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ABSTRACT

A theory of the surface.tension of a gquantum liquid, pro-
posed by Atkins, is developedffurther and applied to liquid
helium at 0°K. On the basis of the imperfect-gas model developed
by Gross and Pitaevski the free energy per unit area arising
from the density non-uniformity is calculated. This surface
free energy is then identified with the "intrinsic" surface
tension of liquid helium.

The same model of the surface tension of a quantum fluid
1s then used to calculate the .interfacial surface tension in a
phase-separated He®-He" system at T = 0°K. The result obtained
is then contrasted with the corresponding result based on a
"eclassical® model of the surféce tension of an ideal fluid. A
corresponding experimental study should be able to distinguilsh
quantitatively between the two predictions.

We also discuss the effect of density non-uniformities on
the lambda transition in He" films. Semi-quantitative evidence
is obtained that the lambda temperature depression in He* films
is, at least in part, due to the presence.of excitations at the
free surface of the film.

We also obtain an estimate of the lambda temperature de-
pression in rotating helium as a function of both the angular
speed of rotation and the physical dimensions of the cpntainer.
The result obtained is more general than, and under special
conditions reduces to, the previous results obtained by

Andronikashvili, Mamaladze and co-workers.
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CHAPTER 1
INTRODUCTION

The study of liquid helium is of considerable: physical
ihterest because it 1s the only liquid that exhiblts- quantum
effects on a macroscdpiC;écale. Before we delve into the study.
of. certain speclalized problems concerning this liquid, it
appears worthwhile to give a brief outline of some of its
important properties that arise by virtue of these quantum
effects.

Kamerlingh Onnes (1) was the first to successfully
accomplish in 1908 the liquefaction of helium. He discovered
that the critical temperature of helium;was about 5.2°K, and
its normal boiling point about 4.2°K. Solid helium, however,
could not be obtained simply by cooling the liquid. Owing to
the. large zero-point energy of the helium atoms (which arises
from their light mass) and the relatively weak interatomic
attractive forces (which are so because of the closed structure
of the helium atoms), the solid phase. can be obtained only by
applylng an external pressure of at least 25 atmospheres even
~at T = 0°K.

As early as 1911, Kamerlingh Onnes (2) noticed that strange
things happened to liquid helium{when it - is cooled below about
2.2°K. As the temperature is decreased below this value, the
liquid, instead of continuing to contract, began to expand.
This suggested to Keesom and Wolfke (3) the possibility of
helium undergoing an allotropic modification at T = 2.2°K; they
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designated the liquid at lower temperatures as HeIT and that at
higher temperatures as Hel.

The discovery that gave this. transition the name A-trans-
1tion was due to Keesom and Clusius (l4) who found in 1932
that while the phase transition at 2.18°K was not accompaniled
by a latent heat, 1t was indeed accompanied by a singularity
in the nature of the specific heat curve, whose shape resembled
the greek letfer lambda. Recent measurements, by Falirbank,
Buckingham and Kellers (5), of the specific heat. at saturated

pressure have shown that, as the temperature approaches Tx,csat

diverges 1in the manner of - the logarithm of the magnitude of
the temperature interval IATA] = |r-T,|. For the temperapure

interval 1070 < |aT] < 10™2, the specific heat satisfied the

empirical formula:

_ . oule
c = 4.55 - 3.00 log,, |AT| -5.208 %,T'rg , (1.1)

sat

where 6 = o for T > TA’ and § = 1 for T < TA' It 1is clear that

there occurs a discontinuity in the specific heat of the amount

_ _ Joule.
A esar = Csat (T>TA) - csat(T<TA) = -5.20 gm °K . (172)

A closely related property of liquid helium was discovered
by Keesom and Miss Keesom in 1936. They noticed that as liquid
helium passes through the A-polnt into the helium II phase there
occurred an enormous increase in its thermal conductivity.

Earlier in 1930, Keesom and van den Ende (6) discovered,

rather accidentally, one of the most important properties of
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liquid helium. They observed that liquid helium, when cooled
below 2.18°K, gwould manage to escape through extremely tiny
leaks in the. apparatus which had been completely leakproof at
higher temperatures to both helium I and gaseous helium, Thls
observation seemed te indicate ar enormous drop in the. vis-
coslty of the liquid on passing down through the, lambda point.

Early measurements on the viscosity of liquid helium,
however, yielded conflicting.results. Experiments based on the
oscillating disc-method (7) showed that the viseosity of
helium II, though 1t decreases continually with decreasing
temperature, is not very different from the visCosity of
helium I. On-the other hand, experiments: done by Kapitza (8)
and by Allen and Misener (9) using the capillary flow method,
seemed to indicate that the, viscosity of helium II was several
orders of magnitude lower than that of helium I.

Other properties which indicate the inadequacy of a
classical description for liquid helium were the so-called
fountaln effect and the. existence of supersurface films. Both
these properties seemed to indicate that the heat transfer and
the mass transfer in.helium II were inseparably interconnected (10).

The first to tackle the problem theoretically was
F. London (11) who in 1938 advanced the. hypothesis that the
phenomenon of Bose-Einstein condensation, with due allowance
made for the presence of interparticle. interactions and for the
liquid state of the substance, might be the essential cause of
the A-transition:-in liquid helium. This is made highly plausible.
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by the simple, fact that whereas the heavier isotepe of helium:
(namely He") displays the phenomenon, of' A-transition the lighter
isotope (namely He?) does not. Moreover, the temperature at
which the ideal Bose gas, with the same atomic mass and density
as liquid He", undergoes Bose-Einstein condensation turns:

out to be about 3.14°K, which is of the very order of magni-
tude as the transition temperature’.in liquid helium. London:
went on. to suggest that the, superflow of HeII might be supposed
to be connected especlally with the condensed phase of the Bose
gas. Further, there is some similarity (though not  very much)
in the, temperature dependence of the specific heat in, the two
cases. Whereas liquid helilum showg‘a logarithmic discontinulty
in the specific heat ag the .transition point, the ideal Bose

gas shows. a discontinuity only 1n.the derivative(acﬁ), of the
oT /V

specific heat. Of course, in the. Bose.gas model, the specific.
heat;Cp does become. infinite at the transition temperature.

An important difference is met with in connection with the.
behaviour of‘tjpv at low temperatures. While 1liquid helium
shows a T3-behaviour, the ideal Bose gas shows a TWé behaviour.

Despite these shortcomings, London's hypothesis d4did

provide a theoretical basis for the two-fluid model of liquid
helium, which had been suggested by Tisza (12) on purely em-
pirical grounds. Thils model rested on the following major

assumptions (13):

[N
= i * -
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1)  There exists in liquid helium IT a superfluld com-
ponent plus an-excited normal fluid. component, At T = 0°K,
the whole of the 1iquid i1s superfluid. As the temperature 1s.
raised excitatlons are created whose, density increasés.mone-
‘tonically with temperature; these excitationS'consﬁitute the,
normal fluid. At-T;Tx, the whole. of the liguid is in the normal.
state,

2) " The viscoeity and the entropy of the superfluid com-
ponent are ldentically zero. The viscoslity and the entropy of
liguid helium II are, thefefore, due to the.normal component
élone,

These assumptions at once remove the. apparent discrepancy
in the: visgoslty measurements. In the capillary flow éxperi—
ments. the normal component 1s completely held back and the. flow
is"all due to the superfluid component. Consequently the,
measured viscosity 1is practically zero. In the:osciilating
disc experiments, however, the superfluid component remalns:
unattaéhed while the normal.component becomes: involved in the
oscillatory motion. The measured coefficlent of viscosity then,
depends on the,fraction.pn/p of the normal component of the
liquid. |

The explanation for the, existence of second sound in
ligquid helium also follows easily from these assumptions. If
the temperature at some point in the fluid is suddenly railsed,
excitations wlill be created at that peint:leading to a non-
unifermity in- the density of: the normal component. A resulting
flow of normal fluid away from that point will occur with a

corresponding flow .of superfluid component towards it. Entropy
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non-uniformities can thus be propagated as. temperature waves
through liquid helium II. This phenomenon. was first»studied
by Tisza (12) in 1940 and Landau (14) in 1941.

Although. experiments bore out many of the predictions of
the two-fluid.model, it remains primarilly an- intuitive model,
not based on any rigorous theory except on.the relevance. of
the Bose-Einsteln condensation to the observed phenomena of
superfluidity.

The two-fluid model was.given a new life by Landau (14).
In 1941, Landau suggested that the liquid helium be regarded as
a. quasi-continuum, whose low-lylng excltations were quantized
in the same manner as Debye mddes in .a solid. Landau assumed
two kinds of elementary excitations: (1) phonons, which afe
the quanta of longitudinal souhd waves, governed by the energy
spectrum~h=pc, where p 1s the.momentum of the phonoh and ¢ is
the. velocity of sound in the liquid, and (11) rotons, whose
energy 1s assumed to be separated from the lowest state by an
energy gap A. Both types of excitations are supposed to have
an effective mass and momentum which are ultimately attributed
to the normal component of the liquid. The energy spectrum of
the rotons may be written as

(p - p,)*

=AY, (1.3)

where A, Po and p are the parameters of the spectrum. The
precise values of these parameters are hard to obtain but have

been found by means of neutron scattering experiments 115);.thus
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we have

= = -1 =
A/k = 8.65°K, p /b = 1.9147, u = 0.16my, .

The existence of another kind of excitation has been
proposed by Kuper (16); these are associated with the vibrational
modes of the free.surface of the liquid and are considered'to
.be of the nature of "quantized capillary wavés? or the so-called

ripplons. The energy spectrum of these excitations is

: 3
w2 =gk + 9%— R (1.4)

where the first term arises from the influence of gravity on.

the vibrations of the surface while the second term arises

from the. surface tension of the liquid. The concept of quantized
surface modes of vibration has: proved. very useful in under-
standing the temperature. variation of the surface tension of
liquid helium and also leads to a significant contribution
towards the zero-point surface tension of the liquid. Of course,
the property of surface tension arises intrinsically from the
interparticle interactions in the system. A study along these
lines has been carried out in Chapters 2 and 3.

Other studies based on the two-fluid model of helium II
that have been carried out here relate to the, lambda temperature
depression that occurs in helium films and is supposed to occur
in rotating helium. These problems have been discussed in

detail in Chapters 5 and 6.
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A number of microscopic. theories -have also been:developed
in order to understand the physical behaviour of liquid helium
from a more fundamental standpoint, Difficulties in developing
a workable: theory from first principles, however, stem from the
fact that the substance under study is in the liquid state,
which of all the states of matter 1s the least understood.
Nevertheless, the theories of Bogolyubpv(l?) and Lee, Huang,
and Yang (18) have succeeded in explaining some of the.quali-
tative,features.of.pﬁe liquid helium behaviour. These theoriles
have, almost invariébly, employed- a hard-sphere interaction
as a model potential between the. helium atoms. However, in
order to study liquid helium on a more realistic basis,
especially in regard to properties that belong exclusively to
the, 1liquid state, one must not:overlook the attractive part of
the: lnteraction. Without this part of the. interaction, the
system cannot even exist in the liquld state. The attraction
may, of course, be too weak to cause two-body bound states in
the medium, but it must at any rate be strong enough to form
an N-body bound state. The N-body system will consequently
possess an equilibrium density at which the total energy of
the system 1s negative. Therefore, when attractive inter-
actions of reasonable strength are present it is no longer
necessary to fix the volume of the system by means of external
boundaries. In fact, i1f the volume of the container is larger
than that determined by the. equililbrium density of the liquid,

.,surface
7,

a free/appears. A study of the nature of this free surface
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and a calculation of the free energy assoclated with it, on the
basis of the. imperfect-gas model of Gross and Pitaevski,
constitutes the. first major content of thilis thesis, By means
of this approach, we obtain a theoretical. estimate. of the
"intrinsic" surface tension of 1liquid helium; see Chapter 3.

We propase to review other, more particular, properties
and concepts relating to ligquid helium in the introductory

sections of the relevant chapters of the. thesils.



CHAPTER 2

TEMPERATURE DEPENDENCE .OF THE SURFACE TENSION OF HELIUM IT
2.1 INTRODUCTION

The surface tension of liquid helium was originally measured’
by van Urk, Keesom, and Kamerlingh Onnes (19) in 1925 and by
Allen and Misener (20) in 1938. Extrapolating the results
obtalned atq0°K, they observed that, starting from a value of
0.35 erg cm'2, the surface tension at. first decreases gradually
but begins-to decrease more . rapidly - as the critical point is
approached. Recent experimental work by Atkins-and Naraharg (21)
on the determination of the surface tension of heliumu for
temperatures down to 0.35%K has shown that the temperature dépgn-~
dence of the surface tension can be expressed by an empirical
relatlionship of the form

o(T) = 0(0) - aT? ; (2.1)
here, o(0) is the limiting value of the. surface tension as
T+0%K, while a and n are adjustable parameters. The best fit,
Jsing the method of least squares, was. obtained with 9(0) =
0.3729 erg cm'z, a = 0.0081 erg em™2 °k™, and n = 2.5%0.2. A
complete theoretical understanding of the observed behaviour of
o(T), as depicted by Eq. (2.1) was, however, still lacking.

The most satisfactory theory we have so far of the
surface tension of liquid helium II is the one due to Atkins
who, in an earlier paper (22), suggested that the major con-~
tribution to the surface energy of this liquid comes from the
quantized surface modes of vibration known as ripplons. Atkins.
assumed these surface modes. to be similar in nature to the
macroscoplc capillary waves which have a frequency-dependent

phase velocity given by (23)
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v = (zrov/e) (2.2)
where‘o is the surface tension of the liquild, p iS‘itS density
and v is-the frequency of the wave. In the spirit of the‘
Debye theery of solids, Atkins chose a cutoff frequency V,,
such that the total number. of normal modes in the surface was.
equal to the total number of atoms in a monomolecular layer
at the surface. This fixed the cutoff frequency at about 1011

per second and the corresponding characteristic temperature

0, (=E&CZK) at a few degrees Kelvin.

Thus, according to Atkins' theory, a part of the observed
surface tension ¢(T) of liquld helium arises from the presence
of quantized surface modes, which themselves arise due to the
surface tension of the liquid. Accordingly, we must invoke
an "intrinslc" surface tension, oi(T) say, of this liquld, |
with the result that the observed surface. tension o(T) can be,

expressed as

o(T) = 0,(T) + o [T, oi('I')] , (2.3)

oy being the contribution arising from the vibrational modes

of the surface which would depend upon the . temperature of the
liquid explicitly as well as implicitly---the latter through
the. temperature dependence of oi(T) itself. Of course, 1t will
be natural for us to look for the origin of ci(T) in the basic
interactions among the atoms of the fluid. This problem will

be pursued in Chapter 3.
In the limit of 0°K, Eq. (2.3) reduces to (22)

o(0) = oi(O) + %%@m <8§§é0) ) 1/2 (2.1)

3
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the second term on the right representing the zero-point con-
tributlon of: the surface_modes. In order to appreclate the:
relative magnitudes of the two terms in (2.4),; we note that to

2 for cf0), we

obtain the.experimental estimate of 0.37 erg cm~
require ci(O) fo be about 0.1l erg cm"2, leaving about 0.23
erg cm'2 for cv(O). The contribution of the surface modes is,
therefore, more than appregiable!

At non-zero temperatures, especlally for T<<ec, the

added contribution of the. surface modes (as arising from the

explicit dependence on temperature) turns out to be (U4)

-1.55 é—%)zh —%‘-Z;:- 7B = 6.5 x 1073 T7/3 erg em™2 . (2.5) -

The exponent 7/3 is quite consistent with the, empirical value
of 2.5 * 0.2] however, the numerical factor here is about 20%
lower than the corresponding empirical value. It is, however,
quite imaginable that the temperature dependence of oi(T)
itself could, to some exbent, account for the. remainder.

An alternative explanation of the temperature dependence
of the surface tension of liquid helium has been attempted by
Singh (24), who adopted the ideal gas model for this liquid.
but made use of a better enumeration of the eigenfunctions in

a bounded continuum, viz.

g(p) dp = %%X p2dp + %ﬁz pdp + ..., (2.6)

where V is the volume of the'enclosure, and A 1ts surface area.
The positive sign of the surface term is due to the fact that

Neumann boundary conditions have been adopted, i.e. %% = 0 at
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the surface. The above enumeration takes into account the
so~called surface effects. in the expression for the density of
states. Singh thereby obtaiped for the temperature-dependent

part of the surface tension the expresslion:

-z ngzgé?) % - l7.5x107372 erg om2; (2.7)
here, m is the mass of a helium atom, while the Riemann function
z(2) is equal to T?t. Comparing (2.7) with the empirical result
of Atkins and Narahara, one finds that the numerical factor is
now much closer to the corresponding empirical value, but. that
the exponent is significantly low. From the point of view of:
agreement with the experimental data, therefore, there is not
much reason to choose one or the other of the two alternatives
(2.5) and (2.7). PFrom a physical point of view, however, we
note that whereas the theoretical basis for (2.5) is suffi-
clently sound, the adequacy of uslng the ideal gas model for
liquid helium, which led to (2.7) is hardly acceptable. Of
course, Singh's argument. does advoéate a closer examination of
the surface effects than has hitherto been done; however, in
studying the, K contribution of these effects to the density of
states and hence to the free energy of liquid helium, we must
consider a gas of actual excitations, namely phonons and rotons,
rather than one of non-interacting atoms. In the absence of

interactions there would be no basis for expecting 01(0), and

hence o(0) to be nonzero at T=0°K.
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In this chapter we shall settle the 1ssue in regard to
the surface effects that arise .from a better enumeration of
the density of states.-in a gas of excitations. In See, 2.2,
we shall consider the thermodynamics of an n-dimensional ideal
Bose. gas of quasi-particles (excitations) taking into account:
"surface" effects that -may be important. In Seec. 2.3 the
surface energy contributions made by phonons and rotons are-
‘calculated and it will be shown that, regardless of boundary
conditlons chosen,fthese are negligible: compared to the free
energy contributions,due to ripplons. The temperature,
dependence of the surface tension of helium II can thus be
adequately explained by the.exlistence of quantized surﬁace

modes of vibration.
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2.2 THE 1i-DIMENSIONAL BOSE GAS
In order to study mhe physical properties of a statistiecal
system a knowledge of the_asympfotic distribution of single.
particle states, which are eigenfunctions of the.Scheringer'

equation
Vi o+ Ry =0, (i =ph) (2.8)

is essential. Customarily, the number of elgenstates g(p)
wlth momenta not exceeding a particular value .p is approxi-

mated by the familiar Rayleigh-Weyl expression

g(o) = ¥ (p/my? (2.9)

where V 1s the volume of the enclosure. Of course, the,
validity of. this expression rests on the assumption that: the
linear dimensions of the K enclosure are much larger than the
characteristlic wavelength ({Vp). A more rigorous study of the
density of states, as allowed by (2.8) shows that the segond
term of the asymptotic expression for g(p), ©f which (2.9) is
the main term is directly proportional to the surface area S
of the enclosure (25) (26). This surface term is naturally of
a very direct physical interest to us for, when taken into
account in calculating the extensive properties of a physical
system, 1t leads to what might be called a "surface contri-
bution" to the customary bulk values of these properties.

In order to appreciate the accuracy made possible by the

inclusion of the surface term, Pathria (25) has tabulated a set
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numbers adapted from an earlier work by Bolt' (27), who computed’
the actual frequenéy.distribution of acoustical eigentones:
(under the Neumann boundary condition) for a number of rooms
of varlous sizes. In-a typiecal case, when the room size waé
10' by 15' by 30', the numerical value.of g(v),taking
c=1125 ft/sec, were as given. in the last column of Table 2.1.-

Table 2.1

.......

Freqﬁency g(v),asymptotic g(v) actual r
v Volume term Volume term | (from Bolt)

(eps) - glone Surfggg term

60 3 7 8

100 13 24 25

150 I5 70 74

200 106 151 159

250 | 207 277 283

300 358 458 Leh

The second column of the table gives. the numbers due to the
volume term alone, while the third column takes into account the,
surface term as well. Clearly, the surface term makes a very
important contribution to g (v).; at the same time, the final
remainder appears to be very small.

For the sake of complete generality, the enclosure. that we
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shall consider is an n-dimensionsl domain, D(n) say. For such.

a domain Fedosov (26) has established the following asymptotic

formula:
X £ 1 £111 E+i n-1
[(K-Kk)* dg(k) =2 gy K + 0(K"™), (2.10)
l -

so that, with £ = 0, onp obtains
1
g(k) = I a, k' + o(x?"Y), (2.11)
=N ,

The coefficients ay here are related to certain gedmetrical

measures of the domain, viz.

p(n)
ay .= = T R
27w (Q).
2N (2.12)
and
X mes ., _ 1) S (n-1)
= —_J v
#n-1 T 4~ L ¢ (n 1)/2 %
\ X 5 (2.13)

where SJ(t)is a t-dimensional. "face" of the domain; the upper
sign corresponds to the Dirighlet boundary condition ¢ =

and the lower sign corresponds to the Neumann boundary
condition ¥ = ¢,
dn

For a three-dimensional domain of arbitrary shape, Eq. (2.12)
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and (2.13) yield the formula

K? - K2 | 2
g(K) W V+ m S + O(K ) . (2-11')

Now, the error term as such rather appears to vitlate the role
of the surface term in the expression for g(K). However,
Pathria (25) has provided. sufficient computational evidence.
(see Table 2.1) to show that the error term in (2.11') 1s in
effect much inferior to the surface term, so that Eq. (2.11')

" Using (2.12) and (2.13) we can calculate the thermo-
dynamic functlons of an n—dimgnsional Bose gas. We have, quite
generally,

%% =-I1n (1 - z e By, (2.14)
P

The summation can be converted into an integral employing the

expression (2.11), along with (2.12) and (2.13), for the

density of states. Again, for the sake of generality, we take

the energy-momentum relationship for the quasi-particles to be

E = aps. We then obtain
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V) 1 (z) V h
PV = kT ln-‘ZL=-1r %) gé%u) 27 'n (kT):r‘"'
(521) hn- an’g
n-=
N "@%&‘uzl | 8 (z) A ol
P ey S a0l 2as)

-

i - - ﬁ.—l
4 (Qi%)! h"' a

e 1
where gn(z) =i§1 EH .
= 2

The  internal energy can be found from Eq. (2.14) yielding

the result
' n)“n/2 ny, iV
5 =)l g, (Z2) n n
A 6
u/ = a = /s ' (kT) .. (2.16)
('é-lh o
n-1
~ (n-1 2 ~1
+ ) T <‘s )! gn,-;l (z) An n-1
=== +1 —_— =1

(xT) ®

0(252)r noed O F

The number of particles in the excited states can also be

found with the result
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nn/z(g)! gg (z) Vh.

s n/s
(%)! hn,an/s‘ (kT)

Nb =

n (—n'l)x .
™. S gn._l (Z) Ari : l:l;%

: : (kT)
-] -1 :
u(gb ), Wt ns (2.17)

+ 1
(]

From the last relation it is easy to show in general the
conditions necessary for Bose-Einstein condensation:.to occur
in an infinite n-dimensional. Bose gas. In face, true Bese-
Einstein condensation can occur. only if the expression for the
tgtal number of excited particles (2.17) is bounded. Then
if the  total number of particles is .greater that the maximum

number of particles the excited_states can hold, i.e. if

ﬂn/Z(g)! t(g) Vh (kT)n/s'

(3)) ynon/s

N >

then %he ground state of the system will be occupied. The

transition temperatureaTé is then defined as

(g)} hn.an/s - /n
T, = nn/‘?‘kn/s';(g) (2)' v (2.18)

=
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A non-zero transitioh'teméerature ié possible if and only if
the Riemann zeta function c(g) remains bounded. This is true
only if n>s. Hence for an-infinite three dimensional Bose gas,
since n = 3 and s = 2, a true.Bose-Einstein condensation temp-
erature does exist. In the case of an infinite two-dimensional
Bose gas Bose-Einstein condensation does not  occur since z(1l)
is 'unbounded and hence all the particles can be accommodated
in the excited states. Peculdarly enough, for an extreme
relativistic, infinite two-dimensional Bose gas, since & = pc
(where ¢ is the speed of light) true Bose-Einstein condensation
does occur since now n = 2, s = 1 and z(2) is bounded.

Now, since F = uN - PV, where u is the chemical potential
of the Bose .gas, then below the transition temperature (where
U = 0) we have F = -PV. Considering only the surface term of
(2.15), we have, in the case of ideal-gas particles (n = 3,

o = %‘-m’ s =.2),

* "gﬁgigl (kT)? = 7.5 x 10 “37 érg em™2 > (2.19)

Fé/A

which is exactly the result obtained by Singh. Eq. (2.19) can
also be derived without making use of the explicit expression
.for g(K). In that case, one works with the summations as such
by applying the theta-function transformation to the sums; for
the details see Appendix I. Still another way of deriving this
result 1s through the construction of the Mellin transforms of
the relevant summands and evaluating the resulting complex
contour integrals (28). For the phonons (n = 3, o = ¢ (the

speed of sound), s = 1) one obtains
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Fo/A = 1530 )3 -+ 1.96x 107413 erg em™2. (2.20)
This result can also be derived by the use of Mellin trans-
forms (28).

For rotons it is necessary to make a separate calculation
because theilr energy-momentum relationship does not fall into
the category E = aps; One has, in this case, E = A+£255011 .

A straight-forward calculation making use of formulae (2.11')

glves
oo + )2
F /A = & KT »pr 2" [e [ 3 TRamal Y,
Lo p dp
3.,y Y2 -A/KkT
~-A/kT

=+ 3,1 x 1072 e 7% epg em™2
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2.3 SURFACE FREE ENERGY OF RIPPLONS
Before applying the thermodynamics of Section (2.2) to
calculate the surface free energy of the ripplons we shall have

to derive the necessary energy-momentum relation for surface.

waves.

The basic equations required in order to derive the dis-
persion relation for hydrodynamic capilllary waves are (1)

Laplace's equation (29)

p-po=-o(§—2§+§ )s (2.22)
where ¢ is the normal displacement of the surface, and (ii)
Euler's equation for an incompressible, irrotational fluid in
a gravitatlonal field

3y . 1 2 o _ P
st t zerad v grad (p + gz) (2.23)

In this case we have potential.flow and can write v = grad ¢,
so that ¢ 1is the veloclty potential. Equation (2.23) then

reads

grad (%% + % v® + P/p + gz) = 0,

and hence, choosing the arbitrary function p(t) to be zero,

D = - pgzZ - 9%% - % pv? . (2.24)

Considering only small velocities of the fluid, and



neglecting the term %.pvz, we substitute Eq. (2.21) into
Eq. (2.22) and obtain the. relation

ogz + P2 o (25 4+ 2% -0 . (2.25)

Here we have redefined the potential ¢' = ¢ + (Po/p)t; this
makes no essential difference since v = grad ¢ = grad ¢'.
We can differentiate this relétion with respect to t and

replace —E by —9, obtaining
3z

2

3¢ 8%2¢ _ 3 3% . 3%%, _ |

Assuming now a plane wave propagating in the x—directioh,

kz

say ¢ = A e cos (kx-wt) and substituting into (2.26) we .

obtain the dispersion relation

3
w? = gk + 9%— ) (2.27)

For long wavelengths, such that k<<v/gp/o, we have pure gravity

waves., In the opposite case of short wavelengths we have

capillary waves, or ripplons
p (2.28)

We can now use Equation (2.15) to calculate the free
energy of these excitations and consequently the contribution to

the surface tension of helium II below the transition point.
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For ripplons, the energy-momentum relationship, when the

effect of the gravitational field can be neglected, is-

_g)yé qu

oh . (2:29)

E = (

v

so that we have a = (%ﬁ , s = 3/2. Since ripplons con-
stitute a surface phenomenon (rather than-a correction to
some bulk value), the desired result in this case follows
from the main term in (2.15) with n = 2 and V.. = A. One
thus obtains

F/A

/ .
(8" n ez, rcdy o

-6.5 x 1073 175 erg em™2. (2:30)

This is. precisely the result obtained earlier by Atkins (22).
A comparison of (2.20) with (2.30) readlly shows that.
the surface effect of the phonon component is hardly a few
percent of the direct contribution of the ripplons. The
surface effect of the roton component, as given by (2.21), is
still less by a factor of 10 or more. Moreover, a bésic
difficulty with the surface effects (2.20) and (2.21) is that
they are so strongly dependent_on the nature. of the boundary
conditions used. Thus, we see. that the observed temperature
dependence of the surface tension of 1liquid helium is, in the
main, given by the direct surface energy of the quantized waves

on the surface of the lilquid.
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INTRINSIC SURFACE TENSION OF HELIUM II AT .T=0°K
3.1 INTRODUCTION

In this -chapter we‘attempt-to.explain the exlistence of the.
limiting surface tension o(d)'on[thé basis of the atomiec inter-
actions. The theoretical mpdel‘employedAfor this investigation:
consists of a dllute, imperfect gas of bosons, interacting
through a two-body potential V(r-r') which can be replaced by
a pseudopotential;Vba(zgg') where Vy is. a constant that depends
upon. the strength of the interaction. It is wgll known that
thls model has been successfully employed by Gross (31) and by
Pitaevskil (32) to demonstrate the possibility of existence: of
quantlzed vortex motion in a Bose fluld and to investigate in-
homogeneous states of a Bose system. We employ this model to
investigate. the nature of the inhomogeneity at the free surface
of a Bose liquld and compute thereby the eﬁergy assoclated
with a unit area of the surface. This leads quite naturally to
a nonvanishing value of the, intrinsic surface tension oi(o),
whence follows the vibrational part of the surface tension,
cv(o), so that finally we have an estimate for the observed
surface. tension at T=0°K. The resulting theoretical estimate
of 0.28 erg cm'2'compares favourably with the experimental

- estimate of 0.37 erg cm'2(3,43).
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3.2 THE-IMPERFECT GAS MODEL

As a model, we consider the case of particles interacting
by means of weak, two-body forces, taking the self-consistent
field theory as.the first.approximation (33)., We shall assume‘
that the range of the. "ghterparticle force is much greater
than the average interparticle spacing, so that the rapidly
changing forces on a particle are less important than. the
smoothly varying average force. Under these assumptions one
can ‘start the analysis with the Hartree approximation.

We assume the ground state wave function . to be a product .

of single-particle wavefunctions.

=

(R, ey s 8) = T og(xy,t)

i=1

fletz,t)]%a%x = 1, (3.1)

where 8(Ki,t) is a normalized single-particle state. We also

assume.that,g(xi,t) is separable such that:
g(x,t) = g(x) exp [}iut/ﬁ] .

The single-particle wave function g(x,t) is thus an

approximate stationary state of the hamiltonian.

N piZ 1
H= I = +% I V(x, - X,). (3.2)
1=1 M- 2 4yy 7L F]

If we renormalize the wavefunction g(x) and let ¢(x) =

VN g(x), we then have /I?(;) |2d3%x = N and |¢(x)|? will represent
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the density of.the fluid. In terms of Y(x) the time-dependent

self-consistent field equation:becomes

?.l = . 2 / 2 - 3
ik % .;f_:,nv v+ w(x)x [¥(y)|? v(x-y) d%y. (3.3)

The energy of a statlionary. state is

-8 flopwi® atx v L ﬁww V(a-p) [vig) | Faxaty. (3.0)

The cdmplex wave function-P(x,t) thus governs the behavior of
the superfluid condensate.
The analysis can be much simplified if we replace.

V(x-y) by the approximate pseudo-potential Vg 6(x-y), where (34)

V° = (ul]?l'ﬁ—z) 1‘2;

This does not-alter the general nature of the results for
phenomena whose, characteristic length - the. thermal wave-

1/2

lgngth, A = h/2wmkT) - is larger than the range of the, force,

The simpler equation is then

{-5—;- V2 4 ——”";4"‘2 lez} Y =y, (3.5)

where we see that u, the chemical potential, is Jjust. the énergy

increase in the system when one more particle 1s added to 1it.
Depending upon. the boundary conditions used, solutions of

the equations of the type. (3.5) can. .often be found in terms of

elliptic functions. Abrikosov (35) has discussed approximate
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solutiens of~this=equation:in»relation»to.type}II supercon-
ductors;_ In the.case of the noninteracting Bose gas contained:
in a box of macroscopic dimensions, with rigid walls the

solution possesses the absu#lg feature oflexhibiting an. enormous .,
density near the center of the container. Solutions. of Eg.(3.5)
have the virtue of giving an almost uni@orm density distribution
in the system, except near the rigid walls of the box, or near
the vertex.cores. Ginzburg and Pitaevski: (36) have used a
similar equation in. order te discuss the lambda temperature’
shift in liquid helium films. In many cases it .is useful to
apply certain integral relations, discussed by Schiff (37),
Derrick (38) and by Darewych and Schiff (39), which can con-

siderably simplify integrals of the type (3.4).
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3.3 SURFACE NON-UNIFORMITY AND FREE ENERGY

We shall apply Eq. (3.5) to study only the surface part.
of the fluid, for it is in this: part alone that wé have a.
variation of n(r) froem the bulk value to a vanishingly small
value, over a region.characterized by some sort of a "healing
length". It is, however, important. to note that- the existence
of 'a free surface, which is one of the basic characteristics: of
a liquid, as opposed to a gas, necessarily requires that the.
atoms 1n the surface region of the liquid experience, consequent
upon a small outward displacement, a predominantly attractive
force toward the interior of the.fluid; consequently, the
effectlive scattering length of interaction for the atoms in:
this so-called surface layer must be negative (40), i.e, a=e|a|.

Now, considering a free surface normal to the x-axis, so
that the operator V2 in (3.5) is just d>/dx?, and denoting the
value -of n(x) at the point of infilexion (see Fig 3.1) by ng,

we obtaln for the parameter u,

llﬂaﬁz n (3.6)

u = m s N

The differential equation (3.5) can then be written as

2
%§$ + 8m|aly® = 8n|a|nsw (3.7)

Introducing the reduced variables

Vo (1) = v(x)n Y25 £ = 21, (3.8)
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where & = (8ﬂnslal)"1/2, the differential equatlion becomes

M, s

T + wo - wo = 0. » . (3.9)
The relevant solution of this equatlen that-we- shall consider
is the one that vanishes at &+», and has a vanishing slope. at,
say £2o0. This corresponds to a.density varying from a bulk
value n(o) at -x=o to a vanishingly small value of over the
distance of a healing length 2. For all #%<o, i.e. everywhere
in the bulk of the liquid, we shall take n(x) = n(o) = N

We find as a solution
Y, = V2 sech , (3.10)

and, - accordingly, for the superfluid density

2 X
ang sech® (§). (3.11)

n{x)

As x»o, the particle. density approaches the value 2ns, which
should be equal to the bulk value ng« Thus, the point of.

inflexion of the (wo,g) curve (see Fig 2,1) corresponds to a
particle density exactly one-half of the bulk value, which is
clearly a very satisfactory situation. In terms of the bulk

density n, the solution.is thus

2 (3 . (3.12)

=

n(x) = n_ sech

o}
This density variation is. similar to that found by Cahn

and Hilliard (40) in the case of a classlcal fluid. Cahn and
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Hilliard minimized the free energy in a region of non-uniform
compositlion near the critical temperature and obtained the

density variation
n
n(x) = 5= Eann(%) + 1] , (3.13)

where 2o (T-Tc)'l/z. The authors also calculate the, corres-
ponding interfaclal free energy to be proportional to (TC—T)3/2;
Considering again Fig. 2.1, the dashed 1line in the graph
indicates the spatial region which would be occupied by the
particles now constituting the non-uniform surface. layer if
they were spread out uniformly with a density equal to‘no.
Thus & = (Hﬂ|a|n0)1/2 is a measure. of the extent of the.
spatlal inhomegeneity in. the free surface; in magnitude, 1t
1s comparable to the. lateral dimension,of the "core" of the.
quantized vortex!
The structural energy per unlt area associated with the.
non-uniformity in the free surface can be determined by
calculating the difference betweer the energy per unit area

of the surface layer as it is and jhat of the corresponding

layer if the distribution were uniform. One. thereby has-

F-Fo _ E-Eo _ h? ;" (g%-idx . 2n|;[’62_ [Z ) |
(e}

2 L2 .
-} no"-dx] ~12% 2"’1';?1%? n03/f la]¥2. (3.14)

mi

Wl

It is difficult to find a theoretical estimate for the scattering
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length a. However, Girardeau (U41l) has discussed the imperfect
Bose gas under the influence of an attractive interaction and
has arrived at an estimate for a::-2A. If we use. this value,

we obtain for the:surface tension of helium IT,
- 0 0t -2
ci(o) = 0.09 erg cm (3.15)

The exlstence of the intrinsic surface tenslon would lead
to the presence of ripplons on the freé surface which, in turn,
would give rise to a zero-polnt free energy. Atkins (4) has
carried out this calculation earlier with the result

Vv
o, (0) = [° (3 h Wg(VIav
Q

¥ (801(0) 1
T Y N , (3.16)

which, on substitution from (3.14) becomes.
8m b2 n q“lal’V
o,(0) =7/37 m sV (3.17)
Substituting the relevant values in this expression.we obtain

o (0) = 0.19 erg cm™ 2 . (3.18)

Combining ci(o) and ov(o), we obtain for the observed surface.
tension c(o) of He" an estimate of 0.28 erg cm_2; the corres-
ponding experimental estimate is 0.37 erg cm_2

Of course, on the basis of a gaseous model, though interacting,

we cannot expect to understand the behaviour of a liquild
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quantitatively, especially when- the numerical value used for
the scattering length is not very reliable. In fact, if:we
took a value . for the scattering length a =-—45, the agreement
wlth experiment would be excellent, Qualitatively, in any
case, the theory developed here indeed appears to be a step
in the.right direction.

Finally, we remark that, since the, femperature.depen—
dence of the:surface tension of liquid helium is very weill
explained up to approximately 1.5°K by the surface energy
contribution of the.surface waves, the. intrinsic surface-
tension 0, may not be expected to be strongly temperature-
dependent near T=0°K. One also expects this from consideration
of the.third law of thermodynamics. Since the entropy

S = - (%%)P, we can write the surface part of the entropy as

[+ ¥4

S'—-aT——S—

Q

H

where s 1s the surface area of the,system and ¢ its surface.

tension. Thus, since the entropy is zero at. T=0°K, clearly

%9 = 0 at T=0°K.
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3.4 SURFACE TENSION OF HELIUM®

Since helium3 is a Fermi liquid, while helium® is a Bose
liquid,‘the difference in statisties wguld seem to. imply:--that
ne one. theory could satisfactorily explain certain phenomena
occurring in both liquids. However, if statistical effects
were unimportant for certain phenomena, for example, the.
surface tension of the liquid, then, perhaps one theory
could give adequate. results for both liguids. In fact, if
statistical effects are neglected, the theory developed. above
can, quite successfully, be applied to liquid He?®.

We will show that- the surface tension of liquid He® can
be understood along similaf lines as that. of He", although 'we.
cannot, of couprse, claim a strong theoretical basis for this
treatment. We shall use as our basic equation Eq.(3.5), but
cannot speak in terms of ground-state wave functions, but will
use Eq.(3.5) as differential equation for the density distrib-
ution of the fluid and calculate the free-energy associated
with the.density non-unipormity at the surface.

Since the zero-point energy of.the atoms plays an important
part in determining the. surface energy of a liquid at low
temperatures, liquid He® would be. expected to have a surface
tension much smaller than-that. of liquid He". In fact, the
surface tension of He?® at T=0°K can be extrapolated to a value
of 0.153 erg em™2,

Lovejoy(42) has found that the assumption concerning the.

exlstence of surface waves also explains reasonahly well the
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temperature dependence of the surface tension of He?® up to
approximately 1.5°K. He also had to invoke an intrinsic
surface tension in order torsupport the quantized wave motion.
This intrinsic surface tension can also be reasonably well
explained by the thebry of Section 3.2. We shall adopt a.
slmllar approach as used by Amit and Gross (43), in. considering
Eq.(3.5) not as a wave equatlon, but as an equation to
determine the distribution of fluid. density over the surface

region. Thus we remrite Eq. (3.5)

'{;2—;' vZ o+ L'”,;li n(:c)} M(xT = uwhlx) , (3.19)

where u 1is a parameter which can again be determined at the

point of inflixion of the Curve (3.1) and we have

= (21r|a|4'12/m)no .

From this equation, we obtailn as a solution jJust Eg.(3.11)

n(x) = n_ sech? (%).

(]

We also rewrlte the equation for the energy due to the surface

non-uniformity in terms of the density

g0 . 42 f[w—m 7]+ 2ulglhl [ frerace o

(3.20)

Now since the boilling point, critical polnt, and density

of He? are appreciably less than the corresponding values for.
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He! (see Table 3.l), the molecules.of He® are farther apart.
than. the molecules of He". Consequently, the attractive .
1nteyaétion, while still present in the surface region, is-
much'smaller in Hes.than in‘He“. The scatteringvlength then,
while Still negative, should be considerably sméller in.
magnitude, If we take a wvalue for a =<—1§ we. ebtaln oi(O)

= 0.04 erg em™2 and o ¢(0)7=0.11 erg em™2,  We can,.thus:

obtain good agreement with experiment up te approximately 1.5°K.

Table 3.1 (44) Some Eguilibrium Properties of Liguid Helium-3

and Helium-4: Normal Boiling Point (N.B.P); Critical

Temperature,-Tc; Critical Density Pos Denslty Po at 0°K.

N.B.P. Té .90 Po
He? 3.19 3.33 0.0413 0.082
He* 4, 21 5.21 0.0675 0.146

Atkins (4) and Lovejoy (42) have suggested that.the reason
why. the surface tension of He" and He® depart from theoretical
predictions at approximately 1.5°K is that the simple two-

dimensional. Debye model does not take inte account sufficiently
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the hlgher frequency surface waves. Secondly, at higher
temperatures, the wavelengths of the surface waves become.
comparable to. the interatomic distance so that the energy-
momentum relationship for ripplons will be affected. A

third reasen is;, of course, that as the critical temperature,
isvapproachéd, the intrinsic surfa¢e tension itself begins to
decrease rapldly, to disappear at Tc. It is probable that
the temperature dependence of the: intrinsic surface tension
is thus responsible. for the departure of the.experimental.

results from the theoretical predictions around 1.5°K.-
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CHAPTER 4
SURFACE TENSION AT THE Hea;ﬁe“ INTERFACE
INTRODUCTION

Sinc¢e 1946, when Franck (U46) suggested that a phase
separation of the two isotepes. He®? and He" might be expected
at low temperatures due to the fact that He? would not take
part in the superfluid phenomena characteristic of liquid
helium II, much research has‘been done on mixtures of He?
and He".

Phase separation was discovered experimentally by
Walters and Fairbank (47). As the temperature of the He®-He"
mixture is lowered, a critical temperature is reached at
which phase separation begins to occur. As the temperatufe
apprbaches zero, the upper phase becomes very nearly pure,
the He" fraction decreasingly exponentially with temperature.
However, contrary to initial expectations, the conéentration
of He® in the lower phase doeé_not go to zero as the temper-
ature of the mixture approaches zero. This finite solubility
of He® in He" was. suggested in 1961 by van Leuwen and Cohen(48)
on the basis of a hard sphere model. Measurements by
Edwards et al (49) of the phase separation curve by means of a
heat capacity method showed a limiting solubility of He® in
He" in the lower phase of 6% at T = 0°K.

Liquid He®-He" systems also exhibit superfluidity.
However, down to very low temperatures, He® does not partake
in superfluid flow, but forms part of the normal fluid. In
fact, when the temperature is suddenly raised in a region of

the liquid mixture, there will be a flow of normal fluid and
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He® away from this region . and a corresponding flow of super-
‘flulid toward it. Consequently, the, equilibrium distribution
of He® in the mixture. is very sensitive to small heat currents,
a fact which strongly affected initial experimental results
on He®-He" mixtures.

In 1949, Abraham, Weinstock, and Osborne (50) discovered
that the A-temperature depended upon the concentration of
He® in He". This was contrary to expectations based on the.
classical ideal solutions, which would have a A-point inde-
pendent of concentration. It was found, however, that the.
A-temperature decreased almost linearly with the concentration.
of He® in He". The simplest theoretical derivation of the
A-temperature is He®-He" mixtures was -advanced by Heer and
Daunt (51) in 1951. They treated the He" component as an
ideal gas, quite independent of the presence of He?, and the

transition temperature of this ideal gas is
p. = B Ny P '
Aoemmy s g10v (4.1)
m Y]

where Vm = N3v3 + Nuvu, v3 and vy being the mean volumes per.

atom in pure liquid He® and He" respectively. The change in
the A-temperature is therefore a consequence in the change in

Vﬁ/NM and hence

2/3
T, (xR %3
A3 - - (4.2)
xb’ Ll + X (—3- -b
3 Vq 9
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where x3 is the mele fraction of He?® in the mixture. This
theory predicts the initial-slope'of the TA versus x3 curve
to be -1.9, whereas experimentally the slope (3T1/3x3) of:
the curve is approximately -1.5 (52),

Another property of liquid He®-He* mixtures that depends
uppn the relative.concentration of the two components is the:
surface tenslon. The surface tension of  the mixture. can be
expressed approximately in terms of the surface tensions of

the pure liquids, i.e.

0 =x 05+ (1-x) oy + o, > (4.3)

where o, 1s a small positive."excesg" surface tension (53).

In this chapter, however, we shall. be concerned with a.
dlscussion of the interfacial surface tension of a liquid
He®-He" system at T = 0°K, i.e., after phase separation has
occurred. The predicted value for the interfacial tension
depends critically upon. the model one adopts for the surface
tension of a quantum liquid. In Section 4.2 we will calculate
the. value of the interfacial surface tenslion as predicted by
the "classical" theory of surface tension, which has been
applled by Amit and Gross to liquid He", and in Section 4.3
we will calculate the value of the interfacial tension as

~

predicted by Atkins' model.
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4.2 CLASSICAL INTERFACIALSURFACE TENSION

In the "classical" theory of the surface tension of a
lliquid, the zero point energy of the surface modes of vibration.
plays no part. This.1is, no doubt, correct in. the case of
classical liquids in which case the zero point energy of surface
modes of vibration is only an infinitesimal part of the total
value of the. surface energy. However, Amit and Gross (54) have
used the classical theory to calculate the surface tension of
liquid He" and obtain reasonable ekperimental argument. The

authors assumed a trial density pattern for the liquid
_ X
p(x) = upo a x%+a s x<a

p(x) xza (4.4)

il
©
-

where x 1is the perpendicular distance from the wall and a is a
parameter to be determined by minimizing the surface energy

obtained. The energy can be expressed as an integral by using

Eq. (3.4).
a 2 s a
o LT e 8 oo -or)
_ a
T oo, | E)O - 'p(x)] ax (4.5)

where V =.fV(r) d®r. Using (4.4) and performing the integral

one arrives at:

2
E/S = mp_ [0.73 i O.l6-cza]. (4.6)
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When this. is minimized with respect to a one obtains

E/S = O.7’h c p'= 0.4 erg em™2 s (4.7)
which agrees reasonably well with experiment.

In order to obtain an estimate of the interfacial surface
tension of a liquid He®-He" system, based on the classical
model, we shall apply Antonoff's rule (55) to calculate the.

interfacial tension o3u(o) at T = 0°K,

034(0) = ou(o) - 03(0) s (4.8)

cu(o) being the equilibrium surface tension between liquid He*
and 1ts.vapour at T = 0°K and 03(0) the equilibrium surface
tension between liquid He® and its vapour at T = 0°K. In a
number of experiments on a phase-separated phenol-water sys%em,
Antonoff et al (56) found that the measured interfacial tension
agreed to within experimental error with the prediction from
Antonoff's rule. Of course, we must first correct cu(o) for
the fact that, on phase-separation at T = 0°K, the lower phase
may still contain a 6% admixture of He?®. Hehce, using Eq.
(4,3), neglecting the small excess surface tension ce.we

obtain the: result

034(0) = 0,36 - 0.15 = 0.21 erg em™2. (4.9)

On the other hand, if the "quantum" theory of the surface

tension of a quantum liquid is correct, then the interfacial
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surface tension 034(0) must be regarded as made up of, two

contributions, i.e.

034(0) = 034i(°) + °3Mv(°) , (4.10)

where, as usual, 0341(0) 1s the intrinsie interfacial tension
and o3uv(d)'is the contribution made by the capillary waves

at the interface. Clearly enough, it-is then only 0341(0)
which can be obtained by applying the Antonoff rule; and again
taking into account the 6% concentration of He® in He' at

T = 0°K, we obtain

0341(0) 641(0) - 031(0)

1]

0.134 - 0.04 = 0.094 erg em™2. (4.11)

The contribution °34v must be calculated separately from

the. zero point energy of the capillary waves at the interface.
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(4.3) VIBRATIONAL MODES AT THE INTEHPACE

Consider a 1liquid of density p' and depth h' flowing with
constant velocity V' over a liquid of density p and depth.h
which flows with constant velocity V.

We take the x~axis in the interface separating the fluids,
with y being measured vertically upward from the interface at
equillibrium. It can be shown (57) that the complex potential
for the lower fluid is just

w=- (V-c)z - gé%%s%_ﬂ cosm (z +1h.), (4.12)

where ¢ 1s the speed of propagation of the surface wavesi, .
m= 2x/\A, and a is a constant. The streamline ¥ = o then.
becomes n = a sin m x, where n is.the vertical displacement
of the. interface from equilibrium. The complex potential for
the upper fluid can be obtained by writing, V',-h', for V,h.

The speed in the lower liquid is then given by

2
= (V-¢c)? - g?n(v;c% cosh m (y+h) sin m x,

and the speed at the.interface (y=o) is then.

[ S)
o,
RIS

= 9w
T = 3z

2
q, = (V-e)?* Ex - 2m n coth m h] , (4.13a)

and, for the upper liquid,

2
q; = (V'-c)? {; + 2mn coth m h'}. (4.13b)
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Bernoulli's equation for the two liquids just gives
' 1 ' 12 4.
p' + 50" ql +.p* g n =.const. (4,14a)

p + % P al+ pgn = const. (4.14pb)

However, in the presence of an interfacial surface tension o

we have the relation

o
»
=3

p' - p =0/R = -0 = om?n. (4.15)

d

Hence subtracting (4.14B) from (4.14a) and using (4.15) we have
1/2 p'ql? - £ pa? + g n(p'-p) - om®n = const. (4.16)

Now, substituting qéz,and q? from (4.13) and setting the.
coefflicient of n equal to zero (since the r.h.s. of (4.16) is

constant) we obtain
mp (V-c)2 cothmh +m p'(V'-c)? coth m h'
= g(p-p') + om?2. (4.17)

Letting h = ~h' = » for our situation, we obtain the result

2 _ Ag p-p' 210
¢t = o7 G T (4.18)
As usual, we shall consider only short wavelength vibrationg so
that the effect of gravity can be neglected. The cutoff frequency
Y, can be determined in the same way as for a pure liquid. It

is essentially the difference in the number of particles per

unit area in the adjacent layers on opposite sides of the
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interface that are responsible. for the restoring force when a
small displacement of the surface is made (assuming that the.
interparticle interaction.is essentially the same Ffor both
fluids). Hence the cutoff frequency Vo of these modes is deter-
mined by requiring that their total number per unit area of the.
interface be equal to the difference between the number of
molecules per unit area of the high density phase' on the one hand
and the low density phase on. the other. It turns. out that

?c = 4,3 x 1010 sec"1 for the interfacial modes which may be
éﬁmpared with the values 9.5 x_lolo sec—1 for liquid He? and

1.5 x 10''sec™t for liquid He". Carrying out the relevant cal-

culation for the zero-point energy of the interfacial waves, in

the same way as was done. in Section (3. ), we obtain
- -2 |
034v(°) = 0,007 erg cm R (4.19)

which is extremely small in comparison with the intrinsic
surface tension (4.11). Consequently, the theoretical estimate

for the He’-He" interfacial tension would be

034(0) * 0,10 erg em™2 , (4.20)

which 1is about one-half of the classical estimate. An extra-
polation of experimental determinations of the He3-He" interfacial
tension should therefore be. able. to decide the issue between the
two estimates and provide a practical Justification for expressing
the surface tension of a quantum,.liquid as a sum of two con-

tributions of a different nature.



CHAPTER 5

LAMBDA TEMPERATURE DEPRESSION IN HELIUM FILMS
5.1 INTRODUCTION "

Although '~ film flow had beén observed much earlier, the
existence of a helium film in equilibrium covering a vertical
surface in contact with a helium II bath was first postulated
by Rollin (61) in 1936, to explain the anomalous character of
the heat flow in fhe‘liquid. The existence and properties of
such a film were first clearly elucidated in a series of ex-
periments‘performed by Daunt and Mendelssohn (62) in 1939.

Some of the more important of their results were: v

1) Helium II creeps in the form of a film over all solid

surfaces in contact with the bath level, as long as the

temperature of these surfaces 1is well below the A point.

2) The transfer of the film 1s nearly frictionless and

the rate of transfer is in the first approximation,

independent of the pressure head, or the length of the path
to be traversed.

3) The superfluid flows up a temperature gradient. Such

a film flow is thus an example of "ideal" superfluidity

since no corresponding normal fluid flow occurs in this

manner. |

4) Saturated helium II films (in equilibrium with the

saturated vapor) achieve a thickness of approximately

300 & at a height of 1 cm. above the surface of the bulk

liquid;

Unsaturated films - films in equilibrium with a gas at a

pressure p less than the saturated pressure pb-have also been
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studied. However, as pointed out by Rice and Widom (63), there
is a possible connectlon between saturated and unsaturated
films. If we imagine a saturated film at a height H above the
bath in equilibrium with the saturated vapour, then the pressure

at large dlstances from the wall is

p = p, exp (-BE)

Hence an unsaturated film at a relative pressure p/po can be
regarded as having identical propertles as a saturated film in

equllibrium with the saturated vapour at a helght H above the

bulk liquid given by

= BT

H ng

in (p/p,).

Hence, when we discuss helium II films in thlis chapter, we shall
not differentiate between saturated and unsaturated films.

Since at low temperatures the helium atom is chemically
inert'the formation of the film is clearly an example of
physical rather than chemical adsorption. The force necessary
for holding the film to the wall must be the van der Waals
attraction between the helium atoms and the wall.

Another important property of helium II films is that the
A-temperature in such films may be considerably depressed below.
the bulk value, and the magnitude of this depression depends
upon the film thickness.

Frederikse (64) in 1949 noticed that in helium II films,
the specific heat maxlimum becomes smeared out and occurs at
lower temperatures than the bulk specific heat maximum. It
also appeared at this time that, for a given film thickness,

the onset temperature for superflow was well below that of the
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speclfic heat maximum. Later experiments (65) showed. that in-
very fine channels of diameter approximately 705, the. two
temperatures were the same. It has: been concluded expérimen-
tally by Brewer et al (66) that the disparity between the
specific heat maximum and the onset temperature for superflow
in thin films 1s consistent with the presence of excitations
associafed;with the free surface of the helium II film. As-
these excitations could not be:present in filled fine pores,
the. two temperatures would. be expected to. agree. These
authors conclude that- for a giﬁen film thickness, superfluidity
dies out at a well—definedAtemperature above. which, however,
the excitations contributing to the specific heat still remain.
until the ordered phase is completely destroyed. The experi-
mental curves.for the temperature at which the speclfic heat
maximum occurs. can be fitted near the bulk A-point as

_0.24 x 10”4 op.

AT=32 % 10=0)?

The temperature for the onset of superfluidity obeys approxi-
mately the empirical relation

=14, )
_0.92 x 10 OK.

AT=TE35 % T0=*)°2

Here, the first layer of helium II near the wall is considered
to be solid. However, there is at present no agreement on this
point (67); hence we shall not make. this assumption.in our cal-
culations.

In this chapter we shall attempt to explain theoretically
the depression of the A=temperature on the basis of the existence
of excitations at the free surface and in the region of non-

uniform density near the wall. In section 5.2 we shall outline
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the attempts based on the ideal Bose-Einstein gas theory to
explain the. T, depression. In Section 5.3 we review the
Ginzburg-Pitaevski theory which is based on an analogy with
the corresponding Landau-Ginzburg theory of superconductivity.

In Section 5.4, we discuss several modifications of the

Ginzburg-~Pitaevskl theory, and in the. subsequent section“we.

present our own theoretical. calculations.
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5.2 FINITE THREE-DIMENSIONAL=BOSE-EINSTEIN SYSTEMS

Since the A-transition §ccurs only;inuHeg and-nbt in
He3, it appears that statistical correlations must play a
fundamental role in acecgunting for the A-transition and for
many other superfluild properties of Heu. There are many
reasons, however, why Bose-Einstein condensation cannot
account even qualitatively for the behaviour of Heu near the
A-transition. Although Bose-Einstein condensation of the
ideal gas takes place at a temperature comparable.to the A~
temperature, the thermodynamic behavdgur of the ideal gas
near the transition temperature is very different from that
of Heul For example, whereas experimentally one. observes a
logarithmic singularity in the specific heat at the A-point;
the Bose-~Einstein gas predicts. a maximum in the form of a
cusp. Moreover, whereas the ideal gas predicts a Cy @ T:"/2
behaviour near T=0°K, the experimentally observed temperature
dependence of the specific heat 1s just that due to phonons,
namely Cy o T3, These discrepancies are certainly not:
surprising since the theory of the 1deal Bose-Einsteln gas
does not take into account atomic interactions. It is clear
that one has to take into account not only the effect of the
shért-range repulsive forces in Heu, but also the weak
attractive forces which are responsible. for the liquefaction

of-Heu

at low temperatures.

A number of attempts have also been made to explain the
depression of the A-temperature in thin helium films on the,
basis of the ideal-gas model. Osborne (68) showed in 1949

fhat although the two-dimensional Bose-Einstein gas does not
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undergo true condensation, it_is possible to define an accumul-
ation temperature at which a rapid accumulation of particles
into the ground state ocecurs. This accumulation temperature.
1s non-zero for a finite-two-dimensionél system, but tends to
zerq. as the size of the system is increased without limit, as
we have already shown. in Section 2.2.

It was also shown by Ziman (69) that a finite three-
dimensional ideal Bose-Einstein system behaves in many ways
like the two-dimensional system. One can similarly define an
accumulation temperature, which is non-zero when the dimenéions,
of the system are of comparable length, but goes. to zero when
any two of the dimensions are increased without limit. The
perfect gas theory thud predicts that the A-temperature should
depend on the size and the shape of the.container in a
definite way: for a given thickness of the helium film, the
lambda temperature should go to zero as the two lateral |
dimensions are made much larger than the thickness of tﬂe £ilm.
This 1s, of course, in complete disagreement with experimental
observations.

In 1953, Ziman (69) suggested an ideal-gas model, with the
aim of reconciling the discrepancies between the,experiﬁental
results and the predictions of the ideal gas. Ziman suggested
that the model to be adopted for liquid helium was made up of
a very large number of finite, ideal Bose-Einstein. cells whose
size is determined by some characteristic length of Heu. These
cells were to have in common the same temperature and the same
chemical potential but were to be otherwise completely inde~

pendent. Then for those films that have a thickness less

s

L B -
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than: the size of the characteristic cells or assemblies,
finite size effects should be observed. The characteristic
extent of these asserblies were chosen by Ziman in such a
way that one obtains the best numerical correspondence
between the variations with film thickness of the predicted
accumulation  temperature and the actual temperature.

Ziman's. model predicted a satisfactory value.for the
thickness of a saturated film below the A-point and also
suggested a possible explanation of the magnitude of the
characteristic velocity of flow through superleaks. However,
the model does not make satisfactory prediqtions of the
thermodynamic behaviour about liquid helium in the nelghbourhood
of the A-point, neither in thin films nor in bulk samples.

Goble; and Trainor (70) have improved upon the numerical
results obtained by Ziman. By means of extensive computer
calculations, they evaluated the thermedynamic quantities per-
taining to Ziman's model by carrying out explicitly the summations
involved rather than replacing them by integrations, as is
customarily done. They also discussed the condensation
process in finite systems and showed that small Bose-Einstein
assemblies retain important features characteristic of the.
condensation process. However, they noted that a suggestion by
Khorana and Douglass (71), namely that the procedure used by
Landon (72) for determining the condensation point in bulk
systems was to be used for finite systems also, is misleading.
Goble and Trainor point out that there is no unique procedure

for defining the condensation temperature in finite systems.
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In fact, the.authors CQnsidered six different ecriteria for
evaluating the transition temperature in a finite assembly of
size LxLxD, where D<<L-(corresponding to a thin film). All.
the six criteria can be used in the case of bulk systems also,
in which case one obtains the. same transition temperature,
However, for thin films, different criteria lead to different
results.

For completeness and for possible. later reference, we
reproduce in Table 5.1 the numerical results obtained by
Goble and Trainor. The different transition temperatures have

the following meanings:

2
l. T, corresponds to the maximum value .of [%Téﬂéﬂg%}-
’ 3
u]
5
3

3. TE,is obtained by setting E,~u=0 in the expression for

2
2. T‘P corresponds to the minimum value of ZBT

the total number of particles,

b, Th-isgthe temperature at which the maximum occupation

of the first excited state oceurs,

5. Te is obtained by extrapolating the No/N vs. T curve,

6. T, 1s the temperature at which the specific heat

attainé 1ts maximum.
The experimental results for he;ium films, which are given in
the last column were obtained by Long and Meyer (73). The
temperature values. have been renormalized in order to bring the
various condensation . temperatures for bulk samples into agreement

with the observed A-~temperature of 2.18°K in 1iquid helium.
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'Renormalized Temperatures

Thickness in.oK’ Experimental
D.in Tea Téﬁ' T, Ton Tg: T, Value . of TA
0 0.65 0.52 - 0.49 0.5 w -
10 1.36 1.17 0.94 1.13 1.39 3.24 1,46
25 1.98 1.79 - 1.80 1.91 - 1.83
60 2.17- 2.09° 2.03 2.01- 2.14 2.38 2.14
750 2.18 2.18 2.18 2.18 2.18 2.18 2.18
Bulk  2.18 2,18 2.18 2.18 2.18 2.18 2.18

The transition temperature versus film thickness results

in the first five columns are in qualitative agreement with the

experimental results.

However, whereas experimentally one

observes that the specific heat maxima become less prominent

and shift towards lower temperatures.as the film thickness is

reduced, Ziman's model predicts a shift of the specific heat

maxima towards higher. temperatures as the film thickness is

decreased.

by all ideal gas models.

As the authors point out, this is a defect shared

It -appears therefore that a correct.

explanation of the A-transition in. thin. films cannot be based

on the i1deal gas model but needs to take into account the atomic

interactions.

Moreover, it is possible that finite size effects

alone, as considered by Goble and Trainor, may not be sufficient

to explain the. A~temperature. depression but that surface

effects, as well as effects due to the van der Waals interaction

between the helium atoms and the wall have to ve taken into

account.
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5.3 GINZBURG-PITAEVSKI THEORY

In order to explain the phenomena of superconductivity
and superfluldity, a number of macroscopic, theories which do
not begin with the elemental partieles of the system, but
with some gross, overall features of the whole system, have
been developed. One such approach was developed by Landau (74)
in 1937. The central idea of that approach was. to expand the
Gibbs: free energy of the system in terms of a certain order
parametér y about the transition temperature. In order for
thlis approach to be valid, one considers only the reglion in:
which the order parameter is small, i.e., the region near the
fransition temperature: IT-Tc|<<Tc.

In 1950 Landau and Ginzburg (75) applied the theory to
the superconducting phase transition with great success.

Eight years later, Ginzburg and Pitaevski applied the same
theory to the superfluid transition, though not with the same
measure of success.

In this section we review the Ginzburg-Pitaevski theory
and 1ts application to the depression of the lambda temperature
in helium films. In Section 5.3 we shall consider some useful
modifications of this theory.

The first assumption made in the theory is that the order
funetion Y(r) corresponds to an effective wave function of the-
superfluid component. Since Y(r) is assumed to be a complex
wave function, we can write

v(r) = x(r) 18(r) (5.1)

The real functions x(r) and ¢@r) defined by (5.1) correspond to
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the superfluid mass density pg(r) and the superfluid velocity

vs(r) by the relations

ps (r) = m x*(r),

*
= V(r). (5.2)

vs(r)
Another assumption made in this theory concerns the functional
form of the Gibbs free energy g(¢). Considering a system in
which the normal component is at. rest and is at a temperature
close to the A-temperature, we can expand g(¥) in powers of
the pafameter ¥(r), whieh, of necessity, is very small. |

The functional form for g(¥) that Ginzburg and Pitaevski
take 1s the following:

g(¥) = &) -alv|2e/2[v]*- B |2, (5.3)

Here the term 81 1s the Gibbs free energy for the normal
component; the next two terms are the free energy contributions
of the superfluid component, and the. last term represents the
kinetic. energy ccntribution from the superfluid component.

We then minimize g(y) with respect to ¢ in order to deter-
mine Y(r) from the resulting Euler equation which we. can write

as

2

~5m V¥ - ap + Bly|%y = 0. (5:4)
This is the Ginzburg-Pitaevski equation which has the same form
as Equation (3.5) although the coefficients have dampletely
different meanings.

The third assumption concerns the pressure and temperature.

b
dependence of the parameters &(P,T) and B(P,T). Since the



- 5.12 -
transition is characterized by the solution ¥=0 above and
y# 0 below, the parameter &¢(P,T) must vanish at the transition.
Also, for g(¥) to be a minimum at the transition point, the
coefficient B(P,T) of the fourth order term must be positive
at the transition. The transition line 1is therefore charac-
terized by the equation &(P,T)=0 (76).

Considering the transition for a given value of the
pressure, Gilnzburg and Pitaevskl assume (after Landau (74))

a(T) = oz"(T-'IX)’= ~at AT, _ (5.5)
The coefficient B(T) is simply put.equal to the. constant BCTX).

There 1s no reason why this expansion of the parameters
d(T) and B(T) should be valid. In fact, we shall see in
Sec. (5.4) that the above expansion leads to an incorrect tem-
perature dependence of the superfluild density.

The  Ginzburg-Pitaevskl theory can be applied to the problem
of the transition temperature. depression :ln;HeLl films. Cne
first simplifies Equations (5.3) and (5.4) by introducing the
dimensionless parameters

by = Wb by = (H1/2

e

gy = X;/% v = b/ (emay/? (5.6)

The Gibbs free energy then takes the form

2.

g(y) = g~ = 2 2
12 felvgln-lv, I *-2lv0, 1 (5.7)
ahd ﬁhe éorresponding Euler equation bécomes
Vet vy = [8,7-1v (5.8)

For a fi1lm of thickness L in the z-direction, say, and

infinite in extent in the x and y directions, Ginzburg and
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Pitaevski took the boundary conditions corresponding to an
impenetrable wall, i.e.,

¥ ,(E) = 0 for =0 and &=L/%, *~ . (5.9)
These boundary conditions are, strictly speaking, valid only
for a film enclosed on both sides by impenetrable walls. The
solution of Equation (5.8) with the boundary conditions (5.9)
can be. expressed in terms,of»an~e111pticiintegral of the first
kind (77)

i v
£ = /Z- J o] dt
r o o ~2C+C s (5.10)

which can be solved explicitly in terms of Jacobiah elliptie

functions. One obtains

_ % y
\bo(g) = — sn(‘/ﬁr{,‘ -R_) ’ (5.11)

where the_modulus,k;is given by
= 2/TTF Kk, (5.,12)

KLE} being the complete elliptic integral of the first kind.

The constant Cvis expressed in terms of K as
4%2

C = 1+
A plot of the function ¥ has the form of a dome, which is
symmetric with respect to the middle of the film and the height.
of which decreases with decreasing film thickness. Also,
there is a film thickness below which no solution with V#o
exists, i.e. the film ceases to be superfluid. The order
parameter wo(E) can be seen from Eq. (5:.11) to vanish when k=0,

and hence we obtain from Eq. (5.12)

§= 2&(0) =TT , (5.13)
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which defines a film transition temperature Tx that dfffers:

from the bulk transition temperature by the amount

AT, = 2m o’ (Ilﬁ) . (5,14)
The constants o'/ and B can be evaluated from specific heat
data. When these values are substituted into Eq. (5.14) one

obtains -

=14
AT 2x104

A= I (5.15)

One finds that this result differs from the experimental values’

by about a factor of 3.



- 5.15 -~

5.4 MODIFICATIONS OF THE GINZBURG~-PITAEVSKI  THEORY

The Ginzburg-Pitaevski theory possesses a number of obvious.
shortcomings. First-of.all, as has been mentioned in the
previous section, there is no basic reason why the expansion
a(T) = a‘(TéTx) should be valid. In fact, this expansion can
be shown to lead immediately to an. incorpect temperature de-
pendgnce for the superfluid density:

mo mo/
ps = m|ye|® = "B =g (T-T,), (5.16)

which disagrees with the experimentally well-established relation
Qsda(Ti-T)z/a near the A-transition (37,38).

Secondly, the Ginzburg-Pitaevski theory predicts a second-
order phase transition in a bulk system. The Gibbs free
energy in -the bulk limit can be written from Eq. (5.3), using
the relation a(T) = a’Cf-TA),

g =8 - %% (T—T}‘)2 . (5.17)

This cleakly represents a second-order phase transition
in contrast to the logarithmic behavigur of C? near the lambda
point.

Thirdly, the Ginzburg-Pitaevski theory predicts a second-
order phase transition in films also (80). Measurements of CP’
however, show a very smooth behaviaur at the superfluid
transition temperature indicating thereby a higher order
transition (81,82).

There are a number of obvious ways of "improving" the
Ginzburg-Pitaevski theory to obtain better agreement with exper-
iment. One can, for example, easily incorporate the log-
arithmic behaviour of CP near TA into the theory by keeping the

same functional form for g(¥) but changing the temperature
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dependence of the coefficients o and B (80,83). According to.
such a scheme one chooses a = -a“ATB(T), B(T) = B“1n(-AT), so

1) |y]? = -a’aT,

11) g =g - 3 a"28”(AT)? In(-AT). (5.18)
Consequently one obtains the proper logarithmic behaviour for
Cp near TA' However, the theory not only predicts a linear
dependence of superfluid mass density on temperature, but
when applied to the helium film shows no shift at all in the
transition temperature.

Alternatively, one. can choose the temperature dependence
of o and B so as. to obtain the correct relationship between the
superfluld density and the temperature. This was done by
Mamaladze (84) in 1966. Mamaladze assumed that

e =+, - MY, =g, - D, (5.19)
where a and B are both positive. Substituting these parameters
into Eq. (5.16), we readily obtain

by = B (1, - M) . (5.20)
We thus obtain the proper dependence of superfluld density on
temperature. However, on substituting the parameters o and B
into the expression (5.3) for g(y) we obtaln the Gibbs free
energy

g(y) =g, - %—;—= gy - %%,i (Ty - T)2,

which again implies a second-order phase transition at the A-
temperature.

Modification of the.temperature dependence of the parameters

¢ and B also leads to a new formula for the A-temperature shift

In films. Substituting Eq. (5.19) into Eq. (5.13) we obtain
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. -11. ) -
Aty = =25 x 30711 (5.21)

LSI < . 4

This does indeed give a better.agreement with the. experimental
results near.the lambda point. However, as has been pointed
out by Wong (80) amd Mamaladze (84) there is as yet no sound
theoretical basis for the definition or redefinition of the
parameters.

Amit. (85,86) has further modified Mamaladze's theory.
He noticed that, whereas the requirement that y=o give a stable,
minimum for g(y) at;"'_l'é'l"i 1£2fulftlled by the original
Ginzburg-Pitaevski theory since. B, the coefficient of the lml“
term was. positive, this requirement is obviously not- fulfilled
by Mamaladze's theory since both the coefficilents vanish at:
T=Tx, To insure stability therefore one has to add a term of
the form v|Y|® where y>o. We then have

glvl = gy + (A+ $mv )2 + By*+ oy, - (5.22)
where A = -a(Tx—T)"/a, B = B(mk-T)Z/a, as before. Using this
theory Amit finds for the. critical velocity vg in a film

V6 = (20/m) (T,-17)22, (5,23)
and for the superfluid mass density

5 (V5=0) = (1,-1)2/2 (5.2

Wong (80) has proposed the following modification of the
Ginzburg-Pitaevski theory: he considers an order funetion vy,
to be defined later, and constructs the functional g(y) as

) = g + AlV]2 + BIW[® +cly]* + 22 |uylz. (5.25)
1 m

We now have two equations to define the lambda point
0

= A (Py, Ty)
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By varying g(¢) with respect to ¥, we now obtain a sgmewhat

different Euler equation

2

o Vi + AY + . -§9w2.+ 2Cyp%= 0 (5.27)
From microscopic arguments, Wong 1is able to show that the . order
parameter here has .a different meaning, namely that.

912 o n_3/2 (5.28)
Consequéntly, 1f one assumes for the parameters A and B the.
temperéfUre dependence

A(P,T) = Ap AF

B(P,T) Bn AT
c(pP,T) > 0 5 (5.29)
one obtains n o (-AT)z/a. One thus obtains the proper. depen-
dence of superfluid density on temperature.
Again, one obtains a second-order phase transition for g
bulk system. However, for a thin film, or for porous media,

Wong obtains a third-order phase transition, which is indeed an

improvement over the‘original,Ginzburg—Pitaevski theory.

Wong has also applied his modified theory to the hglium IT
film by assuming a suitable. expression for the order function Y.
He then obtains

(a13) = - Z§%§§TZ°K , (5.30)
which is in very good agreement with experimental results near

the A~point.
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5.5 TA DEPRESSION IN HELIUM II FILMS

In this section we shall present results of our calculations
of the~A—temperature.depression in films using fdur different
criteria. This will tend to show that it.is impossible to des~-
cribe the observed depression in A-temperature without con-
Sidering in Some way the surface effects. The calculations,
though their merit is mainly of a qualitative rather than.
quantitdh0enature, will show that these surface effects become
increasingly important as the thickness of the film is decreaseqd.
Moreover, the calculations are found to show a reasonable
agreement with the experimental data concerning the. . Specific
heat maxima rather than with the data related to the. breakdown
of superflow in films.

The first criterion that we use for determining the transition
temperature. is simply to equate the inertigl densities of all
the excitations to the average total density of the film; for
the latter we may assume the bulk density 0.146 gm/cm3 at
T=2,2%K. We know that this density varies- by at- most 7% between
the. transition temperature and absolute zero (22).

In order to calculate the inertial-density of a gas of
excitations we shall use. Landau's. definition (87) of inertial
densities. According to this method, we give to the gas of
exclitations considered a drift velocity + in a certain chosen
direction, and calculate the resulting drift momentum J. The

lnertial density p is then taken to be

i |
b= (5.31)

~....The drift momentum of a gas of excitations can be written as



- 5.20 -

J = z‘<né>.2 =.%i/’VN(E) p d’pax , (5.32)

|4

where N(g) represents  the appropriate occupation number for

the excitation considered. The lnertial densitles of the
elementary excitations are well-known but as an example we have
calculated in Appendix B the inertial density of the quantized
surface modes. |

The inertial density of rotons turns:out to be

ll'rrpoz(21ruk'1’)’/2 ¢~ A/KT \ ( )
p..., = [ukT +p ‘} . 5.33
nr 30 3% o
For phonons we obtain
o g lOmikMT
°ph = TTBRYCT (5.34)

which, at temperatures above 0.5°K is much smaller than the
roton component.

In the case of ripplons we obtain the result
10m 7hp\*A sh ol 7y (1
o (22)" am rd o) @), (5.35)

which depends, of course, on the thickness t of the film.

When we set the sum of the inertial densities of the above
excitations equal to the average fllm density we obtain the
results given in Column 1 of Table 5.2. The A-temperatures
obtalned for all film thicknesses are much higher than the
experimental values obtained by Long and Meyer. Clearly we
have not taken into account to a full extent all the surface
factors present though the trend seems to be essentially right.

The next approach 1s somewhat related to that of Ginzburg

and Pitaevski. Since the free energy per unit volume of
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helium IT 1s a continuous function of temperature even at the.
transition point, the A~temperature corresponds to a definite
valge of the. free energy per unit volume, i.e., the free.
energy of helium II must reach a definite value before, the
transition to the phase helium I occurs. We shall assume that:
this value of the free energy per unit volume must also be
attained in the case of a helium II film in, order that one
arrives at the transition. In order to define a transition
temperature, in the film we may, therefore, equate the free
energy per unit volume in the bulk system at T=2,18°% to the
free energy per unit volume of the helium II film ath-Tx,
Since surface effects. in the film contribute considerably\to
the. free energy, TX can be expected to be considerably modified
in relation to the bulk value of,2.l8éK.

For the, time being we shall consider the free energy of
the film to be made up of three parts, namely due to rotons,
phonons and ripplons. Needless to day, it i1s only the phonbn
and roton contributions that are present in the free energy of
the bulk system.

For the free energy of phonons, we substitute the relevant
energy-momentum relation E=pc into the main term of Eq. (2:15),

and obtain

(F)ph - _ 8m (k) (km)® ) (5.36)

v .hc?

i
In the case of rotons also we have to calculate the

volume contribution to the.free energy in a similar way as was.

done for the surface correction in 2.3, with the.result that

o 1/2 _A/] ‘
(F) = = A% (emikm) " kn /KT [ukT~.+ pozj . (5.37)
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Since the ripplon surface contribution has been shown to be
much larger than the surface corrections to Egs. (5.35) and

(5.36), we can neglect these.

The ripplon contribution to the free energy of the film

has already been calculated and is just given by Eq. (2.29),

B a2 n( D)t e L. (5.38)
(V)s 6553) h t

Hence we have ta solve the equation

[(‘E’)Ph +(%);) T = 2.18%K =
IR B,

for various values of t. The results are glven in Column 2 of

(5.39)

Table 5.2, and are in somewhat better agreement with experiment
than those in Column 1. It 1is clear, however, that there must
be other factors present to depress the A-temperature even
further. This bears out the statement of Atkins (89) that the
lowering of the A-point in thin films cannot be due solely to
ripplons.

However, we have already remarked in Chapter 3 also that
the decrease with temperature of the surface tension of helium II
cannot be explained solely in terms of the ripplon contribution,
as calculated by Atkins (22). This may be due to two reasons:

1) the contribution of the quantized surface waves to the

free energy of the surface may not have been taken into

account properly, or

2) there are additional surface excitations present which

contribute to the surface free energy.



- 5,23 -
Atkins-(22) and Lovejoy (41) have given.several reasons for
believing that the surface wave contribution has not:
sufficiently been taken into account. These reasons have been
reviewed in 3.4. Whiohever of the alternatives is true, the
total surface contribution-to the free energy can be taken
into account by taking as the free energy due to surface
excltations the experimentally determined result of Atkins and
Narahara (21) which is just
(g) - -0.0081 728

S

v t (5.40)
If we substitute this into equation (5.38) in place of the
ripplon contribution alone (Eqg. 5.yo)w111 include the.ripplon
component) we obtain the results given,infColumn 3 of Table. 2.4,
These results are in much better agreement with experiment.

Next, we may include into our equation a free energy con-
tribution arising from excitations near the wall. Here the. van
der Waals attraction between the helium atoms and the wall
causes a nonuniformity of density, as shown in Appendix II.
We have presented there a calculation estimating the free
energy due to such a non-uniformity. If we assume that the
creation of excitations with increase in tempsrature causes the
helium film to be less 1oosely bound at higher temperatures,
and moreover that these excitations. have an energy spectrum
similar to the surface excitations, then we obtain a further

contribution to the free. energy of the film of the amount

(%)W = - 0.0020 T% (5.41)

Taking this into account and again using Eq. 5.38Aas our basic

equation, we obtain the results shown in Column 4 of Table 5.2.
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Table 5,2
Comparison of theoretical estimates. of the Tx—depression with

experimental data.

Thi@kness Renormalized Temperatures in k Experimental
# 1A T, T, T, T, Value of TA

0 0 - 0 0 -

10 2,05 1.81 1.66 1.56 1.46
25 2.11 2.02 1.97 1.89 1.83
60 2,16  2.12 2.09 2.07 2,14
750 2,18  2.18 2.18 2.18 2.18
Bulk 2.18 2.18 2.18 2.18 2.18

The results appear to confirm our procedure of taking lnto
account the surface effects in helium films. However, there are .
several points that must be noted here:

1) For thick films the effects due to the non-uniform
regions at-the free surface and near the wall have been rather.
overstated, When the film is thick enough the central layers
of the film can be considered in a sense independent from the
"surface" layers and hence, superflulidity might occur in the,
bulk of Hhe film at tempematures higher than the ones. calculated
4n column 4.

2) In the thin film region the experimental values lie.
below the calculated ones. One reason for this is that we
have treated the roton-like excitations as mutually noninteracting.

It ‘i1s clear, however, that the various excitations interact
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strongly at temperatures above 1°K. Secondly; and equally
significantly, we have ignored the finlte-size effecfs upon
the energy spectrum of the. excitations (47,90). The true
A-point depression can probably only be explained satisfactorily
if both surface. effects and finite size.effects are taken into
account together.

3) The measurable "transition temperatures" in helium
films are (1) the onset temperatures for superflow and (ii).
theftemperaﬁure at which the specific heat of the system 1s
méximumlv Hence, an lmportant improvement in the:above dis-
cussion would be a calculation of the specific heat maximum
from a better knowledge of the energy spectrum of the
excitations,

4) One could also do the calculations considering the.
first layer. from the wall to be solid, as done by Brewer et
at (66), in which case agreement with experiment would be
better for thin films. However, as'there is as yet little
agreement on this question (67) there is not much point in
doing such a calcugation at present.

Nevertheless it appeaPrs to have been demonstrated fal®ly
conclusively that the surface effects are of extreme importance

in films in understanding the, physical behavidur of helium

films,



CHAPTER 6
DEPRESSION OF TRANSITIdN TEMPERATURE IN ROTATING HELTUM II
6.1 INTRODUCTION
In view of the depression of the transition temperature in
helium II films and in porous media, it is imperative that one
consider the nature of the superfluid phase transition in
rotating helium II. A depression in the lambda temperature of
rotating helium II can certainly be predicted theoretically.
However, since the size of the rotating cylindrical container
is characteristically much larger than the corresponding
thickness of the helium II film, it will be evident that the
mechanism responsible for the depression of the transition-
temperature in rotating He II differs in nature. from the
corresponding mechanism in He II films. For the same reason
the. depression in. transition temperature will be much smaller
in the case of the rotating He II. 1In fact, experiments to
this date have not.yet been able to measure. the lambda temp-—
erature of helium in rotation to a sufficiently great degree
of accuracy in order to detect sucha small effect. Before
golng into more detail, however, we shall review some of the
relevant properties of helium II in a rotating medium.
As 1is well-known, when a cylindrical vessel containing

helium II is set into uniform rotation, the whole of the

fluid appears to imitate solid-body rotation. This was con-
trary to the prediction of the Landau theory (88) according to
which the .absence of viscosity in the superfluid component,
and the. necessity of maintaining potential motion (i.e.

curl vy = 0), the superfluid component would not partake in

—
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the rotational motion of the vessel and hence only the normal
component of the liquid would rotate. The first experiment

to test this prediction was performed by Osborne (89) in 1950.
The results showed that helium II rotated as a whole; so it
was- thought that the. interaction of the superfluid component
with the walls of the vessel or with the normal component

must be responsible. for this "breakdown" of superfluidity.
However, an earlier experiment performed by Andronikashvili (90)
in 1946, concerned with axial oscillations of a pile of
closely spaced parallel thin discs had shown that superfluidity
was not-destroyed by rotation but: that only the normal com-
ponent was dragged into rotation. A later. experiment
(Andronikashvili and Kaverkin (91))in 1955 showed that the
fountain effect continued to exist in rotating helium II and
had, in fact, the same quantitative features as in helium II

at rest. As a resiylt of these experiments it became evident
that, although an interaction did exlist between the.superfluid
and normal components of rotating helium II, this interaction
was not related to the breakdown of superfluidity. In accor-
dance with Onsager's hypothesis (92) in 1949, this interaction.
was related to the appearance of vortex lines in the super-
fluld component of helium II. The circulation of these
vortices was quantized in units of h/m. This quantization of
the clrculation explains the existence of an initial critical

velocitymc below which the superfluid component does not at
1
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all participate in the rotation. TFor if a vortex. line cannot:
exist in a state with arbitrarily small intensity, then -
vortex formatlon can take place only if some minimum energy
1s avallable in the fluid flow. Superfluidity, on the other

hand, 1s destroyed only when some greater critical veloeity, -

wc2 say, 1s reached.

Experimental as well as theoretical evidence for the
existence of vortices in rotating helium II was gquickly
forthecoming. In 1955, Feynman used quantum mechanical ideas
to explain the possibility of. vortex formation in liquid
helium and showed that the established fact of- superfluid
rotation is.adequately explained by the existence of quantized
vortices. The macroscopic veloclty field formed by these
vortices for each velocity of. rotation simulates that of a
classical fluid. This in turn defines at all velocities of
rotation an equilibrium density of vortex lines in the rotating
fluld. Experimental evidence for the existence of quantized
circulation came. from the classic experiments of Vinen;(93)
who utilized the existence of a Magnus. force between. a vortek
line and a vibrating wire to demonstrate that circulation did
appear in quanta of h/m.

The first experiment desdgned to study a possible. shift
in transition temperature of rotating liquid hélium was
performed by Zamtaradze and Tsakadze (94) in 1964. They

studied the nature. of the thermomechanical effect near the

transition point in order to determine the effect of a uniform
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angular velocity w on the. phase transition. They found that
the dependence  of the height of superfluld helium on its:
temperature does not differ significantly from that of the
fluid at rest.:

Bablldze, Tsakadze and .Cheishvili (95) performed an._
experiment; again in 1964, which was designed to observe the.
discontinuity in the heating or cooling curve at the. trans-
ition temperature of a phosphor-bronze thermometer placed in
rotating helium and then compared it with the corresponding
situafion for liquid helium at rest. This break inhthe.
heating or cooling curve 1is connected with.a jump taking
place in the thermal resistivity when helium II passes through.
the transition into helium I and vice versa. In this experiment,
where the maximum attainable angular velocity was w = 0.54 sec-l,
no shift of the transition temperature to within the experi-

u°K was observed.

mental accuracy of 5 x 10~
Theoretical estimates. of the lambda temperature depression.
in rotating helium II have been made on the basis of the
Ginzburg-Pitaevskl model of helium II. Kiknadze, Mamaladze
and Cheishvili (98) have considered solutions of the equation
1 4

57 1 - V+exr}? ¥-oa¥+gly|?v=0, (6.1)

which represents a generalization of the Ginzburg-Pitaevski
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equation with v, = @ x 1, i.e.,.the normal fluid is in uniform
rotation. This equation admits solutions describing a unit:
vortex line in an infinite:liquid. As x + 0, the function V
is. of the form cx. For x>>%, Eq. (6.1), with & = 0, has the.

asymptotic solution

2

e 1- Iy
where & =4 / v/2ma. This solution represents a vortex line
in which the density at the vortex core equals zero and rises
to the normal fluid density at a distance of the order of the
lealing length %. Kiknadze, Mamaladze, and Cheishvili have
shown that Eq. (6.1) also has solutions corresponding to the.
presence. of a vortex line with the expected difference that:
the vortex axis moves with.the normal component:-of. the fluid.
In faect, analogous to the two-dimensional array of magnetic.
field lines in Type.II superconductors, as determined by
Abrikosov (96) in 1957, Eq. (6.1) also admits of stable
arrays of triangular and square lattices of vortex lines.

The possibility of the destruction of superfluidity is
realized in the case of an infinite fluid moving with velocity
W= wc2. As o>+-u%2, the wavefunction of He II, bbtainedAas
a solution of Eq. (6.1), tends to zero smoothly. This leads

to an approximate shift in the transition temperature as given
by [20]

AT, = (2.3 x 107 e ok, (6.2)
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where w is measured in rad/sec.

Kiknédzé, MamaladZe and Cheishvili (98) have also deter-
mined approximately the values of the critical veloecity of
rotation at which the superfluld density in a vessel of

finite slze becomes zero. One thereby obtalns
AT, = -(1.1 x 10714y / R? ox, (6.3)

where R is measured in cm. This relation 1s valid only for a
small range of angular velocities just above 0%1. As w is
further increased, ATA will depend on both & and R until the.
critical,velocity'aczfor the breakdown of superfluidity is
reached.

In the next two sections, we present a calculation of the
depression.of the transition temperature in rotating liguid
heltum. The functional dependence of the Tl—depression on‘thé
angular velocity as well as the radius of the (cylindrical)
contalner will be derived. Further, we will obtailn as. specilal

cases of our more general result two relations which are

practically the.same as relations (6.2) and (6.3).
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6.2 INERTIAL DENSITY OF A ROTATING GAS OF EXCITATIONS

Our approach consists in calculating the lnertial density
of a rotating gas of excitations (phonons and rotons) as a
function of the angular velocity w, the radius R of the
cylindrical contalner, and the temperature. T. This will
naturally represent the density pn(T) of the. normal component
of the fluid. The temperature at which this density becomes
equal to the total density p of the 1iqu1d helium, i.e., when
Py = 0, we will take as the transition temperature. Thus a
relationship can be obtained between the transition temperature
TA and the parameters w and R.

We employ as before Landau's definition (85) of the
inertial density of elementary excitations for calculating
the inertial density of a rotating gas of phonons and rotons.
To do this, we study the gas of excitations from a frame of
reference in which it appears to have a mass-motion characterized
by a drift velocity v and calculate the accompanying drift
momentum J. The inertial density p is then given by the

obvious formula

|<2||L|
< .

(6.4)

where V 1s the volume of the gas.

The drift momentum of the gas can be written as.

o=

J =z n,> P o= b ‘f£(g;z,g) _d3xd3p, (6.5)

D
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where n(p;v,w) is the. relevant mean occupation number. For

rotons we have

nlest,e) = EEXP {B (B, - ¥R - w.z)} -]-'1

R

exp (—-B(EE - V.p - 9.&)} 5 (6.6)

where Ej = A + (p-pg)°/2u, and B = 1/kT, and & 1is the
angular momentum of an excitatlon. Carrying out the Taylor

expansion of (6.6) about (v,w) = (0,0), we can write

n(p;v,w) = n(p) {1-BSE + -g—j- (6E)? - %?— (6E)%. +...}
(6.7)

where 6E = -(v.p + w.2). The even-order terms of this
expansion do not contribute to the drift momentum (6.5)
because in theilr case the integrand becomes an odd function.
of the momenta. The first two odd-order terms yleld the

following result:

. 1. pov 1 po v 1 .
F v b d T () e 60

|
]
=

where R 1s the radius of the ecylindrical enclosure and N}

the mean number of rotons in the gas at rest. For the
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inertial density of. the roton gas, we thus obtain

2 p
oy (v0) = 5, (0,0) [14 }—k—°- v2+%3<k—,_‘;—w+]<69>

It may be poilnted.out here that the first two terms in this
expansion -are Jjust the first two terms of the general expan-

sion for pr(v) as given by Khalatnikov (99):
= ofkT)? p_V v
) 3(pOV) p,(0) l}osh(rﬁf) -(%%;) sinh(?%fé] . (6.10)

In the case of phonons, the relevant occupation numbers

s 9-1
[exP {B(EE - X’R = 9‘&)}_]] s (6-11)

where EE = pe, ¢ being the velocity of sound in the liquild.

The integration (6.5) is once again straightforward, though

pr(

)

are

ni{p;v,w)

somewhat- laborious, with.the result
3v2 R2 2 .
PL'cho) (0,0) 1+ 57—+ gz w? +... (6.12)

It again may be pointed out that the first. two terms of this
expansion are just the first two terms of the ggneral

expression for pph(v), as glven by London (100)

) v2 -3
Pon(V) = ppp(0) |1 - =] (6.13)
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In the limit v-»0, we get

p R\?
pp(@) = p,(0) [1 + 35 (k—;—) w? +] ; (6.14)
and
pph(w) = pph(O) 1+ %; w2 +J . - (6.15)

Since we shall be concerned bnly with temperatures in
the. neighborhood of T=TA, the inertial density of the
phonons can be shown to be much smaller than the inertial
density of the rotons and may, therefore, be'neglected.
However, for typlcal values of the parameters involved, viz.
R ='1lem, and w=3orad/sec., the change Apr in inertial density
of the normal fluid can become quite appreciable. In fact,
for Tx B 2;1é°K, we have a relative density lncrease as high

@)
as

3—%5) «1x 107°. (6.16)
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6.3 DEPRESSION OF TRANSITION TEMPERATURE IN ROTATING HELIUM II

Although pytnometric studles by Andronikashvili and
the density of helium II - when: brought into rotation, of a
magnitude. comparable to that given by Eq. (6.16), more recent
experiments by Esel'son et al (102-105) have almost ton-
clusively proved that, when sufficient care is taken to
ensure temperature stability in the rotating fluid, one does
not observe any density changes to within an accuracy of 1. in-
2 x.106. It is.clear then that Eqs, (6.14) and (6.15)
represent an increase in the density of the normal fluid at
the expense of the superfluid component. Consequently, the
calculation outlined in Section 6.2 is valid only when the
superfluid component itself is in rotation, i.e., for
wclgtuswcz*.

In order to study the behaviour of the transition

fempéfdfuré:fl we set the roton inertial density (6.14) equal

to the corresponding quantity for non-rotating helium at the

transition point;Tx . We then obtain, using Eq. (4.32),
o]

¥ The condition wac is necessary to safeguard the
2
situation against a total breakdown of superfluidity.
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(o}

Rearranging (6.17) in order to solve for ATA(=TA56;T)5
0
the depression in the lambda. temperature, and retaining only
the first two terms of the exponential, we obtain for the TA

depression

2
- 1 p0 252
Substituting for the relevant numerical factors one obtains.

the final result:
AT, = -(1.25 x 1oﬂ8) w2R? °K, (6.19)

where w'and R are measured in rad/sec. and cm respectively.

As pointed out earlier, this formula is valid for the
range of angular velocities in which the. superfluid is
dragged into rotation. Blatt and Butler (106) have shown that
the first internal energy jump in an ideal Bose gas contained
in a cylindrical vessel of radius R takes place at an-
angular velocity

w, =4.454n /mR. (6.20)
1

This 1s comparable in value to the critical velocity for the

creation of a vortex line as found by Arkhipov (107) and
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Vinen (93):

w o~
¢

=l fa )

(R%2-a2)~! 1n (2—), (6.21)
(o]

where a, is the core radius of the vortex. Starting from
this velocity the creation of vortex lines is thermodynam-
lcally favourable. As the angular velocity-  increases, the
number of vortex lines. increases until a maximum number of
vortex. lines 1s reached at an angular velocity w, '~

y (98) '
w 98).
¢

Hence the angular velocities for which the formula (6.19)
for the Tk-depression<is,valid are confined to a narrow

interval of angular velocities.

4,450

“F Tmr? . (6.20)!

Substituting this value of w into equation (6.19) we obtain

for the dependence of ATA on R

AT, = -(0.9 x 10™1%) sR2 0k , (6.22)

A

which is in excellent agreement with the corresponding result

of Kiknadze et al (12):

-14

AT, =~ —(1.1 x 10 ) /R? °K, (6.22a)

A

If, ;on the other hand, we decide to keep the radius R constant,
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and vary the angular velocity w, then. we can obtain the

desired result by eliminating R between (6.19) and (6.20)':

AT, = —(1.7 x 10711y 4 ok , (6.23)

A
which is again in good agreement with the corresponding

result of Kiknadze and Mamaladze (12):

AT, = -(2.3 x 10‘11) w °K. (6.23a)

One must lndeed remember that. the two relations (6,22) and
(6.23) are valid only for constant values of w and R resp-
ectively. When both the angular velocity and the size of the
container are allowed to vary, Eq. (6.19) must clearly be
used and a reliable estimate of the lambda temperature

depression obtained.



CHAPTER 7 _
THE HELIUM FILM PRQFILE
7.1 INTRODUCTION '

A large. number of experiments have been performed in order
to determine the thickness of saturated and unsaturated helium
films at various heights. However, due to the difficulty of.
guarding against small amounts of radiation influx which
greatly influence the amount of evaporati@n from the film,
experimental results have not been‘generélly in agreement.

Atkins (108) was the first to, carry out a systematic
.measurement of the thickness of é saturated helium film by means

of a dynamical method and establ;shed the empirical relation
d=1.67 x 10767H1/7, (7.1)

where both d and H are measured in cm.
In a series of experiments, Burge and Jackson (109) and

Jacksonland Henshaw (110) have found the empirical result to be
ad=e2zx10°6m/3, (7.2)

However, when radiation was permitted to impinge on the top of
the film, a variation approaching that of Atkins was obtained.
It thus appears that Atkins' result was not reliable due to the
radiation influx occurring.

An experiment by Bowers (111) in 1953 showed a still

different variation of thickness versus height, namely

g =11.8 x 10-6/41/2, (7.3)
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In a similar experiment on thin unsaturated films, Bowérs found

the felation-(112)
a =5 x 10 %mY3, (7.4)

Keeping in mind the possible relation between saturated and
unsaturated films, as pointed out by Rice and Widom, this
result 1is reasonable agreement with the relation obtained by
Jackson et al.

The earliest theoretical work on the. subject was done by
Schiff (113) and Frenkel (114), who took into account the nature
of the van der Waals force.of attraction between the wall and

the. adsorbed helium atoms and derived the relation:
a= (4 x 1003 | (7.5)

in the case of a helium film on a glass wall. The constant
would, of course, vary with the material of the wall. This
;elation is in good agreement with the results of Jackson and.
coworkers on saturated films and with the work of Bowers on
unsaturated films except that the temperature dependence of

1/2 could not be.

the constant k in the relation d = k/H
determined theoretically whereas the experimental value varied
considerably with temperature.

A different theoretical approach was.adopted by Bijl, de
Boer, and Michels (115) who considered the variation of the

zero point energy of the film with thickness. They visualized
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the eigenfunctioné of lowest energy as. having nodes at thé wall
and at the. free surface of the, film and having wavelength.

A = 2d, thus giving a zero point energy per atom

h? S
2= B mat (7.6)

Minimizing the sum of.the zero point energy and the gravitational

energy one obtains the relation

d= B - (L,yl/2, 1x107
m - tegh’ H/2 (7.7)

This agrees well with the work of Bowers on thick saturated
fillms. The drawback in this method is that, with the eigen-
functions considered, it leads to a doncentration of helium
atoms toward the middle of the film which is physically un-
realistic. However, as the result agrees with a number of
experiments, it seems that the correct relation between:

thickness and height might be-of the form
d = ki/Hl/B + 1y /ut 2, (7.8)

In this chapter we shall discuss the various attempts. that
have been made to derive a relation of the form (7.8). 1In
both these attempts the effect of the finite film thickness on
the zero point energy of the helium film 1s calculated, and

its influence on the d-H relationship studied. A comparison of
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the results obtained by different approaches.makes quite an.

interesting study.

The main result of this discussion, however, will be a
vindication of the contention made by Pathria (25), namely
that, if the expression for the density of single-particle

states is written as
K3 - K2
g(;{) = gz V¥ g S+ E(K),

then the.error term is o(XK?) and not 0(K?), i.e. the error term
is of an order inferior to that of the surface term. In hils
paper, Pathria has provided computational evidence in favor

of the contention. Here we shall obtain further evidence 1n
favour of this contention. To do this, we will present a
calculation -for the thickness dependence of the zero point
energy of the film, not only for the Neumann boundary conditions
as was done by Atkins, but also for Dirichlet and periodic
boundary conditions. The results will show that, as was
contended by Pathria, the error term in the expresslon for

g(K) 1s definitely inferior to the surface term.
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7.2 ZERO POINT ENERGY OF A HELIUM FILM
After Atkins, we assume the, zero point energy of a helium

film of thickness 4 to be of the form

| a; 3
Z(d) = Z(w) lyg=+37+ .../, (7.8)

where Z2(d) is the zero point energy per.gram of a film of
density p and Z(~) is the zero point energy per gram for the

bulk liquid.
Imagine a: film of unit area at a height H above the bulk

liquid and consider an increase in its thickness from 4 to

d + t. The change in the energy of the system is then

AU = ot(gH - &) + ot X faz(e) (1 ¢ 2L & 22 4.y
prig 43 Pt 34 g T gzt

- ptZ ().

In €quilibrium AU should be zero and hence

o a a
H = gg,+ Zé) [d—§-+d—3;+..j . (7.9)

We now calculate that part of: the zero point energy that:

arises from longitudinal Debye waves. In a square film of side
L cm. and thickness d cm. a typical Debye wave of frequency v

and velocity ¢ has direction cosines-lx, 1l , and 1z given by

y
n_c n._c n_c
1=-—£—,l =—L,1 =_Z_'
x 2Ly y 2Ly z 24y s
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Nys Do, N, belng integers. Hence the lattice points. corresponding

y

to waves with:frequencies not- exceedinyg a given frequency v

will lie in a reglon bounded by the ellipsoid

2 2 2
L2 d2 c2 (7.10)

The length L of a side can be made very large permitting large.

values of n, and ny, but, if d 1s small, the maximum possible
value for n, is m-= 2d")c where Vo is the cutoff frequency. We

]

choose d so that'm is an integer. Then, for a fixed value.of~nz

the number of modes with.frequency between v and. v+dy will: be

2
g(nz,v)dv = 5— vdv,

n_c
- . Z
but with a minimum value Voin = 53

The cutoff frequency can be calculated by equating the.
total number of modes of vibration to N, the total number of

particles in the film.

n_=m  vymax

g g(n_,v)dv
=0 Z
1 min

m c

n 2
= — z_ '()2 -~ .a_—g_
c n279 ¢ d

i

: 2
5 gL [(m+1)\:-fJ - %‘m(m+1)(2m+l-) %-azj
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for Neumann boundary conditions, and

_ w2 2 1 c?
=5 m Yc -7 m(m+1) (2m+1) Tq2

28y
for Darichlet boundary conditionsi. Inserting m = cc and

solving for Vo in terms_of'v:, we obtailn.

v e -1 ¢ 7 ¢ 2
Ve = Ve Eﬂ,’ o t 15 (2y°°d) +] s (7.11)

C. c

where v:‘is the cutoff frequency for the bulk liquid and the

upper sign corresponds - to Neumann boundary conditions.

The zero point energy can now be.calculated,

j $hv gln, v

-
min.

}
no~Ms

~ 3dc?

mEL2%h s _ 1 2 ¢’
-3_8.?- Em+l)\?c -7 m* (m+1) LHE

for Neumann boundary conditions, and
_ 7L%h s 1 o 2 ¢
ol rria {Erwc-u-m (m+1) 8'53]
for Dirichlet boundary conditions.

Substituting for m =,2dvc > we obtain for the zero point

)
energy
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_ 7h 3d..u 1l .3 1 /,¢c 3§ .2
20Q) = 3ge75 |2 Ve * 3 Ve - T (3@ vc.’“-] ;

and using relation.(7.11) for V,s We have finally

z(d) = z(=) EL T5 G +3 G e &y <%;o—d>3+---j-
c c c
(7.12)

Substituting this expression into equation (7.9) we obtain

_a L= [
Bl s Ko (d"??-)z’ (7.13)

lrrespective of the boundary conditions used. Inserting the,.

relevant numbers, this gives
‘ -6)s -6\ 2
H = <——.—” £ 10 ) + ("————g 10 ) : (7.14)

For thin. films this agrees with the experimental findings of
Bowers (112) for the unsaturated films and with Jackson's
results (109, 110) for the saturated films. For thick films,
however, the zero point energy term becomes more important and
hence 1n the expression 4 = k/Hl/ﬁ, n would begin to approach 2.
For thick films, then, this result agrees fairly well with the
experimental results of Bowers (11ll) on saturated films.

In the. case of periodic boundary conditions the wave-
functions will have the form

ik:r
() @ oHE
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where k = (=,

o |-

contained in the ellipsoid'

Choosing a = b = L, thls corresponds to the ellipsoid

% ,:%'. Again, the points of interest are

Again, L can be made as large as we like, but .the maximum

d
. = - C.
value of n, is now m s V%

The number of modes with frequency between vy and y+dy

1s Aydy with the minimum value of y being %'nz.

Evaluating the cutoff frequency again, we obtain.

ﬁ.
ymax vay
v

A [vg - 3 (s vE]

Solving for Vo in terms of VX, we have

= (82 1

(7.15)

(7.16)
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We now calculate the zero point energy as before.

m ?max 1
Z(d) =B I S (5 hy)yay
nz=-m
?hin
=B I Ey -(%)*n lﬂ
n,=-m ¢ z
9 B" E;_ % (%)2 72] . (7.17)

Substituting (7.16) into (7.17( we obtain the final result-

)"_+“] : (7.18)

This 1s, of course an expected result. Finite size effects

alo

72(d) = Z(w) ﬁ+%u—(

cannot be taken into account properly if periodic boundary
conditions are adopted.

We can use. the foregoing result to check the accuracy of
the density of states.relation:(2.2). If we do the calculation-

using the density of states approach, we have

gMar = ¥ yrayy 55 gar +

For the zero-point energy in the first approximation we obtain

in a straightforward way
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vC
z(a) = 5 (3 1) g(¥)ay

Yav 1 Te Sh Yo
=—%:5h; UG R 4

o] (o]

=T VY oo
2¢c’ S+ glr2c2 ?é.+""
Hence
Z2@d) = z(w) [1? % (;"-g-a) +...-] . (7:21)
‘ c-

Thls result 1s in exact agreement with Eq.(7.12); hence

E(K) = o(K?) and not O0(X?) and Pathria's contentlon appears to
be borne out. Still further evidence for the correctness of
Pathria's contention can be obtained from a calculation by
Broywerand Pathria (118 ). They derive an expression for the.
free energy of ideal Bose-Einsteiln gas particles by means of the
density of states formula (2.2) and also by performing the
summation over states directly by means of a. method introduced.
by Fowler and Jones (118). Complete agreement is found up to
the surface term. Franchetti(117) and Singh and Pafhfia(llQ)
have also calculated the free energy of ideal gas. particles

and of phonons by construecting the Mellin transforms-of the
relevant summands and have obtained complete agreement with

the results obtained by using the density of states formula.
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In the case of periodic boundary conditions, the result
obtained by using the.density of  state formula is just the
first term of Eq. (7.21), with the surface term being zero.
Hence agreemenf is obtained in this case also.

In passing, we may mention that Franchetti(117) has also
calculated the. thickness dependence of the. zero-point energy.
of a film. He introduces two methods for calculating the zero
polnt energy correction in films and his result differs con-
siderably from that of Atkins. By a more approximate method
Franchetti obtains

2@ = 2te) 14} G+ ] - (7.19)
Franchetti does not obtain a term proportional to 1/d4 because,
when summing over all frequencies, a contour is chosen so
that the density of points is not altered. However, Franchetti
obtained the above result by letting the total number of modes
of vibration equal to 3N. 1In a liquid, however, only longi-
tudinal modes of vibration are present, but the transverse
modes cannot exist. Hence the total number of modes of vibration
should be equal to just the total number of particles in the
liquid. If we do Franchetti's calcuiation, by calculating the
cutoff frequency from the condition that the total number of

modes. of vibration is just equal to N, then we obtain approximately

72(d) = Z(w) [1+ 33%7 (%@_7)2 +j s - (7.20)
(o4

which 1s now in good agreement with Eq. (7.12).



CHAPTER 8
CONCLUSION

In this thesis we have, in:.the first-place, extended the
quantum mechanical theory of. surface tension proposed by
Atkins, which considers the, free energy contribution of quan-
tized surfgce modes of .vibration as an essential part of the
surface tension of a quantum;liquid. We have shown moreover
that the surface correction to the free energy of bulk liquid
excltations - phonons and rotons - is much smaller than the '
free energy of these quantized surface modes, or ripplons.

Our main coentribution to this theory of the surface tension
of 1liquid helium was, however, to calculate the intrinsic.
surface tension of.1liquid helium at-T = 0°K. This contribution
to the surface;tenéion was “calculated on the basis of the
Imperfect-gas model of Gross and Pitaevskil; this imperfect-gas
model is able to give a description of the density non-unifor-

feee sucfoce of the
mity at_ther}iquid, provided one assumes-an attractive inter-
action between the atoms in the. surface region. Consequenﬁly,
one calculates the. free energy per unit area assoclated with
this non-uniformity and identifies this with the intrinsic
surface tension of the liquid.

A test for the validity of this theory of the surface
tension of a quantum liquid has been developed in Chapter 4.
The two rival theoriles:of surface tension glve significantly
different predictions for the interfacial surfacé tension of a
phase-separated He®-He" system at T = 0°K. An extrapolation of:

experimental measurements on the interfacial surface tension of
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a He?-He“ system should be able to decide the issue between the
two estimates.

In Chapter 5 we have demonstrated "qualitatively" the.
necessity of taking into account;surface phenomena when dis-
cussing the lambda. temperature depression in helium films. The
criterion that we have used to define a lambda temperature was
to compare the free energy of all excitations present in a
helium film (including surface excitations) to the free energy
of the excltations. in bulk liquid helium. Clearly, since.
ripplons contribute to the free energy of the film, a lambda
temperature depression will be observed, which depends on the
film thickness. We have obtained reasonable agreement with
results obtained from specific heat measurements, although the
criterion that we have used to define the lambda temperature. is
not one that can be directly compared to experimental results.

In Chapter 6 we have calculated the.lambda temperature
depression that one might expect in rotating helium II. Rather
than calculate the decrease in the superfluid density as a
function of the angular velocity and the size of the rotating
cylinder as was done approximately by Andronikashvili, _
Mamaladze and others, we have calculated the increase in the
normal fluid density as a function of these parameters; this
problem can be solved much more easily and surprisingly enough,
the more general result obtained reduces to those obtained by
Andronikashyili et -al in the limit. in which the lambda. temper-
ature depression depends on either the angular velocity or the

size of the container alone.
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In Chapter 7 we have présented some theoretlcal justifi-
cation: for Pathria's contention that the error term in the
density of states formula (2.6) is, for the systems that we.
have. considered; much inferior to the:.surface term. However,
none of the results obtalned in this thesis depend critically
upon. this  contention.

The main criticism to be made of the above thesis, and -
of much of the.previous work on liquid. helium is that the results
are generally based on macroscopic. theories with-1little or no
basls in microscopic. theory. The main reason why mieroscopic
theorlies have not been as successful in this field as in the
field. of éupercondmctivity 1s, of course, that helium II is a
liquid. Consequently, even a microscopic theory such as the
hard-sphere Bose gas cannot be, expected: to account quantitatively
or even qualitatively for many phenomena in helium II, espec-
lally thgse that are associated with the free surface, or with,
helium II films. A proper microscopicftheory must take into
account both the repulsive and attractive nature of the inter-
particle interaction in.order to explain without amblguity the

phenomena occurring in liquid helium II.



APPENDIX I
FREE ENERGY OF A GAS OF NON~INTERACTING BOSE PARTICLES
We derive here expression (2.28) without. replactng the
summation over states by an integration; accordingly, we shall
not. make use of any explicit. formula for g(X). Let us consider
a gas of noninteracting particles, each of mass m, confined to
a volume V, which for simplicity is taken to be a cube of side

a. The energles of the stationary states of any one particle

are given by

€ = (h?/8ma?) (s2 + t2 + u?), (I-1)

WHeré 85, t, and u éaﬁ'téké oﬁly positive-integral values in the
case of the Dirichlet boundary condition, but can also take the
value zero in the case of the Neumann boundary condition.

We then have for the logarithm of the grand partition

funection

1n [}—ze—U(sz+tz+u?], (1-2)

where u=h?/(8ma®kT) and z is the fugacity of the system. The

Internal energy U can then be determined by the relationship
0= - [o108 e ]y ’ (1-3)

where f#=1/kT. Carrying out the expansion (I-1l) in powers of z

and the differentiation as required by (I-2) we obtain
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. ' 2fe24-2 2
ZJ(sz+t2+u2) e""IJJ(S +t +u )

(o]

._Il

%] o
[\ 1] [

™
He~s8

1
33; J[z s2e “JSJ [z e'“Jt] . (I-4)

The sums involved here can be evaluated by using Polsson's

. m

formula

S==0 u S0

” Y2 o
> e-quz'=(23) L e-n’sz/uj.’ (I-5)
s

and the one resulting from (I-5) by a differentiation with

respect to (uj), namely,

; sze'ﬁJSz'= " 12s? e'“zsz/uj' (I-6)
S=—® - (UJ) g= B R

From (I-5) and (I-6) it follows that, in the. limit u-0,

s s’ [(" e—wzsz/uJ?Fl]
s=] =00
o}

= 3 [t g 1], (1-5")

and

5 Sze-quz = _12; ® Sze-]-l:ls2 - %'?T/('u,j)a_]lﬁ . (I-61)
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Accordingly, (I-U4) becomes
U= (V/A*)KTgg ) (2)F F(A/A)KTg,(2) , (I-7)
where l=h/(2ﬂka)yé and the function
g (z) = JZI‘J-nZJ

The free energy of the system can be calculated by means of

. the formula

T
v
F = -T aT, (I-8)
0

whence we finally get
F = (-V/A*)kTg, ,, (2)EF (A/A%)kTg,(2).(I-9)

For T<TA, z=1; then, for n>1, gn(z)=c(n). The second term in.

(I-9) thereby gives precisely the expression (2.28) for FS/A.



APPENDIX TII
FREE ENERGY -DUE-TO- NON~-UNEIPORMITY--AP--WALL- -

In order to calculate the free energy due to the intef-
action between the helium atoms and the. rigid wall, we assume
that, due to.the short-range van der waals forces, the density
distribution of the film as a: function of the distanée.from
the wall is of the form depicfed in Figure 1.

' F
Fig. 1 Variatlion of superfluld density with z distance

from the wall.

L d

At pregent, 1t 1s Impossibde to take into account the
precise nature of the van der Waals interaction and calculate
the density nonuniformity and hence the free energy therefrom.
Rather than take into account this interaction directly, et us
solve a problem giving a similar density non-uniformity. We

shall adopt a model in which the transition region I 1s a region
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of density variation between a hypothetical high density phase

of he};ym II and a low .density phase of helium II. The density
of thepliquid in region I, extending in the,negativé‘z region,

is given by the. experimentally determined density ng of the

first layer. of helium II from the wall. This density determines,
or 1is.determined: by, the. nature of the wall and the van.der
Waals interaction; hence the solution. of this hypothetical-
problem determines the solution of the actual problem of
interest.

: We describe the high -density region I by a Gross-

Pitaevskl equation-

2 2
_5— 2 -— l'—'"—li.l%_ 2 =. -
o Vv m— 1, 1% = (11-1)
In this situation we let p represent the energy change that

arises when one particle from the low density region II is

transferred to the high density region I. Hence we have

y o= —)-l'n'mla.l'tz lw1(°>|2'= -_lm;lnﬁ‘(ns-no). (II-2)

Thus the square of the wave. function wlrepresents the difference
in density between region I and region II. The solution of

Eq. (II-1) can be obtained analogous to the solution of equation
(3.9). One again defined dimensionless parameters and obtains

the solution
_ X
y = ;/ns-nO sech(f),

1



where
1

¢ = /Tlal(n,-n)

At any polint in the transitioen region then. we have
(%)
n(x) = n_ + (ng-n_) sech?\%/, (I1.3)

If we compare thls with the corresponding solution due to
Cahn and Hilliard (3-22), we obtain a density distribution-
which is more pr less similar. These authors obtalned for a

transition reglon between two phases of a classical fluid.

n(x) = n, + (ng-n) tanh(%?, (II.4)

Again, as before, we can calculate the free energy due to
such a denslty non-uriformity and obtaln’ the result

F7F6~= 1 ’ha(ns“no>
m 1 (I1.5)

- 3

T

In order to obtain a numbrical estimate for this energy we

must again estimate the value of the scattering length a. Since
we. are using the experimentally determined surface tension

which corresponds: to a scattering length a=-4£, we use the same
value here. We thus obtain

F-F

—2 = 0.092 erg em™ 2. (II.6)

In the reglon of density non-uniformity near the wall,

excitations will be created as the temperature is raised above
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0°K, and willl reduce the "effective" free.energy. If we
asgume that: the temperature.#ariation of this free energy is
the same as that of the surface free energy, we obtain for
the temperature dependence of the free energy due to the non-
uniformity at the wall,

F-F 2.5

© = 0.092 - 0.002 T°*? erg em™ 2 , (II.7)




APPENDIX III
INERTIAL DENSITY OF RIPPLONS
In order.to‘calculate the inertial -denslity of a two-
dimensional gas. of ripplons we again have to take the main
term in the expression for the density of states (2.11) with
n=2. We give the gas a drift veloclty v and calculate the
drift momentum J. The drift momentum of such a two-dlmensional

gas of excltations is thus
J = %t /Iq(é—x.g) pzdzp . (I1I-1)

Applying the Taylor series expansion (6.7) for n(e~v.p),
the. first term of the integral for the. inertial density Pn of

the ripplons becomes

_J _ 2w on(e) 3
Pn = V7 © 1%t f 5¢ . P 9P - (111-2)

Using the erérgy-momeéntum ‘relation €5 é.(%’-s)"‘/z p¥ for- -
ripplons, and substituting into Eq. (III-2) the. expression

an(e) _ gp w1 ) (p)
e 3 <E‘ - p” §p ,

we obtain

Py 3h £ (ﬁ") fn(p) p¥eap. (I1I-3)

Letting y = Ap?é, where A = %T-<%E>yégyé s we substitute for
the occupation number of a gas of ripplons the expression

n(p) = (exp .l\.pa/z-l)-1 and obtain the result

3
NN SR (T
Oh7E 1

n

This expression can be evaluated in terms of the Riemann Zeta

function to yield / /
b = Gt (kﬂ r¢5/3) p(5/3) (kT) (III.4)
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