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Abstract

In the face of an overwhelmingly information intensive Internet, searching has be-

come the most important way to locate information efficiently. Current searching

techniques are able to retrieve relevant data, however, personalization techniques

are still needed to better identify different user requirements. This thesis proposes

an interactive and iterative approach to infer a user’s intentions implicitly, and adapt

to changing user requirements. We gather relevance feedback from the user, and

classify items in the query result set into different groups based on the feedback for

each item. We rerank the original result set according to the user’s interest towards

each group. The group of the user’s interest is ranked higher. We illustrate the

approach using a personalized academic paper searching application and evaluate

it with real users. The experimental results show improvements after applying our

approach. The system design is extensible and potentially applicable to other search

domains.
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Chapter 1

Introduction

Searching is a fast and efficient way to locate information on the Web. Data gen-

eration has been growing at an increasing rate, creating large amounts of data that

need to be filtered effectively. This happens in all areas of the Web, making the need

for search engines a common necessity in e-commerce websites, digital libraries,

social networks, etc.

Current search engines are able to retrieve and rank items by relevancy to users

in most cases. However, there are still special individual needs that cannot be ad-

dressed effectively. This problem is caused by the resource-centric essence of cur-

rent search engines [39]. The characteristics of items are considered more, while

user preferences are considered less. Ignoring different requirements between users

and changing user requirements will cause search engines to not locate and rank

information of actual user interests appropriately. Thus personalization techniques

are needed to make the searching more individualized.

In this thesis, we propose an interactive and iterative approach to personalize

searching. Different from existing personalization approaches, our system infers a

user’s intentions implicitly through their iterative selections of items of particular

interest, and reranks items of the user’s interest to the top of the search results.

Compared with the original order, the new ranking is more personalized towards

the user.
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predicted like

predicted unsure

predicted dislike

labeled dislike

test dataset

training set

Figure 1.1: Approach Introduction

We analyze user feedback. First, when the user submits a query string and gets

the original result list, he/she may be interested in only a few items, as highlighted

in the rectangles in the left part of Figure 1.1. In our approach, we ask users to

provide explicit feedback on each item in the original list. The feedback can be like,

dislike, or unsure (Figure 1.2). Second, we regard personalization as a classification

problem (middle part in Figure 1.1). The items that the user has viewed so far and

labeled via the feedback are considered the training set. Items in the original result

list comprise the test set, and we classify these items into 3 classes: like, dislike, and

unsure. Third, we rerank the items according to their labels. Labeled liked items

are ranked on top, followed by predicted liked items, then unsure items, predicted

disliked items, and labeled disliked items. Thus the items remain the same, yet

their ranking changes according to the user’s selections. Higher ranked items will

be more of the user’s interest (right part in Figure 1.1). The user can iterate by

further providing on the reranked list and rerank again. If the user wants to start a

new search task, he/she can clear out all the previous selections.

Figure 1.2: User Feedback

In this way, each individual’s preferences towards items are captured by training

classifiers. Changing the selections will change the classifier subsequently. Since

our system focuses on ad-hoc queries that requires little about a user’s historical

profiles, our system is adaptive to changing user requirements. Compared with the

2



initial order, the personalized ranking focuses more on the user’s current require-

ments.

Our thesis statement is that with an acceptable amount of effort expended, our

personalization approach is capable of ranking search results so that they are more

of interest to a user.

The contributions of this thesis are as follows.

1. We propose an interactive and iterative approach to improve the results of

existing search engines by analyzing user feedback with machine learning

techniques.

2. We apply the approach in the academic search domain, and explore a variety

of techniques to build the feature space for papers.

3. We evaluate the personalized academic search with real users, and collect

their ratings towards the original order of results and our personalized rerank-

ing in terms of several properties. The findings show that users favor person-

alized search.

4. The implementation follows separation of concerns1 design principles, and

our system can easily incorporate different algorithms to construct features

and perform machine learning operations, making it very extensible and po-

tentially applicable to different search domains.

The structure of the rest of the thesis is as follows. In Chapter 2, we will intro-

duce the high-level system design, system components, and working procedures.

In Chapter 3, we implement a personalized paper search application using our pro-

posed system. In Chapter 4, we conduct an experiment to evaluate the performance

of personalized search in terms of several properties. In Chapter 5, we review ex-

isting search personalization techniques related to our approach. In Chapter 6, we

conclude this thesis and outline possible future directions.

1Separation of concerns is a design principle for separating a computer program into different
parts, each of which addresses a specific concern, such that the change of one part does not impact
other parts. [23]
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Chapter 2

System Design and Methodologies

When we personalize the initial order of the search results, we aim for the reranked

list to reflect the current requirements of the user. We do this through an interactive

and iterative process. Firstly, the user needs to tell our system his/her preferences in

terms of like, dislike, or unsure on items he/she views in the initial list. Secondly,

we use the above explicit user feedback to analyze the user requirements implicitly,

then change the ranking of the item set for presentation to the user. Thirdly, the user

can further interact with the reranked list by specifying more preferences, and let the

system rerank according to the updated preferences. This process goes iteratively

until the user is done with the searching task.

The second step is our key to personalize the initial result. In order to analyze

user requirements implicitly based on the explicit user feedback in the first place,

we need to be able to represent possible user requirements. In our approach, we

build a feature space for the items, thus the user’s requirements towards items are

represented by the features. Moreover, we need to understand what each individ-

ual’s current requirements are. We treat this as a classification problem. Items that

the user has viewed so far and labeled via the feedback are the training set, and the

user’s preferences are the labels. The items’ features, which represent the candidate

requirements, are the feature set. The test set contains all items in the query result

set. By training a classifier based on the user’s selections, we can infer the possible

requirements implicitly. By classifying the test set and reordering the result accord-

ing to the predicted labels, we present a personalized reranking of the items to the

user.
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In order to leverage data from different sources, we use a data adapter to wrap

different kinds of data to make the analysis easier in the downstream steps.

In this chapter, we will first give a high level description of the system architec-

ture, then describe the system activities.

2.1 System Components

Our system consists of four basic components: Data Acquisition, Feature Con-

struction, User Interaction, and Machine Learning components. The overview of

the system can be seen in Figure 2.1. The arrows in this figure are data flows. There

are possibilities of adding new components, which will be discussed later in this

thesis.

Feature Construction

Component
Data Acquisition

Component

Preprocessing

Dimension Reduction

Training Classifier

Classification

Machine Learning 

Component

Data Source

Data Adapter

User

User Interaction

Component

Figure 2.1: System Design

2.1.1 Data Acquisition

The Data Acquisition component consists of data sources and data adapters. De-

pending on the search domain, data sources range from less structured crawled web-

pages, various kinds of raw datasets, to more structured open APIs and databases.

The data source can be textual, or non-textual (such as social networks, image, or

audio).

Data adapters are designed to get raw data from the data sources, and transform

them to the format that our system can consume. The outputs of data adapters pro-

vide datasets for the other components. By using adapters, we can easily leverage

multiple, different data sources without changing other code.
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2.1.2 Feature Construction

The Feature Construction component constructs possible features for the Machine

Learning component from the formatted data source(s). Depending on the type of

the data, we use different techniques. For example, for textual data, we use tf-idf

[32] to vectorize the content, or use topic modeling techniques [13] to indicate the

semantics. For relational data, social network analysis techniques can be used to get

the graph metrics. And for images or audio data, signal processing techniques can

be adopted. Each technique serves as a candidate algorithm for the system pipeline,

meaning that only when a technique is appropriate for an application area, it is

used. After feature construction, the raw data is represented as numerical values to

be consumed in later steps.

The Feature Construction component is very extensible, i.e., a new algorithm

can be easily added to the algorithm pool, and be incorporated into the pipeline.

2.1.3 User Interaction

The User Interaction component allows a user to give inputs to the system and

view related items. The inputs are search queries, preferences, filtering criteria, and

other service requests such as reranking and starting over. After getting the query

results, a user can specify preferences in terms of like, dislike, or unsure on items

he/she views, which can be regarded as a manual labeling process. We will use this

labeling information in our Machine Learning components.

Moreover, after getting user labeling information, our backend system will re-

generate results accordingly upon request, returning a personalized result to the user

for further interaction.

2.1.4 Machine Learning

The Machine Learning component consists of four modules: preprocessing, dimen-

sionality reduction, training, and classification.

The preprocessing module preprocesses the constructed features of the data

viewed by the users. The goal of preprocessing is to make the feature set more
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suitable to the downstream machine learning algorithms. Common preprocessing

jobs include mean removal, variance scaling, normalization, imputation of missing

values [7].

Dimensionality reduction is used to reduce high-dimensional features to a space

of fewer dimensions before the datasets are passed to learning algorithms to avoid

the problem of the curses of dimensionality [12]. Common dimensionality re-

duction techniques include principal component analysis [25], linear discriminant

analysis [24], and canonical correlation analysis [19]. After dimensionality reduc-

tion, only features of interest will be retained among all features, which improves

the performance of the learning algorithms by focusing only on these discriminating

features.

The training of a classifier is the core of the system. By utilizing the labels

specified by a user, i.e., items of interest to the user, and preprocessed features,

we can train a classifier that reflects the preferences of the user towards features

matching their interests. There are a variety of machine learning algorithms to

choose from, e.g., logistic regression [22], support vector machine (SVM) [41],

decision trees [31], Bayesian networks [29]. However, different learning algorithms

may perform distinctly in different user scenarios. For example, in some cases

the user requirements may be better expressed by a linear kernel SVM, while the

quadratic kernel SVM may not perform well. Thus a learning algorithm selection

process is needed to find the best match. We use cross-validation to calculate the

accuracy of each candidate algorithm and choose one with the highest score to

perform classification. This is done dynamically such that a user’s preference can

be expressed by the best classifier available.

In the classification module, we classify the items that the user has not viewed

yet, with the selected classifier. Items classified to be of user interest will be ranked

higher when the results are presented to the user.

The Machine Learning component is also extensible in that new algorithms can

be easily added to the algorithm pool, and incorporated into the pipeline if appro-

priate.

7



2.2 Working Procedure

User interaction Data profiling

Machine learning

User invisible

User invisible

1

2

43

User visible

Figure 2.2: System Activities

As can be seen from Figure 2.2, there are mainly three activities when working

with this system: User Interaction, Data Profiling, and Machine Learning.

2.2.1 User Interaction

When a user begins to use the system, he/she automatically starts in the User Inter-

action activity. To begin with, the user needs to give inputs to the system, such as

query strings, which will make the system go to the Data Profiling activity (step 1).

After getting back to the User Interaction activity (step 2), the user can view a list

of query results and try to select ones of his/her interests. When the user is done

with the selection, the system will go to the Machine Learning activity (step 3).

In the User Interaction activity, the inputs are empty (when a user has not yet

entered anything) or a list of items (when a user searches for or regenerates new

items), and the outputs are user input queries and selections. The User Interaction

component is involved in this activity.

2.2.2 Machine Learning

When the user submits his/her selections of items, the system goes to the Machine

Learning activity (step 3). In this activity, the Machine Learning component will

first use the feature set and user labels to train a classifier. More specifically, it first

8



preprocesses the features, then performs dimensionality reduction, and trains and

selects a classifier of the highest accuracy.

After the training step, we use the classifier to perform classification over ad-

ditional query results, which are produced in the Data Acquisition component and

processed by the Feature Construction component. Data classified to be of user in-

terest will be ranked higher in the new list of items returned. After that, the system

will go to the Data Profiling activity again (step 4).

In the Machine Learning activity, the inputs are feature sets and user selections,

and the outputs are the regenerated list of items. The Machine Learning, Data

Acquisition and Feature Construction components are involved in this activity.

2.2.3 Data Profiling

When the user submits some inputs to the system to get relevant items (step 1),

or when the Machine Learning component generates a new list of items (step 4),

the system goes into the Data Profiling activity. The difference between step 1 and

step 4 is that, in step 1, the data is acquired through data sources using the Data

Acquisition component, while in step 4, the data is sent directly from the Machine

Learning component. If this activity is entered from step 1, the Feature Construction

component will construct features of the item set. If this activity is entered from

step 4, no feature constructions are needed since the item set remains the same and

only the ranking changes. After getting the list of items, the user interface will be

populated with the new data, and the system will go to the User Interaction activity

(step 2).

In the Data Profiling activity, the inputs are user queries (when the previous

activity is User Interaction) or a list of items (when the previous activity is Machine

Learning), and the outputs are a list of items and feature set of the items. Data

Acquisition and Feature Construction components are involved in this activity.

Among the three activities, the User Interaction activity is visible to users, i.e.,

users can view the effects or have control over the system, while Machine Learning

and Data Profiling activities are invisible to the user. All three activities happen

online, i.e., all the calculations and interactions are done in real time.

9



Chapter 3

Application

In this chapter, we apply our proposed personalized search system to find relevant

academic papers to show the operations of our system. We motivate this application

domain, describe the system architecture, outline the application-specific compo-

nents, and explain how to use the system.

3.1 Motivating Story

Paper searching is an important activity in academia. Researchers search for differ-

ent reasons. For example, a new graduate student may want to find an authoritative

survey paper to get familiar with a new area. A researcher may want to find papers

related to a certain topic with emphasis on a specific aspect. An author may want

to find references from a specific conference or people. A scholar may want to get

rid of irrelevant papers that accidentally match his/her query string. These diverse

requirements emphasize different aspects of a paper, e.g., the topic coverage, the

influence in terms of citations. The relevant features are difficult to infer, yet are

important for a particular user.

However, major academic search engines mainly focus on keyword matching,

ignoring specific needs of different users. Even with advanced searching functional-

ities, such as filtering or sorting by some criterion, flexibility is still limited because

some requirements are hard to represent. This issue results in users refining their

queries by trial and error, or flipping through many pages of results, which is time

consuming and may miss what the user wants.

10



In order to address this problem, we apply our proposed personalized search

system to allow users to provide feedback. Users indicate which initial paper results

seem more relevant. The system discovers the features of interest across the selected

papers, using the feedback to produce improved results. The interaction happens

iteratively to better converge to the user’s requirements. The system is extensible,

thus we can easily add other kinds of features to address various user requirements.

3.2 Architecture

Model
View URL

Template

Webpage

Util

Client sideServer side

1. user service requests

2. mapping requests to backend services

3. backend support

4. return response

Feature Construction 
component;
Machine Learning 
component;

Data Acquisition 
component (data 
source, e.g., MAS 
API, and data 
adaptor)

Django HTML template (layout and 
content control variable, HTTP requests 
for searching, reranking, and 
restarting);
Javascript functions (get and update 
preferences);

Mapping between 
URL and service 
function

Service functions 
(search, rerank, 
paging, show 
and update 
preference)

Figure 3.1: System Architecture

We use the open source Django framework to implement this system. Django is a

high-level Python Web framework which uses a Model-Template-View structure to

provide a clean, pragmatic design to support rapid development [2].

We show the system architecture in Figure 3.1, where the directed edges denote

data flows. The text in the brackets explain the content of major components. More

detailed comments and the implementation can be found in [8].

The following is a walkthrough of the working procedure of this Django appli-

cation, combined with the system components and activities.
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3.2.1 User Service Requests

When a user requests services from the system, the web browser will send HTTP

requests to a target URL of the backend server. The services include searching

for papers, flipping through pages, selecting interesting papers, and generating new

papers of interest. The requests can be either synchronous or asynchronous (such

as Ajax calls). The User Interaction component and the User Interaction activity is

involved.

3.2.2 Mapping Requests to Backend Services

The type of requested service is identified by a specified URL to which the request

is sent. A URL module in Django maps a URL to a service function in the View

module. Thus, the service request can be handled by a corresponding service func-

tion.

3.2.3 Backend Support

When a service function in the View module is called, it can utilize a variety of data

sources and algorithms from the backend to serve the incoming requests. In our

application, the backend support includes data acquisition, feature construction, and

machine learning. After getting the desired results, the service function can either

render them to a specific HTML template or package them into JSON1 objects.

Since the service functions are separated from the controller (URL module),

data model, and presentation tier (HTML templates), we can easily add new algo-

rithms to the application. The data acquisition, feature construction, and Machine

Learning components, as well as Data Profiling and Machine Learning activities

are involved in the backend support.

3.2.4 Return Response

When the rendered HTML webpages or JSON data are returned to the browser,

client-side scripts can manipulate the response before presenting it to the user.

1http://www.json.org/
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3.3 Application-Specific System Components

Since we are applying our personalized search system to paper searching, we need

to customize some of the components to the application area. The major customiza-

tion exists in the Data Acquisition, Feature Construction, and Machine Learning

components.

3.3.1 Customization of Data Acquisition

The goal of data acquisition is to get raw data from data sources, and use data

adapters to transform them to the format that our system can consume. In this

application, we want to customize the data sources of paper dataset providers, fetch

paper information, and store that in our system. The dataset provider should be

legally usable, rich in data, and provide necessary functionalities.

There are many paper dataset providers, such as ArnetMiner2 and arXiv3. How-

ever, arXiv significantly lacks publication information in certain computing science

research areas, such as software engineering. ArnetMiner only provides limited in-

formation of the publications. While Google Scholar4 is very popular in academia,

it does not provide any public interfaces that developers can use.

Microsoft Academic Search (MAS) also provides relatively good search ser-

vices for academia. Moreover, it provides an API that allows developers to build

applications by leveraging the data and functions of MAS. The API enables appli-

cations to [5]:

• send a free text query to retrieve relevant objects (with object types including

publication, author, conference, journal, organization, keyword and domain);

• get the detailed information for a given object;

• explore the relationships between objects, such as Reference and Citation.

The MAS API provides powerful search functionalities. For example, the devel-

opers can specify different conditions such as title matching and author matching,
2http://arnetminer.org/
3http://arxiv.org/
4http://scholar.google.com/
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and the returned objects will be the requested object type and meet the intersection

of all the conditions, which enables the developers to implement all functionalities

of MAS itself. The returned objects of MAS API are in pure JSON format, which

is easy to manipulate.

Thus we use the MAS API as our data source. We focus on using the publication

search function of the MAS API. When we issue a valid publication search request,

the returned results are sets of relevant publications containing information about

paper titles, authors, abstracts, citation count, conference or journal, keywords, and

URL link.

These rich fields of publication information can be used to construct paper fea-

tures. We can potentially use the information of other object types, such as author

or conference, to apply the personalized search in other search aspects.

3.3.2 Customization of Feature Construction

The goal of customizing the Feature Construction component is to allow it to ad-

dress different requirements as mentioned in Chapter 1. Thus we need to identify

possible user requirements and analyze the information available to address as many

requirements as we can.

For example, some users may be interested in papers from some groups of re-

searchers. We can address this requirement by mining the community of the coau-

thorship graph, i.e., clustering authors who work together frequently into the same

community and analyze whether the user is interested in some communities of au-

thors. Using the Louvain Method5 [15], we can quickly find the community of

authors in a coauthor graph, which is constructed from the authors of the current

query result set. Figure 3.2 shows the result of mining the coauthorship graph of a

query result set. Authors in the same community are in the same color. Communi-

ties containing less than five nodes are hidden in the graph. This graph is visualized

with Meerkat6, a social network analysis tool.

5Louvain Method is a community mining algorithm that finds the structure of a network and
divides it into clusters based on the connections between the nodes.

6http://www.aicml.ca/?q=node/41
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Figure 3.2: Community Mining of Coauthorship Graph

Textual features also play a very important role in academic search. Using tf-

idf is a good way to search keywords; however, in our application, there is limited

training data compared with the dimensionality of tf-idf features, which is in the

thousands. Using tf-idf can make the feature space significantly greater than the

number of data points, which will downgrade the performance of some classifiers.

For example, the decision tree model will overfit the data if the feature dimension-

ality is much greater than the number of samples [7]. Moreover, since the query

results provided by the MAS API are already related to the query words, the need

for matching query words is reduced. Thus, we use the Latent Dirichlet Allocation

(LDA7) [13] language model instead. LDA can help to create topic distributions,

which significantly reduces dimensions while keeping semantics of items as a fea-

ture. We first train a LDA language model from the concatenated texts of title and
7LDA is a language modeling technique that models topics as distributions of words and docu-

ments as distributions of topics. It can greatly reduce the dimensionality of the feature space for the
documents.
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abstract of each paper in the current query result set. The language model contains

ten topics, and each topic is a distribution of words in the current query result set.

Each paper has a distribution of the ten topics, denoting its semantics. There is a

maximum of 1000 papers in each query result set. If we set the number of topics too

large, the distinction between topics becomes very small so that papers cannot be

easily differentiated by their topic distributions. If we set the number of topics too

small, there will not be enough topics to differentiate the papers. We observed the

data and tried with different numbers of topics and found that 10 topics is a good

balance. On average, each topic is supported by 100 paper entries (where each entry

is a concatenation of title and abstract that are around 100 words), thus the topics

are well built. The papers can be differentiated by their distributions of different

topics instead of just one topic. Moreover, since the papers are already related to

the query words, the differences between papers are not as vast as papers randomly

chosen from the whole paper dataset. Thus we do not need to use that many topics

to differentiate the papers.

There are also other features that a user may be interested in. For example,

the user may be interested in what conference the paper is published in, how many

citations the paper gets, how many papers that paper cites, and how recent the paper

is. We can easily get this information using the MAS API.

Different types of data will produce different types of features, which are con-

structed with different algorithms. Table 3.1 summarizes the implemented list of

features, feature types, and their corresponding feature construction techniques in

the publication search area. Please note that this list can be extended easily af-

ter identifying appropriate new features on the dataset. We do so by inserting the

new feature construction techniques into the Feature Construction component, and

adding the features they construct to the whole feature set. This is documented in

the ProcessFeature module in [8].

3.3.3 Customization of Machine Learning

The Machine Learning component is the core of the system. Based on the prefer-

ences given by the User Interaction component and the feature set given by the Fea-
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Table 3.1: Paper Feature List
Feature Name Feature Type Technique

Community number of first
author in coauthorship graph

integer
Community Mining using
Louvain Method [15]

Topic distribution of title and
abstract

list of float
Latent Dirichlet Alloca-
tion [13]

Conference ID integer from MAS
Citation count integer from MAS
Reference count integer from MAS
Recency of publication integer from MAS

ture Construction component, the Machine Learning component trains classifiers

that can capture a user’s preferences, which helps to reach our goal of personaliza-

tion.

Since there are different search domains, the feature sets may vary vastly in

terms of dimensionality, and differ in value type, i.e., categorical or numerical.

And different users are likely to focus on different features. Thus it is necessary to

include a wide range of classification algorithms, train different types of algorithms,

and choose one of the best.

Also, it is important to do dimensionality reduction to avoid overfitting [20]

and increase time efficiency when there are too many features. Increasing time

efficiency is important because we want the personalization to be interactive and

more responsive to save the user’s time.

Moreover, since some classification algorithms hold certain assumptions of the

feature values, e.g., zero mean, unit variance, or Gaussian distribution, it is required

to preprocess the features to meet these requirements first.

Lastly, when users are interacting with the publication items, they mainly have

three different attitudes towards each item:

• Like. The user is clear that this item meets his/her criteria.

• Dislike. The user is clear that this item does not meet his/her criteria at all.

• Unsure. The user does not have good confidence in either Like or Dislike,

maybe because the item is not interesting enough, or the user cannot under-

stand it well.
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Thus instead of having two classes, we have three classes representing each item.

The benefits of having three classes is not only letting users avoid making hard

decisions, but also giving papers with uncertainty an appropriate place. Thus the

classification algorithm should support multi-class classification.

Considering the above requirements, we choose the open source Python ma-

chine learning library, scikit-learn, to help implement the Machine Learning com-

ponents.

Classification algorithms

When constructing the classification algorithm pool, we are mainly concerned about

the ability to process every feature in the feature set, thus we need to make the

algorithm pool as complete as possible. However, we also need to consider the

efficiency tradeoff when there are too many classification algorithms, since each

algorithm will be trained and evaluated online.

Consider the following issues.

• Our paper search feature set contains both categorical and numerical values.

• Most of the features are independent of each other. (Naive Bayes Classifier

assumes that all features are independent of each other.)

• A user’s requirements on some of the features may be linear or non-linear.

• A user’s requirements may evolve during the search.

One classification algorithm may not perform well at all times, thus we construct

the following algorithm pool that can address these issues.

1. Support Vector Classifier (SVC). SVC trains a hyper surface (decision func-

tion) using kernel functions (such as linear kernel) and some key training data

points (support vectors). The label of a test data point is determined by its po-

sition relative to the hyper surface. SVC is very effective in high dimensional

space, even when the dimensionality is greater than the class size. It is also

memory efficient, because it only uses a few support vectors to train the clas-

sifier. More importantly, it is very versatile since different kernel functions
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can be specified for the decision function. The decision function is the hyper

surface that determines whether a data point belongs to one class or another.

The shape of decision function is determined by the kernel functions. We

can customize the decision function using different kernel functions such as

the linear kernel, polynomial kernel and radial basis function (RBF) kernel.

Thus both linear and non-linear requirements can be addressed. However, we

should note that SVC is not scale invariant, thus we preprocess the feature set

to make features in the same scale to avoid one feature being weighted more

importantly than another. [7]

2. Decision Tree. Decision Tree creates a model that predicts the label of a test

data by learning simple if-then-else rules from the training dataset. Decision

Tree is a very useful candidate because of its ability to handle both numerical

and categorical values. Besides, it requires little data preprocessing. More-

over, the decision process is quite interpretable and can be easily visualized.

However, we should note that Decision Trees may create a complex model

that does not generalize to the whole dataset. It may also create biased trees

if one class dominates. In order to address these problems, we perform di-

mensionality reduction to avoid overfitting. [7]

3. Naive Bayes Classifier (NBC). NBC is based on Bayes theorem with the

”naive” assumption of independence between every pair of features. The

probability of test data belonging to one class can be decoupled to the product

of the probability of each independent feature’s presence in that class. NBC

has a simple assumption that all features are independent of each other. De-

spite this simple assumption, NBC works decently well and is extremely fast

compared with other more sophisticated classifiers because of the decoupling,

which also helps to alleviate problems caused by the curse of dimensionality.

[7]

4. Logistic Regression Classifier (LRC). LRC is a linear model classifier. In this

model, the probabilities describing the possible outcomes of a single trial are

modeled using a logistic function. The LRC model also assumes that the
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features are independent of each other. [7]

5. Nearest Neighbors Classifier (NN). NN can also serve as a classifier by pre-

dicting the label of a data point to be the most frequent label of its nearest N

neighbors. [7]

There are also a lot of other classifiers that can be easily added. We can do this

by inserting the new classification algorithm to the Machine Learning component,

and calling it in the classifier comparison function. This is documented in the clf

module in [8]. However, if too many classifiers are added, each requiring some

training and tuning time, the time efficiency may be reduced, making the users wait

longer. Thus we only use the above classifiers, which are able to address the above

issues without sacrificing too much time efficiency.

Each classifier has its own set of parameters that should be tuned for the best

performance, e.g., to make the classifier gain highest accuracy on the current set of

training data. And the best parameters may change when the training set changes.

Thus it is important to get the best set of parameters for each type of classifier for

each classification task.

We use k-fold cross validation to find the best set of parameters. Firstly, we

use the StratifiedKFold module provided by scikit-learn to split the training set

into k folds, where each fold has approximately the same ratio of different classes.

We use k-1 folds as the training set, and the remaining 1 fold as the test set. By

running it k times, we can get the average performance of a specific classifier under

a set of parameters. Secondly, we prepare candidate values for some parameters

of classifiers as needed (Table 3.2). For example, in SVC, we can choose different

kernels for the decision function such as the linear kernel and RBF kernel. Also,

the penalty parameter C is a tradeoff between training error and the generalization

ability of the model. If C is too small, the training error will be large. However,

if C is too large, the model overfits the training data and loses the generalization

property. Thus we prepare a set of candidate values for C, [1, 10, 100, 1000], which

ranges from a small penalty to a very large penalty. Thirdly, for each classifier, we

use the GridSearchCV module of scikit-learn to score each parameter combination
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prepared earlier. In the above example, we have 2 kernel candidates and 4 penalty

parameter candidates, thus there are 8 (2× 4) combinations. The best parameter

combination for that classifier is retained until the training data changes, when the

user changes his/her selections and requests to rerank. This step once again reminds

us that, if too many classifiers are added to the algorithm pool, the search efficiency

would be reduced significantly since each classifier will be trained k ×m times,

where k is the folds number, while m is the number of parameter combinations.

Table 3.2: Parameter Grid of Classifiers
Classifier Parameters and value sets

SVC kernel: [RBF, linear]; γ: [10−3, 10−4]; C: [1, 10, 100, 1000]

NN
n-neighbors: [3, 5]; algorithm: auto; weights: [uniform,
distance]

After each classifier gets its best parameters, we further compare the scores of

different classifiers, and use the highest scoring one to classify the test data set.

There are many scoring techniques when comparing classifier performance, e.g.

accuracy, recall, and precision. When we are choosing the score, we should mainly

consider the application being built. Taking paper searching as an example, if a

disliked item is classified as liked (False Positive), it will be ranked higher; a truly

liked item (True Positive) will be consequently ranked lower, which the user may

miss. However, if a liked item is classified as disliked (False Negative), the other

truly liked items will still be ranked higher. Thus, users will be more tolerant with

False Negative than False Positive. In this situation, we choose accuracy as our

scoring criterion.

Preprocessing

As mentioned in Section 3.3.3, some classification algorithms require preprocess-

ing, thus we preprocess the feature set before training classifiers. According to the

classifier requirements, we process the data to have zero mean, unit variance, and

same scale among different features before the dataset is applied to the classification

algorithms. Although some classification algorithms (such as the decision trees) do

not require preprocessing, it does no harm to standardize the data for them. Sharing
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the same preprocessing step for all the classification algorithms can also save the

time of preprocessing for each algorithm that needs preprocessing separately.

Dimensionality reduction

Performing dimensionality reduction is a good way to increase time efficiency as

well as avoid overfitting. We use tree based estimators (ExtraTreeClassifier [7] pro-

vided by scikit-learn) to compute feature importance, which can be used to discard

irrelevant features.

Figure 3.3 is an example of a three-class classifier, which has gone through the

preprocessing, dimensionality reduction, and parameter tuning stages. And it has

been compared against several other classifiers and selected as the best one on the

result dataset for the query terms of software engineering.

From the Figure 3.3, we can see that after dimensionality reduction, there are

only 3 features left, which means only 3 features are considered to be significant

to discriminate papers belonging to three different classes, i.e., like, dislike, and

unsure. The figure plots the data points according to only the first two dimensions,

yet we still can see that data points from the like class are well separated from the

other two classes. However, this is not always the case, especially when the features

are not discriminative and when the user has unclear or over-complex requirements.

In this example, decision tree classifier has the highest accuracy and is selected as

the classifier to classify the test data.
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Figure 3.3: 3 Class Prediction and Corresponding Classifier

After customizing these components, our personalized search system can work

for a paper search application. The implementation can be found in our Bitbucket

host [8].

3.4 Example Interaction Scenario

In this section, we will show how the frontend works in the personalized paper

search engine.

The frontend consists of four sections: input, commands, selections, and results

(Figure 3.4). The input section allows a user to input new queries, refine queries,

and search. The commands section has three commands for the user. The first
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command is Search, which users can click to request the backend server to search

relevant items according to the search query. The second command is Rerank,

which means the user asks to rerank the items from the current query results based

on the current preferences. The third command is Start Over, which means the

user can empty the current selections and start a new searching task. The selections

section shows the user’s current liked and disliked items. If a user selects new liked

or disliked items, they will be appended to the selections section. The selections

section will only be emptied when the user clicks the Start Over button. The results

section shows the set of relevant items when the user clicks Search button, or the

personalized set of interesting items when the user clicks the Rerank button.

Figure 3.4: Frontend Layout

The following pages show a step-by-step user interaction of the personalized

paper searching application.

• Search for publications using queries

1. As shown in Figure 3.5, a user can input a query string and search just

like an ordinary search engine.
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Figure 3.5: User Interaction: input query

2. After the query string is submitted, the backend Data Acquisition com-

ponent fetches data from MAS then sends it to the frontend. After that,

the user gets a list of publications containing information such as title,

authors, publication year, citation count, reference count, venue, ab-

stract, keywords, and its link (as shown in Figure 3.6). Meanwhile, in

the backend, the Feature Construction component constructs the fea-

tures set in another thread.

Figure 3.6: User Interaction: get initial results

• Personalize the search results

3. On the left of each publication item, there is a group of radio buttons in-

dicating the user preference of that publication. It is Unsure by default.
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Users can click on one of the choices to specify the preference as shown

in Figure 3.7.

Figure 3.7: User Interaction: specify preferences

4. At the bottom of the page, the user can see his/her personalized selection

results. He/She can also browse through pages as shown in Figure 3.8.

Figure 3.8: User Interaction: view next page

5. After browsing the publication list and specifying preferences, the user
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can click on the Rerank button to rerank the current results based on the

selections as shown in Figure 3.9. At this point, features of all the paper

entries viewed so far by the user and papers in the selection list (liked

and disliked papers) are the training dataset, while the user specified

preferences, i.e., like, dislike, and unsure, serve as the labels. The fea-

tures of all the papers in the query result set are the test dataset. The Ma-

chine Learning component trains classifiers, predicts and reranks items

with the best classifier. After the reranking, the labeled liked papers are

listed on the top, predicted liked papers come after, predicted unsure

papers in the middle, predicted disliked papers after, labeled disliked

papers at the bottom. Figure 3.10 shows the reranked list of publica-

tions.

Figure 3.9: User Interaction: rerank
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Figure 3.10: User Interaction: get reranked results

6. If the user is not satisfied with the initial rerank, he/she can just browse

the first page and click on the Rerank button again. This is called

Successive Reranking, which takes advantage of existing selection re-

sults, thus can save effort. Since the viewed papers change, the training

dataset will also change, resulting in an updated classifier. The second

rerank will generate a different ranking accordingly. This is shown in

Figure 3.11.
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Figure 3.11: User Interaction: successive reranking

• Revise query terms

7. During the process of searching for papers, the users may come up with

better search terms for the query task. If so, the user can simply input

new query terms in the search box and submit the query (Figure 3.12).

All his/her previous selections are kept. A new list of search results is

returned (Figure 3.13).

Figure 3.12: User Interaction: revise query terms
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Figure 3.13: User Interaction: get new results

8. The user can also specify personal preferences on the new query result

set, and rerank the new results. His/her previous selections for the same

task stay the same (Figure 3.14).

Figure 3.14: User Interaction: rerank on new results

• Start Over

9. Click on the Start Over button to clean all the internal states and start a
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new task (Figure 3.15).

Figure 3.15: User Interaction: start a new search task
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Chapter 4

Experiment

Personalized search focuses on the specific needs of each unique user, thus a user’s

rating is very important when evaluating the system [36]. As a continued work for

our previous research [40], this thesis evaluates the approach with real users. We

arrange the real users to use our personalized search engine (system A) as well as

an ordinary search engine (system B). Each user performs the same searching task

on both search engines, and rates their performance.

When the user is performing a searching task, he/she inputs a query string to get

items, and holds certain criteria when judging whether an item is of his/her interest

or not. We define items of interest as items meeting the criteria.

However, not all the returned items are relevant to the query according to the

user. And these query-irrelevant items are not of the user’s interest, because they are

regarded as irrelevant by the user and therefore they do not meet the user’s criteria.

Also, among the query-relevant items, some are of the user’s interest, while some

are not of the user’s interest. The user gives like as the relevance feedback to items

of interest, and dislike/unsure as the relevance feedback to items not of interest.

For example, a user wants to search for papers about applications of princi-

ple component analysis. He/she uses PCA, the abbreviation, as the query string.

However, there are papers about patent certificate application returned, because the

search engine thinks it is relevant to the query. In this scenario, the papers about

patent certificate application are query-irrelevant items according to the user. Even

if the user is interested in patent applications, these papers are still categorized as

items not of interest because they do not meet the current search criteria. Also,
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among the principle component analysis-relevant papers, some focus on applica-

tions, and some focus on theories. According to our definition of items of interest,

application-relevant papers are items of interest, while theory-relevant papers are

items not of interest.

The categories of items can be visualized in Figure 4.1.

query-relevant items query-irrelevant items

of interest

(like)
not of interest

(dislike/unsure)

not of interest

(dislike/unsure)

* Items of interest = Items meeting the user's criteria

* Items not of interest = Items not meeting the user's criteria

Figure 4.1: Items Categories

We focus on the following properties when rating search engine performance:

• Accuracy. Accuracy focuses on whether items of interest will be ranked

higher.

• Coverage. Coverage focuses on whether query-irrelevant items will be ranked

lower, leaving room for query-relevant items to be ranked higher.

• Serendipity. There are some items that are query-relevant but does not meet

the user’s criteria (not of interest), however, the user may find these items

potentially useful. We define these items as serendipity. And the serendipity

property focuses on whether these items will be ranked higher.

• Effort. Good accuracy may come with the cost of extra user effort. Effort is a

measure of user specific tolerance of extra effort, indicating the user’s subjec-

tive perception instead of objective measurement such as time consumption.

• Overall. Taking all properties into consideration, overall is the general ten-

dency of a search engine being preferred.
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We hypothesize that our personalized search engine (system A) will outperform

ordinary search engine (system B) in Accuracy, Coverage, and Serendipity proper-

ties.

4.1 Experiment Design

4.1.1 Participants

In this experiment, we called for participants, and 10 graduate students agreed to

participate. All of the graduate students were in their second year or above from the

Department of Computing Science. The choice of second year or above is because

this group is more familiar with their research. Their research background varied

in different research topics of computing science, such as theoretical algorithms,

software engineering, machine learning, computer vision, visualization, natural lan-

guage processing, and wireless sensor networks.

4.1.2 System Setting

The experiment was run on a laptop, a quad core Intel R©CoreTM i3-M370 CPU

2.40GHz and 3 GB of memory. The required disk space for this experiment is 20

MB, while our available disk space is 200 GB. This configuration was far beyond

the needs of this experiment.

Both system A, the personalized search engine, and benchmark system B, the

ordinary search engine, used the MAS API. The maximum number of results re-

trieved was 1000 for a query, which took around 10 seconds for both systems. Sys-

tem A used exactly the same set of features and classifiers as described in Chapter

3, and the implementation is in [8] (commit id: a67721f).

4.1.3 Experimental Goal

In this experiment, our goal was to compare the 5 properties (as mentioned above)

of both systems, and validate our hypothesis.
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4.1.4 Procedure

The experiment was conducted in person. In this way, we could answer the par-

ticipant’s questions and have a better chance to observe user behavior and ask user

requirements. For each participant, we first prepared him/her with an introduction

and hands-on practice. Then we let the user choose and perform his/her search

tasks. After a search task was finished, the participant filled in a questionnaire (Ap-

pendix D) and began the next task. There are 2 tasks for each participant.

Preparation and warming up

1. Participant signed a consent form (Appendix A).

2. We introduced the features and usage of system A (personalized search en-

gine) and benchmark system B (ordinary search engine) to the participant.

3. We explained to participant about the questionnaire comparison properties,

i.e., accuracy, coverage, serendipity, effort, and overall.

Choose searching tasks

Each searching task contained some query words and certain criteria. We provided

searching tasks from Appendix D as examples. For instance, one searching task

was searching with the query word Hbase, with the criteria of finding papers with

emphasis on the application and industrial side. Since participants had different

background and areas of interest, they could instead create a searching task on their

own. The differences in participants-created searching tasks did not impact our goal

of collecting their property ratings. On the contrary, if a participant was interested

in a searching task, his/her ratings of properties could reflect his/her preferences

more accurately. Each participant chose two searching tasks.

Searching and rating in each task

Each participant would fulfill the two searching tasks he/she had chosen. In the first

task, the participant would first use system A, then system B. In the second task, the

participant would first use system B, then system A. In this way, the potential bias
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caused by the order of use can be decreased. A questionnaire was filled after each

task.

During one task, the participant entered the same query words to both A and B.

Since A and B shared the same data source (MSAS API), they would return exactly

the same initial result set and ranking. If the participant was not satisfied with the

result set, he/she can change the query words, but the input to both systems stayed

the same.

A participant was expected to use system A and B in the following steps.

Using system A After getting the initial result set, the participant scanned through

the list of items. For each item, he/she had three options, i.e., like, dislike, and

unsure. The default option was unsure. The participant needed to select at least

one liked or disliked paper. If the participant did not see enough liked papers from

the first page, he/she could go to the second page. After specifying the preferences,

the participant could click on the Rerank button. After the classification, a reranked

list was returned. The labeled liked items were listed on the top, predicted liked

items after, predicted unsure items in the middle, predicted disliked items after, and

labeled disliked items at the bottom.

If the participant was not satisfied with the reranking, he/she could click on the

Rerank button again after making a few adjustments such as selecting more liked

items. The participant did not need to be nervous about making false judgments

since there would not be any information lost. He/she could even re-click on the

Rerank button without specifying any new preferences.

During the experiment, we observed that the participant often browsed 2 pages

(where each page contained 20 items) before reranking. And the participant usually

labeled 5 to 15 items for each of the like and dislike class. The total number of

labeled items was usually 10 to 15. The labeling was subject to the result set and

the participant’s criteria.

Figure 4.2 shows the user interface of system A.
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Figure 4.2: System A Layout

Using system B After getting the result set, the participant reviewed the default

list of items. Participants were asked to keep their criteria consistent throughout the

experiment.

Figure 4.3 shows the user interface of system B. The only difference of the user

interface between A and B is that B did not support the reranking function. Though

B also provided radio buttons, they were designed to remind participants of their

paper preferences.

Figure 4.3: System B Layout
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Comparison between A and B After getting the reranked list in system A and

the default list in system B, the participant compared the rankings from the two

lists. In order to guarantee a fair comparison, we asked the participants to ignore

items that the participant had already labeled as like or dislike in both systems and

only compare items that were not labeled by the participant.

In order to validate our hypothesis, we asked the participant to focus on three

properties, i.e., accuracy, coverage, and serendipity. When focusing on the accu-

racy property, the participant compared the rankings of items of interest in both sys-

tems. For example, if there were more items of interest among higher ranked items

in system A, then the accuracy score for A would be higher. When focusing on the

coverage property, the participant compared the rankings of query-irrelevant items

in both systems. For example, if there were more higher ranked query-irrelevant

items in system B, then the coverage score for A would be higher. When focusing

on the serendipity property, the participant compared the rankings of serendipitous

items in both systems. For example, if there were more higher ranked serendipitous

items in system A, then the serendipity score for A would be higher.

Since different participants had a different definition of higher ranked items, we

allowed them to decide on the number of items to be considered as higher ranked

as long as the number was no greater than 100 (i.e., 5 pages).

We also asked the participant to estimate his/her perceived effort for completing

the task in each system, and give an overall score for each system.

Rating properties Based on the previous comparison, the participants rated the 5

properties of both systems, i.e., accuracy, coverage, serendipity, effort, and overall.

The values were in the scale of 1 to 5, where 1 meant worst, 3 meant neutral, and 5

meant best.

The participant recorded the scores in the questionnaire. For each property,

they could also write down comments, e.g., reasons why he/she thought A or B was

good or bad in property accuracy. We also recorded the query task (query string

and criteria) and information about each participant’s familiarity with the searched

topic.
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When the first task was finished, the participant began with the second task.

Each task took between 15 to 20 minutes.

4.2 Experimental Result and Analysis

We collected 20 questionnaires in total. Each questionnaire contained a searching

task and 10 property scores (where each system received 5 property scores). Par-

ticipants created 17 of the searching tasks. We found that these tasks covered a

wide range of topics (see Table 4.1). The last 3 rows are experimenter created tasks

adopted by participants.
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Table 4.1: Searching Tasks
Query Criteria

deblurring recent publications about motion deblurring

large scale data visualization
general application of large scale data visu-
alization, large scale data rendering solution

vegetation signal propagation attenuation microwave, RET model

object recognition
approaches of 2 dimension image object
recognition

NP hard
algorithms for solving NP hard problems,
not identifying NP hard problems

smoothed analysis recent development

principle component analysis
image related application or theoretical
method focused

natural language processing fundamental works, theories, not application
approximation algorithms about
TSP

recent algorithms

combinatorial game paper with high citation

resource mobile ad hoc networks
resource allocation, grid, mobility models,
distributed

bloom filter network
application of bloom filter in network proto-
cols

natural language processing has statistic as a keyword

spatio-temporal data visualiza-
tion

applications of different spatio-temporal
data visualization methods under different
domains

affiliation extraction from re-
search papers

extract meta-data from pdf research papers

document cluster labeling has labeling as keyword
simultaneously localizing and
mapping (SLAM)

visual SLAM

Hbase application side of Hbase

machine learning
machine learning publication with high cita-
tion and reference

image processing new approaches to processing images
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4.2.1 Preliminary Processing of Result

For each system, we got its score distribution for each property.

Also, we define the relative score of property X (relative property X score) as

follows: In each questionnaire, the relative score of property X equals to the dif-

ference between the scores of system A and B in terms of property X. A positive

relative score of property X means system A outperforms system B and a negative

relative score means system B outperforms system A (in terms of property X). We

got the distribution of relative score for each property.

For example, if one participant’s score of accuracy for system A in a question-

naire was 4, and his/her rating of accuracy for system B in the same questionnaire

was 2, then his/her relative score of accuracy was 2 (4− 2). Furthermore, if the

relative score of accuracy equaled to 2 in 4 out of the 20 questionnaires, then the

percentage of the relative accuracy score of 2 was 20%.

4.2.2 Result Analysis

We analyzed the correlation between different properties, compared the score dis-

tribution between the 2 systems for each property, and showed the distribution of

relative scores for each property. Lastly, we compared the average and standard

deviation of the 5 properties between the 2 systems.

Pearson correlation coefficient

We calculated the Pearson correlation coefficient (PCC) of relative scores of differ-

ent properties as follows:

r =
cov(X ,Y )√

var(X)
√

var(Y )

PCC is a measure of a linear relationship between two variables X and Y [10].

The value ranges from -1 to 1, where the greater the absolute PCC value, the higher

the correlation. A positive PCC value means a positive correlation, and a negative

value means a negative correlation.
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We calculated the PCC for the relative scores in every pair of properties (Ta-

ble 4.2). For example, if the relative score of accuracy from questionnaire 1 to

20 is X=(accuracy1, accuracy2, ..., accuracy20), and the relative score of overall

from questionnaire 1 to 20 is Y=(overall1, overall2, ..., overall20), then we can use

the above equation to calculate the value of PCC for relative accuracy and relative

overall.

Table 4.2: PCC Value for Relative Scores of Each Pair of Properties
Variate X Variate Y PCC

relative accuracy relative coverage 0.8227
relative accuracy relative serendipity 0.5234
relative accuracy relative effort 0.4156
relative accuracy relative overall 0.9045
relative coverage relative serendipity 0.6908
relative coverage relative effort 0.3981
relative coverage relative overall 0.7263

relative serendipity relative effort 0.2892
relative serendipity relative overall 0.5048

relative effort relative overall 0.3276

We can observe high correlations between some of the properties.

The PCC value of 0.8227 between relative accuracy and relative coverage shows

a high correlation between the relative scores of accuracy and coverage. The reason

is that if items of interest are ranked higher, items not of interest (which included

query-irrelevant items) will be ranked relatively lower. The PCC value of 0.9045

between relative accuracy and relative overall shows a high correlation between the

relative scores of accuracy and overall. This result shows that if system A generates

higher ranks for items of interest, participants will generally prefer system A. The

PCC value of 0.6908 between relative coverage and relative serendipity shows a

high correlation between relative coverage and relative serendipity. The reason is

that if query-irrelevant items are ranked lower, query-relevant items (which include

serendipitous items) will be ranked relatively higher. The PCC value of 0.7263

between relative coverage and relative overall shows a high correlation between

relative coverage and relative overall. This result shows that if system A generates

lower ranks for query-irrelevant items, participants will generally prefer system A.
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Accuracy

The accuracy property focuses on whether items of interest will be ranked higher.

A score of 3 means neutral, and a score greater than 3 means good. We show the

distribution of the accuracy scores as a bar chart in Figure 4.4, which allows for

better comparison of score numbers. We show the distribution of relative scores

of accuracy as a pie chart in Figure 4.5, which allows for intuitive comparison of

score percentages. The same goes for other properties. As can be seen from Figure

4.4, the number of score 4 for system A is 11, which means, in more than half

of the querying tasks, people feel good about the accuracy property of system A,

while only in 4 of the querying tasks, people feel good about the accuracy property

of system B. In Figure 4.5, more than half of the relative scores of accuracy are

positive, which means, system A is helpful in ranking items of the user’s interest

higher in more than half of the search tasks.

Figure 4.4: Distribution of Accuracy Score
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Figure 4.5: Distribution of Relative Score of Accuracy (pie sector label: relative
score)

However, we also can notice that about 25% of the relative accuracy scores

have value 0 and 20% have value -1. This means, in nearly half of the search tasks,

system A does not help much or is worse than system B when ranking items of

interest.

We investigated into the questionnaires, and found that there were mainly three

causes:

• First, poor accuracy happened when the original results were poor. For exam-

ple, we had seen a participant input a query, but only 70 items returned, most

of which were apparently irrelevant. In this case, the classifier could not get

enough data for the liked class, thus it could not create an effective classifier.

• Second, even if the original results were relevant to the query string, the cri-

teria might constrain the liked items to only a few candidates, which would

also make the unsure and disliked classes dominate, resulting in a poor per-

forming classifier. The classifier might mis-classify the already nearly extinct

good candidates and rank them lower, which might make the user unhappy.
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• Third, even if the original results were good, and even if there were many

liked items, when the criteria could not be represented by the system well,

the classifier might not be able to know enough specifics of the user. The

reasons varied for this phenomena. For example, if the Feature Construction

component failed to represent the right feature of the liked items, the Machine

Learning component might make false judgments. We had seen a participant

looking for papers with relevancy to microwaves; however, the system mis-

takenly recommended frequency related papers.

Based on these observations, we conclude that the performance of the reranking is

dependent on the original dataset, the user’s feedback of liked or disliked items, and

the system’s ability to represent the criteria. In order to represent more kinds of user

requirements, there should be more features. However, with too many features and

too few specified items, the performance of classification may be poor, even with

the presence of the dimensionality reduction module.

Coverage

Coverage focuses on whether query-irrelevant items will be ranked lower, leaving

room for query-relevant items to be ranked higher. In Figure 4.6, we can see that

after reranking, in more than half of the questionnaires, users are happy about the

coverage property. In Figure 4.7, we can see that in 45% of the questionnaires,

the coverage property does not change after the reranking. In 40% of the question-

naires, reranking helps to rank query-irrelevant items lower, while in 15% of the

questionnaires, reranking mistakenly ranks query-irrelevant items higher.
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Figure 4.6: Distribution of Coverage Score

Figure 4.7: Distribution of Relative Score of Coverage (pie sector label: relative
score)
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Serendipity

The serendipity property focuses on whether serendipitous items will be ranked

higher. It is observed that in Figure 4.8, the score of 3 is the most frequent one for

both systems. This is not hard to imagine because of the infrequent nature of good

surprises. In Figure 4.9, we can also observe that in 45% of the questionnaires,

reranking does not help with the serendipity performance. However, we notice that

the serendipity score of 4 and 5 for system A is notably better than for system B.

Figure 4.8: Distribution of Serendipity Score
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Figure 4.9: Distribution of Relative Score of Serendipity (pie sector label: relative
score)

Effort

Effort is a measure of user specific tolerance of extra effort, indicating the users

subjective perception instead of objective measurement such as time consumption.

It is our expectation that the effort property score will be relatively low for system

A, because the user simply has to do more work for a better reranked list. The

low values of PCC between the relative effort score and relative scores of other

properties confirm this point. However, the effort is less than we have expected.

According to Figure 4.10, in more than half of the questionnaires, users give good

scores on this property. In Figure 4.11, 75% of participants report no increased

effort with system A. We see comments saying that reranking is not hard, that the

good reranking is worth the effort, and that it actually feels good to know the system

tries to learn from the user.

In real world academic search, users tend to click on the items of interest, which

can be seen as a manual labeling process. Though our system requires users to click

on the item explicitly to specify a preference, it does not require particularly extra
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work, since they are doing something similar anyway. They will potentially get a

better ranked list from the effort. A typical user will view 3 to 5 pages of search

results and select around 10 papers of interest or not of interest before reranking.

Figure 4.10: Distribution of Effort Score
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Figure 4.11: Distribution of Relative Score of Effort (pie sector label: relative
score)

Overall

We received very encouraging overall ratings. As seen in Figure 4.12 and 4.13, In

60% of questionnaires, participants prefer system A over system B. As mentioned

previously, we can see a high correlation between overall and accuracy and cov-

erage, which implies that a better ranking from system A can make people prefer

system A. This is especially true in areas where people would like to devote effort

to search for something interesting. The reranking functionality ranks higher items

of interest that would otherwise be hidden in further pages.

50



Figure 4.12: Distribution of Overall Score

Figure 4.13: Distribution of Relative Score of Overall (pie sector label: relative
score)
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Average Comparison

Figure 4.14 shows the average score and standard deviation of each property for

both systems. We can observe that system A outperforms system B in the accuracy,

coverage, serendipity, and overall properties, , and ties on effort property.

Figure 4.14: Average Ratings of Properties

Based on the above results and analysis, we validate our hypothesis that our per-

sonalized search engine (system A) outperforms the ordinary search engine (system

B) in the accuracy, coverage, and serendipity properties. Also, the effort property

for our search engine is on par with the ordinary search engine. The overall property

for our search engine also outperforms the ordinary search engine.

4.3 Discussion

Personalized search can help making the search results more of interest to a user.

As we can see from Figure 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, and 4.14, system A outper-

forms system B in accuracy, coverage, and serendipity properties. These properties

are concerned with whether items of interest are ranked higher (accuracy), query-
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irrelevant items ranked lower (coverage), or serendipitous items are ranked higher

(serendipity). Thus, on these properties, the ranking is improved after personaliza-

tion.

The performance of personalized search is subject to the original search results.

We observed in the experiment that MAS did not always return good initial results.

For example, in one particular search task created by a participant, ”document clus-

ter labeling” was the query string. There were around 500 results returned. How-

ever, no more than 10 papers had the keyword labeling in the whole dataset. In this

case, the personalized search was unable to find more papers related to document

labeling. Moreover, as the size of the class of liked papers was significantly smaller

than the other two classes, the performance of the classifiers would be poor, which

might mis-classify papers of interest that are already rare and annoy the user.

The performance of personalized search is subject to the actual user require-

ments. We observed in the experiment that our system could not interpret the actual

intentions of users at times. For example, a participant searched ”vegetation signal

propagation” with the goal of finding papers emphasizing attenuation microwave

and RET model. However, our system misinterpreted this as a preference for pa-

pers related to frequency, since microwave was a high frequency wave. We checked

the log and found that it was because frequency and microwave were grouped in the

same topic in the topic distribution, which meant the features were not fine grained

enough to discriminate the two terms. Moreover, our system currently only sup-

ports a limited number of types of features, thus the user requirements that can be

possibly addressed are also limited.

The performance of personalized search is also subject to the interaction be-

tween the user and the system. During the experiment, we noticed that inconsistent

criteria, e.g., the intended criteria was high citation yet the actual liked list contained

several papers with no citations at all, would confuse the classifiers, which would

generate unwanted ranking. If one class was too dominant, e.g., the user selected

only one liked paper, leaving the rest to be unsure, the performance of the classifiers

would be poor since it could not identify what features the user was really interested

in.
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Better accuracy performance may come with the trade-off of effort. But if the

reranked list is good, the users may be more tolerant with effort, and vice versa. We

observe that the effort scores of the two systems are almost a tie, and only 25% of

the questionnaires report more effort in system A. While it is arguable that this is

only true in the experimental setting, we believe that some simple clicking will not

require a noticeable amount of extra effort. The process is intuitive, but the reranked

list may be surprisingly good, which may delight the user. Some comments say that

it feels good to know that the system tries to fulfill his/her requirements, and that

the system finds a paper of interest that would otherwise be hidden in the bottom

pages (see Appendix E).

We also find that the reranking speed is so fast that it usually takes no more than

1 second to get the reranked list after the Rerank button is clicked. Compared with

the time it takes to fetch the data from MAS, which is around 10 seconds, this time

duration is tolerated by participants.

To conclude this section, depending on the initial dataset, a user’s requirements,

and his/her interactions with the system, our system can make the ranking more

of the user’s interest, with just some simple clicks and a small amount of time.

The user can save a lot of page-flipping time when our system ranks initially lower

ranked items of interest on the top pages.

4.4 Threats to Validity

The experiment shows the value of our system. However, there are threats to the

validity of the experiment.

• The designer of the system is the experimenter of study. In this case, the

experimenter may be biased when designing and conducting the experiment.

For example, the experimenter created search tasks which might favor system

A and not be representative of general tasks. In order to decrease this bias, we

gave participants freedom to create their own search tasks. In the end, there

were only 3 experimenter created tasks adopted by the participants. Also, in

our experiment, we tried to keep everything the same between system A and
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B. For example, we let each participant finish two tasks using the systems in

alternate orders to reduce any potential bias caused by the order.

• The group of participants is limited. It is likely that if we invite more par-

ticipants, the experimental results may be different. It is possible that people

with different backgrounds will think differently about our system. We will

evaluate our system on more people with more different backgrounds in the

future.

• The user study has its inherent limitations. Different people have different

rating scores for the same system performance. Thus we used the relative

property rating score to reflect a participant’s preference between system A

and B. Moreover, a participant may prefer system A since it is a new system

that people would feel interesting at first, which would cause bias. Thus we

explicitly asked the user to be true to his/her actual preferences.

• The user interface may cause bias. Since we implemented our own user in-

terface, the original MAS user interface is not supported. However, the user’s

rating towards the 2 systems may be influenced by the interface. For exam-

ple, if both systems used the MAS user interface, the advantage of system A

may be diluted by the convenience brought by the MAS user interface, which

may influence the user’s rating.

• The choice of data source may cause bias. As we have mentioned before,

the performance of our personalized search engine is subject to the original

search results. Although MAS often provides satisfying initial search results,

there are still many research areas for which MAS does not provide enough

papers.

• Manual comparison may cause bias. In our experiment, the participant needs

to manually ignore labeled items, and manually compare the ranking of items

of interest, query-irrelevant items, as well as serendipitous items. The manual

process is error-prone and may cause bias. In our future experiment, we can

make this process automated or semi-automated. First, we can change our
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implementation in the experimental setting so that the labeled items can be

eliminated from the result set for both systems. Thus, the participant does

not have to manually ignore labeled items to guarantee the fair comparison.

Second, we can implement a function for participants to specify the category

of an item, i.e., item of interest, query-irrelevant item, or serendipitous item,

so that the system can compare the rankings between the 2 search engines for

each category automatically. However, the participant still needs to manually

specify the category of an item, which may not be accurate and cause bias.

• There is no standard or optimal solution when deciding how many pages

should be viewed before reranking, or how many pages should be considered

during the comparison. The number depends on the individual, the task, and

the initial results. For example, different people may view the same result

differently since they have different habits. This uncertainty is another source

of bias. In our future experiment, we may try to set rigid numbers. This may

not show the best performance of any of the systems; however, the potential

bias caused by this form of uncertainty can be decreased.
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Chapter 5

Related Work

There are a number of established and ongoing research in the personalized search

area. And there are mainly four approaches to this research problem. The first

approach is to use explicit user input to search, filter or sort items. The second

approach is to build a user model to provide additional information and personalize

the searching results. The third approach is to leverage user relevance feedback to

improve search result. The fourth approach is to combine some or all of the above

approaches to boost personalization performance.

5.1 Explicit Input

Simple, yet useful, explicit user input can help to accurately retrieve items of in-

terest that match the conditions of the user input. There are mainly three types of

user input information, i.e., query string, filtering conditions, and ranking criteria.

Depending on the area of search, there are different specific kinds of user input

fields.

Take the publication search in the academic area as an example. Google Scholar

[4], Microsoft Academic Search [5], and CiteSeer [1] provide advanced search

functionalities such as searching for a query string in different publication fields

(e.g., title, abstract, author.), filtering according to publication years, venues, re-

search domains, etc., and ranking the result according to relevance, citations, or

publication date. The retrieval result is the intersection of all items that meet the

above conditions. ScienceDirect [6] further provides a functionality that some of
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the conditions can be combined using one of the three logic operators, i.e., AND,

OR, and NOT. The retrieval result thus is the certain combination of intersections

and unions of items that meet the above conditions. The advantages of these search

engines are that the searching criteria is clear and specific, making the search results

mostly relevant to these criteria. However, some of these advanced search function-

alities are neither easy to learn nor to use. Sometimes, a user needs to see what

items are out there before he/she gets a bit more clear about what his/her criteria

may look like, and these criteria may not be fully expressed by the explicit input

fields alone.

Faceted DBLP [3] is more intelligent in a sense that beyond traditional searching

and getting results back to a user, it does a simple post-search analysis of the original

search results by grouping items according to different criteria. For example, papers

can be grouped together if they are published in the same conference, or written by

the same author. In this way, a user can view the original results first, identify

which groups he/she likes, and filter out papers outside of groups of interest. The

grouping information provided by the post-search analysis makes the searching task

easier since it comes up with filtering suggestions and eases the pain of coming up

with and typing in these filtering criteria. However, the post-search analysis is

still too simple and is limited to only criteria such as publication conference and

year. Sometimes, a user may have more advanced requirements, e.g., looking for

theoretical papers that do not necessarily contain ”theoretical” in the title or abstract

fields. This kind of requirement cannot be addressed by the above approach. In our

system, however, we can analyze the paper entries and apply user knowledge, which

is more capable of addressing the user’s requirements.

5.2 User Model

Building a user model is a popular approach to personalization. A user model can

be built from the user’s historical interaction with the system, e.g., submitted query

strings and corresponding viewed items, browser caches, even local desktop files.

The model is usually represented as a document collection in common practice, and
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reveals possible interests of the user.

Many different ways have been explored to leverage the user model. Pretschner

and Gauch [30] try to monitor user web browsing behaviors to construct a user

interest list, which can be used in reranking, filtering, or query expansion. Liu et al.

[27] model and gather a user’s search history, construct a user model based on the

history, and construct a general profile based on the ODP (Open Directory Project)

category hierarchy. Then they deduce appropriate new query categories from the

user model and general profile, improving the web search by using the categories as

a context. Ding and Patra [16] also try to generate a category in response to a user’s

query; however, they use a self-organizing map to cluster the user’s search history

into categories. Martinez et al. [17] uses machine learning methods to identify

the user’s intended category and incorporate it with user specified interest to form

a user model, which is used to support their decision making and personalization

engine.

These techniques are built on the assumption that the current user intention

is always consistent with the user model. However, in real world scenarios, it is

common to have ad-hoc queries that are significantly different from the user’s his-

tory. Moreover, personalization only using the user model needs to deal with the

cold-start problem, i.e., when the user first uses the system, there may not be as

much user information available to build a rich user model. Thus we think that

using a user model alone cannot deliver useful personalization performance. In-

stead of maintaining a user profile, our system focuses on inferring user intention

for each query through the interaction, making the system more flexible for ad-hoc

needs. Nevertheless, the system is extensible to incorporate a user profile compo-

nent, which can also be used for personalization [39].

Since we mostly use a user model to process existing search results (e.g., rerank-

ing, filtering), or perform query expansion (e.g., by adding context information to

the old query), the concern of transferring personal information to the web is mini-

mized.
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5.3 Relevance Feedback

Relevance feedback is another popular approach to achieve personalized search.

It is recognized that a user is still capable of identifying items of relevance

even if he/she does not know how to specify the query terms. [33]. This leads to

leveraging user relevance feedback to improve search results. Relevance feedback

can be regarded as a simple short term user model, since the relevance feedback

indicates the user’s current preferences.

There are mainly three types of feedback: explicit feedback, implicit feedback,

and pseudo feedback [18]. In explicit feedback, a user explicitly specifies his/her

preferences towards items. The feedback accurately reflects a user’s opinion, yet

the user needs to explicitly specify the opinion. While in implicit feedback, user

opinion is inferred from his/her behaviors, such as mouse clicking, and time spent

viewing a document. There are no obtrusive user inputs required, however, the user

opinion might not be reflected as accurately. Surf Canyon Search uses the implicit

feedback approach to personalize results of existing search engines, e.g., Google

and Bing, based on the user’s browsing behaviors [9]. Pseudo feedback holds the

assumption that the top ranked items in the original result is of great relevance. Thus

using them as items of relevance can improve the original result. This approach does

not need any human involvement; however, the performance may not be stable if

the top ranked items are actually irrelevant.

Different methods have been designed to leverage relevance feedback. The most

popular one is query expansion. The goal of query expansion is to revise the orig-

inal query string to include terms that have higher weights in items of relevance.

The updated query is sent to the server to request a new set of results, which is

supposed to be more relevant since the query string contains more terms of inter-

est. Much research has been done to find the best strategy to update the query

string. The fundamental work is the Rocchio algorithm [34]. It uses a vector space

model to represent both the query string and the items. The algorithm tries to find

a new query string that maximizes the difference between the average vector of the

relevant documents and the average vector of the irrelevant documents. More com-
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prehensive query expansion methods can be found in Ruthven and Lalmas’s survey

[33].

There are also other methods to leverage relevance feedback. Allan [11] applies

feedback incrementally and selectively to decrease the space and time overhead,

while making the system adaptive to drifting user interests. Hijikata [21] studies

the mouse operations of the user, analyzes the potential user interest, uses infor-

mation from mouse operations to update the query, and gets better performance

compared with a traditional tf-idf approach. Sheth [35] combines a genetic algo-

rithm with relevance feedback. In this approach, different agents are created and

used to recommend different items. Agents recommending items of relevance have

higher health points and better chance of generating offspring.

In our approach, we also use relevance feedback. Our difference is that we use

feedback as labels of items, and try to identify the shared attributes for each class,

which represents the user preferences of the current search. Moreover, different

from most approaches in query expansion that only uses textual information (e.g.,

tf-idf ), our approach is able to leverage other available features, such as topic dis-

tribution and community number, which contains more domain knowledge and is

more powerful in addressing user requirements.

5.4 Hybrid Approach

Personalization can be achieved with combined methods. Research has been done

in the hybrid of different approaches.

Teevan et al. [38] combines a user model with relevance feedback to use the user

interest information to rerank the original search result. They modify BM25 [37], a

probabilistic weighting scheme that ranks documents based on their probability of

relevance given a query, such that relevance feedback is incorporated. The modified

version can compute the similarity of a query to a document, taking into account the

relevance feedback influence. Moreover, the relevance feedback is calculated from

the user model, which is implicitly built, thus the effort for the user is minimized.

Elegant as it is, the personalization is still biased towards historical records, making
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it less effective with new ad-hoc queries. Since the whole approach is built on

a vector space model, the approach cannot adopt domain knowledge as what our

system does.

Luxenburger et al. [28] try to match a task profile with user needs, such that the

system can identify whether the user is making a new ad-hoc query or a historically

similar query. They cluster the historical search tasks from user model, cluster

search results from the current query, and try to find the two most similar clusters

from the two different fields. If their divergence is greater than a certain threshold,

then the query is identified as a new query, so the personalization should not be

biased towards historical records. While this approach helps to alleviate the ad-

hoc querying problem, it still needs to cope with the cold start problem, and lacks

support for non-textual features.

5.5 Discussion

Different approaches emphasize different personalization aspects. For example,

user model based approaches are more fit for longer term searching environments

where the queries are more stable, while relevance feedback approach emphasizes

more on current search goals.

While our approach is also more focused on current search goals, it provides a

very flexible integration mechanism with other approaches, e.g., user model based

approaches. To be precise, it can be built on top of any search engine that pro-

vides lists of search results. Moreover, our approach is flexible in supporting more

domain knowledge, which the user may require.
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Chapter 6

Conclusion and Future Work

In this chapter we first summarize the contributions of this thesis, then we discuss

future directions for the personalized search, followed by lessons learned during

this research.

6.1 Conclusion

Personalizing search engines can better assist users in addressing their individual

requirements. In this thesis, we proposed an interactive and iterative approach to

improve the searching result of existing search engines by analyzing user feedback

using machine learning techniques. We first construct a feature space from acquired

data, allow users to select items of interest, then use machine learning techniques

to train classifiers that reflect user preferences, and rerank a new list of items with

improved relevance for further user interaction. The interaction happens iteratively

to better converge to the user’s requirements. We apply the approach in the aca-

demic search domain, explore a variety of techniques to build the paper’s feature

space and build a pool of classification algorithms that can dynamically select the

best classifier for the current user selection. Moreover, we evaluate the above per-

sonalized academic search with real users, collect their ratings towards the original

search and our personalized search in terms of several properties. The result shows

users favor personalized search. Last but not the least, our system follows modu-

lar design principles, making it extensible with different algorithms and potentially

applicable to various search domains.

63



6.2 Future Work

There are three directions for the future. Firstly, we will continue to improve the

personalized publication academic search. Secondly, we plan to extend the appli-

cation to other areas of academic search, such as searching for relevant experts

(i.e., researchers) or venues (i.e., conference or journal). Thirdly, we will explore

applying this approach to other domains such as web search or commodity search.

6.2.1 Improving Publication Academic Search

Our system has personalized the default ranking provided by the original search

engine; however, there are still possible ways to improve the user’s searching ex-

perience. Since our system is not a replacement for the original search engine, our

approach can be seamlessly combined with other customization techniques. For

example, some academic search engines, such as Faceted DBLP, provide explicit

filters, e.g., publication conference, to narrow down the results. While these filters

are accurate to narrow down the results, they can not address some features such as

topic distribution. We can combine the strengths of both explicit filtering and our

implicit inference by building our approach on top of the filtering approach. In this

case, the user will specify the filters before the search, then provide feedback to the

backend system, and rerank after he/she gets the initial results. We can combine our

approach with other relevance feedback techniques such as query expansion [33] in

the same way.

There are also other techniques [26] with which our approach can be combined.

We previously [39] proposed the use of a personal sphere that could record a user

profile to support personalized search. We analyzed a data model for papers to add

domain knowledge, and designed a ranking module to rank items by relevance. The

personal sphere is useful when we need the user’s background information, e.g., to

do the personalization. The analyzed data model precomputes the paper features,

which can address more user requirements. The ranking module uses information

from the personal sphere, and can help to rank items of the same class to make

the ranking even more personalized. We can seamlessly incorporate these modules
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into our existing system. We show the concept in Figure 6.1, where the add-on

components are in shaded boxes.

Feature Construction

Component
Data Acquisition

Component

Preprocessing

Dimension Reduction

Training Classifier

Classification

Machine Learning 

Component

Data Source

Data Adapter

User

User Interaction

Component

Analyzed Data Model

Personal Sphere

Ranking

Figure 6.1: System Design with Addon

There are also some user interface enhancements suggested by the participants.

For example, the user interface can be more intuitive by changing the radio button

of like and dislike to figures of thumb up and thumb down. Also, we can store a

user’s historical classifiers to use in similar future search tasks, which helps to save

the time and effort of clicking. Moreover, we can change the result set by including

references and citations of papers of user interest. This can potentially improve the

quality of the result set since if a paper is interesting, its references and citations

will possibly be also interesting. We can do so by using the relationship-exploring

functionality of the MAS API. At the algorithmic level, we can try the ensemble

method [7] to implement the classifier, and compare with our current approach. We

can try sampling techniques [14] to reduce the impact of dominant class(es). We

also need to further evaluate our system as mentioned in Chapter 4.

6.2.2 Extending to Other Academic Search Areas

In the academic search area, searching for relevant experts (i.e., researchers) or

venues (i.e., conference or journal) would naturally complement searching for rele-

vant papers. The MAS API also supports author and venue search, which are similar

to the publication search functionality, except that the returned entities are authors

and venues. When applying our personalization approach to these searches, we
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need to customize the Feature Construction component to represent possible user

requirements when the user is doing author or venue search. For example, the user

may be interested in the institution of the author. Then we need to include the in-

stitution ID as a feature. And the pool of classification algorithms should be able to

deal with categorical features in this case.

6.2.3 Exploring Other Search Domains

Academic search is an important activity in academia. However, in our daily life,

we are more involved with other kinds of searches, such as web search and com-

modity search. More often than not, we encounter a situation where we input our

query words, get tens and hundreds of pages of results which are stuffed with some

popular items surely not of our interest. There is no way to filter out this informa-

tion to leave room for items of our interest, and searching with more specific query

strings will possibly miss important items in other aspects. Thus, the user can do

nothing but to flip through pages and scan through each page to not miss any valu-

able item in a sea of uninteresting items. If we apply our approach to these searches,

the users can simply specify items not of interest, and the system can automatically

rank those items at the bottom of the result list, leaving room for items of more

interest.

Microsoft Bing Search1 provides an API for developers to use the functionalities

of Bing to search. However, as the items in the results of web search are much less

structured, it is much harder to get common features than in academic search. We

may start with simple features such as topic distribution then explore other features

that can potentially help to address the user requirements.

6.3 Lessons Learned

After implementing the personalized search approach and experimenting it with real

users, we find this approach helpful, easy-to-use, easy-to-implement, extensible,

and can be built on top of existing search engines. It would be an interesting feature

1http://www.bing.com/
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for MAS to incorporate. And since MAS has the full data warehouse of publica-

tions, it can perform more powerful data analysis and construct more features that

can represent more user requirements. With the user accounts at Microsoft, MAS

can mine user profiles both individually and globally upon the user’s approval. The

profile can further help with the personalization.

We suggest users to keep their requirements consistent when using our person-

alized search engine. We also suggest our users to try to keep the size of each class

close by exploring new pages or new search queries to build a better classifier.
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Appendix A

Information Letter

Study title Searching for paper with different requirements, an interactive and

iterative approach

Background Dear participants, we want to invite you to participate in this re-

search because you have research experience in computing science. And you have

the potential need to use our improved paper search engine. We would like you to

try it to help us get some feedback and evaluate our system. Thanks!

Purpose The purpose of this research is to come up with a new way of interaction

between researchers and academic search engine to satisfy different requirements.

Study procedures Participants(You) will fulfill 2 paper searching tasks. You can

either choose your own task or pick an example from the sample list (see ques-

tionnaire). Each task is about searching for papers in a computing science research

area. Before the task, we will ask you about your knowledge level in that area. Dur-

ing the task, you will use our provided search engines to search for papers. After

the task, we will ask you about your preferences towards different search engines

in terms of accuracy, coverage, serendipity, effort, and overall. We only record

the experimental data in terms of questionnaire, user-system interaction data. The

whole process takes 30 to 40 minutes. The experiment is conducted in-person. The

research investigator will be there to provide you with non-biased help were there

any questions.
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Benefits Participants(You) can experience a different kind of search engine, know-

ing how you can use it to help with your paper searching activities. We can release

our service to public to let more people use it. Participants(You) can expect refresh-

ments during the experiment, which is the cost of the experiment.

Risk Please be prepared to do a 35 minutes experiment

Voluntary participation Participant can withdraw at any time during the ex-

periment without any penalties. If you do so, we will automatically destroy any

recorded data from you. Participant reserves the right to ask us to destroy his/her

experiment-related data 2 weeks after the experiment.

Confidentiality and anonymity We do not ask for participants’ personal infor-

mation, we only collect experiment-related data. None of the recorded data will

have any identifiable information directly or indirectly. The electronic data will be

encrypted in a folder, and will be written in a writable DVD. The DVD and paper

documents (interview notes and questionnaires) will be kept by professor Kenny

Wong for five years. After five years, the DVD and paper documents will be de-

stroyed.

Further information The plan for this study has been reviewed for its adherence

to ethical guidelines by a Research Ethics Board at the University of Alberta. For

questions regarding participant rights and ethical conduct of research, contact the

Research Ethics Office at (780) 492-2615.

73



Appendix B

Consent Form

The Study of Searching for paper with different requirements, an interactive and

iterative approach

I, , hereby agree to participate in the above research conducted

by Haiming Wang.

I have read the information letter and I understand that the experimental result

may be used for publications. I understand that the research investigators will only

record the experiment-related data, which includes questionnaire, in-person inter-

view notes, user-system interaction data. I understand that my personal identifiable

information will not be recorded in any means directly or indirectly, my experi-

mental data will be kept securely for five years, after which all of the data will be

destroyed, and I have the right to protect my identity from being revealed.

I know that I am not obliged to participate in the research, and I can withdraw

at any time without any penalty of any kind. If I withdraw, my experimental data

will be destroyed automatically. I understand my benefits/risks. I reserve the right

to ask the research investigators to destroy my experimental data.

Name of participant:

Signature of participant:

Name of researcher:

Signature of researcher:

Date:
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Appendix C

Experimental Protocol

Hypothesis We assume that when researchers search for papers, they have ei-

ther clear criteria, such as author, topic, that can be clearly addressed by current

academic search engines using filters or keywords matching, or unclear, subjective,

changeable criteria or combination of criterion that are hard to be represented. Thus

we calculate a feature space representing these criterion and use a new way of in-

teraction to infer the underlying user criteria. We hypothesize that our personalized

search engine can make the ranking of the result list more of the user’s interest.

How the experiment is run We call for participants, mostly graduate students

with research background in computing science. Each participant will perform 2

paper searching tasks in different research areas. Participant can either create their

own task or pick one from the questionnaire. The tasks will be conducted in person.

The research investigator will stay with the participants during the experiment to set

up the system, train the participant, give helps, and ask specific questions regard-

ing to the experiment. The user interaction with the system will be recorded, the

questionnaires will be collected, in-person interview notes will also be collected.

Full sequence of phases for each participant Firstly, each participant will need

to read and sign all related documents, information letter and consent form. Sec-

ondly, each participant will read the questionnaire instructions, get trained with the

system to get familiar. Thirdly, each participant will choose and perform 2 search-

ing tasks. After finishing each task, each participant fills in the questionnaire, and
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go to the next task. During this period, the research investigator will be there to

provide non-biased help and ask experiment-related questions. Lastly, after the

participant finishes both tasks, the research investigator will collect consent form,

questionnaire, in-person interview notes and user-system interaction data.

Timing of each phase of a run Each task takes about 15 to 20 minutes. The

participant is expected to finish both tasks in 30 to 40 minutes.

User training or practice tasks The research investigator will teach participants

how to use the system, how to get most of the system, and what the experiment pro-

cess is. They will also practice with the example task provided in the questionnaire.

How many formal tasks 2

How you will analyze/use the data For each task, we collect the user’s rating of

accuracy, coverage, serendipity, effort, and overall properties for our personalized

system and the ordinary system. For each property, we calculate its distribution of

scores for both systems. We also calculate the distribution of relative score of each

property and analyze the correlation.

How you will protect the data and anonymity of users We do not ask for par-

ticipants’ personal information, we only collect experiment-related data. None of

the recorded data will have any identifiable information directly or indirectly. The

electronic data will be encrypted in a folder, and will be written in a writable DVD.

The DVD and paper documents (interview notes and questionnaires) will be kept

by professor Kenny Wong for five years. After five years, the DVD and paper

documents will be destroyed. A participant reserves the right to ask us to delete

all his/her experimental data during or after the experiment. Any future published

paper will not contain any identifiable user data either.

76



Appendix D

Questionnaire

Instructions

1. Please read the information letter and sign the consent form.

2. Research conductor will introduce you how to use the system.

3. Please create two search tasks, or choose from the table below.

4. Please be aware of what the three options: like, dislike, and unsure, means.

5. Please try to be consistent with your criteria.

6. Feel free to ask the research conductor any questions.

Example Searching Tasks List

Queries Criteria
Hbase Application side of Hbase

Natural language processing
Application of natural language
processing

Image processing
New approaches to processing im-
ages

Social network analysis
New approaches in social network
analysis

Community mining
Community mining techniques, ap-
plications, etc.

Recommender systems
Collaborative filtering approaches
of recommender system

Machine learning
Machine learning publication with
high citation and reference
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Query:

Criteria:

Your familiarity with this topic (familiar/unfamiliar):

Please rate A and B search engines according to the following properties (Score

1 to 5: 1 means worst, 3 means neutral, and 5 means best)

Parameters A search engine B search engine
Accuracy (items of interest ranked
higher)
Comments: (e.g. Why do you think A/B is good/bad in terms of accuracy?)

Coverage (query-irrelevant items ranked
lower)
Comments: (e.g. Why do you think A/B is good/bad in terms of coverage?)

Serendipity (serendipitous items ranked
higher)
Comments: (e.g. Why do you think A/B is good/bad in terms of serendipity?)

Effort (perceived effort during the search)
Comments: (e.g. Why do you think A/B is good/bad in terms of effort?)

Overall (general preference)
Comments: (e.g. Why do you think A/B is good/bad in terms of overall?)
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Appendix E

Comments From Participants

Comments Explanation

A gives me papers from other fields such as
medication, biology.

preference in B in accuracy
since A contains some irrele-
vant papers

A showed many useful results after rerank, the
results in B is less useful, even though most of
them are related to the query.

preference in A in accuracy
since A’s results are more
tuned towards him/her

Most of papers shown in A are highly related to
what I am interested in, the results in B are re-
lated to my query, but not as interesting as those
in A.

preference in A in accuracy
since A’s results are more per-
sonalized

A showed a few results that are interesting and
unexpected, B failed to eliminate old papers
which are uninteresting. So there are few un-
expected but useful results.

preference in A in serendipity

B is as simple as google. For A, I need to rate
on some results, so not as easy as B, but it’s still
easy because it only costs a few clicks.

preference in B in effort yet
mentions A is also easy

Even though A cost me some extra time to rate a
few publications, it helped to eliminate unuseful
results, so in general, it saved my time.

preference in A in overall

B gives more related paper. preference in B in accuracy
A shows results that could be used after affilia-
tion extraction.

preference in A in serendipity

A gives more serendipity. It is good to have a
tool like this for research.

preference in A in serendipity

A has less duplicated inaccurate results and
more close results of general application of
large-scale data visualization.

preference in A in accuracy

A and B both find a useful but unexpected result
but A ranks it higher.

preference in A in serendipity
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Both are easy to use. It’s no trouble to click a
few more buttons.

same preference in effort

A can sometimes help us refine the result to
some extent. In some cases, we may not think
of the right search term to search in B.

preference in A in overall

The reranking helps find more relevant papers. preference in A in overall

Without the keywords I was looking for.
low preference in both A and
B

A filters out unrelated topics like 3D data or vi-
sual cortex.

preference in A in accuracy

A can help me find certain papers that otherwise
will hardly appear if using B, since some papers
do not use the common terms related to the in-
terested topic.

preference in A in overall

After two pages of reranking, results become
very good.

preference in A in accuracy

Some really interesting theoretical papers are
pulled up by A, even if I didn’t give much feed-
back.

preference in A in accuracy

A recommended another Chinese NLP paper
based on my previous choices while I can’t find
that paper in the first 5 pages of B.

preference in A in accuracy

Feel comfortable that the machine is trying to
fulfill my requirement.

same preference in effort

A is better because it learns to give better re-
sults.

preference in A in overall
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