
U n iv ers ity o f A lb e r ta

A S t u d y o f L a t e r P h a s e S t a t i c S i n g l e A s s i g n m e n t i n t h e O p e n

R e s e a r c h C o m p i l e r

by

A ngela J e a n B lan ch F ren ch ©

A thesis submitted to the Faculty of Graduate Studies and Research in partial
fulfillment of the requirements for the degree of M a s te r o f Science.

Department of Computing Science

Edmonton, Alberta
Spring 2004

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 * 1
Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 0-612-96474-4
Our file Notre reference
ISBN: 0-612-96474-4

The author has granted a non
exclusive license allowing the
Library and Archives Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur a accorde une licence non
exclusive permettant a la
Bibliotheque et Archives Canada de
reproduire, preter, distribuer ou
vendre des copies de cette these sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
electronique.

L'auteur conserve la propriete du
droit d'auteur qui protege cette these.
Ni la these ni des extraits substantiels
de celle-ci ne doivent etre imprimes
ou aturement reproduits sans son
autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I f yo u h ave n o vo ice , sc ream ;

i f y o u h ave n o legs, run;
i f y o u h ave n o hope, in ve n t .

- Cirque du Soleil’s Alegria

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

Static single assignment (SSA) is an intermediate code representation used in con

temporary production compilers. In processor architectures tha t implement predi

cated execution, the intermediate code is typically converted out of SSA form before

later phases in the compilation process. In such architectures, the elegant framework

provided for code optimizations by SSA is not available after predication is used to

eliminate conditional expressions. Thus such compilers cannot benefit from SSA in

later compiler phases. ip-SSA is a new intermediate representation tha t allows the

maintenance of SSA after if-conversion.

This thesis introduces ip-SSA in a later phase of the Open Research Compiler

(ORC). Most traditional SSA algorithms use a worklist to process the nodes in the

Control Flow Graph representation of the program when building the SSA form.

We propose an improvement to the SSA construction algorithm tha t reduces both

the number of worklists processed as well as the size of the initial set of nodes in

some of the remaining worklists. We measure the gains of this improvement in the

standard SPEC CINT2000 benchmark suite.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To the memory of Dr. Cyril P. Coombs,
who valued education as highly as anyone else I have ever known.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgem ents

First of all, I would very much like to thank my fiance. Dave, your constant support

in everything I do continues to amaze me. In particular, I want to thank you for

your ever-present interest in my work, confidence in my abilities, and encouragement

of my dreams. We really are a team.

Next, I want to express my gratitude towards my family. Mom and Daddy, you

have always inspired me to strive to do my best. Even though you said I was “on my

own” for further education, your consistent interest in what I do is still appreciated.

Greg and Debbie, you’ve always been there to help take my mind off school, which

has helped so much over the years. Thanks to all of you.

I would also like to mention Arthur Stoutchinin, my external collaborator for

this project. Thanks for being so patient with my questions, and helping me to

understand your complex piece of work. Allowing me to be a part of your research

has been an amazing opportunity.

Finally, my supervisor, Dr. Jose Nelson Amaral deserves a huge thank you.

Nelson, you used the perfect combination of guiding me and giving me freedom to

create an excellent working relationship. The immense knowledge you have shared

with me has been wonderful. Thanks for always being so patient and supportive.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table o f Contents

1 In tro d u c tio n 1
1.1 Contributions of this T h e s is ... 2

2 B ack g ro u n d M a te r ia l 4

3 S ta tic Single A ss ig n m en t 11

4 SSA A lg o rith m s 15
4.1 Algorithms for ^-Function Insertion ... 15

4.1.1 Cytron et al... 15
4.1.2 Sreedhar and Gao .. 18
4.1.3 Bilardi and P in g a li .. 19

4.2 Variable R en am in g ... 23
4.3 D iscussion.. 24
4.4 Conversion out of S S A ... 26

4.4.1 Naive Translation .. 26
4.4.2 Translation Based on Interference Graph U p d a te 28
4.4.3 Translation Based on D ata Flow and Interference Graph Up

dates .. 29
4.4.4 Comparison of Individual Translation M e th o d s 32

5 SSA for P re d ic a te d C ode 34
5.1 P re d ic a tio n ... 34
5.2 V’-S S A 35
5.3 Predicated S S A .. 38
5.4 Comparison of ip-SSA and P S S A .. 40

6 O p en R esea rc h C o m p ile r 41
6.1 Existing F u n c tio n a lity ... 41
6.2 Modified Code G e n e ra to r ... 44

7 E lim in a tin g R e d u n d a n t Jo in S et C o m p u ta tio n s in SSA 51

8 E x p e rim e n ta l R e su lts 57
8.1 Timing R e s u l t s .. 58
8.2 Inserted In s tru c tio n s ... 60
8.3 Executed In s tru c t io n s ... 62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

9 F u tu re W o rk 65

10 C onclusion 6 6

B ib lio g rap h y 6 8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

4.1 The A D T for Figure 4 . 1 ... 21

6.1 Description of SSA translation le v e ls .. 45

7.1 Opportunities for eliminating redundant join set computations in
SPEC CINT2000 benchm arks... 54

7.2 Instances where two join sets are equivalent in SPEC CINT2000
b en ch m ark s .. 55

7.3 Instances where one join set is a subset of another join set in SPEC
CINT2000 benchm arks.. 56

8.1 SPEC CINT2000 benchmark compile and run times (in seconds) . . 58
8.2 Compile and run times for gzip (in seco n d s).. 59
8.3 Compile and run times for mcf (in seco n d s).. 59
8.4 Compile and run times for gap (in s e c o n d s) .. 60
8.5 Compile and run times for bzip2 (in s e c o n d s) 60
8 . 6 Number of </>, ip and copy instructions inserted in the SPEC CINT2000

ben ch m ark s .. 61
8.7 Number of <p, ip and copy instructions inserted at individual transla

tion levels in g z i p .. 61
8 . 8 Number of (p, ip and copy instructions inserted at individual transla

tion levels in m c f .. 61
8.9 Number of <p, ip and copy instructions inserted at individual transla

tion levels in mcf for Sreedhar’s et al.’’s translation method 1 62
8.10 Number of cp, ip and copy instructions inserted at individual transla

tion levels in g a p .. 62
8.11 Number of (p, ip and copy instructions inserted at individual transla

tion levels in b z i p 2 .. 63
8.12 Number of executed instructions for the SPEC CINT2000 benchmarks 63
8.13 Number of executed instructions at individual translation levels in gzip 63
8.14 Number of executed instructions at individual translation levels in m cf 64
8.15 Number of executed instructions at individual translation levels in

m cf using Sreedhar’s et aVs translation method 1 64
8.16 Number of executed instructions at individual translation levels in gap 64
8.17 Number of executed instructions at individual translation levels in

b z ip 2 ... 64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List o f Figures

2.1 A control flow g r a p h ... 4
2.2 Points in a CFG ... 5
2.3 A dominator t r e e ... 7
2.4 Finding a dominance f r o n t i e r .. 8

2.5 Finding a local dominance f r o n t i e r ... 9
2.6 Finding a dominance frontier passed up to an immediate dominator 9

3.1 Simple conversion into S S A .. 12
3.2 Conversion into SSA f o r m ... 12

4.1 Pseudo-code for the running exam ple ... 16
4.2 CFG for the running e x a m p le ... 16
4.3 Dominance frontiers for the running e x a m p le 17
4.4 J-edges of the CFG for the running example, shown in bold print . . 18
4.5 Constructing the DJ-graph for the running e x a m p le 19
4.6 The SSA form of Figure 4 . 1 .. 23
4.7 The result of naively inserting copies to remove the SSA form 27
4.8 Translating out of SSA using Sreedhar et aVs first m e t h o d 28
4.9 Modified exam ple .. 29
4.10 Translating out of SSA based on live range interference 30
4.11 Translating out of SSA based on live range interference and dataflow

in fo rm a tio n .. 32

5.1 (a) Example from Figure 4.1; (b) If-converted ex am p le 35
5.2 ^-converted form of Figure 5 .1 (b).. 37
5.3 (a) After removal of SSA and '</>SSA from Figure 5.2;

(b) Final code product after redundant copy removal . . 39

6.1 Flow of control in ORC ... 41
6.2 ORC’s code g e n e ra to r .. 42
6.3 Modified ORC code g en e ra to r... 45
6.4 CFG for sample code before SSA construction.. 47
6.5 CFG for sample code after SSA construction ... 47
6 . 6 CFG for sample code after level 1 SSA re m o v a l..................................... 48
6.7 CFG for sample code after level 2 SSA re m o v a l..................................... 48
6 . 8 CFG for sample code after levels 3, 4 and 5 SSA removal 49
6.9 Sample code after level 6 SSA re m o v a l... 50

7.1 Example of sets of assignments for two variables, x and y 55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Sym bols

congruence class order
0 cc ^-congruence class
A(x) set of nodes containing definitions of x
ADT augmented dominator tree
B ileve l level number for node B t
B B basic block
CFG control flow graph
D F dominance frontier
D F + iterated dominance frontier
DFiocai local dominance frontier
DFUp dominance frontier to be passed up
E D F edge dominance frontier
equidom equidominates
GTN global temporary name
I interference graph
idom immediate dominator
IPA interprocedural analysis
J join set
J+ iterated join set
J-edge join edge
Lin live-in set
Lout live-out set
LNO loop nest optimizations
M merge relation
OP operation
ORC Open Research Compiler
PSSA predicated static single assignment
S<f,(x) minimum set of join nodes requiring a ^-function for x
SPEC Standard Evaluation Performance Corporation
SSA static single assignment
TN temporary name
WHIRL Winning Hierarchical Intermediate Representation Language

zone associated with node Bi
z[Bi) zone size of Z b{

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

Static Single Assignment (SSA) is a modern intermediate code representation that

aids dataflow analysis by ensuring tha t each use of a variable can only be associ

ated with one definition. The SSA form is traditionally removed well before the

code generator in a production compiler. In particular, the SSA algorithm has not

been capable of maintaining its form after predication is used to eliminate condi

tional branches. Architectures tha t support predication generally do not use SSA in

later phases. Hence, code transformations tha t occur after predication in supported

architectures cannot reap the benefits afforded by the elegant SSA framework.

In this thesis, a method for constructing the SSA form in a later phase of the

Open Research Compiler (ORC) is presented. More importantly, an algorithm for

allowing SSA after if-conversion, called ip-SSA, is discussed. i/>-SSA combines tradi

tional SSA techniques with ideas incorporating the unique properties of predicated

code. Using this method, SSA can be maintained throughout global instruction

scheduling. Our initial experiments suggest that building and removing the SSA

form in the ORC code generator does not significantly increase compile-time, nor

add an overwhelming number of instructions to the baseline results. As well, run

time performance is not degraded by the additional work performed during the SSA

algorithm.

Current SSA construction algorithms use a worklist method to identify nodes in

the Control Flow Graph where ^-functions have to be inserted. This thesis suggests

an improvement to this technique whereby individual worklists are compared for

equality. If two sets to be iterated over by a worklist are identical, one of the

worklists can be eliminated, thus reducing the amount of work performed by the

algorithm. Additionally, if one set is a subset of the other, the number of elements

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

in the second worklist can be decreased. On average, 45% of worklist elements to

be processed can be saved when the subset relationship is detected.

We begin this thesis with a presentation of background material required to

discuss the remainder of the document in Chapter 2. Then, Chapter 3 formally

introduces the concept at the heart of this work, SSA. Using the key ideas from

Chapter 3, Chapter 4 gives an overview of the current state of the art with respect

to SSA. The three main 0-placement techniques are introduced in detail with fully

expanded examples. As well, the process of removing the SSA form is discussed,

focusing on three techniques currently being studied. The issue of predicated SSA

is then the topic of Chapter 5, where the methods discussed are extensions to the

traditional SSA algorithms of Chapter 4.

The work of this thesis is performed on the ORC, which is thus the subject of

Chapter 6 . The ORC’s current capabilities are discussed, as well as the modified

code generator tha t results from including ^-SSA. Our suggested improvement to

the SSA ^-placement algorithm comes next in Chapter 7, where opportunities for

improvement on the ORC are identified. Finally, Chapter 8 presents an experimental

evaluation of the modified code generator with respect to compile and run times,

instructions inserted, and instructions executed, for a selection of programs from

the SPEC CINT2000 benchmark suite. Directions for future work are discussed in

Chapter 9, with conclusions tying the entire thesis together found in Chapter 10.

1.1 Contributions of this Thesis

This thesis is a comprehensive study of the effects of SSA in a later phase of the

compilation process. The major contributions of this thesis include:

1. A detailed examination of current SSA algorithms, using step-by-step exam

ples to illustrate their behaviour. SSA methods for predicated code are also

discussed. Particular attention is given to the ip-SSA technique, which is ex

amined with examples.

2. A proof showing tha t the iterated join set of a set of nodes can be calculated

as the union of the iterated join sets of its partitions.

3. An improvement to the standard ^-placement algorithm, based on the proof

from item 2 , tha t reduces both the number of worklists processed as well as the

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

size of the initial set of nodes in some of the remaining worklists. We quantify

this enhancement using a selection of the SPEC CINT2000 benchmark suite.

4. A preliminary experimental evaluation of SSA in a later phase of the ORC. The

modified ORC code generator includes an implementation of ip-SSA, which

extends the SSA form through global instruction scheduling. 1

5. The first measurements of the effects of later phase SSA on compile and run

times, the number of instructions inserted, and the number of those executed

using the later phase SSA algorithm . 2

1The source code for the later phase SSA im plem entation was written by Arthur Stoutchinin. I
contributed w ith the porting to an ORC environm ent and w ith the testing on an Itanium 2-based
machine.

2These numbers are preliminary and are based on an initial im plem entation. Several improve
ments to this im plem entation are planned, and once more definitive results are available, a publica
tion will be prepared. Therefore, we are requesting that the publication of th is thesis be withheld
for a year.

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

Background M aterial

Most definitions found in this section are paraphrased from Aho et al. [1]. Excep

tions are noted.

D efin itio n 1. A basic block (BB) is formed by a sequence of consecutive statements

in which flow of control enters at the beginning and only leaves at the end.

D efin itio n 2. A control flow graph, C F G = G(V,E), is a directed graph repre

senting the flow of control in a program, where V is a set of basic blocks and an

edge (Bi —> Bj) e E indicates that the execution of the program may be transferred

from the basic block Bi to the basic block Bj.

In Figure 2.1, Bq is the start node and Be is the end node of the CFG. Nodes

I? 2 and B 3 are successors of node B \ and predecessors of node B^.

Bo

B i

Figure 2.1: A control flow graph

D efin itio n 3. W ithin a basic block, there is a point between any two consecutive

statements, as well as a point before the first statement, and a point after the last

statement.

4

Reproduced with permission of the copyright owner. Furiher reproduction prohibited without permission.

Figure 2.2 shows some points for the CFG of Figure 2.1. Note tha t the edge

from node B \ to node Byy contains 2 points.

point after
a definition
of xpoint after

a definition ^
of x

point before
 a definition
B3 of *
point after
a definition

of x

point before
an use of x

Figure 2.2: Points in a CFG

Definition 4. A path from p\ to pn is a sequence of points P\,P2 , ■ ■ ■ ,Pn such that

for each i : 1 < i < n — 1 , either

1 . pi is the point immediately preceding a statement and p,+ i is the point imme

diately following that statement in the same block; or

2 . pi is the end of some block and pj+i is the beginning of a successor block.

We often refer to paths in terms of the basic blocks in which their points appear.

Given a collection of points such tha t pi £ B L, pj € B j, . . . , pn £ B n, then a path

tha t includes P i , P j , . . . ,pn may be referred to as the path Bi, B j , . . . , B n.

Definition 5. A definition of a variable x is a statement tha t assigns a value to x.

In the CFG in Figure 2.1, the statements in basic blocks By, By, and B$ are all

definitions of x.

Definition 6. Let statement Si define a variable x and statement Sj have x as an

operand. If there is a path P from Si to Sj tha t contains no other definitions of x,
then Sj uses the value of x defined by Si.

The statement in node f? 2 of the CFG in Figure 2.1 uses the value of x defined

in node By, since the path from By to B^ contains no other definitions of x. We say

tha t the definition of x from By reaches i?2 - If another definition did occur along

the single path from Bi to B^, the definition found in By would be killed.

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

D efin itio n 7. A statement Si tha t defines a variable x kills all previous definitions

of x that reach Si along the paths tha t include Si-

In Figure 2.1, the definition of x in node B \ is killed along the path B \ ,B o ,B 4

since B% contains a definition of x, but is not killed along the path B \, B 2 , B 4 .

When multiple definitions of a variable x appear in a CFG, we are interested in

the points tha t a given definition of x reaches.

D efin itio n 8 . Suppose tha t a variable x is defined in a statement Si in a node of

a CFG — G(V,E). We say tha t Si s definition of x is live at point pj in G if:

1 . there is at least one path from Si to pj in which x is not killed; and

2. there exists a path from pj to a use of x tha t contains no definition of x [33].

D efin itio n 9. Two variables x and y in a program interfere if there exists a point

Pi in the graph in which both variables are live.

D efin itio n 10. The live-in set of a basic block Bi (denoted Lin(Bi)) is the set of

all variables live on entry to B i , while the live-out set of Bi (denoted L 0Ut(B i)) is

the set of variables live upon exit from Bi.

We want to know how individual CFG nodes relate to each other. The con

cept of dominance is im portant because it enables the compiler to prove tha t some

definitions cannot reach some uses of a variable.

D efin itio n 11. Suppose B q is the start node of a C F G = G(V,E). Consider two

nodes Bi and Bj. If every path in G from Bo to B j goes through B i , then Bi

dominates B j . Every node dominates itself. If Bi dominates B j and Bi 7 ̂B j , then

Bi strictly dominates B j [18].

In the CFG of Figure 2.1, node Bq dominates every node in the graph. Node B \

dominates nodes B \, B%, B%, and B 4 . Node B \ does not dominate node Bo because

there is another path from Bo to Bo, namely the path Bq, Bq, Bq. A convenient

representation of the dominance relationships among nodes in a CFG is given by

the dominator tree.

If there exists a downward path P from node Bi to B j in a directed graph, then

Bi is an ancestor of B j and B j is a descendant of Bi. These relationships are strict

if Bi / Bj.

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

D efin ition 12. Suppose Bq is the start node of a C F G = G (V,E). The corre

sponding d o m in a to r tree for G has B q as its root, and each node B t dominates its

descendants in the tree.

The dominator tree corresponding to the CFG in Figure 2.1 is given in Figure

2.3. Nodes B 2 , B 3 and B 4 are children of node B \ and Bq is the parent of nodes

B \, f?5 and Bo. The terms parent and child will be reserved for the dominator tree,

while predecessor and successor will reference the CFG. Also, the terms descendant

and ancestor will be used in conjunction with the dominator tree. In Figure 2.3,

node Bo is an ancestor of every other node, while node B 2 is a strict descendant of

nodes Bo and B\.

Bi

Figure 2.3: A dominator tree

We can also associate a level with nodes in the dominator tree.

D efin ition 13. A level number for a node Bi in the dominator tree (written

Bi.level) is the depth of Bi from the root of the tree [32],

In Figure 2.3, Bo-level — 0, B\.level — Bo-level = B^.level = 1, and B 2 -level =

B^.level = B^.level = 2.

D efin ition 14. Suppose tha t Bo is the start node of a CFG = G(V,E). Consider

a node Bi in G. The immediate dominator (idom) of B t is the last strict dominator

of Bi on any path from Bo to Bj [18].

The children of a node Bi in a dominator tree are all immediately dominated by

Bi. In Figure 2.3, node Bq immediately dominates nodes B\, Bo and B q. Node B\

immediately dominates nodes B 2 , -B3 , and B 4 .

D efin ition 15. Consider a node Bi in a CFG = G(V,E). The dominance frontier

(DF) of Bi is the set of all nodes Bj 6 F i n G such tha t Bi dominates a predecessor

of Bj, but Bi does not strictly dominate Bj itself [18].

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

There are different ways to find the dominance frontier of a CFG node B j. We

can start by identifying all the nodes tha t Bi dominates. These nodes are found

by searching the subtree rooted at Bi in the dominator tree. For example, to find

the dominance frontier of B y in the CFG of Figure 2.1, we start by finding the

nodes that are dominated by B y , as shown in Figure 2.4(a). We now want to check

the successors of these nodes. The set of successors is indicated by the rectangle

in Figure 2.4(b). We are looking for successors tha t are not themselves strictly

dominated by B y . Thus, D F (B y) — {5g}.

B0

B i

B 0

(a) Nodes dominated by B y (b) Successors of nodes dominated by B y

Figure 2.4: Finding a dominance frontier

Another computation method for finding the dominance frontier requires the

local dominance frontier and the dominance frontier passed to a node Bi from nodes

tha t Bi immediately dominates.

D efin ition 16. Consider a node B i in a C F G = G (V , E) . The local dominance

frontier (D F i ocai) of B i is the set of successors of B t tha t are not strictly dominated

by Bi [18].

Consider node f ?2 from Figure 2.1. We know from the dominator tree in Figure

2.3 that _Z?2 does not strictly dominate any nodes. The set of successors of jE?2

is shown by the rectangle in Figure 2.5. The local dominance frontier can then

be found by subtracting the set of nodes strictly dominated by I ?2 from the set of

successors of i?2 - Since B^ does not strictly dominate any node, the local dominance

frontier of B% is just its set of successors. Thus, DFiocai(B 2) = {B 4} . Similarly,

D F i ocai { B o) = { B 4 } .

D efin ition 17. Consider a node Bi in a C F G = G (V , E) . The dominance frontier

of B i that can be passed up (D F up) to the immediate dominator of B i is the set

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 2.5: Finding a local dominance frontier

of nodes in the dominance frontier of Bi tha t are not strictly dominated by the

immediate dominator of Bi [18].

Consider node B 4 of Figure 2.1. We want to compute DFup(B4). From Figure

2.3, the immediate dominator of node B 4 is node B \. We need D F {B 4). From

Figure 2.3, we know tha t node B 4 only dominates itself. The only successor of B 4

is Bq. Since Bq is not strictly dominated by B 4 , D F (B 4) = {Bq}, shown in Figure

2.6(a). We also need the set of nodes strictly dominated by idom(B 4) — B \ , as

indicated by the rectangle in Figure 2.6(b). We are looking for shaded nodes not

found in this rectangle (i.e., nodes in D F (B 4) tha t are not strictly dominated by

B i) . Thus, D Fup(B 4) = {S6}.

Si

(a) Dominance frontier of B 4 (b) Nodes strictly dominated by B \

Figure 2.6: Finding a dominance frontier passed up to an immediate dominator

The dominance frontier can also be computed using Equation 2.1 [18].

D F (B i) = D F local (B i) U (J D F u p (B j) (2.1)
Bj £Chi l dre n(Bi)

Recall that the children of a node are found by looking at the dominator tree.

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Using Equation 2.1, the dominance frontier of node B \ in Figure 2.1 can be calcu

lated:

D F { B {) = D F local (B i) \ J (J D F u p { B j)

Bj EChi ldre n(Bi)

= D F i ocai (B {) U (D F u p (B 2) U D F u p (B 3) U D F u p (B i))

The local dominance frontier of B i is the set of nodes strictly dominated by

B \ subtracted from the set of successors of B \ . Thus, D F i ocai { B \) = { B 2 , B 3 } —

{B2,B3,B4} = t
For the dominance frontiers being passed up to B i, it has already been shown

tha t DFup(B4) = { B q } . Nodes B 2 and B 3 do not pass up anything to B \ . Since each

of B 2 and B 3 only dominates itself, and their common successor is node B 4 , B 4 is

the only element in each of their dominance frontiers. B 4 itself is strictly dominated

by node Bi, and it therefore does not contribute to the dominance frontier of B \.

Thus, DFup(B2) = DFup(B3) = 0.

The final equation then becomes

D F { B i) — D F i ocai (B i) U (D F u p (B 2) U D F u p (B 3) U D F u p (B i))

= 0 U (0 U 0 U { S 6 })

= {Be}

The result of Equation 2.1 is the same as was computed using Definition 15.

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

Static Single Assignm ent

W ithin compiler research, much work has been done towards effective code anal

ysis and optimization techniques. Traditionally achieved with def-use and use-def

chains , 1 code analysis techniques have matured. Now, methods for understanding

and improving code focus on the relationships among individual statements and

basic blocks [25]. Briggs et al. argue tha t the static single assignment (SSA) form

is a sparse representation of these relationships [7].

D efin itio n 18. A program is in static single assignment form if each variable is

defined only once.

An SSA form is attractive for compiler code analysis because it reduces the

complexity of dataflow analysis. In SSA each variable has a single definition, thus

whenever a use of the variable is encountered, there is only one place in the code

where the value consumed by that use could have been produced. Allen and Kennedy

claim tha t the most im portant benefit of the SSA form is the improved performance

of optimization algorithms, such as constant propagation, forward substitution of

expressions, and induction-variable substitution [3]. In particular, an entire category

of dependences that arise from reusing variables (resulting in an anti-dependence) or

reassigning variables (resulting in an output dependence) can be eliminated, called

false dependences. Then, the program analysis is left only with true dependences

(arising from flow dependences tha t cannot be eliminated by SSA) with which to

contend [38].

Consider the sample code in Figure 3.1. The code shown in Figure 3.1(a) is not

in SSA form, since there are two definitions of x and y. In this example, a simple

1 Def-use chains are lists that associate w ith each definition of a variable the possible run-tim e uses
of that definition. Similarly, use-def chains map definitions of a variable that could be associated
w ith a particular use [3].

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

renaming of variables produces the SSA form shown in Figure 3.1(b).

X 3;

y x;
x «— 4;

y < - x;

Xi
yi ■
X 2

2/2

3;

an;
■4;

X2',

(a) Non-SSA form (b) SSA form

Figure 3.1: Simple conversion into SSA

Now consider the code of Figure 3,2. The code in Figure 3.2(a) is not in SSA

form, since two definitions of x exist in two distinct control flow paths. By renaming

the variables, the code of Figure 3.2(b) is produced.

if x > a if x \ > a if x \ > a

x «— a; X2 <— a; X2 «— a;

else else else

x <— b; X3 <— b; x 3 «— 6 ;
V = x ; 2 /i= ? ; 2/i = 4>(x 2 , x 3)-,

(a) Non-SSA form (b) Partial SSA form (c) SSA form

Figure 3.2: Conversion into SSA form

In the final statement of Figure 3.2(b), the value of x assigned to y\ depends on

which path is executed at runtime. The potential for a use to be associated with

more than one definition occurs at the first node that belongs to two distinct paths

in the CFG. Such nodes are called join nodes [19].

Alpern and Rosen first introduced a 0-function, which is an abstraction used in

the join node, to “decide” which definition to use [4, 30]. Figure 3.2(c) shows the

example code in SSA form.

0-functions are found in the SSA intermediate code representation, and are not

executable. Inserting 0-functions can be done trivially by determining every variable

used in a join node. Let a; be a variable used in a join node Bj. Then we need to

look at definitions of x tha t are live on entry to B j . A 0-function can be inserted at

the point following each such definition of x. However, the number of ^-functions

tha t are actually required can be much smaller than those inserted by this method.

Inserting unnecessary 0-functions increases the compilation time.

Let i be a variable defined in two or more basic blocks in a CFG = G(V,E).

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

S<f,(x) is defined as the minimum set of join nodes in V tha t must receive a ^-function

for x. A method for computing 5^(x) is required. Let A(x) be the set of nodes in V

that contain a definition of x. Clearly, DF(A(x)) C Sj,(x). However, a 0-function

is itself a definition of x, therefore an iterated method to compute Sj,(x) is needed.

Based on this formulation, the notion of dominance frontiers from Chapter 2 can be

extended to sets of nodes.

When constructing the SSA form of a program, if a variable x has multiple

definitions, it is desirable to insert a collection of 0 -functions for r a t a time instead

of just a single 0-function. We therefore want to analyze sets of nodes [18]. Let X

be a set of CFG nodes. Then,

In Section 4.1.1, we will examine the relationship between the iterated dominance

frontier and where 0 -functions should be placed.

D efin ition 19. Given a set of CFG nodes X , the iterated dominance frontier (DF+)

of X is the limit of the following sequence [18]:

We make a key assumption during the analysis of a CFG. To ensure tha t we

never have a variable tha t is used without being previously defined, we assume that

all variables are defined in the start node of the CFG. Code analysis is therefore

simplified, as we can always assume there is a single definition with which to associate

a use.

D efin ition 20. Suppose A" is a subset of nodes in a CFG = G(V, E) such that

the start node is in X . The join set (J) of A is then the set of all nodes Bj G V

for which distinct nodes Bi,Bk G A exist where a pair of paths B i , . . . , B j and

B k , ... ,Bj intersect only at Bj [19].

D efin ition 21. Given a set of CFG nodes A , the iterated join (J+) of A is the

limit of the increasing sequence [18]:

D F (X) = (J DF(Bi) (3.1)
B{e x

DFi = DF(X)

DFi+1 = D F (X U DFi)

(3.2)

(3.3)

J x = J (A)

Ji+1 = J (A U Jf)

(3.4)

(3.5)

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Cytron et al. showed tha t 5^(x) — J +(A(x)), i.e., the minimum set of nodes

tha t require a (^-function for a variable x is the iterated join of the set of nodes that

define x [19].

Many algorithms have been developed for constructing the SSA form of a pro

gram. Among these algorithms, techniques for ^-function placement and variable

renaming have been developed. However, since the ^-function has yet to be found

in an instruction set of a machine architecture, the “function” is still not executable.

In fact, an instruction tha t decides which control path was taken is unlikely to exist.

Because the function cannot be executed, it must be eliminated before code gener

ation, since there is no code corresponding to the ^-function. Therefore, ^-function

removal methods are also of interest. The algorithms for all the phases of SSA

construction and removal are presented in Chapter 4.

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

SSA Algorithm s

4.1 Algorithm s for 0-Function Insertion

The insertion of 0-functions is widely thought to be the core of the SSA construction

problem. Several algorithms were proposed for deciding where ^-functions should

be placed.

4.1.1 C ytron et al.

The primary 0-placement method still used in many compilers was presented by

Cytron et al. in 1989 [18], and further elaborated on in 1991 [19]. This method

uses dominance frontiers to determine where the 0-functions should be placed. The

relationship between dominance frontiers and 0-functions is established by Theorem

1 [19].

T h e o re m 1. The set of nodes that need 0-functions for any variable x is the iterated

dominance frontier D F +(A(x)). Equivalently,

J +{A{x)) = D F +(A(x)) (4.1)

Cytron et al. compute the dominance frontiers needed for their 0-placement

algorithm using Equation 2.1.

The algorithm takes a CFG = G(V, E) and V as input. Also required for each

node Bi 6 7 is DF(Bi), as well as A{x) for each variable x in G. The main loop

of this worklist algorithm iterates for every variable. For each variable, a worklist,

W , represents the nodes being processed. Suppose an iteration of the algorithm’s

main loop is working on a variable v. W is initialized to A(v). Then, if B, E W ,

a 0-function is inserted in every Bj € DF(Bi), and Bi is removed from W . Recall

tha t a node with a 0-function for v is itself in A(v). Thus for every Bt E W , each

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

y live-in

if (y > 1)

x = 2

else if (y < 1)

x — 3

else x = 10

for (i = 0; i < y \ i + +) {

if (x > y)

x + +

else

x -----

}
return(x + y)
x, y are live-out

Figure 4.1: Pseudo-code for the running example

Bj 6 DF(Bi) is also relevant, and therefore included in W. The algorithm ends

when W = 0.

Consider Figure 4.2, the CFG for the running example in Figure 4.1. The only

non-empty dominance frontiers for this example are given in Figure 4.3. Let S ^ x)

be the set of nodes that are assigned ^-functions for variable x.

y live-in

Cif (y > 1)

x = 2

B i
x = 10x = 3

Figure 4.2: CFG for the running example

The loop iteration for x begins by initializing W = A (x) = { B 2 , B 4 , B $, B g , -Bio}.

Based on the dominance frontiers of these nodes, S<f,(x) — {Be, B n } , and nodes B 2 ,

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

D F (B 2) = { B e } D F (B 9) = { B n }

D F (B t t) = {-Be} D F (B i o) = {-Bn }

D F { B 5) = { B e } D F (B n) = { B 7}

Figure 4.3: Dominance frontiers for the running example

£ 4 , £ 5 , £ 9 and £ 1 0 are removed from W . Then each of nodes B q and £ n need to

be analyzed, and are thus added to W . Since D F (B n) — { £ 7 } , node £ 7 is added

to Sv (x) and nodes B% and £ n are eliminated from W . Node £ 7 must itself be

processed, and is appended to W . Since D F (B j) = 0, £ 7 is taken from W and

there are no additional nodes to include in W . Thus, S(f>{x) = {£f,, £ 7 , £ 1 1 }, and

0-functions for x can be added to nodes B q, £ 7 and B \\. W ith W = 0, this loop

iteration is complete. The main loop will then proceed for every variable in the

CFG.

Cytron and Ferrante continued their work in 1995 with improvements to their

original algorithms [21]. In particular, the new work avoids computing all the dom

inance frontiers by producing an order to determine the entire D F relation. Using

the order ensures that no elements of the D F relation will be skipped. They focus

on two cases. The more general case checks, for an edge (£ , —> Bj) in the CFG,

nodes in the dominator tree between the immediate dominator of B j and Bi, which

have been established in the D F relation. The order used is a reverse depth-first

numbering, hence nodes are processed if their immediate dominators have decreasing

depth-first numbers.

The alternate case encompasses nodes tha t are siblings in the dominator tree.

The pre-determined order from the general case is not applicable, since both nodes

have the same immediate dominator. A new relationship is needed [21].

Definition 22. Consider a node £ ,. The equidominates of £,; are those nodes with

the same immediate dominator as Bi. Equivalently,

equidom(Bi) = {B j \ idom(Bj) = idom(Bi)} (4-2)

The equidominates are partitioned into blocks of nodes tha t are contained in

each other’s iterated dominance frontiers. However the cost of computing individual

dominance frontiers is avoided. The required order is then computed based on the

edges between equidominates.

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4.4: J-edges of the CFG for the running example, shown in bold print

This method avoids the computation of all dominance frontiers, and also the

recursive iteration through the nodes in the dominance frontiers of the worklist

nodes.

The final form tha t Cytron and Ferrante have presented is pruned SSA [12].

This method only places a ^-function for a; at a join node if x is used within or after

the join node, i.e., x is live at the entry point of the join node. This strategy differs

from the original algorithm, which places ^-functions at all join nodes.

4.1 .2 Sreedhar and G ao

The next ^-placement method was introduced in 1995 by Sreedhar and Gao [32],

This algorithm requires the construction of a DJ-graph, a modification of the tradi

tional dominator tree. The DJ-graph contains all dominator tree edges (referred to

as D-edges), as well as a set of J-edges [32].

D efin itio n 23. An edge (Bi —> Bj) in a CFG = G(V,E) is a join edge (J-edge) if

Bi does not strictly dominate Bj.

A DJ-graph can be constructed by inserting join edges from the CFG into the

dominator tree. Figure 4.4 indicates the J-edges of the CFG from Figure 4.2 in bold

print. Figure 4.5(b) shows the DJ-graph corresponding to the dominator tree of the

CFG shown in Figure 4.2. J-edges are indicated by dotted lines in the graph. Also

given in the figure are the node levels.

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

L e v e l

(b) DJ-graph(a) Dominator tree

Figure 4.5: Constructing the DJ-graph for the running example

This algorithm takes as input a DJ-graph and a subset of CFG nodes, Na, and

returns D F + (Na). It begins by initializing an array P B to Na , with indices based

on the level numbers of the individual nodes . 1 The start level is set to be the highest

level. Then, each level represented in the P B is processed by visiting each node in

tha t level stored in P B . Say node B t of level I is the current node being processed.

For each successor B j of B i , if (B i —> B j) is a J-edge, then B j is included in D F +

and is placed in P B . If (B i —> B j) is a D-edge, B j is recursively processed.

Consider the example in Figure 4.2. Let Na = A(x) = {B2, B4, Be, Bg, Bw}.

We then initialize P B = Na . Processing higher level nodes first means nodes Bg

and B\o from level 4 are examined. (Bg —> B n) is a J-edge (see Figure 4.5(b)),

thus D F + = {-Bn}, and P B = P B U {-B11}. Node -Bio’s only outgoing J-edge

is with node -Bn, which is already in D F + . Now we process node J5n in level

4. (Bn —> B?) is a J-edge, therefore D F + = { S n , ^ } , and P B = P B U {B7 }.

We continue processing at level 2 with node B$. (B 4 —> Be) is a J-edge, hence

D F + = (B n , B y, B q} and P B = P B U {Be}. The only other J-edges in the DJ-

graph are directed to node Be, thus we are done, and </>-functions for x can be added

to nodes Be, B 7 , and Bn- This process can be repeated with other initial sets; in

particular, with the sets representing assignments of the other variables in the CFG.

4.1 .3 B ilard i and P in ga li

The third ^-placement algorithm was first introduced by Bilardi and Pingali in 1995

[28]. In 2003, they revisited the description of the original algorithm in an extensive

comparative study of SSA construction techniques [5, 6]. This algorithm uses a

1P B refers to the “P iggyB ank” used in Sreedhar and G ao’s algorithm [32].

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

new data structure, the augmented dominator tree. First, the dominance frontier is

defined in terms of edges instead of nodes.

D efin ition 24. Suppose (Bi —>■ Bj) is an edge in a CFG = G(V,E). If Bi ^

idom(Bj), then the edge (Bi —» Bj) is an up-edge [5].

D efin ition 25. An edge (Bi -> Bj) is in the edge dominance frontier (E D F) of a

node B k if B k dominates B % and B k does not strictly dominate B j [5].

In the Cytron e t al. definition of a dominance frontier given in Definition 15,

the node Bj would be in the dominance frontier of B k.

D efin ition 26. Let B k be a node in a C F G = G(V, E) such that an edge (Bi —>

Bj) G E D F (B k). Then, B j G D F (B k) [5].

Finally, we need to know which nodes are boundary nodes. Several ways of

determining boundary nodes were discussed in [5]. For example, a simple problem

formulation defined a node to be a boundary node if it is a leaf node in the dominator

tree. It was also suggested tha t every node could be initialized as a boundary node.

In practice, however, boundary nodes are defined by Definition 28.

D efin ition 27. A zone is a smaller tree created by partitioning the dominator tree.

The zone associated with a tree node Bi is denoted Z b{- The zone size of is

z[Bi] [5].

D efin ition 28. A node Bi is a boundary node if:

1 . Bi is a leaf node in the dominator tree; or

(1 + Y^Bjechildren{Bi) z lB j \) > W X \ED F(B i) | + 1),

where /3 > 0 is a param eter used to control the space and query-time tradeoffs [5].2

D efin ition 29. A node Bi in the dominator tree is an interior node if Bi is not a

b o u n d a ry n o d e [5].

D efin ition 30. The zone size of a node Bi is computed by the following [5]:

Z[B 1 = / 1 + T,Bj echiidren{Bi) z iB j l if B i is an interior node.
1 \ 1 , if Bi is a boundary node.

2For the remainder of th is discussion, it can be assumed that j3 = 1. This /3 value produced the
best results in the experim ents o f [5], and was encouraged for use by the authors.

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Definition 31. The augmented dominator tree (A D T) consists of a number of

structures [5]:

1 . a dominator tree capable of producing top-down and bottom-up traversals.

2 . the depth-first search number (equivalently, the level number, discussed in

Section 4.1.2) for each node of the tree.

3 . a boolean value for each node indicating whether or not it is a boundary node.

4 . a list of CFG edges corresponding to a particular node Bj. The list is E D F (B i)

if Bi is a boundary node. If Bj is an interior node, the list consists of the CFG

up-edges sourced at Bj.

The A D T for the example in Figure 4.1 is given in Table 4.1.

Node Level Boundary Node? List
Bi 0 T 6 , 6 , 6

b 2 1 T 6

1 F
b 4 2 T 6

b 5 2 T 6

B 6 1 T 7
b 7 2 T 7
Bs 3 T 7, 11, 11
b 9 4 T 1 1

B io 4 T 1 1

B u 4 T 7
B l2 3 T

Table 4.1: The A D T for Figure 4.1

The algorithm, based on the A D T data structure, takes as input a set of nodes

and returns the set of merge nodes where ^-functions are to be placed.

Definition 32. Suppose Bo is the start node of a C F G = G (V , E) . The merge

relation (M) is a binary relation on nodes defined as a set of pairs, (Bj, B j) such

tha t B i G V and B j G J ({B o ,B j}). The merge set of Bj is the set of all nodes B j

such tha t (B j,B j) G M [5].

The relationship between merge nodes and (^-functions is given in Theorem 2.

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Theorem 2. The iterated dominance frontier is the same as the merge relation.

That is [5],

D F + = M (4.4)

The input set of nodes are initialized as a priority queue, P Q , using the node

levels as keys. The dominator tree is also required, and all nodes from the input set

are marked in the tree. The main loop of the algorithm iterates while P Q is not

empty, taking the next deepest node B i from PQ for processing. Then each node

from the list for B i described in Definition 31, part 4, is studied. If the immediate

dominator of the current list node is a strict ancestor of B*, then it is a merge node,

and is added to M. If the node was not marked in the dominator tree, it is marked

and inserted in PQ for future processing. Finally, if B i is not a boundary node,

then we recursively visit all children of B i tha t aren’t marked.

Consider the example in Figure 4.1. Let the input set S = A(x) = {B2 , B 4 ,5 s ,

^ 9 , .Bio}- Also, PQ = 5 = {f?2 , B 4 ,B 5 , Bg, -Bio}- Using the level as the key to

PQ means nodes B g and B i o are processed first. The list for node B g consists just

of node B \ \ . From Figure 4.5(a), we know tha t the immediate dominator of node

B 11 is node B $, which is a strict ancestor of node Bg. Thus, node B n is a merge

node and M = M U {B n}. Node B n is not in S, thus it is not marked in the

dominator tree. It is then marked and PQ = PQ U {B n}. The A D T in Table 4.1

shows tha t node B g is a boundary node, therefore this loop iteration is finished. We

next process node .Bio, whose only list element is node B n , which is already in M.

Then node B \i itself is examined, since its level is also 4. Node B n s list consists

of node B 7 , whose immediate dominator is node Bg, a strict ancestor of node B n .

Thus, M — {Bn ,B r }. Node B 7 is not in S, hence it is marked in the dominator

tree and PQ = PQ U {B7 }. Node B n is also a boundary node. Node B 4 , with the

next highest level number, is then extracted from PQ. Node B q is the only node

in node B ^ s list. Node Bg’s immediate dominator is node B i, a strict ancestor of

all other nodes. Node B q is a merge node and M = { B n ,B 7 , B g } . Node B q is not

in S, thus it is marked and added to PQ. And node B 4 is a boundary node. From

Table 4.1, we can see that all the lists of the remaining nodes contain nodes that

have already been added to M , therefore we are done, ^-functions for x can then

be added to nodes B q , B 7 , and B n . To obtain the required ^-functions for other

variables, other input sets can be used; namely, A(v) for all other v.

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2 Variable Renaming

The renaming of variables tha t subsequently occurs during SSA construction is

much less studied in the literature. Cytron et al. propose renaming variables using

a top-down traversal of the dominator tree [19]. During this pass, arrays of stacks

are accessed to find the next available variable for an assignment, or the previous

definition tha t should now be referenced. The array is indexed by the original

variable name, and the stacks contain the replacement subscripts. By visiting a

specific node, statements associated with tha t node, beginning with any ^-functions,

are processed in sequential order. Only variables referenced in the statement are

handled.

Briggs et al. presented improvements to this algorithm in 1998 [7]. They pro

posed pushing a subscript on the stack only at the first definition of a variable x in

the block. Then, subsequent definitions would overwrite the subscript, thus taking

away the pure stack nature of the data structure. Information would have to be

maintained as to which variables had subscripts pushed into a particular block. To

restore the original state of the stack, the algorithm reads the already-pushed list,

and pops subscripts from tha t list.

y i live-in

Figure 4.6: The SSA form of Figure 4.1

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The SSA form of our running example is given in Figure 4.6. This product results

from any of the techniques discussed in Sections 4.1 and 4.2. Added (^-instructions

are shown.

4.3 Discussion

Cytron et aVs algorithm from Section 4.1.1 is widely thought to be the easiest

of the three presented algorithms to implement, although they each produce the

same result. It is thus still found in many production compilers today. Since the

algorithm is based on the dominance frontiers of individual nodes, the calculation of

these structures is crucial in compile-time analysis. Consider a CFG with N nodes,

E edges, At0t number of assignments and Mt0t number of references to variables.

Let D F be the mapping from nodes to their dominance frontiers , 3 and avg(DF)

be the weighted average of the sizes \DF(B)\. X is the set of all nodes in the

CFG. Then the total running time of the algorithm is the time required to compute

the dominance frontiers, along with the time to place ^-functions and the time to

rename variables [19]. T hat is,

T im e = 0 (5] ^ (A O I] + 0 (A tot x avg{DF)) + 0 (M tot) (4.5)
\ B e x /

Now let T be the overall size of the original program, calculated by:

T = m a x { N , E , A orig, Morig}

The worst-case running time is then [19]:

T im eworst = 0 (T 2) + 0 (T 3) (4.7)

The authors argue tha t in practice, the calculation is actually linear.

Sreedhar and Gao’s DJ-graph algorithm for placing ^-functions presented in Sec

tion 4.1.2 is in fact linear. Given a dominator tree, the DJ-graph can be constructed

in O(E) time, just the time required to insert the J-edges. It was shown tha t [32]:

Theorem 3. The time complexity of Sreedhar and Gao’s algorithm is 0(\E \).

Now let V be the number of variables in the CFG. Sreedhar and Gao’s method

takes as an initial set the set of assignments to a particular variable. The algorithm

3Assume for all of these calculations that the dominator tree is available. It has been shown
that the dominator tree com putation is O(E) [23, 22].

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

will have to be performed for each variable in the CFG to produce the complete

set of iterated dominance frontiers. Therefore, the actual time to compute the SSA

form of a program using this method is:

T im e = 0 (E) + \V\ x 0(\E \) + 0 (M tot) (4.8)

The final algorithm presented in Section 4.1.3 was tha t of Bilardi and Pingali,

which places ^-functions based on another new data structure, the A D T . Let E up

be the set of up-edges in the CFG. It was shown tha t [5]:

T h eo re m 4. The A D T for a given CFG can be constructed in time

T im e ADT = 0 (\E up\ + (1 + 1//3) x \N\) (4.9)

Given tha t the version of the algorithm presented here uses ft = 1, Equation 4.9

becomes:

TimeADT = 0 (\E up\ + 2|1V|) (4.10)

Let F be the number of extractions from the PQ data structure and K be

the number of keys used by the PQ implemented as a heap. Then the (^-function

placement algorithm was shown to be [5]:

T i m e ^ f u n c t i o n = 0(|1V| + \Eup\ + |E |/c) + 0 (F + K), c constant (4.11)

The final running time of Bilardi and Pingali’s method is then:

Tim e — 0 (\E up \ + 2|1V|) + 0(|.ZV| + |EUp| + 1V|/c) + 0 (F + K) + 0 (M t 0t) , c constant

(4.12)

From the experience of producing the examples seen throughout Section 4.1, it

was easy to rank the algorithms in practice. Sreedhar and Gao’s method was the

easiest to work through, since the DJ-graph made visualizing the process straight

forward. Cytron et aVs algorithm was easy to understand, since it is rooted in

original theory without additional structures to learn. It simply requires the basic

concepts that the other algorithms use only as a starting point. It is also the most

familiar, as it appears in most compilers. However, the enhancement of a concrete

data structure could be beneficial. Bilardi and Pingali’s technique was very com

plicated. There were quite a few structures and values to keep track of, and this

process was tedious. The idea was not intuitive.

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Since the dominator tree is readily available, Cytron et aids algorithm is still

probably the easiest to implement, as no new data structure is required. However,

constructing a DJ-graph from the dominator tree should require little extra time.

The main concern therefore with Sreedhar and Gao’s method would be the addi

tional space requirements for a structure only required for one purpose. Bilardi and

Pingali’s method also needs an additional structure for this single task, but the cost

of building the elaborate A D T is not worth the supposed rewards.

4.4 Conversion out of SSA

After SSA translation, a code representation ensues tha t contains non-executable

instructions. Further compilation phases, such as instruction scheduling and register

allocation, require the removal of these ^-functions.

Trivially, the removal process can be achieved by inserting many copy instruc

tions into the modified code, one for each definition of a variable. Consider Figure

4.7. In our example, five copies for x are inserted, one in each of nodes B 2 , B 4 , B 5 , Bg

and Bio- These ensure tha t when the common uses of x occur in nodes B&, Bg, Bio

and B 1 2 , the correct definition will be used. Then the ^-instructions in nodes B q, By

and B n are no longer necessary, and are removed. A similar process is used for i.

The added instructions are indicated in bold print.

The number of copies will increase according to the original code size and com

plexity. Methods for minimum copy insertion are desired.

Sreedhar et al. have proposed three methods for translating out of the SSA form

[33]. These methods use a variety of techniques, ranging from brute-force insertion

of copies to using both dataflow and interference graph information.

D efin ition 33. Consider a C F G = G(V, E) such tha t x and y are variables in G.

An interference graph (I) can be used to indicate if x and y interfere. Let each

variable in G represent a node in I. If x and y interfere, then there is an edge

between the nodes representing x and y in I.

4.4.1 N aive T ranslation

Using this method, copies are inserted for all variables referenced in a ^-instruction.

D efin ition 34. Given a ^-instruction of the form x = <p(xi,X2 , ■ ■ ■ , x n), x and all

the source operands x i , . . . , x n are said to be referenced in tha t instruction.

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

y i live-in

!lf (j/i < lT) s 3X = X l

'̂ 3 = 10'

X = X 3

if (i < 2/1)

if (x > yij) (return (x + j/ij ,

Z = 7 ^ Bw
X = X 7X = X 6

x,?/i live-out

n (%3 = * + 1# 1 1 (; ;
V 1 = 1 3

Figure 4.7: The result of naively inserting copies to remove the SSA form

Contrary to the preliminary example presented in Figure 4.7, this technique will

also add copies for the target of the (^-instruction. The result of applying the Naive

Translation Method to our running example can be seen in Figure 4.8. Added copies

are indicated in bold print.

Let’s investigate the ^-instructions for x in Figure 4.6. Since there are three

instructions, three copies of the form Xi = x will be required for each target operand

Xi. Similarly, there are seven 0-function source operands Xj tha t require copies of

the form x = X j . These copies ensure tha t the correct value is accessed during uses

of x. However, the ten copies for a single variable x seems excessive. Improvements

are needed.

In production compilers, however, SSA will never be translated into and out

of directly without its benefits being maximized. In this regard, we can assume

that several optimizations will occur between the SSA form construction and SSA

removal. Sreedhar et al.'s remaining translation methods are best seen in this altered

context. For this discussion, we will focus on a slightly modified example, shown in

Figure 4.9. Here, some instructions have been re-arranged, and some basic blocks

removed, as can happen after compiler optimizations.

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

j/i live-in

(Tf (?/i > 1)

x \ = 2
X = X i

'"&2 = 3
= X 2

X 3 = m
X = X 3

*"l2 = 1
X 5 = X

if fe < yi

x s , y i live-out

X 4 = x
X = X 4
i \ — 0
i = i i _

Figure 4.8: Translating out of SSA using Sreedhar et al?s first method

4 .4 .2 T ranslation B ased on Interference G raph U p d a te

This translation method sees the insertion of copies only for variables whose live

ranges interfere. Cytron and Gershbein present a special definition of liveness with

respect to (/(-instructions [20]. In particular, if a </>-function is in basic block

B j , then each use of a 0-function source operand is associated with the end of

the corresponding predecessor to B j through which X{ reaches B j . 0-functions are

expected to occur at the beginning of the basic block in which they appear. Given

these assumptions, the subsequent definition follows.

Definition 35. Consider a source operand X{ of a 0-instruction x,/, tha t occurs in

basic block B j . Let basic block B i be the block through which X{ reaches x^. X{

is live along the path from the point right after its definition to the final point in

B i . The 0-instruction target x is live along the path from the point right after its

definition to the point right before its last use.

Given Definition 35, target operands of a 0-function cannot be live at the same

time as the source operands of tha t 0-function. We can thus eliminate all of the

copies related to 0-function target operands from Figure 4.8. The result of removing

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

return(a:5 + V l

V b™

Figure 4.9: Modified example

the SSA form from Figure 4.9 is given in Figure 4.10.

Let’s study the x ^-instructions from Figure 4.9. We must determine which

referenced variables from 0-functions interfere. The three copies required for the

three 0-function targets are automatically eliminated. Since only and x% of the

operands for the 0 -function defining x \ interfere, the copy for x\ is unnecessary.

The main x variable is then propagated throughout the code, and we are left with

four copies for x.

This result is a significant improvement for a small example. Of course, there is

a cost for examining each variable’s live range, but with such benefits, it is worth

the additional checks. Section 4.4.3 analyzes the effects of further steps.

4 .4 .3 T ranslation B ased on D a ta F low and Interference G raph U p
dates

W ith this method, copies are inserted based on live ranges tha t interfere, and the

live-in and live-out sets of the variables involved. Eliminating interferences between

0 -instruction source operands can be done exclusively with live-out sets, while elim

inating those between target and source operands requires the live-in sets as well.

It is the most effective of Sreedhar et al.,s methods.

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4.10: Translating out of SSA based on live range interference

D efin itio n 36. Two variables x and y are in the same 0 -congruence class (denoted

by 0Cc) if they are referenced in the same ^-instruction, or there exists a resource

z such tha t y and z are referenced in the same ^-instruction, and x and z are

referenced in the same 0-instruction [33].

Intuitively, two variables are congruent if they are referenced in the same 0-

instruction, or referenced transitively between 0-instructions. We want two con

gruent variables to be able to receive the same representative name. It can be

compared to register allocation by colouring, where variables tha t do not interfere

can be assigned to the same register [11], Similarly, if two variables occur in the

same 0 -congruence class, we would like for them to get renamed to the same repre

sentative name upon removal of the SSA form.

A fundamental property for this translation is the 0 -Congruence Property, a

slight modification on which is presented here [33].

P ro p e r ty 1. (0- Congruence Property) All occurrences of variables tha t belong to

the same 0 -congruence class in a program may be replaced by the same repre

sentative name. After all variables in the 0-instruction have been replaced, the

0 -instruction can be eliminated without violating the original semantics of the pro-

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

gram, and thus the SSA form can be removed.

As Property 1 states, congruent variables may be renamed the same, but this

renaming is not always possible. Interfering variables within a ^-congruence class

should be handled by the insertion of copies. In fact, there are four cases to be

studied with respect to the 0-congruence classes. 4 A 0-congruence class is initialized

so that a variable in a 0 -instruction belongs to its own class; hence, (j>Cc{xi) — {^i}-

Given a variable a;*, the basic block through which its definition reaches the 0-

instruction is denoted B Xi.

1. If [(/>cc(xi)r\L0Ut(BXj) ± 0] A[(j>cc{ x j)n L 0Ut(BXi) = 0], then the copy xtf = Xi is

needed in B Xi. This copy ensures X{ and xj are added to different 0-congruence

classes.

2. If [0cc(xj) n L 0Ut(BXj) = 0] A [<t>cc{xj) H L out(BXi) ^ 0], then the copy Xjl = Xj

is needed in B Xj.

3. If [^ccix^nLoutiBxj) ± 0] A [c/)c c (x.j) n L out[BXi) ± 0], then two copies, x j = x t

in B Xi and Xjf = Xj in B Xj.

4. If [<pcc{xi) n L 0Ut{BXj) = 0] A [<t>cc{xj) n L 0Ul(BXi) = 0], then one of the copies

X{! = Xi in B Xi or Xjl — xj in B Xj is needed. The final decision is made at a

later stage of the translation process.

When all required copies have been added, the variables denoted by Xif can be

replaced by a representative name.

Using these conditions, the translated code in Figure 4.11 is produced. Com

pared with Figure 4.10, we have eliminated two copies, the copy in node S 3 and the

one in node Bg. Consider the variables X2 and x% from Figure 4.9, where B X2 = B^

and B X3 = S 3 . We know tha t <j)Cc(x2) = {^2 } and 4>cc{x3) = {^3 }. We can also

determine tha t L out{BX2) = Lout(S 4) = 0 and L ^ B ^) = L ^ i B z) = {x2}- Given

the first case described previously, we check (f>cc(x2) versus L 0Ut(Bx3). T hat is,

0cc(*2) n L out(BX3) = {£2 } n {x2} = {x2} 0. We also look at 4>Cc{xz) and

L 0Ut(BX2). Thus, (j)cc{x3) n L 0Ut(BX2) = {x3} D 0 = 0. Hence, variables x 2 and x 3

satisfy the first case of the four to be checked, and only the copy x 2f = x 2 is needed

in B X2. The copy in S 3 is therefore unnecessary, and not included. Upon renaming

4Budimlic et al. discussed a similar approach in [8], where variables are compared for interference
by checking the liveness information for the blocks in which the respective variables are defined.

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4.11: Translating out of SSA based on live range interference and dataflow
information

by the representative name, the actual copy x = xg is added in node B 4 . A similar

analysis can be performed for the variables xq and x j in nodes B g and B g to see

tha t only the copy x — x$ is required in B g , and the copy from B g in Figure 4.10 is

unnecessary.

4.4 .4 C om parison o f Indiv idual T ranslation M ethod s

As can be seen by the examples presented in Sections 4.4.1, 4.4.2 and 4.4.3, Sreedhar

et aZ.’s three translation techniques produce a variety of results, even on small pieces

of code. Even though the results are all correct, some are more desirable than others.

In particular, producing fewer inserted copies will result in a smaller number of

extra instructions to be executed, and an ultim ate decrease in additional run-time.

However, an overhead is incurred during the increased work performed by translation

methods 2 and 3. In Chapter 8 , the actual costs and benefits of methods 1 and 2

will be examined.

In terms of working with the individual translation methods, there are clear dif

ferences in usability. The naive method is straightforward, as copies are inserted

exclusively for variables referenced in ^-instructions. Working with this method

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

simply entails iterating through the (^-instructions to see which variables are refer

enced.

A little more thought is required to examine the live ranges of variables as

performed in the second translation method. Since the liveness information has

already been computed at an earlier stage of the compilation process, the additional

work needed is minimal. It is simply a m atter of maintaining and updating the

liveness information throughout the SSA construction and removal phase. The

benefits seem obvious, since even in our small example more than half of the copies

included using the first method could be eliminated by exploring liveness properties.

The third translation method, however, requires extra processing which at present

is not needed by other compilation phases. The calculations necessary to implement

0-congruence classes may not be worth the additional effort. Besides analyzing the

liveness information, the 0 -congruence classes must also be compared to the live

sets. It is not yet clear if the added compile-time restrictions will be alleviated by

significant runtime benefits. However, as was seen by the small example of Section

4.4.3, the major gains were realized between methods 1 and 2, and much smaller

improvements were achieved through method 3.

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

SSA for Predicated Code

5.1 Predication

Traditional SSA only applies to code with branches by “choosing” the path tha t the

program execution followed. However, the technique of if-conversion, introduced by

Allen et al. in 1983 [2], eliminates conditional branches and changes the flow of a

program [3]. It enables the compiler to treat control dependences as data depen

dences. If-converted code is sequential, bu t removing control flow is not allowed

to change the semantics of the program. W ith conditional branches removed, de

cisions are made based on predicates [29, 27]. Each statement is assigned a logical

expression, tha t if evaluated true results in the statement being executed. The pred

icates themselves are defined by statements inserted in the program. If a program

statement has no explicit predicate, the predicate is assumed to be true, and the

statement is always executed . 1

Recall the example from Chapter 4 in Figure 5.1(a). There are three occurrences

of conditional branches associated with if-statements. By performing if-conversion,

these branches will be eliminated. Figure 5.1(b) gives the if-converted form. Note

tha t in Figure 5.1(b), we have explicitly stated tha t x is live-in. We are utilizing the

assumption from Chapter 3 tha t every variable is defined in the start node of the

CFG. The previous forms of our example defined x in every control flow path before

its first use, and thus an initial definition was never needed for analysis. When

we introduced predicates through if-conversion, and removed the control flow, the

initial definition of x was necessary.

SSA as it has been defined does not deal with predicated code. The transforma-

1 For this discussion, the predicate po will be the always true predicate, thus statem ents assigned
to po will always be executed.

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

y live-in x, y live-in

(Po) P i , P 2 - (y > l)

(pi) x = 2

(P 2) P 3 , P 4 = (y < l)

(p3) x = 3

(p a) x = 10

(po) i = 0
label:

(po) P5,P6 = (i < y)
(P5) P7,P8 = (x > y)

(p i) X + +

if (p > 1)

a; = 2
else if (y < 1)

x = 3

else ® = 10

for (i — 0 ;i < p ;i + +) {

if (® > y)

x + +

else

}
return(® + y)

x, y are live-out

(Pa)

(ps) i + +
(ps) br: label

x -----

(pe) return(® + y)

x, y are live-out

(a) (b)

Figure 5.1: (a) Example from Figure 4.1; (b) If-converted example

tion has no way of “deciding” which statements are executed based on the predicate

information. Consider Figure 5.1(b). There are three predicated assignments to x

before x is used. After applying the SSA algorithm to this code, there is still no

decision as to which value of x to use. Traditional SSA is not sufficient to deal with

this situation, since many definitions of a variable can still reach a use in a single

control-ffow path [35].

It is not desirable for SSA to ignore if-converted code. If-conversion is a popular

and useful optimization technique since branches can hinder most compiler analyses.

Current production compilers translate out of SSA form well before if-conversion

occurs to avoid the problem. However, it is a natural extension to want code in SSA

as long as possible within intermediate representations, to maximize the benefits

SSA can afford.

Stoutchinin and de Ferriere introduced an SSA algorithm for predicated code in 2001

[35]. They suggested that their technique could benefit Linear Assembly Optimizers

5.2 -0-SSA

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and just-in-time compilers,2 as well as managing inlined predicated assembly code

in higher level programs. These advantages are especially prevalent in architectures

with support for predication, such as the target architecture for this work, the Intel

Itanium processor [16].

The algorithm presented in [35], called 0-SSA, is an extension of the traditional

SSA representation. The technique inserts 0-functions at predicate join points,

similar to the 0-function insertion of SSA. The operands of the 0-function represent

the predicated definitions tha t reach a particular program point. Only the first

operand can be associated with an unconditional assignment. The algorithm first

inserts 0-functions after conditional assignments to variables, and then performs

the entire SSA procedure, including 0-function placement.

Figure 5.2 gives the code of Figure 5.1(a) in SSA form, including the transfor

mation into 0-SSA. Notice in Figure 5.2 that there are two fewer 0-functions than

in the SSA code of Figure 4.6. Since 0 -SSA is applied after if-conversion, many

of the 0-functions are simply if-converted 0-functions. The construction given in

Figure 5.2 is a preliminary form. On subsequent passes of the algorithm, 0-function

operands tha t are defined by another 0-function will be inlined into the operand

list. This transformation allows for predicated code reordering.

As with any SSA transformation, reverting the code back into an executable

form is necessary. This translation is usually non-trivial since an assortment of

optimizations may have been performed by this stage in the compiler. Similar to

the naive method of translation out of the SSA form presented in Section 4.4.1, a

predicated copy instruction could be inserted for every 0-function operand. This

translation technique could result in excess copies being inserted.

As part of the work in [35], a translation algorithm was presented to remove

the 0 -SSA form. This method makes associations between related predicated as

signments and creates a representative live range for the related assignments. The

fundamental idea behind the algorithm is that of a 0 -congruence class.

D efin itio n 37. Two variables x and y belong to the same if)-congruence class (and

are said to be congruent to each other) if they are referenced in the same 0-function,

or there exists a variable z such tha t x is congruent to z and z is congruent to y

[35].__________________________

2 Linear A ssem bly Optimizers take programs written in a linear assembly input language and
translate it into the traditional assembly language used at assembly and linkage-time [35]. Just-in-
tim e compilers convert Java bytecodes into executable instructions.

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

x o , y i live-in

(po) Pl,P2 = (Pi > 1)

(p i) x i = 2

(po) X 2 = 1p (x 0,£ l)

(P2) P3.P4 = (pi < 1)

(ps) *3 = 3

(Po) X i = 1p (x 2 , X 3)

(P4) m II h-i O

(Po) x e = ip(x 4 , £ 5)

(Po) *i = 0

label:

(Po) *2 = *3)

(Po) P5,P6 = (*2 < Pi)

(Po) x t = p (x e , x n)

(Ps) P7.P8 = (XT > p i)

(pt) £8 = X T + 1

(Po) £ 9 = 1p (x T , X &)

(Ps) X 1 0 = £ 9 — 1

(Po) £ 1 1 = l p (X 9 , X l o)

(Ps) i z = *2 + 1

(Ps) br: label

(ps) return (£ 1 1 + p i)

x i i , y i are live-out

Figure 5.2: ^-converted form of Figure 5.1(b)

Definition 37 is closely related to Definition 36 presented in Section 4.4.3. We

want to replace all variables in the same ^-congruence class with a single represen

tative name upon translation out of the ip-SSA form. Let Xi be an element of a

^-congruence class. x,{ actually corresponds to the live subrange beginning at Xi s

predicated definition and ending with X{ s last use not in a ip-function. The renam

ing is then possible since each ^-congruence class represents a single live range, the

union of the non-overlapping subranges.

The congruence class order, -<c, is used to relate elements in a single '(/'-congruence

class, and help maintain the original program semantics.

Definition 38. Given two variables x and y, x -<c y if [35]:

1. the definitions of x and y may be live at the same time; and

2. x precedes y in the operand list of some '(/’-function, or there exists a variable

z such tha t x precedes z in the operand list of some i/)-function, and y and z

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

are referenced in some -^-function with z -<c y.

The 'ip-SSA form must maintain a certain consistency, defined by the following

conditions [35]:

1. Assignments to variables within each -^-congruence class must occur in the

congruence class order.

2. Live subranges corresponding to elements of each -^-congruence class cannot

interfere.

Often, transformations such as code motion may result in a non-consistent /tp-

SSA form. In this situation, copy instructions must be inserted to restore the code’s

consistency. When the code is once again consistent, the renaming process can

proceed. The result of translating the example of Figure 5.2 both out of ip-SSA and

SSA can be seen in Figure 5.3(a). Note tha t dead code has been removed at this

stage as well. Figure 5.3(b) gives the final code product after eliminating redundant

copies. The resultant code includes 4 extra instructions over the original if-converted

form. This overhead can be justified by the additional optimization opportunities

presented by the complete SSA form.

5.3 Predicated SSA

Carter et al. first introduced the notion of applying SSA to predicated code in

1999 [9, 10]. Their technique, Predicated SSA (PSSA), is designed for the Trimaran

System (Version 1.0) [37] and uses hyperblocks [24].

Definition 39. A hyperblock is a set of predicated basic blocks with one entry

point at the beginning of the region, but one or more exit points from locations

throughout the region.

A hyperblock consists of basic blocks, which are included in the hyperblock

through profiling. Information about execution frequency, basic block size and

operation latencies is compiled. A hyperblock should maximize optimization and

scheduling opportunities by combining basic blocks of different control flow paths.

Ideal blocks to include within a hyperblock are small and infrequently executed, with

few hazardous instructions [24].3 If branches in eligible basic blocks have both true

3Hazardous instructions include procedure calls and m em ory accesses that are not readily re
solvable.

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

x, y live-in x, y live-in

(Po) P i ,P 2 = (yi > 1) (Po) P l,P 2 = (2/1 > 1)

(P i) x = 2 (P i) x — 2

(Pa) P3,P4 = (p i < 1) (Pa) P3,P4 = (2/1 < 1)

(Pa) x = 3 (Ps) x = 3

M x = 10 (Pi) II I—1 o

(Po) X q — X (Po) i \ = 0

(Po) X = X 6 (Po) i — i\
(Po) i i = 0 label:

(Po) i = i \ (Po) P5,P6 = (i < 2/1)
label: (Po) X 7 = x

(Po) Vs j Po = (i < y i) (Ps) P7,P8 = (X7 > 2/1)

(Po) X 7 = X (pr) X = X 7 + 1

(Ps) p 7,P8 = (X7 > t/1) (Po) Xg = X

(Pr) x = X7 + 1 (Ps) X = Xg — 1

(Po) Xq = X (Ps) iz = i + 1

(Ps) X — XQ — 1 (Ps) i = *3

(Po) Xu = X (Ps) br: label

(Po) X — X l l (Po) return(x7 + yi)
(Ps) — i 1 *7,2/1 are live-out

(Ps) i = i*3

(Ps) br: label

(Po) return(:T7 + yi)
X7,yi are live-out

(a) (b)

Figure 5.3: (a) After removal of SSA and tp-SSA from Figure 5.2;
(b) Final code product after redundant copy removal

and false targets within the hyperblock, the branches get if-converted. A property

of the hyperblock is tha t it contains no cyclic dependences.

PSSA processes the hyperblock in top-down order, and takes two forms: Control

PSSA, which is used on predicate-defining operations; and Normal PSSA, which

applies to all other instructions. The algorithm introduces a new predicate OR

operation, tha t defines predicates on blocks by taking the logical OR of multiple

predicates. Full-path predicates are also used, along with path-sensitive analysis, to

determine under which conditions an individual variable reached a join point [9].

D efin ition 40. A full-path predicate is a collection of predicates representing the

unique path along which an operation is valid.

When processing the hyperblock, if an assignment is reached, Normal PSSA is

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

invoked. The variable being defined is renamed and operands take on their already

renamed versions. If the assignment is in a join block and multiple versions are

live, the operation is duplicated in every incoming path with appropriate variable

versions. Full-path predicates are used on these copies.

Trimaran defines a cmpp operation to assign values to predicates, and PSSA uses

the instruction. Control PSSA is used to handle cmpp operations, by replacing them

with one or more cmpp instructions tha t define full-path predicates for each path

leading in to the block. The new cmpp instructions are guarded by the full-path

predicate coming in to the current block.

The final step of the PSSA algorithm comes after optimizations (such as predi

cated speculation and control height reduction [9]) have been performed, when extra

code is removed and copies are inserted to restore the code’s consistency.

5.4 Comparison of ip-SSA and PSSA

Both ip-SSA and PSSA are attem pting to remove conditional control flow from a

program to enable potential optimization opportunities that were previously un

seen. However, the methods employed to achieve this goal are quite different. For

example, the architects of PSSA do not implement ^-functions, claiming additional

dependences would be added, thus making the hyperblock schedule longer. This

exclusion results in instances of incomplete SSA code, leaving some SSA optimiza

tions to falter. The main goal of PSSA is scheduling instructions at the earliest

cycle, hence the loss of SSA potential is minor. Since -0-SSA builds on the estab

lished SSA algorithm, maximum benefits can be achieved from both SSA and its

predicated version.

The fundamental difference between PSSA and ip-SSA is its usability. Since

PSSA was implemented as part of the Trimaran System, which is a simulation

system, adding the new predicate OR instruction was trivial. On a real architecture,

such as the target IA-64, adding new instructions is not straightforward. A work

around is suggested in [9], which involves transferring the predicate register file into

a general register with the move from p re d ic a te instruction provided in IA-64

[14]. But with no new instructions required by ip-SSA, it is an easier method to

implement.

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6

Open Research Compiler

6.1 Existing Functionality

The Open Research Compiler (ORC) [31] is an open source compiler project in

tended for leading research in compiler design and optimization. Based on the

MIPSPro compiler, the project is headed by Intel [15] and the Chinese Academy of

Sciences [26], and is geared towards Intel’s Itanium architecture [16]. The compiler

gives researchers and students an opportunity to test their ideas in a competitive

environment.

The ORC currently implements SSA before the code generator, which is the case

with all modern production compilers. The SSA form is removed before the backend

begins to generate code. The code transformation is performed using Cytron et al.'s

algorithm, presented in Section 4.1.1. Figure 6.1 shows the flow of control in the

current ORC version.1

Current
S S A

Figure 6.1: Flow of control in ORC

As Figure 6.1 indicates, the SSA transformation is performed immediately fol

1 The work in this thesis was performed on ORC version 2.0.

41

W H I R L

H i g h

F r o n t E n d

I P A a n d

O p t i m i z a t i o n s

G l o b a l O p t s

C o d e G e n e r a t o r

L N O

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

lowing the front end. Interprocedural analysis (IPA), interprocedural optimizations,

loop nest optimizations (LNO), and global optimizations all occur within the SSA

form. The intermediate transformation used by the ORC is WHIRL [36] ,2 and the

SSA has been removed by the lowest phase of WHIRL. To this point, no attem pt has

been made to incorporate SSA in the code generator. The existing code generator

is shown in Figure 6.2.

C o n v e r t W H I R L

t o O P s

1

C o d e e x p a n s i o n

1

E d g e a n d v a l u e

p r o f i l i n g

1

G l o b a l l i v e r a n g e

a n a l y s i s

1

E x t e n d e d b l o c k

o p t i m i z e r

p r e - p r o c e s s

1

C F L O W o p t i m i z e

(f i r s t p a s s)

R e g i o n f o r m a t i o n

1

S t r i d e p r e f e t c h i n g

l

I f - c o n v e r s i o n

H y p e r b l o c k

f o r m a t i o n

*

L o o p o p t i m i z a t i o n s

1

C F L O W o p t i m i z e

(s e c o n d p a s s)

E x t e n d e d b l o c k
o p t i m i z e r

X
G l o b a l i n s t r u c t i o n

s c h e d u l i n g

1
L o c a l i n s t r u c t i o n

s c h e d u l i n g

L o c a l i z e

g l o b a l T N s

G l o b a l r e g i s t e r

a l l o c a t i o n

L o c a l r e g i s t e r

a l l o c a t i o n

E x t e n d e d b l o c k

o p t i m i z e r

p o s t - p r o c e s s

L o c a l i n s t r u c t i o n

s c h e d u l i n g

G e n e r a t e c o d e

Figure 6.2: ORC’s code generator

The phases of the code generator are briefly described here.

Convert W HIRL to OPs The intermediate representation used up to this point,

WHIRL, is removed in favour of actual operations.

Code expansion Among the tasks performed during this phase, BBs are split into

smaller units and tail calls are optimized.3

Edge and value profiling This analysis is performed for profile-directed compi

lation, where information is gathered at runtime to aid further compilation

2W HIRL stands for W inning Hierarchical Intermediate Representation Language.
3A tail call is a recursive call that exists at the end of the recursive function, i .e. , there are no

further instructions past the recursive call.

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

decisions. Edge profiling is the traditional method used to determine fre

quently executed paths in the CFG, while value profiling is used on individual

variables to assist in value optimizations such as constant propagation.

Global live range analysis This pass actually occurs at several points following

the current stage, to update the live ranges tha t may have been altered by

individual transformations. Live ranges are determined at a global level, for

use in many phases.

Extended block optimizer pre-process Used in the extended block optimiza

tion phase, blocks are analyzed here and transformed into an extended block

sequence of instructions, beyond the existing basic block.

CFLOW optim ize (first pass) Control flow based optimizations are performed,

including unreachable code removal and branch optimization.

Region formation W ithin this step, a region is built on which to perform the

subsequent stages. It is desirable to have the largest area possible to optimize,

without creating an unmanageable chunk of code.

Stride prefetching This phase introduces a method for choosing candidates for

software prefetching using information about strides between loop iterations.

If-conversion This stage removes conditional branches via predication, as dis

cussed in Section 5.1.

Hyperblock formation During this pass, larger chunks of predicated basic blocks

are fused for analysis, as in Definition 39.

Loop optim izations The traditional loop optimizations such as loop unrolling and

backedge coalescing are performed at this point.

CFLOW optim ize (second pass) The same as the first pass, this phase iterates

over the newly transformed code.

Extended block optim izer Peephole type optimizations are performed here, in

cluding constant propagation, redundant and dead expression elimination.

Global instruction scheduling Instructions are scheduled on a global level dur

ing this phase. The resultant schedule imposes global restrictions on the code.

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Local in s tru c tio n schedu ling This pass schedules instructions locally, within the

limitations of the schedule decided on by global scheduling.

Localize g lobal T N s Global TNs tha t are able to become local variables are trans

formed at this stage. Local TNs are easier to handle during register allocation.4

G lobal re g is te r a llo ca tio n This phase allocates registers on a global scale. Again,

global dependences are introduced under which further allocations must con

form.

Local re g is te r a llo ca tio n Here, registers are allocated at the local level.

E x te n d e d b lock o p tim iz e r p o s t-p ro cess Extended block optimizations are again

performed after register allocation is complete.

Local in s tru c tio n schedu ling Further scheduling occurs during this phase, to

allow the best schedule possible after all transformations have finished, for the

actual generation of code.

G e n e ra te code Assembly language code is em itted for the target architecture.

6.2 M odified Code Generator

The work of this thesis has introduced SSA in the code generator of the ORC. Based

on code originally written by Arthur Stoutchinin [34], the code was re-targeted for

the Itanium processor by Stoutchinin, with later assistance from the author of this

thesis. The implementation of ip-SSA in the ORC was written by Stoutchinin and

has not yet been published. Stoutchinin kindly shared his source code with me so

tha t I could conduct the initial experimental evaluation described in Chapter 8. The

SSA form is built after the global live range analysis phase, using Cytron et al.’s

method from Section 4.1.1. There are six locations where the SSA can be removed,

described in Table 6.1. Currently, methods 1 (Section 4.4.1) and 2 (Section 4.4.2)

of Sreedhar et al. have been implemented. The choice of removal location can be

made with a compile-time flag. The modified code generator’s phases can be seen

in Figure 6.3.

4A T N is a tem porary name representing a variable instance in a program.

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Translation level Where the SSA removal is performed
1 after extended block optimizer preprocessing
2 after first pass of control flow optimization
3 after if-conversion
4 after second pass of control flow optimization
5 after extended block optimization
6 after global scheduling

Table 6.1: Description of SSA translation levels

Build
SSA form

Translation
level 1

Translation
level 2

Translation
level 3

C onvert W HIRL
to O P s

I
C ode expansion

I
E dge and value

profiling_____

G lobal live range
analysis_______

E xten d ed block
optim izer

pre-process

C FL O W op tim ize
(first pass)

I
R egion fornjation

I
S trid e prefetch ing

If-conversion

H yperblock
form ation

Loop o p tim iza tion s

TZ

C FL O W optim ize
(secon d pass)

E xten d ed block
optim izer

G lob al instruction
sch ed uling_____

L ocal instruction
sch ed uling

Translation
level 4

.Translation
level 5

Translation
level 6

L ocalize
global T N s

G lobal register
a llocation

Local register
alloca tion

E xten d ed block
optim izer

p ost-p rocess

L ocal instruction
sch ed uling

G enerate code

Figure 6.3: Modified ORC code generator

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Consider again Figure 4.1, from Chapter 4. The sample code is presented here at

various phases of the code generator using the modified compilation process at opti

mization level 2. Figures 6.4 and 6.5 graphically represent the CFG of the example

code just before and immediately following SSA construction. Note tha t variables of

the form ti are intermediate values tha t the compiler introduces, and GTNs (global

temporary names) are intermediate values relating to procedure preparation. In

Figure 6.4, and for further figures, one can see an introduction of predicates well

before the if-conversion phase of the compiler has occurred. Limited predication is

used in earlier stages to handle some basic control flow issues.

Figure 6.6 pictures the CFG of the sample code after the SSA form has been

removed following the extended block optimizer preprocessing phase. Figure 6.7

gives the sample code’s representation after SSA removal subsequent to the first

control flow optimization pass. Notice tha t the main difference between Figures 6.6

and 6.7 is the removal of node B-j from Figure 6.7 and the inclusion of code in

node B q.

Figure 6.8 indicates the form of the sample code following SSA removal after if-

conversion. It is obvious tha t the code has taken on a very different form, with the

union of many smaller nodes into several larger nodes. This process was facilitated

by removing most of the control flow issues via if-conversion.

It turns out that, for this small example, the code representations after levels

4 and 5 of SSA removal do not change the CFG of level 3. Thus, Figure 6.8 is

sufficient to show all three translation levels.

Figure 6.9 shows the code form following SSA removal after global scheduling

has passed. This code is quite different from the code of earlier stages. Based on

Intel’s Itanium architecture, code scheduling is performed using code blocks of three,

called bundles. If the scheduler cannot decide on three appropriate instructions to

place within a bundle, nop’s are inserted. These operations tha t perform no task

are undesirable, but often necessary, depending on the code’s form at the time of

scheduling.

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

in i t ia liz e G T N s

"'"'Tnit I p '
if] 1 > ylelse

to = 2 t1 = 3
t 2 = 10

if (0 > y)

if (0 > y)

return (to + V)

tio =

if (to < y)

to = to — 1

Figure 6.4: CFG for sample code before SSA construction

CjnHialize G T N s)

B i 2 i Q > ~ (~

^21 = tig)
^ retu rn (£21 + i

Figure 6.5: CFG for sample code after SSA construction

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I n it ia liz e G T N s

P 3S ' N
= 3 t i = 10

to = 2

if (0 > y)
else

return (£0 + V)

else

to — to — 1

Bn

else

Figure 6.6: CFG for sample code after level 1 SSA removal

in it ia liz e G T N s

BS
t 0 = 2

P 3

if (0 > y)
else

if (i 0 < y)

Figure 6.7: CFG for sample code after level 2 SSA removal

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In itia lize G T N s,

return (to + y)

Figure 6.8: CFG for sample code after levels 3, 4 and 5 SSA removal

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B v Bo-.

(Po) Initialize GTNs (p o) t i — 0

{p o) br: B 2 (p o) t s = y

B r - (p o) n o p

(P o) Init y (po) 1 10 = t s

(p o) P 0 P2 = (1 > y) (po) n o p

(p o) n o p (po) n o p

(p o) P3,P4 = (0 > ? /) Bs--

(P 2) £1 2 = 2 (p o) P7,P8 = (to < 1

(P o) n o p (p o) t7 + +

(P o) P s ; Po = (0 > y) (po) n o p

M £1 = 10 (pv) 114 = t g — 1

(Pa) £9 — t \ 2 (p s) t i s = £ 9 + 1

(Ps) £5 = 3 (p o) P9,P10 = { t l ^

(P4) t2 = £l (p o) n o p

(po) n o p (pt) t s = t 14

(ps) £2 = £5 (p s) f l l = £l3

(po) n o p (pr) £ 9 = £8

(po) n o p (p s) £ 9 = £ll

(p i) £ 3 = t2 (p o) n o p

(p i) £9 = t s (Po) t o = £9

(po) n o p (Po) n o p

(po) t o = £9 (P o) br: B s

(po) n o p (Po) br: B 1 2

(ps) br: B 1 3 B 1 3 :

(p o)

B \ 2 ' .

(p o)

br: B 1 2

return (£ 0 + y)

Figure 6.9: Sample code after level 6 SSA removal

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7

Elim inating Redundant Join Set
Com putations in SSA

In this chapter, Cytron et aids ^-placement algorithm from Section 4.1.1 is revisited.

The computation of join sets is at the center of that SSA construction technique.

Two factors make the join set computation an interesting component for analysis.

First, Cytron et aids algorithm is still the most prevalent in today’s production

compilers. Additionally, the bulk of the work performed by this method involves

the join set. These considerations make the join set computation appealing as a

point for optimization.

Theorem 7 presents the fundamental principle of this discussion. However, some

preliminary results are necessary.

Theorem 5 . Let X be a subset of nodes in a CFG = G(V, E) such that X =
Xi U X2 and Xi D X2 = 0. Then,

DF(X 1) U DF(X2) = DF{Jfi U X 2) (7.1)

Proof. Let A" be a subset of nodes in a CFG = G(V, E) such tha t X = X i U X2

and X\ fl X2 = 0. By Equation 3.1, we know that:

DF(X) = |J DF(Bi)
Btex

Thus,

DF(X1)U D F (X 2)= (J DF(Bi) U U DF{Bi)= (J D F (Bi)
Bi£X 1 Bi£X2 Bi£(X 1UX2)

= DF(X 1UI2)

□

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

T h e o re m 6 . Let X be a subset of nodes in a CFG = G (V,E) such that X =

X \ U X 2 and X \ D X 2 — 0 - Then,

D Fi(X i) U DFt {X2) = DFiiXx U X 2) (7.2)

such that DF{ is an element of the sequence that defines D F +.

Proof. Let X be a subset of nodes in a C F G = G(V, E) such tha t X = X \ U X 2

and X \ D X 2 = 0. The proof is by induction.

Base case: If i = 1, from Definition 19 we know that DF\ = D F (X) . Hence:

D F i{X i) U D F i (X 2) = D F (X i) U D F (X 2)

Prom Theorem 5, we have:

D F (X 1) U D F { X 2) = D F (X i U X 2)

Thus,

D F x(X x) U D F i {X2) = D F { X 1 U X 2) = D F x{Xx U X 2)

Inductive case: Assume tha t D F fiX 1) U D F fiX 2) = DFt(X\ U X 2) for i = k. Let

i = k + 1. Prom Definition 19 we know tha t DFi+x(X) = D F (X U D FfiX)) . Then,

D Fk+x(X x) U DFk+l(X 2) = D F (X x U D Fk(X x)) U D F (X 2 U D Fk(X 2))

= D F (X 1) U D F (D F k {Xx)) U D F (X 2) U D F (D F k(X 2))

= D F (X 1 U X 2) U D F{D Fk (X x U X 2))

= D F (X 1 U X 2 U D F k(X 1 (JX2)

= D Fk+1(X x U I 2)

□

T h e o re m 7. Let X be a subset of nodes in a C FG — G (V,E) such that X =

X x U X 2 and X x fl X 2 — 0 . Then,

J +(X) = J +(X 1) U J + (X 2) (7.3)

Proof. Let A be a subset of nodes in a C F G = G(V,E) such tha t X = X x U X 2

and Ax fl X 2 — 0 . Since G is a finite graph, D F +(A) must be finite. We know

from Definition 19 tha t D F +(X) is the limit of a sequence of elements D FfiX).

Equivalently,

D F +(A) = lim D FfiX)i^c

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

where c is a constant. Recall from Theorem 1 that D F +(X) = J +(X). Now

J + (X i)U J + (X 2) = D F + (X l) U D F + (X 2)

= lim D F i (X i) U lim D F i (X 2)
i —>c i - ^ c

= U m l D F i i X ^ U D F ^) }
i—yc

= lim D F i (X \ U X 2)
i~±c

= lim D F i { X)i^c
= D F + (X)

= J+(X)

□

Consider two variables, x and y , in a program. If A (x) = A(y), then J +(A(x)) =

J +(A(y)). Similarly, if A(y) C A(x), then J +(A(y)) C J +(A(x)). Recall tha t

J +(A(x)) = S^,(x), the minimum set of nodes where ^-functions are required when

constructing the SSA form of a program. Thus, if it can be shown tha t two variables

have the same set of assignment nodes, then only one join set computation needs

to be performed. Conversely, if one set of assignment nodes is a subset of another,

two join set computations are still required. The intersection of the two sets (i.e.,

the smaller set) will be calculated. However, the second computation (i.e., the

remainder of the larger set) will be smaller than the original.

The majority of the time in Cytron et aVs worklist algorithm is spent iterat

ing over the worklist W , and every variable has a worklist associated with it. In

particular, the worklist has to be initialized for every variable v to' A(v). Then,

each element B i G W is removed from W , and a </>-function is inserted in every

B j G D F (B i) . As well, each B j tha t now contains a ^-function is also inserted in

W , and the process continues.

An initial analysis of individual SPEC CINT2000 benchmarks [17] indicates the

opportunities for join set optimization. Table 7.1 gives a comparison between the

number of times A(y) C A(x) for two variables x and y and the number of worklists

processed in the original implementation of the code generator’s SSA construction.

The percentage of work saved is the maximum number of entire worklists whose

computation can be avoided by the elimination of redundant join set computations.

All the calculations in this chapter were performed at SSA translation level 1 (refer

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to Table 6.1) and optimization level 02 for baseline results, using Sreedhar et al. ’«

translation method 1 and the individual benchmarks’ test data set.

Benchmark Opportunities for
optimization

Total number of
worklists processed

Percentage of
work saved

164.gzip 220 2787 7.89
181.mcf 51 246 20.73

197.parser 698 17567 3.97
254.gap 3555 115686 3.07

255.vortex 1294 37372 3.46
256.bzip2 348 12089 2.88
Average 1028 30958 3.32

Table 7.1: Opportunities for eliminating redundant join set computations in SPEC
CINT2000 benchmarks

Let x and y be two variables such tha t A(x) = A(y). If this condition is detected,

the worklist algorithm only needs to iterate for one of the two variables, W = A(x) =
A(y). The major change comes upon insertion of a ^-function for the variable

being processed, since now there are two variables. Hence, for every Bi € W and

Bj e DF(Bi), two (^-functions are added in Bj, one each for x and y. Performing

the ^-function insertion in this manner eliminates an entire worklist iteration, and

thus an entire join set computation, along with cutting down on accesses to the

dominance frontier data structure. In practice, ^-functions are placed via a function

call in the modified ORC SSA implementation in the code generator. Therefore,

further savings can be achieved by removing a function call.

Table 7.2 shows the original opportunities presented in Table 7.1 where A(x) =

A(y), which is the best case scenario. In fact, more than half of the optimization

possibilities explored can eliminate an entire worklist. The actual percentage of

worklists avoided can be seen in Table 7.2.

Now let x and y be two variables such tha t A(y) C A(x). One approach

for handling this case is to split A(x) into two smaller sets, A(x\) — A{y) and

A(x 2) = A(x) — A(y). This set division is possible since Theorem 7 determined

tha t J +{A{x)) = J +(A(x 1)) U J +(A(x2)). Processing for A(x 1) can be performed

as normal. Consider here A(x 2). The list of nodes tha t require a ^-function because

of A(x 2) will have to be computed separately as a worklist for x. Thus, savings still

exists, since A(x 1) and A(y) are combined, and the worklist for A(x2) requires fewer

iterations since A(x 2) < A(x).

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Benchmark Opportunities for
optimization

Total number of
worklists processed

Percentage of
worklists avoided

164.gzip 89 2787 3.19
181.mcf 22 246 8.94

197.parser 526 17567 2.99
254.gap 1928 115686 1.67

255.vortex 751 37372 2.01
256.bzip2 177 12089 1.46
Average 582.2 30958 1.88

Table 7.2: Instances where two join sets are equivalent in SPEC CINT2000 bench
marks

Consider the example in Figure 7.1. A{x) = {B \, B 2, Bs, B 4 , Bs} and A(y) =

{ B i ,B 2 , B 5}. Clearly, A(y) C A(x). Now A (x i) = A(y) = { B i ,B 2 , B 5} and

A (x2) — A(x) — A(y) = {Bs, B 4 }. During the worklist algorithm, when A(x) and

A(y) are compared, we can see tha t processing A(y) will make up for most of the

calculations also required by A (x). Hence, when ^-functions are placed for y as part

of the iteration for A(y), we will know to also place ^-functions for x. Remaining

now is -14(2 :2), the elements left over from the larger set A(x). The worklist will have

to iterate for ^ (2:2), however this remaining set is smaller than the original A(x).

We will thus perform fewer computations.

v =

y =

= y

Figure 7.1: Example of sets of assignments for two variables, x and y

Table 7.3 gives the number of instances from Table 7.1 that were actually A(y) C

A{x). This case is less attractive than the A(x) = A(y) situation since it requires

more work. However, if it can be shown that, generally, A (x2) is much smaller than

A(x), then the benefits could be significant. As can be seen by Table 7.3, we are

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

on average saving 45% of the calculations by combining the portion of the two sets

tha t intersect. This means that A(x) — A(y) is generally 45% smaller than A(x).

Benchmark Opportunities for
optimization

Average difference in
size of subsets

Average
percentage saved

164.gzip 131 6.79 38.38
181.mcf 29 3.45 42.99

197.parser 172 2.65 52.10
254.gap 1627 4.34 45.35

255.vortex 543 5.00 53.14
256.bzip2 171 5.65 41.33
Average 445.5 5.58 45.55

Table 7.3: Instances where one join set is a subset of another join set in SPEC
CINT2000 benchmarks

Checking the relationships between these sets requires some extra calculation,

but much of the work is facilitated through existing data structures in the SSA

code. The one-time expense incurred to build correspondences between individual

sets should be worth the benefits achieved through minimizing join set computations.

This chapter evaluated opportunities for eliminating redundant join set com

putations in Cytron et aVs (^-placement algorithm. We feel tha t there is enough

evidence to warrant implementing the join set optimization in the ORC, however

time constraints leave this implementation outside of the scope of this thesis. Since

the proof of concept tests were performed on a selection of the SPEC CINT2000

benchmark suite, this small optimization could be beneficial in other compilers that

utilize Cytron et aVs technique.

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 8

Experim ental R esults

The SSA framework presented in Section 6.2 allows for optimizations in the code

generator to take advantage of the benefits provided by the SSA form. However, if

the gains allowed by SSA are outweighed by the cost of constructing and removing

the SSA form, it may not be desirable to have SSA in the code generator. Since

the work of this thesis does not introduce any further optimizations throughout the

later phase SSA, the real assets of having SSA in the code generator are not realized.

Therefore, if the SSA construction presented here is too expensive, future code

transformations within SSA may be avoided. We will show tha t building the SSA

form does not seriously degrade performance, thus making it a viable infrastructure

upon which to introduce additional code transformations

This chapter presents the preliminary experimental results tha t were obtained

from A rthur Stoutchinin’s porting of the computation of if)-SSA to the ORC. The

numbers presented in this chapter are a snapshot of an ongoing software develop

ment process. These numbers in no way represent the final expected effect of ift-SSA

on the code generation. Several improvements to this implementation are currently

underway and are expected to change these numbers, perhaps in significant ways.

The experiments were run on an Itanium machine (HP Itanium2-2048 processor,

1GB memory). The ORC2.0 cross compiler used code compiled on an IA-32 ma

chine (Pentium lll, 700MHz-128). Using the cross environment, four of the SPEC

CINT2000 benchmarks did not behave as expected using the baseline compiler.1

The baseline simply has the changes to the code generator turned off, and is thus

equivalent to the original ORC. These discrepancies account for the omission of the

problematic benchmarks from the results presented here.

1175.vpr produced unexpected output; 186. crafty had trouble involving the linker; 252. eon could
not find files that it needed to include; and the source code for 253 .perlbmk contained a syntax error.

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

For these experiments, 0-functions were inserted using the insertion algorithm

of Section 4.1.1. There are two SSA removal techniques (Sreedhar et aV s methods

1 of Section 4.4.1 and method 2 of Section 4.4.2) that we could use for testing. Our

experiments focus on method 2, which as discussed in this thesis is the superior

algorithm. We present some comparisons with method 1 to justify this decision.

The results are broken down into 3 categories: compile-time and run-time results;

number of inserted instructions during SSA construction and removal; and number

of actual instructions executed. All results were accumulated at optimization level

0 2 and used the individual benchmarks’ test data set.

8.1 Tim ing Results

First of all, we would like to ensure tha t constructing the SSA form in the code

generator does not unreasonably increase compile-time or degrade run-time perfor

mance. All timing results are presented in seconds, and are an average over 5 runs.

The experiments were compiled while in single-user mode on the IA32 machine, and

run while in single-user mode on the Itanium machine. The execution times were

calculated using the UNIX time command.

The numbers listed in Table 8.1 compare SSA translation level 1 (refer to Table

6.1) and the baseline results.2 On average, to compile a benchmark with later phase

SSA included is 2.91% slower than without SSA. This difference is minor for the

amount of extra work included. The execution time does not on average change with

SSA included. Therefore, performance results have not been negatively affected by

later phase SSA.

Benchmark Compile-time
(baseline)

Compile-time
(SSA)

Run-time
(baseline)

Run-time
(SSA)

164.gzip 22.29 22.24 1.69 1.71
181.mcf 11.15 11.32 0.27 0.29

197.parser 53.50 54.91 3.89 3.83
254.gap 236.38 244.57 1.57 1.62

255.vortex 144.74 148.69 5.69 5.70
256.bzip2 11.91 12.24 7.19 7.08
Average 80.00 82.33 3.38 3.37

Table 8.1: SPEC CINT2000 benchmark compile and run times (in seconds)

2The omission of 176.gcc and 300 . twolf from this, and subsequent tables, indicates that these
benchmarks exhibited bugs at translation level 1 and higher.

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Tables 8.2, 8.3, 8.4 and 8.5 expand on the results of Table 8.1 for 164.gzip,

181.me/, 254.gap, and 256. bzip2 at the remaining translation levels, as well as show

ing the percentage differences in compile and run times.3 Notice in Tables 8.2 and

8.3 that there is little deviation between the compile-times for the individual transla

tion levels. These numbers indicate tha t the same cost ensues even when more work

is performed, as the SSA form is maintained incrementally. Tables 8.4 and 8.5 show

the expected trend, where the compile-time increases as more work is performed

along later translation levels. Execution times vary greatly among the benchmarks.

Tables 8.2, 8.4 and 8.5 present how the various translation levels consistently achieve

better execution rates. However, Table 8.3 shows tha t mcf performs poorly across

translation levels. These results are still preliminary, as the full benefits are not

expected to be realized until after optimizations that exploit the properties of SSA

are implemented. At this point, since we want to maintain the SSA form as long

as possible, we just need to ensure tha t the individual translation levels do not

overwhelmingly degrade performance.

Translation level Compile-time Time increase (%) Run-time Speedup (%)
0 22.29 - 1.69 -
1 22.24 -0.2 1.71 -1.2
2 22.50 0.9 1.65 2.4
3 22.95 3.0 1.65 2.4
4 23.23 4.2 1.65 2.4
5 23.10 3.6 1.67 1.2

Table 8.2: Compile and run times for gzip (in seconds)

Translation level Compile-time Time increase (%) Run-time Speedup (%)
0 11.15 - 0.27 -
1 11.32 1.5 0.29 -7.4
2 11.29 1.3 0.27 0
3 11.18 0.3 0.28 -3.7
4 11.37 2.0 0.27 0
5 11.28 1.2 0.28 -3.7
6 11.45 2.7 0.27 0

Table 8.3: Compile and run times for m cf (in seconds)

3164.gzip and 254 .gap had problems at translation level 6 , and were thus om itted from Tables
8.2 and 8.4, respectively.

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Translation level Compile-time Time increase (%) Run-time Speedup (%)
0 236.38 - 1.57 -

1 244.57 3.5 1.62 -3.2
2 245.99 4.1 1.30 17.2
3 249.03 5.4 1.92 -22.3
4 254.08 7.5 1.41 10.2
5 256.68 8.6 1.32 15.9

Table 8.4: Compile and run times for gap (in seconds)

Translation level Compile-time Time increase (%) Run-time Speedup (%)
0 11.91 - 7.19 -

1 12.24 2.8 7.08 1.5
2 12.68 6.5 7.11 1.1
3 12.83 7.7 7.13 0.8
4 13.01 9.2 7.10 1.3
5 12.91 8.4 6.17 14.2
6 13.44 12.9 6.18 14.1

Table 8.5: Compile and run times for bzip2 (in seconds)

8.2 Inserted Instructions

The next interesting measure of how the later phase SSA performed is the number

of inserted instructions. Throughout the SSA algorithm, there are two distinct op

portunities for additional instructions to be included in the intermediate code. Both

(j) and ip functions are inserted, and then copies are included to remove these unexe

cutable instructions. It is obviously desirable tha t the number of extra instructions

not greatly hinder the baseline performance. The number of actual instructions

executed is discussed in Section 8.3.

Table 8.6 gives a summary of the number of <p, ip, and copy instructions added

through the process of building and removing the SSA form for translation level 1.

As will be seen in Section 8.3, the weight of these inserted instructions is negligible.

Tables 8.7, 8.8, 8.10, and 8.11 expand on the results of Table 8.6 for the remaining

translation levels. In is interesting to note that, on average, more copies are needed

to remove the (p and ip functions as the translation levels increase. As the SSA

form is maintained longer, more transformations can be performed. Therefore, the

analysis tha t results in the insertion of copies can become more difficult, resulting

in more copies being required to ensure correctness.

For comparative purposes, we have also included the results for Sreedhar et al.’s

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Benchmark PP of 0 and ip functions
inserted

PP of copies
inserted

164.gzip 1089 437
181.mcf 230 67

197.parser 2364 421
254.gap 13682 6020

255.vortex 6112 1058
256.bzip2 771 211

Table 8.6: Number of 0, ip and copy instructions inserted in the SPEC CINT2000
benchmarks

translation method 1 (Section 4.4.1) in Table 8.9.4 Method 2 outperforms method 1

in the number of ^-copies inserted for the individual translation methods, and thus

is justified as the method of interest. Method 1 inserts many more copies than are

necessary.

Translation level PP of 0-functions
inserted

PP of copies
inserted

PP of '0-functions
inserted

PP of copies
inserted

1 989 269 100 168
2 989 269 100 168
3 989 304 100 232
4 989 309 100 232
5 989 309 100 228

Table 8.7: Number of 0, ip and copy instructions inserted at individual translation
levels in gzip

Translation level PP of 0-functions
inserted

PP of copies
inserted

PP of 0-functions
inserted

PP of copies
inserted

1 193 10 37 57
2 193 32 37 57
3 193 27 37 87
4 193 25 37 87
5 193 25 37 75
6 222 25 37 75

Table 8.8: Number of 0, ip and copy instructions inserted at individual translation
levels in mcf

4Translation level 6 had a problem w ith the linker, and is thus excluded from these results.

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Translation level PP of ^-functions
inserted

PP of copies
inserted

PP of i/'-functions
inserted

PP of copies
inserted

1 193 619 37 57
2 193 624 37 57
3 193 564 37 87
4 193 530 37 87
5 193 530 37 75

Table 8.9: Number of (p, ip and copy instructions inserted at individual translation
levels in m cf for Sreedhar’s et a/.’s translation method 1

Translation level PP of ^-functions
inserted

PP of copies
inserted

PP of -^-functions
inserted

PP of copies
inserted

1 10909 1959 2773 3830
2 10909 2172 2773 3848
3 10909 2292 2773 4787
4 10909 2165 2773 4791
5 10909 2209 2773 4762

Table 8.10: Number of (p, ip and copy instructions inserted at individual translation
levels in gap

8.3 Executed Instructions

The final category of measurements is the actual number of instructions executed,

or retired, a t runtime. These figures were obtained using the hardware performance

monitoring tool pfmon [13]. We want to measure the increased number of instruc

tions executed using SSA, hoping the additions do not overwhelm the original code

generator’s results.

Table 8.12 indicates the differences between number of executed instructions

at the baseline level versus those executed at translation level 1. A percentage

indicating number of extra instructions is also included. In general, there are only

an extra 0.51% of instructions executed when later phase SSA is included

Tables 8.13, 8.14, 8.16, and 8.17 expand on^ the results of Table 8.12 for the

remaining translation levels. We can see from these tables that there is no significant

change in the number of retired instructions as we proceed through the translation

levels.

Comparatively, Table 8.15 gives the number of retired instructions for mcf using

Sreedhar et a/.’s translation method 1. On average, the naive translation method

executes an extra 11% of instructions over the algorithm that uses interference graph

updates.

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Translation level # of ^-functions
inserted

of copies
inserted

of 0-functions
inserted

of copies
inserted

1 673 86 98 125
2 673 87 98 125
3 673 114 98 175
4 673 111 98 175
5 673 113 98 171
6 818 113 98 171

Table 8.11: Number of 0, 0 and copy instructions inserted at individual translation
levels in bzip2

Benchmark Baseline SSA % of increase in
instructions over baseline

164. gzip 4,226,267,378 4,444,772,461 5.17
181.mcf 292,144,926 296,331,818 1.43

19 7. parser 5,500,841,729 5,513,781,510 0.24
254.gap 1,624,134,732 1,627,696,252 0.22

255.vortex 13,186,363,361 13,199,873,707 0.10
256.bzip2 14,270,261,637 14,215,398,582 -0.38
Average 6,516,668,961 6,549,642,388 0.51

Table 8.12: Number of executed instructions for the SPEC CINT2000 benchmarks

The results presented in this chapter have shown that the later phase SSA

framework adds a minimal amount of compile-time and few additional executed

instructions for the SPEC CINT2000 benchmarks. As well, the run-time is not

compromised by the SSA inclusion. Therefore, working with the later phase SSA

by introducing further code optimizations is a competitive option for the ORC.

Translation level # of retired instructions % increase
over baseline

Baseline 4,226,267,378 -
1 4,444,772,461 5.17
2 4,475,198,347 5.89
3 4,489,361,441 6.23
4 4,492,050,665 6.29
5 4,516,763,080 6.87

Table 8.13: Number of executed instructions at individual translation levels in gzip

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Translation level f f of retired instructions % increase
over baseline

Baseline 292,144,926 -
1 296,331,818 1.43
2 296,331,791 1.43
3 296,002,885 1.32
4 295,647,938 1.20
5 293,062,433 0.31
6 292,946,658 0.27

Table 8.14: Number of executed instructions at individual translation levels in mcf

Translation level # of retired instructions % increase
over baseline

Baseline 292,144,925 -
1 331,373,448 13.43
2 329,715,993 12.74
3 328,431,952 12.42
4 327,940,049 12.25
5 324,111,065 10.94

Table 8.15: Number of executed instructions at individual translation levels in mcf
using Sreedhar’s et a/.’s translation method 1

Translation level # of retired instructions % increase
over baseline

Baseline 1,624,134,732 -
1 1,627,696,252 0.22
2 1,627,086,081 0.18
3 1,634,621,472 0.65
4 1,633,378,414 0.57
5 1,633,645,871 0.59

Table 8.16: Number of executed instructions at individual translation levels in gap

Translation level ■jf of retired instructions % increase
over baseline

Baseline 14,270,261,637 -
1 14,215,398,582 -0.38
2 14,201,901,874 -0.48
3 14,216,218,572 -0.38
4 14,230,515,987 -0.28
5 14,261,806,865 -0.06
6 14,274,974,881 0.03

Table 8.17: Number of executed instructions at individual translation levels in bzip2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 9

Future Work

Since we expect some improvements in efficiency using Sreedhar et aVs third trans

lation technique (Section 4.4.3), it should be implemented in the ORC. Then, com

parisons can be made with the two techniques already in place.

When the full framework is established, it would be of great interest to add ad

ditional optimizations into the code generator of the ORC. Besides the code trans

formations already in place, further benefits could be realized with the inclusion

of specific optimizations geared towards the SSA form. As discussed in Chapter

8 , the current implementation does not hinder performance, but does nothing to

improve it. Optimizations tha t take full advantage of SSA could certainly result in

experimental gains.

The enhancement to Cytron et aUs ^-placement algorithm presented in Chapter

7 gives another opportunity for future work. The evidence is strong tha t this opti

mization of the traditional algorithm will produce a decreased amount of iterations

through the worklist algorithm. Thus, an improvement in compile-time is possible.

A long term goal of this project is to maintain the later phase SSA algorithm

even further in the code generator, at least through local instruction scheduling.

Eventually, a method may be discovered for handling SSA during register allocation.

Finally, it would be interesting to evaluate the effects of later phase SSA on other

compilers. However, compilers intended for architectures that support predication

should benefit from this algorithm more than others.

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 10

Conclusion

This thesis has presented a comprehensive study into the unique properties and wide

ranging capabilities of the Static Single Assignment form. Commonly used to ease

dataflow analysis, SSA is a powerful representation tha t produces many benefits

for the code optimizations supported by it. However, not all transformations have

traditionally been able to avail of the SSA form. In particular, architectures tha t

implement predication have avoided SSA in the later stages of the compiler after

if-conversion removes conditional expressions. Unfortunately, such later phase code

transformations have not benefited from the elegant framework provided by the SSA

representation.

Throughout the course of this thesis, ip-SSA, a mechanism for dealing with

SSA at a later compiler phase, has been presented. 'ip-SSA combines traditional

SSA ^-placement with new ideas for handling predicated execution to produce an

entire SSA algorithm. Additionally, implementation details using the Open Research

Compiler were disclosed. The framework for the code generator has been shown to

not impose serious performance penalties on the baseline compiler, thus making the

later phase SSA algorithm a viable starting point for further code optimizations.

As well, an improvement to a well-known ^-placement technique was suggested.

Throughout this method, worklists are used to decide where ^-functions should be

inserted. We have shown tha t entire worklists can be eliminated and the number

of elements in some remaining worklists decreased using our augmentation. The

opportunities for optimization were explored for the SPEC CINT2000 benchmark

suite on the ORC. The validity of the enhancement allows future implementations

to incorporate the small, but significant, change.

This thesis has demonstrated the usefulness of SSA at a later stage of the com-

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

pilation process. Since most production compilers avoid SSA in the code generator,

we believe tha t many opportunities for improving the quality of code produced are

lost. Using the ip-SSA algorithm, a new framework for the code generator of the

ORC is now available. We hope that this work is the beginning of a renewed focus

on utilizing SSA to its full potential in later compiler phases.

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

[1] A.V. Aho, R. Sethi, and J.D. Ullman. Compilers: Principles, Techniques, and
Tools. Addison-Wesley Publishing Company, Calif., USA, 1986.

[2] J.R. Allen, K. Kennedy, C. Porterfield, and J. Warren. Conversion of control
dependence to data dependence. In Conference Record of the 10th Annual AC M
Symposium on Principles of Programming Languages, pages 177-189, 1983.

[3] R. Allen and K. Kennedy. Optimizing Compilers for Modern Architectures: A
Dependence-Based Approach. Morgan Kaufmann Publishers, Calif., USA, 2001.

[4] B. Alpern, M.N. Wegman, and F.K. Zadeck. Detecting equality of variables
in programs. In Proceedings of the Conference on Principles of Programming
Languages, pages 1-11, 1988.

[5] B. Bilardi and K. Pingali. The static single assignment form and its computa
tion. Technical report, Cornell University, 1999.

[6] G. Bilardi and K. Pingali. Algorithms for computing the static single assign
ment form. Journal of the ACM, 50(3):375-425, 2003.

[7] P. Briggs, K.D. Cooper, T .J. Harvey, and L.T. Simpson. Practical improve
ments to the construction and destruction of static single assignment form.
Software-Practice and Experience, 28(8):859-881, July 1998.

[8] Z. Budimlic, K.D. Cooper, T .J. Harvey, K. Kennedy, T.S. Oberg, and S.W.
Reeves. Fast copy coalescing and live-range identification. In Proceedings of the
Conference on Programming Language Design and Implementation, volume 37
of A C M SIG PLAN Notices, pages 25-32, May 2002.

[9] L. Carter, B. Simon, B. Calder, L. Carter, and J. Ferrante. Predicated static
single assignment. In Proceedings of the International Conference on Parallel
Architectures and Compilation Techniques, pages 245-255, Oct. 1999.

[10] L. Carter, B. Simon, B. Calder, L. Carter, and J. Ferrante. Path analysis
and renaming for predicated instruction scheduling. International Journal of
Parallel Programming, 28(6):563-588, 2000.

[11] G. J. Chaitin. Register allocation and spilling via graph coloring. In Proceedings
of the Symposium on Compiler Construction, volume 17 of A C M SIG PLAN
Notices, pages 98—105, June 1982.

[12] J.-D. Choi, R. Cytron, and J. Ferrante. Automatic construction of sparse
data flow evaluation graphs. In Proceedings of the Conference on Principles of
Programming Languages, pages 55-66, 1991.

[13] Hewlett-Packard Development Company, pfmon. http://ww w .hpl.hp.com /
research/linux/perfmon/pfmon.php4, 2003.

[14] Intel Corporation. Intel Itanium Architecture Software Developer’s Manual.
Volume 3: Instruction Set Reference, Revision 2.0, 2001.

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.hpl.hp.com/

[15] Intel Corporation, http://w w w .intel.com /, 2003.

[16] Intel Corporation. The Intel Itanium Processor, http://w w w .intel.com /
products/ server/processors/ server/ itanium /, 2003.

[17] The Standard Performance Evaluation Corporation. The SPEC CINT2000
Benchmark Suite, http://ww w .spec.org/cpu2000/, 2003.

[18] R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadeck. An
efficient method of computing static single assignment form. In Proceedings of
the 16th Annual AC M Symposium on Principles of Programming Languages,
pages 25-35, Jan. 1989.

[19] R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadeck. Efficiently
computing static single assignment form and the control dependence graph.
AC M Transactions on Programming Languages and Systems, 13(4):451-490,
Oct. 1991.

[20] R. Cytron and R. Gershbein. Efficient accomodation of may-alias information in
SSA form. In Proceedings of the Conference on Programming Language Design
and Implementation, volume 28 of AC M SIG PLAN Notices, pages 36-45, June
1993.

[21] R.K. Cytron and J. Ferrante. Efficiently computing </>-nodes on-the-fly. ACM
Transactions on Programming Languages and Systems, 17(3):487-506, May
1995.

[22] D. Harel. A linear time algorithm for finding dominators in flow graphs and re
lated problems. In Proceedings of the 17th Annual ACM Symposium on Theory
of Computing, pages 185-194, 1985.

[23] T. Lengauer and R.E. Tarjan. A fast algorithm for finding dominators in a flow-
graph. A C M Transactions on Programming Languages and Systems, 1 (1): 121—
141, July 1979.

[24] S.A. Mahlke, D.C. Lin, W.Y. Chen, R.E. Hank, and R.A. Bringmann. Effective
compiler support for predicated execution using the hyperblock. In Proceedings
of the 25th Annual International Symposium on Microarchitecture, pages 45-54,
1992.

[25] S.S. Muchnick and N.D. Jones, editors. Program Flow Analysis: Theory and
Applications. Prentice-Hall Inc., New Jersey, USA, 1981.

[26] Chinese Academy of Sciences, http://english.cas.ac.cn/english/, 2003.

[27] J.C.H. Park and M. Schlankser. On predicated execution. Technical report,
Hewlett-Packard Software and Systems Laboratory, 1991.

[28] K. Pingali and G. Bilardi. APT: A data structure for optimal control depen
dence computation. In Proceedings of the Conference on Programming Lan-
quaqe Desiqn and Implementation, volume 30 of AC M SIG PLAN Notices, pages
32-46, June 1995.

[29] B.R. Rau, D.W.L. Yen, W. Yen, and R.A. Towle. The Cydra-5 departmen
tal supercomputer: Design philosophies, decisions, and trade-offs. Computer,
22(1):12—35, Jan. 1989.

[30] B.K. Rosen, M.N. Wegman, and F.K. Zadeck. Global value numbers and re
dundant computations. In Proceedings of the Conference on Principles of Pro
gramming Languages, pages 12-27, 1988.

[31] SourceForge. Open Research Compiler, http://ipf-orc.sourceforge.net/, 2003.

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.intel.com/
http://www.intel.com/
http://www.spec.org/cpu2000/
http://english.cas.ac.cn/english/
http://ipf-orc.sourceforge.net/

[32] V.C. Sreedhar and G.R. Gao. A linear time algorithm for placing 0-nodes. In
Proceedings of the 22nd AC M SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 62-73, 1995.

[33] V.C. Sreedhar, R.D.-C. Ju, D.M. Gillies, and V. Santhanam. Translating out of
static single assignment form. In Static Analysis 1999, volume 1694 of Lecture
Notes in Computer Science, pages 194-210.

[34] A. Stoutchinin. Code extension to the Open Research Compiler. Unpublished,
2003.

[35] A. Stoutchinin and F. de Ferriere. Efficient static single assignment form for
predication. In Proceedings of the 34th Annual International Symposium on
Microarchitecture, pages 172-181, Dec. 2001.

[36] Open64 Compiler Tools. WHIRL Documentation.
http ://open64.sourceforge.net/documentation.html, 2003.

[37] Trimaran. An Infrastructure for Research in Instruction-Level Parallelism.
h ttp ://w w w .trim aran.org/, 2003.

[38] M. Wolfe. High Performance Compilers for Parallel Computing. Addison-
Wesley Publishing Company, Calif., USA, 1986.

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://open64.sourceforge.net/documentation.html
http://www.trimaran.org/

