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ABSTRACT
Software energy consumption is a relatively new concern for
mobile application developers. Poor energy performance can
harm adoption and sales of applications. Unfortunately for
the developers, the measurement of software energy con-
sumption is expensive in terms of hardware and difficult in
terms of expertise. Many prior models of software energy
consumption assume that developers can use hardware in-
strumentation and thus cannot evaluate software running
within emulators or virtual machines. Some prior models
require actual energy measurements from the previous ver-
sions of applications in order to model the energy consump-
tion of later versions of the same application.

In this paper, we take a big-data approach to software
energy consumption and present a model that can estimate
software energy consumption mostly within 10% error (in
joules) and does not require the developer to train on en-
ergy measurements of their own applications. This model
leverages a big-data approach whereby a collection of prior
applications’ energy measurements allows us to train, trans-
mit, and apply the model to estimate any foreign applica-
tion’s energy consumption for a test run. Our model is based
on the dynamic traces of system calls and CPU utilization.

1. INTRODUCTION
In recent years, the popularity of battery-driven devices,

such as smart-phones and tablets, has become overwhelm-
ing. People now roam around with small computers—i.e.,
smart-phones and tablets—in their pockets [41]. According
to eMarketer, the number of smart-phone users will exceed
two billion by 2016 [21]. This enormous adoption led to a
significant increase in mobile data traffic, and is predicted to
increase 10-fold between 2014 and 2019 [19]. Recent develop-
ments have equipped these hand-held devices with different
types of peripherals and sensors including digital cameras,
Wi-Fi, GPS, etc. These advancements have elevated the
expectation of the users. Consequently, application devel-
opers are compelled to develop more sophisticated applica-
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tions, leading them to continually update and maintain their
products. Such updates, however, can be harmful in terms
of applications’ energy efficiency [28]; most software devel-
opers are not aware of how their source code changes might
have drastic repercussions on their application’s energy con-
sumption [37].

More energy consumption leads to shorter battery life, but
mobile users are reluctant to frequently charge their device
battery. A recent survey reveals that a large fraction of the
smart-phone users desire longer battery life more than other
non-functional requirements [35]. Yet the improvement in
battery technology does not keep up with the advancements
in computing capabilities. This indirectly emphasizes the
importance of energy efficient software development.

The first impediment towards developing energy friendly
applications is to know the actual energy consumption. This
requires tools that are not only expensive and time consum-
ing to develop, but demand expertise as well—a far cry from
what most of the software developers have even today [37].
Among different energy related topics such as energy opti-
mization, software developers mostly suffer from the mea-
surement related issues [40]. Yet the number of models and
tools to estimate software energy consumption and to locate
energy bugs are noticeably low [37, 11]. Some of those mod-
els [25] are also too complicated for the developers to use or
reproduce.

In this paper, we propose an accurate and simple resource
count-based energy prediction model (GreenOracle) that is
trained on a large corpus of Android applications’ energy
measurements that we evaluate on unseen Android appli-
cations. Our contribution can be summarized as: inspired
by the power of system call traces [12, 39, 17] for estimating
resource usage, we incorporate techniques from Mining Soft-
ware Repositories (Green Mining) to build an energy model
for Android applications. In addition to the counts of differ-
ent system calls, CPU utilization, and pertinent information
were added to our model. We collected 984 versions from
24 different Android applications, mostly from their open
source repositories. We then profiled each version of the
applications with their associated energy consumption and
resource usage statistics (i.e., traces of system calls and CPU
utilization) using Green Miner [28].

This significantly large and varied collection of data en-
abled us to train our energy model with high predictive abil-
ity. The proposed model does not need any energy measure-
ment of the application under test, thus can save develop-
ers time by mitigating the complexity of measuring actual
energy consumption using perplexing hardware instrumen-



tation. Software developers can download the GreenOracle
model which is trained on many other applications. After
capturing the resource usage of their applications, GreenO-
racle can be used to estimate the energy consumption in
joules. When a developer modifies the source code, they
can re-run the energy model for the new version to discover
if the energy consumption exceeds their predefined thresh-
old. Appalled at such a regression, the developer proceeds
to optimize their source code so that the energy regression
is within an acceptable limit. A complete workflow to apply
GreenOracle is presented in section 6.

2. BACKGROUND AND RELATED WORK
In this section, we start with defining terms that are used

in this paper. The related work is discussed in two broad
categories: 1) modeling software energy consumption and 2)
improving energy efficiency.

2.1 Power and Energy
The rate of doing work is defined as power. Power is mea-

sured in watts. Energy, on the other hand, is expressed as
the total sum of power integrated over time and is expressed
in joules [12]. An operation that uses 4 watts of power for
a period of 30 seconds can be stated to consume 120 joules
of energy. Although energy is proportional to power, us-
ing less power does not necessarily indicate consuming less
energy. In energy optimization, a module can have higher
power usage than another module with the same function-
ality, but can still consume much less energy if its runtime
is sufficiently shorter [18].

2.2 System Calls
A system call is the gateway to access process and hard-

ware related services and acts as the interface between a
user application and the kernel [12, 39]. Different groups of
system calls are responsible for different types of services:
process control related system calls are used to initiate and
abort processes; memory related system calls include remap
memory addresses, synchronize a file to a memory map etc.;
some of the most frequently used system calls related to file
operations are file read, file write, file open.1 As system calls
are the only way to access such services, we hypothesize that
counting the numbers of different system calls invoked by an
application should roughly indicate the types and amount of
resources required for an appointed task to complete.

2.3 Modeling Energy Consumption

2.3.1 Energy Modeling based on Component’s Uti-
lization

Carrol et al. [16] studied the energy consumption of the
Openmoko Neo Freerunner, an Android smartphone. After
observing and capturing energy usage in different scenar-
ios, a simple energy model was developed. For example,
Eaudio(t) = t × 0.32W is the model to calculate the energy
consumption for audio playback. Shye et al. [44] employed
a logger application to log system performance metrics and
user activities. The authors found that screen and CPU
power consumption contributes highly toward the total en-
ergy drain. In a similar study by Gurumurthi et al. [24],

1http://man7.org/linux/man-
pages/man2/syscalls.2.html last accessed: 05-Oct-2015

disk was found to be the largest consumer of energy. Uti-
lization based energy models were also studied by Flinn et
al. [22], Zhang et al. [47], and Dong et al. [20].

The basic philosophy of utilization based approaches is to
capture a component’s utilization time to model its energy
consumption. Such approaches, however, suffer from the tail
energy leaks [39]—some components (e.g., NICs, GPS) stay
in a high power state for a period of time even after com-
pleting the appointed task. The utilization of a component
does not include this time period, thus tail energy can not
be modeled with such energy modeling approaches.

2.3.2 Instruction Based Modeling
In order to estimate software energy consumption using

program instruction cost, Shuai et al. proposed eLens [25].
eLens takes three types of inputs: a software artifact; sys-
tem profiles which uses per instruction energy models; and
the workload. eLens itself consists of three separate compo-
nents: a workload generator which is responsible for creating
a new instrumented version of the software artifact and can
generate sets of paths in the application from the workload;
an analyzer which estimates energy consumption using sys-
tem profiles and sets of paths; and the source code annotator
to produce the annotated version of the source code so that
the developers know which line of code or part of code is en-
ergy expensive. Seo et al. [43] modeled energy consumption
for Java based distributed systems. The proposed method
considered component level energy consumption along with
communication cost.

Instruction based models are mostly language dependent.
A model developed for Java-based systems are hard to re-
produce for other systems—systems developed with multiple
programming languages, for example.

2.3.3 Energy Modeling from System Call Traces
Pathak et al. [39] proposed a model with several finite

state machines (FSM). Each state in a FSM represents the
power usage patterns for a specific component. Unlike the
traditional utilization-based models, this FSM-based model
was found to be more accurate when the tail energy leaks
are severe. Yet such a model requires re-calibration for a to-
tally new platform, which becomes more challenging when
different FSMs have to be rebuilt for different energy sen-
sitive device components. Aggarwal et al. [12] proposed a
system call count based model which does not require com-
plex FSMs. The author proposed a simple rule of thumb:
“a significant change in the number of system calls indi-
cates a significant change in the total energy consumption”.
The authors validated their model by evaluating the en-
ergy changes in different versions of two Android applica-
tions. This model, however, was not evaluated for a new
application—an application that was never used in the train-
ing set. Moreover, it does not offer the actual energy con-
sumed by an application except predicting whether energy
consumption has changed or not.

We developed an energy model, inspired by the promises
shown by system call traces, that can predict the total en-
ergy consumption for any Android application. We also in-
cluded CPU usage as system calls are unable to capture this
information [17]. Our proposed model enables Android de-
velopers to know the actual energy consumption, in addition
to giving them the ability to compare different versions of
the same application’s energy consumption.



2.4 Energy optimization
Research has been done to understand different methods

of improving software energy efficiency. I/O components
are some of the dominant sources of smart-phones’ energy
drains [15]. This is partly because of the tail energy leaks
that are common to exist when energy bugs are not consid-
ered carefully [38, 39]. In order to reduce the tail energy leak,
bundling I/O operations together has been suggested [38].

For suitable jobs—when offloading data itself is not very
expensive—transferring task to fixed servers can be com-
pelling towards saving energy [36]. Unfortunately, a sepa-
rate study revealed that for most of the mobile applications
data offloading is too expensive to offer any gain in energy
saving [34].

Automatic color transformation was offered by Li et al. [32]
as another avenue to improve software energy efficiency. The
objective is to have less energy expensive interface colors
(e.g., black background) while maintaining the readability
at the same time. Likewise, pre-fetching in video stream-
ing has been suggested by Gautam et al. [23]. Rasmussen
et al. [42] observed that ad-blockers, in spite of their own
energy consumption, can help in reducing energy drains.

3. METHODOLOGY
Our proposed energy model takes the counts of different

system calls and CPU utilization statistics of an Android
application’s test case as the input and produces the esti-
mated joules of energy consumption of the test case as the
output. In order to develop such a big-data based energy
model, we followed the following steps. 1) We collected a
large number of Android applications with their committed
versions (section 3.1). 2) Energy measurements along with
the resource usage patterns were captured for all of the ver-
sions (section 3.2, 3.3, and 3.4). 3) A grouping mechanism
was used in order to deal with some system calls that have
different names but similar characteristics (section 3.5). 4)
Feature selection was used for identifying only the impor-
tant features from the set of system calls and CPU related
information that cause energy drains (section 3.6). Finally,
models are developed using machine learning algorithms for
regression (section 3.7) and validated using a separate cross
validation set (section 3.8). Although our objective is to
produce a simple linear regression based model (i.e., ridge
regression), performance of some other algorithms are also
presented. This is to evaluate if the prediction accuracy can
be improved with added complexities of learners, such as
Support Vector (SV) regression, and to understand the im-
plication of adding more applications’ data in our training
corpus (e.g., bagging). This section describes each of these
phases.

3.1 Collecting Versions of Android Applica-
tions

In order to build a robust generalized energy model, we
need a significant number of measurements for training (i.e.,
applications’ resource usage against actual energy consump-
tion). The problem with having many different Android
applications is that separate test cases are required for each
application that are time consuming to develop and test.
On the contrary, a single test case is sufficient for many of
the different versions of the same application. For example,
only one test script was sufficient to run and collect mea-
surements for all the 156 Firefox versions (Table 1).

F-Droid [3], a free and open source android repository, was
used to select applications from different domains—browser,
game, utility, etc. F-Droid, however, usually contains at
most three different versions of an application. This hin-
ders the objective of having a sufficiently large training cor-
pus with the least possible effort. As a result, we collected
the source code for a significant number of commits of ap-
plications that are available on GitHub. We focused on a
group of applications that are not only different in nature,
but also have a large number of commits on GitHub—more
commits offer more versions of the same application. The
APKs for the committed versions were then generated using
the Apache Ant tool. For a few applications, such as Firefox
and ChromeShell, we collected the APKs directly from their
APK repositories. For a few others, we collected the apks
directly from F-Droid or other similar sources—when the
source code was not on GitHub or the Apache Ant was not
successful. Some of the applications with only one version
were selected to test GreenOracle’s accuracy in predicting
energy consumption for a wide range of applications.

Table 1 describes all the collected applications and their
types; the total number of Android applications is 24 whereas
the total number of versions is 984. A total of 106 unique
system calls was observed in our dataset implying the rich-
ness and diversity of our training data.

3.2 Green Miner
Green Miner [29], a hardware-based energy profiler, was

used for energy and resource profiling. Green Miner includes
a YiHua YH-305D power supply, Raspberry Pi model B
computer for controlling the experiments, Adafruit INA219
breakout board and Arduino Uno for collecting energy drain,
and a Galaxy Nexus phone as the client. Four different se-
tups with four Galaxy Nexus phones were used to speedup
the data collection process. The Raspberry Pi pushes and
executes tests on the phone and aggregates the measured
data to store into a centralized server. Wi-Fi was re-enabled
after enabling the airplane mode; this ensures the actual en-
ergy measurement is not contaminated by cellular radio and
bluetooth. More details about Green Miner are available in
prior work [29, 42].

3.3 Developing the Test Scripts
A separate test script was developed for each of the appli-

cation which emulates a simple use case for a specific appli-
cation. For example, in order to create a to do list for the
Temaki application, a test script is required that can create
a new list, enter some entries to the list and then delete the
completed entries. These test scripts were automatized by
injecting various touch inputs into the input systems using
rudimentary Unix shell available on Android [29].

3.4 Collecting Energy and Resource Usage of
the Applications

The final phase is to collect the resource usage, indirectly
of course, of an application test run and the correspond-
ing energy consumption, which enables the development of
our proposed energy model. Green Miner, using the Rasp-
berry Pi, pushes the test script with the input APK to run,
collect, and store the respective energy consumption for a
specific test case of an application. Each run was repeated
10 times in order to produce a stable average energy con-
sumption; this was to address the observed variation among



Applications Type No. of versions No. of unique system calls Time period of commits of versions Source

Firefox Browser 156 84 Jul, 2011 - Nov, 2011 APK repos [4]
Calculator Android Calculator 97 48 Jan, 2013 - Feb, 2013 GitHub

Bomber Bombing game 79 47 May, 2012 - Nov, 2012 GitHub
Blockinger Tetris game 74 56 Mar, 2013 - Aug, 2013 GitHub
Wikimedia Wikipedia mobile 58 67 Sep, 2015 - Aug, 2015 GitHub

Sensor Readout Read sensor data 37 51 Apr, 2012 - Apr, 2014 GitHub
Memopad Free-hand Drawing 52 47 Oct, 2011 - Feb, 2012 GitHub
Temaki To do list 66 50 Sep, 2013 - July, 2014 GitHub

2048 Puzzle game 44 60 Mar, 2014 - Aug, 2015 GitHub
ChromeShell Browser 50 76 Mar, 2015 - Mar, 2015 APK repos [1]

Vector Pinball Pinball game 54 48 Jun, 2011 - Mar, 2015 GitHub
Budget Manage income & expense 59 56 Aug, 2013 - Aug, 2014 GitHub

Acrylic Paint Finger painting 40 49 Apr, 2012 - Sep, 2015 GitHub
VLC Video/Audio player 46 61 Apr, 2014 - Jun, 2014 APK repos [9]

Eye in Sky Weather app 1 77 Sep, 2015 Google Play
AndQuote Reading quotes 21 51 Jul, 2012 - Jun, 2013 GitHub
Face Slim Connect to Facebook 1 65 Nov, 2015 Fdroid
24game Arithmetic game 1 50 Jan, 2015 Fdroid

GnuCash Money Management 16 56 May 2014 - Aug, 2015 GitHub
Exodus Browse 8chan image board 3 60 Jan, 2010 - Apr, 2015 GitHub
Agram single/multi word anagrams 3 46 Apr, 2015 - Oct, 2015 Fdroid

Paint Electric Sheep Drawing app 1 66 Sep, 2015 Google Play
Yelp Travel & Local app 12 78 Unknown APK4Fun

DalvikExplorer System information 13 54 Jun,2012 - Jan, 2014 code.google [2]

Table 1: Description of the applications

different runs of the same test case [17, 12]. System calls
were traced using the simple Linux strace command; the -c
option was used to produce the summarized counts of dif-
ferent system calls invoked by an application. In order to
model the CPU usage with the energy, we collected the total
CPU jiffies (A Linux CPU utilization measurement) used by
our applications along with other relevant information such
as the number of context switches, total interrupts, and ma-
jor page faults. The Linux /proc pseudo-file system was
used for capturing CPU jiffies and other information about
processes. Information local to a process was collected by ac-
cessing /proc/pid/stat [8], and information global to the sys-
tem behavior was captured from /proc/stat [7]. The global
information is not associated with any specific process; so we
measured the difference of resource usage before and after
the test case. In case of process specific information, how-
ever, capturing information at the end of our test run was
sufficient.

The problem is that instrumented code such as running
strace in parallel to the actual application can contaminate
the application’s energy measurement; instrumentation is
work, and work consumes energy. This led us to enforce
isolation in our measurements. For a single representational
data point, we collected the energy consumption 10 times
separately from strace and stat programs. Similarly, for the
same test case strace was run 10 times followed by another
10 runs which access the /proc file system. After taking the
average from all the measurements, we mapped the values to
a single example in our training dataset. In a word, a single
data point in the training set required 30 different runs in
Green Miner, which is an indication of our effort and time
given to collect data for the 984 Android versions (a total
of approximately 30,000 test runs). Our publicly shared
dataset can be accessed and used for future research [5].

3.5 Grouping System Calls
We observed that in spite of their very similar charac-

teristics, some system calls come with different names [17].
For example, lseek and llseek are two system calls with the
same purpose. This is problematic for our energy model

when one of the applications call lseek whereas another one
call llseek. A generalized energy model would be hard to de-
velop with such inconsistency in the training data. A model
that has never seen llseek in the training phase, does not
know the contribution of llseek towards the energy drains
although the model knows the role of lseek which can be
directly used for llseek. We resolved this issue by manu-
ally grouping similar system calls together based on their
semantics as described in Linux man page [6]. System calls
that are unique in their functionality were not grouped with
others. All the grouped system calls are presented in Table
2. For example, an application with 10 write and 10 pwrite
is represented with a new feature called Write with 20 as its
value in the training dataset.

3.6 Feature Scaling & Feature Selection
Machine learning algorithms often suffer when the ranges

of values are very different among different features. As we
observed such wide variety among the features, we normal-
ized our data in the range 0 to 1. Such normalization not
only speedups the learning time, but also improves the accu-
racy in prediction very significantly; features with vary large
values, regardless of their importance, influence the model
more than small valued features. Equation 1 was used for
our feature normalization [13], where x is a feature vector.

x̂ =
x−min(x)

max(x)−min(x)
(1)

After applying grouping, the dataset has 98 features from
system call traces along with the 21 features that we got
from stat program (for CPU and related information). In-
cluding duration of the test case, the total number of fea-
tures is 120. This large number of features overfit the train-
ing data—although we have approximately 1000 Android
APK versions, the number of applications is 24. Moreover,
we are also interested in identifying the influential features
that contributes to the actual energy consumption. Some
feature selection algorithms like forward and backward selec-
tion suffer from local optimization problem—decisions can
not be altered once a feature is selected or dropped [31].



Groups System calls Semantics
Lseek lseek, llseek “Reposition read/write file offset”
Write write, pwrite “Write to a file descriptor”
Writev writev, pwritev “Write data into multiple buffer”
Read read, pread “Read from a file descriptor”
Readv readv, preadv “Read data from multiple buffer”
Open open, openat “Open a file”
Statfs fstatfs64, statfs64, statfs, fstatfs “Get filesystem statistics”
Stat lstat64, stat, fstat, lstat, fstat64, stat64 “Get file status”

FSync fsync, fdatasync “Synchronize a file’s in-core state with storage device”
Pipe pipe, pipe2 “Create pipe”
Clone clone, clone2 “Create a child process”
Utime utime, utimes “Change file last access and modification times”
Dup dup, dup2, dup3 “Duplicate a file descriptor”

Table 2: Grouping similar system calls according to OS semantics

Algorithms like exhaustive search are very time consuming,
yet did not produce the best set of features that offer an
accurate prediction model.

We also observed high correlation among different fea-
tures, which is problematic for coefficient based feature se-
lection methods like Ridge regression and Lasso. Elastic
Net, however, works better with such scenarios and has been
selected as our feature selection algorithm [48]. We also ap-
plied recursive elimination in order to have the least number
of possible features with high predictive power. The only
drawback of Elastic Net was that it deleted test duration
from the set of important features after few rounds of the
recursive elimination. We, however, used our domain knowl-
edge and added test duration as one of the selected features;
an application without doing anything can still consume en-
ergy if it is open. In fact, we observed significant improve-
ment in prediction accuracy after including test duration in
our feature set. It is important to note that we used 70% of
the applications for the feature selection purpose. Table 3
shows the selected features for our prediction models.2 Once
the features are measured and normalized, we applied them
to the machine learners to model energy consumption.

3.7 Algorithms to Model Energy Consumption
In order to build the proposed model of predicting energy

consumption in joules, we have used four different machine
learning algorithms. This is to select the best prediction
algorithm (i.e., GreenOracle) that is not only accurate in
estimating energy consumption, but also simple to use and
interpret.

3.7.1 Ridge Regression
Linear regression is perhaps the simplest learning algo-

rithm to build a regression model. Ridge regression is just an
extension of simple linear regression with an added penalty
expression which is used to restrict the size of the coeffi-
cients in order to avoid overfitting. The outline of the algo-
rithm can be described as follows. Given a set of labelled
instances {[Xi, Y i]}, ridge regression finds a coefficient vec-
tor θ = (θ0, θ1, . . . , θn), which can find the best linear fit,
Yp = θTX, where the predicted values Yp minimizes the
sum of the squared error. This can be formalized as in equa-

2In the table, an actual system calls starts with lower
case letter

tion 2 [26]:

θ = arg min
θ

[

m∑
i=1

(Y i −
n∑

j=0

θjX
i
j)

2 + λ

n∑
j=1

θ2j ] (2)

In our case, m is the number of versions, n is the number
of selected features from the traces of system calls and CPU
related information, Xis are the feature vectors, Y is are
the observed energy consumption, and Yp is the vector of
predicted energy consumption. The parameter λ is used for
penalization in order to avoid overfitting the training data.

3.7.2 Lasso
One of the characteristics of ridge regression is that it does

not eliminate unnecessary features—no feature will have a
coefficient of zero. Lasso, on the other hand, drops features
from a group of highly correlated features. The only math-
ematical difference between ridge and lasso is the penalty
term in equation 2; lasso uses l1 (i.e.,

∑
|θj |) penalty in-

stead of l2 (i.e.,
∑
θ2j ) [26].

3.7.3 Support Vector Regression
Unlike the other algorithms that we implemented with

Octave, we used the SVM light [30] implementation with lin-
ear kernel for the SV regression. SVM light is implemented
based on ε-SV regression [45] where the main goal is to find
a predictor function f(x) that does not deviate more than ε
from the true values. Success using linear kernel—instead of
more complicated radial basis function, polynomial, and sig-
moid kernels—is more beneficial, as linear features produce
more interpretable results [27].

3.7.4 Bagging
In unstable learning, high variance is observed with little

change in the training data [14]. As we test the accuracy of
our models for different applications, and the training sets
are a little bit different each time (the application under test
is excluded), we need to verify how a little change in the
training data affects the model. Bagging with ridge regres-
sion is used for this verification. We run ridge regression 100
times with replacement in the training set so that some of
the applications are not included in a particular run. If the
models are very different among different runs of bagging,
our data collection is not adequate yet. Both the mean and
median of the bagging predictions from 100 different runs
are presented in our result analysis.



Features Description
User Number of CPU jiffies for normal processes executing in user mode

CTXT Total number of context switches
Num threads Total number of threads created during execution

Intr Total number of interrupts serviced during the test
Vsize Virtual memory size

Duration Length of the test case
recvfrom System call to receive a message from a socket

Fsync System calls (fsync &fdatasync) to “ synchronize a file’s in-core state with storage device”
setsockopt System call for setting socket options

mkdir System call for making a new directory
futex System call for locking fast user-space
Write System calls (write and pwrite) for writing to a file descriptor
sendto System call to send a message to a socket
unlink System call to delete a name from the file system to make the space reusable
Open System calls (open and openat) to open a file

Table 3: Selected features from the traces of system calls and the CPU related information

3.8 Cross Validation
We evaluated the accuracy of our models using each ap-

plication separately; when an application was under test, all
the versions of that application were excluded from the train-
ing set. For parameter tuning, such as λ in equation 2, we
separated out the versions of one of the applications from the
training set; this specific set was used as the cross validation
set. When we observed good accuracy in both training and
cross set, the cross set was again combined with the training
set to produce a final model. This model was then used to
predict the energy of the versions of our application under
test—application that was neither used for training nor for
cross validation. The same tuned parameters (λ = 0.001
for ridge regression, for example) was then used for testing
other applications’ energy consumption. For example, when
testing the accuracy of the application Firefox, we formed
the training set with all of the versions from the other 23
applications. Now using λ = 0.001 for ridge regression, we
trained the model and evaluated the prediction accuracy for
156 Firefox versions. As the accuracy was very similar across
all versions of a particular application, we represented pre-
diction accuracy of an application as the average accuracy
across all versions. Similar process was followed for all other
applications and algorithms.

4. EXPERIMENT AND RESULT ANALYSIS
Table 4 shows the percent of errors when predicting the

energy consumption in joules for all of the Android applica-
tions. A prediction of 95 joules against the ground truth of
100 joules is a 5% prediction error. All the presented results
are for foreign applications; an application under test was
never used in training nor in cross validation. The accuracy
level varies across applications and algorithms. Although
considering the average percent of error across all the appli-
cations, SV regression (with only 5.96% error) outperforms
all others, simple ridge regression has shown the best perfor-
mance when the worst case is considered. Ridge regression
exhibits the least prediction accuracy for Exodus, an Im-
age Board Browser, with 13.44% error. On the other hand,
the worst performance of SV regression, bagging with mean,
bagging with median, and lasso are 14.83%, 17.46%, 17.03%,
and 19.13% of prediction errors (in joules) respectively.

Figure 1 illustrates the strength of the ridge regression
based model more elaborately. Besides showing the cumula-

0 2 4 6 8 10 12 14 16
Percent of error

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

All versions
App average

Figure 1: Percent of error with ridge regression

tive distribution function (CDF) of the percent of errors for
all of the 24 applications (percent of error for an application
is the average of the percent of errors across all the versions
of the application), it also depicts the error distribution for
all the 984 versions separately. It is not surprising that the
CDF curve with all the versions is different than the CDF
curve only with the applications. There are lots of versions
for which the energy consumption was predicted with ≈0%
error. On the other hand, unlike the CDF curve of applica-
tion where the worst percent of error is 13%, ridge regression
has a worst case prediction error of 16% when all the 984
versions are considered. This is not surprising as our map-
ping mechanism—separate 10 runs for energy, system calls,
and CPU usage pattern—can be a bit inaccurate, and the
accuracy can vary across versions.

In spite of all the impediments with our data collection,
this simple model is still very accurate in estimating the en-
ergy consumption of the Android applications under test.
The CDF graph suggests that the energy consumption of
approximately 85% of the applications and versions were
predicted within 10% error. This is very similar to the per-
formance of previous complicated but widely accepted tools
and models—eLens [25] and Pathak’s FSM based model [39]



% of prediction error (measured and predicted in joules)
Applications SVR Ridge Bagging (Mean) Bagging (Median) Lasso

Wikimedia 3.99 6.17 5.03 4.77 4.57
Sensor Readout 3.56 3.33 4.2 3.85 0.73

Bomber 7.94 7.12 8.20 7.01 7.21
Memopad 3.73 4.78 4.39 4.40 3.68
Calculator 11.36 11.34 11.92 11.87 14.61
Blockinger 3.61 4.09 0.52 1.76 4.00

Temaki 2.55 1.75 0.89 1.00 4.96
2048 4.05 5.11 3.15 3.08 4.02

ChromeShell 13.31 11.91 10.73 11.81 19.13
Pinball 2.32 3.93 6.31 6.07 1.44
Firefox 5.35 4.83 6.23 4.84 6.83
Budget 5.76 5.16 4.50 4.46 5.90

Acrylic Paint 2.33 4.44 5.26 5.26 2.84
VLC 7.54 5.86 2.80 3.20 7.18

Eye in Sky 4.45 6.96 9.34 10.78 7.99
AndQuote 14.83 6.07 11.04 10.11 12.10
Face Slim 6.58 4.33 7.87 8.56 6.02
24game 6.16 8.48 0.80 0.13 17.38

GnuCash 4.33 6.40 5.59 5.64 7.13
Exodus 13.96 13.44 12.35 12.53 12.97
Agram 6.39 6.69 5.43 5.41 5.82

Paint Electric Sheep 1.46 3.02 9.92 8.89 1.01
Yelp 4.79 11.95 17.46 17.03 9.49

Dalvik 2.77 0.95 3.65 3.08 5.03
Average 5.96 6.17 6.57 6.48 7.17

Table 4: Prediction accuracy of the proposed energy models: train on all but the application under test. The ground truths
are the average of 10 runs and the predicted energy consumption is based on the average of 10 system call traces and 10 CPU
usage traces. Error for a particular application is the average percent of error across all of its versions.

for examples. eLens and the FSM based models also have
an upper bound of 10% error for most of the cases. With the
current state—training set with 24 applications—we suggest
the ridge regression based model as the best of our energy
models, thus referred as the GreenOracle. This is encourag-
ing as unlike SVR or bagging, models based on simple linear
regression are easy to interpret, use, and reproduce.

A software developer, after capturing the set of invoked
system calls and CPU usage patterns as described earlier,
can directly apply our ridge regression based energy model
(GreenOracle) as presented in Table 5 to estimate any An-
droid application’s energy consumption. The model for lasso
is also presented to observe if the role of any particular fea-
ture varies towards energy prediction. These final models are
developed using all the 24 applications with the tuned pa-
rameters after cross validation and exhaustive testing. En-
couragingly, in both the models the role of a particular fea-
ture is same (either positive or negative) with little difference
in scale.

It is important to mention that the negative coefficients
in the models do not necessarily indicate their role in sav-
ing energy. In spite of applying one of the best feature se-
lection techniques with highly correlated features, Elastic
Net, we observed some features with high correlation still
exists in our selected predictor set. For example, the system
calls sendto and recvfrom (system calls for socket commu-
nication) are highly correlated (with correlation coefficient
≈ 0.7), but none of them were deleted from the set even

Weight
Features LR LASSO Minimum Maximum

Offset 41.96 46.06 - -
User 45.22 53.89 272.11 6686.20

CTXT 31.70 38.28 28497.93 370208.43
Num threads -20.89 -36.33 10.00 43.60

Intr 22.86 5.95 16837.67 193892.90
Vsize -15.99 -16.71 477690265.60 637551820.80

Duration 84.95 88.60 42.00 200.00
recvfrom -25.56 -24.99 94.79 6932.20

Fsync 47.99 45.49 0.00 234.20
setsockopt 15.45 16.69 0.00 195.80

mkdir 18.41 16.54 0.00 48.30
futex -6.80 -6.01 910.70 148252.70
Write -9.57 -7.08 43.80 12338.00
sendto 41.81 25.90 8.00 580.20
unlink 18.71 39.78 0.00 60.40
Open 18.80 17.02 8.00 1153.44

Table 5: Model description: after normalizing the features
using the max and min, a developer can directly use the co-
efficients of the models to estimate the energy consumption
of a new application.



after applying recursive elimination. In fact, the accuracy
dropped significantly if we drop one of these features—to
a greater extent for sendto and lesser extent for recvfrom.
Models with such correlations are expected to have negative
coefficients. As the models are developed with normalized
feature values, maximum and minimum of all the features
are also presented to enable normalization for a new appli-
cation.

5. ARE THE MODELS USEFUL?
Considering the ridge regression model for example—with

mostly an upper-bound of 10% error and 13% in the worst
case—GreenOracle has two direct use cases: 1) developing
an automated system to enable energy-rated mobile applica-
tions; 2) finding energy bugs incurred by any code changes
in subsequent versions.

5.1 Energy-rated mobile applications
The concept of energy-rated mobile applications is yet to

be adopted in spite of its urgency among the users. This
is mostly due to the lack of tools and techniques required
for such automated systems. Chenlei et al. [46] observed
that significant reduction in energy consumption is possi-
ble when the users know how to select the most energy
efficient application from a pool of applications with sim-
ilar functionalities. The authors recommended the genesis
of Green Star : Software Application Energy Consumption
Ratings (SAECR). Johannes et al. [33] proposed an auto-
mated system where a new application is grouped with an
existing cluster based on their functionalities. The energy
consumption of the new application is measured and com-
pared against other applications within the same cluster.
The new application is then ranked based on its energy con-
sumption. This not only improves user experience in se-
lecting energy efficient applications, but also push the de-
velopers to consider energy efficiency in order to be com-
petitive in the market. Such a system, however, requires a
model which is able to estimate a new application’s energy
drains—a model with the capability of identifying different
applications’ energy consumption. In order to evaluate our
models for such scenarios, we selected four applications from
our training set that have very different energy requirement.
And then we compared the actual energy consumption of
these four applications (by picking a representative version
from each) with the predicted values from our models. Fig-
ure 2 confirms that all of our models, in fact, are able to
identify different applications’ energy consumption very ac-
curately; bagging with mean is omitted because of its very
similar performance to median. As the actual energy con-
sumption is the average of 10 different runs, the standard
deviation of the measurements are also depicted.

5.2 Identifying energy sensitive code changes
between subsequent versions

In continuous developments, the developers produce sub-
sequent versions of the same application. In terms of energy
efficiency, a simple code change can be colossal—both posi-
tively and negatively [38, 28]. The developers should be able
to know if the changes committed for the new versions are
going to cause more energy drains. This is where our en-
ergy models can be vital. The developers can use our mod-
els to estimate the energy consumption of the two versions
of interest. If the new version consume more energy than
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Figure 2: Models accuracy in segregating applications with
very different energy requirements. Our proposed energy
prediction approach is promising to enable energy-rated ap-
plications.

the previous one, the developers can simply investigate the
changes made in the new version to find the possible energy
bugs.

In order to be really useful for such scenarios, our models
have to be able to identify if the energy consumption of an
application has changed. For this evaluation, we selected
four applications for which we found versions with totally
different energy requirements than other versions. Figure
3 portrays the strength of our proposed approach in seg-
regating versions with different energy consumption of the
same application. In the 2048 Android game, we observed
two different energy patterns among all the versions: ver-
sions tended to consume either around 65 joules or around
52 joules. We selected two versions from each cluster ran-
domly and compared with our models’ predictions. Figure
3 (a) clearly shows the accuracy of the estimates produced
by all of our models. Similar observations can be made from
Figure 3 (b) for versions of Pinball. In case of Wikimedia,
all the versions have an energy consumption of around 166
joules, except two outliers with around 128 joules. Figure 3
(c) shows the efficacy of our proposed approach in separating
those two outliers from other Wikimedia versions—the first
Wikimedia versions in our dataset is used to represent oth-
ers. In case of Agram, an application to generate anagrams
with only three versions in our dataset, the later two ver-
sions have very similar energy drains, but are significantly
different than the first one. This is clearly reflected in our
prediction models in Figure 3 (d). These observations clearly
indicate the accuracy of our proposed models in identifying
significant changes in energy consumption between subse-
quent versions of applications.

It is useful to understand why some of the versions are
so different than others, in spite of their same functionality.
This, however, requires a thorough understanding of differ-
ent segments of the application’s source code to know how
different modules are connected. We selected Agram for this
part of analysis as the functionalities of this application are
simple, and thus the source code is easy to understand. Con-
sequently, we ask what significant changes were made from
version one to two in Agram, and how our models captured
those changes?
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(a) 2048 Android puzzle game
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(b) Pinball Android game
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(c) Wikimedia (Wikipedia for mobile)
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Figure 3: Models’ efficiency in differentiating versions with different energy consumption

Our models (ridge and lasso) suggest that the number of
CPU jiffies, the total number of context switches, and the
total number of interrupts have increased substantially for
the next two versions of the Agram test case. Table 5 con-
firms that these three features have positve coefficients and
thus any increase in these features contribute to more en-
ergy drains. Our first impression, especially for the changes
observed with the number of context switches and inter-
rupts, was that these changes should imply modification in
thread related code. In order to verify this, we used git
diff command to capture the code changes between version
one and two. We observed a significant changes between
these two versions, and the committed changes in fact sup-
port our hypothesis about thread related code. All the Java
methods related to generating anagrams have been changed
to synchronized methods. Figure 4 depicts such a synchro-
nized method that returns the list of anagrams using an
overloaded generate method. Interestingly, the efficiency of
Java’s synchronized methods have been castigated and re-

ported as very resource expensive in different programming
forum discussions [10, 40]. One commenter stated that lock
requires more system calls and context switches that induce
performance degradation [10]. This observation is encour-
aging as it clearly illustrates the effectiveness of our models
in detecting energy bugs between subsequent versions.

We conclude that GreenOracle is not only able to foretell
the changes in energy efficiency incurred by code changes,
but is also able to provide pointers to the newly introduced
energy buggy code.

6. DEVELOPER’S WORKFLOW TO ESTI-
MATE AND IMPROVE ENERGY CON-
SUMPTION

A developer can simply follow the following five steps to
estimate an Android application’s energy consumption in
joules without dealing with any hardware instrumentation:
1) develop a test case using Android unit test for example;
2) run the test case in parallel to strace and capture counts



public synchronized ArrayList<Str ing>
generate ( int n) {
. . .
return r e s u l t s ;

}

Figure 4: Agram synchronized method example

of different system calls; 3) run the test case to capture
information from /proc/stat and /proc/pid/stat file systems
to collect the CPU utilization and relevant information. In
case of /proc/stat, take the difference of before and after
the test case; 4) normalize the selected features as presented
in Table 5; and 5) use the ridge regression coefficients (i.e.,
GreenOracle) from Table 5 to estimate energy. After any
modification in the source code, the developer can again use
GreenOracle to check for energy consumption regression. In
case of a significant change, feedback from GreenOracle can
be used to locate possible energy bugs as we did for the
Agram application.

7. TOWARDS IMPROVING THE ACCURACY
OF OUR MODELS

Considering the average percent of error in predicting un-
seen application’s energy consumption, the performance of
bagging with ridge regression is very similar to the simple
ridge regression (Table 4). For some applications, however,
significant differences are observed. AndQuote and 24game
are of such examples. This implies that our energy model
with ridge regression was not yet completely stable; with
little changes in the training set—exclusion or inclusion of
some applications as occur in bagging—the coefficients can
vary slightly. This articulates the importance of collect-
ing more data to have an adamant and more robust energy
model. For further verification, we measured the accuracy of
ridge regression with an increasing number of applications in
the training set. Figure 5 shows the distribution of accuracy
for all of our Android applications with x number of appli-
cations in training. We observed that the accuracy varies
based on the selected applications used for training; some
of the applications cover more system calls than the others.
As a result, we ran each of the scenarios 10 times and cal-
culated the average percent of errors. In each run we select
x number of applications randomly for training and predict
the energy consumption of our application under test with
the produced model. We increased the number of applica-
tions (i.e., x) from 1 to 23 and observed how the accuracy
improved. With more applications in the training, the error
distribution dwindles consistently.

Does big-data matter? Yes, it does. Controlling for
the number of applications in training we can see that the
error rates for energy prediction drop almost monotonically.
This implies that we need to band together and collect mea-
surements for more applications to produce a better energy
model.

8. THREATS TO VALIDITY
Our application selection was manual and could introduce

bias. The test cases we developed only executed some of the
selected functionalities offered by the applications. With
more test cases, more application features can be tested and
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new system calls can be added to the training set. The map-
ping mechanism (resource count to energy consumption) can
be inaccurate although we ran each test 10 times to map
the averages (a total of 30 runs for a single data point).
External validity is harmed by the use of a single brand of
smart-phone with a single version of the operating system.

9. CONCLUSION AND FUTURE WORK
In this work we have presented an approach to model en-

ergy consumption that allows developers to estimate energy
consumption without having to measure the energy of their
own applications directly. The proposed GreenOracle model
follows a MSR/big-data approach whereby CPU usage and
system call counts of many applications under test are com-
bined in order to estimate the energy consumption (joules)
of an application under test. Through a thorough evalua-
tion we demonstrated that GreenOracle can estimate joules
mostly with less than 10% error, and the model can be dis-
tributed and run on unseen applications without hardware
instrumentation. We also observed that the model continues
to benefit from a variety of measured applications and tests
of these applications.

We conclude that CPU usage statistics and system call
counts are enough information to estimate the energy use
of a test-run of an application based on a model tuned and
trained on foreign applications.

Future work includes collecting more applications to cre-
ate a public/crowd-sourced repositories of applications, test-
cases, and traces in order to enable the creation of a truly
big-data based energy model. Our long run goal is to de-
velop an on-line energy model where an energy expensive
system call can be directly mapped to the source code to
enable bug fixing during the development phase [11].
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