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Abstract

Under suitable geological conditions and depending on the modeling goals at the

project’s current phase, a geological modeler could justifiably choose to estimate

natural resource concentrations by building geostatistical models on a 2D grid rather

than a 3D grid. While the application of these 2D models is limited only to resource

estimation, they take less time for a modeler to build and while generating similar

overall results to 3D models, are simpler to build. Thus, in geological domains that

have a flat and layer-like geometry, i.e., tabular mineral deposits, modelers might

prefer these 2D models to 3D models.

While the implementation of 2D geostatistical modeling in these geological do-

mains is well established, the quantification of uncertainty in these workflows is not,

especially in comparison to 3D models in the same domains. Since the uncertainty in

final resource estimations is a critical economic factor in deciding the feasibility and

risk of investing in a mineral/hydrocarbon extraction campaign, an understanding of

differences in uncertainty quantification between 2D and 3D models allows modelers

to make informed choices on which type of modeling workflow is most appropriate

for their specific project.

To make a comprehensive comparison of uncertainty quantification in 2D and

3D modeling, all aspects of uncertainty are considered and grouped into three cate-

gories: uncertainty in model parameters, uncertainty in the geometry, and residual

uncertainty (which is the uncertainty in the models that include no parameter un-

certainty). These categories are analyzed through two lenses: firstly, by building 2D

and 3D models in the McMurray formation of Northern Alberta as a case study and
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analyzing the results, and secondly, by looking at each category separately through

analytical tests.

The results show that the smaller size of the 2D domain and data set leads to

higher uncertainties in some categories, such as histogram uncertainty or residual

uncertainty. However, this is not necessarily true in other categories, such as the un-

certainty in the geometry, and uncertainty could be higher in the 2D or 3D workflow

depending on modeler choices and domain characteristics. In the case study, the 3D

workflow shows almost identical overall global uncertainty in the results compared to

the 2D workflow. This emphasizes the importance of incorporating full uncertainty

quantification in the results to have realistic resource estimations while indicating the

loss of information in the 2D workflow that causes higher uncertainties in some aspects

of the workflow. Additionally, the results from analytical tests provide some insight

into contributing factors to differences between uncertainty quantification in 2D and

3D workflows, such as the vertical size of the domain, degree of vertical spatial con-

tinuity, and sample density that have an impact on the degree of differences between

the two workflows. By considering these factors, the modeler could make a more

informed decision on the type of workflow for their project with an understanding of

probable differences between the two workflows.
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Chapter 1

Introduction

1.1 Motivation and problem statement

Every natural resources extraction project, such as open-pit and underground mines

and in-situ oil extraction projects, is developed based on an understanding of the spa-

tial distribution of valuable minerals and hydrocarbons in the geological domain under

consideration (Pyrcz and Deutsch 2014; Rossi and Deutsch 2014; Darling 2011). This

understanding usually takes the form of block models of the subsurface that contains

estimated values of variables such as grades of metals and oil saturation (Pyrcz and

Deutsch 2014; Rossi and Deutsch 2014). These block models also provide a global

estimation of the total tonnage of material and other variables which leads to some

estimation of the contained resources, which in turn is a major factor in deciding the

feasibility of investing in and extracting the resource under consideration (Pyrcz and

Deutsch 2014; Rossi and Deutsch 2014). One common way to construct these block

models is through geostatistical modeling of these variables through relevant estima-

tion and simulation workflows, which is the methodology followed in this research

(Journel and Huijbregts 2003).

Most natural resource concentrations extend in three dimensions, which means to

properly model and capture the spatial distribution of petrophysical properties and

geological features, it is best to create 3D models of those resource concentrations

(Journel and Huijbregts 2003). Such models are vital in many applications of geosta-

tistical modeling, including flow simulations and mine schedules, and while they act

as a basis for extraction campaigns of mining and petroleum resources, they are also

the best way to apply and use all types of geospatial data (Journel and Huijbregts
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2003; Pyrcz and Deutsch 2014). However, the process of creating 3D models in many

cases can become too complex or computationally exhaustive (Ren et al. 2006). Many

geological domains require fine-scale models, sometimes with grid cells in the order of

centimeters, to capture the spatial variability of geological features. Creating models

of these cells in domains that extend for multiple kilometers laterally and hundreds

of meters vertically could be difficult. Plus, considering many important aspects of

geostatistical modeling, like parameter uncertainty, could also be daunting in large

3D models (Ren et al. 2006).

On the other hand, in certain geological domains where the resource concentration

has a flat and layer-like geometry that already demonstrates 2D characteristics and

features, modelers could choose to model the domain on a 2D grid as an alternative to

a 3D grid. An example of these geological domains is a stratigraphic formation where

multiple strata are laid in parallel to each other over time and show a high degree of

horizontal continuity along those layers (Mallet 2004). There are multiple examples

of both mineral and hydrocarbon resource concentrations that are located within

these types of geological structures (Figure 1.1). In the opening stages of assessing

the economic viability of a mineral or hydrocarbon deposit where more advanced

applications of geostatistical models such as flow simulation and mine scheduling

are still far in the future and the modeling goal is mostly limited to gaining an

approximate understanding of the economic potential and volume of resources in a

domain, 2D models tend to be highly useful (Rossi and Deutsch 2014).
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Figure 1.1: A photo taken from the Steepbank River in the McMurray formation of
Northern Alberta, an example of a stratigraphic domain where multiple horizontal
layers are laid in parallel to each other over time. The upper McMurray, middle
McMurray, Devonian, and Wabiskaw layers can be seen here. This domain is the case
study for this research and is a suitable candidate for 2D modeling (Langenberg et
al. 2002).

The main advantage of modeling on a 2D grid rather than a 3D grid is that building

2D models take much less time for the modeler due to reduced complexity and smaller

size of the domain and data sets (Ren et al. 2006). Additionally, this leads to less

possible ground for errors in parameter selection and modeling decisions in the 2D

workflow. However, transforming samples from a 3D to a 2D setting would inevitably

lead to a loss of information in the process. Using samples initially collected in a

3D space on a 2D grid requires some form of grouping or averaging of the original

samples until a single sample would be representing each well/borehole in the 2D

data set. This grouping of samples from the 3D space to the 2D space leads to a

reduction in the data set size that carries some inevitable loss of information with it.

For instance, this would potentially remove many outlier samples that might indicate

the presence of high-grade zones. Additionally, the use of these 2D models is limited
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to resource estimation as most other applications of geostatistical models requires a

full 3D model of the subsurface.

In most modern geostatistical analyses, rather than creating a single model using

estimation methods such as Kriging or Inverse Distance Weighting, multiple models

or realizations are constructed that are meant to honor the input statistical proper-

ties of the data, like reference histogram and variogram (Pyrcz and Deutsch 2014).

Here, uncertainty in the estimations is quantified by these equiprobable realizations,

where each realization would yield a different estimation of the resource and the full

distribution of these estimations gives a range of estimations for that resource (Pyrcz

and Deutsch 2014; Rossi and Deutsch 2014; Khan and Deutsch 2015)(Figure 1.2).

While in the past these realizations used constant input statistics and uncertainty

was recognized only as the ergodic fluctuations from Monte-Carlo simulations, it is

now understood that such an approach would lead to an underestimation of uncer-

tainty (Pyrcz and Deutsch 2014; Rossi and Deutsch 2014; Khan and Deutsch 2015).

Modern geostatistical workflows are expected to also account for uncertainty in input

statistics to perform a more comprehensive uncertainty analysis (Pyrcz and Deutsch

2014; Rossi and Deutsch 2014; Khan and Deutsch 2015).

One of the reasons that 2D models are a suitable and frequently used option under

the right geological conditions is the fact that 2D and 3D models tend to produce

highly similar results when it comes to the averages of multiple resource estimations

without parameter uncertainty (Mondal et al. 2015). However, the two workflows

have been observed to generate significantly different results when it comes to the

uncertainty in probabilistic resource estimations, usually with 2D models typically

showing higher uncertainty in the results. Multiple undocumented studies have re-

peatedly demonstrated this disparity in different geological domains and with different

modeling choices and frameworks (Figure 1.3).

Because the uncertainty of the distribution of resource estimations is a critical eco-

nomic parameter that acts as the basis of assessing the risk associated with investing

in a potential mineral or hydrocarbon resource, this disparity between uncertainty

in the results of the two workflows makes the choice between them a highly conse-

quential and critical decision for the modeler (Pyrcz and Deutsch 2014; Rossi and

Deutsch 2014; Khan and Deutsch 2015). If the 3D model is underestimating uncer-
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Figure 1.2: An illustration of probabilistic resource estimation, where instead of just
one model of a variable of interest (Original Oil In Place in this figure), multiple
models are created (the top plots), and their distribution is used to estimate a resource
(the bottom plot).

tainty, it would be in turn underestimating the risk associated with the deposit or the

reservoir, while if the 2D workflow is overestimating uncertainty, it would be giving

an unrealistic range of positive or negative outcomes. Both cases are hazardous to

any investment in a mineral or hydrocarbon resource and can greatly diminish its

profitability.

The long-lasting negative impacts of an incorrect assessment of uncertainty moti-

vate the need to reconcile and explain any disparity that exists between 2D and 3D

models. Since there are certain advantages with both workflows, modelers should be

able to make an informed decision when it comes to the uncertainty of the results
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Figure 1.3: An example of estimations of Original Oil In Place (OOIP) (m3)from 100
realizations in 2D (red) and 3D (blue) workflows (without parameter uncertainty),
where the averages of the 100 estimations are almost equal but the variances show
higher uncertainty in 2D results.

generated by these workflows. The purpose of this research is to explain disparities

and differences in the quantification of uncertainty in 2D and 3D models. Due to the

importance of uncertainty in model parameters and input statistics, the two mod-

els are compared with consideration of all relevant aspects of parameter uncertainty

(Pyrcz and Deutsch 2014; Khan and Deutsch 2015).
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1.2 Literature review

In this section, an introduction to the existing literature on probabilistic resource

estimation uncertainty is added with previous attempts at comparing 2D and 3D

modeling of geological domains using geostatistical tools to identify the research gap

that this thesis aims at addressing. Additionally, the review of existing works on

parameter uncertainty in geostatistical analysis helps identify significant aspects of

parameter uncertainty that will be incorporated into this research and the right ap-

proach to quantifying their contribution.

1.2.1 Resource modeling

There are generally two approaches to natural resource modeling, geological and geo-

statistical modeling (Pyrcz and Deutsch 2014). The theory of geostatistical modeling

was developed based on a need for numerical modeling of geological phenomena in

pioneering works such as Krige (1951) and Journel and Huijbregts (2003), which have

laid the foundation of geostatistical modeling. The basis of geostatistical modeling

lies in spatial variability and dependency of variables, as laid out by Hohn (1991) and

David (2012). This theory is itself based on the theory of the regionalized variables

laid out by Matheron (1971) and is the basis for estimation methods such as Krig-

ing (Krige 1951). In this context, samples of spatial variables are used to determine

the covariance structure to provide estimated values of those variables in the entire

domain (Matheron and Blondel 1962). This theory was developed further by Jour-

nel and Huijbregts (2003) into the foundations of resource modeling and estimations

using geostatistics. As an alternative to estimation methods, Journel (1994a) and

Journel (1996) laid out the methodology for resampling from stochastic simulations,

which is the theoretical framework for simulation methods that exist today and allows

for the incorporation of uncertainty into the geostatistical modeling workflow.

1.2.2 2D modeling

Multiple previous works have explored the advantages of 2D modeling and developed

the workflows to implement it. Langenberg et al. (2002) detailed a 2D mapping

approach to model large domains to generate resource estimations, specifically with
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a focus on the oil sands of Northern Alberta, and how it could be implemented as an

alternative to 3D modeling due to its simplicity. Bertoli et al. (2003) also reviewed

the process of implementing 2D modeling on the 1A Shoot Nickel deposit in Western

Australia and found significant advantages in 2D modeling, such as the lack of bias

due to non-additivity. Mondal et al. (2015) reviewed the process of 2D geostatistical

modeling in Western Onland Oil Field, India and compared the result of Kriging and

E-Type mean from simulated realizations in 2D with the results from 3D modeling and

found similarity in the averages, but no comparison of uncertainty quantification was

provided. Multiple papers such as Harris and Perkins (1991) and Wang et al. (2022)

have reviewed the process of upscaling 2D models and images to a 3D framework or

building 3D models based on 2D images.

1.2.3 Parameter uncertainty

There has been extensive research in the areas of parameter uncertainty and uncer-

tainty quantification in geostatistical modeling in general. Since early works in this

area such as Journel (1996), Ballin et al. (1992), and Journel (1994b), geostatistics

with uncertainty have grown to new heights and specific attention is being paid to

parameter uncertainty (Chiles and Delfiner 2009). Wang and Wall (2003) show that

if no parameter uncertainty is included in the workflow, the global uncertainty in the

results is understated, and Babak and Deutsch (2009) further point out that a lack

of parameter uncertainty leads to fluctuations above and below the average to cancel

out and imply a small uncertainty in the final results. These works and others such

as Khan and Deutsch (2015) and Wang et al. (2022) all point out the importance of

including parameter uncertainty in a geostatistical modeling workflow.

One approach toward parameter uncertainty is to use maximum likelihood and

Bayesian inference methods. Dowd and Pardo-Igúzquiza (2002) developed a method

whereby inferring model parameters through maximum likelihood algorithms pro-

vides a way to estimate parameter uncertainty by including them in conditional sim-

ulation procedures. Diggle and Ribeiro Jr (2002) also developed a similar method

where through Bayesian inference, model parameters and the uncertainty associated

with their selection were captured and incorporated. Other than these Bayesian-

based methods, another common method of accounting for parameter uncertainty
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(specifically uncertainty in the reference distribution) is to resample the reference

distribution, which leads to a measure of histogram uncertainty. Spatial bootstrap is

the most common method in this category, which is developed on an earlier version

of the bootstrap (Journel and Bitanov 2004; Efron and Tibshirani 1994). In this

method, the reference distribution is resampled through several unconditional sim-

ulations and based on the spatial continuity of the variables. However, it has been

demonstrated that spatial bootstrap leads to excessive uncertainty, and in response,

other methods have been developed such as Babak and Deutsch (2009) that develops

a conditional finite domain (CFD) method and Khan and Deutsch (2015) that focuses

on the posterior uncertainty after the simulation workflow as a reference to the true

uncertainty.

Another important aspect of parameter uncertainty is variogram uncertainty, which

is in essence uncertainty in the covariance structure that is the input to many spatial

unbiased predictors, such as Kriging (Wang and Wall 2003). Since the covariance

structure, like the reference distribution, is derived from the sampled data set and

is not inherently and exactly known, the experimental variogram and the variogram

models that are based on this covariance structure are also uncertain (Wang and

Wall 2003). While there have been many works in this area to incorporate and

include variogram uncertainty in resource estimations, in many cases, especially in

domains that are densely sampled, the true global uncertainty arising from variogram

uncertainty is found to be often negligible (Putter and Young 2001).

1.3 Thesis outline

This research is focused on providing a detailed and comprehensive comparison of un-

certainty quantification between 2D and 3D geostatistical modeling workflows, specif-

ically as it relates to probabilistic resource estimation. This is achieved through both

numerical and analytical comparison of uncertainty quantification in different aspects

of parameter uncertainty between the two workflows and providing explanations into

possible differences and contributing factors to these differences.

To explain differences and make comparisons, 2D and 3D geostatistical modeling is

implemented with a full range of parameter uncertainty and aspects of uncertainty are
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grouped into three main categories: uncertainty in model parameters, uncertainty in

geometry, and residual uncertainty (the uncertainty in the results that are generated

using no parameter uncertainty, which primarily comes from random fluctuations

of Monte-Carlo simulations (Journel and Huijbregts 2003; Journel and Kyriakidis

2004a)). The results are compared between 2D and 3D workflows both using an-

alytical tests and a numerical case study at the McMurray formation of Northern

Alberta.

Chapter 2 focuses on the methodology of 2D and 3D geostatistical modeling and the

differences between the two workflows in probabilistic resource estimation. Chapter 3

presents numerical results from the case study while Chapter 4 focuses on the results

of some test cases that are set to compare histogram and residual uncertainty in

2D and 3D workflows, which provides some insight into differences between the two.

Chapter 5 discusses a new methodology for pairing samples to provide a more optimal

variogram, which was developed and used through this research as the need for better

variogram calculation came up. Finally, Chapter 6 presents the overall results and

conclusions and possible future works.

The case study for this research is at the McMurray formation of Northern Alberta.

The Lower Cretaceous McMurray formation in north-eastern Alberta is home to one

of the largest oil accumulations in the world, the Athabasca oil sands (Masliyah et

al. 2011). Proven oil reserves in the entire province of Alberta are estimated at 165.4

billion barrels (bbl), while most of the profitable reserves lie in the Athabasca oil

sands (Masliyah et al. 2011). The oil sands are currently under two main methods

of production: surface mining and in-situ extraction methods (Masliyah et al. 2011).

The McMurray formation sequence in the Athabasca oil sands are remnants of coastal

plains of a large fluvial drainage system (Ren et al. 2006). This formation has an

average thickness of 50 meters and mostly consists of unlithified quartz sand and

shale (Ren et al. 2006). This formation is highly uncemented, with porosity going as

high as 35 percent (Ren et al. 2006). There are three main facies in this formation

which in ascending order are: Thick-bedded sand facies, Epsilon cross-stratified facies,

and Argillaceous sand facies (Ren et al. 2006).
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Chapter 2

Methodology

In this chapter, the methodology followed in this research is explained with each

step in the geostatistical modeling process in both 2D and 3D settings described in

detail. While the steps are relatively general to any natural resource concentration

with the potential of modeling on a 2D grid, many steps and decisions are specific

to the McMurray formation, which is the subject of the case study and focus of this

research.

Figure 2.1 demonstrates the geostatistical modeling workflow and resource estima-

tion in a 2D setting. In this figure, the green box refers to the process of generating

simulated realizations of the continuous variables on a 2D grid, which is laid out in

more detail in Figure 2.3. Continuous variables are the spatial variables that are

used in resource estimation and are sampled in the domain. The yellow box refers

to the process of modeling thickness (m) (the vertical length of the reservoir), which

is simulated as a continuous variable in a workflow like the one depicted in Figure

2.3 on a 2D grid. Realizations of thickness are the representation of the domain’s

volumetric geometry on a 2D grid, and these realizations are used along with those

of the continuous variables to generate resource estimations.

Figure 2.2 presents the same overview of geostatistical modeling and resource esti-

mation on a 3D grid. The green box in this figure lays out the process of simulating

continuous variables (Figure 2.3), and the yellow box refers to the process of modeling

the geometry of the domain in a 3D grid, which is a combination of modeling bound-

ing surfaces and thickness. In the 3D workflow, simulations of continuous variables

are generated separately for each rock type or facies and are clipped to realizations of
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the rock type, in addition to being limited to simulated realizations of the geometry

of the reservoir.

2.1 Preparing the 2D 
data set by grouping 
original samples and 

calculating thickness at 
sample locations

2.3 Declustering of 2D 
samples

2.4 Modeling continuous 
variables to generate n

realizations

2.5.1 Modeling Thickness
to generate n realizations 

of the geometry of the 
reservoir/deposit on a 

2D grid

2.7 1st resource 
estimation using 2D 
simulated realization 

number 1 and 1st

realization of Thickness

2.7 2nd resource 
estimation using 2D 
simulated realization 

number 2 and 2nd

realization of Thickness

2.7 nth resource 
estimation using 2D 
simulated realization 

number n and nth
realization of Thickness

Figure 2.1: A general depiction of geostatistical modeling on a 2D grid. The steps
are numbered with the corresponding following sections.
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2.1 Preparing the 3D 
data set by 

compositing original 
samples within each 

lithofacies

2.2 Stratigraphic 
coordinate 

transformation of 
samples

2.3 Declustering of 3D 
samples

2.6.1 Indicator variography 
for the lithofacies

2.6.2 Spatial bootstrap of 
lithofacies’ proportions to 
generate multiple sets of 

proportions

2.6.3 1st Sequential 
Indicator Simulation 
(SIS) realization using 
the global proportion 
from 1st bootstrapped 

distribution

2.4 Modeling 3D 
continuous 

variables within 
lithofacies 1

2.5.3 and 2.6.4 Clipping 
1st simulated 
realization of 

continuous variables in 
all lithofacies to the 1st

lithofacies and 1st

simulated realization of 
the geometry

2.5.3 and 2.6.4 Clipping 
2nd simulated 
realization of 

continuous variables in 
all lithofacies to the 2nd

lithofacies and 2nd

simulated realization of 
the geometry

2.5.3 and 2.6.4 Clipping 
nth simulated 
realization of 

continuous variables in 
all lithofacies to the 

nth lithofacies and nth
simulated realization of 

the geometry

2.5.2 Modeling the 
geometry of the 

reservoir/deposit on a 
3D grid to generate n
simulated realizations2.6.3 2nd Sequential 

Indicator Simulation 
(SIS) realization using 
the global proportion 

from 2nd bootstrapped 
distribution

2.6.3 nth Sequential 
Indicator Simulation 
(SIS) realization using 
the global proportion 

from nth bootstrapped 
distribution

2.7 1st resource 
estimation using 3D 
simulated realization 

number 1

2.7 2nd resource 
estimation using 3D 
simulated realization 

number 2

2.7 nth resource 
estimation using 3D 
simulated realization 

number n

2.4 Modeling 3D 
continuous 

variables within 
lithofacies n

2.4 Modeling 3D 
continuous 

variables within 
lithofacies 2

Merging all realizations 
of continuous variables 

within all lithofacies

Figure 2.2: A general depiction of steps in geostatistical modeling on a 3D grid. The
steps are numbered with the corresponding following sections.
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2.4.1 Gaussian 
transformation of the 
continuous variables

2.4.2 Modeling the trend of 
the Gaussian-transformed 

variables

2.4.3 Calculating the 
residuals of the Gaussian-

transformed variables

2.4.5 Second Gaussian 
transformation of Gaussian-
transformed residuals using 
bootstrapped distribution 

number 1 

2.4.6 Variography of the 1st set 
of second Gaussian-

transformed residuals

2.4.7 1st Sequential Gaussian 
Simulation (SGS) using the 

second Gaussian-transformed 
residual number 1

2.4.8 Two Gaussian back-
transformations and adding 

the trend values to the 
simulated realization number 

1

2.4.5 Second Gaussian 
transformation of Gaussian-
transformed residuals using 
bootstrapped distribution 

number 2 

2.4.6 Variography of the 2nd

set of second Gaussian-
transformed residuals

2.4.7 2nd Sequential Gaussian 
Simulation (SGS) using the 

second Gaussian-transformed 
residual number 2

2.4.8 Two Gaussian back-
transformations and adding 

the trend values to the 
simulated realization number 

2

2.4.5 Second Gaussian 
transformation of Gaussian-
transformed residuals using 
bootstrapped distribution 

number n 

2.4.6 Variography of the nth
set of second Gaussian-
transformed residuals

2.4.7 nth Sequential Gaussian 
Simulation (SGS) using the 

second Gaussian-transformed 
residual number n

2.4.8 Two Gaussian back-
transformations and adding 

the trend values to the 
simulated realization number 

n

2.4.4 Spatial bootstrap of 
the Gaussian-transformed 

residuals 

Figure 2.3: A general depiction of steps in the simulation of continuous variables.
The steps are numbered with the corresponding following sections.

The case study is on an 8*8-kilometer domain in the McMurray formation of North-
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ern Alberta. There are 393 vertical wells and 268549 samples within this domain of

two continuous variables, effective porosity (ϕ) (ratio) and oil saturation (So) (ratio),

as well as five lithofacies as the categorical variable (clean sand (1), sandy HIS (2),

sand with 30-70 percent mud (3), mud (4), and breccia (5)). Elevations of the top

of the continuous reservoir (TCR) (m) and the bottom of the continuous reservoir

(BCR) (m) are also available for each well, which in turn leads to values of thickness

for each vertical well, which is the third continuous variable in the 2D workflow. The

workflows are implemented in 100 realizations using aerial grid dimensions of 50*50

meters in both 2D and 3D workflows and 1 meter in the vertical direction for the 3D

workflow.

2.1 Preparing data sets

The first step is to transform the input samples collected from the domain into 2D

and 3D settings. Figure 2.5 demonstrates a plan view of the vertical wells in the

domain. The 3D data set is prepared by compositing hard data samples taken from

wells. This includes both categorical, such as facies or rock types, and continuous

spatial variables, such as effective porosity and oil saturation. This step also includes

other auxiliary tasks such as data cleaning and outlier management. In the case

study, samples are composited to 1-meter intervals and with a 40 percent minimum

acceptance rate.

The 2D data set is generated by combining samples along the length of the con-

tinuous bitumen. In the case study, samples within the continuous reservoir of the

McMurray formation are averaged to form the 2D data set (Figure 2.4), with one

sample representing each well.
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Figure 2.4: An example of a well with 14 samples of effective porosity between the
TCR and BCR surfaces. These samples are averaged to produce a single sample in
the 2D data set. The difference between the elevation of the TCR and BCR surfaces
is the thickness of the reservoir in that well.

16



Figure 2.5: A map of the spread of sample wells in the domain, with averaged values
of oil saturation in the 2D data set.

When a spatial variable that is sampled in a 3D space is transformed into a 2D

setting by averaging those initial samples, the distribution of the values of that spatial

variable would end up with lower variability. In this process, many of the extreme val-

ues that define the upper and lower ends of the 3D distribution are merged with other

samples. Figure 2.6 illustrates an example of this, where the 2D and 3D distribution

of effective porosity in the case study are plotted together.
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Figure 2.6: The distribution of effective porosity in the 2D and 3D data sets. The
average is the same in both settings but the variance is smaller in 2D, which is due
to averaging.

Apart from effective porosity and oil saturation, another variable that is used in

the 2D workflow is thickness. If the angle of the intersection of the well in the ground

is not perfectly vertical, the detected length might have to be converted to the true

thickness (Bertoli et al. 2003). In the 2D workflow, thickness represents the geometry

of the target resource purely from a volumetric perspective and is modeled along with

the other variables as a continuous variable (Figure 2.7).

18



Figure 2.7: A conceptual example of the cross-section view of the McMurray forma-
tion. The black area is the continuous reservoir with the TCR and BCR surfaces
pointed out in the picture. The outer brown area is the entire McMurray layer.

2.2 Stratigraphic coordinate transformation

In stratigraphic formations, such as that of the McMurray formation of Northern

Alberta, one necessary step in geostatistical modeling is to transform the coordinates

of samples to reflect the geological genesis of the formation. This process is called

stratigraphic coordinate transformation and involves the alteration of the elevation

of samples in relation to one or two bounding surface(s) (Latifi and Boisvert 2022).

In the case study, samples are shifted in relation to the top bounding surface of the

McMurray formation in the 3D data set. This step is exclusive to the 3D workflow.

The improvement in spatial continuity of effective porosity and oil saturation from

the data set can be seen in Figure 2.8.
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Figure 2.8: The experimental semi-variogram of the variables effective porosity and
oil saturation in the major and minor directions (azimuth of 0 and 90 degrees, re-
spectively) with original (blue) and stratigraphic (red) coordinates.

2.3 Declustering

After creating the 2D and 3D data sets, declustering must be implemented to have a

representative distribution of variables that is a key input in the Gaussian transfor-

mation of variables. While there are different approaches to declustering, cell declus-

tering was used in this research and the case study (Deutsch and Deutsch 2015).
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Cell declustering gives higher weights to samples in more sparsely sampled areas and

lower weights to samples in more densely sampled regions. This is accomplished by

dividing the sampled area into equal-length squares and giving equal weight to all

samples within each square which leads to densely sampled squares sharing the same

weight between more samples (Deutsch and Deutsch 2015).

While there are differences between 2D and 3D cell declustering, since wells are

vertical in the 3D data set, 2D cell declustering is implemented for both workflows

with cells of 500*500 meters based on well spacing. The differences between distribu-

tions of the variable oil saturation with and without the use of declustering weights

can be seen in Figure 2.9.

In some cases, the variables must also go through despiking to facilitate Gaussian

transformation in the simulation process but this is not needed in the case study of

this research.
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Figure 2.9: Distribution of oil saturation in 2D (top plot) and 3D (bottom plot) data
sets with (blue distribution and statistics on the right) and without (red distribution
and statistics on the left) the use of declustering weights.
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2.4 Modeling continuous variables

After creating the data sets and other necessary pre-modeling steps such as declus-

tering and stratigraphic coordinate transformation, the continuous variables must be

modeled in both 2D and 3D workflows. The steps outlined in this section are general

to every continuous variable in both 2D and 3D settings, and whenever any contin-

uous variable is modeled in this research, including effective porosity, oil saturation,

thickness, or surface elevations, the following workflow is followed regardless of the

nature of the variable.

2.4.1 Gaussian transformation

Declustering weights provide a representative distribution of continuous variables.

These variables must then be transformed into a Gaussian variable to model them in

the next subsequent steps. This transformation is necessary for Sequential Gaussian

Simulation (SGS) that leads to simulated realizations of the variables across the

domain (Pyrcz and Deutsch 2014).

2.4.2 Trend modeling

To account for the assumption of stationarity in the subsequent modeling steps, the

trends of the continuous variables must be modeled across the domain (Journel and

Huijbregts 2003; Pyrcz and Deutsch 2014; Rossi and Deutsch 2014). There are mul-

tiple approaches to trend modeling and a moving window averaging method is used

in this research (Manchuk and Deutsch 2011). It must be pointed out that while the

2D workflow only has an aerial trend model, the 3D workflow requires a 3D trend as

well. For the case study, a moving window of 4*4 kilometers with 70 percent of all

samples in 2D and 3D workflows was chosen. The results can be seen in Figures 2.10

and 2.12. Figures 2.11 and 2.13 illustrate the swath plots of these trend models in

relation to the reference data in the 2D and 3D models, respectively.

In theory, since the trend model uses as input several parameters and is thus

subjective to some degree, parameter uncertainty could also extend into trend model

uncertainty. In that case, each simulated realization is modeled using a different

trend model. In this research, trend model uncertainty was included and since its
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contribution to overall uncertainty was negligible, it was not incorporated in the final

results.

Figure 2.10: The areal trend model of the three variables in the 2D workflow.

Figure 2.11: The swath plots of the trend models in the 2D workflow in relation to
the reference data in the major (0 azimuth) and minor (90 azimuth) directions for
the three variables in the 2D workflow.
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Figure 2.12: The 3D trend model of the two continuous variables in the 3D workflow,
with plan views at the top and cross-sections at the bottom.
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Figure 2.13: The swath plots of the trend models in the 3D workflow in relation to the
reference data in the major (0 azimuth), minor (90 azimuth), and vertical directions
for the two variables in the 3D workflow.

2.4.3 Residual calculation

After the trend is modeled, the residual of the trend must be derived. In this research,

residuals are calculated by subtracting collocated trend values from sample values at

sample locations (McLennan 2007; Qu and Deutsch 2018; Wackernagel 2003; Harding

and Deutsch 2021).

2.4.4 Spatial bootstrap

As discussed in the introduction, to account for histogram uncertainty, the weighted

distribution of the residuals is used along with the variogram of the residuals to

generate multiple bootstrapped distributions (depending on the number of intended
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realizations) (Journel and Bitanov 2004; Vincent and Deutsch 2019). Figures 2.14

and 2.15 demonstrate these bootstrapped distributions along with the original resid-

ual distribution. In order to quantify histogram uncertainty in the final resource

estimations, the entire modeling workflow is implemented once with the inclusion of

histogram uncertainty (using multiple bootstrapped distributions), and once with-

out histogram uncertainty (using a fixed reference distribution) and the reduction in

overall uncertainty is measured to quantify histogram uncertainty.

Figure 2.14: 100 bootstrapped distributions (grey distributions) of the residual of the
continuous variables in the 2D workflow and the original reference distribution of the
residual (red distribution).

Figure 2.15: 100 bootstrapped distributions (grey distributions) of the residual of the
continuous variables in the 3D workflow and the original reference distribution of the
residual (red distribution).
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2.4.5 Second Gaussian transformation

Using the bootstrapped distributions generated in the previous step, the residuals of

the continuous variables are transformed into a Gaussian variable again. This time,

however, this transformation takes place multiple times, depending on the number

of intended realizations of the domain. Each transformation uses a separate boot-

strapped distribution from the previous step as a reference distribution that leads to

a separate Gaussian transformed variable.

2.4.6 Variography of the Gaussian residual

As was pointed out in the previous step since multiple bootstrapped distributions

of the original residual variable are used to generate multiple sets of Gaussian resid-

ual variables, each variable would lead to a different experimental variogram and

variogram model. This is utilized to incorporate variogram uncertainty, where each

Gaussian residual variable is used with a different variogram model in the SGS work-

flow to capture variogram uncertainty. The results can be seen in Figures 2.16 and

2.17. As is evident in these figures, the degree of variability in the variograms in the

2D workflow is much higher compared to the variograms in the 3D workflow. This is a

direct cause of the lower variability of bootstrapped distributions in the 3D workflow

compared to the 2D workflow, as illustrated in Figures 2.14 and 2.15. The larger

variability in bootstrapped distributions in the 2D workflow leads to more variability

in the Gaussian residual variables generated in section 2.4.5 and thus more variability

in the experimental variogram calculated from them.
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Figure 2.16: The results of Gaussian residual variography in the 2D workflow. The
red points indicate the experimental variogram for each Gaussian residual variable
and the blue lines refer to the variogram model fit to the variables. Since there are
100 realizations in the case study workflow, there are 100 experimental variograms
and 100 variogram models generated in this step here.
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Figure 2.17: The results of Gaussian residual variography in the 3D workflow. The
red points indicate the experimental variogram for each Gaussian residual variable
and the blue lines refer to the variogram model fit to the variables. Since there are
100 realizations in the case study workflow, there are 100 experimental variograms
and 100 variogram models generated in this step here.

2.4.7 SGS

Using each one of the Gaussian residual variables and its corresponding variogram

model, SGS is implemented and multiple simulated realizations of the continuous

variables are generated (Deutsch, Journel, et al. 1992; Gómez-Hernández and Journel

1993; Journel and Kyriakidis 2004b).

2.4.8 Back transformation

The simulated realizations generated in the previous step are in Gaussian residual

units and must be back-transformed into original units. To do this, the second Gaus-

sian transformation must first be back-transformed according to the corresponding

transformation table generated in section 2.4.5. Subsequently, the back-transformed

values which are in original residual units must be added back with the trend values

and reverse the process in step 2.4.3. Lastly, the final Gaussian back-transformation

is implemented using the transformation table generated at step 2.4.1. The results
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of these back-transformations are simulated realizations in the original units of the

continuous variable.

2.5 Modeling geological boundaries

Modeling the geometry and boundaries of a geological formation is a critical part of

geostatistical modeling and resource estimation and is also very diverse in nature and

approach (Pyrcz and Deutsch 2014; Rossi and Deutsch 2014). In general, since there

is uncertainty also in the modeling of the boundaries of a geological domain, it must

also include uncertainty to reflect a more realistic estimation of resources. In both 2D

and 3D workflows in this research, the geometry and boundaries of the domain are

modeled in a geostatistical workflow with the inclusion of all aspects of uncertainty.

2.5.1 2D geological boundary modeling

In this research, modeling geological boundaries in the 2D workflow is limited to mod-

eling the thickness of the continuous reservoir. Simulated realizations of thickness,

as generated in section 2.4, lead to a 2D understanding of the volume and geometry

of the reservoir and are directly used in resource estimation (Figure 2.18). While it

might be necessary to model the aerial boundaries of the domain as well, the McMur-

ray formation of the case study does not have a specific aerial lease limit and thus

this step is not included in the workflows.
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Figure 2.18: Six different realizations of thickness within the same domain. Each
realization of thickness leads to a different realization of the geometry of the domain.

2.5.2 3D geological boundary modeling

In this case study and based on the geological information available, realizations of the

elevation of the upper bounding surface are simulated on a 2D grid and following the

workflow laid out in section 2.4 and are added with the simulated value of thickness

at each grid node to infer elevations of the lower bounding surface. This process leads

to 3D simulated realizations of the geometry of the reservoir (Figure 2.19). Like the

2D workflow, no aerial limit is conceived for the reservoir.
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Figure 2.19: A cross-section of the average of 100 realizations of the reservoir in the 3D
model. Each point that falls within the boundaries of the reservoir gets an indicator
value of 1, and 0 if it falls outside. The averaging of these indicator realizations shows
the extent of the variation of the boundary surfaces within these realizations. The
dark red vertical lines represent exploration wells. Notice how the wells control the
realizations of the reservoir.

2.5.3 Clipping continuous variables to the boundaries of the
domain

Only in the 3D workflow, simulated realizations of variables are limited to the area

between upper and lower bounding surfaces, as generated in the previous section.

2.6 Modeling categorical variables

In most resource modeling projects, categorical variables, such as lithofacies or rock

types, carry significant geological information and are modeled in a geostatistical

workflow (Journel and Huijbregts 2003; Pyrcz and Deutsch 2014; Rossi and Deutsch

2014). The 2D data set is the product of averaging variables into a single sample per

well and the product of averaging facies in a well does not carry significant geological

information and cannot be properly modeled on a 2D grid. Thus, in this research,

categorical variable modeling is limited to the 3D workflow. In this section, a general

description of categorical variable modeling is explained. In the case study, five main

lithofacies form the primary categorical variable of interest: clean sand, sandy IHS,

sand with 30-70 percent mud, mud, and breccia.
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2.6.1 Indicator variography

In the context of categorical variable modeling, indicator variables are binary vari-

ables that indicate the presence of each instance (in this context lithofacies) of the

categorical variable at sample locations or simulated grid nodes. Figures 2.20 to 2.24

show the variograms of these indicator variables for the five lithofacies used in the

case study.

Figure 2.20: The experimental variogram of the indicator variable of the first litho-
facies used in the case study and the fitted variogram model.

Figure 2.21: The experimental variogram of the indicator variable of the second
lithofacies used in the case study and the fitted variogram model.
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Figure 2.22: The experimental variogram of the indicator variable of the third litho-
facies used in the case study and the fitted variogram model.

Figure 2.23: The experimental variogram of the indicator variable of the fourth litho-
facies used in the case study and the fitted variogram model.

Figure 2.24: The experimental variogram of the indicator variable of the fifth litho-
facies used in the case study and the fitted variogram model.

2.6.2 Spatial bootstrap

Similar to the continuous variable modeling workflow in section 2.4.4, spatial boot-

strap is also implemented on the categorical variables to generate several different

35



representative distributions that in turn lead to a number of different global propor-

tions of the categorial variables. These proportions are used as input in the Sequential

Indicator Simulation (SIS) workflow to incorporate histogram uncertainty in the cat-

egorical variable modeling workflow (Deutsch 2006).

2.6.3 SIS

Using the indicator variogram models, global proportions of the lithofacies generated

using the spatial bootstrap workflow, and the original samples collected in the 3D

space and composited, simulated realizations of the categorical variables are gener-

ated with a trend using the SIS workflow (Figure 2.25 show these trends used in the

SIS workflow and Figures 2.26, 2.27, 2.28, 2.29, and 2.30 show the swath plots for

these categorical trend models) (Deutsch 2006). In the continuous variable modeling

workflow and in section 2.4.6, each realization of spatial bootstrap leads to a sepa-

rate distribution of reference samples and a separate experimental semi-variogram.

The spatial bootstrap workflow in the categorical modeling workflow is implemented

differently, with each realization of spatial bootstrap leading to a different set of

global proportions for the lithofacies. These proportions are used directly in the SIS

workflow. Thus, unlike the continuous variable modeling workflow where there are

multiple experimental variograms that could capture variogram uncertainty, a single

indicator variogram is used here. In order to incorporate variogram uncertainty, pa-

rameters of indicator variogram models are selected randomly within a realistic range

of values that fit the experimental variograms but allow for variogram uncertainty to

be included.

36



Figure 2.25: A plan view of the trends for the five lithofacies used in the SIS workflow
at an elevation of 55 meters.
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Figure 2.26: The swath plots of the trend models for the first facies in the major
(0 azimuth), minor (90 azimuth), and vertical directions in relation to the reference
data.
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Figure 2.27: The swath plots of the trend models for the second facies in the major
(0 azimuth), minor (90 azimuth), and vertical directions in relation to the reference
data.
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Figure 2.28: The swath plots of the trend models for the third facies in the major
(0 azimuth), minor (90 azimuth), and vertical directions in relation to the reference
data.
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Figure 2.29: The swath plots of the trend models for the fourth facies in the major
(0 azimuth), minor (90 azimuth), and vertical directions in relation to the reference
data.
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Figure 2.30: The swath plots of the trend models for the fifth facies in the major
(0 azimuth), minor (90 azimuth), and vertical directions in relation to the reference
data.

2.6.4 Clipping continuous variables to categorical models

The workflow detailed in section 2.4 must be repeated for samples of continuous

variables within each facies. Then, to each grid node, the simulated value of the

continuous variables is assigned from the workflow of the facies that the simulated

result of the SIS workflow shows. For instance, if the simulated value of the categorical

modeling workflow shows the value of a grid node to be facies 2, the simulated values

of So and ϕ are assigned from the workflow of facies 2 to that grid node. Through this
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process, continuous variables are modeled within each facies separately as a different

domain.

2.7 Probabilistic resource estimation

After realizations of the continuous variables are generated and clipped by simulated

realizations of the boundaries of the reservoir and simulated realizations of lithofacies,

they can be used for resource estimation. In the case study, realizations of effective

porosity and oil saturation are multiplied at each 2D grid node with the realization

of thickness at that location to calculate the Original Oil In Place (OOIP) (m3).

This calculation is made using expression 2.1, where ϕ(u)is the effective porosity at

location u, So(u) is the oil saturation at location u, Thickness(u) is the thickness of

the reservoir at location u, and S(u) is the surface of the grid cell (m2) at location

u, for all locations of u at the domain. Expression 2.2 shows this calculation in a 3D

setting, where thickness is removed and V (u) is the vertical size of the grid cell (m)

at location u.

OOIP (m3) =
∑︂

(ϕ(u) ∗ So(u)∗Thickness(u)∗

S(u))∀u ∈ Domain
(2.1)

OOIP (m3) =
∑︂

(ϕ(u)∗So(u)∗

S(u) ∗ V (u))∀u ∈ Domain
(2.2)
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Chapter 3

Application of uncertainty
quantification

In this chapter, the analyses and workflows discussed previously to measure uncer-

tainty quantification in probabilistic resource modeling are implemented on a data

set of sampled wells in the McMurray formation as a case study. The main purpose

of the case study is to quantify the contribution of the three categories of uncertainty

to overall global uncertainty in the probabilistic resource estimation of OOIP in the

2D and 3D workflows.

To do this, probabilistic resource estimation is implemented in three cases: 2D

workflow, 3D workflow with no lithofacies, and 3D workflow with lithofacies (Figure

3.1). Since lithofacies are not included in the 2D modeling workflow, for better

comparison between 2D and 3D settings the results are generated with and without

the inclusion of lithofacies in the 3D workflow. This means that the steps outlined

in Chapter 2 related to modeling categorical variables are skipped and continuous

variables are simulated across the domain and within the geological boundaries. This

would also help determine the impact of uncertainty in the modeling of lithofacies in

the 3D workflow.
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Figure 3.1: A single realization of OOIP in 2D (top plot) and 3D (bottom plot). The
color bars indicate OOIP in cubic meters.

As discussed previously, the McMurray formation has a flat and layer-like geom-

etry and is considered a stratigraphic formation, which makes it an ideal candidate

for 2D modeling. Furthermore, modeling the McMurray formation on a 2D grid is

already common practice within the industry, and analysis of 2D and 3D uncertainty

quantification in this setting could be extra beneficial (Ren et al. 2006) (Figure 1.1).

3.1 Model checks and validation

The final simulated realizations generated in the methodology detailed in Chapter 2

need to be checked and validated before their results are interpreted. In this section,

some important checks and validations from the results are reviewed. These checks

consist of the reproduction of reference histograms, reproduction of variograms, re-

production of sample values, swath plots to inspect the reflection of trends in the
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results, and vertical proportion curves.

Starting with some visual inspections, Figure 3.2 is the average and variance of

simulated realizations of the three continuous variables in the 2D workflow. Figure

3.3 shows a single realization of the lithofacies in the 3D workflow. In this figure,

grid nodes that fall outside the geological boundaries are colored as white. The

visual checks show a general fidelity to sample value, but abrupt and very short-

range changes to simulated values, which is in line with the geological context of

the models and the variograms reviewed in Chapter 2, especially for porosity and oil

saturation.
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Figure 3.2: The averages and variances of 100 simulated realizations of continuous
variables in the 2D workflow. The black points represent sample locations.
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Figure 3.3: An example of the lithofacies simulations at specific plan views and cross
sections. The white cells indicate parts of the domain that are outside the boundaries
of the geological domain. The numbers indicate the five lithofacies: clean sand (1),
sandy HIS (2), sand with 30-70 percent mud (3), mud (4), and breccia (5)

Figures 3.4 and 3.5 demonstrate the histogram reproduction of the continuous

variables in the 2D and 3D without facies workflows, respectively. These histogram

reproduction plots indicate high fidelity to reference distributions, in terms of aver-

ages, standard deviations, and the distribution itself, with a range of uncertainty that

appears to be higher in the 2D workflow.

Figures 3.6 and 3.7 demonstrate the sample reproduction of the continuous vari-

ables in the 2D and 3D without facies workflows, respectively. The sample repro-

duction shows complete adherence to sample values. The points in these plots that

appear to show different realization values from the truth values are due to the fact

that these checks show several simulated values all in one plot and the simulation

software used in this research produces a simulated value for grid nodes where there

are more than one samples inside the node, hence different values for the same truth

value in those nodes.
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Figure 3.4: The histogram reproduction of the three continuous variables in the 2D
workflow.

Figure 3.5: The histogram reproduction of the two continuous variables in the 3D
workflow without facies.
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Figure 3.6: The sample reproduction of the three continuous variables in the 2D
workflow.

Figure 3.7: The sample reproduction of the two continuous variables in the 3D work-
flow without facies.

Figures 3.8 and 3.9 show the variogram reproduction in the 2D and 3D without

facies workflows, respectively. In these plots, the variogram of the simulated realiza-

tions is compared with both the reference experimental variogram and the variogram

model. As discussed in Chapter 2, a different variogram is used for each realization,

which is why there are several experimental variograms and variogram models in these

plots. In these plots, the reproduced variograms follow both experimental and model

variograms closely, with deviations happening in the short ranges. This is due to

sparse sampling and extreme changes in the very short ranges. Additionally, it also

appears that 2D simulations show higher variability in 2D than 3D.
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Figure 3.8: The variogram reproduction of the three continuous variables in the 2D
workflow in the major (0 azimuth) and minor (90 azimuth) directions.
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Figure 3.9: The variogram reproduction of the two continuous variables in the major
(0 azimuth), minor (90 azimuth), and vertical directions in the 3D workflow without
facies.

Figure 3.10 shows the proportion reproduction check for the lithofacies in the

simulated realizations, while Figure 3.11 shows the reproduction of the indicator

variograms of the five lithofacies.
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Figure 3.10: The reproduction of the reference proportions of the five lithofacies in
the simulations.
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Figure 3.11: The reproduction of the indicator variograms of the five lithofacies in
the horizontal (omni-directional variogram) and vertical directions.

Swath plots of the average of 100 simulated realizations of the continuous variables
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are plotted along with the reference data. Figure 3.12 shows these swath plot checks

in the major and minor directions for the 2D workflow and Figure 3.13 is the same

checks but for the 3D workflow without facies in the major, minor, and vertical

directions.

Figure 3.12: The swath plot of the average of 100 simulated realizations of the contin-
uous variables in the 2D workflow in the major (0 azimuth) and minor (90 azimuth)
directions plotted against the data. The red dots represent the average of sample
values at given ranges, the red line shows the average of simulated realizations at dif-
ferent ranges, and the histogram bars at the bottom of the plots show the frequency
of samples being located at the given ranges.
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Figure 3.13: The swath plot of the average of 100 simulated realizations of the contin-
uous variables in the 3D workflow without facies in the major (0 azimuth), minor (90
azimuth), and vertical directions plotted against the data. The red dots represent the
average of sample values at given ranges, the red line shows the average of simulated
realizations at different ranges, and the histogram bars at the bottom of the plots
show the frequency of samples being located at the given ranges.

All the swath plots show an accurate reflection of trends in the models. Overall,

the model checks indicate reliability in the models in terms of fidelity to the reference

data sets and how realistic they are considering the geological context of the models.
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3.2 Uncertainty quantification in 2D and 3D work-

flows

As discussed in Chapter 2, the contribution of each aspect of uncertainty is quantified

by implementing the entire modeling workflow with and without the inclusion of

each aspect, and the reduction in global uncertainty of the results is determined as

the contribution of that aspect. This process can be demonstrated using multiple

distributions of OOIP estimations in Figures 3.14, 3.15, 3.16 where the exclusion of

one aspect of uncertainty leads to a distribution of estimations with lower variability

in the results.

Figure 3.14: The distribution of 100 realizations of OOIP in the 2D workflow with
the exclusion of one aspect at each step.
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Figure 3.15: The distribution of 100 realizations of OOIP in the 3D workflow without
lithofacies with the exclusion of one aspect at each step.

Figure 3.16: The distribution of 100 realizations of OOIP in the 3D workflow with
lithofacies with the exclusion of one aspect at each step.
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Figure 3.17 shows the breakdown of uncertainty into four main aspects: histogram

uncertainty, variogram uncertainty, uncertainty in the geometry, and residual un-

certainty. The first two aspects would form uncertainty in model parameters when

combined. The charts in Figure 3.17 show the standard deviation in estimations of

OOIP in the three workflows.

Figure 3.17: Uncertainty in the estimations of OOIP in the three workflows along
with the contribution of each aspect to overall uncertainty.

The results in Figure 3.17 demonstrate that while the 2D workflow and the 3D

workflow without facies have similar overall global uncertainties in estimations of

OOIP, the 3D workflow with facies shows a significantly higher uncertainty. While

the 3D workflow without facies includes histogram and variogram uncertainty for the

two continuous variables, the 3D workflow with facies also incorporated the uncer-

tainty in the global proportions of the categorical variables, which is a function of
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categorical reference distribution uncertainty, as well as the uncertainty in the indi-

cator variogram models used in SIS. This additional uncertainty in the 3D workflow

with facies which is absent in the 3D workflow without facies is the primary reason

the former shows significantly higher histogram and variogram uncertainties.

In terms of the contribution of each aspect to overall uncertainty, uncertainty in the

geometry of the reservoir is the dominant aspect in all three workflows, followed by

residual uncertainty, histogram uncertainty, and variogram uncertainty. Uncertainty

in the geometry shows higher contributions in the 3D workflows compared to 2D,

whereas residual uncertainty is higher in 2D compared to the 3D workflows. While

histogram uncertainty is higher in the 2D workflow compared to the 3D workflow

without facies, it is higher than all of them in the 3D workflow with facies, primarily

due to the additional uncertainty from categorical proportions.

While the comparison of global uncertainty in estimations of OOIP reveals impor-

tant information about the contribution of each aspect to overall uncertainty, it is

also important to compare the local distribution of uncertainty in the two workflows.

However, the 2D and 3D models are generated on different grids, which makes direct

comparison of results at each grid node impossible. To make such comparisons, the

3D estimations are transformed into a 2D grid by summing values of OOIP at all

grid nodes in the same aerial location, represented as a vertical column of cells at

each aerial location. Equation 3.1 lays out this transformation in more detail. In

this equation, OOIP2D(i, j) is the estimated value of OOIP at the aerial grid nodes

located at indices i and j, and OOIP3D(i, j, k) is the estimated value of OOIP at the

grid node located at aerial indices i and j and the vertical index of k. V limit is the

maximum vertical index at aerial grid nodes of i and j. Figure 3.18 demonstrates the

local distribution of averages and variances of OOIP estimations in the 2D and 3D

workflow, generated using Equation 3.1 for the latter.

OOIP2D(i, j) =

V limit(i,j))∑︂
k=1

OOIP3D(i, j, k) (3.1)
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Figure 3.18: The map of averages and variances of OOIP estimations in the 2D and
3D (without facies) workflows.

3.3 Pad-size analysis

In this section, some of the applications of probabilistic resource models in the context

of the case study are further illustrated and discussed. Probabilistic resource modeling

gives an assessment of uncertainty in the estimated resources in a geological domain,

which can then be used in economic decisions related to the feasibility of that resource

and the risk associated with extracting it. Since the uncertainty in estimations is a

critical parameter in these decisions and it has been demonstrated that the choice of

2D or 3D modeling impacts the quantification of uncertainty, it is useful to show how
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this choice between 2D and 3D settings could change these economic decisions.

One of the most common methods of in-situ hydrocarbon extraction in the Mc-

Murray formation is steam-assisted gravity drainage (SAGD) (Butler 1994). In this

method, two wells are drilled into a designated area, which is referred to as a SAGD

pad, with one well injecting hot steam into the reservoir and one well extracting the

fluids. The first well, called the injector well, is tasked with lowering the viscosity of

the fluids, which would, in turn, cause them to be displaced. The second well called

the producing well then extracts the displaced fluids from the pad to the surface

(Butler 1994).

Figure 3.19 shows two plots, with the left plot showing the difference in the stan-

dard deviation of OOIP estimations in the 2D and 3D without facies workflows and

the right plot showing the same difference, but in a grid of 200*200 meters, which is

an upscaled model with dimensions approaching that of a SAGD pad. The right plot

shows more clearly how quantification of uncertainty impacts different pads located

in different areas of the domain, with red cells indicating potential SAGD pads where

2D quantification of uncertainty is higher than 3D, and blue areas showing the re-

verse. This indicates that in addition to decisions that are impacted by uncertainty

in estimations of a resource in an entire domain, more locally focused decisions are

also influenced by the type of modeling workflow that is selected in that domain.

Figure 3.19: Left: the map of differences in the standard deviation of OOIP estima-
tions between 2D and 3D (without facies) workflows. Right: the same map but in
200*200-meter grid blocks.
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Figure 3.20 further demonstrates the same concept with three simulated pads being

singled out, wherein for each pad the results are different between the two workflows

(2D workflow and 3D workflow without facies). Deciding which of the two results is

appropriate for each pad is a major decision.

Figure 3.20: The quantification of uncertainty is shown as an example in two pad-size
blocks. In the right block, 2D shows a significantly higher uncertainty, whereas in the
left block, the 3D workflow shows higher variance.

3.3.1 Sample density analysis

The results and analyses demonstrated previously are generated using samples from

393 vertical wells in both workflows. The same uncertainty analyses are implemented

on 2D and 3D workflows with decreasing number of wells, where in each step a given

number of wells are removed from the data set randomly, and the simulation workflow

is repeated for the new data set (Figure 3.21).
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Figure 3.21: Global uncertainty in 100 estimations of OOIP in 2D and 3D (without
facies) workflows with decreasing number of input sampled wells, with overall uncer-
tainty in estimations as well as the contribution of three important aspects: histogram
uncertainty, uncertainty in geometry, and residual uncertainty. Although the results
are similar in cases with higher sample density, 2D uncertainty starts to grow faster
as the number of wells drops.

Here, although the two workflows show similar global uncertainty in OOIP esti-

mations in the higher density of samples, a growing disparity in favor of 2D appears

between them as the number of wells decreases. In terms of each aspect, both work-

flows show a very similar trend, except for uncertainty in the geometry, which appears

to increase for the 2D workflow at the lowest number of wells.

3.4 Summary

In this chapter, the quantification of the contribution of each aspect of uncertainty

is presented in the 2D and the 3D workflow (with and without the inclusion of litho-

facies in the latter). The results in the case study show similar overall uncertainty

in resource estimations in the 2D and 3D workflow without facies but higher uncer-

tainty in the 3D workflow with facies, which is due to the inclusion of parameter

uncertainty in the categorical variable modeling workflow. In terms of global uncer-

tainty, uncertainty in geometry has the largest contribution in all workflows, followed
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by residual uncertainty and model parameter uncertainty. The results are also an-

alyzed on a local scale, which shows significant differences in the local distribution

of uncertainty between the two workflows, and the impact of this difference is exem-

plified in a SAGD-pad analysis. Finally, the analysis of results in multiple different

workflows with changing sample densities reveals a similar composition of aspects of

uncertainty in different sample densities.
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Chapter 4

Analysis of residual and histogram
uncertainty quantification

Analysis of results from the implementation of probabilistic resource modeling in

Chapter 3 reveals important information about differences in the results of 2D and

3D modeling workflows regarding the contribution of each aspect of uncertainty and

the overall uncertainty within the results. However, these results did not point to the

reasons for these differences.

In this chapter, two categories of uncertainty are analyzed for the 2D and 3D work-

flows: residual and histogram uncertainty. The contribution of these two categories

of uncertainty is compared given different modeling parameter choices and charac-

teristics within synthetic data sets. These test models are designed to identify the

contribution of different modeling parameters and data set characterizations to dif-

ferences between 2D and 3D models and the sensitivity of these differences to each of

these factors.

4.1 Test model description

The test models used to analyze residual and histogram uncertainty are based on a

synthetic data set of drill holes in a 100*100-meter domain with block sizes of 2*2 me-

ters. The synthetic drill holes consist of samples of a single random Gaussian variable

that are created based on variable input parameters, such as vertical and horizon-

tal spatial continuity of the variable and the drill hole spacing, and the contribution

of these parameters is evaluated. The samples within drill holes are uniformly dis-
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tributed in the vertical direction across all drill holes, assuming a simple stratigraphic

formation that is fixed for all the 500 realizations.

As in Chapter 2, the synthetic data set is initially constructed as a 3D collection

of samples and is averaged into a 2D data set. Subsequently, probabilistic resource

modeling is implemented within 2D and 3D spaces for the random Gaussian variable

within 500 realizations. Finally, histogram and residual uncertainty are measured

and compared.

4.2 Residual uncertainty

Probabilistic resource modeling is implemented with one input variable parameter for

each parameter while fixing other parameters to measure the impact of each factor

on residual uncertainty in 2D and 3D workflows. The standard deviation of the

mean of 500 realizations is compared between the 2D and 3D workflows as a measure

of residual uncertainty. For residual uncertainty tests, unconditional simulation is

implemented.

The base case for all the following tests has 2*2-meter blocks in a 100*100-meter

domain with 30-meter domain thickness, a nugget effect of 0.0, and a two-structure

spherical variogram with a total major and minor range of 50 meters and a vertical

range of 15 meters. These ranges are divided equally between the two structures. A

single realization of the test model in the horizontal and vertical directions is depicted

in Figure 4.1. The base case variogram model can also be seen in Figure 4.2.
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Figure 4.1: The top plot demonstrates a single simulated realization of the base case
test model from a plan view and the bottom plot shows the same realization from a
cross-section view.
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Figure 4.2: The base case variogram model used in the residual tests in the horizontal
and vertical directions.

4.2.1 Thickness

The thickness of the stratigraphic formation which is equal to the vertical size of the

drill holes is the first factor that is analyzed for its impact on residual uncertainty.

Fixing other input parameters as described in the base case and changing the vertical

dimension of drill holes in both 2D and 3D workflows results in Figure 4.3.

Figure 4.3: Standard deviation of the mean of 500 simulated realizations of the ran-
dom variable with varying values for the thickness of the domain in 2D and 3D
workflows. The black dots indicate the base case.

The lines in Figure 4.3 show that with increasing values of thickness residual un-
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certainty in 2D remains the same, which is expected since no change is made to

parameters in the 2D workflow and unconditional simulation leads to the same exact

simulated values for all realizations. However, for the 3D tests, the higher the thick-

ness of the domain, the lower the residual uncertainty. This could potentially be due

to more averaging in the results with thicker domains and a constant variogram. This

trend starts to flatten out at around 4-5 meters and sees lower changes after that.

The results in Figure 4.3 indicate that the gap between residual uncertainty in

2D and 3D workflows increases with larger vertical size of the domain. This also is

in line with the observations made in Chapter 3 and Figure 3.17 regarding residual

uncertainty in the 2D and 3D workflows in the case study, which showed higher

residual uncertainty in the 2D workflow.

The results from the numerical case studies and the analytical tests here show

that the 2D workflow tends to produce higher residual uncertainty. Whether the

interpretation that higher thickness always leads to a higher difference between the

two workflows is true depends on more comparative analysis and more conditional

simulations to verify the observation made here.

4.2.2 Horizontal spatial continuity

The base case included a two-structure spherical variogram with a range of 50 meters.

Changing this range to different values in the unconditional simulations for both 2D

and 3D workflows leads to Figure 4.4. This indicates that differences in horizontal

spatial continuity affect the two workflows similarly.
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Figure 4.4: Standard deviation of the mean of 500 simulated realizations of the ran-
dom variable with varying values for the horizontal range of the variogram in 2D and
3D workflows. The black dots indicate the base case.

4.2.3 Vertical spatial continuity

Similar to the horizontal variogram ranges, sensitivity to the vertical variogram ranges

are also considered and the results can be seen in Figure 4.5. The residual uncertainty

for all ranges in the 2D workflow is the same because there is no vertical spatial

continuity in the 2D models, which is due to the exclusion of any vertical spatial

continuity in that setting. However, the 3D residual uncertainty increases with higher

vertical variogram ranges, indicating a shrinking difference between the two workflows

with higher spatial continuity. This can be interpreted as more 2D-like behavior by

the 3D models in vertically continuous domains.
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Figure 4.5: Standard deviation of the mean of 500 simulated realizations of the ran-
dom variable with varying values for the vertical range of the variogram in 2D and
3D workflows. The black dots indicate the base case.

4.2.4 Nugget effect

Changing the nugget effect in the variogram used for unconditional simulations leads

to Figure 4.6, which shows different behaviors in the 2D and 3D workflows. The 2D

results show a consistent drop in residual uncertainty with a higher nugget effect,

whereas the 3D results show an almost parabolic shape. It is hard to interpret much

information from the 3D results, but the 2D results show a lower uncertainty in

domains with a high nugget effect.
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Figure 4.6: Standard deviation of the mean of 500 simulated realizations of the ran-
dom variable with varying values for the nugget effect of the variogram in 2D and 3D
workflows. The black dots indicate the base case.

4.3 Histogram uncertainty

As demonstrated in Chapter 3, histogram uncertainty is the dominant aspect of un-

certainty in model parameters and contributes the most to global uncertainty. To

analyze uncertainty in model parameters, tests are designed to measure histogram

uncertainty in 2D and 3D probabilistic modeling workflows.

The test model described earlier is set up with conditional simulation with a number

of synthetic drill hole samples with 20 meters spacing and a normal distribution. One

important difference between these tests and the residual tests described earlier is

that variogram ranges are only an input to the generation of the synthetic drill hole

samples and the variograms used in the simulation are automatically fitted to the

experimental variograms of the samples in a process similar to the one described in

Chapter 2. Thus, variable variogram ranges only lead to a change in the level of

spatial continuity of the input samples.

The workflows described in Chapter 2 are implemented with and without the pres-

ence of histogram uncertainty for 500 realizations. Histogram uncertainty is calculated

as the difference between the standard deviation of simulated means with and with-

out histogram uncertainty. Similar to residual uncertainty, the impact of multiple
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factors on 2D and 3D histogram uncertainty is assessed while fixing other parameters

according to the base case described above. Figure 4.7 demonstrates an example of

the layout of drill hole samples from a plan and cross-section view in the domain.

Figure 4.7: A conceptual demonstration of the distribution of samples in the synthetic
data set used in histogram uncertainty tests.
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4.3.1 Drill hole spacing

Histogram uncertainty in 2D and 3D with variable drill hole spacings is summarized

in Figure 4.8. While the histogram uncertainty in 3D seems to remain flat for most

spacings, the 2D results show a consistent increase with higher drill hole spacing.

This is expected, as higher drill hole spacing leads to less sample density and more

uncertainty in the results. However, the presence of more than one sample per drill

hole seem to lessen the impact of decreasing drill holes on the 3D results.

Figure 4.8: Histogram uncertainty with varying values for the horizontal spacing of
drill holes in 2D and 3D workflows. The black dots indicate the base case.

4.3.2 Horizontal spatial continuity

Figure 4.9 demonstrates the change in histogram uncertainty given different horizontal

ranges of the variogram in both workflows.
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Figure 4.9: Histogram uncertainty with varying values for the horizontal range of the
variogram in 2D and 3D workflows. The black dots indicate the base case.

The results in Figure 4.9 show higher histogram uncertainty in 2D for lower vari-

ogram ranges and higher values in 3D for higher ranges. 2D results show little changes

over different ranges, but 3D results have a significant increase in histogram uncer-

tainty towards higher ranges. It could be interpreted that changes to the spatial

structure of the input samples appear to impact the 3D workflow more.

4.3.3 Vertical spatial continuity

Setting variable values for the vertical range of the variogram in the test model lead

to results summarized in Figure 4.10. In this case, both 2D and 3D results show an

overall increase in histogram uncertainty with higher vertical ranges. More spatial

structure in the input samples translates to higher histogram uncertainty. The 2D

results show a consistent increase with higher vertical ranges.
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Figure 4.10: Histogram uncertainty with varying values for the vertical range of the
variogram in 2D and 3D workflows. The black dots indicate the base case.

4.3.4 Nugget effect

Changing the value for the nugget effect used in creating the input samples leads

to Figure 4.11. 2D and 3D results show opposite trends with increasing degrees of

nugget effect, with 2D results consistently dropping, as opposed to 3D results which

increase with higher nugget effects.

Figure 4.11: Histogram uncertainty with varying values for the nugget effect of the
variogram in 2D and 3D workflows. The black dots indicate the base case.
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4.3.5 Summary

The test models implemented for analyzing residual uncertainty reveal important

patterns and information about the differences between uncertainty quantification in

2D and 3D workflows. In line with the results in Chapter 3, residual uncertainty is

observed to be higher in the 2D workflow in all test cases and with different input

parameters. This is interpreted to be due to the vertical dimension in the modeling

grid and vertical spatial continuity, as is observed in Figure 4.3 and 4.5.

Higher spatial continuity in the vertical direction leads to less pronounced differ-

ences between the two workflows and the 3D results become more similar to the 2D.

Vertical spatial continuity indicates the presence of information in input samples in

the 3D space that are absent in the 2D space, and as vertical continuity increases, the

amount of significant information that vertical spatial continuity provides diminishes

and makes the 3D samples more similar to a simple averaged 2D sample. This in turn

leads to less difference in the uncertainty in those cases. Along with the larger size of

the models in the 3D workflow due to the extra dimension present in that workflow,

these two are the main observed factors in differences between 2D and 3D residual

uncertainty.

Unlike residual tests, the test models conducted on histogram uncertainty are less

informative and contain few patterns. The most likely explanation for this difference

is how histogram uncertainty is calculated, as subtraction of two different variances,

as opposed to residual uncertainty which itself is a variance. This likely leads to more

irregular results in terms of histogram uncertainty. Consistent with the rest of the

research, this is how histogram uncertainty is measured in this project.

Overall, it appears that 3D histogram uncertainty is higher than 2D, which contra-

dicts the results observed in Chapter 3. This likely further emphasizes the fact that

histogram uncertainty is heavily dependent on the nature and configuration of the

input data and could be higher or lower in either workflow depending on the factors

considered in this chapter.

However, one important takeaway is the results of variable drill hole spacing values.

Those results indicate a higher sensitivity towards drill hole spacing in 2D, which is

likely due to the smaller size of the 2D data set compared to 3D. This indicates a
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higher increase in 2D histogram uncertainty with lower sample density, which is an

important note for modelers when considering these two workflows.
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Chapter 5

Optimization of sample pairing in
the calculation of variograms

The common approach to quantifying spatial correlation in a geostatistical model is

through pairing different samples, either in calculating variograms, correlograms, or

other methods. Since this pairing process is usually only based on the vector of the

distance between a pair of samples, it does not consider the small-scale non-linear

geological features that might connect several samples to each other that would not

have been connected to one another through typical two-point-based pairings. In the

presence of such features, allowing samples to be paired with each other based on the

covariance of the petrophysical variables between head and tail samples might lead to

a pairing scenario that is based on the geological features that relate samples to each

other. In this chapter, a method is developed that finds an optimal pairing scenario

between samples of two wells or drill holes.

5.1 Motivation and problem statement

This new method of pairing samples is specifically focused on the geology of the

McMurray formation and aims at pairing samples in a way that is aligned with the

geology of the formation and captures the correct heterogeneity of the variables by

stepping away from the conventional two-point-based methods. While the focus is on

the McMurray formation, this method can be applied to many other formations and

deposits where the problem of non-linear pairing exists.

Under the assumption of stationarity, the mean and variance of a spatial variable
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are constant in the domain and the correlation between any two points is charac-

terized by one of many methods, like variogram, correlogram, or covariance. This

two-point correlation is the basis of quantifying spatial correlation for the purpose

of geostatistical modeling (Journel and Huijbregts 2003; Pyrcz and Deutsch 2014).

The selection of parameters for pairing points is commonly derived from a geological

understanding of the domain, as well as the distribution and spatial configuration of

samples, and determines which samples are paired together (Chiles and Delfiner 2009).

For instance, the understanding of the major and minor directions of anisotropy and

the angle of azimuth tolerance dictates which paths to select points along (Wacker-

nagel 2003). Another criterion is the distance between two samples, which associates

pairs with specific lag distances (Figure 5.1). The result of the process of selecting

pairs of points is the h-scatter plot that is the input to calculating the experimental

semi-variogram (Figure 5.2) (Pyrcz and Deutsch 2014; Chiles and Delfiner 2009).

Figure 5.1: Illustration of tolerance parameters and how they define which points are
paired to each other (Pyrcz and Deutsch 2014).
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Figure 5.2: The h-scatter plot is the combination of several samples that are paired
to each other for a specific lag distance and based on specific tolerance parameters
(Pyrcz and Deutsch 2014).

What is often lacking in this approach is a detailed consideration of small-scale

non-linear geological features that connect points to each other that might not follow

simple distance criteria. This could be the case in certain geological domains, like

sandy shales of the McMurray formations of Alberta, which have very small-scale

features and petrophysical properties are highly continuous within these features.

Such features might not follow linear patterns, and this results in their importance

being missed in simple distance vector considerations when pairing samples.
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The motivation of this chapter is to develop an algorithm for the pairing of samples

that are based on the value of the petrophysical variable of interest and considers the

possibility that disrupting geological processes, such as folding or faulting, could lead

to a non-linear distribution of variables in space. In this way, samples are paired in a

way that maximizes the correlation of a petrophysical variable between the head and

tail samples and would lead to an explicit capturing of small-scale non-linear features.

5.2 Methodology

The focus of this research is on capturing and incorporating the effect of small-scale

geological features on the pairing process and the basic approach is to compare two

drill holes at a time. This means that at every step, two drill holes or wells are com-

pared and the pairing of samples between these two is considered. The calculation of

a semi-variogram or covariance between two drill holes is then repeated for many pairs

of wells or drill holes. Since the lateral distance between two drill holes is constant

for all the samples within them, averaging the covariance or the semi-variogram for

pairs of drill holes with the same lag distance will produce the experimental semi-

variogram. It is assumed that the pair of wells are parallel and vertical and deviated

drill holes are not considered.

As an example, two drill holes are considered in Figure 5.3. Under the conventional

methodology, samples in the two drill holes are paired with each other depending

on their distance vector, which here means their relative elevation (for the purpose

of calculating the horizontal experimental variogram). This scenario is depicted in

Figure 5.3, where each green point on the sides represents a sample and each blue

line is the connection between two samples on the two drill holes.
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Figure 5.3: Pairing of samples in two drill holes depending on their distance vector,
which here means their relative elevation to each other. Green points are samples in a
drill hole and blue lines represent the pairing of samples between the two wells. This
pairing results in a correlation coefficient of 0.562 for the spatial variable of interest.

To maximize the covariance between the paired samples in the two wells or drill

holes, the pairing process must be optimized using an optimization algorithm. In the

current paper, a greedy optimization algorithm is implemented (Black et al. 2020).

To divide the samples in the two wells or drill holes into several distinct geological

features that define the pairing process, several control points are randomly chosen

on the two drill holes. The samples that fall between these control points are paired

with their mirroring group on the other drill hole. For instance, Figure 5.4 shows how

two drill holes are divided into three groups using two control points. Each group is

paired with its equivalent on the other drill hole.
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Figure 5.4: An example of two drill holes and how the samples are divided into three
groups using two control points. The purple dots mark the top and bottom sample
of each drill hole, while the red dots represent a selection of control points.

As said above, the pairing process allows for multiple points to be paired with each

other. When an unequal number of samples exist in the same pairing group in the

two drill holes, samples from the smaller group will have multiple samples from the

larger group paired with them. The only limit is that any sample must be paired

with at least one other sample. The algorithm goes through the following loop:

1- Randomly select a given number of control points from between the samples in

the two drill holes.
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2- Match all the points in the same groups from the two drill holes.

3- For each of the control points, go through a given number of iterations. Each

time, randomly changing the control point from among samples between the neigh-

boring bottom and top control points. Each time the control point is changed, re-

calculate the covariance of the new pairs. Accept the change in the iteration if the

overall covariance of pairs increases.

4- Once the algorithm goes through all the control points, a random restart is

initiated, where the control points are randomly reselected. The same process of step

3 is repeated for the new set of control points. By the end, if the results are improved,

the new set of control points replace the previous ones. This process is repeated for

a given number of random restarts.

By the end of the algorithm’s implementation, the experimental semi-variogram

value is calculated for the optimal group of pairs between the two drill holes. Figure

5.5 shows the result of such a pairing process. Here, the deciding factor was the

covariance of effective porosity between groups of pairs from the two wells.
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Figure 5.5: Pairing of samples in the two wells according to the optimization algo-
rithm. The red dots represent the final control points, as optimized by the program.
The purple dots are the top and bottom samples of the drill holes, which are treated
as control points for the purpose of dividing samples into different groups, but re-
main constant through the algorithm. The correlation of head and tail samples in
this pairing scenario is 0.724, which is higher than the result from the conventional
pairing.

The control points can be seen as a method of detecting the footprint of a set of

complex geological features within the two drill holes. The optimal set of control

points results in certain groups of samples being paired from the two drill holes

that might have very different elevations and might never have been paired in a

conventional pairing process. But since the target is the maximum covariance of a

spatial variable between the group of pairs, the result will point to groups of samples

that have the greatest amount of similarity in terms of petrophysical properties. As

a result, these control points and how they group the samples together are meant to

replicate the geological features that exist in the space between the two drill holes.

Referring to the example in Figure 5.4, Figure 5.6 illustrates how the grouping of

samples is meant to infer the spread of geological features in the space between the

two drill holes.
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Figure 5.6: The spread of control points in the optimal model is an interpretation of
the presence of geological features in the space between the two drill holes.

One additional feature in this method is a tolerance parameter that is meant to

allow the user to determine the degree of linear behavior in the optimization work-

flow. Based on a preexisting understanding of the geological domain, the user could

define how linear the pairing of samples should be. A high degree of tolerance in the

optimization workflow leads to a possibility of highly non-linear pairing, while a low

degree of tolerance leads to a more linear result.

This tolerance is implemented as a range of values that the elevations of control

points can take. The length of each borehole is divided into equal parts based on the
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number of control points, and the center of each part is the predetermined elevation

of each control point. Higher tolerances lead to a larger range of allowed elevations

for each control point around these fixed elevations. This definition means that even

a full 100 percent tolerance also has some degree of linear behavior. These tolerances

are illustrated in Figure 5.7 and the formula for finding the ranges can be seen in

Equations 5.1 and 5.2. In these Equations, R1 and R2 refer to the bounding limits

of the elevation of control points in each borehole, CP refer to the number of control

points in each borehole, LBH1 and LBH2 refer to the length of the array of samples

in each borehole, and Tol is tolerance parameter defined by the user from 0 to 1.

Figure 5.7: In the current revised workflow, a tolerance parameter is used to define
the bounding limits of elevations of control points (R1 and R2) in each drill hole.
These ranges are calculated using Equations 5.1 and 5.2.

R1 = ((LBH1/(CP + 1))/2) ∗ Tol (5.1)
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Figure 5.8: An example of the optimal sample pairing algorithm implemented on two
wells, with results in a simple pairing scheme (top) and the optimal pairing scheme
(bottom) showing a higher correlation in the results from the workflow

R2 = ((LBH2/(CP + 1))/2) ∗ Tol (5.2)

5.3 Results

In this section, the results of this algorithm for a 14-well data set located at the

McMurray formations will also be reviewed. The McMurray oil formations are known

for their small-scale shale features that make it an excellent choice for implementing

the optimization algorithm. In all the following results, the variable oil saturation is

used to determine the optimal pairing set.
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The results in Figure 5.8 demonstrate a typical performance by the optimal algo-

rithm. Here, three control points are given to the program and the samples in the

two wells are divided accordingly. A noticeable improvement in the correlation of

the paired samples from 0.562 to 0.724 shows how the algorithm matches samples to

improve their geological similarity.

Figure 5.9 shows similar results in another well pair along with the geological

surfaces in those two wells. The results here show that although the algorithm does

not exactly detect or predict the correct elevation of surfaces, it does divide the

two wells into sections of similar behavior in terms of the spatial variable (here, oil

saturation) (Figure 5.9).
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Figure 5.9: The results of optimizing the pairing scheme using three control points
in two wells. The colored lines refer to the elevation of geological surfaces in these
two wells, while the light blue lines refer to the elevation of control points. The black
lines are the drill hole plots illustrating the value of oil saturation in the two wells.

Figure 5.10 shows the impact of tolerance in the optimal correlation found in the

algorithm in different pairs of wells. Each set of colored points refers to one pair

of wells that have been used as input in the pairing algorithm. Although in general

the higher the tolerance the optimal correlation also increases, this trend has different

levels of intensity between the different well pairs. This shows that when a pair of wells

have a high degree of linear behavior, it is highly probable that the global optimal

pairing scheme is found in the low tolerances. In contrast, when the formation is
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highly non-linear within the well pair, the true optimal set is only revealed at high

tolerances.

Figure 5.10: The relation between tolerance of the pairing algorithm and the semi-
variogram value of the paired samples show a general higher correlation (lower vari-
ogram value) with higher tolerance but with different degrees of intensity

In general, the pairing algorithm leads to a more continuous variogram compared

to conventional two-point pairing schemes (Figure 5.11).
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Figure 5.11: The experimental variogram calculated on the same data set with three
different schemes: original elevations (simple pairing), stratigraphic elevations (simple
pairing), and the optimal scheme. The results show a more continuous variogram in
the optimal scheme.

5.4 Conclusion

The pairing of samples is a fundamental question in any quantification of spatial

correlation in a geostatistical model. This is usually done based on the vector of the

distance between any pair of samples, which pairs them based on lag distances, angle

tolerances, and other variogram calculation parameters. But this pairing scheme does
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not consider the role of geological features which might relate certain samples to each

other that might not have a clear and straightforward connection in terms of their

distance vectors. In other words, the geological background of points and the features

to which they belong could have a major impact on the actual spatial correlation in

the domain. This is not properly captured in a normal pairing scheme.

An alternative method for pairing samples was proposed which was based on group-

ing samples from two drill holes or wells based on the geological features that occupy

the space between those two wells or drill holes. This method optimizes the pairing

based on the covariance of the spatial variable of interest in tail and head samples. In

this method, a greedy optimization algorithm is proposed, whereby defining a certain

number of control points that effectively divide samples into groups and optimizing

the placement of these control points in the two drill holes or wells, the pairing of

points is optimized for a given number of iterations and random restarts.

As was seen in the results, this workflow improves the spatial correlation between

samples and yields a horizontal experimental variogram that has higher continuity

than the pairing made in original or stratigraphic coordinates. The algorithm manages

to divide the two wells/bore holes into sections of similar patterns in the value of the

spatial variable of interest. The algorithm also shows a higher correlation in results

when the tolerance increases.

For access to the source code used in the algorithm described in this chapter,

readers are encouraged to contact the authors to provide access to the source code.
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Chapter 6

Conclusion

6.1 Summary

As per the thesis statement, the purpose of this research is to implement probabilistic

resource modeling in 2D and 3D modeling workflows and discuss possible differences

between the two workflows and the contributing factors to those differences.

Towards this goal, the main methodology used to generate probabilistic resource

modeling in the case study is described through a step-by-step analysis in Chapter 2.

Chapter 2 highlights steps in the modeling process where uncertainty is quantified in

the final results and how this is done differently in the 2D and 3D workflows, which

helps better explain uncertainty in final results in later chapters.

Following a description of the methodology, Chapter 3 details the results of imple-

menting the methodology in the case study of the McMurray formation of Northern

Alberta, in addition to multiple checks and validations of the modeling results. Re-

sults in Chapter 3 point to similar global uncertainty in estimations of OOIP in both

2D and 3D without facies workflows, although higher uncertainty in the 3D with facies

workflow due to additional uncertainty in the modeling of lithofacies. The contribu-

tion of each of the three main categories of uncertainty is also measured separately

in Chapter 3, which points to the high impact of uncertainty in the geometry of the

domain, followed by residual uncertainty and uncertainty in model parameters, dom-

inated by histogram uncertainty. Additional analyses on the impact of well spacing

density and SAGD pad uncertainty are also considered in Chapter 3.

Chapter 4 focuses on residual and histogram uncertainty, with the goal of identi-

fying what factors lead to these two categories of uncertainty being higher or lower
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in 2D and 3D workflows using several test models. Results of residual uncertainty

tests generated by unconditional simulation point to two critical factors in differences

of residual uncertainty in 2D and 3D workflows: the vertical size of the domain or

thickness of the domain, and the degree of vertical spatial continuity. While higher

thickness leads to more differences between the two workflows, lower spatial con-

tinuity has the same effect. While histogram uncertainty is observed to show few

patterns and appears to be dependent on the specific data set and domain, the test

results show higher impact on 2D histogram uncertainty as a result of sparse drill

hole density, which is likely due to the smaller size of the 2D data set.

Finally, Chapter 5 reviews a method of pairing samples in the process of variogram

modeling in a stratigraphic domain. This method relies on maximizing the correlation

between paired groups of samples using a greedy optimization algorithm. The method

relies on a geological understanding of the McMurray formation, or other stratigraphic

formations, where undulating processes have disturbed the horizontal continuity of

structures and simple pairing schemes might not capture the full spatial continuity

in the domain. Using this method, maximizing the correlation of paired samples

within a given number of groups could lead to the detection of those structures and

an improvement in the spatial continuity of variograms. The results show that while

the algorithm cannot fully detect existing layers, it can provide a variogram with

more continuity compared to the original variogram.

6.2 Contributions

This thesis provides a number of insights on the key question in the thesis statement.

Regarding the results from the case study, the key takeaway from results in Chapter

3 is the almost equal uncertainty quantified by 2D and 3D without facies modeling

workflows when all aspects of parameter uncertainty are considered, as opposed to

higher residual uncertainty in the 2D workflow in the absence of any parameter un-

certainty. Once facies are incorporated into the 3D workflow, the results show higher

uncertainty compared to 2D. This overall comparison could be used as a default pre-

sumption in any domain within the Athabasca oil sands, and to some degree in other

stratigraphic domains with similar characteristics. This could help modelers across
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the industry to shape some expectations before building a more detailed model of

these domains.

The higher residual uncertainty in 2D is one of the main motivations for this re-

search and is also observed in the results. Common industry practices in probabilistic

resource estimation frequently use fixed modeling input parameters and a fixed geo-

logical boundary model (no uncertainty in model parameters and no uncertainty in

geometry), which leads to the entire global uncertainty in results to be residual uncer-

tainty, hence the observation of higher 2D uncertainty shown in Figure 1.3. Modelers

should have an expectation of higher 2D uncertainty in the absence of parameter or

geometry uncertainty.

These results reinforce the practice of incorporating all aspects of uncertainty for a

meaningful assessment of resources. Given the assumptions behind those results and

the fact that these results come from a single geological formation, the conclusions and

recommendations can be applied to any other domain within the Athabasca oil sands

(given the sufficient similarity with the McMurray formation) and to some degree to

other formations where 2D-like characteristics can be observed, such as tabular coal

deposits or other stratigraphic formations.

The results from Chapter 3 also indicate the importance of including uncertainty

in surfaces and boundaries of stratigraphic formations as a best practice and how

critical they could be in the global uncertainty of results. Approaches to capturing

uncertainty in surfaces and boundaries are diverse and could lead to different quan-

tification of uncertainty, and depending on the geological context behind the models,

it may be preferred to assume a fixed boundary. It must also be pointed out that

while all the uncertainty in variable boundaries is considered as a single category, this

uncertainty itself comes from a variety of sources, such as histogram and variogram

uncertainty in modeling the surfaces.

Similar to results from the case study, results from test models in Chapter 4 show

that residual uncertainty is always higher in the 2D workflow, primarily due to the

smaller size of the modeling domain in that workflow (due to the lack of a vertical

dimension in the modeling grid). Higher thickness leads to a larger disparity in the

size of the 2D and 3D modeling grids and leads to lower 3D uncertainty and thus

more disparity between the two workflows. On the other hand, higher vertical spatial
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continuity leads to lower 3D uncertainty which leads to lower differences between 2D

and 3D results. A higher degree of vertical geological structure which appears in the

form of higher vertical spatial continuity increases the amount of information lost in

the transition of the data set from 3D to 2D (in this study through averaging of 3D

samples) and leads to more significant differences in the uncertainty generated in the

two workflows.

The test results point to these two factors to be major controls on the degree of

differences in residual uncertainty between 2D and 3D workflows, which appears to be

higher in 2D in almost all cases. This means that modelers should pay close attention

to these two factors in a domain when determining the degree of disparity between

residual uncertainty in 2D and 3D.

6.3 Assumptions and Limitations

One of the key assumptions in this research is the focus on tabular deposits and

features observed within these domains. While many tabular and stratigraphic for-

mations share features like the ones in the McMurray and many of the results in this

research can be extended to other tabular formations, there are unique geological

characteristics within each stratigraphic formation that has the potential of altering

the results of probabilistic modeling. This also extends to types of samples and input

data that could also have a significant impact on the results. Focusing on a single

formation and a single data set might have prevented a broader understanding of 2D

and 3D resource estimation in different contexts.

Additionally, some specific modeling workflows and tools such as SGS, SIS, and

spatial bootstrap are also used in this research which could be seen as a limitation

since other geostatistical methods and their corresponding results were not explored.

Other geostatistical tools and workflows could potentially lead to different results,

but the methods used here are commonly used by geostatistical modelers and are

well-established and well-tested.

Regarding uncertainty in geometry, some important assumptions and limitations

exist. Firstly, uncertainty in the aerial boundaries of the domain is excluded due

to the geological nature of the McMurray formation which has no natural aerial
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boundary within the lease examined. Including uncertainty in aerial boundaries could

be important in other domains. Additionally, the approach to quantify uncertainty

in geometry through thickness and surface modeling is only one way to approach

this problem and other geological or geophysical workflows could lead to a different

measurement of uncertainty in the geometry of the domain. Also, different types of

formations and domains might require different approaches. As a result, analyzing the

consequences of different modeling approaches in different domains on the uncertainty

in the final results requires another study that is out of the scope of this research.

6.4 Future works

While the current research sheds some light on how 2D and 3D modeling of a tabular

or stratigraphic formation could have major consequences on the uncertainty driven

by those models, there are some important gaps that must be further explored.

Firstly, uncertainty in geometry is largely left unexplored in terms of how different

approaches and methods could lead to different results. Additionally, exploring the

contribution of aspects of uncertainty could also be further analyzed in this case.

Secondly, applying probabilistic resource estimation in other tabular and strati-

graphic formations with different data sets and geological characteristics could further

validate the findings and provide confidence in generalizing the findings to other ge-

ological settings. While this research provides many domain-specific observations for

the Athabasca oil sands, those research projects could do the same in other domains.

100



Bibliography

[1] M. Pyrcz and C. Deutsch, Geostatistical Reservoir Modeling, 2nd Edition, Ox-
ford University Press, New York, p. 448. May 2014, isbn: 978-0199731442.

[2] M. Rossi and C. Deutsch, Mineral Resource Estimation. Jan. 2014, isbn: 978-
1-4020-5716-8. doi: 10.1007/978-1-4020-5717-5.

[3] P. Darling, SME mining engineering handbook. SME, 2011, vol. 1.

[4] A. Journel and C. Huijbregts, Mining Geostatistics. Blackburn Press, 2003,
isbn: 9781930665910. [Online]. Available: https://books.google.ca/books?id=
Id1GAAAAYAAJ.

[5] W. Ren, J. Mclennan, O. Leuangthong, and C. Deutsch, “Reservoir characteri-
zation of mcmurray formation by 2d geostatistical modeling,” Natural Resources
Research, vol. 15, pp. 111–117, Jan. 2006. doi: 10.1007/s11053-006-9011-8.

[6] J.-L. Mallet, “Space–time mathematical framework for sedimentary geology,”
Mathematical Geology, vol. 36, pp. 1–32, Jan. 2004. doi: 10.1023/B:MATG.
0000016228.75495.7c.

[7] C. Langenberg, F. Hein, D. Lawton, and J. Cunningham, “Seismic model-
ing of fluvial-estuarine deposits in the Athabasca oil sands using ray-tracing
techniques, Steepbank River area, northeastern Alberta,” Bulletin of Canadian
Petroleum Geology, vol. 50, no. 1, pp. 178–204, Mar. 2002, issn: 0007-4802. doi:
10.2113/50.1.178. eprint: https://pubs.geoscienceworld.org/cspg/bcpg/article-
pdf/50/1/178/3312188/178.pdf. [Online]. Available: https://doi.org/10.2113/
50.1.178.

[8] K. Khan and C. Deutsch, “Practical incorporation of multivariate parameter
uncertainty in geostatistical resource modeling,” Natural Resources Research,
vol. 25, May 2015. doi: 10.1007/s11053-015-9267-y.

[9] S. Mondal, L. Zeite, and M Mallik, “2d geostatistical modeling and volume
estimation of an important part of western onland oil field, india,” Dec. 2015.

[10] D. G. Krige, “A statistical approach to some basic mine valuation problems on
the witwatersrand,” Journal of the Southern African Institute of Mining and
Metallurgy, vol. 52, no. 6, pp. 119–139, 1951.

101

https://doi.org/10.1007/978-1-4020-5717-5
https://books.google.ca/books?id=Id1GAAAAYAAJ
https://books.google.ca/books?id=Id1GAAAAYAAJ
https://doi.org/10.1007/s11053-006-9011-8
https://doi.org/10.1023/B:MATG.0000016228.75495.7c
https://doi.org/10.1023/B:MATG.0000016228.75495.7c
https://doi.org/10.2113/50.1.178
https://pubs.geoscienceworld.org/cspg/bcpg/article-pdf/50/1/178/3312188/178.pdf
https://pubs.geoscienceworld.org/cspg/bcpg/article-pdf/50/1/178/3312188/178.pdf
https://doi.org/10.2113/50.1.178
https://doi.org/10.2113/50.1.178
https://doi.org/10.1007/s11053-015-9267-y


[11] M. E. Hohn, “An introduction to applied geostatistics: By edward h. isaaks
and r. mohan srivastava, 1989, oxford university press, new york, 561 p., isbn
0-19-505012-6, isbn 0-19-505013-4 (paperback), 55.00cloth,35.00 paper (us),”
Computers & Geosciences, vol. 17, no. 3, pp. 471–473, 1991.

[12] M. David, Geostatistical ore reserve estimation. Elsevier, 2012.

[13] G Matheron, “The theory of regionalised variables and its applications,” Les
Cahiers du Centre de Morphologie Mathématique, vol. 5, p. 212, 1971.

[14] G Matheron and F Blondel, “Traité de géostatistique appliquée. tome 1. editions
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