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Abstract 

 

This work presents a new test case generation methodology, which has a 

high degree of automation (cost reduction); while providing increased 

“power” in terms of defect detection (benefits increase). Our solution is a 

variation of model-based testing, which takes advantage of symbolic 

grammars (a context-free grammar where terminals are replaced by regular 

expressions that represent their solution space) and quasi-random sequences 

to generate test cases. 

Previous test case generation techniques are enhanced with adaptive 

random testing to maximize input space coverage; and selective and directed 

sentence generation techniques to optimize sentence generation. 

Our solution was tested by generating 200 firewall policies containing up 

to 20 000 rules from a generic firewall grammar. Our results show how our 

system generates test cases with superior coverage of the input space, 

increasing the probability of defect detection while reducing considerably the 

needed number the test cases compared with other previously used 

approaches. 
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1 Introduction 

Fuzzing is a software testing technique used to find bugs through the 

external or exposed interfaces of systems complementing traditional testing 

with randomness, protocol knowledge and attack heuristics. 

In recent time, fuzzing has become a widely accepted testing approach 

due to its ease of automation and obtained results (compared with 

traditional software testing, fuzz testing improves the obtained results). 

Fuzzing is used by the software industry to improve the quality of their 

software, by vulnerability analysts to detect software and by third parties 

(such as hackers) to find and exploit software.  

For testing applications that require highly-structured inputs, traditional 

testing tools and fuzzing tools can be very limited. Examples of this kind of 

system can be found in any system that uses compilers or interpreters to 

obtain its parameters values from an external input. These systems process 

the information in stages such as lexical, pre-processing and syntactical. 

Each stage usually depends on the successful termination of the previous 

stage. Due to its nature, most of the testing techniques generated inputs 

can rarely surpass the first stages. 

Systems that require highly structured inputs usually have defined 

language grammars that control the input syntax. These grammars define 

the valid input space for all the possible inputs of the system under test. As 

known, the input surface of any system tends to infinite, so heuristics 

should be used in order to constraint it and make testing feasible. 

Previous work employs black box and white box testing approaches. 

Black box consists in feeding random inputs to the system under test so 

they can reveal flaws in the system under test. As mentioned, black box 

testing approaches are very limited due to the highly-structured inputs 

where any malformation prevents information from reaching deeper stages. 

White box fuzzing approaches combine black box testing with dynamic test 

generation. Starting with a well-formed input, it executes the test and 

keeps track of the conditionals used. Then those conditionals are negated 

so different control paths are tested. For large systems, this approach is 

unfeasible as the possible control paths and constraints can grow 

exponentially. 



8 
 

To solve these limitations, some black box fuzzing approaches use 

grammars to reduce the solution space of the generated well-formed inputs 

and test heuristics. One of those approaches is grammar-based whitebox 

fuzzing, which is an enhancement of whitebox fuzzing with grammar-based 

specifications of valid inputs and high-level symbolic constraints expressed 

in terms of symbolic grammar tokens. This approach guarantees that all of 

its generated outputs will be parsable system inputs. Nonetheless, several 

limitations were not solved by this approach as the grammar and the 

grammar token constraints only reduce the testing input space in terms of 

generating parsable system inputs. 

Parsable system inputs present many of the problems non-parsable 

inputs present. For example, the input space is reduce, but the total 

permutations is still of exponential order even using the token constraints 

and symbolic grammars. Another detected problem is that parsable system 

inputs have no control over the tokenizing selection algorithm used in fully 

defined testing inputs. Both limitations make the algorithm practically 

unusable for most testing strategies that require precise control over the 

fully defined testing inputs. 

To address the detected limitations this work presents an extension to 

grammar-based whitebox fuzzing where controlling algorithms are added to 

reduce even more the input space. With these expansions the system will 

not only explore deeper program paths and will avoid the generation of 

non-parsable system inputs, but will also increase the solution space 

covered by each generated test. 
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2 Related Work 

Much progress has been accomplished regarding grammar-based 

testing. Starting from the early 70s, this testing strategy has evolved from 

its initial formalization to its implementation in testing frameworks. 

This section is organized as follows: first an introduction discusses 

model-based testing; then we review of previous blackbox testing 

techniques; following this, whitebox approaches will be analyzed to 

introduce whitebox fuzzing and its implementations; finally we review  the 

latest technologies employed will that define today’s state-of-the-art for 

grammar-based approaches will be presented. 

2.1 Model-based Testing 

Model 

Subject 
Environment 

System Under Test (SUT) 

Redundancy 
Shared test & dev model 

Separate test model 

Characteristics 

Deterministic/Non-Det. 

Timed /Untimed 

Discrete/Hybrid/Continuous 

Paradigm 

Pre-Post 

Transition-Based 

History-Based 

Functional 

Operational 

Test 

Generation 

Test Selection 

Criteria 

Structural Model Coverage 

Data Coverage 

Requirements Coverage 

Test Case Specifications 

Random & Stochastic 

Fault - Based 

Technology 

Manual 

Random Generation 

Graph Search 

Model-checking 

Symbolic execution 

Theorem proving 

Test 

Execution 
On/Offline Online/Offline 

Table 2.1 Taxonomy proposed by Utting and Legeard for model-based testing. 
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Model-based testing is the automatic derivation of concrete test cases 

from abstract formal models (1). Utting and Legeard propose a model with 

seven dimensions (properties) that give a full description of any type of 

system that uses a model for generating its outputs. The taxonomy is 

shown in Table 2.1. 

According to this taxonomy, grammar-based testing is a type of model-

based testing whose dimensions are shown in Table 2.2. 

Dimension Characteristic Description 

Subject Environment 

The model of the environment is used 

to restrict the possible inputs of the 

model. The model is a context-free 

grammar that gives a full protocol’s 

description of the input space of 

the system under test 

Redundancy 
Separate test 

model 

Redundancy is guaranteed as the test 

tool is built separately from the SUT and 

goes through its own development 

lifecycle. 

Characteristics 

Non-Deterministic / 

Deterministic 

Both characteristics are used depending 

on the approach chosen.. 

Untimed 

All approaches act over the system 

under test’s input/output so real-time 

execution is not considered. 

Discrete 

The testing system depends on the 

occurrence of asynchronous discrete 

events over time 

Paradigm Functional 

The SUT is described as a collection of 

mathematical functions, in this case the 

context-free grammar. 

Test Selection 

Criteria 

Structural Model 

Coverage 

The structure of the model (grammar) is 

exploited to generate the test cases. 

Technology 

Random 

Generation 

Several systems use constrained 

random generation  

Model-checking 

With dynamic test generation, model 

checking is used for creating new 

testing inputs for the SUT.  

Symbolic execution 

White fuzzing approaches use symbolic 

execution as their main engine for 

constraining the input space. 

On/Offline Online/Offline 

Until dynamic test generation was 

introduced, all systems were executed 

offline. 

Table 2.2 Dimensions for model-based testing proposed by Utting and Legeard 

Grammar-based testing focuses on using the model (grammar) to 

produce test inputs to verify the conformance of the system under test to 
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the model. Context-free Grammars can produce syntactically correct 

predicates, but fail to produce semantically correct predicates – a significant 

limitation that has been studied, as the following sections demonstrate. 

2.2 Random Testing 

The first attempts to employ grammar-based testing date back to the 

1970’s. Grammars found in language definitions are recipes to generate 

strings that will be considered to be well-formed and part of the language 

accepted by the compiler. To satisfy this constraint the following two 

conditions need to be satisfied: 

� All well-formed programs can be written down following the 

model. 

� Only well-formed programs can be written down following the 

model. 

BNF notation satisfies the first one but fails to satisfy the second one. 

This is comprehensible as the second condition can only be satisfied with 

context-sensitive grammars. 

To satisfy the second condition, Hanford (2) introduces the concept of 

dynamic grammars, which is an extended grammar that considers syntax 

declaration correctness. Hanford proposes that an approximation to a 

context sensitive grammar can be achieved by adding rules that produce 

predicates of a declarative programming language. 

Purdom (3) focussed on the problem of sentence generation, 

presenting an algorithm that produces a set of short sentences from a 

context-free grammar such that each production of the grammar is used at 

least once. Purdom overlooks semantical correctness but focuses on how to 

rapidly generate a short test set of sentences that obey the syntax of a 

context-free grammar. 

Both attempts concentrated on the automated generation of test cases, 

but no further control was proposed. This led to problems controlling the 

input space which wasn’t reduced and includes all the sentences defined by 

the grammar (that are part of the language definition). Random generation 

was employed to solve this limitation. Random testing consists of randomly 

selecting inputs from the input space. This approach is not effective as the 

input space is too big and the chances of hitting “error crystals” (4) is very 

small. So a more reliable approach is needed to constrain the produced 

sentences. 



12 
 

2.3 Exhaustive Generation 

Exhaustive generation from the grammar was tried by Duncan and 

Hutchison (5); they proposed the usage of attributed context-free grammar 

as the basic mechanism for grammar production heuristics (constraints over 

the solution space). Their first step in the algorithm is to change the CFG 

grammar to an attributed CFG grammar with attributes that will be solved 

by the system. Those attributes will give control over the production choice 

of rules, attributes and productions. Attributes act as guides that tell the 

parser which rules employ and how to employ them. 

Take for example the following set of rules: 

A = B{1} C{0,1} D{m,n} ; 

 

B= “b”; 

C= “c”; 

D= “d”; 

 

In this example each terminal symbol is enclosed between quotes and 

non-terminal is followed by user-defined attributes annotated between curly 

brackets. These attributes control the non-terminal boundary values (lower 

and upper); if m=1 and n=4 an example of the language defined by this 

grammar would be “bcd” and “bcddd”. The system proposes a set of 

attributes for controlling the use of certain rules. This gives the system 

certain context awareness in order to generate semantically correct 

sentences: 

Asd = [? terminal = “else”] “else” stmt; 

 

stmt = “stmt” ; 

 

In this rule, “[? ... ]” indicates that the variable terminal (set during the 

system execution) will be evaluated. If this block is evaluated as true, then 

the rule will be solved during execution time.  

This system leaves all the choices to the tester on how to combine the 

attributes, so the effectiveness of the tool is proportional to the ability of 

the tester to refine its results and, as no dynamic strategy is suggested, the 

inspection of the results is done manually. Another limitation of this 

approach is that each grammar has to be modified to comply with the 

system syntax; this implies further human interaction with the system. 

2.4 Constrained Exhaustive Enumeration 

Even when the grammar has been restrained the input space is usually 

too large to attempt exhaustive (test case) generation; to address this 
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problem, the concept of “constrained exhaustive enumeration” was 

introduced, which consists of adding constraints to the grammar to reduce 

the solution space. 

Maurer (6) proposes building a grammar in a bottom-up fashion, 

keeping the solution space as controlled as possible and defining a different 

test grammar for each different test case. Attributes are added to each 

grammar to give limited semantic control over the generated outputs. 

The probability for selecting a particular alternative of a rule with 

different choices is annotated before choice. For example, the rule “vowel” 

can be extended with probabilities, giving the terminal “u” a 33% chance of 

being chosen compared to the terminal “a” that only has 7% probability. 

 

extended_vowel = %15{vowel} 

 

vowel = 1:”a” | 2:”e” | 3:”i” | 4:”o” | 5:”u” 

 

Action routines are also another enhancement proposed by Maurer. 

Action routines allow the grammar to keep track of values previously 

selected. These values can be used later when a previously selected value 

is wished to be used. 

extended_vowel = %{vowel.letter} %{letter} 

 

letter: variable; 

 

vowel = ”a” | ”e” | ”i” | “o” | ”u” ; 

 

The main drawback of this approach is the buttom-up grammar 

generation that prevents scalability as the grammars become complex. 

Another limitation is that when the grammar is defined the system works 

generating all possibilities for some productions while allowing other choices 

to be made at random.  

McKeeman (7) employs the concept of differential testing to address 

the oracle problem employing stochastic grammars. Stochastic grammars 

are grammars where each of the rules is associated with a probability. 

Whenever a nonterminal is to be expanded, a random number is generated 

and compared with the fixed rule probabilities to direct the expansion 

choice. The author proposes 7 levels of quality assurance for testing a C 

compiler: 

1. Sequence of ASCII characters 

2. Sequence of words, separators and white spaces 

3. Syntactically correct C program 

4. Type-correct C program 
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5. Statically-conforming C program 

6. Dynamically-conforming C program 

7. Model-conforming C Program 

Stochastic grammars satisfy only levels 1 and 2. For levels 3 – 5, 

adding more specific rules and probabilities is suggested to achieve the 

semantic correctness required (7). For levels 6 and 7, a post-generation 

analysis with a different tool that selects only well-formed inputs is 

proposed. As only few test cases reach level 7, it is suggested to employ 

exhaustive generation to generate enough test cases (to raise the 

probability for having well-formed inputs). 

Lämmel (8) presents controllable combinatorial coverage where 

parameters are set to control the grammar such as: 

� Depth - limit the number of rules employed to produce the 

testing sentences. 

� Recursion - limit the nested selection of recursive rules. 

� Balance - limit the depth variation for argument terms when 

depth and recursion are not enough to satisfy the desire 

depth over recursive rules. 

� Dependence – defines the syntactic (context-free) or 

semantic (context-sensitive) options for controlling 

combinations of arguments when forming new terms. 

� Construction – conditions and computations that semantically 

constrain test-data generation into test cases. 

These approaches focus their efforts on describing valid inputs and 

generating test cases that satisfy the grammar but fail to solve the 

exhaustive generation of sentences once the grammar has been 

constrained to a certain depth.  

2.5 Symbolic Execution 

Symbolic execution is a program analysis technique that, instead of 

supplying inputs to a program, supplies symbols representing arbitrary 

values that allows the exploration of program executions paths. Symbolic 

execution is useful in other forms of program analysis such as test input 

generation (9), program optimization (10), and program debugging (11). 

Clarke (9) suggests that the system should be represented as a control 

flow graph. Then a random input is selected and its control path is traced. 

The relationships that affect the program flow are determined as a set of 

constraints in terms of the program’s input variables. When a path is 

symbolically executed, expressions denoting the evolution of the variables 

are generated. These values are collected and used to constrain the next 
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set of input test values; this is repeated until all the control paths have 

been exercised. 

For example take the following Java code (its control graph is shown in 

Figure 2.1.): 

1 public int myFunction (int var1, int var2){ 

2  

3 var1 = var1 + 1; 

4  

5 if (var1 > var2) 

6     var1=10 – var2; 

7 else 

8     var1 = var1 / var2; 

9  

10 return var1; 

11 } 

12  

Given random initial values (for example var1 = 10 and var 2 = 0), the 

symbolic execution records the values of the variables in lines 3, 5, 6 and 

10. The final result (line 10) would be expressed as: 

var1 = 10 – var1 - 1 

Giving the following constraint for the “if” statement found in line 5: 

var1 +1 > var2 

Whenever a conditional transfer of control is executed, one or more 

constraints representing the branch form of the chosen conditional 

statement are generated. Each constraint should be sent to an inequality 

solver to check if it can be solved given previously generated constraints. If 

the constraint can’t be satisfied, it would indicate that the path is unfeasible. 
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Figure 2.1 Control graph for example code. 

2.6 Concolic Execution 

EXE (12), DART (13) and CUTE (14) are examples of automated 

approaches to systematic testing based on dynamic test generation. All 

these systems combine constrained random-testing with automatic 

symbolic and concrete execution (called concolic execution); but are not 

selective as test inputs are generated randomly and iteratively refined 

through symbolic execution. This led to uncertainty and forces the program 

to generate very large set of inputs, so “error crystals” can be found in the 

input space. 

Godefroid and Larlund developed DART: Dynamic Automatic Random 

Testing (13) one of the first symbolic execution systems to introduce 

dynamic test generation to fully automate the process of testing. DART 

uses the following techniques: 

� Automated extraction of the interface of a program with its 

external environment using static source-code techniques. 

� Automatic generation of a test driver for this interface that 

performs random testing. 

� Dynamic analysis of the test results and automatic generation 

of new test inputs to systematically manoeuvre the flow path 

in an attempt to cover all feasible paths. 

Automated extraction refers to the control of the program interfaces 

with its environment. It detects external variables and external functions 

(i.e. libraries) and the arguments of a user-specified initial function 

employed for starting the test execution.  DART distinguishes three kinds of 

C functions: 

� Program functions that are defined and used in the program. 

� External functions that are controlled by the environment so 

they are part of the external interface of the program. 

� Library functions that are functions not defined in the 

program but are used by the program. 

This step enhances the testing system with external entities awareness, 

so external calls are treated as black boxes which cannot be instrumented 

or analyzed. DART is capable of evaluating these external functions in order 

to create more precise constraints when needed. 

Automatic generation is responsible for creating dynamic C code (a 

main function) that initializes the interface variables at random and 

executes the test. The initialization of variables takes as arguments a 

memory location. 
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Dynamic analysis of test results and automatic generation of new test 

inputs refers to a constraint solver that takes the results of the test (as 

memory locations and values) and defines concrete values for each 

parameter in the external interface forcing new control paths to be 

executed. Only one value is changed at a time starting from the last 

recorded one (last value in the execution path). 

Some limitations of this approach were related to the complexity of 

dynamic variables, pointers and data structures. In fact this system fails to 

correctly generate constraints for these data types and suggests that pure 

random testing should be employed. Due to the nature of path explosion, 

the tool is only built to aid in the unit testing phases. 

DART sets the basis for further work in symbolic execution testing 

frameworks. For example Sean et al. (14) develop CUTE: “A Concolic Unit 

Testing Engine for C” which focuses on the problem of providing methods to 

extract and solve constraints generated by a program where dynamic data 

structures are employed. They introduce the idea of a logical input map 

that represents all inputs as a collection of symbolic variables. From this 

map, the system builds constraints by performing a symbolical execution of 

the code under test. 

CUTE extends DART by adding better pointer manipulation, separating 

pointer constraints from integer constraints and keeping them simple. 

Another enhancement is that the system takes into account code 

preconditions and sanity checks extending unit testing limitations and 

adding scalability. 

Cadar, et al. introduce EXE (12). EXE keeps track of the execution path 

constraints in the same fashion as previously discussed. Its main difference 

is that it employs those constraints and a predefined set of “validations” to 

check for input values that can cause an error. 

For each recorded constraint, EXE’s constraint solver verifies if the 

symbolic expression has a value that satisfies the constraints that can 

cause a null or out-of-bounds memory reference or a division or modulo by 

zero error. If true, it reports that the evaluated condition occurs, generates 

a test case, and terminates; if false, it reports that the evaluated condition 

does not occur and continues execution. If EXE has a set of constraints on 

those expressions and the constraint engine can solve them, then EXE 

detects if any concrete value exists on that path that causes the error. If no 

concrete value exists that causes the error then the branch is considered to 

be safe. 

For example for the following code: 

1 public int myFunction (int var1, int var2){ 

2  

3 var1 = var1 + 1; 
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4  

5 if (var1 > var2) 

6     var1=10 – var2; 

7 else 

8     var1 = var1 / var2; 

9  

10 return var1; 

11 } 

12  

From our previous example, the symbolic constraint for the else 

execution path found was: 

var1 + 1 <= var2 

 

When EXE’s constraint solver reaches line 8, it will look for values that 

satisfy the constraint and can produce one of the mentioned known errors. 

For this case the concrete values for the next test could be var1 = -10 (or 

any negative number) and var2 = 0. Despite the enhancements over 

previous systems, execution path explosion and dynamic data structures 

still limit the scalability of the system. 

2.7 WhiteBox Fuzzing 

Godefroid, Levin and Molnar (15) propose a testing framework that 

uses a generational search algorithm and a code-coverage maximizing 

heuristic. The initial input is chosen at random from a pool of well-formed 

inputs and is symbolically executed by the program. The approach consists 

of recording a concrete execution of the program under test based upon 

supplying a well-formed input. Subsequently, it symbolically evaluates the 

recorded trace and gathers constraints on the input variables capturing 

their interaction with the program. For producing new test cases, the 

authors propose an algorithm called “generational search” which tries to 

expand all constraints found in the path constraint; for this they associate 

with each constraint a score that represents the incremental branch 

coverage. This approach uses exhaustive generation as all constraints are 

expanded, but prunes the unsolvable constraints and returns a concrete 

value, whenever symbolic execution is not possible. 

The algorithm is implemented in a symbolic execution framework called 

SAGE which stands for “Scalable, Automated, Guided Execution”. The 

framework has two main features that separate it from previous 

frameworks—the generational heuristic algorithm (generational search) and 

a trace-based x86 binary symbolic execution engine. 

The generational heuristic algorithm works as follows: 

� Starting with an initial input seed and initial path constraint, 

it will attempt to expand all of the given constraints (opposed 
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to the usual approaches where the first one (breadth-first) or 

only the last one (depth-first) are expanded). 

� Then, to prevent these child sub-searches from redundantly 

exploring overlapping parts of the search space, a parameter 

is used to prune each existing sub-search. 

� The result is a set of test cases called “generation” that will 

be the input seeds for the next symbolic execution. 

The expansion of generational constraints is prioritized by using a 

heuristic that attempts to maximize block coverage. It computes the 

incremental block coverage obtained by comparing the actual run to all 

previous generated runs. The actual run is saved and classified in a list 

according to its score, with the highest scores placed at the head of the list. 

The constraint generation differs from previous symbolic executions 

implementations in two main ways. First, it adopts a machine-code based 

approach instead of common source-based implementation because: 

� Source-based instrumentation must be adapted to support 

each language, compiler or build tool adding upfront cost. 

� Compilation and post processing tools may introduce 

differences between the source code and the actual machine 

code. 

� Much third-party source code is not available and JIT–

compilers are difficult to test with source-based 

implementations. 

Second, instead of an online instrumentation, the framework 

implements an offline trace-based constraint generation. In online 

generation, constraints are generated during program execution by 

statically injecting fixed or dynamic binary code. This approach results in 

non-repeatable scenarios where, if the constraint solver fails, the 

environment is unlikely to be reproducible making it hard to debug. Another 

encountered problem is that some memory allocations are protected by the 

operating system, making it very hard to replace at runtime. Offline trace-

based constraint generation is chosen as it is completely deterministic 

because it works on the execution trace that captures the result of all 

nondeterministic events found during the recorded run. 

Path explosion and imperfect symbolic execution are still unsolved 

limitations. For example, path explosion is not solved for large applications, 

so performing dynamic test generation compositionally (16) is suggested as 

a work around. This consists in testing functions separately (unit testing), 

encoding test results as function summaries, then treating them in a 

deterministic way with the recorded values corresponding to their input 

preconditions and output post conditions. 
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Dynamic data structures analysis (pointer manipulations, arithmetic 

operations, etc.) constraint solving, calls to the operating-system and 

library functions that are very difficult to solve symbolically remain as 

unsolved limitations where concrete values are employed in a classic 

random fashion. 

Another approach was suggested by Ganesh, Leek and Martin (17). 

Their system uses dynamic taint tracing to locate regions of well-formed 

input files that influence the behaviour of the system under test. Once it 

has detected those regions, it fuzzes them to produce new test inputs. 

These approaches change only small parts of the well-formed files so the 

change is usually syntactically correct, allowing it to pass the parsing 

phases and reaching “deeper” control paths within the system.  

This algorithm was implemented in BuzzFuzz (17), which uses directed 

whitebox fuzzing. Whitebox fuzzing is designed to produce well-formed test 

inputs that exercise “deep code” in the semantic core of the program under 

test. It is based on the following four techniques: 

� Taint Tracing - the execution is instrumented to record taint 

information that represents each input value and the input 

bytes that influence each value that the program computes. 

� Attack Point Selection - the system identifies specific 

vulnerable points (i.e. library and system calls) and allows 

the user to specify any arbitrary number of attacking points. 

� Directed Fuzzing - for each identified vulnerable point, the 

system computes the set of input bytes that affect the values 

at that attack point. This technique is enhanced with fixed 

“extreme” values (very long or null strings, etc.) to stress the 

system. 

� Directed Testing - dynamic execution over new generated 

values. 

The main benefits of this proposal are: 

� Preservation of syntactic structure - directed fuzzing targets 

input bytes that can be changed without violating the legal 

syntactic structure of original well-formed inputs. 

� Targeted values - fuzzed input bytes are designed to have a 

high concentration of inputs that can reveal errors that may 

exist in the detected vulnerable points. 

� Coordinated changes - directed fuzzing can identify and alter 

multiple values of the input space that must change together 

to reveal errors. 

The main difference between traditional symbolic execution and this 

approach is the symbolic information with which both techniques work. 

Traditional symbolic execution records a logical expression for each variable 
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that defines all possible concrete values these variables can take for 

exercising the execution path; the new approach only maintains the set of 

input bytes that influence the program variables through the execution path. 

2.8 Symbolic Grammars 

Symbolic grammars are context-free grammars where terminal 

symbols are substituted with regular expressions that represent the entire 

solution space for that (precise set) of terminal symbols. They combine the 

advantages of selective enumerative test generation and directed symbolic 

test generation.  

Model-based exhaustive enumeration is guaranteed to provide valid 

inputs to the program; however it is likely to produce redundant tests cases, 

which will exercise exactly the same execution path making them identical 

from the programs perspective. Test generation based on symbolic 

execution is directed, systematically exercising new paths; even though, 

symbolic techniques are expensive and limited by the capacity of the 

symbolic engine. Performance is also a limitation, symbolic exploration is 

sensitively slower than exhaustive enumeration; this may lessen as 

symbolic execution produce no redundant test cases (18). 

Symbolic grammars enable a sensitive decrease in the number of 

strings to be enumerated. For each enumerated symbolic string, the 

symbolic constants give control over the strategy to generate concrete 

values (deterministically or non-deterministically) to maximize the path 

coverage of the program. 

Majumdar and Gang Xu (18) propose to combine the selectiveness of 

specification-guided test generation with the directedness of concolic 

generation through the use of symbolic grammars that give more 

constraints over the input space that enable deeper control path exploration. 

Their work proposes to exhaustively pre-generate all feasible inputs up to a 

certain size from the symbolic grammar and then performing dynamic test 

generation over those pre-generated inputs. 

Take for example the following code: 

1 public void main (char[] argv){ 

2     public int myFunction () { 

3  

4         var1= (int) argv[1]; 

5         var2= (int) argv[2]; 

6  

7         var1 = var1 + 1; 

8  

9     if (var1 > var2) 

10         var1 = 10 – var2; 

11     else 

12         var1 = var1 / var2; 

13  
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14     return var1; 

15     } 

16 } 

The grammar that describes the rules for this program would be: 

expr = “myFunction ” number number ; 

 

number = <number>; 

 

The values for the rule “number” are not specified; instead a symbolic 

constant is specified. This can be understood as the parsing trees shown in 

Figure 2.2 where the number branch in G is replaced in G’ by a symbolic 

constant whose description will be later given in V. 

 

Figure 2.2 Parse trees for G, G' and V 

The test generation algorithm instantiates symbolic constants with 

concrete values at runtime in a directed fashion which consists in treating 

symbolic constants as unconstrained symbolic values which will be solved 

by concolic execution. The reduction in the number of possible strings in the 

language enables exhaustive enumeration to scale and provides selectivity. 

In the other hand, directedness is given by concolic execution as the 

symbolic constants enables exploration of non-redundant strings. 

The system works as follows: 
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� It converts the concrete grammar to a symbolic grammar by 

replacing unbound set of concrete constants with symbolic 

constants.  

� It exhaustively enumerates all symbolic sentences from the 

symbolic grammar up to a certain size. 

� For each symbolic sentence, directed testing is achieved by 

concolic execution where each symbolic constant is 

considered to be an unconstrained input to be solved. 

As this work is based on concolic execution and model-based testing, it 

inherits their limitations, but the usage of both approaches lessens the 

effects and helps with scalability.  

The effectiveness of the constraint solver engine is limited; i.e. if the 

constraints are beyond the capabilities of the constraint solver, random 

testing is employed to produce concrete values. The symbolic grammar is 

as effective as the user defines it; for example, a more descriptive grammar 

that captures the semantic properties or if deeper executions paths are 

needed to be exercised, a more descriptive grammar needs to be employed. 

Finally, the exhaustive generation of test inputs prevents this approach 

from being used in larger systems. 

For our approach, a context-free grammar that gave a complete 

description of the protocol and valid program inputs was employed. The 

grammar was a lexical description of valid inputs of the technological base 

of the system under examination; normally, a programming language, a 

(communications) protocol (such as HTTP response messages), a container 

format (such as pdf file) or a policy definition (such as firewall rules). 

2.9 Grammar-based WhiteBox Fuzzing 

Kiezun, Godefroid and Levin (19) introduce grammar-based whitebox 

fuzzing which is an enhancement to whitebox fuzzing that employs a 

grammar-based specification of valid inputs. Grammar-based whitebox 

fuzzing is a dynamic test generation algorithm where symbolic execution 

generates grammar-based constraints whose intersection with the model 

grammar is verified using a grammar-based constraint solver. The 

algorithm has two main components: 

� High-level symbolic constraints - expressed in terms of 

symbolic grammar tokens returned by the lexer, instead of 

the traditional symbolic bytes read as input. 

� A custom constraint solver that solves constraints on 

symbolic grammar tokens. The solver looks for the 

intersection between the constraints and a given context-free 

symbolic grammar. 
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The grammar represents valid inputs for the program under test so all 

solutions generated by the constraint solver correspond to valid inputs.  

Grammar-based whitebox fuzzing extends traditional whitebox fuzzing 

algorithms as follows: 

� It requires a symbolic grammar G that describes only valid 

program inputs  

� It associates a symbolic variable with each token returned 

from the tokenizing function. 

� It uses the given grammar to require that the new input not 

only satisfies the execution path constraint, but that it is also 

is part of the language defined by the grammar 

The constraint solver computes language intersection of both the given 

symbolic grammar (G) and the constraints recorded from the symbolic 

execution (R) as follows: 

� Convert G to a Push-Down Automata (PDA); 

� Convert R to a Finite-State Automata (FSA); 

� Compute a PDA with the intersection between the PDA (G) 

and the FSA (R), 

� Check the emptiness of the resulting PDA, if empty 

terminate; else 

� Generate any string in that language. 

The algorithm implemented (in SAGE) is a simpler version of this one. 

It computes a grammar representing the intersection of both languages G 

and R . It takes advantage that any regular language R always constrains 

only the first n tokens returned by the tokenization function, and that it 

does not go through an explicit PDA transformation. 

Consider the following symbolic grammar: 

expr = expr op  expr  | <number> ; 

op = “+” | “-” | “*” ; 

 

With a constraint grammar - taken from recorded runs: 

T0 = <number> 

T1 = “+” 

T2 = <number> 

T3 = “-” 

 

Then the constraints are solved as follows: 

1.  First the grammar initial production (expr) is duplicated and 

renamed as expr’. 
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2.  Starting with the duplicated initial production expr’ of the 

grammar, the algorithm removes the second production as it 

can't satisfy the constraint "<number>".  

3. Then the algorithm examines the next constraint "+" and it 

expands the non-terminal op in the production, expr = 

<number> op expr, with the production, op = “+”, as it is the 

only production that satisfies the constraint from the production 

op = “+” | “-” | “*”.  

4. This is repeated until all the constraints are solved or until a 

constraint can't be satisfied.  

The values expr’ takes for each constraint as the algorithm solves them 

are shown: 

expr’ = <number> op expr | <number>; 

T0: expr’ = <number> op expr; 

T1: expr’ = <number> “+” expr; 

T2: expr’ = <number> “+” <number> op expr; 

T3: expr’ = <number> “+” <number> “-” expr; 

 

Finally, the symbolic sentence is executed by SAGE and the symbolic 

constants are substituted for concrete values by the constraint solver at 

runtime.  

Some of the limitations of this work are the need for an accurate 

grammar that correctly describes the input space. Path explosion is 

lessened by the constraint solver which prunes non-feasible paths; however, 

the input space remains too open and exhausting random generation 

makes scalability infeasible. 
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3 Problem Overview 

Fuzz testing is a method for discovering faults in software by providing 

unexpected inputs and monitoring for exceptions. Fuzz testing is divided 

into different phases: target identification, identify inputs, generate fuzz 

data, execute fuzzed data, monitor for exceptions and determine 

exploitability (20). This research focuses on fuzz data generation. For this, 

previous model-based fuzzing attempts are analyzed and a new approach 

for model-based fuzz data generation is proposed. 

This section is divided as follows: first an analysis of fuzz testing and a 

definition of the problem to solve will be given. After that a revision of the 

different technologies employed in building our solution will be presented, 

Finally, the design of the new approach will be discussed. 

3.1 Fuzz Testing 

Software companies spend a great deal of its time and money in the 

testing of their software (21), so ways of optimizing this phase have been 

of interest for researches in the past years. One of the first steps to 

optimizing this task was to automate it as manual approaches proved to be 

inefficient. Fuzz testing was a technique that took immediate advantage of 

this automation. Fuzz testing has emerged as one of the most promising 

techniques for automated testing (22). 

Sutton (20) divides fuzz testing into five basic phases: target 

identification, inputs identification, fuzz data generation, fuzzed data 

execution, exceptions monitoring, and exploitability determination. One of 

the most difficult and expensive parts of these phases is the actual 

generation of test data. Test data generation was first done by hand, and 

has evolved towards its complete automation (22).  

Different approaches exist for automatic data generation (23).  

� Random - generates test cases with a complete quasi-

random approach. Its implementation is inexpensive and can 

quickly generate thousands of test cases. Its main 

disadvantage is that many of the generated cases are non-

meaningful and we can't control which part of the systems 

are exercised.  

� Adaptive - this approach is based on an architecture that 

implements feedback through an adaptive test generator. 

The technique provides values for input parameters and 

produces data values which calculate an indication of test 

effectiveness. The adaptive test generator uses these values 
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and previous test data values to produce new test data which 

attempts to increase test effectiveness. 

� Syntax-based - this approach processes data which is 

expressed in a grammar or notation (i.e., BNF, a message 

protocol, etc.) and generates test cases from it. This 

approach is one of the most used for fuzz testing as it can 

generate large amounts of well-formed data in an automated 

fashion. 

� Path-oriented - the main goal of the approach is to execute a 

full-path coverage of the application under test. This 

approach has been implemented mainly by symbolic 

execution which is very effective, but expensive in terms of 

domain knowledge and implementation.  

� Specification-oriented methods - test generation is based on 

the specification of the system. The main drawback of these 

approachs are that specification is not collected in a uniform 

fashion preventing a general method to escalate. 

From all these different approaches syntax-based generation testing 

was selected as it is one of the most widely used in the industry (21) and 

the significant advances it has gone through in recent years make it a very 

promising field of research. 

3.2 Grammar-based Fuzzing 

One of the main advantages of using syntax-based test generation is 

that test data structure must be documented precisely; this helps to 

optimize the phases of software maintenance and debugging. Another 

advantage is that it can generate large quantities of data in an automated 

fashion. Recent research has focused on optimizing the model’s usage (i.e. 

using all productions in a grammar) and generating test data that focuses 

on maximizing code coverage or complies with statistical distributions. All of 

these advantages help the tester to add complexity to the test data (23). 

Two main disadvantages of this technique are that some classes of data 

are impossible to generate (i.e. GUI testing); and that writing the syntax 

rules for complex sets of test data can be very complex. These limitations 

are the reasons why this approach has normally been applied for testing 

complier projects. 

One of the most explored model-based fuzz testing strategies is 

grammar-based fuzzing. The first approaches were bottom-up strategies 

that created a specific grammar that was able to generate a specific set of 

values (6). Later this approach was modified for top-down strategies where 

grammars describing the complete input space are used to generate test 

data (5). 
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As the input space of top-down strategies is too large, strategies have 

been suggested to reduce that space. For example attributed grammars 

were proposed by Maurer (6) to give context-awareness to the context-free 

grammar. Another approach was studied by McKeen (7) who employed 

stochastic grammars to associate probabilities to its rules. 

One of the most recent approaches was suggested by Majmudar (18) 

who introduces the concept of symbolic grammars. Symbolic grammars are 

context-free grammars where terminal symbols are substituted with regular 

expressions that represent the solution space for that precise set of 

terminal symbols. The reduction in the number of possible strings in the 

language enables exhaustive enumeration to scale and provides selectivity. 

However, the input space is still too large and relies basically in the 

symbolic execution engine to constrain the sentences generated with the 

symbolic grammar. A solution was proposed by Kiezun et al. (19) where 

high-order symbolic constants are used in a constraint symbolic grammar 

to reduce the input space and execute a directed generation of sentences. 

3.3 Limitations 

Three main limitations have been identified regarding grammar-based 

testing: 

� Employment - grammar-based test generation can be 

employed in a wide variety of systems that receive a 

structured input as any system that receives a structured 

input can be expressed with a grammar created in a bottom 

up fashion (6). But it is encouraged for systems that have 

highly structured inputs (such as programming languages, 

protocols, format containers or policy definitions) that can be 

defined with a context-free grammar (or can be transformed 

to one) (19). For systems or tests that do not have 

structured inputs, grammar-based testing is not 

recommended. 

� Context-sensitive inputs – due to their nature, context-free 

grammars (CFG) are not context sensitive, so for this kind of 

testing which is based on the employment of CFG. In practice 

the set of valid inputs of a system is bounded by an 

approximated grammar which is a simplified representation 

of valid inputs. Approximated grammars are subsets of the 

grammar that describe the entire solution space, but with 

added rules to approximate context-sensitive behaviours 

needed to create parsable inputs. (19)  

� Domain knowledge – grammar-based testing requires a 

limited amount of domain knowledge: the formal grammar, 
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the criteria to convert formal grammar into a symbolic 

grammar; and, if needed, the constraint grammar definition. 

Formal grammars are sometimes readily available;, i.e. for 

our initial test the http-cookie formal grammar defined in RFC 

2965 was found in a matter of minutes. 

3.4  Grammar-based Test Data Generators 

Up to now the advantages and limitations of grammar-based data 

generation for grammar-based fuzz testing has been discussed. It is 

important to establish the generic model of any grammar-based test data 

generator, is shown in Figure 3.1. 

 

Figure 3.1 Generic model for grammar-based data generator 

Where: 

� Grammar - is a set of rules that represents the structure of 

the input solution space. 

� Constraints – fuzzing heuristic (22) which sets boundary 

values for the input solution space. 

� Grammar sentence engine – in charge of solving the 

constraints and the grammar to produce grammatical 

sentences that comply with both. 

� Constraint solver – solves the input constraints, in the 

context of the grammar, so that the string generator engine 

can use them to generate valid sentences. 

� String generator engine – generates grammatical sentences 

using the computed constraints from the constraint solver. 

� Grammar sentences – grammar-based generated sentences 

which comply with both the input grammar and other 

constraints (these are the actual test cases). 

Limitations on each entity can be found in Table 3.1. 

 Limitations Previous Solutions 
Grammar Lack of expressiveness 

(CFG modification for 

system employment) 

• Attributed grammars 

(6) (8) 

• Stochastic grammars 
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(7) 

• Symbolic grammars 

(18) 

Constraints Effective representation of  

inputs 

(The format in which the 

inputs are fed to the 

system). 

• Byte code level (17) 
• High-level symbolic 

level (19) 

Constraint 

Solver 

Effective constraint solving 

(How the system solves its 

constraints) 

• Symbolic solver (18) 

• Language intersection 
(19) 

String 

Generation 

Engine 

Lack of grammar rules 

usage control 

(Technique used to control 

rules during sentence 

generation) 

• Attributed grammars 

(6) (8) 

• Stochastic grammars 

(7) 

• Uniform distribution 

(24) 

• Shortest string (3) 

 Lack of sentence length 

control 

(Technique used to control 

sentence length) 

• Fixed length (8) (24) 

 Unconstrained generation 

of sentences 

(Technique used to 

generate sentences from 

the grammar) 

• Random approaches 

(18) 

• Selective approaches 
(8) 

Grammar 

Sentences 

Impossibility to choose 

which sentences to 

generate 

(Technique used to select 

which sentences to 

generate) 

• Enumeration (18) 

• Directed generation 
(19) 

• Selective post-phase (8) 

This table is a summary of sections 3.1.1 and 3.1.2 

Table 3.1 Limitations for grammar-based data generator components 

3.5 Systems Comparison 

In this section the different attempts to generate test cases for each 

approach will be discussed. As a simple application it is consider a simplified 

version of SimpleCalc that is employed by several authors (18) that explore 

this technology). The following approaches were chosen as they establish 

the state-of-the-art at the moment and are the most more related to our 

work: 

1. Random Generation of sentences from a concrete grammar. 

2. Symbolic Test Generation introduced by Majumdar et al. (18) 

uses symbolic grammars and exhaustive generation. 
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3. Symbolic Constrained Test Generation introduced by Kiezun 

et al. (19) uses symbolic grammars and symbolic constraints 

to bound the input domain. 

The BNF-grammar  for our simplified version of Simple Calc (18) is the 

following: 

expression =  singleExpresion | operationExpression | 

numbers ; 

singleExpresion = "(" expression ")" | "-" expression ; 

operationExpression =  expression operator expression ; 

operator = "+" | "-" | "*" | "/" | "%" | "^" | "v" ; 

numbers = number number; 

number = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" 

| "9" ; 

 

The program takes an arithmetic expression, parentheses for 

precedence, various numerical and some bitwise operators. Numerical 

operators are directly applied, and precedence is handled by parsing. Let’s 

suppose that the implementation contains some simple and common bugs: 

division or modulus by zero. 

For our tests, we will take a maximum sentence length for simplicity. 

Note that numbers are considered a single terminal symbol for our 

comparison. Length is measured in terminal symbols found in the generated 

concrete sentence, for example, for the concrete sentence “30” “+” “50” we 

have three terminal symbols thus, a length of three. 

The approach will be considered to solve the problem when a division 

or module by zero test cases is generated. The difference of these 

approaches with our proposed solution will be used to explore its strengths 

and benefits over previous work. 

3.5.1 Random Generation 

Random generation approaches takes a grammar and generates 

random sentences from it. Usually exhaustive generation of all possible 

inputs is infeasible as the input space is too large. 

Let’s take Table 3.2, which gives the total number of different 

sentences for a given length that can be produced by the SimpleCalc 

grammar. 

Length 
Valid unique 

strings 

Percentage of 

tests 

3 70 200 0.288% 

4 140 300 0.289% 

5 49 420 300 0.368% 

Table 3.2 Total number of different sentences for a given length for the SimpleCalc grammar 
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It is clear that as the string length keeps increasing, the number of 

valid unique strings grows exponentially. Thus enumeration is not a good 

option for test case generation in this case.  

The probability of producing a grammatical sentence of length five that 

has the exact values needed for exposing the desired pattern (‘/00’ or 

‘%00’) for lengths three to five are extremely low, so hitting a bug with this 

technique is highly improbable. The problem is that random testing is 

neither directed nor selective. 

3.5.2 Symbolic Test Generation 

The first step proposed for this method is to convert a context-free 

grammar (CFG) into its equivalent symbolic grammar. This is accomplished 

by replacing the CFG’s terminal symbols (in our grammar, the number is 

considered to be a terminal symbol) with regular expressions (symbolic 

constants) that represent the entire solution space for that precise set of 

terminal elements. In our example, two rules were substituted (operation 

and numbers) with symbolic constants that represent the values defined by 

the substituted rules: 

expression =  singleExpresion | operationExpression | 

<NUMBERS> ; 

singleExpresion = "(" expression ")" | "-" expression ; 

operationExpression =  expression <OPERATOR> expression ; 

 

With the symbolic grammar, the method undertakes an exhaustive 

generation of symbolic sentences up to length five (producing symbolic 

sentences of length less than five is not of interest in our example). With 

this new approach, the enumeration is simple and manageable (only 

length-five symbolic sentences are shown): 

"-" "-" "-" "-" <NUMBERS> 

"-" "-" "(" <NUMBERS> ")" 

"-" "-" <NUMBERS> <OPERATOR> <NUMBERS> 

"-" <NUMBERS> <OPERATOR> "-" <NUMBERS> 

"(" "(" <NUMBERS> ")" ")" 

"("<NUMBERS> <OPERATOR> <NUMBERS> ")" 

"(" <NUMBERS> ")" <OPERATOR> <NUMBERS> 

<NUMBERS> <OPERATOR> "-" "-" <NUMBERS> 

<NUMBERS> <OPERATOR> "("<NUMBERS> ")" 

<NUMBERS> <OPERATOR> <NUMBERS> <OPERATOR> <NUMBERS> 

 

The approach proposes that exhaustive generation should be made 

with these symbolic sentences, selecting test cases that are of interest or 

that could exercise interesting execution paths. Common criteria for 
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selection would suggest selecting symbolic sentences which are very simple, 

equivalent or that show common patterns in them. For example applying 

exhaustive generation over "-" <NUMBERS> <OPERATOR>"-" <NUMBERS> 

which is the simplest form of the <NUMBERS> <OPERATOR><NUMBERS> 

pattern and is present in seven of the ten generated symbolic sentences, 

makes it the “obvious” testing target. The approach uses concolic execution 

(14) for test cases selection, but as test generation phase of this system is 

the only element discussed, it is not applicable. To overcome this limitation, 

the approach suggests constrained exhaustive enumeration of concrete 

sentences from symbolic sentences. In our example, this approach would 

select the symbolic sentence "-" <NUMBERS> <OPERATOR>"-" 

<NUMBERS> with a simple enumeration approach: 

"-" "00" "+" "-" "00" 

"-" "01" "+" "-" "00" 

"-" "02" "+" "-" "00" 

"-" "03" "+" "-" "00" 

... 

"-" "99" "+" "-" "00" 

"-" "00" "-" "-" "00" 

... 

 

For this enumeration, each possible concrete value the symbolic 

sentence can take was generated, so it is clear that the search is directed 

but it is not very selective once the symbolic sentences have been 

generated. 

It should be noted that even though this approach makes enumeration 

manageable (up to certain lengths), the number of symbolic sentences can 

grow exponentially for complex grammars. Another limitation is that there 

is no proposed strategy to control the total number of symbolic constants in 

symbolic sentences. For example, generating sentences that are of no 

interest for our testing strategy (in our example symbolic sentences 

containing less than five concrete constants are likely to be produced). 

3.5.3 Constrained Symbolic Test Generation 

This approach employs symbolic grammars in a similar way as symbolic 

test generation, but introduces a symbolic constraint grammar which 

restricts the input space. The symbolic constraint grammar consists of 

single symbolic non-terminal element rules. Each of these rules represents 

a symbolic constant constraint that the generated symbolic sentence should 

satisfy. To satisfy these constraints, the system computes the intersection 

between the symbolic constraint grammar and the symbolic grammar 

exploiting the fact that, by construction, any regular language always 

constrains only the first n-symbolic constants of the symbolic grammar, 

where n is the total number of rules in the symbolic constraint grammar. 
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The algorithm guarantees that productions that violate the constraints 

during computation will be pruned from the search, making it a directed 

search. 

Using this strategy, once the symbolic sentence is generated, concrete 

values are instantiated to comply with concolic execution. As only test 

generation is being used for this approach, the instantiation of concrete 

values for our tests has to be implemented separately. This method 

instantiates symbolic values with pseudo-random values, making it very 

ineffective when specific inputs are required to expose a system flaw. 

To illustrate this, the previously defined symbolic grammar and the 

following symbolic constraint grammar are employed: 

T0 = <NUMBERS> ; 

T1 = <OPERATOR> ; 

 

The symbolic constraint grammar is defined by the user looking to 

prune from the search any non-interesting paths. For the symbolic 

constrained grammar, any input that begins with the symbolic constants 

<NUMBERS> and <OPERATOR> was found promising. So only the following 

strings are generated after the languages intersection is computed: 

<NUMBERS> <OPERATOR> "-" "-" <NUMBERS> 

<NUMBERS> <OPERATOR> "(" <NUMBERS>")" 

<NUMBERS> <OPERATOR> <NUMBERS> <OPERATOR> <NUMBERS> 

<NUMBERS> <OPERATOR> "-" <NUMBERS>  

<NUMBERS> <OPERATOR> <NUMBERS>   

 

It should be mentioned that not only sentences of length five are 

generated, but all strings that comply with the constraint up to length five 

are produced. This enhances the previous approach as it directs the testing 

generation only with test cases that are “of interest” for our testing strategy. 

It can be seen that any of these symbolic sentences are likely to expose the 

failure in the same amount of tries (except the third one). 

The main limitation of this approach is that it doesn’t present a good 

strategy for instantiating concrete sentences from the symbolic sentences. 

This is a major drawback; thus, after generating a desired symbolic 

grammar, the algorithm resorts to pure random generation. 

Another limitation is that for each test case, a symbolic sentence is 

generated. This makes it difficult to produce test cases that share the same 

structure defined by the symbolic sentence. For our example, five symbolic 

sentences are generated. 
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Finally, when a symbolic constant is solved its instantiation is not 

controlled, thus losing any relation between the elements that compose the 

regular expression that represents the solution space for the symbolic 

constant. This affects directly the results obtained when replacing the 

symbolic constants for concrete values as they raise the probability of 

producing syntactical incorrect test cases when a relation between its 

concrete values exists. 

3.5.4 Our Approach 

The strongest features of the two discussed systems were combined in 

our approach. Meanwhile for the limitations that both approaches present 

we suggest new alternatives to lessen their effects and produce a novel 

approach for grammar-based generation.  

The main functionality of our system consists of three sequential 

phases: constraint solving, symbolic sentences generation and 

concrete sentence production. These phases use a symbolic grammar, 

symbolic values grammar and a symbolic constraint expression. 

The symbolic grammar has the same characteristics as previously 

discussed. The symbolic value grammar is where symbolic constants are 

defined with concrete constants; it is used to instantiate symbolic constants. 

Finally the symbolic constraint expression is a regular expression expressed 

in terms of symbolic constants and concrete values that replace the 

symbolic constraint grammar previously discussed where its left hand side 

should be the initial symbol of the symbolic grammar. These three 

components are shown: 

Symbolic Grammar  

expression =  singleExpresion | operationExpression | 

<NUMBERS> ; 

singleExpresion = "(" expression ")" | "-" expression ; 

operationExpression =  expression <OPERATOR> expression ; 

 

Symbolic Values Grammar  

NUMBERS = number number; 

OPERATOR = "*" | "/" | "%" | "+" | "-" | "^" | "v" ; 

number = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" 

| "9" | "0" ; 

 

Symbolic Constraint Expression 

expression = <NUMBERS> <OPERATOR> ; 

 

For the constraint solving phase, our system computes the language 

intersection defined by the symbolic grammar and the symbolic constraint 

expression to produce a symbolic constrained grammar. For our example, 

the constraint expression that is equivalent to the symbolic constraint 
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grammar employed in the last example and the symbolic grammar for the 

SimpleCalc was used as follows: 

Symbolic Constrained Grammar 

expression = <NUMBERS> <OPERATOR> expression’ ; 

expression’ =  singleExpresion | operationExpression | 

<NUMBERS> ; 

singleExpresion = "(" expression’ ")" | "-" expression’ ; 

operationExpression =  expression’ <OPERATOR> expression’ ; 

 

It can be appreciated that the rule expression’ is now part of the 

constrained symbolic grammar and that the rule expression has been 

redefined with the computed intersection of the languages. With these 

changes, it is guaranteed that the constrained symbolic grammar can only 

generate sentences that comply with the language intersection.  

After this phase, symbolic sentences generation starts in which the 

system computes grammar-based, lexically accurate, unique sentences 

from the symbolic constrained grammar that comply with the symbolic 

constraint expression. Using our example these would be the results of this 

phase: 

<NUMBERS> <OPERATOR> "-" "-" <NUMBERS> 

<NUMBERS> <OPERATOR> "(" <NUMBERS>")" 

<NUMBERS> <OPERATOR> <NUMBERS> <OPERATOR> <NUMBERS> 

<NUMBERS> <OPERATOR> "-" <NUMBERS>  

<NUMBERS> <OPERATOR> <NUMBERS>   

 

Constrained symbolic test generation is not aware of previous 

generated sentences, so it is likely to generate the same symbolic 

sentences several times. Our system overcomes this limitation by producing 

only unique symbolic sentences, allowing the system to focus its efforts on 

the concrete generation phase. 

The symbolic sentences represent different grammatically valid 

structures that are used to produce concrete sentences during the 

concrete generation phase. For this purpose, our system uses quasi-

random techniques replacing traditional pseudo-random techniques for the 

instantiation of symbolic constants. This phase produces the same number 

of concrete sentences for each symbolic sentence, giving the tester control 

over the relation of symbolic constants elements and the number of 

concrete sentences that will be produced for each symbolic sentence. For 

example Table 3.3 enlists 10 concrete sentences for two symbolic sentences. 

<NUMBERS> <OPERATOR> 

<NUMBERS>   

<NUMBERS> <OPERATOR> <NUMBERS> 

<OPERATOR> <NUMBERS> 

71-62 

17*08 

04^05v19 

45-50%36 
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09/90 

44v35 

03%03 

58+49 

75^66 

20/11 

40v80 

95%26 

00*30+90 

18/85^21 

72v68-76 

01%13*59 

47+54/04 

20%00^45 

74+27-00 

33^81*18 

Table 3.3 Concrete sentences for two symbolic sentences 

It can be seen that values are evenly distributed through the input 

domain. Take for example the concrete values for the symbolic constant 

<OPERATOR>, where in 10 elements each element only appears twice only 

after all the other elements have been generated. 

This is the main idea of our system. The design and description of the 

main features will be presented in the next section. 
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4 The System 

In previous sections the current state-of-the-art was analyzed and the 

current limitations were discussed. Then we gave an overview of our 

system. Section 4 presents a detailed discussion of the system which is 

based on the following concepts: 

� The solution shall accept any context-free grammar (CFG). 

� The solution shall employ a symbolic grammar derived from 

the CFG. 

� The solution shall be flexible enough to accept any given 

grammar with minimal changes 

� The solution shall employ symbolic constraints. 

� The solution shall constrain its input space with human-

readable restrictions. 

� The solution shall employ a constraint solver that computes 

the intersection between the symbolic constraints and the 

symbolic grammar. 

� The solution shall use all selectable grammar productions in a 

uniform fashion to produce grammar sentences. 

� The solution shall provide control over the volume of 

terminals in the sentence. 

� The solution shall implement a selective strategy for 

instantiating symbolic sentences. 

� The solution shall generate directed concrete test cases that 

share the same symbolic sentence. 

� The solution shall give control over symbolic constant 

instantiation to maintain the relation between the elements 

that compose concrete values.  

4.1 Definitions 

Through section 3 we have been faithful to the definitions and terms 

used by the authors of the approaches analyzed. However as they are not 

consistent through the literature, hence, at this point, these terms will be 

defined more formally here and these definitions are used throughout the 

remainder of this document. 

� Let Π be a finite alphabet. 

� A terminal is a regular expression over Π. 

� A context-free grammar (a set of recursive productions 

used to generate patterns of strings) is defined as a 4-tuple 

G = �B, Σ, R, S	 where: 
o B is a finite set of non-terminals. 
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o ∑ is a finite set of terminals. 

o R is a finite set of production rules of the form 

	B → �B ∪ Σ	. 
o S ∈ B is the start symbol. 

� The language L(G) ⊆ Π* of G is defined as usual (25): 

o You use a grammar to describe a language by 

generating each string of that language in the 

following manner. 

1. Write down the start symbol. It is the non-

terminal on the left-hand side of the top rule, 

unless specified otherwise. 

2. Find a non-terminal that is written down and a 

rule that starts with that non-terminal. Replace 

the written down non-terminal with the right-

hand side of that rule. 

3. Repeat step 2 until no non-terminals remain. 

o All strings generated in this way constitute the 

language of the grammar. 

� The language Lh(G) ⊆ Π* of G is defined as all strings 

containing h terminals of Π. 

� Let Φ = �TE�, … , TE�, … , TE�� , where Φ is referred to as a 

concrete sentence (CS) of length m and TE� ∈ Σ is referred 
to as a concrete constant. 

� Let � = �α�, … , α�, … , α�� be k symbolic constants not in Π where 

α��� is referred to as a symbolic constant. 

� A symbolic grammar (G’) for G is defined as a 4-tuple 

G′ = �F	, Υ, R′	, S	 where: 
o F ⊂ B where B is the finite set of non-terminals of G. 

o Υ = 	Σ	 ∪ 	Α where Σ is the set of terminals of G. 

o R’ is a finite set of production rules of the form 

B → �B ∪ Υ	 
o S is the start symbol of G 

� The language of G’ is defined as Ld(G’) ⊂ (Π ∪ A)*. 

� Let Ψ = �SE�, … , SE�, … , SE!�  where 	Ψ  is referred to as a 

symbolic sentence (SS) of length n and SE� ∈ Υ. 
� A symbolic constraint expression (E) of G’ is defined as a 

symbolic sentence. 

� A symbolic constraint grammar (C’) of E is defined as a 

3-tuple C′ = �N, Υ, R′	 where: 
o N is a finite set of non-terminals. 

o Υ is the finite set of terminals of G’. 

o R’ is a finite set of production rules of the form 	N → Υ′. 
� A symbolic constrained grammar (C) is defined as 

$ = %& ∩ $′ 
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� A symbolic value grammar (V) for G’ is defined as 3-tuple 

V = �W, Λ, P	 
o W is a finite set of non-terminals where A ∈ W and A 

is the set of symbolic constants in G’. 

o Λ is a finite set of terminals. 

o P is a finite set of production rules of the form 

W → �W ∪ Λ	∗. 
� Let Ç be a finite set of production rules of the form 	W → Λ. 
� Let Ξ = �pCE�, … , pCE�, … , pCE/� where 	Ξ is referred to as a pre-

concrete sentence (pCS) of length z and pCE� ∈ Ç. 

4.2 Technologies Employed 

The purpose of the system is to generate lexically-accurate examples of 

a given symbolic grammar that complies with a set of additional user-

defined constraints. The user-defined constraints place limitations on the 

initial symbolic grammar to provide an effective specialisation. With these 

examples, a set of effective test cases provided that the symbolic grammar 

and the constraints provide an adequate representation of the input space 

can be generated. The effectiveness of the test cases is enhanced by a 

user-defined symbolic definition grammar (symbolic value grammar) that 

will define specialized structures for different test cases that share the same 

symbolic sentences. 

Our work is mainly based on the following techniques 

� Symbolic grammars which were discussed in section 2.8. 

� Symbolic constraints which are used for constraining the 

input space of a symbolic grammar with a symbolic constraint 

grammar, allowing the test case generation to be directed 

(19). 

� Adaptive random testing, proposed by Tappenden and Miller 

(26), which is a strategy whose objective is to increase the 

effectiveness of random testing by attempting to maximize 

the coverage of the input space. 

� Selective and directed concrete sentence generation 

techniques that enhance symbolic sentence and symbolic 

constants instantiation. These techniques are novel in our 

approach; as in previous grammar-based systems, concrete 

sentence generation was computed during concolic execution. 

� Genetic algorithms for enhancing some punctual deterministic 

heuristics used on the symbolic sentence generator. 

Our approach takes all the advantages of these technologies and adds 

novel enhancements to lessen their limitations. The combination of all these 

techniques and enhancements produces a novel approach for model-based 
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test data generation. These techniques will be discussed in the following 

sections. 

4.2.1 Symbolic Constraint  

Our approach takes the initial idea of a symbolic constraint grammar 

defined by Kiezun et al (19). In this approach, the input space of a symbolic 

grammar is constrained with a symbolic constraint grammar, allowing the 

test case generation to be directed and comply with the symbolic execution 

properties. 

The original implementation employs dynamic testing where selected 

concrete sentences are used as symbolic constraint seeds for subsequent 

iterations. For this, the system must transform a symbolic sentence into its 

symbolic constraint grammar equivalent in order to be able to use it. It was 

found through our experiments, that for test data generation, this approach 

becomes impractical as there is no formal heuristic suggested for this 

transformation, making it difficult for the tester to correctly define the 

symbolic constraint grammar fed to the system. For example, consider the 

following symbolic sentence, from the SimpleCalc grammar used in the 

previous examples: 

<NUMBERS> <OPERATOR> "(" <NUMBERS> ")" 

To convert it into its symbolic constraint grammar, a rule for each 

terminal symbol must be added: 

T0 = <NUMBERS> ; 

T1 = <OPERATOR> ; 

T2 = "(" ; 

T3 = <NUMBERS> ; 

T4 = ")" ; 

This approach is not formally defined and other approaches might exist. 

Because of this the grammar must be substituted with a regular expression 

expressed in terms of symbolic constants and concrete values which are 

part of the symbolic grammar. Our approach uses the same symbolic 

sentence generated by the system, but preceded it with the starting symbol 

of the symbolic grammar: 

expression = <NUMBERS> <OPERATOR> "(" <NUMBERS> ")" 

 

With this enhancement, first, the starting symbol of the symbolic 

grammar (which originally had to be provided separately) is explicitly set; 

and second, the constraint definition is simplified by using the same 

symbolic sentence generated by the system (with the previously mentioned 

modification). This last modification allows the user to only provide the 

symbolic constraint expression, suppressing the explicit definition of the 
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symbolic constraint grammar. Please note, the system still uses the 

symbolic constraint grammar internally.  

A symbolic constraint expression is produced from a well-formed input 

(usually a well-formed concrete sentence that is part of the language 

described by the system input grammar). A common way of producing an 

initial seed is using inputs generated randomly from the symbolic grammar; 

another approach could be to select a seed from previous attempts (a pool 

of known input seeds) that are already known to be likely to exercise 

sections of the program that are of interest (19). 

4.2.2 Adaptive Random Testing  

Adaptive random testing seeks to maximize the effectiveness of 

traditional random testing by spreading the test cases evenly across the 

input domain. It employs the random generation of test cases with a 

selection criterion used to evaluate the best available candidate (27). The 

basis for adaptive random testing methodologies has its origins in the 

observation that errors often occur within failure regions within the input 

domain (28). 

Quasi-random sequences are mathematical sequences whose low-

discrepancy properties allow them to provide a sequence with a uniform 

distribution of values. The low-discrepancy property ensures that the 

constructed sequences are “evenly-spaced”; that is, minimise the 

discrepancy from the quantitative definition of “evenly-spaced” (26). 

Quasi-random sequences have several limitations, most seriously their 

deterministic nature. Each time a sequence of the same length is calculated 

a new sequence is generated with the same numbers in the same order, so 

the sequences are clearly not random. Several attempts have been 

proposed to overcome this limitation, such as scrambling the sequence 

each time it needs to be reused (28). However this solution is not currently 

available for real-world testing applications as an adequate scrambling 

method that retains the low-discrepancy nature of the quasi-random 

sequence is not computationally feasible. For addressing this problem, each 

time the sequence finishes and must be repeated, it is proposed that a 

different starting point in the sequence should be chosen. 

For our implementation several options exist; the quasi-random 

sequence proposed by Sobol (29) is used. This sequence is widely used for 

financial simulations and has been proposed for use in software testing by 

Chi & Jones (30). Another alternative is the heuristic based approach of 

Tappenden and Miller (26) which has many characteristics which suggest 

that it may be superior to the Sobol Sequence. However, solutions exist for 

generating the Sobol sequence of linear algorithmic complexity; whereas, 

Tappenden and Miller is of quadratic complexity. Hence, a Sobol generator 
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is being utilised as it provides a more assured mechanism for producing a 

highly-scalable test generator. 

With this strategy, the generic model of Grammar-based Test Data 

Generators is enhanced by replacing pseudo-random evaluations of 

symbolic constants by selections from quasi-random sequences. 

4.2.3 Selective and Directed Concrete Sentence 

Generation 

This enhancement to symbolic grammars has not been examined as 

symbolic grammars are commonly only considered as a sub-component of 

concolic execution. Different alternatives are employed to give control of 

concrete sentence generation and symbolic constant instantiation. 

Selective and directed concrete sentence generation is proposed via 

two approaches for controlling how concrete sentences are instantiated 

from symbolic sentences. 

4.2.4 Concrete Sentence Generation Control 

As discussed, another limitation is that for each concrete sentence a 

symbolic sentence is generated. The original algorithm transforms each 

symbolic sentence into a concrete sentence, thus the probability of having a 

concrete sentence that shares the same symbolic sentence in a set of 

generated strings decreases dramatically. To address this problem, using a 

concrete sentence generation control mechanism, which adds control over 

the symbolic constants is proposed. This approach consists in generating a 

user-defined fixed set of different concrete sentences for each symbolic 

sentence opposed to generating a single concrete sentence for each 

symbolic sentence as previous work suggested (19). 

4.2.5 Symbolic Constants Instantiation Control 

In previous work, when a symbolic constant is solved any relation 

between its sub-components is discarded. This affects directly the results 

obtained when replacing the symbolic constants for concrete values as this 

increases the probability of producing syntactically incorrect test cases. 

In our approach, symbolic constants instantiation control which adds 

explicit relations between symbolic constants sub-components which must 

be instantiated communally is proposed (by low discrepancy sequences) to 

increase the probability of producing syntactically correct concrete 

sentences. To accomplish this, the concept of “entities” is introduced, 

which are groups of symbolic constants that are related and hence are 
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treated as a single compound value (for example IP addresses or port 

numbers). 

4.2.6 Removing Deterministic Componentry 

During the examination and testing of the symbolic sentence 

generation, several deterministic algorithms that controlled the rule usage 

for producing symbolic sentences were found. These algorithms could be 

enhanced with an evolutionary computation approach to produce more 

random (better distributed) symbolic sentences. 

For this enhancement, these algorithms (choose(l) and gi(n) in 

McKenzie’s algorithm (24) ) were transformed into an evolutionary 

computation introducing a mutation computation (31) to provide a 

stochastic component to these algorithms The algorithms work together to 

select the next rule that will guarantee to maintain the uniform distribution 

implemented by McKenzie. With the introduced mutation computation add a 

user defined probability that will allow the algorithm to choose an arbitrary 

rule. This enhancement prevents rule selection becoming too similar to 

each other; thus making the rule selection better distributed. 

4.3 System Overview 

Symbolic Grammar (G') Symbolic Value Grammar (V) 

El. Description El. Description 

F 
expression, singleExpresion, 

operationExpression 
W OPERATOR, NUMBER 

Y 
<OPERATOR>, <NUMBER>, "(", 

")", "-" 
Λ 

*, "/", "+", "-", "0", "1", 

"2", "3", "4", "5", "6", 

"7", "8", "9", "0" 

R' 

• expression =  

singleExpresion | 

operationExpression | 

<NUMBER> ; 

• singleExpresion = "(" 

expression ")" | "-" 

expression ; 

• operationExpression =  

expression <OPERATOR> 

expression ; 

P 

• OPERATOR = "*" | "/" | 

"+" | "-" ; 

• NUMBER = "0" | "1" | "2" 

| "3" | "4" | "5" | "6" 

| "7" | "8" | "9" | 

"0" ; 

S expression 
  

Figure 4.1 Members description for elements of G' and V 

For an overview of the system phases and how they interact, the 

following example is given (this section will be followed by a section with a 

detailed example). 
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A simplified version of the previously defined G', V and E (section 

3.1.4.4) are used (Figure 4.1 shows a description of members conforming G’ 

and V): 

Symbolic Grammar (G') 

expression =  singleExpresion | operationExpression | 

<NUMBER> ; 

singleExpresion = "(" expression ")" | "-" expression ; 

operationExpression =  expression <OPERATOR> expression ; 

 

Symbolic Value Grammar (V) 

OPERATOR = "*" | "/" | "+" | "-" ; 

NUMBER = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" 

| "9" | "0" ; 

 

Symbolic Constraint Expression (E) 

expression = <NUMBER> <OPERATOR> ; 

 

Some examples of sentences that are part of Ld(G’) would be the 

following: 

"(" "(" "(" "-" <NUMBER> <OPERATOR> <NUMBER> ")" ")" ")" 

<NUMBER> <OPERATOR> "-" <NUMBER> <OPERATOR> <NUMBER>  

"(" "(" <NUMBER> ")" <OPERATOR> "-" <NUMBER> ")" 

"-" <NUMBER> 

"-" <NUMBER> <OPERATOR> "(" <NUMBER> ")" 

 

The first phase of the system is the constraint solving phase where 

the intersection between G’ and E is computed, the result would therefore 

be a symbolic constrained grammar (C). To produce C, the system makes 

changes in S (the initial rule of G’) to ensure that: 

� All sentence produced by C comply with E, and 

� LC(C) ⊂ Ld(G’) 

For this example, the resulting C would be: 

Symbolic Constrained Grammar (C) 

expression = <NUMBER> <OPERATOR> expression' ; 

expression' =  singleExpresion | operationExpression | 

<NUMBER> ; 

singleExpresion = "(" expression' ")" | "-" expression' ; 

operationExpression =  expression' <OPERATOR> expression' ; 

 

The next phase of the system is the symbolic sentences generation 

phase where symbolic sentences are generated from C. In the following 

examples, it is clear that the sentences produced by this phase comply with 

E and are a subset of G’: 

<NUMBER> <OPERATOR> "-" <NUMBER> 

<NUMBER> <OPERATOR> "(" <NUMBER> ")" 

<NUMBER> <OPERATOR> "(" <NUMBER> ")" <OPERATOR> <NUMBER> 
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<NUMBER> <OPERATOR> <NUMBER> 

<NUMBER> <OPERATOR> <NUMBER> <OPERATOR> "(" "-" <NUMBER> ")" 

 

The final phase is the concrete sentences generation phase where 

the produced symbolic sentences are instantiated with concrete values. This 

phase introduces adaptive testing strategies for rules and terminal symbols 

selection from V. In Figure 4.2, the instantiated concrete sentences are 

shown for each of the previously produced symbolic sentences. 

<NUMBER><OPERATOR><NUMBER> 
<NUMBER><OPERATOR>"("<NUMBER>") 

"<OPERATOR><NUMBER> 

1 * 2 1 / ( 4 ) + 3 

9 + 8 3 - ( 3 ) - 7 

7 / 1 9 / ( 8 ) / 2 

4 - 9 0 + ( 7 ) * 9 

5 * 3 2 * ( 0 ) + 1 

  

<NUMBER> <OPERATOR> "(" 

<NUMBER> ")" 
<NUMBER> <OPERATOR> "-" <NUMBER> 

5 - ( 0 ) 4 - - 6 

4 * ( 9 ) 5 + - 5 

9 + ( 3 ) 1 * - 1 

1 / ( 7 ) 0 + - 9 

2 - ( 5 ) 2 / - 0 

  

<NUMBER> <OPERATOR> <NUMBER> <OPERATOR> "(" "-" <NUMBER> ")" 

1 + 2 * ( - 2) 

2 - 3 / ( - 8) 

7 * 8 + ( - 3) 

8 / 1 - ( - 7) 

5 + 0 / ( - 5) 

Figure 4.2 Symbolic sentences and their corresponding instantiated concrete sentences. 

4.4 Working Example 

In this section, a large example illustrates how the employed 

technologies work together. Let’s suppose a database engine must be 

tested with a set of test cases derived from a simplified version of the BNF 

Grammar for ISO/IEC 9075:1999 (32) for “SELECT” statements: 

BNF Grammar (G) 

Select = "SELECT " column_name (", " column_name )* "FROM " 

table_name "WHERE " BCond ; 

BCond = BCond "OR " BTerm | BTerm ; 

BTerm = BTerm "AND " BFactor | BFactor ; 

BFactor = "NOT " BCond | id "IS NULL " | ATerm | STerm ; 

ATerm = value aop value ; 

Value = id | number ; 

STerm = id "LIKE " value | id sop value | id sop id ; 

aop = "=" | "<" | ">" | "<=" | ">=" | "!=" ; 

sop = "=" | "!=" ; 

column_name = "CustomerID" | "CompanyName" | "ContactName" | 

"ContactTitle" | "Address" | "City" | "Region" | 

"PostalCode" | "Country" | "Phone" | "Fax" ; 

table_name = "Customers" ; 

id = column_name ; 
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number = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" 

| "9" ; 

value = (letter)+ ; 

letter = "a" | "b" | "c" | "d" | "e" | "f" | "g" | "h" | "i" 

| "j" | "k" | "l" | "m" | "n" | "o" | "p" | "q" | "r" | 

"s" | "t" | "u" | "v" | "w" | "x" | "y" | "z" | "A" | 

"B" | "C" | "D" | "E" | "F" | "G" | "H" | "I" | "J" | 

"K" | "L" | "M" | "N" | "O" | "P" | "Q" | "R" | "S" | 

"T" | "U" | "V" | "W" | "X" | "Y" | "Z" ; 

 

Examples of the sentences part of the grammar’s language are also 

given: 

SELECT CustomerID FROM Customers WHERE kGHEn = trnQWE OR NOT 

PostalCode = YJIkkl ; 

SELECT CompanyName FROM Customers WHERE Fax LIKE  HDllKK AND 

Country != Region ; 

SELECT ContactTitle FROM Customers WHERE Phone IS NULL OR 

BFactor OR City = a ; 

SELECT City FROM Customers WHERE Jaw >= jKuuIgfDeWA ; 

SELECT Region FROM Customers WHERE ContactTitle IS NULL AND 

Address LIKE  mNnN ; 

4.4.1 Prerequisites 

The prerequisites will be the generation of G’ and V from G. As it was 

explained in Section 4.2.4, a mechanism which groups symbolic and 

concrete constants that are related will be introduced. A single compound 

value is a group of symbolic and concrete constants whose individual 

generated values should be related to the previously generated values of all 

members if the group. This is especially useful when the group of constants 

represent concepts such like IP addresses, mail addresses, ages, etc. 

Compound values are represented in G' as symbolic constants (one 

symbolic constant in G' for each compound value). For each symbolic 

constant, a group of symbolic and concrete constants is defined in V. 

G’ and V will be generated to control the instantiation of the STerm 

symbolic constants. Any symbolic constant defined in G’ will be instantiated 

as a set of grouped values defined in V. Thus it should be taken into 

account in this feature to decide how those symbolic constants should be 

instantiated 

For this example, let us take the following production rules from G: 

BFactor = ATerm | STerm ; 

STerm = column_name sop column_name ; 

column_name = "CustomerID" | "CompanyName" | "ContactName" | 

"ContactTitle" | "Address" | "City" | "Region" | 

"PostalCode" | "Country" | "Phone" | "Fax" ; 

sop = "=" | "!=" ; 
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A one word approach would be to declare column_name and sop as 

symbolic constants in G’ and leaving their concrete definitions to appear in 

V: 

Example G’ 

BFactor = ATerm | STerm ; 

STerm = <column_name> <sop> <column_name> ; 

 

Example V 

column_name = "CustomerID" | "CompanyName" | "ContactName" | 

"ContactTitle" | "Address" | "City" | "Region" | 

"PostalCode" | "Country" | "Phone" | "Fax" ; 

sop = "=" | "!=" ; 

 

This way of defining G’ and V will be solved by our solution as three 

single separate values (<column_name> <sop> <column_name>), each one with 

its own low discrepancy sequence but with no relationship to the other 

selected values in the other sequences. Clearly, this is not desirable if the 

terms have a relationship. An alternative would be to solve all three terms 

together. Let us assume three non-terminals in the STerm rule to be solved 

as a single value. For this G’ and V will be defined: 

Example G’ 

BFactor = ATerm | <STerm> ; 

 

Example V (expands the symbols introduced in G’) 

STerm = column_name sop column_name ; 

column_name = "CustomerID" | "CompanyName" | "ContactName" | 

"ContactTitle" | "Address" | "City" | "Region" | 

"PostalCode" | "Country" | "Phone" | "Fax" ; 

sop = "=" | "!=" ; 

 

This way of defining G’ and V will be solved as a single value, with a 

single low discrepancy sequence; that is, a relationship is maintained 

between the terms during the selection of values for that entire (STerm) 

symbolic constant definition. These different approaches provide the tester 

with the flexibility to control how symbolic values will be instantiated. 

Back to our example, we define the following G’: 

Symbolic Grammar ( (G’) for a grammar (G) ) 

Select = "SELECT " <COLUMNS_NAMES> "FROM " <TABLE_NAME> 

"WHERE " BCond ; 

BCond = BCond "OR " BTerm | BTerm ; 

BTerm = BTerm "AND " BFactor | BFactor ; 

BFactor = "NOT " BCond | <ID> "IS NULL " | ATerm | STerm ; 

ATerm = Value <AOP> Value ; 

Value = <ID> | <NUM> ; 

STerm = <ID> "LIKE " <VALUE> | <ID> <SOP> <VALUE> | <ID> 

<SOP> <ID> ; 
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G’ gives a complete description of the protocol for any SQL engine. As 

established by Majumdar (18) for creating G’, SQL context-free grammar G 

was taken and substituted h-elements of Υ, where its regular expression 
has more than a single concrete value, with h-elements of Α ( “Northwind” 

SQL example database for MS SQL Server (33) will be employed for this 

purposes). For this example the following symbolic value grammar (V) is 

defined: 

Symbolic Value Grammar (V) 

 

AOP = "=" | "<" | ">" | "<=" | ">=" | "!=" ; 

SOP = "=" | "!=" ; 

COLUMNS_NAMES = COLUMN_NAME ”, ” COLUMN_NAME ; 

COLUMN_NAME = "CustomerID" | "CompanyName" | "ContactName" | 

"ContactTitle" | "Address" | "City" | "Region" | 

"PostalCode" | "Country" | "Phone" | "Fax" ; 

TABLE_NAME = "Customers"; 

VALUE = (letter)+; 

ID = COLUMN_NAME ; 

NUM = number ; 

number = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" 

| "9" ; 

letter = "a" | "b" | "c" | "d" | "e" | "f" | "g" | "h" | "i" 

| "j" | "k" | "l" | "m" | "n" | "o" | "p" | "q" | "r" | 

"s" | "t" | "u" | "v" | "w" | "x" | "y" | "z" | "A" | 

"B" | "C" | "D" | "E" | "F" | "G" | "H" | "I" | "J" | 

"K" | "L" | "M" | "N" | "O" | "P" | "Q" | "R" | "S" | 

"T" | "U" | "V" | "W" | "X" | "Y" | "Z" ; 

Suppose a script which fills the table "Customers" (which comes as 

default in the Northwind (33) installation) with no NULL data. Let’s assume 

a set of test cases that will test the correctness of an implementation of this 

script is needed. A set of "SELECT" statements that will query for NULL 

values will be generated; if any test query returns any non-empty result, an 

error has been found. To test for this condition, we will generate a set of 

queries where at least one of any set of random columns has a NULL value. 

Test cases will be generated with a manageable length, so we chose to 

generate symbolic sentences with a maximum length of 15 elements – this 

is an arbitrary selection at this stage. For this, the following symbolic 

constraint expression (E) is defined: 

"SELECT " <COLUMNS_NAMES> "FROM " <TABLE_NAME> "WHERE " <ID> 

"IS NULL " "AND "  

 

E establishes the terminals of G’ that should be satisfied while 

generating symbolic sentences from G’; therefore it only constrains the first 

terminals, allowing the grammar to generate sentences to a maximum of 

length 15 as long as they satisfy these constraints. 
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With G’, V and E defined, a description of the different phases 

implemented in our system can be started. For this the system will execute 

its three phases in a sequential order. 

4.4.2 Constraint Solving Phase 

The constraint solving phase’s first step consists in computing the 

intersection between the G’ and E.  

This is performed internally by generating the constraint grammar from 

the user defined E, replacing each production in the start symbol of G’ until 

the last value in the constraint is satisfied. The symbolic constraint 

grammar (C’) computed would be: 

T0 = "SELECT " ; 

T1 = <COLUMNS_NAMES> ; 

T2 = "FROM " ; 

T3 = <TABLE_NAME> ; 

T4 = "WHERE " ; 

T5 = <ID> ; 

T6 = "IS NULL " ; 

T7 = "AND " ; 

 

With C’ generated, the intersection with G’ is computed as follows: 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

input: symbolicGrammar ∈ G', symbolicConstraintGrammar ∈ C' 

output: constrained symbolic grammar C 

  

// Make a copy of G' 

C <- G' 

  

// Clone the first rule of G' and add it to C 

r ∈ R’  <- G'.FirstRule 

  

// Give the rule a name not in G' 

r.leftHand ∉ F 

  

// Rename all instances G'.FirstRule in C with r.LeftHand 

FOR EACH rule ∈ R’ IN G' 

 FOR EACH element IN rule 

   IF element = G'.FirstRule THEN 

    element <- r.LeftHand  ; 

   END IF 

  END 

 END 

END 

  

// Add r to C 

C.add(r) ;  

  

FOR EACH production IN C' 

 thisElement = r(element++); 

  

 DO 

  DO 

   // Gets the next expansion 
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33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

   expansion <- thisElement(expansion++); 

  

   // If no more expansions available then unsolvable. 

   IF NO MORE expansions THEN 

    return NULL; 

   

  // Compares the first element in the expansion 

  WHILE expansion(0) ≠ constraintProduction THEN 

  

  // Substitutes element in r with its expansion 

  r(element) <- expansion ; 

  // Redefines the working element with the expansion encountered 

  thisElement <- G.FirstProduction(thisElement); 

  

 UNTIL thisElement ∈ Υ 
  

END 

  

return C ; 

 

The algorithm undertakes the following steps: 

• Lines 8 – 11: The start symbol of G’ is copied and renamed as r.  

• Lines 14 to 21: All the references to the start symbol in G’ are 

redirected to r. This step is needed to guarantee that the 

grammar will keep its capability of producing the exact same 

language L(G’) taking into account the restrictions that will be 

added later by the algorithm.  

• Line 24: Add r to C (which holds G’ (line 5)). The algorithm 

continues and it encounters the constraint T0 in C’ and (line 27) 

satisfies it with the first element found in the rule "Select" (no 

expansion is needed as this element is a terminal value, line 46).  

• This is repeated for constraints T1 to T4 (loops through lines 29 

- 46) and their corresponding terminal values in the start 

symbol (S) of G’. 

• Then the algorithm expands the first found non-terminal “BCond” 

(line 32) from G’ and creates a new definition of S (line 44) for 

each found possible expansion that can comply with T5:  

 

Select = "SELECT " <COLUMNS_NAMES> "FROM " <TABLE_NAME> 

"WHERE " BCond "OR " BTerm ; 

Select = "SELECT " <COLUMNS_NAMES> "FROM " <TABLE_NAME> 

"WHERE " BTerm ; 

 

Two choices are available. The algorithm will attempt to solve both 

trying to satisfy T5 (line 32), both can eventually solve it. However, as it 

was established 15 terminal elements as a limit the first choice will 

eventually be pruned from the search; therefore only the second expansion 

(“Bterm”) will be explicitly explored: 
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Select = "SELECT " <COLUMNS_NAMES> "FROM " <TABLE_NAME> 

"WHERE " BTerm "AND " BFactor ; 

Select = "SELECT " <COLUMNS_NAMES> "FROM " <TABLE_NAME> 

"WHERE " BFactor ; 

 

The only expansion that can satisfy the constraint is the first one 

(BTerm "AND " BFactor). The second one (“BFactor”) fails when the 

algorithm attempts to satisfy the constraint T7, after satisfying T6, as no 

more elements remain in the start symbol. Expanding the first alternative: 

 

Select = "SELECT " <COLUMNS_NAMES> "FROM " <TABLE_NAME> 

"WHERE " BTerm "AND " BFactor "AND " BFactor ; 

Select = "SELECT " <COLUMNS_NAMES> "FROM " <TABLE_NAME> 

"WHERE " BFactor " "AND " BFactor ; 

 

For the first expression, a same state to the one found when expanding 

(“Bterm”) is encountered. So for simplicity, only “BFactor” will be expanded, 

as again, to satisfy the constraint: 

 

Select = "SELECT " <COLUMNS_NAMES> "FROM " <TABLE_NAME> 

"WHERE " "NOT " BCond " "AND " BFactor ; 

Select = "SELECT " <COLUMNS_NAMES> "FROM " <TABLE_NAME> 

"WHERE " <ID> "IS NULL " "AND " BFactor ; 

Select = "SELECT " <COLUMNS_NAMES> "FROM " <TABLE_NAME> 

"WHERE " ATerm " "AND " BFactor ; 

Select = "SELECT " <COLUMNS_NAMES> "FROM " <TABLE_NAME> 

"WHERE " STerm " "AND " BFactor ; 

 

From the four choices, the only expansion that cannot solve the 

constraint (“IS NULL”) is the first one "NOT” as it is a terminal element that 

cannot be expanded. Therefore, it is pruned from the search. The algorithm 

will attempt to solve the remaining sentences, expanding the non-terminal 

elements (ATerm and STerm through lines 30 - 39). The expansion for 

these three sentences would be: 

 

Select = "SELECT " <COLUMN_NAME> "FROM " <TABLE_NAME> "WHERE 

" <ID> "IS NULL " "AND " BFactor ; 

Select = "SELECT " <COLUMN_NAME> "FROM " <TABLE_NAME> "WHERE 

" <ID> <AOP> Value " "AND " BFactor ; 

Select = "SELECT " <COLUMN_NAME> "FROM " <TABLE_NAME> "WHERE 

" <ID> "LIKE " <STRING>" "AND " BFactor ; 

Select = "SELECT " <COLUMN_NAME> "FROM " <TABLE_NAME> "WHERE 

" <ID> <SOP> <STRING> " "AND " BFactor ; 

Select = "SELECT " <COLUMN_NAME> "FROM " <TABLE_NAME> "WHERE 

" <ID> <SOP> <ID> " "AND " BFactor ; 

 

The next step in the algorithm is to satisfy T6 "IS NULL " (line 27). The 

only available choice that satisfies this constraint is the first one, so the 
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algorithm abandons the other searches upon discovering that they are 

unsatisfiable-able. Finally, the algorithm will attempt to satisfy the T7 "AND 

", which is satisfied by the remaining sentence: 

 

Select = "SELECT” <COLUMN_NAME> "FROM " <TABLE_NAME> "WHERE 

" <ID> "IS NULL " "AND " BFactor ; 

 

As all the constraints are satisfied the new symbolic constrained 

grammar C will look like this: 

Constrained Symbolic Grammar 

 

Select = "SELECT " <COLUMN_NAME> "FROM " <TABLE_NAME> "WHERE 

" <ID> "IS NULL " "AND " BFactor ; 

Select’ = "SELECT " <COLUMN_NAME> "FROM " <TABLE_NAME> 

"WHERE " BCond ; 

BCond = BCond "OR " BTerm | BTerm ; 

BTerm = BTerm "AND " BFactor | BFactor ; 

BFactor = "NOT " BCond | <ID> "IS NULL " | ATerm | STerm ; 

ATerm = Value <AOP> Value ; 

Value = <ID> | <NUM> ; 

STerm = <ID> "LIKE " <STRING> | <ID> <SOP> <STRING> | <ID> 

<SOP> <ID> ; 

 

Taking a closer look to the grammar, the nonterminal Select’ (created 

in line 11) is never used by any rule making it an unreachable rule. Because 

of this, a final step that removes any non-reachable rules is taken to 

optimize symbolic string generation. The result of this phase is: 

 Constrained Symbolic Grammar 

 

Select = "SELECT " <COLUMN_NAME> "FROM " <TABLE_NAME> "WHERE 

" <ID> "IS NULL " "AND " BFactor ; 

BCond = BCond "OR " BTerm | BTerm ; 

BTerm = BTerm "AND " BFactor | BFactor ; 

BFactor = "NOT " BCond | <ID> "IS NULL " | ATerm | STerm ; 

ATerm = Value <AOP> Value ; 

Value = <ID> | <NUM> ; 

STerm = <ID> "LIKE " <STRING> | <ID> <SOP> <STRING> | <ID> 

<SOP> <ID> ; 

 

C is now a grammar that complies with both G’ and E, and is ready to 

be used in the next phase. 

4.4.3 Symbolic Sentences Generation Phase 

In the symbolic sentences generation phase, an implementation of 

the approach suggested by McKenzie (24) is utilised. This approach 

proposes a uniform distribution for production rules that maximizes 

production rule coverage (making it imperative to use all production rules) 
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and guarantees that all strings from the given grammar are equally likely to 

be generated. As our approach objective is to employ any CFG this 

approach is our best option as all production rules are treated without bias. 

In this approach, the production rules (R) defined for any context-free 

grammar (G) are used to generate symbolic sentences (SS) up to a 

specified length (d) in a uniform fashion. Our solution enhances previous 

approaches (19) by preventing the re-generation of previously generated 

symbolic sentences. 

For this example, as E consists of 10 terminal elements, five or less 

additional terminal elements are required in our test cases (remember, 15 

elements was set as a maximum size constraint). 

The GenerateFronNonTerminal algorithm starts as follows: 

1 input: nonterminal ∈ F, d (length of SS) 

2 output: string ∈ SS 

3  

4 Let q ∈	Υ 
5 Let r’⊆ R’ be of the form nonterminal	 → q; 
6 Let λ be an example of r’ and be referred to as an expansion of 

nonterminal. 

7  

8 // Chooses an expansion from all selectable expansions. 

9 result ∈ r’ <- Choose(nonterminal, d); 

10 // Expands the nonterminal with the chosen expansion 

11 string <- Expand(result , q(0), d); 

12  

13 return string; 

  

• It chooses an expansion of the element received (line 9). The 

Choose routine will be discussed later. 

• It expands the first element q(0) in the selected production rule 

result (line 11).  

For our example, the start symbol (“select”) will be used as a starting 

point and an arbitrary length, between the length of the start symbol (11) 

and the previously defined maximum length (15), for which 12 is chosen.  

The routine receives “select” and the length 12 and chooses between all 

of the possible expansions of “select”. The start symbol for C has only one 

expansion, so this will be selected (line 9) and the start symbol will be 

expanded by the function Expand (line 11). 

The algorithm for Expand works as follows: 

1 input: rule ∈ R’, element(i) ∈ q, d (length of SS) 

2 output: result ⊆ SS 

3  

4 s1 ⊆ SS <- ""; 
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5 s1 ⊆ SS <- ""; 

6  

7 IF element ∉ F THEN 

8  s1 <- element; 

9  

10  // If more elements continue expanding 

11  IF more elements IN rule to the right of this element THEN 

12   nextElement ∈ q  <- element(i+1) ; 

13   // Expand recursively 

14   s2 <- Expand(rule, q, d - 1); 

15  END 

16  

17  // Concatenate and return results 

18  return s1 + s2 ; 

19 ELSE 

20  // Call function GenerateFronNonTerminal 

21  s1 <- GenerateFromNonterminal (element, d + 1) 

22  

23  // If more elements continue expanding 

24  IF more elements IN rule to the right of this element THEN 

25   nextElement <- element(i++); 

26   // Expand recursively 

27   s2 <- Expand(rule, nextElement, d); 

28  END 

29  

30  // Concatenate and return results 

31  return s1 + s2 ; 

32  

33 END 

• If the element is a terminal (line 7), then it stores the value of 

the element in s1 (line 8); if more elements are to the right 

(line 11), it expands them recursively and stores the computed 

values in s2 (line 14).  

• If the element is a nonterminal (line 19), then it calls 

generateFromNonTerminal and stores the value of the element 

in s1 (line 21); if more elements are to the right (line 24), it 

expands them recursively and stores the computed values in s2 

(line 27).  

• Finally, it concatenates  the computed values (lines 18 and 31) 

Continuing with our example, the expansion selected is shown: 

"SELECT " <COLUMN_NAME> "FROM " <TABLE_NAME> "WHERE " <ID> 

"IS NULL " "AND " BFactor 

The element selected is "SELECT " (line 1) and as it is a symbolic 

constant (terminal value for C) its evaluation is true for line 7. Now the 

algorithm looks for the next element (to the right of this one) and as this 

evaluation is true (line 11), it takes this element and tries to expand it 

recursively in line 14. For this call on Expand, the selected expansion is now 

<COLUMNS_NAMES> which is a symbolic constant and a terminal for C; 

thus as for the previous case, it will go through lines 7 and 11, with the 

difference that on line 14 it will chose the next element "FROM ". 
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The algorithm will continue parsing the rule and adding results 

recursively to s1 and s2 until a symbolic sentence is generated as final 

result.  

"SELECT " <COLUMNS_NAMES> "FROM " <TABLE_NAME> "WHERE " <ID> 

"IS NULL " "AND " <COLUMN_NAME> "IS NULL " 

 

The Choose routine which was employed in the 

GenerateFromNonTerminal and Expand algorithms will be explored.  

The following is the algorithm of this routine which holds our 

enhancement which introduces evolutionary computation principles to the 

selection of production rules. 

1 input: nonterminal ∈ F, d (length of SS) 

2 output: element ∈ q 

3  

4 Let q be an expansion of nonterminal; 

5 Let UC be a count variable  

6 // Fetches list containing the expansions and its use count for 

7 // this nonterminal and d. 

8 [q, UC] <- usageList(nonterminal, d); 

9  

10 // Calculates a random number between 0 - 1 to use for operation 

selection. 

11 decider <- Random(0, 1); 

12  

13 // Decides which operation to execute. 

14 IF decider < stochastic percentage  THEN 

15  element <- uniform(q); 

16 ELSE  

17  // Select a random element from the list. 

18  element <- random(q); 

19 END 

20  

21 // Updates list with the new selected expansion. 

22 usageList.Update(element, d); 

23  

24 return element; 

25  

• It uses usageList (line 8) a list which is indexed by a non-

terminal (left-hand side of an expression) and the length of a 

symbolic sentence which is derivable from the non-terminal. The 

list returns a set of pairs [q ∈ 	Υ, UC], where UC is the total 
number of times that q has been selected by this algorithm. 

• It decides if it should continue with the original flow or apply a 

random selection mechanism (this is a novel element in our 

approach). For this, it compares a pseudo-random value (line 8) 

with a stochastic percentage (user-defined variable). The exact 

value of this parameter is relatively unimportant and the system 

default value produces acceptable results in all known situations. 

If the random value is less than the percentage, it selects the 

alternative operation; otherwise it continues. If increased 
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stochastic behaviour is required the stochastic percentage could 

instead follow a cooling schedule to allow an increased selection 

of pseudo-random values at the start of the cycle which then 

decreases as the cooling schedule is applied. 

• The routine uniform selects an element based upon: 

Let =$>>>> = �
#@	 	∑ =$@		@ , where # is the cardinality of q 

∃C ∙ 	=$>>>> > 	=$@ 	∧ 	min@ G=$@ −	=$>>>>GI 

• The stochastic branch (line 16) selects an element at random 

from the list (line 18). 

• The list is updated with the selected expansion (line 22) and the 

element selected is returned (line 24). 

Back to our example, a set of five symbolic sentences generated by our 

system in these circumstances is shown: 

Symbolic Sentences 

 

"SELECT " <COLUMN_NAME> "FROM " <TABLE_NAME> "WHERE " <ID> 

"IS NULL " "AND " <COLUMN_NAME> "IS NULL " 

"SELECT " <COLUMN_NAME> "FROM " <TABLE_NAME> "WHERE " <ID> 

"IS NULL " "AND " <NUM> <AOP> <COLUMN_NAME> 

"SELECT " <COLUMN_NAME> "FROM " <TABLE_NAME> "WHERE " <ID> 

"IS NULL " "AND " "NOT "  <COLUMN_NAME>  "IS NULL " 

"SELECT " <COLUMN_NAME> "FROM " <TABLE_NAME> "WHERE " <ID> 

"IS NULL " "AND " "NOT " "NOT " <COLUMN_NAME> <AOP> 

<NUM> 

"SELECT " <COLUMN_NAME> "FROM " <TABLE_NAME> "WHERE " <ID> 

"IS NULL " "AND " "NOT " "NOT " "NOT " <COLUMN_NAME> 

"IS NULL " 

 

If more symbolic sentences are required then the routines are executed 

iteratively as many times as defined (by the user). For future iterations, 

new length values are generated to be passed to the 

GenerateFromNonTerminal routine. 

4.4.4 Concrete Sentence Production Phase 

Finally, the concrete sentence production phase is initiated where 

concrete sentences (CS) are generated from the symbolic sentences (SS) 

employing the symbolic value grammar (V). 

The phase starts with the following algorithm: 

1 input: grammar ∈ V, sentences ∈ SS, nr (total number of concrete 

sentences to be generated) 

2 output: testCases ∈ CS 

3  

4 // Parse each element in the symbolic sentence 
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5 FOR EACH element ∈ Υ IN SS 
6  // If it is a symbolic constant 

7  IF element ∈ Α THEN 
8   results.adds(SolveSymbolicConstant(V, element, nr)) 

9  ELSE IF element ∈ Σ THEN 
10   results.adds(element); 

11  END 

12 END 

13  

14 // Convert results to a readable output 

15 testCases <- ConstructConcreteSentence(results) 

16  

17 return testCases 

18  

Let’s take the first symbolic sentence of our example: 

"SELECT " <COLUMN_NAME> "FROM " <TABLE_NAME> "WHERE " <ID> 

"IS NULL " "AND " <COLUMN_NAME> "IS NULL " 

 

Let’s assume nr has a value of 5. In the first iteration, the algorithm 

parses the concrete value "SELECT " and adds its value to the results 

variable (line 10). In the second iteration, when the parser finds the 

symbolic constant <COLUMNS_NAMES>, it now calls the routine 

SolveSymbolicConstant (line 8), explained below, which will compute the 

concrete value for this symbolic constant. To continue the explanation, let 

us suppose that the returned value is the symbolic constant conformed of 

the concrete constants "City" "," "Region" , so this value is added to the 

results. This is repeated until the entire symbolic sentence is parsed. 

SolveSymbolicConstant 

1 input: grammar ∈ V, nonterminal ∈ W, nr (total number of  

2  concrete sentences to be generated) 

3 output: results ∈ Λ 

4  

5 Let β ⊆ P and have the form W → Λ
+
 

6 Let η = nonterminal ∈ Α → β
+
 

7  

8 Let entity ∈ β+ be the right hand of η 
9 Let sequence be a low discrepancy sequence � ∀entity �(∃ sequence � entity 

→ sequence) 

10   

11 Let T be the set of permutations of an entity 

12 Let τ ∈ T � ∀τ �(∃ seq ∈ sequence � τ → seq)) 

13  

14  

15 // Compute the entity for this nonterminal 

16 entity <- GenerateEntity(grammar, nonterminal) 

17  

18 // Solve the entity 

19 FOR EACH position IN entity 

20  // Fetch next item in the low discrepancy sequence 

21  concreteValues ∈ τ <- values(entity.sequence) 

22  // Add values to results. 

23  results.add(concreteValues) 

24 END 

25  
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26 // size of results = nr 

27 return results 

28  

 

Consider the following definition of discrepancy. Given a sequence of 

numbers which belong to the right-open interval [0,1), and can be scaled if 

necessary. Consider the s-dimensional right-open unit cube I
s
 [0,1)s; s ≥ 1. 

For N points {x1, x2, ....., xN} ∈ I
s
;  and a subinterval J ∈ I

s
; if A(J) counts 

the number of points xi ϵ J and V(J) is the volume of J , discrepancy D(J,N) 

is defined as: 

D�J,N		=	 L��M	N − O�M	L 

The discrepancy is the difference between the proportion of points in J 

compared to the full unit cube I
s
 and the volume of the ‘box’ J compared to 

I
s
. 

The worst-case discrepancy, i.e. the worst-case distribution of a 

set/sequence of points{ x1, x2, ....., xN } ∈ I
s
 is called the star-discrepancy 

and is defined as: 

D∗	�N	 = maxQ D�J, N		 

The goal of a low-discrepancy sequence is to minimize this star 

discrepancy. This definition is utilized by the algorithm. 

 

For our example, <COLUMNS_NAMES> is the first symbolic constant to be 

solved. First, the entity for COLUMNS_NAMES is generated; as the 

production rule COLUMN_NAME satisfies the entity definition (line 8) then 

the entity is:  

<COLUMNS_NAMES> = COLUMN_NAME “, ” COLUMN_NAME; 

 

The entity now is solved. The algorithm fetches the values for this 

position in the entity using its associated low discrepancy sequence (line 

21). As this is repeated 5 times, 5 values are added to results (line 23): 

"City" “, ” "Address" 

"ContactTitle" “, ” "Phone" 

"Country" “, ” "Region" 

"ContactName" “, ” "CostumerID" 

"Address" “, ” "CompanyName" 
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It can be appreciated that the symbolic constants have been 

substituted with their corresponding definitions in V, but the values chosen 

cover more input space than pure pseudo-random approaches. This is more 

easily appreciated if 20 concrete sentences are generated in the same 

fashion: 

SELECT City, Address FROM Customers WHERE Phone IS NULL AND PostalCode IS NULL  

SELECT ContactTitle, Phone FROM Customers WHERE Region IS NULL AND Fax IS NULL  

SELECT Country, Region FROM Customers WHERE CustomerID IS NULL AND City IS NULL  

SELECT ContactName, CustomerID FROM Customers WHERE CompanyName IS NULL AND 

ContactTitle IS NULL  

SELECT Address, CompanyName FROM Customers WHERE PostalCode IS NULL AND Country 

IS NULL  

SELECT Phone, PostalCode FROM Customers WHERE Fax IS NULL AND ContactName IS 

NULL  

SELECT Region, Fax FROM Customers WHERE City IS NULL AND Address IS NULL  

SELECT CustomerID, City FROM Customers WHERE ContactTitle IS NULL AND Phone IS 

NULL  

SELECT CompanyName, ContactTitle FROM Customers WHERE Country IS NULL AND Region 

IS NULL  

SELECT PostalCode, Country FROM Customers WHERE ContactName IS NULL AND 

CustomerID IS NULL  

SELECT Fax, ContactName FROM Customers WHERE Address IS NULL AND CompanyName IS 

NULL  

SELECT Country, Fax FROM Customers WHERE City IS NULL AND ContactTitle IS NULL  

SELECT ContactName, City FROM Customers WHERE ContactTitle IS NULL AND Country 

IS NULL  

SELECT Address, ContactTitle FROM Customers WHERE Country IS NULL AND 

ContactName IS NULL  

SELECT Phone, Country FROM Customers WHERE ContactName IS NULL AND Address IS 

NULL  

SELECT Region, ContactName FROM Customers WHERE Address IS NULL AND Phone IS 

NULL  

SELECT CustomerID, Address FROM Customers WHERE Phone IS NULL AND Region IS NULL  

SELECT CompanyName, Phone FROM Customers WHERE Region IS NULL AND CustomerID IS 

NULL  

SELECT PostalCode, Region FROM Customers WHERE CustomerID IS NULL AND 

CompanyName IS NULL  

SELECT Fax, CustomerID FROM Customers WHERE CompanyName IS NULL AND PostalCode 

IS NULL 

 

4.4.5 Pseudo-Random vs. Quasi-Random 

A comparison between our approach using low discrepancy sequences 

and pure pseudo-random approaches will be made (as all previous 

approaches have utilised). Taking our example and comparing it with our 

system working with a symbolic grammar, symbolic values grammar and 

symbolic constraint expression similar to the previously used. The change in 

the symbolic grammar can be found in the rule “Select” where the 

<COLUMNS_NAMES> symbolic constant has been replaced with  two symbolic 

(and one concrete) constants <COLUMN_NAME> ", " <COLUMN_NAME> (found in 

the example’s Symbolic Value Grammar): 

Symbolic Grammar 
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Select = "SELECT " <COLUMN_NAME> ", " <COLUMN_NAME> "FROM " 

<TABLE_NAME> "WHERE " BCond ; 

 

Symbolic Constraint Expression 

 

"SELECT " <COLUMN_NAME> "," <COLUMN_NAME> "FROM " 

<TABLE_NAME> "WHERE " <ID> "IS NULL " "AND "  

 

As discussed, the manner in which these values are defined affects 

directly how they are solved by our solution. In the previous example, 

these constants were solved as a single entity for this definition they will be 

solved as three independent entities. 

SELECT City, Country FROM Customers WHERE Address IS NULL AND Fax IS NULL  

SELECT ContactTitle, ContactName FROM Customers WHERE Phone IS NULL AND City IS 

NULL  

SELECT Country, Address FROM Customers WHERE Region IS NULL AND ContactTitle IS 

NULL  

SELECT ContactName, Phone FROM Customers WHERE CustomerID IS NULL AND Country IS 

NULL  

SELECT Address, Region FROM Customers WHERE CompanyName IS NULL AND ContactName 

IS NULL  

SELECT Phone, CustomerID FROM Customers WHERE PostalCode IS NULL AND Address IS 

NULL  

SELECT Region, CompanyName FROM Customers WHERE Fax IS NULL AND Phone IS NULL  

SELECT CustomerID, PostalCode FROM Customers WHERE City IS NULL AND Region IS 

NULL  

SELECT CompanyName, Fax FROM Customers WHERE ContactTitle IS NULL AND CustomerID 

IS NULL  

SELECT PostalCode, City FROM Customers WHERE Country IS NULL AND CompanyName IS 

NULL  

SELECT Fax, PostalCode FROM Customers WHERE ContactName IS NULL AND PostalCode 

IS NULL  

SELECT ContactName, Country FROM Customers WHERE Fax IS NULL AND Fax IS NULL  

SELECT Address, ContactName FROM Customers WHERE City IS NULL AND City IS NULL  

SELECT Phone, Address FROM Customers WHERE ContactTitle IS NULL AND ContactTitle 

IS NULL  

SELECT Region, Phone FROM Customers WHERE Country IS NULL AND Country IS NULL  

SELECT CustomerID, Region FROM Customers WHERE ContactName IS NULL AND 

ContactName IS NULL  

SELECT CompanyName, CustomerID FROM Customers WHERE Address IS NULL AND Address 

IS NULL  

SELECT PostalCode, CompanyName FROM Customers WHERE Phone IS NULL AND Phone IS 

NULL  

SELECT Fax, PostalCode FROM Customers WHERE Region IS NULL AND Region IS NULL  

SELECT City, Fax FROM Customers WHERE CustomerID IS NULL AND CustomerID IS NULL 

 

The difference may not be obvious given that both answers are valid. 

For making an informal comparison, the Cartesian product of the set of 

values of <COLUMN_NAME> (defined in the symbolic values grammar) will be 

employed. Ordered pairs will be represented in a table, where the first set 

(first occurrence from left to right) will be the rows and the second set 

(second occurrence from left to right) will be the columns. 

For this comparison the first 60 tuples were generated (half the input 

space) and then we draw them in the table previously defined. The results 
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for three approaches: pseudo-random, low discrepancy single values and 

low discrepancy entity value will be analyzed. 

Figure 4.3 shows the distribution for the pseudo-random approach 

(using the grammar defined in this section) where the symbolic constants 

<COLUMN_NAME> ", " <COLUMN_NAME> were solved using the pseudorandom 

approach used by  all other,  systems of this type: 
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City • • • • 4

CompanyName • • • • • 5

ContactName • • 4

ContactTitle • • • • 5

Country • • • • • 5

CustomerID • • 3

Fax • • • • • 6

Phone • • • • • 8

PostalCode • • • • • 6

Region • • • • • • • • 9

4 1 9 8 4 5 6 2 10 3 8  

Figure 4.3 Distribution for the pseudo-random approach. 

The numbers on the edges of the table show that the distribution is 

randomly biased through the columns where the value “City” appears with 

1 occurrence while “CompanyName” and “Phone” appear with 10 

concurrencies. The large circles represent coordinates with more than one 

count, so it is clear that for example in the ordered pair <“Phone”, 

“CompanyName”> many test cases hit the same pairs making only 49 out 

of 60 test cases unique. The figure also shows that there are large areas 

that are poorly tested like the area defined by <”City”,”Address”>: 

<”Fax”,”CompanyName”> which represents 20% of the total input space. 

Figure 4.4 shows the distribution for the low discrepancy single 

approach (using the grammar defined in this section) where the symbolic 

constants <COLUMN_NAME> ", " <COLUMN_NAME> were solved using our low 

discrepancy proposal solving each symbolic constant separately: 
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Phone • • • • 5
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Figure 4.4 Distribution for the low discrepancy single approach. 

The numbers on the edges show that the distribution now is more 

evenly distributed (all values on the edges are now between five and six). 

This is achieved by the low discrepancy sequences used to make the 

selections. As in the previous table, the large circles represent ordered pairs 

which occur more than once; an improvement in how the repeated values 

are distributed 45 out of 60 test cases is unique with a maximum of two 

repeated cases for any combination can be appreciated. The graph also 

shows that there are not “large areas” that are poorly tested as was 

experienced in the random approach; this improves the overall coverage of 

the input space with less test cases covering more input space. 

Figure 4.5 shows the distribution for the low-discrepancy entity 

approach (using the grammar defined in the working example) where the 

symbolic constant <COLUMNS_NAMES> is solved using the low discrepancy 

sequences and the symbolic constant is considered as a single entity value. 
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Figure 4.5 Distribution for the low discrepancy entity approach. 

The numbers on the edges show that the distribution remains even due 

to the low discrepancy sequence used when solving the entity. As before, 

the large circles represent coordinates which occur more than once; it can 

be seen that there are no bold circles indicating that all the test cases 

produced are unique. The table also shows that there are no large areas 

that are poorly tested, optimizing the previous example by covering more 

input space with the same generated test cases. 

It is now clear that our approach is significantly better than pure 

pseudo-random enumeration usually employed when exhaustive generation 

is not feasible. It has also been demonstrated that our approach provides a 

better coverage of the input space when values are related between them 

and solved as a single entity, which is novel to this kind of test case 

generation. 

4.4.6 Conclusions 

A walkthrough of our solution was given starting with its prerequisites 

and through its three phases giving a detailed insight of the computations 

occurring at each phase. To finalize, a summary of the solution is 

presented: 

� The main functionality of our system consists of three 

sequential phases: constraint solving, symbolic sentence 

generation and concrete sentence production. This 

phases use a: 
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o Symbolic grammar - abstract representation of a 

context-free grammar (that represents the concrete 

input syntax of the system under test) where some 

original terminals are replaced with symbolic 

constants (regular expressions that represent the 

entire solution space for the replaced terminals). Each 

rule in the symbolic grammar represents a set of CFG 

rules, where each symbolic constant will be later 

instantiated with concrete constants (terminals) 

during execution. 

o Symbolic values grammar - a grammar where 

symbolic constants are defined with concrete 

constants (terminals); it is used to instantiate 

symbolic constants during execution. 

o Symbolic constraint expression - a regular expression 

expressed in terms of symbolic constants and 

concrete constants that the generated symbolic 

sentences should satisfy. 

� To initiate a description of the system under test (SUT), input 

is constructed in the form of a symbolic constraint 

expression, which is a description of the testing objectives. 

Our system already has a description of the SUT's language 

or protocol in the form of a symbolic grammar and a symbolic 

values grammar. 

� The symbolic constraint expression is supplied to the system. 

� The system passes symbolic constraint expression to the 

constraint solving phase, which restricts the symbolic 

grammar by forcing it to also conform to the supplied 

symbolic constraint expression. 

� The output of the constraint solving phase is passed to the 

symbolic sentences generation phase (part enumeration 

part constraint solving). Several specific terms match each 

more generic term; therefore we get enumeration which is 

controlled by the objective uniform distribution. 

� The output of symbolic sentences generation phase is 

passed to the concrete sentence production phase (part 

enumeration part constraint solving). The more generic 

output of the symbolic sentences generation phase is 

forced to bind to concrete values as these are the final 

testing values. Because, in general, several specific terms 

match each more generic term we get enumeration. The 

enumeration is controlled by the objective low-discrepancy 

sequence when applicable or uncontrolled (random 

generation) when the objective is inapplicable. 
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This section has established how our enhancements (like evolutionary 

algorithms) and novel approaches (like low discrepancy sequences) mix 

together to form a new and promising testing tool for generating test cases 

based on symbolic grammars. 
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5 Future Work 

As we developed and tested our system, several details came to our 

attention as interesting research fields which go beyond this thesis.  

5.1 Specifying System Constants 

In section 4.4.1, a starting sentence length was needed to control the 

symbolic sentence generation phase. Our criterion for selecting it was 

arbitrary as we didn’t employ any formal method to compute a starting 

length. 

Similarly in section 4.4.3, we specified that the user must provide the 

system with the total number of desired symbolic sentences. We have 

found that the total number of symbolic sentences is not fixed; neither can 

it be determined taking into account the size of the system, neither the 

nature of the software nor the objectives of the testing case. When possible, 

we suggest that an enumeration of all symbolic sentences from the 

symbolic grammar should be made and to use these computed values as a 

starting number that can be reduced in future iterations depending on the 

testing results. For small and simple grammars enumeration is possible due 

to their nature, but even with this advantage, enumeration is not possible 

when using complex grammars, for example grammars that contain 

recursive rules.  

Concrete sentences are discussed on section 4.4.4 and this raises the 

question of how many concrete sentences should be instantiated from each 

symbolic sentence. 

Research should be done in this field in order to remove human 

interaction and to aid the tester to set these parameters with a formal 

method. 

5.2 Constraint Structure 

Constraints were discussed in section 4.4.2 where their importance was 

established as a mechanism for limiting the size of the solution space. The 

question raises about which and how many symbolic and concrete 

constants should be included in the initial constraint. 

A well-formed input was used as an initial value (in section 4.4.1) to 

set the rule elements and the length employing an explorative testing 

approach. This kind of approach is not formal and different constraints 

could have given similar results. It can be argued that the selected 

approach is not optimal. For example, the used constraint was: 
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"SELECT " <COLUMNS_NAMES> "FROM " <TABLE_NAME> "WHERE " <ID> 

"IS NULL " "AND " 

 

This was derived from the test case specification, but in practice test 

case specifications are rarely detailed enough to derive the test case to this 

extent. This leaves the problem of defining the constraint structure entirely 

to the tester; clearly, there is a need to guide the tester in this regard. 

5.3 Constraint Solving 

The constraint solving literature (17) (19) (34) (35) omit details about 

constraint solving heuristics; these details include the order in which 

constraints should be solved. Usually linear constraint solving (first term 

followed by second term followed by third term) is assumed and found in 

different implementations. 

In the symbolic sentences generation phase, we utilise an 

implementation of the approach suggested by McKenzie (19) (34). This 

approach solves constraints from left to right in consecutive order, which is 

common practice while working with grammar-based approaches. However, 

these implementations may fail when left-recursion is present, thus forcing 

a grammar simplification before entering the constraint solving phase. 

Research on alternatives to linear constraint solving is a promising field 

as left-recursion is present in many non-context-free grammars. With these 

enhancements the system might be extended from using only BNF 

representation for CFG widening its industrial application. 
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6 Case Study 

In this section, a comparison between our solution and previous tools 

that employ grammar-based approaches in a real-world situation will be 

presented. For this, an overview of the system to test will be given, and 

then a description of our evaluation criteria, and finally the generated 

empirical results will be discussed. 

6.1 Firewalls 

A system or group of systems that enforces an access control policy 

between two networks is called a firewall. It implements a network access 

policy by forcing connections to pass through the firewall, where they can 

be examined and evaluated. 

Nowadays corporations face a variety of information system attacks 

against their local area networks (LANs) and wide area networks (WANs). 

Many of these attacks come from the Internet in three basic groups: 

� People which find a technological challenge in attacking a 

corporation's network; 

� People which find a promising field for high-tech vandalism in 

attacking a corporation's network; and 

� People associated with a competitor with an agenda who see 

the corporation’s network as a strategic target 

A firewall is then a fundamental asset of network security. It allows the 

corporation to focus its security efforts where the corporation’s information 

system connects to the Internet. Some of tasks that can be performed by a 

firewall are: 

� The control and prevention of attacks from untrusted network 

services. 

� Monitoring of traffic passing through the system. 

� Audit the corporation’s network  

� Alerts to the corporation’s staff of anomalies within the 

network. 

� Logging features and statistic’s collection (which can be used 

to create a network profile). 

� Providing the ability to control access to internal systems. 

A cornerstone of a firewall’s functionality is its capability for 

implementing and enforcing a network access policy. As a firewall provides 

access control to users and services, a network access policy can be 

enforced. 
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Firewalls can only protect against attacks going through the firewall. 

For example, there are many organizations investing in expensive firewalls 

and neglecting the numerous other backdoors into their network. A firewall 

must be part of a consistent overall organizational network security 

architecture. 

6.2 Firewall Policies 

The main function of a firewall is to centralize access control, so it 

allows the implementation of a security policy to ensure security within an 

organization. The centralized access control divides the local network into 

two separate parts: the trusted and the untrusted. This approximation 

allows the firewall to effectively manage the resources within the trusted 

network and safeguard them from the untrusted network. 

A firewall policy consists of a set of conditions represented by a list of 

rules. The workflow is simple; whenever there is an incoming packet 

(regardless its origin), it is analyzed and the firewall decides if it should be 

let through or blocked based on the firewall’s policy. 

Firewalls suffer from the same quality problems as other software 

products; even though trusted vendors are generally trustworthy and 

vulnerabilities tend to be patched relatively quickly. The main concern 

regarding firewall security testing is that firewalls must be configured with a 

rule set that implements an appropriate security policy for the actions that 

the organization wants the firewall to perform. Therefore the firewall 

policies are always costume made thus, the likelihood of a security 

vulnerability arising from misconfiguration is much greater than from a bug 

in the software itself (36). 

Even small companies have firewalls with several hundred rules. 

Furthermore, firewall policies and, by definition, rule sets change with time. 

Changes are often implemented by adding or changing rules, resulting in 

more complexity which increases the probability of errors. 

As the main vulnerability found in a firewall is its policy, the importance 

of producing test cases based on firewall policies is an obvious starting 

point for firewall testing. 

6.2.1 Firewall Rules 

The list of rules that comprise a firewall policy have different structures 

depending on the implementation of the firewall. Even though all firewall 

rules, regardless the vendor, include at least the following common fields: 

� Source address - the address (i.e. IP or domain) from where 

the package origins. 
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� Source port - the port number from where the package 

origins in the defined source address. 

� Destination address - the address (i.e. IP or domain) that the 

package is intended to reach. 

� Destination port - the port that the package is intended to 

reach on the defined destination address. 

� Protocol - the protocol in which the message is encoded. 

� Action - generally speaking the action will be to deny or allow 

the transit of a package from the source to the destination. 

 

 
Src. Addr. Src. Port Dst. Addr. Dst. Port Protocol Action 

R1: 198.32.24.87 50 localhost.com 30 ICMP Allow 

R2: 198.32.25.* 80 localhost.com 85-90 IPv6 Allow 

R3: localhost.com 80 * 80 * Allow 

R4: * * * * * Deny 

 
      

Table 6.1 Generic firewall policy 

The generic firewall policy shown in Table 6.1 consists of 4 simple 

rules: 

� Rule one allows all incoming packages to port 30 from a 

specific source address and port with protocol ICMP. 

� Rule two allows all incoming packages to port 80 from all 

addresses within the range 198.32.25.0 - 198.32.25.255 on 

ports 85 to 90 with protocol IPv6. 

� Rule three allows all outgoing packages from port 80 to any 

destination address on port 80. 

� Rule four denies all incoming packages that don’t match any 

of the above. 

Policy rules order is very important as the packet filtering process is 

performed by sequentially matching the packets information with the policy 

rules beginning with the first one and continuing sequentially until they 

reach the final rule (which usually is of the type of Rule four – denying 

anything that doesn’t matches). This doesn't happen in some firewalls 

where filtering rules are disjoint meaning that the ordering of the rules is no 

considered. 

Firewalls that work in a sequential matching fashion are the most 

common approach, so it is common to have policy rules that are related. In 

this case, the ordering of rules becomes a priority and a security issue. If 

the related rules are not carefully ordered, some rules will result in a 

firewall policy anomaly.  
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A firewall policy anomaly is defined as the existence of two or more 

rules that filter the same set or a subset that another rule filters. Firewall 

policy anomalies generally fall into four categories (37): 

� Shadowing anomaly - a rule is said to be shadowed when a 

previous rule matches all the packets that match this rule, 

such that the shadowed rule won’t be reached. 

� Correlation anomaly - two rules are correlated if they have 

different filtering actions and those actions overlap a subset 

of each rule’s filtered packets. 

� Generalization anomaly -a rule is a generalization of a 

preceding rule if one rule filters all of the packets that the 

other rule filters. 

� Redundancy anomaly - a rule is said to be redundant if there 

is another rule that filters the exact same packages as 

another one. 

As firewall policies keep growing in size (usually hundreds of rules), the 

importance of tests that are based on firewall policies is essential. 

6.2.2 Firewall Testing 

 

Figure 6.1 Firewall testing framework proposed by Al-Shaer etal. 

Al-Shaer et al. (38) have proposed one of the most complete 

frameworks for firewall testing which is illustrated in Figure 6.1. It consists 

in the following logical divisions: 
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� Policy Module - the system described accepts a file that has 

firewall policies that comply with a given grammar. To 

produce this file two options are given, the first one is to use 

a policy generator, the second one is to produce manually the 

file and feed it to the system. 

� Segmentation Module - policy rules are separated into 

segments that will cover all the rules in the testing policy. A 

segment is a subset of the complete address space. These 

segments are formed by dividing the total rules in the policy 

into groups that have similar traits. For a detailed discussion 

of segments; see Al-Shaer et al. (38). 

� Test Packet Generator - responsible for generating the actual 

packages for testing (producing as many packages as needed 

to cover all the segments with a bias set by the segment 

importance). 

� Spy - a standalone sniffer that receives the original package 

sent from the generator and the packets that come from the 

firewall. Both are received as bitmaps, when the test is over 

the bitmaps are compared and a final bitmap is sent to the 

framework for analysis. 

� Reports - The results from the framework are analyzed and 

several reports can be made including: policy complexity, 

package generation and segmentation effectiveness. 

From this model, a simplified firewall testing framework should consist 

of the following two phases: 

1. Generating policies with different configurations that include 

different rule complexity, interaction, etc.; and  

2. The generation of packets to test the implementation of the 

system under test (SUT) using the previously generated policies. 

Generating firewall policies in an automated fashion presents the 

following challenges: 

� The policy generator should be applicable to different firewall 

configurations and specifications unique of each vendor. 

� The policy generator should be able to cover the rule 

configurations completely (field values, rule complexities, rule 

relations, etc.). 

Firewall testing falls into two approaches: 

� A static one where the firewall policy is analyzed and 

modified to optimize it. 

� A dynamic one where the firewall is subjected to user 

designed traffic and monitored for anomalies.  
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Even though policies are the starting points for any testing regarding 

firewalls, little has been written regarding policy generation for firewall 

testing and sometimes it is omitted (38), (39) or just suggested (37). For 

static approaches, the most common method is to use existing firewall 

policies or modifications of them (37), (40), (41); another common 

technique is to analyze network traffic and build the firewall policy from this 

analysis (42). For dynamic approaches, the main concern is to develop 

frameworks that automate the testing task and generate packages to test 

the firewall (43), (44).  

All approaches use model-based approaches for generating policies. 

The model is usually a previously generated policy (40), a predefined rule 

generator that changes fields in the rule (45) or a grammar that describes 

the vendor’s features and configurations (44). 

One of the most powerful and up-to-date policy generators is 

ClassBench (45); which is a tool for testing and evaluating firewalls. The 

tool focuses in generating rules based on user-defined probabilities for each 

field that composes the rules. The main limitation of this tool is that it does 

not consider rule complexity and field interactions or features. Another 

limitation is that it is not flexible; it cannot use user-defined models of 

policy grammars and does not guarantee an efficient coverage of the 

testing space. 

The policy generator shown in Figure 6.1 takes as a starting point the 

limitations of ClassBench and proposes the use of the following strategies: 

� A policy grammar – an attributed grammar with defined 

attributes for each rule that controls the syntactic accuracy 

during generation. 

� A BNF Graph – a directed graph corresponding to the finite 

state automata of the grammar with a unique initial and final 

state. Each node in the graph represents a nonterminal in the 

attributed grammar and is associated with a user-defined 

probability for generation purposes. 

� Generation Process – the framework uses a complete 

traversal of the BNF graph to generate a rule; repeating the 

process for each generated rule. For generating a rule, the 

initial state is visited and each node, using its grammar 

attributes and probabilities, produces a terminal element. 

When the final state is reached, the rule has been generated 

and the process can be repeated to generate further rules. 

These approaches have been found to present several different 

limitations which are listed in Table 6.2. 

Limitation Description 
No formal steps to transform a • There is no suggested or formal 
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firewall rule grammar in BNF 

notation into an attributed 

firewall grammar. 

procedure to add attributes to a 

firewall rule grammar in BNF 

notation. This can lead to errors and 

adds unintended complexity to the 

grammar production. 

• Lack of flexibility to adapt to 
different firewall rule definition. 

Pseudo-random rule generation • Excludes exhaustive generation 
where applicable and relies only in 

probabilities to maintain an even 

distribution over nodes selected in 

the graph. 

Uncertain rule complexity • Rule complexity is managed 

probabilistically, excluding 

exhaustive generation where 

possible. 

Unconstrained input space. • The generation process doesn’t 
control how final tokens are 

selected. 

Unaware of previous results. • A count is added to each node in 
the BNF graph during execution 

time, so the node is only aware of 

previous attempts on itself. 

Table 6.2 Policy grammar, BNF Graph and Generation Process approaches limitations. 

Firewall testing is highly complex. For this reason, this research will 

focus on policy generation strategies, where grammars and sentence 

generation techniques can be employed and evaluated without the need of 

external systems.  

6.2.3 Our Approach 

For the experiments this research area was selected as, traditionally, 

firewall testing frameworks usually use for automated generation of their 

firewall policies model-based generation approaches. Grammars have been 

recently employed with a good impact in firewall testing frameworks, so 

this will allow us to make fair comparisons of the efficiency of our solution 

as previous methods are available for comparison. 

Our solution proposes the following approaches that will lessen the 

limitations discussed for the Al-Shaer et al (44) policy generator as shown 

in Table 6.3. 

 

Limitation Description 
No formal steps to transform 

a firewall rule grammar in 

BNF notation into an 

attributed firewall grammar. 

• Our solution defines a simple approach to 

transform usual firewall rule grammar in 

BNF notation to its equivalent symbolic 

grammar. 
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• Any firewall rule grammar can be easily 

transformed with minimal changes. 

Pseudo-random rule 

generation 

• We include exhaustive generation where 

applicable and low discrepancy generation 

where not. 

Uncertain rule complexity • Rule complexity is managed by grammar 

sentence length and the symbolic 

sentences generation’s engine.  

Unconstrained input space. • We include exhaustive generation where 

applicable and low discrepancy generation 

where not. 

Unaware of previous results. • All previous generated outputs are 
considered in the generation of test cases. 

Table 6.3 Lessened limitations by our solution. 

For evaluating this solution’s accuracy, a set of empirical experiments 

was designed and it will be discussed in the following sections. 

6.3 Case Study 

As discussed, firewall policy generation has not been subject of 

exhaustive study; thus leaving a field full of possibilities for research. 

Firewall policies consist of policy rules that, independent of their 

manufacturer, share a basic syntax. This trait makes its selection an 

obvious one as it gives enough flexibility to experiment with the impact of 

our solution and it is rigid enough to avoid the unrestricted growth of other 

kind of grammars that can give an infinite set of solutions (e.g. recursive 

grammars). Therefore a simplified firewall rule grammar that will allow us 

to have a proper insight of how practical test policies can be generated with 

different systems and the benefits that our solution provides will be used. 

6.3.1 Previous Firewall Testing Approaches 

Hoffman et. al. (46) have recently published that there are few case 

studies in grammar-based test generation. Because of this research, topics 

where firewall policies are needed for testing will be explored. The main 

source for policies are mainly divided in two,  

� Model-based generation (47) (48) and; 

� Firewall policies used in real world situations (university 

firewalls, corporation firewalls, etc.) (49) 

For firewall testing there exist frameworks (44) (50) which include 

several features that range from policy generation, packet generation and 

result evaluation. These two approaches altogether are widely used in the 

mentioned frameworks and in other research topics where firewall policies 

are needed for testing (51). These frameworks consider a firewall policy 

generation but don’t go in detail of how they generate their policies, giving 
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only a brief description of their methodologies which coincide with the 

previously discussed. 

As a result of this, a testing oracle or an external system to which a 

comparison could be made in the level of detail that was managed in the 

experiments, was not available. The most similar approach is the one 

proposed by Al-Shaer (44). Details on their work were requested but as 

their research were sponsored by Cisco, their information was not available 

for disclosure. 

6.3.2 Methodology 

An analysis and a comparison of four different test case generation 

methods were chosen as our experiments: 

� Random generation – This experiment consisted of random 

generation of sentences from a BNF-Grammar where the only 

restrictions are the defined grammar rules. For this 

experiment, a simple sentence generation engine which 

solves the grammar in a pseudo-random fashion was 

developed.  

� HAMPI system - the HAMPI string solver (19) (34) is used to 

solve the symbolic grammar derived from the BNF-Grammar 

used in the “random” experiment. It is believed that HAMPI 

can be viewed as the state-of-the-art for this type of problem 

and that our system can be built upon this previous work. 

� Our system – This experiment is divided into two parts: one 

will apply only adaptive testing techniques for symbolic 

constant instantiation, and the second one will apply the 

enhancements over symbolic sentence generation. 

o Single approach - Our solution will be executed 

without any grouping of symbolic constants. With this 

only the enhancements that concern symbolic 

constant instantiation will be employed. 

o Entity approach - Our solution will be executed taking 

advantage of our enhancements over concrete 

sentence generation which group all the rules that 

represent a concept that is needed to be solved as a 

single value. 

Effectively, random generation acts as the control situation – it is 

widely understood and has well-known properties. HAMPI (19) (50) is 

considered to represent state-of-the-art in test case generation of this type. 

HAMPI is a general solution and is utilised because no specify firewall 

policy-oriented solution is available. 
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6.3.2.1 Grammars 

The system was tested with several grammars ranging from 4 to 200 

production rules (e.g. http-cookies, SQL, JavaScript, ANSI C, etc.). We 

believe that although our system is capable of solving large context-free 

grammars, the analysis of the results becomes increasingly complex as the 

magnitude of the grammar increases. In our experiments, the Extended 

Cisco IOS access list grammar which can be viewed as an attempt to define 

vendor-natural firewall grammar will be employed. This grammar is in fact 

a subset of the grammar used by Al-Shaer (44), which incorporates a 

significant number of vendor-specific terms. 

The grammar proposed in (44) corresponds to an attributed grammar 

which is presented in a notation that can be understood by the grammar 

parser introduced in their work; therefore it contains special characters and 

attributes that are not part of a BNF notation. Our system can only parse 

BNF grammars thus the attributed grammar should be converted into its 

equivalent BNF representation. 

Let's take for example the following definition of the "action" production 

rule: 

action\FieldID(0) := "permit"\V(1) | "deny"\V(0) 

 

This rule contains annotated attributes at the right side of the terminal 

and non-terminal elements. For our purposes these attributes are removed 

leaving it exclusively with BNF valid operators: 

action = "permit" | "deny" 

 

This grammar presents other set of attributes which give information to 

the parser about how production rules should be selected. For removing 

this kind of attributes a method that keeps most of their properties when 

transformed into BNF notation was selected. The method chosen was 

adding redundancy to the rules that were favoured by the original 

attributed grammar; for example : 

Rule Probability 

PROTOCOL_NUMBER = PROTOCOL_NUMBER_L0 | 

PROTOCOL_NUMBER_L2 ; 

 

PROTOCOL_NUMBER_L0 = "1" | "2" | "4" | "6" | "17" 

| "41" | "58"  ; 

50% 

PROTOCOL_NUMBER_L2 = [0-255]; 50% 

  

Rule with redundancy  

PROTOCOL_NUMBER = PROTOCOL_NUMBER_L0 | 

PROTOCOL_NUMBER_L2 ; 

 

PROTOCOL_NUMBER_L0 = "1" | "2" | "4" | "6" | "17" 

| "41" | "58"  ; 

75% 

PROTOCOL_NUMBER_L2 = PROTOCOL_NUMBER_L0 | [0-255]; 25% 

Table 6.4 Example redundancy added to the grammar. 
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In this case, it is of interest to favour the group of numbers defined by 

the rule “PROTOCOL_NUMBER_L0” so this rule is added in “PROTOCOL_NUMBER_L2” 

to raise the probability of a terminal element that belongs to 

“PROTOCOL_NUMBER_L0” to be selected.  

Another change to consider is the set of rules which define specific-

vendor rules terms (for this case extended Cisco IOS access list). These 

rules define flags, connections and logging. Take for example the initial 

rule: 

S := "access-list" Policy-Number action proto SrcAddr 

[SrcPort] DestAddr [DestPort] [ACK] [FIN] [PSH] 

[RST] [SYN] [URG] [Prec] [Tos] [Established] 

[Logging] [Fragments] [icmpquals] [igmpquals] 

 

This after removing Cisco IOS specific fields is simplified to:  

S = proto SrcAddr [SrcPort] DestAddr [DestPort] action 

 

With this modification our grammar is modified into a simplified version 

of the original which gives generic firewall rules that contain the commonly 

used fields for the most used products (Check Point Software’s Firewall-1, 

CyberGuard’s CyberGuard, Microsoft's Windows Firewall, NetGuard’s 

Guardian, Milkyway’s SecurIT, etc. (52) ). 

Finally, a subset of the rules was renamed to give a more descriptive 

annotation; and rules which are related as they are part of the same 

concept were grouped (i.e. Source address). 

 

SIMPLIFIED: S = proto SrcAddr [SrcPort] DestAddr 

[DestPort] action 

RENAMED: RULE = PROTOCOL_NUMBER SOURCE DESTINATION 

ACTION ; 

 

After the discussed changes were applied to the original attributed 

grammar, the resulting equivalent BNF grammar (G) used for the “random” 

experiment is presented: 

 

 RULE = PROTOCOL_NUMBER SOURCE DESTINATION ACTION ; 

PROTOCOL_NUMBER = PROTOCOL_NUMBER_L0 | PROTOCOL_NUMBER_L1 | 

PROTOCOL_NUMBER_L2  ;  

PROTOCOL_NUMBER_L0 = "1" | "2" | "4" | "6" | "17" | "41" | 

"58"  ; 

PROTOCOL_NUMBER_L1 = PROTOCOL_NUMBER_L0 | "9" | "15" | "37" | 

"43" | "44" | "59" | "60"; 

PROTOCOL_NUMBER_L2 = PROTOCOL_NUMBER_L0 | PROTOCOL_NUMBER_L1 | 

[0-255]; 

SOURCE = IP_ADDRESS PORT ; 

DESTINATION = IP_ADDRESS PORT ; 

PORT = PORT_NONE | PORT_SINGLE | PORT_LT | PORT_GT | PORT_NE | 



80 
 

PORT_RANGE ; 

PORT_NONE = ""; 

PORT_SINGLE = DECIDE_PORT ; 

PORT_LT = LT DECIDE_PORT ; 

PORT_GT = GT DECIDE_PORT ; 

PORT_NE = NE DECIDE_PORT ; 

PORT_RANGE = DECIDE_PORT SLASH DECIDE_PORT ; 

DECIDE_PORT = PORTS_Commons | PORTS_Not_Commons ; 

PORTS_Not_Commons = PORTS_Others | PORTS_Assigned | [0-65535]; 

PORTS_Commons = "1" | "7" | "9" | "11" | "13" | "17" | "18" 

|"19" | "20" | "21" | "22" | "23" | "25" | "37" | "39" | 

"42" | "43" | "50" | "53" | "67" | "68" | "69" | "70" | 

"79" | "80" | "88" | "95" | "101" | "102" | "105" | "107" 

| "109" | "110" | "111" | "113" | "115" | "117" | "119" | 

"123" | "137" | "138" | "139" | "143" | "161" | "162" | 

"163" | "164" | "177" | "178" | "179" | "191" | "194" | 

"199" ; 

PORTS_Others = "201" | "202" | "204" | "206" | "209" | "210" | 

"213" | "220" | "369" | "370" | "372" | "443" | "444" | 

"487" | "610" | "611" | "612" ; 

PORTS_Assigned = "1524" | "1525" | "1645" | "1646" | "1812" | 

"1813" | "2401" | "2430" | "2431" | "2432" | "2433" | 

"3306" | "5002" | "5308" | "7000" ; 

IP_ADDRESS = IP_ADDRESS_COMPLETE | IP_WILD ; 

IP_WILD = IP_OTHER | IP_ADDRESS_SET ; 

IP_ADDRESS_SET = IP_ADDRESS_SET_1000 | IP_ADDRESS_SET_0100 | 

IP_ADDRESS_SET_0010 | IP_ADDRESS_SET_0001; 

IP_ADDRESS_COMPLETE = IP_NUMBER DOT IP_NUMBER DOT IP_NUMBER DOT 

IP_NUMBER ; 

IP_ADDRESS_SET_1000 = IP_NUMBER DOT IP_DECIDE DOT IP_DECIDE DOT 

IP_DECIDE ; 

IP_ADDRESS_SET_0100 = IP_DECIDE DOT IP_NUMBER DOT IP_DECIDE DOT 

IP_DECIDE ; 

IP_ADDRESS_SET_0010 = IP_DECIDE DOT IP_DECIDE DOT IP_NUMBER DOT 

IP_DECIDE ; 

IP_ADDRESS_SET_0001 = IP_DECIDE DOT IP_DECIDE DOT IP_DECIDE DOT 

IP_NUMBER ; 

IP_DECIDE = " * " | IP_NUMBER ; 

IP_OTHER = "127 . 000 . 000 . 001" ; 

IP_NUMBER = [0-255]; 

ACTION = "permit" | "deny" ; 

LT = "<" ; 

GT = ">" ; 

NE = "!=" ; 

DOT = " . "; 

SLASH = " - "; 

Two rule modifications that were in the original grammar and were kept 

in our simplification should be mentioned (it was decided to keep them 

based on their purpose, which was to mimic real life firewall rules): 

� Protocols and ports numbers have been biased to favour 

most commonly used selections. The grammar refers to user-

defined values which are defined based on (53) for protocols 

and (54) for port numbers. 

� IP addresses are distinguished between local host, specific 

addresses (containing no wildcards) and addresses that 

contain one or more wild cards. 
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The next step was to define the symbolic grammar G’. For defining it, 

the same criteria in section 4.3.1 suggested by Majumdar (18) was applied. 

This criterion gave the derived the following symbolic grammar (GS’): 

 RULE = <PROTOCOL_NUMBER> SOURCE DESTINATION <ACTION>  ; 

SOURCE = IP_ADDRESS PORT ; 

DESTINATION = IP_ADDRESS PORT ; 

PORT = PORT_NONE | PORT_SINGLE | PORT_LT | PORT_GT | PORT_NE | 

PORT_RANGE ; 

PORT_NONE = ""; 

PORT_SINGLE = <DECIDE_PORT> ; 

PORT_LT = LT <DECIDE_PORT> ; 

PORT_GT = GT <DECIDE_PORT> ; 

PORT_NE = NE <DECIDE_PORT> ; 

PORT_RANGE = <DECIDE_PORT> SLASH <DECIDE_PORT> ; 

IP_ADDRESS = IP_ADDRESS_COMPLETE | IP_WILD ; 

IP_WILD = IP_OTHER | IP_ADDRESS_SET ; 

IP_ADDRESS_COMPLETE = <IP_NUMBER> DOT <IP_NUMBER> DOT 

<IP_NUMBER> DOT <IP_NUMBER> ; 

IP_ADDRESS_SET = IP_ADDRESS_SET_1000 | IP_ADDRESS_SET_0100 | 

IP_ADDRESS_SET_0010 | IP_ADDRESS_SET_0001; 

IP_ADDRESS_SET_1000 = <IP_NUMBER> DOT <IP_DECIDE> DOT 

<IP_DECIDE> DOT <IP_DECIDE> ; 

IP_ADDRESS_SET_0100 = <IP_DECIDE> DOT <IP_NUMBER> DOT 

<IP_DECIDE> DOT <IP_DECIDE> ; 

IP_ADDRESS_SET_0010 = <IP_DECIDE> DOT <IP_DECIDE> DOT 

<IP_NUMBER> DOT <IP_DECIDE> ; 

IP_ADDRESS_SET_0001 = <IP_DECIDE> DOT <IP_DECIDE> DOT 

<IP_DECIDE> DOT <IP_NUMBER> ; 

IP_OTHER = "127 . 000 . 000 . 001" ; 

LT = "<" ; 

GT = ">" ; 

NE = "!=" ; 

DOT = " . "; 

SLASH = " - "; 

 

 

These symbolic constants are then defined into its correspondent 

symbolic values grammar (VS): 

 PROTOCOL_NUMBER = PROTOCOL_NUMBER_L0 | PROTOCOL_NUMBER_L1 | 

PROTOCOL_NUMBER_L2  ;  

PROTOCOL_NUMBER_L0 = "1" | "2" | "4" | "6" | "17" | "41" | 

"58" ; 

PROTOCOL_NUMBER_L1 = PROTOCOL_NUMBER_L0 | "9" | "15" | "37" | 

"43" | "44" | "59" | "60" ; 

PROTOCOL_NUMBER_L2 = PROTOCOL_NUMBER_L0 | PROTOCOL_NUMBER_L1 | 

[0-255]; 

DECIDE_PORT = <PORTS_Commons> | <PORTS_Not_Commons> ; 

PORTS_Not_Commons = PORTS_Others | PORTS_Assigned | [0-65535]; 

PORTS_Commons = "1" | "7" | "9" | "11" | "13" | "17" | "18" | 

"19" | "20" | "21" | "22" | "23" | "25" | "37" | "39" | 

"42" | "43" | "50" | "53" | "67" | "68" | "69" | "70" | 

"79" | "80" | "88" | "95" | "101" | "102" | "105" | "107" | 

"109" | "110" | "111" | "113" | "115" | "117" | "119" | 

"123" | "137" | "138" | "139" | "143" | "161" | "162" | 

"163" | "164" | "177" | "178" | "179" | "191" | "194" | 

"199" ; 

PORTS_Others = "201" | "202" | "204" | "206" | "209" | "210" | 

"213" | "220" | "369" | "370" | "372" | "443" | "444" | 

"487" | "610" | "611" | "612" ; 
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PORTS_Assigned = "1524" | "1525" | "1645" | "1646" | "1812" | 

"1813" | "2401" | "2430" | "2431" | "2432" | "2433" | 

"3306" | "5002" | "5308" | "7000" ; 

IP_DECIDE = WILD_CARD | IP_NUMBER ; 

IP_NUMBER = [0-255]; 

ACTION = "permit" | "deny" ; 

WILD_CARD = " * " ; 

 

 

Once GS and VS have been defined, a new symbolic grammar (GE’) 

and a new symbolic values grammar (VE) will be derived from G, which will 

be used for the “entity” experiment. There is not a single way for defining 

entities, therefore they will consider each of the fields in a firewall rule 

(protocol, source address, action, etc.) these criteria will generate the 

following GE’: 

 RULE = <PROTOCOL_NUMBER> <SOURCE> <DESTINATION> <ACTION>  ; 

 

And the following VE: 

 PROTOCOL_NUMBER = PROTOCOL_NUMBER_L0 | PROTOCOL_NUMBER_L1 | 

PROTOCOL_NUMBER_L2  ;  

PROTOCOL_NUMBER_L0 = "1" | "2" | "4" | "6" | "17" | "41" | 

"58" ; 

PROTOCOL_NUMBER_L1 = PROTOCOL_NUMBER_L0 | "9" | "15" | "37" | 

"43" | "44" | "59" | "60" ; 

PROTOCOL_NUMBER_L2 = PROTOCOL_NUMBER_L0 | PROTOCOL_NUMBER_L1 | 

[0-255] ; 

SOURCE = IP_ADDRESS PORT ; 

DESTINATION = IP_ADDRESS PORT ; 

PORT = PORT_NONE | PORT_SINGLE | PORT_LT | PORT_GT | PORT_NE | 

PORT_RANGE ; 

PORT_NONE = ""; 

PORT_SINGLE = DECIDE_PORT ; 

PORT_LT = LT DECIDE_PORT ; 

PORT_GT = GT DECIDE_PORT ; 

PORT_NE = NE DECIDE_PORT ; 

PORT_RANGE = DECIDE_PORT SLASH DECIDE_PORT ; 

DECIDE_PORT = PORTS_Commons | PORTS_Not_Commons ; 

PORTS_Not_Commons = PORTS_Others | PORTS_Assigned | [0-65535]; 

PORTS_Commons = "1" | "7" | "9" | "11" | "13" | "17" | "18" | 

"19" | "20" | "21" | "22" | "23" | "25" | "37" | "39" | 

"42" | "43" | "50" | "53" | "67" | "68" | "69" | "70" | 

"79" | "80" | "88" | "95" | "101" | "102" | "105" | "107" 

| "109" | "110" | "111" | "113" | "115" | "117" | "119" | 

"123" | "137" | "138" | "139" | "143" | "161" | "162" | 

"163" | "164" | "177" | "178" | "179" | "191" | "194" | 

"199" ; 

PORTS_Others = "201" | "202" | "204" | "206" | "209" | "210" | 

"213" | "220" | "369" | "370" | "372" | "443" | "444" | 

"487" | "610" | "611" | "612" ; 

PORTS_Assigned = "1524" | "1525" | "1645" | "1646" | "1812" | 

"1813" | "2401" | "2430" | "2431" | "2432" | "2433" | 

"3306" | "5002" | "5308" | "7000" ; 

IP_ADDRESS = IP_ADDRESS_COMPLETE | IP_WILD ; 

IP_WILD = IP_OTHER | IP_ADDRESS_SET ; 

IP_ADDRESS_SET = IP_ADDRESS_SET_1000 | IP_ADDRESS_SET_0100 | 

IP_ADDRESS_SET_0010 | IP_ADDRESS_SET_0001; 

IP_ADDRESS_COMPLETE = IP_NUMBER DOT IP_NUMBER DOT IP_NUMBER DOT 

IP_NUMBER ; 
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IP_ADDRESS_SET_1000 = IP_NUMBER DOT IP_DECIDE DOT IP_DECIDE DOT 

IP_DECIDE ; 

IP_ADDRESS_SET_0100 = IP_DECIDE DOT IP_NUMBER DOT IP_DECIDE DOT 

IP_DECIDE ; 

IP_ADDRESS_SET_0010 = IP_DECIDE DOT IP_DECIDE DOT IP_NUMBER DOT 

IP_DECIDE ; 

IP_ADDRESS_SET_0001 = IP_DECIDE DOT IP_DECIDE DOT IP_DECIDE DOT 

IP_NUMBER ; 

IP_DECIDE = " * " | IP_NUMBER ; 

IP_OTHER = "127 . 000 . 000 . 001" ; 

IP_NUMBER = [0-255]; 

ACTION = "permit" | "deny" ; 

LT = "<" ; 

GT = ">" ; 

NE = "!=" ; 

DOT = " . "; 

SLASH = " - "; 

 

The derived grammars (one context-free and two symbolic) and the 

two symbolic values grammars will be the ones use from this point on for 

our experiments. Finally, few changes as possible were made from one 

derivation to the other so, after analysis, the comparison between the 

obtained results of each experiment can be done without complex 

interpretations. 

6.3.2.2 Constraints 

The “random” experiment employs a BNF grammar, thus it doesn’t 

have the need for any constraints. 

For the “HAMPI” and “single” experiments, an enumeration of all the 

possible symbolic sentences derived from G’ and GS’ was made; this is 

possible due to symbolic grammars that greatly restraining the solution 

space. With this approach 6084 symbolic sentences were generated, 

including the following examples: 

<PROTOCOL_NUMBER> <IP_NUMBER> "." <IP_DECIDE> "." 

<IP_DECIDE> "." <IP_DECIDE> <PORTS_Not_Commons> "127 . 

000 . 000 . 001" <PORTS_Not_Commons> <ACTION> ; 

<PROTOCOL_NUMBER> <IP_NUMBER> "." <IP_NUMBER> "." 

<IP_NUMBER> "." <IP_NUMBER> <OPERAND> 

<PORTS_Not_Commons> <IP_NUMBER> "." <IP_NUMBER> "." 

<IP_NUMBER> "." <IP_NUMBER> <PORTS_Not_Commons> 

<ACTION> ; 

<PROTOCOL_NUMBER> <IP_NUMBER> "." <IP_NUMBER> "." 

<IP_NUMBER> "." <IP_NUMBER> <PORTS_Commons> <IP_DECIDE> 

"." <IP_DECIDE> "." <IP_DECIDE> "." <IP_NUMBER> 

<ACTION> ; 

<PROTOCOL_NUMBER> <IP_NUMBER> "." <IP_DECIDE> "." 

<IP_DECIDE> "." <IP_DECIDE> <OPERAND> <PORTS_Commons> 

"127 . 000 . 000 . 001" <PORTS_Commons> "-" 

<PORTS_Commons> <ACTION> ; 
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This enumeration will be used as the constraints for these experiments 

as they guarantee that all possible combinations from the grammar are 

instantiated during the concrete sentence-generation phase. The decision to 

enumerate all the solution space for GS’ was taken to generate all the 

possible values, so the results obtained vary as little as possible. Therefore 

the variation is concentrated in the concrete sentence generation phase. 

This phase is where the “competing” approaches differ. 

For the entity experiment, no constraints were generated as the 

grammar consists of the following single rule: 

RULE = <PROTOCOL_NUMBER> <SOURCE> <DESTINATION> <ACTION>; 

6.3.2.3 Other Parameters 

Some other parameters were also defined for this experiment. They 

were set to large values so they did not have an impact in the final results. 

The values selected were: 

� Sentence length - .set to 30 as the maximum possible used 

fields (concrete values) is 24 (this will be explained later). 

� Grammar depth - set to 30 as the maximum possible number 

of nested rules is 13. 

It should be mention that these values are arbitrary and any one that 

exceeds the maximum possible value will have the same effects. 

6.3.3 Evaluation Criteria 

As discussed in section 6.3.1, there exists little work on firewall policy 

generation. Therefore an accepted testing oracle was not available to 

compare against or to act as a gold standard. An alternative is presented in 

Al Shaer's (42) framework, which describes a set of evaluation criteria 

including: 

� Field coverage - which evaluates whether all the optional 

fields have been employed. 

� Space coverage - which evaluates the coverage of individual 

fields (how diverse are the selected values for a specific field). 

It was found that these evaluation criteria were too limited for our 

purposes, since they do not contain sufficient detail on how space coverage 

is achieved. This problem was overcome by making use of the grammars 

that are employed by the systems under analysis. Taking advantage of the 

nature of model-based testing, which bounds its input and output space 

with its model, the grammar can be employed and create from it a set of 

criteria which will function as an oracle for our evaluations. In this selected 

approach, an additional measure will be considered: 
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� Concrete constants generation probability - the likelihood 

that a concrete constant is selected by its set of production 

rules. 

Quasi-random sequences gives another criterion to consider which is 

the solution space covered by the different implementations considered, 

which is proportional to the number of unique values generated by each 

evaluated system; therefore we will consider the following measure: 

� Unique values generation – the uniqueness of a result 

compared against previously generated results. 

This set of evaluation concepts was selected since it will provide insight 

into how each system reflects the properties (distribution, bias, etc.) 

defined in the grammar through its production rules.  

In the following sections, the specific details for each field that will be 

evaluate will be presented. 

6.3.3.1 Rules Distribution 

Rules distribution will be measured by comparing each produced rule 

against previously generated rules and classifying them between unique 

and not unique (previously generated).  

This count is one of the most important criteria that will be analyzed as 

it will give a clear exemplification about our proposed solution, which is 

based in quasi-random sequences, enhances diversity over pseudo-random 

based systems. 

6.3.3.2 Rule Length 

Rule length is defined as the total number of fields within a single rule. 

Table 6.5 presents three firewall rules having different rule lengths. 

Rules Rule length 

233 11.*.048.213 127.000.000.001 accept 16 
58 2.89.127.147 80 212.254.105.206 deny 17 
17 *.182.096.044 114.*.44.194 194 - 34408 deny 22 

Table 6.5 Firewall rules with different length. 

It is observed that the minimum length is 16 if no optional values are 

selected, while the maximum length is 22 if both source and destination IP 

addresses include a range (where a range consists of 3 fields). 

The concrete constants generation probability is determined by the rule 

"PORT" which is responsible for specifying the possible expansions from 

where the systems can make their selection: 
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PORT = PORT_NONE | PORT_SINGLE | PORT_LT | PORT_GT | 

PORT_NE | PORT_RANGE; 

 

From the possible selections from which PORT can chose, PORT_LT, 

PORT_GT, PORT_NE will generate only lengths of two, while PORT_NONE, 

PORT_SINGLE and PORT_RANGE produce lengths of zero, one and three 

respectively; therefore a greater concentration of values for length two is 

expected (with 50% of the chances to be selected).  

A firewall rule must have two port values (source and destination) and 

each port value will favour lengths of magnitude two, therefore the rule 

length will concentrate its results in any permutation containing these 

values. 

Length Distribution 

16 2.78% 

17 5.56% 

18 19.44% 

19 22.22% 

20 30.56% 

21 16.67% 

22 2.78% 

Table 6.6 Rule length expected distribution 

Table 6.6 shows how the probability for generating extreme cases 

(lengths 16 and 22) are the same (1 out of 36 total permutations) as they 

can only be generated when both port definitions select the exact same 

expansion (PORT_NONE and PORT_RANGE). In contrast, rules with length 

20 are the most favoured as 11 out of the 36 total permutations produce 

rules with this magnitude. 

6.3.3.3 Protocol Numbers 

Protocol number rules are biased to favour the most commonly used 

protocols (54), and thus it is expected that the analysis will reflect this bias. 

For asserting these expectations the production rules, which control 

concrete constants generation probability, will be employed in an example. 

First the production rules are shown: 

PROTOCOL_NUMBER = PROTOCOL_NUMBER_L0 | PROTOCOL_NUMBER_L1 | 

PROTOCOL_NUMBER_L2  ;  

PROTOCOL_NUMBER_L0 = "1" | "2" | "4" | "6" | "17" | "41" | "58" ; 

PROTOCOL_NUMBER_L1 = PROTOCOL_NUMBER_L0 | "9" | "15" | "37" | "43" | 

"44" | "59" | "60" ; 

PROTOCOL_NUMBER_L2 = PROTOCOL_NUMBER_L0 | PROTOCOL_NUMBER_L1 | 

NUMBER_0_255 ; 

NUMBER_0_255 = "0" | "1" | "2" | "3" | . . . | "253" | "254" | 

"255" ; 
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As an example, the probability of generating the protocol number 255 

beginning with the PROTOCOL_NUMBER rule can be calculated. The first 

rule to be visited is PROTOCOL_NUMBER; this rule has three possible 

selections and each selection has a probability of 33.33%. The next rule to 

visit is PROTOCOL_NUMBER_L2 which has three possible selections, each 

one having an associated probability of 33.33%. Finally the option 

NUMBER_0_255 in PROTOCOL_NUMBER_L2 stands for a range of numbers 

which can be evenly generated, therefore it can be considered as a 

production rule with a total number of available selections equal to the 

possible values specified in the range (256 for this case) associating a 

probability of 0.392% to each one of them. The probability to produce the 

number 255 with this rule path is the product of the three visited rules 

which gives us 0.0434%. 

It should be noted that this calculation is more complex for rules such 

as PROTOCOL_NUMBER_L0 that can be reached with different “rule paths”; 

and whose values can be generated from other rules (i.e. “1” can be 

produced from PROTOCOL_NUMBER_L0 and [0-255]). 

A) 

Range 

from 0 

to 70 
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B) 

Range 

from 71 

to 255 

 

Figure 6.2 A-B Expected distribution for protocol numbers. 

Using this methodology, the expected results for the protocol numbers 

can be calculated and are summarized in Figure 6.2 (the distribution should 

be the same for all of the experiments as the same definition is true for all 

of them). 

6.3.3.4 IP Address Structure 

IP address structure probability was calculated employing the same 

methodology previously discussed; however, using the following set of 

rules: 

IP_ADDRESS = IP_ADDRESS_COMPLETE | IP_WILD ; 

IP_WILD = IP_OTHER | IP_ADDRESS_SET ; 

IP_ADDRESS_SET = IP_ADDRESS_SET_1000 | IP_ADDRESS_SET_0100 | 

IP_ADDRESS_SET_0010 | IP_ADDRESS_SET_0001; 

IP_ADDRESS_COMPLETE = IP_NUMBER DOT IP_NUMBER DOT IP_NUMBER 

DOT IP_NUMBER ; 

IP_ADDRESS_SET_1000 = IP_NUMBER DOT IP_DECIDE DOT IP_DECIDE 

DOT IP_DECIDE ; 

IP_ADDRESS_SET_0100 = IP_DECIDE DOT IP_NUMBER DOT IP_DECIDE 

DOT IP_DECIDE ; 

IP_ADDRESS_SET_0010 = IP_DECIDE DOT IP_DECIDE DOT IP_NUMBER 

DOT IP_DECIDE ; 

IP_ADDRESS_SET_0001 = IP_DECIDE DOT IP_DECIDE DOT IP_DECIDE 

DOT IP_NUMBER ; 

IP_DECIDE = " * " | IP_NUMBER ; 

IP_OTHER = "127 . 000 . 000 . 001" ; 

 

� IP_ADDRESS is the starting rule for this set of production 

rules, thus it holds the 100% of the solution space.  
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� From it two paths can be followed IP_ADDRESS_COMPLETE 

and IP_WILD with an associated probability of 50% for each 

one of them.  

� If IP_ADDRESS_COMPLETE is chosen it can be induced that 

50% of the total produced rules will contain no wild cards as 

this rule can only generate this kind of values.  

� For IP_WILD two selections are possible IP_OTHER and 

IP_ADDRESS_SET, each one with an associated probability of 

50% relative to this rule and a 25% relative to the total 

solution space.  

� If IP_OTHER is chosen then it can be induced that this 25% 

of the total solution space will only generate IP addresses 

that contain no wild cards as this rule can only generate the 

IP value for localhost (127.0.0.1).  

� For the IP_ADDRESS_SET rule, which holds the remaining 

25% of the solution space, four options are available with an 

associated probability of 6.25%. Each one of these four 

options can generate 8 different combinations, thus 

associating a probability of 0.781% of the total solution space 

to each one of them.  

The complete results for the solution space can be found in Table 6.7 

and its resulting distribution is shown in Table 6.8. From this table, it is 

observed that rules with no wild cards have a 78.13% of being selected, 

rules with one and two wild cards with 9.38% each; the distribution value is 

further reduced to 3.12% for rules having three wild cards. 

 

IP_ADDRESS_COMPLETE  IP_OTHER 

50% #.#.#.#  25% #.#.#.# 

IP_ADDRESS_SET_1000 IP_ADDRESS_SET_0100 IP_ADDRESS_SET_0010  IP_ADDRESS_SET_0001 

0.781% #.#.#.# 
 

0.781% #.#.#.# 
 

0.781% #.#.#.# 
 

0.781% #.#.#.# 

0.781% #.#.#.* 
 

0.781% #.#.#.* 
 

0.781% #.*.#.# 
 

0.781% #.#.*.# 

0.781% #.#.*.# 
 

0.781% #.#.*.# 
 

0.781% *.#.#.# 
 

0.781% #.*.#.# 

0.781% #.*.#.# 
 

0.781% *.#.#.# 
 

0.781% #.#.#.* 
 

0.781% *.#.#.# 

0.781% #.#.*.* 
 

0.781% #.#.*.* 
 

0.781% *.*.#.# 
 

0.781% #.*.*.# 

0.781% #.*.#.* 
 

0.781% *.#.#.* 
 

0.781% #.*.#.* 
 

0.781% *.#.*.# 

0.781% #.*.*.# 
 

0.781% *.#.*.# 
 

0.781% *.#.#.* 
 

0.781% *.*.#.# 

0.781% #.*.*.* 
 

0.781% *.#.*.* 
 

0.781% *.*.#.* 
 

0.781% *.*.*.# 

Table 6.7 Each production rule is shown with their possible generated IP address values and 

their associated probability (# stands for any no-wild card value). 

Wild 

Cards 
Pattern Distribution 

0 #.#.#.# 78.125% 
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1 

#.#.#.* 2.344% 

#.#.*.# 2.344% 

#.*.#.# 2.344% 

*.#.#.# 2.344% 

2 

#.#.*.* 1.563% 

#.*.#.* 1.563% 

#.*.*.# 1.563% 

*.#.#.* 1.563% 

*.#.*.# 1.563% 

*.*.#.# 1.563% 

3 

#.*.*.* 0.781% 

*.#.*.* 0.781% 

*.*.#.* 0.781% 

*.*.*.# 0.781% 

4 *.*.*.* 0.000% 

Table 6.8 IP structure expected distribution (# stands for any no-wild card value). 

6.3.3.5 IP Address Size 

IP address size is measured as the number of bits needed to represent 

each of the numbers comprising an IP address. Each IP number needs a 

certain quantity of bits to be generated that range between one and eight. 

As each IP address is composed of four IP numbers, the maximum 

complexity will be 32 and the minimum 4. 

In the previous section, it has been discussed that the set of rules 

which produce IP addresses, generate both no-wild card and wild card 

values. For this criterion only values with no-wild cards will be considered, 

so the 78.13% (calculated in section 6.3.3.3) of the solution space that 

contains this type of value will conform the solution space for this criterion. 

There are three main paths for generating an IP address with no wild 

cards: 

� From IP_ADDRESS; 

� From IP_OTHER; and 

� From IP_ADDRESS_SET_1000, IP_ADDRESS_SET_0100, 

IP_ADDRESS_SET_0010 and IP_ADDRESS_SET_0001 where all 

the instances of IP_DECIDE select the IP_NUMBER path.  

The associated probabilities for IP_ADDRESS, IP_OTHER, appear in Table 

6.7. IP_ADDRESS_SET_1000, IP_ADDRESS_SET_0100, IP_ADDRESS_SET_0010 

and IP_ADDRESS_SET_0001 can be found in Table 6.7. As we are only 

considering a subset of the total solution space, the solution space for this 

criterion must be calculated. For this calculation, the distribution associated 
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for each rule will be divided between the total solution space that contains 

no wild card values. That is, for IP_ADDRESS_COMPLETE, its distribution 

(50%) is divided between the total distribution for no wild cards values 

(78.13%) giving a value of 64.0%. This method is applied for calculating 

the solution space distribution for each of the rule paths considered. Table 

6.9 shows the rule paths, its solution space distribution, the solution space 

distribution for this criterion and the possible sizes these paths can 

generate. 

Rule Path 
Solution Space 

percentage 

Solution space 

percentage for 

this criterion 

Possible 

size 

IP_ADDRESS_COMPLETE 50.00% 64.0% 4-32 

IP_OTHER 25.00% 32.0% 10 

IP_ADDRESS_SET 3.13% 4.0% 4-32 

Table 6.9 Solution and criterion solution space percentage for each rule. 

In this table, it is clear that the IP_OTHER distribution will have a 

significant impact on the expected distribution as 32% of the criterion 

values will produce IP addresses of size 10. For calculating the complete 

expected distribution, the numbers of bits that are needed to represent 

each IP address are enumerated: 

IP Address Bits Value 

10.10.10.10 4 + 4 + 4 + 4 16 

10.100.100.255 4 + 7 + 7 + 8 26 

100.100.100.100 7 + 7 + 7 + 7 28 

255.255.255.255 8 + 8 + 8 + 8 32 

Table 6.10 IP Address size calculation. 

For example, the only permutation of IP numbers that will result in an 

address of size four would be the case when the four IP numbers require 

only a single bit for their representation (1+1+1+1); the same is true for 

the size 32, where each of the four values require 8 bits. The probability of 

each number is calculated (with the same methodology employed in the 

previous section) and the distribution is shown in Table 6.11, where it can 

be appreciated that a large concentration of values is present in value 10 as 

was shown in Table 6.9.  

Bits Distribution 
 
Bits Distribution 

 
Bits Distribution 

 
Bits Distribution 

4 0.017% 
 

12 2.669% 
 

20 5.222% 
 

28 0.580% 

5 0.066% 
 

13 3.382% 
 

21 4.708% 
 

29 0.332% 

6 0.166% 
 

14 4.078% 
 

22 4.078% 
 

30 0.166% 

7 0.332% 
 

15 4.708% 
 

23 3.382% 
 

31 0.066% 

8 0.580% 
 

16 5.222% 
 

24 2.669% 
 

32 0.017% 

9 0.928% 
 

17 5.570% 
 

25 1.989% 
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10 33.492% 
 

18 5.703% 
 

26 1.392% 
   

11 1.989% 
 

19 5.570% 
 

27 0.928% 
   

Table 6.11 IP Address size expected distribution. 

6.3.3.6  IP Values Distribution 

The distribution of IP addresses can be measured by comparing each 

produced rule’s IP address against previously generated rules’ IP address 

and classifying them as either unique or previously generated. This will 

provide insight into how the different solutions impact the generation of IP 

addresses and will help to evaluate the coverage of the solution space that 

each solution produces. 

The total space covered for each experiment will also be measured. It 

will be calculated by computing the ratio between the unique produced IP 

values and the total possible IP values (232). This evaluation will give us an 

insight of how the quasi-random sequences implemented in our solution 

optimizes previous work. 

6.3.3.7  Ports usage 

Similar to the rules for protocol numbers, port production rules are also 

biased to favour the most commonly used ports, and again, it is expected 

that the analysis reveal this bias (53). Ports can be divided into three 

groups: 

� PORTS_Commons - This first group include the most 

commonly used ports. This group includes ports such as: 

Echo (port 7), Active Users (port 11), file transfer control 

(port 21), Telnet (port 23), host name server (port 42), 

World Wide Web (port 80), simple file transfer protocol (port 

115), and the internet message access protocol (port 143) 

� PORTS_Others – This is a less frequently used group 

compared to PORTS_Commons. In this group, ports such as 

AppleTalk routing (port 201), The Quick Mail Transfer 

Protocol (port 209), Protocol v3 (port 220), and Simple 

Asynchronous File Transfer (port 487) are found. 

� PORTS_Assigned - - These are the ports not controlled by the 

IANA (Internet Assigned Numbers Authority) and can be used 

by non-administrative users or non-administrative user 

processes. 

These groups are defined in our grammars by the following rules: 

DECIDE_PORT = PORTS_Commons | PORTS_Not_Commons ; 

PORTS_Not_Commons = PORTS_Others | PORTS_Assigned | [0-65535]; 

PORTS_Commons = "1" | "7" | "9" | "11" | "13" | "17" | "18" | "19" | 

"20" | "21" | "22" | "23" | "25" | "37" | "39" | "42" | "43" | 
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"50" | "53" | "67" | "68" | "69" | "70" | "79" | "80" | "88" | 

"95" | "101" | "102" | "105" | "107" | "109" | "110" | "111" | 

"113" | "115" | "117" | "119" | "123" | "137" | "138" | "139" | 

"143" | "161" | "162" | "163" | "164" | "177" | "178" | "179" | 

"191" | "194" | "199" ; 

PORTS_Others = "201" | "202" | "204" | "206" | "209" | "210" | "213" 

| "220" | "369" | "370" | "372" | "443" | "444" | "487" | "610" 

| "611" | "612" ; 

PORTS_Assigned = "1524" | "1525" | "1645" | "1646" | "1812" | "1813" 

| "2401" | "2430" | "2431" | "2432" | "2433" | "3306" | "5002" 

| "5308" | "7000" ; 

 

Employing the previously discussed methodology in section 6.3.3.2, 

Table 6.12 can be derived for the expected results’ distribution.  

RULE Distribution 

PORTS_Commons 50.00% 

PORTS_Others 16.67% 

PORTS_Assigned 16.67% 

[0-65535] 16.67% 

Table 6.12 Port usage expected distribution values 

From a simple inspection of the rules, the maximum port value which is 

biased by a rule is port “7000” (BBS service), and all the subsequent ports 

(greater than 7000) will have the same probability as they are all derived 

from the [0-65535] rule. It is noted that that other groups are discussed in 

(54), however, are omitted from this discussion as they refer to specific 

services like UNIX, Kerberos, Linux, BSD, etc. 

6.3.3.8 Port operators distribution 

Operator Description 

> # Less than 

< # More than 

!= # Different 

# - # Range 

Table 6.13 Common port operators considered. 

Our grammars consider the common port operators listed in Table 6.13. 

The rules controlling the concrete constants generation probability are as 

follows: 

PORT = PORT_NONE | PORT_SINGLE | PORT_LT | PORT_GT | 

PORT_NE | PORT_RANGE ; 

PORT_NONE = ""; 

PORT_SINGLE = DECIDE_PORT ; 

PORT_LT = LT DECIDE_PORT ; 

PORT_GT = GT DECIDE_PORT ; 

PORT_NE = NE DECIDE_PORT ; 

PORT_RANGE = DECIDE_PORT SLASH DECIDE_PORT ; 
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Using the previously discussed methodology in section 6.3.3.2, the 

same probability is shared by all the possible paths of rule PORT; therefore 

a uniform distribution can be expected (with a 16.66% probability for each 

rule). 

6.3.3.9 Action Values Distribution 

Action values distribution will provide an insight of how rule selection 

varies depending on the technology used for concrete constant generation. 

The action rule is straightforward with only two terminal values that have 

no variation with the different generated grammars: 

ACTION = "permit" | "deny" ; 

 

It is simple enough to appreciate that it is a binary selection where 

each of the options should be expected to have a 50% of the choice. 

6.4 Empirical Results 

Empirical results that cover firewall rules will be discussed in the next 

following sections.  Two analyses are provided: 

� Policies - how policies were generated; and 

� Rules distribution - how the generated rules cover the 

solution space. 

Finally, discussion over individual firewall rules will be presented in the 

last section. 

6.4.1 Policies 

For the evaluation, 200 different polices with policy sizes ranging from 

100 – 24000 rules were generated as suggested in AL-Shaer’s experiment 

(44). In their work, there is no suggestion on how to determine the total 

rules per policy. The first option was to produce them in a deterministic 

fashion with uniform increments as follows: 

RSRTUVWUXY = Z �[\]VWUXY	 + 		]	\]_`X[X]R	
abacdebdfgfhij�

klm
 

\]_`X[X]R = 	ncopqdhij��!pqdhiabacdebdfgfhi . 

 

Here minRules and maxRules are the minimum and maximum desired 

number of rules (100 – 24000). However, it is believed that firewalls having 
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the same number of rules are highly improbable in practice, as each user 

builds its own firewall policy depending on their particular needs and 

objectives. In an attempt to mimic real world firewall policies, a non-

deterministic component was added to our policy generator:.  

rSU\_sf = rSU\_sfj� + \]_`X[X]R ∗ �1 + `T]uS[vXRwXX]�−0.01,0.01			 
rSU\_sm = [\]VWUXY	 

 

The function randomBetween specifies a random number between -

0.01 and 0.01. This function allows the generated policy rules to vary within 

a 1% range from the deterministic value. Figure 6.3 illustrates the number 

of rules per policy for each experiment: 

 

Figure 6.3 Rules per policy empirical distribution 

For our analysis, the percentage (relative) error will be calculated as 

follows:  

\]_`X[X]R = 	 z{j{|}}~��{ z × 100. 
 

Here υ is the expected value and υapprox is the empirical value, this 

methodology will be used for all the calculations of percentage error. 

Back to this criterion, the percentage error between the deterministic 

algorithm and each one of our experiments was calculated; the results are 
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shown in Table 6.14. A comparison between the expected distribution and 

the results for each of the experiments is presented in Figure 6.4. 

 

 

Total Rules 

Experiment Rules %.E. 

Random 2,388,100  0.83% 

HAMPI 2,386,518  0.89% 

Single 2,427,137  0.79% 

Entity 2,418,275  0.43% 

Totals 9,620,030  0.12% 

Ideal 2,408,000  0.00% 

Ideal Total 9,632,000  0.00% 

Table 6.14 Total rules per experiment and their percentage error. 

A 

 

B 
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C 

 

D 

 

Figure 6.4 A-D Detail for policy empirical distribution for policies in the range from 150 to 

200. 

It is clear that the percentage error for any of the experiments is 

always below 1%; this is an acceptable result for our purposes here. 

6.4.2 Rules Distribution 

The results for the four experiments are illustrated in Table 6.15; where 

we can find annotated the number of non-unique firewall rules. From simple 

inspection, it can be seen that the experiment which presents the greater 

number of not unique cases is the “random” experiment with 14286 for the 

total solution space generated.  While the “HAMPI” experiment shows 474 

not-unique cases. These two results contrast with the results obtained from 

the analysis of the “single” and “entity” experiments where the count drops 

to 5 and 1 respectively. 

The reason for these results was discussed in section 4.2.2 where it 

was established how quasi-random sequences maximize the coverage of 

the solution space. This is asserted in these results where the experiments 

where pseudo-random algorithms are employed for test case generation 
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produce a greater number of not-unique results than the two experiments 

which employ quasi-random sequences (“single” and “entity”). 

 

Generated Random HAMPI Single Entity 

100000 153 85 0 0 

200000 386 111 0 0 

300000 661 156 2 0 

400000 1004 185 3 0 

500000 1392 188 3 0 

600000 1836 190 3 0 

700000 2306 191 4 0 

800000 2791 192 4 0 

900000 3369 194 4 0 

1000000 3955 194 4 0 

1100000 4590 196 4 0 

1200000 5261 227 5 1 

1300000 5922 261 5 1 

1400000 6651 261 5 1 

1500000 7426 261 5 1 

1600000 8224 261 5 1 

1700000 9010 339 5 1 

1800000 9793 341 5 1 

1900000 10666 410 5 1 

2000000 11513 449 5 1 

2100000 12376 449 5 1 

2200000 13311 474 5 1 

2300000 14286 474 5 1 

Table 6.15 Each experiment is annotated with its accumulated count of not-unique rules for 

each interval of 100000 firewall rules. 

The differences between the random and HAMPI experiments respond 

to the use of constraints by the “HAMPI” experiment as the constraints 

enforce diversity in the rule structure. As discussed in section 6.3.2.2, an 

enumeration of the possible symbolic sentences was made, using this 

enumeration guarantees that all the possible structures are used and this 

favours diversity as is demonstrated in the results. For explaining the 

differences between the “single” and “entity” approaches, we should focus 

on the concrete sentence generation phase where the systems employ 

different approaches for symbolic constants instantiation. The "single" 

experiment separately instantiates symbolic constants with a quasi-random 

sequence. In contrast, the "entity” experiment instantiates entities grouped 

symbolic constants (entities) with a quasi-random sequence. The solution 



99 
 

space for an entity is greater than the solution space of a single symbolic 

constant (as the solution space for an entity is the Cartesian product of the 

grouped symbolic constants) thus, the possibilities of generating not-unique 

values decreases dramatically when employing entities, as asserted by the 

empirical results. 

The evidence demonstrates the superiority of the implemented solution 

over previous approaches. 

6.4.3 Rule Length 

In Table 6.16, it can be appreciated that the “HAMPI” and “single” 

experiments show expected behaviour in their results as the rule length 

depends solely in the symbolic sentences generation phase, thus there 

should be no substantial difference as they both employ the same symbolic 

grammar and symbolic values grammar for their generation. These trends 

start from near a frequency of zero for rules with length 16 and rise to a 

frequency near 30% for length of 20. The frequency reduces to 29% for a 

length 21 and finally drops to a value of 10% for length 22. The behaviour 

is a direct result of how the system creates sentences from the symbolic 

grammar using McKenzie’s algorithm (24) which is set by the “sentence 

length” parameter (discussed in section 6.3.2.3) to favour the generation 

firewall rules with this rule length. 

Rule 

Length 
Expected Random HAMPI Single Entity 

16 2.778% 2.738% 0.465% 0.651% 1.955% 

17 5.556% 5.544% 1.919% 2.388% 7.369% 

18 19.444% 19.311% 9.012% 9.553% 16.026% 

19 22.222% 22.297% 19.250% 19.142% 18.772% 

20 30.556% 30.524% 29.214% 30.179% 38.612% 

21 16.667% 16.762% 30.347% 28.967% 15.102% 

22 2.778% 2.825% 9.794% 9.119% 2.165% 

Table 6.16 Rule length empirical distribution 

The "entity" experiment behaviour responds directly to the 

enhancements of our solution over the symbolic sentences generation 

phase which instantiates grouped symbolic constants (entities) instead of 

instantiating them separately. Impact from the symbolic sentences 

generation phase is null as there are no constraints and the symbolic 

grammar consists on a single production rule. This fact leaves the full 

control of how the entities are solved to the concrete sentences 

generation phase. This phase solves the rules as follows: 

1. A rule is chosen. 
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2. Its possible expansions are associated with a unique quasi-

random sequence. 

3. The engine selects the expansion based on the associated 

quasi-random sequence. 

This guarantees that all the productions have the same probability, as 

the quasi-random sequences enforces that the entire solution space is 

covered before repeating values. This behaviour explains the distribution 

which matches well with the one expected. 

In order to provide a more formal comparison between these results, 

the percentage error is calculated in Table 6.17.  

For each experiment each value is shown with their respective 

percentage error, in the last rows of the table the average, median and 

accumulated percentage error for each experiment is annotated. 

Bits Random HAMPI Single Entity 

16 1.45% 83.26% 76.55% 29.62% 

17 0.21% 65.46% 57.01% 32.64% 

18 0.69% 53.65% 50.87% 17.58% 

19 0.34% 13.37% 13.86% 15.53% 

20 0.10% 4.39% 1.23% 26.37% 

21 0.57% 82.08% 73.80% 9.39% 

22 1.71% 252.57% 228.28% 22.06% 

Average 0.72% 79.26% 71.66% 21.88% 

Median 0.57% 65.46% 57.01% 22.06% 

Accumulated 5.06% 554.79% 501.60% 153.18% 

Table 6.17 Rule Length percentage error. 

The random experiment shows almost complete agreement with the 

expected distribution as evidenced by the negligible error values ranging 

between 0.1% and 1.71%. Entity follows with the second lowest percentage 

error having a maximum of 32.64%. The “HAMPI” and “single” approaches 

have values that have a median of 65.46% and 57.01% respectively, which 

when compared to the median of “random” (0.57%) and “entity” (22.06%) 

makes them the less acceptable cases. 

This behaviour is due to the nature of the systems where the following 

elements affect the results: 

1. Grammar depth - The "random" approach becomes less 

accurate when the number of rules needed to reach a 

concrete value increases (this will be corroborated in further 

criteria i.e. address size). To make the selection of rule 

length the production rule PORT must be visited; thus to 
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reach it only one derivation must be made starting from the 

starting symbol. The number of needed rules substitutions is 

the minimum favouring an almost null percentage error. 

2. The error shown is related directly to how symbolic sentences 

are produced from McKenzie's algorithm. It has been 

discussed that this algorithm favours the production of 

grammar sentences with a specified sentence length which 

can be appreciated by the obtained results for "HAMPI" and 

"single" experiments. Our system is based on this algorithm, 

therefore the bias is still present if no correction algorithm is 

implemented in the original system. Our solution corrects it 

employing entities which are solved using their associated 

quasi-random sequences; this approach minimizes the impact 

of McKenzie's algorithm over the "entity" results giving an 

optimization of 72.34% over the "HAMPI" accumulated 

percentage error. 

6.4.4 Symbolic Sentences Representation 

In section 4.2.4, it was discussed that our solution proposes a concrete 

sentence generation control mechanism to control the symbolic sentences 

instantiation mechanism. This mechanism was proposed in order to solve 

the limitations encountered in previous approaches where the total number 

of concrete sentences instantiated from a symbolic sentence is not 

controlled. To measure the impact of our enhancements, we traced the 

number of concrete sentences instantiated from each symbolic sentence; 

these results are shown in Table 6.18 with their averages and standard 

deviations for each rule length. 

Random HAMPI Single Entity 

10 
Average 1816.028 322.444 329.000 1839.000 

St. Dev. 659.934 138.214 0.000 0.000 

11 
Average 919.368 331.188 339.000 931.000 

St. Dev. 339.970 137.572 0.000 0.000 

12 
Average 800.623 377.564 385.000 811.000 

St. Dev. 360.481 162.585 0.000 0.000 

13 
Average 462.221 397.472 404.359 468.000 

St. Dev. 169.071 170.895 0.480 0.000 

14 
Average 389.394 376.815 383.000 394.000 

St. Dev. 181.164 168.450 0.000 0.000 

15 
Average 231.645 413.402 420.000 235.000 

St. Dev. 85.142 169.790 0.000 0.000 

16 
Average 117.132 402.948 410.000 118.207 

St. Dev. 44.849 157.628 0.000 0.405 
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Table 6.18 Symbolic sentences representation average and standard deviation by rule length. 

From the obtained results, it can be observed that the “random” 

experiment presents standard deviations that range from 44.849 (for length 

16) to 659.934 (for length 10). This shows how random generation does 

not favour any specific symbolic structure resulting in uncertainty in their 

final representation (it should be mentioned that the “random” experiment 

has no symbolic sentence generation phase, therefore its equivalent 

symbolic sentences had to be computed from the generated concrete 

sentences). 

The HAMPI experiment shows standard deviations which range from 

137.572 to 170.895, these deviations illustrate that the results from the 

“random” experiment have been significantly improved. This improvement 

is a direct consequence of constraint usage which forces all symbolic 

structures to be used; but the standard deviation still shows the uneven 

coverage of these structures. 

For “single” and “entity” experiments, the standard deviations reach 

values of 0 in all lengths but in two. This is expected as the concrete 

sentence generation control mechanism implemented guarantees that 

symbolic sentences are covered evenly: 

1. Symbolic sentences are received from the symbolic 

sentences generation phase by the concrete sentences 

generation phase. 

2. Pre-concrete sentences are derived from the symbolic 

sentences. 

3. The experiments’ total rules are calculated. 

4. For each symbolic sentence, the number of rules to be 

instantiated are  calculated dividing the total rules between 

the total derived pre-concrete sentences. 

Step 4 of the methodology uses a deterministic algorithm; therefore 

each of the symbolic sentences is covered with the same rules, resulting in 

a standard deviation of zero. Standard deviations that are not zero (length 

13 for “single” and 16 for “entity”) are explained by the fact that step 4 can 

return non-integer values which have to be adjusted to deliver the exact 

quantity of total rules. The average between these two experiments vary 

(despite their standard deviations) due to pre-concrete sentences derivation 

which is based on symbolic constants for the “single” experiment and 

entities for the “entity” experiment (entities group symbolic constants 

producing fewer combinations that ungrouped symbolic constants). 
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6.4.5 Individual Rule Fields Analysis 

Evaluation of the behaviour of individual firewall fields is required to 

fully analyze the effects of our proposed approach; a discussion for 

evaluation criteria which analyze individual firewall rule fields is presented 

in this section.  

6.4.5.1 Protocol Numbers 

A) 

Range 

from 0 

to 70 

 

A) 

Range 

from 

70 to 

255 

 

Figure 6.5 A-B Protocol numbers empirical distribution 

 

Experiment Rule 

Random RULE = PROTOCOL_NUMBER SOURCE DESTINATION 

ACTION 

HAMPI and 

Simple 

RULE = <PROTOCOL_NUMBER> SOURCE 

DESTINATION <ACTION> 

Entity RULE = <PROTOCOL_NUMBER> <SOURCE> 
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<DESTINATION> <ACTION> 

Table 6.19 Changes made in the different grammars. 

 

Random HAMPI Single Entity 

Average 12.178% 12.875% 10.428% 1.249% 

Median 12.012% 11.534% 10.156% 1.022% 

Mode 9.793% 11.534% 15.257% 0.471% 

Standard 

Deviation 
4.231% 4.163% 4.449% 0.917% 

MAX 24.457% 21.514% 15.406% 3.160% 

MIN 0.025% 0.027% 0.544% 0.031% 

Accumulated 3117.585% 3296.078% 2669.581% 319.775% 

Table 6.20 Protocol numbers first-order statistics percentage error for its 256 elements 

solution space. 

Figure 6.5 presents the empirical results for the four experiments 

compared to their expected distribution. This behaviour can be attributed to 

the changes illustrated in Table 6.19 which took place during the derivation 

of the symbolic grammars. The symbolic constant <PROTOCOL_NUMBER> did not 

change significantly with the derivations of the symbolic grammars from the 

context-free grammar used in the “random” experiment and this can be 

appreciated in the results. Percentage error distribution is calculated to 

evaluate how they compare to the expected ones, which are given in Table 

6.20. The table illustrates that the experiment which shows the least 

accumulated percentage error from the expected values is the “entity” 

experiment varying with a value of 319.78%, followed by the “single” 

experiment with a value of 2669.58%. This result is confirmed by the 

median and average values where the “entity” experiments raises as the 

best of the 4 experiments. 

For this criterion, the solution space coverage was omitted as the 

protocol numbers have a solution space of 256 elements is completely 

covered by each of the experiments’ generated values as shown in Figure 

6.5. 

6.4.5.2 IP Address Structure 

Wild 

cards 
Pattern Expected Random HAMPI Single Entity 

0 #.#.#.# 78.13% 77.902% 42.006% 41.580% 77.718% 

1 

#.#.#.* 2.34% 2.387% 6.210% 6.325% 1.801% 

#.#.*.# 2.34% 2.389% 6.220% 6.271% 3.448% 

#.*.#.# 2.34% 2.378% 6.231% 6.259% 1.806% 



105 
 

*.#.#.# 2.34% 2.399% 6.219% 6.264% 4.390% 

2 

#.#.*.* 1.56% 1.568% 4.138% 4.179% 0.915% 

#.*.#.* 1.56% 1.564% 4.181% 4.172% 1.283% 

#.*.*.# 1.56% 1.581% 4.145% 4.173% 0.591% 

*.#.#.* 1.56% 1.564% 4.147% 4.172% 0.271% 

*.#.*.# 1.56% 1.575% 4.134% 4.147% 1.390% 

*.*.#.# 1.56% 1.588% 4.126% 4.187% 1.468% 

3 

#.*.*.* 0.78% 0.770% 2.064% 2.076% 0.964% 

*.#.*.* 0.78% 0.768% 2.041% 2.053% 2.523% 

*.*.#.* 0.78% 0.767% 2.077% 2.063% 0.717% 

*.*.*.# 0.78% 0.792% 2.049% 2.070% 0.707% 

4 *.*.*.* 0.00% 0.000% 0.000% 0.000% 0.000% 

Table 6.21 IP address structure empirical distribution 

The bias for generating rules with no wild cards can be observed in 

Table 6.21 where for the case of no wild cards (#.#.#.#), “HAMPI” and 

“single” perform significantly poorer than “random” and “entity”. For the 

“random” experiment, the behaviour is as expected as biased rules are 

more likely to be chosen (as discussed in section 6.3.3.4). The behaviour 

for the “entity” experiment responds directly to the fact that for the 

concrete sentence generation phase three independent groups are 

considered (as discussed in section 6.3.3.3). The behaviour for the “HAMPI” 

and “single” experiments shows the impact of the biased rules, but with 

less concentration of data in those points. This is due to: 

1. No groups are considered as in the “entity” experiment; and 

2. Rules are selected during the symbolic sentence generation 

phase employing McKenzie's algorithm whose selection 

algorithm favours a uniform selection of production rules 

regardless of the grammar definition. It can be appreciated 

that for the "entity" experiment McKenzie's algorithm is not 

employed for rule selection but rather quasi-random 

sequences, which results in the less significant accumulated 

percentage error (shown in Table 6.22). 

Random HAMPI Single Entity 

Average 1.24% 147.25% 150.10% 1.19% 

Median 1.20% 164.68% 167.84% 1.07% 

Standard 

Deviation 0.9458% 47.642% 48.589% 0.8242% 

MAX 3.02% 166.42% 171.75% 3.47% 

MIN 0.00% 0.00% 0.00% 0.00% 

Accumulated 19.92% 2355.98% 2401.53% 19.10% 

Table 6.22 IP address structure first-order statistics percentage error. 
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An inspection to Table 6.22 shows that the experiments which present 

the largest accumulated percentage error are “HAMPI” (2355.98%) and 

“single” (2401.53%), which are non-desirable results, while “random” 

(19.92%) and “entity” (19.10%) both show expected dispersion. 

Comparing the three presented values in to Table 6.22 the “entity” 

experiment has the most acceptable data of the four compared experiments. 

IP address structure's solution space coverage was omitted as its 

solution space consists solely of 16 elements which is completely covered 

by the experiments’ generated values as shown in Table 6.21. 

6.4.5.3 IP Address Size 

The results for both source and destination are the same (as the same 

definition is used for both) therefore we will only discuss the results for the 

source case. The numbers of bits for each source IP and their distributions 

are presented in Table 6.23. A special point worth mentioning is the notable 

concentration of values in the address size ten, which corresponds to the IP 

value of localhost (see the initial grammar for its definition). 

Bits Expected Random HAMPI Single Entity 

4 0.017% 0.001% 0.001% 0.001% 0.000% 

5 0.066% 0.003% 0.003% 0.003% 0.002% 

6 0.166% 0.007% 0.008% 0.008% 0.005% 

7 0.332% 0.017% 0.020% 0.019% 0.012% 

8 0.580% 0.036% 0.043% 0.042% 0.017% 

9 0.928% 0.076% 0.091% 0.088% 0.061% 

10 33.492% 33.070% 20.168% 21.682% 33.241% 

11 1.989% 0.331% 0.400% 0.390% 0.355% 

12 2.669% 0.599% 0.726% 0.709% 0.651% 

13 3.382% 0.963% 1.170% 1.143% 1.053% 

14 4.078% 1.427% 1.736% 1.697% 1.573% 

15 4.708% 1.995% 2.429% 2.376% 2.194% 

16 5.222% 2.670% 3.252% 3.182% 2.916% 

17 5.570% 3.445% 4.196% 4.107% 3.753% 

18 5.703% 4.283% 5.216% 5.109% 4.576% 

19 5.570% 4.937% 6.012% 5.890% 5.197% 

20 5.222% 5.410% 6.584% 6.454% 5.622% 

21 4.708% 5.699% 6.928% 6.794% 5.846% 

22 4.078% 5.794% 7.033% 6.900% 5.848% 

23 3.382% 5.683% 6.881% 6.755% 5.669% 

24 2.669% 5.343% 6.444% 6.329% 5.201% 

25 1.989% 4.747% 5.690% 5.592% 4.494% 

26 1.392% 3.858% 4.579% 4.502% 3.601% 
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27 0.928% 3.071% 3.581% 3.522% 2.809% 

28 0.580% 2.379% 2.692% 2.649% 2.080% 

29 0.332% 1.774% 1.913% 1.883% 1.501% 

30 0.166% 1.246% 1.244% 1.226% 0.928% 

31 0.066% 0.776% 0.692% 0.682% 0.585% 

32 0.017% 0.359% 0.268% 0.264% 0.210% 

Table 6.23 IP Address size empirical distribution. 

The concentration for size 10 for each experiment can be analyzed as 

follows: 

� The “random” experiment has a major concentration without 

reaching the expected 33%. This was expected as this 

experiment fits into the probabilities shown in Table 5.22 due 

to its pseudo-random behaviour. 

� The “HAMPI” and “single” experiments behave as previous 

analysis have shown; but presenting a concentration of 21% 

for this value which is not expected. This concentration 

corresponds to how the symbolic sentence generation 

phase favours sentences with greater length.  

� The “entity” experiment has a concentration of 33.241% 

which shows the impact of the concrete sentences 

generation phase which instantiates IP address as entities 

instead of a concatenation of isolated symbolic constants (like 

in the “HAMPI” and “single” experiments). 

Random HAMPI Single Entity 

Average 219.49% 208.58% 205.31% 164.53% 

Median 91.80% 92.82% 92.54% 93.44% 

SD 412.64% 321.61% 316.46% 247.49% 

MAX 2067.9% 1517.2% 1494.7% 1168.8% 

MIN 1.3% 7.9% 5.8% 0.7% 

Accumulated 6365.16% 6048.89% 5954.05% 4771.43% 

Table 6.24 IP address size percentage error first order statistics for its 28 elements solution 

space.. 

The percentage error for this criterion is presented in Table 6.24; from 

where it can be seen that the experiment with lowest accumulated error is 

“entity” with 4771.43% followed by “single” (5954.05%), “HAMPI” 

(6048.89%) and “random” (6365.16%) in that order. The only 

measurement where “entity” experiment does not raises as the most 

desirable result is the median which is the largest of the four, even though 

the distance between the most desirable median (“random” with 91.80) and 

its value is of 1.64% which compared to the distance for the best and worst 
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cases for the average (54.96%) and accumulated percentage error 

(1593.73%) is acceptable. 

As for previous criteria, the IP address size solution space coverage was 

omitted as its solution space consists of 18 elements which is covered by 

each of the experiments’ generated values as shown in Table 6.23. 

6.4.5.4 IP Values Distribution 

Experiment 
Generated 

Rules 

Expected 

Rules to 

compute 

Computed 

Rules 

Percentage 

Error 

Random 2388100 1791075 1770463 1.1642% 

HAMPI 2386518 1789889 2000990 10.5498% 

Single 2427137 1820353 2041792 10.8453% 

Entity 2418275 1813706 1812737 0.0534% 

Table 6.25 Computed rules for IP values distribution analysis 

Random HAMPI Single Entity 

100000 96.6858% 89.8705% 90.8820% 97.9810% 

200000 95.9600% 87.9546% 89.5082% 97.5742% 

300000 95.5879% 86.6787% 88.0045% 97.4573% 

400000 95.2802% 85.6105% 86.7587% 97.3214% 

500000 95.0264% 84.5209% 85.4649% 97.1685% 

600000 94.7717% 83.5607% 84.4914% 97.0972% 

700000 94.5557% 82.6068% 83.5076% 97.0893% 

800000 94.3316% 81.6135% 82.6303% 96.7956% 

900000 94.1122% 80.6315% 81.7886% 96.9356% 

1000000 93.9088% 79.8810% 80.9631% 96.8841% 

1100000 93.7046% 78.9748% 80.1387% 96.8300% 

1200000 93.5296% 78.3025% 79.3554% 96.8411% 

1300000 93.3415% 77.6474% 78.6020% 96.7850% 

1400000 93.1786% 76.9266% 77.8900% 96.7973% 

1500000 93.0119% 76.4009% 77.2624% 96.8169% 

1600000 92.8407% 75.7481% 76.6177% 96.7447% 

1700000 92.6883% 75.2494% 75.9966% 96.7458% 

Table 6.26 Unique rules percentage empirical distribution values 

The solution space covered by each one of the experiments is of high 

interest for our comparison, as it will determine the impact of pseudo-

random and quasi-random technologies for symbolic constant instantiation.  

From the total generated rules, we only analyzed the rules which had a 

different value from localhost, as this IP address will occupy 25% of the 

solution space accordingly to the grammar definition (discussed in section 
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6.3.3.4). For each experiment, its generated rules, expected rules (different 

from localhost), the actual rules computed and the percentage error 

between expected and computed rules are shown in Table 6.25. This table 

shows a percentage error for the “HAMPI” and “computed” which can be 

explained by the low concentration of IP address in length 10 

(corresponding to the localhost IP address) as discussed in section 6.3.3.5. 

 

Possible Random HAMPI Single Entity 

100000 0.00233% 0.0023% 0.0021% 0.0021% 0.0023% 

200000 0.00466% 0.0045% 0.0041% 0.0042% 0.0045% 

300000 0.00698% 0.0067% 0.0061% 0.0061% 0.0068% 

400000 0.00931% 0.0089% 0.0080% 0.0081% 0.0091% 

500000 0.01164% 0.0111% 0.0098% 0.0099% 0.0113% 

600000 0.01397% 0.0132% 0.0117% 0.0118% 0.0136% 

700000 0.01630% 0.0154% 0.0135% 0.0136% 0.0158% 

800000 0.01863% 0.0176% 0.0152% 0.0154% 0.0180% 

900000 0.02095% 0.0197% 0.0169% 0.0171% 0.0203% 

1000000 0.02328% 0.0219% 0.0186% 0.0189% 0.0226% 

1100000 0.02561% 0.0240% 0.0202% 0.0205% 0.0248% 

1200000 0.02794% 0.0261% 0.0219% 0.0222% 0.0271% 

1300000 0.03027% 0.0283% 0.0235% 0.0238% 0.0293% 

1400000 0.03260% 0.0304% 0.0251% 0.0254% 0.0316% 

1500000 0.03492% 0.0325% 0.0267% 0.0270% 0.0338% 

1600000 0.03725% 0.0346% 0.0282% 0.0285% 0.0360% 

1700000 0.03958% 0.0367% 0.0298% 0.0301% 0.0383% 

1800000 0.04191% 0.0385% 0.0311% 0.0317% 0.0405% 

Table 6.27 Percentage solution space covered percentage accumulated values. 

The total number IP source address was classified between unique and 

not unique IPs; the results are shown in Table 6.26. In this table, it is 

observed that the “random” and “entity” experiments generate more 

diverse production rules (91.8886% and 96.7266%) as they have more 

diversity than the other two experiments (74.1972% and 75.6955%). This 

is simple to deduce for the “random” experiment, as the solution space 

contains 2�I possible values, and the probability of obtaining the same value 

in several occasions is very small. For the “entity” solution, the result is 

expected showing the highest rate of unique IP addresses becoming more 

evident as the count increases. The data also shows that experiments 

“HAMPI” and “single” yield poor results (74.1972% and 75.6955%). The 

results differ from each other with a constant value of 1.4983% this is due 

to the nature of the original engine and our solution: they only differ in how 

they instantiate symbolic constants during the concrete sentence phase 
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and the simple employment of adaptive random testing gives an immediate 

enhancement to the HAMPI system. The results for the last row of Table 

6.26 shows the results for 1.7 million computed rules (maximum valid 

number of computed rules for all experiments as shown in Table 6.25), 

illustrating that the entity experiment is ~5% better than the random 

experiment which is its closest competitor. 

Results are provided for the total solution space covered for our sample 

in Table 6.27 the table illustrates that the experiment that covers the 

largest solution space using less rules is the “entity” experiment; which 

covers 0.0405% of the total possible values (232). This adds to the results 

obtained in Table 6.26 which demonstrates that the “entity” experiment is 

the best approach of the four discussed. 

6.4.5.5 Ports usage 

 

Figure 6.6 Ports usage empirical distribution for 0-8000 interval 

Figure 6.6 shows the interval for source ports 0-8000 (only the source 

case is presented since the destination case is almost identical). The 

interval for ports 8001 to 65535 is omitted given the fact that the values 

are too large to obtain meaningful in information. For the same reason this 

analysis we will make use of the percentage error's first order statistics for 

each experiment which are presented in Table 6.28. 

The accumulated error shows such a large values (in the order of 

millions) as a direct result of the large solution space analyzed (65536 data 

points); however the average shows that percentage errors were in the 

order of 35.55%, 38.14%, 30.22% and 19.35% for "random", "HAMPI", 

"single" and "entity" experiments respectively which is makes this statistic 
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acceptable. From this accumulated values, the "entity" experiment shows a 

significant improvement over the other analyzed approaches; this can be 

attributed to the employment of quasi-random sequences for rule selection 

during the concrete sentences generation phase.  

The "entity" experiment bests all experiments in average and median 

measurements; this behaviour is explained by the quasi-random sequences 

employed for symbolic constants instantiation selecting between the 

solution spaces in a controlled fashion. This behaviour is supported by the 

fact that the smallest standard deviation is present in the "entity" 

experiment, which indicates that all concrete values have been evenly 

employed. One of the most significant statistics is the MAX measurement 

which is ~94% smaller for the "entity" experiment compared to the 

analyzed algorithms; as previous behaviours, this is explained with the 

concrete sentences generation phase and the use of entities which use 

quasi-random sequences for symbolic constants instantiation. 

Port’s solution space coverage was omitted as its solution space 

consists of 65536 elements which are completely covered by the 

experiments’ generated values as shown in Table 6.28. 

Random HAMPI Single Entity 

Average 35.55% 38.14% 30.22% 19.35% 

Median 31.36% 32.15% 23.02% 11.40% 

Mode 17.90% 5.61% 12.03% 11.40% 

SD 33.60% 34.58% 30.22% 14.89% 

MAX 1147.96% 1127.11% 1098.63% 59.14% 

MIN 0.0261% 0.1300% 0.0013% 1.3302% 

Accumulated 2329537.74% 2499830.26% 1980208.34% 1268438.12% 

Table 6.28 Ports usage percentage error dispersion first order statistics for its 65536. 

6.4.5.6 Ports Operators Distribution 

Operations Random HAMPI Single Entity 

< # 16.818% 15.956% 15.053% 16.657% 

!= # 16.564% 16.158% 14.909% 16.578% 

> # 16.537% 14.796% 15.433% 16.471% 

None 16.558% 6.871% 7.997% 16.687% 

# - # 16.762% 31.537% 30.975% 16.623% 

# 16.761% 14.682% 15.632% 16.676% 

Average 0.682% 29.740% 28.617% 0.367% 

Median 0.654% 11.906% 10.548% 0.261% 

Accumulated 4.774% 208.182% 200.320% 2.569% 

Table 6.29 Ports Operators empirical distribution values and percentage error. 
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The frequency for each operator is described in Table 6.29. As expected, 

the “random” experiment has an almost perfect uniform distribution; this 

stems from the fact that all the values have an equal probability of being 

generated. For the “HAMPI” and “single” experiments the symbolic 

sentences generation phase algorithms demonstrates how McKenzie's 

algorithm favours larger rules, resulting in a higher concentration of values 

in the "# - #" (range) value which, as discussed in section 6.3.4.1, derives 

in sentences with greater length; this explains their large accumulated 

percentage error values..  

Finally, the “entity” experiment illustrates the variation that the 

concrete sentences generation phase introduces within the solution. 

Given the fact that quasi-random sequences were implemented, a more 

even selection resulted and yielded a minimal accumulated percentage 

error. This result was expected since rules are chosen employing an 

associated quasi-random algorithm 

Like in previous criteria, the ports operators’ solution space coverage 

was omitted as its solution space consists of six elements which are covered 

by each of the experiments’ generated values as shown in Table 6.29. 

6.4.5.7 Action distribution 

Action has only two possible values; its results are shown in Table 6.30 

and their relative percentage errors are presented in Table 6.31. 

 
Random HAMPI Single Entity 

Deny 50.355% 49.987% 49.996% 50.00002 

Allow 49.645% 50.013% 50.004% 49.99998 

Table 6.30 Action empirical distribution. 

Random HAMPI Single Entity 

Deny 0.7093% 0.0258% 0.0086% 0.00004% 

Allow 0.7093% 0.0258% 0.0086% 0.00004% 

Table 6.31 Action distribution percentage values. 

Differences between pseudo-random and quasi-random approaches 

become evident with this analysis. The two experiments which use pseudo-

random algorithms for concrete constants generation ("Random" and 

"HAMPI") show a percentage error which contrasts with the percentage 

error near 0% of approaches that employ quasi-random sequences. This 

behaviour is as expected, as quasi-random sequences select, in an orderly 

fashion, values from the solution space while pseudo-random select 

between these values with no order making it more probable to favour any 

of both values. This behaviour is corroborated by our results where the 
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"random" experiment shows a percentage error of 0.7093% while the 

"entity" experiments show the minimal error of 0.00004%. 

Action’s solution space coverage was omitted as it has a binary solution 

space therefore it is trivial to cover it within a few generated rules. 

6.4.6 Discussion 

Several conclusions have been drawn for each individual evaluation 

criterion. A discussion of the experiments utilizing several criterions will be 

presented; which will provide an overview of the system’s performance. 

6.4.6.1 HAMPI’s Pseudo-Random vs. Single’s Quasi Random 

The behaviour of both “HAMPI” and “single” experiments seems to 

follow a similar trend in all criteria. Between the two, the “single” 

experiment is superior because it has a better distribution of values with 

less percentage error for all the analysis presented. This can be explored by 

comparing each of the experiments percentage error medians for each 

criterion. 

Pseudo 

Random 

Quasi 

Random 

Rule Length 65.46% 57.01% 

Protocol 

Numbers 
11.534% 10.156% 

IP Address 

Structure 
164.68% 167.84% 

IP Address Size 92.82% 92.54% 

Ports Usage 32.15% 23.02% 

Table 6.32 Pseudo-random and quasi-random percentage error medians. 

This can be attributed to the final steps of concrete sentence 

generation, where the “HAMPI” experiment uses a traditional pseudo-

random approach, while the “single” experiment uses quasi-random 

sequences. 

6.4.6.2 Computational Cost 

The computational cost of generating test cases based on quasi-random 

sequences remains inexpensive for all experiments. For the creation of 200 

policies, an Intel Dual Core 2.3GHz with 4MB RAM was used and the 

computational times for each experiment are contained in Table 6.33. 

Experiment Minutes 

Random 107 

HAMPI 5 
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Single 440 

Entity 36 

Table 6.33 Experiment's performance in minutes 

While the performance will vary with the specific platform, the results 

will remain consistent with the implementation presented here. The 

“random” generation has neither constraints nor production control 

algorithms, so it visits all of the rules that are required each time it 

generates a sentence from the grammar. Thus it ranks as the second 

slowest of the four. The “HAMPI” experiment has the best performance, 

requiring 5 minutes to generate the 200 policies. This provides a point of 

reference between the original system and the enhancements.  

The “single” experiment has the slowest generation ranking in . The 

“entity” experiment ranks second requiring only 36 minutes to generate the 

200 policies. These two experiments share the symbolic sentence 

generation phase. The only difference is the number of symbolic 

sentences that are instantiated during the concrete sentence generation 

phase. In this phase, a quasi-random sequence has to be associated to 

each element, while for the “single” experiment it associates a sequence to 

each symbolic constant found in the symbolic sentences. For the “entity” 

experiment, it associates one for each entity. This has a direct impact when 

producing large results. Therefore, it can be concluded that, for our 

implementation, that concrete sentence generation is where the system 

invests most of its resources. Therefore, its performance is proportional to 

the number of symbolic sentences produced. 

6.4.7 Limitations 

A series of limitations arose during the experimentation process, and 

the most significant are summarized in this section. 

6.4.7.1 Grammar restrictions 

The number of rules that a firewall policy must have is not constant. 

Therefore, firewall grammars define rules structure for a single firewall rule. 

If a firewall policy is needed then the firewall rule grammar must produce 

as many sentences as required to produce a firewall policy with a specified 

number of rules. 

This approach forces the tester to specify the number of rules that a 

certain policy must have in order to reveal system flaws; thus, preventing 

full automation. This limitation becomes more evident when several firewall 

policies with different numbers of rules are required., For our experiments 

we decided to apply Majumdar's suggested approach (18) which consisted 

of 200 policies with a policy length that ranged from 100 to 20000 rules; 
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however, the limitation remains a forcing us to implement an arbitrary 

algorithm that selected between random policy lengths.  

6.4.7.2 Semantic Management 

Semantic control has been a limitation for all grammar-based 

approaches as the employment of context-free grammars is a common 

practice; therefore, even though firewall rules are relatively simple, these 

limitations were encountered. 

Semantic correctness is paramount as only semantic correct test cases 

can make it into the system under test as semantically incorrect ones are 

discarded in the initial phases of parsing preventing them from exercising 

any actual code paths. Context-free grammars produce syntactically correct 

sentences but fail to achieve semantic correctness, generating several 

incorrect test cases. Incorrect test cases consume time and resources, thus 

preventing their generation gains importance. This limitation confines the 

use of grammar-based approaches to systems whose input can be modeled 

with relatively simple grammars. 

Semantic verification has been a subject of research since the 

formalization of grammar-based testing.  Several solution attempts have 

been suggested (i.e. attributed grammars, second phase parsing trees, 

extended grammars etc.), however, regardless these and other methods 

have been suggested for semantic control, there is no definitive answer for 

which approach is better to solve this problem.  

Our solution implemented an extended grammar for controlling the 

semantic correctness of the grammar rules; this simplified the overall 

analysis. This approach, while correct for our purposes, will probably have 

to be tailored to fit each scenario. 

6.4.8 Summary 

Two tables are presented here showing the summary of the obtained 

results focusing on: 

� Values distribution – how empirical data is scattered through 

its corresponding solution space. 

� Concrete constants generation probability – which 

experiments are more representative of the expected results. 

6.4.8.1 Values distribution 

Table 6.34 shows the results for the distributions for each of the four 

experiments and for each evaluation criterion. 
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The table shows that “random” and “entity” experiments presents 8 out 

of 8 experiments with a distribution proportional to grammar bias while 

“HAMPI” and “single” experiments present this behaviour only in 2 of the 

criterion. These two experiments show concentrations of values 

proportional to the expected ones but with a larger medians and percentage 

errors. From this evidence it can be concluded that “random” and “entity” 

experiments generate results following grammar rules definition. 

 Random HAMPI Single Entity 

Rule length Proportional 

to grammar 

definition. 

Concentration in lengths 22 

and 23. 

Proportional 

to grammar 

definition. 

Protocol 

number 

distribution 

Proportional to grammar bias. 

IP 

complexity 

Proportional 

to grammar 

bias. 

Concentration in expected 

values but with different 

density. 

Proportional 

to grammar 

bias. 

IP structure Proportional 

to grammar 

bias. 

Concentration in expected 

values but with different 

density. 

Proportional 

to grammar 

bias. 

IP values 

distribution Good ratio 

between 

produced rule 

and solution 

space 

covered. 

The worst 

ratio 

between 

produced 

rules and 

solution 

space 

covered. 

Poor ratio 

between 

produced rule 

and solution 

space covered. 

Maximum 

ratio 

between 

produced 

rule and 

solution 

space 

covered. 

Ports usage Proportional to grammar bias. 

Port 

operators 

distribution 

Proportional 

to grammar 

bias. 

Concentration proportional to 

operators’ length. 

Proportional 

to grammar 

bias. 

Action 

distribution 

Proportional 

to grammar 

bias. 

Minor 

random bias. 
Expected 50-50 distribution 

Table 6.34 Summary of empirical vs. expected values distribution. 

6.4.8.2 Concrete constants generation probability 

Each of the experiments was ranked according to their dispersion and 

percentage error median. The experiment with the lowest dispersion and 

lowest percentage error median would rank as number one. 
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R
a
n
d
o
m
 

H
A
M
P
I
 

S
in
g
le
 

E
n
ti
ty
 

Rule length 1 4 3 2 

Protocol number 

distribution 
4 3 2 1 

IP complexity 4 3 2 1 

IP structure 2 3 4 1 

IP values distribution 2 4 3 1 

Ports usage 4 3 2 1 

Port operators 

distribution 
2 4 3 1 

Action distribution 4 3 2 1 

Table 6.35 Experiment concrete constants generation ranking. 

Table 6.35 shows that for seven out of eight criteria, the “entity” 

experiment was superior to the any of the other approaches. It is followed 

by the “random” ranking first in only one of the eight categories. Greater 

differences are in the lower rankings, where “entity” ranks second in one 

criterion while “random” experiment ranks last in four criteria. 

To reiterate, these selected criteria indicate that the best experiment is 

the “entity” experiment, which utilizes all of the enhancements 

implemented in our solution. 
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7 Conclusions 

The obtained results assert that quasi-random sequences provide 

improved space coverage over the two analyzed systems that deploy 

pseudo-random approaches. Another benefit that our solution offers is with 

respect to grammar design. Pseudo-random approaches results are 

completely bound by the grammar rules, therefore the resulting concrete 

sentences are trustful to the grammar definition. The HAMPI string solver 

focuses on rules usage and sentence length. For achieving this goal, 

grammar rules no longer have the complete control over sentence 

production; this adds bias and uncertainty about which test cases are going 

to be produced given a certain grammar. Our solution takes the best of 

both approaches, employing sentence length and rules usage from the 

HAMPI string solver and adding an extra phase which solves the symbolic 

values grammar employing quasi-random sequences for rule selection, 

which generates results which are accurate representations of the grammar 

design.  

Symbolic and concrete constants have been shown to be beneficial for 

test design as symbolic grammars allow complete enumeration for simple 

grammars and an acceptable degree of enumeration for large and complex 

grammars, which helps test design heuristics as it allows automated testing 

tools to focus on sections of the solution space maximizing results. Our 

solution enhances this benefit by introducing an extra phase, replacing 

previous pseudo-random techniques for symbolic constants instantiation 

with a novel approach utilizing quasi-random sequences. This new extra 

phase (concrete sentences generation phase) first identifies user-defined 

entities (groups of symbolic constants) and then associates with each entity 

a quasi-random sequence that will control which values from the solution 

space will be used for concrete constant selection. 

Our solution introduces the concrete sentences generation phase, which 

enables the tester to define entities and solve them as a single value. This 

new approach raises the importance of entity design as the obtained results 

will benefit directly from their implementation. During the analysis of our 

experiments, it was asserted that entities offer an advantage over previous 
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approaches which can be attributed to the correct design of entities during 

symbolic grammar derivation. This approach is flexible enough to fit 

different testing needs and designs, which adds to the benefits of the 

proposed solution. The Concrete sentences generation phase implements a 

concrete sentence generation control mechanism, which evenly instantiates 

symbolic sentences into concrete sentences guaranteeing that all symbolic 

sentences are equally represented. This approach results in a better 

solution space coverage increasing the likeliness of detecting defects. 

Despite all the benefits that our solution introduce over pseudo-random 

approaches and grammar string solvers, there is still more research to be 

done. First, quasi-random sequences can only be employed where the 

solution spaces are enumerable. One way of overcoming this problem for 

our experiments is to divide the solution space into subsets and then apply 

quasi-random sequences to each subset. However, even when the solution 

space can be enumerated, it should be used carefully as enumerating large 

solution spaces can result in a major impact to performance. Some other 

limitations as grammar restrictions and semantic management remain as a 

research field for future work which will help to completely automate the 

testing process. 

Finally, these experiments give us the confidence to claim that our 

solution can be employed to produce vast amounts of test data with little 

effort and with all the advantages of grammar-based generation and quasi-

random testing. 
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