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ABSTRACT
\

~ .The development of Denil fishways fis xrevie-ed and the hydraulics
of three Deni;l designs, referred to as Denil 1, 2 and 3, are st!ud-ied
e:periﬁntﬁij and analytically. The very turbulent nature of the flow
in the fishways 1’5 described and extensive ve1ec-ity measuremets aze
presented. Ve‘loﬁt; profiles in the centerline of Denil 1 and 2 are
distinct and display characteristic shapes amenable to similarity
analysis, while velocity profiles for Denil 3 are inconclusive in this
respect. Depth averaged velocities through the fishways are found to be
only 11% to 14% of the average velocities expected in rectangular
channels of the same dimensions, indicating high efficiency 'n energy
dissipation. A semi-empirical method fis developed :nr the design of
Denil fishways fnvolving a fluid friction coefficient.
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CHAPTER I

INTRODUCTION

Fishways are hydraulic structures that enable fish to Qvercm;
obstructions to their spawning or other migrations. These obstructions
may be man-made, such as dams and other hydraulic structures, or natu-
ral, such &5 waterfalls and rapids. Blocking spawning migrations can
serfously affect the fish resources of an entire river system. Should
the blockage be complete and permanent, a species could be totally elim-
Jnated from the system. Fishways allow migratory fish to maintain access
to their sutochthonous habitat and are provided whenever social, ecolog-
ical, economic or legal requirements exfst. ) ]

Dams bring many problems for the minténance of a stock of migra-
tory fish. Building fishways is not a panacea for all the biological
and physicochemical tmpacts on ‘the watershed, that a dam produces.
Fishways can only provide a migration. path and thus assist fish either
to reach traditional spawning areas or to colonize areas previously cut
off by a barrier. Although most fishways were developed to serve the
salmon, other migratory species have utilized them also. Fishways can-
not be expected to maintain the same degree of access to migrating fish
as a natural river would. Well designed fishways must always be regar-
ded as alds to fish migrations and not as replacements for the natural
migration paths. ’ v

In general, hshwqys are waterways which a’ne navigable by fish
moving upstream. Water flow within fishways is controlled so that fish
are able to swim through the structure without undue stress. Flow con-

trol is achieved by employing devices which dissipate the energy of the



water and maintain velocities within the biokinetic capabilities of
fﬂigﬂting fish. A variety of energy dissipation schemes have been in-
vented which give rise to a diversity of fishway types. Three basic
fishway types are generally recognized: the pool and weir, the vertical
slot, and the Denil.

The pool and weir fishway consists of a channel with regularly
spaced weirs, each slightly higher than the one iomediately downstream;
thus a series of step-like pools are created. In this fishway, also
known as the fish ladder, the weirs may incorporate orifices or short
surface chutes. Water cascades over the weirs or flows through orifices
and chutes into the pools setting up a circulation pattern around an
axis perpendicular to the channel walls. Through this mechanism water
energy is dissipated and velocities are controlled. Fish ascend from
pool to pool by jumping or swimming over the weirs or by passing through
the orifices or chutes. In the vertical slot fishway a series of pools
is also created by the installation of baffles at regular intervals be-
tween the walls of the xﬂug. Narrow slots, adjacent to either one or

both walls, extend vertically over the full height of the baffle. Water

dissipating energy through circulation around an axis perpendicular ‘to
the flume floor. '

The Denil fishway was first conceived by G. Denil in 1908. This
is a flume equipped with closely spaced vanes (or fins, or bafﬂés)'an
the: sidewalls and floor. The vanes cause part of the flow ép turn and
oppose the main stream in the !eentrﬂ part of the fishway. This ar-
rangement provides cmsid;rahh energy dissipation, establishes lew

velocity flow fn the central zone of the fishway and allows fish a



continuous and direct route of ascent. The intricacy of the original
design led Denil and subsequent researchers to the development of
simpler versions of this fishway. This study deals with three rather
simple Denil fishway designs.

Physiological data on sﬁ*iniing modes and capabilities as well as
behaviour of fish are very important in settipg design criteria for
ftshways. Fish swimming speeds provide limits for the water velocities
in a fishway and allow the designer to establish flow caﬂdit’ians that
fish can navigate without undue delay or fatigue. Three levels of swim-
ming activity are disting;i;hﬂ: the burst, prolonged and sustained
s;;’eeds. The burst speed is a very high swisming speed which fish can
miritain for less than 15 seconds. Energy for this acﬁﬁt; 1s made
avatlable largely from anaerobic processes; consequemtly the fish
fatigues rapidly and may be in a weakened condition afterwards. The
sustained swimming speed comprises a spectrum of swimming activities
that can be maintained for an indefinite period (longer than 200 mi-
nutes) and does not involve fatigue. Activities involved in this type
of swimming include position holding, schooling, foraging and migration;
ntatiolism is aerobic. Finally, praianggd speed represents the inter-
ndiafe Tevel of swimming performance and is often characterized by
steady swimming with more vigorous efforts periodically. The g’iuﬁiﬁg
period ranges from 15 secomds to 200 minutes and if maintained will end

energy for these activities.
Swimming speeds vary with species and size of fish, time the
effort is maintained, water temperature and other parameters. Generally

the reiatianship between swimming speed and time, termed the fatigue



curve, is curvilinear. Burst and prolonged speeds plotted against the
logarithm of time usually result in straight lines for a given species: é
and length of fish, provided other parameters remain the same. Equiva-
Tently, the water velocity that fish can swim against varies linearly
with the logarithm of distance travelled. The slope of the fatigue
curve is much steeper for the burst speeds than for the prolonged
speeds. Such biokinetic relationships yield the maximum distance that a
fish can travel against a given water velocfty; this provides a meaning-
ful constraint to the length of a Denfl fishway. In the Denils a con-
tinuous swimming effort is required and fish use their burst or higher
levels of their prolonged speeds to navigate the entire fishway length.
The burst speed limits the maximum water velocities over weirs or ’
through orifices, chutes and slots. Prolonged and sustained speeds set
guidelines for providing areas where fish can rest within fishways or
,resting pools.

Probably the singlg most improtant factor in the success of a
fishway is the location of the fish entrance (water Ewt‘let),. If the
_entrance {s not readfly discovered by the migrating ’Fisl:; they will be
deiayed for varying periods and, in the extreme case, may never enter
the fishway. Hydraulic conditions and particularly water velocities
within the fishway channel also‘detemim the success and efficiency of
the facility. Although a number of studies have been conducted, compre-
hensive data on velocity profiles in Denil fishways are lacking. The
present study addresses this data deficiency for three Denil designs.
The long tem»aus of this and, hopefully follow-up field and laboratory

fishway designs and to develop a semi-empirical but general design



method, so that the hydraulic characteristics of various designs can be
predicted without reverting to direct testing.



CHAPTER 11

LITERATURE REVIEW
HISTORICAL PERSPECTIVE | )
| Anndtated bibliographies on fishways have been ﬁub]isheﬂ by
Nemenyi (1941), The American Society of Civil Engineers (1960), and

Brown (1976). Reviews on the development and design of fishways have

Nemenyi (1941), Rounsefell and Everhart (1953), Andrew and Geen (1960),
Clay (1961), Ziemer (1962), Decker (1967), Eicher (1970), Bell (1973),
Berg (1973), Jens (1973), Mahmood (1973), Larinier (1977), Hildebrand
(1980), and Katopodis (1981). A long history of fishways has been re-
corded. Fishways were constructed in France at least as early as the
. 17th century. Thesg fishways consisted of steep, broad, open channels,
the bottoms of which were roughened with bundles of branches. Undoubt-
edly there were earlier attempts of even more primitive nature. How-

ever, it was the advent of hydraulic turbimes, about the middle of the

the scientific investigation of fishways. Fishway design has since pro-
gresgéd from the crude, roughened channels into the three distinct types
of Denil, vertical slot and pool and weir.

The design simplicity of the psol and weir fishway (Fig. 1) would
_suggest that this was probably the first to be developed. At the end of
the 19th century Landmark was well known, at least in Norway, for build-
ing successful salmon ladders. Almost all of these ladders were inten-

ded to permit fish (Atlantic salmon, Salmo salar; Brown trout, Salmo

trutta and Arctic charr, Salvelinus alpinus) to pass over natural falls

6



in northern Norwegian rivers. A chajn of pools, with a length of

3.0 - 4.0 m, a width of 2.5 - 3.0 m and a depth of 1.5 m, were usidlly
created by blasting through rock formatfons. Often there were openings,
1.0 - 2.0 m in length and 0.6 - 1.0 m in width, between the poa]s-» The
stope of the ladders varied from 5% to 12.5% (Berg 1973). The design of
the ladder has since been improved with the addition of orifices (Fig.
2) or chutes (Fig. 3). In the early 1960's these developments culmi-
nated -in the Ice Harbor Dam design, on the Snake River, State of
Washington, i;\ieh is considered the most advanced (Fig. 2).

Lanmﬁzi:ﬁrﬁved the traditional fish ladder (pool and weir fish-
way) by 1nsta‘l1ing; the weirs obliquely to onme wall and extending across
but not joining the opposite wall. Simple jet deflectors were placed on
the opposite wall while the weirs remained perpendicular to the floor.
Thus a narrow slot, extending the full height of the weir, was left
along the one side of the fishway close to the wall (McLeod and Nemenyi,
1941). This fishway appears to be the forerunner of the vertical slot
fishway (Fig. 4,5) which was developed in the 1940's under the guidance
of M.C. Bell for use at Hell's Gate on the Fraser River in British.
Columbia (Fig. 4). Since the success at Hell's Gate the vertical slot
has been used extensively. o)

The principle of operation of the Deni) fishway probably origina-
ted with MacDonald at about 1879 in Virginia. MacDonald's invention
consisted of a timber trough, 600 mm x 600 ma, with a slope as steep as
33.3%; 1n the trough 75 mm high éie:ts were laid at 300 mm centres along
with two longitudinal boards 250 mm n hefght and 150 mm from the
sides. Thus a 300 sm wide central path was left for the.fish to pass

(Comittee on Fish-Passes 1942). This was the first attempt to



redirect part of the flowing water in a fishway and turn it back to
impinge on the mai& stream of flow and thereby dissipate the energy of
the water.

"Although early investigators made careful and EXtEﬁSTVEADbSEFVIi
tions, né systematic scientific study of ;ishﬁays appears to have been
made until the beginning of the iZﬂth century. The first fishway devel-
oped on scientific principles was probably that of G. Denil in Belgium.
He-presented his early design in 1908-and, over a period of 30 years,
impraoved it, é;r'entuaﬂy devising the most effective energy dissipators
known which do not involve moving parts. His latest publication appear;
ed in the Annales des Travaux Publics de Belgique in 1936, 1937 abd
1938. Nemenyi (1941) sunﬁarizes these articles which include attempts
to understand the nautical properties and locomotion of fish, the resis-
tances they encounter while swimming, extensive observations of fish
navigating through fishways and hydraulic measurements cn=§mal1 scale

models as well as actual fishways. .

THE DEVELOPMENT OF DENIL FISHWAYS

White and Nemenyi (1942) and McLeod and MNemenyi (1941) conducted
numerous Tabofatarx experiments with small scale models of Denil type
fishways. These experimnt-s were seen as a means of easily and inexpen-
® sively checking a large number of old and new design variations and pave
‘the way for the comprehensive study of |‘Iarger models and prototypes.
White and Nemenyi (1942) completed their investigations in 1938 on 25
different models at the I@peﬂa] College of Science and Technology, |
London, Eﬁgland; and cansequeﬁtiy"ﬁcgeéd and Nemenyi (1941) tested an- 1

other 15 models at the Iowa Institute of Hydraulic Research. Some of
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the most promising models from these intgstigatiens are shown in Fig. 6.

Model 1 in Fig. 6 is of historical interest. This is the original
fishway developed by G. Denil in 1908. It was reproduced and retested
by McLeod and Nemenyi (1941). Although this intricate design was found
to tre an efficient energy dissipator, it was ‘substantially less so than
some of the other simpler designs tested. Mode} 2 represents an attempt
to apply the Demil principle of enerqgy disstpation by usfng planar vanes
of triangular and rectangular sl';ape. This design was intended for con-
stmciion either in timber or concrete, possibly in precaét units. The
results were very favorable. Energy dissipation was only slightly less
than Model 4 which is essentially the same design except for the thin
sheet metal vanes., Both Models 2 and ‘4 were recommended for prototype
trials. Model 3 (Fig. 6) was built and tested as a prototype to Model
2. ‘

Often a fishway mst: operate over a wide range of headwater
levels. Since bottam vanes were expected to be hydraulically ineffec-
tive at large water depths, only t:h; sideva'ﬂ vanes could be relied
upon to cause high energy dissipation. To accommodate such conditions,
Denil (1938) eliminated the bottom bafﬂeé and designed a special pat-
tern of planar, zigzag, herringbéne vanes -h‘h:h were attached to the
sidgﬂa’ifs' of a rectangular channel.. MclLeod and Nemenyi (1941) simpli-
fied this desfgn using plane, parallel metal plates or planks which ﬁeré
set at an angle to the channel sides and floor. Six alternative designs
were tested of which Models 5, 6, and 7 (Fig. 6) proved successful in
producing high energy dissipation. Models 5 and 6 were Jjudged as super-
for and good energy dissipators respectively, while Model 7 gave results

similar to Model 5. Full scale testing was not undertaken on these

i -



models, nevertheless they were ed for field trial basgd on the
favourable hbor.atofj' assessment.

Model 8 (Fig. 6) fs another attempt by Denil to simplify his ori-
ginal design while maintaining higfa! energy dissipation. white and
Nemenyf (1942) tested this model under six slopes and at three flow
depths a_hd found it gxi:rml;-‘ steady hydraulically, rehtiée]y free of
aerafion, and the most efficient design for energy diss%patiani White
and Nemenyi (1942) do not give all the dimensions of the model they
tested. The width of the clear opening (b) in the model (Fig. 6) was
g 101.5 mn and the vane spacing (a) was 3/8 of the r}v;ra‘ll channel width.

(8),- i.e. a' = 0.3758. : For this- design Dent) (1938)" gives B = 2b, so if
‘White and Nemenyi {(1942) proportioned their model accordingly, the over-
all width ‘(ﬁ) should have been 203 wmm and the vane spacing (a) 76 mm.
Model 3 led Ziemer (1962) in Alaska to the development and proto-

type testing-of portable fishways, built from aluminum. Me reported
Hhydraulic measurements (depth and discharge) for two prototype versions
which he named "Alaska Steeppass Model A and C*. Model A fs shown fn
Fig. 7 and Plates 1 and 2, with the following dimensions (in mm) given
'by Zfemr (1962): b = 3§6 B = 556, k''= 127, 3= 254 Y = 686. The
.vanes were perpend1cu’lgr to the fishway-floor and ¢ = 30°. Model C had
the same dimensions as Model A but ¢ = 45° and all the vanes lean up-
stream at 45° to the ﬂoar of the f’!uugf E

Hhite and Nemnyi (1942) clevg’lqpvgd and tested the siqﬂest Denil
‘déysign to date. The -advantage of this design over the previous ones
~ Hes in the construction simplicity of the vanes. Both the sidewall and
' _ bottom vanes have been:incorporated into single-plane baff‘les (Fig. 8;

Plate 3 and 4). Although White and Nemenyi (1942) pr@vidf;d a general
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description,of the flow characteristics in this fishway, unfortunately
neither the exact dignsm}; of the model tested nor the hydraulic
measurements sade were reported. The Committee on Fish Passes (1942)
though, which commissioned the study, selected this design as the most
practical and recommended the following di-ensians for usé in the field
(Fig. 8; all dimenstons in mm): b = 533, B = 914, - 152, a = (2/3)B =
610, slope of 20%, gngt = 45°, Recently, Larinfer (1981) reported
hydraulic -easurmnts (depths and dischargs) made in the laboratory
u‘it;a siwqﬂe Denil fishway of the following dimnsion (mm): b =175, B
= 300, k = 70. Table 1 summarizes the characteristic di,ﬁensigns for a
variety of Denil fishways.

The above investigators have taken an empirical approach in devel-
oping and testing Denil fishways. This approach has, very succgssfuﬂy,
"Ted to the evolution of simie. practical des*igﬁ;s; Although some appre-
ciation uf the ;néral flow characteristics has been gained, comprehen-
sive research on velocity profiles and the energy dissipation méhanism

has not been undertaken.

" FIELD TESTING OF DENIL FISHWAYS

Designs by G. Denil

Nemeny{ (1941). in summarizing Denil's 1nvestigatians. repqrted
that Denil undertook a nunber of field trials of his fishways and nat;-d
various degrees of success with salmonids (salmon and trout) and qprin! '
;’fds (minnow or carp family)., A number of early Denﬂ designs were con-
structed in several ]cu:ations in Europe and the USSR (Deelder 1958;
'Kipper and Milefko 1967; Sakowicz and Zarnecki 1962). Most of these
installations were unsuccessful. Fish entrance problems were reported

]



in some of these stmztu;s, while several of them -employed vanes only
at the fishway floor and not on the sidewalls. A1l the fishways though
were set at s’]apes ranging from about 30% to 60%. Such steep slopes
were, probably, the main cause for failure.
Model 3 (Fig. 6)

McLeod and Nemenyi (1941), following their studies with models,

carried out field tests on the Iowa River. Twelve different fishways
were tested all of which were 7.3 m Tong and set at a slope of 25%.
Among these were Model 3 (Fig. 6) and a larger Denil which was geaig'tﬁ—
cally similar to Model 3 but 50% wider. For each test two fishways were
operated simultaneously and the species, size and mumber of -fish pass;ing
through each one were recorded. Over a period of 75 days, 15 such come
parisons were made. Some fishway pairs were compared twice by reversing
"their position in the approach channel. It was found that fish did not
favour onk position cvér the other. Mode! 3 was used as an index to com-
pare all fishways. The ratio of preference by fish for Model 3 over the
_ other fishways ranged from 7:1, when compared with the pm'!iand weir
types, to 1.75:1 when compared with the larger Denil. A1l species of
fish present used both Denil fishways and passed without njurfes. It
is notewov?thy that a channel catfish weighing about 11 kg, measuring 838
- mm in length and 229 mm across the head, passed through the clear open-
ing of Model 3 which is only 254 mm wide. ;

The successful field trials with Model 3 led to the installation
of similar fishways at five dam sites on the Des Moines River. These
fishways were evaluated and the results were repartedi by Einer (1944)
for the Lake Shetek fishway in Hinﬂgsété. and by Harrison (1948) and
Harrison and Speaker (1950) for the fishways at Fort Dodge, Humboldt,

.



Rdtland and Des Moines fn Iowa. Efner (1944) concluded that the ‘fishway
at Lake Shetek was entirely suecéssfui for the fish species in the Des
Moines River e}(cept for the Centrarchids (sunfish fan‘lr]y)i From April 1
to October 24, 1943, and from April 1 to October 15, 1:94’4, the fishway
was kept under constant observation. The largest fish to ascend the
fishway was a northemn pike (Esox lucius) 620 mm long, :‘iﬁﬁng 2.3 kg,

while white suckers (Catostomus commersoni) as small as 100 wm-in length

were able to pass.

Harrison (1948) along with Harrison and Speaker (1950) provided
four years of data (1946-1949) on the species, numbers and sizes of fish |
that passed through the fishways at Humboldt and Rutland, three years of
data (1947-19_49) for i:hg fishway at Fort Dodge, and aﬁe jéar (1948) of
such data for the fishw‘y at Des Fhim-s A1l fishways were set at a
slope of 25%, except for one of the two sections at Humboldt which was
set at a slope of .16.67%. The length of the fishway sections ranged !
from 5.5 m to 8._2 m. All species of fish which attain a total length of

152 mm or more in life, except for the northern hog sucker (Hype
nigricans), 14ving in the areas of the fishways made use of them. The
fishways were apparently non-selective with respect to species 'and size
in that they passed fish in relative numbers to their size and abundance
in the r"lver.’~ The fish species that utilized the fishways on the lowa
R.iver, Lake Shetek and on the Des Moines River included primarily Catos-
tomids, Cyprinids and Ictalurtds. Swall numbers of northern pike (Esox
Jucius) and wﬂlm. (Stizostedion vitreum) were involved.

The Steeppass (Fig. 7)
2iemer (1962) reported several successful installations of the

steeppass in Alaska, ranging from 6.1 m to 27.4 m in le}ngth and set at
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Slopes of 26.2% to 19.7%. All Pacific salmons present (Oncorhynchus

spp.), including pink (0. gorbuscha), chum (0. keta), coho (0. kisutch),

and sockeye (6. nerka), passed through the ﬁshnay?i Ziemer (1962)
estimated that the steeppass had a capacity of 750 fish per hour.
Thompson and Gauley (1964) gxpériﬁnted with a 6.1 m long steep-
ass on a 33% slope at the John Day Dam on the Columbia River. Coho
(Q. kisutch) 305-914 mm in length, chinook (0. tshawytscha) 356-1219 mm
in length, and steelhead trout (Salmo gairdneri) 457-1016 mm in length,

used the fishway. There was no evidence that any fish, even the largest
individuals, rejected the fishway. Results from fish counts for twelve
tests were recorded. The highest mean count was 410 ﬂ'sh per hour,
while the maximum count was 2520 fish per hour with no evidence that
peak passage had been ;egeheﬂ_ Weaver et al (1976) tested 2 9.1 m long
steeppass in 1968 at the Fisheries-Engineering Research Laboratory loca-
"ted at Bonneville Dam also on the Columbia River. The laboratory is
located adjacent to the Washington shore fish ladder. Fish can be
‘diverted from the ladder, cbserved as they pass on their: own volition
through experimental conditions in the iabératagy, ahd allowed to re-
enter the ladder continuing their migration. Sockeye, chinook and
steelhead successfully passed at slopes of Z7% and 40%. These fish
ranged in length (mm) from 300-580 for Sﬁckgye. 300-1050 for chinook,
.and 350-800 for steelhead. '

Slatic (1975) -;ﬂsa conducted a number of evaluations qn the - steep-
pass at the above ﬁbﬂl‘itéi’?; Steeppass sa:tiﬁni 7.9'm, 9.1 m and 15.2
m long were tested at 248, 28.7% and 28.7% slopes, respectively. Fish
species that successfully negotiated these Denil fishways included the

varfous Pacific salmons, as well as, American shad (Alosa sapidissima),
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suckers (Catostomus spp.), northern squawfish (Ptychocheilus

oregonensis),and Pacific lamprey (Entosphenus tridentatus). Slatic

(1975) estimated that the fish passage capacity of the fishways would
most 1ikely fgl'] within a F&;P"Qf 650 to 1140 fish per hour.

Extending the 9.1 m long fishway to 15.2 m, while maintaining the
slope at 28.7%, had no adverse effect on passage efficiency. When
offered a simultaneous choice between a Denil fishway (i.e. a steeppass)
and a pool and weir fishway, the majority of the fish chose the Denil.
Approximately 95% of all the salmonids selected the Denil and only 5%
chose the pool and weir. None of the American shad entered the poo! and
weir fishway, while 32% of them entered and passed through the Denil
fishway in the one hour tests. As a result of these tests two Denils
were installed at the Little Goose Dam on the rSml:e River and had been
used successfully for three years. They passed fish without any apparent
injuries or noticeable delay. ‘

" Tack and Fisher (1977) carried out field tests in Poplar Grove

Creek, Alaska, with a 6.1 m long steeppass. Tests were performed with

\y fishway set at 7.5%, 11.25% and 15.0% slope and fcrr discharges of
9-127 L/s. Arctic grayling Lh_yullus arcticus), longnose sucker

(Catostomus catostomus) and rainbow trout (Salmo gairdneri) were invol-

ved. It was found that the fishway was fully accepted by the migrating
fish of the Poplar Grove Creek. A1l fish showed a success rate of 80% or
better except for the yearling grayling (85-130 mm in length) which
showed an overall success rate of 33%. Adult grayling achieved the best
success rates (near 100%) at a slope of 15.0% and a discharge of 127 L/s
whigh was the most difficult condition tested. Juvenile grayling (130
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discharge tested. Yearling grayling, however, reached their best suc-
cess rate of 44% at a slope of 11.25% and a d’fs:harge of 8 L/s, and
they were severely inhibited at a slope of 15.0% and higher discharges.
The Denil fishway (Fig. 8)

Clay (1961) reported that Denil fishways (Fig. 8), based on the

design recommended by the Committee on Fish-Passes (1942), had been used
in several European countries. At least three fishways were reported fn .
Sweden, including one a;t the Herting power dam. These fishways had suc-
cessfully passed salmon, sea trout, and brown trout down to extremely
small sizes. The smallest size reported at n@r;siﬂ fishway flows was a
brown trout weighing 180 g. However, at a flow of 8.5 L/s, which is
about 1% of normal, roach and perch as 5@11 as 50 mm in length were
reported.to. have ascended (Clay 1961). The apparent success of the
fishway at Herting Dam, generated interest for th;s design in North
Amgerica. A Denil fishway was installed at Dryden Dam on the Wenatchee
River, a tributary to the Columbia River. This Denil fishway was loca-
ted side by side with a pool and weir fishway. Observations on the two
fishways were reported by Fulton et al (1953). |

’ Fulton et al (1953) provided the dimensions of the ‘HShiiy: at
Herting. The channel width (B) was 1300 mm and the width of the clear
opening (b) 760 mm, representing an 1ner-eas§ of approximately 42% over -
the dimensions recommended by the Committee on Fish-Passes (1942). The
fishway slope was decreased to 16;57'1, the angle between the vanes and
the floor was mafntained at 45°, and the vane spacing was kept at 2/3 of
the channel width. The longest section be!tseen resting pools was 9.02
m. The Denil fishway at Dryden Dam was patterned after the Hér’tin\gi
installation and had the following dimensions (mm): b = 762, B = 1302,



aiﬂ k = 292, Y = 1768-2134. The fishway was 8.6 m long and on a
16.67% slope. Sockeye and chinook salmon, ‘steelhead trout, Dolly Varden
(_alveHnus gha). suckers (Catostomus spp.) and northern squmrﬂsh

(Ptychncheﬂus ar:ggnsis) used the fishway. Based on two years of

observations, 89% of the fish used the Denil fishway and 11% the pool

[ ]
and weir. It was ::anc'ludeﬂr';,at the foremost advantage of the Denil was

the attractive entrance cdMitions created by the nature of the fishway
outflow. The Denil also proved superior in facilitating fish passage.
Fish appeared to arrive at the fishway exit with little effort. The
short time required for a salmon to negotiate the Denil never failed to
startle the observers and was in contrast to the tardy progress through
the pool and weir. During short periods of observation, fish passed
through the Denil at an average of 24 s intervals. On numerous occa-
sions several sqckeyes passed through simultaneously or in rapid succes-
sion. '

The capacity of a fishway to transport sediments could affect Vthei
maintenance of the facility, particularly in streams which carry Tafge
quantities of bedload. Field tests with the Denil fishway at Dryden Dam
were reported by Cagle (1953). Gravels and cobbles were dumped into the
ﬂ-shwqy at the inlet and their movements observed. A counter flow at
the bottom of the fishway seemed to push the gravel into the main flow.
The gravel moved through the fislay by saltations from one vane to the
next. It ns concluded that the fishway would not retain any sediment
particles 100 mm or smaller. The largest cobble tested, measuring 356
mn x 178 ma x 178 mm, moved six vane spacings or a distance of 5.2 m in

20 minutes.



Since the successful testing at -Dryden Dam, the Denil fishway has
been wideiy used both in the Pacific and Atlantfc coasts of North Ameri-
ca. Decker (1967) reported that in the state of Maine Denil fishways up
to 227; fn length (including resting poairs) have been built and hydrau-
Tic heads of up to 15 m have been accommodated. Channel widths have
varied from 600 mm to 1200 mn and in all cases, the designs were geome-
trically similar to the one recommended by the Committee on Fish-Passes
(1942). Most fishways were built on a 16.67% slope, although a few were

installed on a 12.5% slope. The vanes were sloped 3 vertical to 2

horizontal making the angle between them and the floor (v) approximately

47° and 49° for the 16.67% and 12.5% slopes, respectively. Winn and
Richkus (1972) evaluated the passbge of alewife (Alosa pseudoharengus)
through two Denils on the Amnaquatucket River, Rhode Island. DiCarlo

(1975) described several Denils installed in ‘Massachusetts. Boreman

(1981) reported on the successful utilization by rainbow trout (Salmo
) of a Denil fishway on the Cayuga Inlet, New York. The dimen-

sfons of this fishway, as provided by Webster and Otis (1973), were:
slope 12.5%, length 13.0 m, b = 610 mm, B = 1067 "M, a2 = 648 mm, and the

vanes were sloped at 3 vertical to 2 horizontal.
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CHAPTER II1

EXPERI!EN’TAL ARRANGEMENTS

APPARATUS

Three Denil fishway designs were studied at the T. Blench Hydrau-
1ics Laboratory of the University of Alberta. For convenmience these
designs were referred to as Denil 1, 2, and 3. All three were full
“scale models, so no scale effects were involved in this study. Denil 1
was the steeppass (Fig. 7, Plates 1 and 2) with the dimensions given by
Ziemer (1962). Denils.2 and 3 retained thexfeat,u;es of the simple Denil
&esign of Fig. 8. (Plates 3 and 4). The dimensions for the three fish-
_ ways are 'Shﬁl in Figs. 9 and 10. Denil 2 had the same dimensions and
vane spacing as Denfl 1. Denil 3 was identical to Deni1 2 except for
the vane spacing which was set at approximately (2/3)B as was recommen-
ded by the Committee on Fish-Passes. (1942).

The experiments were conducted 1n!the arrangement shown in Plate
5. A steel frgied flume with 13 ﬁ thick plexiglass sidewalls was con-
structed. The flume measured 4.9 m (16.0- ft) in length, 560 mm (22*) in
width and 690 me (27°) n hefght (Fig. 9). The vanes for sach fishway
design were ﬁrefgbriéatad using 16 gauge (1.6 mm) galvanized sheet
metal. Subsequently, the vanes were fitted in the flume, supported at
the bottom and sides and sealed to prevent water leakage. . |

A headtank, equipped with~sti111ng arrangements, was attached to
the flume inlet. The stilling arrangements consisted of a serits of
circular pipe sections (152 mm-in diameter and 914 mm in length) follow-
ed by a double screen (16 gauge or 1.6 sm, galvanized wire mesh) with a
51 mm thick layer of "hogs hair” in batwsen. The headtank and. flume
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assembly was supported by a cement block on the upstream end. A hinge
allowed the upstream end to rotate while the downstream end could be
lifted by a crane, set at a desired slope, and then supported. 7
Water was circulated through the system by pumping from the 1abor-
atory sump through an overhead pipeline (305 mm in diameter) leading to
the headtank. From.the headtank, water entered the flume through the
+5t1111ng arrangements, flowed through the fishway, and spilled back into

the sump.

HYDROMETRIC TECHNIQUES
The water discharge through the fishway was measured by a magnetic
FT,::-; meter installed in the pipeline. For the water surface profiles, a

point gauge with a least count of 0.3 mm (0.001 ft) was used. The velo-

~ city readings were ohtained using a current meter having an external

ring diameter of 15 sm (Plate 6). For all the giperignt,s on Denil 1
and for onégthird of the experiments on Denil 2 (third slope), the read-
ing ‘m the current meter dial was visually averaged, whereas for the
remaining experiments, the output from the current meter was cannegted
to a paper tape from which an mﬂgé for each reading was obtained.
Fig. 11 shows a sample output of the paper tape; numbers 56-1 to 56-15
refer to readings taken at different points along a central plane, star-
ting at the bottom and moving towards the surfaéé; Some observations
were made on the flow patterns and the extent of air entrainment in the
flow. .
Although the limitations of resources and time for the study did
not allow for a detailed evaluation of these factors, iignificint errors

in the velocity measurements may have been introduced by air entrainment
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flow meter alignment and flow turbulence. Considering the size of the
current meter, large air bubbles could, canceivabi}, have encased the <
probe from tise to time thereby producing lower velocity readings. It

was anticipated though that the extended time of observation fgﬁ*vis;éi
(60-90 s) or recorded (50 s per inch, Fig. 11) readings would minimize

the air entrainment effect on average velocities. Since the current

meter axis was always set parallel to the longitudinal axis of the fish-
way, only the corresponding directional component of the velocity was
measured. The -agﬁ%éude of the velocity in the‘di%ectien of flow at a
particular point would aétualiy be greater. This angularity effect was
suspected ta.bg negligible af@ng the centerline but more pronounced near
the vanes and walls of the fishway. Also unknown is the effett on the
current meter Féadings of the very turbulent nature of the f1u§; .

PRELIMINARY OBSERVATIONS ’ /

Range of Experimental Parameters

Considering the results of previous investigations, it was initi-
ally decided to test the fishways for three slopes of approximately 10,
20 and 30% and three discharges for each slope. As a result, the final
values of the three slopes tested were 10.0%, 20.1% and €1.5%. FEach
slope was tested fﬁr three discharges of 56.6 L/s (2 cfs), 85.0 L/s (3
cfs) and 113.3 L/s (4 cfs). A total of 27 experiments (9 for each fish-
way) were conducted. A coding system was used to identify the different
experiments and the associated velocity profiles. A test code was de-
vised in which the first number refers to the type of fishway, which
could be 1, 2 or 3 corresponding to Denil 1, Denil 2 or Denil 3, -
respectively. The second element of the could be A, Bor C denotingtgf\\



respectively, the slopes of 10.0%, 20.1% and 31.5%. The third element,
a number, could be 2, 3 or 4 cbrrespon&mg- to the d1schargé tested in
cfs. The last element of the code (if present) is a compound one which
could Je CL, denoting centerline, L3, denoting 3" on the left of the
cgntral plane of the fishway looking upstream, or R5 which represents a
transverse distance of 5" to the right of the central plane, etc.

Rationale for Selecting Test Sections

From visual observations it was recognized that there was a flow
development length of about 60-80 am in the initial part of tﬁe fishway
where the flow accelerated and towards the end of the fishway there was
an exit length, of about 60-80 on in which the flow was affected by the -
free overfall at the end. In between the inlet and outlet affected
reaches, there was a region of fully developed flow in which the water
surface profile in the central plane of the fishway was approximately
parallel to the bed of the channe]. (Fig. 12). From velocity observa-
t1ons along the centerline it was found that the velocity profﬂes were
,essentfany 1nvar1ant in the regfon of fully developed flow (Fig.
13a-r). Accordingly the testing stations for velocit_y measuremnts for
the three fishways were selected as indicated below (all distances mea-
sured from the fishway water inlet): (‘
Denfl 1 - Station -1:- 188 om (6'2")

Station 2: 201 cm (6'7") }"
.Station 3: 213 o= (7'0") -
Denil 2 - Station 1: 201 om (6'7")

Station 2: 2‘1‘3‘m (7'0")
Station 3: 226 om (7'5")
2: 213 om (7'0%)

Denil 3 - S_tation



CHAPTER IV ’ -

EXPERIMENTAL RESULTS

parts: a main stream fn the central portion of the channel and a series :
of systematic lateral streams, each one corresponding to a side pocket
created by the vanes. Observations revealed the very tu%bu?ént natgrej.'
of the flow. Very extensive mixing was evident between the predominan-
tly unidirectional main stream and the ever swirling, lateral streams.
. Water was directed by the vanes into the side packeis,r;heréziarge cir-
culation patterns were set up; subsequently, water éas redirected to
strike and to counteract the main stream. Considerable air entrainment
was noted throughout the flow. The motfons of air bubblés prévided a
visual appreciation of the nature of the flow in the fishways (Plates
7-38). |

. The matn stream, although idiomorphic, was characterized by sym-
metry, strong surface undulations, and sizable, systematic and perfodic
water level fluctuations. The lateral streams were symmetric, homolo-
gous and jsadyngjié when éa!pgred to one another. Each lateral stream
displayed large scale spiral motions and rythmic water level oscilla-
tions, while all together syéchroni&aT]y and synergistically counter-
acted the main stream. The strength of the lateral steams appeal;gd to
be proportional to the vigor of the main stream. The intense and vigo-
rous interiction between the main stream and the lateral ones appeared
to provide the main mechanism for transferring mass and momentum, and

producing considerable turbﬂem::e and energy loss (Plates 7-38).
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Closer examination revealed both the similarities and the_giffgr—
ences in flow conditions in each fishway. For a discharge of 113.3 L/s
and for each of the three slopes tested, Eiates 7-9, 17-19, and 28-30
' purvey a view from tﬁe top for the flow gﬂttEFﬂS exhibited by Denil 1,
2, and 3, respectively. Denil 1 displayed strong lateral strean% which.
strikgé the main ;tre;n almost perpendicularly. At the 31;51;§§ope each
lateral stream extended to the centerline of the channel and col11ded
with the corresponding stream from the opposite side of the fishway.
Water level in the side pockets rised sfgnificantly higher than in the

central plane of the fishway. As slope was decreased, the lateral

streams became weaker, the water level differences between the side Eac?

kets and the main channel dimnigshed;. and flow turbulence decreased. In
contrast to-Denil 1, Denil 2 (Plates 17-19) and Denil 3 (Plates 28-30)
exhibited a smoother, yet faster moving water surface. The lateral
*streéms were less conspicuous and appeared to involve spiral motions
around an axis‘pgrallgl to the wall vaées. For Denil 2 and 3 the inter-
action bgtwgeﬂ'the main stream Dﬂ% the lateral streams was ;at as in-
tense as in Denil 1. Flow turbulence decreased with s1ape,iaithau§h not
ffta the same degree as in Denil 1. Denil 2 displayed less turbulence
than Denil- 3. Thg increased spacing of the vanes in Denil 3 appeared to
render the lateral strﬂﬂﬁs'ié%?geffective in slowing down the main

stream than in Denil 2.

_When viewed from the .side, Denil 1 manifested large scale circula-
'Einn patterns. Edgh lateral stream consisted essentially of flow moving

in a spiral path around an axis perpendicular to the wall vanes. Turbu-

lence and air entrainment were high but both decreased with slope and

discharge. Sizable water level differences from one wall vane edge to



the next were noted (Plates 10-12). Side views of Denil 2 (Plates
20-22) and Denil 3 (Plates 31-34), disclosed higher air entrainment than
in Denil 1 for the same slpe and discharge and confirmed a high velo-
city stream in the upper layer of the *F"lna.!; Wave patterns, with a2 wave
length approximating the vane.spacing, were featured at the water sur-
face of both Denil 2 and 3. Pockets of slower moving water were evident

close to the floor of the fishways.

' Close-up photographs showed how the nature of the lateral streams .

changed with slope and discharge (Plates 13-16 for Denil 1, 23-27 for
Denil 2,,: and 35-38 for Denil 3). For Denil 2 and 3 flow observations
iﬁd'if:{ité; that, in descending from the water surface towards the ﬁséﬁay
floor, the direction of flow circulations shifted. Close to the water
;;urface the min stream moved more or less parallel to the floor. This
direction gradually changed to prﬁduag an almost vertically upward moti-
on near the bottom of the flume. As noted earlier , the lateral streams

'displayed a spiral motion near the surface around an axis parallel to

the vanes. ‘' This motion changed to

inward one near the bottom. The

Jdnwnward one at -ﬂdsdgpth and to an
rd motion contributed to ihéupwa%d
movements which were displayed by the mafn stream. Evidence of these:
ﬂ’& patterns s _pmﬂdgd by Plates 21-22 and 26-27 for Denil 2, as well
as Plates 32-34 and 37-38 for Dentl 3. Stimilar flow characteristics
were described by Fulton et al. (1953) and Larinfer (1981). The upward

| motions. near the floor also concurred with aﬁsgﬁatipn; by Cagle (1953) '
on the movements of gravel deposited fn the Dryden Dam fishway.
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VELOCITY PROFILES
The nature of the velocity field in each fishway was studied by

ged) in the direction of the centerline of the fishway. This velocity
was measured in the region of &Vﬂﬂp&diﬂ{ﬁ at several points along tﬁe
central normal (or in the central plane) and a number of non-central
normals. The range of velocity fluctuations were recorded also.

s /
Denil 1 Fishway

The variation of u with.y fn the central normal is shown in Fig.
14, for the nine experiments with the Denil 1 fishway. In the plots of

Fig. 14 the vertical axis (depth) corresponds to y as defined in Fig. 9

city readings made at the centerline of the fishway. In most of the
experiments, the velocity profiles at the three stations exhibit similar
characteristics. They all display the same gemtﬁca] shape. The

maximum velocity Up» occurs at y=0; u decreases with y, reaching a

minimum value somewhere below the free surface. In Fig. 14 the water _

surface is represented by the str—éigﬁt horizonal lines across. the plots

(solid, dashed or dotted lines). Thgsé velocity profiles vary little
from station to station for the same slope and discharge. The only
exception is station 1 for experiment 1B3CL (Fig. lde) which was attri-
buted té expeﬁgntﬂ erﬁ:r |
Velocity profiles were also established at a number of non-centra)
normals and are included in Appendix 1 (Fig. 1.1). For' these velocity
profiles the following characteristics can be abserved: a) they are
generally smtrh:a:T on either side of the central plane; b) the
profiles for L3, R3, L5 and RS (i.e. 76 and 127 mm from the central

26



plane) have nearly the same geometric shape as the centerline profiles;
c) the u values tend to rematn approximately the same foé- different
values of y for the profiles for L7, R7..L9 and R9 (f.e. 178 and 229 mm
from the central plane and 1nsi¢!e the side pockets). bfhen moving trans-‘
versely away from the central plane, the typical shape of the centerline .
veiociity profiles appears to shift gradually to a nearly vertical line
of constant velocity. The m;nitude of the velocities also appears to
be decreasing in the same direction.
Denil 2 Fishway

The centerline velocity profiles for the nine experiments with the

Denil 2 fishway are shown in Fig. 15. These profiles are charicterized
by Tow and approximately constanf velocities up to a certain depth, with
2 gradual increase in magnitude thereafter, reaching maximum velocities
at the f;-ee surface. This is consistent-with the observed fast water
-layer near the free surface m_jéh was described previously. The geomet-
ric shape of the profiles is g§hera11y the same and a mean curve could
easily be drawn for the two or three stations of each experiment.
Velocity profiles for .fhe non~central normals (Appendix ll.'F1g.' 1.2 for
L3, R3, L5 and R5) exhibit trends similar to the centerline profiles.
Velocity m'asumnts in the side pockets were not made as the inclined

. vanes ‘rendered this task impractical.
Denil 3 Fi;hwi,y | ‘

As was discussed previqusl;y. Flow observations in the Denil 3
fishway indicated that the vanes were not as effective in slowing the
main stream as in the case of Denil 2, because of the increased spa-
cing. The 'centerline'\re'locity profiles, shom‘jn Fig. 16, support these
observations. 'Furt_her. theyfndicate that even‘ thougl) the profiles for



the 10.0% slope appear to have the same shape as that in Dentl 2, the
prai;ﬂes for the other two slopes suggest an aimsf uniform velocity.
By combining the centerline profiles for each slape (F1g. 16§ to 161) it
is 1ntemsting to note that for a slope uf 10. 0%, the velocity profiles
do not seem to be affected by the discharge. This trend though does not
necessarily persist for the 20.1% and 31.5%1 slopes. For Denil 3, cen-
terline velocity measurements were made only at station 2, and the non-

central velocity profiles (Appendix 1, Fig. 1.3) were also limited.

VELDCI‘% CDNTDURS
Velncity contours were dr'aim fru- the tig averaged velocity
measurements made at the different normals. These contours shown in
Fig. 17 for Denﬂ 1, Fig. 18 for Denfl 2 and Fig. 19 for Denil 3, pro-
*vide a more :aiprehensive view of the velocity field on the three fish-
ways tested. In thgse plots, the vertical axis (depth) sarrespends toy
-as defined in: Fig. 9; the horizontal axis (width) corresponds to the
transverse distance Frm the centeane (taken as- 0) and extends to the
furthest paint where Flocit:y r*eadings were made on either side of the
central plane. A mean water surface level is marked and the velocities
are s;;e‘ti;fjgfd‘in cm/s Far. contour intervals of 10 cm/s. The velocity
contours for station 2 are the most comprehensive for each fishway. The
limited data for Denﬂ 3 allowed only one graph to be e plotted (Fig_ 19)
The shape and distribution of the isotachs confirm some of the
observations which have already been made. Flow is generally symmetri-
cal around the centerline and particularly so for Denil. 1. [For the
Denil 1 fishway (Fig. 17) high velocities exist at the bottom layers of

the flow. The close spacing of the isotachs indicates that velocities
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reduce rapiéi: reaching a minimum at approximately 60% of the flow
depth. Also, velocities .appear to diminish iith>dist$ﬂcg from the
centerline. Sharp! turns in the isotachs are usua]ly noted at some
distance on efther side of the centerline. These represent the
iﬁiiuenﬁe of the sidewall vanes of the fishway. The interior edges of
the vanes were approximately 18 cm from the centerline.

In the Denil 2 fishway (Fig. 18) the fsotachs, in the clear open-
ing of the channel, when ¢Qﬁpared ta_thase'far‘the Denil 1 display a
different patt;ern for the velocity field. Eansistent with previous

observations, high velocities are exhibited close to the water surface

flow. The 1sotachs for Denil 2 are generally not as cicsﬂ; spaced as
themes for Denil 1, indicating a more gradual change in velocities.
Ina-similar way to the Denil 1 fishway, velocities fn Denil 2 are re-
duced with distance from the centerline, although this reduction appears
to be more gradual. . The velocity contours of the only plot available .

for Denil 3 (Fig. 19) exhibit characteristics similar to those for Denil

. 2.



CHAPTER V

ANALYSIS

FLOW DEVELOPMENT ;

The longitudinal water surface profiles of Flig. 12 illustrate the
three flow development regions obser.'ved. Immediately after the stilling
arrangements of the hea&tank, ﬂow‘\a'ls typical of a rectangular open
channel on a steep slope: unifoﬁ, with ]w‘water depth and high veloc-
fties. Within the short distance between the end of the stilling
arrangements and the uppermost fishway baffle, flow depth increased -
steadhy. . Water depth continued to increase, fér approximately 60-80 om
into the fishway, until a depth was reached which was maintained for
aluos‘t the entire fishway length. Only for app)rox1ntgiy 60-80 om at
the downstream end of the fishway did the water depth decrease under the
influence of the free overfall -arrangement. For all the experiments
‘conducted wi'th t& three fishways, a flow development region was obser-
ved, follpwgd by a fully developed flow region and a drawdown section at
the water outlet. The fully developed flow region was characterized by
longitudinal water surface profiles, in the central plane of the fish-
way, which wére approximately parallel to the bed of the channel (Fig.
12). ' ‘

“ _In an actual field installation, an initial flow development re-
gion 1s unlikely since the water inlet (or the fish exit) of the fishway
ts placed in a relatively calm area of a reservoir or a lake upstream of
an obstructfon. In the field then, fully developed flow is expected to
begin in the fmmediate vicinity of the uppermost baffle. In this re-
spect, the ‘!n’it_.ial flow development region observed in the laboratory
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was not expected to represent field conditions. Also in most situa-
tions, the free outfall crfst.hg.:”!abajr'atm? experiments would not corres- ‘
pond to an actual field setting. In the field, the iater_mtleﬁ (or
fish entrance) would be influenced by the elevation of the taﬂﬁatgr. ’
Haviﬂl"l‘jyx. there would not be a significant drop in water level between
the water outlet and the tailwater. Apart fram the short in]gt\and
autiet region, .the fully developed flow regwn?is‘expeéted to éﬁresent
field conditions reasonably well. ]

3 Vélotity profiles for Denil 1 and Eﬁ are shm in Fig- 13a t.n f and -
13g to r, respectively, for different central normals along the Iénjth _ 
of the flume. For experiment 1B2, the velocity p’mfi‘iﬂe at 61 om from |
the water inlet (Fig. 13a) deviates substantially, while the velocity
profile at 127 om deviates only slightly from the remaining velocity
profiles. This testifies to the presence and influence of the flow
development region. The é’lar;it; profiles of Fig. 13b and c appear
similar to each other as well as to the carrgspoﬁdiﬁé centerline profile
of Fig. 14d in which statfons 1, 2, 3 were, respectively, 188, 201 and
213 om from the water inlet. A small deviation from these profiles is
~detected 1n Fig- 13d, which represents wvelocity profiles influenced by
the free outfall. The water outlet was 488 om downstream of the inlet.
F}9. 13e and f along with Fig. 14h provide further evidence that the

flow was relatively steady and uniform in t% fully develapgi flow re-
gion. Fig. 13g to r in conjunction with Fig. 15a, d and g, offer evi- }
.dence similar to the above regarding the three flow regi’»ms observed in

" Denil 2.



SIMILARITY ANALYSIS
that the velocity profiles for Denil 1 and 2 exhibited, generally, simi-
lar ggq':gtrica’l shapes. Mathematically, velocity prof‘i’les are termed
"similar® if the dimensionless local velocities plotted against the
diﬁenéianiess local depths fall on one common curve. The velocities and
depths ;‘re non-dimensional ized by appropriate velocity and length sca-
les. These scales characterize the flow and assist in its description
and analysis. Similarity of the velocity profiles is a property mani-
fested by a very large number of turbulent jet flows. The maximm velo-
city of the profile ‘15 commonly used as the velocity scale (Rajaratnanp
1976).

For the Denfl 1 centerline velocity profiles (Fig. 14) the simila-
rity hypothesis was tested by chosing Ups the maximum value of u
occurring at y=0 (Table.2), as the velocity scale, and d, the ciepthA of
flow, as the length scale. The dimensionless local velocity (u/u)
was then plotted against the dimensionless local depth (§/d). From
Fig. 20 1t 1s found that almost all the'experimental points cluster
afwnd a cosmon curve, attesting to the validity of the similarity hypo-
thesis for the centerline velocity profiles of the Denil 1 fishﬁay.i The
. hand drawn curve of Fig. 20 is characterized by (a) a high velcn:ity’
region near the bottom, where u/ug=1.0 for y/d=0, (b) a section in
which velocities reduce rapidly to u/u;ﬂ.! for y/d=0.55, and (e) an
ar';ea in which velocities change very gradually, reaching a winimum

u/u =0.32 for y/d«0.77.
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The similarity hypothesis was also tested with the centerline
velocity profiles for Denil 2 by plotting u/u:i versus y/d (Fig.
21). Here, the velocity scale, u;' (Table 2), represents the ve]gf;_—
fty of the profile at y=0.75d. The selection of this velocity scale was_
méessitated by the nature of the centerline profiles for the Denil 2
fishway (Fig. 15). In contrast to the profiles for Dentl 1 (Fig. 14),
where a maximum velocity (um) could be easily defined near the bot-
tom, the maximum velocity for the Denil 2 profiles appeared to occur at
or near the water surface. The experimental technique adopted far this
study could not have been used to accurately measure velocities very
close to the water surfacs because the flow oscillations there caused
the current meter to be alternately submerged and exposed. If the
results of experiment 2A4, which appeared to be very different (perhaps
due to measurement problems), are amitted, then a mean curve could be
drawn through the data points of the remaining experiments. Thié curve -
indicates that- the velocity in the lower layers is approximately con-

yg;ant at O.tSSu;| for y to about 0.3d and then increases cont {nuously

to reach a value of about Z.7u;l near the free surface (extrapolated

‘value, not shown in Fig. 21).

VELOCITY SCALES
The similarity profiles presented above can be used to predict the

mean velocity field in the fishways if the velocity scales (um.u;) can
easily be estimated from other known flow parameters. A convenient and
practical such parnetgr. which has been used by previous 1nve§st19atérs
to characterize flows in Denil fishways, is the “"average® velocity (v)
computed fraom the discharge-im relatfonship assuming steady, u*nifaﬁna
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flow. This velocity is defined as the ratio of fishway discharge to the
net flow area which is bounded .b; ‘the vane edges and is normal to the
flume floor (McLeod and Nemenyi 1941; Swith 1976; White and Nemenyi
1942; Ziemer 1962). The net flow area would be bd for Denil 1 and bd -
for Denil 2 and 3 (Fig. 9); This “average" velocity is then given by:

v '2; (Denil 1) or v.-' % (Den? 2, 3) ©)

The velocity V from (1) is tabulated in Tab.h 2, along with the ratios
up/V for Denil 1 and 3, and u,/V for Denil 2. These ratios were
plotted against d/b in an attempt to arrive at a method of ‘pfedicting
the velocity scales (u_ and u;n)- From Fig. 22. it is found that
for Denil 1 ug/V ncreases with d/b for all three slopes and the
full range of discharges tested. For Denil 2, u"i/V'-GgS,. whereas for
Denil 3, ‘u_/v increases 1in d/b. It_:_is noted though that significant
;cé:tter is displayed by the data of Fig. 22 and the range of d/b values
is rather limited. In the field, much larger d/b values would be
required in many cases.

In previous studies, velqcity p:ﬁ;fﬂes were not measured and
therefore no true mean velocities were estabiished. From the centerline
velocity profiles presented earlier, a depth averaged velocity (U) was

calculated and t:méﬂd'ta the “average” velocity V. Although U is not

a true mean velocity either, it is expected to reflect the true mean

velocity more closely than V. In computing U the values of U/ug =0.525

and U/u,=0.95 were estimated from Fig. 20 (Denil 1) and Fig. 21

i(DeniT 2) respectively. The corresponding U vaiues for Denil 3 were

estimated from Fig. 16,
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From Table 2, the ratios u-/\f; uf-ﬂ and‘ U/V indicate,
particularly for Denil 2 and 3, that the net flow area (bd or bd) used
for the computation of the “"average® velocity V, even though it is
convenient, it is rather small. In between the vanes, the flow depth
and especially the flow width are considerably larger, resulting inl much
larger values for t.he flow area and thereby yielding much smaller values
for the velaﬂity&xv. Nevertheless, V proved a useful ipara-eter- in the
estimation of the ie’!n-:ity scales (Ffg. 22) and was utilized again in
the prediction of the depth averaged velocity U. Fig. 23 presents the
results of plotting U/V versus d/b. Although a slight slope effect fis
discernible for Denil 1, an average value of 0.75 for U/V is indicated.
It is noteworthy that a sIape effect is less apparent for Denil 2 where
anive_ra; value of 0.50 for U/V is implied by Fig. 23, while for Denil
3 U/V=0.41 could be used. For the slopes of 10.0%, 20.1% and 31.5% the
corresponding average U/V ratios are (a) 0.87, 0.73, 0.63 for Denil 1,
(b) 0.51, 0.40, 0.60 for Denil 2, and (c) 0.39, 0.43, 0.40 for Denil 3.

Besigi;!s g u;. v and:li‘ another useful parameter in
characterizing the flow in the fishways is the Froude number (F). Here,
the Froude number was basad on the depth averaged velocity U and was

computed from (Table 2):

U ey U . na -
F = —— (Denil 1) or F = —— (Denil 2,3) (2)
P R -

where g is the acceleration due to gravity.

#i

conditions in steady, uniform open channel flow. The average values for

the Froude riuﬂér (F), corresponding to the 10.0%, 20.1% and 31.5%



slopes tested, were estimated to be (a) 0.26, 0.31, 0.34 for Denil 1,
(b) 0.24, 0.22, 0.38 for Denil 2, and (c) 0.20, 0.43, 0.53 for Denil 3.

HYORAULIC ANALYSIS N

- At tﬁis stage, }t would be 1nsiruct1ve to compare the flow ﬁafa—
meters of the Denil fishways to those of a plain ‘rectangular channel.
Consider then two channels set at the same bed slope :(-Sﬂ) and carry-
ing the same discharge (Q). One channel {s the Denil 1 fishway and the
' @thér is a pIajn rectangular channel of width b, the same as the main
stream 1n'the fishway. De%iﬁe Qs V. d, R, n, and E as the discharge per
unit width, the water velocity, the water dgpi_:h, the hydraulic radius,
“the friction factoﬁ (Manning's), and :tfhe specific energy of flow for the
Fisbﬁgy; the corresponding parameters for the é]ain channel are q., vgi
Yo Rg’ Nos Eo‘ If ch is the Froude number for thé plain channel, the

following relationships hold 1f steady, uniform flow is assumed in both

- channels:

q =3 =g, ST 3)
GV Yoy, R

E =y +2 ; o e
- ﬂi '2/3 1,2 T . - ) ’. J :_ . B
=’\l N R SD _ | - -
! 7 o =L y

0 n, c

UM o 2/3c1/2 o T
Vo m g R3S o | T C

F = vf——g, » : e E ' S ""(9])
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where M is a constant dependent on the system of uﬁits used; M is

1.0 for m-s umits and 1.486 for ft-s units.

From (4) and (9):

T vE g2
‘Fﬁgiiﬁ'jw
- Q"Q E’a

Also, from (9):
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From (12) and (13) readily follows that:

Equations (6) and (11) yletd:,
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Bty (G e @ / (18)
‘ Substﬂguti%g (12) in (18): ' !! |
F2)2 2+ F§13

1,9 V orF = 0

E-_va

- Dividing (17) by (19): ! |
2 n ) Z ‘ * . i
E (2 + ngz)/zs 2+ ngs

Then (15) becomes:

2 +F?
[+]

E‘lf?[ {21)

i z+ Fi“
~_ From (15) 1t ‘15 evident thgtg ¢ 1s a measure of the e!ner—g dissi-
pated in the fishway. It can also indicate fishway efficiency because
-'gthe water velocity decreases as the energy dissipation ,1m:r-ea§s.
.E;ecreasing water vgineity to levels that are within the biokinetic range .
of fish is the main objective in the Denil fishways. Equation (21) ’
shpws that ¢ i; a function of i and Fa and provides an estimate of
the energy.ﬂ1ssipatian in the fishway. 5
Further, from (4), (7) and (8):

ey y =8 p2/3c1/2
=V nﬁ’onq So
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Then, . k
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Ry ol 2) vy 1vef
b+ y J " T Ty . L -
o 1+ z.ro i
O"; substituting (12), (13) and (16): - . 2 B P
. n A+ 2n ' ' N
S Ro'lxl#zx-l )Y -A'A.’.zn
R I+ 2n T+ 2n -m. or

R , : |
- H : Zn ‘ | - (23)
Utilizing (12) and (23), (21) way be rewritten as:

n . 2/3 . ,
e ptea R =y | (24)

From (21) and (24) it is evident that energy dissipation and flow

resistance are linked through the parameter A. .‘
) -As evidenced by Fig. 22 and 23, the velocity V, which was, defined
by (1) or (4), my bo used to estimate the maximum mean velocities and
- the depth averaged velocities expected in each fishway. The above
analysis assists in the development of a simple method to predict V.
. Equation (8) could be rewritten as:
noo
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Equation (25) has been tabulated by Posey (1942) for given values
of Q, n,e SQ and b, so n and hence Y, can easily be calculated. For
each of the present series of experiments Yo and Vo haée'beeﬁ ca]culaﬁe_&

and givefi ifn Table 2. 7
Further, for Denil 1, if T is the average shear stress exer-.

ted by the surrounding fluid on the three wetted boundaries of the main-
stream of the fishway, for a unit length of the fully-developed part of

the flow:
vZ
bdvS, - ¢ F— (b + 2d) =0 | | ) (26)
K 2 | @
wherein b is the width and d is the depth of the main stream m"ﬁm .
S

fishway, v is the specific weight and o is the mass density of the
water, and Ce is the coefficient of fluid friction. Combining (26)
with (4)' and after simplification,

B

) /3 V, 3 B .
- ¢ - .°__227.. ..(1_*_21).:_ (%) (28)

_For the Denil 2\and Denil 3 fishways, the only difference will be to

replace d by d in equations (4) to (28). ‘
Using experjntital obseryatiohs on V and (25) to calculat:,yo .

and vo. Ce was calculated for each experiment and the calculated
vii_ues are show.ulin Table 2. It is 1nter~es'-ting to find out that:.'the.
Cq values are of the order of 1 for the Denfl l.fishway imeregs for
rigid boundary friction, Ce is many times smaller (typically of thg‘
order of 10-3),

-



] .
For the Denil 1 fishway, Fig. 242 shows that Ce decreases with

increasing d/b. Perhaps for approximate calculations, cp could be

given an- average value of 0.8 for d/b in the range of .0.5 to 1.4. With

su:h an average- value, for Denil 1, using (26) and the continu’lty (or
mass conservation) equation: _

Q="bdv o (29)
for any given .S , b and Q, V and hence d can easn;pe'abtgined- If the
variation of ¢ 1s to Ene ﬁ-frlned, then a tria) and. error érm:edm*e will
be needed. - ' i :

For the Denil 2 fishway, if the two data points of the 2C serieé’
that are located away from others are discounted 1n Fig. 24b, then an
average value of about 0.4 is indicated in the range of d/b studied.
From Fig. 24c, for the Denil 3 fishway, an average value of 0.25 is
indfcated. !

If ¢ Ce is taken as an index for the effh:iency of the fishﬁa_ys.
Denﬂ 1 is the most efficient and Denil 3 the least efficient. It is
interesting to note that all three fishways maintained subcritical flow
with Froude nusbers less than 0.67 (Tibie 2) even for the steepest slope

of 31.5%.. -Further, Table 2 provides values ;of'V/'Ya. For Denil 1, 2 and

3, V/Va values of approximately 0.18, 0.22 and 0.30 are indicated,
respectively. Using the continuity equation, the corresponding values
for the depth ratfos would be 5.6, 4.6 and 3.3 for Denil. 1, 2 and 3

respectively. i ; | , J
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CHAPTER VI

CONCLUSIONS AND RECOMMENDATIONS
CONCLUSTONS ‘
1. The velocity profiles in the central plane of Denil 1, have
" been found to have a cﬁiﬁcter—isfi; shape with the maximm velocity
filament to be located at the bottom of the main S‘ti‘!l‘!ﬂg These velocity
p;écfiies for the three slopes and three discharges have heen described
by one “"similarity curve®. The scales for this 'si-ﬂarit:y curve" have
been t:arrelated with the main parameters of the flow.

2. An analysis has been developed for wedictiﬂg the mean veloc- -

“ ity and the depth of the main stream for all the three fishways. This
- analysis introduces a coefficient of friction (l; ) bgtﬁeen the min
stream and the ﬁcirculating flow on the sides and the bottom. For the
Denil 1, this coefficient is of the order of unity which is about 100
tiu; larger than the skin friction coefficient known for traditional
open channel flow.

3. The simﬂaritg of the central plane velocity profiles was
f@urﬂi to hold for Denil 2 also. The main differgﬂc;e appears to be that
for Denil 2 the lﬁ'ﬂﬁjﬁ velocity filament is located near the surface of
the main stream. ' The scales for the “similarity curve® for this fishway
have also been correlated.

) 4. The coefficient of friction for the second fishway has been
found to be somewhat less than that of the first fishway. ‘

5. For the third fishway the data on the velocity profﬂes are
rather incnm:lu:ivc regarding the similarity aspect. Further, the

.friction coefficient for Denil 3 is only about 1/3 of the corresponding
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. values for Denil 1.

6. The flow was subcritical for all three fishways and for all
conditions tested. . The Froude nusber ranged from 0.24 to 0.35 for Denﬂ
1, from 0.18 to 0.46 for Denil 2, and from 0.19 to 0.67 for Denil 3.

p 7. The depth averaged centerline velocity for thé main stream in
Denil 1 was only about 143 of the velocity thlt would exist in a flume
(withouf vanes) for the same slope and discharge. The corresponding
bercentages for Denil 2 and 3 were about 11% and 12‘1 respec;i,;eiy_ It
would appear then that all three fishways are very efficient in r‘édusing

watér velociti'es.

RECOMMENDATIONS _

1. To extend the results of the present study to cover a larger
range of depths, 1t would be necessary to do further studies with much
larger values of d/b. Scale models would be required since such studies
could not be conducted in the laboratory using prototype dimensions.
Definitive experiments to éstablish the validity of scale models for
these types of fishw'qys would be worthwhile. !

2. Different values of b would be needed to accommodate very
small or very large fish species. Further experiments need to be made
with varﬂng values for b. '

3. The spacing and the )ngles of inclination of tha vanes, the
width of the recirculation ngion formed by the ‘vanes and the arrange-
ment of the bottom fins should be studied, prefgr:hly in the laboratory. -

4. Some experiments on smaller slopes my be cbsirgbh, p:rticu-
larly 1f juvenile fish nnd to be accommodated. '



5. Field studies of these designs are very important and should
be carried out. Continuous interaction between field and laboratory

studies should be ensured.

of these .fishways was surprising; nevertheless only a small part of the
total field of the hydraulics of fishways was invtﬁtigateda For further

. studies in this area to be effective and useful (for.people as well as

fish!) very close collaboration should exist between fisheries
biologists and scientists, water resources engineers, planners and

scientists.
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FIG. 23. Variation of the depth averaged velocity for the three
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FIG. 24. Variation of the friction coefficient for the three
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PLATE 11.

PLATE 12.

Denil 1 displaying weak but large scale
circulation patterns at a slope of 10.0-
(discharge 113.3 L/s, experiment 1A4;.

Jenil 1 displaying strong and large
circulation patterns at a slope of 20.1%
. (discharge 85.0 L/s, experiment 1B3).
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PLATE 13.

PLATE 14

Denil 1 displaying weak lateral streams at
a slope of 10.0% and a discharge of 56.6
L/s (experiment 1A2).

Denil 1 displaying strong lateral streams
at a slope of 31.5% and a discharge of

56.6 L/s (experiment 1C2).

i
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PLATE 21.

PLATE 22.

Benil 2 displaying low air entrainment and
velocities, as well as an inward motion near
the flume bottom (experiment 2A4°.

Denil J Ziupiayiig satier surface wave
patterns and spiral motions of the lateral
streams (experiment 283).

[



Denil 2 showing the effect of lateral streams
at a siope of 10.0 and a discharge of 56.6
L/s (experiment 2AZ2;.

Denil 2-displaying strong lateral streams &t ~
a slope of 20.1% and a discharge of 85.0 L/s
(experiment 2B3). :

%
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PLATE 25.

PLATE 26.

Denil 2 displaying very strong lateral
streams at a slope of 31.5% and a discharge
of 113.3 L/s (experiment 2C4).

Denil 2 displaying spirai motions of the
lateral streams near the water surface and
inward motion near the flume bottom (dis-
charge 56.6 L/s, experiment 2B2).

[l
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PLATE 31.

PLATE 32.

Denil 3 displaying water surface wave patterns
and spiral motions of the lateral streams
(slope 31.5 , discharge 113.3 L/s, experiment
3C4).

Denil 3 displaying water surface wave
patterns and spiral motions of the lateral
streams (discharge 113.3 L/s, experiment
3B4). _



PLATE 33.

PLATE 34.

Denil 3 displaying low air entrainment and
velocities, as well as an inward motion
near the flume bottom {experiment 3A4).

Denil 3 Gispidying water surtace wave
patterns and spiral motions of the lateral
streams (experiment 3B3).
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PLATE 35. Denil 3 showing the effect of lateral streams
~at a slope of 10.0 and a discharge of 56.6
" L/s (experiment 3A2),

PLATE 36. weniy 3 displaying very stroiy iaierai streams
at a slope of 31.5% and a dischgrge of 113. 3
L/s (experiment 3C4)
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"APPENDIX 1

VELOCITY PROFILES AT NON-CENTRAL NORMALS
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FIG. 1.3. Denil 3: velocity profiles at non-central normals.
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