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ABSTRACT

This analysis presents a theoretical boundary-layer formulation
which is valid for steady, two-diménsional and axisymmetric free-convection
~flow of any Newtonian fluid. along surfaces having smosth, continuous temperQ
ature distributions. In addition, the stability of these flows is_anélysed
theoretically using the small disturbance theory. The linearized forms
of the disturbané; equations are presented for two forms of small distur-
bances: two-dimensional disturbances of the form. of Tollmien-Schlichting
waves, and three-dimensional disturbances of the form of Taylor-Goertler
roll vortices.

Ngmerical solutions are presented for steady, constant-property,
boundary-layer free-convection flbw of alr along long, inclined; isothermal,
.plane surfaces; These steady- or mean—flow solutions are subsequently used
in the stability analysis to obtain numericzal solutions for points on the
neutral stability curves for both forms of the disturbances.

The mean~flow solutions are found to be in good agreement with
previous theoretical and experimental results, where these results are
comparable., It is concluded from the mean—fléw results that over the range
of surface inclinations from 0° to 120° the most significant change in the
profiles occurs within the range from 0° to 60° with only very small changes
over the range from 60° to 120°.

The results of the stability analysis are in good agreement with
previous theoretical results, but not with previous experimental results.
However, the difference between the theoretical anq experimental results
is attributed to an amplification process. The stability of the flow is

strongly influenced by the surface inclination over the range from 30° to



120° with the most significant change occurring at about 85°. For angles

below 85°, the results reveal that the Taylor—Goertler roll-ﬁortex distur-

bances determine the stability of the flow, while above 85°, the Tollmien-—

Schlichting wave disturbances determine ‘the stability.
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CHAPTER 1

INTRODUCTION

1.1 Previous Analyses of Steady, Laminar, Free—Convection Boundary—

Layer Flows.

One of the earliest analyses of free-convection flows dates
back to the theoretical work of Lorenz [1]* in 1881. He considered the
problem of a free-convection flow along a heated veftical plate, and in
his analysis, Lorenz assumed that the stream lines and the isotherms are -
parallel fo the surface of the plate. However, it is now known that
these assumptions do not agree with experimental observations.

In 1930, Schmidt and Beckmann [2] suggested that the boundary-
layer assumftions might be applied to the equations for at least some
free-convection flows. Using these assumptions, they obtained solutions
for a free-convection flow of air over a heated vertical plate. Schmidt
and Beckmann also performed an experimental analysis for the same condi-
tions. They used a quartz—fibre anemometer to measure the velocities
and manganese-constantan thermocouples to measure the temperatures across
the boundary layer.

Pohlhausen [l1] appears to have been the first to suggest a
similarity transformatioﬁ of the boundary-layer equations. He determined

the unknown conditions at the surface from the experimental results of

* The numbers in [ ] denote the references.



.Schmidt and Beckmann and obtained a series solution for the transformed
boundary-layer equations. However, his results are restricted to the
flow conditions applicable to Schmidt and Beckmann's experiments. To
-overcome this restriction Saunders [1] suggested using polynomial approx-~
imations to solve the single fifth-order equation which results from a
combination of the transformed momentum and energy equations.

Ostrach [3] presented the first "exact" numerical solutions of
the transformed free-convection boundary-layer equations for the flow
about an isothermal vertical plate. He obtained the velocity and temper-
ature profiles and the heat transfer for a range of Prandtl numbers from
0.01 to 1000. Ostrach found that his theoretical solutions#agréed well
with the experimental results of Schmidt and Beckmann. Oétrach's work
was followed by many other numerical solutions encompassing a wide range
of conditions. A few of the analyses dealing with vertical surfaces are
briefly discussed below.

Sparrow and Gregg [4] considered a free-convection boundary-
layer flow along a vertical plate with a uniform heat flux from the
surface. They determined a similarity formulation of the equations and
presented solutions for a range of Prandtl numbers from 0.1 to 100. In
a later study, Sparrow and Gregg [5] considered non-isothermal vertical
surfaces which admit to similarity transformations. They presented solu-
tions for several examples of each of two families of power-law temperature
distributions. Sparrow and Gregg [6] also presented similarity solutions
for several cases of variable-property flows.

Each of the above analyses is concerned with a free~convection

flow along a surface having a continuous temperature distribution.



Shetz and Eichhorn [7] performed experiments using a vertical plate with
a single step discontinuity in the surface temperature. They used a Mach
Zehnder interferometer to obtain the temperature and heat transfer da;a
for air. They also performed experiments in water using Tellurium dye

to observe the flow. Hayday, Bowlus and McGraw [8] analysed the ﬁroblem
theoretically using the concept of localvsimilarity in conjunction with a

transformation similar to that used by Falkner and Skan [9]: this tyﬁg

k\
Y

of transformation will henceforth be called a Falkner—Skan traﬁsformatidn.
Combined free- and forced-convection boundary-layer flows along
vertical surfaces have also been investigated. Sparrow, Eichhorn and
Gregg [10] obtained a similarity transformation for this problem and
presented velocity, temperature and heat transfer results for several
examples of aiding and opposing flows. Szewczyk [11] approached the problem
somewhatvdifferently. He set out to determine the effect of free comvection
on forced-convection flows and vice versa., For each case he determined
the first three terms of a power series expansion where the first term was
the forced-convection flow in the first case and the free—convection floﬁ
in the second case. Kubair and Pei [12] again used a similarity formulation
to determine the solutions for combined free- and forced-convection flows
of several non-Newtonian fluids.
Eichhofn [13] analysed the effect of mass transfer on a free-
convection boundary-layer flow along a vertical, isothermal plate. He
found that for certain power-law distributions of mass transfer the problem
could be solved in terms of similarity solutions. Eichhorn considered a
range of conditions which covered both suction and blowing, and his results
show that mass transfer has a very strong effect on the heat transfer but

only a small effect on the skin friction.



Most anaiyses of free-convection boundary-layer flows assume
that the fluid outside the boundary layer is isothermal. An exception
is the work of Cheesewright [14] which deals with an isothermal vertical
surface in a non-isothermal environment. Cheesewright founﬁ that there
are certain temperature distributions of the surrounding fluid for which
similarity solutions can be obtained. For sevefal examples of these
temperature distributions, Cheesewright presented the velocity, tempera-—
ture and heat transfer results in graphical form and also tabulated the
similarity solutions for two examples.

Each of the above analyses has dealt with free-convection
boundafy-layer flows along vertical plateé, but another important surface
geometry is a vertical cylinder. In analysing vertical-cylinder problems,
Millsaps and Pohlhausen [15] found that the flow along an isothermal
vertical cylinder does not admit to a similarity solution. However,
they did find that for a linear surface-temperature distribution the
equations admitted to similarity solutions. They presented several numer-
ical solutions for the velocity and temperature profiles and compared their
heat transfer results with results obtaiﬁed by applying integral methods.
The comparison revealed that integral methods'using‘parabolic approxima-
tions of the velocity and temperature profileé give heat tramsfer results
close to the exact numerical solutions.

Kuiken [16] also investigated free—convection boundary-layer
flows along vertical cylinders as part of his analysis of the effect of a
small radius of curvature on the flow. He considered the flow past thin
vertical cylinders and slender vertical cones. He apélied a Falkner-Skan

transformation and used a series expansion to obtain solutions for several

non-linear surface-temperature distributions.



Braun, Ostrach and Heighway [17] extended the analysis of free-
convection flows aleng vertical bodies to a wider class of two-dimensional
and axisymmetric body shapes for which similarity solutions could be
obtained. Using an integral method, they determined the growth of the
boun&ary—layer thickness ‘and the heat transfer for several specific body
shapes for isothermal surfaces. Non-isothermal surface-temperature distri-
butions for which similarity'solutions could be obtained were also discussed.

One of the earliest theoretical investigations of free—convection
boundary-layer flows along a horizontal surface was the analysis of
Stewartson [18]. He presented a similarity formulation of the equations
and also obtained a solution for an isothermal surface. However, in his
analysis of the equations, Stewartson concluded that a boundary-layer flow
on an upward-facing, heated, semi-infinite horizontal surface was impossible
but such a flow was possible on a downward-facing, heated, semi—iﬁfinite
horizontal surface. These conclusions were the reverse of what Stewartson
should have concluded, and this error was pointed out by Gill, Zeh and
del Casal [19] who showed that the sign of one term in Stewartson's analysis
was incorrect.

Rotem and Claassen [20] further examined boundary-layer flows
along horizontal surfaces by considering similarity formulations for power-
law surface-temperature distributions and determining the limits of the
exponents for which solutions canbe obtained. They specifically discussed
the isothermal and uniform-heat-flux temperature distributions, but they

presented numerical solutions for the isothermal case only. They also

considered solutions which are independent of the Prandtl number provided
that the Prandtl number is tending to the appropriate limit. In addition

to their theoretical analysis, Rotem and Claassen performed some experiments



using semi-focusing colour-Schlieren photography to obtain temperature
data and what appeared to be reasonable evidence for the existence of a
boundary-layer flow on a horizontal semi-infinite surface. They used a
variety of plate sizes and covered a range of Rayleigh numbers from 0 to
' 40,000. In a second paper, Rotem and Claassen [21] extended the above
theoretical analysis. to axially symmetric flows.

The vertical and horizontal surfaces are rather special cases
of a more general class of inclined surfaces. It appears that the earliest
investigation of free-convection flows along an inclined surface was tﬁat
of Rich [22]. Rich suggested that the boundary-layer equations for a
flow along a vertical surface could be modified for inclined surfaces
simply by modifying tﬁe buoyancy term. He made no attempt to include the
effects of pressure variations, and he made no attempt to solve the
equations. Instead, Rich examined the flows experimentally using a Mach
Zehnder interferometer to determine the heat transfer from flat plates
heated isothermally and inclined at angles uﬁ to forty degrees from the'
vertical.

Levy [23] was perhaps the first investigator to present some
theoretical solutions to the problem of free-convection boundary-layer
flows along inclined surfaces. He was concerned with the applicability
of integral methods to free-convection problems, and one of the examples
he referred to was the inclir~d isothermal plate. He concluded that the
accuracy of the heat transfer results was good, and he found his results
for the inclined plates were in agreement with the experimental results
of Rich [22]. Michiyoshi [24] also applied an integral method to a free-

convection flow along an inclined surface. He considered the heat transfer

from an isothermal, infinitely-wide, thin plate of elliptical cross section.



In his analysis, Michiyoshi appears to have neglected the effect of the
longitudinal pressure gradient and, therefore, his results cannot be
expected to be accurate for inclinations near the horizontal.

Kierkus [25] used another approach to the solution of the
boundary-layer equations for free-—convection flows along inclined sur-
faces, néﬁely a perturbation analysis. Using the similarity solution
for an isothermal vertical plate as the zeroth-—order approximation and
using a small parameter relating the surface inclination and the Grashof
number as the perturbation parameter, Kierkus determined the first—order
approximations for angles up to forty-five degrees on either side of the
vertical. To check the validity of his analysis, Kierkus also experi;
mentally determined the velocity, temperature and heat transfer results.
He found good agreement between theory and experiment and cqncluded that
his analysis was valid.

Another more recent experimental analysis of free-convection
flows along inclined surfaces was conducted by Hassan and Mohamed [26]
who were primarily interested in the heat transfer results. To obtain
these results, Hassan and Mohamed used Boelter—Schmidt heat flux meters.
Their experiments were performed in air for isothermal surfaces and the
results cover a range of surface inclinations from 0° to 180°. Wherever
comparisons were possible, their results were in good agreement with

other experimental results [2, 22, 25] and with the available theoretical

results [3, 25].

1.2 Previous Analyses of the Stability of Free-Convection Boundary-Layer

Flows
The above discussion indicates that the interest in free-

convection flows is considerable. The analyses considered above were all



concerned with steady, laminar flows; however, aﬁother important aspect
of free-convection flows is the stability of the flow. Some of the
analyses of stability and transition to turbulent flows are discussed in
this section.

Saunders [1, 27] was one of the earliest to study transition,
but he pointed out that in 1922 Griffiﬁhs and Davis had noted the trans-
ition to turbulent flow on a heated vertical cylinder. Saunders f27]
performed his experiments on a heated vertical plate placed inside a
pressurized tank. He was primarily interested in determining the effect
of pressure on the heat transfer and his study of the transition to a
turbulent flow was only a minor aspect of his work. However, this study
did reveal that the position of the tramsition is very sensitive to
draughts. Since his apparatus was relatively'freevfrom draughts, Saunders
obtained a higher wvalue for the tramnsition Grashof‘numberskthan that
obtained by Griffiths and Davis. |

Eckert and Soehnghen [28] were among the earliest to perform
experiments with the primary purpose of studying the stability and the
transition to turbulence of free-convection boundéry-layer flows. They
used a Mach Zehnder interferometer to study the flow along an isothermal,
vertical plate. They observed the formation and amplification of a wave
disturbance which was initially two-dimensional and purely sinusoidal.
However, as the disturbance amplified further, the wave form became more
complex and eventually gave way to a three-dimensional disturbance. On
the basis of their observations, Eckert and Soehnghen concluded that the

flow initially becomes unstable due to some small wave disturbance having

a particular wavenumber.



The first theoretical attempt to predict the stability of free-
convection boundary-layer flows was made by Plapp [29]. Using the sﬁall
disturbance theory, Plapp derived the disturbance equations including the
coupling between the disturbance momentum and energy equations. He
accoupted for the effect of surface inclination and demonstrated how to
account for variable properties. However, since he lacked the necessary
computer facilities, Plapp could only obtain approximate solutions of the
uncoupled equations for the case of constant-property flows. In particular,
he obtained the neutral stability curve for the uncoupled equations for a
free-convection flow over an isothermal, vertical plate.

Birch [30] performed another experimental analysis of a free-
convection flow about an isothermal, vertical plate. He studied the
stability of the flow by introducing small disturbances at various dis-
tances from the leading edge of the plate. He introduced these distur-
bances by passing an electrical pulse through a wire placed in the flow,
and he observed the flow with a Mach Zehnder interferometer.

Another experimental technique was utilized by Eckert, Hartnett
and Irvine [31] for the purpose of detecting three-dimensional effects
in the transition process. Interferometers cannot detect these effects
since the density of the observed fluid is integrated along the light
beam. Therefore, Eckert, Hartnett and Irvinme used smoke threads to
obtaiﬁ information to supplement the interferometric studies of free-
convection flow about an isothermal, vertical plate. They also used this
technique to determine the effect on the stability of the flow of placing
an obstacle in the flow at certain positions along the surface. They
found that the critical Grashof number decreased as the distance of the

obstacle from the leading edge increased.
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A theoretical and experimental analysis of the stability of a
free-convection boundary-layer flow of water around an isothermal, vertical
plate was presented by Szewczyk [32]. Szewczyk used expansions about the
critical points to obtain solutions to the uncoupled disturbance equations.
For his experimental work, he used a thermocouple probe to measure the
temperature, and he used dye-injection to observe fhe flow field.

ﬁachtsheim [33] was the first to obtain a numerical solution of
the coupled disturbance equations. Previous investigators had always
assumed that the effect of coupling was small, but Nachtsheim showed that
this effect was very significant. He determined both the coupled and
uncoupled neutral stability curves for free-convection flows of air and
water along an isothermal, vertical plate. The coupled results revealed
the existence of two modes of instability: one in which energy is trans-
ferred to the disturbance by Reynolds stresses, and omne in which energy
is transferred to the disturbance by the interaction of the buoyancy
forces with the velocity fluctuations.

The disturbance equations for a vertical plate having a uniform
heat flux from the surface were derived by Polymeropoulos and Gebhart [34].
Polymeropoulos and Gebhart solved the uncoupled equations and showed how
to convert the results for an isothermal plate for comparison with the
uniform-heat—-flux results. An experimental analysis of this problem was
glso performed by Polymeropoulos and Gebhart [35]. They introduced
artificial disturbances by means of a vibrating ribbon placed in the flow,
and thé& determined the approximate position of the neutral stability
curve by carefully observing the disturbances with a Mach Zehnder inter-
ferometer. The results were in good agreement with Nachtsheim's theoret-

ical results [33] and definitely revealed the importance of coupling.
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Knowles and Gebhart [36] solved the disturbance equations for
the case of a free-convection boundary-layer flow along a vertical surface
having a uniform heat flux. They showed that a thermal-capacity coupling
exists between the fluid and the surface and that this coupling has a
first-order effect on the solution. They solved the equations for several
valﬁes of the thermal capacity for air, and the results showed the impor-
tance of this coupling. The results were also in good agreement with the
experimental results of Polymeropoulos and Gebhart [35]. 1In addition,
Knowles and Gebhart chose a zero-thermal—capacity surface and obtained
soiutions for severai Prandtl numbers.

In another analysis of the stability of a free-convection
boundary—layer flow along a uniform-heat-flux vertical plate, Dring and
Gebhart [37] considered the spatial amplification characteristics of the
disturbance as it moved downstream.- They determined the constant-amplifi-
cation-rate contours from which the relative amplification was determined.
Then using the émplitude of the neutrally stable disturbances as unity,
Dring and Gebhart presented the amplitude ratio contours. Their results
revealed that low-frequency, long-wavelength disturbances begin to amplify
first but higher-frequency, shorter-wavelength disturbances amplify much
faster. To check these theoretical predictions, Dring and Gebhart [38]
conducted an experimental analysis. They used a hot-wire anemometer to
obtain the amplitude and phase profiles of the disturbance velocity and
to measure the spatial amplification rate as a function of the frequency.
To measure the amplitude and phase profiles of the disturbance temperature,
Dring and Gebhart used an interferometer. The relative spatial amplifi-
cation of fhe disturbance temperature was determined from interferometric

moiré patterns. The experimental results were found to be in good agreement
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with the theoretical results, and they verified that the disturbances
which are amplified fastest have much higher frequencies than the distur-
bances which begin to amplify first.

Hieber and Gebhart [39] also considered the stability of free-
convection boundary-layer flows along a uniform-heat-flux vertical plate.
Using a simplified numerical procedure, they were able to extend the
ana;ysis to a much larger range of Grashof numbers. For a Prandtl number
of 0.733 as the Grashof number tends to infinity, Hieber and Gebhart found
" that the effect of temperature coupiing vanished more rapidly than the
effect of viscosity. They also noted that the upper branch of the neutral
stability curve was oscillatory but tending to a non-zero asymptote -
typical of an inviscid instability. For higher Prandtl numbers, the two
instability modes merged to form a loop in the neutral stability curve.

As the Prandtl number tended to infinity, the temperature coupling was
dominznt in the instability. For small Prandtl numbers, there was only
one mode of instability with the temperature coupling effect being negli-
gible or highly destabilizing for large or small thermal-capacity walls,
respectively. They also presented empirical correlations between the

small disturbance theory and the regions in which the flow first becomes
significantly oscillatory and in which the flow first departs significantly
from a laminar flow.

Hieber and Gebhart {40] further examined the above problem in
an attempt to determine the physical effects associated with the two
instability modes as the Prandtl number tends to infinity. They used
asymptotic expansions of both the mean-flow equations and the disturbance-
flow equations to accomplish their goal. From their analysis, Hieber and

Gebhart noted that while the boundary-layer theory predicts the formation
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of an inner or thermal layer and an outer or viscous layer, the stability
theory combined with the empirical correlation with the experimental
results predicts that the‘flow will be turbulent before the two-layer
structure can fully develop. Hieber and Gebhart also converted the
results to the isothermal case.

All of the above analyses have dealt with vertical surfaqes, but
some experimental work has been done on the stability of free—convection
flows along-inclined surfaces. Tritton [41] ﬁsed a fibre anemometer to
study the stability and transition of a free-convection flow along an
isothermal plate inclined at angles up to fifty degrees on either side
of the vertical. He noted that the buoyancy effect stabilizes the flow
for downward-facing surfaces and destabilizes the flow for upward;facing
surfaces. The experimental results of Lock, Gort and Pond [42] clearly
showed this effect. A Schlieren apparatus and thermocouples ﬁere used
by Lock, Gort and Pond to obtain a plot of the critical Rayleigh number
versus the surface inclination.

Lloyd and Sparrow [43] later confirmed the results of Lock, Gort
and Pond: but in addition, they revealed a fundamental change in the
mechanism of the instability as the surface inclination passes through a
range between 14° and 17° from the vertical for upward-facing surfaces.
They found that for angles less than 14° the insﬁability was due to wave
disturbances but for angles greater than 17° the instability took the form
of longitudinal roll vortices. To study the stability of the flow, Lloyd
and Sparrow used the same technique used by Sparrow and Husar [44] in a
study of the formation of roll vortices, namely an electrochemical flow

visualization technique.
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1.3 Present Analysis

Thé above discussions of steady or mean, laminar, free-convection
Boundary—layer flows indicates that the ﬁheoretical solutions for vertical
(90°) and horizontal (0°) surfaces are well established under a wide range
of conditions; ' For other inclinations, solutions are évailable only by
approximate integral mefhods or perturbation analyses un&er limited condi-
tions. It is felt that the profiles obtained by integral methods may pot
be sufficiently accurate for the stability analysié, and the perturbation
analysis has a limited range of application. Therefore, one purpose of
the present analysis is to attempt to find a boundary-layer formulation
‘of the equations which is valid for two~dimensional and axisymmetric flows
of any Ngwtonién.fluid.along surfaces having: smooth, continuous .temperature
distributions. (A finite number of finite discontinuities in the surface
temperature might be considered by a method used bybﬂayday, Bowlus and
McGraw [8].) Before attempting the boundary-layer formulation, it is alsq
necessary to establish a normalization procedure and an order—of-magnitude
analysis which are valid under the conditions stated. A procedure for
solving these boundary-layer flows must also be found. In particular,
numerical solutions are sought for constant-property, free-convection
boundary-layer flows of air along long, inclined, isothermal, plane sur-
faces. The resulting temperature, pressure, velocity and heat transfer
data obtained from this analysis will be compared with available theoret-
ical and experimental results.

A second purpose of this analysis is to study the stabilit&.of
free-convection boundary-layer flows subjected to two forms of small
disturbances: a two—-dimensional wave disturbance, and a set of longitu-

dinal roll-vortex disturbances. For the somewhat general mean-flow
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conditions stated above, an attempt is made to establish the linearized
forms of the disturbance equations based on the small disturbance theory.
As in the case of the mean-flow equations, a normalization procedure and
an order~of—-magnitude analysis have to be established such that they are
valid under the conditions stated for the mean flow. Then procedures for
solving these equations must be chosen. Solutions are then sought for
the stability of constant-property, free-convection boundary-layer flows
of air along long, inclined, isothermal, plane surfaces subjected to both
forms of disturbances. In particular, the neutral stability curves are
to be determined, and from these curves the critical Rayleigh numbers
will be determined. The critical Rayleigh numbers for both disturbance
forms will be compared to determine the ranges of surface inclinations
over which each disturbance form governs the stability of the flow.
Finally, the critical Rayleigh numbers will be compared with the available

theoretical and experimental data.
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CHAPTER II

- FORMULATION OF THE PROBLEM

2.1 Steady-Flow Equations

Steady, two-dimensional or axisymmetric free-convection flow of a
Newtonian fluid- about. a heated surface or in a buoyant jet is consideréd.
(The flow about any cooled surface inclined at 180° to am identical heated
surface can be described by the same equations and boundary conditions
provided that the property variations of the fluid are skew-symmetric
about the ambient temperature.) An attempt is made to reduce the Navier-—
Stékes equations and the energy equation to a set of equations describing
a free-convection boundary-layer flow along the surfacé, or in the jet.
The equations are to be applicable for a temperature distribution which
varies continuously with position along the surface, or the axis of the
jet, or which has a finite number of finite discontinuities.

2.1-1 Governing Equations

For the present analysis, thermal radiation effects are assumed
to be negligible and the above flow is assumed to be described by the
following vector equations [45]:
cénservation of mass:

v.(oV) = 0,
conservation of momentum:

OV.W = =VP + V[ (@-21)V.¥] + (V). [(V) + (V)]
3
(2.1-1)

+ u[vaV + V(V.V)] + oG,
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conservation of energy:

PCpV.VT + T p) V.VP = V.(kVT) + (fi-2p) (V.9)2
3

o T

+ UV {[(W) + (W) 1.V}-uV. [V3V + V(V.D)]

In addition to these equations, an equation of state and,relations for
the property variations are required.

Consider equations 2.1-1 applied to a region such as the omne
illustrated in figure 1. It is assumed that the body force field is due
to gravitational effects alone. It is also assumed that the pressure can
be expressed as a sum of the hydrostatic pressure, measured for the case
of no flow, and a departure from this hydrostatic pressure, that is:

P =P, + Pg .

Similarly, the density is expressed as a sum of the density of the undis-

turbed fluid far from the surface and a departure, that is:

P Po + Pg .

The pressure, Py» and the density, po, are related as follows:

0= -1 23Po

TT) oX " Peg sin g

- 2 _ osa | ‘
37 Po & C s

o
0

and

where Kk = K(X) is the curvature in the X direction of the surface Y = 0

for any Z.

The set of equations 2.1-1 can now be written as:

o] BU U _g (1+xY) p 9 KpV o) +VY sinOL U, dR+Ycosodo
X T + [ aY Y] + + REYsing) | +(x = 1=0
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U pvaU KoUV _ _ _ -1 Pq, (fi+4/30) (14xY)32%V | K3V
(T+<D) 9X T BY T (IHY) | (@) et {axz + 3%oY T OX
vdk 1 Ud?R - UYsino do, 2, UYcoso d?a , 3U 4R
Xt ®Esin [ X2 Y (dx) * axz T ‘&
LYcosa da) (14xY)Vcosa da , (1+KY)3V sinc 1 U (dR
* ax) * ax * X 1 - ®evsinm 2l (X
+ Ycosa _d_oc) Vsina (__dﬁ Ycosa da) } - (4 /31)Y dK KV
* ax) * ax = 1) = @3 [ax
U dR | Ycoso do 1 0(fi-2/3u) (3U . kV
* ®itsina) X * @) t @rz: X Bx T
4 (FKY)IV BV 1 U ,dR , Ycosodo. (1+kY)Vsin
* vson) b Gax * ax) * 13
2_ 9y OU , KV oy 90 . 1 9V KU
+ @D 29x 5% )ty Iy Y @ Gx 17 ”{BYZ

1 3%v _ kdU , _ sino 3V _ (1+kV)3U KUy
- D 3%y ~ 9Y ¥ ®ivsing) 9% 3Y ]
K oV - KU
W (BX )} - P48 sina (2.1-2)
pyu oV pVaVv pu2k  _ =-3Pg + (i+4/31) { sino v

(A+xY) X 3Y ARy -9y ayz * ®ivsina)
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3 __Vsina 4 4 1 _ [ %0 4 K3V 1 9U dR ., YcosodU da
(RtYsina) (1+KY) "oXoY Y (RtY¥sina) 9Y dX Y dX

+ Ucosa do 7 Usino (il_{_ + Ycosa _gl_g))] _ K [ﬂ

= dX 7 (RtYsina) ‘dX ~ dx (+Y)? '9x

+ U (_qg 4 Ycosa d_a) + KV]} + 9 (1—-2/3u) [ﬂi Vsino
(RtYsina) ‘dX dx oY 9Y =~ (RtYsina)

13U, KV U dR , Ycoso do. 1 3u (98U

Y Own 3x T T (B¥sine) ‘ax - =) * ane 5x By

+ol @V _ KUy, 20u3V __ u_gd%wW, 1 93U 4R
(1+kY) ‘39X 3Y 9Y  (I+KY) 9XdY = (RE¥sina) oY ‘dX

Ycosa doy _ 1 2%V _ Udk _ kdU 1 @R
ax (1+<Y) '9X2 dX 93X (R*¥Ysino) daX

I+

I+

Ycosa doy 8V _ KU Y dk 9V _ KUy} _ pgg cos®
Yox - Nt morx G- )

CoU 30 |, pCpVed . T 3p. U 3P , V3P, _ 1 k320
(1+kY) ox T 5y * o G IawD 3x * ay! = @wepz [ axz
k 90 dR . Ycosa do ok 90. k520 ., 3k 30
*+ (Re¥sino) 9X Cax ax) tax axlt ¥z t ey oy
+__ksino 30 ke 30 _ __ kY __dk 30 , (f+4/3u)(__ 1 __ [aU)*
(Rt¥sina) 9Y (I+KY) 9Y (1+kY)? dX 3X (1+xY)2" B3X



where

and

It

2 2
k?v2 2|<V8U U Ycosa do
+ + (R_Ysina)z(dx dX) ] * ( )
V%sinla . 2UVsino (dR Ycosa doz)} + 2(u-2/3u) (
(RY¥sina)2 = (14KY) (R*Ysina)? R+Ysina)

sinaav [(Rt¥sina) U 3V KVRV, KV?sina | Vsino U

(1+|<Y) Gx 3y 5y * * 3X
UdV  dR Ycoso do Ycosa doi, A
3% (dX + —*9] +‘TE;E§75 ( + KV)( dx)}
23U LV 1 av, 2
u{( ) + -(—WY_) 3Y (ﬁ - KU) + (l_'HCY)_z- [(3X) +K2U2 2KkU— ]}

<o -g implies an upward—facing surface.

SIE

The above set of equations is not complete until a sufficient

number of boundary conditions has been established. However, because of

the semi-infinite nature of the region, the complete set of boundary

conditions is not evident. This fact combined with the complexity of the

equations makes it desirable to seek some simplification to the equations

with a possibility of obtaining a boundary-layer formulation. Such a

formulation would eliminate the necessity for specifying those boundary
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conditions which are not evident.

2.1-2 Boundary-Layer Equétions

In an attempt to simplify the equations, the equations are
normalized and an order-of-magnitude analysis is performed. This procedure
is given in detail in appendix A. The final fesult of this procedure is
a set of equations of the boundary-layer type which may be expressed in

dimensionless form as follows:

You q_x Y. vJsina ._l chosada (1+Aqy) YBV v
8x ox + (§%Jysinc) [ : ( * )] + ( By )

+ Aqyv = 0
1epn 2 -1 2
yRa_Ls(luu 1)[ u au + Vou . _Aquv ] = —oRaL, s(L+w™) o5
(1+Aqy) o (1+Aqy) (1+Aqy) ox

Lt (4w?-1) Ma” + oM du AQM du ., _MJsina _ Ju

+ oRay U35%2 * 3y 3y * (Traay) 3y * (3Edysing) By

Aqu M  A%Mq3u + MAq Jusino ] oYq sina

© (I+Aqy) 3y = (1+Aqy)? ~ (I+Aqy) (3%Jysina)’ ~ 8O,

+ 0 [oRaL%(sz-B), oAzRaLS(zw -3)]

(2.1-3)
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w? 2 1 1 2
_R Agyu® _ o3P gYd coso 5 (3w -2) 5 (3w -2)
°L (+Aqy) 3y ~ BO, + 0 [Ray » ORay ’
1rq .2_
chaL5(3w 2)]
c[{kra) wdl , _Ou _da , (1+a)vd8, _ (1+a)[K826 3K 36 ARq 36
YelQwaqy) 3x T (FAqy) ax 3y 3yZ © Jy 3y | (1+Aqy) 9y
KJIsino -1 (1+w?) -5 (1+w?) ~£ (1+0?)
T3:3§§IEET'By] + 0 [0s RaL R RaL , A RaL .

1 g2 1 2_

2.1-3 Boundary Conditions

Having posed the problem in terms of a boundary layer formulation,
it is necessary to establish the applicable boundary conditions. To arrive
at these conditions, it is assumed that the presence of the heated surface
does not affect the fluid in the region preceding X = 0 or in the region
far from the surface. Furthermore, it is assumed that there is no flow
parallel to the surface at X = 0. Although experiments indicate that these
conditions are not exact, there is no detailed information known a priori
about the flow outside the boundary layer to facilitate the establishment
of more realistic boundary conditions. However, even if it were possible

to establish more exact boundary conditions, it must be noted that the
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boundaryflaber equations 2.1-3 are not valid near X = 0. Thus by applying
these equations near X = 0, the solutions obtained will be in error, but
|
it is assumed that this error will propagate only a shoFt distance into
the region where the boundary-layer approximations are valid.
The other boundary conditions state that there is no flow across
the solid surface, there is no slip of the fluid in contact with the

surface, and the fluid at the surface attains the temperature of the

surface. Therefore, the relevant nondimensional boundary conditions are:

x = 0, y>0: y=1

x>0, y = O: 0 = 6,(x)

(2.1-4)
All x, yow: y=1

c=1
K=1

u=Pg=6=0

The condition 0 = 6y(x) for x>0 and y = O implies that the
surface temperature distribution is known. If the heat flux from the
surface were known, this condition would be replaced by a condition on
90 at the surface.

dy

2.2 Constant-Property Flow

2.2-1 Governing Equations

In general, the fluid properties are functions of temperature
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and pressure. However, the departure from hydrostatic pressure resulting
from a free-convection flow is usually of a magnitude which has little or
ﬁo effect on the fluid properties. If temperature variations are small
throughout the fluid, the property variations resultiné‘from the temper-

ature variations can frequently be ignored.

Consider all fluid properties constant with the exception of
the density. The density is also considered to be constant in all terms
except the buoyancy terms, in which the Boussinesq approximation is used,
that is:

P = Pul1-B(T-T,)].

Using the expression for the density as given in section 2.1-1, it foliows

that:
pd = —pooBG
The set of equations 2.1-3 now becomes:
du u ds | Jycosa do (1+Aqy) 3v , Aqv = O
Q. u_ 45 <o ov
ox + (J +Jysina) (dx * dx) + oy +
1,2 - (1+w?)
R 5 (4w —1)[ u §2_+ Y§2.+ Aquv ] =" ORay. P,
4, (1+Aqy) ox dy = (1+Aqy) (1+Aqy) 9x
1 2 2 2 2
5 (4w°=1) 3°u Aq dJu Jsino du A°q°u
+ ORay [8y2 + (1+Aqy) dy * (3+Jysina) 9y ~ (1+Aqy)?

Ag J u sino

(2.2-1)

- Ra Aq u?® _ -0dp4

= +
(1+Aqy) 3y o(1+a) Ocosa
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(1+a)vdd _ (1+a) 326 Ag 90 , _Jsina 36

(1ta)u 96 , Oda 98 , __Jsino _ 96
(1+Aqy) (Bx + dx) * dy [3y2 + (1+Aqy) 9y = (j+Jysinq) By]

The corresponding boundary conditions are as follows:

x=0,y>0: u=P =6=0

x>0,y=0: u=v=0,0=0(x ‘ (2.2-2)

All x, y+> o u=P =606=0

2.2-2 The Falkner-Skan Formulation

In order to proceed further with the analysis of the above
equations, consideration must be given to the geometry of the surface.
The following analysis is concerned primarily with two-dimensional sur-
faces. Whenever possible, an attempt is made to outline the procedﬁre
for asixymmetric bodies and for buoyant jets.

The equation of conservation of mass, or the continuity equation
as it is frequently called, as it appears in equations 2.2-1 or 2.1-3 can
be identically satisfied by the introduction of a stream function, ¥,

defined as follows:

Y _ u and 3y _ -(l+Aqy)v, ' (2.2-3)
oy ox :

or oY _ yu and 3¢ _ -Y(1+Aqy)v, (2.2-4)
oy ox

respectively.
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In éddition to the stream function, the Falkner-Skan transfor-

mation [9] is introduced as follows:

n+ 3
Vix,y) = % v, ©),
4n+2+-8w2
S~4w2 :
pd(X,Y) =X H(T], E), (2-2"5)
and e(x,}') = xn ‘I’(TI, g):
where £ = x,
'n-2+4w2
T](X’Y) = X S-4w
C

1
and C1 is a constant used in scaling tﬁe boundary layer thickness in the
n, & plane. The derivation of this transformation is given in appendix B.
It is also pointed out in appendix B how the traﬁsformation can be modified
for flows for which it is either impossible or inconvenient to introduce
a stream function, such as in the case of axisymmetfic flows.
Introducing the transformations given in equations 2.2-3 and 2.2-5

into equations 2.2-1 leads to the following set of equations:

1 p2
4w”-1) 2 2
C.Ra, 5¢ 2nHl+4w?, F.2 - _ n+3
1L {(—-5—_4—(;2—) n 5_-52') Fan + F,(FnFEn FEan)
2-n~-4w?>
- C AqE OTAW n+3 . FF n-2+4w2, NF_2 + EF,F
1 [GZ52) n+ Gz 0 g nl
2-n-4w> 2-n-4w?
/G Aang S 3/ 1ae agng SR



1 1am?
s (A7) pnt2+8w2, T
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= -0C,%R n=2+4w>, n I g
e Gt G
" 2-n-4w? - 2-n-4w?
540> g (4w*-1) - S—4w?
14C A ) +
./( 1 ang ) + oRa {ann + clAqg an
2-n-4w? 4=-2n-8w? 2-n-4w?>
Jarcaag O - o tarqre ST R/ e Aand AT 2y
(n+3) (1-4w?)
3 5=-4w*
+ o (1+a) Cl g dsina (2.2-6)
2
(2-n) (1-4w?) 2-n-4? “—‘”3{14‘{;3—)—
3y, n 1 1 c, n
+ o(1+a) %cosc
2-n-4w?
_ n+3 _ dFna AR
C,m @ F G @n T + g[Qan @an + Tiﬂ;%]}/(1+clAqn£ )
2-n-4w? 2-n-4w?>
- S—4? S—4p?
= an + ClAqE ¢n/(1+clAan )

where the subscripts £ and

to £ and n, respectively.

n refer to partial differentiation with respect

Before considering the boundary conditions to apply to equations

2.2-6, it is important to note that the function,

a(x), is chosen such

that OW(X) = GW(L)[1+a(x)] xn, which leads to a very simple transformed

boundary condition.



The boundary conditions now become the following:

F(0,8) =‘Fn(0,€) $(0,8) -1=0

I

F(2,8) = 8(=,8) = T(=:E) = 0

F(n,0) = F(n,&%)
(2.2-7)

F (M0 = F(n:E%)

®(n,0) = 2(M,E")

CTI(N,0) = T(N,E)

where £° is some small, but non—-zetro, value of £ used in the 1a£era1
momentum equation to avoid the singularity which arises in an attempt to
solve for Hn at £ = 0.

Equations 2.2-6 are applicable to a reasonably wide class of
problems. However, the primary purpose of thié work is to comnsider a
class of problems for which the curvature of the surface 1s zero, that is

q = 0. For this particular class for the special cases of oo = 0 and

o = m/2 (with a(x) = 0), equations 2.2-6 are replaceable by ordinary
differential equations since the transformations given by equations 2.2-5
can be replaced by similarity transformations. However, since equations
2.2-6 are valid for a(x) = 0 for a = 0 and o = T/2, it must follow that

all terms involving derivatives with respect to £ are identically zero.
Similarity solutions were first obtained for O = 0 and o = ©/2 by Stewértson
[18] and Ostrach [{3], respectively. Similarity solutions for a class of

problems for which the curvature isnon—-zero were considered by Braun,

Ostrach and Heighway [171.
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2.2-3 The Lefevre Transformation

Equations 2.2-6 afe applicable to fluids having a Prandtl number
of the order of unity or higher. It would be most desirable to obtain a
set of equations which would 7apply for an& Prandtl number, including the
limits of zero and infinity. Lefevre [46] introdupgd a transformation,
hereafter referred to as the Lefevre transformation,‘which was suitéble
for all Prandtl numbers including zero and infinity. Using Lefevre's
basic idea, the transformation for the present analysis is derived in

appendix C and is given by the following:

1
n= &9 =
| c=d
F(n,E) = (29 £(z2,8),
1 (2.2-8)
T(n,g) = <1—:‘i)mn(c,a),
and 8(n,E) = X(2,E)-

Introducing equations 2.2-8 into equations 2.2-6 and setting

1 2-n-4w?>
5-4w* 5-4w*
_ 1+0
I=CA ) qé&

leads to:

5 (4w?-1) {(2n+1+4m2) £2 . 3y o

C,Ra,, 5—4w? z 5—4w? gg v 8L fgp - £
n+3 n=2+4w2 2
-G f fC + 5700 fC + £ fg f€]/(1+CZ)}/(1+CZ)



30

5
=z 1 2
- -C 30(1+°)5 4w R 5 (1+w )[(4n+2+8w?) T+ (n-2+4w2) -
1 c 4 540> S=4w> z

} (4w?-1)- . _ oz
+ EM 1/ (HEZ) + oRay o + @y for ~ @on® &t

4 (n+3) (1-4w?)
140 S-4w* 5=-40° '
+ cl3 o (l+a) ) E xsina (2.2-9)
=4 (2-n) (1-4w3) : 4w2 (n+3)
14g O-4w? 5—4w> . . o 54>
-q &) g £,.7/0c, 7 QD)) = EI‘E T

+ o(1+a) Ycoso

_C1 —t+3 - _ag - _z
sy (0 X £ =G5 Xg £+ EIXg £ - X £ + gy X 1110 = X @y X

The boundary conditions are:
f(ogg) = fc(o’g) = X(09E) -1=0

'"'(°°’E) =0

fc(w,E) = X(®,&)

£(z,0) = £(¢,&8°)
(2.2-10)

fc(;so) = fC(;’g )

X(Z,0) = X(T,E®)

m(Z,0) = T(Z,E®).
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The set of equations 2.2-9 with the boundary conditiéns 2.2-10
is only applicable to constant-property flows. However, the Falkner-Skan
tr;nsformation and the Lefevre transfofmation are not restricfed to such
flows. Given some additional relationships to specify the property vari-
ations, it would be possible to introduée additional dependent variables
into the derivations of these transformations, but the resulting transfor-
mation would not be geheral since they would depend on the specific
property-variation relationships. No attempt will be made to give any
examples for variable property fluids since the present work is primarily

concerned with constant-property fluids.

2.3 Disturbance Equations

The combined hydrodynamic and thermal stability of the steady,
free~convection fluid flows described in the preceding section is consid-
ered. Using the method of small disturbances, an attempt is made to
reduce the time-dependent Navier-Stokes equations and thé time-dependent
energy equation to a set of disturbance equations which determines the

stability of the flow.

2.3-1 Governing Equations

The small disturbance theory assumes that each of the dependent
variables is expressible as a sum of a steady-state component and a small
disturbance component. In the present analysis, the steady~state (or meaﬁ)
component is indicated by a bar over the variable and the disturbance
component is indicated by an asterisk. In formulating the analysis, the
disturbance components are assumed to be three-dimensional and time-
dependent. It is also assumed that the disturbance components are suffic-

iently small to permit the neglect of terms which are quadratic or higher-
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order in the disturbance components. Therefore, the governing equations
are the three-dimensional forms of equations 2.1-1 with the addition of
the unsteady-flow terms. Assuming that the mean components satisfy

equations 2.1-2, the resulting set of equations is the following:

p|<V* p*aU p*KV + Uop* + U*ap + 1 (dR

gg* 1 [an* 9P’
BX oX (R,_Ysina) dax

*+ @D +

, Ycosa do:. pU* p*U. POV* | p*3V _ Vap* , V*3p sino. ,pV*
* x M1+ 5% Y eyt oy 3Y ¥ (RE¥sina)

Rr, oW*

(R¥Ysino) 2z - 0

<
DV)+

1

p[ (UBU*v KOVE | U%QU  KUAV, . Voux v*a_U] + P*V3U
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)+ 5yl T 3y C3ganGr + )
1 [-3* _(dR , Ycosada, , V*sina + R OWk
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The semi-infinite extent of the region in the X direction and

the lack of distinct boundaries in the Z direction present difficulties

in attempting to establish a set of boundary conditions for the above set

of equations. However, even supposing that the boundary conditions are

available, the complexity of the above equations makes any solution

attempt very difficult. Therefore, it is desirable to seek some simplifi-

cation to the above equatioms.

2.3-2 Simplified Disturbance Equations

In appendix D, the set of equations 2.3-1 is normalized and an
order-of-magnitude analysis is applied. The end result is the set of
equations D-1 which constitutes one form of the simplified disturbance
equations. The mean-flow quantities appearing in the equations are assumed
to be known. However, the equations cannot be solved without having
auxiliary relationships for M*, c* and K* in terms of the other disturbance
variables.

Assuming that these auxiliary relationships are available, then
a suitable representation must be found for the time dependence, for the
semi~infinite extent of the region in the X direction and for the lack of
boundaries in the Z direction. This problem is approached b& assuming
that the disturbance variables are proportional to exp [i(Ax* + Qz - BT)].

Using this assumed proportionality, the disturbance variables are bounded
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as X or Z goes to infinity, and the stability of the flow can be analysed
by considering a single component of a Fourier series in x* and z. The
real parts of A and £, Ar énd Qr, are the wave numbers in the x* and 2z
directiohs, respectively, and the real part of B, Bf’ is the frequency of
the disturbance. The imaginary parts of A, § and B, Ai’ Qi and Bi’ are
amplification factors. The disturbance grows with increasing x%*, z and T
ifli_and Qi are negative and Bi is positive. If Xi, Qi and Bi are all
zero, the disturbance neither amplifies or attenuates and the flow is said
to be neutrally stable.

For the stability analyses of free—convection flows, Knowles and
Gebhart [36] have shown that for a = 7/2 free-convection flows subjected
to two-dimensional disturbances have a lower criticalRayleighInmmer than
the same flows subjected to three-dimensional disturbances. However,
since the present analysis is for all a, an attempt is made to solve the
disturbance equations as they apply for two types of disturbances. The
first type is a two-dimensional disturbance in the form of a wave which
travels in the X direction with an amplitude dependent only on y. The
second type is a three-dimensional disturbance in the form of a set of
roll vortices having their axes parallel to the X direction. These vortices
are periodic in z and have amplitudes which depend only on y. 1In additdion,
these vortices are assumed to be independent of x*, but this does not imply

that u* is zero.

2.3-3 Tollmien-Schlichting Wave Disgturbances

In forced-convection stability analyses, two-dimensional wave
disturbances similar to those described above are called Tollmien-Schlichting

waves. This terminology is also applied in the present stability analysis.
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For Tollmien-Schlicht:lng wave disturbances, the set of equations D-1, with

the chosen funct:ion for H(w), can be simplified to the following:

__31:1 (1+y,) 3V* du* Aqv* v*JsinO | v*3Y4q u dYg*
ot 4’5y (1+Aqy) Gxx ) * 1+ oy + @Haay) s_i

(j*Jysinc)

-4 (1+w?) - - -
+ R ~ (_1 chosagg_)[(1+Ya‘)u* Ya*u_4
(j+Jysina) (1+Aqy) (1+Aqy)
Yq*vJsing 1 * du ‘ Aqv u B'Yd Y Bv _S'Yd* _
= (JxJysinc) + (1+Aqy)" Ya (Bx ) + 1+ d35y 3? 3y }=0
W)L __@ivk  _ Aqdut _ 2Aqu*du _ Aqudv¥ _ EE duk _ ud’ut , _ dfuk
TTFAqy) (ox*aT 3T 3y 3y 7 dx* ~ 8yext’ ~ 8ydT

v*a’- vk au S ,2Aqux _ 32y d Bu* . vHdu
- ay - 3y (1+Aqy)2( oxk ~ 9x*Z 1 - [81: oy
1 2
u s (14w7) 1. 87 ov*

* % *
Jdu Aqv )] - Agu Yg: 4+ Ray

* iFagy) Oxx (I+Aqy) T (i+Aqy) o% TR

(Bv* _ 2Aqu*)]‘ (1+’Yd) [va u* _Bja_u* + 1 2AqVdu*
(1+Aqy) ox* ?y? T 9y ¥y (1+Aqy) * - 9y
_ valvk dv* v u*d?y_ | du* §_§1_{_ + Aqu*%v) + 1 (ZA\-m*_c_l_cl

5x*3y  ox* 3y 3yoR = 9y 0 (THaqy) 2 dx
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* %g E% N <1+iq-yl) (ag:rgi * % % + Aq;;%g * ZAq;%%) + 71_4%2737(6%%
- 20 - Gl @ - 'g%d[;g—;* + e T
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Jsino @Z[ 1 ov* Aqu*) + _a_u_*] + 1 32M* [_81_1_
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+ A2q23v* A3q3u*)] T Misino,  3%u* 1 2AqQu* _ 32v* S
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+

2
Aqu oRa ¥ (dy*sina
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5y, v(1+a)d0* _ u*(l+a) 98 ae + Yo*ep_u(l+a) 38 ud __ da
+ u*f) + 5y T (taqy) ?x T ¢ [Haqy) 3% T (+aqy) o=
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Assuming that the disturbance variables are proportional to
exp[1i(Ax*-Bt)] and that the stability of the flow can be analysed by consid-
ering a single component of a Fourier series in x%, the disturbance variables
are expressed as follows: |

u* (x*, 'y, ) = Gl(y) ei()\x* - BD)

vhk(x*, y, T) = 62(y) ei(lx* - B7)
ox(x*, y, T) = s(y) et Px* = BD)
1i(Ax* - BT)

Yq* (%, v, T) = r(y) e

M*(x*, y, T) = A(y) el (Ax* - BT)
ck(xk, y, T) = A(y) et Ox* - BD)
R (x*, y, T) = T(y) el (** = BD)

Substituting these expressions into the set of equations 2.3-2 and
eliminating the exponential factor from each term, the following set of

equations 1s obtained:

{il<1+Id), Ray, ~5 (1) Vg +%3) ( chosada)]}61 +{(1+yd [ Agq

(1+Aqy) (1+Aqy) 8x (j+Jysina) (1+Aqy)
Jsino aYd QA+ )ds i\u 1B
* ety * oy 2+ O {cl Ay
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+ (1+Aqy)3 &N By <1+Aqy)]
-1 (+w?) 2= 2=
+ o’RaL dA . 23%u + Aq 8u A“qu ]
dy' oay® = (1+Aqy) dy = (1+Aqy)
1 2 - 2 -
, ORay s(H)  gsina [ ) + OBy 8%y 535
- (3*Jysina) dy 9 (1+Aqy) ay®
2= 2. 2 3 3= -1 (1+w?) 2=
+ 2Aq  9°u A“q au A’g’u , , ORa, AJsina (9°u
7 (1+Aqy) dy° (1+Aqy)‘ By T (@Hay)’ (3+JIysina) "3y"
+ _@l_x_] _ o‘RaL-S(lm ) 'AJ2sin?0 Su + Aqu 1
(1+Aqy) dy (j+Jysina)“3y (1+Aqy)
_1 2
, ORa; 5(1H07) 52y (28 _Agu
(1+Aqy) '3y . (1+Aqy)
. (2.3—3)
_1 2y_ _1 2 _
(+ayra, S 0Ra%s | (1ta)Ray S Fag , _Rsina _, 3R z
dyz (1+Aqy) ~ (j+Jysinot)
- . SL?) 1470030
_ (1+Yd)cv]g_s_ + {i(1+Yd)c(1+a) [B - A, Ra (1+Ygq)cu da
dy (1+Aqy) (1+Aqy) dX

(1+a)®A%,, s _ Ra -5 o’ ) (1474)c Bda , (1+2)38; &,
+ TR - T (1+Aqy)[ 3%

1 2
- (1+§d)2(1+a)§§_62 _ RaL'S(IH” )[rE + (1+§d)A][ u(l+a) 938
3y ' (1+Aqy) 9%
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- - = -1 +w?) 23
+_3_6___g;§_+v(l+a)&] + Ragp (1+a)T 320 . __Aq 38
(I+Aqy) dx 3y oy° T (ItAqy) 3y

-1 (1+w?)

Jsina 3,6] Ra
oy dy

* Giiysina) dy

The above set of equations can be employed in the stability
analysis of any free-convection flow which satisfies the boundary-layer
equations 2.1-3 and the boundary conditions 2.l1-4, assuming that the distur-
bance has the form of Tollmien-Schlichting waves. However, auxiliary
relationships for r, A, A and T and a set of boun&ary conditions must be
established before a solution can be attempted.

By considering constant-property flows over two—dimensional
surfaces, equations2.3-3 can be replaced by a set of more simplified

equations. From the Boussinesq approximation,

p = p,(1-80).
However, since p=p+ p*
and 0 =8 + 0%,
then P = p (1-B®)
and p* = - pBO*.

Using the normalized forms of these expressions along with the above
assumptions and assuming €<<l where € = BGW, the disturbance continuity
equation reduces to a form which can be satisfied by introducing a distur-

bance stream function, Y*, defined by:

oy

and vk = =1 oYx .
(1+Aqy) ox*
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Utilizing the above assumptions and introducing the disturbance stream

function, equations 2.3-2 reduce to the following:

' _1 2
L %W x _ ayrap S®)ag p2px @k Aq DRy
(1+Aqy)© 9x*°9T (1+Aqy)° dx 9x*dT Jy“oT (1+Aqy) dyoT
= 3 .= (14w?) 2 - 2
+ u 9Pk  2AyRajy, dq 3 P*.- _ __Aqu o°yP*
(1+Aqy)°tax*°  (1+Aqy) dx ox*‘ (1+Aqy)“ dyox¥*
u 93yP* A%q2u Oy A du oY* 1 3%u Sy*
+ . q‘u ; q u oY u

(3+Aqy) dx*dy~ + (1+Aqy) S 9x*  (1+Aqy)“dy 9x* T (1+Aqy) 9y“© 9x*

+ RaL s(L )[ 1 du D2yP* _ _Ayu dg 92y* + v ?3y*
(1+Aqy)” X ox*“ (L+Aqy) ¥ dx ox** (1+Aqy)* 9x*“3y

2Aq _ Bu JY* 2au __ dq dy* _ _2A%qyu_dg dP*
+ (1+Aqy)“ 93X dy + (1+Aqy) % dx 9y (1+Aqy) '3% 9y

L1 _2%u 3yx v 9%y* 26qv_ %Yk | v iy
(1+Aqy) 9ydx dy 3y ay*© (1+Aqy) 9y 9y

+—1 v 3%ypx _ __Aqv 3%k 1 du %y* Ag _ dv dy*
(1+Aqy)° 9y 3x*“ (1+Aqy)® 9x* (1+Aqy) 9x 9y (1+Aqy) 9y 9y
ora, "BCHOT) p3g3 gy A2q?  B2y% 2aq 3%y

= L [__A_S' - q - L +

(1+Aqy)~ 3y (1+Aqy)“ 9y (1+Aqy) 9y
4 _3A%q% d%y* 249 _d%yx 1 Blyk 2 3y

(Trhqy)” ox*? ~ (ithqy)® 3x#79y | (1+Aqy)® ox* + [vaqy) Z 3x*20y7
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y ~w? -1 (1+w?)
+ 2 $*] + GRaL [Agsina‘e* + RaL sino  dad*.
oy (1+Aqy) . (1+Aqy) dXx
_ 1 30* cosa | 6% sina]
(1+Aqy) Ox* oy

(2.3-4)

(1+a)20% | _(Ita)i 80% _ _(1+a) 38 dy* , Ra (™) Jox g

8T T (1+Aqy) ox* ~ (1+Aqy) dy ox* T (I+Aqy) dx
+ (1+3)v30* _ (14a) 38 By 6 da dy*

oy (1+Aqy) 9% 3y (1+Aqy) dX 9y ]

1 2
_ Ra ~S(IF® dva)__1__ %%  p%x . aq 26%,
(1+Aqy) © 3x** * 3y? (1+Aqy) Oy

Following the procedure used to obtain equationg 2.3-1, it is assumed that
Y* and O* are proportional to exp [1(Ax* -.BT)] and a single component of
a Fourler series in x* is used to analyse the stability of the flow.
Therefore, P* and 0% are assumed to have the following forms:

Pr(x*, v, T) = ¢(y) el (Ax* - BT)

i(Ax* - BT)

and B*(x*, y, T) = s(y) e

Substituting these expressions into equations 2.3-4 and eliminating the

exponential factor in each term, the set of disturbance equations becomes:



51

{ i r A

B - __Au 9%u A%q%u Aq aG]
(1+Aqy) " (1+Aqy) *

(taqy)) ~ 352 T (i+Aqy)? ~ (i+Aqy) 3y

ARay S M%) AvBaq  3ayAE _ dgq ABE _ AaAV | A(L+AQY)BTg} 4

T (A+Aqy) dx = (l#Aqy) dx = 3% oy
+ {4 Aquh__ __BAg 1+ RaL-§(1+w2)[ 24 du _ _ A%y
(1+Aqy) 2 © (l+Aqy) (I+Aqy)* 3x  (1+Aqy) z

240 dq _ _2A%qyu _dg . ___1 9%u_ . __Aq gx}_]}gg

+ Ataay)Z dx ~ (L+Aqy)® dx | (i+Aqy) 9ydx = (I+Aqy) 3y ~ dy
A _ _1 2y _ _ -
- B - u _ Rag s (140%) v , _2Aqv__ 1 _ duy, az¢
(1+Aqy) 3y | (l+Aqy) = (1+Aqy) 3%~ dy°
1 2 2
-z (L+Hw°)=.3 -0
R s( vd $ ORa, - s iAcosa - Agsina
+ 't b ot
_1 2
_ Rag s (14w )sina_cy_] _ ds sina,
dx dy
_1 2
_ oRa s (14w ){d“¢ 4+ 24q _d% 222 | _A’q® ]d2$
ay* © (I+Aqy) dy (A+Aqy)Z © (1+Aqy)“'dy
1 A3q® + 2A2Aq)d¢ A2 (A2 - 3a2¢%)¢}
o+
M GTYCIORA dy ¥ @HE”

(2.3-5)
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21 2 - 21 2 -
{(1+a)[B - Au ] + fRa "SI 3 day s + iRa s (14w )(1+a)vgg
(1+Aqy) (1+Aqy) dx dy
- . 1 2 - -
+ AQ+a) 38 ¢ . iRay s (14w )[(1+a)_3_6+ 0da d¢
(1+Aqy) 9y (1+Aqy) X dx"dy
-1 (1+w?) 2 2
= iRa; (1+a) d”s Aq ds _ A S5
dy” " (I+Aqy) dy = (I+Aqy)~

It is possible to simplify the disturbance equations further by

assuming that the mean flow is parallel.

This assumption implies that the

mean—-flow velocities and temperature do mot vary with x and that v is

approximately zero.

Utilizing this assumption, equations 2.3-5 reduce to:

(A o A __B-__ Au y - 9%u _ _ A%q%u _ _ 2Aq ﬁl
(1+Aqy) " (T+Aqy) " (1+Aqy) dy*  (l+Aqy)®  (1+Aqy) dy
ARa -5 (1+w?) AyBdq 3Ay\u dq .19 - —1iAq - Au
- - .
Qag)® [ ax - g &1t Yasag) tHagy * B!
2a5Ra; M) ) | Aqy dqy d6 - 1B - Ag .d?
* Ghay)? ! e i T man s
—w? -1 (1+w?)
+ ORa; {——2 [iAcosa - Agsino - Ra, s sinada, _ ds sina}
(1+Aqy) dx dy
_1 2
_ oRq, ~S(1H® -){d"d) +o-28q _d% 1 2% + A%q%d%
dy’ = (l+Aqy) dy’  (l+Aqy)*" dy
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A2q% + 202.d¢ A% A% - 3a%¢®
+ Ty Xy * TR ) ¢}

(2.3-6)

1 2
iuRaL,S( Hw )da s A(l+a) 36¢ + i§RaL—5(1+m )QEHQQ

{(1"‘8) [B - ]
(1+Aqy) (1+Aqy) ax (1+Aqy) dy (1+Aqy) dx dy
-3 (1+w?) 2 | 2
- iRa, (l+a)[d s . Aq ds - A 8y
dy?Z © (i+Aqy) dy = [HAqy) 2

Before attempting to solve either - equations 2.3-5 or 2.3-6, a set
of boundary conditions must be established. Firstly, from the assumption
of no flow along or through the surface the disturbance velocities vanish
along the surface y = 0 and far from the surface. Secondly, the distur-
bance température is assumed to vanish far from the surface. These
conditions can be stated as follows:

y=0 : ¢=4d¢=0

dy ,
(2.3-7)

$ =dp =s8=0
dy

and y > >

The remaining condition on s is not easily specified. As Knowles and
Gebhart [36] pointed out, the second condition for s depends on the thermal
capacity and the thermal conductance of the material used for the heated
surface. If the thermal capacity of the surface material and the thermal
conductance normal to the surface are large, it is possible to maintain an
isothermal surface, implying that the disturbance temperature is zero at
the surface. If the thermal capacity of the surface material is zero and

the thermal conductance is negliglible in the direction parallel to y = 0,
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it is possible to maintain a uniform heat flux along the surface, implying
that the disturbance heat flux is zero at the surface. The intermediéte
conditions can be obtained by considering an energy balance on a small
element.of the material between the heaters, used for heating the surface,
and the boundary, y = 0. Consider the energy balance after subtracting
the mean-flow energy terms and neglecting the disturbance conduction_tefms .

in the direction parallel to y = 0, that is,

pb C_ 90* _ k 00%
P3¢ | 5Y IY=0—0
2 2
or ‘ s(o) = EL_RaL_5(1+w )ds(o), ..
: Bb dy (2.3-8)

where b is the thickness of the surface material and it is assumed to be
small relative to L. The above conditions 2.3-7 and 2.3-8 are applicable

to either equations 2.3-5 or 2.3-6.

2.3-4 Taylor-Goertler Roll-Vortex Disturbances

The roll-vortex disturbances described in section 2.3-2 are
called Taylor-Goertler roll vortices as are their counterparts in forced-
convection flows. These roll vortices are independent of x*, and there-

fore, the set of equations D~1 can be simplified to the following:

3Ygq* (1+y,) ov¥ Agv* 1 ow ., v¥JIsina v*37h
.t 45y F {Thaqy) T GEiysing) Bz © N+ T 5y
+ Rap Yg*vIsino 1 (A . chosqgg_[(l+ dlu

(jtJysina) + (JzJysina) ‘dx ~ dx’ ' (1+Aqy)



Ya*a 1 .v.* 38 , Aqu, , u*dTq. . Y. %8V _ VOYa*y _
t gy T ARl GO0 w1t iyt oy }=0

(1+v4) {Bzw + 1 . 2Aqu _ du* _ Jsinodw _ Bzv*]} + g 3w
9ydT = (j+Jysino) " (1+Aqy) 0z 9T  9z0T 9y 9ot
Aqu? 3Yq* . Ra ~SY) (147 ) Ta2y . 3T dw
+ A { d

(357 * 3y 3y

(1+Aqy) (§*Jysina) 3z

+ +Yq) L@l ; Jycosada, (wﬁ L 9w _ _Aqwu y- v 2y
(j*Jysina) ' (1+Aqy) "dx ~ dx’ " 9y dy (1+Aqy) 9293y
+ 2vJIsinodw + wuJcoso do _ v vk + stinozi_)i] + va¥q a_w}
oy ~ (l+Aqy) dx dy 0z . dy 3y 9y
ORa -3 (14u®) 3%M, ow 1 ov* — wisino oM, 202w
= L ByZ[W + (j*Jysinc) (5; + 0 B_y[ oy 2
+ —29 ow 3 Jsino ow 1 Aqav® Aqus:Lno:.)

(1+Aqy) 9y = (jxJysino) ¥y + (1+Aqy) (j*Jysina) * 9z

1 23%w | 3Jsinodv* _ szsinza)] + ﬁ[83w + —29 3%w
(GxJysino) 2+ 3z2 9z 3y = (1+Aqy) 3y~

- _A%g2 B_W] + M . 33w + 2Jsinad’w _ 33V*+ Ag .
(1+Aqy¥ 9y (3+Jysina) "9z°3y ~ dy? ~ oy’ez = (l+Aqy)"

Jsinodw _ Bzv*) + A%q®  dv*
9y 9yoz (1+Aqy)“ ‘oz

+1

WJSinOL) ] +

I+

M
(jxJysina) z(



Jsinadivk _ J%sin®0dw

- dydz

ov¥
-3 )t e,

(1+Y3) . 32u* _ du dv*

“(32Jysina) "3z9T Jy oz

1 ABu du*
(1+Aqy) ‘9% 9z

1 vﬁdaw

- FAqy) 9% ot T

oRa. ~5(1H0%)

Aqu
(1+Aqy) 9z

(j*Jysino) 9z
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MJ%sin’a. ( , wIsino

Jsinad 3w _ 93yx

oy 3z2  0z° ) + (JxJysinQ)

2
gcoso RaL—w AVg*

oz

B_V*] + RaL 5 (1+0%) 1+Y, vd2u*

(jt.]ysina)[ 329y

Aqvdu* 1

a——————.

—) - .(9__2]__ 4+ Jycosada. ow
0z (1+Aqy) ‘dx

| 3% o7]

1 dYq* vou

ou u du |, Aqv
5y + Ty + 01!

1 92M* . Ju Aqu 1 92u*

Aq _ du* oM

- *Aqy) 9z oy T

+

(

(3tJysina) 929y oy (1+Aq)')] + (3*Jysina) “923y

M . 93ux Aq 92u* 1 ,Azqzau*

AwIsinadqg, 4 M
cqg —_— [
dx)] + J+Jysino) L=

M 93u*

(§+Jysina) 929y~ (1+Aqy) 9zd9y  (1+Aqy)™ 3z

Jsinad2u* , AqJsino _':11_1_*]
9zdy ~ (l+Aqy) 9z

1 oM* d2%u Ag  du A2%q%u

+

+ Jsina oM
= (j*Jysino) Z 3z

(3zJysina)*® 3z°

Mk Bu
9y = (1+Aqy)

Gi3yeim) 5z oy ¥ Traqy) 3y = C(ivhay)?)

2
1} - osind RaL-“u oYg*
Bo, oz

Aqﬁ

(2.3-9)
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(1+Y ) Ju¥* 2v*3u uig* d2u*x . y*32g 3v* du Bu*
[(1+Aqy) Gr + 7yt )t 5t t SyE tay oyl - [

* S Ay + 5<1+m2>{_____(1+Aqy) Sy - ey

- (#) [va uk | % g_;* . (l-!-iqy) (2Aq<7_g_z;* L ut a_s_;_g + _g_;* %_i
D e - i 0

+ g—g -aé + (1+iqy) (ugygx + g; g:: Aqug; ZAQVS;) (1+2:y)2( dx

dq vau* u® Aqv
+ ) (1+Aqy) &l - ay syl 3y + TTtaqy) (ax )]
- d*vau Aqv) 1}

(1+Aqy) <8x

BM 29 2y* Aq Ju*

oRa SSH) af  aquk  pus . du
dy" 9y* (1+Aqy) dy

3y [(1+Aqy) T

1]

- __A2%q%ux 1 oM Aqu*Jsing . Jsinadu*
(1+Aqy)7] (JxJysina) ay[ * (1+Aqy) * dy

+ 1 azu*] 9 2M* [ au 3M*[28 u Aq Bu
($2Jysina) 9z2 oy > (1+Aqy) y (1+Aqy) qy
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- _Alqu_, 3 Jsimo  OM* ou . _ Aqu , _ Hdlwx | 24 3’y
(1+aqy)© (3¥Jysina) 3y ‘dy = (l+Aqy) dy” = (l+Aqy) dy°
A%q? du* A3qlu* . - MJIsino. D2u* 2Aq  Ju¥

+ 1+ (§+Jysina) “9y* (1+Aqy) 9y ]

T (1taqy)? 3y (Q+Aqy)?

My 2 2 & 3% * T2 2. 2. %
+ M. +J<s8in“0du 0%u Aq ,quinor._au)]

(3xJysina) 2" 3y ~ 3yezZ T [raqy) " oz

' MJsino 92u* M+ _53%u 2Aq 9%u A%g2  du Adq%u
+ : - - [Pl
* (3xiysin)”® 327 [35% * Ciraqy) 2y? ~ Q+hay)? 3y * Civaayl

-  M*Jsino 8%u + 289 du, M*J2sin20 .du + Aqu 1}
(J*Jysina) “3y° = (1+Aqy) 9y (3tJysine) “*3y = (1+Aqy)

2 _1 2
+ oRaL-m [8Yd* sina  Yq*Agqsino . Rag 5 (1+w )Yd*sina da.
dy (1+Aqy) (I+Aqy) dx

80,

1 2
(1+7.)3 (1+a) 98*% , v*dB, , Ra, M) (14733 1 da(uox + u*b)
d (31: + ay) + Ra']’_, d [m a—};{-

v (1+a)90* 4+ u*x(Q+a) 8_5_] [Gg1+a) 98 ub _ da

+ 3y T (i+Aqy) ox (L+Aqy) 9x | (1+Aqy) dx

+ 6(1+a)35_g_] [yd*z + (1+?d)c*]}

-1 Q+w?)

_ (1+a) ? K*_ 328 Ag 3_6_ Jsino _8_§
o Uy * TWragy 3y * Gilysina) 3y
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E[aze* +-hq _ 36% . Jsino  30% 1 aze*]
ay* (I+Aqy) 3y = (J+Jysina) dy (j*Jysina)® 3z°

+

Ok* 38, oK 26%,
dy 3y 9y 9y

An approach similar to that employed in section 2.3—3 is used
in the analysis of the above equati&ns. If it 1s assumed that the distur-
bance variables are proportional to exp [1(Rz - BT)] and that the stability
of the flow can be analysed by considering a single component of a Fourier

series in 2z, the disturbance variables may be written as follows:

u*(y, z, T) = al(y) ei(ﬂz - BT)

v*(y, z,AT) = 52(y) ei(ﬂz - BT)

W(Y’ Z T) = 63(y) ei(nz - BT)

0*(y, z, T) = s(y) ei(ﬂz - BT)

Yd*(y’ zZ, T) = r(y) ei(nz - BT)

M*(y, z, T) = A(y) 1z - BT)

Ay) 1z - BT)

C*(y, Z, T)

1(Qz - BT)

K*(y, z, T) = T(y) e
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Substituting these expressions into equations 2.3-9 and eliminating the

exponential factor in each term leads to the following set of equations:

1, 2

- - ‘ -5 (1+w*)
(A+y a8 . (8¥q . (1+y.) Aq Jsing s Rap ° 3Yq4
d dy + {ay + d [(1+Aqy) * (ji‘Jysina)]} 2+ (1+Aqy) [8:‘:

| -1 (1w?)-
1+Ygq dj , Jycosada, .6 1Q(1+Y4) & Ra_ ~5¢ vdr
+ (J*Jysina) G * !+ (j*Jysino) 3+ dy
-3 (1+w?) = = -
+ (*a, Q8 + AQVy | OV b fen
' (1+Aqy) ‘ox 3y . (1l+Aqy) (j*Jysina) “d%
Jycosodo. vJsino _ _
x. o) * (ji'Jysina)] iB} r = 0
Ra, TS (147 y5a28s L (147 )RaL-%(lmz) v g di
. em— {-
L TG+ e I3y * Ty Giysing) Gk
. Ltz -
+ chosagg) + __2visino ] + RaL voYq _ iB(l+'Yd)} déj
- dx’ ~ (j*xJysina) oy dy
-5 (1+w?)
+ {-133’7,1 7 1B(+Vy)Jsino  (1+V4)Ray, [t &
oy (§+Jysina) (j+xJysina) (1+Aqy) ‘d%
+ Jycosada Aqu uJcosa do . Jsinaﬁl }63

<) (ﬂ - ) % &>
dx’ ‘dy (1+Aqy)’ = (1+Aqy) dx ~ dy

1 2 - - 1 ' 2y
Ra, S (") 100(1474) a6y _ _(4¥)0 B + 1Ra "SI )3v,6,
oy

- L (GtJysina) dy ~ (§=Jysina):
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+ 21QAq (1+Ygdudy . iQAqu’r
(1+Aqy) (3=Jysina) (1+Aqy) (j*Jysina)
1 2 - -
.. ORa -3 (e )Md363+ RaL"S(l*“’ )[28M+ MAq _ , _2MIsina d263
dy (1+Aqy) ~ (jtJysina)
-1 (1+w?) om = . MA2q2
+0RaL -8M+8M, Aq iy Jsin‘a]_MAq .
3yZ © 9y (I+Aqy) = (j*Jysina) (1+Aqy)®
_ M [92 = Aquina] _ Mi?sin’a }
(3xJysina) (1+Aqy) (j+Jysina)2
-1 (1+w?)
- ORa_ oM 1 2 2 AqJsino
L G5yl Ggyeinmy 2 (2% + I7sin “) 3 TTFAay) (JEiysina)’
Jsina  92M MJIsino i A%q2 Q2

H

(3*Jysino) dy”° = (3+Jysina) " (1+Aqy)2 j+Jysin0L)1

- _ _1 2 - _ 2
Hulsin®a 18, _ igfoRar B 25, gofioray”t (P97 [ A
- 820 2 - -

(§+xJysina) (jxJysina) dy* (jxJysina) (1+Aqy)
< Jsino ] , iSoRag ) 5oy gg{ Ag _ , _ 3Jsina
(jtJysina)-d (j+Jysin0t) y“© dy' (1+Aqy) ~ (3*Jysina)
- - - w2
MAZq2 Q%M MI28in?0 ]_62 + i coso Ra.L r

B@

+ (1+Aqy)2+ (3xJysina) ~ (J*Jysine)”®

1 2 - - - -
maL‘s(l"“‘) (AT ds; Q(1+Yg) (B, iRap” =5 (1+w? )<au Aqvy 8,
(3*Jysina) dy (3xJysina) " (1+Aqy) 9%



Ra

L

. 100479 35 | _Aq 8, , iBRar_ ) 37, 142 44
(jtJysina) "3y = (1+Aqy) (1+Aqy) % (3xJysina) ‘d¥
-1 (1+w?) =
+ chosada)] 3+ iSiRa vau ( Aqv)] r
N (3 £Jysino) (1+AqY) ax
_1 24_ 2 -
_ _iomayPOM)Eg 025y | 1orait)g b, i
(j*Jysina) dy (JxTysina) ‘By (1+Aqy)
A 81 BAGlS #a2q2
+ sino ]d _ ioRajg, ‘ [ Aq
(j+Jysina) ' dy (j*Jysina) (1+Aqy) By (1+Aqy)
- =—2 "%(1'“»02)"
. MAqJsino o+ MR ] - ORay, MAJsino gg§3
= (1+Aqy) (3*Jysina) (jtJysina)“ (1+Aqy) < (J*Jysina) dx
, 1oRap -840%)0 55 aqu j8A , ioRap s(HN)g 525
(j*Jysina) ‘By (1+Aqy)“'dy = (j*Jysina) oy~
Aq . du _ _ A%q%u Jsino, . du
+ - & 1} A
(I+Aqy) 9y  (1+Aqy) (3xJysina) " By (1+Aqy)
—?
_ iof sinaRaL
8,
(2.3-10)
~HH%) (147 yTa2s, . ABQ4Y.) - Ra, AT 4y )av (1+74) ,2Aqv
d E;zl-+-{ d L [ dis— + (1+Aqy)(
-1 (14w?)
a?dv ] iB, (14+Y4)Aq 3’7,1 Ra; 5 2A qudYg
32 ]} +{ [(1+Aqy) + 1 - [(1+Aqy)2( dx

1 (+w?

62
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+ T @da | @5y, (i) 9% Aqdv) _ 28°qya(l3Va) dg
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Equations'2.3H10 can be utilized in the stability analysis of
any free-convection flow which satisfies the boundary-layer equations 2.1-3
and the boundary conditions 2.1-4, assuming that the disturbance takes the
form of a set of roll vortices which satisfies the assumptions involved in
obtaining equations 2.3-10. However, a set of auxiliary relationships for
r, A, A and T and a set of boundary conditions are required before attempt-
iné a solution.

As stated in section 2.3-3, the present study 1s primarily
concerned with a study of constant-property, free—convection flows over
two-dimensional surfaces. Using the Boﬁssinesq approximation for the
density as in section 2.3-3 and assuming that €<<1,;the disturbance

equations reduce to

QS

48y 4 —Bd 0, , 1003 -,

+
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-5 (1+0?)

+ Rag, %44
dx

S 1 2 -
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1 2
Ray 5 (1HW7) Bda (1+2)38,8, _ (1+a) —5(H0?) 2
(THay) | dx Pl L 552

ds _ st]
(1+Aqy) dy

The above sét of equations appears‘to be over-determined since
there are five equations in four unknowns. However, a closer inspection
reveals that the fourth equation can be obtained from the second and
third equations by the procedure which follows. Firstly, multiély the
third equation by (l1+Aqy) and then take the derivative with respect to
y of the resulting equation. Secondly, take the derivative with respect
to x* of the second equation, and note that some of the.terms are of the
order of the terms previously neglected and, therefore, these terms must

also be neglected. Finally, add the two modified equations and multiply

the result by i .
Q(1+Aqy)

The first of equations 2.3-11 can be used to eliminate 63 from

the other equations in the set. The resulting set of independent equations

is the following:

- (1+w?)= -§(1+w?)
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1 2
-5 (1+w*4) .2
dgg + Aq ds st]

- (l+a)RaL 4 ds _
“dy (1+Aqy) dy

Following the procedure'of section 2.3-3, the mean flow is
assumed to be parallel. This assumption reduces equations 2.3-12 to the

following set of equations:
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“la+w?) 2 2
_ (1+a)Ra, [d s 4 Ag _ds _ @ 51
dyZ ' (1+Aqy) dy

The appropriate boundary conditions to be  satisfied by equations
2.3-13 follow from the conditions that the disturbance velocities vanish
along the surface y = 0 and far from the surface. In addition,. the distur—
bance temperature must vanish far from the surface and satisfy the enefgy
balance at the surface as given by the expression 2.3-8. These boundary

conditions may be written as:

y=0: 61 = 62 ='d52 = 0
dy
2 1_Hn2)
and s = iL Ra 5( ds
b L dy (2.3-14)
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CHAPTER IIIL

SOLUTION OF THE PROBLEM

In chapter 2, the formulation of the problem is presented in
two steps: the formulation of the steady-flow or mean—flow equations and
the formulation of the disturbance equations. The resulting sets of
equations from these steps are distinct in cﬁaracter and, therefore, they
require different methods of solution. This chapter presents the methods

of solution adopted for the presemt analysis.

3.1 Solution of the Mean—-Flow Equations

There are several possible approaches to solving the mean—-flow
equations. For example, given the property variations, an explicit finite-
difference scheme might be applied to equatioms 2.1-3 subject to the
boundary conditions 2.1-4. An approach such as this was attempted in the
present investigation but it was abandoned due to difficulties in starting
the solution at x = O because of the singularity at x = 0 and because of
the problem of obtéining accurate approximations to the derivatives wifh
respect to x in this region. In addition, explicit finite-difference
schemes have an inherent instability. |

A second possible.approach would be to transform the set of
equations 2.1-3 by a transformation such as the von Mises transformation.
In the transformed plane, the boundary-layer thickness is more uniform
throughout the region of interest. In addition to the transformation,
the explicit finite-difference scheme may be replaced by an implicit
finite-difference scheme, thereby avoiding any inherent instability.

However, the von Mises transformation introduces a singularity at the
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surface, aqd this singularity maf be difficult to handle in the soiuéion.
Tﬁis approach was -also tried, but it was abandoned because of difficulties
attributea to the singﬁlarity. |

A third finite-difference scheme, whiéh is similar to the second
scheme, is given in a paper by Patankar and Spalding [47]. Patgnkér and
Spaldiné suggested a transformation of the equations- of the von Misés type,
. but which uses a new definition of the nondimensional stream functiqﬁ.

The authors stated that-the advantage of their method was thét it provided
a definite bound on the boundary-layer thickness. However, their method
still has the disadvantage of introducing a singularity at the surface.

Iﬁtegral methods offer a fourth possible approach to the
solution of the mean-flow equations. Levy [23] investigated the possi-
bility of using integral methods in free-convection problems. Michiyoshi
[24] also used an integral method in his aﬁalysié. The diéadvantage'bf
integral methods isvtheir inability to accurately predict the shape and
magnitude of the velocity and temperature profiles. Since thé influence
of these profiles on the stability analysis is not yet clear, it is felt
that an attempt should be made to keep the errors in the profiles to a
minimum.

Another possible solution approach is to use a perturbation
expansion. Kierkus [25] used a perturbation expansion in terms of a
small Grashof-number parameter to study the effect of inclination from
the vertical on laminar, free-convection flow about an isothermal plate.
Although the results of this perturbation analysis are in good agreement
with experimental results, this approach is limited by the size of the

perturbation parameter.
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The 'difficulties which may be encountered in utilizing aﬁy.of
the above methods suggest that perhaps some other approach might be ° |
sought.. For the transformed boundaryflayer eﬁua;ions 2.2-9 subject to the
boundary-conditions 2.2-10, it is possible to4use-énother approach; hdwevgr,
‘the method is not restricted to the flows described by these equations,
but instead it can be applied to any set of equations_expreséed iﬁ‘terﬁs
of a Falkner-Skan transformation. It is noted in chapter 2 and.appendix
‘B how the Falkner-Skan transformation might be extended to more general
flows. ' |

Basically, the scheme chosen replaces the schemes mentioned.
above by a numerical integration,bfor which there are two bfoad choices:
the equations may be integrated as a single set of partial differential
equations, or the dependent vafiables can be expanded using, for example,
a Goertler expansion which leads to an infinite set of ordinary differ-
éntial equations. An important consideration in applying the latter method
is the number of terms needed in the expansion to obtain the desired
accuracy in the solution. Although it is believed that either of the
above methods is suitable, the former procedure is chosen for the present
analysis. The latter method was used by Kuiken [16] in a study of axi-
symmetric free-convection boundary-layer flows past vertical cylinders
and cones. Saville and Churchill [48] also used a Goertler expansioﬁ in
their analysis of horizontal cylinders and vertical axisymmetric bodies.

The numerical integration in the former method is made possible
by replacing the partial derivatives with respect to & by finite-difference
approximations as discussed by Hartree and Wbmersiey [49]. The method
has been applied to laminar, forced-convection boundary-layer flows for
some time, but the method has only recently been adopted to free-convection

boundary-layer problems. After applying a Falkner-Skan transformation,
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Heyday, Bowlus and McGraw [18] applied this method of-solution to=a free—
convection flow past a vertical plate with a step discontinuity in the
surface. temperature. The apparent success of the method in handling such
a difficult boundary condition~suggested that this approach might also be
applied to the present work.

After replacing the partial derivatives with respect to & by
finite-difference approximations, the equations reduce to ordinary differ-
entiai equations for any_value of £. In order to solve the equations for
a particular &, it is aseumed that the equations have been solved at all
previous steps in the E-direction. At £ = 0, it is assumed that the deriva-
tives with respect to & remain finite, and therefore, these derivatives
" are eliminated because of the coefficient £. However, § cannot be set to
zero eniformly throughout the equations. This is a consequence of the
coefficient of the pressure term in the lateral momentum equation. In order
to start the procedure, & must be given a small non-zero value in this term.

For the finite-difference approximations to the E—derivatives, a
two-point difference formula must be used for the first step beyona'€ = 0.
For subsequent steps, a three-point formula may be used. The two- and three—
point formulae were given by Smith and Clutter [50] as well as by Hayday,
Bowlus and McGraw [8], but they are repeated here for completeness. For

any variable, say S, the two- and three-point formulae at & = £, are:

M|
3s Si = Sy
% et 5y 831
and
5 1 1 S E17€5-2) S
()| = [ 175 - 77— — 173-1
g, G e | EE ) E ) By E)

+ o (51783-1) ]
T2 €3-18;2) 12
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procedure was given by Nachtsheim and Swigert, but a brief description

is also given here.

After introducing the following definitions

rln = f;z; (o, » En) ’
an = XC (o, gn)
and : I'3n =T (0’ gn,-) E

where &, is the nth step in the £~direction, the first step of the iterative

process consists of determining

(i (1 (1)
By = & [‘Qn(i) + 200" ary, +20n_ ) ara 4 202" AT3n1%s
=1 5T, 3Ton T3,
where Qn(l) = fr (Cws &n)>
QP = £ (Tws £

0. =X (G E)»
(4)

O
=]
]

XC (Cw, En)’
0, = 7 (e, £

~

(=]
~
|

and Qn = T (Coos En) .

Next, this quantity is minimized with respect to the increments Arln’

ATo, and Al'3n. The incremental changes in Iy, Ipp and T3, necessary to

effect this minimization are then found and used to modify the eigenvalues.
It must be noted that the above process will éonverge only if

the initial approximations to the eigenvalues lie within certain limits

of the correct eigenvalues, these limits being the boundaries of the

region of convergence. To facilitate the solution for the eigenvalues,

the error indicated by Enj is minimizel at several Cj<?;°° in order t6 keep

the set of approximate eigenvalues within a region of convergence. Since

the value of g, is unknown a priori, this procedure may also be used to
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find a suitable measure of .. The procedure assumes that for any reason-
able set of approximate eigenvalues there will be some Z; < Zwo for which
Epl lies within a fairly large region of convergence. It seems reasonable
to expect that as.;j'becomes larger, the region of convergence becomes
prqgreSSively smaller. Having-minimi;ed E,; and modifigd the approximate
eigehvalues, the équations are forward-integrated from zero io y ¥ gl.
This procedure is repeated m times until E;m is less than a séecified
value, e.g. 107®. The corresponding vélue of Cm then defines Z,. Clearly
this method permits a much wider range of initial approximations to the -
eigenvalues for which the process will converge; however, the choice of

£; and the optimum number of steps m can be determined only by trial and
error methods.

The above procedure for finding Le was used initially; but after
finding a suitable value, I, was specified to provide a conétant value for all
€ such that for any particular £ the necessary information at previous
values of £ would be available for all [ < Lw. The value specified varied
with the surface inclination and corresponded to a value for yo at & = 1.0.
At 0 = 0, Yo at £ = 1.0 was given a value of 10.0, while at a = 7/2, it
was given a value of 8.0. For other angle;, Vo at £ = 1.0 varied between
these limits.

The utilization of the Falkner-Skan formulation in conjunction
with the 1ocaljsimilarity concept has several advantages over other possible
methods. It provides a definite procedure for starting the solution at
£ = 0, and the boundary-layer thickness remains finite at £ = 0 since the
procedure removes some of the &-variation of the transformed boundary-
layer thickness. In addition to these advantages, the most important

advantage is that, for a given &, the equations reduce to ordinary
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differential equations.

3;2~'SQlugionyoffthe«Dis;urbanée.EquatiQns

3.2-1 Tollufen-Schlichting Wave Disturbances

- This Sectioﬂ presenESua‘discussiOn-of some of the numerical
procedures used in previous work as well as the procedure used in the
present work. This discussion refers specifically'té'équations 2.3—6
and the boundary conditions 2.3-7 and 2.3-8, but the procedures can also
be applied.without'modification to equatiens 2.3-5. The basic'ideas of
these procedures could also be applied in a solution attempt on equations
2.3-3, however, the procedures would have to be modified to handle the
additional relationships for r, A, A and T.

. Essentially, each of the procedures involves two solutions, an
inner solutiop and an outer solufion; and these must be matched. The
outer solution satisfies the simplified disturbance equations, which are
obtained by neglecting the terms involving mean—flow quantities since the
mean-flow quantities are assumed to be approaching zero,and is valid for
large values for the independent variable. The inner solution is obtained
by integrating the disturbance equations over a range of the independent
variable which includes most of the mean-flow boundary layer.

The set of disturbance equations corresponding to the inner
solution constitutes a two-point boundary-value problem for which three
complex conditions are specified at each of the boundaries. Therefore,
to start the integration at one end and proceed to the other end, three
unknown complex conditions at the starting point must be guessed. Since
the disturbance momentum equation is a fourth-order, linear, homogeneous
differential equation, the second derivative of the disturbance stream

function amplitude evaluated at the starting point determines the scale



79

of ;he.disturbaﬂces and may be assigied arbitrar}ly. In addition to the
remafniﬁgztﬁb unknown . conditions; one complex-parameter‘or two real para-—
meters:must-be“determiped. Thus, in total, thére aré six real or tﬁree
complex eigenvalues to be determined. E

Nachtsheim [33] chose the complex wave veiocity as-the'unknown

parameter, .and since he integrated from the surface to a suitably chosen

- edge, the other two complex eigenvalueSMWEYe:¢’i‘(0),and S'(0). For a

given wavenumber—-Reynolds number pairg‘Nadhtsheim obtained successive

' approximations to.the eigenvalues by applying a Newton-Raphson procedure

baéed on the conditions at the outer point of his integration range. To

find a point on the neutral stability curve, he had to fix the Reynolds

. number and vary the wavenumber until the imaginary part of the cqmple*_

wave velocity just changed sign. He then repeated this procedure at othef
ReynoldS‘numbérs to obtain the neutral stability curve.

Knowles and Gebhart [36] followed a procedure somewhat like
that used by Nachtsheim except they chose the real parts.of the waveﬁumber :
and of the frequency as the unknown parameters. They set the imaginary
part of the wavenumber to zero, as did Nachtsheim, and they also set the
imaginary part of the frequency to zero. Therefore, for a givén Grashof
ndmber, a point was obtained on the neutral stability curve. This procedure
requires much less compdtation to obtain the neutral stability curve than
Nachtsheim's method. Another modification introduced by Knowles andl
Geﬁhart was the boundary condition for the disturbance temperature differ-
ence as discussed in section 2.3-3.

Dring and Gebhart [37] encountered a problem with the procedures
used by Nachtsheim and by Knowles and Gebhart, namely that the solutions

would become unbounded if the integration proceeded far enough from the
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surféce. This effect is independent of the accuracy of the eigenvalues
and is related to the exponentiai nature of the solutions in the region
far from the surface. Theoretically the goefficients of the terms with
positive real parts in their exponenes must vanish because these solutions
are physically inadmissible. However,vnumerically these coefficients are
_ véry small but still non-zefo.- Therefore, the terms with positive real
pgrts in their exponents will eventually doiminate the solﬁti&n if the
integration proceeds far enough. To avoid this problem, Dring and Gebhart
reversed the direction of integration. They used the outer solution to
start the integration by choosing the coefficients of the terms with posi-
tive real parts in their exponents to be identically zero. Of the remain-
ing three complex coefficients, one coefficient was used to determine the
scale of the solutions and the remaining two became two of the complex
eigenvalues. In addition, they also chose the real parts of the wave--
number and of the frequency as eigenvalues. Successive approximations to
the eigenvalues were obtained by a Newton—Raphson procedure applied to

the conditions at the surface.

Although each of the above procedures appears to be relatively
simple to apply, in practice this is not the case. Without having>at
least one complete set of eigenvalues corresponding to one point on the
neutral stability curve, it is very difficult to guess six real or three
complex numbers which will be close enough to the correct values for the
iterative process to converge. This difficulty can be appreciated by
realizing that the search technique amounts to searching for a point in
a six-dimensional space. This problem can be overcome by noting that the
disturbance equations can be combined to form a sixth-order, linear, homo-

geneous differential equation which can be solved by a linear combination
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of six linearly independent solutions. Hieber and Gebhart [39] used this
approach while following Dring and Gebhart's procedure by integrating from
the outer edge to the surface; but instead of guessing the coefficients
as Dring and Gebhart did, Hieber and Gebhart integrated the solutions
separately. They used one of the three non-zero coefficients of the linear
combination to scale the solution and solved for the other two coefficients by
satisfying two of theboundary-conditions atlthé surface. ~Hieber and Gebhart
used the complex wavenumber as the remaining elgenvalue. fhe wavenumber
was varied until the remaining boundary condition was satisfied within
the specified 1limit. This approach simplified the solution to a search
for one complex eigenvalue rather than for three complex eigenvalues.

The procedure followed by Hieber and Gebhart appears to be far
superior to the procedures used previously, and therefore, this procedure
is used in the present work. It is assumed that the disturbance amplitudes
can be expressed as:

¢ = ¢;3 + Caty + C305

and s 81 + 0282 + C383

]

At the starting point of the integration, the outer solutions indicate

that
b1ve) = e e,
8;(ve) = 0,
92(ve) = e e,
85(ye) = 0,
$3(ye) = e DVe
and 83(ye) = (D® - A2)(0* - ¢?) Ray —f.s'(l-ooz)e—nye

(iAcosa - Dsina)

where Ye 18 the value of y at the starting point of the integration and
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L(1+w?) 1/2

= 22 - 4R
C = _A iE_RaL ]

L o

and D

1
[)\2 ~ 4B RaLS(lmz)]l/Z

The forms of-the outer solutions given ip-the above expression are obtained
in exactly the same way as those obtained‘by Nachtsheim and by Dring and
Gebhart.

In their work, Hieber and Gebhart used the wavenumber as the
complex eigenvalue, but the present work uses the real parts of the wave-
number and of the frequency as unknown real eigenvalues. After making
initial guesses for Ar and Br and separately integrating the three solutiomns

from y = Ve to y = 0, the boundary conditions

$(0) =0
and $'(0) =0
are used to solve for C2 and C3. Then the condition on 8(0) is used to
test the approximate values for Ar and Br' If this condition is not
satisfied within the specified accuracy, e.g. 10 °, then a Newton-Raphson
procedure is applied to the condition. For the present work g (0) = 0 is

used as the boundary condition, and therefore, the Newton-Raphson procedure

is of the form:

0 = sr(O) + dsr (0) Alr , 9sy(0) ABr

Ep " 9B,
and 0=s,(0) , 355(0) A\ 3s4(0) 4B_.
OAr 9B,
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The partial derivatives in this procedure are approximated by finite
differences, and A, and B_ are changed to‘1;001 A, and 1.001 B, to find
these derivatives. With the new values of A, and B_ determined frop this
process, the integrations are repeated and the iteration continues until
.8(0) = 0 is satisfiéd within the prescribed limits.

3.2-2 Taylor—Goertler Roll-Vortex Disturbances

The methods of solution of the disturbance equations for the
wave disturbances can also be applied to the equations for the roll-vortex
disturbances. Howevér, there are some imbortant differences in the
equations which result in considerable simplification. Firstly, the real
part of B is zero since the vortices may be considered as standing trans-
verse waves. Secondly, if the vortices are assumed to be neutrally stable
with position and time, the imaginary parts of 2 and B are also zero.
Under these simplifications the disturbance equations reduce to real
equations.

Equations 2.3~11, 2.3-12 and 2.3-13 represent sets of linear,
homogeneous ordinary differential equations of eighth order. In ordgr to
solve these equations, a combination of eight linearly independent solutions
is required; but following the procedure in the previous section, four of
the coefficients must be zero because the corresponding outer solutions
have positive real parts in their exponents. Another coefficient is set
to unity to scale the solutions and the remaining three coefficients are
solved for by satisfying three of the four boundary conditions given'in
2.3-14. 1If the above simplificationé are used, the equations are real and
the remaining boundary condition is used in finding the real part of the
wavenumber in the same way as A, and B, are obtained for the wave

disturbance.



84

For the present work, the surface is isothermal and, therefore,
the function a(§) is zero. This makes it possible to reduce equations
2.3-13 to a sixth-order set, thus simplifying the procedure even further.
Under these conditions, the disturbance amplitude functions are expressed
as

8y = 6331 + Cy835 + €384

and 8 = 831 + C2§2-+ C3s3
At the starting point of the integration, y,, the solutions take the form

of the outer solutions as follows:

- :
8p10ve) = e Te,
Sl(ye) = 0,

-$:
89p(¥e) = Ve € T7°,

82 (}'e) =0,

-
§23(7) =yt e T°

and ss(ye) - 8 5(1 w )e QrYe.
cosO.

+
Since e Sy are the only forms of the outer solutions for 621, it is
+Q Qy
necessary to use ye ry and yze 4 to form the other solutions. The
remainder of the procedure closely parallels that described in section

3.2-1 and therefore will not be repeated.
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' CHAPTER IV
RESULTS. AND- DISCUSSION

4.1. Me‘a“n; Flow
4.1-1 1Ertons

Solutionsofthe transformed boundary—layer equations 2, 2;9
subject to the boundary conditions 2.2-10 have: been ‘obtained for air
'(Prandtl number of 0.72) adjacent to a flat,-two#dimensional,'1sothermal
surface. The solutions nave-been'generated.at positions‘along‘the surface
up to X = L,;where'the Rayleigh number is:los. A1l of  the numerical
eonputations have been done in double precision on an IBM 360/67 computer
‘at the University of Alberta. In'tne eoﬁputations; the value of Af was
'chosenrsuch that Ay = 0.05 at & = 1.0 and this.step'size was used in all
solutions. As a check on the truncation error in the celcnlations, this
step size wasedoubled with the result that the eigenvalues changed in or
beyond the third decimal place. A value of 10 * was used for £° in most
of the calculations, but variations from 107! to 107° were also used with

the result that the eigenvalues changed in the third decimal place at the

most. For the finite~difference approximations of the partial derivatives

with respect to &, the step size AZ was decreased until the eigenvalues-
obtained from two step sizes agreed to at least three figures for ﬁalues
of £ > 0.1. The resulting step size for the first step away from £ =

was quite small to minimize the error in the two-point fig;te-difference
approximation which is of the order of Af per step. As the solution
proceeded in the &-direction, the value 2of AE had to be increased several
times because of a numerical stabllity problem. In most cases, it was |

found that the ratio of _£ had to be less than about 3. Because of this
A
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restriction, the last step size used in many solutions was Af = 0.4.

This would appear to give a comnsiderable error since the erfor pér step
using a threehpoiﬂt finite-~difference forﬁula is equal to iéglz multi-
plied by the third derivative of the functions with respect 30 £.

However, the solutions reveal that .the functioné in. question are almost
asymptotic in the vicinity of & = 1.0, and therefore, the thifd derivatives
with respect to £ would be very small as would be the error in the finite-
difﬁerence approximation. The results.of these computations are presented

in figures 2 to 7.

4.1~2 Mean=Flow Results

Figures 2 snd 3 present typical e#amples of the\éffect of surface
inclination on the temperature, pressure and velocity profiles at different
positions along the surface. Figure 2 presents the results for a position
given by £ = 0.2, whereas figure 3 considers the position £ = 1.0. The
temperature and velocity profiles are shown for 0°, 30°, 45° and 90° in
figure 2 and for 0°, 30°, 45°, 60° and 90° in figure 3. The pressure
profiles are shown for 0°, 30°, 45°, 60°, 75°, 105° and 120° in both
figures. The eigenvalues for these profiles are tabulated in table 1.

Figures 4 and 5 indicate typical examples of the variations
with position along the surface of the temperature, pressure and velocity

profiles for specific inclinations. Figure 4 considers the profiles for

45° at the positions £ = 0.00625, 0.01875, 0.04375, 0.1, 0.2, 0.4, 0.6

and 1.0. Figure 5 presents the profiles for 75° at the positions £ = 0.00625,

0.025, 0.05, 0.1, 0.2, 0.4, 0.6, and 1.0. For these profiles, the eigen-

values are listed in table 2.

With the exceptions of the flows for 0° and 90°, the mean flow

is non-similar and two examples of the departures from similarity of the
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temperatuxre; pressure andwvelocitynare{indiéatéd in'figurés*G.and 7.
Eigﬁ:émﬁtsh6Wsathis/depéntnre’for a‘sﬁrfﬁée'indliqatioﬁ of 45° at the
positions £=0.00625, 0,01875, 0.04375, 0.1, 0.4, and 1.0. Figure 7
shbws~therdeparture~f6r an inclination of 75° at the position £=0.00625,
0.01875, 0.1, 0.4 and 1.0. The éigenvalues for these profiles are-.also.
listed in table 2. | '

4.1-3 Discussion .of. the. Results

‘Figures 2 and.3 clearly show that for any position along the
surface the mean-flow boundary-layer thickness decreases and the heat
transfer incnéases'markedly as the surface inclination changes from 0°
to 30°. The boundary-layer thickness continues to decrease and the
heat tnansier continues to increase-a; much slower rates as the in-
clination increases from 30° to 90° at which the boundary-layer thick-
ness reaches a minimum and the heat transfer reaches a maximum. As is
indicated by the order-of-magnitude analysis in appendix A, the changes
in the profiles from 0° to 30° are due primarily to the decrease in the
lateral buoy#ncy force and, therefore, to the decrease in the lateral
pressure gradient as well. For inclinations from 30° to 90°, the changes
in the profiles are due primarily to'the increase in the longitudinal
buoyancy force. This longitudinal buoyancy force varies from zero at0° to a
maximum at 90°, whereas the lateral buoyancy force varies from a maximum
at 0° to zero at 90°.

Figures 2b and 3b indicate the variation in the pressure profiles
as the surface varies from 0° to 120°. The pressure changes sign as the
inclination passes through 90°, but for inclinétions on opposite sides of
the vertical, the magnitudes of the pressure are almost identical. This

fact by itself is evidence that the pressure has little effect on the
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flow at least over the range of inclinations from 60° to 120°. In

support of this.conclusipﬁ, the veloeityuand‘éempenature p:ofiles for
75° and 105° as well as for 60° and 120° were found to be very nearly
coincident. None of these profiles are included in figure 2 since the
departures from the 90° profiles are veiry small. 1In fact.forlmost
puréosés,_the 90° profiles could be used for any angle from 60° to 120°.
However, figure-3-&oes show the velocity and'temperature profiles at

60°. The departures from 90° profiles are still quite small. In this
case, the 90° profiles could be used for angles from 75° to 105°. If

the solutions had been obtained for surféce-inclinatiOns greater than
120°, the effect of the lateral buoyancy force should become'important
again. Then a comparison of the profiles for imclinations on opposite
sides of the vertical should have revealed a thinner boundary.layer on
the downward-facing side, that is for a>90°. However, difficulties were
encountered in starting the numerical procedure and the solution attempts
had to be abandoned. The difficulties were attributed to the increasing
importance of the lateral buoyancy force, which indirectly causes a
positive longitudinal pressure gradient which opposes a flow iﬁ the
positive E-direction. If the longitudinal buoyancy force is not of
sufficient strength to overcome this positive pressure gradient, then

it is impossible for a boundary layer to develop. It has been known

for some time that a boundary-layer flow on a downward-facing, horizontal,
isothermally~heated surface (o = 180°) is not possible [18, 19]. How-
ever, it is not known if the theory will predict the break-down of the
boundary-layer formulation at some inclination less than 180°. The
difficulties encountered in attempting to generate solutions for inclina-

tions greater than 120° would seem to indicate that such a limiting
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1nc11n3tion may exist, but ﬁnfofﬁuneteiy”the numerical procedure‘appegrs
‘to be incapable of finding this limit. |

Figures 4 and 5 indicate: the development of - the temperature,
pressure andvveldcity~profiles“at-vartous-positions along. the surface
for surface indlinations of 45° and '75%; respecrinely., It is‘evident
from these profiles that the thermal and'. ‘momentum boundary layers con-—
tinue to grow with distance fromrthe"leadingyeoge.' This 18 in contra-
diction to an egsumprion uged in obfaining the disturbance equations -
2;3—6 and 2.3-13. However, since theuneglected terms are all of the

_ 2
order of Ray $Q+w®)

or less relative to the largest terms retained,
this contraoicrion mey have little bearing on the stability'reeults.

It has been stated previously that the boundary-layer problem
posed for the present analysisvis‘non—similar.except for the surface
inclinations of 0° and 90°. The departure from shmilarity.for 45° and
75° are indicated in figures 6 and 7, respectively. Although the-magni—
tudes of the departures indicated are a reflection of the particular
function H(w) used in the order—of-magnitude analysis and the particular
transformation applied to the equations, these figures do indicate
~ qualitatively the departures that would result for any otner choice of
H(w), d(w) and h(w) indicated in appendices A, B and C, respectively.

The profiles for & = 0.00625 do not appear to fit the family of curves
indicated by the profiles for the other positions. This may be attributed,
at least in part, to the non-zero value of £ used in the lateral pressure
gradient term to start the integration procedure as mentioned in section
3.1. However, as mentioned in section 4.1-1, the numerical experiments

with £° indicated that this effect was not significant for most of the

other values of &.
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4.1-4 Comparison with Previous Theoretical and Experimental Work

The available: information for free—convection flOWS over
inclined-surfaces is still somewhat sparse. The earliest work on the
inclined-surface problémrappéars:to be that of Rich'[ZZ], Rich's experi-
mental work covered a range of angles from the vertical to 40° from the
vertical with the heated surfacg'facing up. For inciinations further
from the verticai, the flow became three-dimensional. Hassan and
Mohammed [26] attempted to explain the three-dimensional effect observed
by Rich as a separation of the flow. However, since Rich's experiments
were for large Grashof numbers and since he observed fluctuations in his
results, the phenomenon ﬁight also be explained as the formation of a set
of longitudinal roil vortices of the form observed by Sparrow and Husar
[44]. The experimental results obtained by Rich were later found to be
in good agreement with the theoretical and experimental results of Kierkus
[25] and with the experimental results of Hassan and Mohammed [26].

Levy [23] used integral methods to study various examples of
free—convection flow. His predictions for the heat transfer were found
to be in good agreement with the experimental results of Rich. Levy's
heat transfer results for a vertical and a horizontal isothermal plate
are indicated in figures 8 and 9. These figures compare the effécts of
inclination on the heat transfer results as predicted by the present
analysis with the results of previous theoretical and experimental investi-
gations for £ = 0.2 and for £ = 1.0. The Nusselt numbers predicted by the
present'analysis are slightly higher than Levy's second appréximations for

the horizontal. For the vertical plate, Levy's second approximations are
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mugh higher than the present results. However, usiﬁg-awqugrtic, LeVyfs
results for the vertical plate are very close to the ﬁreSth results.

The theoetical heat transfer results of Stéwartsoﬁ“[iSjgand
Oétrach [3] are also indicated in figures 8 and 9. Ihéfpréseﬁt_resﬁlts
‘are in good agreement with these results. H0wever,.siﬁce.thé”;iansfbfméw
tiéh giﬁén in appendix B is based on and can be'teduced:fo the similarity
transformations for 0° and 90°, the results éf'the“presenfiahalysis f§r
0° and 90° would be expected to'agree with the Siﬁilarityisoldtiohs
obtained by Stewartson and. Ostrach, respeCtiQelyf

Michiyoshi's heat-transferlresults>[24].are'élso shown in
figures 8 and 9. . The agreément between the preseht'results an&-Micﬁi—
;yéshi's results is quite good over the range of inclinatiqns from 30°
to 120° except near 90° for £=0.2. This effect may be dqe to the curva-.
ture of Michiyoshi's plate near the leading edée. The'poor agreement be- -
tween 0° and 30° is probably due to the neglect of the longitudinal pressure
gradient in Michiyoshi's work. Through its coupling with the lateral -
pressure gradient and the lateral buoyancy force, this term is very impbrt-
ant for 0° since it provides the only driving force for a flow. For
£=1.0, the zero heat transfer for 0° in Michiyoshi's work can be explained
in the following manner. This position is the mid-point along the
upper surface of the plate. Since the plate is finite, the flow starts.
at both ends of the plate and proceeds towards the mid-point of the
plate, where the fiow rises. in a plume. Because of the formation of a
plume, there is no flow parallel to the surface at £=1.0. Therefore,'
from Michiyoshi's equation (6), it can be seen that the local heat
transfer is zero. However, if the surface is éemi—infinite'as in the

present analysis,ithen the flow starts at the leading edge and proceeds
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along;the surface without the formation of a plume.

The heat transfer results obtained byKierkus[ZS] using. a
perturbation ‘analysis are also given in figures 8 and 9. v Over the :
range of inclinations for which a comparison is possible, the results
of the Present analysis are higher than Kierkus results, but the
results are still in good agreement over a range of inclinations within
about 15° of the vertical. However, the difference between the results
increaseS‘markedly as the inclination goes beyond 15° to 20° from the
vertical, especially for £=0.2. Since a perturbation analysis is
limited by the size of the perturbation barameter, the increasing
difference between the results can be explained at least partially by
noting that Kierkus' analysis is approaching its limit of validity.

- A further comparison between the present results and Kierkus theoretical
results is given in table 3, in which the surface pressures are com-
Pared and found to be in good agreement.

| An interesting point about Kierkus' results is that for the
vertical they do not agree with the vertical solutions used as his
zeroth-order approximation (although Kierkus apparently intended this
to be the case). Although an examination of Kierkus'equation (20)
reveals that it ig clearly non~homogeneous except for a vertical plate,
Kierkus stated that the equation is homogeneous; on this basis, he
concluded that homogeneous boundary conditions were unacceptable since
they would yield only trivial solutions for the first-order approxima-
tions. Kierkus thus established a set of non-homogeneous boundary
conditions following a procedure used by Yang and Jerger [52], who
analysed a free-convection flow over a vertical pPlate using a pertur-

1
bation analysis with Gr % as their perturbation parameter. 1In their
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analysis, Yang and Jerger neglected terms of the order of Gr-l'/2 or less
(that is second- and higher—ordef perturbations). Since there were ﬁo
terms in their equations having a coefficient of Gr_l/“, ali of the terms
remaining in the equations were included in the zeroth-order approximations.
Since the»zeroth—orderﬁapproximatidnsisatisfied ail of the imposed boundary '
conditions of the problem, the zeroth-order solugions should have been

the solutions to the problem at least to the order of the terms neglected.
To: improve the solutions, soﬁe of‘fhe neglected terms should be added;
but.the first-order approximations do not include any of these terms and
thereforé triviai solutions should be expected. Since Yang and Jerger
imposed nonhhomogeneousvboundary conditions for their first-order approx-
imation, one is lead to believe that the boundary conditions of the
originalvproblem were somehow incorrect. If this were true, the zeroth-
order apér@ximation could have accounted for a modified boundary condition.
It appears that the solutions presented by Yang and Jerger and by Kierkus
are incorrect.

Yang and Jerger stated that the boundary-layer solutions must
match the potential~flow solutions and that one of fhe boundary conditions
for their potential flow is given by their equation (21). In addition,
they stated* that U(l) and V(l) must tend to zero as y tends to infinity.
Since the potential-flow equations are first order in y for both U(l) and
V(l); then U(l) and V(l) can each satisfy either a condition at y=20 6r
a condition for y -+ ® but not both. If U(l) = 0 as y + @ is imposed, then
it would be fortuitous if U(l) at y = 0 matched the boundary-layer solution.

Yang and Jerger, and later Kierkus, followed this approach and found that

* Their notation is used here.
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U<l) ‘'did not match the boundary-layer solution. They modified the first-'
lorder boundary—layer solution accordingly, but they also imply that V(l)
matches the zeroth-order boundary-layer ‘solution before modification and
that v(1) = 0 as y + », This amounts to imposing more conditions on V(l)
than the equations can satisfy. Therefore, it is felt that. Yang and Jerger;
and Kierkus were in error in assﬁmiﬁg that the boundary-layer soiution
follows-f;om the potential-flow solution rather than vice versa, and
COnsequent1§ their results must be in error.

In addition to his theoretical work, Kierkus performed some
experiments on the free~convection flow about ‘an inclined isothermal plate.
He used a Mach—Zehnder interferometer to measure the velocity and temper-
ature profiles. Hassan and Mohamed [26],also conducted an extensive
experimental investigation of the heat transfer from an inclined, isothermal
flat surface for a wide range of inclinations which corresponds to 0° to
180°. They used Boelter-Schmidt heat flux meters to determine the local
heat-tramsfef coefficient along the surface, and they found that most of

their heat transfer data could be correlated within #10% by the relation

Nu, = 0.348 (Gry sina)l/*,
Using. this relation, some experimental points are indicated in figures 8,
9, 10 and 11. These figures reveal that the present theoretical results
are well witoin ten per cent of the above relation, thus indicating good
agreement between theory and experiment. The theoretical results of
Kierkus appear to be in better agreement with the experimental results,
but in view of the above discussion of Kierkus' work, this conclusion
may be unjustified. However, figures 8 and 9 do indicate that the present

results are in better agreement with Hassan and Mohamed's experimental
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;esﬁlts than are Michiyoshi's results.

Figures 10 and ‘11 indicate the variation with'positién along
the surface of the heat transfer for 45° and 75°, respectively. Some
experimental results. of Hassan and Mohamed are.alsé shown. The aétéemeﬁt
between theor& and expériméﬁt is again ve:y;good. Kierkus' theorétiéal.
results are also indicated in figures 10 and 11, but again ﬁhé apéarenf
good agreement of his results with the present results and with those of

Hassan and Mohamed may be fortuitous.

4.2 Disturbance Flow

-4.2~-1 Errors and Results

Solutions of the disturbance equations have also been obﬁained
for air (Prandtl number of 0.72) adjacent to a flat, two-diménsional,.
isothermal surface. For the Tollmien-Schlichting wave &isturbances,
equationé 2.3-6 subject to the boundary conditions 2.3-7 and 2.3-8 have
been solved under the conditions specified above. For the Taylor-
Goertler foll—vortex disturbances, solutions have been obtained for
equations 2.3-13 with the boundary conditions 2.3-14. All of the solutions
were generated on an IBM 360/67 computer at the University of Alberta.

The computations were done in siﬁgle precision because it was found that
a change to.double precision resulted in a change in the eigenvalues in or
beyond the sixth significaﬁt'figure.ﬁThe values for Ay and ¥, Were deter-
mined by the values used in generating the mean-flow solutions. To obtain
solutions qf_the disturbance equations at Rayleigh numbers for which there
were no mean-flow results, the mean-flow profiles were interéolafed using
a computer-supplied routine which uses Chebyshev polynomials. For input

parameters, this routine requires bounds on the relative loss of significance
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and the relative error in- the interpolation. These bounds were specified
as ;0’10 and IO"G,IrespECtively. |

Figure 12 presents‘the‘neuxral étability‘curves for the Tollmien-
Schlichting wave disturbances for surface inclinatioms. of 30°, 37.5°, 45°,
60°, 75°, 90°, 105° and 120°. Most of the curves have been generated for
Rayleigh numbers up tovlos, but the 90° curvesrhave'been extended to
Rayleigh numbers of 2.8 x 10° on the upper branch and 4.0 x 10® on the
lower branch. Figure 12a présents the neutral stability curves in terms
of the wavenumber versus the Rayleigh number, and figure 12b presents the
neutral stability curves in terms of the frequency versus the Rayleigh
number. The curves are not extended to inclinations less than 30° because
the boundary-layer assumptions are no longer valid in the neighborhood of
the critical Rayleigh'nﬁmber. The curves do ﬁot extend beyohd 120° for
reasons noted in section 4.1.

Figure 13 presents the neutral stability curves for the Taylor-
Goertler roll-vortex disturbances for surface inclinations of 30°, 37.5°,
45°, 60°, 75° and 85°. These curves indicate the variation of the wave-
number with Rayleigh number for each surface inclination. The results are
presented for Rayleigh numbers up to 10% or as far as convergence could be
obtained. Inclinations at or beyond 90° are not considered because this
mode of instability is not possible. Some of the eigenvalues obtained for

each form of instability are tabulated in tables 4 and 5.

4.2-2 Discussion of the Results

The neutral stability curves for the Tollmien-Schlichting wave
disturbances are indicated in figures 12a and 12b, and these figures are
interpreted in the following manner. For small Rayleigh-number flows,

there are no wavenumber-frequency combinations corresponding to a boundary-
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layer meen flow for which the wave disturbances will grow with time ox
position. As X increases, a position is reached for which there is a
single wavenumber—frequency pair that produces a neutrally stable distur-
bance. For Rayleigh numbers above.this “oritical" Rayleigh number, there
are ranges of wavenumbers and frequencies for Which the resulting distux-
‘bances grow with position or time or both. These ranges are bounded by
the upper and lower branches of the curves shown in figure 12. The upper
branches of the curves in figure 12a correspond to the upper branches of
the curves in figure 12b. For any inclination, any distﬁrbances haviné'
wavenumber—frequency pairs which 1ie above the upper branches or below
the lower branches of the curves in figures 12a and 12b are stable since
they will attenuate with position or time or both.

Figures 12a and 12b reveal that the surface inclination has a
very significant effect on the neutral stability curves for the Tollmien—
Schlichting wave disturbances. Since the solution for 90° was previously
determined by Nachtsheim [33], the 90°-curves will be used as a base from
which any changes are observed. The 90°-curves are characteriéed by the
existeece of two "noses" and these will be referred to as the upper and
lower noses. Nachtsheim's work revealed that in the region of the upper
nose instability in the flow is associated with hydrodynamic effects in
which the Reynolds stresses play a dominant role in transferring energy
from the mean flow to the disturbances. 1In the region of the lower nose,
the Reynolds stresses were found to be subtracting energy from the distur-
bances, and the instability resulted from an energy transfer to the
disturbances by the buoyancy effects which give rise to the temperature
disturbances. Hence, this latter instability is characteristic of a

thermal instability. From 90° to 30°, the lower nose becomes more
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prominent and the region asSociated.with the uppef nose is almost completely
absorbed. This implies that the thermal instability definitely assumes

the dominant role as the surface is inclined further from the vertical.
However, from 90° to 120°, the buoyancy effect is in the opposite direction
to that for angles between 0° and 90°, and therefore it provides a stabi~
lizing effect on the flow.

The initial decrease in the maximum wavenumber and the maximum
frequency as the inclination varies from 90° to 75f may be attributed to
the decreasing role of the hydrodynamic effects noted above. Since the
energy transfer associated with the Reynolds stresses is expected to
continue to decrease with increasing inclination from the vertical, the
subsequent increases in these maximum values between 75° and 30° are
presumably due to the increasing importance of the buoyancy effects. In
figure 12a, there is no obvious explanation for the peaks inlthe upper
portion of the curves for 37.5° and 30°. Since this peak is slightly more
prominant at 37.5°, it might be attributed to a small energy transfer
associated with the Reynolds stresses, but the position of the peak does
not appear to fit the pattern established for the other inclinations.

In conjunction with the increasing effect of thermal instability
as the surface inclination varies from 90° to 30°, there is a very signifi-
cant increase in the range of wavenumbers associated with unstable flows.
This wide range of wavenumbers exists even in the region close to the
critical Rayleigh number. However, for inclinations of 45° or less, the
ranges of frequencies associated with unstable flows decrease in the region
close to the critical Rayleigh number.

Figures 12a and 12b also reveal that the critical wavenumber

increases as the inclination varies from 90° to 37.5°, but it decreases
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slightly between 37.5° and 30° as well as from 90° to 120°. It is not
apparent from the present analysis why, or if, the critical wavenumber
shouid reach a maximum in the vicinity of 37.5°. In contrast to the
ecritical wavenumber, the critical frequency is very close to a maximum
at 90°. It decreases at 105° and 120°, but it is nearly constant from
90° to 60° with it decreasing markedly from 60° to 30°. The critical
frequency at 75° appears to be slightly higher than the value at 90° but
it is difficult to deéefmine whether or not this_is due to small numeri-
‘cal errors.

The neutral stability curves for 30°, 37.5°, 45° and 60°
indicate possible closure of the curves as the Rayleigh number tends to
infinity. However, the profiles have not been extended far enough to
draw any definite conclusion on this point. There is a possibility‘that
the wavenumbers associated with the upper branch may teand to oscillate
as the Rayleigh number becomes very large. This oscillatory behaviour
of the upper branch was observed by Hieber and Gebhart [40] in their
stability analysis of a free-convection boundary-layer flow over a vertical
uniform-heat-flux plate. Hieber and Gebhart were unable to explain this
phenomenon and there is nothing in the present analysis to indicate why
such a behaviour might be observed.

Figure 13 presents the neutral stability curves for the Taylor-
Goertler roll-vortex disturbances in terms of the wavenumber versus the
Rayleigh number based on the position along the surface. Unlike the
neutral stability curves for the wave disturbances, the curves in figure
13 do not exhibit any significant change in shape with a change in the
surface inclination. These curves again separate the stable and unstable

regions, but these regions are much more simply defined than for the wave
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disturbances. For'a.given Rayleigh number and a particular inclination,
any set of vortices having a wavenumber above the neutral curve will be
démped out with time; but this set of vortices would be amplified if its
wavenumber was below the curves im figure 13 or if the Rayleigh number is
increased. - The lower portion of each of the curves has beep obtained by
eﬁtrépolation‘usihg a five-point Adam's scheme because problems were
encéuntered with the convergences of the numerical procedure in this

. region.

The curves in figure 13 clearly show that the effect of the
surface inclination is much greater as the inclination approaches the
vertical. This can be seen by noting the variation in the wavenumber
as the inclination changes for a fixed Rayleiéh number. Another inter-
esting feature of the curves in figure 13 is that each curve appears to
be tending toward its own upper bound on the wavenumber. This reveals
that for each surface inclination there is some size of the roll vortices
below which the disturbances will not grow. This size increases as the
surface inclination tends toward 90°.

Another point which requires some consideration is the meaning
of the critical Rayleigh number associated with the roll-vortex distur-
bances. Following the definition for the wave disturbances, the critical
Rayleigh number is defined as the lowest Rayleigh number at which amplifi-
cation for at least one wavenumber just begins. For each of the curves
shown in figure 13, the critical Rayleigh number is found by the inter-
section of the extrapolated neutral stability curve with the zero
wavenumber line. This implies that the roll vortices associated with the
critical Rayleigh number are infinitely large. This is physically

impossible, and it implies that the critical Rayleigh numbers obtained
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in figure 13 are actually lower bounds.

?here is one other point,regarding the solutioniof'the“
disturbance equations . which requires~some’consideration.” In the
solutions obtained for both disturbance forms, it was. assumed that.
the mean flow could be approximatedaas.a parallel flow. However,.ln
section 4.1-3 it was noted that the flow is in fact non—parallel.» |
It should be noted that some of the terms neglected by the parallel—
flow assumption are of the same oxrder as some of the terms retained
in the equations. Howener, those terms retained involve.the highest~
order derivatives and the neglect of these terms- would completely‘

" change the nature of the disturbance equations. The non-parallel
deffects are related to the inertia effects in the disturbance equations
.and,if_the inertia effects are conSidered by themselves then the terms

2 .
- @+®) , or less, relative to the

neglected are of the order of Rax
terms retained. Furthermore, since the non-parallel effects are not
associated with the highest—order derivatives, it is reasonable to
assume that these terms can be neglected without a significant change

in any important charateristics of the disturbance equations.

4.2-3 Comparison with Previous Theoretical and Experimental Work

The critical Rayleigh numbers predicted by each of the dis—:
tnrbance theories used in the present analysis are plotted versus the
surface inclination in figure 14. Also shown is the theoretical critical
Rayleigh number for a vertical, isothermal plate obtained by Nachtsheim.
The experimental results of Lloyd and Sparrow [43] are also indicated.
Nachtsheim's result [33] provides the only theoretical check on the
present results for the wave disturbances. Nachtsheim used a different

ordering analysis to obtain the set of disturbance equations for his
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§tability‘analysi§, but the equations uged in the prgéent;anal&?is.'
have all the.terms involved in Nachtsheim‘s gqﬁation55 pﬁiy ﬁhé
coéfficients'ha&é‘chaﬁged; Since the sets of equations~§buldj5e
identical if the wvariables ﬁadbbeenunormalized.by the-same:procedure,
then the results obtained by‘bofh‘gets ﬁust agree'withiﬁcthg nu-

- ﬁer;cal’éccuraéy when presented in the same coordiﬁgté-syStému ‘Figuré
14 reveals that this agreement has been achieved. The neutrQI sta-
‘bility curve for 90°biﬁ-figure 12a also agrees with the neﬁtralkaté—
.bili;y curve giveﬁ by Nachtsheima'-This'agreement'indicatés tﬁat the
‘nﬁmerical précedure for thelwave«disturb#nces is capable“of~giviné
sqfficiehtly acqurate.nesults'at_lé;stiﬁor‘90°. Since thisvﬁrbcédure
isfupalcéred for other surface in¢1iqatidﬁ33_theneris.no reason to
doubt ;he acéuracy of the numeriéalvresults for the'oﬁher'surfaée in-.:
élinations. In fact, since the numerical procedure ﬁsed for the roll-
- vortex disturbances is essentially the saﬁe as that for the wave dis-
turbances; the above agreement is considered to be an indication of the
accuracy of the results obtained for the roll-vortex disturbances as
well.

A éomparison of the two disturbance theories reveals a very
abrupt change in the form of the instability between 85° and 90° with
another possible changé between 15° and 20°. Since the latter ch;nge
would occur at a Rayleigh number well below the limit of the boundary-
layer approximations and since it has been obtained by extrapolation,
fhis reéult has -very little significance. In contrast, the former
change 1is. very significant since it implies a fundamental change in'the
mechanism of the instability. For surface inclinations of 90° or above,

the present theory predicts that any instability in the flow initially
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results from the formation of Tollmien—séhlichting“waveidisturbancés
vhich are two-dimensional. For surfaée inclinatiQﬁépof'85°.dr-be;qw,
any instability is due initially to the formation of Taylor-Goertler
roll vortices which'make the flow three-dimensional.

The change from one form of instaﬁility’to,the o;hgr.at a
" surface inclination befween 85° and 90° does not agreefwith'theiex—'
" perimental obsenﬁations of Lloyd and ‘Sparrow [43] which revealed a
éhange between 73°and 76°. This difference is not surprising in
view of the difference in the critical Rayleigh~ﬁumbers predicted by
theory and §bserved by experiment. However, in viewlof the work of
Dring and Gebhart [36, 37] and Gebhart [53], the results observed by
éxperiments.are'the final stageS‘éf-the,transition whereas the theor-
etical results are predicting the initial step towards the tréﬁsition
to turbﬁlence. For a free-convection boundary-layer flow over a uni-
form-heat-flux vertical surface, Dring and Gebhart [37] showed that
the disturbances which begin to amplify first do not have the highest
amplification rate. Gebhart [53] found that the frequencies associated
with the disturbances having the highest amplification rate were in
good agreement with the experimental values observed by Eckert and
Soehnghen [28], Szewczyk [32] and Lock, Gort. and Pond [42]. This agree-
ment suggests that the difference between the theoretical and experi-
mental.critical Rayleigﬁ numbers can be attributed to an amplification
process.

All of the above experiments were performed without introducing
controlled disturbaﬁces. However, using controlled disturbances intro-
duced by a vibrating ribbon and using a Mach Zehnder interferometer to

observe these disturbances, Polymeropoulos and Gebhart [35] performed
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experiments on'thé-stébility of ‘a free—convection.géundary-layer'flow
-over.a7dn$fdrﬁ;heat-f1ux vertical plate to determinewthe;neutral sta-
bility curve. 'Ihewresults of their inveSGigétibn give:sﬁrong'Support
to the linear stability theory in‘prgdiCting~£he initial instability.
‘Hleber and Gebhart [39,40] found -empirical correlations between the
linéér stébility theory and the experimental observations of : a)the
first noticeable oscillation in the boundary-layer flow, b)thé first
-significant departure from a laminar flow.

Although the above results seem to adequately account for the
difference_between.the theoreticaljand‘experimental.results'for the
wave disturbance, the difference for the roll-vortex disturbance re-
mains to be explained. There does not appear to'be any method of
ingoducing*setg of roll vortices of a controlled size into the flow,
and therefore, only "natural" roll-vortex disturbances can be observed.
The theoretical predictions shown in figure 13 indicate that the flow
initially becomes unstable due to the formation of very large roll
vortices. In actual flows, it might be expected that the first roll
vortices to form would be relatively small. Assuming that this is what
actually happens, then the Rayleigh numbers indicated by the inter~
sections of the experimental wavenumbers with the neutral stability
curves in figure 13 could be several orders of magnitude higher than
the values plotted in figure 14. However, since Lloyd and Sparrow did
not determine the wavenumbers of the roll vortices first observed, the

above explanation remains as a hypothesis.
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l - . CHAPTER V

" CONCLUSIONS

Thé.sgreémEnt between the present~theorética1 and-ths previous'
theoretical and experimental mean-flow’ results appears to justify the
boundary—layer formulation of the problem as well as the transformations
used in the analysis.  Although the solutions presented are_restricted
;6 constsnt-property free—convection-“boundary—layer.flsws of air.over‘a
flat, thrdﬁmsnsional, isothermal surface, it can be seen from the trans-<
formed'bqun&aryhlayer equations 2,2-9 that‘the,eitsnsion‘to-otherffluids,
to more general two-dimensional surfaces and to more -general surface-—
temperature &istributions is straightforward. As' pointed out in'chaprér
2, it is also quite simple to extendAthe.transformed‘houndsry-layer
equations to variable-property flows if the property variations are
specified. The extension to axisymmetic flows is only slightly more
difficult since it requires a reformulation of the Falkner-Skan and
Lefevre transformations in the manner indicated in chspter 2. Therefore,
using a formulation of the problem si—*lar to that presented in chapter
2 and using a numerical procedure such as that in cﬁapter 3, it should
be possible to obtain the solutions to a large numbsr of steady, lam-—
inar free-convection flows of the boundary-layer type or of the buoy-
ant—-jet type. |

Ths present solutions reveal that the surface inclination
has a significant effect on the ﬁean flow. However, the greatest effect
of the inclination can be seen over the range from 0° to 60°. Within
a range of about 30° on either side of the vertical, there is only a very

small change in the velocity and temperature profiles. The profiles at
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angleeﬁontopﬁesite.sides of the vefbical are almost identical over

this range. Over ‘the same range of inclinations, the pressure’ profiles
show’ a- considerable change, including a- change of sign as the inclina—
tion passes through 90°; but it is apparent from ‘the velocity and  tem-
perature profilesvthat“the pressure-yariation-over the'bpundary—layer
has a negligible influenee on the flow at~Ieast'over5this-range of
surface_inclinations witnin'30° of ﬁhe vértical.

In contrast to the slight cliange: in the nean ‘profiles over
the range of surface inclinations from 60° to 120°, the stability of
the flow is very strongly-influenced byxthe,surfacesinc;ination over
this range as reflected by the’change:ef five tpusix orders of magni-
tude in the critical Rayleigh nuﬁﬁer.: Furthermore, the mecnanism of the
initial instability'underéoes a change from the fornation of a set of
Taylor*Gdertler roll-vortex disturbances»to the formation of Tollmien-
Schlichting wave diStnrbances as the surface inc¢lination varies from
below to above about 85°.

| For surface inclinations below approximately 80°, the present
stability analysis reveals that any free—conveetion boundary-layer flow,
which satisfies the conditions assumed in the present analysis, is
potentially unstable if a set of sufficiently large roll vortices is
superimposed on it. The critical size of these roll vortices decreases
as the angle decreases. For surface inclinations below about 35°, the
same flow is also potentially unstable if certain wave disturbances are
{ntroduced into the flow. The range of wavenumbers for unstable dis-
turbances increases as the angle decreases. Therefore, assuning that
the flow is in a region in which the boundary-layer approximations

are valid, it may be concluded that for inclinations below about 80° the
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flow is not completely stable to all Tollmien-Schlichting wave dis-,
turbances and all Taylor-Goertler roll-vortex disturbances. However,
for inclinations greater than 80°, there is at least some pbfﬁion of
the boundary~layer régime over which the flow is completely stable to
all sizes of both formgvofAthe‘assumed.disturbances.

The lack of theoretical and experimental stability analyses
with which a compafison can be made makes ‘it difficult to draw any
- definite conclusions regarding the validity of the present results.
However, the results do appear to be reasonable in terms of the pre-
viously available results for 90°. In view of this apparent success
in the present stability analysis in addition to the capability of
generating the mean-flow solutions,; it is now possible to extend the
stability analysis to a much wider class of problems. Perhaps the
first extension to.the present work would be to determine the ampli-
fication rates and attempt to correlate the results to the experimental
results for both disturbance forms following procedures such as those
used by Dring and Gebhart [37] and by Hieber and Gebhart [39,40].
Before proceeding ﬁith other classes of problems, the influence on
the stability of the non-parallel effects of the mean flow should be
determined even though the effect is expected to be small. To do
this, the disturbance equations 2.3-6 and 2.3-13 would have to be re-
placéd by equations 2.3-5 and 2.3-12, respectively, but the numerical
procedufe should not require any modification for the wave disturbances.
However, the procedure for the roll-vortex disturbances has to be
modified to solve for four linearly independent solutions because of
the additional coupling related to 61. Depending on the outcome of this

investigation, either equations 2.3-5 and 2.3-12 or equations 2.3-6
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and 2.3-13 could then be used to analyse the stability of constant-—-
property free—conﬁection boundary-layer flows of different fluids
over more general two-dimensional surfaces having more general sur-—
face-temperature distributions.

In order to consider the stability of variable-property or
~ axisymmetric flows, the more'generalrdisturbance equations 2.3-3 aqd
2.3-10 can be considéréd for the wave diéturbances and. the roll-vortex
disturbances, respectively. . Although these equations are much more
complicated, the procedure for solving these equations should be
basically the same as the procedure used in the present work. Ob-
taining the asymptotic solutions may be slightly more éomplicated, but
once these are obtained, the procedure for obtaining the linearly
independeﬁt solutions should be straightforward. For the wave dis-
turbances, there will be.three equations to solve instead of two
because the disturbance stream function cannot be introduced, but
again this should not present any serious difficulties. Therefore,
within the limitations of the linear stability theory, the formulation
of the equations and the procedure for solving the equations appears
to be capable of analysing the stabiiity of a large class of free-

convection boundary-layer of buoyant jet flows.
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Appendix A - A Normalization and an Order—-of-Magnitude Analysis

of the Meén-FIowAEquations

As a first step in seeking any simplification to the set of
steady, two—-dimensional equations of motion 2.1-2, an attempt is madé to
normalize the dependent and independent variables by introducing a set
of characteristic quantities. The definition of each of these character-
i#tic quantities must come from either the boundary conditions, the
equations or the physical description of the problem. Introducing the
normalized_variables and the characteristic quantities into equations

2.1-2 yields the following set of equations:
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(1+Aqy) 1+ (ay 3 3y’oy (ay 3 By)[ (j'*'Jysina)]}
+ [uc o] (M-i-M 3%u__ M du (__ _ 2 2M) du (1+Agqy)u (_1
X Y (1+Aqy) 3’8x8y ¥x 9y 9y 3 3y’ "ox (jxJysina) *d
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Jycosado.
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Jusino
(j+Jysina)

Ju
(l+AqY) ox

1 L chosada
(IxJysina) ‘dx *
Gl +3 (T+Aay)
Bu, _ Aqu oM

1

(I¥Aqy) ox

M dv , M3y

M

1 + ( + 3

- ____;__{ dq  _
(1+Aqy) " dx ox
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) [ (M+M) du _ _AquM '
33y ~ (I+Aqy)

+*Jucosa

qdu _ _Aqyu dq
(1+Aqy)

[—%lwlax 5x T ox?

MAy dq ov
T QHAqy) dx ax] - [p BB, ]'Jl

yeu . (1+a}23@

X
c

T (1+Aqy) "

4+

+

Bx

RO,

(3+tJysina) 3x

cos o

c

>{[U“1’m 4 9p, (Yeoyvd

kceg 1
[ Xc ](1+Aqy)2

chosqgg)
dx

(1+a)3K 30
dy 9y

+

T (1+Aqy) ox T

{K(1+a)826

57t

BK KAy dgq
(1+Aqy) dx

KJIsina(1+a)
(jtJysina)

2

2Ko6 da
¥x dx

(1+a)9d0
1=

oy

}

+

X

eda] + [gchVc@g]ch(l+a)89

K6d2a K

da.

)[(jinsina) dx

e=3l

6‘1 chosaggb

dx

Qi

+ %42y o [—L&] [

KAq(l+a) QQJ
(1+Aqy) 9y

axz T [(jinsina)‘dx

K(1+a)d26
AN Z
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}._lc ‘i SM+4/3Mg | Jycosoda, 2
+ [ ]{(1+Aqy) [( + (j'*'Jysina)Z(—l dx) ]

2.(M-2/3M)u

du chosada M + 4 A%q%v?
+ GiTysind) (LFAqy)? dxldx ~ Fee il 5‘ HC " 3z
v, 2 J2v2sin?a 2.(M-2/3M) , Jsinodv 42 Jysing. Aqvav
t Gy *+ (Gigyeinoy?) T (GEiysine) - © 3y ¥ T (i+Aqy) 3y
+ JAgvzs-ina]} + [u ] 1l - {(M + AM)[ 2Agv _ du
7 (l+Aqy) X Y (1+Aqy) (1+Aqy) x
+ _2Juvsino (_1 chosada)] + 2 (M-2/3M) j+Jysinoc)_§g ov
= (3xJysina)Z d * j+Jysind.) ox dy
+ vaind.au udv d ( chosagqt_) Aquv & _j_ chosaﬂ)]
- Sx oy 'dx * dx (1+Aqy) 'd * dx
i 2M3v ,du 2Aqu M, du,? 2MAqu _ du MAzg""u2
+ _B_.E. ——
* [ay (1+Aqy)]} [ 1 (By) (I+Aqy) 9y T (1+Aqy) ]

ucv‘z..2 M v, 2
+ I xc ](1+Aqy)2(8x)

I
A
<

where A

and J = Yo o
R
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characteristic quantities found for the special cases, an attempt is made
to generalize these quantities for. any angle.

Firstly, consider equations A-1 for o = 0.' For this surface
orientation, the lateral body or buoyancy force in the momentum equations
provides the oﬁly driving force forlany subsequent motion. This lateral
buoyancy fﬁrcevgivés rise to a lateral pressure (departure) gradient,
which in turn establishes a longitudinal pressure (departure) gradient.
Since it is this longitudinal pressure gradient that establishes a longi-~
tudinal driving force, it follows that the lateral pressure gradient must
be of the same order of importance as the lateral buoyancy force. This

is expressed in the following equation:
2 = p 8O g. (a-4)
Yc c ¢

In addition, the largest viscous terms in the longitudinal momentum
equétion are expected to be of the same order as the longitudinal pressure
gradient, at least for fluids having moderate or high Prandtl numbers.

(For low and moderate Prandtl-number fluids, the inertia terms are expected

to be of the same order as the pressure gradient.) This leads to an expres—

sion of the form:

o

c

[

Now a combination of equations A-2, A-3, A-4 and A-5 yields a set of

characteristic quantities given by:
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<
0

]
3

" a = 2 S
and Pc PcVe Raxc s

where i Rax

Secondly, consider equations A-1l for o = m/2. For this surface
orientation, the buoyancy force in the longitudinal momentum equation
proﬁides the driving force for any subsequent motion. For fluids having
moderate or high Prandtl numbers, it is assumed that the largest viscous
terms in the longitudinal momentum equation are of the same order as the
buoyancy force. (For low- and moderate-Prandtl-number fluids, the inertia
terms are assumed to be of the same order as the buoyancy force.) The

resulting expression is:

uYgU§ - P8O 8 . (A=7)
Cc

If it is assumed that equation A-4 applies for 0=m/2 as well as for a=0,

then a combination of equations A-2, A-3, A-4 and A-7 defines a set of

characteristic quantities as follows:
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=
]
>
b
??

1
U_ = _Vo Rag 2 (A-8)
¢ oX c’
[
V_ Ra H
¢ ch “e

and : . P

[¢]
]
'E
N
w
>éb
0
CFw

Finally, on the basis of the expressions given by A-6 and A-8,
an attempt is made to extend the order—of-magnitude analysis to any angle.
To accomplish this, consider one éf.the characteristic quantities, whose
form varies with angle, and generalize this quantity by introducing an

unknown function of the angle. For example, let

= Vv H(w) _
UC aﬂ- Raxc » (A 9)

where H(0) = 2/5 and H(1/2) = 1/2. By inserting A-9 into equations A-2,

A-3 and A-4, the following results are obtained:

~3H(W)
Yc = XcRax 2

C

3H(w) (A-10)
oX C

1-3H(w)

|

d P peVe? R
an c cx a.}{c
C
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If expression A-9 and A-10 are introduced into equations A-1l, the following

set of equations is obtained:

* vIsino + u(gj_ + chosozgg_)]

H
pg\)s You u_!
[oxc Raxc H x + (j+Jysin0L)[ dx dx

(1+Aqy) (Yav | vay. v} =
+ ( 5y * ay) + Aqyv} = 0

2H
PV ? Ray Yyu  3u 'yvau _YAquv __
[05 xc:" c ]{(1+Aqy) T + (1+Aqy)}

1-in 1 (h4/34) 5%y

_ PeVe? R 1
=T [oxc5 *Xe ](1+Aqy) ax "+ [ 5 axc ‘(1+Aqy) (1+Aqy) Fre

1 (ud2 ry uJysino:.(g_q) uchosou:l2 Bu 44
(j"'JysinOL) dx dx * dx? 8x dx
+ Jycosada Bu) (__j_ chosotg)2 _ Ay dq,ou
dx 9% (j"'Jysina.)z * dx (1+Aqy) dx'ox
u di chosada))] + [( 4 oM, 3u u

+ (j*xJysino) (dx - T3 wex T (jxJysina) (E

_1 chosada (1+Aqy) (M + ¥ 33v Jsino v
ax) * )]/ 3)[3x8y * (j*Jysina) Bx]

P

R AM, Jvcosa g_lg+7/3M2 Aqdv +4/3M2 [Avdg
3 " (j*Jysina) dx (1+Aqy) Bx (1+Aqy) dx
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- Jvsino ,dj , Jycosado. Azxg 4 éM Aqu
+ (j+Jysina)( * dx) (1+Aqy) dx] ( 3 Bx)(l+Aqy)
M _ 2 oM Jvsino. M dv R aM du
tGx T '3‘3?:‘)('3’5 Gilysinay’ * 3y 3% © [""‘5“ ax ]{ 75y
_ Aqu) *_M[B u Jsinc Buy MAq [ Jﬁsina ]
oy* (j+Jysina) ay (1+Aqy) By (3xJysina)
MA2q2u _‘L_ sina
- A 5 %158 (a-11)
3
PoeVe? R 2H Yu v Yvav 2 R xAgu
[OEX S ]{(l-l-Aqy) 5= T } - I E ’ ax ](1+Aqy)
c .

P..dP Vo2 + 4M . Aq_ v
- st S Ra" R i

Jsino, vz J2vsin®o_ _ _ A%q%v ] + ( L4 M. 3v + M
= (j*Jysino) dy | (GEIysina)® (1+Aqy)“ ay 3 5y’ oy Jy

Aqv Jvsino M+ M, 9%u M du, ,(1+Aqy)
)[ (j+Jysina)] N )Bxay x By]/ + (

2 BM)[
3 dy 3% | (jEJysino) ‘d

(1+Aqy)u é __1_ + chosada)] /(1+Aqy) +' 1 (g
(j*Jysino) "dx

chosa_d_a_)[(ﬁ +Mdu _ _MAqu _ _ (H+4/3¥)Aqu
dx 3 ay (1+Aqy) (1+Aqy)

+
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s (ﬁ+4/3M\)Jusin0L] J(HAay) (f+4/3M) 2Jucose _ do _ __Aq __du
(J*Jysino) (1+Aqy) ' (j*Jysina) dx ~ (1+Aqy) 9x
- Agu MA udq _ L Aqyu dq
(T+Aqy) - TAqy) %t ax (T+Aqy) ax)?

M 3v , Md%v M 43
N Ra" M oyr G2+ Y ¢ e s

I+

Jycosoda. MAy dq dv PeVe Yq cosa
T - Toragy) ax o) “::‘5’“' Ra"c]rsec

[_c_E.Rax ]{Tﬁfiﬂ'[(lﬂ)gi e%%] +ch(l+a)86}

koOc Osl 3p 3p , Vip
+ [ x'cE Raxc ] >GD {(1+A'qy) 5% * Byl

_ (keOoq 1 K(1+a)d20 , 2K30 da , KOd’a K 41

= x =1 Graany® { 57t sxax T ax T [(3Eiyeing) dx
choso&doc 9K _ __KAy (1+a)36 _ 6da.

* ) tex ~ (1+Aqy) dx][ ox + dx]}

2
Rax ](1+a){K3 0 + 9K 36 , - KJsino 290 KAq _ag}

kO
+ I xc9 3y 3y - (3xJysina) Oy * [I+Aqy) 9y

’ 2H-1
k.0, Os SM+4/3Mg chosada
*PRE e MiTiagy (J*Jysinot)Z(_i * ax’ §
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2 (M- 2/3M)u Bu( + chosada)/(l+Aqy) + (M + 4 )[(1+Aqu)

(j +Jysina) 9xd

J%v2sin2a ] + (M—Z/.%Q, (j¥Jysina)Aqv dv + Jsinadv
(3xJysina) < (jxJysina) " (1+Aqy) dy dy

+ JAqusincl.] (ﬁ+4./3M), 2Aqv_ du + —2Juvsino ( + chosada)]
(1+Aqy) (1+Aqy) "(1+Aqy) 9x ~ (J*Jysina)2'dx

2(M~2/3M2 (j+Jysina)du dv , Jvsinodu ua_v(gj_ . chosagl_o_L_)
(j*‘JysinOL) 3x dy = T dy dx ~ dx

Aquv _dj | Jycosoda,,,(1+Aqy) 2M . 9u - _2Aqu
+ (1+Aqy)( * a1/ * (1+Aqy)[3y (1+Aqy)]}
H~-1 2.2 2
kces OsR M 9 _ _2MAqu du . MA®q‘u
I X, axc I (3y (1+Aqy) 9y © (I+Aqy) _}

H-1 2
kceg OsRax M ov
+ 1 Xc c ](1+Aqy)2(8x)

where Os = BgX. is the Ostrach number.

c

The function H(w) has no restrictions on its form as yet, thoﬁgh

it seems reasonable to expect H(w) to be bounded by H(0) and H(1/2), that
is 2/5 < H(w) < 1/2. Furthermore, if it is assumed that terms of

21
i

_1 _3 _3
the order ] Rax ", o‘RaX ", A2¢:5RaX s 08, AZOS, Oe.Rax 5, AZOSRaX 5
c c c
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or less relative to the largest terms in each equation are negligible,

then equations A-1l can be simplified to the following:

Ydu '-‘J... Y [ + vJsina +u(__-]_ chosada)] + (1+Aqy) (Yav vo )
Bx ox (jxJysina) * oy

. + Aq‘yv =
i
2H~1 ' 1y
RaX I u 8u + vau du | _Aquv ] = - ORay 2 1 aPq
c (1+Aqy) 9 (1+Aqy) ¢ (1+Aqy) ox
+ O 8M ou _ Aqu Jsino ou
Rax By(ay - ) + [ay" ~ (JrIysina) ay] + (1+Aq-y)[8y
Jusino ] - MA2%q3u } - O'Yd sina + O(chax l, AzoRax H'-:I')
* Gidysina)! ~ (1+Aqy)>2 ¢
(A-12)
3H-1 3H-1 3H-1 > 3H-1
- Rax 2 vAqu? - _ O’3P,~| oY dcoso, + O(RaX 2 R GRax 2 s A chax 2 )
c (1+Aqy) oy BG C c
yeu ;(1+a)3@ | 6da, , yev(1+a)de _ (1+a)[K329 9K 36 , _ KJsina 36
(1+Aqy) x dx oy 9y 9y = (jzJIysina) dy
-in -H 28-1 2H-1 -H
KAq ] + O(OsRax Raxc . OsRaxc s A OsRaXc ,ARaxc )

(1+Aqy) 3y

The above analysis does not require H(W) to take any special
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form but it is expected to be a monotone function which must satisfy

2/5 < H(w) < 1/2. However, in order to obtain a numerical solution, a
specific form must be provided‘for H(w). For this purpoSe, a reasonably
simple, but arbitrarily chosen form is given by:

Hw) = 2 (L+w?), ‘ (A-13)
5 4

aqd this is used in the present work wherever it is required.

P In order to complete the normalization and the order-of-magnitude
" analysis, the remaining characteristic quantities must be specified. For
the properties p, U, Cp and k, the properties of the fluid far from the

surface might be used as the characteristic quantities, that is:

Pe = Po,
l-lc = Hops
C =¢C
c P,
and kc = koo .

The characteristic length, Xc, is considered to be the position along the
surface at which the flow is being examined. This position is sometimes
designated as L. The characteristic temperature difference, Gc, depends
on the surface temperature. For example, if the surface temperature is
uniform, then Gc = Qw. If the surface temperature is a known function of
X, then the largest (or the mean) temperature difference between the sur-
face and the undisturbed fluid might be used for Gc. If there is a

uniform heat flux along the surface, then Gc is defined in terms of the
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heat flux, i.e. Oc = SﬁL whére q, is the heat flux. Having established
these remaining characteristic quantities, the order—of-magnitude analysis

is complete.
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Appendix B - The Falkner-Skan Transformation

The set of equations 2.1-3 is not easily solved even though the
order-of-magnitude analysis has already eliminated several terms. In some
special cases, it is possible to apply a similarity transformation and
obtain a set of ordinary differential equations. The procedure followed
in obtaining the similarity transformation can be extended to include a
very wide class of problems simply by making the new dependent variables
fJnctions'of both new independent variables. This is the transformation
referred to in Chapter I as the Falkner-Skan transformation and it is
applicable to variable-property flows as well as to constant-property flows.

The present work is primarily concerned with constant-property
flows and therefore the transformation will be derived on this basis.
However, the extension of the procedure for variable-property flows can
be easily seeﬁ. Starting with the set of equatioms 2.2~1 and assuming the

continuity equation is eliminated by introducing a stream function, the

following transformation is applied:

Ny
V(x, ¥) =x ~ F(, &),

N
pyGx, ¥) = x 2 I, £)

N
and B(x, v) = X 3 o(m, &), (8-1)
where E=x
Ny
and n(x, y) =y_x .
1

The exponents in the above transformation will be functions of
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ﬁhe angle o. The limitiné values of these functions can be determined by
considering the transformation for o = 0 and a = II/2. When the transfor-
mation is applied to the equations, each term in the equations contains a
power of x. Followling a procedure used in similarity transformations, the
exponents of x in terms not involving derivatives with respect to & are
equated. If the resulting relations lead to more than one definition of
the exponents, then each possible transformation should be considered. If
thére are no definite advantages of one transformation over the other,
then the choice becomes arbitrary. After choosing transformations for
o0 =0 and o = /2, then an attempt is made to establish a general trans-
formation for all angles.

Consider the exponents for o = 0. One relation between the
exponents is obtained from the conduction and advection terms in the emergy

equation, and it states that:

Nl + N3 + N4 -1= N3 + 2N4. (B-2)

Another relation, obtained from the pressure and buoyancy terms in the

lateral momentum equation is:

N2 + N4 = N3 . (B-3)

A third relation, obtained from the pressure and viscous terms in the

longitudinal momentum equation, is:

N, - 1=N, + 3N, . (B-4)

2 1 4
Since a fourth relation is not available, it 1s assumed that:

N, =n « (B~5)
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Solving for the other exponents gives:

N1 = nt3

= 4n+2 (B-6)
and N4 = n-2 .

Consider the exponents for o = /2. It is assumed that the
relation B-2 is also valid for o = II/2. Then using the viscous and

buoyancy terms in the longitudinal momentum equation, a second relation

is:

. (B-7)

It is also assumed that relations B-4 and B-5 hold for o = II/2. The

resulting set of exponents is:

N, = nt3,
1 =
N, = ntl ' (B-8)
and N, = n-1
4

A generalization of the exponents given in B-6 and B-8 is given

by the following:
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N, = nt3 ,
1oaw
=1+n3 + 3[n+3-d (w)] (8-9)
d(m) d(w)
and N 4 = n+3-d (W),
o d(w)

Wh%re d(w) is any continuous function of w satisfying
a(0) =
aq/2) =

and that 4 < dW) < 5.

Using the exponents given by relations B-5 and B-9 in the trans—
formation given by B-1 and introducing the transformation into equations

- 2,2-1, the following set of equations is obtained:

4n+12-3d
1 (4w?-1)

Ra, « 4 {(Zn-l-6 ayF 2 (n+3) o+ S Fen - Fefay)

|

d-n-3

- ACqE d o+ FF +

+3-d nF_2
(n 3 d)n n

d-n-3 - d-n-3
4 EFgF, 1/ (1HAC ank T y)/1c 2 arac,anE ¢ )]

4n+12-3d

1 2
- - -5 (1tw ) d _
ORaL x [(4n+32 Zd)H

+ (n+3-d)nnn
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d-n-3 L., 2 4ntl12-3d
d s (4w*-1) d
+ Eng]/ (1+AC,qnE ) . _?CU Ra, x Frnn
1
d-n-3 d-n-3 2d-2n-6 d-n-3
+ AC,qE d an/(1+Aclqn€ d 5 - Azclzqza d Fn/(1+'Aclqn€.~ d )2}
‘ + o(l+a)x ¢sina (8-10)
) 4n+12-2d d-n-3 S5n+15-3d
_ w d 2 d _ d n, _
RaL ég x Fn /(l+AClan ) = %__x Hn + o(l+a)x ¢coso
1 1
2n+6-2d+nd d-n-3
d d
1 : - ot + - +_a (1+AC
1x {n0F, - @#3,0 F + EIOF, - &, £__9F 1}/ (1+AC,qng )
Cy d (1+a)
2n+6-2d+nd d-n-3 d-n-3
d d d
_ Cl x {q’rm + AclqE ¢n/(1+Aclan )}
1

For the present work, the function d(®w) has been chosen as

d@w) = 5 - 4w?.

In the transformation B-~1, it has been assumed that a stream
function can be introduced. For some free-convection flows, e.g. certain
axisymmetric flows, it may be impossible or inconvenient to introduce a
stream function, in which case the transformation B-1 might be replaced

by:



and

where

and

Ny
u(x, Y) =X Fl(n’ g)’

N2

v(x, y) =X FZ(T\, E)s
N3

pd(x, y) =X I, &),

Ny
8(x, y) = x @M, &)

134
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Appendix C — The Lefevre fransformation

The set of equations 2.2-6 is applicable to fluids having.Prandtl
numbers of unit order or higher. An attempt will now be made to transform
the equations such that the new equations are applicable for all Prandtl
numbers, including zero and infinity.

Consider the following transformation:

n = E (0)z,

1]
[

F(n, £) = E,(@E, E),

I, &) = Eg@)m(, £)

and Q(ﬂ’ E) X(gs E)’

where El(o), 52(0) and 53(0) are disposable functions of the Prandtl
number. Introducing this transformation into the set of equations 2.2-6

leads to the following set of equations:

1 2
5 (4w*-1) 2 o,o2¢c 2
CiRay (AR 22 - e —szfc; + g—zr( - fefery
~1

2-n—-4w?
- C,AqE 5-4w 2 n+3 n-2+4w2 £ 2
1 5 LG 7 a3 FE o 5oz &

2-n-4w?2 2-n—-4w?

5402

+ EE,£_1/(1+C,AqE TE 5-4w% 1/ (1+4C,AqE, CE )
et 9%, 149%y
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' 1 2
= - 3 -5 (1+w )=
GCl RaL Z31 (4n+2+8w n-2+4w? )I; z

5-4w ) + ¢ S—40?

o2
+ ETTE]/(l"'ClAq:lCE ) + ORa, {:::2 fCCC
-1

2-n-4w? 2-n—-4w?>
5—4w? = = 5402
+ clAqE ;2 fccl(l+C1Aq“1;g )

4=2n-8w? 2-n-4w?
- ¢ 2a%q% > 5y £ /(i aqE e PR )2
%1
(n+3) (1-4w3)
3 5-4w*
+ c5(1+a)C:L 3 xsino (C-1)
,  (2mm)(1-sw?) 2-n-bw?
w 5—40)‘ =.2 2 2 = 5-4w
- Ra; " AqE Z fC /[Cy " (1+AqE,TE )]
c1
4w? (n+3)
- Dog S-4w '2317?; + o (1+a)ycosa
¢y %1
2-n-4w?
C, mSoxf, - n+3 __2)( EE?_ X-£, = X, £ + _Xfr a (1+cC Aq.. zE 3-bw )
15t - omEt AU T (1+a)£]}/ 1
%1 =1 .
2-n-4w? 2-n-4w?
= 2 Xer _J_‘1§ o Xp/ (1+C; AqE, 28 3-hT
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For the energy equation in C-1, since the flow is'phermally
generated, it is assumed that the advection terms and one of the conduction

terms will be of the same order for the limits of 0 = 0 and 0 +> o, implying

that :2 ~ . : (C-2)

1)

N

In the lateral momentum equation, it is also assumed that the préssure
term and the buoyancy term will be of the same order for the limits of

0 =0 and 0 + o, implying that

~ 1. | (C-3)

u121
[

A third relationship can be obtained from the longitudinal momentum  equation,
but this relationship depends on 0. For @ =0, it is assumed that for
small Prandtl numbers the order of the pressure term is the same as that

of the inertia terms, such that

2 (C-4)

For ¢ = 0 and for large Prandtl numbers, the order of the Pressure term is

assumed to be equal to that of one of the viscous terms, implying that

£ : (C-5)

For the present work, the above relations will be taken as identities.

Then a combination of C-2, C-3 and Cc-4 implies that

(C-6)



whereas a combination of C-2, C-3 and C-5 implies that

[1)
(1]
i
=

A generalization of C-6 and C-~7 is given by

Then

and

[11

E, = 0.1 .
3 &G°

are given by

: 1
= 140, °
1 &)

-
)
—

1
= 14+0, °.
2 &

—
-
—

terms have the same order for small Prandtl numbers, implying that

For large Prandtl

=1

138

(c-7)

(c-8)

(c-9)

For Q =_H/2, it is assumed that the buoyancy term and the inertia

(C~10)

numbers, it is assumed that order of the buoyancy term

is the same as that of one of the viscous terms, implying that

~lo

[£41184]
=

(C~11)

For the present work, C-10 and C-11 will be assumed to be identities.

Then combining C-2 and C-10 leads to

—
(o] =
—

1,
1 (¢)

(c-12)



and combining C-2
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and C-11 leads to

(1}
i

.. —
1 1. (c ;3)

A generalization similar to that used in C-8 results in the following

expressions for El’ 52 and 53:

and

1

B, = 40,
1 & »
g
1
5 = -y (C_ll")
g, (130) .
= A

i

The expressions for El, 52 and 53 given in C-8, C-9 and C-14

may be generalized as follows:

and

where h = h(w) is

that

- h

217 &Y

N —
%2 7 &9 (c-15)
= - h

37 &%

any continuous function of w satisfying the conditions

h@©) =1,
5
h,l, = 1
('2') %



and that

L<h@ <1
5 4

Substituting C-15 into C-1 leads to the following set of equations:

C Ray,

+

+

i (4w?-1)

2 2 - '
@mE, T (I g + ElE fey — £efpp)

2-n-4w?2

E———

h 2 2
140 n+3 [ff n-2+4w° ., ¢f
) [(S—Aw‘) t+ C S—4w?> ) C_

2-n-4w? 2-n-4w?
h,, 5-4w? h,, 5-4w’
Efgf;]/[1+clAq(1:0) zg ]}/[1+ClAq(1:c) zg ]

- Sh -1 (1+w?)

3 _ 2
_ (130) C1 RaL n—2+4W )cﬂ

(4n+2+8m2)ﬂ + ¢
540> 54w~

4

2-n-4w? L )
h 54> (4w*-1)
Eﬂg]/[l+clAq(1+o) zg ] + cRaLs {fgg

—

p> g

2-n-4w? 2-n-4w?
54> h h S—4uw>
+
ClAqE (1+0) fCC/[I ClAq(l+0) zg 1

4—2n—8w?> 2mn—bw?

2,22 540> 2h h 542 .2
14C +C.A +0

Cl A°q g ¢ = ) fgl[l 1 q(lo ) zg 1%}

(n+3) (1-4w?)

o(1+a)(1+o)4hc13g 5-4w xsino.

(¢]

140

(C-16)
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(2-n) (1-4w?) 2-n~4w?
_ 5-40° ~4h_ 2 2 L h_ 5-4w?
qa€ (1_:;) £.2/1¢cy [1+c1Aq(;a+_q) 43 1}
42 (n+3)
= =0t S-ho “C + o(1+a)xcoso
c
1
2-n-4w?
Co{mxE, - (m3 X £ + EIXgE, - XEp + XEzag;}/[14C A (_1_-Lq_)hz;g S-407
5-4w (1 +_‘a )" o
2-n-4w? 2-n-4w?
5=40” h, h_, 5-4w?
= Xer * C,AqE (;a+_o_) x';/ [1+C,Aq (_16+_q) zE ]

For the present work, the function h{(w) has been chosen as

h(w) = 1 .
C 7z
5-4w

This procedure can also be applied to variable-property flows.
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Appendix D — A Normalization and an Order—of-Magnitude Analysis

of the Disturbance Equations

Following the procedure outlined in appendix A for the mean-
floﬁ equations, an attempt is made to normalize the dependeﬁt and iﬁdepen—
dent variables in the set of equations 2.3-1 by'ihtroducing a set of
characteristic quantities. The definitions of these quantities must follow é
either from the boundéry conditions, from the equations or from the physiﬁal |
de'scription of the problem. Since the disturbance quantities are assumed

to be small, it follows that:

X % << X
¢ c

b

Y * <<

=]

U * <<

ci

V % <<

W*<<T

u*<<]-_l
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C % << C
C C
k * << k
Cc [}

P*<<?P
c c
The analysié of the mean-flow équétions reveals that

¥ << X and V_<< U_.
[o] Cc (o4 [

These last relationships suggest that the characteristic lengths and
velocities for the disturbance flow might be related to the characteris-—

tic lengths and velocities for the mean flow as follows:

- - 21
X *=Y*=2%=Y =X Rai zH
c c c c c Xe
.- 1x
* = * = * = = —
and Uc Vc Wc Vc vg Rax
dxc c

The characteristic time, tc? is chosen in such a way that the highest

order terms involving derivatives with respect to time are of the same
order as the highest order terms retained in each equation. The character-
i{stic time and the remaining relationships between the characteristic
quantities for the disturbance flow and the characteristic quanﬁities for

the mean flow may be determined by assuming that:
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21
Be* _ Xc* _ Rag 2t
ﬁc xc Cc .
-1
Oc* _ Xo* _ Rag
ec xc
o
-3H
uc xc
-iH
* * -
.9.1‘- = §.£ = Rax
c. X, c
1
: -zH
Be* _ Xc* _ Rag
PC XC
1
_2H
ke* _ Xo* _Reg T
kc xc ¢

Following the approach used for the mean-flow equations, ic is

replaced by L. Terms of the order of RaL-H, ORaL_H, JRaL.H, AZURaL_H,

3%0Ra, "V, A2JoRa 7V, (Z20y 1 OsRay 2%, osra 2H71 A1, J%0era P71,

( , A20sRa
p ‘oT P

L

A...'IOsRaLl'I_1 or less relative to other terms in the equations are assumed
to be negligible. Therefore, after eliminating the pressure terms from
the disturbance momentum equations, normalizing the equations, and

neglecting terms of the orders indicated above, a simplified set of
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disturbance equations is obtained as follows:

3aYq* (1wd)[av* (Bu* Aqv*) + 1 oW v*Jsina)] + v*3Yq
2T (1+Aqy) ox* (3xJysina) 3z oy
s —u__ a* Ra, ° { d _1 chosada (1+Yg)u*
(1+Aqy) ox* { +Jysina) (1+Aqy)

Yd*u ] Yq*vIsino | 1 *(au + Aq\_r) + u*'aYd]
(1+Aqy) ~ (JtJysino) (1+Aqy) [ ox X

(1+yd){ 1 cud?w , dudw _ Aqu 3
dyaT + (IFAqy)t Syox* - Oy ox*  (1l+Aqy) Bx*

+ 1 1 (2Aqﬁ§g* , uJsinadw _ ud v y = + Jsinodw
(3%Jysina) - (1+Aqy) 9z ox* zox* oT

_ Bzv*]} + aV¥q ow + u oYa ow + Aqu? 9Yq*
02971 9y 9T (1+Aqy) 9y Jx* (1+Aqy) (J*Jysinc) 9z

'5H{<1+§d) F2% , 3 2w, ¥ 1 &
ay By oy (j+Jysina) (1+Aqy) 'd

+ Ry

va v* 2vJ sinodw

chosoudct wau udw Agwa y -
Bzay dy

& oy T 3y T (@HAay
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=~ (1+Aqy) dx 9dy 9z Ay dy 9y
-ig - -
_ ORa; "%, 1 3 2M* [=Aqu 1 _3u, 3w
(3xJysina) 3zox* " (1+Aqy)“ (1+Aqy) 9y oy’ oy

+ 1 LOvk - stinO!.)] + Q_D_QIZBZW + Aq  dw
(j*Jysina) ‘3z oy" 9y° ' (1+Aqy) 9y
+ 1 9% _ - __ Jsino _ Bw , . 1 <32u* Aqdv*
(1+Aqy) < Ox*“ (3xJysina) 9y = (1+Aqy) (F*Jysina) ‘9zox* dz
+ Aquisina __1 ‘(ZGZY 4 3Jsinodvk szsinzoL)]
(j*Jysino) oz oz
M 33w Aq 03w 1 . 33w 2Aq32u* _ A2q2_§_v1
+ [3y3 + (1+Aqy) dy” + (1+Aqy) “ “9yox** + dzdx* dy
_ 33vx y - 24q  9%w 1+ M [83w . 2J3sinad?w _ 33vx
9Zox*< (1+Aqy) ° ox** (jtJysina) '3z“3y 3yZ _ dy’oz
+ 1 (* 2AqJsinodw _ Aqazv*) 1 ,Azq"_al*
(1+Aqy) ~ ~ dy dydz (1+Aqy)<* 9z

Jsinad?w - A%q*wJsina M Jsinad 2v¥

+ L ——( % —
ox* + )] + (j=Jysino) ( dydz

_ J2sin?adw + Jeinod?w , 33v* Mi2sin’0 4 wJsina

3y ~ 522 ¥ 327 ) + (3+Jysina) "
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g Ra, 1 EB5y
- ov )} + chsa aL
o9z BB, 9z
(7). 1 (%  dudvk 1 _ ud’u* Aquav*)] o 9%
(j*Jysina) '9z0T = 9y 9z (1+Aqy) * 9zdx* (1+Aqy) % ox*“

1 92w R 1+7 (1+Yg) ﬂ_x_ dgq dw
T (1+Aqy) ax*a'r} + aL l-l-Aqy) (1+Aqy) dx x*

_ 1 giy_ _ v 9%w 1 + (1+Y4) ,\—Iazu* + 1 du du¥*
(1+Aqy) 9x 9x* 9x*dy (3*Jysina) - 9239y - (l+Aqy) G% 3z

+ Aqvdu* s vJsinan ] - gl+’7d) (d chosada)[ | ow
3z dx* (+Jysina) ‘dx * dx (1+AqY) 3T

+ 2u ow ] - 1 BY [Bw u ow ]
(1+Aqy) 2 ox* (1+Aqy) 9x "9OT (1+Aqy) 9x*

1 Vg* vau du |, Aqv
+ (j*xJysina) Sz [ By (1+Aqy) (8:_: )1}
GRaL { 1 93M* au Aqu 1 + [ 1 32u*
(j*Jysina) BzayLay (1+Aqy) ay (jtJysina) 3z9dy

_ 1 92w ] - 1 BM[ Aq _ du¥ I Jsino  ow ]
(1+Aqy) 9x*9y (jxJysina) dy" (1+Aqy) 3z (1+Aqy) ox*

[ 1 93w + Aq 92w + 1 ]
(1+Aqy)?® ox** (1+Aqy) < 9x*dy (1+Aqy) Bx*ay‘
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+ M 93u* + 1__ Aqd?u* 7 Jsina 33w )
(j*Jysina) *82z9y® ~ (l+Aqy)* dzoy 9x*dy

1 ,2Aq3%v* A%q%3u* 3%u* - AwJsinadq - AqJsinoow
* (1+Aqy)*"  9zdx* 5z T Sx*Z5z T ax T Bx*)]

+ M [+ Jsinad 2u* 1 ,J 2sin2a§_v1 —~ 2Jsinad2v*
(3xJysina) 2t = 023y = (l+Aqy) ' ox* dzox*
+ AqJsinodu* 33w M 3 3u* 1 oM* 92y

5z~ dzZomx) ] * (j*Jysina)® oz’ + (j*Jysina) 9z [ay?-

Aq__ du _ Azqaﬁ] s Jeino _ 3M* du . Aqu 1}
(1+Aqy) 9y  (1+Aqy)*’ = (JxJysina)? 3z 'By = (1+Aqy)

osing Ra, 1By, (p-1)
-===" 4
BB, H
(1+§d)[ 1 9d%* Aqdu* _ 2Aqv*du _ Aqudv* _ du du* _ wdlu* . . 92u*
(1+Aqy) ‘9x*3T 9T dy " dy dy ox* dydx* dyoT
_ v¥3%u vk 3u 1 2Aqudu* _ udivx 3Yq 0u* | v¥du

dy2 ~ ¥y ¥y (1+Aqy)2( ox*. ax*Z)] T 3y [81: + ¥y -

1
- - - -in =
+ 1 (uau* Aquv*)] _ Aqu""2 B’Yd*+ RaL 2 { 1 azd[av*

(1+Aqy) * Bx* (1+Aqy)~ ox* (1+Aqy) 9% 'Ot

u Sv* _ 2Aqux,. _ (1+y,) v2u* _ 3V du* 1 2Aqvdu*
(1+Aqy) (ax* )] a7l Byz + dy 9y (1+Aqy)( oy
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+
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Vv 32yx _ 3vk Jv u*d’u du*du + Aqu*‘a;) + 1 (2Auu*gg
9x*3y  9x* Jy dydx dy X (1+Aqy) dx
2Aqu*3u _ 8v* du. du Ayu dg v vk _ 2Aqu¥, . _Y.* vd3u
%~ Bx* 3% T (IFAqy)° dx ox* )1 -Ta Ugye
v du 1 ,ud% | du du + Aqudv 2Aqv8u) + Au (
3y 9y (1+Aqy)‘ dyox = dy O 8y (1+Aqy)? dx
2 au A2qyu® dag, _ vau* ' u* + Aav
) (1+Aqy) di'] [ (1+Aqy) (Bx )]
Vg *[vau u au Aqv)]}
oy oy (1+Aqy) Bx
chaL BZM, 1 Aqu* Bv*) au*] SM[28 u* + Aq _ du*
8y“(1+Aqy)‘ ox* dy dy* (1+Aqy) 9y
1 (Zazu* 3Aqov¥* _ Azqzu*)] _ 1 21\1[ 1 3%
(1+Aqy) 2" 9x*” ox* (3xJysina) 3y (1+Aqy) "9x*dz
Jsinodv* . Aqu*J sinOL) Jsincdu* 1 32 u='¢:I
ox* ¥y (j*Jysina) 0z°
1 32M#* . du Aqu ] 3%M* .  Aqu_ _ du,y _ M*[za u
(FAqy)® ox*%loy ~ (THAay) 3y® '(l+Aqy) _dy' 9y - 3y~
ou _ __ A%qu ] F Jsina aM*[au Aqu ]
(A+Aqy) 0y  (1+Aqy)”© (jxJysinc) 3y "3y = (1+Aqy)
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dux 1 (ZAqazn*_ 33yx 1 . 33ux Aqd3v

Mu* , 1 __ ) + +
dy (1+Aqy). dy dy“ox* (1+Aqy) “ *3x*%dy . dydx*

- Azqzﬂ* - 1 Iaav* _A 32u* + Azqz_al* - Aaqsu*)]
9y /  (1+Aqy)’ ‘ox*T ox* ox*
rd MJsino +92u* 1 ,2Agdu* 92v*

(GxJysina) 3y2 ¥ FAqy) < By - Syoxr)]

+ M [stinzaﬂ* _ _3%ux _ 1 ., , Jsina 3%w _ _33vx
(§j*Jysina)? dy dydz“ = (1+Aqy) " dx*dz  Ix*dz”*

+ J2sin0dv¥ _ Aqu*stinzoL_'_ Aqd2u* | Jsinad?w 3]
ox* 9z° =~ 9zox*

= 2 %* 535 2= 2_2 = 3,32
MJsino.  3°u M* .9 u 2Aq _9%u _ _ A%q du . __A’q°u

T (jxIysino) ¥ 3z T [By’ + (1+Aqy) 9y (1+Aqy)“ 9y = (1+Aqy)

M*Jsino 3%u . 2Aq  du M*J2sin’a  du Aqu
(jxJysino) [ayz + (1+Aqy) 3}'] + (jinsina)Z[By + (1+Aqy)]}

-3 _1
+ GRaIl 2H d¥g*sina , Yg*Agsina _ __coso 93Yg% + RaLZH'Yd*sinOL ﬂ]
B(T)c oy (1+Aqy) (1+Aqy) ox* (1+Aqy) dx

da ,uf*

1
- - - - -~3H R
(1+y,)c(1+a) 36* u 36* _ v*38 2Ty e 1 da

3t * Gy axx ¥ ay) ¥

+ u*é) + \-7(1+a)_3£* + u*(1+a) 351 + Yd*E t_1§1+a! ) ub da

3y  (1+Aqy) 9% Caiaeyy 3% * (1+Aqy) dx
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v(1+a)38, . (1+y )c* u(l+a) 38 ub _ da , v(1+a)dhb,
+ 5yl * 4 Ta¥aqy) 3% ¥ (TFagy) ax T 5yt
_ (1+a) {K* aze Aq 36 _ _ Jsina K 92%0%
= Ray, * + TFaqy) 3y ¥ (Gilysino) By] A e
+ 00%* 1 826*‘+ Jsino 06* 1

The function H(w) is the same function used in appendix A. For the

' present work, this function is

H(w) = 2(1+w?).
5

(1+Aqy) 9y | (IthAqy)? 3x*% © (j%dysina) 9y T (J=dysina)? 927 ]
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FIGURE 1. COORDINATE SYSTEM
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CRITICAL RAYLEIGH NUMBER, Rac,
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RFACE INCLINATION, Q (degrees)

COMPARISON OF CRITICAL RAYLEIGH NUMBERS
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TABLE 1

EFFECT OF SURFACE INCLINATIONS ON MEAN-FLOW EIGENVALUES

£=0.2
o fCC XC i
0 2.2420  -0.5664 =-1.3672 i
30 4.9133  -0.7273 -1.0211 *
45 4.7693  -0.7194 -0.9461
60 3.8988  -0.6665 <0.8643
75 2.7106  -0.5733 —0.6670
90 1.6898  =-0.4818  0.0000
105 2.6030 -0.5739  0.6642
120 3.5569  -0.6588  0.8698
£ =1.0
oL fCC XC m
0 2.2420 -0.5664 -1.3672
30 8.7905  ~0.8871 —0.7546
45 8.0485  -0.8542 -0.6226
60 5.8518  -0.7532 -0.4786
75  3.4578  ~0.6207 —0.2830
90 1.6898  -0.4818  0.0000
105 3.5170  -0.6107  0.2872

120 5.8587 -0.7422 0.4844



VARTATION WITH POSITION ALONG THE SURFACE

TABLE 2

OF MEAN-FLOW EIGENVALUES

o = 45°
g fre Xz i
0.00000  2.0762  -0.5543 -4.0101
0.00625  1.2073  -0.4792 -2.3551
0.01875  2.4157  ~0.5717 -1.7460
0.04375  2.9287  -0.6083 -1.4169
0.10000  3.7886  -0.6632 -1.1420
0.20000  4.7693  -0.7194 —0.9461
0.40000  5.9928  ~0.7790 —-0.7857
0.60000  6.7987  -0.8108 -0.7100
1.00000  8.0485  -0.8542 —0.6226
a = 75°
& 2z Xg m
0.00000  0.8112  -0.4146 -11.6288
0.00625  0.7013  =0.4010 —4.9209
0.01875  1.8397  =-0.5270 —-2.2746
0.02500  1.8995  -0.5316 —1.9479
0.05000 2.1095 -0.5411 -1.3775
0.10000  2.3898  ~-0.5549 —0.9645
0.20000 2.7104 -0.5733 -0.6670
0.40000  3.0389  -0.5936 —0.4601
0.60000 3.2144 -0.6049 -0.3713
1.00000 3.4578 -0.6207 -0.2830
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COMPARISON OF THE SURFACE PRESSURE DEPARTURES

TABLE 3

£ = 0.2

P szc "
-B;z—'x 10

PRESENT KIERKUS

30
45
60
75

53.4306 ~-3.4502
-2,5862 -2.5834
-1.7502 -1.7370
-0.8985 -0.8750

£E=1.0

P.L%g

4
—332—-x 10

PRESENT KIERKUS

30
45
60

75

-5.2694 -=5.1595
-3.9702 -3.8633
-2.6896 -2.5976
-1.3530 -1.3084
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EIGENVALUES FOR THE TOLLMIEN—SCHLICHTING WAVE DISTURBANCES

TABLE 4

o = 120°
1 2 1 2
s (1+w*) 5 (1H+w*e)
Ray Ray i Ray
5 r — gz Br
UPPER LOWER . UPPER LOWER
BRANCH BRANCH BRANCH BRANCH
1.000 x 10® 5.2313 1.6999 2028.3 901.4
4.655 x 10° 3.8569 2.9651 1515.7 1253.3
o = 105°
1.000 x 10° 5.9366 1.4709 2303.4 845.2
3.430 x 10° 5.4234 2.6036 1930.9 1149.8
2.383 x 10° 3.9108 1478.2
a = 90°
4.000 x 10° 0.8939 723.1
2.800 x 10° 12.7814 3956.4
1.900 x 10° 7.4294 2615.7
1.000 x 10° 7.0256 1.5044 2437.8 832.6
1.720 x 10° 4.8850 4.6751 1587.1 1540.2
a = 75°
1.000 x 10° 10.7727 1.3279 2951.4 744.2
7.290 x 105 10.9724 2917.9
5.120 x 10° 8.8801 1.7643 2517.2 856.3
1.25 x 10° 7.4319 3.7765 1970.1 1263.2
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TABLE 4 (CONTINUED)

o = 60°
1.000 x 10° 8.1416 1.2275 2083.3 657.5
5.120 x 10° 10.0022 2408.3
2.160 x 10° 12.6150 2.3081 2689.2  88l.4

6.400 x 10* 10.4028 4.3460 2062.1  1188.3

o = 45°
1.000 x 10° 9.5018 1.1528 1528.7 553.3
2.160 x 10° 15.2573 2.0586 2370.5 709.9
9.112 x 10" 18.5805 " 2894.0

8.000 x 10° 15.9489 7.8290 1797.5 1105.1

o = 37.5°
1.000 x 108 9.5015 1.0921 1393.6 484.8
2.160 x 10° 15.0876 1.8732 - 2146.5 601.3
6.400 x 10" 20.3577 2.8793 2916.4 698.5
8.000 x 103 20.9067 5.4852 2155.6 785.5
1.000 x 103 18.4608 10.1014 1301.7 813.4
5.12 x 102 16.8832 12.2704 1059.4 824.0
o = 30°
1.000 x 108 9.4161 1.0081 1280.0 404.2
2.160 x 10° 15.0306 2009.3
6.400 x 10" 20.8175 2.4040 2756.3 535.0
4.288 x 10" 22,6427 2974.3
8.000 x 103 24,5873 4.1110 2419.9 557.3
1.000 x 103 23.7006 6.5226 1570.8 519.4

91.12 16.1803 12.5260 679.6 529.4



'TABLE 5

EIGENVALUES FOR.THE TAYLOR-GOERTLER ROLL-VORTEX DISTURBANCES
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Q 1 2
. L (1+w?)
o = 85° o= 75° o = 60° o= 45° o = 37.5° a = 30°
~1.000 x 10° 12.920  23.896  32.098
5.120 x 10° 11.970 23.301
2.160 x 10° 10.277 22.415 30.960 36.186  38.176
6.400 x 10" 6.668 20,933 29.725 35.246 37.341 39,087
2.700 x 10" 1.915 |
8.000 x 10° 17.784 26.964 33.103 35.457 37.426
1.060 x 10? 13.484 23.064 30.063 32.645 34.795
1.250 x 102 6.956
83.74 16.459 24.533 27.275 29.524
30.52 13.315 21.429 24.148 26.379
6.592 16.059 18.343 20.291
1.953 10.778 12.425 13.935



