS, or
PCS respectively. The probability of sampling terminal history z is then

q(z) =
∏
havz
h∈D

fc(a|h). (3.1)

Let ~ai ∈ ~Ai, B = Ii(~ai), and let Q ∈ Q. By [63, Theorem 7], it suffices to show
that

Y =
∑
I∈B

( ∑
z∈ZI∩Q

πσ−1(z[I])πσ(z[I], z)/q(z)

)2

≤ 1.

By (3.1) and definition of πσ−i, we have

Y =
∑
I∈B

 ∑
z∈ZI∩Q

πσ2 (z[I])πσ1,2(z[I], z)
∏
havz
h∈C\D

fc(a|h)


2

. (3.2)

Now by the definition of Q, for each h ∈ D, there exists a unique a∗h ∈ A(h)
such that if z ∈ Q and h v z, then ha∗h v z. Next, we define a new probability
distribution on chance events according to

f̂c(a|h) =


1 if h ∈ D, a = a∗h
0 if h ∈ D, a 6= a∗h
fc(a|h) if h ∈ C\D.

Notice that
∏

havz,h∈D f̂c(a|h) is 1 if z ∈ Q and is 0 if z /∈ Q. Thus from (3.2), we
have

Y =
∑
I∈B

∑
z∈ZI

πσ2 (z[I])πσ1,2(z[I], z)
∏
havz
h∈C

f̂c(a|h)


2

=
∑
I∈B

(∑
z∈ZI

π̂σ−1(z[I])π̂σ(z[I], z)

)2

where π̂σ is πσ except fc is replaced by f̂c

=
∑
I∈B

(∑
h∈I

π̂σ−1(h)
∑
z∈ZI

π̂σ(h, z)

)2

=
∑
I∈B

(∑
h∈I

π̂σ−1(h)

)2

≤ 1,

where the last inequality follows by [63, Lemma 16]. �.
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The Abstraction-Solving-Translation procedure lets us create strategies for large
games, but with no theoretical guarantees on their real game exploitability. In addi-
tion to the anticipated errors from using lossy abstraction techniques, the abstraction
pathologies discovered by Waugh et al. [103] and the overfitting effect [53] de-
scribed in Chapter 2 mean that an abstract game Nash equilibrium may not be close
to a real game Nash equilibrium, and is unlikely to even be the least exploitable
strategy that can be represented within the abstraction. This raises a question: if
abstract equilibria are not the least exploitable strategies, then how can we evaluate
the quality of our abstractions? How closely can our abstractions approximate a
real Nash equilibrium?

In their work on abstraction pathologies, Waugh et al. noted that if a game could
be solved where one player used abstraction and their opponent did not, then the ab-
stracted player’s strategy would have the lowest exploitability of any strategy within
that abstraction, and thus be immune to abstraction pathologies and the overfitting
effect. Given the immense memory and computational cost of solving a game with
even one unabstracted player, this property was thought to only be of theoretical
interest. However, unabstracted opponent strategies are not always infeasible to
compute, as the Accelerated Best Response algorithm presented in Chapter 2 does
exactly that. This insight helped guide us to a new game solving algorithm that uses
abstraction while avoiding abstraction pathologies and overfitting entirely.

In this chapter’s paper we present the CFR-BR algorithm, which combines the
Public Chance Sampling (CFR) and Accelerated Best Response (BR) algorithms.
As in other CFR variants, the algorithm is iterative and resembles two strategies
competing against each other. In this variant, one player updates their abstracted
strategy using CFR with the vector-style updates used in PCS, while their unab-
stracted opponent computes and uses a best response on every iteration. While
performing a 76 CPU-day best response computation inside a loop might at first
seem infeasible, the algorithm can be implemented to converge in quite reasonable
time, and represents the unabstracted opponent while using less memory than PCS
would need for an abstracted opponent. The result is not an abstract game Nash
equilibrium, but an optimal abstract strategy: one with the lowest real game ex-
ploitability that can be represented in the abstract space.

Author’s contributions. I was responsible for the idea behind CFR-BR, which
was to combine PCS and Accelerated Best Response to solve a game with an un-
abstracted opponent, and thus avoid abstraction pathologies and overfitting effects.
I also developed the steps presented in Figure 4.2 that make it feasible to compute
CFR-BR. I created our implementation of CFR-BR, with assistance from Bard.
Bowling and Burch contributed the theoretical foundation. In particular, Burch
provided the proof of Theorems 4 and 5. I performed all of the experiments and in-
terpreted the results. The paper was written and edited equally by all four authors.
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Abstract:
Extensive-form games are a powerful model for representing interactions between
agents. Nash equilibrium strategies are a common solution concept for extensive-
form games and, in two-player zero-sum games, there are efficient algorithms for
calculating such strategies. In large games, this computation may require too much
memory and time to be tractable. A standard approach in such cases is to apply a
lossy state-space abstraction technique to produce a smaller abstract game that can
be tractably solved, while hoping that the resulting abstract game equilibrium is
close to an equilibrium strategy in the unabstracted game. Recent work has shown
that this assumption is unreliable, and an arbitrary Nash equilibrium in the abstract
game is unlikely to be even near the least suboptimal strategy that can be repre-
sented in that space. In this work, we present for the first time an algorithm which
efficiently finds optimal abstract strategies — strategies with minimal exploitability
in the unabstracted game. We use this technique to find the least exploitable strategy
ever reported for two-player limit Texas hold’em.

4.1 Introduction
Extensive-form games are a general model of multiagent interaction. They have
been used to model a variety of scenarios including game playing [110; 62; 41;
79], bargaining and negotiation [64; 30], argumentation [77], and even distributed
database management [70]. Strategic reasoning in all but the simplest such mod-
els has proven computationally challenging beyond certain special cases. Even the
most theoretically-straightforward setting of two-player, zero-sum extensive-form
games presents obstacles for finding approximate solutions for human-scale interac-
tions (e.g., two-player, limit Texas hold’em with its 1018 game states). These obsta-
cles include the recently discovered existence of abstraction pathologies [103] and
a form of abstract game “overfitting” [53]. This paper presents the first technique
for overcoming these abstraction challenges in the two-player, zero-sum setting.

Abstraction, first suggested by Billings and colleagues [11], is the dominant
approach for handling massive extensive-form imperfect information games and

1The paper presented in this chapter originally appeared at the Twenty-Sixth Conference on Ar-
tificial Intelligence (AAAI-12). Copyright 2012 Association for the Advancement of Artificial In-
telligence. M. Johanson, N. Bard, N. Burch, and M. Bowling. Finding Optimal Abstract Strategies
in Extensive-Form Games. Proceedings of the Twenty-Sixth Conference on Artificial Intelligence
(AAAI-12), 1371-1379, 2012.

2The appendix has additional figures that extend the results presented here.
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is used by the majority of top competitors in the Annual Computer Poker Com-
petition [84]. The approach involves constructing an abstract game by aggregat-
ing each player’s states (i.e. , information sets) into abstract game states [39;
110]. An ε-Nashequilibrium is computed in the abstract game, and that strategy
is then employed in the original game. As equilibrium computation algorithms
improve or computational resources become available, a refined, less abstract but
larger, game can be solved instead. This improvement, as larger and larger abstract
games are solved, has appeared to drive much of the advancement in the Annual
Computer Poker Competitions [84].

However, recent work by Waugh et al. [103] showed that solving more refined
abstractions is not always better by presenting examples of abstraction patholo-
gies in toy poker games. They showed that even when considering strict refine-
ments of an abstraction (i.e. , one capable of representing a strictly larger set of
strategies), the equilibria found in this finer-grained abstraction could be dramati-
cally worse approximations than equilibria in the coarser abstraction. Furthermore,
their experiments showed that while an abstraction may be able to represent good
approximations of real game equilibria, these good abstract strategies may not be
abstract game equilibria.

A recent publication presented a technique for efficiently computing best-
responses in very large extensive-form games [53]. This made it possible to in-
vestigate Waugh’s findings in the context of full two-player limit Texas hold’em.
While abstraction pathologies were not found to be common using typical abstrac-
tion techniques, it was discovered that equilibrium learning methods, such as Coun-
terfactual Regret Minimization (CFR) [110], can “overfit”: as the approximation
gets more exact in the abstract game, its approximation of the full-game equilib-
rium can worsen (see Figure 4.1).

Combined, these results present a rather bleak picture. It is unclear how to
use more computational power to better approximate a Nash equilibrium in mas-
sive extensive-form games. Furthermore, our current abstractions are likely able
to represent better approximations than our current methods actually compute. In
this paper, we present the first algorithm that avoids abstraction pathologies and
overfitting entirely. Essentially, the approach leaves one player unabstracted and
finds the best possible abstract strategy for the other player. It avoids the memory
requirements for solving for an unabstracted opponent by having the opponent em-
ploy a best-response strategy on each iteration rather than a no-regret strategy. It
then uses sampling tricks to avoid the computational requirements needed to com-
pute an exact best-response on each iteration. The resulting algorithm, CFR-BR,
finds optimal abstract strategies, i.e, the best-approximation to a Nash equilibrium
that can be represented within a chosen strategy abstraction. Consequently, it is
not subject to abstraction pathologies or overfitting. We demonstrate the approach
in two-player limit Texas hold’em, showing that it indeed finds dramatically better
Nash equilibrium approximations than CFR with the same abstraction. We use the
technique to compute the least exploitable strategy ever reported for this game.
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Figure 4.1: Abstract-game and real-game exploitability of strategies generated by
the CFR algorithm.

4.2 Background
We begin with some formalism for extensive-form games and the counterfactual
regret minimization algorithm.

Extensive-Form Games For a complete description see [76]. Extensive-form
games provide a general model for domains with multiple agents making decisions
sequentially. They can be viewed as a game tree that consists of nodes correspond-
ing to histories of the game and edges between nodes being actions taken by agents
or by the environment. Therefore each history h ∈ H corresponds to a past se-
quence of actions from the set of players, N , and chance, c. For each non-terminal
history h, the acting player P (h) ∈ N∪{c} selects an action a fromA(h), the set of
actions available at h. We call h′ a prefix of h, written as h′ v h, if h begins with h′.
Each terminal history z ∈ Z has a utility associated with it for each player i, ui(z).
If
∑

i∈N ui(z) = 0 then the game is zero-sum. This work focuses on two-player,
zero-sum games (i.e. , u1(z) = −u2(z)). Let ∆i = maxz∈Z ui(z) −minz∈Z ui(z),
be the range of utilities for player i. In our case, a two-player zero-sum game, ∆i is
the same for both players and so we refer to it simply as ∆.

In imperfect information games, actions taken by the players or by chance
may not be observable by all of the other players. Extensive games model imperfect
information by partitioning the histories where each player acts into information
sets. For each information set I ∈ Ii, player i cannot distinguish between the
histories in I . It is required that A(h) must equal A(h′) for all h, h′ ∈ I , so we
can denote the actions available at an information set as A(I). Furthermore, we
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generally require the information partition to satisfy perfect recall, i.e., all players
are able to distinguish histories previously distinguishable or in which they took
a different sequence of actions. Poker is an example of an imperfect information
game since chance acts by dealing cards privately to the players. Since player
i cannot see the cards of the other players, histories where only the cards of i’s
opponents differ are in the same information set.

A strategy for player i, σi ∈ Σi, maps each information set I ∈ Ii to a
probability distribution over the actions A(I). The average strategy, σ̄ti , of the
strategies σ1

i , . . . , σ
t
i defines σ̄ti(I) as the average of σ1

i (I), . . . , σti(I) weighted by
each strategy’s probability of reaching I [110, Equation 4]. A strategy profile,
σ ∈ Σ, is a vector of strategies (σ1, . . . , σ|N |). We let σ−i refer to the strate-
gies in σ except for σi. Given a strategy profile, we define player i’s expected
utility as ui(σ) or, since we are using two-player games, ui(σ1, σ2). We define
bi(σ−i) = maxσ′i∈Σi

ui(σ
′
i, σ−i) to be the best response value for player i against

their opponents σ−i (a best response is the argmax). A strategy profile σ is an ε-
Nash equilibrium if no player can gain more than ε by unilaterally deviating from
σ. That is, if bi(σ−i) ≤ ui(σi, σ−i) + ε, for all i ∈ N . If this holds when ε = 0, then
all players are playing a best response to σ−i, and this is called a Nash equilibrium.
In two-player zero-sum games, we define the game value, vi, for each player i to
be the unique value of ui(σ∗) for any Nash equilibrium profile σ∗. Finally, in two-
player zero-sum games we define εi(σi) = b−i(σi) − v−i to be the exploitability
of strategy σi, and ε(σ) = (ε1(σ1) + ε2(σ2))/2 = (b1(σ2) + b2(σ1))/2 to be the
exploitability (or best response value) of the strategy profile σ. This measures the
quality of an approximation to a Nash equilibrium profile, as Nash equilibria have
an exploitability of 0.

Counterfactual Regret Minimization CFR [110] is a state-of-the-art algorithm
for approximating Nash equilibria in two-player, zero-sum, perfect-recall games.
It is an iterative algorithm that resembles self-play. Two strategies, one for each
player, are represented in memory and initialized arbitrarily. In each iteration, the
strategies are evaluated with respect to each other and updated so as to minimize
a weighted form of regret at each decision: the difference in utility between the
actions currently being selected and the best action in retrospect. Over a series of
iterations, the average strategy for the players approaches a Nash equilibrium. As
our algorithm builds upon CFR, we will restate some theory and formalism from
that work.

Define RT
i , player i’s average overall regret over T steps, as RT

i =
1
T

maxσ∗i ∈Σi

∑T
t=1(ui(σ

∗
i , σ

t
−i) − ui(σt)). In other words, average overall regret is

how much more utility a player could have attained on average had they played
some other static strategy instead of the sequence of strategies they actually played.

Theorem 2 (Folk theorem used by Zinkevich et al. [110, Theorem 2]) In a two-
player zero-sum game at time T, if RT

i < εi for both players, then σ̄T is an (ε1 + ε2)-
Nash equilibrium.
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Theorem 3 [110, Theorem 4] If player i is updating their strategy with CFR, then
RT
i ≤ ∆|Ii|

√
|Ai|/

√
T where |Ai| = maxI∈I |A(I)|

Since Theorem 3 bounds RT
i , it follows from Theorem 2 that both players play-

ing according to CFR will yield an average strategy σ̄T that is an (ε1 + ε2)-Nash
equilibrium where εi = ∆|Ii|

√
|Ai|/

√
T .

4.3 CFR-BR
In Waugh and colleagues’ work on abstraction pathologies, they found one case
in which abstraction pathologies do not occur [103, Theorem 3]. When solving a
game where one agent uses abstraction and the other does not, Waugh et al. noted
that a strict refinement to the abstraction will result in a monotonic decrease in the
abstracted player’s exploitability. In addition, we note that the abstracted player’s
strategy in this equilibrium is by definition the least exploitable strategy that can be
represented in the space; otherwise, it would not be an equilibrium. Thus, applying
an iterative algorithm such as CFR to this asymmetrically abstracted game will
avoid both the pathologies and the overfitting problem, as convergence towards the
equilibrium directly minimizes exploitability. However, Waugh et al. [103, Page 4]
note that “...solving a game where even one player operates in the null abstraction
is typically infeasible. This is certainly true in the large poker games that have been
examined recently in the literature.”

We will now present an algorithm that achieves exactly this goal – solving a
game where the opponent is unabstracted – and we will demonstrate the technique
in the large domain of two-player limit Texas hold’em poker, just such a poker
game which has been examined recently in the literature. Our technique, called
CFR-BR, does this without having to explicitly store the unabstracted opponent’s
entire strategy, and thus avoids the large memory requirement for doing so. Our
explanation of CFR-BR involves two steps, and is illustrated in Figure 4.2. For our
explication, we will assume without loss of generality that the abstracted player is
player 1, while the unabstracted player is player 2.

Training against a Best Response We begin by presenting an alternative method
for creating the unabstracted opponent’s strategy. The proof of CFR’s convergence
relies on the folk theorem presented as Theorem 2. Using CFR to update a player’s
strategy is just one way to create a regret minimizing agent needed to apply the
theorem. A best response is also a regret minimizing agent, as it will achieve at
most zero regret on every iteration by always choosing the highest valued actions.
We will call an agent with this strategy update rule a BR-agent, and its strategy
on any iteration will be a best response to its opponent’s strategy on that same
iteration.3

3Note that we could not employ two BR-agents in self-play, as they would each have to be a
best-response to each other, and so a single iteration would itself require solving the game.
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  High computation requirements
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  Low memory and
    computation requirements

CFR

CFR-BR
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Figure 4.2: Moving from CFR to CFR-BR

In the CFR-BR algorithm, we will start with an agent that updates its strategy
using CFR (a CFR-agent) and use a BR-agent as its opponent. The CFR-agent
may use abstraction. Over a series of iterations, we will update these strategies
with respect to each other. Since both of these agents are regret minimizing agents,
we can prove that they converge to an equilibrium at a rate similar to the original
symmetric CFR approach.

Theorem 4 After T iterations of CFR-BR, σ̄T1 is player 1’s part of an ε-Nash equi-

librium, with ε =
∆|I1|
√
|A1|√

T
.

Proof Since player 1 is playing according to CFR, by Zinkevich et al. [110],RT
1 ≤

ε. By the folk theorem, to finish the proof it is enough to show that player 2 has no
positive regret.

T ·RT
2 = max

σ2

(
T∑
t=1

u2(σt1, σ2)−
T∑
t=1

u2(σt1, σ
t
2)

)
(4.1)

= max
σ2

T∑
t=1

u2(σt1, σ2)−
T∑
t=1

u2(σt1, σ
t
2) (4.2)

= max
σ2

T∑
t=1

u2(σt1, σ2)−
T∑
t=1

max
σ′2

u2(σt1, σ
′
2) ≤ 0 (4.3)
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Using an unabstracted BR-agent as opposed to an unabstracted CFR-agent for
the opponent has two benefits. First, its strategy will be pure, and can thus be
represented more compactly than a behavioral strategy that assigns probabilities to
actions. Second, we will now prove that when a CFR-agent plays against a BR-
agent, the CFR-agent’s sequence of strategies converges to a Nash equilibrium.
Typically, it is only the average strategy that converges. However, since the current
strategy converges with high probability, tracking the average strategy is unneces-
sary and only half as much memory is required for the CFR-agent. Note that the
proof requires the algorithm to be stopped stochastically in order to achieve its high-
probability guarantee. In practice, our stopping time is dictated by convenience and
availability of computational resources, and so is expected to be sufficiently ran-
dom.

Theorem 5 If CFR-BR is stopped at an iteration T ∗ chosen uniformly at random
from [1, T ], then for any p ∈ (0, 1], with probability (1 − p), σT

∗
1 is player 1’s part

of an ε
p
-Nash equilibrium with ε defined as in Theorem 4.

Proof As in Theorem 4, after T iterations, RT
1 ≤ ε. This gives a bound on the

average observed value based on the game value v1.

RT
1 =

1

T
max
σ1

T∑
t=1

u1(σ1, σ
t
2)− 1

T

T∑
t=1

u1(σt1, σ
t
2) ≤ ε (4.4)

∴
1

T

T∑
t=1

u1(σt1, σ
t
2) ≥ 1

T
max
σ1

T∑
t=1

u1(σ1, σ
t
2)− ε (4.5)

≥ max
σ1

u1(σ1, σ̄
T
2 )− ε (4.6)

≥ v1 − ε (4.7)

For all t, σt2 is a best response to σt1, so u1(σt1, σ
t
2) ≤ v1. With the bounds above,

this implies u1(σt1, σ
t
2) < v1 − ε

p
on no more than bp ∗ T c of the T iterations. If T ∗

is selected uniformly at random from [1, T ], there is at least a (1 − p) probability
that u1(σT

∗
1 , σT

∗
2 ) ≥ v1 − ε

p
. Because σT ∗2 is a best response to σT ∗1 , this means σT ∗1

is player 1’s part of an ε
p
-Nash equilibrium. �

CFR-BR with sampling CFR-BR still has two remaining challenges that make
its use in large games intractable. First, while a best response can be stored com-
pactly, it is still far too large to store in human-scale settings. Second, best response
strategies are nontrivial to compute. Recently Johanson and colleagues demon-
strated an accelerated best response technique in the poker domain that required
just 76 CPU-days, and could be run in parallel in one day [53]. While previously
such a computation was thought intractable, its use with CFR-BR would involve re-
peatedly doing this computation over a large number of iterations for convergence
to a desired threshold.
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However, there is an alternative. Monte-Carlo CFR (MCCFR) is a family of
sampling variants of CFR in which some of the actions in a game, such as the
chance events, can be sampled instead of enumerated [62]. This results in faster but
less precise strategy updates for the agents, in which only subgames of the game tree
are explored and updated on any one iteration. One such variant, known as Public
Chance Sampled CFR (PCS), uses the fast game tree traversal from the accelerated
best response technique to produce a CFR variant that efficiently traverses the game
tree, updating larger portions on each iteration than were previously possible [50].
The new variant samples only public chance events while updating all possible
information sets that vary in each agent’s private information.

We can use a variant of PCS with CFR-BR to avoid the time and memory prob-
lems described above. On each iteration of CFR-BR, we will sample one public
chance event early in the game and only update the complete subgame reachable
given that outcome. This subgame includes all possible subsequent chance events
after the sampled one. This divides the game tree into two parts: the trunk from
the root to the sampled public chance event, and the subgames that descend from
it. Unlike strategies based on regret accumulated over many iterations, portions of a
best response strategy can be computed in each subgame as required and discarded
afterwards. This avoids the memory problem described above, as at any one time,
we only need to know the BR-agent’s strategy in the trunk and the one sampled
subgame for the current iteration. However, the computation problem remains, as
creating the BR-agent’s trunk strategy would still require us to traverse all of the
possible chance events, in order to find the value of actions prior to the sampled
public chance event.

To avoid this final computation problem, we replace the BR-agent with yet an-
other regret-minimizing agent which we call a Hybrid-agent. This agent will main-
tain a strategy and regret values for the trunk of the game, and update it using Public
Chance Sampled CFR. In the subgames, it will compute and follow a best response
strategy to the opponent’s current strategy. Together, this means that on any one
iteration, we only need to compute and store one subgame of a best response, and
thus require far less time and memory than a BR-agent does. We will now prove
that the Hybrid-agent is a regret minimizing agent.

Definition 3 Ĩ2 ⊂ I2 is a trunk for player 2 if and only if for all I, I ′ ∈ I2 such
that there exists h v h′ with h ∈ I and h′ ∈ I ′, if I ′ ∈ Ĩ2 then I ∈ Ĩ2. In other
words, once player 2 leaves the trunk, she never returns to the trunk.

Theorem 6 After T iterations of hybrid CFR-BR using a trunk Ĩ2, with probability

(1− p), RT
2 ≤ ε =

(
1 +

√
2√
p

)
∆|Ĩ2|
√
|A2|√

T
.

Proof Define a partial best-response with respect to the trunk Ĩ2 as follows

σ2:I2\Ĩ2→BR(σ1) = argmax
σ′2 s.t. σ′2(I)=σ2(I)∀I∈Ĩ2

u2(σ1, σ
′
2) (4.8)
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We can bound the regret using this partial-best response.

RT
2 =

1

T
max
σ2

T∑
t=1

u2(σt1, σ2)− 1

T

T∑
t=1

u2(σt1, σ
t
2) (4.9)

≤ 1

T
max
σ2

T∑
t=1

u2

(
σt1, σ2:I2\Ĩ2→BR(σt

1)

)
− 1

T

T∑
t=1

u2

(
σt1, σ

t
2:I2\Ĩ2→BR(σt

1)

)
(4.10)

Because σt2 no longer has any effect outside Ĩ2, this is equivalent to doing sampled
CFR on a modified game where player 2 only acts at information sets in the trunk.
This means we can bound the regret by ε with probability (1− p) by application of
the MCCFR bound from Lanctot et al. [62, Theorem 5]. �

Since the Hybrid-agent is regret minimizing, it is simple to show that a CFR-agent
playing against it will converge to an equilibrium using our sampling variant of
CFR-BR.

Theorem 7 For any p ∈ (0, 1], after T iterations of hybrid CFR-BR using a trunk
Ĩ2, with probability (1− p), (σ̄T1 , σ̄

T
2 ) is an (ε1 + ε2)-Nash equilibrium profile with

ε1 =
(

1 + 2√
p

)
∆|I1|
√
|A1|√

T
and ε2 =

(
1 + 2√

p

)
∆|Ĩ2|
√
|A2|√

T
.

Proof Because player 1 is playing according to sampled CFR, we can bound
RT

1 ≤ ε1 with probability (1 − p/2) by application of the MCCFR bound [62,
Theorem 5]. Theorem 6 shows that RT

2 ≤ ε2 with probability (1− p/2). Using the
union-bound, we have that both conditions hold with at least probability (1 − p).
If both conditions hold, Theorem 2 gives us that (σ̄T1 , σ̄

T
2 ) is an (ε1 + ε2)-Nash

equilibrium. �

Unfortunately, since the Hybrid-agent does not use a best response strategy in
the trunk, only the CFR-agent’s average strategy (and not the current strategy) is
guaranteed to converge to a Nash equilibrium. Since the trunk is such a minuscule
fraction of the tree, the current strategy might still converge (quickly) in practice.
We will specifically investigate this empirically in the next section. In the remainder
of the paper, we will use the name CFR-BR to refer to the variant that uses the
Hybrid-agent, as this is the variant that can be practically applied to human scale
problems.

4.4 Empirical Analysis
Our empirical analysis begins by exploring the correctness of our approach in
a toy poker game. We then apply our technique to two-player (heads-up) limit
Texas hold’em. Finally, we explore how we can use CFR-BR to answer previously
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Figure 4.3: Convergence to equilibrium in unabstracted [2-4] hold’em, 94 million
information sets.

unanswered questions about abstraction quality, abstraction size, and the quality of
strategies in competition.

Toy Game We begin our empirical analysis of CFR-BR in the small poker game
of 2-round 4-bet hold’em ([2-4] hold’em), recently introduced by Johanson et al. [50].
While we call this a “toy game”, this game has 94 million canonical information
sets and 2 billion game states. It is similar to the first two rounds of two-player limit
Texas hold’em. A normal sized deck is used, each player is given two private cards
at the start of the game, and three public cards are revealed at the start of the second
round. In each round, the players may fold, call and bet as normal, with a maximum
of four bets per round. At the end of the second round, the remaining player with
the best five-card poker hand wins. This game is useful for our analysis because it is
small enough to be solved by CFR and CFR-BR without requiring any abstraction.
In addition, we can also solve this game when one or both players do use abstrac-
tion, so that we can evaluate the impact of the overfitting effect described earlier.
The following [2-4] experiments were performed on a 12-core 2.66 GHz computer,
using a threaded implementation of CFR and CFR-BR.

Figure 4.3 shows the convergence rate of Public Chance Sampled CFR and
CFR-BR in unabstracted [2-4] hold’em on a log-log plot. In this two-round game,
CFR-BR uses a “1-round trunk”, and each iteration involves sampling one set of
flop cards. Each series of datapoints represents the set of strategies produced by
CFR or CFR-BR as it runs over time, and the y-axis indicates the exploitability of
the strategy. In the computer poker community, exploitability is measured in milli-
big-blinds per game (mbb/g), where a milli-big-blind is one one-thousandth of a
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Figure 4.4: Convergence in [2-4] hold’em using a perfect recall 5-bucket abstrac-
tion, 1,790 information sets.

big blind, the ante made by one player at the start of the game. All exploitability
numbers for all experiments are computed exactly using the technique in Johanson
et al. [53]. From the graph, we see that CFR smoothly converges towards an optimal
strategy. The CFR-BR average strategy also smoothly converges towards equilib-
rium, although at a slower rate than CFR. Finally, the CFR-BR current strategy also
improves over time, often faster than the average strategy, although it is noisier.

In Figure 4.4, we investigate the effects of applying a simple perfect recall ab-
straction technique to [2-4] hold’em. When CFR solves a game where both play-
ers are abstracted (CFR A-vs-A), we see that the strategies are exploitable for 144
mbb/g in the unabstracted game. When CFR is used to create an abstracted player
through games against an unabstracted opponent (CFR A-vs-U), the abstracted
strategies converge to an exploitability of 81 mbb/g. This demonstrates that the
abstraction is capable of representing better approximations than are found by CFR
as it is typically used. With CFR-BR, both the average strategy and the current
strategy converge to this same improved value.

In Figure 4.5, we perform a similar experiment where an imperfect recall ab-
straction is applied to [2-4] hold’em. Imperfect recall abstractions have theoretical
problems (e.g. , the possible non-existence of Nash equilibria), but have been shown
empirically to result in strong strategies when used with CFR [104; 53]. When both
players are abstracted, CFR converges to an exploitability of 103 mbb/g. When only
one player is abstracted, or when CFR-BR is used, the abstracted player’s strategy
converges to an exploitability of 25 mbb/g.

These results in [2-4] hold’em show that CFR-BR converges to the same qual-
ity of solution as using CFR with one unabstracted player, while avoiding the high
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Figure 4.5: Convergence in [2-4] hold’em using an imperfect recall 570-bucket
abstraction, 41k information sets.

memory cost of representing the unabstracted player’s entire strategy. We also note
that while the CFR-BR current strategy is not guaranteed to converge since the
unabstracted Hybrid-agent uses CFR in the trunk, in practice the current strategy
converges nearly as well as the average strategy. Having demonstrated these prop-
erties in a small game, we can now move to the large game of Texas hold’em in
which it is intractable to use CFR with an unabstracted opponent.

Texas Hold’em We can now apply the CFR-BR technique to the large game of
two-player limit Texas hold’em, one of the events in the Annual Computer Poker
Competition [44]. First, we will investigate how the choice of the size of the trunk
impacts the memory requirements and convergence rate. In the [2-4] hold’em re-
sults presented above, we used a “1-round trunk”, where each iteration sampled
the public cards revealed at the start of the second round. While the split between
the trunk and the subgames could happen at any depth in the tree, in practice it is
convenient to start subgames at the start of a round. In a four-round game such as
Texas hold’em, there are three such convenient choices for the size of the trunk:
1-round, 2-round, or 3-round. With a 1-round trunk, each iteration involves sam-
pling one set of public cards for the flop, and then unrolling all possible turn and
river cards to create a best response strategy for this 3-round subgame. We then
update the CFR-agent throughout this large subgame, and use the resulting values
to perform CFR updates for both players in the trunk. Alternatively, with a 2-round
trunk we will sample one set of flop and turn public cards and unroll all possible
river cards. The trunk is thus larger and requires more time to update, but each sub-
game is smaller and updates are faster. Similarly, a 3-round trunk will sample one
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Texas hold’em RAM required
CFR-BR Trunk Trunk Subgame Total (48 cores)
1-Round 14.52 KB 1.18 GB 56.64 GB
2-Round 936.33 MB 2.74 MB 1.07 GB
3-Round 359.54 GB 6.54 KB 359.54 GB
CFR (4-round) 140.26 TB n/a 140.26 TB

Table 4.1: Memory requirements for the CFR-BR Hybrid-agent in heads-up limit
Texas hold’em

set of flop, turn and river cards, and each small subgame involves only the betting
on the final round. A 4-round trunk would be equivalent to running CFR with an
unabstracted opponent, as the entire game would be in the trunk.

Our choice of the size of the trunk thus allows us to trade off between the time
required for the trunk and subgame updates, and the memory required to store an
unabstracted CFR trunk strategy and the unabstracted best response subgame strat-
egy. In practice, multiple threads can be used that each perform updates on dif-
ferent subgames simultaneously. Thus, the program as a whole requires enough
memory to store one copy of the CFR player’s strategy and one copy of the Hybrid-
agent’s trunk strategy, and each thread requires enough memory to store one pure
best response subgame strategy. In Table 4.1, we present the memory required for a
CFR-BR Hybrid-agent using these trunk sizes, after merging isomorphic informa-
tion sets that differ only by a rotation of the cards’ suits. As a 3-round trunk would
require 360 gigabytes of RAM just for the Hybrid-agent, our Texas hold’em exper-
iments will only use 1-round and 2-round trunks. Since CFR with an unabstracted
opponent requires an infeasible 140 terabytes of RAM, our results will only com-
pare CFR-BR to CFR with both players abstracted. For our experiments on Texas
hold’em, a 48-core 2.2 GHz computer was used with a threaded implementation of
Public Chance Sampled CFR and CFR-BR.

Figure 4.6 shows a log-log convergence graph of CFR compared to 1-round
and 2-round CFR-BR’s current and average strategies in a 10-bucket perfect re-
call abstraction. This abstraction was used to demonstrate the overfitting effect in
the recent work on accelerated best response computation [53, Figure 6], and was
the abstraction used by Hyperborean in the 2007 Annual Computer Poker Com-
petition’s heads-up limit instant runoff event. Due to the overfitting effect, CFR
reaches an observed low point of 277 mbb/g after 2,713 seconds (130k seconds of
CPU-time), but then gradually increases to an exploitability of 305 mbb/g. The 2-
round trunk CFR-BR current and average strategies reach 92.638 mbb/g and 93.539
mbb/g respectively, and very little progress is being made through further compu-
tation.

Figure 4.7 demonstrates CFR and CFR-BR in a 9000-bucket imperfect recall
abstraction. This abstract game is almost exactly the same size as the perfect recall
abstraction presented in Figure 4.6, and was also used previously to demonstrate
the overfitting effect [53, Figure 6]. In this setting, CFR reaches an observed low
of 241 mbb/g within the first 3600 seconds (172k seconds of CPU-time), and then
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gradually increases to 289 mbb/g. The 2-round trunk CFR-BR current and average
strategies reach 61.339 mbb/g and 60.687 mbb/g respectively, after which point the
curves appear to have very nearly converged.

These two figures demonstrate that CFR-BR can find dramatically less exploitable
strategies than is possible with CFR. The previous least exploitable known strat-
egy for this game was Hyperborean2011.IRO, which was exploitable for 104.410
mbb/g while using an abstraction with 5.8 billion information sets, one hundred
times larger than the abstractions used in Figures 4.6 and 4.7. While the 1-round
and 2-round trunk strategies will converge to the same level of exploitability, we
find that the 2-round trunk strategy converges significantly faster while, as shown
in Table 4.1, using far less memory.

In Competition The significant drop in exploitability provided by CFR-BR is ac-
companied by a cost to the performance of the strategies against suboptimal oppo-
nents, such as those likely to be faced in the Annual Computer Poker Competition.
When CFR is applied to an abstract game, it finds a Nash equilibrium within the
abstraction and these strategies will do no worse than tie against any other strategy
in the abstraction, including those generated by CFR-BR. In fact, since the CFR-
BR strategies minimize their loss against an unabstracted opponent, the CFR-BR
strategies will likely deviate from the abstract equilibrium in ways that incur losses
against an equilibrium in the same abstraction found via CFR. Figures 4.8a and 4.8b
present the in-game performance of the 2-round trunk current and average strate-
gies from Figures 4.6 and 4.7 against the final CFR strategy from those abstractions.
While the CFR-BR strategies are far less exploitable, they lose to the CFR strategies
that share their abstraction.

To further investigate this effect, we can also compare the performance of CFR
and CFR-BR average strategies against a CFR strategy from a much larger abstrac-
tion. In Figure 4.9, we use these same CFR and CFR-BR strategies to play games
against Hyperborean2011.IRO, which uses an abstraction 100 times larger. Even
though this opponent uses a much finer grained abstraction, the CFR strategies still
lose less to this opponent than the CFR-BR strategies. These results underscore
an observation made in the analysis of the 2010 Annual Computer Poker Compe-
tition competitors: while minimizing exploitability is a well defined goal, lower
exploitability is not sufficient on its own to ensure a victory in competition against
other suboptimal opponents.

Comparing Abstractions CFR-BR allows us to find optimal strategies within an
abstraction. We can use this tool, then, to evaluate abstractions themselves. In the
past, abstractions were typically compared by using CFR to produce strategies, and
the one-on-one performance of these strategies was used to select the “strongest”
abstraction. When real game best response calculations became feasible, the ex-
ploitability of the CFR strategies could instead be used to compare abstractions [53].
However, Waugh et al. have shown that even within one abstraction, different ab-
stract game equilibria can have a wide range of exploitability [103, Table 3], making
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Figure 4.8: One-on-One performance in Texas hold’em between CFR-BR strategies
and the final CFR strategy with the same abstraction. Results are accurate to ±1.2
mbb/g.
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Figure 4.11: Convergence in Texas hold’em in perfect recall 2-bucket and 3-bucket
abstractions, 96056 and 476934 information sets.

this approach unreliable. Since CFR-BR finds a least exploitable strategy within an
abstraction, it can replace CFR in this task by directly measuring the ability of an
abstraction to represent a good approximation to a Nash equilibrium.

Figure 4.10 demonstrates this abstraction comparison by applying CFR-BR to
three different 10-bucket perfect recall abstractions. Each abstraction divides the
set of hands into equal weight buckets according to different domain features: ex-
pected hand strength, expected hand strength squared, or a combination of both, as
described in [47, Page 24]. While these abstractions are exactly the same size, we
found a range of 20 mbb/g – nearly 20% – by changing the features used to create
the abstraction.

Abstraction Size While abstractions can vary in the features used, they also nat-
urally vary in size. In the 2011 Annual Computer Poker Competition entries had a
hard disk limit of 30 GB, and some of the entries use large abstractions that fill this
space. However, we first focus on the opposite extreme, abstractions whose strate-
gies are so small they can fit on a single 1.44 MB floppy disk. Figure 4.11 shows the
exploitability of CFR-BR strategies in extremely small 2-bucket and 3-bucket per-
fect recall abstractions. Despite their very coarse abstractions, the resulting strate-
gies are exploitable for just 218.487 mbb/g and 175.824 mbb/g respectively, and
are less exploitable than most of the 2010 Annual Computer Poker Competition
strategies evaluated by Johanson et al. [53].

In Figure 4.12 we apply CFR-BR to the large, fine-grained abstraction used
by Hyperborean2011.IRO in the 2011 Annual Computer Poker Competition. This
abstraction has 5.8 billion information sets and in the first two rounds uses no ab-
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Figure 4.12: Convergence in Texas hold’em in the Hyperborean2011.IRO abstrac-
tion, 5.8 billion information sets. This figure differs slightly from Figure 12 in the
original paper, as we continued running the experiment after submitting the paper.
The original figure had final values of 41.199 and 63.47 for the current and average
strategies respectively.

straction beyond merging isomorphic states. The turn and river rounds have 1.5
million and 840 thousand imperfect recall buckets respectively. The resulting strat-
egy is 20 GB using only a single byte per probability. The Hyperborean2011.IRO
strategy was created with CFR and was exploitable for 104.410 mbb/g, and prior
to this work was the least exploitable strategy known for the game. However, by
applying CFR-BR to this abstraction, the current strategy at the final datapoint is
exploitable for just 37.170 mbb/g and is the new least exploitable strategy known
for heads-up limit Texas hold’em poker.

4.5 Conclusion
Although there are efficient game solving algorithms for two-player, zero-sum games,
many games are far too large to be tractably solved. State space abstraction tech-
niques can be used in such cases to produce an abstract game small enough to be
tractably solved; however, recent work has demonstrated that an equilibrium in an
abstract game can often be far more exploitable in the unabstracted game compared
to the least exploitable strategies that can be represented in the abstraction. In this
work we presented CFR-BR, a new game solving algorithm that converges to one
of these least exploitable abstract strategies, while avoiding the high memory cost
that made such a solution previously intractable. We demonstrated the effective-
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ness of our approach in the domain of two-player limit Texas hold’em, where it was
used to generate far closer approximations to the unknown, optimal Nash equilib-
rium strategy within an abstraction than was possible using previous state-of-the-art
techniques.
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Thus far, we have discussed how abstract strategies can be computed (such
as by CFR, PCS, or CFR-BR) and evaluated (exploitability, in-game performance
against opponents). In this chapter’s paper, we will discuss how abstractions them-
selves can be created and evaluated. An abstraction’s fidelity in modelling the real
game depends both on its size and in the features and algorithms used to group
real game information sets together. And although CFR-BR allows us to compute
an abstraction’s least exploitable strategies, higher-fidelity abstractions can repre-
sent even stronger strategies that have lower exploitability and improved in-game
performance.

Prior to the invention of CFR-BR, abstraction evaluation was a difficult task.
Evaluating abstractions by the exploitability of an abstract equilibrium was not al-
ways consistent, as different abstract equilibria may have large differences in real
game exploitability, and abstraction pathologies and overfitting mean that the ab-
straction may be better than these exploitability values suggest. Comparing the in-
game performance of abstract strategies is also difficult, since intransitivities may
exist where strategy A beats B, B beats C, and C beats A. Using CFR-BR, we
were able to bring badly needed rigour to the abstraction evaluation task by demon-
strating that one abstraction can get closer to a Nash equilibrium than another. This
paper also provided strong empirical evidence supporting the use of imperfect recall
abstraction techniques.

This paper also presented for the first time the practical and powerful abstraction
techniques that the University of Alberta had used in the Annual Computer Poker
Competition from 2010 onwards. Abstraction quality is a key factor in an agent’s
strength, and published techniques had lagged behind those used in practice in the
ACPC. This paper unveiled the details of clustering techniques, state features, and
distance metrics that we had developed, and demonstrated empirically that they
improved on earlier published techniques.

Author’s contributions. This paper makes three contributions: the use of CFR-
BR for evaluating abstractions (first proposed in our earlier paper on CFR-BR [49]),
justifying the effectiveness of imperfect recall abstractions (first proposed in our
earlier paper on imperfect recall [104]), and the practical and powerful abstraction
technique used by the CPRG from 2009 onwards. This abstraction technique was
primarily developed by myself with assistance from Valenzano, and started as a
course project with Valenzano and Mengliao Wang. The use of k-means clustering
as the foundation for abstraction predates this work, having been used by Martin
Zinkevich in 2006 (who also experimented with earthmover’s distance), and Mihai
Ciucu in his ACPC agent “GGValuta” in 2008. I performed all of the experiments
presented in this paper and interpreted their results. Burch contributed the software
library that this work builds upon, and also contributed a “public bucket” abstraction
technique that was evaluated in earlier drafts of this paper, but was not included in
the final version. All four authors contributed equally to the writing and editing.

75



Evaluating State-Space Abstractions in
Extensive-Form Games12

Michael Johanson (johanson@ualberta.ca)
Neil Burch (nburch@ualberta.ca)

Richard Valenzano (valenzan@ualberta.ca)
Michael Bowling (mbowling@ualberta.ca)

Abstract:
Efficient algorithms exist for finding optimal policies in extensive-form games.
However, human-scale problems are typically so large that this computation re-
mains infeasible with modern computing resources. State-space abstraction tech-
niques allow for the derivation of a smaller and strategically similar abstract do-
main, in which an optimal strategy can be computed and then used as a suboptimal
strategy in the real domain. In this paper, we consider the task of evaluating the
quality of an abstraction, independent of a specific abstract strategy. In particu-
lar, we use a recent metric for abstraction quality and examine imperfect recall
abstractions, in which agents “forget” previously observed information to focus
the abstraction effort on more recent and relevant state information. We present
experimental results in the domain of Texas hold’em poker that validate the use
of distribution-aware abstractions over expectation-based approaches, demonstrate
that the new metric better predicts tournament performance, and show that abstrac-
tions built using imperfect recall outperform those built using perfect recall in terms
of both exploitability and one-on-one play.

5.1 Introduction
Realistic multiagent settings involve complex, sequential interactions between agents
with different perspectives regarding the underlying state of the world. A general
model for such settings is the extensive-form game with imperfect information.
While state-of-the-art techniques for approximating Nash equilibria in extensive-
form games [110; 41] have made remarkable progress [84; 50], the size of most
real-world settings is beyond the capability of current solvers. For example, a com-
mon benchmark of progress is the domain of computer poker. Current solution
techniques have found approximate equilibria in poker-like games with as many as
88 billion decision points [45], which is still four orders of magnitude smaller than
the smallest poker game played by humans. The ubiquitous approach to handling
such human-scale domains is abstraction [11; 89; 37], where strategically similar
decision points for the players are grouped to construct an abstract game that is

1The contents of this chapter originally appeared at the Twelfth International Conference on Au-
tonomous Agents and Multi-Agent Systems (AAMAS-13). Copyright 2013 International Foundation
for Autonomous Agents and Multiagent Systems (www.ifaamas.org). All rights reserved. M. Johan-
son, N. Burch, R. Valenzano and M. Bowling. Evaluating State-Space Abstractions in Extensive-
Form Games. Proceedings of the Twelfth International Conference on Autonomous Agents and
Multiagent Systems, 2013.

2The Appendix has additional results related to this paper.
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tractably sized for current solution techniques. The solution of the abstract game is
then employed in the original game.

While even simple abstraction techniques have been found to be empirically
effective [110], their success is not guaranteed. Waugh et al. [103] gave sur-
prising examples of abstraction pathologies where strict refinements of abstrac-
tions can result in abstract strategy equilibria that are more exploitable in the real
game. While there is little theory to guide the construction of abstractions, Gilpin
and Sandholm [38] presented three methods for empirically comparing abstrac-
tion methodologies: one-on-one comparison, versus-equilibrium comparison, and
versus-best-response comparison. While these remained the best-practice approach
for abstraction evaluation, each of these methods has conceptual drawbacks: possi-
ble intransitivities, infeasible computation, and not being well correlated with actual
performance (respectively). Johanson et al. [49] recently presented the CFR-BR
algorithm, which computes the best Nash approximation strategy that can be repre-
sented in a given abstraction. This represents a new, fourth method for evaluating
abstraction methodologies: comparing the representation power of an abstraction
by how well it can approximate an unabstracted Nash equilibrium. In this paper,
we will examine the efficacy of this new approach for evaluating abstractions, and
use it to evaluate several abstraction methodologies in the poker domain. We show
that not only does it have many desirable conceptual properties (e.g., transitivity
and computational tractability), it is also empirically well-correlated with the in-
game performance of abstract game equilibria. We demonstrate all of this through
a series of abstraction evaluation experiments. In particular, we repeat the Gilpin
and Sandholm experiments that concluded that expectation-based abstractions are
weaker than distribution-aware abstractions3. We also use this technique to val-
idate the efficacy of imperfect recall abstractions, in which an agent forgets in-
formation known in past decisions to refine its representation of its current state.
Such abstractions are empirically effective [104; 53], but previous research has not
shown a conclusive advantage. Finally, we present for the first time the abstraction
methodology employed by Hyperborean, one of the top competitors in the Annual
Computer Poker Competition.

5.2 Background
Extensive-form games Extensive-form games are an intuitive formalism for rep-
resenting the interaction between agents and their environment. These interactions
are represented by a tree, in which nodes represent game states and edges represent
actions taken by one of the agents, i ∈ N , or chance, c. The root of the tree rep-
resents the start of the interaction, and actions are taken until a leaf, i.e., terminal
node is reached. Each terminal node z ∈ Z assigns a utility to each player i, ui(z).
In imperfect information games, agents may not be able to observe some of the
actions taken by chance or the other agents. In the poker setting we use the terms

3Gilpin and Sandholm refer to their abstraction technique as being potential-aware, as it is
distribution-aware and can also represent how quickly a hand may change over time.
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private and public to refer to actions visible to only one agent or to all agents, al-
though in general other types of actions are possible. Each set of game states that
are indistinguishable by the acting agent is called an information set. When some
actions are not observed, an agent perceives the game not as a tree of game states,
but as a tree of information sets. A perfect recall game has the natural property
that each agent remembers the exact sequence of its past observations and actions
leading to each decision.

A behavioral strategy (or simply a strategy) for each player i, σi, maps each
of player i’s information sets to a probability distribution over the legal actions. A
strategy profile σ is a tuple containing a strategy for each player. Let σ−i refer to
the strategies of player i’s opponents. Given a strategy profile σ, we denote each
player’s expected utility by ui(σ). Given the opponents’ strategies σ−i, a best re-
sponse for player i is the strategy that maximizes utility against σ−i, where bi(σ−i)
is the utility of the best response strategy when played against σ−i. A strategy
profile σ is called an ε-Nash equilibrium if ∀i ∈ N, bi(σ−i) − ui(σi, σ−i) ≤ ε.
When ε = 0, the profile is called a Nash equilibrium. In two-player repeated
games where the agents alternate positions, each agent has one strategy for each
position and their exploitability is their utility (averaged over all positions) against
a worst-case adversary who, in each position, uses a best-response to the agent. In
two-player zero-sum games, a Nash equilibrium has an exploitability of 0 and thus
cannot lose, on expectation, to any adversary.

Poker is a canonical example of stochastic imperfect information extensive-
form games. In this paper we will focus on two-player limit Texas hold’em, which
is one of the variants played in the Annual Computer Poker Competition. The game
begins with each player being given a hand of two private cards that only they can
see or use. The players’ actions are to bet or call, placing or matching wagers that
their hand will be the strongest at the end of the game, or to fold to concede the
game. This is followed by chance revealing an additional three public cards that
both players can see and use, and an additional round of betting actions. After two
additional such rounds in which one public card is revealed and the players act, the
game is over and the player with the strongest hand made of their private cards and
the public cards wins the wagers. Poker is a repeated game in which two agents will
play a long series of such games with the overall goal of having the highest total
winnings.

Counterfactual Regret Minimization Counterfactual Regret Minimization (CFR)
is a state-of-the-art algorithm for solving extensive-form games (i.e. , approxi-
mating a Nash equilibrium strategy) and has been widely used in the poker do-
main [110; 45]. Although it is only proven to converge to a Nash equilibrium
in two-player zero-sum perfect recall games, in practice it appears robust when
these constraints are violated as it has been successfully applied to multi-player
games [79], non-zero-sum games [53], and imperfect recall games [104]. CFR is
an iterative self-play algorithm. Each player starts with an arbitrary strategy. On
each iteration, the players examine every decision, and for each possible action
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compare the observed value of their current policy to the value they could have
achieved by making that action instead. This difference is the regret for playing
an action, and the accumulated regret is used to determine the strategy used on the
next iteration. In the limit, the average strategies used by the players will converge
to a Nash equilibrium. CFR is efficient in both time and memory, requiring space
which is linear in the number of actions across all information sets. While it has
been applied to games with up to 8.8× 1010 information sets [45], the computation
remains intractable for domains as large as two-player limit Texas hold’em, which
has 3.2× 1014 information sets.

State-space abstraction A state space abstraction is a many-to-one mapping
between the game’s information sets and the information sets in a smaller, arti-
ficially constructed abstract game. An agent using abstraction only observes its
abstract game information set, and its strategy for that information set is used for
all of the real information sets mapped to it. The goal is to construct a game small
enough that an optimal strategy can be found through an algorithm such as CFR,
and the resulting strategy can be used to choose actions in the original game, where
it is hoped to closely approximate a Nash equilibrium strategy. The success of this
approach relies on both the size of the abstract game (a larger and finer-grained ab-
stract game can lose less information) and the domain features used to decide which
information sets can be mapped together.

The earliest uses of state-space abstraction in poker involved the construction
of abstract chance events, called bins by Shi and Littman [89], buckets by Billings
et al. [11], and signals by Gilpin and Sandholm [37], by grouping together chance
events that are similar according to a metric. As the players’ actions were left
unabstracted, the abstract game resembles the real game except with a coarsened
representation of the chance events. A common metric used in this early work is
a player’s expected hand strength (E[HS]). In the final round when all public
cards have been revealed, a player’s hand strength (HS) is the probability that
their hand is stronger than a uniform randomly sampled opponent hand. In the
earlier rounds, expected hand strength (E[HS]) is the expectation of hand strength
over all possible rollouts of the remaining public cards. A related metric, expected
hand strength squared (E[HS2]), computes the expectation of the squared hand
strength values, and assigns a relatively higher value to hands with the potential to
improve such as flush-draws or straight-draws.4

These expectation-based metrics can be used to create abstract chance events
in a number of different ways, such as bucketing based on expert-chosen ranges of
E[HS] values [11], bucketing based on E[HS] ranges chosen so as to contain an
equal number of hands (called percentile bucketing) [110], or by merging hands
whose E[HS] values differ by less than a threshold [36]. Additionally, two abstrac-
tion techniques can be nested by applying one and then subdividing by the other.
For example, an abstraction might split the possible hands into five buckets by per-
centile E[HS2] and further split each into two percentile E[HS] buckets, giving

4The rationale behind E[HS2] is discussed in detail in [47, p. 25].
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ten buckets overall. The Percentile nested E[HS2] / E[HS] abstraction technique
has been well studied by researchers [53; 104] and was used by Hyperborean in the
Annual Computer Poker Competitions from 2007 to 2009.

Gilpin et al. showed that expectation-based metrics have difficulty distinguish-
ing between hands that have the potential to improve and those that do not, and
that this difference is strategically important [39]. High potential hands are called
drawing hands, which might be weak initially but have the possibility to become
very strong given fortunate chance outcomes later in the game. Expectation-based
abstraction techniques place these hands into buckets along with hands that have a
similar E[HS] values and no likelihood of improving. Abstracting these strategi-
cally distinct hands together loses information, as an abstracted agent must choose
one strategy to handle both cases. While theE[HS2] metric was designed to address
this fault, it was only a partial solution. Gilpin et al. addressed this shortcoming
through a multi-pass k-Means abstraction technique in which the final round is
clustered by E[HS] and each earlier round was clustered by L2 distance over his-
tograms showing the probability of transitioning to the next round’s buckets [39].
In later work, Gilpin and Sandholm compared these distribution-aware abstrac-
tions to expectation-based abstractions and found that expectation-based abstrac-
tions yielded stronger strategies in small abstractions, but are surpassed as more
buckets are made available [38].

Imperfect Recall Imperfect recall is a relaxation of perfect recall in which agents
may “forget” some of the information that it has observed. It is not typically a prop-
erty of a real domain (as humans cannot be forced to forget their observations), but
is instead an optional property that can be used for abstract games. When creating
an imperfect recall abstraction agents can be forced to discard old observations that
are no longer strategically important, thus merging the real information sets that
differed in this observation. This means that an agent may be able to distinguish
two information sets early in a game, but not distinguish their descendant informa-
tion sets later in the game. They will perceive the game as a directed acyclic graph
instead of as a tree.

An example of equal-sized perfect recall and imperfect recall abstractions in a
poker-like game is shown in Figure 5.1. This game starts with a chance event, C,
which deals the player a private card. Each abstraction coarsens that information
and maps it to a bucket, 1 or 2, indicating that the card is in the top or bottom half
of all possible cards. At the action node, A, the players take a sequence of actions,
X, or Y, which is followed by a chance node at which a public card is revealed. This
is where the two abstractions differ. In the perfect recall abstraction, the agent must
remember its sequence of observations: 1 or 2, X or Y. The new chance information
is coarsened by the perfect recall abstraction, and the agent receives one of two
new buckets depending on their earlier observation. The sequences 1-1, 1-2, 2-1,
and 2-2 represent different sets of chance events, and can have overlapping ranges
according to metrics such as E[HS]: a weak hand that becomes strong may score
higher than a strong hand that becomes weak. In the imperfect recall abstraction,
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Figure 5.1: Perfect recall and imperfect recall games.

only the players’ action sequence, X or Y, is remembered while the original chance
bucket, 1 or 2, is forgotten. The 1X and 2X paths merge, as do 1Y and 2Y. The
second chance node is coarsened to one of four buckets, 1 to 4, representing the
strength of its private card combined with the public card. These four buckets can
be constructed to form non-overlapping ranges of E[HS]. If this second chance
event makes the first less significant (i.e. if the agent’s previous strength is not very
important, as is the case in poker), then the imperfect recall representation may
provide more useful information.

The use of imperfect recall abstractions in the poker domain was first proposed
by Waugh et al. [104]. As they noted, imperfect recall presents several theoretical
challenges: there is no guarantee that a Nash equilibrium for an imperfect recall
game can be represented as a behavioral strategy (Nash’s celebrated theorem only
guarantees that a mixed strategy equilibrium exists), and no proof that CFR (or other
efficient algorithms) will converge towards such a strategy if one exists. Recent
work by Lanctot et al. has shown that CFR will converge in a class of imperfect
recall games; however, this class does not include the abstractions typically used
in poker [61]. However, CFR remains well-defined in imperfect recall abstractions
and can be used to generate abstract strategies that can be used in the real game.
Waugh et al. [104] showed that a small improvement was possible in two-player
limit Texas hold’em, as imperfect recall discarded less relevant earlier observations
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and allowed new domain features to be used along with E[HS].

5.3 Evaluating Abstractions
With many options available for constructing abstractions and no theory to guide
these choices, progress has only been established through empirical evaluation.
This involves creating abstract games, solving them, and evaluating the strategy
in the real game. Gilpin and Sandholm [38] codified the possibilities for evaluat-
ing the resulting strategy, and thus evaluating the abstraction methodology itself.
They described three approaches: in-game performance against other agents, in-
game performance against an unabstracted Nash equilibrium, and exploitability in
the real game.

While these evaluation methods measure qualities we want, each involves a po-
tentially serious drawback. In one-on-one play, it is possible to find intransitivities
where strategy A defeats B, which defeats C, which defeats A. A weaker form of
intransitivity occurs when A defeats B, but B defeats C by more than A defeats C.
It is not clear what to conclude in such cases. In one-on-one play against a Nash
equilibrium, many strategies of varying exploitability may tie. Even more problem-
atic is that generating an unabstracted equilibrium strategy in human-scale domains
is intractable. Finally, while measuring the exploitability of abstract strategies di-
rectly addresses the goal of approximating a Nash equilibrium, recent research has
shown that abstract game equilibria may not be the abstract strategies with the low-
est real game exploitability [103; 53]. In addition, both Waugh et al. [101, p.30
and p.52] (in a toy game) and Johanson et al. [53] (in Texas Hold’em), found that
exploitability does not correlate well with one-on-one performance.

Johanson et al. recently presented CFR-BR: a CFR variant that, in perfect re-
call abstractions, converges towards an abstract strategy with the lowest real game
exploitability [49]. These strategies are not abstract game equilibria, as are found
by CFR, but instead are the closest approximations to a real game equilibrium that
can be represented within an abstraction. In practice, the exploitability of these
CFR-BR strategies is as little as 1

3
of those found via CFR. While CFR-BR’s con-

vergence is only proven for perfect recall abstractions, in practice the same degree
of improvement is shown in imperfect recall games. CFR-BR requires repeated
traversals of the real game tree, and may not be tractable in large domains where ab-
straction enables CFR. However, calculating a strategy’s exploitability also requires
a real game tree traversal (although an efficient traversal may be possible [53]), and
in such large games one-on-one performance may remain the only viable evalua-
tion.

Johanson et al. also demonstrated that CFR-BR could be used for evaluating
abstractions by measuring the closest approximation to a Nash equilibrium that
can be represented by the abstraction [49]. In this paper, we will broadly apply
the CFR-BR technique for the first time to compare new and existing abstraction
techniques. Our experiments will evaluate two abstraction choices that have been
raised by recent publications: the effectiveness of expectation-based as opposed to
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distribution-aware abstractions, as proposed by Gilpin and Sandholm [39], and the
use of perfect recall as opposed to imperfect recall, as proposed by Waugh et al.
[104]. We will also present for the first time the abstraction technique and distance
metrics used by the Hyperborean agent in the Annual Computer Poker Competition
since 2010.

5.4 Abstraction as Clustering
To eliminate the need for direct human expert knowledge when creating an abstrac-
tion, the abstraction generation problem will be considered as a clustering problem.
Given a target number of clusters (i.e. buckets) k and a distance function between
information sets, a clustering algorithm can be used to partition the real information
sets into the buckets that form the information sets of the abstract game. Using a
clustering algorithm allows the abstraction designer to focus on two aspects of the
task: designing a distance metric that represents the strategic similarity of two in-
formation sets, and choosing the total number of clusters on each round, ki, so that
the total number of information sets in the resulting abstract game is small enough
to solve.

In practice, the number of information sets to be clustered can be very large,
making the use of many clustering algorithms computationally intractable. In the
poker domain, for example, the final round of Texas hold’em has 2,428,287,420
canonical combinations of public and private cards to be grouped into between one
thousand (a small abstraction) and one million (a large abstraction) clusters or more.
To make this large clustering problem tractable, we use a k-Means implementation
that uses the triangle inequality to reduce the number of distance function calls [28].
Multiple restarts and the k-Means ++ initialization [4] are also used to improve the
quality of the clustering.

As in previous work in the limit Texas hold’em poker domain, the abstractions
used in our experiments will only merge information sets on the basis of having
similar chance events. This approach leaves the players’ actions unabstracted and
reduces the abstraction generation task to that of finding clusters of similar private
and public cards. In the remainder of this section, we will present two new distance
metrics for the poker domain that capture strategic similarities that were not handled
by earlier expectation-based approaches, and describe how imperfect recall can be
used to reallocate the distribution of buckets throughout the game.

Hand Strength Distributions In Section 5.2, we described the expected hand
strength metric. In the final round of the game, hand strength measures the prob-
ability of winning against a randomly sampled opponent hand, given the public
cards. Earlier in the game, E[HS] measures the expectation of hand strength over
all possibilities for the remaining public cards. Thus, E[HS] summarizes the dis-
tribution over possible end-game strengths into a single expected value.

As noted by Gilpin and Sandholm [38], this single value is unable to distinguish
hands with differing potential to improve. Consider Figure 5.2(top), which shows
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Figure 5.2: (top) Hand Strength histograms for four poker hands at the start of the
game. (bottom) Earth mover’s and E[HS] distances.
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the distributions over the final round hand strength of four Texas hold’em poker
hands in the first round of the game. Each distribution is discretized into a histogram
with values ranging from 0 (a guaranteed loss) to 1 (a guaranteed win). The height
of each bar indicates the probability of the remaining public cards resulting in that
hand strength, and the vertical black line and label shows E[HS].

Note that the top and bottom histograms have different distribution shapes:
4♠4♥ and 6♠6♥ have most of their weight near their E[HS] values, while T♠J♠
and Q♠K♠ have almost no weight near E[HS] as the unrevealed cards will make
this hand either strong or weak. This difference is an indication that the top and
bottom rows are strategically distinct: the bottom row has high potential, while the
top row does not. However, when comparing the columns of hands we find al-
most identical E[HS] values. As such, expectation-based approaches would merge
within each column, whereas merging along each row may be better.

This suggests the use of a distribution-aware similarity metric such as earth
mover’s distance [105] to compare two hand strength distributions. Earth mover’s
distance measures the minimum work required to change one distribution into an-
other by moving probability mass. In one-dimensional discrete distributions such
as these hand strength distributions, it can be efficiently computed with a single
pass over the histogram bars. Unlike alternative distance metrics such as L2 or
Kolmogorov-Smirnov, earth mover’s distance measures not only the difference in
probability mass, but also how far that mass was moved. In Figure 5.2(bottom), the
earth mover’s distance and difference in E[HS] for four hands are listed. In parti-
tioning these four hands into two clusters, earth mover’s distance would merge the
rows (similar distribution shapes) while E[HS] would merge the columns (similar
expected values).

In Texas hold’em poker, hand strength histograms can be precomputed for every
combination of private and public cards in the first three rounds, and earth mover’s
distance provides a candidate distance function for comparing them. After all of
the public cards are revealed in the final round, each histogram would be a single
impulse at the corresponding hand strength value, and earth mover’s distance and
the difference in hand strength values would be equivalent.

Opponent Cluster Hand Strength Our second new distance metric addresses
a different aspect of E[HS]. The ‘hand strength’ component of E[HS] measures
the probability of winning against a uniform randomly sampled opponent hand at
the end of the game, and this provides one summary feature. However, we can
also consider our probability of winning against multiple subsets or distributions
of possible opponent hands, and thereby generate additional features. While any
number of overlapping or non-overlapping subsets could be used, in this work we
will partition the 169 starting hands into eight non-overlapping subsets, which we
call opponent clusters5. These were formed by clustering the hands using the earth
mover’s distance metric on the first round, and are presented in Table 5.1.

5Our use of these eight clusters was an engineering decision to limit the memory required for the
precomputed tables; other choices may be even more effective.
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Table 5.1: Eight hand clusters used for the OCHS features.
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Figure 5.3: (top) OCHS values for four poker hands at the start of the game. (bot-
tom) OCHS L2 and E[HS] distances.
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# Action Sequences PR 10-10-10-10 IR 10-100-1,000-10,000 IR 169-9,000-9,000-9,000
Round Inside Continuing # Buckets # Infosets # Buckets # Infosets # Buckets # Infosets

1 8 7 10 80 10 80 169 1,352
2 7*10 7*9 10*10 700 100 700 9,000 630,000
3 7*9*10 7*9*9 10*10*10 630,000 1,000 630,000 9,000 5,670,000
4 7*9*9*10 10*10*10*10 56,700,000 10,000 56,700,000 9,000 51,030,000

Total 57,330,780 57,330,780 57,331,352

Table 5.2: Computing the number of information sets in three nearly equally sized
Texas hold’em abstractions.

Instead of using a single E[HS] value, we will now compute eight values mea-
suring the hand strength against hands drawn uniform randomly from each oppo-
nent cluster. For example, the eighth Opponent Cluster Hand Strength (OCHS)
feature measures the probability of winning against an opponent hand sampled from
the set of top pairs. For each game round, we can precompute a vector of OCHS
features to describe a hand’s strength. The L2 distance between two vectors is then
used as a distance metric. Figure 5.3 shows an example with the four first-round
hands from Table 5.2 and the L2 distances between their vectors. OCHS provides a
richer representation of strength than E[HS], which can itself be derived from the
vector.

Perfect and Imperfect Recall We will now describe how clustering can be used
to form abstractions with perfect and imperfect recall. A perfect recall abstraction is
created hierarchically by solving many small clustering problems. To start, the first
round of the game is clustered into k1 clusters. In the second round, perfect recall
requires that information sets may only be clustered together if they share the same
sequence of observations. This means that we must solve k1 independent clustering
problems, each of which only includes those chance events that are descendents
of chance events clustered together in the first round. Although each of these in-
dependent clustering problems could assign a different number of clusters, in our
experiments we use the same constant k2 for each. The hierarchical abstraction
generation continues until the final round in which we have to solve k1 · . . . · kn−1

clustering problems, into kn clusters each, for a total of k1 · . . . · kn clusters in the
final round.

When creating an imperfect recall abstraction, we simply cluster all of the
chance events without considering their predecessors’ clusters on earlier rounds.6

Solving one large clustering problem is more computationally difficult than solving
many small ones. However, the larger number of clusters may allow for a more
accurate clustering, as there will not be a need for clusters with similar features that
differ only by their history.

The key constraint when making an abstraction is not the number of buckets

6In general, the previous rounds’ clusters or features can be considered when forming clusters,
and perfect recall simply enforces this as a constraint. In earlier work [104], we created imperfect
recall abstractions that formed clusters from hands with similar, but not strictly matching, earlier
clusters or features. This form of abstraction may still be useful, particularly for representing earlier
public knowledge, and warrants further study. At this time, when clustering on private features such
as PHS, DIST, and OCHS, we have found little benefit to considering the earlier clusters or features,
and instead focus solely on the current information.
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either in each round or overall, but the total number of information sets in the re-
sulting game, as this determines the memory required to solve it. In imperfect
recall abstractions it is possible to change the distribution of buckets throughout
the game, dramatically increasing the number of buckets in early rounds, without
changing the overall number of information sets. We demonstrate this effect in Ta-
ble 5.2. The ‘Action Sequences’ columns describe only the players’ actions and not
the chance events, and shows the number of action sequences leading to a choice
inside the round and continuing to the next round. The next three sections describe
nearly equally sized abstractions. PR-10-10-10-10 uses perfect recall, while IR-
10-100-1,000-10,000 and IR-169-9,000-9,000-9,000 use imperfect recall. For each
abstraction, the table lists the number of buckets and the number of information sets
(buckets times decision points) in the abstraction in that round. The final row shows
the total number of information sets.

The PR-10-10-10-10 and IR-10-100-1,000-10,000 abstract games are exactly
the same size and use the same total number of buckets on each round: either
through multiple small perfect recall clusterings, or in one large imperfect recall
clustering. The IR-169-9,000-9,000-9,000 abstraction changes the distribution of
buckets, shrinking the final round to 9,000 buckets and removing 5.67 million fi-
nal round information sets. Due to the multiplying effect of the number of action
sequences that reach the final round, removing one fourth-round bucket allows for
the addition of 9 third-round buckets, 81 second-round buckets, or 567 first-round
buckets. In this way, we can decrease the number of fourth-round buckets by 10%
to get an abstraction that is lossless in the first round (i.e. it has 169 buckets) and
has 9,000 buckets in the second and third rounds. Note that this type of redistribu-
tion is not possible when using perfect recall, as the larger number of buckets early
in the game need to be remembered until the final round: having 169 buckets in the
first round would allow only four buckets on each subsequent round.

5.5 Results
We can now begin our empirical investigation of abstraction techniques, using the
domain of two-player limit Texas hold’em poker. In this paper, we have described
three abstraction techniques that are applicable to the first three rounds: Percentile
Hand Strength (PHS), k-Means earth mover (KE), and k-Means OCHS (KO). We
have two choices of abstraction techniques to use on the final round: Percentile
Hand Strength (PHS) and k-Means OCHS (KO). Each combination of an early-
game and end-game technique can be used to form a different abstraction. Addi-
tionally, we can consider abstractions that use Perfect Recall (PR) and Imperfect
Recall (IR), resulting in 2 × 3 × 2 = 12 abstractions. An abstraction (or agent)
named IR-KE-KO uses imperfect recall, k-Means earth mover to abstract the first
three rounds, and k-Means OCHS to abstract the final round. Each abstraction will
be of the sizes listed in Table 5.2: either Perfect Recall 10-10-10-10, or Imperfect
Recall 169-9000-9000-9000 with a lossless first-round abstraction. In the first three
rounds, PHS abstractions will use nesting to partition first by E[HS2] and then by
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E[HS]. Perfect recall PHS will use 5 × 2 = 10 buckets and imperfect recall PHS
will use 150 × 60 = 9000 buckets. On the final round E[HS2] ranks hands in the
same order as E[HS], and so PHS uses a single partition into 10 or 9000 buckets.

We begin our evaluation of these abstraction styles and distance metrics with
the first evaluation technique suggested by Gilpin and Sandholm: one-on-one per-
formance between abstract game Nash equilibrium strategies [38]. For each ab-
straction, a parallel implementation of the Public Chance Sampled CFR algorithm
(PCS) [50] was run for 4 days on a 48-core 2.2 GHz AMD computer7. Each pair
of strategies was then played against each other for 10 million hands of duplicate
poker to obtain statistically significant results with a 95% confidence interval of 1.1
mbb/g. The crosstable of this match is shown in Table 5.3. We find that every im-
perfect recall agent, regardless of abstraction technique, outperformed every perfect
recall agent. Comparing each imperfect recall agent against its perfect recall equiv-
alent (i.e. , IR-KE-KO to PR-KE-KO) we find that the imperfect recall agent also
had a higher expected value against each opponent. Overall, the IR-KE-KO agent
was undefeated and additionally scored the highest against each adversary. Ranked
by average performance, the IR-KO-KO and IR-KE-PHS agents placed second and
third.

Gilpin and Sandholm’s third abstraction evaluation technique is to calculate the
real game exploitability of abstract game Nash equilibrium strategies. In the CFR
column of Table 5.4, we present the exploitability of the same CFR strategies used
in the one-on-one crosstable. Note that the results are inconsistent: neither per-
fect recall or imperfect recall shows a clear advantage. Notably, the two KE-KO
strategies are almost exactly tied, despite the fact that IR-KE-KO was considerably
stronger in the crosstable. As described earlier, recent work by Waugh et al. [103]
and Johanson et al. [53] has shown that abstract game Nash equilibria are rarely
the least exploitable strategies representable in an abstraction, making this method
of evaluating abstractions inconclusive.

The recently developed CFR-BR algorithm provides a more reliable metric [49].
In each abstraction, a parallel implementation of CFR-BR was run for 8 days on the
same computer used to generate the CFR strategies8. The exploitability of these
CFR-BR strategies is presented in Table 5.4, and the results are much more con-
sistent with the one-on-one performance presented in Table 5.3. IR-KE-KO, IR-
KO-KO, and IR-KE-PHS are once again ranked first, second and third. With the
exception of PHS-PHS, the imperfect recall agents are also less exploitable than
their perfect recall equivalents. Johanson et al. note that CFR-BR strategies tend to
lose slightly when played against their more exploitable PCS equivalents [49, Fig.
8], and so the CFR strategies’ one-on-one performance is of more interest. The out-
comes of playing the CFR-BR agents against each other are very similar to those of
the CFR agents in Table 5.3.

In Table 5.2, we showed that imperfect recall allows us to decrease the number

7Johanson et al. found that applying PCS to 10-bucket PR-PHS-PHS for 105 seconds was
sufficient for near convergence [50, Figure 3c].

8Johanson et al. found that this time, 3.3 × 107 seconds, was sufficient for near convergence
using PR-PHS-PHS and IR-KE-KO [49, Figures 6 and 7].
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CFR CFR-BR
PR IR PR IR

PHS-PHS 288.942 358.188 89.632 94.841
PHS-KO 289.152 318.197 90.371 85.275
KE-PHS 281.63 339.872 90.720 80.557
KE-KO 282.856 282.395 84.039 64.820
KO-PHS 335.902 355.881 105.389 88.546
KO-KO 330.319 291.574 105.523 73.091

Table 5.4: Exploitability of CFR-BR and CFR strategies. Results are measured in
milli-big-blinds/game and are exact. An extended version of this table is available
in the appendix as Table 11.4.

Abstraction CFR-BR Exploitability
PR KE-KO 10-10-10-10 84.039

IR KE-KO 10-100-1000-10000 89.7975
IR KE-KO 169-9000-9000-9000 64.820

Table 5.5: Effect of redistributing buckets in an abstraction.

of buckets in later rounds of the game in return for many more buckets in earlier
rounds, without increasing the size of the game. In Table 5.5, we revisit this decision
and also consider an IR KE-KO 10-100-1,000-10,000 abstraction. We find that the
imperfect recall agent is more exploitable than its perfect recall equivalent, while
the redistributed agent shows a significant decrease.

We can also measure the exploitability of CFR-BR strategies as a response to
abstraction size, to investigate if these abstraction techniques improve at different
rates. For this experiment, we consider five sizes of four abstractions: PR-PHS-
PHS and IR-PHS-PHS, PR-KE-KO and IR-KE-KO. The perfect recall abstractions
branch to 5, 6, 8, 10 and 12 buckets on each round, and the imperfect recall abstrac-
tions have a lossless first round and 570, 1175, 3700, 9000 and 18630 buckets on
later rounds.

The CFR-BR exploitability results for these abstractions are presented in Fig-
ure 5.4 as a log-log plot. Comparing the slope of each curve, we find that IR-KE-KO
and PR-KE-KO are steeper than PR-PHS-PHS and IR-PHS-PHS, indicating that
their advantage increases with the abstraction size. The combination of abstraction
techniques presented in this paper, imperfect recall with redistribution and the KE
and KO techniques, is less exploitable at all tested abstraction sizes.

5.6 Discussion
Recent research towards state-space abstraction in the poker domain has raised two
issues: the effectiveness of distribution-aware as compared to expectation-based
approaches (as described by Gilpin and Sandholm [38]) and the practical uses of
imperfect recall (as described by Waugh et al. [104]). The discovery that the ex-
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Figure 5.4: Exploitability of CFR-BR strategies in four abstractions as the abstrac-
tion size is varied. An extended version of this figure is available in the appendix as
Figure 11.3.

ploitability of abstract game Nash equilibrium strategies was not an accurate mea-
sure of an abstraction’s ability to represent a real Nash equilibrium has left these
issues unresolved. Our goal in these experiments was to use the recently developed
CFR-BR technique to survey these abstraction choices and evaluate them more pre-
cisely.

Gilpin and Sandholm’s investigation showed that while agents in expectation-
based abstractions are more effective in small abstract games, the distribution-aware
agents match and surpass them as the number of buckets is increased. Figure 5.4
shows that our experiment matches their result: the steeper slope of the PR-KE-KO
line as compared to PR-PHS-PHS shows that the distribution-aware metric makes
better use of the available buckets as the abstraction size increases. In addition, the
one-on-one crosstable in Table 5.3 shows that the distribution-aware agents using
the k-Means earth mover’s abstractions outperformed the expectation-based agents.

We now turn to imperfect recall. In one-on-one performance, every imperfect
recall agent, regardless of its abstraction features, outperformed every perfect recall
agent. In terms of exploitability, aside from IR-PHS-PHS, every CFR-BR agent
using imperfect recall was found to be less exploitable than its perfect recall equiv-
alent. While CFR-BR is not theoretically guaranteed to converge to a least ex-
ploitable strategy in an imperfect recall game, our results provide an upper bound:
the least exploitable IR-KE-KO strategy is exploitable for at most 64.820 mbb/g,
far less than the least exploitable perfect recall agent. While Waugh et al. found
that imperfect recall and additional features provided a small advantage, we have
shown a significant improvement while using the same domain features.

Finally, the CFR and CFR-BR results presented in Table 5.4 support Johanson
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et al. ’s proposed use of CFR-BR to evaluate strategies instead of measuring the
exploitability of abstract game Nash equilibria. The CFR results are inconsistent,
showing no clear advantage for perfect or imperfect recall, and ordering the agents
differently than the one-on-one crosstable. While there is no guarantee that the
one-on-one results and exploitability should agree, the CFR-BR strategies are both
far less exploitable in all cases, show an advantage for imperfect recall, and rank
the top three agents in the same order as the one-on-one results. Using CFR-BR
to evaluate abstractions based on their ability to approximate an unabstracted Nash
equilibrium provides a more consistent metric than the previous approaches.

5.7 Conclusion
Historically, state-space abstraction techniques in extensive-form games have been
evaluated by computing optimal abstract strategies and comparing their one-on-
one performance and exploitability. A recently published technique, CFR-BR, di-
rectly finds the abstract strategy with the lowest real game exploitability, providing
a more consistent measure of an abstraction’s quality. Using this technique, we
evaluated two abstraction choices in the poker domain: expectation-based as op-
posed to distribution-aware distance metrics, and imperfect recall abstractions. Our
findings on distribution-aware techniques support those of Gilpin and Sandholm:
distribution-aware distance metrics provide a clear advantage once the abstract
game is large enough. We also demonstrated a clear improvement in one-on-one
performance and exploitability through the use of imperfect recall abstractions, and
demonstrated that imperfect recall abstractions can contain less exploitable strate-
gies than equal sized perfect recall strategies.
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Thus far, we have described techniques for approximating Nash equilibria. In
a two-player zero-sum game, a Nash equilibrium is a useful default strategy as it
is guaranteed to not lose on expectation to any opponent, even a worst-case omni-
scient opponent who knows our agent’s strategy before the match begins, or who
can quickly model it and respond to it online. However, the opponents that our
agents will face in practice will be humans and computer agents whose strategies
will be imperfect and exploitable. Instead of cautiously trying to not lose, our agents
can instead better achieve the goal of the game by modelling their opponent and de-
veloping an exploitive counter-strategy, and hopefully increase their expected win-
nings far beyond what a Nash equilibrium would win.

However, opponent modelling and adaptation is a difficult and error-prone task.
If we attempt to model our opponent offline through observations of their past be-
haviour, then we must generalize a relatively small number of observations across
a vastly larger strategy space. Further, the natural inclination to compute and use
a utility-maximizing best response strategy is dangerous. Best response strategies
tend to be brittle: they maximize utility against a very particular opponent, but if
our model is imperfect due to a limited number of observations, or if the opponent’s
strategy is changing over time, then it can itself be badly exploited.

In prior work, we proposed using robust counter strategies, that provide a trade-
off between minimizing exploitability (like a Nash equilibrium) and maximizing ex-
ploitation (like a best response). The algorithm we used, Restricted Nash Response
(RNR) [54], generates the pareto-optimal set of strategies that trade off between
these goals, in practice outperforming any simple mixture between a Nash equi-
librium and a best response. However, RNR requires complete knowledge of the
opponent’s strategy, and is error prone when using a model built from observations.

In this chapter’s paper, we present the Data Biased Response algorithm. Data
Biased Response is a variant of CFR that restricts one player’s behaviour at indi-
vidual information sets, based on a provided model that we have constructed. The
degree to which the model is enforced is dependent on our confidence in the model’s
accuracy at each decision point, to avoid errors caused by sparse data. The result is
a practical, efficient offline algorithm for computing robust counter-strategies.

DBR forms part of our current approach for opponent modelling and online
adaptation, called the Implicit Modelling framework. Developed by Bard, Bowl-
ing, myself and our colleagues [8; 7; 9], this framework anticipates types of oppo-
nents we might face, clusters them into categories, uses DBR to construct counter-
strategies to each category, and then uses the Imaginary Observations technique we
will discuss in Chapter 7 to switch between these counter-strategies online.

Author’s contributions. I developed the original idea for this paper, which ad-
dresses many of the faults of our earlier work on Restricted Nash Response [54]. I
designed and implemented the algorithm and performed all of the experiments. The
results were interpreted by Bowling and myself. Bowling contributed the formal-
ism in Section 6.7 which casts DBR as a task of picking a robust prior. The paper
was written and edited equally by Bowling and myself.
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Data Biased Robust Counter Strategies12

Michael Johanson (johanson@cs.ualberta.ca)
Michael Bowling (bowling@cs.ualberta.ca)

Abstract:
The problem of exploiting information about the environment while still being ro-
bust to inaccurate or incomplete information arises in many domains. Competitive
imperfect information games where the goal is to maximally exploit an unknown
opponent’s weaknesses are an example of this problem. Agents for these games
must balance two objectives. First, they should aim to exploit data from past in-
teractions with the opponent, seeking a best-response counter strategy. Second,
they should aim to minimize losses since the limited data may be misleading or
the opponent’s strategy may have changed, suggesting an opponent-agnostic Nash
equilibrium strategy. In this paper, we show how to partially satisfy both of these
objectives at the same time, producing strategies with favourable tradeoffs between
the ability to exploit an opponent and the capacity to be exploited. Like a recently
published technique, our approach involves solving a modified game; however the
result is more generally applicable and even performs well in situations with very
limited data. We evaluate our technique in the game of two-player, Limit Texas
Hold’em.

6.1 Introduction
Maximizing utility in the presence of other agents is a fundamental problem in
game theory. In a zero-sum game, utility comes from the exploitation of opponent
weaknesses, but it is important not to allow one’s own strategy to be exploited in
turn. Two approaches to such problems are well known: best response strategies
and Nash equilibrium strategies. A best response strategy maximizes utility for an
agent, assuming perfect knowledge of its static opponent. However, such strategies
are brittle: against a worst case opponent, they have a high exploitability. In a two-
player zero-sum game, a Nash equilibrium strategy maximizes its utility against
a worst-case opponent. As a result, we say that such strategies are robust. If a
perfect model of the opponent is available, then they can be exploited by a best
response; if a model is not available, then playing a Nash equilibrium strategy is
a sensible choice. However, if a model exists but it is somewhat unreliable (e.g.,
if it is formed from a limited number of observations of the opponent’s actions, or
if the opponent is known to be changing strategies) then a better option may be
to compromise: accepting a slightly lower worst-case utility in return for a higher
utility if the model is approximately correct.

1The paper presented in this chapter originally appeared at the Twelfth International
Conference on Artificial Intelligence and Statistics (AISTATS-09). Copyright
2010 by the authors. M. Johanson and M. Bowling. Data Biased Robust Counter Strategies.
Proceedings of the Twelfth International Conference on Artificial Intelligence
and Statistics, 264-271, 2009.

2The appendix has additional results related to this paper.
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One simple approach for creating such a compromise strategy is to create both
a best response strategy and a Nash equilibrium strategy, and then play a mixture of
the two. Before each game, we will flip a biased coin. With probability p we will
use the best response, and with probability (1−p) we will use the Nash equilibrium.
By varying p, we can create a range of strategies that linearly trade off exploitation
of the opponent and our own exploitability by a worst-case opponent. While this
approach is a useful baseline, we would like to make more favourable tradeoffs
between these goals.

McCracken and Bowling proposed ε-safe strategies as another approach [66].
The set of ε-safe strategies contains all strategies that are exploitable by no more
than ε. From this set, the strategies that maximize utility against the opponent are
the set of ε-safe best responses. Thus, for a chosen ε, the set of ε-safe best re-
sponses achieve the best possible tradeoffs between exploitation and exploitability.
However, their approach is computationally infeasible for large domains, and has
only been applied to Ro-Sham-Bo (Rock-Paper-Scissors).

In previous work we proposed the restricted Nash response [54] technique (RNR)
as a practical approach for generating a range of strategies that provide good trade-
offs between exploitation and exploitability. In this approach, a modified game
is formed in which the opponent is forced to act according to an opponent model
with some probability p, and is free to play the game as normal with probability
(1 − p). When p is 0 the result is a Nash equilibrium, and when p is 1 the result
is a best response. When 0 < p < 1 the technique produces a counter-strategy
that provides different tradeoffs between exploitation and exploitability. In fact, the
counter-strategies generated are in the set of ε-safe best responses for the counter-
strategy’s value of ε, making them the best possible counter-strategies, assuming
the model is correct. In a practical setting, however, the model is likely formed
through a limited number of observations of the opponent’s actions, and it may be
incomplete (it cannot predict the opponent’s strategy in some states) or inaccurate.
As we will show in this paper, the restricted Nash response technique can perform
poorly under such circumstances.

In this paper, we present a new technique for generating a range of counter-
strategies that form a compromise between the exploitation of a model and its ex-
ploitability. These counter-strategies, called data biased responses (DBR), are
more resilient to incomplete or inaccurate models than the restricted Nash response
(RNR) counter-strategies. DBR is similar to RNR in that the technique involves
computing a Nash equilibrium strategy in a modified game where the opponent is
forced with some probability to play according to a model. Unlike RNR, the op-
ponent’s strategy is constrained on a per-information set basis, and depends on our
confidence in the accuracy of the model. For comparison to the RNR technique,
we demonstrate the effectiveness of the technique in the challenging domain of
2-player Limit Texas Hold’em Poker.
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6.2 Background
A perfect information extensive game consists of a tree of game states and termi-
nal nodes. At each game state, an action is taken by one player (or by “chance”)
causing a transition to a child state; this is repeated until a terminal state is reached.
The terminal state defines the payoffs to the players. In imperfect information ex-
tensive games such as poker, the players cannot observe some piece of information
(such as their opponent’s cards) and so they cannot exactly determine which game
state they are in. Each set of indistinguishable game states is called an information
set and we denote such a set by I ∈ I. A strategy for player i, σi, is a mapping
from information sets to a probability distribution over actions, so σi(I, a) is the
probability player i takes action a in information set I . The space of all possible
strategies for player i will be denoted Σi. In this paper, we will focus on two player
games.

Given strategies for both players, we define ui(σ1, σ2) to be the expected utility
for player i if player 1 uses the strategy σ1 ∈ Σ1 and player 2 uses the strategy
σ2 ∈ Σ2. A best response to an opponent’s strategy σ2 is a strategy for player 1
that achieves the maximum expected utility of all strategies when used against the
opponent’s strategy. There can be many strategies that achieve the same expected
utility; we refer to the set of best responses as BR(σ2) ⊆ Σ1. For example, the set
of best responses for player 1 to use against σ2 is defined as:

BR(σ2) = { σ1 ∈ Σ1 :
∀σ′1 ∈ Σ1u1(σ1, σ2) ≥ u1(σ′1, σ2)}

A strategy profile σ consists of a strategy for each player in the game; i.e.,
(σ1, σ2). In the special case where σ1 ∈ BR(σ2) and σ2 ∈ BR(σ1), we refer
to σ as a Nash equilibrium. A zero-sum extensive game is an extensive game
where u1 = −u2 (one player’s gains are equal to the other player’s losses). In
such games, all Nash equilibrium strategies have the same utility for the players,
and we refer to this as the value of the game. We define the term exploitability
to refer to the difference between a strategy’s utility when playing against its best-
response and the value of the game for that player. We define exploitation to refer
to the difference in utility between one strategy’s utility against a specific opponent
strategy and the value of the game for that player.

A strategy that can be exploited for no more than ε is called ε-safe, and is a
member of the set of ε-safe strategies Σε-safe

1 ⊆ Σ1. A strategy profile where each
strategy can be exploited by no more than ε is called an ε-Nash equilibrium. Given
the set Σε-safe

1 , there is a subset BRε-safe(σ2) ⊆ Σε-safe
1 that contains the strategies

that maximize utility against σ2:

BRε-safe(σ2) = { σ1 ∈ Σε-safe :
∀σ′1 ∈ Σε-safeu1(σ1, σ2) ≥ u1(σ′1, σ2)}
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6.3 Texas Hold’em Poker
Heads-Up Limit Texas Hold’em poker is a two-player wagering card game. In addi-
tion to being commonly played in casinos (both online and in real life), it is also the
main event of the AAAI Computer Poker Competition [65], an initiative to foster
research into AI for imperfect information games. Texas Hold’em is a very large
zero-sum extensive form game with imperfect information (the opponent’s cards
are hidden) and stochastic elements (cards are dealt at random). Each individual
game is short, and players typically play a session of many games.

We will briefly summarize the rules of the game. A session starts with each
player having some number of chips, which usually represent money. A single
game of Heads-Up Limit Texas Hold’em consists of each player being forced to
place a small number of chips (called a blind) into the pot before being dealt two
private cards. The players will combine these private cards with five public cards
that are revealed as the game progresses. The game has four phases: the preflop
(when two private cards are dealt), the flop (when three public cards are dealt), the
turn (when one public card is dealt) and the river (when one final public card is
dealt). If both players reach the end of the game (called a showdown), then both
players reveal their private cards and the player with the best 5-card poker hand wins
all of the chips in the pot. If only one player remains in the game, then that player
wins the pot without revealing their cards. After the cards are dealt in each phase,
the players engage in a round of betting, where they bet by placing additional
chips in the pot that their opponent must match or exceed in order to remain in the
game. To do this, the players alternate turns and take one of three actions. They
may fold to exit the game and let the opponent win, call to match the opponent’s
chips in the pot, or raise to match, and then add a fixed number of additional chips
(the “bet” amount). When both players have called, the round of betting is over,
and no more than four bets are allowed in a single round.

The goal is to win as much money as possible from the opponent by the end
of the session. This distinguishes poker from games such as Chess or Checkers
where the goal is simply to win and the magnitude of the win is not measured. The
performance of an agent is measured by the number of bet amounts (or just bets)
they win per game across a session. Between strong computer agents, this number
can be small, so we present the performance in millibets per game (mbb/g), where
a millibet is one thousandth of a bet3. A player that always folds will lose 750 mil-
libets per game to their opponent, and a strong player can hope to win 50 millibets
per game from their opponent. Due to a standard deviation of approximately 6000
millibets per game, it can take more than one million games to distinguish with 95%
confidence a difference of 10 millibets per game.

Since the goal of the game is to maximize the exploitation of one’s opponent,

3From 2006 to 2010, “millibet” or “millibets per game” was the unit commonly used by re-
searchers. The switch to “milliblinds per game” began in 2011 with the Accelerated Best Response
paper [53]. In heads-up limit Texas hold’em, millibets and milliblinds are equivalent. The millib-
linds unit is preferred as it extends to games such as no-limit Texas hold’em, where there is no such
“big bet” size defined by the rules, whereas all poker games have blinds or antes.
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the game emphasizes the role of exploitive strategies as opposed to equilibrium
strategies. In the two most recent years of the AAAI Computer Poker Competition,
the “Bankroll” event which rewards exploitive play has been won by agents that
lost to some opponents, but won enough money from the weakest agents to have
the highest total winnings. However, many of the top agents have been designed to
take advantage of a suspected a priori weakness common to many opponents. A
more promising approach is to observe an opponent playing for some fixed number
of games, and use these observations to create a counter-strategy that exploits the
opponent for more money than a baseline Nash equilibrium strategy or a strategy
that exploits some expected weaknesses.

6.3.1 Abstraction
The variant of poker described above has 9.17 × 1017 game states; computing best
responses and Nash equilibria in a game of this size is intractable. Therefore, it is
common practise to instead reduce the real game to a much smaller abstract game
that maintains as many of the strategic properties as possible. The strategies of
interest to us will be computed in this abstract game. To use the abstract game
strategy to play the real game, we will map the current real game information set
to an abstract game information set, and choose the action specified by the abstract
game strategy.

The game is abstracted by merging information sets that result from similar
chance outcomes. On the preflop, one such abstraction might reduce the number of
chance outcomes from 52 choose 2 down to 5, and from (52 choose 2)(50 choose
3) to 25 on the flop. Each chance outcome is reduced to one of 5 outcomes, giving
625 possible combinations, resulting in a game that has 6.45× 109 game states. In
this abstract game, best response counter-strategies can be computed in time linear
in the size of the game tree; on modern hardware, this takes roughly 10 minutes.
Using recent advances for solving extensive form games [110], a Nash equilibrium
for this abstract game can be approximated to within 3 millibets per game in under
10 hours.

6.3.2 Opponent Strategies
Much of the recent effort towards creating strong agents for Texas Hold’em has fo-
cused on finding Nash equilibrium strategies for abstract games [110; 34]. We want
to examine the ability to exploit opponent weaknesses, so we will examine results
where the opponent is not playing an equilibrium strategy. Toward this end, we
created an agent similar to “Orange”, which was designed to be overly aggressive
but still near equilibrium and competed in the First Man-Machine Poker Cham-
pionship [47, p. 82],. “Orange” is a strategy for an abstract non-zero-sum poker
game where the winner gets 7% more than usual, while the loser pays the normal
price. When this strategy is used to play the normal (still abstract) zero-sum game
of poker, it is exploitable for 28 millibets per game. This value is the upper bound
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on the performance obtainable by any counter-strategy that plays in the same ab-
straction.

In this paper, we will also refer to an agent called “Probe” [54]. Probe is a trivial
agent that never folds, and calls and raises whenever legal with equal probability.
The Probe agent is useful for collecting observations about an opponent’s strategy,
since it forces them into all of the parts of the game tree that the opponent will
consent to reach.

6.3.3 Opponent Beliefs
A belief about the opponent’s current strategy can simply be encoded as a strategy
itself. Even a posterior belief derived from a complicated prior and many observa-
tions still can be summarized as a single function mapping an information set to a
distribution over actions, the expected posterior strategy4. In this work, we will
mainly take a frequentist approach to observations of the opponent’s actions (al-
though we discuss a Bayesian interpretation to our approach in Section 6.7). Each
observation is one full information game of poker: both players’ cards are revealed.
The model of our opponent will consider all of the information sets in which we
have observed the opponent acting. The probability of the opponent model taking
an action a in such an information set I is then set to the ratio of the number of ob-
servations of the opponent playing a in I to the number of observations of I . There
will likely be information sets in which we have never observed the opponent act-
ing. For such information sets, we establish a default policy to always choose the
call action [47, p. 60]5

Since our opponent model is itself a strategy, it can be used to play against the
counter-strategies that are designed to exploit it. We would expect the counter-
strategies to perform very well in such cases, and this is demonstrated in our pre-
vious work on restricted Nash responses [54]. However, since the model is con-
structed only from (possibly a small number) observations of the opponent’s strat-
egy, it is more interesting to examine how the counter-strategies perform against the
actual opponent’s strategy.

6.4 Limitations of Current Methods
As discussed in the introduction, restricted Nash response counter-strategies form
an envelope of possible counter-strategies to use against the opponent, assuming
the opponent model is correct [54]. The restricted Nash response technique was
designed to solve the brittleness of best response strategies. As was presented in
Table 1 of that work, best response strategies perform well against their intended
opponent, but they can perform very badly against other opponents, and are highly

4If f : Σ2 → < is the posterior density function over strategies, then the expected posterior
strategy chooses action a at information set I with probability σ̄1(I, a) =

∫
σ1∈Σ1

σ1(I, a)f(σ1)
5Alternative default policies were tried in this previous work, but all performed far inferior.
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exploitable by a worst-case opponent. Restricted Nash response strategies are ro-
bust, and any new technique for producing counter-strategies should also be able to
produce robust strategies. However, restricted Nash response strategies have three
limitations. We will show that our new counter-strategy technique addresses these
issues.

Before discussing the limitations, we first explain the exploitability-versus-exploitation
graph that is used throughout the paper. For each counter-strategy, we can measure
the exploitability (worst-case performance) and exploitation (performance against
a specific opponent). So we can plot any counter-strategy as a point on a graph
with these axes. Restricted Nash responses involve a family of counter-strategies
attained by varying p. Hence, we plot a curve passing through a set of represen-
tative p-values to demonstrate the shape of the envelope of strategies. Since the
exploitability is determined by the choice of p, we are (indirectly) controlling the
exploitability of the resulting counter-strategy, and so it appears on the x-axis; the
counter-strategy’s exploitation of the specific opponent is the result, and is shown
on the y-axis. In each of the following graphs, the values of p used were 0, 0.5, 0.7,
0.8, 0.9, 0.93, 0.97, 0.99, and 1. Each value of p corresponds to one datapoint on
each curve. Unless otherwise stated, each set of counter-strategies was produced
with 1 million observed games of Orange playing against Probe.

Restricted Nash response counter-strategies can overfit to the model. By vary-
ing p, the resulting restricted Nash response counter-strategies each present a differ-
ent tradeoff of exploitation and exploitability when compared against their opponent
model. As p increases, the counter-strategies exploit the opponent model to a higher
degree, and are themselves more exploitable. However, as Figure 6.1a shows, this
trend does not hold when we compare their performance against the actual opponent
instead of the opponent model. As p increases, the counter-strategies begin to do
markedly worse against the actual Orange strategy. The computed counter-strategy
has overfit to the opponent model. As the number of observations approach the
limit, the opponent model will perfectly match the actual opponent in the reachable
part of the game tree, and this effect will lessen. In a practical setting, however, p
must be chosen with care so that the resulting counter-strategies provide favourable
trade-offs.

Restricted Nash response counter-strategies require a large quantity of obser-
vations. It is intuitive that, as any technique is given more observations of an
opponent, the counter-strategies produced will grow in strength. This is true of
the restricted Nash response technique. However, if there is not a sufficient quan-
tity of observations, increasing p can make the resulting counter-strategies worse
than the equilibrium strategy. This is another aspect of the restricted Nash response
technique’s capacity to overfit the model; if there is an insufficient number of ob-
servations, then the default policy plays a larger part of the model’s strategy and
the resulting counter-strategy is less applicable to the actual opponent. Figure 6.1b
shows this effect. With less than 100 thousand observed games, increasing p causes
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Figure 6.1: Exploitation versus exploitability curves that illustrate three problems
in the restricted Nash response technique. In 6.1a, we note the difference in per-
formance when counter-strategies play against the opponent model and against the
actual opponent. In 6.1b, we see how a scarcity of observations results in poor
counter-strategies. In 6.1c, we see that the technique performs poorly when self-
play data is used. Note that the red, solid curve is the same in each graph.
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the counter-strategies to be both more exploitable and less exploitive.

Restricted Nash response counter-strategies are sensitive to the choice of train-
ing opponent. Ideally, a technique for creating counter-strategies based on obser-
vations should be able to accept any reasonably diverse set of observations as input.
However, the restricted Nash response technique requires a very particular set of
observations in order to perform well. Figure 6.1c shows the performance of two
sets of restricted Nash response counter-strategies. The set labelled Probe uses an
opponent model that observed one million games of Orange playing against Probe;
the set labelled Self-Play uses an opponent model that observed one million games
of Orange playing against itself. One might think that a model constructed from
self-play observations would be ideal, because it would be accurate in the parts of
the game tree that the opponent is likely to reach. Instead, we find that self-play
data is of no use when constructing a restricted Nash response counter-strategy. If
an agent will not play to reach some part of the game tree, then the opponent model
has no observations of the opponent in that part of the tree, and is forced to turn to
the default policy which may be very dissimilar from the actual opponent’s strat-
egy. The Probe agent forces the opponent to play into all of the parts of the tree
reachable because of the opponent’s strategy, however, and thus the default policy
is used less often.

6.5 Data Biased Response
The guiding idea behind the restricted Nash response technique is that the opponent
model may not be perfect. The parameter p can be thought of as a measure of confi-
dence in the model’s accuracy. Since the opponent model is based on observations
of the opponent’s actions, there can be two types of flaws in the opponent model.
First, there may be information sets in which we never observed the opponent, and
so the opponent model must provide a default policy to be taken at this information
set. Second, in information sets for which there were a small number of observa-
tions, the observed frequency of actions may not match the true opponent’s action
probabilities.

We claim that the restricted Nash response technique’s selection of one param-
eter, p, is not an accurate representation of the problem, because the accuracy of
the opponent model is not uniform across all of the reachable information sets.
Consider the two cases described above. First, in unobserved information sets, the
opponent model uses the default policy and is unlikely to accurately reflect the op-
ponent’s strategy. If we could select a value of p for just this information set, then
p would be 0. Second, the number of observations of a particular information set
will vary wildly across the game tree. In information sets close to the root, we are
likely to have many observations, and so we expect the model to be accurate. In
information sets that are far from the root, we will tend to have fewer observations,
and so we expect the model to be less accurate. If we were selecting a value of p for
one information set, it should depend on how accurate we expect the model to be;
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one measure of this is the number of times we have observed the opponent acting
in this information set.

This is the essential difference between the restricted Nash response technique
and the data biased response technique. Instead of choosing one probability p that
reflects the accuracy of the entire opponent model, we will assign one probability to
each information set I and call this mapping Pconf . We will then create a modified
game in the following way. Whenever the restricted player reaches I , they will be
forced to play according to the model with probability Pconf(I), and can choose their
actions freely with probability (1−Pconf(I)). The other player has no restrictions on
their actions. When we solve this modified game, the unrestricted player’s strategy
becomes a robust counter-strategy to the model.

One setting for Pconf is noteworthy. If Pconf(I) is set to 0 for some informa-
tion sets, then the opponent model is not used at all and the player is free to use
any strategy. However, since we are solving the game, this means that we assume
a worst-case opponent and essentially compute a Nash equilibrium in these sub-
games.

6.5.1 Solving the Game
Given an opponent model σfix and Pconf , the restricted player chooses a strategy σ′2
that makes up part of their restricted strategy σ2. The resulting probability of σ2

taking action a at information set I is given as:

σ2(I, a) = Pconf(I)× σfix(I, a) + (1− Pconf(I))× σ′2(I, a) (6.1)

Define ΣPconf ,σfix
2 to be the set of strategies for the restricted player, given the

possible settings of σ′2. Among this set of strategies, we can define the subset of
best responses to an opponent strategy σ1, BRPconf ,σfix(σ1) ⊆ ΣPconf ,σfix

2 . Solving a
game with the opponent restricted accordingly, finds a strategy profile (σ∗1, σ

∗
2) that

is a restricted equilibrium, where σ∗1 ∈ BR(σ∗2) and σ∗2 ∈ BRPconf ,σfix(σ1). In this
pair, the strategy σ∗1 is a Pconf -restricted Nash response to the opponent model
σfix, which we call a data biased response counter-strategy.

6.5.2 Choosing Pconf

We will now present four ways in which Pconf can be chosen, all of which have
two aspects in common. First, each approach sets Pconf(I) for an information set
I as a function of the number of observations we have of the opponent acting in
information set I , nI . As the number of observations of our opponent acting in
I increase, we will become more confident in the model’s accuracy. If nI = 0,
then we set Pconf(I) to zero, indicating that we have no confidence in the model’s
prediction. Note that this choice in setting Pconf removes the need for a default
policy. As mentioned in Section 6.5, this means the restricted player will become
a worst-case opponent in any information sets for which we have no observations.
Second, each approach accepts an additional parameter Pmax ∈ [0, 1], which acts
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in a similar fashion to p in the restricted Nash response technique. It is used to set
a maximum confidence for Pconf . Varying Pmax in the range [0, 1] allows us to set
a tradeoff between exploitation and exploitability, while nI indicates places where
our opponent model should not be trusted.

Removing the default strategy. First, we consider a simple choice of Pconf ,
which we call the 1-Step function. In information sets where we have never ob-
served the opponent, Pconf returns 0; otherwise, it returns Pmax. This choice of
Pconf allows us to isolate the modelling error caused by the default policy from the
error caused by the opponent model’s action probabilities not matching the action
probabilities of the actual opponent.

Requiring more observations. Second, we consider another simple choice of
Pconf , which we call the 10-Step function. In information sets where we have ob-
served the opponent fewer than 10 times, Pconf returns 0; otherwise, it returns Pmax.
Thus, it is simply a step function that requires ten observations before expressing
any confidence in the model’s accuracy.

Linear confidence functions. Third, we consider a middle ground between our
two step functions. The 0-10 Linear function returns Pmax if nI > 10 and (nI ×
Pmax)/10 otherwise. Thus, as we obtain more observations, the function expresses
more confidence in the accuracy of the opponent model.

Curve confidence functions. Fourth, we consider a setting of Pconf with a Bayesian
interpretation. The s-Curve function returns Pmax× (nI/(s+ nI)) for any constant
s; in this experiment, we used s = 1. Thus, as we obtain more observations, the
function approaches Pmax. The foundation for this choice of Pconf is explained
further in Section 6.7.

6.6 Results
In Section 6.3, we presented three problems with restricted Nash response strate-
gies. In this section, we will revisit these three problems and show that data biased
response counter-strategies overcome these weaknesses. In each experiment, the
sets of restricted Nash response and data biased response counter-strategies were
created with p and Pmax (respectively) parameters of 0, 0.5, 0.7, 0.8, 0.9, 0.93, 0.97,
0.99, and 1. Unless otherwise stated, each set of counter-strategies was produced
with 1 million observed games of Orange playing against Probe.

Overfitting to the model. We begin with the problem of overfitting to the model.
Figure 6.2a shows the results of sets of restricted Nash response and 1-Step, 10-
Step and 0-1 Linear data biased response counter-strategies playing against Orange
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Figure 6.2: Exploitation versus exploitability curves for data biased response
counter-strategies. 6.2a shows that restricted Nash and 1-Step counter-strategies
overfit the model, while 10-Step, 0-10 Linear, and 1-Curve counter-strategies do
not. 6.2b shows that the 0-10 Linear counter-strategies are effective with any quan-
tity of training data. 6.2c shows that the 0-10 Linear counter-strategies can accept
any type of training data. Note that the red, solid curve is the same in each graph.
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and the opponent model of Orange. Two of the results are noteworthy. First, we ob-
serve that the set of 1-Step data biased response counter-strategies overfit the model.
Since the 1-Step data biased response counter-strategies did not use the default pol-
icy, this shows us that the error caused by the opponent model’s action probabilities
not agreeing with the actual opponent’s action probabilities is a nontrivial problem
and that the default policy is not the only weakness. Second, we notice that the 0-10
Linear, 10-Step and 1-Curve data biased response counter-strategies do not overfit
the opponent model, even at the last datapoint where Pmax is set to 1.

Quantity of observations. Next, we examine the problem of the quantity of
observations necessary to produce useful counter-strategies. In Figure 6.1b, we
showed that with insufficient quantities of observations, restricted Nash counter-
strategies not only did not exploit the opponent but in fact performed worse than
a Nash equilibrium strategy (which makes no attempt to exploit the opponent). In
Figure 6.2b, we show that the 0-10 Linear data biased response counter-strategies
perform well, regardless of the quantity of observations provided. While the im-
provement in exploitation from having 100 or 1000 observations is very small, for
Pmax < 1 the counter-strategies became only marginally more exploitable. This is
a marked difference from the restricted Nash response results in Figure 6.1b.

Source of observations. Finally, we consider the problem of the source of the
observations used to create the model. In Figure 6.1c, we showed that the restricted
Nash response technique required observations of the opponent playing against an
opponent such as Probe in order to create useful counter-strategies. In Figure 6.2c,
we show that while the data biased response counter-strategies produced are more
effective when the opponent model observes games against Probe, the technique
does still produce useful counter-strategies when provided with self-play data.

6.7 Discussion
We motivated data biased responses by noting that the confidence in our model is
not uniform over all information sets, and suggesting p should be some increas-
ing function of the number of observations at a particular information set. We can
give an alternative motivation for this approach by considering the framework of
Bayesian decision making. In the Bayesian framework we choose a prior density
function (f : Σ2 → <) over the unknown opponent’s strategy. Given observa-
tions of the opponent’s decisions Z we can talk about the posterior probability
Pr(σ2|Z, f). If only one more hand is to be played, decision theory instructs us to
maximize our expected utility given our beliefs.

argmax
σ1

∫
σ2∈Σ2

u1(σ1, σ2) Pr(σ2|Z, f) (6.2)
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Since utility is linear in the sequence form representation of strategy, we can move
the integral inside the utility function allowing us to solve the optimization as the
best-response to the expected posterior strategy (see Footnote 4).

However, instead of choosing a single prior density, suppose we choose a set
of priors (F ), and we want to play a strategy that would have large utility for any-
thing in this set. A traditional Bayesian approach might require us to specify our
uncertainty over priors from this set, and then maximize expected utility given such
a hierarchical prior. Suppose, though, that we have no basis for specifying such
a distribution over distributions. An alternative then is to maximize utility in the
worst case.

argmax
σ1

min
f∈F

∫
σ2∈Σ2

u1(σ1, σ2) Pr(σ2|Z, f) (6.3)

In other words, employ a strategy that is robust to the choice of prior. Notice that if
F contains a singleton prior, this optimization is equivalent to the original decision
theoretic approach, i.e. , a best response strategy. If F contains all possible prior
distributions, then the optimization is identical to the game theoretic approach, i.e.
, a Nash equilibrium strategy. Other choices of the set F admit optimizations that
trade-off exploiting data with avoiding exploitation.

Theorem 8 Consider F to be the set of priors composed of independent Dirich-
let distributions for each information set, where the strength (sum of the Dirichlet
parameters) is at most s. The strategy computed by data biased response when
Pconf(I) = nI/(s+ nI) is the solution to the optimization in 6.3.

Proof (Sketch) If we let Σs
2 be the set of resulting expected posterior strategies

for all choices of priors f ∈ F . It suffices to show that Σs
2 = ΣPconf ,σfix . For any

prior f ∈ F , let αfI,a be the Dirichlet weight for the outcome a at information set
I . Let σfix(I, a) = αfI,a/

∑
a′ α

f
I,a′ , in other words the strategy where the oppo-

nent plays the expected prior strategy when given the opportunity. The resulting
expected posterior strategy is the the same as σ2 from Equation 6.1 and so is in
the set ΣPconf ,σfix . Similarly, given σfix associated with a strategy σ2 in ΣPconf ,σfix ,
let αI,a = sσfix(I, a). The resulting expected posterior strategy is the same as σ2.
The available strategies to player 2 are equivalent, and so the resulting min-max
optimizations are equivalent. �

In summary, we can choose Pconf in data biased response so that it is equivalent
to finding strategies that are robust to a set of independent Dirichlet priors.

6.8 Conclusion
The problem of exploiting information about a suspected tendency in an environ-
ment while minimizing worst-case performance occurs in several domains, and
becomes more difficult when the information may be limited or inaccurate. We
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reviewed restricted Nash response counter-strategies, a recent work on the oppo-
nent modelling interpretation of this problem in the Poker domain, and highlighted
three shortcomings in that approach. We proposed a new technique, data biased
responses, for generating robust counter-strategies that provide good compromises
between exploiting a tendency and limiting the worst case exploitability of the re-
sulting counter-strategy. We demonstrated that the new technique avoids the three
shortcomings of existing approaches, while providing better performance in the
most favourable conditions for the existing approaches.
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Estimating an agent’s peformance through observations is difficult because of
random chance and hidden information. In a game such as poker, these can be
caused by random aspects of the game (i.e. cards being dealt randomly), agents
sampling actions from mixed strategies, and incomplete information when the game
is viewed from one player’s position (i.e. hidden opponent cards). While an agent’s
performance can be estimated by simply averaging over a sufficiently large number
of observed games, in many settings we would like to draw conclusions from as few
games as possible. For example, in matches against human players, we may only
be able to play a few thousand games. In an online setting, if we intend to adapt
to the opponent, we would like to draw accurate conclusions in even shorter time
scales in order to respond before the opponent changes their behaviour.

In this chapter’s paper, we describe the Imaginary Observations technique for
agent evaluation. This technique derives an unbiased, low-variance estimate of an
agent’s performance in a game, by leveraging our knowledge of the agent’s strategy.
Specifically, the technique examines each observed game, and then considers the
much larger set of possible outcomes that would have appeared identical to the
opponent, and thus elicited the same behaviour from them. Each “real” game is thus
turned into thousands of “imaginary” games that can be averaged over, weighted by
importance sampling, in order to derive a much lower variance estimate.

This technique has two key applications. First, it can be used as an accurate
postgame analysis tool for evaluating games with complete information. In Chap-
ter 8, we will demonstrate this by analyzing the 2007 and 2008 Man-vs-Machine
Poker Championships with greater precision than any previously published anal-
ysis. Second, it can be used for online estimation, so that an agent can accurately
estimate its performance during a match. The technique can also be used off-policy,
allowing it to play strategy A and evaluate how well strategy B would have per-
formed. This second application allows our agent to dynamically adapt during a
match by switching between a set of candidate strategies in order to select the one
with the highest expected value against the opponent. Our Polaris agent used this
approach in the 2008 Man-vs-Machine Poker Championship to switch between five
component strategies of varying aggressiveness, and thus adapt to and exploit its
human adversaries.

DBR and Imaginary Observations now form two key steps of our current ap-
proach for opponent modelling and online adaptation, called the Implicit Mod-
elling framework. Developed by Bard, Bowling, myself and our colleagues [8;
7; 9], this framework avoids “explicit models” in which we must learn how the op-
ponent behaves at billions of decision points, and instead learns “implicit models”
that describe the expected value of using each member of a set of precomputed
strong strategies. In this framework, we anticipate the types of opponents that we
might face and collect observations of their play, cluster the opponents into cat-
egories, use DBR to construct counter-strategies to each category’s observations,
and then use the Imaginary Observations technique online to switch between these
counter-strategies. In this way, our agent combines the advantages of using offline
computation to construct a strong, balanced set of strategies, with the ability to
adapt to the opponent online in order to increase its expected winnings.
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Strategy Evaluation in Extensive Games with Importance
Sampling1

Michael Bowling (bowling@cs.ualberta.ca)
Michael Johanson (johanson@cs.ualberta.ca)

Neil Burch (burch@cs.ualberta.ca)
Duane Szafron (duane@cs.ualberta.ca)

Abstract: Typically agent evaluation is done through Monte Carlo estimation.
However, stochastic agent decisions and stochastic outcomes can make this ap-
proach inefficient, requiring many samples for an accurate estimate. We present a
new technique that can be used to simultaneously evaluate many strategies while
playing a single strategy in the context of an extensive game. This technique is
based on importance sampling, but utilizes two new mechanisms for significantly
reducing variance in the estimates. We demonstrate its effectiveness in the domain
of poker, where stochasticity makes traditional evaluation problematic.

7.1 Introduction
Evaluating an agent’s performance is a component of nearly all research on sequen-
tial decision making. Typically, the agent’s expected payoff is estimated through
Monte Carlo samples of the (often stochastic) agent acting in an (often stochastic)
environment. The degree of stochasticity in the environment or agent behavior de-
termines how many samples are needed for an accurate estimate of performance.
For results in synthetic domains with artificial agents, one can simply continue
drawing samples until the estimate is accurate enough. For non-synthetic envi-
ronments, domains that involve human participants, or when evaluation is part of
an on-line algorithm, accurate estimates with a small number of samples are criti-
cal. This paper describes a new technique for tackling this problem in the context
of extensive games.

An extensive game is a formal model of a sequential interaction between mul-
tiple, independent agents with imperfect information. It is a powerful yet compact
framework for describing many strategic interactions between decision-makers, ar-
tificial and human2. Poker, for example, is a domain modeled very naturally as an
extensive game. It involves independent and self-interested agents making sequen-
tial decisions based on both public and private information in a stochastic environ-
ment. Poker also demonstrates the challenge of evaluating agent performance. In
one typical variant of poker, approximately 30,000 hands (or samples of playing
the game) are sometimes needed to distinguish between professional and amateur

1The paper presented in this chapter originally appeared at the Twenty-Fifth International
Conference on Machine Learning (ICML-08). Copyright 2008 by the authors. M. Bowling,
M. Johanson, N. Burch and D. Szafron. Strategy Evaluation in Extensive Games with Importance
Sampling. Proceedings of the 25th International Conference on Machine Learning
(ICML-08), 72-79, 2008.

2In this work we use the words “agent”, “player”, and “decision-maker” interchangeably and,
unless explicitly stated, aren’t concerned if they are humans or computers.
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levels of play. Matches between computer and human opponents typically involve
far fewer hands, yet still need to draw similar statistical conclusions.

In this work, we present a new technique for deriving low variance estimators
of agent performance in extensive games. We employ importance sampling while
exploiting the fact that the strategy of the agent being evaluated is typically known.
However, we reduce the variance that importance sampling normally incurs by se-
lectively adding synthetic data that is derived from but consistent with the sample
data. As a result we derive low-variance unbiased estimators for agent performance
given samples of the outcome of the game. We further show that we can efficiently
evaluate one strategy while only observing samples from another. Finally, we exam-
ine the important case where we only get partial information of the game outcome
(e.g., if a player folds in poker, their private cards are not revealed during the match
and so the sequence of game states is not fully known). All of our estimators are
then evaluated empirically in the domain of poker in both full and partial informa-
tion scenarios.

This paper is organized as follows. In Section 7.2 we introduce the extensive
game model, formalize our problem, and describe previous work on variance reduc-
tion in agent evaluation. In Section 7.3 we present a general procedure for deriving
unbiased estimators and give four examples of these estimators. We then briefly
introduce the domain of poker in Section 7.4 and describe how these estimators can
be applied to this domain. In Section 7.5 we show empirical results of our approach
in poker. Finally, we conclude in Section 7.6 with some directions for future work.

7.2 Background
We begin by describing extensive games and then we formalize the agent evaluation
problem.

7.2.1 Extensive Games
Definition 4 [76, p. 200] a finite extensive game with imperfect information has
the following components:

• A finite set N of players.

• A finite set H of sequences, the possible histories of actions, such that the
empty sequence is in H and every prefix of a sequence in H is also in H .
Z ⊆ H are the terminal histories (those which are not a prefix of any other
sequences). A(h) = {a : (h, a) ∈ H} are the actions available after a
non-terminal history h ∈ H ,

• A player function P that assigns to each non-terminal history (each member
of H\Z) a member ofN ∪{c}, where c represents chance. P (h) is the player
who takes an action after the history h. If P (h) = c, then chance determines
the action taken after history h.
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• A function fc that associates with every history h for which P (h) = c a
probability measure fc(·|h) on A(h) (fc(a|h) is the probability that a occurs
given h), where each such probability measure is independent of every other
such measure.

• For each player i ∈ N a partition Ii of {h ∈ H : P (h) = i} with the
property that A(h) = A(h′) whenever h and h′ are in the same member of
the partition. Ii is the information partition of player i; a set Ii ∈ Ii is an
information set of player i.

• For each player i ∈ N a utility function ui from the terminal states Z to the
reals R. If N = {1, 2} and u1 = −u2, it is a zero-sum extensive game.

A strategy of player i σi in an extensive game is a function that assigns a
distribution over A(Ii) to each Ii ∈ Ii. A strategy profile σ consists of a strategy
for each player, σ1, σ2, . . ., with σ−i referring to all the strategies in σ except σi.

Let πσ(h) be the probability of history h occurring if players choose actions
according to σ. We can decompose πσ = Πi∈N∪{c}π

σ
i (h) into each player’s con-

tribution to this probability. Hence, πσi (h) is the probability that if player i plays
according to σ then for all histories h′ that are a proper prefix of h with P (h′) = i,
player i takes the subsequent action in h. Let πσ−i(h) be the product of all players’
contribution (including chance) except player i. The overall value to player i of
a strategy profile is then the expected payoff of the resulting terminal node, i.e.,
ui(σ) =

∑
z∈Z ui(z)πσ(z). For Y ⊆ Z, a subset of possible terminal histories,

define πσ(Y ) =
∑

z∈Y π
σ(z), to be the probability of reaching any outcome in the

set Y given σ, with πσi (Y ) and πσ−i(Y ) defined similarly.

7.2.2 The Problem
Given some function on terminal histories V : Z → < we want to estimate
Ez|σ [V (z)]. In most cases V is simply ui, and the goal is to evaluate a particu-
lar player’s expected payoff. We explore three different settings for this problem.
In all three settings, we assume that σi (our player’s strategy) is known, while σj 6=i
(the other players’ strategies) are not known.

• On-policy full-information. In the simplest case, we get samples z1...t ∈ Z
from the distribution πσ.

• Off-policy full-information. In this case, we get samples z1...t ∈ Z from the
distribution πσ̂ where σ̂ differs from σ only in player i’s strategy: πσ−i = πσ̂−i.
In this case we want to evaluate one strategy for player i from samples of
playing a different one.

• Off-policy partial-information. In the hardest case, we don’t get full samples
of outcomes zt, but rather just player i’s view of the outcomes. For example,
in poker, if a player folds, their cards are not revealed to the other players
and so certain chance actions are not known. Formally, in this case we get
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samples of K(zt) ∈ K, where K is a many-to-one mapping and zt comes
from the distribution πσ̂ as above. K intuitively must satisfy the following
conditions: for z, z′ ∈ Z, if K(z) = K(z′) then,

– V (z) = V (z′), and

– ∀σ πσi (z) = πσi (z′).

7.2.3 Monte Carlo Estimation
The typical approach to estimating Ez|σ [V (z)] is through simple Monte Carlo es-
timation. Given independent samples z1, . . . , zt from the distribution πσ, simply
estimate the expectation as the sample mean of outcome values.

1

t

t∑
i=1

V (zi) (7.1)

As the estimator has zero bias, the mean squared error of the estimator is determined
by its variance. If the variance of V (z) given σ is large, the error in the estimate
can be large and many samples are needed for accurate estimation.

Recently, we proposed a new technique for agent evaluation in extensive
games [107]. We showed that value functions over non-terminal histories could
be used to derive alternative unbiased estimators. If the chosen value function was
close to the true expected value given the partial history and players’ strategies, then
the estimator would result in a reduction in variance. The approach essentially de-
rives a real-valued function Ṽ (z) that is used in place of V in the Monte Carlo esti-
mator from Equation 7.1. The expectation of Ṽ (z) matches the expectation of V (z)
for any choice of σ, and so the result is an unbiased estimator, but potentially with
lower variance and thus lower mean-squared error. The specific application of this
approach to poker, using an expert-defined value function, was named the DIVAT
estimator and was shown to result in a dramatic reduction in variance. A simpler
choice of value function, the expected value assuming the betting is “bet-call” for
all remaining betting rounds, can even make a notable reduction. We refer to this
conceptually and computationally simpler estimator as (Bet-Call) BC-DIVAT.

Both traditional Monte Carlo estimation and DIVAT are focused on the on-
policy case, requiring outcomes sampled from the joint strategy that is being evalu-
ated. Furthermore, DIVAT is restricted to full-information, where the exact outcome
is known. Although limited in these regards, they also don’t require any knowledge
about any of the players’ strategies.

7.3 General Approach
We now describe our new approach for deriving low-variance, unbiased estimators
for agent evaluation. In this section we almost exclusively focus on the off-policy
full-information case. Within this setting we observe a sampled outcome z from the
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distribution πσ̂, and the goal is to estimate Ez|σ [V (z)]. The outcomes are observed
based on the strategy σ̂ while we want to evaluate the expectation over σ, where
they differ only in player i’s strategy. This case subsumes the on-policy case, and
we touch on the more difficult partial-information case at the end of this section. In
order to handle this more challenging case, we require full knowledge of player i’s
strategies, both the strategy being observed σ̂i and the one being evaluated σi.

At the core of our technique is the idea that synthetic histories derived from
the sampled history can also be used in the estimator. For example, consider the
unlikely case when σ is known entirely. Given an observed outcome z ∈ Z (or even
without an observed outcome) we can exactly compute the desired expectation by
examining every outcome.

VZ(z) ≡
∑
z′∈Z

V (z′)πσ(z′) = Ez|σ [V (z)] (7.2)

Although impractical since we don’t know σ, VZ(z) is an unbiased and zero vari-
ance estimator.

Instead of using every terminal history, we could restrict ourselves to a smaller
set of terminal histories. Let U(z′ ∈ Z) ⊆ Z be a mapping of terminal histories to
a set of terminal histories, where at least z′ ∈ U(z′). We can construct an unbiased
estimator that considers the history z′ in the estimation whenever we observe a
history from the set U(z′). Another way to consider things is to say that U−1(z) is
the set of synthetic histories considered when we observe z. Specifically, we define
the estimator VU(z) for the observed outcome z as,

VU(z) ≡
∑

z′∈U−1(z)

V (z′)
πσ(z′)

πσ̂(U(z′))
(7.3)

The estimator considers the value of every outcome z′ where the observed history z
is in the set U(z′). Each outcome though is weighted in a fashion akin to importance
sampling. The weight term for z′ is proportional to the probability of that history
given σ, and inversely proportional to the probability that z′ is one of the considered
synthetic histories when observing sampled outcomes from σ̂. Note that VU(z) is
not an estimate of V (z), but rather has the same expectation.

At first glance, VU may seem just as impractical as VZ since σ is not known.
However, with a careful choice of U we can insure that the weight term depends
only on the known strategies σi and σ̂i. Before presenting example choices of U ,
we first prove that VU is unbiased.

Theorem 9 If πσ̂i (z) is non-zero for all outcomes z ∈ Z, then,

Ez|σ̂ [VU(z)] = Ez|σ [V (z)] ,

i.e., VU is an unbiased estimator.
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Proof First, let us consider the denominator in the weight term of VU . Since
z′ ∈ U(z′) and πσ̂i is always positive, the denominator can only be zero if πσ̂−i(z

′) is
zero. If this were true, πσ−i(z

′) must also be zero, and as a consequence so must the
numerator. As a result the terminal history z′ is never reached and so it is correct to
simply exclude such histories from the estimator’s summation.

Define 1(x) to be the indicator function that takes on the value 1 if x is true and
0 if false.

Ez|σ̂ [VU(z)]

= Ez|σ̂

 ∑
z′∈U−1(z)

V (z′)
πσ(z′)

πσ̂(U(z′))

 (7.4)

= Ez|σ̂

[∑
z′

1(z ∈ U(z′))V (z′)
πσ(z′)

πσ̂(U(z′))

]
(7.5)

=
∑
z′

V (z′)
πσ(z′)

πσ̂(U(z′))
Ez|σ̂ [1(z ∈ U(z′))] (7.6)

=
∑
z′

V (z′)
πσ(z′)

πσ̂(U(z′))
πσ̂(U(z′)) (7.7)

=
∑
z′

V (z′)πσ(z′) = Ez|σ [V (z)] (7.8)

The derivation follows from the linearity of expectation, the definition of πσ̂, and
the definition of expectation. �

We now look at four specific choices of U for which the weight term can be
computed while only knowing player i’s portion of the joint strategy σ.

Example 1: Basic Importance Sampling. The simplest choice of U for which
VU can be computed is U(z) = {z}. In other words, the estimator considers just
the sampled history. In this case the weight term is:

πσ(z′)

πσ̂(U(z′))
=
πσ(z′)

πσ̂(z′)
(7.9)

=
πσi (z′)πσ−i(z

′)

πσ̂i (z′)πσ̂−i(z
′)

(7.10)

=
πσi (z′)

πσ̂i (z′)
(7.11)

The weight term only depends on σi and σ̂i and so is a known quantity. When
σ̂i = σi the weight term is 1 and the result is simple Monte Carlo estimation.
When σ̂i is different, the estimator is a straightforward application of importance
sampling.
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Example 2: Game Ending Actions. A more interesting example is to consider
all histories that differ from the sample history by only a single action by player
i and that action must be the last action in the history. For example, in poker, the
history where the player being evaluated chooses to fold at an earlier point in the
betting sequence is considered in this estimator. Formally, define S−i(z) ∈ H to be
the shortest prefix of z where the remaining actions in z are all made by player i or
chance. Let U(z) = {z′ ∈ Z : S−i(z) is a prefix of z′}. The weight term becomes,

πσ(z′)

πσ̂(U(z′))
=

πσ(z′)

πσ̂(S−i(z′))
(7.12)

=
πσ−i(z

′)πσi (z′)

πσ̂−i(S−i(z
′))πσ̂i (S−i(z′))

(7.13)

=
πσ−i(S−i(z

′))πσi (z′)

πσ̂−i(S−i(z
′))πσ̂i (S−i(z′))

(7.14)

=
πσi (z′)

πσ̂i (S−i(z′))
(7.15)

As this only depends on the strategies of player i, we can compute this quantity and
therefore the estimator.

Example 3: Private Information. We can also use all histories in the update
that differ only in player i’s private information. In other words, any history that the
other players wouldn’t be able to distinguish from the sampled history is considered.
For example, in poker, any history where player i receiving different private cards is
considered in the estimator since the opponents’ strategy cannot depend directly on
this strictly private information. Formally, letU(z) =

{
z′ ∈ Z : ∀σ πσ−i(z′) = πσ−i(z)

}
.

The weight term then becomes,
πσ(z′)

πσ̂(U(z′))
=

πσ(z′)∑
z′′∈U(z′) π

σ̂(z′′)
(7.16)

=
πσ−i(z

′)πσi (z′)∑
z′′∈U(z′) π

σ̂
−i(z

′′)πσ̂i (z′′)
(7.17)

=
πσ−i(z

′)πσi (z′)∑
z′′∈U(z′) π

σ̂
−i(z

′)πσ̂i (z′′)
(7.18)

=
πσ−i(z

′)πσi (z′)

πσ̂−i(z
′)
∑

z′′∈U(z′) π
σ̂
i (z′′)

(7.19)

=
πσi (z′)

πσ̂i (U(z′))
(7.20)

As this only depends on the strategies of player i, we can again compute this quan-
tity and therefore the estimator as well.

Example 4: Combined. The past two examples show that we can consider histo-
ries that differ in the player’s private information or by the player making an alter-
native game ending action. We can also combine these two ideas and consider any
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history that differs by both an alternative game ending action and the player’s private
information. DefineQ(z) =

{
h ∈ H : |h| = |S−i(z)| and ∀σπσ−i(h) = πσ−i(S−i(z))

}
,

Let U(z) = {z′ ∈ Z : a prefix of z′ is in Q(z)}.

πσ(z′)

πσ̂(U(z′))
=

πσ(z′)

πσ̂(Q(z′))
(7.21)

=
πσ−i(z

′)πσi (z′)∑
h∈Q(z′) π

σ̂
−i(h)πσ̂i (h)

(7.22)

=
πσ−i(z

′)πσi (z′)∑
h∈Q(z′) π

σ̂
−i(S−i(z))πσ̂i (h)

(7.23)

=
πσ−i(S−i(z

′))πσi (z′)

πσ̂−i(S−i(z
′))
∑

h∈Q(z′) π
σ̂
i (h)

(7.24)

=
πσi (z′)

πσ̂i (Q(z′))
(7.25)

Once again this quantity only depends on the strategies of player i and so we can
compute this estimator as well.

We have presented four different estimators that try to extract additional infor-
mation from a single observed game outcome. We can actually combine any of
these estimators with other unbiased approaches for reducing variance. This can
be done by replacing the V function in the above estimators with any unbiased
estimate of V . In particular, these estimators can be combined with our previous
DIVAT approach by choosing V to be the DIVAT (or BC-DIVAT) estimator instead
of ui.

7.3.1 Partial Information
The estimators above are provably unbiased for both the on-policy and off-policy
full-information case. We now briefly discuss the off-policy partial-information
case. In this case we don’t directly observe the actual terminal history zt but only a
many-to-one mappingK(zt) of the history. One simple adaptation of our estimators
to this case is to use the history z′ in the estimator whenever it is possible that
the unknown terminal history could be in U(z′), while keeping the weight term
unchanged. Although we lose the unbiased guarantee with these estimators, it is
possible that the reduction in variance is more substantial than the error caused by
the bias. We investigate empirically the magnitude of the bias and the resulting
mean-squared error of such estimators in the domain of poker in Section 7.5.

7.4 Application to Poker
To analyze the effectiveness of these estimators, we will use the popular game of
Texas Hold’em poker, as played in the AAAI Computer Poker Competition [65].
The game is two-player and zero-sum. Private cards are dealt to the players, and
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over four rounds, public cards are revealed. During each round, the players place
bets that the combination of their public and private cards will be the strongest at the
end of the game. The game has just under 1018 game states, and has the properties of
imperfect information, stochastic outcomes, and observations of the game outcome
during a match exhibit partial information.

Each of the situations described in Section 7.2, on-policy and off-policy as well
as full-information and partial information, have relevance in the domain of poker.
In particular, the on-policy full-information case is the situation where one is trying
to evaluate a strategy from full-information descriptions of the hands, as might be
available after a match is complete. For example, this could be used to more ac-
curately determine the winner of a competition involving a small number of hands
(which is always the case when humans are involved). In this situation it is criti-
cal, that the estimator is unbiased, i.e., it is an accurate reflection of the expected
winnings and therefore does not incorrectly favor any playing style.

The off-policy full-information case is useful for examining past games against
an opponent to determine which of many alternative strategies one might want to
use against them in the future. The introduction of bias (depending on the strategy
used when playing the past hands) is not problematic, as the goal in this case is an
estimate with as little error as possible. Hence the introduction of bias is acceptable
in exchange for significant decreases in variance.

Finally, the off-policy partial-information case corresponds to evaluating alter-
native strategies during an actual match. In this case, we want to evaluate a set of
strategies, which aren’t being played, to try and identify an effective choice for the
current opponent. The player could then choose a strategy whose performance is
estimated to be strong even for hands it wasn’t playing.

The estimators from the previous section all have natural applications to the
game of poker:

• Basic Importance Sampling. This is a straightforward application of impor-
tance sampling. The value of the observed outcome of the hand is weighted
by the ratio of the probability that the strategy being evaluated (σi) takes the
same sequence of actions to the probability that the playing strategy (σ̂i) takes
the sequence of actions.

• Game ending actions. By selecting the fold betting action, a player surren-
ders the game in order to avoid matching an opponent’s bet. Therefore, the
game ending actions estimator can consider all histories in which the player
could have folded during the observed history.3 We call this the Early Folds
(EF) estimator. The estimator sums over all possible prefixes of the betting
sequence where the player could have chosen to fold. In the summation it
weights the value of surrendering the pot at that point by the ratio of the
probability of the observed betting up to that point and then folding given the

3In the full-information setting we can also consider situations where the player could have called
on the final round of betting to end the hand.
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player’s cards (and σi) to the probability of the observed betting up to that
point given the player’s cards (and σ̂i).

• Private information. In Texas Hold’em, a player’s private information is
simply the two private cards they are dealt. Therefore, the private informa-
tion estimator can consider all histories with the same betting sequence in
which the player holds different private cards. We call this the All Cards
(AC) estimator. The estimator sums over all possible two-card combinations
(excepting those involving exposed board or opponent cards). In the summa-
tion it weights the value of the observed betting with the imagined cards by
the ratio of the probability of the observed betting given those cards (and σi)
to the probability of the observed betting (given σ̂i) summed over all cards.

7.5 Results
Over the past few years we have created a number of strong Texas Hold’em poker
agents that have competed in the past two AAAI Computer Poker Competitions.
To evaluate our new estimators, we consider games played between three of these
poker agents: S2298 [108], PsOpti4 [11], and CFR8 [110]. In addition, we also
consider Orange, a competitor in the First Man-Machine Poker Championship.

To evaluate these estimators, we examined records of games played between
each of three candidate strategies (S2298, CFR8, Orange) against the opponent
PsOpti4. Each of these three records contains one million hands of poker, and can
be viewed as full information (both players’ private cards are always shown) or as
partial information (when the opponent folds, their private cards are not revealed).
We begin with the full-information experiments.

7.5.1 Full Information
We used the estimators described previously to find the value of each of the three
candidate strategies, using full-information records of games played from just one
of the candidate strategies. The strategy that actually played the hands in the record
of games is called the on-policy strategy and the others are the off-policy strategies.
The results of one these experiments is presented in Table 7.1. In this experiment,
we examined one million full-information hands of S2298 playing against PsOpti4.
S2298 (the on-policy strategy) and CFR8 and Orange (the off-policy strategies) are
evaluated by our importance sampling estimators, as well as DIVAT, BC-DIVAT,
and a few combination estimators. We present the empirical bias and standard
deviation of the estimators in the first two columns. The third column, “RMSE”,
is the root-mean-squared error of the estimator if it were used as the method of
evaluation for a 1000 hand match (a typical match length). All of the numbers are
reported in millibets per hand played. A millibet is one thousandth of a small-bet,
the fixed magnitude of bets used in the first two rounds of betting. To provide some
intuition for these numbers, a player that always folds will lose 750 millibets per
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Bias StdDev RMSE
S2298
Basic 0* 5103 161

DIVAT 0* 1935 61
BC-DIVAT 0* 2891 91
Early Folds 0* 5126 162

All Cards 0* 4213 133
AC+BC-DIVAT 0* 2146 68

AC+EF+BC-DIVAT 0* 1778 56
CFR8
Basic 200 ± 122 62543 1988

DIVAT 62 ± 104 53033 1678
BC-DIVAT 84 ± 45 22303 710
Early Folds 123 ± 120 61481 1948

All Cards 12 ± 16 8518 270
AC+BC-DIVAT 35 ± 13 3254 109

AC+EF+BC-DIVAT 2 ± 12 2514 80
Orange

Basic 159 ± 40 20559 669
DIVAT 3 ± 25 11350 359

BC-DIVAT 103 ± 28 12862 420
Early Folds 82 ± 35 17923 572

All Cards 7 ± 16 8591 272
AC+BC-DIVAT 8±13 3154 100

AC+EF+BC-DIVAT 6±12 2421 77

Table 7.1: Full Information Case. Empirical bias, standard deviation, and root
mean-squared-error over a 1000 hand match for various estimators. 1 million hands
of poker between S2298 and PsOpti4 were observed. A bias of 0* indicates a
provably unbiased estimator.

hand, and strong players aim to achieve an expected win rate over 50 millibets per
hand.

In the on-policy case, where we are evaluating S2298, all of the estimators are
provably unbiased, and so they only differ in variance. Note that the Basic estima-
tor, in this case, is just the Monte-Carlo estimator over the actual money lost or won.
The Early Folds estimator provides no variance reduction over the Monte-Carlo es-
timate, while the All Cards estimator provides only a slight reduction. However, this
is not nearly as dramatic as the reduction provided by the DIVAT estimator. The im-
portance sampling estimators, however, can be combined with the DIVAT estimator
as described in Section . The combination of BC-DIVAT with All Cards (“AC+BC-
DIVAT”) results in lower variance than either of the estimators separately.4 The

4The importance sampling estimators were combined with BC-DIVAT instead of DIVAT because
the original DIVAT estimator is computationally burdensome, particularly when many evaluations
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addition of Early Folds (“AC+EF+BC-DIVAT”) produces an even further reduction
in variance, showing the best-performance of all the estimators, even though Early
Folds on its own had little effect.

In the off-policy case, where we are evaluating CFR8 or Orange, we report the
empirical bias (along with a 95% confidence bound) in addition to the variance.
As DIVAT and BC-DIVAT were not designed for off-policy evaluation, we report
numbers by combining them with the Basic estimator (i.e., using traditional im-
portance sampling). Note that bias is possible in this case because our on-policy
strategy (S2298) does not satisfy the assumption in Theorem 9, as there are some
outcomes the strategy never plays. Basic importance sampling in this setting not
only shows statistically significant bias, but also exhibits impractically large vari-
ance. DIVAT and BC-DIVAT, which caused considerable variance reduction on-
policy, also should considerable variance reduction off-policy, but not enough to
offset the extra variance from basic importance sampling. The All Cards estimator,
on the other hand, shows dramatically lower variance with very little bias (in fact,
the empirical bias is statistically insignificant). Combining the All Cards estima-
tor with BC-DIVAT and Early Folds further reduces the variance, giving off-policy
estimators that are almost as accurate as our best on-policy estimators.

The trends noted above continue in the other experiments, when CFR8 and Or-
ange are being observed. For space considerations, we don’t present the individual
tables, but instead summarize these experiments in Table 7.2. The table shows
the minimum and maximum empirically observed bias, standard deviation, and the
root-mean-squared error of the estimator for a 1000 hand match. The strategies be-
ing evaluated are separated into the on-policy case, when the record involves data
from that strategy, and the off-policy case, when it doesn’t.

7.5.2 Partial Information
The same experiments were repeated for the case of partial information. The results
of the experiment involving S2298 playing against PsOpti4 and evaluating our three
candidate strategies under partial information is shown in Table 7.3. For DIVAT and
BC-DIVAT, which require full information of the game outcome, we used a partial
information variant where the full-information estimator was used when the game
outcome was known (i.e., no player folded) and winnings was used when it was not.
This variant can result in a biased estimator, as can be seen in the table of results.
The All Cards estimator, although also without any guarantee of being unbiased,
actually fares much better in practice, not displaying a statistically significant bias
in either the off-policy or on-policy experiments. However, even though the DIVAT
estimators are biased their low variance makes them preferred in terms of RMSE
in the on-policy setting. In the off-policy setting, the variance caused by Basic
importance sampling (as used with DIVAT and BC-DIVAT) makes the All Cards
estimator the only practical choice. As in the full-information case we can combine
the All Cards and BC-DIVAT for further variance reduction. The resulting estimator

are needed for every observation as is the case with the All Cards estimator.
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Bias StdDev RMSE
Min – Max Min – Max Min – Max

On Policy
Basic 0* – 0* 5102 – 5385 161 – 170

DIVAT 0* – 0* 1935 – 2011 61 – 64
BC-DIVAT 0* – 0* 2891 – 2930 91 – 92

AC+GE+BC-DIVAT 0* – 0* 1701 – 1778 54 – 56
Off Policy

Basic 49 – 200 20559 – 244469 669 – 7732
DIVAT 2 – 62 11350 – 138834 358 – 4390

BC-DIVAT 10 – 103 12862 – 173715 419 – 5493
AC+GE+BC-DIVAT 2 – 9 1816 – 2857 58 – 90

Table 7.2: Summary of the Full-Information Case. Summary of empirical bias,
standard deviation, and root-mean-squared error over a 1000 hand match for various
estimators. The minimum and maximum encountered values for all combinations
of observed and evaluated strategies is presented. A bias of 0* indicates a provably
unbiased estimator.

has lower RMSE than either All Cards or BC-DIVAT alone both in the on-policy
and off-policy cases. The summary of the results of the other experiments, showing
similar trends, are shown in Table 7.4.

7.6 Conclusion
We introduced a new method for estimating agent performance in extensive games
based on importance sampling. The technique exploits the fact that the agent’s
strategy is typically known to derive several low variance estimators that can si-
multaneously evaluate many strategies while playing a single strategy. We prove
that these estimators are unbiased in the on-policy case and (under usual assump-
tions) in the off-policy case. We empirically evaluate the techniques in the domain
of poker, showing significant improvements in terms of lower variance and lower
bias. We show that the estimators can also be used even in the challenging problem
of estimation with partial information observations.
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Bias StdDev RMSE
S2298
Basic 0* 5104 161

DIVAT 81±9 2762 119
BC-DIVAT 95±9 2759 129
Early Folds 47±1 5065 167

All Cards 5±13 4218 133
AC+BC-DIVAT 96±12 2650 127

CFR8
Basic 202±80 40903 1309

DIVAT 175±47 23376 760
BC-DIVAT 183±47 23402 762
Early Folds 181±78 39877 1274

All Cards 13±19 7904 250
AC+BC-DIVAT 101±16 4014 162

Orange
Basic 204±45 23314 765

DIVAT 218±22 10029 385
BC-DIVAT 244±21 10045 401
Early Folds 218±43 22379 741

All Cards 3±19 8092 256
AC+BC-DIVAT 203±16 3880 237

Table 7.3: Partial-Information Case. Empirical bias, standard deviation, and root
mean-squared-error over a 1000 hand match for various estimators. 1 million hands
of poker between S2298 and PsOpti4 with partial information were observed. A
bias of 0* indicates a provably unbiased estimator.

Bias StdDev RMSE
Min – Max Min – Max Min – Max

On Policy
Basic 0* – 0* 5104 – 5391 161 – 170

DIVAT 56 – 144 2762 – 2876 105 – 170
BC-DIVAT 78 – 199 2759 – 2859 118 – 219

AC+BC-DIVAT 78 – 206 2656 – 2766 115 – 224
Off Policy

Basic 17 – 433 23314 – 238874 753 – 7566
DIVAT 103 – 282 10029 – 88791 384 – 2822

BC-DIVAT 35 – 243 10045 – 99287 400 – 3139
AC+BC-DIVAT 63 – 230 3055 – 6785 143 – 258

Table 7.4: Summary of the Partial-Information Case. Summary of empirical bias,
standard deviation, and root-mean-squared error over a 1000 hand match for various
estimators. The minimum and maximum encountered values for all combinations
of observed and evaluated strategies is presented. A bias of 0* indicates a provably
unbiased estimator.
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Chapter 8

Man-vs-Machine Poker
Championships

The Abstraction-Solving-Translation procedure that these papers have described
provides a practical approach for creating effective strategies and counter-strategies.
In addition to the objective evaluation provided by best response calculations, we
have also empirically validated the agents we have created through comparisons
against computer and human opponents. For example, in the 45 ACPC events held
between 2006 and 2014, the University of Alberta has taken first place 26 times
and second or third an additional 17 times, failing to medal in only two events.
Many of the top computer agents in the ACPC now use the abstraction and game
solving algorithms that we have pioneered: of the top three agents in each event,
13 out of 18 in 2013 and 10 out of 18 in 2014 used CFR and abstractions derived
from the techniques presented in Chapter 5. Further, several of our colleagues such
as Oskari Tammelin, Eric Jackson, Mihai Ciucu, and Sandholm, Ganzfried, and
Brown at Carnegie Mellon University have extended our algorithms such as CFR
and defeated us in ACPC events.

Competitions against top human experts provide another empirical evaluation,
in which we can compare artificial intelligence against human intelligence. The
moment at which computer agents first surpass human abilities in a game serves
as a milestone event in the public’s understanding of artificial intelligence, such
as the checkers-playing program Chinook becoming the first computer agent to
win a world championship [86], IBM’s Deep Blue achieving its famous victory
over Kasparov in chess [43], and IBM’s Watson defeating Jennings and Rutter on
Jeopardy! [29]. Once computer agents surpass human expertise in a game, the
second – and final – milestone to achieve is when the game is solved, such that a
computer agent will never lose again against any adversary.

My research that has been presented in this thesis has played a central role in
meeting both of these milestones in the poker domain, in the game of heads-up limit
Texas hold’em. In this chapter, we will focus on the first milestone of defeating top
human professionals, which occurred in 2008 at the beginning of my doctorate. In
the next chapter, we will focus on the second milestone of solving the game, which
occurred in January 2015 at the end of my doctorate.
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In 2007 and 2008, the University of Alberta held two Man-vs-Machine Poker
Championships, using the game of heads-up limit Texas hold’em. In each event
our agent, Polaris, competed in a series of duplicate poker matches against teams of
human professionals.1 Polaris narrowly lost the 2007 match against Phil Laak and
Ali Eslami, but demonstrated that it was approaching professional calibre play. In
the 2008 match, an improved version of Polaris played a against a team of heads-
up limit Texas hold’em specialists and narrowly won, marking the first time that a
computer had defeated expert human poker players in a meaningful competition.

Although the variance-reducing duplicate format was used in the 2007 and 2008
matches, the matches still had enough variance that the results were not statis-
tically significant. In my Masters thesis, published just after the 2007 match, I
presented a further analysis using the DIVAT variance reduction technique [107;
14] that predicted Polaris should have won the 2007 match, but again without sta-
tistical significance [47, Section 7.3]. Likewise, an analysis of the 2008 match using
DIVAT helps, but does not provide statistically significant results.

In this chapter, we will re-examine the 2007 and 2008 Man-vs-Machine Poker
Championships. Using the Imaginary Observations technique that we presented
in Chapter 7, we can now analyze the matches hand-by-hand to produce an un-
biased low-variance evaluation of Polaris’ performance. This analysis, previously
unpublished and appearing here for the first time, predicts with 95% confidence that
Polaris was favoured to win the 2007 event, and that Polaris earned its victory in
the 2008 event.

8.1 The First Man-vs-Machine Poker Championship,
2007

The First Man-vs-Machine Poker Championship was held in July 2007 during the
AAAI Conference on Artificial Intelligence.2 Our opponents in this event were Phil
Laak, a well-known professional poker player, and his chosen teammate Ali Eslami.
The two-day event used a series of four 500-hand duplicate matches (4000 hands
total), in which Laak and Eslami separately played against independent copies of
Polaris. In each match, one human player played on a stage in front of an audience
of AAAI attendees, while their partner played while sequestered in a hotel room. In
between matches, the players were free to meet to exchange opinions and plan their
strategy for the next match; likewise, the CPRG had an opportunity to adjust Polaris
in between matches, and the program played autonomously during each match.

1In a duplicate poker match, two teams simultaneously play independent matches in different
rooms. The same cards are dealt in each match, with the players acting in opposite positions in each
room, or “side of the match”. This format reduces the impact of luck, because when a player is
dealt strong cards in one room, their teammate’s opponent is dealt the same strong cards in the other
room. In a duplicate match against a computer program, two human players act as a team, and each
plays against an independent copy of the program.

2 See [74] for the website used during the event, which includes photos, media links, and a
minute-by-minute commentary of each match.
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Using the duplicate format the same cards were dealt in each room, with the
humans playing in opposite positions, such that both Laak and the Polaris agent
opposing Eslami were dealt the same cards. The duplicate format helped to reduce
the variance of the game3, but with 4000 hands was still not expected to be sufficient
to declare a winner with statistical significance. Instead, the rules defined a margin
of victory: in each 500-hand match, a winner was declared if their team’s score
exceeded 25 big blinds. The overall winner of the Championship would be the
team that won the most matches.

Polaris used a set of strategies computed by the newly-invented CFR algorithm,
and used perfect recall percentile hand strength card abstractions. These abstrac-
tions used just 8 or 12 buckets per round, and were both tiny and crude by modern
standards, as compared to the techniques we presented in Chapter 5. Polaris used
a slightly different strategy in each of the four matches, and in the third match
switched between several strategies in an attempt to exploit the opponent’s weak-
nesses. Our agreement with the players was that each of its strategies would be
given an arbitrary name, which we would tell them at the start of each match. Thus,
if Polaris used the same strategy in two matches, the humans would know. For de-
tailed information on the specific strategies used in each match, consult my Masters
thesis [47, Section 7.3], which was written just after the competition.

In the competition, the raw “Money” outcome of each duplicate match was
used to choose a winner for the match, but these selections were not statistically
significant. A further analysis in my Masters thesis [47, Section 7.3] using the
DIVAT technique [107; 14] suggested that Polaris had an edge, but also could not
identify a winner of each match with 95% confidence.

Now, using the combination of the Imaginary Observations technique from
Chapter 7 and DIVAT, we can produce a more accurate value estimation for Polaris
that achieves 95% confidence. These results are shown in Figures 8.1 to 8.4, which
show Polaris’s winnings or losses over the course of each match. Each set of three
plots shows Polaris’ performance against Laak, Eslami, and the Duplicate match
that combines both opponents. The “Money” curve in each graph shows Polaris’
actual winnings or losses, while DIVAT and IO-DIVAT show our variance-reduced
estimates.

3 In practice, we have found that heads-up limit Texas hold’em played between two strong play-
ers has a standard deviation of about 5000 mbb/g. In a duplicate match where the outcome of each
game is the average of the two teammates’ scores, in practice the standard deviation is about 1800
mbb/g.
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Figure 8.1: 2007 Man-vs-Machine Championship Match 1.

131



-200

-150

-100

-50

 0

 50

 0  100  200  300  400  500

P
ol

ar
is

' B
an

kr
ol

l (
bi

g 
bl

in
ds

)

Games

Money (Mean -319, StdDev 4634 mbb/g)
DIVAT (Mean 12, StdDev 1816 mbb/g)

IO-DIVAT (Mean 66, StdDev 798 mbb/g)

(a) Phil Laak: On Stage

-50

 0

 50

 100

 150

 200

 250

 300

 0  100  200  300  400  500

P
ol

ar
is

' B
an

kr
ol

l (
bi

g 
bl

in
ds

)

Games

Money (Mean 503, StdDev 5500 mbb/g)
DIVAT (Mean 150, StdDev 2387 mbb/g)

IO-DIVAT (Mean 59, StdDev 1066 mbb/g)

(b) Ali Eslami: Hotel Room

-100

-80

-60

-40

-20

 0

 20

 40

 60

 80

 100

 0  100  200  300  400  500

P
ol

ar
is

' B
an

kr
ol

l (
bi

g 
bl

in
ds

)

Games

Money (Mean 91, StdDev 1976 mbb/g)
DIVAT (Mean 81, StdDev 1451 mbb/g)

IO-DIVAT (Mean 62, StdDev 617 mbb/g)

(c) Duplicate

Figure 8.2: 2007 Man-vs-Machine Championship Match 2.
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Figure 8.3: 2007 Man-vs-Machine Championship Match 3.
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Figure 8.4: 2007 Man-vs-Machine Championship Match 4.
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Match 1 Match 2 Match 3 Match 4 Total
Money 0 1 -1 -1 -1

Significant Money 0 0 0 0 0
DIVAT 0 1 0 0 1

Significant DIVAT 0 0 0 0 0
IO-DIVAT 1 1 1 1 4

Significant IO-DIVAT 1 1 0 1 3

Table 8.1: Summary table for the 2007 First Man-vs-Machine Poker Championship.
Each pair of rows shows analysis by a different unbiased postgame analysis tech-
nique, with “Money” indicating the raw outcome of each match. 1, 0, or -1 indicate
a win, tie or loss for Polaris.

In Table 8.1, we summarize these results in a summary table. Each pair of rows
applies one of the three value estimators to each duplicate match outcome, and
states whether Polaris won (1) tied (0) or lost (-1) that match. The first row of each
pair uses the estimator’s raw outcome, while the second row declares a tie unless
the winner’s margin of victory has 95% confidence in a one-sided significance test.

The Money and DIVAT estimators predict a loss and a win for Polaris respec-
tively, but none of the matches achieve statistical significance through this analysis.
The Imaginary Observations technique, however, estimates that Polaris had an ad-
vantage in all four matches, and that in three of these matches Polaris’ edge was
significant according to the one-sided 95% confidence test.

Although Polaris lost the First Man-vs-Machine Poker Championship, we learned
a great deal by competing against Phil Laak and Ali Eslami. We are grateful to them
for their time and expertise which they openly shared with us. In practical terms,
we identified several areas for improvement that guided our research over the next
year: specifically, the use of imperfect recall abstractions to better represent the
game state, and the importance of aggressive and exploitive strategies and online
adaptation to the opponent.4

8.2 The Second Man-vs-Machine Poker Championship,
2008

In 2008, after a significant year’s progress on Polaris, we were ready for a rematch
against human professionals. The Second Man-vs-Machine Poker Championship
was held in July in Las Vegas, at the Gaming Life Expo convention held alongside

4Our single victory, in Match 2, was scored by an aggressive (non-equilibrium) strategy that
played a “tilted” strategy, described in Chapter 2. Laak and Eslami found this to be a much more
challenging opponent than the equilibrium stratgy used in both Match 1 and 4, even though the
equilibrium strategy used a card abstraction four times larger than the aggressive strategy. This
agent was described in detail in my Masters thesis [47, Section 7.3.2].
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the World Series of Poker.5 In this second championship we challenged a group of
heads-up limit Texas hold’em specialists, organized by the StoxPoker poker train-
ing website. One of our opponents, Matt “Hoss TBF” Hawrilenko, was widely re-
garded by other professional poker players to be the world’s strongest human player
at heads-up limit Texas hold’em. He was joined by Nick “StoxTrader” Grudzien,
IJay “doughnutz” Palansky, Kyle “cottonseed” Hendon, Mark Newhouse, Victor
Acosta, and Rich McRoberts.

The event consisted of a set of six 500-hand duplicate matches played against
pairs of humans from the team. The first two were played online, and the final four
were played live in Las Vegas. As in the 2007 match, one human player played in
front of an audience in the expo hall, while the other played in a hotel room.

We had made several improvements to Polaris in the year between 2007 and
2008. Most notably, Polaris used the online off-policy partial information Imag-
inary Observations technique to switch between five component strategies during
each match. This technique allowed us to quickly find and use the most appropriate
exploitive strategy to use against the opponent’s most recent behaviour. Follow-
ing our earlier colour-based naming convention from the 2007 match, one of the
strategies (Pink) was an abstract game Nash equilibrium approximation, while the
other four (Orange, Peach, Red and Green) were “tilted” in different ways to create
aggressive strategies, as previously described in Figure 2.5. The five component
strategies all used an imperfect recall card abstraction that nested public texture and
percentile hand strength private buckets. Pink, Orange and Peach had 266,135,752
information sets and were twice as large as the largest Polaris 2007 strategy, while
Red and Green had 115,386,552 information sets and were approximately the same
size. While seemingly large at the time, these abstractions are tiny compared to
those now commonly in use.

For the live matches, one 500-hand match was played per day over four con-
secutive days. As in 2007, a 25 big blind margin in duplicate score was required
to declare a winner. Over two remote matches and four live matches, Polaris won
three matches, lost two and tied one, marking the first time that a poker program
had ever defeated human professionals in a meaningful poker match. The hand
histories and overall money scores were revealed in real time on the competition
website [75]. However, as in 2007, the variance reduction provided by the dupli-
cate match format was insufficient for any of the six matches to have a statistically
significant outcome.

For the first time, we will now present an analysis of these hands using the
DIVAT and Imaginary Observations variance reduction techniques.6 Using these

5 See [75] for the website used during the event, which includes photos, media links, and a
minute-by-minute commentary of each match.

6Note that there are two distinct uses of Imaginary Observations being used in this match. Dur-
ing the match, Polaris used online off-policy partial-information Imaginary Observations to choose
which strategy to play. This online analysis was biased due to the use of off-policy evaluation, and
also because of the use of DIVAT only at showdowns. DIVAT requires all players’ card information
after a game, and this is not available during a match after either player folds. In the postgame anal-
ysis that we will present here, however, our use of DIVAT and Imaginary Observations is unbiased.

136



techniques, we can now show that Polaris earned its victory in the 2008 Man-vs-
Machine match. The results of the two remote matches and four live matches are
shown in Figures 8.5c through 8.10c.

This is possible because for postgame analysis we have the full-information hand histories (reveal-
ing all players’ cards on each hand), and our analysis is on-policy since we know which strategy
Polaris used in each game.
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Figure 8.5: 2008 Man-vs-Machine Championship Remote Match 1. Due to a tech-
nical error during this match the record of which strategy Polaris chose to use for
each hand was lost, and so post-game analysis with Imaginary Observations is not
possible.
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Figure 8.6: 2008 Man-vs-Machine Championship Remote Match 2.
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Figure 8.7: 2008 Man-vs-Machine Championship Live Match 1.
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Figure 8.8: 2008 Man-vs-Machine Championship Live Match 2.
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Figure 8.9: 2008 Man-vs-Machine Championship Live Match 3.
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Figure 8.10: 2008 Man-vs-Machine Championship Live Match 4.
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R1 R2 1 2 3 4 Total
Money -1 1 0 -1 1 1 1

Significant Money 0 0 0 0 0 0 0
DIVAT 1 1 -1 -1 1 1 2

Significant DIVAT 0 0 0 0 0 0 0
IO-DIVAT – 1 -1 1 1 1 3

Significant IO-DIVAT – 1 0 0 1 1 3

Table 8.2: Summary table for the 2008 Second Man-vs-Machine Poker Champi-
onship. Each pair of rows shows analysis by a different unbiased postgame analysis
technique. 1, 0, or -1 indicate a win, tie or loss for Polaris.

In Table 8.2, we summarize our analysis of the six matches. Matches “R1” and
“R2” refer to the two remote matches, while matches 1 through 4 refer to the live
matches played in Las Vegas. As with our summary of the 2007 event, a 1, 0, or -1
indicates a predicted win, tie, or loss for Polaris. Each pair of rows represents one
of our analysis techniques, with the first row declaring a winner if the margin was
greater than 25 big blinds. The second “Significant” row declares a winner if their
score was greater than 0 with 95% confidence in a one-sided test.

Using the raw Money score used in the competition, Polaris won the event with
three wins, two losses and one draw, but none of these results were statistically
significant. DIVAT analysis raises Polaris’ predicted winnings to four wins and
two losses, with none being statistically significant. As noted in the caption of
Figure 8.5, due to a technical error, Imaginary Observations cannot be applied to
Remote Match 1. Across the other five matches, it predicts four wins and one loss,
with three of the wins being statistically significant. This result supports Polaris’
victory in the Second Man-vs-Machine Poker Championship.

In the ACPC events after 2008, our agent Hyperborean and other strong ACPC
competitors have continued to improve beyond Polaris 2008’s strength. While
match outcomes are not always transitive, we predict that most of the current ACPC
heads-up limit Texas hold’em competitors would defeat Polaris 2008, and would
also defeat top human players. Competition became so tight in the ACPC heads-up
limit events that the heads-up limit “Instant Runoff” event was dropped in 2014.
And now that my colleagues and I have succeeded in solving the game, there will
be no need for a third match in this variant of poker. Research leading to further
human-computer events will continue in more complicated variants of poker, such
as no-limit Texas hold’em.
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When we create artificially intelligent agents for a game, there are two signifi-
cant milestones: the first time that a program defeats the top-ranked human players
and surpasses human abilities, and the first time that a program solves the game,
such that it will never lose again against any adversary. In the last chapter, we
described our 2008 Man-vs-Machine Poker Championship, when Polaris defeated
human champion players for the first time to reach the first milestone. In January
2015, our new agent Cepheus1 reached the second milestone in the game of heads-
up limit Texas hold’em by essentially solving the game. With an exploitability of
0.986 mbb/g, its approximation of a Nash equilibrium is so close that even a human
lifetime of perfect play – 60 million games – is insufficient to have 95% confidence
of defeating Cepheus.

While other human-scale games have been solved previously, such as check-
ers [85], Connect-Four [2], and awari [82], our solving of heads-up limit Texas
hold’em marked the first time that any human-scale imperfect information game
had been solved. Furthermore, it is among the first human-scale stochastic games
to be solved: the only predecessor is hypergammon, a three-checker version of
backgammon. The full game of heads-up limit Texas hold’em is also three orders
of magnitude larger than any abstraction of a poker game that has been solved
previously. While the accomplishment is exciting within the poker domain, its
significance is much greater as it illustrates the power of modern game theoretic
algorithms and the scope of problem that can now be efficiently reasoned about.

Our effort to solve heads-up limit Texas hold’em has spanned more than a
decade, including the entirety of my Masters and PhD degrees. Our earlier at-
tempts to meet this goal are present in the papers contained in this thesis. Prior to
the development of Accelerated Best Response, we believed that if we could solve
a large and accurate enough abstraction, we might be able to drive exploitability
low enough to solve the game. Unfortunately, even in large abstractions, abstrac-
tion pathologies and abstraction overfitting meant that this approach was unlikely
to succeed. With the development of CFR-BR, we hoped that solving an abstract
game properly might work. But even in very large abstractions (see Appendix 11.2),
our improvement in exploitability with respect to abstraction size was converging
at a rate that suggested that we would only reach 1 mbb/g when the abstract game
was as large as the real game. For a third attempt, Burch developed the CFR-D
algorithm [21], which safely uses decomposition to solve a game and dramatically
reduces the memory required, in exchange for an increased computational cost.
This allowed us to avoid using abstraction entirely, but the greatly increased com-
putational cost was infeasible in practice.

Finally, a new variant of CFR called CFR+ provided a solution. CFR+ was
developed by Oskari Tammelin [94], an independent programmer from Finland.
CFR+ uses the vector-style updates first used by PCS but without any use of sam-

1Cepheus is named for the constellation Cepheus, which contains the star Gamma Cephei. While
the star Polaris is currently the Earth’s northern pole star, around the year 3000 Gamma Cephei will
replace it. Thus the star Gamma Cephei is replacing the star Polaris, our poker agent Cepheus is
replacing our earlier agent Polaris, and the algorithm CFR+ used to create Cepheus may also replace
CFR.
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pling techniques, and makes a few subtle changes to the algorithm that result in a
greatly improved convergence rate over other CFR variants. Recently, Tammelin,
Bowling, Burch and I published a followup paper [95] that establishes the theoret-
ical support for CFR+, and may help to explain this surprisingly fast convergence.
This greatly improved convergence rate overcame the computational cost associ-
ated with solving a game as large as heads-up limit Texas hold’em. Tammelin also
developed a streaming compression algorithm, optimized for poker games, that al-
lowed us to compress CFR+’s internal variables during the computation, reducing
the effective memory cost from 523 TB to 11 TB. By distributing the computation
across a cluster of 200 identical nodes with 4800 CPU cores total, and making use
of local hard disks on each node, the joint team of Bowling, Burch, Tammelin and
myself were able to essentially solve the game in just over 900 CPU-years of com-
putation. We unveiled the resulting strategy in detail on our website [16], where
visitors can play against Cepheus and inspect its strategy at arbitrary points.

This result largely completes the story of AI for heads-up limit Texas hold’em,
and creates new possibilities for solving larger and more complex games. While
researchers have long been exploring the larger and more popular poker game of
no-limit Texas hold’em with equal vigor, the prospect of being able to solve ab-
stractions one thousand times larger than was possible just months ago has renewed
our hopes of defeating human professionals in this domain as well. Our understand-
ing of CFR+ is also still incomplete, which makes it an exciting area for research.
We have now proven that it is guaranteed to converge [95], and have demonstrated
empirically that it converges far faster than other CFR variants, but have not yet
proven that its convergence bound has improved; further, we have only intuition for
why its speed has increased. CFR+ also does not currently work well with sam-
pling, which is vital for solving abstract games. If these gaps can be addressed,
then CFR+ may overtake CFR as the new state-of-the-art game solving technique.

Author’s contributions. Tammelin invented the CFR+ algorithm and streaming
compression technique used in the paper. Our implementation of CFR+, designed
for high performance clusters, was written and tested by Burch and myself. I was
responsible for tuning parameters to find an acceptable three-way tradeoff between
solution quality, disk and RAM memory required, and computation time. I also ran
the three-month long computation and collected the empirical results. Bowling led
our decade-long effort to solve the game and was responsible for composing the
manuscript. Burch and I assisted with manuscript editing and formatting.
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Abstract:
Poker is a family of games that exhibit imperfect information, where players do
not have full knowledge of past events. While many perfect information games
have been solved (e.g., Connect-Four and checkers), no nontrivial imperfect in-
formation game played competitively by humans has previously been solved. In
this paper, we announce that the smallest variant of poker in-play, heads-up limit
Texas hold’em, is now essentially weakly solved. Furthermore, this computation
formally proves the common wisdom that the dealer in the game holds a significant
advantage. This result was enabled by a new algorithm, CFR+, which is capable
of solving extensive-form games three orders of magnitude larger than previously
possible.

9.1 Introduction
Games have been intertwined with the earliest developments in computation, game
theory, and artificial intelligence (AI). At the very conception of computing, Bab-
bage had detailed plans for an “automaton” capable of playing tic-tac-toe and dreamt
of his Analytical Engine playing chess [6, Chapter 34]. Both Alan Turing [97] and
Claude Shannon [87], on paper and in hardware respectively, developed programs
to play chess as validation of early ideas in computation and AI. For over a half-
century, games have continued to act as testbeds for new ideas and the resulting suc-
cesses have marked significant milestones in the progress of AI: e.g., the checkers-
playing computer program Chinook becoming the first to win a world championship
title against humans [86], Deep Blue defeating Kasparov in chess [25], and Watson
defeating Jennings and Rutter on Jeopardy! [29]. However, defeating top human
players is not the same as “solving” a game, i.e., computing a game-theoretically
optimal solution that is incapable of losing against any opponent in a fair game.
Solving games has also served as notable milestones for the advancement of AI,
e.g., Connect-Four [2] and checkers [85].

Every nontrivial game played competitively by humans that has been solved to-
date is a perfect information game.3 In perfect information games, all players are

2The paper presented in this chapter originally appeared in the journal Science. Copyright 2015
by the authors. M. Bowling, N. Burch, M. Johanson and O. Tammelin. Heads-up Limit Hold’em
Poker is Solved. Science, Volume 347 Issue 6218, 145-149, January 2015.

3We use the word trivial to describe a game that can be solved without the use of a ma-
chine. The one near-exception to this claim is oshi-zumo, but it is not played competitively
by humans and is a simultaneous-move game that otherwise has perfect information [23]. Fur-
thermore, almost all nontrivial games played by humans that have been solved to-date also have
no chance elements. The one notable exception is hypergammon, a three-checker variant of
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informed of everything that has occurred in the game prior to making a decision.
Chess, checkers, and backgammon are examples of perfect information games. In
imperfect information games, players do not always have full knowledge of past
events (e.g., cards dealt to other players in bridge and poker, or a seller’s knowl-
edge of the value of an item in an auction). These games are more challenging,
with theory, computational algorithms, and instances of solved games lagging be-
hind results in the perfect information setting.4 And, while perfect information may
be a common property of parlour games, it is far less common in real-world decision
making settings. In a conversation recounted by Bronowski, John von Neumann,
the founder of modern game theory, made the same observation, “Real life is not
like that. Real life consists of bluffing, of little tactics of deception, of asking your-
self what is the other man going to think I mean to do. And that is what games are
about in my theory.” [20].

Von Neumann’s statement hints at the quintessential game of imperfect in-
formation: the game of poker. Poker involves each player being dealt private
cards, with players taking structured turns making bets on having the strongest
hand (possibly bluffing), calling opponent bets, or folding to give up the hand.
Poker played an important role in the early developments of the field of game
theory. Borel [15] and von Neumann’s [99; 100] foundational works were mo-
tivated by developing a mathematical rationale for bluffing in poker, and small
synthetic poker games5 were commonplace in many early papers [15; 100; 60;
72]. Poker is also arguably the most popular card game in the world with over 150
million players worldwide [1]. The most popular variant of poker today is Texas
hold’em. When it is played with just two-players (heads-up) and with fixed bet-
sizes and number of raises (limit), it is called heads-up limit hold’em or HULHE.
HULHE was popularized by a series of high-stakes games chronicled in the book
The Professor, the Banker, and the Suicide King [27]. It is also the smallest variant
of poker played competitively by humans. HULHE has 3.16× 1017 possible states
the game can reach making it larger than Connect Four and smaller than checkers.
However, as an imperfect information game, many of these states cannot be distin-
guished by the acting player as they involve information about unseen past events
(i.e., private cards dealt to the opponent). As a result, the game has 3.19 × 1014

decision points where a player is required to make a decision.
While smaller than checkers, the imperfect information nature of HULHE makes

it a far more challenging game for computers to play or solve. It was 17 years after

backgammon invented by Hugh Sconyers in 1993 which he then strongly solved, i.e., the game-
theoretic value is known for all board positions. It has seen play in human competitions. See
http://www.bkgm.com/variants/HyperBackgammon.html (accessed July 4, 2014).

4For example, Zermelo proved the solvability of finite, two-player, zero-sum, perfect information
games in 1913 [106], while von Neuman’s more general minimax theorem appeared in 1928 [99].
Minimax and alpha-beta pruning, the fundamental computational algorithm for perfect information
games, was developed in the 1950s, while Koller and Megiddo’s first polynomial-time technique for
imperfect information games was introduced in 1992 [56].

5We use the word synthetic to describe a game that was invented for the purpose of being studied
or solved rather than played by humans. A synthetic game may be trivial, such as Kuhn poker [60],
or nontrivial such as Rhode Island hold’em [89]
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Chinook won its first game against world champion Marion Tinsley in checkers that
the computer program Polaris won the first meaningful match against professional
poker players [78]. While Schaeffer et al. solved checkers in 2007 [85], heads-up
limit Texas hold’em poker, until now, was unsolved. This slow progress is not for
lack of effort. Poker has been a challenge problem for artificial intelligence, op-
erations research, and psychology with work going back over 40 years [13]. 17
years ago, Koller and Pfeffer [59] declared, “we are nowhere close to being able to
solve huge games such as full-scale poker, and it is unlikely that we will ever be
able to do so.” The focus on HULHE as one example of “full-scale poker” began in
earnest over ten years ago [11], and became the focus of dozens of research groups
and hobbyists after 2006 when it became the inaugural event in the Annual Com-
puter Poker Competition [65], held in conjunction with the main conference of the
Association for the Advancement of Artificial Intelligence (AAAI). This paper is
the culmination of this sustained research effort toward solving a “full-scale” poker
game.

Allis [3] gives three different definitions for solving a game. A game is said
to be ultra-weakly solved if for the initial position(s), the game-theoretic value has
been determined; weakly solved if for the initial position(s), a strategy has been
determined to obtain at least the game-theoretic value, for both players, under rea-
sonable resources; and strongly solved if for all legal positions, a strategy has been
determined to obtain the game-theoretic value of the position, for both players,
under reasonable resources. In an imperfect information game, where the game-
theoretic value of a position beyond the initial position is not unique, Allis’s no-
tion of “strongly solved” is not well-defined. Furthermore, imperfect information
games, due to stochasticity in the players’ strategies or the game itself, typically
have game-theoretic values that are real-valued rather than discretely valued (such
as “win”, “loss”, and “draw” in chess and checkers), and only achieved in expecta-
tion over many playings of the game. As a result, game-theoretic values are often
approximated, and so an additional consideration in solving a game is the degree
of approximation in a solution. A natural level of approximation under which a
game is essentially weakly solved is if a human lifetime of play is not sufficient to
establish with statistical significance that the strategy is not an exact solution.

In this paper, we announce that heads-up limit Texas hold’em poker is essen-
tially weakly solved. Furthermore, we bound the game-theoretic value of the game,
proving that the game is a winning game for the dealer.

9.2 Solving Imperfect Information Games
The classical representation for an imperfect information setting is the extensive-
form game. Here the word “game” refers to a formal model of interaction between
self-interested agents and applies to both recreational games and serious endeavours
such as auctions, negotiation, and security. See Figure 9.1 for a graphical depiction
of a portion of a simple poker game in extensive-form. The core of an extensive-
form game is a game tree specifying branches of possible events, namely player
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actions or chance outcomes. The branches of the tree split at game states and each
is associated with one of the players (or chance) who is responsible for determining
the result of that event. The leaves of the tree signify the end of the game, and
have an associated utility for each player. The states associated with a player are
partitioned into information sets, which are sets of states which the acting player
cannot distinguish between (e.g., corresponding to states where the opponent was
dealt different private cards). The branches from states within an information set are
the player’s available actions. A strategy for a player specifies for each information
set a probability distribution over the available actions. If the game has exactly two
players and the utilities at every leaf sum to zero, the game is called zero-sum.

The classical solution concept for games is a Nash equilibrium, a strategy for
each player such that no player can increase their expected utility by unilaterally
choosing a different strategy. All finite extensive-form games have at least one
Nash equilibrium. In zero-sum games, all equilibria have the same expected utili-
ties for the players, and this value is called the game-theoretic value of the game.
An ε-Nash equilibrium is a strategy for each player where no player can increase
their utility by more than ε by choosing a different strategy. By Allis’s categories, a
zero-sum game is ultra-weakly solved if its game-theoretic value is computed, and
weakly solved if a Nash equilibrium strategy is computed. We call a game essen-
tially weakly solved if an ε-Nash equilibrium is computed for a sufficiently small ε
to be statistically indistinguishable from zero in a human lifetime of played games.
For perfect information games, solving typically involves a (partial) traversal of the
game tree. However, the same techniques cannot apply to imperfect information
settings. We briefly review the advances in solving imperfect information games,
benchmarking the algorithms by their progress in solving increasingly larger syn-
thetic poker games as summarized in Figure 9.2.

Normal-Form Linear Programming The earliest method for solving extensive-
form games involved converting it into a normal-form game, represented as a matrix
of values for every pair of possible deterministic strategies in the original extensive-
form game, and then solving it with a linear program (LP). Unfortunately, the num-
ber of possible deterministic strategies is exponential in the number information sets
of the game. So, while LPs can handle normal-form games with many thousands
of strategies, even just a few dozen decision points makes this method impractical.
Kuhn poker, a poker game with 3 cards, one betting round, and a one bet maximum
having a total of 12 information sets (see Figure 9.1), can be solved with this ap-
proach. But even Leduc hold’em [90], with 6 cards, two betting rounds, and a two
bet maximum having a total of only 288 information sets, is intractable having over
1086 possible deterministic strategies.

Sequence-Form Linear Programming Romanovskii [81] and later Koller et al. [56;
57] established the modern era of solving imperfect information games, introduc-
ing the sequence-form representation of a strategy. With this simple change of
variables, they showed that the extensive-form game could be solved directly as
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Figure 9.1: Portion of the extensive-form game representation of three-card Kuhn

poker [60] where player 1 is dealt a queen (Q) and the opponent is given either

the Jack (J) or King (K). Game states are circles labeled by the player acting at

each state (“c” refers to chance, which randomly chooses the initial deal). The

arrows show the events the acting player can choose from, labeled with their in-

game meaning. The leaves are square vertices labeled with the associated utility for

player 1 (player 2’s utility is the negation of player 1’s). The states connected by

thick gray lines are part of the same information set, i.e., player 1 cannot distinguish

between the states in each pair since they represent a different unobserved card

being dealt to the opponent. Player 2’s states are also in information sets, containing

other states not pictured in this diagram.
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Figure 9.2: Increasing sizes of imperfect information games solved over time. The
shaded regions refer to the technique used to achieve the result with references in
the main text. CFR+ is the algorithm used in this work and the dashed line shows
the result established in this paper.

an LP, without the need for an exponential conversion to normal-form. Sequence-
form linear program (SFLP) was the first algorithm to solve imperfect information
extensive-form games with computation time that grows as a polynomial of the
size of the game representation. In 2003, Billings et al. [11] applied this technique
to poker, solving a set of simplifications of HULHE to build the first competitive
poker-playing program. In 2005, Gilpin and Sandholm [37] used the approach
along with an automated technique for finding game symmetries to solve Rhode
Island Hold’em [89], a synthetic poker game with 3.94× 106 information sets after
symmetries are removed.

Counterfactual Regret Minimization In 2006, the Annual Computer Poker Com-
petition was started [65]. The competition drove significant advancements in solv-
ing larger and larger games, with multiple techniques and refinements being pro-
posed in the years that followed [84; 83]. One of the techniques to emerge, and
currently the most widely adopted in the competition, is counterfactual regret mini-
mization (CFR).6. CFR is an iterative method for approximating a Nash equilibrium
of an extensive-form game through the process of repeated self-play between two

6Another notable algorithm to emerge from the Annual Computer Poker Competition is an ap-
plication of Nesterov’s excessive gap technique [73] to solving extensive form games [34] The tech-
nique has some desirable properties, including better asymptotic time complexity that what is known
for CFR. However, it has not seen widespread use among competition participants due to its lack
of flexibility in incorporating sampling schemes and its inability to be used with powerful (but un-
sound) abstractions that employ imperfect recall. Recently, Waugh and Bagnell [102] have shown
that CFR and the excessive gap technique are more alike than different, suggesting that the individual
advantages of each approach may be attainable in the other.

153



regret-minimizing algorithms [110]. Regret is the loss in utility an algorithm suf-
fers for not having selected the single best deterministic strategy, which can only
be known in hindsight. A regret-minimizing algorithm is one that guarantees its
regret grows sub-linearly over time, and so eventually achieves the same utility as
the best deterministic strategy. The key insight of CFR is that instead of storing
and minimizing regret for the exponential number of deterministic strategies, CFR
stores and minimizes a modified regret for each information set and subsequent ac-
tion, which can be used to form an upper bound on the regret for any deterministic
strategy. An approximate Nash equilibrium is retrieved by averaging each player’s
strategies over all of the iterations, and the approximation improves as the num-
ber of iterations increases. The memory needed for the algorithm is linear in the
number of information sets, rather than quadratic, which is the case for efficient
LP methods [55]. Since solving large games is usually memory-bound, CFR has
resulted in as dramatic an increase in the size of solved games as Koller et al.’s
advance. Since its introduction in 2007, CFR has been used to solve increasingly
complex simplifications of HULHE, reaching as many as 3.8 × 1010 information
sets in 2012 [45].

9.3 Solving Heads-Up Limit Hold’em
The full game of HULHE has 3.19 × 1014 information sets. Even after removing
game symmetries it has 1.38× 1013, i.e., three orders of magnitude larger than pre-
viously solved games. There are two challenges for established CFR variants to
handle games at this scale: memory and computation. During computation CFR
must store the resulting solution and the accumulated regret values for each infor-
mation set. Even with single-precision (4 byte) floating point numbers, this requires
262 TB of storage. Furthermore, past experience has shown that a three order of
magnitude increase in the number of information sets requires at least three orders
of magnitude more computation. In order to tackle these two challenges we employ
two ideas recently proposed by Tammelin, a co-author of this paper [93].

To address the memory challenge we store the approximate solution strategy
and accumulated regrets using compression. For the solution and regrets we use
fixed-point arithmetic by first multiplying all values by a scaling factor and trun-
cating them to integers. The resulting integers are then ordered to maximize com-
pression efficiency, with compression ratios around 13-to-1. Overall, we require
under 11 TB of storage during the computation, which is distributed across a clus-
ter of computation nodes. This amount is infeasible to store in main memory, and
so we store the compressed strategy and regret values on each node’s local disk.
Each node is responsible for a set of subgames, i.e., portions of the game tree par-
titioned based on publicly observed actions and cards so that each information set
is associated with one subgame. The regrets and strategy for a subgame are loaded
from disk, updated, and saved back to disk, using a streaming compression tech-
nique that decompresses and recompresses portions of the subgame as needed. By
making the subgames large enough, the update-time dominates the total time to pro-
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cess a subgame. With disk pre-caching, the inefficiency incurred by disk storage is
approximately 5% of the total time.

To address the computation challenge we use a variant of CFR called CFR+ [93].
CFR implementations typically sample only portions of the game tree to update on
each iteration. They also employ regret-matching at each information set, which
maintains regrets for each action and chooses among actions with positive regret
with probability proportional to that regret. Instead, CFR+ does exhaustive iter-
ations over the entire game tree, and uses regret-matching+, a variant of regret-
matching where regrets are constrained to be non-negative. Actions that have ap-
peared poor (with less than zero regret for not having been played) will be chosen
again immediately after proving useful (rather than waiting many iterations for the
regret to become positive). Finally, in contrast with CFR, we have observed em-
pirically that the exploitability of the players’ strategies during the computation
regularly converges to zero. Therefore, we skip the step of computing and stor-
ing the average strategy, instead using the players’ current strategies as the CFR+

solution. We have empirically observed CFR+ to require considerably less compu-
tation than state-of-the-art sampling CFR [50], while also being highly suitable for
massive parallelization.

Like CFR, CFR+ is an iterative algorithm that computes successive approxi-
mations to a Nash equilibrium solution. The quality of the approximation can be
measured by its exploitability: the amount less than the game value that the strategy
achieves against the worst-case opponent strategy in expectation. Computing the
exploitability of a strategy involves computing this worst-case value, traditionally
requiring a traversal of the entire game tree. This was long thought to be intractable
for games the size of HULHE. Recently it was shown that this calculation could
be dramatically accelerated by exploiting the imperfect information structure of the
game and regularities in the utilities [53]. This is the technique we use to confirm
the approximation quality of our resulting strategy. The technique and implemen-
tation has been verified on small games and against independent calculations of the
exploitability of simple strategies in HULHE.

A strategy can be exploitable in expectation and yet, due to chance elements
in the game and randomization in the strategy, its worst-case opponent still isn’t
guaranteed to be winning after any finite number of hands. We define a game to
be essentially solved if a lifetime of play is unable to statistically differentiate it
from being solved at 95% confidence. Imagine someone playing 200 hands of
poker an hour for 12 hours a day without missing a day for 70 years. Furthermore
imagine them employing the worst-case, maximally exploitive, opponent strategy,
and never making a mistake. Their total winnings, as a sum of many millions of
independent outcomes, would be normally distributed. Hence, the observed win-
nings in this lifetime of poker would be 1.64 standard deviations or more below
its expected value (i.e., the strategy’s exploitability) at least 1 time out of 20. Us-
ing the standard deviation of a single hand of HULHE, which has been reported to
be around 5 bb/g (big-blinds per game, where the big-blind is the unit of stakes in
HULHE) [19], we arrive at a threshold of 1.64∗5/

√
200 ∗ 12 ∗ 365 ∗ 70 ≈ 0.00105.

So, an approximate solution with an exploitability under 1mbb/g (milli-big-blinds
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Figure 9.3: Exploitability of the approximate solution with increasing computation.

per game) cannot be distinguished with high confidence from an exact solution, and
indeed has a 1-in-20 chance of winning against its worst-case adversary even after
a human lifetime of games. Hence, 1mbb/g is the threshold for declaring HULHE
essentially solved.

9.4 The Solution
Our CFR+ implementation was executed on a cluster of 200 computation nodes
each with 24 2.1 GHz AMD cores, 32GB of RAM, and a 1 TB local disk. We
divided the game into 110,565 subgames (partitioned based on preflop betting, flop
cards, and flop betting). The subgames were split among 199 worker nodes, with
one parent node responsible for the initial portion of the game-tree. The worker
nodes performed their updates in parallel, passing values back to the parent node
for it to perform its update, taking 61 minutes on average to complete one iteration.
The computation was then run for 1,579 iterations, taking 68.5 days, and using
a total of 900 core years of computation7 and 10.9 TB of disk space, including
filesystem overhead from the large number of files.

Figure 9.3 shows the exploitability of the computed strategy with increasing
computation. The strategy reaches an exploitability of 0.986 mbb/g, making HULHE
essentially weakly solved. Using the separate exploitability values for each posi-
tion (as the dealer and non-dealer) we get exact bounds on the game-theoretic value
of the game: between 87.7 and 89.7 mbb/g for the dealer, proving the common
wisdom that the dealer holds a significant advantage in HULHE.

7The total time and number of core years is larger than was strictly necessary as it includes
computation of an average strategy that was later measured to be more exploitable than the current
strategy and so discarded. The total space noted, on the other hand, is without storing the average
strategy.
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(a) first action as the dealer (b) first action as the non-dealer after

a dealer raise

Figure 9.4: Action probabilities in the solution strategy for two early decisions.

Each cell represents one of the possible 169 hands (i.e., two private cards) with the

upper diagonal consisting of cards with the same suit and the lower diagonal con-

sisting of cards of different suits. The color of the cell represents the action taken:

red for fold, blue for call, and green for raise, with mixtures of colors representing

a stochastic decision.

The final strategy, as a close approximation to a Nash equilibrium, can also an-

swer some fundamental and long-debated questions about game-theoretically opti-

mal play in HULHE. Figure 9.4 gives a glimpse of the final strategy in two early

decisions of the game. Human players have disagreed about whether it may be

desirable to “limp”, i.e., call as the very first action rather than raise, with certain

hands. Conventional wisdom is that limping forgoes the opportunity to provoke an

immediate fold by the opponent, and so raising is preferred. Our solution emphati-

cally agrees (see the absence of blue in Figure 9.4a). The strategy limps just 0.06%

of the time and with no hand more than 0.5%. In other situations, the strategy

gives insights beyond conventional wisdom, indicating areas where humans might

improve. The strategy rarely “caps”, i.e., makes the final allowed raise, in the first

round as the dealer, whereas some strong human players cap the betting with a wide

range of hands. Even when holding the strongest hand, a pair of aces, the strategy

caps the betting less than 0.01%, and the hand most likely to cap is a pair of twos,

with probability 0.06%. Perhaps more importantly, the strategy chooses to play,

i.e., not fold, a broader range of hands as the non-dealer than most human players

(see the relatively small amount of red in Figure 9.4b). It is also much more likely

to re-raise when holding a low-rank pair (such as threes or fours).8

While these observations are only for one example of game-theoretically opti-

mal play (different Nash equilibria may play differently), they both confirm as well

8These insights were the result of discussions with Mr. Bryce Paradis, previously a professional

poker player who specialized in HULHE.
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as contradict current human beliefs about equilibria play, and illustrate that humans
can learn considerably from such large-scale game-theoretic reasoning.

9.5 Conclusion
In this paper, we announced that heads-up limit Texas hold’em poker is essentially
weakly solved. This is the first nontrivial imperfect information game played com-
petitively by humans to be solved. Even still, the reader may ask what is the ultimate
significance of solving poker? The breakthroughs behind this result are general al-
gorithmic advances that make game-theoretic reasoning in large-scale models of
any sort more tractable. And, while seemingly playful, game theory has always
been envisioned to have serious implications, e.g., its early impact on cold war
politics [69]. More recently, there has been a surge in game-theoretic applications
involving security, including systems being deployed for airport checkpoints, air
marshall scheduling, and coast guard patrolling [92]. CFR algorithms, based on
those described in this paper, have been used for robust decision-making in settings
where there is no apparent adversary, with potential application to medical deci-
sion support[26]. With real-life decision-making settings almost always involving
uncertainty and missing information, algorithmic advances, such as those needed
to solve poker, are needed to drive future applications. However, we also echo a
response attributed to Alan Turing in defense of his own work in games, “It would
be disingenuous of us to disguise the fact that the principal motive which prompted
the work was the sheer fun of the thing.”[67]
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Chapter 10

Conclusion

“The method of von Neumann and Morgenstern has become the archetype
of later applications of game theory. One takes an economic problem,
formulates it as a game, finds the game-theoretic solution, then trans-
lates the solution back into economic terms.”
– R.J. Aumann [5]

In this thesis, we explored the Abstraction-Solving-Translation procedure as a
means of creating strong computer agents for human-scale domains. The tech-
niques we have presented are general, and have advanced the field of computational
game theory by reaching two milestones: the first victory of a computer agent over
human professionals in a meaningful poker match, and solving the first human-scale
imperfect information game. In this final chapter we will summarize the contribu-
tions presented in this thesis, note two recent developments in the field, describe
promising areas for future work, and conclude with some final remarks.

10.1 Contributions
This thesis presented seven of my research papers as contributions, which span the
steps of the Abstraction-Solving-Translation procedure:

• Accelerating Best Response Calculation in Large Extensive Games (IJ-
CAI 2011), [53]. In Chapter 2 we explored the task of evaluating strategies
by their exploitability, or distance to a Nash equilibrium. While this computa-
tion was previously thought to be intractable for large imperfect information
domains, our Accelerated Best Response algorithm made the computation
possible and provided our first insight in the poker domain. Our experiments
showed that the existing strong strategies were still quite exploitable, and re-
vealed the overfitting effect that results from solving abstract games.

• Efficient Nash Equilibrium Approximation through Monte Carlo Coun-
terfactual Regret Minimization (AAMAS 2012), [50]. In Chapter 3, we
explored the CFR algorithm for solving large imperfect information games.

160



Public Chance Sampling CFR improved on the state-of-the-art CFR algo-
rithm by taking advantage of the imperfect information structure of the game,
resulting in faster convergence. PCS was also a transitional step between
previous CFR variants and descendant algorithms that provided further effi-
ciency and qualitative improvements.

• Finding Optimal Abstract Strategies in Extensive-Form Games (AAAI
2012), [49]. In Chapter 4, we investigated the issues of abstraction patholo-
gies and the overfitting effect. These issues plague attempts to approximate
Nash equilibria by solving abstract games. CFR-BR is the first tractable
game solving algorithm that solves abstract games while avoiding these is-
sues, by provably converging to the least exploitable strategy that can be rep-
resented within an abstraction.

• Evaluating State-Space Abstractions in Extensive-Form Games (AAMAS
2013), [52]. In Chapter 5, we explored the task of creating and evaluat-
ing abstract games. We demonstrated how abstractions could be evaluated
through their ability to represent a Nash equilibrium, provided strong evi-
dence supporting the use of imperfect recall abstractions, and revealed the
powerful abstraction techniques we have used in the Annual Computer Poker
Competition.

• Data Biased Robust Counter Strategies (AISTATS 2009), [51]. In Chap-
ter 6 we investigated the offline opponent modelling and counter-strategy
task. By computing robust counter-strategies to use against a flawed oppo-
nent, we aim to outperform a Nash equilibrium strategy while retaining most
of its worst-case guarantees. The Data Biased Response algorithm achieves
this tradeoff while using observations of the opponent’s strategy, avoiding the
suboptimal behaviour of the earlier Restricted Nash Response algorithm.

• Strategy Evaluation in Extensive Games with Importance Sampling (ICML
2008), [19]. In Chapter 7 we explored the Imaginary Observations tech-
nique for low-variance unbiased value estimation. This technique can be used
in online and offline settings, and can also be used on-policy and off-policy.
In Chapter 8, we used this technique to analyse the 2007 and 2008 Man-vs-
Machine Poker Championships, showing for the first time that Polaris earned
its 2008 victory. The Imaginary Observations technique was also a key com-
ponent of this 2008 victory, when Polaris used its online off-policy form to
dynamically change strategies during each match.

• Heads-up Limit Hold’em Poker is Solved (Science, 2015) [17]. Finally,
in Chapter 9 we presented our recent milestone result of essentially solving
heads-up limit Texas hold’em. This was the first human-scale imperfect
information game to be solved. While we have pursued the goal of solving
this game for more than a decade, it was finally made possible by the devel-
opment of CFR+, a new variant of the Counterfactual Regret Minimization
algorithm.
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10.2 Recent Developments
The papers presented in this thesis span from 2008 to 2015. Ongoing research has
extended this work in exciting ways. In this section, I will briefly describe recent
developments in two aspects of this research.

10.2.1 CFR’s Flexibility
In Chapters 3, 4, and 9, we described the Counterfactual Regret Minimization algo-
rithm and several of its variants, such as PCS, CFR-BR, and CFR+. In these papers
we focussed on two-player zero-sum games, and while we explored the use of im-
perfect recall abstractions in Chapter 5, most of our papers focus on perfect recall
games and abstractions. This focus was chosen because CFR is only guaranteed to
converge to a Nash equilibrium in the two-player zero-sum perfect recall setting.

One of CFR’s most exciting properties, however, is that it remains well-defined
outside of these bounds. In practice, we have obtained excellent empirical results
by applying CFR to multiplayer games [79; 33; 32], non-zero-sum games [47; 32],
and imperfect recall games [104; 52], including games that involve all three at once.

The application to multiplayer games is particularly interesting. Recently, Szafron
and Gibson have used CFR to solve the game of 3-player Kuhn poker [91], produc-
ing a set of equations that describe a family of Nash equilibria. In general, however,
we have found that CFR does not converge to a Nash equilibrium even in slightly
larger games such as 3-player Leduc hold’em. This is not necessarily a disadvan-
tage, as even if a Nash equilibrium could be computed, it would offer no perfor-
mance guarantees to a single agent in a multiplayer game. And, even though it does
not converge to a Nash equilibrium, CFR does appear to produce strong strategies
in practice for large multiplayer games. In the Annual Computer Poker Competi-
tion, our 3-player limit entries from 2009 onwards have been created by running
CFR. The resulting strategies have won each year’s competition by a large margin,
and yet little is understood about what properties are making them effective. Dis-
covering what properties CFR and “CFR Strategies” might have in a multiplayer
game is an exciting direction for future research.

10.2.2 Implicit Modelling
In Chapters 6 and 7, we explored aspects of offline and online opponent modelling
and adaptation. Bard has recently extended this work into the Implicit Modelling
framework [8]. DBR is an example of an explicit modelling approach: we at-
tempt to model the opponent’s entire strategy, and then compute a counter-strategy.
To be effective, this approach requires a large amount of data. Bard’s implicit
modelling framework reverses the process: we start by computing a portfolio of
counter-strategies that we believe will be generally useful against the opponents we
are likely to face, and then use the Imaginary Observations technique to choose
amongst them during a match. This approach creates an implicit model of the
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opponent that is much easier to learn: a vector representing the expected value of
using each strategy in our portfolio against the opponent being faced.

10.3 Future Work
The contributions presented in this thesis have advanced the state-of-the-art across
the full scope of the Abstraction-Solving-Translation procedure. And although we
have now solved the simplest of the human-scale poker games, this field of research
is still in its early days. In this section, I will note several promising areas for future
work. Although there are many exciting directions to explore in the poker domain,
particularly as attention shifts towards the no-limit Texas hold’em variant that is
most popular amongst humans, I will focus on general extensions of this work.

10.3.1 Game Solving
10.3.1.1 CFR+

The CFR+ algorithm described in Chapter 9 represents a significant step in the de-
velopment of the CFR family of algorithms. While we have recently published
a paper proving that it is theoretically guaranteed to converge [95], many aspects
of CFR+ are not yet fully understood. For example, the current theoretical conver-
gence bounds for CFR+ are the same as for CFR, while in practice CFR+ converges
dramatically faster. Further, it is not yet known if the current strategy is guaranteed
to converge, even though it does so quite reliably in our experiments.

With our current understanding, CFR+ is also difficult to use with abstraction.
The root cause is that CFR+ does not perform well when sampling techniques are
used. In our experiments with Monte Carlo variants such as CS and PCS, sam-
pled CFR+ is outperformed by sampled CFR. For extremely large abstract games,
such as no-limit Texas hold’em abstractions, card abstraction techniques reduce the
memory needed to represent a strategy but not the computational cost to traverse
the tree. Sampling techniques make it possible to quickly traverse parts of a game
tree while updating many abstract information sets.

If a combination of CFR+ and sampling can be found that converges quickly,
then it may be feasible to use CFR+ in place of CFR for solving very large abstract
games. This may greatly improve our ability to create agents for domains that are
larger and more challenging than HULHE, such as no-limit Texas hold’em.

10.3.1.2 Nash Equilibrium Refinements

While Nash equilibria are guaranteed to do no worse than tie in two player zero-
sum games, they can still make mistakes. For example, it is not contradictory for a
Nash equilibrium to make seemingly simple mistakes, such as folding the strongest
possible hand (the “nuts”) in a poker game. These errors can occur in subgames
following an action that it is unprofitable for the opponent to take, and cannot be so
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egregious as to cause the opponent to start taking the action. We call these “unex-
ploitable errors”, as their existence does not increase the value of a best response.
And yet, a suboptimal opponent who does choose the unprofitable action will not
be punished for their choice.

These have been observed in practice, particularly in strategies for no-limit
Texas hold’em. Solutions to abstract no-limit games typically do not go all-in as the
first action, as this is less profitable than playing the game normally. We have found
that following this untaken all-in bet, the solutions tend to have a suboptimally wide
calling range: they will call the all-in bet with too many of their weak hands. And
while the optimal strategy is still to play the game normally, doing so requires great
skill and precision. A suboptimal opponent may not be able to do so, but can very
easily go all-in and make the remainder of the game almost a coin flip.

Ideally, we would like to compute a strategy that avoids such errors. Fortunately,
there are solution concepts that are refinements of the Nash equilibrium concept,
such as quasi-perfect equilibrium or sequential equilibrium. These solution con-
cepts maximize expected value at every information set, instead of maximizing
expected value at the root.

What is currently missing is an algorithm for computing such strategies that
is as practical and efficient as CFR. While CFR can be combined with “trembling
hand” approaches to compute a trembling hand equilibrium, this somewhat impacts
CFR’s practical speed as cutoffs are eliminated, and it is currently unknown how
long CFR would take to converge at each information set. If a CFR variant (or other
algorithm) can be found that efficiently converges to one of these Nash equilibrium
refinements, then the resulting strategies should increase their winnings against sub-
optimal opponents.

10.3.2 Opponent Modelling
In Chapter 6, we discussed the Data Biased Response algorithm for computing
robust counter-strategies. DBR is a practical algorithm that generates effective
tradeoffs between robustness and exploitation. Unlike the earlier Restricted Nash
Response algorithm, it can reliably use models constructed from observed data,
instead of requiring the complete opponent strategy.

However, there is considerable room for improvement in the offline opponent
modelling task. Note that DBR is not tied to the frequency-count models that we
used in the paper. Instead, it can be combined with any opponent modelling tech-
nique that can provide both a prediction of the opponent’s strategy and a confidence
in that prediction at each information set. In particular, the frequency count model
that we used suffers from data sparsity. It requires a large number of observed hands
to fill in the opponent model, and does not attempt to generalize from observations
to fill in unobserved or under-observed parts of the model. By combining DBR with
a more sophisticated machine learning technique that attempts to generalize from
observations, it may be possible to create more effective counter-strategies while
using a more reasonable quantity of data.
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10.4 Concluding Remarks
The central challenge of artificial intelligence research is to create computer pro-
grams that can independently consider their environment, learn about its param-
eters, and choose actions so as to reach their goals. Games have a long history
as a testbed for artificial intelligence research because they offer many types of
challenges. Games provide complex yet well-defined state spaces to act within,
clear goals and metrics for measuring success, and the opportunity for comparisons
against humans amateurs and experts: the only other source of intelligent agents
against which our artificially intelligent agents can be compared. By pursuing the
goal of creating strong game playing agents, we can learn general techniques that
can be applied to artificially intelligent agents that act in real-world domains.

Different game domains focus on different components of this task. Following
successes in the deterministic perfect information games of chess and checkers, the
go research community continues in a domain with a large branching factor, where
alpha-beta search is less effective. The real-time-strategy game research commu-
nity, typified by the Starcraft AI challenge [24], stresses the importance of making
real-time actions in an extremely large and imperfect information space. The Gen-
eral Game Playing research community [31] investigates the creation of agents that
can learn to play arbitrary board games on their own, without intervention by hu-
mans. In a similar vein, the Arcade Learning Environment community aims to cre-
ate computer agents that can learn to play arbitrary, unseen Atari 2600 games [10;
68].

The central focus of computer poker research is to discover effective algorithms
for learning in large stochastic and imperfect information domains with multiple
other agents with varying abilities. Even more so than the classic artificial intelli-
gence domains of chess and checkers, we believe that the poker domain has much in
common with the real world scenarios that we would like virtual agents and phys-
ical robots to act in. Agents in real world scenarios must act while coping with
imperfect information, stochastic outcomes, and the presence of other agents with
their own goals and abilities.

Through our research in the poker domain, we aim to make progress towards the
full scope of real world challenges. And, returning to the beginning of game theory,
John von Neumann drew a similar connection. As we noted in the introduction,
when asked about perfect information games, he replied:

“Real life is not like that. Real life consists of bluffing, of little tactics
of deception, of asking yourself what is the other man going to think I
mean to do. And that is what games are about in my theory.”
– John von Neumann [20]
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Chapter 11

Appendix

Each chapter in this thesis presented one complete research paper, as it originally
appeared. In this appendix, we will supply additional information and results for
some of these papers that supplement the original results, or correct weaknesses
that were discovered after publication.

11.1 Chapter 2: Worst-Case Evaluation
In Table 2.2, we presented a table comparing several ACPC competitors in terms of
exploitability and in-game performance against Rockhopper, the winner of the 2010
ACPC. In Table 11.1, we supplement this table by also showing the in-game perfor-
mance against PULPO (winner of the 2010 Total Bankroll event) and against Hy-
perborean.IRO, the least exploitable agent of those evaluated from the 2010 ACPC.

In 2012, I ran a followup experiment for the Computer Poker Symposium at
the AAAI 2012 conference. In this second experiment, I again offered to all ACPC
competitors to measure the exploitability of their agents. The intent was to measure
the progress of the community between the 2010 and 2012 competitions. In the
2012 ACPC, Eric Jackson’s agent Slumbot [45] was both the least exploitable agent
and the winner of the Instant Runoff and Total Bankroll events.

Name vs (1) vs (4) vs (6) Exploitability
(1) Hyperborean.IRO 0 -3 ± 2 2 ± 4 135.427
(2) Hyperborean.TBR 3 ± 4 -1 ± 4 9 ± 4 141.363
(3) GGValuta 3 ± 6 -7 ± 2 1 ± 5 237.330
(4) Rockhopper 3 ± 4 0 7 ± 5 300.032
(5) GS6.IRO -31 ± 5 -37 ± 6 -32 ± 6 318.465
(6) PULPO -2 ± 4 -9 ± 2 0 399.387
(7) Littlerock -70 ± 5 -77 ± 5 -125 ± 5 421.850

Table 11.1: Extended exploitability results for 2010 ACPC heads-up limit competi-
tors.
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Name vs Slumbot Exploitability
Slumbot 0 90.873
Hyperborean.IRO -4 ± 3 106.035
ZBot -21 ± 4 249.384
Littlerock -18 ± 3 324.216

Table 11.2: Exploitability results for 2012 ACPC heads-up limit competitors.
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4-2 Hold'em, IR KE-9000 Abstraction: CFR-BR Trunks

1-Round Trunk CFR-BR Avg
2-Round Trunk CFR-BR Avg
3-Round Trunk CFR-BR Avg

Figure 11.1: CFR-BR with 1-, 2-, and 3-round trunks. The real game is 4-round,
2-bet heads-up limit hold’em, and the abstraction is IR KE-9000, as described in
Chapter 5.

11.2 Chapter 4: Optimal Abstract Strategies
In Chapter 4, we demonstrated the convergence rate of CFR-BR in heads-up limit
Texas hold’em using a 1-round and 2-round trunk. While a 3-round trunk is possi-
ble, the memory cost is considerably higher (see Table 4.1), while the 2-round trunk
nicely balances the size of each part of the game. Nonetheless, it is still interesting
to compare the convergence rate, to see if the extra memory cost for a 3-round trunk
is accompanied by an increase in speed.

We investigate this in Figure 11.1. To avoid the huge memory cost of a 3-round
trunk in heads-up limit Texas hold’em, we ran this experiment in [4-round, 2-bet]
heads-up limit hold’em, which simply limits the bets and raises in each round to
two instead of four. In this figure, we see that the 2-round trunk converges more
quickly than the 1-round trunk at all datapoints, matching our earlier results. In
this game, the three round trunk offers no advantage over the two round trunk:
it initially converges more slowly, and at the end exactly matches the two round
trunk’s performance.

In Figure 4.12, we demonstrated the convergence of CFR-BR in the abstraction
we used for our 2011 ACPC heads-up limit agent. The resulting strategy reached
an exploitability of 37.170 mbb/g, which at the time was by far the least exploitable
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Figure 11.2: CFR-BR applied to a very large abstraction of heads-up limit Texas
hold’em.

strategy ever produced: the best previous strategy was created by running CFR on
the same abstraction, which reached an exploitability of 104 mbb/g. At the time,
CFR-BR seemed like it might be a feasible way to get close enough to equilibrium
to declare the game solved: if our abstraction was a sufficiently good model of
the real game, and if we ran CFR-BR long enough, we might eventually reach our
target of 1 mbb/g. In particular, we hoped that if the first three rounds used a lossless
abstraction and only the river used lossy abstraction techniques, that we might reach
our goal.

In pursuit of that goal, in 2012 we ran a second large experiment shown in
Figure 11.2. The abstraction was canonical in the first three rounds. In the final
round, the abstraction divided the public cards into 280 public buckets, and then
subdivided each into (on average) 7200 imperfect recall OCHS buckets, with just
over two million river buckets total. Solving this game took approximately two ter-
abytes of RAM on an SGI UV1000 ccNUMA computer with 2048 cores, half of
which were used for our experiment. When this abstraction was solved with CFR-
BR, the strategy reached an exploitability of 26.6 mbb/g and may have eventually
reached 25 mbb/g if we had continued running it. While this was a substantial im-
provement over our previous 37 mbb/g strategy, it convinced us that our abstraction
technique, at our target game size, was not sufficient to reach 1 mbb/g.

11.3 Chapter 5: State-Space Abstraction

11.3.1 IR-*-PHS results
In our comparison of abstraction techniques in Tables 5.3, 5.4 and 5.5, we focussed
on perfect recall abstractions with a branching factor of 10 buckets per round and
imperfect recall abstractions with 9000 buckets per round, which are approximately
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the same size. However, after the publication of the paper, Marcin Dukaczewski1

contacted me to note that this comparison was unfair to the imperfect recall per-
centile hand strength combination, as there are only 1950 possible E[HS] values
on the river. In this section, we will present additional figures that address this flaw,
and further investigate the relative strength of abstract strategies as the abstraction
size is varied.

Using our abstraction implementation, in the IR-*-PHS abstractions only 1950
of the 9000 river buckets were used and the remaining 7050 were simply empty. A
fairer comparison of the IR-*-PHS abstractions would use at most 1950 nonempty
river buckets, and redistribute the remaining river buckets to the flop and turn. As
we illustrated in Table 5.2, the cost of each river bucket is equal in memory cost
to 9 turn buckets or 81 flop buckets, allowing us to greatly improve the quality
of the abstraction in those rounds while retaining the same overall game size. Of
course, if this movement of buckets proved advantageous for the IR-*-PHS family
of abstractions, then it might also be advantageous for the IR-*-KO family.

In Table 11.3, we present a new crosstable of in-game performance using strate-
gies generated by PCS. The original imperfect recall strategies, which used the same
number of buckets in the flop, turn and river, remain with the IR-EQ name prefix
(EQ for “equal” number of buckets on each round). The IR-FT (FT for “Flop/Turn”)
name prefix is used for the new abstractions, which have 1950 river buckets and
66105 flop and turn buckets. In the case of the IR-FT-PHS-PHS strategies, a nested
abstraction was used in the flop and turn, which used 406E[HS2] × 103E[HS] =
66178 buckets, slightly larger than the target of 66105. The conclusions reached
in the original paper are unchanged: the IR-EQ-KE-KO, IR-FT-KE-KO, and IR-
FT-KO-KO abstractions have the highest overall winnings, do not lose to any other
agents, and are inseperable from each other.

In Table 11.4, we also compare these new strategies in terms of exploitability,
using both CFR and CFR-BR. While the new IR-FT-*-PHS strategies improve as
expected over the (unfairly compared) IR-EQ-*-PHS variants, the improvement is
not sufficient to match the IR-EQ-KE-KO or IR-FT-KO-KO strategies, which re-
main the strongest overall in terms of CFR-BR exploitability.

In Figure 11.3, we compare these families of abstractions by varying the number
of buckets in the abstraction. The strategies evaluated were generated by CFR-BR.
The smallest IR abstraction is quite small, at just 100 buckets per round. Overall,
the IR-EQ-KE-KO and IR-FT-KE-KO strategies were less exploitable than the other
variants at all tested abstraction sizes.

1Thank you to Marcin Dukaczewski for noting this flaw in our analysis.
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11.3.2 Canonical Preflop and Flop Results
One of the common abstraction choices that was not investigated in the abstraction
paper is the use of “canonical flop” abstractions. By reducing the number buckets
in later rounds, we can add a far greater number of buckets to earlier rounds. This
makes it quite feasible to allocate the 1,286,792 flop buckets necessary for a canon-
ical (i.e. lossless) flop abstraction, in which every canonical combination of flop
cards and preflop cards are represented separately.

This leads to an interesting tradeoff. How many turn and river buckets should we
be willing to sacrifice in order to achieve this lossless flop representation? In Fig-
ure 11.4, we present a plot showing two abstraction families: IR-C-KE-KE-KO and
IR-C-C-KE-KO. The naming convention differs slightly from what we used earlier
by explicitly describing each of the four rounds, with C representing a canonical
abstraction. The IR-C-KE-KE-KO abstractions used 100, 570, 1175, 3700, 9000,
18630 and 34470 buckets on the flop, turn and river, while IR-C-C-KE-KO used
570, 1175, 3700, 9000, 18630, 60k, 180k and 540k buckets on the turn and river.
Aside from the first few small IR-C-C-KE-KO datapoints, the two curves almost
perfectly overlap and follow the same slope. The IR-C-C-KE-KO abstraction with
3700 buckets and the IR-C-KE-KE-KO abstraction with 18630 buckets are both
exploitable for 62.8 mbb/g, and the IR-C-C-KE-KO with 18630 buckets and the
IR-C-KE-KE-KO with 34470 are also similar at 57.1 and 56.8 mbb/g respectively.

11.3.3 Asymmetric Abstractions
All of the abstractions in the original paper and in our extended analysis here use
symmetric abstractions in which both players use the same size of game and ab-
straction technique. However, it is also interesting to consider asymmetric ab-
stractions, in which one player’s abstraction is finer-grained than their opponent’s.
When these games are solved, in comparison to a symmetric abstract strategy, the
finer-grained player’s strategy tends to be more exploitable but also more effective
in one-on-one play against a wide range of weaker adversaries. The coarser-grained
player’s strategy tends to be less exploitable than its symmetric equivalent, but also
weaker in one-on-one play. This mirrors our findings from CFR-BR, which is an
extreme form of one player’s abstraction being coarser than the opponent’s. For a
full treatment of this subject, see [7].

11.4 Chapter 6: Offline Modelling and Counter Strate-
gies

Poker Academy Online was an online play-money poker training website, founded
in part by alumni from the University of Alberta’s Computer Poker Research Group,
which operated until August 2011.2 After the 2007 Man-vs-Machine Poker Cham-
pionship, the University of Alberta had six rooms on Poker Academy where players
could play for play money against Polaris and experimental agents that we had cre-
ated. The players were aware that Polaris was the computer agent that had competed
against human pros. This gave us a chance to benchmark its performance against
non-professional opponents, and also to test opponent modelling and counter strat-
egy techniques such as data biased response.

2The current website running at the old Poker Academy address offers a different service and is
unrelated.

182



200

101

102

105 106 107 108 109 1010

E
xp

lo
ita

bi
lit

y 
(m

bb
/g

)

Game size (Information Sets)

IR-C-KE-KE-KO

IR-C-C-KE-KO

Figure 11.4: Exploitability of IR-KE-KO abstracted strategies with and without a
canonical flop abstraction.

Agent Games Played Average Winnings
Polaris 2007 Pink 563461 145 ± 14
Polaris 2007 Orange 582026 155 ± 14
Polaris 2008 531598 120 ± 14
DBR-PokerAcademy 35839 341 ± 59

Table 11.5: Performance of several CPRG agents that played for play money on
Poker Academy Online between 2007 and 2009.

Over their time on the website, our agents played over two million hands of
heads-up limit Texas hold’em against these human opponents. In 2007, the Polaris
“Pink” and “Orange” strategies that played in matches (1 and 4) and 2 respectively
of the 2007 event were online. In 2008, they were replaced with Polaris 2008, which
dynamically switched between five component strategies.

In 2009, we used Data Biased Response to create a counter-strategy to the hu-
mans that had played against Polaris. This strategy used the same 8-bucket perfect
recall PHS abstraction that was used for Polaris 2007’s Orange strategy. To create
the opponent model, we used the one million games that had been played at that
time against Polaris 2007 and 2008, treating all of the human opponents as being a
single adversary. We then put this counter-strategy on Poker Academy, labelled as
being an experimental strategy (i.e. not Polaris), for players to play against.

In Table 11.5, we compare the performance of these players in their matches
on Poker Academy Online. Note that this was not a controlled experiment, as we
had no way of evaluating whether the same population was playing against the
Polaris strategies and the DBR strategy. Nonetheless, even though the DBR’s card
abstraction was far weaker than the abstraction used in Polaris 2008 (see Table 2.3),
its winrate was far higher than Polaris’, which was online at the same time in a
different room. It is not surprising that amateur humans would have exploitable
flaws, and the DBR strategy appears to have exploited them.
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