

University of Alberta

Test Case Generation using Symbolic Grammars

and Quasi-Random Sequences

by

Alejandro Felix

A thesis submitted to the Faculty of Graduate Studies and Research

in partial fulfillment of the requirements for the degree of

Master of Science

in

Software Engineering and Intelligent Systems

Department of Electrical and Computer Engineering

© Alejandro Felix

Spring 2011
Edmonton, Alberta

Permission is hereby granted to the University of Alberta Libraries to

reproduce single copies of this thesis and to lend or sell such copies for

private, scholarly or scientific research purposes only. Where the thesis is

converted to, or otherwise made available in digital form, the University of

Alberta will advise potential users of the thesis of these terms.

The author reserves all other publication and other rights in association with

the copyright in the thesis and, except as herein before provided, neither

the thesis nor any substantial portion thereof may be printed or otherwise

reproduced in any material form whatsoever without the author's prior

written permission.

Examining Committee

• James Miller, Electrical & Computer Engineering

• Bruce F. Cockburn, Electrical & Computer Engineering

• H. James Hoover, Computing Science

TO

MY

DEAREST

MOTHER

AND

GRANDMOTHER

Abstract

This work presents a new test case generation methodology, which has a

high degree of automation (cost reduction); while providing increased

“power” in terms of defect detection (benefits increase). Our solution is a

variation of model-based testing, which takes advantage of symbolic

grammars (a context-free grammar where terminals are replaced by regular

expressions that represent their solution space) and quasi-random sequences

to generate test cases.

Previous test case generation techniques are enhanced with adaptive

random testing to maximize input space coverage; and selective and directed

sentence generation techniques to optimize sentence generation.

Our solution was tested by generating 200 firewall policies containing up

to 20 000 rules from a generic firewall grammar. Our results show how our

system generates test cases with superior coverage of the input space,

increasing the probability of defect detection while reducing considerably the

needed number the test cases compared with other previously used

approaches.

Acknowledgments

I’d like to especially thank the University of Alberta – CONACYT

agreement who’s funding and support made this work possible.

I’ll also like to thank my supervisor, Dr. James Miller, for his patience,

guidance and assistance during my master studies and research.

Last but not least, a special recognition to my friends. Thank you guys!

1

Table of Contents

I. List of Tables ... 4

II. List of Figures ... 6

1 Introduction.. 7

2 Related Work ... 9

2.1 Model-based Testing ... 9

2.2 Random Testing ... 11

2.3 Exhaustive Generation .. 12

2.4 Constrained Exhaustive Enumeration .. 12

2.5 Symbolic Execution .. 14

2.6 Concolic Execution ... 16

2.7 WhiteBox Fuzzing ... 18

2.8 Symbolic Grammars ... 21

2.9 Grammar-based WhiteBox Fuzzing ... 23

3 Problem Overview ... 26

3.1 Fuzz Testing .. 26

3.2 Grammar-based Fuzzing ... 27

3.3 Limitations .. 28

3.4 Grammar-based Test Data Generators .. 29

3.5 Systems Comparison .. 30

3.5.1 Random Generation .. 31

3.5.2 Symbolic Test Generation .. 32

3.5.3 Constrained Symbolic Test Generation 33

3.5.4 Our Approach .. 35

4 The System .. 38

4.1 Definitions ... 38

4.2 Technologies Employed ... 40

2

4.2.1 Symbolic Constraint .. 41

4.2.2 Adaptive Random Testing .. 42

4.2.3 Selective and Directed Concrete Sentence Generation 43

4.2.4 Concrete Sentence Generation Control 43

4.2.5 Symbolic Constants Instantiation Control 43

4.2.6 Removing Deterministic Componentry 44

4.3 System Overview ... 44

4.4 Working Example ... 46

4.4.1 Prerequisites .. 47

4.4.2 Constraint Solving Phase ... 50

4.4.3 Symbolic Sentences Generation Phase 53

4.4.4 Concrete Sentence Production Phase 57

4.4.5 Pseudo-Random vs. Quasi-Random 60

4.4.6 Conclusions ... 64

5 Future Work ... 67

5.1 Specifying System Constants ... 67

5.2 Constraint Structure ... 67

5.3 Constraint Solving .. 68

6 Case Study ... 69

6.1 Firewalls ... 69

6.2 Firewall Policies .. 70

6.2.1 Firewall Rules .. 70

6.2.2 Firewall Testing .. 72

6.2.3 Our Approach .. 75

6.3 Case Study .. 76

6.3.1 Previous Firewall Testing Approaches 76

6.3.2 Methodology .. 77

6.3.3 Evaluation Criteria .. 84

3

6.4 Empirical Results .. 94

6.4.1 Policies ... 94

6.4.2 Rules Distribution ... 97

6.4.3 Rule Length ... 99

6.4.4 Symbolic Sentences Representation 101

6.4.5 Individual Rule Fields Analysis.. 103

6.4.6 Discussion ... 113

6.4.7 Limitations .. 114

6.4.8 Summary .. 115

7 Conclusions .. 118

8 Works Cited .. 120

4

I. List of Tables

Table 2.1 Taxonomy proposed by Utting and Legeard for model-

based testing. .. 9

Table 2.2 Dimensions for model-based testing proposed by Utting

and Legeard ... 10

Table 3.1 Limitations for grammar-based data generator components

 .. 30

Table 3.2 Total number of different sentences for a given length for

the SimpleCalc grammar ... 31

Table 3.3 Concrete sentences for two symbolic sentences 37

Table 6.1 Generic firewall policy ... 71

Table 6.2 Policy grammar, BNF Graph and Generation Process

approaches limitations. ... 75

Table 6.3 Lessened limitations by our solution. 76

Table 6.4 Example redundancy added to the grammar. 78

Table 6.5 Firewall rules with different length. 85

Table 6.6 Rule length expected distribution 86

Table 6.7 Each production rule is shown with their possible

generated IP address values and their associated probability (#

stands for any no-wild card value). ... 89

Table 6.8 IP structure expected distribution (# stands for any no-

wild card value). ... 90

Table 6.9 Solution and criterion solution space percentage for each

rule... 91

Table 6.10 IP Address size calculation. 91

Table 6.11 IP Address size expected distribution. 92

Table 6.12 Port usage expected distribution values 93

Table 6.13 Common port operators considered. 93

Table 6.14 Total rules per experiment and their percentage error. 96

Table 6.15 Each experiment is annotated with its accumulated count

of not-unique rules for each interval of 100000 firewall rules. 98

5

Table 6.16 Rule length empirical distribution 99

Table 6.17 Rule Length percentage error.100

Table 6.18 Symbolic sentences representation average and standard

deviation by rule length. ...102

Table 6.19 Changes made in the different grammars.104

Table 6.20 Protocol numbers first-order statistics percentage error

for its 256 elements solution space. ...104

Table 6.21 IP address structure empirical distribution105

Table 6.22 IP address structure first-order statistics percentage error.

 ...105

Table 6.23 IP Address size empirical distribution.107

Table 6.24 IP address size percentage error first order statistics for

its 28 elements solution space.. ..107

Table 6.25 Computed rules for IP values distribution analysis108

Table 6.26 Unique rules percentage empirical distribution values .108

Table 5.27 Percentage solution space covered percentage

accumulated values. ..109

Table 6.28 Ports usage percentage error dispersion first order

statistics for its 65536. ...111

Table 6.29 Ports Operators empirical distribution values and

percentage error. ..111

Table 6.30 Action empirical distribution.112

Table 6.31 Action distribution percentage values.112

Table 6.32 Pseudo-random and quasi-random percentage error

medians. ..113

Table 6.33 Experiment's performance in minutes114

Table 6.34 Summary of empirical vs. expected values distribution.

 ...116

Table 6.35 Experiment concrete constants generation ranking. ...117

6

II. List of Figures

Figure 2.1 Control graph for example code. 16

Figure 2.2 Parse trees for G, G' and V 22

Figure 3.1 Generic model for grammar-based data generator 29

Figure 4.1 Members description for elements of G' and V 44

Figure 4.2 Symbolic sentences and their corresponding instantiated

concrete sentences. .. 46

Figure 4.3 Distribution for the pseudo-random approach. 62

Figure 4.4 Distribution for the low discrepancy single approach. ... 63

Figure 4.5 Distribution for the low discrepancy entity approach. ... 64

Figure 6.1 Firewall testing framework proposed by Al-Shaer etal. . 72

Figure 6.2 A-B Expected distribution for protocol numbers. 88

Figure 6.3 Rules per policy empirical distribution 95

Figure 6.4 A-D Detail for policy empirical distribution for policies in

the range from 150 to 200. .. 97

Figure 6.5 A-B Protocol numbers empirical distribution103

Figure 6.6 Ports usage empirical distribution for 0-8000 interval ..110

7

1 Introduction

Fuzzing is a software testing technique used to find bugs through the

external or exposed interfaces of systems complementing traditional testing

with randomness, protocol knowledge and attack heuristics.

In recent time, fuzzing has become a widely accepted testing approach

due to its ease of automation and obtained results (compared with

traditional software testing, fuzz testing improves the obtained results).

Fuzzing is used by the software industry to improve the quality of their

software, by vulnerability analysts to detect software and by third parties

(such as hackers) to find and exploit software.

For testing applications that require highly-structured inputs, traditional

testing tools and fuzzing tools can be very limited. Examples of this kind of

system can be found in any system that uses compilers or interpreters to

obtain its parameters values from an external input. These systems process

the information in stages such as lexical, pre-processing and syntactical.

Each stage usually depends on the successful termination of the previous

stage. Due to its nature, most of the testing techniques generated inputs

can rarely surpass the first stages.

Systems that require highly structured inputs usually have defined

language grammars that control the input syntax. These grammars define

the valid input space for all the possible inputs of the system under test. As

known, the input surface of any system tends to infinite, so heuristics

should be used in order to constraint it and make testing feasible.

Previous work employs black box and white box testing approaches.

Black box consists in feeding random inputs to the system under test so

they can reveal flaws in the system under test. As mentioned, black box

testing approaches are very limited due to the highly-structured inputs

where any malformation prevents information from reaching deeper stages.

White box fuzzing approaches combine black box testing with dynamic test

generation. Starting with a well-formed input, it executes the test and

keeps track of the conditionals used. Then those conditionals are negated

so different control paths are tested. For large systems, this approach is

unfeasible as the possible control paths and constraints can grow

exponentially.

8

To solve these limitations, some black box fuzzing approaches use

grammars to reduce the solution space of the generated well-formed inputs

and test heuristics. One of those approaches is grammar-based whitebox

fuzzing, which is an enhancement of whitebox fuzzing with grammar-based

specifications of valid inputs and high-level symbolic constraints expressed

in terms of symbolic grammar tokens. This approach guarantees that all of

its generated outputs will be parsable system inputs. Nonetheless, several

limitations were not solved by this approach as the grammar and the

grammar token constraints only reduce the testing input space in terms of

generating parsable system inputs.

Parsable system inputs present many of the problems non-parsable

inputs present. For example, the input space is reduce, but the total

permutations is still of exponential order even using the token constraints

and symbolic grammars. Another detected problem is that parsable system

inputs have no control over the tokenizing selection algorithm used in fully

defined testing inputs. Both limitations make the algorithm practically

unusable for most testing strategies that require precise control over the

fully defined testing inputs.

To address the detected limitations this work presents an extension to

grammar-based whitebox fuzzing where controlling algorithms are added to

reduce even more the input space. With these expansions the system will

not only explore deeper program paths and will avoid the generation of

non-parsable system inputs, but will also increase the solution space

covered by each generated test.

9

2 Related Work

Much progress has been accomplished regarding grammar-based

testing. Starting from the early 70s, this testing strategy has evolved from

its initial formalization to its implementation in testing frameworks.

This section is organized as follows: first an introduction discusses

model-based testing; then we review of previous blackbox testing

techniques; following this, whitebox approaches will be analyzed to

introduce whitebox fuzzing and its implementations; finally we review the

latest technologies employed will that define today’s state-of-the-art for

grammar-based approaches will be presented.

2.1 Model-based Testing

Model

Subject
Environment

System Under Test (SUT)

Redundancy
Shared test & dev model

Separate test model

Characteristics

Deterministic/Non-Det.

Timed /Untimed

Discrete/Hybrid/Continuous

Paradigm

Pre-Post

Transition-Based

History-Based

Functional

Operational

Test

Generation

Test Selection

Criteria

Structural Model Coverage

Data Coverage

Requirements Coverage

Test Case Specifications

Random & Stochastic

Fault - Based

Technology

Manual

Random Generation

Graph Search

Model-checking

Symbolic execution

Theorem proving

Test

Execution
On/Offline Online/Offline

Table 2.1 Taxonomy proposed by Utting and Legeard for model-based testing.

10

Model-based testing is the automatic derivation of concrete test cases

from abstract formal models (1). Utting and Legeard propose a model with

seven dimensions (properties) that give a full description of any type of

system that uses a model for generating its outputs. The taxonomy is

shown in Table 2.1.

According to this taxonomy, grammar-based testing is a type of model-

based testing whose dimensions are shown in Table 2.2.

Dimension Characteristic Description

Subject Environment

The model of the environment is used

to restrict the possible inputs of the

model. The model is a context-free

grammar that gives a full protocol’s

description of the input space of

the system under test

Redundancy
Separate test

model

Redundancy is guaranteed as the test

tool is built separately from the SUT and

goes through its own development

lifecycle.

Characteristics

Non-Deterministic /

Deterministic

Both characteristics are used depending

on the approach chosen..

Untimed

All approaches act over the system

under test’s input/output so real-time

execution is not considered.

Discrete

The testing system depends on the

occurrence of asynchronous discrete

events over time

Paradigm Functional

The SUT is described as a collection of

mathematical functions, in this case the

context-free grammar.

Test Selection

Criteria

Structural Model

Coverage

The structure of the model (grammar) is

exploited to generate the test cases.

Technology

Random

Generation

Several systems use constrained

random generation

Model-checking

With dynamic test generation, model

checking is used for creating new

testing inputs for the SUT.

Symbolic execution

White fuzzing approaches use symbolic

execution as their main engine for

constraining the input space.

On/Offline Online/Offline

Until dynamic test generation was

introduced, all systems were executed

offline.

Table 2.2 Dimensions for model-based testing proposed by Utting and Legeard

Grammar-based testing focuses on using the model (grammar) to

produce test inputs to verify the conformance of the system under test to

11

the model. Context-free Grammars can produce syntactically correct

predicates, but fail to produce semantically correct predicates – a significant

limitation that has been studied, as the following sections demonstrate.

2.2 Random Testing

The first attempts to employ grammar-based testing date back to the

1970’s. Grammars found in language definitions are recipes to generate

strings that will be considered to be well-formed and part of the language

accepted by the compiler. To satisfy this constraint the following two

conditions need to be satisfied:

� All well-formed programs can be written down following the

model.

� Only well-formed programs can be written down following the

model.

BNF notation satisfies the first one but fails to satisfy the second one.

This is comprehensible as the second condition can only be satisfied with

context-sensitive grammars.

To satisfy the second condition, Hanford (2) introduces the concept of

dynamic grammars, which is an extended grammar that considers syntax

declaration correctness. Hanford proposes that an approximation to a

context sensitive grammar can be achieved by adding rules that produce

predicates of a declarative programming language.

Purdom (3) focussed on the problem of sentence generation,

presenting an algorithm that produces a set of short sentences from a

context-free grammar such that each production of the grammar is used at

least once. Purdom overlooks semantical correctness but focuses on how to

rapidly generate a short test set of sentences that obey the syntax of a

context-free grammar.

Both attempts concentrated on the automated generation of test cases,

but no further control was proposed. This led to problems controlling the

input space which wasn’t reduced and includes all the sentences defined by

the grammar (that are part of the language definition). Random generation

was employed to solve this limitation. Random testing consists of randomly

selecting inputs from the input space. This approach is not effective as the

input space is too big and the chances of hitting “error crystals” (4) is very

small. So a more reliable approach is needed to constrain the produced

sentences.

12

2.3 Exhaustive Generation

Exhaustive generation from the grammar was tried by Duncan and

Hutchison (5); they proposed the usage of attributed context-free grammar

as the basic mechanism for grammar production heuristics (constraints over

the solution space). Their first step in the algorithm is to change the CFG

grammar to an attributed CFG grammar with attributes that will be solved

by the system. Those attributes will give control over the production choice

of rules, attributes and productions. Attributes act as guides that tell the

parser which rules employ and how to employ them.

Take for example the following set of rules:

A = B{1} C{0,1} D{m,n} ;

B= “b”;

C= “c”;

D= “d”;

In this example each terminal symbol is enclosed between quotes and

non-terminal is followed by user-defined attributes annotated between curly

brackets. These attributes control the non-terminal boundary values (lower

and upper); if m=1 and n=4 an example of the language defined by this

grammar would be “bcd” and “bcddd”. The system proposes a set of

attributes for controlling the use of certain rules. This gives the system

certain context awareness in order to generate semantically correct

sentences:

Asd = [? terminal = “else”] “else” stmt;

stmt = “stmt” ;

In this rule, “[? ...]” indicates that the variable terminal (set during the

system execution) will be evaluated. If this block is evaluated as true, then

the rule will be solved during execution time.

This system leaves all the choices to the tester on how to combine the

attributes, so the effectiveness of the tool is proportional to the ability of

the tester to refine its results and, as no dynamic strategy is suggested, the

inspection of the results is done manually. Another limitation of this

approach is that each grammar has to be modified to comply with the

system syntax; this implies further human interaction with the system.

2.4 Constrained Exhaustive Enumeration

Even when the grammar has been restrained the input space is usually

too large to attempt exhaustive (test case) generation; to address this

13

problem, the concept of “constrained exhaustive enumeration” was

introduced, which consists of adding constraints to the grammar to reduce

the solution space.

Maurer (6) proposes building a grammar in a bottom-up fashion,

keeping the solution space as controlled as possible and defining a different

test grammar for each different test case. Attributes are added to each

grammar to give limited semantic control over the generated outputs.

The probability for selecting a particular alternative of a rule with

different choices is annotated before choice. For example, the rule “vowel”

can be extended with probabilities, giving the terminal “u” a 33% chance of

being chosen compared to the terminal “a” that only has 7% probability.

extended_vowel = %15{vowel}

vowel = 1:”a” | 2:”e” | 3:”i” | 4:”o” | 5:”u”

Action routines are also another enhancement proposed by Maurer.

Action routines allow the grammar to keep track of values previously

selected. These values can be used later when a previously selected value

is wished to be used.

extended_vowel = %{vowel.letter} %{letter}

letter: variable;

vowel = ”a” | ”e” | ”i” | “o” | ”u” ;

The main drawback of this approach is the buttom-up grammar

generation that prevents scalability as the grammars become complex.

Another limitation is that when the grammar is defined the system works

generating all possibilities for some productions while allowing other choices

to be made at random.

McKeeman (7) employs the concept of differential testing to address

the oracle problem employing stochastic grammars. Stochastic grammars

are grammars where each of the rules is associated with a probability.

Whenever a nonterminal is to be expanded, a random number is generated

and compared with the fixed rule probabilities to direct the expansion

choice. The author proposes 7 levels of quality assurance for testing a C

compiler:

1. Sequence of ASCII characters

2. Sequence of words, separators and white spaces

3. Syntactically correct C program

4. Type-correct C program

14

5. Statically-conforming C program

6. Dynamically-conforming C program

7. Model-conforming C Program

Stochastic grammars satisfy only levels 1 and 2. For levels 3 – 5,

adding more specific rules and probabilities is suggested to achieve the

semantic correctness required (7). For levels 6 and 7, a post-generation

analysis with a different tool that selects only well-formed inputs is

proposed. As only few test cases reach level 7, it is suggested to employ

exhaustive generation to generate enough test cases (to raise the

probability for having well-formed inputs).

Lämmel (8) presents controllable combinatorial coverage where

parameters are set to control the grammar such as:

� Depth - limit the number of rules employed to produce the

testing sentences.

� Recursion - limit the nested selection of recursive rules.

� Balance - limit the depth variation for argument terms when

depth and recursion are not enough to satisfy the desire

depth over recursive rules.

� Dependence – defines the syntactic (context-free) or

semantic (context-sensitive) options for controlling

combinations of arguments when forming new terms.

� Construction – conditions and computations that semantically

constrain test-data generation into test cases.

These approaches focus their efforts on describing valid inputs and

generating test cases that satisfy the grammar but fail to solve the

exhaustive generation of sentences once the grammar has been

constrained to a certain depth.

2.5 Symbolic Execution

Symbolic execution is a program analysis technique that, instead of

supplying inputs to a program, supplies symbols representing arbitrary

values that allows the exploration of program executions paths. Symbolic

execution is useful in other forms of program analysis such as test input

generation (9), program optimization (10), and program debugging (11).

Clarke (9) suggests that the system should be represented as a control

flow graph. Then a random input is selected and its control path is traced.

The relationships that affect the program flow are determined as a set of

constraints in terms of the program’s input variables. When a path is

symbolically executed, expressions denoting the evolution of the variables

are generated. These values are collected and used to constrain the next

15

set of input test values; this is repeated until all the control paths have

been exercised.

For example take the following Java code (its control graph is shown in

Figure 2.1.):

1 public int myFunction (int var1, int var2){

2

3 var1 = var1 + 1;

4

5 if (var1 > var2)

6 var1=10 – var2;

7 else

8 var1 = var1 / var2;

9

10 return var1;

11 }

12

Given random initial values (for example var1 = 10 and var 2 = 0), the

symbolic execution records the values of the variables in lines 3, 5, 6 and

10. The final result (line 10) would be expressed as:

var1 = 10 – var1 - 1

Giving the following constraint for the “if” statement found in line 5:

var1 +1 > var2

Whenever a conditional transfer of control is executed, one or more

constraints representing the branch form of the chosen conditional

statement are generated. Each constraint should be sent to an inequality

solver to check if it can be solved given previously generated constraints. If

the constraint can’t be satisfied, it would indicate that the path is unfeasible.

16

Figure 2.1 Control graph for example code.

2.6 Concolic Execution

EXE (12), DART (13) and CUTE (14) are examples of automated

approaches to systematic testing based on dynamic test generation. All

these systems combine constrained random-testing with automatic

symbolic and concrete execution (called concolic execution); but are not

selective as test inputs are generated randomly and iteratively refined

through symbolic execution. This led to uncertainty and forces the program

to generate very large set of inputs, so “error crystals” can be found in the

input space.

Godefroid and Larlund developed DART: Dynamic Automatic Random

Testing (13) one of the first symbolic execution systems to introduce

dynamic test generation to fully automate the process of testing. DART

uses the following techniques:

� Automated extraction of the interface of a program with its

external environment using static source-code techniques.

� Automatic generation of a test driver for this interface that

performs random testing.

� Dynamic analysis of the test results and automatic generation

of new test inputs to systematically manoeuvre the flow path

in an attempt to cover all feasible paths.

Automated extraction refers to the control of the program interfaces

with its environment. It detects external variables and external functions

(i.e. libraries) and the arguments of a user-specified initial function

employed for starting the test execution. DART distinguishes three kinds of

C functions:

� Program functions that are defined and used in the program.

� External functions that are controlled by the environment so

they are part of the external interface of the program.

� Library functions that are functions not defined in the

program but are used by the program.

This step enhances the testing system with external entities awareness,

so external calls are treated as black boxes which cannot be instrumented

or analyzed. DART is capable of evaluating these external functions in order

to create more precise constraints when needed.

Automatic generation is responsible for creating dynamic C code (a

main function) that initializes the interface variables at random and

executes the test. The initialization of variables takes as arguments a

memory location.

17

Dynamic analysis of test results and automatic generation of new test

inputs refers to a constraint solver that takes the results of the test (as

memory locations and values) and defines concrete values for each

parameter in the external interface forcing new control paths to be

executed. Only one value is changed at a time starting from the last

recorded one (last value in the execution path).

Some limitations of this approach were related to the complexity of

dynamic variables, pointers and data structures. In fact this system fails to

correctly generate constraints for these data types and suggests that pure

random testing should be employed. Due to the nature of path explosion,

the tool is only built to aid in the unit testing phases.

DART sets the basis for further work in symbolic execution testing

frameworks. For example Sean et al. (14) develop CUTE: “A Concolic Unit

Testing Engine for C” which focuses on the problem of providing methods to

extract and solve constraints generated by a program where dynamic data

structures are employed. They introduce the idea of a logical input map

that represents all inputs as a collection of symbolic variables. From this

map, the system builds constraints by performing a symbolical execution of

the code under test.

CUTE extends DART by adding better pointer manipulation, separating

pointer constraints from integer constraints and keeping them simple.

Another enhancement is that the system takes into account code

preconditions and sanity checks extending unit testing limitations and

adding scalability.

Cadar, et al. introduce EXE (12). EXE keeps track of the execution path

constraints in the same fashion as previously discussed. Its main difference

is that it employs those constraints and a predefined set of “validations” to

check for input values that can cause an error.

For each recorded constraint, EXE’s constraint solver verifies if the

symbolic expression has a value that satisfies the constraints that can

cause a null or out-of-bounds memory reference or a division or modulo by

zero error. If true, it reports that the evaluated condition occurs, generates

a test case, and terminates; if false, it reports that the evaluated condition

does not occur and continues execution. If EXE has a set of constraints on

those expressions and the constraint engine can solve them, then EXE

detects if any concrete value exists on that path that causes the error. If no

concrete value exists that causes the error then the branch is considered to

be safe.

For example for the following code:

1 public int myFunction (int var1, int var2){

2

3 var1 = var1 + 1;

18

4

5 if (var1 > var2)

6 var1=10 – var2;

7 else

8 var1 = var1 / var2;

9

10 return var1;

11 }

12

From our previous example, the symbolic constraint for the else

execution path found was:

var1 + 1 <= var2

When EXE’s constraint solver reaches line 8, it will look for values that

satisfy the constraint and can produce one of the mentioned known errors.

For this case the concrete values for the next test could be var1 = -10 (or

any negative number) and var2 = 0. Despite the enhancements over

previous systems, execution path explosion and dynamic data structures

still limit the scalability of the system.

2.7 WhiteBox Fuzzing

Godefroid, Levin and Molnar (15) propose a testing framework that

uses a generational search algorithm and a code-coverage maximizing

heuristic. The initial input is chosen at random from a pool of well-formed

inputs and is symbolically executed by the program. The approach consists

of recording a concrete execution of the program under test based upon

supplying a well-formed input. Subsequently, it symbolically evaluates the

recorded trace and gathers constraints on the input variables capturing

their interaction with the program. For producing new test cases, the

authors propose an algorithm called “generational search” which tries to

expand all constraints found in the path constraint; for this they associate

with each constraint a score that represents the incremental branch

coverage. This approach uses exhaustive generation as all constraints are

expanded, but prunes the unsolvable constraints and returns a concrete

value, whenever symbolic execution is not possible.

The algorithm is implemented in a symbolic execution framework called

SAGE which stands for “Scalable, Automated, Guided Execution”. The

framework has two main features that separate it from previous

frameworks—the generational heuristic algorithm (generational search) and

a trace-based x86 binary symbolic execution engine.

The generational heuristic algorithm works as follows:

� Starting with an initial input seed and initial path constraint,

it will attempt to expand all of the given constraints (opposed

19

to the usual approaches where the first one (breadth-first) or

only the last one (depth-first) are expanded).

� Then, to prevent these child sub-searches from redundantly

exploring overlapping parts of the search space, a parameter

is used to prune each existing sub-search.

� The result is a set of test cases called “generation” that will

be the input seeds for the next symbolic execution.

The expansion of generational constraints is prioritized by using a

heuristic that attempts to maximize block coverage. It computes the

incremental block coverage obtained by comparing the actual run to all

previous generated runs. The actual run is saved and classified in a list

according to its score, with the highest scores placed at the head of the list.

The constraint generation differs from previous symbolic executions

implementations in two main ways. First, it adopts a machine-code based

approach instead of common source-based implementation because:

� Source-based instrumentation must be adapted to support

each language, compiler or build tool adding upfront cost.

� Compilation and post processing tools may introduce

differences between the source code and the actual machine

code.

� Much third-party source code is not available and JIT–

compilers are difficult to test with source-based

implementations.

Second, instead of an online instrumentation, the framework

implements an offline trace-based constraint generation. In online

generation, constraints are generated during program execution by

statically injecting fixed or dynamic binary code. This approach results in

non-repeatable scenarios where, if the constraint solver fails, the

environment is unlikely to be reproducible making it hard to debug. Another

encountered problem is that some memory allocations are protected by the

operating system, making it very hard to replace at runtime. Offline trace-

based constraint generation is chosen as it is completely deterministic

because it works on the execution trace that captures the result of all

nondeterministic events found during the recorded run.

Path explosion and imperfect symbolic execution are still unsolved

limitations. For example, path explosion is not solved for large applications,

so performing dynamic test generation compositionally (16) is suggested as

a work around. This consists in testing functions separately (unit testing),

encoding test results as function summaries, then treating them in a

deterministic way with the recorded values corresponding to their input

preconditions and output post conditions.

20

Dynamic data structures analysis (pointer manipulations, arithmetic

operations, etc.) constraint solving, calls to the operating-system and

library functions that are very difficult to solve symbolically remain as

unsolved limitations where concrete values are employed in a classic

random fashion.

Another approach was suggested by Ganesh, Leek and Martin (17).

Their system uses dynamic taint tracing to locate regions of well-formed

input files that influence the behaviour of the system under test. Once it

has detected those regions, it fuzzes them to produce new test inputs.

These approaches change only small parts of the well-formed files so the

change is usually syntactically correct, allowing it to pass the parsing

phases and reaching “deeper” control paths within the system.

This algorithm was implemented in BuzzFuzz (17), which uses directed

whitebox fuzzing. Whitebox fuzzing is designed to produce well-formed test

inputs that exercise “deep code” in the semantic core of the program under

test. It is based on the following four techniques:

� Taint Tracing - the execution is instrumented to record taint

information that represents each input value and the input

bytes that influence each value that the program computes.

� Attack Point Selection - the system identifies specific

vulnerable points (i.e. library and system calls) and allows

the user to specify any arbitrary number of attacking points.

� Directed Fuzzing - for each identified vulnerable point, the

system computes the set of input bytes that affect the values

at that attack point. This technique is enhanced with fixed

“extreme” values (very long or null strings, etc.) to stress the

system.

� Directed Testing - dynamic execution over new generated

values.

The main benefits of this proposal are:

� Preservation of syntactic structure - directed fuzzing targets

input bytes that can be changed without violating the legal

syntactic structure of original well-formed inputs.

� Targeted values - fuzzed input bytes are designed to have a

high concentration of inputs that can reveal errors that may

exist in the detected vulnerable points.

� Coordinated changes - directed fuzzing can identify and alter

multiple values of the input space that must change together

to reveal errors.

The main difference between traditional symbolic execution and this

approach is the symbolic information with which both techniques work.

Traditional symbolic execution records a logical expression for each variable

21

that defines all possible concrete values these variables can take for

exercising the execution path; the new approach only maintains the set of

input bytes that influence the program variables through the execution path.

2.8 Symbolic Grammars

Symbolic grammars are context-free grammars where terminal

symbols are substituted with regular expressions that represent the entire

solution space for that (precise set) of terminal symbols. They combine the

advantages of selective enumerative test generation and directed symbolic

test generation.

Model-based exhaustive enumeration is guaranteed to provide valid

inputs to the program; however it is likely to produce redundant tests cases,

which will exercise exactly the same execution path making them identical

from the programs perspective. Test generation based on symbolic

execution is directed, systematically exercising new paths; even though,

symbolic techniques are expensive and limited by the capacity of the

symbolic engine. Performance is also a limitation, symbolic exploration is

sensitively slower than exhaustive enumeration; this may lessen as

symbolic execution produce no redundant test cases (18).

Symbolic grammars enable a sensitive decrease in the number of

strings to be enumerated. For each enumerated symbolic string, the

symbolic constants give control over the strategy to generate concrete

values (deterministically or non-deterministically) to maximize the path

coverage of the program.

Majumdar and Gang Xu (18) propose to combine the selectiveness of

specification-guided test generation with the directedness of concolic

generation through the use of symbolic grammars that give more

constraints over the input space that enable deeper control path exploration.

Their work proposes to exhaustively pre-generate all feasible inputs up to a

certain size from the symbolic grammar and then performing dynamic test

generation over those pre-generated inputs.

Take for example the following code:

1 public void main (char[] argv){

2 public int myFunction () {

3

4 var1= (int) argv[1];

5 var2= (int) argv[2];

6

7 var1 = var1 + 1;

8

9 if (var1 > var2)

10 var1 = 10 – var2;

11 else

12 var1 = var1 / var2;

13

22

14 return var1;

15 }

16 }

The grammar that describes the rules for this program would be:

expr = “myFunction ” number number ;

number = <number>;

The values for the rule “number” are not specified; instead a symbolic

constant is specified. This can be understood as the parsing trees shown in

Figure 2.2 where the number branch in G is replaced in G’ by a symbolic

constant whose description will be later given in V.

Figure 2.2 Parse trees for G, G' and V

The test generation algorithm instantiates symbolic constants with

concrete values at runtime in a directed fashion which consists in treating

symbolic constants as unconstrained symbolic values which will be solved

by concolic execution. The reduction in the number of possible strings in the

language enables exhaustive enumeration to scale and provides selectivity.

In the other hand, directedness is given by concolic execution as the

symbolic constants enables exploration of non-redundant strings.

The system works as follows:

23

� It converts the concrete grammar to a symbolic grammar by

replacing unbound set of concrete constants with symbolic

constants.

� It exhaustively enumerates all symbolic sentences from the

symbolic grammar up to a certain size.

� For each symbolic sentence, directed testing is achieved by

concolic execution where each symbolic constant is

considered to be an unconstrained input to be solved.

As this work is based on concolic execution and model-based testing, it

inherits their limitations, but the usage of both approaches lessens the

effects and helps with scalability.

The effectiveness of the constraint solver engine is limited; i.e. if the

constraints are beyond the capabilities of the constraint solver, random

testing is employed to produce concrete values. The symbolic grammar is

as effective as the user defines it; for example, a more descriptive grammar

that captures the semantic properties or if deeper executions paths are

needed to be exercised, a more descriptive grammar needs to be employed.

Finally, the exhaustive generation of test inputs prevents this approach

from being used in larger systems.

For our approach, a context-free grammar that gave a complete

description of the protocol and valid program inputs was employed. The

grammar was a lexical description of valid inputs of the technological base

of the system under examination; normally, a programming language, a

(communications) protocol (such as HTTP response messages), a container

format (such as pdf file) or a policy definition (such as firewall rules).

2.9 Grammar-based WhiteBox Fuzzing

Kiezun, Godefroid and Levin (19) introduce grammar-based whitebox

fuzzing which is an enhancement to whitebox fuzzing that employs a

grammar-based specification of valid inputs. Grammar-based whitebox

fuzzing is a dynamic test generation algorithm where symbolic execution

generates grammar-based constraints whose intersection with the model

grammar is verified using a grammar-based constraint solver. The

algorithm has two main components:

� High-level symbolic constraints - expressed in terms of

symbolic grammar tokens returned by the lexer, instead of

the traditional symbolic bytes read as input.

� A custom constraint solver that solves constraints on

symbolic grammar tokens. The solver looks for the

intersection between the constraints and a given context-free

symbolic grammar.

24

The grammar represents valid inputs for the program under test so all

solutions generated by the constraint solver correspond to valid inputs.

Grammar-based whitebox fuzzing extends traditional whitebox fuzzing

algorithms as follows:

� It requires a symbolic grammar G that describes only valid

program inputs

� It associates a symbolic variable with each token returned

from the tokenizing function.

� It uses the given grammar to require that the new input not

only satisfies the execution path constraint, but that it is also

is part of the language defined by the grammar

The constraint solver computes language intersection of both the given

symbolic grammar (G) and the constraints recorded from the symbolic

execution (R) as follows:

� Convert G to a Push-Down Automata (PDA);

� Convert R to a Finite-State Automata (FSA);

� Compute a PDA with the intersection between the PDA (G)

and the FSA (R),

� Check the emptiness of the resulting PDA, if empty

terminate; else

� Generate any string in that language.

The algorithm implemented (in SAGE) is a simpler version of this one.

It computes a grammar representing the intersection of both languages G

and R . It takes advantage that any regular language R always constrains

only the first n tokens returned by the tokenization function, and that it

does not go through an explicit PDA transformation.

Consider the following symbolic grammar:

expr = expr op expr | <number> ;

op = “+” | “-” | “*” ;

With a constraint grammar - taken from recorded runs:

T0 = <number>

T1 = “+”

T2 = <number>

T3 = “-”

Then the constraints are solved as follows:

1. First the grammar initial production (expr) is duplicated and

renamed as expr’.

25

2. Starting with the duplicated initial production expr’ of the

grammar, the algorithm removes the second production as it

can't satisfy the constraint "<number>".

3. Then the algorithm examines the next constraint "+" and it

expands the non-terminal op in the production, expr =

<number> op expr, with the production, op = “+”, as it is the

only production that satisfies the constraint from the production

op = “+” | “-” | “*”.

4. This is repeated until all the constraints are solved or until a

constraint can't be satisfied.

The values expr’ takes for each constraint as the algorithm solves them

are shown:

expr’ = <number> op expr | <number>;

T0: expr’ = <number> op expr;

T1: expr’ = <number> “+” expr;

T2: expr’ = <number> “+” <number> op expr;

T3: expr’ = <number> “+” <number> “-” expr;

Finally, the symbolic sentence is executed by SAGE and the symbolic

constants are substituted for concrete values by the constraint solver at

runtime.

Some of the limitations of this work are the need for an accurate

grammar that correctly describes the input space. Path explosion is

lessened by the constraint solver which prunes non-feasible paths; however,

the input space remains too open and exhausting random generation

makes scalability infeasible.

26

3 Problem Overview

Fuzz testing is a method for discovering faults in software by providing

unexpected inputs and monitoring for exceptions. Fuzz testing is divided

into different phases: target identification, identify inputs, generate fuzz

data, execute fuzzed data, monitor for exceptions and determine

exploitability (20). This research focuses on fuzz data generation. For this,

previous model-based fuzzing attempts are analyzed and a new approach

for model-based fuzz data generation is proposed.

This section is divided as follows: first an analysis of fuzz testing and a

definition of the problem to solve will be given. After that a revision of the

different technologies employed in building our solution will be presented,

Finally, the design of the new approach will be discussed.

3.1 Fuzz Testing

Software companies spend a great deal of its time and money in the

testing of their software (21), so ways of optimizing this phase have been

of interest for researches in the past years. One of the first steps to

optimizing this task was to automate it as manual approaches proved to be

inefficient. Fuzz testing was a technique that took immediate advantage of

this automation. Fuzz testing has emerged as one of the most promising

techniques for automated testing (22).

Sutton (20) divides fuzz testing into five basic phases: target

identification, inputs identification, fuzz data generation, fuzzed data

execution, exceptions monitoring, and exploitability determination. One of

the most difficult and expensive parts of these phases is the actual

generation of test data. Test data generation was first done by hand, and

has evolved towards its complete automation (22).

Different approaches exist for automatic data generation (23).

� Random - generates test cases with a complete quasi-

random approach. Its implementation is inexpensive and can

quickly generate thousands of test cases. Its main

disadvantage is that many of the generated cases are non-

meaningful and we can't control which part of the systems

are exercised.

� Adaptive - this approach is based on an architecture that

implements feedback through an adaptive test generator.

The technique provides values for input parameters and

produces data values which calculate an indication of test

effectiveness. The adaptive test generator uses these values

27

and previous test data values to produce new test data which

attempts to increase test effectiveness.

� Syntax-based - this approach processes data which is

expressed in a grammar or notation (i.e., BNF, a message

protocol, etc.) and generates test cases from it. This

approach is one of the most used for fuzz testing as it can

generate large amounts of well-formed data in an automated

fashion.

� Path-oriented - the main goal of the approach is to execute a

full-path coverage of the application under test. This

approach has been implemented mainly by symbolic

execution which is very effective, but expensive in terms of

domain knowledge and implementation.

� Specification-oriented methods - test generation is based on

the specification of the system. The main drawback of these

approachs are that specification is not collected in a uniform

fashion preventing a general method to escalate.

From all these different approaches syntax-based generation testing

was selected as it is one of the most widely used in the industry (21) and

the significant advances it has gone through in recent years make it a very

promising field of research.

3.2 Grammar-based Fuzzing

One of the main advantages of using syntax-based test generation is

that test data structure must be documented precisely; this helps to

optimize the phases of software maintenance and debugging. Another

advantage is that it can generate large quantities of data in an automated

fashion. Recent research has focused on optimizing the model’s usage (i.e.

using all productions in a grammar) and generating test data that focuses

on maximizing code coverage or complies with statistical distributions. All of

these advantages help the tester to add complexity to the test data (23).

Two main disadvantages of this technique are that some classes of data

are impossible to generate (i.e. GUI testing); and that writing the syntax

rules for complex sets of test data can be very complex. These limitations

are the reasons why this approach has normally been applied for testing

complier projects.

One of the most explored model-based fuzz testing strategies is

grammar-based fuzzing. The first approaches were bottom-up strategies

that created a specific grammar that was able to generate a specific set of

values (6). Later this approach was modified for top-down strategies where

grammars describing the complete input space are used to generate test

data (5).

28

As the input space of top-down strategies is too large, strategies have

been suggested to reduce that space. For example attributed grammars

were proposed by Maurer (6) to give context-awareness to the context-free

grammar. Another approach was studied by McKeen (7) who employed

stochastic grammars to associate probabilities to its rules.

One of the most recent approaches was suggested by Majmudar (18)

who introduces the concept of symbolic grammars. Symbolic grammars are

context-free grammars where terminal symbols are substituted with regular

expressions that represent the solution space for that precise set of

terminal symbols. The reduction in the number of possible strings in the

language enables exhaustive enumeration to scale and provides selectivity.

However, the input space is still too large and relies basically in the

symbolic execution engine to constrain the sentences generated with the

symbolic grammar. A solution was proposed by Kiezun et al. (19) where

high-order symbolic constants are used in a constraint symbolic grammar

to reduce the input space and execute a directed generation of sentences.

3.3 Limitations

Three main limitations have been identified regarding grammar-based

testing:

� Employment - grammar-based test generation can be

employed in a wide variety of systems that receive a

structured input as any system that receives a structured

input can be expressed with a grammar created in a bottom

up fashion (6). But it is encouraged for systems that have

highly structured inputs (such as programming languages,

protocols, format containers or policy definitions) that can be

defined with a context-free grammar (or can be transformed

to one) (19). For systems or tests that do not have

structured inputs, grammar-based testing is not

recommended.

� Context-sensitive inputs – due to their nature, context-free

grammars (CFG) are not context sensitive, so for this kind of

testing which is based on the employment of CFG. In practice

the set of valid inputs of a system is bounded by an

approximated grammar which is a simplified representation

of valid inputs. Approximated grammars are subsets of the

grammar that describe the entire solution space, but with

added rules to approximate context-sensitive behaviours

needed to create parsable inputs. (19)

� Domain knowledge – grammar-based testing requires a

limited amount of domain knowledge: the formal grammar,

29

the criteria to convert formal grammar into a symbolic

grammar; and, if needed, the constraint grammar definition.

Formal grammars are sometimes readily available;, i.e. for

our initial test the http-cookie formal grammar defined in RFC

2965 was found in a matter of minutes.

3.4 Grammar-based Test Data Generators

Up to now the advantages and limitations of grammar-based data

generation for grammar-based fuzz testing has been discussed. It is

important to establish the generic model of any grammar-based test data

generator, is shown in Figure 3.1.

Figure 3.1 Generic model for grammar-based data generator

Where:

� Grammar - is a set of rules that represents the structure of

the input solution space.

� Constraints – fuzzing heuristic (22) which sets boundary

values for the input solution space.

� Grammar sentence engine – in charge of solving the

constraints and the grammar to produce grammatical

sentences that comply with both.

� Constraint solver – solves the input constraints, in the

context of the grammar, so that the string generator engine

can use them to generate valid sentences.

� String generator engine – generates grammatical sentences

using the computed constraints from the constraint solver.

� Grammar sentences – grammar-based generated sentences

which comply with both the input grammar and other

constraints (these are the actual test cases).

Limitations on each entity can be found in Table 3.1.

 Limitations Previous Solutions
Grammar Lack of expressiveness

(CFG modification for

system employment)

• Attributed grammars

(6) (8)

• Stochastic grammars

30

(7)

• Symbolic grammars

(18)

Constraints Effective representation of

inputs

(The format in which the

inputs are fed to the

system).

• Byte code level (17)
• High-level symbolic

level (19)

Constraint

Solver

Effective constraint solving

(How the system solves its

constraints)

• Symbolic solver (18)

• Language intersection
(19)

String

Generation

Engine

Lack of grammar rules

usage control

(Technique used to control

rules during sentence

generation)

• Attributed grammars

(6) (8)

• Stochastic grammars

(7)

• Uniform distribution

(24)

• Shortest string (3)

 Lack of sentence length

control

(Technique used to control

sentence length)

• Fixed length (8) (24)

 Unconstrained generation

of sentences

(Technique used to

generate sentences from

the grammar)

• Random approaches

(18)

• Selective approaches
(8)

Grammar

Sentences

Impossibility to choose

which sentences to

generate

(Technique used to select

which sentences to

generate)

• Enumeration (18)

• Directed generation
(19)

• Selective post-phase (8)

This table is a summary of sections 3.1.1 and 3.1.2

Table 3.1 Limitations for grammar-based data generator components

3.5 Systems Comparison

In this section the different attempts to generate test cases for each

approach will be discussed. As a simple application it is consider a simplified

version of SimpleCalc that is employed by several authors (18) that explore

this technology). The following approaches were chosen as they establish

the state-of-the-art at the moment and are the most more related to our

work:

1. Random Generation of sentences from a concrete grammar.

2. Symbolic Test Generation introduced by Majumdar et al. (18)

uses symbolic grammars and exhaustive generation.

31

3. Symbolic Constrained Test Generation introduced by Kiezun

et al. (19) uses symbolic grammars and symbolic constraints

to bound the input domain.

The BNF-grammar for our simplified version of Simple Calc (18) is the

following:

expression = singleExpresion | operationExpression |

numbers ;

singleExpresion = "(" expression ")" | "-" expression ;

operationExpression = expression operator expression ;

operator = "+" | "-" | "*" | "/" | "%" | "^" | "v" ;

numbers = number number;

number = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8"

| "9" ;

The program takes an arithmetic expression, parentheses for

precedence, various numerical and some bitwise operators. Numerical

operators are directly applied, and precedence is handled by parsing. Let’s

suppose that the implementation contains some simple and common bugs:

division or modulus by zero.

For our tests, we will take a maximum sentence length for simplicity.

Note that numbers are considered a single terminal symbol for our

comparison. Length is measured in terminal symbols found in the generated

concrete sentence, for example, for the concrete sentence “30” “+” “50” we

have three terminal symbols thus, a length of three.

The approach will be considered to solve the problem when a division

or module by zero test cases is generated. The difference of these

approaches with our proposed solution will be used to explore its strengths

and benefits over previous work.

3.5.1 Random Generation

Random generation approaches takes a grammar and generates

random sentences from it. Usually exhaustive generation of all possible

inputs is infeasible as the input space is too large.

Let’s take Table 3.2, which gives the total number of different

sentences for a given length that can be produced by the SimpleCalc

grammar.

Length
Valid unique

strings

Percentage of

tests

3 70 200 0.288%

4 140 300 0.289%

5 49 420 300 0.368%

Table 3.2 Total number of different sentences for a given length for the SimpleCalc grammar

32

It is clear that as the string length keeps increasing, the number of

valid unique strings grows exponentially. Thus enumeration is not a good

option for test case generation in this case.

The probability of producing a grammatical sentence of length five that

has the exact values needed for exposing the desired pattern (‘/00’ or

‘%00’) for lengths three to five are extremely low, so hitting a bug with this

technique is highly improbable. The problem is that random testing is

neither directed nor selective.

3.5.2 Symbolic Test Generation

The first step proposed for this method is to convert a context-free

grammar (CFG) into its equivalent symbolic grammar. This is accomplished

by replacing the CFG’s terminal symbols (in our grammar, the number is

considered to be a terminal symbol) with regular expressions (symbolic

constants) that represent the entire solution space for that precise set of

terminal elements. In our example, two rules were substituted (operation

and numbers) with symbolic constants that represent the values defined by

the substituted rules:

expression = singleExpresion | operationExpression |

<NUMBERS> ;

singleExpresion = "(" expression ")" | "-" expression ;

operationExpression = expression <OPERATOR> expression ;

With the symbolic grammar, the method undertakes an exhaustive

generation of symbolic sentences up to length five (producing symbolic

sentences of length less than five is not of interest in our example). With

this new approach, the enumeration is simple and manageable (only

length-five symbolic sentences are shown):

"-" "-" "-" "-" <NUMBERS>

"-" "-" "(" <NUMBERS> ")"

"-" "-" <NUMBERS> <OPERATOR> <NUMBERS>

"-" <NUMBERS> <OPERATOR> "-" <NUMBERS>

"(" "(" <NUMBERS> ")" ")"

"("<NUMBERS> <OPERATOR> <NUMBERS> ")"

"(" <NUMBERS> ")" <OPERATOR> <NUMBERS>

<NUMBERS> <OPERATOR> "-" "-" <NUMBERS>

<NUMBERS> <OPERATOR> "("<NUMBERS> ")"

<NUMBERS> <OPERATOR> <NUMBERS> <OPERATOR> <NUMBERS>

The approach proposes that exhaustive generation should be made

with these symbolic sentences, selecting test cases that are of interest or

that could exercise interesting execution paths. Common criteria for

33

selection would suggest selecting symbolic sentences which are very simple,

equivalent or that show common patterns in them. For example applying

exhaustive generation over "-" <NUMBERS> <OPERATOR>"-" <NUMBERS>

which is the simplest form of the <NUMBERS> <OPERATOR><NUMBERS>

pattern and is present in seven of the ten generated symbolic sentences,

makes it the “obvious” testing target. The approach uses concolic execution

(14) for test cases selection, but as test generation phase of this system is

the only element discussed, it is not applicable. To overcome this limitation,

the approach suggests constrained exhaustive enumeration of concrete

sentences from symbolic sentences. In our example, this approach would

select the symbolic sentence "-" <NUMBERS> <OPERATOR>"-"

<NUMBERS> with a simple enumeration approach:

"-" "00" "+" "-" "00"

"-" "01" "+" "-" "00"

"-" "02" "+" "-" "00"

"-" "03" "+" "-" "00"

...

"-" "99" "+" "-" "00"

"-" "00" "-" "-" "00"

...

For this enumeration, each possible concrete value the symbolic

sentence can take was generated, so it is clear that the search is directed

but it is not very selective once the symbolic sentences have been

generated.

It should be noted that even though this approach makes enumeration

manageable (up to certain lengths), the number of symbolic sentences can

grow exponentially for complex grammars. Another limitation is that there

is no proposed strategy to control the total number of symbolic constants in

symbolic sentences. For example, generating sentences that are of no

interest for our testing strategy (in our example symbolic sentences

containing less than five concrete constants are likely to be produced).

3.5.3 Constrained Symbolic Test Generation

This approach employs symbolic grammars in a similar way as symbolic

test generation, but introduces a symbolic constraint grammar which

restricts the input space. The symbolic constraint grammar consists of

single symbolic non-terminal element rules. Each of these rules represents

a symbolic constant constraint that the generated symbolic sentence should

satisfy. To satisfy these constraints, the system computes the intersection

between the symbolic constraint grammar and the symbolic grammar

exploiting the fact that, by construction, any regular language always

constrains only the first n-symbolic constants of the symbolic grammar,

where n is the total number of rules in the symbolic constraint grammar.

34

The algorithm guarantees that productions that violate the constraints

during computation will be pruned from the search, making it a directed

search.

Using this strategy, once the symbolic sentence is generated, concrete

values are instantiated to comply with concolic execution. As only test

generation is being used for this approach, the instantiation of concrete

values for our tests has to be implemented separately. This method

instantiates symbolic values with pseudo-random values, making it very

ineffective when specific inputs are required to expose a system flaw.

To illustrate this, the previously defined symbolic grammar and the

following symbolic constraint grammar are employed:

T0 = <NUMBERS> ;

T1 = <OPERATOR> ;

The symbolic constraint grammar is defined by the user looking to

prune from the search any non-interesting paths. For the symbolic

constrained grammar, any input that begins with the symbolic constants

<NUMBERS> and <OPERATOR> was found promising. So only the following

strings are generated after the languages intersection is computed:

<NUMBERS> <OPERATOR> "-" "-" <NUMBERS>

<NUMBERS> <OPERATOR> "(" <NUMBERS>")"

<NUMBERS> <OPERATOR> <NUMBERS> <OPERATOR> <NUMBERS>

<NUMBERS> <OPERATOR> "-" <NUMBERS>

<NUMBERS> <OPERATOR> <NUMBERS>

It should be mentioned that not only sentences of length five are

generated, but all strings that comply with the constraint up to length five

are produced. This enhances the previous approach as it directs the testing

generation only with test cases that are “of interest” for our testing strategy.

It can be seen that any of these symbolic sentences are likely to expose the

failure in the same amount of tries (except the third one).

The main limitation of this approach is that it doesn’t present a good

strategy for instantiating concrete sentences from the symbolic sentences.

This is a major drawback; thus, after generating a desired symbolic

grammar, the algorithm resorts to pure random generation.

Another limitation is that for each test case, a symbolic sentence is

generated. This makes it difficult to produce test cases that share the same

structure defined by the symbolic sentence. For our example, five symbolic

sentences are generated.

35

Finally, when a symbolic constant is solved its instantiation is not

controlled, thus losing any relation between the elements that compose the

regular expression that represents the solution space for the symbolic

constant. This affects directly the results obtained when replacing the

symbolic constants for concrete values as they raise the probability of

producing syntactical incorrect test cases when a relation between its

concrete values exists.

3.5.4 Our Approach

The strongest features of the two discussed systems were combined in

our approach. Meanwhile for the limitations that both approaches present

we suggest new alternatives to lessen their effects and produce a novel

approach for grammar-based generation.

The main functionality of our system consists of three sequential

phases: constraint solving, symbolic sentences generation and

concrete sentence production. These phases use a symbolic grammar,

symbolic values grammar and a symbolic constraint expression.

The symbolic grammar has the same characteristics as previously

discussed. The symbolic value grammar is where symbolic constants are

defined with concrete constants; it is used to instantiate symbolic constants.

Finally the symbolic constraint expression is a regular expression expressed

in terms of symbolic constants and concrete values that replace the

symbolic constraint grammar previously discussed where its left hand side

should be the initial symbol of the symbolic grammar. These three

components are shown:

Symbolic Grammar

expression = singleExpresion | operationExpression |

<NUMBERS> ;

singleExpresion = "(" expression ")" | "-" expression ;

operationExpression = expression <OPERATOR> expression ;

Symbolic Values Grammar

NUMBERS = number number;

OPERATOR = "*" | "/" | "%" | "+" | "-" | "^" | "v" ;

number = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8"

| "9" | "0" ;

Symbolic Constraint Expression

expression = <NUMBERS> <OPERATOR> ;

For the constraint solving phase, our system computes the language

intersection defined by the symbolic grammar and the symbolic constraint

expression to produce a symbolic constrained grammar. For our example,

the constraint expression that is equivalent to the symbolic constraint

36

grammar employed in the last example and the symbolic grammar for the

SimpleCalc was used as follows:

Symbolic Constrained Grammar

expression = <NUMBERS> <OPERATOR> expression’ ;

expression’ = singleExpresion | operationExpression |

<NUMBERS> ;

singleExpresion = "(" expression’ ")" | "-" expression’ ;

operationExpression = expression’ <OPERATOR> expression’ ;

It can be appreciated that the rule expression’ is now part of the

constrained symbolic grammar and that the rule expression has been

redefined with the computed intersection of the languages. With these

changes, it is guaranteed that the constrained symbolic grammar can only

generate sentences that comply with the language intersection.

After this phase, symbolic sentences generation starts in which the

system computes grammar-based, lexically accurate, unique sentences

from the symbolic constrained grammar that comply with the symbolic

constraint expression. Using our example these would be the results of this

phase:

<NUMBERS> <OPERATOR> "-" "-" <NUMBERS>

<NUMBERS> <OPERATOR> "(" <NUMBERS>")"

<NUMBERS> <OPERATOR> <NUMBERS> <OPERATOR> <NUMBERS>

<NUMBERS> <OPERATOR> "-" <NUMBERS>

<NUMBERS> <OPERATOR> <NUMBERS>

Constrained symbolic test generation is not aware of previous

generated sentences, so it is likely to generate the same symbolic

sentences several times. Our system overcomes this limitation by producing

only unique symbolic sentences, allowing the system to focus its efforts on

the concrete generation phase.

The symbolic sentences represent different grammatically valid

structures that are used to produce concrete sentences during the

concrete generation phase. For this purpose, our system uses quasi-

random techniques replacing traditional pseudo-random techniques for the

instantiation of symbolic constants. This phase produces the same number

of concrete sentences for each symbolic sentence, giving the tester control

over the relation of symbolic constants elements and the number of

concrete sentences that will be produced for each symbolic sentence. For

example Table 3.3 enlists 10 concrete sentences for two symbolic sentences.

<NUMBERS> <OPERATOR>

<NUMBERS>

<NUMBERS> <OPERATOR> <NUMBERS>

<OPERATOR> <NUMBERS>

71-62

17*08

04^05v19

45-50%36

37

09/90

44v35

03%03

58+49

75^66

20/11

40v80

95%26

00*30+90

18/85^21

72v68-76

01%13*59

47+54/04

20%00^45

74+27-00

33^81*18

Table 3.3 Concrete sentences for two symbolic sentences

It can be seen that values are evenly distributed through the input

domain. Take for example the concrete values for the symbolic constant

<OPERATOR>, where in 10 elements each element only appears twice only

after all the other elements have been generated.

This is the main idea of our system. The design and description of the

main features will be presented in the next section.

38

4 The System

In previous sections the current state-of-the-art was analyzed and the

current limitations were discussed. Then we gave an overview of our

system. Section 4 presents a detailed discussion of the system which is

based on the following concepts:

� The solution shall accept any context-free grammar (CFG).

� The solution shall employ a symbolic grammar derived from

the CFG.

� The solution shall be flexible enough to accept any given

grammar with minimal changes

� The solution shall employ symbolic constraints.

� The solution shall constrain its input space with human-

readable restrictions.

� The solution shall employ a constraint solver that computes

the intersection between the symbolic constraints and the

symbolic grammar.

� The solution shall use all selectable grammar productions in a

uniform fashion to produce grammar sentences.

� The solution shall provide control over the volume of

terminals in the sentence.

� The solution shall implement a selective strategy for

instantiating symbolic sentences.

� The solution shall generate directed concrete test cases that

share the same symbolic sentence.

� The solution shall give control over symbolic constant

instantiation to maintain the relation between the elements

that compose concrete values.

4.1 Definitions

Through section 3 we have been faithful to the definitions and terms

used by the authors of the approaches analyzed. However as they are not

consistent through the literature, hence, at this point, these terms will be

defined more formally here and these definitions are used throughout the

remainder of this document.

� Let Π be a finite alphabet.

� A terminal is a regular expression over Π.

� A context-free grammar (a set of recursive productions

used to generate patterns of strings) is defined as a 4-tuple

G = �B, Σ, R, S	 where:
o B is a finite set of non-terminals.

39

o ∑ is a finite set of terminals.

o R is a finite set of production rules of the form

	B → �B ∪ Σ	.
o S ∈ B is the start symbol.

� The language L(G) ⊆ Π* of G is defined as usual (25):

o You use a grammar to describe a language by

generating each string of that language in the

following manner.

1. Write down the start symbol. It is the non-

terminal on the left-hand side of the top rule,

unless specified otherwise.

2. Find a non-terminal that is written down and a

rule that starts with that non-terminal. Replace

the written down non-terminal with the right-

hand side of that rule.

3. Repeat step 2 until no non-terminals remain.

o All strings generated in this way constitute the

language of the grammar.

� The language Lh(G) ⊆ Π* of G is defined as all strings

containing h terminals of Π.

� Let Φ = �TE�, … , TE�, … , TE�� , where Φ is referred to as a

concrete sentence (CS) of length m and TE� ∈ Σ is referred
to as a concrete constant.

� Let � = �α�, … , α�, … , α�� be k symbolic constants not in Π where

α��� is referred to as a symbolic constant.

� A symbolic grammar (G’) for G is defined as a 4-tuple

G′ = �F	, Υ, R′	, S	 where:
o F ⊂ B where B is the finite set of non-terminals of G.

o Υ = 	Σ	 ∪ 	Α where Σ is the set of terminals of G.

o R’ is a finite set of production rules of the form

B → �B ∪ Υ	
o S is the start symbol of G

� The language of G’ is defined as Ld(G’) ⊂ (Π ∪ A)*.

� Let Ψ = �SE�, … , SE�, … , SE!� where 	Ψ is referred to as a

symbolic sentence (SS) of length n and SE� ∈ Υ.
� A symbolic constraint expression (E) of G’ is defined as a

symbolic sentence.

� A symbolic constraint grammar (C’) of E is defined as a

3-tuple C′ = �N, Υ, R′	 where:
o N is a finite set of non-terminals.

o Υ is the finite set of terminals of G’.

o R’ is a finite set of production rules of the form 	N → Υ′.
� A symbolic constrained grammar (C) is defined as

$ = %& ∩ $′

40

� A symbolic value grammar (V) for G’ is defined as 3-tuple

V = �W, Λ, P	
o W is a finite set of non-terminals where A ∈ W and A

is the set of symbolic constants in G’.

o Λ is a finite set of terminals.

o P is a finite set of production rules of the form

W → �W ∪ Λ	∗.
� Let Ç be a finite set of production rules of the form 	W → Λ.
� Let Ξ = �pCE�, … , pCE�, … , pCE/� where 	Ξ is referred to as a pre-

concrete sentence (pCS) of length z and pCE� ∈ Ç.

4.2 Technologies Employed

The purpose of the system is to generate lexically-accurate examples of

a given symbolic grammar that complies with a set of additional user-

defined constraints. The user-defined constraints place limitations on the

initial symbolic grammar to provide an effective specialisation. With these

examples, a set of effective test cases provided that the symbolic grammar

and the constraints provide an adequate representation of the input space

can be generated. The effectiveness of the test cases is enhanced by a

user-defined symbolic definition grammar (symbolic value grammar) that

will define specialized structures for different test cases that share the same

symbolic sentences.

Our work is mainly based on the following techniques

� Symbolic grammars which were discussed in section 2.8.

� Symbolic constraints which are used for constraining the

input space of a symbolic grammar with a symbolic constraint

grammar, allowing the test case generation to be directed

(19).

� Adaptive random testing, proposed by Tappenden and Miller

(26), which is a strategy whose objective is to increase the

effectiveness of random testing by attempting to maximize

the coverage of the input space.

� Selective and directed concrete sentence generation

techniques that enhance symbolic sentence and symbolic

constants instantiation. These techniques are novel in our

approach; as in previous grammar-based systems, concrete

sentence generation was computed during concolic execution.

� Genetic algorithms for enhancing some punctual deterministic

heuristics used on the symbolic sentence generator.

Our approach takes all the advantages of these technologies and adds

novel enhancements to lessen their limitations. The combination of all these

techniques and enhancements produces a novel approach for model-based

41

test data generation. These techniques will be discussed in the following

sections.

4.2.1 Symbolic Constraint

Our approach takes the initial idea of a symbolic constraint grammar

defined by Kiezun et al (19). In this approach, the input space of a symbolic

grammar is constrained with a symbolic constraint grammar, allowing the

test case generation to be directed and comply with the symbolic execution

properties.

The original implementation employs dynamic testing where selected

concrete sentences are used as symbolic constraint seeds for subsequent

iterations. For this, the system must transform a symbolic sentence into its

symbolic constraint grammar equivalent in order to be able to use it. It was

found through our experiments, that for test data generation, this approach

becomes impractical as there is no formal heuristic suggested for this

transformation, making it difficult for the tester to correctly define the

symbolic constraint grammar fed to the system. For example, consider the

following symbolic sentence, from the SimpleCalc grammar used in the

previous examples:

<NUMBERS> <OPERATOR> "(" <NUMBERS> ")"

To convert it into its symbolic constraint grammar, a rule for each

terminal symbol must be added:

T0 = <NUMBERS> ;

T1 = <OPERATOR> ;

T2 = "(" ;

T3 = <NUMBERS> ;

T4 = ")" ;

This approach is not formally defined and other approaches might exist.

Because of this the grammar must be substituted with a regular expression

expressed in terms of symbolic constants and concrete values which are

part of the symbolic grammar. Our approach uses the same symbolic

sentence generated by the system, but preceded it with the starting symbol

of the symbolic grammar:

expression = <NUMBERS> <OPERATOR> "(" <NUMBERS> ")"

With this enhancement, first, the starting symbol of the symbolic

grammar (which originally had to be provided separately) is explicitly set;

and second, the constraint definition is simplified by using the same

symbolic sentence generated by the system (with the previously mentioned

modification). This last modification allows the user to only provide the

symbolic constraint expression, suppressing the explicit definition of the

42

symbolic constraint grammar. Please note, the system still uses the

symbolic constraint grammar internally.

A symbolic constraint expression is produced from a well-formed input

(usually a well-formed concrete sentence that is part of the language

described by the system input grammar). A common way of producing an

initial seed is using inputs generated randomly from the symbolic grammar;

another approach could be to select a seed from previous attempts (a pool

of known input seeds) that are already known to be likely to exercise

sections of the program that are of interest (19).

4.2.2 Adaptive Random Testing

Adaptive random testing seeks to maximize the effectiveness of

traditional random testing by spreading the test cases evenly across the

input domain. It employs the random generation of test cases with a

selection criterion used to evaluate the best available candidate (27). The

basis for adaptive random testing methodologies has its origins in the

observation that errors often occur within failure regions within the input

domain (28).

Quasi-random sequences are mathematical sequences whose low-

discrepancy properties allow them to provide a sequence with a uniform

distribution of values. The low-discrepancy property ensures that the

constructed sequences are “evenly-spaced”; that is, minimise the

discrepancy from the quantitative definition of “evenly-spaced” (26).

Quasi-random sequences have several limitations, most seriously their

deterministic nature. Each time a sequence of the same length is calculated

a new sequence is generated with the same numbers in the same order, so

the sequences are clearly not random. Several attempts have been

proposed to overcome this limitation, such as scrambling the sequence

each time it needs to be reused (28). However this solution is not currently

available for real-world testing applications as an adequate scrambling

method that retains the low-discrepancy nature of the quasi-random

sequence is not computationally feasible. For addressing this problem, each

time the sequence finishes and must be repeated, it is proposed that a

different starting point in the sequence should be chosen.

For our implementation several options exist; the quasi-random

sequence proposed by Sobol (29) is used. This sequence is widely used for

financial simulations and has been proposed for use in software testing by

Chi & Jones (30). Another alternative is the heuristic based approach of

Tappenden and Miller (26) which has many characteristics which suggest

that it may be superior to the Sobol Sequence. However, solutions exist for

generating the Sobol sequence of linear algorithmic complexity; whereas,

Tappenden and Miller is of quadratic complexity. Hence, a Sobol generator

43

is being utilised as it provides a more assured mechanism for producing a

highly-scalable test generator.

With this strategy, the generic model of Grammar-based Test Data

Generators is enhanced by replacing pseudo-random evaluations of

symbolic constants by selections from quasi-random sequences.

4.2.3 Selective and Directed Concrete Sentence

Generation

This enhancement to symbolic grammars has not been examined as

symbolic grammars are commonly only considered as a sub-component of

concolic execution. Different alternatives are employed to give control of

concrete sentence generation and symbolic constant instantiation.

Selective and directed concrete sentence generation is proposed via

two approaches for controlling how concrete sentences are instantiated

from symbolic sentences.

4.2.4 Concrete Sentence Generation Control

As discussed, another limitation is that for each concrete sentence a

symbolic sentence is generated. The original algorithm transforms each

symbolic sentence into a concrete sentence, thus the probability of having a

concrete sentence that shares the same symbolic sentence in a set of

generated strings decreases dramatically. To address this problem, using a

concrete sentence generation control mechanism, which adds control over

the symbolic constants is proposed. This approach consists in generating a

user-defined fixed set of different concrete sentences for each symbolic

sentence opposed to generating a single concrete sentence for each

symbolic sentence as previous work suggested (19).

4.2.5 Symbolic Constants Instantiation Control

In previous work, when a symbolic constant is solved any relation

between its sub-components is discarded. This affects directly the results

obtained when replacing the symbolic constants for concrete values as this

increases the probability of producing syntactically incorrect test cases.

In our approach, symbolic constants instantiation control which adds

explicit relations between symbolic constants sub-components which must

be instantiated communally is proposed (by low discrepancy sequences) to

increase the probability of producing syntactically correct concrete

sentences. To accomplish this, the concept of “entities” is introduced,

which are groups of symbolic constants that are related and hence are

44

treated as a single compound value (for example IP addresses or port

numbers).

4.2.6 Removing Deterministic Componentry

During the examination and testing of the symbolic sentence

generation, several deterministic algorithms that controlled the rule usage

for producing symbolic sentences were found. These algorithms could be

enhanced with an evolutionary computation approach to produce more

random (better distributed) symbolic sentences.

For this enhancement, these algorithms (choose(l) and gi(n) in

McKenzie’s algorithm (24)) were transformed into an evolutionary

computation introducing a mutation computation (31) to provide a

stochastic component to these algorithms The algorithms work together to

select the next rule that will guarantee to maintain the uniform distribution

implemented by McKenzie. With the introduced mutation computation add a

user defined probability that will allow the algorithm to choose an arbitrary

rule. This enhancement prevents rule selection becoming too similar to

each other; thus making the rule selection better distributed.

4.3 System Overview

Symbolic Grammar (G') Symbolic Value Grammar (V)

El. Description El. Description

F
expression, singleExpresion,

operationExpression
W OPERATOR, NUMBER

Y
<OPERATOR>, <NUMBER>, "(",

")", "-"
Λ

*, "/", "+", "-", "0", "1",

"2", "3", "4", "5", "6",

"7", "8", "9", "0"

R'

• expression =

singleExpresion |

operationExpression |

<NUMBER> ;

• singleExpresion = "("

expression ")" | "-"

expression ;

• operationExpression =

expression <OPERATOR>

expression ;

P

• OPERATOR = "*" | "/" |

"+" | "-" ;

• NUMBER = "0" | "1" | "2"

| "3" | "4" | "5" | "6"

| "7" | "8" | "9" |

"0" ;

S expression

Figure 4.1 Members description for elements of G' and V

For an overview of the system phases and how they interact, the

following example is given (this section will be followed by a section with a

detailed example).

45

A simplified version of the previously defined G', V and E (section

3.1.4.4) are used (Figure 4.1 shows a description of members conforming G’

and V):

Symbolic Grammar (G')

expression = singleExpresion | operationExpression |

<NUMBER> ;

singleExpresion = "(" expression ")" | "-" expression ;

operationExpression = expression <OPERATOR> expression ;

Symbolic Value Grammar (V)

OPERATOR = "*" | "/" | "+" | "-" ;

NUMBER = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8"

| "9" | "0" ;

Symbolic Constraint Expression (E)

expression = <NUMBER> <OPERATOR> ;

Some examples of sentences that are part of Ld(G’) would be the

following:

"(" "(" "(" "-" <NUMBER> <OPERATOR> <NUMBER> ")" ")" ")"

<NUMBER> <OPERATOR> "-" <NUMBER> <OPERATOR> <NUMBER>

"(" "(" <NUMBER> ")" <OPERATOR> "-" <NUMBER> ")"

"-" <NUMBER>

"-" <NUMBER> <OPERATOR> "(" <NUMBER> ")"

The first phase of the system is the constraint solving phase where

the intersection between G’ and E is computed, the result would therefore

be a symbolic constrained grammar (C). To produce C, the system makes

changes in S (the initial rule of G’) to ensure that:

� All sentence produced by C comply with E, and

� LC(C) ⊂ Ld(G’)

For this example, the resulting C would be:

Symbolic Constrained Grammar (C)

expression = <NUMBER> <OPERATOR> expression' ;

expression' = singleExpresion | operationExpression |

<NUMBER> ;

singleExpresion = "(" expression' ")" | "-" expression' ;

operationExpression = expression' <OPERATOR> expression' ;

The next phase of the system is the symbolic sentences generation

phase where symbolic sentences are generated from C. In the following

examples, it is clear that the sentences produced by this phase comply with

E and are a subset of G’:

<NUMBER> <OPERATOR> "-" <NUMBER>

<NUMBER> <OPERATOR> "(" <NUMBER> ")"

<NUMBER> <OPERATOR> "(" <NUMBER> ")" <OPERATOR> <NUMBER>

46

<NUMBER> <OPERATOR> <NUMBER>

<NUMBER> <OPERATOR> <NUMBER> <OPERATOR> "(" "-" <NUMBER> ")"

The final phase is the concrete sentences generation phase where

the produced symbolic sentences are instantiated with concrete values. This

phase introduces adaptive testing strategies for rules and terminal symbols

selection from V. In Figure 4.2, the instantiated concrete sentences are

shown for each of the previously produced symbolic sentences.

<NUMBER><OPERATOR><NUMBER>
<NUMBER><OPERATOR>"("<NUMBER>")

"<OPERATOR><NUMBER>

1 * 2 1 / (4) + 3

9 + 8 3 - (3) - 7

7 / 1 9 / (8) / 2

4 - 9 0 + (7) * 9

5 * 3 2 * (0) + 1

<NUMBER> <OPERATOR> "("

<NUMBER> ")"
<NUMBER> <OPERATOR> "-" <NUMBER>

5 - (0) 4 - - 6

4 * (9) 5 + - 5

9 + (3) 1 * - 1

1 / (7) 0 + - 9

2 - (5) 2 / - 0

<NUMBER> <OPERATOR> <NUMBER> <OPERATOR> "(" "-" <NUMBER> ")"

1 + 2 * (- 2)

2 - 3 / (- 8)

7 * 8 + (- 3)

8 / 1 - (- 7)

5 + 0 / (- 5)

Figure 4.2 Symbolic sentences and their corresponding instantiated concrete sentences.

4.4 Working Example

In this section, a large example illustrates how the employed

technologies work together. Let’s suppose a database engine must be

tested with a set of test cases derived from a simplified version of the BNF

Grammar for ISO/IEC 9075:1999 (32) for “SELECT” statements:

BNF Grammar (G)

Select = "SELECT " column_name (", " column_name)* "FROM "

table_name "WHERE " BCond ;

BCond = BCond "OR " BTerm | BTerm ;

BTerm = BTerm "AND " BFactor | BFactor ;

BFactor = "NOT " BCond | id "IS NULL " | ATerm | STerm ;

ATerm = value aop value ;

Value = id | number ;

STerm = id "LIKE " value | id sop value | id sop id ;

aop = "=" | "<" | ">" | "<=" | ">=" | "!=" ;

sop = "=" | "!=" ;

column_name = "CustomerID" | "CompanyName" | "ContactName" |

"ContactTitle" | "Address" | "City" | "Region" |

"PostalCode" | "Country" | "Phone" | "Fax" ;

table_name = "Customers" ;

id = column_name ;

47

number = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8"

| "9" ;

value = (letter)+ ;

letter = "a" | "b" | "c" | "d" | "e" | "f" | "g" | "h" | "i"

| "j" | "k" | "l" | "m" | "n" | "o" | "p" | "q" | "r" |

"s" | "t" | "u" | "v" | "w" | "x" | "y" | "z" | "A" |

"B" | "C" | "D" | "E" | "F" | "G" | "H" | "I" | "J" |

"K" | "L" | "M" | "N" | "O" | "P" | "Q" | "R" | "S" |

"T" | "U" | "V" | "W" | "X" | "Y" | "Z" ;

Examples of the sentences part of the grammar’s language are also

given:

SELECT CustomerID FROM Customers WHERE kGHEn = trnQWE OR NOT

PostalCode = YJIkkl ;

SELECT CompanyName FROM Customers WHERE Fax LIKE HDllKK AND

Country != Region ;

SELECT ContactTitle FROM Customers WHERE Phone IS NULL OR

BFactor OR City = a ;

SELECT City FROM Customers WHERE Jaw >= jKuuIgfDeWA ;

SELECT Region FROM Customers WHERE ContactTitle IS NULL AND

Address LIKE mNnN ;

4.4.1 Prerequisites

The prerequisites will be the generation of G’ and V from G. As it was

explained in Section 4.2.4, a mechanism which groups symbolic and

concrete constants that are related will be introduced. A single compound

value is a group of symbolic and concrete constants whose individual

generated values should be related to the previously generated values of all

members if the group. This is especially useful when the group of constants

represent concepts such like IP addresses, mail addresses, ages, etc.

Compound values are represented in G' as symbolic constants (one

symbolic constant in G' for each compound value). For each symbolic

constant, a group of symbolic and concrete constants is defined in V.

G’ and V will be generated to control the instantiation of the STerm

symbolic constants. Any symbolic constant defined in G’ will be instantiated

as a set of grouped values defined in V. Thus it should be taken into

account in this feature to decide how those symbolic constants should be

instantiated

For this example, let us take the following production rules from G:

BFactor = ATerm | STerm ;

STerm = column_name sop column_name ;

column_name = "CustomerID" | "CompanyName" | "ContactName" |

"ContactTitle" | "Address" | "City" | "Region" |

"PostalCode" | "Country" | "Phone" | "Fax" ;

sop = "=" | "!=" ;

48

A one word approach would be to declare column_name and sop as

symbolic constants in G’ and leaving their concrete definitions to appear in

V:

Example G’

BFactor = ATerm | STerm ;

STerm = <column_name> <sop> <column_name> ;

Example V

column_name = "CustomerID" | "CompanyName" | "ContactName" |

"ContactTitle" | "Address" | "City" | "Region" |

"PostalCode" | "Country" | "Phone" | "Fax" ;

sop = "=" | "!=" ;

This way of defining G’ and V will be solved by our solution as three

single separate values (<column_name> <sop> <column_name>), each one with

its own low discrepancy sequence but with no relationship to the other

selected values in the other sequences. Clearly, this is not desirable if the

terms have a relationship. An alternative would be to solve all three terms

together. Let us assume three non-terminals in the STerm rule to be solved

as a single value. For this G’ and V will be defined:

Example G’

BFactor = ATerm | <STerm> ;

Example V (expands the symbols introduced in G’)

STerm = column_name sop column_name ;

column_name = "CustomerID" | "CompanyName" | "ContactName" |

"ContactTitle" | "Address" | "City" | "Region" |

"PostalCode" | "Country" | "Phone" | "Fax" ;

sop = "=" | "!=" ;

This way of defining G’ and V will be solved as a single value, with a

single low discrepancy sequence; that is, a relationship is maintained

between the terms during the selection of values for that entire (STerm)

symbolic constant definition. These different approaches provide the tester

with the flexibility to control how symbolic values will be instantiated.

Back to our example, we define the following G’:

Symbolic Grammar ((G’) for a grammar (G))

Select = "SELECT " <COLUMNS_NAMES> "FROM " <TABLE_NAME>

"WHERE " BCond ;

BCond = BCond "OR " BTerm | BTerm ;

BTerm = BTerm "AND " BFactor | BFactor ;

BFactor = "NOT " BCond | <ID> "IS NULL " | ATerm | STerm ;

ATerm = Value <AOP> Value ;

Value = <ID> | <NUM> ;

STerm = <ID> "LIKE " <VALUE> | <ID> <SOP> <VALUE> | <ID>

<SOP> <ID> ;

49

G’ gives a complete description of the protocol for any SQL engine. As

established by Majumdar (18) for creating G’, SQL context-free grammar G

was taken and substituted h-elements of Υ, where its regular expression
has more than a single concrete value, with h-elements of Α (“Northwind”

SQL example database for MS SQL Server (33) will be employed for this

purposes). For this example the following symbolic value grammar (V) is

defined:

Symbolic Value Grammar (V)

AOP = "=" | "<" | ">" | "<=" | ">=" | "!=" ;

SOP = "=" | "!=" ;

COLUMNS_NAMES = COLUMN_NAME ”, ” COLUMN_NAME ;

COLUMN_NAME = "CustomerID" | "CompanyName" | "ContactName" |

"ContactTitle" | "Address" | "City" | "Region" |

"PostalCode" | "Country" | "Phone" | "Fax" ;

TABLE_NAME = "Customers";

VALUE = (letter)+;

ID = COLUMN_NAME ;

NUM = number ;

number = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8"

| "9" ;

letter = "a" | "b" | "c" | "d" | "e" | "f" | "g" | "h" | "i"

| "j" | "k" | "l" | "m" | "n" | "o" | "p" | "q" | "r" |

"s" | "t" | "u" | "v" | "w" | "x" | "y" | "z" | "A" |

"B" | "C" | "D" | "E" | "F" | "G" | "H" | "I" | "J" |

"K" | "L" | "M" | "N" | "O" | "P" | "Q" | "R" | "S" |

"T" | "U" | "V" | "W" | "X" | "Y" | "Z" ;

Suppose a script which fills the table "Customers" (which comes as

default in the Northwind (33) installation) with no NULL data. Let’s assume

a set of test cases that will test the correctness of an implementation of this

script is needed. A set of "SELECT" statements that will query for NULL

values will be generated; if any test query returns any non-empty result, an

error has been found. To test for this condition, we will generate a set of

queries where at least one of any set of random columns has a NULL value.

Test cases will be generated with a manageable length, so we chose to

generate symbolic sentences with a maximum length of 15 elements – this

is an arbitrary selection at this stage. For this, the following symbolic

constraint expression (E) is defined:

"SELECT " <COLUMNS_NAMES> "FROM " <TABLE_NAME> "WHERE " <ID>

"IS NULL " "AND "

E establishes the terminals of G’ that should be satisfied while

generating symbolic sentences from G’; therefore it only constrains the first

terminals, allowing the grammar to generate sentences to a maximum of

length 15 as long as they satisfy these constraints.

50

With G’, V and E defined, a description of the different phases

implemented in our system can be started. For this the system will execute

its three phases in a sequential order.

4.4.2 Constraint Solving Phase

The constraint solving phase’s first step consists in computing the

intersection between the G’ and E.

This is performed internally by generating the constraint grammar from

the user defined E, replacing each production in the start symbol of G’ until

the last value in the constraint is satisfied. The symbolic constraint

grammar (C’) computed would be:

T0 = "SELECT " ;

T1 = <COLUMNS_NAMES> ;

T2 = "FROM " ;

T3 = <TABLE_NAME> ;

T4 = "WHERE " ;

T5 = <ID> ;

T6 = "IS NULL " ;

T7 = "AND " ;

With C’ generated, the intersection with G’ is computed as follows:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

input: symbolicGrammar ∈ G', symbolicConstraintGrammar ∈ C'

output: constrained symbolic grammar C

// Make a copy of G'

C <- G'

// Clone the first rule of G' and add it to C

r ∈ R’ <- G'.FirstRule

// Give the rule a name not in G'

r.leftHand ∉ F

// Rename all instances G'.FirstRule in C with r.LeftHand

FOR EACH rule ∈ R’ IN G'

 FOR EACH element IN rule

 IF element = G'.FirstRule THEN

 element <- r.LeftHand ;

 END IF

 END

 END

END

// Add r to C

C.add(r) ;

FOR EACH production IN C'

 thisElement = r(element++);

 DO

 DO

 // Gets the next expansion

51

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

 expansion <- thisElement(expansion++);

 // If no more expansions available then unsolvable.

 IF NO MORE expansions THEN

 return NULL;

 // Compares the first element in the expansion

 WHILE expansion(0) ≠ constraintProduction THEN

 // Substitutes element in r with its expansion

 r(element) <- expansion ;

 // Redefines the working element with the expansion encountered

 thisElement <- G.FirstProduction(thisElement);

 UNTIL thisElement ∈ Υ

END

return C ;

The algorithm undertakes the following steps:

• Lines 8 – 11: The start symbol of G’ is copied and renamed as r.

• Lines 14 to 21: All the references to the start symbol in G’ are

redirected to r. This step is needed to guarantee that the

grammar will keep its capability of producing the exact same

language L(G’) taking into account the restrictions that will be

added later by the algorithm.

• Line 24: Add r to C (which holds G’ (line 5)). The algorithm

continues and it encounters the constraint T0 in C’ and (line 27)

satisfies it with the first element found in the rule "Select" (no

expansion is needed as this element is a terminal value, line 46).

• This is repeated for constraints T1 to T4 (loops through lines 29

- 46) and their corresponding terminal values in the start

symbol (S) of G’.

• Then the algorithm expands the first found non-terminal “BCond”

(line 32) from G’ and creates a new definition of S (line 44) for

each found possible expansion that can comply with T5:

Select = "SELECT " <COLUMNS_NAMES> "FROM " <TABLE_NAME>

"WHERE " BCond "OR " BTerm ;

Select = "SELECT " <COLUMNS_NAMES> "FROM " <TABLE_NAME>

"WHERE " BTerm ;

Two choices are available. The algorithm will attempt to solve both

trying to satisfy T5 (line 32), both can eventually solve it. However, as it

was established 15 terminal elements as a limit the first choice will

eventually be pruned from the search; therefore only the second expansion

(“Bterm”) will be explicitly explored:

52

Select = "SELECT " <COLUMNS_NAMES> "FROM " <TABLE_NAME>

"WHERE " BTerm "AND " BFactor ;

Select = "SELECT " <COLUMNS_NAMES> "FROM " <TABLE_NAME>

"WHERE " BFactor ;

The only expansion that can satisfy the constraint is the first one

(BTerm "AND " BFactor). The second one (“BFactor”) fails when the

algorithm attempts to satisfy the constraint T7, after satisfying T6, as no

more elements remain in the start symbol. Expanding the first alternative:

Select = "SELECT " <COLUMNS_NAMES> "FROM " <TABLE_NAME>

"WHERE " BTerm "AND " BFactor "AND " BFactor ;

Select = "SELECT " <COLUMNS_NAMES> "FROM " <TABLE_NAME>

"WHERE " BFactor " "AND " BFactor ;

For the first expression, a same state to the one found when expanding

(“Bterm”) is encountered. So for simplicity, only “BFactor” will be expanded,

as again, to satisfy the constraint:

Select = "SELECT " <COLUMNS_NAMES> "FROM " <TABLE_NAME>

"WHERE " "NOT " BCond " "AND " BFactor ;

Select = "SELECT " <COLUMNS_NAMES> "FROM " <TABLE_NAME>

"WHERE " <ID> "IS NULL " "AND " BFactor ;

Select = "SELECT " <COLUMNS_NAMES> "FROM " <TABLE_NAME>

"WHERE " ATerm " "AND " BFactor ;

Select = "SELECT " <COLUMNS_NAMES> "FROM " <TABLE_NAME>

"WHERE " STerm " "AND " BFactor ;

From the four choices, the only expansion that cannot solve the

constraint (“IS NULL”) is the first one "NOT” as it is a terminal element that

cannot be expanded. Therefore, it is pruned from the search. The algorithm

will attempt to solve the remaining sentences, expanding the non-terminal

elements (ATerm and STerm through lines 30 - 39). The expansion for

these three sentences would be:

Select = "SELECT " <COLUMN_NAME> "FROM " <TABLE_NAME> "WHERE

" <ID> "IS NULL " "AND " BFactor ;

Select = "SELECT " <COLUMN_NAME> "FROM " <TABLE_NAME> "WHERE

" <ID> <AOP> Value " "AND " BFactor ;

Select = "SELECT " <COLUMN_NAME> "FROM " <TABLE_NAME> "WHERE

" <ID> "LIKE " <STRING>" "AND " BFactor ;

Select = "SELECT " <COLUMN_NAME> "FROM " <TABLE_NAME> "WHERE

" <ID> <SOP> <STRING> " "AND " BFactor ;

Select = "SELECT " <COLUMN_NAME> "FROM " <TABLE_NAME> "WHERE

" <ID> <SOP> <ID> " "AND " BFactor ;

The next step in the algorithm is to satisfy T6 "IS NULL " (line 27). The

only available choice that satisfies this constraint is the first one, so the

53

algorithm abandons the other searches upon discovering that they are

unsatisfiable-able. Finally, the algorithm will attempt to satisfy the T7 "AND

", which is satisfied by the remaining sentence:

Select = "SELECT” <COLUMN_NAME> "FROM " <TABLE_NAME> "WHERE

" <ID> "IS NULL " "AND " BFactor ;

As all the constraints are satisfied the new symbolic constrained

grammar C will look like this:

Constrained Symbolic Grammar

Select = "SELECT " <COLUMN_NAME> "FROM " <TABLE_NAME> "WHERE

" <ID> "IS NULL " "AND " BFactor ;

Select’ = "SELECT " <COLUMN_NAME> "FROM " <TABLE_NAME>

"WHERE " BCond ;

BCond = BCond "OR " BTerm | BTerm ;

BTerm = BTerm "AND " BFactor | BFactor ;

BFactor = "NOT " BCond | <ID> "IS NULL " | ATerm | STerm ;

ATerm = Value <AOP> Value ;

Value = <ID> | <NUM> ;

STerm = <ID> "LIKE " <STRING> | <ID> <SOP> <STRING> | <ID>

<SOP> <ID> ;

Taking a closer look to the grammar, the nonterminal Select’ (created

in line 11) is never used by any rule making it an unreachable rule. Because

of this, a final step that removes any non-reachable rules is taken to

optimize symbolic string generation. The result of this phase is:

 Constrained Symbolic Grammar

Select = "SELECT " <COLUMN_NAME> "FROM " <TABLE_NAME> "WHERE

" <ID> "IS NULL " "AND " BFactor ;

BCond = BCond "OR " BTerm | BTerm ;

BTerm = BTerm "AND " BFactor | BFactor ;

BFactor = "NOT " BCond | <ID> "IS NULL " | ATerm | STerm ;

ATerm = Value <AOP> Value ;

Value = <ID> | <NUM> ;

STerm = <ID> "LIKE " <STRING> | <ID> <SOP> <STRING> | <ID>

<SOP> <ID> ;

C is now a grammar that complies with both G’ and E, and is ready to

be used in the next phase.

4.4.3 Symbolic Sentences Generation Phase

In the symbolic sentences generation phase, an implementation of

the approach suggested by McKenzie (24) is utilised. This approach

proposes a uniform distribution for production rules that maximizes

production rule coverage (making it imperative to use all production rules)

54

and guarantees that all strings from the given grammar are equally likely to

be generated. As our approach objective is to employ any CFG this

approach is our best option as all production rules are treated without bias.

In this approach, the production rules (R) defined for any context-free

grammar (G) are used to generate symbolic sentences (SS) up to a

specified length (d) in a uniform fashion. Our solution enhances previous

approaches (19) by preventing the re-generation of previously generated

symbolic sentences.

For this example, as E consists of 10 terminal elements, five or less

additional terminal elements are required in our test cases (remember, 15

elements was set as a maximum size constraint).

The GenerateFronNonTerminal algorithm starts as follows:

1 input: nonterminal ∈ F, d (length of SS)

2 output: string ∈ SS

3

4 Let q ∈	Υ
5 Let r’⊆ R’ be of the form nonterminal	 → q;
6 Let λ be an example of r’ and be referred to as an expansion of

nonterminal.

7

8 // Chooses an expansion from all selectable expansions.

9 result ∈ r’ <- Choose(nonterminal, d);

10 // Expands the nonterminal with the chosen expansion

11 string <- Expand(result , q(0), d);

12

13 return string;

• It chooses an expansion of the element received (line 9). The

Choose routine will be discussed later.

• It expands the first element q(0) in the selected production rule

result (line 11).

For our example, the start symbol (“select”) will be used as a starting

point and an arbitrary length, between the length of the start symbol (11)

and the previously defined maximum length (15), for which 12 is chosen.

The routine receives “select” and the length 12 and chooses between all

of the possible expansions of “select”. The start symbol for C has only one

expansion, so this will be selected (line 9) and the start symbol will be

expanded by the function Expand (line 11).

The algorithm for Expand works as follows:

1 input: rule ∈ R’, element(i) ∈ q, d (length of SS)

2 output: result ⊆ SS

3

4 s1 ⊆ SS <- "";

55

5 s1 ⊆ SS <- "";

6

7 IF element ∉ F THEN

8 s1 <- element;

9

10 // If more elements continue expanding

11 IF more elements IN rule to the right of this element THEN

12 nextElement ∈ q <- element(i+1) ;

13 // Expand recursively

14 s2 <- Expand(rule, q, d - 1);

15 END

16

17 // Concatenate and return results

18 return s1 + s2 ;

19 ELSE

20 // Call function GenerateFronNonTerminal

21 s1 <- GenerateFromNonterminal (element, d + 1)

22

23 // If more elements continue expanding

24 IF more elements IN rule to the right of this element THEN

25 nextElement <- element(i++);

26 // Expand recursively

27 s2 <- Expand(rule, nextElement, d);

28 END

29

30 // Concatenate and return results

31 return s1 + s2 ;

32

33 END

• If the element is a terminal (line 7), then it stores the value of

the element in s1 (line 8); if more elements are to the right

(line 11), it expands them recursively and stores the computed

values in s2 (line 14).

• If the element is a nonterminal (line 19), then it calls

generateFromNonTerminal and stores the value of the element

in s1 (line 21); if more elements are to the right (line 24), it

expands them recursively and stores the computed values in s2

(line 27).

• Finally, it concatenates the computed values (lines 18 and 31)

Continuing with our example, the expansion selected is shown:

"SELECT " <COLUMN_NAME> "FROM " <TABLE_NAME> "WHERE " <ID>

"IS NULL " "AND " BFactor

The element selected is "SELECT " (line 1) and as it is a symbolic

constant (terminal value for C) its evaluation is true for line 7. Now the

algorithm looks for the next element (to the right of this one) and as this

evaluation is true (line 11), it takes this element and tries to expand it

recursively in line 14. For this call on Expand, the selected expansion is now

<COLUMNS_NAMES> which is a symbolic constant and a terminal for C;

thus as for the previous case, it will go through lines 7 and 11, with the

difference that on line 14 it will chose the next element "FROM ".

56

The algorithm will continue parsing the rule and adding results

recursively to s1 and s2 until a symbolic sentence is generated as final

result.

"SELECT " <COLUMNS_NAMES> "FROM " <TABLE_NAME> "WHERE " <ID>

"IS NULL " "AND " <COLUMN_NAME> "IS NULL "

The Choose routine which was employed in the

GenerateFromNonTerminal and Expand algorithms will be explored.

The following is the algorithm of this routine which holds our

enhancement which introduces evolutionary computation principles to the

selection of production rules.

1 input: nonterminal ∈ F, d (length of SS)

2 output: element ∈ q

3

4 Let q be an expansion of nonterminal;

5 Let UC be a count variable

6 // Fetches list containing the expansions and its use count for

7 // this nonterminal and d.

8 [q, UC] <- usageList(nonterminal, d);

9

10 // Calculates a random number between 0 - 1 to use for operation

selection.

11 decider <- Random(0, 1);

12

13 // Decides which operation to execute.

14 IF decider < stochastic percentage THEN

15 element <- uniform(q);

16 ELSE

17 // Select a random element from the list.

18 element <- random(q);

19 END

20

21 // Updates list with the new selected expansion.

22 usageList.Update(element, d);

23

24 return element;

25

• It uses usageList (line 8) a list which is indexed by a non-

terminal (left-hand side of an expression) and the length of a

symbolic sentence which is derivable from the non-terminal. The

list returns a set of pairs [q ∈ 	Υ, UC], where UC is the total
number of times that q has been selected by this algorithm.

• It decides if it should continue with the original flow or apply a

random selection mechanism (this is a novel element in our

approach). For this, it compares a pseudo-random value (line 8)

with a stochastic percentage (user-defined variable). The exact

value of this parameter is relatively unimportant and the system

default value produces acceptable results in all known situations.

If the random value is less than the percentage, it selects the

alternative operation; otherwise it continues. If increased

57

stochastic behaviour is required the stochastic percentage could

instead follow a cooling schedule to allow an increased selection

of pseudo-random values at the start of the cycle which then

decreases as the cooling schedule is applied.

• The routine uniform selects an element based upon:

Let =$>>>> = �
#@	 	∑ =$@		@ , where # is the cardinality of q

∃C ∙ 	=$>>>> > 	=$@ 	∧ 	min@ G=$@ −	=$>>>>GI

• The stochastic branch (line 16) selects an element at random

from the list (line 18).

• The list is updated with the selected expansion (line 22) and the

element selected is returned (line 24).

Back to our example, a set of five symbolic sentences generated by our

system in these circumstances is shown:

Symbolic Sentences

"SELECT " <COLUMN_NAME> "FROM " <TABLE_NAME> "WHERE " <ID>

"IS NULL " "AND " <COLUMN_NAME> "IS NULL "

"SELECT " <COLUMN_NAME> "FROM " <TABLE_NAME> "WHERE " <ID>

"IS NULL " "AND " <NUM> <AOP> <COLUMN_NAME>

"SELECT " <COLUMN_NAME> "FROM " <TABLE_NAME> "WHERE " <ID>

"IS NULL " "AND " "NOT " <COLUMN_NAME> "IS NULL "

"SELECT " <COLUMN_NAME> "FROM " <TABLE_NAME> "WHERE " <ID>

"IS NULL " "AND " "NOT " "NOT " <COLUMN_NAME> <AOP>

<NUM>

"SELECT " <COLUMN_NAME> "FROM " <TABLE_NAME> "WHERE " <ID>

"IS NULL " "AND " "NOT " "NOT " "NOT " <COLUMN_NAME>

"IS NULL "

If more symbolic sentences are required then the routines are executed

iteratively as many times as defined (by the user). For future iterations,

new length values are generated to be passed to the

GenerateFromNonTerminal routine.

4.4.4 Concrete Sentence Production Phase

Finally, the concrete sentence production phase is initiated where

concrete sentences (CS) are generated from the symbolic sentences (SS)

employing the symbolic value grammar (V).

The phase starts with the following algorithm:

1 input: grammar ∈ V, sentences ∈ SS, nr (total number of concrete

sentences to be generated)

2 output: testCases ∈ CS

3

4 // Parse each element in the symbolic sentence

58

5 FOR EACH element ∈ Υ IN SS
6 // If it is a symbolic constant

7 IF element ∈ Α THEN
8 results.adds(SolveSymbolicConstant(V, element, nr))

9 ELSE IF element ∈ Σ THEN
10 results.adds(element);

11 END

12 END

13

14 // Convert results to a readable output

15 testCases <- ConstructConcreteSentence(results)

16

17 return testCases

18

Let’s take the first symbolic sentence of our example:

"SELECT " <COLUMN_NAME> "FROM " <TABLE_NAME> "WHERE " <ID>

"IS NULL " "AND " <COLUMN_NAME> "IS NULL "

Let’s assume nr has a value of 5. In the first iteration, the algorithm

parses the concrete value "SELECT " and adds its value to the results

variable (line 10). In the second iteration, when the parser finds the

symbolic constant <COLUMNS_NAMES>, it now calls the routine

SolveSymbolicConstant (line 8), explained below, which will compute the

concrete value for this symbolic constant. To continue the explanation, let

us suppose that the returned value is the symbolic constant conformed of

the concrete constants "City" "," "Region" , so this value is added to the

results. This is repeated until the entire symbolic sentence is parsed.

SolveSymbolicConstant

1 input: grammar ∈ V, nonterminal ∈ W, nr (total number of

2 concrete sentences to be generated)

3 output: results ∈ Λ

4

5 Let β ⊆ P and have the form W → Λ
+

6 Let η = nonterminal ∈ Α → β
+

7

8 Let entity ∈ β+ be the right hand of η
9 Let sequence be a low discrepancy sequence � ∀entity �(∃ sequence � entity

→ sequence)

10

11 Let T be the set of permutations of an entity

12 Let τ ∈ T � ∀τ �(∃ seq ∈ sequence � τ → seq))

13

14

15 // Compute the entity for this nonterminal

16 entity <- GenerateEntity(grammar, nonterminal)

17

18 // Solve the entity

19 FOR EACH position IN entity

20 // Fetch next item in the low discrepancy sequence

21 concreteValues ∈ τ <- values(entity.sequence)

22 // Add values to results.

23 results.add(concreteValues)

24 END

25

59

26 // size of results = nr

27 return results

28

Consider the following definition of discrepancy. Given a sequence of

numbers which belong to the right-open interval [0,1), and can be scaled if

necessary. Consider the s-dimensional right-open unit cube I
s
 [0,1)s; s ≥ 1.

For N points {x1, x2,, xN} ∈ I
s
; and a subinterval J ∈ I

s
; if A(J) counts

the number of points xi ϵ J and V(J) is the volume of J , discrepancy D(J,N)

is defined as:

D�J,N		=	 L��M	N − O�M	L

The discrepancy is the difference between the proportion of points in J

compared to the full unit cube I
s
 and the volume of the ‘box’ J compared to

I
s
.

The worst-case discrepancy, i.e. the worst-case distribution of a

set/sequence of points{ x1, x2,, xN } ∈ I
s
 is called the star-discrepancy

and is defined as:

D∗	�N	 = maxQ D�J, N		

The goal of a low-discrepancy sequence is to minimize this star

discrepancy. This definition is utilized by the algorithm.

For our example, <COLUMNS_NAMES> is the first symbolic constant to be

solved. First, the entity for COLUMNS_NAMES is generated; as the

production rule COLUMN_NAME satisfies the entity definition (line 8) then

the entity is:

<COLUMNS_NAMES> = COLUMN_NAME “, ” COLUMN_NAME;

The entity now is solved. The algorithm fetches the values for this

position in the entity using its associated low discrepancy sequence (line

21). As this is repeated 5 times, 5 values are added to results (line 23):

"City" “, ” "Address"

"ContactTitle" “, ” "Phone"

"Country" “, ” "Region"

"ContactName" “, ” "CostumerID"

"Address" “, ” "CompanyName"

60

It can be appreciated that the symbolic constants have been

substituted with their corresponding definitions in V, but the values chosen

cover more input space than pure pseudo-random approaches. This is more

easily appreciated if 20 concrete sentences are generated in the same

fashion:

SELECT City, Address FROM Customers WHERE Phone IS NULL AND PostalCode IS NULL

SELECT ContactTitle, Phone FROM Customers WHERE Region IS NULL AND Fax IS NULL

SELECT Country, Region FROM Customers WHERE CustomerID IS NULL AND City IS NULL

SELECT ContactName, CustomerID FROM Customers WHERE CompanyName IS NULL AND

ContactTitle IS NULL

SELECT Address, CompanyName FROM Customers WHERE PostalCode IS NULL AND Country

IS NULL

SELECT Phone, PostalCode FROM Customers WHERE Fax IS NULL AND ContactName IS

NULL

SELECT Region, Fax FROM Customers WHERE City IS NULL AND Address IS NULL

SELECT CustomerID, City FROM Customers WHERE ContactTitle IS NULL AND Phone IS

NULL

SELECT CompanyName, ContactTitle FROM Customers WHERE Country IS NULL AND Region

IS NULL

SELECT PostalCode, Country FROM Customers WHERE ContactName IS NULL AND

CustomerID IS NULL

SELECT Fax, ContactName FROM Customers WHERE Address IS NULL AND CompanyName IS

NULL

SELECT Country, Fax FROM Customers WHERE City IS NULL AND ContactTitle IS NULL

SELECT ContactName, City FROM Customers WHERE ContactTitle IS NULL AND Country

IS NULL

SELECT Address, ContactTitle FROM Customers WHERE Country IS NULL AND

ContactName IS NULL

SELECT Phone, Country FROM Customers WHERE ContactName IS NULL AND Address IS

NULL

SELECT Region, ContactName FROM Customers WHERE Address IS NULL AND Phone IS

NULL

SELECT CustomerID, Address FROM Customers WHERE Phone IS NULL AND Region IS NULL

SELECT CompanyName, Phone FROM Customers WHERE Region IS NULL AND CustomerID IS

NULL

SELECT PostalCode, Region FROM Customers WHERE CustomerID IS NULL AND

CompanyName IS NULL

SELECT Fax, CustomerID FROM Customers WHERE CompanyName IS NULL AND PostalCode

IS NULL

4.4.5 Pseudo-Random vs. Quasi-Random

A comparison between our approach using low discrepancy sequences

and pure pseudo-random approaches will be made (as all previous

approaches have utilised). Taking our example and comparing it with our

system working with a symbolic grammar, symbolic values grammar and

symbolic constraint expression similar to the previously used. The change in

the symbolic grammar can be found in the rule “Select” where the

<COLUMNS_NAMES> symbolic constant has been replaced with two symbolic

(and one concrete) constants <COLUMN_NAME> ", " <COLUMN_NAME> (found in

the example’s Symbolic Value Grammar):

Symbolic Grammar

61

Select = "SELECT " <COLUMN_NAME> ", " <COLUMN_NAME> "FROM "

<TABLE_NAME> "WHERE " BCond ;

Symbolic Constraint Expression

"SELECT " <COLUMN_NAME> "," <COLUMN_NAME> "FROM "

<TABLE_NAME> "WHERE " <ID> "IS NULL " "AND "

As discussed, the manner in which these values are defined affects

directly how they are solved by our solution. In the previous example,

these constants were solved as a single entity for this definition they will be

solved as three independent entities.

SELECT City, Country FROM Customers WHERE Address IS NULL AND Fax IS NULL

SELECT ContactTitle, ContactName FROM Customers WHERE Phone IS NULL AND City IS

NULL

SELECT Country, Address FROM Customers WHERE Region IS NULL AND ContactTitle IS

NULL

SELECT ContactName, Phone FROM Customers WHERE CustomerID IS NULL AND Country IS

NULL

SELECT Address, Region FROM Customers WHERE CompanyName IS NULL AND ContactName

IS NULL

SELECT Phone, CustomerID FROM Customers WHERE PostalCode IS NULL AND Address IS

NULL

SELECT Region, CompanyName FROM Customers WHERE Fax IS NULL AND Phone IS NULL

SELECT CustomerID, PostalCode FROM Customers WHERE City IS NULL AND Region IS

NULL

SELECT CompanyName, Fax FROM Customers WHERE ContactTitle IS NULL AND CustomerID

IS NULL

SELECT PostalCode, City FROM Customers WHERE Country IS NULL AND CompanyName IS

NULL

SELECT Fax, PostalCode FROM Customers WHERE ContactName IS NULL AND PostalCode

IS NULL

SELECT ContactName, Country FROM Customers WHERE Fax IS NULL AND Fax IS NULL

SELECT Address, ContactName FROM Customers WHERE City IS NULL AND City IS NULL

SELECT Phone, Address FROM Customers WHERE ContactTitle IS NULL AND ContactTitle

IS NULL

SELECT Region, Phone FROM Customers WHERE Country IS NULL AND Country IS NULL

SELECT CustomerID, Region FROM Customers WHERE ContactName IS NULL AND

ContactName IS NULL

SELECT CompanyName, CustomerID FROM Customers WHERE Address IS NULL AND Address

IS NULL

SELECT PostalCode, CompanyName FROM Customers WHERE Phone IS NULL AND Phone IS

NULL

SELECT Fax, PostalCode FROM Customers WHERE Region IS NULL AND Region IS NULL

SELECT City, Fax FROM Customers WHERE CustomerID IS NULL AND CustomerID IS NULL

The difference may not be obvious given that both answers are valid.

For making an informal comparison, the Cartesian product of the set of

values of <COLUMN_NAME> (defined in the symbolic values grammar) will be

employed. Ordered pairs will be represented in a table, where the first set

(first occurrence from left to right) will be the rows and the second set

(second occurrence from left to right) will be the columns.

For this comparison the first 60 tuples were generated (half the input

space) and then we draw them in the table previously defined. The results

62

for three approaches: pseudo-random, low discrepancy single values and

low discrepancy entity value will be analyzed.

Figure 4.3 shows the distribution for the pseudo-random approach

(using the grammar defined in this section) where the symbolic constants

<COLUMN_NAME> ", " <COLUMN_NAME> were solved using the pseudorandom

approach used by all other, systems of this type:

RAN
DO

M

A
d

d
re

ss

C
it

y

C
o

m
p

a
n

y
N

a
m

e

C
o

n
ta

ct
N

a
m

e

C
o

n
ta

ct
T
it

le

C
o

u
n

tr
y

C
u

st
o

m
e
rI

D

F
a
x

P
h

o
n

e

P
o

st
a
lC

o
d

e

R
e
g
io

n

Address • • • • 5

City • • • • 4

CompanyName • • • • • 5

ContactName • • 4

ContactTitle • • • • 5

Country • • • • • 5

CustomerID • • 3

Fax • • • • • 6

Phone • • • • • 8

PostalCode • • • • • 6

Region • • • • • • • • 9

4 1 9 8 4 5 6 2 10 3 8

Figure 4.3 Distribution for the pseudo-random approach.

The numbers on the edges of the table show that the distribution is

randomly biased through the columns where the value “City” appears with

1 occurrence while “CompanyName” and “Phone” appear with 10

concurrencies. The large circles represent coordinates with more than one

count, so it is clear that for example in the ordered pair <“Phone”,

“CompanyName”> many test cases hit the same pairs making only 49 out

of 60 test cases unique. The figure also shows that there are large areas

that are poorly tested like the area defined by <”City”,”Address”>:

<”Fax”,”CompanyName”> which represents 20% of the total input space.

Figure 4.4 shows the distribution for the low discrepancy single

approach (using the grammar defined in this section) where the symbolic

constants <COLUMN_NAME> ", " <COLUMN_NAME> were solved using our low

discrepancy proposal solving each symbolic constant separately:

63

Si
ngl

e

A
d

d
re

ss

C
it

y

C
o

m
p

a
n

y
N

a
m

e

C
o

n
ta

ct
N

a
m

e

C
o

n
ta

ct
T
it

le

C
o

u
n

tr
y

C
u

st
o

m
e
rI

D

F
a
x

P
h

o
n

e

P
o

st
a
lC

o
d

e

R
e
g
io

n

Address • • • • 5

City • • • • 5

CompanyName • • • • 6

ContactName • • • • • 5

ContactTitle • • • • 5

Country • • • • 5

CustomerID • • • • 6

Fax • • • • 6

Phone • • • • 5

PostalCode • • • • 6

Region • • • • 6

5 5 6 5 5 5 6 6 5 6 6

Figure 4.4 Distribution for the low discrepancy single approach.

The numbers on the edges show that the distribution now is more

evenly distributed (all values on the edges are now between five and six).

This is achieved by the low discrepancy sequences used to make the

selections. As in the previous table, the large circles represent ordered pairs

which occur more than once; an improvement in how the repeated values

are distributed 45 out of 60 test cases is unique with a maximum of two

repeated cases for any combination can be appreciated. The graph also

shows that there are not “large areas” that are poorly tested as was

experienced in the random approach; this improves the overall coverage of

the input space with less test cases covering more input space.

Figure 4.5 shows the distribution for the low-discrepancy entity

approach (using the grammar defined in the working example) where the

symbolic constant <COLUMNS_NAMES> is solved using the low discrepancy

sequences and the symbolic constant is considered as a single entity value.

64

EN
TI

TY

A
d

d
re

ss

C
it

y

C
o

m
p

a
n

y
N

a
m

e

C
o

n
ta

ct
N

a
m

e

C
o

n
ta

ct
T
it

le

C
o

u
n

tr
y

C
u

st
o

m
e
rI

D

F
a
x

P
h

o
n

e

P
o

st
a
lC

o
d

e

R
e
g
io

n

Address • • • • • 5

City • • • • 4

CompanyName • • • • • 5

ContactName • • • • • • 6

ContactTitle • • • • • • 6

Country • • • 3

CustomerID • • • • • • 6

Fax • • • • • • 6

Phone • • • • • • 6

PostalCode • • • • • • 6

Region • • • • • • • 7

6 6 6 6 4 5 5 6 6 5 5

Figure 4.5 Distribution for the low discrepancy entity approach.

The numbers on the edges show that the distribution remains even due

to the low discrepancy sequence used when solving the entity. As before,

the large circles represent coordinates which occur more than once; it can

be seen that there are no bold circles indicating that all the test cases

produced are unique. The table also shows that there are no large areas

that are poorly tested, optimizing the previous example by covering more

input space with the same generated test cases.

It is now clear that our approach is significantly better than pure

pseudo-random enumeration usually employed when exhaustive generation

is not feasible. It has also been demonstrated that our approach provides a

better coverage of the input space when values are related between them

and solved as a single entity, which is novel to this kind of test case

generation.

4.4.6 Conclusions

A walkthrough of our solution was given starting with its prerequisites

and through its three phases giving a detailed insight of the computations

occurring at each phase. To finalize, a summary of the solution is

presented:

� The main functionality of our system consists of three

sequential phases: constraint solving, symbolic sentence

generation and concrete sentence production. This

phases use a:

65

o Symbolic grammar - abstract representation of a

context-free grammar (that represents the concrete

input syntax of the system under test) where some

original terminals are replaced with symbolic

constants (regular expressions that represent the

entire solution space for the replaced terminals). Each

rule in the symbolic grammar represents a set of CFG

rules, where each symbolic constant will be later

instantiated with concrete constants (terminals)

during execution.

o Symbolic values grammar - a grammar where

symbolic constants are defined with concrete

constants (terminals); it is used to instantiate

symbolic constants during execution.

o Symbolic constraint expression - a regular expression

expressed in terms of symbolic constants and

concrete constants that the generated symbolic

sentences should satisfy.

� To initiate a description of the system under test (SUT), input

is constructed in the form of a symbolic constraint

expression, which is a description of the testing objectives.

Our system already has a description of the SUT's language

or protocol in the form of a symbolic grammar and a symbolic

values grammar.

� The symbolic constraint expression is supplied to the system.

� The system passes symbolic constraint expression to the

constraint solving phase, which restricts the symbolic

grammar by forcing it to also conform to the supplied

symbolic constraint expression.

� The output of the constraint solving phase is passed to the

symbolic sentences generation phase (part enumeration

part constraint solving). Several specific terms match each

more generic term; therefore we get enumeration which is

controlled by the objective uniform distribution.

� The output of symbolic sentences generation phase is

passed to the concrete sentence production phase (part

enumeration part constraint solving). The more generic

output of the symbolic sentences generation phase is

forced to bind to concrete values as these are the final

testing values. Because, in general, several specific terms

match each more generic term we get enumeration. The

enumeration is controlled by the objective low-discrepancy

sequence when applicable or uncontrolled (random

generation) when the objective is inapplicable.

66

This section has established how our enhancements (like evolutionary

algorithms) and novel approaches (like low discrepancy sequences) mix

together to form a new and promising testing tool for generating test cases

based on symbolic grammars.

67

5 Future Work

As we developed and tested our system, several details came to our

attention as interesting research fields which go beyond this thesis.

5.1 Specifying System Constants

In section 4.4.1, a starting sentence length was needed to control the

symbolic sentence generation phase. Our criterion for selecting it was

arbitrary as we didn’t employ any formal method to compute a starting

length.

Similarly in section 4.4.3, we specified that the user must provide the

system with the total number of desired symbolic sentences. We have

found that the total number of symbolic sentences is not fixed; neither can

it be determined taking into account the size of the system, neither the

nature of the software nor the objectives of the testing case. When possible,

we suggest that an enumeration of all symbolic sentences from the

symbolic grammar should be made and to use these computed values as a

starting number that can be reduced in future iterations depending on the

testing results. For small and simple grammars enumeration is possible due

to their nature, but even with this advantage, enumeration is not possible

when using complex grammars, for example grammars that contain

recursive rules.

Concrete sentences are discussed on section 4.4.4 and this raises the

question of how many concrete sentences should be instantiated from each

symbolic sentence.

Research should be done in this field in order to remove human

interaction and to aid the tester to set these parameters with a formal

method.

5.2 Constraint Structure

Constraints were discussed in section 4.4.2 where their importance was

established as a mechanism for limiting the size of the solution space. The

question raises about which and how many symbolic and concrete

constants should be included in the initial constraint.

A well-formed input was used as an initial value (in section 4.4.1) to

set the rule elements and the length employing an explorative testing

approach. This kind of approach is not formal and different constraints

could have given similar results. It can be argued that the selected

approach is not optimal. For example, the used constraint was:

68

"SELECT " <COLUMNS_NAMES> "FROM " <TABLE_NAME> "WHERE " <ID>

"IS NULL " "AND "

This was derived from the test case specification, but in practice test

case specifications are rarely detailed enough to derive the test case to this

extent. This leaves the problem of defining the constraint structure entirely

to the tester; clearly, there is a need to guide the tester in this regard.

5.3 Constraint Solving

The constraint solving literature (17) (19) (34) (35) omit details about

constraint solving heuristics; these details include the order in which

constraints should be solved. Usually linear constraint solving (first term

followed by second term followed by third term) is assumed and found in

different implementations.

In the symbolic sentences generation phase, we utilise an

implementation of the approach suggested by McKenzie (19) (34). This

approach solves constraints from left to right in consecutive order, which is

common practice while working with grammar-based approaches. However,

these implementations may fail when left-recursion is present, thus forcing

a grammar simplification before entering the constraint solving phase.

Research on alternatives to linear constraint solving is a promising field

as left-recursion is present in many non-context-free grammars. With these

enhancements the system might be extended from using only BNF

representation for CFG widening its industrial application.

69

6 Case Study

In this section, a comparison between our solution and previous tools

that employ grammar-based approaches in a real-world situation will be

presented. For this, an overview of the system to test will be given, and

then a description of our evaluation criteria, and finally the generated

empirical results will be discussed.

6.1 Firewalls

A system or group of systems that enforces an access control policy

between two networks is called a firewall. It implements a network access

policy by forcing connections to pass through the firewall, where they can

be examined and evaluated.

Nowadays corporations face a variety of information system attacks

against their local area networks (LANs) and wide area networks (WANs).

Many of these attacks come from the Internet in three basic groups:

� People which find a technological challenge in attacking a

corporation's network;

� People which find a promising field for high-tech vandalism in

attacking a corporation's network; and

� People associated with a competitor with an agenda who see

the corporation’s network as a strategic target

A firewall is then a fundamental asset of network security. It allows the

corporation to focus its security efforts where the corporation’s information

system connects to the Internet. Some of tasks that can be performed by a

firewall are:

� The control and prevention of attacks from untrusted network

services.

� Monitoring of traffic passing through the system.

� Audit the corporation’s network

� Alerts to the corporation’s staff of anomalies within the

network.

� Logging features and statistic’s collection (which can be used

to create a network profile).

� Providing the ability to control access to internal systems.

A cornerstone of a firewall’s functionality is its capability for

implementing and enforcing a network access policy. As a firewall provides

access control to users and services, a network access policy can be

enforced.

70

Firewalls can only protect against attacks going through the firewall.

For example, there are many organizations investing in expensive firewalls

and neglecting the numerous other backdoors into their network. A firewall

must be part of a consistent overall organizational network security

architecture.

6.2 Firewall Policies

The main function of a firewall is to centralize access control, so it

allows the implementation of a security policy to ensure security within an

organization. The centralized access control divides the local network into

two separate parts: the trusted and the untrusted. This approximation

allows the firewall to effectively manage the resources within the trusted

network and safeguard them from the untrusted network.

A firewall policy consists of a set of conditions represented by a list of

rules. The workflow is simple; whenever there is an incoming packet

(regardless its origin), it is analyzed and the firewall decides if it should be

let through or blocked based on the firewall’s policy.

Firewalls suffer from the same quality problems as other software

products; even though trusted vendors are generally trustworthy and

vulnerabilities tend to be patched relatively quickly. The main concern

regarding firewall security testing is that firewalls must be configured with a

rule set that implements an appropriate security policy for the actions that

the organization wants the firewall to perform. Therefore the firewall

policies are always costume made thus, the likelihood of a security

vulnerability arising from misconfiguration is much greater than from a bug

in the software itself (36).

Even small companies have firewalls with several hundred rules.

Furthermore, firewall policies and, by definition, rule sets change with time.

Changes are often implemented by adding or changing rules, resulting in

more complexity which increases the probability of errors.

As the main vulnerability found in a firewall is its policy, the importance

of producing test cases based on firewall policies is an obvious starting

point for firewall testing.

6.2.1 Firewall Rules

The list of rules that comprise a firewall policy have different structures

depending on the implementation of the firewall. Even though all firewall

rules, regardless the vendor, include at least the following common fields:

� Source address - the address (i.e. IP or domain) from where

the package origins.

71

� Source port - the port number from where the package

origins in the defined source address.

� Destination address - the address (i.e. IP or domain) that the

package is intended to reach.

� Destination port - the port that the package is intended to

reach on the defined destination address.

� Protocol - the protocol in which the message is encoded.

� Action - generally speaking the action will be to deny or allow

the transit of a package from the source to the destination.

Src. Addr. Src. Port Dst. Addr. Dst. Port Protocol Action

R1: 198.32.24.87 50 localhost.com 30 ICMP Allow

R2: 198.32.25.* 80 localhost.com 85-90 IPv6 Allow

R3: localhost.com 80 * 80 * Allow

R4: * * * * * Deny

Table 6.1 Generic firewall policy

The generic firewall policy shown in Table 6.1 consists of 4 simple

rules:

� Rule one allows all incoming packages to port 30 from a

specific source address and port with protocol ICMP.

� Rule two allows all incoming packages to port 80 from all

addresses within the range 198.32.25.0 - 198.32.25.255 on

ports 85 to 90 with protocol IPv6.

� Rule three allows all outgoing packages from port 80 to any

destination address on port 80.

� Rule four denies all incoming packages that don’t match any

of the above.

Policy rules order is very important as the packet filtering process is

performed by sequentially matching the packets information with the policy

rules beginning with the first one and continuing sequentially until they

reach the final rule (which usually is of the type of Rule four – denying

anything that doesn’t matches). This doesn't happen in some firewalls

where filtering rules are disjoint meaning that the ordering of the rules is no

considered.

Firewalls that work in a sequential matching fashion are the most

common approach, so it is common to have policy rules that are related. In

this case, the ordering of rules becomes a priority and a security issue. If

the related rules are not carefully ordered, some rules will result in a

firewall policy anomaly.

72

A firewall policy anomaly is defined as the existence of two or more

rules that filter the same set or a subset that another rule filters. Firewall

policy anomalies generally fall into four categories (37):

� Shadowing anomaly - a rule is said to be shadowed when a

previous rule matches all the packets that match this rule,

such that the shadowed rule won’t be reached.

� Correlation anomaly - two rules are correlated if they have

different filtering actions and those actions overlap a subset

of each rule’s filtered packets.

� Generalization anomaly -a rule is a generalization of a

preceding rule if one rule filters all of the packets that the

other rule filters.

� Redundancy anomaly - a rule is said to be redundant if there

is another rule that filters the exact same packages as

another one.

As firewall policies keep growing in size (usually hundreds of rules), the

importance of tests that are based on firewall policies is essential.

6.2.2 Firewall Testing

Figure 6.1 Firewall testing framework proposed by Al-Shaer etal.

Al-Shaer et al. (38) have proposed one of the most complete

frameworks for firewall testing which is illustrated in Figure 6.1. It consists

in the following logical divisions:

73

� Policy Module - the system described accepts a file that has

firewall policies that comply with a given grammar. To

produce this file two options are given, the first one is to use

a policy generator, the second one is to produce manually the

file and feed it to the system.

� Segmentation Module - policy rules are separated into

segments that will cover all the rules in the testing policy. A

segment is a subset of the complete address space. These

segments are formed by dividing the total rules in the policy

into groups that have similar traits. For a detailed discussion

of segments; see Al-Shaer et al. (38).

� Test Packet Generator - responsible for generating the actual

packages for testing (producing as many packages as needed

to cover all the segments with a bias set by the segment

importance).

� Spy - a standalone sniffer that receives the original package

sent from the generator and the packets that come from the

firewall. Both are received as bitmaps, when the test is over

the bitmaps are compared and a final bitmap is sent to the

framework for analysis.

� Reports - The results from the framework are analyzed and

several reports can be made including: policy complexity,

package generation and segmentation effectiveness.

From this model, a simplified firewall testing framework should consist

of the following two phases:

1. Generating policies with different configurations that include

different rule complexity, interaction, etc.; and

2. The generation of packets to test the implementation of the

system under test (SUT) using the previously generated policies.

Generating firewall policies in an automated fashion presents the

following challenges:

� The policy generator should be applicable to different firewall

configurations and specifications unique of each vendor.

� The policy generator should be able to cover the rule

configurations completely (field values, rule complexities, rule

relations, etc.).

Firewall testing falls into two approaches:

� A static one where the firewall policy is analyzed and

modified to optimize it.

� A dynamic one where the firewall is subjected to user

designed traffic and monitored for anomalies.

74

Even though policies are the starting points for any testing regarding

firewalls, little has been written regarding policy generation for firewall

testing and sometimes it is omitted (38), (39) or just suggested (37). For

static approaches, the most common method is to use existing firewall

policies or modifications of them (37), (40), (41); another common

technique is to analyze network traffic and build the firewall policy from this

analysis (42). For dynamic approaches, the main concern is to develop

frameworks that automate the testing task and generate packages to test

the firewall (43), (44).

All approaches use model-based approaches for generating policies.

The model is usually a previously generated policy (40), a predefined rule

generator that changes fields in the rule (45) or a grammar that describes

the vendor’s features and configurations (44).

One of the most powerful and up-to-date policy generators is

ClassBench (45); which is a tool for testing and evaluating firewalls. The

tool focuses in generating rules based on user-defined probabilities for each

field that composes the rules. The main limitation of this tool is that it does

not consider rule complexity and field interactions or features. Another

limitation is that it is not flexible; it cannot use user-defined models of

policy grammars and does not guarantee an efficient coverage of the

testing space.

The policy generator shown in Figure 6.1 takes as a starting point the

limitations of ClassBench and proposes the use of the following strategies:

� A policy grammar – an attributed grammar with defined

attributes for each rule that controls the syntactic accuracy

during generation.

� A BNF Graph – a directed graph corresponding to the finite

state automata of the grammar with a unique initial and final

state. Each node in the graph represents a nonterminal in the

attributed grammar and is associated with a user-defined

probability for generation purposes.

� Generation Process – the framework uses a complete

traversal of the BNF graph to generate a rule; repeating the

process for each generated rule. For generating a rule, the

initial state is visited and each node, using its grammar

attributes and probabilities, produces a terminal element.

When the final state is reached, the rule has been generated

and the process can be repeated to generate further rules.

These approaches have been found to present several different

limitations which are listed in Table 6.2.

Limitation Description
No formal steps to transform a • There is no suggested or formal

75

firewall rule grammar in BNF

notation into an attributed

firewall grammar.

procedure to add attributes to a

firewall rule grammar in BNF

notation. This can lead to errors and

adds unintended complexity to the

grammar production.

• Lack of flexibility to adapt to
different firewall rule definition.

Pseudo-random rule generation • Excludes exhaustive generation
where applicable and relies only in

probabilities to maintain an even

distribution over nodes selected in

the graph.

Uncertain rule complexity • Rule complexity is managed

probabilistically, excluding

exhaustive generation where

possible.

Unconstrained input space. • The generation process doesn’t
control how final tokens are

selected.

Unaware of previous results. • A count is added to each node in
the BNF graph during execution

time, so the node is only aware of

previous attempts on itself.

Table 6.2 Policy grammar, BNF Graph and Generation Process approaches limitations.

Firewall testing is highly complex. For this reason, this research will

focus on policy generation strategies, where grammars and sentence

generation techniques can be employed and evaluated without the need of

external systems.

6.2.3 Our Approach

For the experiments this research area was selected as, traditionally,

firewall testing frameworks usually use for automated generation of their

firewall policies model-based generation approaches. Grammars have been

recently employed with a good impact in firewall testing frameworks, so

this will allow us to make fair comparisons of the efficiency of our solution

as previous methods are available for comparison.

Our solution proposes the following approaches that will lessen the

limitations discussed for the Al-Shaer et al (44) policy generator as shown

in Table 6.3.

Limitation Description
No formal steps to transform

a firewall rule grammar in

BNF notation into an

attributed firewall grammar.

• Our solution defines a simple approach to

transform usual firewall rule grammar in

BNF notation to its equivalent symbolic

grammar.

76

• Any firewall rule grammar can be easily

transformed with minimal changes.

Pseudo-random rule

generation

• We include exhaustive generation where

applicable and low discrepancy generation

where not.

Uncertain rule complexity • Rule complexity is managed by grammar

sentence length and the symbolic

sentences generation’s engine.

Unconstrained input space. • We include exhaustive generation where

applicable and low discrepancy generation

where not.

Unaware of previous results. • All previous generated outputs are
considered in the generation of test cases.

Table 6.3 Lessened limitations by our solution.

For evaluating this solution’s accuracy, a set of empirical experiments

was designed and it will be discussed in the following sections.

6.3 Case Study

As discussed, firewall policy generation has not been subject of

exhaustive study; thus leaving a field full of possibilities for research.

Firewall policies consist of policy rules that, independent of their

manufacturer, share a basic syntax. This trait makes its selection an

obvious one as it gives enough flexibility to experiment with the impact of

our solution and it is rigid enough to avoid the unrestricted growth of other

kind of grammars that can give an infinite set of solutions (e.g. recursive

grammars). Therefore a simplified firewall rule grammar that will allow us

to have a proper insight of how practical test policies can be generated with

different systems and the benefits that our solution provides will be used.

6.3.1 Previous Firewall Testing Approaches

Hoffman et. al. (46) have recently published that there are few case

studies in grammar-based test generation. Because of this research, topics

where firewall policies are needed for testing will be explored. The main

source for policies are mainly divided in two,

� Model-based generation (47) (48) and;

� Firewall policies used in real world situations (university

firewalls, corporation firewalls, etc.) (49)

For firewall testing there exist frameworks (44) (50) which include

several features that range from policy generation, packet generation and

result evaluation. These two approaches altogether are widely used in the

mentioned frameworks and in other research topics where firewall policies

are needed for testing (51). These frameworks consider a firewall policy

generation but don’t go in detail of how they generate their policies, giving

77

only a brief description of their methodologies which coincide with the

previously discussed.

As a result of this, a testing oracle or an external system to which a

comparison could be made in the level of detail that was managed in the

experiments, was not available. The most similar approach is the one

proposed by Al-Shaer (44). Details on their work were requested but as

their research were sponsored by Cisco, their information was not available

for disclosure.

6.3.2 Methodology

An analysis and a comparison of four different test case generation

methods were chosen as our experiments:

� Random generation – This experiment consisted of random

generation of sentences from a BNF-Grammar where the only

restrictions are the defined grammar rules. For this

experiment, a simple sentence generation engine which

solves the grammar in a pseudo-random fashion was

developed.

� HAMPI system - the HAMPI string solver (19) (34) is used to

solve the symbolic grammar derived from the BNF-Grammar

used in the “random” experiment. It is believed that HAMPI

can be viewed as the state-of-the-art for this type of problem

and that our system can be built upon this previous work.

� Our system – This experiment is divided into two parts: one

will apply only adaptive testing techniques for symbolic

constant instantiation, and the second one will apply the

enhancements over symbolic sentence generation.

o Single approach - Our solution will be executed

without any grouping of symbolic constants. With this

only the enhancements that concern symbolic

constant instantiation will be employed.

o Entity approach - Our solution will be executed taking

advantage of our enhancements over concrete

sentence generation which group all the rules that

represent a concept that is needed to be solved as a

single value.

Effectively, random generation acts as the control situation – it is

widely understood and has well-known properties. HAMPI (19) (50) is

considered to represent state-of-the-art in test case generation of this type.

HAMPI is a general solution and is utilised because no specify firewall

policy-oriented solution is available.

78

6.3.2.1 Grammars

The system was tested with several grammars ranging from 4 to 200

production rules (e.g. http-cookies, SQL, JavaScript, ANSI C, etc.). We

believe that although our system is capable of solving large context-free

grammars, the analysis of the results becomes increasingly complex as the

magnitude of the grammar increases. In our experiments, the Extended

Cisco IOS access list grammar which can be viewed as an attempt to define

vendor-natural firewall grammar will be employed. This grammar is in fact

a subset of the grammar used by Al-Shaer (44), which incorporates a

significant number of vendor-specific terms.

The grammar proposed in (44) corresponds to an attributed grammar

which is presented in a notation that can be understood by the grammar

parser introduced in their work; therefore it contains special characters and

attributes that are not part of a BNF notation. Our system can only parse

BNF grammars thus the attributed grammar should be converted into its

equivalent BNF representation.

Let's take for example the following definition of the "action" production

rule:

action\FieldID(0) := "permit"\V(1) | "deny"\V(0)

This rule contains annotated attributes at the right side of the terminal

and non-terminal elements. For our purposes these attributes are removed

leaving it exclusively with BNF valid operators:

action = "permit" | "deny"

This grammar presents other set of attributes which give information to

the parser about how production rules should be selected. For removing

this kind of attributes a method that keeps most of their properties when

transformed into BNF notation was selected. The method chosen was

adding redundancy to the rules that were favoured by the original

attributed grammar; for example :

Rule Probability

PROTOCOL_NUMBER = PROTOCOL_NUMBER_L0 |

PROTOCOL_NUMBER_L2 ;

PROTOCOL_NUMBER_L0 = "1" | "2" | "4" | "6" | "17"

| "41" | "58" ;

50%

PROTOCOL_NUMBER_L2 = [0-255]; 50%

Rule with redundancy

PROTOCOL_NUMBER = PROTOCOL_NUMBER_L0 |

PROTOCOL_NUMBER_L2 ;

PROTOCOL_NUMBER_L0 = "1" | "2" | "4" | "6" | "17"

| "41" | "58" ;

75%

PROTOCOL_NUMBER_L2 = PROTOCOL_NUMBER_L0 | [0-255]; 25%

Table 6.4 Example redundancy added to the grammar.

79

In this case, it is of interest to favour the group of numbers defined by

the rule “PROTOCOL_NUMBER_L0” so this rule is added in “PROTOCOL_NUMBER_L2”

to raise the probability of a terminal element that belongs to

“PROTOCOL_NUMBER_L0” to be selected.

Another change to consider is the set of rules which define specific-

vendor rules terms (for this case extended Cisco IOS access list). These

rules define flags, connections and logging. Take for example the initial

rule:

S := "access-list" Policy-Number action proto SrcAddr

[SrcPort] DestAddr [DestPort] [ACK] [FIN] [PSH]

[RST] [SYN] [URG] [Prec] [Tos] [Established]

[Logging] [Fragments] [icmpquals] [igmpquals]

This after removing Cisco IOS specific fields is simplified to:

S = proto SrcAddr [SrcPort] DestAddr [DestPort] action

With this modification our grammar is modified into a simplified version

of the original which gives generic firewall rules that contain the commonly

used fields for the most used products (Check Point Software’s Firewall-1,

CyberGuard’s CyberGuard, Microsoft's Windows Firewall, NetGuard’s

Guardian, Milkyway’s SecurIT, etc. (52)).

Finally, a subset of the rules was renamed to give a more descriptive

annotation; and rules which are related as they are part of the same

concept were grouped (i.e. Source address).

SIMPLIFIED: S = proto SrcAddr [SrcPort] DestAddr

[DestPort] action

RENAMED: RULE = PROTOCOL_NUMBER SOURCE DESTINATION

ACTION ;

After the discussed changes were applied to the original attributed

grammar, the resulting equivalent BNF grammar (G) used for the “random”

experiment is presented:

 RULE = PROTOCOL_NUMBER SOURCE DESTINATION ACTION ;

PROTOCOL_NUMBER = PROTOCOL_NUMBER_L0 | PROTOCOL_NUMBER_L1 |

PROTOCOL_NUMBER_L2 ;

PROTOCOL_NUMBER_L0 = "1" | "2" | "4" | "6" | "17" | "41" |

"58" ;

PROTOCOL_NUMBER_L1 = PROTOCOL_NUMBER_L0 | "9" | "15" | "37" |

"43" | "44" | "59" | "60";

PROTOCOL_NUMBER_L2 = PROTOCOL_NUMBER_L0 | PROTOCOL_NUMBER_L1 |

[0-255];

SOURCE = IP_ADDRESS PORT ;

DESTINATION = IP_ADDRESS PORT ;

PORT = PORT_NONE | PORT_SINGLE | PORT_LT | PORT_GT | PORT_NE |

80

PORT_RANGE ;

PORT_NONE = "";

PORT_SINGLE = DECIDE_PORT ;

PORT_LT = LT DECIDE_PORT ;

PORT_GT = GT DECIDE_PORT ;

PORT_NE = NE DECIDE_PORT ;

PORT_RANGE = DECIDE_PORT SLASH DECIDE_PORT ;

DECIDE_PORT = PORTS_Commons | PORTS_Not_Commons ;

PORTS_Not_Commons = PORTS_Others | PORTS_Assigned | [0-65535];

PORTS_Commons = "1" | "7" | "9" | "11" | "13" | "17" | "18"

|"19" | "20" | "21" | "22" | "23" | "25" | "37" | "39" |

"42" | "43" | "50" | "53" | "67" | "68" | "69" | "70" |

"79" | "80" | "88" | "95" | "101" | "102" | "105" | "107"

| "109" | "110" | "111" | "113" | "115" | "117" | "119" |

"123" | "137" | "138" | "139" | "143" | "161" | "162" |

"163" | "164" | "177" | "178" | "179" | "191" | "194" |

"199" ;

PORTS_Others = "201" | "202" | "204" | "206" | "209" | "210" |

"213" | "220" | "369" | "370" | "372" | "443" | "444" |

"487" | "610" | "611" | "612" ;

PORTS_Assigned = "1524" | "1525" | "1645" | "1646" | "1812" |

"1813" | "2401" | "2430" | "2431" | "2432" | "2433" |

"3306" | "5002" | "5308" | "7000" ;

IP_ADDRESS = IP_ADDRESS_COMPLETE | IP_WILD ;

IP_WILD = IP_OTHER | IP_ADDRESS_SET ;

IP_ADDRESS_SET = IP_ADDRESS_SET_1000 | IP_ADDRESS_SET_0100 |

IP_ADDRESS_SET_0010 | IP_ADDRESS_SET_0001;

IP_ADDRESS_COMPLETE = IP_NUMBER DOT IP_NUMBER DOT IP_NUMBER DOT

IP_NUMBER ;

IP_ADDRESS_SET_1000 = IP_NUMBER DOT IP_DECIDE DOT IP_DECIDE DOT

IP_DECIDE ;

IP_ADDRESS_SET_0100 = IP_DECIDE DOT IP_NUMBER DOT IP_DECIDE DOT

IP_DECIDE ;

IP_ADDRESS_SET_0010 = IP_DECIDE DOT IP_DECIDE DOT IP_NUMBER DOT

IP_DECIDE ;

IP_ADDRESS_SET_0001 = IP_DECIDE DOT IP_DECIDE DOT IP_DECIDE DOT

IP_NUMBER ;

IP_DECIDE = " * " | IP_NUMBER ;

IP_OTHER = "127 . 000 . 000 . 001" ;

IP_NUMBER = [0-255];

ACTION = "permit" | "deny" ;

LT = "<" ;

GT = ">" ;

NE = "!=" ;

DOT = " . ";

SLASH = " - ";

Two rule modifications that were in the original grammar and were kept

in our simplification should be mentioned (it was decided to keep them

based on their purpose, which was to mimic real life firewall rules):

� Protocols and ports numbers have been biased to favour

most commonly used selections. The grammar refers to user-

defined values which are defined based on (53) for protocols

and (54) for port numbers.

� IP addresses are distinguished between local host, specific

addresses (containing no wildcards) and addresses that

contain one or more wild cards.

81

The next step was to define the symbolic grammar G’. For defining it,

the same criteria in section 4.3.1 suggested by Majumdar (18) was applied.

This criterion gave the derived the following symbolic grammar (GS’):

 RULE = <PROTOCOL_NUMBER> SOURCE DESTINATION <ACTION> ;

SOURCE = IP_ADDRESS PORT ;

DESTINATION = IP_ADDRESS PORT ;

PORT = PORT_NONE | PORT_SINGLE | PORT_LT | PORT_GT | PORT_NE |

PORT_RANGE ;

PORT_NONE = "";

PORT_SINGLE = <DECIDE_PORT> ;

PORT_LT = LT <DECIDE_PORT> ;

PORT_GT = GT <DECIDE_PORT> ;

PORT_NE = NE <DECIDE_PORT> ;

PORT_RANGE = <DECIDE_PORT> SLASH <DECIDE_PORT> ;

IP_ADDRESS = IP_ADDRESS_COMPLETE | IP_WILD ;

IP_WILD = IP_OTHER | IP_ADDRESS_SET ;

IP_ADDRESS_COMPLETE = <IP_NUMBER> DOT <IP_NUMBER> DOT

<IP_NUMBER> DOT <IP_NUMBER> ;

IP_ADDRESS_SET = IP_ADDRESS_SET_1000 | IP_ADDRESS_SET_0100 |

IP_ADDRESS_SET_0010 | IP_ADDRESS_SET_0001;

IP_ADDRESS_SET_1000 = <IP_NUMBER> DOT <IP_DECIDE> DOT

<IP_DECIDE> DOT <IP_DECIDE> ;

IP_ADDRESS_SET_0100 = <IP_DECIDE> DOT <IP_NUMBER> DOT

<IP_DECIDE> DOT <IP_DECIDE> ;

IP_ADDRESS_SET_0010 = <IP_DECIDE> DOT <IP_DECIDE> DOT

<IP_NUMBER> DOT <IP_DECIDE> ;

IP_ADDRESS_SET_0001 = <IP_DECIDE> DOT <IP_DECIDE> DOT

<IP_DECIDE> DOT <IP_NUMBER> ;

IP_OTHER = "127 . 000 . 000 . 001" ;

LT = "<" ;

GT = ">" ;

NE = "!=" ;

DOT = " . ";

SLASH = " - ";

These symbolic constants are then defined into its correspondent

symbolic values grammar (VS):

 PROTOCOL_NUMBER = PROTOCOL_NUMBER_L0 | PROTOCOL_NUMBER_L1 |

PROTOCOL_NUMBER_L2 ;

PROTOCOL_NUMBER_L0 = "1" | "2" | "4" | "6" | "17" | "41" |

"58" ;

PROTOCOL_NUMBER_L1 = PROTOCOL_NUMBER_L0 | "9" | "15" | "37" |

"43" | "44" | "59" | "60" ;

PROTOCOL_NUMBER_L2 = PROTOCOL_NUMBER_L0 | PROTOCOL_NUMBER_L1 |

[0-255];

DECIDE_PORT = <PORTS_Commons> | <PORTS_Not_Commons> ;

PORTS_Not_Commons = PORTS_Others | PORTS_Assigned | [0-65535];

PORTS_Commons = "1" | "7" | "9" | "11" | "13" | "17" | "18" |

"19" | "20" | "21" | "22" | "23" | "25" | "37" | "39" |

"42" | "43" | "50" | "53" | "67" | "68" | "69" | "70" |

"79" | "80" | "88" | "95" | "101" | "102" | "105" | "107" |

"109" | "110" | "111" | "113" | "115" | "117" | "119" |

"123" | "137" | "138" | "139" | "143" | "161" | "162" |

"163" | "164" | "177" | "178" | "179" | "191" | "194" |

"199" ;

PORTS_Others = "201" | "202" | "204" | "206" | "209" | "210" |

"213" | "220" | "369" | "370" | "372" | "443" | "444" |

"487" | "610" | "611" | "612" ;

82

PORTS_Assigned = "1524" | "1525" | "1645" | "1646" | "1812" |

"1813" | "2401" | "2430" | "2431" | "2432" | "2433" |

"3306" | "5002" | "5308" | "7000" ;

IP_DECIDE = WILD_CARD | IP_NUMBER ;

IP_NUMBER = [0-255];

ACTION = "permit" | "deny" ;

WILD_CARD = " * " ;

Once GS and VS have been defined, a new symbolic grammar (GE’)

and a new symbolic values grammar (VE) will be derived from G, which will

be used for the “entity” experiment. There is not a single way for defining

entities, therefore they will consider each of the fields in a firewall rule

(protocol, source address, action, etc.) these criteria will generate the

following GE’:

 RULE = <PROTOCOL_NUMBER> <SOURCE> <DESTINATION> <ACTION> ;

And the following VE:

 PROTOCOL_NUMBER = PROTOCOL_NUMBER_L0 | PROTOCOL_NUMBER_L1 |

PROTOCOL_NUMBER_L2 ;

PROTOCOL_NUMBER_L0 = "1" | "2" | "4" | "6" | "17" | "41" |

"58" ;

PROTOCOL_NUMBER_L1 = PROTOCOL_NUMBER_L0 | "9" | "15" | "37" |

"43" | "44" | "59" | "60" ;

PROTOCOL_NUMBER_L2 = PROTOCOL_NUMBER_L0 | PROTOCOL_NUMBER_L1 |

[0-255] ;

SOURCE = IP_ADDRESS PORT ;

DESTINATION = IP_ADDRESS PORT ;

PORT = PORT_NONE | PORT_SINGLE | PORT_LT | PORT_GT | PORT_NE |

PORT_RANGE ;

PORT_NONE = "";

PORT_SINGLE = DECIDE_PORT ;

PORT_LT = LT DECIDE_PORT ;

PORT_GT = GT DECIDE_PORT ;

PORT_NE = NE DECIDE_PORT ;

PORT_RANGE = DECIDE_PORT SLASH DECIDE_PORT ;

DECIDE_PORT = PORTS_Commons | PORTS_Not_Commons ;

PORTS_Not_Commons = PORTS_Others | PORTS_Assigned | [0-65535];

PORTS_Commons = "1" | "7" | "9" | "11" | "13" | "17" | "18" |

"19" | "20" | "21" | "22" | "23" | "25" | "37" | "39" |

"42" | "43" | "50" | "53" | "67" | "68" | "69" | "70" |

"79" | "80" | "88" | "95" | "101" | "102" | "105" | "107"

| "109" | "110" | "111" | "113" | "115" | "117" | "119" |

"123" | "137" | "138" | "139" | "143" | "161" | "162" |

"163" | "164" | "177" | "178" | "179" | "191" | "194" |

"199" ;

PORTS_Others = "201" | "202" | "204" | "206" | "209" | "210" |

"213" | "220" | "369" | "370" | "372" | "443" | "444" |

"487" | "610" | "611" | "612" ;

PORTS_Assigned = "1524" | "1525" | "1645" | "1646" | "1812" |

"1813" | "2401" | "2430" | "2431" | "2432" | "2433" |

"3306" | "5002" | "5308" | "7000" ;

IP_ADDRESS = IP_ADDRESS_COMPLETE | IP_WILD ;

IP_WILD = IP_OTHER | IP_ADDRESS_SET ;

IP_ADDRESS_SET = IP_ADDRESS_SET_1000 | IP_ADDRESS_SET_0100 |

IP_ADDRESS_SET_0010 | IP_ADDRESS_SET_0001;

IP_ADDRESS_COMPLETE = IP_NUMBER DOT IP_NUMBER DOT IP_NUMBER DOT

IP_NUMBER ;

83

IP_ADDRESS_SET_1000 = IP_NUMBER DOT IP_DECIDE DOT IP_DECIDE DOT

IP_DECIDE ;

IP_ADDRESS_SET_0100 = IP_DECIDE DOT IP_NUMBER DOT IP_DECIDE DOT

IP_DECIDE ;

IP_ADDRESS_SET_0010 = IP_DECIDE DOT IP_DECIDE DOT IP_NUMBER DOT

IP_DECIDE ;

IP_ADDRESS_SET_0001 = IP_DECIDE DOT IP_DECIDE DOT IP_DECIDE DOT

IP_NUMBER ;

IP_DECIDE = " * " | IP_NUMBER ;

IP_OTHER = "127 . 000 . 000 . 001" ;

IP_NUMBER = [0-255];

ACTION = "permit" | "deny" ;

LT = "<" ;

GT = ">" ;

NE = "!=" ;

DOT = " . ";

SLASH = " - ";

The derived grammars (one context-free and two symbolic) and the

two symbolic values grammars will be the ones use from this point on for

our experiments. Finally, few changes as possible were made from one

derivation to the other so, after analysis, the comparison between the

obtained results of each experiment can be done without complex

interpretations.

6.3.2.2 Constraints

The “random” experiment employs a BNF grammar, thus it doesn’t

have the need for any constraints.

For the “HAMPI” and “single” experiments, an enumeration of all the

possible symbolic sentences derived from G’ and GS’ was made; this is

possible due to symbolic grammars that greatly restraining the solution

space. With this approach 6084 symbolic sentences were generated,

including the following examples:

<PROTOCOL_NUMBER> <IP_NUMBER> "." <IP_DECIDE> "."

<IP_DECIDE> "." <IP_DECIDE> <PORTS_Not_Commons> "127 .

000 . 000 . 001" <PORTS_Not_Commons> <ACTION> ;

<PROTOCOL_NUMBER> <IP_NUMBER> "." <IP_NUMBER> "."

<IP_NUMBER> "." <IP_NUMBER> <OPERAND>

<PORTS_Not_Commons> <IP_NUMBER> "." <IP_NUMBER> "."

<IP_NUMBER> "." <IP_NUMBER> <PORTS_Not_Commons>

<ACTION> ;

<PROTOCOL_NUMBER> <IP_NUMBER> "." <IP_NUMBER> "."

<IP_NUMBER> "." <IP_NUMBER> <PORTS_Commons> <IP_DECIDE>

"." <IP_DECIDE> "." <IP_DECIDE> "." <IP_NUMBER>

<ACTION> ;

<PROTOCOL_NUMBER> <IP_NUMBER> "." <IP_DECIDE> "."

<IP_DECIDE> "." <IP_DECIDE> <OPERAND> <PORTS_Commons>

"127 . 000 . 000 . 001" <PORTS_Commons> "-"

<PORTS_Commons> <ACTION> ;

84

This enumeration will be used as the constraints for these experiments

as they guarantee that all possible combinations from the grammar are

instantiated during the concrete sentence-generation phase. The decision to

enumerate all the solution space for GS’ was taken to generate all the

possible values, so the results obtained vary as little as possible. Therefore

the variation is concentrated in the concrete sentence generation phase.

This phase is where the “competing” approaches differ.

For the entity experiment, no constraints were generated as the

grammar consists of the following single rule:

RULE = <PROTOCOL_NUMBER> <SOURCE> <DESTINATION> <ACTION>;

6.3.2.3 Other Parameters

Some other parameters were also defined for this experiment. They

were set to large values so they did not have an impact in the final results.

The values selected were:

� Sentence length - .set to 30 as the maximum possible used

fields (concrete values) is 24 (this will be explained later).

� Grammar depth - set to 30 as the maximum possible number

of nested rules is 13.

It should be mention that these values are arbitrary and any one that

exceeds the maximum possible value will have the same effects.

6.3.3 Evaluation Criteria

As discussed in section 6.3.1, there exists little work on firewall policy

generation. Therefore an accepted testing oracle was not available to

compare against or to act as a gold standard. An alternative is presented in

Al Shaer's (42) framework, which describes a set of evaluation criteria

including:

� Field coverage - which evaluates whether all the optional

fields have been employed.

� Space coverage - which evaluates the coverage of individual

fields (how diverse are the selected values for a specific field).

It was found that these evaluation criteria were too limited for our

purposes, since they do not contain sufficient detail on how space coverage

is achieved. This problem was overcome by making use of the grammars

that are employed by the systems under analysis. Taking advantage of the

nature of model-based testing, which bounds its input and output space

with its model, the grammar can be employed and create from it a set of

criteria which will function as an oracle for our evaluations. In this selected

approach, an additional measure will be considered:

85

� Concrete constants generation probability - the likelihood

that a concrete constant is selected by its set of production

rules.

Quasi-random sequences gives another criterion to consider which is

the solution space covered by the different implementations considered,

which is proportional to the number of unique values generated by each

evaluated system; therefore we will consider the following measure:

� Unique values generation – the uniqueness of a result

compared against previously generated results.

This set of evaluation concepts was selected since it will provide insight

into how each system reflects the properties (distribution, bias, etc.)

defined in the grammar through its production rules.

In the following sections, the specific details for each field that will be

evaluate will be presented.

6.3.3.1 Rules Distribution

Rules distribution will be measured by comparing each produced rule

against previously generated rules and classifying them between unique

and not unique (previously generated).

This count is one of the most important criteria that will be analyzed as

it will give a clear exemplification about our proposed solution, which is

based in quasi-random sequences, enhances diversity over pseudo-random

based systems.

6.3.3.2 Rule Length

Rule length is defined as the total number of fields within a single rule.

Table 6.5 presents three firewall rules having different rule lengths.

Rules Rule length

233 11.*.048.213 127.000.000.001 accept 16
58 2.89.127.147 80 212.254.105.206 deny 17
17 *.182.096.044 114.*.44.194 194 - 34408 deny 22

Table 6.5 Firewall rules with different length.

It is observed that the minimum length is 16 if no optional values are

selected, while the maximum length is 22 if both source and destination IP

addresses include a range (where a range consists of 3 fields).

The concrete constants generation probability is determined by the rule

"PORT" which is responsible for specifying the possible expansions from

where the systems can make their selection:

86

PORT = PORT_NONE | PORT_SINGLE | PORT_LT | PORT_GT |

PORT_NE | PORT_RANGE;

From the possible selections from which PORT can chose, PORT_LT,

PORT_GT, PORT_NE will generate only lengths of two, while PORT_NONE,

PORT_SINGLE and PORT_RANGE produce lengths of zero, one and three

respectively; therefore a greater concentration of values for length two is

expected (with 50% of the chances to be selected).

A firewall rule must have two port values (source and destination) and

each port value will favour lengths of magnitude two, therefore the rule

length will concentrate its results in any permutation containing these

values.

Length Distribution

16 2.78%

17 5.56%

18 19.44%

19 22.22%

20 30.56%

21 16.67%

22 2.78%

Table 6.6 Rule length expected distribution

Table 6.6 shows how the probability for generating extreme cases

(lengths 16 and 22) are the same (1 out of 36 total permutations) as they

can only be generated when both port definitions select the exact same

expansion (PORT_NONE and PORT_RANGE). In contrast, rules with length

20 are the most favoured as 11 out of the 36 total permutations produce

rules with this magnitude.

6.3.3.3 Protocol Numbers

Protocol number rules are biased to favour the most commonly used

protocols (54), and thus it is expected that the analysis will reflect this bias.

For asserting these expectations the production rules, which control

concrete constants generation probability, will be employed in an example.

First the production rules are shown:

PROTOCOL_NUMBER = PROTOCOL_NUMBER_L0 | PROTOCOL_NUMBER_L1 |

PROTOCOL_NUMBER_L2 ;

PROTOCOL_NUMBER_L0 = "1" | "2" | "4" | "6" | "17" | "41" | "58" ;

PROTOCOL_NUMBER_L1 = PROTOCOL_NUMBER_L0 | "9" | "15" | "37" | "43" |

"44" | "59" | "60" ;

PROTOCOL_NUMBER_L2 = PROTOCOL_NUMBER_L0 | PROTOCOL_NUMBER_L1 |

NUMBER_0_255 ;

NUMBER_0_255 = "0" | "1" | "2" | "3" | . . . | "253" | "254" |

"255" ;

87

As an example, the probability of generating the protocol number 255

beginning with the PROTOCOL_NUMBER rule can be calculated. The first

rule to be visited is PROTOCOL_NUMBER; this rule has three possible

selections and each selection has a probability of 33.33%. The next rule to

visit is PROTOCOL_NUMBER_L2 which has three possible selections, each

one having an associated probability of 33.33%. Finally the option

NUMBER_0_255 in PROTOCOL_NUMBER_L2 stands for a range of numbers

which can be evenly generated, therefore it can be considered as a

production rule with a total number of available selections equal to the

possible values specified in the range (256 for this case) associating a

probability of 0.392% to each one of them. The probability to produce the

number 255 with this rule path is the product of the three visited rules

which gives us 0.0434%.

It should be noted that this calculation is more complex for rules such

as PROTOCOL_NUMBER_L0 that can be reached with different “rule paths”;

and whose values can be generated from other rules (i.e. “1” can be

produced from PROTOCOL_NUMBER_L0 and [0-255]).

A)

Range

from 0

to 70

88

B)

Range

from 71

to 255

Figure 6.2 A-B Expected distribution for protocol numbers.

Using this methodology, the expected results for the protocol numbers

can be calculated and are summarized in Figure 6.2 (the distribution should

be the same for all of the experiments as the same definition is true for all

of them).

6.3.3.4 IP Address Structure

IP address structure probability was calculated employing the same

methodology previously discussed; however, using the following set of

rules:

IP_ADDRESS = IP_ADDRESS_COMPLETE | IP_WILD ;

IP_WILD = IP_OTHER | IP_ADDRESS_SET ;

IP_ADDRESS_SET = IP_ADDRESS_SET_1000 | IP_ADDRESS_SET_0100 |

IP_ADDRESS_SET_0010 | IP_ADDRESS_SET_0001;

IP_ADDRESS_COMPLETE = IP_NUMBER DOT IP_NUMBER DOT IP_NUMBER

DOT IP_NUMBER ;

IP_ADDRESS_SET_1000 = IP_NUMBER DOT IP_DECIDE DOT IP_DECIDE

DOT IP_DECIDE ;

IP_ADDRESS_SET_0100 = IP_DECIDE DOT IP_NUMBER DOT IP_DECIDE

DOT IP_DECIDE ;

IP_ADDRESS_SET_0010 = IP_DECIDE DOT IP_DECIDE DOT IP_NUMBER

DOT IP_DECIDE ;

IP_ADDRESS_SET_0001 = IP_DECIDE DOT IP_DECIDE DOT IP_DECIDE

DOT IP_NUMBER ;

IP_DECIDE = " * " | IP_NUMBER ;

IP_OTHER = "127 . 000 . 000 . 001" ;

� IP_ADDRESS is the starting rule for this set of production

rules, thus it holds the 100% of the solution space.

89

� From it two paths can be followed IP_ADDRESS_COMPLETE

and IP_WILD with an associated probability of 50% for each

one of them.

� If IP_ADDRESS_COMPLETE is chosen it can be induced that

50% of the total produced rules will contain no wild cards as

this rule can only generate this kind of values.

� For IP_WILD two selections are possible IP_OTHER and

IP_ADDRESS_SET, each one with an associated probability of

50% relative to this rule and a 25% relative to the total

solution space.

� If IP_OTHER is chosen then it can be induced that this 25%

of the total solution space will only generate IP addresses

that contain no wild cards as this rule can only generate the

IP value for localhost (127.0.0.1).

� For the IP_ADDRESS_SET rule, which holds the remaining

25% of the solution space, four options are available with an

associated probability of 6.25%. Each one of these four

options can generate 8 different combinations, thus

associating a probability of 0.781% of the total solution space

to each one of them.

The complete results for the solution space can be found in Table 6.7

and its resulting distribution is shown in Table 6.8. From this table, it is

observed that rules with no wild cards have a 78.13% of being selected,

rules with one and two wild cards with 9.38% each; the distribution value is

further reduced to 3.12% for rules having three wild cards.

IP_ADDRESS_COMPLETE IP_OTHER

50% #.#.#.# 25% #.#.#.#

IP_ADDRESS_SET_1000 IP_ADDRESS_SET_0100 IP_ADDRESS_SET_0010 IP_ADDRESS_SET_0001

0.781% #.#.#.#

0.781% #.#.#.#

0.781% #.#.#.#

0.781% #.#.#.#

0.781% #.#.#.*

0.781% #.#.#.*

0.781% #.*.#.#

0.781% #.#.*.#

0.781% #.#.*.#

0.781% #.#.*.#

0.781% *.#.#.#

0.781% #.*.#.#

0.781% #.*.#.#

0.781% *.#.#.#

0.781% #.#.#.*

0.781% *.#.#.#

0.781% #.#.*.*

0.781% #.#.*.*

0.781% *.*.#.#

0.781% #.*.*.#

0.781% #.*.#.*

0.781% *.#.#.*

0.781% #.*.#.*

0.781% *.#.*.#

0.781% #.*.*.#

0.781% *.#.*.#

0.781% *.#.#.*

0.781% *.*.#.#

0.781% #.*.*.*

0.781% *.#.*.*

0.781% *.*.#.*

0.781% *.*.*.#

Table 6.7 Each production rule is shown with their possible generated IP address values and

their associated probability (# stands for any no-wild card value).

Wild

Cards
Pattern Distribution

0 #.#.#.# 78.125%

90

1

#.#.#.* 2.344%

#.#.*.# 2.344%

#.*.#.# 2.344%

*.#.#.# 2.344%

2

#.#.*.* 1.563%

#.*.#.* 1.563%

#.*.*.# 1.563%

.#.#. 1.563%

.#..# 1.563%

..#.# 1.563%

3

#.*.*.* 0.781%

.#..* 0.781%

..#.* 0.781%

..*.# 0.781%

4 *.*.*.* 0.000%

Table 6.8 IP structure expected distribution (# stands for any no-wild card value).

6.3.3.5 IP Address Size

IP address size is measured as the number of bits needed to represent

each of the numbers comprising an IP address. Each IP number needs a

certain quantity of bits to be generated that range between one and eight.

As each IP address is composed of four IP numbers, the maximum

complexity will be 32 and the minimum 4.

In the previous section, it has been discussed that the set of rules

which produce IP addresses, generate both no-wild card and wild card

values. For this criterion only values with no-wild cards will be considered,

so the 78.13% (calculated in section 6.3.3.3) of the solution space that

contains this type of value will conform the solution space for this criterion.

There are three main paths for generating an IP address with no wild

cards:

� From IP_ADDRESS;

� From IP_OTHER; and

� From IP_ADDRESS_SET_1000, IP_ADDRESS_SET_0100,

IP_ADDRESS_SET_0010 and IP_ADDRESS_SET_0001 where all

the instances of IP_DECIDE select the IP_NUMBER path.

The associated probabilities for IP_ADDRESS, IP_OTHER, appear in Table

6.7. IP_ADDRESS_SET_1000, IP_ADDRESS_SET_0100, IP_ADDRESS_SET_0010

and IP_ADDRESS_SET_0001 can be found in Table 6.7. As we are only

considering a subset of the total solution space, the solution space for this

criterion must be calculated. For this calculation, the distribution associated

91

for each rule will be divided between the total solution space that contains

no wild card values. That is, for IP_ADDRESS_COMPLETE, its distribution

(50%) is divided between the total distribution for no wild cards values

(78.13%) giving a value of 64.0%. This method is applied for calculating

the solution space distribution for each of the rule paths considered. Table

6.9 shows the rule paths, its solution space distribution, the solution space

distribution for this criterion and the possible sizes these paths can

generate.

Rule Path
Solution Space

percentage

Solution space

percentage for

this criterion

Possible

size

IP_ADDRESS_COMPLETE 50.00% 64.0% 4-32

IP_OTHER 25.00% 32.0% 10

IP_ADDRESS_SET 3.13% 4.0% 4-32

Table 6.9 Solution and criterion solution space percentage for each rule.

In this table, it is clear that the IP_OTHER distribution will have a

significant impact on the expected distribution as 32% of the criterion

values will produce IP addresses of size 10. For calculating the complete

expected distribution, the numbers of bits that are needed to represent

each IP address are enumerated:

IP Address Bits Value

10.10.10.10 4 + 4 + 4 + 4 16

10.100.100.255 4 + 7 + 7 + 8 26

100.100.100.100 7 + 7 + 7 + 7 28

255.255.255.255 8 + 8 + 8 + 8 32

Table 6.10 IP Address size calculation.

For example, the only permutation of IP numbers that will result in an

address of size four would be the case when the four IP numbers require

only a single bit for their representation (1+1+1+1); the same is true for

the size 32, where each of the four values require 8 bits. The probability of

each number is calculated (with the same methodology employed in the

previous section) and the distribution is shown in Table 6.11, where it can

be appreciated that a large concentration of values is present in value 10 as

was shown in Table 6.9.

Bits Distribution

Bits Distribution

Bits Distribution

Bits Distribution

4 0.017%

12 2.669%

20 5.222%

28 0.580%

5 0.066%

13 3.382%

21 4.708%

29 0.332%

6 0.166%

14 4.078%

22 4.078%

30 0.166%

7 0.332%

15 4.708%

23 3.382%

31 0.066%

8 0.580%

16 5.222%

24 2.669%

32 0.017%

9 0.928%

17 5.570%

25 1.989%

92

10 33.492%

18 5.703%

26 1.392%

11 1.989%

19 5.570%

27 0.928%

Table 6.11 IP Address size expected distribution.

6.3.3.6 IP Values Distribution

The distribution of IP addresses can be measured by comparing each

produced rule’s IP address against previously generated rules’ IP address

and classifying them as either unique or previously generated. This will

provide insight into how the different solutions impact the generation of IP

addresses and will help to evaluate the coverage of the solution space that

each solution produces.

The total space covered for each experiment will also be measured. It

will be calculated by computing the ratio between the unique produced IP

values and the total possible IP values (232). This evaluation will give us an

insight of how the quasi-random sequences implemented in our solution

optimizes previous work.

6.3.3.7 Ports usage

Similar to the rules for protocol numbers, port production rules are also

biased to favour the most commonly used ports, and again, it is expected

that the analysis reveal this bias (53). Ports can be divided into three

groups:

� PORTS_Commons - This first group include the most

commonly used ports. This group includes ports such as:

Echo (port 7), Active Users (port 11), file transfer control

(port 21), Telnet (port 23), host name server (port 42),

World Wide Web (port 80), simple file transfer protocol (port

115), and the internet message access protocol (port 143)

� PORTS_Others – This is a less frequently used group

compared to PORTS_Commons. In this group, ports such as

AppleTalk routing (port 201), The Quick Mail Transfer

Protocol (port 209), Protocol v3 (port 220), and Simple

Asynchronous File Transfer (port 487) are found.

� PORTS_Assigned - - These are the ports not controlled by the

IANA (Internet Assigned Numbers Authority) and can be used

by non-administrative users or non-administrative user

processes.

These groups are defined in our grammars by the following rules:

DECIDE_PORT = PORTS_Commons | PORTS_Not_Commons ;

PORTS_Not_Commons = PORTS_Others | PORTS_Assigned | [0-65535];

PORTS_Commons = "1" | "7" | "9" | "11" | "13" | "17" | "18" | "19" |

"20" | "21" | "22" | "23" | "25" | "37" | "39" | "42" | "43" |

93

"50" | "53" | "67" | "68" | "69" | "70" | "79" | "80" | "88" |

"95" | "101" | "102" | "105" | "107" | "109" | "110" | "111" |

"113" | "115" | "117" | "119" | "123" | "137" | "138" | "139" |

"143" | "161" | "162" | "163" | "164" | "177" | "178" | "179" |

"191" | "194" | "199" ;

PORTS_Others = "201" | "202" | "204" | "206" | "209" | "210" | "213"

| "220" | "369" | "370" | "372" | "443" | "444" | "487" | "610"

| "611" | "612" ;

PORTS_Assigned = "1524" | "1525" | "1645" | "1646" | "1812" | "1813"

| "2401" | "2430" | "2431" | "2432" | "2433" | "3306" | "5002"

| "5308" | "7000" ;

Employing the previously discussed methodology in section 6.3.3.2,

Table 6.12 can be derived for the expected results’ distribution.

RULE Distribution

PORTS_Commons 50.00%

PORTS_Others 16.67%

PORTS_Assigned 16.67%

[0-65535] 16.67%

Table 6.12 Port usage expected distribution values

From a simple inspection of the rules, the maximum port value which is

biased by a rule is port “7000” (BBS service), and all the subsequent ports

(greater than 7000) will have the same probability as they are all derived

from the [0-65535] rule. It is noted that that other groups are discussed in

(54), however, are omitted from this discussion as they refer to specific

services like UNIX, Kerberos, Linux, BSD, etc.

6.3.3.8 Port operators distribution

Operator Description

> # Less than

< # More than

!= # Different

- # Range

Table 6.13 Common port operators considered.

Our grammars consider the common port operators listed in Table 6.13.

The rules controlling the concrete constants generation probability are as

follows:

PORT = PORT_NONE | PORT_SINGLE | PORT_LT | PORT_GT |

PORT_NE | PORT_RANGE ;

PORT_NONE = "";

PORT_SINGLE = DECIDE_PORT ;

PORT_LT = LT DECIDE_PORT ;

PORT_GT = GT DECIDE_PORT ;

PORT_NE = NE DECIDE_PORT ;

PORT_RANGE = DECIDE_PORT SLASH DECIDE_PORT ;

94

Using the previously discussed methodology in section 6.3.3.2, the

same probability is shared by all the possible paths of rule PORT; therefore

a uniform distribution can be expected (with a 16.66% probability for each

rule).

6.3.3.9 Action Values Distribution

Action values distribution will provide an insight of how rule selection

varies depending on the technology used for concrete constant generation.

The action rule is straightforward with only two terminal values that have

no variation with the different generated grammars:

ACTION = "permit" | "deny" ;

It is simple enough to appreciate that it is a binary selection where

each of the options should be expected to have a 50% of the choice.

6.4 Empirical Results

Empirical results that cover firewall rules will be discussed in the next

following sections. Two analyses are provided:

� Policies - how policies were generated; and

� Rules distribution - how the generated rules cover the

solution space.

Finally, discussion over individual firewall rules will be presented in the

last section.

6.4.1 Policies

For the evaluation, 200 different polices with policy sizes ranging from

100 – 24000 rules were generated as suggested in AL-Shaer’s experiment

(44). In their work, there is no suggestion on how to determine the total

rules per policy. The first option was to produce them in a deterministic

fashion with uniform increments as follows:

RSRTUVWUXY = Z �[\]VWUXY	 +]	\]_`X[X]R	
abacdebdfgfhij�

klm

\]_`X[X]R = 	ncopqdhij��!pqdhiabacdebdfgfhi .

Here minRules and maxRules are the minimum and maximum desired

number of rules (100 – 24000). However, it is believed that firewalls having

95

the same number of rules are highly improbable in practice, as each user

builds its own firewall policy depending on their particular needs and

objectives. In an attempt to mimic real world firewall policies, a non-

deterministic component was added to our policy generator:.

rSU_sf = rSU_sfj� + \]_`X[X]R ∗ �1 + `T]uS[vXRwXX]�−0.01,0.01			
rSU_sm = [\]VWUXY	

The function randomBetween specifies a random number between -

0.01 and 0.01. This function allows the generated policy rules to vary within

a 1% range from the deterministic value. Figure 6.3 illustrates the number

of rules per policy for each experiment:

Figure 6.3 Rules per policy empirical distribution

For our analysis, the percentage (relative) error will be calculated as

follows:

\]_`X[X]R = 	 z{j{|}}~��{ z × 100.

Here υ is the expected value and υapprox is the empirical value, this

methodology will be used for all the calculations of percentage error.

Back to this criterion, the percentage error between the deterministic

algorithm and each one of our experiments was calculated; the results are

96

shown in Table 6.14. A comparison between the expected distribution and

the results for each of the experiments is presented in Figure 6.4.

Total Rules

Experiment Rules %.E.

Random 2,388,100 0.83%

HAMPI 2,386,518 0.89%

Single 2,427,137 0.79%

Entity 2,418,275 0.43%

Totals 9,620,030 0.12%

Ideal 2,408,000 0.00%

Ideal Total 9,632,000 0.00%

Table 6.14 Total rules per experiment and their percentage error.

A

B

97

C

D

Figure 6.4 A-D Detail for policy empirical distribution for policies in the range from 150 to

200.

It is clear that the percentage error for any of the experiments is

always below 1%; this is an acceptable result for our purposes here.

6.4.2 Rules Distribution

The results for the four experiments are illustrated in Table 6.15; where

we can find annotated the number of non-unique firewall rules. From simple

inspection, it can be seen that the experiment which presents the greater

number of not unique cases is the “random” experiment with 14286 for the

total solution space generated. While the “HAMPI” experiment shows 474

not-unique cases. These two results contrast with the results obtained from

the analysis of the “single” and “entity” experiments where the count drops

to 5 and 1 respectively.

The reason for these results was discussed in section 4.2.2 where it

was established how quasi-random sequences maximize the coverage of

the solution space. This is asserted in these results where the experiments

where pseudo-random algorithms are employed for test case generation

98

produce a greater number of not-unique results than the two experiments

which employ quasi-random sequences (“single” and “entity”).

Generated Random HAMPI Single Entity

100000 153 85 0 0

200000 386 111 0 0

300000 661 156 2 0

400000 1004 185 3 0

500000 1392 188 3 0

600000 1836 190 3 0

700000 2306 191 4 0

800000 2791 192 4 0

900000 3369 194 4 0

1000000 3955 194 4 0

1100000 4590 196 4 0

1200000 5261 227 5 1

1300000 5922 261 5 1

1400000 6651 261 5 1

1500000 7426 261 5 1

1600000 8224 261 5 1

1700000 9010 339 5 1

1800000 9793 341 5 1

1900000 10666 410 5 1

2000000 11513 449 5 1

2100000 12376 449 5 1

2200000 13311 474 5 1

2300000 14286 474 5 1

Table 6.15 Each experiment is annotated with its accumulated count of not-unique rules for

each interval of 100000 firewall rules.

The differences between the random and HAMPI experiments respond

to the use of constraints by the “HAMPI” experiment as the constraints

enforce diversity in the rule structure. As discussed in section 6.3.2.2, an

enumeration of the possible symbolic sentences was made, using this

enumeration guarantees that all the possible structures are used and this

favours diversity as is demonstrated in the results. For explaining the

differences between the “single” and “entity” approaches, we should focus

on the concrete sentence generation phase where the systems employ

different approaches for symbolic constants instantiation. The "single"

experiment separately instantiates symbolic constants with a quasi-random

sequence. In contrast, the "entity” experiment instantiates entities grouped

symbolic constants (entities) with a quasi-random sequence. The solution

99

space for an entity is greater than the solution space of a single symbolic

constant (as the solution space for an entity is the Cartesian product of the

grouped symbolic constants) thus, the possibilities of generating not-unique

values decreases dramatically when employing entities, as asserted by the

empirical results.

The evidence demonstrates the superiority of the implemented solution

over previous approaches.

6.4.3 Rule Length

In Table 6.16, it can be appreciated that the “HAMPI” and “single”

experiments show expected behaviour in their results as the rule length

depends solely in the symbolic sentences generation phase, thus there

should be no substantial difference as they both employ the same symbolic

grammar and symbolic values grammar for their generation. These trends

start from near a frequency of zero for rules with length 16 and rise to a

frequency near 30% for length of 20. The frequency reduces to 29% for a

length 21 and finally drops to a value of 10% for length 22. The behaviour

is a direct result of how the system creates sentences from the symbolic

grammar using McKenzie’s algorithm (24) which is set by the “sentence

length” parameter (discussed in section 6.3.2.3) to favour the generation

firewall rules with this rule length.

Rule

Length
Expected Random HAMPI Single Entity

16 2.778% 2.738% 0.465% 0.651% 1.955%

17 5.556% 5.544% 1.919% 2.388% 7.369%

18 19.444% 19.311% 9.012% 9.553% 16.026%

19 22.222% 22.297% 19.250% 19.142% 18.772%

20 30.556% 30.524% 29.214% 30.179% 38.612%

21 16.667% 16.762% 30.347% 28.967% 15.102%

22 2.778% 2.825% 9.794% 9.119% 2.165%

Table 6.16 Rule length empirical distribution

The "entity" experiment behaviour responds directly to the

enhancements of our solution over the symbolic sentences generation

phase which instantiates grouped symbolic constants (entities) instead of

instantiating them separately. Impact from the symbolic sentences

generation phase is null as there are no constraints and the symbolic

grammar consists on a single production rule. This fact leaves the full

control of how the entities are solved to the concrete sentences

generation phase. This phase solves the rules as follows:

1. A rule is chosen.

100

2. Its possible expansions are associated with a unique quasi-

random sequence.

3. The engine selects the expansion based on the associated

quasi-random sequence.

This guarantees that all the productions have the same probability, as

the quasi-random sequences enforces that the entire solution space is

covered before repeating values. This behaviour explains the distribution

which matches well with the one expected.

In order to provide a more formal comparison between these results,

the percentage error is calculated in Table 6.17.

For each experiment each value is shown with their respective

percentage error, in the last rows of the table the average, median and

accumulated percentage error for each experiment is annotated.

Bits Random HAMPI Single Entity

16 1.45% 83.26% 76.55% 29.62%

17 0.21% 65.46% 57.01% 32.64%

18 0.69% 53.65% 50.87% 17.58%

19 0.34% 13.37% 13.86% 15.53%

20 0.10% 4.39% 1.23% 26.37%

21 0.57% 82.08% 73.80% 9.39%

22 1.71% 252.57% 228.28% 22.06%

Average 0.72% 79.26% 71.66% 21.88%

Median 0.57% 65.46% 57.01% 22.06%

Accumulated 5.06% 554.79% 501.60% 153.18%

Table 6.17 Rule Length percentage error.

The random experiment shows almost complete agreement with the

expected distribution as evidenced by the negligible error values ranging

between 0.1% and 1.71%. Entity follows with the second lowest percentage

error having a maximum of 32.64%. The “HAMPI” and “single” approaches

have values that have a median of 65.46% and 57.01% respectively, which

when compared to the median of “random” (0.57%) and “entity” (22.06%)

makes them the less acceptable cases.

This behaviour is due to the nature of the systems where the following

elements affect the results:

1. Grammar depth - The "random" approach becomes less

accurate when the number of rules needed to reach a

concrete value increases (this will be corroborated in further

criteria i.e. address size). To make the selection of rule

length the production rule PORT must be visited; thus to

101

reach it only one derivation must be made starting from the

starting symbol. The number of needed rules substitutions is

the minimum favouring an almost null percentage error.

2. The error shown is related directly to how symbolic sentences

are produced from McKenzie's algorithm. It has been

discussed that this algorithm favours the production of

grammar sentences with a specified sentence length which

can be appreciated by the obtained results for "HAMPI" and

"single" experiments. Our system is based on this algorithm,

therefore the bias is still present if no correction algorithm is

implemented in the original system. Our solution corrects it

employing entities which are solved using their associated

quasi-random sequences; this approach minimizes the impact

of McKenzie's algorithm over the "entity" results giving an

optimization of 72.34% over the "HAMPI" accumulated

percentage error.

6.4.4 Symbolic Sentences Representation

In section 4.2.4, it was discussed that our solution proposes a concrete

sentence generation control mechanism to control the symbolic sentences

instantiation mechanism. This mechanism was proposed in order to solve

the limitations encountered in previous approaches where the total number

of concrete sentences instantiated from a symbolic sentence is not

controlled. To measure the impact of our enhancements, we traced the

number of concrete sentences instantiated from each symbolic sentence;

these results are shown in Table 6.18 with their averages and standard

deviations for each rule length.

Random HAMPI Single Entity

10
Average 1816.028 322.444 329.000 1839.000

St. Dev. 659.934 138.214 0.000 0.000

11
Average 919.368 331.188 339.000 931.000

St. Dev. 339.970 137.572 0.000 0.000

12
Average 800.623 377.564 385.000 811.000

St. Dev. 360.481 162.585 0.000 0.000

13
Average 462.221 397.472 404.359 468.000

St. Dev. 169.071 170.895 0.480 0.000

14
Average 389.394 376.815 383.000 394.000

St. Dev. 181.164 168.450 0.000 0.000

15
Average 231.645 413.402 420.000 235.000

St. Dev. 85.142 169.790 0.000 0.000

16
Average 117.132 402.948 410.000 118.207

St. Dev. 44.849 157.628 0.000 0.405

102

Table 6.18 Symbolic sentences representation average and standard deviation by rule length.

From the obtained results, it can be observed that the “random”

experiment presents standard deviations that range from 44.849 (for length

16) to 659.934 (for length 10). This shows how random generation does

not favour any specific symbolic structure resulting in uncertainty in their

final representation (it should be mentioned that the “random” experiment

has no symbolic sentence generation phase, therefore its equivalent

symbolic sentences had to be computed from the generated concrete

sentences).

The HAMPI experiment shows standard deviations which range from

137.572 to 170.895, these deviations illustrate that the results from the

“random” experiment have been significantly improved. This improvement

is a direct consequence of constraint usage which forces all symbolic

structures to be used; but the standard deviation still shows the uneven

coverage of these structures.

For “single” and “entity” experiments, the standard deviations reach

values of 0 in all lengths but in two. This is expected as the concrete

sentence generation control mechanism implemented guarantees that

symbolic sentences are covered evenly:

1. Symbolic sentences are received from the symbolic

sentences generation phase by the concrete sentences

generation phase.

2. Pre-concrete sentences are derived from the symbolic

sentences.

3. The experiments’ total rules are calculated.

4. For each symbolic sentence, the number of rules to be

instantiated are calculated dividing the total rules between

the total derived pre-concrete sentences.

Step 4 of the methodology uses a deterministic algorithm; therefore

each of the symbolic sentences is covered with the same rules, resulting in

a standard deviation of zero. Standard deviations that are not zero (length

13 for “single” and 16 for “entity”) are explained by the fact that step 4 can

return non-integer values which have to be adjusted to deliver the exact

quantity of total rules. The average between these two experiments vary

(despite their standard deviations) due to pre-concrete sentences derivation

which is based on symbolic constants for the “single” experiment and

entities for the “entity” experiment (entities group symbolic constants

producing fewer combinations that ungrouped symbolic constants).

103

6.4.5 Individual Rule Fields Analysis

Evaluation of the behaviour of individual firewall fields is required to

fully analyze the effects of our proposed approach; a discussion for

evaluation criteria which analyze individual firewall rule fields is presented

in this section.

6.4.5.1 Protocol Numbers

A)

Range

from 0

to 70

A)

Range

from

70 to

255

Figure 6.5 A-B Protocol numbers empirical distribution

Experiment Rule

Random RULE = PROTOCOL_NUMBER SOURCE DESTINATION

ACTION

HAMPI and

Simple

RULE = <PROTOCOL_NUMBER> SOURCE

DESTINATION <ACTION>

Entity RULE = <PROTOCOL_NUMBER> <SOURCE>

104

<DESTINATION> <ACTION>

Table 6.19 Changes made in the different grammars.

Random HAMPI Single Entity

Average 12.178% 12.875% 10.428% 1.249%

Median 12.012% 11.534% 10.156% 1.022%

Mode 9.793% 11.534% 15.257% 0.471%

Standard

Deviation
4.231% 4.163% 4.449% 0.917%

MAX 24.457% 21.514% 15.406% 3.160%

MIN 0.025% 0.027% 0.544% 0.031%

Accumulated 3117.585% 3296.078% 2669.581% 319.775%

Table 6.20 Protocol numbers first-order statistics percentage error for its 256 elements

solution space.

Figure 6.5 presents the empirical results for the four experiments

compared to their expected distribution. This behaviour can be attributed to

the changes illustrated in Table 6.19 which took place during the derivation

of the symbolic grammars. The symbolic constant <PROTOCOL_NUMBER> did not

change significantly with the derivations of the symbolic grammars from the

context-free grammar used in the “random” experiment and this can be

appreciated in the results. Percentage error distribution is calculated to

evaluate how they compare to the expected ones, which are given in Table

6.20. The table illustrates that the experiment which shows the least

accumulated percentage error from the expected values is the “entity”

experiment varying with a value of 319.78%, followed by the “single”

experiment with a value of 2669.58%. This result is confirmed by the

median and average values where the “entity” experiments raises as the

best of the 4 experiments.

For this criterion, the solution space coverage was omitted as the

protocol numbers have a solution space of 256 elements is completely

covered by each of the experiments’ generated values as shown in Figure

6.5.

6.4.5.2 IP Address Structure

Wild

cards
Pattern Expected Random HAMPI Single Entity

0 #.#.#.# 78.13% 77.902% 42.006% 41.580% 77.718%

1

#.#.#.* 2.34% 2.387% 6.210% 6.325% 1.801%

#.#.*.# 2.34% 2.389% 6.220% 6.271% 3.448%

#.*.#.# 2.34% 2.378% 6.231% 6.259% 1.806%

105

*.#.#.# 2.34% 2.399% 6.219% 6.264% 4.390%

2

#.#.*.* 1.56% 1.568% 4.138% 4.179% 0.915%

#.*.#.* 1.56% 1.564% 4.181% 4.172% 1.283%

#.*.*.# 1.56% 1.581% 4.145% 4.173% 0.591%

.#.#. 1.56% 1.564% 4.147% 4.172% 0.271%

.#..# 1.56% 1.575% 4.134% 4.147% 1.390%

..#.# 1.56% 1.588% 4.126% 4.187% 1.468%

3

#.*.*.* 0.78% 0.770% 2.064% 2.076% 0.964%

.#..* 0.78% 0.768% 2.041% 2.053% 2.523%

..#.* 0.78% 0.767% 2.077% 2.063% 0.717%

..*.# 0.78% 0.792% 2.049% 2.070% 0.707%

4 *.*.*.* 0.00% 0.000% 0.000% 0.000% 0.000%

Table 6.21 IP address structure empirical distribution

The bias for generating rules with no wild cards can be observed in

Table 6.21 where for the case of no wild cards (#.#.#.#), “HAMPI” and

“single” perform significantly poorer than “random” and “entity”. For the

“random” experiment, the behaviour is as expected as biased rules are

more likely to be chosen (as discussed in section 6.3.3.4). The behaviour

for the “entity” experiment responds directly to the fact that for the

concrete sentence generation phase three independent groups are

considered (as discussed in section 6.3.3.3). The behaviour for the “HAMPI”

and “single” experiments shows the impact of the biased rules, but with

less concentration of data in those points. This is due to:

1. No groups are considered as in the “entity” experiment; and

2. Rules are selected during the symbolic sentence generation

phase employing McKenzie's algorithm whose selection

algorithm favours a uniform selection of production rules

regardless of the grammar definition. It can be appreciated

that for the "entity" experiment McKenzie's algorithm is not

employed for rule selection but rather quasi-random

sequences, which results in the less significant accumulated

percentage error (shown in Table 6.22).

Random HAMPI Single Entity

Average 1.24% 147.25% 150.10% 1.19%

Median 1.20% 164.68% 167.84% 1.07%

Standard

Deviation 0.9458% 47.642% 48.589% 0.8242%

MAX 3.02% 166.42% 171.75% 3.47%

MIN 0.00% 0.00% 0.00% 0.00%

Accumulated 19.92% 2355.98% 2401.53% 19.10%

Table 6.22 IP address structure first-order statistics percentage error.

106

An inspection to Table 6.22 shows that the experiments which present

the largest accumulated percentage error are “HAMPI” (2355.98%) and

“single” (2401.53%), which are non-desirable results, while “random”

(19.92%) and “entity” (19.10%) both show expected dispersion.

Comparing the three presented values in to Table 6.22 the “entity”

experiment has the most acceptable data of the four compared experiments.

IP address structure's solution space coverage was omitted as its

solution space consists solely of 16 elements which is completely covered

by the experiments’ generated values as shown in Table 6.21.

6.4.5.3 IP Address Size

The results for both source and destination are the same (as the same

definition is used for both) therefore we will only discuss the results for the

source case. The numbers of bits for each source IP and their distributions

are presented in Table 6.23. A special point worth mentioning is the notable

concentration of values in the address size ten, which corresponds to the IP

value of localhost (see the initial grammar for its definition).

Bits Expected Random HAMPI Single Entity

4 0.017% 0.001% 0.001% 0.001% 0.000%

5 0.066% 0.003% 0.003% 0.003% 0.002%

6 0.166% 0.007% 0.008% 0.008% 0.005%

7 0.332% 0.017% 0.020% 0.019% 0.012%

8 0.580% 0.036% 0.043% 0.042% 0.017%

9 0.928% 0.076% 0.091% 0.088% 0.061%

10 33.492% 33.070% 20.168% 21.682% 33.241%

11 1.989% 0.331% 0.400% 0.390% 0.355%

12 2.669% 0.599% 0.726% 0.709% 0.651%

13 3.382% 0.963% 1.170% 1.143% 1.053%

14 4.078% 1.427% 1.736% 1.697% 1.573%

15 4.708% 1.995% 2.429% 2.376% 2.194%

16 5.222% 2.670% 3.252% 3.182% 2.916%

17 5.570% 3.445% 4.196% 4.107% 3.753%

18 5.703% 4.283% 5.216% 5.109% 4.576%

19 5.570% 4.937% 6.012% 5.890% 5.197%

20 5.222% 5.410% 6.584% 6.454% 5.622%

21 4.708% 5.699% 6.928% 6.794% 5.846%

22 4.078% 5.794% 7.033% 6.900% 5.848%

23 3.382% 5.683% 6.881% 6.755% 5.669%

24 2.669% 5.343% 6.444% 6.329% 5.201%

25 1.989% 4.747% 5.690% 5.592% 4.494%

26 1.392% 3.858% 4.579% 4.502% 3.601%

107

27 0.928% 3.071% 3.581% 3.522% 2.809%

28 0.580% 2.379% 2.692% 2.649% 2.080%

29 0.332% 1.774% 1.913% 1.883% 1.501%

30 0.166% 1.246% 1.244% 1.226% 0.928%

31 0.066% 0.776% 0.692% 0.682% 0.585%

32 0.017% 0.359% 0.268% 0.264% 0.210%

Table 6.23 IP Address size empirical distribution.

The concentration for size 10 for each experiment can be analyzed as

follows:

� The “random” experiment has a major concentration without

reaching the expected 33%. This was expected as this

experiment fits into the probabilities shown in Table 5.22 due

to its pseudo-random behaviour.

� The “HAMPI” and “single” experiments behave as previous

analysis have shown; but presenting a concentration of 21%

for this value which is not expected. This concentration

corresponds to how the symbolic sentence generation

phase favours sentences with greater length.

� The “entity” experiment has a concentration of 33.241%

which shows the impact of the concrete sentences

generation phase which instantiates IP address as entities

instead of a concatenation of isolated symbolic constants (like

in the “HAMPI” and “single” experiments).

Random HAMPI Single Entity

Average 219.49% 208.58% 205.31% 164.53%

Median 91.80% 92.82% 92.54% 93.44%

SD 412.64% 321.61% 316.46% 247.49%

MAX 2067.9% 1517.2% 1494.7% 1168.8%

MIN 1.3% 7.9% 5.8% 0.7%

Accumulated 6365.16% 6048.89% 5954.05% 4771.43%

Table 6.24 IP address size percentage error first order statistics for its 28 elements solution

space..

The percentage error for this criterion is presented in Table 6.24; from

where it can be seen that the experiment with lowest accumulated error is

“entity” with 4771.43% followed by “single” (5954.05%), “HAMPI”

(6048.89%) and “random” (6365.16%) in that order. The only

measurement where “entity” experiment does not raises as the most

desirable result is the median which is the largest of the four, even though

the distance between the most desirable median (“random” with 91.80) and

its value is of 1.64% which compared to the distance for the best and worst

108

cases for the average (54.96%) and accumulated percentage error

(1593.73%) is acceptable.

As for previous criteria, the IP address size solution space coverage was

omitted as its solution space consists of 18 elements which is covered by

each of the experiments’ generated values as shown in Table 6.23.

6.4.5.4 IP Values Distribution

Experiment
Generated

Rules

Expected

Rules to

compute

Computed

Rules

Percentage

Error

Random 2388100 1791075 1770463 1.1642%

HAMPI 2386518 1789889 2000990 10.5498%

Single 2427137 1820353 2041792 10.8453%

Entity 2418275 1813706 1812737 0.0534%

Table 6.25 Computed rules for IP values distribution analysis

Random HAMPI Single Entity

100000 96.6858% 89.8705% 90.8820% 97.9810%

200000 95.9600% 87.9546% 89.5082% 97.5742%

300000 95.5879% 86.6787% 88.0045% 97.4573%

400000 95.2802% 85.6105% 86.7587% 97.3214%

500000 95.0264% 84.5209% 85.4649% 97.1685%

600000 94.7717% 83.5607% 84.4914% 97.0972%

700000 94.5557% 82.6068% 83.5076% 97.0893%

800000 94.3316% 81.6135% 82.6303% 96.7956%

900000 94.1122% 80.6315% 81.7886% 96.9356%

1000000 93.9088% 79.8810% 80.9631% 96.8841%

1100000 93.7046% 78.9748% 80.1387% 96.8300%

1200000 93.5296% 78.3025% 79.3554% 96.8411%

1300000 93.3415% 77.6474% 78.6020% 96.7850%

1400000 93.1786% 76.9266% 77.8900% 96.7973%

1500000 93.0119% 76.4009% 77.2624% 96.8169%

1600000 92.8407% 75.7481% 76.6177% 96.7447%

1700000 92.6883% 75.2494% 75.9966% 96.7458%

Table 6.26 Unique rules percentage empirical distribution values

The solution space covered by each one of the experiments is of high

interest for our comparison, as it will determine the impact of pseudo-

random and quasi-random technologies for symbolic constant instantiation.

From the total generated rules, we only analyzed the rules which had a

different value from localhost, as this IP address will occupy 25% of the

solution space accordingly to the grammar definition (discussed in section

109

6.3.3.4). For each experiment, its generated rules, expected rules (different

from localhost), the actual rules computed and the percentage error

between expected and computed rules are shown in Table 6.25. This table

shows a percentage error for the “HAMPI” and “computed” which can be

explained by the low concentration of IP address in length 10

(corresponding to the localhost IP address) as discussed in section 6.3.3.5.

Possible Random HAMPI Single Entity

100000 0.00233% 0.0023% 0.0021% 0.0021% 0.0023%

200000 0.00466% 0.0045% 0.0041% 0.0042% 0.0045%

300000 0.00698% 0.0067% 0.0061% 0.0061% 0.0068%

400000 0.00931% 0.0089% 0.0080% 0.0081% 0.0091%

500000 0.01164% 0.0111% 0.0098% 0.0099% 0.0113%

600000 0.01397% 0.0132% 0.0117% 0.0118% 0.0136%

700000 0.01630% 0.0154% 0.0135% 0.0136% 0.0158%

800000 0.01863% 0.0176% 0.0152% 0.0154% 0.0180%

900000 0.02095% 0.0197% 0.0169% 0.0171% 0.0203%

1000000 0.02328% 0.0219% 0.0186% 0.0189% 0.0226%

1100000 0.02561% 0.0240% 0.0202% 0.0205% 0.0248%

1200000 0.02794% 0.0261% 0.0219% 0.0222% 0.0271%

1300000 0.03027% 0.0283% 0.0235% 0.0238% 0.0293%

1400000 0.03260% 0.0304% 0.0251% 0.0254% 0.0316%

1500000 0.03492% 0.0325% 0.0267% 0.0270% 0.0338%

1600000 0.03725% 0.0346% 0.0282% 0.0285% 0.0360%

1700000 0.03958% 0.0367% 0.0298% 0.0301% 0.0383%

1800000 0.04191% 0.0385% 0.0311% 0.0317% 0.0405%

Table 6.27 Percentage solution space covered percentage accumulated values.

The total number IP source address was classified between unique and

not unique IPs; the results are shown in Table 6.26. In this table, it is

observed that the “random” and “entity” experiments generate more

diverse production rules (91.8886% and 96.7266%) as they have more

diversity than the other two experiments (74.1972% and 75.6955%). This

is simple to deduce for the “random” experiment, as the solution space

contains 2�I possible values, and the probability of obtaining the same value

in several occasions is very small. For the “entity” solution, the result is

expected showing the highest rate of unique IP addresses becoming more

evident as the count increases. The data also shows that experiments

“HAMPI” and “single” yield poor results (74.1972% and 75.6955%). The

results differ from each other with a constant value of 1.4983% this is due

to the nature of the original engine and our solution: they only differ in how

they instantiate symbolic constants during the concrete sentence phase

110

and the simple employment of adaptive random testing gives an immediate

enhancement to the HAMPI system. The results for the last row of Table

6.26 shows the results for 1.7 million computed rules (maximum valid

number of computed rules for all experiments as shown in Table 6.25),

illustrating that the entity experiment is ~5% better than the random

experiment which is its closest competitor.

Results are provided for the total solution space covered for our sample

in Table 6.27 the table illustrates that the experiment that covers the

largest solution space using less rules is the “entity” experiment; which

covers 0.0405% of the total possible values (232). This adds to the results

obtained in Table 6.26 which demonstrates that the “entity” experiment is

the best approach of the four discussed.

6.4.5.5 Ports usage

Figure 6.6 Ports usage empirical distribution for 0-8000 interval

Figure 6.6 shows the interval for source ports 0-8000 (only the source

case is presented since the destination case is almost identical). The

interval for ports 8001 to 65535 is omitted given the fact that the values

are too large to obtain meaningful in information. For the same reason this

analysis we will make use of the percentage error's first order statistics for

each experiment which are presented in Table 6.28.

The accumulated error shows such a large values (in the order of

millions) as a direct result of the large solution space analyzed (65536 data

points); however the average shows that percentage errors were in the

order of 35.55%, 38.14%, 30.22% and 19.35% for "random", "HAMPI",

"single" and "entity" experiments respectively which is makes this statistic

111

acceptable. From this accumulated values, the "entity" experiment shows a

significant improvement over the other analyzed approaches; this can be

attributed to the employment of quasi-random sequences for rule selection

during the concrete sentences generation phase.

The "entity" experiment bests all experiments in average and median

measurements; this behaviour is explained by the quasi-random sequences

employed for symbolic constants instantiation selecting between the

solution spaces in a controlled fashion. This behaviour is supported by the

fact that the smallest standard deviation is present in the "entity"

experiment, which indicates that all concrete values have been evenly

employed. One of the most significant statistics is the MAX measurement

which is ~94% smaller for the "entity" experiment compared to the

analyzed algorithms; as previous behaviours, this is explained with the

concrete sentences generation phase and the use of entities which use

quasi-random sequences for symbolic constants instantiation.

Port’s solution space coverage was omitted as its solution space

consists of 65536 elements which are completely covered by the

experiments’ generated values as shown in Table 6.28.

Random HAMPI Single Entity

Average 35.55% 38.14% 30.22% 19.35%

Median 31.36% 32.15% 23.02% 11.40%

Mode 17.90% 5.61% 12.03% 11.40%

SD 33.60% 34.58% 30.22% 14.89%

MAX 1147.96% 1127.11% 1098.63% 59.14%

MIN 0.0261% 0.1300% 0.0013% 1.3302%

Accumulated 2329537.74% 2499830.26% 1980208.34% 1268438.12%

Table 6.28 Ports usage percentage error dispersion first order statistics for its 65536.

6.4.5.6 Ports Operators Distribution

Operations Random HAMPI Single Entity

< # 16.818% 15.956% 15.053% 16.657%

!= # 16.564% 16.158% 14.909% 16.578%

> # 16.537% 14.796% 15.433% 16.471%

None 16.558% 6.871% 7.997% 16.687%

- # 16.762% 31.537% 30.975% 16.623%

16.761% 14.682% 15.632% 16.676%

Average 0.682% 29.740% 28.617% 0.367%

Median 0.654% 11.906% 10.548% 0.261%

Accumulated 4.774% 208.182% 200.320% 2.569%

Table 6.29 Ports Operators empirical distribution values and percentage error.

112

The frequency for each operator is described in Table 6.29. As expected,

the “random” experiment has an almost perfect uniform distribution; this

stems from the fact that all the values have an equal probability of being

generated. For the “HAMPI” and “single” experiments the symbolic

sentences generation phase algorithms demonstrates how McKenzie's

algorithm favours larger rules, resulting in a higher concentration of values

in the "# - #" (range) value which, as discussed in section 6.3.4.1, derives

in sentences with greater length; this explains their large accumulated

percentage error values..

Finally, the “entity” experiment illustrates the variation that the

concrete sentences generation phase introduces within the solution.

Given the fact that quasi-random sequences were implemented, a more

even selection resulted and yielded a minimal accumulated percentage

error. This result was expected since rules are chosen employing an

associated quasi-random algorithm

Like in previous criteria, the ports operators’ solution space coverage

was omitted as its solution space consists of six elements which are covered

by each of the experiments’ generated values as shown in Table 6.29.

6.4.5.7 Action distribution

Action has only two possible values; its results are shown in Table 6.30

and their relative percentage errors are presented in Table 6.31.

Random HAMPI Single Entity

Deny 50.355% 49.987% 49.996% 50.00002

Allow 49.645% 50.013% 50.004% 49.99998

Table 6.30 Action empirical distribution.

Random HAMPI Single Entity

Deny 0.7093% 0.0258% 0.0086% 0.00004%

Allow 0.7093% 0.0258% 0.0086% 0.00004%

Table 6.31 Action distribution percentage values.

Differences between pseudo-random and quasi-random approaches

become evident with this analysis. The two experiments which use pseudo-

random algorithms for concrete constants generation ("Random" and

"HAMPI") show a percentage error which contrasts with the percentage

error near 0% of approaches that employ quasi-random sequences. This

behaviour is as expected, as quasi-random sequences select, in an orderly

fashion, values from the solution space while pseudo-random select

between these values with no order making it more probable to favour any

of both values. This behaviour is corroborated by our results where the

113

"random" experiment shows a percentage error of 0.7093% while the

"entity" experiments show the minimal error of 0.00004%.

Action’s solution space coverage was omitted as it has a binary solution

space therefore it is trivial to cover it within a few generated rules.

6.4.6 Discussion

Several conclusions have been drawn for each individual evaluation

criterion. A discussion of the experiments utilizing several criterions will be

presented; which will provide an overview of the system’s performance.

6.4.6.1 HAMPI’s Pseudo-Random vs. Single’s Quasi Random

The behaviour of both “HAMPI” and “single” experiments seems to

follow a similar trend in all criteria. Between the two, the “single”

experiment is superior because it has a better distribution of values with

less percentage error for all the analysis presented. This can be explored by

comparing each of the experiments percentage error medians for each

criterion.

Pseudo

Random

Quasi

Random

Rule Length 65.46% 57.01%

Protocol

Numbers
11.534% 10.156%

IP Address

Structure
164.68% 167.84%

IP Address Size 92.82% 92.54%

Ports Usage 32.15% 23.02%

Table 6.32 Pseudo-random and quasi-random percentage error medians.

This can be attributed to the final steps of concrete sentence

generation, where the “HAMPI” experiment uses a traditional pseudo-

random approach, while the “single” experiment uses quasi-random

sequences.

6.4.6.2 Computational Cost

The computational cost of generating test cases based on quasi-random

sequences remains inexpensive for all experiments. For the creation of 200

policies, an Intel Dual Core 2.3GHz with 4MB RAM was used and the

computational times for each experiment are contained in Table 6.33.

Experiment Minutes

Random 107

HAMPI 5

114

Single 440

Entity 36

Table 6.33 Experiment's performance in minutes

While the performance will vary with the specific platform, the results

will remain consistent with the implementation presented here. The

“random” generation has neither constraints nor production control

algorithms, so it visits all of the rules that are required each time it

generates a sentence from the grammar. Thus it ranks as the second

slowest of the four. The “HAMPI” experiment has the best performance,

requiring 5 minutes to generate the 200 policies. This provides a point of

reference between the original system and the enhancements.

The “single” experiment has the slowest generation ranking in . The

“entity” experiment ranks second requiring only 36 minutes to generate the

200 policies. These two experiments share the symbolic sentence

generation phase. The only difference is the number of symbolic

sentences that are instantiated during the concrete sentence generation

phase. In this phase, a quasi-random sequence has to be associated to

each element, while for the “single” experiment it associates a sequence to

each symbolic constant found in the symbolic sentences. For the “entity”

experiment, it associates one for each entity. This has a direct impact when

producing large results. Therefore, it can be concluded that, for our

implementation, that concrete sentence generation is where the system

invests most of its resources. Therefore, its performance is proportional to

the number of symbolic sentences produced.

6.4.7 Limitations

A series of limitations arose during the experimentation process, and

the most significant are summarized in this section.

6.4.7.1 Grammar restrictions

The number of rules that a firewall policy must have is not constant.

Therefore, firewall grammars define rules structure for a single firewall rule.

If a firewall policy is needed then the firewall rule grammar must produce

as many sentences as required to produce a firewall policy with a specified

number of rules.

This approach forces the tester to specify the number of rules that a

certain policy must have in order to reveal system flaws; thus, preventing

full automation. This limitation becomes more evident when several firewall

policies with different numbers of rules are required., For our experiments

we decided to apply Majumdar's suggested approach (18) which consisted

of 200 policies with a policy length that ranged from 100 to 20000 rules;

115

however, the limitation remains a forcing us to implement an arbitrary

algorithm that selected between random policy lengths.

6.4.7.2 Semantic Management

Semantic control has been a limitation for all grammar-based

approaches as the employment of context-free grammars is a common

practice; therefore, even though firewall rules are relatively simple, these

limitations were encountered.

Semantic correctness is paramount as only semantic correct test cases

can make it into the system under test as semantically incorrect ones are

discarded in the initial phases of parsing preventing them from exercising

any actual code paths. Context-free grammars produce syntactically correct

sentences but fail to achieve semantic correctness, generating several

incorrect test cases. Incorrect test cases consume time and resources, thus

preventing their generation gains importance. This limitation confines the

use of grammar-based approaches to systems whose input can be modeled

with relatively simple grammars.

Semantic verification has been a subject of research since the

formalization of grammar-based testing. Several solution attempts have

been suggested (i.e. attributed grammars, second phase parsing trees,

extended grammars etc.), however, regardless these and other methods

have been suggested for semantic control, there is no definitive answer for

which approach is better to solve this problem.

Our solution implemented an extended grammar for controlling the

semantic correctness of the grammar rules; this simplified the overall

analysis. This approach, while correct for our purposes, will probably have

to be tailored to fit each scenario.

6.4.8 Summary

Two tables are presented here showing the summary of the obtained

results focusing on:

� Values distribution – how empirical data is scattered through

its corresponding solution space.

� Concrete constants generation probability – which

experiments are more representative of the expected results.

6.4.8.1 Values distribution

Table 6.34 shows the results for the distributions for each of the four

experiments and for each evaluation criterion.

116

The table shows that “random” and “entity” experiments presents 8 out

of 8 experiments with a distribution proportional to grammar bias while

“HAMPI” and “single” experiments present this behaviour only in 2 of the

criterion. These two experiments show concentrations of values

proportional to the expected ones but with a larger medians and percentage

errors. From this evidence it can be concluded that “random” and “entity”

experiments generate results following grammar rules definition.

 Random HAMPI Single Entity

Rule length Proportional

to grammar

definition.

Concentration in lengths 22

and 23.

Proportional

to grammar

definition.

Protocol

number

distribution

Proportional to grammar bias.

IP

complexity

Proportional

to grammar

bias.

Concentration in expected

values but with different

density.

Proportional

to grammar

bias.

IP structure Proportional

to grammar

bias.

Concentration in expected

values but with different

density.

Proportional

to grammar

bias.

IP values

distribution Good ratio

between

produced rule

and solution

space

covered.

The worst

ratio

between

produced

rules and

solution

space

covered.

Poor ratio

between

produced rule

and solution

space covered.

Maximum

ratio

between

produced

rule and

solution

space

covered.

Ports usage Proportional to grammar bias.

Port

operators

distribution

Proportional

to grammar

bias.

Concentration proportional to

operators’ length.

Proportional

to grammar

bias.

Action

distribution

Proportional

to grammar

bias.

Minor

random bias.
Expected 50-50 distribution

Table 6.34 Summary of empirical vs. expected values distribution.

6.4.8.2 Concrete constants generation probability

Each of the experiments was ranked according to their dispersion and

percentage error median. The experiment with the lowest dispersion and

lowest percentage error median would rank as number one.

117

R
a
n
d
o
m

H
A
M
P
I

S
in
g
le

E
n
ti
ty

Rule length 1 4 3 2

Protocol number

distribution
4 3 2 1

IP complexity 4 3 2 1

IP structure 2 3 4 1

IP values distribution 2 4 3 1

Ports usage 4 3 2 1

Port operators

distribution
2 4 3 1

Action distribution 4 3 2 1

Table 6.35 Experiment concrete constants generation ranking.

Table 6.35 shows that for seven out of eight criteria, the “entity”

experiment was superior to the any of the other approaches. It is followed

by the “random” ranking first in only one of the eight categories. Greater

differences are in the lower rankings, where “entity” ranks second in one

criterion while “random” experiment ranks last in four criteria.

To reiterate, these selected criteria indicate that the best experiment is

the “entity” experiment, which utilizes all of the enhancements

implemented in our solution.

118

7 Conclusions

The obtained results assert that quasi-random sequences provide

improved space coverage over the two analyzed systems that deploy

pseudo-random approaches. Another benefit that our solution offers is with

respect to grammar design. Pseudo-random approaches results are

completely bound by the grammar rules, therefore the resulting concrete

sentences are trustful to the grammar definition. The HAMPI string solver

focuses on rules usage and sentence length. For achieving this goal,

grammar rules no longer have the complete control over sentence

production; this adds bias and uncertainty about which test cases are going

to be produced given a certain grammar. Our solution takes the best of

both approaches, employing sentence length and rules usage from the

HAMPI string solver and adding an extra phase which solves the symbolic

values grammar employing quasi-random sequences for rule selection,

which generates results which are accurate representations of the grammar

design.

Symbolic and concrete constants have been shown to be beneficial for

test design as symbolic grammars allow complete enumeration for simple

grammars and an acceptable degree of enumeration for large and complex

grammars, which helps test design heuristics as it allows automated testing

tools to focus on sections of the solution space maximizing results. Our

solution enhances this benefit by introducing an extra phase, replacing

previous pseudo-random techniques for symbolic constants instantiation

with a novel approach utilizing quasi-random sequences. This new extra

phase (concrete sentences generation phase) first identifies user-defined

entities (groups of symbolic constants) and then associates with each entity

a quasi-random sequence that will control which values from the solution

space will be used for concrete constant selection.

Our solution introduces the concrete sentences generation phase, which

enables the tester to define entities and solve them as a single value. This

new approach raises the importance of entity design as the obtained results

will benefit directly from their implementation. During the analysis of our

experiments, it was asserted that entities offer an advantage over previous

119

approaches which can be attributed to the correct design of entities during

symbolic grammar derivation. This approach is flexible enough to fit

different testing needs and designs, which adds to the benefits of the

proposed solution. The Concrete sentences generation phase implements a

concrete sentence generation control mechanism, which evenly instantiates

symbolic sentences into concrete sentences guaranteeing that all symbolic

sentences are equally represented. This approach results in a better

solution space coverage increasing the likeliness of detecting defects.

Despite all the benefits that our solution introduce over pseudo-random

approaches and grammar string solvers, there is still more research to be

done. First, quasi-random sequences can only be employed where the

solution spaces are enumerable. One way of overcoming this problem for

our experiments is to divide the solution space into subsets and then apply

quasi-random sequences to each subset. However, even when the solution

space can be enumerated, it should be used carefully as enumerating large

solution spaces can result in a major impact to performance. Some other

limitations as grammar restrictions and semantic management remain as a

research field for future work which will help to completely automate the

testing process.

Finally, these experiments give us the confidence to claim that our

solution can be employed to produce vast amounts of test data with little

effort and with all the advantages of grammar-based generation and quasi-

random testing.

120

8 Works Cited

1. Utting, M., Pretschner, A. and Legeard, B. A Taxonomy of Model-Based Testing.

New Zealand : Department of Computer Science, The University of Waikato, 2006.

Tech. Rep, 4.

2. Automatic Generation of Test Cases. Hanford, K. 1970, IBM Systems Journal, p. 9(4).

3. A sentence generator for testing parsers. Purdom, P. 1972, BIT Numerical

Mathematics, p. 12(3).

4. NASA Software failure characterization experiments. Finelli, G. B. 1991, Reliability

Engineering & System Safety 32(1-2), pp. 155-169.

5. Using Attributed Grammars to Test Designs and Implementations. Duncan, A. G.

and Hutchison, J. S. San Diego, California, United States : International Conference on

Software Engineering, 1981. Proceedings of the 5th international conference on

Software engineering. pp. 170 - 178. 170 - 178 .

6. Generating test data with enhanced context-free grammars. Maurer, P. s.l. : IEEE

Software, 1990, IEEE Software, p. 7(4).

7. Differential testing for software. McKeeman, W. M. 1998, Digital Technical Journal,

10(1), pp. 100-107.

8. Controllable combinatorial coverage in grammar-based testing. Lammel, R. and

Schulte, W. New York City, USA : Springer Verlag, 2006. The 18th IFIP International

Conference on Testing Communicating Systems (TestCom 2006).

9. A System to Generate Test Data and Symbolically Execute Programs. Clarke, L. 1976,

IEEE Trans Software Eng. 2, pp. 215-222.

10. Darlington, J. A Semantic Approach To Automatic Program Improvement.

Edinburgh : University of Edinburgh, 1972. Ph.D. Th.

11. Symbolic execution and program testing. King, J. C. 1976, Commun. ACM, pp. 385-

394.

12. EXE: automatically generating inputs of death. Cadar, V., et al., et al. Alexandria,

Virginia, USA : ACM, 2006. Proceedings of the 13th ACM conference on Computer and

communications security. pp. 322 - 335.

13. DART: directed automated random testing. Godefroid, P., Klarlund, N. and Sen, K.

New York, NY, USA : ACM, 2005. Proceedings of the 2005 ACM SIGPLAN conference

on Programming language design and implementation. pp. 213 - 223 .

14. Cute: a concolic unit testing engine for c. Sen, K., Marinov, D. and Agha, G. Lisbon,

Portugal : ACM, 2005. Proceedings of the 10th European software engineering

121

conference held jointly with 13th ACM SIGSOFT international symposium on

Foundations of software engineering. pp. 134-143.

15. Godefroid, P., Levin, M. and Molnar, D. Automated whitebox fuzz testing.

Redmond, Washington, U.S. : Microsoft, 2007. Technical Report MS-TR-2007-58.

16. Compositional Dynamic Test Generation. Godefroid, P. Nice, France : Annual

Symposium on Principles of Programming Languages, 2007. Proceedings of the 34th

annual ACM SIGPLAN-SIGACT symposium on Principles of programming languages. pp.

47 - 54.

17. Tainted-based Direct Whitebox Fuzzing. Ganesh, V., Leek, T. and Martin, R.

Vancouver, Canada : ICSE 2009, 2009. Proceedings of the 31st International

Conference on Software Engineering. pp. 474 - 484.

18. Directed test generation using symbolic grammars. Majumdar, R. and Xu, R. G.

Atlanta, Georgia, USA : Automated Software Engineering, 2007. Proceedings of the

twenty-second IEEE/ACM international conference on Automated software

engineering. pp. 134-143.

19. Kiezun, A., Levin, M. Y. and Godefroid, P. Grammar-based WhiteBox Fuzzing.

Seattle, WA : Microsoft, 2007. Microsoft Research Tech Report, MSR-TR-2007-154.

20. What is Fuzzing? [book auth.] M. Sutton, A. Greene and P. Amini. Fuzzing: Brute

Force Vulnerability Discovery. Upper Sadle River, NJ : Pearson Education, 2007.

21. Prasanna, M., et al., et al. A survey on Automatic Test Case Generation. ACAD

Journal. 2005.

22. Introduction. [book auth.] A. Takanen, J.D. DeMott and C. Miller. Fuzzing: for

Software Security Testing and Quality Assurance. Norwood, MA. USA : Artech House,

2008.

23. The Automatic Generation of Test Data. Ince, D.C. 1987, The Computer Journal, pp.

63-69.

24. McKenzie, B. Generating strings at random from a context free grammar. s.l. :

Department Of Computer Science, University of Canterbury, 1997. Technical Report

TR-COSC 10/97.

25. Sipser, M. Context Free Languages. Introduction To the Theory of Computation.

Boston, Massachusetts, USA : Thomson Course Technology, 2006, pp. 99-134.

26. A Novel Evolutionary Approach for Adaptive Random Testing. Tappenden, A.F., &

Miller, James. 2009, IEEE Transactions on Reliability, pp. 58 (4) 619-633.

27. Proportional sampling strategy: A compendium and some insights. Chen, T.Y., Tse,

T.H. and Yu, Y.T. 2001, Journal of Systems and Software, Vol. 58, pp. 65–81.

122

28. Quasi-random testing. Chen, T.Y. and Merkel, R. New York, NY, USA : ACM, 2005.

Proceedings of the 20th IEEE/ACM international Conference on Automated software

engineering. pp. 309-312.

29. Uniformly distributed sequences with additional uniformity properties. Sobol, I.M.

1967, Journal of Computational Mathematics and Mathematical Physics, p. 6.

30. Computational investigations of quasirandom sequences in generating test cases

for specification-based tests. Chi, H. and Jones, E.L. Monterey, California : Winter

Simulation Conference, 2006. Proceedings of the 38th conference on Winter

simulation . pp. 975 - 980 .

31. Using Genetic Algorithm for Unit Testing of Object Oriented Software. Gupta, N.K.

and Rohil, M.K. Nagpur, Maharashtra : IEEE International, 2008. erging Trends in

Engineering and Technology, 2008. ICETET '08. First International Conference on

Emerging Trends in Engineering. pp. 308 - 313 .

32. BNF Grammar for ISO/IEC 9075:1999 - Database Language SQL (SQL-99). [Online]

savage.net.au, 07 26, 2004. [Cited: 06 09, 2010.] http://savage.net.au/SQL/sql-

99.bnf.html.

33. Northwind and pubs Sample Databases for SQL Server 2000. Microsoft Download

Center. [Online] Microsoft. [Cited: 06 09, 2010.]

http://www.microsoft.com/downloads/details.aspx?familyid=06616212-0356-46a0-

8da2-eebc53a68034&displaylang=en.

34. Hampi: A Solver for String Constraints. Kiezun, A., et al., et al. Chicago USA : ISSTA

2009, 2009. In Proceedings of the International Symposium on Testing and Analysis.

35. Constraint-Based Automatic Test Data Generation . Offutt, A.J. and DeMillo, R. A.

1991, IEEE Transactions on Software Engineering, pp. 900-910.

36. Securing cyberspace for the 44th presidency. Washington, D.C. : Center for

Strategic and International Studies (CSIS), 2008.

37. Modeling and Management of Firewall Policies. Al-Shaer, E. and Hamed, H. 2004.

IEEE Transactions on Network and Service Management. Vols. 1-1.

38. Automated pseudo-live testing of firewall configuration enforcement. Al-Shaer, E.,

El-Atawy, A. and Samak, T. 3, April 2009, Selected Areas in Communications, IEEE

Journal on, Vol. 27, pp. 302-314.

39. Policy segmentation for intelligent firewall testing. El-Atawy, A., et al., et al.

Boston : IEEE Computer Society , 2005. In 13th IEEE International Conference on

Network Protocols .

40. Model-based Firewall Conformance Testing. Brucker, A.D., Brügger, L. and Wolff,

B. s.l. : Testcom, 2008. In Testcom/FATES 2008. pp. 103-118.

123

41. Verified Firewall Policy Transformations for Test Case Generation. Brucker, A.D.,

et al., et al. s.l. : IEEE, 2010. 2010 Third International Conference on Software Testing,

Verification and Validation.

42. FIREMAN: a toolkit for FIREwall Modeling and ANalysis. Yuan, L. and Chen, H.

2006. In Proceedings of IEEE Symposium on Security and Privacy . pp. 199--213.

43. Dynamic rule-ordering optimization for high-speed firewall filtering. Hamed, H.

and Al-Shaer, E. New York, NY, USA : ACM, 2006. Proceedings of the 2006 ACM

Symposium on Information, computer and communications security. pp. 332 - 342.

44. Blowtorch: a framework for firewall test automation. Yoo, K. and Hoffman, D.

New York, NY, USA : ACM, 2005. Proceedings of the 20th IEEE/ACM international

Conference on Automated software engineering. pp. 96-103.

45. Classbench: A packet classification benchmark. Taylor, D.E. and Turner, J.S. 3, s.l. :

IEE/ACM Trans., 2007, IEE/ACM Trans. Networking, Vol. 15, pp. 499-511.

46. Two case studies in grammar-based test generation. Hoffman , D., et al., et al.

0164-1212, s.l. : Journal of Systems and Software, Available online 11 August 2010,

Vol. In Press.

47. Systematic Structural Testing of Firewall Policies. JeeHyun , H., et al., et al. s.l. :

IEEE, 2008. IEEE Symposium on. pp. 105-114.

48. Fault Localization for Firewall Policies. Jee Hyun, H., et al., et al. s.l. : IEEE. IEEE

International Symposium on Reliable Distributed Systems. pp. 100-106.

49. Formal Verification of Firewall Policies. Liu, A.X. s.l. : IEEE, 2008. IEEE International

Conference on Communications, . pp. 1494-1498.

50. Integrated Framework for Automated Firewall Testing and Validation. En-Nouaary,

A. and Akiki, M. [ed.] Information Technology: New Generations (ITNG). s.l. : 2010

Seventh International Conference on, April 2010. pp. 768-773.

51. Verified Firewall Policy Transformations for Test Case Generation. Brucker, A.D.,

et al., et al. [ed.] Verification and Validation (ICST) Software Testing. s.l. : Third

International Conference on, 2010.

52. Vacca , J. R. and Ellis, S. R. Appendix B - Worldwide Survey of Firewall Products.

Firewalls: Jumpstart for Network and Systems Administrators. s.l. : Digital Press, 2005.

53. Chapter 2 - Protocols Guide . [book auth.] Javvin, and Inc. Technologies. Network

Protocols Handbook. s.l. : Javvin Technologies, 2007.

54. Project, The Computer Technology Documentation. Commonly Used Network

Ports. The Computer Technology Documentation Project. [Online] CTDP, February 3,

2001. [Cited: September 26, 2010.]

http://www.comptechdoc.org/independent/networking/guide/netports.html.

124

55. Meyer, Michael J. The Project Martingale. [Online] 09 24, 2003. [Cited: 02 01,

2010.] http://martingale.berlios.de/Martingale.html.

56. Generation of Pairwise Test Sets Using a Genetic Algorithm. McCaffrey, J.D.

Seattle, WA, U.S.A. : IEEE International, 2009. Computer Software and Applications

Conference, 2009. COMPSAC '09. 33rd Annual IEEE International. Vol. 1, pp. 626-631.

57. Software Vulnerability Analysis. [book auth.] A. Takanen, J.D. DeMott and C. Miller.

Fuzzing: for Software Security Testing and Quality Assurance. Norwood, MA. USA :

Artech House, 2008.

58. Whittaker, J. A. How to Break Software:A Practical Guide to Testing. s.l. : Addison-

Wesley, 2002.

