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Abstract

The effects of radiation damage, tumour repopulation, repair and the possibility to 

extract information about the model parameters describing them are investigated. 

Published data on cultured cell lines were analyzed by employing a non-Poissonian 

tumour control probability model. A report in the literature, where in-vivo data were 

analyzed, the employment o f the single-hit model of cell kill and cell repopulation 

produced the best fit. Ignoring the quadratic term of cell damage in the current analysis 

leads to poor fits. Our data analysis shows the importance o f the linear-quadratic 

mechanism o f cell damage for the description of the in-vitro cell dynamics.

The possibility of calculating more radiobiologically adequate dose-volume 

constraints for the needs of the radiation treatment optimization is investigated. Based on 

the Lyman and the critical volume normal tissue complication probability (NTCP) 

models, the Monte-Carlo method of reverse NTCP mapping is applied for the calculation 

of new dose-volume constraint information.
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Preface

Chapter 1 outlines the current developments in the radiation biology and the main 

aspects of the interaction of the radiation with matter. The radiobiological models o f cell 

damage are discussed. Models describing the probability of tumour control after 

irradiation and the probability o f normal tissue complication are described.

Chapter 2 presents the application o f the most recent non-Poissonian TCP model 

to cell megaculture data with the purpose of model parameter values extraction. Our 

work was published this year (1, see below in List of Publications and Conference 

Publications) and presented at various conferences (2 and 3, see below in List o f 

Publications and Conference Publications).

In Chapter 3, a reverse mapping approach is applied for the estimation of proper 

physical dose-volume constraints based on radiobiological considerations for the need of 

the physical RT optimization. A paper using the work mentioned in this chapter was 

submitted recently (4, see below in List o f Publications and Conference Publications). 

Material which used the work was presented at two conferences this year, which are 

listed below (5 and 6, see below in List of Publications and Conference Publications). 

Finally, Chapter 4 concludes the findings from the previous two chapters.

List o f  Publications and Conference Publications

1. P. Stavrev, M. Weldon, B. Warkentin, N. Stavreva, B. G. Fallone. Radiation damage, 

repopulation and cell recovery analysis o f in vitro tumour cell megacolony culture
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Chapter 1

Overview of the current developments in radiation induced tissue 

damage models

1.1 Introduction

Radiation therapy can frequently contribute to the cure of a malignancy, or at least 

to a significant palliative improvement in quality o f life. One o f the most common means 

of treatment in a modem medical setting is by means of highly penetrating high-energy 

photons from a linear accelerator. Several x-ray beams are directed into the patient from 

various angles and, because of Compton (which predominate at high energies in soft 

tissue) and photoelectric interactions, each of them is attenuated nearly exponentially as it 

passes into the body. The resulting high-velocity photons and Compton electrons ionize 

the tissues they traverse, depositing dose especially in the beams’ crossfire region. The 

production o f free radicals and other molecular instabilities leads to damage to DNA and 

to the tissue microenvironment. That, in turn, is intended to kill the tumour cells.

In this chapter, mathematical models describing cell damage will be introduced. A 

brief overview of the interaction of the radiation with matter will be given. Mechanisms 

of tissue damage caused by ionizing particles on a molecular - cellular level are 

discussed. Finally the models describing the probabilities of tumour control and normal 

tissue complication will be introduced.

1
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1.2 Definitions

Some important definitions of terms used in this thesis are listed below.

TCP - Tumour control probability, the probability for zero clonogens surviving after the 

irradiation.

NTCP - Normal tissue complication probability, the probability for complication of 

certain kind for a given organ at risk after the radiation treatment.

Dso - The dose resulting in 50% probability of complication (NTCP=0.5).

Integral and differential dose volume histosrams are two very important notions widely 

used in the treatment optimization planning.

Integral dose volume function is defined by the function (V,D) determining the volume V 

which is irradiated to at least a dose D. Mathematically it is expressed as:

where 0  is the Heaviside step function.

Differential dose volume function is defined by the function (V,D) determining the volume 

V which is irradiated to a dose D. Mathematically this is obtained by differentiating the 

Integral dose volume function leading to:

SlruclureO/lnieresl

(1.1)

SlruclureO/lnieresl

(1.2)

where d  denotes the Dirac's 8  function.

The corresponding dose-volume histograms are given with:

SlruclureO/lnieresl

(1.3)

and

2
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Dj+A

Krf#(Z>.)= { dD  |  S (D (r ) -D )d 3? . (1.4)
/ ) .  — A  Structure■< flm erest

The dose volume histograms are easily calculated from the dose distribution (defining the 

dose at a certain point r in the body). They represent a one-dimensional reduction of the 

three dimensional dose distribution. They are widely used in the radiobiological models 

developed to determine the probabilities o f complication or tumour control. They are 

very important for intensity-modulated radiation therapy (IMRT) plan optimization using 

dose-volume constraints.

1.3 Interaction o f  Photons with Matter

1.3.1 Coherent (Classical or Rayleigh) Scattering

When incident photons are scattered by the atoms or molecules as a whole, the 

interaction takes place without energy transfer. The scattered photons have the same 

frequency as the incident ones. The cross-section of coherent scattering is greater for 

lower photon energies, which are not large enough to cause ejection of atomic electrons 

and ionization o f the atoms. After energies o f about 100 keV, the cross sections for 

coherent scattering becomes negligible. This kind o f interaction does not cause any 

changes in the atoms and molecules of the substance, and is thus of no radio-therapeutic 

interest. At most, coherent scattering contributes to broadening the photon beam slightly.

1.3.2 Compton Scattering

When the incident photons interact with individual quasi-free atomic electrons 

they transfer part o f their energy to the electrons. The electrons being quasi-free, i.e. 

nearly unbound, acquire kinetic energy as a result of the interaction and leave the atom

3
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(molecule). Thus, the atom (molecule) is ionized. Compton scattering takes place on 

outer weakly bound electrons. That is why the Compton effect is more essential for light 

and medium atoms, whose electrons are not very strongly bound and for photon energies 

in the range 0.1-10 MeV widely used in radiotherapy. Compton scattering is the 

predominant interaction photons with such energies undergo in water and soft tissue 

(muscles, connective tissue, fatty tissue). This kind of interaction is of great importance 

in radiobiology and hence, radiotherapy.

1.3.3 Photoelectric Effect

The photoelectric effect involves the interaction of high energy photons with 

atoms, resulting in the atoms being ionized and the photons absorbed. Bound electrons 

are ejected with kinetic energy Ee-hv-(p, where hv is the energy of the incoming photon 

and (p is the binding energy holding the electron to the atom. Free electrons are not 

subject to this effect. This is a consequence of the laws of energy and momentum 

conservation, and it has simple classical explanation. Let us imagine a free electron and 

suppose it absorbs a photon. In a frame where the electron (e-) is initially at rest both

1 2 £laws will give: — wv = e , p _ =m v — p Y = — - This would lead to v=2c, i.e. to a
2 e c

contradiction with the physical reality (given relativity).

As free electrons do not absorb photons at all, this interaction can only take place 

on inner atomic electrons that are strongly bound and it is more important for heavy 

atoms. The photons must have energies somewhat greater than the binding energy o f the 

electrons to be absorbed. The mass attenuation varies approximately with atomic number 

Z to the power of 3-3.8, for higher and lower Z values respectively. It plays a role in a

4
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limited incident energy interval of the order of the binding energies o f the electrons. In 

body tissue it is insignificant for energies greater than 0.1 MeV.

1.3.4 Electron-Positron Pair Production

Theoretically, at energies no less than twice the rest energy of the electron, 

2x0.511 MeV = 1.022 MeV, a photon of energy higher than this can be converted into an 

e' - e+ pair. A single free photon cannot produce an e' - e+ pair because the energy and 

momentum conservation laws cannot be simultaneously fulfilled. The e‘ - e+ pair 

production can take place only when the photon is within an electromagnetic field (or 

interacts with another photon). Usually the e" - e+ production takes place when the photon 

is in the strong electric field of atomic nuclei. The larger the atomic number and the 

greater the photon energy, the greater the probability of an e' - e+ pair production. In body 

tissue this interaction becomes predominant for photon energies greater than 20 MeV, i.e. 

well above the theoretical threshold. The kinetic energy given to the e' - e+ pair (which 

can be distributed between the positron and electron in any fraction) is then given by hv -  

1.022 MeV. At such photon energies, the kinetic energy o f the produced electrons and 

positrons is in itself enough to cause inelastic interactions with the medium. Also, photon 

production by the charged particles (e" - e+) can take place either as a result of 

bremstrahlung or annihilation of the positron with an electron from the medium. The 

probability of annihilation of a fast positron (1), while passing through matter is quite 

small, so in most cases a fast positron will first lose all its energy and is then annihilated. 

As a result of the annihilation process, two photons are produced, each with an energy of 

at least 0.511 MeV, i.e. these are photons capable of causing Compton interactions. Thus, 

electron - photon showers may be developed.

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1.4 Interaction o f  Electrons with Matter

The energy interval of electrons used in radiotherapy varies from several keV to 

20 MeV. These electrons may be considered fast electrons. Fast electrons are electrons 

whose velocity is much greater than the mean velocity o f atomic electrons which is o f the 

order of 106 m/s. For comparison the velocity of 10 keV electrons is 6xl07 m/s and the 

velocity of 10 MeV electrons is nearly 3x l08 m/s, i.e. they are ultra-relativistic particles.

1.4.1 Elastic Scattering

Fast electrons may interact elastically with the atoms of the medium. As in the 

case o f coherent scattering of photons, these interactions do not cause changes in the state 

o f the atoms or molecules and are o f no biological interest. But as far as there is 

momentum transfer, the electrons get deflected which causes broadening of the electron 

beam. That is why these events have to be taken into account for the purposes of electron 

transport description in the medium.

1.4.2 Inelastic Scattering, Collisional Energy Losses

Inelastic scattering includes excitation and ionization of the atoms or molecules of 

the medium as a result of collisions of the incident electrons with the atomic electrons or 

atoms and molecules as a whole. These processes are accompanied by energy transfer 

and thus cause collisional energy losses and slowing down of the incident electrons. The 

inelastic scattering can be examined in the Bom approximation like the elastic scattering. 

The value o f the transferred momentum determines the outcome of the interaction 

(excitation or ionization of the atom).
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Low momentum and energy transfers cause excitation of the atoms or molecules. 

The energy of the excited state can be radiated (in the optical region) or can dissipate in 

the form of heat. More importantly, it can cause unspecific chemical reactions in the 

medium.

Large momentum transfer means that the atom receives a large increase in 

momentum in comparison to the momentum of the atomic electrons. Since free electrons 

cannot exist in the medium, the low energy secondary electrons are trapped by nearby 

atoms (molecules) thus causing their ionization, too.

The low energy transfer ionizations together with the excitation events contribute 

to the so-called continuous collisional energy losses and continuous slowing down o f the 

incident electrons.

In some cases, even though with low probability, the energy exchange can be 

considerable due to the fact that the interacting particles have equal masses. The 

secondary (knock-on) electrons can be energetic enough to cause further excitation and 

ionization of the atoms (molecules) o f the medium, i.e. they have a track of their own. 

Such electrons are called delta rays.

1.4.3 Bremsstrahlung Radiation Losses

When accelerated or decelerated in the electric fields of the atomic electrons and 

nuclei, the incident electrons like all accelerated charged particles emit photons. This 

phenomenon is called bremsstrahlung production -a quantum analogue of the synchrotron 

radiation. It takes place predominantly as a result of interaction with the atomic nucleus 

as its electric field is stronger by a factor of Z than the field of a single atomic electron.

7
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The intensity o f the bremsstrahlung emission is proportional to the particle acceleration, 

therefore it is inversely proportional to the particle mass. Hence, the bremsstrahlung 

production is more essential for light particles such as electrons and is quite inessential 

for heavy particles such as protons and a-particles. The bremsstrahlung photons have a 

continuous energy spectrum with a sharp bound at the initial energy o f the emitting 

particle.

The bremsstrahlung photons undergo the same interactions as all photons and thus 

contribute to the development of electron - photon cascades. Thus, the production of 

bremsstrahlung photons is an additional mechanism of indirect ionization of the medium 

by the incident electrons.

1.5 Cellular Radiation Response

As long as radiation therapy is one of the major modes of the treatment o f solid 

tumours, the prediction of how radiation affects tumours and the human body will be 

important. Much effort has been directed to the study o f the cellular response to 

radiation, the understanding of which helps us to develop models o f tumour control and 

normal tissue injury by radiation. A discussion of the different models of cellular 

response to radiation is presented in this section

1.5.1 Single Hit Model

The simplest model for cell death (or survival probability) by radiation is the

single hit model. This model assumes that after the cell has been hit with radiation it is 

dead. A more important assumption is that a cell needs only be ‘hit’ once by radiation to 

kill it, a cell can only stay alive if it receives no hits whatsoever. Due to the quantum 

nature of the processes of high energy particle irradiation, the energy transfer is discrete.

8
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Hence, the dose D  could be measured in terms of ‘hits per volume’. If v is the volume of 

the cell or rather the volume of its sensitive structural element, the product vD represents 

the mean number o f hits within the volume v after irradiation with dose D. The four 

conditions of Poissonian statistics (see Appendix 1) are applicable in this case. Hence, 

the probability of a cell surviving an irradiation of dose D  will be given with:

P
survival ■ ? (1.5)

n\

where // is the mean number of hits and n is the number of hits. As mentioned earlier, the 

mean number of hits is proportional to the dose. Thus, more radiation equates to more 

possible hits. Since p  -  vD, and in order to survive the cell would have to receive zero 

hits, i.e n=0, the survival probability for a Single Hit model is given as

D
Psurviva, = e aD= e D° (1.6)

where Da is the dose required to reduce the survival probability to 0.369 ( e 1), and its 

reciprocal value determines the cells radiosensitivity a. All the relevant radiobiology and 

radiation physics reside within Da , which may be a complex function of any number of 

interesting parameters which may, or may not, be understood.

The same equation could be obtained by assuming that the decrease in the 

surviving cells dN  irradiated to a dose dD is proportional to the number of cells before the 

irradiation and the dose dD:

dN = aNdD, (1.7)

hence after the integration

9
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N.survivals (D )  =  N 0 e aD (1.8)

where N surv iva is  is the number of cells which are alive after being irradiated with a dose D, 

and N 0 is the initial number of cells alive. The ratio N survjvals /  N n gives the surviving 

fraction of cells S(D), after irradiation with dose D, serving as an estimate of the 

probability o f cell survival.

If we look at a graph of log P(D) along the y axis and Dose along the x axis, we 

would see a linear graph with a slope equivalent to \/D 0. However, in cell irradiation 

experiments the graphs of the surviving fractions S(D) are not linear, but in most cases 

they curve downwards with increasing dose. In the real case, the constant a  is not 

independent of the dose D. Integration o f Equation (1.8) then leads to a cell survival 

curve with a shoulder. So while it may be the simplest model for survival probabilities of 

cells (as it has only one parameter), it is only a very basic approximation.

1.5.2 Linear Quadratic Model of Cell Damage

A more commonly used model for survival probability is the Linear Quadratic 

model (LQ). It is given with the following equation

where a and [1 are radiosensitivity coefficients. This LQ model tends to fit survival 

curves better than the Single Hit model as it does not give an immediate dose response, 

but a ‘shoulder’ at low doses that curves downwards with increasing dose. This tends to 

represent experimental data more accurately, which tends to have a sigmoid shape 

(shoulder at first, then decreases monotonically). The LQ model diverges from

S{D) = e~(aD+pD2) (1.9)

10
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experimental data at high doses (due to experimental data tending to be more linear given 

high dose). The biological explanation of a and (3 were originally thought to be related to 

single and double strand breaks, a  was thought to represent interactions caused by a 

single photon, while P represented dual-photon events inflicted on the same local area.

It is now understood that chromosome and chromatid aberrations are responsible 

for cell death or inactivation. Due to malformed chromosomes (in such patterns as 

dicentrics or rings), not all o f the chromosomes can be properly divided, or even 

separated, when the cell divides. Given this, it can be thought that single photons that 

incur these aberrations are represented by a. Likewise, aberrations caused by two photons 

are represented by ft.

There is an alternate explanation, involving lethality of the damage produced by 

the photons. Given that there are different degrees of damage depending on how the 

photons interact with the cells (eg: indirect, direct, how much energy is deposited), cells 

have a varying degree in success on repairing the DNA. Single strand breaks are very 

easily repaired, as often are smoothly cut double strand breaks. However, mass 

eliminations of segments o f DNA (multiple base pairs) on both sides can produce genetic 

mutations when reattached. Given multiple double strand breaks as well as the winding, 

close knit way in which DNA gathers to form chromosomes, chromosomal (and 

chromatid) aberrations can occur, as mentioned above. Thus the cells' chances of 

survival are dependent upon the type o f damage sustained, whether it is lethal or sub- 

lethal.
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Given lethal damage, a cell will die without any possible ability to recover, but 

cells receiving sub-lethal damage have the potential to repair themselves. In relation to 

the LQ model, a would represent lethal damage while /? represents sub-lethal damage.

1.6 Tissue Response to Radiation

1.6.1 Tumour Control Probability

It is believed that a tumour can repopulate from a single clonogenic cell. The 

desired outcome of a curative treatment must therefore be the total eradication of all 

tumour cells. Therefore the probability of zero surviving clonogens after the radiation 

treatment is sought. This probability is called Tumour Control Probability -  TCP. Let

N
S(D) be the surviving fraction of clonogens in the tumour, given as S(D)  = — , where

N 0

N0 is the number o f initial clonogens and N  is the number of clonogens after receiving a 

dose D. S(D) is an estimate of the probability that a cell will survive after receiving a 

dose D, l-S(D) represents the probability that a cell will die given dose D. As there are 

only two states a cell can be in (alive or dead), we can thus apply the binomial 

distribution to estimate the probability for observing exactly N  survivals out of N0 

clonogens

P(N)  = (S(D))n (1 -  S(D))n- 'n ( 1.10)
+N)\ (N0 - N ) l  

The probability for zero survivals (N=0) is then given with:

TCP = (1 -  S(D)}N°. (1.11)

12
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This can be converted to the Poisson model given that S(D) is small (of course, it is 

known that the reduction to the Poisson model from the Binomial distribution requires a 

large N0 value, which is logical because S(D) and N0 are inversely proportional). The 

TCP then becomes

TCP = {e~S(D)) N° = e ~N"S(D). (1.12)

1.6.2 Fractionation

It has been shown that by splitting the dose into fractions, fewer cells are killed 

and more total dose is required to maintain the same level o f cell death (2). Taking this 

into consideration, as well as non-trivial cell survival models, it would at first be 

perceived as foolish to fractionate the dose when the focus is maximizing tumour cell 

death. Contrary to this, it is common practice for radiotherapy treatments to be 

fractionated. To understand why one must examine more closely other aspects of cellular 

responses to radiation.

After being irradiated, cells can repair themselves from sublethal damage. 

Repopulation also occurs between fractions. However, this happens for normal tissue 

cells as well as tumour cells. The initial justification for fractionation is from the lower 

a/p ratios of normal tissue compared to tumours. While early response is similar for both 

tumours and normal tissue, normal tissue fairs better with each fraction o f radiation. It 

can be seen that despite the greater amount of dose required to achieve the same level of 

tumour control when implementing fractionation, normal tissue damage could be 

decreased.
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Many biological advancements in understanding the cell replication cycle and 

how it correlates to the repair of radiation-induced damage (at different points of the 

cycle) have been made in recent years.

Another reason for using fractionation is allowing hypoxic regions (hypoxic is 

defined as a deficiency of oxygen in tissue, which causes the cells to be more 

radioresistant) to be reoxygenated, causing them to be more susceptible to the next 

fraction. This is due to the clearing of surrounding non-hypoxic cells which were killed 

off, allowing blood to reach the oxygen deprived cells. On the other hand, even if the 

sublethal repair rates in the tumour and the normal tissue are equal, the dose delivered to 

the tumour is considerably higher, hence the damage to the tumour is much greater than 

to the normal tissue. In addition, the normal tissue is irradiated heterogeneously, there is 

cellular repair between the irradiations, and there is organ repair on a macro-level. Tissue 

rescuing units, which are migrating cells from the healthier parts o f the organ (receiving 

very low doses), may help the organ to reestablish some of its damaged functions.

Over the years, the TCP model has been adapted (or completely remade) to take 

into consideration fractionation, as well as effects that result from repopulation and repair 

of sublethal damage. The problem of incomplete cell repair has been examined by a 

number of authors (3-7).

1.6.3 Repopulation: Attempts to Incorporate the Repopulation in the Poissonian 

Model

Tumour control probability models are usually based on the assumption that the 

distribution of the surviving cells is subject to the Poisson approximation of the binomial

14
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statistics, and that the cell kill occurs according to either the single hit mechanism or the 

LQ model o f cell damage with complete repair of the cells between any two consecutive 

fractions (8-19). To incorporate the clonogen repopulation and overcome this lack of 

completeness in the TCP modeling a number of authors (20-34) have used a modified 

version of the Poissonian TCP model which incorporates a time-dependent term to 

account for the process o f repopulation.

Cell culture experiments have shown that the increase in the number of cells dN  

for a time dt due to repopulation is proportional to the number of cells at that moment, N:

dN
—  = NX, (1.13)
dt

with X being the proportionality constant or repopulation rate. The solution of this 

ordinary differential equation is

N  = N a exp(/fo). (1.14)

Hence if a tumour is left to itself it will repopulate according Equation (1.14). The 

irradiation to a dose D  will reduce the number of cells according to Equation (1.8) (or 

(1.9) depending on the model o f cell damage chosen). In the case when the cellular 

damage follows the LQ model o f cell kill with the assumption o f complete repair of 

sublethal damage between fractions, the cell survival probability is

S(D)  = e~(aD+l3Dd)+AT, (1.15)

where d  is the dose per fraction. The TCP is then given by

- a D - B D d + Z T

TCP = e~N°e (1.16)

15
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where D  the total dose and T the total treatment time. This is independent of fraction time 

length, which can be variable.

For non-constant dose per fraction, and incorporating the results for sublethal cell 

repair, one gets:

< 7 7 - 1 - 7 / - , )
n  i  n - 1 n   1-----------------

- c c D -0  I  d f - i p  I  Z  d j d / f  r  +1T
XT _ /=1 /=1 / — /+1

TCP = e " . (1.17)

A more mathematically rigorous approach will be discussed in Section 1.6.4. The 

derived TCP formula that accounts for repopulation has the following flaws:

• It predicts a TCP that always tends to zero for large post treatment times, which is 

incorrect.

• Only the full treatment time T  matters, no account is taken for varying intervals 

between two consecutive fractions and cell survival probability that changes from 

fraction to fraction.

1.6.4 Non-Poissonian Models

As early as 1990 the question o f the character of the TCP distribution in the 

presence of repopulation was raised by Tucker et al (35):

“The results show that although Poisson statistics (based on exact knowledge o f  

all parameters) accurately describes the probability o f  tumour cure when no 

proliferation occurs during treatment, it underestimates the cure rate when 

proliferation does occur” (35).

The formalism of tumour dynamics that has been developed in the past has been mostly

descriptive rather than quantitative. Theoretical modeling of the combined effects of cell

kill by radiation and cell dynamics is particularly difficult mainly because the distribution

o f the surviving tumour cells was found to deviate from the binomial (Poisson)

16
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distribution (35, 36). Nevertheless, theoretical models (37, 38) taking cell repopulation 

into account have been developed recently. Zaider and Minerbo (37) give a general 

expression for the probability of zero cells surviving the treatment that is applicable to 

any fractionation regime and for cell survival probability that may vary from fraction to 

fraction. The form of the expression makes it also applicable to any treatments protracted 

in time like brachytherapy, radioactive nuclide applications or any other continuous 

treatment. In a later work, Zaider et al (38) use a more specific expression of the 

distribution of the number of surviving cells when repopulation is accounted for. This 

expression, however, is only valid for the special case o f equal time intervals between the 

fractions and for equal cell survival probability for each fraction. These are rather 

limiting conditions: the former condition is not conventionally fulfilled in clinics; the 

latter condition is fulfilled only for the simple Single Hit model o f cell kill (or the LQ 

model with complete recovery of the cells between any two consecutive fractions) and 

when equal doses per fraction are delivered. For this reason, Stavreva et al (39) 

investigated the more generally applicable repopulation model presented in the earlier 

work of Zaider and Minerbo (37). Based on the Zaider-Minerbo model, Stavreva et al 

(39) derived an explicit expression for the TCP for fractionated external treatments with 

varying intervals between two consecutive fractions and with cell survival probability 

that changes from fraction to fraction. This expression allows the incorporation o f the 

more general version o f the LQ model of cell damage assuming incomplete recovery of 

the cells between fractions.

Recently it was demonstrated (39) that the Zaider-Minerbo model is superior to 

the standard (Poissonian) model description of TCP data from animal experiments.

17
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The Zaider and Minerbo TCP model, which incorporates repopulation without 

using the Poisson (or binomial) distribution to determine the cell death after irradiation, is 

based on a birth/death model developed by Kendall in 1948 (40) which can be defined by 

the following partial differential equation (PDE)

_ 1) ^  (,) _ i[b + s]p. (0  + (/ + 1 )SPM (/)
dt

(1.18)

where Pi(t) is the probability that at time t there are i clonogens alive, b is the cell birth 

rate and S is the cell death rate (41).

By solving the PDE, they created a generalized TCP model,

TCP ( 0  =
p ( t ) e ( b - d  )t

1 + bp ( t ) e ( h - d ) < V d t '
n ( t ' ) e (b~d)t'P ( t  )

(1.19)

where p(t) is the time dependent surviving fraction (not taking into account repopulation, 

as that is done by e(b~d)t), n is the number o f initial clonogenic cells and b and d  are the 

radiation independent birth and death rate o f the cells respectively. This very adaptable 

model can use any given surviving fraction, and gives the TCP at any point during or 

after treatment. However, due to the integral, it can be mathematically intensive 

requiring numerical models. The authors mention that this particular model

“predicts that fo r  any dose distribution -  not only fo r  a fractionated schedule -  

the binomial/Poisson versions always underestimate the TCP” (Zaider and 

Minerbo, 2000 (37)).

The model does reduce to the binomial model given b=d=0.
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Based on the Zaider-Minerbo model, Stavreva et al (39) derived an explicit 

expression for the TCP for fractionated external treatments with varying intervals 

between two consecutive fractions and with cell survival probability that changes from 

fraction to fraction. This expression allows the incorporation of the more general version 

o f the LQ model o f cell damage assuming incomplete recovery of the cells between 

fractions. By assuming that the dose is given instantaneously (essentially in a small 

enough time period where no cell repair can happen), and that S(t) (time dependent 

surviving fraction) is time independent between fractions, the resulting model is given by

TCP ( t = T.t_x) 1 -

S ( T ^ ) e

k = 1

( 1.20)

where is the time after the /-7th fraction, and X is

“the net birth rate of cells equal to the difference between their actual birth rate 

and their death rate” (39).

It uses Sit) = exp-
n— 1 n

aD + P Y jd - + P Y s H d -d j exP/=! j=i+1/=1

(r,_. - r ^ )
for the surviving

fraction, which assumes an exponential rate of recovery for sublethal damage between 

any two fractions, where T1 is the probability of cell repair per unit time (see Appendix 3 

for the derivation).

The model is not necessarily dependent on time, but instead on the time between 

each fraction, which is more important given modem treatment methods. Recently it was 

demonstrated (39) that the Zaider-Minerbo model provides superior results to the 

standard (Poissonian) model for the description o f TCP data from animal experiments.
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1.6.5 O rgan 's or Normal Tissue Response

It was not until the late 70's when some initial attempts were made in the direction 

of quantifying the response o f the normal tissue to radiation (10, 42-45) and some indices 

such as normal tissue complication probability factor (44) were introduced. During the 

80's, the concept of the critical element model of tissue response was dominant ((46-49) 

and others). In 1982, Wolbarst et al (46) introduced a concept similar to that o f the 

damaged volume (47), and in 1988 Withers et al (50) introduced a very basic hypothesis 

which laid the foundation of the mathematical biological modeling o f the normal tissue 

response in the 90's, namely, the notion of functional sub-units (50-52).

1.6.5.1 Functional Sub-Unit Response Models (Critical Volume and Critical Element 

Models)

Based on the hypothesis that the normal tissue is comprised o f Functional Sub- 

Units (FSUs) (50), and that the radiation response of these structural elements is 

statistically independent, it can be shown that the tissue response to a homogeneous 

irradiation can be described by one general formula, namely the cumulative binomial 

distribution (14, 53, 54). The general concept behind this hypothesis is that the 

probability of causing damage to a normal tissue, NTCP, depends on the probability of 

damaging a structural element - functional sub-unit, on the functional reserve of the tissue 

and on the total number of structural elements under irradiation. Depending on whether 

the irradiation is a whole organ or partial irradiation, this number may be equal to or less 

than the total number o f elements comprising the organ - N. The functional reserve or the 

critical number o f elements M  is the number of structural elements that must be damaged
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to cause a failure in the structure of interest. The ratio jlcr= M/N  is called relative critical 

volume. Based on the above discussion and the following assumptions:

• the number o f cells in an FSU is constant and cannot vary from FSU to FSU in an 

organ

• the volume of the organ could be divided into sub-volumes where the dose 

distribution might be considered homogeneous, with a sufficient number of FSUs in 

each sub-volume

Jackson et al (54) and Niemierko and Goitein (55) have derived the following expression 

for the tissue response to a heterogeneous irradiation:

NTCP = O

4 n iPFSU (A  ) -  Me
V I

v i PFSU ( A ) 0  -  P f s u  (A  ))
( 1.21)

1 Y ” 1 
where <D(x) = i e 2 dt = —

VAr J 2
1 + erf]

Wx
T i

p FSL, ( A ) is the probability of

damaging an FSU irradiated to a dose Dj and the set (Vj,Dj) represents the differential 

dose volume histogram. The sum v; p FSU (D t) can be identified as the mean relative

damaged volume fid , the concept for which was first introduced by Wolbarst (integral

response organs) (46). The NTCP expressions in the cases of homogeneous partial or 

whole organ irradiation can be obtained as special cases from Equation (1.21). These 

expressions can be found in refs. (54, 55).
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1.6.5.2 Probability o f  FSU Damage

It is believed that an FSU can repopulate from a single stem cell comprising the 

FSU. Therefore, an expression similar to the Poissonian TCP expression (Equation 

(1.12)) is commonly used to describe the sub-unit response - p FSU = e~N"nrP' , where now 

Nofsu is the total number of stem cells constituting an FSU and p s is the probability of 

damaging a cell. The Single Hit model o f cell damage is usually assumed sufficient to 

describe the stem cell response to irradiation - p s = e~aD. The resulting expression for

P fsu  *S-

p FSU=e-N̂ .  (1.22)

An expression for p FSU written in terms of the slope } f f J and position D f u of the FSU 

response curve is also frequently used:

1.6.6 Population NTCP Models

The TCP and NTCP models described so far are models of individual dose- 

response. Due to the variation o f the different model parameters over the population and 

the complexity o f achieving an individualised treatment, currently the clinically relevant 

models are the population response models. It is interesting to note that during the 80's 

most works did not take into account the fact that what researchers were dealing with was 

actually a population response to radiation. It seems that the models developed in these 

studies were based on consideration of the individual response of an organ. It was

r D \

P fsu  =  l n (1.23)
v
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assumed implicitly that these models could be applied to clinical data, while clinical data 

is obviously data describing a population response. The first adequate population NTCP 

model is the Lyman's model (56).

1.6.7 Lym an's NTCP Model

1.6.7.1 Uniform Irradiation

Under the assumption that the individual organ response to homogeneous 

irradiation is infinitely steep ( y50 —> °°) and therefore can be described by the position of

the response curve D50 alone and that D so is normally distributed among the population, 

the probability of complication is given with the cumulative normal distribution:

for an organ homogeneously irradiated to dose D. Originally, instead of <r50 representing 

the spread o f D^o among the population, Lyman used the coefficient o f variation m:

1.6.7.2 Non-Uniform Irradiation

The case o f partial volume (y) uniform irradiation is accounted for by 

recalculating D50 (48, 57) as follows: A 0(v) = D50(WholeOrgan)v~", where n is an organ

specific unknown parameter. More recently, other authors have proposed a number of 

ways to account for heterogeneous dose irradiation introducing the dose histogram 

reduction algorithm scheme (58-61), which is a method for handling non-uniform 

irradiation of an organ. It involves recursive dose volume reduction, i.e. N-step to (N-l)-

N T C P  = <P
f D - D 5 0

\
(1.24)
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step etc., until there a single-step DVH is left corresponding to a homogeneous 

irradiation. In the case of heterogeneously irradiated organs the following expression:

f  N  ____

i  Vi l fD,
\  i =  1

(1.25)

was suggested (62, 63), for the uniform equivalent dose. Equation (1.25) also reflects the 

histogram reduction algorithm proposed by Lyman (59), which, as demonstrated by 

Niemierko (62), relates closely to the Kutcher and Burman reduction algorithm (60, 61). 

In fact, Equation (1.25) represents the generalized mean (64) dose (GMD). By 

substituting D  in Equation (1.24) with the generalized mean dose one obtains

N T C P  = 4> O

(  N

£V  1 =  1

I  v , . ^ 7  - D s

m D ,
, (1-26)

representing the Lyman's NTCP model in case of heterogeneous irradiations.

1.6.8 Critical Volume NTCP Population Models

In order to obtain a population response model based on an individual model an 

averaging of the individual responses over the population is required. The individual 

Critical Volume NTCP model has four parameters (see Equations (1.21) and (1.22)). In 

general a distribution function is needed to describe the spread of the parameter values 

over the population. The problem of choosing a distribution function is discussed in 

details in (54, 55, 65).
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Based on the assumption that only the relative critical volume parameter jUcr 

varies over the population and that it is log-log-normally distributed, the following 

expression for the population Critical Volume NTCP model is obtained:

NTCPpop =
\n (-\n ju d) + \n(-]njucr)

(1.27)

Here <7 is the standard deviation of the log-log-normal distribution of ficr. Equation

(1.27) is one of the most commonly used CV NTCPpop expressions. However, pseudo- 

numerical experiments (65) have shown that the NTCP model represented by this 

expression loses its biological meaning, turning into a phenomenological model. 

Equation (1.27) produces acceptable fits to the data but the best fit parameter values 

deviate considerably from the parameter values used for the generation of the pseudo­

data, i.e. the parameters lose their biological meaning. The explanation o f the 

phenomenon lies in the fact that when deriving Equation (1.27) the population variations 

o f the other 3 individual parameters were ignored.

Assuming that not only the critical volume /4 r but also the radiosensitivity 

parameter a  varies among the population the following CV NTCPpop expression is 

obtained:

NTCP„ =
-  In (in A, («)) + ln(-In A ,)

\  (In a-\na
2Cln/T

V2X(T]naa
d a .  (1.28)

It has been shown (65) that Equation (1.28) when used to fit pseudo-experimental data 

produces parameter values very close to the true parameter values used for the generation
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of the pseudo-data. Therefore, Equation (1.28) can be considered as representing the 

biologically adequate CV population model. Mathematically, it is more complex than 

Equation (1.27). However, the power of the contemporary computers makes the 

numerical integration fast and easy. For calculation purposes, one may consider both 

Equations (1.27) and (1.28) as identical.
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Chapter 2

Radiation damage, repopulation and cell recovery analysis of in vitro 

tumour cell megacolony culture data using a non-Poissonian cell 

repopulation TCP model

2.1 Introduction

In vivo as well as in vitro dose response experiments are essential for the testing 

and ranking of mathematical models designed to evaluate the efficacy of cancer 

treatment. In this respect, the recent work of Tamawski et al. (1) presenting in vitro 

dose-response-fractionated data from two different cell lines is a welcome contribution. 

Such experiments are very helpful and present a forum for model testing.

The tumour clonogen probability distribution is an extremely important quantity 

for whose estimation mechanistic mathematical models are being developed. Tumour 

control probability (TCP) models are usually based on the assumption that the 

distribution of the surviving cells is subject to the Poisson approximation of the binomial 

statistics, and that the cell kill occurs according to either the single hit mechanism or the 

LQ model of cell damage with complete repair of the cells between any two consecutive 

fractions (2-13). Clonogen repopulation, resensitization, or cell recovery, with the 

assumption of incomplete repair between fractions, are routinely not taken into account. 

To overcome this lack o f completeness in the TCP modelling, a number of authors (14-
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28) have used a modified version of the Poissonian TCP model which incorporates a 

time-dependent term to account for the process of repopulation. The Poissonian based 

TCP model with the artificially added term to account for tumour repopulation in the 

course o f protracted treatments, is given by:

TCP  = e x p (-  exp(X  -  a D  -  f i D d fx + XtOTT)) (2.1)

where K  is the natural logarithm of the initial number o f clonogens ( K  = In N ), D  is the 

total dose delivered during the treatment, dfx is the dose per fraction, A is the growth

rate, tOTT is the overall treatment time, a  and f3 are the radiosensitivity parameters. This

modified Poissonian model with an artificially added term to account for repopulation has 

been also used by Tamawski et al. (1) for the analysis o f their data.

However, during the 1990's, a number o f papers (29-34) reported on the non- 

Poissonian character o f the TCP for prolonged treatments of proliferating tumours. As 

early as 1990, Tucker, Thames and Taylor (29) suggested that the distribution of the 

surviving clonogens must be expected to deviate from the binomial distribution because 

of cell proliferation that occurs between fractions o f irradiation. Although it was recently 

shown by Hanin et al (32) that the limiting distribution of the number of surviving 

clonogens is in fact Poissonian, it has the following flaws:

• It predicts a TCP that always tends to zero for large post treatment times, which is 

incorrect (35).

• It only considers the full treatment time T. No account is taken for varying intervals 

between two consecutive fractions and cell survival probability that changes from 

fraction to fraction.
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In 2000, Zaider and Minerbo (33) constructed an exact expression that describes 

the distribution of proliferating clonogens having survived a protracted treatment, on 

whose basis a TCP formula was derived. Based on the Zaider-Minerbo TCP model, 

Stavreva et al (35) derived a TCP expression specific for external fractionated treatments 

and applicable for the general case of variable probability of cell kill per dose fraction.

Since tumour proliferation may have an appreciable impact on the treatment 

outcome we consider it important that the Zaider-Minerbo TCP model be applied for the 

analyses of fractionated treatments rather than the Poissonian or even the modified 

Poissonian model. In the work presented in this thesis, we analyzed the Tamawski et al. 

(1) experimental in vitro data by using the TCP expression derived by Stavreva et al

2.2 Method and Materials

2.2.1 Zaider-Minerbo TCP Model

We obtained, from the Zaider-Minerbo TCP model (33), the following TCP expression 

valid for the case o f external radiation with different time intervals between any two 

consecutive fractions and varying cell survival probability per dose delivery (35):

(35).

TCP( t  = Tn_l) =  l - 7

V

(2 .2)

where N  is the initial number of clonogens, A is the cell repopulation rate, Tn_x is the

overall treatment time, Tk_x is the time until after the kth fraction, and p s {Tk_i )  is the
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cell survival probability after the kth fraction o f dose delivery. When the spontaneous 

death rate is not negligible in comparison to the birth rate X should be considered the net 

birth rate o f cells equal to the difference between their actual birth rate and their death 

rate. According to the LQ model o f cell kill with partial repair of sublethal damage (35, 

36), the cell survival probability p s {Tk_] ) is

k  k  k - 1 k  ( Tj - \ - Ti - \ )

-a'Zd, X  d'dje r

P s ( Tk-x) = e  * e  * ™J=M , (2-3)

where a  and (5 are the cell radiosensitivity characteristics, T 1 is the probability of 

sublethal damage repair per unit time, d t is the dose per fraction A value of

T_1 = 0 corresponds to the case o f no recovery of the cells, a value o f r -1 ^  0

corresponds to the case of partial recovery o f the cells and a value of T~] —> 00 

corresponds to the case o f complete recovery o f the cells between any two consecutive 

fractions (see Appendix 3).

2,2.2 Data

The Zaider/Minerbo model is sufficienlty flexible that it can be used on either in 

vivo (such as data from Fischer et al (3)) or in vitro data. This is interesting as it is 

uncommon to see in vitro data produced that allows TCP to be calculated, as the work 

has to be quite extensive to produce the proper fractionated schemes. Normally only 

surviving fraction vs dose plots are produced from in vitro data. Given the alterations by 

Stavreva et al (35), any fractionated treatment can be easily fitted. Unfortunately, 

parameters including the number o f cells, radiosensitivity and repopulation coefficients,
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can not be compared between in vivo and in vitro due to very different environmental 

influences.

The data that was used in Stavreva et al (35) was obtained from experiments 

presented by Fischer et al (3). It their experiments, they induced localized, non­

metastasized tumours to genetically similar rats (the rats were from the same strain). 

When the tumours reached -7 .5mm (~107-108 cells per tumour), they irradiated 

homogeneously under different fractionating schemes (always on a 

Monday/Wednesday/Friday schedule), after which there would be a follow up period of 

120 days. The animal was deemed cured if there was no recurrence of any tumours. 

Comparatively, instead o f in vivo data, Tamawski et al (1) did experiments in vitro. Two 

cell types - AT478 (murine squamous cell carcinoma of the cervix) and A549 (human 

lung adenocarcinoma cells) were used in the experiments performed by Tamawski et al 

(1). The cells were grown in DMEM and DMEM/F12 growth medium respectively, 

supplemented with fetal bovine serum and antibiotics. The cells were then resuspended 

in growth medium, the number of cells per volume approximating lx l0 6/mL. On the 

bottom of flasks, 9 carefully spaced drops of cell suspension were arranged, containing 

~50jiL (about 5xl04 cells). These were then incubated to enable attachment of the cells 

and then covered in growth medium. After being incubated again (for -  one week), the 

cells developed into megacolonies of about 1 cm in diameter. The statistic per 

experimental dose response point (the total number of cases per point) was presumed to 

be 9, because each flask irradiated to a given dose contained 9 megacolonies of cells prior 

to the treatment. The statistic per point is an important quantity for the estimation o f the 

goodness of fit.
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The colonies were homogeneously irradiated for three different fractionated 

schemes - acute treatment (single dose), consecutive daily treatment (Continuous 

Accelerated Irradiation - CAIR) and conventional treatment. The flasks that received the 

acute treatment were irradiated with single doses of gamma rays ranging from 8-30 Gy. 

They were then incubated for 1-4 months to determine if regrowth occurred. Flasks that 

were used for the CAIR fractionation scheme received 2 Gy of radiation every day 

(including weekends) until the total dose was delivered. For conventional treatment, 

flasks received 2 Gy of radiation every weekday (not on weekends), which mimics the 

current method of fractionation used in radiotherapy. This continued until the total dose 

was administered. For both CAIR and conventional fractionation schemes, doses ranging 

from 16-80 Gy were used. Also, both schemes were incubated for 1-4 months after the 

final fraction was delivered to determine if  regrowth occurred. In all treatment schemes, 

megacolonies were considered dead if no regrowth was observed after 3 months. 

Radiation was delivered using a 60-Co gamma source, at a dose rate of 0.82 Gy/min.

2.2.3 Data Analysis

The TCP expression given by Equations (2.2) and (2.3) was used to analyze the 

data published in the Tamawski et al (1) paper using the maximum likelihood 

methodology of fitting models to data (28, 37-39) and a Monte Carlo based optimization 

technique for searching for functional minima (39). Following Press (37) and Collet (40),

the goodness of fit is calculated from the deviance Dev = -2  (in Lmm -  In Lfull), where Ljuu

and Lmax represent the log-likelihood of the full model (see Collet (40)) and the maximum 

log-likelihood of the best fit of the model to the data, respectively. The deviance has an
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asymptotic £  distribution. The p-value is calculated using, p  = J x l  (x)dx , where x l  is
Dev

the chi-square function for v  degrees of freedom, and v  is equal to the number of data 

points minus the number of free fitting parameters. Conventionally, fits that yield a p- 

value o f less than 5% are considered statistically unacceptable.

The original code used in Stavreva et al (35) was used to fit the Tamawski et al 

(1) data; however, it had to be altered slightly in order to accommodate the differences 

between the two data sets. The code originally used constant maximum doses allowing 

for different fractionation schemes dictated in Fischer et al (3), but had to be altered to 

allow for the alternate fractionating schemes given in Tamawski et al (1). In Stavreva et 

al, the number o f fractions was kept constant for a given dose-response curve. However, 

the Tamawski et al data had a constant dose per fraction for all cell lines. This detail 

actually simplified the code after it was modified for the Tamawski et al data, the 

modifications that were made simplified the code. See Appendix 2 for the MATLAB 

code.

2.3 Results

We first investigated a simpler version of the TCP model that corresponds to the 

case of complete cell recovery between any two consecutive fractions, i.e. the case of

T~x —> 00 ( T — 0 , i.e. p s is no longer time dependent and

becomes p s {Tk_x) =  e  e  ,_l )5 thus reducing the number of model parameters to

be fitted by one. The resulting fits for megacolony cultures, AT478 and A549, are shown 

in Figs. 2.1 (a) and 2.1 (b), respectively.
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Figure 2.1 Fits of (a) and (b) a TCP model assuming full recovery o f the cells 
between fractions and repopulation; (c) and (d) a TCP model assuming full 
recovery o f the cells between fractions and no repopulation; (e) and (f) a TCP 
model assuming single hit mechanics o f cell damage and repopulation to the 
Tamawski et al megacolony culture data. The solid lines and + represent the 
corresponding model single dose response, the dashed lines and x represent the 
CAIR dose response, and the dotted lines and o are the conventional treatment 
dose response.
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Two other cases were investigated by setting to zero some of the other model 

parameters besides T . Firstly, a case was investigated in which it was assumed that no 

cell repopulation (A = 0 ,  i.e. TCP simplifies to(l — and complete cell recovery

between any two consecutive fractions ( T = 0 )  were taking place. This was done with 

the purpose o f checking the impact of cell repopulation via comparing this case with the 

case o f active cell repopulation ( A ^  0 )  and complete cell recovery ( T — 0). The 

resulting fits for this case are shown in Figs. 2.1 (c) and 2.1 (d) for the two cultures, 

AT478 and A549, correspondingly.

Another case was investigated in which the /8 mechanism of cell kill was assumed

i  \  -  ~a P 'inactive (/?  = 0 , i.e. p s \Tk~\) ~  e  ' )> i-e- it was assumed that the cell kill took

place solely via the single hit mechanism of cell damage. Biologically with f i  — 0 , cell 

recovery has no meaning as a cell is killed with a single hit (no sublethal damage). At the 

same time it was assumed that cell repopulation was taking place ( A ^  0). This case was 

studied to check the role o f the {$ mechanism of cell kill. The resulting fits for 

megacolony cultures, AT478 and A549, are shown in Figs. 2.1 (e) and 2.1 (f), 

respectively.

We then included the partial recovery in the model by making r a  free parameter 

o f the fit. In this partial recovery mode we investigated two cases. When it was assumed 

that cell repopulation was present during the treatment (A ^  0 ), the fits shown in Figs.

2.2 (a) (AT478) and 2.2 (b) (A549) were obtained. In the second case, no cell 

repopulation
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Figure 2.2 Fits of (a) and (b) a TCP model assuming partial recovery of the cells 
between fractions and repopulation; (c) and (d) a TCP model assuming partial 
recovery of the cells between fractions and no repopulation to the Tamawski et al 
megacolony culture data. The solid lines and + represent the corresponding model 
single dose response, the dashed lines and x represent the CAIR dose response, and 
the dotted lines and o are the conventional treatment dose response.
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was assumed through setting A to zero ( A = 0). The corresponding fits for megacolony 

cultures, AT478 and A549 are shown in Figs. 2.2 (c) and 2.2 (d).

2.4 Discussion and Conclusions

The first conclusion that can be made when comparing the p-values of all the fits 

is that the version of the Zaider-Minerbo model that assumes full recovery of the cells 

between any two consecutive fractions accompanied by cell repopulation best fits the 

data from both cellular cultures. This can be seen by comparing the fit in Fig. 2.1 (a) to 

the fits in Figs. 2.1 (c) and 2.1 (e), and likewise, by comparing Fig. 2.1 (b) to Fig. 2.1 (d) 

and 2.1 (f). Because of the low best fit values of % 0.58 days for AT478 and 0.16 days 

for A549, the case of partial recovery of the cells accompanied by cell repopulation (Figs.

2.2 (a) and 2.2 (b)) actually reduces to the case of full recovery and repopulation for both 

cellular cultures. The best fit values of T for both cell cultures are very close to zero, 

indicating that full recovery o f the cells occurs between any two consecutive fractions. 

Also, the best fit values of the rest of the parameters are virtually the same as those of the 

corresponding parameters in the case of full recovery and repopulation. The somewhat 

lower p-values in the latter case are due to the number of the fitted parameters is higher.

Figures 2.1 (c) and 2.1 (d) illustrate that the model that assumes full recovery of 

the cells and no cell repopulation does not describe the data well. This model does not 

distinguish between the two applied fractionation schemes, the CAIR and the 

conventional one, predicting the same outcome in both cases. Indeed, according to this 

model, the sublethal damage effectively occurs immediately. Biologically, however, it is 

more realistic to view the recovery time as being very small with respect to the time 

between fractions. This, in combination with the assumed inactive cell repopulation,
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makes the treatment outcome independent of the time interval between the fractions, and 

therefore alike for the two fractionation schemes. The data, however, show that the 

outcome is different for the two fractionation schemes. The conclusion that this model 

does not fit the data well is confirmed by the very low p-value o f the fit in the case of cell 

type A549. A p-value of 0.04 makes the fit statistically unacceptable. In the case of cell 

type AT478, a quite high p-value is achieved despite the obviously different outcome for 

the two fractionation schemes as shown by the data points. This can be explained by the 

rather low statistics per point, and the fact that the points corresponding to the CAIR 

(crosses) and to the conventional fractionation scheme (circles) do not lie very far apart. 

We did not attempt to use a model that assumes single-hit mechanism without 

repopulation, as this would not distinguish between any fractionation schemes including 

acute treatments.

Judging by the p-values which allow easy ranking of the models, the version of 

the Zaider-Minerbo model that assumes single hit mechanism o f cell kill accompanied by 

repopulation offers the worst fit to the data from both cellular cultures. It is interesting to 

compare this result with a result reported by Stavreva et al (35), where the Zaider- 

Minerbo model was fit to experimental animal data. Stavreva et al (35) concluded that 

the version of the model which best fits the data was the one assuming the single hit 

mechanism of cell kill and cell repopulation. However, in a later work by Stavreva et al 

(41), a version o f the model was developed that accounted for possible reoxygenation of 

the tumour occurring between treatment fractions. Under that scenario, the model that 

best fits the data turned to be the one that assumed full recovery of the cells between the 

fractions accompanied by reoxygenation and cell repopulation. Therefore, it could be
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concluded that the consistency and the applicability of the LQ model are preserved in in 

vivo, as well as in vitro processes. Also, it should be pointed out that there is no 

discrepancy between the results reported in (35) and the newly developed approach 

accounting for initial tumour resensitization in (41). In the first case, where one desires to 

describe only treatments with high number of fractions, the complexity of the LQ model 

becomes unnecessary, the effects are so small that the more complex model developed in 

(41) shrinks from a seven-parametric one to a three-parametric one. In general, one can 

say that the difference in the manifestation of the /? mechanism may be attributed to 

differences between the in vivo and in vitro conditions of irradiation and additionally, to 

differences in the fractionation regimes.

A somewhat unexpected result is the extremely good fit achieved by the model 

with the assumption of the partial recovery o f the cells between fractions without cell 

repopulation (Figs. 2.2 (c) and 2.2 (d)). Based on the p-values o f the fits, this fit for cell 

type A549 is third to the fit o f the model that assumes full cell recovery and cell 

repopulation (compare Fig. 2.2 (d) with Fig. 2.1 (b)). For cell type AT478, the fit that 

assumes partial recovery of the cells between fractions and no cell repopulation is as 

good as the fit of the model that assumes full cell recovery and cell repopulation 

(compare Fig. 2.2 (c) with Fig. 2.1 (a)). Therefore, based on statistical criteria only, the 

two models are virtually equally acceptable. However, the good fits are achieved at the 

expense of rather unusual best fit values of a  and j5 for both cell types. The best fit value 

of a  is quite low, i.e. a -  0.0093 G y 1 for AT478 and a  -  0.0043 G y1 for A549 (the 

usual range of values for a  from many experiments is OCG [0.1-h0.3](?p_i), while the 

best fit value of f i  is comparable to the value o f a  (it is accepted, that for most tumour
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lines, the value of /3 is about an order of magnitude lower than the value of a ). The role 

of the P  mechanism is artificially increased in this model through the high value o f /? 

accompanied by a rather slow repair (T  = 2.46 days~x), which compensates for the 

inactive repopulation and makes the three fractionation regimes distinguishable. 

Therefore, we would like to recommend the design of experiments using multiple 

fractionation regimes to produce diverse data which would potentially allow the 

acceptance or rejection of models based on statistical criteria rather than on a priori 

knowledge of model parameter values. In particular, as opposed to fractionation schemes 

evident from Tamawski et al (1) or Fischer el al (3), which show fractionation schemes 

revolving around 1-3 day delays between fractions, experiments should be created giving 

consideration to actual biological repair cycles. Given that cells have been found to 

repair themselves over a matter of hours, perhaps delays between fractions of 12, 6 and 3 

hours would provide a more accurate basis for understanding mathematically the repair 

mechanism, as well as potentially provide alternative fractionation schemes clinically.
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Chapter 3

On Dose-Volume constraints based on radiobiological considerations. 

An algorithm of Dose Volume histogram random sampling

3.1 Introduction

In clinical practice several dose-volume constraints are usually simultaneously 

specified in the process of radiation treatment (RT) optimization. Currently these 

constraints relate to partial organ irradiations (1), equivalent to single step dose-volume 

histograms (DVH), resulting in a normal tissue complication probability (NTCP), of 5%. 

Combining two or more such dose volume constraints is unadvisable, since they will no 

longer result in the expected 5% NTCP. Although the RT optimization based on 

radiobiological indices is still in its infancy, a reverse NTCP mapping method (2) was 

proposed, based on radiobiological indices, for the proper estimation of the physical 

dose-volume constraints for the needs of the inverse RT planning. In this chapter, based 

on the Lyman and the Critical Volume NTCP models, the Monte Carlo method of reverse 

NTCP mapping is applied to calculate proper dose volume constraints for organs for 

which parameter value information is available (3, 4). Based on clinical information 

about the maximal dose-range to which an organ may be irradiated during the RT, 106 

DVHs are simulated. From this set of DVHs, the DVHs producing an 

NTCPe  {5 ±0.5%} are selected. An average DVH is produced from the selected DVHs. 

Its values are proposed to serve as dose-volume constraints in the process of inverse
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treatment planning. Currently there is only one main compendium of dose-volume NTCP 

data given (1). However, it is shown that indeed a DVH passing through a combination 

o f constraints as specified in Emami et al. (1) is well outside the range of the DVHs 

producing NTCPe {5±0.5%}.  The proposed method helps in creating new dose- 

volume constraint information.

3.2 NTCP Models used fo r  Reverse Mapping

The two models used to calculate NTCP in this project are the Lyman model and 

the CV model (see Sections 1.6.7 and 1.6.8, respectively). The population version of the 

CV model in particular is used, as the Emami et al DV constraints are for the average 

population.

3.3 Method

In this section, a general overview of the method of reverse mapping is presented. 

The goal of this project is to create the software for random integral DVH sampling and 

to apply it for the estimation of dose constraint points for values o f NTCP=5+/-0.5%.

The problem concerning using multiple constraint points to verify whether a 

particular treatment plan would produce an NTCP of approximately 5% was first 

examined by Stavrev et al (2). MATLAB was used in conjunction with Monte Carlo 

methods to produce integral DVHs and analyze their NTCP  distributions. The methods 

used by Stavrev et al to create integral DVHs are discussed in the next section. The 

definition of integral DVHs was given in Section 1.2.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3.3.1 Original Algorithm for DVH Sampling

The first point of the volume array would have an initial value starting at zero, and 

the next point would be selected randomly (between 0 and 1), and would only be 

accepted if it was higher than the previous point. This would continue until it passed a 

threshold (0.999 in this case). The dose array would then be created of the same length, 

started and ending at 0 and 1 respectively, each interval uniformly spaced. The volume is 

then interpolated using another dose array from 0 to 1 with 0.01 increments, which gives 

all DVHs a constant length, and constant dose increments. This allows for easy 

averaging, though sacrifices diversification.

One drawback to this method is that it has a threshold of 0.999 to stop the process 

of creating a single DVH, which then takes an average o f 1000 iterations per DVH. The 

number of points added to the DVH values is small in comparison to the number of 

iterations (average is ~9 points per DVH, maximum number of points -23). In this 

method, most of the DVHs would populate the lower left quadrant o f the plot area, which 

again limits the diversity of the DVHs produced.

This method of creating integral DVHs is acceptable for our purposes, however 

the method only has one source o f randomness because it uses constant dose increments, 

A more robust method is thus required in order to produce as many diverse DVHs as 

possible, using at least 2 random variables.

3.3.2 Random Radial Distance and Angle Algorithm for DVH Sampling

The core purpose of our current developed program is to produce many diverse 

types of DVHs as efficiently as possible. Since integral DVHs can be represented by any
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monotonically decreasing function (in the positive direction), there are many possible 

ways to approach this issue. However, as the quality of statistics improves with number 

o f cases studied, calculation time becomes a limiting factor in the technique. The 

solution lies in the use of Monte Carlo methods, which enables diverse amounts o f data to 

be created within a short amount of time.

Integral DVHs, as stated previously, are monotonically decreasing functions, 

where the x and y axis are represented by the integral Dose (Gy) and the Relative Volume 

irradiated, respectively. Given each DVH starts at [0,1] and ends at [1,0], hence are 

normalized on both axis, it is simple to modify the DVHs to have any maximum Dose. 

This gives flexibility to the program, as it can then be used to analyze any treatment plan. 

The method for creating integral DVHs is as follows. First, the initial coordinates are 

selected, at the point [0,1]. Then an angle and radial length are both selected randomly. 

These are used to calculate independent x and y increments for the next point. To 

maintain a monotonically decreasing function, the range is limited from 0 to n/2. The 

radial length is bounded by a maximum limit for each DVH. The next step is to 

subtract/add the respective increments from the previous point and add the new 

coordinate values to the array. This is repeated until either the x coordinate exceeds 1 or 

the y coordinate is below 0. See Fig. 3.1 for the first three steps of creating an integral 

DVH.
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Figure 3.1 (a-d) Illustration of the random radial distance and angle DVH generating 
algorithm. The randomly selected radial distance and angle are selected by the r and a  
values respectively.

One problem with this particular method is that on average, the DVHs will tend to 

be close to the diagonal line, which is due to the randomness o f the angle (which when
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averaged over many values, equates to half the range, ?r/4). This is even more evident 

with DVHs that have a smaller maximum radial step size, resulting in an increase in 

increments, tends to vary only slightly from the diagonal in comparison with larger step 

sizes. This problem shouldn’t be solved by only selecting large maximum radial step 

sizes, as this limits the number of points in each DVH, especially since they tend to cross 

either the x or y border quickly. However, despite the sacrifice to the number of points, 

larger step sizes do create DVHs that dramatically deviate from the axis far more often.

A second problem that occurs with this algorithm is that it doesn’t produce many 

DVHs which cross the diagonal unless they are particularly close to it already. This is an 

unfortunate result o f having a maximum random step size. As probability of choosing an 

angle close to either 0 or 7i/2 is slim, combined with an upper limit to the radial length, it 

is rare to see any DVH which crosses the diagonal. For future study, the use of a normal 

distribution instead of a uniform distribution could help resolve this issue when selecting 

radial length for each point. The low (but existent) probability o f step sizes beyond the 

maximum radial step size would encourage more DVHs which would deviate 

significantly from the diagonal.

3.3.3 Methods to Increase Diversification of Potential Integral DVHs

3.3.3.1 Varying Maximum Radial Step Sizes

One way of varying potential DVHs is to ensure that each DVH has a different 

maximum radial length. This is achieved by selecting the maximum radial length 

randomly from a range of possible radial lengths, ranged between a minimum and 

maximum value. There must be a minimum value for the radial length for two reasons.
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First, if  the radial length is close to zero, the time to produce a single DVH will be very 

large and counter-productive as there is no need for thousands of points. Secondly, as 

stated before, the DVH produced will essentially be a diagonal line, or very close to it. 

The maximum radial length enables more deviating DVHs to be produced, but must be 

within limits to ensure each DVH has a minimum number of points. On average, each 

DVH should have -70  points. Figures 3.2 (a) and 3.2 (c) demonstrate the differences 

between small and large step sizes respectively.

3.3.3.2 Angle Weighting

Given the problem of DVHs centering around the diagonal, a method to spread 

the DVHs was needed. Simply using large maximum radial lengths solves the problem 

but limits the number o f points, and the quandary is still present for smaller radial 

lengths. One answer lies in weighting o f certain ranges of angles so the mean angle is not 

tc/4. However, this would create a new problem if the mean angle was simply changed 

from k!A to another value, as the DVHs would then cluster around that value instead. It is 

desired that the spread o f DVHs, and thus diversity, be increased; yet that the mean DVH 

curve be maintained as the same value for a uniform distribution o f angles, which is a 

diagonal line from [0,1] to [1,0].

These issues are solved by using a randomly roaming weighting of a segment of 

the normal angle range. A certain angle range (or wedge if viewed radially), 6, is 

overlaid on top of a segment of angles anywhere within the normal range of angles (0 to 

7r 12). Any angle values under this range covered by the wedge will be 1.5 times more 

probable of being selected than angles which are not within that segment. For each new 

DVH, the segment of angles of which the wedge overlays is randomly chosen. This new
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a b

Figure 3.2 Example o f 2000 random DVH samples created with: (a) small step sizes 
and uniform angle distribution, (b) small step sizes and weighted angle distribution, 
(c) large step sizes and uniform angle distribution, (d) large step sizes and weighted 
anele distribution.

method for determining angles is easily described by the following probability 

distribution
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P{x ,d ,<p)  =

O < x < 0  

0<X <0 + 0 

0 + 0  < X <  7 lj2

Tt + 0
3

7t + 0  
2

Jt + 0

(2.4)

where x is any angle between 0 and tc/2, and <p is the angle at which the wedge starts, 

where (p ranges from 0 to tt/2-0. In comparison, the normal distribution of angles is given 

2
by P(x)  = —, V x \  0 <x < k/2. (p is selected randomly for each new DVH, which varies 

n

where the wedge lies. 0 can be any angle value within the normal range of angles.

This new probability distribution results in a variation o f the angles mean values. 

Given a normal distribution, the mean angle x would be tc/4, where the mean angle is 

given by a range o f values, which are linearly dependent on (p. For example, if  given

9=tc/4, then the range o f mean angles is given by

the mean angle will change. To prove statistic merit of this new distribution, it can be 

mathematically proven that if  the mean angle values are averaged over all possible values 

of (p for any given 0, the result will be 7t/4, independent of 0. Providing enough samples, 

it will converge to the same mean as given by the normal distribution.

'A !*A
By taking the derivative o f x (x =  J xP (x ,0 ,0 )d x  j  ^ P ( x , 0 , 0 ) d x )  over 6, and

o /  o

letting cp -  0, it can be shown that the best wedge angle is given by ;t(V6 -  2j j l  (or

9 ^ 11— —  < x < — ---
 ̂4 , 10 10
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0.44957t). It produces the range 7t{s[6 < x  < n{2>-y[6^j2 (or

0.4495;r < x < 0.5505;r).

Given these additions to the code, the DVHs could deviate more from the 

diagonal and thus more varied DVHs would be produced. In total, the additional 

calculations are minimal and are proportional to the number o f DVHs created. The 

calculation time is small if compared to any o f the more complicated methods of 

determining radial length or angle weighting, as they would either add extra calculations 

per point created, or many more calculations per DVH. Figure 3.2 (a) and 3.2 (b) show 

the difference of using a uniform angle distribution and the new angle distribution, 

respectively, for small step sizes. Figures 3.2 (c) and 3.2 (d) show the difference o f using 

a uniform angle distribution and the new angle distribution, respectively, for large step 

sizes. This is more difficult to see than in Figs 3.2 (a) and 3.2 (b) (as the increase in 

DVH-space is relatively larger), though it can be seen that the DVH-space is slightly 

wider in Fig 3.2 (d) than in Fig 3.2 (c).

To reiterate, each DVH created has a maximum radial length and individual 

weighted angle distribution, which are chosen randomly yet remain constant for that 

individual DVH.

3.3.3.3 Partial Organ Irradiation

The two examples given for DVH generation only cover non-homogenous 

distribution o f dose in the organ volume. As there are cases where some parts o f an 

organ will receive all or zero of the total administered dose (eg: partial organ irradiation), 

this needs to be considered.
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Thus, for some of the DVHs created, the initial relative volume value (which 

normally begins at 100% for 0 Gy) was varied in order to represent volumes where 

segments were not irradiated at all. In order to represent DVHs which had segments that 

had received 100% of the dose, the relative volume was kept at 100% up to X dose, 

where X was a varied percentage of the total dose. Organs which had a portion receive 

the same maximum dose as the tumour would produce DVHs such as those. Most 

potential DVHs can be generated by allowing for both of these possibilities.

3.3.4 Calculating Constraints from DVH/NTCP Data

The next step in the program is to calculate the NTCP  values for each integral 

DVH. Previous to any calculations, a particular organ to be examined must be selected. 

Each organ is different in their structure and reaction to radiation (both physical and 

temporal), so they will have different NTCP parameter values. These parameters are 

stored in text files to facilitate access. They are retrieved when an organ is selected. 

Most of the Lyman parameters were derived (4) from the Emami et al data, which has no 

confidence intervals for its values of tolerance doses. There are some parameters though 

which were obtained from other sources (5-12) that do have confidence intervals, though 

currently the program does not take these into consideration. The Lyman model 

parameters D5o, n and m are given for a multitude of organs. The population based 

critical volume model parameter values are also derived from the Emami et al data, 

giving values for D50, yso, fJ-cr and a (3).
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3.3.5 Scaling of Generated DVHs

The NTCPs cannot be simply calculated from the integral DVHs that are 

generated. There are two steps to take beforehand, the first being multiplying the relative 

dose points by an absolute maximum dose value.

By definition, the relative dose has a maximum value of 1 and is unitless. We 

could very well use the relative dose to calculate the NTCP, however, it would make little 

sense as it would be assuming that the maximum dose has a value of 1 Gy. In order to 

produce meaningful NTCPs, we must have sensible dose values in the DVHs. This is 

simply achieved by scaling the relative dose values by an absolute maximum dose value. 

Of course these values will vary depending on the organ and treatment protocol in 

question.

Clinically, the maximum dose that a particular organ can receive can vary 

depending on where the planning target volume (PTV) is located in relation to the organ 

in question, and the maximum dose prescribed to the PTV. In order to cover most 

possibilities, a range of maximum doses is required. It is most desirable to use the dose 

for 99% NTCP and 5% NTCP for the maximum absolute dose value, Dmax, and the 

minimum absolute dose value, Dmin, respectively. These NTCP values would be 

calculated using a uniform irradiation o f the entire organ at the mentioned dose values. 

The maximum dose value that the relative dose of the kth DVH created is multiplied by is 

given by

Anax,* = A™ + nk (Dmax -  Dmm) (2.5)
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where rik is a random number generated from a uniform distribution. Dmax and Dmm 

values have to be calculated for both the Lyman and the CV models, for each organ in 

question.

Alternatively, it is possible to use the clinically absolute maximum and minimum 

values o f the highest dose a normal tissue has been subject to for Dmax and Dmin, 

respectively. Despite that using the clinical values would cover most clinically feasible 

variations o f dose distribution, statistically and logistically it makes sense to favour the 

calculated values instead. It should be noted that in some cases, the calculated and 

clinical dose values can be quite varied. The clinical Dmin can potentially be zero, as the 

organ can receive no dose whatsoever during an irradiation treatment (being outside the 

radiation field). Comparably, the Dmax for some organs can be quite high, receiving 

almost the total prescribed dose meant for the tumour (as such is the case for healthy lung 

tissue in lung tumour treatments).

Given all possible relative DVHs, if the Dmax is too high, most calculated NTCP 

values will be 100% or very close. If the Dmax is too low, many intermediate NTCP 

values will be missed. The same applies for Dmin, though in reverse. Too small a Dmin 

value will result in very low, close to 0% NTCP values, while too high a Dmin could 

potentially omit NTCP values that we are trying to study. In one case, large Dmin or small 

Dmax values could eliminate potential NTCP values in either the lower or upper limits 

respectively. But if  there are too many DVHs, which are producing 0% or 100% NTCP 

values (because o f low Dmin or high Dmax values respectively), the reduction of DVHs 

with intermediate NTCP values could create a bias. As we are interested in all intervals 

of NTCP (intervals are 0-10%,..., 90-100%), neither of these situations are desirable.
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Using 99% NTCP as an upper limit for calculating D max promotes more varied 

NTCP values in the DVHs produced. Using 5% NTCP as the lower limit for calculating 

Dmin ensures that most DVHs will not result in very low, near-zero NTCP values. Hence 

calculated Dmax and Dmin values are preferred instead of clinical values.

The second step involves calculating the differential DVH from the integral DVH. 

The integral DVH shows how much dose is received by at least a certain percent volume 

of the organ in question. However, this is not useful for calculating NTCP values, which 

require exactly what dose each section of the organ received. Thus the integral DVH 

must be differentiated before any NTCP can be performed. See Section 1.2 for 

definitions of integral and differential DVHs.

3.3.6 NTCP Calculating/Averaging and Binning of Integral DVHs Based on NTCP

Two different models are used to determine the NTCP  values: the Lyman model 

(see Section 1.6.7) and the Critical Volume Model (see Section 1.6.8). Once a DVH is 

created, the NTCP using both models is calculated, and the DVH is named and saved as 

well as its NTCP values. To graphically visualize this, Fig. 3.3 represents the histograms 

of the equivalent uniform dose (EUD) and NTCP  values that are created for a random 

sampling of DVH curves. The EUD is essentially the same as the GMD, given by 

Equation (1.25). Figure 3.3 (a) demonstrates the distribution of the EUD for the 

randomly generated DVH curves and Fig. 3.3 (b) illustrates the distribution o f the NTCP 

values resulting from the distribution of EUD values in Fig. 3.3 (a).

For both NTCP models, the DVH is sorted into the following bins based on their 

NTCP values: 0-10%, 10-20%, 20-30%, 30-40%, 40-50%, 50-60%, 60-70%, 70-80%, 80- 

90%, 90-100%, and 4.5-5.5%. Each DVH has its Relative Volume interpolated using an

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



equally spaced Percent Dose array. Depending on which bin(s) the DVH lies within, the 

new Relative Volume array is then added to the previous values. After all DVHs have 

been calculated, the summed Relative Volume arrays for each bin are divided by the total 

number of DVHs sorted per bin, thus creating the average DVH for each bin.

3.3.7 Calculating Dose Volume Constraint Values

The averaged DVHs correlating to each range can now be used to calculate Dose 

Volume (DV) constraints. Given that NTCP values around or below 5% are acceptable
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Figures 3.3 (a) and (b) Histogram o f EUD and NTCP values respectively, derived 
from randomly generated DVH curves.
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in radiotherapy treatments, that particular range was examined. Any NTCP values above 

5% would not be of interest as those values would not be acceptable in any radiotherapy 

application. On the other hand, values much below 5% would skew the averaged DVH as 

there are many more possible DVHs that would equate to almost zero or zero NTCP than 

to 5+/-0.5%.

The DV constraint points for the NTCP range of 5+/-0.5% are calculated by first 

creating a Relative Volume array with 0.1 spacing between each point (0.1, 0.2, ... 0.8, 

0.9). The average DVH value for the 5+/-0.5% bin is then used in conjunction with the 

new Relative Volume array to interpolate the corresponding Percent Dose points. This 

new array now represents the 5+/-0.5% NTCP constraint points for that particular organ.

3.3.8 DVH Probability of Satisfying Calculated DV Constraints for 5+/-0.5%ATCP

The program then takes all the DVHs that had NTCP values within the 5+/-0.5% 

range, and determines whether each of the DVHs satisfies the given constraints. A DVH 

satisfies the DV constraints if  the difference between it’s own Relative Volume values 

corresponding to the 5+/-0.5% constraint values and the Relative Volume array used to 

produce the constraint points are less than or equal to the tolerance value e. For each DV 

constraint point (9 points in total), it tallies how often each DVH satisfies the constraint 

in question. The percentage of total DVHs that satisfies the 5+/-0.5% NTCP constraint 

points can then be calculated.
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3.3.9 Determination of NTCP Distribution for Calculated Constraint Values

While finding the constraints is an important part of this research, it means little if 

the DVHs that satisfy the constraints differ from the normal 5+/-0.5% NTCP range. This 

last part o f the code tends to that issue.

Each DVH that was created is loaded. Using the same method as is mentioned in 

the previous section, all DVHs are compared to the DV constraints for 5+/-0.5% NTCP. 

If the constraints are satisfied, the DVHs are tallied into equally spaced bins depending 

on their NTCP value for each model. This determines what the ranges of NTCP values 

that can satisfy the constraints are.

3.4 Results

We used the liver as the organ for our calculations to date, thus setting the 

parameters for the NTCP models. Dmin and Dmax for the Lyman model were 30.1 and 54.0 

Gy respectively. Dmin and Dmax for the CV model were 30.2 and 52.0 Gy respectively. 

Results are displayed graphically in Figs. 3.4 and 3.5. In order to produce enough diverse 

samples to study, the two DVH generators were used in conjunction with each other.

Figure 3.4 displays the average integral DVHs corresponding to the first six bins 

([0%, 10%], [10%, 20%], [20%, 30%], [50%, 60%], [70%, 80%] and [90%, 100%]) 

denoted in Section 3.3.6. The numbers in the legend relate to the bins, so 1 = 0-10%, 2 

=10-20% and so forth. Figure 3.4 (a) and 3.4 (b) denote the Lyman and CV NTCP model 

respectively.

From Fig. 3.5, we can see a plot o f the DVH curves that lie within the 5+/-0.5% 

NTCP range. In black, we see the constraint points that were calculated from the average 

DVH for the same NTCP range, which were interpolated from the average of the DVHs
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inside the 5+/-0.5% NTCP range (using a constant incremented volume array). Figure

3.5 (a) and 3.5 (b) denote the Lyman and CV NTCP model, respectively. Overlaid on top 

of plots are the Emami et al (1) tolerant doses for 5% complication within 5 years.
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Figure 3.4 (a) and (b) Average DVH curves based on the Lyman and CV (population) 
NTCP models respectively. The lowest volume to the highest volume curves (legend 
values 1-6) correlates to NTCP = [0%, 10%], [10%, 20%], [20%, 30%], [50%, 60%], 
T70%. 80%1 and [90%. 100%1.
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Figure 3.5 (a) and (b) Plot of DVH curves which satisfy the NTCP range o f 5.0+/- 
0.5% NTCP for the Lyman and CV (population) model respectively, for the liver. The 
black curve represents the average DVH for the range of 5.0+/-0.5%, the black dots 
representing the calculated constraint points. The red circles and dashed lines 
represent the Emani et al DV constraint points for the liver.

Figure 3.6 demonstrates the distribution o f the NTCP  o f all DVHs which satisfy 

the e criteria dictated in Section 3.3.9, though only for the constraint point with the 

volume % value of 0.2. Figure 3.6 (a) and 3.6 (b) denote the Lyman and CV NTCP 

model respectively.
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Figure 3.6: Distributions o f all DVHs which satisfy the e-criterion for both NTCP 
models. The DVHs that pass within the e o f the V=0.2 constraint point defined by 
the averaged 5% NTCP are distributed by their NTCP  values.
Left: Lyman NTCP distribution - constraint [36.7 Gy, 0.2];
Rieht: CV nonulation NTCP distribution - constraint T37.9 Gv. 0.21.

3.5 Discussion

It is interesting to note in Figs. 3.4 (a) and (b) that all o f the curves are similar in 

shape, except for the one representing the bin 0-10% NTCP. The 0-10% NTCP curve, 

instead of having a negative curvature, has a positive curvature, and does not level off 

before dropping to the point [1,0], but instead curves down almost exponentially. This 

dramatic difference of shape, despite the same width in NTCP range, can be explained by 

examining the bounds of NTCP, in particular the lower bound.
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The NTCP models that were used in the program are based on error functions (the

2
generalized error function is given by erf{z) = —j=  f e r dt). Because of this, there

d n  Jo
will

exist a wide range o f dose and relative volume values where no or negligible 

complication will be shown, while the number of DVHs that would give non-zero 

complication probabilities are much less common in comparison. This can be easily seen 

in Fig. 3.3 (b), which shows significantly more low NTCP values in the distribution than 

compared to the medium range. O f course, it cannot be ignored that the NTCP  

distribution is dependent on a number of factors. These are the maximum dose that is 

chosen to be studied, as well as the quality of the DVHs produced (uniformly varied over 

all possible DVH curves), which is dependant on the DVH algorithm generator. 

However, providing that enough uniformly varied DVHs were produced (i.e. there is no 

bias or weighting given to the curves), this will be true. Thus, for the curve representing 

0-10% NTCP, it is heavily weighted towards NTCP~0, which is reflected in the shape of 

the curve.

If we now compare the curves related to 5+/-0.5% NTCP  in Fig. 3.5 to those in 

Fig. 3.4, it can be seen that the 5+/-0.5% curve would lay directly between the 0-10% and 

10-20% curve. As the 5+/-0.5% does not include 0% NTCP, it is not weighted as the 0- 

10% curve and thus can be seen to mimic the shapes given by the rest of the curves (2-6) 

in Fig. 3.4.

It is interesting to note how, in Figs. 3.5 (a) and 3.5 (b) there exists a rectangular 

region in which no DVH curves pass through. In both Figures 3.5 (a) and 3.5 (b), it 

extends to 30 Gy along the x-axis, and to 0.180 and 0.243 along the y-axis respectively.
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As 30 Gy is the defined tolerance dose (at 100% volume) for 5% complication, the fact 

that it marks the x-axis limit is not surprising.

Supposedly, this would mean that any DVHs that exist entirely inside this region 

would automatically be excluded from having an NTCP between 4.5 and 5.5%, and most 

likely would pertain to NTCP below 4.5%, for this particular maximum dose and organ. 

This is assuming that the DVHs that were sampled were diverse enough to cover this area 

in question. For alternative maximum doses, the upper limit for this rectangle (and 

perhaps shape) would fluctuate as less or more potential DVHs are included in the 

calculations. To determine the absolute limits o f these regions, for a particular organ the 

maximum clinical dose allowed would have to be used. This, o f course, is dependant on 

the mathematical models being used as well as the data which the parameters are based 

on.

Focusing on the upper left region of the plot area, we can see for both models that 

there is a definite curvature to the accumulative DVHs. The curvature has an 

exponential behaviour. This behaviour is reasonable for the Lyman model (see Section 

1.6.7.2) because the tolerance dose at partial volume v is dependent on the v n (for liver n 

has the value of 0.32). This can be imagined if we assume a constant value for the NTCP 

(approximately 5%, though it can be presumed that most DVHs that touch the top left 

border would be closer to 5.5%). Because of the inverse exponential relation of v versus 

n, as the dose decreases, the partial volume increases accordingly.

In fact, by imagining a set o f DVHs which have constant dose up to a certain 

relative volume, it could be easily seen that they would outline the barrier perfectly (see 

Fig. 3.7). Any DVH with points beyond the barrier would result in an NTCP higher than
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5.5%. If we use the same reasoning concerning the CV model, and assume constant dose 

up to a certain partial volume, the relationship between the two variables is very similar 

to their relationship in the Lyman model. Thus it is not surprising that the border 

governing the upper left portion of the plot is of similar exponential shape. We can make 

these assumptions of constant dose and partial volume to represent the outer border of 

DVHs that satisfy the models, as they represent the maximum values possible for any 

DVH that exist within the set NTCP range.

Lyman NTCP CVpop NTCP

Figure 3.7 (a) and (b) Displays constant dose DVH curves which are within the range of 
5.0+/-0.5% NTCP for both Lyman and CV models respectively, for the liver.
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It is interesting to note that in both models, the Emami et al constraint points for 

5% complication probability for whole and 2/3 partial volume are bridged by the DVH 

functional space, but no DVH ventures close to the 1/3 partial volume constraint point. 

Any DVH with points above or to the left of these constraint points (positive volume or 

dose direction only) would be classified as having a larger value of NTCP (as NTCP 

increases with dose and partial volume). Therefore, it is not surprising that the DVH 

upper border runs close or through these constraint points, though the fact that the 1/3 

partial volume constraint is very far away from the border may warrant further study.

As was stated previously in the introduction to this chapter, the Emami et al. DV 

constraints can only be used individually, as a single dose per partial volume point, and 

cannot be combined together, because this would create larger NTCPs than those 

predicted.

We can observe from Figs. 3.5 (a) and 3.5 (b) that many DVHs exist below these 

constraint points, all with NTCPs that are within 5+/-0.5%. This is, however, not a 

guarantee that any DVH below these points will be within or even below this range. A 

DVH simply containing any two of the Emami et al. constraints would prove this. By 

averaging the DVHs, it is theorized that their average will produce a potential base-line 

for DVHs. The possible NTCP values can then be assessed from the DVHs. A question 

lies in how accurate these new constraint points could be. It is important that the averages 

and constraint points not be misinterpreted.

One key point that must be taken into account is that the DVH functional spaces 

given different NTCP  ranges will overlap on top o f one another. In other words, the same 

point that exists in a DVH that produces a 0% NTCP  could also exist in a DVH that
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produces a 100% NTCP. Thus if we look at Fig. 3.5, we cannot assume that any DVH 

that lies within the area containing the DVHs will produce a DVH within the range that 

governs those DVHs. This is explicitly shown by the results of the NTCP values for the 

calculated constraints. The desire however, is to find constraint points where the DVHs 

within a tolerance value of them will produce consistent NTCP values within (or below) 

that range.

For both sets of constraint points, the NTCP was calculated with the respective 

models for each set. The constraints generated using the Lyman model and CV model 

produced an NTCP of 4.98% and 4.97%, respectively. These values not only lie within 

NTCP  range examined for those constraints, but are very close to the median value of 

5%.

Examining the DVH generators, it should be considered that both of the methods 

mentioned (see Sections 3.3.2 and 3.3.3) have their disadvantages. Both generators have 

locations on the plot area where DVHs produced are likely to inhabit. This will not affect 

the NTCP values of the DVH, however, it will skew the average DVH for any range of 

NTCP  values. It is in the best interests for future study that distributions o f DVHs which 

are more uniform be developed to produce more accurate average DVH curves, and thus 

potential constraint points for inverse treatment planning.

3.6 Conclusion

As stated previously, the combination of the three Emami et al. DV constraint 

points (for 5% NTCP) are not a good basis for determining the merits of a DVH. In fact, 

for the DVHs examined, there was no DVH that even contained the 1/3 partial volume 

constraint point at all for the range of 5+/-0.5% NTCP. There exists potential for these
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new constraints in inverse treatment planning, though more study is needed into how 

these constraints reflect the DVHs used to produced them. More uniform DVH sets are 

required to increase confidence in the average DVH curves and calculated constraint 

values.

Regardless o f the constraint points, Figs. 3.5 (a) and (b) show that there are 

regions where, if  all of the points of any DVH lie within this area, the NTCP will be 

almost guaranteed to be either above or below the upper or lower NTCP range, 

respectively. Providing diverse enough DVH sets are evaluated, the confidence in these 

regions will improve.

It cannot be forgotten that the Emami et al. constraint points are based on 

clinician’s opinions and experience, not on scientific data. Since the parameters from 

which the NTCP models rely on for each organ are derived from this data, the accuracy 

of these models to give reliable complication probabilities comes into question. 

However, if  faith is to be given to the Emami et al. data, the calculated constraint points 

found through this work will be a vast improvement from using the original constraint 

points themselves.
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Chapter 4

Conclusion

By definition, radiobiology is the study of the effect o f radiation on living 

organisms. Mathematical models based on the principles of radiobiology are very 

important for understanding the underlying mechanisms involved with how either tumour 

cells or normal tissues react to radiation damage, as well as possibly predicting more 

tailored maximum and minimum dose tolerances. However, data is difficult to produce 

or acquire for various reasons. Obvious ethical issues do not allow testing to be done on 

humans. While animal testing certainly enables a better understanding of radiobiological 

processes, it doesn’t unequivocally lend how radiation affects human tumours and 

tissues. However, it’s difficult to get statistically significant amounts of data for tumour 

effects, and is not very useful for examining NTCP models. Comprehensive databases of 

patient treatment plans and health after treatment would provide a great asset for 

determining more accurate tolerance dose values to normal tissues, though would require 

global participation and many years to develop enough data. In vitro data is less labour 

intensive to acquire than in vivo, however it limits itself to tumour cell studies. 

Additionally, by definition, the data concerns cells in an artificial environment, though it 

is still useful to understand the underlying elements of tumour response to radiation. How 

much can we rely on the in vitro assay? The connection between in vitro and in vivo 

studies is not clear at this moment; and, in practice, in vitro data may add even more 

uncertainties under certain circumstances. In the instance of prostate cancer, for example,
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as pointed out by Wang et al. (1), the differences between in vitro data reported from 

different labs are as large as, or even larger than, the differences observed among various 

cell lines.

Over the past decades, radiation therapy for cancer treatment has improved 

constantly. The invention of the CT scanner, multileaf collimators and tomotherapy 

have all been steps forward to accurately tailor the dose administered to the tumour 

during therapy. Yet, by the nature of radiation it is impossible to completely spare all 

healthy tissue for any treatment, despite these efforts. Inverse planning was developed in 

order to try to maintain proper dose coverage of the tumour, but spare any healthy tissue. 

However, without study of how tumours and normal tissues are affected by radiation 

quantitatively, inverse planning becomes inane. Given this, radiobiological models and 

methods are becoming of more interest, despite the limited data to base them on.

Both experiments involving in vitro and in vivo data are important in efforts to 

understand the effects o f radiation on tumour cells. In Chapter 2, in vitro data from 

Tamawski et al (2) was used to examine several different TCP models (see Section 

2.2.1). The data consists of two cell lines which were irradiated using several different 

fractionation schemes. The best fits are those which use the LQ model in conjunction 

with repopulation. Other models had similarly good fits, though they were dismissed as 

the calculated parameters were irregular. Previous research (3) which focussed on in vivo 

data using the same models found that a single hit model with repopulation fit the data 

better. However, given later work (4), it is hypothesized that the LQ model could 

correspond to both in vivo and in vitro. By better understanding these models and data,
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hopefully they will be able to improve current clinical techniques by being able to more 

accurately tailor dose distributions.

Recommendations for future work consist of suggesting experiments which have 

more diverse multiple fractionation schemes. Models which did not have immediate 

repair tended to not be represented well by the data, with the exception where the other 

parameters were irregularly adjusted to compensate for the presence o f non-instantaneous 

repair. Considering that the data had, at minimum, a single day between fractions, this is 

not surprising. Data using fraction separation times which more closely related to those 

observed in the laboratory, should be used to examine the mathematical descriptions of 

cell repair.

However, despite improving our knowledge of tumour cell death, there is no 

avoiding radiation damage to healthy tissues. It is unwise to strictly focus on tumour 

control models and neglect how radiation would affect normal tissues, as the entire 

reason for curative (as opposed to palliative) treatment is to maximize tumour cell death 

while minimizing healthy tissue damage, whether immediate or long term. Thus from 

Chapter 3, we discuss potential ways to improve modem clinical methods of determining 

NTCPs from clinical DVHs.

A very important issue in contemporary inverse treatment radiotherapy planning 

is the specification o f proper dose-volume constraints limiting the treatment planning 

algorithm from delivering high doses to the normal tissue surrounding the tumor. 

Recently, a method called reverse mapping of normal tissue complication probabilities 

(NTCP) onto dose volume histogram (DVH) space, was proposed. This method allows 

the calculation o f appropriate biologically based dose-volume constraints to be used in
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the inverse treatment planning. The method of reverse mapping requires random 

sampling from the functional space of all monotonically decreasing functions in the unit 

square. In Chapter 3, we have concentrated on the development of the " Random angle - 

random step descent" method for DVH random sampling. DVHs were generated and 

their NTCPs were calculated for the liver. The parameters o f the NTCP models were 

derived from the Emami et al (5) data, and new Dose-Volume constraints are derived and 

analyzed from the data produced, in particular the DVHs which produced NTCP  values 

of 5±0.5%.

The Emami constraints were found to lie along the upper boundary outlined by 

the DVH subspace dictated by the condition NTCP=5±0.5%. Any DVHs which passed 

through a combination of the Emami constraints are outside the NTCP range o f 5±0.5%. 

The NTCP of the calculated DV constraint points was shown to be within the same range 

which governed the DVHs that they were based on. Potentially, the constraints could be 

improved by developing more randomly uniform DVH generators to avoid bias.

Recommendations are for the development of more diverse and less location 

biased DVH generators so as to give more confidence in the calculated confidence 

values. Also, given that the Emami et al data is based mostly on physicians observations 

and not quantitative methods, not to mention that the data have no error governing the 

tolerance dose values, it could be helpful to find more statistically accountable tolerance 

dose values.
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Appendix 1

The Poisson distribution arises when you count a number of events across time or over an 

area. It is based on four assumptions. We will use the term ‘interval’ to refer to either a 

time interval or an area, depending on the context of the problem.

1. The probability of observing a single event over a small interval is approximately 

proportional to the size of that interval.

2. The probability of two events occurring in the same narrow interval is negligible.

3. The probability o f an event within a certain interval does not change over different 

intervals.

4. The probability o f an event in one interval is independent of the probability of an 

event in any other non-overlapping interval.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

91



Appendix 2

The MATLAB code used to fit the Tamawski et al data (Ref) can be seen below. 

function fitTCPtarnawski

% sets colours and shapes fo r  points andfitted lines on graph 
d0=(2:2:90)';
nc=9; % nc is the number o f  colonies 
clr(l,:)=,b+';clr(2,:)-gx';clr(3,:)-ro';

nset=3;
icell=menu('Cell Type', 'a4549', 'at478'); 
cell(l,:)='a4549'; cell(2,:)=’at478';

% choose cell type to be considered — 1 fo r  a4549, 2 fo r  at478 
if  ( ic e ll= l)

load a4549s; ds=a4549s(:,l); ps = a4549s(:,2); ks=ps.*nc; 
load a4549cair; dcair=a4549cair(:,l); pcair = a4549cair(:,2); kcair=pcair.*nc; 
load a4549cr; dcr=a4549cr(:,l); per = a4549cr(:,2); kcr=pcr.*nc; 

else
load at478s; ds=at478s(:,l); ps = at478s(:,2); ks=ps.*nc; 
load at478cair; dcair=at478cair(:,l); pcair = at478cair(:,2); kcair=pcair.*nc; 
load at478cr; dcr=at478cr(:,l); per = at478cr(:,2); kcr=pcr.*nc; 

end

% number o f  fractions in each data set
dpf=2 ; % dose per fraction
nfs(l :length(ds),l)=l; % number o f  fractions
nfcair=dcair/dpf;
nfcr=dcr/dpf;
nfsO(l:length(dO),l)=l; nfcairO=dO/dpf; nfcrO=nfcairO;

% times (days) o f  all fractions 
Tis = 0; % acute
Ticair = FracMod(2, max(nfcair)); % cair 
Tier = FracMod(l, max(nfcr)); % cr
TisO=Tis; TicairO=FracMod(2,max(nfcairO)); TicrO=FracMod( 1 ,max(nfcr0));

% number o f  colonies
ns=nc; ncair=nc; ncr=nc; % all set to common value o f  9 
setnos= 1:3; setstr= {'sVcair','cr'};

% ------------- log likelihood fu l l '-----------------------
Lpf(3)=0;
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Lpf(l) = loglike(ns,ps,ps); deg(l)=length(ps);
Lpf(2) = loglike(ncair,pcair,pcair); deg(2)=length(pcair);
Lpf(3) = loglike(ncr,pcr,pcr); deg(3)=length(pcr); 
degfr=sum(deg);
Lf=sum(Lpf);

cl = ['b' 'g' V]; % color o f  theoretical curves 

% check initial parameters
a=.3;b=.03;lambda=0.15;Tlag=0.0; tau=2.2; N=150;
Lm=10A9; dlt=10;fixN=l;
repopin=0.0; repopout=1.0; il=0; q=0;qpre=1000;eps=0.;
% repopin refers to lambda inside LQ exponent, repopout refers to lambda outside 
exponent, but as multiplier o f  # clonogens, which is the power o f  the individual 
probability o f  death
% at most one o f  repopin, repopout should be — 1.0

mcl(l,:)='partial recovery & no repopulation'; 
mcl(2,:)='partial recovery & repopulation 
me 1 (3,: )='full recovery & no repopulation 
me 1 (4,: )='full recovery & repopulation 
me 1 (5,: )='S ingle hit & Repopulation ';
jcase=menu('Choose a combination',me 1 (1 ,:),mcl(2,:),mc 1 (3,:),m c l(4,:),me 1 (5,:)); 
i f jc a s e = l  recov=l;lambda=0; 

elseif jc a se = 2  recov=l; 
elseif jc ase= 3  recov=0;lambda=0; 
elseif jc a se = 4  recov=0; 
elseif jcase==5 recov=0;b=0; 

end
i f b = 0  recov=0;end; if  recov==0 tau=0; end
degfr=degfr-abs(sign(a))-abs(sign(fixN))-abs(sign(b))-abs(sign(lambda))-abs(sign(Tlag))-
abs(sign(recov));

while dlt>eps il=il+l;
q=q+1; if q>qpre tocontinue=menu([num2str(il),' iterations. Continue?'],'yes','no'); 
if tocontinue=2 eps=10A9;end; q=0; end

% calculate tcp values as a function o f  the parameters a,b,N,lambda, Tlag 
% Zaider model — % these are theoretical model values at dose points in data 
tcps = zaider(N,a,b,lambda,ds,nfs,Tis,tau); 
tcpcair = zaider(N,a,b,lambda,dcair,nfcair,Ticair,tau); 
tcpcr = zaider(N,a,b,lambda,dcr,nfcr,Tier,tau);

% log likelihood method 
Lpp(3)=0;
Lpp(l) = loglike(ns,tcps,ps);
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Lpp(2) = loglike(ncair,tcpcair,pcair);
Lpp(3) = loglike(ncr,tcpcr,pcr);
Lp = sum(Lpp);

% note negative sign in above Lp's — that is why we are minimizing Lp here (instead o f  
maximizing
% ---------------- iterate values o f  parameters and store best values so fa r -----------------------
if Lm>Lp

dlt=abs(Lm-Lp);Lm=Lp; bm=b;am=a;lambdam=lambda;Tlagm=Tlag;Nm=N;

taum=tau;

tcpsm=tcps; tcpcairm=tcpcair; tcpcrm=tcpcr;
hi=2*(+Lp-Lf); Phisq=hi2(degfr,hi,.001); % chi-squared calculations

%-------------------- plot data sets
xld=min(d0)+2; 
figure(l);clf 
axis([0 90 0 1.00]);
plot(ds,ps,'b+',dcair,pcair,'gx',dcr,per,'ro'); hold on; 

text(xld,.9,['L_{fiill} = -’,num2str(Lf,5)]);
text(xld,.96,['L_{max} = -',num2str(Lm,5),'; p -  ,num2str(Phisq,2)])

%--------------------- Plotting scenarios fo r  each o f  the models

title(['N_{clon} = ',num2str(N,4),'; \alpha = ',num2str(a,3),'; \beta = ',num2str(b,4),'; 
\lambda= ',num2str(lambda,3),'; \tau = f,num2str(tau,3)]) 

text(xld,.85,[' Zaider']) 
for ip=setnos;

if  ( i p = l )
p = zaider(N,a,b,lambda,dO,nfsO,TisO,tau);
pi=p;

elseif ( ip = 2 )
p = zaider(N,a,b,lambda,dO,nfcairO,TicairO,tau);
p2=p;

elseif ( ip = 3 ) 
p = zaider(N,a,b,lambda,dO,nfcrO,TicrO,tau); 
p3=p; 

end
plot(dO,p,cl(ip)); hold on; 

end
xlabel([cell(icell,:),'. ',mcl(jcase,:),' Dose [Gy]']);ylabel('TCP') 
drawnow 

end % end o f  i f  Lm>Lp statement

% ----------- change parameter values using Monte Carlo (gaussian)
tau=taum*(l +.051 *randn);
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a=am*(l+.051 *randn);b=bm*(l+.051 *randn); 
lambda=lambdam*(l+.04*randn);
Tlag=Tlagm*(l+. 1 *randn);
N=round(Nm*(l +fixN*. 1 *randn)); 
save test

end % end o f  while loop (main iteration loop)

%-------------------------
function Lp = loglike(ncase, pth, pexp)

Lp=sum(-ncase.*(pexp. *log(pth+1 .e-031)+(1 -pexp). *log( 1 -pth+1 .e-031)));

%-------------------------
function tcp = zaider(N,a,b,lambda,dose,nfract,Ti,tau)

if  (Ti =  0) % acute treatment 
sf = exp(-(a*dose + b*dose.A2)); 
prob = (1 - sf); 

else % one o f  the constant dose per fraction treatments 
% note i f  tau=0, no recovery is disabled 
% nfract is a vector 
nmax=max(nffact);
dpf=max(dose)/nmax; % d p f is dose per fraction
% calculate Ti's, survival fractions fo r  all individual fractions up to nmax fractions 
recovsum —PartialRecCor(Ti, nmax, tau);
% LQ survival; note the following assumes the same dose per fraction fo r  all
% points in a set
i=l:nmax;
% s f  is a vector — calculate survival after each fraction o f  an nmax fraction regimen 
sf = exp(-i.*(a*dpf + b*dpfA2)-2.0*recovsum.*b*dpfA2);
% this is the sum in the denominator o f  Zaider TCP expression 
den=(l ,0./sf(l :nmax-l)).*(exp(-lambda*Ti(2:nmax))-exp(-lambda.*Ti(l :nmax-l))); 
for i= 1: length(nfract) 

densum(i);:::sum(den( 1 :nfract(i)-1)); 
end

% now we will do calculations fo r  each dose/nfract pair in these vectors 
num = sf(nfract) .* exp(lambda*Ti(nfract)); % vector — numerator fo r  each fraction 

in nfract
den2 = 1 - num.* densum; 
prob = (1 - num./den2)'; 

end
tcp=prob.AN; % tcp here is a column vector 

%------------------------
function Ti=FracMod(Mod,NumFrac)

n=NumFrac-l;
Ti(l)=0;
if M o d = l % Mon - Fri 24h int i.e. conventional
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tmp=l:n;
tmpl=sign(l-sign(mod(l:n,5)))*2; 
tmp2=cumsum(tmp 1);
Ti(2: NumF rac)=tmp+tmp2; 

elseif Mod==2 
% 1 treatment every day, 7 days a week 

Ti(2:NumFrac)=l :n; 
end

% -------------------------
function f=PartialRecCor(T,NumFrac,tau)

m=NumFrac;
f(l)=0;
if tau==0 

f(m)=0; 
else

for n=2:m; s=0;
for i=2 :n;for j=(i+1): (n+1);s=s+exp(- (T(j-l)-T(i-l ))/tau);end;end 
f(n)=s; 

end 
end

% ------------------------
function y = hi2(k,hi0,st)
hi=hi0:st:(3*(4*k));
z=exp(-hi/2).*hi.A((k-2)/2)/2A(k/2)/gamma(k/2);
y=st*sum(z);
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Appendix 3

The repair process of irradiated cells can be mathematically represented by the following 

ordinary differential equation

dNr _ N r 
dt t

where Nr is the number o f cells in need of repair, t is time and x is the time 

proportionality coefficient. Solving the ODE produces

N r(t) = Nr(0)e" .

If  AT  equals the time between two fractions o f radiation, it can easily be seen that e~AT/T

( = N r(t ) /Nr(0) ) is the probability that no recovery occurs during this time interval AT,

and conversely l - e “Ar/r is the probability of cell recovery occurring during AT.

By taking the simplest fractionation scheme, two fractions separated by a time AT, the 

surviving number of cells Ns is given as

N ^ N e ^ ^ e ^ e  pdl [ e 2̂  + ( \ - e 2l3d̂ ) ( \ - e MlT)\

where N  is the initial number of cells before irradiation, and di and d2 are the dose given

in the first and second fraction respectively. e~a{d'+d2)e~pd' e~pdl- is simply the probability 

o f cell survival (using the LQ model) after doses dj and d2 are delivered. 

e ~2/3dtd 2 represents the probability that cells will survive lethal damage caused by cross­

damage between doses dj and d2 (dose dj inflicts sublethal damage that then becomes 

lethal damage due to dose d2). Thus (1 -  e ~ipd'dl )(1 -  e“Ar/r) is the probability o f the cell
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receiving lethal damage due to the cross-damage between doses dj and d2, but which is 

repaired in the time interval AT  (and thus the cell survives). It can readily be shown that

if repair is almost instantaneous (full recovery occurs), Ns reverts to Ne~aDe~^d'e~pdl- .

By using the Taylor expansion of e x for small values of x

n = 0

X  +  . . .  ,
n\

the equation e 2/id'd- + ( l - e  2̂ d'dl) { \ - e  at/t) can be shown to approach e 2lldd-c 1 for 

small values o f 2fidid2.

Simplified, e 2,u^  + ( l - ^ 2/M̂ ) ( l - e ^ r/r) becomes l - < f A7yr( l - £ f w ) •

Assuming small values of 2fidid2, e~ipd'dl = 1 - 2 fddxd2 or 2(5dxd2 = 1 - e 1,id',>2, so the 

equation now becomes \ - i p d xd2e~ATlT. As e~AT/r is always lesser than or equal to 1, 

2/?<7,<72e 'Ar/r < 2fidxd2, so the Taylor expansion can be used again and we get our final 

answer ot e H 1 2

If A, is then generalized for multiple fractions, it’s a simple matter of multiplication of 

the probabilities for all possible fraction intervals. The following equation is the result, 

giving Ns after k  fractions:

(  k \
N  = N  exp - a £ idi exp ~ 2PYa X  d<d ,e

\  i=i J y < 1=1 /=/+i

where T,./ and 7}./ are the times at which the /'-7th and /-7th dose is delivered, 

respectively. Notice how frj as dose given by the same fraction cannot cause any cross­

damage.
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