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Abstract

This thesis presents application-specific finite element analysis program, 

JIFEA (Jar Impact Finite Element Analysis), as an efficient and accurate tool 

for solving ID  wave propagation representative of Jarring in a drilling 

assembly.

Custom elements were created to model the pipe, Coulomb damping, viscous 

damping and axial contact. The response of each element was verified against 

analytical solutions and two commercial FEA programs, ANSYS and ADINA 

showing good agreement. Three time-integration methods were implemented 

in JIFEA, Central Difference, Newmark and Wilson and verified with ANSYS 

and ADINA but with JIFEA performing 30 times faster.

A sample drill string model was created to test the elements and solution 

strategy. Viscous and Coulomb damping rapidly decayed the wave response. 

Jar placement offers one of the few controls to alter the generated force 

magnitude.

JIFEA's speed and accuracy makes it a perfect tool for performing this type of 

analyses.
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Chapter 1

INTRODUCTION

The drilling industry is decades old and from the beginning, problems of the 
assembly becoming stuck down-hole were common. Specialized tools, known 
as Drilling Jars, were developed to introduce impulse waves to free the stuck 
drill string. Jars generate high-amplitude impulses that propagate throughout 
the drill string. Jar placement within the drilling assembly affects the 
magnitude and duration of these waves.

Structural and dynamic analyses have long been used to assess the stress or 
force in drilling components for the oil and gas industry. Specifically, dynamic 
analysis is used for a variety of reasons such as determining fatigue limits to 
increase tool and/or pipe lifecycle or used to increase tool efficiency.

Many wave propagation calculation techniques have been employed from 
simple hand calculations to advanced computer simulations. A common 
analysis technique for solving wave propagation is time-history integration. 
This technique is used to assess the force (stress) present in the drilling 
assembly as a function of induced vibration and/or time.

Time-history analyses are used to study Jar wave propagation attempting to 
refine placement and maximize Jarring effectiveness. Finite Element Analysis 
(FEA) is one of the most common methods for solving these problems. FEA is 
also used to verify or calibrate other methods. Alternate methods are 
commonly developed as commercial FEA is considered slow for field use and 
requires extensive training. As the literature shows, commercial FEA methods 
are generally not used beyond verification, calibration or research purposes 
for wave propagation in drilling applications.

Application-specific FEA software is superior to commercial FEA software, 
eliminating extensive training requirements and increasing solution 
performance. Application-specific software produces direct Jar placement 
results and requires minimal user input. The wave propagation model of 
Jarring has specific boundary conditions such as friction and damping that are 
implemented to minimize user input. The solution strategy and integration 
controls are fixed, preventing integration settings from generating erroneous 
or divergent solutions. Result interpretation is built-in, producing placement 
information such as forces at the stuck point.
This thesis demonstrates that application-specific FEA can be used to 
efficiently and accurately solve nonlinear one-dimension (ID ) wave 
propagation and is broken into two components:

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1. The numerical methods typically used in commercial applications are 
reviewed and implemented in an application-specific program, known 
as JIFEA (Jar Impact Finite Element Analysis), and verified using 
analytical methods and commercial FEA.

2. Different integration techniques are used with various control 
parameters, friction, damping and Jar location to demonstrate 
sensitivity to each.

The thesis is structured to introduce the concepts systematically. Chapter 2 
presents detailed background into Jars and application in the drilling industry 
and covers the literature review for analysis methods and application. Chapter 
3 introduces the numerical methods used in the application-specific software, 
in the alternate numerical methods and in the manual (hand) calculations. 
Also, comparisons between JIFEA and commercial FEA software are shown to 
verify accuracy. Chapter 4 shows solution sensitivity to each controlling factor 
of the application-specific program and a brief case study on Jar placement. 
Note: Chapters 3 and 4 were originally written as stand-alone papers and as 
such have separate introductions and summaries specific to the respective 
chapter. Finally Chapter 5 provides an overall conclusion and recommended 
further research.
Considering the diverse use of dynamic analysis, efficient and accurate FEA 
code created for specific purposes will have industry application.
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Chapter 2

LITERATURE REVIEW

2.1 Background
Many of the terms used in the drilling industry may be foreign to people 
outside the industry. This section provides detailed background of the terms 
and drilling concepts that are used throughout this thesis.

2.1.1 Drill string
A drilling assembly is a long assembly of pipe joined end-to-end by threaded 
connections1. The pipe outside and inside diameters are chosen to provide 
weight for the bit, strength for the drilling application and other application- 
specific requirements. Figure 2.1 shows a basic drilling assembly with a 
typical Jar placement and location of the stuck point.

The diameter of the pipe is small compared to its length and when assembled 
acts like a string. Therefore, the assembly is commonly known as the "drill 
string".

2.1.2 Drilling Jar
The Drilling Jar is a specialized tool designed to generate large stress waves in 
the drill string. It  consists of a locking mechanism that enables the driller to 
stretch the drill string into tension. This is often referred to as strain or energy 
storage stage.

Once the tension exceeds the lock-load the Jar travels a free-stroke length 
(gap) allowing each end of the drill string to accelerate towards each other. 
These ends are typically referred to as the hammer for the end connected to 
the upper pipe and the anvil for the lower portion. Figure 2.2 shows a 
depiction of the hammer and anvil. This is the energy release stage.
When the hammer and anvil strike, momentum is transferred creating an 
impulse wave that travels in both directions in the pipe. The amount of 
momentum transferred is a function of the stiffness and mass attached to 
both the hammer and anvil. As such, Jar placement can be used to modify the 
impulse wave amplitude and duration.

The process of pulling the Jar into tension, overcoming the lock-load and 
transferring the momentum is called "Jarring". This process is repeated until 
either the string is freed (ideal) or the stuck string is otherwise bypassed.

1 There are other methods but threaded connection are the most common.

3
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The wave propagation problem involves compression waves travelling in a 
tensile pre-stressed pipe. Reflections and refractions cause the wave to split 
and change sign. Therefore, tension waves could travel into the tensile pre­
stressed pipe potentially causing local yielding2.

2.1.3 Shock tool
The "Shock Tool" is another common tool in a drilling assembly. It  is designed 
to remove vibration generated at the bit from propagating up to the lighter 
weight pipe. Drilling vibrations can cause fatigue failures or reduce the rate of 
penetration (ROP) of the bit. Typically, the shock tool is placed as low in the 
drilling assembly as possible, which places it in close proximity to the Jar.

The shock tool is basically an axial spring with stiffness proportional to the 
weight on bit (WOB). This enables the shock tool to operate within the 
maximum displacement range (fixed stroke length) for the desired drilling 
conditions. Essentially, the shock tool is a vibration isolation system.

The response rate3 of a shock tool may hinder its performance or 
effectiveness as a vibration isolation method.

2.1.4 Stuck point
In Jar impact analysis, the key result of interest is the force response 
generated at the stuck point. By definition, the stuck point is the location 
where the drill string becomes stuck.

As the drilling progresses, several down-hole occurrences can cause the drill 
string to become stuck. The mechanisms that cause sticking of the drilling 
assembly are categorized as follows:

1. Mechanical. The sticking mechanism is considered mechanical when 
the formation is directly responsible for restraining the pipe. For 
example, when rock from the formation collapses in around the pipe or 
foreign matter, such as cuttings, is caught between the pipe and the 
formation.

2. Hydraulic. The mechanism is considered hydraulic when the drilling 
fluid is responsible for restraining the pipe. For example, if cuttings 
present in the drilling-fluid pack around one side of the pipe and 
prevent fluid from separating the pipe from the formation, the fluid 
pressure builds on one side of the pipe effectively pushing the pipe 
against the formation causing friction.

2 Materials typically exhibit higher yield strengths under rapidly applied loads. Strain rate effects 
are out of the scope of this paper.

3 Response rates of tools are out of the scope of this paper. However, this type of dynamic 
analysis is well suited for response rate studies.

4
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Two other terms are commonly used when discussing Jars and the waves 
produced: Impact and Impulse. Their use is somewhat inaccurate in strict 
definition but convenient to describe the different types of wave propagation.

Impact has come to mean a large amplitude force applied over a very small 
time frame; whereas Impulse means a moderate force applied over a longer 
period of time. It  is commonly said that impacts are better against mechanical 
sticking and impulse is better for hydraulic sticking. The difficulty in defining 
the difference is the magnitude of the forces and the times in which they act 
are relatively similar and therefore subjective. Jars are tools that have certain 
conditions that must be met in order to use them. These conditions restrict 
the Jar placement within the drill string limiting how much "Impact" vs. 
"Impulse" is generated.

As the following study will show, most of the waves of interest occur within 
the first half-second or less. The amount of viscous damping and coulomb 
damping will further limit the control on what type of force is produced by the 
Jar.

2.1.5 Reason for analysis
As stated previously, the waves generated by a Jar travel in both directions 
and are impeded by several factors. Understanding how waves travel through 
the drill string is paramount in determining the most effective location to 
place the Jar in the drilling assembly.

Initially simple hand-calculations were employed to determine Jar placement 
based on simple impulse-momentum relations and stress-wave propagation. 
As technology advanced, more and better methods were used to increase the 
accuracy and add complexity to the computations.
One of the most significant contributions was finite element analysis (FEA) 
performed by Kalsi, Wang et al in 1985. Kalsi used ANSYS commercial FEA 
software to evaluate the Jar impact analysis. At that time, the solution took 
approximately 3 hours to solve with that version of the software on the 
computing power of the day (Kalsi et a!., 1985). Kalsi demonstrated an 
advantage to performing the analysis using FEA but the solution time and cost 
of computers and software made commercial FEA impractical for most end- 
users.

Kalsi et al required alternate methods to perform the impact analysis 
producing similar results but much faster if impact analysis was going to be 
used as a design and field placement tool. Kalsi, Wang et al and Eustes set 
out to find such methods. ANSYS was used by both Kalsi (Wang) and Eustes 
to verify and calibrate their respective methods (Eustes, 1996; Wang et al., 
1990).
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2.1.6 Modelling difficulties
The wave propagation problem representative of drilling conditions has 
several difficult features to handle numerically.

1. Friction. The action of friction distributed along the drill pipe is a 
discontinuous function. The elements are created to capture the 
discontinuities as an idealized function of displacement.

2. Damping. The damping term in d'Alembert's principle (equation of 
motion) adds complexity to the integration and additional elements to 
the model.

3. Contact. Contact is used to represent the Jar in the model. The ratio 
of closed stiffness to open stiffness is very large making contact 
elements highly discontinuous.

The modelling utilizes all of these features creating a very discontinuous and 
consequently nonlinear problem. Iterative solvers and integrators are required 
to solve the system of equations. The elements are implemented with 
continuous functions and used to represent a discontinuous system response.

2.2 Literature Review
Wave propagation and mode superposition analysis have been used 
extensively in the drilling industry for decades to evaluate the effect 
vibrations have on the drill string, other tools or even the rig. From the 1960's 
on, methods have evolved from simple hand calculations producing force 
distributions to advanced nonlinear finite element analysis producing force, 
stress and kinematics at any location within the string.
Dynamic analysis is either structural dynamics or wave propagation. In 
structural dynamics, the system is commonly excited by harmonic or periodic 
forcing functions. The system response will exhibit a limited number of 
frequencies. For these types of analysis, depending on the frequency or 
number of frequencies of interest, a spectral (frequency domain) analysis may 
be preferred. For wave propagation problems often several frequencies are 
represented and the forcing function is not harmonic or periodic. These types 
of problems are more commonly solved with time-history techniques.

Many have used wave propagation to determine potential problems within the 
drilling assembly or to maximize specific efficiencies. The review that follows 
looks generally at the application of wave propagation but focuses on analysis 
techniques. The review is presented in ascending chronological order.

2.2.1 Drill string wave propagation analysis
Skeem developed one of the first and most wide-spread methods for 
determining the drill string dynamics during Jar operations (Skeem et al., 
1979). This method was dubbed the "average force" method. Wave 
propagation and basic impulse-momentum principles were applied to a

6
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simplified drill string model to develop an analytical formulation of Jarring 
efficiency. Some of the assumptions were: The drilling assembly consisted of 
drill pipe and drill collar only, the stuck point was represented by a fixed 
boundary and the entire drill collar instantly reached the contraction velocity. 
The results from this work indicated that Jar placement could be altered to 
maximize the force produced or time over which the force was applied at the 
stuck point.
One of the first uses of FEA was performed by McDaniel (McDaniel, 1982) to 
verify empirical data from a simple test of a jar in a 267 foot drilling 
assembly. The method used the Newmark beta method to integrate the 
equation of motion and featured a bilinear element to represent hammer-anvil 
contact. The nonlinear behaviour was handled using a brute-force method 
rather than an incremental solution strategy such as Newton-Raphson. The 
FEA implementation's response was subject to oscillations due to the brute- 
force approach. However, with the appropriate element length and time step 
size, the application-specific FEA did verify the empirical results showing that 
the numerical techniques provided a viable and valuable tool for Jar 
placement impact analysis.

One of the most cited works on transient analysis of the drill string under Jar 
loads is that by Kalsi (Kalsi et al., 1985). The analysis was performed using 
ANSYS and incorporates viscous damping, friction (stuck point) and contact 
(Jar). These features require nonlinear solution techniques available in 
ANSYS. Several of the works cited herein reference this paper and treat it as 
the definitive FEA work on the analysis of Jar wave propagation. For this 
reason, the model used to test and verify JIFEA is Kalsi's model. The cost of 
commercial FEA packages such as ANSYS and the speed of the solutions at 
the time (1985) made field use impractical.

Lerma used Skeem's method in conjunction with Kalsi's results to determine 
the effect heavy-weight drill pipe had on the Jarring Operation (Lerma, 1985). 
The analysis showed that the mass-stiffness relationship altered the Jarring 
efficiency thus requiring adjustment to Jar placement and concludes by 
stating that more mass closer to the Jar increases the magnitude of the force 
propagating. Therefore, running the Jar in the drill collars is preferred. 
However, the results were based on the physics of a specific model and 
changing the parameters will alter the results.

Askew presented a paper to the Society of Petroleum Engineering outlining 
Jar placement refinement using FEA results in combination with experience 
and static calculations being accurate and practical for field use (Askew, 
1986). The paper indicates that finite element analysis was used to perform 
the Jar placement study but specifically states that the details of the software 
used will be omitted. It  is possible that the software was proprietary FEA code 
created for Jar placement -  force propagation analysis. No further information 
could be found at the time of this writing. One might consider the 
performance and cost of commercial nonlinear FEA methods impractical for 
common application to Jar placement motivating the development of
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alternative methods. Fast and simple methods of solving the wave 
propagation problem were required to produce a field-friendly method to 
solve Jar impact.
Dynamic analysis was used by Lubinski to assess the fatigue of drill pipe for 
Sec. 12 of API RP7G. Computer analysis was used to assess the dynamic 
loading of drill pipe during tripping (Lubinski, 1986). No specific mention is 
made regarding the software used to perform the analysis other than to say: 
"two computer programs have been developed ..." From the discussion it 
would seem the programs use some form of wave-tracking similar to that 
presented by Skeem.

Kalsi, Wang et al revisited the Jar placement/wave propagation problem by 
developing a wave-tracking method (Wang et al., 1990). The previous efforts 
proved tedious due to analysis time using commercial software. Wave- 
tracking uses the basic premise of wave propagation as Skeem used but with 
recursive computer algorithms to track all reflections and refractions of the 
propagating waves. The method consisted of a numerical model of an impulse 
introduced into a linear assemblage of pipe and tracked as the wave travelled 
through the pipe. Every encounter with a cross-sectional area change would 
split the wave, some being reflected and some being transmitted (Clough & 
Penzien, 1993).

The program results were verified against ANSYS and the wave-tracking 
method then developed into a commercial Jar placement/analysis program 
called JarPRO™. The initial input wave was a square pulse with the magnitude 
computed from basic impulse-momentum relationships and compared to 
incremental root-mean-square magnitudes of the wave generated by ANSYS. 
The results were found to be reasonable enough to warrant the creation of 
JarPRO™. Wave-tracking produced considerably faster solution times making 
iterative Jar placement possible for field use.
Kalsi produced an information pamphlet outlining the JarPRO™ software and 
demonstrating the capabilities ("JarPRO™”, 1990). JarPRO™ features an 
intuitive user interface, robust drilling assembly creation and produces a 
results matrix with force and kinematics information for the entire assembly. 
Also, it produces similar results compared to ANSYS but in a fraction of the 
time, solutions in a few seconds rather than several minutes. Further work by 
Kalsi Engineering produced a new version of the wave-tracking method where 
nonlinear effects such as friction and damping were added. Again, ANSYS was 
used to calibrate the results. At the time of this writing, documentation on the 
verification or implementation of the nonlinear results was unavailable.

Rather than determining the force produced at the stuck point, Aarrestad 
determined the force waves propagating up through the drill pipe (Aarrestad 
& Kyllingstad, 1994). This could be used to assess the forces acting on the rig 
or to determine the fatigue loading of the drill pipe. This paper demonstrates 
the necessity of performing dynamic analysis on the full drilling assembly 
even if only in one dimension. Kalsi's FEA model used a reduced model size to
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decrease the solution time. In order to analyze the forces reaching the rig, a 
full model with a longer solution time must be used. An efficient and accurate 
application-specific solution may facilitate such analyses.
Eustes also considered the wave propagation problem of Jars but considered 
it from a purely numerical analysis view. Very complex elements (spectral 
elements) were used to represent the pipe but the complex nature meant 
very few were required. Elements represent a Fourier series and could only 
represent frequencies or modes proportional to the number of terms in the 
series. Eustes used ANSYS to re-create the work of Kalsi and Askew and to 
calibrate the spectral analysis. As mentioned earlier, spectral analysis is well 
suited for harmonic or periodic responses but not necessarily for general wave 
propagation. Eustes concluded that the method produced similar results to 
ANSYS but in a fraction of the time. However, spectral analysis is not 
meaningful until the results are transformed into time-history data. 
Furthermore, the numerical model was found conditionally stable to the 
damping coefficient4.
The spectral model proved to be very fast to solve the system but very 
temperamental to damping and solution control parameters. Slight changes in 
either would produce large changes in the response or cause numerical 
instability.
A case history was performed to assess the affects jar accelerators had on the 
stuck drill string (Broussard et a/., 2004). As part of the analysis, proprietary 
jar analysis software was used. This software was based on the wave-tracking 
method (Wang et al., 1990). Broussard makes no mention in the publication 
as to why the proprietary Jar software was used. However, it may have been 
for two reasons, first, the simplified user input facilitates extensive case 
studies; and second, the cost of the software and learning time is significantly 
less than that of commercial analysis software such as ANSYS. Other software 
such as JIFEA could have been used that is equally accurate and efficient to 
perform the dynamic analysis.

Companies that produce drilling Jars, such as National Oilwell, publish 
guidelines on Jar placement and Jar operation ("Basic jar placement", 1995), 
("Drilling jars", 1994). These documents discuss the energy transfer that 
occurs from the hammer-anvil contact within the Jar and provide an overview 
of how energy travels from the Jar to the stuck point. They do not, however, 
discuss the wave propagation in detail but do provide cursory results from 
JarPRO™ analyses.

2.2.2 Other dynamic analyses
The literature shows wave propagation used for several purposes other than 
Jar placement.

4 Information conveyed by co-worker.
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Stockard discusses case histories performed on Pile Driving in the Gulf of 
Mexico (Stockard, 1980). Wave propagation is used to study the dynamics of 
Pile Driving and considers the impact generated from the ram, the damping of 
the pile cushion, the dynamics of the pile and both the friction and damping of 
the soil. The software used to perform the analysis is described as a Wave 
Equation Program, and from the discussion is likely some form of wave- 
tracking program. The analysis is a ID  wave propagation problem with 
damping and friction. Piles are modelled as an elastic ID  structure with 
friction acting at the soil-pile interface. In some models, contact is used to 
model the hammer-pile interface while in other models a time-based periodic 
forcing function is used. The top of the pile may have a cushion attached 
represented by a lower stiffness and viscous damping.

As part of an extensive drilling design optimization, Gibson discusses the use 
of dynamic analysis to improve Jar firing efficiency (Gibson eta l., 1992). The 
overall drilling optimization is to improve Openhole completions of North Sea 
horizontal wells. The optimization is performed using drill string stability 
analysis.
Reid describes the use of dynamic analysis to prevent MWD damage from drill 
string vibration (Reid etal., 1993). The analysis produces a critical speed that 
is used as running criteria for the drilling operations. The use of Critical Speed 
Analysis (CSA) is recommended as a pre-drilling analysis to better predict the 
expected dynamics. However, the paper also mentions "judicious post­
processing" as a requirement of proper application of the CSA method. 
Application-specific software could be implemented with the post-processing 
requirements built-in streamlining the solution process.

Mabsout presents a paper on the simulation of pile driving using finite 
element analysis (Mabsout & Tassoulas, 1994). The numerical model 
presented is a two dimensional model making use of the axisymmetric nature 
of dimensions. The analysis is a nonlinear time-history analysis similar to that 
performed by JIFEA. The use of the dynamic analysis is used to determine the 
drivability of concrete piles under various hammering and soil conditions. For 
this case, the hammer is represented by a periodic forcing function rather 
than modelling the contact between hammer and pile.
Elnaggar discusses a similar nonlinear model used to analyze the dynamics of 
piles (Elnaggar & Novak, 1994). Axial dynamic analysis is used to determine 
the bearing capacity and load-deflection relationships for the pile. The model 
allows for nonlinear response decay through damping and soil hysteresis. 
These effects can be modelled using combinations of spring stiffness, damping 
and friction.

Nonlinear dynamic analysis is used to study the scattering of waves at 
nonlinear joints between two rods (Nagem & Williams, 1994). Nonlinear joint 
analysis can be added to wave propagation analysis and used for response 
prediction, non-destructive testing and space structures. The discussion
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indicates the joints are analyzed by using nonlinear damping, nonlinear 
friction and nonlinear weak springs.

The full transient analysis of a bend-housing BHA enables the determination 
of the time-dependent bit side load (Jianhong & Taihe, 1996). Finite element 
analysis was used to determine the speed depended loading on the BHA when 
used with a bend-housing. The results were used to specify drilling 
parameters to control trajectory and prevent fatigue. Two or three 
dimensional analysis was employed due to the geometry but these effects can 
be applied to a one dimensional model to simulate the results. The paper 
describes the difficulty in solving these types of analysis and mentions 
application of harmonic spectral analysis as an alternative simplifying the 
solution. Application-specific software is viable for solving these types of 
problems producing the required results.

Badoni discusses pile-to-pile interactions (Badoni & Makris, 1997). The focus 
of this paper is on the pile-to-pile interaction of waves travelling through the 
soil. Wave propagation is used to determine the force entering the soil from 
each pile then visco-elastic soil properties and plain-strain wave theory is 
used to model the wave propagation through the soil. The analysis was 
performed to assess the effect pile motions have on one another.

Aadnoy performed a friction analysis on long-reach wells (Aadnoy et al., 
1998). Analytical equations are developed to assess the friction in various well 
geometries. These equations produce a total well friction distribution on the 
drill string.

Longitudinal wave attenuation in rods was presented by Thorp (Thorp et al., 
2001). The waves were effectively filtered out by use of piezoelectric bands 
placed along the rod. The application of this filtering technique is interesting 
for application in drilling to remove vibration from sensitive regions of the drill 
string.

Several other applications for wave propagation analysis were found during 
the literature review but none other than the references listed addressed 
development of application-specific software or specific relationships for 
damping and friction. A few other references typical of documents found are : 
(Fernandez et al., 2003), (Li & Li, 2002), (Dawson & Paslay, 1984).
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2.3 Chapter 2 figures
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Chapter 3

SOLUTION STATEGIES FOR FINITE ELEMENT ANALYSIS OF 
NONLINEAR WAVE PROPAGATION

"... progress in design of new structures seems to be unlimited" (Bathe, 
1967).

By today's standards Bathe's statement may appear an extreme view but it is 
truer today than ever and progress will continue expanding.

Jars have not changed much, although, advancements in analysis and design 
improved the technology and quality. The use of computers and techniques 
such as Finite Element Analysis (FEA) enabled designers to better explore 
geometry variations, materials and part interactions.

The evolution of Drilling Jars largely stems from manufacturers and operators 
improving their understanding of Jar component behaviour and Jar -  drill 
string interaction. Wave propagation analysis is used to refine Jar placement 
within the drilling assembly. The analysis is typically used on a comparative 
basis so absolute forces are not necessarily important.

This thesis focuses on waves introduced into a system and the numerical 
methods used to analyze them. Several manual methods have been published 
describing approximations to wave propagation based on impulse-momentum 
relations. With advancements in numerical methods and computer /  software 
technology, more sophisticated techniques were developed and used to 
analyze the waves. Commercial FEA was used to calibrate or verify these 
methods. However, it was not used directly to perform the analysis.
Commercial FEA packages ADINA and ANSYS were used to re-create 
previously documented models and some of the alternate methods such as 
spectral analysis and wave-tracking were reviewed. The key numerical 
techniques for time integration (Central Difference, Newmark and Wilson) and 
nonlinear solutions (full or modified Newton) were evaluated for 
implementation in custom finite element software specifically designed to 
solve a nonlinear one dimensional wave propagation problem.

3.1 Model Description
The waveform and amplitude of the waves are a function of the Jar's position 
within the drill string but also, the characteristics of the well bore and fluid 
surrounding the pipe.

In order to perform the desired wave propagation analysis, the basic 
modelling approach must be defined. This includes the definition of element
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type, storage of the stiffness, damping and mass matrices and determination 
of the solution strategy.

The drill string is idealized as a ID  wave propagation problem with viscous 
damping, coulomb damping (friction) and contact. The Jar is modelled as a 
single ID  contact element representative of the hammer-anvil couple. The 
hole-drag is modelled as friction elements tied from ground to the pipe, 
distributed along the drilling assembly. Damping from fluid shear is also tied 
from ground to the pipe, distributed along the drilling assembly. Figure 3.1 
shows a depiction of a three-dimensional drilling assembly and the 
corresponding one-dimensional representation.

The model used to assess the wave propagation is a ID  assembly of link1 
elements. A link element represents simple tension and compression forces 
with no large displacement, large strain or nonlinear material effects. It  is 
used to capture the longitudinal waves as they propagate along the length of 
the model. A simple derivation of this element is in Appendix A. Given the ID  
nature of this problem, the element is assembled inline to remove any 
requirements of 2D degrees of freedom. Well curvature contributions were 
added by imposing the effects onto the ID  geometry. Details of these effects 
are discussed in the Model Features section. The simplicity of this element 
suits the application as the internal element forces required for the nonlinear 
analysis are easily computed without integration. See Bathe (Bathe, Chap 6, 
1996) for more information on computation of internal element forces.

The assembled elements form a symmetric tri-diagonal matrix. To reduce the 
memory requirements, a condensed matrix storage was developed. Only the 
diagonal and upper off-diagonal terms are stored. Without efficient memory 
usage the data storage is significant. For example, 1000 link elements require 
a matrix 1001 by 1001. In the condensed format, the storage is only 1001 by 
two.

A solver based on simple Guassian elimination was written to solve the 
condensed system of equations. This solver is used for static linear, static 
nonlinear, dynamic linear and dynamic nonlinear analyses.

The nonlinear aspects principally come from friction (hole-drag) acting along 
the length of the model. Friction acts to limit displacement and remove 
energy from the system. The distribution of friction comes from a simple 
rationalization of the hole-drag. This provides a nonlinear distribution of a 
nonlinear effect. The friction elements are connected from each node of the 
pipe assembly to ground. Therefore, all the relative displacements are related 
to a zero displacement at ground.
Contact is another nonlinear aspect in the model. Contact elements are highly 
nonlinear but as only one element is used to model the Jar hammer-anvil 
interaction, the effects are limited. Furthermore, the element was designed to

1 ANSYS uses the term "link" for a basic tension/compression element; other texts and software 
use alternate terms such as spar element or truss element.
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reduce the nonlinear severity (see Model Features section). Contact is 
modelled for two reasons: first, it provides the ability to generate a more 
natural waveform2 from the model; and second, it allows the adjacent section 
of pipe to come out of contact.

In some FEA analyses the waveform is assumed and input as a time-function. 
Modelling the contact with the simple contact element used here enables a 
non-uniform wave to propagate.
Many models in the past have made the assumption that once the contact is 
made the bodies remain in contact for the rest of the analysis. In the contact 
description used here, the contact surfaces are allowed to contact and 
separate as the wave travels. This allows subsequent impact to occur between 
the hammer and anvil generating more waves. Previous models analyzed 
using similar techniques demonstrated good agreement with empirical data 
(McDaniel, 1982).
The Jar is represented by the contact element. The element is placed at the 
desired location of the Jar within the drilling assembly. Several analyses are 
performed varying the location of the Jar to determine the Jar location that 
generates maximum force at the stuck point. The stuck point is modelled 
either as a constrained node for which the reaction force history provides 
required force information or as a friction element allowing the stuck point to 
slide if the incoming force is large enough and re-stick once the wave has 
passed. Re-sticking occurs if down-hole conditions still exist after the initial 
Jarring. The stuck point friction is large enough that the initial pull force does 
not free the drill string. Therefore, the stuck point slips only when incoming 
waves have sufficient magnitude to overcome friction. This provides the 
ability to assess the time at which the stuck point is mobilized and form other 
placement acceptance criterion different from wave magnitude. Another 
possibility is to model the stuck point as a friction point that once free, it 
remains free. The purpose of Jarring is to free the string but it doesn't always 
occur upon first attempt. This type of stuck point makes developing a 
placement acceptance criterion difficult, either the total distance of slip or the 
total time of slip could be used.
Initially a link element, stiffer than the drill string link elements, is used to 
bridge the contact element. The assembly is pulled into tension using a static 
nonlinear solver. This provides the initial displacements in the model. The 
"bridge element" is removed and the dynamic nonlinear solver is employed to 
solve the system. Microsoft Excel® is used to analyze the displacement field 
and the response of the system; in particular, the location of the stuck point, 
the Jar and the Rig. The desire is to minimize the force acting at the Jar and 
Rig and maximize the force at the stuck point.

2 The waveform is a function of the mesh density. As the mesh density increases, the waveform is 
more accurately represented but at the cost of solution speed.
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3.2 Time integration Techniques
Many of the schemes used in Finite Element Analysis (FEA) are derived from 
Newton Backward, Central and Forward methods. Other schemes are formed 
from polynomial approximations to functions and some are formed by 
simulating the Taylor Series Expansion in different ways from the Newton 
methods mentioned above. In any case, the fundamental goal is to provide an 
integration technique that is fast and accurate but also stable. In the work 
that follows, the evaluated methods were chosen because of to their 
commonality in FEA and numerical texts.

Many of the derivations and techniques presented were referenced from 
Bathe (Bathe, 1996). However, the information was verified in other texts 
such as Tedesco (Tedesco et a!., 1999), Logan (Logan, 1992), Clough 
(Clough & Penzien, 1993) and Chapra (Chapra & Canale, 1988).

The methods are broken down into two basic types with two alternate forms 
of each.
Explicit Methods -  These methods are generally straightforward as the 
function is evaluated at known locations and/or previously solved locations. 
The primary advantages of explicit methods are that they are fast and simple 
to understand and implement. However, if the differential equations being 
integrated are stiff in nature or have abrupt changes in the response, explicit 
techniques generally require a small time step size (Tedesco et al.r 1999), 
thus increasing the total number of steps to complete the integration. In 
many wave propagation problems, the time step size must be considerably 
smaller than the highest frequency (period) of interest. Many authors suggest 
the time step size be at least l/10 th the shortest period (Logan, 1992). The 
step size must at least be smaller than the critical time step size, which is 
discussed in detail in the Central Difference section. Also, the element length 
must be shorter than the wavelength of interest. ANSYS theory manual 
suggests 2 0  elements per wavelength.
Implicit Methods -  These methods are more complex to implement and are 
iterative in nature (Tedesco et al., 1999). They are implicit as the 
determination of the next step (left hand side) is dependant on a guess of the 
next step for a function evaluation on the right hand side. Hence, the solution 
is iterative and often the convergence is dependent on the quality of the initial 
guess. The main advantage of implicit methods is that they can generally 
handle stiff differential equations or abrupt changes in the response. The main 
disadvantages are that they must iteratively solve each integration step and 
are more difficult to implement. Note that when solving a linear system, only 
one iteration is required per time step.
Semi-Implicit Methods -  These are a class of methods that are implicit but the 
function evaluation on the right hand side is computed directly rather than 
iteratively. The computation captures the behaviour from the past and current 
steps to the next (future) step.
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Sinole-Step Methods -  Explicit or Implicit methods may be single-step. This 
means the determination of the next step is solely based on the previous 
step. The advantage is that these methods are simpler and require fewer 
function evaluations. However, by only including the previous step, they 
generally have significant error associated with the results.

Multi-Step Methods -  Explicit and Implicit methods can be multi-step which 
means that the determination of the next step is based on more than just the 
previous step. Some schemes may include contributions from the previous 
two or three steps. While these methods have a lower error, they are not 
self-starting. As such, they are often used in conjunction with a single-step 
method as a predictor-corrector pair or require a "special" starting sequence.
Predictor-Corrector Methods -  These methods combine the single-step and 
multi-step techniques (Tedesco et al., 1999). The predictor is a single step 
method used to compute the first few points then a multi-step algorithm is 
used from these points to determine the next point more accurately. This 
process can be used to start the multi-step method or can be employed 
continuously as the single step is usually faster than multi-step methods 
switching where the response is more abrupt.

Choosing the numerical integration schemes for a given problem is somewhat 
subjective given the vast number of schemes available today. For the purpose 
of this work, three schemes were chosen for evaluation: The Central 
Difference method, The Newmark method and The Wilson 0  method.

Selection of these methods was a choice of the author. The Central Difference 
method was chosen because of its simplicity and ease of implementation and 
to evaluate the speed and accuracy of an explicit method compared to the 
implicit methods. The Newmark Beta method (referred to as Newmark for the 
remainder of the text) is the primary integration technique used in 
commercial Finite Element Analysis (FEA) packages such as ANSYS and 
ADINA. The Wilson 0  method was found while researching integration 
schemes. It  has similar characteristics to the Newmark method and is 
discussed in several books including Bathe and Tedesco, McDougal and Ross 
(Bathe, 1996; Tedesco et al., 1999). The primary difference between the 
Wilson method and the Newmark method is that the Wilson method is based 
on a linear variation in acceleration while the Newmark method employs a 
constant average acceleration. Clough (Clough & Penzien, p330, 1993) 
suggests that the linear acceleration method is more accurate than the 
constant average method. In the ADINA theory manual, Bathe indicates that 
the Wilson 0  method is not suitable for certain types of elements such as 
multi-layered shell elements. In this work, only ID  link, friction, damping and 
contact elements are used so this integration technique is applicable.

Additional consideration should be given to the numerical stability of the 
methods. Texts such as Bathe and others in the bibliography discuss the 
stability of the numerical methods chosen for consideration in this thesis.
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The equation of motion forms the backbone of the analysis being performed. 
Equation 3.2.1 shows the equation of motion at time = t. If  the initial and 
boundary conditions are known, then the initial acceleration can be computed 
from equation 3.2.1 at time £=0 shown in equation 3.2.2.

{'■°Jc}= [m ] '  ({'-0# } -  [C]{'-V}) 3.2.2

The calculation of the initial acceleration can be used to start any of the 
following methods.

3.2.1 Central difference method
The central difference method was chosen as a representation of an explicit 
method but also as a common integration method used in commercial codes. 
Simplicity makes it popular for many numerical integration requirements, 
however, not without trade-offs. Central Difference is based on substitution of 
the first and second displacement derivatives with the Newton central 
difference approximation. Re-writing the equation of motion with these 
approximations provides the future displacement in terms of the current and 
previous displacements. A partial derivation is in Appendix C. The Central 
Difference method is more sensitive to time step size than implicit methods 
and is not well suited for stiff differential equations. In the wave propagation 
analysis considered in this thesis, nonlinearity comes from friction and 
contact. The behaviour is very discontinuous and represents a severe 
nonlinearity. In theory, implicit codes with equilibrium iterations are better 
suited to handle such system behaviour.

3.2.1.1 Linear derivation
Typically in FEA, the equation being solved is [Af]{x}= {#}, where [AT] is the 
global stiffness matrix, {x} is the nodal displacement vector and {ft} is the 
applied load vector. From the central difference method, the equation being 
solved is Ia^ J { x}=  The linear central difference method takes the
following form:

Bathe et al present a method of implementing the central difference, which 
demonstrates that no matrix inversions are required, with lumped mass and 
damping, the method performs a series of matrix and vector multiplications. 
However, since JIFEA has efficient storage and solution techniques and 
includes damping, the full method is employed. Normally the presence of the
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damping matrix requires the full method (Bathe, p771, 1996). In this case, 
the damping elements connect the pipe nodes to ground. This creates a 
diagonal damping matrix similar to that of the lumped mass matrix so the full 
implementation is not required. Use of the concise Central Difference method 
would only reduce the number of operations by approximately a factor of two. 
The Central Difference method requires a much smaller step size than the 
implicit methods thus the advantage may be lost for this model. The 
verification case required a step size 1 0  times smaller than the implicit 
methods.

Time step size
An important consideration of using an explicit method is time step size At . If  
the time step is too large then the solution is likely to be erroneous and/or 
unstable. The basis for choosing a suitable time step is to consider the 
application and expected response characteristics. Normally the time step is 
chosen smaller than the shortest natural frequency, however, when a ID  
analysis of a bar is performed with lumped mass assumptions and no 
damping, the ideal time step size is the critical step size (equation 3.2.4) 
(Bathe, p815, 1996). Using the central difference method in this case with the 
ideal effective element length yields the exact wave propagation solution. 
Bathe and Tedesco, McDougal and Ross both discuss the critical time step size 
and the effective element length (Tedesco et al., 1999). Bathe suggests using 
the natural frequency (natural period) as the critical time step in the following 
manner:

T
At < 1sterf = — , where TN is the system natural period 3.2.4

it

The analysis will capture the natural frequency of the system but higher 
frequencies are lost. If  higher frequency response is desired then the step size 
must be smaller.

Element length
The effective element length is also a function of the natural period. A wave 
with a wavelength of 10 mm would not be captured by elements 500 mm in 
length. As a general rule of thumb, Bathe suggests that the element length be 
no less than 1 /10* the wavelength of interest (ANSYS suggests 1 /20*). The 
solution time becomes very large if high frequency response is desired 
because of the number of elements combined with the time step size. The 
element length requirement can be thought of as an analog to digital 
conversion. A sine wave cannot be adequately described with 3 points. 
However, it can be reasonably modelled with 10 points and better with 20 
points. Bathe suggests that the effective length of an element should be the 
wave speed in the given material times the time step size.
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3.2.1.2 Nonlinear derivation
The primary difference in the nonlinear and linear derivations is the 
calculation of the element's internal forces. In equation 3.2.5, the stiffness 
matrix can no longer be multiplied by the nodal displacements to obtain the 
force because the stiffness itself is a function of the displacement. Therefore, 
equation 3.2.1 is written as:

{ ' f )  is defined as the element's internal forces at time t. The internal force is
calculated from the nonlinear effects and is updated at every time step. Since 
the displacement at time t  is known, this method equates to a simple forward 
marching in time. Depending on the nature of the nonlinearity, the time step 
size may have to be much smaller than the critical time step discussed above.

3.2.2 Newmark method
The first and principle implicit method of interest is the Newmark method. 
Based on a constant average acceleration, the equations forming the method 
are used to directly increment time steps in linear problems or with the 
addition of equilibrium iterations for incremental nonlinear analysis. As 
mentioned earlier, if desired, the acceleration, {x}, can either be assumed
zero or calculated at f =  0 using equation 3.2.2. The Newmark method 
performs well for the verification case whether the initial acceleration is 
specified or assumed zero.

3.2.2.1 Linear derivation
The Newmark method is a multi-step semi-implicit method designed to solve 
second order differential equations extending the constant average 
acceleration assumption. The multi-step aspect comes from the use of the 
displacement, velocity and acceleration at the previous time step. The velocity 
and acceleration are essentially from solutions of displacement further back in 
time.
Newmark Beta is the second "version" of Newmark's method. The notation 
used in this derivation is taken from Bathe (Bathe, 1996). The following 
assumptions are used:

{'+a,jc}= {'*}+ |(l -  <?){'*}+ 8  {,+A,x}J^ 3-2-6

3.2.7
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When S = V 2 and a  = V 6 the above equations produce the linear 
acceleration method and when S = V 2  and a  = V 4  the above equations 
produce the constant average acceleration method (trapezoid rule) (Clough & 
Penzien, 1993). The parameters are chosen for speed, accuracy and stability 
of the integration method. Newmark is unconditionally stable (solution does 
not grow unbounded for given time step size) when 5  > V 2  and a  > V4 . The 
parameters are often set for specific types or classes of problems. For ID  
wave propagation, the integration parameters are set to mimic the constant- 
average-acceleration method.

Unlike the Central Difference method, the equation of motion is considered at 
time t + A t. The full derivation is in Appendix D.

This method is implemented in both ANSYS and ADINA commercial FEA 
codes. During the implementation, one feature to note is that the Newmark 
method requires fewer vector calculations per step than the Wilson method. 
However, the Wilson method seems to provide a more accurate solution, 
especially the velocity and acceleration components. In the Verification 
section comparisons between the various methods and the analytical solution 
are shown.

Z.2.2.2 Nonlinear derivation
In order to develop the nonlinear variation of the Newmark integration 
scheme two factors must be considered. First, the stiffness matrix, [Af], is 
now a function of the displacement, {*}. Second, the system needs to be 
solved incrementally in order to determine equilibrium at any given time step. 
There are several techniques that can be employed to perform the equilibrium 
iterations, however, the following derivation uses the full Newton-Raphson 
method. The discussion on the Newton-Raphson method shows a variation on 
the full method.
Equation 3.2.8 can be modified to allow for an incremental approach 
necessary for implementing the full Newton-Raphson iteration technique.

3.2.8

3.2.9

And with the relationship:

3.2.10
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Several texts including Bathe take a  = 0.25 and 5 = 0.50. By using these 
values, the terms in the equations simplify yielding the constant-average 
acceleration method. Bathe's derivation of the nonlinear Newmark method is 
based on the constant-average method, dropping the integration coefficients 
and only uses the modified Newton-Raphson method (Newton method). 
However, some codes such as ANSYS use slightly different default values (a  
= 0.250625 and 8  = 0.5050) (Ansys theory manual, 2003) for these 
coefficients. The following derivation keeps the general format for the 
equations with the full Newton method. The entire derivation is in Appendix D.

{'+A,Jc(i)}= a0({'+A,jr(A-1)} -  {'*}+ * 2  fa } "  * 3  { '4  3.2.11

3.2.12

The final form of the nonlinear Newmark method is:

k J = 4 w ] + 4 c ] + h * ' ,1‘ "|

U ) ~

l c H { ^ (k-l)}~ M ) "  a4 {'*}“  «5 {'*})

Note that these equations are very similar to the linear counterpart except 
that the displacement is in terms of the incremental displacement and the 
internal element force {f } has been added to resolve equilibrium. This 
describes the full Newton-Raphson technique. A modified Newton method is 
also presented later in the text.

3.2.3 Wilson O method
The Wilson 0  method is very similar in implementation to the Newmark 
method. It  is an implicit method that has an integration parameter (0 ) that 
acts to relax the computations controlling stability. Fundamentally, it is based 
on the linear acceleration method (0  = 1). The advantage over the standard 
linear acceleration method is that for 0  > 1.37 the Wilson method is 
unconditionally stable (Bathe, p777,1996; Clough & Penzien, p331, 1993).

3.2.3.1 Linear derivation
The following equations describe the acceleration, velocity and displacement 
at time = t +  v in Bathe's notation (Bathe, p777, 1996).
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3.2.16

3.2.17

3.2.18

Notice that the acceleration is a linear interpolation assuming 0 < r  < 6  A t . The
velocity is the integration of the acceleration with respect to t  and the 
displacement is then determined by integrating the velocity. This method is 
based on solving the system at t + 0 A t. The load vector uses a linear
extrapolation to get the load at t + O A t.

The rest of the derivation is in Appendix E.

3.2.3.2 Nonlinear derivation
The derivation of the nonlinear Wilson method is in Appendix E. The nonlinear 
concepts were taken from Bathe. Similar derivations are found in other texts 
such as Tedesco (Tedesco et al., 1999). Bathe's discussion of the nonlinear 
implicit schemes uses the trapezoid rule (simplification of Newmark) in the 
derivation (Bathe, p826, 1996). The full Wilson derivation is completed here 
to implement the method in JIFEA. The behaviour of the Wilson method is 
similar to Newmark but marginally slower for the same step size. Using the 
full Newton iteration, the Wilson method can be expressed as:

[M ]{,+* ‘“ x }+ [ C ^ * x}+  [ r f 4* * * } -  { ' * * *  } 

{ '* * £ } = { ' / * } +  {'/?})

3.2.19

3.2.20

3.2.21

3.2.22
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The main difference in computational effort between Wilson and Newmark is 
the number of vector calculations that take place every time step. The linear 
extrapolation adds a few extra operations as does calculating displacement 
from the equation of motion at time t + 0 A t . The following three equations
show the equation of motion solved at t + 0 A t.

Such that the final form is

}- {'+eA,F(*-1}}

Since \ r and {p} are at time t + 0 A t , the calculation of {to} produces 

displacements at time t + 0 A t.  These displacements are then used to 
calculate velocity and acceleration at time t + 0 At for each equilibrium 
iteration.

The acceleration, velocity and displacement at t + At must be calculated using 
the kinematics calculated at /  + for each time step. Clough's statement
that the linear acceleration scheme is more accurate is supported by the 
verification tests performed here, (see Verification section). An important 
consideration in this method is that equilibrium is sought for time t +  0 At 
then the displacement, velocity and acceleration results interpolated to t + At.

3.3 Model Features
Since the focus of this work is to understand the solution strategies of 
nonlinear systems, it is necessary to review the components that add
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nonlinearity to the system and the mechanisms to solve them. Subsequently 
the numerical techniques and their respective controls will be reviewed.

3.3.1 Newton-Raphson method for nonlinear equilibrium
As mentioned previously, the Newton-Raphson or Newton method is an 
iterative technique used to determine the equilibrium of the system. For the 
static linear solution of an FEA system, equation 3.3.1 is solved. The time 
shown on the load vector in a static analysis is just a convenient variable to 
allow for different load steps. In a dynamic analysis, time would truly 
represent time.

The Newton method requires balance between the external forces and the 
internal forces as shown in equation 3.3.2. Bathe (Chapter 6 ) describes, in 
detail, the computation of the internal forces. In this case, the determination 
of internal forces is straightforward as the link element has no nonlinear 
properties. The friction and contact elements are handled more carefully and 
are discussed later in this section.

The full Newton method uses an iterative approach in solving equation 3.3.1 
as shown in equation 3.3.3.

Several texts on nonlinear analysis or numerical analysis, such as Bathe 
(Bathe, 1996), show the complete derivation, rate of convergence and 
stability for the Newton method. The appeal of the full Newton method is the 
quadratic rate of convergence.
The modified Newton method simplifies the solution process by only updating 
the stiffness matrix at each time step rather than at each equilibrium 
iteration.

3.3.1

3.3.2
{■/?}-{ 'f } = 0

3.3.3

With the relation:

3.3.4

3.3.5
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For systems that do not exhibit severe nonlinearities, a modified method may 
be preferred. Systems that have severe nonlinearities generally require the 
full method for good convergence rates and accuracy.

For either the full or the modified methods, the following initial conditions are 
used.

3.3.2 Friction element
Friction is the primary nonlinear feature of the wave propagation problem. 
Friction elements are connected to every node to resist motion over the 
length of the model. The friction element is depicted in Figure 3..

Using a true stick-slip description causes severe nonlinear behaviour and can 
contribute to oscillations in the response. To help smooth the response an 
alternate element is formulated. Figure 3.3 shows the response used for the 
friction element. Initially, when the element is defined, there is a known 
displacement between node i and node j. The stiffness of the friction element 
is defined by the maximum friction force and a tolerable amount of 
displacement. This displacement is referred to as the critical displacement as 
any amount of displacement over this limit is defined as slipping. Evaluating 
the incremental displacement provides the indication of direction.

As the element is loaded in tension, the two nodes move apart such that the 
response is along the sloped part of the friction curve until the critical 
displacement is reached. Then, as the incremental displacement passes the 
critical displacement, the element switches behaviour modes from sticking to 
slipping. If  the incremental displacement continues to increase, the element 
continues to slip. When the incremental displacement changes direction, this 
indicates that the incremental load has dropped below the maximum force 
and the element unloads along the sloped portion of the friction curve. The 
behaviour of this element is analogous to elastic-perfectly plastic material 
characteristics. Maximum friction force is used in place of the yield stress and 
the friction stiffness Fn** /  Ucrtt is used for the elastic modulus. The amount of 
slip that occurs is similar to the plastic strain. Therefore, this friction element 
is described in terms of force and displacement instead of stress and strain. 
JIFEA assumes node Nj is "ground" so the displacement is always zero. This 
simplifies the computation of the slip between the nodes.

{'+V 0) }= { '* } 3.3.6

3.3.7

3.3.8

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3.3.3 Friction distribution
The friction data provided by most drilling operators is very limited. Though 
techniques exist to measure the hole-drag accurately, cost, time and lack of 
requirement typically means the total friction is measured as the difference 
between the string weight and the force required to insert or extract the 
drilling assembly from the well. A distribution of the total friction (hole-drag) 
was needed to define the friction acting in each friction element. A 
rationalization was created to take the total friction and distribute it using 
several factors: the length of the string, the size (diameter) of the string and 
the inclination of the string from vertical. Each of these factors was used to 
create a weighted distribution. The effects were normalized to ensure the total 
sum of the ratios equalled one (total friction was not exceeded).

The following system was used to distribute the total friction:

R PipeLength,
L‘ TotalAssemblyLength

PipeDiametert 
MinAssemblyDiameter

R j = l+ sin (^ ) 3.3.11

P-d, = t t —:------- . .   —  3.3.10

R, xRn xR.
Ri =

3.3.12

Frictioni = RfXTotalFriction yielding friction per 
element

The index, /', specified is the pipe number and "n" is the total number of pipes. 
It  could be altered to work over the number of elements but JIFEA will work in 
conjunction with the Jar placement program previously written, (see Appendix 
F) so the simplification will be employed. The previous placement software 
uses a basic summation of forces to provide an operation range. JIFEA is then 
used to find the optimal location within the range.

In the above formulas, RL is the length ratio, Rq is the diameter ratio and Ri is 
the inclination ratio (zero is vertical). The length is a linear distribution of the 
total hole-drag along the length of the string. The diameter ratio penalizes the 
pipe for having a large diameter. This concentrates more friction along the 
larger diameter pipe. The use of the inclination ratio essentially maps some of 
the directional effects from curved wells onto the ID  model. Intuitively, the 
pipe lying on its side in a horizontal section will have more friction than a pipe 
in a straight vertical section of the hole. The ratio used is simplistic but
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comparisons between crudely field-measured hole-drag and this distribution 
indicated reasonable agreement
The friction can be evenly divided over the elements that make up the pipe. 
For example, the number of pipes in a 2000 m well is typically 200. If  each 
pipe is divided into 1 0  elements the friction is first calculated for a specific 
pipe then evenly distributed over each element. The friction applied in the 
friction element will encompass half the friction from each adjoining element. 
Figure 3.4 shows how the friction is taken half from each adjacent element to 
form the total friction applied to the friction element. The left-leaning hatched 
(orange) region represents half of the friction on the left element and the 
right-leaning hatched (green) region is half the friction on the right element. 
The distribution is left over the pipe length rather than element length since 
actual Jar placement analysis typically uses very few elements to represent 
the pipe length.

The model is assembled such that no friction is applied to constrained nodes 
or to nodes that extend beyond the well (free end).

3.3.4 Axial contact element
The Jar is represented in the model by a simple axial contact element (point- 
to-point) created using a penalty method (Ansys theory manual, 2003). The 
contact between two nodes is defined as Kpipe/1000 for out of contact and 
1000*Kpipe when in contact. Kpipe is the stiffness of the base pipe where the 
Jar is placed, such as the drill collar. Using the small stiffness when out of 
contact reduces the severity of the nonlinearity but also enables this element 
to be used in static nonlinear analysis. An open gap in a static analysis 
creates a singular stiffness matrix and leads to rigid body motion. Figure 3.5 
indicates the response used to capture the contact behaviour.

The contact element is visualized in Figure 3.6. The difference in the nodal 
displacement is compared to the specified gap size. When the difference in 
nodal displacement is less than the gap size the element uses the open 
stiffness otherwise uses the closed stiffness.

The element is defined such that the gap can open and close as the waves 
travel through the element but only carries a tensile load (no resistance to 
opening).

The presence of the contact element allows waves to propagate from the 
element creating a more natural waveform. The element lengths still dictate 
the incremental shape of the waves but the use of the contact element will 
improve the waveform. Many of the previously discussed alternate methods 
start with a square wave. The contact element enables the comparison 
between waveforms to test the validity of the square wave approximation.

The stiffness associated with the open and closed state of this element has 
been chosen somewhat arbitrarily. The magnitude of the stiffness will have an 
impact on the waveform and amplitude. Some sensitivity tests should be
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performed to assess the effects that these stiffness values have on the final 
results.

3.3.5 Damping element
System damping is provided by an element similar in design to the link 
element. Rather than a ioad-displacement relationship it has a load-velocity 
relationship. The damping element is tied to each pipe node and to ground. 
Therefore, the relative velocity is that of the pipe node only. The element uses 
a constant damping coefficient per unit length and the velocity calculated 
from the numerical methods outlined previously. A brief derivation of the 
element is in Appendix A. Figure 3.7 shows a depiction of the damping 
element. The element acts as a dash-pot style damper.

The force generated by the damping element is directly proportional to the 
nodal velocity by the damping coefficient. Figure 3.8 shows the response 
curve of the damping element.
Other forms of damping such as material damping could be represented by 
this element with the appropriate damping coefficient and connecting the 
element to the appropriate nodes.

3.3.6 Numerical control parameters
The numerical methods presented have several parameters that can be 
altered to test the performance of JIFEA.
As mentioned in the Central Difference section, this method is usually 
employed when a lumped mass approximation is used and damping can be 
neglected. In this implementation the damping also forms a diagonal matrix 
so the Central Difference method could be efficiently employed to solve the 
system (Bathe, p771, 1996).
The application-specific FEA program (JIFEA) written for this thesis uses 
storage and solving systems specific to the ID  wave problem so no further 
changes were made. The method requiring a small time step size still exists. 
Since the storage and solver are efficient, the implicit methods actually solve 
faster because they don't require as small a time step. The time step was 10 
times smaller for the Central Difference method to converge for the 
verification case.
The time step size, in combination with the integration parameters, provides 
control on the solution. The use of the full or modified Newton iteration 
provides additional control on the solution.

Sensitivity studies on these parameters and their effect on the wave 
propagation results will aid in finding the most efficient solution method.
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3.4 Verification
Several components were included in JIFEA. Each was verified by comparing 
results to known solutions. The linear static solver was tested with a basic 
linear spring assembly and was proven to be correct. It  is not discussed in 
detail because of its simplicity. The time integration schemes represent 
significantly more effort and were, therefore, evaluated against an analytical 
solution and two commercial finite element programs, ADINA and ANSYS. The 
friction and contact elements were compared to an analytical description.

3.4.1 Linear time integration
A basic linear problem was modelled to verify the time integration schemes. 
The analytical base case use was a vibration example (13.2) taken from "An 
Introduction to Mechanical Vibrations." (Steidel, p403, 1989). This example is 
similar to the model being considered in this thesis.
The problem is a rod fixed at one end with an initial strain then released at 
time t= 0. Figure 3.9 shows the model considered in the example problem.

To test the analytical solution the parameters listed in Table 1 were used.

Table 1, Vibration exam ple param eters used fo r verification model

Parameter Value
Outside Diameter 0.1524 m
Inside Diameter 0.0508 m
Length 1 . 0  m
Area 0.0162 m2

o (mass density) 7850 kg/m2

E (elastic modulus) 2.05 e11 Pa
T (time) .004 seconds
At (time step) . 0 2  milliseconds

The full analytical solution for this problem is in Appendix B. The final solution 
is repeated here as equation 3.4.1.

/ >. i d  v  ( - l ) ^  - n7JXu{x,t)= —  £  sin— cos6>„/
f t  n -1 ,3 .5 ,- n

/  \2li
. /  \  8a? v '  ( - 1 )  2 . n m  . ,  .  iu{x,t)=-<o„ —  2 ,  3.4.1

f t  n - l.3 ,5 .-  n  4 /

\  2 v '  (—1) 2 . n7Dcu{x ,t)= -(02n—  X  ± - i — sm— C0SG>„t
f t  n - l.3 .5 ,-  n  4 /

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



A minimum of 25 terms was required to return the initially prescribed 
displacement (strain). For the comparison that follows, 50 terms of the series 
were used for the displacement, velocity and acceleration. The responses for 
each are shown for the free end of the bar in Figure 3.10, Figure 3.11 and 
Figure 3.12 respectively.

The next step is to compare the numerical solutions to those of the analytical 
solutions. An interesting observation to note is that in all the cases, the 
displacements agree well with the analytical solution, however, the velocity 
deviates somewhat and the accelerations are very different. Comparisons 
were made between solutions generated from ADINA and ANSYS to JIFEA 
velocity and acceleration results for verification. The solutions are taken from 
the free end of the model for all of the following comparisons.

The critical time step size and element length were computed in order to 
compare the results from the different numerical schemes.

Bathe suggests the following method for determining the discretization and 
time step size (Bathe, p772,1996).

At < At„ = —  3.4.2cr
k

At = — , tw= — 3.4.3
n c

êlement ^ cAt 3 -4 -4

Using these relationships, the following FEA parameters are calculated:

Table 2, FEA elem ent length and tim e step size calculated from  
equations 3 .4 .4  to 3 .4 .6

Parameter Value

Highest Frequency 20,000 Hz

Tn 0.00005 seconds

Atcr 0.0000159 seconds

k 0.2555 m

tw 0.00005 seconds

N 1 0

At 0.000005 seconds

Lelement 0.02555 m

These conditions also produce a ratio between the element length and time 
step in the order of the wave speed.
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R = kit™, = 0-02555 =5UQ m/s 3 4 5
At 0.000005

If  we assume 10 steps in time and space are required, then, as the ratio 
shows, the wave speed relationship is maintained. To ensure accuracy of both 
time and space, this ratio must be in the order of the wave speed. A course 
discretization in space (large element size) cannot capture the short 
wavelengths and similarly, a large time step cannot capture a short period.
The requirement of the "true waveform" shape may not be necessary. What is 
important to capture in this model is the wave speed, the force amplitude and 
wavelength. Attempting to capture a true waveform as is reasonably possible 
should ensure that the speed, force magnitude and length are accurately 
computed.

3.4.1.1 Central difference verification
Table 3 lists the time step and element length actually used in the analysis.
Table 3 , FEA tim e step size and elem ent length used for the central 
difference sim ulation o f the vibration exam ple

Parameter Value

At 1.0e-7 seconds

i-element 0.001 m

Figure 3.13 shows the linear Central Difference FEA results with the 
displacement analytical results (equation 3.4.1). There is good agreement 
between the two central difference methods and the analytical response. An 
interesting effect is the time step required. As listed above, the element size 
used was considerably smaller than the calculated size. The consequence of 
making the element size so small was that the time step had to be reduced to 
le -7  s in order to gain convergence. With a time step of 5e-6 s, the solution 
was very unstable. Based on the ratio in equation 3.4.5, the ideal time step is 
1.96e-7 s. This was done to verify that the ratio of element length to time 
step size is a requirement of the analysis. Due to the smaller time step size, 
this model was only run to a final time of 0.0008 seconds.

The Central Difference response of the velocity shows reasonable agreement 
with the analytical response. Figure 3.14 shows the linear and nonlinear 
central difference results compared to the analytical solution. The nonlinear 
implementation was used though no nonlinear elements are present to ensure 
the solution was generated with one equilibrium iteration. The overall solution 
time had to be reduced to show the results because of the very large number 
of small time steps.
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The accelerations in Figure 3.15 indicate the linear and nonlinear results have 
a similar trend with the analytical result but the oscillations and amplitude of 
the numerical results make the analytical solution appear almost flat.

3.4.1.2 Newmark verification
Using the values listed in Table 4, the linear and nonlinear Newmark methods 
were evaluated. Figure 3.16 shows the Newmark response compared to the 
analytical results. The figure shows the displacement field is computed 
accurately. The linear Newmark response curve is completely hidden by the 
nonlinear curve. The nonlinear version is used to solve a linear system 
requiring only one equilibrium-iteration as expected.
Table 4 , FEA tim e step size and elem ent length used for Newm ark and 
Wilson sim ulation o f the vibration exam ple

Parameter Value

At 5.0e-6 seconds

Leiement 0 .0 0 1  m

Figure 3.17 shows the velocity response of the Newmark methods compared 
to the analytical response. The general trend of the solution seems reasonable 
but the response was expected to be closer. Comparisons made between 
ADINA and JIFEA later in the text show good agreement. JIFEA's results are 
therefore considered correct.
Figure 3.18 shows the acceleration response of the free end using the 
Newmark method. The trends agree well but the oscillations in the response 
may require some form of data smoothing or filtering. Later, comparisons 
between JIFEA and ADINA show good agreement in the response.

3.4.1.3 Wilson 0  verification
The Wilson method was tested using the same parameters as listed in Table 3 
and compared to the analytical solution.
Figure 3.19 shows the displacement response of the free end using the Wilson 
method. Again, good agreement is found between the numerical results and 
the analytical solution. The response is somewhat different from the Newmark 
method specifically at the peaks.

Figure 3.20 shows good agreement between the Wilson velocity and the 
analytical solution.

Figure 3.21 indicates that the acceleration response of the Wilson method 
matches the analytical response closely with minimal oscillations. However, 
the peak amplitudes do not match as well. The response seems to exhibit 
some numerical decay. Different values for the time step or 0  may alter the 
response and provide a better result.
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3.4.1.4 Commercial FEA software comparison
The acceleration results are somewhat questionable in the above results. The 
implementation of the results is believed to be correct otherwise it is unlikely 
the displacement and velocity results would be correct. To test the response 
of the system, additional comparisons between commercial programs ADINA 
and ANSYS were performed. Figure 3.22 shows the comparison between 
ANSYS, ADINA and JIFEA results. The responses denoted by "FEA" refer to 
JIFEA. The ANSYS and JIFEA Newmark and nonlinear Newmark all have very 
good agreement; however, the ADINA response shows slightly larger peaks. 
This indicates that JIFEA's implementation is sound.

As a final check, the accelerations between ADINA, ANSYS and JIFEA's 
Newmark methods (marked FEA) are shown in Figure 3.23.
Clearly, the implemented methods have the same trend as ADINA but the 
absolute magnitudes are different. ANSYS has the largest variation in 
response from the group. The problem with the commercial codes is that it 
may not be possible to completely turn off all the conditioning features. 
ANSYS does not provide the feature to export the Newmark velocity and 
acceleration directly. They are numerically calculated derivatives from the 
displacement field using a simple Newton-forward method. Using the same 
approach with the application-specific code produces results almost identical 
to ANSYS.

3.4.2 Friction behaviour
The friction behaviour was defined by the analytical description listed below.

3.4.6fr
Sc1 AE

—  = £ = J ^ x + C  3.4.7
Sc AE

u = —-^ -x 2 +C x+B  3.4.8
2 AE

Then given the boundary conditions at x = 0, u = 0 and at x = L, eAE = R. 
The final equation for friction can be expressed as:

/ \ 1 f T ■> R ~  f rLu\x) = — — x~ 4------ -1— x  3.4.9
2 AE AE

Where fr is the friction per unit length, 
L is the length,
A is the cross sectional area,
E is the elastic modulus,
R is the applied load,
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x is the distance along the length and 
u is the displacement.

Using this description of friction the analytical force is compared to the FEA 
results in Figure 3.24. The analytical solution line is hidden behind the FEA 
results line. A simple four link element model was created with a friction 
element attached to the middle of the model and tied to ground to further 
demonstrate the behaviour of the friction element. Figure 3.25 shows the FEA 
model used to demonstrate the friction element behaviour.

Table 5 lists the results used to generate Figure 3.24. To perform this FEA 
analysis, a static nonlinear solver with very small increments in load and large 
equilibrium convergence criteria was used. Tighter convergence criterion 
would have produced more accurate results.

Table 5 , 4  link elem ent distributed friction results

Element Element Force (N) Analytical Force (N)

1 44378.3 44822.2

2 177711.5 178155.5

3 311044.1 311488.9

4 444377.7 444822.2

The same FEA model used previously was used to perform a cyclic load 
friction test. The load R applied is ramped from 0 to 444822.2 N over 25 steps 
then unloaded to 0 N over the next 25 steps. From there, the load is 
decreased to -444822.2 N over 25 steps then returns to 0 N over the next 25 
steps.
Figure 3.26 shows the response of the friction element (Node 3) over the load 
steps in black. The red line shows the applied load as a function of load steps 
as described above. Node 3 remains motionless (stuck) until almost load step 
10. Then sufficient force is applied to cause the friction element to slip. At 
load step 25, the applied load begins to decrease at which point the friction 
element sticks and remains in this position until the force has changed 
enough to cause slippage again. The same type of stick-slip behaviour is seen 
at load step 75 where the applied load reaches -444822.2 N. This load cycle 
confirms the behaviour of the friction element.

3.4.3 Contact behaviour
A simple 5 node model was built to verify the contact element. The model is 
shown in Figure 3.27.
Table 6  lists the values used in the contact model. ANSYS was used to verify 
the response of the element.
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Table 6 , FEA gap size, tensile load and contact open and closed 
stiffness used to  verify contact

Parameter Value

Gap 0.25 m

R 444822.2 N

Kopen 1 .0 e6

Kdosed 1 .0 e l6

Figure 3.28 shows the response of the contact elements nodes. The line 
labelled "Above contact element" indicates the displacement of the node 
above the gap (free side) and the line labelled "Below contact element" shows 
the response of the node where the pipe connects to ground (see Figure 
3.27). The scale of the displacements for each node is several orders of 
magnitude apart as the displacement of the lower node (3) is very small. The 
change in node 4's response is because the gap closing adds significant 
stiffness to the system. The blue line indicates that the bottom node's 
displacement is linear with load. This is because of the weak spring used to 
eliminate rigid body movement. The force applied is transmitted through the 
contact element to the left part of the model. The remaining elements are 
linear link elements and therefore displace linearly.

The element agrees with the intended design. The force due to inertia (the 
wave) is considerably larger than the external force applied therefore the 
element response is satisfactory.

3.4.4 Damping behaviour
The response produced when using the damping elements showed the 
characteristic decay typical of dash-pot style damping. Figure 3.29 shows the 
decay of the free end of a simple 4 link element model with distributed 
damping. The model represents an assembly of pipe pre-stressed in tension 
then suddenly released.

3.5 Summary of Solution Strategies for Finite Element 
Analysis of Nonlinear Wave Propagation

JIFEA has demonstrated that application-specific FEA can be used to 
effectively and efficiently solve a nonlinear ID  wave propagation problem. 
Each factor contributing to the solution strategy was evaluated independently 
and shown to perform well. The matrix storage, the equation solver, the 
integration techniques and the elements themselves have all been 
independently evaluated to understand their impact on the solution speed and 
accuracy.
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By using efficient matrix storage and solver, all the methods are very fast to 
solve the problem. However, because the Central Difference method requires 
a very small time step size, the Newmark and Wilson methods perform much 
better. They are just as accurate but do not require as small a step size. The 
Newmark and Wilson methods' step size was 5 times bigger than the required 
step size for convergence using the Central Difference method for the 
verification case.

The Newmark and Wilson methods are very similar in implementation but, for 
a given step size, the Wilson method was slightly slower with more accurate 
results. This is attributed to the increased number of vector computations per 
time step. More extensive testing between these methods varying the 
integration parameters and time step size is warranted.

All of the integration methods were tested against analytical and commercial 
packages ANSYS and ADINA and found to exhibit good agreement.

The elements used in the model were tested independently. The link, 
damping, friction and contact all performed as expected yielding the intended 
results. The emphasis of the element implementation was efficiency. 
Computational overhead was reduced as much as possible while maintaining 
accuracy. For example, the contact uses a weak spring across the gap when 
the gap is open. This reduces the severity of the nonlinear effects but still 
maintains accuracy. The friction element was handled similarly with a slight 
slope in the response rather than a true step function. Damping elements are 
straightforward to implement and produce the characteristic response decay.

The initial results indicate that with the appropriate choice of step size, 
element length (number of elements), integration parameters and iteration 
method, the wave propagation method can be solved directly using 
application-specific FEA. The performance will be comparable or better than 
commercial software with reasonable accuracy. Further testing by altering the 
parameters may indicate that this FEA approach may be even more efficient 
when the accuracy is allowed to decrease.
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3.6 Chapter 3 figures
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Figure 3 .1 , One dimensional representation o f drilling assembly
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Figure 3 .3 , Friction force -  displacem ent response curve
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Figure 3 .4 , Friction distribution o f adjacent elem ents
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Figure 3 .5 , Contact elem ent force-displacem ent response curve
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Figure 3 .6 , Contact elem ent depiction w ith specified gap size
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Figure 3 .7 , Dash-pot style damping elem ent depiction
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Figure 3 .8, Damping elem ent force-velodty response curve
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Figure 3 .9 , Graphical depiction o f th e  exam ple vibration problem  
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Figure 3 .10 , Vibration exam ple verification model. Analytical 
displacem ent response fo r free  end o f bar after pre-stressed tension  
is released
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Figure 3 .1 1 / Vibration exam ple verification model. Analytical velocity  
response fo r free  end of bar a fte r pre-stressed tension is released
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Figure 3 .1 2 , Vibration exam ple verification model. Analytical 
acceleration response fo r free  end o f bar a fter pre-stressed tension is 
released
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Figure 3 .13 , Comparison o f linear and nonlinear Central difference 
displacem ent response to  analytical displacement response o f free  
end after release o f pre-stressed tension for the vibration exam ple 
model
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Figure 3 .14 , Comparison o f linear and nonlinear Central difference  
velocity response to  analytical velocity response o f free  end a fter 
release of pre-stressed tension for the vibration exam ple model
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Figure 3 .15 , Comparison of linear and nonlinear Central difference  
acceleration response to  analytical acceleration response of free end 
a fte r release o f pre-stressed tension fo r the vibration exam ple model
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Figure 3 .16 , Comparison o f linear and nonlinear Newmark 
displacem ent response to  analytical displacem ent of free  end a fte r 
release o f pre-stressed tension fo r the  vibration example model
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Figure 3 .1 7 , Comparison of linear and nonlinear Newm ark velocity  
response to  analytical velocity response of free end a fter release of 
pre-stressed tension for the vibration exam ple model
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Figure 3 .1 8 , Comparison of linear and nonlinear Newmark 
acceleration response to analytical acceleration response o f free  end 
after release o f pre-stressed tension fo r the vibration exam ple model
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Figure 3 .1 9 , Comparison of linear and nonlinear Wilson displacem ent 
response to  analytical displacem ent response o f free end a fte r release 
of pre-stressed tension for the vibration exam ple model
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Figure 3 .2 0 , Comparison of linear and nonlinear Wilson velocity 
response to  analytical velocity response o f free end a fter release of 
pre-stressed tension fo r the vibration exam ple model
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Figure 3 .2 1 , Comparison of linear and nonlinear Wilson acceleration 
response to  analytical acceleration response of free end after release 
of pre-stressed tension for the vibration exam ple model
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Figure 3 .22 , Comparison o f vibration exam ple model free end velocity  
response between ADINA, ANSYS and JIFEA
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Figure 3 .2 3 , Comparison of vibration exam ple model free end 
acceleration response between ADINA, ANSYS and JIFEA

eo
£

500000
Analytical 
Element force

400000

300000

200000

100000

0
2 3 41

Elements

Figure 3 .2 4 , Comparison between JIFEA and analytical friction results 
fo r a sim ple 4  link model w ith distributed friction
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Figure 3 .2 5 , Depiction of 4 -lin k  elem ent distributed friction model fo r 
verification o f increm ental tensile load
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Figure 3 .2 6 , Displacement and load response fo r a single friction  
elem ent under a single load cycle (Node 3 )

Figure 3 .2 7 , Depiction of contact verification model consisting o f four 
link elem ents and one contact elem ent
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Figure 3 .28 , Displacem ent response of contact elem ent for sim ple 
contact verification model
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Chapter 4

SOLUTION CONTROL VARIABLE SENSITIVITY 
FOR JAR WAVE PROPAGATION

Creating and using an application-specific finite element analysis (FEA) 
program to produce results equivalent to commercial FEA software in a 
fraction of the time is the main objective of this thesis.
Other methods including manual calculations such as impulse-momentum 
relationships (Skeem et al., 1979), alternate FEA techniques such as 
application-specific spectral (frequency domain) analysis (Eustes, 1996) and 
alternate numerical techniques such as wave-tracking (Wang et al., 1990) 
have been employed to solve the wave propagation problem. These alternate 
methods were generally sought to reduce the time Jar impact analyses took 
with commercial FEA aiding determination of "best practice" Jar placement. 
An additional benefit is the cost advantage in replacing commercial FEA 
software such as ANSYS.
All the alternate methods found avoided time-history FEA analysis. JIFEA uses 
many of the same numerical techniques as commercial FEA software but with 
significantly reduced computational overhead. Solvers and data storage have 
been streamlined to increase the solution speed and minimize memory 
requirements.
To achieve the main objective, JIFEA is compared to ANSYS only as many 
creators of alternate methods used ANSYS to verify, calibrate or study wave 
propagation. Therefore, being able to replicate the results from ANSYS implies 
agreement with the alternate methods as well.
The results indicate good agreement between ANSYS and JIFEA with a 
dramatic increase in speed (30 times faster than ANSYS for the verification 
model).
Sensitivity to damping and friction are evaluated using JIFEA to determine 
their effects on the force generated at the stuck point. Also, the numerical 
integration parameters are studied to assess their influence on the 
performance (time and accuracy) of the program.
Finally, a few Jar placement impact analyses are evaluated using all the 
features built into JIFEA to demonstrate the effect Jar location has on stuck 
point forces and to show where increasing the analysis time may be required 
to obtain the maximum force.
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4.1 Alternate methods
The desire to evaluate drill string dynamics began long before personal 
computers were available. Various people and companies invested time 
developing techniques to determine the forces generated from Jars. The force 
information is used either to improve Jar effectiveness or to assess the load 
capacity required by other components to sustain Jarring.

The discussion that follows is a very rudimentary overview of some methods 
that motivated the development of JIFEA and this paper.

4.1.1 Manual calculations
Many hand calculations and manual techniques begin with a basic impulse- 
momentum approach using the simplified model shown in Figure 4.1. The 
initial acceleration is computed and the velocity of each mass determined at 
the point of first contact.
The largest impulse is generated when the greatest relative momentum 
between the hammer and anvil is achieved. Adjusting both the hammer and 
anvil mass and stiffness arriving at the greatest momentum is one approach 
used to gain the largest impulse. This assumes the largest force propagating 
down the pipe will free the drill string.
Additional factors such as wave speed and wave propagation effects were 
added by some to increase the accuracy of the computations. The force 
transferred to the stuck point is a function of the contraction speed (Skeem et 
al., 1979).
In general these methods are approximations to the complex drilling 
assembly often omitting damping and hole-drag. They are well documented 
and fast to compute but are not as accurate as numerical methods analyzing 
models with more complex details. However, manual methods are reasonable 
when complex drilling details are unknown.

4.1.2 Wave-tracking method (Wang et al., 1990)
Kalsi, Wang et al developed the wave-tracking method as an alternate 
approach to FEA (Wang et al., 1990). ANSYS was used with a simple fishing 
Jar analysis (same as a drilling Jar for all intent and purpose of this 
discussion) to verify and calibrate the wave-tracking method.

The method uses some of the basic impulse-momentum and wave speed 
calculations to define the initial wave (impulse). Refractive and reflective 
wave relationships were implemented in a recursive algorithm to compute the 
displacements and forces at key points throughout the drilling assembly.

Good agreement was found comparing the results with ANSYS. This led to the 
development of the JarPRO™ software, which is application-specific software, 
intended to provide bottom-hole assembly designers a tool to optimize Jar 
placement ("JarPRO™", 1990).
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The wave-tracking method solved much faster than ANSYS making JarPRO™ 
viable for field use.

4.1.3 Application-specific spectral analysis (Eustes, 1996)
Eustes developed an application-specific spectral (more commonly known as 
frequency domain analysis) finite element analysis (SFEA) (Eustes, 1996). In 
part, the effort was motivated by the slow nature of ANSYS when solving a 
simple wave propagation problem. Eustes also reviewed the work performed 
by Kalsi and theorized that an alternate numerical method would produce 
accurate results in a timely fashion.

The SFEA method required a spectral element development. Eustes's spectral 
element captured the full equation of motion (d'Alembert's principle) with the 
intent of requiring fewer elements to perform the analysis. The method uses 
only a few terms of the Fourier series to represent the element and thus is 
analogous to a time-history analysis with a limited time step size and element 
length.

Field experience reveals the technique is very sensitive to damping. Small 
changes to the damping coefficient would cause radical differences in results 
or cause numerical instabilities preventing a solution. When the damping 
coefficient was held proportionally constant to the model length, the 
technique produces results comparable to ANSYS in a fraction of the time.
The method is implemented in several phases. The entire model is built in the 
time-history domain, converted into the frequency domain using FFT, 
analyzed, then converted back into the time domain again using IFFT (Inverse 
Fast Fourier Transforms) for force-time result interpretation. The requirement 
of the pre- and post-analysis adds additional complexity to the analysis but is 
a necessary step as interpreting the results is more straight-forward in the 
time domain.

4.2 Replication of Kalsi model (Kalsi e ta l., 1985)
The original modelling performed by Kalsi was re-created from the 
information provided in the SPE paper (Kalsi et al., 1985). It  is a model of a 
partial fishing assembly (similar to a drilling assembly) in a basic vertical well 
bore with the combination of components as listed in Table 7.
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Table 7 , Kalsi's FEA model components w ith  length and num ber of 
elem ents

Component Length
(m )

Number of 
Elements

Elem ent Length 
(m )

Drill Pipe (link) 609.60 20 30.48

Heavy Weight (link) 91.44 10 9.14

Drill Collar (link) 27.43 10 2.74

Intensifier (spring) 3.05 1 3.05

Drill Collar (link) 54.86 20 2.74

Jar (contact element) 0.165 1 0.165

Drill Collar (link) 45.72 15 3.05

Stuck Point (friction) 0 1 N/A

Drill Collar (link) 45.72 15 3.05

Drill Collar (link) 91.44 15 6.10

Tie down spring 0.0254 1 .0254

Damping elements connect the drill collars from the intensifier to the "tie 
down" spring to the ground. The damping coefficient specified by both Kalsi 
and Eustes is 239 N-s/m/m and is used throughout the present paper except 
in the damping sensitivity cases.
The addition of the intensifier jar above the drilling jar is intended to act as a 
free-end, reflecting all waves back down towards the stuck point. In practise, 
intensifiers are rarely used. Basically, an Intensifier Jar is a large spring with 
stiffness of 2.33 MN/m (much more flexible than the base pipe).

The Kalsi model was reconstructed by interpreting model details from the SPE 
paper. Since the modelling details are not completely described, variations in 
the model may exist. However, re-running the analysis in ANSYS version 8.0 
produced results very similar to those obtained by Kalsi.
Recreating Kalsi's original work defines a benchmark for JIFEA and verifies the 
current model. Kalsi chose to model a shortened version of the drilling 
assembly (609.6 m of drill pipe rather than 3048 m) and included the 
Intensifier Jar to reflect waves down towards the stuck point. Since the full 
model was not represented, Kalsi selected an analysis time of 0.14 seconds to 
limit wave generation. Furthermore, 0.14 seconds only allowed time for the 
initial wave to reach the stuck point. Running the analysis further into time 
may show that reflections of subsequent waves produce constructive 
interference and greater wave amplitude. In the next section, longer times 
with the full pipe length are modelled without the Intensifier Jar to assess the 
stuck point force with wave interference effects.
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All comparisons between JIFEA and ANSYS for this and the subsequent 
sections were executed on a computer with the following specifications:

• Dual Pentium I I I  933

• 1024 Megs SD PC133 RAM

• 1 - 1 8  Gig 10,000 RPM SCSI drive (boot)
• 2 -  120 Gig 7,200 RPM UlatraDMAlOO IDE drives (data/scratch)

• Windows 2000 Professional
The program was written in C++ using object-oriented techniques for ail 
aspects from element implementation to solvers and data storage. Microsoft 
Visual C ++®  V6.0 was used with the default compiler optimizations.

4.2.1 Verification I  base case
A modified version of the model was defined to benchmark JIFEA with ANSYS, 
and to establish a base case for the parametric evaluation. It  is defined as the 
original model but with the damping elements and Intensifier Jar omitted. 
There are slight differences between the ANSYS model and the model built for 
JIFEA. First, JIFEA is modelled top-down; the top node is node 1, in ANSYS 
the bottom node is node 1. Second, the Jar is modelled with additional pipe 
on either side of the contact element to represent the Jar diameter and 
length. The number and size of elements on each side of the contact element 
were modified to reflect the modelling techniques employed by JIFEA.
Using the computer described previously, the analysis took 3.5 minutes using 
ANSYS. Performing the same analysis using JIFEA solved in 7 seconds. Figure
4.2 shows a comparison between the modified Kalsi model solved with ANSYS 
version 8.0 and JIFEA. It  shows good agreement between the Jar (contact 
element) displacement results. The slight difference is caused by variations 
between the model definition and the program implementations of both 
solvers and elements.

Similarly, Figure 4.3, Figure 4.4 and Figure 4.5 show very good agreement 
between ANSYS and JIFEA for forces calculated at the rig, jar and stuck point. 
The force calculations include inertia forces indicating the acceleration is also 
in agreement with ANSYS.
The Jar response is very similar in both programs, however, there is a slight 
variation in the result magnitude and signature between ANSYS and JIFEA 
after Jar impact (gap closes). Interestingly, the gap doses at the same time 
in both responses indicating that the velocity and acceleration in both models 
agree. The slight variation in response is likely due to the small difference in 
model description. The JIFEA model has extra pipe on either side of the 
contact element to represent the Jar. Contact element implementation 
difference between ANSYS and JIFEA and numerical conditioning preset in 
ANSYS may also cause some response differences.
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The stuck force response exhibits subtle differences but local oscillations are 
focused around the same mean value. Again, the difference may be due to 
implementation and model definition.

The forces at these locations are considered paramount in determining best 
Jar location within the drilling assembly. Given the close agreement between 
the programs, JIFEA can easily be used to evaluate Jar impact analysis in a 
fraction of the time of ANSYS. The performance is comparable to the wave- 
tracking method and the spectral analysis but with the features provided by 
ANSYS.

4.3 Parametric evaluation
A variety of parameters control the response of the system. These parameters 
need to be evaluated to assess their affect on the forces generated in the drill 
string and also how the numerical techniques react. Some parameters damp 
the response whereas others increase the solution speed but cause numerical 
instability.

It  is convenient to consider three groups of parameters:

1. External. External effects are factors that alter the wave propagation 
by changing the wave form or magnitude independent of integration 
method. By this description, damping and friction are external 
parameters. To clarify how these are considered external effects, the 
basic pipe structure is defined as the reference model and any 
additional modelling factors that modify the response are external to 
the base model.

2. Geom etric. Geometric effects are imposed by modelling artifacts such 
as element length, time step size (abbreviated as 7£s' for integration 
time step) and the integration time or duration (hereon in referred to 
as 'time' or analysis time). Referring to these artifacts as geometric 
may seem counter-intuitive; however, the wave form is discretized 
both in space and time. The term geometric is associated with the 
wave discretization.

3. In tern a l. Internal effects are the integration parameters that directly 
control the integration process. In the case of both Newmark and 
Wilson methods, the use of these parameters in effect creates a 
different integration technique. The Wilson method with 0=1  becomes 
the basic linear acceleration method. Similarly the Newmark method 
with a  = V s  and 8  = l/ 2 also reduces to linear acceleration method. So 
by altering the parameters an entire family of integration schemes are 
possible. These types of parameters are internal to the integration 
methods and separate from the model.

Combinations of the Geometric and Internal parameters may be required to 
maximize the performance of JIFEA.
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The analysis time and time step size used throughout the parametric study 
was taken as 0.14 s1 and 0.2 ms2 respectively. These values are taken from 
the Kalsi analysis for comparison purposes.

4.3.1 Nonlinear element sensitivity
Several nonlinear elements are used in the model. The contact element is 
used to generate the impulse wave and both the damping and friction 
elements act to reduce the propagating wave energy. This section evaluates 
the decay sensitivity to damping and friction.

4.3.1.1 Damping coefficient sensitivity
The interest in the damping coefficient stems from the wide spread variation 
in literature as to how much damping truly exists. The damping coefficient is 
a function of annulus size, fluid viscosity and density. The coefficient used 
may vary depending on the literature referenced or the techniques used to 
measure or calculate it. Evaluating the sensitivity to damping will provide 
insight as to the importance damping plays in the analysis and the influence it 
has on the results.
The damping coefficient used by Kalsi et al for the purpose of drilling 
assembly modelling is 239 N-s/m/m. Furthermore, the Kalsi model only 
applies the damping to the bottom portion of drill collars from the bit to the 
intensifier jar (see Table 7). JIFEA was configured to apply the damping to the 
entire length of the assembly.

Figure 4.6 shows the stuck point force response for a range of damping 
coefficients. The critical damping lies between 23,900 and 239,000 N-s/m/m. 
For coefficient values less than and including 1,195 N-s/m/m the stuck point 
(friction element) slides and is the flat portion of the force response curve 
above 800 kN. If  the stuck point friction is not exceeded then insufficient 
force has reached the stuck point to free the drill string.

The default damping coefficient of 239 N-s/m/m is somewhat subjective. A 
value 5 times greater alters the response but still allows the waves to free the 
stuck point. This indicates the wave propagation is relatively insensitive to the 
damping coefficient. Therefore, determination of the damping coefficient may 
not require significant effort.

In this model, the damping elements connect the nodes of the pipe to ground. 
The spectral analysis model embedded the damping between the nodes of the 
pipe possibly causing the method's damping sensitivity. Applying damping 
elements between pipe and ground generates the proper relative velocity for 
use with the damping coefficient. However, access to the SFEA method was 
not possible at the time of this writing so no direct comparisons could be

1 Unless the analysis time is otherwise stated

2 Unless the time step size is otherwise stated
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made. Other forms of damping such as material damping could be employed 
by connecting the damping elements across the pipe nodes. However, the 
effects of this type of damping on wave propagation should be explored but 
are outside the scope of this work.

The dash-pot style damping used in the element derivation is based on 
equation 4.3.1. It  was suggested the damping coefficient generating a force 
by equation 4.3.1 does not apply to this type of motion, 'c' would be 
computed from the fluid properties and be representative of the fluid shear in 
the flow. The wave propagation is a localized effect and as such may not 
introduce significant motion into the fluid boundary layers. Further work may 
be required to quantify the localized effects of the damping coefficient on 
wave propagation.

F d = c v  4.3.1

4.3.1.2 Friction (hole-drag) sensitivity
The hole-drag is the total friction acting on the drilling assembly. It  is a single 
value used to indicate the resistance to movement for inserting (tripping-in) 
or removing (tripping-out) the drilling assembly from the well bore.

Realistically, the friction is caused by pipe contacting the well bore where 
localized pipe buckling occurs, global deviations in the well cause pipe bending 
or inclines where the pipe rests on the well bore. Therefore, friction is 
unevenly distributed along the length of the pipe.

For the purpose of the sensitivity analysis, the friction is linearly distributed 
over the length of the pipe. This provides insight as to how the waves behave 
with friction acting evenly along the length of the pipe.

Figure 4.7 shows the effects increasing hole-drag (friction) has on the force 
generated at the stuck point. The zero friction case is the base case and the 
subsequent curves are applied hole-drag. The hole-drag is distributed along 
the length of the pipe to limit the wave propagation. Clearly, the wave is 
almost completely suppressed when the drag reaches a total friction of 750 
kN (775.7 N/m).
Note: the (* )  in the figure indicates that the friction element stiffness had to 
be revised. The element force-displacement relationship must remain 
somewhat balanced. If  the element stiffness is too high, the critical 
displacement allowing slippage is too low and oscillations occur. If  the 
stiffness is too low, the element may not slip.
Balancing the friction critical displacement and stiffness can be automated by 
assuming the friction stiffness is a function of the critical displacement. 
Equation 4.3.4 shows a possible relationship between the stiffness and the 
critical displacement.
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4.3.2

4.3.3

F.max 4.3.4

This keeps the value of K proportional to the critical displacement. Other 
functions are possible; therefore, further evaluation would be required to 
ensure the chosen function is appropriate for all common drilling assemblies.

4.3.1.3 Nonlinear element summary
The parametric evaluation has shown that damping exhibits standard decay in 
the response. However, the default value of 239 N-s/m/m does not generate 
a significant decay in the response. Increasing the damping coefficient by a 
factor of 5 increases the decay but still produces a force large enough to free 
the stuck point. This suggests that when the damping is not close to the 
critical damping, changes in the damping have minimal effect on the 
response.

This is easily seen by considering the ratio of damped and natural frequency 
to the damping ratio. The equation for free damped vibration is given by 
equation 4.3.5.

Figure 4.8 shows a plot of equation 4.3.5. When the damping coefficient is 
very small relative to the system, small changes have little effect on the 
damped frequency. However, when the damping value is large compared to 
the system, (right side of figure) a small change in damping produces a 
significant change in frequency.

As stated previously, the damping causes an exponential decay in the 
response of the system. Figure 4.9 shows a generic system with modest 
damping in the system. When the drill string becomes stuck it is desirable to 
get the maximum force to the stuck point. Viscous damping in the drilling 
system is caused by fluid between the pipe and annulus. Therefore the further 
the wave has to travel the more damping decays the magnitude.

The friction sensitivity has shown that distributing friction along the drill string 
also causes a reduction in the wave magnitude reaching the stuck point 
similar to viscous damping. However, unlike viscous damping, friction 
(Coulomb damping) causes a linear decay to the response. Figure 4.10 shows 
a generic decay to a response when under a distributed friction. Linear decay

4.3.5
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is a characteristic of friction being a displacement based phenomenon 
(Steidel, 1989).
Both forms of damping reduce the magnitude of the wave and lower the 
likelihood of freeing the stuck point. When both types exist the decay is 
greatest. In real drilling assemblies, the damping exists along the full string 
length but may be more concentrated in the lower section where the annulus 
is smallest. A small annulus also means a concentration of friction may exist. 
To maximize the force produced at the stuck point, Jars have to be placed as 
close to the potential stuck point as possible. Since the stuck point is 
unknown, a general rule of thumb is: place the Jars as low as possible but 
above any potential sticking location.

4.3.2 Length and time sensitivity
In the cases shown in the damping section, all the models were run to a total 
time of 0.14 seconds. The modified model described in section 4.3.1.1 is 
analyzed but with the drill pipe length increased to 3048 meters. Figure 4.11 
shows the stuck point force response from the model used in section 4.3.1.1 
analyzed for 0.14 second and from a model with the full complement of drill 
pipe and analyzed for 0.28 seconds. Though the stuck point friction is not 
exceeded there is significant wave activity taking place after 0.14 seconds. 
Initially the two curves show the exact same response indicating the 
increased length had no effect on the response. However, beyond 0.14 
seconds, wave interference has caused a change in the response. The 
encircled point indicates a period change likely caused by interference from 
reflected or refracted waves. A wave travelling 5135 m/s requires 1.18 
seconds to reach the end of the pipe and back (2x3048 meters). Therefore, 
the change in the response is due to the increased analysis time not the 
increased model length.

The addition of the full complement of drill pipe increases the number of 
elements by 80 link elements and 80 damping elements. Furthermore, the 
analysis time was increased to 0.28 seconds. This increases the model size 
significantly yet JIFEA solves in 40 seconds, 5 times longer than the original 
base case model but with twice the elements and twice the time duration.

Stuck point mobilization may only occur as a result of wave interference. 
Therefore, having the ability to run the analysis for longer durations may be 
important depending on the parameters and modelling details.

4.3.3 Integration sensitivity
All the integration methods are sensitive to time step size and element length 
to some degree but certain methods have additional parameters that need to 
be explored. These parameters control the performance (speed and accuracy) 
of the results. It  is important to determine what specific settings can be used 
to maximize the speed while retaining reasonable accuracy.
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The default values for time step and element length are used as per Kalsi to 
define the reference response. Results from alterations to the model and/or 
solution strategy are compared to the reference response to assess accuracy. 
In cases where the waveform deviates greatly, the modifications to the 
solution strategy or model are considered a reduction in accuracy.

Acceleration and velocity are not used as a basis for comparison as the forces 
are representative of the displacement field, which in turn is a function of the 
velocity and acceleration fields. The force shown in the following analyses is 
the stuck point force. All of the models used are the modified Kalsi model with 
no damping.

For the study, the element length will be held constant and only the time step 
size will be varied.

The Central Difference (CD) method does not have any integration 
parameters other than the time step size and element length.

The Newmark method (NM) has two additional parameters a  and S . They 
are used to control the average acceleration and the linear velocity in the 
method.
Similarly, the Wilson method (WM) has one parameter, 0 , used to control the 
linear acceleration of the method.

Table 8 lists the default parameters used to define the base cases for each 
method.

Table 8 , D efault integration param eters fo r Central difference/ 
Newm ark and Wilson methods

Alpha (NM) a 0.5050

Delta (NM) 5 0.25250625

Theta (WM) 0 1.40

Time step size Its 0.2 ms

Solution time time 0.14 s

The Newmark parameters were taken from the ANSYS version 8.0 theory 
manual since the verification comparisons have been done between JIFEA 
ANSYS. The Wilson parameter was taken from Bathe (Bathe, p777, 1996) as 
a common value used for the method.

4.3.3.1 Time step size
The sensitivity to time step size is evaluated for each integration method. This 
shows how the time step size alters the response produced from each 
method.
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The analysis time and time step size were taken from Kalsi's model as 0.14 s 
and 0.2 ms respectively3. To determine the time step size in advance, the 
techniques outlined in section 3.2.1.1 are used. Assuming the drilling 
assembly can be approximated as a continuous length of a uniform cross- 
section pipe, the time step size and element length can be computed as 
shown in equation 4.3.6.

= 969.45m

= i W f f L  = _5135_ = 53radJs 
I  969 45TotalLength

A /^  = —  = —  = 0.3785
5.3'n

At = ^S2L = 0.03785 
10

X = c—  = 5135—  = 6091.24m
5.3

, _ ^ _609L24
element ^  q  304.56m 4.3.6

The length and area assumptions produce a time step size and element length 
larger than that used in the modelling by Kalsi. Realistically, the change in 
area from section to section makes this model a multi-degree of freedom 
problem where the natural frequencies are a combination of all pipes present. 
Bathe suggests calculating the time step based on the desired frequency of 
interest then use the wave speed to compute the maximum element length as 
shown in equation 4.3.7.

f  = 200Hz

T  1 1 « - 3T = — =  = 5e s
f  200

. T 5e~3 _ _4At = —  =  = 5 e s
10 10

L:l:m:ill = cAt = 5135 x5s-4 = 2.56m 4 -3-7

With the time step (its) of 0.5 ms (0.0005 s) and an element length less than 
2.56 meters, the maximum frequency that could be accurately modelled is

3 Unless the analysis time or time step size is otherwise stated
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200 Hz. The longest element in the Kalsi model is longer than this length 
indicating that the maximum frequency that the analysis can produce is less 
than 200 Hz. In the region of the stuck point, the element length is 3.05 m, 
combined with the time step size of 0.0002 s, the maximum frequency is in 
the order of 168 Hz. However, the ratio of element length to time step does 
not satisfy the wave speed rule as recommended by Bathe.

For a multi-degree of freedom system, the shortest natural period could be 
used to ensure that all the frequencies are captured. However, care must be 
taken when extreme length variations exist in the drill string. These variations 
may cause a large natural frequency range for the system.

In this work, the analysis time and time step size were taken from the 
verification models. For field use, the minimum analysis time would be 
calculated from the wave speed and the model length as shown in equation 
4.3.8. This allows time for a single wave to travel the length of the drill string. 
Also, solving the general eigenvalue problem (equation 4.3.9) (Steidel, Ch. 
11, 1989) results in an eigenvector in <o2. The time step size is then 
computed from the shortest natural period following the method shown in 
section 3.2.1.1. The matrix [/4] is assembled from the mass and stiffness of 
the drill string excluding damping, friction and contact.

rp . LD riU String „ „ „Time^ = ---------   4.3.8
^WaveSpeed

D el^M Y '[K ]-ia2)= 0  4.3.9

4.3.3.1.1 Newmark method
The first method evaluated is the Newmark method. Figure 4.12 shows the 
response at the stuck point of the base case as the time step {its) is varied. 
The default its was 0.2 ms. An its of 0.02 ms took approximately 68 seconds 
and does not improve the accuracy enough to warrant the increase in solution 
time. However, using 2.0 ms decreased the solution time to less than 1 
second with a decrease in accuracy. An its of less than 2.0 ms produces a 
very general trend but not sufficient to determine the behaviour of the 
response. Table 9 lists the solution time for each of the time step analyses.
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Table 9 , Newm ark solution tim e w ith  tim e step size

Time Step Size "/£s" (ms) 

20 

2
0.2 (default)

0.02

Solution Time (s) 

«  1 

< 1 

7 

68

Using an its of 2.0 ms may be viable for refining jar placement if maximum 
values were used to draw comparisons between placements rather than using 
the analysis results as true forces acting on the drill string. Given the speed in 
which the analysis can be performed, time step sizes in the order of the 
default give the best compromise between solution time and accuracy.

4.3.3.1.2 Wilson method
To evaluate the Wilson method the base case is used with varying time step 
sizes to assess the effects on the stuck point force response.
Figure 4.13 shows how the stuck point response changes as the time step size 
is varied from the default size. With an its of 0.02 ms, the response looks 
similar to the Newmark response shown in Figure 4.12 but the default its of 
0.2 ms is much smoother than Newmark. The Wilson method with an its of
2.0 ms produces a smooth response with a similar period but with a lower and 
faster decaying amplitude. An its of 20 ms was attempted but the method 
could not resolve equilibrium.
The response of this system should be essentially a square-like pattern so this 
suggests that the Wilson method produces accurate results removing the local 
oscillations if the time step size is suitable for the model in question. Clough 
and Penzien claim that the linear acceleration method is one of the most 
accurate methods; the Wilson method is derived from the linear acceleration 
method.
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In general the Wilson method is slightly slower than the Newmark method 
due to an extra set of operations per time step. The difference in solution 
times becomes more prevalent at smaller time step sizes. Table 10 lists the 
analysis times for the Wilson method for the various time step sizes.

Table 10, W ilson solution tim e w ith  tim e step size

Time Step Size (s) Solution Time (s)

0.02
0.002
0.0002 (default) 

0.00002

no convergence 

<  2 

7

75

Similar to the Newmark method, an its of 2.0 ms could be used if the absolute 
results are not considered important but rather as a comparison between Jar 
locations.

4.3.3.1.3 Central Difference method
The evaluation of the Central Difference method was chosen due to its 
common use in commercial finite element analysis and dynamics. This 
method requires a smaller time step size than those of the other methods but 
with the proper choice of time step size and element length produces an exact 
solution to the linear wave propagation method (Bathe, p815, 1996).

Figure 4.14 shows the response at the stuck point when the central difference 
method is used. The largest time step size (/£s) that could be used for 
convergence was 0.03 ms, a factor of 6.67 times smaller than the default its 
used for the Newmark or Wilson methods. However, the response using this 
increment oscillates once the stuck point slips. Using a time step size of 0.02 
ms generates a flat response for the stuck point slippage consistent with the 
previous methods. Further refinement to the time step size (0.002 ms) does 
not increase the response accuracy for this model but increases the solution 
time to 114 s.

Central Difference required a smaller time step than the implicit methods. 
Table 11 shows a list of the solution times with respect to the time step size. 
With the default time step size of 0.2 ms, the Central difference method is 
unstable and does not produce a result. The central difference method 
required at least a time step of approximately 0.03 ms before a solution could 
be obtained. However, the solution at an its of 0.03 ms has severe oscillations 
in the response indicating that a finer time step is required.
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Table 11, Central difference solution tim e w ith  tim e step size

Time Step Size (ms) Solution Time (s) 
no solution 

8 (oscillation)

12

114

0.2
0.03

0.02
0.002

The central difference method has fewer operations per time step than the 
other methods but requires a time step approximately 10 times smaller for 
this model. The danger is that a small change in time step can make the 
difference between a valid and invalid result, i.e. as in the 0.03 ms to 0.02 ms 
case (factor of 1.5). Use of the other methods would still produce reliable 
results even if the time step was varied within a factor of 2. The difficulty in 
determining the time step size for implicit methods a priori is that the time 
step is largely dependent on the severity of the nonlinearities present (Ansys 
theory manual, 2003). However, in general, the time step required for implicit 
methods is larger than for explicit methods so the techniques shown in 
section 3.2.1.1 can be used to calculate the time step size.

4.3.3.2 Integration parameter variation
The implicit methods used in JIFEA have parameters that alter the 
performance of the method. These parameters are evaluated for their effect 
on the solution time and results generated. The explicit method only has the 
time step size and element length and is therefore not present in this section.

4.3.3.2.1 Newmark method
There are two parameters in the Newmark method, a  and 8 .  ANSYS uses 
the relationships shown in equations 4.3.10 and 4.3.11 for a  and 8  to cast 
the Newmark parameters in terms of a new variable y that must be greater 
than or equal to zero for unconditional stability. Note: the function response 
can be nonlinear but must be continuous for unconditional stability. Newmark 
will be conditionally stable for discontinuous responses from plasticity, friction 
or contact. The ANSYS theory manual describes the effect of a non-zero y as 
adding numerical damping to the method. ANSYS uses a default of y -  
0.005. Using y  = 0 makes Newmark equivalent to theTrapezoid rule.

a  = ^ ( i + r f 4.3.10

4.3.11
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Figure 4.15 shows the stuck point force response with changing y .  The 
response does not begin to show the numerical damping effects until y = 
0.05 and greater. Notice that for values of y  greater than 0.1 the response 
becomes similar to those of the Wilson method.
In all of the cases the solution took 7 seconds to complete. Initially it was 
expected that different values for y would cause convergence problems and
increase solution time but it is likely that for the simple base case with 
minimal nonlinear effects, the model is still well behaved.

4.3.3.2.2 Wilson method
The Wilson method uses 0  as the integration parameter. It  can be shown 
mathematically that values of 1.37 or greater are required for unconditional 
stability (Bathe, 1996; Clough & Penzien, 1993). The default for the analyses 
performed is 1.40. Figure 4.16 shows the response of the stuck point force as 
0 is varied. 0  = 2.0 begins to show the local oscillations but these are more 
likely present due to the decrease in the time step size. Only 0 = 1.37 and 
1.40 could be solved with the default its of 0.2 ms. The remaining analyses 
required smaller time step sizes. Table 12 lists the required time step size to 
gain convergence for a given value of 0 . Also, the table lists the solution time 
for each analysis.

Table 12, W ilson solution tim e w ith  tim e step size

Theta (0 ) Time Step Size (ms) Soi

1.37 0.2 8

1.40 0.2 8

1.50 0.1 13
1.75 0.08 16

2.00 0.02 61

The method is slightly slower than Newmark which was expected as it has a 
greater number of operations to perform per time step. Wilson method uses a 
linear assumption between the current acceleration and the future 
acceleration. © = 2.0 uses more of the future acceleration than the current 
hence the time step must be smaller. This indicates that unconditional 
stability may not apply when the nonlinearity is discontinuous.

4.3.3.2.3 Newmark and Wilson as linear acceleration
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To test other possibilities, the Newmark and Wilson methods were configured 
to simulate the linear acceleration method. I.e. a  =1/6, 8  =1/2 and © =1.0. 
With these integration parameters and time step size of 0.2 ms, the methods 
should be identical. Figure 4.17 shows that the response of the two methods 
is identical as expected. The linear acceleration method is not unconditionally 
stable and therefore will not be used for general purpose analysis.

4.3.3.3 Integration sensitivity summary
The Newmark method provides reasonable results even with larger time steps 
sizes and with the fastest solution times. The integration parameter had 
minimal affects on the results produced. Theoretically, adding numerical 
damping smoothes the response of the system simplifying the nonlinear 
equilibrium iterations. However, the nonlinearities are discontinuities and are 
minimally affected by numerical damping.
Wilson provides a more accurate solution but with a slight increase in solution 
time. Wilson is more sensitive to the integration parameter and time step 
size. The study revealed that for the same model Wilson could not produce 
results with the same time step range as Newmark and showed greater 
variation in the response as the integration parameter was varied.

The Central Difference method was generally slower requiring 12 seconds 
producing similar results to Newmark and Wilson with a smaller time step of
0.02 ms, 10 times smaller than the default (0.2 ms).

It  could be argued that Newmark be used for "quick and dirty" solutions and 
stable field use reserving Wilson for refined analyses. Table 13 shows a 
summary comparison between integration methods. Either the Wilson or 
Newmark methods with a time step size of 0.2 ms could be used. However, 
the Wilson method is more sensitive to time step size and integration 
parameter modifications loosing convergence under some circumstances. The 
Central Difference method does not provide more accuracy than the implicit 
methods, however, it is generally slower and very sensitive to step size. 
Therefore, the best option is to use the Newmark method unless strict 
computational rules were implemented in JIFEA to ensure the time step size 
and element length will produce a valid solution using the Wilson method.

Table 13 , Solution tim es comparison fo r accuracy and perform ance

Method Accuracy Time Step Size "/£s" (ms) Solution Time (s)

Newmark moderate 2 < 1

Newmark Good 0.2 (default) 7

Wilson very good 0.2 (default) 7

Wilson Good 0.02 75

Central
Difference

Good 0.02 12
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Central Good 0.002
Difference

114

4.4 Combined modelling effects
Several cases were run to benchmark JIFEA and evaluate the external, 
geometric and internal parameters. For practical and complete Jar placement 
analysis, adjustments in all these components may be required.
The parametric evaluation indicated the Newmark method was the most 
reliable integration method. All the cases analyzed in this section were done 
with the Newmark method configured with an its of 0.2 ms and the default 
integration parameters of a  =0.25250625 and S =0.505 ( / =  0.005).

A full model is defined to assess the performance of the model. Several
changes were made to the original Kalsi model.

1. A full complement of drill pipe to represent the entire length of the
drilling assembly. (3048 m rather than 609.6 m)

2. Damping is distributed along the entire length of the drilling assembly 
using the default damping coefficient of 239 N-s/m/m. Currently, a 
single damping coefficient is used but different values could be used to 
represent the varying annulus size.

3. Hole-drag distributed along the length of the pipe. Distributed by the 
following factors:

a. Length

b. Outside diameter

c. Inclination

The effect of using this distribution is to concentrate the hole-drag in 
locations where the drag is expected to be highest.

Reference to the Jar position is made with respect to the Jar location of the 
original Kalsi model. +1 collar means one collar is moved from above the Jar 
to below it. This effectively moves the Jar up in the drilling assembly by one 
collar. The placement is similar for the -1 and -2 collar(s) cases.

The full model has approximately 80 more link elements, 80 more damping 
elements and 160 friction elements that the original Kalsi model did not 
possess. The extra elements were added to the drill pipe section using the 
same element length as in the original Kalsi model. Despite the increase in 
model size and complexity, the solution times ranged from 16 to 18 seconds.

4.4.1 Jar position +1 collar
The Jar position within the drilling assembly was moved up by one collar. 
Figure 4.18 shows the force response at the stuck point over a range of hole- 
drag values.
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Only the 200 kN hole-drag case shows that the friction of the stuck point is 
exceeded within the time frame of the analysis. As suggested earlier, 
performing the analysis to a time further than 0.14 seconds may show that 
wave interference produces forces great enough to free the drill string. The 
stuck point slips at approximately t=0.13 seconds. The sliding distance was 
not determined as the analysis was not run past 0.14 seconds.

4.4.2 Jar position -  original position
The original position case is the original Kalsi model description but with the 
full complement of drill pipe, distributed friction and damping. Figure 4.19 
shows the force response at the stuck point for the Jar in the original location. 
The stuck point friction is exceeded at approximately t=0.123 seconds. 
Moving the Jar up the drill string by one collar caused a delay in the wave 
reaching the stuck point. With the distributed damping and friction, the 
further the Jar is placed from the stuck point, the less likely the wave will 
reach it.

4.4.3 Jar position -1 collar
By moving the Jar down one collar in the drill string the stuck point slips at 
approximately t=0.135 seconds. Figure 4.20 shows the stuck point force 
response at various hole-drag values and indicates that the period of the 
wave decreases as the Jar approaches the stuck point. The reduced length of 
pipe between the Jar and the stuck point changes the frequency of the wave, 
hence the period change. Again nothing can be inferred about the amount of 
stuck point slip beyond the extent of the analysis.
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4.4.4 Jar position -2 collars
Finally a model where the Jar is moved down by two collars is analyzed. As 
Figure 4.21 shows, the stuck point never slips within the analysis time for any 
of the friction values. The period gets considerably shorter due to the short 
distance between the Jar and the stuck point. This may suggest that the Jar 
should not be placed too close to the stuck point. However, without running 
the analysis beyond 0.14 seconds such a judgement may be premature. It  is 
possible that with the higher frequency waves, subsequent wave reflections 
may cause constructive interference increasing the force to free the stuck 
point.
The 200 kN -2 collar case was re-run with an analysis time of 0.28 seconds, 
double the default, to show the stuck point response beyond 0.14 seconds. As 
Figure 4.22 shows, the waves free the stuck point an instant after 0.14 
seconds. Given the history up to 0.14 seconds, the interpretation could easily 
have been that the force response would decay, looking similar to the 
response from 0 to 0.06 seconds. This is a good example of why running the 
analysis further in time may make the difference between a good Jar 
placement decision and a poor one.

4.4.5 Combined modelling effects summary
During discussion of the alternate methods it was mentioned that to get the 
maximum force to the stuck point the largest impulse must be generated. It 
was stated that the maximum impulse occurs as a result of the maximum 
relative momentum between hammer and anvil. Moving the Jar location 
effectively changes the stiffness and mass of the hammer and anvil, thus 
altering the relative momentum.

The mass-stiffness relationship of the system changes as the Jar is moved 
within the drill string. This causes the period and the amplitude of the force 
response to change. Ideally, to free the stuck point, the largest force with 
minimal damping and friction is desired. Since damping and friction are fixed 
parameters, Jar placement is the only remaining parameter the driller has to 
control the force generation.

The analyses performed do not show the maximum force produced at the 
stuck point. As the force wave hits the stuck point, if the maximum prescribed 
friction force is reached, then the element slips. To determine the maximum 
force, the friction element could be defined with a larger friction force. 
Alternately, the stuck point could be constrained and the maximum reaction 
force computed as a function of time.
Best placement can be viewed two ways: as the maximum force produced at 
the stuck point or as a function of the stuck point slip. The slippage can also 
be viewed in two ways: the total distance the stuck point moves or as the slip 
time duration. The analysis time would have to be increased to determine the 
amount of slip or the total time of slip of the stuck point. In either case, to 
arrive at a best-placement scenario multiple iterations with longer times may
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be required. Since JIFEA solves the system so much faster and with the 
nonlinear complexities included, neither the multiple iterations nor the longer 
time duration is a problem. The analysis(es) can be solved in a timely and 
accurate manner.

4.5 Summary of Solution Control Variable Sensitivity for 
Jar Wave Propagation

The primary conclusion is, JIFEA and ANSYS generate consistent results but 
the former 30 times faster in the sample problems.

Kalsi, Eustes et al, have made use of ANSYS to verify and calibrate the results 
of their methods. JIFEA has been shown to agree very well with ANSYS. 
Therefore, it can be stated that JIFEA provides the accuracy of ANSYS but 
with the speed advantage sought by Kalsi or Eustes in developing their 
methods. Wave-tracking or SFEA may still run faster than JIFEA but the 
speed, accuracy and flexibility demonstrated by JIFEA makes it the best 
overall.
The damping sensitivity revealed the model results are somewhat insensitive 
to damping for the initial value used. Doubling the coefficient had a fairly 
small effect on the forces generated at the stuck point. A factor over 5 times 
the original damping was required before the decay became appreciable. 
Since damping was applied over the entire length of the drill string, 5 times 
the damping is a significant increase. The change in damping is relative to the 
initial value and how close the system is to being critically damped. It  seems 
for the models used, a damping coefficient of 239 Ns/m/m is far enough from 
the critical damping that doubling the damping has minimal effect. 
Nevertheless, damping reduces the wave amplitude preventing the force from 
freeing the stuck point.
Friction showed similar results to that of damping. Friction acting at the nodes 
along the drill string length impeded the wave travel and caused the wave to 
lose energy (force) at every node. Therefore, high friction may prevent the 
wave from freeing the stuck point.

The Newmark method was shown to be the most versatile of the integration 
methods. It  was relatively insensitive to time step size so even crude 
calculations could be used to determine the time step size with less 
convergence issues. It  was insensitive to the integration parameters so no 
modifications would be warranted between placements. The Newmark method 
is fast and requires minimal prior calculations or monitoring making it a good 
choice for field use. If  more refined analysis is required, the Wilson method 
produced the most accurate result. However, this method requires more care 
in determining the time step size and integration parameters. Therefore, its 
use is geared more towards research rather than "quick and dirty" field use.
Both Newmark and Wilson are deemed unconditionally stable for specific 
integration parameter values. The Wilson method proved to be time-step size
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dependent despite the integration parameter chosen to be unconditionally 
stable. This suggests stability requires a continuous nonlinear function.

4.6 Chapter 4 figures

Anvil Hammer

K h “W\A
Kh Pull

Figure 4 .1  Depiction o f sim plified linear d rill string spring-mass 
system
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Figure 4 .2 , Comparison between contact displacem ent results 
between JIFEA and ANSYS of the m odified Kalsi model
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Figure 4 .3 , Rig force response comparison between JIFEA and ANSYS 
fo r the  modified Kalsi model
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Figure 4 .4 , Jar force comparison between JIFEA and ANSYS fo r the  
modified Kalsi model
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Figure 4 .6 , Stuck point force comparison w ith  varying damping 
coefficients (tim e = 0 .1 4  seconds) using JIFEA
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Figure 4 .1 2 , Comparison of stuck force reaction w ith  various tim e  
step size using the Newm ark method
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Figure 4 .1 3 , Comparison of stuck force reaction w ith  various tim e  
step size using the Wilson method
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Figure 4 .1 4 , Comparison o f stuck force reaction w ith  various tim e  
step size using th e  Central Difference method
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Figure 4 .15 , Comparison o f stuck force reaction fo r various 
integration param eter for the New m ark method (t= 0 .14 s  
#5 = 0 .0002s)
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Figure 4 .16 , Comparison o f stuck force reaction fo r various 
integration param eter (6 )  fo r the Wilson m ethod (t= 0 .14 s  
rts=0.0002s)
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Figure 4 .18 , Comparison of stuck force reaction w ith  various to ta l 
friction and Jar position moved up one collar in the drilling assembly 
from  the base case (Kalsi model)
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Figure 4 .19 , Comparison o f stuck force reaction w ith  various total 
friction and Jar in original position (Kaisi m odel)
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Figure 4 .20 , Comparison o f stuck force reaction w ith  various total 
friction and Jar position moved down by one collar in the drilling  
assembly from  the base case (Kalsi m odel)
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Figure 4 .21 , Comparison o f stuck force reaction w ith  various total 
friction and Jar position moved down by tw o collar in the drilling  
assembly from  th e  base case (Kalsi model)
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Figure 4 .22 , Comparison o f stuck force reaction between the standard 
run tim e and an extended run tim e for the Jar position down tw o  
collars case (2 0 0  kN to ta l friction )
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Chapter 5

CONCLUSION

The thesis was presented in two parts; first, the numerical methods were 
evaluated piecewise, and second, the combined pieces used to study the 
results when analyzing a well-documented wave propagation problem.

Chapter 3 considered the components required to perform nonlinear finite 
element analysis of wave propagation. The components consisted of 
elements, time-integrators and the nonlinear incremental solver.

To improve solution efficiency, ail components in JIFEA were implemented 
focusing on performance. Each component was compared to either analytical 
solutions or results from commercial FEA software ANSYS and ADINA.

Central Difference, Newmark and Wilson time integration methods were 
evaluated for accuracy against text book examples and both commercial FEA 
programs. JIFEA's implementation agreed well with the results produced from 
ANSYS and ADINA. The Central Difference method required a time-step size 
10 times smaller than the implicit methods, Newmark and Wilson, for the 
sample problem.

The Wilson method is similar to Newmark in implementation but requires a 
few extra vector computations per time step. Therefore, Wilson is slightly 
slower than Newmark for the same time step size.

The link, damping, friction and contact elements were all verified using 
analytical methods or compared using ANSYS and ADINA. In all cases, good 
agreement was found between the JIFEA implementation and the verification 
cases. Differences found in the friction and contact responses were primarily 
attributed to slight modelling details and to element and/or solution strategy 
implementation discrepancies between programs.

JIFEA has demonstrated good efficiency and accuracy performing nonlinear 
one dimensional wave propagation analysis.

Chapter 4 demonstrates JIFEA used to solve real drill string problems and 
evaluates the effects various parameters have on the results. This section 
presented several comparisons between JIFEA and various other results. First, 
Kalsi's model was re-created using ANSYS to ensure the results could be 
reproduced, which was confirmed. The model was modified slightly to match 
the JIFEA model description. JIFEA produced similar results to ANSYS but 30 
times faster1.

1 On the same computer system
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The performance suggests that JIFEA performs as well as the wave-tracking 
or SFEA methods. Both the wave-tracking and SFEA methods were verified 
using ANSYS and JIFEA produces comparable results. Therefore, JIFEA 
provides the performance and accuracy of other technologies complete with 
multiple solvers and nonlinear elements for extensive Jar placement analysis.

Factors such as integration technique, integration parameters, friction and 
damping were tested to determine solution effects.
Modest variation in viscous damping coefficient had some effect on the 
response but still freed the stuck point. Increasing the damping by a factor of 
five times the original value was required before the waves were insufficient 
to free the stuck point. The stuck point force is somewhat insensitive to 
damping coefficient. However, the sensitivity depends on how relatively close 
the system is to being critically damped.

In general, damping and friction reduce the magnitude of the wave reaching 
the stuck point. Therefore, generating the largest force possible may be the 
best practice for selecting Jar placement.
The most robust integration technique was the Newmark method. It  produced 
accurate results and showed little deviation in results from modifying time 
step or integration parameters. In fact, Newmark proved to be more reliable 
than the other methods if unrealistic time step sizes are used. This makes 
Newmark a good choice for field use.
The Wilson method was more accurate but demonstrated convergence 
difficulties for large integration parameter values despite the value chosen for 
unconditional stability. Two thoughts arise from this; first, the Wilson method 
may not be suitable for "quick and dirty" field use and second, the concept of 
unconditional stability may not apply to discontinuous nonlinearities.

Literature has indicated need for dynamic analysis, specifically wave 
propagation, when evaluating drill string behaviour. The use of wave 
propagation to understand the forces produced from Jarring and the effect on 
the stuck point has grown over the years. FEA has been used to refine Jar 
placement and increase the understanding of how the force is transmitted to 
the stuck point and even to the rig. JIFEA uses techniques common to 
commercial software, generates fast, accurate solutions comparable to 
alternate methods and can easily produce force, stress or kinematics at any 
point in the model with a simple user interface. In short, the program can be 
used in commercial applications, field use and research without compromise.

There are several benefits of JIFEA.
1. Performance. The accuracy is comparable to ANSYS with a speed in 

the order of the alternate methods such as Kalsi's Wave-tracking 
method or Eustes's spectral analysis. Even with the full complement of 
elements including the distributed friction, the model still solved in 17 
seconds.
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2. Efficient. The storage and solvers have been specifically written to 
solve only this problem. The final executable (program file) used to 
generate the results is only 212 kilobytes. Even a minimum installation 
of ANSYS is in the order of Gigabytes. This makes the possibility of 
running the program on a pocket PC, handheld or a website plausible.

3. Cost. Commercial FEA software such as ANSYS is expensive, typically 
greater than $20,000 USD with high annual maintenance costs. 
Licensing on such software is typically very restrictive and third party 
distribution is essentially impossible. The application-specific code can 
be used as a FEA engine in software that companies could sell very 
inexpensively or even give away with tool rentals.

4. Longer analysis. Since the application-specific program runs so much 
faster, the analysis can be allowed to run for longer times to assess 
the force response of constructively interfering waves.

5. More Jar placem ent variations. With only 17 seconds for a fairly 
long drilling assembly analysis, more variations on Jar placement may 
be evaluated. Ignoring model setup time, in theory, 30 times more 
placements could be evaluated within the same time than ANSYS.

6. Elem ent Library. With the element library present, other tools can be 
modelled in the drilling assembly. Shock tools, stabilizers or other 
friction and/or damping distributions are all possible with minimal 
incremental effort to solve the system.

5.1 Recommended Future Research
When undertaking a project of this magnitude it is often difficult to keep the 
scope under control. Producing the work contained within this thesis raised as 
many questions as it answered. Future considerations for this type of analysis 
follow.

5.1.1 Determination of viscous damping coefficient
Typically the damping coefficient is determined by a simple correlation 
between the moving pipe and the force required to maintain motion. Fluid 
properties such as viscosity and density enter the damping coefficient.
Obviously if the pipe is stuck then there is no global pipe motion. However, in 
many cases the drilling fluid circulation is maintained.

Stress waves propagating through the pipe produce a very small disturbance 
in the surface. The strains in the axial and radial directions are small 
compared to the length and diameter of the pipe. The no-slip condition 
requires boundary layers to form on the surface of the pipe. Considering small 
perturbations of the pipe and the size of the boundary layers, does 
determination of the damping coefficient lend itself to this type of motion?
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In cases where the formation has caved in around the pipe, there may be a 
loss of circulation so the only the localized pipe velocity contributes to viscous 
damping forces. This produces a similar concept but with a very short length 
of pipe affected.
Further research and scale testing may provide a different damping value 
than used in this thesis. I.e. damping more suitable to the localized effects 
stress waves have on the pipe.

5.1.2 Multi-dimensional effects imposed on 1D model
The friction distribution system used in this thesis is based on an intuitive 
rationalization of hole-drag characteristics. Keeping the model symmetric and 
banded keeps the matrix size small and simplifies the solvers. The structure 
of the model used in JIFEA forms a tri-diagonal matrix. Both the damping and 
friction elements are tied to ground so using matrix portioning also helps to 
reduce the matrix size.

An interesting concept is the creation of a one dimensional element capable of 
storing pre-stress information. If  lateral deformations are not of interest it 
may be possible to develop an element and process that enables 3D effects to 
be imposed on this ID  model and compute the longitudinal displacement 
more accurately.

Effects such as buckling, helical buckling and bending due to key-seat or well 
deviation could be included and imposed on the ID  model to better calculate 
the friction at well-contact points and the stresses in the pipe with pre-stress 
conditions.

Using these effects, the analysis may be faster and as accurate as performing 
a full 3D analysis.

5.1.3 Advanced FEA techniques
Throughout this thesis the performance, being speed and accuracy, is the 
driving force behind the development of the application-specific program. It  
has been well documented that in order to generate accurate results using 
FEA, the element size must be small enough with a small enough time step. 
There are two possibilities for an advanced approach that would produce 
similar or improved accuracy at the same or increased speed.

5.1.3.1 Adaptive meshing
Along a long section of drill pipe, the stress waves that travel are very short 
respectively. The waveform then could be captured by a very fine element 
mesh localized to the location of the wave. As the wave is constantly moving, 
this requires the mesh to move as well. By having a region of fine mesh 
density that follows the wave the rest of the pipe may be meshed with very 
coarse density.
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Consideration for velocity and acceleration may be required to ensure 
continuity between models.
It is uncertain if the extra computing required to perform the re-meshing at 
every time step would counteract the speed increase from the reduced model 
size or if the effort would warrant an increase in accuracy.

5.1.3.2 Temporal/Spatial adaptive meshing
Another requirement of time-history wave propagation is a suitable time step 
size. Stiff differential equations require a smaller time step size than non-stiff 
equations. Another way to think of this is: systems that have modest 
responses can be integrated with simple methods and large time steps. In 
regions where the model has a rapid response, the time step must be smaller 
and the use of more complex integration schemes may be required.

This suggests that regions where little is happening, i.e. no waves are 
present, the time step size could be large with a simple integration technique. 
Where waves are travelling, a small time step could be used with a more 
sophisticated integration method.
Combining a temporal adaptive technique in conjunction with the adaptive 
meshing strategy may produce far too much complexity to warrant the effort 
but, in theory, would have similar benefits to that of adaptive meshing alone 
but with increased accuracy.

5.1.4 Tool Modelling
The Jar in the Kalsi model was represented as a gap within the drill collar. To 
better capture the behaviour of a Jar, a combination of elements could be 
used; Contact to represent the gap, specialized friction to represent the 
locking mechanism, standard friction to represent the internal tool friction and 
link elements to represent the tool body. Shock Tools could be modelled in a 
similar fashion by using link and damping elements. Even stabilizers could be 
modelled in greater detail.
Better representation of each tool could be useful in determining stress wave 
amplitude at the stuck point or in the various tools. Tool forces may provide 
insight for placing other tools in Jar proximity.
Note: Shock tools placed close (typically under) Jars usual sustain severe 
damage from Jar impulse waves.

5.1.5 Lateral Wave Propagation
The majority of the papers reviewed consider longitudinal wave propagation 
only. These waves cause localized length variation in the presence of the 
stress waves. In conjunction with these waves lateral waves are also 
produced. Little reference is made to the effects these wave have on the 
friction distribution, the damping or the stuck point.
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It  could be argued that lateral waves cause cross-section expansion or 
contraction localized in the region of the waves. In full 3D, these waves may 
cause localized ovalization in the cross-section rather than uniform expansion 
or contraction.

Cross-section area changes may affect the hole-drag or the viscous damping 
acting at that region. As stated previously, the damping may be minimally 
affected by the waves as the disturbance in the pipe is localized.
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Appendix A -  Elements
Link Element Description

The internal force is calculated from the internal stresses found in the
element. In this case, the element is a simple link or truss in the elastic
material regime, therefore, the element force calculation is straightforward.
The force-displacement relationship for the link element is:

Fl = kexl - k ex2 A.l

F2 =  - k exx +  kex 2 A.2

Since the material modelled is elastic, the iso-parametric nodal element force 
can be computed directly using Fx and F2.

Damping Element

The damping coefficient cd could be a function of viscosity, surface area of 
the pipe, length of the pipe or annular width, etc. To provide a consistent 
damping, c ^ ,  the effective damping coefficient is defined as a function of
pipe surface area and length.
The force-velocity relationship for the damping element is:

F\ —Ceff*\ Ceff*2 A.4

f 2 = - V + V :  A.5

cd =  damping coefficient

Cgff =  cdj£>L A.6

The damping element is based on the damping component of the ANSYS 
Spring-Damping element Combinl4.

Friction Element

The force-displacement relationship for the friction element is:
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F l = k ( X l - X 2 ~ X s Up )  

F2 = -k (x l - x2 -JCslip)

k  =  k f r i c >0

A.7

A.8

A.9

As implemented, x2 is always tied to ground, therefore, Fx is the force at the 
node connected to the pipe and F2 is the friction element ground reaction. The 
determination of the amount of slip is equivalent to the behaviour of an 
elastic-perfectly plastic material but expressed in terms of force and 
displacement rather than stress and strain.

Contact Element
The force-displacement relationship for the contact element is:

Fx is the force at node 1 and F2 is the force at node 2. To reduce the nonlinear 
effects, the element is described with a very low stiffness when the gap is 
open. The element is intended to only carry a tensile load. If  the gap opens, it 
is free to continue to open. It  is modelled after the description of the point to 
point contact element (Contacl2) in ANSYS.

Fl = koPJ Xl ~ xi )

F2 = ~kopaxiX\ ~  *2)

A.10

A .l l

A.12

A.13
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Appendix B -  Linear Vibration Problem
Linear Vibration Problem 

In general the wave equation is:

B.l
dx2 dt2

B.2

c - M - M

From which the general solution is:

u{x,t) = (A cos coj + B sin <y„/]^C cos —^  + D  sin

For longitudinal waves the wave speed (speed of sound in medium) is:

E g = [ I  

V m  I p

where p is the weight density and p is the mass density.

Boundary conditions

The fixed end of the rod can never have any displacement. Therefore, the 
following can be written:

w(0,/) = (AcoseoJ + B sin aJ^C  cos +  Z) sin B.4

u(0, t) = (A cos mnt + B sin cani)C, : .C  = 0 B. 5

To determine the natural circular frequency, the rod is assumed to be free of
forces or initial strains. This provides the condition for the free end that no 
forces are applied. This can be expressed as:

EA—  = 0 B.6
dx

0 = (A cos (ont + 5  sin cos B.7

. \c o s ^ -  = 0 B.8
c
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Therefore, the displacement for the principle mode can be expressed as:

u{x,t) = sin c osa>nt + B sin coj) B. 11

This indicates that there are several modes that form the displacement. The 
total displacement then is the sum of all the modes.

“ (■*>')= Z  si n ( ^ " c o s (°nt +  Bnsina>nt ) b.12

Since the complete dynamic response is sought, equation B.12 can be 
differentiated to determine the velocity and acceleration as:

« (* , ')=  Z  a n Sin^ ( “  A n S in 0 ) n (  + COS <Oj) B.13
n=1.3.5.-- "

and

“(*>') = Z 60n S i t l (“  An C° SV"* ~ B* Sin<*>„') B.14
n=l,3,5,— "

The prescribed strain is now applied since the natural frequency and total 
displacement was determined.

The strain at any point in the rod is described by:
Ax AI Se -  —  = —  = — B.15
x I  I

The prescribed strain is an initial condition as it occurs at t=0 and is only
known to be true at t=0. In addition, since the rod is "pulled" and allowed to
come to equilibrium there is no initial velocity at t=0. Therefore:

u(x,0) = sc B.16

m( x , 0)=0  B.17
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«= Z sin (4 cos 6>„ (0)+ Bn sin 6>n (o)) b.18
n=l,3,5.- 21

. nnx .«= Z sm̂r4, B.19
n = l,3 ,5 ,- "

0= Z  Sin ̂ r ( “  4 . Sin <°n(° )+ B« C0S (°)) B.20
n=1.3,5.- ■«

-A . «7cc _
0 =  Z 6>„sm— Bn B.21

n - I .3 .5 .-  "

Solving for the coefficients requires recalling knowledge of Fourier 
coefficients.

8d  i __
An = - r T ( - 1)2 B.22

n n

B„ = 0 B.23

So finally, the displacement, velocity and acceleration are:
/  \ —

/  x -A  ( - 1)2  . m a R
u { x j ) = —  £  7 s m — cosft?„f B.24

n  rt=i,3,5.- - n  2 /

\  ^  (~ l )~  • nnx • r  ->cu ( x , / ) = - 6 > „ —  £  1 - 4 — s m — s i n © /  B.25
x  » = u l ~  »  2 /

\ 2 ^  v 1 (—1)  ̂ . b
y (* , /)= -< y „  —  2 .  :sm — c o s © / B-2 6

^  «=1,3.5.— n  "
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Appendix C -  Central Difference Derivation
Central Difference Derivation

The second derivative approximation can be expressed as:

C .l
At*

The first derivative approximation can be expressed as:

C.2
2At

Using this formulation, both approximations have the same error of order 
0 (A tf  (for more information on Newton forward, backward or central 
methods refer to an intermediate or advanced numerical text).
Using these approximations, the equation of motion can be re-written as:

M
At*

C.4

Grouping the known values on the right and the unknowns on the left 
produces:

M U2 1 l i +A,;C}=:At2 2At)  }
C.5

The only remaining factor is that of determining a starting procedure. Since 
this is a multi-step method, at time t = 0 there is a requirement of knowing 
{x} at t = -A t .  For this the initial conditions can be used to determine the 
displacement at t = - A t . If  the entire body is at rest, the initial condition is:
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C.6

The main difference between the linear and nonlinear derivation is the 
calculation of the stiffness. For a linear system, [£ ]{x}={F }, but in a
nonlinear analysis this linear relationship does not exist. Therefore, C.5 can be 
re-written in terms of the element's internal forces. Otherwise the method is 
treated the same as the linear method.
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Appendix D -  Newmark Method
Newmark Derivation

{,+a/jc } =  { 'x } +  { ' * } &  +  -  or j{ '3 c }+  a  {f+" x }  A t

D.l

D.2

When 8  = V 2 and a  = 76 the above equations produce the linear 
acceleration method and when 8  = V 2  and a  = XU  the above equations 
produce the trapezoidal rule. The parameters are to be chosen for speed, 
accuracy and stability of the integration method. They are often set for 
specific types or classes of problems. In the ID  wave propagation, the 
method will start using the constant-average-acceleration (trapezoidal) 
values. Considering the equations of motion at the desired time, the equation 
takes the following form:

Rewriting equations D .l and D.2 in terms of the unknown displacements at 
/  +  A/ yields equations D.4 and D.5 respectively

Substituting equations D.4 and D.5 into equation D.3 puts the equation of 
motion in terms of known displacements, velocities and accelerations.

[ M ] { ' +A/3 r}+  [C ]{ '+A,i } +  [ K f r “ x}= D.3

D.4

D.5

and imposing the following conditions on the two parameters:

D.6
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[ c i { x } +  A/(l -  s ) { x } +  SAt {,+A,Jc})+ [AT]{r+A/Jc}= {'+a,.r}

{ +* r }+

D.7

D.8

Equation D.8 can be simplified by considering the matrices on the left side as 
the effective stiffness matrix and the right side as the effective load vector.

{“ % ■ }=  {""■»}+

D.9

D.10

So finally the equation being solved is

D . l l

Nonlinear Derivation
Equation D.3 can be modified to allow for an iterative approach necessary for 
implementing the full Newton-Raphson iteration technique.

D.12
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And with the relationship:

{f+A,x(;:)}= {'+A/x(i' l)}+ {te{k)} D.13

At this point several texts including Bathe take a  = ^  and 8  = - k  By using

these values, the terms in the equations simplify yielding the constant- 
average acceleration method. Furthermore, Bathe's derivation of the 
nonlinear Newmark method uses the modified Newton-Raphson method 
(Newton method). To keep the general format using the full Newton method, 
the following are used.

{ +* $ k)}=  {kc(i)} ) -  a2{x}~  a3{'ic} D.14

{ +A,x[k)}=  D.15

Using these relationships and equation D.12, the general nonlinear form of 
Newmarks equations are:

{'x}+ <j2 { ' i } -  Oj {'*})+

[ c R ' iK  “<■ { '4 + " 7  D.16
[war/:(*-i)

r / { • * } +  o6 ana2 { ' i l -  cucu {'x}+

!)] ^ (i)}= {'+A,7?}- {'+A,F (*_I)}

{'*})+ [M  ]a0 } -  [M  ]a2 { '* } -  k k { '^ } +

[c fx } +  [c k { '^ }+  [C k ^ o f i '^ ^ -0} -  {'*})+ [ c k « o K {t)} -  D.18
[c]a7*2 { ' * } -  [C ]a 7a 3 { ' * } +  [ ' ^ ^ (4- 1) ] ^ JC(* ) j=  { '+ * /? } _  }

jM ]a 0 + [c k *o  + ['+A'^ (* 'l)l ) k c(")}= {'+A,tf} -  {,+A,F (i-I}} -

[M ^o  ({ '^  x(a-1)} -  { '*} )-  o2 { '*}+  * 3 { 4 ~  D.19

M ) "  (* 7 * 2  ~ ! ) {^ } -  (*7*3 -  * 6) { '^
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Rewriting the equation of motion using the Newmark approximation for 
velocity and acceleration enables the solution of the incremental 
displacement. The equation still takes the form:

D.20

Where,

d .2 i

and

’} -  W ) -  “2 {'■*}+ ‘h {'-?})- D.22

The following coefficients have been specified to simplify the equations. 

a° ~  a  At2

ax =

a2 =

S
a  At 

1
a  At

cu= —— 1 D.23
2 a

*-KH
a6 = A t ( l-S )  

a7 =  A tS
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Using these coefficients, the final form of equations D.21 and D.22 are:

Note that these equations are very similar to the linear counterpart except 
that the displacement is in terms of the incremental displacement and the 
internal element force, {f }, has been added to resolve equilibrium. This 
describes the full Newton-Raphson technique. Several modified or quasi- 
Newton methods could be employed to reduce computation overhead.

The process for performing the incremental solution requires the following 
conditions:

D.24

/+Af (A-l) D.25

}={'*} D.26

D.28

D.27
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Appendix E -  Wilson O Derivation
Wilson 0 Derivation

The following derivation is taken from Bathe

OAt

r}

20 At

^  + E.3

Equations E.l to E.3 form the basis of the Wilson method. When 0 is 1 then 
these equations reduce to the linear acceleration method. Rewriting equations
E.2 and E.3 with r  = 0At we obtain:

E.4

and

{,+tf A/x}= { '*}+ £  A /{ 'i}+  ̂ - ^ l ( { '+eA'x}+2{'jc}) E.5

From which the acceleration and velocity can be expressed in terms of the 
displacement.

^ " * } =  2{'3c} E.6

With the acceleration and velocity known at t + 6 A i,  the equation of motion
can be solved at time t + 0A t. Because we are solving at t + 9&t the load
vector at that time is required. Since the acceleration is assumed to vary 
linearly, the load vector can be linearly extrapolated.

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[A /]{ '+eA/j f } +  [ C ^ x } +  [ * ] { ' * * * } =  {'+<>̂ }

{'+* * f l}=  { r }+ 0({'+a7?}- {'/?})

E.8

E.9

Substituting equations E.6 and E.7 into equation E.8 expresses the equation 
of motion in terms of the unknown displacement and all the known quantities.

E.10+

Grouping the known and unknown values, equation E.IO in the final form is:

tar H ^ l + O o M + a J c ]  £.11

W + a2 { '4 +  2 { '4 )+ [c fe  { '4 +  2 { '4 +  ai { '4 )

[ ^ ] ! " “ 4 = ! " ' ' i ' ^ }  e .i 3

Once the displacements at t + OAt are determined the displacement, velocity 
and acceleration at t + At can be computed from:

{'+A,* }=  a4({,+tf" - * } - { ,-*}+«s { '*}+<J6 { '*}  E.14

E.15

{ '^ x }= { 'x }+ A r{'x }+ a 8({'+i'Jc}-2{'x}) E.16
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Where the coefficients are defined as: 

6
ao =

a, =

(0 A tf
3

a 2 =

etst 
6 

0At
0At

a, = ------
3 2

a4 = 0r &  E ' 1 7

cu =
- 6

5 02 At

0
At

O n -----7 2
At2

<h=-

This derivation is the linear method presented by Bathe. For the nonlinear 
derivation, no specific formulation is provided. In order to show the nonlinear 
derivation the linear equations and background is required.

The main difference in the nonlinear derivation is the use of the incremental 
displacement. Using equation E.18 and assuming that the acceleration and 
velocity in equations E.6 and E.7 are at iteration k, then:

A / J f ( t ) } = | * + ^ j c ( * - 1) } +  ^ ( * ) |  e.18

E.19

M ) - 2 { ' 4 -  H  E.21
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0 At 2

Then equations E.20 and E.22 can be substituted into the full Newton- 
Raphson implementation of Wilson, equations E.23 and E.24.

[M ]{ +6“ x{k)}+  [c]{'+eA,Jc(i)}+ ['+' 4'^ (t-1)]fix (*)}=

{ * * % } =  {'#}+ 0({'+A,/?}~ {'/?}) E.24

Expanding yields:

\
+ E.25

E.26

Equation E.26 is expressed in terms of the effective stiffness, effective load 
vector and coefficients, similar to the linear derivation.

[,+<'A,AT<arJ=['+eA,/ : (*‘ 1)J+ or0M +  a,[c] E.27

W + « (! '* " « ! - ! '« ! ) -

E-28
[cK a,({^^'‘-,)} -W )-2 { i} -a 3 { '4
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Such that the final form is

E.29

Once the incremental displacement is computed, the total displacement is 
updated using E.18 then the following equations are used to obtain the 
solution at f + A /. Note that these equations are very similar to the linear 
derivation if the overall implementation and use of E.18 are handled properly.

a4({'*#"x l*1} -{ 'i j)+  Oj { 'i}+  a6 M  E.30

E.31

{ '4 + A/ { 'i}+  2 {'if}) E.32
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Appendix F -  Jar Placement Software
The creation of Jar Placement software initially led to this thesis. Companies 
that provide Jar placements to customers generally performed a basic force 
analysis (summation of forces) on the drill string. The Jar placements were 
performed by hand using an approximation to the drilling assembly. To aid in 
this process software was created to perform force calculations on the drilling 
assembly. As the program advanced, the interface was enhanced so more 
complicated drilling assemblies could be built and analyzed. The program 
generated a range of viable locations where a Jar could be placed. The results 
produced a wide range of placement possibilities.

The software was expanded by including various well geometries with 
distributed friction. The rationalization presented in this thesis was originally 
developed for the Jar placement software to distribute the friction.

To refine the placement wave analysis was sometimes employed using 
commercial FEA. The time to perform a wave analysis generally was too long 
for most customers and therefore rarely done.
The next step in the program's evolution was to add Jar placement 
refinement, thus work on the wave propagation was initiated. The problem 
was commercial programs solved the problem too slowly and cost too much to 
be of any practical field use. This prompted work into coding the application- 
specific FEA based wave propagation solution and ultimately this thesis. The 
FEA code written could be added to the Jar placement software to refine the 
placement. Therefore much of the code structure has been done with the Jar 
placement software in mind.
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Appendix G -  ANSYS Input Code
ANSYS input code for Kalsi model.

PI=2*ASIN(1)

RunTime=.14/.0002+10

/Title, Vertical Jar Impact Analysis — IMP001

!!! Parametric Parameters !!!

PullLoad=733956.6 
FForce=1779289

! Drill Pipe Area
DSArea=PI/4*(0.1143**2-0.094742**2)
! Srill Collar Area
DCArea=PI/4*(0.18415**2-0.0714248**2)
! Heavy Weight Drill Pipe Area 
HWArea=PI/4*(0.1143**2-0.070104**2)
! Intensifier Jar Stiffness (N/m) 
IntK=2330006

! Damping coefficient ((N sec/m) /  m) 
Damp=239

! Drill String length
DSI=609.6
dsel=20

! Heavy Weight Length
HWI=91.44
hwel=10

! Drill Collar Length (above intensifier)
DCI1=27.432
dclel=10

! Intensifier Length 
intl=3.048

gosolve=l
gopost=l
dampon=0
inton=0
dofxon=0

! 0- don't solve, 1- solve 
! 0- don't post, 1- post
! 0 - no damping 1 - damping
! Turn on Intensifier Jar 
! Turn on ux constraints

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



! Drill Collar Length (below intensifier above jar)
DCI2=54.864 
dc2el=20

! Drill Collar length (below jar above stuck point)
dcl3=45.72
dc3el=15

! Drill Collar length (below stuck point)
dcl4=45.72
dc4el=15

! More DC.
dcl5=91.44
dc5el=15

! Total number of elements 
tot=dsel+hwel+ddel+dc2el+dc3el+dc4el+dc5el 
! Total length of string
totl=dsl+hwl+intl+dcll+dcl2+dcl3+dd4+dcl5

!!!!! Determine Integration Time Step as per Ansys 5.5 Dynamics manual.

! Wave Speed
ws=(2.068427e+011/(7850))**.5  
! Integration Time Step (instead of .0002) 
! its= .0002 !totl/tot/3/ws*.9

/PREP7
!!! Basic Steel Properties !!!

mp,ex,l,2.068427e+011 ! Modulas of Elasticity
mp,nuxy,l/-3 ! Poison's Ratio
mp,mu,l,.5 ! Coulomb Friction coefficient

inn

(used to create stuck point)

mp,dens,l,7850 ! Density of Steel (lb mass /  cu. in.)

!!! Define Elements !!!

et,l/Hnkl
R,l/DSArea

!Element to represent Drill String

et,2,linkl
r,2,HWArea

! Element to represent Heavy Weight Drill String
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et,3,linkl
r,3,DCArea

! Element to represent Drill Collar

*if,inton,eq,l,then 
et,4,combinl4 
r,4,IntK 
keyopt,4,2,2 

♦endif

*if,dampon,eq,l,then
et,17,14
r,17„Damp*dc2el 
keyopt, 17,2,2

et,18,14
r,18„Damp*dc3el 
keyopt, 18,2,2

et,19,14
r,19„Damp*dc4el 
keyopt, 19,2,2

et,20,14
r,20„Damp*dc5el 
keyopt,20,2,2

♦endif

et,8,contacl2

r,8,90,1.751885e+009„2

! Element to represent an Intensifier Jar

!Element to represent string damping.

!Element to represent string damping.

!Element to represent string damping.

.'Element to represent string damping.

! Element to represent Stuck Point by applying 
Normal load and friction coefficient

! Theta = 9 0  - interface surface 90 degrees from global x axis
! KN = 10e6 - Normal Stiffness of Contact surface 
! INTF = 0  - initial Gap size
! Start = 2  - node J slides to the right of node I
! KS = 0  - Surface Stiffness "Sticking" force
! Redfact = 0 - Weak spring between gap Reduction Factor of KN (default
le -6)

et,9,combinl4 ! Element to remove rigid body motion from
model

r,9,26278.27 ! Weak spring to promote fast solution
keyopt,9,2,2 ! uy only, added Apr 20, 2000
et,10,12 ! Element to represent jar stroke and impact
r,10,180,1.751885e+010,-0.1651,,,
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! keyopt,10,3,1

e t,ll,lin k l ! Tie element for holding the gap open during
static step

r , l l ,  17518.85

1111111111111111II1111II1II1I I1II111111
III im

!!! Build The Model !!!
in !!!
ii i it ii i ii 11 ill 1111111 ii 11111 ii 11111111

! Tie Down Spring 

n,l

type,9 
real,9 
n, 2,0,2.54 
e,l,2

TieNod=2
! Lower Section of Drill Collar

kk=2
jj=2.54
♦do,ii,kk+l,kk+dc5el 

type,3 
real,3
j j - j j + dcl5/dc5el
n,ii,0,jj
e,ii-l,ii

♦if,dofxon,eq,l,then
d,ii,ux,0

♦endif

♦if,dampon,eq,l,then
dn=ii+5000
n,dn,0,jj!-l
d,dn,all,0 
type,20 
real,20
e,ii,dn 

♦endif
♦enddo
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! Lower Section of Drill Collar 
kk=ii
LoDCNod=kk

*do,ii,kk+l,kk+dc4el 
type,3 
real,3
jj=jj+dcl4/dc4el
n,ii,0,jj
e ,ii-l,ii

*if,dofxon,eq,l,then
d,ii,ux,0

*endif

*if,dampon,eq,l,then
dn=ii+5000
n,dn,0,jj!-l
d,dn,all,0 
type, 19 
real,19
e,ii,dn 

’•‘endif

♦enddo

! Stuck Point (Arbitrarily set 0.1 m x axis) 
type,8 
real,8

kk=ii
n,1000,0.0254,jj ! 0.1 m to the right (positive x axis) of y=0 axis
e,1000,kk ! node i at 1000 node j at kk

! Add Force and constraint to Stuck Point

d,1000,all,0 
FricNode = kk

! Upper Drill Collar

*do,ii,kk+l,kk+dc3el 
type,3 
real,3
jj=jj+dd3/dc3el
n,ii,0,jj
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e,ii-l,ii
*if,dofxon,eq,l,then

d,ii,ux,0 
*endif

*if,dampon,eq,l,then 
dn=ii+5000 
n,dn,0,jj!-l 
d;dn,all,0 
type, 18 
real,18
e,ii,dn 

*endif

♦enddo

! Jar
jj= jj+6.5

kk=ii
UpDCNod=kk

type, 11 ! Tie Element
real,11
kk=kk+l
n,kk,0,jj
e,kk-l,kk

type,10 
real,10

e,kk-l,kk
*get,Jarelem,elem„num,max
Linkelem=Jarelem-l
JarNodej=kk
JarNodei=kk-l

! Upper Drill Collar

*do,ii,kk+ l,kk+dc2el 
type,3 
real,3
jj=jj+dcl2/dc2el
n,ii,0,jj
e,ii-l,ii
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*if,dofxon,eq,l,then
d,ii,ux,0

♦endif

*if,dampon,eq,l,then
dn=ii+5000
n,dn,0,jj-l
d,dn,all,0 
type,17 
real,17
e,ii,dn 

*endif

*enddo

! Intensifier jar 
kk=ii
Up2DCNod=kk

*if,inton,eq,l,then 
type,4 
real,4

jj=jj+intl 
kk=kk+l 
n,kk,0,jj 
e,kk-l,kk  

*  end if

! Upper Drill Collar 9' sections

*do,ii,kk+l,kk+dclel 
type,3 
real,3
jj= jj+dc ll/dde l
n,ii,0,jj
e,ii-l,ii

*if,dofxon,eq,l,then
d,ii,ux,0

*endif

!*if,dampon,eq,l,then 
!dn=ii+5000 
!n,dn,0,jj!-l 
!d,dn,all,0 
! type,7
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!real,7
!e,ii,dn

!*endif

*enddo

! Heavy Weight Pipe 30' sections

kk=ii
DcHwNode=kk

*do,ii,kk+l,kk+hwel 
type,2 
real,2
jj=jj+hwl/hwel
n,ii,0,jj
e,ii-l,ii

*if,dofxon,eq,l,then
d,ii,ux,0

*endif

!*if,dampon,eq,l,then 
!dn=ii+5000 
!n,dn,0,jj.'-l 
!d,dn,all,0 
!type,7 
! real,7 
!e,ii,dn 

!*endif

♦enddo

! Drill String 100' sections

kk=ii
HwDsNode=kk

*do,ii,kk+l,kk+dsel
type,l
real,l
jj=jj+dsl/dsel
n,ii,0,jj
e,ii-l,ii

*if,dofxon,eq,l,then
d,ii,ux,0
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♦endif

!*if,dampon,eq,l,then 
!dn=ii+5000 
!n,dn,0,jj!-l 
!d,dn,all,0 
!type,7 
! real,7 
!e,ii,dn 

!*endif

♦enddo

kk=ii

! Add Constraint to fixed end (bottom end)

d,l,all,0
d,kk,ux,0
*get,RigElem,elem/fnum,max
RigElem=RigElem-l
RigNode=kk-l
ddel,fricnode,all

LUMPM,1

fini

111111111111 i i  11111 i i  1111 i i  111

Solve The Model

1111111111111111 M 111111

*  if ,goso I ve,eq, 1 ,then 

/solu

! Setup Solution controls
ANTYPE,4
TRNOPT,FULL

outres,all,l
kbc,l
autots,on
lnsrch,off
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! Apply Friction and Add Pull Force to Drill String
timint,off
time,.0002
nsub,10
f,FricNode,fx,FForce
f,kk,fy,Pulll_oad
solv

timint,on 
ekill,Linkelem 
DELT1M,.0002 
time,. 14
f,FricNode,fx,FForce
f,kk,fy,PullLoad
solv ! Solve this thing...

fini

*if,gopost,eq,l,then

/post26
zP ! Post macro

♦endif !End if statement for post processing 

♦endif !End if statement to solve model
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Appendix H -  ANSYS Post-procession Code
ANSYS post processing code for Kalsi model.

/post26
NUMVAR,200,
FILE,file,rst,
pltime,0,.5 ! Time Frame

rforce,2,1000,f,y,fric_fy
nsol,3,FricNode,u,y,u_stuck
rforce,4 ,FricNode,f,y,Stuck_fy
esol,5,Jarelem,JarNodej,smisc,l,Jar_fy
RFORCE,6 ,l,F,Y,supp_fy
nsol,7,2,u,y,u_Tie
nsol,8,Jarnodei,u,y,ui
nsol,9,Jarnodej,u,y,uj
esol,10,Jarelem,Jarnodej,nmisc,3,gap_stat

ADD,11,9,8, ,Stroke,, ,1,-1,1,
DERIV,12,9,1, ,v_Hammer,, ,1,
DERIV,13,12,1, ,a_Hammer,, ,1,
PROD,14,13, , ,a_H_g, , ,1/9.807,1,1,

esol,15,RigElem,RigNode,f,y,Rig_fy

esol,32,RigElem-l,RigNode-l,f,y,Rig_l_fy

nsol,16,RigNode,u,y,u_Rig

ESOL,23,2,3,F,Y,onedown
ESOL,24,l,2,F,Y,tie
NSOL,25,2,U,Y,u_Tie
esol,26,160,158,f,y,DC-HW
esol,27,FricElem,FricNode,smisc,l,Normal
esol,28,FricElem,FricNode,smisc,2,Tangential

DERIV,30,8,1, ,v_Anvil, , ,1,
DERIV,31,30,1, ,a_Anvil,, ,1,
DERIV,32,16,1, ,v_Rig,, ,1,
DERIV,33,32,1, ,a_Rig,, ,1,

PLVAR,15
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