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Abstract

The present study quantifies the effects of lexical competition dur-
ing spoken word recognition using acoustic distance, rather than phono-
logical neighborhood density. The indication of a word’s lexical com-
petition is given by what is termed its acoustic distinctiveness, which
is taken as its average acoustic distance to all other words in the lexi-
con. A variety of acoustic representations for items in the lexicon are
analyzed. Statistical modeling shows that acoustic distinctiveness has
a similar effect trend as phonological neigbhorhood density. Addition-
ally, acoustic distinctiveness consistently increases model fitness more
than phonological neighborhood density, regardless of which kind of
acoustic representation is used. Acoustic distinctiveness does not seem
to explain all the same things as phonological neighborhood density,
however. The different areas that these two predictors explain are
discussed, in addition to potential theoretical implications of acoustic
distinctiveness’s usefulness in models. The paper concludes with mo-
tiviations for why a researcher may want to use acoustic disinctiveness
over phonological neighborhood density in future experiments. [This
document was prepared as part of a generals paper course in the fall
2018 term.]
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1 Introduction

In the process of spoken word recognition, a listener must discriminate the
word contained in an audio signal from other potential candidates. One pre-
dominant metaphor used to describe this process is the activation/competition
metaphor. Under this metaphor, potential matches for the word in the audio
signal receive activation on the basis of how well the acoustic information in
the signal matches the listener’s expectations for each word. These potential
matches compete until one receives enough activation that it is recognized.
The present study introduces a new measure of competition based on the
acoustic distance between words and uses it to model responses to an audi-
tory lexical decision task.

A group of words that sound similar and are expected to compete have
been called phonological neighborhoods (Luce, 1986; Luce and Pisoni, 1998).
In Luce (1986) and Luce and Pisoni (1998), words are defined to be neighbors
on the basis of being one substitution, addition, or deletion away. That is, for
a word A, if a word B can be transformed into word A by adding, subtracting,
or substituting exactly one phoneme, word B is considered a neighbor to word
A. So, cat, for example, is neighbors with bat but not bad.

Competition is then quantified by counting the number of words in the
lexicon that are neighbors with a given word. Luce (1986) and Luce and
Pisoni (1998) term this competition measure “phonological neighborhood
density.” It is taken as an indicator of how many words will be competing
for activation when a particular word is being heard. It has been found to be
predictive of participant behavior in many psycholinguistic tasks. In auditory
lexical decision, for example, high phonological neighborhood density values
have been found to have inhibitory effects in English (Luce and Pisoni, 1998;
Goldinger et al., 1989; Vitevitch and Luce, 1999; Tucker et al., 2018), where
the words with high values are more difficult to process or take longer to
respond to. However, facilitatory effects were found in Spanish (Vitevitch
and Rodŕıguez, 2005), where words with a high phonological neighborhood
density value were easier to process or faster to recognize. See Vitevitch and
Luce (2016) for a review of other tasks that this measure has been used for.

Despite its popularity, when Luce (1986) introduced the notion of phono-
logical neighborhood density, he remarked that a measure more sophisticated
than the one-edit definition of neighbors should eventually be used. He notes
that the one-edit definition applies equal weight to phoneme substitutions
wherever they occur in the word, meaning that kit would be considered as
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similar to sit as it is to kiss. What’s more, equal weight is also assigned to any
possible phoneme change, so pow would be connsidered to be as close to bow
as it is to now. There have been attempts to replace or modify phonological
neighborhood density, to varying efficacy.

1.1 Previously proposed alterantives to phonological
neighborhood density

Luce (1986) details more sophisticated methods of quantifying competition,
ending on the frequency-weighted neighborhood probability rule. It is an
indication of the probability of a listener correctly identifying a word. In
addition to how many phonological neighbors a word has, it accounts for the
the lexical frequency of the word’s neighbors, as well as the confusability of
the word’s constituent phonemes. Note that this method still uses the one-
edit definition for a neighbor that was used in phonological neighborhood
density.

A modification to the one-edit definition of neighbors is proposed by Ka-
patsinski (2005). A word is taken to be a neighbor to another word if at least
two thirds of the segments in the words are the same. This is determined by
dividing the word in question’s number of segments by 3 and rounding down
if needed. The result of this division is taken as the maximum number of edits
that can be performed to a word before it is no longer a neighbor to the word
in question. With this modified definition, only 7% of the words Kapatsinski
examined in English had no neighbors, as compared to 58% when using the
one-edit definition of neighbors. Notably, this modification keeps the results
of historical experiments that used monosyllabic CVC stimuli, since the de-
termined edit distance would still be 1. However, this modification does not
address the original concerns expressed about using edit distance as a way
of determining whether words are neighbors or not.

Iverson et al. (1998) presents a method of applying the phi-square coeffi-
cient to phoneme similarity. The phi-square coefficient is calculated based on
experimental phoneme identification data. For two phonemes, it is a measure
of how distinct the distributions the phonemes come from are. If it has a
value of 0, the two distributions are taken to be identical. And, if it has a
value of 1, the two distributions are taken to be distinct. This coefficient
allows for perceptual similarity of phonemes to be taken into account when
finding some measure of competition. However, this coefficient is often calcu-
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lated using confusion data based on monosyllabic stimuli. Iverson et al. used
C-/A/ for consonants and /h/-V-/d/ for vowels, which is not representative
of the larger variety of patterns observed in everyday language use.

Gahl and Strand (2016) also use Iverson et al.’s (1998) measure. Gahl and
Strand were comparing phonological neighborhood density and and the phi-
square coefficient to see if one was a better predictor of competition. They did
slightly expand the type of stimuli the phi-square coefficient has been used on
by adding CVC structures. However, it seems the phi-square coefficient only
seems to have been used with CVC style stimuli. These kinds of stimuli likely
present fewer confounds to account for when calculating the coefficient. Such
confounds could be coarticulatory or contextual cues also being present when
the phoneme is pronounced. Nonetheless, the phonetic signals that listeners
encounter in everyday life involve more than just monosyllabic words. So,
the phi-square coefficient as it has been calculated before is not as ecological
to the task of spoken word recognition as it could be.

Turning to production, where it’s been suggested that lexical competition
impacts a speaker’s speech, Nelson and Wedel (2017) and Wedel et al. (2018)
examined the hyperarticulation of stop consonants and vowels in conversa-
tional English. They found that the presence of a minimal pair for a word
was a significant predictor of whether a speaker would hyperarticulate the
portion of the word that related to the minimal pair. In Wedel et al. (2018),
they also found that phonological neighborhood density was not predictive
of the acoustic phenomena they were studying. They reason that phonologi-
cal neighborhood density’s lack of predictive power may be due to speakers’
attention to phonetic cues rather than form-based repreesentations of words.
Nevertheless, switching to using the presence of a minimal pair does not re-
solve the concerns about the timing or type of change to the phonetic signal
that Luce (1986) raised when introducing phonological neighborhood density
as an indication of competition.

1.2 Previous measures of similarity

Comparisons between segments date back at least to Saporta (1955), who
used distinctive features from English (Jakobson et al., 1952) and Spanish
(Llorach, 1950) to calculate a distance between segment pairs for each lan-
guage. Measure of distance between two segments often compare feature
vectors and count the number of values that don’t match (Saporta, 1955;
Mohr and Wang, 1968; Allen and Becker, 2015; Hall et al., 2017), though not
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all of them use fully-specified features vectors (Frisch et al., 2004; Albright
and Hayes, 2006). Still others use different sets of features, like Peterson
and Harary (1961) who used hierarchical parameters based on physiology
and assigned greater or lesser weights depending on the category of the fea-
tures. Sanders and Chin (2009), Heeringa (2004), and Kondrak (2000) also
use feature sets different from the traditional distinctive feature sets. It bears
noting that Kondrak’s (2000) metric calculates similarity and not distance
like the others metrics and measures discussed here. Some of these compar-
ison measures have been used to create phonetic alignments between phone
strings (Allen and Becker, 2015; Albright and Hayes, 2006; Kondrak, 2000),
while others were used to compare co-occurrence of consonants (Frisch et al.,
2004; Saporta, 1955).

Inherently, one of the challenges of using such featural comparisons is that
they are not grounded in perceptual or acoustic evidence. They may very
well be useful when creating phonetic alignments (Allen and Becker, 2015;
Albright and Hayes, 2006; Kondrak, 2000), but it cannot be assumed a priori
that these measures will be relevant in perceptual studies. Additionally, while
these measures will allow for more gradience in determining how similar two
individual segments are, and aligning algorithms like Levenshtein distance
can be used to compare similar segments to each other (as in Allen and
Becker 2015 and Albright and Hayes 2006), these measures do not all address
phonological neighborhood density’s shortcoming regarding the position of
differences in a word. Those comparison measures that do in some way
address the position of the change do so due to the alignment algorithm
forcing comparisons between similar segments. Thus, though the outcome of
comparing words by using these measures may be affected by the position
of segmental differences, it is not due to differences in speech production or
perception observed in the data. Rather, it is due to incidental effects of the
algorithms used for alignment.

Other researchers comparing linguistic units have instead focused on us-
ing acoustic data. In addition to featural comparison between segments,
Heeringa (2004) also examined comparing spectrograms to each other and
formant tracks (including F1 and F2) to each other. These representations
were compared using Euclidean distance. At the word level, the formant rep-
resentation included F1, F2, and F3. Word-level comparison include a speech
rate normalization to ensure a consistent duration for every segment in the
word’s transcription. The words are then compared by using a modified Lev-
enshtein distance which uses the Euclidean distance between spectrogram
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slices or formant values as the sbustitution cost. A notable shortcoming of
this method for use in perceptual work is its reliance on speech rate nor-
malization, since speaking rate is everpresent in the speech that listeners
hear.

Mielke (2012) also introduced a method of calculating phonetic similarity
between phone or phoneme categories. It involves converting the acoustic
signal from the time representation to a frequency-time representation using
Mel-frequency cepstral coefficients. Dynamic time warping is then applied
to the two signals in frequency-time representation to calculate the minimal
distance between the two signals. The dynamic time warping process works
by comparing each time slice in one signal to all the time slices in the other
signal that it can be compared to, and it then performs the comparisons that
result in the smallest distance between the two signals. The overall distance
between the two signals being compared is then taken as the accumulation
of the distance between each time slice based on the prevoiusly determiend
alignment.

Lewandowski (2012) presented a method of calculating acoustic similarity
based on the amplitude envelopes of specific frequency bands of the signals
in question. Calculating the similarity between two signals with this method
involves finding the amplitude envelopes of 4 frequency bands in the two sig-
nals and comparing them using cross-correlation on a dynamic time warped
version of them. Cross-correlation is a mathematical function that deter-
mines the extent to which two signals match each other, which can be taken
as a form of similarity between the signals. Lewandowski used this method
in evaluating phonetic convergence between speakers. Overall, it is similar to
the Mel-frequency cepstral coefficient method, but only four frequency bands
are used, so it provides a coarser representation of the signal. However, it
is more interpretable because the frequency bands aren’t transformed into
cepstral coefficients, which are harder to interpret.

Being that both of these methods operate on the entire acoustic signal,
they could both account for the shortcomings of the one-edit definition of
neighbors. The type of change should be reflected in the acoustics; if the
change is drastic, the acoustic signal will be different, and thus the distance
measure will be impacted accordingly. The position or timing of the change
can be addressed as well, at least in the sense that acoustic differences based
on where a segment is in a word (e.g., word-initial, word-final, before a voiced
segment) will also be incorporated into the ditance measure. There is not a
straightforward definition of what a neighbor is with these measures, though.
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Rather, each individual item in the lexicon would have a distance to every
other item in the lexicon.

1.3 The present study

The remainder of the paper presents a measure of lexical competition bsaed
on acoustic comparisons between words, and presents the analyses that were
run on auditory lexical decision data.

The first analysis is a proof-of-concept where the stimuli that are used in
the experiment are compared with each other to determine an overall acous-
tic distinctiveness value for each word. The second analysis builds on the
first but compares different ways calculating the acoustic distinctiveness of a
word, including using recordings from speakers that aren’t used in the audi-
tory lexical decision and using average sequences from different recordings.
These results are compared with a model that uses neighborhood density in-
stead of acoustic distinctiveness. The third analysis investigates the extent to
which acoustic distinctiveness and phonological neighborhood density over-
lap in the models. These anlyses are followed by a general discussion of the
results and why a researcher might choose to use acoustic distinctiveness over
phonological neighborhood density.

2 Analyses and results

The data that are used in the analysis come from Tucker et al.’s (2018) freely
available Massive Auditory Lexical Decision (MALD) data set. MALD is
an auditory lexical decision megastudy, and it allows researchers to perform
analyses and vritual experiments with a large sample size and vast number of
real words. Auditory lexical decision is a behavioral task where participants
are presented with a series of audio stimuli and asked to respond on a button
box whether each stimulus they are hearing is a real word or not a real
word in the target language. In this case, the target language was English.
The time it takes to respond to each word is recorded, and the accuracy of
the participants’ responses is also recorded. These response latencies can be
analyzed using standard behavioral chronometry techniques like regression
analyses as in Tucker et al.. Further discussion of chronometric methods is
discussed in Baayen and Milin (2010).

For the first version of the MALD data set, over 26,000 real words were
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recorded by a young male speaker of western Canadian English, and each
word was responded to at least 4 times from among 231 unique participants
who were also native speakers of western Canadian English, for a total of
227,129 data points (including reponses to both real words and pseudowords).
Stimuli sets have also been recorded for two other speakers: a young female
and and older male, both of whom are native speakers of western Canadian
English. These other recording sets will be crucial for further development
and testing of the measures of acoustic distance detailed later on in the
present study. As such, only words that are in common between these three
speakers will be used, so that no particular word is left being uncomparable
in the different representations developed herein. There are 26,005 words in
common between the speakers.

See Tucker et al. (2018) for more information on the recording process for
the young male speaker, the auditory lexical decision task, and the variables
included in the data set.

2.1 Analysis 1

The first analysis performed was to use the auditory lexical decision stimuli
themselves as templates to compare each word against. In this sense, the
recordings or some manipulations thereof were taken as a cognitive represen-
tation of the word in the lexicon. This analysis using the same stimuli as
were used in the experiment as the lexical representation was run as a proof-
of-concept so as to make sure that the method worked in the first place and
to see how it compares to phonological neighborhood density. Subsequent
analyses will address the question of the ecology of the representation, as
well as its potential for generalizability.

2.1.1 Calculating acoustic distinctiveness

Only the subset of words with recordings from all three speakers mentioned
above were used. Each word was first converted to a Mel-frequency cep-
stral coefficient (MFCC) representation, similar to Mielke (2012). At a high
level, this process converts the waveform of the audio into a frequency rep-
resentation, similar in some ways to a spectrogram. More specifically, this
process involves windowing the signal, calculating Mel filterbanks for each
frame from the windowing, and determining the cepstrum coefficients for
each filterbank. In the present analysis, a typical format used in speech
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recognition was used, where the window length was 25 ms, the step size for
the windows was 10 ms, and there were 12 coefficients used along with the
log energy of the frames for a total of 13 values representing each frame of au-
dio. Unlike in speech recognition, delta and delta-delta coefficients were not
calculated. This choice was made on the grounds that the goal is to calculate
the distance between the signals, and derivatives do not make sense to use
in such calculations. For example, if you have two points in space and want
to know the distance between them, only their current positions matter; how
quickly they are moving in space does not matter at the point in time when
you want their distance. Additionally, similarity and distance measures such
as Euclidean distance, cosine similarity, and Levenshtein distance do not or
cannot make use of derivatives, so the derivatives are not used in the calcu-
lation of acoustic distance to be consistent with other measures of similarity
or distance.

Once the words were converted to an MFCC-by-time representation, each
individual word was compared to all the other words using the fast dynamic
time warping algorithm with a radius set to 10 (Salvador and Chan, 2007).
Dynamic time warping is the process of finding the ideal warping between
two time signals. That is, it takes a signal and a template and matches
the time steps in the signal to their closest matches in the template. The
restriction is that a time step in the signal cannot be matched to a time step
in the template that comes before the previously matched time step in the
template. So, if a 10-item sequence is being mapped to a 6-item template,
and the 5th item in the 10-item sequence was matched to the 2nd item in
the template, the 6th item in the 10-item sequence cannot be matched to the
1st item in the template. At the end of this process, the distance between all
of the matches is summed to output a sequence-level cost value of how far
apart the sequence is from the template.

The dynamic time warping algorithm is similar to the edit distance or
Levenshtein distance calculation used for phonological neighborhood den-
sity. Like Levenshtein distance, dynamic time warping calculates addition or
deletion costs at each time step and accumulates the costs as it processes fur-
ther. The difference is that additions and deletions are explicitly penalized
with a discrete value in Levenshtein distance calculations. Whereas, in dy-
namic time warping, the cost for an addition or deletion is determined based
on the similarity between frames. For this reason, dynamic time warping
is more general and allows for more nuanced comparisons between frames,
when working with continuous values. In the present analysis, the MFCC
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frames take on real values, so dynamic time warping is a fitting choice for the
comparisons, while also maintaining some similarity to phonological neigh-
borhood density.

The dynamic time warping process for the number of items in the present
analysis involves a large number of calculations and would take an unreason-
able amount of time to process using the full dynamic time warping process,
so the fast dynamic time warping algorithm with a radius of 10 was used,
which produces a good approximation of the dynamic time warping output
(Salvador and Chan, 2007).

After comparing each word to all the other words, the mean of its dis-
tance to all the other words was calculated. This mean value was taken
as an indicator of the word’s acoustic distinctiveness, or how distinct it is
overall from the other words in the lexicon. So that the calculations were
carried out in a reasonable amount of time, they were performed using the
DynamicTimeWarp.jl package (Fowler, 2016) in the Julia programming lan-
guage (Bezanson et al., 2017).

It was found that one recording, for the word “accounts” had an excessive
period of silence at the end, so it was left out of the analysis. Additionally,
a handful of words were recorded but not used in the experiment, so they
were used in the process of calculating the acoustic distinctiveness for other
words, but those words’ acoustic distinctiveness values themselves were not
able to be used in the modeling process.

2.1.2 Statistical analysis

Theoretically, the general relationship between phonological neighborhood
density and acoustic distinctiveness is inverse. Where phonological neigh-
borhood density is high, acoustic distinctiveness is low, and vice-versa. The
intuition behind this relationship is that acoustic distinctiveness is a measure
of how unique a word is from other words, whereas phonological neighbor-
hood density is a measure of how similar a word is to other words. This
trend is represented in a linear correlation value of -0.47 between these two
variables.

This acoustic distinctiveness values were used as a predictor of response
latency in generalized additive mixed models (GAMMs) using the mgcv (Wood,
2011) and itsadug (van Rij et al., 2017) packages in the R programming lan-
guage (R Core Team, 2018). Response latency was measured from stimulus
offset so as to factor stimulus duration out of the respone latency values
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Table 1: Table of coefficients for the GAMM

edf Ref.df F p-value

Trial number 8.12 8.79 127.54 < 0.001
Phonological uniqueness point 5.42 6.38 303.99 < 0.001
Log COCA frequency+1 6.52 7.60 238.01 < 0.001
Log acoustic distinctiveness 4.84 5.99 1148.64 < 0.001

themselves. Only correct responses that were made after stimulus offset
were kept. Only correct responses to real words were used in the analysis.
51 words were outliers in terms of acoustic distinctiveness (beyond the 0.998
quantile) and were trimmed from the data as well. Manual inspection of a
handful of these words suggested they had untrimmed periods of silence in
the recording, meaning that their inflated values of distinctiveness were likely
due to extraction errors, providing a strong motiviation to remove them from
the data. 95,902 responses remained for the modeling process.

The model fitting process consisted of a forward-fitting for the random
structure, where complexity was gradually added based on the f restricted
maximum likelihood score (fREML), as suggested in van Rij et al. (2017).
The fixed effect structure was fit analagously but gradually removing com-
plexity. This backward fitting process resulted in a smooth term for age and
a parametric term for sex being removed from the model for not contribut-
ing to the overall fitness of the model. Age was also checked as a parametric
term, but it was not found to contribute significantly enough to the model
fitness to warrant the extra complexity. The table of coefficients for the fixed
smooth terms can be seen in Table 1. The random effect structure consisted
solely of random intercepts by subject. By-item random intercepts were not
included in the model because the models took a prohibitively long time
and amount of RAM to run. Additionally, most items had four or fewer
responses, so there would be not much explanatory power added by having
the by-item random intercepts, and the potential for overfitting increases.
(Some words had only one response once the data were subset, so a by-item
random intercept would end up being the exact response time value itself,
which is overfitting.)

The smooth for uniqueness point could be taken as linear, and it is are
generally decreasing. That is, for words where the uniqueness point is later,
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the response time is faster. For trial, there is a sharp decrease at the begin-
ning of the experiment, and then a more gradual decrease as the experiment
goes on. In general, participants get faster throughout the experiment. In
part, this may be due to a learning effect. this this means that the further
into the experiment the participant is, the faster they respond. The smooth
for frequency is nonlinear, and the trend changes for highly frequent words.
For low and middle frequency words, the higher the frequency, the faster the
response. However, for higher frequency words, the higher the frequency,
the slower the response, which may be due to increased competition at the
higher frequency values.

A plot of the smooth effect of acoustic distinctiveness can be seen in
Figure 1. The relationship is virtually linear and monotonically decreasing.
That is, words that are acoustically similar to other words are responded to
slower. Analogously, words that are acoustically distinct from other words are
responded to faster. In the frame of competition, words with many potential
competitors (words that are acoustically similar to many other words) take
longer to be responded to, and words with few potential competitors (words
that are more acoustically distinct) take less time to be responded to. This
is the same trend as neighborhood density shows, at least for English.

The concurvity was also calculated for this model. The results may be
seen in Table 2. Concurvity is a generalization of collinearity for nonlinear
trends (Wood, 2011). Since GAMMs model nonlinear trends, it is appropriate
to use concurvity here. It uses the same scale as correlation, where a value
of 0 means no concurvity and a value of 1 means indiscernability from other
smooths. The values taken were the estimate values, which are supposed to
be between the pessimistic and optimistic values the concurvity calculation
outputs (Wood, 2011). These values are hard to interpret, and the only
consensus seems to be concern for values near to 1. As such, in this model,
there do not appear to be issues of concurvity among the smooth terms.

There are some implications about speech processing to be gleaned from
the effect of acoustic distinctiveness in the model presented here. First, it
would seem that competition effects can be modeled using data derived from
physical measurements. The MFCC templates used for calculating acous-
tic distinctiveness are grounded in the acoustic production of the speaker,
and each coefficient in each frame of the template indicates frequency in-
formation. If competition were to arise at an abstract level—like that of
phonemes—acoustic distinctiveness should not have had a great effect in
modeling the response latencies because it would not connect directly to the
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Figure 1: Smooth effect for the log acoustic distinctiveness value. The y-axis
is the respone latency after backtransformation from log scale. The x-axis is
the scaled and centered log acoustic distinctiveness.
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Table 2: Estimate concurvity table for smooths in the GAMM model. A
value of 0 indicates no concurvity and a value of 1 indicates indiscernability
of the effect among other smooths.

Estimate concurvity

Trial number 0.02
Uniqueness point 0.21
Log frequency+1 0.08
Log acoustic distinctiveness 0.28
Subject 0.00

cognitive information that is producing the competition effect. However,
since acoustic distinctiveness produced a competition-style effect, its effect
in this model challenges the the idea that lexical competition only plays out
among candidates that are represented by phoneme strings.

Overall, these results show that calculating acoustic distinctiveness by
comparing sequences of MFCC values produces a useful predictor for re-
sponse latencies in the auditory lexical decision task. However, there is a
potential shortcoming of using the stimuli themselves as the template against
which the stimuli are compared against to find their acoustic distinctiveness.
Namely, it is not very ecological to the prior experience of a listener. Re-
gardless of what the structure of the lexicon may be or what the mechanisms
of speech processing are, an adult listener will have experience with a wide
variety of speakers. New stimuli will be compared against this summed expe-
rience, rather than just the experience relating to the speaker themselves. As
such, the next analysis focuses on comparing templates created from different
and multiple speakers and assessing their viability in modeling spoken word
reocgnition, with attention also paid to how they compare to phonological
neighborhood density.

2.2 Analysis 2

To answer the question of how using different and multiple speakers to create
the templates for calculating acoustic distinctiveness and how these compare
to neighborhood density, acoustic distinctiveness values were calculated sim-
ilarly to those in Analyss 1. However, additional speakers’ recordings were
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Table 3: Example comparisons for finding time series medoid.

Series 1 Series 2 Series 3

Series 1 0 5 100
Series 2 5 0 10
Series 3 100 10 0

used. These were the previously mentioned young female and older male
speakers. Both of these speakers’ recordings were used as template sets for
determining the acoustic distinctiveness of the stimuli used in the lexical de-
cision task. Additionally, two other sets of values were calculated by using
the average of the recordings of the words. One set consisted of averages
between the female and older speakers’ recordings, and the second set con-
sisted of averages between all three speakers. The motivating hypotheses
were that (1) if the acoustic representation is abstracted enough away from
the raw signal, using a different speaker’s recordings as the templates should
also provide an indication of lexical competition, and (2) that since a listener
has multiple experiences with a given word’s auditory shape, using an aver-
age of multiple speakers’ recordings should produce a template that is closer
to a listner’s cognitive representation, providing a better index than a single
speaker would.

2.2.1 Calculating average sequences

The averaging process comes from Petitjean et al. (2011) and Petitjean et al.
(2014), which was designed for time series data generally. As with the distinc-
tiveness calculations, this process begain by converting each of the recordings
to MFCC-by-time sequences. Next, the medoid of the sequence was found.
The medoid is a central tendency—like the mean and median—for a set of
data. The element in the data set which is closest to all the other elements
in the set is taken as the medoid. For a set of time series, it is time series
that is closest to all the other time series. For example, given the dummy
sequences and distances in Table 3, Series 2 would be taken as the medoid
because the sum of its distance to Series 1 and Series 3 is smaller than the
sum of Series 1’s distances and the sum of Series 3’s distances. The distances
are found using the dynamic time warping algorithm’s ouptut.
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Once the medoid is found, it is taken to be the time series that will be
modified to find the average sequence. Subsequently, the medoid is mapped
onto the other series with dynamic time warping. In effect, each frame of the
current average sequence is mapped onto relevant frames in the other time
series. After each frame in the current average has been mapped frames in
all the series being averaged, each frame in the current average sequence is
replaced by the average (or barycenter) of all the frames that were associated
with it. The process of mapping to relevant frames and taking the average
is repeated iteratively for a user-specified number of times, and the resulting
sequence is taken as the average. It has been shown that this process will
converge to final values with enough iterations (Petitjean et al., 2011, 2014).
For this analysis, 10 iterations were used for finding each average.

2.2.2 Statistical analysis

To compare the effect each of the different methods of calculating the acous-
tic distinctiveness had on the model, the model from Analysis 1 without
the acoustic distinctiveness value was taken as a baseline. The acoustic dis-
tinctiveness values from different calculation methods were then added to
the model separately, and the changes in the fREML values were observed.
The fREML is a measure of model fitness that penalizes model complexity.
Using this measure helps ensure that the terms used in the model actually
contribute meaningfully to the fitness of the model. Lower values are bet-
ter. The decreases were calculated using the values from the GAMM models
themselves. They are presented visually in Figure 2.

There was a decrease in fREML for each method used for deriving the
templates to compare the audio simuli against, providing support for both
hypotheses. The second hypothesis was not fully supported since using the
young male speaker’s recordings as the templates produced the greatest in-
crease to model fitness. This is not completely unexpected, though, since
his recordings are naturally going to be closer to each other than they are to
other speakers’ recordings.

By a large margin, neighborhood density improved model fitness the least.
However, based on the fREML value, it was still a significant increase in
fitness from the baseline model. Both templates that included the speaker
of the stimuli for the lexical decision task incresed the model fitness the
most. This result is not surprising, since the speaker’s productions themselves
should be the best templates for the words, since they should be the closest
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to his speaking patterns.
What is more striking is that using the older male speaker’s productions

as templates does not improve model fitness to the same degree as the other
acoustic distinctiveness values. It suggests that the recordings from the older
male speaker are different enough acoustically from the stimuli used in the
experiment so as to not be good templates for the stimuli. By extension,
the larger increases to model fitness from the other methods of template
calculation could be taken to indicate more acoustic similarity between the
templates and the stimuli. Support for this idea is also found in that using
the younger speaker’s recordings as the templates to compare the stimuli
against produces the greatest increase to model fitness.

Concurvity was also checked for each model, and the results were similar
to those in Analysis 1, with the exception that the model that used neigh-
borhood density instead of acoustic distinctiveness, the concurvity value for
neighborhood density was 0.34, and the uniqueness point was 0.40. This sug-
gests that there is a moderate degree of overlap in terms of what uniqueness
point and neighborhood density are predicting in the model. It is difficult
to interpret concurvity values absolutely until they approach 1. The rela-
tively higher concurvity in the model with neighborhood density suggests
that neighborhood density is partially explained by other predictors in the
model, but it is unlikely that it this level is high enough to raise concern
about the model.

In the face of these observations, it is clear that acoustic distinctiveness
increases model fitness more so than does neighborhood density. Overall, this
means that acoustic distinctiveness is a better predictor of response latencies
in the model. Treating acoustic distinctiveness as an indicator of lexical
competition, these results imply that competition is better measured using
acoustic representations that are closer to the observed data than phoneme
sequences.

What’s more, the results suggest that this measure can be generalized to
be used in other studies. Because various speakers or combinations thereof
can be used as templates for the stimuli in the experiment without destroy-
ing the effect of acoustic distinctiveness, a database could be produced that
contains a large number of templates. A researcher could then use input
their stimuli to a program that will compare the stimuli to the items in the
database and give back their acoustic distinctiveness results.

It is still unclear, though, if acoustic distinctiveness values represent the
same kind of information as neighborhood density does. To answer this
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Figure 2: fREML differences between acoustic distinctiveness calculations
and neighborhood density. All the changes were decreases, indicating better
model fit. Larger values indicate greater increases to model fitness.
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question, a third analysis was carried out that examined the degree to which
neighborhood density further increased model fitness for models that already
had distinctiveness values as predictors.

2.3 Analysis 3

To answer the question of whether acoustic distinctiveness and neighbor-
hood density represent similar information, a third analysis was performed.
The motivating hypothesis is that if neighborhood density and acoustic dis-
tinctiveness are inherently measuring the same thing, adding neighborhood
density to a model that already has acoustic distinctiveness should not sig-
nificantly increase the model’s goodness of fit.

2.3.1 Statistical analysis

Phonological neighborhood density was added to each of the models from
from Analysis 2, and the changes in the fREML values were observed. The
results of this analysis are presented in Figure 3. Overall, neighborhood
density contributed significantly to improving the fitness of all the models,
which is taken as evidence against the motivating hypothesis for this analysis.

Note that the level of increase was greatest for the model using the
older male speaker’s recordings as the template for acoustic distinctiveness.
There is a parallel trend in Analysis 2 where using the older male speaker’s
recordings as the templates increased model fit the least compared to the
other acoustic distinctiveness values. This implies that using the older male
speaker’s productions as the templates for the the younger male speaker’s
productions is a worse fit, potentially due to there being greater acoustic
differences between the two speakers.

A similar trend is seen in the concurvity values. Table 4 shows the esti-
mate concurvity values for the model using the older male speaker recordings
as templates and the model using the young male speaker recordings as tem-
plates. The better acoustic models produced from the young male result
in higher concurvity values for neighborhood density and uniqueness point.
Whereas, the less well matching acoustic models from the old male result in
lower concurvity values for neighborhood density.

In sum, the more the acoustic representation contained in the templates
matches the stimuli, the more that acoustic distinctiveness explains parts
neighborhood density’s domain. Further against the hypothesis motivating
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Figure 3: fREML differences between acoustic distinctiveness calculations
and neighborhood density. All the changes were decreases, indicating better
model fit. Larger values indicate greater increases to model fitness.
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Table 4: Estimate concurvity values for the models using the young speaker
and the old speaker to create the templates.

Young male Old male

Trial number 0.02 0.01
Uniqueness pt 0.44 0.42
Log freq+1 0.17 0.17
Log ac distinctiveness 0.25 0.16
Nbrhd density 0.40 0.37

Subject 0.01 0.01

this analysis, it may not be possible for acoustic distinctiveness to completely
subsume neighborhood density’s effect, since they appear to be measuring
different phenomena, even if there is some overlap. This could be due in
part to how neighborhood density’s reliance on phonological, phoneme-based
representations is multiple degrees divorced from the observed acoustic signal,
or that phonological neighborhood density’s reliance on phonemes may cause
it to be confounded by the effects of orthography. It may also be due to
phonemic representations capturing some level of abstractness that is not
currently captured in the way that acoustic distinctiveness is calculated. The
remaining question is whether what remains of neighborhood density’s effect
in the presence of acoustic distinctiveness is relevant to speech processing at
all.

3 General discussion

The overall results presented in the current study are that acoustic distinc-
tiveness is a significant predictor of response latencies in auditory lexical
decision, acoustic distinctiveness is more predictive than phonological neigh-
borhood density in statistical models, and there is a degree of overlap be-
tween what acoustic distinctiveness and phonological neighborhood density
are measuring. The overlap, however, did not seem to rise to the level at
which it could be said that neighborhood density and acoustic distinctiveness
are measuring the exact same thing. And, in reality, they aren’t. Acoustic
distinctiveness is measuring an overall tendency of how easily a given word
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can be distinguished from other words on the basis of acoustics. Phonologi-
cal neighborhood density is providing an index of approximately how many
words there are that sound like a given word. Both of these measures can be
interpreted as some indication of lexical competition, though.

Looking back to initial investigations using phonological neighborhood
density, the focus was on examining the role of the structure of words on
lexical competition (Luce, 1986). Structure was taken to be sound patterns,
which can have a variety of representations. It could be a sequential string
of phoneme-like units, a series of acoustically derived values, the intensity by
time signal itself, etc. Nevertheless, because the one-edit-away measure of
similarity was seemingly chosen simply as a tool to model lexical competition
and not strictly due to theoretical constraints as to how words are represented
in the mind, it stands to reason that what is important in any index of lexical
competition is that it models trends seen in the data. This is as opposed to
necessitating that such an index rest on the same theoretical underpinnings
as phonological neighborhood density. As such, it does not appear that what
is understood about lexical competition based on phonological neighborhoods
or otherwise similar sounding words is tied directly to the characteristics of
phonological neighborhood density itself.

It emerges then that the decision of whether to use phonological neigh-
borhood density or acoustic distinctiveness should be based on the merits of
what assumptions the measures make about lexical representation and what
trends they can predict. To begin, it is instructive that acoustic distinctive-
ness and phonological neighborhood density do not share a high level of cor-
relation. Were this to be the case, it would suggest they are operationalizing
the same characteristics of words as each other, and are interchangeable for
non-theoretical reasons. Rather, replacing phonological neighborhood den-
sity with acoustic distinctiveness must be predicated on theoretical grounds.
These grounds may be representational, in that they concern the nature of
lexical representations; applicability, in that one of the measures can explain
something another can’t; statistical, in that one of the measures provides a
better fit to the data; or feasible, in that the measure can be calculated eas-
ily and efficiently by researchers without being experts in high-performance
computing.

Concerning representational grounds for using either acoustic distinc-
tivenes or phonological neighborhood density, the principal question is how
a word is represented in the mind. Phonological neighborhood density relies
on an assumption that lexical entries take the form of strings of phonemes.
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Whereas, acoustic distinctiveness makes an assumption that lexical entries
have some sort of acoustic representation. Inherently, acoustic distinctive-
ness is less well-defined as a concept because acoustic representations can
take many forms. In the context of the present study, the acoustic represen-
tations were taken as sequences of MFCC frames, or otherwise sequences of
frequency information. Such an acoustically based representation is similar
in essence to those proposed in Port and Leary (2005), Baayen et al. (2016),
Ramscar and Port (2016), and Port (2010).

In spoken word recognition, it is definitional that the acoustic signal itself
will come to bear on how words are recognized. The question is whether it is
necessary for discrete symbols—phonemes—must be recognized, or if some
less abstract, acoustic features suffice for representing items in the lexicon.
The averaged MFCC sequences represent a level of abstraction between the
raw signal and phonemes. For any given word, provided a sufficient number
of observations of a word are available, it is likely that the average sequence
would converge toward one sequence to represent that word, such that the
addition of new observations similar to the representation do little to alter
the average sequence. In other words, the sequence is stable. At that point,
each element in the sequence could be treated as a symbol with a numerical
specification. Note as well that such an acoustic representation of words
allows for neighborhood anlyses in the style of phonological neighborhood
density if sections of the sequence are treated as symbols.

The reverse, however, is not true; a phonemic representation of words in
the lexicon can not be expanded easily into an acoustic representation of the
words. And this point leads into the question of the applicability grounds,
since the processes of creating the acoustic specifications associated with
acoustic distinctiveness are transparent and can be mapped to explaining a
variety of lingusitic phenomena.

One such example is when a listener adapts to an unfamiliar speaker.
Using the acoustically specified lexical entries, this process can be modeled
as adding additional observations to the lexical entries that must be incor-
porated into the representation. This process can still be modeled when
assuming phonemes as the units of lexical representation, possibly as the lis-
tener adjusting the weights they have in the connections they have between
acoustic information and phonemes. However, it is unclear how this process
might be simulated or modeled effectively. The conclusion in Ohala (1996)
highlights some difficulties and potential remedies to finding invariant cues
for phonemes, but to date, the constellations of cues that unvaryingly lead
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to the perception of phonemes are unknown. Additionally, though deep neu-
ral networks have seen some success in phoneme recognition. For example,
Graves and Schmidhuber (2005) have achieved competitive performance in
classifying 25 ms frames as belonging to English phoneme classes, Zhang
et al. (2016) have found success in determining the phonemes in an acous-
tic signal without using time-aligned transcriptions to trian, and Kelley and
Tucker (2018) have used phoneme classification to build a forced alignment
system. However, it remains unclear what these networks are learning and
how to use them as models of cognitive processes.

An example of where it is not possible to use phonological neighborhood
density is the analysis of perception relating to homophones. By definition,
homophones will have the same phonemic representation. However, Warner
et al. (2004), Gahl (2008) (renalyzed and confirmed by Lohmann (2018)),
and Seyfarth et al. (2018) have found production differences in homophones.
Additionally, Warner et al. (2004) have also found that listeners are sensitive
to these production differences. Any study wishing to examine the perceptual
differences of homophones will not be able to use phonological neighborhood
density to tease out these perceptual effects, since it will be the same for the
homophone pairs. Acoustic distinctiveness, however, has the potential to be
used in such studies because it allows for more granular representations of
words that can be sensitive to differences in production. It would also be
applicable to studies examining the effects of studies on perception, where
phonological neighborhood density could not.

Turning now to statistical grounds for using one of phonlogical neigh-
borhood density and acoustic distinctiveness over the other, the case for
acoustic distinctiveness is stronger. The analyses presented in the current
study show acoustic distinctiveness to be more predictive than neighborhood
density in a variety of different methods of deriving the acoustic represen-
tation. Whether using the stimuli themselves that were being presented to
the participants, recordings of the same words by different speakers, or aver-
ages of recordings of the words, acoustic distinctiveness increased model fit
more so than did neighborhood density. There was as well a non-insignificant
amount of concurvity in the models once both acoustic distinctiveness and
phonological neighborhood density were included in the model. The parts
of phonological neighborhood density that were not subsumed by acoustic
distincitveness may not have to do with lexical competition, either. Since
phonological neighborhood density uses letter-like units, it is possible that
part of the observed effects of phonological neighborhood density are due to
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the effects orthography, which has been found to have profound and varied
effects on speech perception in a variety of studies, such as in Ziegler and
Ferrand (1998), Perre and Ziegler (2008), Taft et al. (2008), and Mukai et al.
(2018).

In terms of feasibility, phonological neighborhood density has some factors
in its favor. It is conceptually easier to program, especially compared to the
average sequencing procedure. It is also used with textual data, which is
easier to manipulateand gather, and it takes less hard drive space. However,
some steps can be taken for acoustic distinctiveness to make it more accessible
to researchers. It can be incorporated into software packages, which will
give researchers an accessible programatic interface for calculating it on their
stimuli. Additionally, a database could be released for researchers to look up
the acoustic distinctiveness for words, or to upload their stimuli to and have
them compared against an acoustic database. Those steps still need to be
taken for acoustic distinctiveness to be as feasible and convenient a variable
as phonological neighborhood density is.

Thus, on representational grounds, where acoustic representations of lex-
ical items can provide more transparent explanations of phenomena than
phonemic representations; scope grounds, where acoustic distinctiveness seems
applicable to a wider variety of experiments performed in phonetic and lin-
guistic research; and statistical grounds, where acoustic distinctiveness con-
tributes more to model fitness than phonological neighborhood density and
does not seem to be confounded with the effects of orthography, it is possi-
ble that phonological neighborhood density can be supplanted with acoustic
distinctiveness.

Future work should focus on improving the acoustic representation used
to model the lexical representation of words. There should also be work done
on providing an acoustic specification of phonemes. These specifications can
be used to ensure that acoustic representations without phonemes can explain
the general tendencies that phonemes do. In doing so, lexical representations
can be specified from observed, physical data, rather than hypothesized units
like phonemes.

It will also be necessary to use acoustic distinctiveness in modeling spoken
word recognition in non-English languages. The results presented in the
present study are intended to be applicable cross-linguistically, but it cannot
be determined whether these results are indeed valid across languages until
future experiments are conducted.
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4 Conclusion

The present paper began by discussing the activation/competition metaphor
in language comprehension and discussed a common operationalization of
competition, phonological neighborhood density. It was observed that acous-
tic distinctiveness is a stronger predictor of competition effects than phono-
logical neighborhood density is, even if they don’t completely account for the
same information.

Though competition has often been reasoned about using abstract forms,
there is now cause to consider reasoning about competition in terms of acous-
tics. Lexical representations may encode acoustic information, rather than
the mind merely using acoustics to get to the lexical representations. Addi-
tionally, the timing of the onset of competition effects may be earlier than
once thought, and future models of spoken word recognition will need to be
intentional in how they depict competition.

If nothing else, the advent of large databases of speech and more powerful
computers has ushered in the possibilitty of refining the notion of phono-
logical neighborhoods. The initial concerns of Luce (1986) may finally be
addressed, and characteristics of acoustic data can play a larger role in un-
derstanding the comprehension of spoken language, as they should.
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