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Abstract

Our present work endeavours to develop practical methods for implementing the Semiclassical Initial
Value Representation (SC-IVR) based on the propagator of Herman and Kluk in cases where a
reduction in the total number of degrees of freedom has been accomplished by applying holonomic
constraints. By freezing out selected high frequency motions, the semiclassical propagator becomes
less oscillatory, facilitating its evaluation, and integration of the classical equations of motion becomes
less computationally expensive. Although the idea of eliminating undesirable molecular motions is
certainly not new, it is usual to carry this out by going to some new coordinate of lower dimension
which naturally describes the motions of interest. It is our view that a simpler and more general
approach would be to remain in Cartesian coordinates throughout.

First, we show that our approach is theoretically justified for a simple model system consisting
of two particles in a one dimensional harmonic potential, connected by a rigid “bond”. Then, we
turn our attention to a simple molecular problem: a constrained “water-bender” with one effective
degree of freedom, namely, the bend mode. This problem was assessed using the standard methods
of quantum molecular dynamics, and the existing prescription for the application of SC-IVR to
constrained systems. It is shown that our new approach is quantitatively accurate vis-a-vis these

methods.
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Chapter 1

Introduction

1.1 The Theoretical Study of Molecules

Our understanding of a large class of natural phenomena lies in a molecular picture of some sort. This
picture, along with its associated terminology, usually derives directly from the theoretical model
used to rationalise experimental observations. Theoretical chemistry as a discipline has enjoyed
tremendous advances in the past decades in the details with which we can predict and explain the
properties of matter at the atomic and molecular level.

At this level, the description of matter leads to the many-body problem, a problem we can
not hope to solve analytically. Because efforts are therefore restricted to numerical methods, the
development of methodologies for the study of molecules has been linked to the development of the
digital computer. The recent advent of affordable large scale parallel computing from commodity
hardware (e.g. Beowulf clusters) has allowed theoretical chemists to tackle the simulation of systems
of much greater complexity than ever before possible.

This chapter begins with a molecular picture consisting of a set of charged point particles (the
electrons and the nuclei) whose motions are governed by the laws of quantum mechanics. By invoking
the Born-Oppenheimer approximation (see Section 1.2), we substantially reduce the complexity of
this picture. The electron problem is briefly outlined, and then set aside. Instead, we turn our
attention to the motions of the nuclei on some energy landscape. These motions can be addressed
with three levels of theory: classical mechanics (Section 1.3), quantum mechanics (Section 1.4), and
a hybrid of these two, the semiclassical methods (Section 1.5). Finally, in Section 1.6, we introduce
the concept of reducing the dimensionality of the model used to describe a particular molecular
system. These reduced dimensionality techniques are of extreme value to the theoretical chemist,

since they enable more complex systems to be addressed for a given computational cost.



1.2 The Born-Oppenheimer Approximation

The Born-Oppenheimer (BO) approximation, which allows for the separation of the electronic and
nuclear degrees of freedom, is one of the most important ideas in Chemistry. According to Struve {1,
without it, electronic and nuclear motions would be scrambled in complicated molecular Hamiltonians
and exstensive numerical calculations would be necessary to extract even the most qualitative features
of vibrational and rotational structure. The underlying idea is that the electrons bound to a molecule
travel so much faster than do the nuclei, that we may consider the nuclei to move in the field of the
averaged electronic charge density.

A brief summary begins with the molecular Hamiltonian, an object of fundamental importance
1

in molecular spectroscopy. For a molecule with ‘nuc’ atoms and ‘el’ electrons, the Hamiltonian is:

nuc

H = E““—'V +Zg—v2+zz4ﬂ'eo]rm——rn1

m=1n>m
el nuc nuc nuc '
ZymZn
S DD I s e R DD D : (11)
ot 471’60]1‘ RNI et 4dreg|Rar — Rl

The electronic and nuclear coordmates are r and R, respectively. The mass of nucleus NV is my,
and Zy is its charge. We have accounted for, in order, nuclear kinetic energy, electronic kinetic
energy, electronic repulsion, electron-nuclear attraction, and nuclear repulsion. The corresponding

time-independent Schrédinger equation (TISE) (2] is
H|®,(r,R)) = E,|T,(r,R)) . (1.2)

Neglecting nuclear motion (i.e. omitting the nuclear kinetic energy operator) leads us to the elec-

tronic Hamiltonian:

Z MV2 + Z Z 47r60trm —-rnl

m=1n>m

el nuc nuc nuc ZM ZN
+ , (1.3)
;IVZ): 47(6011‘ RNI qul AgM 47('60‘RM RNI

in which a particular (fixed) nuclear configuration enters only parametrically. The resulting electronic

problem,

Hu(r;R)) = en(R)|Yn(r; R)) , (1.4)
is overwhelmingly less difficult to solve. In principle, we could endeavour to solve (1.4) for all
possible R, and this would give the Born-Oppenheimer Potential Energy Surface (BO-PES), eo(R).

The global minimum on this surface indicates the equilibrium structure.

1Recall that our electrons and nuclei are taken as point charges, and all nuclear spin effects are neglected. Spin-
orbit coupling is ignored for the electrons, but antisymmetry (i.e. the Pauli Principle) is accounted for in order to get
proper electronic structure.



The study of electronic structure has commanded much attention in recent years owing to the
development of computer software which has made practical ab nitio calculations an accessible and
indispensable tool to Chemists of a variety of disciplines. This has been acknowledged with the
1998 Nobel Prize in Chemistry going to Kohn and Pople for their work on this problem. [3] How-
ever, many classes of physico-chemical phenomena are governed by the dynamics of the nuclei - both
within and between molecules - and these comprise the field of molecular dynamics. Examples which
are found as subjects of frequent theoretical investigation include vibronic spectroscopy, molecular
photodissociation, and the study of chemical reaction rates (i.e. kinetics). Processes are studied
in the gas phase (elastic, inelastic or reactive scattering problems, for example), in solution (trans-
port properties, fluid dynamics, docking of biomolecules, protein folding), and in the solid phase
(molecular crystal growth and fracture, plastic mechanical properties, defect formation). Equilib-
rium properties can be calculated using ensemble averages, and transport properties and spectra are
obtained from appropriate time correlation functions using linear response theory. {4, 5]

Although electronic structure programs support normal mode analysis, in which nuclear degrees
of freedom are investigated to harmonic approximation about the equilibrium structure, this is ade-
quate only for small amplitude oscillations. There is often the need to characterise broader regions
of the potential energy landscape, and the development of molecular potentials has for a long time
been an active area of research. These potentials can be carefully parameterised? analytical expres-
sions, defined over full configuration space, or can be calculated “on the fly” using the semiempirical
force fields of Molecular Mechanics (MM) or ab initio programs (Quantum Chemistry - Molecular
Dynamics, QCMD - presently a rapidly growing area of research).

With a PES in hand, it is now decided whether the nuclear dynamics are going to be calculated

according to the laws of classical or quantum mechanics.

1.3 Classical MD

Classical molecular dynamics (MD) is based on classical mechanics. From a particular set of initial
conditions (configuration, momenta) for a molecular system, one solves Newtons equation, ' = ma,
to obtain the corresponding trajectory. Historically, MD is what theoretical chemists first employed
for small systems in the context of reactive scattering. Because of the relatively small computational
cost associated with determining these trajectories, MD is routinely used today for large biological
systems, condensed phase reactions, and the study of materials, for example. Numerous method-
ological developments have been made in the past forty years [4, 6] and one of the objectives of the
research presented here is to develop a framework that would allow one to reuse this resource to

study quantum dynamics.

2Potentials can be parameterised to reproduce spectroscopic data, or the results of electronic structure calculations.



1.4 Quantum MD

Although it is true that for many systems it is only because we ask gquantum questions (such as
energy specific transition probabilities between two quantum states ) that we need to invoke quantum
mechanics at all [7), it is these laws which nature ultimately obeys. When quantum phenomena
such as coherence, tunneling, or the quantisation of bounded motion are significant, classical MD
is doomed to failure. Only quantum methods can address problems involving nonadiabatic elec-
tronic degrees of freedom (essential for certain problems in photochemistry), or be used to predict
the selection rules for transitions involving identical particle symmetry, for example. Quantum ef-
fects become especially significant for hydrogen atom motion, which is consequential for solvation,
hydrogen-bonding and proton transfer.

In quantum molecular dynamics (QMD), molecular motions are governed by the time-dependent

Schrodinger equation (TDSE):

maq:?(f{) = H¥(R), (1.5)
where, here our Hamiltonian accounts for nuclear motion:
Frnuc S
Arve = NZ=1 —MVN +V(R) . (1.6)

The potential term, V(R), is the BO-PES from Section 1.2.

In earlier years, Chemists tended to focus primarily on the energy form of the Schrédinger
equation, H%, = E,¥,, but this has since given way to some extent to the time-dependent version
due to the short-time nature of the “essential physics” of a number of problems. {8] Regardless
of which route is taken, the variational method is normally used, in which the Hamiltonian is
represented in some basis set. The computational effort lies in diagonalising the Hamiltonian matrix
and this procedure is susceptible to poor scaling: the size of the Hamiltonian matrix goes as n?
where N is the number of degrees of freedom and n is the number of basis functions used to represent
each of these (typically 10 - 20). Diagonalisation routines scale as the cube of this size. Presently, the
“state of the art” in QMD calculations involve models which are limited to fewer than 10 effective
degrees of freedom. [9] Therefore, new scalable approximate schemes are presently being sought.

These alternative schemes can be grouped into three categories. The first involves the use of
mixed quantum-classical models in which select degrees of freedom are subjected to QMD, while the
rest are handled classically. Although this is an intuitively simple strategy, it leads to inconsistencies,
especially at the boundary separating the two subsystems. In effective potential methods, classical-
like equations of motion are solved, but the force is derived from a potential which has been modified
to accommodate quantum effects. This thesis is concerned with the third class, in which all degrees

of freedom are treated semiclassically (i.e. on the same footing).



1.5 Semiclassical Methods

Semiclassical methods are characterised by their use of classical trajectories in order to obtain
quantum information about a system. This feature has immediate appeal: an intuitively classical
quality is preserved' which facilitates physical interpretation of the results. Development of these
methods experienced a dramatic revival in the early 1970’s, and they have since been demonstrated
to capture quantum effects such as tunneling, quantum coherence, and zero point energy, at least
qualitatively.

The origins of these methods can be traced back to Dirac and the correspondence principle. In
his book [10], Dirac demonstrated that the Hamilton-Jacobi equations of classical dynamics could be
recovered from the Schrddinger equation in the limit / — 0 (this is presented in Section 2.3). On a
historical note, this line of reasoning inspired Feynmann to develop his path integral formulation of
quantum mechanics [11], a paradigm from which the various semiclassical schemes are most naturally
derived.

As with pure quantum dynamics, of central importance in various semiclassical schemes is Green’s
function, which determines the amplitude connecting coordinate space at two distinct times. Green’s
function is a propagator - that is, it directs the evolution of some arbitrary wavefunction, ¥, from one
time to another under the influence of the Hamiltonian (this is discussed in more detail in Section
2.1). Modern semiclassical methods endeavour to provide an approximate form for the quantum
Green’s function. The archetype for the semiclassical propagator is due to Van Vleck [12] (see
Section 2.5). Because it is difficult to implement, save for a couple of exceptions, it is not used
directly. The chief difficulties with it arise from the notorious root-search problem, in which all
possible classical trajectories connecting two points in coordinate-space by a certain time-interval
must be located. Computationally practical semiclassical propagators side-step this problem by
going to an nitial-value representation (IVR) [8, 13, 14], a change of variables whereby final-time
position is exchanged for initial-time momentum. The propagator used in this thesis is the initial-
value version of the Herman-Kluk (HK) propagator (HK-IVR). [15, 16, 17, 18, 19, 20]

The genealogy of the HK-IVR begins with a paper by Heller [7], in which he identified a novel
approach to semiclassical dynamics based on Gaussian wavepackets (GWP - this is presented in
Section 2.6.1).[7] A specific GWP form of the wavefunction (ansatz) is imposed, defined by four time-
dependent parameters. These parameters define the centre of the wavepacket, and its associated
momentum, the width of the wavepacket and its phase. Expanding the potential to second order, he
found analytic expressions for the time-evolution of these four parameters (according to the TDSE),
and discovered that the centre of the GWP follows a classical trajectory. Later, Heller discovered that

even if the width parameter is fixed to some constant value, the wavepackets perform surprisingly



well (see Section 2.6.2).[21] Even the evolution of position-momentum correlation is captured at least
qualitatively by a “swarm” of these frozen Gaussians (FG) about some central trajectory. Using
the so-called frozen Gaussian approzimation (FGA), in which an overcomplete set of FG’s is used
as a representation, the HK-IVR propagator was born. This propagator has since received the lion’s
share of recent attention (see Section 2.7).

Papers continue to appear which are devoted to the efficient evaluation of individual parts of the
HK-IVR integral [22, 23}, and a number of conditioning techniques have been developed to facilitate
its integration.[24, 25, 26]

1.6 Reduced Dimensionality Techniques

No matter how efficient emerging semiclassical propagators become, there will always be a desire to
tackle problems which are beyond feasible size limits. The simplest and most straightforward way
to substantially reduce the computational effort required for a particular problem is to reduce the
complexity of the model used to describe it.® The dimensionality of a model is reduced according
to the timescale of the motions which are of principal interest. By eliminating undesirable modes,
complex molecular motions can be effectively described by a reduced number of coordinates.

The principle, like that of the BO approximation, is that motions of different timescales couple
only weakly to each other. Eliminating undesirable, high frequency modes (by fixing them to mean
values) greatly facilitates calculation: larger timesteps may be taken when integrating the classical
equations of motion, thereby allowing longer simulations for a given amount of CPU time.

Traditionally, this procedure involves first finding and changing to a new coordinate of lower
dimension which naturally describes the motion of interest. For any system more complicated than,
say butane, defining this new coordinate (and its derivatives) is either nontrivial or not feasible.
Furthermore, if this new coordinate is curvilinear, an ordering problem arises in the kinetic energy
operator. According to Schulman [27], of you like excitement, conflict, and controversy, especially
when nothing very serious is at stake, then you will love the history of quantisation on curved spaces.

Forthcoming studies employing the HK-IVR are at the level of complexity where implementing
the traditional procedure is becoming increasingly difficult. ‘Therefore, the potential value of an
alternate, more general way of reducing the dimensionality of a problem is becoming increasingly
apparent. We would hope for such a method to be easy to implement and general. A desire
for generality is keeping with the spirit of potentially integrating this method with existing MD
codes. Also, we hope that, even if this method has a higher associated computational cost than the

alternatives, that it at least scales as well with the effective number of degrees of freedom.

30f course 1 do not mean to imply that the development of new models by theorists is trivial. For my purposes,
it is enough that countless models have been cataloged, and so to make use of them, or to introduce holonomic bond
constraints, is straightforward.



In this work, we propose a novel method which meets the above criteria. It evolved from the
viewpoint that things would be much simpler if calculations remained in Cartesian coordinates
with the reduction in dimension being accomplished through the application of holonomic (bond)

constraints.



Chapter 2

Theory and Methods

This section begins with a discussion of the importance and utility of the quantum mechanical prop-
agator and then proceeds to briefly outline what it means to seek a classical limit in QM. This follows
with a summary of some important features of a few of the more fundamental semiclassical schemes.
This is intended to be a survey of the historical development for the framework of semiclassical
theory which is relevant to the Herman-Kluk initial-value representation.

1 should emphasise that the semiclassical propagator is the central entity in this thesis. It is
what we evaluate in order to obtain results which may be compared with experiment or exact
quantum calculations. I conclude with a justification for the precise form of the HK-IVR and a brief

description of the computational approach employed here.

2.1 The Importance of the Propagator in Quantum MD

The fundamental question of quantum dynamics is: “how does a state ket change in time?” To
address this question, let us define an operator, K (ta,t1), which will take a ket at time, ¢, and
transform it into the corresponding ket some time later, 3 > 1, as it evolves under the influence of

the Hamiltonian, (Equation (1.6)),
[T (ts)) = K (ta, )| ¥ (t1)) - (2.1)

We want to ensure that K is unitary, since we want it to preserve the norm of our state (i.e. preserve
probability), and we know that a wavefunction evolves in time according to the TDSE (Equation
1.5). [2]

Before we proceed, let us ask a simpler question: how does a stationary state (an eigenstate of

the Hamiltonian) evolve in time? This is worked out easily enough:

zh%ln) = Hin) = E.ln) .



Now we just need to solve a separable ordinary differential equation

mfn@) = ~2rtyo
() = eEH/neC
In(0)) = €
@)y = e ERn(0) (2.2)

This is not surprising. The term, stationary state alludes to the fact that there is no time dependence
in an arbitrary observable calculated for these states (the phase terms cancel). If we are not in a

stationary state, we are left with an operator in an exponent
K(t,0) = e~Ht/H (2.3)

Exponentiating an operator properly is an important problem in quantum dynamics - there is no
simple solution which does not involve first solving an eigenvalue problem. The best we can do at

this point is decompose our state ket in terms of the stationary states:
1) =" Injea (2.4)
n

which leads us to

[T@) = Inyene™ Fot/R (2.5)

This is not terribly useful, however, since it presupposes that we have already solved the TISE,
Hln) = Ep|n).
Potential utility aside, Equation (2.3) does provide us with our starting point for further discus-

sion of the propagator. We begin by taking it in the coordinate representation:

It

Tx) = (K[ED)
(x'e~ /1% (0))
/ dae( e /M) (x] ¥ (0))

' /det(x',x)\Ilo(x) . (2.6)

I

il

]

On the second last line, we have inserted a complete set of position states (1 = [ dx|x)(x|). This
coordinate representation of K is usually called the “kernel of the propagator”, however in this

thesis, to lighten the language we will simply call it the propagator,

KM (x!,x) = (x|e /M x) . 2.7)



We will use it as the starting point for developing much of the forthcoming theory in the next
chapter.

To summarise, Equation (2.7) gives the QM amplitude of a transition from a point x to x’ in
time, t. What makes it so fundamental is that it can be used to transform a wavefunction [¥g) to
|¥,). Computing the time-dependence of a wavefunction is equivalent to solving the TDSE, and

therefore, once the propagator is known, solving for any observable of the system is trivial.
Other uses for the propagator

The imaginary time version of the propagator (t — —ifif) is an important quantity in statistical
mechanics as it represents the equilibrium density operator. In turn, the trace of this operator yields

the central quantity of statistical mechanics, the partition function, which is defined as:

Z=Tre " (2.8)

where (3 is related to the temperature as g = k—;'T [28] The density operator is also be used to

calculate the ensemble average for a given observable, represented by the operator, O:
. 1 o
©O)=3Tr e PH O | (2.9)

This expression can be extended to the treatment of dynamical quantities through the use of time
correlation functions:

(OO) = —;— Tr e=PH O (1) (2.10)
where O(t) is the Heisenberg representation of O, and is given by:
O(t) = et/ § g=iflt/h (2.11)

Here, we have made use of the real time version of the propagator. By invoking the fluctuation-
dissipation theorem, which connects the spontaneous fluctuations of a system to its relaxation fol-
lowing a perturbation, one can use time correlation functions to study the various transport and
spectral properties. For instance, the velocity-velocity correlation function can be connected to the

diffusion coefficient (D) of a particular particle in a gas or a liquid:

D x /t dt' (% 9(t")) (2.12)
0

and similarly, the dipole-dipole correlation can be connected to the infra-red absorption spectrum.[5]

2.2 The Classical Limit of Quantum Mechanics

A fundamental question of quantum mechanics is: “which conditions must be met so that classical

concepts may be assumed to apply?” The set of these conditions is referred to as the classical

10



limit of quantum mechanics. - We should clarify an issue here: quantum mechanics assumes that
classical mechanics is correct. That is, quantum mechanics proceeds by constructing the Hamiltonian
operator from classical energy considerations and then replacing Poisson brackets with commutators,
etc. Even the path integral approach assumes that the classical expression for the action is correct.
In this sense, we do not hope to derive the classical laws of motion as a limiting case of gquantum
mechanics, even though quantum mechanics is more fundamental.

Three limits are commonly considered: (1) vanishing Planck’s constant (fi — 0), (2) high energy
/ quantum number (n — 00), and (3) short de Broglie wavelength / large mass (m — 00). In this
thesis, we focus our attention on the first limit. A comment: /i is not necessarily small; its value
depends on the system of units being used. Instead it is important only that it be negligibly small
when compared to other quantities of the same dimension (e.g. action). In the following sections,

we will present some of the most fundamental and important of these semiclassical schemes.

2.3 Dirac’s “Crude” Semiclassical Approximation

I present Dirac’s semiclassical approximation (as it appears in his famous book, {10]) not only because
it was one of the first to appear, but also because it offers qualitative physical arguments.

By casting the wavefunction in polar form, Dirac examined how this so-called wavepacket varied
in time, according to the TDSE. For any dynamical system with a classical analogue, a state for
which the classical description is valid as an approzimation is represented in quantum mechanics by
a wave packet.[10] The hope is to find some classical-like equations of motion corresponding to the
centre of the wavepacket. Of course, the accuracy in our knowledge of the coordinates and momenta
of this point are limited by Heisenberg’s Uncertainty. Principle.

For simplicity, we consider the one-dimensional case, taking the (time-dependent) wavefunction
as

¥(z, t) = Az, £)elS@H/M (2.13)

where A(z,t) and S(z,t) are real functions of position and time. Inserting into the TDSE with the

Hamiltonian,
HA_-~——2———2+[/33 2.14
2 8 2 ( ) 7 ( - )
we obtain
, 0A ) —iS/h f ,i5/h
AT ¢ . 2.1
ih En A 5 e He™/"A (2.15)

Dirac notices that e=*5/®HeiS/? is a unitary transformation with

e—iS/hzeiS/h 4 (2.16)
) . as
emiSIMpeiS/h g - (2.17)
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The first expression holds since # and e~ 5/ commute in the coordinate representation. The second

follows from

e—iS/ﬁﬁeiS/h‘f) — e—iS/h (__,Lh(_aa;) eiS/hlf)

L {108 O
—ili (5—6—5 + '5:;) 1f)

il

as
- ('a'i + p) 1 . 2.18)
Therefore,
eTSIMH (p, 3)e"S/ M = H (%g + b, 7). (2.19)
With this, (2.15) becomes
L O0A 8s .08

We now take the classical limit % — 0. The vanishing terms of Equation (2.20) are iidA/8t and
p = —ihd/0z, leaving us with a partial differential equation for the phase of the wavepacket (we
have divided A(z,t) out):

' .88 a8
0 = H(’a—x‘,z)'*“é‘i‘

1 [0S\? 3s
= '2?5('6’2) +V(@) + 57 - (2.21)

Equation (2.21) exactly resembles the Hamilton-Jacobi equation in classical mechanics [29] where

S(z,t) is the classical action:!

S(z,t) = /Ot dt'{pt'it' - H(Pt',l't')} . (2.22)

What remains now is to find an equation for the amplitude of our wavepacket, A(z,t). To do this,
we consider a generic Hermitian operator, f (z). We go to Dirac’s notation and multiply Equation

(2.20) by (A|f]:

.. OA as, 2n 08
(AflinSs — A% = (AIFAGE +po)l4) - (2:23)
Taking the transpose of each side, we obtain
., 0A 08 ;o . 88 N
(—inS — A IFIA) = (A (G + P ) flA) (2.24)
Subtracting (2.24) from (2.23) gives
an OA PPN
(Alff2ihzr) = (AlfH - Hf|A)
~0A 1 frn ~a
NAfI1Z) = (Al (FH - BF)14)

i

o) = A{h i, (225)

LThe notation used here may be ambiguous: It should clarify things to indicate that S is a functional of the
time-dependent variables, ps and z¢, which depend explicitly on time and parametrically on the boundary conditions,
xo and x (final position, as it appears on the left-hand-side of the equation).
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where { fH } denotes a Poisson Bracket (PB). [29] To evaluate this PB, we take advantage of the

fact that h will be considered small, so that we may expand H about p = %% for small 6p
. N as
~ _ (%) .
H(p’:c)lﬁ:%zi Z k‘H ( ( (93:)
N 8 as
A5+ 55 [06:2)], ( %)

Q

. 08 1 BS . 08
Therefore
.~ 85 Y 185 (. .y 108
{f»H(p+ 5—:;9:1:)} ~ {f’H(é—;’I)}—i—Raz {f’p} m@:c {f’ }
1 as (. .
= m 5(17 {f’p} ’ (2'27)

since functions of z commute with f. We now use the definition of a PB in 1D [10] to evaluate the
final PB:

.\ _0fop ofop _of
{f’ } 8z Bp —51;5; oz (2.28)
So we have 4
0 _ 108S9f
Sirn (4%)) = (Al 5 A)
(A 23f 9 H(p ) Q_s_) ) (2.29)
Next, we exploit a property of the derivatives of brackets,
L@@ = @ @) + @@l E) = 0
SAa(z (z)) = —{a'(x)b(x)) , (2.30)
to finally arrive at
Gy = w2, )
=%
.0
= g (4) 5B .0) )
= —(f 32 ( —H(p,z) o %§>)
8 o 0 (20 .
5 @A) = -5 <A2 gy ) - (2.31)

The second last step is made by observing that
é]
s (Zago
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and the last step holds since f(z) is an arbitrary (and Hermitian) function of z. Equation (2.31)
also resembles a classical equation: it is just the equation of conservation for a fluid with density,
A?, at position, z, and time, . Taking the velocity of the fluid to be

ox d .
Te=2a60| . (252)

~ 08
P=3z

the dynamics of the fluid can be found by solving
S
H (g—x,:a) %—f =0,

where H is the classical Hamiltonian. Next, we turn our attention to the validity of this semiclassical
limit. We would like to localise our ‘fluid’ so that the density (4?) vanishes outside some small region;
the size of this region being restricted by the Uncertainty Principle. Dropping the terms with A of
orders of 2 or greater is justified if [10]

1 90

Alz,t) Oz

That is, the localised region must contain a large number of wavelengths of ¥(z,t) in order for the

10

approximation to be valid.
Finally, if we take S(z,t) to be the action evaluated along some classical trajectory, i.e. so that

as
then
o _ 205
ot — Otoz
RL)
Oz Ot
0
= - . 2.3
o= (H(p,) (2.35)
This result, taken with (2.32) are just Hamilton’s classical equations of motion. Therefore, so long

as (2.33) holds, we observe classical mechanics as a limiting case of quantum mechanics.

2.4 The WKB Semiclassical Approximation

As seen in Section 2.3, wave mechanics and the Hamilton-Jacobi (HJ) formalism of classical mechan-
ics seem to be intimately related. This is no surprise: Schrédinger was guided by the HJ equation
when he formulated his wave equation. Here, a semiclassical approximation is shown, due to Wigner,
Kramers, and Brillouin (WKB) [30], which follows naturally from HJ theory. The WKB approxi-
mation is also one of the earliest? and most fundamental of the semiclassical approximations, and

is very successful in integrable problems with a separable Hamiltonian. [31]

2¢.a. 1926.
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The basic idea is that reflection, or scattering, of a particle occurs in regions where the potential
varies sharply. Because reflection leads to quantum interference, a semiclassical regime can be
proposed for systems in which the potential is comparatively smooth.

Again, the 1D case is considered for simplicity, and we restrict ourselves to stationary states with
positive kinetic energy (i.e. E > V). We take the (time-independent) wavefunction to be of the
form®

P(z) = e?@V/h (2.36)
and we assume that the phase term, ¢(x), can be expanded in powers of i (hoping, of course, that

this series will converge):
$(x) = do(@) + hig1(z) + K ¢a(z) + -+ . (2.37)

As in Section 2.3, we consider only up to single powers of k, and insert the resulting wavefunction

into the TISE. Collecting like powers of A, we obtain

0 = R4 -idi@)
+ R{20h(2)é (@) - idf (@)
+ (¢(,(x)2+2m(V(m)——E)). (2.38)

Assuming that all dependence on 7 is explicit, each of these terms will be 0. Starting with the B

term, we arrive at an expression for ¢p(z):
#(z)? = 2m(E - V(z))

oodo(z) = :i:/w dz'/2m(E — V(z')) . (2.39)

0

Using this result, we proceed to solve the /' term for ¢y (z):

o i@
hia = §(¢Z<x>)

i mV'(x)

1
’_2<—V%ME-W@J(V%ME—WﬂJ

_imV'(2) 1
T T 2m(E - V(z))

Lod(z) = iln[Qm(E~V(x))]. (2.40)

Before combining Equations (2.39) and (2.40) to form the WKB wavefunction, we look at the

condition to ignore the A% term in our expansion: [30]

mhV'(z)|
[2m(E - V()]

3We may leave out the amplitude term, since we are not requiring that our phase be real, anymore.
Y p q g

1. (2.41)
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Here, we are comparing the de Broglie wavelength,

A= h (2.42)

V2m(E -V (z))

to the “smoothness” of the potential

27h?
B = :
< V@) (2.43)
Or, to express this limit in a different way, we notice that
dA mhV'(z)
— . 2.44
dz = [2m(E - V(z))]3/? (2.44)
Comparing this with (2.41), we alternatively say that the WKB approximation is valid when
dA

This condition is met provided that V (z) varies slowly with respect to z, or if | E — V(z)| is not too
small.

We now construct our WKB wavefunction, using our approximation for ¢(x):

I

py K5 ()

exp { £ [onle) + 1)}
exp {i% / da'\/Zm(E = V(a;’))}

0
1
4}

jom(E - V(a:))l_%exp {i% /m : da'/Im(E = V(x’))} . (2.46)

i

X exp{ln‘Qm(E - V(%))

Because we obtained (2.46) from the TISE, it is an approximation to a stationary state. Therefore,
including time dependence involves only including the (trivial) phase factor, exp(—iEt/h), where E
is the (conserved) energy of the trajectory. So, our final expression for the time-dependent WKB
wavefunction is:
—1 N T .
YWEB(z 1) = |om(E - V(a:))l ! exp {ﬂ:% / dr'\/2m(E — V(a)) — %Et} . (2.47)
o9

Now, comparing this to Dirac’s result (which uses the same level of approximation), we propose that

the phase is calculated as the action, S(x,t), along the classical trajectory, where

i
S{z,t) = /dt'{pt/a';t:~—E}
0

/: dz'p(z’) — /Ot dt'E . (2.48)

]

I

Noticing that the classical expression for momentum is
p(z) = V2m(E -V (z)) ,
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we observe that

—1
P EB (g, t) = 2m(E - V(z))| €=M (2.49)

where P} X5 (z,¢) is called the “classical wavefunction”. Tt satisfies the classical equations of motion
exactly, and the quantum equations of motion approximately. Again, the approximation holds so
long as the potential varies smoothly with z. This is not a universal criterion for obtaining the
semiclassical limit: the WKB conditions are not always sufficient, nor are they exclusive. For
example, scattering problems involving sharp potentials will never satisfy the WKB conditions for

approximation. Therefore, other schemes are necessary for certain scenarios.

2.5 The Van Vleck Propagator

Here, I will present the first semiclassical expression for the propagator, (2.7); an expression which
Van Vleck provided as early as 1928. [12] It is widely considered to be the most fundamental
semiclassical propagator, and is generally used as a starting point when more advanced forms are
proposed (as is the case for the HK-IVR).

Van Vleck arrived at this propagator after considering a classical form which satisfied the TDSE
in the limit & — 0. More recent and more rigorous derivations are available [32], but are beyond the
scope of this thesis. (Certainly, Van Vleck’s original paper is far too arcane for me to decipher - so

the “quasi-derivation” that follows was taken from [31]).

2.5.1 Quasi-derivation of the Van Vleck propagator
Here, I present a justification for the form of the Van Vleck propagator, taking the N-dimensional

free particle as an instructive example. We begin with the exact propagator for this model system:

PPy 1 — I — it 2
KFP (30 = (<o T ) ) (2.50)

Inserting a complete set of (N-dimensional) momentum states allows us to evaluate the operator by

plp) = plp):
KFPWx) = [ apteless (=5 ) In) oo
/ dp exp (—Q%L-p?) x'Ip)(plx) - (251)

il

Using the definition of the overlaps above:

(xip) = (;};ﬁ)m exp (f—ipx) , (252)
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leads us to a multidimensional Gaussian integral which we evaluate analytically (see Appendix A)
N ) ,

1 it 2 1 ,

(m> /dpeXp[ (2ﬁm> P ] exp [h (p-x'-p X)}
N , .

- (L Y N W S
= () [orew|-(g) o+ =)
_ (1 N rontm\ N2 . i 2 (x' —x)? (2hm
= \2mh it Rl AV 4 it

m \N/2 irm, 2
()" £ [ 7]} o

Since we might expect an action term to appear somewhere in the propagator, we shall work out

K" (', %)

Il

1l

an expression for the action of a free particle. Noticing that a free particle’s momentum is constant

x t
/ dx'p ~ / dt'E
Xg 0

peGe-x0) -~ (5 ) PP (2.54)

and that potential energy is zero,

St(X)

i

Because momentum is constant, we may replace it with

-
p - At b
to arrive at
Ax 1 Ax\?
o m W2
YN
Therefore,
Sy(x',x) = g%(x' — x)? (2.55)

is the classical action calculated along a trajectory which connects points x and x' in time, ¢. This
is precisely what appears in (2.53), the way we have suggestively written it. Now, we turn our

attention to second derivatives of this action term,

P (x', x) _ _{9_ _”_’f_‘?__ x’—x)Z]
ox'ox ] ~ Oz} |2t Og;
m
= 55 [2(z] — z;)(-1)]

- (D Oz;

- (_T_> 8ij - (2.56)
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In a leap of faith, we propose that the determinant of this matrix will enter into our expression for
the propagator. It is evaluated easily enough as the product of diagonal elements (our matrix is
diagonal due to the d;; term)
2 !
o (5822) - (2)"
Now, by inspection of Equations (2.53),(2.55) and (2.57), we propose the following general form for
the propagator:

1\ V2 88, \1** i
Ki(x',x) = (m) {det (—— 6x’6x>] exp [ﬁSt(x’,x)] . (2.58)

Van Vleck obtained (2.58) using rigorous and outmoded methods in asymptotic analysis, in an effort
to connect classical mechanics to the early transformation theory of Dirac [33] and Jordan [34] in the
limit A — 0. As mentioned earlier, Gutzwiller re-derived this result using Feynman path integrals
and the stationary-phase approzimation. This approximation is presented in Appendix B since it
is used later to arrive at the HK-IVR. The underlying principle is simple enough, though. The
phase term, exp(iS/Hh), causes the integrand to be highly oscillatory (when S >> h). Therefore,
integration should mostly cancel (positive areas match with a corresponding negative area). The
main contribution to the overall integral will occur in places where the phase is stationary, i.e.
where §5 = 0. By Hamilton’s variational principal, this region of stationary phase corresponds to
the classical trajectory. So, we just need to evaluate the integral along a classical path and we may
use steepest descent [35] for the region in the immediate vicinity of this path. This prescription
leads to “Fresnel integrals”, which have discrete phase changes which occur at the conjugate points:
points where the determinant goes to infinity or through zero. This phase change was determined
to be (—mv/2), where the so-called Maslov index, v, keeps track of the number of conjugate points

encountered along a trajectory. So we would like to define a subtlety in our notation®,

2 1/2 2 .
[det (—-%H = 4/det (— 6i,§;>e_’””/2 ) (2.59)

and propose

, 1\ M2 928, P '
Ki(x',x)= (27rih> det (_—Bx’—atx> exp [%St(x ,X) — Z—gi] . (2.60)

Since there is not necessarily a unique solution to the equations of motion when solved as a boundary-

value problem, we must sum over all possible trajectories.

KV, x) = 1 N/QZ det _05 e -i—S(x'x)—iv—ﬂ— (2.61)
¢ OX = omn ; ¢ ox'ox ) TP | 2 " ’

raj.

4_011 the right-hand side, we take the positive root always; the correct branch is determined by the phase term
(e——w‘lr/Z - ﬂ‘:l)
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This is our final result; the nature of the determinant here will be discussed in more detail in Section
2.7.

Save for a few exceptions, (2.61) is not normally used directly. Two main factors are usually
identified as the prime culprits for prohibiting direct evaluation. First is the root search problem.
Since the roots of the classical equations of motion (when phrased as a boundary-value problem)
are multiple, in general, we must conduct a search for all such roots where 9;(x’) is significant.
Especially at long times, the number of these roots can become quite large.

The second drawback is that (2.61) is not valid at the conjugate points (also called caustics). At
these points, the propagator becomes undefined. Therefore, motivation exists for alternate schemes
which are capable of bypassing these problems. Such schemes are found with the initial-value

methods.

2.6 Heller’s Gaussian Wavepackets

Here, we present the development of certain semiclassical methods based on Gaussian wavepackets
(GWP). All of the GWP’s encountered in this thesis are commonly called coherent states in the
literature. This term originally arose with reference to optical coherence (in lasers, for example),
but now is used to describe any state which minimises the uncertainty relation for the harmonic
oscillator. Tt turns out that such states are also eigenfunctions of the annihilation operator, a [2],
and this is often used as au alternative definition.

Between the appearance of Dirac’s mysterious remark concerning wavepackets as a classical ana-
logue (see Section 2.3) and the early 1970’s, a large literature on semiclassical dynamics accumulated
employing the principal of expansion in A. In 1975, a paper by Heller [7] appeared, in which he set
out to ezamine an olternative avenue of approach to the semiclassical limit of quantum mechan-
ics. The approzimations involved in the theory presented below differ significantly from those of
the semiclassical techniques mentioned above. It is hoped that the present theory will provide an
alternative framework which may be valid in certain regimes which are complementary to existing
techniques. This “avenue”, discussed in Section 2.6.1, led, in 1981, to his frozen Gaussian approzi-
mation® (FGA). [21] In Section 2.6.2, we introduce the FGA and use it to arrive at our first initial
value representation for the propagator. Again, the most appealing feature of the initial value meth-
ods is the evasion of the root-search problem and difficulties at caustics encountered with the Van
Vleck propagator. It is also interesting that the appearance of these papers was accompanied by a

dramatic revival of interest in the semiclassical methods.

5By “frozen”, we mean that the width of the wavepacket is prevented from changing. In this context, GWP’s used
prior to the FGA are commonly called thawed Gaussians.
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2.6.1 Dynamics with “thawed” Gaussians

Heller {7] begins with Dirac’s derivation for the semiclassical amplitude and phase of the wavefunction
and points out that for a harmonic oscillator, these equations are valid regardless of how big or small
h is. Tt is here that he breaks with the usual line of reasoning in order to investigate the dynamics
of Gaussian wavefunctions in harmonic potentials.

Gaussian wavepackets evolving in a harmonic potential stay Gaussian, and undergo periodic
motion with (p) and (z) following a classical trajectory and its width “refocusing” to the same value
once per period. The motion of the centre of the wavepacket follows from Ehrenfest’s Theorem

which states that

dlp) _ _9H((p), (=)

e ) +C, (2.62)
where C is an error term . 1
c~a|ZV (QK , (263)
O3 \ Oz a=(z)

and d is the diameter of the wavepacket. Notice that the error is zero when there is no anharmonicity
in the potential. The idea for his semiclassical approximation is this: aslong as a GWP is sufficiently
localised so that it can be considered to “feel” only up to quadratic terms of the potential, then it
will stay Gaussian. Therefore we can hope to find analytic expressions for the time-evolution of the
various parameters which define the GWP.
So, Heller’s reasoning begins with the selection of a convenient form (ansatz) for the GWP in
one dimension, '
(z,t) = exp {—Zﬁ [au(z ~ z6)? +pe(z — 24) + 'yt]} , (2.64)
where z; and p; are the position and momentum associated with the centre of the GWP, and oy
and 7; are the time-dependent width and phase parameters, respectively. This form is “convenient”

since it can be verified that
Py = pt
(Z)y = =¢. (2.65)

Now, the principal approximation involved in this method is to replace the potential in the

Hamiltonian with an approximate potential which is harmonic everywhere:

- n? 5?
i v’ Ly 2 2.66
“%@ + V(zy) + Vi(z)(z — ) + "2‘ (z)(z —z)° . (2.66)
Inserting (2.64) and (2.66) into the TDSE (Equation (1.5)), we obtain
[—ae](w — z:)? (2o} +3V"(@)](z — z:)?
+[20d¢ — De)(z — z¢) Pz, t) = +[;,21—atpt + ‘V’(Ict)K:L' —xz) iz, i) . (2.67)
Hpede — ) +[V(z:) — Loy + 5507
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Comparing like powers of {z — z;) leads to three equations:

. 2 1
&y = —aa? e §V"(ﬁl‘7t) (268)
. 2
2% — Py = —oupt + V(z) (2.69)
. . ih 1
P =Y = Vizg) - ot %Pf . (2.70)
Equation (2.69) suggests that we should define
. OH 1
Ty = B . = P (2.71)
OH ,
poo= —om| = —V'(m). (2.72)
0% |y,

Noticing (in Equation (2.70)) that H(ps, ;) = p;/2m~+V(z:) = E is a conserved quantity, we arrive
at differential equations specifying the time-dependence of the other two quantities parameterising

our wavepacket:

, 2 1.,

Qpy = —-———-Ot? — §V’ (ﬂ?t) (273)
Y = pydy P e — B (2.74
Y= Pt . .74)

In principle, we are done. All we need to do for arbitrary potentials in one dimension is integrate
Equations (2.73) and (2.74) as our wavepacket executes its classical motion. Given the simplicity
of this method, it works surprisingly well. Although Heller provides an analogous recipe for two-
dimensional wavepackets, it is not easy to generalise to problems of increased dimensionality. Still

it is perhaps the most intuitive of the semiclassical approaches outlined so far.

2.6.2 The frozen Gaussian approximation

In the time after the appearance of the “thawed” GWP paper, subsequent research demonstrated
that rather astoundingly, quantitative agreement between ezact and semiclassical wave functions can
be obtained by surrounding the point -like classical trajectories conventionally used to semiclassically
quantise a given potential by a rigid or “frozen” Gaussian wavepacket.[21] Although it is true that
the width of a GWP distorts as it travels and furthermore, for anharmonic potentials, it won’t even
remain Gaussian, it was proven that a Fourier transformed frozen Gaussian is an eigenfunction of an
arbitrary system in the limit ki — 0. Freezing the width parameter frees us from integrating (2.73).
Furthermore, guided by (2.61), and recognising the similarity between (2.74) and the expression for
classical action, (2.22), we anticipate that we might be able to avoid integrating (2.74), too. If we
could, then all that would remain would be the computation of classical trajectories.

Suppose we expand our initial wavefunction in a set of frozen GWP’s,

[0} = Y 19%piq)Cn » (2.75)

22



where the coefficients, ¢,, define the phase and amplitude of each wavepacket. The form of the

wavepackets has been modified slightly compared to (2.64):

{7 N/4 7 2, ¢
(zl97pia:) = (;) exp [-5(16 = @ni)” + 7Pail® — dai) | - (2.76)
Notice that the width has been redefined (y = —%0y) and it is assumed to be real and positive. Now,

the time dependence of our wavefunction is made by the so-called Frozen Gaussian Approzrimation:

W) = D e Mg en
FgA Ze'i‘irnt/hlgzptqt)cn ’ (2.77)
where
ry N/4 fy 9 i
@otpa) = (1) op |30~ 0+ fpulo— 00 (278)
t
Lpe = / dt’{pnt’ént’ "(E)nt} (279)
0
(E)ni = <g71ptq¢!ﬁiggptqt> . (280)

Again, the potential has been approximated as Equation (2.66). Notice how closely I';;; now resem-
bles a classical action, (2.22). Also, it should be noted that the subscripts on the wavepacket have
been changed to indicate that its centre follows a classical trajectory.

Heller proceeds to test the FG method by computing a semiclassical vibronic absorption spectrum
for a Henon-Heiles potential [21] and reports surprisingly good agreement with the corresponding
quantum mechanical results. The error observed was attributed to the FG’s being frozen (super-
position error is much less of a problem since our set of GWP’s is overcomplete). To explain how
such a simple method could yield such accurate results, Heller provides his collective correlation
picture, rather than rigorous derivation. In this picture, a “swarm” of FG’s is capable of capturing
position-momentum correlation (i.e. it can distort), even though individually, they cannot.

For future comparison (in Section 2.7) it is convenient to also introduce an even simpler prop-
agator which is similar to Equation (2.77), except that T, is replaced with the classical action.

This propagator makes use of the following “statement of completeness” for the GWP’s of Equation

(2.76): .
(er-n) / / dpdalgga)(gpel = 1 - (2.81)

This equation has been generalised to N dimensions, with {p, q} being N -dimensidnal vectors, so
that
vy N/4 v , i
vy (1 N A il _
(xlggq) = (W) exp [ Sx -+ hp(x )| - (2.82)
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Inserting this expression into the QM propagator, (2.7), gives

N
1 i
P00 = ()] apedat e g ) ) 053)

Now, making the “crude” FGA approximation mentioned above leads to Heller’s primitive initial

value representation,

N
1 .
KPP0 = () [ ot Sont Mg ) - (2.84)

This particular appearance of the propagator will be used again in subsequent sections to allow for
easy comparison. Notice that we have not accounted for the coefficients of Equation (2.77). This is
an issue which will arise later on, when the specific form of the coefficients will be determined. The

consequence of this is that KF7H(x',x) fails to capture the quantum effect of zero point energy.

2.7 The Herman-Kluk Initial Value Representation

Herman and Kluk proposed their frozen Gaussian approximation in 1984 [15] in a paper where they
offered a more substantial analysis of the collective correlation idea of Heller. They demonstrated
that the divergence of adjacent classical trajectories does, in fact, account for the distortion of
¥,. Their propagator is unitary within the stationary-phase approximation and includes a pre-
exponential factor, which is now commonly referred to as the Herman-Kluk prefactor. The HK-IVR
is free from caustics, satisfies the TDSE to first order in A, and reduces to the Van Vieck propagator
when the integrals are evaluated by stationary-phase methods.

In 1994, Kay [18, 19] derived a general formula for a broad class of IVR’s, and related specific

instances of it to established semiclassical wave propagation techniques.

2.7.1 The coherent state approximation: Arriving at the HK-IVR prop-
agator

The form of the propagator which is to be developed herein will be made with analogy to Section
2.6.2. Again, our initial wavefunction, ¥, is decomposed in terms of frozen GWP’s of Equation
(2.76). The potential will be approximated quadratically (ensuring that our GWP’s are sufficiently
localised to justify this), and the parameters specifying the centres of the wavepackets follow classical
trajectories.

In this derivation, our starting point will be taken as Equation (2.83), in which an (overcomplete)

set of coherent states is inserted into the quantum propagator,

1

EM(x',x) = (ﬁ

N -
) / / dpadas (x'le H4/M g7 Vg7 1) . (2.85)
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Now, instead of making Heller’s primitive FGA, we propose another form which contains a pre-
exponential factor to be determined later (this will be done by comparison to the Van Vleck propa-
gator):

e Mgy o) 7 RpqueSeesit/Mgl ) (2:86)
Recall that Sp.q;:¢ is the classical action and N is the dimensionality of the system. In principal, ¥

is an arbitrary real positive width parameter. Inserting this into (2.85) gives

N
1 .
Kb,0) ~ (57) [[ pitaiBpet 5ot M 16 o 0

1\ . N/2 ‘
Ga) (3) ] dodaimaauetionsern, 28

where we have made use of Equation (2.82) to evaluate the overlap terms. The term in the exponent

i

is
1_7;1 {(x’ —q)? 4+ (x - qi)Q] . (2.88)

We now make the stationary-phase approximation (see Appendix B) to arrive at

Ppiqit = SP-‘Qit + [pt(x, —-q) — pi(x — qz)] +

st.pts

// dpidqiRPiq‘.t6+iQPiQ£f/h R (27r’iﬁ)N Z Rp.q:t det [q)”piqit]—l/z
k

xeti®piait/h (2.89)

This leads us to a new semiclassical propagator, which is accurate to both the FGA and the

stationary-phase approximation:

i N - N/2
KtFG—.SP(XI,X) = (—i;r—ﬁ) (;) (27T'Lh)N

st.pts

" ~1/2 4idy q.¢/h
x Z Rpq:t det [® piast) etitriaie/
k

N/2 st.pts )
= (l> z Rp,qt det {‘I'"piq.-trl/z eti®oian/h (2.90)
k

Since we are evaluating the sum in (2.90) at stationary points,

34’9;{1#

/ = Opi —

Ppiqit = | odpau | =0 (2.91)
Bq;
and i
azq’Piqil 9 ®pia;t

" — op? ap; Oq 9
Ppiat = | Ptpign  0°pian (2.92)

0qi0p; 8q7

is some Hessian matrix. Note that Rp,q;: must be evaluated at all stationary points. Now, we

compare this expression to the Van Vleck propagator (Equation (2.61)) to determine the exact form
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of the Herman-Kluk prefactor. To do this, we begin by evaluating the two terms of (2.91):

By L T r
0%piqit - 9Spiqit +(_‘?£t_> (x' —aqp) — (3%) P

op; op; Opi opi
. aqt T !
—(x —q;) —ivh (a—pi) (x' —qi) (2.93)
aépiqit . aSpiQit (?B_{)T r B Oq r )
Oqi B Jq; + Oq; (x @) 0q; Ps + P
. aCIt T '
—ivh B (x' —qy) +{(x—qi)f - (2.94)

It can be shown that the partial derivatives of the classical action with respect to p; and g; can be

written equivalently as:

8Sp,-q¢t _ 6qt T

api = (apz Pt (295)
6Sp.—q,—t _ BCIt r o
Pear ( 6%) pe—pi- (2.96)

These expressions are obtained by differentiating the definition of the classical action with respect
to p; and q;, and then using Hamilton’s equations of motion to cancel terms in the integral over £.

Before continuing, we simplify our result by defining two matrices,

_ op: . . 0q

V = [api whapi] (2.97)
_ |9p s dqy

W = [ 9, iyh qu] , (2.98)

and notice that Equations (2.93) and (2.94) can be rewritten as:

Tt~ W - )~ 7Gx ) (2.100)

Tt is these equations which determine the stationary-phase points. We may now rewrite (2.91) more

T "
(XX’T 4»,%1)(135%(3)- (2.101)

Now, to investigate the nature of the solution to (2.101), we turn our attention to the determinant

compactly in matrix form:

of the matrix:

vl -1 _ T o, T
det( WT iyl ) = det (V (—iyA)+1- W ) . (2.102)
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Since we may take the transpose of the matrix on the right-hand side without affecting the deter-

minant,
det (—ivAVT + WT) = det(W —iyhV)
Opt . . O0q . (c’)pt : 6‘1t>}
= det — iyh— —ivh —ivh
[qu a7\ " ap
dq; Opy 1 Op: . 0q
= (=2i7W)N d e - TPt
(=2i7h) et{ [3% T p:  vhda; i
= (=2iyh)N detR , (2.103)
with
1f0q , Ope 1 Ope . Bqt}
= — — — —ivh . 2.104
{0% pi  iyhoa | Op; (2.104
It can be shown that det R £ 0. Therefore, only the trivial solution of (2.101) remains:
X = q
X = q. (2.105)

Therefore, each stationary point corresponds to a classical trajectory which satisfies the boundary
conditions of (2.105) (i.e. we may replace “st.pts” in (2.90) with “¢raj.”). We must find each of
these trajectories since they will all contribute to our propagator (as Equation (2.90)). Equation

(2.105) greatly simplifies our expression for the phase term:
Ppiqit = Swxt - (2.106)

Notice that the matrix ®7 ., can be written equivalently as

)" 0\ _y _
el = E;g_gT . ( lv w‘g) (2.107)

Using the relation det(AB) = det(A) det(B), we find that

8 .
det®! . = det ( ag’:)det(W—-th)

ax’
e 7 N
(—2ivh)" det ( T

For the last step, we used the result of (2.103) and (2.105).

) detR . (2.108)

Now, we apply this result to our equation for the propagator (2.90):

._stpts 1
KtFG—SP(Xl,X) - ( ) Z Rp st det[ p,q,] 2e+z‘1>paq,-t/h,
N(1)* 1\* ox’ s /n
] - Rl oy t det Poxlxt
“(2) () B R oo () 2e7]
(27rzfi>

Z Rpaut [det (

o
2

il

-3
) det R] eiSxixe/h (2.109)
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Comparing this result to the equivalent Van Vleck expression,

N 1
1\* ox'\17% .5,
K/Vi{x',x) = (Mh) > [det ( api)} e Sxne/h (2.110)
traj.

Herman and Kluk proposed their final form of the prefactor:

Rpqit = detRY?

1[0  dpe _ 1 dpe . 0a])"?
det{2 [8Qi+5pi ivh O ”ﬁapi : (2.111)

We now recall the FGA proposed in (2.86) and write our final result for the HK-IVR:
1\V .
K6 = ('ﬁ) J[ dpstaiRpauet S MK G 0 N0 - @112)

2.7.2 Application of the HK-IVR

For the remainder of this thesis, we will concern ourselves with the autocorrelation function(ACF),
which is defined as

C(t) = (Yol ¥e) - (2.113)

In particular, we are interested in the HK-IVR approximation to C(t):

1\ .
CHE@) = | == dp;idqiRp,q.ee™*7 9/ (Tolg7, 0. )97 . 1%0) - (2.114)
2nh

The ACF is a useful quantity since it is related to the spectrum of energy levels (the power spectrum)
by a Fourier transform (see Appendix C). We restrict ourselves to a Gaussian initial wavefunction
with the same form as our coherent states: |¥o) = |g3,4,)- To further simplify the overlap terms of

(2.114), we choose our width parameters, <y, to be the same also:
(V7 exp [~ 2Lix = q0)? + Epox —
(x|To) = (w) exp [ 2(x qo)” + hpo(x Q)| - (2.115)

In general, the widths for each degree of freedom do not have to be the same. Instead, we place the

values for each in a diagonal matrix and evaluate the appropriate term in (2.115) as:

~%(x—qo)2 = “%[”/'(X"(m)]'(x“‘%)- (2.116)

Selecting appropriate values for + is an issue which is usually not mentioned in the literature. We
employ a simple, yet physically justified scheme for choosing these based only on a single parameter

(see Appendix E). Conveniently, the overlap terms of (2.114) are Gaussian integrals, and can be
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evaluated analytically (see Appendix A):

(Gl = [ axighq o) xl%o)

= o[- Ja— a0 - (o p?)

X exp :+—2%(pi +po)(a; - qo)] (2.117)
(Wolgg.a) = [ dx(olx)(xigha,)

= e [ D - a0~ ez

X  exp :—%(pi +po)(a — qo)] . (2.118)

Now, it is important to recognise that for any non-trivial molecular system, the 2/N-dimensional
phase-space is enormous. Therefore, we cannot hope to hack the double integral over p; and q;
using standard numerical techniques (i.e. by the trapezoid rule, for example). Instead, we use direct
Monte Carlo sampling.[36] We are blessed with a natural Gaussian sampling function: namely, the

Gaussian portion of (2.117):
Yo 2 1 ) 2

Accordingly, this term is removed (along with the appropriate normalisation factor, (47r)~N ) from
(2.114), and phase-space points, (pi,q;), are selected using a Gaussian random number generator.
By accumulating the integrand from each of these initial conditions, we can monitor the convergence
of our integral, C(t). Because the action term appears in the phase of the integrand, this integral
can become highly oscillatory (especially at long time, when the action may become quite large when
compared to /i). This can make convergence of this integral very slow, sometimes prohibitively so.
This problem receives its own share of attention in the literature, where “smoothing” or “filtering”
procedures are developed specifically for application to the HK-IVR.[8, 24, 25, 26] For the model
systems discussed in this thesis, this was not a serious problem, however future work will certainly
incorporate one of these.

Now, what remains is to evolve each such contribution of the integrand in time and compute our
autocorrelation function over a time period which is sufficient to adequately resolve the portion of
the energy spectrum we are interested in.

Computing the overlaps and classical action is straightforward. By integrating the classical
equations of motion using your favourite integrator (Velocity Verlet, for example), we solve for the
parameters defining the coherent states (recall that the width does not change), as well as keep track

of our action, Sp,q.t, along this trajectory. The time-dependence of the Herman-Kluk prefactor,
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Rp,q:t, 18 more involved and presents the computational bottleneck in this procedure.®

Accommodating a diagonal -y matrix, the prefactor is

1 [0q; _18Pt _ 1 -16pt ~.h3qt ]}1/2

Rpiqit = det{é— [aqz + Y 6pz7 'LTE’Y aqz 2 apz7

In fact, the partial derivatives here are the elements of the monodromy matriz, which is defined as

(2.119)

M M
M = ( 29 ar ) , 2.120
MP‘I MZ’P ( )
where s s
= O — Oa
Mygq = as My = e (2.121)
My, = ?9%:‘ My, = ap:

Each of these elements is an IV x N matrix, so the full monodromy matrix is 2IV x 2N. In practice,
these partial derivatives are not evaluated explicitly, but rather, auxiliary equations are integrated
along with the classical trajectory itself. Notation is simplified if we go to mass-weighted Cartesian

coordinates such that?

pmw — m—

tatm
k=]

qmw — m

+
.

q. (2.122)

‘We now drop the superscript, and it is assumed that p and q are as (2.122). This new coordinate

is convenient, since the equations of motion are now

o = -

oqt
& = P (2.123)

So, the auxiliary equations are

M, = %:%:Mm (2.124)
M, = g“gf:gii -M,, (2.125)

Mpy = ng'aii ('%)
= (o) () = (57 @120

2

B (D (L om

6 Actually, in more complex systems, or those exhibiting chaotic behavior, the convergence of the integral is the
bottleneck.
“Here, our mass is also a diagonal matrix.
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This can be written compactly in matrix form:

d 0 1

i Mo )=( g o) (M ) e
Therefore, to compute Rp,q;¢, we propagate the monodromy matrix (initially set to unity) according
to (2.128). This, in turn, requires computing the second derivative of the potential in mass-weighted
coordinates at each timestep. In this thesis, it is not in fact (2.128) which is used, but rather
a log-derivative formulation which was proposed by Miller [23] and is discussed in Appendix F.
The advantage of this alternative scheme is that it sidesteps the need to solve a matrix of coupled
differential equations, while simultaneously avoiding the branch-cut problem associated with taking
the square-root of the complex quantity of Equation (2.119).

Note that throughout this work, multiplicative factors in the autocorrelation function were not
included since the goal was to assess the validity of our new approach for the calculation of energy
levels. For this purpose, the function C(t) was renormalised so that C(0) = 1. For applications where
the absolute value of the correlation function is required (such as in the calculation of reaction rate
constants), one should include all the proper multiplicative factors. Such applications are beyond

the scope of this thesis and will be the subject of future work.
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Chapter 3

Results and Discussion

The purpose of this present work is to establish a general method for computing the semiclassical
propagator in Cartesian coordinates which allows for the inclusion of holonomic constraints. As
outlined in Section 2.7.2, the principal difficulties encountered in the evaluation of the HK-IVR are
the oscillatory nature of the integrand and the slow convergence of the integral by Monte Carlo
methods.

It is our point of view that the elimination of high frequency modes can be thought of as an
integral conditioning technique. High frequency modes are undesirable primarily because they con-
tribute to the accumulation of classical action in the phase of Equation (2.112), leading to a rapid
oscillation of the integrand. By reducing the frequency of this oscillation, we are able to evaluate
our autocorrelation functions using larger timesteps. Furthermore, the convergence of the ACF
is improved: because oscillations are diminished, and because the time-dependent dynamical vari-
ables will vary more smoothly with initial conditions!, fewer Monte Carlo trajectories are necessary.
Again, introducing our constraints is justified so long as the motion of the bonds to be frozen is not
significantly coupled to the motions of primary interest. Again, we remain in Cartesian coordinates
throughout so that our scheme is completely general - i.e. the evaluation of the derivatives of a
curvilinear coordinate is not necessary.

To establish our method, we address a model system: a water bender with one effective degree
of freedom. We compute the power spectrum using both exact quantum methods (Section 3.2.1)
and the “traditional” application of the HK-IVR, for a constrained system (Section 3.2.2). This will
establish for us a basis of comparison for the results of the novel method we shall present in Section
3.9.3. Prior to our discussion of the water bender, however, we shall provide a proof of principle for
our method: a constrained harmonic oscillator model problem. Any novel means of computing the

various components of (2.112) will be presented as they arise, for simplicity and flow.

LThis leads to smaller values for the elements of the monodromy matrix, and therefore, smaller values for the
HK-prefactor.

32



3.1 Proof of Principle: A Harmonic Oscillator Model

In order to establish some confidence that our approach is theoretically justified, we introduce a
model which possesses the essential elements of a typical constrained problem, yet is simple enough
that both exact quantum and semiclassical procedures can be carried out analytically. This model
consists of two particles of mass, m located at points z; and 3 in a one dimensional harmonic trap
with force constant, w?. The relative distance between these two particles is constrained such that

x; — o is constant. The potential is given by
1
V{z1,22) = §an2($% +23) . 3.1)

We begin by solving for the exact quantum energy levels, and proceed to illustrate the methods for

solving the problem semiclassically.

3.1.1 The quantum energy levels

Before the constraint connecting the two particles is applied, the Hamiltonian for our system, in
coordinates r; and zo is
- m o 1 h? 9% 1
H(z1,20) = | — =— == + =mw’zd — 4+ —mw?z2 | . 3.2
(@1,22) ( 2m dz? 2 L) * 2m6w%+2 2 (32)
Here, the simplest way to apply the constraint is to change to centre-of-mass and relative distance

coordinates defined by

T = I — T3

R = %(ml-&—xz), (3.3)

where the Jacobian associated with this change of variables is unity. The Hamiltonian becomes
- R 92 1 R 8 1
HR,7)=| - —=— == + ~Mw*R? e —pw®r? ), 3.4
(B,7) ( aMoRz T2 )“”( spore Tt (3-4)
where M = 2m is the total mass, and g = %m is the reduced mass of the two particles. We introduce
the constraint by fixing r to a constant value, rg, and by removing the kinetic energy operator
associated with the motion along this coordinate. This yields a one dimensional Hamiltonian which

has harmonic oscillator eigenfunctions:
. 1 1
H(R;ro)n(R;mo) = (hw(n + 5) + -2—,uw2r§) Yn(R; 7o) - (3.5)

It is E, = hw(n+ 1) + Jpw?rd which we hope to reproduce semiclassically. Because our model is so
simple, we may integrate (2.112) both analytically and numerically in order to investigate the error
associated with the numerical implementation of our approach. Because our potential is harmonic,

we may expect the HK-IVR to be formally exact.
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3.1.2 The semiclassical energy levels

Here, we would like to evaluate the semiclassical autocorrelation function for our model harmonic

oscillator system without introducing the change of coordinate, (3.3).- The HK-IVR ACF is:

00 = @) [ [ dp: dai Bt €890 (Bolgg, ) 6l ) (3.6)
where p, q are two-dimensional vectors. To evaluate this expression analytically, we must first
find the solutions to the constrained equations of motion: p¢(p;,q;) and q:(p;,q;). Using these
equations, we will find explicit expressions for each of the terms in the integrand. Finally, the
integration will be performed analytically over the subspace of initial conditions which satisfy the

constraints to yield an expression for C(t).
The constrained equations of motion

Our task here is to solve Newton’s equations of motion for the two particles whose positions and

momenta are connected by two constraints:
g = (@-w) -1 =0
g2 = m—p2=0. 3.7)

The equations of motion are to be solved by the method of Lagrange multipliers:

o}
ma:l = —-a—:—z—;Vc(:El,:EQ; )\1,)\2,1’0)
.. 0 .
miy = —7—V(r1,T2;A1,22,70) , (3.8)
61132
where
1
Ve(x1,22; A1, A2,70) = §mw2(l‘% +23) — Mg1 — Aaga - (3.9)
Evaluating this expression leads to
2 +w2m1 -+ 2A1(£L‘1 - .’Bz) = 0
Fo +wirs -2 (x1 —22) = 0. (3.10)

These equations are decoupled by taking their sum and difference and making substitutions, u; =

%—(331 +.’1)2) and us = 21 — To:

d‘1+w2u1 = 0
@+(w%%‘-)w = 0. (3.11)

These differential equations can now be solved independently, yielding the solutions

u(t) = crsin(wt) + g cos(wt)

4 47
¢5 sin (\/wz—i-——l t) + C4 COS (g/w?—l-w—l t) ,
m m
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so that, finally,

1 4
ri{t) = a s‘m(wt) + ¢y cos(wt) 4 e sin ( w? + —z‘lt) + 1c4 cOoS ( w? + é)—‘lt)
2 m 2 m
z2(t) = ¢ sin(wt) + ¢ cos(wt) — —1—03 sin { {/w? + L—i-)it - —1—04 cos | /w2 + é/}lt
2 m 2 m
p() = mai(t)
p2(t) = mas(t). (3.12)

Notice that our constraint connecting the momenta is redundant. We solve for {c1,¢2,¢3,¢4} using

the initial values, {z1(0) = z1; , 22(0) = z2; , P1(0) = p1; , p2(0) = pai}, and A is evaluated using

(3.7), giving Ay = —(w?m/4). Our final equations of motion are:
21(t) = (= )prisin(wt) + Ricos(wt) + =
1 = 2 Dri w i COS 27'0
z2(t) = 1 ; sin{wt) + R; cos(wt) — L
2 = Sy DR i 27' 0
1
mt) = 5PRi cos(wt) — R;mw sin(wt)
1
palt) = 5PRi cos(wt) — Rymwsin(wt) , (3.13)

where the substitutions pr; = p1; +p2i ; Bi = %(mli + Z9;), and T = T1; — T; have been made for
brevity only. Now that we have explicit analytical expressions for the positions and momenta of our

system, we can work out the constituents of the integrand of Equation (3.6).

The semiclassical autocorrelation function

Here, we will develop a final expression for (3.6) and then perform integration analytically to obtain
an expression for the ACF. We begin by writing (3.6) in more detail, where integration is restricted
to the region of phase space where the initial conditions obey the constraints through the inclusion

of delta functions:
C(t) = (ZW)_2/d$1i/d.'L'2i 5((:1}13 —.’1725)2-—7‘%)
/dpli/dp2i 8(p1i — p2i)

3
Ri(z1:, Tos; pri, pi) X exp | =Se(x1i, T24, Prs, P2i)
h

(‘I’OIQZ(f'?u,3321‘71711‘,1722‘))(92’(3711',$2i,P1i,P2i)l‘I’o) . (3.14)

First we shall evaluate the Hermann-Kluk prefactor, Ry(Z1i, T2i, P1i, P2:)- Recall that it is defined as
equation (2.119) of Section (2.7.2). As it turns out, the derivatives of (2.121) conveniently do not

depend on initial conditions. Therefore, the prefactor may be moved outside the integrals. It comes
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out:

n ,
R, = \/ det {5 (Mpp + Mgq — i7Mgp + %Mpq) }

= \/ cos(wt) — 2nffw7 (% + m2w?) sin(wt) . (3.15)

Notice that (3.15) involves taking the square root of a complex number. This leads to a branch
cut problem which normally requires that you keep track of the kernel of the square root along
a particular trajectory. Since our R-factor is independent of initial conditions (and therefore only
needs to be evaluated once), we found it simpler to pre-calculate it and remove the discontinuities
by inspection.

The phase term, €’5¢/%, involves the classical action, S;, which evaluates to

t
St = /dT[T(pxlT,psz)—V(Jllr,szf)}
0

1 .
= ( 4anp%i — mef) sin{wt) cos(wt)

mw?

1 rit . (3.16)

+priR; sin®(wt) —

All that remains is to select a width parameter, v (we chose a value of 1.0), substitute in the
expression for the overlaps and evaluate Gaussian integrals (the Dirac delta functions are taken in the
Fourier representation) using the computer algebra program, Maple [37]. Although this prescription
is straightforward, the algebraic results are cumbersome and are not presented. Because our system
is harmonic, we expect our results to exact. That is, we expect any discrepancies in the results
to reflect errors in the numerical implementation only. In fact, no significant discrepancies were
observed, so we do not show this result (i.e. so far, so good ...).

Another semiclassical ACF is computed: one where integration is not carried out analytically,
but by the Monte Carlo procedure described in Section 2.7.2. The constrained equations of motion
are integrated numerically, using the Rattle algorithm developed by Ryckaert [38] and Anderson
[39]. Rattle is an integrator for the classical equations of motion which is based on the Velocity
Verlet algorithm, but allows for the systematic inclusion of holonomic constraints. A more thorough
investigation of the performance of Rattle appears in Section 3.2.3. Here, the motivation is to
determine the error introduced simply by going to a fully numerical scheme - a scheme which will
closely resemble the one used with the water bender. The results appear in Figures 3.1 - 3.4, the
upshot being that our approach yields an ACF which is indistinguishable from the corresponding
quantum result. Note that the power spectra presented have been conditioned with a Gaussian
window function prior to Fourier transforming (see Appendices C and D). This gives a preferred

line-shape, allowing for accurate determination of peak positions. The numerical positions of the
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Figure 3.1: The quantum autocorrelation function for two particles in a harmonic well.

energy levels predicted by quantum mechanics and those computed by the HK-IVR are presented
in Table 3.1.

3.2 A Physical Example: A Water Bender

In this section, we consider a simple constrained molecular system: a stationary (i.e. no centre-of-
mass motion) water molecule with rigid O-H bonds. This model (see Figure 3.5) will provide the

testing grounds for the development of our general method for evaluating the HK-IVR for arbitrary

Table 3.1: The calculated energy levels for the two particles in a harmonic trap. Values are given in
En. The numbers in brackets indicate the uncertainty on the last digit.

peak QM SC-IVR

0 0.750(2) 0.750(2)
1.750(2)  1.750(2)
2.750(2)  2.750(2)
3.750(2) 3.750(2)
4.750(2)  4.750(2)

0 RN e
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Figure 3.2: The quantum power spectrum for two particles in a harmonic well taken as the Fourier
transform of the windowed autocorrelation function.
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Figure 3.3: The HK-IVR autocorrelation function for two particles in a harmonic well.

molecular systems.

We begin by computing the exact quantum ACF for this system in the bend coordinate: the
angle, 8, and its associated momentum, pg (Section 3.2.1). We proceed by establishing the HK-IVR
in this coordinate (Section 3.2.2). Recall that this would be the “traditional” semiclassical procedure
for this model. Finally, in Section 3.2.3, we will compute the HK-IVR ACF in Cartesian coordinates
and compare results with the preceding two sections.

We use the potential of Polyansky, Jensen and Tennyson [40], implemented by the FORTRAN
routine provided by the authors. It is a full potential defined over all configuration space, defined
in terms of the curvilinear coordinates: V(#,71,72). Figure 3.6 shows the relevant cross-section for

the single dimension of our constrained subspace.

3.2.1 Exact quantum results

Exact quantum mechanical calculations were performed using the following Hamiltonian [41]:

N Rdf2 (1 1-cosf\] d
H(6;ro) = YT [;g (m‘—*H + —-m—o'—‘>] p7) +V(8;re) , (3.17)

where mo and my are the masses of oxygen and hydrogen, respectively. This has been adapted from

the Eckart bond coordinates of {41] by setting ry and 73 to their equilibrium value, ro. The problem
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Figure 3.4: The HK-IVR power spectrum for two particles in a harmonic well.

Figure 3.5: The curvilinear coordinate for water. The O-H bonds will be frozen by setting r; = ro =
70-
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Figure 3.6: The 1D potential for the water-bender. O-H bonds are fixed at the equilibrium value,
ro = 0.958 A.
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Figure 3.7: The 1D potential with first 5 energy levels. |¥o(0)| is shown as the bold curve, super-
imposed at a height (¥o|H|¥p) = 5295.8cm™!.

is represented on a grid following the prescriptions of Wei and Carrington. {42] The Schrédinger
equation is solved variationally in this representation to obtain energy levels and their associated
wavefunctions. Various autocorrelation functions can subsequently be constructed. We chose our
initial wavefunction, [¥g), to be a coherent state of the form |g;’8090) (this notation is used with
reference to Equation 3.23).

Figure 3.7 shows the first 5 energy levels superimposed on our potential energy surface. The
boldface curve indicates the GWP we have selected to represent the ¢t = 0 state. The quantum ACF
appears in Figure 3.8, and its corresponding power spectrum in Figure 3.9.  The vertical lines in
the power spectrum represent the computed eigenvalues and will be included in subsequent figures
for assessing results visually. The numerical positions of the peaks are not presented until Section
3.2.3, where all results are summarised in Table 3.2. Notice that the energy spectrum for our water
bender appears similar to the progression of a harmonic oscillator. The zero point energy is 808.0
cm™!, and anharmonicity can be observed as a contraction of the peak spacing at higher energy

levels.
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Figure 3.8: The quantum autocorrelation function for the 1D water-bender.

3.2.2 HK-IVR in curvilinear coordinates

Here, I present the approach for obtaining the ACF for our constrained water molecule in the “good”
coordinates. This serves two purposes: first, to establish the level of accuracy for the HK-IVR in
its usual implementation, and second, as an illustrative sample problem for how the HK-IVR is
normally used. This will provide a lucent context for understanding how our method differs. The
basic steps taken in the approaches of the following two sections are similar, and are enumerated

here:
1. Get classical dynamics with constraints working:

e choose a value for the timestep and ensure that energy is conserved.
e choose a finite difference value for computing force.
e ensure that the constrained bond lengths have numerically fixed values.
2. Select wavepacket width values (see Appendix E):
e the width parameter is chosen small enough so that C(¢) has sufficient structure, yet large

enough that the GWP’s are well localised for accurate results.
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Figure 3.9: The quantum power spectrum for the 1D water-bender.
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3. Get sampling procedure for initial conditions working:

e initial conditions are written to file to be read in later as needed.

e apply any measures to adjust initial conditions (e.g. placing centre of mass at origin,

removing centre of mass translations, etc.).

e inspect the distributions of p; and q;.
4. Make sure that the overlaps of Equation (2.114) are computed correctly.

5. Make sure that the second derivatives of the potential are computed appropriately (recall that

these are used in the evaluation of the HK-prefactor):

e choose a suitable finite difference. .

e ensure that the Hessian matrix is properly mass-weighted.
6. Calculate C(t) and its Fourier transform, I(E):

e make sure we are going for long enough times that accurate peak positions can be ob-

tained.
e make sure that our Monte Carlo average has converged.
e apply a Gaussian window function to C{t) prior to transforming.

e obtain an accurate determination of the peak positions (i.e. the energy levels).

Equations of motion in curvilinear coordinates

Tt is trivial to obtain a classical Hamiltonian, once the quantum form is worked out. We simply
replace —-ih% with the classical momentum, pg, in Equation (3.17) (the ordering in the kinetic

energy operator is no longer an issue). Our classical Hamiltonian is therefore

1{2 1 1—cosf
w0 0im) =5 7 (i +

2 )] p; + V(63 m0). (3.18)

;g
We would like to define the quantity in square brackets as G(8)?,

(3.19)

2 1 1 —cosé
G =2 (4 izt
0

mg  mo
G is, in general, a matrix of inverse masses in some curvilinear coordinate, as discussed in Wilson,
Decius and Cross. [43] Its precise definition is complicated, however it is worked out for our water
molecule in [43], and concurs with our present expression. Because we have only a single effective

degree of freedom, our G(8) is a scalar quantity.

2We. are dropping the explicit reference to rg in our arguments

45



140 T T T T T

130

120+ § - R R .......... R ........... .

s

—

o
T

0 (degrees)

ool b f 0 [T DIV R N i

woH Vb V] S B I Y SR B ORI N NN B

70 ! 1 1 ; 1
0 1000 2000 3000 4000 5000 6000
time (au)

Figure 3.10: A sample trajectory of the water-bender with initial conditions, (pao = 0,65 = 80°).

The equations of motion can now be evaluated by Hamilton’s laws:

. _ _oH
Pe = "5

= - (%%G"(H) + V’(()))
- (— m29> P - V() (3.20)
OH

dpe
= G(0)ps . (3.21)

Conservation of energy can be verified by taking the time derivative of the Hamiltonian. Equations
(3.20) and (3.21) are integrated using the 4th order Runge-Kutta method [36], while forces are
computed from the potential by finite difference. A sample trajectory was computed with initial
conditions (o = 80°,pgo = 0) in order to get an idea for the timescale of the bend (see Figure
3.10). On the basis of this trajectory, we selected the total time for semiclassical wave propagation
to be 6000 au. We proceed to determine a suitable timestep for our classical trajectories. In Figure
3.11, we show this same trajectory, but where a number of different timestep values were used, and

observe whether total energy is conserved. Although a timestep of 10 au appears to be adequate,
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time {au)

Figure 3.11: Determining a suitable timestep: looking at conservation of energy for a sample tra-
jectory of the water-bender in 1D. In all figures, the dotted line is potential energy, the dashed line,
kinetic energy, and the solid line is total energy. Top figure, dt = 100.0 au. Centre figure, dt =
10.0 au. Bottom figure, dt = 1.0 au. The timestep of the bottom figure was used for all trajectories
computed subsequently.

a value of 1.0 au was used in subsequent calculations, “just to be safe”. Conservation of energy
can alternatively be observed from a phase-space plot. Here, the total energy is given by the area
enclosed by the curve obtained when momentum is plotted against position. This plot (Figure 3.12)
reassures us that this area is, in fact, constant as the water bender executes each period of its simple

motion.

The semiclassical ACF

Now, we turn our attention to the precise form of the HK-IVR ACF for our one-dimensional problem:
c) = / dpoi / d6;e™S2os-P)/A R, (pg;, 6:)(Wolgy,,0,){T ;0. T0) - (3.22)

Notice that we have not included a Jacobian factor in (3.22): we have not performed a change of

variables, but instead simply use Equation (2.114) directly with our chosen coordinate. As outlined
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Figure 3.12: Phase-space plot for the water-bender in 1D.
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in Section 2.7.2, we take our coherent states to be of the form

(e!ggoif?i) = (;Y—{) v €xp ["%(9 - 91’)2 + %p()i(g - 9i)} (3.23)

O0) = (1) o [-20-00+ fomio 00 - (324)

Anticipating the Jacobian which will arise when evaluating the overlaps of (3.22), we take our initial
wavefunction to be
0% ):(l>”4..1..exp ~2(6 = 60)2 + L pao(6 — 60) (3.25)
= \z) i SRR T AR I ‘

The overlap terms reduce to Gaussian integrals and are evaluated analytically:

(%) = / " sin 6d8(g], ,10)(61%0)

{

/+0° sin 9d0<ggﬂ,,|9)(9|q;0)
+00 ;
\/gﬁ df exp {—% [ =)+ (6 —60)°] + 7 [Poo(0 — 6o) — py(0 — n)]}

exp [—%(7) ~60)? — Zl%(p" - pao)z] X exp [%(Pn + Poo)(n — 90)] : (3.26)

il

i

The approximation in the second step is justified so long as the GWP’s are sufficiently localised
in the interval § € (0,7). This may be verified, at least visually, by inspecting Figure 3.7. The
wavefunction used in Figure 3.7 is identical to the one used here, except for the (1/sin8) term.
The first exponential in (3.26) is our Gaussian sampling function. It is removed from (3.22)
(taking the appropriate normalisation factor with it), and is used to sample initial conditions from
which the trajectories will be launched. The results of this sampling procedure are shown in Figures
3.13 and 3.14. An energy cutoff was then applied: initial conditions with energies larger than
10000cm™! were discarded, as they tend to give rise to instability in the HK-prefactor propagation.
This cutoff does not affect the results in a significant way. As our sampling function dictates, we
obtain (roughly) Gaussian distributions in py; and 6;, with widths that are related by the reciprocal

of the width, v, in accordance with the Uncertainty Principle.

Heller’s Primitive FGA

Before we describe the practical computation of the HK-prefactor, it is interesting to look at the
energy levels calculated without it (i.e. with R¢(pgi,0;) = 1). Recall that this is just Heller’s
primitive propagator, Equation (2.84). This ACF appears in Figure 3.15, and its transform in
Figure 3.16. It is apparent that Heller’s propagator fails utterly in capturing the quantum effect
of zero point energy: the ground state energy is found to be 0. The spacing, however, seems to
be acceptable when compared to the quantum results, although some of the anharmonicity in the

progression is missed.
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Figure 3.13: The distributions of § sampled from 6 = 80° in angular coordinates using a wavepacket
width, v = 10.0. The solid line indicates the distribution when an energy cutoff was used (Bmaz =
10000cm™!), while for the dashed line, there was no such cutoff. This figure was generated from
80000 sets of initial conditions.
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Figure 3.14: The distributions of py sampled from pso = 0 in angular coordinates using a wavepacket
width, v = 10.0. The solid line indicates the distribution when an energy cutoff was used (Emaz =
10000cm™1), while for the dashed line, there was no such cutoff. This figure was generated from
80000 sets of initial conditions.
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Figure 3.15: The primitive Heller autocorrelation function for the water-bender, calculated in 1D.
This function was obtained from 4402 bound trajectories.
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Evaluating the HK-prefactor

For the reinainder of this section, we focus our attention on the evaluation of the HK-prefactor by
two methods: one formally exact (Miller’s log-derivative formulation [23], see Appendix F), and
the other involving significant approximation to reduce computational cost (see Appendix F, also).
These methods endeavour to solve (2.119), and I will leave the particulars to the appendix, except to
say that they both require that the second derivative of the potential be computed in mass-weighted
coordinates.

Now, recall that our potential depends on three internal coordinates: r1,73 and 8. In our model,
two of these have been frozen: 71 = r9 = 19, and we must account for this in what is, in general, a
3 % 3 Hessian matrix. To do this, we turn to projection methods, i.e. the construction of a matrix
which will remove modes of the Hessian matrix corresponding to motions along the frozen bonds.
The projection matrix is used in conjunction with the mass-weighting procedure, so we will address
this first.

In general, mass-weighting is coordinate-dependent (in Cartesian coordinates, it is trivial: see
Equation 2.122). Here, we modify the Hessian matrix according to Wilson, Decius and Cross: by
multiplication by the so-called G-matriz introduced near the beginning of this subsection. In our

present coordinate, this matrix is: [43]

1 L 1 D S
mn T mo) ey €086 v sinf
— 1 1 1 R B
G= s cosf (mH + mo) oo Sind . (3.27)
1 : 1 : 2 1 1—cosé
P sin @ T sinf oz (mH + s )

We calculate our second derivative matrix, F, as

8*v
_ 2
Ordr ’ (3.28)
where r = (r1,r3,0). Mass weighting is then carried out:
™ = GF . (3.29)

In Figure 3.17, we present the three modes obtained by diagonalising F™* (with ry = r; = ro) for
all possible values of 8. It is clear that the O-H stretches are generally much higher in energy than
the bend. Furthermore, the bend mode becomes imaginary (w® < 0) for certain ranges of 6. This
indicates the presence of a transition state near § = 180°, while the small “dip” around 8 = 40° is
a feature of the curvature of the potential (perhaps not physically relevant).

In the following section, the projection methods will be discussed in more detail. Here, it is
enough to recognise that, because we are interested in the bend mode, and because this mode is

precisely one of our present coordinates, projecting out ry,72 motion simply involves picking off the
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Figure 3.17: The square frequencies obtained by diagonalising GF. The dashed line corresponds to
the bend mode in 1D, calculated as Gg3 Fas.

55



(GF)33 term. It is easy to verify that an appropriate projection matrix, 4, is

00 0
A={o0 o0 0}. (3.30)
00 1

That is, by diagonalising (AGA)- (AFA), we obtain the two zero-modes and our bend. In practice,

it is of course simpler to obtain the square-frequency of this mode as

v
Kt = G33 (79—8—2—) . (331)

Now, we are ready to address the propagation of the HK-prefactor. We begin by using the
formally exact log-derivative formulation, and proceed to investigate the cost to our accuracy asso-
ciated with adopting a more approximate (i.e. less computationally demanding) form. In essence,
the log-derivative formulation is equivalent to propagating the monodromy maftrix by the auxiliary
equations, (2.128), with initial conditions M=o = 1, and computing the prefactor as (2.119). Al-
though, in [23], Miller claims that his method avoids the branch-cut problem, in which there is some
ambiguity about choosing the correct sign when taking the root of a complex number, we found it
necessary to keep track of the real and imaginary parts of the determinant of (2.119), in order to

keep R:(pes, 6;) a continuous function of time.
The final expression

So, the prefactor is added to Heller’s primitive ACF, giving the HK-IVR. Previously sampled initial
conditions are propagated and the integrand, I(p;, q;), is averaged into a current estimate for C(t) at
the end of each trajectory. Figure 3.18 shows the convergence of this average, made with comparison
to the quantum ACF. The computation of C(t) is halted when additional trajectories appear to be
having no noticeable effect on the current result. This “converged” result and its corresponding
spectrum are shown in Figures 3.19 and 3.20. Figures 3.21 and 3.22 contain the same results, but
when the “Johnson’s multichannel WKB approximation” [23] to the prefactor (of Appendix F) is
employed. We draw the conclusion that this approximate form gives gives better line-shape, and no
significant difference in accuracy in the energy levels. Therefore, from this point on, the prefactor is

computed solely by this method.

3.2.3 HK-IVR in Cartesian coordinates

Finally, we are ready to present the development of our new method (i.e. so far we have done
nothing novel). Again, our goal is to solve Equation (2.114) for a constrained system in Cartesian
coordinates. We rewrite (2.114) here, and indicate that quantities are constrained by adding the

superscript, ¢
1 \Y i
cw=(555) [ dvidai Rogageenp (ESerae) (Wolsfsap) izl o) - (33
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Figure 3.18: The convergence of the HK-IVR autocorrelation function for the water-bender in 1D.
The origin of the vertical axis corresponds to exact agreement with the corresponding quantum
results. The dashed line corresponds to the ACF with the exact expression for the HK-prefactor,
while the solid line was produced by the ACF with the approximate prefactor.
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Figure 3.19: The HK-IVR autocorrelation function for the water-bender calculated in 1D using the
exact expression for the prefactor. This function was obtained from 4402 bound trajectories.
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Figure 3.20: The HK-IVR power spectrum for the water-bender calculated in 1D using the exact
expression for the prefactor.
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Figure 3.21: The HK-IVR autocorrelation function for the water-bender calculated in 1D using the

“multichannel-WKB” approximation to the prefactor. This function was obtained from 4402 bound

trajectories.
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Figure 3.22: The HK-IVR power spectrum for the water-bender calculated in 1D using the
“multichannel-WKB?” approximation to the prefactor.
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The presence of our constraints will certainly have an effect on the value of the normalisation for the
set of coherent states, (27/) ™. Because we do not actually compute this “pre-prefactor” anywhere
(we instead renormalise C(t)), we have not worked out what it should be.

There are three principal challenges introduced by including the superscripts in (3.32). First,
we must integrate the constrained classical equations of motion in Cartesian coordinates. This is
handled by the Rattle algorithm and a discussion of the implementation and performance of this
routine is discussed below. Second, we must modify the method for evaluating the HK-prefactor to
account for our constraints. Again, this is done by constructing a projection matrix to remove all
constrained motions from our Hessian, as it enters in Equation (2.128). Finally, we must be careful
to integrate over the full region of phase-space in which the constraints are satisfied. That is, our
implementation of the Monte Carlo sampling of initial conditions must be modified. Our initial

wavefunction is chosen as |¥o) = g% 4,)-
The constrained equations of motion

Here we present the essence of the Rattle algorithm. [39] We want to solve Newton’s law of motion,
miq; =¥, (3.33)

for each atom as it executes its classical trajectory. Here, m; is the mass of atom 4, and q; and ¥;
are its position and force in Cartesian coordinates (they are three-dimensional vectors). We want to

apply “bond” constraints, that is, holonomic constraints of the form:
o (@) = (ai~a;)* —d}; =0. (3.34)

This constraint (labeled k) indicates that the distance between atoms ¢ and j is fixed to dij. An
additional force is needed in (3.33) to ensure that the complete set of these constraints, o, is satisfied

(i.e. o= 0) at each timestep. We temporarily call this force g, such that
mg=F+g. (3.35)

Now, m is a diagonal matrix of masses (since we are in Cartesian coordinates), and q° is the full
configuration of the molecular system, subject to o= 0. Deriving the Lagrangian equations of

motion leads to the following particular form for g: [4]

constraints 60_k
= WL I 3.36
2> (-x3%) (3.36)

where Ag is the (undetermined) Lagrangian multiplier corresponding to o%. These multipliers are
calculated iteratively by the Rattle routine. Rattle combines the constraint force with the force

derived from the potential, and integrates the classical trajectory by a method equivalent to Velocity

62



0.99 T T UIEEEREE T T T T T T

0.981 i
0.97}+ Pie o - \ R

. . A\ -
Lo96l o’ L S L P - 4

N [ TN A ~ ]
Host <t N ' ARSI

0.941 R

0.93} e .

D -92 H | 1 1 1 1 ] k| I
0 50 100 150 200 250 300 350 400 450 500

0.9581 T T T T H 7 T T T

T
A

0.958

0958 RN ook : = S

<L 0.9579

‘_%@3579

0.9578 -

T

0.9578 ’ : 1

O .9577 1 . 1 1 | i. i i i
0 50 100 150 200 250 300 350 400 450 500

time (au)

Figure 3.23: The effect of the value of the tolerance on Rattle’s ability to hold the O-H bond length
to the constrained value (r¢ = 0.957927 A) over a sample trajectory. In the upper figure, the dotted
line corresponds to a tolerance of 1.0, the dashed line, 0.1, and the solid line, 0.01. In the lower
figure, the dotted line corresponds to a tolerance of 1 x 1073, the dashed line, 1 x 107*, and the
solid line, 1 x 1073, A tolerance value of 1 x 10~ was used in subsequent calculations.

Verlet, making sure that each element of o(q) is smaller than some tolerance at the end of each
timestep. This is done in two stages. First, the constraint force is adjusted so that the constraints
will be satisfied at the end of the timestep. Second, the momenta are adjusted to ensure that atomic
motions are orthogonal to any rigid bonds connecting them.

Figure 3.23 shows the O-H bond distance as it fluctuates along a sample trajectory. It is observed
that as the tolerance is made increasingly stringent, the closer this value is, on average, to ro. A
tolerance value of 1 x 10~ was selected on this basis. That is, for each timestep, Rattle continues

its iterations until

(r1 —ro)® < 1x 107% au ,

and (ry—r)? < 1x10%au.

The number of iterations taken per timestep (over a short sample trajectory) is presented in Figure
3.24, and those performed to remove the undesirable components of the velocity, in Figure 3.25.

We can check to ensure that our implementation of the Rattle algorithm is, in fact, correct
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Figure 3.24: The number of iterations used by Rattle to apply the contraints to the molecular
configuration as a function of time, over a short sample trajectory. This figure shows the relationship
between the number of these iterations and the value of the tolerance. In the upper figure, the circles
correspond to a tolerance of 1.0, the squares, 0.1, and the trlangles 0.01. In the lower figure, the
circles correspond to a tolerance of 1 x 10~3, the squares, 1 x 1074, and the triangles, 1 x 1075.
Notice that as the tolerance is decreased, more iterations (on average) are required.
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Figure 3.25: The number of iterations used by Rattle to apply the contraints to the velocities as
a function of time, over a short sample trajectory. This figure shows the relationship between the
number of these iterations and the value of the tolerance. The tolerance values and associated
symbols match with the preceeding figure. Notice that as the tolerance is decreased, more iterations

{on average) are required.
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Figure 3.26: A comparison of a trajectory obtained by integrating the angular equations of motion
(the solid line) with the corresponding trajectory calculated in Cartesian coordinates by Rattle {the
circles). The initial conditions are (pgo = 0,0p = 80°) and a tolerance of 1 x 107° was used.

by comparing to the trajectories obtained in the previous section. Figure 3.26 confirms that no
significant discrepancy is visible. And just to be certain, the classical actions computed along this

trajectory by both methods was verified to be equivalent also (Figure 3.27).

Evaluating the integral: sampling initial conditions

Here, we confront the issue of correct evaluation of the integrals in (3.32). Recall that our sampling

function,
1 N 1 2 1 1 2
f(Pi,qi;Po, Qo) = (zg) exp [‘Z"/(Qi ~qo)” — il (p: — Po) } ) (3.37)

was taken from the overlap, (g7 4.|%o). Initial conditions sampled directly from this distribution
will almost certainly not satisfy our constraints. Formally, we would like to screen these initial
conditions with our Dirac delta functions, §(c’). In practice, however, this would be exceedingly
toilsome. The probability of selecting initial conditions which happen to satisfy our constraints to
a tolerance on the order of 10~¢ au is very small indeed. Furthermore, we are only interested in
one of the three internal coordinates. We have not yet made mention of the six degrees of freedom

associated with the centre of mass. That is, even after our internal coordinates check out, we should
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Figure 3.27: A plot of the action calculated along a trajectory with initial conditions (6 =

80.0°, pgo = 0.0). For the solid line, the dynamics were performed in angular coordinates, and
the circles, in Cartesian coordinates.
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Figure 3.28: A “top view” of the distribution of configurations initially sampled (ie. they don’t obey
the constraints). The hydrogens are depicted by crosses and the oxygens, by circles. Configurations
were sampled about 8y = 80° with wavepacket widths, (ya# = 2.868,v0 = 9.807). 1000 sets of initial
conditions are represented.

apply yet another delta function in order to remiove centre-of-mass translations and rotations.

We propose an ad hoc method for obtaining suitable initial conditions, and compare the dis-
tributions obtained to those of Section 3.2.2. As a point of reference, Figures 3.28 and 3.29 are
plots of the configurations and momenta sampled directly from (3.37).  Notice that these results
are consistent with the Uncertainty Principle; the reciprocal nature of the p and q distributions is
observed (recall that coherent states are minimum-uncertainty wavepackets).

Taking these initial conditions as a starting point, we first shift the centre of mass to the origin
(which should have no effect on anything). Next, instead of discarding the initial conditions which
violate our constraints, we “repair” them by applying a single Rattle timestep. Finally, we remove
centre-of-mass motions. Removing net translation is trivial, so I will just describe the method for
removing rigid-body rotations. To do this, we first compute the total angular momentum, L, by:

atoms

L= Z mj(r,- X Vj) , (338)

=1

where r; and v; are the three-dimensional position and velocity vectors for atom j. Next, we find
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Figure 3.29: A “top view” of the distribution of momenta initially sampled (i.e. they do not
obey the constraints). The momenta associated with the hydrogens are depicted by crosses and
those of the oxygens, by circles. Momenta were sampled about pgo = 0 with wavepacket widths,
(ve = 2.868, 70 = 9.807). 1000 sets of initial conditions are represented.
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the total angular velocity, w, in terms of L and the 3 x 3 inertial tensor, I: [29]
w=I"L. (3.39)
Subtracting this angular velocity from each atom, according to
Vi =wXTrj, (3.40)

leads to an expression for the new velocity of atom j in terms of the old:

new
Y.

; = v?ld — (w x 1j)

= v - (I7'Lxr) . (3.41)

These new velocities will give L = 0, by (3.38). Our hope is that the distribution which is obtained
from the above procedure will be sufficiently similar to one where the delta functions are applied.

Figure 3.30 gives a “top view” of the set of configurations obtained. Because we have shifted
the centre of mass back to the origin, it is difficult to comment on how localised the oxygen is, for
example. We do observe, however, that the O-H bonds all have length, ro; the hydrogens within the
outer circle are simply not on the xy-plane.

Figure 3.31 shows that the momentum distribution has also been significantly changed: our
initial conditions have considerably less kinetic energy than they did initially. Figure 3.32 shows
how the distribution of kinetic energy (over the initial conditions) changes at various stages of the
above procedure. The most profound change in this distribution is observed after the rotations are
removed: the distribution is now centred on zero.

It is interesting to compare these distributions with those obtained in the curvilinear coordinates
of Section 3.2.2, since ultimately we will be comparing their corresponding ACF’s. This comparison
appears in Figures 3.35 and 3.36. The results are very encouraging, given the “make-it-up-as-you-go”
nature of our sampling scheme.

Now that we have generated a large set of acceptable initial conditions, we turn our attention
to the final significant obstacle: the evaluation of the HK-prefactor. As yet another reference point,
Figures 3.37 and 3.38 show the ACF and power spectrum we are able to calculate at this stage:
everything in 9D except the HK-prefactor, which is computed in 1D by determining py and 6 from
the Cartesian positions and momenta. We could register minor complaints about this result: sharp
oscillations in our ACF occurring near 5000 au leads to a poor line-shape in our spectrum, and it
is presently unclear to me why this should be. The zero point energy is captured to respectable

accuracy, though, and the spacing of the peaks is approximately correct.
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Figure 3.30: The distribution of initial configurations, after the application of Rattle and removal
of centre-of-mass motions.
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Figure 3.31: The distribution of initial momenta, after the application of Rattle and removal of
centre-of-mass motions.
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Figure 3.32: The distributions of kinetic energy of the initial conditions (sampled in Cartesian
coordinates) at the different stages of preparation. The distribution directly sampled is shown with
circles, after the application of Rattle in crosses, after removing translations in squares, and the
distribution (not completely shown) after removing rigid-body rotations is shown as the bold solid
line. These plots were obtained from 80000 sets of initial conditions.
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Figure 3.33: The distributions of § sampled from ¥, in Cartesian coordinates. The dashed line is
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Figure 3.34: The distributions of py sampled from ¥, in Cartesian coordinates. The dashed line is
the distribution obtained from momenta sampled directly (subjected to an energy cutoff, Eyep =
10000cm 1), while the solid line shows the distribution after Rattle is applied and centre-of-mass
motion is subtracted. This plot was obtained from 80000 sets of initial conditions.
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Figure 3.35: A comparison of the values of § used in the initial conditions, obtained in both angular
(solid line) and Cartesian (dashed line) coordinates.
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Figure 3.37: The HK-IVR autocorrelation function calculated for the water-bender in Cartesian
coordinates, except for the prefactor, which is calculated from the 1D Hessian.
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Figure 3.38: The HK-IVR power spectrum calculated for the water-bender in Cartesian coordinates,
except for the prefactor, which is calculated from the 1D Hessian.
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Evaluating the HK-prefactor

Here, we focus our attention on the “Johnson’s multichannel WKB” approximation to the log-
derivative prefactor [23] presented in Appendix F. This is:
it
Rpzqz ~ exp | =5 /0 dt’; S| (3.42)
where wf (') is the frequency of the jth mode for the constrained system. All N of these frequencies
are obtained by diagonalising the fully projected mass-weighted Hessian. Here, we expect 6 + C' of
them to be zero, where C is the number of constraints we apply (i.e. 2).

The appeal of this particular form for the prefactor lies in its ease of computation. Aside from a
single diagonalisation, all computationally intensive matrix manipulation is avoided. Furthermore,
we have lost the square root of a complex number, so the branch-cut problem is effectively avoided.
In the Section 3.2.2, it was determined that (at least for this model system) Equation (3.42) demon-
strates favourable performance when compared to the exact log-derivative formulation: the ACF’s
gave power spectra with a more desirable line-shape, and Monte Carlo convergence of our integral
required fewer trajectories. Now, the only thing we need to worry about is getting the correct
Hessian (i.e. the wf’s).

Since we are in Cartesian coordinates, mass weighting our Hessian is straightforward
FoVo— Lot (3.43)

where p~! is a diagonal N x N matrix defined by

_ 1
(i = ‘n?fsij . (3.44)

13

Before we begin our discussion of the projection method, we look at the frequencies obtained by
diagonalising F™ (Figure 3.39). The three translations are effectively zero, and the 3 internal
modes compare almost identically with Figure 3.17. The three modes corresponding to rigid-body
rotations are troublesome, however, since they are imaginary (w? < 0, except at the equilibrium
structure where w? = 0) and are on the same order of magnitude as the bend mode. This leads to
difficulties: imaginary modes give rise to a positive real exponent in (3.42), leading to very large
values for the prefactor. This problem plagued this work in its earlier stages (our prefactor kept
blowing up), before rotations were removed. This limitation does not cause us too much concern,

however; it simply restricts our scope to problems concerning internal degrees of freedom.
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Figure 3.39: The eigenvalues of the unprojected, mass-weighted Hessian matrix in Cartesian coordi-
nates (u~!-F-u!). The three modes corresponding to translations are zero. Those corresponding to
the three rigid-body rotations are negative (i.e. give imaginary frequencies) for most non-equilibrium
conformations. The remaining three solid lines correspond to the internal modes. The dashed line
indicates the bend mode, calculated in 1D as G33F33.
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The projection method of Hinsen and Kneller

In this section, we present the general method used to construct a matrix which will effectively
project constrained motions out of the Hessian matrix.* The method was originally developed
by Hinsen and Kneller [44] for use in classical MD simulations of macromolecules. This helps to
illustrate one of the chief advantages of our approach: by staying Cartesian, we stay general. That
is, our method will conveniently interface with the molecular potentials and dynamics algorithms
of classical MD. This enables us to freely make use of existing codes and methods when the need
arises, rather than waste our time “reinventing the wheel”.

The essence of this method is to characterise the subspace of interesting motions (i.e. those which
are not constrained) by a set of (possibly linearly dependent) vectors which describe infinitesimal
elementary displacements. That is, rather than specify which motions are to be removed from
the Hessian, we define which motions are going to be allowed, about an infinitesimal displacement
from the present configuration. This technique is especially useful when dealing with large systems
exhibiting motions on a number of different timescales; normal mode analysis is possible for large
biomolecules, when extremely low-frequency normal modes (say, ~ 500cm™!) are being investigated.

The basic procedure is as follows. Once we have specified the complete set of permissible motions,
we construct corresponding vectors (we call them d®)) according to a simple recipe. There are
formulas for describing rigid-body translations and rotations, arbitrary motions of individual atoms,
and bond stretches.* Next, the complete set of these vectors are assembled to form the columns of
the displacement matriz, D:

D=(dW,-..,daM), (3.45)

where M is the total number of elementary displacements. This matrix is then orthonormalised.
Although perhaps the best known routine for this is the Gram-Schmidt method, a more numerically

stable option is singular-value decomposition (SVD), which decomposes D as
D=U.-x=.VT, (3.46)

Here, D is an N x M matrix, U is N x M and contains the orthonormal column vectors, ¥ is an
M-dimensional diagonal matrix containing the eigenvalues of DT . D (these are called the singular-
values of D). The number of non-zero singular values corresponds to the dimensionality of the
subspace of infinitesimal displacements.® Finally, V is an orthogonal M x M matrix which we have

no interest in.

3Note that our “constrained motions” include the two frozen bonds plus the translations and rigid-body rotations
which are associated with the centre of mass.

4Here, our bend is rendered by removing components of the H-H stretch vector corresponding to the O-H stretches.

SFor our water-bender, the dimensionality of this subspace is one.
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After removing the columns of U which correspond to zero singular-values, we form the projection
matrix, A, as

A=U-UT. (3.47)

This projector is then used to bring the Hessian matrix (as well as the matrix used to mass-weigh

our coordinate) into the desired subspace.

F© = A-F-A (3.48)

(e

A-ptAL (3.49)
Therefore, the final Hessian matrix, H, is calculated as

H = (A-p7'-A)-(AF-A)-(A-p7" - A)
= A-p P AF-Apt-A, (3.50)

where, in the last step, we made use of the following property (idempotency) of the projection matrix:
A-A=A. (3.51)

Figure 3.40 displays the eigenvalues of H, calculated as a function of §. Aside from our bend mode,

the rest are now true zero-frequency. Therefore, only this mode contributes to the sum in (3.42).

The semiclassical autocorrelation function

We are now ready to calculate the autocorrelation function by combining the components of the 9D
constrained expression. The autocorrelation function and its associated power spectrum appear in
Figures 3.41 and 3.42, respectively. Notice that we were able to estimate the quantum energy levels
to high accuracy, which is encouraging. The key results of this project are summarised in Tables 3.2
and 3.3. Table 3.3 is a compilation of the peak positions for our water bender, and Table 3.4 shows
the percent error in the peak spacing which is not associated with error in the zero point energy.

We conclude that our proposed method is justified.
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Figure 3.40: Square frequencies obtained by diagonalising A - p=* - A-F-A-pu~' - A. The dashed
line corresponds to the bend mode calculated in 1D by Gs3F3s. Notice that in two places, our bend
mode is imaginary (i.e. the curve goes below zero), and this can lead to problems in the evaluation
of the HK-prefactor. The region around 160° indicates a transition state (we are approaching the
inversion barrier of the potential), while the “dip” near 40° is a feature of the curvature of the
potential (perhaps not physically relevant). Either way, these regions correspond to high energies
and are not visited frequently in our trajectories.
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Figure 3.41: The HK-IVR autocorrelation function calculated for the water-bender in Cartesian
coordinates, using the “multichannel-WKB?” approximation to the prefactor.

Table 3.2: Accuracy in capturing zero point energy. This accuracy is due entirely to the HK-
prefactor. By introducing the approximate form, we gain an additional 0.6% error; by going to the
projected 9D Hessian, our error roughly doubles. The latter result can be explained by noticing that
the frequency of our bend mode spends more time in the imaginary region than does the frequency
computed in 1D.

method of ZPE error
calculation (em™) %
QM 808.0 0.0
1D SC-IVR
no R-factor 0.0 -
approximate R-factor 833.5 3.2
exact R-factor 828.8 2.6

9D SC-IVR (approximate R-factor)

no R-factor 0.0 -
1D hessian 834.8 3.3
9D projected hessian 861.6 6.6
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Figure 3.42: The HK-IVR power spectrum calculated for the water-bender in Cartesian coordinates,
using the “multichannel-WKB” approximation to the prefactor.

Table 3.3: Final table of calculated energy levels (raw data) in cm™!. The numbers in brackets are

uncertainties.
1D SC-IVR 9D SC-IVR
peak QM no approximate - exact no 1D 9D projected

R-factor R-factor R-factor R-factor hessian hessian

0 808.0 0.0 833.5 828.8 0.0 834.8 861.6

1 16415  858.6 1661.1 1652.2 871.7 1673.0 1698.4

2 3253.1 24889 3262.3 3262.6 2492.3 3278.0 33021

3 4828.3 4096.3 4823.1 4834.6 41143 4865.0 4889.5

4 6355.6 5697.5 6363.3 6389.1 5687.1 6333.7 63735

5 7815.0 72914 7880.3 7928.0 7232.7 7900.0 (20) 7905.6 (20)
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Table 3.4: The percent errors on the peak positions, compared to the corresponding quantum results.
This error reflects peak spacings only; peaks values were shifted so that the error associated with
zero point energy is 0.

1D SC-IVR 9D SC-IVR
peak no approximate exact no 1D 9D projected
R-factor R-factor R-factor R-factor hessian hessian
0 0.0 0.0 0.0 0.0 0.0 0.0
1 1.5 -0.4 -0.6 2.3 0.3 0.2
2 1.3 -0.5 -0.3 1.5 -0.1 -01
3 1.6 -0.6 -0.3 1.9 0.2 0.2
4 2.4 -0.3 0.2 2.2 -0.7 -0.6
5 3.6 0.5 1.2 2.9 0.7 0.4
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Chapter 4

Conclusions

“our

The principal conclusion that we make with regards to the results of the preceding chapter is:
method works”. That is, no significant error was found to be associated with our method, vis-a-vis
computation of the HK-IVR in curvilinear coordinates. Again, the primary appeal of our method
derives from its generality: it is amenable to large-scale simulation of arbitrary constrained molecular
systems. We also report that the computational methodology is parallelised in a straightforward
way,! with total processor time approximately equal to that used in corresponding serial calculations

on a single processor.

Limitations of our method

It must be mentioned that, for the simple systems discussed here, our method requires considerably
more CPU time than do the corresponding quantum and traditional semiclassical calculations. If
a model under investigation already has an existing curvilinear coordinate (i.e. the Hamiltonian
has been worked out), then our method will lose. But, our approach is aimed at complex situations
where these coordinates are not available.? Furthermore, when compared to exact quantum methods,
our approach exhibits far more favourable scaling: our computational bottleneck amounts to one
singular-value decomposition and one diagonalisation per timestep. The total number of these
operations is given by:

number of diagonalisations/ \ _ ( number of Monte } number of timesteps
singular-value decompositions J = \ Carlo trajectories per trajectory ’

and each of these operations is performed on a (roughly) N x N matrix. A comparable quantum
mechanical calculation requires only one matrix diagonalisation, but this matrix becomes very large

for systems of moderate complexity, as outlined in Section 1.4.

Y'We launch different Monte Carlo trajectories on different processors, and average results after they are complete.
In this sense, we affectionately refer to our MP1 code as dumb parallelisation.

2 At the present time, there exist kinetic energy operators for 4-atorm models, and these are exceedingly complicated
constructions.
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Also, we acknowledge that our method is not yet capable of addressing problems which include
rotational degrees of freedom. Rotations can become especially important when confronting inter-
molecular dynamics problems.

So far, we have restricted ourselves to a coherent state initial wavefunction. This may be a
poor representation for the physical system at hand in certain instances. Heller [21] has a way to
decompose any arbitrary wavefunction in terms of FG’s, and this may need to be employed in certain
cases.

Here, we have reported a numerical justification for our procedure, rather than a formal math-
ematical proof. We may conclude that our method is adequate to capture zero-point effects, and
proper quantisation in an anharmonic potential. The ad hoc way in which we proposed our sampling
procedure would have been especially troubling, had it not led to success. Qur sampling procedure
is certainly a target for future analysis.

The way we have elected to compute the HK-prefactor is susceptible to the scaling of both SVD
and diagonalisation routines. Because this is the computational bottleneck in our procedure, it is a
strong candidate for potential improvement.

Last, within the framework we have developed, there is no systematic way of dealing with so-
called problematic trajectories. Such trajectories hinder the convergence of our ACF, and in some
cases, cause the integrand to “blow up”. This is widely reported in the literature: Miller [45] screened
his initial conditions, and discarded those which lead to dissociation. Manolopoulos [46] did likewise,
and furthermore discarded trajectories which were deemed to be chaotic. These were identified by
their large HK-prefactors.® In this work, we found it sufficient to apply a simple energy cutoff. In
the case of our water bender model, this cutoff was chosen to be slightly lower than the inversion

barrier.

Future directions

The following improvements can be made in the way with which our method is implemented. First,
we could employ an integral conditioning technique in order to reduce the oscillations of our inte-
grand. Examples of such “smoothing” or “filtering” procedures which have been developed espe-
cially for frozen Gaussian wave-propagation are Miller’s Filinov [24] or generalised Filinov {26], and
Heller’s cellular dynamics.[8] I point out that these methods are formally equivalent, although there
is some dispute over which performs better. We remind the reader that the application of holonomic
constraints can be viewed as a smoothing technique, as described in the introduction to Chapter 3.

Again, our method is presently incapable of addressing rotational degrees of freedom, and this will

3Recall that propagation of the HK-prefactor involves elements of the monodromy matrix. This matrix is a measure
of stability for the dynamics. Therefore, the assessment of a set of initial conditions on the basis of the HK-prefactor
is called a stability criterion.
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be a high priority in the future. The problems with rotations enter our method as the orientational
dependence of the constrained Hessian matrix, giving rise to superfluous imaginary frequencies when
it is computed for any geometry apart from the equilibrium structure.

Because our method is general, it can be interfaced quite readily to other codes. In conjunction
with MMTK (the Molecular Modeling Toolkit developed by Konrad Hinsen {47]), we would be able
to make use of the expansive resources for classical molecular dynamics found therein. Recently, the
HK-TIVR has been used in conjunction with Feynman’s path integral techniques. [48] Our code could
be modified to launch ab initio software to enable “on-the-fly” computation of potentials, gradients,
and Hessians directly on the BO-PES. Finally, we could apply our propagator to the forward-
backward TVR (FB-IVR) of Miller ([49, 50], for example). This was designed for the calculation of
finite-temperature averages.

There are a number of applications of our method which will be potential candidates for research

in this group. I conclude with a brief enumeration of these.

1. Simulations of molecular species embedded in a liquid helium environment. For example, the
dependence of the O-C stretch frequency in OCS-He,, on the number of He atoms comprising

the cluster.

2. Simulation of intermolecular degrees of freedom. We could take as an example the HCI dimer,
and compare to results obtained with the HK-IVR in curvilinear coordinates.[45] This model
would also establish the capabilities of our method in handling particle symmetry and in

capturing the quantum effect of tunneling-splitting.

3. Simulation of photoelectronic spectra of hydrogen-bonded complexes. A number of potential

models exist here including water-clusters and a phenol-water dimer.
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Appendix A

Multidimensional Gaussian
Integrals

Here, we simply generalise the well-known (and by me, well-used) analytical formula for a 1-D

Gaussian integral,

400
IID —_ / dxeaz2+bm+c
—0Q
— _zr_ —b2/4a+c Al
o, (A1)
to IN-dimensions.
+00
I:/ dxexp[xT-A-x+xT-b+c]. (A.2)
—Oo0

Here, we assume that the elements of A are real and negative, and also that it has an inverse. We

now change to a new basis, y, in which A is diagonal, so that we may rewrite (A.2) as a product:

+00 _ B
I = / dyexp[yT-.A'y+yT-b+c]

-0
N 400 ~ _
= H / dy exp [Akky% + bryr + c]
s
N

};Il {\/:——;rk—;exp [——5%/4/1;@1; + c] }

N 7 7-17%
T bkAk,k bk
T exp {Z 4 +cp. (A3)

k=1

Recalling that a determinant does not depend upon basis,

iy s
V det A V det A (a4)
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Also, since A is diagonal,
N - ~ e ~ ~ g
S bdgby = BT-AT-Db
k=1
= bT.- A1 b (A.5)

The last step was made recalling that a linear change of basis matrix is orthogonal. So, our final

+00 T -1
T‘ . T. _ . ™ b ‘.A 'b
/-OO dxexp [xT-A-x+x" -b+c] =4/ detAeXp{ 1 +c]. (A.6)

result is:
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Appendix B

The Stationary-Phase
Approximation

Here, I derive the Stationary-Phase Approzimation {27] which provides us with a means of evaluating

multidimensional integrals of the form:

I= /dxg(x) exp (—zﬁf(x)) . (B.1)

Difficulties in evaluating this integral by conventional means arise due to the highly oscillatory
nature of the integrand. Because of this rapid oscillation, there will be a large degree of cancellation
between positive and negative areas. Therefore, we expect the main contributions to the overall

integral to come from points where the phase is stationary, that is, where
fix)=0. (B.2)

We are therefore justified in expanding the phase (f(x)) to second order and the pre-exponential

function (g(x)) to zeroth order about these stationary points, which will be denoted xy:

~ o g(xk) (B.3)

X=Xpg

g(x)

10| m fl) g £ ke) - (= xe): (B.4)

X=X
Notice that the linear term of (B.4) does not appear because of (B.2). Substituting (B.3) and (B.4)

into (B.1), we obtain for a single stationary point:

o= o) [ axenp (0 + x0T £0) - (0. (B.5)
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Once again, we have a multidimensional Gaussian integral which can be evaluated as per Appendix

A. This gives us:

I

il

@y i
X ——te L exp = f(X
o k>( det(%f”m))) exp [ .10

B 2min)N o [ rix
= 90w (———-———det f,,(xk))e b |1/ (B.6)

Finally, the overall integral is computed as a sum over the contributions from each of these stationary

points:

st.pts.

@rim)N > g(xx)

k=1

1
det f"(xy)

]

exp [%f(xk)] . (B.7)

This final expression is an approximation to (B.1), accurate to O(h).
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Appendix C

The Power Spectrum from the
Autocorrelation Function

In this section, we demonstrate that the Fourier transform of the autocorrelation function, C(t), is

in fact a power spectrum. Beginning with the definition of the autocorrelation function,
C(t) = (shole™ /o) (C.1)

we take the Fourier transform into the energy domain:

I(E) = _L /+oo dte+iEt/h(¢ | ——iﬁt/hl c2
=5 ole o) - (C2)

—co

Inserting a complete set of stationary states allows us to evaluate the Hamiltonian operator:

1 oo iE it iHt/h
5 dtet RN (ole™ R n) (o)
—00

I(E)

il

n=0

1 & [ +iEt/h _—iEnt/h
= oo Do [ e e o) nlo)

n=0 v~

% 1
= Ikl 5= [

n==0 oo

= Y |{nlto)|*S(E — En) - (C.3)

n={0

+o0

dt exp [——————i(E — E")t]

h

In the last step we have identified the Fourier representation of the Dirac delta function. Therefore,
we find that the energy spectrum consists, in theory, of a sum of Dirac delta functions. Although
these functions are defined as having infinitesimal width (yet still integrate to unity), in practice, we
do not evaluate the Fourier transform to infinite time. In fact, we compute I(E) as twice the real

part of (C.2), integrated only to some positive, finite time:

1 T . i
I(E) ~ —Re /G dtet R (ol HE Rl (C.4)
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Figure C.1: The quantum autocorrelation function for two particles in a harmonic well.

This gives rise to sink functions which have finite amplitude. The amplitude of a peak corresponding
to Ey is related to the overlap |{(n|to)|. In principal, our wavefunction |t} could have significant
overlap with any or all of the stationary states. However in practice, we define it such that only the
first, several peaks are observed.

To illustrate this relationship between the autocorrelation function and the energy spectrum, I
will provide an example: the harmonic oscillator model presented in section 3.1. The quantum ACF
calculated is shown again in Figure C.1. The energy spectrum, computed as Equation (C.4) is shown
in Figure C.2. The line-shape of the peaks is undesirable since, for more complicated spectra, it can
pose difficulties in identifying the precise positions of individual peaks. Furthermore, for the least
attractive spectra, it is sometimes difficult to identify which features are true peaks, and which are

artifacts of the numerical transform procedure.
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Figure C.2: The quantum power spectrum for two particles in a harmonic well, taken as the Fourier
transform of the autocorrelation function.
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Appendix D

The Gaussian Window Function
Applied to the Autocorrelation
Function

In order to accurately determine the positions of the peaks in the power spectrum, we apply a
conditioning technique which transforms the approximate Dirac delta functions with smooth Gaus-
sians. The method is simple. We simply multiply our autocorrelation function by a Gaussian

(9°(t) = exp(—at?)) prior to Fourier transforming it:
o (t) = g*(H)C(8)- (D.1)

Again, we evaluate the FT of the above expression:

gw 1 oo iEt/h rgw
_ 1 e dteiEt/h  g—at® < —ift/h
= gp ) e e n§=o(¢ole [n}{n|to)
_ 1l 2 [T 2, UE —Er)
= 5 n§:0:g<n;¢0>| /_ - dtexp{ at? + ot (D.2)

We observe yet another Gaussian integral, which is performed analytically:

%gl(nl%)lz\/gexp K_(_E__—f_)) (%)]
_ %\/g gunmm exp [_mlza( . E")2] | o

Our final result, (D.3), is analogous to that of Appendix C, except our sum over Dirac delta functions

¥(E)

Il

had been replaced with a sum over Gaussians, each with width ;4—,,}5&. The width parameter is
arbitrary in principal, but is selected so that the autocorrelation function decays to zero close to the

end of the time-frame of the experiment.

101



1.5 T T T T T T

Re(C(Y)

~ 05
£
© o
E

-0.5

-1

0 20 40 60 80 100 120 140 160 180 200
time (au)

Figure D.1: The windowed quantum autocorrelation function for two particles in a harmonic well.

To illustrate the effect of this technique, I provide an example for comparison to Appendix C.
Figure D.1 shows the windowed autocorrelation function corresponding to Figure C.1, while Figure

D.2 gives the Fourier Transform. Notice that our peaks now have a Gaussian line-shape.
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Figure D.2: The quantum power spectrum for two particles in a harmonic well taken as the Fourier
transform of the windowed autocorrelation function.
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Appendix E

Selection of the Coherent State
Width Parameters

We want the widths of our wavepackets appearing both in our initial wavefunction as well as in the
coherent states to reflect-both the mass of the atom it is assigned to, as well as the shape of the
potential the atom is in. We know that heavier atoms should be more localised in coordinate space.
Furthermore, in accordance with the Frozen Gaussian Approximation (in section 2.6.2), we would
like atoms located in regions of the potential with a large curvature to be more localised.

Therefore, we calculate a general element of the width matrix, -y, (corresponding to the kt* atom)
as:

o ([(Ee )y xm
k 5Cﬁc TYz k

02V
= G4/ Yoyz X M (E.1)

oq?
where my, is the mass of the k" atom, and (%Z%hyz denotes the average of the z,y, z terms of the
(diagonalised) second derivative matrix of the potential corresponding to the k't atom. C is a global

width parameter, selected at our discretion so that our autocorrelation function has a desirable

shape.
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Appendix F

Miller’s Log-Derivative
Formulation for the Herman-Kluk
Prefactor

Here, I present an alternate method of evaluating the Herman-Kluk prefactor which is due to Miller.
[23] It is not only computationally less intensive than propagating the monodromy matrix (via the
auxiliary equations presented in Section 2.7.2), but also claims to bypass the branch-cut problem,
which arises when we take the square root of a complex number. Perhaps the most attractive feature
of this method is that it can be successively approximated to suit the computational demands of the
problem at hand.

Recall that the Herman-Kluk prefactor is

1 _ i _ h
R;?:;q;z = det {5 [qu + 1Mpp7 + 'ﬁ"f lMpq + ;qu”f} } > (F.1)

where My,, Mp, M, and My, are elements of the monodromy matrix. For brevity, I will refer to
the mass-weighted second derivative matrix for the potential as x; = %2%—. Miller begins by defining
t

a matrix, Q, as
i
Q: = My + ’Z-'qu"/ (F.2)
. . B
Q: = Mg+ ?quﬂ'
i
= Mpq + ;’Mpp'.)/ (F.3)
. . B
Q: = My + TL-‘Mpp'Y
[
= —# Mg — -Z,—/sthp'y. (F.4)
Here, he has made use of the auxiliary equations, (2.128). He notes that (F.1) can be written

Ry q¢ = det {';' [Qt + %’Y—th] } . (F.5)
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and that
- h h
Q; + £k Qe = — Ky |:qu + ;qu’)/] + Ky ‘:qu -+ 'Zqup’y} =0. (FG)

The log-derivative matrix, R; (not to be confused with the prefactor, Ry, q;¢) is now defined as:
R; = Q:Q; " (F.7)
After a little fiddling,

RQ: = QQi'Q
= Q
Q= ReQi+RQ
Qe = ReQp+ RiRoQy
= (R+R})Q
=k = Ry+RL

We have made use of (F.4) in the second last step. Therefore, R, evolves according to
Rt = —K¢ — R? (F.S)

Now, we determine the initial condition for Ry. Sinceat t = 0, My, = M,, = 1 and My, = M, = 0,

it follows that Qg = 1, Qo = %fy, and therefore, by (F.7):

h

To arrive at the final expression for the prefactor in terms of the log-derivative, we notice that, with
the help of (F.7), (F.5) can be factored as

det B (Qt + %”y“th)]

Il

det [-;- (1 + ;—i “1Rt) Qt]
1

det [% (1 + ﬁ "‘Rtﬂ det Q;. (F.10)

i

Now, we must express det Q; in terms of the log-derivative. Solving (F.7) for Q; gives:

t
Q¢ = Texp { /0 dt’Rt’] , (F.11)

where T is the time-ordering operator, although it disappears when the determinant is taken:

t
detQ; = det {T exp {/ dt’Rt,] }
0

t
= exp [/ dt'TrRt:] . (F.12)
¥
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To arrive at (F.12), we’ve diagonalised Ry, so we are able to write the determinant as a product,

and then made use of the basis-invariance of the trace operation. So, our final expression for the

. t
Rp,q.t = 4/det ! 1+ —y~1R¢ )| exp —1—/ dt'TxRy | . (F.13)
2 A 3/,

Note that this result is formally exact. Taken with (F.8) and (F.9), (F.13) provides us with a

prefactor is:

practical means of computing Ry q;¢-
Now we turn our attention to two approximate treatments. The first was not used to produce
any of the results in this thesis, so I won’t provide the details of its derivation. It assumes that the

force constant matrix varies slowly in time, i.e.:

dh’;t BBV .

This gives the following expression for the prefactor:
1t ~
Rp‘-q,.t = eXp {5/ dt’rI‘I‘RtI:I . (F15)
0

Notice that this obviates the need to calculate any determinant, thereby reducing the computational

cost. This new matrix, Ry, has the same time-dependence as R, but with a different initial condition:
~ i1
Ry = 5 {37 w0 +hy]. (F.16)

The other approximate scheme goes a step further: we assume that the log-derivative matrix itself
varies slowly with time:

R~ 0. (F.17)

Miller refers to this as “Johnson’s multichannel WKB approximation”. Equation (F.17) enables us
to simplify (F.8) as:
Re = (—k)"? = —i(ky)'/? (F.18)

Taking Ry as (F.9) in the determinant and as (F.18) in the exponent dramatically simplifies (F.13):

o = i[5 ) [ e ()
\/de—tHGXP [-% /Ot dt'g’ﬁ(nt:)l/z]

. t N
1 ! 1 !
- —hw; . F.19
exp h/o dt JE:I 2ﬁw:,(t) ( )

Ii

Il

For the last step, we have recognised that the trace of the square root of the force-constant matrix

is equivalent to the sum of the frequencies obtained by diagonalising x; (DJJQ (t) are the eigenvalues
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of the k;). Notice that now all that is required to propagate the HK-prefactor is to compute #; and
diagonalise it once per timestep. Notice also that imaginary frequencies (encountered in “concave-
down” regions of the potential) will give rise to rather large contributions to Rp.q;¢. This was
a problem encountered in Section 3.2.3, before rigid-body rotations were removed from our water

model.
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Appendix G

Schematic for Computer Code
Used in this Thesis

Below is a schematic outline of the code used in this thesis. Codes were written in CT, and exten-
sive use was made of the object oriented philosophy. I present the classes used in the evaluation of
the HK-IVR ACF in a format modeled after Hinsen’s MMTK documentation. [47]

class molecule :
This class models a molecular system, and is used to compute common quantities (angular momen-

tum, bond distances and angles, the location of the centre of mass, etc.).

members :

e natoms

The number of atoms in our molecule.

¢ molecule_name

The name of our molecular system. For our water-bender, this was “water”.

e atom_label
The chemical symbols of all of the atoms in the system. Each atom is defined by two characters

(our water-bender was specified by “OuHGH,”).

e atom_chg

The charges, Z, of the nuclei.

® poS

The present configuration.
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e vel

The present velocities.

@ acc

The present accelerations.

® Mmass

The atomic masses.

e M
The total mass.

e animation

A filestream for writing a jmol animation to file.
methods :

e molecule(molecule_name, atom_labels)
The constructor: initialise the molecule name and its atom labels. . Fill atom_chg and mass

with appropriate values.

e init(pos, vel)

Initialise position and velocity.

o write xyz(filename)

Write the molecular configuration to file in zyz format.

e distance(atom_1, atom_2)

Return the distance between atom_1 and atom_2.

e angle(atom_1, atom_2, atom_3)

Return the angle formed by atom_1, atom.2 and atom_3.

e position(atom, coord)

Return the x, y or z component (specified by coord) of the position of atom, atom.

e velocity(atom, coord)

Return the x, y or z component (specified by coord) of the velocity of atom, atom.

e acceleration(atom, coord)

Return the x, y or z component (specified by coord) of the acceleration of atom, atom.

e remove_translations()

Remove net translations.
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e remove_rotations()

Remove net angular momentum, so that L = 0.

e moment_of_inertia()

Return the 3 x 3 inertial tensor.

e cm_at_origin()

Shift the centre of mass to the origin.

e total_mass()

Return the total mass of the molecular system.

e total_L()

Return the total angular momentum of the molecular system.

e return_gcm()

Return the position of the centre of mass.

e return_pcm()

Return the momentum associated with the centre of mass.

e animate_jmol()

Add the present configuration to the animation file, in jmol format.

class waterpot :
This class make use of the molecular potential of Reference [40] (i.e. it calls the FORTRAN func-

tion), in order to compute the potential and its relevant derivatives.

members :

o fdiff

The finite difference value for computing derivatives of the potential.
methods :

o waterpot(fdiff)

The constructor: initialise fdiff.

e potential(pos)

Return the value of the potential, V{q), calculated at the input configuration, pos.
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e gradient(pos)

Return the gradient, _3_%:1_)’ calculated at the input configuration, pos.

e hessian(pos)

2
Return the Hessian, 3—5‘{{2&, calculated at the input configuration, pos.

e projector(pos)
Calculate the elementary displacement matrix, D, at the configuration, pos, and return the

corresponding projection matrix, A.

class rattle :

This class computes classical trajectories for constrained systems in Cartesian coordinates.

members :

e natoms

The number of atoms in our molecule.

e pconsts

The number of holonomic constraints.

e dt

The value of the timestep for the dynamics.

e constraint
The complete set of constraints, {dﬁf)} Fach constraint specifies the two participating atoms

and their relative distance.

® Mass

The atomic masses.

e max.iterations
The maximum number of Rattle iterations to be performed before it gives up and sends an

error message (in order to prevent an infinite loop).

e tolerance

The value of the Rattle tolerance.

methods :

112



e rattle(natoms, nconsts, dt, constraint, mass, max_iterations, tolerance)

The constructor: initialise members.

e init(pos, vel, acc, hes, T, V, potcalc)
“Repair” position and velocity (to obey the constraints), and compute acceleration, the Hes-
sian, and kinetic and potential energy at the beginning of a trajectory (potcalc is an instance

of the waterpot class).

e timestep(pos, vel, acc, hes, T, V, potcalc)
Propagate all dynamical variables forward by dt, ensuring that all constraints are satisfied to

within tolerance.

class hk_ivr :
This class performs the computation of all parts of the HK-integrand. It includes (as members)

instances of the classes written for the calculation of the HK-prefactor (see below).

members :

e ndf

The total number of degrees of freedom of our molecular system.

e dt

The value of the timestep for the dynamics.

e alpha

The wavepacket width parameters.

® Mass

The atomic masses.

e pos0 ‘
The configuration of |¥g).

e vel0

The velocities corresponding to |¥o).

e gpiqi_psi0

The present value of the overlap, (g7, 4.|%o), minus the Gaussian sampling function.
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psi0.gpiqt
The present value of the overlap, (¥olg3,q,)-

action

The present value of the classical action, Sp,q.:.

intgnd
The present value of the HK-integrand, minus the prefactor (i.e. the overlaps multiplied by

the phase term).

r-wkb

An instance of the class for computing the approximate HK-prefactor.

rext

An instance of the class for computing the formally exact HK-prefactor.

methods :

hk_ivr(natoms, dt, alpha, mass, pos0, vel0)

The constructor: initialise members.

sample_ics(posi, veli, rand)
Sample initial positions and velocities from the Gaussian distribution, centred on |¥p) (using

the random number generator, rand), and place these in posi and veli.

init(posi, veli)
The classical action is reset to 0, and the HK-prefactor to 1. The initial positions and velocities
(posi and veli) for this trajectory are used in evaluating the overlaps; (g7 q4.1%o) is computed

only once per trajectory since it is time-independent.

update(post, velt, hest, T, V)

Update all members based on the input dynamical variables: The overlap, (¥olgg,q,) is com-
puted using the present position and velocity (post and velt). The classical action is updated
using the kinetic and potential energy (T and V). The HK-prefactor is updated using the

projected, mass-weighted Hessian (hest).

intgnd_nor()
Return the present value of the HK-integrand without the prefactor. This gives rise to Heller’s

primitive IVR.
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e intgnd_wkb()
Return the present value of the HK-integrand, where the prefactor has been computed by the

approximate method of Appendix F.

e intgnd_ext()
Return the present value of the HK-integrand, where the prefactor has been computed by the
formally exact method of Appendix F.

class r_logwkb :

A class for computing the HK-prefactor by the approximate method presented in Appendix F,
it N
Rp;q:t ~ exp {_% o dt' D25y %h‘”j(t')] .

members :
e ndf

The total number of degrees of freedom of our molecular system.

e dt

The value of the timestep for the dynamics.

e int_sum.w
The present value of the integral in the exponent (see above).
methods :
e r_logwkb(ndf, dt)
The constructor: initialise members.
e init()
Start off with Rp,q;¢ = 1.
e update(hes)
Update the value of the prefactor using the eigenvalues of the projected mass-weighted Hessian,

hes.

e value()

Return the present value of the prefactor.

class r_logext :

A class for computing the HK-prefactor by the formally exact method presented in Appendix F,
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Rpqee = /det [3 (1 + i7" R)] exp [4 [ dt'TrRe ).

members :

e ndf

The total number of degrees of freedom of our molecular system.

e pfsteps
The number of “sub-timesteps” which are performed in the propagation of the log-derivative
matrix (according to R; = —k; — R?) per evaluation of the projected mass-weighted Hessian,

K.

e dt
The value of the timestep for the dynamics, divided by pfsteps.

e R

The present log-derivative matrix.

e igamma

The inverse wavepacket width parameters.

e int_Tr-R
The present value of the integral, f(: dt'TrRy.

e C
The present value of the HK-prefactor.

e imdet
The imaginary part of the determinant, det [% (1 + %'y‘lRt)]. We keep track of this in order

to keep the prefactor a continuous function of time.

eV

This quantity is £1, and is used to keep the prefactor a continuous function of {ime.
methods :

e r_logext(ndf, pfsteps, dt, alpha, mass)

The constructor: initialise members.

e init()
Start off with Rp,q;¢ = 1.
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e update(hes)

Update the value of the prefactor using the projected mass-weighted Hessian, hes.

e value()

Return the present value of the prefactor.
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