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Abstract

The accurate simulation of wireless channels is important since it permits the realistic and
repeatable performance measurement of wireless systems. While software simulation is a
flexible method for testing hardware models, its long-running simulation time can be pro-
hibitive in many scenarios. Prior to the availability of accurate and standardized channel
models, wireless products needed to be verified using extensive and expensive field test-
ing. A far less costly approach is to model the behavior of radio channels on a hardware
simulator.

Different channel characteristics should be considered to ensure the faithful simulation
of wireless propagation. Among the most important characteristics are the path-loss be-
havior, Doppler frequency, delay distribution, fading distribution, and time, frequency, and
space correlation between fading samples across different antennas. Various fading chan-
nel models have been proposed for propagation modeling in different scenarios. A good
homogeneous field programmable gate array (FPGA) fading simulator needs to accurately
reproduce the propagation effects, yet it also needs to be compact and fast to be effectively
used for rapid hardware prototyping and simulation.

In this thesis, new channel models are proposed for the compact FPGA implementation
of fading channel simulators with accurate statistics. Compact hardware implementations
for physical and analytical fading channel models are proposed that can simulate fading
channels with more than one thousand paths on a single FPGA. We also propose design
techniques for accurate and compact statistical fading channel simulation of isotropic and
non-isotropic scattering in Rayleigh, Rician, Nakagami-m, and Weibull fading channels.
Compact FPGA implementations are presented for multiple-antenna fading simulators for
geometric one-ring models, two-ring models, elliptical models, and analytical models in-
cluding the i.i.d. model, and Kronecker, Weichselberger, and VCR channel models. Finally,
a fading simulation and bit error performance evaluation platform is proposed for the rapid

baseband prototyping and verification of single- and multiple-antenna wireless systems.
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Chapter 1

Motivation and Background

Wireless communication systems are designed to operate over radio channels for a variety
of environments and weather conditions. While it is possible to build working hardware
prototypes of a system and then field test them in different locations, such an approach will
be quite expensive and will not provide useful feedback in the early stages of the design
process, when a number of candidate designs must be explored and design changes are
easier and less expensive to make. Moreover, propagation conditions are almost impossi-
ble to repeat for the comparative analysis of test results. A more practical approach is to
create accurate mathematical models for representative radio channels and then base the
initial design on these models. Numerous wireless channel models have been proposed to
characterize time and/or space-variant propagation environments (e.g., see [15-20]). These
channel models have led to different simulator designs that can be efficiently used in the
development and accurate error-rate performance evaluation of wireless systems. A chan-
nel simulator should mimic the propagation characteristics faithfully since the accuracy of
the performance estimation under real world conditions can make the difference between
success and failure.

Two major approaches have been widely used to produce statistically accurate se-
quences of sampled fading variates (i.e., channel attenuation coefficients), namely, shaping
the spectrum of Gaussian variates using digital filters and sum-of-sinusoids (SOS) based
methods. The filter-based technique is attractive for implementing fading channel simula-
tors as it can be customized to accurately reproduce the statistical properties required for
simulating fading channels [19]. However, the computationally-intensive multi-rate signal
processing required by this technique limits its application in more complex scenarios such

as multiple-input multiple-output (MIMO) channels. On the other hand, even though the



SOS-based models are substantially less computationally demanding than the filter-based
technique, some of the proposed SOS-based fading channel models have inaccurate sta-
tistical properties for the unbounded or continuous simulation of time-varying propagation
channels.

The demanding performance requirements of wireless applications, along with the in-
creasing computational complexity of baseband algorithms, have greatly increased software-
based simulation loads. Therefore, the required run times for the accurate performance
evaluation of the most recent low bit error rate (BER) baseband algorithms are becom-
ing prohibitively long (e.g., days and even weeks), which makes software-based simula-
tion increasingly impractical. The required run time for accurate fading simulation is an
even bigger concern in multiple-antenna or wireless networking scenarios as the number
of paths grows rapidly with the number of antennas and/or users. With a large number of
antennas/users, the required simulation time becomes prohibitively long for software-based
simulators. Although it is much easier to design and implement a fading channel emula-
tor in software than in hardware, hardware-based simulators have been shown to provide
several orders of magnitude speed up in performance evaluation over software-based simu-
lators [21,22], significantly reducing the design time.

Different commercial fading channel emulators are available in the market that accu-
rately reproduce the behavior of propagation environments in the laboratory. They are
typically stand-alone units that provide the fading signal in the form of analog or digital
samples. They generally require complex hardware consisting of several circuit cards with
multiple processors. For example, the NoiseCom MP-2500 Multipath Fading Emulator [23]
consists of 11 circuit boards, radio frequency (RF) circuitry, cooling fans, and an external
computer interface for setting the various parameters of a 12-path frequency-selective fad-
ing channel. However, commercially available systems are rather bulky and costly and
cannot be used for systems with a relatively large number of antennas and/or users. Some
of the main specifications of a number of the available fading channel emulators are listed
in Table 1.1. These products are available at prices between $24,000 to $500,000.

A more flexible and cost-effective approach is to implement a real-time channel emu-
lator on a field-programmable gate array (FPGA). In the Monte Carlo performance verifi-
cation of communication systems, the computationally-critical algorithms in the simulation
chain (such as the fading channel emulator) can be efficiently implemented on a dedicated

hardware device, such as an FPGA. Recent increases in FPGA capacities permit the inte-
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Table 1.1: Some Commercially Available Fading Simulators

| Model [T ] 0 [Ix [IV] V]
Number of channels 2 2 2 2 6
Number of paths 12 24 48 6 6
Max. Doppler (Hz) 800 | 2000 | 2400 | - | 340
Fading resolution (Hz) | 0.1 | 0.01 0.05 - 1
Max. delay (ms) 200 | 2000 10 - 40
Time resolution (ns) 5 0.1 1 1 40

“(I) Japan Radio Co. NJZ-1600B [24], (I) Spirent Communications SR5500 [25], (IIT) Agilent Technolo-
gies Inc. N5115A [26], (IV) Rohde & Schwarz ABFS [27], (V) Ascom Ltd. SIMSTAR [28].

gration of the channel emulator along with a noise generator [29] as well as the transmitter
and receiver signal processing blocks onto the same FPGA for rapid prototype design and
verification.

Our main goals are (i) to propose accurate SOS-based fading channel models with ac-
curate statistics along with efficient FPGA implementations of these models for simulating
fading channels with a large number of simultaneous propagation paths; (ii) to propose filter
design techniques for the efficient implementation of fading channels with arbitrary corre-
lation properties; (iii) to propose efficient hardware architectures for especially compact
implementations of filter-based fading channel simulators; and (iv) to implement compact
realistic single and multiple antenna channel simulators that support emerging standards

(e.g., WIMAX, 802.11n, LTE).

1.1 Wireless Fading Channel

In a typical urban area or indoor environment, a direct line of sight (LOS) path between
the transmitter and the receiver is often absent because of intervening obstacles. Due to the
processes of reflection (which occurs when a waveform meets an object that is much larger
than the signal’s wavelength), diffraction (which occurs when the surface encountered by
the signal has irregularities such as sharp edges), and scattering (which occurs when the
medium contains a large number of objects nearly the same size as the signal’s wavelength)
from objects in the path [17], multiple copies of the transmitted signal, called multipath
signal components or rays, arrive at the receiver via different paths with different angle
of arrivals (AOAs), time delays, and amplitudes. More importantly, changes in the path

length by Ad (due to relative motion between the transmitter and receiver) over a short
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time interval At causes a phase shift:

2rAd  2mvAtcos o
Ao="3"=" 3

where v is the relative speed and « is the AOA with respect to the head-on incident direc-
tion. Often the transmitter is taken to be fixed in position in which case the relative motion
is entirely due to the mobile unit (MU). Clearly, as the path length changes by a wavelength
A (30 cm at 1 GHz), the signal phase changes by 27. Multipath propagation leads to ran-
dom fluctuations in the amplitude and phase of the received signal due to the movement of
the receiver and/or the transmitter over a few wavelengths and for short time durations. De-
pending upon the relative speed, fades of 30 to 40 dB or more below the mean value of the
received signal can occur [30]. The phenomenon of rapid fluctuations of the received signal
strength over short distance or short duration is called the small-scale fading effect [30].

Typical small-scale fading behavior in shown in Figure 1.1.

10

Received signal level in dB
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Figure 1.1: Typical simulated Rayleigh fading at the receiver.

If the propagation environment changes or if there is a relative motion of the antennas,
the path length and/or geometry changes by Ad and each multipath signal component ex-
periences an apparent shift in frequency, called a Doppler shift. The Doppler frequency is

defined as
1 Ap wcosa  fevcosa

Tor At XN c

where f. is the carrier frequency, ¢ ~ 3 x 10% m/s is the free-space velocity of the electro-

/o

magnetic wave, and « is the direction of motion of the mobile with respect to the direction
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of multipath signal arrival. The motion of the MU will introduce changes in the signal
strength, and hence the apparent channels, at a rate of fp Hz. For a constant mobile veloc-
ity, as f. increases, the Doppler shift becomes larger. If a sinusoidal signal at the carrier
frequency f. is transmitted, the received signal is spread over a spectrum, called the Doppler
spectrum, with components lying in the range of f. — fp to f.+ fp. If the receiver is mov-
ing toward the transmitter, i.e., —7/2 < 6 < m/2, the Doppler shift is positive (i.e., the
apparent received frequency f = f. + fp is increased); otherwise, if the receiver reverses
direction then the Doppler shift is negative. Relative to the carrier frequency (100s of MHz),
the Doppler shift is typically quite small, but relative to baseband frequencies (e.g., 10s of
MH?z) it can be relatively large.

Fluctuations in the received power are not the only effects of fading. Fading may also
affect the shape of the pulse as it is being transmitted through the channel [31,32]. If the
received multipath components are resolvable [33], then multipath effects can result in the
broadening of the transmitted pulse, leading to inter-symbol interference (IS1), where the
pulses of adjacent symbols interfere at the symbol sampling times. It should be noted that
the small-scale fading is caused by changes in phase rather than by path attenuation since
the path lengths change by only a small amount over small distances. On the other hand,
large-scale fading causes the received power to vary gradually due to signal attenuation
determined by the geometry of the path profile. This phenomenon is affected by prominent
terrain contours (hills, mountains, trees, buildings, billboards etc.) between the transmitter
and receiver. When such terrain contours are present, the receiver is often said to be shad-
owed. The statistics of large-scale fading provide a way of computing an estimate of the
path loss as a function of distance. Large-scale fading may be mitigated by the use of power
control, for example, while small-scale fading may require an equalizer that is capable of
removing the time-varying ISI introduced by the multipath propagation.

Free space path loss is the signal degradation caused by signal spreading when there is
a clear, unobstructed line-of-sight path between the TX-RX pair. The free space received
power P,(d) in the far-field is given by the Friis Free Space Equation [20]

GG [ A
P.(d) = P, T t(m) (1.1)

where P, is the transmitter power, GG, is the receiver antenna gain, G, is the transmitter
antenna gain, L;,ss > 1 is the system loss factor, A is the wavelength, and d is the distance

between the transmitter-receiver pair. Equation (1.1) shows that the received power drops
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as the square of the TX-RX separation (or 20 dB/decade with distance).

To evaluate the performance of wireless communication systems in laboratories, a chan-
nel simulator must faithfully model both the large-scale and small-scale effects of time-
varying propagation environments. Two main approaches are utilized for modeling multi-
path fading channels: ray-theoretical modeling [34] and impulse-response modeling [35].
The ray-theoretical model illuminates essential characteristics of the channel based on ge-
ometric propagation theory and physical rays caused by reflections and diffractions. How-
ever, the relatively high computational complexity and the typical lack of detailed terrain
and building databases make these models difficult to use in practice [19]. By far the most
popular channel simulation models are stochastic parametric models. In this approach, the
channel impulse response is characterized by a set of both deterministic and random pa-
rameters. The values of the parameters and the probability distributions governing their
behavior are selected according to empirical measurements. A multipath fading channel is
commonly modeled as a linear time-varying (LTV) system that is fully described by its im-
pulse response [16,35-37]. The complex impulse response ¢(, 7) is a low-pass equivalent

model of the actual real band-pass impulse response
et 7) = ar(t)el* D5t — 7,(1)] (1.2)
L

defined as the response observed at time ¢ to an impulse applied at time ¢ — 7, where 7 is
the delay parameter, ¢ is the time. The /" signal component experiences a different path
environment which will determine the amplitude ay, carrier phase shift ¢, time delay 7,
AOA «y, and Doppler shift fp. In general each of these parameters is time-varying. When
a large number of propagation paths exist, the Central Limit Theorem can be applied. In this
case, ¢(t, ) can be modeled as a complex Gaussian random process. When the complex

Gaussian process c¢(t, 7) is zero-mean, the envelope |c(¢, 7)| is Rayleigh-distributed
— i —62 /20’2 > 0 1 3
f\C\ (C) o2 € , € Z (L.3)

where 207 is the variance of the zero-mean complex Gaussian random process c(t, 7). Fig-
ure 1.2 plots the Rayleigh probability density function (PDF) in equation (1.3) for different
values of 0. Note that the channel model in Equation (1.2) does not consider the AOA of
each multipath component. It is usually assumed that the scatterers surrounding the mo-
bile station are about the same height as, or are higher than, the mobile. This implies that

the received signal at the mobile antenna arrives from all directions after bouncing from the
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surrounding scatterers. Under these conditions, the Gans assumption, namely, that the AOA
is uniformly distributed over [0, 27], is valid [36]. The classical Rayleigh fading envelope,
with deep fades approximately \/2 apart, arises from this model [37].

25

1.5

Fle(©

05

Figure 1.2: Rayleigh probability density function for different values of o.

When a strong LOS path exists in addition to the scattered paths, then the fading pro-
cess has a non-zero mean (arising from the LOS signal) and the magnitude of the process
becomes Rician [19]. This strong component may be a LOS path or a path that goes through
much less attenuation compared to the other received components (also called a non-faded
or specular path). The Rician PDF is usually characterized by the ratio of the power of the
direct component to the power of the scattered component, where K (dB) = 10log,, K and
the ratio K is called the Rice factor. In the presence of a specular path, the fading signal
g(T,t) can be considered to be the sum of two components: a Rayleigh component ¢(7, t)

and a deterministic (in amplitude and phase) component d(¢) representing the LOS path as

o(rt) = ,/Klﬂ o(r 1) + ,/KKH d(t) (1.4)

where the deterministic component d(t) can be written as d(t) = ae’(“d!T%4) where the
amplitude, Doppler shift, and phase of the LOS component are denoted by a, wg, and ¢g4,
respectively [38]. If the Doppler shift along the LOS path is zero, then the mean value of
d(t) is time-invariant.

Another important distribution that has been proposed to model the magnitude of the
received envelope is the Nakagami-m distribution [39]. Nakagami-m fading is proposed
to model fading channels with relatively large time-delay spreads and different clusters of

reflected waves [39—41].
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In this work, we primarily focus on simulating small-scale fading with the Rayleigh and
Rician distributions. Since large-scale fading changes slowly with distance, it can be imple-
mented easily by attenuating the received signal with precomputed coefficients according
to the desired models. Later, we will propose a hardware strategy to transform samples with

the Rayleigh distribution to samples with the Nakagami-m distribution [42,43].

1.2 Main Contributions

The contributions of this thesis lie in six main problem areas: sum-of-sinusoids (SOS) based
fading simulation, filter-based fading simulation, fixed-point filter design, simulation of an-
alytical MIMO fading channel models, simulation of geometric MIMO fading channel mod-
els, and fading simulation and bit error rate testing platform. Here we briefly summarize

each of these contributions:

e SOS-based fading simulation

1. In this thesis we propose three new models for the accurate simulation of Raylei-
¢h and Rician fading [2—4] (see Sections 2.2.1, 2.2.2 and 2.2.3). We also pro-
pose compact architectures for the fast and efficient on-chip simulation of wire-

less fading channels.

2. We propose a new ultra-compact hardware implementation of an accurate fad-
ing simulator in which the fading samples are generated differentially and in-
terpolated with a very compact architecture (see Section 2.2.4). More than one
thousand paths can be fitted on a conventional field-programmable gate array
(FPGA) with this method, with each path generating more than 300 million
samples per second. Compared to one of our early designs, the proposed fad-
ing simulator is not only 18 times smaller and 50% faster, it can also generate

significantly more accurate fading samples.
e Filter-based fading simulation

1. We propose two architectures for the homogeneous FPGA implementation of
filter-based fading simulators [9, 10] (see Sections 3.2). We also propose a
multi-stage filter design technique for the efficient hardware simulation of Rayleigh

fading channels.
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2. We propose an elastic buffer design for the robust implementation of multipath
fading simulator that can absorb any clock mismatch between hardware mod-
ules [13] (see Section 3.2.3). Another multistage design technique is proposed
and multiplication-free filters are used for interpolation. A fixed-point imple-
mentation of an example four-path fading simulator on a Xilinx Virtex-II Pro
XC2VP100-6 FPGA utilizes only 13.9% of the configurable slices and 2.7% of
the on-chip 18 x 18 multipliers and can generate up to 4 x 73 million samples
per second. This fading simulator was implemented and verified on a Digilent

Spartan-III FPGA development board.

3. Two compact filter processors for the efficient simulation of fading channels are

proposed [11,44] (see Section 3.2.1).

4. We also propose the first hardware simulator for non-isotropic Rayleigh fading
channels [12] (see Section 3.2.2). Our fixed-point implementation of this sim-
ulator on a Xilinx Virtex-II Pro XC2VP100-6 FPGA utilizes only 6.8% of the

configurable slices and can generate up to 300 million samples per second.

5. We propose a new transformation-based fading simulator for the compact and
efficient implementation of Nakagami-m and Weibull fading channels (see Sec-
tion 3.4). This fading simulator converts the already available Rayleigh fading
samples (from SOS-based or filter-based fading simulators) to Nakagami-m or
Weibull fading samples. A new method for the approximation of the transfer
function is proposed which is based on hybrid logarithmic-linear segmentation
with semi-floating-point curve fitting. Compared to the simple table look-up
approach for the approximation of the transfer function, the proposed method
provides more than 265x saving in the storage requirements. A fixed-point im-
plementation of this simulator on a Xilinx Virtex-1I Pro XC2VP100-6 FPGA
utilizes only 1.5% of the configurable slices, five 18 x 18 multipliers and three
block memories and can generate up to 246 million Nakagami-m or Weibull

fading samples per second.
o Fixed-point filter design

1. Traditionally, recursive filters are designed with floating-point tools and then
converted to fixed-point designs for efficient hardware implementation. This

results in unwanted deviations in the filter response and potential numerical
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instability due to fixed word-length effects. In addition, to avoid overflow, the
designed filter needs to be implemented with a sufficiently large number of bits.
We propose a step-by-step technique for the design of stable recursive filters
with fixed-point complex and real coefficients [14] (see Section 3.3). Filter
design with this technique results in very compact and efficient hardware im-

plementations.

2. The proposed filter design technique can be used to simulate a wide range of
fading channel conditions including non-isotropic Rayleigh fading channels and

the TGn channel model for the IEEE Standard 802.11n.

3. We propose two methods to reduce the variable range for the compact imple-
mentation of recursive filters. The first method involves sorting the poles and
zeros in a specific order while the second method involves augmenting auxiliary

poles and zeros at certain frequencies.

4. Using the proposed filter design technique results in significant savings in the
hardware implementation and substantial increases in the system throughput. In
one example, the new filter design technique resulted in a nine times reduction

in the number of configurable slices and more than 22 times higher throughput.

5. We implemented a filter processor for the designed filters and verified the hard-

ware generated power spectral density (PSD) against the target response.
e Simulation of analytical MIMO fading channel models

1. We propose two new models for the efficient simulation of MIMO fading chan-
nels. Unwanted cross-correlations are reduced by adding random-walk pro-

cesses (see [8,45]).

2. We propose a compact differential implementation of a MIMO fading simula-
tor [5] (see Section 2.2.4). This fading simulator is very compact and we can

simulate more than one thousand paths on a single FPGA.

3. We propose a compact and efficient FPGA fading simulator that can support
the simulation of the i.i.d., Kronecker, Weichselberger, and VCR MIMO fad-
ing channel models (see Section 4.5). A new stable interpolator structure is
proposed for this fading simulator. When implemented on a Xilinx Virtex-5

XC5VLX110-3 FPGA, the matrix processor of this design for a 4 x 4 MIMO

10
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system utilizes only 1.8% of the configurable slices, two multipliers, and four
block memories, and can operate at up to 234.1 MHz. This MIMO fading sim-

ulator is also implemented on our bit error rate testing platform.

4. Using the proposed MIMO fading simulator, we measure the bit error perfor-
mance of an example 2 x 2 MIMO communication system on our hardware
platform. The accuracy of our hardware implementation was verified by com-

parison with floating-point computer simulations.
e Simulation of geometric MIMO fading channel models

1. We propose a compact and efficient simulator for the geometric MIMO channel
models (see Section 4.4). The new fading simulator can simulate a wide variety
of single- and double-bounce geometric MIMO channel models. A fixed-point
implementation of this simulator for a 4 x 4 MIMO channel on a Xilinx Virtex-5
XC5VLX110-3 FPGA utilizes only 6.6% of the configurable slices, two 18 x 18
multipliers and three block memories and can generate more than 16 x 324

million samples per second.

2. We verified the accuracy of our fading simulator by comparing the fixed-point
bit-true results with theoretical reference functions. Three common geometric
MIMO fading models, namely the one-ring and two-ring models and the geo-
metrical elliptic MIMO fading channel model, were simulated with our fading

simulator.

3. This fading simulator was also implemented on our fading simulation and bit

error rate testing platform.
e Fading simulation and bit error rate testing platform

1. We implemented a fading simulation and bit error rate testing platform for the
verification of our fading simulators, and for testing MIMO systems (see Sec-
tion 4.7). This platform was implemented on a GVA-290 FPGA development
board which hosts two Xilinx Virtex-E XCV2000E FPGAs.

2. The implemented platform can be used to verify single- and multiple-antenna
wireless systems. It supports the simulation of various fading channel mod-
els including single-antenna models (AWGN, Rayleigh, Rician) and multiple-

antenna models (AWGN, Rayleigh, Rician, one-ring, two-ring, geometric el-

11
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liptic, i.i.d., Weichselberger, Kronecker, and VCR). The implemented platform
also supports both multipath integer (or tap) delays (up to 1023 taps) and frac-

tional delays.

3. The accuracy of the implemented fading simulation platforms was verified against

floating-point computer simulations.

4. We tested a sample 2 x 2 MIMO system with our platform. The MIMO system
under test included an extended Golay code encoder and decoder, a length-
16383 random interleaver and de-interleaver, and a maximum likelihood detec-

tor.

5. Software and hardware parts required for the bit error rate performance evalu-
ation of the system under test were developed. A detailed software graphical
interface was implemented to simplify parameterization of the fading channel

simulator and the bit error performance evaluation platform.

1.3 Thesis Outline

The rest of this thesis is organized as follows. Chapter 2 considers modeling and efficient
implementation of SOS-based Rayleigh and Rician fading channel simulators. In this chap-
ter, various SOS-based fading channel models are presented and their statistical properties
are compared. Three novel fading channel models based on the SOS approach are pre-
sented, and FPGA implementation results of the proposed fading simulators are given.

Chapter 3 presents novel design and implementation methods to realize parameterizable
fading channel simulators on a single FPGA using digital filters. This chapter discusses
compact and efficient implementation of isotropic and non-isotropic Rayleigh and Rician
fading channel models. A new technique is proposed for designing recursive filters with
real and complex fixed-point coefficients. Also, techniques are proposed for reducing the
variable range and thus allowin compact implementation. This chapter also proposes an ef-
ficient technique for generating Nakagami-m and Weibull fading samples from the already
available Rayleigh fading samples.

Chapter 4 considers the accurate and compact simulation of MIMO wireless channels.
This chapter starts with a brief review and classification of various MIMO fading channels.
Then, this chapter discusses hardware simulation of single- and double-bounce geomet-

ric MIMO channel models. Hardware simulation of analytical MIMO channel models is

12



1.3 Thesis Outline

discussed next. This chapter also presents our fading simulation and bit error rate testing
platform.

Finally Chapter 5, proposes related future work and makes some concluding remarks.

13



Chapter 2

Sum-Of-Sinusoids Based Fading
Simulation

The effective design of wireless communication systems needs faithful modeling and accu-
rate simulation of radio propagation characteristics. Successful implementation of wireless
products requires prototyping and extensive field testing possibly involving two or more
design iterations in the event that problems are discovered. Accurate modeling of charac-
teristics of the fading channel plays an important rule in this process. For example, the level
crossing rate of the envelope of the fading samples provides important information convey-
ing the statistics of burst errors in wireless communication systems [46,47]. As another
example, the average fade duration determines the average length of error bursts, which has
a great impact on design and testing of wireless communication systems [46,47] not only
on the physical layer but also on the link and network layers [48]. In addition, the fading
correlation properties affect channel estimation (e.g., [49]), prediction and equalization, and
the distribution of fading samples impacts the error rates [50].

Sum-of-sinusoids (SOS) based methods are among the most widely used approaches to
simulate fading channels [51]. The basic idea behind SOS-based fading channel simula-
tors is that when a sinusoidal carrier is transmitted and subjected to multipath fading, the
received signal can be modeled as a superposition of waveforms received from different
propagation paths. Since the nature and orientation of obstacles in the wireless channel are
not known in advance, the net effect of the received waveforms can be considered to be
a stochastic processes. In the SOS approach, the flat-fading process is modeled by super-
imposing sinusoidal waveforms with amplitudes, frequencies and phases that are selected
appropriately to generate the desired statistical properties in the sum signal.

A well-established technique for modeling the behavior of a Rayleigh fading channel

14



2.1 Background and Related Work

with given temporal correlation properties was introduced by Rice [51]. Rice’s model is
based on the superposition of weighted sinusoids with random phases. For a large number
N of sinusoids, Rice’s model can accurately generate samples with the desired statistics;
however, the relatively large number of required sinusoids makes this model computation-
ally inefficient.

Various fading channel simulators have been proposed over the last four decades that
involve superimposing a sufficient number of sinusoidal waveforms [1, 16, 17, 30, 52-56].
Due to the reasonable computation requirements in this approach, the SOS-based models
have been widely used to implement fading channel simulators [57-61]. Moreover, as we
will see in Chapter 4, a SOS-based fading simulator can be used to simulate a wide variety
of multiple-antenna channel models.

In this chapter we will briefly compare SOS-based models for simulating isotropic fad-
ing in single-antenna scenarios. We have made several improvements to the fading channel
models to enhance the statistical accuracy and reduce computational complexity. Several
SOS-based fading simulators have been implemented in this work. We will briefly present
implementation results for these fading channel simulators. Interested readers can refer to

our listed publications for more details.

2.1 Background and Related Work

A Rayleigh fading channel is commonly modeled using a complex Gaussian wide-sense
stationary uncorrelated scattering (WSSUS) process c(t) = ¢;(t) + jcq(t) [15], where the
envelope |c(t)| follows the Rayleigh distribution

fie|(u) = 2u exp(—u?). 2.1

Two of the most important statistical properties of the fading process are manifested in
the autocorrelation function (ACF) and the cross-correlation function (CCF) between ¢;(t)
and c4(t). In a two-dimensional isotropic scattering environment with an omnidirectional
receiving antenna at the receiver, the ACF associated with either ¢;(t) or c4(t) is expressed

as [62]

RCuCi(T) = ch,cq(T)
= E{ci(t)ci(t+71)}
_ %j0(27rfp7-) 2.2)
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2.1 Background and Related Work

where E{-} denotes mathematical expectation, fp is the maximum Doppler frequency and
Jo(+) denotes the zeroth-order Bessel function of the first kind [63]. The CCF between c¢;(t)
and c,4(t) is

Rcz‘,cq(T) = ch,Ci(T)
= 0. 2.3)

Moreover, the power spectral density (PSD) associated with either ¢;(t) or ¢,(t) is the so-

called Jakes PSD, which can be written as [64]
Se,(f) = Se,(f)
1
for | f| <
_ ey < 2.4)
0 elsewhere.

Also, higher-order statistical properties, such as the envelope level crossing rate (LCR)
and the average fade duration (AFD), provide important information for assessing verifying

system performance. For a Rayleigh fading channel with the Jakes’ PSD, the LCR and the
AFD can be shown to be [20]

L=V 27‘(‘po€_’02 (2.5)

and
T e —1 2.6
4 Vo oo

respectively, where p = Ry, /Ry is the value of the specified threshold level Ry, nor-
malized to the root-mean-square value of the fading envelope R, ;.

When a strong direct path exists in addition to the scattered paths, then the fading pro-
cess has a non-zero mean and the magnitude of the process becomes Rician-distributed
instead of simply Rayleigh-distributed [19]. This strong component may be a line-of-sight
(LOS) path (also called a specular path or component) or a path that happens to undergo
much less attenuation compared to the other received components. Rician fading is often
characterized by the ratio of the power of the direct component to the total power of the
scattered components, also known as the Rice factor K. In the presence of a specular path,
the complex fading process r(t) can be considered to be the sum of two complex com-
ponents: a Rayleigh component ¢(¢) and a deterministic component d(¢). In this case the

fading process is expressed as

r(t) = ,/KIH o(t) + ’/KKH o). 27
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2.1 Background and Related Work

Existing Rician channel models assume that the LOS path is either (a) constant and
non-zero [65], or (b) time-varying and deterministic [66], or (c) time-varying and stochastic
[67,68]. Since the first two assumptions may not accurately reflect the behavior of the LOS
component, without loss of generality we chose the third model. This Rician fading model

can be expressed as

r(t) = ri(t) 4 jre(t)

1 K 4
_ ¢ j27 fptcos(0o)+do 2.8
VEs1 OV E1° 28)

where 6, and ¢, are the AOA and the initial phase of the LOS component, respectively,
which are uniformly distributed random variables over [—, 7).

It can be shown that the probability distribution function (PDF) of the amplitude of the
fading samples in (2.8) follows the Rician distribution [68]

firi(w) = 20+ K)juxexp|[—K—(1— K)u?] x
L[2uy/ KA1+ K)]  u>0, (2.9)

where I,(-) denotes the zero-order modified Bessel function of the first kind [63]. Further,

for the above Rician fading model the ACF and the CCF are given by [68]

R"’iv""i (T) = quﬂ’q (T)

= E{ri@)ri(t+71)}
Jo(27fpT) + K cos(2m fpT cosb,)
(2+2K)

(2.10)
and

Rm,rq(T) = —qu,m(T)

= E{ri(t)rg(t +7)}
K sin(2r fp7 cosb,)
2+ 2K ’

@2.11)

respectively. Also, the LCR and the AFD of the Rician model can be expressed as [68]

MPfDexp(—K— (1+ K)p?) x

i 2 K
/0 (1—1—; K+1008290.C08a> X
exp (2p/ K (14 K) cos o

—2K cos? 6,. sin® a) da, (2.12)

Lig(p) =
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2.1 Background and Related Work

and

1-Q (ﬂ 201 + K)p2)
Lig (p) 7

Tig(p) = (2.13)

where (-) is the Marcum ()—function [69].

Jakes proposed a computationally-efficient model for the simulation of Rayleigh fading
channels. Compared to Rice’s model, Jakes’ model requires a relatively small number of
sinusoids [17] whose amplitudes, frequencies, and phases are constant and angles of arrival
are equally distributed about the receiver. Over the past three decades, many modifications
and improvements to Jakes” model have been proposed (e.g., see [1,54-56,70]). Jakes’ orig-
inal model and its derivatives are generally divided into either deterministic models (i.e., the
amplitude, phase, and frequency of each sinusoid are constant values) or stochastic models
(i.e., at least one of the three parameters is a random variable) [71]. Both deterministic and
stochastic SOS-based models have been used to model Rayleigh [30, 62], Rician [66—68],
and Nakagami [72, 73] fading channels. These simulators have been used successfully in
the burst error analysis of mobile communication systems (e.g., see [74,75]).

A channel simulator should generate a discrete time (i.e., t = mTs where T is the sam-
ple period) fading process c[m| = ¢;[m|+jc,[m] whose statistical properties are sufficiently
close to those of the reference model. Unfortunately, the deterministic Jakes’ simulator [62]
and related derivatives (either deterministic or stochastic models), have undesirable statisti-
cal properties. For example, it is shown in [56] that the deterministic models in [17,70] have
different ACFs for the in-phase and quadrature components of the fading process (when
they should be identical). Also the CCF between c;(t) and c,(t) is not zero (as required
by theory), and the outputs of independently initialized pairs of fading processes are not
statistically independent.

The deterministic model in [66] is not wide-sense stationary (WSS) [68] and the quadra-
ture CCF of the model in [54] can deviate from zero. The mean of of a WSS stochastic pro-
cess is constant over time and the correlation function of a WSS stochastic process depends
only on the time difference [76, p. 388]. These WSS properties are necessary in a fading
simulator since they assure rather similar results independent of simulation time.

A deterministic model of the exact Doppler spread [77] as well as the model in [56,77],
requires a relatively large number of sinusoids to successfully produce multiple uncorre-
lated Rayeligh fading processes [78]. This increases the computational complexity and

precludes the use of these models in frequency-selective channels and MIMO scenarios.
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2.1 Background and Related Work

Some hardware simulators based on deterministic SOS-based fading channel models have
been proposed in the literature (e.g., [53,79]), despite the fundamental weaknesses that we
will describe later.

Stochastic SOS-based models have been used instead of deterministic models to in-
crease the statistical accuracy. In stochastic models, multiple uncorrelated fading sequences
can be generated using a relatively small number of sinusoids (e.g., N = 8) [80]. There
are also several hardware-based implementations of SOS-based fading channel simulators
based on stochastic models [6, 7,60, 61].

The main drawback of the stochastic models (e.g., [1,81]) is that their statistical prop-
erties converge to the reference properties only when averaged over a sufficiently large
number of simulation trials and/or when a sufficiently large number of sinusoids are super-
imposed. Unfortunately computationally-intensive time-averaging implies long simulation
times to achieve reliable results. Also, time-averaging requires the design under test (DUT)
to be fully synchronized with the repeated restarts of the channel simulator, which is not
always feasible. In other words, the fading simulator cannot change the fading parameters
when the DUT is transmitting packets in the middle of a simulation-based measurement.

Using larger values of V (e.g., N = 40) produces greater simulation accuracy over long
simulation runs [68], but as mentioned before, this will lengthen the simulation times. When
N is a small number, the deterministic and stochastic models are not in general ergodic and
the properties of one simulation trial will deviate substantially from the theoretical refer-
ence properties. If a channel model is ergodic, then each fading process generated by one
simulation trial will have the same statistics. In such a case, only one sample fading pro-
cess would suffice to characterize the channel. Thus an ergodic model significantly reduces
the overall simulation time, requiring only the time-averaging provided by a single simula-
tion run instead of ensemble-averaging [68]. References [78, 82] report the stationarity and
ergodicity properties of a deterministic SOS-based model and compare them with those of
different classes of stochastic SOS-based models (depending on the randomness or constant
behavior of sinusoid parameters).

An SOS-based Rayleigh fading model that has been used in FPGA implementations of
fading channel simulators [60, 61] is the Li ef al. model [56] (henceforth called Model I),

which can be written in discrete time as follows:
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2.1 Background and Related Work

Model I:

=4/= Z cos 27TfD"T mcosan+<pn)
=4/ = Z sin 27rfDnTmsman+1/Jn)

where N is some sufficiently large number of sinusoids, m is the discrete-time index, fp, 7’
is the normalized maximum Doppler frequency of the n-th sinusoid, 7’s is the sample period,
and o, = 2mn/(4N) + «, is the angle of arrival (AOA) of the n-th sinusoid where 0 <
a, < 27/N and o, # 7/N. The phases of the n-th sinusoidal components, ¢,, and ¥,,,
are statistically independent and uniformly distributed random variables over [—m, ), for
all n.

Another well-known SOS-based model that has been utilized in FPGA implementations
of fading channel simulators [6, 7] is the model proposed by Zheng et al. [1] (henceforth
called Model II). 1t is shown in [71] that this fading model is one of the most accurate
models for simulating a fading channel for a relatively small number of sine waves. This

fading model can be written in discrete time as follows:

Model II:

N
1
= \/;Z cos (27rfDTSm cos oy, + SDn)a
n=1
T
m] = \/;Z cos (2m fpTemsin oy, + y,)
n=1

where ay, = (2rn—7+0)/(4N) and 6, ,, and 1),, are mutually independent random vari-
ables uniformly distributed over [—, 7). This model requires a relatively small number of
sinusoids (between 8 and 12) to generate relatively accurate correlation and LCR proper-
ties. It was concluded in [71] that Model Il has superior statistical properties compared to
the other SOS-based models.

The Rayleigh model proposed by Xiao et al. [67] (henceforth called Model III) can be

written in discrete time as follows:

Model II1:

N
1
= \/;Z cos (27rfDTSm cos oy, + SDn)a
n=1
1 N
cqlm] = \/;Z sin (27 fpTsm cos oy, + 1y, ,
n=1
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2.1 Background and Related Work

where «,, = (27n + 6,)/N and ¢, is the phase of the n-th sinusoid. ¢, and 6,, are
statistically-independent and uniformly-distributed random variables over [—, ), for all
n.

As shown in Figure 2.1, the ACFs of Models 1, I1, and III all deviate significantly from
the reference properties, especially at the larger lags, when the statistics are taken over only
one block of generated fading samples. In this figure, all of the above models have been
simulated with NV = 8 sinusoids. For more accurate results using Model I, a relatively large
number of sinusoids NV (e.g., N = 32) is required [56], which is not desirable for imple-
mentation. Even though these models have serious limitations with respect to matching the
theoretical ACF, as shown in Figure 2.2, Model Il has a much better (i.e., closer to zero)
cross-correlation function between the quadrature components compared to Models I and
1.

Compared to the other models, Model II can reproduce the theoretical CCF (i.e., that at
zero) more accurately with a relatively small number N of sinusoids, as shown in Figure
2.2. However the ACF properties of this model need further improvements for the purpose
of an accurate hardware simulator.

The main drawback of the above models is that their statistical properties converge to
the desired properties only when averaged over a relatively large number of simulation trials
[1]. The statistical properties of a single trial, no matter how long, deviate from the reference
properties [78]. If the channel simulator were to be ergodic, then each simulation trial would
produce the same statistics. Being able to use only a single trial would significantly reduce
the overall simulation time [78]. The simulation results in Figures 2.1 and 2.2 confirm the
results in [78] that Model 11, which has constant amplitudes but random frequencies and
phases, is not ergodic. Therefore, Model II is also not appropriate for the simulation of
wireless systems with continuous (or very long) communications [2]. To generate more
accurate results one could frequently reset the random phases in Model I1I. However, this is
not desirable in practical channel simulations since it would require simulation restarts and

would introduce channel property discontinuities during the trials.
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Figure 2.1: Normalized ACF for one block containing 2 x 105 fading samples using the
Zheng et al., Xiao et al., and Li et al. models with fpTs = 0.01 for N = 8.
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Figure 2.2: CCF for one block containing 2 x 10° fading samples using the Zheng et al.,
Xiao et al., and Li et al. models with fpTs = 0.01 for N = 8.

To overcome these limitations, we propose new fading channel models that replace

the angle of arrival and other phase parameters in Model Il with random walk processes.

These modifications significantly improve the statistical accuracy of the generated fading

samples. In the following sections, we will provide more details about our modifications

and the corresponding implemented SOS-based hardware fading simulators.
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2.2 Implementation of SOS-Based Fading Simulators

The SOS-based fading simulators developed in [6, 7] used Model Il for the FPGA im-
plementation of a fading simulator. This model was chosen for implementation because
it could produce the desired channel properties with a relatively small number N of sine
waves [71]. The main difference between the hardware implementations in [6] and [7] is
in the way the trigonometric functions cos(-) and sin(-) are approximated. In [6], these
functions are stored in look-up tables with 1024 entries, while the design in [7] calculates
these trigonometric functions iteratively.

Comparing the implementation results from [6, Table 1] and [7, Table 1] shows that
using table look-up for approximating the basic trigonometric functions is a more efficient
approach compared to iterative calculation. Based on these results, in our implementations
we approximated the cos(-) and sin(-) trigonometric functions using the table look-up ap-

proach.

2.2.1 SOS-Based Fading Simulator with Improved Statistics

As mentioned before, one of the drawbacks of SOS-based fading simulators is that their
average statistical properties converge over a relatively large number of simulation trials.
To overcome this problem, a multiple parameter set (MPS) simulation method is proposed
in [83]. This technique divides a simulation trial into several frames and randomly generates
Doppler frequencies and phases for each frame. For example, to generate 107 in-phase and
quadrature components, we can divide them into 10% frames of length 10* samples each, to
find time-averaged results. It should be noted that the autocorrelation with the MPS model
is zero for time delays that exceed the frame length. Hence, the frame length should be
sufficiently large to cover the time delays of interest to get meaningful results. With this
method, the performance of Monte Carlo simulation with the Model II fading simulator is
considerably improved [71].

Unfortunately, the MPS model creates discontinuities in the temporal behavior. As a
consequence, the testing of a communication system should be interrupted and re-initialized
every time with a new set of random parameters for each trial to ensure accurate modeling of
the channel. At the receiver, the channel estimation or carrier recovery must be re-acquired
after each draw of random parameters. However stopping and restarting the communication

system and channel simulator in this way might not be convenient in many practical cases.
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2.2 Implementation of SOS-Based Fading Simulators

Therefore, Model II may not be suitable for emulating a Rayleigh fading channel with
accurate time-average statistical properties.

To improve the existing models, Zaji¢ and Stiiber [84] proposed a deterministic model
which is ergodic. In other words, for their model the average of the fading process pa-
rameters over time and the average over the statistical ensemble are the same. However,
the autocorrelation of the in-phase and quadrature components do not accurately match the
theoretical properties. Zaji¢ and Stiiber also proposed a statistical model to overcome this
shortcoming of their deterministic model. However, the resulting modified model was no
longer ergodic.

In order to have a SOS-based fading simulator whose time average converges to its
statistical ensemble average, the random AOA in the model should vary in a reasonable
way with time and become a stochastic process. We proposed a new model in [2], based
on Model 11, in which the in-phase and quadrature components of the fading samples are

expressed as

Model IV:

N
n=1

N
cqlm] = \/;Z cos (2m fpTsm sin ap, [m] + ¥y,

n=1

where o, [m| = (27n — 7w + 0[m])/(4N) and @][m] is a stationary stochastic process. In
particular, we were inspired by the measurements in [85] to model the behavior of AOA as
a random walk process.

Although the AOA changes continuously, the time samples look like a random walk
[85]. Moreover, in isotropic scattering, §[m] is uniformly distributed over [, 7), and also
since the AOA does not change rapidly, #[m] must be highly correlated. A highly corre-
lated (depending on Doppler frequency) random process was thus required with uniformly
distributed samples over [—m, 7). Time-correlation can result in a non-uniform distribution
of samples except in a random walk processed with controlled step size. We proposed to
use the stochastic random walk process given by Algorithm 1 (from [2]).

The random walk process 6 in this algorithm is generated using the process u[m| which
has independent samples that are uniformly distributed over [0, 1). The step size d, should
be chosen to be small enough to model the behavior of highly correlated (or slowly chang-

ing) AOAs for different Doppler rates. Some suitable values for ¢, are suggested in [2].
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2.2 Implementation of SOS-Based Fading Simulators

Algorithm 1 The proposed random walk process 0[m]
1: Initialize 6, = ¢ < 1, 0[0] = U(—m,7);

2: for m > 0do

3 Olm]=0[m — 1]+ 6, x u[m];

4:  if O[m] > + then

5 Olm] = +m; 6o = =003

6: end if

7

8

9

0

if 0[m] < —n then
Olm] = —m; 6, = —0o;
end if

10: end for
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Figure 2.3: (a) Normalized ACF and CCF of 107 fading samples generated using Model IV.
(b) LCR of generated fading samples and the reference LCR.

We performed several numerical simulations to verify the statistical properties of Model
IV. In one simulation trial, we generated a block of 107 fading samples using N = 8
sinusoids and measured the time-averaged statistical properties. Figure 2.3 (a) plots the
reference ACF along with the ACF and CCF of the samples generated with Model IV.
As Figure 2.3 (a) shows, the measured ACF accurately matches the reference ACF and
the measured CCF is very small. Also, the LCR of the envelope of the generated fading
variates and the theoretical LCR for fp7s = 0.002 are plotted in Figure 2.3 (b). Here again
a close match between the measured LCR and the desired LCR from equation (2.5) can be
observed. A comparison between Model IV and the original Model Il (from [1]) based on
the mean square error of different statistics is provided later in this chapter.

To measure the hardware performance of the new fading simulator, Model IV was im-
plemented as a Verilog HDL design and synthesized for three typical Xilinx Virtex-II Pro,

Xilinx Virtex-4, and Altera Stratix FPGA devices. The results are summarized in Table 2.1.
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2.2 Implementation of SOS-Based Fading Simulators

Table 2.1: Implementation of the Fading Simulator on Three Different FPGAs

Device XC4VSX55-11 | XC2VP100-6 | EP1S80F1508C6
Max. clock freq. (MHz) 195.61 204.75 103.01
Output rate (MSamps/sec) 195 204 103
Slice utilization 2447 (9%) 2444 (5%) 1292 (1%)
18 x 18 MULTs A8 (9%) 13 (10%) 128 (72%)
Number of BRAMs 12 (3%) 12 (2%) 12 (2%)
More details about the FPGA implementation can be found in [2].
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Figure 2.4: Simulation results for a block of 2 x 10% fading samples with fp7T, = 0.01 gen-
erated with Model V using N = 8 sinusoids. (a) Normalized estimated ACF, (b) absolute
value of normalized CCF, (c) estimated PDF, and (d) estimated LCR.

2.2.2 Proposed SOS-Based Rician and MIMO Fading Simulator

We now propose new modifications to our model [2] to reduce the cross-correlation levels
and to cover Rician fading as well as Rayleigh fading. The new model also has a more
efficient hardware implementation [3, 8, 86]. The modified version of Model IV, called

Model V, generates the Rayleigh fading samples as
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Model V:

cilm] = \/EZ COS (ZWfDTSm cos i [m] + Wn[m]),

N
cqlm] = \/gz CoS (27TfDTSm sin ay, [m] + 1y, [m]),

n=1

where ¢, [m] and 1,,[m] are independent and stationary random processes (RPs). More
specifically, compared to Model 1V, in Model V we propose replacing the random phases
p, and 1, with independent stationary random processes (RPs). Each random process
0[m], pn[m], and ¢, [m], is updated using [8, Algorithm 1] which is, in essence, Algorithm
1 extended to update ¢,,[m| and 1,,[m]. These modifications reduce the CCF between
the generated streams of fading samples. Low CCF levels are particularly important for
simulating independent fading paths for simulating multipath channels (including wide-
band frequency selective channels) or MIMO channels.

To measure the statistical properties of the fading samples from Model V, we generated
one block of 2 x 106 samples with fpTs = 0.01, and N = 8 sinusoids. Figure 2.4 (a)
plots the ACF of the generated fading samples and the theoretical reference. Note that the
estimated ACF matches the theoretical ACF, even at the larger lags. Figure 2.4 (b) shows
the small cross-correlation between two sequences of 2 x 10° generated fading variates.
Figure 2.4 (c) and Figure 2.4 (d) show close agreement between the theoretical functions

and estimated PDF and the LCR of the fading channel.
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Figure 2.5: Dataflow for updating random processes and calculating fading coefficients.

We used a time-overlapped approach for the compact implementation of Model V. In
this approach, each simulation trial is divided into shorter intervals, each of length 1 time
units (e.g., clock cycles). To minimize the number of functional units and memories, in-
stead of updating the RP values every clock cycle, their values are updated (with no loss
in performance) every w clock cycles, where 1 < w < W. Rather than computing the

RPs in parallel, they can be calculated sequentially using time-shared arithmetic resources
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but distinct register sets. The updated RP values are copied at the beginning of the next
interval to another set of registers where they can be read during the next fading coefficient
generation interval. This dataflow schedule is shown in Figure 2.5.

We will now present the computation of the in-phase ¢;[m]| component of ¢[m]. The
quadrature c,[m/| can be evaluated similarly. First, we factor out the 27 and re-write ¢;[m]

as
1 N
cilm) =1/—=) cos |27 ((fpTscos an[m]) x m+ @n[m]) ), (2.14)
\/N; (2m (0 onlm]) )

where ¢, [m] € [-0.5,0.5). We can also write a,[m] as

an[m] = 2”("_2‘]5v+ e[m])’ (2.15)

where 6[m] € [~0.5,0.5). Note that 8[m] € [~ 7) and @,[m] € [, ) are rescaled as

0[m] and @y [m] in (2.14), respectively, to lie within [—0.5,0.5).
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Figure 2.6: (a) Datapath for updating the random processes using shared hardware. (b)
Datapath for calculating ( fpT cos ay,[m]) x m and generating ¢;[m)].

To update the random walk process 0 (and also the other RPs ¢,, and 1/~Jn), the random
step size 0 for each process is calculated by multiplying a generated uniform pseudo-random
number (PN) in (0, 1) by a positive value £ < 1. Note that the fading variate generator
must create long periods of non-repeating propagation conditions to evaluate the error-rate
performance accurately and thereby ensure confidence in the test results. To ensure that test
conditions do not repeat during test runs, we used a combined multiple-component linear
pseudo-random number generator (PNG) [87] that has a very long period and substantially
better randomness and correlation properties compared to conventional linear PNGs. To

eliminate the multiplication operation, the value of ¢ is chosen to be 2~¢ for some suitable
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exponent d. Note that the Bit Mask module masks the d most significant bits of the
generated PNs and uses the result d; as a random updating step for the RP 0, as shown in
Figure 2.6 (a). The RPs ¢y, - - - , ¢, are updated similarly to 0, as shown in Figure 2.6 (a).

According to (2.15), forn = 1,-- - , 8, the lower and upper bounds of «,, are [0, 7/16)
and [7/16m,7/2), respectively. Therefore we only need to calculate the cosine values (for
c¢;[m]) and the sine values (for c,[m]) of a,[m] over the interval [0, 7/2). We uniformly
quantize the cosine and sine values within [0, 7/2) over 512 sub-intervals and store their
values in one of the Block RAM (BRAM) memories in the FPGA. This BRAM is used in the
1024 x 16 configuration with the first 512 words storing the cosine values and the second
half storing the sine values, both in the 2’s complement fixed-point format Q (16, 15)
(i.e., 16-bit words with the 15 least significant bits dedicated to the fractional part). The
Bit Selection module selects the 10 least significant bits of the adder output (i.e., the
value of «,) and addresses the COS/SIN Memory. The N values of cos ay,[m] are read
from the COS/SIN Memory in N clock cycles and are multiplied by fpTs sequentially
to generate N values of 3;, = fpTscos ay,. The N values of 3,, = fpTssin «, are
calculated similarly in the next /N clock cycles. Since fpTs < 1 and since the sine and
cosine values lie within [—1,1), 3;, and 3, lie within [—1, 1) and can be represented in
Q0(16,15).

Figure 2.6 (b) shows the datapath for calculating (fpTs cos a,[m]) x m. After cal-
culating 3;, [m| = fpTscos ay|m| (as shown in Figure 2.6 (a)), integer multiples of (3;
can be obtained using an accumulator instead of a multiplier. Then the 3;, [m] x m val-
ues are added to the ,, values and used to address IN/2 dual-port cosine memories. Note
that when calculating the cos(27y) functions, only the fractional part of the ~ is required
and the integer part can be ignored. Hence, the adders and registers used in Figure 2.6 (b)
are only 16-bit modules. The outputs of the N/2 cosine memories are then passed to a
pipelined adder tree to compute the in-phase component of ¢[m]. Computation of c,[m]
can be performed simultaneously using a similar datapath to that in Figure 2.6 (b).

The registers and the operation of the functional modules for computing ¢;[mn] and ¢,[m]
are controlled using a W -state machine. The value of W depends on the number N of
sinusoids, the functional dependency between operations, and also the number of pipeline
stages in the longest path in the datapath that updates the RPs. For clarity let us ignore
the number of pipeline stages. As shown in Figure 2.6 (a), since we use only one PNG

and since updating 6[m), @, [m] and v,,[m] requires independent noise samples, these RPs
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must be updated sequentially in 2N + 1 clock cycles. After updating §[m], values 3;, [m]
and (3;, [m] can be calculated sequentially for IV sinusoids in 2NV clock cycles. Note that
register 0 is disabled during the calculation of 3;, and 3, . The process of updating 3;,, [m]
and f3,, [m] takes place in parallel with the updating of @, [m] and 1), [m]. Therefore, W can
be any integer number greater than or equal 2N + 1. For N = 8 sinusoids, and including
several pipeline stages in the design, we chose W = 32. Note that register R; is initialized

to 0.5 at the start (i.e., n = 1) of the cos a,,[m] and sin a;,[m] computations.

Table 2.2: FPGA Implementation Results for Model V

Device XC2VP100-6 | XC2VP100-6 | XC2V4000-6
Model Model IV Model V Model V
Max. clock freq. (MHz) 204.75 201.1 177.99
Output rate (MSamps/sec) 204 201 177
Configurable slices 2444 (5%) 1105 (2%) 1100 (4%)
18 x 18 MULTs 48 (10%) 1(< 1%) 1(<1%)
Number of BRAMs 12 (2%) 9 (2%) 9 (7%)

The implementation results for the above fading simulator based on Model V using
N = 8 sinusoids are summarized in Table 2.2. Our implementation on a Xilinx Virtex-
IT Pro XC2VP100-6 FPGA, uses 1105 of the 44096 configurable slices (2%), one of the
444 dedicated multipliers (< 1%), and 9 of the 444 on-chip memory blocks (1%) while
generating over 200 million 16-bit complex-valued fading samples per second. This table
also compares the new implementation results with the FPGA implementation results for
Model 1V (from Table 2.1). As shown in Table 2.2, the previous fading channel simulator
based on Model 1V requires 10% of the dedicated multipliers on the same device. The
reason that the previous implementation of Model IV (from [2]) uses such a large number
of dedicated multipliers is because in order to compute fpTs X m, in [2] we used a 48-bit
register to accumulate successive multiples of fpT since m, which is a discrete-time index,
can be a large integer. Then we used N multipliers to multiply the 12-bit cos v, [m] with the
48-bit value of m fpTs. Thus this earlier scheme is certainly not compact enough for larger
systems with more than 10 channels given present FPGAs. However, the proposed scheme
uses substantially fewer dedicated multipliers, fewer BRAMs, and also fewer configurable
slices than the implementation in [2], while the slight decrease in fading generation rate is
negligible. In [8], Model V has also been used for the simulate a MIMO fading channel
with Kronecker model.

In [3], Model V is extended to cover Rician fading. The new Rician model (henceforth
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called Model VI) can be expressed in discrete time as

Model 1V:
rlm] = ri[m] 4 jrq[m],
rifm] = (ci[m] + VK cos(2r fpTsmcos 6, + o)) /VE + 1,
rglm] = (cqlm] + VK sin(2n fpTym cos 0, + ¢,)) /VE + 1,

where K is the Rice factor (the ratio of the specular power to the scattered power), and 6,
and ¢, are the AOA and the initial phase of the LOS component, respectively, which are
uniformly distributed random variables over [—m, 7). In Model VI, the Rayleigh samples

¢i[m] and ¢q[m] are defined in as Model V.
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Figure 2.7: Datapath of generating Rician fading variates.

Hardware simulation of Rician fading according to Model VI is straightforward. In
this model, the contribution of the scattered components (i.e., c[m]) is scaled and added to
the contribution of the specular component. Here, the Rayleigh fading samples {c[m|} are
generated with the datapath in Figure 2.6 (b). Figure 2.7 shows the datapath for generating
Rician fading variates.

Similar to the Rayleigh fading, the parameters of the cosine and sine functions in Model

VI can be written as 27 ( fpTsm cos 6, +¢~>0), where ¢, € [—0.5,0.5). The integer multiples
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of fpTscosb, are calculated using an accumulator, as shown in Figure 2.7. This value is
then added to ¢, to address the cosine and sine memories over the domain [0, 27). The
outputs of the memories are multiplied by scaled Rice factors that are read from the primary

inputs. The results are added later to the normalized Rayleigh coefficients.

Table 2.3: Comparison of the FPGA Implementation Results for Model IV, Model V, and
Model VI on a Xilinx Virtex-II Pro XC2VP100-6 FPGA

Model Model IV Model V Model VI
Fading Type Rayleigh Rayleigh Rician
Max. clock freq. (MHz) 204.75 201.1 201.1
Output rate (MSamps/sec) 204 201 201
Configurable slices 2444 (5%) | 1105 (2%) | 1222 (2%)
18 x 18 MULTs 48 (10%) | 1 (< 1%) 5 (1%)
Number of BRAMs 12 (2%) 9 (2%) 11 (2%)

Table 2.3 compares the FPGA implementation results between Model 1V, Model V,
and Model VI (from [2], [8], and [3], respectively). An FPGA implementation of the Ri-
cian fading channel simulator Model VI using N = 8 sinusoids on a Xilinx Virtex-II Pro
XC2VP100-6 FPGA uses 1222 of the 44096 configurable slices (2%), 5 of the 444 dedi-
cated multipliers (< 1%), and 11 of the 444 on-chip memory blocks (2%) while generating
201 million 16-bit complex-valued fading samples per second. Table 2.3 shows that the Ri-
cian fading simulator Model VI requires four more 18 x 18 on-chip multipliers and utilizes
approximately 11% more configurable slices than the Rayleigh fading simulator Model V,
but the two new simulators generate fading variates at the same rate. Thus the increased

cost of providing Rician fading beyond Rayleigh fading is quite reasonable.

2.2.3 Compact Architecture for Fading Simulation

In [4] we proposed a compact architecture for the simulation of multipath Rayleigh chan-
nels based on Model V. In a typical wireless communication systems, since the Doppler
frequency fp is significantly smaller than the signal sample rate Fy = 1/Ty, the fading
samples can be generated at significantly lower rates. Hence, rather than implementing N
complex “oscillators,” one time-shared datapath can be used for the compact implementa-
tion of the N complex “oscillators” in Model V.

When resources are shared for a compact hardware implementation, the fading sample
generation rate will typically be reduced proportionally. To compensate for the throughput
reduction, we utilize a linear interpolator to achieve the desired output sample rate. To

use such an interpolator, the signal bandwidth should be small enough that the interpolator
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response does not have a significant impact on the statistics of the generated samples. More
specifically, if an initial sample rate E, > 32 x fp is used, a simple linear interpolator can
provide more than 80 dB of attenuation on the image signals (introduced by operating at F,

instead of FY) with no significant effects on the desired signal.

Calculating & Updating @, wand ¢

1 I Q(16,15) 2

| dol Q(16,15) . 2
uf dOut dOut ]

| RAM @ " RAMY " RAM @ |

| i 1 1

Figure 2.8: Datapath for updating phase angles.

This low-rate fading simulator generates the fading samples in three steps. In the first
step, the random walk processes (RWPs) 0[m], p,[m], and 1,,[m| are updated. In the
second step, low-rate Rayleigh fading samples are generated at a frequency F, < F,.
Finally, in the third step, the low rate fading samples are interpolated up to F,. Here we

explain how these three steps are processed in the implemented hardware.

2.2.3.1 Updating the RWPs 0, ©,,, and 1,

We define a,[m] = an[m]/(2r) = (n — 0[m])/(4N) where 6[m] € [0,1) and thus
Gplm] € [0,1/4). We also define ¢, [m] = (7 + @n[m])/(27) and ¢, [m] = (7 +
¥n[m])/(2m) to be in the range [0,1). Note that shifting a random phase process by 7
does not change its statistical properties. Correspondingly, when implementing Algorithm
1, we normalize the random walk process to fall within U(0, 1). The resulting datapath
that updates the RWPs is shown in Figure 2.8, where the signals are represented in the
2’s complement fixed-point format Q (WL, WF') (i.e., WL-bit words with the WF < WL
least significant bits dedicated to the fractional part). The pseudo-random number genera-
tor (PNG) generates uniformly-distributed samples. The common size of on-chip memories
RAM o, RAM ¢, and RAM v, is L x N x 16, where L > 1 is the number of independent

faders and each sinusoid parameter is stored in 16-bit 2’s-complement format. For exam-
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ple, utilizing 18-Kb on-chip block memories on Xilinx FPGAs, each one of the parameters
A, Pn and 1/3,1 for L = 32 different faders with N = 32 can be stored in one BRAM, as

shown in Figure 2.8. L different values of 6 are also stored in a memory RAM 6.

2.2.3.2 Generating the Rayleigh fading process

Based on the discrete-time definition of Model V, which operates at a sample rate Fy, we
define a slow discrete-time fading signal ¢;[m] (in-phase component) operating at sample

rate Fy (< F,) as follows:

N
&lm] = \/g;g(f(i—an[mbgwn[w) (2.16)

where g(z) = cos(2mz) and f(z) = 64 x (fp/F)sin(2rz) for z € [0,1/4). We choose
F, > 64 x fp, hence the value of f(z) is limited to the range [0, 1]. As shown in Fig. 2.9,
the values of f(x) for z € [0,0.25) are precomputed by uniformly quantizing f(x) over
1024 segments and then storing these values in ROM f. Note that the inner cosine function
in (2.16) is obtained using the identity cos(2wz) = sin(27(1/4 — z)). For z € [0,1/4),

1/4 — 2 can be calculated using the negation NEG operation.
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Figure 2.9: Datapath for generating the in-phase component of the fading process.

The repeated multiplication of m and f(-) in (2.16) can be replaced with a running

summation as follows:

m

£ = Gl ] = 3 55 = dals]). 1)
j=1

Note that 3;,,[m] can be written in recursive form as 3;,,[m| = Gin[m—1]+ f(1/4—é&,[m])

with ;,[—1] = 0. With similar modifications to ¢é,;[m], the resulting simplified in-phase
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and quadrature components can be written as follows:

N
éilm] = \/gnz:lg(ﬁm[m]/&l—l—cﬁn[m]), (2.18)

N
Cqlm] ~ ﬁ ; 9(Ban[m] /64 + du[m]), (2.19)

where 3, [m] is defined recursively as By, [m] = Bgn[m—1]+ f(&y[m]) with By, [—1] = 0.
Our bit-true fixed-point simulations show that the word length of 3;,, and 3;,, has a signifi-
cant impact on the output statistics. Through experimentation we found that the Q (22, 15)
format provides enough accuracy for the computation. The 2 x L x N values of (3;,, and 3,
are stored in memory RAM (3, as shown in Figure 2.9. Also, the Cos Module is used to cal-
culate the g(x) function using look-up tables. The first quarter cycle of the cosine function
is quantized into 1024 segments and the resulting values are stored in an on-chip BRAM.
The value of g(x) over (0, 1) is calculated using the values of the first quarter cycle. The
outputs of the Cos Module are accumulated to compute scaled values of (2.18) and (2.19),

which are then stored in memory RAM c.

2.2.3.3 Interpolation

In this step, fading samples generated at F, samples per second are oversampled and in-
terpolated I times to provides samples at the target sample rate Fy; = I X F,. The linear
interpolator requires the discrete difference between two successive low-frequency sam-

ples y[mI] and y[(m + 1)I] to generate the interpolated fading samples y[mI + i], where

1=0,1,---,I — 1, which can be expressed as
. m+ 1)I| —ylmlI|)
yiml +1] = WU )I] yimdli ). (2.20)

To avoid the multiplication and division operations, we use an accumulator and the divisor

1 is chosen to be a power of two. Thus

yml +i] =" yl(m + 1)11] —ylmdl ), 2.21)
=0

and the interpolator is implemented as shown in Figure 2.10. The interpolator contains a
24-bit accumulator and one register that holds the value of the input signal for an interval

of I samples.
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Figure 2.10: Interpolator structure.

An important property of the proposed architecture is that since the same datapath is
shared to update the sinusoid parameters and to calculate the superposition of sinusoids, the
number N of sinusoids only impacts the size of the memories used to store the sinusoid
parameters. The computational complexity is directly proportional to the number L of
faders since, for every stream of in-phase and quadrature samples, one instantiation of the
interpolator shown in Figure 2.10 is required. For example, the implementation of the low-
rate fading simulator with L = 32 paths, which requires 64 independent interpolators for
the in-phase and quadrature components, uses 6899 (7%) of the configurable slices in a
Xilinx Virtex-4 XC4VLX200-11 FPGA. The synthesis results show that 6214 out of 6899
configurable slices (i.e., 91%) used for the entire fading channel simulator are used by the

interpolators.
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Figure 2.11: (a) Normalized ACF and CCF of the ¢[m)] for one block containing 2 x 10°
fading samples with fpTs = 0.0001 and N = 16. (b) PDF of the fading envelope |c[m)]|.
(c) Normalized LCR.

To verify the accuracy of the Rayleigh fading simulator, we compared the bit-true fixed-
point simulation results of important statistical properties of the generated fading variates
with the theoretical functions. The simulations were performed using N = 16 sinusoids.
Four major statistical measures, namely ACF, CCF, PDF, and LCR were examined against
the theoretical references in equations (2.2), (2.3), (2.1), and (2.5) respectively. The plots
in Figure 2.11 show excellent agreement between the fixed-point bit-true simulated results
and the corresponding theoretical curves.

Based on the above methodology, we modified this design to simulate Rician fading
channels using Model VI. For a fairer comparison with other designs, we implemented
the fading channel simulator with different numbers L of paths on a Xilinx Virtex-II Pro
XC2VP100-6 FPGA. Table 2.4 compares the characteristics of two implementations of the
new fading simulator with the fading channel simulators in [59] (implemented on an Altera

APEX EP20K1000EBC652-3 FPGA) and [3] (for Model VI). Note that the new L = 32
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Table 2.4: Comparison Between FPGA Implementation Results

Model A [59] B [3] C NEW D NEW
FPGA Device EP20K1000 | XC2VP100 | XC2VPI100 | XC2VP100
Fading type Rayleigh Rician Rician Rician
Number of paths L 16 32 32 64
Number of sinusoids N 16 8 32 32
Max. clock freq. (MHz) 50.0 201.1 238.94 238.94
Output rate 16 x 1.5 32 x 201 32 x 238 64 x 238
Configurable slices 58% 87% 15% 29%
18 x 18 MULTSs - 36% 0.2% 0.2%
BRAMs 17% 79% 2.0% 2.0%

path fading simulator is 82% smaller and 18% faster than the previous implementation for
Model VI despite the fact that the simulator uses four times more sinusoids (and hence has
greater statistical accuracy). Moreover, comparing the number of paths L, the number of
sinusoids NV, and the maximum speed of the designs, the new fading simulator is signifi-
cantly faster and more efficient than the fading simulator reported in [59] while providing

higher statistical accuracy.

2.2.4 High Path Count Rician and MIMO Fading Simulator

In [5], we proposed new modifications to the fading simulator in [4] (represented in Section
2.2.3) and made it significantly more efficient for hardware implementation. The new fad-
ing simulator basically generates the discrete difference between fading samples at a low
sample rate. A simplified interpolator is then used to provide the target sample rate. The
compact implementation of this fading simulator makes it an especially appropriate candi-
date for simulating fading scenarios with large number of paths, like multipath and MIMO

fading channels [5]. Here we explain how this fading simulator is implemented.

2.2.4.1 Modifications

Let’s start with equation (2.21). Note than when I is chosen to be a power of two (i.e.,
I = 2¥), the interpolator (2.21) can be implemented without multiplications or divisions.
Note also that the interpolator requires the discrete difference between two subsequent low-
frequency samples. In addition, since the difference is a linear and time-invariant operation,
it can be performed before adding in any Rician specular (i.e., LOS) component. The
discrete difference signal for the Rayleigh in-phase component in (2.18) is thus

i (g(Binlml o &, 1m)) — g(Zmlm=l 4 5 1m — 1))

(2.22)

n=1
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By substituting (2.22) into (2.21), one can verify that the in-phase Rayleigh fading samples
of Model V at sample rate F can be approximated by

-1
GlmIl+u] = &1+ ) difm] +27%d;[mlu

3

3
Ll

3
[

u

= 0] difrh] + 275 " dim], (2.23)
j=1

_l’_

S

n=0

3
]

where k = loga(I), m = 0,1,2,---,and u = 0,1,--- , I — 1. Equation (2.23) shows that
with the above modifications, the interpolation operation can be simplified to a discrete dif-
ference, a shifting operation, and an accumulation (the two summations in equation (2.23)
can be implemented with only one accumulator).

Next, the discrete difference of the LOS component is added to the Rayleigh fading

samples. The discrete difference signal for Rician samples can be written as (see Model VI)

1 K

silm] = ﬁd,[m] + T K

where A[m] = S7_ (n/64) 4 o, do = ¢o/(27), and 1) = 64 x (fpT%) cos(fy). The

in-phase component of the final Rician samples are interpolated with an accumulator as

(9(Alm]) — g(A[m — 1])), (2.24)

follows:

rilmI +u] = 7[0] + ,_ si[rh] + 2_ksi[m]u

3

3
I
= O

3

= H0]+ Y sifm] + 278 si[ml, (2.25)
0 j=1

3
|

where 7[0] = (&]0] + VKg($o))/v1I+ K. The interpolated quadrature component

rqlmI +1i],form =0,1,2,--- andu =0,1,--- ,I — 1, can be calculated similarly.
2.2.4.2 Hardware Model

We now describe an efficient hardware design for an especially compact and high-throughput
simulator based on the above simplified fading channel model. Without loss of generality
we explain the design for 32 channels with each channel providing Rayleigh fading with
N = 32 sinusoids. The architecture of this fading simulator consists of two cascaded
stages. In the first stage, the complex sinusoids are generated at the sample rate F,. Since
F, is much slower than the target sample rate F, a common data path can be time-shared to

interleave the calculations for different paths. The various required waveform parameters
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are stored in different random-access memories to allow the samples to be updated using a
shared datapath. However, every low-speed stream of fading samples must be interpolated
with a dedicated interpolator. This way, the low-speed calculations are performed more
efficiently with the least amount of hardware. Note that the final sample rate of the fading
simulator depends on the maximum speed of the interpolator if different clock sources are

used for the first (wave superposition) and second (interpolation) stages.
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Figure 2.12: Datapath for generating the random phase processes.

Here, a time-overlapped approach is used where one simulation trial is divided into
shorter intervals, each of length W clock cycles. To minimize the number of FPGA func-
tional units and memories, instead of updating the RP values every clock cycle, without
significant loss in final accuracy their values are updated every w clock cycles, where
1 < w < W. The RPs are calculated sequentially using time-shared arithmetic resources
but distinct memory locations. The datapath shown in Figure 2.12 updates the random
phases dv, [m], ¢n[m] and 1, [m]. These random parameters are stored in three block mem-
ories “RAM «”, “RAM ¢ and “RAM 9, respectively, in Q (16, 15) format each of depth
1024 words. Also, 32 values of @ are stored in the dual-port distributed memory “RAM 6”
in Q(16,15) format. The random processes 0, ¢,[m] and v, [m] are updated according
to a modified version of the algorithm described in [3] (see Section 2.2.2).

A fading variate generator must create long periods of non-repeating propagation condi-
tions to evaluate accurately the error-rate performance of the communication system under
evaluation. The quality of the modeled conditions depends on the quality of an underly-
ing pseudo-random number generator (PNG). To ensure this, we used a combined linear
PNG [87] that has a very long period and substantially better randomness and correla-

tion properties compared to conventional linear PNGs. In addition to updating the ran-
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A~

dom phases, the datapath in Figure 2.12 updates the value of &,,[m] = (n — 0)/(4N) for
n=1,2,---,N.
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Figure 2.13: Datapath for generating Rayleigh fading samples.

Figure 2.13 shows the datapath for calculating the sequences of differences, d;[m| and
dg[m]. In our example design, 1024 = 32 x 32 values of ¢, [m] are stored in dual-port block
memory “RAM o™ in Q (16, 15) format. The function f(z) = 64 x (fp/F;) sin(27z) for
x € [0,1/4) is precomputed and quantized in Q (16, 15) format in 1024 steps and stored
in “ROM f”. To calculate the sine function, the value of &,,[m] is passed to “ROM f” after
proper bit selection. To calculate the cosine function, the reformatted value &, [m] is first
passed through a negation circuit and then passed to “ROM f”.

Through extensive fixed-point simulations we found that the choice of fixed-point rep-
resentation for 3;,,[m] and (3,,[m] has a great impact on the output statistics. Specifically,
we found that the 0 (22, 15) fixed-point representation provides enough accuracy for our
purposes. 2048 = 2 x 32 x 32 values of 3;,[m] and (34, [m] are stored in dual-port block
memory “RAM (7. The (;,[m| and [y, [m] values are updated using adder “add1” ac-
cording (2.17) after reformatting the f(-) values from Q (16,15) to Q (22, 15) format.
Moreover, ¢, and 1/A}n from two-port block memories “RAM ¢ and “RAM 1) are used to
compute phases in (2.18) and (2.19) after proper bit selection. In Figure 2.13, “cos module”
provides g(x) = cos(2mz) values for two inputs from a look-up table. According to our

fixed-point simulations, to ensure acceptable statistical accuracy, the look-up table for g(x)
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2.2 Implementation of SOS-Based Fading Simulators

in Q(16,15) format should have at least 4096 entries (requiring 12-bit addressing). For
a more efficient implementation, only the first quarter cycle of g(z) (i.e., x € [0,1/4)) is
stored in an on-chip block memory. For 2 € [1/4, 1), we can find the corresponding values
of g(x) based on the values from the first quarter cycle. The outputs of the “cos module”
are then passed to accumulators “add4” and “add5” to compute scaled copies of (2.18)
and (2.19). The outputs of “add4” and “add5” are then passed to “sub1”, which computes
the corresponding differences d;[m| and d,[m] (see (2.22)) in Q (20, 15) format. After
scaling and proper bit selection, 32 values of d;[m] and d,[m] are stored in a distributed

memory of depth 64 =2 x 32inQ(16,15) format.
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Figure 2.14: Datapath for converting Rayleigh fading samples into Rician fading samples.

The specular component is added to the Rayleigh samples using the datapath shown
in Figure 2.14. Here, N = 32 values of = 64 x (fp/F})cos(6,) are stored in single-
port memory “ROM 7” and used to update the A values stored in memory “RAM A\’ in
Q(22,15) format. Memory “RAM \” is initialized with qgo values. The ‘“‘sin/cos module”
reads the sine or cosine of the A for the specular component (see Model VI) from a look-
up table. Moreover, memory “ROM K” holds 64 = 2 x 32 values of 1/4/1 + K and

K/(1+ K)inQ(16,15) format. Multiplier “mul1” performs the four multiplications
required to calculate s;[m] and sq[m] (see (2.24)). Adder/subtracter “add2” accumulates
different components of (2.24) the result of which, after proper bit selection, is stored using
format Q (16, 15) in distributed memory “RAM s” of depth 64 = 2 x 32.

The datapath of the interpolator is shown in Figure 2.15. Note that one interpolation
branch is dedicated to every in-phase and quadrature stream of samples (64 = 2 x 32
interpolation branches in total). Each interpolation branch consists of a 24-bit accumulator
and a register that holds the input signal for an interval of I samples (see (2.21)). Data

from memory “RAM s” is read and stored in these registers with specific timing. A decoder
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2.2 Implementation of SOS-Based Fading Simulators

circuit selects which interpolator branch should store the present output data from “RAM
s”. The interpolator circuit generates the final 32 streams of independent complex Rician

fading samples at the desired output sample rate.
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Figure 2.15: Datapath for the interpolation.
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2.2.4.3 Results

To demonstrate the performance of this fading simulator, we first implemented a fixed-point
bit-true model in the compiled language MEX (C for MATLAB) and generated sequences
of fading variables. We simulated different Rayleigh and Rician fading scenarios for a

fading channel with fp7Ts = 0.001 and N = 32 sinusoids.

1
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Figure 2.16: Normalized autocorrelation of the generated fading samples (real part) for one
block containing 2 x 10® samples generated in a fixed-point simulation with fp7T, = 0.001,
0o = /3, and N = 32 for K = 0 (Rayleigh), 1 and 3.

43



2.2 Implementation of SOS-Based Fading Simulators

0.8

‘ K =3‘ ‘ —‘Theory l ‘ l
0.6 K=1| | —_— Fixed-Point Simulation (N=32) |
04 b
02 k=0 1
0 l

0.2 i
041 :
-0.6 - . : 1

i

.0.8 L i i i i i
0 2000 4000 6000 8000 10000 12000 14000 16000
Lag (in samples)

Cross-correlation

Figure 2.17: Normalized cross-correlation between the in-phase and quadrature compo-
nents of the generated fading samples for one block containing 2 x 10% samples generated
in a fixed-point simulation with fpTs = 0.001, 6y = /3, and N = 32 for K = 0
(Rayleigh), 1 and 3.

Figure 2.16 demonstrates the autocorrelation for 2 x 10° in-phase and quadrature com-
ponents of the generated fading samples for Rice factors K = 0,1 and 3. The theoretical
reference ACFs and CCFs between the quadrature components of the fading samples are
given by equations (2.10) and (2.11), respectively. As Figure 2.16 confirms, there is a close
match between the expected analytical autocorrelation plots and the generated fixed-point
simulation results. Also, Figure 2.17 plots the cross-correlation between the in-phase and
quadrature components of the generated fading samples and the analytical curves. This fig-
ure again shows a close match between the fixed-point simulation results and the desired

curves.
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Figure 2.18: Normalized level crossing rate (LCR) function for one block containing 2 x 10°
fading samples generated in a fixed-point simulation with 6y = 7/3 and N = 32 sinusoids,
for K = 0 (Rayleigh), 1, 3, 5 and 10.
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Figure 2.18 shows the normalized LCR of the amplitude of generated complex fading
samples. The LCR is normalized to fpTs. The theoretical LCR from equation (2.12) is
plotted too. Figure 2.18 shows excellent agreement between the theoretical (from equation

(2.12)) and fixed-point simulation results for different values of Rice factor K.

3

10

10

10’

10°

2 ; .
-25 -20 -15 -10 .5 0 5
2=20log , (RIR )

Figure 2.19: Normalized average fade duration (AFD) function for one block containing
2 x 108 fading samples generated in a fixed-point simulation with 65 = 0 and N = 32
sinusoids, for ' = 0 (Rayleigh), 1, 3, 5 and 10.

Figure 2.19 shows the normalized AFD of the generated samples in our fixed-point
simulation for 2 x 10% samples and different values for Rice factor K. To have distinct
curves for illustration, in this simulation the angle of arrival for the specular component is
set to 6, = 0. As this figure shows, the results of our fixed-point simulation closely match

the theoretical references from equation (2.13).
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Table 2.5: Comparison Between FPGA Implementation Results

Model B [3] C [4] E (NEW)
Number of paths L 32 32 32
Number of Sinusoids N 8 32 32
Number of complex waves 256 1024 1024
Max. clock freq. (MHz) 201.1 238.9 224.2
Output rate (MSamp/sec) 32 x 201 32 x 238 32 x 276
Configurable slices 39104 (87%) | 6894 (15%) | 2151 (4%)
18 x 18 MULTs 160 (36%) 1(0.2%) 1(0.2%)
Number of BRAMs 352 (79%) 9 (2.0%) 9(2.0%)

“The sample rate of the new fading simulator depends on the maximum speed of the interpolator (here
276.7 MHz) if different clock sources are used for the first (wave superposition running at a maximum fre-
quency of 224.2 MHz) and the second (interpolation) stages. If one clock source is used, the maximum sample
rate will be 32 x 224 million complex fading samples per second.
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Figure 2.20: Probability density function (PDF) for one block containing 2 x 10° fading
samples generated in a fixed-point simulation.

Finally, Figure 2.20 plots the PDF of the amplitude of the generated fading samples.
Once again it can be observed that this PDF accurately reproduces its reference value in
equation (2.9).

We implemented the new fading simulator on a Xilinx Virtex-II Pro XC2VP100-6
FPGA. As in our example simulator, we configured the hardware to generate 32 indepen-
dent streams of Rician fading samples using N = 32 sinusoids. For each fading stream,
our FPGA implementation uses 2151 of the 44096 configurable slices (4%), only one of
the 444 dedicated 18 x 18 multipliers (< 1%), and nine of the 444 on-chip memory blocks
(2%). When implemented with one clock source, our fading generator can generate up to

32 x 224 million 16-bit complex-valued fading samples per second. However, when imple-
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mented with two clock sources (for wave superposition and for interpolation), this figure
rises to 32 x 276 million samples per second, which is determined by the maximum speed
of the interpolation circuit in Figure 2.15. Table 2.5 summarizes the characteristics of the
new fading simulator.

This table also compares the new implementation with the fading channel simulators
in [3] (presented in Section 2.2.2) and [4] (presented in Section 2.2.3). Our fading channel
simulator in [3] requires 39104 (87%) configurable slices, 160 dedicated 18 x 18 (36%)
multipliers, and 352 (79%) on-chip block memories and provides 32 independent streams
of Rician fading samples utilizing N = 8 sinusoids and runs at a maximum frequency
of 201.1 MHz. By comparison, the new fading simulator is more accurate (32 sinusoids
versus 8 sinusoids), 18 times smaller (in terms of number of slices), and 37% faster than
the previous design. Also compared to our previous implementation in [4] ((from Section
2.2.3), the new fading simulator is more than 3 times smaller.

The compactness of the new fading simulator arises mainly because of the efficient
implementation of the interpolation circuit. Since each in-phase and quadrature component
of a fading sample requires an interpolator, the efficiency of the interpolation is directly
related to how compactly the fading simulator is implemented. In our latest implementation
of an SOS-based fading simulator, the interpolator was reduced to a simple accumulator

which in turn resulted in compact and efficient implementation of the fading simulator.

2.3 Accuracy and Efficiency Comparisons

Detailed simulation and implementation results for different proposed models and archi-
tectures are provided in their corresponding publications. Here, we provide a comparison
between accuracies of different designs in terms of mean square error (MSE) for differ-
ent statistical characteristics. The MSE is defined as the average square error between the
measured statistics and the theoretical targets (from equations (2.2), (2.3), (2.1), (2.5), and

(2.6)) over a specified range.
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Figure 2.21: Mean square error (MSE) for different statistical measures of the new fading
simulators: (a) MSE of ACF, (b) MSE of CCF, (c) MSE of PDF, (d) MSE of LCR, and (e)
MSE of AFD. The MSE values are measured over one continuous block of Rayleigh fading
samples of length 107 with normalized Doppler frequency fpTs = 0.01. The simulated
fading models are (i) the model proposed in [1] (see Section 2.1), (ii) the model proposed
in [2] (see Section 2.2.1), (iii) the model proposed in [3] (see Section 2.2.2), (iv) the model
proposed in [4] (see Section 2.2.3), and (v) the model proposed in [5] (see Section 2.2.4).

2.3.1 Accuracy Comparison

We compared the statistical accuracy of different fading simulators. We measured the mean

square error of different statistical measures (ACF, CCF, PDF, LCR, and AFD) over one
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continuous block of Rayleigh fading samples of length 10" with normalized Doppler fre-
quency fpTs = 0.01. The output statistics of the fading simulators proposed in [1-5]
(represented in Sections 2.1, 2.2.1, 2.2.2, 2.2.3, and 2.2.4) were gathered in simulation.
Figure 2.21 (a) compares the MSE of the ACF of of different designs. This MSE is mea-
sured with over a lag of 3200 samples. As this figure shows, the improved SOS model
proposed in [2] (from Section 2.1) provides a 20 dB reduction in ACF-MSE compared to
the model in [1] (Model II in Section 2.2.1). Also, Figure 2.21 (a) shows that the fading
simulator in [5] (see Section 2.2.4) reduces the ACF-MSE by almost 50 dB. Figure 2.21 (b)
compares the CCF-MSE for different model. As this figure show, Model II (from [1]) has
lower CCF than other designs. However, the CCF-MSE in [2-5] is probably small enough
(CCE-MSE < —50 dB) for practical purposes. In addition, in Figure 2.21 (c) the PDF-
MSE is illustrated and shows that the PDF of our latest simulators are more accurate than
the original models. In Figures 2.21 (d) and (e) the LCR-MSE and AFD-MSE of different
models are plotted. These figures also show the improvement in the statistics of our fading

simulators.

2.3.2 Efficiency Comparison

Figure 2.22 compares the implementation results for different SOS-based fading simulators.
All of the fading simulators are implemented in Verilog HDL and synthesized on a Xilinx
Virtex-1I Pro FPGA XC2VP100-6. The implemented fading simulators are from [2—8]
(from Sections 2.2, 2.2.1, 2.2.2, 2.2.3, and 2.2.4). The resource utilization figures are di-
vided up based on the number of generated fading paths.

Figure 2.22 (a) compares the maximum clock frequency of different designs. All of
the designs are fully pipelined. The maximum clock frequency among all of these designs
belongs to the design in [4] (from Section 2.2.3). Figure 2.22 (b) compares the maximum
output sample rate of the different designs '. Note that all of the designs are fully pipelined
to achieve maximum throughput. As this figure shows, in the designs reported in [2,3, 6-8]
the output rates are similar. However in the two latest designs [4,5] (from Sections 2.2.3 and
2.2.4), the hardware has become faster because of the two-stage design. More specifically,

the design reported in [5] can generate up to 276 million samples per second (only one

"The fading simulator proposed in [5] is designed in two stages and its output sample rate depends on the
maximum speed of the interpolator (here 276.7 M H z) if different clock sources are used for the first (wave
superposition running at a maximum frequency of 224.2 MHz) and the second (interpolation) stages. If one
clock source is used, the maximum sample rate will be 224 million complex fading samples per second.
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path).

Figure 2.22 (c) compares the required number of configurable slices per fading path. As
this figure shows, the designs in [4, 5] are the most compact. More specifically, the design
in [5] requires only 68 slices per fading path with N = 32 sinusoids.

Figures 2.22 (d) and (e) compare the required number of on-chip multipliers and block
memories per fading path. As this figure shows, newer designs require fewer and fewer
multipliers and less storage per fading path. Finally, Figure 2.22 (f) compares the number
of sinusoids /V in all of the fading simulators, which could be used as a measure of accuracy.

It can be seen that in the process of this work, the SOS-based fading simulator’s design

has evolved so that our latest fading simulator is

1. Smaller than all of the other known designs (only 68 slices per path, 1 multiplier and

9 block memories for 32 paths);

2. Faster than the other designs (up to 276 MSamp/Sec on a Virtex-II Pro FPGA and
342 MS/Sec on a Virtex-4 FPGA); and,

3. More accurate than our other designs and all of the designs available in the literature.

2.4 Summary and Conclusions

The sum-of-sinusoids fading channel model is an efficient approach for the software and
hardware simulation of fading channels. In this chapter, we first provided a brief overview
of different sum-of-sinusoid based fading simulators. We evaluated their advantages and
shortcomings. We proposed different models for the accurate simulation of Rayleigh and
Rician fading channels. We also proposed efficient architectures suitable for compact and
high-throughput hardware implementation. During the progress of this work, the proposed
fading channel models became more statistically accurate for the continuous simulation of
fading channels. Moreover, the implemented fading simulator architectures became more
compact and more efficient.

One of our early SOS-based fading simulators in [2] (discussed in Section 2.2.1) re-
quired 2444 configurable slices, 48 multipliers, and 12 block memories on a Xilinx Virtex-
IT Pro XC2VP100-6 FPGA to generate the complex fading gains of a single path Rayleigh
channel with N = 8 complex sinusoids, generating 204 million samples per second. How-

ever, our latest fading simulator in [5] (presented in Section 2.2.4) requires 2151 config-
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Figure 2.22: Comparison between different implementations of our fading simulators. All
of the fading simulators have been implemented in Verilog HDL and synthesized on a Xilinx
Virtex-1I Pro FPGA XC2VP100-6. The plots show (a) maximum clock frequency, (b) max-
imum output sample rate, (¢c) number of configurable slices per generated path, (d) number
of utilized on-chip 18 x 18 multipliers per generated path and, (e) number of utilized on-
chip 18-Kb block memories per generated path. The implemented fading simulators are
from (i) the model proposed in [6] (see Section 2.2), (ii) the model proposed in [7] (see
Section 2.2), (iii) the model proposed in [2] (see Section 2.2.1), (iv) the model proposed
in [3] (see Section 2.2.2), (v) the model proposed in [8] (see Section 2.2.2), (vi) the model
proposed in [4] (see Section 2.2.3), and (vii) the model proposed in [5] (see Section 2.2.4).
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urable slices, 1 multiplier, and 9 block memories on the same PFGA device to generate the
complex fading gains of a 32 path Rayleigh/Rician fading channel with N = 32 complex

sinusoids for each path, generating 32 x 276 million samples per second.
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Chapter 3

Filtered-Based Fading Simulation

In addition to the sum-of-sinusoids (SOS) method, another well-known approach for gener-
ating fading variates for channel simulation is to filter a complex, zero-mean, Gaussian
random process with independent samples. The fading process c(t) = ¢;(t) + jcy(t)
is obtained by passing the Gaussian variates through a suitable spectrum shaping filter
(SSF) [18,88-90]. Under the common assumption of a two-dimensional isotropic scatter-
ing environment with an omni-directional receiving antenna at the receiver [62], the power
spectral density (PSD) of ¢(t) has the band-limited U-shaped form, the so-called Jakes’
PSD [64]. The filter-based approach can be customized to accurately provide the statistical
properties required for simulating different fading scenarios [19].

This chapter presents novel design and implementation schemes for realizing parame-
terizable fading channel simulators on homogeneous architectures. More specifically, one
of the new designs is an accurate filter-based fading channel simulator that is compact
enough to be integrated on a single field-programmable gate array (FPGA) along with
many communication circuits of interest. Several new architectures for efficient hardware
implementation of fading simulators are presented.

Also, we address the related and more general problem of designing complex and real
infinite impulse response (IIR) filters with fixed-point coefficients for compact and stable
implementation. These complex filters are required in different applications such as fading
simulation with non-isotropic scattering [91] or the implementation of the standard TGn
fading channel models for simulating IEEE 802.11n wireless local area networks [92].

Moreover, in this chapter we will present an efficient hardware implementation for the
simulation of Nakagami-m and Weibull fading channels. The simulation method is based

on transforming Rayleigh fading samples with arbitrary correlation into Nakagami-m or
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Weibull distributed samples.

3.1 Background and Related Work

As mentioned earlier, the behavior of multipath fading channels is commonly modeled
as a complex Gaussian wide-sense stationary (WSS) process ¢(t) = ¢;(t) + jcq(t) [15].
In a two-dimensional isotropic scattering environment with an omnidirectional receiving
antenna at the receiver [62], the autocorrelation function (ACF) associated with either ¢; ()
or cq(t) is given by Re, o, (7) = Re,¢,(T) = Jo(27fp7)/2. The PSD function of c(t),
denoted by G.(f), can be written as

Co(f) = { m fl<Jp G.1)

0 |fl > fp.

In order to generate the in-phase and quadrature components of fading variates with a
particular correlation between variates, we can pass a complex zero-mean and unit-variance
white process n(t) = n;(t) + jny(t) through a linear SSF with an appropriate frequency
response H(f). A linear filtering operation on the complex Gaussian samples with flat
PSD, yields samples that also have a Gaussian distribution, with the power spectrum density

Gy (f) = Gu(f) |H(f)|?, where G,,(f) is the PSD of the input samples and G, (f) is the
PSD of the output samples.

The theoretical spectral density of the complex envelope of the signal received by an
omni-directional antenna in a Rayleigh fading wireless channel is given by the Jakes’ PSD
[93]. The required shaping filter must be designed with a frequency response that is equal
to the square root of the PSD of the desired fading process (i.e., |Ge(f)|'/?).

3.1.1 Realization of a Spectrum Shaping Filter

The filtering process can be performed in the frequency domain [18, 89] by multiplying
the Gaussian samples by |G.(f)|'/2. Then an inverse fast Fourier transform (IFFT) can
be applied to the resulting discrete spectrum to obtain time series fading samples [18, 89].
The resulting series is still Gaussian by virtue of the linearity of the IFFT, and it has the de-
sired Jakes” spectrum. The IFFT has a computational complexity of O(I"logI') operations,
where " is the number of time-domain sampled Rayleigh channel coefficients. One major
disadvantage of the IFFT method is its block-oriented nature, which requires all channel
coefficients to be generated and stored before the data is sent through the channel. This im-

plies significant memory requirements and precludes unbounded continuous transmission,
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which is usually preferred in long running characterization applications such as hardware
fading simulation.

In the time domain, the SSF can be implemented with either finite impulse response
(FIR) filters, infinite impulse response (IIR) filters or autoregressive (AR) models. The
fading channel simulators in [18, 94-102] use FIR filters as the shaping filter while the
designs in [4,9-11,13,14,21,88,103-108] use IIR filters. The AR modeling approach has
also been proposed for generating fading processes by passing the noise through an all-
pole IIR filter [90, 109]. Several important points should be considered when implementing
fading channel simulators using FIR and IIR filters on hardware platforms:

e While these approaches might be appropriate for computer simulations, they are not
necessarily the best candidates for hardware implementation. For example in the IFFT
method, samples are generated with a single fast Fourier transform (FFT) operation, and the
large storage requirement can result in space-inefficient and costly implementation [109].
To produce samples with accurate statistics, the AR model needs a large filter order, which
greatly increases the number of required multiplications per output sample. Also, imple-
mentation of the AR fading simulator demands highly accurate floating-point variables,
which makes it unappealing for compact fixed-point implementations.

o The degree of the FIR filter is related to the time span of the truncated signal held in the
filter and inversely proportional to the Doppler frequency. Specifically, implementation of
an extremely narrow-band digital filter with a sharp cutoff and a very large attenuation in the
stop-band requires a high-order FIR filter [93, 101]. Meeting the same specifications with
an IIR filter typically requires fewer hardware resources than an FIR filter. In fact, utilizing
both feedforward and feedback polynomials in an IIR filter permits steeper frequency roll-
offs to be implemented for a given filter order than an FIR filter [110].

e An FIR filter has no feedback and is thus inherently stable. However, as the coef-
ficients are quantized in any fixed-point implementation, the resulting numerical error is
fed back in the IIR filter, possibly causing instability. Moreover, such effects can cause
significant deviations from the expected response. To make sure that the filters are stable
under quantization effects, we have designed the filters in fixed-point format using Filter
Design Toolbox by MATLAB [111] which offers bit-true implementations of second-order
sections with section scaling and reordering to obtain maximum accuracy.

e Although FIR and IIR filter-based approaches might be appropriate for computer

simulations of isotropic fading, they are not the best candidates for the hardware simulation
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of non-isotropic scattering scenarios, where the angle of arrival (AOA) is not uniformly
distributed or when the antennas are not omni-directional. Problems arise because the PSD
of fading samples in non-isotropic fading is not symmetric in general and requires filters
with complex coefficients.

Isotropic scattering refers to the case in which the distribution of the incident direc-
tions of the received multipath signals, or AOA, are equally distributed. Assuming two-
dimensional isotropic scattering with an omni-directional antenna at the receiver [62], the
PSD associated with either the in-phase or quadrature component of a complex fading sig-
nal has the well-known Jakes’ U-shaped band-limited form [64] with independent in-phase
and quadrature samples. However such assumptions have been challenged [112-116] and
experimentally demonstrated [117-126] to be inaccurate due to the blockage of some prop-
agation directions and antenna directivity [127], resulting in a nonuniform probability den-
sity function (PDF) for AOA at the receiver. As discussed in [126], the PDF of the AOA
has a great impact on the second-order statistics of the fading process including correla-
tion functions, envelope level crossing rate (LCR) and average fade duration (AFD). These
properties can greatly affect the design and analysis of the wireless systems, not only at the
physical layer but also at the link and network layers [48]. In a wireless channel, for exam-
ple, the average length of error bursts is determined with the AFD. Hence, the AFD of the
fading channel plays an important role in design and verification of wireless transceivers.

Several nonuniform PDFs have been proposed in the literature to represent the AOA
including the geometrically-based PDFs [128, 129], Gaussian PDF [130], quadratic PDF
[131], Laplace PDF [120], cosine PDF [132], and von Mises PDF [91]. The von Mises
PDF, which includes the uniform AOA distribution as a special case, is supported with
empirical measurements of narrow-band fading channels in [91]. Also it is argued that the
von Mises PDF is attractive because it can approximate other non-uniform PDFs and can

provide mathematical convenience for analysis [91].

3.1.2 General Channel Model
We assume multipath fading in which the complex envelope of the fading process is

c(t) = ci(t) + jicq(t)

N
= lim L upe? 3 fD cos(¥n)tn) (3.2)

N—o0 \/N

n=1
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where fp is the Doppler frequency, ¢,, n = 1,..., N are independent and identically
distributed (i.i.d.) angles of arrival of the incoming wave at the receiver antenna with
distribution pg(v), ¢n, n = 1,...,N are i.i.d. phases with uniform distribution over
[-7, ), and apy, n = 1,..., N are deterministic normalized complex constants that sat-
isfy 25:1 |an|? = N. When the scattering encountered in the propagation environment
is non-isotropic, the power spectral density (PSD) function associated with ¢(t) is given

by [91]

S.(f) = o’ J. (33)

wlo(r)y/1 - (£)?

where x controls the beam-width, 1/; denotes the average AOA of the scattered component,

- )
" )75 cosh (n sin(¢)4/1 — (i)2>

and I,,,(+) is the m-th order modified Bessel function of the first kind. To obtain (3.3) it is as-
sumed that the AOA of the scattered component is distributed with the von Mises/Tikhonov
distribution [133, 134] as follows

exp[r cos(i) — )]
21 lo(k) ’

Note that when the beam-width parameter « is zero, the AOA has a uniform distribution

over [—, ) and (3.3) reduces to Jakes’ “U-shaped” spectrum Sc(f) = (75 f2— )1

pu(¥) = ¢ € [=m,m). (3.4

The ACF of ¢(t) can be obtained by taking the inverse Fourier transform of (3.3) as follows

Ru(r) = IO(\//-@2 —Am?fA72 + 45k COS(JJ)?TfDT)‘ 35)
Io(k)

Another important statistical property of ¢(t) is the envelope LCR, which is defined as the

expected number of envelope crossings per second through a given level p with positive

slope. It can be shown that the LCR of ¢(¢) is [135]

W ) + cos(20)[To (k) o () — T3(x)]
Iy(k)
Note that for k = 0 (isotropic scattering), (3.6) reduces to the Rayleigh LCR, namely

Ly (p) = V2 fppexp(—p?). Also, for the case where the AOA is modeled by the von
Mises PDF, the AFD is

Lig(p X\ﬁfppexp( %), (3.6)

Tiele X . (3
lel\P \/12 +cos(21/1)[[o( Vo (k) — I3 (k)] V2mfpp

For isotropic scattering (x = 0) AFD reduces to Tj./(p) = (exp(p?) — 1)/(vV27fpp).
To mimic the behavior of a realistic wireless channel, a fading simulator must be able to

generate the path gains {c(¢)} with high accuracy.
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Compared to the SOS-based method, the filter-based fading simulation method is much
trickier to implement. A filter-based simulator needs to be designed carefully because of
possible instability and finite word-length effects when implemented with fixed-point arith-
metic. On the other hand, filter-based fading simulation has several advantages over the
SOS-based method. First, with the filter-based method, it is possible to simulate a wide
range of power spectral densities. Second, the filters can be designed to provide a high
level of statistical accuracy. Finally, the generated samples have very accurate Gaussian
distribution.

The goal of this work is to make filter-based fading simulation both compact and effec-
tive so that it can provide accurate statistics with a hardware complexity close to that of a
SOS-based fading simulator.

To achieve this, we first aimed for a compact implementation of a filter-based fading
simulator. A new multilayer filter design procedure was proposed. Later, we developed two
simple signal processors for performing filter operations. A new filter design technique for
designing stable complex filters with fixed-point coefficients was proposed as well. We also
proposed an elastic design for the convenient and efficient implementation of candidate fad-
ing simulators. Finally, we proposed a compact and accurate filter-based fading simulator
in which colored-noise is used instead of white noise. The computational complexity of the
new filter-based fading simulator is comparable to a SOS-based fading simulator with 32
sinusoids. In the rest of this chapter, we explain how we implemented in hardware a variety

of filter-based fading simulators.

3.2 Implementation of Filter-Based Fading Simulators

We described the first filter-based fading simulators in [9]. To design the SSF, transformation-
based filter design was used [88, 136]. Since the Doppler frequency is much smaller than
the sample rate, the SSF can be designed to operate at a lower sample frequency F, < F,
and later interpolated to reach the target sample rate F; = 10 MHz. In [9] the Doppler
frequency is set to fp = 2 KHz and the SSF is designed at sample rate F, = 20 KHz. An
order 10 IIR filter (5 cascaded biquads) is used to implement the SSF.

An important point is that if the stop-band attenuation of the shaping filter is not suf-
ficiently high, then the out-of-band noise that passes through the filter will degrade the
accuracy of the statistics of the generated fading variates. Specifically, since designing a

narrow-band filter with a sharp cutoff and large attenuation invariably leads to a high-order
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filter, to obtain the closest approximation to the desired frequency response with a relatively
small filter order, we only minimized the approximation error in the pass-band of the SSF.
The low-pass filters utilized downstream in the interpolator stages can then be designed
with extra attenuation over the transition region to ensure a sharp cutoff.

The interpolation is performed in two stages. We designed a two-stage interpolator
using two low-pass inverse Chebyshev (Type II) IIR filters [137], one that interpolates by
a factor I; = 5 and one for Iy = 100. The interpolation lowpass filters have a maximum
of 0.01 dB attenuation in the pass-band and a minimum of 100 dB attenuation in the stop-
band. Also, our Gaussian variate generator described in [138] was used to implement the
Gaussian noise source.

We proposed a time-multiplexed resource sharing scheme to implement both the spec-
trum shaping filter and the first interpolation filter. Sharing hardware in this way achieves
the maximum performance with a minimum amount of FPGA resources, leading to an effi-
cient implementation [9]. The operation of the shaping filter and the first interplation low-
pass filter (ILPF) are bound to only one shared biquad. The second interpolation filter uses
a separate set of configurable resources to achieve the target throughput. Our implemen-
tation of a 32-bit fading channel simulator on a Xilinx Virtex-II Pro XC2VP100-6 FPGA
utilizes 4% of the slices, 19% of the dedicated multipliers, and 2% of the BlockRAMs. The
core operates at 50 MHz and generates 12.5 million fading variates per second.

We proposed another implementation of the filter-based fading channel simulator in
[10]. Since only signal amplitudes impact the correlation properties, no limitations were
imposed on the phase response of the SSF and therefore the inverse Chebychev filters in
the previous design were replaced with more efficient elliptic (Cauer) filters [137]. In the
hardware implementation, an out-of-order scheduling scheme was utilized to reduce the
number of required clock cycles to execute cascaded second-order sections. Also, a new
time sharing mechanism was used that resulted in twice the throughput at the same opera-
tion frequency. The 32-bit fixed-point FPGA implementation of this fading simulator on a
Xilinx Virtex-II Pro XC2VP100-6 utilized 4% of the slices, 20% of the dedicated multipli-
ers, and 10 (2%) of the BlockRAMs and operated at 50 MHz generating 25 million fading

variates per second [10].
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3.2.1 Real and Complex Filter Processors for Fading Simulation

In [11], we presented a flexible and compact general-purpose filter processor. This proces-
sor is a convenient building block for fading simulation as well as other applications. Also,
in [44] we proposed a processor for IIR filters with complex coefficients. These two filter
processors have similar architectures, so we only describe the real filter processor here.

In an isotropic scattering Rayleigh fading channel, the path gains are modeled using a
unit-variance zero-mean complex Gaussian process ¢(t) = ¢;(t) +jcq(t) [15] with the PSD

function

1 f
Se(f) = "VIb=1? 171 < io. (3.8)

0 otherwise.

In this model ¢;(t) and ¢,(t) are Gaussian-distributed independent stochastic processes.
These samples can be generated by passing a stream of independent Gaussian samples
through a SSF. For the case of Rayleigh fading, the SSF must have the magnitude |H (f)| =
|S.(f)|'/2. In the design of the SSF, since no constraints are imposed on the phase response,
we can use IIR filters since they are typically much smaller than their FIR counterparts.
However, we must ensure that the designed SSF is stable. Similar to [88, 136] we approxi-
mated the desired magnitude response of the SSF with an IIR filter of order 2/Ng. Here, the

response of the SSF is expressed as

1 + bl,q eijw + b27q €7j2w

, . 3.9
1+aiqe 4 ag, e I2’ (39)

Nq
H(e%) = H gq X
qg=1

which is equivalent to the magnitude response of N¢ cascaded second-order canonical
sections, or biquads (BQDs). In (3.9) note that by 4, b2 4, a1,4 and az 4 denote the real-
valued filter coefficients and g, denotes the scaling factor of the ¢-th biquad.

The datapath of a biquad in direct-form-II (DF-II) structure [137] is shown in Figure
3.1 (a), where four intermediate variables are stored in four on-chip dual-port memories
RAM M1l, “RAM M1Q~, “RAM M2I”, and “RAM M2Q”. Four coefficients are stored in four
read-only memories (ROMs), “ROM a1”, “ROM b1, “ROM a2”, and “ROM b2”. “ADO0” de-

notes the read address and “AD1” denotes the write address for the memories.
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Figure 3.1: (a) Datapath of one biquad and, (b) the filter processor architecture.

Implementation of only one biquad uses 855 configurable slices and utilizes 9% of the
dedicated 18 x 18-bit multipliers available on a Xilinx Virtex-II Pro XC2VP100-6 FPGA.
These results confirm that the maximum number of second-order sections that can be imple-
mented on a large contemporary FPGA is limited to 11 due to the relatively large number
of high-precision arithmetic units required by each biquad. Instead, we designed a com-
pact filter processor to maximize the throughput with the minimum of FPGA resources.
With this processor, the computation of an IIR filter (using N cascaded biquads) can be
performed using one compact filter processor.

Figure 3.1 (b) shows the datapath of the filter processor. The memory blocks in this
datapath have the same structure as those in Figure 3.1 (a). The core component of the filter
processor is a biquad with inputs coming from two memories (in-phase and quadrature),
“RAM RI” and “RAM RQ”, with read address bus “AD0” and write address bus “AD3”. The
outputs of biquad are stored in memories “RAM BI” and “RAM BQ”, with read address “AD1”
and write address bus “AD3”. ROM “ROM g is initialized with the scaling factors of the IIR
filters using the “AD2” addressing bus. Two combinational multipliers are used to perform
the scaling operation of intermediate values between biquads. The two zero inputs to the
8-input multiplexer are reserved for when filter processor performs zero padding for the
interpolators.

The filter processor is sequenced by a microprogrammed controller. A code generator
program was developed that receives the specification of shaping filter as inputs and gen-
erates a sequence of filter processor microinstructions (microcode). This microprogram is
stored in an instruction ROM and is addressed by a program counter (PC). To simplify and
minimize the hardware, we used a horizontal microcode architecture in which every control

bit in the microinstruction drives a control line in the filter processor datapath.
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It merits attention that providing a microprogrammed controller makes the proposed fil-
ter processor flexible and reconfigurable to perform the arithmetic operations of several IIR
filters with different filter lengths, rates, and coefficients. In addition, the design supports
the possibility of zero padding, and both up and down sampling. Finally, the programmable
filter processor supports the realization of different filter concatenations.

Samples generated at a low sampling frequency need to be over-sampled and passed
through lowpass filters in order to obtain the target sample rate. In the fading simula-
tors proposed in the literature, this is normally done using conventional FIR or IIR filters.
However, this approach is overly expensive in hardware since the filtering operations are
performed at higher sample rates. When the maximum Doppler frequency is much smaller
than the sampling frequency, we propose to use a cascade of [, = 2 zero-order hold filters
with impulse response dp(n) = [P~!, P71, ..., P™!]1xp where P is the over-sampling
rate. Such filters, called specific interpolation lowpass filters (SILPF), can be easily imple-
mented without multiplication.

An FPGA implementation of this fading channel simulator on a Xilinx XC2VP100-6
utilizes 2022 configurable slices (4%), 40 dedicated 18 x 18-bit multipliers (9%), and 10
BlockRAMs. The maximum clock frequency of this fading simulator is 63.4 MHz and
it can generate more than 63 million fading samples per second. However, the maximum
sample rate can be increased to 300 million sample per second if multiple clock sources are

utilized since the maximum clock frequency of the interpolator is 300 MHz.

3.2.2 Non-isotropic Fading Simulation

In [12] we presented the first FPGA-based non-isotropic Rayleigh fading simulator. In the
fading model in this paper, it is assumed that the AOA is distributed with the von Mises
PDF [91].

____________________________________

Figure 3.2: Block diagram of the non-isotropic Rayleigh fading channel simulator.

Figure 3.2 shows the block diagram of this non-isotropic fading simulator. To gener-
ate the Rayleigh fading process, independent samples of a zero-mean complex Gaussian

process, generated by the GNG block in Figure 3.2, and pass through an SSF with a mag-
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nitude response equal to the square root of the magnitude of (3.3). In practice, since fp is
much smaller than the sample rate F, the designed SSF would have an extremely narrow
bandwidth and a very sharp cut-off. However, we can reduce the complexity of the SSF by
designing it at a lower sampling frequency, F| < Fj, which also improves the accuracy of
the designed filter. Further, the generated samples are interpolated to obtain the target sam-
pling frequency F,+1 = F1 X H;Fi 1 I; = F§, where T}, denotes the number of interpolation
stages and I; is the interpolation factor at the j-th interpolation stage.

In contrast to isotropic fading, the PSD in (3.3) is not symmetric, and hence the filter
coefficients are potentially complex [137]. Here the SSF is approximated with

2Np

1 — by eI
H(e®) H g X —JLkC T (3.10)

1—aqre” Jw?

where gy, is the positive scaling factor, by, and a are the Eth complex zero and pole,
respectively, and 2Ny is the filter order. This filter can be realized as a cascade of 2Np
first-order sections (FOSs). Figure 3.3 (a) shows the direct-form II realization of an FOS,
where the filter coefficients a1 and bjare complex-valued. For isotropic scattering (i.e.,
k = 0), however, poles and zeros of equation (3.10) appear in complex conjugate pairs and
the shaping filter can be implemented using Ny canonic second-order sections. Figure 3.3
(b) depicts the direct-form II realization of a biquad with the real-valued filter coefficients

ai, ag, bl, and bz.

Figure 3.3: (a) Direct-Form II realization of a first-order section. (b) Direct-Form II real-
ization of a second-order section (biquad).

After the shaping filter, the next stage includes zero-padding and lowpass filtering.
Since only the amplitude response affects the correlation properties and no restrictions are
imposed on the phase response, we used elliptic IIR lowpass filters (EILPFs). The lowpass
filter has a symmetric frequency response and hence its poles and zeros appear in com-
plex conjugate pairs and therefore this filter can be realized using cascaded biquads. For

high sample rate interpolation, we used the same multiplication-free SILPFs mentioned in
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Section 3.2.1.

To implement this non-isotropic fading channel simulator on a FPGA, we generated
the Gaussian noise samples by adding twelve 16-bit independent uniformly-distributed ran-
dom variables. These random variables were generated using a 63-bit linear feedback shift
register (LFSR) with a primitive feedback polynomial to ensure the maximum-length state
sequences. Implementation of this noise generator on a Xilinx Virtex-1I Pro XC2VP100-
61f1996 FPGA utilizes only 12 (out of 44096) configurable slices and it can generate more
than 1.1 million random variables per second.

The operation of the first-order and second-order sections for SSF and EILPF are per-
formed using the datapath in Figure 3.4. Here, the filter coefficients are stored in four
on-chip distributed memory blocks “ram al/a;”, “ram aQ/a,”, “ram bl/b;”, and “ram
bQ/by”. Four intermediate variables are stored in memories “ram mly”, “ram mQ;”,
“ram mly”, and “ram mQy”. Note that “adrs0” and “adrs1” are the address lines to
the coefficient and intermediate variable memories, respectively. The input Gaussian sam-
ples enter this datapath via “MUX 3”. The data between successive sections is stored in
memory blocks “ram xI” and “ram xQ”. This datapath is also capable of performing the

zero-padding operation by adding zero inputs via “MUX 3”.

i ;><
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\Mux2  / \ mux1 /
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¥
Y

MUX 3
!
5

<— 0

Figure 3.4: Datapath of the SSF and EILPF.

The precision of the fixed-point representation plays an important role in the stability
and accuracy of IIR filters. Fixed-point error analysis shows that a 32-bit fixed-point imple-
mentation of the fading channel simulator ensures computation accuracy and filter stability.
However, to increase the accuracy, a scaling factor g; was added to each first- or second-

order section. The barrel-shifter in Figure 3.4 multiplies/divides the output of each section
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by gi, which is considered to be a power of two. This way, we ensure that the input and
intermediate variables of each section remain in the valid range. The number of shifts is
stored in “ram g~ for each section. In addition, to increase the accuracy, the intermediate
variables “ram ml;”, “ram mQ;”, “ram mly”, and “ram mQy” were implemented with
40-bit precision.

An FPGA implementation of the structure in Figure 3.4 uses 1004 of the configurable
slices of a Virtex-1I Pro XC2VP100-6ff1996, operates at up to 110 MHz, and can perform
the operations of 44734 first- or second-order sections per second. Note that the adder and
multiplier in this datapath operate sequentially. Also, this design can run IIR filters with
complex coefficients of up to order 32 (order 64 for filters with real-valued coefficients).
Increasing the filter order is straightforward by adding more storage capacity.

The SILPF can also be efficiently mapped onto hardware by using only addition and
shifting operations. Our FPGA implementation of a SILPF with an interpolation factor
I = 4 and 16-bit precision, utilizes 171 configurable slices on the same device and can
operate at up to 300 MHz, generating up to 300 million samples per second.

To verify the performance of this design, we parameterized the design to simulate the
Rayleigh fading experienced by the radio signal of a moving receiver traveling at v =
120 Km/hr with the carrier frequency f. = 1.8 GHz. The received signal experiences a
maximum Doppler frequency of fp = 200 Hz. We also assumed the target sample rate to
be F, = 10 MHz.

For both the isotropic and non-isotropic scattering Rayleigh fading cases, we designed
the SSF at the sampling frequency F; = 625 Hz with Ny = 10 biquads. The signal is then
up-sampled I; = 25 times and passed through an elliptic lowpass filter with 6 biquads at
a sampling frequency F» = 15625 Hz with pass-band corner frequency fpqss = 203 Hz,
stop-band corner frequency fsop = 240 Hz, maximum pass-band ripple Ap,ss = 0.1 dB,

and minimum stop-band ripple A, = 100 dB.
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Figure 3.5: Normalized ACF and CCF between real and imaginary components of the
g~enerated fading process with fp = 290 Hz and Fs; = 10 MHz for (a) isotropic (k = 0,
1) = 0), and (b) non-isotropic (k = 1, b = 0) scattering fading channels.

The signal is then up-sampled with five SILPF blocks with interpolation factors 5, 4, 4, 4,
and 2, respectively, which increase the generated signal rate up to the target sample rate

Fy =10 MHz.
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Figure 3.6: PDF of the generated samples for isotropic scattering fading (i.e., x = 0,

¥ = 0).
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Figure 3.7: Envelope LCR of the generated fading process with fp = 200 Hz and Fs =
10 MHz for (a) isotropic (k = 0, ¢ = 0), and (b) non-isotropic (x = 1, ¥ = 0) scattering
fading channels.

Figure 3.5 shows the ACF and CCF between the real and imaginary parts of the gen-
erated fading process along with the the theoretical references from equation (3.5). These
curves were generated by passing 200,000 complex noise samples through the SSF, EILPF
and SILPF blocks (or equivalently 3.2 billion generated fading samples). Figure 3.5 (a)
plots these statistics for the isotropic scattering case while Figure 3.5 (b) depicts similar
statistics for the non-isotropic scattering case. As seen in this figure, there is a close match
between the desired statistics and those of the generated results for both the isotropic and
non-isotropic cases. Figure 3.6 illustrates the probability density function (PDF) of the en-
velope of the generated samples for isotropic scattering fading. This figure shows that the
PDF of the generated samples closely follows the Rayleigh PDF. For the isotropic and non-
isotropic cases, the LCR of the generated samples is plotted in Figure 3.7 (a) and Figure
3.7 (b), respectively. To generate these curves, the statistics were measured over 43 million
fading samples. These figures also show a close match between theoretical (from equation

(3.6)) and simulation results for both cases.
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The FPGA implementation of this fading simulator uses one Gaussian noise generator,
one SSF, one EILPF (with the same datapath as the SSF), and five SILPF blocks, which to-
gether utilize 6.8% of the configurable slices of a Virtex-II Pro XC2VP100-6ff1996 FPGA,
operating at a maximum clock frequency of 110 MHz. Increasing the output sample rate
up to 300 million samples per second is also possible by adding more SILPF blocks and

utilizing multiple clock sources.

3.2.3 Multipath Rayleigh and Rician Fading Simulator

In [13] we proposed a new elastic structure for simulating multipath Rayleigh and Rician
fading channels with isotropic scattering. A new architecture was described for efficiently
implementing multiple IIR filters. Also, a compact and parameterizable implementation for
the interpolator was presented.

Multipath propagation is the situation where the received signal contains different faded
copies of the transmitted signal. The effect of the multipath fading on the baseband signal
can be modeled with a time-variant linear system with the following impulse response [19]

Np—1
Wt 7) = i len(t)] €40 Wo(r — 7, (1)), 3.11)
n=0

where N, is the number of independent paths, s, is the average attenuation of the n-th
path, and ¢,,(¢) and 7,,(¢) denote the complex gain and delay of the n-th path.

When a line-of-sight (LOS) or strong specular component is present, the channel is
called Rician. In Rician propagation, the non zero-mean complex path gain can be divided
into two components. The first component is the LOS part with normalized average power
|3,)> < 1 and the second component is the random scattering part with average power
1 — |Bn]?. For the n-th path (possibly between an antenna pair), the Rice factor K, is
defined as K,, = % For purely Rayleigh fading channels, 3,, = 0 and hence K,, = 0;
for Rician channels |3,,| > 0 and hence K,, > 0. To simulate Rician propagation, one can
generate the sequence {c¢,(t)} with the PSD given in equation (3.3) and then attenuate the
samples by \/W to obtain the power of the random scattering component. The total
complex path-gain can then be obtained by adding in a scaled LOS component.

Similar to the previous design, this fading simulator consists of a SSF, an EILPF, and
several SILPFs. The block diagram of this fading simulator is shown in Figure 3.2. Note
that for each of the N, independent fading paths, the corresponding SSF is approximated
by equation (3.9).
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3.2.3.1 Filter and Interpolator Design

The interpolation factors in this design are chosen using a different approach compared
to the previous designs. The SSF is designed at sample rate Fy, where 4fp < F} <
8fp. Choosing Fj in this range satisfies the minimum Nyquist rate while keeping the
computational complexity low. In addition, we have the opportunity to exploit power-of-
2 interpolation factors to further reduce the hardware complexity and simplify the filter
design.

Output samples from the SSF are up-sampled I; = 16 times and passed through the
EILPE. Since the SILPF stages are designed to operate on narrow-band signals, the first
interpolation stage is positioned prior to the SILPF stages. Then the samples are passed
through T} successive SILPFs. The i" SILPF interpolates the signal 2¥¢ times. Based on
the processing architecture, the relation between I} and the target output sampling rate is
F, =16 x F} x HiTil 2ki From here we have F} = 2~ 4+5) F where Sy = ZiTi1 ki
is an integer value in the range logy (Fs/fp) — 7 < Sy < logy(Fs/fp) — 6. Based on the
maximum interpolation factor 2Kmaz where K pgp = 4+max{S,}, each SILPF is assigned
a specific interpolation factor. The minimum Doppler frequency that can be simulated by
this system is

flr)mn — 2*(Kmaz+3)FS_ (312)

The maximum Doppler frequency, on the other hand, is dictated by the biquad processor
that performs the SSF operations. If the biquad processor requires Cj, clock cycles to
perform the biquad operations for the in-phase or quadrature part, it can be verified that the
maximum achievable Doppler frequency is

Ny

FBT =05 % forx x (Chg »_ Np(1) ™", (3.13)
=1

where forx is the biquad processor clock frequency, Ny is the number of filters, and Npg(1)

denotes the number of biquads in the I™ filter.

3.2.3.2 [Elastic Buffers

In our design, consecutive blocks are interconnected with elastic buffers. This reduces the
complexity of our hardware design significantly and simplifies interfacing with external
(off-the-chip) blocks. Interfacing is simplified because consecutive blocks do not have to

be strictly synchronized with respect to instantaneous data throughput. Figure 3.8 shows
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the block diagram of this buffer. The elastic buffer is basically a random access memory
with two (potentially) asynchronous ports. The elastic buffer works by allowing input data
to be written into the memory using the input clock and then read out according to an output
clock. The one key constraint for correct operation is that the read time must occur after the
write time for any specific word, and not before or concurrently with the write.

data_In Dual-port data_Out

RAM
clock_1 clock_2
— <

TW_ADRTWE R_ADRT

1 e N\
Lequ:v::te Asynchronous FIFO (_t;e(f}Zreaci
Qui_fult | Controller | out_empty
N\ J

Figure 3.8: Block diagram of the elastic buffer.

To solve this problem, we designed the elastic buffer to operate in two modes. When
operating in the handShaking mode, the receiver block requests to read data samples prior
to reading from the buffer. When the buffer is empty, the receiver is informed (by asserting
buf_empty) to stop requesting until new data arrives. Likewise, the transmitter requests to
write into the elastic buffer and it is informed (by asserting buf_full) when the buffer is full.
The handShaking mode is used for interfacing blocks that are capable of handshaking.
We also use the elastic buffer in the handShaking mode to interconnect consequent blocks
in the design of our fading simulator.

The second mode of the designed elastic buffer is called continuous mode. It is used
for interfacing external clock domains without handshaking capability. In the continuous
mode, the transmitter and the receiver have the same nominal clock frequency. In this mode
the elastic buffer absorbs the clock mismatch between the input and local timing. In the
continuous mode, if the transmitter is clocked slightly faster than the receiver, it may start
to fill the elastic buffer faster than the receiver can drain it. In that case the transmitter
re-writes some of memory locations when the buffer is full and therefore some of the data
words are dropped. Conversely, if the receiver is running slightly faster than the transmitter,
the receiver may clock out more data than have been transmitted. In this mode, as the buffer
drains, the elastic buffer inserts some data words by re-reading the last data word. The
consequences of repeating read data in this way depend on the application.

When Fy > fp, it can be shown that the elastic buffer in the continuous mode does

not have a significant effect on the statistics of the generated fading samples. In practical
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systems, the sample rate is much higher than the maximum Doppler frequency and therefore
immediate fading samples have almost equal values. To show this, we define the difference
signal yi(t) to be the difference between z(t) and (¢ — kT ) for any time t = nTy = n/Fs.
Here yx(n) can be obtained by passing xz(t) through a filter with the impulse response
bi(t) = 6(t) — 6(t — kTs). From here, yx () is a zero-mean Gaussian random process with

variance

Ryy(0) = E{y()y()"},
- / St — T g,

= 7,(0) — To(2nkfpTs).
~ (knfpT.)?, (3.14)

where in (3.14) we used the expansion of the zeroth-order Bessel function

& m 2m
Z 22m ml 27
m=0

to find the approximate value. Equation (3.14) shows that when Fs > fp, the power of
the difference signal goes to zero and therefore the difference between x(t) and z(t + T5)
becomes negligible. Under this condition, if the signal x(¢) is sampled out at F, samples
per second, we can approximate the sampled signal £ (t) ~ x(nt) where n = F, / Fs. From
here, the ACF of £(t) is Ry(;) = Jo(2m(nfp)7). Therefore, in the presence of our elastic
buffer the clock mismatch between the transmitter and receiver has a similar effect as a

slight (probably negligible in most cases) change in the maximum Doppler frequency.

3.2.3.3 Implementation

Figure 3.9 shows a block diagram of the implemented four-path fading emulator. It can
generate IV, = 4 independent fading processes with Ny = 4 filters with different corre-
lation properties. The multiple processes can be used to model, for example, frequency-
selective channels or fading channels in multiple-input multiple-output (MIMO) systems.
The generated Gaussian samples are passed to the first shared filter processor, which runs
the designed SSF from (3.9) in four parallel and independent threads. Each thread of data is
then up-sampled 16 times and passed through an EILPF that is implemented using another
shared filter processor. Each IIR filter processor is capable of processing eight independent

streams of input data. The maximum order of each IIR filter is 16 (eight biquads per filter).
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After the EILPF, the data streams are passed to interpolation filters (IFs). Each IF includes
four configurable SILPFs that are interconnected with elastic buffers. Each IF also contains

a terminal elastic buffer for interfacing to external hardware.
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Figure 3.9: Block diagram of the implemented four-path fading simulator

We found it to be useful to re-use an optimized fixed-point processor to perform the
operations of the SSF and the EILPF. Figure 3.10 shows the architecture of our biquad
processor. The main datapath element is a multiplier-accumulator (MAC) that multiplies
the in-phase and quadrature data components by real-valued coefficients. The output of
each biquad is written into RAM d, which holds the intermediate results. RAM m; and
RAM my, store the complex contents of the biquad memories. The biquad coefficients are
stored in RAM a1, RAM a2, RAM b1, RAM by, and RAM g. The biquad processor can

also add a bias value from RAM (3, which is necessary when simulating Rician fading.

Input

> |_|handshaking
(- ——>
. . ———
<« — N . output
handshakinlg .
|_}in—G

Initialize

Figure 3.10: Datapath of the biquad processor.

The control sequence for running the cascaded biquads is quite straightforward. How-
ever, when emulating multiple paths, where each path could have different filter speci-
fications and different sample rates, flexible implementation of the control unit becomes

challenging. In addition, the fading emulator might have to generate samples for more than
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one external system with different clocks. To improve the robustness of our biquad pro-
cessor, two flags are assigned to every thread of cascaded biquads (i.e., for each individual
path labeled in- 7 and out- j in Figure 3.10). These flags govern the data flow through each
thread. For example, for the ™ thread (path), if in- 7 is high, then input data is ready to be
read. Also, if out- 7 is high, then data can be written to the next stage. For each thread, the
biquad processor keeps executing the biquads unless either of the input or output flags is
de-asserted. To prevent the overwriting of unprocessed data, the biquads in each thread are
scheduled to be executed from the last biquad to the first.

We synthesized the Verilog HDL of a four-path Rayleigh and Rician fading simulator
on a Xilinx Virtex-1I Pro XC2VP100-6 FPGA. In this implementation we used 36-bit fixed-
point variables in the SSF and EILPF filters. Our implementation utilized 6139 (13.9%)
configurable slices, 12 (2.7%) dedicated 18 x 18 multipliers with maximum clock frequency
73 MHz, generating up to 4 x 73 million samples per second. In the design of elastic
buffers, we used both the rising and falling clock edges for reading the input signals and
writing the ouput samples. This complicated the buffer design and lowered the hardware

speed. However, this method reduces the complexity of the rest of the design.
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Figure 3.11: Normalized cross-correlation and autocorrelation between real and imaginary
components of the generated fading process with fp = 0.625 Hz, Fy, = 2.5 MHz for 60
seconds.

Figure 3.11 shows the autocorrelation and cross-correlation between real and imaginary
components of the generated fading process with fp = 0.625 Hz, F; = 2.5 MHz for 60
seconds. These results were generated using the fixed-point bit-true model of this fading
simulator. However, this design was also implemented on a Digilent Spartan-3 board that
hosts a Xillinx XC3S1000 FPGA [139]. Figure 3.11 confirms a close match between the

desired response and the generated results over up to 60 seconds. In another example we
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measured the PDF for the amplitude of the generated samples with fp = 200 Hz and
Fs; = 10 MHz (see Figure 3.12 (a)). Note that the measured PDF accurately matches the
Rayleigh PDF. The LCR of the generated fading samples in Figure 3.12 (a) also shows a

good match between the reference curve and the generated results.
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Figure 3.12: (a) Envelope probability density function. The measured and reference PDFs
are indistinguishable in this figure. (b) Envelope level crossing rate of the generated fading
process with fp = 200 Hz and F; = 10 MHz. In this figure, the solid line represents the
theoretical reference and the circles are the measured values.

3.3 Fixed-Point Complex Stable IIR Filter Design

One of the important steps for generating the fading samples is designing the SSF. The
bit-precision selected for implementing the SSF plays an important role in the accuracy
and stability of the filter implementation. While double-precision floating-point arithmetic
is readily available in most software platforms, floating-point arithmetic on an FPGA is
significantly slower and less efficient than fixed-point arithmetic.

Conventionally IIR filters are designed with double-precision floating-point variables
using available tools like the iirlpnorm function in MATLAB which uses the least p-
norm method [140]. The filter coefficients are then quantized for fixed-point implemen-
tation. To obtain a compact hardware implementation, variables should be implemented
with the minimum possible fixed-point word-length. However, reducing the word-length
impacts the response, and potentially the stability, of the designed IIR filter.

Here, we address the problem of designing complex and real IIR filters with fixed-point
coefficients for compact and stable implementation. Most of the previously proposed filter
design techniques do not support complex filters. However, complex filters are required

in many applications like fading simulation with non-isotropic scattering (e.g., [91]) or
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the implementation of the TGn fading channel models for simulating IEEE 802.11 radio
propagation [92].

In the following sections we propose a step-by-step technique for designing real and
complex stable IIR filters with complex coefficients. We will also propose some techniques

for reducing the number of bits required for fixed-point implementation of these IIR filters.

3.3.1 Filter Design

Several methods exist for designing complex IIR filters. Nonlinear optimization [141-143],
linear programming [144], and semidefinite programming [145] have been proposed to
design IIR digital filters in the complex Chebyshev sense. Least-squares methods have
been applied extensively to design FIR and IIR filters [146—151]. However, ensuring the
stability of an IIR filter whose coefficients are obtained by least-squares methods is not
straightforward. Many authors have neglected this topic and concentrated on finding close
approximations to the desired frequency response. This approach can be used for designing
real filters in which the complex poles and zeros appear in complex-conjugate pairs. In this
case, all unstable factors in the filter transfer function 1/(1 — sze/?*e~7) can be replaced
with their stable counterparts 1/(e™7% — s,e/~?) with identical magnitude response. If,
however, the complex filter poles and zeros do not appear in complex-conjugate pairs, such
as when the filter coefficients are complex, this method cannot be applied.

Different approaches exist for filter stabilization when optimization techniques are used
for designing the filter. One method, proposed in [141], is to start the search from a sta-
ble point and then control the step size so that the solution never leaves the stable region.
This method is computationally intensive and is not easy to implement with traditional
optimization procedures. A second method is to make sure that the desired response is
minimum-phase [152] or that it has a “large-enough” group delay [153]. These conditions
cannot be met in many situations since the flexibility to modify the target frequency re-
sponse is restricted. In a third method, explicit constraints are imposed on the coefficients
of the denominator of the transfer function [154, 155]. This technique, however, has some
limitations and affects the filter quality [156]. Finally, in a fourth method, the least-squares
cost function is modified so that the minimum always falls in the stable region [149, 156].
In [149], the filter design problem is reformulated using nonlinear transformations so that
the final solution always falls in the stable region. In [156] the authors suggest adding a

barrier function to the original cost function. Their proposed barrier function is designed
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as follows. First they form an all-pole proxy transfer function consisting of all of the filter
poles. The barrier function is basically the sum of the squared amplitude of a section of the
impulse response of the proxy transfer function. If the filter is unstable, the tail will have
(large) non-zero values. This effect is used to avoid filter instability.

In contrast, we propose to augment the least-squares cost function with a specific barrier
function to control the location of the poles (and potentially also the zeros) to enforce filter
stability. In the proposed approach, the IIR filter is represented as a product of first-order

factors

1 — rped =)
jw
H(e) = A H oD’ (3.15)

where A is a positive scaling factor, 7e/% and s;,e/?* are the k-th complex zero and pole,
respectively, and I' is the number of first-order sections (FOSs), i.e., the filter order.

Here, we focus on designing IIR filters with a prescribed amplitude response. When the
amplitude of the frequency response is symmetric, the poles and zeros of (3.15) appear as
complex conjugate pairs and the IIR filter can be implemented using I" /2 canonical second-
order sections, that is, as biquads (BQDs). Note that the poles and zeros are expressed in
polar coordinations. This makes it easy to construct a barrier function that increases the
cost when any of the poles (or zeros) beyond a certain radius.

Another challenge is to accurately implement the IIR filters in fixed-point arithmetic.
When the filter coefficients are quantized, the poles and zeros of the system function typ-
ically shift to new positions in the z-plane. This perturbs the frequency response from its
intended response. If the designed IIR filter is extremely sensitive to coefficient changes,
the resulting filter might not meet the target specifications or the filter might even become
unstable.

We assume that the desired amplitude response is represented with 2 x M samples, i.e.,

Yi = (3.16)

d |P(e72m44)| if 27ru; is in pass-band
g, otherwise,

where P(e/?7%i) is the desired response, u; € [—0.5,0.5] is the normalized sampling
frequency, and € > 0 is the attenuation in the stop-band. We introduce a weight vec-
tor v = [v1, v2,...Us M]T to allow us to emphasize the error minimization for certain fre-
quency bands. We define the column vector x of length 41" containing 7, Sg, 0 and ¢
for k = 1,...,T. Similar to the work in [136], we express H (/) = A x F(x;e’*) where

F(x;e7) represents the product of FOSs in (3.15). Next, to find the filter parameters we
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define the cost function

2M—1

d(Ax) = D v (loa(AIF (s ) ~ loaw)) + B o), GA7)
=0

Note that the sum of squared errors on a logarithmic scale is augmented by a parametric
barrier function B(1; g; x). Function B(%; g; x) is included to keep the poles (and zeros, if

necessary) within the unit circle and is defined as

2r
B(9;0;x) = Y b(9; 05 1), (3.18)
k=ko
where
0 if 7] < o,
2
b(¥;057) = Q¥ (‘I'%f) ifo<|r| <1, (3.19)
2Lir| — 9 (12) ifrf > 1.

In (3.18), the parameter p < 1 determines an outer boundary for the poles and zeros. When
ko = I' + 1, the barrier function tries to keep the poles within a circle of radius p. Setting
ko = 1, on the other hand, forces both poles and zeros into the same boundary. In addition,
1 determines how fast the barrier function grows outside of the unit circle. The barrier
function (3.18) is useful when designing filters for fixed-point implementation since it can
be parameterized to keep the poles and zeros at any desired safe distance from the unit
circle. Moreover, using this technique, the quantization noise can be reduced to acceptable
levels. It can be shown that the variance of the quantization noise that originates in the k"

first-order factor when implemented in direct-form-I (DF-I) is

7 X 2_2(Qk_1)

2
k) = o a2y i=s)" (3.20)

where {2, is the number of bits used to quantize the coefficients (and the intermediate vari-
ables) at the &t stage. To derive (3.20) it is assumed that the quantization noise after each
multiplier in our model is uniformly-distributed, wide-sense stationary white noise that is
uncorrelated with the input signal and the quantization noise in other stages. We also as-
sumed that the samples are truncated and represented in 2’s-complement.

The coefficients of the IIR filter are calculated iteratively. At each iteration, the optimum

scaling factor A° is calculated as

2 e ST,
o __ 1 1= v
=l <|F<x;eﬂm>|) | 32D
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This expression for A° is found by differentiating (3.17) with respect to A and setting the
resulting expression to zero. Next the gradient vector

8(](“407 X) 8q(A07 X) T

g(A 7X) - [ 8.731 3ty ax4r

is calculated, where the partial derivative of (3.17) with respect to x; can be expressed as

1T A°|F (x;e7%))| :
og(A%x) _ RS URTT) alpGa e ] | 0B(: ix)

Ox}. |F(x; edwi)] Ox} ox,

i=0
where w; = 27u,; and each partial derivative is given by
0 if [zx| < oork < koork > 2T,

0B(¥; 0;x Trl—0) . .
(aa:f) = %mgn(mw if o < |xg| <1,

—f_ﬂgsign(:vk) if |z > 1,
O|F(x;e7%)]| o Tk — cos(0, —w)
A P (x; e 4

ark | (X7 € )’ |1 _ Tkej(ekiw)|2 )
O|F (x; /)| vy TEsin(fp —w)
AN | P(x; e ,

s = P )| R B
OIF (x; 6| o o8k — w) = 5i
N P (x; e ,

aSk ‘ (X, € )‘ ‘]_ — 3k63(¢k—W)‘2’
and '
OF (x; /)| ) Sk Sin(¢r — w)
= |F(x; el , .
ask | (X,e )|‘1 —Skej(d)k_w)‘Q

The filter coefficients are then found using the ellipsoid algorithm [157, 158]. Note that
several optimization algorithms can be used here. We assumed the ellipsoid algorithm
here for its simplicity. However, other techniques could be used to speed up convergence.
Algorithm 2 summarizes the steps for iterative filter design.

A weight vector v, the desired response y? = [y4], and the fixed-point format for dif-
ferent poles and zeros, €2, are passed to Algorithm 2. In this algorithm the function Q[€2, x]
represents the quantization effects that affect each element of x in the Cartesian coordinate
system (coefficients are transferred to Cartesian coordinates, quantized and then transferred
back to the polar coordinates). The algorithm starts from a random point x( contained
within the unit sphere and the initial ellipsoid matrix Eq. The algorithm then searches for
the optimal solution within the present ellipsoid of feasible points. This algorithm then con-
verges on the optimal solution by successively reducing the size of the ellipsoid until it is

small enough (i.e., the algorithm has converged) or when |xj;1 — x| < €. Note that stable
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Algorithm 2 Iterative calculation of the filter coefficients
Require: o; J;€; v = [v;], and y? = [y¢] fori =0,...,2M — 1
Initialize £ = 0, X0, EQ = 20141"><41"
while |x;11 — xi| > edo
find A, from (3.21)
find g = g(A?; xx)

Xt = \/8F Ergr
gk = 8k/ Xk
Xp+1 = Q [ank - ﬁEkgk}
Epi1 = CY (Ek - 2 E8:&l E )
4nz—1 AT+1 k -k
k=k+1
end while

real IIR filters can be designed with the above algorithm as well. To design such filters,
the sample update is only performed for half of the poles and zeros, and the other half are
simply the complex conjugates of the updated samples.

This filter design algorithm can be parameterized to provide a close approximation of
the desired response. The weight vector v can be used to emphasize error minimization in
different frequency bands. The filter design procedure can start with a reasonable order for
the initial approximation. The filter order can be increased gradually if the desired filter

characteristics are not met.

3.3.2 Range Reduction

IIR filters are naturally susceptible to arithmetic overflow and instability due to the inherent
feedback. Design and implementation of digital IIR filters must be carried out carefully to
avoid such pitfalls. Scaling is commonly used to keep the filter variables in range [159].
However, a poor choice of scaling factor results in loss of signal precision and increase in
quantization noise. Another technique is to use more bits to represent intermediate signals.
This method, however, cannot be used effectively on digital signal processors (DSPs) with
a fixed word-length. Moreover, adding extra bits increases resource utilization in FPGA
and application-specific integrated circuit (ASIC) implementations. We now propose two
techniques for minimizing the range of intermediate signals that can be effectively used for
reducing the signal range, overflow probability, and resource utilization in ASIC and FPGA

implementations.
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3.3.2.1 Pole-zero ordering

Considering a small section of an IIR filter, overflows are mainly caused by oscillations
around resonant frequencies. Assuming a limited input signal range, we can reduce the
signal range by reducing the oscillation magnitude. The oscillation frequency is mainly
determined by filter poles. Consider a single FOS of an IIR filter with only one pole at
frequency e727freic. The output range of this section can be reduced significantly if the
input signal to this section is attenuated around frequency 727 fvole

In order to use this technique, we need to implement the IIR filter with the DF-I structure
so that the input signal experiences a zero before it is affected by the pole. We thus match
the filter poles with closest zeros. Moreover, we sort the filter sections according to their
pole magnitude in ascending order. Since larger magnitudes are more likely to happen in
the last filter stages, the signal precision will be carried through ordered filter stages.

Further, signals are scaled in different stages to assure filter stability. The proposed

pole-zero ordering results in effective range control with minimum precision loss.

3.3.2.2 Augmenting auxiliary poles and zeros

As noted earlier, the resonant frequencies of a filter play an important role in filter overflow.
The second proposed method for reducing the signal range is to attenuate the input signal
around resonant frequencies of an IIR filter e72™/Nat that can potentially result in oscillation
or overflow. The imposed distortion can be later compensated with additional poles and/or
zeros. However, this technique is applicable only if the input signal does not have a major
frequency component around e/ fNat

One example is implementation of narrow-band lowpass filters with an approximate
resonance frequency around DC. If the input signal does not have a DC component, it can
be first passed through a highpass filter D(e/“) = 1 — e~/* (difference) prior to being
passed through the filter. The filter output can be later compensated by passing the output
signal through the integrator I(e’“) = (1 — pe™7*)~1. The coefficient p € [1 — ¢, 1)
is intentionally added here since quantization noise and computational errors can render a
perfect integrator (i.e., p = 1) unstable.

When employed along with pole-zero ordering, the augmented poles and zeros are not
included in the ordering process, and instead they keep their position in the DF-I structure,
i.e., the augmented zero appears first and the pole appears last. This technique, when used in

conjunction with pole-zero ordering and scaling can provide efficient, accurate and compact
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implementation of real and complex IIR filters. Note that increasing the word-length is
impractical in many DSPs, and addition of poles and zeros is mostly preferred to widening
the datapath in ASIC and FPGA implementations. The next section provides illustrative

filter design and implementation examples.

3.3.3 Design Examples

To demonstrate the performance and accuracy of our filter design procedure, we designed
several fixed-point IIR filters and compared their results with the desired references. We
also implemented a filter processor for the designed filters to show the efficiency of this

filtering approach. In the following we present some design and implementation examples.
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Figure 3.13: Frequency response of designed fixed-point filters and the desired responses
in Example 1.
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Figure 3.14: Positions of the poles and zeros in the unit circle for the designed filters in
Example 1.
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Table 3.1: Maximum Absolute Signal Range

15t Section

2nd Section

3 Section

DF-1I 182.22 422.82 421.44
DF-I + ord. 35.43 20.93 9.79
DF-I + ord. + aug. 20.87 14.81 11.04

For the first example, we designed three IIR filters with I' = 12 first-order sections. We set
the parameters ¥ = 5 and ¢ = 0.99, i.e., the poles and zeros are bounded within a circle of
radius 7 = 0.99. For all of the first-order sections, the number of bits for representing each
coefficient is set to {2 = 12. Figure 3.13 shows the frequency responses of the designed
filters (with out-of-band attenuation ¢ = 0.001) as well as the desired responses. In this
figure, filter (a) is a lowpass filter with normalized pass frequency f, = 0.3, filter (b)
is a complex spectrum shaping filter for simulating non-isotropic fading with normalized
Doppler frequency fp = —0.15625, directivity x = 5 (see equation (3.3)), and angle of
arrival ¢) = /5 [91], and filter (c) is a custom complex filter with frequency response
H(f) = a+ Bf3, for|f] < 0.2 and H(f) = ¢ for |f| > 0.2. As Figure 3.13 shows, the
frequency response of the designed fixed-point filters closely match the desired responses.
Figure 3.14 shows the position of the poles and zeros for the designed filters. It was verified
that all of the poles and zeros were bounded within a circle of radius r = 0.99.

To illustrate the effectiveness of our range reduction methods, we simulated an or-
der I' = 6 elliptic lowpass filter with sample rate Fy = 4800 Hz, Fj,ss = 1200 Hz,
Fitop = 1500 Hz, Apess = 1 dB, and Ay, = 50 dB. We measured the maximum absolute
range of variables by passing 10® uncorrelated zero-mean Gaussian samples through the
designed filter. Table 3.1 shows the maximum absolute signal ranges for different filter im-
plementations. The output of each section (biquad) is scaled to lie within [—1, +1]. As this
table shows, the direct-form-1I (DF-II) implementation requires the most bits (at least nine
bits for integer part). The DF-I implementation of this filter with the proposed pole-zero
ordering reduces the signal range significantly. Moreover, augmenting a zero at DC can
further reduce the signal range such that the minimum number of integer bits is reduced to
five. Note that in this example it is assumed that the input signal (white Gaussian noise)
does not have a DC component. In this example, our range reduction technique results in
saving four bits in word-length which can significantly reduce the hardware complexity.

To demonstrate the effect of range reduction on hardware complexity, we implemented

three filter processors for the three filter designs in Table 3.1. The processors were designed
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Table 3.2: Hardware Implementation Results for Different Filter Designs

3.3 Fixed-Point Complex Stable IIR Filter Design

Word-length | FPGA Slices | Max Speed
DF-II 24 2696 174 MHz
DF-I + ord. 20 1768 195 MHz
DF-I + ord. + aug. 18 1164 234 MHz

to work with eight complex filters of order 16. We implemented these filter processors on a
Xilinx Virtex-1I Pro FPGA [160]. Table 3.2 summarizes the implementation results. As this
table shows, due to the reduced word-length, the hardware complexity has been reduced by
more than 55% and the maximum operation speed has been increased by more than 34%.
We also implemented a 16-bit version of the designed filter processor on a GVA-290
FPGA development board [161]. In this filter processor, the filter coefficients are presented
in 12-bit fixed-point format. As an example, we took the filter coefficients from the sam-
ple filter (c) in Figure 3.13. To measure the filter response, white Gaussian noise [138]
was filtered. Figure 3.15 shows the power spectrum of the filter output. Comparing the
output spectrum with the desired filter response confirms the accuracy of our filter design

procedure.
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Figure 3.15: Measured power spectrum of the filtered noise.

Example 2
For the second example, using the PSD model in equation (3.3), we designed three SSFs
for three different isotropic and non-isotropic fading scenarios (d), (e), and (f). In scenario

(d) we generated the complex path gains that simulate an isotropic fading channel with
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3.3 Fixed-Point Complex Stable IIR Filter Design

Doppler frequency fp = 9 Hz. In (e) we simulated a non-isotropic fading system with
Doppler frequency fp = —18.5 Hz, beam-width x = 1, and AOA 1) = 7/4 rad. Finally in
(f) we have fp = 2.25 Hz, beam-width x = 5, and AOA zﬁ = 7 /3 rad.

The SSFs for the three fading channels were designed with I' = 10 FOSs, and we
set ¥ = 5 and o = 0.99. For all of the FOSs, the number of bits for representing each
coefficient is set to {2 = 16. Figure 3.16 shows the frequency responses of the designed
filters (with e = 0.001) as well as the desired responses. The desired responses are the
spectra for the three SSFs with different fading characteristics. As this figure shows, the
designed filters accurately produce the desired responses within the pass-band. In the stop-

band, the designed filter provides more that 55 dB attenuation for these examples.
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Figure 3.16: Frequency response of the designed SSFs in Example 2. (d) fp J/F1 = 0.125,

k=0,and ) = 0, (&) fp/Fy = —0.15625, x = 5, and ¢ = 7/5, (f) fp/Fy = 0.25,
k=3,and ¢ = /4.
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Figure 3.17: Positions of the poles and zeros in the unit circle for the designed SSFs in
Example 2. (d) fp/F1 = 0.125, k = 0, and ¢ = 0; (e) fp/F1 = —0.15625, k = 5, and
v =mn/5 ) fp/F1 =0.25, k = 3,and ¢ = /4.

Figure 3.17 shows the position of the poles and zeros for the designed filters. Note that
all the poles and zeros are located within a circle of radius 0.99.

To ensure the accuracy of our fading simulation, we measured the performance of the
fixed-point bit-true model of our hardware fading simulator with the designed filters. The
simulations were performed in fixed-point arithmetic, where the filter coefficients were
represented with €2 = 16 bit variables and 18-bit variables are used to store the intermediate

signals. Also, the target sample rate for the scenarios (d), (e), and (f) was set to Fs; =

40 MHz.
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Figure 3.18: Normalized autocorrelation for the real and imaginary components of the
generated fading processes in Example 2. (d) fp = 9 Hz, F; = 40 MHz, k = 0, and
Y = 0rad, (e) fp = —18.5 Hz, F, = 40 MHz, k = 1, and ¢) = 7/4 rad. (f) fp =
2.25 Hz, F, = 40 MHz, k = 5, and ¢) = /3 rad.

Figure 3.18 compares the autocorrelation for the real and imaginary components of
the generated path gains with the theoretical references. Note that there is a close match
between the desired and generated autocorrelations up to 4 seconds (160 million samples).
Also, Figure 3.19 plots the cross-correlation between the real and imaginary components
of the generated path gains and the reference curves for up to four seconds. This figure

confirms a close match between the achieved and desired curves.
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Figure 3.19: Normalized cross-correlation between the real and imaginary components of
the generated fading processes in Example 2. (d) fp = 9 Hz, F; = 40 MHz, k = 0,
and 1; = 0 rad, (e) fp = —18.5 Hz, Fs, = 40 MHz, x = 1, and 1; = 7/4 rad. (f)
fp =2.25Hz, Fs, =40 MHz, k = 5, andq/; = 7/3 rad.

Figure 3.20 compares the normalized LCR of the amplitude of generated complex path
gains in scenarios (d), (e), and (f) with the theoretical LCR from (3.6). The LCR is normal-
ized to fp x Ts. This figure again confirms excellent agreement between the theoretical
and generated curves. In Figure 3.21 the PDF of the amplitude of the generated samples
in scenario (f) is plotted. It can be observed that this PDF accurately mimics the Rayleigh
PDF. Also the normalized AFD for scenarios (d), (e), and (f) are plotted in Figure 3.22. This
figure shows that the simulated AFD matches the reference curve (from equation (3.7)) with

good accuracy over a wide range of normalized fading durations.
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Figure 3.20: Normalized envelope level crossing rate of the generated fading processes in
Example 2. (d) fp = 9 Hz, F, = 40 MHz, x = 0, and ¢ = 0 rad, (¢) fp = —18.5 Hz,
F, = 40 MHz, k = 1, and ¢) = 7/4 rad. (f) fp = 2.25 Hz, F, = 40 MHz, k = 5, and
¢ = 7/3 rad.
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Figure 3.21: Probability density function of the amplitude of the generated fading process
for the system (f) with fp = 2.25 Hz, Fs = 40 MHz, k = 5, and ¢) = /3 Rad.
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Figure 3.22: Normalized envelope average fade duration of the generated fading processes
in Example 2. (d) fp = 9 Hz, F;, = 40 MHz, k = 0, and zZ; = 0Orad, (e) fp = —18.5 Hz,
Fy, = 40 MHz, x = 1, and 1; = m/4 rad. (f) fp = 2.25 Hz, Fy, = 40 MHz, x = 5, and
¥ = 7/3 rad.

Example 3
For the third example, we designed appropriate filters to simulate the PSD proposed for the
IEEE 802.11n indoor wireless fading channel model [92]. In this model, the bell-shaped

PSD
1 B .
I ? F—Fspike 2
s(f) =4 ) (St (3.22)
07 if ‘f‘ > fmaac
is proposed for representing indoor propagation. Here, fp denotes the maximum Doppler

frequency, which is set to 6 Hz or 3 Hz for carrier frequencies of 5.25 GHz and 2.4 GHz,
respectively, based on experimental measurements. Also, fy,qz is the maximum frequency
component of the Doppler spectrum, which can be set to several times the Doppler fre-

quency [92]. The second term in equation (3.22) corresponds to a Doppler component that
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represents a reflection from a moving vehicle as described in model F of [92]. This com-
ponent is identified with a spike in the PSD at frequency fspike = v/, Where v, is the
vehicle speed and ) is the signal wavelength. The proposed values for the constants A, B,
and C' are 9, 0.5, and 90000, respectively [92].

We simulated an indoor fading channel with the above specifications for a system with
carrier frequency F,. = 2.4 GHz, maximum Doppler frequency 3.0 Hz, and vehicle speed
40.0 km/h, which corresponds to fspike = 88.9 Hz. The Doppler spectrum of the designed
filter along with the matching reference spectrum are shown in Figure 3.23.
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Figure 3.23: Reference and designed “Bell-shaped” Doppler spectra with the Doppler com-
ponent due to a moving vehicle.

These simulations were also performed in fixed-point arithmetic, where the filter co-
efficients are represented with () = 16 bit variables and 18-bit variables are used to store
the intermediate signals. Also, all poles and zeros are constrained to lie within a circle of
radius ¢ = 0.99 and the target sample rate for all scenarios is s = 40 MHz. The Doppler
spectrum is modeled with a complex filter of order I' = 4. Figure 3.24 shows the autocorre-
lation of the quadrature components of the simulated fading process. The cross-correlation
between quadrature components is also plotted in the same figure. Finally, the normalized
LCR and AFD of this channel are plotted in Figures 3.25 and 3.26, respectively. As for
example 1, the LCR and AFD are normalized to fp x T5. Note that compared to the three
scenarios in the previous example, the simulated indoor 802.11n model has a higher LCR

and lower AFD.
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Figure 3.24: Autocorrelation and cross-correlation of quadrature components of the simu-

lated fading process in Example 3.
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Figure 3.26: Normalized envelope average fade duration of the system in Example 3.
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3.3.4 Implementation

To demonstrate the efficiency of the above filter design process, we implemented a hard-
ware fading simulator that exploits a filter processor that is optimized for performing the
necessary filtering operations. The hardware was designed to generate fixed-point results
that are identical to those produced by our bit-true software simulator. Figure 3.27 shows
the datapath of the filter processor that can perform filtering operations using complex co-

efficients of cascaded FOSs. In Figure 3.27 the coefficients are stored in separate RAMs for
aq(k) = spsin(¢y), ar(k) = si cos(Pr), br(k) = i cos(bk), and bg (k) = 71 sin(bg).
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Figure 3.27: Datapath of our filter processor which performs filtering operations using
complex coefficients of cascaded first-order sections.

In order to reduce the variable range and the risk of overflow, the poles and zeros are
matched in pairs so that each pole appears with the closest zero on the unit circle. The
matching process starts with the poles with the largest magnitude since their impulse re-
sponse has more impact on the variable ranges. Direct-form-I is used for the filter imple-
mentations. This way, in each FOS, the signal is first passed through the moving average
(MA) part of the filter. With zero-pole matching, the signal is attenuated at frequencies
close to the pole locations. This way the the variable range, and accordingly the overflow
risk, is significantly reduced.

Further, since the filter input has a Gaussian distribution, fixed scaling factors g(k) for
each stage are used to maintain the signal magnitude within the representable range. By

employing the above techniques, we obtain a compact and efficient implementation with
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the minimum number of bits in each variable. To make our design more resilient against
overflows and the resulting instability, the adder in the filter datapath in Figure 3.27 is
implemented to saturate its output in case of overflow.

The main element in the datapath in Figure 3.27 is a MAC that can multiply the in-phase
and quadrature signal components by complex-valued coefficients a(k) = ay(k) + jag(k)
and b(k) = br(k)+ jbg(k). The output of each FOS is written into “RAM d; —dg”, which
holds the intermediate results. “RAM m; — mg” and “RAM n; — ng”, store the complex
contents of the two memories in the DF-I implementation of a FOS. The coefficients are
stored in “RAM a;”, “RAM aq”, “RAM b7, “RAM bg”, and “RAM ¢”. This datap-
ath can also add bias values from “RAM ;" and “RAM (5", which is necessary when
simulating Rician fading. Also, this datapath can be used for performing zero-padding for
interpolation, when required.

To implement the required lowpass filter for interpolation, the control unit in the data-
path in Figure 3.27 can be slightly modified to perform filtering operations of a real-filter
with second-order sections, which requires the same number of multiplications and addi-
tions as a complex FOS. For an efficient implementation, additional interpolation can be
carried out with the SILPF, as described in Section 3.2.1.

We implemented the datapath in Figure 3.27 and compared the implementation results
with implementations in Section 3.2.2 and Section 3.2.3. Table 3.3 compares the imple-
mentation results on a Xilinx Virtex-4 XC4VLX200-11 FPGA. All of the designs are con-
figured to process eight independent streams of fading samples and the filter order is set
to I' = 16. The design in Section 3.2.2 was reconfigured to meet the above requirements
(eight instantiations of complex filters of order 16). For a fair comparison, in all designs,
the memories are implemented with distributed RAMs (i.e., LUT-based memories) and no
dedicated multipliers are used.

Please note that in Table 3.3, the Design I (from Section 3.2.3) processes filters with
real-coefficients and therefore requires half the memory to store the coefficients and also
performs half the arithmetic operations of its complex-valued counterpart. However, the
new filter design procedure results in a more compact and efficient design, as shown in
Table 3.3. More specifically, compared to the design in Section 3.2.2, the new filter pro-
cessor utilizes almost nine times fewer configurable slices and can process 22.5 times more

samples per second.
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Table 3.3: Characteristics of Filter Processors for Fading Channel Simulators

Design I I’ IIT (NEW)
Device XC4VLX200-11 | XC4VLX200-11 | XC4VLX200-11
Fading Rayleigh Rician Rician
Scattering Non-isotropic Isotropic Non-isotropic
Datapath word-length 40-bits 36-bits 18-bits
Coefficient word-length 32-bits 32-bits 16-bits
Filter order 16 16 16
Filter Coefficients Complex Real Complex
Number of fading paths 8 8 8
Configurable slices 10328 1348 1164
Resource utilization (11.6%) (1.5%) (1.3%)
Max. Clock freq. (MHz) 128 87 234
Output rate (KSamp/Sec) ¢ 26 435 585

“from Section 3.2.2

bfrom Section 3.2.3

“Design I requires 16 x 2459 clock cycles for 8 output samples, Design II requires (16/2) x 25 clock cycles
per output sample (this design processes real filters) and Design III needs (16) x 25 clock cycles per output
sample.

3.3.5 Implementation Comparison

Figure 3.28 compares the implementation results for different filter-based fading simulators.
All of the fading simulators are implemented in Verilog HDL and synthesized on a Xilinx
Virtex-II Pro FPGA XC2VP100-6. The implemented fading simulators are from [9—14]
(the results of [14] are from Section 3.3). The resource utilization figures are divided up
based on the number of generated fading paths.

Figure 3.28 (a) compares the maximum clock frequency of different designs. All of
the designs are fully pipelined. The maximum clock frequency among all of these designs
belongs to last design which is based on the filter design technique in Section 3.3. In this
implementation, DF-I filter structure is used and the input noise is colored. In addition, an
interpolated finite impulse response (IFIR) filter [162] is utilized for the first interpolation
stage. Figure 3.28 (b) compares the maximum output sample rate for different designs '.
Specifically, the last design vi generates up to 268 million samples per second (only one
path). Figure 3.28 (c) compares the required number of configurable slices per fading path.
As this figure shows, the design in [12] requires the most slices per path, and the last design
vi is the most efficient in terms of required number of slices per path. Moreover, design

vi requires only 278 slices per fading path. Figure 3.28 (d) and (e) compare the required

'The fading simulators proposed in [11, 12, 14] are designed in multiple stages and their output sample rate
depends on the maximum speed of the final interpolator stage.
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Table 3.4: Mean Square Error of Different Statistical Measures
MSEscr | MSEccr | MSEppr | MSErcr | MSEArD
—85 (dB) —82 (dB) —77 (dB) —80 (dB) —75 (dB)

number of on-chip multipliers and block memories per fading path. As this figure show,
newer designs require less and less multipliers and storage per fading path.

We also measured the mean square error (MSE) of different statistical measures (ACF,
CCF, PDEF, LCR, AFD) for design vi over one continuous block of Rayleigh fading samples
of length 10® with normalized Doppler frequency fpTy = 0.001. For a fair comparison,
we used the same measurement parameters as those used for testing the SOS-based fading
simulator. Table 3.4 represents the measured MSEs. Comparing these results with the
results of the SOS-based simulator (see Figure 2.21) shows that the filter-base method can

provide much more accurate results.

3.4 Simulation of Nakagami-m and Weibull Fading Channels

The Nakagami-m distribution (or the m-distribution), is another commonly used model for
the simulation and study of fading channels [39]. This distribution can model severe to
moderate fading through the parameter m. This distribution is recommended for modeling
and simulation of fading channels due to its good fit to data obtained from several radio
channels [163-168].

Several methods have been proposed in the literature for the simulation of Nakagami-
m fading channels [42,43,72,73,169-176]. Two Nakagami-m fading simulators based
on the sum-of-sinusoids approach have been proposed in [72,73]. In [169], uncorrelated
Nakagami-m samples are first generated using any random number generation method, and
then autocorrelation is introduced between Nakagami-m samples by sorting them accord-
ing to the rank statistics of additional Rayleigh samples with the desired autocorrelation.
In [170], a Nakagami fading signal with m < 1 is simulated using complex Gaussian
processes and square-root-Beta random processes. It has also been proposed to gener-
ate Nakagami-m distributed samples from Gamma-distributed samples [171-173] and the
Gamma-distributed samples have been correlated using either the Cholesky decomposition
of the covariance matrix or the Sim’s method [177]. In [174, 175], the effect of Nakagami-
m fading on the signal-to-noise ratio at the receiver has been simulated as a finite-state

Markov chain. Also in [42,43, 176] it is proposed to use a transformation for mapping
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Figure 3.28: Comparison between implementations of different filter-based fading simula-
tors. All of the fading simulators have been implemented in Verilog HDL and synthesized
on a Xilinx Virtex-II Pro FPGA XC2VP100-6. The plots show (a) maximum clock fre-
quency, (b) maximum output sample rate, (c) number of configurable slices per generated
path, (d) number of utilized 18 x 18 dedicated multipliers per generated path and, (e) num-
ber of utilized on-chip 18 Kb block memories per generated path. The implemented fading
simulators are from (7) the model proposed in [9] (see Section 3.2), (ii) the model proposed
in [10] (see Section 3.2), (iii) the model proposed in [11] (see Section 3.2.1), (iv) the model
proposed in [12] (see Section 3.2.2), (v) the model proposed in [13] (see Section 3.2.3), and
(vi) using the model from Section 3.3 (submitted for publication in [14]).
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Rayleigh sequences into Nakagami-m sequences.

However, except for the sum-of-sinusoids approach [72, 73], the rest of the above sim-
ulators are not appropriate for hardware implementation of a parameterizable continuous-
time Nakagami-m fading simulator. This is mainly due to the large memory requirements
[169], the block-based nature of the algorithm, [169-173], the high computational com-
plexity [42,43,169-173,176], or the high-precision arithmetic requirements [42,43,176].
The sum-of-sinusoids approach on the other hand is not flexible for simulating arbitrary
time-correlation properties between fading samples.

Here we want to have a simulation method that can generate any time-correlation be-
tween the Nakagami-m fading samples for various values of m. The simulation method
also needs to be appropriate for hardware implementation. The Nakagami fading simula-
tor proposed in [42,43] can simulate different fading scenarios, and the time-correlation
between the generated fading samples can be parameterized. This simulation technique is
based on transforming Rayleigh fading samples to Nakagami-m fading samples with sim-
ilar time-correlation properties. However, due to the wide range of variables used in this
fading simulator, it can not be used for efficient fixed-point implementation of a Nakagami
fading simulator. Based on the fading simulator proposed in [42,43], here we present a
new architecture for the efficient and compact implementation of a parameterizable Nak-
agami fading simulator. Due to the similarities between the Nakagami-m distribution and
the Weibull distribution, with minor modification, the presented technique can be used for
the hardware simulation of Weibull fading channels [178-180] as well.

In the following we briefly present the simulation method that was proposed in [42,43].
Then we present our model for the efficient hardware simulation of Nakagami-m fading

channels.

3.4.1 Basic Simulator

The probability density function of the amplitude R of fading samples in a Nakagami-m

fading channel can be expressed as [39]

2mmp2m—l m
2

fN(T) = W eXp(— HT ), T Z 07 (323)

where I = E{R?} is the average fading power (E{-} denotes the expectation operator),

and I'(+) is the gamma function. In (3.23), the Nakagami fading parameter m > % which
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determines the fading severity is defined as the ratio of moments [181]
112 1
e — > . 3.24
B - "7 324

The Nakagami-m distribution also includes the one-sided Gaussian distribution as a special

m

case when m = 1/2 and the Rayleigh distribution when m = 1. Values of m in the ranges
[1/2,1) and (1, c0) correspond to fading more severe than Rayleigh fading and less severe
than Rayleigh fading respectively.

The simulation method proposed in [42,43], is based on transforming of Rayleigh fad-
ing samples to Nakagami-m samples. In this method, a zero-mean complex Gaussian fading
process c(t) = ¢;(t) + jcq(t) is first generated using a filter-based or sum-of-sinusoid based
Rayleigh fading simulator. The envelope of the fading process rp(t) = (c2(t) + c2(t))"/?
is Rayleigh-distributed, and that can be transformed into samples with uniform distribution
using the transformation

u(t) = Fr(rg(t)),

_TR®

= 1—e 27, (3.25)

where Fr(-) is the cumulative distribution function (CDF) of a Rayleigh random variable
and o2 is the variance of ¢(t). The uniform random variable u(t) is then transformed to

Nakagami-m random variable 7 (%) by the inverse Nakagami-m CDF function as

ra(t) = Fy'(u(t)), (3.26)
where
e = [ e
N = ) Ty P
~y(m, )
= ) (3.27)

and ~y(a, x) is the incomplete gamma function. Complex Nakagami fading samples x(t)

are then generated using the Nakagami-distributed envelope ry (t) as

z(t) = xi(t) + jrg(t)
= rn(t) cos(0(t)) + jr(t) sin(6(t)), (3.28)

where 6(t) = arctan(cq(t)/c;(t)). In [42,43], authors also propose an approximation for
the inverse Nakagami-m CDF

arn(u) + agn®(u) + azn® (u)
1+ bin(u) + ban?(u)

Fyt(u) ~ n(u) + : (3.29)
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n(u) = ( In ! >m. (3.30)

For a given Nakagami fading parameter m, the coefficients a1, as, as, b1, and by are calcu-

where

lated to minimize the approximation error.

This method seems attractive for software simulation of Nakagami-m fading channels.
However, efficient hardware implementation of this fading simulator in its original formu-
lation can be quite challenging. Due to the extensive use of various mathematical functions
and large dynamic range of intermediate variables, it is necessary for this algorithm to be
implemented in floating-point arithmetic to sustain the required accuracy. More specifically,
calculating (3.28) requires two multiplications, one division, and calculation of arctan, sin,
and cos functions. Also, calculation of (3.29) requires several additions and multiplica-
tions, two divisions, square root, m—th root, and natural logarithm. Most of these opera-
tions result in variables with wide dynamic ranges that cannot be effectively mapped onto
a compact hardware with fixed-point arithmetic.

For accurate implementation of this fading simulator, single- or double-precision floating-
point data structures are required to support wide dynamic range while maintaining data
precision. However, full floating-point arithmetics are often unsuitable for implementation
in FPGA or ASIC. Floating-point operators generally have dramatically increased logic uti-
lization and power consumption, combined with lower clock speed, longer pipelines, and
reduced throughput capabilities when compared to integer or fixed-point. On the other
hand, careless fixed-point implementation can result in excessive quantization noise. Also,
issues of truncation, rounding and overflows can render a fixed-point implementation inef-
fective. In the next section, we reformulate Beaulieu’s fading simulator [42,43] to make it

more suitable for fixed-point implementation.

3.4.2 New Nakagami-m and Weibull Fading Simulator

As mentioned in the previous section, in its original formulation, Beaulieu’s Nakagami-m

fading simulator cannot be efficiently mapped onto hardware. To simplify this Nakagami
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fading simulator, we start by rewriting sin(6(t)) and cos(0(t)) as

: _ ci(t)
sin(0(t)) = C?(t) , Cg<t)

)

cos(0(t)) = Z)th(i)z

—
SN—
—~
o~
N—

which implies that calculation of sin(6(¢)) and cos(6(t)) requires an inverse square root
operation and two multiplications. Since the inverse square root operation is common for
both quadrature components, it is possible to factorize it for more compact implementation.

From here, Nakagami fading samples can be generated as

z(t) = g(rR(t) x (cit) +jcg(t)),

where g(r%(t)) is the transfer function defined as

g(ri(t)) = Fy(-e ). (3.31)
5 (t)

For hardware implementation, equation (3.31) is evaluated and stored in a look-up table
(LUT) for a practical range. Since this function F&l (u) is continuous, several root-finding
algorithms can be used to evaluate (3.31). In particular, we used the bisection method due
its simplicity and effectiveness.

Weibull fading channels can be simulated with the same method. The CDF of the
Weibull distribution is [180]

F () —1—exp{— (;)6} r>0, (3.32)

where the fading parameter 3 > 0 corresponds to fading severity. Based on the Weibull

CDF, the transfer function for converting Rayleigh samples to Weibull samples is

2 (t)
F_l 1—e 202
gw (@) = w (1—e ), (3.33)
5 (t)
1I 2 5
= X <%§> . (3.34)

/ 2
"R

The transfer function gy (r%(t)) can be used to generate Weibull fading samples from

Rayleigh-distributed random variates. In the following we present our fading simulation
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method for the Nakagami-m method. However, the only difference is in the transfer func-

tions (3.31) and (3.33). Weibull samples can be generated easily by substituting g(r%(t))

with gy (r%(t)).

)

Rayleigh
Fading
Simulator

— Cq Tq= Cq X g(,,?%)
Figure 3.29: Block diagram of the complex Nakagami-m fading channel simulator.

Figure 3.29 shows the block diagram of the Nakagami-m fading simulator. As this
block diagram shows, to generate Nakagami samples, first the square envelope of the
Rayleigh process r% is calculated which is used to compute the transfer function g(r%).
The in-phase and quadrature components of the Nakagami fading samples are then found

by multiplying ¢;(t) and ¢, (t) by g(r%) respectively.

Figure 3.30: Log-Log plot of the transfer function g(r%) for Il = 1 and different values of
m.

The next step is to evaluate the function g(r%). Software simulations showed that ac-
curate calculation of g(r%) is crucial for the accurate simulation of Nakagami-m fading

channels. Figure 3.30 plots g(r%) as a function of 7%, € [2715,2°) for different values of m
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on a log-log scale. In this figure and in the rest of this section we assume that the average
fading power is I1 = 1. For 0 = 1, since Pr(r%(t) > 2°) is less than 1.125 x 1077, and
Pr(r#(t) < 271%) is less than 1.526 x 10~°, we focused on evaluating g(r%) over the range
r# € [2715,2%) without significantly affecting the output statistics (as we will see later).
Our simulation results show that for m € [0.5,25], and r% € [2715,2°), the variations in
g(r%) can be as high as four orders of magnitude. Also, g(r%) tends to change faster for
small values of r%{.

Our simulation results showed that to have an acceptable representation of the transfer
function g(r%), we require a minimum resolution of 2715 for the lower part of the range
r% € [2715,25). However, no such resolution is required for the upper part of this range
since g(r%) changes slowly in this region. On the other hand, since g(r%) has a wide range
(277 to 27, see Figure 3.30), at least 14 bits are required for the fixed-point storage of
this function. Hence, a linear look-up table needs to store 14 x 2515 = 14 Megabits of
information for acceptable representation of g(r%). In other words, it would take at least
797 18-Kbit block memories to store such look-up table!

Instead of using a simple linear look-up table, we calculated g(r%) using linear ap-
proximation. In this approach, the range [271°,25] is divided into small segments and the
value of g(r%%) over each segment is approximated with a linear equation. For example,
over the segment ¢ € [to, 1), g(r%) is approximated as §(t) ~ ay,(t — to) + by,. We
further reduced the number of bits required to store {a} and {b}, with semi floating-point
representation. More specifically, over the segment ¢ € [to, 1), g(r%) is approximated as
g(t) =~ 20 x [ag, (t — to) + by, ], where azy = 2~ fro x ag, and by, = 2~ fro l;to. Figure
3.31 illustrates this approximation approach.

The storage requirements can be further reduced by non-linear segmentation of the
range [271,25). We specifically used a hybrid logarithmic-linear segmentation approach
for the approximation of g(r%). This hybrid segmentation approach is illustrated in Figure
3.31. As mentioned before, g(r%) changes faster for smaller values of r%. Hence more
accurate approximations, i.e., smaller segments, are required for the lower range. On the

other hand, since g(r%) changes slowly for larger values of r%, wider segments can be used.
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Figure 3.31: Hybrid segmentation and linear approximation of transfer function g(r%).

As Figure 3.31 shows, in this hybrid segmentation approach, the range (0,2"] is di-
vided to [ logarithmic (i.e., power of 2) segments. Each of these segments are further
divided to 2* linear sub-segments. This segmentation method is particularly convenient for
hardware implementation as the logarithmic segment for each sample can be determined
using a “leading-1" circuit. Moreover, the next k bits after the “leading-1”" can be used to
address the linear sub-segment in the memory, and the remaining bits can be used as the

argument of the semi floating-point linear function (i.e., ¢t — tg).

Ci
2
T R| Leading-1,
uo Barrel-Shifter
u2
] addr
Cq u1 us3

Figure 3.32: Datapath of the transformation-based Nakagami-m and Weibull fading simu-
lator.

Figure 3.32 shows the datapath of the Nakagami-m fading simulator based on the above
approach. As this figure shows, the calculated r%% is passed to the “leading-1" detector and

“barrel-shifter” U3 to find the address addr of the current hybrid segment and the argument
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t — to. The address for the current segment addr is then used to read the values a, b, and
f from the corresponding ROMs. Then the value of g(r%) is approximated in U7, U8, and
U9 as §(r%) ~ 2/ x [a(t — to) + b]. The quadrature components of the Nakagami fading
samples are then calculated as z; = ¢; x §(r%) and x; = ¢4 x §(r%) in U10 and U11
respectively.

We performed some simulations using the fixed-point bit-true model of the above Naka-
gami-m fading simulator to verify its accuracy. Based on our fixed-point analysis, we
divided the range [271°, 2%) into 15 logarithmic segments. Each of the logarithmic segments
was further divided into 64 linear sub-segments. The range [0, 271%) was also divided into
64 segments which makes the total number of hybrid segments (1 + 15) x 64 = 1024.
The values of a and b were stored in s18.17 format (i.e., signed 2’s compliment 18-bit
fixed-point values with 17-bit fraction representing the range [—0.5,0.5)). The values of
f were stored in s5. 0 format (i.e., signed 2’s complement 5-bit fixed-point integer values
representing the range [—16, 15]). The input samples ¢; and ¢, were assumed to be in
s16.11 format. In the hardware implementation, the values of a, b, and f were each
stored in a 18-Kbit on-chip block memory.

Figure 3.33 shows the relative approximation error of g(r;) for m = 10. The relative
approximation error is defined as e4(r%) = |1 — §(r%)/g(r%)|. As this figure shows, the
presented segmentation and approximation method can accurately mimic the actual transfer
function g(r%). In this figure we see that the relative error goes up in the upper region. As
we will see in the next simulation results, this increase in the relative error does not have a
significant impact on the distribution of the generated Nakagami samples since large values
of r% are less likely and g(r%) goes to zero for such values. Moreover, for very small
values of 7%, the relative error is higher than the rest of the range, but the effect of this
approximation error on the statistical accuracy of the generated Nakagami-m samples is

insignificant.
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Figure 3.33: Relative approximation error of transfer function g(r%) for m = 10.
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Figure 3.34: Comparison between reference Nakagami-m PDF and the measured PDF of
generated samples for different values of m.
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Figure 3.35: Comparison between reference Weibull PDF and the measured PDF of gener-
ated samples for different values of .

To test the statistical accuracy of this design, we generated some fading samples using
the bit-true fixed-point model of our Nakagami-m fading simulator and compared the statis-
tical properties of the generated samples against the theoretical references. To generate the
Nakagami fading samples, we used isotropic Rayleigh fading samples with the Jakes” PSD
(e, k = 0,and ¢ = 0 in equation (3.3)) and the Doppler frequency fp = 100 Hz, and
sample rate /'y, = 10 KHz. To generate Nakagami-m samples, the approximation coeffi-
cients {a}, {b}, and { f} need to be precomputed and stored in the corresponding memories
for every m.

Figure 3.34 plots the PDF of the generated Nakagami fading samples for different val-
ued of m. The theoretical references from equation (3.23) are plotted as well. As this
figure shows, the PDF of the generated samples closely match the reference Nakagami-m
PDF which verifies the statistical accuracy of the generated samples. Figure 3.36 com-
pares the autocorrelation of the generated Nakagami-m fading samples and the reference
values (from equation (3.5)) for different values of m. This figure also shows a close match
between the measured autocorrelation and the reference values. We also generated some
Weibull fading samples with our fading simulator. Figure 3.35 compares the PDF of the
generated Weibull fading samples with the reference PDF given by

fur(r) = <§> (%)5_1 X exp {— (ﬁ)ﬁ} >0, (3.35)

for different values of 3. In this simulation, the average power of the Weibull fading samples
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was set to II = 1. This figure also shows a close match between the generated PDFs and

the reference values.
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Figure 3.36: Comparison between reference autocorrelation function and that of the gener-
ated samples for different values of m.

The normalized autocorrelation function of the envelope of the generated Nakagami-m
samples and the reference values are compared in Figure 3.37. It can be shown that the
normalized autocorrelation function of the Nakagami-m signal envelope is given by [182,

eq. 26]
2Fi (=3, —5im, | Jo(2m fpT)[?)

&) (&)

where o F} (-, -; -, -) is the Gaussian hypergeometric function [183]. Figure 3.37 also shows

facr(T) = (3.36)

a close match between the generated envelope autocorrelation and the expected values from
equation (3.36) which further verifies the accuracy of our implementation.

We also implemented the datapath in Figure 3.32 on a Xilinx Virtex-II Pro XC2VP100-
6ff1696 FPGA. To increase the throughput of our FPGA implementation, all of the compo-
nents of this datapath are pipelined. More specifically, the blocks U3 and U9 in Figure 3.32
have 6- and 4-stage pipelines respectively. Our FPGA implementation of this datapath uti-
lizes 652 configurable slices (1.5%), five on-chip 18 x 18 multipliers (1.1%), three 18 Kbit
on-chip block memories (0.7%), and can operate at up to 246 MHz.
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Figure 3.37: Comparison between reference normalized envelope autocorrelation function
and that of the generated samples for different values of m.

3.5 Summary and Conclusions

Filter-based simulation can be used to generate fading samples with accurate statistical
properties. For a given accuracy, although using IIR filters can be appealing due to their
lower computational complexity (in terms of number of computational operations) com-
pared to the FIR filters, the fixed-point implementation of IIR filters can be challenging due
to finite word-length effects.

In this chapter we presented several novel computationally-efficient design and imple-
mentation schemes for filter-based simulation of isotropic and non-isotropic Rayleigh and
Rician fading channels. We also presented a novel technique for designing stable fixed-
point filters with real and complex coefficients. We further proposed two techniques for
word-length reduction for implementing IIR filters. Using the new filter design technique,
Rayleigh and Rician fading samples with arbitrary PSD properties can be simulated. In one
example implementation of a non-isotropic Rayleigh fading channel, the proposed filter
design technique resulted in a FPGA implementation that was 8.9 times smaller and 22.5
times faster than a previous design that was based on traditional filter design techniques.

We also proposed a computationally-efficient technique for simulating Nakagami-m
and Weibull fading channels. The proposed technique was based on transforming Rayleigh
fading samples into Nakagami-m and Weibull fading samples. We proposed a technique for

the compact hardware implementation of this fading simulator based on a hybrid logarithmic-
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linear segmentation of the transfer function. We also proposed a semi floating-point approx-

imation technique which reduced the storage requirements significantly.
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Chapter 4

MIMO Fading Channel Overview
and Simulation

Multiple-input multiple-output (MIMO) communication systems can offer significant in-
creases in spectral efficiency and link reliability by exploiting multipath propagation. MIMO
technology has made significant advances in the past decade and has moved from a purely
theoretical blueprint [184, 185] to real-life products (e.g., [186—189]).

Multipath propagation plays a key role in the link capacity increase and diversity gain
in MIMO systems. The propagation conditions determine the channel capacity of a MIMO
system and hence it is of great importance to characterize and model different MIMO prop-
agation scenarios. Moreover, realistic simulation of signal propagation in MIMO channels
is crucial for the design, accurate performance prediction, and verification of MIMO sys-
tems. Therefore it is important to have realistic and yet easy-to-use models to understand
and reproduce the MIMO propagation effects [190]. Hence, the modeling and simulation
of MIMO radio channels has attracted much attention in the literature.

This chapter reviews some of the most important MIMO channel models and presents

efficient hardware simulation platforms for the corresponding models.

4.1 Background

In conventional wireless communication systems, one transmit and one receive antenna are
used for signal transmission. On the other hand, MIMO systems are equipped with multiple
antennas at both the transmit and receive ends. Here we consider an M x N MIMO system,
where M > 1 and N > 1 are the number of transmit and receive antennas, respectively.

Figure 4.1 illustrates this MIMO system.
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Figure 4.1: Illustration of a MIMO system with M transmit and N receive antenna ele-
ments.

The above MIMO channel representation can be used to formulate an overall base-
band MIMO input-output relation between the length- )M transmit signal vector s(¢) and the

length- N receive signal vector y () as

y(t) = / H(t, 7)s(t — 7)dr + n(t), @.1)

where the length- N vector n(t) represents noise and interference. In the representation
(4.1), it is assumed that the MIMO channel is linear and time-variant and can be represented

by the N x M channel matrix

hii(t, ) hia(t,7) ... him(t,7)
hai (t, haa(t, con hom(t,

H(t,7) = 21(: T feat) e BT “.2)
hnt (‘t, T) hp2 ('t, T) ... hnm‘(t, T)

where h;;(t, 7) denotes the time-variant impulse response between the j-th transmit antenna
and the ¢-th receive antenna. Moreover, it is assumed that the channel matrix (4.2) includes
the effects of antennas and frequency response. Note that there is no distinction between
different antennas and various polarizations of the same antenna. To model MIMO systems
with polarization-diverse antennas we can replace the elements of H(¢, 7) in (4.2) with
polarimetric sub-matrices that describe the coupling between the vertical and horizontal
polarizations [191].

If the channel is time-invariant, the channel matrix will be independent of time ¢ and

hence we have H(t,7) = H(7). Further, if the signal bandwidth is rather small so that the
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channel frequency response can be approximated as a frequency-flat channel, there would

be just one single tap, i.e., H(7) = H. In this case (4.1) simplifies to

y(t) = Hs(t) + n(t). 4.3)
4.1.1 Model Classification

The most commonly used MIMO channel model in the literature is the narrow-band and
spatially-independent and identically distributed (i.i.d.) Gaussian channel model. The i.i.d.
channel model is an idealized assumption where the entries of the channel matrix are mod-
eled as independent complex Gaussian random variables (see for example [184]). This
model corresponds to a so-called “rich scattering” scenario. In this model it is assumed that
there is an infinite number of randomly and uniformly located ideal scatterers, which form
a uniform scattering medium. Moreover, in the the i.i.d. model the antenna elements are
considered to be ideal field sensors with no size and no coupling between the elements in
the transmit and receive antenna arrays [192]. For a single-user system with M transmit and
N receive antennas, independent scattering from each transmit antenna to each receive an-
tenna provides approximately min (M, V') separate channels and hence the capacity scales
linearly with min(M, N).

Although the i.i.d. model is convenient for analytical studies, it is too idealized as it
does not consider many propagation characteristics. Most propagation environments result
in spatial and temporal correlations, which are ignored by the i.i.d. model. Also, mod-
ern wireless communication technology targets high data-rate applications over wide-band
channels. Hence several sophisticated models for MIMO channels and propagation have

been proposed.
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Figure 4.2: MIMO fading channel model classification.

Different MIMO channel models can be distinguished based on different criteria like
time and frequency response or modeling approach. For example, considering the band-
width of the system, a fading channel can be frequency-flat (narrow-band, or rather small
delay spread) or frequency-selective (wide-band, or large delay spread). In the wide-band
models (e.g., [193-199]) different frequency subbands can have different channel responses,
while the narrow-band models (e.g., [200-207] ) assume that the channel has the same re-
sponse over the entire bandwidth.

Furthermore, fading channel models can be categorized based on the modeling ap-
proach. More specifically, a MIMO channel model could be analytical or physical [208,
209]. Analytical and physical channel models can also be subdivided into different cat-
egories based on their channel characterization approach. Model-based classification of
some of the MIMO fading channel models is summarized in Figure 4.2.

Analytical channel models characterize the MIMO channel response in a mathemati-
cal/analytical fashion. In analytical models, physical aspects of wave propagation are not
directly considered. Instead, the channel impulse response is expressed in terms of a com-

plex matrix with a specific structure. Due to the mathematical convenience of analysis, these
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models are popular in analytic studies of MIMO systems (see for example [200,210-214]).

In contrast to analytical MIMO channel models, physical models characterize the fading
channel based on the physical characteristics of wave propagation or actual measurements.
A physical MIMO channel model considers the relative location of transmitter, receiver,
and scatterers in the propagation media. More complex physical models can be used to
accurately mimic the wave propagation effects. In the past decade, several physical MIMO
channel modeling approaches have been proposed in the literature (see for example [204,
206,215-225]).

Physical and analytical MIMO channel models can be further divided into sub-categories.
Analytical models are either inspired by the correlation between channel samples or by
the propagation mechanism in the fading channel. The i.i.d. model [184], full correlation
model [200, 223], Kronecker model [200,212-214], and the Weichselberger model [226],
are among the analytical models that try to model a MIMO fading channel based on the
correlation between fading samples h;;(¢, 7). The virtual channel representation (VCR)
model [227,228], finite scatterer model [210], and the maximum entropy model [229,230],
on the other hand, are propagation-motivated analytical models. Later in this chapter, we
will explain some of these models in more detail.

Similarly, physical MIMO channel models can be divided into deterministic models,
nongeometrical-stochastic models, and geometrical-stochastic models. In deterministic
models the signal propagation is fully characterized by deterministic model parameters ei-
ther from actual measurements using channel sounders, or ray-tracing through computer
simulations. Deterministic models can provide site-specific but accurate channel charac-
teristics that can be used for network planning. Examples of deterministic MIMO channel
models can be found in [222,231-235].

Nongeometrical-stochastic models on the other hand, characterize the fading channel
using statistical parameters. In these models, the fading channel is described either as indi-
vidual multipath components (MPCs) or as clusters of MPCs. More specifically, the Zwick
model [236] treats each MPC component individually and independent of other MPCs.
On the other hand, the Saleh-Valenzuela model [237] and the extended Saleh-Valenzuela
model [215, 238] assume that MPCs are grouped in clusters. The idea of forming MPC
clusters was inspired by the observation of temporal clusters in propagation delay [237]
based on which Saleh and Valenzuela proposed a doubly-exponential decay process in ra-

dio signal power for indoor propagation. The proposed doubly-exponential decay process
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is further integrated in other channel models including the TGn channel model [92] of IEEE
802.11.

In contrast to deterministic models, in which the location of scatterers is prescribed in a
database, in a geometry-based stochastic channel model (GSCM) the location of scatterers
is chosen according a specific distribution. GSCM channel models are based on the double-
directional representation [239, 240] in which the propagation channel is represented as
a number of propagation paths (or sub-paths) each characterized by a direction-of-arrival
(DOA), a direction-of-departure (DOD) and a propagation time which is directly related to
the signal attenuation. The GSCM model parameters can be chosen randomly from distri-
butions that are derived from geometry or from measurements. Given the model parameters,
the channel impulse response is then calculated using a simplified ray-tracing procedure.

GSCM has several advantages [241] over other channel models as it can reflect different
real-life propagation effects. GSCM considers the propagation geometry and reproduces
large-scale as well as small-scale fading effects by the superposition of incoming waves
from individual scatterers. GSCM also includes the mobility effects between the transmit-
ter and receiver and can easily be modified to simulate shadowing effects that happen on
the propagation paths. Moreover, the power-delay profile (PDP) and the angular power
spectrum (APS) are modeled conveniently for any distribution of scatterers.

The main advantage of GSCM is the possibility of simulating a large number of chan-
nels by changing channel parameters. The first GSCM model was proposed in 1973 in
[242], where the scatterers are placed on a ring around the base-station and it is assumed
that only single scattering occurs. Several GSCM models have been proposed in the litera-
ture since then [129,225,243-247]. The main differences between these models lie in the
number of bounces allowed, in the trajectory of the sub-paths, and in the use of clusters.

Single-bounce scattering models assume that only one interacting object occurs be-
tween the transmitter and receiver. Different distributions have been proposed for the scat-
terer locations. The simplest model assumes that scatterers are distributed uniformly in
space. This model is too simplistic and hence does not reflect the real propagation effects.
In [225, 243] is it proposed to place the scatterers randomly around the mobile station.
Further, in [248] a one-sided Gaussian distribution with respect to the distance from the
mobile-station is considered.

The single scattering assumption makes the channel simulation convenient. In a single-

bounce scattering model, all paths consist of two subpaths connecting the scatterer to the

115



4.1 Background

transmitter and receiver respectively. A line-of-sight (LOS), or specular component may be
present if the transmit and receive antennas can “see” each other. Every subpath is charac-
terized by its direction-of-departure (DOD), direction-of-arrival (DOA), and the propaga-
tion time which in turn determines the subpath attenuation according to a power law.

The single-bounce assumption, however, limits the degree of freedom in channel mod-
eling as the location of a scatterer completely determines the DOD, DOA, and delay. In
many indoor and outdoor environments in which propagation involves multiple reflections
and diffractions, multiple-bounce scattering can happen for which DOA, DOD and delay
are completely decoupled [249-251].

Multiple-bounce scattering can be used for more accurate channel modeling. In multiple-
bounce scattering more than one interacting object exists on the path between the transmit-
ter and receiver, which can result in complete decoupling between DOA, DOD, and delay.
Simulation of multiple-bounce scattering can be further simplified by incorporation of the
equivalent scatterers concept [191]. Equivalent scatterers are basically substitute single-
bounce scatterers that replace multiple-bounce path by mimicking their DOA and power.
This concept is incorporated in the COST 259 channel model [191].

This method, however, is not effective for modeling MIMO channels as the DOD cannot
be characterized with single-bounce virtual scatterers. In [216] it is proposed to use a
double-bounce scattering approach for modeling MIMO channels.

In this thesis we focus primarily on simulating single- and double-bounce geometric
models. More specifically, among all of the geometric models we target hardware imple-
mentation of the one-ring [206,217,218] , two-ring [219,220], and the geometric elliptical
model [221], as they provide clear insight into single- and double-bounce geometric MIMO
fading channel and provide analytical background for verification of our hardware imple-
mentation. However, extension of this work to other physical models, particularly different
GSCM models, is straightforward.

Moreover, we will present our hardware implementation of the most well-known analyt-
ical channel models. The implemented analytical channel models are the i.i.d. model [184],
the Kronecker model [200,212-214], the Weichselberger model [226], and the VCR model
[227,228]. The implemented fading simulator can also be easily extended to simulate the
finite-scatterer model [210] and the maximum entropy model [229,230]. We also discuss

hardware simulation of of the TGn channel model for the IEEE 802.11 standard [92].
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4.2 Physical Models: Single-Bounce Scattering

Single-bounce scattering models are a subset of the GSCM models in which it is assumed
that the transmitted signal reaches the receiver either directly or after bouncing off one
scatterer. Different distributions have been proposed for the scatterer on the way from the
transmitter to the receiver [201,206,217,218,221,225,243,248]. In this section we present
the one-ring and the geometric elliptical channel models. We will present our hardware

fading simulator for the single-bounce scattering models later in Section 4.4.

4.2.1 System Parameters

To present different geometric channel models we consider a M x N MIMO system with
M and N omnidirectional antennas at the transmitter (or base-station) and the receiver
(or mobile-station) respectively. Figure 4.3 illustrates the geometric representation of this

system.

AN 7

Figure 4.3: Geometrical representation of a M x N MIMO system.

In this figure, D is the distance between the transmitter and the receiver. In this model,
the receiver is assumed to be at the center of the Cartesian coordinate system. The p and ¢
TX antenna elements are denoted by 7}, and 7, in Figure 4.3 and the I™ and m™ RX antenna
elements are shown as U and U,,,. Moreover, it is assumed that the antenna spacing in the
transmitter for antenna elements p and ¢, 1 < p < g < M, is d,,. Similarly, it is assumed
that the antenna spacing in the receiver for antenna elements l and m, 1 <[ < m < N, is
dym. The angle av, denotes the tilt angle between the p™ and ¢ TX antennas. Similarly, the
angle [3;,,, denotes the tilt angle between the [ and m™ RX antennas. Further, it is assumed
that the the transmitter and the local scatterers are fixed while the receiver is moving in the

~ direction.
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4.2 Physical Models: Single-Bounce Scattering

4.2.2 One-Ring Model

The one-ring model assumes that compared to the receiver, the transmitter is elevated and
thus not obstructed by the local scatterers. On the other hand, the receiver is surrounded by
local scatterers that are distributed over a ring. Figure 4.4 illustrates the geometric one-ring
model. In this figure, RF¥ is the radius of the ring of scatterers around the receiver, and .S;

represents the i scatterer.
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Figure 4.4: Geometrical representation of a MIMO channel with the one-ring model.

The visual representation of this model in Figure 4.4 can be used for deriving the chan-
nel gains between transmit and receive antennas. In the presence of a LOS component, the
channel gain hllpR(t) between the p transmit (TX) antenna and the /™" receive (RX) antenna
is

hipt(t) = hp T ) + RS (1), (4.4)
where hgf r _IR(t) represents the contributions of the diffuse components (scattering) and
h{;os (t) denotes the contribution of the LOS component. Figures 4.4 and 4.5 illustrate the
propagation paths for the diffuse and the LOS components, respectively. Let us assume that
the total transmitted power through the p™ TX antenna and the /" RX antenna link is Q.
Using the model representation of Figure 4.4, the contribution of the diffuse component to

the channel gain is [206]

_ 9] 1 & .
hngF LR (p) — o i Wi ;gwlpi(qagf) x exp{j(2m fit + 6;)}, (4.5)
where
U J2m U U
opi(8V) = exp{=12 (€ (0) + Eu(9V ), 6
and
fi = cos(¢f =) x fp. (4.7)
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Moreover, using the representation of Figure 4.5, the contribution of the LOS component

to the channel can be written as [206]

Qi K, ) 27
h05 () = ﬁ x exp{j(2m cos(wp — 7 fpt — )} 4.8)

Parameters used in the above equations are described here. In (4.5) and (4.8), K, denotes
the Rice factor between the p TX antenna and the [ RX antenna link, which is the ratio

of the LOS component power to the diffuse component power, i.e.,
2
)
2
E { ‘hglF—u%(t)’ }

where E{-} denotes the expectation operator. Moreover, Ng is the number of indepen-

Ky = , (4.9)

dent scatterers, g; is the amplitude of the received wave from the i scatterer such that
sz\i 5 E{g?} = Ng for Ng — oco. Also, ; denotes the phase shift introduced by the ™
scatterer, &;;, and &;; are the distances of the i scatterer from the p™ TX antenna and the [
RX antenna respectively as shown in Figure 4.4. Based on this geometric model, the dis-
tances §;;, and §;; are functions of qbZ-U, the direction of arrival (DOA) of the wave traveling
from the ™ scatterer toward the user, \ is the wavelength, j 2= _1,and fp is the max-
imum Doppler frequency. Moreover, in (4.8) (;;, denotes the distance between the p TX
antenna and the /™ RX antenna and wp is the approximate direction-of-arrival of the LOS
path as shown in Figure 4.5. The set {g;}7°; consists of independent and positive random
variables with finite variances, independent of {6;}5°,. Moreover, it assumed that {6;}5°,
are independent and identically-distributed (i.i.d.) random variables uniformly distributed

over [—m, ).

Figure 4.5: The LOS path in the MIMO channel.
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4.2 Physical Models: Single-Bounce Scattering

4.2.2.1 Correlation Properties

Based on the above model, the space-time correlation properties between different path
gains can be derived. More specifically, we are interested in the cross-correlation between

hllpR(t) and h}nlf](t). This cross correlation is defined as

E{nRORE (¢ +7) )
iy g

gt T) = , (4.10)

where (-)* denotes the complex conjugate operation. Since thp] F=1R(4) and hﬁéF —1R(1)
are zero-mean stochastic processes (according to (4.5), they are superpositions of zero-
mean complex sinusoidal stochastic processes), it can be verified that the cross-correlation
pll;fm q(t, 7) can be decomposed into two parts, 1) the cross-correlation between the contri-
butions of the diffuse components and 2) the cross-correlation between the contributions of

the LOS components, i.e.,

Plpong(t:7) = pre T T) + ply (8,7, (4.11)

where

E {thIF—lR(t)hDIF—lR*(t i T)}
DIF—1R P mq
t7) = : 4.12
Pip,mq (t,7) Ry (4.12)
and
E {hlLOS (thEQS (¢ + r)}
P mgq

pLoS .t T) = (4.13)

The space-time cross-correlation functions can be calculated based on the geometric
representation of the one-ring model. Moreover, accurate closed-form approximations for
these functions can be found if the transmitter and the receiver are widely spaced, and the
antenna spacing is much smaller than the distance from scatterers, i.e., D > RFX >
max(dpq, dirm ). These assumptions are supported by different measurements conducted in
different locations and frequencies (see for example [17, 224, 242,252-255]). Based on
these assumptions, the approximate cross-correlation between hgl F=1R and hnDlgF —1R can

be written as [206]

g 6T) = sy ()
-~ 1 +m U .
T By + D (Eog + 1) JARCCREATY

xexp{—j2m fpcos(d” —y)7Hf(¢")de".  (4.14)
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4.2 Physical Models: Single-Bounce Scattering

To derive (4.14) it is assumed that the number N of scatterers is large enough that F{ gf} /Ng
can be approximated as E{g?}/Ngs ~ f(¢!)dpV, where f(¢V) is the probability density
function (PDF) of the AOA seen by the receiver. Moreover, the total distance from the pth
TX antenna to the /"™ RX antenna in (4.6) has been expressed as a function of the angle of
arrival ¢V in (4.14). Similarly, the total distance from the ¢ TX antenna to the m™ RX
antenna has been expressed as a function of the angle of arrival ¢U.

The cross-correlation expression in (4.14) holds for any distribution of AOA. The von
Mises/Tikhonov distribution [133, 134] has been used in the literature to model the AOA
(see for example [91, 206, 221, 256-258]). Also it has been argued that the von Mises
PDF is favorable because it can approximate other non-uniform PDFs and can provide
mathematical convenience for analysis [91]. Moreover, for the empirical justifications of
the von Mises distribution for the AOA the reader may refer to [91,259]. The PDF of the

von Mises distribution is given by [133]

v _
floY) = eXp{'{;fjé?ﬁ) a )}, oY € [—m,m), (4.15)

where I(-) denotes the zeroth-order modified Bessel function of the first kind, u € [—7, )
is the mean direction of AOA and the parameter x > 0 controls the beam-width [91]. For
k = 0 the von Mises PDF becomes a uniform distribution over [—, 7) while for k = oo
the PDF becomes a Dirac delta function 6(¢! — p).

Using the von Mises distribution for AOA the cross-correlation for the diffuse compo-

nent can be approximated as [206]

DIF—1R exp{Jjcpg cos(apg) b ( 2 2 9 2 A2 .. 2

~ x I K —a° —b: —c° A®sin“(«

Pomq  (7) VEp + D(EKmg +1) { fm = pq (@pq)
+2aby, cos(Bim — v) + 2¢pg A sin(ayg) X [asin(y) — by, sin(Bim)]

—j2k[acos(pu —y) = bim cos(p — Bim)
—Cpg A sin(ay,g) sin(p)] }§> /Io(K), (4.16)

where a = 27 fpT, by = 27dpn /A, Cpg = 276py /A, and A = tan— (RT*X /D). Moreover
in (4.16), a,, denotes the angle of the p™ and ¢ TX antenna pair. Similarly, 3y, is the
angle of the I and m"™ RX antenna pair as shown in Figure 4.4.

Moreover, assuming that the distance D between the transmitter and the receiver is
much larger than antenna spacing at the transmitter and receiver, i.e., D > max(dpq, dim ),

the cross-correlation for the LOS component can be approximated as [206]
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(Kip +1)(Kpmg+ 1)
x exp{jacos(y) — Jbim cos(Bim) + jepg cos(apg) }- (4.17)

K, K,
LOS ~ l
plp,mq (T) ~ \/ b

It is important to note that the one-ring model reduces to the non-isotropic Rayleigh
fading model [91] when single antenna elements are deployed at both transmitter and re-
ceiver, i.e. when M = N = 1 and di; = d11 = 0, and no line of sight is present, i.c.,

K11 = 0. In this case, the autocorrelation between fading samples {hi1(¢)} is

Iy (\/n2 —An2fA72 + jAnk COS(M)fDT)
p(T) = Io(k)

When scatterers are uniformly distributed around the receiver, i.e., & = 0, the correlation

(4.18)

model in (4.18) reduces to Clark’s temporal correlation Jo(27 fp7) [17] where Jy(+) de-

notes the zeroth-order Bessel function of the first kind.

4.2.3 Geometric Elliptical Model

In the one-ring and the two-ring channel models it is assumed that the difference between
the propagation delays from from each TX antenna to each RX antenna is negligible. This
approximation can be useful when modeling narrow-band channels. However, for modeling
wide-band channels, the difference between propagation delays should be considered.

Unlike the one-ring and the two-ring models, the geometric elliptical model can be
used for simulating wide-band channels as well as narrow-band channels. In the elliptical
model, each ellipsoid represents the scatterers that result in a specific propagation delay.
Frequency-selective wide-band fading channels can be modeled by multiple ellipsoids of
scatterers, each representing a specific propagation delay.

The geometric elliptical model was first proposed in [129] for the micro- and pico-cell
environments with low mount TX and RX antennas. In this model it is assumed that multi-
path scattering can happen anywhere around the TX and RX. The geometric elliptical model
was further extended to single-input multiple-output (SIMO) channels in [260]. A wide-
band geometric elliptical model for wide-band MIMO channels was proposed in [221].

Another geometric elliptical model has been reported in [261].
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Figure 4.6: Geometric elliptical scattering model for an M x N MIMO channel with local
scatterers S; lying on an ellipse.

Figure 4.6 illustrates the geometric elliptical scattering model. This figure illustrates
that all local scatterers S;, i = 1, ..., Ng, are located on an ellipse, where the transmitter
and the receiver are located at the focal points. This ellipse can be associated with a certain
path length (or propagation delay) between the transmitter and the receiver. The major axis
half length and minor axis half length are denoted by F, and Ej, respectively. The distance
between the two focal points is D = 2(E? — Eg)l/ 2 which is the distance between the
transmitter and the receiver.

Similar to the one-ring model, the channel gain hg(t) between the p" TX antenna and
the /™ RX antenna can be decomposed into the contributions of the diffuse components,
hgl F=E(t), and the contribution of the LOS component h{;os (t) (see equation (4.4)). For
the wireless link between the p TX antenna and the I RX antenna we will denote the Rice
factor and the total transmitted power by K, and €2;,, respectively. The LOS path between
the TX and RX antennas is similar to that shown in Figure 4.5, hence providing the same
equation for the LOS component (equation (4.8)).

Figure 4.6 shows the propagation path for the diffuse component (i subpath) in the ge-
ometric elliptical channel model. The diffuse component of channel gains between the TX
and the RX antennas can be derived from the visual presentation in Figure 4.6. Comparing
the geometric elliptical model in Figure 4.6 with the one-ring model in Figure 4.4, we can

expect the same equation for the contribution of the diffuse component in equation (4.5)
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i.e.,

Ng
Q 1
DIF—E lp U .
(D A7 1 L 4.1
hlp (t) = \/ Ko+ 1VNs ;:1 Givipi (@7 ) x exp{j(2m fit + 6;)} (4.19)

Both the one-ring and the geometric elliptical models are single-bounce channel models and
therefore can be represented with the same equation. The only difference between these two
models is in the distribution of scatterers.

For the one-ring model, the scatterers are distributed on a ring around the receiver and
hence the location of the scatterers in the Cartesian coordinate system can be expressed in

terms of the angle-of-arrival ¢V as
SXR(GV) = RRY x cos(oV),
SY—IR(pU) = RRX x sin(oY).
Finally, the location of scatterers for the geometric elliptical model can be calculated as
SYE(@Y) = RP(¢V) x cos(¢"),
SY=F(¢Y) = RF(¢") x sin(¢”),

(4.20)

4.21)

where , ,
4F% — D

RE(¢Y) = a . 4.22

(%) 4E, + 2D x cos(gV) (422)

4.2.3.1 Correlation Properties

Similar to the one-ring model, since thpI F=E(t) and h,%{lF ~E(t) are zero-mean stochastic

processes, the channel gain cross-correlation can be decomposed into two parts

Plpma(t:7) = Plpimg - (6:7) + Olyong (7). (4.23)
where
DIF—E (4\, DIF—E*
b VU
and pﬁ)% q(t, 7) is the cross-correlation between the contributions of the LOS components

from equation (4.17). However, to the best of my knowledge, no closed-form equation

has been found for the general case of cross-correlation between the contributions of the

DIF—-E
lp,mq

that max,, ; 6, < E, — D /2 and max; ,, di,,, < E, — D /2, the cross-correlation between

diffuse components p (t, ) for the geometric elliptical channel model. Assuming

the contribution of the diffuse components can be approximated as

ipma "6 = piping ©(7)
~ 1 L
VB DK +1) [ e @

x exp{~j2nfp cos(@” — )} f(6")de",  @425)
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where
E) = exp {_jzw@?(wi +&°(¢Y)) } 426)
(V) = \JIX —SX-E@U)2 +(TY — SY-B(¢V))2,  (427)
P(0Y) = JUX - SXE@U)2 4 (UF —SV-E(V)2 @28)

For a single-antenna system (i.e., M = N = 1), if the AOA is distributed with the
von Mises PDF, it can be verified that the autocorrelation between fading samples is given
by equation (4.18). Similar to the one-ring model with single TX and single RX antennas,
when the AOA is uniformly distributed over [—7, 7), the autocorrelation for the geometric

elliptical model reduces to Clark’s temporal correlation Jy(27 fp7) [17].

4.3 Physical Models: Multiple-Bounce Scattering

Multiple-bounce scattering models are another subset of the GSCM models in which it is
assumed that the transmitted signal bounces off multiple objects (scatterers) before reaching
the receiver.

Multiple-bounce scattering models can be more accurate than single-bounce models
since they characterize the reality of multipath propagation effects more accurately. One of
the effects in MIMO channels is the so-called “keyhole-" or “pinhole-effect” in which the
actual channel capacity is much less than the anticipated capacity even though the received
signals at the antenna elements are uncorrelated [201,262-264]. It happens when the scat-
tering around the TX and RX is such that each scatterer at the RX “sees” the TX scatterers
effectively as the same point source.

Double-bounce scattering models can be used for the convenient simulation of multiple-
bounce scattering. A double-bounce scattering approach is proposed in [216] for the mod-
eling of MIMO channels. The double-bounce scattering can provide complete decoupling
between the DOA, DOD, and propagation delay. Further it can be used for modeling dif-
ferent MIMO channel scenarios including the keyhole-effect [216].

In this work we focus on simulating the two-ring MIMO channel model which has
been used by several authors to characterize local scattering at both the TX and RX sides
[201,219, 220, 225,258, 265-267]. Different variations of the two-ring model have been
proposed. The main difference between these models is in single- or double-scattering,

in the distribution of local scatterers, and in the modeling of relative movement between
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the transmitter, the receiver, and the local scatterers. In this work we consider the general
case of double-bounce two-ring scattering where the transmitter and the local scatterers
around the transmitter and receiver are immobile while the receiver is moving compared
to the rest of the system. Other scattering channel models can be simulated with a similar
methodology.

In this section we present the two-ring channel model. In Section 4.4 we will discuss

hardware simulation of this channel model.

4.3.1 Two-Ring Model

The two-ring model assumes that both the transmitter and the receiver are surrounded by
scatterers. This can be the case for indoor wireless communications or in outdoor scenarios
where the TX and RX antennas are not mounted high enough not to be obstructed by local
scatterers. An illustration of the two-ring double-bounce model is shown in Figure 4.7.

Note that in this model, each ray is reflected twice.
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Figure 4.7: Geometrical representation of a MIMO channel with the two-ring model.

Here we assume that Vg7 TX side (or first-bounce) scatterers are distributed on a circle
of radius R7X around the transmitter. Similarly, Ng2 RX side (or second-bounce) scatterers
are distributed on a ring of radius R*X around the receiver. Based on the model presented

in Figure 4.7, the diffuse component of the channel gain can be written as

DIF—2R .\ __ Ql:n 1 B Z ) (AU ; ) )
h‘lp (t) - Klp +1 \/m kZ:l ;gzkvlpzk(¢i ) X eXp{](Qﬂ’fzkt + ezk)}v
(4.29)
where
12
v (6F) = exp{= T (Erp(01) + €in(0}) + €u@}))). (4.30)
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and
fire = cos(¢f —7) x fp. (4.31)

Similar to the previous models, here K, and {};, denote the Rice factor and the total trans-
mitted power over the wireless link between the p TX antenna and the /™ RX antenna,
respectively. In equation (4.29) g;;; denotes the amplitude of the received wave through the
k™ first-bounce and i second-bounce scatterer and we have Eg i f\; 52 g2 = Ng1Nso.
Similar to the single-bounce case, ;; is the random phase shift introduced jointly by the
k™ first-bounce and "™ second-bounce scatterer pair. Moreover, &kp denotes the distance
from the p TX antenna to the k™ first-bounce scatterer, &;, is the distance between the k™
first-bounce and the i second-bounce scatterers, and &;; denotes the distance from the ith

/'™ RX antenna.

second-bounce scatterer to the

When the transmitter is not moving compared to the scatterers, the observed Doppler
frequency from the incoming wave through the £™ first-bounce and the i second-bounce
scatterers is only a function of the AOA of this subpath qﬁZU (i.e., from the second-bounce
scatterer) as shown in equation (4.31). However, if the transmitter is moving, the observed

Doppler frequency from this subpath can be written as [265,266]
fir = cos(@f —4TX) x 55 4 cos(dY — 41X) x fBX (4.32)

where gbg is the AOD from the transmitter to the k" first-bounce scatterer, v/, and /¥
denote the directions of movement for the transmitter an receiver, and ng and f gX denote
the maximum Doppler frequencies at the TX and RX sides. Assuming mobility of the
transmitter can be useful for simulating mobile-to-mobile channels. However, without loss
of generality, in the rest of this work we assume that the transmitter is immobile.
Moreover, the LOS path between the p™ TX antenna and the /" RX antenna is similar
to that shown in Figure 4.5, hence providing the same equation for the LOS component

(equation (4.8)).

4.3.1.1 Correlation Properties

Like the one-ring model, the cross-correlation between the channel gains hgl F *QR(t) and
h{%ép —2R() can be decomposed into two parts
2R DIF—2R LOS
plp,mq(ta 7_) = Pip,mq (ta T) + plp,mq(tv 7_)7 (4.33)
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where
DIF—2R (\1 DIF—2R*
DIF—2R _ B {hlp (t)img (t+ T)}
Ipma (t,7) = ) (4.34)
’ lequ
and pllz’gfq(t, T) is given by equation (4.17). As before, K, and €2;, are the Rice factor and

the total transmitted power over the wireless link between the p™ TX antenna and the /™

RX antenna. Based on equations (4.29), (4.30), and (4.34) we can write

DIF—-2R DIF—-2R
plp mq 2 (t T) = plp,mq 2 (T)
1 Ns1 Ns2
= F{g;.} %
NgiNgo(Kjp + 1) (Kpg + 1) ;; ok}

2
exp{_j;(fkp + fli - fkq - fmz)
—J 27rfm}. (4.35)

Assuming an infinite number of scatterers around the transmitter and receiver, i.e., (Ng; —
o0) and Ngy — 00), E{g%}/(Ns1Ng2) can be approximated as E{g% }/(Ns1Ng2) ~
F@) f(oY)dpT dpV where dp” and doV are the AOD and AOA, and f(¢”) and f(4Y)
denote the PDFs of AOA and AOD. Based on this assumption, the summations in equation

(4.35) can be expressed in integral form as

pg[nqu 2R(7‘) — (Klp_|_1 mq+1 /_7T /_7T exp{ §p(¢ )
+&i(0V) — €(87) — Em(dY))

~jomcos(@V v)fDT}f(qu)f@U)dqudsﬁU- (4.36)

The cross-correlation expression in (4.36) can be calculated for different AOA and AOD
distributions. Here we use the von Mises/Tikhonov PDF [133, 134] for the AOA and the
AOQOD distributions. More specifically, we consider

T _
f(6") = exp{“@i?i((ﬁT> M0} T i € o), (4.37)

and

Uy exp{ky cos(ngU —uu)}
f((b )_ 27TIO(RU)

as the PDFs of the AOD and AOA respectively. In (4.37), pr is the mean AOD and k7
controls the AOD beam-width. Similarly, in (4.38) pys is the mean AOA and 7 is the AOA

. oYy € [, ), (4.38)

beam-width control parameter. Note that for k7 = 0 (ky = 0) the von Mises distribution
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reduces to the uniform distribution over [—7, 7). Finally, when k7 — oo (ky — 00), the
von Mises distribution becomes the Dirac delta function at pr (p).

Assuming that 0, < RTX and dj,,, < R®X the closed-form expression for equation
(4.36) is given by [219]

DIF-2R-T DIF—-2R-U
DIF— 2R( )7 plpmq ( )X plpmq (T)

, 4.39
Pip.mq (Kip + 1) (Kmg + 1) (4.39)
where
Iy ( K& — 02 + 2j K7 Cpg cos(apg — pr)
DIF—QR—T(T) _ \/ ) ’ (440)
lp,mq [0<,€T)
and
1
po () = To(r0) X IO([“%J — a® = bh,, + 2abyy c0S(Bim — )
+2j/{Ublm Cos(ﬂlm - :UJU)
1
—2jky cos(y — p)] ) (4.41)

where a = 27 fpT, by, = 27d)y, /A, and ¢, = 27,/ A. Notice that the cross-correlation
expression in (4.39) is separable into TX correlation (4.40) and RX correlation (4.41) parts.
This property has been considered in several articles [201,212,223,263,268].

4.4 Hardware Simulation of Geometric Models

Let us start with the hardware implementation of one-ring and geometric elliptical single-
scatterer channel models. In discrete time (i.e., t = nTs where T is the sample period and
n is a non-negative integer) the LOS component of the channel gain between the p TX

antenna and the [ RX antenna is (see (4.8))

K, . 27
hEOS[n] = i li - % exp{j(2m cos(wp —7)fom - A“’)}, (4.42)
P

and the contribution of the diffuse components in the same link can be written as (see (4.5)

and (4.19))

hDIF Z gi eXp{J 27szn + Vipi + 0; )}
\/Klp +1

Hardware implementation of a fading simulator that generates samples according to

(4.43)

equations (4.42) and (4.43) is straightforward. The fading process between each antenna

pair (here the p™ TX antenna and the /™ RX antenna) is basically the superposition of a
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number of complex sinusoidal oscillators with random, but stored, phases. These oscillators
can be implemented separately, or with a shared datapath. Considering the limited range
of the maximum Doppler frequency, it is more efficient if the fading samples would be
generated with a shared datapath.

As an example, consider a M x N = 4 X 4 indoor narrow-band MIMO system and
assume that the maximum Doppler frequency is limited to fp = 20 Hz. Note that the max-
imum Doppler frequency for indoor environments is rather small (e.g., 6 Hz in the IEEE
802.11n channel model). Moreover, assume that the samples are generated at a low sam-
ple rate, say F, > 16 x fp and then interpolated using dedicated interpolators. A fading
simulator needs to process (M x N) x (Ng + 1) complex oscillators for the generation of
diffuse and LOS components (see equations (4.42) and (4.43)). Using an architecture that
processes the samples serially, and assuming that each oscillator requires two clock cycles
for processing (one cycle for the in-phase and one cycle for the quadrature component),
calculating all M x N fading samples of one period (TS =1/ FS seconds) requires a min-
imum clock frequency of F/7¥" = 2 x (M x N) x (Ng + 1) x F, Hz. For example, for
M = N =4, Ng = 128, fp = 20, and FS = 16 x fp = 320 Hz, a serial-processing
architecture requires a minimum clock frequency of Fgl'}j" = 1,320, 960 Hz to generate all
of the 4 x 4 complex fading samples.

As long as the maximum clock supported by the designed architecture is higher than the
minimum clock frequency Fc’l",f”, the designed architecture can generate the fading samples
in real-time. Note that with careful design, maximum speeds of 100 MHz to 200 MHz are
achievable with the most recent FPGAs. When the maximum clock speed of the designed
architecture is much higher than Fgﬁf”, the extra clock cycles can be used for either gen-
erating more fading samples (e.g., simulating wide-band channels, or multiple channels),

increasing the number of scatterers Ng, or increasing the maximum Doppler frequency fp.

Similar to the single-bounce scattering fading, for generating fading samples in double-
bounce scattering models we need to superimpose a number of complex oscillators. How-
ever, simulating double-bounce scattering channels may take more computational power as
we need to process Ng; X Ngo + 1 complex oscillators instead of Ng + 1 oscillators. For
example, for M = N = 4, Ng; = 32, Ng1 = 64, fp = 20, and FS =16 x fp =
320 Hz, the above serial-processing architecture requires a minimum clock frequency of
F c’ﬁj” = 20,971,520 Hz to generate all of the 4 x 4 complex fading samples of one pe-

riod. Fortunately for a reasonable number of first- and second-bounce scatterers (Ng; and
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Ngo9), the minimum clock frequency F; is less than the the maximum clock speed of the
fading simulator. However, for a large number of first- and second-bounce scatterers, one

can always employ parallel blocks of fading simulators.

Here we want to design a compact architecture that generates the complex sinusoidal
waves and superimposes them with appropriate gains for the generation of fading samples.
Moreover, the phases for each of the complex oscillators need to be stored and updated. To
make our fading simulator as compact as possible, we want to share our datapath for all of
the oscillators. As shown by the above example, spending two clock cycles per complex
oscillator is a practical assumption (in terms of clock budget) and can result in significant

area savings.

4.4.1 Sample Generation

In a typical wireless communication scenario, the maximum Doppler frequency fp is sig-
nificantly smaller than the signal sample rate Fs = 1/7Ts. This allows us to design the
fading simulator at a much lower sample rate and thereby reduce the required hardware re-
sources. The resulting low-rate signal can then be interpolated to achieve the desired output
sample rate. Here we assume that the channel gains are generated at F, = F, /I samples
per second and then up-sampled by the interpolation factor /.

Our goal is to implement a pipelined architecture for fading simulation that spends two
clock cycles for processing each oscillator in each period. For each oscillator the required
operations are 1) reading the corresponding phase from memory, 2) calculating sin or cos
of the phase, 3) scaling with corresponding g;, 4) superposition of waves, 5) applying Rice
factors, 6) updating each oscillator phase for the next period. In the following we explain

how our hardware generates the fading samples.
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Figure 4.8: Datapath of the MIMO fading samples generator for simulating geometric chan-
nel models.

Figure 4.8 shows the datapath of the proposed fading simulator. In each cycle, this
datapath calculates the fading gains in two steps. In the first step, the in-phase (or real) part
of the channel gains are calculated and in the second step, the quadrature (or imaginary)
parts are processed. Moreover, the phases are updated in the second step of each cycle (this
will be explained later).

Let us start with equation (4.43). The contribution of the diffuse components to the
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channel gain in quadrature form at sample rate F, can be written as

KPIF=I[p] — (O x T, Eif\isl gi x cs(o(l,p,i,n)),

[
- , (4.44)
hém ln] = C x Ti 1Y% gi x sn(¢(l,p,i,n)),

where C' = 1//Ng, T, = 1/\/Kjp +1, cs(¢) = cos(2m¢), sn(¢) = sin(27¢), and
o(l,p,i,n) =1 x fi x n+ (v + 6;) /27 is the path-phase for each of the received waves
from different scatterers at any time n > 0. Further, the path-phase can be calculated

recursively using the following equation

¢(l,p,i,n—1)+fi forn > 0,

4.45
(Vipi + i) /2w forn = 0, ( )

¢(l,p,i,n) = {
where f; = I x f;. Note that in (4.44), sn(¢) and cs(¢) are periodic functions with period
1, hence the integer part of the path-phase can be discarded when calculating (4.45) with-
out affecting the results. Using extensive computer simulation we found that the phases
o(l,p,i,n) need to be stored with 16-bit accuracy. Since the values of ¢(l, p, i, n) are lim-
ited to the range [0, 1), the phases are stored in phiPsiRAM (see UO in Figure 4.8) in
ulé6.16 format, i.e., 16-bit unsigned values with 16-bit fraction.

For more clarity, the proposed datapath in Figure 4.8 has been divided into five parts.
In this figure, PART-1 calculates the summations Zij\fl gi xcs(o(l,p,i,n)) and Z,ﬁisl gi X
sn(¢(l,p,i,n)). The stored phases ¢(l, p, i, n), are passed to the module U2 where cs(¢(l, p,
i,n)) and sn(¢(l, p,i,n)) are calculated. The sine and/or cosine are calculated in the mod-
ule U2. In this module the sine/cosine of the input is approximated using a look-up table
that contains the first quarter cycle of a sine wave. The coefficients {g;} are stored in U1 in
s16.15 format (i.e., 16-bit signed values with 15-bit fraction). Further, the multiplier U3
with the accumulator U6 calculate Zi]isl gi xcs(o(l,p,i,n)) and Zi]\isl gi xsn(p(l,p,i,n))
after proper format adjustments. The fixed-point data formats shown in Figure 4.8 are cho-
sen based on extensive computer simulation.

In PART-2 of the datapath shown in Figure 4.8 the phases ¢(l,p,i,n)) are updated
according to equation (4.45). The initial path-phase values ¢(l,p,i,0) = (v, + 6;)/2m,
fori=1,..N,p=1,...M,i=1,..., Ng are stored in phiPsiRAM. These phases are
updated as the time index advances. The maximum Doppler frequency, fp, is passed to this
circuit from input IN. Moreover, the values {cos(w; — )} for i = 1,..., Ng are stored in
phsCosRAM or U8. These two values are multiplied using U11 to obtain fp x cos(w; —7).

As will be explained later, we set the interpolation factor I to be a power of two. The output
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of the multiplier is then shifted to obtain fl = I X fp % cos(w; —~y) which is used to update
the path-phases according to equation (4.45). Further, a copy of the current phase (through
U13 and U14) is passed to the adder U1 6 where it is added to fz (through U15). Finally,
the updated path-phase value is stored in phiPsiRAM for the next cycle.

Note that PART—-1 and PART-2 operate in parallel. In each cycle, the summations
Zi]isl gi xcs(o(l,p,i,n)) and Zf\isl gi X sn(¢(l,p,i,n)) are calculated in PART-1 for ev-
ery TX and RX antenna (p = 1, ..., M, [ = 1, ..., N) and for every scatterer (¢ = 1, ..., Ng).
The path-phases ¢(l, p,i,n) are updated simultaneously in PART—-2. The operations of
these parts require M x N x Ng clock cycles for either the in-phase or quadrature compo-
nents.

The calculated summations in PART—1 are then scaled in PART-4 by C' x 1}, to pro-
vide the in-phase and quadrature components in equation (4.44). For a large number Ng
of scatterers the coefficient C' x Tj, = 1/,/Ng([Kj, + 1) is a small number. The scaling
is performed using shifting and multiplication operations. More specifically, the coefficient
C' can be decomposed into C' = 275 x C, where K = |loga(1/C)], and C = 2K x C.
Defining Tlp =Ty X C, we have C' x Ty, = 2K % Tlp. The values of Tlp forl=1,...N
and p = 1,..., M are stored in paramsRAM (or U7) in ul6 .16 format and are passed to
the multiplier U11 through the multiplexer U9 in Figure 4.8. These values are then used
to scale the summations calculated in PART~-1. A right-shift operation (K times) after the
multiplier U11 finishes the calculation of the diffuse samples in equation (4.44). Further,
the diffuse samples are stored in the register U14 until they are added to the LOS samples
in the adder U16.

The LOS samples are computed in a similar way. From equation (4.42) the LOS sam-
ples in quadrature form at sample rate F., can be written as

hlLOSJ[n] = Wi, x cs(¥(l,p,n)),

hiosz[n] = Wiy x sn(¥(l,p,n)),

where Wy, = /Ky, /(K + 1), ¥(l,p,n) =1 x f, x n+ /27, f = cos(wp — ) X
fp, and my, = —27(;,/A. The path-phases (I, p, n) are updated recursively in a similar

(4.46)

way to equation (4.45) with a different initialization value (1 — 7,/27). The path-phases
Y(l,p,n), forl = 1,..,N and p = 1,..., M are stored in phiPsiRAM and updated in
PART-2. Moreover PART-1 calculates cs(¢(l, p,n)) and sn(¢(l, p,n)), which are stored
in the register U4 in PART-3. Also the values of W, for{ = 1,...,Nandp = 1,.... M

are stored in paramsRAM (or U7), which are passed to the multiplier U11 through the
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multiplexer U9. This multiplier then calculates the LOS sample (according to equation
(4.46)). The LOS sample (from U15) is then added to the diffuse sample (from U14) in the
adder U1 6 to obtain the final in-phase or quadrature component of the channel gain. The

generated channel gains are yet to be interpolated, which will be discussed in the following.

stt_reset: stt_doQ:
1. Reset all registers 1. Reset wvCntr
2.cycle1=1 ~ —»| 2, Reset select lines
3.page=0 3.1Q=1
4. dointerplt =0 4. if this is the first cycle, read
5. Goto stt_startCntr from ROM
5. Reset WE lines

6. Return address = stt_incCounter
7. Goto stt_calcSOS
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Figure 4.9: Control flow diagram for the control-unit of the fading simulator.

Figure 4.9 shows the simplified state machine of the control unit (CU) that manages the
datapath in Figure 4.8. After reset, this state machine starts at stt_reset. In this state,
the register cyclel is set to 1 indicating the first period of the sample generation. In the
first period, the initial phases are read from read-only memory (ROM) blocks. Note that
these ROMs are not shown in Figure 4.8 for simplicity. Finally, another register, page,
is set to zero. As will be explained later, the interpolators require the difference signal to
be kept “latched” for every period. That is why each interpolator keeps two copies of the

difference signal, called page0 and pagel. When the fading simulator is working on
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pagel (pagel), it informs the interpolators to use the value stored in pagel (page0)
since the value store in page0 (pagel) is volatile and unreliable.

Further, in the initial state stt_reset, the interpolators are inactivated by setting the
register doInterplt=0. After initialization, the state machine goestothe stt_startC-
ntr state to initialize the datapath in Figure 4.8 for calculating the fading samples and
updating the phases. In this fading simulator, two counters are used for processing and
addressing the fading samples. The chCntr counter is used for addressing the M x N
channels and the wvCntr is used for counting Ng + 1 complex oscillators (waves). The
quadrature components of each oscillator are distinguished with the IQ register. When
I0=0 the in-phase component is being calculated and TQ=1 means that the quadrature
component is under process.

The stt_startCntr state resets the channel counter, the oscillator counters, the
memory write-enable lines and the select lines. After initializations for the starting of each
period, this state jumps to the stt_calSOS state for calculating the in-phase component
of the current channel (channel 0). However, before going to the next state, the return ad-
dress is set to stt_doQ so that after calculation of the in-phase component for the current
channel, the required initializations are made for calculating the quadrature component.

Since IQ is setto 0, the stt_calSOS state calculates the in-phase component for the
current channel and then goes to the st t _doQ state. This state sets IQ=1 and initializes the
wvCntr register for the calculation of the quadrature component of the current channel.
Before calling stt_calS0S, however, the return address is set to stt_incCounter.
The control then moves to the stt_calSOS state for the calculation of the quadrature
component for the current channel. The stt_calSOS state also updates the oscillator
phases for the next period (only for the current channel).

After calculating the in-phase and quadrature components of the fading sample for
channel 0 and updating the corresponding phases, the state machine goes to the stt_incC-
ounter state where it initializes the registers for calculating the in-phase and quadrature
components of fading samples for another channel by increasing the channel counter.

When all of the channels have been processed (i.e., the fading samples for one period
of all M x N channels have been generated and the corresponding phases have been up-
dated), the state machine goes to the stt_wait4newCycle state. As mentioned before,
the datapath in Figure 4.8 needs a certain number of clock cycles to process all of the fading

A

samples of one period. After generating all of the fading samples for one period (i.e., T
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seconds), the control unit waits until the interpolators are done with the interpolation. After
the end of each period (signaled from the timing circuit by newCycle=1), the control unit
informs the interpolators to use the newly generated data by changing the page. The con-
trol unit also makes sure that the updated phases are read from random-access memories
(RAMs) not ROMs by setting cyclel=0. Moreover, after the first period, the interpola-
tors are informed to start by setting doInterplt=1. From here, the fading samples are

generated in the same fashion in the following periods.

4.4.2 Interpolation

To simplify the hardware implementation, we constrain the interpolation factor I to powers
of 2,i.e., I = 2. Using a linear interpolator, the interpolated fading samples lep[n], n >0,

at the times n = 2Pk + u, k > 0, u = o, ..., 2P _ 1 can be written as
) k—1
hip[27k + u] = hyp 0] + > dip[2] + 27 Py [k]u (4.47)
z=0

where

(4.48)

d _ hip2F (2 4+ 1)] — hyp[2F2]  forz >0,
Ipl2] = '
0 otherwise,

denotes the difference between subsequent fading samples at sample rate F, = 27PF,
Note that the expression 2~ hip[k]u in (4.47) can be calculated using shifting and running-
sum operations and therefore the linear interpolator can be conveniently implemented using
a simple accumulator and shifter.

In PART-5 of Figure 4.8, the quadrature components of b;,[z] are calculated. More
specifically, in PART-5 the low frequency channel gains are stored in the memory prevRAM
and the difference between the current sample and the previous sample for each TX and RX
pair (see equation (4.48)) is calculated and passed to the linear interpolator for generating

the final channel gains according to (4.47).

137



4.4 Hardware Simulation of Geometric Models

' selol |
: o oddio g ,
page} y "
: intrpBits ; o<_—| !
! : MS el M1 N
| ; idfr o idf < e it |
|l i_chrl i_ch ‘ i_chXi M2
= e 2 ) 16.12 )
's'\6.'\2 £32.12 s32.12 o

M10

16.127 832.1 M oo
Q'!s . s32.12 s32.
q_chr I q_ch , q_chXi |

intrpBits

a
( ) chSel wDiff page IQ sel0l sel1l sel0Q sel1Q

A A Aaaaa000000C0O00O

AR N 0000 A2 0000
AN 00O R, 00,200 2200
-0 -0-—-0-—0C—=0—0-—=0-=0
e NeoleNoNoloNoNoNolooNoNoNo o)
[eNeoNoR e NoNoNo o No o NoloNoNo No)
alieNeReNeoloNoNoloNoNoNoloNoNo No)
el e leoNoNoNoNoNoNoNoNoNoNoNe)

(b)

Figure 4.10: (a) Datapath of the quadrature linear interpolator, and (b) control signals for
the linear interpolator.

Figure 4.10 (a) shows the datapath of the implemented linear quadrature interpolator.
As the fading simulator calculates the difference samples, it informs the corresponding
interpolator to latch the updated value in the page register that is not in use. A decoder
(decoding chCntr) generates the selection signal for individual interpolators and the fad-
ing simulator informs the target interpolator by rising the wD1i £ £ flag. Depending on the
state of the IQ register, the updated difference is latched into the inactive (under process
by fading generator, not the interpolator itself) register for the in-phase or quadrature path.
Figure 4.10 (b) summarizes the operations of the selection lines in a table.

As mentioned above, the interpolator is just a simple accumulator performing a running-
sum operation. Moreover, the operation of scaling by 2=7 in equation (4.47) needs to be
performed with the two barrel shifters M10 and M11 for the in-phase and quadrature paths,

respectively.
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So far we explained the hardware implementation of the geometric fading simulator. In

the following part we will present the simulation results.

4.4.3 Simulation Results

To ensure the accuracy of the geometric fading simulator, we first implemented a fixed-
point bit-true model in MEX (C for MATLAB) and generated sequences of fading vari-
ables. Specifically, to verify our datapath we simulated a MIMO channel with three dif-
ferent models, 1) the one-ring model, 2) the geometric elliptical channel model, and 3) the
double-bounce two-ring model. We compared our bit-true fixed-point results against the
floating-point results to check the accuracy of our fixed-point model.

We simulated a 2 x 2 MIMO system in which the TX-RX pair are 860 meters apart.
The TX and RX antenna arrays are positioned at a 90 degree angle from the horizon. Also
the RX is assumed to be moving in the v = 60 degree direction. We set the maximum
Doppler frequency fp = 10 Hz, sample rate F5; = 10,000 Hz, wavelength A = 20 cm,
and Rice factor K11 = K19 = K91 = K99 = 0. Finally, we used isotropic scattering and
omnidirectional antennas at TX and RX sides (i.e., kK = k7 = ky = 0) and we set the
antenna TX and RX antenna spacing to A/2 = 10 cm.

The fading samples were generated at sample rate F, = 312.5 Hz. The interpolator is
set to increase the sample rate 32 times to provide the final sample rate of F; = 10,000

samples per second.
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Figure 4.11: Fading samples generated using (a) the one-ring model, (b) the geometric
elliptical model and, (c) the two-ring model.

In the one-ring model, Ng = 128 scatterers surround the receiver uniformly on a ring
of radius R*X = 30 meters. Figure 4.11 (a) shows the fading samples h11[n] (channel gain
from the first TX antenna to the first RX antenna) that are generated with both floating-point
and fixed-point models. This figure shows good agreement between the fixed-point and the
floating-point results.

Figure 4.11 (b) shows the fading samples h1;[n] that are generated using the geometric
elliptical channel model. Both floating-point and fixed-point results are shown. In this
model, Ng = 128 scatterers surround the transmitter and the receiver on an ellipsoid with
the major axis of 2a = 1460 meters and the minor axis of 2b = 1182 meters (the transmitter
and the receiver are on the focal points of this ellipsoid). This figure also shows good
agreement between the fixed-point and the floating-point results.

We also simulated a double-bounce scattering fading channel with the two-ring channel
model. In this model, we uniformly distributed Ng; = 32 scatterers around the transmitted

on a circle of radius RT* = 30 meters. Also we assumed that Ngo = 64 scatterers surround
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REX = 30 meters. Figure 4.11 (c) shows the

the receiver uniformly on a ring of radius
fading samples h11[n| that are generated using this model. Here too, the fixed-point results

show complete agreement with the floating-point model.
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Figure 4.12: (a) Fading samples generated using the two-ring model. (b) Absolute error
between fixed-point results and the floating-point results when phases are rounded towards
zero. (c) Absolute error when phases are rounded towards the nearest integer.

Figure 4.12 plots the absolute error between the floating-point and the fixed-point results
for the two-ring model. Since the oscillator phases are updated using running summations
(see equation (4.45), and the description of PART-2 in Section 4.4), the quantization noise
can accumulate in the oscillator phases over time. This in turn causes the fixed-point results
to drift away from the floating-point results.

A major contributor to the quantization noise in the oscillator phases is the rounding
operation that happens when calculating fp x cos(w; — ) (see the description of PART-2
in Section 4.4). The result of the multiplication is a 36-bit value that needs to be rounded to
a 17-bit value according to the datapath shown in Fig 4.8. The simplest rounding method is

to discard the extra fraction bits. Since the phases are positive values, discarding the extra
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bits can be interpreted as rounding towards zero. Figure 4.12 (b) plots the absolute error
between the fixed-point results and the floating-point results for this case. The original
fading samples are plotted in Figure 4.12 (a) for reference. As Figure 4.12 (b) shows,
the magnitude of the peaks of the absolute error increases with time. Rounding the 36-bit
multiplier outputs to the nearest integer on the other hand can reduce the quantization effects
as shown in Figure 4.12 (c). However, rounding to the nearest integer is not necessary as the

slow phase drifts do not affect the statistics of the generated fading samples significantly.

1244220

Figure 4.13: Cross-correlation between hi1[n| and hao[n] versus transmitter and receiver

antenna separation. Results are obtained from fixed-point computer simulation of a MIMO
channel with the one-ring channel model.

0.8
—_
> 0.6
Q
2
= 0.4
j —
=~
e 0.2
N
N
= -
N 0
0.2
0.4

Figure 4.14: Theoretical approximation of the cross-correlation between h11[n] and hog[n]

for the one-ring channel model plotted versus antenna separation at the transmitter and the
receiver.
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Figure 4.15: Difference between the measured cross-correlation and the theoretical approx-
imation of the cross-correlation between hj1[n]| and hog[n| for the one-ring channel model.
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Figure 4.16: Estimated ergodic capacity of a 2 x 2 MIMO channel versus antenna separation
at the transmitter and receiver. The MIMO fading channel is simulated with the one-ring
channel model.

To check the statistical accuracy of our fading simulator hardware we compared the
measured cross-correlations with their corresponding analytical approximations. In this
simulation the transmitter and the receiver of a 2 x 2 MIMO system are set D = 860 meters
apart and the antenna tilt at the receiver and transmitter is ajo = (12 = 90 degrees.
Further, the maximum Doppler frequency is fp = 10 Hz and samples are generated at
Fy = 1000 samples per second. We set the wavelength A = 20 cm, and Rice factor
K1 =Ko=Ky =Ky =0,and k = kp = sy = 0.

The one-ring model was simulated with Ng = 256 scatterers uniformly distributed
around the receiver on a circle of radius R®X = 30 meters. Figure 4.13 shows the
cross-correlation between hq1[n]| and heo[n| versus transmitter and receiver antenna sep-
aration. The simulation results are obtained using our fixed-point hardware model. Figure

4.14 shows the approximated theoretical cross-correlation from equation (4.11), (4.16), and
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(4.17). Figure 4.15 plots the difference between the theoretical approximation and the mea-
sured cross-correlation. As this figure shows, there is an insignificant difference between
the expected cross-correlation and the generated results.

Moreover, Figure 4.16 plots the estimated ergodic capacity of the above one-ring M x

N = 2 x 2 MIMO channel. The ergodic capacity is expressed as [185]
E{C}=FE {1ng det (IN + %HH*)} bps/Hz, (4.49)

where Iy is an IV x N identity matrix, and o is the signal-to-noise ratio. In this simulation
the signal-to-noise ratio is set to 15 dB and the ergodic capacity is plotted versus antenna
separation at the transmitter and receiver. Note that for a single antenna system (M =
N =1) the ergodic capacity is approximately 4.32 bps/Hz. As mentioned before, the one-
ring channel model can be related to a scenario where the base-station (transmitter) is not
obstructed while the mobile-station (receiver) is surrounded by scatterers. As this figure
shows, in a one-ring fading channel mode increasing the antenna spacing at the mobile-
station does not increase the channel capacity significantly, while increasing the antenna

spacing at the base-station affects the channel capacity considerably.

10,1250l

Figure 4.17: Cross-correlation between hq1[n] and hos[n] versus transmitter and receiver
antenna separation. Results are obtained from fixed-point computer simulation of a MIMO
channel with the geometric elliptical channel model.
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Figure 4.18: Theoretical approximation of the cross-correlation between h11[n] and haa[n]
for the geometric elliptical channel model plotted versus antenna separation at the transmit-
ter and the receiver.
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Figure 4.19: Difference between the measured cross-correlation and the theoretical ap-
proximation of the cross-correlation between h11[n| and hoo[n] for the geometric elliptical
channel model.
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Figure 4.20: Estimated ergodic capacity of a 2 x 2 MIMO channel versus antenna separation
at the transmitter and receiver. The MIMO fading channel is simulated with the geometric
elliptical channel model.
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We also verified our fading simulation platform by simulating a 2 x 2 MIMO fading
channel with the geometric elliptical model. The system parameters are chosen like in
the above MIMO system. In this model, Ng = 256 scatterers surround the transmitter
and the receiver on an ellipsoid with the major axis of 2a = 1460 meters and the minor
axis of 2b = 1182 meters. Figure 4.17 shows the measured cross-correlation between
hi1[n] and hag[n] versus transmitter and receiver antenna separation. The theoretical cross-
correlation approximation is shown in Figure 4.18 and the difference between the measured
cross-correlation and the expected results is illustrated in Figure 4.19. The theoretical ap-
proximation of the cross-correlation was found by numerical evaluation of equations (4.23),
(4.17), and (4.25). As Figure 4.19 shows, the generated fixed-point samples have accurate
statistics.

Figure 4.20 plots the ergodic capacity of the above MIMO channel model versus an-
tenna spacing at the transmitter and receiver. As this figure shows, when both transmitter
and receiver are surrounded by scatterers, unlike the one-ring model, increasing the antenna

spacing at either side can help increasing the channel capacity.

Figure 4.21: Cross-correlation between hij[n| and hoo[n] versus transmitter and receiver
antenna separation. Results are obtained from fixed-point computer simulation of a MIMO
channel with the two-ring channel model.
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Figure 4.22: Theoretical approximation of the cross-correlation between h11[n| and hog[n]
for the two-ring model plotted versus antenna separation at the transmitter and the receiver.
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Figure 4.23: Difference between the measured cross-correlation and the theoretical approx-
imation of the cross-correlation between h11[n] and hoo[n] for the two-ring channel model.
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Figure 4.24: Estimated ergodic capacity of a 2 x 2 MIMO channel versus antenna separation

at the transmitter and receiver. The MIMO fading channel is simulated with the two-ring
channel model.
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We also simulated a 2 x 2 MIMO channel with the two-ring channel model. In this
model, we uniformly distributed Ng; = 128 scatterers around the transmitted on a cir-
cle of radius RTX = 30 meters. Also we assumed that Ngo = 128 scatterers surround
the receiver uniformly on a ring of radius R** = 30 meters. The rest of the system
parameters are chosen like the above system parameters. Figure 4.21 plots the measured
cross-correlation between hy;[n] and hoo[n] versus transmitter and receiver antenna separa-
tion. The theoretical approximation for the cross-correlation from equations (4.33), (4.17),
(4.39), (4.40), and (4.41) is plotted in Figure 4.22. The difference between the simulated
cross-correlation and the theoretical approximation is plotted in Figure 4.23. Comparing
the result in figures 4.21 and 4.22 shows some difference between the measured results
and the expected cross-correlation. The difference is mainly because of the low number of
simulated scatterers.

The approximate equation for the cross-correlation between fading samples in (4.39),
(4.40), and (4.41) is based on the assumption of continuous distribution of an infinite num-
ber of scatterers. However, implementation complexity of simulating the two-ring model
grows prohibitively large as the number of first- or second-bounce scatterers increases.

The simulation of the fixed-point model for double-scattering scenarios is extremely
computationally intensive as it needs to generate 100 x 100 = 10000 cross-correlations
point for each plot. We require a large number of channel samples (here we used 10000
sample) for reliable estimation of the cross-correlation. Moreover, (M x N) x (Ng1 x Ng2+
1) complex sinusoids need to be scaled and superimposed for calculation of each set of
fading samples. With Ng; = 128 and Ngo = 128 scatterers and for M = N = 2 antennas,
our software model required twenty four days to generate 6.554 x 102 complex sinusoids,
and estimate the correlations on a dual-core 3.6 GHz Intel Xeon processor. Note that our
fixed-point library includes kernels written in the 80386 32-bit machine language and is
extremely fast (80386 Assembly language embedded in C code and linked to MATLAB as a
library of MEX files). Software simulation of double-bounce scattering becomes very time
consuming as the implementation complexity grows rapidly with the number of scatterers.

Figure 4.20 plots the ergodic capacity of the above two-ring MIMO channel model
versus antenna spacing at the transmitter and receiver. As this figure shows, proper antenna

spacing at both transmitter and receiver can increase the channel capacity in this scenario.
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Figure 4.25: Illustration of the impact of the keyhole effect on the channel capacity. This
figure shows the estimated ergodic capacity of a 2 x 2 MIMO channel versus antenna sep-
aration at the transmitter and receiver.

To show the impact of the keyhole effect on the capacity of a MIMO channel, we used
our fading simulator to simulate a double-bounce scattering case where there is no LOS
path between the transmitter and receiver, and the transmitted signal bounces off a couple
of far scatterers (i.e., Ng1 = 2) before reaching the receiver by bouncing off Ngo = 256

near scatterers. The far scatterers are located RTX

= 150 meters from the transmitter at
pr = 140 degree angle with the directivity parameter k7 = 80 (narrow beam). Also,
Ngo = 256 near scatterers are uniformly distributed on a circle around the receiver. The
rest of the system parameters are set like the above systems. Figure 4.25 shows the impact
of the keyhole effect on the capacity of the 2 x 2 MIMO system. As this figure shows,
increasing the antenna separation between the transmitter or receiver does not improve the
channel capacity significantly. Please note that the ergodic channel capacity for a single
antenna system at the same signal-to-noise ratio (15 dB) is approximately 4.32 bps/Hz. As
this figure shows, when the keyhole effect happens, the capacity of the multiple-antenna

channel does not show significant improvement over single-antenna channels.

4.4.4 Hardware Implementation Results

We implemented our new fading simulator for a 4 x 4 MIMO system on a Xilinx Virtex-
5 XC5VLX110-3 FPGA. We configured the hardware to generate 16 streams of channel
gains. Table 4.1 presents the implementation results of our fading simulator. In the im-
plemented hardware, we set the maximum number of scatterers to Ng = 128. However
more scatterers can be added easily by increasing the storage capacity. The implemented

hardware can be configured to simulate a wide variety of propagation conditions and chan-
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nel models. Our FPGA implementation uses only 4597 configurable slices, two multipliers
(DSP48E), and three on-chip 36-Kb block memories. Moreover, Table 4.1 compares the
new fading simulator with two MIMO fading simulators. As this table shows, the new fad-
ing simulator is faster and much smaller than the designs reported in [59] and our previous
fading simulator in [8], despite the fact that the new design simulates more scatterers and is
capable of simulating more fading model types. The accuracy, speed and compactness of
the proposed design makes it an appropriate simulator for hardware verification of MIMO

systems.

Table 4.1: Comparison of Implementation Results

Design I (from [59]) | II (from [8]) IIT (NEW)
MIMO Model 11D 1ID 1ID, GSCM
M x N 4 x4 4 x4 4 x4

Ng 16 8 128
FPGA EP20K1000-3 | XC2VP100-6 | XC5VLX110-3
Max. Clock 50 MHz 201.1 MHz 324.5 MHz
Output rate 16 x 1.5 2 x 16 x 201 16 x 324.5
# of slices 22576 (58%) | 41198 (93%) 4597 (6.6%)
# of MULTSs — 272 (61%) 2 (3%)

# of BRAMs (17%) 288 (65%) 3 (2.0%)

We used the designed fading simulator for testing a 2 x 2 MIMO system on a GVA-
290 FPGA board [161]. This board hosts two Xilinx Virtex-E XCV2000E FPGAs. The
testing platform includes a pseudo-random data source and a data sink for the bit error
rate (BER) performance measurements. The fading channel simulator implemented on this
prototyping platform can be parameterized in real-time using the host computer to simulate

various propagation conditions.
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Figure 4.26: Bit error rate performance of a 2 x 2 MIMO system measured using the FPGA-
based fading simulator.

Using our testing platform we measured the BER performance of a 2 x 2 MIMO system.
The transmitter under test utilizes an extended Golay channel-code, an interleaver of length
16383, and a 4-QAM modulator. The receiver includes a maximume-likelihood (ML) detec-
tor with perfect channel state information, a de-interleaver and a decoder for the extended
Golay code. The implemented MIMO system will be explained in more detail later in this
chapter.

Figure 4.26 shows the hardware-generated uncoded and coded BER performance of this
MIMO system under the geometric elliptical and two-ring MIMO channel models when the
antenna spacing at the transmitter and the receiver is 0.5 x A. We simulated a 2 x 2 MIMO
system in which the receiver is placed D = 860 meters away from the transmitter. The
transmit and receive antenna arrays are positioned at a 90 degree angle from the horizon.
Also the receiver is assumed to be moving in the v = 60 degree direction. We set the
maximum Doppler frequency fp = 10 Hz, wavelength A\ = 20 cm, Rice factor K;; =
Ky =Koy =Ky =0,and Kk = kp = ky = 0.

In the geometric elliptical model, Ng = 128 scatterers surround the TX and RX uni-
formly on an ellipsoid with the major axis of 2a = 1460 meters and the minor axis of
2b = 1182 meters. Also, for the two-ring model, Ng; = 32 and Ngo = 64 scatterers uni-
formly surround the TX and RX, respectively, on two circles of radius Rrx = Rrx = 30
meters. The implemented fading simulator shows the difference in the performance of the

system under test for the two different propagation scenarios.
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4.5 Analytical Models

In contrast to physical models that characterize physical aspects of wave propagation, ana-
lytical channel models express the MIMO channel impulse response in terms of a complex
matrix with a specific structure. Due to the convenience of analysis, these models are pop-
ular in analytic studies of MIMO systems (see for example [200,210-214]).

Analytical channel models try to mimic different aspects of a MIMO fading channel.
Correlation-based analytical models try to generate fading samples with specific correla-
tion properties [184,200,212-214,223,226]. Other analytical fading channel models are
inspired by the propagation effects in the MIMO fading channel [210, 227-230].

The simplest MIMO channel model is the i.i.d. channel model which is characterized
by channel coefficients that are i.i.d. zero-mean complex Gaussian random variables. This
idealized channel model allows tractable theoretical results, such as the ergodic channel ca-
pacity [184,185]. The i.i.d. MIMO channel model corresponds to a so called “rich scatter-
ing” narrow-band scenario. In practice, however, the channel coefficients between different
transmit-receive antenna pairs show correlation due to clustered scattering in realistic en-
vironments, antenna response and antenna spacing. In realistic conditions, the capacity of
MIMO channels can be substantially lower depending on the level of correlation [200,227].

Assuming that the narrow-band MIMO fading channel is described as a stationary and
zero-mean complex Gaussian process, we can fully characterize the MIMO fading process
with its second-order statistics [76]. If H is an N x M matrix, then we use vec(H) =
[th, e hﬂ]T to denote the NM x 1 vector formed by stacking the columns of H (here
()" denotes the transpose operation). Using this notation, the full correlation matrix is
expressed as [200,223,226]

Ry = E{hh"}, (4.50)

where h = vec{H?}, and (-)" denotes the conjugate transpose (a.k.a. Hermitian trans-
pose) operation. Based on the zero-mean complex Gaussian assumption, the multivariate

Gaussian fading process is fully described by its PDF [76] given by

1

S — ~hR;'h. 451
TMN det{Ry} exp { n b} .51

f(h) =

The most general way of generating the zero-mean complex Gaussian MIMO channel
impulse response H is by

H = unvec{R}/ g}, (4.52)
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where g is an M N x 1 vector of unit-variance and zero-mean i.i.d. complex Gaussian
variables, and R}f denotes any arbitrary matrix square root satisfying R%2(R%2)H =
Ry . For example, R%Q can be calculated as R%Q = UXY2U¥ where U and 3 are
obtained by eigenvalue decomposition of Ry, i.e., USU = Ry.

Note that the main drawback of the above model, also known as the full correlation
model, is its complexity. In this model, (M N)? parameters are required to fully characterize
the correlation between fading samples, however, a direct relation between elements of R g
and the physical propagation effects is not clear. Several different analytical models have
been proposed in the literature to simplify the full correlation model and provide a direct
interpretation of the elements of Ry (e.g., the Kronecker and the Weichselberger channel
models [194,212-214,223,226,263,269]).

In the following we briefly present the Kronecker, Weichselberger, and virtual channel
representation channel models. We will also discuss efficient efficient hardware implemen-

tation of a MIMO fading channel simulator that supports the above models.

4.5.1 Kronecker Model

The Kronecker model is one of the analytical MIMO fading channel models that is widely
used in the research community [194,200,212-214,223,263,269]. This model was pro-
posed by [223] in the framework of the IST SATURN project [270] and has also been used
in the IEEE 802.11n TGn channel model [92].

The Kronecker model assumes that the spatial correlation at the transmitter end is in-
dependent of the spatial correlation at the receiver end (see equations (4.39), (4.40), and
(4.41) as a justification), hence the full correlation matrix R can be well approximated as

the Kronecker product of the correlation matrices of both ends, i.e.,
Ry =Rrx ® Rpy, (4.53)

where ® denotes the Kronecker product, Ryx = E{HTH*} is the TX correlation matrix
where (-)* is the conjugate operator, and Rrx = E{HH} denotes the RX correlation
matrix. The assumption (4.53) can be used to simplify the fading channel simulation. Under

this assumption it can be shown than the (4.52) simplifies to

H = unvec{(Rrx ® Rrx)"?g},
~ RZGRYZ)T. 459
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where G = unvec{g} is an N x M matrix with i.i.d. zero-mean unit-variance complex
Gaussian elements.

Besides the simplicity of channel matrix synthesis, the other advantage of the Kronecker
model over the full correlation model is the reduced number of MIMO channel model pa-
rameters (from (M N)? to M? 4+ N?). Moreover, the spatial correlation properties of the
channel can be estimated separately at the transmitter and receiver ends. Note that the Kro-
necker model cannot be used for the accurate simulation of MIMO fading channels with
single-bounce scattering because the Kronecker simplification in equation (4.53) removes
any dependence between the DOD and the DOA which is a basic characteristic of MIMO

channels with single-bounce scattering.

4.5.2 Weichselberger Model

Compared to the Kronecker model, the Weichselberger channel model removes the separa-
bility restriction and allows for coupling between AOD and AOA [226,271]. This model
was proposed based on channel measurements and has been verified by other researchers in
indoor and outdoor-to-indoor communication scenarios [272-274].

The Weichselberger model represents the MIMO channel impulse response matrix as
H = Urx(Qw © G)ULy, (4.55)

where ® denotes the Schur-Hadamard product, G is an N x M matrix with i.i.d. zero-mean
and unit-variance complex Gaussian elements, and Ugryx and Upyx are the receive and
transmit eigenbasis given by the eigenvalue decomposition of Rrx and R x respectively,

1.e.,
H
Rrx = UrxArxUpy,

4.56
Rrx = UrxApx U, (4.56)

Moreover, in equation (4.55) QW denotes the element-wise square root of the N x M cou-
pling matrix €2y, which has non-negative and real-valued elements. The coupling matrix

Qy can be obtained by
Qw = E{(UZxyHU}y) 0 (UpxH*Ury)}. (4.57)

Overall the Weichselberger channel model provides a good trade off between simplicity
of the model and the correct characterization of correlation between TX and TX antenna

elements [226].
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4.5.3 Virtual Channel Representation Model

In contrast to the Weichselberger model that expresses the MIMO fading channel in the
eigenspace, the virtual channel representation (VCR) model [227] uses the beamspace in
channel modeling. Inspired by the double-directional channel representation [240], the
VCR model partitions the AOD and AOA angular range into discrete virtual angles. The
number of virtual angles is determined by number of antenna elements at each end. For the
M -element antenna array at the transmitter, M virtual angles are selected in such a way that
the M steering vectors are orthonormal. At the transmitter side, these orthonormal steering
vectors form the M x M unitary steering matrix A7 x. For the N-element antenna array
at the receiver side, an N x N unitary steering matrix A px is built in a similar way. The

VCR model is expressed as [227]
H = Agx(Qy © G)AH,, (4.58)

where the N x M matrix Qi represents the amplitude coupling between the corresponding
virtual angles of the TX and RX ends. Here Qy is the element-wise square root of the
N x M power coupling matrix €2y, whose real and non-negative elements determine the
power coupling between the TX and the RX virtual directions. Further, the power coupling

matrix for the VCR model can be expressed as
Qv = EB{(AfxHA ) © (AhxH*Arx)}. (4.59)

The VCR channel model can be easily interpreted based on the geometrical propagation.
There is a direct link between the rank of QV and the channel capacity [227]. Also, the
diversity level of each sub-channel is directly related to the number of virtual RX angles

that couple with each virtual TX angle [227].

4.6 Hardware Simulation of the Analytical Models

The above analytical MIMO channel models can be simulated by introducing specific cor-
relation between zero-mean i.i.d. Gaussian samples. These i.i.d. fading samples can be
generated either with the fading simulators presented in the previous chapters or with the
MIMO fading channel simulator presented in Section 4.4. To generate i.i.d. Gaussian sam-
ples with the fading simulator presented in Section 4.4, we can distribute the scatterers

isotropically around the receiver.
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Assuming that G is the N x M matrix with zero-mean i.i.d. Gaussian samples (i.e.,
spatially independent rich-scattering MIMO flat fading channel), the Kronecker MIMO
fading channel model can be expressed as

H=UGV, (4.60)
where U = R}%/)Q( and V = (R%/;)T (see equation (4.54)). Moreover, the Weichselberger

model and the VCR model can be written as
H=UWoGQG)V, 4.61)

where for the Weichselberger model (see equation 4.55)

U = Ugy,
V =Uly, (4.62)
W = QW?

and for the VCR model (see equation 4.58)

U = Apgx,
V= Aly, (4.63)
W = Qy.

Also, in addition to the above three models, we can express the finite scatterer channel

model [210] and the maximum entropy channel model [229] with equation (4.61).

4.6.1 Sample Generation

Here we want to implement a pipelined architecture for the efficient calculation of equations
(4.60) and (4.61). The implemented architecture needs to 1) receive the elements of matrix
G from the previous stage, which is the MIMO fading sample generator that was introduced
in Section 4.4.1, 2) perform the matrix operations of either equation (4.60) or equation
(4.61), and 3) pass the generated samples to the next stage for interpolation.

As mentioned in the previous section, the fading sample generator in Figure 4.8 gener-

ates the difference between the low-frequency fading samples, i.e.,
D[z] = [di[z]] = G[z + 1] - G[2]. (4.64)

according to equation (4.48). The difference samples are then passed to the linear inter-
polators for up-sampling. To introduce correlation between the i.i.d. fading samples, we
can perform the matrix calculations (4.60) and (4.61) on the high-frequency samples. Al-

ternatively, to implement an efficient and compact hardware we can perform the matrix
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operations on the low-frequency fading samples and later up-sample the resulting streams
with appropriate interpolators. To use linear interpolators, we need to generate the differ-

ence between the fading samples,
Elz] = [ep[2]] = H[z + 1] — H[z]. (4.65)
Moreover, due to the linearity of the basic matrix multiplication we can verify that

UGz + 1]V -~ UG[z]V = U(G[z+1] - G[s])V
— UD[4V, (4.66)

and since the Schur-Hadamard product is a linear operation too, we can write

UWOGE+1)V-UW®oG[)V = UWo (G)z+1] - G[2])V
= U(WoD[))V. (4.67)

Equations 4.66 and 4.67 imply that instead of performing the matrix operations (4.60) and
(4.61) on the original i.i.d. fading samples, we can use the difference samples. Therefore,
the difference sample from the datapath in Figure 4.27 can be directly used for simulating
analytical channel models. We will later increase the sample rate of individual streams
using linear interpolation.

YO0 Y1 Y2 Y3
xadarus —— URAM wRAM — vVRAM tRAM

—
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— — &—— tAddrA

uwvAddr

G
15

Y4 AU
L— (3

IQ ——> g - Y7 g - c,
N Ang g [ e

woiff —> Q | * b - Q

i —| & Y8 2.

S > L —»ew

Y5 Y6 Y9

Figure 4.27: Datapath of the pipelined architecture for performing the matrix operations of
equations (4.60) and (4.61).
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Figure 4.27 shows the datapath of the implemented architecture for performing the ma-
trix operations. For convenience of presentation, this architecture will be loosely referred
to as the “matrix processor” henceforth. However, this architecture is not a true processor
as the control unit does not read instructions from a program memory. Instead, the control
unit is implemented using a set of low-level microinstructions for the elementary matrix
operations including the basic matrix summation, matrix product, and the Schur-Hadamard
matrix product. This architecture can be converted to a complex matrix processor by mak-
ing specific changes to the control unit. However designing an efficient compiler that could
exploit the pipelining capabilities of this processor is out of the scope of this thesis.

Instead of designing a true processor and performing the matrix operations with individ-
ual instructions, we developed specific subroutines of microinstructions to perform the basic
matrix operations. These subroutines are developed to perform these matrix operations effi-
ciently as they exploit the pipelining capabilities of the datapath in Figure 4.27. Moreover,
the developed subroutines can be parameterized to perform the basic matrix operations for
different matrix dimensions (M and N). Also, the control unit can be programmed to

perform these matrix operations is any order.

L, NU10  u14
CONST 4 _»:}—+>»+ U16 |
u2 us—> |

I
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Figure 4.28: Datapath of the pipelined arithmetic unit for performing the basic complex
operations.

The core of this matrix processor is an arithmetic unit (AU) that is designed for the
basic complex arithmetic operations. Figure 4.28 shows the datapath of this AU that can
calculate complex products, complex additions, and real-by-complex products. In other

words, for the two complex inputs al + ja@ and bl + jbQ), the AU in Figure 4.28 can
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calculate 71 + jrQ = (al + jaQ) x (bI + jbQ), rI + jrQ = (al + jaQ) + (bI + jbQ),
and 1 + jrQ = al x (bl 4 jbQ).

The main components of this AU are the 18-bit multipliers U2 and U3 that operate on
the quadrature parts. Moreover, the 36-bit output of the multiplier U2 (U3) is rounded to
the nearest 18-bit value by the modules U4, U5, and U8 (U6, U7, and U9). As we will see
later, the rounding operation is necessary to reduce the the quantization noise and stabilize
the linear interpolators.

When the addition operation is selected, the in-phase parts of the complex inputs (i.e.,
al and bI) are routed to the adder/subtracter U14 either through the multiplexer U10, or
through the multiplexers U0 and U11. Also, the quadrature parts of the complex inputs (i.e.,
a( and b(Q)) are routed to the adder U1 3 through the multiplexers U0 and U1. The output
samples 71 = al + bl and rQ) = a@ + bQ are then sent to the output via multiplexers
Ul6 and U17. All of the above operations are pipelined and when the pipeline is full (for
complex addition), the AU can perform one complex addition per clock cycle.

For the real-by-complex product, the real input a[ is passed to the multipliers U2 and U3
where it is multiplied by the b/ and b respectively. After rounding, the results r/ = al xbl
and Q) = al x bQ are passed to the output through multiplexers U1 6 and U1 7. Note that
the above operations are pipelined as well and when the pipeline (for real by complex
product) is full, the AU needs only one clock cycle for every product.

In contrast to the other complex operations that can be performed in a single clock
cycle, the complex product needs two clocks (considering a full pipeline). In the first cycle,
the inputs a/ and b() are passed to the multiplier U2 and the inputs a() and b/ are routed
to the multiplier U3. After rounding, the results of these two products are passed to the
adder/subtracter U1 4 where the quadrature part of the result, al x bQ)+a@) x bl is calculated
and stored in the register U12. In the next cycle, the inputs a/ and bl are passed to the
multiplier U2 and the inputs a@) and b(Q) are passed to the multiplier U3. The calculated
products are then rounded and passed to the adder/subtracter U14 and the in-phase part of
the result, al x bl — a@Q x bQ, is calculated. Moreover, the in-phase and the quadrature

parts of the result are passed to the output through the multiplexers U1 6, U15, and U1 7.

In the datapath shown in Figure 4.27, the three RAMs uRAM, wRAM, and vRAM are
used to keep the elemements of the U, W, and V matrices respectively. These memories

are dual-port RAMs that can be accessed and programmed externally through the address
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bus xAddrBus and the data bus xDataBus for the real-time configurablity. Moreover,
the dual-port memory t RAM is used as a register bank for holding the intermediate results.
The control unit can read the elements of U, W, and V matrices using the address bus
uwvAddr. Further, to access tRAM, the control unit uses the address lines t AddrA and
tAddrB.

In Figure 4.27 the module Y5 is implemented to interface the matrix processor to the
fading generator module in Figure 4.8. This module keeps two copies (page0 and pagel)
of the difference samples from the previous stage. The quadrature input data is presented in
32-bit format, 16 bits of which are used to present the in-phase (real) part and the remaining
16 bits are used for presenting the quadrature (imaginary) part. Before being passed to the
AU, the input samples are converted to 36-bit variables (18 bits for the in-phase part and 18
bits for the quadrature part).

When the Kronecker channel model is selected, the control unit reads the complex
elements of the input matrix D form Y5 through the multiplexer Y6 and passes them to the
AU. To perform the matrix operations needed for the Kronecker channel model, the matrix
processor starts by calculating

T, = UD, (4.68)

where the elements of U are read from uRAM, and the elements of the temporary matrix T
are written to tRAM. To increase the system throughput and efficient use of the pipelined
datapath, the control unit of the matrix processor performs the matrix multiplication (4.68)

in N steps (assuming that U is N x N and D is N x M). More specifically, the equation
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(4.68) is calculated as
Uil U2 o UIN din di2 - dig
U1 U2 U2 N dor  da2 donr
T, = }
UNT UN2 cc UNN dyt dy2 -+ dnwm
uitdir  wiidiz - undim
ug1dinr  ugidiz -+ u2iding
g . +
unidir unidiz -+ untdim
uiador  wipdea -+ wiadon
ugadar  ugadaa -+ ugadang
_|_
unador  unadaa -+ unadanm
uindnt  uindn2 -0 uiNdNM
usndy1  uandy2 -0 UaNdNM
(4.69)
unndnt unndn2 - UNNANM

In the first step, the first column of U is multiplied by the first row of D and the results
are stored in the temporary memory tRAM. In the second step, the second column of U is
multiplied by the second row of D and so on, until the N column of U is multiplied by
the N row of D. Then the matrix processor accumulates the N sub-product matrices to
generate the multiplication result. The reason for this out-of-order processing for complex
matrix multiplication is that the AU has different latencies for complex addition and com-
plex multiplication operations. By sorting the multiplication and addition operations we
can increase the throughput of AU and avoid unnecessary bubbles in the pipeline.

Further, for the Kronecker model, the calculated temporary matrix T'; is used to gener-

ate the difference samples
E=T,V, (4.70)

where the elements of V are read from vRAM, the elements of T are read from tRAM,
and the elements of the output matrix E are written to the two page buffer Y9 to be passed
to the interpolators. This matrix multiplication is performed similar to the previous matrix
multiplication. This operation is first broken into M multiplication operations between

the columns of T and the rows of the matrix V. Then the M sub-product matrices are
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accumulated to generate the output matrix E.
Simulating the Weichselberger model and the VCR model requires an additional Schur-

Hadamard (or element-wise) product. More specifically, the simulator first calculates

T, = WoD

wil Wiz o WIM din di2 -+ dim
w1 W2 - WM dor  doo -+ doym
= . . . . ®© . .
WN1 WN2 c WNM dyi dn2 -+ dyum
wiidi2  wiadiz - wipdig
wordor  waadae -+ wanday
= ) ) ) ) . (4.71)
wnidyt wy2dy2 - wNmdig

Note that the elements of the matrix W are real-valued and therefore the AU can calcu-
late each of the real-by-complex products in a single clock cycle (when the pipeline is
full). After calculating T'9, the matrix processor proceeds with calculating T3 = UT5 and
E = T3V. These matrix multiplications are also performed with the same matrix multipli-
cation subroutine that breaks the calculations into N (or M) stages for effective use of the

pipelined datapath.

4.6.2 Interpolation

For hardware simulation of the analytical MIMO channel models, we used a similar linear
interpolator to the one presented in Section 4.4.2. In contrast to simulating physical models
which only require superposition of zero-mean waves, simulating analytical MIMO channel
models requires multiple fixed-point multiplication and addition operations.

The number of bits generated by a multiplier is the sum of the number of bits of the in-
put operands. However, implementing a significantly wider datapath for the multiplication
results was mainly avoided here to reduce the hardware complexity. Instead some of the
output bits were trimmed. This, however, can increase the quantization noise that can affect

the accuracy of the implemented fading simulator.
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Figure 4.29: The effect of rounding on the interpolator output.

As an example, Figure 4.29 shows a drift in the interpolated fixed-point samples com-
pared to the floating-point results for a Weichselberger channel model. This drift, due to
quantization noise, has been accumulated over a large number of samples. Notice that
the linear interpolator in equation (4.47) is implemented with a running summation which
resembles a lowpass infinite impulse response (IIR) filter with the frequency response
H;(e??™f) = 1/(1 — ¢772~f). This IIR filter accumulates the input samples (extremely
large gain at zero frequency) and therefore any DC component in the input will add up over
time.

The interpolator presented in Section 4.4.2 can be used effectively for interpolating
samples generated by the fading simulator datapath in Figure 4.8, because the difference
signal has no DC components. In other words, the impulse response of the difference
block, hg[n] = §[n] — 6[n — 1] (see equation (4.48)), in frequency domain is H(e/?"/) =
1 — e7727f which has no output at zero frequency, i.e., Hy(e’> ) = 0. On the other hand,
the quantization noise added by the matrix processor is not necessarily DC-free.

The rounding technique used in the matrix processor has a significant effect on the DC
component of the added quantization noise. For example, rounding down to smaller fixed-
point values always results in a positive residue (or quantization noise). Simply ignoring
the extra least significant bits after a multiplication could be interpreted as rounding down
to smaller fixed-point values.

An effective method is rounding the multiplication results to the nearest fixed-point

samples. Rounding the multiplication results can significantly reduce the DC component of
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the quantization noise, since the multiplication results are rounded up “hopefully” as many
times as they are rounded down. Figure 4.29 also shows the improvement in removing the
drift and the effectiveness of the rounding technique for the same Weichselberger fading
channel model. As this figure shows, no clear DC bias (or drift) can be observed after two
million samples when rounding the multiplier outputs.

We added the rounding functionality to the matrix processor and simulated different
channel models and channel conditions. The fixed-point bit-true model was verified based
on the computer simulation and we proceeded with implementing our fading simulator on
a GVA-290 FPGA prototyping platform [161]. The fading simulator was set to generate
50 million samples per second. The generated fading samples seemed to have the required
statistical properties (mean and variance). However, the mean and variance of the generated
samples started to deviate from theoretical results after a few minutes. The speed and the
direction of deviation for quadrature components of each fading sample were related to
the simulated scenario and specific values of the U, W, and V matrices. In one case, a
12% change in the signal variance happened after five minutes of sample generation, or
5 x 60 x 50 x 106 = 1.5 x 10'° samples. This deviation was happening very slowly in
time and could not be predicted with computer simulations due to the limited computer
simulation speed.

We later found that the deviation is caused by accumulation of the DC component of
quantization noise in the interpolators. More specifically, the assumption that samples are
rounded up as many times as they are rounded down on average is not accurate. Even the
slightest DC components in the quantization noise add up in the interpolator and can render

it unstable after rather long periods of time.
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Figure 4.30: Datapath of the implemented sub-interpolator with DC cancellation.

To solve this problem, we modified the interpolator to remove the DC component from

the output. The DC cancellation should not affect the overall low-frequency response of the
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interpolator since the fading samples can have close-to-DC frequency components. How-
ever the exact DC components of the fading samples, e.g., contributions of line-of-sight
path when the angle of arrival is exactly 90 degrees, would be affected.

Figure 4.30 shows the datapath of the modified interpolator. Only the in-phase branch is
shown in this figure. Also, the two-page buffers are not implemented with the interpolators
since they have been moved to the matrix processor. The main modification in the new
interpolator is the addition of negative feedback to the accumulator N2 (or integrator). In
this feedback loop, the sign of the accumulator output (from the most significant bit) is fed
back and subtracted from half of the least significant bit of the input. More specifically,
12-bits have been used to represent the fraction part of the difference input e[n] as shown in
Figure 4.30. The magnitude of the feedback signal is limited to half of the least significant
bit of the input. Notice that the accumulator output is later divided by the interpolation
factor in the barrel shifter N3. This would further reduce the relative amount of feedback to

the output signal.

Frequency Response (dB)
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Figure 4.31: Frequency response of the implemented linear interpolator.

Figure 4.31 shows the frequency response of the modified linear interpolator which
includes the modified integrator (N2, N3, and N4, in Figure 4.30) and the differentiator
(U18 and U19 in Figure 4.8). In this figure, the interpolation factor is set to I = 16. As this
figure shows, the addition of the negative feedback adds a sharp notch at the DC frequency.

Particularly, the DC frequency has been attenuated more than 60 dB while the frequency
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response goes back to 0 dB at 1.5 x 10~° Hz. The other effect of the added feedback is
reduced attenuation at 0.5 radians per sample. However, the attenuation is still sufficient
to reduce the unwanted frequency components. Therefore the implemented circuit can be

used effectively for interpolating the fading samples.

4.6.3 Simulation Results

To estimate the bit error rate (BER) performance of a communication system with the Monte
Carlo (MC) simulation method, we have to measure the BER over a large number of inde-
pendent problem instances [93]. Simulation of additive white Gaussian noise (AWGN)
channels is straightforward as the system performance is averaged over a large number of
independent instances of noise and data.

Simulation of time varying fading channels, on the other hand, requires significantly
longer simulation times due to the dependence between the channel instances. To accu-
rately estimate the BER performance of a communication system over a time-varying fad-
ing channel, the error performance needs to be averaged not only on independent instances
of noise and data, but also on the fading channel samples. One solution is to estimate the
error rate performance on a quasi-static channel in which fading samples are assumed to
be constant over one frame of data. However, this assumption is not accurate particularly
for fast fading scenarios and provides unrealistic results. Moreover, several communication
blocks (such as channel codes, interleavers, channel estimation and equalization, timing es-
timation, frequency offset estimation and compensation, and automatic gain control) need
to be verified on time-varying channels for different Doppler rates. Thus, an accurate per-
formance estimation needs to be performed over a long period of time (compared to the
channel coherence time T, ~ 0.423/ fp [20]), and a large number of independent instances
of noise and data.

Due to the computational complexity of the fixed-point simulation, measuring the BER
performance of a MIMO communication systems with our bit-true model on time-varying
channels was very slow. We used our hardware simulation platform to measure the BER
performance of a 2 x 2 MIMO system. The hardware simulation platform and the imple-
mented MIMO system are discussed in Section 4.7. The transmitter under test utilizes an
extended Golay channel code, a length-16383 interleaver, a 4-QAM modulator, and an ML
decoder at the receiver. Also, perfect channel state information is assumed to be available

to the receiver.
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Figure 4.32: Uncoded bit error rate performance of a 2 x 2 MIMO system measured using
the FPGA-based fading simulator for different channel models.

Figure 4.32 shows the uncoded BER performance of this 2 x 2 MIMO system for
different channel models. In this platform, the sample rate is set to 3.125 million samples
per second or 12.5 mbps (the maximum speed supported by the ML detector), and the
Doppler frequency is fp = 350 Hz. To estimate each BER point at each signal to noise
ratio (SNR), we measured the performance over at least 1023 seconds of signal transmission
on the hardware platform, and when at least 100 errors where collected from the Golay
decoder output.

For the Kronecker channel model, the U and V matrices are set to

Ur — —0.2281 — 50.6045 0.0659 + 50.6270
K= \~0.8782 +70.6279 0.1516 — 50.0198 )’

V. _ (01914-;0.3442 —0.1091 — j0.0796

K= 10.1021 + j1.2781  0.4248 + 50.0667 )
Also, for the Weichselberger channel model, the values

U, — (00713 -0.3103 0.2119 — j0.9238

W= —0.9478 0.3184 ’
0.3176  0.6355

Ww = (0.9077 1.6340)’

Vo, — (0-8012+0.5202 —0.2468 — j0.1602
W= 0.2941 0.9556 ’
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are used in the simulator. Moreover, for the VCR channel models we set these matrices to

U — (07679 +0.0821 —0.6316 — j0.0676
Vo= 0.6352 0.7723 '

1.6356 0.4370
1.0452 0.2035)

v _ [ 0-2519+;0.7142  0.6530
Ve T\ —0.2172 — j0.6158 0.7573) "

Wy =

The above values are chosen randomly to represent three different communication scenar-
ios. Figure 4.32 also plots the BER performance of the 2 x 2 MIMO system under the i.i.d.
channel model (independent fading). The floating-point computer simulation results for the
ii.d. channel model are also plotted in Figure 4.32. As this figure shows, the hardware
simulation results follow the floating-point simulation results accurately which verifies the

accuracy of our hardware fading simulation platform.
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Figure 4.33: Coded bit error rate performance of a 2 x 2 MIMO system measured using the
FPGA-based fading simulator for different channel models.

Figure 4.33 plots the coded BER performance of the above MIMO system. Also,
floating-point computer simulation of the i.i.d. channel model is shown in this figure. Note
that in Figure 4.33, the computer simulation results are given up to 20 dB SNR. This is due

to the great computational complexity of the accurate BER performance measurement. In
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Figure 4.33 we can verify that the hardware generated BER results accurately match the

computer-generated BER performance.

4.6.4 Hardware Implementation Results

We implemented our matrix processor for simulating analytical MIMO channel models.
Table 4.2 summarizes the synthesis results of 2 x 2 and 4 x 4 matrix processors on Xilinx
Virtex-5 XCVLX110-3 and Altera Stratix III EP3SE50F78014 FPGAs.

We did not use the on-chip block memories for implementing the 2 x 2 matrix processors
because of the small memory sizes (we used the slice registers), while for the larger 4 x 4
matrix processor, we used the available 36-Kbit block memories to store U, W, V, and
T matrices. As Table 4.2 shows, when implemented on a XC5VLX110, the 4 x 4 matrix
processor occupies only 1.8% of the configurable slices, two multipliers (DSP48E), and
four 36-Kbit block memories and can operate at up to 234.1 MHz. When implemented
on a EP3SES50, the 4 x 4 matrix processor occupies 1.8% of the adaptive look-up tables
(ALUTs) and two multipliers and can operate at up to 185.8 MHz. Note that the higher
efficiency in implementation on the Altera Stratix III device is due to the higher flexibility
in block memory allocation.

Table 4.2 also summarizes the synthesis results of the implementation of the sub-interp-
olator on the above devices. As shown in this table, the sub-interpolator can operate at up
to 448.7 MHz and 350 MHz when implemented on XC5VLX110 and EP3SE50 FPGAs
respectively. Notice that the maximum speed of the sub-interpolator corresponds to the

maximum sample generation rate of the fading simulator.

Table 4.2: Comparison of Implementation Results

Design 2 X 2 MP“ 4 x 4 MP 4 x 4 MP SrP SI
Device XC5VLX110 | XCS5VLXI110 EP3SES0 XC5VLX110 | EP3SE50
Max. Clock 234.9 MHz 234.1 MHz 185.8 MHz 448.7 MHz 350 MHz
Slices/ALUTs 2016 (2.9%) 1212 (1.8%) 711 (1.8%) 96 (0.1%) 111 (0.3%)
18 x 18 MULTSs 2 (3.1%) 2 (3.1%) 2 (0.5%) 0 0
BRAM bits 0 147456 (3.1%) | 6336 (0.1%) 0 0

“Matrix Processor
bSub-Interpolator
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4.7 Implemented MIMO Syetem

To verify our design, we implemented a fading simulation platform for 2 x 2 MIMO sys-
tems. The implemented platform could also simulate 4-path single-input single-output
(SISO) channels.

The implemented MIMO fading channel simulator can simulate single- and double-
scattering MIMO flat-fading channel models as well as i.i.d., Kronecker, Weichselberger,

and VCR analytical channel models.
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Figure 4.34: Block diagram of the implemented fading simulation platform.

Figure 4.34 shows the block diagram of the implemented fading simulation platform.
On this platform, the fading simulator can be configured to simulate both single- and
multiple-antenna systems. We implemented a 2 x 2 MIMO communication system for
testing and verification of our fading simulator. In the implemented MIMO system, source
bits are encoded using an extended Golay code and interleaved with a length-16383 inter-
leaver. Then the interleaved bits are modulated to 4-QAM symbols and passed through the
MIMO channel where they are affected by the multipath fading and corrupted with additive
white Gaussian noise (AWGN). In the receiver, a maximum likelihood (ML) detector tries
to estimate the transmitted bits. The ML detector can be configured in real-time to have
access to complete and incomplete channel state information. After ML detection, the bit
stream is de-interleaved, decoded, and compared to the transmitted bit stream.

To demonstrate the fading effects on the transmitted symbols, we also implemented a
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single-antenna transmitter where the bits can be modulated using different schemes (BPSK,
QPSK, 4-PAM, 4-QAM, 8-PSK, 16-PSK, 16-QAM, circular 8-QAM, and circular 16-
QAM). As shown the in block diagram in Figure 4.34, the output of this transmitter can
be passed to an oscilloscope through a digital-to-analog converter. Moreover, the faded
samples (with and/or without noise) can be monitored on the oscilloscope as well. The

output of the MIMO channel can also be shown on the oscilloscope screen.

Figure 4.35: Fading simulation platform on a GVA-290 FPGA board.

We implemented our fading simulation platform on a GVA-290 FPGA board [161].
This board hosts two Xilinx Virtex-E XCV2000E FPGAs in addition to four digital-to-
analog and four analog-to-digital converters. Figure 4.35 shows the picture of the imple-
mented fading simulator on the GVA-290 board along with the power source, oscilloscope,
and the control computer. The GVA-290 board is interfaced with the control computer

through the parallel port.
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Figure 4.36: Graphical user interface of the implemented fading simulation platform.

We also developed a graphical user interface (GUI) through which we can configure

our fading channel simulator in real-time. Figure 4.36 shows the six tabs of the fading

simulator GUL. In the first tab in Figure 4.36 (a), we can set the Doppler frequency, SISO

power profile, Rice factors, delay profile (integer and fractional), and the angles of arrival

for different paths. In the second tab shown in Figure 4.36 (b), we can adjust the sample

rate, change the sample modulation for the SISO system, select the digital-to-analog output,

vary the signal-to-noise ratio, change the noise variance and also set the channel estimation

pariod for the MIMO receiver. In the third tab shown in Figure 4.36 (c), we can monitor

the complex fading samples of the SISO fading simulator along with the time-varying fre-

quency response of the SISO fading channel. In the fourth tab shown in Figure 4.36 (d), the

analytical MIMO channel model can be selected and the model parameters can be set and

passed to the FPGA board. The fifth tab shown in Figure 4.36 (e) measures the bit error rate
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performance of the implemented MIMO system using the Monte Carlo simulation method.
The program can be configured to stop the simulation based on a combination of different
criteria including the number of transmitted bits, number of errors, and transmission time.
Moreover, the measured BER performance is also exported to MATLAB. Finally, in the
sixth tab shown in Figure 4.36 (f), the complex MIMO fading channel samples are plotted.
This tab also plots the instantaneous ergodic MIMO channel capacity and its time average
for the selected signal to noise ratio.

Note that although the implemented fading simulator can simulate geometrical MIMO
channel models, the capability of real-time configuration of the fading simulator for the
geometrical models was not implemented in this version of the GUI software due to the
time limitations. However, the fading simulator can be configured (using the synthesis tool)
for the testing of the implemented MIMO system for different geometrical MIMO channel
models. Moreover, the capability of real-time configuration for the geometrical models can

be added to the next version of the GUI software.

(b)

Figure 4.37: Pictures of the oscilloscope output for (a) the SISO and (b) the MIMO systems.

Figure 4.37 shows two outputs of the fading simulation platform on the oscilloscope
screen. The Doppler frequency for these simulations was set to fp = 0.5 Hz so that the
changes in the scatter-plot could be easily followed. In Figure 4.37 (a), the oscilloscope
screen shows the scatter plot of the noisy output of a SISO channel. In this picture, 8—PSK
modulated samples are passed though a two-path SISO fading channel and corrupted with
AWGN. Figure 4.37 (b) shows the two noisy outputs of a the 2 x 2 MIMO channel where
the transmitted bits are modulated with 4-QAM and the signal to noise ratio is 20 dB.

In the following parts we will briefly present some of the implemented blocks in the

fading simulation platform.
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4.7.1 4-QAM Modulator and MIMO Channel

In the implemented 2 x 2 MIMO system, 4-QAM modulated symbols are passed through
the fading channel. The MIMO channel output samples can be expressed as

() =G i) (2)+ ().
where h;j;, i,j € {1,2}, are the complex fading gains, s;, ¢ € {1,2} are the transmitted
4-QAM symbols, and n;, i € {1,2} are the AWGN samples. Since the in-phase and
the quadrature components of the 4-QAM symbols comprise only +1 and —1 values, the
MIMO channel can be implemented without using multipliers. Decomposing the complex

received samples to their in-phase and quadrature components, we can rewrite equation

(4.72) as
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where the superscripts (-)! and (-)¥ denote the in-phase and quadrature components, re-
spectively.

Using equation (4.73) designing a datapath for the MIMO fading channel is straightfor-
ward. As we will see in Section 4.7.2, the ML detector requires 16 clock cycles to detect
the transmitted symbols. The ML detector is the bottleneck in the communication chain,
limiting the transmission rate which limits the symbol rate to F;; /16 symbols per second.

Therefore we can use up to 16 clock cycles to calculate equation (4.73).
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Figure 4.38: 4-QAM modulation and MIMO channel, (a) datapath and, (b) timing diagram.
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Figure 4.38 shows the datapath and timing diagram of the implemented 4-QAM modu-
lator and MIMO channel. As Figure 4.38 (a) shows, this block has been implemented with
four accumulators with add/subtract inputs. The accumulator adds (subtracts) the input to
(from) its current value if the add input is 1 (0). The quadrature components of the fad-
ing gains h{j and hg, the input samples sf and SZQ, and the noise samples nZI and nZQ are
assumed to be available and constant during each cycle. The fading gains are generated
with our fading channel simulator. Also, to generate the AWGN samples we used the white
Gaussian noise generator presented in [138].

The accumulators accl, acc2, acc3, and acc4 are reset at the beginning of each
cycle (signaled by start). For the quadrature components of the input, the digital value
1 is assumed to represent arithmetic +1 and the digital value O represents arithmetic value
—1. To calculate r{, the accumulator acc1 adds/subtracts the fading gains hi;, hi,, h?l,
h<, according to s1, 51, not (s%), not (s?), respectively, (see equation (4.73)) and adds
n{ . Finally, r% , r?, and r? are calculated using a similar method as illustrated in Figure

4.38.

4.7.2 ML Detector

The ML detector performs an exhaustive search over all of the possible combinations of the
transmitted signal to detect the received symbol vector [50]. Assuming that the transmitted
symbols are modulated with 4-QAM scheme, for a 2 x 2 MIMO channel the ML detector
can be expressed as

§= min |[r—Ht|? (4.74)
te{+1+15}2

where r denotes the received vector, H is the channel matrix, and t denotes the vector
of tentative candidates. ML detection is a combinatorial optimization problem over all of

the possible combinations of the transmitted signal. The cost function of this optimization
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problem can be written as

c(t) = |r—Ht|?
2
i hl, hly, —h% —p% té
_ % [ hy —h3 —h3, %
rb WY b bl bl tb
T2 hs hsy by hi 2

(

(75 — tingy — thiky + 1208 +47n,
(1 — B — ey = o9ds —eP0dy) "+

(9 — i, — hng, — e2nhy - t?h§2)2. (4.75)

Equation (4.75) can be used to implement the ML detector for the 2 x 2 MIMO sys-
tem. Figure 4.39 shows the datapath of the implemented ML detector. In this figure, the
section Cost Function calculates ¢(t) according to equation (4.75). The quadrature
components of the tentative samples, (i.e., t{ , t?, tg, and tQQ) are modulated with the fad-
ing gains and subtracted from the input signal. For example, the first branch of the Cost
Function section (including the adder/subtracters UO, U4, U8, U12 and the multiplier
U16) calculates (r! —t{n!, —tIni, + t?h?l + t?h%y (see equation (4.75)).

In Figure 4.39, the FIFO section delays each of the tentative symbols according to the
latency of the Cost Function datapath so that the cost of each tentative symbol can
be augmented with its corresponding symbol. Moreover, the section Search, finds the

symbol with the minimum cost, which is the output of the ML detector.
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Figure 4.39: Datapath of the implemented exhaustive-search ML detector for the 2 x 2
MIMO system with 4-QAM modulated symbols.

We targeted Xilinx Virtex-E XCV2000E FPGAs for the implementation of our fading
simulation platform since our available GVA-290 boards host this family of FPGAs. How-
ever, the Virtex-E family are relatively small FPGAs with no embedded multipliers. Hence
we tried to optimize the size of our communication system with the minimum number of
multipliers.

For a 2 x 2 MIMO system with 4-QAM modulated symbols, there are 42 = 16 tentative
symbols in the search space. According to equation (4.75), four multiplications are required
for calculating the cost of each of the tentative symbols. Due to the size constraints, we
used only four multipliers for the calculation of the cost function and shared the pipelined
datapath for calculating the 16 costs. The 16 clock cycle latency of the ML detector is the
bottleneck that limits the symbol rate of the MIMO communication system to F/16.

Notice that three comparators are used in the Search section in Figure 4.39 for finding
the tentative symbol with the minimum cost. It was due to the one clock cycle latency of the
comparators that the sequence of the costs of tentative symbols was divided into two sub-
streams. In Figure 4.39, the minimum costs of the two sub-streams (along with the tentative
symbols corresponding to the minimum costs) are stored in the M1 and M2 registers. The
final ML solution, sHat, is picked based on the minimum cost by comparing the final

values of M1 and M2.
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4.7.3 Interleaver and De-interleaver

Errors in the wireless communication tend to happen in blocks when the signal experiences
deep fades. However, a burst of errors can be overwhelming for the channel code (i.e.,
the error control code) that can only correct a certain number of errors in a block of data.
This problem can be alleviated by randomizing the errors in a block of data using inter-
leavers [275,276]. Interleaving spreads the transmitted data over time, which is called time
diversity, without adding any overhead.

Interleavers can be classified into block, convolutional, and pseudo-random interleavers.
In block interleavers, coded bits are first written in row format in a matrix and then read
in column format. Convolutional interleavers break the stream of coded bits into several
sub-streams and delay each sub-stream for a certain amount of time. A pseudo-random
interleaver is a variation of a block interleaver where coded bits are written linearly into
a memory and read out randomly based on a pseudo-random sequence. For our MIMO

communication system, we implemented a pseudo-random interleaver of length 16383.

Interleaver: De-interleaver:
(RAW: Read After Write) (WAR: Write After Read)
hold hold
Do Do
bn  ylding dout2 |—>] bOut L dout2 bOut
newBit newBit
—_—WE —_— > WE
=5 addr1 addr2| =0 50 addr1 addr2 50
CNTR LFSR LFSR CNTR
inc leap leap inc
bitReady bitReady
Control Unit > Control Unit >

W W W e W o W e W W W S W W o W o W e W o W o W o U

newBit )Q_\ [\ newBit L\ [\
bin A > { > bin e {5+ )
WE '%/\—\ \ bitReady = [\
inc o \ WE T\ \
hold R wa I Ifsr 5 ) s X 57
bitReady )/_\ cntr T ) T+1 X T+2
bOut bM(S") Do BM () )—-—( bM(T+1) BM(T+2)
cntr I-1 X I X I+1 hold \:J/_\ [\
Ifsr sn X gnit bOut BM (T) ) BM(T+1) Y bm(1+2)
leap [\ | leap [\ [\
inc [\ [\
(a) (b)

Figure 4.40: Datapath of the implemented (a) interleaver, and (b) de-interleaver with the
corresponding timing diagrams.

Figure 4.40 shows the datapath and the timing diagram of the implemented pseudo-

random interleaver and de-interleaver. In the interleaver, a 14-bit counter is used to write
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the coded input bits into a dual-port 16384 x 1 memory. This counter counts linearly from
1 to 16383 and goes back to 1. At the output, a 14-bit linear feedback shift register (LFSR)
is used to read out the coded bits randomly from the memory. Notice that the counter
does not generate 0. It is because 0 is not among the values that are generated by a LFSR,
hence the interleaver length is 16383 = 16384 — 1. The reverse operation happens in the
de-interleaver where the received bits are written randomly into a dual-port memory using
the same pseudo-random sequence and later read out using a counter that counts from 1 to
16383.

When a new bit is passed to the interleaver (indicated by the newBit signal), it is writ-
ten into the memory location addressed by the counter cnt r and the counter is incremented
for the next cycle. Then an output bit is read out from the location determined by the current
state of the LFSR. The LFSR is then updated for the next cycle. Note that the input bits
must be written into the memory before reading the output bits to maintain the integrity of
the data sequence.

The inverse operation happens in the de-interleaver. When a new bit is ready to be
written into the memory, the de-interleaver first reads one bit from cntr location of the
memory and informs the next stage using the bitReady signal. The counter cntr is also
updated for the next cycle. Then the de-interleaver writes the input bit into memory and
updates the LFSR for the next cycle. Here, the data is read out of the memory and stored
in the bOut register before writing the input bit. Moreover, the extracted LFSR bits are

shuffled to decrease the correlation between the generated values.

4.7.4 Extended Golay Code

Channel codes or “error control codes” are used in communication systems to detect and
possibly correct the errors that happen during data transmission. This is accomplished by
adding redundant data to the transmitted message. The binary Golay code is one of the most
important types of linear binary block codes. The extended binary Golay code has been used
in many real-world applications including the Voyager spacecraft program during the early
1980s [277].

We used the extended binary Golay code in our 2 x 2 MIMO communication system
for the detection and possible correction of occurring errors. This code can be generated by

the 12 x 24 generator matrix G = [I, B] where I is the 12 X 12 identity matrix and B is
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given by
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The code rate for the (24, 12) extended Golay code is R = 1/2. This code has minimum
distance d,,;, = 8 and can correct up to three errors.

Encoding the data bits using the Golay code is straightforward. Assuming u = [u11, u10,
..., up| to be the vector of source bits, the coded bits can be calculated as v = [u, p] = uG
in GF(2), i.e., the Galois field of two elements [278], where p is the length 12 row vector
of parity bits.

To decode the extended binary Golay code, we used the imperfect maximum likelihood
decoding (IMLD) algorithm from [277]. This algorithm tries to find all of the error pattens
e of weight at most 3. The error pattern e is denoted as e = [e}, eg] where eg and e; are
the lower and upper parts of e each with 12 bits.

Assume that w = [wa3, wao, ..., wo| represents the received vector and let o; to be a
row vector of length 12 with a 1 in the i position and zeros elsewhere. Also, let us denote
the i™ row or B as b;. The IMLD algorithm tries to find the error pattern of the received
vector by computing the syndrome s = wH where H = G is the parity check matrix.

This algorithm is represented from [277] in Algorithm 3.

Algorithm 3 IMLD decoding for extended Golay code

1: Compute the syndrome s = wH.

: if (weight(s) < 3) then set e = [s, 0], and goto 8.

. if (weight(s + b;) < 2) for some row b; of B then set e = [s + b;, 0;], and goto 8.

: Compute the second syndrome sB.

. if (weight(sB) < 3) then set e = [0, sB], and goto 8.

: if (weight(sB + b;) < 2) for some row b; of B then set e = [0;, sB + b,], and goto 8.
: The error pattern cannot be determined. Exit.

0 O LB W

. The decoded vector is v = w + e. Exit.

We implemented pipelined datapaths for encoding and decoding of the extended Golay

code. The implemented decoder can correct all of the error patterns with one, two, and three
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errors. More error patterns can also be detected and reported for requesting retransmission.

4.7.5 Fractional Delay

The fractional delay interpolator is an important component of a fading channel simulator.
Assuming uniform sampling, fractional delay refers to a delay that is a non-integer multiple
of the sample interval 7. Several methods have been used for approximating the fractional
delay including the use of lowpass, and allpass filters and polynomial-based interpolation
[279-283]. One of the most attractive implementations for fractional delay interpolators is
the Farrow structure [284]. The Farrow interpolator approximates the delayed signal with a

piecewise polynomial curve in time as

#((n—mTe) =Y _ bi(n), (4.76)

where |u| < 0.5 (1T is the fractional delay), and L is the polynomial degree. The polyno-

mial coefficients {b;(n)}, in equation (4.76) are calculated as

Kp
bi(n) =Y fx((n—k)Ty), 4.77)
k=0

where K denotes the filter order and {cf}, [=0,..,L, k=0,..., Kp, denote the con-
stant filter coefficients [284]. Notice that the coefficients {b;(n)}1, are independent of 4,
hence the Farrow structure can be used to generate time-variable fractional delay by only
varying the delay parameter u. Figure 4.41 (a) shows the Farrow structure for time-varying

fractional delay.
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Figure 4.41: (a) Farrow structure for time-varying fractional delay. (b) Farrow structure for
a cubic interpolator.

In our hardware simulation platform, we implemented the the Farrow structure for a
cubic polynomial interpolation (see Figure 4.41 (b)). In this interpolator, the polynomial
degree L. = 3 and the coefficients are calculated with K = 3 FIR filters. The polynomial

coefficients for this structure are given by

ba(n) = #((n — 3)T)/6 — 2((n — 2T)/2 + 2((n — VT)/2 — (nT.)/6,

ba(n) = x((n —3)Ts)/2 — x((n — 2)Ts) + z((n — 1)T)/2, 4.78)
bi(n) = z((n —3)Ts)/3 + 2((n — 2)T5)/2 — x((n — VT) + 2(nT5) /6, ’
bo(n) = z((n — 2)T%).

Figure 4.42 shows the datapath of the implemented delay module. Notice that in equa-
tion (4.78) the filter coefficients for the cubic Farrow interpolators are limited to {+1, +1/2,
1/3,41/6}. Therefore we can generate the polynomial coefficients {b;(n)}?_,, with shift-
ing, negation, and summation operations in addition to one constant multiplication as shown
in Figure 4.42 (a).

Figure 4.42 (b) shows the datapath of the Farrow polynomial for fractional delay. Figure
4.42 (b) also shows the datapath for integer delay that can be used to extend the range of
fractional delay. Notice that since the Farrow polynomial coefficients in equation (4.77)
are independent of the fractional delay, the same polynomial coefficients can be used for
generating various fractional delays. This is particularly helpful for simulating multipath

delay where multiple fractional delays are required.
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Figure 4.42: Datapath of the cubic Farrow interpolator for fractional delay. (a) Farrow filter
coefficient generator, and (b) Farrow polynomial and integer delay.

T T

—«— Original: Not delayed
—o— Delayed: Floating-point mode!

—~ —— Delayed: Fixed-point bit-true model
o
=
I
S
N i
=
~

A
S 05 5 680 685 69 7
N
=

-1 -
] | I I | |
640 660 680 700 720 740

Sample #

Figure 4.43: Output samples for delayed BPSK signal using the fixed-point bit-true model.
Figure 4.43 shows the output of our fixed-point bit-true model for the cubic Farrow
interpolator. In this figure, a BPSK signal is delayed for half of the signal period (i.e.,

wls = 0.5T%). The original signal and the response of the floating-point model are plotted

as well. As this figure shows, our fixed-point implementation result accurately matches that
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of the floating-point model, which verifies the accuracy of our hardware implementation.

4.7.6 Hardware Implementation Results

As mentioned before, we implemented our fading simulation platform for 2 x 2 MIMO
and SISO systems on a GVA-290 (Revision-B) FPGA development platform [161]. This
board hosts two Xilinx Virtex-E XCV200E FPGAs and two Xilinx Spartan-1I FPGAs. This
board also includes four 100 MS/s analog-to-digital and four 100 MS/s digital-to-analog
converters.

Table 4.3 summarizes the FPGA implementation results of different components. The
synthesis results are provided for the Xilinx Virtex-E XCV2000EBG560-6 FPGA and for
the Xilinx Virtex-4 XC4VSX55FF1148-12 FPGA. For this implementation, the fading sim-
ulation cores were configured to use the resources available on the Virtex-E FPGA family.

From the results presented in this table, we can conclude that the implemented MIMO
communication system (source, encoder, interleaver, detector, de-interleaver, and decoder)
utilizes less than 9% of the available configurable slices on a Virtex-E XCV2000E FPGA
while the rest of the system (fading simulator, BER performance measurement, initializa-
tion, and interfacing modules) consume a much larger portion of the available resources
(more than 60%).

The implemented fading simulation platform and the BER performance measurement
cores along with the analog and digital access to different parts of the system on a GVA-
290 board can be used for testing and verification of more complex wireless communication
systems. More specifically, with one Virtex-E XCV2000E FPGA dedicated to fading sim-
ulation and interfacing, the other on-board FPGAs can be used for the rapid prototyping
of wireless communication systems. In addition, the implemented fading simulation and
BER performance measurement platform can be easily adapted to faster and more recent
FPGA boards for rapid prototyping of wireless communication system in baseband and
intermediate frequency.

Overall, to develop the above fading simulation platform more than 55,000 lines of code
were written in the five languages MATLAB, MEX, Visual C++, 80386-Assembly, and
Verilog hardware description language (HDL). Fixed-point arithmetic was required for the
development of the bit-true models. However, due to the slow execution of the MATLAB
fixed-point library, we developed our own fixed-point library in MEX (C programming for

MATLAB) in which we used 32-bit machine language sections frequently to speed up the
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fixed-point simulation. The main skeleton of most of the designed parts were developed in
MATLAB. However we often used MEX programming to speed-up the computer simula-
tion process. Moreover, we used Verilog HDL for the hardware implementation of different

parts, and finally, the GUI for the fading simulation platform was developed in Visual C++.

Table 4.3: Fading Simulation Platform Implementation Results

Design Device Max. Clock Slices BRAMs
Source XCV2000E | 299.9 MHz 37 (0.2%) 0
Source XC4VSX55 | 778.0 MHz 37 (0.15%) 0
Encoder XCV2000E | 126.6 MHz 50 (0.3%) 0
Encoder XC4VSXS55 | 421.5 MHz 52 (0.2%) 0
Interleaver XCV2000E | 117.1 MHz 49 (0.3%) 4 (2.5%)
Interleaver XC4VSXS55 | 336.7 MHz 49 (0.2%) 4 (1.25%)
MIMO channel* | XCV2000E 99.5 MHz 998 (5.2%) 8 (5.0%)
MIMO channel XC4VSX55 | 303.8 MHz 979 (4.0%) 5(1.6%)
ML detector XCV2000E 76.3 MHz 947 (4.9%) 0

ML detector XC4VSX55 | 188.3 MHz 939 (3.8%) 0
De-interleaver XCV2000E | 115.7 MHz 50 (0.3%) 4 (2.5%)
De-interleaver XC4VSXS55 | 332.2 MHz 51 (0.2%) 4 (1.25%)
Decoder XCV2000E 80.8 MHz 438 (2.3%) 0
Decoder XC4VSX55 | 191.2 MHz 407 (1.7%) 0
Fading generator | XCV2000E 70.9 MHz 3601 (18.8%) 7 (4.4%)
Fading generator | XC4VSX55 | 185.2 MHz | 3522 (14.3%) 7 (2.2%)
Noise generator XCV2000E 99.5 MHz 634 (3.3%) 8 (5.0%)
Noise generator | XC4VSXS5 | 303.8 MHz 632 (2.6%) 5(1.6%)
4-Path delay” XCV2000E 52.6 MHz 2247 (11.7%) 12 (7.5%)
4—Path delay XC4VSX55 | 174.2 MHz 2193 (8.9%) 12 (3.75%)
Entire system® XCV2000E 52.6 MHz 13436 (70.0%) | 47 (29.4%)
Entire system XC4VSX55 | 174.2 MHz | 13247 (53.9%) | 44 (13.75%)

“Includes 4-QAM Modulator, MIMO channel, and Gaussian noise generator.

bIncludes Farrow coefficient generator for in-phase and quadrature (I/Q) paths, three 1/Q Farrow interpola-
tors for fractional delay with 16-bit resolution, and three I/Q delay modules for up to 1023 tap delay.

“Includes the MIMO transmitter and receiver, SISO transmitter, MIMO and SISO fading channel simula-
tor, BER measurement units, digital-to-analog interface modules, initialization logic, and FPGA-PC interface
modules.

4.8 Summary and Conclusions

In this chapter briefly reviewed different MIMO channel models. In general, MIMO chan-
nel models can be categorized, based on the modeling approach, into analytical and physical
channel models. Analytical channel models characterize the MIMO channel response in a
mathematical/analytical fashion, while physical models describe the MIMO channel based

on the physical characteristics of wave propagation.
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We also discussed a simulation model for the efficient simulation of geometric MIMO
channel models in hardware. We showed the effectiveness of our hardware geometric
MIMO fading channel simulator design by simulating the geometric elliptical model, one-
ring, and two-ring models using fixed-point bit-true simulation and actual hardware results.

We also proposed a compact and flexible hardware fading simulator for the simulation
of analytical MIMO channel models including the Kronecker model, the Weichselberger
model, and the virtual channel representation model. The accuracy of our implementation
and hardware generated results were also verified with the floating-point computer simula-
tions.

We implemented our MIMO fading simulator on a GVA-290 FPGA board for proto-
typing and verifying SISO and MIMO wireless systems. The implemented MIMO fading
channel simulator can simulate several different geometric and analytical MIMO channel
models. The implemented fading simulator can also simulate multipath propagation scenar-
ios in single antenna fading channels with Rayleigh and Rician fading models. Moreover,
the multipath propagation delay can be accurately simulated on the fading simulator plat-
form with the implemented fractional-delay circuit.

Moreover, we implemented a 2 x 2 MIMO communication system and tested its perfor-
mance using the implemented fading simulation platform. The implemented MIMO system
includes a length-16383 random interleaver and de-inerleaver, an extended Golay code de-
coder and encoder, and a ML detector. We also implemented a bit error rate performance
measurement platform and the required software and hardware components. Using this
tester and the fading simulator, we can evaluate the bit error rate performance of a wide
variety of wireless communication systems under various channel models and propagation

conditions.
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Chapter 5

Conclusions and Future Work

5.1 Main Contributions

In this thesis we proposed three new channel models for the accurate simulation of Rayleigh
and Rician fading. We also proposed compact hardware architectures for the fast and ef-
ficient on-chip simulation of wireless fading channels. We also proposed a new especially
compact hardware implementation of an accurate fading simulator in which fading samples
are generated differentially and interpolated with a compact architecture. More than one
thousand paths can be fit on a conventional FPGA with this method, with each path gen-
erating more than 300 million samples per second. Compared to one of our early designs,
the proposed fading simulator is not only 18 times smaller and 50% faster, it can generate
significantly more accurate fading samples.

We proposed two architectures for the homogeneous FPGA implementation of filter-
based fading simulators. We also proposed a multi-stage filter design technique for the effi-
cient hardware simulation of Rayleigh fading channels. Moreover, we presented an elastic
design for the robust implementation of a multipath fading simulator that can absorb the
clock frequency mismatches between hardware modules. A fixed-point implementation of
this four-path fading simulator on a Xilinx Virtex-II Pro XC2VP100-6 FPGA utilizes only
13.9% of the configurable slices and 2.7% of the on-chip 18 x 18 multipliers and can gener-
ate up to 4 x 73 million samples per second. We also proposed the first hardware simulator
for non-isotropic Rayleigh fading channels. Our fixed-point implementation of this simu-
lator on a Xilinx Virtex-II Pro XC2VP100-6 FPGA utilizes only 6.8% of the configurable
slices and can generate up to 300 million samples per second.

We presented a new transformation-based fading simulator for the compact and effi-

cient implementation of Nakagami-m and Weibull fading channels. This fading simulator
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converts the Rayleigh fading samples to Nakagami-m or Weibull fading samples. A new
method for the approximation of the transfer function was presented which was based on
hybrid logarithmic-linear segmentation with semi-floating-point curve fitting. Compared
to the simple table look-up approach for approximating the transfer function, the proposed
method provided significant savings in the storage requirements.

We also presented a technique for the design of stable IIR filters with fixed-point com-
plex and real coefficients. Filter design with this technique results in very compact hardware
implementations. It was shown that the new filter design technique could be used for the
simulation of a wide range of fading channel conditions including non-isotropic Rayleigh
fading channels and the TGn channel model for the IEEE 802.11n MIMO wireless LAN
standard. Using the proposed filter design technique should result in significant savings in
the hardware implementation and substantial increases in the system throughput. In one
example, compared to a previous design, the new filter design technique resulted in a nine
times reduction in the number of configurable slices and more than 22 times higher through-
put.

We proposed a compact and efficient FPGA fading simulator that could support the sim-
ulation of the i.i.d., Kronecker, Weichselberger, and VCR MIMO fading channel models.
A new stable interpolator structure was proposed for this fading simulator. When imple-
mented on a Xilinx Virtex-5 XC5VLX110-3 FPGA, the matrix processor of this design for
a4 x 4 MIMO system utilizes only 1.8% of the configurable slices, two multipliers, and
four block memories, and can operate at up to 234.1 MHz. This MIMO fading simulator
was implemented on our bit error rate testing platform. Moreover, we presented a compact
and efficient simulator for geometric MIMO channel models. The proposed fading simula-
tor could simulate a wide variety of single- and double-bounce geometric MIMO channel
models. We verified the accuracy of our fading simulator by comparing the fixed-point
bit-true results with theoretical references. Three common geometric MIMO fading mod-
els, namely the one-ring and two-ring models and the geometrical elliptic MIMO fading
channel model, were simulated with our fading simulator.

We implemented a fading simulation and bit error rate testing platform for the ver-
ification of our fading simulators, and for testing MIMO systems. This platform was
implemented on a GVA-290 FPGA development board which hosts two Xilinx Virtex-E
XCV2000E FPGAs. The implemented platform can be used for the verification of single-

and multiple-antenna wireless systems. It supports the simulation of various fading chan-
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nel models including the single antenna-models AWGN, Rayleigh, Rician, and the MIMO
models AWGN, Rayleigh, Rician, one-ring, two-ring, geometric elliptic, i.i.d., Weichsel-
berger, Kronecker, and VCR channel models. The implemented platform also supports
multipath integer delays (up to 1023 taps) and fractional delays.

We tested a sample 2 x 2 MIMO system with our channel simulation and system veri-
fication platform. The MIMO system under test included an extended Golay code encoder
and decoder, length-16383 random interleaver and de-interleaver, and a maximum likeli-

hood detector.

5.2 Future Work

The future work could be followed in a number of directions.

e The proposed fading simulators are all targeted for the baseband verification of wireless
channels. However, the addition of a radio frequency (RF) stage could broaden the range
of applications. Such RF stages could be designed to work with either simplex or duplex
wireless communication systems.

e In this thesis, we targeted the main elements of fading simulation. For example, we
designed the hardware parts required for generating fading samples for the IEEE 802.11n
fading channel, and we presented an efficient hardware for the simulation of fractional
delay. However, we did not implement a functional 802.11n fading channel simulator.
Various standardized fading channel models (including the TGn channel model for the IEEE
802.11n standard) could be simulated efficiently with the parts designed in this thesis.

e Some aspects of fading channels were not included in our work. For example, our work
can be extended to vector fading channel models and time-varying channel models. Also,
our models can be extended to take into account the antenna polarization, and waveguide
effects in the the fading channels.

In addition to the above subjects, I will continue working on three other problems.
Particularly, I will work on compact and efficient implementation of stable IIR filter pro-
cessors, and extension of our fading model to include other distributions for the angle-of-
arrival (AOA) and the phase of the fading samples. Also, I plan to pursue the simulation of

multi-node wireless networks. In the following sections I will briefly discuss these subjects.
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5.2.1 Pipelined IIR Filter Processor

Digital IIR filters have a wide range of applications in electrical engineering. In this thesis
we used digital IIR filters for the accurate simulation of fading channels. However, due to
the inherent feedback in the IIR filters, these structures are naturally susceptible to instabil-
ity. Efficient implementation of IIR filters with fixed-point arithmetic can also contribute to
numerical error due to fixed word-length and can render these filters unstable.

In Chapter 3 we proposed a filter design technique for the compact and stable imple-
mentation of fixed-point filters with real and complex coefficients. The designed filters can
be used for the compact and stable implementation of IIR filters for different applications.

A multi-rate and multi-channel programmable IIR filter processor can be designed
based on our proposed filter design technique. This IIR filter processor needs to be pipelined
for maximum efficiency. Also, it needs to be flexible so that it can perform the operations
of IIR filters of various orders with real and complex coefficients. Moreover, this filter pro-
cessor needs to be able to operate on several IIR filters with different sample rates. This
capability is particularly important when the filter processor is operating on data from mul-
tiple sources of different rates, potentially from multiple clock domains. In addition, this
filter processor needs to be able to perform interpolation, decimation, zero-padding, and
concatenation of various filters. Moreover, this filter processor needs to be able to add (or
inject) potentially complex tones to the different stages of each IIR filter. This could be
used for a variety of applications including built-in self-test functions or the simulation of
Rician fading samples.

However, designing such a filter processor would not be trivial. A pipelined IIR filter
processor needs to be implemented with out-of-order processing (because of the feedback
in IR filters and the latency of the pipelined arithmetic unit). This can be challenging if
the filter structure (i.e., real/complex coefficients, first-, or second-order section processing,
and filter order) is programmable. Also, the filter processor needs to “execute” the filter
sections in reverse order to avoid overwriting the intermediate samples. Finally, the execu-
tion of each filter needs to be tied to a pair of input and output flags indicating activation or
deactivation of each filter (for rate control).

During the course of this research project, we realized the need for such a filter proces-
sor and we designed the potential datapath and structure. However, due to time limitations
this processor design was not implemented. Figure 5.1 (a) shows the designed datapath for

this processor. In this datapath, the filter coefficients are stored in RAM R4 and RAM R5
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while the intermediate signals are stored in RAM R2 and RAM R3. Moreover, the dual-
port memory RAM R1 keeps the output samples. Figure 5.1 (b) shows the datapath of the
arithmetic unit of this processor which was implemented for performing the matrix opera-
tions in the Section 4.6.1 of this thesis. This arithmetic unit can perform complex additions,

complex-by-complex products and real-by-complex products.

II:latgpg'ch_ _________________ - Arithmetic Unit

Figure 5.1: (a) Datapath of the proposed pipelined IIR filter processor, (b) Datapath of the
arithmetic unit.

Figure 5.2 shows the control unit of the proposed pipelined IIR filter processor. In
this control unit, the instructions are the stored in the memory RAM R6. A section of
this memory is allocated to the interrupt service routine (ISR) that is mainly used for the
construction and initialization of the IIR filters. The memory RAM R7 will store the micro-

instructions, and RAM R8 is the stack that is mainly used for the function calls.

__‘_'_ _________________ -

L|RAMER6|" SRAMR7 SRAMRs[ T RAMRs | JRAMR10o[ |

r
I
# of block: bik stretre | 2
| ISR = :ase‘:actrs next blk ptr § :
| o #of blocks | — blk strctre o
= b tr 3 nextblk ptr| =
| - 3¢ 4 R H gl |
1| 82 3 3 > = 5| |
g s 3= 9 @ i
1 88 || 2¢ ~ DRl Lo |E] !
1| <8 S 8 Bl |
= # of blocks bk stretre | 3.
| base ptr next blk ptr | ® |
| vy 8 T !
— !
I Instruction Decoder <-|—9
=h | & —=h
L )
a | Control Logic | Q
— el —
I ]

Interrupt Control Unit

Figure 5.2: Control unit of the proposed pipelined IIR filter processor.
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Instruction Description Instruction Description

: Run filter if active
Nop ’P‘:r:::::trlso-nnone RUNFA Parameters: input, output, FILTER
- Run filter if input active
WAILT ‘png.:,::;rt:r:.vﬁles' RUNFIA Parameters: input, output, FILTER
Jump to ADR, Run filter if output active
mp Parameters: Z\DR RUNFOA Parameters: input, output, FILTER
IMPI Jump to ADR if inactive, Move a value to a biquad register
Parameters: ADR, FILTER MOVE Parameters: regID, bqdNo, val
REP Repeated Procedure call Allocate a biquad to a given filter
Parameters: ADR, N ALLOC Parameter: FILTER
Procedure call Remove last biquad
CALL Parameters: ADR RMV Parameters: FILTER
RET s::::eters' none RST Reset all internal memories
RUNF Run filter

Parameters: input,output, FILTER

Figure 5.3: Basic instruction set for the proposed IIR filter processor.

In this processor, we suggest that the filter structure be stored as a linked-list so that
addition and extraction of first- and second-order sections can be performed easily. This
way the filter order can be adjusted dynamically and several filters of various orders can
be implemented. Moreover, the input/output activation flags are allocated to filters, not to
individual sections of each filter. Using this linked-list structure enables the filter processor
to control the rate of execution for individual sections of each filter. In the control unit in
Figure 5.2, RAM RO stores structures that record the number of blocks of first- or second-
order sections of each filter. These structures also store the number of blocks in each filter.
The linked-list that keeps the address of the filter blocks and the structure of each filter
block, which is whether this block belongs to a first-order section with complex coefficients
or it belongs to a second-order section with real coefficients, is stored in RAM R10.

Figure 5.3 summarizes the basic instruction set of this filter processor. The basic in-
structions for performing one cycle of the operations of an IIR filter are RUNF, RUNFA,
RUNFIA, and RUNFOA that read one sample from the specified input (constant 0, processor
input, frequency tone, etc.) and writes one sample to the specified output. The filter struc-
tures are built using the ALLOC, RMV, and MOVE instructions. Finally, some instructions
for flow control and function call are assigned, including some instructions (e.g., REP) that

are necessary for interpolation or decimation operations.
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5.2.2 Extensions on AOA and Phase Distribution

In this thesis we presented several architectures for the efficient simulation of different
single-antenna channel models. More specifically, we discussed sum-of-sinusoids (SOS)
based and filter-based simulation of Rayleigh and Rician fading channels. Finally, we dis-
cussed the hardware simulation of Nakagami-m and Weibull fading channels.

The scope of our single-antenna fading channel simulation, however, was limited to
the most common models in which the AOA was either uniformly distributed or followed
the von Mises distribution [91]. Other than these two distributions, several other models
including the geometrically-based PDFs [128, 129], Gaussian PDF [130], quadratic PDF
[131], Laplace PDF [120], and cosine PDF [132], have also been proposed to model the
distribution of AOA.

In Chapter 3, we proposed an architecture for the efficient conversion of Rayleigh
fading samples to Nakagami-m and Weibull fading samples. Beaulieu assumed that in a
Nakagami-m fading channel, the phase of the complex Nakagami-m fading samples is uni-
formly distributed [42,43]. However, a study by Yacoub [285] suggests that the phase of
Nakagami-m samples is not uniformly distributed when m # 1. This work could be con-
tinued by researching new ways to incorporate other proposed PDFs for the AOA in the
fading models. Finally, new ways need to be found to ensure that the generated Nakagami-

m fading samples have the appropriate phase distribution.

5.2.3 Radio-Frequency Multi-Node Fading Channel Simulator

Another possible extension of the work in this thesis is to develop models and platforms for
the simulation of wave propagation between more than two wireless systems. Such a fading
simulator could be used not only for the testing and development of wireless devices, but
also for testing interoperability and inter-compatibility between different devices and also
for the development of higher-level networking protocols.

Essentially, the number of wireless links grows with the square of number of nodes
in a network of wireless devices. Hence, the computational intensity of simulating wire-
less networks grows quickly with the number of nodes in the network. Fortunately, with
the compact and efficient designs provided in this thesis, it is possible to simulate a large
number of fading channels on a single FPGA device. However, additional storage capacity
might be necessary if long delays need to be implemented for networks that are distributed

over larger areas.
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We have successfully developed fading channel simulators for single and multiple-
antenna transceivers. To extend the current fading channel simulators to a multi-node fading
simulator, we would need to add the capability of incorporating more detailed fading chan-
nel models to the current fading channel simulator. Moreover, the baseband simulation of
large networks with distributed fading simulation that are connected with digital links can
be challenging due to digital timing and clock distribution issues. We suggest that such a
multi-node fading simulator should be implemented in baseband, with distributed fading
simulators that are interconnected using intermediate frequency (IF) links. Also, radio fre-
quency (RF) sections need to be added to the current fading simulator for interfacing the

system to general wireless devices.
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Figure 5.4: Diagram of a multi-node fading channel simulator.

Figure 5.4 shows a diagram of the proposed fading simulator. This fading simulator
could be used not only for the testing of individual transceivers, but also for testing inter-
operability and inter-compatibility of a relatively large number of nodes, for media access

control (MAC), and physical layer (PHY) protocol design. In the diagram shown in Fig-
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ure 5.4, the fading effects on the transmitted signal from node A to the rest of the nodes
are simulated in the local Multipath-Multinode Fading Emulator. Then each
faded stream is routed to the target device through the Signal Switch. This process
is controlled by the central Emulation Controller thatrealizes different fading sce-

narios corresponding to different physical environments.
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Appendix A

List of Publications

Co-Authorship Statement

The research on fading channel simulation at the HCDC and VLSI labs was first started
by Dr. Amirhossein Alimohammad and Dr. Bruce Cockburn. Their original research was
focused on hardware simulation of isotropic single antenna fading channels using the sum-
of-sinusoids method and the filter-based approach.

In this thesis, the original work was extended in several directions. We proposed espe-
cially compact fading channel simulators that went beyond Dr. Alimohammad’s work. We
proposed faster, more compact (more than 95%), and more accurate fading simulators for
isotropic and non-isotropic scattering. We also proposed elastic designs, multiplication-free
designs, differential designs, and multiple-antenna fading simulators. We also covered frac-
tional delay simulation and proposed a new design procedure for fixed-point filter design.

The publications that originated from this work incorporate materials that result from joint
work. Dr. Bruce Cockburn, my supervisor, provided us with supervision, guidance, new
ideas, and overall verification of the publications. Dr. Amirhossein Alimohammad helped
us with new ideas, simulation, structure, and verification of our publications. Finally, Dr.
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