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Abstract

This work is devoted to the development and validation of subgrid models de-

scribing heat and mass transfer between the bulk flow of gas/liquid and a moving

particle undergoing phase change under the influence of free/mixed/forced convec-

tion. Such kind of submodels plays the role of ’scale bridges’ between microscale

(e.g. interfacial phenomena) and macroscale phenomena (e.g. continuous casting).

Applied to the multiscale modeling, our new model serves as a coupling between

equations describing particle movement in Lagrangian space and mass, momentum,

heat and species conservation equations defining melt flow in Eulerian space. Input

parameters are Reynolds number (Re), Grashof number (Gr), Stefan number (Ste)

and Prandtl number (Pr). The models have been validated against experimental

data published recently in the literature applied to the melting of spherical and

cylindrical ice particle under different flow conditions. Good agreement between

numerical predictions and experimental data is observed. Additionally, some of

the experiments are repeated numerically using CFD-based particle-resolved simu-

lations. Basic flow features are discussed. Finally, the models developed for a single

particle can be adopted for multi-particles systems.

ii



Preface

Chapter 2 was partially based on a manuscript accepted for publication as “H.

Bansal, P. Nikrityuk. A submodel for spherical particles undergoing phase change

under the influence of convection. Can. J. Chem. Eng. accepted, 2016”. Dr.

Petr Nikrityuk was responsible for development and formulation of submodels. I

was responsible for their programming, carrying out simulations, their validation

against the existing experimental data in literature and explanation of the results

obtained.

iii



Acknowledgements

There are many people in my list to whom I am sincerely grateful for their

support and help. The first and most earnest acknowledgement must go to my

mentor and my supervisor, Dr. Petr Nikrityuk for his everlasting enthusiasm,

guidance and encouragement for my research throughout my Masters. He was always

ready to provide me with intelligent and ingenious ideas and knowledge about CFD

in general. Apart from my research, he equipped me with lot of useful insights

in time management, career goals and life outside academia. I pay my deepest

gratitude to him and I am deeply indebted to him for all his efforts and help.

I would also like to thank Dr. Sina Ghaemi for allowing me to conduct exper-

iments in his lab. I am grateful to Dipl.-Math. Frank Dierich for helping me in

QUICK discretization scheme implementation.

I would like to thank all my friends at Windsor Park Plaza for providing me

a temporary place to eat, stay and sleep whenever I needed. Also, I would like to

thank my friends in Edmonton: Amit Dahiya, Tarang Jain, Nikhil Agrawal, Nanami

Shimizu, Rohtaz Singh, Sahil Kapila, Kaushik Sivaramakrishnan, Hemant Charaya

for sharing their time and joy with me.

At last but not the least, I would like to express my gratitude to my mom, dad

and my sister for their love, constant support and encouragement. Without them,

I can’t imagine myself doing what I am doing today.

iv



Table of Contents

Abstract ii

Acknowledgements iv

1 Introduction 1

1.1 Particle flow with phase change: Applications . . . . . . . . . . . . . 1

1.2 Modeling concepts and basic challenges . . . . . . . . . . . . . . . . 2

1.2.1 Euler-Euler Models . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.2 Euler-Lagrange Models . . . . . . . . . . . . . . . . . . . . . 6

1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Semi empirical model for particles undergoing phase change: Two

phase model 13

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Phase change of single particle in the fluid of same material . . . . . 15

2.2.1 Model Formulation for spherical particle . . . . . . . . . . . . 15

2.2.2 Model formulation for cylindrical particle . . . . . . . . . . . 18

2.3 Model validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.1 Free convection . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.2 Mixed convection . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Semi Empirical model for particles undergoing phase change: Three

phase model 31

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 Model formulation for melting of ice particle in air . . . . . . . . . . 33

3.2.1 Model formulation for spherical ice particle . . . . . . . . . . 33

3.2.2 Model formulation for cylindrical ice particle . . . . . . . . . 37

3.3 Water layer thickness around the particle . . . . . . . . . . . . . . . 40

v



3.3.1 Equation of motion . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3.2 Simple model - balancing gravity and friction . . . . . . . . . 46

3.3.3 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.4.1 Evaporation flux . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.4.2 Three-phase change model for cylindrical particle . . . . . . . 53

3.4.3 Three-phase change model for spherical particle . . . . . . . . 57

3.5 Illustrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.5.1 Ice sphere falling in air . . . . . . . . . . . . . . . . . . . . . . 60

3.5.2 Droplet solidification . . . . . . . . . . . . . . . . . . . . . . . 62

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4 CFD Modeling of Ice Particles Melting in Hot Wa-
ter 65

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3 Model Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.3.1 Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.3.2 Discretization schemes . . . . . . . . . . . . . . . . . . . . . . 70

4.3.3 Pressure-Velocity Coupling . . . . . . . . . . . . . . . . . . . 70

4.3.4 Interface Tracking . . . . . . . . . . . . . . . . . . . . . . . . 70

4.3.5 Different shapes of Solid particle . . . . . . . . . . . . . . . . 73

4.3.6 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.4.1 Flow characteristics/structure of cold melt . . . . . . . . . . . 77

4.4.2 Solid phase front morphology . . . . . . . . . . . . . . . . . . 79

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5 Conclusions 97

vi



List of Tables

2.1 Thermophysical properties [1] of water and ice at different tempera-

tures used during validation of the model. . . . . . . . . . . . . . . . 21

2.2 Ice sample and water properties in different experiments as conducted

by Shukla et al. [2] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 Ice sample and water properties in different experiments as conducted

by Hao and Tao [3] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4 Nondimensional numbers calculated for different water velocities ac-

cording to the different experimental conditions of fig. 2.8 with use

of bulk and film temperature as reference for water properties . . . . 27

3.1 Wet cylinder and ambient air properties in experiments conducted by

Nobel [4] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2 Wet cylinder and ambient air properties in experiments conducted by

Nobel [4] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3 Ice sample and air properties at the start of experiment [5] . . . . . 53

3.4 Ice and air properties used in the validation process . . . . . . . . . 55

3.5 Ice sample and air properties at the start of experiment . . . . . . . 57

3.6 Results obtained from the experiment on melting of ice sphere . . . 59

3.7 Intial condition of the considered droplet solidification process . . . . 62

4.1 Water container dimensions in experiments conducted by Shukla et al.

[2] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

vii



List of Figures

1.1 Free floating equiaxed dendrites and columnar dendrites in solidifying

alloy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Flowchart of numerical models used to solve multiphase flow problems 3

1.3 Fully resolved Eulerian grid in non-body fitted Direct Numerical Sim-

ulation (DNS) methods . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Grid in Unresolved Discrete Particle Model (UDPM) . . . . . . . . . 11

1.5 Principle scheme of a moving particle and basic input parameters for

semi-empirical models for heat and mass transport between particle

and fluid. Typical size of a particle is > 100 µm. . . . . . . . . . . . 12

2.1 Principle scheme of experiments for melting of ice particle conducted

by Shukla et al. [2] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Time history of the radius of spherical ice particle as it melts due

to natural convection with ambient water temperature T∞ of 20 oC.

Experimental data correspond to the work [2]. Initial values of Ra

numbers based on the film and bulk temperatures are 3.74 · 107 and

1.09 · 108, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3 Time history of the radius of spherical ice particle as it melts due

to natural convection with ambient water temperature T∞ of 60 oC.

Experimental data correspond to the work [2]. Initial values of Ra

numbers based on the film and bulk temperatures are 6.33 · 108 and

1.73 · 109, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 Time history of the radius of cylindrical ice particle as it melts due

to natural convection with ambient water temperature T∞ of 20 oC.

Experimental data correspond to the work [2]. Initial values of Ra

numbers based on the film and bulk temperatures are 1.20 · 107 and

3.51 · 107, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.5 Principle scheme of experiments for melting of spherical ice particle

conducted by Hao and Tao [3] . . . . . . . . . . . . . . . . . . . . . . 26

viii



2.6 Time history of the diameter of spherical ice particle predicted using

submodel and experiment [3] for u∞ = 0.06 m/s, T op = −16oC, T∞ =

+26oC. Initial values of the dimensionless numbers based on the film

temperature are as follows: Gr = 4.16 · 106, Re = 2468.1, Gr
Re2

= 0.683. 28

2.7 Time history of the melting rate of spherical ice particle predicted

using submodel and experiment [3] for u∞ = 0.01 m/s, T op = −8oC,

T∞ = +16oC. Initial values of the dimensionless numbers based on

the film temperature are as follows: Gr = 9.81 ·105, Re = 325.62 and
Gr
Re2

= 9.25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.8 Time history of the melting rate of spherical ice particle measured

using experiments [3] and calculated using submodel with Tref : a)

bulk temperature and b) film temperature at different water velocities

(all corresponding to mixed convection): T op = −8oC, T∞ = +16oC,
Gr
Re2

range: 0.2574÷ 2.313. . . . . . . . . . . . . . . . . . . . . . . . 29

2.9 Time history of the melting rate of spherical ice particle measured

using experiments [3] (circles) and calculated using submodel (lines)

with Tref as bulk temperature at different water temperatures (all

corresponding to mixed convection): u∞ = 0.06 m/s, T op = −8oC,
Gr
Re2

range: 0.11÷ 0.895 . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1 Schematic of melting of ice sphere in atmospheric air . . . . . . . . . 34

3.2 Evaporation model for a sphere . . . . . . . . . . . . . . . . . . . . . 35

3.3 Scheme of cylindrical particle submodel . . . . . . . . . . . . . . . . 38

3.4 Water layer on a vertical flat surface . . . . . . . . . . . . . . . . . . 42

3.5 Water layer around cylindrical ice particle . . . . . . . . . . . . . . . 43

3.6 Water layer around spherical ice particle . . . . . . . . . . . . . . . . 45

3.7 Principle schematic for CFD-based model . . . . . . . . . . . . . . . 48

3.8 Water layer thickness with different velocities of water, v = 0.1 m/s,

v = 0.05 m/s, v = 0.01 m/s, v = 0.001 m/s, . . . . . . . . . . . . . . 49

3.9 Water layer thickness with different velocities of water, v = 0.1 m/s,

v = 0.05 m/s, v = 0.01 m/s, v = 0.001 m/s, . . . . . . . . . . . . . . 50

3.10 Predicted water thickness for different mass flux ṁ
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Chapter 1

Introduction

1.1 Particle flow with phase change: Applications

There are numerous instances in natural and engineering processes when solid-liquid

two-phase flows are encountered. Flow behavior of solid–liquid two-phase flow sys-

tems depends on the properties of the dispersed solid phase, the continuous liquid

phase that suspends the solids, and the interactions between the two phases. Dis-

persed solid phase can undergo dissolution, phase change or can participate in chem-

ical reaction depending upon the nature of the system. This study specifically deals

with the case when solid phase undergoes phase change. There are many industrial

applications which deal with the phase changing solid-liquid two phase flows such

as metal casting technology, injection moulding of polymers etc. In the context

of casting technology, understanding of solidification processes under the influence

of gravity-driven convection in a liquid phase is absolute necessary for any techno-

logical breakthrough in the design of new materials or in enhancement of material

quality. Fig. 1.2 shows the dendrite formation in a solidifying alloy. Despite the

long history of industrial casting technology, there are still many little-investigated

phenomena which, if better understood, could significantly improve the process of

industrial casting such as:

• Impact of the bulk flow on the phase change dynamics taking into account the

three-dimensionality of solidification front.

• Transport of free-floating dendrites (if exist) in bulk flow

• Interaction between bulk flow turbulence and solidification front

• Impact of bulk flow on the heat and mass transfer between free floating den-

drites and the melt

1



It is difficult to understand these phenomena through the experiments because

of the complexity involved and their microscopic nature. The adequate numerical

modeling of transport and expansion of free-floating equiaxed dendrites in the melt

flow can address this problem and thereby can open the gate to the designing of

high quality materials.

This study focuses on the numerical modeling of particulate flow system with

particles undergoing phase change in the liquid of same material. Thus, the numer-

ical model will solve a two-phase one-component system.

���������������������������������������������������������������������������
���������������������������������������������������������������������������
���������������������������������������������������������������������������
���������������������������������������������������������������������������

columnar dendrites CET − columnar equiaxed
transition

nucleifloating
equiaxed dendrites

flow

convection
Natural

Figure 1.1: Free floating equiaxed dendrites and columnar dendrites in solidifying
alloy

1.2 Modeling concepts and basic challenges

The extraordinary development of computers specially multicore processors along

with the reduction in their price over last two decades have made it possible to

perform sophisticated scientific computations on many important chemical engi-

neering phenomena which are experimentally difficult to study. For e.g., slurry

transport processes, fluidized beds, pneumatic transport processes etc. Moreover,

experiments are often expensive to conduct. In lieu of this, various CFD packages

like ANSYS-FLUENT, Flow-3D, COMSOL, openFOAM etc. and open source codes

have appeared to efficiently solve these processes numerically. Particulate flow with

particles undergoing phase change is one of the important engineering phenomena

which are difficult to analyze experimentally. Specially, the study of morphology

of melting/solidifying particles experimentally can be very expensive. Numerical

modeling of particulate flow with particles undergoing phase change is a multiscale

problem. The phenomena such as solidification sequence of the particles, shrinkage

cavity formation, macrosegregation formations are governed by the mass, momen-
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tum, heat and species transport equations solved in system scale (or macroscopic

scale) whereas modeling of solidification morphology, particle growth (in case of

solidification) or decay (in case of melting) requires the use of microscopic scales.

There has been lot of research efforts in the past to numerically model this phe-

nomena. A lot of CFD numerical models have been developed for particulate flows.

However, particulate flows with particles undergoing solidification or melting (in

other words, phase change) are still not modeled properly. In general, mathematical

models used for the numerical simulation of particulate flow systems can be divided

into two categories: Euler-Euler models and Euler-Lagrangian models as shown in

fig. 1.2.

Lagrange
Euler−

models

Grid cell size,.....
between solid phase and fluid phase

Ideal for high volume fraction of dispersed phase.

... Closure laws required for interactions

between solid particles and fluid phase

.

..

Numerical
Models

models
Euler−Euler

Unresolved

DPM

DNS (Particle 

resolved models)

No closure laws required

High volume fraction of dispersed phase may.
cause divergence

Closure laws required for interactions

Number of particles that can be modeled = 

Numbers of particle that can be modeled ~ 1000

Grid cell size, Grid cell size,

Number of particles that can be modeled ~ 

4x � 2d

p

1

4x � d

p

=10 4x � 3d

p

10

6

� 10

9

Figure 1.2: Flowchart of numerical models used to solve multiphase flow problems

1.2.1 Euler-Euler Models

Euler-Euler (EE) models drop the concept of solid phase consisting of individual

discrete particles. Both the fluid phase and solid phase are considered as interpen-

etrating continuum. Volume-averaged mass, momentum and energy conservation

equations are written for each phase in Eulerian space. Additional source terms in

each conservation equation are responsible for the mass, momentum, energy and

species concentration exchange between the solid phase and fluid phase. These

source terms, often termed as closure laws, are often based on heuristics which is

the primary drawback of this model. These models escape the requirement of equa-
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tions describing the collision between particles which takes up lot of computational

time in Euler-Lagrange models. However, collision of particles with the walls need

to be modeled. Polydisperse systems i.e. systems having different sized particles

are hard to solve using EE models because size distribution requires the solution

of several sets of conservation equations. Due to the low resolution requirement of

grid, these models are computationally least expensive but require lots of effort to

develop the closure laws.

Applied to the casting technology, equiaxed globular solidification has caught

special attention of various researchers because of its easy-to-define morphology. In

equiaxed globular solidification, it is assumed that only free floating equiaxed den-

drites are involved in the solidification i.e. columnar dendrites are ignored. Thus,

dendrites in this case can be simplified as spheres and overall dendrite size can

be expressed with a volume-averaged diameter. This also simplifies and avoid un-

certainties in the equations required to predict the morphological details of the

dendrites.

Wang and Beckermann [7] developed first ever Euler-Euler model for multiscale

modeling of solidification. The model described the equiaxed dendritic solidification

of an alloy taking into account the melt flow, transport of particles as well as the

grain nucleation and growth mechanisms taking place over microscopic scales. The

conservation equations for mass, momentum, species and heat was written for both

the phases and separate exchange terms were included in each of the conservation

equations to describe the mass, momentum, heat and species transport between

the dendrites and fluid at dendrite-fluid interface. These exchange terms in each

conservation equation were divided into two terms; exchanges due to diffusion across

interface and exchanges due to the movement of interface (because of solidification

or melting). A separate equation for conservation of number of dendrites was also

written. The generation of new dendrites in the solidifying fluid was represented

using the ’nucleation rate’ term in the conservation equation of number of dendrites.

Several supplementary relations were written in the model to define various terms

like interfacial area concentration, nucleation rate, grain growth, particle density

etc. Due to the lack of realistic supplementary relations and exchange terms, this

model failed to agree well with the observed experimental phenomena. However,

this was one promising starting model for the multiscale modeling of particulate flow

with phase change. Ludwig and Wu [8] modified the above mentioned model [7].

Similar to previous model, they also provided the model for the equiaxed dendritic

solidification of an two-component alloy. More emphasis was given on microscopic

modeling, i.e., the definition of different exchange terms for the macroconservation
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equations. Some of the supplementary relations like definition of nucleation rate

were modified to make the model more realistic. At the end of the paper, many

important physical phenomena were explained including macrosegregation, grain

settlement. However, there was no validation of the results.

Later, Wu, Ludwig, Bührig-Polaczek, Fehlbier, and Sahm [9] used above model

and presented different case studies of solidification in an aluminum casting to study

the influence of melt convection and grain movement on the process. They played

with the some model parameters such as grain movement, slip/non-slip boundary

conditions etc. to create three different cases of movement of grains inside the

casting mold. In one case, they did not consider the movement of grains and in two

other cases, the grains were allowed to move. It was shown that grain movement

was the prime cause of macrosegregation inside the mold. Movement of grains

changes the local density of grains at different locations. Once the grain density

becomes more than the packing limit of grains (as defined in the numerical model),

they stop moving and oncoming grains adhere and settle there. It was shown that

the inclusion of grain movement changes the solidification sequence and isotherms

were also changed. Without any grain movement, solidification front and isotherms

proceed equally from the bottom and side walls whereas with grain movement,

solidification front and isotherms proceed much faster from the bottom regions as

compared to the side regions. One of the drawbacks as said by the authors was

the model’s incapability to consider free surface boundary condition. So, constant

pressure boundary condition was implemented at the casting top. This allows hot

melt to continuously enter into the casting mold to compensate for the volume

decrease caused by solidification shrinkage (ρl > ρs). This basically meant that

casting could never be solidified completely.

Ludwig and Wu [10] modeled the columnar to equiaxed transition (CET) using

the three phase Eulerian approach. Three phases were parent melt, the solidifying

columnar dendrites and the solidifying equiaxed dendrites. Spherical morphology

for equiaxed and cylindrical morphology for columnar dendrites is assumed. Con-

servation equations were solved for all the three phases. Momentum conservation

equation for columnar dendrite phase was not solved because it was considered to

be stationary. Additional transport equation for the number density of equiaxed

grains was also written taking into account the grain nucleation term. Several sup-

plementary relations were defined for diffusion controlled growth for both columnar

and equiaxed phases, drag forces between the phases, species partitioning at the

solid-liquid interface etc.. As said by the authors, most challenging point in this

model was to define the closure laws for the competitive growth of both the solid
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phases and mechanical interaction between the two phases. The stationary colum-

nar dendrites are considered to generate at the mold wall and grows preferentially

along the heat flow direction. CET occurs at the end of solidification when colum-

nar dendrite tips are blocked by equiaxed grains. A binary steel ingot casting was

simulated to demonstrate the model potentials. Motion of the columnar tip front,

occurrence of CET, etc. were studied and their effect on the final macroscopic phase

was studied. The results of the model were claimed to reproduce the widely accepted

explanations of experimental findings.

Wu and Ludwig [11] presented a summary of previous model for equiaxed so-

lidification with slight modifications. In second part of this study [12], the model

provided was validated with an existing experimental result in literature. Discrepan-

cies from the experiment were very large and few model parameters and assumptions

like grain morphological parameters and determination of diffusion lengths in dif-

ferent phase regions were said to be the most critical factors influencing the model

results.

As seen, despite considerable progress in the multiscale modeling of solidification

using Euler-Euler models, existing models are very often not capable of reproducing

the experimentally observed phenomena. The main limitation of EE models is the

requirement of closure laws to describe the interactions between the solid and fluid

phase.

1.2.2 Euler-Lagrange Models

The Euler-Lagrange models can be used as an alternative approach for adequately

forecasting multiscale solidification/melting process with free floating dendrites. In

this approach, solid particles are considered as individual discrete distinguishable

particles. Motion of solid particles is treated individually using Newton’s law of

motion. Fluid flow is solved with a fixed Eulerian grid with Navier-Stokes equation.

DNS methods

Euler-Lagrange models can be divided into two categories depending upon the

method used to couple the two phases. First category is Resolved discrete particle

model (RDPM) or Direct Numerical Simulation (DNS) in which all the particles

are fully resolved using appropriate fine grid. Grid size should be at least one order

of magnitude smaller than the particle size. All continuum time and length scales

are fully resolved in this class of numerical modeling. Thus, these models have the

highest requirement of physical resolution due to which they need least modeling
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effort. However, high physical resolution entails high computational cost. Due to

computationally expensive in nature, these models can only predict solidification

phenomena for limited number of particles using even one of the fastest computers

available today.

particle

CV

Figure 1.3: Fully resolved Eulerian grid in non-body fitted Direct Numerical Simu-
lation (DNS) methods

Depending upon the type of grid used, DNS methods can be classified into two

families i.e. Body-fitted methods and non-body fitted methods. In the body fit-

ted methods, grid is fitted according to the flow boundaries. As the boundaries

move, remeshing needs to be done so that new grid also fits the flow boundaries.

In the non-body fitted methods, single stationary grid is used for all the phases as

shown in fig. 1.4. Geometry being studied is ’immersed’ in the discretized volume.

A virtual boundary is created in place of the actual flow boundary using differ-

ent techniques namely stair-step technique, SLIC (Simple line interface calculation)

and PLIC (Piecewise linear interface calculation). This virtual boundary is many

times also called as Immersed Boundary. Most of the fluid related applications deal

with time dependent geometries. Body fitted methods are computationally very

expensive in these cases because new grid needs to be generated at each time step.

Also flow field from previous mesh needs to be mapped to the new mesh at each

time step which makes overall process of problem solving very slow. In the non-

body fitted methods, a single mesh occupying the entire calculation domain is built.

In this case mesh doesn’t conform to the flow boundaries. Arbitrary Lagrangian-

Eulerian (ALE) finite element technique is most widely used method to solve CFD

problem using body fitted grid which is explained below. Depending upon the cou-
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pling of solid and fluid equations, non-body fitted DNS methods can be further

categorized into following methods: Direct forcing IBM (Direct forcing Immersed

Body method), DLM-FD (Distributed Lagrange Multiplier/Fictious Domain), CGM

(Cartesian Grid Method), Lattice Boltzmann method (LBM). To track the interface

due to phase change, use of Stefan boundary condition [13] is the most popular.

Hu et al. [14] modeled a two-dimensional unsteady solid-liquid two-phase flow

using the body fitted DNS approach. Specifically, he modeled sedimenting flow of

upto 4 cylinders in a channel. Particle motion was solved separately with New-

ton’s equation. Motion of particles and fluid flow was coupled via hydrodynamic

forces and moment and boundary conditions on the particle surfaces. Simplest fully

explicit scheme for Newton’s equation was found to be unstable. To correct this in-

stability, they proposed explicit-implicit scheme in which at each time step, positions

of particles were updated explicitly, computational domain is remeshed, solution at

previous time is mapped onto new mesh and finally nonlinear NS equation and im-

plicit discretized Newton’s equation for particle velocities are solved on new mesh

iteratively. Three major challenges in this numerical technique was first, genera-

tion of new mesh at each time step according to the position of particles, second,

mapping of flow field at previous time step to the new mesh and third, numerical

scheme that discretizes the coupled NS equation and particle equation has to be

stable and efficient. The numerical model could be improved in many ways, like a

more accurate scheme (second order error accuracy of time derivative terms).

Meanwhile, Hesla [15] combined fluid and particle motion equations into a single

weak equation called the combined equation of motion, or total momentum equa-

tion. It eliminates the hydrodynamic forces and torque terms from the numerical

scheme. Modifying the method provided by Hu et al. [14], Hu [16] used the com-

bined formulation provided by Hesla [15] The new numerical model developed was

named ”Arbitrary Lagrangian-Eulerian (ALE) moving mesh technique”.

The first popular DNS model for phase changing particulate flow system was

provided by Gan et al. [17]. Gan et al. [17] modeled the sedimentation of melting

solid particles in a hot Newtonian fluid of Prandtl number = 0.7 using Arbitrary

Lagrangian-Eulerian (ALE) scheme. Both the phases were made of the same ma-

terial. Motion of particles and fluid flow was coupled via hydrodynamic force and

moment and boundary conditions on the particle surfaces. It was shown that sed-

imentation of melting particles depends strongly on the upward flow of the warm

bulk fluid and downward flow of cold melt.

Yu et al. [18] used the non-body fitted DNS method to study the heat transfer

in particulate flows. Distributed Lagrange Multiplier/Fictious Domain (DLM/FD)
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method was used to track the interface. The fluid-flow equations were solved with

the finite-difference projection method on a half-staggered grid. It is shown that

DLM/FD method is reliable and efficient for the heat transfer problem in complex

geometries and also usable for particulate flows where heat conduction inside the

moving particles and thermal convection in fluids are coupled.

Feng and Michaelides [19] modeled momentum and heat interactions in partic-

ulate flows using a non-body fitted DNS model and Immersed Boundary Method

(IBM) to track the interface. Modified momentum and energy equations was solved

for the entire flow regime with the use of regular staggered Eulerian grid. In the re-

gion occupied by particles, second particle-based moving Lagrangian grid was used

to track particles. No-slip boundary condition on the particle surface and rigid body

motion of particles are enforced only in Lagrangian grid. A force density function

and a energy density function are introduced to represent the momentum interaction

and thermal interaction between particle and fluid.

Dan and Wachs [20] used a 2D non-body fitted DNS model to solve the heat

transfer in non-isothermal particulate flow. Discrete Element Method (DEM) is

used to compute the motion of particles. Heat transfer equation was solved in

each particle using Finite Element Method (FEM) to calculate the temperature

distribution inside the particles. DLM/FD method was used for coupling between

fluid and particles unknowns. For each particle, a single FEM grid was generated

which is rotated and translated at each time step to match the physical configuration

of each particle.

Dierich et al. [21] carried out the numerical simulations for particulate flow with

phase change. Two different cases of phase change process were modeled. In first

case, single cylindrical ice particle held in a free stream of water was undergoing

phase change due to convection. In second case, multiple cylindrical ice particles

rising up in the water due to buoyancy were melting because of forced convection.

2D non-body fitted DNS was performed in both the cases. A fixed Euler grid was

used to model the entire fluid flow. Particles motion was modeled using Lagrangian

approach. Hydrodynamic forces were calculated using surface integrals without

use of supplementary correlations. Interface velocity was modeled using Stefan

boundary condition [13] for each particle. Optimal Nu-based zero dimensional model

was provided at the end to predict the numerical results obtained by simulations.

Unresolved Discrete Particle Model (UDPM)

Since complete kinematics around each solid body is fully resolved, DNS models

don’t require any closure laws to relate the momentum, mass, heat and species
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transport between solid particles and fluid. However, these models are computa-

tionally very expensive which limits the number of particles which these models

can solve. This problem can be overcome by the use of second category of Euler-

Lagrange models known as Unresolved Discrete Particle Model (UDPM).

Applied to the industrial multiphase flow, it is impractical to fully resolve all the

scales and one must rely on the equations describing average flow or large scale flows.

In UDPM models, the Eulerian grid is at least an order of magnitude larger than the

particle size. Particles are tracked using separate moving Lagrangian grid and fluid

equations are solved using a fixed Eulerian grid. The particle-particle interaction in

these models is modeled in two ways: hard sphere and soft sphere model. Soft sphere

model can handle large number of particles thereby becoming the popular choice.

This category of Euler-Lagrange models is also called coupled DEM-CFD models

because particle equations are solved using Discrete Element Models (DEMs) and

fluid equations are solved using typical conservations equations for momentum, heat

and mass in fixed Eulerian grid.

One of the limitations of this class of models is the requirement of so-called

subgrid model equations or closure laws which describe the transport of momen-

tum, heat, mass and species between the particles and fluid. For e.g., Gas-solid

drag relations for momentum transfer, Stefan conditions between phase changing

particles and fluid, etc.. Compared to DNS models, these models are computa-

tionally less expensive but requires larger modeling effort (in order to develop the

constitutive relations). Most of the computational time in these models is spent

in detecting the contact of particles. There are several different methods in liter-

ature to efficiently detect the contact of particles namely Direct simulation Monte

Carlo (DSMC) method, Multiphase particle in-cell (MPPIC) method [22] . MPPIC

uses the part of both, Euler-Euler models and Euler-Lagrange models, mapping the

particle properties from Lagrangian coordinates to Eulerian grid.

Euler-Euler models, as described earlier, treat solid particles as a continuum like

liquids and gases. So, these models don’t need to detect the collision between the

particles. This makes these models computationally cheaper than UDPM models

but at the same time, required modeling effort increases in Euler-Euler models.

Many complex constitutive equations need to be developed in EE models in order

to close the system of equations. These constitutive relations often lack the physical

background due to which these models often fail to describe the experimental results.

DNS models which essentially represent the exact solution of the numerical sys-

tem being modeled, can be used to define these subgrid model equations that can be

further used to represent the interactions between particle and fluid in a coarse grid
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Euler grid

Lagrangian particles

Figure 1.4: Grid in Unresolved Discrete Particle Model (UDPM)

formulation like UDPM. This work is devoted to the development and validation

of the subgrid models or closure laws required in UDPM models describing heat

transfer between the bulk flow and moving particles undergoing phase change under

the influence of forced and free convection. These subgrid models depend upon the

basic dimensionless numbers like Reynolds number, Stefan number, Prandtl num-

ber etc. as shown in fig. 1.5. These models serve as a coupling between equations

describing particle motion in Lagrangian space and equations defining melt flow

in Eulerian space. In order to obtain these subgrid models, DNS models can be

used to understand the physics and then accurate subgrid models can be developed.

However, in spite of numerous works devoted to the DNS modeling of isothermal

particulate flows, there are few works concentrating on modeling phase change pro-

cesses in solid-liquid two-phase flows. Gan et al. [17] and Dierich et al. [21] used

DNS modeling to describe the particulate flow with phase change but number of

particles were limited. Euler-Lagrange models have a great capability to model the

convection-driven solidification of a multicomponent alloy due to their more natu-

ral multi-scale character and flexibility regarding grid resolution in comparison to

Euler-Euler based approached. Euler-Euler models have to use coarse grid (of the

order of 1 meter) so that statistically reliable volume average of each variable can be

written in each grid cell. Euler-Euler models are suitable for highly dense systems
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i.e. systems having high volume fraction of dispersed solid particles.

particle

Tp

T 8

Re

Pr
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Ste

Figure 1.5: Principle scheme of a moving particle and basic input parameters for
semi-empirical models for heat and mass transport between particle and fluid. Typ-
ical size of a particle is > 100 µm.

1.3 Objectives

The long term objectives of this study are to contribute to the significant improve-

ment of computational software used for multiphase process optimization; to de-

velop and validate a new Euler-Lagrangian model describing complex interactions

between equiaxed dendrites and the melt during solidification; to obtain better un-

derstanding of the behavior of phase-change phenomena in particulate flows. The

short term objectives are to develop subgrid models describing the interfacial heat

transfer between moving particles undergoing phase change and the bulk flow.
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Chapter 2

Semi empirical model for

particles undergoing phase

change: Two phase model1

This chapter is devoted to the development and validation of a subgrid model (also

known as submodels and semi-empirical models) describing heat transfer between

the bulk flow and moving particles undergoing phase change under the influence of

forced and free convection. Such kind of submodels plays the role of “scale bridges”

between microscale (e.g., interfacial heat transfer) and macroscale (e.g., bulk flow)

phenomena. Applied to multiscale modeling of particulate flows with phase change

phenomena, our model serves as a coupling between equations describing particle

movement in Lagrangian space and the mass and heat conservation equation defining

melt flow in Eulerian space. The input parameters in our model are the particulate

Reynolds number (Re), the Grashof number (Gr), the Stefan number (Ste) and

the Prandtl number (Pr). These models are called subgrid models because they are

applied to the particles having much smaller size than the cell size of grid. The model

is validated against experimental data published recently in the literature applied to

the melting of ice spheres under different flow conditions. Good agreement between

our model predictions and published experimental data (A. Shukla et al. Metal.

Mater. Trans. B, 42B, 2011 and Y. Hao & Y. Tao. J. Heat Transfer, 124, 2002.)

was observed.

1based on a manuscript “A Submodel for Spherical Particles Undergoing Phase Change Under
the Influence of Convection” accepted for publication in Can. J. Chem. Engg.
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2.1 Introduction

During the last thirty years, the modeling of solidification of metals and alloys has

made significant progress using novel numerical methods and algorithms, finally be-

coming a quantitative engineering science [23]. One of the crucial parts in so-called

multiphase models describing phase change phenomena is a scale bridge between

heat, mass and fluid flow in the bulk phase and interfacial heat and mass transfer.

One of the widely used multiphase approaches corresponds to the so-called Euler-

Euler models: see the pioneering works by Wang & Beckermann [24, 25, 26] and

later by Wu & Ludwig [27, 28]. The Euler-Euler models use volume-averaged mass,

momentum, energy and species conservation equations written for each phase in Eu-

lerian space. Additional source terms in each conservation equation are responsible

for the mass, momentum, energy and species concentration exchange between the

phases, which are often based on heuristic models. Despite considerable progress

in the multiscale modeling of solidification using Euler-Euler models, (e.g., see the

works [27, 28]), existing models are very often not capable of predicting solidifi-

cation phenomena relating to the moving equiaxed crystals (particles). In light of

this, the Euler-Lagrange-based models can be used as an alternative approach for

adequately forecasting multiscale solidification/melting processes with free-floating

dendrites. In this approach, the motion of the solid particles is treated individu-

ally using Newton’s law of motion. To model heat and mass transfer between the

particles and fluid, subgrid equations (submodels) are used if the size of a particle

is less than the cell of a numerical grid used for calculation of conservation equa-

tion in Eulerian space. To overcome the problem of subgrid models, the so-called

resolved discrete particle model (RDPM) or particle-resolved direct numerical mod-

eling (PR-DNS) can be used [29, 30] when the cell of a numerical grid is less than

the particle size. However, applied to particulate flows where phase change phe-

nomena plays significant effect, PR-DNSs are still computationally expensive tools

used to understand the physics and at the same time to develop more accurate sub-

grid models [31, 32]. In this view, experimental studies on particulate flows with

complex “interfacial-physics” are non-avoidable instruments of obtaining a basic un-

derstanding of particles melting under different flow conditions, (e.g., see the works

[33, 34, 35, 3, 36, 2]).

Nevertheless, recent significant progress in modeling of dense particulate flows,

(e.g., fluidized-bed systems) has been achieved using the Euler-Lagrange-based mod-

els coupled with discrete element models (DEM) originally introduced by Cundall

and Strack [37], see reviews [38, 39]. However, applied to the modeling of phase
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change phenomena (e.g., dendritic solidification), one of the limitations of this class

of models is the lack of subgrid equations (submodels) to predict interfacial heat

and mass transfer between the particles and fluid for different flow conditions (e.g.,

see the review [40]). To overcome this gap, the main objectives of this work are to

develop subgrid models describing the interfacial heat and mass transfer between

a moving particle and the bulk flow undergoing phase change. For the validation

of our model, two cases are considered: The first case corresponds to the melting

of ice particles under the influence of natural convection only, and the second case

corresponds to the melting of ice particles under the influence of mixed conditions

comprised of forced flow and natural convection. Finally, we validate the model

against experimental data published in the literature [3, 2].

2.2 Phase change of single particle in the fluid of same

material

In this section, we develop the required submodel equations to describe the heat

transfer between bulk flow and moving particles undergoing phase change under the

influence of convection. To illustrate the derivation of our model, we consider two

different cases: spherical and cylindrical ice particle moving in a bulk flow of water.

Water temperature is above the melting point of ice thereby causing the melting

of ice particle. In this melting process, driven by the temperature difference, heat

energy flows from bulk water to inside the ice particle via these two heat transfer

processes:

• Convective heat transfer between particle surface and bulk water.

• Conductive heat transfer inside the ice particle.

As the ice particle gets heated, it begins to melt as soon as its surface temperature

reaches the melting point. The following subsections will provide the submodel

equations to predict the size of spherical and cylindrical ice particle in this melting

process.

2.2.1 Model Formulation for spherical particle

The required equation to find the radius of spherical particle in the considered

melting process can be obtained by applying well-known Stefan boundary condition

at ice-water interface [13]. Consider the spherical ice particle as shown in fig. 2.1.
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The application of Stefan boundary condition at ice-water yields following equation:

ρphsfu
∗ = q

′′
l − q

′′
p

=

(
kp
∂Tp
∂x

)
|solid −

(
kl
∂Tl
∂x

)
|liquid

(2.1)

where u∗ is local interface velocity, q
′′
l and q

′′
p are heat fluxes on liquid side and

particle side respectively. Applied to a spherical particle undergoing the phase

change, this equation can be integrated over the particle surface and re-written as

follows:

ρphsf
4

3
π
dr3
p

dt
= ql − qp (2.2)

where rp represents the volume average radius of the particle. The heat rates in the

liquid and solid sides can be formulated as follows:

ql = 4πr2
ph(Tm − T∞) (2.3)

qp =
4πkp(Tp − Tm)rtrp

rp − rt
(2.4)

where Tp is the average temperature of the ice sphere corresponding to the tem-

perature at the distance rt (= 0.51/3rp) from the center [41]. To calculate particle

temperature we use following heat balance equation:

ρpvpcp
dTp
dt

=
4πkp(Tm − Tp)rtrp

rp − rt
(2.5)

Inserting the convective heat transfer coefficient h =
Nudpk∞

dp
into the eq. 2.3 and

substituting this equation into eq. 2.2 reveals final equation for the evolution of the

particle radius:

ρphsf
drp
dt

=
Nudpk∞

2rp
(Tm − T∞) +

kp(Tm − Tp)rt
rp(rp − rt)

(2.6)

Finally, Eq. 2.5 and Eq. 2.6 can be used to predict solidification/melting of a

moving spherical particle. Correlation for Nusselt number in eq. 2.6 depends upon

the nature of convective heat transfer which is governed by the flow regime around

the ice sphere. It should be noted that if initial particle temperature Tp is equal to
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the melting temperature Tm, Eq. 2.6 reduces to:

ρphsf
drp
dt

=
Nudpk∞

2rp
(Tm − T∞)

This equation can be easily transformed into the following form:

dr2
p

dt
=
Nudpk∞

ρphsf
(Tm − T∞) = −Nudp · Ph · αl. (2.7)

where αl = k∞
ρlcp,l

is the thermal diffusivity of the liquid phase and Ph is the Phase

change number calculated as follows:

Ph =
ρl
ρp
Stel

where Stel is the Stefan number for the liquid phase given by:

Ste =
cp,l(Tm − T∞)

hsf

The Eq. 2.7 is termed as ‘one temperature model’ since temperature of ice particle

is assumed to be equal to 0o C and the only temperature value required to solve this

equation is ambient fluid temperature, T∞. Eqs. 2.5 and 2.6 collectively are termed

as ‘Two temperature model’ since two temperature values, Tp and T∞, needs to be

known to solve these two equations simultaneously.

Depending upon the flow of water around the ice particle, convective heat trans-

fer between particle surface and water can be forced, free or mixed [1]. The term
Grdp
Re2dp

defines the type of convective heat transfer. In particular, according to clas-

sical heat transfer theory [1], three regimes can be distinguished according to the

following values of
Grdp
Re2dp

:

• If
Grdp
Re2dp

>> 1, free convection dominated flow regime.

• If
Grdp
Re2dp

< 10−2, forced convection dominated flow regime.

• Otherwise, mixed convection dominated flow regime

Next, we introduce classical Nu-relations for the heat transfer between a sphere

and fluid flow under under different flow regimes:

Forced Convection: Here, the Nusselt number correlation known as Ranz-Marshall
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relation [42] can be used as follows:

Nudp = 2 + 0.6Pr1/3
∞ Re

1/2
dp

(2.8)

where Redp , Reynolds number is give by:

Redp =
ρ∞|up − u∞|dp

µ∞
(2.9)

Free Convection: The following correlation provided by Churchill [43] can be

used and is valid when Pr∞ ≥ 0.7, Radp ≤ 1011

Nudp = 2 +
0.59Ra0.25

dp

(1 + 0.469
Pr∞

9
16 )

4/9
(2.10)

where Radp , Rayleigh number is given by:

Radp =
gβ∞(T∞ − Tm)d3

p

α∞ν∞
(2.11)

Mixed Convection: Here, Nusselt number is given by [1]:

Nunmixed = Nunforced ±Nunfree, n ≈ 3 (2.12)

where “+” or “-” depends on the direction of forced flow relative to the natu-

ral convection driven flow. The plus sign is used for assisting (buoyancy-induced

and forced motions have the same direction) and transverse (buoyancy-induced and

forced motions have perpendicular directions) flows whereas the minus sign is used

for opposing flows [1]. It should be noted that according to the book [1] ‘...the

best correlation of data is often obtained for n = 3, although values of 7/2 and 4

may be better suited for transverse flows involving horizontal plates and cylinders

(or spheres), respectively’.

Now our submodel for spherical particle is closed and can be validated against

the experimental results published in literature.

2.2.2 Model formulation for cylindrical particle

Similar approach can be followed to derive the equation for prediction of size of

cylindrical ice particle with axis in the vertical direction i.e. along the gravity.

Writing Stefan Boundary condition [13] eq. 2.1 at ice-water interface and then
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taking surface integral, we get

ρphsf
dvp
dt

= ql − qp

Above equation can be split into two different equations to predict the height

and radius of cylinder by using the appropriate forms of ql and qp. The equation to

calculate height, lp can be written as

ρphsfπr
2
p

dlp
dt

= htπr
2
p(Tm − T∞) + hbπr

2
p(Tm − T∞)−

2kpπr
2
p(Tp − Tm)

lp − lt

where lp is the length of particle, ht and hb are the heat transfer coefficients on the

top and bottom surface of cylinder respectively, Tp is the average temperature of

the particle. Similarly, the equation to calculate the radius, rp can be written as

ρphsfπlp
dr2
p

dt
= hs2πlprp(Tm − T∞)− 2πkplp(Tp − Tm)

ln(rp/rt)

where hs is the heat transfer coefficient on the side curved surface of cylinder.

The average temperature Tp exists at distance rt and lt from the center. Similar to

the case of spherical particle, rt = 0.51/3rp and lt = 0.51/3lp [41]. The previous two

equations can be re-written as follows

ρphsf
dlp
dt

= (ht + hb)(Tm − T∞) +
2kp(Tm − Tp)

lp − lt
(2.13)

ρphsf
dr2
p

dt
= 2hsrp(Tm − T∞) +

2kp(Tm − Tp)
ln(rp/rt)

(2.14)

The average particle temperature, Tp can be calculated using following heat balance

equation on particle:

ρpvpcp
dTp
dt

=
2kpπr

2
p(Tm − Tp)
lp − lt

+
2πkplp(Tm − Tp)

ln(rp/rt)
(2.15)

where left hand side term represents the rate at which heat energy is stored in

particle and right hand side represents the rate at which the heat energy is entering

the particle at solid-liquid interface.

For cylindrical ice particle, three different Nusselt number correlations have to

be used; each for three different surfaces. For instance, following correlations can

be used for the case of free convection:

For side surface: Correlation for ”vertical flat plate” can be used given that
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the thermal boundary layer thickness is less than the diameter of cylinder. This

condition translates to [1]:
dp
lp
≥ 35

Gr
3/4
lp

(2.16)

Nulp = 0.68 +
0.67Ra

1/4
lp[

1 +
(

0.492
Pr

)9/16
]4/9

(2.17a)

For top surface: Nudp/4 = 0.27Ra
1/4
dp/4

(2.17b)

For bottom surface: Nudp/4 = 0.15Ra
1/3
dp/4

(2.17c)

The submodel for cylindrical particle is closed now and can be validated against

experimental results. Collectively, eqs. 2.13, 2.14, 2.15 coupled with appropriate

Nusselt number correlations constitute the submodel.

2.3 Model validation

The submodel equations are validated against different experimental data published

in the literature. The submodel for ice sphere is validated for the case of natural

convection, mixed convection and forced convection flow regimes where the sub-

model for ice cylinder is validated for natural convection flow regime. The physical

properties of water at different temperatures used in the validation process are sum-

marized in Table 2.1. Latent heat of fusion of ice was considered to be ≈334 kJ/kg

[1].

2.3.1 Free convection

Shukla et al. [2] carried out series of experiments in which spherical and cylindrical

ice particle was submerged and held in a particular position inside a cylindrical

vessel. The cylindrical vessel wad made of some transparent material and was filled

with water. Argon gas was introduced from the bottom of vessel through small

openings. The original idea of the experiments was to study the impact of the

resulting bubble flow on the melting dynamics of ice-made spheres and cylinders

under different ambient water temperatures. We will consider only those results in

which there was no introduction of argon gas into the water, thereby resulting in

quiescent water and making this a case of free convection melting of the ice particle.

Using a high-speed camera and planar laser-induced fluorescence technique, the
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Table 2.1: Thermophysical properties [1] of water and ice at different temperatures
used during validation of the model.

T ρ c k Pr β µ
(K) (kg/m3) (J/kg.K) (W/m.K) (10−6K−1) (10−6N.s/m2)

Water

281.15 1000.00 4195.93 0.58384 9.9265 61.694 1376.69
283.15 1000.00 4192.33 0.58704 9.3465 88.917 1297.89
284.15 1000.00 4190.53 0.58864 9.0565 102.5298 1258.49

286.15 999.77 4187.85 0.59184 8.5225 127.877 1191.65
289.15 999.17 4184.85 0.59664 7.7725 163.817 1104.65
293.15 998.37 4182.11 0.60340 6.9678 207.705 1003.77
294.15 998.17 4181.51 0.60464 6.7798 218.405 979.57
299.15 997.18 4179.34 0.61181 5.9643 267.838 872.68
303.15 995.76 4178.37 0.61741 5.4331 304.135 800.82
333.15 983.03 4185.26 0.65378 2.9799 523.845 466.32

Ice

273.15 920 2040 1.88 – – –

thickness of the ice particle was measured in all of the experiments. Principle scheme

of the experiments is shown in Fig.2.1.
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Figure 2.1: Principle scheme of experiments for melting of ice particle conducted by
Shukla et al. [2]

Table 2.2 shows the various conditions in which experiments were carried out.

Axial length of cylinder in all the cases was 0.05 m. Rayleigh number in the table
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indicates whether the flow in thermal boundary layer is laminar or turbulent. Water

height (H) in the vessel and its diameter (D) were 0.5 m and 0.445 m, respectively.

It should be noted that authors did not provide the exact temperature of ice spheres

used in experiments. Instead different values of the ice’s initial temperature were

used in our simulations.

Table 2.2: Ice sample and water properties in different experiments as conducted by
Shukla et al. [2]

Ice shape Diameter, dp (m) Water temp., T∞ (oC) Rayleigh number

Sphere 0.073 20 3.74 · 107

Sphere 0.075 60 6.33 · 108

Cylinder 0.080 20 1.20 · 107

Fig. 2.2 depicts the time history of ice sphere’s radius predicted by solving

Eqs. 2.5, 2.6 and 2.10 using an Euler explicit-based method. A time step of 0.01

seconds was used in calculations. Lower values of ∆t produced similar results. Due

to the fact that our submodel is 0D-model, which does not require any spatial

coordinates, a grid study is not necessary. Since no information was given regarding

the temperature of the ice particle in the experiments [2], we solved the submodel by

assuming different initial values of the particle’s temperature T op . The ambient T∞

was 20 oC. Before we analyze the model performances, it should be emphasized that

many physical properties of water involved in the formulation of the submodel (e.g.,

thermal expansion coefficient β, molecular viscosity µ∞ and the Prandtl number Pr)

are strong functions of the temperature. Due to natural convection, the temperature

in the boundary layer around the ice particle varies from melting temperature,

273 K, to bulk temperature, 293 K. To maintain the simplicity of the submodel,

a single constant temperature value of the boundary layer should be used as a

reference temperature (Tref ) for water properties. The most obvious choice for

Tref is an average of bulk and melting temperature (referred as film temperature).

Alternatively, we also considered bulk temperature T∞ as the reference temperature

to compare the results against experimental data [2]. Initial values of Ra numbers

based on the film and bulk temperatures are 3.73 · 107 and 1.09 · 108, respectively.

An analysis of fig. 2.2 shows a significant impact of Tref on the time history of

the ice-sphere radius. In particular, the use of the film temperature as a reference

gives better agreement with experimental measurements in comparison to the bulk

temperature case. From the figure, it can be seen that the impact of the initial ice

sphere temperature T op value (-10 0C, -5 0C, 0 0C) is insignificant in comparison to

the influence of Tref value.
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To illustrate the model performances for T∞ = 60 oC corresponding to Rafilm =

6.33 · 108, fig. 2.3 plots the time history of rp calculated using the submodel with

transport properties referring to the film temperature. The comparison with ex-

perimental data reveals good agreement at the beginning of melting and increasing

deviation after 40 s. We explain this deviation by the significant impact of turbu-

lent flow caused by the natural convection on the melting regime. In particular, the

shape of the particle does not remain spherical due to turbulent jets in the bottom

part of the particle, (e.g., see experimental work [34]). This turbulent flow causes

faster melting of the sphere in the bottom region in comparison to the top region

of sphere. Since horizontal maximum dimension of the ice particle was measured

as the radius of the particle in the experiments, submodel results in this case are

expected not to match with the experimental results. In the submodel, the sphere-

equivalent radius of the particle is calculated, which would decrease at a faster rate

compared to the experimental radius, which can also be seen in the results plotted

in fig. 2.3. It should be noted that the use of different Nu-relations for a sphere did

not produce better agreement with experiments than results predicted by the use

of eq. 2.10.
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Figure 2.2: Time history of the radius of spherical ice particle as it melts due to
natural convection with ambient water temperature T∞ of 20 oC. Experimental data
correspond to the work [2]. Initial values of Ra numbers based on the film and bulk
temperatures are 3.74 · 107 and 1.09 · 108, respectively.

23



0 25 50 75 100
t, s

0.0275

0.03

0.0325

0.035

0.0375

r p
, 

m

Experiment

T
p

o
= -10

o
 C, film properties

T
p

o
= -5

o
 C, film properties

T
p

o
= 0

o
 C, film properties

Figure 2.3: Time history of the radius of spherical ice particle as it melts due to
natural convection with ambient water temperature T∞ of 60 oC. Experimental data
correspond to the work [2]. Initial values of Ra numbers based on the film and bulk
temperatures are 6.33 · 108 and 1.73 · 109, respectively.

Fig. 2.4 depicts the submodel result for cylindrical particle. The results were

obtained by solving eqs. 2.13, 2.14, 2.15 and 2.17 using an Euler explicit-based

method with time step of 0.01 seconds. Lower values of time steps produced the

similar results. Since, no information about the initial ice temperature was given in

the experiments [2], ice temperature was assumed to be -10oC. It should be noted

that the curves in fig. 2.4 starts from time = 77 seconds. Experimental results had

an unexpected ’increase’ in the cylinder radius at this time. This might happen due

to some error while conducting experiments. As can be seen from figure, similar to

the spherical particle, use of film temperature as reference gives better agreement

with experimental results.

2.3.2 Mixed convection

To validate the model for a case of forced and mixed convection, we used a series

of experiments carried out by Hao and Tao [3] to study the convective melting

of ice sphere placed in horizontally flowing water. The principle scheme of the

experiment is shown in Fig. 2.5. In particular, in the experimental setup, the water

was circulated at the desired flow rate and temperature past the ice sphere through a
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Figure 2.4: Time history of the radius of cylindrical ice particle as it melts due
to natural convection with ambient water temperature T∞ of 20 oC. Experimental
data correspond to the work [2]. Initial values of Ra numbers based on the film and
bulk temperatures are 1.20 · 107 and 3.51 · 107, respectively.

horizontal open channel made of Plexiglas with dimensions of 500 x 152 x 216 mm.

The sphere was fixed on a movable base through a plastic straw and was placed

into the water flow in the channel. Water level was controlled in channel using an

overflow plate placed at a downstream location. The temperature of the water in

the channel was measured at various locations using thermocouples. The central

temperature of the ice sphere was also measured by placing thermocouples inside

it. A digital camcorder was used to record the images of the sphere as it melted.

Each test was stopped when ice broke away from the base and drifted downstream

with the water flow: for details, we refer to the original work [3]. Table 2.3 lists

the various input parameters used in experiments [3] which we used to validate our

model. In this validation test, we used the term Gr
Re2

, which characterizes the flow

regime (forced, mixed or free convection) around the ice sphere (see section 2.2.1).

Since experiments were carried out at wide span of temperatures and velocities,

the term Gr
Re2

took different values, which resulted in mixed convection and free

convection in different cases. Here again, we used film and bulk temperature as
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reference for calculation of water properties as described in section 2.3.1.
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Figure 2.5: Principle scheme of experiments for melting of spherical ice particle
conducted by Hao and Tao [3]

Table 2.3: Ice sample and water properties in different experiments as conducted by
Hao and Tao [3]

Water temperature 11 C - 30 C
Water velocity 0.01 m/s - 0.06 m/s
Ice sphere temperature -8 C, -16 C
Ice sphere diameter 36 mm

Before we proceed with a comprehensive validation of the model performances in

terms of the forced and mixed convection, we illustrate the impact of the reference

temperature choice (film or bulk) on the melting dynamics of the sphere. Fig. 2.6

depicts the time history of the ice sphere’s diameter predicted using the submodel

(lines) and experiments [3] (red circles) for the water temperature of 26 oC, water

velocity of 0.06 m/s and ice temperature of -16 oC, which correspond to Gr =

4.16 · 106, Re = 2468.1, Gr
Re2

= 0.683 if the film temperature is used as reference

for water properties. As explained in section 2.2.1, this values of Gr
Re2

entails that

we have mixed convection dominated regime in this case. We found out that in

the case of mixed and forced convection, the use of the bulk temperature instead of

film temperature as a reference temperature to calculate transport properties of the

water gives better agreement with experimental data. It can be seen in figure that

use of bulk temperature provides better agreement with experimental data. On the

other hand, film temperature proves to be better choice of reference temperature

for the case of free convection dominated regime. Fig. 2.7 depicts the time history

of the melting rate of an ice sphere predicted using the model (line) and measured

[3] (circles) at the water velocity of 0.01 m/s and T op = −8 oC, T∞ = +16 oC, which

refer to Gr
Re2

= 9.25. Thus, this is a case of free convection dominated regime and
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use of film temperature as Tref provides better agreement with experiments. It

should be noted here that significant deviation between experimental data and our

model predictions at the initial time can be attributed to the establishment of the

boundary layer around the particle. Thus, we think that at the beginning of melting

the reference temperature can differ from the film temperature we used. And the

second possible reason of this deviation can be invalidity of the Nu relation we used

during the start up phase at the initial time.

Table 2.4: Nondimensional numbers calculated for different water velocities accord-
ing to the different experimental conditions of fig. 2.8 with use of bulk and film
temperature as reference for water properties

Velocity
(m/s)

Reference
tempera-
ture

Ra Gr Re Gr/Re2

0.06 bulk 7.6 · 106 9.81 · 105 1953.75 0.2574
0.06 film 2.36 · 106 2.38 · 105 1568.98 0.0968
0.03 bulk 7.6 · 106 9.81 · 105 976.87 1.0282
0.03 film 2.36 · 106 2.38 · 105 784.49 0.3872
0.02 bulk 7.6 · 106 9.81 · 105 651.25 2.3134
0.02 film 2.36 · 106 2.38 · 105 522.99 0.8712

Fig. 2.8 shows the effect of water velocity on the melting rate of the ice sphere,

keeping water temperature constant, for the mixed convection regime. Nondimen-

sional numbers, Gr, Re, and Gr
Re2

are given in Table 2.4, where nondimensional

numbers are calculated using the bulk and film temperature. In particular, Fig.

2.8a shows comparisons between experimentally measured [3] (circles) and predicted

(lines) melting rates using the bulk temperature, and Fig. 2.8b depicts the same

melting rates predicted using the film temperature. It can be seen that better over-

all agreement between experimental and submodel results is obtained with the use

of bulk temperature. The effect of changing water temperature while keeping water

velocity constant can be seen in fig. 2.9. All different tests in this figure represent

the mixed convection case, and therefore, bulk temperature is used as reference for

water properties.

Finally, it should be noted that the analysis of fig. 2.8 and fig. 2.9 shows some

significant deviation between experimental data and our model predictions at the

initial time. We think that this effect can be caused by the fact that our model

is not able to capture the establishment of the boundary layer around the particle.

In particular, the Nu relations we used are not valid for the start up phase at the

initial time.
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Figure 2.6: Time history of the diameter of spherical ice particle predicted using
submodel and experiment [3] for u∞ = 0.06 m/s, T op = −16oC, T∞ = +26oC. Initial
values of the dimensionless numbers based on the film temperature are as follows:
Gr = 4.16 · 106, Re = 2468.1, Gr

Re2
= 0.683.
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Figure 2.7: Time history of the melting rate of spherical ice particle predicted using
submodel and experiment [3] for u∞ = 0.01 m/s, T op = −8oC, T∞ = +16oC. Initial
values of the dimensionless numbers based on the film temperature are as follows:
Gr = 9.81 · 105, Re = 325.62 and Gr

Re2
= 9.25.
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Figure 2.8: Time history of the melting rate of spherical ice particle measured
using experiments [3] and calculated using submodel with Tref : a) bulk temperature
and b) film temperature at different water velocities (all corresponding to mixed
convection): T op = −8oC, T∞ = +16oC, Gr

Re2
range: 0.2574÷ 2.313.
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2.4 Conclusions

A new semi-empirical submodel for a particle undergoing phase change phenomena

under the influence of convection has been developed. Comparison with experimen-

tal data available in the literature showed very good agreement. In particular, we

showed that, applied to free convection flows, the use of the film temperature, which

is an average of the bulk and surface temperature, gives better agreement with ex-

periments compared to the use of the bulk temperature as a reference. At the same

time, when applied to a forced convection or a case when free convection can be

neglected, the use of bulk temperature produces results closer to experimental data.

Performances of two-temperature formulations of the model are better in compar-

ison to simple one-temperature models. Finally, our model presented in this work

can be used in Euler-Lagrange models to “bridge” interfacial (micro) heat and mass

transfer with large-scale models used for the modeling of particulate flows where a

phase change effect plays an important role.
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Chapter 3

Semi Empirical model for

particles undergoing phase

change: Three phase model

The previous chapter deals with the phase change problems involving two phases,

namely solid and liquid. However, there are ample applications in industrial en-

gineering which depend upon the phase change processes involving three phases.

So, the idea of semi-empirical models is extended in this chapter for cases where

three phases are involved. This work is devoted to the development and valida-

tion of a subgrid model describing heat and mass transfer between a hot ambient

gas and moving particles undergoing phase change from solid to gas under the in-

fluence of convection. As described in previous chapter, such kind of submodels

plays the role of ’scale bridges’ between microscale (e.g. interfacial heat transfer)

and macroscale (e.g. bulk flow) phenomena in different applications in chemical

and materials science. Applied to multiscale modeling of particulate flows with

phase change phenomena, our model serves as a coupling between equations de-

scribing particle movement in Lagrangian space and mass and heat conservation

equations defining gas and liquid phases in Eulerian space. The input parameters

in our model are the particulate Reynolds number (Re), the Grashof number (Gr),

the Stefan number (Ste) and the Prandtl number (Pr) for liquid and gas phases.

The model takes into account the solid phase melting/solidification and liquid phase

evaporation/condensation. The model has been validated against experimental data

applied to the melting of ice sphere and ice cylinder in the atmospheric air under

different flow conditions. Good agreement between our model predictions and pub-

lished experimental data is observed. Before deriving the required equations, the
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recent efforts in this area are discussed in next section.

3.1 Introduction

The problem of three phases change ’solid-liquid-gas’ is relevant in many engineer-

ing applications, such as aerospace (e.g. frost preventing), chemical engineering

including combustion engineering. One of the most recurring problem in industrial

engineering relevant to three phase change problem is the frost generation on the

internal cold surface of pipe when humid air passes through inside which results in

decreased heat transfer between air and pipe and higher pressure loss in airflow. Re-

cently, with increased demand on modeling and numerical optimization of transport

phenomena in different engineering devices (from aircraft and heat exchangers to

large scale chemical reactors and boilers) the role of reliable mathematical models

in the engineering design of such devices grew correspondingly. In addition to be-

ing robust, such models have to predict adequately (close to reality) the transport

phenomena occurring inside devices. In this case the validation of new models is

essential part in model justification.

In spite of many experimental works devoted to solid-liquid-gas phase change,

numerical or modeling works are rare. In particular, Lee et al. [44] developed an

analytical one dimensional model for the frost formation taking into account the

molecular diffusion of water vapor and heat generation in frost layer because of

sublimation of water vapor. However, they didn’t consider the radiative heat transfer

between air and frost layer. They calculated the heat and mass transfer in frost layer

using empirical correlations on the air side. An absorption coefficient was introduced

in Fick’s law to obtain the mass transfer equation. The results were compared

with experiment results in which humid air was passed over the cooled horizontal

plate thereby resulting in frost formation. Lee et al. [45] restricted/skipped the

use of empirical correlations and solved set of PDEs instead assuming the frost

layer as a porous medium. The heat transfer within the frost layer was defined

using the effective thermal conductivity. The model was in good agreement with

experimental results with error less than 10% unlike previous existing models since

this model didn’t use any empirical correlations. However, radiative heat transfer

between air and frost layer was again ignored. Murray et al. [46] conducted an

experimental study the ice nucleating ability of kaolinite particles immersed within

water droplets as function of particle surface area, cooling rate etc.. It was found

that freezing temperature changes with the surface area of particles. Wu et al. [47]

carried out numerical modeling of an existing experiment in literature applied to
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the frost formation. In experiment they considered, a humid airflow was introduced

above a cooling source through a thin rectangular channel such that the water vapor

in air directly starts condensing into ice crystals as soon as it enters the channel.

A mass transfer model was developed in the numerical study to define the phase

change mass transfer rate in order to predict the frost layer growth. The calculated

mass transfer rate was used in the source terms used in each conservation equation

in FLUENT with the implementation of Euler multiphase flow model. The obtained

results were claimed to be in good agreement with experiments.

Finally, from the analysis of work cited, it can be seen that some models do not

consider the impact of evaporation/condensation on the solid-liquid phase change.

Moreover the role of convection in the interaction between liquid and gas phase was

not covered at all.

3.2 Model formulation for melting of ice particle in air

A zero-dimensional model for prediction of the size of ice particle melting in atmo-

spheric air is provided in this section. It should be noted that as the ice particle

melts, a thin layer of water will develop around its surface. Thus, atmospheric

air will exchange heat directly with the water layer and not the solid ice particle.

Specifically, following heat transfer processes will be take place as the ice sphere

melts:

• Convective heat transfer between air and water layer

• Radiative heat transfer between air and water layer

• Evaporative cooling of water layer

• Conductive heat transfer from air-water interface to water-ice interface

The conductive heat transported to water-ice interface will cause the melting of

ice particle and increase in the temperature of ice particle.

3.2.1 Model formulation for spherical ice particle

The required set of equations to find the radius of melting spherical ice particle can

be obtained by applying heat balance on the air-water interface and by applying

Stefan Boundary condition [13] at ice-water interface. Consider the spherical ice

particle shown in fig. 3.1. The water layer around the ice particle is shown by

dashed lines with thickness δl and with outer surface temperature of Tl and outer
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Figure 3.1: Schematic of melting of ice sphere in atmospheric air

radius of rl. Stefan Boundary condition can be written on ice-water interface as

follows:

ρphsf
dvp
dt

=
4πkp(Tm − Tp)

1/rt − 1/rp
+

4πkl(Tm − Tl)
1/rp − 1/rl

− τσT 4
∞4πr2

p

=⇒ ρphsfr
2
p

drp
dt

=
kp(Tm − Tp)
1/rt − 1/rp

+
kl(Tm − Tl)
1/rp − 1/rl

− τσT 4
∞r

2
p (3.1)

Similar to the case of spherical particle in chapter 2, rt = 0.51/3rp [41]. Particle

temperature can be calculated using following equation:

ρpvpcp
dTp
dt

=
4πkp(Tm − Tp)

1/rt − 1/rp
(3.2)

The heat balance on water-air interface can be written as follows:

hc(Tl − T∞)︸ ︷︷ ︸
convection

+ εσT 4
l − αabσT 4

∞︸ ︷︷ ︸
radiation

+ ṁ
′′
l hv︸ ︷︷ ︸

evaporative cooling

=
kl(Tm − Tl)

(1/rp − 1/rl)r
2
l︸ ︷︷ ︸

conduction

(3.3)

where rl = rp + δl. ṁ
′′
l is the mass flux rate of water vapors leaving the particle sur-

face because of evaporation. The formulation for ṁ
′′
l is derived later in this section.
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The equation to calculate water layer thickness, δl is provided in section 3.3. The

convection coefficient hc on ice-water interface can be obtained using an appropriate

Nusselt number correlation (hc = Nudlk∞/dl) according to the free/mixed/forced

convection regime. For instance, for the case of free convection, following correlation

can be used:

Nudl = 2 +
0.589Ra

1/4
dl

(1 + (0.469
Pr )9/16)4/9

(3.4)

where Radp , Rayleigh number is given by:

Radl =
gβ∞(T∞ − Tm)d3

l

α∞ν∞
(3.5)

Next, an equation to determine the mass flux rate of water vapor, ṁ
′′
l will be

derived. Consider the spherical particle shown in the fig. 3.2.

Diffusion boundary layer

rl

Ice sphere with water layer

y

l1

y

ls

y

ls

y

l1

Æ

bl

r

l

r

l

+ Æ

bl

Figure 3.2: Evaporation model for a sphere

The diffusion boundary layer around the surface is shown by dashed lines. The

water vapor concentration varies from yls to yl∞ within this boundary layer where

yls is the mass fraction of water vapor in the atmospheric air at relative humidity

of 100% and yl∞ is mass fraction of water vapor in atmospheric air at given air

humidity.
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Now, for a general 1D case, total mass flux of species A can be written as:

ṁ”
A = yA(ṁ”

A + ṁ”
B)︸ ︷︷ ︸

Bulk flux

− ρDAB
dyA
dx︸ ︷︷ ︸

Diffusion flux

(3.6)

Applying this equation to the mass flux of water vapor through the diffusion bound-

ary layer, it takes following form:

ṁ”
l = ylṁ

”
l − ρDlg

dyl
dr

=⇒ ṁ”
l = − 1

1− yl
ρDlg

dyl
dr

Multiplying surface area of sphere on both sides, we get mass flow rate of water

vapor as follows:

ṁl = 4πr2ṁ”
l

=⇒ ṁl = −
(

4πr2

1− yl

)
ρDlg

dyl
dr

Since ṁl remains constant within the boundary layer, above equation can be inte-

grated with respect to yl and r with following limits:

at r = rl, yl = yls

at r = rl + δbl, yl = yl∞

After integration, ṁl takes following form:

ṁl = 4πρDlgln

(
1− yw∞
1− yws

)(
rl(rl + δbl)

δbl

)
=⇒ ṁ”

l = ρDlgln

(
1− yw∞
1− yws

)(
1

δbl
+

1

rl

)
(3.7)

Now, the diffusion boundary layer thickness, δbl needs to be calculated. It should

be noticed that Lewis number for the air is close to 1. It means mass transfer

boundary layer thickness is equal to thermal layer boundary thickness for gases. So,

δbl can be calculated by using heat balance at water-air interface. The conductive

heat transfer between the water and air through the thermal boundary layer should

be equal to the convective heat transfer between water and air. It can be written
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as follows:

q”
cond =

4πk∞(Ts − T∞)(
1
rl
− 1

rl+δbl

)
4πr2

l

=⇒ q”
cond = k∞(Ts − T∞)

(
1

rl
+

1

δbl

)

q”
conv = hc(Ts − T∞)

Equating above two heat fluxes, we get

δbl =
rl

Nudl/2− 1
(3.8)

where hrl/k∞ has been substituted by Nusselt number, Nurl . This Nusselt number

is exactly the same as used to calculate hc in eq. 3.3.

Collectively eqs. 3.1, 3.2, 3.3, 3.7, 3.8 completes the submodel for prediction of

radius of solid particle melting in atmospheric air due to hot ambient temperature

under free/mixed/forced convection. The only parameter which is still undefined is

liquid layer thickness, δl which is formulated in section 3.3.

3.2.2 Model formulation for cylindrical ice particle

This section provides the submodel to predict the melting of a cylindrical solid

particle. Consider a solid ice particle as shown in fig. 3.3. Similar to spherical

particle, melting of cylindrical particle can be explained by using the Stefan bound-

ary condition [13] at the ice-water interface and heat balance at air-water interface.

Since, cylinder has three distinguished surfaces, Stefan boundary condition will take

following form for different surfaces:

Side surface Stefan BC:

ρphsfrp
drp
dt

=
kp(Tm − Tp)
ln(rp/rt)

+
kl(Tm − Tl,s)
ln(rl/rp)

− τσT 4
∞rl (3.9a)

Top and bottom surface Stefan BC:

ρphsfr
2
p

dlp
dt

=
2kp(Tm − Tp)r2

p

(lp − lt)/2
+
kl(Tm − Tl,t)r2

p

δl,t
+
kl(Tm − Tl,b)r2

p

δl,b
− 2τσT 4

∞r
2
p

(3.9b)

Similar to the case of cylindrical particle in chapter 2, rt = 0.51/3rp and lt = 0.51/3lp

[41]. The equation for particle temperature can be obtained as follows:

ρpvpcp
dTp
dt

=
2kpπr

2
p(Tm − Tp)

(lp − lt)/2
+

2πkplp(Tm − Tp)
ln(rp/rt)

(3.10)
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Figure 3.3: Scheme of cylindrical particle submodel

The heat balance equations can be written on the surfaces as follows:

Side surface heat balance:

(hc,s(Tl,s − T∞) + (εσT 4
l,s − αabσT 4

∞)rl + rlṁ
′′
l,shv =

kl(Tm − Tl,s)
ln(rl/rp)

(3.11a)

Top surface heat balance:

hc,t(Tl,t − T∞) + εσT 4
l,t − αabσT 4

∞ + ṁ
′′
l,thv =

kl(Tm − Tl,t)
δl,t

(3.11b)

Bottom surface heat balance:

hc,b(Tl,b − T∞) + εσT 4
l,b − αabσT 4

∞ + ṁ
′′
l,bhv =

kl(Tm − Tl,b)
δl,b

(3.11c)
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The formulations for evaporation mass fluxes, ṁ
′′
l,s, ṁ

′′
l,t, ṁ

′′
l,b are provided later in

this section. The formulation for water layer thickness, δl,s, δl,t, δl,b are provided in

section 3.3. The heat transfer coefficients are given by:

hc,s =
Nulcs,sk∞

lcs
;hc,t =

Nulct ,tk∞

lct
;hc,b =

Nulcb,bk∞

lcb
(3.12)

with characteristic lengths: lcs = ll; l
c
t = dl/4; lcb = dl/4

where characteristic length for top and bottom surface is calculated by dividing area

by parameter of surface. Appropriate Nusselt number correlations according to the

nature of convective heat transfer process should be used. For instance, for free

convection around the particle, following correlations can be used:

Nulcs,s = 0.68+
0.67Ra0.25

lcs(
1 +

(
0.492
Pr

)(9/16)
)(4/9)

; Nulct ,t = 0.27Ra0.25
lct

; Nulcb,b = 0.54Ra0.25
lcb

(3.13)

Ralcs =
gβ∞(T∞ − Tm)ll

3

ν∞α∞
; Ralct = Ralcb =

gβ∞(T∞ − Tm)(dl/4)3

ν∞α∞
(3.14)

The mass flux rates of water vapor, ṁ
′′
l,s, ṁ

′′
l,t, ṁ

′′
l,b can be derived in similar way

to spherical particle. Applying 3.6 in this case results in following equations:

ṁ
′′
l,s = − 1

1− yl
ρDlg

dyl
dr

ṁ
′′
l,t = − 1

1− yl
ρDlg

dyl
dz

ṁ
′′
l,b = − 1

1− yl
ρDlg

dyl
dz

Multiplying both sides by flux area to obtain mass transfer rates:

ṁl,s = − 2πrl

1− yl
ρDlg

dyl
dr

ṁl,t = − πr2

1− yl
ρDlg

dyl
dz

ṁl,b = − πr2

1− yl
ρDlg

dyl
dz

Since mass transfer rates would remain constant within the boundary layer, above

equations can be integrated with respect to yl and r and z with the integral limits
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of yls and yl∞ to get following mass flux equations:

ṁ
′′
l,s =

ρDlgln
(

1−yl∞
1−yls

)
rlln

(
rl+δbl,s

rl

) (3.15a)

ṁ
′′
l,t =

ρDlgln
(

1−yl∞
1−yls

)
δbl,t

(3.15b)

ṁ
′′
l,b =

ρDlgln
(

1−yl∞
1−yls

)
δbl,b

(3.15c)

The diffusion boundary layers, δbl,s, δbl,t, δbl,b can be defined in similar way as

for spherical particle by comparing it with the thermal boundary layers. So,

δbl,s = (exp(2/Nulcs,s)− 1)rl (3.16a)

δbl,t = k∞/hc,t = lct/Nulct ,t; (3.16b)

δbl,b = k∞/hc,b = lcb/Nulcb,b; (3.16c)

where Nusselt numbers are same as used in eq. 3.12. Collectively, eqs. 3.9, 3.10,

3.11,3.12 and 3.15 constitute the submodel for cylindrical particle. The formulation

for water layer thickness δl,s, δl,t, δl,b are provided in section 3.3.

3.3 Water layer thickness around the particle

As the ice particle melts, it will develop a thin layer of water over its surface. Starting

from zero, the thickness of this layer will keep increasing until the weight of this

layer becomes larger than the friction force between the layer and surface of solid

particle. Thereafter, water will start flowing down because of gravity and water

layer would attain a steady constant thickness profile. This water layer around the

particle is crucial in deciding the conductive heat transfer from air-water interface to

ice-water interface which insulates, however minimal, the solid particle from ambient

temperatures. Applied to our case of melting of ice particle, water layer thickness

is expected to be of the order of 10−4 m (as shown later in this section). The

thickness profile can be predicted numerically via microscopic momentum equation

i.e. Navier Stokes equation. While deriving the final equation, we will make following

assumptions:

• Thickness of layer is very small such that velocity in the direction perpendic-

ular to surface of particle is much smaller than that in the direction of flow.
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This assumption will be justified at the end of this section.

• Due to symmetry of all the geometries, velocity in the y-axis (for Cartesian

coordinates), ~θ direction (for cylindrical coordinates) and in ~θ direction (for

spherical particle) will assumed to be zero.

• Water layer thickness at the top of the particle will assumed to be zero

The first two assumptions leave us with only one component of velocity which

is in the direction of gravity. In subsequent calculations, melting rate of particle

will be taken into account using the term vmelt. vmelt is melting velocity at which

water comes out throughout the entire solid surface as shown in figs. 3.4, 3.5, 3.6 for

different geometries. Thus, mass flux of water because of melting will be equal to

ρvmelt. The two different approaches are used to calculate water layer thickness in

following subsections. First subsection uses the Navier-Stokes equation and second

subsection uses the overall balance between drag forces and gravity forces on particle.

In this section, subscript ‘l’ from water layer thickness, δl will be omitted.

3.3.1 Equation of motion

Cartesian coordinates:

Consider the differential volume element of thickness dz of the falling film of water

as shown in fig. 3.4. Within this element, local velocity of water in ~z direction can

be assumed to be independent of z and due to symmetry, independent of y as well

leaving it to be a function of x alone i.e. vz ≡ vz(x). Thus, Navier stokes equation

can be written as:

0 = µ
∂2vz
∂x2

+ ρgz

Integrating above equation using the following boundary conditions:

∂vz
∂x

(at x = δ) = 0

vz(x = 0) = 0

we get,

vz = −ρg
µ

(
x2

2
− δx)

Taking average over the thickness, we get:

v̄z(z) =
ρgδ(z)2

3µ
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Figure 3.4: Water layer on a vertical flat surface

This gives us the dependency between water layer thickness and its average

falling velocity. To relate the thickness with melting velocity vmelt, following mass

balance can be applied on the control volume between z = 0 and z = L as shown in

fig. 3.4:

ρv̄z(L)δ(L) + ṁ
′′
evapL︸ ︷︷ ︸

mass out

− ṁ′′
meltL︸ ︷︷ ︸

mass in

= 0

where ṁ
′′
evap and ṁ

′′
melt are water mass flux terms due to evaporation and melting

respectively. Here, it is assumed that the surface over which ṁ
′′
evap is acting has

same area as for ṁ
′′
melt. Substituting vz in this equation, we get

ρ2gδ(L)3

3µ
+ (ṁ

′′
evap − ṁ

′′
melt)L = 0

=⇒ δ(L) =

(
3µ(ṁ

′′
melt − ṁ

′′
evap)L

ρ2g

)1/3

(3.17)

Mass flux terms ṁ
′′
evap and ṁ

′′
melt can also be written as ρvevap and ρvmelt respec-

tively where vevap and vmelt are the evaporation and melting velocity of water.

Cylindrical coordinates:

Same equation for water layer thickness can be derived for cylindrical particle as
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well. Consider the cylindrical ice particle shown in fig. 3.5. Let us consider the

Water layer

z

dz

z = L

z = 0 r

Ice cylinder

2R

v

melt

Figure 3.5: Water layer around cylindrical ice particle

differential element of thickness dz as shown in fig. 3.5. Similar to Cartesian co-

ordinates, assuming symmetry in ~θ direction, velocity vz will be the function of

radial distance alone i.e. vz ≡ vz(r). Applying the Navier Stokes equation on the

differential element shown, we get

0 = µ

(
1

r

∂

∂r

(
r
∂vz
∂r

))
+ ρgz

Integrating it with following boundary conditions:

∂vz
∂r

(at r = R+ δ) = 0

vz (at r = R) = 0

we get,

vz(r) =
−ρgz
2µ

(
r2 −R2

2
− (R+ δ)2ln

( r
R

))
Taking average over the water layer,

v̄z =

∫ R+δ
R vz2πrdr

π((R+ δ)2 −R2)
=

∫ R+δ
R vz2πrdr

2πRδ
=

∫ R+δ
R vzrdr

Rδ
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where ∫ R+δ

R
vzrdr =

∫ R+δ

R

−ρg
2µ

((
r3 −R2r

2

)
− (R+ δ)2ln

( r
R

)
r

)
dr

=
−ρg
2µ

(
(R+ δ)4 −R4

8
− R2

4
((R+ δ)2 −R2)

)
+

ρg

2µ
(R+ δ)2

(
(R+ δ)2

2
ln(1 + δ/R)− (R+ δ)2 −R2

4

)
Expanding all the terms and ignoring all the terms in which δ has exponent higher

than 3, we get ∫ R+δ

R
vzrdr =

ρgRδ3

3µ

Substituting it in expression for v̄z, we get

v̄z(z) =
ρgδ(z)2

3µ

To relate the thickness with vmelt, mass balance can be performed on the control

volume between z = 0 and z = L shown in fig. 3.5. Mass balance equation can be

written as follows:

ρv̄zπ((R+ δ)2 −R2) + ṁ
′′
evap2πRL︸ ︷︷ ︸

mass out

− ṁ′′
melt2πRL︸ ︷︷ ︸
mass in

= 0

=⇒ ρv̄z2πRδ + (ṁ
′′
evap − ṁ

′′
melt)2πRL = 0

Here, advantage of small δ with respect to R has been utilized to write the surface

area of film flow as 2πRδ. Substituting expression for v̄z in above equation and

rearranging, we get

δ =

(
3µ(ṁ

′′
melt − ṁ

′′
evap)L

ρ2g

)1/3

(3.18)

Spherical coordinates:

Considering the spherical ice particle shown in fig. 3.6, same approach can be used

in this case to calculate water layer thickness.
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Figure 3.6: Water layer around spherical ice particle

As shown in figure, a differential element is considered at the angle φ from the

vertical axis. Assuming symmetry in θ, velocity in the differential element can be

represented by the function of r alone i.e. vφ ≡ vφ(r). Applying the Navier Stokes

equation for this differential element shown, we get

0 = ρgsinφ+ µ

(
1

r2

∂

∂r

(
r2∂vφ
∂r

))
Integrating above equation using following boundary conditions:

∂vφ
∂r

(at r = R+ δ) = 0

vφ (at r = R) = 0

we get,

vφ =
−ρgsinφ

3µ

(
r2 −R2

2
+ (R+ δ)3

(
1

r
− 1

R

))
Average velocity, v̄φ over the water layer can be calculated as:

v̄φ =

∫ R+δ
R vφ2πrsinφdr

2πRsinφδ
=

∫ R+δ
R vφrdr

Rδ
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where ∫ R+δ

R
vφrdr =

−ρgsinφ
6µ

(
(R+ δ)4 −R4

4
− R2

4
((R+ δ)2 −R2)

)
−

ρgsinφ

6µ
(R+ δ)3

(
δ − 1

2R
((R+ δ)2 −R2)

)
Expanding all the terms and ignoring terms in which δ has exponent more than 3,

we get ∫ R+δ

R
vφrdr =

ρgsinφRδ3

3µ

Substituting it in expression for v̄φ,

v̄φ =
ρgsinφδ2

3µ

Considering the control volume between φ = 0 and φ = π/2, mass balance can

be applied as follows:

ρv̄φ2πRδ + ṁ
′′
evap2πR

2︸ ︷︷ ︸
mass out

− ṁ′′
melt2πR

2︸ ︷︷ ︸
mass in

= 0

Substituting expression for v̄φ in above equation and rearranging, we get:

δ =

(
3µ(ṁ

′′
melt − ṁ

′′
evap)R

ρ2g

)1/3

(3.19)

3.3.2 Simple model - balancing gravity and friction

In this section, a simple model is provided for prediction of water layer thickness.

This model balances the drag and gravitational force on water layer resulting in

following equations for different geometries:

Cartesian coordinates:

1

2
CDρv̄

2
φ = ρδg (3.20)

Cylindrical coordinates:

1

2
CDρv̄

2
φ2πRL = ρπ((R+ δ)2 −R2)Lg (3.21)

Spherical coordinates:

1

2
CDρv̄

2
φ4πR2 = ρ

4π

3
((R+ δ)3 −R3)g (3.22)

46



where appropriate correlation for drag coefficient should be used according to

the Reynolds number of water film flow. Coupling above equations with the mass

balance equations given in section 3.3.1 for each geometry, δ can be calculated.

3.3.3 Validation

Due to the lack of experimental data, the results of the above mentioned equations

were compared to a FLUENT-based [48] CFD model for spherical particle. The

principle scheme of the CFD model is shown in fig. 3.7. The Volume of Fluid

(VOF) model was used in FLUENT. The evaporation velocity vevap is absent in

this model. So, vevap will be considered zero in the subsequent calculations in this

section. The model was run for four different values of vmelt namely 0.001 m/s,

0.05 m/s, 0.01 m/s and 0.1 m/s. Figs. 3.8 and 3.9 shows the snapshots of FLUENT

results after water layer attains steady thickness. Fig. 3.10 plots the FLUENT-based

CFD model results and results from equations derived in sections 3.3.1 and 3.3.2.

As it can be seen from the figure, Navier-Stokes based model is in good agreement

with CFD data only for small melting velocities. However, in our case of melting of

ice particles, melting velocities are typically very low. For example, in case of our

experiments of melting of spherical ice particle (explained in next section), melting

velocity averaged over the entire time of melting and averaged over the surface of

sphere comes out to be 1.009·10−6 m/s which is way lower than the melting velocities

considered in CFD-based model. The grid used in CFD-based model consisted of

50756 cells. The time step of 5 ·10−5 second was used. Second order upwind scheme

was used for discretization of momentum conservation equation.
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Air outlet, v = 10 m/s
−8

Water inlet, vmelt

Air inlet, v = 10 m/s
−8

Figure 3.7: Principle schematic for CFD-based model
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(a) v = 0.1 m/s (b) v = 0.05 m/s

(c) v = 0.01 m/s (d) v = 0.001 m/s

Figure 3.8: Water layer thickness with different velocities of water, v = 0.1 m/s, v
= 0.05 m/s, v = 0.01 m/s, v = 0.001 m/s,
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(a) v = 0.1 m/s (b) v = 0.05 m/s

(c) v = 0.01 m/s (d) v = 0.001 m/s

Figure 3.9: Water layer thickness with different velocities of water, v = 0.1 m/s, v
= 0.05 m/s, v = 0.01 m/s, v = 0.001 m/s,
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3.4 Validation

The submodel provided in section 3.2 for spherical and cylindrical ice particle is

validated in this section against various experimental results. Also, the equation for

mass flux of water vapor is validated separately against an existing experimental

result [4]. The submodel for cylindrical ice particle will be compared against the

experimental study conducted by Janna and Jakubowski [5] while submodel for

spherical ice particle will be compared against our own experiments.

3.4.1 Evaporation flux

In this section, we will compare the water vapor mass flux values calculated using

eq. 3.15a with the experimental results available in literature[4]. Nobel [4] carried

out experiments in which water was evaporated from the horizontally aligned wet

cylindrical surface. In short, a filter paper was placed around a cotton filled hori-

zontal cylindrical tube with a thin slit on one side. The paper was kept wet through

this slit so that it is in contact with the moistened cotton inside the tube. An air

stream normal to the axis of cylinder was blown. Table 3.2 shows the conditions in
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which experiments were carried out. To keep the consistency of variables as defined

in section 3.2, subscript l is used in the table to denote the dimensions of cylindrical

tube.

Table 3.1: Wet cylinder and ambient air properties in experiments conducted by
Nobel [4]

Cylinder diameter, dl 2 cm
Cylinder axial length, ll 10 cm
Ambient air temperature, T∞ 20.1 C
Wind velocity, u∞ 10 cm/sec - 1000 cm/sec
Concentration of water at surface, Cws 16.8 gm/cm2

Concentration of water in ambient air, Cw∞ 9.8 gm/cm2
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Figure 3.11: Comparison between experimental [4] results and numerical results

As water will evaporate from the wet filter paper, a diffusion mass transfer

boundary layer will develop around the filter paper as depicted in section 3.2 within

which concentration of water vapors varies from yws to yw∞. Implementing eq. 3.15a

for this case, mass flux rate of water vapor can be predicted. Since the considered

experiment is a case of forced convection over horizontal cylinder, following Nusselt

number can be used [1]:

Nus,dl = 0.3 +
0.62Re

1/2
dl
Pr1/3

(1 + (0.4/Pr)2/3)1/4

(
1 +

(
Redl

2.82 ∗ 105

)5/8
)4/5

where Re.Pr > 0.2

(3.23)

52



Converting concentrations of water given in table 3.2 to the mass fractions yws

and yw∞ and then using eqs. 3.15a, 3.16a and 3.23, mass flux rate of water vapor

leaving the wet cylindrical tube can be predicted. Fig.3.11 shows the comparison

between numerical and experimental results. The Reynolds number plotted on the

x-axis was following function of uair:

Redl =
ρ∞u∞dl
µ∞

(3.24)

where properties of air were calculated at ambient temperature, T∞. Various ther-

mophysical properties used in the calculations are listed below:

Table 3.2: Wet cylinder and ambient air properties in experiments conducted by
Nobel [4]

Thermophysical property Numerical value

Air density, ρ∞ 1.1929 kg/m3

Dynamic viscosity, µ∞ 181.2250 · 10−7 Pa-s
Air Prandtl number, Pr 0.7087
Diffusion coefficient, Dlg 0.24 · 10−4 m2/s

3.4.2 Three-phase change model for cylindrical particle

Janna and Jakubowski [5] carried out an experiment in which an ice cylinder was

suspended by a string in air with its axis aligned vertically. Other end of string

was attached to the cantilever beam. A strain gage was attached to the beam to

measure the weight of ice cylinder as it melts. Principle scheme of the experimental

setup is shown in fig. 3.12.

Table 3.3 lists the various parameters at the start of experiment.

Table 3.3: Ice sample and air properties at the start of experiment [5]

Ice cylinder diameter, dp 0.14 m
Ice cylinder length, lp 0.146 m
Ambient air temperature, T∞ 298 K
Ice cylinder temperature, Tp 273 K

Since this is a case of three phase change problem, the submodel for cylindrical

particle provided in section 3.2.2 can be used to predict the size of particle. Relative

humidity of air is assumed to be 20% since it was not mentioned explicitly in the

reported data [5] while air next to the water layer is assumed to be fully saturated

i.e. having relative humidity of 100%. yws and yw∞ can be easily calculated by
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Figure 3.12: Principle scheme of the experimental setup [5]

converting relative humidity of air into mass fraction of water vapor using mole

concept. Within each time step, following steps are followed to calculate the radius

and height of cylinder:

• Calculate Rayleigh numbers using eqs.3.14 for all the three surfaces

• Calculate Nusselt numbers using correlation for the case of free convection

using eqs. 3.13 and then calculate heat transfer coefficients using eqs. 3.12.

• Solve eqs. 3.16 for diffusion boundary layer thickness for three surfaces.

• Using eqs. 3.15, determine mass flux rates of water vapor at each surface.

• Solve non-linear heat balance equations given by 3.11 to find Tl,s, Tl,t and Tl,b.

• Solve Stefan boundary equations given by 3.9 to calculate radius and height

of ice particle.

The water layer thickness at each time step is calculated using eq. 3.18. The

thermophysical properties of water and air used in calculations correspond to the

temperature value of 273.15 K and 298.15 K respectively. Table 3.4 lists numerical

value of various thermophysical properties used in calculations. Euler’s explicit-

based method with time step of 0.01 second was used to solve the Stefan boundary

conditions. Lower time step values produced similar results.

Fig.3.13 compares the submodel and experimental results. Two different curves

for submodel results can be seen in the figure with the difference being the differ-

ent emissivity values of water layer used in calculations. It has been reported in
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Table 3.4: Ice and air properties used in the validation process

Physical property Numerical value

Ice
ρp 920 kg/m3

kp 1.88 W/mK
cp 2040 J/kgK
Air
ρ∞ 1.180 kg/m3

k∞ 0.0260 W/mK
µ∞ 182.6 · 10−7 Ns/m2

cp∞ 1006.92 J/kgK
β∞ 3.3955 · 10−3 K−1

Water
ρl 1000 kg/m3

kl 0.569 W/mK
µl 1750 · 10−6 Ns/m2

Latent heats
hsf 333.6 · 103 J/kg
hv 2260 · 103 J/kg
Radiation
αab 0.1
τ 0.9

literature that a thin film of any liquid will take emissivity value lesser than that

of bulk fluid [49],[50]. Emissivity of bulk water is 0.96 but for thin film of water,

emissivity will take different value lesser than 0.96. Brissinger et al. [51] investigated

radiative transfer through water film of different thickness. He concluded that wa-

ter film with thickness 100-1000 µm has absorptivity, αab 80-100 % and water with

thickness 100-500 µm has transmissivity, τ 0-10 %. Edalatpour and Francoeur [6]

investigated the effect of thickness of thin film on its emissivity. he concluded that

emissivity increases with the decrease in film thickness for metals and it decreases

with the decrease in film thickness for dielectrics. As can be seen in fig. 3.14, emis-

sivity of 0.9 brings lesser melting rate. Emissivity of 0.48 was found to bring the

least deviation of submodel results from the experimental results.

As it was explained in section 3.1, some models don’t consider the evaporation

mass flux terms (given by eqs. 3.15) in their models and thereby ignoring the

evaporative cooling at air-water interface. Fig.3.14 compares the numerical result

with and without considering these mass flux terms in our submodel. It can be

seen that omitting mass flux terms gives much higher melting rate with very large

deviation from experimental results.
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Figure 3.13: Comparison between experimental [5] results and numerical results
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Figure 3.14: Effect of evaporation flux term on time history of volume of cylinder.
Experimental results correspond to the work [5]
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3.4.3 Three-phase change model for spherical particle

We conducted our own experiment for validation of submodel for spherical particle.

A simple experiment of an ice sphere melting in atmospheric air was conducted.

Fig. 3.15 shows the principle scheme of experiments. An ice sphere was attached to

a thread through a steel hook. Other end of the thread was attached to a weighing

scale placed over a wooden block as shown in the scheme. A container was kept

under the hanging sphere to collect the melted liquid water. A photograph of the

ice sphere during the melting is shown in fig. 3.16. Ambient air temperature and

relative humidity were found to be 25oC and 22 % respectively. Table 3.5 lists

various parameters at the start of experiment. Weight of the hook was 1.4 gm.

Mass of the ice sphere as recorded during the experiment is tabulated in table 3.6.

Weighing scale

Ice sphere

Figure 3.15: Principle scheme of own experiment [section: 3.4.3]

Table 3.5: Ice sample and air properties at the start of experiment

Ice sphere diameter, dp 0.0559 m
Ambient air temperature, T∞ 298 K
Ambient air relative humidity, RH∞ 22 %
Ice cylinder temperature, Tp 273.15 K

The submodel provided in section 3.2 can be used to predict the radius of sphere

as it melts. Similar to the validation of cylindrical particle, air next to the water
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Figure 3.16: Ice sphere hanging in own experiment [section: 3.4.3]

layer is assumed to be fully saturated i.e. it has relative humidity of 100%. yws

and yw∞ can be calculated from relative humidity values using simple mole concept.

Similar to the cylindrical particle, Euler’s explicit-based method with time step of

0.01 second was used to solve the Stefan boundary conditions. Lower time step

values produced similar results.

Figure 3.17 compares the numerical and experimental results. Collectively, eqs.

3.1, 3.3, 3.4, 3.5, 3.7, 3.8, 3.19 are solved together to obtain the numerical results.

All the thermophysical properties of air, water and ice used in the calculations

correspond to the temperature values of 298 K, 273.15 K and 273.15 K respectively.

Thus, table 3.4 lists numerical value of all the thermophysical properties used. Fig.

3.17 compares the submodel results and experimental results. Due to the similar

reasons described in section 3.4.2, lower emissivity value (in this case 0.22) was found

to give the best agreement with experimental results. As mentioned in section 3.4.2,

Edalatpour and Francoeur [6] conducted an experimental study the effect of film

thickness on its emissivity for various materials. Fig. 3.18 plots the experimental

data for thin water film and also the two points which corresponds to our assumption

of emissivity of water layer.
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Table 3.6: Results obtained from the experiment on melting of ice sphere

Time, minutes Collective weight of ice sphere and hook, gm

0 85.9
4 83.5
9 80.8
14 78.5
19 76.1
24 73.2
29 71.1
34 68
39 65.7
44 63.8
49 61.4
54 59.1
59 56.9
64 54.7
69 52.5
74 50.5
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Figure 3.17: Comparison between results obtained from own experiment [section:
3.4.3] and numerical results
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Figure 3.18: Comparison between the emissivity values reported in literature [6] and
used in our calculations

3.5 Illustrations

3.5.1 Ice sphere falling in air

The submodel provided in this chapter can be used to predict the melting of ice

sphere falling due to gravity in atmospheric air. Consider a single ice sphere 5000

m above the ground such that air temperature is -10o C at this height and 25o C

at ground. Relative humidity of air is 25%. Initial temperature of particle is -2o C.

Following equations when solved together, will predict the size and temperature of

ice sphere as it falls down:

Stefan boundary equation [13] on ice-water interface can be written as:

ρphsf
4

3
π
dr3
p

dt
=

4πkl(Tm − Tl)
1/rp − 1/rl

− τσT 4
∞4πr2

l +
4πkp(Tm − Tp)

1/rt − 1/rp
(3.25)

Heat balance on water-air interface can be written as:

(hc(Tl − T∞) + εσT 4
l − αabσT 4

∞ + ṁ
′′
l hv)4πr

2
l =

4πkl(Tm − Tl)
1/rp − 1/rl

(3.26)
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Evaporation flux from the water surface can be written as:

ṁ
′′
l = ρDlgln

(
1− Y∞
1− Yl

)(
1

δl
+

1

rl

)
(3.27)

where δl is given by:

δl =
rl

hcrl/k∞ − 1
(3.28)

and hc is given by:

hc = Nudlk∞/dl (3.29)

where Nudl is given by:

Nudl = 2 +
0.589Ra0.25

dl

(1 + 0.469
Pr∞

9
16 )

4/9
(3.30)

where Ra, Rayleigh number is give by:

Radl =
gβ(T∞ − Tm)d3

l

α∞ν∞
(3.31)

Fig.3.19 shows the results of the submodel for different water layer thicknesses.
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Figure 3.19: Time history of radius of sphere predicted numerically
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3.5.2 Droplet solidification

Consider a drop of water falling in cold atmospheric air with subzero temperature.

The submodel provided in this chapter can be used to predict the solidification

process of droplet. Table 3.7 lists the initial condition of the process under consid-

eration.

Table 3.7: Intial condition of the considered droplet solidification process

Diameter of drop 445 mm
Temperature of drop 500 mm
Temperature of ambient air −20o C
Relative humidity of ambient air 20%

The entire process of droplet solidification can be divided into two phases. First

phase of the process would occur from time = 0 to the time when solidification of

the droplet starts. Thus, the time when surface temperature of the drop reaches 0o

C would mark the end of first phase. Thereafter, second phase of the process would

occur in which ice formation inside the drop takes place. In first phase, drop would

lose only sensible heat whereas in second phase, drop will lose sensible as well as

latent heat. The entire process can be explained numerically using following set of

equations:

First phase (before start of solidification): Consider the water drop as shown in fig.

3.20. Dashed line represent the locus of surface inside sphere where the average

temperature of particle Tp would exist.
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Figure 3.20: Water droplet before the start of solidification
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Heat balance at water-air interface:

(hc(Ts − T∞) + εσT 4
s − ασT 4

∞ +m
′′
shv)4πr

2
l =

4πkl(Tl − Ts)
1/rt − 1/rl

(3.32)

Heat balance inside the drop:

4πkl(Ts − Tl)
1/rt − 1/rl

= ρvlcl
dTl
dt

(3.33)

Second phase (after start of solidification): In second phase, an ice layer would start

appearing in the drop starting from its surface as shown in fig. 3.21. Since there is

no water on the outer sphere of ice layer, evaporation term in surface heat balance

equation will be dropped.
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Figure 3.21: Water droplet after the start of solidification

Heat balance at ice-air interface:

(hc(Ts − T∞) + εσT 4
s − ασT 4

∞)4πr2
p =

4πkp(Tm − Ts)
1/rl − 1/rp

(3.34)

Stefan BC at ice-water interface:

ρphf
dvl
dt

=
4πkp(Tm − Ts)

1/rl − 1/rp
+

4πkl(Tm − Tl)
1/rt − 1/rl

=⇒ ρphf4πr2
l

drl
dt

=
4πkp(Tm − Ts)

1/rl − 1/rp
+

4πkl(Tm − Tl)
1/rt − 1/rl

(3.35)
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Heat balance inside the water drop:

4πkl(Tm − Tl)
1/rt − 1/rl

= ρlvlcl
dTl
dt

(3.36)

3.6 Conclusion

A new semi-empirical submodel for a solid particle undergoing solid-to-liquid-to-gas

phase change in gas under the influence of convection has been developed. The

results were in good agreement with experimental data in literature [5] and own

experimental data [section: 3.4.3]. The importance of evaporation term in the heat

balance on particle surface was illustrated and it was found that omitting this term

results in completely different particle size predictions. Also, it was found that emis-

sivity of water layer is significantly lower as compared to the bulk water emissivity.

Finally, our submodel provided in this chapter can be used in Euler-Lagrange mod-

els to “bridge” interfacial (micro) heat and mass transfer with large-scale models

used for the modeling of particulate flows where a phase change effect plays an im-

portant role. The possible applications of this numerical model include modeling in

scientific fields like meteorology, material science and aerospace engineering.
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Chapter 4

CFD Modeling of Ice Particles Melting in Hot Water

4.1 Introduction

In previous chapters, different zero dimensional submodels were developed and val-

idated to predict the melting/solidification phenomena for sphere and cylindrical

particles under various conditions. However, such submodel are not capable to de-

scribe the dynamics of a particle shape during it melting/solidification in a bulk

flow. Only experimental studies or CFD-based modeling are able to investigate the

time history of a particle shape under phase conditions. It should be noted that

CFD-based simulations of phase change phenomena received recently significant at-

tention in science and engineering due to their abilities to ’see’ processes occurring

on the interface between solid and liquid phases.

Basically, people use a fixed grid method solving the temperature of enthalpy

equation over the whole domain including liquid and solid phases. The phase change

conditions are taken into account using a source term. The velocity inside the

solidified solid is damped utilizing permeability approach.

Kumar and Roy [52, 53] studied the process of melting of metal spherical particle

caused by the forced convection and superheat of its own liquid. A numerical model

consisting of 2D axisymmetric Navier–Stokes and energy equations was solved on

fixed multi-block grid with the use of finite volume method. The simulations were

carried out for material of different Prandtl numbers typically of the order of 10−2

which causes thick thermal boundary layers. A correlation for Nusselt number in

terms of Prandtl number, Stefan number and Reynolds number was provided at the

end. Wittig and Nikrityuk [54] uses the exact same numerical approach as used in

this chapter. They solved 2D and 3D numerical model of melting of pure Gallium

in a cuboid cavity with fixed grid and validated it against an existing experimental

data in literature. The model was then used to study the effect of cuboid width on
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the flow and interface location. [55] studied the melting process of solids inside the

liquid metals by conducting experiments and then solving a numerical model on ice-

water and frozen ethanol-water system. The numerical model was developed based

on ANSYS CFD commercial software package. The influence of temperature and

composition driven buoyancy and surface tension on flow structure was studied in

detail. A pie-shaped domain with 5o angle between the faces was used in the study.

However, the resolution used was not good enough in the paper to fully resolve the

thermal boundary layer since Prandtl number of water is around 7. Galione et al.

[56] studied the effects of different strategies in 2D and 3D numerical modeling of

melting of n-Octadecane inside a spherical capsule using the same numerical ap-

proach as in this chapter. The volume fraction of the liquid near the interface was

calculated using mixture enthalpy. The thermophysical properties of n-Octadecane

were kept constant and were varied as function of temperature in different simu-

lations and significant difference was observed in the computational cost. 2D and

3D models resulted in different local melting rates but overall liquid fraction didn’t

differ much. Bourdillon et al. [57] conducted a computational study on freezing

of water inside a differentially heated cavity and inside a cylindrical enclosure with

constant wall temperature of −18oC. The numerical simulations were run using open

source CFD code OpenFOAM with similar model as used in this chapter. Results

were found to be in good agreement with other CFD codes but no validation was

provided against experimental results. Khodadadi and Zhang [58] performed nu-

merical simulations to study the relative effects of conduction and buoyancy-driven

convection on constrained melting of phase change materials utilizing the numerical

approach similar to this chapter. The model was validated against experiments and

then solved for materials with different Prandtl numbers and the resulting flow and

melting patterns were found to be significantly different.

In this chapter, we provide an axisymmetric CFD DNS model to understand

the detailed physics and behavior of the process of melting of a single particle in

a liquid surroundings. An attempt will be made to obtain a dimensionless number

which will be useful to predict the melting behavior of the particle. This study will

help us to further improve the efficiency and the end results of this process.

Also, this chapter will help us to extend the zero dimensional formulation for ar-

bitrary shaped solid particles. Since the experiments related to the arbitrary shaped

particles involve lot of uncertainties and skepticism, there aren’t many such exper-

imental data in literature. A 2-D axisymmetric DNS CFD model, applied to the

melting of spherical and cylindrical ice particle in water due to natural convection,

will be provided and validated against the existing experimental data in literature.
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After the validation, various parameters of the numerical model can be played with.

For instance, shape and size of the ice particle can be changed and results obtained

can help us extend the submodel formulation for these particles. By introducing

additional shape parameters to the submodel equations, we can predict the melting

process of arbitrary shaped solid particles.

4.2 Problem Formulation

To start with CFD modeling, we consider the case of melting of spherical ice particle

in water [2]. A submodel for the same was provided in section 2.2.1 and validated

in section 2.3.1. As explained in earlier sections, Shukla et al. [2] carried out a series

of experiments involving different shapes of ice particles melting in a cylindrical

container filled with water. The dimensions of the container and water level inside

were as follows:

Table 4.1: Water container dimensions in experiments conducted by Shukla et al.
[2]

Diameter of container 445 mm
Height of container 500 mm

Height of water level 440 mm

Water temperature was changed to three different values namely, 20oC 40oC

and 60oC in different experiments, keeping it constant in each run. The detailed

experimental data was given only for temperatures 20oC and 60oC. Ice was held

centrally inside the water due to which the experiment apparatus had the symmetry

around the axis of cylinder. So, a two dimensional axisymmetric CFD model can be

used for this process given that the cold ice melt which flows down into the water

in the container, stays in laminar flow regime. In other words, if Rayleigh number

stays lower than 108, axisymmetric model can be used. For 20oC water temperature,

Rayleigh number comes out to be 3.7x107 using ice sphere radius as characteristic

length. It entails cold ice melt flow would stay in laminar regime. For 60oC water

temperature, Rayleigh number takes the value of 1.725x109 entailing the cold melt

flow will be turbulent. So, axisymmetric model can not be used for the case of 60oC

water temperature but can be used for 20oC water temperature.
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4.3 Model Formulation

In this section, we present and explain the governing equations that need to be solved

in the provided DNS CFD model. Essentially, the CFD model described below

was implemented into an open source code 1, where the SIMPLE algorithm with

collocated-variables arrangement is used to calculate the pressure and the velocities.

A single set of conservation equations were written for both liquid and solid

phase combined. The boundary conditions at solid-liquid interface was treated using

the damping terms similar to Patankar’s blocking off technique [60]. Specifically,

problem under consideration can be described using following set of conservation

equations [61]:

∇ · ~u = 0 (4.1)

ρ
∂~u

∂t
+ ρ ~u · ∇~u = −∇p+∇ ·

(
µ ·
(
∇~u+ (∇~u)T

))
+ ~FB + ~FIB (4.2)

ρ cp
∂T

∂t
+ ρ cp∇ · (~uT ) = ∇ · (λ∇T )− ρhsf

∂ε

∂t
(4.3)

ε = AMIN

(
1, AMAX

[
0,

(
T − Tm
δT

)])
(4.4)

where ε is volume fraction of liquid in the given cell, δT is phase-change thick-

ness, a free parameter which can take value according to the grid size and desired

numerical stability. More details about various other terms will be provided later

in this section.

Following assumptions have to made to use the above mentioned equations:

• Flow of the liquid phase is axisymmetric.

• Interface cells are treated as a mushy zone represented by porous media ap-

proach.

• Walls of the cylindrical container are adiabatic.

4.3.1 Grid

Fixed structured non-body fitted Euler grid was used in the simulations. Entire

domain was split into 450 cells in the radial direction and 900 cells in the axial

direction with total of 450x900 = 405000 cells. Grid size of 300x600, 320x640,

1An open source CFD code of a 2D Navier– Stokes solver [59] was adopted to model particles
melting, see the book [59] how to download this open source code.
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350x700 were also tried with the CFD code but all these coarser grids resulted in

poor resolution of boundary layers and gave unstable solutions. The local Peclet

number for some grid cells took value of During the process of melting, some grid

cells in the bulk water take temperature values of higher than 20 o C which is clearly

inconsistent since initial temperature of the water was 20 o C. The grid 450x900

resulted in stable solution, 3 to 4 cells in thermal boundary layer and 5 to 6 cells

in momentum boundary layer and the maximum Peclet number for momentum and

heat equation was 0.041 and 0.28 respectively. Time marching with a fixed time

step of 0.005 second was used. Momentum equation was converged to have the

residual less than 10−5 and energy equation was converged to the residual value of

less than 10−4 within each time step. The maximum number of outer iterations

allowed within each time step was 4000.The close up of the grid near solid particle

at time = 0 is shown in fig. 4.1. Finite volume discretization scheme was used.

Figure 4.1: Close up of grid (white lines) near the solid ice particle; 151 cells along
the diameter on z-axis
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4.3.2 Discretization schemes

CDS (Central Difference Scheme) second order scheme was used to discretize the

second order diffusive terms. Convective terms in the momentum equation were

discretized using second order CDS with Deferred Correction and that in the tem-

perature equation were discretized using QUICK (Quadratic upwind interpolation

for convective kinematics) scheme. QUICK scheme is a third order UDS (upwind

Difference Scheme) which uses two points on the upstream side and one point on

downstream side thereby increasing the order of approximation [61]. On the con-

trary, UDS uses one point on the upstream side. The time derivatives were dis-

cretized by a three-time-level scheme using a quadratic backward approximation.

Under Deferred correction scheme, cell-face value is expressed as follows [61]:

ψe = ψUDSe︸ ︷︷ ︸
implicit part

+ψCDSe − ψUDSe︸ ︷︷ ︸
explicit part

On converging, above equation produce pure second-order CDS on uniform grids.

The system of linear equations was solved by using Stone’s strongly implicit proce-

dure (SIP).

4.3.3 Pressure-Velocity Coupling

To solve for velocities and pressure values, SIMPLE algorithm with collocated vari-

ables arrangement was used. All the velocity terms and pressure values were cal-

culated at the center of each CV. Cell-face velocities were interpolated using the

discretized momentum equation. Pressure gradient at cell face was calculated using

the pressure difference between adjacent nodes. This technique of coupling pressure

and velocities is known as Rhie and Chow stabilization. It erases the possibility of

checker-boarded pressure field which is the primary concern in the SIMPLE algo-

rithm when solved with collocated variables arrangement.

4.3.4 Interface Tracking

Evolution of the phase front is tracked using the eq. 4.4. In other words, temperature

of the cell is used to calculate the volume fraction of liquid inside the cell. δT is

the phase-change thickness parameter introduced to smear the phase change over a

small temperature interval to attain the numerical stability. It is a free parameter

which should be given a numerical value before the start of CFD simulation. Larger

its value, larger will be the interface thickness. So, from physical point of view,

δT should be given as small a value as possible but very small δT would result in
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unstable or poorly converging solution. Fig. 4.2 explains the the impact of δT on

CFD model. In this work, δt is set to be 0.1. Many test runs were carried out to find

the optimum value of δT based on the numerical stability and interface thickness.

Since δT is set at 0.1, volume fraction of liquid at T = 273.1K will take value

of 1 and at T = 273K will take the value of 0. In between the two temperature

values, volume fraction will vary from 0 to 1. Fig. 4.3 shows the zoomed view

of the spatial distribution of the temperature and volume fraction of fluid at the

solid-liquid interface.

Thick interface:

Physically unrealisticotherwise unstable

solution

Requires fine grid 

to obtain stable solution

Relatively coarse grid is okay
Physically realistic

Thin interface:

0+0

Pro:

Con:

Æ

T

Figure 4.2: Impact of δT on CFD model

Damping terms

As it can be seen from the fig. 4.3, interface has some finite thickness. Due to

this fact, no-slip boundary condition requires some special treatment. The solid-

liquid interface cells are treated as a mushy zone or porous medium characterized

by the permeability coefficient K. A common approach to the modeling of fluid flow

through a porous medium is the Darcy model (in association with Kozeny-Carman

equation [62, 63]) under which, coefficient K depends on volume fraction of the cells

as follows: K = Koε
3/(1 − ε)2. At the same time, velocity ~u is damped using

the similar technique as Patankar’s blocking-off technique [60]. Taking into account

these conditions, we can write following Fictitious boundary forcing term, FIB [64]

FIB =

{
−µ (~u) cu ·min

(
1, (1−ε)2

ε3

)
0 ≤ ε < 1

0, ε = 1
(4.5)

where

cu =
1

K0
= 2 · 104 ∆x−1

min

where ε is the liquid volume fraction.

So, FIB is zero in the liquid regime. As soon as ε starts approaching zero

from one, FIB starts to increase until ε equals 0.56. Variation of the function
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(a)

(b)

Figure 4.3: Zoomed view of the spatial distribution of the temperature and volume
fraction of fluid near solid-liquid interface; (a) contour plot of volume fraction and
node labels of temperature, (b) contour plot and node labels of volume fraction
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“min(1, (1−ε)2
ε3

)” is shown in fig. 4.4. Inside the control volumes occupied by the

solid phase, a large magnitude of the FIB forces any velocity predictions effectively to

be zero. In the control volumes occupied by the liquid, this term has no consequence

and usual form of the Navier-Stokes equation is assured. Due to this nature, FIB is

termed as “Fictitious boundary forcing term”.
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ε
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in
(1
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))

Figure 4.4: Variation of function min(1, f(ε))

4.3.5 Different shapes of Solid particle

As said earlier, CFD simulations are carried out for different shaped particles. The

various shape profiles used are as follows:

Sphere: R = 0.037 m

Cylinder: H = 0.05 m; R = 0.04 m

Cross: W = 0.02076 m;

Sphere with bumps were created using following function:

r = R−A ·max(cos(10 · θ), 0) (4.6)

All the variables are explained in fig. 4.5. The bump amplitude, A was varied to

following four values: R/20, R/10, R/7, R/2.
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4.3.6 Validation

This section provides the validation of CFD results for spherical and cylindrical ice

particle against the experiments conducted by Shukla et al. [2]. Figures 4.6 and

4.7 shows the comparison of CFD and experimental results. The submodel results

obtained in chapter 2.2 are also plotted for reference. In the experiments, radius was

calculated using the planar laser-induced fluorescence technique [2]. So, essentially,

maximum horizontal dimension of the ice particle was reported in the experimental

results. Thus, two different radii are plotted in fig. 4.6 and among them, rmax

(maximum horizontal dimension of the ice particle) should be compared with the

experimental results. For cylindrical particle, only rmax is plotted. It should be

noticed that CFD simulations and Submodel equations provide comparable results

regardless of the fact that it took around 10 days to run the source code [59] for

spherical particle and cylindrical particle each, and only few seconds took to solve

the submodel equations. However, with the CFD simulations, we get detailed infor-

mation about the characteristics of melt flow and melting front location which will

be explained in section 4.4. Owing to this validation, the provided CFD model can

be used to predict melting process of any arbitrary shaped particle.
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(a) (b)

(c) (d)

Figure 4.5: Shape parameters for (a) cross shaped cylinder; (b) sphere with bumps
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Figure 4.6: Time history of the ice sphere radius predicted numerically using CFD-
based model, subgrid model and measured in experiment [2]; ravg = Volume average
radius of the ice particle, rmax = maximum horizontal dimensions of the ice particle
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Figure 4.7: Time history of the ice cylinder radius predicted numerically using CFD-
based model, subgrid model and measured in experiment [2]
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4.4 Results

4.4.1 Flow characteristics/structure of cold melt

As the ice particle melts, the cold melt will flow down into the surrounding water

resulting in the flow patterns in the bulk water. Cells in downstream direction of

cold melt flow will have some finite velocities caused by these flow patterns. This

phenomena is important in many physical processes. For instance, applications in

which solid substance is to be dissolved into the liquid, intense cold melt flow will

help the cold melt from solid mix faster in the liquid. To study this flow intensity, we

make use of global velocities of the entire fluid in the cavity. Namely, we introduce

the volume-averaged flow velocity as follows:

Urz =
2

R2
oHo

∫ Ho

0

∫ Ro

0
r
√
u2
r + u2

zdrdz (4.7)

where Ro = 0.22 m and Ho = 0.44 m is the radius and height of the cavity

respectively. To analyze Urz for different ice particles, we scale it using following

parameters:

Uref = νlGr
1/3/Lc; tref = LcHo/νlGr

1/3; Gr =
gβ(Tw − Tm)L3

c

ν2
l

Here, Lc stands for the characteristic length of the particle i.e. the maximum

dimension of the particle along the vertical axis. So, Lc for regular and irregular

spherical particles will be the sphere radius, R = 0.037 m; for cylindrical particle, it

will be H = 0.05 m and for cross shaped particle, 5W = 0.1038 m. Variation of the

dimensionless volume average velocity, based on the scale parameters introduced

above, for different shapes of ice particle is shown in fig. 4.9.

Interestingly, all the plots show a rapid rise for first few minutes after which the

volume average velocity starts decreasing. This first peak occurs when the cold melt

reaches the walls of cavity. Thus, it occurs nearly at same time for all the particles.

Figs. 4.10a, 4.14a, 4.16a, 4.18a show the snapshots when the first peak occurs for

these ice particles. Until this peak, cold melt flow exhibits many vortices. Volume

average velocity keeps on increasing because simply there is nothing to discontinue

cold melt flow. As size of the particle decreases, volume average velocity is expected

to decrease. However, immediately after the first peak, a sharp decline in Urz can be

noticed for all the particles. It is because of that fact that as the cold melt reaches

the cavity walls, the overall process of melting reaches a pseudo-steady state. after

which it exhibits lesser number of vortices. So, volume average velocity shows a
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sharp decline.

It can be seen that Cylindrical and cross shaped particle exhibits the maximum

values of Urz among all particles. Also, in the snapshots of CFD simulations, it can

be seen that cold melt flow in case of melting of cylindrical and cross shaped particle

exhibits larger number of vortices as compared to other particles. This is because

of the flat horizontal surface of these two particles. For spherical ice particle, cold

melt flows along its curved surface until it reaches the bottom most point of sphere.

Thereafter, cold melt flow breaks into the bulk water in streamlined manner with

almost no vortices. For cylindrical ice particle, cold melt can break into the bulk

water at any point on its bottom surface. For this reason, volume average velocity

has higher values for cylindrical ice particle as compared to spherical ice particle.

The same phenomena stands true for cross shaped particle. Since cross shaped

particle has more surface area along the horizontal axis, cold melt flow in this case

exhibits more vortices and its Urz curve lies above the curve for cylindrical particle

as can be seen in fig. 4.9a.

For cross shaped cylindrical particle, curve shows a sharp decline at 230 seconds.

At this time, it looses its extended cylindrical arm. So, it changes to a simple vertical

cylinder as shown in fig. 4.14c and 4.15c. Thereafter, cold melt flow is essentially

a streamlined flow with no vortices. On the other hand, cylindrical ice particle

retains its cylindrical shape throughout the time of melting. However, it melts

faster from the vertical base ends as compared to the horizontal curved surface due

to which it attains the shape of circular disc as shown in figs. 4.12d and 4.13d. Since

cylindrical particle has a surface along the horizontal axis throughout the entire

process of melting, velocities in cold melt flow die away slowly. At 280 seconds,

volume average velocity curve for cylindrical ice particle overcomes that for cross

cylinder shaped particle.

Urz curve for spherical particle with bump amplitude, A = R/2 follows the

same trend as other particles. However, at 210 seconds, volume average velocity

unexpectedly starts increasing. This is the result of the fact that at this time,

this particle loses its big mass at the center along the vertical axis as shown in fig.

4.18b and 4.19b. Due to this sudden loss, huge cold melt flows down into the bulk

water increasing the volume average velocity for a while. After a while, as particle

size continues to decrease, average velocity starts decreasing again. It can be seen

from the Urz curves in fig. 4.9b that this temporary increase in the velocity is less

dominant for spherical particles with lesser bumps.
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4.4.2 Solid phase front morphology

Evolution of solid phase front in CFD simulations is explained using snapshots

of temperature contour and snapshots of flow vectors (magnitude proportional to

length) as shown in figs. 4.10 - 4.19. Thermal Buoyancy is the primary flow driver in

all the simulations. Figures 4.10 and 4.11 shows the snapshots of CFD simulations

carried out for the melting of spherical ice particle. It can be seen that towards the

end of simulations, it takes the shape of ellipsoid. The different values of ravg and

rmax in fig. 4.6 also demonstrates the same. This is because of the fact that cold

water melt (melted water) envelopes the bottom surface of the sphere. As ice particle

starts melting, the melted water flows down along the particle surface and mixes

with the bulk water. As it flows along the particle surface, it creates an envelope

on the bottom surface resulting in lower temperature gradient and thicker thermal

boundary layer. This causes bottom surface to melt negligibly and top surface to

continue to melt. Infact, bottom surface of the sphere stays at the nearly the same

location throughout the process of melting. A sharp change in the slope of solid-

liquid interface at the end of simulations can be observed near the top right portion

of sphere due to this non-uniform melting over the surface. Also, there aren’t many

vortices seen in the flow of cold melt due to the reasons explained in section 4.4.1.

The flow appears to be in laminar regime. Since the flow is less intense, volume

average velocity has the least values in this case among all the particles as seen in

fig. 4.9a.

Figures 4.12 and 4.13 shows the snapshots of CFD simulations carried out for

cylindrical ice particle. Zoomed view of velocity vector plot shows the flow char-

acteristics of cold melt around the ice particle. It can be seen that ice particle

retains it’s cylindrical shape throughout the entire melting process. It melts fastest

through its top surface because of the same reason as described above for the case

of spherical ice particle. The cold melt can be seen enveloping the bottom surface

of particle in the zoomed views of velocity vector plot. Thus, bottom surface of

the cylindrical stays at the same location throughout the entire melting process.

Due to this non-uniform melting, towards the end of simulation time, it attains the

shape of circular disc. Since cylindrical particle has the most non-spherical shape

at the end of simulations as compared to other particles, it has the maximum vol-

ume averaged velocity towards the end of simulations. In comparison to spherical

ice particle, cylindrical ice particle exhibits much more vortices mainly due to the

flat bottom surface as explained in section 4.4.1. Fig. 4.21 shows the variation of

volume with time for different particles. For each particle, volume is divided by its

initial volume. Clearly, cylindrical ice particle melts faster than spherical particle
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because cylindrical particle has higher surface area per unit volume. Higher surface

area results in faster melting.

Figures 4.14 and 4.15 shows the snapshots of CFD simulations carried out for

cross cylinder shaped ice particle. Similar to cylindrical particle, many vortices

can be seen here as well in downstream of cold melt flow. Fig. 4.21a shows that

cross shaped particle melts fastest among all the particles. It has melted almost

completely after t = 600 seconds. This is because of its highest surface area per

unit volume. In other words, cross shaped particle is exposed to the bulk water

to the greatest extent among all the particles. Fig. 4.14c and 4.15c shows the

fragmentation of the extended arm of cross shaped particle. As described in section

4.4.1, this arm gets completely fragmented at 230 seconds. This results in the

sudden decrease in the surface area per unit volume thereby decreasing the rate of

melting as seen in fig. 4.21a. Also, after the extended arm is fragmented completely,

cold melt flows along the vertical curved surface of particle and breaks away at the

bottom most point. So, it doesn’t exhibit any vortices thereafter.

Figures 4.16-4.19 shows the snapshots of CFD simulations carried out for spher-

ical particle with bump amplitude, A = R/7 and A = R/2. CFD snapshots for

spherical particle with bump amplitude, A = R/10 and A = R/20 are not shown

here since there isn’t much difference between the physics behind. As it can be

seen from the CFD snapshots and fig. 4.21b, particle with higher bumps melt much

faster because of its higher surface area. Also, particle with higher bumps exhibits

larger number of vortices in its cold melt flow. This is because, cold melt ceases to

flow along the particle surface with higher bumps. In case of amplitude A = R/7,

it easily flows along the surface and breaks away into the bulk liquid at the bottom

most point. On the other hand, in case of amplitude, A = R/2, cold melt flow

breaks away from the surface well above the bottom most point which results in

larger number of vortices. Similar to cylinder, strong jets can be seen here as well

in downstream of cold melt. Also, due to its higher surface area, it has lost much

more solid mass as compared to spherical particle. The particle with lesser bumps

attains the spherical shape at the end of simulations whereas other particle follows

completely different phase front morphology. Both the particles lose bumps at the

top surface faster as compared to the bottom surface as can be seen from figs. 4.16c

and 4.18c. This is caused by the thicker thermal boundary layer on the bottom

surface due to the flow of cold melt.
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Figure 4.8: Variation of volume averaged velocity (Eq. 4.7) with time for (a) sphere,
cylindrical and cross shaped cylindrical particle; (b) spherical particles with different
bump amplitude (Eq. 4.6)
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Figure 4.9: Variation of volume averaged velocity (Eq. 4.7) with time for (a) sphere,
cylindrical and cross shaped cylindrical particle; (b) spherical particles with different
bump amplitude (Eq. 4.6)
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(a) (b)

(c) (d)

Figure 4.10: Snapshots of the vector plot of velocity at time = (a) 53.5, (b) 114, (c)
300, (d) 600 seconds predicted numerically for the case of melting of spherical ice
particle
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(a) (b)

(c) (d)

Figure 4.11: Snapshots of the contour plot of temperature at time = (a) 53.5,
(b) 114, (c) 300, (d) 600 seconds predicted numerically for the case of melting of
spherical ice particle
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(a) (b)

(c) (d)

Figure 4.12: Snapshots of the vector plot of velocity at time = (a) 66.5, (b) 160, (c)
300, (d) 600 seconds predicted numerically for the case of melting of cylindrical ice
particle
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(a) (b)

(c) (d)

Figure 4.13: Snapshots of the contour plot of temperature at time = (a) 66.5,
(b) 160, (c) 300, (d) 600 seconds predicted numerically for the case of melting of
cylindrical ice particle
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(a) (b)

(c) (d)

Figure 4.14: Snapshots of the vector plot of velocity at time = (a) 64, (b) 119.5, (c)
225, (d) 446 seconds predicted numerically for the case of melting of cross shaped
ice particle
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(a) (b)

(c) (d)

Figure 4.15: Snapshots of the contour plot of temperature at time = (a) 64, (b)
119.5, (c) 225, (d) 446 seconds predicted numerically for the case of melting of cross
shaped ice particle
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(a) (b)

(c) (d)

Figure 4.16: Snapshots of the vector plot of velocity at time = (a) 38, (b) 116.5, (c)
300, (d) 600 seconds predicted numerically for the case of melting of spherical ice
particle with bump amplitude, A = R/7. See eq. 4.6
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(a) (b)

(c) (d)

Figure 4.17: Snapshots of the contour plot of temperature at time = (a) 38, (b)
116.5, (c) 300, (d) 600 seconds predicted numerically for the case of melting of
spherical ice particle with bump amplitude, A = R/7. See eq. 4.6
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(a) (b)

(c) (d)

Figure 4.18: Snapshots of the vector plot of velocity at time = (a) 51, (b) 236.5, (c)
300, (d) 600 seconds predicted numerically for the case of melting of spherical ice
particle with bump amplitude, A = R/2. See eq. 4.6
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(a) (b)

(c) (d)

Figure 4.19: Snapshots of the contour plot of temperature at time = (a) 51, (b)
236.5, (c) 300, (d) 600 seconds predicted numerically for the case of melting of
spherical ice particle with bump amplitude, A = R/2. See eq. 4.6
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(a) (b)

(c) (d)

Figure 4.20: Zoomed snapshots of the vector plot of velocity at time = (a) 300
seconds for spherical particle; (b) 160 seconds for cylindrical particle; (c) 119.5
seconds for cross shaped particle; (d) 51 seconds for spherical particle with bump
amplitude A = R/2. See eq. 4.6
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Figure 4.21: Variation of volume with time for (a) sphere, cylindrical and cross
shaped cylindrical particle; (b) spherical particles with different bump amplitude
(Eq. 4.6);For each particle, volume is divided by its initial volume.
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4.5 Conclusions

A CFD-based model was provided to analyze the physics behind the melting process

and to understand the melting process for arbitrary shaped particles. The results

of the model for spherical and cylindrical ice particle were validated against the

existing experimental data in literature [2] with good agreement. The provided

CFD model was implemented in an open-source code [59]. Following were the main

conclusions that can be drawn from the study in this chapter:

• The phase-change thickness parameter, δT was found to have the optimal value

of 0.1 K depending upon the solid-liquid interface thickness and the numerical

stability of the model.

• The grid of 450x900 cells was found to be sufficient to resolve all the major

aspects of process namely the details of flow, temperature and interface lo-

cation. Using the coarser grid resulted in false values of temperature. For

coarser grids, few cells could be seen exhibiting the temperature values higher

than 293 K i.e. higher than the initial bulk water temperature. With total

450x900 cells, 151 cells were present along the particle diameter on y-axis.

• The flow characteristics of the cold melt were studied by analyzing volume

average velocity against time. Particles with the sharp edges and flat surface

parallel to the x-axis exhibit higher velocities of cold melt. So, for mixing

applications, those shapes are preferred.

• Cross shaped particle retained its shape till t = 213 seconds after which the

extended arm in the right gets fragmented as seen in fig. 4.14c. Sphere particle

with bump amplitude, A = R/2, gets fragmented through the center at t =

230 seconds as shown in fig. 4.18b. Sphere particle with bump amplitude, A

= R/7, maintain the overall spherical shape throughout the melting process.

However, it lost its bumps on the upper surface at t = 512 seconds thereby

attaining a uniform surface with no bumps towards the end of melting time

as seen in fig. 4.16d.

• The cylindrical ice particle, unlike other particles, retained its shape until

the end of simulation time. Since it is the only particle at the end with a

flat surface parallel to the x-axis, it has the highest volume average velocity

towards the end of melting process. Spherical particle developed an ellipsoidal

shape at the end as seen in fig. 4.10d.
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• Particles with the highest surface area to volume ratio, lost the highest fraction

of mass after 600 seconds as can be seen in fig. 4.21.

• The CFD model can be run for any arbitrary shaped particles and results

obtained can be used to develop submodel equations for them. Using the some

shape characteristic parameters, submodel equations provided in chapter 2 can

be modified and used.
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Chapter 5

Conclusions

This work attempts to develop and validate new subgrid models describing heat

transfer between the bulk flow of liquid or gas and moving particles undergoing phase

under the influence of forced/mixed/free convection. Specifically, in chapter 2, a new

semi-empirical submodel for a particle undergoing phase change phenomena under

the influence of convection has been developed. Comparison with experimental

data available in the literature showed very good agreement. In particular, we

showed that, applied to free convection flows, the use of the film temperature, which

is an average of the bulk and surface temperature, gives better agreement with

experiments compared to the use of the bulk temperature as a reference. At the

same time, when applied to a forced convection or a case when free convection can

be neglected, the use of bulk temperature produces results closer to experimental

data. Performances of two-temperature formulations of the model are better in

comparison to simple one-temperature models. Finally, our model presented in this

work can be used in Euler-Lagrange models to “bridge” interfacial (micro) heat

and mass transfer with large-scale models used for the modeling of particulate flows

where a phase change effect plays an important role. Thus, submodels described in

this chapter can be employed for the modeling of equiaxed dendrites moving under

the influence of convection in the melt.

In chapter 3, a new semi-empirical submodel for a solid particle undergoing phase

change in gas under the influence of convection has been developed. The results

were in good agreement with experimental data. The importance of evaporation

term in the heat balance on particle surface was illustrated and it was found that

omitting this term results in completely different particle size predictions. Also, it

was found that emissivity of water layer is significantly lower as compared to the

bulk water emissivity. Finally, our submodel provided in this chapter can be used in
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Euler-Lagrange models to “bridge” interfacial (micro) heat and mass transfer with

large-scale models used for the modeling of particulate flows where a phase change

effect plays an important role. The possible applications of this numerical model

include modeling in scientific fields like meteorology, material science and aerospace

engineering.

In chapter 4, a CFD-based model was provided to analyze the physics behind the

melting process and to understand the melting process for arbitrary shaped particles.

The results of the model for spherical and cylindrical ice particle were validated

against the existing experimental data in literature [2] with good agreement. The

provided CFD model was implemented in an open-source code [59]. Following were

the main conclusions that can be drawn from the study in this chapter:

• The phase-change thickness parameter, δT was found to have the optimal value

of 0.1 K depending upon the solid-liquid interface thickness and the numerical

stability of the model.

• The grid of 450x900 cells was found to be sufficient to resolve all the major

aspects of process namely the details of flow, temperature and interface lo-

cation. Using the coarser grid resulted in false values of temperature. For

coarser grids, few cells could be seen exhibiting the temperature values higher

than 293 K i.e. higher than the initial bulk water temperature. With total

450x900 cells, 151 cells were present along the particle diameter on y-axis.

• The flow characteristics of the cold melt were studied by analyzing volume

average velocity against time. Particles with the sharp edges and flat surface

parallel to the x-axis exhibit higher velocities of cold melt. So, for mixing

applications, those shapes are preferred.

• Cross shaped particle retained its shape till t = 213 seconds after which the

extended arm in the right gets fragmented as seen in fig. 4.14c. Sphere particle

with bump amplitude, A = R/2, gets fragmented through the center at t =

230 seconds as shown in fig. 4.18b. Sphere particle with bump amplitude, A

= R/7, maintain the overall spherical shape throughout the melting process.

However, it lost its bumps on the upper surface at t = 512 seconds thereby

attaining a uniform surface with no bumps towards the end of melting time

as seen in fig. 4.16d.

• The cylindrical ice particle, unlike other particles, retained its shape until

the end of simulation time. Since it is the only particle at the end with a

flat surface parallel to the x-axis, it has the highest volume average velocity
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towards the end of melting process. Spherical particle developed an ellipsoidal

shape at the end as seen in fig. 4.10d.

• Particles with the highest surface area to volume ratio, lost the highest fraction

of mass after 600 seconds as can be seen in fig. 4.21.

• The CFD model can be run for any arbitrary shaped particles and results

obtained can be used to develop submodel equations for them. Using the some

shape characteristic parameters, submodel equations provided in chapter 2 can

be modified and used.
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