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Abstract

This thesis presents a new interactive floorplanning utility where floorplanning is based
on a multi-level circuit hierarchy. A multi-level circuit hierarchy reduces the number
of components which make up any module, which in turn reduces the size of the prob-
lem. All occurences of a module in a floorplan use the same module definition, further
reducing the required floorplanning effort. The floorplanner allows a designer to create
multiple alternative floorplans for each module and the floorplanner chooses the combi-
nation of alternatives which minimizes the total area consumption of the final circuit.
This thesis discusscs the advantages this approach has over other approaches, and
discusses the implementation of these features within the utility. The performance of
this floorplanner on a common circuit is discussed along with conclusions about the

implementation and the trade-offs of features.
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-1- Introduction

Chapter One: Introduction

The automation of circuit design is becoming more desirable as the demand for
integrated circuits increases. This thesis introduces and discusses the development of a
new floorplanning utility: FLINT (FLoorplanning INTeractively). This chapter
discusses, in general terms, the paths which circuit design takes, concentrating on the
role of physical layout. The first section of this chapter gives an overview of circuit
design. The second section takes a look at physical circuit design, concentrating on two
main approaches to circuit layout. Section 3 discusses the merits of the two main
approaches presented in section 2. Section 4 discusses the merits of layout automation.

Section S of this chapter presents an outline of this thesis.

1.1 Method of Circuit Design

There are two major activities involved in creating an integrated circuit (IC):
design and fabrication. Design ends, and fabrication begins, with the description of a
set of masks. This set of masks describes all the geometrical relationships between the
components which make up the IC. The entire design process creates these masks
starting with a very general description of circuit behavior. To design a circuit you
must convert a circuit description from the behavioral domain to the structural domain

and, in turn, convert the description from the structural domain to the physical domain.

These three domains describe the same circuit in different ways. The behavioral
domain describes how a circuit acts. The structural domain describes the construction
of a circuit, at an abstract level. The physical domain describes the actual

implementation of the circuit, the location of components and the connections between
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them.

The behavioral, structural and physical domains of circuit description have
several levels of detail. Walker and Thomas |WaTh85] have described a model of
design representation which uses three axes, one each for the behavioral, structural, and
physical representations. Figure 1.1 shows a diagram of this representation.

Descriptions become progressively more detaiied toward the centre of the diagram.

Behavioral Structural
e
<y performs R'CPUs,
pemories
algorithms s X block fupctions
egister {fansfersi® 2] maodule
booleAn egns.i& X} gates
differential eqns.= Rtransisthrs
‘masks
cells
floorplans
block partitions
IC partitions
Physical

Figure 1.1: Domains of Description
Converting a design from performance specifications in the behavioral domain
to cell details in the physical domain does not require specifying the circuit at all levels

in all domains during the design process. For example, the actual design path may
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convert performance specifications to algorithms, algorithms to hardware modules,
hardware modules to arithmetic logic units (ALU), multiplexors (MUX) and registers,
these to floorplans, floorplans to cells, and finally cells to masks. This is not the only
path to follow when designing an IC. For example, although this path does not describe
the circuit in terms of boolean equations, this information is implicit to the design, and

the designers could recreate it if need be.

Automated tools may handle any number of tasks on a given design path. Some
tools handle all the tasks, while others handle only one. FLINT is a floorplanner which
converts circuits described in the structural domain to the floorplan level of the
physical domain, and from there converts them to the module or cell level. This thesis
is not involved with tasks in the behavioral domain. Tasks in the structural domain are
only of interest here because they provide the inputs to FLINT. Before describing what

a floorplanner is and what it does, we give an overview of physical circuit design.
1.1.1 Methods of Circuit Layout

Companies in the integrated circuit industry spend a great number of man-hours
on the physical design of IC’s. Physical design involves five broad steps, some of
which have become routine. These steps are: 1) Partitioning the circuit into ICs. This
involves deciding what functions each IC should perform, maximum size, power
consumption, etc. 2) Partitioning the ICs into functional blocks or modules. The
modules are seis of circuitry which perform a common task, or share a large number of
connections. This step may also include restricting the power available to modules, and
limiting their sizes and shapes. This step may also decide how each module will be

implemented (such as programmed logic arrays (PLA) or standard cells). Modules at
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this level may be items such as ALUs, RAM files, or registers. 3) Floorplanning the
Junctional blocks or modules. This is the physical placement of modules in relation to
each other, determining their sizes and shapes. This step may also assign interconnects
to routing channels between modules. 4) Placing the gates within the modules. This
involves arranging the components which make up each module, or perhaps generating
each module from a set of boolean equations (as may be done if the module is created
as a PLA). This step also assigns the connections between components to routing
channels. 5) Creating masks from the gates. This step involves describing the
components with a series of masks. Indirectly these masks determine where the
material which makes up each component will go. This includes metal for wiring,
polysilicon for transistor gates and wiring, and diffusion regions for transistor sources

and drains, etc.

The circuit design steps in the physical domain require input from the structural
domain. Circuit partitioning cannot take place without a functional block description
from the structural domain. Floorplanning cannot proceed without knowledge of
module interconnections furnished from the structural domain. The floorplanner may
obtain some of this knowledge from a library, hiding these steps during the current

design process. Nonetheless, this information must be available in some form.

A tool capable of turning a circuit description from the structural domain into a
set of masks is called a st;uctural silicon compiler (SSC). Generally an SSC performs
steps 2 through 5 in the physical domain described. Step 1 in the physical domain must

be done prior to using the SSC.
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1.2 Circuit Layout Approaches

Structural silicon compilers employ two common alternatives to handle steps 3
and 4. One of these is macro-cell placement, the other is floorplanning with module
synthesis. Both approaches start with a circuit which is already partitioned and whose

connections are known.

There are several objectives to consider when laying out circuits. These include
minimizing the area which the circuit will consume, minimizing the length of
interconnects, balancing the power consumption of various regions of the IC, and
maximizing the speed of the final circuit. These goals are not always compatible and
trade-offs must be made. In this thesis, the goal of minimizing the total area consumed
by the final circuit is the only goal given much consideration in analysing the

performance of layout utilities.

1.2.1 Macro-Cell Placement

Macro-cell placement arranges modules already described in the physical
domain. These modules have a fixed shape and fixed external terminal connections. In
fact, mask descriptions of each module could be generated before macro-cell placement
begins. The job of macro-cell placement is to arrange these fixed modules next to each
other, minimizing both the interconnect length and the total area consumed by the final
circuit. The macro-cell placement utility can alter the relative placement of modules,
orient modules on their sides, and mirror them horizontally and vertically. After the
macro-cell placement tool decides on a final contiguration, the modules must have their

interconnections joined. The macrocell placement program may do this step or it may



-6- Introduction

be done by a separate routing utility.

The modules used in macro-cell placement may come from a library of available
modules, from a PLA generator or a gate matrix generator, or created in some other
fashion. Modules not coming from a library are generated before macro-cell placement

begins.

1.2.2 Floorplanning with Module Synthesis

Floorplanners are also concerned with arranging modules in the physical
domain. However, floorplanners do not work exclusively with fixed shape modules.
Most of the modules which floorplanners place are flexible modules which are fully
created after floorplanning is complete. So, besides deciding on the placement of
modules, the floorplanner must also decide on their areas and aspect ratios (the height
to width ratio). The floorplanner does not have total control over a modules area and
aspect ratio. Each module has restrictions on its shape and comes with some predefined
relationship between area and aspect ratio with which the floorplanner must work.
After the floorplanner creates the floorplan, a module generator creates the modules.
The module generator arranges the components of the module in relation to each other
and routes them together. The goals of a module generator are the same as the goals of
floorplanners and macrocell placement utilities. The floorplanner gives the module
generator some shape constraints with which it must work. These constraints may be
that the module must have a certain aspect ratio, or not exceed a maximum height or
width. There is no guarantee that the module generator will create modules which
exactly fit the area and aspect ratio which the floorplanner expected. If some module

grossly exceeds its expected area, the floorplanner may have to make changes to the
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floorplan. After the module generator creates the modules and the floorplanner places

them, they must be interconnected. This final step may be done independently of the

floorplanner.

The two step process of floorplanning and module generation can be extended to
a multi-level hierarchical layout process. There have been some proposals for this kind
of hierarchical floorplanning. The floorplanner must floorplan all levels in the
hierarchy, except the lowest level. The module generator creates the flexible modules at

the lowest level of the hierarchy. The hierarchical floorplanner which we have created

is the subject of this thesis.
1.3 Merits of Layout Alternatives

Floorplanning has a greater potential to create good placements than macro-cell
placement because module shapes can be chosen so that the modules fit together well.
Macro-cell placement is a slave to the predefined shapes. Unless module dimensions
are chosen carefully, they may not fit together well. Floorplanning has a second
advantage because module generation takes place after floorplanning. Since the
locations of modules is known, the locations of connections between modules are also
known and this information can be used to optimize the location of each module’s
external terminal locations around the perimeter. This, in turn, reduces the total circuit

wiring length, resuiting in additional space savings.

Floorplanning with module generation does have some drawbacks. Since
floorplanning manipulates more parameters than macro-cell placement, it is a more

complex task, and it usually takes more computer time tha:; macro-cell placement to



-8- Introduction

produce equivalently high quality results. In addition, if the floorplanner does not
predict module shapes accurately, unsatisfactory floorplans can result. Accurate shape

functions can be difficult to generate.

1.4 Merits of Layout Automation

Circuit layout takes a long time to do manually. There are many layout options
to choose from which may or may not provide an acceptable (though probably not
ideal) solution. Manual floorplanning has associated with it a great amount of non-
creative labour. Automated algorithms provide much faster solutions than manually
generated ones, but generally result in poorer designs. Design aids, which handle most
of the non-creative labour while leaving the creative part of floorplanning to a designer,

have been virtually overlooked.

Despite the proliferation of integrated circuits, their design has remained the
domain of large companies and research institutions. Circuit layout has remained
inaccessible in large part because it is a complex and time consuming process. Tools
which aid in the layout phase of circuit design are required to bring circuit design

within the reach of smaller companies.

1.5 FLINT: A New Fioorplanning Utility

In an effort to advance the state-of-the-art of floorplanning, we have designed
FLINT: an interactive hierarchical floorplanner. FLINT uses input from a schematic
diagram that starts at the block function level, and may extend as deeply as the

transistor level, to create a circuit hierarchy and an initial layout. The designer uses the
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graphical output system and the mouse-driven input system of FLINT to explore as
many alternate module floorplans as desired, keeping those which he feels might be
part of a good solution. The floorplan utility chooses, from among the alternative
layouts, the one which best fits into the overall floorplan. When a module occurs in the
schematic in more than one location, the floorplans created for the first module instance

are available for use in all instances. FLINT chooses the better alternative for the final

floorplan in each instance.

To test FLINT, we created a schematic of the AM2901, a common bit slice
processor. This part has several differing functional blocks, some of which are used
many times in the design. The AM2901 typifies the kind of circuit we designed FLINT

to be used with.
1.6 Thesis Outline

This thesis will describe the development of a floorplanning utility. Chapter 2
presents background information on automated circuit design. The emphasis here is on
previous work which has taken place, from the early placement algorithms to
automated floorplanners. Chapter 3 provides information on desirable features of a
floorplanner, and some of the trade-offs which we made during the design. This bulk of
this chapter discusses the features and operations of FLINT. Chapter 4 describes how
FLINT carries out these operations, the data structures used, and software tools used
during development. Chapter 5 presents the results of our efforts, and describes the
performance of FLINT in designing two test circuits. This chapter also discusses some
of FLINT’s shortcomings. Chapter 6 presents our conclusions about FLINT and some
impressions about the merits of some of the design trade-offs. This chapter also

discusses some possible future development.
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Chapter Two: Previous Work

To fully understand where FLINT fits into the scheme of things, one must first
become acquainted with some of the procedures which have been used for layout in the
past. This chapter begins by presenting a description of the two most common methods
used to layout circuits: macro-cell placement and floorplanning with module
generation. Algorithms for both of these layout methods have been presented in the
literature in the past few years and a survey of this work makes up the bulk of this
chapter. The survey starts by presenting some of the standard cell placement algorithms
on which many of the floorplanning algorithms are based, although this thesis is
concerned with floorplanning, not standard cell placement. After the standard celi
algorithms have been discussed, two macro-cell placement algorithms are presented
followed by a survey of algorithms which represent some of the more popular and
successful floorplanning techniques. Finally this chapter concludes with a discussion on

what is missing in current approaches and why our approach can improve on them.

2.1 Circuit Layout Methods

Current automated IC layout techniques fall into three broad categories. The
first two are macro-cell placement and floorplanning with module generation. The third
category, outside the scope of this thesis, deals with layout at the gate level. Algorithms
in this third category perform standard cell placement, PLA generation and gate array
layout, as well as several other layout styles. Layout styles such as these are typically
used to place small circuits and may be used to generate modules after floorplanning is
completed. For the layout of larger circuits, either macro-cell placement or

floorplanning can be used.
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2.1.1 Macro-Cell Placement

Of the two popular layout methods, macro-cell placement was dealt with first in
the literature. It preceded floorplanning historically because it is more closely related to
the standard cell placement techniques which, in turn, preceded it. Macro-cell
placement treats modules as entities whose shape is fixed and whose terminal locations
are known in advance. Although macro-cell placement algorithms are supposed to place
and orient modules so that area and interconnect lengths are minimized, these goals
often conflict. While modules which have a large number of connections in common
should be placed closely together to reduce interconnect length, this may create unused
area or dead space in the layout. It may be worthwhile to rearrange the layout slightly

to reduce the dead space, even though this may push tightly connected modules farther

apart.

In addition to determining the location of modules on the IC, macro-cell
placement algorithms must also decide which way cells should be oriented. Changing
cell orientations and slightly rearranging the layout can have dramatic effects on the

quality of the layout, by reducing both interconnect length and dead space.

The modules used as macro-cells are themselves laid out prior to the macro-cell
placement step. This fixes external connections on the macro-cells and suggests another
way to improve a layout, name!y mirroring a module horizontally or vertically.
Mirroring can reduce interconnect length by positioning external connections closer to
the other modules to which they are connected. This step is often delayed until after the

relative positioning and orientation of the modules.
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2.1.2 Floorplanning with Module Generation

Floorplanning, followed by module generation, is an alternative to macro-cell
placement. Like macro-cell placement, floorplanning is responsible for placing modules
relative to each other. The major difference is that the floorplanner treats some, or
perhaps all, of the modules as flexible blocks. On the surface it appears that working
with flexible blocks, as opposed to fixed blocks, simplifies the problem, since the shape
of the modules can be changed to remove any unused space. But flexible modules can
be more difficult to work with, because their area may not remain constant as their
aspect ratio is varied. The shape function, which describes how the area changes with

aspect ratio, may be very complex.

Like a macro-cell placement algorithm, a floorplanner is responsible for
allocating area on an IC for each module. In addition, however, it must also determine
the shape of the modules. To further complicate the problem, the shape and size of the
modules used in floorplanning may just be estimates, since the modules may not be
generated until after the floorplanning step. If modules are generated after
floorplanning, the module generators must try ‘o produce modules which fit the area
and aspect ratio estimates, provided to it by the floorplanner, as closely as possible.
Having accurate estimates is important because if the modules generated are much
larger or smaller than expected, the layout may waste space. Generating modules after
the floorplan is created has some advantages: the global layout information provided by
the floorplan can be used by the module generators to improve the layout by optimizing

the location of external connections to reduce overall interconnect lengths.

There are trade-offs to be examined in choosing whether floorplanning or
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macro-cell placement should be used. One advantage to macro-cell placement is that
since modules are generated prior to placement, modules which are encountered often
can be optimally laid out once and stored in a library for future reference. Another
advantage to macro-cell placement is that, since it does not have to optimize the shapes
of the modules, it’s less complex than floorplanning, making it less time consuming. of
the two approaches, the advantage in terms of potential layout quality must lie with
floorplanning. Since a floorplanner can vary module shapes so that they fit together
very tightly, and can provide information to module generators on module locations to
allow them to optimize terminal location, it can reduce interconnect length. Overall it
would seem that spending more computer time with floorplanning is worth while, so
jong as the increase in computer time is not excessive. The increased flexibility also
makes floorplanning the more attractive alternative. It was for these reasons that we

decided that a new floorplanner would be created rather than a macro-cell placement

utility.
2.2 Literature Survey
2.2.1 Introduction to Layout Organizations

Before beginning the literature survey, something should be said about layout
organizations. Layout organizations can be grouped into two categories: slicing
structures and non-slicing structures. A considerable number of layout methods have
been based upon slicing structures. When partitioned this way, the circuit is viewed as
being composed of two partitions which are strongly connected internally, and weakly
connected to each other. They are separated horizontally or vertically by a slice line.

Each partition is made up of two more partitions which, in tum, are made up of two
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partitions and so on until each partition consists of a single cell. An example of a
slicing structure is shown in Figure 2.1a. Slicing structures can be represented as a
binary tree where each internal node represents a slice line, and each leaf node
represents a cell. A slicing organization considerably simplifies layout complexity.
While slicing does not represent all possible circuit organizations, it represents a great

many.

Non-slicing organizations obviously include all the layout organizations which
are not slicing structures, but, in the context used here, they may also include some
layouts which are slicing structures. General non-slicing structures cannot be
represented by a binary tree and that is where the distinction is made. A simple
example of a non-slicing structure is the so-called pinwheel layout shown in Figure
2.1b. Note that no slice can partition the layout into two parts. Another non-slicing
layout is given in Figure 2.1c. Algorithms designed to deai with slicing structures are
less complex and much faster than those which deal with more general organizations,
but still produce layouts which rival non-slicing layouts in terms of minimizing area
~onsumption. Some algorithms allow layouts which combine pinwheels with slicing

structures to be represented in a binary tree. An example is given in Figure 2.1d.

0] 5
=Er 0] [l e

Figure 2.1: Slicing vs. Non-Slicing Structures
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At this point it may be prudent to define some terms which wil! be used
throughout this thesis. Block will often be used as a synonym for partition, although
block will be used as a noun only and partition may be used as a verb. A module is a
block, but also is defined by a list of components which make it up. Components are the
items which make up modules. Components may be either cells or module instances.

Module instances are place holders within modules, whereas cells are atomic, and

cannot be broken down further.
222 Standard Cell Placement

Since many of the macro-cell placement and floorplanning algorithms are based
on standard cell placement algorithms, this survey begins with a look at standard cell
placement algorithms. The first algorithms examined are those which use slicing

structures and some kind of partitioning,.
222.1 Standard Cell Placement Using Partitioning and Slicing Structures

The partitioning of a circuit can proceed either bottom-up or top-down. Bottom-
up partitioning starts by grouping cells together, then grouping the groups together and
so on, until the entire circuit has been combined into one group. Binary top-down
partitioning starts by separating the circuit into two groups of cells, then partitioning
each group into two separate groups, and so on, until each group consists of a single

cell.

Bottom-up partitioning, or clustering, as presented by Schuler and Ulrich

[ScUI72] starts by examining the connections between all pairs of cells. For each pair,
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a connection strength value is derived using the number of connections they have to
each other relative to the number of connections they have in total. Clustering starts by
pairing the two most strongly connected cells. This cluster gets treated as a single cell,
and clustering starts over. As clustering proceeds, a penalty for cluster size is included
so that large clusters do not just swallow the rest of the cells one by one. A circuit
clustered in this way can be represented by a binary tree. The tree can be mapped into a
so-called "linear placement” which Schuler and Ulrich [ScU172] use in a second step.
Although their algorithm allows nodes to be rotated (swap the left and right children) to
reduce interconnect length, the resulting layouts are usually less than ideal, since ihe

placement will ultimately be two dimensional, not linear.

Another problem with this method is that signals are treated as point to point
loops rather than as nets. For example, a single net connecting three cells A, B, and C
needs to connect A to B and B to C. But this method assumes the net connects A to B,

B to C, and C to A, biasing the connection strengths unrealistically.

A top-down partitioning method, called min-cut, was proposed by Breuer
[Breu77]. Several derivatives now exist, but in general, all the methods separate the
cells of the circuit into twn blocks of roughly comparable size, let’s say blocks A and
B. The blocks are assumed to be separated by a vertical or horizontal cut line. Each cell
is connected to a number of signal nets, some attached to cells in A, some to cells in B,
and some externally. The objective is to minimize the number of nets crossing the cut
line by moving cells back and forth between A and B (hence the name min-cut). After
an acceptable partition is reached blocks A and B are, in the same manner, partitioned
into smaller blocks, and the process repeated until each block contains a single cell. A

sample partitioning is shown in Figure 2.2. The entire circuit shown in Figure 2.2a has
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been partitioned into partitions A and B in Figure 2.2b. In Figure 2.2c, the cells in
partition A have been partitioned into A; and A,. Figure 2.2d shows the cells in

partition B partitioned into By and B,. Finally, Figure 2.2¢ shows the cells of partition

A, partitioned into A;; and A j,.

Ay A; | B An [An

A, Ay | B, A, B,

a b c d e
Figure 2.2: Block Partitioning
Breuer based his cell movement on an algorithm of complexity O(n? log n), where n is
the number of cells, derived by Kernighan and Lin [KeLi70] for graph partitioning, and
later extended by Schweikert and Kernighan [ScKe72].

A faster cell movement algorithm (which does not perform an identical task)
was provided by Fiduccia and Mattheyses [FiMa82]. This algorithm is based on
Schweikert’s and Kernighan’s algorithm and is of complexity O(n) where n is the
number of cells being partitioned. Briefly, the algorithm proceeds as follows: The
initial partition of a group of cells is made randomly. Then several pass:'s are made
moving cells back and forth across the new partition. On any given pass, once a cell is
moved to the other block, it cannot be moved back. As well, a balance criteria is
established so that all the cells do not wind up in the same block. As the cells are
moved, the number of nets crossing the cut, known as the cut state, is recorded. After
all the cells have been moved once, the best cut state which was encountered during
that pass is restored. This new partition is used as the start for a new pass. Passes are

performed until no further improvements can be made.
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Several contributions have improved the quality of placements produced using
the min-cut method. Dunlop and Kernighan [DuKe85] added an extension to
partiticning, which they call "terminal propagation”. The intent of terminal propagation
is to bias the partitioning by considering external connections in order to improve the
final placement. If an external net intersects one of the two partitions, say partition A,
an immovable dummy cell connected to that net is placed in that partition. This makes
it more attractive to move cells connected to that net into partition A. If the external net
intersects both partitions, then dummy blocks are placed on both sides of the partition,
resulting in it having no affect on the partitioning at all. A key to this method is the way
in which points of intersection are determined. Low cost Rectilinear Steiner trees (a net
connection scheme) are computed for each net that has some elements inside and
outside of the block being partitioned to determine the point of intersection with the
block. If this point is close to the cut line, the net is ignored; otherwise, a dummy cell is
created on the side of the block where the connection point is located and will thus bias
the partitioning. The authors claim that terminal propagation reduces area consumption

by up to 30%.

One more step must be added to these slicing placement routines if they are to
be applied to standard cells. The cells in the slicing structure must be put into rows.
Schuler and Ulrich [ScUI72] create rows by folding their linear placement as many
times as needed. Breuer [Breu77] creates rows by starting with horizontal partitioning
until enough rows have been generated, and then performing vertical partitioning on

each row. Fidducia and Mattheyses [FiMa82] deal only with the partitioning problem.
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2.2.2.2  Standard Cell Placement Using Non-Slicing Structures

Although partitioning is a popular method for placement, it is not the only
solution. One of the classical techniques for cell placement is force-directed placement.
In general, algorithms using this technique have two phases: constructive initial
placement and iterative improvement. The initial placement phase selects a seed cell to
place in the circuit, then selects unplaced cells one at a time and, by some means, places
them in unoccupied locations in the layout. The iterative improvement phase identifies

poorly placed cells and moves them to a better location.

One of the later refinements, introduced by Goto [Goto81], focuses primarily on
the iterative improvement step. Goto’s initial placement step starts by selecting ore
seed cell and placing it. Unplaced cells are placed around this seed, based on the
connectivity which they have to cells already placed. One by one, Goto’s algorithm
selects an unplaced cell and places it in an empty slot in such a way as to minimize
routing length. Goto ranks the locations in which each new cell can possibly be placed
and then randomly chooses one of the better ones. The entire procedure is executed
from scratch several times to create several different initial placements. After initial
placement, Goto’s iterative improvement step is applied to each initial placement and
the best resulting layout is selected as the final layout. A generalized procedure for this
is presented in procedure "replace” given below. It requires a multi-dimensional array
A, with one element in the first dimension, € elements in the second dimension, €2
elements in the third, €3 in the fourth and so on for A dimensions (A is selected before

the procedure is run). In the following procedure, i_a is an index array for the array A.
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i=1; /* i is global */
Procedure replace(A)
/* Cell A is poorly placed */

1. Find & locations where cell A would be better placed.

2. For each of these locations do the following (for (j=1; j<t))

3. Put Ain location j and displace the cell formerly at j (call it

the displaced cell B)

4. If we put B in the location where our original A came from,
will the placement be better than the
best one encountered so far (will it
minimize wire length)? If so save as
state X.

i=i+1;

If (i <A) then replace (B);

else stop and return

N o o

Return state X as the new placement.

The improvement step consists of selecting a cell A which is poorly placed and finding
€ positions at which it is better placed (Goto tries various values of € and finds € =4 to
be a good value) and proposes exchanging cell A with each of the cells at the €
locations. Each cell at the € locations in turn displaces € cells, and so one until A levels
of displacement have been tried. This boils down to an exchange of up to A cells. The
exchange which reduces the wiring length the most from all the possibilities is chosen
as the one to implement. This iterative improvement technique is a generalization of

many of the techniques which preceded it in the literature.
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2.2.3 Macro-Cell Placement

Macro-cell placement is conceptually very similar to standard cell placement.
There are some important constraints inherent in standard cell placement which one
would like to remove. The equal height of standard cells means that cells always fit
together in rows and no cell rotations ever need to be considered. However, macro-cells
(which have various different heights) often do not fit neatly into rows. These new
constraints were first addressed by algorithms designed to perform macro-cell
placement. The major additional dimension of control provided by macro-cell
placement is over module orientation. Orientation can be modified by mirroring a
module horizontally, vertically, by tipping it on its side, or any combination of these. In
standard cell placement, cells can typically be stretched vertically but cannot be tipped

on sideways or mirrored horizontally.

The two macro-cell placement algorithms presented below use placement
techniques which are substantially different from the standard cell techniques discussed
earlier. In the standard cell examples, the cells were ultimately placed in rows. If
slicing structures are employed in placement and some rows are too long (due to
feedthroughs or other problems), it is a simple matter to promote some cell, or
partition, to an adjacent row. In macro-cell placement, this is not possible; this
limitation reduces the appeal of using slicing structures. Neither of the macro-cell

algorithms discussed here uses slicing structures.

Preas and vanCleemput [PrVa80] present a graph based placement model. A
pair of graphs, called channel intersection graphs, are used to represent the horizontal

and vertical relationships between blocks and routing channels. An example of a
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horizontal channel intersection graph for the layout of Figure 2.3b is given in Figure
2.3a. On this graph, vertices represent the boundary between channels and blocks, while
edges represent the width of a block or a channel. The graphs, which start out
representing partial placements, are used to create layouts by adding blocks to the graph

one at a time.
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Figure 2.3: Channel Graph and Floorplan

If the number of blocks to be placed is small then the following exhaustive procedure is

used.

RECURSIVE PROCEDURE placeblock;
FOR each possible position on channel intersection graph DO
BEGIN
derive new graphs for every unplaced block at this
position;
FOR each graph DO
BEGIN

FOR each allowed orientation for this block DO
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BEGIN
place this block in this position and orientation;
IF resulting area is smaller than present bound
and size constraints are satisfied
THEN
BEGIN
IF there are currently unplaced blocks
THEN
placeblock;
ELSE IF aspect ratio constraints are
satisfied THEN
save this placement as new bound,;
END;
END;
END;
END;
END;?

This procedure basically tries every block in every location using every orierntation,
discarding those partial solutions which are already larger than the smallest one found
so far. This is very time consuming so, when a large number of blocks need to be
placed, an initial placement is created by selecting some seed blocks, making a graph

for these, and then placing the rest of the blocks. The procedure for this follows.

PROCEDURE initial_placement;

preas and vanCleemput "Placement Algorithms for Arbitrarily Shaped Blocks”
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IF seed is specified by user THEN
read user_specified seed;

ELSE
construct a seed;

derive graphs for seed;

WHILE any unplaced blocks exist DO
BEGIN
set bounds on maximum height and width permitted;
modplaceblock (1, max_recursion_depth);
get best result to date, make that current;
END;2

The location of new blocks in the graph is not determined exhaustively when the
number to be placed is large. Rather, blocks are selected for addition in some order, and
after trying a number of combinations of additions, the first block of the combination
which results in the smallest partial placement is added to the graph. This procedure

follows:

RECURSIVE PROCEDURE modplaceblock(level, maxlevel)
FOR each possible position on channel intersection graph DO
BEGIN
derive new graphs for a block in this position;
FOR a subset of unplaced blocks DO
BEGIN

place this block in this position;

2preas and vanCleemput "Placement Algorithms for Arbitrarily Shaped Blocks”
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IF detailed size is smaller than current bound and
constraints are satisfied THEN
BEGIN
IF all blocks are placed OR level >= maxlevel
THEN
save this placement as new bound;
ELSE
modplaceblock (level+1, maxlevel);
END;
END;
END;
END;2

Two factors limit the number of combinations tried. First, only a subset of blocks is
selected to be considered for addition to a given graph, and then the number of blocks
actually added is limited (to say three blocks). The subset of blocks chosen to be
considered is based on block gecmetry, and connectivity. Since this procedure is
unlikely to result in a really good placement, the authors also have an iterative
improvement step where they uproot some of the blocks and try and replace them. The
details of block selection for uprooting and replacement were presented by Preas
[Prea79]. The authors compare the placement of a circuit done with a standard cell
placement algorithm described by Feller [Fell76] and their procedure. They first
partitioned the circuit and estimated block dimensions (by hand?), used their procedure
to come up with a trial placement, laid oui the blocks using the algorithm given by
Feller, obtaining exact block dimensions. Then they re-ran the macro-cell placement

routine, finally ending up with a circuit size about 3/4 the size of that produced by
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Feller’s algorithm. While this serves to point out the deficiencies of standard cell
placement procedures when applied directly to large circuits, it also points out some
problems with the authors procedure, namely that some manual intervention must be
taken by the designer to partition the circuit and to estimate block dimensions. The
circuit they tested their procedure on was relatively small, and it is unknown how much

time was taken or how well large circuits would be placed.

Some methods of solving macro-cell placement problems are rather
unconventional. One method, discussed by Sha and Dutton [ShDu85}, requires a new
definition of a rectangle: one where the ends are actually semicircles, so that they may
reformulate the problem as a non-linear optimization problem. In order to solve a
problem in this manner, the problem must be stated as an objective function, subject to
a number of constraints. The objective function used by the authors is minimization of
wire length. The constraints are on block orientation, block shape, block overlap, and

chip aspect ratio.

The authors model rectangles as a line segment and a radius, so that the ends of
the rectangles are actually semi-circles. Normally a rectangle is defined by the
coordinates of a point, a height, a width, and an orientation (either 0 or 1). The new
model defines rectangles using two endpoints (x;, y;), (x2, y) and a radius r.
Orientation is defined either as (x; - x,)/l, or as (y3 -y,)/l, where [ is the length of the
rectangle from endpoint to endpoint. The advantage of this model is that one formula
describes rectangle overlap in all directions, thereby reducing the number of equations.
The trade-off is that rectangles may overlap after placement because the description is

inaccurate.
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Net length is approximated by finding the gravitational center of all blocks
attached to the net, and summing the distance from this centerpoint to each block
attached to the net. If, for block B;, its center is at (x;,y;), and there are m blocks

attached to net £, the center of net k is at (Xy,Y ), where
m m
X =(/m)*Ex; and Y, = (1/m)*Zy,.

i=1 i=1

The modified wire length wy for net £ is given by
m
wi = 2(xi - X% + (i - Y2
i=1
The objective function, which is to minimized is given by

f(x) =W = Zwy.
k=1

The restraints (whose formulae are not given in this thesis) are:

216, ) <0 block overlap

g0 =0 block orientation

g3 =0 block shape (derived from rectangular width and height)
gau(i) <0 perimeter constraints due to aspect ratio

forl=1-2; k=1-4;iand j=1-m,i #j,

where n is the number of signal nets in the circuit. This formula, and those used to
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describe the constraints, are non-linear. The steps involved in solving the prublem are:
1) Select a series ¢, which progresses to infinity, such as ¢y = 1, ¢4, = 10¢4.

2) Construct a new unconstrained objective function:

4
P(x, ci) =f(x) + cx ZIMax(0,g;(i)) |2
=1

3) Use and unconstrained optimization technique to minimize P(x, ¢y), iterating

for k until the problem is solved.

The authors use Newton’s method to solve the problem.

The authors also relate W to the attractive potential energy of a gravitational
system, but it is unknown why this number should be preferred to unsquared wire
length. Nonetheless, the example placement provided by the authors, which has 15
blocks and 142 nets, compares favourably with a manual placement of the same circuit.
The area is 3% larger than the manually placed circuit and the wiring length is 13%
shorter. This is an excellent result, but more comparisons are needed to draw any

substantial conclusions.

224 Floorplanning

The inability of macro-cell placement algorithms to manipulate module shapes
is a great drawback, which results in unused area or dead space. Floorplanning removes
this restriction by allowing the determination of module shape to be an integral part of

the placement process. While this gives floorplanning greater flexibility, it also
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increases the complexity of the layout problem. Although automated floorplanning is a

recent topic of research, it has already received substantial attention in the literature.

2.24.1 Floorplanning Using Slicing Structures

Before presenting an algorithm to determine optimal cell orientation in slicing
floorplans, we must first define the cell orientation problem. Assume we have a
floorplan (such as that of Figure 2.3b), which is defined by a series of intersecting lines
(lines may not cross), which divide the floorplan into rectangles. The outermost
perimeter must also be a rectangle which we will call the boundary rectangle. Each
rectangle not crossed by a line is called an inner rectangle and each inner rectangle
encloses a module. The enclosed module must not have dimensions greater than those
of the enclosing rectangle. Some freedom is allowed in the dimensions of the inner
rectangles which make up the floorplan, but the relationships between the inner
rectangles may not change. For example, in Figure 2.3b, the rectangle timlg is to the
right of rectangle run, and to the left of rectangle nb2. It is above srl and below sttim.
Although the dimensions of the rectangles may change, these relationships must not, or
the floorplan has been altered. The relationships between inner rectangles can be
captured with a pair of graphs, one defining vertical relationships, and the other
defining horizontal relationships (similar to Figure 2.3a, but without the channel
segments). Two floorplans with the same graphs, but different rectangle dimensions are
equivalent. If the dimensions for a module are given by (a, b), then the module can have
two orientations, (a, b) and (b, a). The optimal orientation problem is to find a set of
module orientations for each module, such that the total area of the boundary rectangle

is minimized.
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The orientation of cells within a floorplan may seem to be more readily
applicable to macro-cell placement, but this problem has actually received more

attention in the field of floorplanning.

An algorithm for determining optimal module orientation in slicing structures
was presented by Stockmeyer [Stoc83]. He showed that for the general non-slicing
floorplan, optimal module crientation is NP-complete; however, for slicing floorplans
an algorithm, which is no worse than O(n2), (where n is the number of modules) and is
typically O(n log n), is presented. His algorithm combines, in linear time, a set of
boundaries for each of two modules, giving a set of boundaries for the pair. This
procedure combines the boundaries of pairs of nodes in a bottom-up manner. A leaf
node with dimensions a and b, a > b starts with the set of boundaries {(a,b),(b,a)}. In
general, a non-leaf node would have as its set of boundaries {(h;,w,) ... (h,wy)}, where
h; > h;,, and w; < w;,; and k is the number of boundaries. If we have two nodes U and V
whose boundary sets are {(hV;,wY)) ... (WY, wY)} and {(AY,,wY)) ... (WY WVn)) and

they are to be combined, the generalized procedure is:

Procedure Combine ((hY,wV), (hV,wV), slice_dir)
/* (hY,wY) and (hV,wV) are arrays of boundary pairs */
BEGIN
Initialize i=1,j=1;
WHILE i< k and j< n DO
BEGIN
add Join((hY;,wdy), (hY,,wY)), slice_dir) to the list with
pointers to (hY;,wY;) and (hY;,wV);
IF hY; > hY; THEN increment i,
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IF hY; < hY; THEN increment j
IF hY; = hY; THEN increment j and j;
END;

END;

Procedure Join((hY;,wY)), (hY;,wY), slice_dir)

BEGIN

IF slice_dir is horizontal THEN (x,y) = (hY;+hY;,max(wV;, wV));
ELSE (x,y) = (max(hYi+hY)), wdi+wY)));

return (x,y);

END Procedure;?

For k elements in the U set and m elements in the V set, this combining operation
requires at most O(k + m) steps. Since the leaf nodes have at most two orientations
each, the top node of the tree can have at most 2n pairs in its list, where n is the number
of elements in the circuit. This algorithm has great importance to floorplan automation
because it provides a quick way to estimate the effect of module orientation. This effect
is calculated by replacing the two dimensional pairs at the leaf node in question, and
then recclculating the area for the entire circuit using the aforementioned algorithm.

The area can be recalculated in O(n log n) time.

Some of the standard-cell placement algorithms discussed so far have been
adapted for use in floorplanning. Converting these methods to floorplanning requires
adding extra steps to address the additional moduls shape problem. The new algorithms

usually undergo some refinement as well, since the shortcomings of the method become

3Slockmcycr "Optimal Oricntations of Cells in Slicing Floorplan Designs”
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better understood with time and improvements can be made.

A floorplanner called Mason [LaDi85] uses some variations on the min-cut
method of placement in combination with Stockmeyer’s algorithm. Mason changes the
weight of the nets crossing the cut line as the sizes of the partitions change, increasing
the weight as the difference in size increases. This limits the probability of moving
modules from the smaller to the larger partition. MNason further enhances performance
by exhaustively partitioning small groups of modules (the authors suggest 18 or fewer
modules). Mason’s performance is further enhanced by the addition of termina.
propagation. Terminal propagation in Mason appears to consider only the direction of
terminal connections rather than creating Steiner trees, as was done in Dunlop and

Kernighan [DuKe85].

To convert the slicing tree to an actual geometric layout, Mason uses an
orientation algorithm developed by Otten [Otte83], which in turn is based on
Stockmeyer’s [Stock83]. This algorithm uses a shape function for each leaf node,
modeled by continuous piecewise linear curve segments, and combines shape functions
for the children together at each internal node. After choosing a geometric layout with
Otten’s algorithm, a global routing step estimates routing area, using the slices as
routing channels. This updated area information is used to choose a new final geometric

layout.

A floorplanner similar to Mason was discussed by Modarres et al. [Moda88].
The major difference between it and Mason is that this floorplanner uses a multi-level
circuit hierarchy, whereas Mason used a two-level hierarchy (modules and cells). The

hierarchy is determined in advance of the floorplanning and, presumably, corresponds
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to a schematic of the circuit, also defined hierarchically. Each level in the layout
hierarchy will be referred to as a module. Each module in the hierarchy is composed of
several module instances, which have yet to be partitioned. The circuit is placed in a
slicing tree in which the module instances which make up a module are its children. At
this stage there are no slicing nodes between the module nodes and the module instance
ncdes (since no partitions have been created yet). The tree is traversed several times
during floorplanning. The first traversal estimates the area of each leaf module and
derives a hyperbolic function of the x and y dimension to represent it. The second
traversal partitions the components of each module in the tree using the Kernighan and
Lin partitioning algorithm and a simplified version of terminal propagation (this is the
step which adds slicing nodes between the mcdule nodes, to give a slicing tree). The
partitioning includes a penalty for moving modules from smaller to larger partitions. If
there are less than 15 modules in a partition, they are partitioned optimally. The third
traversal of the tree calculates the shapes of the internal modules using an algorithm
similar to Otten’s [Otte83]. The fourth traversal chooses the shapes of the modules and
the fifth estimates channel size by using a global routing step. Two more traversals use
the routing information to update the module shape functions. These last two steps
result in a complete floorplan which can be manipulated manually if desired. The
authors provide the CPU times taken to floorplan various circuits, but provide no

information on circuit areas or comparisons with other floorplanning methods.

All the floorplanners considered so far examine only a small part of the
floorplanning search space and converge on a local minimum which is unlikely to be
optimal. Min-cut explores beyond a local minimum, but not very far. A method which
will explore farther beyond a local minimum is simulated annealing. This method is

based on a model of the physical process of annealing. At the beginning of the process,
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module placement is random ard the circuit is assumed to be at a high temperature.
High temperatures represen: very disordered states in which modules may move about
freely. As the temperature cools, module movement becomes more restricted and
eventually the layout settles into a position of low energy or low stress, meaning the
modules are well placed. The main feature of simulated annealing is that possible
moves are generated randomly and evaluated. If a move is beneficial, (reducing total
wire length), then the move is accepted. If the move is not beneficial, then a random
number is generated and depending on the random number and the cost of the move, the

move may still be accepted. A general simulated annealing algorithm follows.

Anneal (stateg, Top)
/* state is the initial placement state

To is the initial temperature */

1. T=Ty

2. state = statey;

3. while (T is higher than Tp)

4. num_states_generated = 0;

5. while (num_states_generated < CONSTANT)

/* CONSTANT is based on the number of
components (n) being placed and the
type of component being placed. For
standard cells this may be n * 50. If
components are macrocells this may
ben*15*%

6. generate new state based on State

(Stateproposed);
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7. cost_new = Evaluate state (Stateproposed);
8. cost_old = Evaluate state (State);
9. it (cost_new < cost_old)
10. State = Stateproposed:

else
11. Acost = cost_new - cost_old; /* willbe < 0 */
12. if (efacostT) » (random number between 0

and 1))
13. State = Stateproposed;
endif

endif

14, increment num_states_generated;
endwhile
15. lower T by some small amount;
endwhile

To lower the stress, a module must be placed close to the other modules with which it
shares connections. We shall refer to modules which share a large number of nets as
close neighbors, even if they are not physically close in the layout. When the
temperature is relatively high, the probability of moving modules away from their close
neighbors, thus increasing layout cost, is high, although the probability of moving them
closer together is higher still. As the temperature decreases, the probability of moving
close neighbors farther apart decreases, while the probability of moving them closer
together, thus decreasing cost, remains high. Proposed new states which decrease the
cost are always selected. The distance over which a displacement may occur decreases

with temperature.
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The performa.ace of simulated annealing is very sensitive to a number of
parameters. Changing the temperature, number of proposed new states, distance criteria
and the new state generation procedure all play important roles in determining the
quality of the final solution and the length of time required to achieve it. While
simulated annealing produces some of the better placement results, it also takes the

greatest amount of time, sometimes taking many hours to place circuits of modest size.

Simulated annealing is applied to slicing floorplans by Wong and Liu
[WoLi&¢)l. The authors develop a way of uniquely describing slicing structures with
normalized Polish expressions, thus simplifying the floorplanning process. The Polish
expressions represent slicing trees whose internal nodes have a slice direction
associated with them and whose leaf nodes represent modules. Not all slicing trees or
Polish expressions are unique, and there is no one-to-one correspondence between

floorplans and slicing trees. Figure 2.4 shows a floorplan and two possible slicing trees.

1 /\ /\
2] 3 4 2/\*1 /\41
/\ \
3 4
a b c

Figure 2.4: Floorplan and Two Slicing Trees

If we force the right child of a slicing tree to have a slice direction different from that
of its parent, then the slicing tree is guaranteed to be unique. Even with this restriction
all slicing floorplans are possible, and we have the desired one-to-one correspondence

between slicing trees and slicing floorplans.
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Polish expressions are formed with the two complementary operators **’ and
’+’, which represent vertical and horizonta! slices respectively, and by numbers which
represent nodes. Thus the Polish expression 23 *4 * 1 +, represents the tree in
Figure 2.4c. For an expression to be a proper Polish expression, every operator must be
preceded by a greater number of operands than operators, so proper Polish expressions
must start with two operands and must end with an operator. Proper Polish expressions
must not have consecutive similar operators since right children in a tree must have a
different slice direction than their parents to ensure uniqueness. Examples of invalid

sequencesare 12*34++,*%12+,and12*+3,

There are three types of operations which can be performed on the tree: The
first interchanges the position of two adjacent modules in the tree by interchanging two
adjacent operands in the Polish expression. The second complements a string of
operands thereby changing the slice directions of some nodes in the tree. The third
operation selects an adjacent operator and operand and exchanges them, which
reorganizes the tree. The first two operations obviously leave a proper expression,
provided they started with one, but the third operation does not guarantee this, so the
expression must be checked for legality after the third operation is performed. Legal

examples of these operations are given in Figure 2.5.

3 4 1

12%34+% = 12%43+% 5 12%43%4+ 5 124%3%4
op. 1 op. 2 op. 3

Figure 2.5: Floorplans and Proper Polish Expressions
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The cost function of a particular floorplan is based on circuit area and wire length. The
wire length is approximated by the Manhattan distance between module centers
multiplied by the number of connections between them, summed over all pairs of
modules. The area of the circuit is computed usiny the modified Stockmeyer algorithm
presented by Otten [Otte83] for piecewise linear curves. After every modification to
the circuit, a new area is calculated, the centers of the modules are determined, and a
new wire length is computed. The cost function is of the form ¥ =A + A, W, where A
is the area, W is the wire length, and A,, is the relative weighting of wire length to area
and ranges from 0 to 3 with a typical value of 1. The temperature in the annealing
schedule is changed by a constant rate, and at each temperature, enough moves are tried
until a predetérmined number of downhill moves are accepted, or simply twice that
many moves are attempted. The process stops when less than 5% of all moves made at
any given temperature are accepted. The results indicated for up to 40 modules are good
with reasonable restrictions on module aspect ratio, final chip area, and various
weightings on wire length vs area in the cost function. However, no comparisons are
made to other floorplanning algorithms, and no CPU times are given to indicate the

algorithms efficiency.

Another process similar to simulated annealing, called a sequence heuristic, was
introduced by Nahar and Sahni [Naha86]. The sequence heuristic accepts only moves
which improve the solution. To explain briefly, when the last n moves generated have
not improved the solution, then the current floorplan is assumed to be in a local
minimum. To escape from this position, m random moves are generated and accepted
(regardless of their effect on the placement). Some predetermined number of local
minima are investigated. This particular implementation of the sequence heuristic is

based on the simulated annealing algorithm used by Wong and Liu. Other aspects of
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this algorithm were covered in the preceeding section.
2.24.2  Floorplanning Using Non-Slicing Structures

The force-directed placement method has been adapted to floorplanning in
CHAMP [Ueda85]. This method includes a force-directed initial placement, in which
the blocks may overlap, followed by block unpacking and block reshaping steps to
remove overlap. Initially a connection matrix E is constructed, where entry Ej; is the
number of connections between modules i and j. The matrix is used to calculate
attractive and repulsive strengths, where strongly connected blocks attract and weakly
connected blocks repel. These forces are used to find relative blocks placements. The
method starts by randomly choosing a block and, using attractive forces, moving it to
its gravitational center. From this new position repulsive forces are used to calculate a
newer position for this block and it is moved there. After each block has been moved
the process is iterated several times until it converges to a stable state. This ends the
initial placement phase, but the layout may still contain considerable block overlap.
The second step, block unpacking, begins by assigning a shape to each flexible block
and creating a chip boundary. Blocks are unpacked by repeatedly selecting and applying
one of three procedures: The first procedure simply reduces the chip boundary by a
small value. In the second procedure a module is randomly selected, and temporarily
shifted a small amount in all four directions. The shift which reduces block overlap and
boundary overlap the most is impleme=ted. In the third procedure, a block is randomly
selected and its shape temporarily modified by a small amount. Both shorter/wider and
taller/narrower shapes are proposed and again the shape which reduces overlap the most
is implemented. When overlap between blocks is eliminated, and a satisfactory size is

achieved, the process is terminated.
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Blocks in this model are either generated prior to floorplanning or they are made
up of standard cells. Module shape is changed by adding or removing single rows of
cells. Calculation of block width involves adding some extra width at the end of rows
since the cells are unlikely to fit perfectly. Calculation of block height involves using
information on channel density, obtained experimentally, and is a function of the total
width of all cells in the block, number of rows, number of nets and number of pins per
net. Generally good results are claimed but dead space still remains in the layouts and

must be removed manually.

2.24.3  Comparison of Algorithmic Floorplanning Methods

Some of the approaches to floorplanning algorithms are compared by Cai and
Hegge [CaHe88]. The algorithms compared are min-cut, with the method of terminal
propagation presented by Durlop and Kernighan [DuKe85], a force-directed procedure
similar to CHAMP [UeKi85], simulated annealing as described by Wong and Liu
[WoLi86], and a sequence heuristic as described in [Naha86]. Cai and Hegge run two
trials: In the first trial both fixed and flexible blocks are used in the floorplans (about
half of each). In the second trial only flexible blocks were used. Their results indicate
min-cut outperforms the force-directed method used in CHAMP and also outperforms
simulated annealing and sequencing, but only if the CPU time allotted is reasonably
limited. Sequencing produces better results than simulated annealing, if the CPU time
is limited. Simulated annealing and sequencing produce better IC aspect ratios than
min-cut or the force-directed methods, and better areas if allowed to run for long
periods of time. Both simulated annealing and sequencing can be used to improve the

results of min-cut and force-directed floorplanners in terms of aspect ratio but,
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interestingly, for the largest circuit tested, this resulted in a substantial degradation of
size and wiring length relative to min-cut alone, even when they were allowed to rua
for approximately 1!/2 hours. The authors note that the parameters used for simulated
annealing and sequencing can have a marked effect on their performance, and that more

experimenting would be needed to optimize the parameters.
2.24.4  ExpertSystem Floorplanning Methods

While algorithmic approaches to circuit layout take considerably less time to
complete than manual designs, they are still unable to equal human layouts. One
proposed solution is to use expert systems, or knowledge-based approaches for layouts.
In general, these approaches examine the layout after each design step and decide what
step to take next based on a set of heuristic rules. The system tries to look for those
features which a human expert would look for, evaluate their relative importance, and
make a decision the same way a human would. Quantifying everything a human expert
knows about layout would be a formidable task. Thus, in practice, expert systems only
roughly approximate the reasoning of a human expert. Nonetheless, some of these

systems show promising results.

Flute [WaAc87] is a two stage floorplanning expert system. The first layout
stage, topological layout, places modules on a grid. The modules on the grid are
connected by arcs representing module interconnections and off chip connections.
Crossovers in the arcs are replaced by routing modules. Modules are placed on the grid
in an order determined using expert rules. Those rules which determine the order of
selection heavily favor modules attached to high priority buses, and place all the

modules on one bus before moving on to the next. Those rules which determine module



-42- Previous Work

locations try to place a given module adjacent to other modules to which it is
connected. When a new module is placed which causes a crossover in the routing arcs,
expert rules are invoked to try and reroute the offending net through existing routing
modules. If rerouting does not work, then a new routing module is added to the graph

and the interconnections are rerouted using the new routing module.

Flute’s second layout stage, geometric realization, provides the modules with
shapes and sizes and places them in their final location. Geometric realization is
accomplished by treating the problem as a minimization problem and then solving it
heuristically. The arcs of the graph are assigned non-unique variables which will be
used to formulate constraints. One constraint might be that modules A and B should
have a border long enough to accommodate three connections between them. If the area
of module B is at least 1000 units, another constraint might be width*height 2 1000. In
a reasonable time there is no known way to optimally solve the minimization problem
the authors derive, so Flute uses a heuristic technique similar to that used in CHAMP
[UeKi85]. Basically, Flute constructs one graph describing east-west module
dimensions, and another describing north-south module dimensions. A module is found
which is on the longest path of one graph, but not the other, and its dimensions are
changed by a small amount, keeping the area the same. This process is repeated until no
module can be found which is on the longest path of only one graph. The authors were
encouraged by the results they had achieved at the time of writing, but had more rules

which they wanted to try.

Another graph-based method of floorplanning converts planar graphs of layouts
to rectangular duals. A rectangular dual is a graph whose nodes represent modules and

whose edges represent module adjacencies. The planar graph is derived from the
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connectivity graph of the circuit, whose nodes represent modules and whose edges
represent a connection between two modules. A properly formed graph of this type can
be converted to a layout with relative ease. An important step in this method presented
by Kozminski and Kinnen [KoKi84], provides a set of criteria to determine if a
triangulated planar graph admits a rectangular dual, along with a linear algorithm to
determine this. The first criteria for admissibility is that the graph must be triangulated,
which means that all faces in the graph are triangular. The second criteria is that all
cycles which are not faces must have at least four edges, or arcs. The third criteria is
that the graph must be planar, meaning arcs do not crossover each other. The final
criteria is that vertices which lie on the outermost cycle have at least three edges

attached to them, while all internal vertices have at least four edges attached to them.

Kozminski and Kinnen also provided an O(n2) (where n is the number of nodes
on the graph) algorithm to convert a graph which meets these criteria into a rectangular
dual. Before the algorithm is explained, some terms must be defined. The first terms to
be defined are the shortcut and the corner implying path. Assume that the graph to be
converted to a rectangular dual is called G and refer to Figure 2.6a. A shortcut on G
exists between nodes i and m if nodes i and m are connected by an edge which is not

part of the outside path of G .

Figure 2.6: Planar Triangulated Graphs
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If the path (i, j, ... I, m) is on the outside path then (i, j, ... I, m) is said to be a corner
implying path, but only if no other shortcuts exist in the path (j, ... !). In Figure 2.6a,
(s, 2), (u, v), and (x, z) are shortcuts, but only (s, f) and (x, z) are corner implying paths.
A corner implying path is said to be a critical shortcut. For the special case where a
graph is a triangle, any pair of edges is a corner implying path, even though there are no
shortcuts. Another term which needs to be explained is the cut vertex. A cut vertex is
one which, if removed, would separate the graph into two or more distinct sub-graphs
called blocks. In Figure 2.6b both d and g are cut vertices and L, M, and N are blocks
where L would consist of vertices (a, b, ¢, d), M would consist of (d, e, f, g) and N
would consist of (g, h, i, j). The next term that must be explained is the block
neighborhood graph. If each block is treated as a single vertex, and edges are added
between blocks to indicate a vertex originally shared by the two blocks, then this is
called a block neighborhood graph (BNG). The BNG for the graph in Figure 2.6b is
shown in Figure 2.6¢c. Finally a critical corner implying path in one of the blocks of a
plane graph is a corner implying path which does not contain any cut vertices in its
interior. Note that since block M of has a cut vertex in its interior, this is not a critical
corner implying path. In Figure 2.6d, block M, consisting of vertices (d, e, g)does have

a critical corner implying path.

For a graph to have a rectangular dual, its BNG, if one exists, must be a path as
in Figure 2.6¢, not a cycle, and the end blocks of the path must have no more than two
critical corner implying paths each. No other block in the path must have a critical
corner implying path. By this definition the graphs of Figures 2.6a and 2.6b have
floorplans while the graph of Figure 2.6d does not. Possible floorplans for the graphs of
Figure 2.6a and 2.6b are given in Figures 2.7a and 2.7b.
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a b

Figure 2.7: Rectangular Duals

Kozminski’s and Kinnen’s algorithm for converting graphs to rectangular duals
begins by creating an outermost cycle for the graph which has four vertices and is
called four-completion. The new vertices e connected together in a cycle, and each of
the new vertices is connected to at least one interior vertex. An example of a four-
completion for the graph of Figure 2.6a is shown in Figure 2.8. The new vertices
correspond to the top, bottom, left and right edges of the floorplan. Adjacent vertices on
this outside cycle must have one interior vertex (from the original graph) in common.
An interior vertex connected to at least two vertices on the outside cycle is called a
corner vertex. In Figure 2.8, vertices s, r, y, and z are comer vertices. The corner vertex
represents a module which will occupy a corner of the floorplan. If the graph has corner
implying paths, each path must have at least one corner vertex. This means that there

may be no mrre than four corner implying paths in the graph.

Figure 2.8: Four-Completion of Planar Triangulated Graph
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The paths (s, r, £) and (x, y, z) are corner implying paths. Any vertex on the interior of
the path may be chosen, and the algorithm provides no guidelines on selecting one over
another. Note that because of this restriction, both r and y must become corner vertices.

It is not su! ‘Cient to choose an endpoint of the path.

Once the graph is converted to a four-completion, and meets all the conversion
criteria, the only thing which keeps it from defining a floorplan is adding in edge
orientation. Only a brief description of this process will be given here as complete
details of adding edge orientations are available in the authors paper [KoKi84]. Adding
an edge orientation to the graph involves recursively finding the shortest interior path
from the top to the bottom of the graph. This path is used to separate the graph into two
parts. A new left node is added to the right part of the graph and a new right node is
added to the left part of the graph. Each edge along the path separating the two parts is
assigned a horizontal direction in the dual graph and the process repeated for each sub-
graph. Eventually the subgraphs become small enough to be handled as one of several

cases and can be defined completely.

There are a couple of issues associated with creating rectangular duals which
are beyond the scpe of this algorithm. First of all, the dual of a graph created by this
procedure is not unique, and may not be the best possible dual for the given triangulated
graph. Secondly, conversion of the original connectivity graph into a triangulated graph
requires removing crossovers, meaning edges from the graph must be removed.
Removing edges, in effect, removes module adjacencies and decisions must be made as
to which edges will be removed. These considerations are addressed by Jabri and

Skellern [JaSk87) who employ a knowledge based system to make these decisions.
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Jabri’s and Skellern’s [JaSk87] floorplanner starts by building a graph of the
circuit where vertices represent modules and edges represent communication paths.
This graph is adjusted to become a graph which admits rectangular duals using
knowledge of the modules, interconnections, and the design tools which will be used to
build the modules. First impossible adjacencies are deleted (those which cause the
graph to violate the criteria presented by Kozminski and Kinnen [KoKi84]) and the
number of edges in the graph reduced. From this graph the entire family of rectangular
duals are found. This family of duals is reduced by a selection process which first
assigns figures of merit to the duals. The figure of merit is based on architectural and
design tool constraints, using rules which describe architectural preference based on
function. Functional descriptions and the number of interconnections are used to find
minimum common border lengths for each possible solution. Using these border
lengths, optimal block shapes and minimum layout perimeter are determined with a
Simplex algorithm. The perimeter is in turn used to find the circuit and module areas.
The floorplanner has been used successfully to design circuits of up to 30,000
transistors. The authors point out that, in one instance, a twelve module graph produced
a family of 54 rectangular duals. This is quite a nurnber of potential floorplans to select
from, given that all module adjacencies have been determined prior to this. The authors
suggest that some form of clustering could be used prior to starting when a large

number of modules are present.

2.3 Inadequacies in Floorplanners

The vast majority of floorplanners make minimal use of the hierarchy available
in the circuit schematic. They view the circuit as being composed of modules, which

are composed of gates, rather than as a few modules composed of a few modules, etc.
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Those which do use a hierarchy create it by clustering or min-cut, rather than extracting
it from the schematics. This either results in floorplans with many modules, or
floorplans with several very large modules. This means that either the floorplanner or
the module generator must deal with a large number of items to place. Existing
floorplanners also reduce the solution space to a single floorplan, perhaps allowing
manual cleanup of the final decision. As a result, the designer has no access to
promising intermediate decisions which were rejected by the floorplanning program.
Few tools are available which try and make use of a human designer’s abilities (not to
be confused with expert systems which try and mimic it) while handling the large

numbers of recalculations which go along with proposing design changes.

24 How Are These Inadequacies Addressed Here?

By creating a circuit hierarchy from the schematic diagram before floorplanning
begins, the number of modules which have to be dealt with at any time is greatly
reduced. Once the circuit is partitioned along functional boundaries, the solution space
is significantly reduced, but the probability that good solutions will be overlooked is
still low. By allowing several alternative layouts at any level of the hierarchy,
promising layouts of modules can be created and kept under consideration until the
final floorplan is chosen, rather than being forced to choose one alternative
prematurely. Keeping a human designer in the process increases the iikelihood that
good solutions will be investigated which an automated process may overlook. FLINT
handles all calculations, so the designer can see immediately what effect their changes

will have on the final floorplan.
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Chapter Three: FLINT: A New Floorplanner

We have developed FLINT in order to address some of the deficiencies of the

floorplanners and macro-cell placement algorithms reviewed in the previous chapter.
This chapter begins by discussing the merits of various approaches to floorplanning and
features which floorplanners might have, and continues by presenting the objectives to
be met by FLINT. Next an overview of the system is provided, and finally the details

of FLINT’s features are presented.
3.1 Definitions

Before continuing it should be pointed out that, in the remainder of this thesis,
floorplans are assumed to be hierarchical. A hierarchical floorplan is one which allows
modules to consist either of cells or of other modules. A hierarchical floorplan can be
represented by a tree, where nodes represent modules and the children of a node are the
modules of which the parent is composed. A leaf node (or leaf cell) is a module which
consists of a single component and might be a single gate or composite gate from a
standard cell library or even a PLA. Strictly speaking, the structure used to describe
hierarchical tlooplans is not a general tree, but is a directed acyclical graph (DAG).
However, a DAG doesn’t give the impression of hierarchy which is so important to our
floorplanner. On the other hand, nodes in trees are not supposed to have more than one
parent. In the hierarchy used by FLINT, modules which are components of other
modules have several parents, so that if module A is a component of modules B, C, and
D, then A has B, C, and D as parents. Since the term tree is more descriptive of the
internal structure used to describe the circuit hierarchy, this is the term that shall be

used throughout this document to describe the hierarchical internal structure.
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The term floorplan usually refers to the floorplan of the entire circuit, but for
lack of a better definition, it will also be used throughout this chapter to refer to the
general physical arrangement of the components within any module. If a distinction
needs to be made, it will be clear from the context which one is being referred to. The
term block is also used throughout this chapter. A block is any group of components
separated from the rest of the circuit or layout boundaries by four slices. Thus if we say
that a module is composed of four blocks, we mean that the module has four distinct
groupings of components separated by three slices. If the floorplan in Figure 3.1 were a
module, then it would be composed of four blocks, A, B, C, and D separated by the
three slices. Each of these blocks is composed of two more blocks, which hagpen to be
components in this example, but could be made of further blocks. The term "module
definition" will refer to the partlist of a module, the interconnections of those parts, and
the names of external connections obtained from the schematics. Two modules with
identical definitions must have the same partlists, interconnections, and external
connections, making them interchangeable, provided the external connections are

properly made.

3.2 Design Objectives

Identifying objectives is essential in creating an effective floorplanner. The
most important decision, and one which bears directly on identifying other objectives,
is whether FLINT should be totally automatic or interactive. We chose to make an
interactive floorplanner since, to date, human creativity still seems to produce the best
floorplans. Many objectives governing the design of FLINT followed from this

decision. An interactive floorplanning tool should be flexible enough to allow the
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design of any part of the floorplan at any time, but should avoid displaying unnecessary
detail. Treating the floorplan as a multi-level hierarchy goes a long way towards
accomplishing this objective, since this closely coincides with actual circuit

descriptions, and also provides for a built-in divide and conquer approach to

floorplanning.

The designer should have a significant amount of freedom in floorplanning the
circuit including everything from placing each component of a module, to completely
rearranging the floorplan hierarchy. At the same time, FLINT should treat modules
with identical definitions similarly so the designer doesn’t have to continuously re-
invent the wheel. For example, when laying out several identical instances of a module
next to each other (such as the individual bits of a RAM, or the bits of a register),

FLINT should group them together and treat them identically.

FLINT should allow the designer to propose several alternate floorplans of a
module in his quest to discover one which fits in well with the total floorplan. The
decision as to which alternative module floorplan to incorporate into the design should
be delayed as long as possible so that the most informed choice can be made. Allowing
the designer to propose new alternate module floorplans when the floorplan is near
completion allows him to take more global information into account. A given alternate
floorplan for a module should be available to all instances of the module and not be
restricted to the instance for which it was created. FLINT should be able to select the
alternative which will result in the smallest floorplan for each instance. The designer
should still have control over such floorplanning parameters as, the aspect ratio of
floorplan, being able to set bounds that FLINT must meet in its selection of floorplan

alternatives. Furthermore, FLINT should allow fixed blocks to be incorporated in the
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floorplan.

Immediate feedback should be available as to the effects changes have on the
floorplan. Perhaps the most effective way of accomplishing this is to include a pictorial
representation of that part of the circuit currently being laid out and to have that
representation change as changes are made to the floorplan. Including statistics, which
compare the floorplan before and after changes, would also aid the designer in

evaluating the effects of the changes.

Finally, an interactive tool should allow the addition of future algorithms to
drive the floorplanning process. This would still allow an automatically generated

floorplan to be fine-tuned manuaily.

3.3 Overview of Features and Limitations

Many of the objectives were successfully met by the new floorplanning utility.
The flooplanner represents hierarchical floorplans with slicing structures. It creates the
initial multi-level hierarchy from the schematic, using the same module names as used
by the schematic, so the designer has a consistent reference to modules. FLINT uses a
graphical user interface to aid in interactively floorplanning circuits. The designer can
floorplan modules in any desired order, moving freely about the floorplan hierarchy.
The display only shows the components of the module currently being floorplanned
Displaying all the cells of a large circuit would make floorplanning very difficult.
Because of the hierarchical circuit definition, the components of the module displayed
are the module instances at the next lowest level in the hierarchy. This hides the

underlying module definitions until they are themselves floorplanned. There are
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commands available to modify the floorplan which are accessed via menus using a
mouse driven input system and a point-and-click method of selection. Any of the

floorplanning commands can be used to floorplan the module on display.

FLINT uses common definitions for identical module definitions, which appear
throughout the design, to minimize the amount of floorplanning which needs to be
done. It uses iterated structures to represent identical modules which are spatially
adjacent and were identified as itcrated structures from the schematic diagrams.
Floorplans may be composed of a mixture of fixed and flexible blocks. FLINT allows
the design of multiple alternative module floorplans and, at the end of the floorplanning
process, optimally chooses the one which best meets the design criteria of size and
aspect ratio. FLINT reports on the effects which changes made to the floorplan have on
the overall design, so the designer can tell whether or not his ideas are having the
desired effect. If necessary, FLINT is flexible enough to allow the designer to
significantly modify the hierarchy, but since the hierarchy is obtained from the

schematic diagrams, the need for extensive rearrangement is unlikely.

To help the designer work effectively, feedback is immediately provided on the
effects of changes made to the floorplan. After the change is made to the floorplan, the
area and shape of components are visibly changed to reflect the shape it should take on
to make the floorplan on display as compact as possible. Along with the visual changes,
statistics about the floorplan are also updated after each change. Statistics are available
on floorplan area, areas and x and y dimensions of the module and whole circuit

floorplans, and whether the change increased or decreased the total floorplan area.

There are a variety of operations available for modifying the floorplan. The
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designer may create a new alternate floorplan for a module at any time using the
floorplan on display as a template. He may then look at any alternative and change its
floorplan independently of the other alternatives. Changes to a floorplan alternative
affect that alternative for all instances of that module, so the designer doesn’t have to
perform identical placement operations for each instance of that module in the
hierarchy. Extensive rearrangement to the floorplan can be done by creating new levels
or deleting existing levels in the hierarchy and by moving module instances from one
level to another. The operations for modifying the floorplan of a single module instance

are discussed later in this chapter.

Many circuits contain functional blocks which are made up of identical modules
that are laid out next to each other. For example, all the bits of an adder or a register are
identical and are located next to each other. We have created a new module type called
an iterated structure to simplify dealing with blocks of this type. An iterated structure is
similar to a separate module instance, but there are important differences between the
two. The modules of an iterated structure must be laid out next to each other, either
vertically or horizontally, whereas module instances may be located anywhere in the
floorplan. The iterations (modules) in an iterated structure have identical floorplans,
whereas each module instance may use a different alternative floorplan. The modules
of an iterated structure may have alternate floorplans available, but the floorplan chosen
for one element in the iterated structure is the floorplan chosen for all. Since this may
prove to be too restrictive, iterated structures may be broken apart and groups of
elements treated separately. Iterated structures are identified in the schematic and are

adopted for use by FLINT.

Since no module generation utilities are presently available at the University of
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Alberta, floorplanning with flexible blocks is not possible. To avoid becoming a strict
macro-cell placement program, we reached a compromise. Modules at the lowest level
in the hierarchy, those composed only of cells, may have several alternative floorplans
from which FLINT can choose. Instead of having a continuous curve of possible shapes
and areas for each module, it allows several discrete shapes. The program for the
floorplanner is modular, so when module generators and functions describing module
area become available, incorporating these into FLINT should be easy. The modular

program also makes upgrades and m--**". 05 or the addition of algorithms to drive

the floorplanning process ezsier.
3.4 Introduction to Slicing Stru« ... - 5

One more design point shouid be made before discussing the operation of
FELINT. FLINT uses slicing structures rather than general floorplans. Several factors
contributed to this decision. First a multi-level floorplan hierarchy was chosen, and
since the hierarchy itself can be represented using a tree, as can slicing structures, this
choice allows common handling of the hierarchy and the floorplanning of modules.
Second Stockmeyer’s algorithm [Stock83] for optimal module orientation only applies
to slicing structures, and we wished to adapt this for use with multiple aiternate module
floorplans. Furthermore, as Stockmeyer pointed out, the orientation algorithm for
general floorplans is NP-complete, and so there is no known efficient algorithm for the
general case. Finally, operations for manipulating a slicing floorplan appear to more

straightforward than those for manipulating a general floorplan.

The discussions on the multi-level hierarchy in this thesis use the same terms

used when discussing trees in computing science. A module consisting of components
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can be referred to in familial terms, where a module is a parent, the components are its
children. Generally speaking, a component could be a module instance which, in turn,
consists of components or, in these new terms, a parent with its own children. Using
this terminology the statements "module’s child" or "module’s parent” should be clear:
The first case refers to a component of a module; the second to another module which

has the given module as one of its components.

Like modules and components, hierarchical treatment of slices is possible. Each
slice separates a block of modules in two. In Figure 3.1a the vertical slices separate the
block into four sub-blocks, while the horizontal slices separate each of the four sub-
blocks into two sub-sub-blocks. The horizontal slices are lower in the hierarchy than the
vertical slices, and can be thought of as the children of the vertical slices as shown in
Figure 3.1b.

1 2 3 4 Top |

B € D
A B C D Ahl AloBhlBlOCthlODhl
a b

Figure 3.1: Slicing Structure and Slicing Tree

Dlo

If the numbers 1-3 each represent a slice and the letters A-D each represent a
block, then slices 1-3 separate blocks A-D (slice 4 separates the module from an
adjacent module, or from the IC boundary and is not shown). The slice | at node Top in
the tree represents all four vertical slices. In Figure 3.1, the slices 1,2, and 3 are equal-

level siblings. The blocks A, B, C, and D, are also siblings. The pair of blocks A, and
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Ay, which make up block A are also siblings. Associations between slice directions and
nodes in the hierarchy tree are stored with each node and are shown as horizontal or
vertical bars in the figure. When blocks are separated vertically, the left to right order
of nodes in the tree determines the left to right order of blocks in a floorplan. When

separated horizontally, the left most block in the tree is the highest block in the

floorplan.
3.5 Floorplanner Operations

FLINT offers many features which aid the designer in creating new design
alternatives, changing the graphical view of the circuit, and manipulating floorplans

and structures.
3.5.1 Alternative Creation and Deletion

The first operations presented concern creating and deleting alternatives. These
operations are very straightforward. Creating an alternative for the module on display
only requires invoking the create_alternative operation. The newly created alternative
has the same floorplan as the one displayed. FLINT places no restrictions on the
number of alternatives which can be created. Delete_alternative is also straightforward.
Selecting the operation deletes the alternative on display. FLINT won’t allow the

deletion of the last remaining alternative.

35.2 Circuit Viewing

The designer can use several different floorplanner operations tn affect the
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floorplan: however, in order to evaluate the results and choose the next operation
appropriately he must be able to view various parts of the floorplan. This is done with
the change_view operation. With this operation, the designer can make any module

appear on the display.

Change_view selects modules for display in an orderly fashion, following the
circuit hierarchy. Only the components of one module are displayed at a time. If the
designer is viewing module A, shown in Figure 3.2a, he has three choices of what to
display next. He can display one of module A’s components, as a module, he can
display A’s parent, showing A as a component, or he can display one of A’s alternatate
floorplans. If the next module displayed is A’s parent, then we say that the display has
moved up one level in the hierarchy. If the next module displayed is one of A’s
components, then we say that the display has moved down a level in the hierarchy. If
the next module displayed is one of A’s alternatives, then we have not changed levels in

the hierarchy.

To display one of A’s components as a module, module B for example, we
select the change_view menu item, select module B, and click the left-most mouse
button. The display will change to show the current floorplan for module B, as in

Figure 3.2b.
A 1 B?
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Figure 3.2: Change Circuit View
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To redisplay module A, or the parent of any module displayed, we select the
change_view menu option and click the middle mouse button. The change_view
function doesn’t end until a sub-menu option is chosen. Once the change_view option is
invoked, the designer can move up or down as many levels in the hierarchy as desired
by clicking the left and middle mouse buttons. Alt:rnate floorplans of a module may be
viewed through a second sub-menu option. To view the alternate floorplan of B, shown
in Figure 3.2c, select the change_view function, then the view alternative sub menu
function, and click the left or middle mouse buttons. Alternative floorplans are stored
in a circular linked list. The leftmouse button cycles forward through the list, while the

middle mouse button cycles backward through the list.

353 Operations Affecting Module Floorplans

Several operations are available for changing the floorplan of a module by
rearranging its components. These include: 1) changing the slice direction separating
modules, 2) changing the order of blocks which are the children of a particular node 3)
reversing the order of blocks which are the children of a slice, and 4) moving blocks to
different locations within the module. Using these operations, the components of the
module can be laid out in any possible slicing configuration. We shall discuss these

operations in this order.

If all the slice directions were the same, the components of a module would be
laid out in a straight line. Change_slice_direction splits a row of blocks into two groups
and scparates them with a slice of the opposite direction. This operation rearrunges the
shice tree in a way that can’t be undone with a single operation. Correction requires a

scries of change_slice_direction operations. Changing the slice direction of slice 2 in



-60-

A New Floorplanner

Figure 3.1 would result in the floorplan shown in Figure 3.3, while changing the

vertical slice between the blocks of B in Figure 3.1 would result in the floorplan of

Figure 3.4,
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Figure 3.3: Changing Slice Directions

The order of sibling blocks may be changed by moving them, one at a time, with

the change_order function. This operation takes two selections, moving the first block

selected in front of the second block selected. FLINT only allows siblings of the first

block chosen to selected as the second block, since this operation only works on

siblings. In the example of Figure 3.4a the first block selected is D followed by block

B. The result is the floorplan shown in Figure 3.4b.
D
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a

Figurc 3.4: Changing the Order of Children
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Change_order may also be used to move a block to the end of a row. This is done by
selecting the same block twice. Selecting block B, as in Figure 3.5a, results in the

floorplan shown in Figure 3.5b.

A B C D A C D B
a b

Figure 3.5: Moving a Block to the End of a Row

The order of the children of a block can be reversed, if this is more prudent than
changing their order one at a time. Reverse_order involves all the children of the block.
In Figure 3.6a the lightly dithered block has the order of its children reversed resulting

in the floorplan of Figure 3.6b.

R
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Figure 3.6: Reverse Order of Children

The most powerful operation for changing floorplans is cut_and_paste. Any

block can be cut out of its present location and reinserted in another location in the
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floorplan. The operation of cut_and_paste is similar to that of block movement, except
that the second block selected can be anywhere in the floorplan. Cut_and_paste
between modules is discussed later; for now, assume that both selected blocks are in the
same module. One limitation of cut_and_paste is that blocks can’t be inserted at the end
of a row. They must be inserted elsewhere in the row, and then moved to the end of the
row using block movement. A cuft_and_paste example is shown in Figure 3.7. In
Figure 3.7a the first selection is the lightly dithered block, the second selection is the
heavily dithered block. The first block is inserted ahead of the second resulting in the
new floorplan shown in Figure 3.7b. Cut_and_paste does nothing to a single module
which can’t be done with the other operations. Its real power appears when used across

levels of the hierarchy.
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Figure 3.7: Cut and Paste Within the Same Module

The change_order operation, discussed earlier, is a subset of cut_and_paste
operation; thus the second block selected is constrained to be a sibling of the first block
selected. This makes selection easier, an advantage over the cuf_and_paste operation,

although it is limited in its range of operation. Being able to move blocks to the end of
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a row is another advantage of this operation. Cut_and_paste can’t paste blocks to the

end of rows, they must be inserted elsewhere and moved to the end of the row with this

operation.
3.54 Operations on Iterated Structures

All the operations discussed so far are available for use with all module blocks.
Iterated structures have two operations all to themselves. Before introducing these
operations, something more should be said on iterated structures. Iterated structures are,
in fact, one dimensional, but they may be stacked to appcar multi-dimensional. To do
this, each member of the iterated structure at the highest level in the hierarchy tree
could have as its only component another iterated structure. If the highest level of the
iterated structure consists of four iterations, and the next level consists of eight
iterations, then the whole structure appears to be a 4*8*1 structure; thus a change to the

floorplan of one component changes all 32 components.

If the iterated structure created from the schematic is inconvenient, two
operations which affect only iterated structures are available to alter it. The first

operation splits a structure into two parts. The second interleaves the iterations of two

identically sized structures.

Split_structisie splits an iterated structure into two parts allowing each to be
treated independently. There is no restriction on the relative size each part must take
after being split. Thus a ctructure of size & can be split into parts with sizes 1 and 7, 2
and 6, 3 and 5 etc.. ‘i 2 designer may continue splitting the parts until each contains

only one module. Once split, either part may be relocated anywhere within the circuit
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fioorplan, and the floorplans of each part may be modified independently. In the
example in Figure 3.8, the highlighted slice of Figure 3.8a shows where the split will

occur; between the 4th and 5th iterations of the module.

1L ||u|| m B

i | - I - -
C H

|| | | Hlﬁr]lm

S 6

[ — — — | —

mnnnlal=

Figure 3.8: Splitting a Structure Followed by Changing a Slice Direction

The floorplan doesn’t change after the operation. After using split_structure, changing
the slice direction of the highlighted slice shown in Figure 3.8b. results in the floorplan
of Figure 3.8c. Note that change_slice_di-ection affects both iicrations 5 and 6 of

Figure 3.8b, since they hadn’t been split from each other, but doesn’t affect iterations 1

through 4.

The other operation affecting iterated structures is interleave. This operation
combines a pair of identically sized iterated structures into one, by interleaving their
iterations. This operation requires the selection of two adjacent iterated structures.
Interleaving the members of the structures occurs at the highest level, and so they must
have the same number of iterations at that level. Interleaving a 4*8*1 structure with a

4*1 structure is possible, but not a 4*8*} structure with a 2*16*] structure. In the
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example shown in Figure 3.9a two iterated structures, a and b, are selected for
interleaving. The resulting floorplan, shown in Figure 3.9b, is a single iterated structure

alternating blocks of a and b.
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Figure 3.9: Interleaving Iterated Structures

3.55 QOnerations Affecting Circuit Hierarchy

Operations affecting the circuit floorplan aren’t restricted to rearranging the
components of modules. Modification of the circuit hierarchy to increase floorplan
flexibility is possible. There are three ways to rearrange the circuit hierarchy: 1) flatten
the circuit hierarchy, 2) combine several components to create a new module, 3) move
modules to different locations in the hierarchy. This third operation is discussed

separately in section 3.5.5.1.

The first of these, flatten, removes a module record from the circuit hierarchy,
but not the instance records which make it up. The components (identified by the
instance records) which made up the module definition become components of its
parent. The example in Figure 3.10 shows how flatten works. Figure 3.10a shows
module A, the parent of module B (which is highlighted) who’s definition will be

removed by flatten. Figure 3.10c shows how A would look after the definition removal.
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Note that the components which previously defined module B in Figure 3.10b now take
B’s place in module A. Because flatten is not reversible on modules in the original
hierarchy, a module alternative is created, identical to this one, and the changes are
implemented on the alternative. If the designer really wishes these changes to be the

only choice, he can remove the original alternative.

L_____.I
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Module A Module B Modu]es A and B
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Figure 3.10: Flattening the Circuit Hlerarchy

The removal of the module definition only affects this instance module B. Other
alternatives of module A remain unaffected, and still have molule B as one of their
components. All instances of module A in the floorplan have the floorplan alternative

shown in Figure 3.10a replaced by the floorplan shown in Figure 3.10c.

Creating a new level in the hierarchy requires selecting one block of
components which is to become the new module. FLINT provides a default name for
the new module if the designer doesn’t explicitly provide one. Creating a new level
from the highlighted block of Figure 3.10c changes module A into the module of
Figure 3.10a. The new module, named B, is shown in its entirety in Figure 3.10b and is
shown in Figure 3.10a as the dithered block. The new module can then be treated just

like any other module in the hierarchy.
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It is important to realize that removing a module definition from the hierarchy
permanently changes the hierarchy and often can’t be reversed by creating a new level
with the same components and the same name. If several modules contain instances of
module B, in the above example, and the definition of module B is removed from the
hierarchy, a copy of B’s components is made and they become components of A.
Grouping these components together into a new level and naming it B will result in
module A containing a unique instance of a module B, say B*. No changes to the

floorplan of B* will affect modules which contain original instances of B.

3.5.5.1 Operations Affecting Circuit Hierarchy and Placement

As stated earlier, the cut_and_paste operation can be used to move modules to
other levels in the hierarchy. Cutting and pasting between modules is done in much ihe
same way as cutting and pasting within a module. The cut block is selected first, but
before the paste block is selected, the change_view operation is selected to change
modules. Once the desired module is entered, change_view is exited, and a paste block
selected. The cut block is then pasted next to the paste block. Cutting and pasting can
be done from any module to any other module in the hierarchy, but there are some
restrictions. First, cut_and_paste won’t work between module alternatives, since this
would alter the circuit definition. Second, the hierarchy can’t be restored once a
module’s location in the hierarchy is changed, even though the module can be moved
back to its original location. To see why this must be so, consider a move such as the
one shown in Figure 3.11, without worrying about how the move is made. In this
example, module @, shown in Figure 3.11a, is to be cut from its location in module X
and pasted into a new location in module b, shown in Figure 3.11b. After the move,

module X will appear as in Figure 3.11c and module a will appear as part of module b
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in Figure 3.11d. To prevent any other modules in the hierarchy with instances of
module b as one of their components from suddenly acquiring module a as part of their
definition, a unique copy of module b, b* is created for module X, when a is moved into
it. If the operation is now reversed by moving a back to its original location in
module X, module »* will still be unique to module X and no changes to its floorplan

will affect modules other than X.

[»]
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Figure 3.11: Cut and Paste Across Hierarchy Levels

Third, the designer may not move modules into instances of themselves. For
example, if modules a and b in the example of Figure 3.11 had been instances of the
same module, FLINT would not have allowed the operation. The designer can work
around this by first removing &’s definition, so that its components become part of
module X’s level and then cutting out all the components which used to belong to a and

pasting them into the floorplan of module b.

Other restrictions to cuf_and_paste concern 1:erated structures. First, cutting and
pasting between iterated structures requires their array sizes to be identical. Second,
moving blocks from one multi-dimensional structure to another requires the array sizes
of the structures to be identical in every dimension. Finally, moving an instance
between iterations of the same structure can only be done after the iterated structure has

been split (as discussed earlier) into parts of equal size.
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The restrictions on cut_and_paste are in place to prevent adding or removing
cells from the circuit definition. Because cutting and pasting modules across levels can
have such wide ranging effects, FLINT creates an alternative using the original

hierarchy, as a recovery measure. The designer can undo the changes by deleting the

alternative created by the cut_and_paste operation.
3.6 Other Features Under Designer Control

Another feature under user control “vhich should be discussed is aspect ratio.
This is not an operation, but still affects the final floorplan. An aspect ratio limitation
may be specified when the program is run. FLINT will choose the floorplan with the
smallest area which doesn’t exceed this limitation, if possible. If it isn’t possible,
FLINT chooses the floorplar which comes closest to meeting the aspect ratio criteria.
The aspect ratio specified by the user is a number between 0.0 and 1.0. This number
represents the length of the shorter side of the layout divided by the length of the longer
side. An aspect ratio of 1.0 defines a square layout . FLINT will always try io create
the floorplan whose aspect ratio is greater than or equal to the aspect ratio provided by
the user and whose area is minimal. If the aspect ratio criteria can’t be met, then

FLINT will create the floorplan whose aspect ratio is closest to 1.0, regardless of size.
3.7 Features Under Floorplanner Control
After all the floorplan work is done, there are still several module floorplan

choices to be made. These are the choices of which floorplan alternatives of the

modules to use in creating the final floorplan. This choice is entirely up to FLINT.
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Should the designer decide not to use some alternatives in some instances, his only
recourse is to create unique module instances and delete the alternatives he doesn’t
want used. He can do this by deleting module definitions, and then creating new levels
in the hierarchy. As previously mentioned, this creates unique module instances. This

could be a very time consuming if it had to be done for a large number of modules.

This concludes the discussion of the user controlled operation of FLINT. With

this set of operations, any slicing floorplan can be created.
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Chapter Four: Implementation Details

This chapter presents information pertinent to the internal operation of FLINT,
beginning with a description of the main data structures used in the floorplan, how
these structures connect, and the fields they contain. The second section discusses the
algorithms used to implement many of the features presented in Chapter 3.
Straightforward algorithms, graphics algorithms, and input algorithms are not included
in this discussion. The third section of this chapter discusses some of the software tools

which form an integral part of the floorplanning package.

4.1 Data Structures
4.1.1 Hierarchy Tree
W: i~ the floorplanner, a multi-way tree stores complete layout information.

There are iuur different types of nodes in a multi-way tree including module alternative
nodes, instance nodes, iteration nodes and slicing nodes. The following paragraphs

discuss the distinguishing traits of the nodes and how they are used in the internal data

structures.

4.1.1.1 Module and Instance Records

This discussion of the hierarchy tree only considers three relevant fields in the
record . The first of these fields is the name field, the second is the iteration count field
and finally, the schematic name field. The purposes of these fields will be made clear in
the ensuing discussion. We shall illustrate the use of the record types with a small

example module. An example module A, composed of four components, B, C,D, a1 E
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is shown in Figure 4.1a where the four components are separated by vertical slices. The
records which represent the floorplan for this module are shown if Figure 4.1b. The
record named "A" is a module record. Module records always signify a new layer in the
circuit hierarchy. They also have some special propertics which will be discussed in
greater detail later in this section. The four children of A, marked "B," "C," "D," and
"E" are instance records. Each instance record either represents an instance of a module

or an instance of a leaf cell.

Module A Records for module A
(A T1]
B c ol g [BL_LHe THP THE ]

a b
Figure 4.1: Simple Floorplan and Tree

An instance record does not represent ik:2 moclul® (or leaf cell) itself, rather it points 1o
a module or leaf cell record. The instance record itself suggests an occurrence of the
leaf cell within the given module. Using the example of Figure 4.1, the record namer
"B" is an instance record, indicating that one of the components of moduic A is another
module B. If B were composed of three more components, x, y, and z. then the trew of
records would look like that shown in Figure 4.2b, and the floorptan would iook like
that shown in Figure 4.2a. The components x, y, and z are shown in s dithered box to

indicate that they belong to module B, and are only indirectly part of module A.
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Module A and B Tree for Module A and B
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Figure 4.2: Two Level Floorplan and Tree

The right-most field in the module records A and B (as shown above) ¢."tain
slice direction information. The vertical bar in record 4 indicates that a vertical slice
separates its components, B, C, D, and E. The horizontal bar in moduie record B
indicates that its componen:s are scparated by a horizontal slice. Instance records
contain no slice direction because instance records that point tc leaf cells do not need a
slice direction and instance records that point to module records would just duplicate

the slice information already contained in the module ~ecord.

4.1.1.2 Slice Direction Records

If module records were the only records which indicated slice direction, then
FLINT would cither produce very limited floorplans, or would have a tremendous
number -:f levels in the hierarchy. To rectify thi. we employ a third type of record, the
slicing record, in creating floorplans. Records of this type do not create new m: dules in
the circuit hierarchy, but introduce new slices into a module’s floorplan. To see how
slicing records are used, assume we wish to separate module A of Figure 4.1a into two
parts, separated by a horizontal slice, as in Figure 4.3a. The tree for this new floorplan

is shown in Figure 4.3b. Note the addition of two new records and the change in
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me-wle A’s slice direction. The new slice records indicate the slice direction separating
the Idren is vertical. The horizontal slice in A indicates the blocks represented by
the new slice records are separated horizontally. It is also worth noting that the linked
list of Figure 4.1b which contained recotds for B, C, D, and E has been split into two

lists, one contair’ng B and C, the other containing D and E.

Module A Tree for Module A

S ", o] & -
BN i i NI

D“—“E B T el 1 Bl T HE T

a b
Figure 4.3: Flo~rplan of Two Blocks/Four Modules and i wee

If the tloorplan record structure was truly a tree the:. would be no need to have
instance nodes, since each would point to a singie child. As stated early in Chapter 3, u
floorplan is not stored as a true tree, rather it is a DAG, since the module nodes may
have several parenis. This is where instance nodes make thcir presence felt. Module
nodes always have instance nodes as parents. A module named 77 has parents named E.
Furthermore a secondary linked list connects all instances which point to module E, so
that other i :ules which contain an instance of E can be easily discovered. Fro i here
on we shall refer to sibling elements of the linked lists first mentioned as sisters, and to
those in this new linked list as brothers. Only instance records can have brothers, but all
records can have sisters. In the example of Figure 4.4, modules A and H both . aip an
instance of module E. The instance records named "E" both point to the same module

record, and the instance records are linked in a circular list.
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Figure 4.4: Two Modules With Commo.. Instance

The relationship between moduic nodes and instance nodes does rot znd here.
FLINT allows the designer to create scveral different floorplans for each module and,
for ezch instance, it chooses from among the alternative floorplans the one which
minimizes the amount of area consumed by the entire ci: - 7oorplan. A linked list
connects the alternative floo-slans together. All instances peint to the same module
alternative, but FLINT may c..vose any alternative for any instance in the final design.
Also the desigaer may select one of the alternatives and make changes to its floorplan.
The example of Figure 4.5 shows module E, as in Figure 4.4, but with an alternative
floorplan (much of the tree structure and other module floorplans shown in Figure 4.4,
have been removed here). This example shows a tree with two instance records and two

module records for module E. The alternative module records (named "E!" and "E?"
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where the superscripts just distinguish the two) are connected in a linked list.
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Figure 4.5: Tree With Two Alternatives

The instance records of both E! and E? point to the same leaf cell rccords, a, b, and c. If
a, b, and ¢ were mocule records, they would also have children. The only sisters which
module recerds may have are alternative modi'e records. The instance records of

alternative modules will converge to point to the same modules.

Although this pointer arrangement between instance and module nodes saves
storage space when there are many instances of a module, this was aot the primary

reason for structuring floorplans this way. The main reason for using this type of
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structure is to allow the alternative floorplans created for a module to be available
throughout the circuit floorplan, wherever instances of that module are found. This
allows the designer to create several floorplans for a module the first time he
encounters it without having to redo that work the next time he encounters the module.

It also allows FLINT to do size calculations on a module once and use that information

for all instances.
4.1.1.3 Iteration Records

One final record type not yet encountered ‘s the iterated structure record.
Record . of this type are unique to iterated structures and can be identified by non-zero
counts entered in the iteration count field. This field indicates the number of times the
list of children appears. The iteration field consists of a start index number and an end
index nuriber, so the floorplanner knows which set of iterations it is Jealing with, and
whether the iterations are arranged in asending or descending order. When the
floorplan is first created from the schematics, iteration records always point to a single
instance record, which in turn points to a module record. There are times when multi-
dimensional iterated structures are desirable. In this circumstance the iteration record
would have another iteration record as its child which would then point to an instance
record. As an example of a single dimensioned iterated structure, Figure 4.6a shows
module A, as i Example 3a, but with instance B iterated three times. The tree of
Figure 4.6b includes the iteration record which is the parent of instance B. Assume that
instance B points to module B which consists of ‘nstances x, y, and z, as in Figure 4.2,
and that we eliminate the instanice record and module record for B (this is a legal

operation called expanding a module).
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Figure 4.6: Floorplan with Iterated Structure and Tree

The arrangement of the expanded module’s components would appear as in Figure 4.7a,

and the iteration record would point to the instance records x, y, and z.

Expanded Module O Tree for Expanded Module B
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Figure 4.7: Iterated Struciure and Tree No Siice Node

Note in the floorplan of Figure 4.7a that vertical slices separate both instances (x, y, z),
and the iterations (separating <x;, y;, 2;>,<X3, ¥2, 22>, and <x3, y3, and z3>). If we want
to separate x, y, and z from each other with horizontal slices but still scparate the
iterations with vertical slices, as in Figure 4.8a, we need a slice record between the
iteration record and the instance records of x, y, and z. This record (marked $ in the tree
of Figure 4.8a) only determines the slice direction separating the children of an
iteration. The slice direction separating the iterations from each other is always stored

in the module record. If the slice direction separating iterations is the same as the slice
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direction separating the children of the iteration, then the slice record (like §S) is

redundant and does not appear in the tree.

Module A with Iterated Children Tree for Module A
X X I3
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Figure 4.8: Iterated Structure and Tree With Slice Record

Th . generally true of slice recoxds. If a slice record and its parent have the
sdl. rection, then the slice record is redundant and FLINT removes it from the
tree. This rule does not apply to module or iteration records. Since module records
always have instance records as parents, and instance records contain no slice direction,
module records are not removed from the tree. Iteration records contain counts not

contained in module or slice records, and are not removed from the tree either.

4.1.1.4 Other Fields

Besides the pointers to the linked lists and children, records contain several
other fields. All nodes in the tree use the same type of record and the field ":erminal”
distinguishes from among them. Each record represents a blnck whose coordinates are
given in the fields "upper" and "lower". These coordinates are only used as a

convenience in updating the display and are not crucial to floorplanning. The
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cnordinaics of the endpoints of a slice are given i the fields "slice_hi" and "slive lo"
and describe the slice separating this block from the block to the right (if the slice
direction separating them is vertical) or to the block below (if the slice is horizontal).
Records store slice direction in the field "cut_dir". The namie of a module is given in
the field "name” of module records. The name of the instance which points to a module
is given in the field "sch_name" of instance records and contains th.. aame given to the
instance when it was created in the schematic. The name should describe the type of
module (i.e. adder), while the sch_name shouid describe its purpose (i.e.
add_offset_to_program_counter). Further, "sch_name" may include a hierarchical path,
discrssed later in this chapter. Iteration rcoords use the fields "iter_start” and
"iter_end" to store beginning and ending iteration indices of an iterated structure. This
field must be more than a count, since structures can be split and FLINT must be able
to distinguish between them. The iter_start is always the upper or left most iteration

and iter_end is the lower or right most itrraao~.

4.2 Algorithms

This section presents some algorithmic design details of FLINT. The functions
used by FLINT fall into four categories. Those which are external to the floorplanning
program, those which perform graphics output or mouse driven inpui, support functions
which are either trivial or straightforward and, finally, those which are important to the
operation of FLINT and may require some explanation. Generally only functions which
are members of the for:ith categiry will be presented. With the material so far
presented, some of the functions which operate directly on the tree become trivial to
implement. As an example, reversing the order of children of a node, which reverses

the order of appearance of the blocks in the floorplan and on the screen requires only



-81- Implementation Details

exchanging the order of the children of a list after identifying it. Functions such as this

may be mentioned without presenting details of the design.

421 Support Routines

The first group of functions discussed are important t+ ‘he operation of FLINT
because they are used throughout by other functions to operate on the tree. Several
operations use the routine Copy_Tree to duplicate part of the tree. Copy Tree
duplicates the tree from the given record down as far as the instance records below it.
Invoking this routine with a module record creates a copy of the entire module. The
instance records at the bottom will end up pointing at the same module records which
the in:tance records in the original module pointed to. The instance records are also
added to the secondary linked lists of instance records, as previously shown in
Figure 4.5. The modules which the instance records point to will point back to the new

instance copies as their parents.

Another often used routine, Clean Up, removes redundant nodes from the
layout tree of a module. This involves removing slice nodes which have the same slice
direction as their parents and are not iteration nodes. The example of Figure 4.2 shows
a module tree before and after a clean up operation. In the example, Clean_Up removes
node a from the linked list and replaces it with node Ci because node a had only one
child, making a redundant. Nodes Fi and G! replace node b because b has the same slice
direction as its parent, making b redundant. The layout is the same for both these trees.

Many of the operations leave redundant nodes in the tree, and use this routine to remove

them.
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Figure 4.9: Clean Up of Tree

Several functions exist to incert and remov: ‘ecords from . .s.

Delete removes a record from a linke. i'st. ""he record is not disconnected
from its offspring, so its offsping are removed from the module definition as
well.

Remove also removes a record from a linked list, but the removed recoid is
also disconnected from its sub-tree. Since this operation is only used on
instance nodes, and their children have multiple parents, the sub-tree is not
lost.

Insert (b, a) inserts record a into a linked list as a sister of record b, just
ahead of record b in the list. If record b were the first record in the linked list
before the insertion, record a would become the first in the list after the

insertion followed by record b.
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4, Add ¢e B adds record a as a child of record b at the end »f b’s linked list of
children.
5. Split (a) splits the list in which record a exists into two parts; from the

beginning of the list to the node just ahead of a and from a to the end of the
list. The first part of the list remains with the parent. Starting with a, Split
returns the rest of the list intact, but without a parent. If a is at the front of
the hist, Split removes the whole list.

6. Spadd (b, a) adds the list headed by a to the end of the list of children of b.

4.2.2 Operation Routines

The following algorithms perform operations which are execw::z¢ by the user

from menus,

From the designers point of view the procedure Split Node, who:- . jiuathm
follows, just splits a structure into two parts. Internally Spliz Node makes a copy of the
tree from the iterated structure node down to its instance nodes, inserts the new copy as
a sister of the original copy, and updates the iteration counts of the old and .-
iteration records. In the algorithm, the procedure Check_children checks to see if any of
the instance nodes belonging to the iterated structure originated elsewhere in the tree,
as might happen when a Cut and Paste operation moves children from one set of

iterations to another set. If this had happened then Split Node will abort.

Split_Node (iter_node, old_start, old_end, new_start, new_end )

r* iter_node -- is the iterated node to be split in two
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old_start -- the starting iteration number prior to the split.
old_end -- the ending iteration number prior to the split.
new_start -- the starting iteration of the new iterated structure.
new_end -- the ending iteration of the old iterated structure.
(Note that new end will be either 1 greater or 1 less than

new_start) */

BEGIN

Check_children and return if operation is illegal;

Allocate (new_iter_node identical to iter_node);

Copy_Tree(new_iter_node, iter_node);

Allocate (temp_node);

Insert (temp_node as sister to iter_node);

Delete (iter_node);

Add (iter_node as child of temp_node);

Insert (new_iter_node as sister of iter_node);

iter_node end_index = new_end;

new _iter_node start_index = new_start;

Change path indices of sch_name for each instance in both new
structures;

Clean_Up unneeded records.

END;

Splitting an iterated structure creates two iterated structures, side by side, identical
except in the iteration indices. The sum of iterations of the two new structures equals

the number of iterations of the original structure from which they were created.
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Flattening the hierarchy requires removing an instance and module node, and
replacing them with the sub-tree of the module. If this is the only module instance in
the floorplan, then disconnecting one module alternative would leave any existing
module alternatives floating around without parents, and they would be lost. To prevent
this, a copy of the parent module is made if only one instance node exists. Jumping
slightly ahead, refer to Figure 4.10. If instance A! in module M were the only instance
of module A in the entire tree, then a copy is made of module M. With two instances of
module M, disconnecting an instance Ai and a siizle module alternative of A would
still leave the remaining alternatives of A attached to the other instance in the copy of
M. If M had no alternatives then not creating a copy of M would climinate the
possibility ot floorplanning M with other alternatives of A, so a copy of M is also mude

if M has no alternatives.

Deleting a s - e alternative of A in the expansion would also remove this
alternative from other instances of this module throughout the tree. Since this is
undesirable, a copy of the module being flattened is 1so made (in this example, a copy
of A). Now the flattening can be done on the copy of the parent and the copy of the
mndwl~ ~lternative without affecting other instances in the hierarchy. One final

«1: in our example the instances Ci and D' of module A have a distinct path
to e tup o the tree which allows Ci arl Di to be uniquely identified. Preserving this
path will prevent confusing them with any similar instances in the parent module M.
By failing to preserve these paths after the flattening, these instances would be missing
an important link in their heritage. To see this in our example, flatten the instances Ai
and B' of module M, both of which contain an instance Ci. After the flattening the Ci

instances would be indistinguishable from each other (Figure 4.10d).
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Figure 4.10: Floorplan Before and After Flatten

Appending the parent modules name M and instance name A' to each instances
schematic name before the flattening will eliminate the confusion. The schematic name
for every instance starts with it. mcdule name appended in the field sch_name, as in
Ci:A. Thus the sch_name of Ci whwn came from Ai changes from Ci:A to C:A/AI:M
and the sch_name of C! which came from Bi changes from Ci:B to Ci:B/Bi:M. This is
still insufficient to guarantee distinguishability. Moving D! into C::A/A:M using cut
and paste and then moving it back again as a component of M changes it’s name to
Ci:A/A:M:D:M, which does not reflect its true heritage. To address this concern paths
are not appended when moving modules down in the hierarchy. Paths are only
appended when moving up in the.hierarchy if the module name at the end of the
sch_name differs from the name of the module it is moving from, or differs from the
name of the module being flattened. This does guarantee distinguishability. The
following, Update_Strings, perform this. Using the above example, parent is a pointer

to the record M. Parent_path is the sch_name of M. Node_name is the sch_name of A.

Update_Strings (parent, parent_path, node_name)

BEGIN

child and c_node point to the first child of parent;
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DO
BEGIN
IF (c_node is a module node)
BEGIN
IF (the sch_name of ¢_node is the same as node_name)
Append path_name to c_node's sch_name;
END
IF (c_node is not a module node or we did just append)
Update_Strings(c_node, parent_path, node_name);
¢_node points to ¢_nodes sister;
END
WHILE (c_node is not the same as child)
END

Note that this procedure acts on all the instances of a module, recursively checking
instances so long as they are still traceable to the module with the sch_name of
parent_name. So, moving instance A! of module of M down two levels, and then M
flattened to its parent N, will correctly update A’s path to Ai:M/Mi:N instead of to

Ai:M.
The following procedure interleaves two iterated structures. Two things must be

true before this can happen. Both records must have the same number of iterations and

both must be children of the same node.

Interleave (inter0, inter1)
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Check to make sure both structures are side by side and have the
same number of iterations;
Delete (inter1);
startO points to child of inter0;
start1 points to child of inter1;
Update_Strings(inter1,inter1_path,start1); /* Upd: »ath indices */
master_list points to next sister of startO; /* start0 is a slicing node,
not a list of children */
/* The following interleaves the two lists, starting with start0.
We combine two lists into one by alternating
records, taking one record from one list then
one record from the other list etc. unti! one
of the lists runs out. The rest of the nodes in
the other list are appended to the master
list.*/
DO
BEGIN
Delete; (start1);
Insert(master_list,start1);
master_list points to start1;
start1 points to new child of inter1;
END
WHILE (master_list does not point to start0 and master_list is not
NULL)
Split (start1);
Spadd(inter0,start1);
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Clean_Up (inter0);/* Get rid of any redundant nodes */
END

After the criteria have been met Interleave starts the process of interleaving records. If
we treat the lists headed by starf0 and starsl as arrays and start0 has m elements and
startl has n elements with m<n, then the final list looks like |start0,, startl,, start0,,
startl,, start0;, startls, ..., start0,,, stari!, startl,,, startl .., ..., startl,] are. The final

call to Clean_Up gets rid of any redundant slice nodes.

The operation most frequently used during floorplanning is the
change_slice_direction operation. It is this operation which allows the designer to
change the floorplan of Figure 4.11a into the floorplan of Figure 4.11¢ or back again.
Before describing the algorithm for change_slice_direction, some higher level
discussion of the operation should be given. It is important to understand how this
operation will affect a floorplan since undoing a change slice operation will often
involve more than one step. In Figure 4.11a the slice which changed direction was the
slice between D and E. The parent to these instances also has module F as a child,
along with D and E. After the completion of the operation, E and F are still sisters,
separated vertically from D, rather than horizontally. Visually the operation appears to
affect only the block consisting of D, E, and F. This is always the case with
change_slice_direction. Only the block (i.e. D, E, and F) which contains the slice
whose direction is being changed (between D and E) appears affected while blocks
outside this range appear unaffected. After this operation is complete, the block
structure of the module record (or the parent record of the slice which changed
direction) is rearranged, so that the operation cannot be reversed with a single

operation.
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Bjs!

Figure 4.11: Changing Slice Direction and Tree

Several slice directions may need to be changed to restore the floorplan to its original
form. In Figure 4.11c the blocks of the module are (A.B), D, (E,F), and C. This is also
indicated by the rearrangement of the trees of Figure 4.11b and 11d. Changing the
direction of the slice separating D from E, and F again would not restore the floorplan

to that of Figure 4.11a, but rather to that of Figure 4.12a.

Figure 4.12: Floorplan and Tree After New Slice Directicn Change

As a further example consider the floorplan of Figure 4.13a. This floorplan consists of
3 blocks, (A, B), (E, F),(D, G)), and C. Note that the middle block consists of two sub-
blocks, (E, F),(D, G). Changing the slice direction between these two sub-blocks affects
only the block ((E, F),(D, G)), as shown in Figure 4.13c. After the operation the
module consists of 6 blocks, but two of the original blocks, (A, B) and C are

unchanged. In example 13 the instances E, F, D, and G become sisters of C and also

become individual blocks of the module.
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Figure 4.13: Changing a Slice Between Blocks
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The example of Figure 4.14a shows a module which consists of three blocks,
(A, B), (D, E), and C. If we change the slice direction separating (A, B) and (D, E) then
the floorplan will change to look like that shown in Figure 4.14c. In this example the

module record has its slice direction changed from vertical to horizontal and the blocks

of the module are now A, B and (D, E), C).

=]
Hn

a
Figure 4.14: Changing Siice Separating Two Components

In this example the module record has its slice direction changed because the slice
being changed separated its children (rather than its grandchildren as in the previous

examples).In the previous examples effects on the parent of the slice being changed
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may not be obvious because the procedure Clean_Up removes redundant nodes after the

operation is complete.

Changing the slice directions of iterated structures may have different effects on
the floorplan than changing other slices. If the slice chosen to change direction is
between iterations, then the iterations themselves will be separated by a different
direction, as shown in Figure 4.15. The slice chosen in Figure 4.15a is between D, and

A,, with the resulting layout as in Figure 4.15c.
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Figure 4.15: Changing Slice Between Iterations

Note that the iterations are separated vertically after the operation, but that the
components of each iteration are still separated horizontally. Contrast this to the
floorplan of Figure 4.16a, where the slice chosen to change direction was between B,
and C,. Note that changing the floorplan of the first iteration also affected the second

iteration. Changing a slice direction within an iterated structure will affect all iterations
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Figure 4.16: Changing Slice Which Separates Blocks of One Iteration
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The procedure for changing slice directions is very simple.

identify slice (to be changed) which separates blocks as slice

identify parent node of blocks as parent_node

Change_Slice_Direction(parent_node, slice)
BEGIN
If (parent_node is an iterated node)

BEGIN /* note that as long as the node identified is
iterated, this If code block will change slices
like that of Figure 4.15a to that of
Figure 4.15c or vice versa, because of the

clean up at the end of the If code block */

add slice_node with same slice direction as parent node
between parent_node and parent_nodes
children (or child);

change slice direction of parent_node;

Clean_Up (parent_node);

Return();

END

Endif

slice_node is the node to the right of slice or below slice

(depending on slice direction);

prev_node is the node to the left of of slice or above slice
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(depending on slice direction):

Split list of children of parent_node into two lists, between
prev_node and slice_node;

Provide each list with a new parent whose slice direction is the
same as parent_node. Call them new_part
and new_par2;

join new_par1 and new_par2 into a list and make this list the
children of parent_node;

Change slice_direction of parent_node;

If (parent_node is a module node)

Clean_Up (parent_node);
Else

Clean_Up (parent of parent_node);
Endif

End Procedure;

Although the function of the procedure Clean_Up was presented earlier, it may
be instructive at this point to discuss it again using the example of Figure 4.13.
Figure 4.17 shows the progression of the hierarchy tree for this module as the slice
direction is changed. Figure4.17 shows the tree as it appears before the operation
begins and Figure 4.17b shows the tree as it would appear in the procedure
change_slice_direction before Clean_Up is performed. The list split in
change_slice_direction had consisted of the two slice nodes with vertical slices shown
in Figure 4.17a (one is the parent of E and F, the other is the parent of D and G). The
parents added to them are the nodes marked x and y in Figure 4.17b. The parent_node is

now the parent of nodes x and y. Note that in Figure 4.17b parent_node’s slice direction
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has changed relative to Figure 4.17a. Clean_Up is called with the tree in the state
shown in Figure 4.17b, and recursively searches the tree in a depth first manner looking
for redundant nodes. The first redundant node it encounters is node x. Node x is
redundant because it has only a single child, so the horizontal slice which it represents
does not separate two or more blocks. Therefore node x is removed and replaced by its
children. The same argument applies to node y of Figure 4.17b, so it is also removed
from the tree, leaving the tree in the state shown in Figure 4.17¢c. Clean Up then
identifies the parent node of E and F as being redundant since its slice direction is the
same as its parent (the original parent_node whose slice direction has since been

changed), so it is removed from the tree and replaced by its children.

Figure 4.17: Steps of Clean Up After a Slice Direction Change

At this stage the tree would resemble Figure 4.17d. The same argument is applied to
the parent of nodes D and G that was applied to the parent of E and F, resulting in the
tree of Figure 4.17e. Finally the original parent node is deemed redundant by

Clean_Up because it has the same slice direction as the module node at the top of the
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tree, so it is removed and its children inserted in its place. This results in the tree of
Figure 4.17f, which is the final configuration. Although in this case the addition of
nodes x and y appear unnecessary, there are some circumstances in which they will not
be removed (the node marked x in Figure 4.14d is an example) and must be present to

guarantee a working algorithm.

In the actual implementation several classes of slice direction changes are
identified and treated independently in order to avoid unnecessarily adding and deleting

nodes, but it could be replaced by the above procedure.

Cut_and_paste is the most difficult feature to implement. If the cut_and_paste
does not move across levels of the hierarchy, or move from one iterated structure to
another, then the straightforward procedure is to remove one node and its children and
reinsert it somewhere else in the same modules sub-tree. This process may require
some addition or deletion of nodes. More steps must be taken if the operation involves
moving instances from one iterated structure to another. Assume, for the moment, that
this operation moves a block from one multi-dimensional structure to another, but all
within a single module. Before cut_and_paste begins, a comparison must ensure the
iteration dimensions of both structures involved are identical. Only then may the
cut_and_paste proceed, removing the node to be cut, with its sub-tree from its linked

list, and inserting it into another linked list, next to the chosen paste node.

A cut_and_paste from one module to another requires more sieps to be taken.
First find the paths from the cut location to the top of the tree and from the paste
location to the top of the tree and compare them from the root down. The last module

record found which is common to both paths, the common module, is the node at which
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we will create a new alternative with the results of the operation. Next make a copy of
each module which lies along the path from the cut location to the commen module and
from the paste location to the common module. Then remove the copy of the cut block
and insert it next to the paste block. The following is the procedure for the

cut_and_paste operation.

Cut_Paste_Copy (cut_node, paste_node, common_node)
/™ cut_node is the record which, along with its children is to
be moved.
paste_node is the record which cut_node will be inserted
next to.
common_node is the lowest module record in the tree
which has both cut_node and paste_node
as its progeny */
BEGIN

Make a copy of all the modules which lie along the path
between cut_node and common_node (not
including common_node). Assign a pointer
to this new copy to temp_cut;

Make a copy of all the modules which lie along the path
between paste_node and common_node
(not including common_node). Assign a
pointer to this new copy to temp_paste;

Make a copy of common_node call it new_common_node;

Attach temp_cut to the instance in new_common_node which
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is along its path.
Attach paste_node to the instance in new_common_node

along its path.

/* At this point cut_node has not been removed from the
tree. All instances in new_common_node except the
instance along the cut_path and the instance along
the paste_path point to modules which existed in the
tree before this procedure began. The instance along
cut_path points to a new module, as does the
instance along paste_path. The same can be said for
all new modules along cu‘_path and all new modules
along paste path. These new copies will no longer be
dealt with, and will exist as an alternative to the new
arrangement. From now on we deal with the original
tree.*/

Detach cut_node from its original location.

Update sch_names of instance nodes below cut_node to
reflect new location in tree;

Attach cut_node next to paste_node;

Clean_Up {cut_nodes original parent module);

Clean_Up (paste_nodes pareni module);

END;

Cut_and_paste updates the sch_names of all instances which are children of cuf_node

to reflect the full path from cut_node up to common_node. Blocks can be cut and pasted
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from iterated structures in different modules by adding the steps mentioned for cutting

and pasting across iterated structures to this procedure.

One of the features of FLINT is that it chooses the alternatives to use, so that it
can minimize the area consumed in the layout, subject to aspect ratio constraints. This
is done optimally by using an algorithm similar to Stockmeyer’s algorithm [Stock&3]
as discussed in Chapter 2. For a given module layout, where each instance has several
possible shapes, we apply Stockmeyer’s algorithm directly to derive a set of shape
boundaries for the module layout. The modification to this algorithm comes when
combining boundaries of alternative module layouts. Where Stockmeyer combines two
boundary lists into one by choosing (for blocks separated by horizontal slices) the
maximum width of two blocks, and adding heights together, we merge the alternative
boundary lists into a single list. We only remove from the list those layouts whose
dimensions are larger than those of another layout in both height and width. The task is
simple since we start with a sorted list which increases in height and decreases in
width. The algorithm combines lists two at a time, adding to the composite list the next
element from the two choices which has the smallest height, provided its width is less
than that of the last element added to the list (note that its height must be greater, or the
other element would already have been added). If the height of the two candidates are
equal, then the one with the smaller width is chosen and the other discarded. The

algorithm follows.

Procedure Merge ((hY,wY), (hV,wV)) /* (h,w) is an array of heights
and widths, for blocks U and V respectively
*/

BEGIN
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Initialize i=1,j=1;
WHILE (i < k and j < n)DO
BEGIN
add Merge_Join((hY,wd), (hV;,wV))) to the list with pointers to
(hY;,wV) or (hV;,WV));
IF (hY% 2 hY; and wd; 2 wY) or (hY; < hY; and WY < wY)) THEN
increment J and j;
ELSE IF (hY; > hV)) THEN increment /;
ELSE increment j; /* because hY; < hY;*/
END;
END;

Procedure Merge_Join{(hY;,w4), (hY,wY)))

IF (hY 2 hY;and wd; > w¥) THEN (x,y) = (hY;,wV;);

ELSE IF (hY; < hV;and wd; < wY)) THEN (x,y) = (hY;,wY);
ELSE IF (hY; > hY) THEN (x.y) = (hV;,wY));

ELSE IF (hY; < hY}) THEN (x,y) = (hY;,wd);

return (x,y);

END;

The algorithm for combining boundary lists is as given in Chapter 2. Since nodes may
have more than two children, the algorithm must combine bounding curves for all
children. The easiest way to do this, although not the most efficient, is to merge lists of
boundaries for two nodes into a master list, and then merge the master list with lists for
the rest of the children, one at a time. For iterated nodes the boundary heights or widths

are multiplied by the number of iterations, depending on the slice direction separating
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iterations, giving the bounding curve for the whole structure.

After performing any operation on the tree, FLINT must derive a new set of
bounding curves so that the change may be evaluated. The vast majority of modules are
unaffected by changes to a single module, since changes cannot affect a module unless
those modules have an instance of the altered module somewhere below it in the
hierarchy. This provides us with a simple way to mark the nodes which need to have
their boundaries recomputed. Assuming the change has affected all the blocks within
the module modified, mark all internal nodes (but not instances) and then, starting at
the module node climb the tree marking nodes with the following procedure. This

procedure assumes that node has already been marked.

Mark_Nodes (node)
BEGIN
parent points to the parent of node;
IF (parent is not NULL and is not marked) THEN
BEGIN
IF (parent is not an instance node) THEN
BEGIN
mark parent;
Mark_nodes(parent);
END
ELSE /* parent is an unmarked instance node */
BEGIN
temp points to next brother of parent in instance list;

DO
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BEGIN
mark temp
Mark_Nodes(temp);
temp points to next brother in instance list;
END
WHILE (temp # parent)
END
END

This procedure marks nodes up to the root node (which has no parent), and marks all
instance brothers of every module which has at least one node whose boundaries need
to be recalculated (since all brothers may point to the modules whose boundaries have
changed). If parent was marked previously then parent is an instance node and its

brother instances were also marked previously, so no further action needs to be taken.

After marking all the nodes with this procedure, FLINT can recompute the
boundaries for the whole layout using the modified Stockmeyer algorithm in a depth
first traversal of the marked nodes. FLINT does not need to recompute boundaries for

unmarked nodes and can use them verbatim in applying Stockmeyer’s algorithm.

To mark boundaries when cutting and pasting between modules, FLINT must
do two upward traversals, one from the module where the cut occurred and another
from the module where it was pasted. The boundary rccalculation can still be done with

the downward tree traversal.

43 Tools
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The floorplanning package makes considerable use of three tools which were
available during development. The flooplanner uses Organized C to create and manage
data structures, SunView for the mouse input and graphic output routines, and CapFast

to create circuit schematics and parts lists.

4.3.1 Organized C

Organized C is a collection of macros, and processing routines, which support
the creation and management of data structures. It is extensible insofar as the
programmer can use it to create new data structures and macros for their management.
The programmer can also use it to create new macros which operate directly on
existing data structures. As an example structure, consider the trees produced by
Organized C. Its construct is a parent with one pointer to a dually linked list of
children, each with a pointer back to the parent. Each child may be the parent of another
linked list. Macros for the tree structure are available to add new children to a node,
insert new sisters in a list, delete records from a linked list (with its list of children
intact), find the parent of a record, the forward or backward sister of a record, or the
child of a record. There are also macros for traversing a list of records and creating new
records. The macros and routines only deal with record pointers. The programmer uses
Organized C’s routines by adding a macro definition to an otherwise normal record
definition. The macro defines all the pointers which Organized C uses to link records

together.

The floorplanning hierarchy tree is a three dimensional tree, constructed

specifically for this application. Besides the linked lists of sisters which exist in the
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standard tree, the three dimensional tree adds a second dually linked list of brothers to
each record (hence three dimensions instead of two). Unlike sisters, brothers may have
different parents. FLINT only uses brothers in instance nodes which point to a linked
list of similar instances throughout the tree. Their use has been outlined in the

description of data structures near the beginning of this chapter.

FLINT uses several newly created macros to operate on the hierarchy tree, in
addition to those available for binary trees. These new macros can disconnect a parent
from its child, connect a parent to a new child, split a list into two lists, and add a list of
children to a parent at the end of its existing list. These macros do nothing that cannot
be done with the existing macros, but require fewer operations and are more convenient
to use. Some of these operations would adversely affect the tree if performed out of
context. For example, connecting a parent to a child disconnects the parent from its
existing list of children, and disconnects the child from its existing parent. This macro
is only invoked after a Copy_Tree operation, and only on the instances within the new
module copy, when its child will be a module node with two or more parents. In an
instance like this, no nodes are lost. Since Copy Tree just allocated the newly

connected child it has no parent.

4.3.2 SunView Graphics

The graphics routines were written using the SunView Graphics system. The
program uses this package in functions which draw graphics, open and manage
windows, and for input routines using the mouse. SunView allows FLINT to work with
vector graphic commands on an artificial canvas whose size FLINT determines. The

program may draw on any part of the canvas whether that part of the canvas is
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displayed or not. The view of the canvas takes place through a scrollable and resizable
window. SunView responds to user input to control which part of the canvas is in view.
The user can adjust the window as he would any other window in the Sun environment.
For this floorplanner, the canvas and window sizes of the layout display are the same,
so that the user views the whole canvas in the window. If the user resizes the window,
then the canvas shrinks or expands to fully fill the window. From the programs point of

view, the canvas has the same dimensions before and after resizing the window.

Two other windows are also opened by FLINT via SunView, one for statistics,
and one to display the hierarchy tree of the module displayed in the layout window. The
latter of these windows is resizable and smaller than its underlying canvas and uses
scroll gadgets to change the display. Mouse input is also controlled using SunView By
using SunView the program can determine the mouse location within the window and
detect mouse button depressions. SunView also supports the display of menus and the
selection of menu items. Depressing the rightmost mouse button activates menu
display. Moving the mouse will highlight various menu items and releasing the mouse
button will select the highlighted option. This is the same procedure that is used to

select menu items with most Sun software.

432 CapFast Schematic Editor

FLINT’s program uses the CapFast circuit and schematic layout package to
define schematic diagrams of circuits and to obtain circuit part lists. This package has a
full set of standard gate and device symbols and allows the design of custom symbols
for custom modules. Using existing standard symbols and custom defined symbols the

user can create schematics hierarchically. FLINT uses the hierarchical schematic
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definitions to determine module hierarchy in the floorplan. A module is created by
interactively connecting the terminals of symbols together. The components of a
module are stored as symbols and terminals, not as other module definitions. Since
cach symbol is the name of a module which also has a definition in a file, this means
that file definitions are hierarchical. To convert the schematic to a floorplan, a routine
in FLINT reads a CapFast file and, using the symbols found in the current module
definition, recursively reads all other CapFast files associated with those symbols.
Symbols which have no CapFast schematic file are assumed to be atomic leaf cells.
FLINT creates a part list of all the leaf cells it finds in this circuit and compares this
against an inventory of existing standard cells and module cells. If at least one layout
exists for each leaf cell, then FLINT creates an initial layout and the floorplanning can
begin. The first time FLINT encounters a circuit it creates a floorplan file. This file is
used subsequently, so parsing of the schematics only needs to be done the first time
FLINT is run. Afterwards, if the floorplan file exists, FLINT does not need to read the
CapFast files. The floorplanning file contains the floorplan definition, including
alternative layouts and slice directions. This file is written back to disk after every

operation is complete so that even a catastrophic breakdown will not destroy all the

designers work.
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Chapter Five: Results

This chapter presents some information about FLINT and the results obtained
by floorplanning two circuits. The first section presents some statistics on FLINT. The
second section describes the circuits that were floorplanned; the third section describes
some principles applied by the author during the process, and the fourth section
describes the results of the floorplans, including sizes, aspect ratios etc. The fifth
section describes some impressions about FLINT and the sixth section discusses
changes which we would make if we started the project over again. This last section
does not discuss additions which might be made to FLINT, only implementation details

which would change if it were rewritten.

5.1 Information About FLINT

FLINT was written in the C programming language. The source code contains
roughly 4700 lines and 265,000 characters. The executable is about 350Kbytes, a figure
which includes the C libraries and SunView executable code. Organized C incorporates
macros into the source code, rather than the object modules, but undoubtedly adds to

the size of the executable image.

5.2 Circuit Description

The example circuit floorplanned was an AM2901 bit siice processor originally
designed by American Micro Devices (AMD). The AM2901 is a four bit wide
processor slice containing an ALU, a 4x4 array of dual port RAM, several two and

three bit MUXes, an instruction decode unit, an arithmetic function decode unit and
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some steering or glue logic. Appendix A shows a block diagram of the AM2901. This
circuit was chosen as an example because it contains enough components to be a
considered a realistic test for FLINT, it has several iterated components (such as the
memory of the bit slice), there is some random logic in the circuit, and some modules

exist throughout the circuit, allowing us to test the reuse of module floorplans.

The example circuit was floorplanned in three different invocations. The first
test used a circuit hierarchy that extended deep enough that some modules were
composed primarily of transistors (specifically the dual port RAM) while others were
composed of elementary gates. Not all modules in the first test were described at this
level of detail, some cells still performed complex functions. Each leaf cell was
allowed to have up to four alternative dimensions. The hierarchy used in the second test
did not extend as deeply as the first. Each lowest level leaf module contained at least
one cell which performed a high level function (such as multiplexing two signals),
although the leaf modules may still have contained gate level glue logic. All modules in
the second circuit’s hierarchy also appeared in the first circuit’s hierarchy, but the
hierarchy of the first circuit extended beyond the leaves of the second circuit. We
included the second test because we felt that in practice, designers would not use this

floorplanner at the transistor level; most modules would be available in a standard

library.

The third test was used as a benchmark. In this test only one alternative was
used for each module, although leaf cells still had the same range of alternative
dimensions as in test one. The circuit hierarchy for this test was identical to the circuit
hierarchy used for the first test. The alternative chosen for each module was identical to

one of the alternatives used in test one, and was chosen with the expectation that it
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would be a good choice in producing a layout with a normal floorplanner (which did
not support alternatives). The By comparing the results of this test with the results of
the first test we hoped to determine the usefulness of including module floorplan

alternatives in FLINT.

Both circuits have three atomic modules, representing high level functions, in
the block diagram. These three blocks are the address destination decode (ADD), the
address source operand decode (ASOD), and the arithmetic function decode (AFD).
These blocks are responsible for converting the instruction bit patterns into the bit
patterns required to perform the instructions. It was not felt that working out
combinational logic to perform these functions would enhance he evaluation of
FLINT, and so they were left as leaf cells. In the floorplan these cells could represent
combinational logic constructed with standard cell logic gates, as a gate matrix, or
using some other method. The sizes chosen for these blocks may appear small, but the
instruction set AMD used was likely chosen to minimize the amount of logic needed to
perform these functions, given that the other components were already available, and so

these three blocks probably contained very few gates.

We did not have a comprehensive library of modules available to use in
floorplanning. The Magic standard cell library available had descriptions of cells such
as D flip flops, NAND and NOR gates, but no cells implementing higher level
functions. Rather than designing modules with several layout dimensions, some
estimation was done on the expected size of the modules and the floorplanner used the
estimates rather than actual cell dimensions. When a leaf cell was available in the
standard cell library, FLINT used its dimensions as one alternate layout. Any

subsequent alternate dimensions for a cell were based on the area of the available
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alternative. Leaf cells taking advantage of this include most logic gates, such as NAND
and NOR gates, the N and P transistor types, flip flops, etc. Low level leaf cells such as
these were created with two alternative dimensions for FLINT to choose from. More
than two alternate NAND gates (with the same drive capability) would be unrealistic in

a cell library. Larger modules had four or fewer alternate dimensions to choose from.

5.3 Steps Involved in Circuit Design

The first step in creating the test circuit was to decide which modules would
exist at the lowest level of the hierarchy. Most of these modules were obtained directly
from the block diagram of the AM2901. Other modules, such as the dual port RAM,
were described manually. We included other modules, such as the Instruction Decode,
atomically, since the purpose was to floorplan a circuit, not design a working

alternative to the AM2901.

The second step in the design was to create a schematic description of the
circuit using the CapFast schematic design editor. The circuit was entered

hierarchically with symbol and schematic definitions created in the process.

The next step in the design process was to create a parts list of the lowest level
modules of the AM2901. This information was available from the schematic and
symbol files created by CapFast. The designer created a size file by combining the part
list file with sizes for each leaf cell. This size file is normally created by scanning the
standard cell library but, as stated previously, the available library did not have the
necessary parts. FLINT used the CapFast files, and the size file to generate an initial

floorplan. The initial floorplan hierarchy directly mimicked the schematic hierarchy,
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but contained no slicing records, as noted in Chapter 4.

The author then modified the initial floorplan by roughly following these rules:

1. Change the view down to an unfloorplanned low-level module. Move
instances around within the module next to other instances to which they
are tightly connected, with some consideration of the external
connections. From this initial floorplan, create two more floorplans with
the create alternative operation. Rearrange one of the three floorplans to
be tall and narrow, a second to be short and wide, and the third to be
roughly square.

2. Move up a level in the hierarchy and choose one of the other module
instances to floorplan and repeat Step 1.

3. Repeat Step 2 to floorplan all module instances in the same way, then start
rearranging the parent module using the procedure of Step 1. Check the
instance modules to see if any of them can be more optimally arranged,
and create new alternatives for these arrangements.

4. If a module has too many instances to floorplan comfortably, divide the
module up into several blocks of related components, create new levels
in the hierarchy for each of them, and floorplan them separately. When
done, destroy these additional levels and rearrange the module if
necessary. Although these newly created levels could be left intact, once
they were partially rearranged, the designer could optimize them by
going back to the original module organization.

5. Apply the previous steps to floorplan the whole circuit.

6. Go back to low-level modules and rearrange any that appear could benefit
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from rethinking their floorplans.

7. If the designer noted some arrangement of blocks with a significant amount
of dead space, but not enough to justify moving an instance from another
block into it, then he considered moving some components from an
.djoining module into this block. Before doing this he created an

alternative, so that he could restore the original if this proved to be a

mistake.

This is, of course, a very rough guide on how circuit was floorplanned. Since the
designer had limited previous floorplanning experience, tiese steps should not be

thought of as a tutorial in circuit floorplanning.
54 Floorplan Results

When evaluating the success of a floorplanning utility, two important factors are
the size of the floorplans which the floorplanner creates, and the ease of use. In our
present situation there is no facility to route a floorplanned IC. The routers available
were channel routers which are not suitable to this application. Therefore the only way
to measure the performance of the floorplanner was by measuring the area wasted in
the floorplan. We present the results of the two circuits, stating the minimum area

consumed and the actual area consumed in the floorplan.

Although both circuits are floorplans of an AM2901 bit slice processor, the area
which each consumes is different. in the second circuit the modules ramcolsens, trans,
alubit, mux2, mux3 were atomic. The sizes created for these modules were smaller than

the smallest sizes given in the floorplan of the first test. The created sizes were smaller
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since modules like these in a standard cell library would be more compactly placed than
they appear in the floorplan of circuit one, since the designer would be trying to
optimize their placements. No more than two aspect ratios were created for each of

these modules. Other components were left with the same sizes as those of circuit one.

The sum of the minimum area of each component in circuit one was 7,817,640
CIF5 units, while the actual area consumed for a reasonable floorplan was 9,033,780
CIF units. Components in this floorplan were arranged while keeping in mind probable
external connection locations. By relaxing this requirement somewhat, the area

consumption was reduced to 8,921,440 CIF units with little effort.

While floorplanning circuit two more consideration was given to a compact
design than to terminal placement. The sum of component sizes in circuit two was
7,502,240 CIF units. The floorplan for this circuit differed from that of circuit one in

several places, the final size being 8,708,000 CIF units.

The floorplan for the third circuit was created by running FLINT on the final
floorplan of circuit one, and removing all but one alternative for each module. At each
step the floorplan was re-examined to make sure that the remaining alternative would
be a "reasonable choice for a designer to make", but the alternatives were not custom
made to fit into the final floorplan. The floorplan created by FLINT for this test used
10,247,520 CIF units. This is 15% larger than the area consumed in test circuit one, and
demonstrates the usefulness of using module floorplan alternatives. Output of the final
floorplans for tests one, two and three are included in Appendix B. These floorplans are

not drawn to the same scale, however, comparing the floorplan from test one to that of

5a scalable unit of linear measurement usually equal to a Lundredth of a micron: in this context they refer to arca and should
actually be CIF units?
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test three shows the improvement in area which can be achieved by using alternative

module placements. Appendix C shows a screen image of the final floorplan from the

first test.
55 Performance of FLINT

5.5.1 Impressions About FLINT

As expected, it took some time to become familiar with the floorplanner. The
function which took the most time to become comfortable with was changing slice
directions. While learning how to use FLINT, changing slice directions would not seem
to behave as expected, although the floorplanner was doing exactly what it was
supposed to do. After spending some time with it, I learned how to organize the use of

functions to achieve the desired effect.

The operation of most other functions was predictable either the first time used
or after a very few uses. The inability of cut and paste to paste at the end of a row of
blocks was annoying, but was easily corrected with the change order of children

operation.

I was surprised at how quickly the program recalculated floorplans boundaries
and redisplayed the screen. I had expected a noticeable delay between the time a change

was made o the floorplan and the redisplay of the new floorplan.

The statistics provided were meant to allow the designer to compare how a

change affects a floorplan, but in most circumstances rearranging a floorplan required
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several operations. The statistics changed with each operation, making comparisons
difficult. The work around to this was to create an alternative floorplan, make the
proposed changes to the new copy, and then compare the statistics of the new design
with those of the old design. While this is a little clumsy, there are no alternatives
(which I can think of) which require fewer step on the part of the designer to do a

comparison.
552 Suggested Changes to FLINT

If FLINT were rewritten, with our new knowledge, there are some changes
which would be made. This should not be confused with enhancements or additions
which may still result from future work, but are implementation details, all concerning

designer interaction with the floorplanner which the developer would change.

The method of changing slice directions could be improved. Rather than
changing a slice direction, which may affect the entire circuit, the designer should be
able to specify a block or several blocks which the operation will affect, while blocks
outside this range would remain unaffected. For example, consider changing the
floorplan of Figure 5.1a to that of Figure 5.1b. Normally this would require several

operations.

SO
oiliila::!

Figure 5.1: Change Slice Direction

a
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If the designer could select just blocks E, F, D, and G, and then change the direction of

the slice separating F from D, the floorplan would change to that of Figure 5.1b in one

step.

The inability to paste blocks at the end of a row is annoying. A menu option to

allow pasting behind the selected paste block as opposed to ahead of it could solve this

problem.

The view only shows one module at a time. The ability to show several modules

around it, without the need to expand a level and recreate it afterwards would be a

benefit.

FLINT could also benefit by the addition of an undo cornmand. There were
times during the design phase where several changes were made which I wished to
undo. The only recourse here was to abandon the whole session, and restart with a

backup copy. Fortunately FLINT creates a backup copy at the beginning of every

session.

Overall, the performance of FLINT is satisfactory. Most operations work in a
striightforward manner, requiring very little experience to get used to. This does not
refer to experience in floorplanning itself, just the time it takes to get used to the tools.
Updates are very fast (no noticeable delay) and rearranging the floorplan of a module

can be done with relative ease.
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Chapter Six: Conclusions

This chapter presents some conclusions about FLINT. The first part of this

chapter presents a synopsis of the thesis. The second part discusses the success of the
effort, and how well FLINT has met its goals. The third part discusses the acceptability
of slicing structures. The fourth part presents some limitations of FLINT, and the final

section presents some ideas for future research.

6.1 Synopsis

After having reviewed previous work in floorplanning, we felt there was room
for improvement. Most current floorplanners proceed either by following algorithms or
by using heuristics, while others use knowledge bases to create designs. One thing all
these floorplanners have in common is that they either create a single floorplan, without
checking other possibilities, or they give intermediate designs little consideration.
Another feature of these floorplanners is that the human designer is left out of the
design process. Although this saves labour, it also fails to take advantage of the human
designers adaptability in solving problems. Where a human can foresee a problem with
a procedure and take steps to correct it, the algorithmic and heuristic algorithms often
cannot. Most floorplanners fail to take advantage of a multi-level hierarchy that can
reduce the size of the problem by decreasing the number of components under
consideration at any time. This, in turn, reduces the solution space, and allows for a

more concentrated effort on the portion of the problem under consideration at any time.

We wished to create a floorplanning utility which could improve on the existing

solutions. Our goals were to create an interactive floorplanning utility that was simple
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to use, but still capable of allowing the designer to explore a wide range of possible
floorplan solutions. To this end we created a floorplanning utility in which multiple
module floorplans may be designed and considered for inclusion in the final floorplan,
only removing them from consideration when the existence of a better solution is
known. The human designer plays an important role in the floorplanning process. He
may address the floorplanning problems he feels are most pertinent, addressing them in
the order he wishes. FLINT employs a multi-level hierarchy which follows the
hierarchy of the schematic so that the designer need not bite off more than he can chew.
Even this hierarchy can be modified if the designer feels it ought to be. FLINT uses
slicing structures which allow hierarchical floorplans to be represented easily, and

allows fast recalculation of the statistics.

FLINT includes several operations which are easy to use and allow any
conceivable slicing floorplan to be created. Feedback on the results of a change is
provided after each operation. A graphical user interface allows the designer to see

what the results will look like and he can choose his next action accordingly.

6.2 Success of FLINT

We believe we have met most of our objectives. Most of the operations are
straightforward and easy to use. Some of them, change_slice_direction and
cut_and_paste in particular, are not as straightforward, or as predictable as desired, but
are still workable. Use of wie multi-level hierarchy was generally successful. The levels
in the hierarchy are convenient points for creating alternatives, and they break the
circuit down into smaller chunks that are easy to work with. However, when the

designer is floorplanning a module, he does not get the global sense of the circuit we
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were hoping for. It is too easy to lose track of a modules external connections.

We feel that the use of alternatives was largely responsible for the small amount
of wasted space in the design of the AM2901. Although floorplanning alternatives may
appear to increase the amount of time the designer spends floorplanning a circuit, this
time is probably recovered by eliminating the need to backtrack and floorplan the same
modules several times. Using module definitions in multiple instances does allow

FLINT to recalculate bounding curves very quickly on floorplans of realistic size.

The initial floorplan created by FLINT, where a single slice separates all the
components of a module, is annoying to work with. Often the components are so small
that FLINT cannot display text within the defining rectangle, making them difficult to
identify, and thus difficult to floorplan. Components which will ultimately be close

together may start off some distance apart.

Overall we are happy with the results of the project and believe that we have
shown the usefulness of the concepts we were using. Floorplanning the AM2901has
shown us that creating alternative module floorplans, and choosing among them can
result in smaller floorplans. It has also shown that reusing module floorplans in
multiple instances can significantly reduce the amount of computation involved in
boundary calculations. Floorplan boundary updates were quick, and it does not take
long to familiarize yourself with any of the operations. Floorplans can be created

quickly and waste little space (about 15%).
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6.3 Performance Using Slicing Structures

There was some question at the beginning of the development process about
how well slicing structures would perform. There were questions concerning the
limitations imposed on floorplans by slicing structures, and whether the loss of
flexibility in floorplan design would be offset by the increased functionality of FLINT.
Our example floorplan shows that the wasted space is about 15%. This is not very high
and indicates that slicing structures are adequate to the task of floorplanning, imposing
no more than a small penalty on the quality of the final floorplan while decreasing the

complexity of the algorithms involved in solving the floorplanning problem.

6.4 Limitations of FLINT

Even if we corrected all the problems mentioned so far, FLINT would still have
limitations. It is important to know what these limitations are, either so they can be
addressed in the future, or so that the designer knows what external information he may

need to seek.

FLINT does not have an interface to a leaf module generator. All modules must
be available before floorplanning begins. FLINT should work with leaf modules
described only by an estimated bounding box formula, rather than several rigid

dimensions.

In its present state FLINT cannot create an acceptable floorplan without a
human designer, nor even an initial floorplan as a starting point. Creating an initial

solution (or set of solutions) that was closer to a final result would decrease the amount
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of time the designer needs to spend to complete a floorplan.

FLINT can display the components of only one module at a time. The result of
this is that the designer has little appreciation of the whole circuit when designing at
the lower levels of the hierarchy. As long as this is an interactive tool, the designer
should be able to look at the entire circuit and zoom in on the module he is presently

floorplanning.

The most important limitation of this floorplanner is the lack of routing
information during floorplanning. The addition of wiring nets to a module increases the
area it consumes considerably, and can change dramatically based on the module’s
floorplan. An accurate global estimation of channel density may provide much insight

into space saving changes which may be made to a module’s floorplan.

Another problem, related to the lack of routing information, is that the designer
has no way of knowing which modules connect to which other modules, without
referring to the schematic diagrams. Some method of showing the interconnections
within a module and the external connections would help the designer choose

floorplans which minimize routing space and wire length.

Despite the fact that our experience with FLINT suggests that slicing structures
are adequate for floorplanning circuits, support for some form of non-slicing structure

is desirable.
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6.5 Future Work

Many of the limitations just mentioned can and should be changed in the future.
These are not trivial additions and would require some effort. These changes are listed
according to the amount of time it would take to implement them, with the quickest

given first. This is not necessarily the order in which they should be added to FLINT.

The first addition to FLINT should concern initial floorplan creation. This
requires very little modification of the existing program, but does require modest
additions, and can provide an excellent starting position for interactive floorplan
design. Using a good off-the-shelf algorithm, such as min-cut, would help reduce
development time. Furthermore, at least three such placement algorithms have already

been written at thc University of Alberta, and could be converted for use by FLINT in a

reaconably short space of time.

The second addition to FLINT should be support for a module generator. The
preferred method of floorplan design is to design modules after floorplan completion
rather than designing the floorplan using existing modules. This will allow the module
generator to place external connections intelligently, reducing interconnect length.
Adding this support requires replacing the boundary recalculation algorithm given by
Stockmeyer [Stoc83] by an algorithm similar to the one developed by Otten [Otte83],
which combines boundaries described by a set of curves rather than a set of points.

Some method of adding these curves to the definition of a module must zlso be found.

The third addition to FLINT should be estimation for routing channel width,

perhaps similar to the system used in Mason [LaDi85]. Although this addition would
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take some time, particularly since FLINT now ignores connections, it would
substantially increase the accuracy of the on screen representation with which the
designer works. Although it will slow the floorplan recalculation down to the point
where there is a noticeable delay between operations, the benefits probably outweigh
this cost. The impact of this delay could be reduced by performing the recalculation of
boundaries only when the designer requests it, so he could make several modifications

before recalculating routing area.

The fourth, and most ambitious, addition to FLINT should be an expert system
to drive the floorplanning process since the ultimate goal of IC design tools is to
completely automate the design process. Access to an automated floorplanner which
creates high quality floorplans would remove a large barrier to custom IC design. One
hurdle to overcome in this endeavor is that the U of A has no human floorplanning
expert from which to model a set of expert rules. Furthermore, projects of this type
done at other institutions have taken years to complete, and this would likely also be the

case with a fully-automated expert floorplanner.
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Figure A.1: Block Diagram of AM2901, From Schematic
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Figure C.1: Screen Image of Final Floorplan of Test One



