
Evaluating Search Spaces for Programmatic Policies in POMDPs

by

Tales Henrique Carvalho

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science
University of Alberta

© Tales Henrique Carvalho, 2024

Abstract

Searching for programmatic policies to solve a reinforcement learning problem can be

challenging, particularly when dealing with domain-specific languages (DSLs) that

define policies with internal states for partially observable Markov decision processes

(POMDPs). This is because they lead to complex and discontinuous search spaces,

often requiring combinatorial search processes. To avoid searching in the program-

matic space, the recent work LEAPS and HPRL learn latent spaces of DSLs, which

are used to define policies for POMDPs. Aside from reconstructing programs from

their embedding representations, these spaces are trained to achieve locality in pro-

gram behavior, expecting that vectors close in the latent space decode to programs

that behave similarly. In this work, we show that searching using a hill-climbing

process in the original programmatic space, induced by the DSL itself and requiring

no learning, achieves a similar locality measure in program behavior and significantly

outperforms LEAPS and HPRL in finding high-reward policies. We further analyze

the optimization topology induced by the neighborhood function of each search space

in conjunction with the reward function of the POMDP. We show that a local search

algorithm is more likely to stop in local maxima regions when searching for high-

reward policies in the latent space than when searching in the original programmatic

space. This result implies that the programmatic space is more conducive to local

search and explains its superior performance.

ii

Preface

This dissertation is an original work of the author done in collaboration with Levi

Lelis. This work is currently under review for publication. Due to the collaborative

nature of this work, the pronoun “we” is used in this script. However, I remain solely

responsible for any technical or presentational errors present in this document.

Tales Henrique Carvalho

December, 2023

iii

Acknowledgements

I would like to acknowledge that this work was supported by NSERC Discovery, CI-

FAR through CCAI Chair funding and by the Alberta Machine Intelligence Institute

(Amii).

I would like to thank my supervisor Levi Lelis for the constant support throughout

my research work. Levi was a great mentor during my studies, and taught me a lot

about his specialization and research in general.

I would also like to thank my colleagues from the University of Alberta for sup-

porting me in my studies and for making my time in Edmonton a lot more enjoyable.

In particular, I would like to thank, in no particular order, Saqib Ameen, Rubens

Moraes, and Kenneth Tjhia, from my research group, and Justin Stevens, Michael

Ogezi, Shreya Kannan, Deep Gandhi, and Tian Du, from the Computing Science

department. Your support was incredibly important in every step of my journey.

Lastly, and no less important, I would like to deeply thank my parents, my friends

from Brazil, and my partner Maria Gabriela Goulart Neves for their emotional support

during my studies. I owe a lot of my work to their endless support.

iv

Table of Contents

1 Introduction 1

1.1 Problem Formulation . 2

1.2 Contributions . 4

2 Background 6

2.1 Programmatic Policies . 6

2.2 Latent Representation of Policies . 8

2.2.1 Variational Autoencoders . 8

2.2.2 Training Objective . 9

2.3 Local Search . 10

3 Programmatic Policies as a Local Search Problem 12

3.1 Search Spaces for Programmatic Policies 12

3.1.1 Programmatic Space . 13

3.1.2 Latent Space . 15

3.2 Local Search Algorithms . 15

3.3 Topology Metrics . 18

3.3.1 Local Behavior Similarity . 20

3.3.2 Convergence Rate . 21

4 Empirical Results 22

4.1 Karel the Robot Domain . 22

4.2 First Set: Reward-Based Evaluation 23

4.3 Second Set: Topology-Based Evaluation 27

4.3.1 Local Behavior Similarity Analysis 27

4.3.2 Convergence Analysis . 28

5 Related Works 33

v

6 Conclusions 35

6.1 Future Work . 35

References 37

Appendix A: Training details of LEAPS 41

Appendix B: Karel problem sets 43

B.1 Karel . 43

B.2 Karel-Hard . 44

Appendix C: Running time comparison of Programmatic and Latent

Spaces 46

Appendix D: Examples of obtained solutions 47

Appendix E: Evaluating the impact of initialization methods 50

Appendix F: Proving the existence of high-performing policies in Latent

Space 53

vi

List of Tables

4.1 Mean and standard error of final episodic returns of our proposed meth-

ods in Karel and Karel-Hard problem sets within a budget of 106

program evaluations, compared to the reported results from baselines. 24

C.1 Average time for generating one neighbor in Programmatic Space

and Latent Space from a given candidate. 46

D.1 Representative high-return solutions from HC search in the Program-

matic Space. 48

D.2 Representative high-return solutions from CEBS in Latent Space. . 49

F.1 Initial candidate and resulting program from searching for a high-

performing policy in Latent Space for the DoorKey task. 54

vii

List of Figures

1.1 Example of a programmatic policy in a Karel POMDP. 3

2.1 DSL for Karel the Robot as a context-free grammar. 7

2.2 An example of a program defined in Karel DSL and its AST repre-

sentation. 7

3.1 Example of a mutation in Programmatic Space. 14

3.2 Adopted probabilities for the Karel the Robot DSL as a proba-

bilistic context-free grammar. 14

3.3 Diagram representing an example execution of HC. 16

3.4 Diagram representing an example execution of CEM. 18

3.5 Diagram representing an example execution of CEBS. 20

4.1 Episodic return performance of all methods in Karel and Karel-

Hard problem sets. 25

4.2 Episodic return performance of all methods in Karel and Karel-

Hard problem sets, using the Crashable version of the environment,

that does not allow invalid actions. 26

4.3 Behavior-similarity and identity-rate metrics on Programmatic Space

and Latent Space. 28

4.4 Convergence rate of Programmatic Space and Latent Space with

neighborhood size K = 250, guided by hill-climbing. 29

4.5 Convergence rate of Programmatic Space and Latent Space with

neighborhood sizes K = 10 and K = 1, 000, guided by hill-climbing. . 31

4.6 Convergence rate of Latent Space with neighborhood size K = 64,

guided by HC, CEM, and CEBS. 32

E.1 Episodic return performance of HC with original and latent initializa-

tion in Karel and Karel-Hard problem sets. 51

E.2 Episodic return performance of CEM with original and programmatic

initialization in Karel and Karel-Hard problem sets. 51

viii

E.3 Episodic return performance of CEBS with original and programmatic

initialization in Karel and Karel-Hard problem sets. 52

ix

Abbreviations

AST abstract syntax tree.

CEBS cross-entropy beam search.

CEM cross-entropy method.

CFG context-free grammar.

DSL domain-specific language.

ELBO evidence lower bound.

GRU gated recurrent unit.

HC hill-climbing.

KL Kullback-Leibler.

MDP Markov decision process.

PCFG probabilistic context-free grammar.

POMDP partially observable Markov decision process.

VAE variational autoencoder.

x

Chapter 1

Introduction

Programmatic representations of policies for solving reinforcement learning problems

can offer important advantages over alternatives, such as neural representations. Pre-

vious work showed that due to the inductive bias of the language in which such poli-

cies are written, they tend to generalize better to unseen scenarios [Inala et al., 2020,

Trivedi et al., 2021]. The programmatic nature of policies also allows modularization

and reuse of parts of programs [Ellis et al., 2020, Aleixo and Lelis, 2023], which can

speed up learning. Previous work also showed that programmatic policies can be

more amenable to verification [Bastani et al., 2018] and interpretability [Verma et al.,

2018, 2019].

The main challenge with programmatic representations is that, in the synthesis

process, one needs to search in very large and often discontinuous policy spaces. While

some domain-specific languages are differentiable and gradient descent methods can

be used [Qiu and Zhu, 2022, Orfanos and Lelis, 2023], more expressive languages

that allow the synthesis of policies with internal states [Inala et al., 2020, Trivedi

et al., 2021, Liu et al., 2023] are often full of discontinuities, and thus one must

use combinatorial search algorithms to find suitable programs. In an attempt to ease

the process of searching for policies, recent work introduced Learning Embeddings for

Latent Program Synthesis (LEAPS) [Trivedi et al., 2021], a system that learns a latent

space of a domain-specific language with locality in program behavior. That is, if two

1

vectors are near each other in the latent space, then they should decode programs

with similar behavior. Once the latent space is learned, LEAPS uses a local search

algorithm to find a latent vector that is decoded into a program encoding a policy for

a target task. Liu et al. [2023] extended LEAPS to propose a hierarchical framework,

Hierarchical Programmatic Reinforcement Learning (HPRL), to allow the synthesis

of programs outside the distribution of programs used to learn the latent space. In

this work, we compare the learned latent space with the original programmatic space

in the context of local search.

1.1 Problem Formulation

We are interested in episodic partially observable Markov decision processs (POMDPs)

with deterministic dynamics and undiscounted reward functions. This setting can be

described by the tuple (S,A,O, p, q, r, S0). In this formulation, S is the set of states,

A is the set of actions and O is the set of observations in the environment. The

function p : S ×A → S determines the state transition dynamic of the environment,

q : S → O the observation given a state and r : S ×A → R the reward given a state

and action. Finally, S0 defines the distribution for the initial state of an episode.

We consider that agents can interact in the environment following policies with

internal states. We assume that the functions p, q, and r are hidden from the agent,

and it only has access to the output of q(st) and r(st), given a state of the environment

st. Policies with internal states are defined by the function π : O×H → A×H, where

H represents the set of possible internal states of the policy, initialized as a constant

h0. Given an initial state s0 ∼ S0 and following the state transition st+1 = p(st, at)

and the policy (at, ht+1) = π(q(st), ht) to determine the next states, we can define the

trajectory as a function of the policy and initial state τ(π, s0) = (s1, s2, . . . , sT) for

an episode with T time steps. This can be rewritten as τ(π, s0) = (a0, a1, . . . , aT), as

state transitions are uniquely defined by a state-action tuple.

We restrict the policy representations for this work with the policy class ΠDSL, the

2

set of all policies that can be represented by a program ρ within a domain-specific

language (DSL). Figure 1.1 shows an example of a programmatic policy in Karel

the Robot, the environment used in this work. In the case of the example and

throughout this work, a programmatic policy ρ defined by the DSL is a policy with

internal states, where ht is the pointer in the program ρ after the action taken at

time step t− 1. The internal state ht and the current observation q(st) are sufficient

to uniquely determine the action at the policy returns, thus its trajectory given an

initial state is also deterministic.

ρ := s

s := WHILE (b) { s } | s; s | a

b := noMarkersPresent

a := move | turnLeft | turnRight

WHILE (noMarkersPresent) {

turnLeft

move

turnRight

move

}

(a) (b)

⇒

(c) (d)

Figure 1.1: Example of a programmatic policy in a Karel POMDP, indicating an
example DSL to restrict the policy class as a context-free grammar (a), a program-
matic policy represented in this DSL (b), an initial state of the environment (c), and
the final state after executing the policy, with the trajectory highlighted in green (d).

The goal of an agent acting in a POMDP is to maximize the cumulative reward

over an episode. As the rewards during the episode depend uniquely on the initial

state s0 and the programmatic policy ρ, we can define the return of an episode as

g(s0, ρ) =
∑︁T

t=0 r(st, at). Our objective is to find an optimal programmatic policy ρ∗

3

given by

ρ∗ = arg maxρ∈ΠDSL
Es0∼S0 [g(s0, ρ)], (1.1)

restricted by the policy class ΠDSL.

1.2 Contributions

In our work, we evaluate local search algorithms operating in the programmatic space

induced by the DSL, and compare them with LEAPS and HPRL. Searching in the

original programmatic space involves defining an initial candidate solution (i.e., a

program) and a neighborhood function that returns the neighbor programs of a can-

didate solution. We generate neighbors by following a process similar to the one used

in genetic programming algorithms [Koza, 1992], which was previously used in the

context of programmatic policies in multi-agent settings [Medeiros et al., 2022, Aleixo

and Lelis, 2023]. Namely, we generate a number of neighbor programs by modifying

parts of the program that represents the candidate. We hypothesized that search-

ing for good policies in the latent space is not easier than searching in the original

programmatic space. Our rationale is that, similarly to the programmatic space, the

latent space is high-dimensional and non-differentiable, as the evaluation of latent

vectors depends on executing the decoded program.

We tested our hypothesis using the same set of problems used to evaluate LEAPS

and HPRL. We discovered that a hill-climbing (HC) algorithm in the programmatic

space outperformed both LEAPS and HPRL. HC consistently matched or exceeded

the performance of the two latent-based methods. To interpret our findings, we ex-

amined the value of the behavior loss, used to learn the latent space, within the latent

and programmatic spaces, and found that they are similar in each. Although loss val-

ues do not account for performance differences between the spaces, they suggest that

optimizing solely for the behavior loss does not necessarily produce spaces conducive

to search.

4

We then evaluated the “friendliness” of the two spaces for local search, which

is formalized as the probability of an HC search, which is randomly initialized in

the space, converging to a solution with at least a given target reward value. This

probability is a measure of the topology of the search space for a given distribution

of initial candidates, since it measures the likelihood that the search will be stuck in

local maxima. We observed that the programmatic space is never worse and is often

much superior to the latent space for a wide range of target reward values. These

results not only support our hypothesis that searching in the programmatic space

is easier than searching in the latent space, but also suggest that the programmatic

space can be more conducive to search.

We conjecture that the effectiveness of latent spaces in the context of the synthesis

of programmatic policies depends on two properties: how much the latent space

compresses the original space and how conducive to search the space is. Intuitively,

by compressing the space, the search becomes easier as one has fewer programs to

evaluate; by being more conducive to search, the search signal could directly guide

the search toward high-return programs. Our empirical results suggest that current

systems for learning latent spaces lack either or both of these properties, since the

search in the original programmatic space is more effective than the search in latent

spaces. The contribution of this work is to highlight the importance of using a baseline

that searches directly in the programmatic space in this line of research. Our baseline

allows us to better evaluate and understand the progress in systems that search in

latent spaces.

5

Chapter 2

Background

In this Chapter, we present the background necessary to define our problem and

to conduct our studies. We formally define programmatic policies in Section 2.1,

we present how policies can be represented in a latent space in Section 2.2, and we

formally define local search in Section 2.3.

2.1 Programmatic Policies

A programmatic policy class ΠDSL defines the set of policies that can be represented

by a program ρ within a DSL. Figure 2.1 shows a context-free grammar (CFG) that

defines a DSL for Karel the Robot [Bunel et al., 2018], the problem domain we

use in our experiments. A CFG G is represented by the tuple (Σ, V, R, I). Here,

Σ and V are sets of terminal and non-terminal symbols of the grammar. R defines

the set of production rules that can be used to transform a non-terminal symbol

into a sequence of terminal and non-terminal ones. Finally, I is the initial symbol

of G. In Figure 2.1, the non-terminal symbols are ρ, s, b, n, h and a, where I is ρ;

terminal symbols include WHILE, REPEAT, IF, etc. An example of a production rule is

a := move, where the non-terminal a is replaced by the action move. This grammar

accepts strings defining functions with loops, if-statements, and Boolean functions,

such as frontIsClear, over the observation space O of the underlying POMDP. The

DSL also includes instructions defining actions in the POMDP action space A, such

6

as move and turnLeft.

Program ρ := DEF run m(s m)

Statement s := WHILE c(b c) w(s w) | IF c(b c) i(s i) |
IFELSE c(b c) i(s i) ELSE e(s e) | REPEAT R=n r(s r) |
s; s | a

Condition b := h | not(h)

Number n := 0..19

Perception h := frontIsClear | leftIsClear | rightIsClear |
markersPresent | noMarkersPresent

Action a := move | turnLeft | turnRight | putMarker | pickMarker

Figure 2.1: DSL for Karel the Robot as a context-free grammar.

Programs are represented in memory as abstract syntax trees (ASTs). In an AST,

each node represents a production rule. For example, for the AST shown in Fig-

ure 2.2, its root represents the production rule ρ := DEF run m(s m), whose child is

generated by the rule s := IF c(b c) i(s i). Its conditional expression is gen-

erated by the rules b := h and h := markersPresent, while its statement is generated

by s := s; s, branching into s := pickMarker and s := move.

DEF run m(

IF c(markersPresent c) i(

pickMarker move

i)

m)

ρ

If

h

MP

s; s

PM M

Figure 2.2: An example of a program defined in Karel DSL (left) and its AST rep-
resentation (right). In the AST, MP stands for markersPresent, PM for pickMarker,
and M for move.

7

2.2 Latent Representation of Policies

LEAPS [Trivedi et al., 2021] and HPRL [Liu et al., 2023] introduce a method for

defining a continuous representation of programmatic policies. This representation

is constructed by training a variational autoencoder (VAE) to reconstruct the text

representation of a program ρ ∈ ΠDSL.

2.2.1 Variational Autoencoders

The VAE framework consists of employing an encoder qϕ(z|x) and a decoder pθ(x|z),

parameterized as neural networks with parameters ϕ and θ, respectively, to recon-

struct i.i.d. data from a dataset X =
{︁
x(i)

}︁X

i=1
using a d-dimensional latent variable

z ∈ Rd [Kingma and Welling, 2013]. The reconstruction is achieved by maximizing

the evidence lower bound (ELBO) objective for each data point x(i) ∈ X, which is

equivalent [Kingma et al., 2019] to minimizing

Lrec(θ,ϕ;x(i), β) = −Ez∼qϕ(z|x(i))[log pθ(x
(i)|z)]+βDKL(qϕ(z|x(i))∥pθ(z|x(i))), (2.1)

where DKL represents the Kullback-Leibler (KL) divergence, that approximates the

latent representation to a posterior (in the case of VAE, the posterior is a normal

distribution). The β hyperparameter, introduced by Higgins et al. [2016], constrains

the capacity of the latent information channel, acting as a regularization term.

As the training objective involves sampling z ∼ qϕ(z|x(i)), the encoder network is

constructed to output (µ,σ) from a data point, used to obtain z = µ+σ⊙ ϵ, where

ϵ ∼ N (0, Id), ⊙ represents element-wise multiplication and Id is the d × d identity

matrix. This, known as the reparameterization trick, allows Lrec to be optimized with

gradient descent algorithms. In specific, the trick allows the first term of Equation 2.1

to be computed as a classification loss between the output of the decoder and the

data point x(i), and the second term to be approximated as

βDKL(qϕ(z|x(i))∥pθ(z|x(i))) ≈ −β

2

d∑︂
j=1

(︁
1 + log(σ2

j)− µ2
j − σ2

j

)︁
, (2.2)

8

where µj and σj represent the j-th element of µ and σ, respectively.

2.2.2 Training Objective

The VAE model introduced in LEAPS [Trivedi et al., 2021] parameterizes both en-

coder and decoder networks as gated recurrent units (GRUs). In addition to mini-

mizing Lrec on a dataset composed of P programmatic policies
{︁
ρ(i)

}︁P

i=1
, the authors

minimize two losses related to program behavior, which ensures that programs that

yield similar trajectories over a set of initial states are embedded close together in

the latent space.

We first define a method to measure the similarity in behavior between any two

programs ρ and ρ′. By computing trajectories from an initial state s0 as τ(ρ, s0) =

(a0, . . . , aT) and τ(ρ′, s0) = (a′0, . . . , a
′
T ′), we define the similarity as

ρ-similarity(ρ, ρ′, s0) =
max{0 ≤ t ≤ l | a0:t = a′0:t}

L
, (2.3)

where l = min{T, T ′} and L = max{T, T ′}, x0:t = (x0, . . . , xt), and max{0 ≤ t ≤

l | a0:t = a′0:t} is the length of the longest common prefix of the action sequences

produced by ρ and ρ′ when starting at state s0. Thus, the ρ-similarity returns the

normalized length of this longest common prefix of the action sequences.

The LEAPS framework uses this definition to optimize a program behavior recon-

struction loss, maximizing the similarity between an input program and its decoding.

This is achieved by minimizing

LR(θ,ϕ; ρ(i)) = −Ez∼qϕ(z|ρ(i)),ρ′∼pθ(ρ|z),s0∼S0
[ρ-similarity(ρ(i), ρ′, s0)], (2.4)

estimated by sampling multiple states from a given initial state distribution S0,

and by sampling multiple programs ρ′ from pθ(ρ|z). Minimizing LR is not differ-

entiable, as running the programs in the environment does not allow gradients to

flow back to the model. Therefore, this is done via the policy gradient algorithm

REINFORCE [Williams, 1992], where ρ-similarity composes its reward signal.

9

Additionally, the authors introduce a behavior-related loss that can be trained

with supervised learning. This relies on a neural program executor model πψ(a|z, st),

parameterized as a GRU with parameters ψ, that sequentially predicts the probability

of an agent action at given its latent encoding z and current state in environment

st. The behavior similarity can then be encouraged by minimizing the cross-entropy

between the actions obtained by executing the program ρ and the action probabilities

from the model, formalized by

LL(ψ,ϕ; ρ(i)) = −Ez∼qϕ(z|ρ(i)),s0∼S0
[

T∑︂
t=1

|A|∑︂
j=1

1{at = aj} log πψ(aj|z, st)], (2.5)

also estimated by sampling multiple states from a given initial state distribution S0. In

this equation, each at is obtained by computing the trajectory τ(ρ, s0) = (a0, . . . , aT)

The training objective of the autoencoder framework can be summarized by the

combined objective

min
θ,ϕ,ψ

λ1Lrec(θ,ϕ; ρ(i), β) + λ2LR(θ,ϕ; ρ(i)) + λ3LL(ψ,ϕ; ρ(i)), (2.6)

where λ1, λ2, and λ3 are hyperparameters corresponding to the relative importance of

each loss, and Lrec, LR and LL are given by Equations 2.1, 2.4 and 2.5, respectively.

2.3 Local Search

Local search represents a set of approaches to approximate a solution of a combi-

natorial optimization problem, the problem of maximizing or minimizing a function

f : R → R defined on a search space [Pirlot, 1996]. In our formulation, a search

space specifies a feasible set R, domain of the optimization function, and a neigh-

borhood function NK : R → RK which, given a feasible solution x ∈ R, defines its

K-neighborhood set NK(x).

Given a search space, a local search algorithm defines:

• a method for selecting the first candidate solution x1 ∈ R;

10

• in each search step n = 1, 2, . . . , a method for selecting a new candidate solution

xn+1 from the K-neighborhood of the current candidate xn;

• a stopping condition.

The description implies the existence of a trivial local search algorithm. Such

an algorithm starts by selecting an initial candidate arbitrarily or according to a

distribution. Considering a maximization problem, it then selects a new candidate

solution by looking at the solution x that yields the highest return in the function

among the neighborhood of the current candidate NK(xn). In other words, xn+1 is

selected such as f(xn+1) ≥ f(x)∀x ∈ NK(xn). If there is no x ∈ NK(xn) that yields a

higher return in f than xn, then the algorithm stops. This algorithm is often referred

to as hill climbing in the literature.

11

Chapter 3

Programmatic Policies as a Local
Search Problem

The goal of applying local search for programmatic policies is to find an approximate

solution to Equation 1.1. Therefore, we are interested in finding a programmatic

policy ρ that maximizes the expected episodic return Es0∼S0 [g(s0, ρ)]. In practice,

we estimate the expectation by considering a set s0, where each element s ∈ s0 is

sampled from S0, and calculating

ftask(ρ) =
1

|s0|
∑︂
s∈s0

g(s, ρ), (3.1)

which represents the optimization function we want to maximize, given a task’s initial

state distribution S0 and return function g. We emphasize that this objective depends

on the task that defines the POMDP with the subscript in ftask.

In order to formalize the local search procedure, we specify search spaces, including

a feasible set R ⊆ ΠDSL and a corresponding neighborhood function NK : R → RK ,

and local search algorithms.

3.1 Search Spaces for Programmatic Policies

In this work, we evaluate two search spaces: Programmatic Space, which uses the

DSL directly, and Latent Space, which uses a learned embedding of the DSL.

12

3.1.1 Programmatic Space

In this formulation, Rprog is a subset of the programs the DSL accepts. We define the

subset Rprog by imposing constraints on the size of the programs. In particular, we

limit the number of times the production rule s := s; s (statement chaining) can be

used, and we also limit the height of the AST of every program. These constraints

are identical to the constraints used on the distribution of programs used to train the

autoencoder framework of LEAPS, as described in Appendix A.

The K-neighborhood of a program ρ ∈ Rprog, Nprog
K (ρ), consists of K samples of

a mutation applied in ρ. A mutation is defined by uniformly sampling a node in the

AST of ρ and deleting one of its children, also chosen from a uniform distribution. To

replace the newly created non-terminal node, we generate a new sub-tree by sequen-

tially sampling a suitable production rule following the probability distribution used

to generate the programs to train the LEAPS autoencoder. We continue to sample

production rules from the grammar until the newly created sub-tree does not have

any non-terminal symbols and the neighbor program of ρ is a valid program. We

ignore programs that are not in Rprog through a sample rejection scheme. That is, if

the neighbor of ρ is not in Rprog, we sample a new neighbor until we obtain one that

is in Rprog. We show a sample of the neighbor generation procedure in Figure 3.1,

where the red node in the left-most AST represents the node selected for removal,

and the green branch in the right-most AST represents the sampled sub-tree that

replaces the original node.

For the probability distribution used to choose the DSL production rules in a

program mutation, e.g. when choosing a rule to replace s in Figure 3.1(b), we adopt a

fixed probability for each rule, described in Figure 3.2 as a probabilistic context-free

grammar (PCFG). The adopted probabilities are exactly the same as the ones on the

LEAPS project specifications [Trivedi et al., 2021].

13

ρ

W

h

FC

IF

h

MP

M

⇒

ρ

W

h

FC

s

⇒

ρ

W

h

FC

s; s

M PM

DEF run m(

WHILE c(FC c) w(

IF c(MP c) i(

move

i)

w)

m)

DEF run m(

WHILE c(FC c) w(

s
w)

m)

DEF run m(

WHILE c(FC c) w(

move

putMarker

w)

m)

(a) (b) (c)

Figure 3.1: Example of a mutation in Programmatic Space, indicating the AST
and text representation of the original program (a), the intermediary incomplete
program (b), and the final mutated program (c). We use the abbreviations FC for
frontIsClear, MP for markersPresent, PM for putMarker, and M for move.

Pr(s := WHILE) = 0.15; Pr(s := IF) = 0.08; Pr(s := IFELSE) = 0.04;

Pr(s := REPEAT) = 0.03; Pr(s := s; s) = 0.5; Pr(s := a) = 0.2;

Pr(b := h) = 0.9; Pr(b := not(h)) = 0.1;

Pr(n := 0) = Pr(n := 1) = · · · = Pr(n := 19) = 1/20;

Pr(h := frontIsClear) = 0.5; Pr(h := leftIsClear) = 0.15;

Pr(h := rightIsClear) = 0.15; Pr(h := markersPresent) = 0.1;

Pr(h := noMarkersPresent) = 0.1;

Pr(a := move) = 0.5; Pr(a := turnLeft) = 0.15; Pr(a := turnRight) = 0.15;

Pr(a := pickMarker) = 0.1; Pr(a := putMarker) = 0.1.

Figure 3.2: Adopted probabilities for the Karel the Robot DSL as a probabilistic
context-free grammar.

14

3.1.2 Latent Space

Given a trained autoencoder framework as described in Section 2.2, we define the

Latent Space with the feasible set Rlat ⊆ ΠDSL as the set of all programs that pθ,

the underlying VAE decoder, can generate. Meanwhile, given a program ρ ∼ pθ(z) ∈

Rlat, z ∈ Rd, each program in its K-neighborhood N lat,σ
K (ρ) is given by decoding z+ϵ,

where ϵ ∼ N (0, σId) and Id represents the d × d identity matrix. In this space, we

do not set a sample rejection method to restrict the programs one can decode from

the model.

The standard deviation of the noise σ is a hyperparameter of the Latent Space,

along with the hyperparameters that describe the model itself, as outlined in Sec-

tion 2.2.

3.2 Local Search Algorithms

Once the Latent Space is learned, LEAPS relies on the cross-entropy method

(CEM) [Rubinstein, 1999] to search the Latent Space for a vector that will decode

into a program that approximately maximizes the objective of Equation 3.1. In

addition to CEM, we also consider cross-entropy beam search (CEBS), a method

inspired in CEM that retains information about the best candidate solutions from

a population. We also consider HC, as it is an algorithm that does not offer any

mechanism for escaping local minima, and thus can be used to measure properties

related to the space topology.

Hill-Climbing (HC) This algorithm starts by sampling a candidate solution, using

the PCFG from Figure 3.2 in the case of a search in the Programmatic Space, or

a vector from the distribution N (0, Id) in the case of a search in the Latent Space.

HC evaluates the K-neighborhood set of this initial candidate. If the neighborhood

contains another candidate that yields a greater episodic return on the evaluated

15

Figure 3.3: Diagram representing an example execution of HC. Nodes represent poli-
cies, edges show neighborhood relations, and numbers are the estimated episodic
return of each policy. Nodes with a bold contour are selected as the candidate of each
iteration. In iteration 3, as no policy yields a higher return than the current candi-
date, the algorithm stops and outputs the policy that yields a 0.35 episodic return.

task than the initial candidate, then this process is repeated from that neighbor.

Otherwise, the algorithm returns the best-seen candidate and its episodic return. An

implementation of this procedure is provided in Algorithm 1 and an example of its

execution is represented in the diagram of Figure 3.3.

Algorithm 1 Hill-climbing for Programmatic Policies

Require: N , the neighborhood function; K, the neighborhood size; P0, the initial
program distribution; ftask: the function that estimates the expected episodic
return in the given task.

Ensure: ρ̄, best-seen program with respect to highest episodic return estimate; ḡ,
estimated episodic return of best-seen program.

1: ρ̄ ∼ P0

2: ḡ ← ftask(ρ̄)
3: repeat
4: in local maximum ← true
5: for each ρ in NK(ρ̄) do
6: if ftask(ρ) > ḡ then
7: ρ̄← ρ
8: ḡ ← ftask(ρ)
9: in local maximum ← false
10: until in local maximum = true

Cross-Entropy Method (CEM) CEM generates a set of K candidate solutions

from the K-neighborhood of an initial candidate, whose latent vector is sampled from

16

N (0, Id), and evaluates all of them in terms of episodic return. CEM then calculates

the mean of the latent vectors of the candidate solutions that yield the top E episodic

return. This process is then repeated by defining the K-neighborhood of the mean

latent vector as the new set of candidate solutions until the mean of the top E episodic

returns is unchanged or lower, as described in Algorithm 2. An example of a CEM

execution is shown in Figure 3.4.

Algorithm 2 Cross-Entropy Method for Programmatic Policies in Latent Spaces

Require: N lat, the neighborhood function; K, the neighborhood size; E, the size of
the beam; σ, the noise parameter for the Latent Space; P0, the initial program
distribution; ftask: the function that estimates the expected episodic return in the
given task.

Ensure: ρ̄, best-seen program with respect to highest episodic return estimate; ḡ,
estimated episodic return of best-seen program.

1: ρ̄ ∼ P0

2: ḡ ← ftask(ρ̄)
3: best mean elite return ← −∞
4: (latent vectors, candidates) ← N lat,σ

K (ρ̄) ▷ The
neighborhood function, in the case of Latent Space, returns the latent vectors
used to decode the candidates in a tuple.

5: repeat
6: in local maximum ← true
7: g← []
8: for each ρ in candidates do
9: g.append(ftask(ρ))
10: if ftask(ρ) > ḡ then
11: ρ̄← ρ
12: ḡ ← ftask(ρ)

13: elite indices ← argtop-E(g)
14: elite estimated return ← 1

E

∑︁
i∈elite indices g[i]

15: if elite estimated return > best mean elite return then
16: best mean elite return ← elite estimated return
17: in local maximum ← false
18: mean elite vector ← 1

E

∑︁
i∈elite indices latent vectors[i]

19: (latent vectors, candidates) ← N lat,σ
K (mean elite vector) ▷ For

simplicity, we use the same notation of neighborhood function of a program to
indicate the neighborhood around a latent vector. This is done to skip decoding
and re-encoding the vector in the VAE.

20: until in local maximum = true

17

Figure 3.4: Diagram representing an example execution of CEM. Nodes represent
policies, edges show neighborhood relations, and numbers are the estimated episodic
return of each policy. Nodes in green represent the policies that yield the top-E
episodic return in that iteration, whose latent vectors are averaged as the candidate
policy, depicted as a node with a bold contour in gray. In iteration 3, as the mean
return of the selected policies is lower than the previous iteration, the algorithm stops.

Cross-Entropy Beam Search (CEBS) CEBS maintains a set of promising can-

didates, called a beam. Starting from an initial candidate, we generate its K neighbors

and select the best E candidates with respect to their episodic return as the beam of

the search. Then we form the next beam by selecting the top E candidates from the

pool given by all K neighbors of the candidates in the beam. This process continues

until the mean of the episodic rewards seen in the beam is unchanged. Note that, in

practice, the only difference to CEM is how CEBS generates its next candidate from

the list of top E vectors from the candidates, as shown in line 18 of the implemen-

tation provided in Algorithm 3. The diagram of Figure 3.5 represents an example

execution of CEBS.

3.3 Topology Metrics

Aside from finding policies that maximize our objective, we are interested in measur-

ing how conducive the search spaces are to local search. We do so by analyzing the

properties of the average search path induced by each neighborhood function, and

18

Algorithm 3 Cross-Entropy Beam Search for Programmatic Policies in Latent
Spaces

Require: N lat, the neighborhood function; K, the neighborhood size; E, the size of
the beam; σ, the noise parameter for the Latent Space; P0, the initial program
distribution; ftask: the function that estimates the expected episodic return in the
given task.

Ensure: ρ̄, best-seen program with respect to highest episodic return estimate; ḡ,
estimated episodic return of best-seen program.

1: ρ̄ ∼ P0

2: ḡ ← ftask(ρ)(ρ̄)
3: best mean elite return ← −∞
4: candidates ← N lat,σ

K (ρ̄)
5: repeat
6: in local maximum ← true
7: g← []
8: for each ρ in candidates do
9: g.append(ftask(ρ))
10: if ftask(ρ) > ḡ then
11: ρ̄← ρ
12: ḡ ← ftask(ρ)

13: elite indices ← argtop-E(g)
14: elite estimated return ← 1

E

∑︁
i∈elite indices g[i]

15: if elite estimated return > best mean elite return then
16: best mean elite return ← elite estimated return
17: in local maximum ← false
18: candidates ←

⋃︁
i∈elite indices N

lat,σ
K/E (ρ[i]) ▷ Aggregates as a K-neighborhood of

the elite.
19: until in local maximum = true

19

Figure 3.5: Diagram representing an example execution of CEBS. Nodes represent
policies, edges show neighborhood relations, and numbers are the estimated episodic
return of each policy. Nodes in green represent the policies that yield the top-E
episodic return in that iteration (in this example, E = 2). In iteration 3, as the mean
return of the selected policies is lower than the previous iteration, the algorithm stops.

by measuring how likely an arbitrary search algorithm finds a solution in each search

space. We formalize these metrics in this section.

3.3.1 Local Behavior Similarity

We use the concept of behavior similarity presented by LEAPS in Equation 2.3 as

ρ-similarity to define similarity along an average search path of a search space. The

behavior-similarity of a search space defined by the neighborhood function NK with

initial program distribution P0 and initial state distribution S0 is described as

behavior-similarity(N1, nmutations) = Eρ0∼P0,s0∼S0 [ρ-similarity(ρ0, ρnmutations
, s0)],

(3.2)

where ρnmutations
is the single individual of the neighborhood function N1 (NK with K =

1) recursively applied nmutations times in ρ0, thus producing a path in the underlying

search graph.

Measuring behavior-similarity alone can be misleading due to the possibility of

observing a neighbor that provides no change to the original program. We propose

the metric identity-rate to complement the analysis, which measures the probability of

20

observing a program in its own candidate neighborhood. The identity-rate is defined

as

identity-rate(N1, nmutations) = Eρ0∼P0,s0∼S0 [1{ρ0 = ρnmutations
}] . (3.3)

3.3.2 Convergence Rate

To isolate the search space analysis in the local search procedure, we fix an arbitrary

local search algorithm and measure how likely the search is to find a solution of a

given quality in the search space of interest. This measurement gives us an estimate

of how conducive the search space is to local search.

We define the convergence rate of a search space given by the neighborhood function

NK , with initial program distribution P0 and a task’s return estimation function ftask

(Equation 3.1). The convergence rate is measured in terms of gtarget ∈ [0, 1] by

computing

convergence-rate(NK , gtarget) = Eρ0∼P0 [1{ftask(ρ∗) ≥ gtarget}], (3.4)

where ρ∗ is the best-performing program returned by applying a specified search

algorithm in the space defined by NK starting on ρ0, and K is the neighborhood size.

Note that the convergence rate measure is related to the performance of local

search in finding a high return policy. If the convergence rate, specified by a search

algorithm, is higher in a search space, we can expect this space to yield high return

policies using the same search algorithm in fewer search iterations.

21

Chapter 4

Empirical Results

In this section, we describe our empirical methodology for comparing the Program-

matic Space and the Latent Space with respect to how conducive they are to

local search algorithms. We have two sets of experiments. In the first set we com-

pare CEM searching in the Latent Space, as presented in its original paper, with

CEBS also searching in the Latent Space, and HPRL, which implements a hier-

archical method over Latent Space, and HC in the Programmatic Space. In

the second set, we compare the spaces in a more controlled experiment, as described

in Section 3.3. We start by introducing Karel the Robot, the domain in which

we carried out our experiments. In all instances of the Latent Space, we use the

model trained by the LEAPS authors with training procedure and hyperparameters

described in Appendix A.

4.1 Karel the Robot Domain

Karel the Robot was firstly introduced as a programming learning environ-

ment [Pattis, 1994] and, due to its simplified structure, it has recently been adopted

as a test-bed for program synthesis and reinforcement learning [Bunel et al., 2018,

Chen et al., 2018, Shin et al., 2018, Trivedi et al., 2021]. Karel is a grid environment

with local Boolean perceptions and discrete navigation actions.

To define the programmatic policy class for Karel, we adopt the DSL presented

22

in Section 2.1. This DSL, introduced by the work of Bunel et al. [2018], represents

a subset of the original Karel language. Namely, it does not allow the creation of

subroutines or variable assignments. The language allows the agent to observe the

presence of walls in the immediate neighborhood of the robot, with the perceptions

{front|left|right}IsClear, and the presence of markers in the current robot loca-

tion with markersPresent and noMarkersPresent. The agent can then move the

robot with the actions move and turn{Left|Right}, and interact with the markers

with {put|pick}Marker.

We consider the Karel and Karel-Hard problem sets to define tasks. The

Karel set contains the tasks StairClimber, Maze, FourCorners, TopOff,

Harvester and CleanHouse, all introduced by Trivedi et al. [2021]. The Karel-

Hard problem set includes the tasks DoorKey, OneStroke, Seeder and Snake,

designed by Liu et al. [2023] as more challenging problems to better outline the

capacity of a programmatic solution. Trivedi et al. [2021] showed that these domains

are challenging for reinforcement learning algorithms using neural representations,

so LEAPS and HPRL represent the current state of the art in these problems. A

detailed description of each task in both sets is available in Appendix B.

4.2 First Set: Reward-Based Evaluation

Our first evaluation reproduces the experiments of Trivedi et al. [2021] and Liu et al.

[2023], where we add the results of HC in the Programmatic Space and CEBS in

the Latent Space. We use K = 250 as the neighborhood parameter for the HC

search in the Programmatic Space. For CEBS, we set the dimension of the latent

vector d = 256, the neighborhood size K = 64, the elite size E = 16, and the noise

σ = 0.25. We use the hyperparameters for CEM and HPRL exactly as described in

their original papers.

In this experiment, we consider a set of 16 initial states for the estimation of

Equation 3.1. We limit the execution of each method to a budget of 106 program

23

evaluations. If an algorithm fails to converge but its execution is still within the

budget, we re-sample an initial program and restart the search. We report results

over 32 seeds.

Table 4.1 summarizes our results in the Karel and Karel-Hard problem sets,

comparing them to the results reported by the authors of LEAPS and HPRL. In order

to better outline the performance of each algorithm, we plot the reached episodic

return as a function of the number of episodes in Figure 4.11 and analyze differences

in running time in Appendix C. We also present representative examples of programs

that HC and CEBS synthesize in Appendix D.

Latent Programmatic

Task LEAPS HPRL CEBS HC

StairClimber 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00

Maze 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00

TopOff 0.81± 0.07 1.00± 0.00 1.00± 0.00 1.00± 0.00

FourCorners 0.45± 0.25 1.00± 0.00 1.00± 0.00 1.00± 0.00

Harvester 0.70± 0.02 1.00± 0.00 1.00± 0.00 1.00± 0.00

CleanHouse 0.32± 0.01 1.00± 0.00 1.00± 0.00 1.00± 0.00

DoorKey 0.50± 0.00 0.50± 0.00 0.50± 0.00 0.84± 0.02

OneStroke 0.65± 0.14 0.80± 0.02 0.90± 0.00 0.95± 0.00

Seeder 0.51± 0.03 0.58± 0.06 1.00± 0.00 1.00± 0.00

Snake 0.23± 0.06 0.33± 0.07 0.26± 0.01 0.65± 0.03

Table 4.1: Mean and standard error of final episodic returns of our proposed methods
in Karel and Karel-Hard problem sets within a budget of 106 program evalua-
tions, compared to the reported results from baselines. LEAPS, HPRL, and CEBS
search in Latent Spaces, while HC searches in Programmatic Spaces.

We see that HC, based on Programmatic Space, achieves the highest episodic

1The CEM curve in this plot is based on our implementation of the algorithm, thus it diverges
slightly from the results reported by the LEAPS authors in a few cases.

24

0.0

0.5

1.0
StairClimber TopOff Harvester DoorKey Seeder

100 103 106

0.0

0.5

1.0
Maze

100 103 106

FourCorners

100 103 106

CleanHouse

100 103 106

OneStroke

100 103 106

Snake

B
es
t
E
p
is
o
d
ic

R
et
u
rn

Number of Episodes

HC CEBS CEM

1
Figure 4.1: Episodic return performance of all methods in Karel and Karel-Hard
problem sets. Reported mean and 95% confidence interval over 32 executions. In this
Figure, CEM results are based on our implementation of the search algorithm. The
x-axis is represented in a log scale for better visualization.

return on every task compared to all methods based on Latent Space. Furthermore,

the plots show that, although HC and CEBS achieve the same mean episodic return

at the end of the search process for Seeder, HC generally does so with a smaller

number of samples.

We highlight the results observed in Table 4.1 in the DoorKey task. This is

a two-stage task that requires the agent to pick up a marker in a room, yielding a

0.5 reward, which opens a second room that contains a goal square, which yields

an extra 0.5 reward upon reaching it. LEAPS, HPRL and CEBS are only able to

find programmatic policies that achieve 0.5 episodic return in this task, suggesting

that their search procedures reach a local maximum that does not lead to a general

solution. Meanwhile, HC achieves a mean episodic return that is higher than 0.5,

suggesting that, in some cases, it is able to escape such local maxima and find policies

that reach the final goal. We hypothesize that this is a property of the search space

itself, since HC does not employ a mechanism to escape local maxima.

To further evaluate the search algorithms, we propose a modification of the Karel

25

environment. In this version, which we name Crashable, invalid actions terminate

episodes. This change implies that the same tasks from Karel and Karel-Hard

become more difficult to solve, as the valid trajectories are stricter. Figure 4.2 outlines

the episodic return performance of CEM, CEBS, and HC on the Crashable version

of every task of the problem sets.

0.0

0.5

1.0
StairClimber TopOff Harvester DoorKey Seeder

100 103 106

0.0

0.5

1.0
Maze

100 103 106

FourCorners

100 103 106

CleanHouse

100 103 106

OneStroke

100 103 106

Snake

B
es
t
E
p
is
o
d
ic

R
et
u
rn

Number of Episodes

HC CEBS CEM

1
Figure 4.2: Episodic return performance of all methods in Karel and Karel-Hard
problem sets, using the Crashable version of the environment, that does not allow
invalid actions. Reported mean and 95% confidence interval over 16 seeds. The x-axis
is represented in a log scale for better visualization.

The results show a greater discrepancy between the programmatic and latent meth-

ods. We conjecture that this is because the Latent Space was trained with trajec-

tories obtained from the original environment setting and it is unable to generalize to

the Crashable environment. Since the Programmatic Space does not require

any training, it generalizes better to the Crashable setting.

To observe the impact of the initialization methods of the search algorithms, we

evaluate a second version of all search algorithms using the initialization rule of the

opposed search space. For CEM and CEBS, this version of the algorithms initializes

the search with policies sampled from the defined PCFG. And for HC in Program-

matic Space, search is initialized by decoding a latent sampled from N (0, Id) in

26

the Latent Space. As presented and detailed in Appendix E, the episodic return

values obtained by searching with these proposed versions of the algorithms were very

similar to the values obtained by the original algorithms. This suggests that both

initialization methods are similar and one does not provide a significant advantage

over the other.

4.3 Second Set: Topology-Based Evaluation

To better understand the discrepancy between HC and the algorithms searching in

the Latent Spaces, we analyze the Programmatic and Latent Space while

controlling for the search algorithm, as described in Section 3.3.

4.3.1 Local Behavior Similarity Analysis

To estimate the metrics given by Equations 3.2 and 3.3, we sample a set of 32 initial

states from a distribution S0 and a set of 1000 initial programs from P0. S0 is com-

posed of random Karel maps unrelated to any task in the problem sets, generated

by the same procedure considered while training LEAPS (described in Appendix A),

and we set P0 differently for each search space. For Programmatic Space, it is

given by the PCFG from Figure 3.2, and for Latent Space, it is given by N (0, Id).

We run the metrics estimations as a function of nmutations ∈ [1, 10] on Program-

matic Space and three specifications of Latent Space, setting σ = {0.1, 0.25, 0.5}

– hyperparameters commonly used by LEAPS and HPRL. The results are presented

in Figure 4.3.

Although this was the objective of constructing the Latent Space, we see that

the Programmatic Space achieves comparable behavior-similarity metrics. We

also see that although the setting σ = 0.1 on Latent Space achieves high behavior-

similarity, it is not more conducive to search, which is likely due to its higher identity-

rate.

The observed result still does not provide evidence of the performance discrepancy

27

1 2 3 4 5 6 7 8 9 10

Number of mutations

0.0

0.5

1.0

B
eh

av
io
r
si
m
il
a
ri
ty

1 2 3 4 5 6 7 8 9 10

Number of mutations

0.0

0.5

1.0

Id
en
ti
ty

ra
te Programmatic

Latent, σ = 0.1

Latent, σ = 0.25

Latent, σ = 0.5

1
Figure 4.3: Behavior-similarity and identity-rate metrics on Programmatic Space
and Latent Space (σ = {0.1, 0.25, 0.5}). Reported mean and 95% confidence inter-
val of the estimation of each metric over a set of 32 initial states of the environment
and 1000 initial programs.

that we observe while searching for policies in the programmatic and in the latent

spaces.

4.3.2 Convergence Analysis

Next, we now look at the topology of each search space with respect to the return

functions of the tasks we want to solve. Specifically, we want to measure how con-

ducive a given space is to search. To do so, we use HC in both Latent Space and

Programmatic Space to estimate the chances that it has of converging to solutions

of a given quality.

We use the Equation 3.4 to estimate convergence rate on a given task and search

space, guided by HC. Similarly, the initial program distribution for the Program-

matic Space is given by generating a program using the PCFG from Figure 3.2,

and for the Latent Space, it is given by the programs one decodes after sampling

a latent vector from N (0, Id).

As the HC return depends on the task we are solving, we estimate different values

from Equation 3.4 for each task. The estimation involves sampling a set of 32 states

given by the task’s initial state distribution, and sampling 10, 000 initial programs to

start each execution of HC. The estimation of convergence-rate of Programmatic

Space and Latent Space2, both set to a neighborhood size K = 250, for every

2Here, σ follows the values that the LEAPS authors chose for each task: σ = 0.5 for Four-

28

task in our problem sets is shown in Figure 4.4 as a function of gtarget ∈ [0, 1]. In

the figure, we show a zoomed-in plot for the tasks DoorKey and Snake to better

visualize cases with low convergence rates. Table 4.1 and Figure 4.1 show that the

search in the Programmatic Space achieves episodic return values larger than 0.5

for DoorKey and Snake; the zoomed-in regions in Figure 4.4 show that these are

rare events, but possible to be observed with a reasonable search budget.

0.0

0.5

1.0

StairClimber TopOff Harvester DoorKey

0.40.7 1

0
0.001

Seeder

0.0 0.5 1.0

0.0

0.5

1.0

Maze

0.0 0.5 1.0

FourCorners

0.0 0.5 1.0

CleanHouse

0.0 0.5 1.0

OneStroke

0.0 0.5 1.0

Snake

0.2 0.6 1

0
0.001

Episodic return target

C
o
n
v
er
g
en

ce
ra
te

Programmatic Latent

1
Figure 4.4: Convergence rate of Programmatic Space and Latent Space with
neighborhood size K = 250, guided by hill-climbing. Reported mean and 95% confi-
dence interval of estimation over a set of 10, 000 search initializations.

The plots show that, even in tasks where HC only matched or performed marginally

better than latent methods, the Programmatic Space is more likely to yield poli-

cies with greater episodic return. This indicates that this search space is more con-

ducive to search than the Latent Space, when considering algorithms not equipped

with mechanisms for escaping local optima.

It is important to note that the convergence rate values of zero for episodic return

target larger than 0.5 in DoorKey for the Latent Space do not imply that achiev-

ing policies with that return is impossible in the space. The analysis shows that HC

did not find those policies after testing 10, 000 different search initializations, but we

show that they exist with the following experiment: we encode a policy that yields an

Corners and Harvester, σ = 0.1 for Maze, and σ = 0.25 for all other tasks.

29

episodic return larger than 0.5 as the initial candidate of a HC search in the Latent

Space, and report the best-performing policy after the algorithm stopping condition.

This process, when done with a particular policy, resulted in a policy that yields

a 0.72 episodic return, decoded from the Latent Space. More details about this

experiment are present in Appendix F.

We expand the convergence rate analysis by adopting neighborhood functions NK

with different neighborhood sizes K in Equation 3.4. The convergence rate analysis

on a space given by a lower K indicates how robust would a search process be in the

search space, given that it relies on a small number of samples. On the other hand, the

result of the convergence rate on higher K gives us information about how capable the

search space is, as it can expand a search state further to find the better candidate.

Figure 4.5 compares the convergence-rate estimation of both Programmatic and

Latent Space adopting K = {10, 1000}, and suggests that the Programmatic

Space is both more robust, evidenced by the higher convergence-rate with K = 10,

and more capable, shown by the superior convergence-rate with K = 1, 000.

Finally, we further analyze the convergence rate of the Latent Space by using

CEM and CEBS as the search algorithm that produces ρ∗ in Equation 3.4. Fig-

ure 4.6 compares the convergence rate obtained with HC (original setting), CEM,

and CEBS, with neighborhood size K = 64. Although CEM and HC have a similar

convergence rate across all tasks, we see that CEBS outperforms both CEM and HC

in Harvester, DoorKey, OneStroke and Seeder. These results highlight the

ability of CEBS to escape local optima. Despite the superior performance of CEBS,

HC searching in the Programmatic Space performs better than CEBS searching

in the Latent Space (see Figure 4.1).

30

0

1
StairClimber TopOff Harvester DoorKey Seeder

0 1

0

1
Maze

0 1

FourCorners

0 1

Episodic return target

CleanHouse

0 1

OneStroke

0 1

Snake

C
o
n
ve
rg
en
ce

ra
te

Programmatic Latent

1
(a) K = 10

0

1
StairClimber TopOff Harvester DoorKey Seeder

0 1

0

1
Maze

0 1

FourCorners

0 1

Episodic return target

CleanHouse

0 1

OneStroke

0 1

Snake

C
on

ve
rg
en
ce

ra
te

Programmatic Latent

1
(b) K = 1, 000

Figure 4.5: Convergence rate of Programmatic Space and Latent Space with
neighborhood sizes K = 10 (a) and K = 1, 000 (b), guided by hill-climbing. Reported
mean and 95% confidence interval of estimation over a set of 250 search initializations.

31

0.0

0.5

1.0

StairClimber TopOff Harvester DoorKey Seeder

0.0 0.5 1.0

0.0

0.5

1.0

Maze

0.0 0.5 1.0

FourCorners

0.0 0.5 1.0

CleanHouse

0.0 0.5 1.0

OneStroke

0.0 0.5 1.0

Snake

Episodic return target

C
o
n
v
er
g
en

ce
ra
te

HC CEM CEBS

1
Figure 4.6: Convergence rate of Latent Space with neighborhood size K = 64,
guided by HC, CEM, and CEBS. Reported mean and 95% confidence interval over
1, 000 seeds.

32

Chapter 5

Related Works

Most of the early work on programmatic policies considered stateless programs, such

as decision trees. For example, Verma et al. [2018] and Verma et al. [2019] learn

tree-like programs with no internal states. Bastani et al. [2018] use imitation learning

to induce decision tree encoding policies. Qiu and Zhu [2022] learn programmatic

policies by using a language of differentiable programs, which are identical to oblique

decision trees. Learning programmatic policies with internal states, such as programs

with while-loops, can be more challenging. Inala et al. [2020] presented an algorithm

for learning policies in the form of finite-state machines, which can represent loops. As

in this paper, Trivedi et al. [2021] and Liu et al. [2023] also consider programmatic

policies with internal states through loops. There is also work on programmatic

policies in the multi-agent context, where one learns a sequence of policies within

self-play algorithms [Medeiros et al., 2022, Aleixo and Lelis, 2023]. Most of these

previous works search in the space of programs with a local search algorithm.

Program synthesis problems also pose problems similar to the ones discussed in this

work [Waldinger and Lee, 1969, Solar-Lezama et al., 2006], where one must search in

the programmatic spaces for a program that satisfies the user’s intent. In this case, a

user’s intent is a specification of the solution, usually given as input-output examples

or as a natural language description. These problems can be solved with brute-force

search [Udupa et al., 2013, Albarghouthi et al., 2013] or with algorithms that are

33

guided by a function, which is often learned [Odena et al., 2021, Barke et al., 2020, Shi

et al., 2022, Ellis et al., 2020, Wong et al., 2021, Ameen and Lelis, 2023]. A common

method to learning such guiding functions is to use a self-supervised approach in which

the learning system exploits the structure of the language to generate training data.

Similar to these works, LEAPS can be seen as an attempt to learn a function a priori

to help with the search in the programmatic space in the context of reinforcement

learning.

Constructing a latent space as a search space for combinatorial search has been at-

tempted in other problems throughout the literature. Hottung et al. [2020] construct

a latent space that encodes solutions for routing problems, and apply differential evo-

lution to search for solutions in it. The authors show that the method finds solutions

with low optimality gap in smaller execution time, when compared to a baseline that

applies REINFORCE on a model with attention layers [Kool et al., 2018]. Lynch et al.

[2020] train a VAE that reconstructs programs in program synthesis problems, as op-

posed to reinforcement learning, and compare an evolutionary algorithm in latent

space with genetic algorithms in the original programmatic space. The authors show

that searching in the latent space is competitive with searching in the programmatic

space, but the latter presents higher success rates in problems with discontinuous

optimization landscapes. These results are consistent with our findings in this work.

Liskowski et al. [2020] also construct a latent space for program synthesis problems

with VAEs, but show a higher success rate for an evolutionary continuous search in

latent space when compared to a genetic programming approach. Although this is

not consistent with our findings, we conjecture that this is due to the difficulty of

the problem. In program synthesis, we are given specifications about solutions and

can use that information to guide the process of finding a solution, analogue to a su-

pervised learning problem. We conjecture that it is easier to learn latent spaces that

are conducive to search to supervised learning tasks than to reinforcement learning

tasks.

34

Chapter 6

Conclusions

In our work, we showed that despite the recent efforts in learning latent spaces to

replace programmatic spaces, the latter is still more conducive to search. Empirical

results in Karel the Robot showed that a simple hill-climbing algorithm searching

in the programmatic space can significantly outperform the current state-of-the-art

algorithms that search in latent spaces. We measured both the learned latent space

and the programmatic space in terms of the loss function used to train the former. We

discovered that both have similar loss values, despite the fact that the programmatic

space does not require training. We also compared the topology of the two spaces

through the probability of a hill-climbing search being stuck at local maxima in the

two spaces, and found that the programmatic space is more conducive to search.

Our results suggest that the original programmatic space was an important missing

baseline in previous work and that learning latent spaces for programming languages

is still an open and challenging research question.

6.1 Future Work

We expect that a latent representation is still necessary to effectively find program-

matic policies in programmatic spaces composed of languages more expressive than

Karel DSL. We hypothesize that constructing a latent space that achieves a high

convergence rate requires compression of the programmatic space. Combining com-

35

pression with high behavior similarity could aid search procedures to effectively find

policies with a desired behavior, as neighborhood sets of a candidate policy would

include a set of solutions with more diverse behavior.

This work compares programmatic representations within a single POMDP setting.

We highlight that there is no current research on more general settings, including

the ones commonly used in deep reinforcement learning, such as discounted reward

functions in episodic and continuing tasks, and stochastic dynamics and policies. We

see that, as a direction for future work, it is important to consider these settings to

compare representations for programmatic policies more extensively.

36

References

Aws Albarghouthi, Sumit Gulwani, and Zachary Kincaid. Recursive program synthe-

sis. In International Conference Computer Aided Verification, CAV, pages 934–950,

2013.

David S. Aleixo and Levi H. S. Lelis. Show me the way! Bilevel search for synthesiz-

ing programmatic strategies. In Proceedings of the AAAI Conference on Artificial

Intelligence. AAAI Press, 2023.

Saqib Ameen and Levi H. S. Lelis. Program synthesis with best-first bottom-up

search. Journal of Artificial Intelligence Research, 77:1275–1310, 2023. doi: 10.

1613/jair.1.14394.

Shraddha Barke, Hila Peleg, and Nadia Polikarpova. Just-in-time learning for bottom-

up enumerative synthesis. Proceedings of the ACM on Programming Languages, 4

(OOPSLA):1–29, 2020.

Osbert Bastani, Yewen Pu, and Armando Solar-Lezama. Verifiable reinforcement

learning via policy extraction. In Proceedings of the International Conference on

Neural Information Processing Systems, pages 2499–2509. Curran Associates Inc.,

2018.

Rudy Bunel, Matthew Hausknecht, Jacob Devlin, Rishabh Singh, and Pushmeet

Kohli. Leveraging grammar and reinforcement learning for neural program synthe-

sis. arXiv preprint arXiv:1805.04276, 2018.

Xinyun Chen, Chang Liu, and Dawn Song. Execution-guided neural program syn-

thesis. In International Conference on Learning Representations, 2018.

Kevin Ellis, Catherine Wong, Maxwell I. Nye, Mathias Sablé-Meyer, Luc Cary,

Lucas Morales, Luke B. Hewitt, Armando Solar-Lezama, and Joshua B. Tenen-

baum. Dreamcoder: Growing generalizable, interpretable knowledge with wake-

sleep bayesian program learning. CoRR, abs/2006.08381, 2020. URL https:

//arxiv.org/abs/2006.08381.

37

https://arxiv.org/abs/2006.08381
https://arxiv.org/abs/2006.08381

Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew

Botvinick, Shakir Mohamed, and Alexander Lerchner. beta-vae: Learning basic vi-

sual concepts with a constrained variational framework. In International conference

on learning representations, 2016.

André Hottung, Bhanu Bhandari, and Kevin Tierney. Learning a latent search space

for routing problems using variational autoencoders. In International Conference

on Learning Representations, 2020.

Jeevana Priya Inala, Osbert Bastani, Zenna Tavares, and Armando Solar-Lezama.

Synthesizing programmatic policies that inductively generalize. In International

Conference on Learning Representations, 2020. URL https://openreview.net/

forum?id=S1l8oANFDH.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint

arXiv:1312.6114, 2013.

Diederik P Kingma, Max Welling, et al. An introduction to variational autoencoders.

Foundations and Trends® in Machine Learning, 12(4):307–392, 2019.

Wouter Kool, Herke Van Hoof, and Max Welling. Attention, learn to solve routing

problems! arXiv preprint arXiv:1803.08475, 2018.

J. R. Koza. Genetic Programming: On the Programming of Computers by Means of

Natural Selection. MIT Press, Cambridge, MA, 1992.

Pawel Liskowski, Krzysztof Krawiec, Nihat Engin Toklu, and Jerry Swan. Program

synthesis as latent continuous optimization: Evolutionary search in neural embed-

dings. In Proceedings of the 2020 Genetic and Evolutionary Computation Confer-

ence, pages 359–367, 2020.

Guan-Ting Liu, En-Pei Hu, Pu-Jen Cheng, Hung-Yi Lee, and Shao-Hua Sun. Hier-

archical programmatic reinforcement learning via learning to compose programs.

arXiv preprint arXiv:2301.12950, 2023.

David Lynch, James McDermott, and Michael O’Neill. Program synthesis in a con-

tinuous space using grammars and variational autoencoders. In Parallel Problem

Solving from Nature–PPSN XVI: 16th International Conference, PPSN 2020, Lei-

den, The Netherlands, September 5-9, 2020, Proceedings, Part II 16, pages 33–47.

Springer, 2020.

38

https://openreview.net/forum?id=S1l8oANFDH
https://openreview.net/forum?id=S1l8oANFDH

Leandro C. Medeiros, David S. Aleixo, and Levi H. S. Lelis. What can we learn even

from the weakest? Learning sketches for programmatic strategies. In Proceedings

of the AAAI Conference on Artificial Intelligence, pages 7761–7769. AAAI Press,

2022.

Augustus Odena, Kensen Shi, David Bieber, Rishabh Singh, Charles Sutton, and

Hanjun Dai. BUSTLE: Bottom-up program synthesis through learning-guided ex-

ploration. In International Conference on Learning Representations, 2021. URL

https://openreview.net/forum?id=yHeg4PbFHh.

Spyros Orfanos and Levi H. S. Lelis. Synthesizing programmatic policies with actor-

critic algorithms and relu networks, 2023.

Richard E Pattis. Karel the robot: a gentle introduction to the art of programming.

John Wiley & Sons, 1994.

Marc Pirlot. General local search methods. European journal of operational research,

92(3):493–511, 1996.

Wenjie Qiu and He Zhu. Programmatic reinforcement learning without oracles.

In International Conference on Learning Representations, 2022. URL https:

//openreview.net/forum?id=6Tk2noBdvxt.

Reuven Y. Rubinstein. The Cross-Entropy Method: A Unified Approach to Combi-

natorial Optimization, Monte-Carlo Simulation, and Machine Learning. Springer

Science & Business Media, 1999.

Kensen Shi, Hanjun Dai, Kevin Ellis, and Charles Sutton. Crossbeam: Learning to

search in bottom-up program synthesis. In International Conference on Learning

Representations, 2022. URL https://openreview.net/forum?id=qhC8mr2LEKq.

Eui Chul Shin, Illia Polosukhin, and Dawn Song. Improving neural program synthesis

with inferred execution traces. Advances in Neural Information Processing Systems,

31, 2018.

Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik, Sanjit Seshia, and Vijay

Saraswat. Combinatorial sketching for finite programs. In Proceedings of the 12th

International Conference on Architectural Support for Programming Languages and

Operating Systems, ASPLOS XII, page 404–415, New York, NY, USA, 2006. Associ-

ation for Computing Machinery. ISBN 1595934510. doi: 10.1145/1168857.1168907.

URL https://doi.org/10.1145/1168857.1168907.

39

https://openreview.net/forum?id=yHeg4PbFHh
https://openreview.net/forum?id=6Tk2noBdvxt
https://openreview.net/forum?id=6Tk2noBdvxt
https://openreview.net/forum?id=qhC8mr2LEKq
https://doi.org/10.1145/1168857.1168907

Dweep Trivedi, Jesse Zhang, Shao-Hua Sun, and Joseph J Lim. Learning to syn-

thesize programs as interpretable and generalizable policies. Advances in neural

information processing systems, 34:25146–25163, 2021.

Abhishek Udupa, Arun Raghavan, Jyotirmoy V. Deshmukh, Sela Mador-Haim,

Milo M.K. Martin, and Rajeev Alur. Transit: Specifying protocols with concolic

snippets. In Proceedings of the ACM SIGPLAN Conference on Programming Lan-

guage Design and Implementation, pages 287–296. ACM, 2013.

Abhinav Verma, Vijayaraghavan Murali, Rishabh Singh, Pushmeet Kohli, and Swarat

Chaudhuri. Programmatically interpretable reinforcement learning. In Interna-

tional Conference on Machine Learning, pages 5045–5054. PMLR, 2018.

Abhinav Verma, Hoang Le, Yisong Yue, and Swarat Chaudhuri. Imitation-projected

programmatic reinforcement learning. Advances in Neural Information Processing

Systems, 32, 2019.

Richard J. Waldinger and Richard C. T. Lee. Prow: A step toward automatic pro-

gram writing. In Proceedings of the 1st International Joint Conference on Artificial

Intelligence, page 241–252, San Francisco, CA, USA, 1969. Morgan Kaufmann Pub-

lishers Inc.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist

reinforcement learning. Machine learning, 8:229–256, 1992.

Catherine Wong, Kevin M Ellis, Joshua Tenenbaum, and Jacob Andreas. Leveraging

language to learn program abstractions and search heuristics. In International

Conference on Machine Learning, pages 11193–11204. PMLR, 2021.

40

Appendix A: Training details of
LEAPS

The Latent Space of this work is based on the trained model provided by the

LEAPS authors Trivedi et al. [2021]. The model training involves generating a dataset

of programs in Karel DSL, and, for each program, a set of trajectories following the

rules of the environment.

To compose the program dataset, the authors start by sampling a program from

the PCFG from Figure 3.2. This program sample will only compose the dataset if it

suits the following restrictions:

• Maximum AST height: 4;

• Maximum statement chaining (s := s; s rule): 6;

• Maximum program length (number of symbols in the program text representa-

tion): 45.

Generating trajectories for a program involves generating an initial state where the

program is executed. This is generated as a random Karel map unrelated to any

task by following the procedure: Starting from an empty 8× 8 map, walls are placed

with a chance of 10% on each cell. Afterward, the agent is placed in a uniformly

random coordinate on the map, which is re-sampled in case this lands on a wall.

Finally, a single marker is placed on each empty cell with a probability of 10%.

To train the model used in the final work, the authors generated 50, 000 programs

and 10 trajectories for each program, following the procedure described above. The

41

dataset was split into 35, 000 programs for training, 7, 500 programs for validation,

and 7, 500 programs for testing. The authors then set d = 256 as the dimension of

the latent vectors to specify the model architecture. They used the hyperparameters

β = 0.1, λ1 = 1, λ2 = 1 and λ3 = 1 to train the model using Equation 2.6.

42

Appendix B: Karel problem sets

In this Section, we specify the initial state distribution and episodic return function

of every task in Karel and Karel-Hard problem sets. Further details of each task

are present in LEAPS [Trivedi et al., 2021] and HPRL [Liu et al., 2023], works that

introduced Karel and Karel-Hard, respectively.

B.1 Karel

StairClimber This environment is given by a 12 × 12 grid with stairs formed by

walls. The agent starts on a random position on the stairs and its goal is to reach a

marker that is also randomly initialized on the stairs. If the agent reaches the marker,

the agent receives 1 as an episodic return and 0 otherwise. If the agent moves to an

invalid position, i.e. outside the contour of the stairs, the episode terminates with a

−1 return.

Maze A random maze is initialized on an 8×8 grid, and a random marker is placed

on an empty square as a goal. The agent starts on a random empty square of the grid

and its goal is to reach the marker goal, which yields a 1 episodic return. Otherwise,

the agent receives 0 as a return.

TopOff Markers are placed randomly on the bottom row of an empty 12× 12 grid.

The goal of the agent, initialized on the bottom left of the map, is to place one extra

marker on top of every marker on the map. The return of the episode is given by the

number of markers that have been topped off divided by the total number of markers.

43

FourCorners Starting on a random cell on the bottom row of an empty 12 × 12

grid, the goal of the agent is to place one marker in each corner of the map. Return

is given by the number of corners with one marker divided by four.

Harvester The agent starts on a random cell on the bottom row of an 8× 8 grid,

that starts with a marker on each cell. The goal of the agent is to pick up every

marker on the map. Return is given by the number of picked-up markers divided by

the total number of markers.

CleanHouse In this task, the agent starts on a fixed cell of a complex 14 × 22

grid environment made of many connected rooms, with ten markers randomly placed

adjacent to the walls. The goal of the agent is to pick up every marker on the map

and the return is given by the number of picked-up markers divided by the total

number of markers.

B.2 Karel-Hard

DoorKey The agent starts on a random position on the left side of an 8 × 8 grid

that is vertically split into two chambers. The agent goal is to pick up a marker on

the left chamber, which opens a door connecting both chambers and allows the agent

to reach a goal marker. Picking up the first marker yields a 0.5 reward, and reaching

the goal yields an additional 0.5.

OneStroke Starting on a random position of an empty 8× 8 grid, the goal of the

agent is to visit every grid cell without repeating. Visited cells become a wall that

terminates the episode upon touching. The episodic return is given by the number of

visited cells divided by the total number of cells in the initial state.

Seeder The environment starts as an empty 8 × 8 grid, with the agent placed

randomly in any square. The agent’s goal is to place one marker in every empty cell

44

of the map. The return is given by the number of cells with one marker divided by

the total number of empty cells at the start of the episode.

Snake In this task, the agent and one marker are randomly placed on an empty

8 × 8 grid. The agent acts like the head of a snake, whose body grows each time a

marker is collected. The goal of the agent is to touch the marker on the map without

colliding with the snake’s body, which terminates the episode. Each time the marker

is collected, it is placed in a new random location, until 20 markers are collected. The

episodic return is given by the number of collected markers divided by 20.

45

Appendix C: Running time
comparison of Programmatic and
Latent Spaces

In this section, we compare the neighborhood generation process of each search space

in terms of running time. We do this by measuring the time the Programmatic

Space and the Latent Space take to generate one neighbor from a given candidate

program, sampled from the initial distribution, and present the results in Table C.1.

We see that sampling from the programmatic space is more than 10 times faster than

sampling from the latent space.

In this section, we compare the neighborhood generation process of each search

space in terms of running time. We do this by measuring the time the Program-

matic Space and the Latent Space take to generate one neighbor from a given

candidate program, sampled from the initial distribution, and present the results in

Table C.1. We see that sampling from the programmatic space is more than 10 times

faster than sampling from the latent space.

Programmatic Space Latent Space

Elapsed time (seconds) 0.0021± 0.0002 0.0293± 0.0004

Table C.1: Average time for generating one neighbor in Programmatic Space
and Latent Space from a given candidate, measured over 1, 000 initial random
candidates. Reported mean and 95% confidence interval.

46

Appendix D: Examples of obtained
solutions

In this section, we show representative examples of programmatic policies from HC

and CEBS across some relevant tasks. We selected programs that yield the highest

return for each algorithm. Results are presented in Tables D.1 and D.2 for HC and

CEBS, respectively.

47

Task Solution Return

Harvester DEF run m(WHILE c(leftIsClear c) w(

WHILE c(leftIsClear c) w(REPEAT R=14 r(

move pickMarker r) turnRight w) WHILE c(

rightIsClear c) w(pickMarker turnRight move

turnLeft w) WHILE c(frontIsClear c) w(move

w) w) m)

1.0

CleanHouse DEF run m(WHILE c(leftIsClear c) w(move

turnRight move move w) WHILE c(frontIsClear

c) w(turnRight w) WHILE c(noMarkersPresent

c) w(move REPEAT R=7 r(turnLeft move

pickMarker r) w) move turnLeft m)

1.0

DoorKey DEF run m(WHILE c(frontIsClear c) w(move w)

turnLeft move WHILE c(noMarkersPresent c) w(

turnRight move move w) IF c(leftIsClear c) i(

pickMarker move move WHILE c(noMarkersPresent

c) w(move turnRight move w) putMarker i) m)

1.0

OneStroke DEF run m(IF c(frontIsClear c) i(turnRight

i) WHILE c(noMarkersPresent c) w(WHILE c(

frontIsClear c) w(turnRight move w) turnLeft

IFELSE c(frontIsClear c) i(move turnRight

pickMarker move move move i) ELSE e(turnRight

move e) w) m)

0.953

Seeder DEF run m(turnLeft WHILE c(noMarkersPresent

c) w(putMarker REPEAT R=10 r(move r) REPEAT

R=5 r(WHILE c(markersPresent c) w(turnLeft

move turnRight w) pickMarker r) w) WHILE c(

frontIsClear c) w(turnLeft w) m)

1.0

Snake DEF run m(turnLeft WHILE c(frontIsClear

c) w(move w) WHILE c(rightIsClear c) w(

WHILE c(rightIsClear c) w(move turnLeft

move IF c(frontIsClear c) i(move move i)

turnLeft w) putMarker WHILE c(rightIsClear c)

w(putMarker w) turnRight w) m)

1.0

Table D.1: Representative high-return solutions from HC search in the Program-
matic Space.

48

Task Solution Return

Harvester DEF run m(WHILE c(leftIsClear c) w(move

pickMarker move turnLeft pickMarker move

pickMarker move turnLeft move pickMarker move

turnLeft move pickMarker move w) m)

1.0

CleanHouse DEF run m(WHILE c(noMarkersPresent c)

w(move pickMarker turnLeft w) WHILE c(

leftIsClear c) w(move move w) WHILE c(

frontIsClear c) w(move move w) m)

1.0

DoorKey DEF run m(WHILE c(rightIsClear c)

w(turnLeft pickMarker w) WHILE c(

noMarkersPresent c) w(turnRight move w)

pickMarker WHILE c(noMarkersPresent c) w(

turnRight move w) putMarker m)

0.6875

OneStroke DEF run m(WHILE c(noMarkersPresent c) w(

turnLeft move turnLeft WHILE c(frontIsClear

c) w(turnLeft move w) pickMarker move move

move w) WHILE c(noMarkersPresent c) w(

turnLeft move w) pickMarker move move move

move m)

0.9288

Seeder DEF run m(WHILE c(noMarkersPresent c) w(

putMarker move move WHILE c(markersPresent c)

w(turnRight move w) w) m)

1.0

Snake DEF run m(WHILE c(noMarkersPresent c) w(

REPEAT R=13 r(IFELSE c(frontIsClear c) i(

turnRight move pickMarker i) ELSE e(move

pickMarker REPEAT R=13 r(turnRight move

r) REPEAT R=13 r(pickMarker r) move e)

pickMarker r) w) m)

0.4375

Table D.2: Representative high-return solutions from CEBS in Latent Space.

49

Appendix E: Evaluating the
impact of initialization methods

To measure the impact of the initialization methods of the search algorithms, we eval-

uate an alternative version of all search algorithms using the initialization rule of the

opposed search space. For CEM and CEBS, this version of the algorithms initializes

the search with policies sampled from the defined PCFG. And for HC in Program-

matic Space, search is initialized by decoding a latent sampled from N (0, Id) in

the Latent Space. Figure E.1 compares the performance of HC in Program-

matic Space with its alternative version, while Figures E.2 and E.3 compare the

performance of CEM and CEBS, respectively, with their alternative versions.

Results show that the performance of the alternative version of the algorithms was

very similar to the original algorithm in most cases, and marginally inferior in others.

This suggests that both initialization methods are similar and one does not provide

a significant advantage over the other.

50

0.0

0.5

1.0
StairClimber TopOff Harvester DoorKey Seeder

100 103 106

0.0

0.5

1.0
Maze

100 103 106

FourCorners

100 103 106

CleanHouse

100 103 106

OneStroke

100 103 106

Snake

B
es
t
E
p
is
o
d
ic

R
et
u
rn

Number of Episodes

HC HC+LatentInit

1
Figure E.1: Episodic return performance of HC in Programmatic Space with
original and latent initialization in Karel and Karel-Hard problem sets. Reported
mean and 95% confidence interval over 32 seeds. The x-axis is represented in a log
scale for better visualization.

0.0

0.5

1.0
StairClimber TopOff Harvester DoorKey Seeder

100 103 106

0.0

0.5

1.0
Maze

100 103 106

FourCorners

100 103 106

CleanHouse

100 103 106

OneStroke

100 103 106

Snake

B
es
t
E
p
is
o
d
ic

R
et
u
rn

Number of Episodes

CEM CEM+ProgInit

1
Figure E.2: Episodic return performance of CEM in Latent Space with original
and programmatic initialization in Karel and Karel-Hard problem sets. Reported
mean and 95% confidence interval over 32 seeds. The x-axis is represented in a log
scale for better visualization.

51

0.0

0.5

1.0
StairClimber TopOff Harvester DoorKey Seeder

100 103 106

0.0

0.5

1.0
Maze

100 103 106

FourCorners

100 103 106

CleanHouse

100 103 106

OneStroke

100 103 106

Snake

B
es
t
E
p
is
o
d
ic

R
et
u
rn

Number of Episodes

CEBS CEBS+ProgInit

1
Figure E.3: Episodic return performance of CEBS in Latent Space with original
and programmatic initialization in Karel and Karel-Hard problem sets. Reported
mean and 95% confidence interval over 32 seeds. The x-axis is represented in a log
scale for better visualization.

52

Appendix F: Proving the existence
of high-performing policies in
Latent Space

To complement the performance and topology analysis of the Latent Space, we

designed an additional experiment to validate the existence of high-performing policies

in the space. Specifically, we are interested in confirming if policies with an episodic

return larger than 0.5 in the DoorKey task exist in the Latent Space.

We start by selecting a high-performing policy found by searching in the Pro-

grammatic Space. This policy is then encoded as a latent vector to be represented

in the Latent Space. Note that the encoded policy does not necessarily decode to

the same original policy. To account for that, we use the encoded policy as the initial

candidate for a HC search on the Latent Space with neighborhood size K = 1, 000.

Table F.1 shows a particular choice of initial candidate that led to the discovery of a

policy in the Latent Space that yields an episodic return of 0.71875 in DoorKey.

This experiment confirms that high-performing policies exist in the Latent Space.

However, the convergence rate analysis shows that searching with HC in the space did

not result in such policies, after considering 10, 000 different search initializations.

53

Policy DoorKey return

Original initial

candidate

DEF run m(WHILE c(noMarkersPresent

c) w(turnLeft pickMarker move

move w) pickMarker move WHILE c(

noMarkersPresent c) w(REPEAT R=17

r(move r) move turnLeft move w)

putMarker m)

0.9375

Decoded initial

candidate

DEF run m(WHILE c(noMarkersPresent

c) w(turnLeft pickMarker move w)

move move REPEAT R=3 r(move r)

putMarker turnLeft m)

−0.5

Search result DEF run m(WHILE c(noMarkersPresent

c) w(turnLeft move move w)

pickMarker move WHILE c(

noMarkersPresent c) w(turnLeft

move w) WHILE c(rightIsClear c)

w(putMarker w) m)

0.71875

Table F.1: Initial candidate and resulting program from searching for a high-
performing policy in Latent Space for the DoorKey task. The original initial
candidate is defined in the Programmatic Space, while the decoded initial candi-
date and the search result are defined in the Latent Space.

54

	Introduction
	Problem Formulation
	Contributions

	Background
	Programmatic Policies
	Latent Representation of Policies
	Variational Autoencoders
	Training Objective

	Local Search

	Programmatic Policies as a Local Search Problem
	Search Spaces for Programmatic Policies
	Programmatic Space
	Latent Space

	Local Search Algorithms
	Topology Metrics
	Local Behavior Similarity
	Convergence Rate

	Empirical Results
	Karel the Robot Domain
	First Set: Reward-Based Evaluation
	Second Set: Topology-Based Evaluation
	Local Behavior Similarity Analysis
	Convergence Analysis

	Related Works
	Conclusions
	Future Work

	References
	Appendix A: Training details of LEAPS
	Appendix B: Karel problem sets
	Karel
	Karel-Hard

	Appendix C: Running time comparison of Programmatic and Latent Spaces
	Appendix D: Examples of obtained solutions
	Appendix E: Evaluating the impact of initialization methods
	Appendix F: Proving the existence of high-performing policies in Latent Space

