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Abstract

Location-based Routing and Indoor Location Estimation wbiWe Ad Hoc

Networks

Israat Tanzeena Haque

In Mobile Ad Hoc NETworks (MANETS) autonomous nodes act baghraffic origina-
tors and forwarders to form a multi-hop network. Out-ofgamodes are reachable through
a process called routing, which is a challenging task dué@dacbnstraints of bandwidth
and battery power. Stateless location-based routing seiém@ve been proposed to avoid
complex route discovery and maintenance, whereby nodeg noaking decisions based
solely on the knowledge of their location, the location @itimeighbors, and the location of
the destination. Natural routing schemes based on thessgpiisites suffer from problems
like local maxima or loops. We mitigate those problems byppsing randomized routing
algorithms, which outperform others in terms of the paclativery ratio and throughput.

The prerequisite for location-based routing is knowingltdoation of a node. Location
information is more widely useful anyway for location-a&applications like security,
health care, robotics, navigation etc. Locating a nodeanslcemains a challenging prob-
lem due to the unavailability of GPS signals under the roof.tkis goal we choose the RSS
(Received Signal Strength) as the relevant attribute osin@al due to its minimal require-
ments on the RF technology of the requisite modules. Thefilipgpbased localization
is considered that does not rely on any channel model (raaged) or the connectivity
information (range-free), but rather exploits the contehd node to infer that information

into the estimation.



We propose a RSS profiling based indoor localization systieohed LEMON, based
on low-cost low-power wireless devices that offers bettmusacy than other RSS-based
schemes. We then propose a simple RSS scaling trick to furtipgove the accuracy of
LEMON. Furthermore, we study the effect of the node orieamtthe number and the
arrangement of the infrastructure nodes and the profileghlemmleading us to further in-
sights about what can be effective node placement and pignfe also consider alternate
formulations of the localization problem, as a Bayesianvoet model as well as formu-
lated in a combinatorial fashion. Then performance of ddife localization methods is
compared and again LEMON ensures better accuracy. An eecom localization algo-
rithm is developed, and both single and multiple channelsuaed to test its performance.
Furthermore, a set of two-step localization algorithmseasigned to make the LEMON

robust in the presence of noisy RSS and faulty device behavio



Acknowledgments

It is a long journey to accomplish the research goal in a Phiygam. Students need
strong motivation and dedication towards the achievemethi®goal. It is very common
that they become frustrated along the way. Here comes tkeofdhe supervisors, who
mentor graduate students not only to guide them in researchlso to provide mental
support to recover from all sorts of frustrations and difties. Their support, encourage-
ment, and guidance make it possible for a graduate studenictessfully reach the goal.
The scenario is not exceptional in my case and my supeni@otsanis Nikolaidis and Dr.
Pawel Gburzynski, University of Alberta, were always besie during the long journey
through my PhD program. | would like to express my gratitumety supervisors for their
continuous concern about my work. Their invaluable suggestand guidance helped me
to formulate the challenging problems addressed in thisishend constructively work to-
wards their solution. Indeed, their support and encourageimelped me to recover from
a difficult situation after coming back from a maternity leand working while having a
young child. Also, | would like to thank Dr. Janelle Harms, Dfartha Steenstrup, Dr.
Mike MacGregor, and Dr. Ehab Elmallah from Communicatioriideks group, Depart-
ment of Computing Science, for their valuable suggestiéiso thanks go to Dr. Mario
Nascimento, Database Systems research group from the sgradrdent, for his advice.
Secondly, | would like to thank my family for their encouragent and support. My

father, Azizul Haque, was always there to boost me up fromdaffigult situations. One



person, without whose support and sacrifice | could not e@se thought about embark-
ing on this work is my husband, Wahedunnabi. The tirednesslohg-day work would
disappear in a second after hugging my little son, Sudeep. Nabuld start another long
day full of energy after enjoying a big smile from him. Thisslertation is thus dedicated

to following people.

1. My son, Sudeep Nabi, whose presence is the secret of mgyener

2. My husband, Wahedunnabi, for his love, encouragementsapport to make my

professional life successful.
3. My mother, Jasmina Begum, who is always there, espedamibugh time of my life.

4. My father, Azizul Haque, for his encouragement.

Also, | would like to thank my colleagues Yuxi Li, Bauchun Bé&bdullah-al Mah-
mood, Baljeet Malhotra, Nicholas Boers, Chen Liu, BenyaBinmony, and Ryan Vogt,
Computing Science, University of Alberta, for all the stilaing discussions in Commu-
nication Networks group. | want to thank my friends Rocio @oayer, Georgia State
University and Dongwook Cho, Concordia University for Kingharing with me their
wisdom. A special thanks go to my friend Sheehan Khan, Comg@&cience, University
of Alberta, for the stimulating discussions about both theel@ss networks and machine
learning. And last, but not the least, thanks go to all mynidie who made me feel that |

am not alone in this journey.

Vi



Contents

List of Figures

List of Tables

1

Introduction

1.1 Routing in MANETs

1.2 Indoor Localization . . . . . . . . . . . ...

1.3 Thesis Contribution . . . . . . . . . . ..

1.4 Thesis Organization

Location-based Routing in Mobile Ad Hoc Networks

2.1 Introduction . . . . . . . ..
2.1.1 Routingissuesof MANETs . . ... ... ... ........

2.2 The Problem Definition and Network Model . . . .. ... ... ...
221 Channelmodel . ... ... ... ... .. ... ...,
222 Energymodel ... ... ... ... .. ... . 0.
2.2.3 Antennamodel ... .. .. ... .. ... .. .. .. ...
2.2.4 Mobiltymodel . .. ... ... ... ... .. .
2.25 Trafficmodel . .. ... ... ..
2.2.6 Performancemeasures . ... .. ... ... ........

2.3 The State-of-the-artin MANETsRouting . . . . . ... ... .....

Vil

Xi



2.3.1 Proactive routing protocols . . . . .. .. ... ... .. 18

2.3.2 Reactive or on-demand routing protocols . . . . . ... ...... 21
2.3.3 Location-based or geographic routing protocols . ...... . .. 25
2.4 Protocol Definitions . . . . . .. .. L 33
2.5 Performance Studyof DLR . . . . . . .. . . ... ... . .. ... 5 3
2.5.1 Simulation environment . . . ... .. ... ... ... ..., 35
2.5.2 Performance comparisonof DLRin2D . . ... ... ...... 6 3
2.5.3 Performance comparisonof DLRin3D . .. ... ... ..... 8 3
2.6 Performance Study of FFRand FRT . . ... .. ... ... ...... 9 3
2.6.1 Simulationenvironment . . . ... ... ... ... ... ... 39
26.2 Results . ... .. . ... 40
2.7 Conclusions . . . . . .. 46
LEMON: an RSS-based Indoor Localization Technique 48
3.1 Introduction . . . . . . . .. 48
3.2 An Overview of Indoor Localization Schemes . . . . . ... ...... 49
3.3 LEMON: Transforming Samples into Locations . . . ... ... .. .. 55
3.3.1 Profiling ... ... ... ... 56
3.3.2 Selecting relevant profiledsamples. . . . .. ... ... ... b7
3.3.3 Measuring discrepancy in the samplespace . ... ...... 57
3.3.4 Estimatingthelocation . . . . . ... ... ... ......... 85
3.4 EXperiments . . . . . . .. e e 59
341 Thehardware . . .. ... .. .. . . . ... 59
3.4.2 Thelogistics . ... ... . . ... . 60
3.5 The Impact of Parameters on the Performance of LEMON . . . . .. 62
3.5.1 The effectof sampledensity . . .. ... ... .......... 3 6
3.5.2 Theeffectofpegdensity . . . .. ... .. ... ... ....... 64
353 RSSscaling. ... ..... ... ... ... .. 65



3.6

3.7
3.8

3.5.4 The effect of RSS metrics and averagingbias . . . ... ... 67
3.5.5 Theeffectofobstacles . ... .................... 70
Effect of Profiled Samples and Infrastructure Nodes erPérformance of
LEMON . . . . e e e 71
3.6.1 Impact of number and layout of reference points . . . ...... . 71
3.6.2 Effectofpegplacement . .. .. .. ... ... .......... 73
Performance of LEMON in Multiple Rooms . . . . .. .. ... .. .. 75
Conclusions . . . . . . . .. e 79

Transforming Samples into Location Estimates: A Performance Comparison 82

4.1 Transforming Samplesinto Locations . . . ... ... ........... 83
4.1.1 Lateration . . . . . . .. 84
4.1.2 The Bayesian Network Approach . . . . ... .. ... ...... 88
4.1.3 Maximum Likelihood Estimation . . . ... ... ......... 19
4.1.4 GausSIan ProCeSS . . . . v v v e i e e e e e e 91
4.1.5 Support Vector Machine (SVM) . . . .. ... ... ... ..... 95
4.1.6 Combinatorial localization . . .. ... ... ........... 97

4.2 Discussion of the Experimental Results . . . . .. .. ... ........ 98

4.3 Impact of Distance Between Profiled Samples . . . . .. .. ... ..103

4.4 Multi-channel RF-based Indoor Localization. . . . .. .........105

4.5 RF-based Room Localization . . . . . ... ... .. ... ....... 107

4.6 ConCluSIONS . . . . . . .. 108

Localization Robustness 110

5.1 The Impact of Dimensionality Expansion . ... ... ... ......110

5.2 Robustness Under Imperfect RSS Measurements . . . . . ........ . 112
5.2.1 The impact of erroneous RSS measurements . . . .. .. ... 112
5.2.2 Theimpactof outlierRSSvalues . ... ............ 131



5.2.3 Reliability assessmentofpegs . .. ... ... .. ....... 117

5.3 Conclusions

6 Conclusions



List of Figures

2.1 Hidden and exposed terminal phenomena. . . . .. ... ....... 13
2.2 The presence of count-to-infinity in distance vectotirmy . . . . . . . . 19
2.3 Anexample of location-based routing. . . . . ... ............ 30
2.4 (a) average network throughput, (b) path length, ang#cket delivery

ratio, for 10x 10grid. . . . . . . . .. ... . 41
2.5 (a) average network throughput, (b) path length, ang#cket delivery

ratio, forrandomtopology. . . . . . . . . . ... ... 34
2.6 (a) average network throughput, (b) path length, angpécket delivery

ratio, for 10x 10 grid with biased traffic. . . .. ... ... .. ... ... 45
3.1 The EMSPCC11 mote and the experimental set up to gatiralstrength. 60
3.2 A sample distribution of nodesinaroom. . ............... 62
3.3 Average error distance,room1.. .. ..................... 63
3.4 EXperimentinroom 2. . . . . . . . ... e e e 64
3.5 Theeffectof RSSscaling. . .. ... ... .. ... ... ........| 66
3.6 Effect of distance metrics on location estimation. . ...... . ... ... 67
3.7 Effectofaveragingfactors. . . .. .. ... ... .. .. .. ... ... 69
3.8 Effectofobstacles. . . . ... ... .. . ... 70
3.9 Locations of pegs and of 24 reference points (Diamond).. . . . . . .. 72
3.10 Reference point location configurations. . . . . ... . ...... .. ... 73
3.11 Localization error for different reference point cgofiations. . . . . . .. 74

Xi



3.12
3.13
3.14

3.15
3.16
4.1
4.2
4.3

4.4
4.5

4.6
4.7

4.8

4.9
4.10
5.1
5.2
5.3
5.4
5.5

Peg layouts foreightpegs. . . . . . . . . . .. .. .. ... ... 74
Localization error for different peg layouts. . . . . . . ... ... ... 75
Room layout and layout of pegs (circles), referencatpdicrosses), and

localized points (stars). . . . . . . . . ... e 76

Performance of LEMON (w/ & w/o orientation) and k-NN ased by PLP. 77

Distribution of errors in the three-room experiment. ... . . . ... ... 79
DAG representation of the Bayesian network model. . . ...... . ... 90
The error distribution of LEMON withunscaled RSS. . . . . ... ... 99
The performance comparison of LEMON with LANDMARC and BAR

withunscaled RSS. . . . . . . . .. .. .. . 99
The performance of local and global parameters of latera. . . . . . . . 100

The performance comparison of different localizatietmods without scaled

The error distribution of LEMON with scaled RSS. . . . . .. ... .. 102
The performance comparison of LEMON with LANDMARC and BAR
withscaled RSS. . . . . . . . . . . .. . .. . 102

The performance comparison of different localizatiatmods with scaled

RSS. . . 103
Impact of density of reference points. . . . ... ... .........104
The effect of using multiple channels on localization. . . . . . . .. .. 106
Effect of RSS dimension expansion. . . . ... ... ...........111
Effect of noisy RSS on localization. . . . ... ... ... ....... 112
The RSSvsdistanceforpeg11. . . ... ... ... ... ...... 114
The midrange RSS based localization. . . . ... ....... ... .116
The effect of peg reliability on localization. . . . ... .. ... .. .. 118

Xil



List of Tables

2.1 The average packet delivery ratein 2D space. . . . ... .. ... .. 36
2.2 The average network lifetimein2Dspace. . . . . ... ... ........ 37
2.3 The average numberofhopsin2Dspace. . ... .. ... ... .... 38
2.4 The average packet deliveryratein3Dspace. . .. ... ....... 38
2.5 The average network lifetimein3Dspace. . . . . ... ... ...... .. 39
2.6 The average numberofhopsin3Dspace. . ... ... ......... 39
3.1 RSS vector proximitymetrics. . . . . .. ... ... . .. 67
4.1 Local and global parameters. . . . . . . ... ... ... . 86
4.2 Bestparametersforchannels. . . . . .. ... ... ... ... . ... 107
4.3 Room localization using multi-channels. . . . . .. ... ........108
5.1 Upper and lower values of RSS (in dBm) in midrange loadilin. . . . . . 115

Xiii



Chapter 1

Introduction

The infrastructureless wireless communication paradig dmined in popularity in the
past decade, primarily because of its deployment flexybditd the range of applications
it can support. There are many niche applications of suchlegs communications, e.g.,
disaster recovery, battlefield communications, sociakogking interactions at gatherings
etc. and these are classified under the umbrella of Mobiled®NETworks (MANETS). A
MANET consists of wireless nodes that can communicate withay fixed infrastructure
or central control. Thus MANETS are a perfect choice in gitres where infrastructure is
not present or costly to deploy. For instance, an existifrgstructure can be damaged after
a disaster like earthquake, tsunami, terrorist attack, B&scue teams can communicate
using MANET that can be deployed quickly without waiting sestablish the destroyed
infrastructure.

The devices in MANETSs are equipped with omnidirectionab@utcast), directional
(point-to-point), steerable, or combination of these s/pkantennas [42]. The radio range
of the nodes defines the neighborhood where devices canmpkediroadcast to establish
communication with their neighbors. However, it is not pbkesto have very large radio
range due to interference and energy consumption. Thuggilhes have a moderate range

and transmission power to form a multi-hop network, whichrges in time because of



the node mobility. Owing to the limited range of communioatiover a radio channel,
nodes located farther than that range have to rely on iniateenodes acting as routers.
Finally, the mobile and infrastructureless nature of théesimposes resource constraints

(bandwidth, battery power), which make the routing probiessuch networks challenging.

1.1 Routing in MANETSs

The standard taxonomy of routing protocols for MANETSs idiéed proactiveprotocols,
i.e., ones that try to maintain up-to-date routing inforimaiat every node in anticipation
of demand [11, 44, 54], angactiveones, which collect the necessary routing information
only when it becomes explicitly needed to sustain an actssien [22, 30, 39, 51, 53, 67].
With few exceptions (e.g., [55]), routing schemes assumet{to-point communication,
whereby each node forwarding the packet on its way to thér@dggtn sends it to apecific
neighbor. If the identity and/or location of the neighbagrimodes is unknown or uncertain,
flooding is used as a means of route discovery.

One of the fundamental problems of routing, not necessaiillgless routing, is the
scalability of the requisite knowledge, including its aisgion and storage, to the network
size. This problem is particularly significant in wirelesstworks because 1) the acquisi-
tion component scales poorly due to the inherent bandwicititations of the wireless en-
vironment, 2) many applications of wireless networks (bbtavireless sensor networks—
WSN) are based on nodes with limited resources, and thitdiion affects both acquisition
and storage. To forego the cost of discovering and maimgidetailed routing informa-
tion at the nodes, a family oimemoryless or stateless location-baseauting schemes
[7, 16, 33, 35] has been proposed. In these protocols, netiesalely on the knowledge
of their location (which can be established, e.g., via GP})[1he location of their neigh-

bors, and the location of the destination. We can also @jstgh between deterministic



and randomized solutions to the routing problem. A routilgg@athm is said to beleter-
ministicif the routing rules never rely on a “coin toss” to decide akeds fate, i.e., every
decision is arrived at via a deterministic set of rules thradpce the same output under
identical inputs. Routing algorithms that are not deteistio are calledandomized

In this work, we consider location-based routing protocelhich might be a good
choice for a network with large number of nodes. Two classtation-based routing pro-
tocols areGreedy[16] andCompasg35]. The former one selects the next neighbor on its
way to the destination such that the remaining distance msmized at every step. The
next neighbor in Compass routing is the one that minimizegditection (angle) towards
the destination. These two simple protocols are effectivaenetwork with dense collection
of nodes; however, in a sparse network Greedy suffers fomal maximunproblem (if a
node does not have a neighbor closer to the destination tiself) and Compass may face
routing loops (when a packet is trapped between two neighdparodes due to the next
neighbor selection criteria) [21]. A network with low loadagnuse deterministic approach
as it is unlikely to create bottleneck in some nodes. At hagdk, some nodes (hot spots)
may become congested and start dropping packets, thugbnthie throughput. Random-
ization comes to the scene as by definition it may follow défe routing paths even for
the same pair of source-destination. The packet may traaessuboptimal route, but the
protocol has the potentiality to avoid congested nodesdtttian, randomized protocols
could be an attractive choice to avoid routing loops andlloaxima.

We propose location-based randomized routing protddeotsctional Location-based
Randomized (DLRand Forward with Random selection out of Two (FRZ3, 24] in ad
hoc networks. These protocols could avoid local maxima aodd and improve the packet
delivery ratio compared to the state-of-the-art. Indeeg fherform impressively in various

load conditions (low to high and uniform to biased trafficpféer high throughput.



1.2 Indoor Localization

The prerequisite for location-based routing is knowinglduation of a node. Indeed it is
an interesting and challenging problem in many areas oftiped@pplications, including
security, health care, behavioral pattern recognitiobptics etc. While the problem is
well addressed by GPS [9] outdoors, locating a device inglstit remains a challenging
problem due to the extremely poor characteristics of GPSassgunder the roof. Formally
an indoorocalizationproblem can be defined as a procedure of determining thestarte
coordinates of a wireless device within some monitored.aféa problem can be tackled
via several different technological approaches (e.grarefl or acoustic sensing [17, 31],
as well as various pressure/vibration sensors [75]), ugtneric RF-based approach has
the promise of simplicity, ubiquity, low cost, and unobiweness, if implemented properly.
Hence, in this study we have selected RF-based techniquewlfwor localization.

Once we decide to follow the RF class of techniques, we havepkions to either rely
on some existing wireless infrastructure (most promineitliFi Access Points (APS)) or
use special wireless nodes dedicated to the specific taskalization. Within the frame-
work of the first option, the coordinates of the APs are assuimée known and act as
the basis by which the location of other nodes is gauged. Niahyor areas (where the
localization problem may be of relevance) are already ¢edfivith Local Area Networks
(LANS) of APs providing wireless connectivity to the Intetnlt appears to be a natural ex-
tension of their role if, in addition to acting as APs, onegyilgacks on them the secondary
task of localization, if possible. A relevant, often unstitproperty of such systems is that
the placement of the APs is constrained by the tradeoffs &1 \ddnnectivity (quality of
service) against the cost (the number of APs, transmissiarep collisions, RF pollution),
which need not result in a good design for a localization oeétwIndeed, our experience
indicates that the placement of the static nodes in suchvaonlets a significant factor,
pretty much unrelated to the concept of wireless coveraganderstood by the clients of

a typical WiFi system. In other words, an AP deployment thaat support localization
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should be designed with the purpose of aiding localizathomind.

Based on the attributes of the wireless signal used for ikatadn, one can identify
techniques based on measuring RSS (the Received Signab®iyeTOA (the Time Of
Arrival), or AOA (the Angle Of Arrival) of the signal betweedhe transmitter and receiver
(details will be given in Chapter 3). The first of those catégm of techniques is most
attractive from the practical point of view, as it poses mmalistic requirements on the
RF technology of the requisite modules, which translatés liow cost and off-the-shelf
availability.

Within its realm, RSS-based localization can be carriedusing methods that are
range-basedrange-free or based orfingerprinting (profiling) Schemes in the first cat-
egory use channel models to transform the received sigrealgth into a distance esti-
mate, and then apply lateration [36] to estimate the looatl@ue to the complicated na-
ture of signal propagation indoors, range-based schemdsderoduce large errors, even
when driven by sophisticated channel models, e.g., on@sgako account the presence of
walls [3]. The range-free class of solutions exploits thermrtivity (direct neighborhood)
information among the wireless nodes distributed in theitooed area. For example, the
infrastructure nodes (anchors) may broadcast their locationg with the average hop dis-
tance to other nodes into the network, with the tracked nedésy that information to
infer their distances to the anchors. Lateration may thespdied to estimate the precise
location of the tracked nodes. Such a scheme might be arctattr@hoice in a network
with a large number of nodes (preferably of very limited r@ndnowever, its performance
is highly sensitive to the network structure [46]. This ix@ease the geographical extent
of a single hop may vary depending on the distribution of 1soaled also on the capri-
cious propagation characteristics of the indoor enviramm€onsequently, the quality of
approximation of distance via hops may vary quite dradtiaid, quite likely, more so in
those environments that are also difficult for RSS-basedrsels [46]. The fact that some

(nominally) range-free schemes try to mitigate those m@isl by resorting to range-based



adjustments (like assessing the hop range from a channghgation model) is not reas-
suring, because of the fundamental shortcomings of suclelsoghich often go to great
lengths distinguishing between the Line-Of-Sight (LOSY &on-Line-Of-Sight (NLOS)
signal arrival.

The unifying idea behind the profiling-based methods is thestatation that the only
hope at fighting the inherent and fundamental flaws of blapkgpagation models lies in
embracing those flaws as features. Thus, as any attemptsie daneaningful notion of
distance directly from RSS are bound to fail in an unknowroordenvironment, such an
environment has to be studied (profiled) in order to createstomized model for accurate
location estimation in the particular area. The perceiaddes of RSS are viewed as some
property of the received radio signal whose associatioh tié actual distance from the
sender need not be explicit or straightforward. Insteadsehvalues contribute to ra-
dio mapof the monitored area. The procedure of localization becoat@o-stage process
with profiling preceding the proper “operation,” i.e., actaatimation Profiling means col-
lecting signal strength samples, through infrastructwaes, from known locations within
the monitored area. During the localization stage, thekddaodes send signals whose
RSS footprints are matched against the set of profiled vadtesd in a database of the
central server. It has been demonstrated that this kind foagh offers consistently a
better location estimation accuracy than other categofisshemes [3, 26, 74].

Examples of profiling-based schemes include RADAR [3] andNDMARC [45] (de-
tails will be provided in Chapter 3). The former relies onkdep computers as infrastruc-
ture nodes and laptop as the tracked (sending) device, a$hére latter uses RFID (Radio
Frequency IDentification) readers and tags as infrastrectades and sending devices, re-
spectively. However, both approaches try to keep the nurmbeodes small due to cost
and hence suffer from poor estimation accuracy. We propgsefding-based localization
scheme, dubbedEMON (Location Estimation by Mining Oversampled Neigtiomds)

[26], using low-cost low-power devices. LEMON has been iempénted on a collection



of inexpensive (microcontroller-based) nodes amountragrmassive ad-hoc wireless sen-
sor network (WSN). Consequently, it can deal with a large Ipeinof infrastructure nodes
whose transmission/reception areas can largely overlap. ifffrastructure nodes (called
pegg can be inconspicuously placed with practically any reidgiidensity and practically
anywhere, including furniture, outlets, or even insidelsv& generate an accurate radio
map. Given a particular distribution of pegs, the profilitgge consists in collecting sam-
ple readings from prospective tracked nodes (cakled and storing them in a database.
Actual estimation of a tag’s location is then done by repgrthe RSS readings of the tag’s
signal from the nearby pegs and mining the database forétkmmples (in sample space).
The coordinates of these samples contributing to the “lrastthes are then averaged (in
some weighted fashion) to produce the location estimate.

RSS measurements using micro-controller based devicessodected at various in-
door spaces at the University of Alberta and were used as taparious localization algo-
rithms. The localization results demonstrate that LEMOfésfbetter accuracy compared
to the state-of-the-art. In particular, we present a sefiexperimental results, whose pur-
pose is to learn the effect of various parameters such asutinder of nearest neighbors,
the number and density of profile data, the number and plateofénfrastructure nodes
etc.. We also show that RSS-scaling can significantly img@rtne localization accuracy,
where scaling could be done by giving high/low RSS valudeiht weight when deriving
the location estimates. Most of these initial experimerdgsexcarried out in a single room.
We further have considered multiple rooms and investigttegerformance of LEMON
with and without partitioning the profile data into room leve

We further study and compare profiling-based LEMON with otinethods including
lateration, Bayesian NetworksMaximum Likelihood Estimation (MLEYsaussian Pro-
cess (GP)and Support Vector Machine (SVMIn addition, we propose a new localiza-
tion method dubbedombinatorial localizationLEMON, a much simpler localization ap-

proach outperforms the state-of-the-art or performs jastell as much more complicated



schemes. In addition to the above mentioned localizatioblpm, i.e., computing the ab-
solute Cartesian coordinates of an object, we also conidaoom localization problem,
i.e., identifying a room from which the query came from. Foistpurpose we choose
K closest neighbors and count their room labels, the majofithe labels is reported as
the room label of the query tag. This room localization idegdsunder multiple rooms
and channels, where we obtain adequate performance in téritentification accuracy.

Multiple channels are also used for location estimatiomtprove the accuracy.

LEMON is used indoors where RSS is affected by significanttinpath propagation
due to the presence of obstacles (walls, furniture etc.)thadirst step of mitigating such
effect of multi-path, we have used RSS profiling to obtainisinRSS reading from sim-
ilar environment. We have seen that this idea helps to olggaod estimation accuracy.
However, RSS is still contaminated by noise. The disreggrdEBMON for any explicit
representation of the propagation environment or of anp@mbise and interference pro-
cesses around the nodes suggest that there may be case& B8l will fail to produce
acceptable results. Yet, as we will see, LEMON is robust avieen completely artificial
measurements are introduced on purpose, and certainlyresnaloust than a number of ex-
isting techniques. Even when the overall performance aclemes deteriorates, LEMON
maintains an edge over the rest. Finally, we introduce af$etostep localization schemes
along this path of achieving robustness.niidrangelocalization, we reconstruct the RSS
range for each peg based on theross correlation coefficient (cand using profiled refer-
ence points. These new RSS values then find their way intmtadization of tags. lipeg
reliability based localization we use midrange RSS values to congdoteeach peg. We

use it as the weighting factor during the RSS discrepancysareanent.

1.3 Thesis Contribution

In a nutshell, the contribution of this thesis could be sumnea as follows:



We propose location-based randomized routing to overctwdocal maxima and

routing loop problems and to improve the packet deliverpr@hapter 2 and [23]).

Randomized routing is also proposed to avoid node-corare@treated by the deter-
ministic routing schemes) and better distribute the loadragmodes to obtain high

throughput (Chapter 2 and [23, 24]).

A simple and robust indoor localization system, dubbed LEWI@ proposed based
on low-power low-cost wireless devices while offering gandoor localization ac-
curacy. Its performance is evaluated, including its sevitsitto RSS reading adjust-

ments such as scaling (Chapter 3 and [26]).

The tradeoffs of infrastructure node and profiling pointelaent for profiling-based

localization schemes is examined in depth (Chapter 3 angl [25

We examine how LEMON and other profiling-based schemes comtpavell known
estimation and classification techniques, e.g., Bayesetwdrk, as well as varia-

tions of the basic LEMON scheme (Chapter 4).

Finally, we consider the imperfect nature of RSS readings examine ways in
which the robustness of RSS measurements, or individual gaag be assessed and
mitigated. We study how the mitigation schemes impact mdfdsed localization

schemes, including LEMON (Chapter 5).

1.4 Thesis Organization

Chapter 2 starts with the routing issues and an overvieweafdtiting schemes in MANETS.

We then define our proposed randomized location-basechgpsthemes. A detailed per-

formance analysis of the proposed solution is then predeartd compared with the state-

of-the-art. The performance of the deterministic and ramded routing schemes are then



analyzed under different traffic conditions and using vasiaetwork topologies to assess
the throughput of these schemes. Our proposed randomihgtbscagain performs ade-
guately under all the traffic conditions and could succelssavoid the hot spots, which is
an issue for deterministic approaches [24].

Chapter 3 starts with the motivation behind choosing theandocalization problem
and a description of the hardware that was used in our expatsn Then we present the
literature review of indoor localization. Our proposeddbzation scheme, LEMON, is
then defined. A series of experiments is carried out in variogations of the Univer-
sity of Alberta campus to test the performance of LEMON iretént environments. We
then present the performance results of LEMON and compateantrast them to other
profiling-based localization schemes. We examine the R8hgceffect, the effect of the
node orientation, the number and arrangement of the infretsire nodes and the profiled
samples on the accuracy of LEMON [25]. Other tests are aldonmeed such as the RSS
discrepancy measurement, the averaging techniques, anthact of different types of
obstacles.

In Chapter 4 alternative formulations of the localizationlgem, including a Bayesian
Network based model, and a combinatorial localizationiéeple are proposed and eval-
uated. The performance comparison of different localratnethods is performed using
both unscaled and scaled RSS, and LEMON offers better agcutenpared to the others.
A simple but effective room localization scheme is propoaed tested with different se-
tups. Both single and multiple channels are used for thipgae. The latter option is also
tested for localization and an improvement is observed.

Chapter 5 investigates the robustness issues of profilisgdlocalization, including
LEMON. For this purpose we conduct further experiments amskove the impact of the
RSS dimension expansion and the noisy RSS on the localizpéidormance. LEMON is
also quite capable of maintaining good performance in tlesgce of a node producing

faulty RSS readings. We also observe that LEMON, as welllasrdbcalization schemes,
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can benefit from relatively simply two-step schemes thdtictshe use of RSS values that
are deemed to be outliers or put less weight on measurenrentspiegs that are deemed
unreliable.

In Chapter 6 we briefly discuss our contributions to the nedean MANETS. We have
discovered several interesting and challenging open enoblduring the research for this

thesis, which are also described in the end of this final @rapt
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Chapter 2

Location-based Routing in Mobile Ad

Hoc Networks

2.1 Introduction

In general, the wireless environment is quite susceptlaterference and vulnerable to
environmental changes. The propagation characteristizgreless nodes are difficult to
characterize because of their unpredictability and depecelon many difficult to pinpoint
factors [6]. Here is the list of fundamental issues that nbesfiought by effective commu-
nication techniques in such an environment:

The hidden and exposed terminal probiérhe hidden terminal problem [5] is illustrated in
Figure 2.1(a), where nodkis communicating witlB. NodeC is unaware of this ongoing
communication as it is outside As radio range, tfdsuspects the medium is free to use
and sends message to its neighBpresulting in a collision. All the hidden nodes far
are located irC — (ANC). The exposed terminal problem [5] (illustrated in Figurg(B))
prevents nodes from transmitting packets in some situsitidrere safe communication is
possible. For examplé wants to communicate witB andC has packets fob. Upon

hearing the communicating session betw@eandB, C will stay silent. Thus the hidden
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Figure 2.1: Hidden and exposed terminal phenomena.

terminal problems wastes the resources by generating nbigans whereas the exposed
terminal problem lowers the throughput because of unussalirees.

The absence of infrastructurés there is no preexisting infrastructure or central colntr
the nodes in the ad hoc network need to serve both as the taffinators and routers (to
relay the packets for other nodes). This imposes extra buathe nodes and makes the
network management more challenging.

Dynamic network topologie#\s the nodes move frequently and unpredictably, the multi-
hop network topology changes often. The network partitiok;asymmetry, route changes,
and packets drops come at a price [13, 42].

Constrained resourcesNodes operate within a limited resource budget (mostlyebat
power). Thus a clever mechanism is required for better giinput. As nodes serve both as
routers and originators of packets, energy utilizatiornatrtodes is crucial.

Heterogeneous nodes and link&des usually have different hardware/software configura
tion with different capabilities. Indeed, nodes may be pgad with multiple transceivers
with varying capabilities (transmission power, frequéndy turn, asymmetric links may
appear in the network topology. All these issues, make mgudi tedious job and require

adaptation to changing conditions [13].
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Scalability It is an issue when considering a large number of nodes, (@.gensor net-
works). Routing, location management etc., become norakrig manage in resource-

constrained large networks.

2.1.1 Routing issues of MANETS

In the past few decades, a large number of routing protocolMMANETS have been pro-
posed, having different objectives, i.e., addressingethiffit performance metrics to be op-
timized. We need a general set of metrics - to compreherysivel meaningfully compare
diverse protocols. These metrics are independent of ariyngpprotocols to judge a proto-
col in MANETSs. Corsoret al. in [42] define both qualitative and quantitative metrics for
MANETSs.

The qualitative properties includdistributed operationloop-freedom reactive and
proactive operationadaptation to asymmetric linksupport for constrained resources
scalability, androbustnes$21, 42]. Routing decisions are made individually at eactieno
instead of relying on any central control. It is not desieatal allow packets to survive in
the network for a long time because of unexpected routingdo®his may lead to wastage
of bandwidth and degradation of throughput. Thus, protaesign should take account
of loops without relying on TTL (Time To Live). Proactive pgozols maintain up-to-date
routing information at every node ahead of demand. Thus shdfer from high control
overhead and usage of scarce resources (energy and bamdviReéiactive or on-demand
operation helps to minimize these overheads with the castuaé discovery latency. Most
of proposed routing protocols assume symmetric links betwedes. As we mentioned
before, link-asymmetry may arise due to the dynamic nattiteeonetworks. Thus an ele-
gant routing scheme would consider such asymmetric limkadlhoc networks of sensors,
nodes have limited battery power, thus to prolong the ndkwfatime, it is desirable that

the routing protocols consider energy utilization at thde®as well as the communication

14



energy (the smaller the distance the lower the necessarg\edissipation). Indeed, scal-
ability is an issue in such large networks as routing prdwace not supposed to degrade
in their performance with increasing number of nodes. Bmnedbust routing is needed to
cope with the dynamic behavior of the ad hoc networks.

The quantitative metrics include throughput, end-to-ealkhy] route acquisition time
(end-to-end delay for the route discovery in case of on-aehnauting), and percentage of

out-of-order delivery [42].

2.2 The Problem Definition and Network Model

Formally a MANET is described as a 3étof N nodes placed in 2- or 3-dimensional Eu-
clidean space. In location—based schemes, it is assumedabla node is aware of its
location, expressed as Cartesian coordingtgs or (X,Y,z). We assume that the transmis-
sion range of all nodes is the same and equ&. tbwo nodes can communicate with each
other if and only if their Euclidean distance is at m&stThe ability to communicate is
represented by an edge between the corresponding noderestiing graphG=(V,E), is

the topology of the networkG varies over time due to the presence or absence of the links
among nodes. Give and a pair of node§, j), i, j € V, the problem of routing is to find

a path fromi to j while minimizing some objective functions.

2.2.1 Channel model

In simulations we assume the shadowing propagation mo@lvj&h the path loss at
distanced being
d
PL(d)[dB] = PL(dp) + 10a Iog(d—o) + X5

wherePL(dp) is the path loss at the reference distadgen is the path loss exponent, and

Xg IS a zero-mean Gaussian distributed random variable wathdstrd deviatiorw. The
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antenna gain is included PL(d)[dB],

PL(do) = 20I0§(4Tnd0)

whereA is the wavelength. The received power is expressed as
P [dBm = R [dBm — PL(d)[dB]

whereR is the transmission power. If the received power is less tharnhreshold power
P, the signal is not correctly received [66]. In our simulaspa ando are 3 and 8,
respectively. The reference distance is 1m, the transmieps 25dBm, and the threshold
is -95dBm and\ corresponds to 2.4 GHz. Note that these parameters arerchased on
simulation results such that network is connected and ncol@snunicate with each other
with moderate power and range. Also, these parameters asistant with the standard

values used in the related work.

2.2.2 Energy model

The energy model is the same as in [58], which coincides Wwitohe used in ns-2 [66]. A
node lose$mit X tiransmit @mount of energy, whetgansmit is the transmission time. Also,
when receiving a packet, the energy losBiigy X treceive NOte that we need to update the

remaining energy for the performance analysis of the ndt\Wiatime.

2.2.3 Antenna model

A protocol can use a smart switched-beam antenna [14] withipteupredefined direc-
tional beams. There are two modes of operation: omni-dmeat and directional, with
one mode being active at a time. The size of the main loli&inectional Location-based

Randomized (DLRR3] is 11/3; the side lobes (deemed insignificant) are approximated in
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a (single) sphere. Therobabilistic Geographic Routing (PGHR§8] protocol in particular

also starts with this main lobe, but increases it up.to

2.2.4 Mobility model

When mobility is simulated, we use thrandom waypointmodel, whereby each node
chooses a uniformly distributed random location from aaegtlar area and moves there
at a constant speed selected at random frona{@,]. After reaching the new location, the
node stays there for @ause time.Then, the node repeats the same process until the end
of the simulation run. In our simulation experime¥ax is 10m/s and the pause time is
constant 30 sec. These parameters are again chosen basedsonulation results, which

are consistant with the related work.

2.2.5 Traffic model

The uniform trafficmodel adopted in our simulations makes sure that the déstinaf

a packet is at least two hops away from the source. The propgrtevimplement such

a model is to generate the destination first (uniformly frdimades), and then select a
random source, uniformly from among all nodes exceptingdisgtination as well as its
neighbors. In the case biased traffic we assumed that the endpoints are located on the
edges (specifically the bottom and upper edge of the grid)lewthe interior nodes act

exclusively as routers.

2.2.6 Performance measures

The following performance measures are collected duriegiperiment.

e Packet delivery ratio: the ratio of the total number of packets successfully reszki

by the destination to the total number of packets originatdtie source.
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e Path length: the number of hops taken by a packet to reach the destinaticese

of a successful packet delivery. The path length is an indice delay performance.

e Network lifetime: the average number of successful routing tasks before rite fi

node in the network has lost all its energy.

e Throughput: the maximum number of bits per unit of time that were sudcdlgs
received. In all cases, we drove the networks to saturaticdeé how the schemes

perform under extreme loads.

2.3 The State-of-the-artin MANETSs Routing

In this section we outline the routing approaches that ansidered the state-of-the-art in

MANETS.

2.3.1 Proactive routing protocols

In proactive routing protocols, nodes maintain up-to-dateting information ahead of
demand. This strategy helps such protocols to follow ogtpath. Destination-Sequenced
Distance-Vector (DSDVfp4] andClusterhead Gateway Switched Routing (CGBR)are

examples of proactive protocols.

Destination-Sequenced Distance-Vector (DSDV)

DSDV is one of the early proposed protocols in MANET. It is &&®on the traditional
distance vector (Distributed Bellman-Ford) routing. Istdnce vector routing, each node
maintains a routing table with the best path (say in numbédropfs) to each destination
along with the next-hop neighbor on that path. Tables araigobby periodic exchanges
among the neighbors. However, it suffers from loop and cooximfinity problems in case

of link breakage. Consider a network of 4 nodes A, B, C, and &wshin Figure 2.2.
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Suppose D goes down, C detects it and sends an update togtgonei After receiving
this update B realizes that it has an entry for D (correspanttd the now defunct route
through C) and passes it to the neighbors. Consequentlya@yes its entry for D with the
new metric (increased by 2 hops). This process keeps goitg infinity. In DSDV loops
are prevented by using a sequence number for each routing Bodes broadcast routing
updates at regular intervals or after any significant chaigeh entry in the routing table
contains the destination, the next-hop neighbor to reathdtrequired number of hops, the
sequence number generated by that destination, the itistal(when the entry is made),
and the stable-data. The install time is used to removestates, i.e., the routes for which
no update has been made in the last few update periods [54]laEhfield (stable-data)
is used to determine how stable the route is, i.e., no upddieoadcast until the route is

considered to be stable. This is useful to damp the fluctogiimthe networks.

OO OO

metric = infinity

metric = 2

metric = 3

Figure 2.2: The presence of count-to-infinity in distanceteerouting.

A node will update an entry, if it sees a "recent” update, iome with an increased
sequence number (compared to the last one). In case of sgoense number, the smaller
cost metric is used. As nodes move, links may go up and dowardigally. When a
node detects that a link to one of its neighbors has gone diowuil| generate (on behalf
of the neighbor) an odd-numbered update (a link-down eweitl) the metric value ofo.
This is the only case where another node generates the seqonamber instead of the
node responsible for the metric. The nodes generate fordgblees only even numbers.

Link down events signal significant changes in the topoldgws, there are two ways of
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broadcasting the route update; onéuls dumpcontaining all routing information and the
other one igncrementalthat includes only changed information after the last fuihgb.
In the limited capacity wireless medium, it is desirable ¢ the full dumps infrequent,
especially in a low-mobility environment.

Consider Figure 2.2 again to see how the loop and countfiaitynproblem is elimi-
nated in DSDV. As before, suppose that the link between C aiglldboken, C detects it
and generates an odd sequence number by incrementing Disrsmgnumber by one and
setting the metric teo. Now if B broadcasts a route entry for D with a lower metric, @ w
know it’'s a stale route as the sequence number is not recerthéother hand, a broadcast
from C may help other nodes to learn about the link breakage.

A node may receive a large metric first followed by the bestrimér the same des-
tination. This may happen when the number of nodes is largettam update frequency
is low. This can also happen in a not-so-large network usingrsified update frequency
[54]. If care is not taken, then it could create unnecesgsafid in the network. Nodes
need to determine when an entry for a destination becomefe siad ready to trigger an
update. For this purposettling times used, which is the time difference between the first
and best (least cost) received updates for a destinatiomlash stored settling timé,, is
the most recent measurement. Nodes also keep calculagagéehage settling time;, for
each destinatiort, can be measured 8% = at+ (1 — o)t]. o is used to assign more
weight to the recent measurement. After receiving the fpsiate for a destination, a node
waits for a period of X t; before broadcasting it. This rule is not applicable for tasecof

a broken link, where immediate broadcast is required.

Clusterhead Gateway Switched Routing (CGSR)

In a hierarchical network architecture, nodes are grouptxdlusters and each cluster is
controlled by a special node calletusterhead Nodes could belong to multiple clusters,

and serve agatewaysetween the clusters. This hierarchical structure maytoedyghieve
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better channel access, bandwidth allocation, and roufi@y [However, it may also lead
to following suboptimal routes. Also, a clever clusterhsatéction procedure is needed in
MANETSs. In CGSR, a clusterhead selection algorithm call€CL(Least Cluster Change)
is proposed, where initially the lowest ID or highest nodgrde is used to select the
clusterheads. Afterwards, instead of using the reselegtiocedure of clusterheads after a
significant change in the topology, in LCC the clusterheadyg change when two of them
come into contact, or when a node moves out of contact of lafiratlusterheads. To route
packets, nodes first send them to the corresponding clestérthe packets then travel from
clusterhead to clusterhead through gateways to reach #taal#on clusterhead. Each
node needs to maintain two tables ster member tablandrouting table The first one
records the clusterhead of each node (this table is pealbglisent to the neighbors), and

the second one keeps the next hop node to reach the destinktsberhead.

2.3.2 Reactive or on-demand routing protocols

These protocols differ from the proactive protocols in treeywodes maintain routes. Re-
active protocols collect the necessary routing infornratialy when it becomes explicitly
needed to sustain an actual session. In general, routirgrfisrmed in two steps namely
route discoveryandroute maintenanceDynamic Source Routing (DSE30], Ad hoc On-
Demand Distance Vector (AODVY93], Temporally Ordered Routing Algorithm (TORA)
[50, 51], Tiny Ad hoc Routing Protocol (TARP48], and Associativity Based Routing
(ABR)[68] are the examples of on-demand routing protocols. Irfdhewing subsections

we will briefly present three of them.

Ad hoc On-Demand Distance Vector (AODV)

AODV is a reactive version of the DSDV protocol, which minges the required number of
broadcasts by creating on-demand routes instead of maimgaa complete list of routes as

in DSDV. It uses the destination sequence number to maiofaio-date routes and the DV
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logic in calculating the best path. The route discovery pssds initiated by a node when it
is required to deliver packets to a destination for whiclogsinot have a route in the cache.
The control packets for this purpose apeite request (RREQ)androute reply (RREP).
The former is of the form< Syqd, Sseq-num, broadcasty, Dagd, Dseg-num, HC >. The first
two attributes represent the source address and the segnember, the next one along
with the source address uniquely identify a RREQ, the falhgwiwo attributes are for the
destination, and HC is the hop-count. After receiving a RRBEssage, an intermediate
node may react by a) sending a unicast reply message to treesdit is the destination or
has a route entry for the destination in its cache with a dastin sequence number greater
or equal to the one in RREQ or b) dropping the RREQ, if it hasaaly seen this request.
Otherwise, intermediate nodes simply increment the hapycand rebroadcast the RREQ.

The RREP message is of the foraS, D, Dseq-num, HC, Lifetime>. The destination
sequence number is higher than that of the one in RREQ, andsHi@tialized to O at
D. The last attribute provides the expiration time of the eosgtup. The unicast RREP
is sent back byD to S along the path of RREQ. An intermediate node after receiang
RREP, generates a reverse path pointer to the neighbor flaohwihe RREP came. Also,
it updates théDseq-num and the timeout information. The RREP is then sent back to the
neighbor that propagated the RREQ), if this is the first timé&RRs received 0Dseg-num
is greater than the previous one. Otherwise, subsequenPRREe dropped to suppress
multiple paths unless bring in better hop counts Bor Thus, intermediate nodes learn
about the routes to bothandD as a side effect of this route discovery process. Finally,
Sreceives RREP which might not be optimal the first time arqououd eventually it will
receive the optimal path. Theute request expiration timas used to purge the reverse
path entries from the nodes that are not on the path bet&aedD.

Nodes in AODV maintain route table entries for the set ofvactiestinations. Those
entries are of the form D, Dseq num, N€Xhop, HC, Activaej, time—out>. Nexhopis the

node to be used for the given destination D, HC is the numbeop$ required fron$to D,
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and time-out is used to purge stale routes. Also, a set afeaictiighbors is maintained for a
particularD. Theactive neighboref Sfor D are the ones that originated or relayed at least
one packet fob in the most recent active-timeout-period [53]. The actieghbors are the
ones to be notified if the route entry forbecomes invalid (note the difference with respect
to the periodic broadcasts in DSDV). When a node detects egaahable next-hop node
for a given route, it informs the active neighbors with a RRt&Ring a higher destination
sequence-number and the hop-counkofl hese active neighbors are then propagating the

message to their upstream active neighbors until all theeasburce nodes are informed.

Dynamic Source Routing (DSR)

In addition to RREQ and RREP, DSR uses yet another contritgparalled RERR. It
retains the two routing phases of AODV. The route discover$R is similar to that in
the AODV except that every time a node rebroadcasts a RREA)satincludes its own
address in this request packet to keep track of the entitte foom source to destination.
To prevent loops, an intermediate node drops the receivéelRRit is already in the route
shown in the received RREQ. The RREP could be sent by thendéstn using the cached
route (if it is available) for the source. In the case of dironal links the destination can
also use the route available in the RRE@Ifloes not have any cached route $it needs
to initiate a RREQ foiS and may piggyback the RREP in the RREQ packet. To prevent
the loss of piggybacked data, an intermediate node, afpdying a RREQ from its cache,
must construct another new packet with the piggybacked data

After receiving the RREP, the source node, caches it andsseath packets where
the entire route is added in the header (hence the name smuwiteg). As part of the
route maintenance, nodes monitor for link breakage usihgehop-by-hop or end-to-end
acknowledgments. In either case, RERR is sent back to threestmforce a proper action.
The former method allows to detect a particular hop in treudohd the latter may give

an impression that the last hop along the path to the destmat down [53]. The error

23



handling scheme is further enhanced by a) restricting tteeafiroute discovery for the
same destination, as useless RREQ packets may occupy thenmactase of partitioned
networks, b) allowing nodes to operate in promiscuous moade¢rhear the error message
to update their cache, if the broken link is present in anyhefrtcached routes, and c)
retransmitting the error message up to the point of erronfiarm all the nodes along this
path about the link breakage (this may happen if intermediatles need to discover route
to the source to send back the RERR).

DSR further reduces the control overhead by using cachddspie., nodes may con-
sult their cache to answer a RREQ to make the discovery fadtan intermediate node
needs to forward a packet for which the next-hop link is bpkemay use its cache to use
an alternative route to the same destination instead ofuingpihe packet. Also, nodes may
stay in promiscuous mode to overhear all the packets otigmat the neighbors. Multiple
intermediate nodes may send RREP for the same request atrtieetane and collisions
may occur. Thus a node waits for a perioddof H x (h—1+r), where H is a constant,
is the length of the route for this RREP in hops, ard a random number between 0 and
1. Node can also stay in promiscuous mode during this wagiargpd and stop sending
the RREP if a RREP with a shorter path has been received dtiisgeriod. A source
node may also add hop limit to RREQ to reduce the overhead.inBtance, initially a
RREQ with the hop limit of 0 may be used to check if any neighh@s a cached route
for the requested destination. Otherwise, the node maynséer non-zero value to limit
the propagation of RREQ. Finally, formation of loops can tapped by allowing an inter-
mediate node to respond to a RREQ using its cache if it is éokcat the beginning of the
cached route and in the end of the route in RREQ. The promiscon@de also helps a node
determine if any nodes could be reached directly insteadioiggthrough an intermediate

neighbor. This helps to reduce the number of hops to thercesin.
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Tiny Ad hoc Routing Protocol (TARP)

TARP is an on-demand routing scheme intended for networlkslaw-cost and constrained-
resource devices [48]. Controlled flooding is used to foree ggackets to follow routes
with a limited number of hops. The objective is accomplisttedugh three rules namely
Duplicate Discard (DD) Sub-optimal Path Discard (SPPandLoad Balancing (LB)The
primary goal of DD is to discard duplicate packets by chegkire cached packet signature.
The performance of TARP could be further enhanced by a) distathe cached signa-
tures quicker as the packets approach the destination adtln)g the signature expiration
timer asT, = F¢ x (taygx (r —h)). Fc is the flooding control constarttg is the average
transmission time (the time between a packet is queued atddaeived by a neighbor) ,
r andh are the number of hops allowed to traverse for a packet arddlrtraversed, re-
spectively. The SPD rule is implemented by using a tuple & D, hpk , hsk, Cps,Csp >,
where S, D, K are the source, destination, and an intermeed@de.hpk andhsg are the
number of hops fronD to K andSto K for the last-seen packet Kt respectively. Finally,
CpsandCsp are thediscard countersor the two directions. These parameters are sé by
asCps = mx [(hsk+ hpk) — ﬁ] andCsp = mx [(hsk+hpk) — ﬁ] wheremandh are the
mobility factor and number of hops on the reverse path. Kebkecks the packet header
traveling through it and discard it if the packet is goingrewverse a path shorter than what
K is expecting based on the above calculations. If @pi&andCsp are positive, the route
throughK is suboptimal and better to avoid it. Finally, the LB rule g&ed to allow packets
to traverse less congested nodes and might be suboptintaltmthe destination. TARP
does not have any route discovery phase as is DSR and AODMrratinitiates flooding

and control it using three rules to allow packets to traveessonably good paths.

2.3.3 Location-based or geographic routing protocols

All the protocols described in the previous sections arémgttable based solutions, where

these tables need to be updated to cope with the topolodiaabes. The communication
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overhead is quadratic in the network size. This makes thagbk@ and reactive routing
protocols progressively more complex and less attractvéha number of nodes in the
network grows. Controlled flooding, as in TARP, can simpthg routing and bring about
a potentially significant reduction in the routing cost, the control overhead is still there.
Location-based or geographic routing protocols are pregtseliminate the need of flood-
ing. In these routing schemes, the next-hop node along the to the destination is chosen
solely based on the, possibly approximate, knowledge ofjgtographic coordinates of the
source, its neighbors, and the destination. They do notineegoute establishment and
maintenance, thus they can efficiently utilize the scarseurces in the wireless environ-
ment. Numerous location-based routing schemes have bepogad in the last decades.
In the following discussion, we will present the most sigrafit ones. We classify these
protocols roughly as dimited flooding-based routingt, 34], b)guaranteed-delivery rout-
ing[7, 33], and cprogress-based routing 6, 35]. A detailed description of location-based

routing protocols can be found in [21, 43, 62].

Limited flooding-based routing

Limited flooding is a class of location-based routing schemvbere nodes forward the
packets to all neighbors that are located in the directidgh@flestination.Location-Aided
Routing (LAR)34] and DREAM [4] are two routing algorithms that apply tipsnciple.

LAR uses directed flooding only for route discovery, while EXRVI applies a restricted
flooding for packet delivery.

Location-Aided Routing (LARgduces control overhead due to route discovery (based

on flooding) through a controlled flooding by using locatioformation of the nodes. This

is accomplished by defining two geographical regions cadbguected zonand request
zone The expected zone is the region where the destination dadeexpected to be
located. The zone is defined as a circular region centerdteatdstination’s last known

location at timetp with the radius ofv(t; —tp), wherev is the velocity of the destination
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andty is the current time. Note that if no previous location infation is available, the
entire network is the expected zone of the destination. €haest zone is the region that
contains the source and the expected zone and some othey fnogtethe network. The
idea is to confine the route request packet to a relevant sab#ee network as to reduce
the flooding overhead. The source may increase the size oétlumst zone if the route
discovery stage fails. However, a large request zone alsmsne high overhead.

The source node can define the request zone in two differeyd.vila the first scheme
the request zone is the smallest rectangle containing tiresand the expected zone. The
source calculates the four corners of the request zone fouta discovery and appends
this information to the route request packet. An intermedieode discards the request
packet if it stays outside the request zone. Destinationsusa the same approach as in
AODV to reply to route requests or they perform the same (buénsed) procedure that
the source used for route discovery. In the reply packet éséirthtion appends its current
location, time, and the speed. In the second variant of therse, the source calculates
the distance between itself and the destinatiisi(s,d), and includes it in the RREQ
packet along with the destination’s location. An internagelinode forwards the RREQ if
dist(s,d) > dist(i,d), wheredist(i,d) is the distance between the intermediate node and
the destination.

Unlike LAR, DREAM is a proactive approach that uses locatidormation to forward
packets. The location information is dispersed across #twork based on two criteria:
1) distance effecand 2)mobility rateto limit the scope of the propagation. The former
implies that the closer the nodes are the more importantaie lbcations to each other.
Thus nodes broadcast their locations periodically alorth wiifetime to restrict the travel
of the control packet up to the specified distance from thgimmaior. The broadcasting
frequency also depends on the mobility rate: frequentlyingpmodes may need to trigger
control packets more often. The packet forwarding methddREAM is similar to that

of LAR, i.e., the sender defines a sector towards the destm#tat contains the expected
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zone of the destination. All nodes inside this sector arédhearders of the packets along

the path from the source to the destination.

Guaranteed-delivery routing

Greedy Perimeter Stateless Routing (GPER) andGreedy-Face-Greedy (GFGJ] have
been proposed to address the local maxima problem of thmaki§reedy scheme. In both
schemes, routing is performed in two modgeedyandface or perimeter The protocol
starts with the greedy mode and at every step packets arardew to the neighbor closest
to the destination. Upon hitting a local maximum, the protawitches to face mode.
The face routing is based on thight-hand-rulefor exploring a maze. The rule says that
a maze explorer could successfully traverse it by placiegight hand on the maze-wall
and keep walking. It will eventually take the explorer outlod maze. Thus if we consider
a network topology as a maze, which is a connected graph, waiseathe above rule to
explore it. However, the connected graph needs tpléear (a graph without any crossing
edges). This ensures the explorer is not trapped into a [dbps a connected and planar
graph could be traversed using right-hand-rule. GFG andRais®Gabriel Graph (GG)
[18] and Relative Neighborhood Graph (RN{&9] as the planar graphs. The planar graph
could be constructed in a distributed fashion at each nodle wduting a packet.

Greedy mode: The current node forwards the packet to the neighbor ddseke desti-
nation. In the case of a local maximum, i.e., no further nieggh can be found to be closer
to the destination, the routing switches to the face or petemmode.

Face or perimeter mode: Let f be the node where this mode has been initiated jand
be the destination. In perimeter mode, the packet needauerse all the connected faces
intersected by thdj line. f forwards the packet to the next nogén the current face
according to the right-hand-rule and the process keepgawoitil an intersection between
the linescxand f j is found, where is the current node. In this situation, a face change is

required to ensure progress towards the destination¢irestead of forwarding the packet
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to X, needs to choose the next node from the next adjacent fagdswhe destination
according the right-hand-rule. At every step of face motle,durrent node also checks
whether the next node is strictly closer to the destinatiamthe node which was the local
maximum. The protocol then reverts to the greedy mode apthis.

The above two protocols seem attractive in terms of packieng ratio as they always
guarantee packet delivery if there is a path between a givercs-destination pair. How-
ever, the assumption of unit disk graph and exact locatiorodés are not valid in real life.
In particular, the constructed planar graph may have angssilges due to irregular radio
range of the nodes, which may lead to routing loops. Indeating nodes are forced to

take on the extra burden of planar graph construction.

Progress-based routing

There are numerous protocols proposed under this subdlassitong schemes. One of
the simplest progress-based routing schem&reedy routing16], whereby the routing
node selects the next-hop neighbor as the one with the shdistance to the destination.
Although the scheme works statistically well in dense nekspit suffers from the problem
of local maximai.e., nodes with no neighbors in the transmission rangatéatcloser to
the destination than themselves. Another position-bappdoach, calledCompasswas
proposed in [35]. With Compass, a routing naderwards the packet to the neighbpr
that minimizes the angle formed betwegn and the destination. The protocols, whose
performance is similar to that @reedy suffers from loops. Also, in resource constraint
environments Greedy and Compass perform poorly because eémdency to exhibit hot
spots. Figure 2.3 shows routing examples using Greedy angp@ss protocols. Sdyand

J are the source and destination, respectivelyas three neighbors, batis closest taJ,
wherea$B minimizes the angle towards it. Thus Greedy seldcaésd Compass choosBs
as the next node to route the packetitoHowever, atA packet enters at local maximum

problem as it does not have a neighbor closef than itself. Greedy routing fails at this
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point. On the other hand, packet traps in a loop betwamd A in case of Compass
routing. Even though both protocols fail to route the packtedre is a clear path between
| andJ, which could be made by clever protocol design. Randonumatould be a smart
choice in such situations as by definition packets may follidferent routes even for the

same source-destination pair.

Figure 2.3: An example of location-based routing.

A straight forward randomized routing schemeasdom walk where routing node
randomly chooses a neighbor to forward packets. Howevisrntay lead the packets to
follow unnecessarily a long route. Thus, in this thesis wethuce two variants of random
walk: namelyRW-90and RW-180Q wherei randomly chooses a neighbor from inside a
sector of sizat/2 andmttowards the destination, respectively.

In Geographic Random Forwarding (GeRakJ6], a routing node first divides the
forward transmitting region towards the destination iAgosub-regions. RegioA; is the
one closest to the destination and can be defined by takingaeatered at the destination
with the radius = (djj — R) + a, whered;j is the Euclidean distance between notasd
j and O< a <= R. i then randomly chooses a neighbor from the region closesigo t
destination and relays the packet to it. If this region is gmpubsequent regions are
sequentially searched until a relay neighbor is found.lIfegions are empty, the packet is
dropped. Note that performance of GeRaf is highly depenagietiie size of the subdivided

regions and may create hot spots in reghan For instance, in the above example, néde
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might be the only choice from regigq and could be congested in a highly loaded network.
Thus it is a good idea to consider more neighbours as the fateext-hop nodes and
assign weight to them to control the congestion and routet fe.g., the weight could
be assigned based on the remaining distance or minimum aadleat the resultant path
length could be smaller.)

As the above schemes do not take into account the energy thublgg do not per-
form very well in an energy constrained environment [58]. pagnted out in [61], these
algorithms will generally perform poorly in such environmtg because of the tendency to
exhibit hot spots. Note that the random walk may avoid hotsmt with high probability
it may follow a long route that also consumes more resourteshe following we will
present location-based routing that considers energydiwdgle routing.

The proper definition of local progress as the routing goalpserequisite for efficient

routing in MANETS. Such definitions are proposed in [37], wehthepower progres®b-

o
jective is to minimizg d?jiX_f;Xj) wherei is the forwarding nodex is its neighbor, ang is the

destinationr is the constant component of a single forwarding stepaatr@dnsforms the
transmission distance into the requisite transmissiongpowhe denominator captures the

proportion of the contribution of a single hop to the packelivery task. To account for

the remaining lifetime of a node, tlwest progresss defined as minimizingdijfﬁxng) where
f(x) is the inverse of the node’s remaining lifetime interpredsdts reluctance to forward.
The two components can be combined into a single metric laygstiforward multiplica-
tion and the resulting approach is namedpasver-cost progressThe projection power
progress projection cost progressandprojection power-cost progressan be defined by
replacing the denominators from the above progress-basfedtabns with the dot product
over the vectorsljj anddix. However, as these are deterministic approach, they mégrsuf
from the same drawbacks of Greedy and Compass protocols.

Another energy-aware routing scheme, dubbed PGR [58] atg®in two phases. In

thediscovery phasesach node updates geographic location, remaining battever, and
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reliability of neighbors through the periodic exchange of HELLO messagkereliabil-

ity is defined as the ratio of the number of HELLO packets sucakgseceived at their
destinations within some tim& to the total number of packets that would have been re-
ceived within the same period, if every transmitted HELLQ@k&t had always made it to
the neighbor [58]. The inverse of reliability is the expecteimber of retransmissions re-
quired to deliver a packet. Once the discovery phase is eaeh node selects a certain
subset of its neighbors with the highest reliability as thespective next-hop nodes. A
routing node first defines an angular sector centered at itself and ardwnditection of
the destination. The initial size of this sector is chosdmitearily and then increased up to
at mostrr, if it contains less than two neighbors. If the enlargedaestill has less than

two neighbors the packet is dropped. Otherwisgessigns every neighbarfalling into the

_ Eres(¥)

sector the rank(x) = TR

, WhereEes(X) is the residual power of, andTR(x) is the
inverse reliability ofx, i.e., the expected number of retransmission required tnelink.
The next-hop node is then chosen at random with the probadilectly proportional to
its rank. PGR may suffer from node congestions as most fellaiks get highest rank.
Also, it may follow a long route in case of empty initial sersto

Our proposed routing protocolBjrectional Location-based Randomized (DL.Ryr-
ward First with Ranking (FFR)and Forward with Random selection out of Two (FRT)
[23, 24], could avoid local maxima and loops by exploiting tandom next neighbor se-
lection. Unlike random walk, GeRaF, or PGR they could alsatiab their path length by
introducing weight to the randomized neighbor selectidmere the weight could be deter-
mined based on various criteria such as remaining distaangtes etc. Indeed, they could

also balance load by avoiding congested nodes on their widnetdestination.
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2.4  Protocol Definitions

In this section we present our proposed protocols. We fifgsteleur notation. Suppose that
the current routing node, the next-hop node, the destimatiod the number of neighbors
of i arei, X, j, andn, respectively. The Euclidean distance between two nodesl | is

denoted byd;;. Let 8y = Z]ix| be the angle formed betwegnj, and one of the neighbors

ofi, x. Eres, represents the residual energy of a neightpor

Algorithm 1 Directional Location-based Randomized (DLR) (i)

1: for | + 1tondo
Assign rankP(x;) « Eres, to the neighbox of the routing node.

Assign weighW(x ) + Ero 70000, to the neighbok, of the routing node.

2
3
4: end for

5: Define a secto§ of size® around the routing nodetowards the destinatiop
6: Select theeandidate next nodeac, from inside the sectds.

7. if nc! = NULL then

8:  Choose next nodeout of nc proportional to the rank(x).

9: else

10:  Choose next nodeout of n proportional to the weightV(x).

11: end if

In DLR, the sector siz® is chosen ast/3 so that with high probabilitymay have neigh-
bors inside the sector, which will also be close to the dioacof j compared to the re-
maining neighbors. The closer the direction the better Hamce that the protocol follows
a shorter route to the destination. In case of empty sectghwis assigned to the neigh-
bors according to their angles so that a neighbor with smaigle may get higher priority
to be chosen as the next nadeéAssuming that the traffic load and the mobility of nodes are
uniform across the network, then we may expect that the gropletion is approximately
the same across all nodes. Therefore, if nodes start witsahee energy reserves, they
may approximately have equal reserves at a later point. ¢éjeaven though the weight
biases in favor of nodes with less energy, a suitable chdicemstantcy can amplify the
impact of the angle to be dominant over the smaller diffeesnge expect in terms of the

energy across nodes.
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Algorithm 2 Forward with Random selection out of Two (FRT) (id)

=

i
N P O

e NOdRWN

for | < 1tondo
Assign weightW(x) < dix, x |cosBy | to the neighbox; of the routing node.
end for
Define a sectof of size® around the routing nodeowards the destinatiop
Select thecandidate next nodenc, from inside the sectds.
if nc! = NULL then
Rank neighbors from insid&in terms of maximizingV(x; ).
Choose first two such neighborg,andx,, with highest rank.
Choose next nodebetweerx; andx, uniformly at random.
. else
Drop the packet.
- end if

Th

e sector siz® is chosen ast/2 andin case of FRT-90 and FRT-180, respectively.

FRT initially considers two neighbors that ensures highesgress towards the destination.

Then select one of them uniformly at random as the next nod@lence the load and to

avoid creating congestion to the best candidate on the wayl&stination.

Algorithm 3 Forward-First with Rank (FFR) (i, )

: for | < 1tondo
Assign weightFW(x) < dix, x | cosBy, | to the neighbox; of the routing node.
Assign weightBBW(x|) < dyj x |8y | to the neighbox; of the routing nodeé.
end for
Define a sectof of size® around the routing nodeowards the destination
Select thecandidate next nodenc, from inside the sectd®.
if nc! = NULL then
Choose next nodeout of nc such thaFW(x) is maximum.
else
Choose next nodeout of n such thaBW(x) is minimum.
: end if

The sector siz® is Tt for FFR. It selects the next node from inside the se8tthrat maxi-

mi

of

zes the progress towards the destination. Howeverddsiedropping the packet in case

empty sector (unlike Greedy, Compass, GeRaF, and PGRKER)Bnsiders remaining

neighbors to forward packets to the destination. Thus it fogw a suboptimal route but

may able to reach destination with high success rate compatte other schemes.
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In a nutshell, we proposed a new set of location-based muarotocols that are de-
signed as a compromise between the packet delivery raggqadth length, the loop free-
dom, the network lifetime, and the throughput. Indeed wdaepthe impact of different
load conditions and network topologies on the performaridbese proposed protocols

and the state-of-the-art.

2.5 Performance Study of DLR

2.5.1 Simulation environment

A setV of N nodes is generated at random and uniformly spread over art£90000m
rectangle (1000m1000mx1000m in 3D), withN € 50,70,90,110,130. The nodes are
moving using the random waypoint model with the maximum dpEfelOm/s. The trans-
mission range of each node is 200m (300m in 3D) and its irghakgy is 600J. The transmit
and receive power is 25dBm. Each experiment run simulat@sesOof operation. Each
data point is the average result from 10 independent remgita In the results reported
in this chapter, Confidence Intervals of 95% have been catledlbut they are very tight
around the averages reported, hence they are not includeldt®n However, standard
deviation is included when tabular format is used to preentesults. In order to main-
tain up—to—date information about the neighboring nodegighbor discovery process is
needed. Upon bootstrap, the initial neighbor discoverysphakes 40 sec, with each node
emitting a beacon message every 4 sec. Neighboring nodaesnet$o the beacon. Fol-
lowing the bootstrap phase, beacons are sent once everg. 1Bseiting starts after the
neighbor discovery phase has been bootstrapped. Data tsafenerated by randomly se-
lecting source—destination pairs. Each source—desiimathir generates a packet to route
once every 15 sec. We also consider the node mobility acogitdi the model defined in

Section 2.2.
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2.5.2 Performance comparison of DLR in 2D

The packet delivery rate of DLR vs PGR and Greedy is shown IoleTA.1. Note that the
packet delivery rate of DLR is higher than in the other protec This is because DLR
increases the choice of alternative paths and thus redbegsacket dropping rate. The
performance of Greedy and PGR is very close. PGR can reaafestimation as long as
it finds eligible forwarding nodes inside the sector. Gresdy drop packets due to local
maxima, even though the chance of facing local maxima isitedense networks.

As the number of nodes increases, all the protocols exhditeb performance due
to high node density. For example, the chance of facing d leximum by Greedy is
reduced, which tends to increase the packet delivery rat€AR, the chance of having
more forwarding nodes inside the sector increases withnitreasing node density, which
also pushes up the delivery rate. Also in DLR, the delivetyg slightly improved owing

to the reduced probability of reaching the threshold.

Table 2.1: The average packet delivery rate in 2D space.

n=>50 n=70 n=290 n=110 n=130

Algorithms | Ave. Dev. | Ave. Dev. | Ave. Dev.| Ave. Dev.| Ave. Dev.

GREEDY | 6950 1986|9190 1123|9680 489 |9830 271|9940 190
DLR 8290 1626|9190 1278|9930 2219950 0859970 095
PGR 6830 1997|9010 1309|9750 387 |9800 2221|9940 158

The performance of the three routing strategies in 2D in sevfrthe network lifetime
is shown in Table 2.2, with PGR being the winner. This is beed®GR considers residual
energy of nodes and link reliability to balance the energyzation among the nodes. The
next protocol is Greedy, which does not confine routing toraowasector, which gives it
more flexibility to distribute the energy utilization amotige neighbors of a routing node.
Finally, DLR has the worst performance in terms of the nekibetime. In DLR, a packet

may bounce back and forth, possibly several times, beforgray at the destination, which
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may increase overall energy usage by involving more nodesrikcessary.

With fewer nodes in the network, Greedy performs better tR&R. The probable
explanation is that PGR has fewer choices for next-hop naties to its dependence on
the link reliability and the sector size. The Greedy protoetains a relatively large choice
for balancing energy, even within a relatively sparse nekwad his advantage disappears
with increased node density, as the choice for PGR beconesr and discriminating.
Similarly, the performance of DLR also improves with thergesing node density as the

likelihood of “bouncing” a packet is reduced.

Table 2.2: The average network lifetime in 2D space.

n=50 n=70 n=90 n=110 n=130
Algorithms | Ave. Dev. | Ave. Dev. | Ave. Dev. | Ave. Dev. | Ave. Dev.
GREEDY | 5120 1682|6290 1543|8990 2917 | 10340 2417 | 13480 2673
DLR 1530 841 | 36.00 2444 | 4790 2348 | 7620 3363 | 8030 4461
PGR 4650 1509 | 7010 1474|9060 2697 | 10660 3351 | 15680 7311

Table 2.3 shows the performance of three routing schemesrstof the average path
length. Greedy is the winner here, followed by PGR and the®RDrhis result was ex-
pected as minimizing the distance towards destinationée®y’s primary objective. Both
PGR and DLR may traverse a longer route due to the (biasedpnaization. Then, in
DLR, packets may occasionally travel backwards, which eamenhappen in PGR.

As the number of nodes increases, the path length of Greenlgakes slightly. In DLR,
the likelihood of a backward “bounce” decreases, and so teesverage path length.
PGR, however, may need to traverse a few extra hops in sunlmtgtances, as it always
prefers shorter links with high reliability. Hence, the lp&ngth of PGR tends to increase
as the network becomes denser.

In summary, DLR’s enhanced packet delivery rates comesetased energy cost.
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Table 2.3: The average number of hops in 2D space.

n=50 n=70 n=90 n=110 n=130
Algorithms | Ave. Dev.| Ave. Dev.| Ave. Dev.| Ave. Dev.| Ave. Dev.
GREEDY | 3.67 032|397 017|385 039|380 029|365 017
DLR 971 142|797 400|693 336|552 131|471 041
PGR 383 044|440 020|425 031|451 041|440 039

2.5.3 Performance comparison of DLR in 3D

Table 2.4: The average packet delivery rate in 3D space.

n=50 n=70 n=90 n=110 n=130
Algorithms | Ave. Dev. | Ave. Dev. | Ave. Dev.| Ave. Dev.| Ave. Dev.
GREEDY | 5870 890 | 8110 795 |8750 508 | 9470 5933|9810 160
DLR 7140 1305|9170 1012|9460 4959960 1269990 032
PGR 6590 719 | 8280 692 | 8940 7785|9490 545|9860 117

The behavior of the three protocols in 3D is highly consisteith their planar perfor-
mance. In particular, DLR still offers the highest packdiwaey rate, the performance of
Greedy and PGR is almost the same and close to that of DLR. &tveork lifetime of
Greedy starts better than PGR, but, as the node densityasesePGR picks up. DLR still
yields to the other protocols in terms of network lifetim@proving its performance with

increased node density. In terms of the path length, th@pe&nce of the three protocols

is also similar to their 2D variants.
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Table 2.5: The average network lifetime in 3D space.

n=>50 n=70 n=90 n=110 n=130
Algorithms | Ave. Dev. | Ave. Dev. | Ave. Dev. | Ave. Dev. | Ave. Dev.
GREEDY | 5500 1366 | 66.00 2026 | 9310 2015 | 11450 2685 | 11500 3166
DLR 1330 794 | 1720 813 | 2270 1373 | 2760 1697 | 4130 2062
PGR 4290 884 | 6200 2107 | 6910 3442 | 11420 2778 | 16440 8076
Table 2.6: The average number of hops in 3D space.
n=>50 n=70 n=90 n=110 n=130
Algorithms | Ave. Dev.| Ave. Dev.| Ave. Dev.| Ave. Dev.| Ave. Dev.
GREEDY | 325 027 | 357 020|358 023|342 020|342 015
DLR 9.24 126 | 1107 084|965 139|887 074|744 099
PGR 399 025| 413 041|452 064|402 058|381 025

2.6 Performance Study of FFR and FRT

2.6.1 Simulation environment

We have evaluated our protocols under SMURPH (a System falelitty Unslotted Real-
time PHenomena) [19]. For grid network models, we consiflerd0x 10 perfect grid
with the edge (node-to-node link) length of 50m. The randopologies were generated
by uniformly distributing 75 nodes within a 500m 500m area. The transmission radius
was set to 90m in all the experiments. For randomly genetagsulogies, only connected
networks were used. Note that we use static environmenthisrsimulation (unlike in
DLR) as our main goal is to observe the behavior of differemtqrols under variuos
load conditions and network topologies without making thei@nment more complex
with node mobility. Also, we use differnt radio range andwatk size but they could be

rescaled to the same size used in Section 2.5.
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2.6.2 Results

Grid network with uniform traffic

RW-180 has the worst performance under all loads. The shraitgs of RW-180 are obvi-
ous: the protocol selects the next node at random from ahheairs inside the sector of size
. Odds are against an optimal choice, even if by restrictimegstector tatwe can guar-
antee some “progress” towards the destination. Thus, pmokay have to traverse a long
route and hence occupy the network for long time resultingane packets competing for
the channel and, eventually, higher dropping rate. Howekierthroughput of the smaller
sector variant of RW-180, i.e., RW-90 is almost best under lmad. This performance
though degrades with increasing load. Thus by restrictiegsector size RW-90 controls
the path length and reaches the destination quicker thadi&WHowever, at high load it
still may leave some packets that eventually do not reacdek#nation.

At low load both FRT-90 and RW-180 perform poorly though FRIIperforms better
than RW-180 under heavy load. The performance of FRT-180R&Mlis also similar to
that of RW-90, which falls in the second best protocols groDpe to the limited sector
size ofr/2, biased randomization, and maximized projection, RWFII-180, and FFR
might end up following similar paths. FRT-90 achieves brdtieoughput compared to RW-
180 as it may have limited number of eligible neighbors withs sector and reach the
destination faster than RW-180. However, restricting #hea size along with the biased
randomized selection might not be a good choice while usimgti traffic. It may happen
that the candidate nodes of FRT-90 suffer from congestiorthfoses two neighbors first
and then randomly selects one). RW-90 on the other handatebie sector size but again
does not squeeze the set of eligible next nodes, which inhelps it to balance the load
better compared to FRT-90.

Greedy has the best throughput under uniform burst traffggrimhnetwork. GeRaF can
comfortably compete with Greedy across the entire rangeafffd loads. GeRaF divides

the forward region into sub-regions based on geographigrpss towards the destination,
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Figure 2.4: (a) average network throughput, (b) path leratid (c) packet delivery ratio,
for 10 x 10 grid.



if the size of these regions are reasonable (in grid netwariay happen that only one or
two neighbors might be available in each regions) and ned¢ m®chosen from the closest
region towards destination, chance is high that the clasede towards the destination
might be selected. This way GeRaF may reach the destinatimklg without leaving
packets in the network for prolonged periods of time.

As expected, RW-180 has the worst path length; whereasgtfighth length is offered
by FRT-90. The remaining protocols fall in between. RW-9d &RT-180 have slightly
longer path compared to FRT-90. Greedy has the worst patitHamder highest load
while RW-180 improves its path length under same conditigkisheavy traffic the latter
protocol may succeed for relatively close source-destingpairs, which in turn offers
short path length. Greedy however may deliver more packets for longer paths. All

other protocols retain their behavior under heavy loads.

Random network with uniform traffic

Under light traffic, FRT-90 has the lowest throughput, wiasreGreedy and GeRaF have
best performance. The remaining protocols perform soneeptathe middle of those ex-
tremes. Interestingly under heavy load the relative peréorce changes. FRT-90 outper-
forms all other protocols, but Greedy and GeRaF degrade pleeiormance significantly.
They suffer from congestion while load is high and this iseptpd. FFR performs better
than Greedy under high load as it has the option of choosimgghhor from the backward
sector while the forward sector is empty, this might help RBRollow alternate routes
to the destination. Also, again at high loads, RW-90 follmlzsely the best performance
while RW-180 exhibits the worst performance.

It appears that the sector size has a great impact on theperice of protocols. FRT-
90 and RW-90 have a limited number of neighbors, which doégnsure good load bal-
ance, but helps to retain a steady performance under al$ loadause traffic reaches the

destination quickly to leave more room for additional paskéncreasing the sector size to
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Figure 2.5: (a) average network throughput, (b) path leratid (c) packet delivery ratio,
for random topology.



double helps to find more neighbors to balance the load. Weredshat under low load
RW-180 balances the load nicely, but as load increases dinedadandomness (no bias)
it leaves more packets in the network and longer comparedasetwith smaller sector
size. Hence, quickly degrades its performance to the waorst &RT-180 shows just the
opposite behavior, i.e., due to less number of congestatidaie nodes, packets reach the
destination quickly and the result is evident under heaaglo

The lesson here is that under heavy load, a randomized scéleoodd use selection
criteria based on smaller sector sizes. The cost of randamhszhemes is the selection of
non-optimal next hops, and it needs to be reduced when thwreload is high. We could
therefore argue that a design criterion for adopting randedprotocols is to (a) make
them competitive against Greedy and (b) allow them to “sktieload of the network in

order to reduce the average cost of non-optimal choices Wieenetwork load is high.

Grid network with biased traffic:

The most interesting behavior is observed while using bli&rsdfic on a grid network. The
deterministic protocols Greedy and FFR suffer from congastnd FRT-90 also follows
them due to limited sector size. However, they follow thertdsi paths compared to other
schemes. On the other hand, the best performance is obdentae randomized proto-
cols with notably worse hop count performance, namely RVéi®® FRT-180. RW-90 ex-
presses randomization without any ranks or weights to @asmode choices, but focused
within a narrow sector. Opting for a larger sector (like R@8)Lcan destroy its advantages.
On the other hand, FRT-180 expresses randomization wittimgiof nodes based on some
figure of merit that characterizes good and bad choicesshyiven a larger sector to pick
for its possible candidates. The two schemes achieve cailyarigh performance.

Of course, nothing is for free, and the sub-optimal choideRW-90 and FRT-180
eventually catch up with them at high loads, where GreedyFfd converge with the

performance of RW-90 and FRT-180. Their differences becemall to be statistically
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Figure 2.6: (a) average network throughput, (b) path leratid (c) packet delivery ratio,
for 10 x 10 grid with biased traffic.



significant, yet at ultra-high loads, FRT-180 and RW-90 hibleir ground quite well as
they are able to utilize nodes that are not hot-spots, weeBgaedy and FFR are unable
to do so. The explanation of what happens at very high loadetier provided in the
context of the number of hops where a slight increase of tihaxeu of hops is seen at very
high loads for RW-90 and FRT-180. This means that the packatseventually make it
to their destinations have followed inflated paths (pogdiyl only just one hop) but that
allowed them to bypass hosts where the high congestion waaud resulted in packets

being dropped.

2.7 Conclusions

In this chapter, we consider location-based routing bexdlis nodes do not require to
maintain routing tables but use location information fartimog. This makes location-based
routing suitable for wireless networks with limited resces like MANETS. In location-
based routing pure progress-based next node selectiors se&nactive due to simplicity
and effectiveness in a dense network. However, in a spate®rkerouting protocols like
Greedy and Compass suffer from local maxima and loops, césply. While GFG and
GPSR protocols were proposed to handle these issues, tiigyera planar network topol-
ogy which might not be possible in real deployment due tayuitar radio range of nodes.
We propose to consider randomized next node selection tesslthe above problems and
propose DLR routing as the first step.

The main objective of DLR is to avoid local maxima and loopd anovide high per-
centage of packets delivery. DLR does not easily “give upiverding packets, in that it
is willing to divert packets away from the path to the degdioraand play the odds that at
some later time the packet will be eventually pushed in tletrirection. Due to the cen-
tral importance of energy constraints in routing protodotamobile ad hoc networks, it is

desirable that any other routing objective be seen from arggrconsumption perspective.
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In the particular case of location—based routing, its sgsithwith energy considerations
can be achieved by ensuring that the selection of the negtrbde is made on the basis
of a combination of energy and direction considerationsaddition to offer high packet
delivery ratio, DLR also attempts a synthesis of the twodes:t

Other than the local maximum and loop problems, determinggtproaches may also
create congestion to some nodes in the network. Again raizédion might be considered
to avoid such congestion or hot spots. For this purpose wgoseadditional routing pro-
tocols FFR and FRT. We avoided relying on one type of netwapkkogy only. Instead we
considered regular (grid) as well as random topologiesewike, we considered uniform
and non-uniform traffic. Some of our intuitions, like “romgj randomization works well
with random networks” proved to be wrong. In addition, weabsshed that, yes, random-
ized routing protocols could deal with random environméniisone has to be weary of the
additional cost that randomization will place on path Iésgind therefore congestion. We
also noted that the simplest location-based scheme: Grsaglyite capable to handle a va-
riety of scenarios except for high load non-uniform trafftaations. However, randomized

routing has a lot to offer for biased traffic, even in regutgrdlogies.
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Chapter 3

LEMON: an RSS-based Indoor

Localization Technique

3.1 Introduction

We have proposed a set of location-based routing protogealsei previous chapter that do
not require to maintain detail routing tables to route p&Kk€hus, they could be considered
as the routing solutions for resource constraint devides skensors. However, locations of
the nodes need to be known for such location-based routimgnses. Existing solutions
assume that the nodes are equipped with the GPS and thumhetey their location is
not a problem. However, its applicability on resource cast devices is questionable
because of 1) cost, 2) form factor, 3) accuracy, and 4) utednbiy of GPS indoors. These
reasons motivate us to come up with an indoor localizatistiesy that could be useful
not only for location-based routing but also for a wide ramfether applications. In
this chapter we propose an RF-based indoor localizatioaseltalled LEMON based on
low-power and low-cost wireless devices. The experimaetllts show that the LEMON

competes with (and often exceeds) the state-of-the-agting of the localization accuracy.
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3.2 An Overview of Indoor Localization Schemes

While, generally, GPS handles outdoor localization quigd wits performance indoors is
not satisfactory. Even forgetting about the virtual unkaklity of the GPS satellite signals
under the roof, the limited precision of GPS (aggravatedhsyunavoidable multi-path
effects), practically reduced to about 20m [46], does no¢tintige expectations of typical
indoor applications, e.g., determining the side of the wallwhich the subject is located.
On top of that, the relatively high cost and power expenditaake it difficult to use GPS
on a massive scale and in an inconspicuous (unobtrusive)enafhus we need alternative
solutions for indoor localization.

As we mentioned earlier our focus is on RF-based techniquigish are by no means
the only possible choice. Among the non-RF based locatinagchniques applicable to
indoor environments, one can mention ultrasound techmedd@3] and infrared (IR) sys-
tems [72]. While the acoustic schemes work reasonably wellose range and without
obstacles “getting in the way,” in realistic indoor scenarithey suffer from serious inter-
ference problems. Infrared solutions, on the other handgddition to limited range and
poor accommodation of LOS obstacles, may completely fathanpresence of sunlight
(e.g., rooms with big windows) and are rather costly [3]. Ssgquently, people usually
consider RF-based solutions as being most practicableasteetfective [3].

Theoretically, the propagation properties of RF signal&entipossible to deduce the
location of tracked objects by measuring some of those ptiegeat the receiver. For ex-
ample, the tracked object may emit an RF signal (at some krmpmwer) whose strength
is measured at the (infrastructure) receivers at knowrtilmesa. Alternatively, the infras-
tructure nodes may emit signals whose intensity is meadwydtie tracked receiver. In-
stead of the signal’s received strength, the measured girepenay be théime of arrival
(TOA) [73], time difference of arriva[TDOA), or theangle of arrival (AOA) [47]. In
TOA-based estimation, the velocity, of a signal and the propagation tinhdrom the

transmitter to the receiver are used to measure the disthacet traveled by that signal.
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As the precise TOA measurement of a radio signal poses r@htsiynchronization chal-
lenges [8], especially indoor, where the receiver has td w&h multiple paths, hybrid
solutions are sometimes devised. For example, in Active[B3t the RF signal is used
for the synchronization between the transmitter and receiad ultrasound is used for the
actual measurement of distance.

With a typical AOA scheme, the receiver consists of a serfemtenna arrays: using
their adjacent distance and signal propagation time it $side to measure the angle of ar-
rival. Angulation is then applied to estimate the transenitlocation. Although generally
TOA and AOA systems offer better accuracy than RSS-basezhses), they depend on ex-
pensive and delicate hardware which incurs extra cost atisl tadhe energy consumption
[8].

These shortcomings can be overcome by measuring solelyWw8&) is a very basic
indication available in the lowest end (cheapest) tranecei RSS-based solutions can be
further classified intoange-basegrange-freg andprofiling-basedschemes. With a typical
range-based approach, signal attenuation is assumediow Botertain distance-dependent
formula, e.g., determined by a free-space, two-ray, or®ady channel model [56]. The
last one is considered the best (most general) represemtdtRF signal propagation, with

the received power determined as:

d

The first two terms stand for the received power at some distdrand some close-by
reference distanady. The factora is the path loss exponent, aig is a Gaussian random
variable (expressed in dB) with zero mean and standardtiavia A range-based method
may use this model to determine the distance between thentitiar and the receiver.
However, in the presence of multiple paths, it is hard to igedg predict the path loss

exponent. In practice, a typical indoor environment hardly exhilgtsingle value obx
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for all signal propagation scenarios. While useful for dengimulation studies, a single-
parameter model, like the one above, is not much relevargrfgiguantitative assessment
in a real-life scenario.

Range-based localization schemes attempt to mitigateatequality of blanket mod-
els by adjusting their parameters empirically. For examwi¢h the approach proposed
in [32], the fixed infrastructure nodes know the locationsh&mselves as well as of their
neighbors and use this knowledge to dynamically build a [zt model. The parameters
of that model are then fitted to transform the RSS from an uwknlocation into a dis-
tance estimate for lateration. A similar solution is desed in [2]. Another model-based
indoor localization scheme is presented in [1], where ¢t different channels (sepa-
rated by 5MHz) are used to gather RSS from the tag node betadjzed. This approach
attempts to mitigate the multi-path effect which tends tpetel drastically on the fre-
guency. The collected values are subsequently transform@distance for triangulation.
The authors claim that their scheme derives a close appatiamof the actual distance
from the theoretical propagation model. However, we feat those claims have not been
convincingly substantiated by experiments involving elabe configurations of practical
scenarios including obstacles, walls, etc. Generallyade estimation techniques based
on extensive application of channel models are met withtstism, especially in indoor
applications [3, 74].

In [74], the authors carried out a comprehensive study of Bt&®acteristics, both in-
door and outdoor, to analyze their impact on localizatiofneyf focus on three generic
attributes: the noise, the attenuation rate, and the efeecinge. Different environmen-
tal conditions and parameters are considered in many pessimbinations for the com-
prehensive study e.g., elevation, transmission powekguaeg, the impact of obstacles.
They conclude that, elevation and transmission power aentbst influencing factors for
RSS which is also highly susceptible to environmental ceandhey use the localization

method presented in [46] and confess that their range-tag@dach does not work very
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well in indoor environments—suggesting profiling as a marenpsing idea. The same
observation is made in [3].

A range-free approach based on Distance Vector routingapgsed in [46]. In the
DV-hop variant, the infrastructure nodes (anchors) knosvdistances among themselves
through coordinate exchange via flooding. All regular (ex) nodes (tags) also learn
their distances to the anchors expressed as the number &fHoge that a tag maintains a
table containingX,Y;, hj, where the first two represent the coordinates of anchad the
last one is the number of hops from that anchor to the tag. Vdheanchoi receives the

coordinates of the other anchors, it calculates:

IV =X)P+ (M- Y)?

Hi :
i 5 h

i 7 ]

to obtain the average hop-sid, which is subsequently broadcast into the network. Once
a regular node receives the average hop-size from an anghwally the closest one), it
can estimate its distances to the anchors. This method dveepend on any propagation
property of the RF signals, but the network topology mustdmsonably uniform in all
directions for the hop-size estimation to be useful [46]. ybitd of range-free and range-
based schemes, called DV-distance, is also proposed wiehep distance is transformed
into a geographic (actual) distance based on a channel gmtpa model. In yet another
(third) variant, a tracked node needs to have at least twghbers knowing the Euclidean
distance to an anchor, as well as the distances betweendh@sisSuch a node can then
easily calculate its own distance to the anchor. That schiemk&imed to have a better
accuracy than the hop-based method [46]. However, derthi@dcuclidean distance from
an RF propagation model is still required.

Another simple range-free scheme is proposed in [8] whezddba is to decide on
a subset of anchors (pegs) deemed to be close to the tracked(tag) and then simply
average their coordinate(sz%—x‘, %) into an estimate of the tag’s location. While naive

at first sight, the accuracy of this scheme will tend to imgraxth the increasing density
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of peg coverage (also implying reduced RF range of the tegy'stnitter). It can be viewed
as a generic scheme which, in particular, has found its wigifan a weighted variant)
into LEMON. A good survey of range-free localization teajunes can be found in [63].
RADAR [3] can be considered the pioneer of profiling-basedsRiemes for indoor
localization. During the profiling phase, RSS samples atkegad from four different di-
rections for the same location (to overcome the orientagitect). For localization, a col-
lected sample is compared to the stored set and the coaediothe closest point from the
signal space are reported as the estimated location. Gigposire nearest neighbors and
averaging their locations tends to improve the estimattdowever, RADAR still suffers
from large errors due to the limited number of infrastruetoodes: three long range APs
covering the entire monitored area. One attempt to fix the pedormance of RADAR re-
ported in [3] involved a signal propagation model takingiatcount the presence of walls
between the transmitter and the receiver (which the auttwrsidered the primary source
of problems). That attempt did not work (the observed pertorce was even worse) which
should be taken as a strong hint that, generally, propagataxels cannot compensate for

inadequate coverage with infrastructure nodes. Their insdiefined as

P(d)[dBN] = P(do)[dBn — 10alog (3) ] OWAWAR T aW <€
do Cx WAF otherwise
The model attempts to account for the impact of walls sepayéte tag from a base station,
which were the source of serious discrepancies for the siegtimation algorithm. Thus,
aW is the number of walls along the patWAF stands for the wall attenuation factor, and
C is the threshold foaW beyond which adding more walls becomes irrelevant.
Several popular localization approaches rely on RFID teldgy. Such a system usu-
ally consists of a set of RFID readers, comprising the inftecture, and trackable RFID

tags. An RFID reader is able to detect the signal from a taig,géts sufficiently close.
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For a passive RFID tag, this will happen when the distancéeéa¢ader is so small that
the scheme becomes range-free: detection by a reader iscgesifestimation of the tag’s
location. A localization system like this may not provideudl Eoverage of the monitored
area and be only concerned about detecting the presenagsahteertain “critical” places
or regions. With active tags, on the other hand, which aetditeap (low-range) transmit-
ters, the readers may be able to meaningfully assess theeadcggnal strength and use it
as a representation of the tag’s distance, e.g., quantite@ifew coarse discrete levels.

One RFID-based representative of the profiling-based sehesnLANDMARC [45].
The network consists of a set of RFID readers as the infretsire nodes and RFID tags
as the sending (tracked) devices. LANDMARC suffers fromtdhnological limitation
of RFID readers (the lack of a direct measurement of RSS byehaer). Also, the large
diversity of hardware versions of tags impacts the perforcea

In [52] the existing residential powerline network is usedlbcalization purposes, with
the infrastructure nodes being attached to the powerlioerar the perimeter of the house-
hold. The system, called PLP (for Power Line Positioning)eés residential applications.
The signal transmitted by the infrastructure nodes is veckby the tracked tag. Thus,
with this approach, tags collect signal samples from thestfucture nodes, not the other
way around, as in RADAR, LANDMARC, and also LEMON. During filmg, signatures
of signals from known locations are stored in a database. eBlimation stage proceeds
in two phases: first the room where the tag appears to be priesdentified, and using a
respectively trimmed down population of samples, the maezieassessment of the tag’s
location within that room is carried out. However our expental results show that the
two-phased approach to location estimation in PLP may neinbeffective approach. The
task of accurately inferring whether a tag is in a particubam is often difficult (especially
when the tag is positioned close to the wall), and once thasis is made incorrectly, its
subsequent refinement is not useful.

With respect to WiFi-based solutions, [65] investigates finactical performance of
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WiFi profiling for different numbers of APs. The profile saraplare gathered at every grid
point, where the grid consists of mim cells. The closest neighbor from the signal space,
like in RADAR, is then reported. The authors propose a modetdnking the collected
RSS samples with respect to their contamination level aledtseg less contaminated sam-
ples for location estimation. The practical performanailts reported in [65] are rather
disappointing: in our framework, they would translate iséweral meters of average error
distance, even with five APs. One advantage of LEMON over WdSed schemes, worth
stressing in this context, is the highly reduced power of RRals resulting in smaller cov-
erage of a single “AP.” As our pegs do not compete in any maandrare cheap, we can
easily afford a dense deployment translating into a redeogdrage of a single peg. This
automatically implies better resolution and accuracynewvghout any further tricks. On
top of the reduced energy consumption, one should also heteetiuction in the pollution
of the RF spectrum caused by the signals periodically ethitiethe tracked tags. This
reduction is not without significance, considering the eénereasing popularity of various
RF-based devices (and WiFi enabled devices in particuiaall ipopulated areas.

Another WiFi-based localization scheme is presented ih2f&re the authors propose
to use pairwise RSS differences from the APs as the profileghkes. This increases the
dimensionality of the sample space and, to some extent, mapensate for the limited
number of pegs. For example, with four APs, the number of $asrfpom a single collec-
tion is six rather than four. Our experiments indicate treatihg a larger number of actual

pegs is much more beneficial than such tricks.

3.3 LEMON: Transforming Samples into Locations

Localization in LEMON is a two-step procesprofiling andestimation During the pro-
filing stage, the transmitter (tag) is placed at known lan&ito send a signal, which is

then captured by a set of infrastructure nodes (from now diecc@egy to generate a
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signal strength signature (also called a sample). Theatetlesamples are then stored in
the database along with the tag's location. A kind of radigprodthe monitored area
is thus constructed. After the profiling phase the actuainegion from a query tag can
be performed. In all our experiments we consider static rddeement. The following

description refers to the version of LEMON as presented @&j.[2

3.3.1 Profiling

A single RSS profiled sampletored in the database can be viewed as a tripletQ, 1 >,
whereC stands for the known coordinates of the profiled samles theassociation list
andT, is the sample’slass where class identifies the RF parameters of the transmitter
(typically transmission power, bit rate, and channel numb&he association lis is a
set of pairs< p,r >, wherep identifies a peg (an infrastructure node), and the signal
strength value observed at that peg. In practice, the sclogmetes by having the tag
periodically transmit RF packets that include a sequencebau used to uniquely identify
the transmission. A peg receiving such a packet will forwtardhe central server a re-
port consisting of its own identifier, the identifier of thgtdhe packet number and class.
The server constructs then the association list based aheatkported RSS readings for
the same packet received by the multiple pegs used to distinguish between different
RF parameters. Samples acquired under specific values $¢ fharameters can only be
matched to readings collected under the same values. Wenhasadd that depending on
the environment and the deployment not all pegs may receliag’s transmission; hence

Q need not contain alp’s in its list.

We interchangeably use the term®filed samplesndreference pointso refer to the measured RSS
values from the known locations that are stored in the dam@far localization. Note that sampleis the
average of multiple RS&adings In all our experiments each sample is the average of 5 ididalireadings.
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3.3.2 Selecting relevant profiled samples

In the estimation phase, having received a location estimatquest, the server will search
through the database of profiled samples in order to choasakrsumber of best matching
ones. The input to the estimation process is a list of reading,r >, denoted by®,
representing the set of pegs that have received the curagkepsent by the tag (at the
unknown location) along with their RSS readings. One moeeneht of the query is the
configuration of transceiver parameters used by the tag @moked byt. In the first step of
its search, the server will eliminate all those sampleswiesie collected under different RF
parameterst) than the present set of readings. Having performed thiabk\preliminary
step, we can forget about the existence:dt plays no further role in the scheme.

One simple heuristic used to narrow down the subsequenttseansists in selecting
from @ the pair< pp,rp >, such thatry, is the highest among all pairs #. Then, the
procedure will only consider those profiled samples fromdatabase whose association
lists includepy, as one of the pegs. Clearly, @g appears to have received the present
packet at the highest RSS value among all pegs, it makes se seeven look at samples

whose association lists do not inclupg

3.3.3 Measuring discrepancy in the sample space

Having pre-selected a subset of relevant profiled sampten the database, the server
will order them according to their discrepancy from the gusample (association listp
(from the tag). Then, it will seledf profiled samples in signal space that are “closest” to
the query sample. The location estimate is the weightecageenf the real locations that
correspond to thoské closest profiled samples. Clearly,is a parameter of the proposed
estimation procedure.

One can think of several measures of discrepancy in the saspaice. For the most

natural one, i.e., Euclidean, suppose fat {w;,...,wn} andW¥ = {Y1,...,Ym} are two
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associations lists. The discrepancy between these lidtfiised as:

D(Q,W) = \/§<RQ<1>—Rw<j>>2 (1)
J

]

wherem s the total number of pegs in the network &Rgl( j) is defined asj, if the pair

< pj,rj > occurs inQ, and 0 otherwise. The same is true Ru(j ).

3.3.4 Estimating the location

In the last step, the coordinates of tkeselected profiled samples are averaged to produce
the estimated coordinates of the query tag. The averagimmguia biases the samples in
such a way that the ones with a smaller discrepancy from tleeygsample contribute
proportionally more to the estimate. Layax be the maximum discrepancy frofhamong
the besK selected profiled samples abd= ZiK di be the sum of all those discrepancies.
The located coordinates are estimated as:

_ ZiKzl(Xiayi) X (Omax—di)

(X97ye) - K % dma)(_ D (2)

where(x;,y;) are the coordinates associated with profiled sampteparticular, to answer
a query from the tag, we first search the profiled data to chtheseandidate samples (the
association lists consists of pgg perceived highest RSS from the query tag). The RSS
distance between these samples and the query is then cahgputéop K of them is chosen
in terms of minimizing the RSS distance. The weighted averEdghese K coordinates is
reported as the estimated location of the tag.

Note that the above approach does link RSS to any measure of geographical dis-
tance but treats it as a purely numerical attribute of a sawplose value should be close
to the observed value. The averaging formula does factdramtagnitude of discrepancy

between RSS values (in terms of distance between pointschdéan space), but this is
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a pure interpolation and not an application of any RF propaganodel. LEMON does
not impose any prior restriction on the number of pegs oregiege points. It relies on the
matching rules to locate those profiled samples that bedy ap@ particular “instance”
of localization. If the number of profiled samples is lardes tole of the last-step inter-
polation becomes secondary: we do not assume that the sgeE8 values encode some
information about the real-world distance. In particuiamay make sense to oversample
the area, e.g., collecting multiple samples from the sanmat pa@hich is, e.g., in contrast
to [65]). For example, those multiple samples may corredporthe different orientations

of the tag, as in [3] (without mentioning the orientation aseaplicit attribute).

3.4 Experiments

A prototype system was implemented for collecting RSS messents at various indoor
areas on our university campus. The measurements wereglssftwiaevaluating LEMON

as well as other localization schemes. This section dessthe experimental setup.

3.4.1 The hardware

In our experiments, the wireless device used for both pegjsaays alike is the EMSPCC31
from Olsonet Communications shown in Figure 3.1. EMSPCGI4 low-cost low-power
mote for ad-hoc wireless sensor networking programmabRié@®S [20]. The same de-
vice, in different casings and with different interfacesslat the heart of several WSN ap-
plications, including EcoNet and Smart Condo [64]. The nestgloys the MSP430F1611
microcontroller and the CC1100 RF module, both from Texagiments. The RF module
operates within the 916 MHz band. The transmission powegtisisle from—30dBm to

10dBm (in 8 discrete steps), the bit rate options are 5 klipisbps, 38 kbps, and 200kbps,

2See http://www.olsonet.com/Documents/emspccl . pafdtails.
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Figure 3.1: The EMSPCC11 mote and the experimental set uath®gsignal strength.

and there are 256 different channels (numbered 0 to 25520ikHz spacing. All combi-

nations of options are possible and, in principle, sensible experiments reported on in
the rest of this work were carried out at the second lowesepeetting with 5kbps trans-
mission rate using channel 0. (Note that lowest power gglttéips to reduce interference

and saves energy.)

3.4.2 The logistics

As the implementation was intended for research ratherghadguction, all data processing
was done off-line, i.e., the system was not used for read-fimealization (although there
are no fundamental problems barring its true applicatidri)e collected data, including
the profiled samples as well as specimen tag readings frarkeiidocations, can be re-
interpreted many times within the context of the same expemnt. For example, one can
try to ignore various subsets of the profiled samples, igaonee pegs, use different metrics
for selecting the best-matched set of profiled samples,gegh#ire value oK (the number
of best-matched profiled samples or nearest neighborsyifiseent averaging formulas,
apply various re-scaling functions to RSS readings, intcedhresholds or clustering (dis-

cretizing the RSS values), and so on. Consequently, theaepaof data acquisition from
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the actual estimation (localization) is the most naturalhoéology in this type of work.

A typical experiment would start from deploying a number ofias within the mon-
itored area. Generally, the interpretation of those notlgs(versus pegs) was left until
the off-line analysis stage. The networked program run enrtbdes (thgraxis accord-
ing to PicOS terminology [20]) allowed us to obtain RSS regdibetween all pairs of
directly reachable nodes and for any selected setting ofrimsmitter (output power, bit
rate, channel number). Thus, the deployment of nodes waslydallowed by data col-
lection: the nodes would exchange a massive number of pgata@iveying to the central
node (dubbed theastej their parameters (sender/receiver ID, serial numbarnstratter
parameters, RSS). The master node was connected (via a URtjdo a laptop, where
all the data collected by the network were deposited.

During the off-line analysis, some of the collected readimguld find their way into
the database of profiling samples and some others woulddépreted as measurements of
nodes to be localized. As the locations of all nodes were knexactly, their roles as pegs
or tags were flexible and depended on whether we pretendediwetknow the locations
for some of them in order to treat them as the nodes to be ahli

In early single-room experiments, the size of the surveyedsawere: 3nx 5m (room
1), 7m x 7m (room 2), and 6mx 6m (room 3). The rooms were also populated with
some obstacles, i.e., furniture and equipment (mosthethdabinets, chairs, computers,
and related items), to a varying degree, from sparse (a favscmoved to the walls), to
dense (a typical packed office inhabited by graduate stayle@ubsequent experiments
were carried out in a three-room scenario: three adjacemtugite student offices, with
each office outfitted with four wooden tables, four chairsesal wooden shelves mounted
on the wall, two PC computers, and a steel file cabinet. In enesof experiments, the tag
node was moved around by a person: our objective was to detmiether the node’s

proximity to a body and factors such as, e.g., its orientatiave a significant impact on

SEMSPCC11 is equipped with a raw UART interface which can ls#lyeaonverted to USB.
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the localization accuracy.

Figure 3.2: A sample distribution of nodes in a room.

Figure 3.1 depicts schematically the data collection plhasa typical experiment,
where the master node initiates the exchange of packetdsmdalects the reported signal
readings from the pegs sending them to the server. Figureh®®&s a sample distribution
of nodes for an experiment carried out in room 1. All marksespnt nodes (their total
number is 23 in this case). In one interpretation, the 4 sofites (in the corners) were
pegs, while the 11 crosses (both transparent and solidjdad\profiled samples. The

asterisks acted as tags whose locations were to be detekmine

3.5 The Impact of Parameters on the Performance of LEMON

The primary goal of this (initial) series of experiments waget an insight into the proper
settings of the various parameters of LEMON and see how taeacteristics of the profiled
data (the number of pegs, the number of samples) affect theaxy of the localization.

One important parameter of the location estimation algoritsK, i.e., the number of best
matched points to be used for coordinate averaging. Roonmsl 2 avere used for this

purpose.

62



3.5.1 The effect of sample density

Consider the configuration of nodes shown in Figure 3.2. dhedorner nodes are used as
pegs, while the nodes marked with asterisks are interpeet¢dgs whose locations are to
be estimated. In the first crude experiment, we only use figélpd samples provided by
the nodes marked with solid crosses. Wih= 4 (i.e., four best matching samples out of
the five), the average error in estimating the location ofdilght tags was G3m. With 11
reference points (all crosses) ake= 5, the average error wasdn. Other values &K, i.e.,

K =4 orK > 5 gave worse results, as illustrated in Figure 3.3. Notettieaérror distance
is just the Euclidean distance between the estimated andldotations. The smaller value
of K may not be useful as we may lose required information (locadif reference points)
for the localization. On the other hand Kfis too big we may consider a reference point
far from the estimating tag. Thus the primary concern of gniling-based localization

is to tuneK first.

average
error
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08

11 samples
06

04

19 samples
o 7\//*/

K
0.0l I I I I
3 4 5 6 7

Figure 3.3: Average error distance, room 1.

The set of samples can be augmented by including some resafilorg the nodes rep-
resenting tags, which will bring the total number of sampte49. With those readings
included in the database, the quality of location estinmatigproves rather drastically (see
Figure 3.3). This time the best number Kfturned out to be four. Owing to the fact

that the database contains samples collected from pototged very close (distance zero)
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from the estimated locations, using too many points in tlegaying formula will have the
tendency to pollute the contribution of the true best magsfen if that match isn't 100%
perfect (because of the statistical fluctuations in RSS)sTthis simple exercise suggests
that dense profiling is likely to improve accuracy and regarlower value oK than a

sparse set of samples.

3.5.2 The effect of peg density

In room 2, we set up an 88 grid of nodes spaced 1m apart. Initially, we assumed only
4 pegs located in the corners. The remaining 60 nodes of tdepgvvided signals for
the profiled samples. Then we put some nodes in the centeng gfid squares to collect
data for estimating their locations. The average errorediout to be around.@m, with a

not-so-well pronounced minimum.@6m) forkK = 6.

25 average

error
(meters) 4 pegs
20

5 pegs

05

0ol ‘ ‘ | number of samples
40 50 60 70 80 80 90

Figure 3.4: Experiment in room 2.

There are two obvious ways to try to reduce that error. Thetfat it is significantly
higher than in the previous case clearly results from thetmaiger area being covered
by the same (small) number of pegs. Consequently, incrgasennumber of pegs is one
obvious idea, while another approach is to increase the puwitprofiled samples. Fig-

ure 3.4 shows the impact of these two factors on the observed Suppose that the grid
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points are denoteé u,v >, whereu,v=0,...,7. Thus, the original four pegs had coordi-
nates< 0,0 >, < 0,7 >, < 7,0 >, and< 7,7 >. The case with 5 pegs includes one extra
peg at location< 3,3 >, and the additional four pegs for the 9-peg scenario<afk0 >,
<7,4>,<3,7>, <0,3>. The extra samples were collected in such a way as to make

their distribution as uniform as possible within the condioé the discrete grid.

3.5.3 RSS scaling

In one particular experiment, the localized tag was caroig@ person (both for the pro-
filing as well as for the localization) to determine the imjpatthe tag’s proximity to a
human body (e.g., in people tracking applications). Ifijtidhe results were perceptibly
worse than those obtained under the more sterile conditbtige previous environment.
The analysis of data revealed that most of the problemstesstrom assigning too much
relevance to low RSS values, i.e., corresponding to weadptean, which would exhibit
large statistical fluctuations. With the linear factorinigtioe distance (closeness) of the
requisite RSS vectors into the coordinate averaging fam(bection 3.3), such a fluctu-
ation, additionally amplified by the presence of a human boty cause the coordinates
of a distant reference point to affect the estimation in ameanlisproportionate to itsue
proximity to the tag.

The numerical RSS readings presented by the RF module of EX@SP are positive
numbers, roughly between 84 and 154, representing (nuatigji@a shifted dBm signal
level of the received packet. Considering that the weak&8 Reading is in the ballpark
of 84, which is more than half of the entire scale, it made s¢ose-scale the RSS values
into a range where the weakest readings become zero. Tbheiiog rescaling formula, in
addition to accomplishing the above objective, also allag/fo control the impact of RSS

values with a different magnitude:

r—MIN 1\
Ri=|—c——=]
MAX— MIN
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MIN andMAX represent the minimum and maximum obtainable readingsLé#), across
all sets of measurements, apd> 1 is the amplification factor. Note that fgr= 1 we
obtain a straightforward linear transformation of the R&8dings into the normalized
range|0, 1]. Figure 3.5 shows the an example of the RSS scaling effeceasumned from
a tag at particular distances from peg, where the y axis ofitisealed data spans from 94
to 153 corresponding to power levels from -91 to -61 dBm armdripht side of the figure
shows how it is transformed with scaling. Note that for aipatar experiment we obtain
a pair of MIN and MAX that is used for scaling. For instances #tbove is the pair for a
single room experiments. In the case of three room expetsnear MIN and MAX pair

is (58, 192).

a 5 6 7 1 2 3 a
istance (in m) Distance (in m)

Unscaled RSS Scaled RSS

Figure 3.5: The effect of RSS scaling.

The best results have been observedyfer3 andK = 4. Note that in the remaining
single room experiments, the results reported are for teasge values oK andy. In
90% of the cases we were able to estimate the tag locationamitérror less than 1m.
Even though this step alone does not yet maximize the accwfacEMON, it already
challenges the localization accuracy reported in [45],clvlwas about 2m using an even

finer grid than ours.
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3.5.4 The effect of RSS metrics and averaging bias

As explained in Section 3.3, LEMON estimates the locatioma ¢facked tag by first se-
lecting a number o€losesamples from the database, and then averaging the coaslinat
of the respective reference points into the estimated coates of the tag. The notion of
closeness assumes some metric in the space of vectorstoansis(transformed) RSS
readings. The most natural choice for this metric is stridggtvard Euclidean distance;

however, we have also tested other candidates listed ire Bab!

METRIC FORMULA

Euclidean \/z'j“:l(RQ(j) —Ry(]))?

Manhattan | 5T [Ra(j) — Ru(j)]

Supreme | max<j<m|Ra(j) — Ruw(j)|

Lorentzian | ™, In(1+|Ra(j) — Ry(j)])

Table 3.1: RSS vector proximity metrics.
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Figure 3.6: Effect of distance metrics on location estiomati

The observed difference in performance was not very procexin For example, in
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one experiment aimed at assessing the impact of differetriaaewe used room 3 &7
grid) with Imx1m cell size. 40 reference points were collected to estirtetdocations
of 36 tags. The average error observed under different saggbbction metrics is shown
in Figure 3.6. From now on all the average error results thatpaesented in this work
consider 95% confidence interval. The best performances(ttadlest error) was observed
for the Euclidean metric.

In the last step of LEMON's location estimation proceduredi®n 3.3), the coordi-
nates of the selected samples are averaged to produceithatestcoordinates of the tag.
It is possible to define various averaging formulas in addito the one we proposed in

Section 3.3 (2). In the following paragraphs three suchaieg techniques are outlined.

Yo i Wi x (37y))
) Je (K—l) )

_ TSIl Wi X (37%))

(K—1) ®)

Xe

wherew; = % and(Y*x;j) is the sum of alK x; coordinates except. Note the difference
between formulas 2 and 3 (we call it LEMONZ2). L®be a database sample and ¥;) be
the coordinates of its reference point. ldgtbe the distance of the RSS vector®from
the RSS vector of the tag’s readings. The first formula inetu@;, y;) in the averaged
estimate with a factor directly equal to the difference hwds and the maximund
over all samples selected for the averagidgaf). In particular, the sample witls =
dmax Will be completely ignored from the final result (its factoilivbe zero). The sole
purpose of that sample is to provide the maximum value ohdi#, i.e.dnax to be used
for weighting the contribution of reference points from tlegnaining samples. On the
other hand, with formula (3), all the coordinates of all setel samples contribute to the
final average. The relative distance of a sample is used &s faeighting the contribution
of all other samples, i.e., the further the sample’s RSSovéstfrom the tag’s readings, the

more all the remaining samples should count in the final ed8m
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Figure 3.7: Effect of averaging factors.

In the LANDMARC paper [45], the authors suggest this averggormula:

1/0f

S, 1/d? @

K
(Xe; Ye) = lei(xi,yi),where W=
i=

where the distance exponent (here, equal to 2), is in pimeaparameter. This formula
amplifies the impact of closer samples (and reduces the ingatistant ones) with re-
spect to formulas (2) and (3). Of course, one can apply aryifunctions to the distance,
preferably ones preserving the monotonicity of factoms. (icloser samples having larger
contributions to the average). In particular, this formpfaposed in [49] (we name it
exponential):

—bd

K e
(Xe,Ye) = i;wi (%, Yi),Where w= =" (5)

whereb > 0, amplifies the distance exponentially.
We have tested all the above formulas, and the differengesriormance turned out to

be marginal. The results are compared in Figure 3.7. NoteRA®AR considers simple
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averaging formula. The additiontrivial case corresponds to straightforward averaging,
with the same factor of /K applied to all samples. The best performance (the smallest
overall error) was seen for the LANDMARC formula, with thegrovement of order 2

4%.

3.5.5 The effect of obstacles
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Figure 3.8: Effect of obstacles.

In this series of experiments we studied the impact of obetgiaced in the monitored

area. We consider three scenarios deployed in roonx3 @tid):
1. no obstacles
2. four stacks of chairs placed symmetrically in the fourteeof the grid quadrants

3. alarge table made of wood and steel placed in the centiér,atarge metal object

placed on top of the table

The profiling stage was carried out in an empty room. The ideste see the performance

of our localization scheme in a situation when the layouthef inonitored area has been
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changed (perhaps quite drastically) after the profiling.p#mticular, one would like to
know in what circumstances the profiling data should be deeotsolete, calling for a
new profiling stage.

Somewhat surprisingly, the disturbance caused by the dbstaurned out to be quite
minimal (see Figure 3.8). In particular, the piles of chamsised absolutely no reduction
in accuracy* The impact of the table (including a significant amount of afjetvas more

perceptible and resulted in a8%6 increase in the average error.

3.6 Effect of Profiled Samples and Infrastructure Nodes

on the Performance of LEMON

Indoors, the presence of multi-path introduces noise torteasured RSS. Thus we would
need to collect a large number of reference points to couh&emprecise nature of the
measurements. This brings up the issue of determining tlaleshnumber of reference
points that are sufficient for a given accuracy of localmatiEach reference point measure-
ment could be considered an overhead, since a user (prefetyl have to perform it and
associate it with actual coordinates. Whenever the enwisart changes drastically, e.g.,
when furniture are rearranged or changed, re-measurenoeid Wwe necessary. Therefore,
the smaller the number of required reference points, thiebdh this section we present
experimental results to illustrate the impact of the aresngnt and number of profiled
samples on the localization performance. Indeed, we parfbe same analysis for the

infrastructure nodes, pegs.

3.6.1 Impact of number and layout of reference points

We compare LEMON against two profiling-based localizaticimesnes, LANDMARC [45]

and RADAR [3]. Specifically, we investigate the effect of tinember of reference points

4We could even see a slight improvement which has to be atixibio a statistical fluctuation.
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Figure 3.9: Locations of pegs and of 24 reference pointsniiorzd).

and their arrangement on the localization error. For thrippse, we gathered 49 reference
points, i.e., fromeverygrid point of a %7 grid, where the pegs were positioned at 16
locations (depicted as circles in Figure 3.9). When a ref@eoint measurement was at
the same location as a peg, the actual measurement was taikeavéay from the peg. We
then removed reference points from the database in a refgslaion such that the density
of reference points remained roughly the same across ttielgjgure 3.9 shows the layout
of reference points after removing 25 points; the resulsetp is dubbe®iamondand
consists of measurements from 24 reference points. Bydumrdmoving points in the
same fashion, i.e., one at a time, we arrive at two new lay(aas Figure 3.10) called,
respectivelyHexagon18 points) andNested-Hexagon-Diamor{di2 points). Starting with
the Hexagon layout and eliminating more points, we prodwoeaidditional layouts dubbed
DoubleD(14 points) andsquare(12 points), respectively.

The average error in location estimation for LEMON, LANDMA&Rand RADAR in
each of the above layouts is shown in Figure 3.11. The avesagefor LEMON with all
the initial 49 reference points was37 m, but we could remove points in a regular fashion
and end up with 12 points while the error distance was st than 1 m. This indicates that
it is possible to have a less complex deployment of LEMON autidegrading the perfor-

mance significantly (see, e.g., the case of Dia(24)). Oevalhave observed that the more
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Figure 3.10: Reference point location configurations.

the reference points the better the localization. Yet, thmlmer of reference points alone
is not sufficient, as their placement matters as well (seexample the case of DD(14)
vs. Square(12)). Moreover, LEMON is less sensitive to thalner of reference points and
their layout compared to LANDMARC and RADAR. In fact, of dfiree, RADAR appears
to be the one scheme that deteriorates the most when the nwinieference points is
reduced. This may happen as RADAR uses simple averagingitepehwithout consid-
ering the discrepancy relationship between the query amgtbfiled RSS; hence, sparse

collection of profiled samples may affect the estimatioruaacy.

3.6.2 Effect of peg placement

The unique feature of LEMON is its flexibility of using as mapggs as needed without
imposing any restriction on their number. However, therghhexist better or worse ways
of placing those pegs that may offer better or worse estonatinding the best placement

of pegs for a target localization accuracy may pose a clgdleWe may not need, say,
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Nested-Square ZigZag

Figure 3.12: Peg layouts for eight pegs.

16 pegs for %7 grid to keep the error distance below 1m. Thus we conduatethar
experiment to try to produce configurations with fewer pégs still provide a localization
error less than 1 m. Figure 3.12 shows two such layouts witkg® and the corresponding
average localization error is shown in Figure 3.13. As wese®) it is possible to eliminate
half of the pegs and still maintain error distance well belaw. We also found that remov-
ing just four pegs (the “center square” of circles in Figur@) 3vould leave 12 pegs (called

“Square” in Figure 3.13) but somewhat higher localizatioroethan the configurations
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Figure 3.13: Localization error for different peg layouts.

with the fewer but “better placed” pegs. This may suggedtahaever design of placing
pegs on the target area may help us reduce the error dist@eobservations indicate
that removing pegs from inside the grid may not be a good itfe&. what is even more
interesting to note is that all three schemes (LEMON, LANDRI2, and RADAR) are rel-
atively insensitive to the peg layout, compared to the infyeat the layout (and number) of
reference points could have. Additionally, LANDMARC appeto have a slightly better
performance than the other two, but the statistical sigamibe of the differences is very
small. The lesson is that peg placement is not as criticadsurei as the dense “sampling”
of the space by many reference points. This is good newsggddahement of pegs is likely
to be constrained or even dictated by external factors, placement of furniture, walls,

etc.

3.7 Performance of LEMON in Multiple Rooms

Experiments in this series were carried out in three adjaceams, 3mx 5m each, with

almost identical layouts shown in Figure 3.14. Each roortuinhed four wooden tables and
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chairs, a metal file cabinet, and two desktop computers.
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Figure 3.14: Room layout and layout of pegs (circles), egfee points (crosses), and
localized points (stars).

We placed four pegs at the corners of each room and creatéd\aitir the edge size of
1m. Twelve profile samples were collected in each room atefexence points indicated
by the crosses in Figure 3.14. Then, nine locations from eaam (indicated by the stars
in Figure 3.14) were estimated.

One of our objectives for this series was to study the impkebde orientation, which
was reported in [3] to impact localization accuracy. Tofyahat observation, we collected
readings in four different directions (North, South, Eastd West) from every profiled
reference point, and also noted the tag’s orientation guacalization. Then we compared

the average estimation error for two scenarios:

1. The orientation attribute is ignored. This means thatallprofiled samples from the
database are applied for the localization of a tag, and tjie taientation does not

affect their selection.

2. The orientation of the tag is reported, and only those $asrfpom the database that
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were collected under the same orientation are used forizatiain.

Despite the fact that the line-of-sight (LOS) of the sigisatéver affected by the node’s
orientation (and one would assume that it should be thukeuaet), we noticed a small,
albeit clearly pronounced, improvement when the orieotaéttribute was taken into ac-
count (see Figure 3.15). The observed difference in avexsage was about 12cm. While
not huge, it crisply illustrates how an even minor changegfilacement (namely rotation
on the same spot) may influence the delicate procedure dfzatian. For one thing, the
12cm of difference can be viewed as a lower bound for the uéisol of any localization
scheme that fails to incorporate orientation. This kindexalution is likely to be more
than acceptable in most practical applications. We shootd that in many cases the ori-
entation attribute is not discrete and it cannot be acquikably without rather expensive
and cumbersome equipment. On the other hand, the 12cm bsydbably not easily

reachable, because of other factors.
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Figure 3.15: Performance of LEMON (w/ & w/o orientation) aidlN as used by PLP.

Another subject of this study was a comparison of LEMON agfaihe localization

scheme reported in [52] and based on the K—Nearest Neighdpanitam. That approach,
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called Power Line Positioning (PLP), also resorts to prafilibut it uses power lines as the
means to distribute RF signals throughout a building. Afvarh the unconventional use of
the powerline as an “antenna,” PLP’s approach is to applydifferent neighbor selection
criteria (corresponding to the valuekfin LEMON). Specifically, the scheme uses a larger
K (a larger number of nearest neighbors) to first identify taaw where the tracked tag is
located. The reference points from the identified room aee tised with a smalléf to
estimate the tag’s location within the room. As one of ouechyes was to investigate the
accuracy of room identification in LEMON, we tested the saaggd in our scheme. That
was easy, as both solutions employ essentially the samepbaiK closest neighbors.

Our two values oK were 6 (for the room identification) and 4 for the subsequecHlt
ization within the room. The results show that the estimmasiocuracy of PLP degrades as
it subdivides the signal space according to the physicallgyand then proceeds to localize
within a selected sub-area. There is an apparent loss ahmafiton when we first identify
the room and then localize strictly within that room, resgltin the large error distance
shown in Figure 3.15, even against LEMON with no orientatigiormation. LEMON
clearly outperforms PLP when we consider the three roomsassgnal space and use
all the reference points to perform the estimation. This olestrates that the intuition of
restricting the localization to a subset of reference ainat might appear “close” results
in a loss of data that could be crucial to localization, refgerence points in adjacent rooms
do matter

Finally, Figure 3.16 illustrates the distribution of esan the three-room scenario, col-
lected forK = 4. Thex-coordinate spans all three roomyszoordinate is presented by the
y-axis, and the-axis is to present the estimated error values. The red area®rrespond-
ing to the highest values of error, whereas, the blue areastha lowest error. All the error
distributions presented in this thesis follow the same wigtson. It is interesting to see the

highly non-random nature of those errors, with clearlyhisiand structured “bad spots”
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Figure 3.16: Distribution of errors in the three-room expemnt.

and gradients (specifically near the walls that are at x=3a®)l. This suggests that a sys-
tematic approach to correcting those errors may be possiplexploring the correlations

so vividly present in the surveyed area.

3.8 Conclusions

We have presented a system for RF-based localization vatviered (indoor) areas. In this
chapter, we outlined various factors, including the nundi@earest neighbors, the number
and arrangement of profiled samples and pegs, the RSS sdhknBSS discrepancy and
averaging techniques, the obstacles, the orientationvaéeleand the partitioning of radio
map, on the performance of LEMON. Our experiments indicaé LEMON can easily
achieve a practical average localization error of less ¢hareter in all scenarios examined
in this chapter. The results place it as being both more ate@nd simpler than compet-
ing techniques. The uniformity and low cost of the equipn{emén our underfunded lab

could afford a few hundred of Olsonet nodes) makes LEMON hlfzigiable and practical
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solution.

It is not easy to meaningfully compare the different locatiian schemes proposed in
the literature, mostly due to the difference in equipmenaiding off cost for accuracy), the
logistics of testing (e.g., area size, multiple rooms, atlsts), data gathering techniques,
and the environment [71]. Nevertheless, we attempted t@xtent possible to provide a
fair basis of comparison against other schemes. Note thi thle average accuracy ofiil
has to be considered the worst case in our experiments till isefter than what has been
reported for other schemes [3, 10, 29, 45, 65].

One topic for further study is the impact of a possible dif@ation of theclassat-
tribute of a sample (see Section 3.3) on the accuracy ofiatedn by LEMON. So far,
all our experiments were carried out under the same idérdm#ons of the transceiver
amounting to a single signal class. The observation thagloxalues of RSS tend to be
confusing to the sample selection algorithm, as well as @catferaging formula, hints at
the possibility of using two or more transmission power Is\& the tag. A strong sig-
nal will confuse nearby pegs (their readings will not bealelie), but some further pegs
may then offer assistance in interpreting the reading. €fiectively calls for re-scaling
the RSS readings at both ends of the range and using multipiehes (within different
classes of samples) to arrive at a better approximationeataty’'s location.

Another possible way to diversify the signal class woulddege different channels,
which could mitigate the problem of multi-path propagatidhat, however, is more com-
plicated than diversifying the power level (within the sach@nnel) as it requires the pegs
to be able to receive at different frequencies at the sanme ®me possible solution would
be a channel hopping scheme carried out automatically by aeg)tags according to some
timed pattern. On the other hand, owing to the low cost of @udWware, it is perfectly con-
ceivable to replicate the peg infrastructure by deployindtiple versions of pegs, tuned to
different reception frequencies, at the same place.

The distribution of localization errors depicted in Fig@&&6 provides much food for
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thought and hints at the possibility of correcting thoseexrsystematically, e.g., based on
some second-level profiling. By accepting reports abowurenreceived during the oper-
ation stage, the scheme could build their model (e.g., aki6%]) and attempt to offset
its location estimation in a methodological fashion. Thereertainly a lot of potential in

LEMON for learning and fine tuning as the system attends tdutges.
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Chapter 4

Transforming Samples into Location

Estimates: A Performance Comparison

In the previous chapter, a series of experimental resultsE0MON are presented. Initial
results are quite promising as LEMON guarantees good acgimall practically interest-
ing scenarios and also prevails, in terms of localizatiaueacy, against the state-of-the-art
based on profiling. Thus we next focus on analyzing diffelecalization methods based
on profiling, includinglateration, Bayesian NetworksMaximum Likelihood Estimation
(MLE), Gaussian Process (GPandSupport Vector Machine (SVMNote that these are
well known methods of estimation, thus for the completerséshe comparison we con-
sider all these methods and observe their behavior. Incodati we apply these existing
localization methods in our experimental data. Some ofebhriiques, e.g., the Bayesian
Network, require also a proper model definition to fit theirtgallar assumptions. In ad-
dition, we propose a new localization method dubloedhbinatorial localization The
necessary parameters of each of these methods are outlitieel corresponding subsec-
tion.

In the previous chapter we mentioned that the lateratioedas distance prediction
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from a channel model is not a good choice for localization.vé&afy our claim we per-
form lateration and compare the results against LEMON. We akamine probabilistic
schemes, and Bayesian Networks in particular, which asshatehe signal distribution
is Gaussian and train the network to learn such distributiom the profiled samples. To
estimate the location of a tag, probability (weight) of epcbfiled sample is determined
to generate the weighted average of coordinates of thosplesamFinally, we consider
an MLE-based scheme where only the most (highest) probabfiea sample is reported
as the predicted location, as well as GP and SVM alternatiVesse schemes are worse
performing (but to varying degree) compared to LEMON.

For the purposes of this chapter, we also propose a combialatariety of a localiza-
tion method, whereé,f) sets ofK nearest neighbors are generated o8 pifofiled samples.
Each one of these sets provides an intermediate estimafioa final estimation is com-
puted as the average of those estimates across all setsnéthied can be thought of as an
“exhaustive” method of exploring all possible KNN localimas for a giverK and hence
as yet another means to evaluate the impact of the chiésewe found that instead of
considering allS samples, a subset of them is actually more useful. In pdatioue may
choose the closestC S profiled samples and apply the above trick to estimate the-loc
tion. Nevertheless, the “exhaustive” exploration is ustduearn abouK and its impact

on localization.

4.1 Transforming Samples into Locations

Given a database of RSS readings from known locations, anéhazk of several ways of
using those readings to estimate unknown locations of tagedon their dynamic read-
ings. In the following subsection different methods of lazation, other than KNN, are
presented. Before we start to describe the methods, we vigaltb define the notation

used throughout the description of these methods. 3efR"™™ denotes the collection
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of profiled samples, which is ax m matrix, i.e., there are profiled samples each com-
posed of andimensional RSS vector produced acroggegs in the monitored area. Also,
s; € R*M ands, € R"™1 denote an dimensional row vector andradimensional column

vector, respectively. Thus the former one represents aguaample across all the pegs

while the latter one stands for all the profiled samples acagsarticular peg.

4.1.1 Lateration

The idea of lateration is to estimate the physical distamt@éen the infrastructure nodes
(pegs) and the tag by using a path-loss model on the RSS. Qobalstances are known
a system of non-linear equations is solved to estimate tbatitmn of the tag. Thus the
localization could be thought of as two-step procedsstance measuremeandlocation
estimation We follow the existing solution of lateration [38, 56] angldy it to our exper-

imental data.

Distance measurement

To compute the distance between pegs and a tag, a path log$ defided in [56] is used,

which can be described as

P
=& (6)
L[dB] = C — 10alog(d) + Xs 7)

whereP, andR, are receive and transmit power, respectivdlis the distance between the
transmitter (tag) and receiver (pegs) expressed in unitsstncedy (e.g. meters). The
termC accounts for the frequency dependent component and angammawhileX; is a
Gaussian noise component. Tdiés known as thath loss exponent

Usually, we consider the mean of the Gaussian noise to be(zanally, if it is not
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zero it can be accounted for @). What we are generally interested in is the average loss,

which is:

L[dB] = C — 10ulog(d) (8)

thus the path-loss could be described as a straight linetiequaith respect to logd) .
Note that the variance of th&; is significant, so this straight line, while approximatiheg t
average behavior could be significantly over/under-estngahe behavior of particular
samples. Simple least-square fitting can be applied to ™eterthe path-loss exponent
a (as well asC). This can be done based on the profiled samples as we knovetila a
distance and other parameters for the fitting to determin®©ncea is known, it can be
used to estimate the distance between the tag and the pagshsiRSS (for the details of
path-loss models please check [56]).

In our localization experiment, we use profiled samples ton€ and a based on
equation (8). However, we define two kinds of parameters harnoeal andglobal. The
former approach includes a pair of parameters for every p#ugi system, i.e., 12 pairs of
parameters are learned for 12 pegs. In particular, for eagippwherei = 1to m we use
ansy € R™1 column vector as the corresponding RSS values to compuigeifaeneters.
The distances are calculated using the respective paremasterell. The latter option deals
with only one pair of parameters for all the pegs by considg8c R"*™ and uses them

to compute the distance. Table 4.1 shows all the learnedianckeglobal parameters.

Location estimation

This second step of lateration is defined in [38]. Let the joted distance between the tag
and a peg bd; (j € {1,...,n}) and(xj,y;) be the coordinates of pgg. Let us further as-
sume thatxe, Ye) is the estimated location of the tag. We may then constrectaffiowing

system of equations:
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Methods C a

LocAL —-5957 | 3.70
—63.10 | 3.54
—66.66 | 3.81
—-7545 | 2.12
—74.92 | 1.46
—77.49 | 1.85
—6259 | 3.39
—7994 | 1.80
—70.55 | 3.06
—8348 | 1.94
—-66.81 | 3.13
—6859 | 3.54

GLOBAL | —72.88 | 247

Table 4.1: Local and global parameters.

(X1 —Xe)® + (y1—Ye)? = d2
(X0 — Xe)z + (Yn— Ye)z =d3
This system of nonlinear equations can be linearized byraciirig the last equation from

the first(n— 1) equations to produce (see [38] for detail):

X§ =X = 2(x1 = Xn)Xe + Y1 — Yi — 2(y1 — Yn)Ye = 0f — df

X2 1 —X2—2(Xn_1 —Xn)Xe+ Y2 1 —Y2—2(Yn_1—Yn)Ye=0d2 ; —d2

This system of linear equations can be expressed as:

Ax = b, (9)
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where
2(X1—*n)  2(y1—Yn)

A (10)

2(Xn-1—%1) 2(Yn-1—Yn)

X —xq+ Y]~ YR+ di—df

b 1)

i X%—l—xﬁ‘i‘}’%—l—y%'i‘dr%—dr%—l

The solutiorx (the estimated location of the tag), can then be written as:

x=(ATA)"1ATb (12)

Let us consider an example to illustrate the localizatioocpdure of lateration. As-
sume we have 4 pegs, p2, p3, p4 with coordinateg0,0),(0,4),(3,0),(3,4). We know
the learned global parametegiS,a) = (—72.88,2.47). We would like to estimate the
location, (e, Xe), Of the tagT, with the RSS association list-54, —74, —81, —84).

The first step would be to compute the distances betweand the 4 pegs using equa-
tion 8. The corresponding distances #0:2,1.1,2.2,3.0). We may now generate the

following equations:

(0—x%e)2 4 (0—ye)? = (0.2)2
(0—%e)®+ (4—Ye)® = (L.1)?
(3—xe)?+(0—Ye)* = (2.2)?
(3—%e)2+ (4—Ye)?2 = (3.0)2

By following equations 10 and 1A andb can be computed as:
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A=|_-6 0
0 -8
—16.0400

b=1| —1.2100
—11.8400

Finally using equation 12 the solutionof equation 9 is obtained, which is the estimated
location (xe,Ye) = (0.36781.6046). Note that the procedure of localization using local
parameters is the same except that the distance betweenangdye tag is estimated

using differently determined corresponding parameters.

4.1.2 The Bayesian Network Approach

A Bayesian Networlencodes the joint probability distribution of a set of k ales,
X1, X, ...., X, as a directed acyclic graph (DAG) and a set of conditionatbability distri-
butions (CPDs) [41, 59]. In this graph, each node corresptméxactly one of the system
variables, while the edges denote correlations. In pdaticthe CPD associated with a
node gives the probability of each state of the variablergeeery possible combination
of states of its parents. The set of parentgfsayTy, consists of those values that are
connected withX, by an arc. The edges are placed in such a way that, given thesvaf
its parents, a node is conditionally independent of all tineovariables in the system. The

joint distribution of the variables is thus given by

P(X1, - Xi) = MK P(X|T) (13)

In naive Bayesiamodels, all the variableX are assumed to be mutually independent

given a variabl€€E [41, 59]. The joint distribution of the variables then cangieen by
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P(CE, X4, ..., X) = P(CE)_;P(X|CE) (14)

Naive Bayesian models can be considered as Bayesian Netwdrére each variablg
has the parer€E, which does not have any parents. We follow the above defirstand
define the joint distribution of the variables (correspowggdio the location and the RSS
across the pegs) as described bellow.

In our localization problem, the variables can be defined las set X =
{X,Y,rq,ra,...,rm}. X andY are random variables associated with the location rand
are variables corresponding to the RSS readings at the m pégsay say that the RSS
reading at a peg is a function of its distance to the tranemithich could be captured
with the distributionP(r;|X,Y). Furthermore, we can say that once we know the position
of the transmitter the probability of observing a specificSR& pegi, is independent of
the readings at the other pegs. Note that this is not alwaysds peg readings can be
correlated by some local effects, such as both being nexinetal fence etc. However,
this correlation does not invalidate the Bayesian Netwogkhndology. Thus we define the

joint distribution as follows;

P(X) =P(X,Y) _ﬁP(ri\X,Y) (15)

If we make the further assumption that tkeandY coordinates are independently dis-
tributed (if they are correlated we can still use the chaie to decompose the distri-
bution to P(X,Y) = P(X|Y)P(Y)), we can also break down their marginal distribution
P(X,Y) = P(X)P(Y). Thus we may define a DAG shown in Figure 4.1. If we dropped
the independence assumption of ¥i@andY coordinates this would force us to add an arc
between them.

Given the grid nature of the locations we treataindY as discrete random variables

in our model, but we model RSS data as Gaussian random \esialnl particular, at any
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Figure 4.1: DAG representation of the Bayesian network rhode

particular node in the DAG we store a table with the probgbihf the variable taking
each of the specific values. To store the Gaussian models welitribution of the form
P(ri|X,Y) ~ N(uxy,0?), which means that for each assignment to its discrete pavent
get a different mean. Though the number of readings per safGpeadings were taken for
each profiled and testing samples) might be sufficient toxagé the mean of a distribution,
it might not be reasonable to estimate its variance, esihegvlen all 5 data points are
pretty much centered on the mean (i.e. almost constant)s Ewould be reasonable to
assume that all pegs have the same variance and treat thisras@parameter that we can
optimize on. In particular, we can learn a global varianceeldaon the profiled samples
that is applicable to all distributions.

Once we have our model and distributions, we are ready toigirdte location of
the tag. The association list of that tag could be used to coa®(.X) for every profile

samples. The weighted average of all the samples thus ceuldfined as;

(Xe,Ye) = E(P(X)|ri) wherei= 1tom (16)

Suppose that we have 4 profiled samgled), (2,1), (1,2), and(2,2) and using our
model above we obtain the probabilities a6,®.5, 0.8, and 04 for the query tad . Thus

the estimated location af based on our model would §&.4,1.5).
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4.1.3 Maximum Likelihood Estimation

With the MLE approach defined in [59, 60], we estimate thesdgcation as the single
profiled sample(x;,y;) that maximizesP(X). If we assume that allxj,y;) are equally
likely and the pegs are independent, we shall obtain this @gqation (15). However,
instead of taking the weighted average we report here the likeby profile point as the
estimated location. Note that when we have no knowledgetadyamr probability, we may
use MLE. Thus if we consider the example from the previoussation, the estimated

location of the tag would bél, 2) as this profile point maximizeR(X).

4.1.4 Gaussian process

The Gaussian Process (GPis a non-linear regression tool, where the non-linear “&ern
trick” is used to project the input space to the higher dinral feature space and perform
the linear regression in that feature space. Thus localizabuld be performed using GP
where signal strength and distance have a non-linearaektip. There are two different
views of GP; namelyveight-spacandfunction-spacand in the following we will present
the both views defined in [57].

First we will present the Bayesian analysis of the standagal regression model with

Gaussian noise following the description in [57]:

f(x)=x'w, y=f(x)+e (17)

wherex €e R™, w € R™, f € R, andy € R are the input vector, the weight vector, the
function value, and the observed target value, respeygtivEhe observed valueg are
assumed to differ from the function values by an additiveseeic R, which is assumed to
be Gaussian distributed with zero mean and variarigée., & ~ A((0,0°). Equation (17)

can be rewritten as
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(v =% 'W)

n
P(y|X,w) = |_| (Yjlxj, w) I_II\/— exp(— T)
B 1
_(2n02)n/2

exp(— ZOZ\y—XTw\ ) = N(XTw,0?) (18)

whereX = [Xg, Xp,...Xy] € R™"M s the collection of input vectory, = (y1,Y2, -..... YT,
andl € R™M js the identity matrix. In Bayesian models, we specifpréor over the
parameters before looking into the observations; thus, \ag assign a & R™ mean
Gaussian prior with the covariance matéixc R™™ on the weights, i.ew ~ A(0,%)
[57].

Now, following Bayes’ rule, we may say that

likelihood x prior
marginal likelihood

P(y|X, w)P(w)
P(y[X)

posterior=

P(wly,X) = (19)

the marginal likelihood is independent of the weight andldobe considered as a
normalizing constant. Thus based on the likelihood and mal following the calculation

in [57], it can be said that

A=02XXT 451 (20)

Thus posterior is Gaussian-distributed with meaand the covariance matrix 1.
Now to predict the probability of the functiom, € R, value of a test point, € R™,

we take the weighted average of all possible parametergvalnd their corresponding
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posterior probabilities, which is

PR, X,y) = [ P(F. . w)P(WIX,y)dw

= N(éx*TA1Xy,x*TA1x*) (22)
In the above we use:
P(A) = / P(A B)dB— / P(A/B)P(B)dB 22)

whereP(A) = P(f.|x,,X,y), P(AB) = P(f.|x,,w), andP(B) = P(w|X,y). Thus we get
the distribution off,, the function of a test point,, and the meanggx*TA*Xy) of this
distribution is the predicted value.

However, a typical problem of the above mentioned regregsiodel, especially in low
dimension, is that the assumed linear model may not besefddba. One possible solution
might be to project the, say—dimensional, input space into a high, 9dy-dimensional,
feature spaceaising a set of basis functions and then apply the above-oresdilinear
model on that high dimensional space. Assume that the fumgiix) maps the input

vector to the feature space. Thus the linear model would likek

f(x) = @(x)"w (23)

After some calculation one can notice that the explicit hignensional feature value of
@(x) is never used, but rather we only utiligéx) " =@(x') = k(x,x’), which is defined as a
covariance matrior akernel

The above description of linear regression considers visgace, but could also be

described (producing the same results) considering bligion over functions, i.e., the

93



function-space view, which is described bellow.

Definition 1. A Gaussian process is a collection of random variables, antefnumber of

which have a joint Gaussian distribution.

Note that in aGaussian distributiortihe mean and the covariance are a vector and a
matrix, respectively, i.e., it is distributed over vectorghereas,GP is distributed over
functions.

f ~ GP(MmnK) (24)

where the functionf is distributed as &P with the mean function mmand and theco-
variance function K57]. It means that in a Gaussian distribution, an individaadom
variable from a vector is indexed by its position; wherea& P, a random variablé (x) is
indexed by its argument Let us consider the example @GP in [57], where it is defined
by meanmn(x) = £x2 andk(x,X) = exp(—3(x —x)?). Now we may considen samples
from the functionf and for the chosen values rfwe compute a vector of means and a

covariance matrix, these two thus define a regular Gausssaibdtion as:

1
i =mn(x) = Zrx,-z,i =12,...,n and

1 L.
Zij = K(X,Xj) = exp(—é(xi —xj)?),i,j=1,....,n (25)

wheremn andk define the process andand define the distribution. Now from this
distribution we may write

f~AN(WZ), wherefeR" (26)

Now to predict a test point, ldtandf, be the function values of the training data and

test inputs X, respectively. Their joint distribution can be written as:

f U >
~ N , (27)
f, el [ZT T
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wherep, W, 2, Z,, andZ,, are the training means, the test means, the training set co-
variances, the training-test set covariances, and theé¢siovariances, respectively. The

posterior distribution for a test set can be defined as:
flf ~ A+ 2 2 Y —p), 2, — 2,271, (28)

Note that the above Gaussian distribution considers a fasteof function values. The

corresponding posterior procesjg®(mrg, ks), where

mng(x) = mn(X) + =(X,x)" £~ %(f —mn) and

ks(x,X) = k(x,X) — =(X,x) T 15(X,X) (29)

whereX(X,x) is the vector of covariances between every training casexatdthe pres-
ence of noise in the training data, evefyx) has an extra covariance with itself with

a magnitude equal to the noise variance [57]. In our locatimawe follow the above
definition of G for the localization, where he RBF or Gaussian kernel is defias
k(x,X') = exp(—y(x — X)?). We learned two necessary parameters based on the profile
data, which are and the standard deviation of the Gaussian noise. The vafubese

parameters are 1.0 and 0.5 in both scaled and unscaled Rp8ctigely.

4.1.5 Support Vector Machine (SVM)

SVM, defined in [27, 70], is another choice of non-linear esgion, that also maps the
input space into a higher dimensional feature space usingrr@ekfunction to find the
optimal solution. Basically, we use a linear model as foidveing interested in finding

w):

y=f(x)=x"w+e (30)
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To learnw, we need to solve the following minimization problem

min, 3 V(o= 1)) + 5w

where

0, ifjul <er
V(u) =
|u| —er, otherwise

Note that the difference between GP and SVM is that in theratethod, we have a loss
functionV(u) and a penalizing terré|| w ||2. Any measurement with error less themis
considered loss-free, otherwise, the loss is the differdoetween the predicted value and
the residueer. The above is a quadratic optimization problem to be soltatimay need
to consider huge dimensional data as we perform the optiiaizan the feature space. To
solve this computational issue, instead of solving thisnatiproblem, its dual problem is
used, which is defined using a pair of Lagrange multipliersof’), as

4 T

n n
. 1
mmﬂiﬂi* er Zl(ai*‘H]i)_ Zly G _al +§ G —G. G —Gj)Xi Xj,
i= i= i,]=1

subject to,

n _ n A
Yit10f =i, 0

aF <1/A

0 <aqj

Thus we need to determine the Lagrange multipliers and frquratgon (30) we may write;

w= i (31)

53 =W (32)

=

€ =



After estimating the multipliers, the optimal weight vectoand bias can be determined.
Again we follow the above definition of SVM for the localizai and learned the parame-
tersy for the RBF kernel and the insensitive ersorbased on the profiled data. Once we
know the parameters for the linear model, we are ready tagiradest point using these
parameters. The value gis 0.40 and 0.10 in unscaled and scaled RSS, respectivety. Th

insensitive erroer is 0.0001 for both unscaled and scaled RSS.

4.1.6 Combinatorial localization

In our proposed combinatorial localization, we first coesidll the profiled samples, say
n, from the database and sort them in terms of the RSS disargmetween a tag and
the samples. Now instead of choosing the closestf them as the nearest neighbors,
we generate{{g) combinations, say, to get that many intermediat€ nearest neighbors.
Thus we can computeintermediate locations as the weighted average oKtineembers.
The final estimated locatiofxe, Ye) is simply the weighted average of thentermediate
estimations. Note that the weight in each case could be defisein LEMON. Also,

n = K boils down to the LEMON approach. Following is the algoritfon combinatorial
localization, which could also be used to determine thenogitivalue ofK based on the

profiled samples. Tha€ could be used to estimate the location of the query tag.

Algorithm 4 Combinatorial Localization (Q, n, K)

. Find then nearest neighbors of the query Qg
Sort then nearest neighbors in terms of the RSS discrepancy.
Generatéd = (i) set ofK nearest neighbors.
fori=1toldo
X zﬁ‘zlexj
Yi = 3wy
end for
Xe ¢ 3|1 WIX
Ye <= Z||:1WI Yi

=

©COoN OR®ODN

Assume that we have four profiled samp(ésl), (2,1), (1,2), and(2,2). LetK be 3,
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so there will be 4 combinations of 3 nearest neighbors. Tlaos¢(1,1),(2,1),(1,2)},
{(1,1),(2,1),(2,2)}, {(1,1),(1,2),(2,2)}, and {(2,1),(1,2),(2,2)}. If we consider a
simple averaging technique to compute locations out ofetmesarest neighbors, we will
have(1.33,1.33), (1.67,1.33), (1.33,1.67), and(1.67,1.67), respectively. The final esti-
mated location would be the simple average of these 4 ingiateestimations, which is
(1.5,1.5).

In our localization experiment, a subset of profiled sampses S, is used for the
localization. We consider both the scaled and unscaled RE®$¢é localization. In the
former case, the andK that offer the best estimations are 7 and 6, respectivelyhén
latter case, these parameters are 10 and 4 to obtain thestiesa@ons. In both cases the

averaging formula is the same as the one in LEMON.

4.2 Discussion of the Experimental Results

To evaluate the performance of the above mentioned lot@mlizanethods, we have per-
formed another series of experiments using the same thageigte student’s office (men-
tioned in the Section 3.4.2) with a bigger setup, i.e., wéngatd 52 reference points as
part of the radio map construction and tested 33 tag locatidde have considered both
thescaledandunscaledRSS to evaluate various localization methods. In the falhgwve
start with the unscaled RSS and then present the resultstf@staled data.

The best estimation of LEMON is obtained wikh= 8. The corresponding error dis-
tribution and the performance comparison with LANDMARC &RADAR are shown in
Figure 4.2 and Figure 4.3, respectively. In particular, wepare the RSS profiling based
localization schemes LANDMARC and RADAR with LEMON. Thetieatone outperforms
the other schemes. Note that we consider the same expeaindaié for this comparison
even though in real life the other two schemes considerréiftthardware and size of the

monitored area. In the following, we will present the penfiance of different localization
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y values
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Figure 4.2: The error distribution of LEMON with unscaled®S
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Figure 4.3: The performance comparison of LEMON with LANDRE& and RADAR
with unscaled RSS.
methods we have tested using unscaled RSS.

The performance comparison of global and local paramefdegaration is shown in
Figure 4.4. The best performance is obtained with 3 pegs@ral parameters. The en-
vironment with densely deployed furniture may need locabpeeters to better estimate
the path loss exponent to take into account the small scdiedga It also imposes extra

parameter estimation which is related to the number of pegjsa system. However, this
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Figure 4.4: The performance of local and global parametdegeration.

extra estimation is worthwhile in terms of measured acgurddus we may suggest to
consider local parameter estimation while using log-distebased lateration to predict the
tag’s location, especially indoors where the presence dtipaith effects is high. However,
the performance of lateration is the worst compared to therahethods we have consid-
ered. Lateration considers path-loss model that may beoappate. Thus the estimated
path-loss exponent, even as a local parameter, may notderavgood distance measure-
ment for lateration. Note that it gives the best results @&iimall (closest) number of pegs,
where chance is high that those pegs have direct LOS withatheKNN based LEMON,
on the other hand, does not try to separate LOS and NLOS caenpaof signal strength.
Indeed, it considers signal strength as a quantity and coeephe stored RSS with the
guery RSS with the expectation that the nearby RSS may exprrihe same environment
thus yielding a similar measurement. A KNN based approast dbes not assume that

X and Y locations are independent. The performance compaadédifferent localization

In combinatorial localization, we try to generate, $aintermediate estimations using

a subset of profiled samples and a suitableThe idea is to use thodeestimations to




£

05 F

Avg di
-
B
e
e
L ]
B

o

KNN Combinatorial ~Lateration BayesNet MLE GP SVM

Figure 4.5: The performance comparison of different I@edion methods without scaled
RSS.

produce the final prediction. The performance of this apgida almost the same as of
LEMON. However, we may use the combinatorial approach tmid¢lae best value ok
using the profiled points. In Bayesian networks, we learrdib&ibution of profiled points
and use that information to learn the probability for a quag: The final estimation is the
weighted average of the profiled points, where the weigtitescorresponding probability.
The performance of this method is worse compared to LEMONu¥géefive samples per
profiled point to generate the distribution, most of whick @ery consistent to each other.
Thus this may not provide good distributions to be usefultfar prediction. Using more
samples might help, but by increasing the complexity of thiadjathering phase. Without
this extra burden we could easily choose LEMON and ensuterba&tcuracy. MLE per-
forms worse compared to the Bayesian Networks as it regugtBighest probable profiled
point as the estimation. The last two methods GP and SVM bsghtlhe kernel trick to
project the low-dimensional input space to the high-dinrel feature space. Then they
perform linear regression in that feature space. The foteaens the posterior distribution
of the weight to generate posterior distribution for therguag. The mean of this distribu-

tion is the estimation. The latter one estimates a weightiovebat ensures minimum loss
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or error during the prediction. Their performance is simiteeach other and also similar to
LEMON. Thus, a complicated regression after the kernektmight not be useful for our

localization purposes, where simple RSS scaling offerslgestimation accuracy, as we
will present next. Note that all the results shown in the nexher of the chapter consider

scaled RSS.

Figure 4.6: The error distribution of LEMON with scaled RSS.
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Figure 4.7: The performance comparison of LEMON with LANDRE& and RADAR
with scaled RSS.

The best result for LEMON is obtained wikh= 6 and scaling factoy = 3.5 subject to
RSS scaling. The error distribution of LEMON is shown in Figd.6, where the highest
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estimation error is observed near the walls. The perforemanmparison of LEMON with

RADAR and LANDMARC is given in Figure 4.7.
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Figure 4.8: The performance comparison of different I@edlon methods with scaled
RSS.

The performance of different localization methods usinglestt RSS is given in Fig-
ure 4.8. Note that log-distance based lateration is nouetatl with scaled RSS as that
may ruin the RSS vs distance relationship. The performafd¢beoremaining methods
have similar trend as for the unscaled data. LEMON perforest,[Bayesian Networks
and GP follow it. However, SVM and MLE are the worst. In SVMabig the RSS may

affect its regression on the feature space.

4.3 Impact of Distance Between Profiled Samples

In this section we focus on LEMON and scaled RSS, and pregpetienental outcomes of
LEMON to show its behavior with a varying sample density. Tinenber and arrangement
of the reference points have impact on the localizationgoerdnce [25]. In addition we

may also expect that the density (distance between adjeefenénce points) may influence
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the estimation. We have tested the performance of LEMON, DAMRC, and RADAR

using reference points with different densities. The onteas shown in Figure 4.9. Note
that in the cases of distance 0.71m and 1.6m, the referenno&s@oe placed both at the
grid point and in the center of the grid-cell, whereas alsthpoints are placed only at the
grid points in the remaining two cases of 1m and 2m distariResall that the tested tag’s

locations are at the center of the grid-cell.
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Figure 4.9: Impact of density of reference points.

The worst performance is exhibited by RADAR and it decregsadually (almost lin-
early) with decreasing density. RADAR choog¢€<xlosest neighbors based on the mini-
mum RSS discrepancy and then averages those coordinategaightforward manner to
produce the estimate. On the other hand the other two schegopgsweighted average of
the choserK coordinates, where the weight is based on the RSS discrgp@he impact
of the RSS discrepancy along with the density is noticeable initial set up of the ref-
erence points considers 0.71m distance between them. hettiestep we choose 1m and
the error is reduced. This deterioration can be attribute¢te inherent limitation imposed
by the RF module on the accuracy of its RSS reports, as weldlseomeaning of actual

(ideal) values of RSS in the complicated propagation enwirent. In such a situation, the
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overly dense coverage with samples tends to contributematker than information, and
readings from close locations introduce even more unegytaito the radio map. Increas-
ing the distance further decreases the performance, assoegbect, but the interesting
point is that the highest error is observed with distance.@flrather than 2m. Thus, as
we demonstrated in [25], the arrangement of sample poirtteeimonitored area is of pri-
mary importance, their density ceases to improve things/al certain threshold, which,

according to our observations, lies close to the minimurtadise of 1m.

4.4 Multi-channel RF-based Indoor Localization

The purpose of considering multiple channels is to obsdrge effect on RSS. Channels
may have different degree of noise sensitivity, and RSS fr@same location may behave
differently across different channels. Some channels neajess affected by multipath
compared to others. Thus we may able to define reliabilityhainoels in terms of RSS
fluctuations. In particular, cross correlation of the pegs be calculated to rank the chan-
nels in terms of the number of highly correlated pegs. @toss correlation coefficient ¢

between the RSS and distance for each peg can be defined as:

o Sia(ri—r)(di—d)
VI~ 2304 (0 — d)?

(33)

wheren, r, andd are the number of profiled samples, the RSS value, and therkdistance
between the peg and the profiled point, respectively. Theevafc is between -1 and 1,

and the smaller the value the weaker the correlation bettveedistance and RSS.
Definition. Reliable peg is a peg with cross-correlation coefficientgee than a threshold.
where threshold is an estimated parameter.

Definition. Channel reliability is the ratio of the number of reliablegseto the total num-

ber of pegs, CH = %'
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Rp and T, are the number of reliable pegs and total number of pegsecésgply. The

estimated locations across different channels can beciuatleraged as follows;

ch CHig

Xe,Ye) = > Wi(Xi,Vi),wherew= ————— (34)
( e) i; I( I) ziCElCHrei

ch is the total number of channels aiid,y;) is the estimated location using chanmel
Note that ifCH¢ is 1 for each channel, i.e., all of them are perfectly rekabie estimation

becomes a simple averaging across the channels.

0.8 - 1

]
%

x

oW
5%
X

<

%
X

06 [

oV
R

S
<D
2

e
X
<
OaY

.
X
XS

%0

%
%
ot

V%
35
%
VAN
S
<
o
XX
<&

o
3
&S

X
20588
2%
%
Y

v
%
R
%5

X
<
<
X
<X
XK

T
KK,
SoSodet
de2ee’
T

X

L
XX
detee

Avg error distance

RIS
2088
tefetetel

7
55
S

5
9%
X

7

X
’:
X
23>
35
29588

XK
S
K

X
%
XX

KR

X
<
VA
—
X
<
XK

%
<
<
XL

%
29588
2%

%

YA
v

5%

R

000,
55555
XRKL

oV
X
%
be%s

TR
<

25
L

00
%
255
e
o
X

0.2 -

"
<>

<

2024

X
X8
L
TS
2
X
5%
R

TR
R
RRXXX

X
5%
XL

7
35
S

.
X
<>
S
5%
0%

Z
T
XKKS
XXX
203
2953
e

77

a0
<
%%

,.
X
<
K
<7

55
k5] % ole

Channel 0 Channel 84 Channel 170 Channel 255 Combined

%
%
<

Figure 4.10: The effect of using multiple channels on lalon.

We perform an experiment using three consecutive rooms and $3nx3m grid,
where 4 different RF channels (0, 84, 170, and 255) (chanisesB00MHz and consecutive
channels are 200kHz apart) are used to gather RSS valuesof@mewalls is about 1m
thick whereas the other one is 0.15m. As in other experim&esyather profiled points
from every grid point but the test points are located at theezeof each grid-cell. There
are 73 profiled points to test 36 test points. We place 22 pege\ver the entire area.

The idea is to place more pegs near the walls shared by cdiveemoms. The best RSS
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scaling factory) and the number of nearest neighbd£3 for each channel is presented in

Table 4.2.
Channel RSS scaling factor ¢) | Nearest neighbors K)
CHANNEL O 4.0 7
CHANNEL 84 3.5 8
CHANNEL 170 4.5 9
CHANNEL 255 3.0 5

Table 4.2: Best parameters for channels.

The localization is first performed using individual chalsnand the performance is
shown in Figure 4.10. Then we take the average of these dstinh@cations across the
channels as the new estimation. Applying weighted averlagged on above definitions,

helps to improve the estimation accuracy.

4.5 RF-based Room Localization

Buildings are usually composed of multiple rooms. Inderanany applications of indoor
localization room identification may be sufficient instedidkimowing the exact location of
the tag. Given a set of samples from the reference pointgptira localization problem
is to identify the room from where tag sends its query. Weetdé &3 tag’s queries using
5 nearest neighbors and identified the room where these &gsded by using the label
of these 5 nearest neighbors. In particular we choose 5 steaegghbors that minimize
the RSS discrepancy. Then we check their room label and ¢outite majority, which is
chosen as the label of the query tag. Out of the 33 querieg,ood is misclassified.

As room localization performs adequately and has many piat@pplications, we per-
form further experiments in multiple rooms (mentioned irct8m 4.4) and test the room

localization for that setup. The outcome is shown in Tab® 4.

107



Channel Correct Localization | Wrong Localization

CHANNEL O 35 1
CHANNEL 84 35 1
CHANNEL 170 34 2
CHANNEL 255 34 2

Table 4.3: Room localization using multi-channels.

4.6 Conclusions

In this chapter we analyzed different localization methratgying from a simple nearest
neighbor search to the complex SVM. We tested localizat@asel on lateration, which
estimates the path-loss exponent to relate the distanaebetthe transmitter and receiver
and use this distance to perform lateration. The best paegnce is offered by the nearest
neighbor search which is the mechanism at the heart of LEMIDI is because it does
not need to separate the LOS and NLOS components of sigaagsi, instead it considers
the signal strength as an observed quantity of the monitmeal and performs localization
by computing the discrepancy between the stored and qugnalsstrength observations
to choose the close-match neighbors with known locatiomegort the estimated location
as the weighted sum of those locations. Also, it does notassny distribution of signal
strength (as other methods that assume the signal to bei@aussthe independency of
X and Y coordinates. All these features make the neareshbheigsearch based approach
very flexible and effective for profiling based localization

We performed a new experiment with a bigger setup to evaliteerformance of
the above mentioned localization methods. The performahc&MON is better than the
other approaches or it is almost equal but at a lower cost.

In addition, we analyzed some other properties of LEMON {ii@impact of the profile

points density. We have also performed localization whdesidering multiple channels.
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Finally, we have proposed a simple room localization teghaiand verified its perfor-
mance under both single and multiple RF channels. Expetahessults show that the
multiple channels help to improve the localization accyraélso, the accuracy of the

room localization is promising.
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Chapter 5

Localization Robustness

In this chapter we study the robustness of LEMON. For thigppse, we first study the
impact of dimensionality expansion of RSS on LEMON and codelthat LEMON does
not need such techniques to further improve its accurace rébustness of LEMON is
then tested under erroneous RSS (introduced in the profi'eatapurpose). Finally, we
propose a couple of two-step localization schemes namabangeand peg reliability

based localization, in order to take care of noisy RSS ancerh&MON robust.

5.1 The Impact of Dimensionality Expansion

The use of RSS in its scaled form (versus non-scaled) caraagpdirst to be an arbi-
trary fix. Indeed, we are interested in identifying what kmfdRSS pre-processing can
add to the accuracy and robustness of the localization. iScetid, we consider a num-
ber of alternatives outlined in this and in subsequent sesti We start with a technique
calleddimensionality expansionin a localization system based on WiFi APs, the num-
ber and placement of infrastructure nodes are not flexilgeabse they are decided by the
requirements of their primary role of being APs. In [28], fauch nodes are utilized to
cover a comparatively large monitored area and perforniilataon. To improve the accu-

racy, the authors suggested a scheme to expand the RSS ainadity by using pairwise
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Figure 5.1: Effect of RSS dimension expansion.

differences between RSS values perceived by different. pdgsmally, with m pegs, the
compound RSS sample (viewed as a vector of RSS readingsmestim-dimensional.
Its dimensionality will be exactlyn, if all m pegs perceive the tag, which may be a rule
in a sparse high-powered WiFi setup but it is much less naita LEMON. By using
pairwise differences, we can increase the dimensiondiysample vector stored for each
reference point té1 = (g‘) which represents the differences in (non-scaled) measamts
between pairs of pegs/APs for each given reference poinf28h the authors reported
an improvement in the localization accuracy when using tehtials instead of the 4
straightforward RSS readings. LEMON already utilizes gdanumber of infrastructure
nodes achieving an impressive accuracy. We may thus expatctiimensionality expan-
sion does not help much in improving LEMON’s localizatiorraacy. The results of such
experiments are shown in Figure 5.1. We use 4 pegs at the doners of the monitored
area and apply the pairwise RSS difference among the ped#dm®-dimensional RSS
vectors. This improves the results slightly compared todpeg setup. In the case of 12
pegs, LANDMARC and RADAR experience no improvement, while performance of
LEMON slightly degrades. In a nutshell, the dimensionagixpansion might be helpful in
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a setup of limited number of infrastructure nodes, but dgptpa large number of low-cost
low-power devices yields good estimation without resgrtio such techniques. Using a
large number of devices helps to (naturally and indepetmgegenerate high dimensional
RSS values to better capture the specific environment, wdigih helps the localization.
However, a small number of infrastructure nodes may nowatine to get such a detailed

view of the environment, thus RSS dimension expansion doelldsed in those cases.

5.2 Robustness Under Imperfect RSS Measurements

In this section we consider the various ways in which the ieheunreliability of RSS
measurements impacts the localization and mitigationniecies that can be applied to

deal with such unreliable measurements.

5.2.1 The impact of erroneous RSS measurements
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Figure 5.2: Effect of noisy RSS on localization.

In the presence of multipath propagation, RSS may correlgkedistance in an unpre-

dictable way. While the primary role of profiling is to captany correlation that might
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exist between RSS and locations in space, the ultimate d¢asdifficult environment oc-
curs when there is no apparent correlation at all. Clednbytotal lack of any correlation
whatsoever renders all attempts to use RSS for locatiomastn futile. However it still
makes sense to ask this question: how resistant an RSS-beasede is to the partial loss
of correlation. Such a loss may result from a particularljion@us propagation properties
in a certain region of the monitored area (e.g., lots of nietabjects), or by a malfunc-
tioning peg. The latter problem may become particularlgvant in systems with a large
numbers of cheap nodes, as the ones targeted by LEMON.

To test the sensitivity of our scheme to such propertieseétivironment, we have per-
formed an experiment whereby a selected peg (one such pegleoed at a time) would
produce uniformly distributed random RSS readings betwddh and MAX (minimum
and maximum value of RSS). We have tested 33 localizationegiever all possible sce-
narios in our setup involving one peg (a different peg in es@nario) misbehaving in
this fashion. As the same problem can affect any RSS-basesng; we have subjected
LANDMARC [45] and RADAR [3] to the same test. Note that the ilmmentation of those
schemes was in a sense virtual, and more favorable thaniobtiginal versions, as they
operated on our hardware (with the same coverage by pegMONE, the only difference
being their way of transforming the RSS data into locaticimestes. Needless to say, all
schemes suffered a drop in the accuracy of their estimagesHigure 5.2) but the relative
order in terms of performance, with LEMON outperforming LANIARC and RADAR,

was preserved.

5.2.2 The impact of outlier RSS values

Next we consider a closer inspection of the collected RSSureaents with the purpose
of discarding the ones that are likely less useful. Eyehglihe collected RSS values one
can identify three “regions,” two at the extreme ends, andidrange of values that are

nicely related to distance. RSS values are ranging frome4210 dBm, where the high
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RSS (in dBm)

Figure 5.3: The RSS vs distance for peg 11.

values fall around -70 dBm, low ones around -95 dBm, and tbeat® midrange RSS val-
ues (see Figure 5.3). We observe that the low and high vahrebe& unreliable compared
to midrange values, i.e., they are unrelated to the corresipg physical distances between
sender and receiver. For example the points that fall bel®®dBm in Figure 5.3 appear
to be outliers (e.g., at distance 4m and 5m) and so appeasstteelpoint above -60dBm
at distance 1m. The low RSS values are not far from the noise, fichile the high RSS
values denote a peg that is probably close enough to thamitimg tag and its receiver
may be saturated by the impact of nearby transmission. Tigatatthe effect on localiza-
tion of noisy RSS from the “unreliable” extremes of the ramfealues, we introduce a
two-step localization process. First, we compute the atog®lation coefficient between
the RSS and distance for each peg. We notice that, for eagle pag be further improved
by trimming off the extremes of the RSS values for the pegs Ehnply implies that those
two extremes of the range introduce noise to the capturedvasi8s. We therefore isolate
the “midrange” values of RSS as the most useful, while reptathe extremes with two
representative values (one for the high end and one for theshal values). The list of
upper and lower values of RSS for each peg is shown in Table 5.1

Thus we first compute the coefficieatfor each peg and then attempt to trtéb of
RSS values from both ends of the RSS range for the peg. Wenalienoutliers by starting

with the furthest RSS extremes and trimming performed irhsuevay that the value of
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Peg | Lower value | Upper value
1 —94 —52
2 —105 —72
3 —100 —72
4 —-94 74
5 —96 -71
6 -95 —74
7 —-94 —67
8 —99 —78
9 —102 —66
10 -102 -81
11 -97 —65
12 —105 —59

Table 5.1: Upper and lower values of RSS (in dBm) in midramgalization.

c improves. The trimmed values are replaced as we mentioreed #bove. This is done
(instead of discarding the trimmed RSS completely) becaweserould not like to distort
the dimensionality of the measurements. Clearly, we do adbpm any trimming of the
RSS values for the measurements of the tag that is queryimgt &is location. (Plus, it
would have been dubious at best given that we do not knowstamite from the pegs.) For
each peg it is possible to find its besby trimming any percentage of RSS values from
either end. However, this also means that different pegs lowge different percentage
of RSS values and may have different impact on localizatidmus we trim up to a fixed
percentage of RSS values such that we are not loosing mucatlithe same time are
able to avoid extreme RSS (at both extremes) as well as iremotFinally, we perform
localization using the newly constructed associatiomligirofiled samples.

The performance of midrange RSS based localization is shoviaigure 5.4. Note
that we used unscaled RSS in midrange as well as in the neidrsen peg reliability.
The reason of doing so is to capture the relationship bet®®H and absolute distance;
whereas, if we perform scaling, we lose that RSS vs. distegladonship. We start with

5% trimming, then move to 10%, and finally consider 20%. Fort&#tming localization
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Figure 5.4: The midrange RSS based localization.

accuracy remained almost the same. However, it improvechwit@ming was increased
to 10%. Further trimming though makes the localization itssworse. Thus there is a
trade-off between improving and localization accuracy. If we trim more RSS valges
improves but that also decreases the localization accufiaeyming very small percent-
age also does not help as we still may have outlier RSS vatusgriset of measurements.
We found 10% is a good choice to improve the localization ey We also compare the
midrange localization performance of LEMON with LANDMAR®@@& RADAR, and they
also experience performance improvement when considerange localization. In a nut-
shell, midrange RSS based localization seems promisimggnmstof improving localization
accuracy, where we need to reconstruct the associatioof lesich profiled sample based
on the cross correlation coefficient of each peg and trimntegunwanted RSS values.
An open question is that of determining a systematic RSS uneaent trimming/rejection
strategy that prescribes what needs to be trimmed autcatigtiand takes the appropriate

action.
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5.2.3 Reliability assessment of pegs

Another way to study the RSS data set is to attempt to chairzetée reliability of the pegs
without resorting to any (as we set forth in the beginningpasption of a relation between
distance and RSS value. RSS measurements, in addition¢onkemination by multipath
propagation, may also be affected by the hardware unrétiabi the infrastructure nodes.
We have mentioned before that our infrastructure nodessj@eg low-cost and low-power
devices, which may introduce unreliability on the measiR&S. Here, we will attempt to
introduce metrics to measure the reliability of the pegs.ud&ethe correlation between the
measured RSS and the corresponding distance betweennbmitter and receiver based
on the profiled samples. However, instead of using the ald®$S, we consider midrange
values to compute the correlation coefficiet, and use it as a reliability measure. The
higher the coefficient the better its reliability. This mesed reliability factor can be used

to control the influence of a peg in the RSS discrepancy asvist|

(RS§ —RSS)% xw, (35)

whereRSg andRSS; are the RSS values from the association list of a tag anderater

point, for pegi, respectively. We consider the following weightfor a pegi;

__ Cm
- m
2i=1Cm

The accuracy of localization based on peg reliability iseeésising both original and

Wi

midrange RSS. We found that the midrange RSS helps to furtigove the accuracy if
peg reliability is introduced. However, the original RS®raj with peg reliability does
not help. This may demonstrate that trimming noisy or ual#é RSS is a good idea to
improve the localization accuracy. The outcome of our expents is shown in Figure 5.5.
The performance of LEMON with original RSS is not improvetdather deteriorates a

bit under consideration of peg reliability. However, a@my experiences improvement if

117



1.2

A
ERRXK]

e

%aYaYaYaY
%
A’A

ava

0.8

VeV
R

"'
Y.V, 9.9. 9.9,
RRRKS

%

bt
Yo%
oletetet

<2

0.6

8

VoY%
25
XX

Avg error distance
2% %%
RRRRX
VYV
SRR

&

oY%
L

0.4

VoY%
26202

R
RS

Q2L

v
A‘:

S

TV
R

0.2

R
KRR

S %
XS
S

oY%
K

0%
2’.

o

0%
0:’

-
3

<
LEMON LM RADAR LEMONC‘ LMC‘ RADARC‘ LEMONEN‘ LMCm. RADARcml

Figure 5.5: The effect of peg reliability on localization.

midrange RSS values and peg reliability is used.

5.3 Conclusions

In this chapter we study the robustness of LEMON and thendigp-localization tech-
niques are introduced. Midrange based localization madifie RSS vector or association
list of profiled samples based on the cross correlation ofga géis modified RSS vec-
tor is then used for localization. In peg reliability baseddlization,c is used as weight
during RSS discrepancy measurement and localizationfsrpeed accordingly. The used
c is computed using the midrange RSS of a peg. These methodsvelfhe estimation
accuracy of tags. Thus we conjecture that the presenteditpars can make localization
robust in the presence of noisy RSS and ensure good estmzatoniracy. In all cases, the
presented extensions and modifications result in LEMON laggiaur outperforming the

state-of-the-art schemes.
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Chapter 6

Conclusions

We may divide the contribution of this thesis in two parts. the first part, we address
1) scalability issues in ad hoc and sensor networks, 2) lo@alima and routing loops
problems in location-based routing protocols, and 3) lcadrcing and throughput issues
for the same group of protocols. To address the first issudaese location-based routing
protocols as this class of protocols require no maintenahceuting tables. This helps
location-based routing scale despite the nodes’ limitedueces. Secondly, we introduce
and propose a set of randomized routing protocols to hahéldéocal maxima and loop
problems of location-based Greedy and Compass routinguvifeel analyze the behavior
of deterministic and randomized routings under low to higfffic load and also considered
random and biased traffic. Based on the analysis we propondemazed protocols to help
avoiding congested nodes on the way to a destination anadethe loads among the
nodes. This in turn also helps the proposed protocols ohtgmthroughput.

Load balancing, throughput, packet delivery ratio, anchpangth all are important
performance metrics for any routing protocols. Howeveg, rtain concern of any sensor
network is to optimize the energy consumption of the nodgsrddong the network life-
time. Note that nodes utilize energy for both computatioth emammunication, where the

latter one is more dominant. If a node fails to forward a pat&e neighbor according
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to the definition of a protocol, it retransmits the packete Thore the retransmissions the
higher the energy consumption. Thus by keeping the totalmuraf transmissions across
the network as limited as possible we may be able to optinhigehergy utilization. Thus
the challenge is to integrate the load balancing and theggragatimization to obtain bet-
ter routing performance in terms of the throughput, the padklivery ratio and the path
length. As future work we plan to propose such routing protdor ad hoc and sensor
networks. In particular, nodes may operate in two modes hamegular andcongested
Initially all nodes are in regular mode. If a node detectd thaertain percentage of its
packets are not getting through, it may switch to the comglstode and subsequent pack-
ets are delivered based on new routing criteria. In padictihe next node may be chosen
based on the remaining queue length of the neighbors (baérmdmistic and weighted
randomized options could be tried). Also a regular node &@rning about a congested
neighbor (by hearing its broadcast) may change the routratggy. For instance, if a con-
gested node is chosen as the next node, alternate routedereals A congested node may
switch back to the regular mode once congestion is overcome.

In the second part of this work we consider indoor localmatii.e., computing the
Cartesian coordinates of nodes indoors where GPS sigrealssarlly unavailable. In the
presence of multi-path, indoor localization becomes alehging problem and out of dif-
ferent existing solutions RSS profiling received attentiae to its ability to offer high es-
timation accuracy. The profiling based localization is a-st&p process where radio map
of the monitored area is first constructed by gathering R8& know locations. The es-
timation can be performed by searching Ea@earest neighbors of the query node to take
the weighted average of their coordinates. We have propssel localization scheme,
dubbed LEMON, that uses a densely deployed set of low-cosplower sensors to gather
the RSS. In turn it experiences better estimation accuranpared to the state-of-the-art.

In addition to the KNN method, it is possible to use latemnatiBayesian Networks, MLE,
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Gaussian Process, and SVM for the profiling based locatizatiowever, our experimen-
tal results show that the KNN based approach is low cost dedtefe for such profiling
based localization and can outperform other methods. We &lae analyzed various prop-
erties of LEMON and proposed methods to improve the accusiEMON.

Room localization is a problem where the room label of therguede is identified
rather than computing its actual location. We have conduatseries of experiments to
perform room localization based on KNN. The outcome of tleegeeriments is promising,
where both single and multiple channels are used. Finadyhave proposed a set of two-
step localization schemes based on LEMON. The purpose séthehemes is to make
LEMON robust against noisy RSS.

Given the extensive evaluation we performed, we can stdteseime confidence that
the proposed LEMON could be considered as a complete solatimdoor localization in
various environmental conditions.

One issue of profiling based localization is how to make tH&nef profiling phase
simple. It may even possible to avoid this phase completglyemsely deploying the pegs
to cover the monitored area. Each peg will send a transnmigisad will be captured by the
remaining, saym— 1), pegs. Thus fompegs we will obtairm association lists each with
(m—1) dimensional RSS vector. Then the location of these pegseastimated to learn
bestK, which will be used to answer new queries from the tags.

The profiling-based localization that we described aboilzes a single-hop network
for the localization purposes. The multihop setup is alsssfide where pegs may use
simple routing protocol to pass the received signal stfetmthe master node. However,
we may even deploy a network of a large number of sensors isdmooutdoors such
that single-hop communication is not possible to reachhaldensors. Instead of using
profiling-based scheme we may consider cooperative lataiz. In this scheme a tag
instead of sending signal for localization may search ferriearby pegs it can hear. The

tag can simply measure the RSS from these pegs to assign teéhtw The stronger
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the RSS the higher the weight and the weighted average ofoirelioates of the nearby
pegs may boil down to the estimated location. Thus deplothegoegs is crucial for the
estimation accuracy. Once such deployment is discoveegs, may periodically broadcast
their locations and nearby tag may capture it. The tag mayapely the above mentioned
weighted average based estimation. In a sense, the pegstaamas "anchor” nodes.

In [40], a cooperative localization, CCA-MAP, for multihg@nsor networks is pro-
posed. In this scheme, a small number of sensors equipp&dGHE are deployed as
anchors. Regular nodes first compute a local map based omtimedivity information
among neighbors. A nonlinear data projection is then aggleobtain relative coordi-
nates. The local maps are then combined together to get algtadp. Finally using the
locations of the anchors, absolute coordinates are computes localization scheme uses
mainly connectivity information among neighbors. It waarid that applying range-based
approach to get distances among the neighbors does not TiegpCCA-MAP could be
a choice for localization in a large network where genegatire radio map for profiling-
based localization is not trivial. However, the accuracyC&A-MAP depends on the
number and the placement of the anchors. We may define th@radeployment prob-
lem as an optimization problem with constraints on the esiiom accuracy. Tags may
frequently appear and disappear, causing CCA-MAP to retgrdrequently. We can pro-
pose an incremental CCA-MAP localization to reduce the camigation and computation
cost, a key concern in large networks. Finally, we can ingast the relationship between
weak/unreliable RSS readings and connectivity to furthgerove CCA-MAP, using re-

sults/insights from our work on LEMON.
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