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Abstract

In this thesis we study certain properties of the generalized Fourier algebras 

,4P(G), (1 < p < oo), and their relations with the properties of the underlying 

group G.

It is shown that for amenable groups, all finite-dimensional extensions of 

.4P(G) split strongly. Furthermore, each extension of .4P(G) which splits alge­

braically also splits strongly. We also show that if G is an almost connected 

locally compact group, or a subgroup of GLn(V) (Yr being a finite-dimensional 

vector space), and if for a fixed p € (1, oo), all finite-dimensional singular ex­

tensions of AP(G) split strongly, then G is amenable.

Continuous order isomorphisms for the pointwise order of AP(G) algebras, 

are characterized as weighted composition maps. Similarly, order isomor­

phisms for the pointwise order of BP(G) algebras, are characterized as *-algebra 

isomorphisms followed by multiplication by an invertible positive multiplier. 

In addition, it is shown that for amenable groups, an order isomorphism for the 

pointwise order between AP(G) algebras that preserve cozero sets is necessarily 

continuous, and hence induces an algebra isomorphism.
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Dual, bidual, and spectrum of Lau direct sums of AP(G) algebras are char­

acterized. The existence of topological invariant means, and approximate zeros 

for such direct sums are verified.
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Chapter 1

Introduction

The group algebra L\(G) and the measure algebra A/(G) have been the subject 

of investigation by analysts from the early inception of harmonic analysis. In 

1964, P. Eymard introduced [22] the Fourier algebra -4(G) and the Fourier- 

Stieljes algebra B(G) for an arbitrary locally compact group G. In addition 

to generalizing some of the classical results of the commutative theory to non- 

commutative groups, Eymard also showed the deep and fruitful interaction 

between the properties of the underlying group G and the properties of the 

Banach algebras A(G) and B(G). It should be mentioned that, in the case of 

a commutative group G, -4(G) and B(G) coincide with the Fourier transform 

of Li(G) and A/(G), respectively.

In 1965, C. Herz [37] in a  note on a work of N. Th. Varoupolous [69] on 

the applications of the techniques of tensor products to harmonic analysis, 

obtained a new method of showing that A(G) is closed under pointwise mul­

tiplications. In 1970, it was realized by Herz [38] that the same technique can 

be used to show that a certain Banach space of functions A P(G), 1 < p < oo, 

used by A. Figa-Talamanca [25] in connection with his studies of multipliers 

of Lp-spaces, is in fact a Banach algebra under pointwise multiplication, and 

furthermore, when p =  2, AP{G) coincides with the Fourier algebra .4(G), 

introduced by Eymard.

1

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



The generalized Fourier algebras Ap(G) (also called the Figa-Talamanca- 

Herz algebras) and their multipliers algebra BP(G) (especially for the particu­

lar case of p =  2) have since been studied by several authors including A. Lau 

[45], [46], [47], [48], Lau and Losert [50], Lau and Loy [51], Lau and Ulger [49], 

Lau and Wong [52], E. Granirer [32], Bade. Dales, and Lykova [12], A. De- 

righetti [19], [20], [21], Delaporte and Derighetti [17], [18]. B. Forrest [29], [30], 

[31], N. Lohoue [54], [56], [55], [58], [57], V. Runde [66], V. Losert [59], G. Xu 

[74], J. Font [27], [28], and many others.

In this thesis we study several properties of these algebras with emphasis 

on their connection with the properties of the underlying group G.

In the second chapter we give a brief introduction to the basic notions 

and terminologies of the Banach algebras and harmonic analysis that are used 

constantly throughout the rest of the thesis. Section 1 is devoted to locally 

compact groups and amenability. Section 2 is a quick review of some ter­

minologies from Banach algebra theory. And section 3 deals with the basic 

terminologies related to the extensions of Banach algebras.

In chapter 3, we study Banach algebra extensions of AP(G) algebras with 

emphasize on finite-dimensional extensions. In section 1 we show that if G 

is amenable, then all finite-dimensional extensions of AP(G) split strongly. 

Furthermore, we show that in this case, each extension of AP(G) which splits 

algebraically also splits strongly. Section 2 is devoted to the converse of our 

main result of section 1 in the case of almost connected locally compact groups. 

More precisely, we will prove that if G is an almost connected locally compact 

group, or a subgroup of GL(V)  for a finite- dimensional vector space V, and 

if all finite-dimensional singular extensions of A P(G) (p G (l,oo) fixed) split 

strongly, then G is amenable.

In Chapter 4, we study order isomorphisms of the Banach algebras AP(G) 

and BP(G). In section 1 we introduce and study the pointwise and positive 

definite orders on AP{G) algebras. Here among other things we prove that a

2
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continuous order isomorphism for the pointwise order is a weighted compo­

sition map. In section 2 we obtain a characterization of order isomorphisms 

for the pointwise order of BP(G) algebras. These are *-algebra isomorphisms 

followed by multiplication with an invertible element in £ p(G)+. As a corol­

lary we show that a biorder isomorphism between BP(G) algebras is a multiple 

of an *-algebra isomorphism. In section 3. we briefly study the disjointness 

preserving mappings between AP(G) algebras. As an application, we show 

that for amenable groups, an order isomorphism for the pointwise order be­

tween AP(G) algebras that preserve cozero sets is necessarily continuous, and 

consequently the two algebras are isomorphic.

In chapter 5, we study Lau direct sums of A P(G) algebras. In section 1, we 

characterize the dual, bidual, and the spectrum of such direct sums. In section 

2, we prove the existence of topological invariant means on these spaces, and 

finally in section 3, we prove the existence of approximate zeros.

3
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Chapter 2

Prelim inaries and N otations

2.1 Locally Compact Groups, Haar Measures, 

and Amenability

We assume throughout this thesis that all groups under consideration are 

locally compact groups. In particular, we assume free groups have discrete 

topology. The free group on r generators is denoted by F r

We assume that every locally compact group is equipped with an arbitrary, 

but fixed left Haar measure (in the case of discrete groups we assume that the 

Haar measure is the counting measure, and for the case of compact groups 

we assume the Haar measure is normalized). The integral of a measurable 

function f  on G with respect to such a measure is denoted by

If E  is a measurable subset of G, |.E| denotes the measure of E. The modular 

function of a left Haar measure is denoted by A.

4
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If /  is a function on G and a £ G, we define

„ /(x ) =  La- i f ( x )  = f(ax),

/«(x) =  Raf(x)  =  f(xa),  

f{x)  = f { x ~ l ), 

f{x)  = f i x - 1), 

f i x ) = W ^ ) / A i x ) ,

for all x £ G.

As usual, Coo(G), Co(G), and C{G) are respectively, the collection of all 

continuous functions on G whose support is compact, the collection of all 

continuous functions on G that vanish at infinity, and the collection of all 

bounded continuous functions on G.

A function /  £ C(G) is said to be positive-definite if for every x \ , . .. , x n £ 

G, and rx, . . . .  r„ € C

^ 2 r tr;f(x~xxj) > o .

The collection of all continuous positive-definite functions is denoted by P(G). 

The collection of all positive definite functions /  such that /(e )  =  1 is denoted 

by Pi{G).

If 1 5: P 5: oo. /  € LiiG ), and g £ LPiG), then the function f  *g in LPiG) 

defined by the integral

f * 9 ( x ) =  f f{y)g iy~ lx)dy
J G

is called the convolution of /  and g.

Let G be a locally compact group. A left invariant mean for G is a con­

tinuous linear functional m £ Loc(G)* such that

1. |H | = m(l) = 1.

2- m(a/ )  =  m (/)  for all /  £ LodG) and all a £ G.

5
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A locally compact group that has a left invariant mean is called amenable. 

The study of amenable groups was first started with the work of von Neumann 

in 1929 [70]. Since then, many properties of G as well as various properties 

of algebraic structures on G are shown to be equivalent to the amenability. 

Such studies are still a dominant trend in harmonic analysis of locally compact 

groups. The book of Paterson [63] gives a detailed study of these developments. 

Compact groups and abelian groups are amenable. It is known that any group 

with a closed subgroup isomorphic to the free group on two generators, is not 

amenable. However, A. Yu. OFshanskii [62], has constructed a non-amenable 

group such that every proper subgroup is cyclic (and hence none are free 

on two generators). So in general, amenability is not equivalent to the non­

existence of non abelian free subgroups. The following two classes of groups are 

exceptions. If G is a locally compact group and Go is the connected component 

of the identity of G , then G is called almost connected if G /G q is compact. 

Such a group is amenable if and only if it does not contain F 2 as a closed 

subgroup [65, Theorem 5.5]. The other class of groups for which amenability 

is equivalent to the non-existence of closed subgroups isomorphic to F 2 is the 

class of linear groups over finite-dimensional vector spaces (with arbitrary field 

characteristics), (Tits Dichotomy Theorem. [68, pp. 250-251, Theorem 1 and 

Corollary 1]).

2.2 Banach Algebras

Let A be a Banach algebra and let E  be a Banach space which is a left and a 

right .4-module. If the module multiplications are continuous, then E  is called 

a Banach A-bimodule. The Banach spaces A * and .4** are Banach A-bimodules 

in the usual way. When .4 is commutative, the left and right module actions 

on .4* (and on .4**) coincide.

When a ■ x  =  x ■ a =  0, for all a € A and all x  € E, we call E  an annihilator

6
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A-bimodule. We define

A ■ E = {a ■ e : a € A, e € £}.

When span (A •£ )  =  £ , (respectively, span (E ■ A) = E ), we call E essential 

as a left (respectively, essential as a right) module. If 5 is a subset of .4,

and n 6  N, then we define Stn1 = {ai--*an : a i  an € S}. and S n =

Span {ai • • • an : a \ , . . . , an € 5}. the linear span of S ^ .

An approximate identity for a Banach algebra .4 is a net (e^)ft?/ in .4 such 

that for every a € A

||eQa - a | |  — ► 0 .
(*)

||aeQ -  a|| — ► 0 .

If in addition, this net is bounded, it is called a bounded approximate iden­

tity. If a bounded net (eQ)Q6/ satisfies only the first (respectively, the second) 

condition of (*), it is called a bounded left (respectively right) approximate 

identity for .4.

Let X  be a topological space. We say that (.4, || • H.4) is a Banach algebra 

in Co{X) if .4 is a subalgebra of Co(X) and if -4 is a Banach algebra under 

pointwise operations and its own norm || • Ĥ . For each x 6 -V. let <5r (/)  =  f ( x )  

for all /  € -4. This is a one-to-one, bi-continuous map from X  into <r(.4), the 

spectrum of A. If it is also onto, we say A is a Banach algebra in Co(X). where 

X  is the spectrum of A [40, p. 489]. Such a Banach algebra is called a strong 

Ditkin algebra if

1. .4 has a bounded approximate identity consisting of functions with com­

pact support.

2. For each x  6  X, the set Mx = {tx € A  : u(x) = 0} has a bounded 

approximate identity consisting of functions whose supports are compact 

subsets of X  — {x}.

7
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(See [12, p. 41], compare also with [40, p. 497], where an algebra satisfying 

Ditkin’s conditions is defined).

For 1 < p < oo, the Banach algebra AP(G), is defined as the collection of 

all functions u G Co(G) such that

Using the above terminology, -4P(G) is a Banach algebra in Co(G), where 

G is the spectrum of AP(G) (also denoted by cr(Ap(G)). In the special case 

of p = 2, AP(G) is simply the Fourier algebra -4(G) introduced by Eymard in 

[22]. It is well known that -4P(G) has a bounded approximate identity if and 

only if G is amenable [39].

For every x G G, {x} is a set of spectral synthesis for .4P(G), in the sense 

that the set

Jx =  {u G -4P(G) : u has a compact support disjoint from {x}},

is dense in A/x =  {u € -4p(G) : u(x) =  0} [39. Theorem 2, Proposition 2. and 

Proposition 1, pp. 92-94] (see also [17, Corollary 4]).

Let AP(G)* be the dual of AP(G). Suppose {Ap, LP{G)} is the left regular 

representation of Z-i(G) on LP(G) defined by

then -4P(G)* =  Ap(Li(G)) C  B(LP(G))—where the closure is with respect to 

the weak*-topology of B(LP(G)), the space of all bounded linear operators on 

LP(G) [23, p. 60]. The dual norm on -4P(G)* coincides with the operator norm

8

i = i

where /, 6  LP(G), g{ 6  LP>{G), 1 / p +  l/p '  =  1, and £  ll/.llP lltf.llp' < The

norm on Ap(G) is defined by

(  OO

I  t = l  t = l

K U ) 9  =  /  *9 { f  e  Li(G), g e L p(G)).

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



induced from B(LP(G)) [39, p. 116], and for /  € Li(G), u € AP(G) we have 

[23, p. 60]:

( M / ) - u) =  J  f{x)u{x)dx.

If 0, 0 € cr(Ap(G)) U {0}, we define an .4p(G)-bimodu)e action on the set 

of complex numbers C by

u ■ z = 4>(u)z, z ■ u = ip(u)z. (for all u 6 AP(G), z € C).

Following the notation in [12], we denote the resulting Banach .4p(G)-bimodule 

by C^,^. If 0 = 5X is the evaluation functional at x. we use the slightly modified 

notation C x^ .  instead of C 0.w. Similarly, when 6  and w are both the zero 

functional, we denote the resulting Banach .4p(G)-bimodule by Co.o- 

A function u on G is called a multiplier of .4P(G) if

uv € AP(G) ( for all t; € AP(G)).

The set of all multipliers of -4P(G) is denoted by BP{G). It is easy to verify 

that with the usual operations of pointwise addition and multiplication, and 

with the multiplier norm

M b, = in f{ ||H U P : v 6 AP{G). |MUP = 1},

BP(G) is a Banach algebra.

2.3 Extensions of Banach Algebras

For a basic reference on algebraic and strong splittings of extensions of Banach 

algebras we refer to [12]. Our terminologies and notations are mainly those 

used in the above reference.

Suppose B  and A are Banach algebras, and I  is a closed two sided ideal of 

B. An extension E(B; I) (or simply £) of .4 by I  is a short exact sequence

0 -------► I  B  — .4 ----- ► 0 ,

9
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where i is the inclusion map and tt is a continuous algebra epimorphism with 

ker 7r = /.

We call the extension E(B; I)

1. finite-dimensional, when I is finite-dimensional:

2. singular, if I 2 =  {0};

3. admissible, if there exists a continuous linear map d : .4 — ► B, such that 

n o d = idA (the identity map on .4).

We say that E (B;I)  splits algebraically if there exists an algebra homomor­

phism h : >1 — ► B  such that iroh = id a ; if in addition, such a homomorphism 

is continuous, we say that the extension splits strongly. It is easy to verify that 

an extension E (B; I) splits algebraically if and only if there exists a subalge­

bra C of B  such that B = /  © C. The symbol .0 means that B = I + C and 

I  DC = {0}. Similarly, an extension E(B: I) splits strongly if and only if there 

exists a closed subalgebra C  of B  such that B = I 0  C . The symbol © means 

that I  and C  are closed subspaces of B. and B = I ?  C.

In a singular extension

0 ------ > I  — —  B .4-------- ► 0 .

we regard /  as a Banach .4-bimodule with the following module operations: 

for a € .4, and x 6  / , if b € B  is such that <r(6) = a. we define a ■ x =  bx, and 

x  ■ a = xb.

Suppose E  is a Banach .4-bimodule, and E is a singular extension of .4 by

I. If I  is isomorphic to £  as a Banach .4-bimodule, then E is also called a 

singular extension of .4 by E.

For a Banach algebra A  and a Banach .4-bimodule E, let Bn(A. E) denote 

the set of all continuous n-linear maps from .4 x • • • x .4 into E, and Cn{A, E ) 

denote the set of all n-linear maps from .4 x • • • x .4 into E. If 5  € £ 1(j4, E),

10
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then Sl S  e  C2{A,  E)  is defined by

(SlS)(a. 6) =  a • 5(6) -  S{ab) + 5(a) b (a, b e  A).

We also define

j\P{A, E) = {SlS  : S € B(A, E)},

N 2(A, E) =  {<5l5  : 5  € C(A, £)}.

A bounded bilinear map T e  B2(.4, E) is called a continuous 2-cocycle, if 

for all a, b, and c € .4

a ■ T(b, c) -  T{ab, c) + T(a, be) -  T(a, b) ■ c = 0.

The set of all continuous 2-cocycles is a closed subspace of B2(A, E), denoted 

by Z 2{A. E). It is easy to verify that E) C  2 2(A, E), but in general,

N 2(A, E) is not a subspace of Z 2(A, E). We put N 2(A , E) = Z 2(A, E) D 

N 2(A, E). The second continuous cohomology group of A with coefficients in 

E is defined as

H 2(A ,E)  = Z 2( A ,E ) /M 2(A,E).

An analogue of the above group is defined as

H 2(A ,E)  = Z 2( A , E ) / N 2(A, E).

The latter group is used in the study of the algebraic splitting of extensions 

of A by E.

11
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Chapter 3

Algebraic and Strong Splittings 

of Extensions of the Banach 

Algebras Ap(G)

3.1 Introduction

A classical theorem of Wedderburn [72, Theorem 28] states that when B  is a 

finite-dimensional algebra and rad B  is its Jacobson radical, then there exists 

a subalgebra ,4 of B  such that B  = rad B  © .4.

By definition, a (non semi-simple) Banach algebra B  has a Wedderburn 

decomposition if there exists a subalgebra .4 of B  such that B  =  rad B  © ,4. 

We say that B  has a strong Wedderburn decomposition if there exists a closed 

subalgebra .4 of B  such that B  = rad B  ® ,4.

In 1951. C. Feldman [24. p. 771] found an example of a Banach algebra 

without a strong Wedderburn decomposition. Later W.G. Bade and P.C. 

Curtis [8 . Theorem 6.1] showed that the example of Feldman has a Wedderburn 

decomposition, and therefore the two kinds of decompositions are distinct. The 

question of the existence of Wedderburn decompositions for Banach algebras is

12
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a special case of a rather more general question of splittings of Banach algebra 

extensions (see Section 2.3). Suppose A is a specified Banach algebra. We 

want to know under what conditions on A, every Banach algebra extension 

£(B; I) of .4 splits algebraically or strongly. Of course, when /  =rad B,  this 

question is essentially about the existence of Wedderburn decompositions of 

B.

The algebraic and strong splittings of Banach algebra extensions have been 

studied by many authors, among them Bade and Curtis [8], [9], Bade, Curtis, 

and Sinclair [10], Bade and Dales [11], Feldman [24], Helemskii [34], [35], and 

Johnson [43], [44]. The most comprehensive of such studies is the work by 

Bade, Dales, and Lykova [12].

Our study of extensions of AP(G) algebras was motivated by the results of

H. Steiniger in [67] for the special case of p = 2.

The main result in Section 2 is Theorem 3.2.7, which states that when 

G is amenable, all finite-dimensional extensions of AP{G) split strongly. We 

also show that when G is amenable, each extension of AP(G) which splits 

algebraically also splits strongly (Proposition 3.2.10).

The main result in Section 3 (Theorem 3.3.11), shows that the converse of 

Theorem 3.2.7 is true if the group G is a linear group on a finite-dimensional 

vector space or an almost connected locally compact group.

3.2 Extensions of the Banach Algebras AP(G)

In [32, Theorem 5, p. 123] Granirer showed the existence of a topological 

invariant mean 'I' on Ap(G)m, the dual of AP(G). In other words, he showed 

the existence of an element *  6  Ap(G)mm such that ||* || =  'l'(Je) =  1, and 

u • *  =  u(e)*  for every u 6 AP(G). Now if x  €  G  and Lx- 1 is the left 

translation by x -1 on AP(G), and if we set * x =  L’l ,  * , then it is easy to  see 

that ||ilrz || =  * X(<5X) =  1, and for every u €  AP(G), u • * x =  u (x )*x. So we

13
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have the following result:

3.2.1 Lemma. For every x € G, there exists an .4p(G)-bimodule homomor­

phism : .4P(G)* — ► C x<x such that ||'I'I || =  ^x(^i) =  1-

The first part of the next result is proved in [44, Proposition 1.5, p. 10], 

and its second part can be proved in a similar way.

3.2.2 Proposition. Let .4 be a Banach algebra, and let E  be an annihilator 

Banach .4-bimodule.

1. If A has a left (or right) bounded approximate identity, then H 2(A, E) — 

{ 0 }.

2. If .4 has a left (or right) approximate identity, then H 2(A . E) = {0}.

For the convenience of reference, we mention the following result due to 

Bade. Dales, and Lykova. This result is proved in Proposition 2.5(i). p. 28, 

and Proposition 2.10(i), p. 32 of [12].

3.2.3 Proposition. Let ,4 be a Banach algebra and let £  be a Banach 

.4-bimodule.

1. Every singular admissible extension of A  by E  splits strongly if and only 

\ i H 2{A.E)  = {0}.

2 . Every singular admissible extension of A  by E  splits algebraically if and 

only if H 2{A,E) = {0}.

3.2.4 Lemma. Suppose E  is a finite-dimensional Banach .4p(G)-bimodule, 

and let E  be essential as a left (or as a right) module. Then every singular 

extension of AP(G) by E  splits strongly.

Proof. We assume that E  is essential as a left module. By Proposition 3.2.3, 

it suffices to show that H 2{AP(G), E)  =  {0}. If x  € G, from the fact that {x}

14
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is a set of spectral synthesis for AP(G), we can easily deduce that M~ =  Mx

(where, as we defined before Mx =  {u G AP(G) : u(x) =  0}). Therefore by [12,

pp. 56-57], E  =  ® C ^ ^ ,  where n = d im £ , and fa, fa G <7(Ap(G)) U {0}, for 
:=1

every i. Hence H 2(Ap(G), E)  =  0  H 2{AP{G), Since by assumption E
1=1

is essential as a left module, fa ^  0 for every i =  1, 2 ,..  .n . To complete the 

proof, it suffices to show that H 2(AP(G),CX̂ )  =  {0}, whenever x  G G, and 

ip G a{Ap(G)) U {0} (note that cr(.4p(G)) = {<5X : x G G}).

Let T  G Z 2(.4P(G), C x,^), and let T' be the unique element in (Ap(G)3Ap(G))m 

canonically corresponding T  (that is, T '(a3  b) = T(a, b))—here 3  denotes the 

projective tensor product operation. Now consider the canonical isometric 

isomorphism

(A>(G)®.4p(G))* a  B(AP(G),AP(GY)  

R  — ►

where ($fl(a),6) =  R(b <3 a), for every a ,6 G .4P(G). Then the 2-cocycle 

identity for T', that is,

a(x)T'(b 3  c) — T'{ab 3  c) + T'{a 3  be) — T'{a 3  b)ip(c) =  0,

can be written as

( T ( b 3 c ) S x,a) -  (* T'(c),ab) + (<t>T>(bc),a) -  (^ (c )* r(b ) ,a )  =  0,

or

(T '(b3c)Sx,a) -  (b ■ $Tr(c),a) + ($T'{bc),a) -  (t(c)$T'(b),a)  = 0 .

As a G -4P(G) is arbitrary, it follows that

T'(b 3  c)Sx — b ■ $ t '(c) +  $T'(bc) — t/>(c)$T'(&) =  0.

Suppose 'I'x is the Ap(G)-bimodule homomorphism in Lemma 3.2.1. If we 

define S  G B(AP(G),CX̂ )  to be o $ T,, then by applying 'Px from the left 

to the last equality we obtain

T ( b  3 c ) ~  b(x)S(c) +  S{bc) -  0(c)5(6) =  0,

15
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or

T(6, c ) = b  • 5(c) -  5(6c) +  5(6) • c.

This means that T  =  <5*5 € M 2{AP{G), C x^ ), and hence H2(.4P(G), C*,^,) =

{0}. Q .E .D .

3.2.5 R em ark . The above proof shows that all finite-dimensional AP(G)-
n

bimodules are isomorphic to direct sums of the form 0  C * .w h e r e  n € N,
i= l

and fa, fa e  er(Ap(G)) U {0}.

3.2.6 P ro p o sitio n . All singular finite-dimensional extensions of AP(G) split 

algebraically if the algebra has an approximate identity.

Proof. By Proposition 3.2.3, it suffices to show H2(AP{G). E) = {0} for 

each finite-dimensional Banach .4p(G)-bimodule E. Our proof of Lemma 3.2.4 

shows that if d im E  = n, then H 2(AP(G), E) =  0  H 2{AP(G), C ^ . , ) ,  where
t=i

<t>i,Vi € cr(Ap(G))U{0}. By the same lemma and the fact that ^V^(.4P(G), C*,,^) 

is asubset of N 2(AP(G), C^„^,), it follows that H 2(AP(G), C 0l,^,) =  {0}, when­

ever 4>i or ipi is nonzero. But by Proposition 3.2.2, H2(AP{G), Co.o) = {0} as 

well. Thus H 2(AP{G), E) = {0}. Q .E .D .

3.2.7 T heorem . If G is amenable, all finite-dimensional extensions of AP(G) 

split strongly.

P roof. By [12, Theorem 1.8, p. 13] it suffices to show that all finite-dimensional 

singular extensions of AP(G) split strongly. Suppose E  is a finite-dimensional 

Banach .4p(G)-bimodule. By Remark 3.2.5, H 2(AP(G), E) = 0  H 2{AP(G), C*,,^.).
i=i

Now the result follows from Proposition 3.2.3, Proposition 3.2.2 (and the 

amenability G), and Lemma 3.2.4. Q .E .D .

3.2.8 R em ark . An alternative proof for Theorem 3.2.7 is as follows. By 

[12, Theorem 4.18, p. 72], if A is a  Banach algebra such that every closed 

ideal of finite codimension in A  has a bounded left approximate identity, then
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every finite-dimensional extension of A splits strongly. The fact that when G 

is amenable, AP(G) is such a Banach algebra is a result of B. Forrest in [31, 

Theorem 4.2, p. 239].

The following result for the case of p = 2, is due to A. Lau [48, Corol­

lary 4.4]. For a detailed study of the Ditkin sets of .4P(G) algebras see [21].

3.2.9 Proposition. A locally compact group G is amenable if and only if 

.4p(G’) is a strong Ditkin algebra.

Proof. Suppose G is amenable. Then, it is well known that AP(G) has a 

bounded approximate identity consisting of functions with compact support 

[39, Theorem 6, p. 120]. Furthermore, by a result of B. Forrest [31, Proposi­

tion 3.4, p. 236] for each x  G G. Mx also has a bounded approximate identity 

consisting of functions with compact support. Now, since Jx = \ I X, we can 

easily obtain a bounded approximate identity for Mx from elements in Jx, 

which means that AP{G) is a strong Ditkin algebra.

The converse follows immediately from the fact that .4P(G) has a bounded 

approximate identity if and only if G is amenable. However we can prove the 

converse using a weaker assumption. Suppose Me has a bounded approximate 

identity, then by Cohen’s factorization theorem, A/i2* =  A/e. Now let v € 

AP(G) be arbitrary, and take u € AP(G) such that u(e) =  1. Then v — vu  6 

A/e, and therefore for some i*i,vi in Me, v — vu — uxVy. Thus v € -4P(G)2. 

This means that AP(G) factorizes weakly, and hence G is amenable by [59, 

Proposition 2, p. 138] and [39, p. 121]. Q .E .D .

3.2.10 Proposition. Let G be amenable.

1. If G is infinite, then there exists a singular admissible extension of A P(G) 

which does not split algebraically.

2. Each extension of AP{G) which splits algebraically also splits strongly;

17

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



and H 2{AP(G), E) = H 2{AP(G), E), for each Banach .4p(G)-bimodule 

E.

Proof. This follows from Proposition 3.2.9 and [12, Theorem 3.11, p. 43, 

Theorem 3.10, p. 42, and Theorem 3.19. p. 48]. Q .E .D .

3.3 Almost Connected Groups

In this section we will prove that when G is an almost connected locally com­

pact group, or a linear group on a finite-dimensional vector space, then the 

converse of Theorem 3.2.7 is also true.

For an element x of the free group with r generators F r. |x| denotes the 

length of the word x  (that is, the length of its reduced form, obtained by 

making the necessary cancellations). We let Wn = {x € F r : |x| =  n}, and 

we denote the characteristic function of Wn by \ n. In F r there is only one 

element of length zero (that is, the empty word (1. 1. . . . ) ) ,  and 2r (2r — l )n_1 

elements of length n (n € N). We always assume that the free group F r is 

equipped with the discrete topology.

We begin with some lemmas on the estimation of the norms of certain con­

volution operators on LP(G), for finitely generated free groups G. Our results 

generalizes earlier results of M. Leinert [53, pp. 150, and 154], M. Bozejko [14, 

p. 408], and U. Haagerup [33, Lemmas 1.3 and 1.4]. Our proofs have been

inspired by the techniques of the latter.

3.3.1 Lem m a. Let k , L and m be nonnegative integers, and /  and g be two 

functions on F r, with supports in Wk and W[ respectively. Then

1- ( /  * 9)Xm 7̂  0 implies that k +  I — m  is even, and \k — l\ < m < k + I.

2. If 1 < p < 2, then | |( /  * g)Xm||P < | | / | |PM|p.

3. If 2 < p < oo, then ]](/ * g)Xm\\P < ||/IIP'I1^||P-
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P roo f. The first statement is proved in [33, p. 283, Lemma 1.3]. We will

prove the second statement. Let us first assume that m = k + I. In this case.

if |x| = m, then the sum / *g{x) =  f{xy)g(y~l), has only one nonzero term
y

because there is only one word y of length I such that \xy\ = k. Let us denote 

this word by yx. Then

Turning back to the general case, suppose that m = k + I — 2i, where 

0 < i < min(Ar./) (see statement (1) of the lemma). We define / '  and g' with 

supports in VVt_, and as follows

| i | = m  y

Therefore

ll(/*5)\m llp < ll/llpllsllp- (3-1)

M=*
if | i |  =  k -  i,

0 otherwise.

\ otherwise.

if |x| =  I — i

Then

ii/ t = E E i / w i ' .
| x |=f c- i  |ui |=i

= E
lvl=fc
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Similarly ||<7'| |p =  ||g||P- Now let x € F r , and assume |x| =  k + I — 2i. We 

can write /  * g(x ) =  /(0*7(s)> where the sum is taken over all t, s € F r such

that x = ts , |t| =  k, |s| = I. Let t' be the word consisting of the first k — i 

letters of x, and s' be the word consisting of the last I — i letters of x (in the 

case that either k — i or / — i is zero, we take the corresponding word to be the 

empty word (1 ,1 ,.. .))• Since in the sum above, x =  ts with |x| =  |t| + |s| —2i, 

there are i cancellations in the product ts. That is, t =  t 'w, s = w~ls', with 

t' and s' defined as above. Thus

l/* 3 (* ) l  =  | X  /(Ofl(s)|,
|t|=fc,|s|=/.j=ta

=  I 5 1  f ( t>w)9(w~Xs') l
|u>|=«

( \  U p /  \  1 I p'

£ l / ( ^ ) l p ] ( X > ( « r V ) r '

M=« J \ M = :

( \  l /P  /  \  1 /P

J2 i/(*'u;)ip) (51 i3(urls,),p
M=« /  \M=*

= f'(t')g'(s').

As there is only one pair (f', s') such that x =  t's', |x| =  If'l +  ls'l, |t'| =  k —i, 

and |s'| = l - i ,  we have f ' * g ’{x) = f'(t')g'{s'). Hence \ f*g \Xm < ( / '*5 ')\m - 

This implies that

l | ( / * 0 ) X m | | p < l l ( / W ) X m | | p ,

< Wf’WplWWp by inequality (3.1).

=  WfWpMp-

The proof of the third statement is similar to the one above, once we replace 

p with p' in the definition of f .  Q .E .D .
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3.3.2 L em m a. Let /  be a function defined on F r such that its support is 

in Wn for some n € N.

1. If 1 < p < 2, then ||/|U ;(Pr) < +  1)II/IIP-

2. If 2 < p < oo, then | | / |U;(Fr) < (n + 1) | | / | |^.

Proof. We prove the first inequality; the proof of the second inequality is 

similar. We know that | | / |U ;(F ,)  =  sup { | | / * g ||p : g  €  Zp( F r), ||g ||p <  1}. 

For a function g  € lp(F r ), let gk = g X k , for every k =  0 ,1 ,2 ....... Hence
OO 3 0

ll l̂lp =  51 ll̂ fcllp- Let also h = f  * g  = ^  f  * gk, where the convergence of the
fc=0 fc=0

series is pointwise. Then by Lemma 3.3.1,

IIMIp =
k=0

m + n

=  11 5 1  ( f * 9 k ) X m \ \ p ,
n |

m + n

< n / n ,  E
. Jfc=|m—n|

By Lemma 3.3.1, for the nonzero terms of the above sum, n + k — m is 

even which implies that m  + n — k is also even. Let us write k  =  m n — 2s. 

and define & =  0 if i < 0, then

/ min (n,m)

l l ^ m l lp  ^  I I / l i p  I y  ] | | <7m+n—2s | | p
\  J = 0

n ' IU - ' . P P^  WfWp I 5 Z  llffm+n-2..
\ s = 0

< ( n + l ) ^ ' | | / | | p ( £ | | gm+n. 2a
i/p

I?
3 = 0  /
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Therefore
30

n*ii; =  £  lifem  Up? 
m = 0

< ( n  + i)'," ,' i i / i i ; £  I £  iism+„-2.
3 = 0  \ m = 0  

n  /  oo

< (n+lJ^ 'l l /IIJ^  £ | | 9t
s = 0  \ f c = 0

< ( n + l ) 1+̂ ' | | / | |J  ( f ;  M l j ) ,
i f c = 0

=  ( n + l ) p l l / ^ I W -

Thus we have shown that for every g € Ip(Fr ), \\f*g\\% < (n +  l)p!l/ll£ll£ll£- 

This of course implies that

Uj(Fr) < (n +  1) 11/lip-

Q .E .D .

3.3.3 Lemma. Let u € .4p(Fr), and n € N.

1. If 1 < p < 2. then ||u|Up > ^ I k y j p / .

2. If 2 < p  < oo, then ||u|Up > ^ H u .x J p .

P ro o f. For 1 < p  <  2,

ll^Xnllp' =  sup {|(u, u)| : suppu C Wn, ||v||p < 1} ,

< sup {||w|Upl|w|U; •• suppv C W n, llt'llp < 1} ,

< sup {(n +  l)||u ||.4p||t’||p : supp v C U'n, ||i>||p < 1} by Lemma 3.3.2,

=  (n +  l)||u|Up.

The second inequality follows similarly. Q .E .D .

3.3.4 Lemma. If 1 < p < oo, and M  is the maximum of (2r(2r — I)"-1)1/? 

and (2r(2r — l)n-1)1/p\  then

# W n > MHXnlUp,
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(where # \Vn denotes the number of elements of VF„).

P ro o f. We have

= (2r(2r -  l )n-1) =  (2r(2r -  l )n- 1)1/p(2r(2r -  l ) " - 1)1/p'.

=  (2r(2r — l)"_1)l/p||\n ||P'- 

> (2r(2r — l)n_I)1/p||Xn||.4p:

the last inequality follows because ||\„ |U P = Hx* * <MUP < ll^llpllXnllp' = 

llXnllp'- Similarly we can show that #W„ > (2r(2r — l)n_I)1/p,||Xn||.4p- which 

completes the proof. Q .E .D .

Let A be a Banach algebra and tt' : A x  A — ► .4 be the continuous bilinear 

map defined by (u, v) •— ► uv. Suppose t t  : .4®.4 — ► .4 is the continuous linear 

map associated with t t ' .  We say that .4 has the t  -  property if the image of 

7r is equal to A2.

3.3.5 Theorem. For r > 2 and p G (1. oo). the map tr : .4p(Fr )®.4p(F r) — ► 

Ap(Fr) defined as above, is not surjective.

P ro o f. Assume n is surjective. Then as a consequence of the open mapping 

theorem, there exists a positive constant C  with the property that for every 

u 6 Ap(Fr), there exists x G .4p(Fr)®.4p(Fr ) such that n(x) — u. and ||r || < 

C |M U P- Therefore

> inf 1 5 3  II/.IU.IIJ.IU. : fi.Si  € 4 ,( F r), n -  5 3 / , 9 . |  .

For an arbitrary n  G N, since x„ G .4p(Fr ) and :r is assumed to be sur-
OO ^

jective, there exists an element x  =  JZ fi  ® 9i € .4p(Fr)®.4p(F r ) such that
i=i
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7r(x) =  E  fiQi — Xn- Now by Lemma 3.3.3 we observe that
1=1

>
E  l l ( / t f i ) X n | | l  
■=1_______________

E  E  l/«(s )9.(s)l
i=l a€W'n

(n +  l ) 2 ( # ^ r,)li " ? 1’

E  I E / . ( s )^»(s )l
s€ll’n 1=1

( n + l ) 2 ( # i r n)l5 - ? 1’
=  # w n

(M + i)2(# v rn)i? - ? 1'

Now let us assume for the moment that 1 < p < 2. Then by Lemma 3.3.4.

>

>
(n + 1)2(#IT„)I? ' P I (n + l)2(2r(2r -  l )" - i )p~7

(2r(2r -  i ),*-1)1/p'

IXnIU-

( n  +  l ) 2 ' I X n I U p -

Thus CllXfilUp > (-2r(-2r(~ ^ )2---1-  IIXnIIAp• This is impossible, since n 6 N is 

arbitrary and r > 2. The case of 2 < p < oo also leads to a contradiction by 

a similar argument. Therefore n is not surjective. Q .E .D .

3.3.6 Corollary. If r > 2 and p € (1. oc). then Ap (Fr) does not have the 

t t - property.

P ro o f. Since .4p(F r ) is regular and its elements with compact support are 

dense in .4p(F r ), we have .4p(F r )2 = .4p(F r ). Hence the corollary follows from 

Theorem 3.3.5. Q .E .D .

We notice that in the special case of r = 1, F r = Z is amenable, and hence 

H 2(.4p(Z), Co.o) =  {0}. Consequently, it follows from Lemma 3.3.7 (below) 

that AP(Z) has the TT-property, and in particular ir is surjective.
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3.3.7 Lem m a. If (A , || • ||) is a Banach algebra such that Ti.2(A, Co.o) =  {0}, 

then A has the 7r property.

P roof. VVe define the projective norm || • ||proj on A2 by

n  n

Hu||proj = i n f { ^ | | a t||||6t| | : a 1.6I € .4 . u =  ^ a , 6 , ,  n £ N}.
1=1 i=i

Our assumption implies that j\p{A, C0.o) = N 2(A, C0,o). and hence by [35,

Proposition 1.1.19, p. 64] the two norms || • || and || • ||proj are equivalent on

A 1. In other words, there exists a positive constant C such that for every 

u £ .4*, ||u|| < IMIproj < C||u||. Now it is not difficult to show that

•42 = | ^ a , 6 ,  : a,, b, € .4, and ^  M I M I  < o o | .

S o  i f  u =  5 3  axbi £  .42 ( w h e r e  5 3  lla i l l l l M  <  ° ° ) '  t h e n  w =  5 3  a « ®  ^  A®A,
■=i 1=1_ i=i

and tt(w ) = u. That is, tt is onto .42. Q .E .D .

3.3.8 C orollary . If r > 2 and p € (l.oc), then there exists a singular 

extension of .4p(Fr ) by Co.o which does not split strongly.

P roof. This follows from Proposition 3.2.3. Corollary 3.3.6, and Lemma 3.3.7. 

Q .E .D .

3.3.9 L em m a. Let H be a closed subgroup of a locally compact group

G , and let I{H) =  {u 6 .4P(G) : u\h = 0}. Then the quotient algebra

AP(G)/ I{H)  is isometrically isomorphic to AP(H).

Proof. By [39, Theorem la, p. 92], the restriction of functions AP(G) — ► 

A P{H), /  i— ► / | w, is a linear contraction; that is, ||/|#f|Up(ff) < ll/IUP(C)- 

Also, by [39, Theorem lb, p. 92], for every h £ AP{H) and e > 0, there exists a 

function g £ AP{G) such that ||g|Up(o  < II ÎI.-m//) and 9\h =  h. Therefore 

for every h £ AP(H), ||/»|Up(f/) =  inf{||glUP(o  : 9\h =  K g £ AP(G)}.
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The natural homomorphism 'I' : AP(G)/ 1(H) — ► AP(H), [/] ■— ► / \h is an 

isometric algebra isomorphism since

||[/]|| =  in f{ ||/  +  fc|Up(C): A: e 1(H)},

= inf {||^|UP(C) : 9  € Ap(G). g\H = /[//} .

=  ll/|tf||.4P(«)-

Q .E .D .

3.3.10 Lemma. Let G be a locally compact group which contains Fr, r > 

2, as a closed subgroup. Then H 2(AP(G). C 0.o) ^  {0}. for any p € (1. oc).

Proof. We argue by contradiction. If H 2(AP(G). C 0.o) = {0}, then by

Lemma 3.3.7, .4P(G) will have the 7r-property. And then the quotient al­

gebra Ap(G )/ / (F r) will also have the 7r-propert_v [67, Proposition 12, p. 10]. 

But this is impossible by Corollary 3.3.6 and Lemma 3.3.9. Q .E .D .

So as a consequence of Lemma 3.3.10. Rickert’s Theorem [65, Theorem 

5.5], and Tits' Theorem [68, pp. 250-251, Theorem 1 and Corollary 1]) (see 

also Section 2.1) we have

3.3.11 Theorem. Suppose p € (l.oo), and suppose G is an almost con­

nected group or a subgroup of GL(V)  for a finite-dimensional vector space V . 

Then G is amenable if all finite-dimensional singular extensions of AP(G) split 

strongly.
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Chapter 4

Order Isomorphisms of the  

Banach Algebras Ap(G) and

BP(G)

4.1 Introduction

Order isomorphisms of the Fourier algebra .4(G) and the Fourier-Stieltjes alge­

bra B(G) are studied by Arendt and De Canniere in [5] and [6]. In this chapter 

we study order isomorphisms of the Banach algebras AP(G) and their multi­

plier algebras BP(G). The main result of Section 4.2 is Theorem 4.2.8 where 

continuous order isomorphisms between AP(G) algebras are characterized as 

weighted composition maps.

The main result of Section 4.3 is Theorem 4.3.9, where it is shown that order 

isomorphisms for the pointwise order between BP(G) algebras are *-algebra 

isomorphisms followed by multiplication with invertible positive multipliers.

Disjointness preserving mappings between various spaces has been studied 

by many authors including Abramovich [1], Abramovich and Kitover[2], [3], 

Abramovich, Veksler, and Koldunov[4], Font and Hernandez [26], Jarosz [41],
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de Pagter [16], and most recently by L. G. Brown and N.-C. Wong [15].

In [27] and [28], J. J. Font studied the properties of disjointness preserving 

mappings between Fourier algebras. Most of this theory can be adopted for 

Ap(G) algebras without significant changes. However the proof of the main 

result in [28] uses a Bochner-Schoenberg-Eberline-type characterization of the 

elements in B{G) [22. p. 202. Corollary 2.24]. Such a characterization is not 

available for BP(G) (when G is not commutative). In Section 4.4 we give an 

alternative proof that does not use such characterization.

The main result of Section 4.4 is Theorem 4.4.4, where it is shown that for 

amenable groups G i and Go. .4p(Gt) is Banach algebra isomorphic to AP(G2 ) 

if and only if there exists a disjointness preserving bijection between these 

algebras. As an application, we show that for amenable groups, am order 

isomorphism for the pointwise order between AP(G) algebras that preserve 

cozero sets is necessarily continuous, and consequently the two algebras are 

isomorphic.

4.2 Order Isomorphisms of the Banach Alge­

bras A P ( G )

4.2.1 D efin ition . Let AP{G)+ be the set of all /  € AP{G) such that f ( x )  > 

0 for all x  € G. and let P{G) be the set of all continuous positive-definite 

functions on G. The pointwise order > and the positive-definite order S> on 

.4P(G) are defined as follows

1- /  > 3 i f / - 0 €  A P{G)+.

2- /  »  g if /  -  9  6 P(G).

One may easily verify that both of these relations are partial orders on .4P(G) 

(notice that P(G ) n  (— P(G )) =  {0}). Corresponding to the partial orders >
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and 2> on AP(G), we may define two order relations on AP(GY  which we still 

denote by > and 2>. These relations are defined as

1. T, > To if (Ti -  T2, f )  > 0 for all /  G AP{G)+.

2. T, »  r 2 if (Ti -  T2, / )  > 0 for all /  G AP(G) D P(G).

4.2.2 L em m a. The two relations > and »  on .4P(G)* are partial orders.

P roof. For the case of >, reflexivity and transitivity are immediate conse­

quences of the definition. To verify the anti-symmetry of > suppose T\ > T2 

and T2 > T\, then

( T l , / )  =  ( T 2 , / )  (for all /  G  i 4 „ ( G ) + ) .

Now let /  G AP{G) be a real valued function with compact support K,  and 

let ip G AP(G) be such that ip > 0 and iP\k  = 1. Then

-WfWooiP < f <  I I / I U 0 ,

and therefore

( T i .  1 1 / 1 1 . ^ - / )  =  ( T a f | | / | | o o 0 - / ) ,

and

< T l , | | / | | o o 0  +  / ) « ( T a t | | / | | o o 0  +  / ) .

Subtracting the last two equations we obtain

(Tl, f )  = (T2, f ) ,

for every real valued function /  G AP(G) nCoo(G). Since T\ and T2 are linear 

and continuous, and since flCoo(G) is dense in AP(G) we conclude that

Tx = T2.

Reflexivity and transitivity of »  follow from the definition. To check the 

anti-symmetry suppose T\ 3> T2 and T2 T\, then

(Tu f )  =  ( T 2 , / )  (for aU /  G  . 4 P ( G )  n  P(G)).
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Now let / ,  g G Coo(G). Then f  * g 6 AP(G) and by the polar identity

4 /  * g = ( /  +  g) * ( /  +  g j -  ( f  -  g) * ( /  -  sF+

+ *'(/ + ijj) * ( /  +  ( /  -  ig) * i ( f  -  ig l

That is. /  * g is a linear combination of positive definite functions in AP(G). 

Thus T\ =  To on the subspace of AP(G) generated by { /  * g : f , g  € Coo(G)}: 

since this subspace is dense in AP(G) we have T\ = T2. Q .E .D .

4.2.3 P roposition . Let s € G and let Sa € .4P(G)* be the evaluation func­

tional at s. Then

1. 6, >  0 .

2. .s = e is the only element of G for which 5S 2> 0.

Proof. The first assertion is an immediate consequence of the definitions. 

To prove the second assertion we notice that for /  € A P(G) PI P(G)

(5eJ )  = f(e)  = H/Hoo > 0.

So certainly Se »  0. Now suppose s ^  e. we show that S3 0. We consider 

two cases:

Case I .s'2 ^  e. Let A!- be a compact neighborhood of e such that s K  fl 

s~xK  = 0. Let us choose 0, C € Coo(G) in such a way that 0  > 0, C > 0« 0 7̂  

0, CL-'k = L CU/v =  0, and supp(0) C K. We define

0 = (0 +  iC) * (0  +  ic r  =  0 * 0 + C * C +  *(C * ^  ^  * 0 -

Then 0 € .4P(G) fl P(G). But from our choices of 0  and C it follows that 0(s) 

is not even a real number, in fact

C * 0(s) — 0  * C(s) =  J  C(f)0(t~ls) dt — j  0(t)£(f- l s) dt,

=  ~ J  0 (s tX ( t )d t ,

=  -  J  0 ( f )  d t ,

7^0.
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Case II s2 = e. Let K  be a compact neighborhood of e such that K  n

s K  =  0. We find 0  and C € Coo(G) such that 0  > 0, C, < 0, 0 |v  =

1) CUv =  —1 for some neighborhood V  of e contained in K,  supp(0 ) C  K, 

and supp(C) C  s K  (in fact, once 0 is found with the above properties, it 

suffices to take Q =  —, - 10). We define 0  = 0  +  £. Then 0  is real valued,

supp(0) C  K  U sK,  0 |k > 0, <t>\,K < 0, 0 |v =  1, and 0 |,v  =  —1- Therefore

< 0 .

So 5a y£> 0. Q .E.D .

4.2.4 Definition. Let G\ and G2 be locally compact groups. A linear map 

$  : AP(G\) — ► -4P(G2) is called positive for the pointwise order (respectively, 

positive for the positive-definite order) if 4>.4p(Gi)+ C .4P(G2)+ (respectively, 

if $(Ap(Gi) n  P(G i)) C AP(G2) fl P(G 2)), in which case we write 4> > 0 

(respectively, $  3> 0). The linear map $  is called an order isomorphism for the 

pointwise order (respectively, an order isomorphism for the positive-definite 

order) if $  is bijective and $A p(G i)+ =  AP(G2)+ (respectively, 4>(Ap(Gi) Pi 

P(G  1)) =  Ap(G2) fl P (G 2)). We say that 4> is a biorder isomorphism if $  is 

order isomorphism for both of pointwise and positive-definite orders.

We can of course make similar definitions for linear maps between duals of 

Ap(G) spaces, the details of which are left for the reader.

4.2.5 Proposition. A linear map $  : .4p(Gi) — ► AP(G2) is > 0 (respec­

tively, 2> 0) if and only if : AP(G2)* — > Ap(G i)’ is >  0 (respectively, 

» 0).

Proof. If 0 > 0, then it is easy to verify that 0* >  0. Conversely suppose
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4>* > 0 and /  G .4p(Gi)+, then for every i G G 2

$ /(x )  = {6x, * f )  = <*\5x,/>  > 0 ,

since 5X > 0 by Proposition 4.2.3. Hence $  > 0.

Similarly for the case of 3>, it is easy to show that 4>* 2> 0 whenever <I> 2> 0. 

To prove the converse, suppose <£* »  0 and /  € .4p(Gi) H P(G i), we want to 

show that 4>/ G AP(G2 ) (~l P (G 2). It suffices to show that

J(4>* * 4>)&f > 0 (for all 0 G Li(G2)).

Let {Ap, Lp(G2)} be the left regular representation of Li(G2) on LP(G2), then 

Ap(0* * <p) G .4P(G2)*, and

(Ap(^* * 0), g) =  J((fi '*4>)g> 0 (for all g G .4P(G2) n  P (G 2)).

So Ap(0* * 0) »  0. Consequently for all /  G ,4p(Gi) fl P{G\)

= (<t>m\ p(<t>'*4>) , f ) >0.

Q .E .D .

4.2.6 C orollary. $  : i4p(Gi) — » .4P(G2) is an order isomorphism for the 

pointwise order (respectively, for the positive-definite order) if and only if $* 

is so.

4.2.7 Lem m a. Let T  G .4P(G)’ and T  > 0. Then s G supp (T ) if and only 

if for every neighborhood U of s, there exists some /  G ,4P(G)+ such that 

supp ( /)  C U, and (T, f )  ^  0.

P roof. To prove the necessity of the condition let s G supp (T ), and let U be 

a neighborhood of s. Let V be a relatively compact neighborhood of s such that 

V c  U. From the definition of supp (T) we know that there exists g G AP(G) 

such that supp (g) C V, and (T, g) ^  0. Since the real and imaginary parts of
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g belong to AP(G), we may assume that g is real valued. VVe also notice that 

since V is compact, supp (g) is a compact set. Let /  € AP{G)+ be such that 

y |supp (g) =  1 and supp ( /)  C  U. Since

“ M U /  <  9  <  i W l o c / .

we have

- \ \ 9 \ \ o o ( T J ) < ( T .g ) < \ \ g \U ( T J ) .

Therefore (T, / )  ^  0. Q .E .D .

4.2.8 T heorem . Let 4> : <4p(Gi) — ► .4P(G2) be a continuous order iso­

morphism for the pointwise order. Then there exists a homeomorphism a  : 

Go — ► G\ and a continuous function c : Go — ► (0, oo) such that

* / ( 0  = c(t)f(a(t)) (t € Go).

Proof. To define a  the idea is to show that for every t 6 G2, the support

of is a single point of G\ that we denote by a(£). Since is injective 

and 5t #  0, we have $*(5f ^  0, and hence supp 4>*(5t ^  0. Let us assume that 

there are at least two different points $lf s2 in supp (&'St), and let U and V  be 

two disjoint neighborhoods of S\ and s2 respectively. By Proposition 4.2.3 and 

Lemma 4.2.7. there exist / ,  g € .4p(Gi)+ such that supp ( / )  C  U, supp (g) C  V'. 

and

$ /(* ) =  / )  > 0, *g(t) = ( V S t, g) > 0.

Pick £m open neighborhood W  of t, and a constant c0 > 0, such that for all 

x 6 W, > co, and $g(x) > c0. Let K  C W  be a compact neighborhood

of t. We can find u 6 .4P(G2) such that 0 < u < 1, u =  1 on K,  and u  =  0

outside W  (to find u let V  be a compact symmetric neighborhood of e such 

that K V 2 C IV, and let \ kv  and \ v  be the characteristic functions of K V  and 

V  respectively, then ^ x k v *Xv is the required fimction). Let h = cqu. Hence 

h ^  0, h 6 >1p(G2)+, 0 < h < $ f ,  and 0 <  h < $g.  Since by assumption
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$  1 > 0, we obtain 0 < 4> lh < / ,  and 0 < 4> lh < g. But 4> xh ^  0, so for 

some s £ G\,

0 < $ ~ lh(s) < /(s ) , and 0 < <l>_1/i(s) < g(s).

In other words s € U n  V, which is impossible. Thus supp (<!>*<5f) is a single 

point in G\ which we denote by a(t). Thus for some constant c(t) > 0,

= c(t)Sa(t),

(the fact that c(t) > 0 is a consequence of ^  0, > 0). Notice that if

/  € ^lp(Gi), then for every t € G2,

* /(«) =  <*!,*/> =  <*•<*£,/),

=  (c(t)5a{t) , f ),

=  c(t)f{a(t)).

To show that q  is bijective, we apply the argument above to <I>-1 to obtain 

functions d : G\ — ► (0 ,00), and ft : G 1 — ► G2 such that for every s € Gi

S* = d(s)53{3).

Hence

S3 =  d (s)$*(^(3)) =  d(s)c(0(s))6affla)) (for all s 6 Gi).

and

St =  ($*)-1(c(£)dQ(f)) =  c{t)d{a{t))60{a{t)) (for all t € G2). 

Therefore

0(a(t)) = t, a(/3(s)) =  s, and d(s) =  ■ 1
c ( q  ‘ ( s ) )

It remains to show that a , a -1, and c are continuous functions. Suppose 

a  is not continuous at some £0 € G2. Let {tj)je j  be a net in G2 such that
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tj — ► tQ, but a(tj) does not converge to a(to)- So there exists a neighborhood 

W  of a(t0) such that for any given j \  G J , there exists some j 2 > j\  for which 

a{tj2) W . Let /  G A P(G\) be such that /  =  1 on some neighborhood U of 

a(to), U C W , and /  =  0 outside W.  From continuity of $ /  we have

— ► */(*o) = c{t0)f (a{ t0)) = c(t0) > 0.

So we may choose j  1 € J  such that > 0, for all j  > j\ .  This is of course

impossible in view of the properties of W  and / .  A similar argument shows 

that q -1 is also continuous.

Finally to show the continuity of c : G2 — ‘ (0, 00). let tn € G-i and let W

be a compact neighborhood of a(t0). Choose /  € Ap(Gi) such that f \w  = 1-

Then for every t € a -1(W),

* / ( 0  = c(t)f{a{t))  =  c{t).

Since 4>/ is continuous at t0, so is c. Q .E .D .

4.2.9 R em ark . In the above theorem for any /  6 .4p(Gt), /  o a € BP{G2 )- 

To see this let g G .4P(G2) and let $ h  =  g for some h € .4p(Gi). Then

g ■ f  o q =  $(/i) • f  o a = c • (h o a) • ( f  o a),

=  c- (h- f )  o a ,

=  4>(h • / )  G .4p(C2).

4.3 Order Isomorphisms of the Banach Alge­

bras BP(G)
4.3.1 D efinition . Let BP(G)+ be the set of all /  G BP(G) such that /(x )  > 

0 for all x G G, and let P(G) be the set of all continuous positive-definite 

functions on G. The pointwise order > and the positive-definite order 3> on 

BP(G) are defined as follows
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1- f  > 9 'rf f  -  9 € BP{G)+.

2. /  » p i f / - ^ €  P{G).

Now let Gi and Gi be locally compact groups. A linear map 'I' : BP(G\) — ► 

Bp(Go) is called positive for the pointwise order (respectively, positive for the 

positive-definite order) if 'f/Bp(Gi)+ C BP(G2)+ (respectively, if ^ ( B P(Gi) D 

P{G\)) C Bp(Gi) fl P(Go)), in which case we write > 0 (respectively.

2> 0). The linear map 'I' is called an order isomorphism for the pointwise 

order (respectively, an order isomorphism for the positive-definite order) if 'I' 

is bijective, and '&BP(G\)+ = BP(G2)+ (respectively, ^(BpiG\)  fl P(G i)) = 

Bp(Gi) n  P{Gi)). We say that ^  is a biorder isomorphism if is order 

isomorphism for both of pointwise and positive-definite orders.

4.3.2 R em ark . It is easy to see that an element u G BP(G) can be written as 

a linear combinations of elements in BP(G)+, in fact since u € BP(G). without 

loss of generality we may assume that u is real valued. From — N l » i  < U < 

llullool, it follows that u-f IM I^l and IM I^l -  u belong to BP(G) + . and hence 

u = (u +  IMIool — (||u||oo 1 -  u )) /2 has the desired form.

4.3.3 L em m a. If ^  : BP[ G \ ) — * BP(G2) is positive for the pointwise order, 

then ^  is continuous.

P roof. We use the closed graph theorem. Let {fn)n&n be a sequence in 

Bp(Gi) such that ||/„ ||bp — ► 0, and ||^ /„  -  9 ||B|( — ► 0 for some g G BP{G2). 

Since || • ||Bp > || • IU, we obtain ||/B||oo — " 0, and | |^ / n -  glU — ► 0. 

Furthermore, since

H I /n ||o c l< R e ( /„ ) < ||/„ |U l ,

- | | / n | |o c l< I m ( /n) < | | / n|U l,

we have

-HAIIco^l < ^ (R e ( /ri)) < ||/„[|oo^I,

— Il/nlloc^l < ^,(Im (/Ti)) <  H/nlloo^l.
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which implies that ||^/„||oo < 2 ||/’ri||oo| |^ l | |0o. So when n — ► oo, ||^/„||oo — " 

0, that is, g = 0. Q .E .D .

Since BP(G) is unital, if h is a function on G such that hBp{G) C BP{G), 

then h € Bp(G).

4.3.4 D efinition. For h € BP(G), let A//, : BP(G) — ► BP{G) be defined by 

Mh{f) = h f .  We call {A//, : h € BP{G)}, the set of multipliers of BP(G).

4.3.5 P ro p o sitio n . Let Af : BP(G) — ► BP(G) be positive for the pointwise 

order. Then AI is a multiplier of BP(G) if and only if there exists c > 0 such 

that M f  < cf,  for all /  € BP(G)+.

P roof. First let us assume that Af = Mh is a multiplier. Then h = Afh(l) € 

BP(G)+, and hence

Mhf = h f <  WhW^f (for every /  € BP{G)+).

The idea for the proof of the converse is to show that M  =  Aft, for h = All.

This can be achieved by the following trick. We show that if u 6 BP(G) and 

u(t) = 0 for some t € G, then AIv(t) = 0. If v € BP(G)+, then 0 < Alv(t) < 

cv(t) implies that Afv(t) = 0. Now if v is arbitrary and v(t) =  0, we define a 

semi-inner product on BP(G) by

(h\k) = AI(hk)(t).

Applying the Cauchy-Schwarz inequality we get

| V u ( 0 | 2 =  | ( u | l ) | 2 <  ( u | u )  - ( 1 11 ).

= A/|tf(t)'(l|l).

Since |t’|2(£) =  0, the first part of our argument implies that Af\v\2(t) =  0, and 

hence Afv(t) =  0.

Now set h =  A/1, and let t € G be arbitrary. Then for every /  €

BP(G), ( f  — f ( t ) l ) ( t )  = 0, and hence 

(AI f  -  f ( t)AIl)( t)  = 0,
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or

M f(t)  = h(t)f(t),  

as we wanted to show. Q .E.D .

4.3.6 Lem m a. If \  : G — ► T  is a continuous homomorphism, then \  G 

Bp{G), ||x ||bp =  L and Mx : AP(G) — ► -4P(G), u <— > \u ,  is an isometric 

isomorphism.

Proof. Let /  G LP(G), g G Lp>(G), then for every t G G

x(t)g * f{t) = x(t) J  g(y) f (y~1t)dy.

= J  x(y)9(ymr'»Tnt-'y)dy,

=  (X9) * (xfT(t).

Since \ f  G LP(G) and \ g  G Lp/(G), x(9 * f )  € -4P(G) . Now suppose u =
OO

* fi *s an arbitrary element of .4P(G). Then for every t G G
i = t

X ( t ) u ( t )  =  \ { t )  lim y ^ g i *  f t ( t ) .
n —oc * 1 ^I

n

= lim * (X/.HO,
n —*oe 1

oo

= ^ ( x s « )  * U /.H O -
i

Since for every i, | |/ , ||p =  ||x/i||p and ||pi||p' = Hx&llps the last series is abso­

lutely (and hence uniformly) convergent and therefore \ u  G .4P(G). VVe have 

shown that \  ^  Bp{G), and (by the definition of || • ||.4p) | | x u | U p <  ||w|Up; but 

then

IMUp =  l lx (x « ) IU P <  l lx^lUp <  I M U P-

So ||u|Up =  ||x«IUp for every u G -4P(G): that is.

Mx : AP(G) — »-4P(G). u »— ► \u ,

is an isometric isomorphism. Q .E .D .
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4.3.7  Proposition. For h G BP(G), A/& is an order isomorphism for the 

positive-definite order if and only if h = c\ ,  where \  is a continuous character 

and c > 0. Furthermore Mcx is an isometry if and only if c =  1.

Proof. First let us assume that h = c \ ■ Then Mcx is certainly injective and 

since \  G BP(G) (Lemma 4.3.6), and c \ ( ^ x f )  — f  f°r every /  G Bp(G), Mcx is 

also surjective. In addition, Bp(G)r\P(G)  is invariant under the action of Mcx 

and A/i7, therefore Mcx is an order isomorphism for positive-definite order.c *
Conversely, suppose Afh is an order isomorphism for the positive definite 

order. Since A7), »  0 and A/^1 = M\/h 3> 0, h, and l /h  are positive definite 

functions. Thus

\h{t)\ < h(e), \l/h(t)\ < l/h(e)  (for all t G G).

So |/j(0l = h(e) for all t  G G. But on P(G), || ■ |U  = || • ||fi(G) [22, (1.19) 

and (2.5)], hence ||h||B(c) =  \ h ( t ) \  i 1 0 f°r a^ t  e  G. Now by [6, Lemma 4.3], 

h =  c \, where c =  h(e) and x is a continuous character on G.

To prove the last part of the theorem, notice that by Lemma 4.3.6. Mx 

is an isometry. On the other hand if A/cx, (c > 0). is an isometry then 1 =

IIx IIb ,  =  Ilex • x l l f l ,  =  c. Q . E . D .
For our next result recall that BP(G) with pointwise operations and com­

plex conjugation is an involutive Banach algebra.

4.3.8  Lem m a. Every *-algebra isomorphism ^  : BP(Gi) — - BP(G2 ) is an 

order isomorphism for the pointwise order.

Proof. Suppose =  ^UptCi) : Ap(G\) — ► BP(G2 )- First we show that 

*o is order preserving. Let /  G .4p(Gi)+ and t G G 2 , then

*o/(«2) =  (^ ,* o />  =  <W«a./>-

If ^3^2 =  0 we have nothing to show. Otherwise 'FqA(2 is a nonzero multiplica­

tive linear functional on AP(G\) and hence =  for some a( t2) € G\.
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Thus vPo/(Z2) =  /(a (* 2)) > 0. Similarly one can show that 'P xg > 0 for all 

g G AP(G2)+.

We now prove that 'P preserves the pointwise order on BP(G\). Suppose 

/  G BP(G 1)+ but for some t2 G G2, 'PZ(^) < 0. Since .4P(G2) is regular we 

may find a function g G AP(G2)+ such that g(t2) ±  0, and g is zero outside 

{t G G2 : vpf ( t ) < 0} (if the complement of this set is empty, we drop the 

last condition). Then gtyf  ^  0, g ^ f  < 0, and g 'P / G .4P(G2). Therefore by 

the first part of our proof ('P“ 1<7) • /  =  'P- l (<? • '&/) < 0 and 'P-1# > 0. Since 

• /  ^  0 and /  > 0 we have a contradiction. Similarly we can prove 

that 'P~l preserves the pointwise order and thus »P is an order isomorphism. 

Q .E .D .

4.3.9 T heorem . In order that a linear map 'P : BP{G\) — * BP{G2) be an 

order isomorphism for the pointwise order it is necessary and sufficient that 

for some *-algebra isomorphism V : BP{G\) — > BP(G2).

vpf  = h - V f  (for all /  G BP(G\)).

where h G BP(G2)+ is such that l / h  G BP{G2)+.

Proof. First we show the sufficiency of our hypotheses. Since V  is linear and 

injective and h(t) > 0 for all t G G2, 'P is also an injective linear map. Given 

g G Bp(G2) let k G BP{G\) be such that Vk  =  g/h. Then 'Pk =  h ■ Vk = g 

and hence <P is surjective. By Lemma 4.3.8, V is an order isomorphism for the 

pointwise order which implies that *P is an order isomorphism for the pointwise 

order as well.

Next we show the necessity of our hypotheses. The idea for obtaining V 

is as follows: for any given /  G BP{G\) we show that 'PA//'P-1 : BP(G2) — > 

BP(G2) is a  multiplier and hence is given by some function in BP(G2) which 

we denote by V f .  First we notice that if /  G BP(G 1)+. then 'PA//'P-1 > 0. 

And since for every g G BP(G2)+, f  ■}if~lg < ||/||ac'P-1<7 we have 'PAZ/'P-1# =
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^ ( /  • ^ - 19) < ll/llooff- So by Proposition 4.3.5, 'PA//'P-1 is a multiplier given 

by a function in BP(G2 )+- But BP(G\)+ spans BP{G\) (Remark 4.3.2), so the 

above argument shows that for every /  G BP(G i ) ,  'PA//'P-1 is a multiplier 

given by some (necessarily unique) function in BpiG?) which we call V / ,  that 

is, 'PA// 'P_1 = MVf.

Next we claim that V : BP{G\) — * BP(G2 ), f  '— * V f • is a *- algebra 

isomorphism. The following identities (r € C, / ,  g G BP{G\))

M v u + r g )  =  ' P A / / + r 3 VP " ‘ =  ' P - ' U / ' P " 1 +  r ' P A / g ' P " 1,

=  M \ f  +  r \ I v g,

— A/v'Z + rVg»

show that V is a linear map. Injectivity of V  follows from bijectivity of »P. 

We show that V  is onto. For given g G BpiGo), using a similar argument as in 

above we may show that 'P^A/g'P : BP{G\) — ► BP(G\) is a multiplier, and 

hence 'P- 1A/g'P = Mf for some /  G BP(G\). Thus

M V f  =  ' P A / / ' P - 1  =  » P ( ' p - 1 A / g ' P ) ' p - 1 =  A / g ,

that is, V f  = g. To show that V  is a homomorphism we observe that

MV(fg) =  'PAZ/g'p- 1 = 'PAZ/AZgVp-1,

= ('PA// 'p - 1)(^ M g 'P '1),

= UvfM vg,

=  M v f V g -

So V( f g)  =  Vf Vg .  We also notice that since 'P sends real valued functions 

to real valued functions, so does V . Hence if /  =  f \  + i/2 where / i , /*  are 

real valued functions in BP(G 1), then from linearity of V  we conclude that 

V( f )  = V{ f x -  i / a) =  V f ! -  1V /2 =  Vf .

The final stage of the proof is to show that if h =  'PI, then for every 

/  G B p (G i),^ / =  h - V f .  Since *P is order preserving, h > 0. And since
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M vf  =  'PM / 'I' 1 we get M vj^l  1 = 'h M/ l ,  or 'I '/  = h • V f . Furthermore 

since is onto, for some g € BP(G\), h ■ Vg =  tyg =  1. In other words 

l /h  =  Vg 6 Bp(G2). Q .E.D.

4.3.10 Corollary. Let : BP(Gi) — ► BP(G2) be a biorder isomorphism. 

Then there exists a constant c > 0 and a *-algebra isomorphism V  : BP(G \ ) — ► 

BP{G2) which is also a biorder isomorphism, such that $  = cV\

P roof. From Theorem 4.3.9 we know that 'P =  MhV, where h — 'PI and 

l /h  both belong to BP(G2)+. Since *P »  0, h € P(G2). If we can show 

that l /h  € P(G2), then h(t) = h(e) for all t € G2 which is what we need to 

complete the proof. From the proof of Theorem 4.3.9. we saw that for every 

/  6 BP{G\ ), M vf = 'PA//*P_ l- So if /  6 P(G i), then M y/  »  0 . In particular 

V f  =  A/v/l € P(G2), that is V 0 . Thus \ f\/h  = T 'P -1 2> 0 . which implies 

that l /h  € PiGf). Q.E.D.

4.4 Disjointness Preserving Mappings Between 

the Banach Algebras MG)
4.4.1 Definition. Let G i and G2 be two locally compact groups. A linear 

operator T  : Ap(Gi) — ► .4P(G2) is called disjointness preserving if whenever 

f \  and f 2 in Ap(Gi) are such that f \  ■ }2 — 0 . then T f i  ■ T f 2 = 0.

Clearly every homomorphism between -4P(G) algebras is a disjointness pre­

serving mapping, but the converse is not true. As an example, if 0 is a mul­

tiplier of AP(G) then multiplication by <p is disjointness preserving on AP(G), 

but is not a homomorphism.

First we state the following characterization of continuous disjointness pre­

serving bijections that we need in the sequel, due to Font [27], A rather com­

plicated proof of this theorem can be found scattered through section three of
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[27]. Our proof is quite simple.

4.4.2 T h eo rem . Let T  : .4p(Gi) — ► AP(G2) be a continuous, bijective, 

disjointness preserving mapping. Then

1. There are continuous maps

h G2 — * G \ , 

k : G2 —  C \{ 0 } ,

such that

Tf ( y )  = K(y)f{h(y))  for all /  € Ap(Gi), y 6  G2

2. h(G2) is dense in G\.

3. T ~ l is disjointness preserving and for some continuous map \ G\ — ► 

C \  {0}, we have

T ~ lg(x) = w(x)g(h~l(x)) (for all g G Ap{G2) ,x  6  Gi).

In particular, h is a homeomorphism and

I p K  o  h ~ l =  l C l ,

K ll) o h = 1

Proof.

1. For y € G2, let 5y € .4P(G2)* be the evaluation functional at y, then the 

map

5 y T  : i 4p ( G i )  — ► C 

/  —  T f ( y )

is in .4p(Gi)*. Since T  is onto and A P( G 2) is regular, it follows tha t 5y T  

is nonzero, and hence supp<5yT  ^  0. We show that this support is a
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single point. If x i ,x 2 E supp<5y7\ x\ /  x2, then we can find disjoint 

neighborhoods Vj, V2 of xj and x2 respectively, and functions / i , / 2 € 

Ap(Gt) such that supp f i  C  Vi, supp / 2 C V2, and T f x(y) ^  0, T f 2(y) ±

0. But f i  ■ f i  = 0  and so by assumption T f  \ T / 2 =  0, which is a 

contradiction. Hence supp(5y T  = {x} for some x E Gi. S o  we can define 

a map h : G2 — ► Gj. y '— * x. where x is associated to y as above. It 

follows that for some k(ij) € C \  {0}, 5y T  =  n{y) 5/,(y), and in particular

Tf ( y )  = K(y)f (h(y))  (for all /  € ^ ( G j ) ,  and all y € G2).

That is.

T f  = n f o h .

Suppose h. is not continuous at some y0 € G2. Then for some net (ya)a€i 

in G2, ya — • i/o- and yet h{ya) does not tend to h(y0). So there exists 

a neighborhood U  of h{yo) such that for every Qo € / , there exists some 

q > Q0 such that k(yn) £ U.  Let /  € .4p(Gj) be such tha t supp/  C U. 

and f{h{y0)) ^  0. Then Tf { y 0) = Y\mTf{ya) = lim«(yQ)/(/i(yQ)) =  0.a a
Since Tf{yo) = x-(yo) f  (h{yo)) /  0 we have a contradiction, which proves 

the continuity of h. The continuity of k follows from the continuity of h 

and that of T f  : since if y0 € G2, and if /  € /4p(Gi) is identically equal 

to 1 on a compact neighborhood U of h(yo), then for every y € h~l {U):

Tf ( y )  = K{y)f{h{y)) = «(y).

2. VVe want to show that /i(G2) is dense in G\.  Assuming the contrary, there 

exists xo € Gj and a neighborhood U of x0 such that U n  /i(G2) =  0. 

Let /  € -4p(Gi) be such that supp /  C U, and /(xo) ^  0. Then

T( f )  = K{y)f(h(y))  =  0 (for all y E G2), 

and thus T f  =  0. Since T  is one-to-one, /  =  0, which is a  contradiction.
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3. To show that T  1 is disjointness preserving, suppose g\ and gi in AP(G2) 

are such that

9 i = T f i  = nf i  oh, gi = T  f 2 = n f 2 o h, and gx ■ g2 =  0.

Then n2{ f io h )( f2oh) = 0, and so (/j- f 2)oh = 0. Since h(G2) is dense in 

Gi, f \  • f 2 = 0, as we wanted to show. By the Inverse Mapping Theorem, 

T ~ l is continuous and therefore by the first part of our theorem

T ~ lg = tpg ok,  (for all g 6  AP(G2)),

where 0 : G2 — ► C  \  {0}, and k : G\ — ► G2 are continuous functions, 

and k{G\) is dense in G2 (see part two of the theorem). Now suppose 

/  £ Ap(Gi), then

/  =  T ~ \ T f )  = T~1(k/ o h) =  0  • (k o k) { f  oh)  ok.  (*)

Now we claim that h o k = since otherwise for some x 0 6  Gi, h o  

k(xo) =  X\ 7̂  xo, and taking /  € Ap(Gi) such that f(xo) = 0, f ( x i) =  1 

we obtain

0 =  / ( Xo) = 0 (xo)K(k(x0)) f (xi )  ^  0 ,

which is of course impossible. Similarly k o h =  1 c 2- It follows from (*) 

that, /  =  0 (/c o k) f ,  for all /  € Ap(Gi)i and hence 0 k o  h~l =  1 c t - 

Similarly k 0 o  h =  1 g 3 -

Q .E .D .

4.4.3 Remark. The functions k  and 0  in the above theorem are called the 

weight functions of T  and T ~ l , respectively.

4.4.4 T heo rem . For amenable groups G\ and G2, AP(G\) is Banach alge­

bra isomorphic to AP(G2) if and only if there exists a disjointness preserving 

bijection between these algebras.
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P ro o f. We use the terminologies and notations of Theorem 4.4.2. Let T  : 

Ap(Gi) — ► AP(G2) be a disjointness preserving bijection, with weight func­

tions k and ip. It follows from [27, p. 339, Theorem 1], the amenability of 

Gi, and Proposition 3.2.9 that T  is continuous. By [28, p. 182, Theorem 3], 

it suffices to show that the k and ip are multipliers of .4P(G2) and .4p(Gi), 

respectively. We prove that k € BP(G2 ) (the proof of ip G BP(G i) is similar). 

First we notice tha t if g G .4P(G2) HCoo(G), and if /  € .4p(Gi) is such that 

/|h(supp(g)) =  1» then

K • g = K ■ ( /  O h) ■ g = {Tf )  • g € 4̂P(G2).

Next, let (ga)azj be a bounded approximate identity of bound one for AP{G2), 

consisting of functions with compact support. We claim that (nga)aeJ con­

verges uniformly to « on compact subsets of G2. Suppose E  C G2 is compact. 

Let gE e  .4p(G2) nCoo(G2) be such that gE\E = 1. Then as we saw above, 

*9e € AP{G2). and hence

I\(k9e )9? ~  «9eII.4p(G2) — ► 0.

In particular (since gE\E = 1)

\\K90\E ~  « |e  Hoc ----► 0.

This proves that (kga)a^J converges uniformly on compact sets to «. Since 

G2 is amenable, the unit ball of BP(G2) is closed in C(G2) in the topology of 

uniform convergence on compact sets [23, p. 59, Remark 2, and Proposition 

3.2]. So the proof of our theorem is complete if we show that the net (nga)aeJ 

is bounded. Let e > 0. Using the amenability of G\, for each /3 € J  we choose 

/.? € ,4p(Gi) nCoo(Gi) such that fa\k(suppga) = 1, ll/i3lUp(c,) < (1 +  e). We 
have

(Tfa) ■ ga = *■ (f(3°h) ■ ga = *■ ga,
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and therefore:

\\K9t}\\Bp(G2) < ||k • 9p\\ap(g2)>

=  II (Tfp)  • ^ I U P( c 2)»

<  l |T ’/*3||.4p(G2) lb 3 |l .4 p(G2)-

< ( i + o i m i .

Q .E .D .

4.4.5 Remark. Under the conditions of the above theorem, if g G .4P(G2) 

we have (see part 3 of Theorem 4.4.2)

g o h~l =  (ipK o h~l) • g o h~l = ip(Kg) o h~l = T ~ l(ng) G .4p(Gi).

(since k  G Bp{G2 )- Similarly, for /  € .4p(Gi), /  o h G Ap(Gn)- Now it is not 

difficult to show that if /  G Bp(Gi), then nf oh  G BP{G2 ), and hence a disjoint­

ness preserving mapping T  between -4P(G) algebras of amenable groups, can 

be extended in a natural way, to a bijective, disjointness preserving mapping 

between their multiplier algebras.

For the next result, we recall that the cozero set of a function is the set of 

all points at which the function is non-zero.

4.4.6 Corollary. Suppose G\ and G? are amenable, and T  : .4p(Gi) — ► 

Ap(G2 ) is an order isomorphism for the pointwise order which preserves the 

cozero sets. Then T  is automatically continuous, and .4p(Gi) and .4p(<j2) are 

Banach algebra isomorphic.

The proof of this corollary consists of showing that T  is disjointness pre­

serving, and is similar to the case of p = 2, see [28, p. 184, Corollary 2).

4.4.7  Corollary. Suppose Gi and G2 are amenable. If there exists a linear 

bijection T  : Ap(Gi) — ► .4P(G2), such that ||T/||oo =  ll/lloo, for all /  G 

Ap(Gi), then .4p(Gl) is Banach algebra isomorphic to i4p(G2).
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In general for arbitrary locally compact group G, it is easy to see that if 

x  € G and if V  is a neighborhood of x, then there exists v € AP{G) such that 

suppt’ C V, 0 < v < 1, and v(x) = 1. In other words G is the set of all 

strong boundary points of AP(G). Now a proof similar to that of [28, p. 183, 

Corollary 1] can be used to verify the corollary.

48

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



Chapter 5 

Lau Direct Sums of AP(G) 

Algebras

5.1 Introduction

In [48], A. T.-M. Lau introduced and studied a new class of Banach algebras, 

which are called Lau algebras by J. P. Pier (see [64, §3.A]). Various aspects of 

these algebras are studied by several authors including Pier [64], Lashkarizadeh 

Bami [13], and Nasr-Isfahani [60], [61].

A Lau algebra is a pair (.4, A/), where .4 is a complex Banach algebra and 

M  is a von Neumann algebra such that A  is the predual of A/, and the identity 

of M  is in the spectrum of A. These include the algebras L\{G), A(G), B{G), 

and M(G), but not .4P(G). However, we will show in this chapter tha t a few 

of the important results of [48] can also be obtained for AP(G) algebras.

5.2 Definition and Basic Properties

Let A be a Banach algebra (as usual over the complex numbers), and let B  

be a Lau algebra with e the identity of B *. In [48], Lau defines the following 

direct sum of these algebras: A ® iB  =  {(a, b) : a €  A, b € £}, equipped with
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the coordinatewise addition and scalar multiplication, and the product:

(ai,bi)(a2,b2) =  (aia2+e(b2 )ai+e(bi)a2, bib2) for all (a\,bi), (a2,b2) € A® lB .

The fact that e is in the spectrum of B, guarantees that this product is associa­

tive. We notice also that when B  = C, the above direct sum coincides with the 

unitization of ,4. If we equip this direct sum with the norm ||(a,6)|| =  ||a|| +  ||6||, 

then A@lB  is a Banach algebra.

The above definition can be restated for the case of B  a commutative 

Banach algebra, and e an element in the spectrum of B. However, such a 

definition is not desirable for two reasons. First, this definition is not canonical 

(as opposed to Lau’s definition), due to the non-uniqueness of e as an element 

in the spectrum of B. And second, as we will see shortly, we require such 

direct sums for non-commutative Banach algebras as well.

For the case of AP(G) algebras, we do not face such problems. When 

B  =  AP(G), and e is the identity of G (which can be canonically identified as 

an element of the spectrum of AP{G), as well as the identity of .4P(G)*), then 

we can define the direct sum .4©£,AP(G) for any Banach algebra .4, as in the 

case of Lau algebras.

As usual, in the following we assume all groups involved are locally compact 

groups. The identity of a group G is denoted by e.

For a Banach algebra .4, and locally compact groups G2  Gn, we define

A®lA p(G2)®l • • • ®LAp(Gn)

inductively as

{ A ® i A p { G 2 ) @ l  ■ • • ® L ' 4 p ( G „ _ i ) ) © £ , A p ( G n ) .

We equip this algebra with the norm ||( /i, f 2, . . . ,  /„)|| =  \\fi\\ +  | |/2|UP + . . .  +

l l / n l k -
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5.2.1 L em m a. 1. A@lAp(G2 )®l ••• ©L-4p(Gn) is a Banach algebra. If 

F  = (f\i ■ • ■, fn),  and G = {gx, . . . ,  gn) are in A® l Ap(G2)@l • • • ®LAp(Gn), 

and if H = (h\, • • • , hn) =  FG , then

/ifc =  fk9k + E
.i= k+ \

9 k  +
L«=fc+i

fk (5.1)

2. The direct sum is commutative if and only if .4 is commutative.

3. The dual of .4®£.4p(G2)®l • * • ©l-4p(G„) can be identified with the Ba­

nach space .4* x ,4p(Go)* x • • • x ,4p(Gn)*, equipped with the maximum 

norm

ll(0i  0n)||max = max{||0i||, . . . .  I!0n|| }•

This lemma can be proved by induction.

Our next result describes the spectrum of such direct sums. Suppose Ai  is 

a commutative Banach algebra, and .4, = .4P(G,), (i = 2 . ,  n). Let ox de­

note the spectrum of .4,. Recall that the spectrum of A p(Gt) is homeomorphic 

with the group Gix and consists of all evaluation functionals (5*, (x 6 Gx). Let 

Oj, O2, - • •, 0n, denote the zero functional on .4i, .4P(G2), . . . .  .4P(G„), respec­

tively. We define

ax =  {Oi} x • • • x {Oi_i} x ox x {<Si+1} x • • • x {<*„}.

We equip ax with the topology induced from ax. Now, we define ^Z" ax =  (J" axx 

and put a topology on ]>Zi ctx, by calling a subset U of <7, to be open, if

U fl dx is open in dx, for every i = 1, . . . ,  n.

5.2.2 T heo rem . With the above terminology,
n

<t{A i®lAp{Gi )®l . . .  ®l.4p(G„)) =  <7 , .

1

Proof. For simplicity we consider the case of n =  2. From lemma above,

(i4i®£,^4p(G2))* =  i4J x Ap(G2 )*, and hence &(A\®lAp{G2 )) C .4J x i4p(G2)*-
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N ow  su p p o se  (0 , 0 ) G c r { A \ @ i A p ( G 2)).  th en  for every  (a ,  / ) ,  (b.g) €  -4 i ® l - 4 p(G 2) 

we have

(0 , 0 )((a, f){b, g)) = ((0 , 0 )(a, / ) )  (0 , 0 )(6, r?))

(0 , 0 ) ( a 6 +  g(e2)a +  / ( e 2 )6 , / g )  =  (<t>(a) +  0 ( / ) ) ( 0 (6 ) +  ip{g))

0 (a6) +  g(e2)<t){a) + / ( e 2)0 (6) +  0 (/g) = 0 (a)0 (6) +  0 (a)0 (g) +  0 ( / ) 0 (6) -F 0 ( / ) 0 (p).

If we take /  =  5 =  0 . it follows that 0 (a6) = 0 (a)0 (6), for all a, 6 € *4i. 

and hence 0  G o ^ i )  U {0i}. Subsequently, if we take a =  b =  0, it follows 

that 0  G <t.4 p(G 2) U {0}. But, 0  = 0 implies that 0  = 0 which is impossible, 

since (0 , 0 ) ±  (0i,02). Therefore ip =  Sx, for some x G G2.

Now, in case that 0  = Ch, we have (0 , 0 ) =  (01, <5̂ ) G Otherwise,

we can write the above equality as

( s ( e 2) - 0 (c0 )0 ( a ) + ( / ( e 2) - 0 ( / ) ) 0 (6 ) = 0 (for all (a, / ) ,  (6, g) G .4i®l.4p(G2)).

Setting 6 =  0, and a such that 0 (a) #  0, it follows that <7( e 2) =  ^’(<7), for all g G 

-4P(G2), and hence 0  = This means that (0 . 0 ) = {4>,Sej) G X !icr>- The 

verification that the topology of cr(.4i©£,.4p(G2)) (induced from the product 

topology of A\ x .4P(G2)*), is the same as the topology of is straight

forward. Q .E .D .

5.2.3 P ro p o sitio n . Let A  be a Banach algebra and G a locally compact 

group. Then

1. A® iAp(G) has an identity if and only if G is compact.

2. A(BlAp(G) has a bounded approximate identity if and only if G is 

amenable.

3. .4©£,,4p(G) has an approximate identity if and only if AP(G) has an 

approximate identity.
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To proof this lemma, one only need to recall that AP(G) has an identity if 

and only if G is compact, and A P(G) has a bounded approximate identity if 

and only if G is amenable.

To state our next result, we observe that if <5e € AP(G)* is the evaluation 

functional at e, and if j  : Ap(G)m — ► .4P(G)*** is the canonical injection, 

then j(Se) is the identity of .4P(G)*** and is a multiplicative linear functional 

on .4P(G)** (where both .4P(G)**. and .4P(G)*** are equipped with their cor­

responding first Arens products ©). In fact, for every t f , C € AP(G)**:

O W , tf 3C> = (tf ©C<*e)

« < t f . C - * e >

= ( t f , « , < w >

= GW . VOOW-O-

Therefore we may define ®£, direct sums of .4P(G)** algebras with other 

Banach algebras in the canonical way discussed at the beginning of this section.

5.2.4 Lemma. If A is any Banach algebra, and G2 , . . . ,  G„ are locally com­

pact groups, then the Banach algebra {A®lAp{G2)@l • • • ®LAp{Gn)Y * (equipped 

with its first Arens product) is isometrically isomorphic to the Banach algebra

A ” ®lAp{G2Y '® l ■ ■ ■ ®L.4p(Gn)*V

It is not difficult to verify that the map

tf : A” ®LAp(G2Ym —  (A eLAp(G2)Ym

tf(01i 02)(/l> h )  =  0l ( f l )  +  02(/2)> (/l € A \ h  € .4p(G2)*)

is an isometric algebra isomorphism. The general case follows by induction.
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5.3 Topological Invariant Means

5.3.1 D efinition. Let A  =  .4p(Gi)©£ • • • ®£,.4P(G„). An element (4» i , . . . ,  tyn) 

.4** is called a topological invariant mean for .4* if

1 .  I K * !  * n ) | |  =  < ( « ' l , . . . , « n ) , ( < 5 l , . . . , « 5 n ) )  =  l .

2. For every ut € Ap(Gi), (i =  1 , . . . ,  n),

fl
( l ( l i l ) ,  . . . ,  . . • , ^ „ )  =  (̂ 2 “ » ( C « ) ) ( ^ 1 -----------*

1

where i{uj) is the canonical image of Uj in .4p(Gj)**.

5.3.2 Lem m a. If ^ i  is a topological invariant mean for .4p(G i)\ then 

('I'i, 0 , . . . ,  0) is a topological invariant mean for {Ap{ G \ ) ® i - - - ^ iA p(Gn))m. 

Conversely, every topological invariant mean for (.4p(Gi)©£, • • • ©l.4p(G„))* is 

of this form.

P roof. The first assertion can be easily proved using the equation (5.1). We 

will prove the converse. If ( 'Pi , . . . .  '&„) is a topological invariant mean, and 

if Ui € .4p(Gi), then on one hand using the definition of the product in (5.1), 

we have

( i ( u 0 ,  < . ( 0 ) , . . . .  t ( 0 ) ) ( ' I > i , . . . ,  ' P , , )  =  ( « !  0 ^ 1  + . . .  . 0 ).
L 2

On the other hand, using the fact that ('I'i___   'P,,) is a topological invariant

mean, we have

(i(uO,t(0), . . .  , i(0))( 'Pi , . . . ,  ^n) =  Ui(ei ) (^i , . . . ,  'P„).

Since Ui is arbitrary, we must have ^  =  0, . . . ,  'P,, =  0. Subsequently,

l (u i ) ©  =  u i  • ^ !  =  u i ( e ) ^ i ,

that is. 'Pi is a topological invariant mean. Q . E . D .

5 4
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5.3.3 T heorem . Let A = .4p(Gi)©£, ■ • • ©i,Ap(Gn), and let E  be a Banach 

.4-bimodule such that for every /  =  ( /i, • • •, /n) €. A and every x  G E, f  ■ x  =  

(JZ’i f i(ei))x - Then every bounded derivation D : A — ► E *, is an inner 

derivation.

The proof is similar to the argument in [48, p. 167. Theorem 4.1].

5.3.4 R em ark . 1. A Lau algebra .4 is called left amenable if for any 

two sided Banach .4-bimodule E , such that ipx = </’(e)x for all ip 6 .4 

and all x  € E, every bounded derivation D : A — * E * is an inner 

derivation. This notion was first introduced and studied by Lau in [48]. 

Using this terminology, the above theorem might be restated as follows: 

For any locally compact groups Gy, . . . ,  Gn, .4p(Gi)©l • • • ©£,'4p(Gn) is 

left amenable.

2. Let ^  € .4p(Gi)** be a topological invariant mean, and j  : .4P(G,)* — ► 

.4P(G,)*** and k : .4p(Gi)** — ► .4P(G,)*” * be the canonical injections 

(i =  1, . . . ,  n). Then it is easy to see that

(a) <(*<¥,),0. . . .  0), .. .J (S „ ) ) )  =  ||(* (* ,) .0 .......................0)|| = 1.

(b) For every <P, e AP(G ,)" , (i =  1 , . . . ,  n),

n
(* ,, • . . , *n)(fc(*l), 0, . • ■ , 0) =  ( £  ))(*('f l) .  0........0).

1

A result similar to the above theorem can be stated for (.4p(Gi)©/. • • • ©i,'4p(Gn))* 

algebras as well.

5.4 Approximate Zeros

Let .4 =  Ap(Gx)®l • • • ©i>4p(Gn), and let Pi(.4p(G)) =  { / € .4P(G) : | |/ |U P =  

/(e )  =  1}, and Py(A) = {}  =  ( / i , . . . , / „ )  € A  : |]/|| =  YPx f ^ )  =  !}■ Sui> 

pose is a topological invariant mean for Ap(Gi)*, and {gQ)a € Pi(.4p(Gi)),

5 5
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is a net such the* ga — ► 'Pi, in the w*-topology (see [32, pp. 121-123]). Let 

us set tf =  ( t f^O, . . .  ,0), ga = (gQ, 0 , . . .  ,0).

5.4.1 L em m a. For every

fg a — ga — > 0, (in the w*-topologv).

P roof. Using Lemma (5.2.4), for every <t> = (d>i , . . .  .d>„) G .4* we have:

lim(0,i)Q) = lim(t(po),0)
a a

= (tf-0)

=  lim(i(ga).o- f )
a

= lim(0 • / .  ga)
a

= lim(0, f g Q).
a

Since <t> was arbitrary, this proves our lemma. Q .E .D .

5.4.2 T heo rem . .4 =  .4p(Gi)©£, • • • ©£,.4p(Gn) has a bounded approximate 

zero for Pi{A). In other words, there exists a net (ha)a G Pi(-4), such that for 

every /  G Pi{A), \\fha -  hQ|| — ► 0.

The proof is similar to the proof of Lau in [48, p. 169, Theorem 4.6].
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Chapter 6

Some Open Problem s

This section contains some open questions which arise from my study on AP(G) 

algebras. We give a short description of the significance of each problem, and 

a summary of the known partial results in each case.

6.1 Splitting Properties of AP(G)
Problem . Suppose p € (1, oc) and G is a locally compact group. Does the 

strong splitting of all finite dimensional extensions of .4P(G) imply that G is 

amenable?

We discussed in detail the motivational background of this problem in 

Section 3.1. We proved in Lemma 3.3.10 that if the above condition holds, 

then G cannot contain a closed free subgroup of two generators. As a result, 

we showed in Theorem 3.3.11, that the above question has a positive answer 

in the cases of almost connected groups, finite dimensional linear groups, and 

linear groups over fields with characteristic zero.
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6.2 Characterizations of AP(G)
Problem . If p G (l ,oo) and Gi .G2 are locally compact groups such that 

AP{Gi) is isometrically isomorphic to ,4P(G2). does it follow that G i and G> 

are isomorphic as topological groups?

In other words, does .4P(G) uniquely characterize its underlying group? 

We know that the answer to this question is positive when p — 2 [71]. In 

this case the problem has shown strong connections with theory of G* and 

von Neumann algebras. We also know that if G t and G2 are abelian, then 

the similar question for the case of multiplier algebras BP(G) has a positive 

answer [58]. These results extend the earlier results of Johnson [42], Wendel

[73], and Helson [36] for the case of group and measure algebras.

Our own investigation of order isomorphisms between .4P(G) algebras in 

Chapter 4 was motivated by an attempt to answer the above question. In The­

orem 4.2.8. we showed that a continuous order isomorphism for the pointwise 

order between -4P(G) algebras characterizes the underlying groups as topolog­

ical spaces (that is, induces a homeomorphism between the two groups). An 

interesting related problem is the following

Problem . Does the existence of a continuous order isomorphism for the 

pointwise order between Ap(G i) and .4P(G2) imply that G\ is isomorphic to 

G2?

For the case of p =  2 this question has a positive answer, as shown by 

Arendt and De Canniere in [5].

•  •  _
6.3 Lau-Ulger Conjecture on Arens Regular­

ity of AP(G)
Conjecture. For p 6 (1, oc), AP{G) is Arens regular if and only if G is finite. 

In 1951, R. Arens showed the existence of two multiplications on the dou-
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ble dual of any Banach algebra A [7]. These products, when restricted to 

A coincide with the usual product of .4. Soon it became clear that certain 

problems concerning the Banach algebra -4 can be treated successfully in the 

context of .4”  using the Arens multiplications. In our own study of Lau direct 

sums of AP(G) algebras, we obtained a characterization of the double dual 

of AQlAp(G2)&l ■ ■ ■ ^L-^p(Gn) equipped with the first Arens product (see 

Lemma 5.2.4). If .4 is a Banach algebra, and if the two Arens products of 

A** coincide with each other, then .4 is called Arens regular. It was shown by 

A.T.-M. Lau and J.C.S. Wong [52], that when G is amenable, A 2{G) is Arens 

regular if and only if G is finite. It is a conjecture of Lau and Ulger [49], that 

in general, for arbitrary p € (1, oo) and an arbitrary locally compact group G , 

AP{G) is Arens regular if and only if G is finite. For a large class of locally 

compact groups (including abelian groups), this conjecture has been proved 

by B. Forrest [30], He has also shown that Arens regularity of A P(G) implies 

that G is discrete. This is an overwhelming evidence that the above conjecture 

might in fact be true.
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