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Abstract

Dose modelling is an important component of radiotherapy treatment plan-

ning, as clinicians prescribe a dose to a tumour while requiring certain adjacent

organs to receive at or below a given tolerance dose. Mathematical models such

as the linear Boltzmann transport equation, or LBTE, provide a method for

calculating the dose received at each location within a patient for a given beam

configuration. Solution of this model can be complicated, and deriving accu-

rate and efficient numerical solution methods continues to be an active area of

research. Stochastic solutions remain the “gold standard” in terms of accuracy,

though many deterministic numerical solvers have been shown to achieve the

same level of accuracy as Monte Carlo in a computationally efficient manner.

The development of the combination linear accelerator/magnetic resonance

imaging system has created the need for a modified LBTE model that incor-

porates the Lorentz force and its influence on secondary electrons. Such a

model was previously derived mathematically where a new angular advection

term was introduced. Finding computationally efficient methods to stabilize

the angular advection term so that numerical solutions are both accurate and

efficient is a difficult problem. Previously, a numerical method was developed
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capable of solving the modified LBTE, however the upwinding scheme used

creates a magnetic field dependency in the spectral radius, thus reducing the

convergence rate for increasing magnetic field strengths.

In this work, a linear streamline upwind Petrov-Galerkin (SUPG) method is

applied in angle as a potential stabilization scheme. A spectral radius analysis

shows that application of this method eliminates any magnetic field strength

dependency in the convergence rate and the resulting system is uncondition-

ally stable. Simulation results of the discretized system confirm these findings.

Phantom simulations also confirm that the SUPG method stabilizes the an-

gular advection term. However, while the method proved accurate in the 0.5

T parallel magnetic field case, advection dominated too strongly in the 1.5 T

perpendicular magnetic field and the results were over-diffusive in low density

media, negatively impacting the accuracy in these regions. A non-linear SUPG

method was then derived and proposed as a possible remedy to the accuracy

problems in low density media.
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Chapter 1

Introduction

External beam radiotherapy is a crucial step in the modern treatment of can-

cer, with the accuracy and predictability of radiation dose deposition of critical

importance to clinicians. In radiotherapy, the aim is typically to induce cy-

totoxic effects in cancer cells while causing as little damage as possible to

surrounding healthy tissue [1]. The first step in treatment planning is usually

simulation, often using computed tomography or CT. This process generates

a three-dimensional image of the tumour and surrounding tissues, effectively

giving a three dimensional representation of the patient anatomy. Addition-

ally, the CT voxel values can be related to electron density as required for dose

calculations. The images are then used to configure radiation beams around a

patient in order to achieve a high dose to the tumour and a suitably low dose

to the surrounding tissues. While earlier treatments were restricted to simple

beam shapes, advances in linear accelerator (linac) technology has allowed for

conformal beam delivery using multi-leaf collimators (MLCs). MLCs allow for

adaptive, dynamic beam shaping in real-time during treatment. In addition

to the ability to treat tumours conformally, advances like intensity-modulated

radiation therapy (IMRT) and volumetric arc therapy (VMAT) have led to

more precise treatment plans that can better spare healthy tissues and organs
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at risk.

The International Commission on Radiation Units and Measurement (ICRU)

recommends that dose should be delivered within an accuracy of 5% [2]. A

number of components contribute to this possible error, including but not lim-

ited to, daily patient setup, target contouring and the dose calculation tools

used [2]. Each component contributes to the overall uncertainty, and im-

provements in each step of the treatment flow can improve overall treatment

accuracy. As a result, dose modelling is an important area of research, with

the primary goals being accuracy and computational speed. Dose models allow

for radiation distributions to be quantified and predicted prior to treatment,

so that if a particular dose is prescribed to a tumour along with upper dose

limits on surrounding organs and normal tissues, a plan can be designed to

meet these criteria. Having an accurate model gives a clinician confidence that

a patient will receive the dose as predicted. In addition to the accuracy re-

quirement, such models should be reasonably fast to execute so that treatment

planning can be done in minutes.

1.1 Dose

The ability to quantify the dose distribution within a patient is an impor-

tant component of the treatment flow. Absorbed dose refers to the energy

absorbed per unit mass, and has SI units of Gray, or Gy, where 1 Gy=1 J/kg

[3]. This energy is deposited via a number of interactions, each having their

own probability of occurrence based on parameters such as material density

and particle energy. In this work, the primary focus is on photon irradiations

generated from a therapeutic linear accelerator. Photons are indirectly ioniz-

ing and do not themselves deposit dose; however, photons that interact with

matter generate directly ionizing particles in the form of secondary electrons
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and positrons. These secondary charged particles then induce ionizations in

the irradiated material as they lose energy and slow down [4]. As charged

particles slow down, the energy deposition per unit path length, also called

stopping power, increases, with most of the energy deposited near the end of

the particle’s trajectory [3]. Thus to fully model the process of dose deposi-

tion, photon flux and the relevant photon-electron interactions that generate

the secondary electron flux must both be considered. It is then using this

electron flux that absorbed dose may be calculated.

The primary photon-electron interactions of interest are the Compton ef-

fect, the photoelectric effect, and pair production. The relative contribution

of each process depends on both the atomic number of the irradiated mate-

rial and the incident energy of the interacting photon [5]. The probability

of each interaction is quantified via its macroscopic cross-section, to be dis-

cussed further in Chapter 2. The total probability of interaction then is the

sum of all individual interaction probabilities. It is through these macroscopic

cross-sections that these physical processes can be incorporated into the dose

modelling process [6].

1.1.1 Dose Calculation and Treatment Planning

All methods for calculating dose are based on the linear Boltzmann transport

equation (LBTE), as they either attempt to solve it directly (such as determin-

istic methods) or indirectly (such as Monte Carlo techniques). The LBTE is

an integrodifferential equation describing radiation transport and its solution

corresponds to the radiation probability distribution parametrized by space,

angle and energy. This distribution can then be translated to dose through

the use of energy deposition cross-sections [6].

Dose calculation algorithms have been in use since the 1950’s [7], and use a

variety of techniques to solve or approximate the LBTE. The earliest methods
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of dose-calculation were correction-based algorithms [8]. From here, the field

progressed towards model-based algorithms [1, 3], before the development of

the sophisticated principle-based algorithms [6, 9] that are in use today. The

development of all of these methods was guided both by an increase in our

understanding of radiation physics, and an improvement in computational

power [7]. A more complete description of each type of method is given below.

1.1.2 Correction-based Methods

Correction-based techniques assume that a patient is water-equivalent, then

use correction factors to obtain a more accurate representation of the dose

to the patient. These factors are used by correcting the dose under certain

reference conditions for different aspects of the treatment configuration one at

a time [1]. For example, the tissue maximum ratio (TMR) may be used to

determine the effect of depth in a phantom on the resultant dose, and the head

scatter factor (HSF) accounts for scatter from the treatment machine head.

An inverse square factor incorporates the effect of distances that differ from

the reference distance, and modulation factors account for beam modulators

such as wedges or MLCs [3, 10, 11]. The first step in correction-based methods

then is the measurement of all relevant factors in a water phantom [8]. Once

all reference values have been tabulated, an equivalent water dose can be

obtained. It should be noted, however, that some factors do not need to be

measured and can be determined through a simple calculation, such as the

inverse square factor [1].

The equivalent water dose is then converted to a patient dose value through

the use of an inhomogeneity correction factor (ICF) that accounts for the

presence of materials of varying densities [8], and is equal to the ratio of the

dose in the heterogeneous medium to the dose in water [12]. Obtaining an

accurate dose in the presence of inhomogeneities is one of the most challenging
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aspects of any dose calculation algorithm. For correction-based methods, a

number of techniques for determining the ICF have been developed, beginning

in the 1960s [12]. The most direct method is to simply use a ratio of the tissue

air ratio (RTAR) values using the actual depth (d) to the calculation point

and an adjusted depth (d′). The ICF is then given as the TAR at d′ and the

given field size, divided by the TAR at depth d and the given field size. The

depth d′ is computed as the equivalent depth in water equivalent material as

determined by the relative electron densities [8, 12].

Other methods for calculating the ICF include the Batho power law, and

the equivalent TAR, or ETAR [12]. The Batho power law was developed in

the mid 1960s, and consists or raising the TAR values to some power that is

determined by the density of inhomogeneities present [13, 14]. This method

has been shown to be an improvement over the RTAR method for some cases,

however it still only includes local energy deposition and has great limitations

in cases of large field sizes or very dense inhomogeneities [12]. The ETAR

[15, 16], or equivalent tissue-air ratio method was used widely in the 1980s

and is still in limited use today [12]. This method uses full patient CT scans

to compute effective values for both the field size and the depth, before again

calculating a ratio of TARs.

Correction-based methods are useful in their simplicity, and are still some-

times used clinically as a second-check for treatment-planning software [7, 11];

however, these methods have some significant limitations that necessitated

the development of more sophisticated methods of calculation. Correction-

based algorithms assume ideal conditions of charged-particle equilibrium, and

struggle in the presence of inhomogeneities that do not have a simple slab-like

geometry, as correction-based methods do not effectively account for lateral

scatter [7, 11]. These techniques will thus have poor accuracy in cases such as

build-up regions and tissue interfaces.
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1.1.3 Model-based Methods

Model-based methods are based on underlying physical principles, with cer-

tain approximations made to speed up calculation time [7]. As the primary

photons interact in a medium, they undergo scattering events, generating sec-

ondary particles that themselves go on to deposit energy. This whole process

can be represented computationally through the use of pre-calculated scatter

kernels. The result of this is that non-local energy deposition can be some-

what accounted for, as electron transport is incorporated into these kernels.

With correction-based methods, only local energy deposition is accounted for

[12, 17]. Thus, model-based methods for dose calculation consider dose de-

position as a two-step process: 1) Fluence modelling, and 2) Dose deposi-

tion. The primary photon fluence is thus calculated, followed by convolution-

superposition with the scattering kernels [7].

To model photon fluence, typically a number of components are computed

and summed to obtain the TERMA, or the total energy released to the medium

per unit mass due only to primary photon interactions. For example, the

TERMA may be divided into contributions direct from the target and from

the flattening filter and upper linac components, as well as contributions from

the collimators and any physical beam modulator used, such as a wedge [1].

Key to note about these various components is that the energy spectrum will

vary, thus necessitating unique deposition kernels for each contributor to the

total TERMA [1].

The next step uses scatter kernels to describe the process of spatial energy

deposition. These can be computed in one, two and three dimensions, with

three dimensional kernels giving the best accuracy but carrying the largest

computational cost [12]. These scatter kernels are typically calculated via

Monte Carlo simulations, which will be discussed in the next section. Water

equivalent material is used for calculation of these distributions and inho-
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mogeneous material is incorporated via density scaling [18]. Once both the

TERMA and energy deposition kernels have been calculated, the two quan-

tities are convolved to give the resultant dose distribution [12, 18]. Under

the proper conditions, these calculations can be done in the Fourier domain

to increase computational efficiency. These methods are referred to as fast

Fourier transform techniques [18]. Convolution-Superposition methods are

widely used in commercial treatment planning systems. For example, Varian’s

Analytical Anisotropic Algorithm (AAA) [19] uses this method.

1.1.4 Principle-Based Methods

Principle-based methods are built up from the physics underlying the dose

deposition process, which allows for a more accurate representation of inho-

mogeneities, as the effects are modelled directly. The two main examples of

these types of algorithms are deterministic schemes that solve the LBTE di-

rectly using sophisticated numerical techniques [9], and Monte Carlo methods

that indirectly solve the LBTE by simulating the behaviour of a very large

number of particles and computing their aggregate behaviour [20, 21].

Monte Carlo methods are often referred to as the “gold standard” in terms

of accuracy of radiotherapy dose calculations, particularly in cases with com-

plex geometries [22, 23]. These Lagrangian calculations are done by simulating

the trajectories of a large number of particles, mimicking the transport and

energy deposition of the physical particles (i.e., photons or electrons) via their

associated known probability distributions. An accurate Monte Carlo simula-

tion begins with the modelling of the treatment unit and phantom geometry,

as well as all the associated cross-section data [1]. These can then be used to

model the resulting dose distribution.

When all aspects are modelled appropriately, Monte Carlo simulations are

very accurate. However, their use is somewhat limited by the computational
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burden required to simulate the vast number of particles necessary to obtain

the desired reduction in statistical noise [22]. As such, Monte Carlo simulations

have traditionally been primarily useful in a research setting as a method of

validating other calculation methods [20, 22]. More recently, however, fast

Monte Carlo codes have been used clinically in some capacities.

The other main principle-based method is to deterministically solve the

LBTE via an Eulerian method [9, 22, 23, 24, 25], which will be the focus

of this work. Deterministic methods involve discretization of space, angle

and energy, where care must be taken to ensure stability due to the presence

of advection. Space is made up of three-dimensions, angle of two-dimensions

(polar and azimuthal components), and energy of one-dimension, resulting in a

six-dimensional phase space [26]. Spatial discretization can be done via a finite

element method (FEM), while angular discretization has traditionally been

done via discrete ordinates. Energy discretization typically uses a multigroup

method [6, 22, 27]. The result is a large system of equations that is then solved

for the unknown fluence values. All of these ideas will be discussed in more

detail in Chapter 2. Deterministic methods can be faster to calculate than a

full unaccelerated Monte Carlo simulation, and don’t suffer from the statistical

noise present in the latter.

Existing deterministic methods have been developed and commercialized,

and are used in standard linac treatment planning systems. Varian’s Acuros

XB is a deterministic Boltzmann solver capable of both speed and accuracy,

even in inhomogeneous geometries. The accuracy is comparable to Monte

Carlo techniques, with improved computational efficiency [28].
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1.2 Linac-MR Systems

Tumour localization is one of the most challenging aspects of radiotherapy, as

anatomical structures can move between imaging and treatment, or even un-

dergo movement during treatment. These issues necessitate the use of margins

that increase the treatment area to ensure the tumour receives the appropriate

dose, thus resulting in higher normal tissue dose to the patient. A potential

solution mitigating this problem has been developed that combines a standard

linear accelerator (linac) with magnetic resonance imaging (MRI) to allow for

real-time imaging during treatment [29, 30]. Three main MRI-guided linac

designs currently exist, with significant variations in their specifications. The

Alberta Linac-MR project at the University of Alberta developed one of the

first linac-MR designs, the Aurora-RT, which combines a 0.5T superconduct-

ing bi-planar MRI and a 6 MV linac. A key component of this design is that

the radiation beam runs parallel to the main magnetic field. This design has

been shown to have less of an effect on the resulting dose than a perpendic-

ular configuration [31]. The Australian Magnetic Resonance Imaging-Linac

Program has also developed a linac-MR system with a parallel configuration

[32]. The first commercial MR linac was developed by ViewRay, and origi-

nally featured a 0.35T MRI combined with three cobalt sources [33], and more

recently uses a 6MV linac source [34]. The third design, the Elekta Unity MR-

linac, combines a 1.5T superconducting MRI and a 7MV linac [35]. Both the

ViewRay and the Elekta units feature a configuration in which the radiation

beam runs perpendicular to the main magnetic field.

1.2.1 Dose Calculation

Combination linac-MR machines involve delivering a patient’s radiation dose

while they are immersed in a magnetic field, which has an effect on dose deposi-
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tion due to the Lorentz force [24]. While the primary photons are unaffected,

secondary charged particles produced via photon interactions experience a

deflection which alters their paths. Depending on magnetic field strength

and beam/magnetic field orientation, this effect can be clinically significant

[36, 37, 38]. Thus, existing deterministic methods for dose calculation must

be modified in order to be applied to the case of linac-MR systems. The

LBTE is derived based on underlying physical principles of mass conservation.

Streaming, scattering and sources are all accounted for, providing an accurate

model in most circumstances. However, when radiation is delivered within a

magnetic field, an accurate radiation transport model must account for the

additional physical phenomenon caused by the Lorentz force. Even in cases of

uncharged particle transport, a secondary charged particle flux is induced, as

described above, which is then affected by the presence of the magnetic field.

Thus, full characterization of radiation transport within a magnetic field must

include an angular advection term [23, 24].

Such a model was derived and modelled by St-Aubin et al. [23, 24]. While

the original LBTE features only a spatial advection term, the LBTE with

magnetic field term includes both spatial and angular advection. It is a well

known mathematical result that advection-dominated PDEs are challenging to

solve numerically, with stabilization often required [39]. As a result, existing

deterministic methods of solving the LBTE are not sufficient for the LBTE

with magnetic fields, and additional angular stabilization is required. An

existing scheme developed by Yang et al. [40] and St-Aubin et al. [23] will be

introduced that provides stabilization in both space and angle, and that has

been validated against Monte Carlo for accuracy. While this scheme satisfies

both the stabilization and accuracy requirements, there are some factors that

limit the attainable computational speed, to be discussed further in Chapter

2.
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1.3 Thesis Outline

This thesis focuses on the development of a novel stabilization scheme for the

angular advection component of the LBTE with magnetic field term. This

investigation begins in Chapter 2 where the relevant background information

is provided, beginning with a review of advection-diffusion equations and as-

sociated stability issues. The LBTE is then introduced and fully described,

including the incorporation of the magnetic field term. The existing frame-

work of Yang et al. [40] is then introduced, along with some of its limitations.

In particular, the convergence properties are discussed including the spectral

radius results of Zelyak et al. [26].

In Chapter 3, a novel method of angular stabilization is derived for the

LBTE with magnetic fields using a streamline upwind Petrov-Galerkin (SUPG)

scheme. Following derivation, the convergence behaviour is investigated by us-

ing both a continuous and discretized spectral radius calculation. The scheme

is then implemented by modifying the existing framework of Yang et al. [40],

and simulations are performed using both homogeneous and inhomogeneous

phantoms. Accuracy is evaluated by direct comparison to the results obtained

using the existing validated framework.

Chapter 4 describes the derivation of a modification of the SUPG method

developed in Chapter 3. The scheme described in Chapter 3 is a linear SUPG

method, while that derived in Chapter 4 adds a non-linear component. The

linear SUPG method of Chapter 3 was found to be over-diffusive in the case

of low-density media such as lung or air, and the non-linear SUPG method is

derived and presented as a possible solution.

Finally, Chapter 5 concludes by reviewing the key contributions, results

and conclusions of the work described throughout the first four chapters.
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Chapter 2

Theory

The LBTE is a partial differential equation (PDE) that calculates dose deter-

ministically based on physical principles such as conservation of mass. Both

particle streaming (i.e., propagation) and scattering are present to varying

degrees dependent on energy and material. In low-density materials, scatter

is dominated by particle streaming and the LBTE is an advection-dominated

equation. This means that particles travel predominantly with a fixed ve-

locity, due to the relatively low amount of scatter that occurs at such low

densities. Advection-dominated PDE’s create numerical challenges and must

be handled carefully in order to ensure stable and accurate solutions. In this

chapter, some background on advection-diffusion equations is given, followed

by a description of the LBTE, including the magnetic field term. The finite

element implementation of the LBTE with magnetic fields is then given as

per the work of Yang et al. [40], followed by a discussion of the limitations

and computational constraints associated with using an upwinding method for

stabilization.
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2.1 Advection-Diffusion Equations

While the LBTE is not explicitly an advection-diffusion equation, the proper-

ties are similar. As such, we begin with a brief overview of advection-diffusion

equations, as well as associated stability issues that can arise.

Advection-diffusion systems are used in the modelling of many physical

phenomena, from heat transfer to concentration gradients, or in this case,

radiation transport. A general advection-diffusion equation takes the form

∂u

∂t
+ ~c · ∇u = D∆u, (2.1)

where u represents the dependent variable, ~c gives the advective velocity, D

the diffusion coefficient, and ∆ = ∇ · ∇. The advective term serves to move

the entire solution with the given velocity, while the diffusive term spreads

and smoothes out the solution.

While the general form of the equation is given above, it is often appropriate

to consider the time-independent steady-state case. In these cases, the time-

derivative can be set to 0 and the resultant equation is considered in place of

Equation 2.1:

~c · ∇u = D∆u. (2.2)

The steady-state solution is considered in cases where one is not concerned

with the transient behaviour of the solution. For example in the case for the

LBTE, the resulting dose distribution or energy fluence is all that is required

and transient behaviour of the solution is of little importance for clinical ap-

plications.
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2.1.1 Stabilization

In cases where the system is highly advection dominated (i.e. where |~c| is

very large relative to D), obtaining a numerical solution is challenging. These

types of systems are very susceptible to instabilities if care isn’t taken with

the solution technique. The following simple example, adapted from Fries and

Matthies [39] highlights the instabilities that can arise. Consider a simple

one-dimensional, steady-state, advection-diffusion equation:

c
∂u

∂x
−D∂

2u

∂x2
= 0. (2.3)

A characteristic dimensionless value called the Peclet number quantifies the

amount of advection present in a system relative to the amount of diffusion,

and is defined by Pe =
c∆x

2D
[39], where ∆x gives the grid size. The system

is then unstable for Pe > 1, and can be stabilized by reducing the advection,

increasing the diffusion, or decreasing the grid size [39].

A simple finite difference numerical solver can illustrate the introduction

of numerical instabilities with increasing Peclet number. A central difference

scheme is first used in both first and second derivatives:

∂u

∂x
≈ ui+1 − ui−1

2∆x
, (2.4)

∂2u

∂x2
≈ ui+1 − 2ui + ui−1

(∆x)2
. (2.5)

The results of simulating Equation 2.3 using the central difference numerical

schemes are shown in red in Figure 2.1 for increasing Peclet number, alongside

the exact solution in black. Note that for Pe > 1, the result is unstable.

In this case, the result can be stabilized by using an upwinding numerical
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(a) (b)

(c) (d)

Figure 2.1: The results of simulating Equation 2.3 with a central difference
scheme (red), and an upwinding scheme (blue), as well as the exact solution
(black), for Peclet numbers of (a) Pe=0.5, (b) Pe=1.0, (c) Pe=2.5 and (d)
Pe=5.0.

discretization for the advective term, i.e.,

∂u

∂x
≈ ui − ui−1

∆x
, (2.6)

where c is assumed positive. These results are shown in Figure 2.1 in blue,

and it is seen that while the solution is now stable, the accuracy is affected.

The system considered in the remainder of this document will employ a

finite element scheme, but the important concept remains the same: advection-

dominated systems introduce a high degree of numerical instability and thus

stabilization of any advective terms is required. In the case of the LBTE

with magnetic fields considered in the following sections, the system is highly

advection-dominated in both space and angle, hence stabilization of both terms
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is required.

2.2 Linear Boltzmann Transport Equation

As alluded to in the introduction, dose calculation amounts to solving or ap-

proximating the solution of the LBTE. The LBTE is an integro-partial differ-

ential equation modelling radiation transport in a medium. The full derivation

is omitted here, however a brief outline of the framework and equation is pro-

vided. For a full derivation, see Lewis and Miller [6].

The LBTE as presented here models angular fluence and arises as a result of

particle conservation. In the case where a large enough quantity of particles is

present, then statistical uncertainty or fluctuations about the expected fluence

value can be ignored. The LBTE deterministically models the expected fluence

value, neglecting any perturbations under this assumption. The steady state

LBTE is a time-independent equation, as dose-calculation is not concerned

with transient behaviour, only steady-state fluence. The angular fluence (ψ)

is first parameterized by space (~r), angle of propagation (~Ω = ~v/v) and energy

E, for a total of six-dimensional phase space. Particle conservation is then

considered on a macroscopic scale, with each term in the equation describing

a way in which the angular fluence within an infinitesimal volume can change.

The terms can be described as follows:

• Term I: Spatial streaming: The particles are moving through space with

orientation ~Ω. This is modelled through a first order derivative term, and

provides the spatial advection term.

• Term II: Removal: Particles scatter out of a given energy/angle as they

interact with other particles in the medium. This process is described

by the total cross-section, σT .
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• Term III: Scattering in: Particles scatter into a given energy/angle

from all other energies and angles. This kernel term takes the form of

an integration over both energy and angle, and thus depends on the

differential cross-section.

• Term IV: External source: Particles input into the system from some

external source, such as a radioactive source.

The equation is then given by [6]

~Ω · ∇ψ(~r, ~Ω, E)︸ ︷︷ ︸
Term I

+ σT (~r, E)ψ(~r, ~Ω, E)︸ ︷︷ ︸
Term II

= Q(~r, ~Ω, E)︸ ︷︷ ︸
Term III

+S(~r, ~Ω, E)︸ ︷︷ ︸
Term IV

(2.7)

The explicit form of the scattering term Q is generally written as Qxy,

meaning particles of type y created from particles of type x. For example,

Qpp would refer to photons generated as a result of photon scattering, while

Qpe corresponds to electrons generated as a result of photon scattering. This

scattering term takes the form of an integral [24]:

Qxy =

∫ ∞
0

dE ′
∫
dΩ′σxys (~r, E ′ → E,Ω · Ω′)ψx(~r,Ω′, E ′), (2.8)

where σs gives the macroscopic differential scattering cross-section [22]. As-

suming an isotropic scattering medium, the differential scattering does not de-

pend on the individual angles Ω and Ω′, but only on the angle between them,

via Ω · Ω′. This property can be exploited, and the differential cross-section

can be expanded in Legendre polynomials P`(Ω · Ω′) [6, 22]:

σs(~r, E
′ → E, ~Ω′ · ~Ω) =

∞∑
`=0

(2`+ 1)σ`(~r, E
′ → E)P`(Ω

′ · Ω) (2.9)

=
∞∑
`=0

∑̀
m=−`

σ`(~r, E
′ → E)Y ∗`m(~Ω′)Y`m(~Ω), (2.10)
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where the Y`m are the spherical harmonic functions, and σ`(~r, E
′ → E) are the

expansion coefficients in the Legendre polynomials, found via [22]

σ` =
1

2

∫ 1

−1

dµ0σs(~r, E
′ → E, µ0)P`(µ0) (2.11)

with µ0 = ~Ω′ · ~Ω. The following property of Legendre polynomials was used

P` =
1

2`+ 1

∑̀
m=`

Y ∗`m(~Ω′)Y`m(~Ω). (2.12)

Note that for practical applications, an upper limit L is imposed such that

0 ≤ ` ≤ L, effectively truncating the spherical harmonic moment expansion

order. It is also customary to expand the angular flux from Equation 2.8 over

angular flux moments

ψ(~r, ~Ω′, E ′) =
∞∑
`′=0

`′∑
m′=−`′

φ`′m′(~r, E ′)Y`′m′ . (2.13)

The spherical harmonic moments can be found via

φ`′m′(~r, E ′) =

∫
dΩ′Y`′m′(~Ω′)ψ(~r, ~Ω′, E ′). (2.14)

Finally, substituting equations 2.10 and 2.13 into Equation 2.8 gives

∫
0∞
dE ′

∫
dΩ′σs(~r, E

′ → E, ~Ω′ · ~Ω)ψ(~r, ~Ω′, E ′) (2.15)

=
∞∑
`

∑̀
m=−`

∫
dE ′

∫
dΩ′σ`(~r, E

′ → E)Y ∗`mY`m(~Ω)
∞∑
`′=0

`′∑
m′=−`′

φ`′m′(~r, E ′)Y`′m′(~Ω)

=
∞∑
`=0

∑̀
m=−`

∫
dE ′σ`(~r, E

′ → E)φ`m(~r, E ′)Y`m(~Ω),
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where the following property of spherical harmonics was used

∫
dΩ′Y ∗`m(~Ω′)Y`′m′(~Ω′) = δ``′δmm′ . (2.16)

The LBTE describes the angular flux of a given particle type, for example,

photons, electrons or positrons. In this thesis, two simplifying assumptions

are made:

(1): Positrons that are produced do not annihilate and no photons are pro-

duced, allowing them to be treated as electrons [24], and

(2): Photons are not produced as a result of Bremsstrahlung [41].

In the radiotherapy energy range, both of these assumptions should con-

tribute only a very small amount of error and should not reduce the accuracy

of the results in a significant way [41]. Additionally, these assumptions greatly

simplify the solution method.

When computing angular flux in a radiotherapy situation, it is the elec-

tron flux that deposits dose, hence, it is ultimately the electron equation that

needs to be solved. However, generally, a radiotherapy source produces pho-

tons, and the secondary electrons are generated via photon scattering. As

a result, a coupled system is required to fully characterize the system. As-

sumption (1) above allows for only two particle types to be considered, and

assumption (2) allows for Qep to be neglected, or, the photons that would

be generated via bremsstrahlung. Practically speaking, this means that the

photon equation can be solved first, followed by the electron equation, without

having to iteratively solve both equations simultaneously.

The above representation of the LBTE is valid for photons, however for

electrons, the Boltzmann-Fokker-Planck equation must be used to account for

additional physical properties. The Boltzmann-Fokker Planck equation, or

BFP, consists of the original terms of the LBTE, a continuous slowing down
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(CSD) term, plus Fokker-Planck terms. The full BFP including all of these

terms is given by [22, 42]

~Ω · ~∇ψ(~r, E, ~Ω) + σT (~r, E)ψ(~r, E, ~Ω)

− α

2

[
∂

∂µ
(1− µ2)

∂

∂µ
ψ(~r, E, ~Ω) +

1

1− µ2

∂2ψ(~r, E, ~Ω)

∂φ2

]
− ∂

∂E

(
βr(~r, E)ψ(~r, E, ~Ω)

)
= Q(~r, E, ~Ω) + S(~r, E, ~Ω), (2.17)

where α is the momentum transfer coefficient, and βr is the restricted mass

stopping power. For ease of notation, let µ = cos θ. In the case of external

beam photon calculations, it can be reasonably assumed that α ≈ 0, leaving

only the CSD term [22].

Therefore, the coupled system takes the form

~Ω · ∇ψp + σp(~r, E)ψp(~r, ~Ω, E) = Qpp + Sp, (2.18)

~Ω · ∇ψe + σe(~r, E)ψe −
∂

∂E

(
βr(~r, E)ψe(~r, E, ~Ω)

)
= Qee +Qpe + Se. (2.19)

From this point, once the electron fluence is calculated, the dose can then

be computed using the energy deposition cross-section σED(~r, E) via [42]

D(~r) =

∫
dE

∫
dΩ

σED(~r, E)

ρ
ψe(~r, E, ~Ω), (2.20)

where D(~r) is the deposited dose, and ρ is the density of the material. Calcu-

lating the dose in the case of an MRI-guided linac, however, requires a modi-

fication to the electron LBTE given in Equation 2.19, which will be described

in the following section.
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2.2.1 Inclusion of Magnetic Field Term

As mentioned in the introduction, when irradiation occurs within a magnetic

field, the physics of dose deposition are impacted. This effect was derived by

St-Aubin et al. [23, 24] and incorporated into the original LBTE as shown in

Equation 2.7. The resultant equation for a general charged particle is given

by

~Ω · ∇ψ(~r, ~Ω, E) +
q

|~p|
~τ( ~B, ~Ω) · ∇Ωψ(~r, ~Ω, E)︸ ︷︷ ︸

Angular Streaming

+σT (~r, E)ψ(~r, ~Ω, E)

− ∂

∂E

(
βr(~r, E)ψ(~r, ~Ω, E)

)
= Q(~r, ~Ω, E) + S(~r, ~Ω, E), (2.21)

where q is the particle charge, ~p is the particle momentum, ~B is the magnetic

field vector, and

~τ( ~B, ~Ω) =
1√

1− cos2 θ

[(
~Ω× (~Ω× ~B)

)
z
φ̂−

(
~Ω× ~B

)
z
θ̂
]
. (2.22)

Note that θ and φ represent the spherical polar and azimuthal angles, re-

specitvely. As before, let µ = cos θ. Then, the angular gradient is given by

∇Ω =
1√

1− µ2

∂

∂φ
φ̂+

∂

∂θ
θ̂. (2.23)

For ease of implementation, it is often useful to assume that the magnetic

field is in the z-direction only without loss of generality as any problem can

be reduced to this orientation through a coordinate transformation [23]. This

simplifies the magnetic field term greatly, as the
(
~Ω× ~B

)
term in ~τ will be

orthogonal to the z-direction, hence
(
~Ω× ~B

)
z

= 0, and the angular advec-

tion term reduces to a partial derivative in φ, as opposed to the full angular

gradient.
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Vacuum boundary conditions are used such that no particles cross the

boundary into the domain:

ψ = 0, ~Ω · ~n < 0, (2.24)

where ~n is an outward unit normal perpendicular to the boundary of the

domain.

2.3 Discretization of the Variables of the LBTE

As with many PDE’s, the analytical solution of the LBTE with magnetic fields

is not known, hence a solution must be achieved via numerical methods. The

existing work of Yang et al. [40] will be discussed here with an alternative

angular discretization method derived and discussed in Chapters 3 and 4. In

the existing scheme, energy discretization is handled using the multigroup

method [6], and both space and angle are discretized using a Discontinuous

Galerkin Finite Element Method (DGFEM) [23, 40].

2.3.1 Energy Discretization

While space and angle will be discretized via the finite element method, or

FEM, discussed in the next section, energy is handled via the multigroup

method. This method involves dividing the energy domain into discrete energy

groups, with

Emin = EG < · · · < Eg < Eg−1 < · · ·E0 = Emax,

shown graphically in Figure 2.2 [26, 40].

The LBTE is then solved for each energy group, one at a time, from the

highest energy to the lowest energy. This order is chosen due to the downscat-
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Figure 2.2: A graphical depiction of the energy domain discretization via the
multigroup method.

ter of electrons to lower energy groups. For example, we are assuming electrons

will not gain energy from scattering interactions, hence electron generation can

only occur from higher energy groups to lower energy groups. Assuming func-

tions vary slowly in energy over each bin, energy-dependent parameters can

be computed as:

σg(~r) =

∫ Eg

Eg+1

dE
σ(~r, E)

∆Eg
, (2.25)

σgg′(~r) =

∫ Eg

Eg+1

dE
σs(~r, E

′ → E)

∆Eg
, (2.26)

Sg(~r, ~Ω) =

∫ Eg

Eg+1

dE S(~r, ~Ω, E), (2.27)

where ∆Eg is the width of the specific energy group. Additionally, a multi-

group magnetic field parameter is defined as [23]

κg =
qc

Eg − Eg+1

ln

(
Eg +m0c

2 +
√

(Eg +moc2)2 − (m0c2)2

Eg+1 +m0c2 +
√

(Eg +m0c2)2 − (m0c2)2

)
, (2.28)

where c is the speed of light, q is the particle charge, and m0 is the rest mass

of the particle. Then the energy dependence can be eliminated, and replaced
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by a discrete index “g”:

~Ω·∇ψg(~r, ~Ω) + σg(~r)ψg(~r, ~Ω) + κg~τ( ~B, ~Ω) · ∇Ωψg(~r, ~Ω)

= Qee
g (~r, ~Ω) +Qpe

g (~r, ~Ω) + Sg(~r, ~Ω).
(2.29)

Recall that while the electron subscripts have been dropped, Equation 2.29

models electron transport. Additionally, the CSDA term is omitted here as

it has been incorporated into the Qee term via a diamond difference approxi-

mation [43]. Similarly, the group indices will be dropped going forward, how-

ever it is assumed that the equation represents one energy group. With the

multi-group implementation, the scatter source of Equation 2.8 becomes a

summation over energy groups, as opposed to a continuous integral:

Qxy
g =

∫
Ω

d~Ω′
g∑

g′=1

σxys (~r, g′ → g, ~Ω · Ω′)ψg′x (~r,Ω′). (2.30)

Note however, that while scattered fluence is generated by higher energy groups

in the form of down-scatter, scatter fluence is also generated within a given

energy group, i.e., g → g, in the form of in-scatter. As this term then depends

on the angular fluence that is being calculated, the problem must be solved

via iteration over ψg until convergence is achieved. This will be discussed in

Section 2.4.

2.3.2 Spatial and Angular Discretization

In employing the finite element method, or FEM, the PDE can be considered

in operator form for ease of notation:

Lψ = g. (2.31)
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(a) (b)

Figure 2.3: (a) A sample spatial element [26], and (b) a sample angular dis-
cretization [40].

In comparing this to the modified LBTE given in Equation 2.21

L = ~Ω · ∇+ κ~τ( ~B, ~Ω) · ∇Ω + σT (~r) (2.32)

and

g = Q(~r, ~Ω) + S(~r, ~Ω). (2.33)

The idea then is to discretize the system so that an approximation of the un-

known function can be found via solution of a linear system. This is done by

first discretizing both space and angle into a series of finite elements, each con-

taining a fixed number of “nodes”, or points. For example, space is discretized

into cubic voxels, with each voxel containing six faces and eight nodes. An

example of such an element is shown on the left of Figure 2.3, and is taken

from [26]. The angular elements are chosen to be triangles conformal to the

unit sphere, with each element having three, six or ten nodes depending on

the basis functions used. A sample discretization of the unit sphere is shown

on the right in Figure 2.3, modified from [40].

The next step is to define basis functions on each element, which will control

how the solution is interpolated within the elements. In this case, the spatial
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basis functions are defined for each node, to be equal to 1 at the node itself,

and 0 at every other node. Interpolation between nodes is given by linear

functions. Similarly, the angular basis functions are defined as 1 at the node

itself, and 0 at every other node. In this case, however, the interpolation is

done using higher-order polynomials, such as quadratic or cubic functions.

The unknown function (angular fluence in this case) is then expanded in

the set of basis functions defined on the discrete nodes

ψ ≈ ψ̃ =
I∑
i=1

P∑
p=1

ψipλi(~r)γp(~Ω), (2.34)

where λi(~r) and γp(~Ω) are the spatial and angular basis functions. In this case,

I = 8, and P = 6 for quadratic basis functions and P = 10 for cubic basis

functions, for the number of spatial nodes per element, and angular nodes

per element, respectively. It is key to note here then, that the equation will

be solved on an element-by-element basis, with the flow between elements

controlled via the boundary terms. The values at each spatial node, however,

will be discontinuous, thus the value at a given node could differ depending

on which element is being solved if it is common to more than one element.

This ends up being advantageous as a discontinuous FEM allows for better

resolution of the fluence over sharp spatial interfaces in radiation transport

problems [40].

The expansion coefficients ψip then represent the unknowns in the problem,

and as the basis functions are pre-defined, the approximate solution requires

solving for these coefficients. This is done by minimizing what is referred to

as the residual, given by [44]

r̃ = g − Lψ̃. (2.35)

To solve this, the residual is first multiplied by a weighting function wi and
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integrated over the domain. The result is then set to 0, i.e., [44]

∫
V

r̃wi(x) = 0. (2.36)

Such methods in general are referred to as “weighted residual”. The type of

weighting function that is used determines the specific numerical method used.

In this case, a Galerkin method is chosen, whereby the weighting function is

chosen from the same set of basis functions used to expand the unknown

function [44]. Then, for the LBTE

∫
V,Ω

(Lψ̃ − g)λj(~r)γq(~Ω) = 0, (2.37)

which can also be written in inner product form as

〈Lψ̃,Υ〉 = 〈g,Υ〉, (2.38)

with Υ(~r, ~Ω) = λj(~r)γq(~Ω).

The expansion of Equation 2.34 is then substituted into Equation 2.38:

〈Lψ̃,Υ〉 =
I∑
i=1

P∑
p=1

ψip

∫
V,Ω

d~ΩdV
[
γp~Ω · ∇ (λi) + λiκ~τ · ∇Ω (γp)

+σT (λiγp)] (λj(~r)γq(~Ω)),

(2.39)

and

〈q,Υ〉 =
I∑
i=1

P∑
p=1

ψip

∫
V,Ω

d~ΩdV
[
Q(~r, ~Ω, E) + S(~r, ~Ω, E)

]
(λj(~r)γq(~Ω)). (2.40)

If i, p are grouped into a hybrid index, as well as j, q, then ψip can be interpreted

as a vector with the integral terms generating a matrix. Upon solving the

known terms of the right hand side, a linear system is generated, and vector ψip
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can be determined. As this is a discontinuous Galerkin method, the equations

are solved on each pair of spatial and angular elements, one at a time, as

opposed to the system as a whole. Thus elemental boundary conditions are

required. These boundary conditions are defined in space:

Ψipk =

ψ
inc
ip , ~Ω · n̂k < 0 (down-wind)

ψip, ~Ω · n̂k > 0 (up-wind),

(2.41)

where nk is the unit normal to boundary surface k of the spatial element.

Angular boundary conditions are given by:

Ψipk =

ψ
inc
ip , ~τ( ~B, ~Ω) · n̂k′ < 0 (down-wind)

ψip, ~τ( ~B, ~Ω) · n̂k′ > 0 (up-wind),

(2.42)

with

n̂k′(~Ω) =
~dl × ~r
|~dl × ~r|

, (2.43)

or the unit normal to boundary edge k′ of the angular element. The incom-

ing fluence is given by the adjacent upwind elements based on the respective

advective velocities. The outgoing fluence is calculated based on the function

defined in the element itself. For elements at the boundary of the domain, the

vacuum boundary conditions are used. It should be noted that while for the

existing scheme elemental boundary conditions are defined in both space and

angle, this will not be the case for the new system derived in Chapter 3. A

continuous method will be used to stabilize the angular advection term and

thus elemental boundary conditions will only be defined in space.
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2.4 Stationary Iterative Schemes

Many mathematical systems, such as the discretized LBTE, can be expressed

as linear systems in the form of

A~x = ~b, (2.44)

where A is the coefficient matrix, ~x is the unknown vector, and ~b is the known

source vector. The unknown vector ~x can then be written in terms of the

inverse of the coefficient matrix:

~x = A−1~y. (2.45)

For some forms of A, the system may be solved directly, however for full matri-

ces or very large systems, computer memory capabilities or computational time

requirements limit the possibility of direct solutions. Additionally, round-off

errors can become significant for large systems [6, 45]. For cases where direct

methods are infeasible, iterative solution methods are the preferred approach.

Iterative methods are those which begin with an initial guess x0 and pro-

ceed through a sequence of approximate guesses x1, x2, . . . , xn, . . . which should

converge to the exact solution as n→∞ [45]. Of course in practice, such se-

quences must be terminated after some finite number of iterations, thus the

rate at which the method converges is of great importance computationally.

Any numerical method used to solve the modified LBTE must have a reason-

able convergence rate, or the efficiency will be (sometimes drastically) reduced.

In the next section, we discuss a method for quantifying the convergence rate.
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Spectral Radius

Beginning with

A~x = ~b, (2.46)

assume that A is a non-singular matrix, i.e., that det(A) 6= 0. A standard

family of iterative solution methods referred to as splitting methods involve

“splitting” matrix A by expressing it as the difference of two matrices M and

N :

A = M −N. (2.47)

Note that M and N must be of the same order as the coefficient matrix, and

that det(M) 6= 0. Equation 2.46 can then be rewritten as

M~x = N~x+ b. (2.48)

The sequence of approximate solution vectors {~xn}, beginning with initial

guess ~x0, is then generated by the recursive relation

M~xn = N~xn−1 + b, n = 1, 2, . . . . (2.49)

As there are infinitely many ways to choose M and N , there are several im-

portant considerations in how these matrices are chosen. In a practical sense,

splitting methods only make sense if the resulting system is easier to solve than

the original linear system, hence matrix M should generate a linear system

that is easy to solve. For example, the standard Jacobi method uses a diagonal

matrix for M , while the Gauss-Seidel method uses a lower triangular matrix

for M [46]. Additionally, not every combination of M and N will generate

a convergent scheme, and for those schemes that do converge, their rates of

convergence can vary. To investigate the convergence properties, we introduce
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the “iteration matrix” T defined as

T = M−1N. (2.50)

Then, as per Isaacson and Keller [45], the iteration will converge provided the

magnitude of all eigenvalues of T are less than one. Equivalently, we may say

that the iteration will converge whenever ρ(T ) < 1, where [42]

ρ(T ) ≡ max{|λ| : λ ∈ σ(T )}, (2.51)

and σ(T ) is the eigenvalue spectrum of T , or the set of all eigenvalues of T .

ρ(T ) is referred to as the spectral radius of iteration matrix T . A quick error

analysis shows why this condition works. Define the error vector

e(n) = xn − x, n = 0, 1, 2, . . . , (2.52)

and subtract Equation 2.48 from Equation 2.49 to get

M(xn − x) = N(xn−1 − x), (2.53)

=⇒Me(n) = Ne(n−1). (2.54)

Applying the inverse of M to both sides gives

e(n) = M−1N︸ ︷︷ ︸
T

e(n−1) (2.55)

= Te(n−1) (2.56)

= T 2e(n−2) (2.57)

... (2.58)

= T ne(0), n = 1, 2, . . . . (2.59)
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Now let λi and ηi be the set of eigenvalues and eigenvectors for the iteration

matrix T , respectively. The set of eigenvectors is linearly independent, hence

the error associated with the initial guess x0 can be expanded as

e(0) =
J∑
i=1

αiηi, (2.60)

with coefficients αi. Then consider the error associated with x1:

e(1) = Te(0) (2.61)

= T
J∑
i=1

αiηi (2.62)

=
J∑
i=1

αiλiηi, (2.63)

then using the result from above that e(n) = T ne(0), by induction,

e(n) = T ne(0) (2.64)

=
J∑
i=1

αiλ
n
i ηi, n = 1, 2, . . . . (2.65)

Therefore in order for e(n) → 0 as n→∞, we require

|λi| < 1, i = 1, 2, . . . , J. (2.66)

The spectral radius gives an indication about the rate of convergence as

well, as schemes with ρ far less than 1 will converge rapidly. As the spectral

radius approaches 1 (while remaining less than 1), the convergence rate of the

scheme will be reduced. A scheme having a spectral radius value greater than

1 will not converge, and is referred to as unstable [47].
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Source Iteration

With respect to the LBTE with magnetic fields described above, multiple

terms depend on the unknown angular fluence which is to be computed. In

particular, the left hand side terms of Equation 2.21 clearly depend on the

unknown fluence for the energy group under consideration, however, the right-

hand side scattering integral also depends on the fluence for the current energy

group. While energy groups are solved from highest energy to lowest energy

to easily compute down-scatter between energy groups, there will also be in-

scatter whereby particles in the current energy group scatter, but do not lose

sufficient energy to become part of a lower energy group. Thus, the right hand

scatter source term will also depend on the unknown fluence.

Zelyak et al. [26, 42] performed a detailed analysis regarding which terms

should be calculated iteratively, and which should be treated as a known source

term based on the behaviour of the spectral radius, and thus the convergence

properties of the iteration. It was determined that optimal convergence is

achieved when the left-hand terms are computed iteratively, while the right-

hand scatter term is considered to be a known source. As such, Equation 2.21

is reframed in the form

~Ω ·∇ψ(t+1)(~r, ~Ω, E) +
q

|~p|
~τ( ~B, ~Ω) ·∇Ωψ

(t+1)(~r, ~Ω, E) +σT (~r, E)ψ(t+1)(~r, ~Ω, E)

− ∂

∂E

(
βr(~r, E)ψ(t+1)(~r, ~Ω, E)

)
=

`max∑
`=0

∑̀
m=−`

∫
dE ′σ`(~r, E

′ → E)φ
(t)
`m(~r, E ′)Y`m(~Ω) + S(~r, E, ~Ω), (2.67)

where ψ(t+1) is the unknown angular fluence, and φ
(t)
`m is the known angular

fluence moment from the previous iteration. Typically φ
(0)
`m is chosen to be 0.

The iteration is then carried out until the relative error goes below a specified
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threshold value ε, defined as

ε =
||φ(t+1) − φ(t)||
||φ(t+1)||

. (2.68)

2.4.1 Calculating the Spectral Radius

The spectral radius of a given scheme can be approximated discretely from

the simulation code, or it can be evaluated using the Fourier analysis method.

Both methods are briefly outlined here, and will be employed in Chapter 3 for

the evaluation of the spectral radius of the proposed stabilization scheme.

Approximation of the Spectral Radius

While one may be tempted to calculate the spectrum of the constructed itera-

tion matrix in order to determine the spectral radius, sometimes these systems

are prohibitively large such that direct calculation is not computationally fea-

sible. In such cases, the spectral radius can be estimated through the use of

the iterative error e(n) as defined by Equation 2.52 above. Assuming linear

convergence, the spectral radius can then be computed via [26, 47]

ρ = lim
t→∞

||ψ − ψ(t)||
||ψ − ψ(t−1)||

. (2.69)

This formula requires that the solution ψ be known, which is not typically the

case. As t→∞, an alternative formula for the spectral radius is given by

ρ = lim
t→∞

||ψ(t) − ψ(t−1)||
||ψ(t−1) − ψ(t−2)||

. (2.70)

In practice, the iteration can be truncated after sufficient time steps such that

the spectral radius value has stabilized.
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Fourier Analysis Method

While in this case the Fourier Analysis (FA) method will be applied to the

continuous case, it is equally applicable to both discrete and continuous sys-

tems [26]. The method provides a manner for predicting the spectral radius

before performing simulations, and thus also allows for isolation of any sources

of instability within an iterative scheme. FA can also be used to determine

the dependence of the convergence rate on certain parameters in the problem

under consideration. While a brief outline of the method is given here, an

application where the steps are followed through for a complete analysis of the

newly proposed stabilization scheme in angle will be shown in Chapter 3. For

more details of the method, see Zelyak [42], or Larsen and Morel [47].

The FA method begins with the iterative error on the unknown function

ψ, given by

δψ(t) = ψ(~r, ~Ω)− ψ(t)(~r, ~Ω), (2.71)

where ψ(~r, ~Ω) is the exact solution, and ψ(t)(~r, ~Ω) is the value of ψ after the

tth iteration. The iterative error is then expanded as a Fourier integral:

δψ(t)(~r) =

∫ ∞
−∞

a(t)(~λ)ei
~λ~rd~λ. (2.72)

When the Fourier expansion for the iterative error is substituted into the

system under consideration, an expression for the iteration matrix is derived.

Eigenvalues of the iteration matrix are then analyzed with respect to the

Fourier wave numbers, and the spectral radius behaviour can be determined.

This method allows for determination of the dependence of the spectral radius

on various parameters in the problem formulation.
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2.5 Stabilized Upwind Method

As mentioned in Chapter 1, the SUPG angular stabilization scheme developed

and evaluated in this work will be compared to an existing method that has

been validated against Monte Carlo simulations. The existing method will be

referred to as the upwind method, or DGFEM. The resulting linear system

for the DGFEM is based on Equation 2.38, with the left and right hand sides

given by Equations 2.39 and 2.40, respectively. The DGFEM method of St-

Aubin et al. [23] and Yang et al. [40] is a discontinuous method, and is solved

on an element-wise basis versus the entire system as a whole. For each pair

of spatial and angular elements, an individual linear system is computed and

solved to determine the values of ψip on each set of spatial and angular nodes.

This means that a given node can have multiple different values depending

upon which element in the system is being solved. The DGFEM method is

employed in both space and angle, and allows for the fluence across material

interfaces to be more effectively resolved versus a continuous method.

If the system is expanded, and each term written out, then as per Yang et
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al. [40], the elemental equation is given by

I∑
i=1

P∑
p=1

K∑
k=1

ψipk

∫
Ωα

d~Ωγp(~Ω)γq(~Ω)~Ω · n̂k
∫
Sek

dSλi(~r)λj(~r)

−
I∑
i=1

P∑
p=1

ψip

∫
Ωα

d~Ωγp(~Ω)γq(~Ω)~Ω

∫
V e
dV λi(~r)∇λj(~r)

+ κ

I∑
i=1

P∑
p=1

K′∑
k′=1

ψipk′

∫
Γk′

dΓγp(~Ω)γq(~Ω)~τ( ~B, ~Ω) · n̂k′(~Ω)

∫
V e
dV λi(~r)λj(~r)

− κ
I∑
i=1

P∑
p=1

ψip

∫
Ωα

d~Ωγp(~Ω)~τ( ~B, ~Ω) · ∇Ωγq(~Ω)

∫
V e
dV λi(~r)λj(~r)

+
I∑
i=1

P∑
p=1

ψipσ(~r)

∫
Ωα

d~Ωγp(~Ω)γq(~Ω)

∫
V e
dV λi(~r)λj(~r)

=

∫
Ωα
d~Ω

∫
V e
dV Q(~r, ~Ω)γq(~Ω)λj(~r) +

∫
Ωα
d~Ω

∫
V e
dV S(~r, ~Ω)γq(~Ω)λj(~r).

(2.73)

The summation over k indicates summation over each face of the spatial voxel,

while the summation over k′ gives summation over each edge of the angular

element. Integration over the spatial element is indicated by V e for the volume

integral, and by Sek for the surface integral. Similarly, integration over the

angular element is represented by Ωα for the surface integral, and by Γk′ for

the edge integrals. The outward unit normal to side k of the spatial voxel being

considered is given by nk, whereas n̂k′ represents the unit normal tangential to

the unit sphere along edge k′ of the angular element of consideration. The first

two terms correspond to the spatial streaming term, the second two terms to

the angular advection term, and the last term on the left hand side represents

the removal term. The calculation of such terms will be considered in more

detail in Chapter 3 in the context of the SUPG method derivation, however

it is key to note here that the divergence theorem has been applied to both

spatial and angular advection terms, resulting in the introduction of boundary
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terms in each case. These boundary terms allow for elements to be coupled

together and for the fluence to “flow” through the domain. It is also through

these boundary terms that the elemental boundary conditions are defined as

in Equations 2.41 and 2.42.

The stabilization for this scheme is provided by a careful treatment of

these boundary conditions, coupled with the proper ordering of solution for

both spatial and angular elements. As specified in the boundary conditions

above, calculated fluence is carried across downwind faces to the upwind faces

of the adjacent element, as indicated by the inc superscript in the elemental

boundary conditions, short for “incoming”. Upwind and downwind directions

are determined by the advective velocities in both space and angle. Elements

are then solved in an order as determined by the transport direction, beginning

at the domain boundary and propagating through the elements sequentially.

For more details of how this process is carried out, see Yang et al. [40].

Applying the upwind stabilization method in a DGFEM framework in both

space and angle resulted in a scheme that was both stable and very accurate.

When simulation results were compared to Monte Carlo simulations for an as-

sortment of slab phantom configurations, a three dimensional gamma analysis

resulted in more than 99% of points passing a 2%/2 mm criterion. As this

method has been validated for accuracy, our SUPG results will be compared

to the upwinding simulation results to evaluate accuracy.

2.5.1 Spectral Radius Results

As described above, a key component of any iterative scheme is the convergence

rate, and how it may change with the parameters of the problem. Zelyak et

al. [26, 42] investigated the convergence properties of the upwinding DGFEM

scheme based on a spectral radius analysis. Parameters such as magnetic

field strength, total cross-section, and degree of anisotropy were investigated
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to determine what effect, if any, the specified parameters had on convergence

rate.

Zelyak et al. [26] first investigated the spectral radius of the iterative

procedure described above in the absence of an external magnetic field, setting

~B = ~0. The result of this analysis revealed that the spectral radius in this case

was always equal to the ratio of the isotropic scattering cross-section σ0(~r) to

the total cross section σ(~r), regardless of the anisotropy of the problem. Thus,

in the case of ~B = ~0 [26, 42],

ρ =
σ0(~r)

σ(~r)
. (2.74)

Note that σ0(~r) is the expansion coefficient of the first scattering moment from

Equation 2.10.

The next component of the spectral radius analysis sought to determine

the best way to split the matrix of the linear system. With the magnetic field

term newly introduced, there are two possibilities for its placement within an

iterative scheme. It could be placed:

(1): As a known source term on the right-hand side of the equation, along

with the scattering kernel term, or

(2): as an operator on the unknown fluence ψ on the left-hand side of the

equation.

A spectral radius analysis in this case is useful for determining the stability

of the iteration in each case, and thus, the optimal placement of the magnetic

field term from a convergence perspective. This effectively determines the

matrix splitting discussed above.

Zelyak et al. first considered placement (1) of the magnetic field term as a

known source. After performing a Fourier analysis, the key result was that as

the magnetic field strength was increased, the spectral radius would increase

linearly, exceeding 1 for all values of the magnetic field strength greater than
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a threshold value. This result indicates that when the magnetic field term is

considered as an iterative source, the iterative scheme is unstable.

As placement (1) of the magnetic field term resulted in an unstable scheme,

placement (2) was then considered. The result of the Fourier analysis was that

the magnetic field had no effect on the spectral radius, and thus the spectral

radius was given by Equation 2.74 as in the zero magnetic field case. While

this result is very encouraging, it does not hold in the discrete case where the

upwinding DGFEM scheme described above is implemented.

The first investigation showed that when the magnetic field term is applied

as an iterative source, increasing magnetic field strength degrades the con-

vergence rate of the system. The stability of the upwinding DGFEM scheme

depends on a coupling between the elements that effectively partitions the

magnetic field term, with part of it acting like a left hand side operator and

the other part behaving as an iterative source. The iterative source part comes

from the elemental boundary conditions whereby some of the solution flux is

pulled across the boundary into the adjacent elements, where it becomes a

right-hand side source term. While the effect is not so detrimental as when the

entire magnetic field term is treated as a source, there is an unfavourable effect

on the spectral radius nonetheless. Numerical investigation revealed that for

small values of the total cross-section ( 0.001 cm−1), the spectral radius rapidly

approached one as the magnetic field strength was increased and thus while

the scheme is still convergent, the convergence rate would be extremely slow.

For intermediate values of the cross-section value ( 0.1-1.0 cm−1), the spectral

radius increased towards 1 more slowly, resulting in a convergent scheme. For

large values of the cross section ( 1000 cm−1), the spectral radius was not

strongly affected by an increase in magnetic field strength. These results of

Zelyak et al. are plotted in Figure 2.4 for varying values of the cross-section,

and for a fixed ratio of c = σ0
σ

= 0.2. Note that κ and B are taken as one
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Figure 2.4: The dependence of the spectral radius of the discrete upwinding
DGFEM scheme as a function of magnetic field parameter. A constant value of
c = σ0

σ
= 0.2 is used, along with cross-section values of σ = 0.001 cm−1 (blue),

σ = 0.1 cm−1 (red), σ = 1.0 cm−1 (yellow) and σ = 1000 cm−1 (purple).

parameter, as this is how it appears in the original equation. Together, they

are referred to as the “magnetic field parameter”.

The takeaway from these results is that the LBTE with magnetic fields

could benefit from an alternative stabilization scheme so that the convergence

rate will not be degraded for higher magnetic field strength cases. Such a

scheme would require the magnetic field term to remain as a left-hand side

operator in the modified LBTE. This idea is the motivation behind the SUPG

angular stabilization scheme that will be derived in the next Chapter.
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Chapter 3

Streamline Upwind Petrov

Galerkin Method

3.1 Background

Yang et al. [40] achieved excellent results in terms of accuracy using their

DGFEM technique for solving the modified LBTE with magnetic fields. The

results were shown to be very accurate, however there are improvements that

could be made in computational speed. In this chapter, we propose and derive

a method that attempts to improve the computational speed in two different

ways. The Streamline Upwind Petrov-Galerkin, or SUPG, method introduces

a small amount of artificial diffusion in the streamline, or advection, direction

in order to stabilize the advection term of an advection-diffusion equation.

As discussed in Chapter 2, a DGFEM technique will still be used in space to

capture discontinuities in material interfaces, but the SUPG method will be

applied in angle.

In outlining Yang et al. ’s method, the coupling between both spatial and

angular elements was a key component of the stabilization scheme, coupled

with a selective solution direction. Unfortunately, this limited the potential
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for parallelization. Implementing an SUPG scheme in angle will allow all an-

gular elements to be solved simultaneously, as there will be no inter-elemental

angular dependance, thus creating much greater potential for parallelization.

While parallelization is possible for the Upwinding method, as per Zelyak et

al. [26, 42], the spectral radius and thus the convergence rate will be adversely

impacted. Additionally, as will be seen later in this chapter, the convergence

properties as determined by the spectral radius are more favourable for the

SUPG method, and thus it should see faster convergence of the source itera-

tivation scheme than is seen in the angular DGFEM method, particularly for

stronger magnetic fields.

The SUPG method is applied to the Galerkin FEM via alteration of the

weak form. The addition of artificial diffusion is implemented via a modifi-

cation of the weighting function as defined in Equation 2.36 to include the

transport operator. Consider a general transport PDE [48]:

Lu = T u+ ku+ Sσu = f, (3.1)

where Sσ is the scattering operator, and T is the transport operator in space,

defined as [48]

T = ~v · ∇u(x,~v). (3.2)

Any remaining terms in the equation are contained in the operator k or the

function f . Then the weak form using the streamline diffusion method is given

by the variational form

〈Lu,w + δT w〉 = 〈f, w + δT w〉, (3.3)

where 〈 〉 indicates an inner product, and w a generic weighting function.
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3.1.1 Derivation from Artificial Diffusion

To demonstrate this, the general one-dimensional advection-diffusion equation

shown above in Equation 2.2 is used, though the result may be applied in gen-

eral and is not affected by the equation to which it is applied. The derivation

shown here is as done in Fries and Matthies [39]. Consider then, the weak form

of Equation 2.2, with weighting function wj ∈ V , and approximate solution ũ:

∫
V

dV wj

(
c
∂ũ

∂x
−D∂

2ũ

∂x2

)
= 0. (3.4)

Now artificial diffusion is introduced by directly adding a term D̃ ∂2ũ
∂x

. The

weak form thus becomes

∫
V

dV wj

(
c
∂ũ

∂x
− (D + D̃)

∂2ũ

∂x2

)
= 0. (3.5)

Applying the finite element expansion ũ =
I∑
i=1

wiui, gives

I∑
i=1

ui

∫
V

dV cwj
∂wi
∂x
− D̃wj

∂2wi
∂x2

−Dwj
∂2wi
∂x2

= 0. (3.6)

Applying integration by parts to both second derivative terms

I∑
i=1

ui

[
c

∫
V

dV wj
∂wi
∂x

+ D̃

∫
V

dV
∂wj
∂x

∂wi
∂x

+D

∫
V

dV
∂wj
∂x

∂wi
∂x
−D

∫
S

dSwj
∂wi
∂x

]
= 0, (3.7)

where S denotes the boundary of V . Note that there is no boundary term for

the artificial diffusion term defined by D̃, justified by considering the scheme
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only over element interiors [39]. The above can be rearranged in the form

I∑
i=1

ui

[
c

∫
V

dV

(
wj +

D̃

c

∂wj
∂x

)
∂wi
∂x

+D

∫
V

dV
∂wj
∂x

∂wi
∂x
−D

∫
S

dSwj
∂wi
∂x

]
= 0. (3.8)

From this form, it can be seen that the artificial diffusion can be treated as

an additional component to the weighting function on the advection term.

However, these methods must be mathematically consistent, thus a different

weighting function cannot be applied to the advection and diffusion terms.

The modified weighting function taken from the advection term must then be

applied to all terms, giving

I∑
i=1

ui

[
c

∫
V

dV

(
wj +

D̃

c

∂wj
∂x

)
∂wi
∂x

+D

∫
V

dV
∂

∂x

(
wj +

D̃

c

∂wj
∂x

)
∂wi
∂x

]

−
I∑
i=1

ui

[
D

∮
S

dS

(
wj +

D̃

c

∂wj
∂x

)
∂wi
∂x

]
= 0 (3.9)

Finally, the modified weak form is found via the reverse application of inte-

gration by parts, resulting in

∫
V

(
wj +

D̃

c

∂wj
∂x

)(
c
∂ũ

∂x
−D∂

2ũ

∂x2

)
dV = 0. (3.10)

As can be seen then, the SUPG method can be obtained from the Galerkin

FEM by using a modified weighting function that incorporates a perturbation

determined by the transport operator.

The amount of artificial diffusion added in this example can be modified by

changing D̃. Analogously, it is important to determine an appropriate value of

δ from Equation 3.3, which controls the amount of artificial diffusion that will

be added. Roughly speaking, an ideal value for δ is such that enough diffusion
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is added to stabilize the system without adding so much that the accuracy is

compromised. While the radiation transport equation does not contain diffu-

sion explicitly, the scattering operator behaves in a diffusive manner. Thus,

while the Peclet number cannot be calculated explicitly, it remains true that

a system containing a high degree of advection without scatter to balance it

will be unstable, while a system that has a high degree of scatter may require

little to no stabilization. As a result, it is expected that the parameter δ

should depend on the total cross-section, which in itself depends on material

and energy. A higher cross-section value should require a smaller δ, and vice

versa.

3.2 Derivation in Angle for LBTE with Mag-

netic Fields

Now that the need for stabilization as well as the proposed scheme have been

established, it is necessary to determine how it may be applied to the LBTE

with magnetic field term. The interesting and challenging thing about this

particular integro-PDE is the fact that it contains both spatial and angular

advection, both of which require stabilization. While all previous applica-

tions of streamline diffusion have been in the spatial variable, in this work,

the same method is used for the angular advection term. This means that

the transport term in the new weighting function will now have an angular

derivative, as in Equation 3.3. The T operator of this equation will now refer

to the angular advection operator. It should be noted that the streamline dif-

fusion method is a continuous Galerkin FEM. Spatially, as mentioned above,

a discontinuous approach is more appropriate, as material interfaces can re-

sult in sharp changes in the solution that cannot be accurately represented

with a continuous method. In angle however, there should not generally be
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sharp discontinuities, hence a continuous method such as streamline diffusion

is appropriate.

To simplify the derivation, it will be assumed without loss of generality

that the magnetic field is in the z-direction, such that the form of the magnetic

field operator is simplified. This way, only scalar integrals need be calculated,

avoiding the complication of computing integrals of vectors. This is appro-

priate since any problem can be reduced to one where the magnetic field is

oriented in the z direction through a coordinate transformation [23].

The modified LBTE is then given by [24]

~Ω · ∇ψ(~r, ~Ω) + κBz
∂

∂φ
ψ(~r, ~Ω) + σT (~r)ψ(~r, ~Ω) = Q(~r, ~Ω) + S(~r, ~Ω). (3.11)

The magnetic field strength (assumed to be in the z-direction) is Bz. Then,

using the notation above,

L = ~Ω · ∇+ κBz
∂

∂φ
+ σT (~r), (3.12)

and

T = κBz
∂

∂φ
. (3.13)

The weak formulation incorporating the standard streamline diffusion mod-

ification is given by

〈
Lψ,Υ + δκBz

∂Υ

∂φ

〉
=

〈
Q+ S,Υ + δκBz

∂Υ

∂φ

〉
. (3.14)

Note that δ is the parameter controlling the amount of artificial diffusion that

is introduced. Then the modified weak form may be written as

〈Lψ,Υ〉︸ ︷︷ ︸
(I)

+

〈
Lψ, δκBz

∂Υ

∂φ

〉
︸ ︷︷ ︸

(II)

= 〈Q+ S,Υ〉︸ ︷︷ ︸
(III)

+

〈
Q+ S, δκBz

∂Υ

∂φ

〉
.︸ ︷︷ ︸

(IV)

(3.15)
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Note that terms (I) and (III) are as would be found in the standard DGFEM

expansion without streamline diffusion, with terms (II) and (IV) requiring

novel derivation.

Term (I): The DGFEM expansion of Equation 2.34 is substituted in for

ψ(~r, ~Ω) and each term is considered separately. Taking the first term:

〈L,Υ〉 ≈

〈
~Ω · ∇

(
I∑
i=1

P∑
p=1

ψipλi(~r)γp(~Ω)

)
︸ ︷︷ ︸

i

+κBz
∂

∂φ

(
I∑
i=1

P∑
p=1

ψipλi(~r)γp(~Ω)

)
︸ ︷︷ ︸

(ii)

+ σT (~r)

(
I∑
i=1

P∑
p=1

ψipλi(~r)γp(~Ω)

)
︸ ︷︷ ︸

(iii)

, λj(~r)γq(~Ω)

〉
. (3.16)

This can then be further separated by considering each of the three terms

individually. Applying the inner product to term (i) gives

(i) =
I∑
i=1

P∑
p=1

ψip

∫
Ωe
d~Ωγp(~Ω)γq(~Ω)

∫
V e
dV ~Ω · ∇(λi(~r))λj(~r). (3.17)

Applying the product rule to the integrand

~Ω · ∇(λi(~r))λj(~r) = ∇ · (λi(~r)λj(~r)~Ω)− λi(~r)~Ω · ∇(λj(~r)). (3.18)

Integrating and applying the divergence theorem then gives

(i) =
I∑
i=1

P∑
p=1

ψip

∫
Ωe
d~Ωγp(~Ω)γq(~Ω)

(∫
Se
dSλi(~r)λj(~r)~Ω · n̂

−
∫
V e
dV λi(~r)~Ω · ∇(λj(~r))

)
. (3.19)

In applying the divergence theorem in space, a boundary term appears. This

boundary term will then be split into “upwind” faces and “downwind” faces,
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based on the advection direction. The upwind faces will be moved to the right

hand side and treated as a known source, while the downwind faces remain on

the left hand side as an unknown. The upwind faces then pull their values from

the previously solved spatial elements, thus requiring the elements be solved

in a specific order dictated by the advection velocity. This is the concept

behind the Upwinding method of Yang et al. [40] where it is applied in both

space and angle. Here it is applied only in space. It was determined however,

that to ensure stability, the divergence theorem must also be applied in angle,

however rather than treating the boundary term as in the Upwinding method,

it is here assumed to be 0 due to continuity in angle. Thus, applying the

divergence theorem to term (ii), and the inner product to both terms (ii) and

(iii) gives

(ii) = −κBz

I∑
i=1

P∑
p=1

ψip

∫
Ωe
d~Ω

∂γq
∂φ

(~Ω)γp(~Ω)

∫
V e
dV λi(~r)λj(~r), (3.20)

and

(iii) =
I∑
i=1

P∑
p=1

ψip

∫
Ωe
γp(~Ω)γq(~Ω)d~Ω

∫
V e
λi(~r)λj(~r)σT (~r)dV. (3.21)

Term (II): Taking the second term of the DGFEM scheme, which includes
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streamline diffusion, gives

〈
Lψ, δκBz

∂Υ

∂φ

〉
=

〈
~Ω · ∇

(
I∑
i=1

P∑
p=1

ψipλi(~r)γp(~Ω)

)
︸ ︷︷ ︸

(i)

+

κBz
∂

∂φ

(
I∑
i=1

P∑
p=1

ψipλi(~r)γp(~Ω)

)
︸ ︷︷ ︸

(ii)

+ σT (~r)

(
I∑
i=1

P∑
p=1

ψipλi(~r)γp(~Ω)

)
︸ ︷︷ ︸

(iii)

, δκBzλj(~r)
∂γq(~Ω)

∂φ

〉
. (3.22)

Again, the three terms are considered individually. Applying the inner product

first to term (i) gives

(i) = δκBz

I∑
i=1

P∑
p=1

∫
Ωe
d~Ω

∂γq(~Ω)

∂φ
γp(~Ω)

∫
V e
dV ~Ω · ∇(λi(~(r)))λj(~r). (3.23)

As before, the product rule can be applied to the spatial integral, resulting in

~Ω · ∇(λi(~r))λj(~r) = ∇ · (λi(~r)λj(~r)~Ω)− λi(~r)~Ω · ∇(λj(~(r))). (3.24)

Then, integrating and applying the divergence theorem gives

(i) = δκBz

I∑
i=1

P∑
p=1

ψip

∫
Ωe
d~Ω

∂γq(~Ω)

∂φ
γp(~Ω)

(∫
Se
dSλi(~r)λj(~r)~Ω · n̂

−
∫
V e
dV λi(~r)~Ω · ∇(λj(~r))

)
. (3.25)

The product rule is not required for the remaining integrals. Applying the
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inner product

(ii) = δκ2B2
z

I∑
i=1

P∑
p=1

ψip

∫
Ωe
d~Ω

∂γp(~Ω)

∂φ

∂γq(~Ω)

∂φ

∫
V e
dV λi(~r)λj(~r), (3.26)

and

(iii) = δκBz

I∑
i=1

P∑
p=1

ψip

∫
Ωe
d~Ω

∂γq(~Ω)

∂φ
γp(~Ω)

∫
V e
σT (~r)λi(~r)λj(~r)dV. (3.27)

Then the entire DGFEM-SUPG system can be represented as follows

I∑
i=1

P∑
p=1

K∑
k=1

ψipk

∫
Ωe
d~Ωγp(~Ω)γq(~Ω)~Ω · n̂k

∫
Sek

dSλi(~r)λj(~r)

−
I∑
i=1

P∑
p=1

ψip

∫
Ωe
d~Ωγp(~Ω)γq(~Ω)

∫
V e
dV λi(~r)~Ω · ∇(λj(~r))

+ δκBz

I∑
i=1

P∑
p=1

K∑
k=1

ψipk

∫
Ωe
d~Ω

∂γq(~Ω)

∂φ
γp(~Ω)~Ω · n̂k

∫
Sek

dSλi(~r)λj(~r)

− δκBz

I∑
i=1

P∑
p=1

ψip

∫
Ωe
d~Ω

∂γq(~Ω)

∂φ
γp(~Ω)

∫
V e
dV λi(~r)~Ω · ∇(λj(~r))

− κBz

I∑
i=1

P∑
p=1

ψip

∫
Ωe
d~Ω

∂γq(~Ω)

∂φ
γp(~Ω)

∫
V e
dV λi(~r)λj(~r)

+ δκ2B2
z

I∑
i=1

P∑
p=1

ψip

∫
Ωe
d~Ω

∂γp(~Ω)

∂φ

∂γq(~Ω)

∂φ

∫
V e
dV λi(~r)λj(~r)

+
I∑
i=1

P∑
p=1

ψipσT (~r)

∫
Ωe
d~Ωγp(~Ω)γq(~Ω)

∫
V e
dV λi(~r)λj(~r)

+ δκBz

I∑
i=1

P∑
p=1

ψipσT (~r)

∫
Ωe
d~Ω

∂γq(~Ω)

∂φ
γp(~Ω)

∫
V e
dV λi(~r)λj(~r)

= RHS terms. (3.28)

The right hand side terms are derived subsequently. Notice in Equation 3.28
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that all terms that are due to the streamline diffusion term can be distinguished

by the presence of the δ parameter, and that setting δ = 0 gives the original

DGFEM formulation.

Now, considering the right hand side, terms (III) and (IV) from Equation

3.15 can be expanded. Applying the inner product to each of these terms,

gives

〈Q+ S,Υ〉 =

∫
Ωe
d~Ωγq(~Ω)

∫
V e
dV Q(~r, ~Ω)λj(~r)

+

∫
Ωe
d~Ωγq(~Ω)

∫
V e
dV S(~r, ~Ω)λj(~r), (3.29)

and

〈
Q+ S, δκBz

∂Υ

∂φ

〉
= δκBz

∫
Ωe
d~Ω

∂γq(~Ω)

∂φ

∫
V e
dV Q(~r, ~Ω)λj(~r)

+ δκBz

∫
Ωe
d~Ω

∂γq(~Ω)

∂φ

∫
V e
dV S(~r, ~Ω)λj(~r). (3.30)

Finally, the boundary conditions are as in Equation 2.41. Note that these are

elemental equations, meaning that the system is solved over each pair of spa-

tial and angular elements separately, and thus the boundary condition above

applies to the element boundaries. There are no elemental angular bound-

ary conditions as we are now using a continuous method in angle. Vacuum

boundary conditions are used at the boundary of the domain.

3.3 Spectral Radius

In Chapter 2, the development of the SUPG angular stabilization scheme was

motivated by the spectral radius results from the existing Upwinding method.

As was seen in the work of Zelyak et al. [26], the Upwinding stabilization

had an impact on the convergence rate of the iterative scheme. It was deter-
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mined through a spectral radius analysis that as the magnetic field strength

increased, the spectral radius of the discrete Upwinding scheme increases and

thus the convergence rate is reduced. Additionally, due to the coupling of the

angular elements, parallelization in the solution of the angular elements be-

comes limited. While Zelyak et al. [26] provided a method for parallelization

in angle for the Upwinding scheme, it was shown that once again, the spectral

radius would be negatively effected.

The angular SUPG scheme developed above allows for all angular elements

to be solved simultaneously thus allowing for easy parallelization. Additionally,

since no part of the magnetic field operator appears on the right hand side of

the equation as a source, it is expected that the magnetic field should not

impact the spectral radius. This hypothesis is investigated both through a

Fourier Analysis of the continuous formalism, and through iterative calculation

of the spectral radius using the discrete code.

3.3.1 Continuous

The spectral radius for the continuous (non-discretized) form of the streamline

diffusion method can be analyzed via the Fourier Analysis method. For details

on this method, the reader should consult Zelyak [26], however it is outlined

here along with the results. The weak form of the SUPG equation is, as above

〈
Lψ − g,Υ + δκB

∂Υ

∂φ

〉
= 0. (3.31)

The adjoint operator is given by A† = 1 − δκB ∂
∂φ

, hence the spectral radius

equation is

A†LΦ = A†g. (3.32)

To get our equation into the proper form, the differential scattering cross-

section is first expanded in Legendre polynomials as per the discussion in
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Equations 2.10-2.12. For the purposes of this spectral radius analysis, the

angular fluence is also expanded using spherical harmonics as it was in Chapter

2, giving

ψ(~r, ~Ω) =
L∑
`=0

∑̀
m=−`

φ`m(~r)Y`m(~Ω),

where the expansion coefficients are given by Equation 2.14. Note here the

orthogonality condition for spherical harmonics, as it will be used to simplify

the form of equations later on in this analysis:

∫
d~ΩY`m(~Ω)Y ∗`′m′(~Ω) = δ``′δmm′ . (3.33)

Then, as per Zelyak, [26], the form of the iterative equation considered in

this analysis is the transport equation for a single energy group:

[
~Ω · ∇+ κB

∂

∂φ
+ σ

]
ψ(t+1)
g (~r, ~Ω) =

∞∑
`

∑̀
m=`

σ`,gg′φ
(t)
`m,g(~r)Y`m(~Ω) + s(~r, ~Ω).

(3.34)

As before, without loss of generality we have assumed ~B to be in the positive

z−direction to simplify calculations. Note that only the in-group scatter is

considered to be an iterative source, with the scatter from all higher-energy

groups included in the known source:

sg(~r, ~Ω) =

NG∑
g′ 6=g

∞∑
`=0

∑̀
m=−`

σ`,gg′φ`m,g′(~r) + Sg(~r, ~Ω), (3.35)

where NG is the total number of energy groups, and Sg is the external source

as before. Because we are assuming no upscatter, only higher energy groups

will contribute to the scattering source. The second iterative equation is given

by

φ
(t)
`m,g(~r) =

∫
d~Ωψ(t)

g (~r, ~Ω)Y ∗`m(~Ω). (3.36)
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While we will perform this analysis for a single energy group, the g subscripts

are omitted going forward for ease of notation. Error functions are then for-

mulated as

δψ(~r, ~Ω) = ψ(t+1)(~r, ~Ω)− ψ(t)(~r, ~Ω), (3.37)

δφlm(~r) = φ
(t+1)
`m (~r)− φ(t)

`m(~r). (3.38)

Then, the iterative system of equations incorporating the error functions, is

given by

(
1− δκB ∂

∂φ

)[
~Ω · ∇+ κB

∂

∂φ
+ σ

]
δψ(t+1)(~r, ~Ω)

=

(
1− δκB ∂

∂φ

)∑
`m

σ`δφ
(t)
lm(~r)Y`m(~Ω), (3.39)

δφ
(t)
lm =

∫
Ω

d~Ωδψ(t)(~r, ~Ω)Y ∗lm(~Ω). (3.40)

Note that the fixed source terms are eliminated as they remain constant be-

tween iterations, and are thus simply subtracted. The error functions can

then be expanded using Fourier modes. Here the angular fluence is expanded

in Fourier modes both in space and angle:

δψ(t)(~r, ~Ω) =
∑
p

∫ ∞
−∞

d~λa(t)
p (~λ, θ)ei

~λ~reipϕ, (3.41)

δφ`m(~r) =

∫ ∞
−∞

d~λb`m(~λ)ei
~λ~r. (3.42)

Substituting the expansions of Equations 3.41 and 3.42 into Equations 3.39
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and 3.40 gives

∞∑
p=−∞

(1− δκBp)[i~Ω · ~λ+ iκBp+ σ]a(t+1)
p (~λ, θ)eipϕ

=

(
1− δκB ∂

∂φ

)∑
`m

σ`Y`m(~Ω)b
(t)
`m(~λ), (3.43)

b
(t)
`m(~λ) =

∫
d~ΩY ∗`m(~Ω)

∞∑
m′=∞

a
(t)
m′(~λ, θ)e

im′ϕ. (3.44)

The θ and ϕ variables of ~Ω can be separated using the expression

Y`m(~Ω) = Y`m(µ, ϕ) =

√
(2`+ 1)(`−m)!

(`+m)!
P`m(µ)eiϕm, (3.45)

with µ = cos θ. This relation is then substituted into Equation 3.43 and the

equation is multiplied by a single Fourier mode eim
′ϕ before being integrated

over

∫ 2π

0

dϕ

2π
. Replacing ~Ω · ~λ by λµ gives a simplified expression

(1− δκBm′) [iλµ+ iκBm′ + σ] a
(t+1)
m′ (~λ, θ)

= (1− δκBm′)
∑
`′≥|m′|

σ`′b
(t)
`′m′(~λ)C`′m′Pl′m′(µ), (3.46)

where

C`m =

√
(2`+ 1)(`−m)!

(`+m)!
. (3.47)
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Equations 3.44 and 3.46 are used to derive an iterative equation for b(t):

b
(t)
`m(~λ)

=

∫ 1

−1

dµ

2

∫ 2π

0

dϕ

2π
C`mP`m(µ)e−imϕ

∑
`′m′

σ`′e
im′ϕ

· (1− δκBm′)C`′m′P`′m′(µ)

(1− δκBm)[iλµ+ iκBm+ σ]
B

(t−1)
`′m′ (~λ)

=
∑
`′

σ`′

∫ 1

−1

dµ

2

(1− δκBm)C`mP`m(µ)C`′mP`′m(µ)

(1− δκBm)[iλµ+ iκBm+ σ]
b

(t−1)
`′m (~λ)

=
∑
`′

σ`′

∫ 1

−1

dµ

2

C`mP`m(µ)C`′mP`′m(µ)

iλµ+ iκBm+ σ
b

(t−1)
`′m (~λ).

(3.48)

This can be represented in matrix form:

b
(t)
`m(~λ) = T``′b

(t−1)
`m (~λ), (3.49)

with the matrix components given by

T``′ = σ′`C
m
``′

∫ 1

−1

dµ

2

P`m(µ)P`′m(µ)

iλµ+ iκBm+ σ
, (3.50)

with

Cm
``′ =

√
(2`+ 1)(`−m)!

(`+m)!

√
(2`′ + 1)(`′ −m)!

(`′ +m)!
. (3.51)

The eigenvalues of the iterative matrix T determine the convergence behaviour

of the original system. At this point, the key result here is that the SUPG

operator, i.e., the term containing δ, completely cancels out, and thus does

not have an effect on spectral radius compared to the standard Galerkin for-

mulation. It is noteworthy that the final result of Equation 3.50 is identical to

that of Zelyak et al. [26, 42] for the original Galerkin formulation, for which

they determined the spectral radius was not affected by the magnetic field

strength and that the system was unconditionally stable. Recall that there
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was a dependence on the B-field when the DGFEM method was implemented,

however, this will not be the case for the SUPG scheme due to the use of a

continuous method in angle. This was determined via a numerical investiga-

tion which determined that the maximum eigenvalue, and thus the spectral

radius value, occurred for m = 0, or the isotropic scattering case. Thus the

spectral radius in the case of the SUPG angular stabilization scheme is equal

to that of the 0 T magnetic field case, and is given by ρ = σ0
σ

. These analytical

results will be validated via simulation in the following section.

3.3.2 Discretized

The results of the continuous derivation indicate that there is no dependence

of the spectral radius on either the SUPG parameter δ, or the magnetic field

strength B. As a result, the expected value of the spectral radius ρ should be

as in the case of a 0 T magnetic field, or the ratio of the isotropic scattering

moment σ0 to the total cross-section σ: [26]

ρ = c =
σ0

σ
. (3.52)

This result is investigated for the discrete case of Equation 3.15 using the

following formula

ρ = lim
t→∞

||ψt+1 − ψt||
||ψt − ψt−1||

. (3.53)

The spectral radius was then investigated for a variety of values of c, B and δ,

with the results summarized in Table 3.1. As can be seen, the spectral radius

does not depend on the magnetic field strength or the value of δ, which repre-

sents the amount of added diffusion. This is an advantage over the Upwinding

stabilization scheme, where the spectral radius increases with magnetic field

strength [26], and thus slows the convergence. Recall that as per the work

of Zelyak et al. [26], we consider κB as a single parameter, as this is how it
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appears in the equation as a whole.

The advantage of this property of the spectral radius can be further high-

lighted by comparing to the results of the Upwinding method. While for the

SUPG method, the spectral radius does not depend on the magnetic field

strength, the total cross-section, or the SUPG parameter, the spectral radius

analysis for the Upwinding method revealed a dependence on both the mag-

netic field strength and the total cross-section. This is illustrated in Figure 3.1,

where the spectral radius is plotted versus magnetic field strength for both the

SUPG technique and the Upwinding method, for four different values of σt :

(i) σt=0.001, top left, (i) σt=0.1, top right, (iii) σt=1.0, bottom left, and (iv)

σt=1000, bottom right. Here it can clearly be seen that while the convergence

rate of the Upwinding scheme will be reduced with increasing magnetic field

strength, the convergence rate of the SUPG method is unaffected. Addition-

ally, for very low values of the total cross-section, the spectral radius of the

Upwinding scheme approaches 1, thus while still stable, the convergence rate

may become arbitrarily slow in such cases.

3.4 Optimizing the SUPG parameter

The results of simulating the angular fluence are now presented as compared

to the simulation results of the Upwinding scheme under the same conditions.

The Upwinding scheme has been fully validated against Monte Carlo results

and has shown a high degree of accuracy [40], hence it is used for comparison.

It is first necessary to determine an appropriate value of δ, which controls

the amount of artificial diffusion that will be added. Roughly speaking, an

ideal value for δ is such that enough diffusion is added to stabilize the system

without adding so much that the accuracy is compromised. While the radi-

ation transport equation does not contain diffusion explicitly, the scattering
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c = 0.05

δ = 0.05 δ = 0.5 δ = 5
κB = 1 0.05 0.05 0.05
κB = 5 0.05 0.05 0.05
κB = 10 0.05 0.05 0.05
κB = 20 0.05 0.05 0.05

c = 0.1

δ = 0.05 δ = 0.5 δ = 5
κB = 1 0.1 0.1 0.1
κB = 5 0.1 0.1 0.1
κB = 10 0.1 0.1 0.1
κB = 20 0.1 0.1 0.1

c = 0.2

δ = 0.05 δ = 0.5 δ = 5
κB = 1 0.2 0.2 0.2
κB = 5 0.2 0.2 0.2
κB = 10 0.2 0.2 0.2
κB = 20 0.2 0.2 0.2

c = 0.4

δ = 0.05 δ = 0.5 δ = 5
κB = 1 0.4 0.4 0.4
κB = 5 0.4 0.4 0.4
κB = 10 0.4 0.4 0.4
κB = 20 0.4 0.4 0.4

c = 0.99

δ = 0.05 δ = 0.5 δ = 5
κB = 1 0.99 0.99 0.99
κB = 5 0.99 0.99 0.99
κB = 10 0.99 0.99 0.99
κB = 20 0.99 0.99 0.99

Table 3.1: The spectral radius values as computed from the discrete linear
SUPG code for a variety of values for c, κB and δ.
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(a) (b)

(c) (d)

Figure 3.1: The spectral radius as a function of magnetic field parameter
κB for the Upwinding scheme (solid line) and for the SUPG scheme (dotted
line). Results are shown for (a) σ = 0.001, (b) σ = 0.1, (c) σ = 1.0, and (d)
σ = 1000.0.
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operator behaves in a diffusive manner. A system containing a high degree of

advection without scatter to balance it will be unstable, while a system that

has a high degree of scatter may require little to no stabilization. As a result,

it is expected that the parameter δ should depend on the total cross-section,

which in itself depends on material and energy. A higher cross-section value

should require a smaller δ, and vice versa. Additionally, more finely resolved

grids should require less stabilization, as was seen in the discussion of the

Peclet number in Chapter 2.

3.4.1 Empirical Investigation

To determine appropriate values for δ, an empirical optimization was first per-

formed in which the parameter was optimized over each energy group, one at a

time, for homogeneous phantoms of lung and water. This allowed for the gen-

eral shape and energy dependence to be determined. Optimal solutions were

found by comparing the calculated fluence to the fluence that was calculated

using the Upwind method. Optimization was performed such that the max-

imum percent difference over the whole phantom between the SUPG results

and the Upwinding results was minimized. Each energy group was optimized

and the value of δ fixed before proceeding to the next (lower) energy group

sequentially.

During the initial investigation, three cases were considered:

1) 1.5 T parallel magnetic field, water,

2) 1.5 T perpendicular magnetic field, water,

3) 1.5 T parallel magnetic field, lung.

Some sample results of this investigation are plotted in Figure 3.2, showing

the optimal δ value versus cross-section. The general take-away from this
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(a) (b)

(c)

Figure 3.2: Some sample results of an empirical optimization for the SUPG
parameter, δ. Optimization was performed over each energy group, and the
parameter was chosen to maximize agreement with the Upwinding results. (a)
1.5 T parallel magnetic field, water, (b) 1.5 T perpendicular magnetic field,
water, (c) 1.5 T parallel magnetic field, lung.

investigation is that the highest energies require the most stabilization, as the

cross-sections here are small and thus advection dominates scatter, as was

predicted. The SUPG parameter values drop fairly sharply as cross-section

increases.

3.4.2 Hyperbolic Cotangent Formula

Fries and Matthies [39] and Brooks and Hughes [49] provide a hyperbolic

cotangent form of the δ parameter that has been derived based on known

solutions of the general advection-diffusion equation. The parameter is derived

as a function of the diffusion coefficient and the advective velocity. In fact, the
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formula given in the literature depends directly on the Peclet number: [39]

δ ∝ h

2c

(
coth (Pe)− 1

Pe

)
, (3.54)

where h is the spatial element size, c is the spatial advective velocity, and

Pe = ch
2D

, with D the spatial diffusion coefficient. As mentioned before, all

previous applications of the SUPG method were in space, hence all parameters

are with respect to spatial advection and diffusion. For our particular scenario,

while there is no explicit diffusion and we cannot calculate a Peclet number,

the scattering cross-section offers a very reasonable stand-in for the purposes

of calculating δ. As such, we define a pseudo-Peclet number, denoted P̃ e:

P̃ e = C̃
c∆Ω

2σT
, (3.55)

where c is the angular advective velocity, given by the coefficient of the angular

first derivative term. In the case of the z-magnetic field, c = κBz. ∆Ω

indicates the angular step size and has units of radians. Because the units

on the scattering cross-section (d2) are different from those of the diffusion

coefficient (d2/t), a constant C̃ is included which has units of td2

rad2 , in order to

render the pseudo-Peclet number dimensionless. Then, Equation 3.54 can be

used with the newly defined pseudo-Peclet number, and is given by

δ = α
∆Ω

2c

(
coth

(
C̃c∆Ω

2σT

)
− 2σT

C̃c∆Ω

)
. (3.56)

A constant of proportionality α, along with the constant C̃ was varied in order

to fit the formula for the different magnetic field strengths, configurations and

materials. In our implementation, we took α = C̃ and combined C̃ and ∆Ω

into a single parameter Cδ for fitting. This reduces the problem to a one-

dimensional optimization. Cδ was then determined for each material, evaluated
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(a)

Figure 3.3: The relationship between Cδ and material density, determined
empirically for bone, water, lung and air and fit exponentially.

based on the agreement of the calculated fluence to the reference distribution

as calculated using the Upwinding technique. It was observed that the required

value was inversely proportional to material density. As the data seemed to

follow an exponential function, a curve was fit to the Cδ values for each of the

four densities considered here (Bone, water, lung, air). The results are shown

in Figure 3.3. The exponential equation used is given by

Cδ = 0.034 + 1.87e−3.94ρ. (3.57)

Some sample plots of δ calculated based on Equation 3.56 and with constant

Cδ determined from Equation 3.57 are shown in Figures 3.11-3.14 below. As

before, the more diffusion or scattering that is present, the lower the value of

δ. Additionally, high values of δ are required for low values of the scattering

cross-section, with a sharp drop-off as scattering increases.
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3.5 Simulation Results

We now present the results of simulating a beam in a phantom for a variety of

material configurations and two different magnetic field strength/orientation

combinations.

3.5.1 Calculation Geometry

Simulations are performed for a 2 cm× 2 cm square field size using a 9.6×9.6×9.6

cm3 phantom. This field size was chosen as a small field with its associated

charged particle disequilibrium makes for a challenging validation case. The

beam used a 6 MV photon spectrum [24] originating from a point source with

an SSD of 100 cm. In the beam and penumbra, 4 mm Cartesian voxels were

used, with 8 mm voxels used in the surrounding volume, and 16 mm voxels

at the edges of the phantom. In the angular domain, 32 triangular angular

elements conformal to the unit sphere were used. In space, linear basis func-

tions were selected while in angle, quadratic basis functions were used. The

energy domain was discretized into 32 photon energies and 20 electron ener-

gies. Material cross-section values were determined using the CEPXS software

[50] with Legendre expansion truncated at L = 5.

A series of homogeneous phantoms of lung (ρ = 2.6× 10−1 g cm−3), water

(ρ = 1.00 g cm−3 ) and bone (ρ = 1.92 g cm−3) were used, as well as two

different heterogeneous slab phantoms. The heterogeneous lung slab phantom

had 4 cm of water, followed by 1.2 cm of bone, followed by 2.8 cm of lung,

and 1.6 cm of water. The heterogeneous air slab phantom had 4 cm of water,

followed by 1.2 cm of bone, followed by 2.8 cm of air (ρ = 1.2× 10−3 g cm−3),

and 1.6 cm of water. Representations of these two phantoms are shown in

Figure 3.4. The key difference is that the heterogeneous lung slab phantom

used lung, while the heterogeneous air slab phantom used air. Two different
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(a) (b)

Figure 3.4: Schematic representations of the inhomogeneous phantoms used
in the simulations for both the Upwinding method and the SUPG method. (a)
The heterogeneous lung slab phantom is made up of 4 cm of water, followed
by 1.2 cm of bone, followed by 2.8 cm of lung, and 1.6 cm of water. (b) The
heterogeneous air slab phantom is made up of 4 cm of water, followed by 1.2
cm of bone, followed by 2.8 cm of air, and 1.6 cm of water

Linac-MR geometries are chosen, in particular, a 0.5 T parallel magnetic field

configuration, and a 1.5 T perpendicular magnetic field configuration to co-

incide with the configurations found in existing Linac-MR systems. A beam

was simulated for each geometry, for each phantom type.

3.5.2 Homogeneous Phantoms

In this section, the results of calculating the fluence in three different homoge-

neous phantoms are shown for both the case of a 0.5 T parallel magnetic field,

and a 1.5 T perpendicular magnetic field. The results of simulations using

Bz = 0 are also shown so that the effect of the magnetic field can be clearly

seen.

0.5 T Parallel ~B Field

Simulations for a 0.5 T parallel magnetic field are first shown for a lung phan-

tom in Figure 3.5. In this case, it can be seen that the percentage depth doses,

or PDD’s for the linear SUPG method and the Upwinding method agree very
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well, and that the overall maximum percent difference for depths greater than

dmax is 1.05%. Results for a water phantom are then shown in Figure 3.6,

where it can be seen that the two methods show excellent agreement with

a maximum percent difference for depths greater than dmax of 0.033%. The

results for the bone phantom in Figure 3.7 are better still, with a maximum

percent difference for depths greater than dmax of 0.0034%. A gamma analysis

was performed using the criteria that only points having a dose greater than

or equal to 10% of the maximum dose qualified for the calculation. This anal-

ysis had a passing rate of 100% (100%) at 2%/2 mm (3%/3 mm) for all three

materials. These results are as expected, as for larger cross-sections the value

of δ is smaller, thus introducing less artificial diffusion.

1.5 T Perpendicular ~B Field

The simulation results for a 1.5 T perpendicular magnetic field are now shown.

The results of applying both the SUPG scheme and Upwinding scheme in a

lung phantom are shown in Figure 3.8. The 0 T magnetic field case is also

shown for reference. It can be seen that the PDD’s differ quite significantly,

and the results appear noticeably over-diffusive. Low density media with a

higher magnetic field strength provides the biggest challenge to any stabiliza-

tion scheme. A maximum percent difference for depths greater than dmax of

18.1% can be seen. The results for a water phantom are shown in Figure

3.9. As water is denser, we would expect to see improved results over the

lung case. Better agreement can indeed be observed with a maximum per-

cent difference for depths greater than dmax of 1.9%. The results for a bone

phantom are shown in Figure 3.10, where a maximum percent difference for

depths greater than dmax of 1.4% is observed, again at the phantom interface.

A gamma analysis for each case showed a passing rate at 2%/2 mm (3%/3

mm) of 83.52% (92.39%) in lung, 100% (100%) in water and 100% (100%) in
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(a) (b)

(c) (d)

Figure 3.5: The results of simulating a 2 × 2 cm2 6 MV photon beam using
both the Upwinding scheme and the Linear SUPG method in a 9.6×9.6×9.6
cm3 lung phantom in a 0.5 T parallel magnetic field. (a) PDD profiles down
the center of the phantom for the Upwinding scheme (blue) and the Linear
SUPG scheme (red). The 0 T magnetic field case is also shown (yellow). (b)
A slice through the center of the phantom showing the % difference in dose as
calculated by the two different methods. (c) Profiles across the center of the
beam for the Upwinding scheme (blue) and the Linear SUPG scheme (red).
(d) A gamma map at 2%/2 mm.
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(a) (b)

(c) (d)

Figure 3.6: The results of simulating a 2 × 2 cm2 6 MV photon beam using
both the Upwinding scheme and the Linear SUPG method in a 9.6×9.6×9.6
cm3 water phantom in a 0.5 T parallel magnetic field. (a) PDD profiles down
the center of the phantom for the Upwinding scheme (blue) and the Linear
SUPG scheme (red). The 0 T magnetic field case is also shown (yellow). (b)
A slice through the center of the phantom showing the % difference in dose as
calculated by the two different methods. (c) Profiles across the center of the
beam for the Upwinding scheme (blue) and the Linear SUPG scheme (red).
(d) A gamma map at 2%/2 mm.
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(a) (b)

(c) (d)

Figure 3.7: The results of simulating a 2 × 2 cm2 6 MV photon beam using
both the Upwinding scheme and the Linear SUPG method to 9.6×9.6×9.6
cm3 bone phantom in a 0.5 T parallel magnetic field. (a) PDD profiles down
the center of the phantom for the Upwinding scheme (blue) and the Linear
SUPG scheme (red). The 0 T magnetic field case is also shown (yellow). (b)
A slice through the center of the phantom showing the % difference in dose as
calculated by the two different methods. (c) Profiles across the center of the
beam for the Upwinding scheme (blue) and the Linear SUPG scheme (red).
(d) A gamma map at 2%/2 mm.

71



bone. While 3%/3 mm gamma analysis is a reasonable metric to assess most

clinical situations, it does not fully capture the agreement of the model in this

case. Because the region of discrepancy is fairly small, a very good pass rate

can be achieved while still seeing a difference of up to 18%.

(a) (b)

(c) (d)

Figure 3.8: The results of simulating a 2×2 cm2 6 MV photon beam using both
the Upwinding scheme and the Linear SUPG method in a 9.6×9.6×9.6 cm3

lung phantom in a 1.5 T perpendicular magnetic field. (a) PDD profiles down
the center of the phantom for the Upwinding scheme (blue) and the Linear
SUPG scheme (red). The 0 T magnetic field case is also shown (yellow). (b)
A slice through the center of the phantom showing the % difference in dose as
calculated by the two different methods. (c) Profiles across the center of the
beam for the Upwinding scheme (blue) and the Linear SUPG scheme (red).
(d) A gamma map at 2%/2 mm.
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(a) (b)

(c) (d)

Figure 3.9: The results of simulating a 2×2 cm2 6 MV photon beam using both
the Upwinding scheme and the Linear SUPG method in a 9.6×9.6×9.6 cm3

water phantom in a 1.5 T perpendicular magnetic field. (a) PDD profiles down
the center of the phantom for the Upwinding scheme (blue) and the Linear
SUPG scheme (red). The 0 T magnetic field case is also shown (yellow). (b)
A slice through the center of the phantom showing the % difference in dose as
calculated by the two different methods. (c) Profiles across the center of the
beam for the Upwinding scheme (blue) and the Linear SUPG scheme (red).
(d) A gamma map at 2%/2 mm.
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(a) (b)

(c) (d)

Figure 3.10: The results of simulating a 2× 2 cm2 6 MV photon beam using
both the Upwinding scheme and the Linear SUPG method in a 9.6×9.6×9.6
cm3 bone phantom in a 1.5 T perpendicular magnetic field. (a) PDD profiles
down the center of the phantom for the Upwinding scheme (blue) and the
Linear SUPG scheme (red). The 0 T magnetic field case is also shown (yellow).
(b) A slice through the center of the phantom showing the % difference in dose
as calculated by the two different methods. (c) Profiles across the center of the
beam for the Upwinding scheme (blue) and the Linear SUPG scheme (red).
(d) A gamma map at 2%/2 mm.
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3.5.3 Heterogeneous Phantoms

Results of simulating the LBTE with magnetic fields using the linear SUPG

method for heterogeneous phantoms are now provided, as in clinical situations

we often encounter heterogeneous situations. Additionally, heterogeneous ge-

ometries provide a much more challenging test of the method, as material

interfaces create rapid changes in the fluence in the presence of a magnetic

field. The results for the case of 0 T magnetic field are also shown in these

plots so that the effect of the magnetic field can be clearly visualized.

0.5 T Parallel ~B Field

The results of applying the Linear SUPG method to the heterogeneous lung

slab phantom in a 0.5 T parallel magnetic field are shown in Figure 3.11.

It can be seen that for this low magnetic field strength, the linear SUPG

method shows very good agreement with the Upwinding results. In this case,

a small amount of angular advection is present due to the low field strength,

and thus the SUPG parameter can be kept quite small, (Figure 3.11 f). A

gamma analysis had a passing rate of 99.14% (100%) at 2%/2 mm (3%/3

mm). Additionally, the maximum percent difference for depths greater than

dmax was 0.25%.

The results for the heterogeneous air slab phantom in a 0.5 T parallel

magnetic field are shown in Figure 3.12. It can be seen that the linear SUPG

method still shows excellent accuracy in the water and bone tissue, however,

the accuracy is degraded in air. This is due to the advection dominating the

small amount of scatter present as a result of the very low density medium. It

can be seen that a much larger δ value is required for stabilization, negatively

impacting the accuracy in this region. In this case, the gamma analysis had a

passing rate of 73.11% (82.35%) at 2%/2 mm (3%/3 mm). the maximum per-

cent difference for depths greater than dmax was 31.1%. These results indicate
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that dose in air is very challenging for the SUPG method to capture.

1.5 T Perpendicular ~B Field

The results of applying the Linear SUPG method to the lung phantom in a

1.5 T perpendicular magnetic field are shown in Figure 3.13. The agreement

is also degraded for this case, where the higher magnetic field creates more

angular advection and thus more stabilization is required. The result is that

the SUPG simulations are over-diffusive, which negatively affects the accuracy

of the scheme. Additionally, the benefit of the improved convergence is more

pronounced in the higher magnetic field. A gamma analysis had a passing

rate of 89.38% (96.26%) at 2%/2 mm (3%/3 mm). The maximum percent

difference for depths greater than dmax was 25.0%.

The results of applying the method to the air phantom in a 1.5 T perpendic-

ular magnetic field are shown in Figure 3.14. The agreement is still excellent

in water and bone, however a very high δ value is required to stabilize the

system in such sparse media for a higher magnetic field. This negatively im-

pacts the accuracy in the low density region, causing the resulting fluence to

be over-diffusive, and failing to capture the peak resulting from the material

interface. However, in this case, the improved convergence rate can be clearly

seen, with the linear SUPG method requiring less than half as many iterations

to converge as the Upwinding method for some energy groups. For this case,

the gamma analysis had a passing rate of 89.78% (94.75%) at 2%/2 mm (3%/3

mm). This may seem counterintuitive, but as some of the dose in this case

is very low, fewer points qualified based on the minimum dose requirement

allowing for a higher gamma pass rate to be attained. As such, the maximum

percent difference for depths greater than dmax was 52.0%, occurring in the air

region. Likewise in this case, while the 3%/3 mm gamma analysis achieves a

high pass rate, it is not completely indicative of the agreement of the model.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.11: The results of simulating a 2× 2 cm2 6 MV photon beam using
both the Upwinding scheme and the Linear SUPG method in a 9.6×9.6×9.6
cm3 heterogeneous lung slab phantom in a 0.5 T parallel magnetic field. (a)
PDD profiles down the center of the phantom for the Upwinding scheme (blue)
and the Linear SUPG scheme (red). The 0 T magnetic field case is also
shown (yellow). (b) A slice through the center of the phantom showing the
% difference in dose as calculated by the two different methods. (c) Profiles
across the center of each material section for the Upwinding scheme (blue) and
the Linear SUPG scheme (red). (d) A gamma map at 2%/2 mm. (e): the
number of iterations required to converge each energy group for the Upwinding
scheme (blue) and the Linear SUPG method (red). (f): the value of δ for each
material as a function of total cross-section.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.12: The results of simulating a 2× 2 cm2 6 MV photon beam using
both the Upwinding scheme and the Linear SUPG method in a 9.6×9.6×9.6
cm3 heterogeneous air slab phantom in a 0.5 T parallel magnetic field. (a)
PDD profiles down the center of the phantom for the Upwinding scheme (blue)
and the Linear SUPG scheme (red). The 0 T magnetic field case is also
shown (yellow). (b) A slice through the center of the phantom showing the
% difference in dose as calculated by the two different methods. (c) Profiles
across the center of each material section for the Upwinding scheme (blue) and
the Linear SUPG scheme (red). (d) A gamma map at 2%/2 mm. (e): the
number of iterations required to converge each energy group for the Upwinding
scheme (blue) and the Linear SUPG method (red). (f): the value of δ for each
material as a function of total cross-section.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.13: The results of simulating a 2× 2 cm2 6 MV photon beam using
both the Upwinding scheme and the Linear SUPG method in a 9.6×9.6×9.6
cm3 heterogeneous lung slab phantom in a 1.5 T perpendicular magnetic field.
(a) PDD profiles down the center of the phantom for the Upwinding scheme
(blue) and the Linear SUPG scheme (red). The 0 T magnetic field case is also
shown (yellow). (b) A slice through the center of the phantom showing the
% difference in dose as calculated by the two different methods. (c) Profiles
across the center of each material section for the Upwinding scheme (blue) and
the Linear SUPG scheme (red). (d) A gamma map at 2%/2 mm. (e): the
number of iterations required to converge each energy group for the Upwinding
scheme (blue) and the Linear SUPG method (red). (f): the value of δ for each
material as a function of total cross-section.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.14: The results of simulating a 2× 2 cm2 6 MV photon beam using
both the Upwinding scheme and the Linear SUPG method in a 9.6×9.6×9.6
cm3 heterogeneous air slab phantom in a 1.5 T perpendicular magnetic field.
(a) PDD profiles down the center of the phantom for the Upwinding scheme
(blue) and the Linear SUPG scheme (red). The 0 T magnetic field case is also
shown (yellow). (b) A slice through the center of the phantom showing the
% difference in dose as calculated by the two different methods. (c) Profiles
across the center of each material section for the Upwinding scheme (blue) and
the Linear SUPG scheme (red). (d) A gamma map at 2%/2 mm. (e): the
number of iterations required to converge each energy group for the Upwinding
scheme (blue) and the Linear SUPG method (red). (f): the value of δ for each
material as a function of total cross-section.
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Chapter 4

Non-Linear SUPG Formulation

The linear SUPG formulation provides stabilization by introducing artificial

diffusion in the streamline direction, the amount of which can be varied de-

pending on the amount of scatter present. However, because the diffusion is

added only in the streamline (advection) direction, at times too much artifi-

cial diffusion is required for stability thus reducing the accuracy. This effect is

particularly pronounced in low density media where advection dominates. A

proposed solution is to use a non-linear scheme in which the artificial diffusion

now depends on the solution gradient, both in magnitude and direction. This

effectively adds diffusion in the cross-wind direction, potentially dampening

oscillations with less effect on the accuracy than in the linear SUPG case.

Additionally, due to the dependence on the solution gradient, regions with a

steeper gradient will introduce more diffusion. Prior work by Merton [51] as

well as Pain et al. [52] has shown excellent accuracy results using a non-linear

SUPG method for stabilization of the radiation transport spatial advection

term, even in very low density media. This suggests we may see improvement

in accuracy by using a non-linear SUPG scheme in angle in addition to the cur-

rent linear SUPG scheme. As was the case for linear SUPG, this method has

previously only been explored for spatial discretization, with the application
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to angular advection being a novel advancement.

4.1 One-dimension in Space

In this section, the theory behind the development of this method is outlined.

The application to the angular advection term of the LBTE with magnetic

fields will then be derived. Following the works of Merton [51] and Hughes

et al. [53], a one-dimensional, time-dependant, spatial case is first considered.

An example in space is first given, followed by the analogous novel angular

derivation. Begin with the simple equation

~a · ∇xtψ + σψ = 0, (4.1)

where ~a = (at, ax)
T , and ∇xt =

(
∂ψ
∂t
, ∂ψ
∂x

)T
. The modified weighting function

will be based on the projection of ~a onto ∇xt. Taking θa to be the angle

between these two vectors, then the cosine rule gives

cos(θa) =
~a · ∇xtψ

|~a||∇xtψ|
. (4.2)

In this case, the norm used is simply the Euclidean, or L2-norm, i.e.

~a =
√
a2
t + a2

x.

The projection of ~a onto ∇xt is given by

~a∗ = |~a|~n cos(θa), (4.3)
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with ~n = ∇xtψ
|∇xtψ| . Substituting Equation 4.2 into Equation 4.3 and simplifying

gives

~a∗ =
(~a · ∇xtψ)∇xtψ

||∇xtψ||2.
(4.4)

Then, as per Merton [51], in this case, the non-linear Petrov-Galerkin

method can be applied in a similar manner as for the linear Petrov-Galerkin,

via a modification of the weighting function. For this simple example then,

the method would take the form

(1−∇xt · ~a∗p∗)(~a · ∇xtψ + σψ − s) = 0. (4.5)

The parameter p∗ can then be chosen in several different ways. Some

options given in [51] include:

p∗ =
1

4
(|~a∗ · ∇xtNxti|)−1 , (4.6)

where Nxti is the ith basis (weighting) function. An alternative form uses the

space-time Jacobian matrix ~Jxt:

p∗ =
1

4

(
|| ~Jxt

−1
~a∗||2

)−1

. (4.7)

This method is also employed in Hughes et al. [53] with slightly different

notation and a simpler form of p∗ from above. In this case, and in our imple-

mentation, the non-linear term is simply added to the weighting function in

the same manner as the linear SUPG term. Note that the linear SUPG term is

also added, so that both streamline and crosswind diffusion are present. Then,

the suggested modified weighting function is

w̃ = wh + τ1~a · ∇wh + τ2~a
∗ · ∇wh, (4.8)
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where the first term wh gives the original FEM weighting function, the second

term gives the streamline diffusion, or linear Petrov Galerkin term, and the

final term corresponds to the non-linear Petrov-Galerkin term. In particular,

τ1 in this notation is equivalent to the δ of our earlier derivation. The derived

form of the non-linear term from Merton [51] and Pain et al. [52] shown above

is an extension of this early method, with a more sophisticated method of

controlling the amount of diffusion added, i.e., various forms of p∗.

4.2 Application to Angular Advection

In order to apply this non-linear method to the LBTE with magnetic fields, ~a∗

must be defined. This term is based on the advection term in the full equation,

and is given by Equation 4.4, where ~a gives the angular advective velocity, i.e.,

the angular advection term can be written as ~a · ∇ΩΨ. As above, without loss

of generality, the case of a z-magnetic field is considered, i.e. ~B = Bz~̂z. In this

case then,

~a = (κBz

√
1− µ2, 0), (4.9)

and

∇Ω =

(
1√

1− µ2

∂

∂φ
,
∂

∂θ

)
. (4.10)

Note that since µ = cos θ,
√

1− µ2 = sin θ, as it will be written henceforth.

Then the weak formulation incorporating both the standard streamline diffu-

sion modification as well as the non-linear SUPG term is given by

〈
Lψ,Υ + δκBz

∂Υ

∂φ
+ τ2~a

∗ · ∇ΩΥ

〉
=

〈
Q,Υ + δκBz

∂Υ

∂φ
+ τ2~a

∗ · ∇ΩΥ

〉
.

(4.11)

The non-linear diffusion term has been introduced directly in an amount given

by τ2, and the linear SUPG term is still controlled by the parameter δ. This

84



equation can then be split up as was done for the case of the linear SUPG

derivation:

〈Lψ,Υ〉︸ ︷︷ ︸
(I)

+

〈
Lψ, δκBz

∂Υ

∂φ

〉
︸ ︷︷ ︸

(II)

+ 〈Lψ, τ2~a
∗ · ∇ΩΥ〉︸ ︷︷ ︸

(III)

= 〈Q,Υ〉︸ ︷︷ ︸
(IV)

+

〈
Q, δκBz

∂Υ

∂φ

〉
︸ ︷︷ ︸

(V)

+ 〈Q, τ2~a
∗ · ∇ΩΥ〉︸ ︷︷ ︸

(VI)

. (4.12)

Terms (I), (II), (IV) and (V) have already been calculated previously in

Chapter 3, thus only terms (III) and (VI) need now be considered.

Term (III): Before constructing terms (III) and (VI), the weighting func-

tion must be expanded to determine how all the components are incorporated.

Beginning with the full non-linear weighting function:

τ2~a
∗ · ∇ΩΥ = τ2

(
(~a · ∇Ωψ)

|∇Ωψ|22
∇Ωψ

)
·
(

1

sin θ

∂

∂φ
,
∂

∂θ

)
λj(~r)γq(~Ω). (4.13)

First consider the piece ~a · ∇Ωψ, where the finite element expansion of ψ is

used

~a · ∇Ωψ = (κBz sin θ, 0) ·
(

1

sin θ

∂

∂φ
,
∂

∂θ

) I∑
i=1

P∑
p=1

ψipλi(~r)γp(~Ω) (4.14)

=
I∑
i=1

P∑
p=1

κBzψipλi(~r)
∂γp(~Ω)

∂φ
. (4.15)
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Now looking at |∇Ωψ|22:

|∇Ωψ|22 =

∣∣∣∣∣
(

1

sin θ

∂

∂φ
,
∂

∂θ

) I∑
i=1

P∑
p=1

ψipλi(~r)γp(~Ω)

∣∣∣∣∣
2

2

(4.16)

=

(
I∑
i=1

P∑
p=1

ψip
λi(~r)

sin θ

∂γp(~Ω)

∂φ
,

I∑
i=1

P∑
p=1

ψipλi(~r)
∂γp(~Ω)

∂θ

)
·(

I∑
i=1

P∑
p=1

ψip
λi(~r)

sin θ

∂γp(~Ω)

∂φ
,

I∑
i=1

P∑
p=1

ψipλi(~r)
∂γp(~Ω)

∂θ

)
(4.17)

=
1

sin2 θ

(
I∑
i=1

P∑
p=1

ψipλi(~r)
∂γp(~Ω)

∂φ

)2

+

(
I∑
i=1

P∑
p=1

ψipλi(~r)
∂γp(~Ω)

∂θ

)2

.

(4.18)

Then the new non-linear modified weighting term is given by

τ2~a
∗ · ∇ΩΥ =

τ2κBz sin2 θ
(∑I

i=1

∑P
p=1 ψipλi(~r)

∂γp(~Ω)

∂φ

)
(∑I

i=1

∑P
p=1 ψipλi(~r)

∂γp(~r)

∂φ

)2

+ sin2 θ
(∑I

i=1

∑P
p=1 ψipλi(~r)

∂γp(~r)

∂θ

)2

·

[(
1

sin θ

I∑
i=1

P∑
p=1

ψipλi(~r)
∂γp(~Ω)

∂φ
,

I∑
i=1

P∑
p=1

ψipλi(~r)
∂γp(~Ω)

∂θ

)

·

(
1

sin θ
λj(~r)

∂γq(~Ω)

∂φ
, λj(~(r))

∂γq(~Ω)

∂θ

)]
(4.19)

(4.20)

To simplify the above expressions, the following quantities are introduced:

η1(~r, ~Ω) =
I∑
i=1

P∑
p=1

ψipλi(~r)
∂γp(~Ω)

∂φ
(4.21)

η2(~r, ~Ω) =
I∑
i=1

P∑
p=1

ψipλi(~r)
∂γp(~Ω)

∂θ
(4.22)

χ(~r, ~Ω) =
η1(~r, ~Ω)

η2
1(~r, ~Ω) + sin2 θη2

2(~r, ~Ω)
. (4.23)
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Using these simplifying expressions, the non-linear modified weighting function

can be written as

τ2~a
∗·∇ΩΥ = τ2κBzχ(~r, ~Ω)·

(
λj(~r)

∂γq(~Ω)

∂φ
η1(~r, ~Ω) + sin2 θλj(~r)

∂γq(~Ω)

∂θ
η2(~r, ~Ω)

)
.

(4.24)

Then consider term (III) of Equation 4.12:

〈Lψ, τ2~a
∗ · ∇ΩΥ〉 =

〈
~Ω · ∇

(
I∑
i=1

P∑
p=1

ψipλi(~r)γp(~Ω)

)
︸ ︷︷ ︸

(i)

+κBz
∂

∂φ

(
I∑
i=1

P∑
p=1

ψipλi(~r)γp(~Ω)

)
︸ ︷︷ ︸

(ii)

+ σT (~r)

(
I∑
i=1

P∑
p=1

ψipλi(~r)γp(~Ω)

)
︸ ︷︷ ︸

(iii)

, τ2~a
∗ · ∇ΩΥ

〉
. (4.25)

We first work with term (i), as this is the term to which the spatial diver-

gence theorem is applied. Taking the inner product and expanding this term

out gives

〈
~Ω · ∇

(
I∑
i=1

P∑
p=1

ψipλi(~r)γp(~Ω)

)
, τ2~a

∗ · ∇ΩΥ

〉

= τ2κBz

I∑
i=1

P∑
p=1

ψip

[∫
Ωe
d~Ωγp(~Ω)

∂γq(~Ω)

∂φ

∫
V e
dV ~Ω · ∇(λi(~r))λj(~r)η1(~r, ~Ω)χ(~r, ~Ω)

+

∫
Ωe
d~Ωγp(~Ω) sin2 θ

∂γq(~Ω)

∂θ

∫
V e
dV ~Ω · ∇(λi(~r))λj(~r)η2(~r, ~Ω)χ(~r, ~Ω)

]
. (4.26)

Before proceeding, we define

ρ(~r, ~Ω) = λj(~r)η1(~r, ~Ω)χ(~r, ~Ω), (4.27)

87



and consider only the spatial integrals from Equation 4.26. Applying the

divergence theorem to the first spatial integral and substituting in Equation

4.27 gives

∫
V e
dV ~Ω · ∇(λi(~r))λj(~r)η1(~r, ~Ω)χ(~r, ~Ω)

=

∫
Se
dSλi(~r)ρ(~r, ~Ω)~Ω · n̂−

∫
V e
dV λi(~r)~Ω · ∇(ρ(~r, ~Ω)). (4.28)

Taking the gradient of ρ(~r, ~Ω)

∇(ρ(~r, ~Ω)) = ∇(λj(~r))η1(~r, ~Ω)χ(~r, ~Ω) + λj(~r)∇(η1(~r, ~Ω)χ(~r, ~Ω)) (4.29)

= ∇(λj(~r))η1(~r, ~Ω)χ(~r, ~Ω) + λj(~r)∇(η1(~r, ~Ω))χ(~r, ~Ω) (4.30)

+ λj(~r)η1(~r, ~Ω)∇(χ(~r, ~Ω)), (4.31)

where

∇(η1(~r, ~Ω)) =
I∑
i=1

P∑
p=1

ψip∇(λj(~r))
∂γp(~Ω)

∂φ
, (4.32)

and

∇(χ(~r, ~Ω)) =
η2

1(~r, ~Ω) + η2
2(~r, ~Ω)∇(η1(~r, ~Ω))−∇(η2

1(~r, ~Ω) + η2
2(~r, ~Ω)η1(~r, ~Ω)

(η2
1(~r, ~Ω) + η2

2(~r, ~Ω)2
,

(4.33)

with

∇(η2
1(~r, ~Ω) + η2

2(~r, ~Ω) = 2η1(~r, ~Ω)∇η1(~r, ~Ω) + 2η2(~r, ~Ω)∇η2(~r, ~Ω). (4.34)

The second spatial integral of Equation 4.26 can be solved similarly, giving

a total of four terms; two surface integrals, and two volume. This allows for

Upwinding to still be applied in space. Terms (ii) and (iii) can be expanded

in a simpler manner, as the divergence theorem is not applied in these cases.
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Beginning with term (ii):

〈
κBz

∂

∂φ

(
I∑
i=1

P∑
p=1

ψipλi(~r)γp(~Ω)

)
, τ2~a

∗ · ∇ΩΥ

〉

= τ2κ
2B2

z

I∑
i=1

P∑
p=1

ψip

[∫
Ωe
d~Ω

∂γp(~Ω)

∂φ

∂γq(~Ω)

∂φ

∫
V e
dV λi(~r)λj(~r)η1(~r, ~Ω)χ(~r, ~Ω)

∫
Ωe
d~Ω sin2 θ

∂γp(~Ω)

∂θ

∂γq(~Ω)

∂θ

∫
V e
dV λi(~r)λj(~r)η2(~r, ~Ω)χ(~r, ~Ω)

]
. (4.35)

Term (iii) is then given by

〈
σT (~r)

(
I∑
i=1

P∑
p=1

ψipλi(~r)γp(~Ω)

)
, τ2~a

∗ · ∇ΩΥ

〉

= τ2κBz

I∑
i=1

P∑
p=1

ψipσT (~r)

[∫
Ωe
d~Ωγp(~Ω)

∂γq(~Ω)

∂φ

∫
V e
dV λi(~r)λj(~r)η1(~r, ~Ω)χ(~r, ~Ω)

∫
Ωe
d~Ω sin2 θγp(~Ω)

∂γq(~Ω)

∂θ

∫
V e
dV λi(~r)λj(~r)η2(~r, ~Ω)χ(~r, ~Ω)

]
. (4.36)

Finally, to complete the derivation of the non-linear SUPG system, we

consider term (VI) from equation 4.12 to give the right hand side term

〈Q, τ2~a
∗ · ∇ΩΥ〉 =

τ2κBz

[∫
Ωe
d~Ω

∂q(~Ω)

∂φ

∫
V e
dV Q(~r, ~Ω)λj(~r)η1(~r, ~Ω)

+

∫
Ωe
d~Ω sin2 θ

∂q(~Ω)

∂θ

∫
V e
dV Q(~r, ~Ω)λj(~r)η2(~r, ~Ω)

]
. (4.37)

4.3 Solving the Non-Linear System

Applying a non-linear SUPG method leads to a non-linear system of equations.

For the linear SUPG method, as well as the standard DGFEM method, the
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resulting system of the equations could be represented as a linear system, i.e.

A~x = ~b, (4.38)

where A is an N × N matrix, ~x is a vector of unknowns of length N , and ~b

is a vector of known values of length N . The key to this type of system is

that both A and ~b are independent of the unknown ~x, hence many solution

methods are available, as linear systems have been studied extensively. When

the weighting function is modified to include a term involving the solution

gradient, the system can no longer be represented in the simple linear system

given in Equation 4.38. The equation now takes the form

~F (~x) = ~b, (4.39)

where ~F represents a vector of length N and each component depends on ~x in

a non-linear manner. Thus in this section we have derived an angular imple-

mentation of the non-linear SUPG method which effectively adds crosswind

diffusion to the existing streamline diffusion term. It is expected that this

additional term may improve the accuracy of the simulations, in particular

for cases of low density media such as lung or air. As was seen in Chapter

3, the accuracy in low density media is negatively impacted by the amount of

artificial diffusion required for stability. If the amount of streamline diffusion

could be reduced with the introduction of cross-wind diffusion, the accuracy

may improve.
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Chapter 5

Conclusions and Future Work

A dose calculation method that is both accurate and fast is a crucial part of any

radiation treatment system. Various approaches starting from the 1950’s have

been developed, using ever more sophisticated schemes, as both the underlying

physics knowledge and computational capabilities progressed. For standard

linac systems, existing dose calculation software has advanced to the point of

being both accurate and fast enough for near real-time treatment planning.

However, the development of new MR-guided linac systems has required that

existing methods be modified to incorporate the effect of the magnetic field.

As dose deposition occurs via secondary electrons, particles are affected by the

Lorentz force that causes angular deflection. These effects can be modelled

using Monte Carlo simulations, but St-Aubin et. al also derived a new angular

advection term of the charged particle LBTE which accurately incorporates

the magnetic field effects [24, 23].

Solving the modified LBTE numerically is challenging, as it contains both

a spatial and an angular advection term. An existing method developed by

St-Aubin et. al [24, 23], and Yang et. al [40] is capable of accurate solutions to

the integro-PDE, however, the method features some potential inefficiencies.

Firstly, because the stabilization method is predicated on a sequential solving
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of both spatial and angular elements, the potential for parallelization is limited.

Additionally, the work of Zelyak et. al [26] has shown that the convergence

properties of the fixed-point iteration for the existing method are dependant on

the magnetic field strength. This suggests that for certain configurations, the

existing method could show very slow convergence, limiting the computational

speed that can possibly be attained.

This thesis focuses on the development of an alternative angular stabiliza-

tion scheme that has advantages both in terms of parallelization, and in terms

of its convergence properties. The original method of Yang et. al [40] employs

a DGFEM method in both space and angle. Using this method, elements are

coupled together so that the solution in one element depends on the solution of

the previous element, based on the advective direction. This requires a specific

ordering for solution of the elements based on the respective spatial and angu-

lar advective velocities to ensure stability. In order to capture discontinuities

in space due to the presence of tissue interfaces, the new method developed

here still uses this DGFEM method in space. However, in angle, a continuous

method is used where a small amount of angular diffusion is introduced in

the streamline (advective) direction in order to stabilize the angular advection

term, and allowing all angular elements to be solved simultaneously, as they are

no longer coupled together. This introduces the potential for parallelization

which could greatly improve computational speed.

The method developed here is called a Streamline Upwind Petrov-Galerkin,

or SUPG method, and it is applied in angle only. The angular weighting

function of the original FEM formulation is modified to include an additional

term that serves to introduce artificial diffusion in an amount controlled by the

parameter δ. An analysis of the convergence behaviour was first performed

based on both the continuous and discrete formalisms. Fourier analysis of

the discrete formalism suggested that neither the magnetic field strength nor
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the SUPG parameter δ value should have any effect on the convergence rate

of the source iteration scheme. This suggests that convergence should occur

as quickly using the SUPG method as it would for the 0-magnetic field case.

Inputting a variety of magnetic field strengths and values of δ into the discrete

code confirmed these findings.

We hypothesized that the amount of artificial diffusion required for stabil-

ity would depend on the energy, the magnetic field strength, and the material.

These components impact the amount of advection present, and it was ex-

pected that increased advection would necessitate a larger value of δ. Existing

code was modified to include the SUPG method so that dose could be calcu-

lated. Empirical investigation was consistent with this hypothesis, and it was

found that in general, the δ value should be larger in higher energy groups and

low density materials. Homogeneous phantoms were first used to determine

the energy dependence. Typically, the SUPG method is applied for advection-

diffusion systems, however in this case, no explicit diffusion is present, hence

the scatter term serves to act as a diffusion term and thus we suspected that

the total cross-section could be used as a surrogate for the diffusion coefficient.

This idea was tested using a literature-defined form for δ, and it gave good

agreement with the empirical behaviour that was observed.

Both homogeneous and heterogeneous slab phantoms were then used to

evaluate the accuracy of the SUPG-method both in homogeneous material,

and in the presence of inhomogeneities. Phantoms of pure lung, pure water,

and pure bone were used, as well as both a water-bone-lung-water, and a

water-bone-air-water phantom. The dose in each was calculated in both a 1.5

T perpendicular magnetic field and a 0.5 T parallel magnetic field, meant to

simulate the main designs in use for linac-MR systems. For a 0.5 T parallel

magnetic field, accuracy results were very good, with a 2%/2 mm gamma anal-

ysis achieving 100% agreement in all three homogeneous phantoms, as well as
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the first heterogenous phantom. Results were not as good in the heterogenous

phantom containing air, however for all other materials, the SUPG method

was effective in the 0.5 T parallel magnetic field.

In the 1.5 T perpendicular magnetic field, high levels of accuracy were

obtained in materials such as water and bone. However, lower density media

such as lung and air suffered from a loss of accuracy, as compared to the

existing validated DGFEM method. It was noted, however, that the SUPG

method was indeed capable of capturing the effect of the magnetic field. We

hypothesize that the problem in low-density media comes from the fact that

advection dominates so strongly in these regions, requiring a large amount

of artificial diffusion for stability, thus negatively impacting the accuracy. In

terms of convergence, the SUPG method did perform consistently with the

0-magnetic field case, as expected. For certain configurations, such as the

water-bone-air-water phantom in a 1.5 T perpendicular magnetic field, the

number of iterations required for convergence was reduced by nearly half when

compared to the existing DGFEM method.

With the eventual goal of improving accuracy in low density media, a

non-linear SUPG method was derived in angle. The idea behind this tech-

nique is to introduce artificial diffusion in the cross-wind direction. While

the implemented linear SUPG technique introduced diffusion to the stream-

line direction, i.e., in line with the magnetic field deflection, it is possible that

instabilities were also present in the cross-wind direction perpendicular to the

magnetic field deflection. Thus, the δ parameter was made large in order to

stabilize the scheme. If diffusion could be explicitly controlled in the cross-

wind direction, a reduction in δ may be possible, thus restoring some of the lost

accuracy. This non-linear SUPG scheme was derived here for the LBTE with

magnetic field term with the goal of implementing and testing the method.

In the future, we would like to implement the non-linear SUPG method and
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observe if any improvement in accuracy can be obtained. To solve a system

of equations of this type, typically an iterative technique is required. As such,

implementing the non-linear scheme is not a simple extension of the existing

linear scheme implementation, but rather requires a reworking of the problem

architecture. For the linear scheme, many components of the iteration matrix

could be pre-computed, as these did not change with the value of unknown

angular fluence. In the case of the non-linear scheme, these same matrices

must be recomputed for every iteration. This introduces challenges computa-

tionally that must be carefully considered in the implementation. Following

implementation, a new stability study would be required as well as further

accuracy testing. A nested iteration method such as that employed by Merton

[51] is suggested for solution of the non-linear scheme, where an “outer” iter-

ation is employed to converge the non-linear terms and an “inner” iteration

such as Source Iteration used to converge the right-hand-side source terms. It

is expected that this method should show improved accuracy over the existing

linear scheme, in particular for low density media.
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