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Abstract

The accurate simulation of wireless channels is important since it permits the realistic and

repeatable performance measurement of wireless systems. While software simulation is a

flexible method for testing hardware models, its long-running simulation time can be pro-

hibitive in many scenarios. Prior to the availability of accurate and standardized channel

models, wireless products needed to be verified using extensive and expensive field test-

ing. A far less costly approach is to model the behavior of radio channels on a hardware

simulator.

Different channel characteristics should be considered to ensure the faithful simulation

of wireless propagation. Among the most important characteristics are the path-loss be-

havior, Doppler frequency, delay distribution, fading distribution, and time, frequency, and

space correlation between fading samples across different antennas. Various fading chan-

nel models have been proposed for propagation modeling in different scenarios. A good

homogeneous field programmable gate array (FPGA) fading simulator needs to accurately

reproduce the propagation effects, yet it also needs to be compact and fast to be effectively

used for rapid hardware prototyping and simulation.

In this thesis, new channel models are proposed for the compact FPGA implementation

of fading channel simulators with accurate statistics. Compact hardware implementations

for physical and analytical fading channel models are proposed that can simulate fading

channels with more than one thousand paths on a single FPGA. We also propose design

techniques for accurate and compact statistical fading channel simulation of isotropic and

non-isotropic scattering in Rayleigh, Rician, Nakagami-m, and Weibull fading channels.

Compact FPGA implementations are presented for multiple-antenna fading simulators for

geometric one-ring models, two-ring models, elliptical models, and analytical models in-

cluding the i.i.d. model, and Kronecker, Weichselberger, and VCR channel models. Finally,

a fading simulation and bit error performance evaluation platform is proposed for the rapid

baseband prototyping and verification of single- and multiple-antenna wireless systems.
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Chapter 1

Motivation and Background

Wireless communication systems are designed to operate over radio channels for a variety

of environments and weather conditions. While it is possible to build working hardware

prototypes of a system and then field test them in different locations, such an approach will

be quite expensive and will not provide useful feedback in the early stages of the design

process, when a number of candidate designs must be explored and design changes are

easier and less expensive to make. Moreover, propagation conditions are almost impossi-

ble to repeat for the comparative analysis of test results. A more practical approach is to

create accurate mathematical models for representative radio channels and then base the

initial design on these models. Numerous wireless channel models have been proposed to

characterize time and/or space-variant propagation environments (e.g., see [15–20]). These

channel models have led to different simulator designs that can be efficiently used in the

development and accurate error-rate performance evaluation of wireless systems. A chan-

nel simulator should mimic the propagation characteristics faithfully since the accuracy of

the performance estimation under real world conditions can make the difference between

success and failure.

Two major approaches have been widely used to produce statistically accurate se-

quences of sampled fading variates (i.e., channel attenuation coefficients), namely, shaping

the spectrum of Gaussian variates using digital filters and sum-of-sinusoids (SOS) based

methods. The filter-based technique is attractive for implementing fading channel simula-

tors as it can be customized to accurately reproduce the statistical properties required for

simulating fading channels [19]. However, the computationally-intensive multi-rate signal

processing required by this technique limits its application in more complex scenarios such

as multiple-input multiple-output (MIMO) channels. On the other hand, even though the
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SOS-based models are substantially less computationally demanding than the filter-based

technique, some of the proposed SOS-based fading channel models have inaccurate sta-

tistical properties for the unbounded or continuous simulation of time-varying propagation

channels.

The demanding performance requirements of wireless applications, along with the in-

creasing computational complexity of baseband algorithms, have greatly increased software-

based simulation loads. Therefore, the required run times for the accurate performance

evaluation of the most recent low bit error rate (BER) baseband algorithms are becom-

ing prohibitively long (e.g., days and even weeks), which makes software-based simula-

tion increasingly impractical. The required run time for accurate fading simulation is an

even bigger concern in multiple-antenna or wireless networking scenarios as the number

of paths grows rapidly with the number of antennas and/or users. With a large number of

antennas/users, the required simulation time becomes prohibitively long for software-based

simulators. Although it is much easier to design and implement a fading channel emula-

tor in software than in hardware, hardware-based simulators have been shown to provide

several orders of magnitude speed up in performance evaluation over software-based simu-

lators [21, 22], significantly reducing the design time.

Different commercial fading channel emulators are available in the market that accu-

rately reproduce the behavior of propagation environments in the laboratory. They are

typically stand-alone units that provide the fading signal in the form of analog or digital

samples. They generally require complex hardware consisting of several circuit cards with

multiple processors. For example, the NoiseCom MP-2500 Multipath Fading Emulator [23]

consists of 11 circuit boards, radio frequency (RF) circuitry, cooling fans, and an external

computer interface for setting the various parameters of a 12-path frequency-selective fad-

ing channel. However, commercially available systems are rather bulky and costly and

cannot be used for systems with a relatively large number of antennas and/or users. Some

of the main specifications of a number of the available fading channel emulators are listed

in Table 1.1. These products are available at prices between $24,000 to $500,000.

A more flexible and cost-effective approach is to implement a real-time channel emu-

lator on a field-programmable gate array (FPGA). In the Monte Carlo performance verifi-

cation of communication systems, the computationally-critical algorithms in the simulation

chain (such as the fading channel emulator) can be efficiently implemented on a dedicated

hardware device, such as an FPGA. Recent increases in FPGA capacities permit the inte-
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1.1 Wireless Fading Channel

Table 1.1: Some Commercially Available Fading Simulators
Model a I II III IV V

Number of channels 2 2 2 2 6

Number of paths 12 24 48 6 6

Max. Doppler (Hz) 800 2000 2400 - 340

Fading resolution (Hz) 0.1 0.01 0.05 - 1

Max. delay (ms) 200 2000 10 - 40

Time resolution (ns) 5 0.1 1 1 40

a(I) Japan Radio Co. NJZ-1600B [24], (II) Spirent Communications SR5500 [25], (III) Agilent Technolo-

gies Inc. N5115A [26], (IV) Rohde & Schwarz ABFS [27], (V) Ascom Ltd. SIMSTAR [28].

gration of the channel emulator along with a noise generator [29] as well as the transmitter

and receiver signal processing blocks onto the same FPGA for rapid prototype design and

verification.

Our main goals are (i) to propose accurate SOS-based fading channel models with ac-

curate statistics along with efficient FPGA implementations of these models for simulating

fading channels with a large number of simultaneous propagation paths; (ii) to propose filter

design techniques for the efficient implementation of fading channels with arbitrary corre-

lation properties; (iii) to propose efficient hardware architectures for especially compact

implementations of filter-based fading channel simulators; and (iv) to implement compact

realistic single and multiple antenna channel simulators that support emerging standards

(e.g., WiMAX, 802.11n, LTE).

1.1 Wireless Fading Channel

In a typical urban area or indoor environment, a direct line of sight (LOS) path between

the transmitter and the receiver is often absent because of intervening obstacles. Due to the

processes of reflection (which occurs when a waveform meets an object that is much larger

than the signal’s wavelength), diffraction (which occurs when the surface encountered by

the signal has irregularities such as sharp edges), and scattering (which occurs when the

medium contains a large number of objects nearly the same size as the signal’s wavelength)

from objects in the path [17], multiple copies of the transmitted signal, called multipath

signal components or rays, arrive at the receiver via different paths with different angle

of arrivals (AOAs), time delays, and amplitudes. More importantly, changes in the path

length by ∆d (due to relative motion between the transmitter and receiver) over a short
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1.1 Wireless Fading Channel

time interval ∆t causes a phase shift:

∆φ =
2π∆d

λ
=

2πv∆t cosα

λ

where v is the relative speed and α is the AOA with respect to the head-on incident direc-

tion. Often the transmitter is taken to be fixed in position in which case the relative motion

is entirely due to the mobile unit (MU). Clearly, as the path length changes by a wavelength

λ (30 cm at 1 GHz), the signal phase changes by 2π. Multipath propagation leads to ran-

dom fluctuations in the amplitude and phase of the received signal due to the movement of

the receiver and/or the transmitter over a few wavelengths and for short time durations. De-

pending upon the relative speed, fades of 30 to 40 dB or more below the mean value of the

received signal can occur [30]. The phenomenon of rapid fluctuations of the received signal

strength over short distance or short duration is called the small-scale fading effect [30].

Typical small-scale fading behavior in shown in Figure 1.1.
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Figure 1.1: Typical simulated Rayleigh fading at the receiver.

If the propagation environment changes or if there is a relative motion of the antennas,

the path length and/or geometry changes by ∆d and each multipath signal component ex-

periences an apparent shift in frequency, called a Doppler shift. The Doppler frequency is

defined as

fD =
1

2π

∆φ

∆t
=
v cosα

λ
=
fcv cosα

c

where fc is the carrier frequency, c ≈ 3 × 108 m/s is the free-space velocity of the electro-

magnetic wave, and α is the direction of motion of the mobile with respect to the direction
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1.1 Wireless Fading Channel

of multipath signal arrival. The motion of the MU will introduce changes in the signal

strength, and hence the apparent channels, at a rate of fD Hz. For a constant mobile veloc-

ity, as fc increases, the Doppler shift becomes larger. If a sinusoidal signal at the carrier

frequency fc is transmitted, the received signal is spread over a spectrum, called the Doppler

spectrum, with components lying in the range of fc− fD to fc+ fD. If the receiver is mov-

ing toward the transmitter, i.e., −π/2 ≤ θ ≤ π/2, the Doppler shift is positive (i.e., the

apparent received frequency f = fc + fD is increased); otherwise, if the receiver reverses

direction then the Doppler shift is negative. Relative to the carrier frequency (100s of MHz),

the Doppler shift is typically quite small, but relative to baseband frequencies (e.g., 10s of

MHz) it can be relatively large.

Fluctuations in the received power are not the only effects of fading. Fading may also

affect the shape of the pulse as it is being transmitted through the channel [31, 32]. If the

received multipath components are resolvable [33], then multipath effects can result in the

broadening of the transmitted pulse, leading to inter-symbol interference (ISI), where the

pulses of adjacent symbols interfere at the symbol sampling times. It should be noted that

the small-scale fading is caused by changes in phase rather than by path attenuation since

the path lengths change by only a small amount over small distances. On the other hand,

large-scale fading causes the received power to vary gradually due to signal attenuation

determined by the geometry of the path profile. This phenomenon is affected by prominent

terrain contours (hills, mountains, trees, buildings, billboards etc.) between the transmitter

and receiver. When such terrain contours are present, the receiver is often said to be shad-

owed. The statistics of large-scale fading provide a way of computing an estimate of the

path loss as a function of distance. Large-scale fading may be mitigated by the use of power

control, for example, while small-scale fading may require an equalizer that is capable of

removing the time-varying ISI introduced by the multipath propagation.

Free space path loss is the signal degradation caused by signal spreading when there is

a clear, unobstructed line-of-sight path between the TX-RX pair. The free space received

power Pr(d) in the far-field is given by the Friis Free Space Equation [20]

Pr(d) = Pt
GrGt
Lloss

(

λ

4πd

)2

(1.1)

where Pt is the transmitter power, Gr is the receiver antenna gain, Gt is the transmitter

antenna gain, Lloss ≥ 1 is the system loss factor, λ is the wavelength, and d is the distance

between the transmitter-receiver pair. Equation (1.1) shows that the received power drops
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1.1 Wireless Fading Channel

as the square of the TX-RX separation (or 20 dB/decade with distance).

To evaluate the performance of wireless communication systems in laboratories, a chan-

nel simulator must faithfully model both the large-scale and small-scale effects of time-

varying propagation environments. Two main approaches are utilized for modeling multi-

path fading channels: ray-theoretical modeling [34] and impulse-response modeling [35].

The ray-theoretical model illuminates essential characteristics of the channel based on ge-

ometric propagation theory and physical rays caused by reflections and diffractions. How-

ever, the relatively high computational complexity and the typical lack of detailed terrain

and building databases make these models difficult to use in practice [19]. By far the most

popular channel simulation models are stochastic parametric models. In this approach, the

channel impulse response is characterized by a set of both deterministic and random pa-

rameters. The values of the parameters and the probability distributions governing their

behavior are selected according to empirical measurements. A multipath fading channel is

commonly modeled as a linear time-varying (LTV) system that is fully described by its im-

pulse response [16, 35–37]. The complex impulse response c(t, τ) is a low-pass equivalent

model of the actual real band-pass impulse response

c(t, τ) =
∑

ℓ

aℓ(t)e
jφℓ(t)δ

[

t− τℓ(t)
]

(1.2)

defined as the response observed at time t to an impulse applied at time t − τ , where τ is

the delay parameter, t is the time. The ℓth signal component experiences a different path

environment which will determine the amplitude aℓ, carrier phase shift φℓ, time delay τℓ,

AOA αℓ, and Doppler shift fD. In general each of these parameters is time-varying. When

a large number of propagation paths exist, the Central Limit Theorem can be applied. In this

case, c(t, τ) can be modeled as a complex Gaussian random process. When the complex

Gaussian process c(t, τ) is zero-mean, the envelope |c(t, τ)| is Rayleigh-distributed

f|C|(c) =
c

σ2
e−c

2/2σ2
, c ≥ 0 (1.3)

where 2σ2 is the variance of the zero-mean complex Gaussian random process c(t, τ). Fig-

ure 1.2 plots the Rayleigh probability density function (PDF) in equation (1.3) for different

values of σ. Note that the channel model in Equation (1.2) does not consider the AOA of

each multipath component. It is usually assumed that the scatterers surrounding the mo-

bile station are about the same height as, or are higher than, the mobile. This implies that

the received signal at the mobile antenna arrives from all directions after bouncing from the
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1.1 Wireless Fading Channel

surrounding scatterers. Under these conditions, the Gans assumption, namely, that the AOA

is uniformly distributed over [0, 2π], is valid [36]. The classical Rayleigh fading envelope,

with deep fades approximately λ/2 apart, arises from this model [37].
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Figure 1.2: Rayleigh probability density function for different values of σ.

When a strong LOS path exists in addition to the scattered paths, then the fading pro-

cess has a non-zero mean (arising from the LOS signal) and the magnitude of the process

becomes Rician [19]. This strong component may be a LOS path or a path that goes through

much less attenuation compared to the other received components (also called a non-faded

or specular path). The Rician PDF is usually characterized by the ratio of the power of the

direct component to the power of the scattered component, whereK(dB) = 10 log10K and

the ratio K is called the Rice factor. In the presence of a specular path, the fading signal

g(τ, t) can be considered to be the sum of two components: a Rayleigh component c(τ, t)

and a deterministic (in amplitude and phase) component d(t) representing the LOS path as

g(τ, t) =

√

1

K + 1
c(τ, t) +

√

K

K + 1
d(t) (1.4)

where the deterministic component d(t) can be written as d(t) = aej(ωdt+φd) where the

amplitude, Doppler shift, and phase of the LOS component are denoted by a, ωd, and φd,

respectively [38]. If the Doppler shift along the LOS path is zero, then the mean value of

d(t) is time-invariant.

Another important distribution that has been proposed to model the magnitude of the

received envelope is the Nakagami-m distribution [39]. Nakagami-m fading is proposed

to model fading channels with relatively large time-delay spreads and different clusters of

reflected waves [39–41].
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1.2 Main Contributions

In this work, we primarily focus on simulating small-scale fading with the Rayleigh and

Rician distributions. Since large-scale fading changes slowly with distance, it can be imple-

mented easily by attenuating the received signal with precomputed coefficients according

to the desired models. Later, we will propose a hardware strategy to transform samples with

the Rayleigh distribution to samples with the Nakagami-m distribution [42, 43].

1.2 Main Contributions

The contributions of this thesis lie in six main problem areas: sum-of-sinusoids (SOS) based

fading simulation, filter-based fading simulation, fixed-point filter design, simulation of an-

alytical MIMO fading channel models, simulation of geometric MIMO fading channel mod-

els, and fading simulation and bit error rate testing platform. Here we briefly summarize

each of these contributions:

• SOS-based fading simulation

1. In this thesis we propose three new models for the accurate simulation of Raylei-

gh and Rician fading [2–4] (see Sections 2.2.1, 2.2.2 and 2.2.3). We also pro-

pose compact architectures for the fast and efficient on-chip simulation of wire-

less fading channels.

2. We propose a new ultra-compact hardware implementation of an accurate fad-

ing simulator in which the fading samples are generated differentially and in-

terpolated with a very compact architecture (see Section 2.2.4). More than one

thousand paths can be fitted on a conventional field-programmable gate array

(FPGA) with this method, with each path generating more than 300 million

samples per second. Compared to one of our early designs, the proposed fad-

ing simulator is not only 18 times smaller and 50% faster, it can also generate

significantly more accurate fading samples.

• Filter-based fading simulation

1. We propose two architectures for the homogeneous FPGA implementation of

filter-based fading simulators [9, 10] (see Sections 3.2). We also propose a

multi-stage filter design technique for the efficient hardware simulation of Rayleigh

fading channels.

8



1.2 Main Contributions

2. We propose an elastic buffer design for the robust implementation of multipath

fading simulator that can absorb any clock mismatch between hardware mod-

ules [13] (see Section 3.2.3). Another multistage design technique is proposed

and multiplication-free filters are used for interpolation. A fixed-point imple-

mentation of an example four-path fading simulator on a Xilinx Virtex-II Pro

XC2VP100-6 FPGA utilizes only 13.9% of the configurable slices and 2.7% of

the on-chip 18 × 18 multipliers and can generate up to 4 × 73 million samples

per second. This fading simulator was implemented and verified on a Digilent

Spartan-III FPGA development board.

3. Two compact filter processors for the efficient simulation of fading channels are

proposed [11, 44] (see Section 3.2.1).

4. We also propose the first hardware simulator for non-isotropic Rayleigh fading

channels [12] (see Section 3.2.2). Our fixed-point implementation of this sim-

ulator on a Xilinx Virtex-II Pro XC2VP100-6 FPGA utilizes only 6.8% of the

configurable slices and can generate up to 300 million samples per second.

5. We propose a new transformation-based fading simulator for the compact and

efficient implementation of Nakagami-m and Weibull fading channels (see Sec-

tion 3.4). This fading simulator converts the already available Rayleigh fading

samples (from SOS-based or filter-based fading simulators) to Nakagami-m or

Weibull fading samples. A new method for the approximation of the transfer

function is proposed which is based on hybrid logarithmic-linear segmentation

with semi-floating-point curve fitting. Compared to the simple table look-up

approach for the approximation of the transfer function, the proposed method

provides more than 265x saving in the storage requirements. A fixed-point im-

plementation of this simulator on a Xilinx Virtex-II Pro XC2VP100-6 FPGA

utilizes only 1.5% of the configurable slices, five 18 × 18 multipliers and three

block memories and can generate up to 246 million Nakagami-m or Weibull

fading samples per second.

• Fixed-point filter design

1. Traditionally, recursive filters are designed with floating-point tools and then

converted to fixed-point designs for efficient hardware implementation. This

results in unwanted deviations in the filter response and potential numerical
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instability due to fixed word-length effects. In addition, to avoid overflow, the

designed filter needs to be implemented with a sufficiently large number of bits.

We propose a step-by-step technique for the design of stable recursive filters

with fixed-point complex and real coefficients [14] (see Section 3.3). Filter

design with this technique results in very compact and efficient hardware im-

plementations.

2. The proposed filter design technique can be used to simulate a wide range of

fading channel conditions including non-isotropic Rayleigh fading channels and

the TGn channel model for the IEEE Standard 802.11n.

3. We propose two methods to reduce the variable range for the compact imple-

mentation of recursive filters. The first method involves sorting the poles and

zeros in a specific order while the second method involves augmenting auxiliary

poles and zeros at certain frequencies.

4. Using the proposed filter design technique results in significant savings in the

hardware implementation and substantial increases in the system throughput. In

one example, the new filter design technique resulted in a nine times reduction

in the number of configurable slices and more than 22 times higher throughput.

5. We implemented a filter processor for the designed filters and verified the hard-

ware generated power spectral density (PSD) against the target response.

• Simulation of analytical MIMO fading channel models

1. We propose two new models for the efficient simulation of MIMO fading chan-

nels. Unwanted cross-correlations are reduced by adding random-walk pro-

cesses (see [8, 45]).

2. We propose a compact differential implementation of a MIMO fading simula-

tor [5] (see Section 2.2.4). This fading simulator is very compact and we can

simulate more than one thousand paths on a single FPGA.

3. We propose a compact and efficient FPGA fading simulator that can support

the simulation of the i.i.d., Kronecker, Weichselberger, and VCR MIMO fad-

ing channel models (see Section 4.5). A new stable interpolator structure is

proposed for this fading simulator. When implemented on a Xilinx Virtex-5

XC5VLX110-3 FPGA, the matrix processor of this design for a 4 × 4 MIMO

10
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system utilizes only 1.8% of the configurable slices, two multipliers, and four

block memories, and can operate at up to 234.1 MHz. This MIMO fading sim-

ulator is also implemented on our bit error rate testing platform.

4. Using the proposed MIMO fading simulator, we measure the bit error perfor-

mance of an example 2 × 2 MIMO communication system on our hardware

platform. The accuracy of our hardware implementation was verified by com-

parison with floating-point computer simulations.

• Simulation of geometric MIMO fading channel models

1. We propose a compact and efficient simulator for the geometric MIMO channel

models (see Section 4.4). The new fading simulator can simulate a wide variety

of single- and double-bounce geometric MIMO channel models. A fixed-point

implementation of this simulator for a 4×4 MIMO channel on a Xilinx Virtex-5

XC5VLX110-3 FPGA utilizes only 6.6% of the configurable slices, two 18×18

multipliers and three block memories and can generate more than 16 × 324

million samples per second.

2. We verified the accuracy of our fading simulator by comparing the fixed-point

bit-true results with theoretical reference functions. Three common geometric

MIMO fading models, namely the one-ring and two-ring models and the geo-

metrical elliptic MIMO fading channel model, were simulated with our fading

simulator.

3. This fading simulator was also implemented on our fading simulation and bit

error rate testing platform.

• Fading simulation and bit error rate testing platform

1. We implemented a fading simulation and bit error rate testing platform for the

verification of our fading simulators, and for testing MIMO systems (see Sec-

tion 4.7). This platform was implemented on a GVA-290 FPGA development

board which hosts two Xilinx Virtex-E XCV2000E FPGAs.

2. The implemented platform can be used to verify single- and multiple-antenna

wireless systems. It supports the simulation of various fading channel mod-

els including single-antenna models (AWGN, Rayleigh, Rician) and multiple-

antenna models (AWGN, Rayleigh, Rician, one-ring, two-ring, geometric el-
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1.3 Thesis Outline

liptic, i.i.d., Weichselberger, Kronecker, and VCR). The implemented platform

also supports both multipath integer (or tap) delays (up to 1023 taps) and frac-

tional delays.

3. The accuracy of the implemented fading simulation platforms was verified against

floating-point computer simulations.

4. We tested a sample 2× 2 MIMO system with our platform. The MIMO system

under test included an extended Golay code encoder and decoder, a length-

16383 random interleaver and de-interleaver, and a maximum likelihood detec-

tor.

5. Software and hardware parts required for the bit error rate performance evalu-

ation of the system under test were developed. A detailed software graphical

interface was implemented to simplify parameterization of the fading channel

simulator and the bit error performance evaluation platform.

1.3 Thesis Outline

The rest of this thesis is organized as follows. Chapter 2 considers modeling and efficient

implementation of SOS-based Rayleigh and Rician fading channel simulators. In this chap-

ter, various SOS-based fading channel models are presented and their statistical properties

are compared. Three novel fading channel models based on the SOS approach are pre-

sented, and FPGA implementation results of the proposed fading simulators are given.

Chapter 3 presents novel design and implementation methods to realize parameterizable

fading channel simulators on a single FPGA using digital filters. This chapter discusses

compact and efficient implementation of isotropic and non-isotropic Rayleigh and Rician

fading channel models. A new technique is proposed for designing recursive filters with

real and complex fixed-point coefficients. Also, techniques are proposed for reducing the

variable range and thus allowin compact implementation. This chapter also proposes an ef-

ficient technique for generating Nakagami-m and Weibull fading samples from the already

available Rayleigh fading samples.

Chapter 4 considers the accurate and compact simulation of MIMO wireless channels.

This chapter starts with a brief review and classification of various MIMO fading channels.

Then, this chapter discusses hardware simulation of single- and double-bounce geomet-

ric MIMO channel models. Hardware simulation of analytical MIMO channel models is
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discussed next. This chapter also presents our fading simulation and bit error rate testing

platform.

Finally Chapter 5, proposes related future work and makes some concluding remarks.
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Chapter 2

Sum-Of-Sinusoids Based Fading

Simulation

The effective design of wireless communication systems needs faithful modeling and accu-

rate simulation of radio propagation characteristics. Successful implementation of wireless

products requires prototyping and extensive field testing possibly involving two or more

design iterations in the event that problems are discovered. Accurate modeling of charac-

teristics of the fading channel plays an important rule in this process. For example, the level

crossing rate of the envelope of the fading samples provides important information convey-

ing the statistics of burst errors in wireless communication systems [46, 47]. As another

example, the average fade duration determines the average length of error bursts, which has

a great impact on design and testing of wireless communication systems [46, 47] not only

on the physical layer but also on the link and network layers [48]. In addition, the fading

correlation properties affect channel estimation (e.g., [49]), prediction and equalization, and

the distribution of fading samples impacts the error rates [50].

Sum-of-sinusoids (SOS) based methods are among the most widely used approaches to

simulate fading channels [51]. The basic idea behind SOS-based fading channel simula-

tors is that when a sinusoidal carrier is transmitted and subjected to multipath fading, the

received signal can be modeled as a superposition of waveforms received from different

propagation paths. Since the nature and orientation of obstacles in the wireless channel are

not known in advance, the net effect of the received waveforms can be considered to be

a stochastic processes. In the SOS approach, the flat-fading process is modeled by super-

imposing sinusoidal waveforms with amplitudes, frequencies and phases that are selected

appropriately to generate the desired statistical properties in the sum signal.

A well-established technique for modeling the behavior of a Rayleigh fading channel
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2.1 Background and Related Work

with given temporal correlation properties was introduced by Rice [51]. Rice’s model is

based on the superposition of weighted sinusoids with random phases. For a large number

N of sinusoids, Rice’s model can accurately generate samples with the desired statistics;

however, the relatively large number of required sinusoids makes this model computation-

ally inefficient.

Various fading channel simulators have been proposed over the last four decades that

involve superimposing a sufficient number of sinusoidal waveforms [1, 16, 17, 30, 52–56].

Due to the reasonable computation requirements in this approach, the SOS-based models

have been widely used to implement fading channel simulators [57–61]. Moreover, as we

will see in Chapter 4, a SOS-based fading simulator can be used to simulate a wide variety

of multiple-antenna channel models.

In this chapter we will briefly compare SOS-based models for simulating isotropic fad-

ing in single-antenna scenarios. We have made several improvements to the fading channel

models to enhance the statistical accuracy and reduce computational complexity. Several

SOS-based fading simulators have been implemented in this work. We will briefly present

implementation results for these fading channel simulators. Interested readers can refer to

our listed publications for more details.

2.1 Background and Related Work

A Rayleigh fading channel is commonly modeled using a complex Gaussian wide-sense

stationary uncorrelated scattering (WSSUS) process c(t) = ci(t) + jcq(t) [15], where the

envelope |c(t)| follows the Rayleigh distribution

f|C|(u) = 2u exp(−u2). (2.1)

Two of the most important statistical properties of the fading process are manifested in

the autocorrelation function (ACF) and the cross-correlation function (CCF) between ci(t)

and cq(t). In a two-dimensional isotropic scattering environment with an omnidirectional

receiving antenna at the receiver, the ACF associated with either ci(t) or cq(t) is expressed

as [62]

Rci,ci(τ) = Rcq ,cq(τ)

= E{ci(t)ci(t+ τ)}

=
1

2
J0(2πfDτ) (2.2)
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2.1 Background and Related Work

where E{·} denotes mathematical expectation, fD is the maximum Doppler frequency and

J0(·) denotes the zeroth-order Bessel function of the first kind [63]. The CCF between ci(t)

and cq(t) is

Rci,cq(τ) = Rcq ,ci(τ)

= 0. (2.3)

Moreover, the power spectral density (PSD) associated with either ci(t) or cq(t) is the so-

called Jakes PSD, which can be written as [64]

Sci(f) = Scq(f)

=







1

2π
√
f2

D
−f2

for |f | < fD

0 elsewhere.
(2.4)

Also, higher-order statistical properties, such as the envelope level crossing rate (LCR)

and the average fade duration (AFD), provide important information for assessing verifying

system performance. For a Rayleigh fading channel with the Jakes’ PSD, the LCR and the

AFD can be shown to be [20]

L|c| =
√

2πfDρe
−ρ2 (2.5)

and

T|c| =
eρ

2 − 1√
2πfDρ

, (2.6)

respectively, where ρ = Rth/Rrms is the value of the specified threshold level Rth, nor-

malized to the root-mean-square value of the fading envelope Rrms.

When a strong direct path exists in addition to the scattered paths, then the fading pro-

cess has a non-zero mean and the magnitude of the process becomes Rician-distributed

instead of simply Rayleigh-distributed [19]. This strong component may be a line-of-sight

(LOS) path (also called a specular path or component) or a path that happens to undergo

much less attenuation compared to the other received components. Rician fading is often

characterized by the ratio of the power of the direct component to the total power of the

scattered components, also known as the Rice factor K. In the presence of a specular path,

the complex fading process r(t) can be considered to be the sum of two complex com-

ponents: a Rayleigh component c(t) and a deterministic component d(t). In this case the

fading process is expressed as

r(t) =

√

1

K + 1
c(t) +

√

K

K + 1
d(t). (2.7)
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Existing Rician channel models assume that the LOS path is either (a) constant and

non-zero [65], or (b) time-varying and deterministic [66], or (c) time-varying and stochastic

[67,68]. Since the first two assumptions may not accurately reflect the behavior of the LOS

component, without loss of generality we chose the third model. This Rician fading model

can be expressed as

r(t) = ri(t) + jrq(t)

=

√

1

K + 1
c(t) +

√

K

K + 1
ej2πfDt cos(θo)+φo (2.8)

where θo and φo are the AOA and the initial phase of the LOS component, respectively,

which are uniformly distributed random variables over [−π, π).

It can be shown that the probability distribution function (PDF) of the amplitude of the

fading samples in (2.8) follows the Rician distribution [68]

f|R|(u) = 2(1 +K)u× exp
[

−K − (1 −K)u2
]

×

Io
[

2u
√

K(1 +K)
]

u ≥ 0, (2.9)

where Io(·) denotes the zero-order modified Bessel function of the first kind [63]. Further,

for the above Rician fading model the ACF and the CCF are given by [68]

Rri,ri(τ) = Rrq ,rq(τ)

= E{ri(t)ri(t+ τ)}

=
Jo(2πfDτ) +K cos(2πfDτ cos θo)

(2 + 2K)
(2.10)

and

Rri,rq(τ) = −Rrq ,ri(τ)

= E{ri(t)rq(t+ τ)}

=
K sin(2πfDτ cos θo)

2 + 2K
, (2.11)

respectively. Also, the LCR and the AFD of the Rician model can be expressed as [68]

L|R|(ρ) =

√

2(1 +K)

π
ρfD exp

(

−K − (1 +K)ρ2
)

×
∫ π

0

(

1 +
2

ρ

√

K

K + 1
cos2 θo. cosα

)

×

exp
(

2ρ
√

K(1 +K) cosα

−2K cos2 θo. sin
2 α
)

dα, (2.12)
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and

T|R|(ρ) =
1 −Q

(√
2K,

√

2(1 +K)ρ2
)

L|R|(ρ)
, (2.13)

where Q(·) is the Marcum Q−function [69].

Jakes proposed a computationally-efficient model for the simulation of Rayleigh fading

channels. Compared to Rice’s model, Jakes’ model requires a relatively small number of

sinusoids [17] whose amplitudes, frequencies, and phases are constant and angles of arrival

are equally distributed about the receiver. Over the past three decades, many modifications

and improvements to Jakes’ model have been proposed (e.g., see [1,54–56,70]). Jakes’ orig-

inal model and its derivatives are generally divided into either deterministic models (i.e., the

amplitude, phase, and frequency of each sinusoid are constant values) or stochastic models

(i.e., at least one of the three parameters is a random variable) [71]. Both deterministic and

stochastic SOS-based models have been used to model Rayleigh [30, 62], Rician [66–68],

and Nakagami [72, 73] fading channels. These simulators have been used successfully in

the burst error analysis of mobile communication systems (e.g., see [74, 75]).

A channel simulator should generate a discrete time (i.e., t = mTs where Ts is the sam-

ple period) fading process c[m] = ci[m]+jcq[m] whose statistical properties are sufficiently

close to those of the reference model. Unfortunately, the deterministic Jakes’ simulator [62]

and related derivatives (either deterministic or stochastic models), have undesirable statisti-

cal properties. For example, it is shown in [56] that the deterministic models in [17,70] have

different ACFs for the in-phase and quadrature components of the fading process (when

they should be identical). Also the CCF between ci(t) and cq(t) is not zero (as required

by theory), and the outputs of independently initialized pairs of fading processes are not

statistically independent.

The deterministic model in [66] is not wide-sense stationary (WSS) [68] and the quadra-

ture CCF of the model in [54] can deviate from zero. The mean of of a WSS stochastic pro-

cess is constant over time and the correlation function of a WSS stochastic process depends

only on the time difference [76, p. 388]. These WSS properties are necessary in a fading

simulator since they assure rather similar results independent of simulation time.

A deterministic model of the exact Doppler spread [77] as well as the model in [56,77],

requires a relatively large number of sinusoids to successfully produce multiple uncorre-

lated Rayeligh fading processes [78]. This increases the computational complexity and

precludes the use of these models in frequency-selective channels and MIMO scenarios.
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Some hardware simulators based on deterministic SOS-based fading channel models have

been proposed in the literature (e.g., [53, 79]), despite the fundamental weaknesses that we

will describe later.

Stochastic SOS-based models have been used instead of deterministic models to in-

crease the statistical accuracy. In stochastic models, multiple uncorrelated fading sequences

can be generated using a relatively small number of sinusoids (e.g., N = 8) [80]. There

are also several hardware-based implementations of SOS-based fading channel simulators

based on stochastic models [6, 7, 60, 61].

The main drawback of the stochastic models (e.g., [1, 81]) is that their statistical prop-

erties converge to the reference properties only when averaged over a sufficiently large

number of simulation trials and/or when a sufficiently large number of sinusoids are super-

imposed. Unfortunately computationally-intensive time-averaging implies long simulation

times to achieve reliable results. Also, time-averaging requires the design under test (DUT)

to be fully synchronized with the repeated restarts of the channel simulator, which is not

always feasible. In other words, the fading simulator cannot change the fading parameters

when the DUT is transmitting packets in the middle of a simulation-based measurement.

Using larger values ofN (e.g.,N = 40) produces greater simulation accuracy over long

simulation runs [68], but as mentioned before, this will lengthen the simulation times. When

N is a small number, the deterministic and stochastic models are not in general ergodic and

the properties of one simulation trial will deviate substantially from the theoretical refer-

ence properties. If a channel model is ergodic, then each fading process generated by one

simulation trial will have the same statistics. In such a case, only one sample fading pro-

cess would suffice to characterize the channel. Thus an ergodic model significantly reduces

the overall simulation time, requiring only the time-averaging provided by a single simula-

tion run instead of ensemble-averaging [68]. References [78,82] report the stationarity and

ergodicity properties of a deterministic SOS-based model and compare them with those of

different classes of stochastic SOS-based models (depending on the randomness or constant

behavior of sinusoid parameters).

An SOS-based Rayleigh fading model that has been used in FPGA implementations of

fading channel simulators [60, 61] is the Li et al. model [56] (henceforth called Model I),

which can be written in discrete time as follows:
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Model I:

ci[m] =

√

1

N

N−1
∑

n=0

cos
(

2πfDnTsm cosαn + ϕn
)

,

cq[m] =

√

1

N

N−1
∑

n=0

sin
(

2πfDnTsm sinαn + ψn
)

,

whereN is some sufficiently large number of sinusoids,m is the discrete-time index, fDnTs

is the normalized maximum Doppler frequency of the n-th sinusoid, Ts is the sample period,

and αn = 2πn/(4N) + αo is the angle of arrival (AOA) of the n-th sinusoid where 0 <

αo < 2π/N and αo 6= π/N . The phases of the n-th sinusoidal components, ϕn and ψn,

are statistically independent and uniformly distributed random variables over [−π, π), for

all n.

Another well-known SOS-based model that has been utilized in FPGA implementations

of fading channel simulators [6, 7] is the model proposed by Zheng et al. [1] (henceforth

called Model II). It is shown in [71] that this fading model is one of the most accurate

models for simulating a fading channel for a relatively small number of sine waves. This

fading model can be written in discrete time as follows:

Model II:

ci[m] =

√

1

N

N
∑

n=1

cos
(

2πfDTsm cosαn + ϕn
)

,

cq[m] =

√

1

N

N
∑

n=1

cos
(

2πfDTsm sinαn + ψn
)

,

where αn = (2πn−π+θ)/(4N) and θ, ϕn and ψn are mutually independent random vari-

ables uniformly distributed over [−π, π). This model requires a relatively small number of

sinusoids (between 8 and 12) to generate relatively accurate correlation and LCR proper-

ties. It was concluded in [71] that Model II has superior statistical properties compared to

the other SOS-based models.

The Rayleigh model proposed by Xiao et al. [67] (henceforth called Model III) can be

written in discrete time as follows:

Model III:

ci[m] =

√

1

N

N
∑

n=1

cos
(

2πfDTsm cosαn + ϕn
)

,

cq[m] =

√

1

N

N
∑

n=1

sin
(

2πfDTsm cosαn + ψn
)

,
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where αn = (2πn + θn)/N and ϕn is the phase of the n-th sinusoid. ϕn and θn are

statistically-independent and uniformly-distributed random variables over [−π, π), for all

n.

As shown in Figure 2.1, the ACFs of Models I, II, and III all deviate significantly from

the reference properties, especially at the larger lags, when the statistics are taken over only

one block of generated fading samples. In this figure, all of the above models have been

simulated with N = 8 sinusoids. For more accurate results using Model I, a relatively large

number of sinusoids N (e.g., N = 32) is required [56], which is not desirable for imple-

mentation. Even though these models have serious limitations with respect to matching the

theoretical ACF, as shown in Figure 2.2, Model II has a much better (i.e., closer to zero)

cross-correlation function between the quadrature components compared to Models I and

III.

Compared to the other models, Model II can reproduce the theoretical CCF (i.e., that at

zero) more accurately with a relatively small number N of sinusoids, as shown in Figure

2.2. However the ACF properties of this model need further improvements for the purpose

of an accurate hardware simulator.

The main drawback of the above models is that their statistical properties converge to

the desired properties only when averaged over a relatively large number of simulation trials

[1]. The statistical properties of a single trial, no matter how long, deviate from the reference

properties [78]. If the channel simulator were to be ergodic, then each simulation trial would

produce the same statistics. Being able to use only a single trial would significantly reduce

the overall simulation time [78]. The simulation results in Figures 2.1 and 2.2 confirm the

results in [78] that Model II, which has constant amplitudes but random frequencies and

phases, is not ergodic. Therefore, Model II is also not appropriate for the simulation of

wireless systems with continuous (or very long) communications [2]. To generate more

accurate results one could frequently reset the random phases in Model II. However, this is

not desirable in practical channel simulations since it would require simulation restarts and

would introduce channel property discontinuities during the trials.
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Figure 2.1: Normalized ACF for one block containing 2 × 106 fading samples using the

Zheng et al., Xiao et al., and Li et al. models with fDTs = 0.01 for N = 8.
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Figure 2.2: CCF for one block containing 2 × 106 fading samples using the Zheng et al.,

Xiao et al., and Li et al. models with fDTs = 0.01 for N = 8.

To overcome these limitations, we propose new fading channel models that replace

the angle of arrival and other phase parameters in Model II with random walk processes.

These modifications significantly improve the statistical accuracy of the generated fading

samples. In the following sections, we will provide more details about our modifications

and the corresponding implemented SOS-based hardware fading simulators.
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2.2 Implementation of SOS-Based Fading Simulators

The SOS-based fading simulators developed in [6, 7] used Model II for the FPGA im-

plementation of a fading simulator. This model was chosen for implementation because

it could produce the desired channel properties with a relatively small number N of sine

waves [71]. The main difference between the hardware implementations in [6] and [7] is

in the way the trigonometric functions cos(·) and sin(·) are approximated. In [6], these

functions are stored in look-up tables with 1024 entries, while the design in [7] calculates

these trigonometric functions iteratively.

Comparing the implementation results from [6, Table 1] and [7, Table 1] shows that

using table look-up for approximating the basic trigonometric functions is a more efficient

approach compared to iterative calculation. Based on these results, in our implementations

we approximated the cos(·) and sin(·) trigonometric functions using the table look-up ap-

proach.

2.2.1 SOS-Based Fading Simulator with Improved Statistics

As mentioned before, one of the drawbacks of SOS-based fading simulators is that their

average statistical properties converge over a relatively large number of simulation trials.

To overcome this problem, a multiple parameter set (MPS) simulation method is proposed

in [83]. This technique divides a simulation trial into several frames and randomly generates

Doppler frequencies and phases for each frame. For example, to generate 107 in-phase and

quadrature components, we can divide them into 103 frames of length 104 samples each, to

find time-averaged results. It should be noted that the autocorrelation with the MPS model

is zero for time delays that exceed the frame length. Hence, the frame length should be

sufficiently large to cover the time delays of interest to get meaningful results. With this

method, the performance of Monte Carlo simulation with the Model II fading simulator is

considerably improved [71].

Unfortunately, the MPS model creates discontinuities in the temporal behavior. As a

consequence, the testing of a communication system should be interrupted and re-initialized

every time with a new set of random parameters for each trial to ensure accurate modeling of

the channel. At the receiver, the channel estimation or carrier recovery must be re-acquired

after each draw of random parameters. However stopping and restarting the communication

system and channel simulator in this way might not be convenient in many practical cases.
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Therefore, Model II may not be suitable for emulating a Rayleigh fading channel with

accurate time-average statistical properties.

To improve the existing models, Zajić and Stüber [84] proposed a deterministic model

which is ergodic. In other words, for their model the average of the fading process pa-

rameters over time and the average over the statistical ensemble are the same. However,

the autocorrelation of the in-phase and quadrature components do not accurately match the

theoretical properties. Zajić and Stüber also proposed a statistical model to overcome this

shortcoming of their deterministic model. However, the resulting modified model was no

longer ergodic.

In order to have a SOS-based fading simulator whose time average converges to its

statistical ensemble average, the random AOA in the model should vary in a reasonable

way with time and become a stochastic process. We proposed a new model in [2], based

on Model II, in which the in-phase and quadrature components of the fading samples are

expressed as

Model IV:

ci[m] =

√

1

N

N
∑

n=1

cos
(

2πfDTsm cosαn[m] + ϕn
)

,

cq[m] =

√

1

N

N
∑

n=1

cos
(

2πfDTsm sinαn[m] + ψn
)

,

where αn[m] = (2πn − π + θ[m])/(4N) and θ[m] is a stationary stochastic process. In

particular, we were inspired by the measurements in [85] to model the behavior of AOA as

a random walk process.

Although the AOA changes continuously, the time samples look like a random walk

[85]. Moreover, in isotropic scattering, θ[m] is uniformly distributed over [−π, π), and also

since the AOA does not change rapidly, θ[m] must be highly correlated. A highly corre-

lated (depending on Doppler frequency) random process was thus required with uniformly

distributed samples over [−π, π). Time-correlation can result in a non-uniform distribution

of samples except in a random walk processed with controlled step size. We proposed to

use the stochastic random walk process given by Algorithm 1 (from [2]).

The random walk process θ in this algorithm is generated using the process u[m] which

has independent samples that are uniformly distributed over [0, 1). The step size δo should

be chosen to be small enough to model the behavior of highly correlated (or slowly chang-

ing) AOAs for different Doppler rates. Some suitable values for δo are suggested in [2].
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Algorithm 1 The proposed random walk process θ[m]

1: Initialize δo = ǫ≪ 1, θ[0] = U(−π, π);
2: for m > 0 do

3: θ[m] = θ[m− 1] + δo × u[m];
4: if θ[m] > +π then

5: θ[m] = +π; δo = −δo;

6: end if

7: if θ[m] < −π then

8: θ[m] = −π; δo = −δo;

9: end if

10: end for
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Figure 2.3: (a) Normalized ACF and CCF of 107 fading samples generated using Model IV.

(b) LCR of generated fading samples and the reference LCR.

We performed several numerical simulations to verify the statistical properties of Model

IV. In one simulation trial, we generated a block of 107 fading samples using N = 8

sinusoids and measured the time-averaged statistical properties. Figure 2.3 (a) plots the

reference ACF along with the ACF and CCF of the samples generated with Model IV.

As Figure 2.3 (a) shows, the measured ACF accurately matches the reference ACF and

the measured CCF is very small. Also, the LCR of the envelope of the generated fading

variates and the theoretical LCR for fDTs = 0.002 are plotted in Figure 2.3 (b). Here again

a close match between the measured LCR and the desired LCR from equation (2.5) can be

observed. A comparison between Model IV and the original Model II (from [1]) based on

the mean square error of different statistics is provided later in this chapter.

To measure the hardware performance of the new fading simulator, Model IV was im-

plemented as a Verilog HDL design and synthesized for three typical Xilinx Virtex-II Pro,

Xilinx Virtex-4, and Altera Stratix FPGA devices. The results are summarized in Table 2.1.
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2.2 Implementation of SOS-Based Fading Simulators

Table 2.1: Implementation of the Fading Simulator on Three Different FPGAs
Device XC4VSX55-11 XC2VP100-6 EP1S80F1508C6

Max. clock freq. (MHz) 195.61 204.75 103.01
Output rate (MSamps/sec) 195 204 103

Slice utilization 2447 (9%) 2444 (5%) 1292 (1%)
18 × 18 MULTs 48 (9%) 48 (10%) 128 (72%)

Number of BRAMs 12 (3%) 12 (2%) 12 (2%)

More details about the FPGA implementation can be found in [2].
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Figure 2.4: Simulation results for a block of 2×106 fading samples with fDTs = 0.01 gen-

erated with Model V using N = 8 sinusoids. (a) Normalized estimated ACF, (b) absolute

value of normalized CCF, (c) estimated PDF, and (d) estimated LCR.

2.2.2 Proposed SOS-Based Rician and MIMO Fading Simulator

We now propose new modifications to our model [2] to reduce the cross-correlation levels

and to cover Rician fading as well as Rayleigh fading. The new model also has a more

efficient hardware implementation [3, 8, 86]. The modified version of Model IV, called

Model V, generates the Rayleigh fading samples as
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Model V:

ci[m] =

√

1

N

N
∑

n=1

cos
(

2πfDTsm cosαn[m] + ϕn[m]
)

,

cq[m] =

√

1

N

N
∑

n=1

cos
(

2πfDTsm sinαn[m] + ψn[m]
)

,

where ϕn[m] and ψn[m] are independent and stationary random processes (RPs). More

specifically, compared to Model IV, in Model V we propose replacing the random phases

ϕn and ψn with independent stationary random processes (RPs). Each random process

θ[m], ϕn[m], and ψn[m], is updated using [8, Algorithm 1] which is, in essence, Algorithm

1 extended to update ϕn[m] and ψn[m]. These modifications reduce the CCF between

the generated streams of fading samples. Low CCF levels are particularly important for

simulating independent fading paths for simulating multipath channels (including wide-

band frequency selective channels) or MIMO channels.

To measure the statistical properties of the fading samples from Model V, we generated

one block of 2 × 106 samples with fDTs = 0.01, and N = 8 sinusoids. Figure 2.4 (a)

plots the ACF of the generated fading samples and the theoretical reference. Note that the

estimated ACF matches the theoretical ACF, even at the larger lags. Figure 2.4 (b) shows

the small cross-correlation between two sequences of 2 × 106 generated fading variates.

Figure 2.4 (c) and Figure 2.4 (d) show close agreement between the theoretical functions

and estimated PDF and the LCR of the fading channel.ÕÖ×ØÙÚ ÛÜÝÞØßàáßØÙÚ ÛÜÝÞØßàáßØÙÚ âØ×ãäå àæÚââãàãÚäÙÝ ÞØßàáßØÙÚ âØ×ãäå àæÚââãàãÚäÙÝÞØßàáßØÙÚ ÛÜÝ çèéêëäãÙãØßãìÚ ÛÜÝíîÚåãÝÙÚîÝí Øä×ïÚïæîãÚÝ ð ñ
Figure 2.5: Dataflow for updating random processes and calculating fading coefficients.

We used a time-overlapped approach for the compact implementation of Model V. In

this approach, each simulation trial is divided into shorter intervals, each of length W time

units (e.g., clock cycles). To minimize the number of functional units and memories, in-

stead of updating the RP values every clock cycle, their values are updated (with no loss

in performance) every w clock cycles, where 1 < w ≤ W . Rather than computing the

RPs in parallel, they can be calculated sequentially using time-shared arithmetic resources
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2.2 Implementation of SOS-Based Fading Simulators

but distinct register sets. The updated RP values are copied at the beginning of the next

interval to another set of registers where they can be read during the next fading coefficient

generation interval. This dataflow schedule is shown in Figure 2.5.

We will now present the computation of the in-phase ci[m] component of c[m]. The

quadrature cq[m] can be evaluated similarly. First, we factor out the 2π and re-write ci[m]

as

ci[m] =

√

1

N

N
∑

n=1

cos
(

2π
(

(fDTs cos αn[m]) ×m+ ϕ̃n[m]
)

)

, (2.14)

where ϕ̃n[m] ∈ [−0.5, 0.5). We can also write αn[m] as

αn[m] =
2π(n− 0.5 + θ̃[m])

4N
, (2.15)

where θ̃[m] ∈ [−0.5, 0.5). Note that θ[m] ∈ [−π, π) and ϕn[m] ∈ [−π, π) are rescaled as

θ̃[m] and ϕ̃n[m] in (2.14), respectively, to lie within [−0.5, 0.5).òóôõõòó ö÷÷ôõõøùúûüýüþ ÿ���������	
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Figure 2.6: (a) Datapath for updating the random processes using shared hardware. (b)

Datapath for calculating (fDTs cosαn[m]) ×m and generating ci[m].

To update the random walk process θ̃ (and also the other RPs ϕ̃n and ψ̃n), the random

step size δ for each process is calculated by multiplying a generated uniform pseudo-random

number (PN) in (0, 1) by a positive value ξ ≪ 1. Note that the fading variate generator

must create long periods of non-repeating propagation conditions to evaluate the error-rate

performance accurately and thereby ensure confidence in the test results. To ensure that test

conditions do not repeat during test runs, we used a combined multiple-component linear

pseudo-random number generator (PNG) [87] that has a very long period and substantially

better randomness and correlation properties compared to conventional linear PNGs. To

eliminate the multiplication operation, the value of ξ is chosen to be 2−d for some suitable
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exponent d. Note that the Bit Mask module masks the d most significant bits of the

generated PNs and uses the result δθ̃ as a random updating step for the RP θ̃, as shown in

Figure 2.6 (a). The RPs ϕ̃1, · · · , ϕ̃n are updated similarly to θ̃, as shown in Figure 2.6 (a).

According to (2.15), for n = 1, · · · , 8, the lower and upper bounds of αn are [0, π/16)

and [7/16π, π/2), respectively. Therefore we only need to calculate the cosine values (for

ci[m]) and the sine values (for cq[m]) of αn[m] over the interval [0, π/2). We uniformly

quantize the cosine and sine values within [0, π/2) over 512 sub-intervals and store their

values in one of the Block RAM (BRAM) memories in the FPGA. This BRAM is used in the

1024 × 16 configuration with the first 512 words storing the cosine values and the second

half storing the sine values, both in the 2’s complement fixed-point format Q(16,15)

(i.e., 16-bit words with the 15 least significant bits dedicated to the fractional part). The

Bit Selection module selects the 10 least significant bits of the adder output (i.e., the

value of αn) and addresses the COS/SIN Memory. The N values of cos αn[m] are read

from the COS/SIN Memory in N clock cycles and are multiplied by fDTs sequentially

to generate N values of βin = fDTs cos αn. The N values of βqn = fDTs sin αn are

calculated similarly in the next N clock cycles. Since fDTs ≪ 1 and since the sine and

cosine values lie within [−1, 1), βin and βqn lie within [−1, 1) and can be represented in

Q(16,15).

Figure 2.6 (b) shows the datapath for calculating (fDTs cosαn[m]) × m. After cal-

culating βin [m] = fDTs cosαn[m] (as shown in Figure 2.6 (a)), integer multiples of βin

can be obtained using an accumulator instead of a multiplier. Then the βin [m] × m val-

ues are added to the ϕ̃n values and used to address N/2 dual-port cosine memories. Note

that when calculating the cos(2πγ) functions, only the fractional part of the γ is required

and the integer part can be ignored. Hence, the adders and registers used in Figure 2.6 (b)

are only 16-bit modules. The outputs of the N/2 cosine memories are then passed to a

pipelined adder tree to compute the in-phase component of c[m]. Computation of cq[m]

can be performed simultaneously using a similar datapath to that in Figure 2.6 (b).

The registers and the operation of the functional modules for computing ci[m] and cq[m]

are controlled using a W -state machine. The value of W depends on the number N of

sinusoids, the functional dependency between operations, and also the number of pipeline

stages in the longest path in the datapath that updates the RPs. For clarity let us ignore

the number of pipeline stages. As shown in Figure 2.6 (a), since we use only one PNG

and since updating θ̃[m], ϕ̃n[m] and ψ̃n[m] requires independent noise samples, these RPs
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must be updated sequentially in 2N + 1 clock cycles. After updating θ̃[m], values βin [m]

and βqn [m] can be calculated sequentially for N sinusoids in 2N clock cycles. Note that

register θ̃ is disabled during the calculation of βin and βqn . The process of updating βin [m]

and βqn [m] takes place in parallel with the updating of ϕ̃n[m] and ψ̃n[m]. Therefore,W can

be any integer number greater than or equal 2N + 1. For N = 8 sinusoids, and including

several pipeline stages in the design, we chose W = 32. Note that register R1 is initialized

to 0.5 at the start (i.e., n = 1) of the cos αn[m] and sin αn[m] computations.

Table 2.2: FPGA Implementation Results for Model V
Device XC2VP100-6 XC2VP100-6 XC2V4000-6

Model Model IV Model V Model V

Max. clock freq. (MHz) 204.75 201.1 177.99
Output rate (MSamps/sec) 204 201 177

Configurable slices 2444 (5%) 1105 (2%) 1100 (4%)
18 × 18 MULTs 48 (10%) 1 (< 1%) 1 (< 1%)

Number of BRAMs 12 (2%) 9 (2%) 9 (7%)

The implementation results for the above fading simulator based on Model V using

N = 8 sinusoids are summarized in Table 2.2. Our implementation on a Xilinx Virtex-

II Pro XC2VP100-6 FPGA, uses 1105 of the 44096 configurable slices (2%), one of the

444 dedicated multipliers (< 1%), and 9 of the 444 on-chip memory blocks (1%) while

generating over 200 million 16-bit complex-valued fading samples per second. This table

also compares the new implementation results with the FPGA implementation results for

Model IV (from Table 2.1). As shown in Table 2.2, the previous fading channel simulator

based on Model IV requires 10% of the dedicated multipliers on the same device. The

reason that the previous implementation of Model IV (from [2]) uses such a large number

of dedicated multipliers is because in order to compute fDTs ×m, in [2] we used a 48-bit

register to accumulate successive multiples of fDTs sincem, which is a discrete-time index,

can be a large integer. Then we usedN multipliers to multiply the 12-bit cos αn[m] with the

48-bit value of mfDTs. Thus this earlier scheme is certainly not compact enough for larger

systems with more than 10 channels given present FPGAs. However, the proposed scheme

uses substantially fewer dedicated multipliers, fewer BRAMs, and also fewer configurable

slices than the implementation in [2], while the slight decrease in fading generation rate is

negligible. In [8], Model V has also been used for the simulate a MIMO fading channel

with Kronecker model.

In [3], Model V is extended to cover Rician fading. The new Rician model (henceforth

30



2.2 Implementation of SOS-Based Fading Simulators

called Model VI) can be expressed in discrete time as

Model IV:

r[m] = ri[m] + jrq[m],

ri[m] =
(

ci[m] +
√
K cos(2πfDTsm cos θo + φo)

)

/
√
K + 1,

rq[m] =
(

cq[m] +
√
K sin(2πfDTsm cos θo + φo)

)

/
√
K + 1,

where K is the Rice factor (the ratio of the specular power to the scattered power), and θo

and φo are the AOA and the initial phase of the LOS component, respectively, which are

uniformly distributed random variables over [−π, π). In Model VI, the Rayleigh samples

ci[m] and cq[m] are defined in as Model V.` abcdef ghiijddhiiklmnopoqrstuvwxyz{|}~r�w�z{�
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Figure 2.7: Datapath of generating Rician fading variates.

Hardware simulation of Rician fading according to Model VI is straightforward. In

this model, the contribution of the scattered components (i.e., c[m]) is scaled and added to

the contribution of the specular component. Here, the Rayleigh fading samples {c[m]} are

generated with the datapath in Figure 2.6 (b). Figure 2.7 shows the datapath for generating

Rician fading variates.

Similar to the Rayleigh fading, the parameters of the cosine and sine functions in Model

VI can be written as 2π(fDTsm cos θo+φ̃o), where φ̃o ∈ [−0.5, 0.5). The integer multiples
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of fDTs cos θo are calculated using an accumulator, as shown in Figure 2.7. This value is

then added to ϕ̃o to address the cosine and sine memories over the domain [0, 2π). The

outputs of the memories are multiplied by scaled Rice factors that are read from the primary

inputs. The results are added later to the normalized Rayleigh coefficients.

Table 2.3: Comparison of the FPGA Implementation Results for Model IV, Model V, and

Model VI on a Xilinx Virtex-II Pro XC2VP100-6 FPGA
Model Model IV Model V Model VI

Fading Type Rayleigh Rayleigh Rician

Max. clock freq. (MHz) 204.75 201.1 201.1
Output rate (MSamps/sec) 204 201 201

Configurable slices 2444 (5%) 1105 (2%) 1222 (2%)
18 × 18 MULTs 48 (10%) 1 (< 1%) 5 (1%)

Number of BRAMs 12 (2%) 9 (2%) 11 (2%)

Table 2.3 compares the FPGA implementation results between Model IV, Model V,

and Model VI (from [2], [8], and [3], respectively). An FPGA implementation of the Ri-

cian fading channel simulator Model VI using N = 8 sinusoids on a Xilinx Virtex-II Pro

XC2VP100-6 FPGA uses 1222 of the 44096 configurable slices (2%), 5 of the 444 dedi-

cated multipliers (< 1%), and 11 of the 444 on-chip memory blocks (2%) while generating

201 million 16-bit complex-valued fading samples per second. Table 2.3 shows that the Ri-

cian fading simulator Model VI requires four more 18× 18 on-chip multipliers and utilizes

approximately 11% more configurable slices than the Rayleigh fading simulator Model V,

but the two new simulators generate fading variates at the same rate. Thus the increased

cost of providing Rician fading beyond Rayleigh fading is quite reasonable.

2.2.3 Compact Architecture for Fading Simulation

In [4] we proposed a compact architecture for the simulation of multipath Rayleigh chan-

nels based on Model V. In a typical wireless communication systems, since the Doppler

frequency fD is significantly smaller than the signal sample rate Fs = 1/Ts, the fading

samples can be generated at significantly lower rates. Hence, rather than implementing N

complex “oscillators,” one time-shared datapath can be used for the compact implementa-

tion of the N complex “oscillators” in Model V.

When resources are shared for a compact hardware implementation, the fading sample

generation rate will typically be reduced proportionally. To compensate for the throughput

reduction, we utilize a linear interpolator to achieve the desired output sample rate. To

use such an interpolator, the signal bandwidth should be small enough that the interpolator
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response does not have a significant impact on the statistics of the generated samples. More

specifically, if an initial sample rate F̂s ≥ 32 × fD is used, a simple linear interpolator can

provide more than 80 dB of attenuation on the image signals (introduced by operating at F̂s

instead of Fs) with no significant effects on the desired signal.

Figure 2.8: Datapath for updating phase angles.

This low-rate fading simulator generates the fading samples in three steps. In the first

step, the random walk processes (RWPs) θ[m], ϕn[m], and ψn[m] are updated. In the

second step, low-rate Rayleigh fading samples are generated at a frequency F̂s ≪ Fs.

Finally, in the third step, the low rate fading samples are interpolated up to Fs. Here we

explain how these three steps are processed in the implemented hardware.

2.2.3.1 Updating the RWPs θ, ϕn, and ψn

We define α̂n[m] = αn[m]/(2π) = (n − θ̂[m])/(4N) where θ̂[m] ∈ [0, 1) and thus

α̂n[m] ∈ [0, 1/4). We also define ϕ̂n[m] = (π + ϕn[m])/(2π) and ψ̂n[m] = (π +

ψn[m])/(2π) to be in the range [0, 1). Note that shifting a random phase process by π

does not change its statistical properties. Correspondingly, when implementing Algorithm

1, we normalize the random walk process to fall within U(0, 1). The resulting datapath

that updates the RWPs is shown in Figure 2.8, where the signals are represented in the

2’s complement fixed-point format Q(WL,WF) (i.e., WL-bit words with the WF ≤ WL

least significant bits dedicated to the fractional part). The pseudo-random number genera-

tor (PNG) generates uniformly-distributed samples. The common size of on-chip memories

RAM α, RAM φ, and RAM ψ, is L × N × 16, where L ≥ 1 is the number of independent

faders and each sinusoid parameter is stored in 16-bit 2’s-complement format. For exam-
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ple, utilizing 18-Kb on-chip block memories on Xilinx FPGAs, each one of the parameters

α̂n, ϕ̂n and ψ̂n for L = 32 different faders with N = 32 can be stored in one BRAM, as

shown in Figure 2.8. L different values of θ̂ are also stored in a memory RAM θ.

2.2.3.2 Generating the Rayleigh fading process

Based on the discrete-time definition of Model V, which operates at a sample rate Fs, we

define a slow discrete-time fading signal ći[m] (in-phase component) operating at sample

rate F̂s (< Fs) as follows:

ći[m] =

√

1

N

N
∑

n=1

g
(

f(
1

4
− α̂n[m])

m

64
+ ϕ̂n[m]

)

(2.16)

where g(x) = cos(2πx) and f(x) = 64 × (fD/F̂s) sin(2πx) for x ∈ [0, 1/4). We choose

F̂s ≥ 64 × fD, hence the value of f(x) is limited to the range [0, 1]. As shown in Fig. 2.9,

the values of f(x) for x ∈ [0, 0.25) are precomputed by uniformly quantizing f(x) over

1024 segments and then storing these values in ROM f . Note that the inner cosine function

in (2.16) is obtained using the identity cos(2πx) = sin(2π(1/4 − x)). For x ∈ [0, 1/4),

1/4 − x can be calculated using the negation NEG operation.

Figure 2.9: Datapath for generating the in-phase component of the fading process.

The repeated multiplication of m and f(·) in (2.16) can be replaced with a running

summation as follows:

f(
1

4
− α̂n[m])m ≈ βin[m] =

m
∑

j=1

f(
1

4
− α̂n[j]). (2.17)

Note that βin[m] can be written in recursive form as βin[m] = βin[m−1]+f(1/4−α̂n[m])

with βin[−1] = 0. With similar modifications to ćq[m], the resulting simplified in-phase
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and quadrature components can be written as follows:

ći[m] ≈
√

1

N

N
∑

n=1

g(βin[m]/64 + ϕ̂n[m]), (2.18)

ćq[m] ≈
√

1

N

N
∑

n=1

g(βqn[m]/64 + ψ̂n[m]), (2.19)

where βqn[m] is defined recursively as βqn[m] = βqn[m−1]+f(α̂n[m]) with βqn[−1] = 0.

Our bit-true fixed-point simulations show that the word length of βin and βqn has a signifi-

cant impact on the output statistics. Through experimentation we found that the Q(22,15)

format provides enough accuracy for the computation. The 2×L×N values of βin and βqn

are stored in memory RAM β, as shown in Figure 2.9. Also, the Cos Module is used to cal-

culate the g(x) function using look-up tables. The first quarter cycle of the cosine function

is quantized into 1024 segments and the resulting values are stored in an on-chip BRAM.

The value of g(x) over (0, 1) is calculated using the values of the first quarter cycle. The

outputs of the Cos Module are accumulated to compute scaled values of (2.18) and (2.19),

which are then stored in memory RAM c.

2.2.3.3 Interpolation

In this step, fading samples generated at F̂s samples per second are oversampled and in-

terpolated I times to provides samples at the target sample rate Fs = I × F̂s. The linear

interpolator requires the discrete difference between two successive low-frequency sam-

ples y[mI] and y[(m + 1)I] to generate the interpolated fading samples y[mI + i], where

i = 0, 1, · · · , I − 1, which can be expressed as

y[mI + i] =
(y[(m+ 1)I] − y[mI])i

I
+ y[mI]. (2.20)

To avoid the multiplication and division operations, we use an accumulator and the divisor

I is chosen to be a power of two. Thus

y[mI + i] =
i
∑

j=0

y[(m+ 1)I] − y[mI]

I
+ y[mI], (2.21)

and the interpolator is implemented as shown in Figure 2.10. The interpolator contains a

24-bit accumulator and one register that holds the value of the input signal for an interval

of I samples.
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Figure 2.10: Interpolator structure.

An important property of the proposed architecture is that since the same datapath is

shared to update the sinusoid parameters and to calculate the superposition of sinusoids, the

number N of sinusoids only impacts the size of the memories used to store the sinusoid

parameters. The computational complexity is directly proportional to the number L of

faders since, for every stream of in-phase and quadrature samples, one instantiation of the

interpolator shown in Figure 2.10 is required. For example, the implementation of the low-

rate fading simulator with L = 32 paths, which requires 64 independent interpolators for

the in-phase and quadrature components, uses 6899 (7%) of the configurable slices in a

Xilinx Virtex-4 XC4VLX200-11 FPGA. The synthesis results show that 6214 out of 6899

configurable slices (i.e., 91%) used for the entire fading channel simulator are used by the

interpolators.
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Figure 2.11: (a) Normalized ACF and CCF of the c[m] for one block containing 2 × 106

fading samples with fDTs = 0.0001 and N = 16. (b) PDF of the fading envelope |c[m]|.
(c) Normalized LCR.

To verify the accuracy of the Rayleigh fading simulator, we compared the bit-true fixed-

point simulation results of important statistical properties of the generated fading variates

with the theoretical functions. The simulations were performed using N = 16 sinusoids.

Four major statistical measures, namely ACF, CCF, PDF, and LCR were examined against

the theoretical references in equations (2.2), (2.3), (2.1), and (2.5) respectively. The plots

in Figure 2.11 show excellent agreement between the fixed-point bit-true simulated results

and the corresponding theoretical curves.

Based on the above methodology, we modified this design to simulate Rician fading

channels using Model VI. For a fairer comparison with other designs, we implemented

the fading channel simulator with different numbers L of paths on a Xilinx Virtex-II Pro

XC2VP100-6 FPGA. Table 2.4 compares the characteristics of two implementations of the

new fading simulator with the fading channel simulators in [59] (implemented on an Altera

APEX EP20K1000EBC652-3 FPGA) and [3] (for Model VI). Note that the new L = 32
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Table 2.4: Comparison Between FPGA Implementation Results
Model A [59] B [3] C NEW D NEW

FPGA Device EP20K1000 XC2VP100 XC2VP100 XC2VP100

Fading type Rayleigh Rician Rician Rician

Number of paths L 16 32 32 64
Number of sinusoids N 16 8 32 32
Max. clock freq. (MHz) 50.0 201.1 238.94 238.94

Output rate 16 × 1.5 32 × 201 32 × 238 64 × 238
Configurable slices 58% 87% 15% 29%
18 × 18 MULTs - 36% 0.2% 0.2%

BRAMs 17% 79% 2.0% 2.0%

path fading simulator is 82% smaller and 18% faster than the previous implementation for

Model VI despite the fact that the simulator uses four times more sinusoids (and hence has

greater statistical accuracy). Moreover, comparing the number of paths L, the number of

sinusoids N , and the maximum speed of the designs, the new fading simulator is signifi-

cantly faster and more efficient than the fading simulator reported in [59] while providing

higher statistical accuracy.

2.2.4 High Path Count Rician and MIMO Fading Simulator

In [5], we proposed new modifications to the fading simulator in [4] (represented in Section

2.2.3) and made it significantly more efficient for hardware implementation. The new fad-

ing simulator basically generates the discrete difference between fading samples at a low

sample rate. A simplified interpolator is then used to provide the target sample rate. The

compact implementation of this fading simulator makes it an especially appropriate candi-

date for simulating fading scenarios with large number of paths, like multipath and MIMO

fading channels [5]. Here we explain how this fading simulator is implemented.

2.2.4.1 Modifications

Let’s start with equation (2.21). Note than when I is chosen to be a power of two (i.e.,

I = 2k), the interpolator (2.21) can be implemented without multiplications or divisions.

Note also that the interpolator requires the discrete difference between two subsequent low-

frequency samples. In addition, since the difference is a linear and time-invariant operation,

it can be performed before adding in any Rician specular (i.e., LOS) component. The

discrete difference signal for the Rayleigh in-phase component in (2.18) is thus

di[m] =

N
∑

n=1

(g(βin[m]
64 + ϕ̂n[m]) − g(βin[m−1]

64 + ϕ̂n[m− 1])√
N

. (2.22)
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By substituting (2.22) into (2.21), one can verify that the in-phase Rayleigh fading samples

of Model V at sample rate Fs can be approximated by

ĉi[mI + u] = ći[0] +
m−1
∑

ḿ=0

di[ḿ] + 2−kdi[m]u

= ći[0] +
m−1
∑

ḿ=0

di[ḿ] + 2−k
u
∑

j=1

di[m], (2.23)

where k = log2(I), m = 0, 1, 2, · · · , and u = 0, 1, · · · , I − 1. Equation (2.23) shows that

with the above modifications, the interpolation operation can be simplified to a discrete dif-

ference, a shifting operation, and an accumulation (the two summations in equation (2.23)

can be implemented with only one accumulator).

Next, the discrete difference of the LOS component is added to the Rayleigh fading

samples. The discrete difference signal for Rician samples can be written as (see Model VI)

si[m] =
1√

1 +K
di[m] +

√

K

1 +K
(g(λ[m]) − g(λ[m− 1])), (2.24)

where λ[m] =
∑m

ḿ=1(η/64) + φ̂o, φ̂o = φo/(2π), and η = 64 × (fDT̂s) cos(θ0). The

in-phase component of the final Rician samples are interpolated with an accumulator as

follows:

r̂i[mI + u] = ŕi[0] +
m−1
∑

ḿ=0

si[ḿ] + 2−ksi[m]u

= ŕi[0] +
m−1
∑

ḿ=0

si[ḿ] + 2−k
u
∑

j=1

si[m], (2.25)

where ŕi[0] = (ći[0] +
√
Kg(φ̂o))/

√
1 +K. The interpolated quadrature component

r̂q[mI + i], for m = 0, 1, 2, · · · and u = 0, 1, · · · , I − 1, can be calculated similarly.

2.2.4.2 Hardware Model

We now describe an efficient hardware design for an especially compact and high-throughput

simulator based on the above simplified fading channel model. Without loss of generality

we explain the design for 32 channels with each channel providing Rayleigh fading with

N = 32 sinusoids. The architecture of this fading simulator consists of two cascaded

stages. In the first stage, the complex sinusoids are generated at the sample rate F̂s. Since

F̂s is much slower than the target sample rate Fs, a common data path can be time-shared to

interleave the calculations for different paths. The various required waveform parameters
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are stored in different random-access memories to allow the samples to be updated using a

shared datapath. However, every low-speed stream of fading samples must be interpolated

with a dedicated interpolator. This way, the low-speed calculations are performed more

efficiently with the least amount of hardware. Note that the final sample rate of the fading

simulator depends on the maximum speed of the interpolator if different clock sources are

used for the first (wave superposition) and second (interpolation) stages.

Figure 2.12: Datapath for generating the random phase processes.

Here, a time-overlapped approach is used where one simulation trial is divided into

shorter intervals, each of length W clock cycles. To minimize the number of FPGA func-

tional units and memories, instead of updating the RP values every clock cycle, without

significant loss in final accuracy their values are updated every w clock cycles, where

1 < w ≤ W . The RPs are calculated sequentially using time-shared arithmetic resources

but distinct memory locations. The datapath shown in Figure 2.12 updates the random

phases α̂n[m], ϕ̂n[m] and ψ̂n[m]. These random parameters are stored in three block mem-

ories “RAM α”, “RAM ϕ” and “RAM ψ”, respectively, in Q(16,15) format each of depth

1024 words. Also, 32 values of θ̂ are stored in the dual-port distributed memory “RAM θ”

in Q(16,15) format. The random processes θ̂, ϕ̂n[m] and ψ̂n[m] are updated according

to a modified version of the algorithm described in [3] (see Section 2.2.2).

A fading variate generator must create long periods of non-repeating propagation condi-

tions to evaluate accurately the error-rate performance of the communication system under

evaluation. The quality of the modeled conditions depends on the quality of an underly-

ing pseudo-random number generator (PNG). To ensure this, we used a combined linear

PNG [87] that has a very long period and substantially better randomness and correla-

tion properties compared to conventional linear PNGs. In addition to updating the ran-

40



2.2 Implementation of SOS-Based Fading Simulators

dom phases, the datapath in Figure 2.12 updates the value of α̂n[m] = (n − θ̂)/(4N) for

n = 1, 2, · · · , N .

Figure 2.13: Datapath for generating Rayleigh fading samples.

Figure 2.13 shows the datapath for calculating the sequences of differences, di[m] and

dq[m]. In our example design, 1024 = 32×32 values of α̂n[m] are stored in dual-port block

memory “RAM α” in Q(16,15) format. The function f(x) = 64× (fD/F̂s) sin(2πx) for

x ∈ [0, 1/4) is precomputed and quantized in Q(16,15) format in 1024 steps and stored

in “ROM f”. To calculate the sine function, the value of α̂n[m] is passed to “ROM f” after

proper bit selection. To calculate the cosine function, the reformatted value α̂n[m] is first

passed through a negation circuit and then passed to “ROM f”.

Through extensive fixed-point simulations we found that the choice of fixed-point rep-

resentation for βin[m] and βqn[m] has a great impact on the output statistics. Specifically,

we found that the Q(22,15) fixed-point representation provides enough accuracy for our

purposes. 2048 = 2 × 32 × 32 values of βin[m] and βqn[m] are stored in dual-port block

memory “RAM β”. The βin[m] and βqn[m] values are updated using adder “add1” ac-

cording (2.17) after reformatting the f(·) values from Q(16,15) to Q(22,15) format.

Moreover, ϕ̂n and ψ̂n from two-port block memories “RAM ϕ” and “RAM ψ” are used to

compute phases in (2.18) and (2.19) after proper bit selection. In Figure 2.13, “cos module”

provides g(x) = cos(2πx) values for two inputs from a look-up table. According to our

fixed-point simulations, to ensure acceptable statistical accuracy, the look-up table for g(x)
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in Q(16,15) format should have at least 4096 entries (requiring 12-bit addressing). For

a more efficient implementation, only the first quarter cycle of g(x) (i.e., x ∈ [0, 1/4)) is

stored in an on-chip block memory. For x ∈ [1/4, 1), we can find the corresponding values

of g(x) based on the values from the first quarter cycle. The outputs of the “cos module”

are then passed to accumulators “add4” and “add5” to compute scaled copies of (2.18)

and (2.19). The outputs of “add4” and “add5” are then passed to “sub1”, which computes

the corresponding differences di[m] and dq[m] (see (2.22)) in Q(20,15) format. After

scaling and proper bit selection, 32 values of di[m] and dq[m] are stored in a distributed

memory of depth 64 = 2 × 32 in Q(16,15) format.

Figure 2.14: Datapath for converting Rayleigh fading samples into Rician fading samples.

The specular component is added to the Rayleigh samples using the datapath shown

in Figure 2.14. Here, N = 32 values of η = 64 × (fD/F̂s) cos(θo) are stored in single-

port memory “ROM η” and used to update the λ values stored in memory “RAM λ” in

Q(22,15) format. Memory “RAM λ” is initialized with φ̂o values. The “sin/cos module”

reads the sine or cosine of the λ for the specular component (see Model VI) from a look-

up table. Moreover, memory “ROM K” holds 64 = 2 × 32 values of 1/
√

1 +K and
√

K/(1 +K) in Q(16,15) format. Multiplier “mul1” performs the four multiplications

required to calculate si[m] and sq[m] (see (2.24)). Adder/subtracter “add2” accumulates

different components of (2.24) the result of which, after proper bit selection, is stored using

format Q(16,15) in distributed memory “RAM s” of depth 64 = 2 × 32.

The datapath of the interpolator is shown in Figure 2.15. Note that one interpolation

branch is dedicated to every in-phase and quadrature stream of samples (64 = 2 × 32

interpolation branches in total). Each interpolation branch consists of a 24-bit accumulator

and a register that holds the input signal for an interval of I samples (see (2.21)). Data

from memory “RAM s” is read and stored in these registers with specific timing. A decoder
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circuit selects which interpolator branch should store the present output data from “RAM

s”. The interpolator circuit generates the final 32 streams of independent complex Rician

fading samples at the desired output sample rate.

Figure 2.15: Datapath for the interpolation.

2.2.4.3 Results

To demonstrate the performance of this fading simulator, we first implemented a fixed-point

bit-true model in the compiled language MEX (C for MATLAB) and generated sequences

of fading variables. We simulated different Rayleigh and Rician fading scenarios for a

fading channel with fDTs = 0.001 and N = 32 sinusoids.
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Figure 2.16: Normalized autocorrelation of the generated fading samples (real part) for one

block containing 2×106 samples generated in a fixed-point simulation with fDTs = 0.001,

θ0 = π/3, and N = 32 for K = 0 (Rayleigh), 1 and 3.
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Figure 2.17: Normalized cross-correlation between the in-phase and quadrature compo-

nents of the generated fading samples for one block containing 2 × 106 samples generated

in a fixed-point simulation with fDTs = 0.001, θ0 = π/3, and N = 32 for K = 0
(Rayleigh), 1 and 3.

Figure 2.16 demonstrates the autocorrelation for 2× 106 in-phase and quadrature com-

ponents of the generated fading samples for Rice factors K = 0, 1 and 3. The theoretical

reference ACFs and CCFs between the quadrature components of the fading samples are

given by equations (2.10) and (2.11), respectively. As Figure 2.16 confirms, there is a close

match between the expected analytical autocorrelation plots and the generated fixed-point

simulation results. Also, Figure 2.17 plots the cross-correlation between the in-phase and

quadrature components of the generated fading samples and the analytical curves. This fig-

ure again shows a close match between the fixed-point simulation results and the desired

curves.

Figure 2.18: Normalized level crossing rate (LCR) function for one block containing 2×106

fading samples generated in a fixed-point simulation with θ0 = π/3 and N = 32 sinusoids,

for K = 0 (Rayleigh), 1, 3, 5 and 10.
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Figure 2.18 shows the normalized LCR of the amplitude of generated complex fading

samples. The LCR is normalized to fDTs. The theoretical LCR from equation (2.12) is

plotted too. Figure 2.18 shows excellent agreement between the theoretical (from equation

(2.12)) and fixed-point simulation results for different values of Rice factor K.

Figure 2.19: Normalized average fade duration (AFD) function for one block containing

2 × 106 fading samples generated in a fixed-point simulation with θ0 = 0 and N = 32
sinusoids, for K = 0 (Rayleigh), 1, 3, 5 and 10.

Figure 2.19 shows the normalized AFD of the generated samples in our fixed-point

simulation for 2 × 106 samples and different values for Rice factor K. To have distinct

curves for illustration, in this simulation the angle of arrival for the specular component is

set to θo = 0. As this figure shows, the results of our fixed-point simulation closely match

the theoretical references from equation (2.13).
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Table 2.5: Comparison Between FPGA Implementation Results
Model B [3] C [4] E (NEW)

Number of paths L 32 32 32
Number of Sinusoids N 8 32 32

Number of complex waves 256 1024 1024
Max. clock freq. (MHz) 201.1 238.9 224.2

Output rate (MSamp/sec) 32 × 201 32 × 238 32 × 276 a

Configurable slices 39104 (87%) 6894 (15%) 2151 (4%)
18 × 18 MULTs 160 (36%) 1 (0.2%) 1 (0.2%)

Number of BRAMs 352 (79%) 9 (2.0%) 9 (2.0%)

aThe sample rate of the new fading simulator depends on the maximum speed of the interpolator (here

276.7 MHz) if different clock sources are used for the first (wave superposition running at a maximum fre-

quency of 224.2 MHz) and the second (interpolation) stages. If one clock source is used, the maximum sample

rate will be 32 × 224 million complex fading samples per second.
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Figure 2.20: Probability density function (PDF) for one block containing 2 × 106 fading

samples generated in a fixed-point simulation.

Finally, Figure 2.20 plots the PDF of the amplitude of the generated fading samples.

Once again it can be observed that this PDF accurately reproduces its reference value in

equation (2.9).

We implemented the new fading simulator on a Xilinx Virtex-II Pro XC2VP100-6

FPGA. As in our example simulator, we configured the hardware to generate 32 indepen-

dent streams of Rician fading samples using N = 32 sinusoids. For each fading stream,

our FPGA implementation uses 2151 of the 44096 configurable slices (4%), only one of

the 444 dedicated 18× 18 multipliers (< 1%), and nine of the 444 on-chip memory blocks

(2%). When implemented with one clock source, our fading generator can generate up to

32× 224 million 16-bit complex-valued fading samples per second. However, when imple-
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mented with two clock sources (for wave superposition and for interpolation), this figure

rises to 32 × 276 million samples per second, which is determined by the maximum speed

of the interpolation circuit in Figure 2.15. Table 2.5 summarizes the characteristics of the

new fading simulator.

This table also compares the new implementation with the fading channel simulators

in [3] (presented in Section 2.2.2) and [4] (presented in Section 2.2.3). Our fading channel

simulator in [3] requires 39104 (87%) configurable slices, 160 dedicated 18 × 18 (36%)

multipliers, and 352 (79%) on-chip block memories and provides 32 independent streams

of Rician fading samples utilizing N = 8 sinusoids and runs at a maximum frequency

of 201.1 MHz. By comparison, the new fading simulator is more accurate (32 sinusoids

versus 8 sinusoids), 18 times smaller (in terms of number of slices), and 37% faster than

the previous design. Also compared to our previous implementation in [4] ((from Section

2.2.3), the new fading simulator is more than 3 times smaller.

The compactness of the new fading simulator arises mainly because of the efficient

implementation of the interpolation circuit. Since each in-phase and quadrature component

of a fading sample requires an interpolator, the efficiency of the interpolation is directly

related to how compactly the fading simulator is implemented. In our latest implementation

of an SOS-based fading simulator, the interpolator was reduced to a simple accumulator

which in turn resulted in compact and efficient implementation of the fading simulator.

2.3 Accuracy and Efficiency Comparisons

Detailed simulation and implementation results for different proposed models and archi-

tectures are provided in their corresponding publications. Here, we provide a comparison

between accuracies of different designs in terms of mean square error (MSE) for differ-

ent statistical characteristics. The MSE is defined as the average square error between the

measured statistics and the theoretical targets (from equations (2.2), (2.3), (2.1), (2.5), and

(2.6)) over a specified range.
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Figure 2.21: Mean square error (MSE) for different statistical measures of the new fading

simulators: (a) MSE of ACF, (b) MSE of CCF, (c) MSE of PDF, (d) MSE of LCR, and (e)

MSE of AFD. The MSE values are measured over one continuous block of Rayleigh fading

samples of length 107 with normalized Doppler frequency fDTs = 0.01. The simulated

fading models are (i) the model proposed in [1] (see Section 2.1), (ii) the model proposed

in [2] (see Section 2.2.1), (iii) the model proposed in [3] (see Section 2.2.2), (iv) the model

proposed in [4] (see Section 2.2.3), and (v) the model proposed in [5] (see Section 2.2.4).

2.3.1 Accuracy Comparison

We compared the statistical accuracy of different fading simulators. We measured the mean

square error of different statistical measures (ACF, CCF, PDF, LCR, and AFD) over one
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continuous block of Rayleigh fading samples of length 107 with normalized Doppler fre-

quency fDTs = 0.01. The output statistics of the fading simulators proposed in [1–5]

(represented in Sections 2.1, 2.2.1, 2.2.2, 2.2.3, and 2.2.4) were gathered in simulation.

Figure 2.21 (a) compares the MSE of the ACF of of different designs. This MSE is mea-

sured with over a lag of 3200 samples. As this figure shows, the improved SOS model

proposed in [2] (from Section 2.1) provides a 20 dB reduction in ACF-MSE compared to

the model in [1] (Model II in Section 2.2.1). Also, Figure 2.21 (a) shows that the fading

simulator in [5] (see Section 2.2.4) reduces the ACF-MSE by almost 50 dB. Figure 2.21 (b)

compares the CCF-MSE for different model. As this figure show, Model II (from [1]) has

lower CCF than other designs. However, the CCF-MSE in [2–5] is probably small enough

(CCF-MSE < −50 dB) for practical purposes. In addition, in Figure 2.21 (c) the PDF-

MSE is illustrated and shows that the PDF of our latest simulators are more accurate than

the original models. In Figures 2.21 (d) and (e) the LCR-MSE and AFD-MSE of different

models are plotted. These figures also show the improvement in the statistics of our fading

simulators.

2.3.2 Efficiency Comparison

Figure 2.22 compares the implementation results for different SOS-based fading simulators.

All of the fading simulators are implemented in Verilog HDL and synthesized on a Xilinx

Virtex-II Pro FPGA XC2VP100-6. The implemented fading simulators are from [2–8]

(from Sections 2.2, 2.2.1, 2.2.2, 2.2.3, and 2.2.4). The resource utilization figures are di-

vided up based on the number of generated fading paths.

Figure 2.22 (a) compares the maximum clock frequency of different designs. All of

the designs are fully pipelined. The maximum clock frequency among all of these designs

belongs to the design in [4] (from Section 2.2.3). Figure 2.22 (b) compares the maximum

output sample rate of the different designs 1. Note that all of the designs are fully pipelined

to achieve maximum throughput. As this figure shows, in the designs reported in [2,3,6–8]

the output rates are similar. However in the two latest designs [4,5] (from Sections 2.2.3 and

2.2.4), the hardware has become faster because of the two-stage design. More specifically,

the design reported in [5] can generate up to 276 million samples per second (only one

1The fading simulator proposed in [5] is designed in two stages and its output sample rate depends on the

maximum speed of the interpolator (here 276.7 MHz) if different clock sources are used for the first (wave

superposition running at a maximum frequency of 224.2 MHz) and the second (interpolation) stages. If one

clock source is used, the maximum sample rate will be 224 million complex fading samples per second.
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path).

Figure 2.22 (c) compares the required number of configurable slices per fading path. As

this figure shows, the designs in [4, 5] are the most compact. More specifically, the design

in [5] requires only 68 slices per fading path with N = 32 sinusoids.

Figures 2.22 (d) and (e) compare the required number of on-chip multipliers and block

memories per fading path. As this figure shows, newer designs require fewer and fewer

multipliers and less storage per fading path. Finally, Figure 2.22 (f) compares the number

of sinusoidsN in all of the fading simulators, which could be used as a measure of accuracy.

It can be seen that in the process of this work, the SOS-based fading simulator’s design

has evolved so that our latest fading simulator is

1. Smaller than all of the other known designs (only 68 slices per path, 1 multiplier and

9 block memories for 32 paths);

2. Faster than the other designs (up to 276 MSamp/Sec on a Virtex-II Pro FPGA and

342 MS/Sec on a Virtex-4 FPGA); and,

3. More accurate than our other designs and all of the designs available in the literature.

2.4 Summary and Conclusions

The sum-of-sinusoids fading channel model is an efficient approach for the software and

hardware simulation of fading channels. In this chapter, we first provided a brief overview

of different sum-of-sinusoid based fading simulators. We evaluated their advantages and

shortcomings. We proposed different models for the accurate simulation of Rayleigh and

Rician fading channels. We also proposed efficient architectures suitable for compact and

high-throughput hardware implementation. During the progress of this work, the proposed

fading channel models became more statistically accurate for the continuous simulation of

fading channels. Moreover, the implemented fading simulator architectures became more

compact and more efficient.

One of our early SOS-based fading simulators in [2] (discussed in Section 2.2.1) re-

quired 2444 configurable slices, 48 multipliers, and 12 block memories on a Xilinx Virtex-

II Pro XC2VP100-6 FPGA to generate the complex fading gains of a single path Rayleigh

channel with N = 8 complex sinusoids, generating 204 million samples per second. How-

ever, our latest fading simulator in [5] (presented in Section 2.2.4) requires 2151 config-
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Figure 2.22: Comparison between different implementations of our fading simulators. All

of the fading simulators have been implemented in Verilog HDL and synthesized on a Xilinx

Virtex-II Pro FPGA XC2VP100-6. The plots show (a) maximum clock frequency, (b) max-

imum output sample rate, (c) number of configurable slices per generated path, (d) number

of utilized on-chip 18 × 18 multipliers per generated path and, (e) number of utilized on-

chip 18-Kb block memories per generated path. The implemented fading simulators are

from (i) the model proposed in [6] (see Section 2.2), (ii) the model proposed in [7] (see

Section 2.2), (iii) the model proposed in [2] (see Section 2.2.1), (iv) the model proposed

in [3] (see Section 2.2.2), (v) the model proposed in [8] (see Section 2.2.2), (vi) the model

proposed in [4] (see Section 2.2.3), and (vii) the model proposed in [5] (see Section 2.2.4).
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urable slices, 1 multiplier, and 9 block memories on the same PFGA device to generate the

complex fading gains of a 32 path Rayleigh/Rician fading channel with N = 32 complex

sinusoids for each path, generating 32 × 276 million samples per second.
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Chapter 3

Filtered-Based Fading Simulation

In addition to the sum-of-sinusoids (SOS) method, another well-known approach for gener-

ating fading variates for channel simulation is to filter a complex, zero-mean, Gaussian

random process with independent samples. The fading process c(t) = ci(t) + jcq(t)

is obtained by passing the Gaussian variates through a suitable spectrum shaping filter

(SSF) [18, 88–90]. Under the common assumption of a two-dimensional isotropic scatter-

ing environment with an omni-directional receiving antenna at the receiver [62], the power

spectral density (PSD) of c(t) has the band-limited U-shaped form, the so-called Jakes’

PSD [64]. The filter-based approach can be customized to accurately provide the statistical

properties required for simulating different fading scenarios [19].

This chapter presents novel design and implementation schemes for realizing parame-

terizable fading channel simulators on homogeneous architectures. More specifically, one

of the new designs is an accurate filter-based fading channel simulator that is compact

enough to be integrated on a single field-programmable gate array (FPGA) along with

many communication circuits of interest. Several new architectures for efficient hardware

implementation of fading simulators are presented.

Also, we address the related and more general problem of designing complex and real

infinite impulse response (IIR) filters with fixed-point coefficients for compact and stable

implementation. These complex filters are required in different applications such as fading

simulation with non-isotropic scattering [91] or the implementation of the standard TGn

fading channel models for simulating IEEE 802.11n wireless local area networks [92].

Moreover, in this chapter we will present an efficient hardware implementation for the

simulation of Nakagami-m and Weibull fading channels. The simulation method is based

on transforming Rayleigh fading samples with arbitrary correlation into Nakagami-m or
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Weibull distributed samples.

3.1 Background and Related Work

As mentioned earlier, the behavior of multipath fading channels is commonly modeled

as a complex Gaussian wide-sense stationary (WSS) process c(t) = ci(t) + jcq(t) [15].

In a two-dimensional isotropic scattering environment with an omnidirectional receiving

antenna at the receiver [62], the autocorrelation function (ACF) associated with either ci(t)

or cq(t) is given by Rci,ci(τ) = Rcq ,cq(τ) = J0(2πfDτ)/2. The PSD function of c(t),

denoted by Gc(f), can be written as

Gc(f) =

{

1

πfD

√
1−(f/fD)2

|f | < fD

0 |f | ≥ fD.
(3.1)

In order to generate the in-phase and quadrature components of fading variates with a

particular correlation between variates, we can pass a complex zero-mean and unit-variance

white process n(t) = ni(t) + jnq(t) through a linear SSF with an appropriate frequency

response H(f). A linear filtering operation on the complex Gaussian samples with flat

PSD, yields samples that also have a Gaussian distribution, with the power spectrum density

Gy(f) = Gn(f) |H(f)|2, where Gn(f) is the PSD of the input samples and Gy(f) is the

PSD of the output samples.

The theoretical spectral density of the complex envelope of the signal received by an

omni-directional antenna in a Rayleigh fading wireless channel is given by the Jakes’ PSD

[93]. The required shaping filter must be designed with a frequency response that is equal

to the square root of the PSD of the desired fading process (i.e., |Gc(f)|1/2).

3.1.1 Realization of a Spectrum Shaping Filter

The filtering process can be performed in the frequency domain [18, 89] by multiplying

the Gaussian samples by |Gc(f)|1/2. Then an inverse fast Fourier transform (IFFT) can

be applied to the resulting discrete spectrum to obtain time series fading samples [18, 89].

The resulting series is still Gaussian by virtue of the linearity of the IFFT, and it has the de-

sired Jakes’ spectrum. The IFFT has a computational complexity of O(Γ log Γ) operations,

where Γ is the number of time-domain sampled Rayleigh channel coefficients. One major

disadvantage of the IFFT method is its block-oriented nature, which requires all channel

coefficients to be generated and stored before the data is sent through the channel. This im-

plies significant memory requirements and precludes unbounded continuous transmission,
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which is usually preferred in long running characterization applications such as hardware

fading simulation.

In the time domain, the SSF can be implemented with either finite impulse response

(FIR) filters, infinite impulse response (IIR) filters or autoregressive (AR) models. The

fading channel simulators in [18, 94–102] use FIR filters as the shaping filter while the

designs in [4, 9–11, 13, 14, 21, 88, 103–108] use IIR filters. The AR modeling approach has

also been proposed for generating fading processes by passing the noise through an all-

pole IIR filter [90,109]. Several important points should be considered when implementing

fading channel simulators using FIR and IIR filters on hardware platforms:

• While these approaches might be appropriate for computer simulations, they are not

necessarily the best candidates for hardware implementation. For example in the IFFT

method, samples are generated with a single fast Fourier transform (FFT) operation, and the

large storage requirement can result in space-inefficient and costly implementation [109].

To produce samples with accurate statistics, the AR model needs a large filter order, which

greatly increases the number of required multiplications per output sample. Also, imple-

mentation of the AR fading simulator demands highly accurate floating-point variables,

which makes it unappealing for compact fixed-point implementations.

• The degree of the FIR filter is related to the time span of the truncated signal held in the

filter and inversely proportional to the Doppler frequency. Specifically, implementation of

an extremely narrow-band digital filter with a sharp cutoff and a very large attenuation in the

stop-band requires a high-order FIR filter [93, 101]. Meeting the same specifications with

an IIR filter typically requires fewer hardware resources than an FIR filter. In fact, utilizing

both feedforward and feedback polynomials in an IIR filter permits steeper frequency roll-

offs to be implemented for a given filter order than an FIR filter [110].

• An FIR filter has no feedback and is thus inherently stable. However, as the coef-

ficients are quantized in any fixed-point implementation, the resulting numerical error is

fed back in the IIR filter, possibly causing instability. Moreover, such effects can cause

significant deviations from the expected response. To make sure that the filters are stable

under quantization effects, we have designed the filters in fixed-point format using Filter

Design Toolbox by MATLAB [111] which offers bit-true implementations of second-order

sections with section scaling and reordering to obtain maximum accuracy.

• Although FIR and IIR filter-based approaches might be appropriate for computer

simulations of isotropic fading, they are not the best candidates for the hardware simulation
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of non-isotropic scattering scenarios, where the angle of arrival (AOA) is not uniformly

distributed or when the antennas are not omni-directional. Problems arise because the PSD

of fading samples in non-isotropic fading is not symmetric in general and requires filters

with complex coefficients.

Isotropic scattering refers to the case in which the distribution of the incident direc-

tions of the received multipath signals, or AOA, are equally distributed. Assuming two-

dimensional isotropic scattering with an omni-directional antenna at the receiver [62], the

PSD associated with either the in-phase or quadrature component of a complex fading sig-

nal has the well-known Jakes’ U-shaped band-limited form [64] with independent in-phase

and quadrature samples. However such assumptions have been challenged [112–116] and

experimentally demonstrated [117–126] to be inaccurate due to the blockage of some prop-

agation directions and antenna directivity [127], resulting in a nonuniform probability den-

sity function (PDF) for AOA at the receiver. As discussed in [126], the PDF of the AOA

has a great impact on the second-order statistics of the fading process including correla-

tion functions, envelope level crossing rate (LCR) and average fade duration (AFD). These

properties can greatly affect the design and analysis of the wireless systems, not only at the

physical layer but also at the link and network layers [48]. In a wireless channel, for exam-

ple, the average length of error bursts is determined with the AFD. Hence, the AFD of the

fading channel plays an important role in design and verification of wireless transceivers.

Several nonuniform PDFs have been proposed in the literature to represent the AOA

including the geometrically-based PDFs [128, 129], Gaussian PDF [130], quadratic PDF

[131], Laplace PDF [120], cosine PDF [132], and von Mises PDF [91]. The von Mises

PDF, which includes the uniform AOA distribution as a special case, is supported with

empirical measurements of narrow-band fading channels in [91]. Also it is argued that the

von Mises PDF is attractive because it can approximate other non-uniform PDFs and can

provide mathematical convenience for analysis [91].

3.1.2 General Channel Model

We assume multipath fading in which the complex envelope of the fading process is

c(t) = ci(t) + jcq(t)

= lim
N→∞

1√
N

N
∑

n=1

αne
j(2πfD cos(ψn)+ϕn),

(3.2)
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where fD is the Doppler frequency, ψn, n = 1, ..., N are independent and identically

distributed (i.i.d.) angles of arrival of the incoming wave at the receiver antenna with

distribution pΨ(ψ), ϕn, n = 1, ..., N are i.i.d. phases with uniform distribution over

[−π, π), and αn, n = 1, ..., N are deterministic normalized complex constants that sat-

isfy
∑N

n=1 |αn|2 = N . When the scattering encountered in the propagation environment

is non-isotropic, the power spectral density (PSD) function associated with c(t) is given

by [91]

Sc(f) =
e
κ cos(ψ̃) f

fD cosh
(

κ sin(ψ̃)
√

1 − ( f
fD

)2
)

πI0(κ)
√

1 − ( f
fD

)2
, (3.3)

where κ controls the beam-width, ψ̃ denotes the average AOA of the scattered component,

and Im(·) is them-th order modified Bessel function of the first kind. To obtain (3.3) it is as-

sumed that the AOA of the scattered component is distributed with the von Mises/Tikhonov

distribution [133, 134] as follows

pΨ(ψ) =
exp[κ cos(ψ − ψ̃)]

2πI0(κ)
, ψ ∈ [−π, π). (3.4)

Note that when the beam-width parameter κ is zero, the AOA has a uniform distribution

over [−π, π) and (3.3) reduces to Jakes’ “U-shaped” spectrum Sc(f) = ( π
fD

√

f2
D − f2)−1.

The ACF of c(t) can be obtained by taking the inverse Fourier transform of (3.3) as follows

Rc(τ) =
I0(
√

κ2 − 4π2f2
Dτ

2 + 4jκ cos(ψ̃)πfDτ)

I0(κ)
. (3.5)

Another important statistical property of c(t) is the envelope LCR, which is defined as the

expected number of envelope crossings per second through a given level ρ with positive

slope. It can be shown that the LCR of c(t) is [135]

L|c|(ρ) =

√

I2
0 (κ) − I2

1 (κ) + cos(2ψ̃)[I0(κ)I2(κ) − I2
1 (κ)]

I0(κ)
×
√

2πfDρ exp(−ρ2). (3.6)

Note that for κ = 0 (isotropic scattering), (3.6) reduces to the Rayleigh LCR, namely

L|c|(ρ) =
√

2πfDρ exp(−ρ2). Also, for the case where the AOA is modeled by the von

Mises PDF, the AFD is

T|c|(ρ) =
I0(κ)

√

I2
0 (κ) − I2

1 (κ) + cos(2ψ̃)[I0(κ)I2(κ) − I2
1 (κ)]

× exp(ρ2) − 1√
2πfDρ

. (3.7)

For isotropic scattering (κ = 0) AFD reduces to T|c|(ρ) = (exp(ρ2) − 1)/(
√

2πfDρ).

To mimic the behavior of a realistic wireless channel, a fading simulator must be able to

generate the path gains {c(t)} with high accuracy.
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Compared to the SOS-based method, the filter-based fading simulation method is much

trickier to implement. A filter-based simulator needs to be designed carefully because of

possible instability and finite word-length effects when implemented with fixed-point arith-

metic. On the other hand, filter-based fading simulation has several advantages over the

SOS-based method. First, with the filter-based method, it is possible to simulate a wide

range of power spectral densities. Second, the filters can be designed to provide a high

level of statistical accuracy. Finally, the generated samples have very accurate Gaussian

distribution.

The goal of this work is to make filter-based fading simulation both compact and effec-

tive so that it can provide accurate statistics with a hardware complexity close to that of a

SOS-based fading simulator.

To achieve this, we first aimed for a compact implementation of a filter-based fading

simulator. A new multilayer filter design procedure was proposed. Later, we developed two

simple signal processors for performing filter operations. A new filter design technique for

designing stable complex filters with fixed-point coefficients was proposed as well. We also

proposed an elastic design for the convenient and efficient implementation of candidate fad-

ing simulators. Finally, we proposed a compact and accurate filter-based fading simulator

in which colored-noise is used instead of white noise. The computational complexity of the

new filter-based fading simulator is comparable to a SOS-based fading simulator with 32

sinusoids. In the rest of this chapter, we explain how we implemented in hardware a variety

of filter-based fading simulators.

3.2 Implementation of Filter-Based Fading Simulators

We described the first filter-based fading simulators in [9]. To design the SSF, transformation-

based filter design was used [88, 136]. Since the Doppler frequency is much smaller than

the sample rate, the SSF can be designed to operate at a lower sample frequency F̂s ≪ Fs

and later interpolated to reach the target sample rate Fs = 10 MHz. In [9] the Doppler

frequency is set to fD = 2 KHz and the SSF is designed at sample rate F̂s = 20 KHz. An

order 10 IIR filter (5 cascaded biquads) is used to implement the SSF.

An important point is that if the stop-band attenuation of the shaping filter is not suf-

ficiently high, then the out-of-band noise that passes through the filter will degrade the

accuracy of the statistics of the generated fading variates. Specifically, since designing a

narrow-band filter with a sharp cutoff and large attenuation invariably leads to a high-order
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filter, to obtain the closest approximation to the desired frequency response with a relatively

small filter order, we only minimized the approximation error in the pass-band of the SSF.

The low-pass filters utilized downstream in the interpolator stages can then be designed

with extra attenuation over the transition region to ensure a sharp cutoff.

The interpolation is performed in two stages. We designed a two-stage interpolator

using two low-pass inverse Chebyshev (Type II) IIR filters [137], one that interpolates by

a factor I1 = 5 and one for I2 = 100. The interpolation lowpass filters have a maximum

of 0.01 dB attenuation in the pass-band and a minimum of 100 dB attenuation in the stop-

band. Also, our Gaussian variate generator described in [138] was used to implement the

Gaussian noise source.

We proposed a time-multiplexed resource sharing scheme to implement both the spec-

trum shaping filter and the first interpolation filter. Sharing hardware in this way achieves

the maximum performance with a minimum amount of FPGA resources, leading to an effi-

cient implementation [9]. The operation of the shaping filter and the first interplation low-

pass filter (ILPF) are bound to only one shared biquad. The second interpolation filter uses

a separate set of configurable resources to achieve the target throughput. Our implemen-

tation of a 32-bit fading channel simulator on a Xilinx Virtex-II Pro XC2VP100-6 FPGA

utilizes 4% of the slices, 19% of the dedicated multipliers, and 2% of the BlockRAMs. The

core operates at 50 MHz and generates 12.5 million fading variates per second.

We proposed another implementation of the filter-based fading channel simulator in

[10]. Since only signal amplitudes impact the correlation properties, no limitations were

imposed on the phase response of the SSF and therefore the inverse Chebychev filters in

the previous design were replaced with more efficient elliptic (Cauer) filters [137]. In the

hardware implementation, an out-of-order scheduling scheme was utilized to reduce the

number of required clock cycles to execute cascaded second-order sections. Also, a new

time sharing mechanism was used that resulted in twice the throughput at the same opera-

tion frequency. The 32-bit fixed-point FPGA implementation of this fading simulator on a

Xilinx Virtex-II Pro XC2VP100-6 utilized 4% of the slices, 20% of the dedicated multipli-

ers, and 10 (2%) of the BlockRAMs and operated at 50 MHz generating 25 million fading

variates per second [10].
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3.2.1 Real and Complex Filter Processors for Fading Simulation

In [11], we presented a flexible and compact general-purpose filter processor. This proces-

sor is a convenient building block for fading simulation as well as other applications. Also,

in [44] we proposed a processor for IIR filters with complex coefficients. These two filter

processors have similar architectures, so we only describe the real filter processor here.

In an isotropic scattering Rayleigh fading channel, the path gains are modeled using a

unit-variance zero-mean complex Gaussian process c(t) = ci(t)+jcq(t) [15] with the PSD

function

Sc(f) =







1

π
√
f2

D
−f2

if |f | < fD,

0 otherwise.
(3.8)

In this model ci(t) and cq(t) are Gaussian-distributed independent stochastic processes.

These samples can be generated by passing a stream of independent Gaussian samples

through a SSF. For the case of Rayleigh fading, the SSF must have the magnitude |H(f)| =

|Sc(f)|1/2. In the design of the SSF, since no constraints are imposed on the phase response,

we can use IIR filters since they are typically much smaller than their FIR counterparts.

However, we must ensure that the designed SSF is stable. Similar to [88, 136] we approxi-

mated the desired magnitude response of the SSF with an IIR filter of order 2NQ. Here, the

response of the SSF is expressed as

H(ejω) =

NQ
∏

q=1

gq ×
1 + b1,q e

−jω + b2,q e
−j2ω

1 + a1,q e−jω + a2,q e−j2ω
, (3.9)

which is equivalent to the magnitude response of NQ cascaded second-order canonical

sections, or biquads (BQDs). In (3.9) note that b1,q, b2,q, a1,q and a2,q denote the real-

valued filter coefficients and gq denotes the scaling factor of the q-th biquad.

The datapath of a biquad in direct-form-II (DF-II) structure [137] is shown in Figure

3.1 (a), where four intermediate variables are stored in four on-chip dual-port memories

RAM M1I, “RAM M1Q”, “RAM M2I”, and “RAM M2Q”. Four coefficients are stored in four

read-only memories (ROMs), “ROM a1”, “ROM b1”, “ROM a2”, and “ROM b2”. “AD0” de-

notes the read address and “AD1” denotes the write address for the memories.
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Figure 3.1: (a) Datapath of one biquad and, (b) the filter processor architecture.

Implementation of only one biquad uses 855 configurable slices and utilizes 9% of the

dedicated 18 × 18-bit multipliers available on a Xilinx Virtex-II Pro XC2VP100-6 FPGA.

These results confirm that the maximum number of second-order sections that can be imple-

mented on a large contemporary FPGA is limited to 11 due to the relatively large number

of high-precision arithmetic units required by each biquad. Instead, we designed a com-

pact filter processor to maximize the throughput with the minimum of FPGA resources.

With this processor, the computation of an IIR filter (using NQ cascaded biquads) can be

performed using one compact filter processor.

Figure 3.1 (b) shows the datapath of the filter processor. The memory blocks in this

datapath have the same structure as those in Figure 3.1 (a). The core component of the filter

processor is a biquad with inputs coming from two memories (in-phase and quadrature),

“RAM RI” and “RAM RQ”, with read address bus “AD0” and write address bus “AD3”. The

outputs of biquad are stored in memories “RAM BI” and “RAM BQ”, with read address “AD1”

and write address bus “AD3”. ROM “ROM g” is initialized with the scaling factors of the IIR

filters using the “AD2” addressing bus. Two combinational multipliers are used to perform

the scaling operation of intermediate values between biquads. The two zero inputs to the

8-input multiplexer are reserved for when filter processor performs zero padding for the

interpolators.

The filter processor is sequenced by a microprogrammed controller. A code generator

program was developed that receives the specification of shaping filter as inputs and gen-

erates a sequence of filter processor microinstructions (microcode). This microprogram is

stored in an instruction ROM and is addressed by a program counter (PC). To simplify and

minimize the hardware, we used a horizontal microcode architecture in which every control

bit in the microinstruction drives a control line in the filter processor datapath.
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It merits attention that providing a microprogrammed controller makes the proposed fil-

ter processor flexible and reconfigurable to perform the arithmetic operations of several IIR

filters with different filter lengths, rates, and coefficients. In addition, the design supports

the possibility of zero padding, and both up and down sampling. Finally, the programmable

filter processor supports the realization of different filter concatenations.

Samples generated at a low sampling frequency need to be over-sampled and passed

through lowpass filters in order to obtain the target sample rate. In the fading simula-

tors proposed in the literature, this is normally done using conventional FIR or IIR filters.

However, this approach is overly expensive in hardware since the filtering operations are

performed at higher sample rates. When the maximum Doppler frequency is much smaller

than the sampling frequency, we propose to use a cascade of lz = 2 zero-order hold filters

with impulse response dP (n) = [P−1, P−1, ..., P−1]1×P where P is the over-sampling

rate. Such filters, called specific interpolation lowpass filters (SILPF), can be easily imple-

mented without multiplication.

An FPGA implementation of this fading channel simulator on a Xilinx XC2VP100-6

utilizes 2022 configurable slices (4%), 40 dedicated 18 × 18-bit multipliers (9%), and 10

BlockRAMs. The maximum clock frequency of this fading simulator is 63.4 MHz and

it can generate more than 63 million fading samples per second. However, the maximum

sample rate can be increased to 300 million sample per second if multiple clock sources are

utilized since the maximum clock frequency of the interpolator is 300 MHz.

3.2.2 Non-isotropic Fading Simulation

In [12] we presented the first FPGA-based non-isotropic Rayleigh fading simulator. In the

fading model in this paper, it is assumed that the AOA is distributed with the von Mises

PDF [91].·¸· ¹º ¹º ¹» ¹¼ ¹½¾¾¿ ÀÁÂÃÄÁÅ ÁÆ ÁÇÈÁÂÃÄ ÈÁÂÃÄ
Figure 3.2: Block diagram of the non-isotropic Rayleigh fading channel simulator.

Figure 3.2 shows the block diagram of this non-isotropic fading simulator. To gener-

ate the Rayleigh fading process, independent samples of a zero-mean complex Gaussian

process, generated by the GNG block in Figure 3.2, and pass through an SSF with a mag-
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nitude response equal to the square root of the magnitude of (3.3). In practice, since fD is

much smaller than the sample rate Fs, the designed SSF would have an extremely narrow

bandwidth and a very sharp cut-off. However, we can reduce the complexity of the SSF by

designing it at a lower sampling frequency, F1 ≪ Fs, which also improves the accuracy of

the designed filter. Further, the generated samples are interpolated to obtain the target sam-

pling frequency Fn+1 = F1×
∏Tg

j=1 Ij = Fs, where Tg denotes the number of interpolation

stages and Ij is the interpolation factor at the j-th interpolation stage.

In contrast to isotropic fading, the PSD in (3.3) is not symmetric, and hence the filter

coefficients are potentially complex [137]. Here the SSF is approximated with

H(ejω) =

2NF
∏

k=1

gk ×
1 − b1,ke

−jω

1 − a1,ke−jω
, (3.10)

where gk is the positive scaling factor, b1,k and a1,k are the kth complex zero and pole,

respectively, and 2NF is the filter order. This filter can be realized as a cascade of 2NF

first-order sections (FOSs). Figure 3.3 (a) shows the direct-form II realization of an FOS,

where the filter coefficients a1 and b1are complex-valued. For isotropic scattering (i.e.,

κ = 0), however, poles and zeros of equation (3.10) appear in complex conjugate pairs and

the shaping filter can be implemented using NF canonic second-order sections. Figure 3.3

(b) depicts the direct-form II realization of a biquad with the real-valued filter coefficients

a1, a2, b1, and b2.
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Figure 3.3: (a) Direct-Form II realization of a first-order section. (b) Direct-Form II real-

ization of a second-order section (biquad).

After the shaping filter, the next stage includes zero-padding and lowpass filtering.

Since only the amplitude response affects the correlation properties and no restrictions are

imposed on the phase response, we used elliptic IIR lowpass filters (EILPFs). The lowpass

filter has a symmetric frequency response and hence its poles and zeros appear in com-

plex conjugate pairs and therefore this filter can be realized using cascaded biquads. For

high sample rate interpolation, we used the same multiplication-free SILPFs mentioned in
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Section 3.2.1.

To implement this non-isotropic fading channel simulator on a FPGA, we generated

the Gaussian noise samples by adding twelve 16-bit independent uniformly-distributed ran-

dom variables. These random variables were generated using a 63-bit linear feedback shift

register (LFSR) with a primitive feedback polynomial to ensure the maximum-length state

sequences. Implementation of this noise generator on a Xilinx Virtex-II Pro XC2VP100-

6ff1996 FPGA utilizes only 12 (out of 44096) configurable slices and it can generate more

than 1.1 million random variables per second.

The operation of the first-order and second-order sections for SSF and EILPF are per-

formed using the datapath in Figure 3.4. Here, the filter coefficients are stored in four

on-chip distributed memory blocks “ram aI/a1”, “ram aQ/a2”, “ram bI/b1”, and “ram

bQ/b2”. Four intermediate variables are stored in memories “ram mI1”, “ram mQ1”,

“ram mI2”, and “ram mQ2”. Note that “adrs0” and “adrs1” are the address lines to

the coefficient and intermediate variable memories, respectively. The input Gaussian sam-

ples enter this datapath via “MUX 3”. The data between successive sections is stored in

memory blocks “ram xI” and “ram xQ”. This datapath is also capable of performing the

zero-padding operation by adding zero inputs via “MUX 3”.ÜÝÞ ÞßàÜÝÞÞáàÜÝÞ ÞßâÜÝÞÞáâ
ãäåæ
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Figure 3.4: Datapath of the SSF and EILPF.

The precision of the fixed-point representation plays an important role in the stability

and accuracy of IIR filters. Fixed-point error analysis shows that a 32-bit fixed-point imple-

mentation of the fading channel simulator ensures computation accuracy and filter stability.

However, to increase the accuracy, a scaling factor gk was added to each first- or second-

order section. The barrel-shifter in Figure 3.4 multiplies/divides the output of each section
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by gk, which is considered to be a power of two. This way, we ensure that the input and

intermediate variables of each section remain in the valid range. The number of shifts is

stored in “ram g” for each section. In addition, to increase the accuracy, the intermediate

variables “ram mI1”, “ram mQ1”, “ram mI2”, and “ram mQ2” were implemented with

40-bit precision.

An FPGA implementation of the structure in Figure 3.4 uses 1004 of the configurable

slices of a Virtex-II Pro XC2VP100-6ff1996, operates at up to 110 MHz, and can perform

the operations of 44734 first- or second-order sections per second. Note that the adder and

multiplier in this datapath operate sequentially. Also, this design can run IIR filters with

complex coefficients of up to order 32 (order 64 for filters with real-valued coefficients).

Increasing the filter order is straightforward by adding more storage capacity.

The SILPF can also be efficiently mapped onto hardware by using only addition and

shifting operations. Our FPGA implementation of a SILPF with an interpolation factor

I = 4 and 16-bit precision, utilizes 171 configurable slices on the same device and can

operate at up to 300 MHz, generating up to 300 million samples per second.

To verify the performance of this design, we parameterized the design to simulate the

Rayleigh fading experienced by the radio signal of a moving receiver traveling at v =

120 Km/hr with the carrier frequency fc = 1.8 GHz. The received signal experiences a

maximum Doppler frequency of fD = 200 Hz. We also assumed the target sample rate to

be Fs = 10 MHz.

For both the isotropic and non-isotropic scattering Rayleigh fading cases, we designed

the SSF at the sampling frequency F1 = 625 Hz with NF = 10 biquads. The signal is then

up-sampled I1 = 25 times and passed through an elliptic lowpass filter with 6 biquads at

a sampling frequency F2 = 15625 Hz with pass-band corner frequency fpass = 203 Hz,

stop-band corner frequency fstop = 240 Hz, maximum pass-band ripple Apass = 0.1 dB,

and minimum stop-band ripple Astop = 100 dB.
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Figure 3.5: Normalized ACF and CCF between real and imaginary components of the

generated fading process with fD = 200 Hz and Fs = 10 MHz for (a) isotropic (κ = 0,

ψ̃ = 0), and (b) non-isotropic (κ = 1, ψ̃ = 0) scattering fading channels.

The signal is then up-sampled with five SILPF blocks with interpolation factors 5, 4, 4, 4,

and 2, respectively, which increase the generated signal rate up to the target sample rate

Fs = 10 MHz.
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Figure 3.6: PDF of the generated samples for isotropic scattering fading (i.e., κ = 0,

ψ̃ = 0).
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Figure 3.7: Envelope LCR of the generated fading process with fD = 200 Hz and Fs =
10 MHz for (a) isotropic (κ = 0, ψ̃ = 0), and (b) non-isotropic (κ = 1, ψ̃ = 0) scattering

fading channels.

Figure 3.5 shows the ACF and CCF between the real and imaginary parts of the gen-

erated fading process along with the the theoretical references from equation (3.5). These

curves were generated by passing 200,000 complex noise samples through the SSF, EILPF

and SILPF blocks (or equivalently 3.2 billion generated fading samples). Figure 3.5 (a)

plots these statistics for the isotropic scattering case while Figure 3.5 (b) depicts similar

statistics for the non-isotropic scattering case. As seen in this figure, there is a close match

between the desired statistics and those of the generated results for both the isotropic and

non-isotropic cases. Figure 3.6 illustrates the probability density function (PDF) of the en-

velope of the generated samples for isotropic scattering fading. This figure shows that the

PDF of the generated samples closely follows the Rayleigh PDF. For the isotropic and non-

isotropic cases, the LCR of the generated samples is plotted in Figure 3.7 (a) and Figure

3.7 (b), respectively. To generate these curves, the statistics were measured over 43 million

fading samples. These figures also show a close match between theoretical (from equation

(3.6)) and simulation results for both cases.
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The FPGA implementation of this fading simulator uses one Gaussian noise generator,

one SSF, one EILPF (with the same datapath as the SSF), and five SILPF blocks, which to-

gether utilize 6.8% of the configurable slices of a Virtex-II Pro XC2VP100-6ff1996 FPGA,

operating at a maximum clock frequency of 110 MHz. Increasing the output sample rate

up to 300 million samples per second is also possible by adding more SILPF blocks and

utilizing multiple clock sources.

3.2.3 Multipath Rayleigh and Rician Fading Simulator

In [13] we proposed a new elastic structure for simulating multipath Rayleigh and Rician

fading channels with isotropic scattering. A new architecture was described for efficiently

implementing multiple IIR filters. Also, a compact and parameterizable implementation for

the interpolator was presented.

Multipath propagation is the situation where the received signal contains different faded

copies of the transmitted signal. The effect of the multipath fading on the baseband signal

can be modeled with a time-variant linear system with the following impulse response [19]

h(t, τ) =

Np−1
∑

n=0

µn |cn(t)| ej∠cn(t)δ(τ − τn(t)), (3.11)

where Np is the number of independent paths, µn is the average attenuation of the n-th

path, and cn(t) and τn(t) denote the complex gain and delay of the n-th path.

When a line-of-sight (LOS) or strong specular component is present, the channel is

called Rician. In Rician propagation, the non zero-mean complex path gain can be divided

into two components. The first component is the LOS part with normalized average power

|βn|2 ≤ 1 and the second component is the random scattering part with average power

1 − |βn|2. For the n-th path (possibly between an antenna pair), the Rice factor Kn is

defined as Kn ,
|βn|2

1−|βn|2
. For purely Rayleigh fading channels, βn = 0 and hence Kn = 0;

for Rician channels |βn| > 0 and hence Kn > 0. To simulate Rician propagation, one can

generate the sequence {cn(t)} with the PSD given in equation (3.3) and then attenuate the

samples by
√

1 − |βn|2 to obtain the power of the random scattering component. The total

complex path-gain can then be obtained by adding in a scaled LOS component.

Similar to the previous design, this fading simulator consists of a SSF, an EILPF, and

several SILPFs. The block diagram of this fading simulator is shown in Figure 3.2. Note

that for each of the Np independent fading paths, the corresponding SSF is approximated

by equation (3.9).
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3.2.3.1 Filter and Interpolator Design

The interpolation factors in this design are chosen using a different approach compared

to the previous designs. The SSF is designed at sample rate F1, where 4fD < F1 ≤
8fD. Choosing F1 in this range satisfies the minimum Nyquist rate while keeping the

computational complexity low. In addition, we have the opportunity to exploit power-of-

2 interpolation factors to further reduce the hardware complexity and simplify the filter

design.

Output samples from the SSF are up-sampled I1 = 16 times and passed through the

EILPF. Since the SILPF stages are designed to operate on narrow-band signals, the first

interpolation stage is positioned prior to the SILPF stages. Then the samples are passed

through Tg successive SILPFs. The ith SILPF interpolates the signal 2ki times. Based on

the processing architecture, the relation between F1 and the target output sampling rate is

Fs = 16 × F1 ×∏Tg

i=1 2ki . From here we have F1 = 2−(4+Sg)Fs, where Sg =
∑Tg

i=1 ki

is an integer value in the range log2(Fs/fD) − 7 ≤ Sg < log2(Fs/fD) − 6. Based on the

maximum interpolation factor 2Kmax , whereKmax = 4+max{Sg}, each SILPF is assigned

a specific interpolation factor. The minimum Doppler frequency that can be simulated by

this system is

fminD = 2−(Kmax+3)Fs. (3.12)

The maximum Doppler frequency, on the other hand, is dictated by the biquad processor

that performs the SSF operations. If the biquad processor requires Cbq clock cycles to

perform the biquad operations for the in-phase or quadrature part, it can be verified that the

maximum achievable Doppler frequency is

fmaxD = 0.5 × fCLK × (Cbq

Nf
∑

l=1

NB(l))−1, (3.13)

where fCLK is the biquad processor clock frequency,Nf is the number of filters, andNB(l)

denotes the number of biquads in the lth filter.

3.2.3.2 Elastic Buffers

In our design, consecutive blocks are interconnected with elastic buffers. This reduces the

complexity of our hardware design significantly and simplifies interfacing with external

(off-the-chip) blocks. Interfacing is simplified because consecutive blocks do not have to

be strictly synchronized with respect to instantaneous data throughput. Figure 3.8 shows
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the block diagram of this buffer. The elastic buffer is basically a random access memory

with two (potentially) asynchronous ports. The elastic buffer works by allowing input data

to be written into the memory using the input clock and then read out according to an output

clock. The one key constraint for correct operation is that the read time must occur after the

write time for any specific word, and not before or concurrently with the write.������� ������ �¡¢£¡¤� ¥ ¡¢£¡¤�¦§¨©¦§¨��§¨©¦ª§«�¨¬ ­�­ ¢¢ ¬ ­�¨® �̄°±²°�¡³§£�£ ² ´�´�µ£��§£¢¢¨§
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Figure 3.8: Block diagram of the elastic buffer.

To solve this problem, we designed the elastic buffer to operate in two modes. When

operating in the handShaking mode, the receiver block requests to read data samples prior

to reading from the buffer. When the buffer is empty, the receiver is informed (by asserting

buf empty) to stop requesting until new data arrives. Likewise, the transmitter requests to

write into the elastic buffer and it is informed (by asserting buf full) when the buffer is full.

The handShaking mode is used for interfacing blocks that are capable of handshaking.

We also use the elastic buffer in the handShaking mode to interconnect consequent blocks

in the design of our fading simulator.

The second mode of the designed elastic buffer is called continuous mode. It is used

for interfacing external clock domains without handshaking capability. In the continuous

mode, the transmitter and the receiver have the same nominal clock frequency. In this mode

the elastic buffer absorbs the clock mismatch between the input and local timing. In the

continuous mode, if the transmitter is clocked slightly faster than the receiver, it may start

to fill the elastic buffer faster than the receiver can drain it. In that case the transmitter

re-writes some of memory locations when the buffer is full and therefore some of the data

words are dropped. Conversely, if the receiver is running slightly faster than the transmitter,

the receiver may clock out more data than have been transmitted. In this mode, as the buffer

drains, the elastic buffer inserts some data words by re-reading the last data word. The

consequences of repeating read data in this way depend on the application.

When Fs ≫ fD, it can be shown that the elastic buffer in the continuous mode does

not have a significant effect on the statistics of the generated fading samples. In practical
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systems, the sample rate is much higher than the maximum Doppler frequency and therefore

immediate fading samples have almost equal values. To show this, we define the difference

signal yk(t) to be the difference between x(t) and x(t−kTs) for any time t = nTs = n/Fs.

Here yk(n) can be obtained by passing x(t) through a filter with the impulse response

bk(t) = δ(t)− δ(t− kTs). From here, yk(t) is a zero-mean Gaussian random process with

variance

Ryy(0) = E{y(t)y(t)∗},

=

∫ +∞

−∞
Sc(f)|1 − e−j2πfkTs |2df,

= Jo(0) − Jo(2πkfDTs),

≈ (kπfDTs)
2, (3.14)

where in (3.14) we used the expansion of the zeroth-order Bessel function

Jo(x) =

∞
∑

m=0

(−1)mx2m

22m(m!)2
,

to find the approximate value. Equation (3.14) shows that when Fs ≫ fD, the power of

the difference signal goes to zero and therefore the difference between x(t) and x(t ± Ts)

becomes negligible. Under this condition, if the signal x(t) is sampled out at F́s samples

per second, we can approximate the sampled signal x́(t) ≈ x(ηt) where η = F́s/Fs. From

here, the ACF of x́(t) is Rx́(τ) = Jo(2π(ηfD)τ). Therefore, in the presence of our elastic

buffer the clock mismatch between the transmitter and receiver has a similar effect as a

slight (probably negligible in most cases) change in the maximum Doppler frequency.

3.2.3.3 Implementation

Figure 3.9 shows a block diagram of the implemented four-path fading emulator. It can

generate Np = 4 independent fading processes with Nf = 4 filters with different corre-

lation properties. The multiple processes can be used to model, for example, frequency-

selective channels or fading channels in multiple-input multiple-output (MIMO) systems.

The generated Gaussian samples are passed to the first shared filter processor, which runs

the designed SSF from (3.9) in four parallel and independent threads. Each thread of data is

then up-sampled 16 times and passed through an EILPF that is implemented using another

shared filter processor. Each IIR filter processor is capable of processing eight independent

streams of input data. The maximum order of each IIR filter is 16 (eight biquads per filter).
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After the EILPF, the data streams are passed to interpolation filters (IFs). Each IF includes

four configurable SILPFs that are interconnected with elastic buffers. Each IF also contains

a terminal elastic buffer for interfacing to external hardware.ÈÉÊËÌÍÎÏÌÐÑÒÓ
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Figure 3.9: Block diagram of the implemented four-path fading simulator

We found it to be useful to re-use an optimized fixed-point processor to perform the

operations of the SSF and the EILPF. Figure 3.10 shows the architecture of our biquad

processor. The main datapath element is a multiplier-accumulator (MAC) that multiplies

the in-phase and quadrature data components by real-valued coefficients. The output of

each biquad is written into RAM d, which holds the intermediate results. RAM m1 and

RAM m2, store the complex contents of the biquad memories. The biquad coefficients are

stored in RAM a1, RAM a2, RAM b1, RAM b2, and RAM g. The biquad processor can

also add a bias value from RAM β, which is necessary when simulating Rician fading.
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Figure 3.10: Datapath of the biquad processor.

The control sequence for running the cascaded biquads is quite straightforward. How-

ever, when emulating multiple paths, where each path could have different filter speci-

fications and different sample rates, flexible implementation of the control unit becomes

challenging. In addition, the fading emulator might have to generate samples for more than
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one external system with different clocks. To improve the robustness of our biquad pro-

cessor, two flags are assigned to every thread of cascaded biquads (i.e., for each individual

path labeled in- i and out- j in Figure 3.10). These flags govern the data flow through each

thread. For example, for the ith thread (path), if in- i is high, then input data is ready to be

read. Also, if out- i is high, then data can be written to the next stage. For each thread, the

biquad processor keeps executing the biquads unless either of the input or output flags is

de-asserted. To prevent the overwriting of unprocessed data, the biquads in each thread are

scheduled to be executed from the last biquad to the first.

We synthesized the Verilog HDL of a four-path Rayleigh and Rician fading simulator

on a Xilinx Virtex-II Pro XC2VP100-6 FPGA. In this implementation we used 36-bit fixed-

point variables in the SSF and EILPF filters. Our implementation utilized 6139 (13.9%)

configurable slices, 12 (2.7%) dedicated 18×18 multipliers with maximum clock frequency

73 MHz, generating up to 4 × 73 million samples per second. In the design of elastic

buffers, we used both the rising and falling clock edges for reading the input signals and

writing the ouput samples. This complicated the buffer design and lowered the hardware

speed. However, this method reduces the complexity of the rest of the design.
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'() *+,-./0+12344567893:

;<,.=,>?-(@ ABCC?D,0EF.?/> G?HI@(>,0 ABC;<,.=,>?-(@ BBCC?D,0EF.?/> G?HI@(>,0 BBC
Figure 3.11: Normalized cross-correlation and autocorrelation between real and imaginary

components of the generated fading process with fD = 0.625 Hz, Fs = 2.5 MHz for 60

seconds.

Figure 3.11 shows the autocorrelation and cross-correlation between real and imaginary

components of the generated fading process with fD = 0.625 Hz, Fs = 2.5 MHz for 60

seconds. These results were generated using the fixed-point bit-true model of this fading

simulator. However, this design was also implemented on a Digilent Spartan-3 board that

hosts a Xillinx XC3S1000 FPGA [139]. Figure 3.11 confirms a close match between the

desired response and the generated results over up to 60 seconds. In another example we
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measured the PDF for the amplitude of the generated samples with fD = 200 Hz and

Fs = 10 MHz (see Figure 3.12 (a)). Note that the measured PDF accurately matches the

Rayleigh PDF. The LCR of the generated fading samples in Figure 3.12 (a) also shows a

good match between the reference curve and the generated results.
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Figure 3.12: (a) Envelope probability density function. The measured and reference PDFs

are indistinguishable in this figure. (b) Envelope level crossing rate of the generated fading

process with fD = 200 Hz and Fs = 10 MHz. In this figure, the solid line represents the

theoretical reference and the circles are the measured values.

3.3 Fixed-Point Complex Stable IIR Filter Design

One of the important steps for generating the fading samples is designing the SSF. The

bit-precision selected for implementing the SSF plays an important role in the accuracy

and stability of the filter implementation. While double-precision floating-point arithmetic

is readily available in most software platforms, floating-point arithmetic on an FPGA is

significantly slower and less efficient than fixed-point arithmetic.

Conventionally IIR filters are designed with double-precision floating-point variables

using available tools like the iirlpnorm function in MATLAB which uses the least p-

norm method [140]. The filter coefficients are then quantized for fixed-point implemen-

tation. To obtain a compact hardware implementation, variables should be implemented

with the minimum possible fixed-point word-length. However, reducing the word-length

impacts the response, and potentially the stability, of the designed IIR filter.

Here, we address the problem of designing complex and real IIR filters with fixed-point

coefficients for compact and stable implementation. Most of the previously proposed filter

design techniques do not support complex filters. However, complex filters are required

in many applications like fading simulation with non-isotropic scattering (e.g., [91]) or
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the implementation of the TGn fading channel models for simulating IEEE 802.11 radio

propagation [92].

In the following sections we propose a step-by-step technique for designing real and

complex stable IIR filters with complex coefficients. We will also propose some techniques

for reducing the number of bits required for fixed-point implementation of these IIR filters.

3.3.1 Filter Design

Several methods exist for designing complex IIR filters. Nonlinear optimization [141–143],

linear programming [144], and semidefinite programming [145] have been proposed to

design IIR digital filters in the complex Chebyshev sense. Least-squares methods have

been applied extensively to design FIR and IIR filters [146–151]. However, ensuring the

stability of an IIR filter whose coefficients are obtained by least-squares methods is not

straightforward. Many authors have neglected this topic and concentrated on finding close

approximations to the desired frequency response. This approach can be used for designing

real filters in which the complex poles and zeros appear in complex-conjugate pairs. In this

case, all unstable factors in the filter transfer function 1/(1 − ske
jφke−jω) can be replaced

with their stable counterparts 1/(e−jω − ske
j−φk) with identical magnitude response. If,

however, the complex filter poles and zeros do not appear in complex-conjugate pairs, such

as when the filter coefficients are complex, this method cannot be applied.

Different approaches exist for filter stabilization when optimization techniques are used

for designing the filter. One method, proposed in [141], is to start the search from a sta-

ble point and then control the step size so that the solution never leaves the stable region.

This method is computationally intensive and is not easy to implement with traditional

optimization procedures. A second method is to make sure that the desired response is

minimum-phase [152] or that it has a “large-enough” group delay [153]. These conditions

cannot be met in many situations since the flexibility to modify the target frequency re-

sponse is restricted. In a third method, explicit constraints are imposed on the coefficients

of the denominator of the transfer function [154, 155]. This technique, however, has some

limitations and affects the filter quality [156]. Finally, in a fourth method, the least-squares

cost function is modified so that the minimum always falls in the stable region [149, 156].

In [149], the filter design problem is reformulated using nonlinear transformations so that

the final solution always falls in the stable region. In [156] the authors suggest adding a

barrier function to the original cost function. Their proposed barrier function is designed
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as follows. First they form an all-pole proxy transfer function consisting of all of the filter

poles. The barrier function is basically the sum of the squared amplitude of a section of the

impulse response of the proxy transfer function. If the filter is unstable, the tail will have

(large) non-zero values. This effect is used to avoid filter instability.

In contrast, we propose to augment the least-squares cost function with a specific barrier

function to control the location of the poles (and potentially also the zeros) to enforce filter

stability. In the proposed approach, the IIR filter is represented as a product of first-order

factors

H(ejω) = A
Γ
∏

k=1

1 − rke
j(θk−ω)

1 − skej(φk−ω)
, (3.15)

where A is a positive scaling factor, rke
jθk and ske

jφk are the k-th complex zero and pole,

respectively, and Γ is the number of first-order sections (FOSs), i.e., the filter order.

Here, we focus on designing IIR filters with a prescribed amplitude response. When the

amplitude of the frequency response is symmetric, the poles and zeros of (3.15) appear as

complex conjugate pairs and the IIR filter can be implemented using Γ/2 canonical second-

order sections, that is, as biquads (BQDs). Note that the poles and zeros are expressed in

polar coordinations. This makes it easy to construct a barrier function that increases the

cost when any of the poles (or zeros) beyond a certain radius.

Another challenge is to accurately implement the IIR filters in fixed-point arithmetic.

When the filter coefficients are quantized, the poles and zeros of the system function typ-

ically shift to new positions in the z-plane. This perturbs the frequency response from its

intended response. If the designed IIR filter is extremely sensitive to coefficient changes,

the resulting filter might not meet the target specifications or the filter might even become

unstable.

We assume that the desired amplitude response is represented with 2×M samples, i.e.,

ydi =

{

|P (ej2πui)| if 2πui is in pass-band

ε, otherwise,
(3.16)

where P (ej2πui) is the desired response, ui ∈ [−0.5, 0.5] is the normalized sampling

frequency, and ε > 0 is the attenuation in the stop-band. We introduce a weight vec-

tor v = [v1, v2, ...v2M ]T to allow us to emphasize the error minimization for certain fre-

quency bands. We define the column vector x of length 4Γ containing rk, sk, θk and φk

for k = 1, ...,Γ. Similar to the work in [136], we express H(ejω) = A× F (x; ejω) where

F (x; ejω) represents the product of FOSs in (3.15). Next, to find the filter parameters we
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define the cost function

q(A,x) =

2M−1
∑

i=0

vi

(

log(A|F (x; ejω)|) − log(ydi )
)2

+B(ϑ; ̺;x), (3.17)

Note that the sum of squared errors on a logarithmic scale is augmented by a parametric

barrier function B(ϑ; ̺;x). Function B(ϑ; ̺;x) is included to keep the poles (and zeros, if

necessary) within the unit circle and is defined as

B(ϑ; ̺;x) =
2Γ
∑

k=k0

b(ϑ; ̺;xk), (3.18)

where

b(ϑ; ̺; τ) =



















0 if |τ | ≤ ̺,

ϑ
(

|τ |−̺
1−̺

)2
if ̺ < |τ | ≤ 1,

2ϑ
1−̺ |τ | − ϑ

(

1+̺
1−̺

)

if |τ | > 1.

(3.19)

In (3.18), the parameter ̺ ≤ 1 determines an outer boundary for the poles and zeros. When

k0 = Γ + 1, the barrier function tries to keep the poles within a circle of radius ̺. Setting

k0 = 1, on the other hand, forces both poles and zeros into the same boundary. In addition,

ϑ determines how fast the barrier function grows outside of the unit circle. The barrier

function (3.18) is useful when designing filters for fixed-point implementation since it can

be parameterized to keep the poles and zeros at any desired safe distance from the unit

circle. Moreover, using this technique, the quantization noise can be reduced to acceptable

levels. It can be shown that the variance of the quantization noise that originates in the kth

first-order factor when implemented in direct-form-I (DF-I) is

σ2
f (k) =

7 × 2−2(Ωk−1)

6 × (1 − s2k)
, (3.20)

where Ωk is the number of bits used to quantize the coefficients (and the intermediate vari-

ables) at the kth stage. To derive (3.20) it is assumed that the quantization noise after each

multiplier in our model is uniformly-distributed, wide-sense stationary white noise that is

uncorrelated with the input signal and the quantization noise in other stages. We also as-

sumed that the samples are truncated and represented in 2’s-complement.

The coefficients of the IIR filter are calculated iteratively. At each iteration, the optimum

scaling factor Ao is calculated as

Ao =

2M−1
∏

i=0

(

ydi
|F (x; ej2πui)|

)

vi
∑2M−1

i=0
vi
. (3.21)
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This expression for Ao is found by differentiating (3.17) with respect to A and setting the

resulting expression to zero. Next the gradient vector

g(Ao,x) = [
∂q(Ao,x)

∂x1
, ...,

∂q(Ao,x)

∂x4Γ
]T

is calculated, where the partial derivative of (3.17) with respect to xk can be expressed as

∂q(Ao,x)

∂xk
= 2

2M−1
∑

i=0

[

vi log(A
o|F (x;ejωi )|

yd
i

)

|F (x; ejωi)| × ∂|F (x; ejωi)|)
∂xk

]

+
∂B(ϑ; ̺;x)

∂xk
,

where ωi = 2πui and each partial derivative is given by

∂B(ϑ; ̺;x)

∂xk
=











0 if |xk| ≤ ̺ or k < k0 or k > 2Γ,
2ϑ(|xk|−̺)

(1−̺)2
sign(xk) if ̺ < |xk| ≤ 1,

2ϑ
1−̺sign(xk) if |xk| ≥ 1,

∂|F (x; ejω)|
∂rk

= |F (x; ejω)|rk − cos(θk − ω)

|1 − rkej(θk−ω)|2 ,

∂|F (x; ejω)|
∂θk

= |F (x; ejω)| rk sin(θk − ω)

|1 − rkej(θk−ω)|2 ,

∂|F (x; ejω)|
∂sk

= |F (x; ejω)|cos(φk − ω) − sk
|1 − skej(φk−ω)|2 ,

and
∂|F (x; ejω)|

∂sk
= |F (x; ejω)| −sk sin(φk − ω)

|1 − skej(φk−ω)|2 .

The filter coefficients are then found using the ellipsoid algorithm [157, 158]. Note that

several optimization algorithms can be used here. We assumed the ellipsoid algorithm

here for its simplicity. However, other techniques could be used to speed up convergence.

Algorithm 2 summarizes the steps for iterative filter design.

A weight vector v, the desired response yd = [ydi ], and the fixed-point format for dif-

ferent poles and zeros, Ω, are passed to Algorithm 2. In this algorithm the function Q[Ω,x]

represents the quantization effects that affect each element of x in the Cartesian coordinate

system (coefficients are transferred to Cartesian coordinates, quantized and then transferred

back to the polar coordinates). The algorithm starts from a random point x0 contained

within the unit sphere and the initial ellipsoid matrix E0. The algorithm then searches for

the optimal solution within the present ellipsoid of feasible points. This algorithm then con-

verges on the optimal solution by successively reducing the size of the ellipsoid until it is

small enough (i.e., the algorithm has converged) or when |xk+1 −xk| < ǫ. Note that stable
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Algorithm 2 Iterative calculation of the filter coefficients

Require: ̺; ϑ;Ω; v = [vi], and yd = [yd
i
] for i = 0, ..., 2M − 1

Initialize k = 0, x0, E0 = 20I4Γ×4Γ

while |xk+1 − xk| ≥ ǫ do

find Ao

k
from (3.21)

find gk = g(Ao

k
;xk)

χk =
√

gT

k
Ekgk

g̃k = gk/χk

xk+1 = Q
[

Ω,xk − 1
4Γ+1Ekg̃k

]

Ek+1 = (4Γ)2

(4Γ)2−1

(

Ek − 2
4Γ+1Ekg̃kg̃

T

k
Ek

)

k = k + 1
end while

real IIR filters can be designed with the above algorithm as well. To design such filters,

the sample update is only performed for half of the poles and zeros, and the other half are

simply the complex conjugates of the updated samples.

This filter design algorithm can be parameterized to provide a close approximation of

the desired response. The weight vector v can be used to emphasize error minimization in

different frequency bands. The filter design procedure can start with a reasonable order for

the initial approximation. The filter order can be increased gradually if the desired filter

characteristics are not met.

3.3.2 Range Reduction

IIR filters are naturally susceptible to arithmetic overflow and instability due to the inherent

feedback. Design and implementation of digital IIR filters must be carried out carefully to

avoid such pitfalls. Scaling is commonly used to keep the filter variables in range [159].

However, a poor choice of scaling factor results in loss of signal precision and increase in

quantization noise. Another technique is to use more bits to represent intermediate signals.

This method, however, cannot be used effectively on digital signal processors (DSPs) with

a fixed word-length. Moreover, adding extra bits increases resource utilization in FPGA

and application-specific integrated circuit (ASIC) implementations. We now propose two

techniques for minimizing the range of intermediate signals that can be effectively used for

reducing the signal range, overflow probability, and resource utilization in ASIC and FPGA

implementations.

79



3.3 Fixed-Point Complex Stable IIR Filter Design

3.3.2.1 Pole-zero ordering

Considering a small section of an IIR filter, overflows are mainly caused by oscillations

around resonant frequencies. Assuming a limited input signal range, we can reduce the

signal range by reducing the oscillation magnitude. The oscillation frequency is mainly

determined by filter poles. Consider a single FOS of an IIR filter with only one pole at

frequency ej2πfpole . The output range of this section can be reduced significantly if the

input signal to this section is attenuated around frequency ej2πfpole .

In order to use this technique, we need to implement the IIR filter with the DF-I structure

so that the input signal experiences a zero before it is affected by the pole. We thus match

the filter poles with closest zeros. Moreover, we sort the filter sections according to their

pole magnitude in ascending order. Since larger magnitudes are more likely to happen in

the last filter stages, the signal precision will be carried through ordered filter stages.

Further, signals are scaled in different stages to assure filter stability. The proposed

pole-zero ordering results in effective range control with minimum precision loss.

3.3.2.2 Augmenting auxiliary poles and zeros

As noted earlier, the resonant frequencies of a filter play an important role in filter overflow.

The second proposed method for reducing the signal range is to attenuate the input signal

around resonant frequencies of an IIR filter ej2πfNat that can potentially result in oscillation

or overflow. The imposed distortion can be later compensated with additional poles and/or

zeros. However, this technique is applicable only if the input signal does not have a major

frequency component around ej2πfNat .

One example is implementation of narrow-band lowpass filters with an approximate

resonance frequency around DC. If the input signal does not have a DC component, it can

be first passed through a highpass filter D(ejω) = 1 − e−jω (difference) prior to being

passed through the filter. The filter output can be later compensated by passing the output

signal through the integrator I(ejω) = (1 − ρe−jω)−1. The coefficient ρ ∈ [1 − ǫ, 1)

is intentionally added here since quantization noise and computational errors can render a

perfect integrator (i.e., ρ = 1) unstable.

When employed along with pole-zero ordering, the augmented poles and zeros are not

included in the ordering process, and instead they keep their position in the DF-I structure,

i.e., the augmented zero appears first and the pole appears last. This technique, when used in

conjunction with pole-zero ordering and scaling can provide efficient, accurate and compact
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implementation of real and complex IIR filters. Note that increasing the word-length is

impractical in many DSPs, and addition of poles and zeros is mostly preferred to widening

the datapath in ASIC and FPGA implementations. The next section provides illustrative

filter design and implementation examples.

3.3.3 Design Examples

To demonstrate the performance and accuracy of our filter design procedure, we designed

several fixed-point IIR filters and compared their results with the desired references. We

also implemented a filter processor for the designed filters to show the efficiency of this

filtering approach. In the following we present some design and implementation examples.
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Figure 3.13: Frequency response of designed fixed-point filters and the desired responses

in Example 1.
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Figure 3.14: Positions of the poles and zeros in the unit circle for the designed filters in

Example 1.

Example 1
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Table 3.1: Maximum Absolute Signal Range
1st Section 2nd Section 3rd Section

DF-II 182.22 422.82 421.44

DF-I + ord. 35.43 20.93 9.79

DF-I + ord. + aug. 20.87 14.81 11.04

For the first example, we designed three IIR filters with Γ = 12 first-order sections. We set

the parameters ϑ = 5 and ̺ = 0.99, i.e., the poles and zeros are bounded within a circle of

radius r = 0.99. For all of the first-order sections, the number of bits for representing each

coefficient is set to Ω = 12. Figure 3.13 shows the frequency responses of the designed

filters (with out-of-band attenuation ε = 0.001) as well as the desired responses. In this

figure, filter (a) is a lowpass filter with normalized pass frequency fp = 0.3, filter (b)

is a complex spectrum shaping filter for simulating non-isotropic fading with normalized

Doppler frequency fD = −0.15625, directivity κ = 5 (see equation (3.3)), and angle of

arrival ψ̃ = π/5 [91], and filter (c) is a custom complex filter with frequency response

H(f) = α + βf3, for |f | ≤ 0.2 and H(f) = ε for |f | > 0.2. As Figure 3.13 shows, the

frequency response of the designed fixed-point filters closely match the desired responses.

Figure 3.14 shows the position of the poles and zeros for the designed filters. It was verified

that all of the poles and zeros were bounded within a circle of radius r = 0.99.

To illustrate the effectiveness of our range reduction methods, we simulated an or-

der Γ = 6 elliptic lowpass filter with sample rate Fs = 4800 Hz, Fpass = 1200 Hz,

Fstop = 1500 Hz, Apass = 1 dB, and Astop = 50 dB. We measured the maximum absolute

range of variables by passing 108 uncorrelated zero-mean Gaussian samples through the

designed filter. Table 3.1 shows the maximum absolute signal ranges for different filter im-

plementations. The output of each section (biquad) is scaled to lie within [−1,+1]. As this

table shows, the direct-form-II (DF-II) implementation requires the most bits (at least nine

bits for integer part). The DF-I implementation of this filter with the proposed pole-zero

ordering reduces the signal range significantly. Moreover, augmenting a zero at DC can

further reduce the signal range such that the minimum number of integer bits is reduced to

five. Note that in this example it is assumed that the input signal (white Gaussian noise)

does not have a DC component. In this example, our range reduction technique results in

saving four bits in word-length which can significantly reduce the hardware complexity.

To demonstrate the effect of range reduction on hardware complexity, we implemented

three filter processors for the three filter designs in Table 3.1. The processors were designed
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Table 3.2: Hardware Implementation Results for Different Filter Designs
Word-length FPGA Slices Max Speed

DF-II 24 2696 174 MHz

DF-I + ord. 20 1768 195 MHz

DF-I + ord. + aug. 18 1164 234 MHz

to work with eight complex filters of order 16. We implemented these filter processors on a

Xilinx Virtex-II Pro FPGA [160]. Table 3.2 summarizes the implementation results. As this

table shows, due to the reduced word-length, the hardware complexity has been reduced by

more than 55% and the maximum operation speed has been increased by more than 34%.

We also implemented a 16-bit version of the designed filter processor on a GVA-290

FPGA development board [161]. In this filter processor, the filter coefficients are presented

in 12-bit fixed-point format. As an example, we took the filter coefficients from the sam-

ple filter (c) in Figure 3.13. To measure the filter response, white Gaussian noise [138]

was filtered. Figure 3.15 shows the power spectrum of the filter output. Comparing the

output spectrum with the desired filter response confirms the accuracy of our filter design

procedure.

Figure 3.15: Measured power spectrum of the filtered noise.

Example 2

For the second example, using the PSD model in equation (3.3), we designed three SSFs

for three different isotropic and non-isotropic fading scenarios (d), (e), and (f). In scenario

(d) we generated the complex path gains that simulate an isotropic fading channel with
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Doppler frequency fD = 9 Hz. In (e) we simulated a non-isotropic fading system with

Doppler frequency fD = −18.5 Hz, beam-width κ = 1, and AOA ψ̃ = π/4 rad. Finally in

(f) we have fD = 2.25 Hz, beam-width κ = 5, and AOA ψ̃ = π/3 rad.

The SSFs for the three fading channels were designed with Γ = 10 FOSs, and we

set ϑ = 5 and ̺ = 0.99. For all of the FOSs, the number of bits for representing each

coefficient is set to Ω = 16. Figure 3.16 shows the frequency responses of the designed

filters (with ε = 0.001) as well as the desired responses. The desired responses are the

spectra for the three SSFs with different fading characteristics. As this figure shows, the

designed filters accurately produce the desired responses within the pass-band. In the stop-

band, the designed filter provides more that 55 dB attenuation for these examples.
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Figure 3.16: Frequency response of the designed SSFs in Example 2. (d) fD/F1 = 0.125,

κ = 0, and ψ̃ = 0, (e) fD/F1 = −0.15625, κ = 5, and ψ̃ = π/5, (f) fD/F1 = 0.25,

κ = 3, and ψ̃ = π/4.
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Figure 3.17: Positions of the poles and zeros in the unit circle for the designed SSFs in

Example 2. (d) fD/F1 = 0.125, κ = 0, and ψ̃ = 0; (e) fD/F1 = −0.15625, κ = 5, and

ψ̃ = π/5; (f) fD/F1 = 0.25, κ = 3, and ψ̃ = π/4.

Figure 3.17 shows the position of the poles and zeros for the designed filters. Note that

all the poles and zeros are located within a circle of radius 0.99.

To ensure the accuracy of our fading simulation, we measured the performance of the

fixed-point bit-true model of our hardware fading simulator with the designed filters. The

simulations were performed in fixed-point arithmetic, where the filter coefficients were

represented with Ω = 16 bit variables and 18-bit variables are used to store the intermediate

signals. Also, the target sample rate for the scenarios (d), (e), and (f) was set to Fs =

40 MHz.

85



3.3 Fixed-Point Complex Stable IIR Filter Design

^ ^_` ^_a ^_b ^_c ^_de^_d̂
^_d̀

fgh ijklmnojpqrsstuvwxry

^ ^_` ^_a ^_b ^_c ^_de^_d̂
^_d̀

fgh ijklmnojpqrsstuvwxry
z{|b_d b_} b_~ b_� b_� cfgh ijklmnojp e^_d^̂

_d`����������� �������������� ������������ ����������������� ������������ ������

e^_d^̂
_d`

b_d b_} b_~ b_� b_� c��� ���� ¡¢�£
����������� �������������� ������������ ����������������� ������������ ������

z¤|

z¥|
^ ^_d ` _̀d a a_d b b_d ce^_d̂

^_d̀
fgh ijklmnojpqrsstuvwxry

����������� �������������� ������������ ����������������� ��������� ��� ������
Figure 3.18: Normalized autocorrelation for the real and imaginary components of the

generated fading processes in Example 2. (d) fD = 9 Hz, Fs = 40 MHz, κ = 0, and

ψ̃ = 0 rad, (e) fD = −18.5 Hz, Fs = 40 MHz, κ = 1, and ψ̃ = π/4 rad. (f) fD =
2.25 Hz, Fs = 40 MHz, κ = 5, and ψ̃ = π/3 rad.

Figure 3.18 compares the autocorrelation for the real and imaginary components of

the generated path gains with the theoretical references. Note that there is a close match

between the desired and generated autocorrelations up to 4 seconds (160 million samples).

Also, Figure 3.19 plots the cross-correlation between the real and imaginary components

of the generated path gains and the reference curves for up to four seconds. This figure

confirms a close match between the achieved and desired curves.
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Figure 3.19: Normalized cross-correlation between the real and imaginary components of

the generated fading processes in Example 2. (d) fD = 9 Hz, Fs = 40 MHz, κ = 0,

and ψ̃ = 0 rad, (e) fD = −18.5 Hz, Fs = 40 MHz, κ = 1, and ψ̃ = π/4 rad. (f)

fD = 2.25 Hz, Fs = 40 MHz, κ = 5, and ψ̃ = π/3 rad.

Figure 3.20 compares the normalized LCR of the amplitude of generated complex path

gains in scenarios (d), (e), and (f) with the theoretical LCR from (3.6). The LCR is normal-

ized to fD × Ts. This figure again confirms excellent agreement between the theoretical

and generated curves. In Figure 3.21 the PDF of the amplitude of the generated samples

in scenario (f) is plotted. It can be observed that this PDF accurately mimics the Rayleigh

PDF. Also the normalized AFD for scenarios (d), (e), and (f) are plotted in Figure 3.22. This

figure shows that the simulated AFD matches the reference curve (from equation (3.7)) with

good accuracy over a wide range of normalized fading durations.
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Figure 3.20: Normalized envelope level crossing rate of the generated fading processes in

Example 2. (d) fD = 9 Hz, Fs = 40 MHz, κ = 0, and ψ̃ = 0 rad, (e) fD = −18.5 Hz,

Fs = 40 MHz, κ = 1, and ψ̃ = π/4 rad. (f) fD = 2.25 Hz, Fs = 40 MHz, κ = 5, and

ψ̃ = π/3 rad.
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Figure 3.21: Probability density function of the amplitude of the generated fading process

for the system (f) with fD = 2.25 Hz, Fs = 40 MHz, κ = 5, and ψ̃ = π/3 Rad.
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Figure 3.22: Normalized envelope average fade duration of the generated fading processes

in Example 2. (d) fD = 9 Hz, Fs = 40 MHz, κ = 0, and ψ̃ = 0 rad, (e) fD = −18.5 Hz,

Fs = 40 MHz, κ = 1, and ψ̃ = π/4 rad. (f) fD = 2.25 Hz, Fs = 40 MHz, κ = 5, and

ψ̃ = π/3 rad.

Example 3

For the third example, we designed appropriate filters to simulate the PSD proposed for the

IEEE 802.11n indoor wireless fading channel model [92]. In this model, the bell-shaped

PSD

S(f) =











1

1+A
(

f

fD

)2 + B

1+C

(

f−fspike

fspike

)2 , if |f | ≤ fmax

0, if |f | > fmax

(3.22)

is proposed for representing indoor propagation. Here, fD denotes the maximum Doppler

frequency, which is set to 6 Hz or 3 Hz for carrier frequencies of 5.25 GHz and 2.4 GHz,

respectively, based on experimental measurements. Also, fmax is the maximum frequency

component of the Doppler spectrum, which can be set to several times the Doppler fre-

quency [92]. The second term in equation (3.22) corresponds to a Doppler component that
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represents a reflection from a moving vehicle as described in model F of [92]. This com-

ponent is identified with a spike in the PSD at frequency fspike = νv/λ, where νv is the

vehicle speed and λ is the signal wavelength. The proposed values for the constants A, B,

and C are 9, 0.5, and 90000, respectively [92].

We simulated an indoor fading channel with the above specifications for a system with

carrier frequency Fc = 2.4 GHz, maximum Doppler frequency 3.0 Hz, and vehicle speed

40.0 km/h, which corresponds to fspike = 88.9 Hz. The Doppler spectrum of the designed

filter along with the matching reference spectrum are shown in Figure 3.23.
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Figure 3.23: Reference and designed “Bell-shaped” Doppler spectra with the Doppler com-

ponent due to a moving vehicle.

These simulations were also performed in fixed-point arithmetic, where the filter co-

efficients are represented with Ω = 16 bit variables and 18-bit variables are used to store

the intermediate signals. Also, all poles and zeros are constrained to lie within a circle of

radius ̺ = 0.99 and the target sample rate for all scenarios is Fs = 40 MHz. The Doppler

spectrum is modeled with a complex filter of order Γ = 4. Figure 3.24 shows the autocorre-

lation of the quadrature components of the simulated fading process. The cross-correlation

between quadrature components is also plotted in the same figure. Finally, the normalized

LCR and AFD of this channel are plotted in Figures 3.25 and 3.26, respectively. As for

example 1, the LCR and AFD are normalized to fD × Ts. Note that compared to the three

scenarios in the previous example, the simulated indoor 802.11n model has a higher LCR

and lower AFD.
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Figure 3.24: Autocorrelation and cross-correlation of quadrature components of the simu-

lated fading process in Example 3.
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Figure 3.25: Normalized envelope level crossing rate of the system in Example 3.
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Figure 3.26: Normalized envelope average fade duration of the system in Example 3.
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3.3.4 Implementation

To demonstrate the efficiency of the above filter design process, we implemented a hard-

ware fading simulator that exploits a filter processor that is optimized for performing the

necessary filtering operations. The hardware was designed to generate fixed-point results

that are identical to those produced by our bit-true software simulator. Figure 3.27 shows

the datapath of the filter processor that can perform filtering operations using complex co-

efficients of cascaded FOSs. In Figure 3.27 the coefficients are stored in separate RAMs for

aQ(k) = sk sin(φk), aI(k) = sk cos(φk), bI(k) = rk cos(θk), and bQ(k) = rk sin(θk).
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Figure 3.27: Datapath of our filter processor which performs filtering operations using

complex coefficients of cascaded first-order sections.

In order to reduce the variable range and the risk of overflow, the poles and zeros are

matched in pairs so that each pole appears with the closest zero on the unit circle. The

matching process starts with the poles with the largest magnitude since their impulse re-

sponse has more impact on the variable ranges. Direct-form-I is used for the filter imple-

mentations. This way, in each FOS, the signal is first passed through the moving average

(MA) part of the filter. With zero-pole matching, the signal is attenuated at frequencies

close to the pole locations. This way the the variable range, and accordingly the overflow

risk, is significantly reduced.

Further, since the filter input has a Gaussian distribution, fixed scaling factors g(k) for

each stage are used to maintain the signal magnitude within the representable range. By

employing the above techniques, we obtain a compact and efficient implementation with
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the minimum number of bits in each variable. To make our design more resilient against

overflows and the resulting instability, the adder in the filter datapath in Figure 3.27 is

implemented to saturate its output in case of overflow.

The main element in the datapath in Figure 3.27 is a MAC that can multiply the in-phase

and quadrature signal components by complex-valued coefficients a(k) = aI(k) + jaQ(k)

and b(k) = bI(k)+jbQ(k). The output of each FOS is written into “RAM dI−dQ”, which

holds the intermediate results. “RAM mI −mQ” and “RAM nI − nQ”, store the complex

contents of the two memories in the DF-I implementation of a FOS. The coefficients are

stored in “RAM aI”, “RAM aQ”, “RAM bI”, “RAM bQ”, and “RAM g”. This datap-

ath can also add bias values from “RAM βI” and “RAM βQ”, which is necessary when

simulating Rician fading. Also, this datapath can be used for performing zero-padding for

interpolation, when required.

To implement the required lowpass filter for interpolation, the control unit in the data-

path in Figure 3.27 can be slightly modified to perform filtering operations of a real-filter

with second-order sections, which requires the same number of multiplications and addi-

tions as a complex FOS. For an efficient implementation, additional interpolation can be

carried out with the SILPF, as described in Section 3.2.1.

We implemented the datapath in Figure 3.27 and compared the implementation results

with implementations in Section 3.2.2 and Section 3.2.3. Table 3.3 compares the imple-

mentation results on a Xilinx Virtex-4 XC4VLX200-11 FPGA. All of the designs are con-

figured to process eight independent streams of fading samples and the filter order is set

to Γ = 16. The design in Section 3.2.2 was reconfigured to meet the above requirements

(eight instantiations of complex filters of order 16). For a fair comparison, in all designs,

the memories are implemented with distributed RAMs (i.e., LUT-based memories) and no

dedicated multipliers are used.

Please note that in Table 3.3, the Design I (from Section 3.2.3) processes filters with

real-coefficients and therefore requires half the memory to store the coefficients and also

performs half the arithmetic operations of its complex-valued counterpart. However, the

new filter design procedure results in a more compact and efficient design, as shown in

Table 3.3. More specifically, compared to the design in Section 3.2.2, the new filter pro-

cessor utilizes almost nine times fewer configurable slices and can process 22.5 times more

samples per second.
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Table 3.3: Characteristics of Filter Processors for Fading Channel Simulators
Design I a II b III (NEW)

Device XC4VLX200-11 XC4VLX200-11 XC4VLX200-11

Fading Rayleigh Rician Rician

Scattering Non-isotropic Isotropic Non-isotropic

Datapath word-length 40-bits 36-bits 18-bits

Coefficient word-length 32-bits 32-bits 16-bits

Filter order 16 16 16
Filter Coefficients Complex Real Complex

Number of fading paths 8 8 8
Configurable slices 10328 1348 1164
Resource utilization (11.6%) (1.5%) (1.3%)

Max. Clock freq. (MHz) 128 87 234
Output rate (KSamp/Sec) c 26 435 585

afrom Section 3.2.2
bfrom Section 3.2.3
cDesign I requires 16×2459 clock cycles for 8 output samples, Design II requires (16/2)×25 clock cycles

per output sample (this design processes real filters) and Design III needs (16) × 25 clock cycles per output

sample.

3.3.5 Implementation Comparison

Figure 3.28 compares the implementation results for different filter-based fading simulators.

All of the fading simulators are implemented in Verilog HDL and synthesized on a Xilinx

Virtex-II Pro FPGA XC2VP100-6. The implemented fading simulators are from [9–14]

(the results of [14] are from Section 3.3). The resource utilization figures are divided up

based on the number of generated fading paths.

Figure 3.28 (a) compares the maximum clock frequency of different designs. All of

the designs are fully pipelined. The maximum clock frequency among all of these designs

belongs to last design which is based on the filter design technique in Section 3.3. In this

implementation, DF-I filter structure is used and the input noise is colored. In addition, an

interpolated finite impulse response (IFIR) filter [162] is utilized for the first interpolation

stage. Figure 3.28 (b) compares the maximum output sample rate for different designs 1.

Specifically, the last design vi generates up to 268 million samples per second (only one

path). Figure 3.28 (c) compares the required number of configurable slices per fading path.

As this figure shows, the design in [12] requires the most slices per path, and the last design

vi is the most efficient in terms of required number of slices per path. Moreover, design

vi requires only 278 slices per fading path. Figure 3.28 (d) and (e) compare the required

1The fading simulators proposed in [11, 12, 14] are designed in multiple stages and their output sample rate

depends on the maximum speed of the final interpolator stage.
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Table 3.4: Mean Square Error of Different Statistical Measures

MSEACF MSECCF MSEPDF MSELCR MSEAFD
−85 (dB) −82 (dB) −77 (dB) −80 (dB) −75 (dB)

number of on-chip multipliers and block memories per fading path. As this figure show,

newer designs require less and less multipliers and storage per fading path.

We also measured the mean square error (MSE) of different statistical measures (ACF,

CCF, PDF, LCR, AFD) for design vi over one continuous block of Rayleigh fading samples

of length 108 with normalized Doppler frequency fDTs = 0.001. For a fair comparison,

we used the same measurement parameters as those used for testing the SOS-based fading

simulator. Table 3.4 represents the measured MSEs. Comparing these results with the

results of the SOS-based simulator (see Figure 2.21) shows that the filter-base method can

provide much more accurate results.

3.4 Simulation of Nakagami-m and Weibull Fading Channels

The Nakagami-m distribution (or the m-distribution), is another commonly used model for

the simulation and study of fading channels [39]. This distribution can model severe to

moderate fading through the parameter m. This distribution is recommended for modeling

and simulation of fading channels due to its good fit to data obtained from several radio

channels [163–168].

Several methods have been proposed in the literature for the simulation of Nakagami-

m fading channels [42, 43, 72, 73, 169–176]. Two Nakagami-m fading simulators based

on the sum-of-sinusoids approach have been proposed in [72, 73]. In [169], uncorrelated

Nakagami-m samples are first generated using any random number generation method, and

then autocorrelation is introduced between Nakagami-m samples by sorting them accord-

ing to the rank statistics of additional Rayleigh samples with the desired autocorrelation.

In [170], a Nakagami fading signal with m < 1 is simulated using complex Gaussian

processes and square-root-Beta random processes. It has also been proposed to gener-

ate Nakagami-m distributed samples from Gamma-distributed samples [171–173] and the

Gamma-distributed samples have been correlated using either the Cholesky decomposition

of the covariance matrix or the Sim’s method [177]. In [174, 175], the effect of Nakagami-

m fading on the signal-to-noise ratio at the receiver has been simulated as a finite-state

Markov chain. Also in [42, 43, 176] it is proposed to use a transformation for mapping
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Figure 3.28: Comparison between implementations of different filter-based fading simula-

tors. All of the fading simulators have been implemented in Verilog HDL and synthesized

on a Xilinx Virtex-II Pro FPGA XC2VP100-6. The plots show (a) maximum clock fre-

quency, (b) maximum output sample rate, (c) number of configurable slices per generated

path, (d) number of utilized 18× 18 dedicated multipliers per generated path and, (e) num-

ber of utilized on-chip 18 Kb block memories per generated path. The implemented fading

simulators are from (i) the model proposed in [9] (see Section 3.2), (ii) the model proposed

in [10] (see Section 3.2), (iii) the model proposed in [11] (see Section 3.2.1), (iv) the model

proposed in [12] (see Section 3.2.2), (v) the model proposed in [13] (see Section 3.2.3), and

(vi) using the model from Section 3.3 (submitted for publication in [14]).
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Rayleigh sequences into Nakagami-m sequences.

However, except for the sum-of-sinusoids approach [72, 73], the rest of the above sim-

ulators are not appropriate for hardware implementation of a parameterizable continuous-

time Nakagami-m fading simulator. This is mainly due to the large memory requirements

[169], the block-based nature of the algorithm, [169–173], the high computational com-

plexity [42, 43, 169–173, 176], or the high-precision arithmetic requirements [42, 43, 176].

The sum-of-sinusoids approach on the other hand is not flexible for simulating arbitrary

time-correlation properties between fading samples.

Here we want to have a simulation method that can generate any time-correlation be-

tween the Nakagami-m fading samples for various values of m. The simulation method

also needs to be appropriate for hardware implementation. The Nakagami fading simula-

tor proposed in [42, 43] can simulate different fading scenarios, and the time-correlation

between the generated fading samples can be parameterized. This simulation technique is

based on transforming Rayleigh fading samples to Nakagami-m fading samples with sim-

ilar time-correlation properties. However, due to the wide range of variables used in this

fading simulator, it can not be used for efficient fixed-point implementation of a Nakagami

fading simulator. Based on the fading simulator proposed in [42, 43], here we present a

new architecture for the efficient and compact implementation of a parameterizable Nak-

agami fading simulator. Due to the similarities between the Nakagami-m distribution and

the Weibull distribution, with minor modification, the presented technique can be used for

the hardware simulation of Weibull fading channels [178–180] as well.

In the following we briefly present the simulation method that was proposed in [42,43].

Then we present our model for the efficient hardware simulation of Nakagami-m fading

channels.

3.4.1 Basic Simulator

The probability density function of the amplitude R of fading samples in a Nakagami-m

fading channel can be expressed as [39]

fN (r) =
2mmr2m−1

Γ(m)Πm
exp(−m

Π
r2), r ≥ 0, (3.23)

where Π = E{R2} is the average fading power (E{·} denotes the expectation operator),

and Γ(·) is the gamma function. In (3.23), the Nakagami fading parameter m ≥ 1
2 which

97



3.4 Simulation of Nakagami-m and Weibull Fading Channels

determines the fading severity is defined as the ratio of moments [181]

m =
Π2

E{(R2 − Π)2} , m ≥ 1

2
. (3.24)

The Nakagami-m distribution also includes the one-sided Gaussian distribution as a special

case when m = 1/2 and the Rayleigh distribution when m = 1. Values of m in the ranges

[1/2, 1) and (1,∞) correspond to fading more severe than Rayleigh fading and less severe

than Rayleigh fading respectively.

The simulation method proposed in [42, 43], is based on transforming of Rayleigh fad-

ing samples to Nakagami-m samples. In this method, a zero-mean complex Gaussian fading

process c(t) = ci(t)+jcq(t) is first generated using a filter-based or sum-of-sinusoid based

Rayleigh fading simulator. The envelope of the fading process rR(t) = (c2i (t) + c2q(t))
1/2

is Rayleigh-distributed, and that can be transformed into samples with uniform distribution

using the transformation

u(t) = FR(rR(t)),

= 1 − e−
r2
R

(t)

2σ2 , (3.25)

where FR(·) is the cumulative distribution function (CDF) of a Rayleigh random variable

and σ2 is the variance of c(t). The uniform random variable u(t) is then transformed to

Nakagami-m random variable rN (t) by the inverse Nakagami-m CDF function as

rN (t) = F−1
N (u(t)), (3.26)

where

FN (v) =

∫ v

0

2mmt2m−1

Γ(m)Πm
exp(−m

Π
t2)dt,

=
γ(m, mΠ r

2)

Γ(m)
, (3.27)

and γ(a, x) is the incomplete gamma function. Complex Nakagami fading samples x(t)

are then generated using the Nakagami-distributed envelope rN (t) as

x(t) = xi(t) + jxq(t)

= rN (t) cos(θ(t)) + jrN (t) sin(θ(t)), (3.28)

where θ(t) = arctan(cq(t)/ci(t)). In [42, 43], authors also propose an approximation for

the inverse Nakagami-m CDF

F−1
N (u) ≈ η(u) +

a1η(u) + a2η
2(u) + a3η

3(u)

1 + b1η(u) + b2η2(u)
, (3.29)
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where

η(u) =

(

√

ln
1

1 − u

) 1
m

. (3.30)

For a given Nakagami fading parameter m, the coefficients a1, a2, a3, b1, and b2 are calcu-

lated to minimize the approximation error.

This method seems attractive for software simulation of Nakagami-m fading channels.

However, efficient hardware implementation of this fading simulator in its original formu-

lation can be quite challenging. Due to the extensive use of various mathematical functions

and large dynamic range of intermediate variables, it is necessary for this algorithm to be

implemented in floating-point arithmetic to sustain the required accuracy. More specifically,

calculating (3.28) requires two multiplications, one division, and calculation of arctan, sin,

and cos functions. Also, calculation of (3.29) requires several additions and multiplica-

tions, two divisions, square root, m−th root, and natural logarithm. Most of these opera-

tions result in variables with wide dynamic ranges that cannot be effectively mapped onto

a compact hardware with fixed-point arithmetic.

For accurate implementation of this fading simulator, single- or double-precision floating-

point data structures are required to support wide dynamic range while maintaining data

precision. However, full floating-point arithmetics are often unsuitable for implementation

in FPGA or ASIC. Floating-point operators generally have dramatically increased logic uti-

lization and power consumption, combined with lower clock speed, longer pipelines, and

reduced throughput capabilities when compared to integer or fixed-point. On the other

hand, careless fixed-point implementation can result in excessive quantization noise. Also,

issues of truncation, rounding and overflows can render a fixed-point implementation inef-

fective. In the next section, we reformulate Beaulieu’s fading simulator [42, 43] to make it

more suitable for fixed-point implementation.

3.4.2 New Nakagami-m and Weibull Fading Simulator

As mentioned in the previous section, in its original formulation, Beaulieu’s Nakagami-m

fading simulator cannot be efficiently mapped onto hardware. To simplify this Nakagami
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fading simulator, we start by rewriting sin(θ(t)) and cos(θ(t)) as

sin(θ(t)) =
ci(t)

√

c2i (t) + c2q(t)
,

cos(θ(t)) =
cq(t)

√

c2i (t) + c2q(t)
.

which implies that calculation of sin(θ(t)) and cos(θ(t)) requires an inverse square root

operation and two multiplications. Since the inverse square root operation is common for

both quadrature components, it is possible to factorize it for more compact implementation.

From here, Nakagami fading samples can be generated as

x(t) = g(r2R(t)) × (ci(t) + jcq(t)) ,

where g(r2R(t)) is the transfer function defined as

g(r2R(t)) =
F−1
N (1 − e−

r2
R

(t)

2σ2 )
√

r2R(t)
. (3.31)

For hardware implementation, equation (3.31) is evaluated and stored in a look-up table

(LUT) for a practical range. Since this function F−1
N (u) is continuous, several root-finding

algorithms can be used to evaluate (3.31). In particular, we used the bisection method due

its simplicity and effectiveness.

Weibull fading channels can be simulated with the same method. The CDF of the

Weibull distribution is [180]

FW (r) = 1 − exp

{

−
( r

Π

)β
}

, r ≥ 0, (3.32)

where the fading parameter β > 0 corresponds to fading severity. Based on the Weibull

CDF, the transfer function for converting Rayleigh samples to Weibull samples is

gW (r2R(t)) =
F−1
W (1 − e−

r2
R

(t)

2σ2 )
√

r2R(t)
, (3.33)

=
Π
√

r2R

×
(

r2R
2σ2

)
1
β

. (3.34)

The transfer function gW (r2R(t)) can be used to generate Weibull fading samples from

Rayleigh-distributed random variates. In the following we present our fading simulation
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method for the Nakagami-m method. However, the only difference is in the transfer func-

tions (3.31) and (3.33). Weibull samples can be generated easily by substituting g(r2R(t))

with gW (r2R(t)).

ÉÊËÌÍÎÏÐÑÊÒÎÓÏÔÎÕÖÌÊ×ØÙ
Figure 3.29: Block diagram of the complex Nakagami-m fading channel simulator.

Figure 3.29 shows the block diagram of the Nakagami-m fading simulator. As this

block diagram shows, to generate Nakagami samples, first the square envelope of the

Rayleigh process r2R is calculated which is used to compute the transfer function g(r2R).

The in-phase and quadrature components of the Nakagami fading samples are then found

by multiplying ci(t) and cq(t) by g(r2R) respectively.
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Figure 3.30: Log-Log plot of the transfer function g(r2R) for Π = 1 and different values of

m.

The next step is to evaluate the function g(r2R). Software simulations showed that ac-

curate calculation of g(r2R) is crucial for the accurate simulation of Nakagami-m fading

channels. Figure 3.30 plots g(r2R) as a function of r2R ∈ [2−15, 25) for different values of m
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on a log-log scale. In this figure and in the rest of this section we assume that the average

fading power is Π = 1. For σ2 = 1, since Pr(r2R(t) > 25) is less than 1.125 × 10−7, and

Pr(r2R(t) < 2−15) is less than 1.526×10−5, we focused on evaluating g(r2R) over the range

r2R ∈ [2−15, 25) without significantly affecting the output statistics (as we will see later).

Our simulation results show that for m ∈ [0.5, 25], and r2R ∈ [2−15, 25), the variations in

g(r2R) can be as high as four orders of magnitude. Also, g(r2R) tends to change faster for

small values of r2R.

Our simulation results showed that to have an acceptable representation of the transfer

function g(r2R), we require a minimum resolution of 2−15 for the lower part of the range

r2R ∈ [2−15, 25). However, no such resolution is required for the upper part of this range

since g(r2R) changes slowly in this region. On the other hand, since g(r2R) has a wide range

(2−7 to 27, see Figure 3.30), at least 14 bits are required for the fixed-point storage of

this function. Hence, a linear look-up table needs to store 14 × 25+15 = 14 Megabits of

information for acceptable representation of g(r2R). In other words, it would take at least

797 18-Kbit block memories to store such look-up table!

Instead of using a simple linear look-up table, we calculated g(r2R) using linear ap-

proximation. In this approach, the range [2−15, 25] is divided into small segments and the

value of g(r2R) over each segment is approximated with a linear equation. For example,

over the segment t ∈ [t0, t1), g(r
2
R) is approximated as ĝ(t) ≈ ãt0(t − t0) + b̃t0 . We

further reduced the number of bits required to store {ã} and {b̃}, with semi floating-point

representation. More specifically, over the segment t ∈ [t0, t1), g(r
2
R) is approximated as

ĝ(t) ≈ 2ft0 × [at0(t − t0) + bt0 ], where at0 = 2−ft0 × ãt0 and bt0 = 2−ft0 × b̃t0 . Figure

3.31 illustrates this approximation approach.

The storage requirements can be further reduced by non-linear segmentation of the

range [2−15, 25). We specifically used a hybrid logarithmic-linear segmentation approach

for the approximation of g(r2R). This hybrid segmentation approach is illustrated in Figure

3.31. As mentioned before, g(r2R) changes faster for smaller values of r2R. Hence more

accurate approximations, i.e., smaller segments, are required for the lower range. On the

other hand, since g(r2R) changes slowly for larger values of r2R, wider segments can be used.
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Figure 3.31: Hybrid segmentation and linear approximation of transfer function g(r2R).

As Figure 3.31 shows, in this hybrid segmentation approach, the range (0, 2W ] is di-

vided to l logarithmic (i.e., power of 2) segments. Each of these segments are further

divided to 2k linear sub-segments. This segmentation method is particularly convenient for

hardware implementation as the logarithmic segment for each sample can be determined

using a “leading-1” circuit. Moreover, the next k bits after the “leading-1” can be used to

address the linear sub-segment in the memory, and the remaining bits can be used as the

argument of the semi floating-point linear function (i.e., t− t0).ïðñòóôõö÷øùñúúðûöüýóþÿðú ��� ñ��� ���� þ ùñúúðûöüýóþÿðú����
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�� �� ��
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Figure 3.32: Datapath of the transformation-based Nakagami-m and Weibull fading simu-

lator.

Figure 3.32 shows the datapath of the Nakagami-m fading simulator based on the above

approach. As this figure shows, the calculated r2R is passed to the “leading-1” detector and

“barrel-shifter” U3 to find the address addr of the current hybrid segment and the argument
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t − t0. The address for the current segment addr is then used to read the values a, b, and

f from the corresponding ROMs. Then the value of g(r2R) is approximated in U7, U8, and

U9 as ĝ(r2R) ≈ 2f × [a(t − t0) + b]. The quadrature components of the Nakagami fading

samples are then calculated as xi = ci × ĝ(r2R) and xq = cq × ĝ(r2R) in U10 and U11

respectively.

We performed some simulations using the fixed-point bit-true model of the above Naka-

gami-m fading simulator to verify its accuracy. Based on our fixed-point analysis, we

divided the range [2−15, 25) into 15 logarithmic segments. Each of the logarithmic segments

was further divided into 64 linear sub-segments. The range [0, 2−15) was also divided into

64 segments which makes the total number of hybrid segments (1 + 15) × 64 = 1024.

The values of a and b were stored in s18.17 format (i.e., signed 2’s compliment 18-bit

fixed-point values with 17-bit fraction representing the range [−0.5, 0.5)). The values of

f were stored in s5.0 format (i.e., signed 2’s complement 5-bit fixed-point integer values

representing the range [−16, 15]). The input samples ci and cq were assumed to be in

s16.11 format. In the hardware implementation, the values of a, b, and f were each

stored in a 18-Kbit on-chip block memory.

Figure 3.33 shows the relative approximation error of g(rrR) for m = 10. The relative

approximation error is defined as eg(r
2
R) = |1 − ĝ(r2R)/g(r2R)|. As this figure shows, the

presented segmentation and approximation method can accurately mimic the actual transfer

function g(r2R). In this figure we see that the relative error goes up in the upper region. As

we will see in the next simulation results, this increase in the relative error does not have a

significant impact on the distribution of the generated Nakagami samples since large values

of r2R are less likely and g(r2R) goes to zero for such values. Moreover, for very small

values of r2R, the relative error is higher than the rest of the range, but the effect of this

approximation error on the statistical accuracy of the generated Nakagami-m samples is

insignificant.
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Figure 3.33: Relative approximation error of transfer function g(r2R) for m = 10.
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Figure 3.34: Comparison between reference Nakagami-m PDF and the measured PDF of

generated samples for different values of m.
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Figure 3.35: Comparison between reference Weibull PDF and the measured PDF of gener-

ated samples for different values of β.

To test the statistical accuracy of this design, we generated some fading samples using

the bit-true fixed-point model of our Nakagami-m fading simulator and compared the statis-

tical properties of the generated samples against the theoretical references. To generate the

Nakagami fading samples, we used isotropic Rayleigh fading samples with the Jakes’ PSD

(i.e., κ = 0, and ψ̃ = 0 in equation (3.3)) and the Doppler frequency fD = 100 Hz, and

sample rate Fs = 10 KHz. To generate Nakagami-m samples, the approximation coeffi-

cients {a}, {b}, and {f} need to be precomputed and stored in the corresponding memories

for every m.

Figure 3.34 plots the PDF of the generated Nakagami fading samples for different val-

ued of m. The theoretical references from equation (3.23) are plotted as well. As this

figure shows, the PDF of the generated samples closely match the reference Nakagami-m

PDF which verifies the statistical accuracy of the generated samples. Figure 3.36 com-

pares the autocorrelation of the generated Nakagami-m fading samples and the reference

values (from equation (3.5)) for different values of m. This figure also shows a close match

between the measured autocorrelation and the reference values. We also generated some

Weibull fading samples with our fading simulator. Figure 3.35 compares the PDF of the

generated Weibull fading samples with the reference PDF given by

fW (r) =

(

β

Π

)

( r

Π

)β−1
× exp

{

−
( r

Π

)β
}

, r ≥ 0, (3.35)

for different values of β. In this simulation, the average power of the Weibull fading samples
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was set to Π = 1. This figure also shows a close match between the generated PDFs and

the reference values.

��� ��� ��� ��� ��� ��� ��� ��� ��� ����
��������������

��� ��� ��������
���������� �¡
�¢

£¤¥¦§¦¨©ª«¬­®����­®����­®����­®����­®����­®�����
�¯���¯���

Figure 3.36: Comparison between reference autocorrelation function and that of the gener-

ated samples for different values of m.

The normalized autocorrelation function of the envelope of the generated Nakagami-m

samples and the reference values are compared in Figure 3.37. It can be shown that the

normalized autocorrelation function of the Nakagami-m signal envelope is given by [182,

eq. 26]

fACF (τ) =
2F1(−1

2 ,−1
2 ;m, |J0(2πfDτ)|2)

[

Γ(m)
Γ(m+1/2)

]2
(

m
Π

)

(3.36)

where 2F1 (·, ·; ·, ·) is the Gaussian hypergeometric function [183]. Figure 3.37 also shows

a close match between the generated envelope autocorrelation and the expected values from

equation (3.36) which further verifies the accuracy of our implementation.

We also implemented the datapath in Figure 3.32 on a Xilinx Virtex-II Pro XC2VP100-

6ff1696 FPGA. To increase the throughput of our FPGA implementation, all of the compo-

nents of this datapath are pipelined. More specifically, the blocks U3 and U9 in Figure 3.32

have 6- and 4-stage pipelines respectively. Our FPGA implementation of this datapath uti-

lizes 652 configurable slices (1.5%), five on-chip 18× 18 multipliers (1.1%), three 18 Kbit

on-chip block memories (0.7%), and can operate at up to 246 MHz.
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Figure 3.37: Comparison between reference normalized envelope autocorrelation function

and that of the generated samples for different values of m.

3.5 Summary and Conclusions

Filter-based simulation can be used to generate fading samples with accurate statistical

properties. For a given accuracy, although using IIR filters can be appealing due to their

lower computational complexity (in terms of number of computational operations) com-

pared to the FIR filters, the fixed-point implementation of IIR filters can be challenging due

to finite word-length effects.

In this chapter we presented several novel computationally-efficient design and imple-

mentation schemes for filter-based simulation of isotropic and non-isotropic Rayleigh and

Rician fading channels. We also presented a novel technique for designing stable fixed-

point filters with real and complex coefficients. We further proposed two techniques for

word-length reduction for implementing IIR filters. Using the new filter design technique,

Rayleigh and Rician fading samples with arbitrary PSD properties can be simulated. In one

example implementation of a non-isotropic Rayleigh fading channel, the proposed filter

design technique resulted in a FPGA implementation that was 8.9 times smaller and 22.5

times faster than a previous design that was based on traditional filter design techniques.

We also proposed a computationally-efficient technique for simulating Nakagami-m

and Weibull fading channels. The proposed technique was based on transforming Rayleigh

fading samples into Nakagami-m and Weibull fading samples. We proposed a technique for

the compact hardware implementation of this fading simulator based on a hybrid logarithmic-
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linear segmentation of the transfer function. We also proposed a semi floating-point approx-

imation technique which reduced the storage requirements significantly.
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Chapter 4

MIMO Fading Channel Overview

and Simulation

Multiple-input multiple-output (MIMO) communication systems can offer significant in-

creases in spectral efficiency and link reliability by exploiting multipath propagation. MIMO

technology has made significant advances in the past decade and has moved from a purely

theoretical blueprint [184, 185] to real-life products (e.g., [186–189]).

Multipath propagation plays a key role in the link capacity increase and diversity gain

in MIMO systems. The propagation conditions determine the channel capacity of a MIMO

system and hence it is of great importance to characterize and model different MIMO prop-

agation scenarios. Moreover, realistic simulation of signal propagation in MIMO channels

is crucial for the design, accurate performance prediction, and verification of MIMO sys-

tems. Therefore it is important to have realistic and yet easy-to-use models to understand

and reproduce the MIMO propagation effects [190]. Hence, the modeling and simulation

of MIMO radio channels has attracted much attention in the literature.

This chapter reviews some of the most important MIMO channel models and presents

efficient hardware simulation platforms for the corresponding models.

4.1 Background

In conventional wireless communication systems, one transmit and one receive antenna are

used for signal transmission. On the other hand, MIMO systems are equipped with multiple

antennas at both the transmit and receive ends. Here we consider anM×N MIMO system,

where M ≥ 1 and N ≥ 1 are the number of transmit and receive antennas, respectively.

Figure 4.1 illustrates this MIMO system.
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Receiver

Transm
itter

M N
Figure 4.1: Illustration of a MIMO system with M transmit and N receive antenna ele-

ments.

The above MIMO channel representation can be used to formulate an overall base-

band MIMO input-output relation between the length-M transmit signal vector s(t) and the

length-N receive signal vector y(t) as

y(t) =

∫

τ
H(t, τ)s(t− τ)dτ + n(t), (4.1)

where the length-N vector n(t) represents noise and interference. In the representation

(4.1), it is assumed that the MIMO channel is linear and time-variant and can be represented

by the N ×M channel matrix

H(t, τ) =











h11(t, τ) h12(t, τ) . . . h1m(t, τ)
h21(t, τ) h22(t, τ) . . . h2m(t, τ)

...
...

. . .
...

hn1(t, τ) hn2(t, τ) . . . hnm(t, τ)











, (4.2)

where hij(t, τ) denotes the time-variant impulse response between the j-th transmit antenna

and the i-th receive antenna. Moreover, it is assumed that the channel matrix (4.2) includes

the effects of antennas and frequency response. Note that there is no distinction between

different antennas and various polarizations of the same antenna. To model MIMO systems

with polarization-diverse antennas we can replace the elements of H(t, τ) in (4.2) with

polarimetric sub-matrices that describe the coupling between the vertical and horizontal

polarizations [191].

If the channel is time-invariant, the channel matrix will be independent of time t and

hence we have H(t, τ) = H(τ). Further, if the signal bandwidth is rather small so that the
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channel frequency response can be approximated as a frequency-flat channel, there would

be just one single tap, i.e., H(τ) = H. In this case (4.1) simplifies to

y(t) = Hs(t) + n(t). (4.3)

4.1.1 Model Classification

The most commonly used MIMO channel model in the literature is the narrow-band and

spatially-independent and identically distributed (i.i.d.) Gaussian channel model. The i.i.d.

channel model is an idealized assumption where the entries of the channel matrix are mod-

eled as independent complex Gaussian random variables (see for example [184]). This

model corresponds to a so-called “rich scattering” scenario. In this model it is assumed that

there is an infinite number of randomly and uniformly located ideal scatterers, which form

a uniform scattering medium. Moreover, in the the i.i.d. model the antenna elements are

considered to be ideal field sensors with no size and no coupling between the elements in

the transmit and receive antenna arrays [192]. For a single-user system withM transmit and

N receive antennas, independent scattering from each transmit antenna to each receive an-

tenna provides approximately min(M,N) separate channels and hence the capacity scales

linearly with min(M,N).

Although the i.i.d. model is convenient for analytical studies, it is too idealized as it

does not consider many propagation characteristics. Most propagation environments result

in spatial and temporal correlations, which are ignored by the i.i.d. model. Also, mod-

ern wireless communication technology targets high data-rate applications over wide-band

channels. Hence several sophisticated models for MIMO channels and propagation have

been proposed.
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Figure 4.2: MIMO fading channel model classification.

Different MIMO channel models can be distinguished based on different criteria like

time and frequency response or modeling approach. For example, considering the band-

width of the system, a fading channel can be frequency-flat (narrow-band, or rather small

delay spread) or frequency-selective (wide-band, or large delay spread). In the wide-band

models (e.g., [193–199]) different frequency subbands can have different channel responses,

while the narrow-band models (e.g., [200–207] ) assume that the channel has the same re-

sponse over the entire bandwidth.

Furthermore, fading channel models can be categorized based on the modeling ap-

proach. More specifically, a MIMO channel model could be analytical or physical [208,

209]. Analytical and physical channel models can also be subdivided into different cat-

egories based on their channel characterization approach. Model-based classification of

some of the MIMO fading channel models is summarized in Figure 4.2.

Analytical channel models characterize the MIMO channel response in a mathemati-

cal/analytical fashion. In analytical models, physical aspects of wave propagation are not

directly considered. Instead, the channel impulse response is expressed in terms of a com-

plex matrix with a specific structure. Due to the mathematical convenience of analysis, these
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models are popular in analytic studies of MIMO systems (see for example [200,210–214]).

In contrast to analytical MIMO channel models, physical models characterize the fading

channel based on the physical characteristics of wave propagation or actual measurements.

A physical MIMO channel model considers the relative location of transmitter, receiver,

and scatterers in the propagation media. More complex physical models can be used to

accurately mimic the wave propagation effects. In the past decade, several physical MIMO

channel modeling approaches have been proposed in the literature (see for example [204,

206, 215–225]).

Physical and analytical MIMO channel models can be further divided into sub-categories.

Analytical models are either inspired by the correlation between channel samples or by

the propagation mechanism in the fading channel. The i.i.d. model [184], full correlation

model [200, 223], Kronecker model [200, 212–214], and the Weichselberger model [226],

are among the analytical models that try to model a MIMO fading channel based on the

correlation between fading samples hij(t, τ). The virtual channel representation (VCR)

model [227,228], finite scatterer model [210], and the maximum entropy model [229,230],

on the other hand, are propagation-motivated analytical models. Later in this chapter, we

will explain some of these models in more detail.

Similarly, physical MIMO channel models can be divided into deterministic models,

nongeometrical-stochastic models, and geometrical-stochastic models. In deterministic

models the signal propagation is fully characterized by deterministic model parameters ei-

ther from actual measurements using channel sounders, or ray-tracing through computer

simulations. Deterministic models can provide site-specific but accurate channel charac-

teristics that can be used for network planning. Examples of deterministic MIMO channel

models can be found in [222, 231–235].

Nongeometrical-stochastic models on the other hand, characterize the fading channel

using statistical parameters. In these models, the fading channel is described either as indi-

vidual multipath components (MPCs) or as clusters of MPCs. More specifically, the Zwick

model [236] treats each MPC component individually and independent of other MPCs.

On the other hand, the Saleh-Valenzuela model [237] and the extended Saleh-Valenzuela

model [215, 238] assume that MPCs are grouped in clusters. The idea of forming MPC

clusters was inspired by the observation of temporal clusters in propagation delay [237]

based on which Saleh and Valenzuela proposed a doubly-exponential decay process in ra-

dio signal power for indoor propagation. The proposed doubly-exponential decay process
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is further integrated in other channel models including the TGn channel model [92] of IEEE

802.11.

In contrast to deterministic models, in which the location of scatterers is prescribed in a

database, in a geometry-based stochastic channel model (GSCM) the location of scatterers

is chosen according a specific distribution. GSCM channel models are based on the double-

directional representation [239, 240] in which the propagation channel is represented as

a number of propagation paths (or sub-paths) each characterized by a direction-of-arrival

(DOA), a direction-of-departure (DOD) and a propagation time which is directly related to

the signal attenuation. The GSCM model parameters can be chosen randomly from distri-

butions that are derived from geometry or from measurements. Given the model parameters,

the channel impulse response is then calculated using a simplified ray-tracing procedure.

GSCM has several advantages [241] over other channel models as it can reflect different

real-life propagation effects. GSCM considers the propagation geometry and reproduces

large-scale as well as small-scale fading effects by the superposition of incoming waves

from individual scatterers. GSCM also includes the mobility effects between the transmit-

ter and receiver and can easily be modified to simulate shadowing effects that happen on

the propagation paths. Moreover, the power-delay profile (PDP) and the angular power

spectrum (APS) are modeled conveniently for any distribution of scatterers.

The main advantage of GSCM is the possibility of simulating a large number of chan-

nels by changing channel parameters. The first GSCM model was proposed in 1973 in

[242], where the scatterers are placed on a ring around the base-station and it is assumed

that only single scattering occurs. Several GSCM models have been proposed in the litera-

ture since then [129, 225, 243–247]. The main differences between these models lie in the

number of bounces allowed, in the trajectory of the sub-paths, and in the use of clusters.

Single-bounce scattering models assume that only one interacting object occurs be-

tween the transmitter and receiver. Different distributions have been proposed for the scat-

terer locations. The simplest model assumes that scatterers are distributed uniformly in

space. This model is too simplistic and hence does not reflect the real propagation effects.

In [225, 243] is it proposed to place the scatterers randomly around the mobile station.

Further, in [248] a one-sided Gaussian distribution with respect to the distance from the

mobile-station is considered.

The single scattering assumption makes the channel simulation convenient. In a single-

bounce scattering model, all paths consist of two subpaths connecting the scatterer to the
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transmitter and receiver respectively. A line-of-sight (LOS), or specular component may be

present if the transmit and receive antennas can “see” each other. Every subpath is charac-

terized by its direction-of-departure (DOD), direction-of-arrival (DOA), and the propaga-

tion time which in turn determines the subpath attenuation according to a power law.

The single-bounce assumption, however, limits the degree of freedom in channel mod-

eling as the location of a scatterer completely determines the DOD, DOA, and delay. In

many indoor and outdoor environments in which propagation involves multiple reflections

and diffractions, multiple-bounce scattering can happen for which DOA, DOD and delay

are completely decoupled [249–251].

Multiple-bounce scattering can be used for more accurate channel modeling. In multiple-

bounce scattering more than one interacting object exists on the path between the transmit-

ter and receiver, which can result in complete decoupling between DOA, DOD, and delay.

Simulation of multiple-bounce scattering can be further simplified by incorporation of the

equivalent scatterers concept [191]. Equivalent scatterers are basically substitute single-

bounce scatterers that replace multiple-bounce path by mimicking their DOA and power.

This concept is incorporated in the COST 259 channel model [191].

This method, however, is not effective for modeling MIMO channels as the DOD cannot

be characterized with single-bounce virtual scatterers. In [216] it is proposed to use a

double-bounce scattering approach for modeling MIMO channels.

In this thesis we focus primarily on simulating single- and double-bounce geometric

models. More specifically, among all of the geometric models we target hardware imple-

mentation of the one-ring [206, 217, 218] , two-ring [219, 220], and the geometric elliptical

model [221], as they provide clear insight into single- and double-bounce geometric MIMO

fading channel and provide analytical background for verification of our hardware imple-

mentation. However, extension of this work to other physical models, particularly different

GSCM models, is straightforward.

Moreover, we will present our hardware implementation of the most well-known analyt-

ical channel models. The implemented analytical channel models are the i.i.d. model [184],

the Kronecker model [200,212–214], the Weichselberger model [226], and the VCR model

[227, 228]. The implemented fading simulator can also be easily extended to simulate the

finite-scatterer model [210] and the maximum entropy model [229, 230]. We also discuss

hardware simulation of of the TGn channel model for the IEEE 802.11 standard [92].
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4.2 Physical Models: Single-Bounce Scattering

4.2 Physical Models: Single-Bounce Scattering

Single-bounce scattering models are a subset of the GSCM models in which it is assumed

that the transmitted signal reaches the receiver either directly or after bouncing off one

scatterer. Different distributions have been proposed for the scatterer on the way from the

transmitter to the receiver [201,206,217,218,221,225,243,248]. In this section we present

the one-ring and the geometric elliptical channel models. We will present our hardware

fading simulator for the single-bounce scattering models later in Section 4.4.

4.2.1 System Parameters

To present different geometric channel models we consider a M × N MIMO system with

M and N omnidirectional antennas at the transmitter (or base-station) and the receiver

(or mobile-station) respectively. Figure 4.3 illustrates the geometric representation of this

system.
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Figure 4.3: Geometrical representation of a M ×N MIMO system.

In this figure, D is the distance between the transmitter and the receiver. In this model,

the receiver is assumed to be at the center of the Cartesian coordinate system. The pth and qth

TX antenna elements are denoted by Tp and Tq in Figure 4.3 and the lth andmth RX antenna

elements are shown as Ul and Um. Moreover, it is assumed that the antenna spacing in the

transmitter for antenna elements p and q, 1 ≤ p ≤ q ≤ M , is δpq. Similarly, it is assumed

that the antenna spacing in the receiver for antenna elements l and m, 1 ≤ l ≤ m ≤ N , is

dlm. The angle αpq denotes the tilt angle between the pth and qth TX antennas. Similarly, the

angle βlm denotes the tilt angle between the lth andmth RX antennas. Further, it is assumed

that the the transmitter and the local scatterers are fixed while the receiver is moving in the

γ direction.
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4.2 Physical Models: Single-Bounce Scattering

4.2.2 One-Ring Model

The one-ring model assumes that compared to the receiver, the transmitter is elevated and

thus not obstructed by the local scatterers. On the other hand, the receiver is surrounded by

local scatterers that are distributed over a ring. Figure 4.4 illustrates the geometric one-ring

model. In this figure, RRX is the radius of the ring of scatterers around the receiver, and Si

represents the ith scatterer.
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Figure 4.4: Geometrical representation of a MIMO channel with the one-ring model.

The visual representation of this model in Figure 4.4 can be used for deriving the chan-

nel gains between transmit and receive antennas. In the presence of a LOS component, the

channel gain h1R
lp (t) between the pth transmit (TX) antenna and the lth receive (RX) antenna

is

h1R
lp (t) = hDIF−1R

lp (t) + hLOSlp (t), (4.4)

where hDIF−1R
lp (t) represents the contributions of the diffuse components (scattering) and

hLOSlp (t) denotes the contribution of the LOS component. Figures 4.4 and 4.5 illustrate the

propagation paths for the diffuse and the LOS components, respectively. Let us assume that

the total transmitted power through the pth TX antenna and the lth RX antenna link is Ωlp.

Using the model representation of Figure 4.4, the contribution of the diffuse component to

the channel gain is [206]

hDIF−1R
lp (t) =

√

Ωlp

Klp + 1

1√
NS

NS
∑

i=1

giυlpi(φ
U
i ) × exp{j(2πfit+ θi)}, (4.5)

where

υlpi(φ
U
i ) = exp{−j2π

λ
(ξip(φ

U
i ) + ξli(φ

U
i ))}, (4.6)

and

fi = cos(φUi − γ) × fD. (4.7)
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Moreover, using the representation of Figure 4.5, the contribution of the LOS component

to the channel can be written as [206]

hLOSlp (t) =

√

ΩlpKlp

Klp + 1
× exp{j(2π cos(ωp − γ)fDt−

2πζlp
λ

)}. (4.8)

Parameters used in the above equations are described here. In (4.5) and (4.8), Klp denotes

the Rice factor between the pth TX antenna and the lth RX antenna link, which is the ratio

of the LOS component power to the diffuse component power, i.e.,

Klp =

∣

∣

∣
hLOSlp (t)

∣

∣

∣

2

E

{

∣

∣

∣
hDIF−1R
lp (t)

∣

∣

∣

2
} , (4.9)

where E{·} denotes the expectation operator. Moreover, NS is the number of indepen-

dent scatterers, gi is the amplitude of the received wave from the ith scatterer such that
∑NS

i=1E{g2
i } = NS for NS → ∞. Also, θi denotes the phase shift introduced by the ith

scatterer, ξip and ξli are the distances of the ith scatterer from the pth TX antenna and the lth

RX antenna respectively as shown in Figure 4.4. Based on this geometric model, the dis-

tances ξip and ξli are functions of φUi , the direction of arrival (DOA) of the wave traveling

from the ith scatterer toward the user, λ is the wavelength, j2 = −1, and fD is the max-

imum Doppler frequency. Moreover, in (4.8) ζlp denotes the distance between the pth TX

antenna and the lth RX antenna and ωp is the approximate direction-of-arrival of the LOS

path as shown in Figure 4.5. The set {gi}∞i=1 consists of independent and positive random

variables with finite variances, independent of {θi}∞i=1. Moreover, it assumed that {θi}∞i=1

are independent and identically-distributed (i.i.d.) random variables uniformly distributed

over [−π, π).

j
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Figure 4.5: The LOS path in the MIMO channel.
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4.2.2.1 Correlation Properties

Based on the above model, the space-time correlation properties between different path

gains can be derived. More specifically, we are interested in the cross-correlation between

h1R
lp (t) and h1R

mq(t). This cross correlation is defined as

ρ1R
lp,mq(t, τ) =

E
{

h1R
lp (t)h1R

mq
∗
(t+ τ)

}

√

ΩlpΩmq

, (4.10)

where (·)∗ denotes the complex conjugate operation. Since hDIF−1R
lp (t) and hDIF−1R

mq (t)

are zero-mean stochastic processes (according to (4.5), they are superpositions of zero-

mean complex sinusoidal stochastic processes), it can be verified that the cross-correlation

ρ1R
lp,mq(t, τ) can be decomposed into two parts, 1) the cross-correlation between the contri-

butions of the diffuse components and 2) the cross-correlation between the contributions of

the LOS components, i.e.,

ρ1R
lp,mq(t, τ) = ρDIF−1R

lp,mq (t, τ) + ρLOSlp,mq(t, τ), (4.11)

where

ρDIF−1R
lp,mq (t, τ) =

E
{

hDIF−1R
lp (t)hDIF−1R

mq
∗
(t+ τ)

}

√

ΩlpΩmq

, (4.12)

and

ρLOSlp,mq(t, τ) =
E
{

hLOSlp (t)hLOSmq
∗
(t+ τ)

}

√

ΩlpΩmq

. (4.13)

The space-time cross-correlation functions can be calculated based on the geometric

representation of the one-ring model. Moreover, accurate closed-form approximations for

these functions can be found if the transmitter and the receiver are widely spaced, and the

antenna spacing is much smaller than the distance from scatterers, i.e., D ≫ RRX ≫
max(δpq, dlm). These assumptions are supported by different measurements conducted in

different locations and frequencies (see for example [17, 224, 242, 252–255]). Based on

these assumptions, the approximate cross-correlation between hDIF−1R
lp and hDIF−1R

mq can

be written as [206]

ρDIF−1R
lp,mq (t, τ) = ρDIF−1R

lp,mq (τ)

≈ 1
√

(Klp + 1)(Kmq + 1)

∫ +π

−π
υlp(φ

U )υ∗mq(φ
U )

× exp{−j2πfD cos(φU − γ)τ}f(φU )dφU . (4.14)
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To derive (4.14) it is assumed that the numberNS of scatterers is large enough thatE{g2
i }/NS

can be approximated as E{g2
i }/NS ≈ f(φUi )dφU , where f(φU ) is the probability density

function (PDF) of the AOA seen by the receiver. Moreover, the total distance from the pth

TX antenna to the lth RX antenna in (4.6) has been expressed as a function of the angle of

arrival φU in (4.14). Similarly, the total distance from the qth TX antenna to the mth RX

antenna has been expressed as a function of the angle of arrival φU .

The cross-correlation expression in (4.14) holds for any distribution of AOA. The von

Mises/Tikhonov distribution [133, 134] has been used in the literature to model the AOA

(see for example [91, 206, 221, 256–258]). Also it has been argued that the von Mises

PDF is favorable because it can approximate other non-uniform PDFs and can provide

mathematical convenience for analysis [91]. Moreover, for the empirical justifications of

the von Mises distribution for the AOA the reader may refer to [91, 259]. The PDF of the

von Mises distribution is given by [133]

f(φU ) =
exp{κ cos(φU − µ)}

2πI0(κ)
, φU , µ ∈ [−π, π), (4.15)

where I0(·) denotes the zeroth-order modified Bessel function of the first kind, µ ∈ [−π, π)

is the mean direction of AOA and the parameter κ ≥ 0 controls the beam-width [91]. For

κ = 0 the von Mises PDF becomes a uniform distribution over [−π, π) while for κ = ∞
the PDF becomes a Dirac delta function δ(φU − µ).

Using the von Mises distribution for AOA the cross-correlation for the diffuse compo-

nent can be approximated as [206]

ρDIF−1R
lp,mq (τ) ≈ exp{jcpq cos(αpq)}

√

(Klp + 1)(Kmq + 1)
× I0

({

κ2 − a2 − b2lm − c2pq∆
2 sin2(αpq)

+2ablm cos(βlm − γ) + 2cpq∆ sin(αpq) × [a sin(γ) − blm sin(βlm)]

−j2κ[a cos(µ− γ) − blm cos(µ− βlm)

−cpq∆ sin(αpq) sin(µ)]
} 1

2
)

/I0(κ), (4.16)

where a = 2πfDτ , blm = 2πdlm/λ, cpq = 2πδpq/λ, and ∆ = tan−1(RRX/D). Moreover

in (4.16), αpq denotes the angle of the pth and qth TX antenna pair. Similarly, βlm is the

angle of the lth and mth RX antenna pair as shown in Figure 4.4.

Moreover, assuming that the distance D between the transmitter and the receiver is

much larger than antenna spacing at the transmitter and receiver, i.e., D ≫ max(δpq, dlm),

the cross-correlation for the LOS component can be approximated as [206]
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ρLOSlp,mq(τ) ≈
√

KlpKmq

(Klp + 1)(Kmq + 1)

× exp{ja cos(γ) − jblm cos(βlm) + jcpq cos(αpq)}. (4.17)

It is important to note that the one-ring model reduces to the non-isotropic Rayleigh

fading model [91] when single antenna elements are deployed at both transmitter and re-

ceiver, i.e. when M = N = 1 and d11 = δ11 = 0, and no line of sight is present, i.e.,

K11 = 0. In this case, the autocorrelation between fading samples {h11(t)} is

ρ(τ) =
I0

(√

κ2 − 4π2f2
Dτ

2 + j4πκ cos(µ)fDτ
)

I0(κ)
. (4.18)

When scatterers are uniformly distributed around the receiver, i.e., κ = 0, the correlation

model in (4.18) reduces to Clark’s temporal correlation J0(2πfDτ) [17] where J0(·) de-

notes the zeroth-order Bessel function of the first kind.

4.2.3 Geometric Elliptical Model

In the one-ring and the two-ring channel models it is assumed that the difference between

the propagation delays from from each TX antenna to each RX antenna is negligible. This

approximation can be useful when modeling narrow-band channels. However, for modeling

wide-band channels, the difference between propagation delays should be considered.

Unlike the one-ring and the two-ring models, the geometric elliptical model can be

used for simulating wide-band channels as well as narrow-band channels. In the elliptical

model, each ellipsoid represents the scatterers that result in a specific propagation delay.

Frequency-selective wide-band fading channels can be modeled by multiple ellipsoids of

scatterers, each representing a specific propagation delay.

The geometric elliptical model was first proposed in [129] for the micro- and pico-cell

environments with low mount TX and RX antennas. In this model it is assumed that multi-

path scattering can happen anywhere around the TX and RX. The geometric elliptical model

was further extended to single-input multiple-output (SIMO) channels in [260]. A wide-

band geometric elliptical model for wide-band MIMO channels was proposed in [221].

Another geometric elliptical model has been reported in [261].
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Figure 4.6: Geometric elliptical scattering model for an M ×N MIMO channel with local

scatterers Si lying on an ellipse.

Figure 4.6 illustrates the geometric elliptical scattering model. This figure illustrates

that all local scatterers Si, i = 1, ..., NS , are located on an ellipse, where the transmitter

and the receiver are located at the focal points. This ellipse can be associated with a certain

path length (or propagation delay) between the transmitter and the receiver. The major axis

half length and minor axis half length are denoted by Ea and Eb, respectively. The distance

between the two focal points is D = 2(E2
a − E2

b )
1/2 which is the distance between the

transmitter and the receiver.

Similar to the one-ring model, the channel gain hElp(t) between the pth TX antenna and

the lth RX antenna can be decomposed into the contributions of the diffuse components,

hDIF−E
lp (t), and the contribution of the LOS component hLOSlp (t) (see equation (4.4)). For

the wireless link between the pth TX antenna and the lth RX antenna we will denote the Rice

factor and the total transmitted power by Klp and Ωlp, respectively. The LOS path between

the TX and RX antennas is similar to that shown in Figure 4.5, hence providing the same

equation for the LOS component (equation (4.8)).

Figure 4.6 shows the propagation path for the diffuse component (ith subpath) in the ge-

ometric elliptical channel model. The diffuse component of channel gains between the TX

and the RX antennas can be derived from the visual presentation in Figure 4.6. Comparing

the geometric elliptical model in Figure 4.6 with the one-ring model in Figure 4.4, we can

expect the same equation for the contribution of the diffuse component in equation (4.5)
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i.e.,

hDIF−E
lp (t) =

√

Ωlp

Klp + 1

1√
NS

NS
∑

i=1

giυlpi(φ
U
i ) × exp{j(2πfit+ θi)}. (4.19)

Both the one-ring and the geometric elliptical models are single-bounce channel models and

therefore can be represented with the same equation. The only difference between these two

models is in the distribution of scatterers.

For the one-ring model, the scatterers are distributed on a ring around the receiver and

hence the location of the scatterers in the Cartesian coordinate system can be expressed in

terms of the angle-of-arrival φU as

SX−1R(φU ) = RRX × cos(φU ),
SY−1R(φU ) = RRX × sin(φU ).

(4.20)

Finally, the location of scatterers for the geometric elliptical model can be calculated as

SX−E(φU ) = RE(φU ) × cos(φU ),
SY−E(φU ) = RE(φU ) × sin(φU ),

(4.21)

where

RE(φU ) =
4E2

a −D2

4Ea + 2D × cos(φU )
. (4.22)

4.2.3.1 Correlation Properties

Similar to the one-ring model, since hDIF−E
lp (t) and hDIF−E

mq (t) are zero-mean stochastic

processes, the channel gain cross-correlation can be decomposed into two parts

ρElp,mq(t, τ) = ρDIF−E
lp,mq (t, τ) + ρLOSlp,mq(t, τ), (4.23)

where

ρDIF−E
lp,mq (t, τ) =

E
{

hDIF−E
lp (t)hDIF−E

mq
∗
(t+ τ)

}

√

ΩlpΩmq

, (4.24)

and ρLOSlp,mq(t, τ) is the cross-correlation between the contributions of the LOS components

from equation (4.17). However, to the best of my knowledge, no closed-form equation

has been found for the general case of cross-correlation between the contributions of the

diffuse components ρDIF−E
lp,mq (t, τ) for the geometric elliptical channel model. Assuming

that maxp,q δpq ≪ Ea−D/2 and maxl,m dlm ≪ Ea−D/2, the cross-correlation between

the contribution of the diffuse components can be approximated as

ρDIF−E
lp,mq (t, τ) = ρDIF−E

lp,mq (τ)

≈ 1
√

(Klp + 1)(Kmq + 1)

∫ +π

−π
υElp(φ

U )υEmq
∗
(φU )

× exp{−j2πfD cos(φU − γ)τ}f(φU )dφU , (4.25)
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where

υElp(φ
U ) = exp

{

−
j2π(ξEp (φU ) + ξEl (φU ))

λ

}

, (4.26)

ξEp (φU ) =
√

(TXp − SX−E(φU ))2 + (T Yp − SY−E(φU ))2, (4.27)

ξEl (φU ) =
√

(UXl − SX−E(φU ))2 + (UYl − SY−E(φU ))2. (4.28)

For a single-antenna system (i.e., M = N = 1), if the AOA is distributed with the

von Mises PDF, it can be verified that the autocorrelation between fading samples is given

by equation (4.18). Similar to the one-ring model with single TX and single RX antennas,

when the AOA is uniformly distributed over [−π, π), the autocorrelation for the geometric

elliptical model reduces to Clark’s temporal correlation J0(2πfDτ) [17].

4.3 Physical Models: Multiple-Bounce Scattering

Multiple-bounce scattering models are another subset of the GSCM models in which it is

assumed that the transmitted signal bounces off multiple objects (scatterers) before reaching

the receiver.

Multiple-bounce scattering models can be more accurate than single-bounce models

since they characterize the reality of multipath propagation effects more accurately. One of

the effects in MIMO channels is the so-called “keyhole-” or “pinhole-effect” in which the

actual channel capacity is much less than the anticipated capacity even though the received

signals at the antenna elements are uncorrelated [201, 262–264]. It happens when the scat-

tering around the TX and RX is such that each scatterer at the RX “sees” the TX scatterers

effectively as the same point source.

Double-bounce scattering models can be used for the convenient simulation of multiple-

bounce scattering. A double-bounce scattering approach is proposed in [216] for the mod-

eling of MIMO channels. The double-bounce scattering can provide complete decoupling

between the DOA, DOD, and propagation delay. Further it can be used for modeling dif-

ferent MIMO channel scenarios including the keyhole-effect [216].

In this work we focus on simulating the two-ring MIMO channel model which has

been used by several authors to characterize local scattering at both the TX and RX sides

[201, 219, 220, 225, 258, 265–267]. Different variations of the two-ring model have been

proposed. The main difference between these models is in single- or double-scattering,

in the distribution of local scatterers, and in the modeling of relative movement between
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4.3 Physical Models: Multiple-Bounce Scattering

the transmitter, the receiver, and the local scatterers. In this work we consider the general

case of double-bounce two-ring scattering where the transmitter and the local scatterers

around the transmitter and receiver are immobile while the receiver is moving compared

to the rest of the system. Other scattering channel models can be simulated with a similar

methodology.

In this section we present the two-ring channel model. In Section 4.4 we will discuss

hardware simulation of this channel model.

4.3.1 Two-Ring Model

The two-ring model assumes that both the transmitter and the receiver are surrounded by

scatterers. This can be the case for indoor wireless communications or in outdoor scenarios

where the TX and RX antennas are not mounted high enough not to be obstructed by local

scatterers. An illustration of the two-ring double-bounce model is shown in Figure 4.7.

Note that in this model, each ray is reflected twice.
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Figure 4.7: Geometrical representation of a MIMO channel with the two-ring model.

Here we assume that NS1 TX side (or first-bounce) scatterers are distributed on a circle

of radiusRTX around the transmitter. Similarly,NS2 RX side (or second-bounce) scatterers

are distributed on a ring of radius RRX around the receiver. Based on the model presented

in Figure 4.7, the diffuse component of the channel gain can be written as

hDIF−2R
lp (t) =

√

Ωlp

Klp + 1

1√
NS1NS2

NS1
∑

k=1

NS2
∑

i=1

gikυlpik(φ
U
i ) × exp{j(2πfikt+ θik)},

(4.29)

where

υlpik(φ
U
i ) = exp{−j2π

λ
(ξkp(φ

U
i ) + ξik(φ

U
i ) + ξli(φ

U
i ))}, (4.30)
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and

fik = cos(φUi − γ) × fD. (4.31)

Similar to the previous models, here Klp and Ωlp denote the Rice factor and the total trans-

mitted power over the wireless link between the pth TX antenna and the lth RX antenna,

respectively. In equation (4.29) gik denotes the amplitude of the received wave through the

kth first-bounce and ith second-bounce scatterer and we have
∑NS1

k=1

∑NS2
i=1 g

2
ik = NS1NS2.

Similar to the single-bounce case, θik is the random phase shift introduced jointly by the

kth first-bounce and ith second-bounce scatterer pair. Moreover, ξkp denotes the distance

from the pth TX antenna to the kth first-bounce scatterer, ξik is the distance between the kth

first-bounce and the ith second-bounce scatterers, and ξli denotes the distance from the ith

second-bounce scatterer to the lth RX antenna.

When the transmitter is not moving compared to the scatterers, the observed Doppler

frequency from the incoming wave through the kth first-bounce and the ith second-bounce

scatterers is only a function of the AOA of this subpath φUi (i.e., from the second-bounce

scatterer) as shown in equation (4.31). However, if the transmitter is moving, the observed

Doppler frequency from this subpath can be written as [265, 266]

fik = cos(φTk − γTX) × fTXD + cos(φUi − γRX) × fRXD , (4.32)

where φTk is the AOD from the transmitter to the kth first-bounce scatterer, γTX , and γRX

denote the directions of movement for the transmitter an receiver, and fTXD and fRXD denote

the maximum Doppler frequencies at the TX and RX sides. Assuming mobility of the

transmitter can be useful for simulating mobile-to-mobile channels. However, without loss

of generality, in the rest of this work we assume that the transmitter is immobile.

Moreover, the LOS path between the pth TX antenna and the lth RX antenna is similar

to that shown in Figure 4.5, hence providing the same equation for the LOS component

(equation (4.8)).

4.3.1.1 Correlation Properties

Like the one-ring model, the cross-correlation between the channel gains hDIF−2R
lp (t) and

hDIF−2R
mq (t) can be decomposed into two parts

ρ2R
lp,mq(t, τ) = ρDIF−2R

lp,mq (t, τ) + ρLOSlp,mq(t, τ), (4.33)
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where

ρDIF−2R
lp,mq (t, τ) =

E
{

hDIF−2R
lp (t)hDIF−2R

mq
∗
(t+ τ)

}

√

ΩlpΩmq

, (4.34)

and ρLOSlp,mq(t, τ) is given by equation (4.17). As before, Klp and Ωlp are the Rice factor and

the total transmitted power over the wireless link between the pth TX antenna and the lth

RX antenna. Based on equations (4.29), (4.30), and (4.34) we can write

ρDIF−2R
lp,mq (t, τ) = ρDIF−2R

lp,mq (τ)

=
1

NS1NS2(Klp + 1)(Kmq + 1)

NS1
∑

k=1

NS2
∑

i=1

E{g2
ik} ×

exp

{

−j 2π
λ

(ξkp + ξli − ξkq − ξmi)

−j2πfikτ
}

. (4.35)

Assuming an infinite number of scatterers around the transmitter and receiver, i.e., (NS1 →
∞) and NS2 → ∞), E{g2

ik}/(NS1NS2) can be approximated as E{g2
ik}/(NS1NS2) ≈

f(φT )f(φU )dφTdφU where dφT and dφU are the AOD and AOA, and f(φT ) and f(φU )

denote the PDFs of AOA and AOD. Based on this assumption, the summations in equation

(4.35) can be expressed in integral form as

ρDIF−2R
lp,mq (τ) =

1

(Klp + 1)(Kmq + 1)

∫ π

−π

∫ π

−π
exp

{

−j 2π
λ

(

ξp(φ
T )

+ξi(φ
U ) − ξq(φ

T ) − ξm(φU )
)

−j2π cos(φU − γ)fDτ

}

f(φT )f(φU )dφTdφU . (4.36)

The cross-correlation expression in (4.36) can be calculated for different AOA and AOD

distributions. Here we use the von Mises/Tikhonov PDF [133, 134] for the AOA and the

AOD distributions. More specifically, we consider

f(φT ) =
exp{κT cos(φT − µT )}

2πI0(κT )
, φT , µT ∈ [−π, π), (4.37)

and

f(φU ) =
exp{κU cos(φU − µU )}

2πI0(κU )
, φU , µU ∈ [−π, π), (4.38)

as the PDFs of the AOD and AOA respectively. In (4.37), µT is the mean AOD and κT

controls the AOD beam-width. Similarly, in (4.38) µU is the mean AOA and κU is the AOA

beam-width control parameter. Note that for κT = 0 (κU = 0) the von Mises distribution
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reduces to the uniform distribution over [−π, π). Finally, when κT → ∞ (κU → ∞), the

von Mises distribution becomes the Dirac delta function at µT (µU ).

Assuming that δpq ≪ RTX and dlm ≪ RRX the closed-form expression for equation

(4.36) is given by [219]

ρDIF−2R
lp,mq (τ) =

ρDIF−2R−T
lp,mq (τ) × ρDIF−2R−U

lp,mq (τ)

(Klp + 1)(Kmq + 1)
, (4.39)

where

ρDIF−2R−T
lp,mq (τ) =

I0

(√

κ2
T − c2pq + 2jκT cpq cos(αpq − µT )

)

I0(κT )
, (4.40)

and

ρDIF−2R−R
lp,mq (τ) =

1

I0(κU )
× I0

(

[

κ2
U − a2 − b2lm + 2ablm cos(βlm − γ)

+2jκUblm cos(βlm − µU )

−2jκU cos(γ − µU )
] 1

2

)

, (4.41)

where a = 2πfDτ , blm = 2πdlm/λ, and cpq = 2πδpq/λ. Notice that the cross-correlation

expression in (4.39) is separable into TX correlation (4.40) and RX correlation (4.41) parts.

This property has been considered in several articles [201, 212, 223, 263, 268].

4.4 Hardware Simulation of Geometric Models

Let us start with the hardware implementation of one-ring and geometric elliptical single-

scatterer channel models. In discrete time (i.e., t = nTs where Ts is the sample period and

n is a non-negative integer) the LOS component of the channel gain between the pth TX

antenna and the lth RX antenna is (see (4.8))

hLOSlp [n] =

√

Klp

Klp + 1
× exp{j(2π cos(ωp − γ)fDn− 2πζlp

λ
)}, (4.42)

and the contribution of the diffuse components in the same link can be written as (see (4.5)

and (4.19))

hDIFlp [n] =
1√
NS

NS
∑

i=1

gi exp{j(2πfin+ υlpi + θi)}
√

Klp + 1
. (4.43)

Hardware implementation of a fading simulator that generates samples according to

equations (4.42) and (4.43) is straightforward. The fading process between each antenna

pair (here the pth TX antenna and the lth RX antenna) is basically the superposition of a
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number of complex sinusoidal oscillators with random, but stored, phases. These oscillators

can be implemented separately, or with a shared datapath. Considering the limited range

of the maximum Doppler frequency, it is more efficient if the fading samples would be

generated with a shared datapath.

As an example, consider a M × N = 4 × 4 indoor narrow-band MIMO system and

assume that the maximum Doppler frequency is limited to fD = 20 Hz. Note that the max-

imum Doppler frequency for indoor environments is rather small (e.g., 6 Hz in the IEEE

802.11n channel model). Moreover, assume that the samples are generated at a low sam-

ple rate, say F̂s ≥ 16 × fD and then interpolated using dedicated interpolators. A fading

simulator needs to process (M ×N) × (NS + 1) complex oscillators for the generation of

diffuse and LOS components (see equations (4.42) and (4.43)). Using an architecture that

processes the samples serially, and assuming that each oscillator requires two clock cycles

for processing (one cycle for the in-phase and one cycle for the quadrature component),

calculating all M ×N fading samples of one period (T̂s = 1/F̂s seconds) requires a min-

imum clock frequency of Fminclk = 2 × (M × N) × (NS + 1) × F̂s Hz. For example, for

M = N = 4, NS = 128, fD = 20, and F̂s = 16 × fD = 320 Hz, a serial-processing

architecture requires a minimum clock frequency of Fminclk = 1, 320, 960 Hz to generate all

of the 4 × 4 complex fading samples.

As long as the maximum clock supported by the designed architecture is higher than the

minimum clock frequency Fminclk , the designed architecture can generate the fading samples

in real-time. Note that with careful design, maximum speeds of 100 MHz to 200 MHz are

achievable with the most recent FPGAs. When the maximum clock speed of the designed

architecture is much higher than Fminclk , the extra clock cycles can be used for either gen-

erating more fading samples (e.g., simulating wide-band channels, or multiple channels),

increasing the number of scatterers NS , or increasing the maximum Doppler frequency fD.

Similar to the single-bounce scattering fading, for generating fading samples in double-

bounce scattering models we need to superimpose a number of complex oscillators. How-

ever, simulating double-bounce scattering channels may take more computational power as

we need to process NS1 ×NS2 + 1 complex oscillators instead of NS + 1 oscillators. For

example, for M = N = 4, NS1 = 32, NS1 = 64, fD = 20, and F̂s = 16 × fD =

320 Hz, the above serial-processing architecture requires a minimum clock frequency of

Fminclk = 20, 971, 520 Hz to generate all of the 4 × 4 complex fading samples of one pe-

riod. Fortunately for a reasonable number of first- and second-bounce scatterers (NS1 and
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NS2), the minimum clock frequency Fclk is less than the the maximum clock speed of the

fading simulator. However, for a large number of first- and second-bounce scatterers, one

can always employ parallel blocks of fading simulators.

Here we want to design a compact architecture that generates the complex sinusoidal

waves and superimposes them with appropriate gains for the generation of fading samples.

Moreover, the phases for each of the complex oscillators need to be stored and updated. To

make our fading simulator as compact as possible, we want to share our datapath for all of

the oscillators. As shown by the above example, spending two clock cycles per complex

oscillator is a practical assumption (in terms of clock budget) and can result in significant

area savings.

4.4.1 Sample Generation

In a typical wireless communication scenario, the maximum Doppler frequency fD is sig-

nificantly smaller than the signal sample rate Fs = 1/Ts. This allows us to design the

fading simulator at a much lower sample rate and thereby reduce the required hardware re-

sources. The resulting low-rate signal can then be interpolated to achieve the desired output

sample rate. Here we assume that the channel gains are generated at F̂s = Fs/I samples

per second and then up-sampled by the interpolation factor I .

Our goal is to implement a pipelined architecture for fading simulation that spends two

clock cycles for processing each oscillator in each period. For each oscillator the required

operations are 1) reading the corresponding phase from memory, 2) calculating sin or cos

of the phase, 3) scaling with corresponding gi, 4) superposition of waves, 5) applying Rice

factors, 6) updating each oscillator phase for the next period. In the following we explain

how our hardware generates the fading samples.
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Figure 4.8: Datapath of the MIMO fading samples generator for simulating geometric chan-

nel models.

Figure 4.8 shows the datapath of the proposed fading simulator. In each cycle, this

datapath calculates the fading gains in two steps. In the first step, the in-phase (or real) part

of the channel gains are calculated and in the second step, the quadrature (or imaginary)

parts are processed. Moreover, the phases are updated in the second step of each cycle (this

will be explained later).

Let us start with equation (4.43). The contribution of the diffuse components to the
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channel gain in quadrature form at sample rate F̂s can be written as

hDIF−I
lp [n] = C × Tlp

∑NS

i=1 gi × cs(φ(l, p, i, n)),

hDIF−Q
lp [n] = C × Tlp

∑NS

i=1 gi × sn(φ(l, p, i, n)),
(4.44)

where C = 1/
√
NS , Tlp = 1/

√

Klp + 1, cs(φ) = cos(2πφ), sn(φ) = sin(2πφ), and

φ(l, p, i, n) = I × fi × n+ (υlpi + θi)/2π is the path-phase for each of the received waves

from different scatterers at any time n ≥ 0. Further, the path-phase can be calculated

recursively using the following equation

φ(l, p, i, n) =

{

φ(l, p, i, n− 1) + f̂i for n > 0,

(υlpi + ψi)/2π for n = 0,
(4.45)

where f̂i = I × fi. Note that in (4.44), sn(φ) and cs(φ) are periodic functions with period

1, hence the integer part of the path-phase can be discarded when calculating (4.45) with-

out affecting the results. Using extensive computer simulation we found that the phases

φ(l, p, i, n) need to be stored with 16-bit accuracy. Since the values of φ(l, p, i, n) are lim-

ited to the range [0, 1), the phases are stored in phiPsiRAM (see U0 in Figure 4.8) in

u16.16 format, i.e., 16-bit unsigned values with 16-bit fraction.

For more clarity, the proposed datapath in Figure 4.8 has been divided into five parts.

In this figure, PART-1 calculates the summations
∑NS

i=1 gi×cs(φ(l, p, i, n)) and
∑NS

i=1 gi×
sn(φ(l, p, i, n)). The stored phases φ(l, p, i, n), are passed to the module U2where cs(φ(l, p,

i, n)) and sn(φ(l, p, i, n)) are calculated. The sine and/or cosine are calculated in the mod-

ule U2. In this module the sine/cosine of the input is approximated using a look-up table

that contains the first quarter cycle of a sine wave. The coefficients {gi} are stored in U1 in

s16.15 format (i.e., 16-bit signed values with 15-bit fraction). Further, the multiplier U3

with the accumulator U6 calculate
∑NS

i=1 gi×cs(φ(l, p, i, n)) and
∑NS

i=1 gi×sn(φ(l, p, i, n))

after proper format adjustments. The fixed-point data formats shown in Figure 4.8 are cho-

sen based on extensive computer simulation.

In PART-2 of the datapath shown in Figure 4.8 the phases φ(l, p, i, n)) are updated

according to equation (4.45). The initial path-phase values φ(l, p, i, 0) = (υlp + θi)/2π,

for l = 1, .., N , p = 1, ...,M , i = 1, ..., NS are stored in phiPsiRAM. These phases are

updated as the time index advances. The maximum Doppler frequency, fD, is passed to this

circuit from input IN. Moreover, the values {cos(ωi − γ)} for i = 1, ..., NS are stored in

phsCosRAM or U8. These two values are multiplied using U11 to obtain fD×cos(ωi−γ).
As will be explained later, we set the interpolation factor I to be a power of two. The output
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of the multiplier is then shifted to obtain f̂i = I×fD×cos(ωi−γ) which is used to update

the path-phases according to equation (4.45). Further, a copy of the current phase (through

U13 and U14) is passed to the adder U16 where it is added to f̂i (through U15). Finally,

the updated path-phase value is stored in phiPsiRAM for the next cycle.

Note that PART-1 and PART-2 operate in parallel. In each cycle, the summations
∑NS

i=1 gi×cs(φ(l, p, i, n)) and
∑NS

i=1 gi× sn(φ(l, p, i, n)) are calculated in PART-1 for ev-

ery TX and RX antenna (p = 1, ...,M , l = 1, ..., N ) and for every scatterer (i = 1, ..., NS).

The path-phases φ(l, p, i, n) are updated simultaneously in PART-2. The operations of

these parts require M ×N ×NS clock cycles for either the in-phase or quadrature compo-

nents.

The calculated summations in PART-1 are then scaled in PART-4 by C × Tlp to pro-

vide the in-phase and quadrature components in equation (4.44). For a large number NS

of scatterers the coefficient C × Tlp = 1/
√

NS(Klp + 1) is a small number. The scaling

is performed using shifting and multiplication operations. More specifically, the coefficient

C can be decomposed into C = 2−K × C̃, where K = ⌊log2(1/C)⌋, and C̃ = 2K × C.

Defining T̃lp = Tlp × C̃, we have C × Tlp = 2K × T̃lp. The values of T̃lp for l = 1, ..., N

and p = 1, ...,M are stored in paramsRAM (or U7) in u16.16 format and are passed to

the multiplier U11 through the multiplexer U9 in Figure 4.8. These values are then used

to scale the summations calculated in PART-1. A right-shift operation (K times) after the

multiplier U11 finishes the calculation of the diffuse samples in equation (4.44). Further,

the diffuse samples are stored in the register U14 until they are added to the LOS samples

in the adder U16.

The LOS samples are computed in a similar way. From equation (4.42) the LOS sam-

ples in quadrature form at sample rate F̂s can be written as

hLOS−Ilp [n] = Wlp × cs(ψ(l, p, n)),

hLOS−Qlp [n] = Wlp × sn(ψ(l, p, n)),
(4.46)

where Wlp =
√

Klp/(Klp + 1), ψ(l, p, n) = I × fp × n + ηlp/2π, fp = cos(ωp − γ) ×
fD, and ηlp = −2πζlp/λ. The path-phases ψ(l, p, n) are updated recursively in a similar

way to equation (4.45) with a different initialization value (1 − ηlp/2π). The path-phases

ψ(l, p, n), for l = 1, ..., N and p = 1, ...,M are stored in phiPsiRAM and updated in

PART-2. Moreover PART-1 calculates cs(ψ(l, p, n)) and sn(ψ(l, p, n)), which are stored

in the register U4 in PART-3. Also the values of Wlp for l = 1, ..., N and p = 1, ...,M

are stored in paramsRAM (or U7), which are passed to the multiplier U11 through the
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multiplexer U9. This multiplier then calculates the LOS sample (according to equation

(4.46)). The LOS sample (from U15) is then added to the diffuse sample (from U14) in the

adder U16 to obtain the final in-phase or quadrature component of the channel gain. The

generated channel gains are yet to be interpolated, which will be discussed in the following.PQQRSTPTQU
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Figure 4.9: Control flow diagram for the control-unit of the fading simulator.

Figure 4.9 shows the simplified state machine of the control unit (CU) that manages the

datapath in Figure 4.8. After reset, this state machine starts at stt reset. In this state,

the register cycle1 is set to 1 indicating the first period of the sample generation. In the

first period, the initial phases are read from read-only memory (ROM) blocks. Note that

these ROMs are not shown in Figure 4.8 for simplicity. Finally, another register, page,

is set to zero. As will be explained later, the interpolators require the difference signal to

be kept “latched” for every period. That is why each interpolator keeps two copies of the

difference signal, called page0 and page1. When the fading simulator is working on
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page0 (page1), it informs the interpolators to use the value stored in page1 (page0)

since the value store in page0 (page1) is volatile and unreliable.

Further, in the initial state stt reset, the interpolators are inactivated by setting the

register doInterplt=0. After initialization, the state machine goes to the stt startC-

ntr state to initialize the datapath in Figure 4.8 for calculating the fading samples and

updating the phases. In this fading simulator, two counters are used for processing and

addressing the fading samples. The chCntr counter is used for addressing the M × N

channels and the wvCntr is used for counting NS + 1 complex oscillators (waves). The

quadrature components of each oscillator are distinguished with the IQ register. When

IQ=0 the in-phase component is being calculated and IQ=1 means that the quadrature

component is under process.

The stt startCntr state resets the channel counter, the oscillator counters, the

memory write-enable lines and the select lines. After initializations for the starting of each

period, this state jumps to the stt calSOS state for calculating the in-phase component

of the current channel (channel 0). However, before going to the next state, the return ad-

dress is set to stt doQ so that after calculation of the in-phase component for the current

channel, the required initializations are made for calculating the quadrature component.

Since IQ is set to 0, the stt calSOS state calculates the in-phase component for the

current channel and then goes to the stt doQ state. This state sets IQ=1 and initializes the

wvCntr register for the calculation of the quadrature component of the current channel.

Before calling stt calSOS, however, the return address is set to stt incCounter.

The control then moves to the stt calSOS state for the calculation of the quadrature

component for the current channel. The stt calSOS state also updates the oscillator

phases for the next period (only for the current channel).

After calculating the in-phase and quadrature components of the fading sample for

channel 0 and updating the corresponding phases, the state machine goes to the stt incC-

ounter state where it initializes the registers for calculating the in-phase and quadrature

components of fading samples for another channel by increasing the channel counter.

When all of the channels have been processed (i.e., the fading samples for one period

of all M × N channels have been generated and the corresponding phases have been up-

dated), the state machine goes to the stt wait4newCycle state. As mentioned before,

the datapath in Figure 4.8 needs a certain number of clock cycles to process all of the fading

samples of one period. After generating all of the fading samples for one period (i.e., T̂s
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seconds), the control unit waits until the interpolators are done with the interpolation. After

the end of each period (signaled from the timing circuit by newCycle=1), the control unit

informs the interpolators to use the newly generated data by changing the page. The con-

trol unit also makes sure that the updated phases are read from random-access memories

(RAMs) not ROMs by setting cycle1=0. Moreover, after the first period, the interpola-

tors are informed to start by setting doInterplt=1. From here, the fading samples are

generated in the same fashion in the following periods.

4.4.2 Interpolation

To simplify the hardware implementation, we constrain the interpolation factor I to powers

of 2, i.e., I = 2P . Using a linear interpolator, the interpolated fading samples h̃lp[n], n ≥ 0,

at the times n = 2Pk + u, k ≥ 0, u = 0, ..., 2P − 1 can be written as

h̃lp[2
Pk + u] = hlp[0] +

k−1
∑

z=0

dlp[z] + 2−Pdlp[k]u (4.47)

where

dlp[z] =

{

hlp[2
P (z + 1)] − hlp[2

P z] for z ≥ 0,

0 otherwise,
(4.48)

denotes the difference between subsequent fading samples at sample rate F̂s = 2−PFs.

Note that the expression 2−Phlp[k]u in (4.47) can be calculated using shifting and running-

sum operations and therefore the linear interpolator can be conveniently implemented using

a simple accumulator and shifter.

In PART-5 of Figure 4.8, the quadrature components of blp[z] are calculated. More

specifically, in PART-5 the low frequency channel gains are stored in the memory prevRAM

and the difference between the current sample and the previous sample for each TX and RX

pair (see equation (4.48)) is calculated and passed to the linear interpolator for generating

the final channel gains according to (4.47).
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Figure 4.10: (a) Datapath of the quadrature linear interpolator, and (b) control signals for

the linear interpolator.

Figure 4.10 (a) shows the datapath of the implemented linear quadrature interpolator.

As the fading simulator calculates the difference samples, it informs the corresponding

interpolator to latch the updated value in the page register that is not in use. A decoder

(decoding chCntr) generates the selection signal for individual interpolators and the fad-

ing simulator informs the target interpolator by rising the wDiff flag. Depending on the

state of the IQ register, the updated difference is latched into the inactive (under process

by fading generator, not the interpolator itself) register for the in-phase or quadrature path.

Figure 4.10 (b) summarizes the operations of the selection lines in a table.

As mentioned above, the interpolator is just a simple accumulator performing a running-

sum operation. Moreover, the operation of scaling by 2−P in equation (4.47) needs to be

performed with the two barrel shifters M10 and M11 for the in-phase and quadrature paths,

respectively.
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So far we explained the hardware implementation of the geometric fading simulator. In

the following part we will present the simulation results.

4.4.3 Simulation Results

To ensure the accuracy of the geometric fading simulator, we first implemented a fixed-

point bit-true model in MEX (C for MATLAB) and generated sequences of fading vari-

ables. Specifically, to verify our datapath we simulated a MIMO channel with three dif-

ferent models, 1) the one-ring model, 2) the geometric elliptical channel model, and 3) the

double-bounce two-ring model. We compared our bit-true fixed-point results against the

floating-point results to check the accuracy of our fixed-point model.

We simulated a 2 × 2 MIMO system in which the TX-RX pair are 860 meters apart.

The TX and RX antenna arrays are positioned at a 90 degree angle from the horizon. Also

the RX is assumed to be moving in the γ = 60 degree direction. We set the maximum

Doppler frequency fD = 10 Hz, sample rate Fs = 10, 000 Hz, wavelength λ = 20 cm,

and Rice factor K11 = K12 = K21 = K22 = 0. Finally, we used isotropic scattering and

omnidirectional antennas at TX and RX sides (i.e., κ = κT = κU = 0) and we set the

antenna TX and RX antenna spacing to λ/2 = 10 cm.

The fading samples were generated at sample rate F̂s = 312.5 Hz. The interpolator is

set to increase the sample rate 32 times to provide the final sample rate of Fs = 10, 000

samples per second.
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Figure 4.11: Fading samples generated using (a) the one-ring model, (b) the geometric

elliptical model and, (c) the two-ring model.

In the one-ring model, NS = 128 scatterers surround the receiver uniformly on a ring

of radiusRRX = 30 meters. Figure 4.11 (a) shows the fading samples h11[n] (channel gain

from the first TX antenna to the first RX antenna) that are generated with both floating-point

and fixed-point models. This figure shows good agreement between the fixed-point and the

floating-point results.

Figure 4.11 (b) shows the fading samples h11[n] that are generated using the geometric

elliptical channel model. Both floating-point and fixed-point results are shown. In this

model, NS = 128 scatterers surround the transmitter and the receiver on an ellipsoid with

the major axis of 2a = 1460 meters and the minor axis of 2b = 1182 meters (the transmitter

and the receiver are on the focal points of this ellipsoid). This figure also shows good

agreement between the fixed-point and the floating-point results.

We also simulated a double-bounce scattering fading channel with the two-ring channel

model. In this model, we uniformly distributed NS1 = 32 scatterers around the transmitted

on a circle of radiusRTX = 30 meters. Also we assumed thatNS2 = 64 scatterers surround
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the receiver uniformly on a ring of radius RRX = 30 meters. Figure 4.11 (c) shows the

fading samples h11[n] that are generated using this model. Here too, the fixed-point results

show complete agreement with the floating-point model.
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Figure 4.12: (a) Fading samples generated using the two-ring model. (b) Absolute error

between fixed-point results and the floating-point results when phases are rounded towards

zero. (c) Absolute error when phases are rounded towards the nearest integer.

Figure 4.12 plots the absolute error between the floating-point and the fixed-point results

for the two-ring model. Since the oscillator phases are updated using running summations

(see equation (4.45), and the description of PART-2 in Section 4.4), the quantization noise

can accumulate in the oscillator phases over time. This in turn causes the fixed-point results

to drift away from the floating-point results.

A major contributor to the quantization noise in the oscillator phases is the rounding

operation that happens when calculating fD × cos(ωi− γ) (see the description of PART-2

in Section 4.4). The result of the multiplication is a 36-bit value that needs to be rounded to

a 17-bit value according to the datapath shown in Fig 4.8. The simplest rounding method is

to discard the extra fraction bits. Since the phases are positive values, discarding the extra
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bits can be interpreted as rounding towards zero. Figure 4.12 (b) plots the absolute error

between the fixed-point results and the floating-point results for this case. The original

fading samples are plotted in Figure 4.12 (a) for reference. As Figure 4.12 (b) shows,

the magnitude of the peaks of the absolute error increases with time. Rounding the 36-bit

multiplier outputs to the nearest integer on the other hand can reduce the quantization effects

as shown in Figure 4.12 (c). However, rounding to the nearest integer is not necessary as the

slow phase drifts do not affect the statistics of the generated fading samples significantly.

Figure 4.13: Cross-correlation between h11[n] and h22[n] versus transmitter and receiver

antenna separation. Results are obtained from fixed-point computer simulation of a MIMO

channel with the one-ring channel model.

Figure 4.14: Theoretical approximation of the cross-correlation between h11[n] and h22[n]
for the one-ring channel model plotted versus antenna separation at the transmitter and the

receiver.
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Figure 4.15: Difference between the measured cross-correlation and the theoretical approx-

imation of the cross-correlation between h11[n] and h22[n] for the one-ring channel model.

Figure 4.16: Estimated ergodic capacity of a 2×2 MIMO channel versus antenna separation

at the transmitter and receiver. The MIMO fading channel is simulated with the one-ring

channel model.

To check the statistical accuracy of our fading simulator hardware we compared the

measured cross-correlations with their corresponding analytical approximations. In this

simulation the transmitter and the receiver of a 2×2 MIMO system are setD = 860 meters

apart and the antenna tilt at the receiver and transmitter is α12 = β12 = 90 degrees.

Further, the maximum Doppler frequency is fD = 10 Hz and samples are generated at

Fs = 1000 samples per second. We set the wavelength λ = 20 cm, and Rice factor

K11 = K12 = K21 = K22 = 0, and κ = κT = κU = 0.

The one-ring model was simulated with NS = 256 scatterers uniformly distributed

around the receiver on a circle of radius RRX = 30 meters. Figure 4.13 shows the

cross-correlation between h11[n] and h22[n] versus transmitter and receiver antenna sep-

aration. The simulation results are obtained using our fixed-point hardware model. Figure

4.14 shows the approximated theoretical cross-correlation from equation (4.11), (4.16), and
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(4.17). Figure 4.15 plots the difference between the theoretical approximation and the mea-

sured cross-correlation. As this figure shows, there is an insignificant difference between

the expected cross-correlation and the generated results.

Moreover, Figure 4.16 plots the estimated ergodic capacity of the above one-ring M ×
N = 2 × 2 MIMO channel. The ergodic capacity is expressed as [185]

E{C} = E
{

log2 det
(

IN +
σ

M
HH∗

)}

bps/Hz, (4.49)

where IN is an N ×N identity matrix, and σ is the signal-to-noise ratio. In this simulation

the signal-to-noise ratio is set to 15 dB and the ergodic capacity is plotted versus antenna

separation at the transmitter and receiver. Note that for a single antenna system (M =

N = 1) the ergodic capacity is approximately 4.32 bps/Hz. As mentioned before, the one-

ring channel model can be related to a scenario where the base-station (transmitter) is not

obstructed while the mobile-station (receiver) is surrounded by scatterers. As this figure

shows, in a one-ring fading channel mode increasing the antenna spacing at the mobile-

station does not increase the channel capacity significantly, while increasing the antenna

spacing at the base-station affects the channel capacity considerably.

Figure 4.17: Cross-correlation between h11[n] and h22[n] versus transmitter and receiver

antenna separation. Results are obtained from fixed-point computer simulation of a MIMO

channel with the geometric elliptical channel model.
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Figure 4.18: Theoretical approximation of the cross-correlation between h11[n] and h22[n]
for the geometric elliptical channel model plotted versus antenna separation at the transmit-

ter and the receiver.

Figure 4.19: Difference between the measured cross-correlation and the theoretical ap-

proximation of the cross-correlation between h11[n] and h22[n] for the geometric elliptical

channel model.

Figure 4.20: Estimated ergodic capacity of a 2×2 MIMO channel versus antenna separation

at the transmitter and receiver. The MIMO fading channel is simulated with the geometric

elliptical channel model.
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We also verified our fading simulation platform by simulating a 2 × 2 MIMO fading

channel with the geometric elliptical model. The system parameters are chosen like in

the above MIMO system. In this model, NS = 256 scatterers surround the transmitter

and the receiver on an ellipsoid with the major axis of 2a = 1460 meters and the minor

axis of 2b = 1182 meters. Figure 4.17 shows the measured cross-correlation between

h11[n] and h22[n] versus transmitter and receiver antenna separation. The theoretical cross-

correlation approximation is shown in Figure 4.18 and the difference between the measured

cross-correlation and the expected results is illustrated in Figure 4.19. The theoretical ap-

proximation of the cross-correlation was found by numerical evaluation of equations (4.23),

(4.17), and (4.25). As Figure 4.19 shows, the generated fixed-point samples have accurate

statistics.

Figure 4.20 plots the ergodic capacity of the above MIMO channel model versus an-

tenna spacing at the transmitter and receiver. As this figure shows, when both transmitter

and receiver are surrounded by scatterers, unlike the one-ring model, increasing the antenna

spacing at either side can help increasing the channel capacity.

Figure 4.21: Cross-correlation between h11[n] and h22[n] versus transmitter and receiver

antenna separation. Results are obtained from fixed-point computer simulation of a MIMO

channel with the two-ring channel model.
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Figure 4.22: Theoretical approximation of the cross-correlation between h11[n] and h22[n]
for the two-ring model plotted versus antenna separation at the transmitter and the receiver.

Figure 4.23: Difference between the measured cross-correlation and the theoretical approx-

imation of the cross-correlation between h11[n] and h22[n] for the two-ring channel model.

Figure 4.24: Estimated ergodic capacity of a 2×2 MIMO channel versus antenna separation

at the transmitter and receiver. The MIMO fading channel is simulated with the two-ring

channel model.
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We also simulated a 2 × 2 MIMO channel with the two-ring channel model. In this

model, we uniformly distributed NS1 = 128 scatterers around the transmitted on a cir-

cle of radius RTX = 30 meters. Also we assumed that NS2 = 128 scatterers surround

the receiver uniformly on a ring of radius RRX = 30 meters. The rest of the system

parameters are chosen like the above system parameters. Figure 4.21 plots the measured

cross-correlation between h11[n] and h22[n] versus transmitter and receiver antenna separa-

tion. The theoretical approximation for the cross-correlation from equations (4.33), (4.17),

(4.39), (4.40), and (4.41) is plotted in Figure 4.22. The difference between the simulated

cross-correlation and the theoretical approximation is plotted in Figure 4.23. Comparing

the result in figures 4.21 and 4.22 shows some difference between the measured results

and the expected cross-correlation. The difference is mainly because of the low number of

simulated scatterers.

The approximate equation for the cross-correlation between fading samples in (4.39),

(4.40), and (4.41) is based on the assumption of continuous distribution of an infinite num-

ber of scatterers. However, implementation complexity of simulating the two-ring model

grows prohibitively large as the number of first- or second-bounce scatterers increases.

The simulation of the fixed-point model for double-scattering scenarios is extremely

computationally intensive as it needs to generate 100 × 100 = 10000 cross-correlations

point for each plot. We require a large number of channel samples (here we used 10000

sample) for reliable estimation of the cross-correlation. Moreover, (M×N)×(NS1×NS2+

1) complex sinusoids need to be scaled and superimposed for calculation of each set of

fading samples. With NS1 = 128 and NS2 = 128 scatterers and for M = N = 2 antennas,

our software model required twenty four days to generate 6.554× 1012 complex sinusoids,

and estimate the correlations on a dual-core 3.6 GHz Intel Xeon processor. Note that our

fixed-point library includes kernels written in the 80386 32-bit machine language and is

extremely fast (80386 Assembly language embedded in C code and linked to MATLAB as a

library of MEX files). Software simulation of double-bounce scattering becomes very time

consuming as the implementation complexity grows rapidly with the number of scatterers.

Figure 4.20 plots the ergodic capacity of the above two-ring MIMO channel model

versus antenna spacing at the transmitter and receiver. As this figure shows, proper antenna

spacing at both transmitter and receiver can increase the channel capacity in this scenario.
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Figure 4.25: Illustration of the impact of the keyhole effect on the channel capacity. This

figure shows the estimated ergodic capacity of a 2 × 2 MIMO channel versus antenna sep-

aration at the transmitter and receiver.

To show the impact of the keyhole effect on the capacity of a MIMO channel, we used

our fading simulator to simulate a double-bounce scattering case where there is no LOS

path between the transmitter and receiver, and the transmitted signal bounces off a couple

of far scatterers (i.e., NS1 = 2) before reaching the receiver by bouncing off NS2 = 256

near scatterers. The far scatterers are located RTX = 150 meters from the transmitter at

µT = 140 degree angle with the directivity parameter κT = 80 (narrow beam). Also,

NS2 = 256 near scatterers are uniformly distributed on a circle around the receiver. The

rest of the system parameters are set like the above systems. Figure 4.25 shows the impact

of the keyhole effect on the capacity of the 2 × 2 MIMO system. As this figure shows,

increasing the antenna separation between the transmitter or receiver does not improve the

channel capacity significantly. Please note that the ergodic channel capacity for a single

antenna system at the same signal-to-noise ratio (15 dB) is approximately 4.32 bps/Hz. As

this figure shows, when the keyhole effect happens, the capacity of the multiple-antenna

channel does not show significant improvement over single-antenna channels.

4.4.4 Hardware Implementation Results

We implemented our new fading simulator for a 4 × 4 MIMO system on a Xilinx Virtex-

5 XC5VLX110-3 FPGA. We configured the hardware to generate 16 streams of channel

gains. Table 4.1 presents the implementation results of our fading simulator. In the im-

plemented hardware, we set the maximum number of scatterers to NS = 128. However

more scatterers can be added easily by increasing the storage capacity. The implemented

hardware can be configured to simulate a wide variety of propagation conditions and chan-
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nel models. Our FPGA implementation uses only 4597 configurable slices, two multipliers

(DSP48E), and three on-chip 36-Kb block memories. Moreover, Table 4.1 compares the

new fading simulator with two MIMO fading simulators. As this table shows, the new fad-

ing simulator is faster and much smaller than the designs reported in [59] and our previous

fading simulator in [8], despite the fact that the new design simulates more scatterers and is

capable of simulating more fading model types. The accuracy, speed and compactness of

the proposed design makes it an appropriate simulator for hardware verification of MIMO

systems.

Table 4.1: Comparison of Implementation Results
Design I (from [59]) II (from [8]) III (NEW)

MIMO Model IID IID IID, GSCM

M ×N 4 × 4 4 × 4 4 × 4
NS 16 8 128

FPGA EP20K1000-3 XC2VP100-6 XC5VLX110-3

Max. Clock 50 MHz 201.1 MHz 324.5 MHz

Output rate 16 × 1.5 2 × 16 × 201 16 × 324.5
# of slices 22576 (58%) 41198 (93%) 4597 (6.6%)

# of MULTs − 272 (61%) 2 (3%)
# of BRAMs (17%) 288 (65%) 3 (2.0%)

We used the designed fading simulator for testing a 2 × 2 MIMO system on a GVA-

290 FPGA board [161]. This board hosts two Xilinx Virtex-E XCV2000E FPGAs. The

testing platform includes a pseudo-random data source and a data sink for the bit error

rate (BER) performance measurements. The fading channel simulator implemented on this

prototyping platform can be parameterized in real-time using the host computer to simulate

various propagation conditions.
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Figure 4.26: Bit error rate performance of a 2×2 MIMO system measured using the FPGA-

based fading simulator.

Using our testing platform we measured the BER performance of a 2×2 MIMO system.

The transmitter under test utilizes an extended Golay channel-code, an interleaver of length

16383, and a 4-QAM modulator. The receiver includes a maximum-likelihood (ML) detec-

tor with perfect channel state information, a de-interleaver and a decoder for the extended

Golay code. The implemented MIMO system will be explained in more detail later in this

chapter.

Figure 4.26 shows the hardware-generated uncoded and coded BER performance of this

MIMO system under the geometric elliptical and two-ring MIMO channel models when the

antenna spacing at the transmitter and the receiver is 0.5× λ. We simulated a 2× 2 MIMO

system in which the receiver is placed D = 860 meters away from the transmitter. The

transmit and receive antenna arrays are positioned at a 90 degree angle from the horizon.

Also the receiver is assumed to be moving in the γ = 60 degree direction. We set the

maximum Doppler frequency fD = 10 Hz, wavelength λ = 20 cm, Rice factor K11 =

K12 = K21 = K22 = 0, and κ = κT = κU = 0.

In the geometric elliptical model, NS = 128 scatterers surround the TX and RX uni-

formly on an ellipsoid with the major axis of 2a = 1460 meters and the minor axis of

2b = 1182 meters. Also, for the two-ring model, NS1 = 32 and NS2 = 64 scatterers uni-

formly surround the TX and RX, respectively, on two circles of radius RTX = RRX = 30

meters. The implemented fading simulator shows the difference in the performance of the

system under test for the two different propagation scenarios.
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4.5 Analytical Models

In contrast to physical models that characterize physical aspects of wave propagation, ana-

lytical channel models express the MIMO channel impulse response in terms of a complex

matrix with a specific structure. Due to the convenience of analysis, these models are pop-

ular in analytic studies of MIMO systems (see for example [200, 210–214]).

Analytical channel models try to mimic different aspects of a MIMO fading channel.

Correlation-based analytical models try to generate fading samples with specific correla-

tion properties [184, 200, 212–214, 223, 226]. Other analytical fading channel models are

inspired by the propagation effects in the MIMO fading channel [210, 227–230].

The simplest MIMO channel model is the i.i.d. channel model which is characterized

by channel coefficients that are i.i.d. zero-mean complex Gaussian random variables. This

idealized channel model allows tractable theoretical results, such as the ergodic channel ca-

pacity [184, 185]. The i.i.d. MIMO channel model corresponds to a so called “rich scatter-

ing” narrow-band scenario. In practice, however, the channel coefficients between different

transmit-receive antenna pairs show correlation due to clustered scattering in realistic en-

vironments, antenna response and antenna spacing. In realistic conditions, the capacity of

MIMO channels can be substantially lower depending on the level of correlation [200,227].

Assuming that the narrow-band MIMO fading channel is described as a stationary and

zero-mean complex Gaussian process, we can fully characterize the MIMO fading process

with its second-order statistics [76]. If H is an N × M matrix, then we use vec(H) =

[hT1 , ...,h
T
M ]T to denote the NM × 1 vector formed by stacking the columns of H (here

(·)T denotes the transpose operation). Using this notation, the full correlation matrix is

expressed as [200, 223, 226]

RH = E{hhH}, (4.50)

where h = vec{H}, and (·)H denotes the conjugate transpose (a.k.a. Hermitian trans-

pose) operation. Based on the zero-mean complex Gaussian assumption, the multivariate

Gaussian fading process is fully described by its PDF [76] given by

f(h) =
1

πMN det{RH}
exp

{

−hHR−1
H h

}

. (4.51)

The most general way of generating the zero-mean complex Gaussian MIMO channel

impulse response H is by

H = unvec{R1/2
H g}, (4.52)
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where g is an MN × 1 vector of unit-variance and zero-mean i.i.d. complex Gaussian

variables, and R
1/2
H denotes any arbitrary matrix square root satisfying R

1/2
H (R

1/2
H )H =

RH . For example, R
1/2
H can be calculated as R

1/2
H = UΣ1/2UH where U and Σ are

obtained by eigenvalue decomposition of RH , i.e., UΣUH = RH .

Note that the main drawback of the above model, also known as the full correlation

model, is its complexity. In this model, (MN)2 parameters are required to fully characterize

the correlation between fading samples, however, a direct relation between elements of RH

and the physical propagation effects is not clear. Several different analytical models have

been proposed in the literature to simplify the full correlation model and provide a direct

interpretation of the elements of RH (e.g., the Kronecker and the Weichselberger channel

models [194, 212–214, 223, 226, 263, 269]).

In the following we briefly present the Kronecker, Weichselberger, and virtual channel

representation channel models. We will also discuss efficient efficient hardware implemen-

tation of a MIMO fading channel simulator that supports the above models.

4.5.1 Kronecker Model

The Kronecker model is one of the analytical MIMO fading channel models that is widely

used in the research community [194, 200, 212–214, 223, 263, 269]. This model was pro-

posed by [223] in the framework of the IST SATURN project [270] and has also been used

in the IEEE 802.11n TGn channel model [92].

The Kronecker model assumes that the spatial correlation at the transmitter end is in-

dependent of the spatial correlation at the receiver end (see equations (4.39), (4.40), and

(4.41) as a justification), hence the full correlation matrix RH can be well approximated as

the Kronecker product of the correlation matrices of both ends, i.e.,

RH = RTX ⊗ RRX , (4.53)

where ⊗ denotes the Kronecker product, RTX = E{HTH∗} is the TX correlation matrix

where (·)∗ is the conjugate operator, and RRX = E{HHH} denotes the RX correlation

matrix. The assumption (4.53) can be used to simplify the fading channel simulation. Under

this assumption it can be shown than the (4.52) simplifies to

H = unvec{(RTX ⊗ RRX)1/2g},

= R
1/2
RXG(R

1/2
TX)T , (4.54)
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where G = unvec{g} is an N ×M matrix with i.i.d. zero-mean unit-variance complex

Gaussian elements.

Besides the simplicity of channel matrix synthesis, the other advantage of the Kronecker

model over the full correlation model is the reduced number of MIMO channel model pa-

rameters (from (MN)2 to M2 + N2). Moreover, the spatial correlation properties of the

channel can be estimated separately at the transmitter and receiver ends. Note that the Kro-

necker model cannot be used for the accurate simulation of MIMO fading channels with

single-bounce scattering because the Kronecker simplification in equation (4.53) removes

any dependence between the DOD and the DOA which is a basic characteristic of MIMO

channels with single-bounce scattering.

4.5.2 Weichselberger Model

Compared to the Kronecker model, the Weichselberger channel model removes the separa-

bility restriction and allows for coupling between AOD and AOA [226, 271]. This model

was proposed based on channel measurements and has been verified by other researchers in

indoor and outdoor-to-indoor communication scenarios [272–274].

The Weichselberger model represents the MIMO channel impulse response matrix as

H = URX(Ω̃W ⊙ G)UT
TX , (4.55)

where ⊙ denotes the Schur-Hadamard product, G is anN×M matrix with i.i.d. zero-mean

and unit-variance complex Gaussian elements, and URX and UTX are the receive and

transmit eigenbasis given by the eigenvalue decomposition of RRX and RTX respectively,

i.e.,
RRX = URXΛRXUH

RX ,
RTX = UTXΛTXUH

TX .
(4.56)

Moreover, in equation (4.55) Ω̃W denotes the element-wise square root of the N ×M cou-

pling matrix ΩW which has non-negative and real-valued elements. The coupling matrix

ΩW can be obtained by

ΩW = E
{

(UH
RXHU∗

TX) ⊙ (UT
RXH∗UTX)

}

. (4.57)

Overall the Weichselberger channel model provides a good trade off between simplicity

of the model and the correct characterization of correlation between TX and TX antenna

elements [226].
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4.5.3 Virtual Channel Representation Model

In contrast to the Weichselberger model that expresses the MIMO fading channel in the

eigenspace, the virtual channel representation (VCR) model [227] uses the beamspace in

channel modeling. Inspired by the double-directional channel representation [240], the

VCR model partitions the AOD and AOA angular range into discrete virtual angles. The

number of virtual angles is determined by number of antenna elements at each end. For the

M -element antenna array at the transmitter,M virtual angles are selected in such a way that

the M steering vectors are orthonormal. At the transmitter side, these orthonormal steering

vectors form the M ×M unitary steering matrix ATX . For the N -element antenna array

at the receiver side, an N × N unitary steering matrix ARX is built in a similar way. The

VCR model is expressed as [227]

H = ARX(Ω̃V ⊙ G)AH
TX , (4.58)

where theN×M matrix Ω̃V represents the amplitude coupling between the corresponding

virtual angles of the TX and RX ends. Here Ω̃V is the element-wise square root of the

N ×M power coupling matrix ΩV whose real and non-negative elements determine the

power coupling between the TX and the RX virtual directions. Further, the power coupling

matrix for the VCR model can be expressed as

ΩV = E
{

(AH
RXHA∗

TX) ⊙ (AT
RXH∗ATX)

}

. (4.59)

The VCR channel model can be easily interpreted based on the geometrical propagation.

There is a direct link between the rank of Ω̃V and the channel capacity [227]. Also, the

diversity level of each sub-channel is directly related to the number of virtual RX angles

that couple with each virtual TX angle [227].

4.6 Hardware Simulation of the Analytical Models

The above analytical MIMO channel models can be simulated by introducing specific cor-

relation between zero-mean i.i.d. Gaussian samples. These i.i.d. fading samples can be

generated either with the fading simulators presented in the previous chapters or with the

MIMO fading channel simulator presented in Section 4.4. To generate i.i.d. Gaussian sam-

ples with the fading simulator presented in Section 4.4, we can distribute the scatterers

isotropically around the receiver.
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Assuming that G is the N ×M matrix with zero-mean i.i.d. Gaussian samples (i.e.,

spatially independent rich-scattering MIMO flat fading channel), the Kronecker MIMO

fading channel model can be expressed as

H = UGV, (4.60)

where U = R
1/2
RX and V = (R

1/2
TX)T (see equation (4.54)). Moreover, the Weichselberger

model and the VCR model can be written as

H = U(W ⊙ G)V, (4.61)

where for the Weichselberger model (see equation 4.55)

U = URX ,
V = UT

TX ,

W = Ω̃W ,

(4.62)

and for the VCR model (see equation 4.58)

U = ARX ,
V = AH

TX ,

W = Ω̃V .

(4.63)

Also, in addition to the above three models, we can express the finite scatterer channel

model [210] and the maximum entropy channel model [229] with equation (4.61).

4.6.1 Sample Generation

Here we want to implement a pipelined architecture for the efficient calculation of equations

(4.60) and (4.61). The implemented architecture needs to 1) receive the elements of matrix

G from the previous stage, which is the MIMO fading sample generator that was introduced

in Section 4.4.1, 2) perform the matrix operations of either equation (4.60) or equation

(4.61), and 3) pass the generated samples to the next stage for interpolation.

As mentioned in the previous section, the fading sample generator in Figure 4.8 gener-

ates the difference between the low-frequency fading samples, i.e.,

D[z] =
[

dlp[z]
]

= G[z + 1] − G[z]. (4.64)

according to equation (4.48). The difference samples are then passed to the linear inter-

polators for up-sampling. To introduce correlation between the i.i.d. fading samples, we

can perform the matrix calculations (4.60) and (4.61) on the high-frequency samples. Al-

ternatively, to implement an efficient and compact hardware we can perform the matrix
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operations on the low-frequency fading samples and later up-sample the resulting streams

with appropriate interpolators. To use linear interpolators, we need to generate the differ-

ence between the fading samples,

E[z] =
[

elp[z]
]

= H[z + 1] − H[z]. (4.65)

Moreover, due to the linearity of the basic matrix multiplication we can verify that

UG[z + 1]V − UG[z]V = U(G[z + 1] − G[z])V

= UD[z]V, (4.66)

and since the Schur-Hadamard product is a linear operation too, we can write

U(W ⊙ G[z + 1])V − U(W ⊙ G[z])V = U(W ⊙ (G[z + 1] − G[z]))V

= U(W ⊙ D[z])V. (4.67)

Equations 4.66 and 4.67 imply that instead of performing the matrix operations (4.60) and

(4.61) on the original i.i.d. fading samples, we can use the difference samples. Therefore,

the difference sample from the datapath in Figure 4.27 can be directly used for simulating

analytical channel models. We will later increase the sample rate of individual streams

using linear interpolation.
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Figure 4.27: Datapath of the pipelined architecture for performing the matrix operations of

equations (4.60) and (4.61).
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Figure 4.27 shows the datapath of the implemented architecture for performing the ma-

trix operations. For convenience of presentation, this architecture will be loosely referred

to as the “matrix processor” henceforth. However, this architecture is not a true processor

as the control unit does not read instructions from a program memory. Instead, the control

unit is implemented using a set of low-level microinstructions for the elementary matrix

operations including the basic matrix summation, matrix product, and the Schur-Hadamard

matrix product. This architecture can be converted to a complex matrix processor by mak-

ing specific changes to the control unit. However designing an efficient compiler that could

exploit the pipelining capabilities of this processor is out of the scope of this thesis.

Instead of designing a true processor and performing the matrix operations with individ-

ual instructions, we developed specific subroutines of microinstructions to perform the basic

matrix operations. These subroutines are developed to perform these matrix operations effi-

ciently as they exploit the pipelining capabilities of the datapath in Figure 4.27. Moreover,

the developed subroutines can be parameterized to perform the basic matrix operations for

different matrix dimensions (M and N ). Also, the control unit can be programmed to

perform these matrix operations is any order.
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Figure 4.28: Datapath of the pipelined arithmetic unit for performing the basic complex

operations.

The core of this matrix processor is an arithmetic unit (AU) that is designed for the

basic complex arithmetic operations. Figure 4.28 shows the datapath of this AU that can

calculate complex products, complex additions, and real-by-complex products. In other

words, for the two complex inputs aI + jaQ and bI + jbQ, the AU in Figure 4.28 can
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calculate rI + jrQ = (aI + jaQ) × (bI + jbQ), rI + jrQ = (aI + jaQ) + (bI + jbQ),

and rI + jrQ = aI × (bI + jbQ).

The main components of this AU are the 18-bit multipliers U2 and U3 that operate on

the quadrature parts. Moreover, the 36-bit output of the multiplier U2 (U3) is rounded to

the nearest 18-bit value by the modules U4, U5, and U8 (U6, U7, and U9). As we will see

later, the rounding operation is necessary to reduce the the quantization noise and stabilize

the linear interpolators.

When the addition operation is selected, the in-phase parts of the complex inputs (i.e.,

aI and bI) are routed to the adder/subtracter U14 either through the multiplexer U10, or

through the multiplexers U0 and U11. Also, the quadrature parts of the complex inputs (i.e.,

aQ and bQ) are routed to the adder U13 through the multiplexers U0 and U1. The output

samples rI = aI + bI and rQ = aQ + bQ are then sent to the output via multiplexers

U16 and U17. All of the above operations are pipelined and when the pipeline is full (for

complex addition), the AU can perform one complex addition per clock cycle.

For the real-by-complex product, the real input aI is passed to the multipliers U2 and U3

where it is multiplied by the bI and bQ respectively. After rounding, the results rI = aI×bI
and rQ = aI × bQ are passed to the output through multiplexers U16 and U17. Note that

the above operations are pipelined as well and when the pipeline (for real by complex

product) is full, the AU needs only one clock cycle for every product.

In contrast to the other complex operations that can be performed in a single clock

cycle, the complex product needs two clocks (considering a full pipeline). In the first cycle,

the inputs aI and bQ are passed to the multiplier U2 and the inputs aQ and bI are routed

to the multiplier U3. After rounding, the results of these two products are passed to the

adder/subtracter U14where the quadrature part of the result, aI×bQ+aQ×bI is calculated

and stored in the register U12. In the next cycle, the inputs aI and bI are passed to the

multiplier U2 and the inputs aQ and bQ are passed to the multiplier U3. The calculated

products are then rounded and passed to the adder/subtracter U14 and the in-phase part of

the result, aI × bI − aQ × bQ, is calculated. Moreover, the in-phase and the quadrature

parts of the result are passed to the output through the multiplexers U16, U15, and U17.

In the datapath shown in Figure 4.27, the three RAMs uRAM, wRAM, and vRAM are

used to keep the elemements of the U, W, and V matrices respectively. These memories

are dual-port RAMs that can be accessed and programmed externally through the address
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bus xAddrBus and the data bus xDataBus for the real-time configurablity. Moreover,

the dual-port memory tRAM is used as a register bank for holding the intermediate results.

The control unit can read the elements of U, W, and V matrices using the address bus

uwvAddr. Further, to access tRAM, the control unit uses the address lines tAddrA and

tAddrB.

In Figure 4.27 the module Y5 is implemented to interface the matrix processor to the

fading generator module in Figure 4.8. This module keeps two copies (page0 and page1)

of the difference samples from the previous stage. The quadrature input data is presented in

32-bit format, 16 bits of which are used to present the in-phase (real) part and the remaining

16 bits are used for presenting the quadrature (imaginary) part. Before being passed to the

AU, the input samples are converted to 36-bit variables (18 bits for the in-phase part and 18

bits for the quadrature part).

When the Kronecker channel model is selected, the control unit reads the complex

elements of the input matrix D form Y5 through the multiplexer Y6 and passes them to the

AU. To perform the matrix operations needed for the Kronecker channel model, the matrix

processor starts by calculating

T1 = UD, (4.68)

where the elements of U are read from uRAM, and the elements of the temporary matrix T1

are written to tRAM. To increase the system throughput and efficient use of the pipelined

datapath, the control unit of the matrix processor performs the matrix multiplication (4.68)

in N steps (assuming that U is N ×N and D is N ×M ). More specifically, the equation
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(4.68) is calculated as

T1 =











u11 u12 · · · u1N

u21 u22 · · · u2N
...

...
. . .

...

uN1 uN2 · · · uNN





















d11 d12 · · · d1M

d21 d22 · · · d2M
...

...
. . .

...

dN1 dN2 · · · dNM











=











u11d11 u11d12 · · · u11d1M

u21d11 u21d12 · · · u21d1M
...

...
. . .

...

uN1d11 uN1d12 · · · uN1d1M











+











u12d21 u12d22 · · · u12d2M

u22d21 u22d22 · · · u22d2M
...

...
. . .

...

uN2d21 uN2d22 · · · uN2d2M











+

. . .











u1NdN1 u1NdN2 · · · u1NdNM
u2NdN1 u2NdN2 · · · u2NdNM

...
...

. . .
...

uNNdN1 uNNdN2 · · · uNNdNM











. (4.69)

In the first step, the first column of U is multiplied by the first row of D and the results

are stored in the temporary memory tRAM. In the second step, the second column of U is

multiplied by the second row of D and so on, until the N th column of U is multiplied by

the N th row of D. Then the matrix processor accumulates the N sub-product matrices to

generate the multiplication result. The reason for this out-of-order processing for complex

matrix multiplication is that the AU has different latencies for complex addition and com-

plex multiplication operations. By sorting the multiplication and addition operations we

can increase the throughput of AU and avoid unnecessary bubbles in the pipeline.

Further, for the Kronecker model, the calculated temporary matrix T1 is used to gener-

ate the difference samples

E = T1V, (4.70)

where the elements of V are read from vRAM, the elements of T1 are read from tRAM,

and the elements of the output matrix E are written to the two page buffer Y9 to be passed

to the interpolators. This matrix multiplication is performed similar to the previous matrix

multiplication. This operation is first broken into M multiplication operations between

the columns of T1 and the rows of the matrix V. Then the M sub-product matrices are
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accumulated to generate the output matrix E.

Simulating the Weichselberger model and the VCR model requires an additional Schur-

Hadamard (or element-wise) product. More specifically, the simulator first calculates

T2 = W ⊙ D

=











w11 w12 · · · w1M

w21 w22 · · · w2M
...

...
. . .

...

wN1 wN2 · · · wNM











⊙











d11 d12 · · · d1M

d21 d22 · · · d2M
...

...
. . .

...

dN1 dN2 · · · dNM











=











w11d12 w12d12 · · · w1Md1M

w21d21 w22d22 · · · w2Md2M
...

...
. . .

...

wN1dN1 wN2dN2 · · · wNMd1M











. (4.71)

Note that the elements of the matrix W are real-valued and therefore the AU can calcu-

late each of the real-by-complex products in a single clock cycle (when the pipeline is

full). After calculating T2, the matrix processor proceeds with calculating T3 = UT2 and

E = T3V. These matrix multiplications are also performed with the same matrix multipli-

cation subroutine that breaks the calculations into N (or M ) stages for effective use of the

pipelined datapath.

4.6.2 Interpolation

For hardware simulation of the analytical MIMO channel models, we used a similar linear

interpolator to the one presented in Section 4.4.2. In contrast to simulating physical models

which only require superposition of zero-mean waves, simulating analytical MIMO channel

models requires multiple fixed-point multiplication and addition operations.

The number of bits generated by a multiplier is the sum of the number of bits of the in-

put operands. However, implementing a significantly wider datapath for the multiplication

results was mainly avoided here to reduce the hardware complexity. Instead some of the

output bits were trimmed. This, however, can increase the quantization noise that can affect

the accuracy of the implemented fading simulator.
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Figure 4.29: The effect of rounding on the interpolator output.

As an example, Figure 4.29 shows a drift in the interpolated fixed-point samples com-

pared to the floating-point results for a Weichselberger channel model. This drift, due to

quantization noise, has been accumulated over a large number of samples. Notice that

the linear interpolator in equation (4.47) is implemented with a running summation which

resembles a lowpass infinite impulse response (IIR) filter with the frequency response

Hi(e
j2πf ) = 1/(1 − e−j2πf ). This IIR filter accumulates the input samples (extremely

large gain at zero frequency) and therefore any DC component in the input will add up over

time.

The interpolator presented in Section 4.4.2 can be used effectively for interpolating

samples generated by the fading simulator datapath in Figure 4.8, because the difference

signal has no DC components. In other words, the impulse response of the difference

block, hd[n] = δ[n] − δ[n− 1] (see equation (4.48)), in frequency domain is Hd(e
j2πf ) =

1 − e−j2πf which has no output at zero frequency, i.e., Hd(e
j2π0) = 0. On the other hand,

the quantization noise added by the matrix processor is not necessarily DC-free.

The rounding technique used in the matrix processor has a significant effect on the DC

component of the added quantization noise. For example, rounding down to smaller fixed-

point values always results in a positive residue (or quantization noise). Simply ignoring

the extra least significant bits after a multiplication could be interpreted as rounding down

to smaller fixed-point values.

An effective method is rounding the multiplication results to the nearest fixed-point

samples. Rounding the multiplication results can significantly reduce the DC component of
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the quantization noise, since the multiplication results are rounded up “hopefully” as many

times as they are rounded down. Figure 4.29 also shows the improvement in removing the

drift and the effectiveness of the rounding technique for the same Weichselberger fading

channel model. As this figure shows, no clear DC bias (or drift) can be observed after two

million samples when rounding the multiplier outputs.

We added the rounding functionality to the matrix processor and simulated different

channel models and channel conditions. The fixed-point bit-true model was verified based

on the computer simulation and we proceeded with implementing our fading simulator on

a GVA-290 FPGA prototyping platform [161]. The fading simulator was set to generate

50 million samples per second. The generated fading samples seemed to have the required

statistical properties (mean and variance). However, the mean and variance of the generated

samples started to deviate from theoretical results after a few minutes. The speed and the

direction of deviation for quadrature components of each fading sample were related to

the simulated scenario and specific values of the U, W, and V matrices. In one case, a

12% change in the signal variance happened after five minutes of sample generation, or

5 × 60 × 50 × 106 = 1.5 × 1010 samples. This deviation was happening very slowly in

time and could not be predicted with computer simulations due to the limited computer

simulation speed.

We later found that the deviation is caused by accumulation of the DC component of

quantization noise in the interpolators. More specifically, the assumption that samples are

rounded up as many times as they are rounded down on average is not accurate. Even the

slightest DC components in the quantization noise add up in the interpolator and can render

it unstable after rather long periods of time. KLMNOPKMQRSKLMNORS TUVLMNOWMXY Z[\][^ _TNK `` Z^^][^Z^a][aZ^a][aZ[b][a KcdeKcdeN fgfhfi
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Figure 4.30: Datapath of the implemented sub-interpolator with DC cancellation.

To solve this problem, we modified the interpolator to remove the DC component from

the output. The DC cancellation should not affect the overall low-frequency response of the
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interpolator since the fading samples can have close-to-DC frequency components. How-

ever the exact DC components of the fading samples, e.g., contributions of line-of-sight

path when the angle of arrival is exactly 90 degrees, would be affected.

Figure 4.30 shows the datapath of the modified interpolator. Only the in-phase branch is

shown in this figure. Also, the two-page buffers are not implemented with the interpolators

since they have been moved to the matrix processor. The main modification in the new

interpolator is the addition of negative feedback to the accumulator N2 (or integrator). In

this feedback loop, the sign of the accumulator output (from the most significant bit) is fed

back and subtracted from half of the least significant bit of the input. More specifically,

12-bits have been used to represent the fraction part of the difference input e[n] as shown in

Figure 4.30. The magnitude of the feedback signal is limited to half of the least significant

bit of the input. Notice that the accumulator output is later divided by the interpolation

factor in the barrel shifter N3. This would further reduce the relative amount of feedback to

the output signal.
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Figure 4.31: Frequency response of the implemented linear interpolator.

Figure 4.31 shows the frequency response of the modified linear interpolator which

includes the modified integrator (N2, N3, and N4, in Figure 4.30) and the differentiator

(U18 and U19 in Figure 4.8). In this figure, the interpolation factor is set to I = 16. As this

figure shows, the addition of the negative feedback adds a sharp notch at the DC frequency.

Particularly, the DC frequency has been attenuated more than 60 dB while the frequency

165



4.6 Hardware Simulation of the Analytical Models

response goes back to 0 dB at 1.5 × 10−5 Hz. The other effect of the added feedback is

reduced attenuation at 0.5 radians per sample. However, the attenuation is still sufficient

to reduce the unwanted frequency components. Therefore the implemented circuit can be

used effectively for interpolating the fading samples.

4.6.3 Simulation Results

To estimate the bit error rate (BER) performance of a communication system with the Monte

Carlo (MC) simulation method, we have to measure the BER over a large number of inde-

pendent problem instances [93]. Simulation of additive white Gaussian noise (AWGN)

channels is straightforward as the system performance is averaged over a large number of

independent instances of noise and data.

Simulation of time varying fading channels, on the other hand, requires significantly

longer simulation times due to the dependence between the channel instances. To accu-

rately estimate the BER performance of a communication system over a time-varying fad-

ing channel, the error performance needs to be averaged not only on independent instances

of noise and data, but also on the fading channel samples. One solution is to estimate the

error rate performance on a quasi-static channel in which fading samples are assumed to

be constant over one frame of data. However, this assumption is not accurate particularly

for fast fading scenarios and provides unrealistic results. Moreover, several communication

blocks (such as channel codes, interleavers, channel estimation and equalization, timing es-

timation, frequency offset estimation and compensation, and automatic gain control) need

to be verified on time-varying channels for different Doppler rates. Thus, an accurate per-

formance estimation needs to be performed over a long period of time (compared to the

channel coherence time Tc ≈ 0.423/fD [20]), and a large number of independent instances

of noise and data.

Due to the computational complexity of the fixed-point simulation, measuring the BER

performance of a MIMO communication systems with our bit-true model on time-varying

channels was very slow. We used our hardware simulation platform to measure the BER

performance of a 2 × 2 MIMO system. The hardware simulation platform and the imple-

mented MIMO system are discussed in Section 4.7. The transmitter under test utilizes an

extended Golay channel code, a length-16383 interleaver, a 4-QAM modulator, and an ML

decoder at the receiver. Also, perfect channel state information is assumed to be available

to the receiver.
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Figure 4.32: Uncoded bit error rate performance of a 2 × 2 MIMO system measured using

the FPGA-based fading simulator for different channel models.

Figure 4.32 shows the uncoded BER performance of this 2 × 2 MIMO system for

different channel models. In this platform, the sample rate is set to 3.125 million samples

per second or 12.5 mbps (the maximum speed supported by the ML detector), and the

Doppler frequency is fD = 350 Hz. To estimate each BER point at each signal to noise

ratio (SNR), we measured the performance over at least 1023 seconds of signal transmission

on the hardware platform, and when at least 100 errors where collected from the Golay

decoder output.

For the Kronecker channel model, the U and V matrices are set to

UK =

(

−0.2281 − j0.6045 0.0659 + j0.6270
−0.8782 + j0.6279 0.1516 − j0.0198

)

,

VK =

(

0.1914 − j0.3442 −0.1091 − j0.0796
0.1021 + j1.2781 0.4248 + j0.0667

)

.

Also, for the Weichselberger channel model, the values

UW =

(

0.0713 − j0.3103 0.2119 − j0.9238
−0.9478 0.3184

)

,

WW =

(

0.3176 0.6355
0.9077 1.6340

)

,

VW =

(

0.8012 + j0.5202 −0.2468 − j0.1602
0.2941 0.9556

)

,
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are used in the simulator. Moreover, for the VCR channel models we set these matrices to

UV =

(

0.7679 + j0.0821 −0.6316 − j0.0676
0.6352 0.7723

)

,

WV =

(

1.6356 0.4370
1.0452 0.2035

)

,

VV =

(

0.2519 + j0.7142 0.6530
−0.2172 − j0.6158 0.7573

)

.

The above values are chosen randomly to represent three different communication scenar-

ios. Figure 4.32 also plots the BER performance of the 2× 2 MIMO system under the i.i.d.

channel model (independent fading). The floating-point computer simulation results for the

i.i.d. channel model are also plotted in Figure 4.32. As this figure shows, the hardware

simulation results follow the floating-point simulation results accurately which verifies the

accuracy of our hardware fading simulation platform.
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Figure 4.33: Coded bit error rate performance of a 2× 2 MIMO system measured using the

FPGA-based fading simulator for different channel models.

Figure 4.33 plots the coded BER performance of the above MIMO system. Also,

floating-point computer simulation of the i.i.d. channel model is shown in this figure. Note

that in Figure 4.33, the computer simulation results are given up to 20 dB SNR. This is due

to the great computational complexity of the accurate BER performance measurement. In
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Figure 4.33 we can verify that the hardware generated BER results accurately match the

computer-generated BER performance.

4.6.4 Hardware Implementation Results

We implemented our matrix processor for simulating analytical MIMO channel models.

Table 4.2 summarizes the synthesis results of 2 × 2 and 4 × 4 matrix processors on Xilinx

Virtex-5 XCVLX110-3 and Altera Stratix III EP3SE50F780I4 FPGAs.

We did not use the on-chip block memories for implementing the 2×2 matrix processors

because of the small memory sizes (we used the slice registers), while for the larger 4 × 4

matrix processor, we used the available 36-Kbit block memories to store U, W, V, and

T matrices. As Table 4.2 shows, when implemented on a XC5VLX110, the 4 × 4 matrix

processor occupies only 1.8% of the configurable slices, two multipliers (DSP48E), and

four 36-Kbit block memories and can operate at up to 234.1 MHz. When implemented

on a EP3SE50, the 4 × 4 matrix processor occupies 1.8% of the adaptive look-up tables

(ALUTs) and two multipliers and can operate at up to 185.8 MHz. Note that the higher

efficiency in implementation on the Altera Stratix III device is due to the higher flexibility

in block memory allocation.

Table 4.2 also summarizes the synthesis results of the implementation of the sub-interp-

olator on the above devices. As shown in this table, the sub-interpolator can operate at up

to 448.7 MHz and 350 MHz when implemented on XC5VLX110 and EP3SE50 FPGAs

respectively. Notice that the maximum speed of the sub-interpolator corresponds to the

maximum sample generation rate of the fading simulator.

Table 4.2: Comparison of Implementation Results
Design 2 × 2 MPa 4 × 4 MP 4 × 4 MP SIb SI

Device XC5VLX110 XC5VLX110 EP3SE50 XC5VLX110 EP3SE50

Max. Clock 234.9 MHz 234.1 MHz 185.8 MHz 448.7 MHz 350 MHz

Slices/ALUTs 2016 (2.9%) 1212 (1.8%) 711 (1.8%) 96 (0.1%) 111 (0.3%)

18 × 18 MULTs 2 (3.1%) 2 (3.1%) 2 (0.5%) 0 0
BRAM bits 0 147456 (3.1%) 6336 (0.1%) 0 0

aMatrix Processor
bSub-Interpolator
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4.7 Implemented MIMO Syetem

To verify our design, we implemented a fading simulation platform for 2 × 2 MIMO sys-

tems. The implemented platform could also simulate 4-path single-input single-output

(SISO) channels.

The implemented MIMO fading channel simulator can simulate single- and double-

scattering MIMO flat-fading channel models as well as i.i.d., Kronecker, Weichselberger,

and VCR analytical channel models.
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Figure 4.34: Block diagram of the implemented fading simulation platform.

Figure 4.34 shows the block diagram of the implemented fading simulation platform.

On this platform, the fading simulator can be configured to simulate both single- and

multiple-antenna systems. We implemented a 2 × 2 MIMO communication system for

testing and verification of our fading simulator. In the implemented MIMO system, source

bits are encoded using an extended Golay code and interleaved with a length-16383 inter-

leaver. Then the interleaved bits are modulated to 4-QAM symbols and passed through the

MIMO channel where they are affected by the multipath fading and corrupted with additive

white Gaussian noise (AWGN). In the receiver, a maximum likelihood (ML) detector tries

to estimate the transmitted bits. The ML detector can be configured in real-time to have

access to complete and incomplete channel state information. After ML detection, the bit

stream is de-interleaved, decoded, and compared to the transmitted bit stream.

To demonstrate the fading effects on the transmitted symbols, we also implemented a
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single-antenna transmitter where the bits can be modulated using different schemes (BPSK,

QPSK, 4-PAM, 4-QAM, 8-PSK, 16-PSK, 16-QAM, circular 8-QAM, and circular 16-

QAM). As shown the in block diagram in Figure 4.34, the output of this transmitter can

be passed to an oscilloscope through a digital-to-analog converter. Moreover, the faded

samples (with and/or without noise) can be monitored on the oscilloscope as well. The

output of the MIMO channel can also be shown on the oscilloscope screen.

Figure 4.35: Fading simulation platform on a GVA-290 FPGA board.

We implemented our fading simulation platform on a GVA-290 FPGA board [161].

This board hosts two Xilinx Virtex-E XCV2000E FPGAs in addition to four digital-to-

analog and four analog-to-digital converters. Figure 4.35 shows the picture of the imple-

mented fading simulator on the GVA-290 board along with the power source, oscilloscope,

and the control computer. The GVA-290 board is interfaced with the control computer

through the parallel port.
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Figure 4.36: Graphical user interface of the implemented fading simulation platform.

We also developed a graphical user interface (GUI) through which we can configure

our fading channel simulator in real-time. Figure 4.36 shows the six tabs of the fading

simulator GUI. In the first tab in Figure 4.36 (a), we can set the Doppler frequency, SISO

power profile, Rice factors, delay profile (integer and fractional), and the angles of arrival

for different paths. In the second tab shown in Figure 4.36 (b), we can adjust the sample

rate, change the sample modulation for the SISO system, select the digital-to-analog output,

vary the signal-to-noise ratio, change the noise variance and also set the channel estimation

pariod for the MIMO receiver. In the third tab shown in Figure 4.36 (c), we can monitor

the complex fading samples of the SISO fading simulator along with the time-varying fre-

quency response of the SISO fading channel. In the fourth tab shown in Figure 4.36 (d), the

analytical MIMO channel model can be selected and the model parameters can be set and

passed to the FPGA board. The fifth tab shown in Figure 4.36 (e) measures the bit error rate
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performance of the implemented MIMO system using the Monte Carlo simulation method.

The program can be configured to stop the simulation based on a combination of different

criteria including the number of transmitted bits, number of errors, and transmission time.

Moreover, the measured BER performance is also exported to MATLAB. Finally, in the

sixth tab shown in Figure 4.36 (f), the complex MIMO fading channel samples are plotted.

This tab also plots the instantaneous ergodic MIMO channel capacity and its time average

for the selected signal to noise ratio.

Note that although the implemented fading simulator can simulate geometrical MIMO

channel models, the capability of real-time configuration of the fading simulator for the

geometrical models was not implemented in this version of the GUI software due to the

time limitations. However, the fading simulator can be configured (using the synthesis tool)

for the testing of the implemented MIMO system for different geometrical MIMO channel

models. Moreover, the capability of real-time configuration for the geometrical models can

be added to the next version of the GUI software.


�� 
��
Figure 4.37: Pictures of the oscilloscope output for (a) the SISO and (b) the MIMO systems.

Figure 4.37 shows two outputs of the fading simulation platform on the oscilloscope

screen. The Doppler frequency for these simulations was set to fD = 0.5 Hz so that the

changes in the scatter-plot could be easily followed. In Figure 4.37 (a), the oscilloscope

screen shows the scatter plot of the noisy output of a SISO channel. In this picture, 8−PSK

modulated samples are passed though a two-path SISO fading channel and corrupted with

AWGN. Figure 4.37 (b) shows the two noisy outputs of a the 2 × 2 MIMO channel where

the transmitted bits are modulated with 4-QAM and the signal to noise ratio is 20 dB.

In the following parts we will briefly present some of the implemented blocks in the

fading simulation platform.
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4.7.1 4-QAM Modulator and MIMO Channel

In the implemented 2 × 2 MIMO system, 4-QAM modulated symbols are passed through

the fading channel. The MIMO channel output samples can be expressed as
(

r1
r2

)

=

(

h11 h12

h21 h22

)(

s1
s2

)

+

(

n1

n2

)

, (4.72)

where hij , i, j ∈ {1, 2}, are the complex fading gains, si, i ∈ {1, 2} are the transmitted

4-QAM symbols, and ni, i ∈ {1, 2} are the AWGN samples. Since the in-phase and

the quadrature components of the 4-QAM symbols comprise only +1 and −1 values, the

MIMO channel can be implemented without using multipliers. Decomposing the complex

received samples to their in-phase and quadrature components, we can rewrite equation

(4.72) as

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nI1
nI2
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nQ2









, (4.73)

where the superscripts (·)I and (·)Q denote the in-phase and quadrature components, re-

spectively.

Using equation (4.73) designing a datapath for the MIMO fading channel is straightfor-

ward. As we will see in Section 4.7.2, the ML detector requires 16 clock cycles to detect

the transmitted symbols. The ML detector is the bottleneck in the communication chain,

limiting the transmission rate which limits the symbol rate to Fclk/16 symbols per second.
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Figure 4.38: 4-QAM modulation and MIMO channel, (a) datapath and, (b) timing diagram.
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Figure 4.38 shows the datapath and timing diagram of the implemented 4-QAM modu-

lator and MIMO channel. As Figure 4.38 (a) shows, this block has been implemented with

four accumulators with add/subtract inputs. The accumulator adds (subtracts) the input to

(from) its current value if the add input is 1 (0). The quadrature components of the fad-

ing gains hIij and hQij , the input samples sIi and sQi , and the noise samples nIi and nQi are

assumed to be available and constant during each cycle. The fading gains are generated

with our fading channel simulator. Also, to generate the AWGN samples we used the white

Gaussian noise generator presented in [138].

The accumulators acc1, acc2, acc3, and acc4 are reset at the beginning of each

cycle (signaled by start). For the quadrature components of the input, the digital value

1 is assumed to represent arithmetic +1 and the digital value 0 represents arithmetic value

−1. To calculate rI1 , the accumulator acc1 adds/subtracts the fading gains hI11, hI12, hQ11,

hQ12 according to sI1, sI2, not(sQ1 ), not(sQ1 ), respectively, (see equation (4.73)) and adds

nI1. Finally, rI2 , rQ1 , and rQ2 are calculated using a similar method as illustrated in Figure

4.38.

4.7.2 ML Detector

The ML detector performs an exhaustive search over all of the possible combinations of the

transmitted signal to detect the received symbol vector [50]. Assuming that the transmitted

symbols are modulated with 4-QAM scheme, for a 2 × 2 MIMO channel the ML detector

can be expressed as

ŝ = min
t∈{±1±1j}2

||r − Ht||2, (4.74)

where r denotes the received vector, H is the channel matrix, and t denotes the vector

of tentative candidates. ML detection is a combinatorial optimization problem over all of

the possible combinations of the transmitted signal. The cost function of this optimization
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problem can be written as

c(t) = ‖r − Ht‖2,
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Equation (4.75) can be used to implement the ML detector for the 2 × 2 MIMO sys-

tem. Figure 4.39 shows the datapath of the implemented ML detector. In this figure, the

section Cost Function calculates c(t) according to equation (4.75). The quadrature

components of the tentative samples, (i.e., tI1, tQ1 , tI2, and tQ2 ) are modulated with the fad-

ing gains and subtracted from the input signal. For example, the first branch of the Cost

Function section (including the adder/subtracters U0, U4, U8, U12 and the multiplier

U16) calculates (rI1 − tI1h
I
11 − tI2h

I
12 + tQ1 h

Q
11 + tQ1 h

Q
12)

2 (see equation (4.75)).

In Figure 4.39, the FIFO section delays each of the tentative symbols according to the

latency of the Cost Function datapath so that the cost of each tentative symbol can

be augmented with its corresponding symbol. Moreover, the section Search, finds the

symbol with the minimum cost, which is the output of the ML detector.
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Figure 4.39: Datapath of the implemented exhaustive-search ML detector for the 2 × 2
MIMO system with 4-QAM modulated symbols.

We targeted Xilinx Virtex-E XCV2000E FPGAs for the implementation of our fading

simulation platform since our available GVA-290 boards host this family of FPGAs. How-

ever, the Virtex-E family are relatively small FPGAs with no embedded multipliers. Hence

we tried to optimize the size of our communication system with the minimum number of

multipliers.

For a 2×2 MIMO system with 4-QAM modulated symbols, there are 42 = 16 tentative

symbols in the search space. According to equation (4.75), four multiplications are required

for calculating the cost of each of the tentative symbols. Due to the size constraints, we

used only four multipliers for the calculation of the cost function and shared the pipelined

datapath for calculating the 16 costs. The 16 clock cycle latency of the ML detector is the

bottleneck that limits the symbol rate of the MIMO communication system to Fclk/16.

Notice that three comparators are used in the Search section in Figure 4.39 for finding

the tentative symbol with the minimum cost. It was due to the one clock cycle latency of the

comparators that the sequence of the costs of tentative symbols was divided into two sub-

streams. In Figure 4.39, the minimum costs of the two sub-streams (along with the tentative

symbols corresponding to the minimum costs) are stored in the M1 and M2 registers. The

final ML solution, sHat, is picked based on the minimum cost by comparing the final

values of M1 and M2.
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4.7.3 Interleaver and De-interleaver

Errors in the wireless communication tend to happen in blocks when the signal experiences

deep fades. However, a burst of errors can be overwhelming for the channel code (i.e.,

the error control code) that can only correct a certain number of errors in a block of data.

This problem can be alleviated by randomizing the errors in a block of data using inter-

leavers [275,276]. Interleaving spreads the transmitted data over time, which is called time

diversity, without adding any overhead.

Interleavers can be classified into block, convolutional, and pseudo-random interleavers.

In block interleavers, coded bits are first written in row format in a matrix and then read

in column format. Convolutional interleavers break the stream of coded bits into several

sub-streams and delay each sub-stream for a certain amount of time. A pseudo-random

interleaver is a variation of a block interleaver where coded bits are written linearly into

a memory and read out randomly based on a pseudo-random sequence. For our MIMO

communication system, we implemented a pseudo-random interleaver of length 16383.����������������������� �� ����� ����� ������� ¡¢£¤¥ ¦��§¡ ¦��§� ¨©ª¥¨�  � §�« ¬ ��«­¦® � ¯ °±²³ ´µ¶·¯«¸ ­¹ º��»¼ ½¾¿�»��¥­¦�À«ÁÂ§
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Figure 4.40: Datapath of the implemented (a) interleaver, and (b) de-interleaver with the

corresponding timing diagrams.

Figure 4.40 shows the datapath and the timing diagram of the implemented pseudo-

random interleaver and de-interleaver. In the interleaver, a 14-bit counter is used to write
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the coded input bits into a dual-port 16384 × 1 memory. This counter counts linearly from

1 to 16383 and goes back to 1. At the output, a 14-bit linear feedback shift register (LFSR)

is used to read out the coded bits randomly from the memory. Notice that the counter

does not generate 0. It is because 0 is not among the values that are generated by a LFSR,

hence the interleaver length is 16383 = 16384 − 1. The reverse operation happens in the

de-interleaver where the received bits are written randomly into a dual-port memory using

the same pseudo-random sequence and later read out using a counter that counts from 1 to

16383.

When a new bit is passed to the interleaver (indicated by the newBit signal), it is writ-

ten into the memory location addressed by the counter cntr and the counter is incremented

for the next cycle. Then an output bit is read out from the location determined by the current

state of the LFSR. The LFSR is then updated for the next cycle. Note that the input bits

must be written into the memory before reading the output bits to maintain the integrity of

the data sequence.

The inverse operation happens in the de-interleaver. When a new bit is ready to be

written into the memory, the de-interleaver first reads one bit from cntr location of the

memory and informs the next stage using the bitReady signal. The counter cntr is also

updated for the next cycle. Then the de-interleaver writes the input bit into memory and

updates the LFSR for the next cycle. Here, the data is read out of the memory and stored

in the bOut register before writing the input bit. Moreover, the extracted LFSR bits are

shuffled to decrease the correlation between the generated values.

4.7.4 Extended Golay Code

Channel codes or “error control codes” are used in communication systems to detect and

possibly correct the errors that happen during data transmission. This is accomplished by

adding redundant data to the transmitted message. The binary Golay code is one of the most

important types of linear binary block codes. The extended binary Golay code has been used

in many real-world applications including the Voyager spacecraft program during the early

1980s [277].

We used the extended binary Golay code in our 2 × 2 MIMO communication system

for the detection and possible correction of occurring errors. This code can be generated by

the 12 × 24 generator matrix G = [I,B] where I is the 12 × 12 identity matrix and B is
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given by

B =
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The code rate for the (24, 12) extended Golay code is R = 1/2. This code has minimum

distance dmin = 8 and can correct up to three errors.

Encoding the data bits using the Golay code is straightforward. Assuming u = [u11, u10,

..., u0] to be the vector of source bits, the coded bits can be calculated as v = [u,p] = uG

in GF(2), i.e., the Galois field of two elements [278], where p is the length 12 row vector

of parity bits.

To decode the extended binary Golay code, we used the imperfect maximum likelihood

decoding (IMLD) algorithm from [277]. This algorithm tries to find all of the error pattens

e of weight at most 3. The error pattern e is denoted as e = [e1, e0] where e0 and e1 are

the lower and upper parts of e each with 12 bits.

Assume that w = [w23, w22, ..., w0] represents the received vector and let oi to be a

row vector of length 12 with a 1 in the ith position and zeros elsewhere. Also, let us denote

the ith row or B as bi. The IMLD algorithm tries to find the error pattern of the received

vector by computing the syndrome s = wH where H = GT is the parity check matrix.

This algorithm is represented from [277] in Algorithm 3.

Algorithm 3 IMLD decoding for extended Golay code

1: Compute the syndrome s = wH.

2: if (weight(s) ≤ 3) then set e = [s,0], and goto 8.

3: if (weight(s + bi) ≤ 2) for some row bi of B then set e = [s + bi,oi], and goto 8.

4: Compute the second syndrome sB.

5: if (weight(sB) ≤ 3) then set e = [0, sB], and goto 8.

6: if (weight(sB + bi) ≤ 2) for some row bi of B then set e = [oi, sB + bi], and goto 8.

7: The error pattern cannot be determined. Exit.

8: The decoded vector is v̂ = w + e. Exit.

We implemented pipelined datapaths for encoding and decoding of the extended Golay

code. The implemented decoder can correct all of the error patterns with one, two, and three
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errors. More error patterns can also be detected and reported for requesting retransmission.

4.7.5 Fractional Delay

The fractional delay interpolator is an important component of a fading channel simulator.

Assuming uniform sampling, fractional delay refers to a delay that is a non-integer multiple

of the sample interval Ts. Several methods have been used for approximating the fractional

delay including the use of lowpass, and allpass filters and polynomial-based interpolation

[279–283]. One of the most attractive implementations for fractional delay interpolators is

the Farrow structure [284]. The Farrow interpolator approximates the delayed signal with a

piecewise polynomial curve in time as

x̂((n− µ)Ts) =
L
∑

l=0

bl(n)µl, (4.76)

where |µ| ≤ 0.5 (µTs is the fractional delay), and L is the polynomial degree. The polyno-

mial coefficients {bl(n)}Ll=0 in equation (4.76) are calculated as

bl(n) =

KF
∑

k=0

ckl x((n− k)Ts), (4.77)

where KF denotes the filter order and {ckl }, l = 0, ..., L, k = 0, ...,KF , denote the con-

stant filter coefficients [284]. Notice that the coefficients {bl(n)}Ll=0 are independent of µ,

hence the Farrow structure can be used to generate time-variable fractional delay by only

varying the delay parameter µ. Figure 4.41 (a) shows the Farrow structure for time-varying

fractional delay.
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Figure 4.41: (a) Farrow structure for time-varying fractional delay. (b) Farrow structure for

a cubic interpolator.

In our hardware simulation platform, we implemented the the Farrow structure for a

cubic polynomial interpolation (see Figure 4.41 (b)). In this interpolator, the polynomial

degree L = 3 and the coefficients are calculated with KF = 3 FIR filters. The polynomial

coefficients for this structure are given by

b3(n) = x((n− 3)Ts)/6 − x((n− 2)Ts)/2 + x((n− 1)Ts)/2 − x(nTs)/6,
b2(n) = x((n− 3)Ts)/2 − x((n− 2)Ts) + x((n− 1)Ts)/2,
b1(n) = x((n− 3)Ts)/3 + x((n− 2)Ts)/2 − x((n− 1)Ts) + x(nTs)/6,
b0(n) = x((n− 2)Ts).

(4.78)

Figure 4.42 shows the datapath of the implemented delay module. Notice that in equa-

tion (4.78) the filter coefficients for the cubic Farrow interpolators are limited to {±1,±1/2,

1/3,±1/6}. Therefore we can generate the polynomial coefficients {bl(n)}3
l=0, with shift-

ing, negation, and summation operations in addition to one constant multiplication as shown

in Figure 4.42 (a).

Figure 4.42 (b) shows the datapath of the Farrow polynomial for fractional delay. Figure

4.42 (b) also shows the datapath for integer delay that can be used to extend the range of

fractional delay. Notice that since the Farrow polynomial coefficients in equation (4.77)

are independent of the fractional delay, the same polynomial coefficients can be used for

generating various fractional delays. This is particularly helpful for simulating multipath

delay where multiple fractional delays are required.
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Figure 4.42: Datapath of the cubic Farrow interpolator for fractional delay. (a) Farrow filter

coefficient generator, and (b) Farrow polynomial and integer delay.
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Figure 4.43: Output samples for delayed BPSK signal using the fixed-point bit-true model.

Figure 4.43 shows the output of our fixed-point bit-true model for the cubic Farrow

interpolator. In this figure, a BPSK signal is delayed for half of the signal period (i.e.,

µTs = 0.5Ts). The original signal and the response of the floating-point model are plotted

as well. As this figure shows, our fixed-point implementation result accurately matches that
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of the floating-point model, which verifies the accuracy of our hardware implementation.

4.7.6 Hardware Implementation Results

As mentioned before, we implemented our fading simulation platform for 2 × 2 MIMO

and SISO systems on a GVA-290 (Revision-B) FPGA development platform [161]. This

board hosts two Xilinx Virtex-E XCV200E FPGAs and two Xilinx Spartan-II FPGAs. This

board also includes four 100 MS/s analog-to-digital and four 100 MS/s digital-to-analog

converters.

Table 4.3 summarizes the FPGA implementation results of different components. The

synthesis results are provided for the Xilinx Virtex-E XCV2000EBG560-6 FPGA and for

the Xilinx Virtex-4 XC4VSX55FF1148-12 FPGA. For this implementation, the fading sim-

ulation cores were configured to use the resources available on the Virtex-E FPGA family.

From the results presented in this table, we can conclude that the implemented MIMO

communication system (source, encoder, interleaver, detector, de-interleaver, and decoder)

utilizes less than 9% of the available configurable slices on a Virtex-E XCV2000E FPGA

while the rest of the system (fading simulator, BER performance measurement, initializa-

tion, and interfacing modules) consume a much larger portion of the available resources

(more than 60%).

The implemented fading simulation platform and the BER performance measurement

cores along with the analog and digital access to different parts of the system on a GVA-

290 board can be used for testing and verification of more complex wireless communication

systems. More specifically, with one Virtex-E XCV2000E FPGA dedicated to fading sim-

ulation and interfacing, the other on-board FPGAs can be used for the rapid prototyping

of wireless communication systems. In addition, the implemented fading simulation and

BER performance measurement platform can be easily adapted to faster and more recent

FPGA boards for rapid prototyping of wireless communication system in baseband and

intermediate frequency.

Overall, to develop the above fading simulation platform more than 55,000 lines of code

were written in the five languages MATLAB, MEX, Visual C++, 80386-Assembly, and

Verilog hardware description language (HDL). Fixed-point arithmetic was required for the

development of the bit-true models. However, due to the slow execution of the MATLAB

fixed-point library, we developed our own fixed-point library in MEX (C programming for

MATLAB) in which we used 32-bit machine language sections frequently to speed up the
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fixed-point simulation. The main skeleton of most of the designed parts were developed in

MATLAB. However we often used MEX programming to speed-up the computer simula-

tion process. Moreover, we used Verilog HDL for the hardware implementation of different

parts, and finally, the GUI for the fading simulation platform was developed in Visual C++.

Table 4.3: Fading Simulation Platform Implementation Results
Design Device Max. Clock Slices BRAMs

Source XCV2000E 299.9 MHz 37 (0.2%) 0

Source XC4VSX55 778.0 MHz 37 (0.15%) 0

Encoder XCV2000E 126.6 MHz 50 (0.3%) 0

Encoder XC4VSX55 421.5 MHz 52 (0.2%) 0

Interleaver XCV2000E 117.1 MHz 49 (0.3%) 4 (2.5%)

Interleaver XC4VSX55 336.7 MHz 49 (0.2%) 4 (1.25%)

MIMO channela XCV2000E 99.5 MHz 998 (5.2%) 8 (5.0%)

MIMO channel XC4VSX55 303.8 MHz 979 (4.0%) 5 (1.6%)

ML detector XCV2000E 76.3 MHz 947 (4.9%) 0

ML detector XC4VSX55 188.3 MHz 939 (3.8%) 0

De-interleaver XCV2000E 115.7 MHz 50 (0.3%) 4 (2.5%)

De-interleaver XC4VSX55 332.2 MHz 51 (0.2%) 4 (1.25%)

Decoder XCV2000E 80.8 MHz 438 (2.3%) 0

Decoder XC4VSX55 191.2 MHz 407 (1.7%) 0

Fading generator XCV2000E 70.9 MHz 3601 (18.8%) 7 (4.4%)

Fading generator XC4VSX55 185.2 MHz 3522 (14.3%) 7 (2.2%)

Noise generator XCV2000E 99.5 MHz 634 (3.3%) 8 (5.0%)

Noise generator XC4VSX55 303.8 MHz 632 (2.6%) 5 (1.6%)

4-Path delayb XCV2000E 52.6 MHz 2247 (11.7%) 12 (7.5%)

4−Path delay XC4VSX55 174.2 MHz 2193 (8.9%) 12 (3.75%)

Entire systemc XCV2000E 52.6 MHz 13436 (70.0%) 47 (29.4%)

Entire system XC4VSX55 174.2 MHz 13247 (53.9%) 44 (13.75%)

aIncludes 4-QAM Modulator, MIMO channel, and Gaussian noise generator.
bIncludes Farrow coefficient generator for in-phase and quadrature (I/Q) paths, three I/Q Farrow interpola-

tors for fractional delay with 16-bit resolution, and three I/Q delay modules for up to 1023 tap delay.
cIncludes the MIMO transmitter and receiver, SISO transmitter, MIMO and SISO fading channel simula-

tor, BER measurement units, digital-to-analog interface modules, initialization logic, and FPGA-PC interface

modules.

4.8 Summary and Conclusions

In this chapter briefly reviewed different MIMO channel models. In general, MIMO chan-

nel models can be categorized, based on the modeling approach, into analytical and physical

channel models. Analytical channel models characterize the MIMO channel response in a

mathematical/analytical fashion, while physical models describe the MIMO channel based

on the physical characteristics of wave propagation.
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We also discussed a simulation model for the efficient simulation of geometric MIMO

channel models in hardware. We showed the effectiveness of our hardware geometric

MIMO fading channel simulator design by simulating the geometric elliptical model, one-

ring, and two-ring models using fixed-point bit-true simulation and actual hardware results.

We also proposed a compact and flexible hardware fading simulator for the simulation

of analytical MIMO channel models including the Kronecker model, the Weichselberger

model, and the virtual channel representation model. The accuracy of our implementation

and hardware generated results were also verified with the floating-point computer simula-

tions.

We implemented our MIMO fading simulator on a GVA-290 FPGA board for proto-

typing and verifying SISO and MIMO wireless systems. The implemented MIMO fading

channel simulator can simulate several different geometric and analytical MIMO channel

models. The implemented fading simulator can also simulate multipath propagation scenar-

ios in single antenna fading channels with Rayleigh and Rician fading models. Moreover,

the multipath propagation delay can be accurately simulated on the fading simulator plat-

form with the implemented fractional-delay circuit.

Moreover, we implemented a 2×2 MIMO communication system and tested its perfor-

mance using the implemented fading simulation platform. The implemented MIMO system

includes a length-16383 random interleaver and de-inerleaver, an extended Golay code de-

coder and encoder, and a ML detector. We also implemented a bit error rate performance

measurement platform and the required software and hardware components. Using this

tester and the fading simulator, we can evaluate the bit error rate performance of a wide

variety of wireless communication systems under various channel models and propagation

conditions.
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Chapter 5

Conclusions and Future Work

5.1 Main Contributions

In this thesis we proposed three new channel models for the accurate simulation of Rayleigh

and Rician fading. We also proposed compact hardware architectures for the fast and ef-

ficient on-chip simulation of wireless fading channels. We also proposed a new especially

compact hardware implementation of an accurate fading simulator in which fading samples

are generated differentially and interpolated with a compact architecture. More than one

thousand paths can be fit on a conventional FPGA with this method, with each path gen-

erating more than 300 million samples per second. Compared to one of our early designs,

the proposed fading simulator is not only 18 times smaller and 50% faster, it can generate

significantly more accurate fading samples.

We proposed two architectures for the homogeneous FPGA implementation of filter-

based fading simulators. We also proposed a multi-stage filter design technique for the effi-

cient hardware simulation of Rayleigh fading channels. Moreover, we presented an elastic

design for the robust implementation of a multipath fading simulator that can absorb the

clock frequency mismatches between hardware modules. A fixed-point implementation of

this four-path fading simulator on a Xilinx Virtex-II Pro XC2VP100-6 FPGA utilizes only

13.9% of the configurable slices and 2.7% of the on-chip 18×18 multipliers and can gener-

ate up to 4× 73 million samples per second. We also proposed the first hardware simulator

for non-isotropic Rayleigh fading channels. Our fixed-point implementation of this simu-

lator on a Xilinx Virtex-II Pro XC2VP100-6 FPGA utilizes only 6.8% of the configurable

slices and can generate up to 300 million samples per second.

We presented a new transformation-based fading simulator for the compact and effi-

cient implementation of Nakagami-m and Weibull fading channels. This fading simulator
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converts the Rayleigh fading samples to Nakagami-m or Weibull fading samples. A new

method for the approximation of the transfer function was presented which was based on

hybrid logarithmic-linear segmentation with semi-floating-point curve fitting. Compared

to the simple table look-up approach for approximating the transfer function, the proposed

method provided significant savings in the storage requirements.

We also presented a technique for the design of stable IIR filters with fixed-point com-

plex and real coefficients. Filter design with this technique results in very compact hardware

implementations. It was shown that the new filter design technique could be used for the

simulation of a wide range of fading channel conditions including non-isotropic Rayleigh

fading channels and the TGn channel model for the IEEE 802.11n MIMO wireless LAN

standard. Using the proposed filter design technique should result in significant savings in

the hardware implementation and substantial increases in the system throughput. In one

example, compared to a previous design, the new filter design technique resulted in a nine

times reduction in the number of configurable slices and more than 22 times higher through-

put.

We proposed a compact and efficient FPGA fading simulator that could support the sim-

ulation of the i.i.d., Kronecker, Weichselberger, and VCR MIMO fading channel models.

A new stable interpolator structure was proposed for this fading simulator. When imple-

mented on a Xilinx Virtex-5 XC5VLX110-3 FPGA, the matrix processor of this design for

a 4 × 4 MIMO system utilizes only 1.8% of the configurable slices, two multipliers, and

four block memories, and can operate at up to 234.1 MHz. This MIMO fading simulator

was implemented on our bit error rate testing platform. Moreover, we presented a compact

and efficient simulator for geometric MIMO channel models. The proposed fading simula-

tor could simulate a wide variety of single- and double-bounce geometric MIMO channel

models. We verified the accuracy of our fading simulator by comparing the fixed-point

bit-true results with theoretical references. Three common geometric MIMO fading mod-

els, namely the one-ring and two-ring models and the geometrical elliptic MIMO fading

channel model, were simulated with our fading simulator.

We implemented a fading simulation and bit error rate testing platform for the ver-

ification of our fading simulators, and for testing MIMO systems. This platform was

implemented on a GVA-290 FPGA development board which hosts two Xilinx Virtex-E

XCV2000E FPGAs. The implemented platform can be used for the verification of single-

and multiple-antenna wireless systems. It supports the simulation of various fading chan-
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nel models including the single antenna-models AWGN, Rayleigh, Rician, and the MIMO

models AWGN, Rayleigh, Rician, one-ring, two-ring, geometric elliptic, i.i.d., Weichsel-

berger, Kronecker, and VCR channel models. The implemented platform also supports

multipath integer delays (up to 1023 taps) and fractional delays.

We tested a sample 2 × 2 MIMO system with our channel simulation and system veri-

fication platform. The MIMO system under test included an extended Golay code encoder

and decoder, length-16383 random interleaver and de-interleaver, and a maximum likeli-

hood detector.

5.2 Future Work

The future work could be followed in a number of directions.

• The proposed fading simulators are all targeted for the baseband verification of wireless

channels. However, the addition of a radio frequency (RF) stage could broaden the range

of applications. Such RF stages could be designed to work with either simplex or duplex

wireless communication systems.

• In this thesis, we targeted the main elements of fading simulation. For example, we

designed the hardware parts required for generating fading samples for the IEEE 802.11n

fading channel, and we presented an efficient hardware for the simulation of fractional

delay. However, we did not implement a functional 802.11n fading channel simulator.

Various standardized fading channel models (including the TGn channel model for the IEEE

802.11n standard) could be simulated efficiently with the parts designed in this thesis.

• Some aspects of fading channels were not included in our work. For example, our work

can be extended to vector fading channel models and time-varying channel models. Also,

our models can be extended to take into account the antenna polarization, and waveguide

effects in the the fading channels.

In addition to the above subjects, I will continue working on three other problems.

Particularly, I will work on compact and efficient implementation of stable IIR filter pro-

cessors, and extension of our fading model to include other distributions for the angle-of-

arrival (AOA) and the phase of the fading samples. Also, I plan to pursue the simulation of

multi-node wireless networks. In the following sections I will briefly discuss these subjects.
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5.2.1 Pipelined IIR Filter Processor

Digital IIR filters have a wide range of applications in electrical engineering. In this thesis

we used digital IIR filters for the accurate simulation of fading channels. However, due to

the inherent feedback in the IIR filters, these structures are naturally susceptible to instabil-

ity. Efficient implementation of IIR filters with fixed-point arithmetic can also contribute to

numerical error due to fixed word-length and can render these filters unstable.

In Chapter 3 we proposed a filter design technique for the compact and stable imple-

mentation of fixed-point filters with real and complex coefficients. The designed filters can

be used for the compact and stable implementation of IIR filters for different applications.

A multi-rate and multi-channel programmable IIR filter processor can be designed

based on our proposed filter design technique. This IIR filter processor needs to be pipelined

for maximum efficiency. Also, it needs to be flexible so that it can perform the operations

of IIR filters of various orders with real and complex coefficients. Moreover, this filter pro-

cessor needs to be able to operate on several IIR filters with different sample rates. This

capability is particularly important when the filter processor is operating on data from mul-

tiple sources of different rates, potentially from multiple clock domains. In addition, this

filter processor needs to be able to perform interpolation, decimation, zero-padding, and

concatenation of various filters. Moreover, this filter processor needs to be able to add (or

inject) potentially complex tones to the different stages of each IIR filter. This could be

used for a variety of applications including built-in self-test functions or the simulation of

Rician fading samples.

However, designing such a filter processor would not be trivial. A pipelined IIR filter

processor needs to be implemented with out-of-order processing (because of the feedback

in IIR filters and the latency of the pipelined arithmetic unit). This can be challenging if

the filter structure (i.e., real/complex coefficients, first-, or second-order section processing,

and filter order) is programmable. Also, the filter processor needs to “execute” the filter

sections in reverse order to avoid overwriting the intermediate samples. Finally, the execu-

tion of each filter needs to be tied to a pair of input and output flags indicating activation or

deactivation of each filter (for rate control).

During the course of this research project, we realized the need for such a filter proces-

sor and we designed the potential datapath and structure. However, due to time limitations

this processor design was not implemented. Figure 5.1 (a) shows the designed datapath for

this processor. In this datapath, the filter coefficients are stored in RAM R4 and RAM R5
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while the intermediate signals are stored in RAM R2 and RAM R3. Moreover, the dual-

port memory RAM R1 keeps the output samples. Figure 5.1 (b) shows the datapath of the

arithmetic unit of this processor which was implemented for performing the matrix opera-

tions in the Section 4.6.1 of this thesis. This arithmetic unit can perform complex additions,

complex-by-complex products and real-by-complex products.
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Figure 5.1: (a) Datapath of the proposed pipelined IIR filter processor, (b) Datapath of the

arithmetic unit.

Figure 5.2 shows the control unit of the proposed pipelined IIR filter processor. In

this control unit, the instructions are the stored in the memory RAM R6. A section of

this memory is allocated to the interrupt service routine (ISR) that is mainly used for the

construction and initialization of the IIR filters. The memory RAM R7 will store the micro-

instructions, and RAM R8 is the stack that is mainly used for the function calls.
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Figure 5.2: Control unit of the proposed pipelined IIR filter processor.
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Figure 5.3: Basic instruction set for the proposed IIR filter processor.

In this processor, we suggest that the filter structure be stored as a linked-list so that

addition and extraction of first- and second-order sections can be performed easily. This

way the filter order can be adjusted dynamically and several filters of various orders can

be implemented. Moreover, the input/output activation flags are allocated to filters, not to

individual sections of each filter. Using this linked-list structure enables the filter processor

to control the rate of execution for individual sections of each filter. In the control unit in

Figure 5.2, RAM R9 stores structures that record the number of blocks of first- or second-

order sections of each filter. These structures also store the number of blocks in each filter.

The linked-list that keeps the address of the filter blocks and the structure of each filter

block, which is whether this block belongs to a first-order section with complex coefficients

or it belongs to a second-order section with real coefficients, is stored in RAM R10.

Figure 5.3 summarizes the basic instruction set of this filter processor. The basic in-

structions for performing one cycle of the operations of an IIR filter are RUNF, RUNFA,

RUNFIA, and RUNFOA that read one sample from the specified input (constant 0, processor

input, frequency tone, etc.) and writes one sample to the specified output. The filter struc-

tures are built using the ALLOC, RMV, and MOVE instructions. Finally, some instructions

for flow control and function call are assigned, including some instructions (e.g., REP) that

are necessary for interpolation or decimation operations.
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5.2.2 Extensions on AOA and Phase Distribution

In this thesis we presented several architectures for the efficient simulation of different

single-antenna channel models. More specifically, we discussed sum-of-sinusoids (SOS)

based and filter-based simulation of Rayleigh and Rician fading channels. Finally, we dis-

cussed the hardware simulation of Nakagami-m and Weibull fading channels.

The scope of our single-antenna fading channel simulation, however, was limited to

the most common models in which the AOA was either uniformly distributed or followed

the von Mises distribution [91]. Other than these two distributions, several other models

including the geometrically-based PDFs [128, 129], Gaussian PDF [130], quadratic PDF

[131], Laplace PDF [120], and cosine PDF [132], have also been proposed to model the

distribution of AOA.

In Chapter 3, we proposed an architecture for the efficient conversion of Rayleigh

fading samples to Nakagami-m and Weibull fading samples. Beaulieu assumed that in a

Nakagami-m fading channel, the phase of the complex Nakagami-m fading samples is uni-

formly distributed [42, 43]. However, a study by Yacoub [285] suggests that the phase of

Nakagami-m samples is not uniformly distributed when m 6= 1. This work could be con-

tinued by researching new ways to incorporate other proposed PDFs for the AOA in the

fading models. Finally, new ways need to be found to ensure that the generated Nakagami-

m fading samples have the appropriate phase distribution.

5.2.3 Radio-Frequency Multi-Node Fading Channel Simulator

Another possible extension of the work in this thesis is to develop models and platforms for

the simulation of wave propagation between more than two wireless systems. Such a fading

simulator could be used not only for the testing and development of wireless devices, but

also for testing interoperability and inter-compatibility between different devices and also

for the development of higher-level networking protocols.

Essentially, the number of wireless links grows with the square of number of nodes

in a network of wireless devices. Hence, the computational intensity of simulating wire-

less networks grows quickly with the number of nodes in the network. Fortunately, with

the compact and efficient designs provided in this thesis, it is possible to simulate a large

number of fading channels on a single FPGA device. However, additional storage capacity

might be necessary if long delays need to be implemented for networks that are distributed

over larger areas.
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We have successfully developed fading channel simulators for single and multiple-

antenna transceivers. To extend the current fading channel simulators to a multi-node fading

simulator, we would need to add the capability of incorporating more detailed fading chan-

nel models to the current fading channel simulator. Moreover, the baseband simulation of

large networks with distributed fading simulation that are connected with digital links can

be challenging due to digital timing and clock distribution issues. We suggest that such a

multi-node fading simulator should be implemented in baseband, with distributed fading

simulators that are interconnected using intermediate frequency (IF) links. Also, radio fre-

quency (RF) sections need to be added to the current fading simulator for interfacing the

system to general wireless devices.
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Figure 5.4: Diagram of a multi-node fading channel simulator.

Figure 5.4 shows a diagram of the proposed fading simulator. This fading simulator

could be used not only for the testing of individual transceivers, but also for testing inter-

operability and inter-compatibility of a relatively large number of nodes, for media access

control (MAC), and physical layer (PHY) protocol design. In the diagram shown in Fig-
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ure 5.4, the fading effects on the transmitted signal from node A to the rest of the nodes

are simulated in the local Multipath-Multinode Fading Emulator. Then each

faded stream is routed to the target device through the Signal Switch. This process

is controlled by the central Emulation Controller that realizes different fading sce-

narios corresponding to different physical environments.
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[84] A. Zajić and G. L. Stüber. Efficient simulation of Rayleigh fading with enhanced

de-correlation properties. IEEE Trans. Wireless Commun., 5(7):1866–1875, 2006.

[85] P. Pampaloni and S. Paloscia. Microwave Radiometry and Remote Sensing of the

Earth’s Surface and Atmosphere. VNU Science Press, 2000.

[86] A. Alimohammad, S. Fouladi Fard, B. F. Cockburn, and C. Schlegel. A compact

Rayleigh and Rician fading simulator based on random walk processes. to appear in

202



BIBLIOGRAPHY

IET Communications, 2009.

[87] P. L'Ecuyer. Tables of maximally equidistributed combined LFSR generators. Math.

of Comp., 68(225):261–269, 1999.

[88] C. Komninakis. A fast and accurate Rayleigh fading simulator. In Proceedings of

the IEEE Global Telecommunications Conference, pages 3306–3310, 2003.

[89] D. J. Young and N. C. Beaulieu. The generation of correlated Rayleigh random

variates by inverse Fourier transform. IEEE Trans. Commun., 48:1114–1127, 2000.

[90] K. E. Baddour and N. C. Beaulieu. Autoregressive models for fading channel sim-

ulation. In Proceedings of the IEEE Global Telecommunications Conference, pages

1187–1192, 2001.

[91] A. Abdi, J. Barger, and M. Kaveh. A parametric model for the distribution of the

angle of arrival and the associated correlation function and power spectrum at the

mobile station. IEEE Trans. Veh. Technol., 51(1):425–434, May 2002.

[92] V. Erceg et al. IEEE 802.11 document 03/940r4 (TGn Channel Models). Garden

Grove, California, May 2004.

[93] M. C. Jeruchim, P. Balaban and K. S. Shanmugan. Simulation of Communication

Systems : Modeling, Methodology, and Techniques. New York: Kluwer Academic

Publishers, 2000.

[94] A. Verschoor, A. Kegel, and J. C. Arnbak. Hardware fading simulator for a number

of narrowband channels with controllable mutual correlation. Electronics Letters,

24(22):1367–1369, 1988.

[95] R. A. Goubran, H. M. Hafez, and A. U. H. Sheikh. Implementation of a real-time

mobile channel simulator using a DSP chip. IEEE Trans. Instrum. Meas., 40(4):709–

714, 1991.

[96] M. S. Lim and H. K. Park. The implementation of the mobile channel simulator in

the baseband and its application to the quadrature type GMSK modem design. In

IEEE Veh. Tech. Conf., pages 469–500, 1990.

[97] P. M. Crespo and J. Jimenez. Computer simulation of radio channels using a har-

monic decomposition technique. IEEE Trans. Veh. Technol., 44(3):414–419, August

1995.

[98] K. W. Yip and T. S. Ng. Efficient Simulation of Digital Transmission over WSSUS

Channels. IEEE Trans. Commun., 43:2907–2913, December 1995.

203



BIBLIOGRAPHY
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List of Publications
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The research on fading channel simulation at the HCDC and VLSI labs was first started

by Dr. Amirhossein Alimohammad and Dr. Bruce Cockburn. Their original research was

focused on hardware simulation of isotropic single antenna fading channels using the sum-

of-sinusoids method and the filter-based approach.

In this thesis, the original work was extended in several directions. We proposed espe-

cially compact fading channel simulators that went beyond Dr. Alimohammad’s work. We

proposed faster, more compact (more than 95%), and more accurate fading simulators for

isotropic and non-isotropic scattering. We also proposed elastic designs, multiplication-free

designs, differential designs, and multiple-antenna fading simulators. We also covered frac-

tional delay simulation and proposed a new design procedure for fixed-point filter design.

The publications that originated from this work incorporate materials that result from joint

work. Dr. Bruce Cockburn, my supervisor, provided us with supervision, guidance, new

ideas, and overall verification of the publications. Dr. Amirhossein Alimohammad helped

us with new ideas, simulation, structure, and verification of our publications. Finally, Dr.

Christian Schlegel was my co-supervisor and provided us with help and guidance through-
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