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:*ﬁhnew faster algorzthm ror l1near determ1nlstic System is’
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In th1s thesis, a fast algorxthm for the parametEr

jadent1f1cat1on of linea: stochastxc systems 1s derzved and -

fl\

";1ts unbzased convergence property iw prbved» B !“‘“ - " o
| J.‘ ‘_V_ ) . ‘ X ) A. s | \. ‘/ " ) d,\q».

4 ‘., o~

) To lay the ground work for the above development,

1)

“aw

‘Jder1ved by 1mprov1ng the prev16usly publlshed Kudva Narendra
‘;algorlthm Geometrxc 1nterpretatxon d? the Kudva Narendra
algorathm helps one/to understand how th1s algor1thm works

" and consequently to 1mprove the convgrgence rate thus

1 dbresultzng 1n a rapldly convergxng algor:thm with reduced

v
’

';computatlonal requzrements.;;

b4
-

\ -

The algprlthm for the stochastlc system 1s obtained by
}mod1fy1ng the Extended Kalmanﬁngter‘aigortthm u51ng a
canonzcal form of the 1nnovatlons representatlon and us1ng
the concepts deveioped for the determ1nlst1c case. Thls
development reveals that other ex1st1ng algorlthms whzch
were\déveloped u51ng dlfferent approaches can be shoWn to be

mod1f1catlons of. thp EKF algor1thm." : i -

bblThe'effectiveness Of'this algorithmfis oompared with
' two other exlstlng algorlthms by means of 51mulat1on

,-studles. These studles show ‘the super1or1ty of the new

TR



algo:ithm.Vith regpect.to,coﬁvergénce rate aqd,comput@tiqnal
' requirements. | | o |
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1.1 xaerodaet!on
| Any successful tpplicttiou of modern ﬂontrol ‘theory

;.

largely depends on the intorlleioﬂ Q%nil‘bli with ravtvd to
tba phyuicul ly'taa of inecrwl:. Thiu intatuo:ion is.

wu;uully incorporatcd into s mathematical model that behaves
1d:nticnl to the physical system in terms of itn

‘input~auepnt rtzitionn.k The nnthtmatidil model can bo
charactcri:cd mainly by tvg alpoctcx

i a. strocture 4 |

‘ b. parameters
Therefore, the qollociion of the information about the
physical-sfstom is equival;nt to the determination of the
structure and pﬁ'inetors of the methematical qucl on the
basis of input and gptput information (Zadoh 1962). Such a

determination is cften rotetted to as the 1dtntit1cation

problem and is the main subject pursued in this thesis.

It is extremely useful if it is'péssible'to identify a
black box only with input and output information. However,
a basic pr;nciple of identification is that a completely
‘unknown system cannot beé identified. The fxrst step, thgn,
~to beltaken_zn the formulatlon of an_identification problem
}s‘to characterize the system. This Eharacterization, in |

general, invoives the selection of gn appfopriate structure



. for the system. The strutture chosen should reflect factors

such as: any a przorz knoLledge of the system and the
ult1mate purpose of thew1dent1£1cat1on.

‘Due. to the“adVent*of the digital computer,»it‘is now
lp0551b1e to employ sophlst1cated methods to control systems.
Such methods requ1re, however, that on- 11ne estlmatlon of
the parameters be made even as the 1mplementatlon of the

3

| control scheme is in progress. Recur51ve est1mat1on is

. S
'often mandatory 1n many modern adaptlve control systems.
h Thus, con51derable attentlon has recently been pald to

recursive 1dent1f1cat1on algor1thms.

4

Of the many identification techniques which have. been
developed in recent years, the model reference technique,

posseSses’a(s;rong;intuitive appeallin that (it fully

”utilizes the\advantage of the recursive alégrithm The use

14

of the tefm model reference in the context of 1dent1f1cat1on

perhaps needs some justlflcatlon ' As f1rst conce1ved by
'Wh1ttaker (1958) for a1rcraft control the model reference
technlque adjusts the controller parameters in such a manner
;that the parameters of the compos1te system namely, .he"
;controller and .the system to be controlled approach the ;,'
parameters of the reference model in. some opt1ma1 sense.

‘The philosophy of thlS technlque can be used for the
,1dent1f1cat10n problem by adjustlng the model parameters.to.

follow the parameters of the unknown system, Whlch 1sﬁlooked

{)O

upon as the reference system.'vThls adjustment is best done

°

[Ea N, )



in.a»recursive‘fashionr‘eh»natural waycto come up with a
suitable recursive‘algorithm would be'to introduce_a~CQst
functlon in terms of the error between the mode andxthe"
system and to dev1se an adjustmEnt mechanism for m1n1mlz1ng
the cost function. This appro;Zh not only converts the - -
prbblem of.the model rererence identiflcation into an
'fopt1m1zat1on problem but also prov1des 8 quant1tat1ve

*measure of the perfonmance of the adjustment mechanism.

The recur51ve least squares (LS) algorlthm is perhaps

' the best known and wldely used. for llnear systems (Astrom,

et al., 1971) It is well known that this algorlthm leads

“to a blased estimate when noise, if present 1s correlated
‘as 1s the case in. the 1dent1f1cat10n problem of linear

stochastlc systems. In order to av01d th1s ser1ous drawback,
" a number of mod1f1catlons has . been proposed (Isermann,

‘et al,,,1974; Sar1dls, 1974; Soderstrom et al., . 1978)

Among them the Extended'Least Squares (ELS)'algorithm
(Panuska, 1968- 1969) 1s the eas1est to 1mplement and
consequently has galned pOpular1ty in real- 11fe appllcatlons

.(L]ung, et al.,t1975) The basic 1dea of thls approach is
that noise is regarded as an,addltlonal input 51gnal and the
LS technlque 1s applled to it. . Slnce_the n01se is not,
available for measurement, it is replaced by‘previousb
'residualsr Early 51mulatlon stud1es seemed to 1nd1cate that
this method had good convergence property (Panuska, 1968; |
Kashyapfr1974). But a study carrled_out by Ljung, et. al

7

[

//’

. l'fs



(197%“ 1977) howevet,dhés'reuealed that contrery toﬂprior‘
, symulat1on results, the ELS method wxll not always converge R
';to the rue values of the parameters S1nce convergence 1s -~
'idepende t on a condztlon predeterm1ned by the unknown
process arameters. This nonconvergence,,whth apparently
stems from the replacement of noise by prev1ous re51duals,

" can be c rrected by the 1ntroductlon of ar prefllter ;
u‘1nvolv1ng the unknown parameters. Approx1mat1ng the
prefilter recurs1vely w1th the updated est1mates results in
the recur#1ve,approx1mate maximum llkellhood (RML) method
'(Soderstr m, 1973) ‘This algorlthmtwas developed by an
approx1mat1on of the off- 11ne max1mum llkellhood (ML) method
d.(Astromyﬁe al., ]966) and it possesses>a n1ce local
‘convetgence propertjt No élohal convetgence‘results~are,
'however,tavailable‘atVthis timev(Panuska,'19§0b).

By the inclusion of thefunknown oa:ameters into its

- state vectorta llnear'etochestic system hecomes e nonlinear'
stochestic sjstem,‘ Hence the identificatlon problemfof a
linearfstochestic system;is-equivelent to the stateli
eStimation_problem’oﬁ a’nonllnear.stochastic»System;“;Anong
the“numerous appEOaches available for thefnonlinear.
-estimation problem, the Extended Kalman Filter (EKF)
approach turns out to be suitéble.in meny cases (Qaz#ﬁneki;
1970).;n51n¢e the EKF approechfis beeed_on linearization at
each”step-of'iteration_around the previous estinates and the
application of‘the Kalman"filtering theory (Kalman,"WQéO),

e



'the algorlthm usually suffers from the lack of global
‘"stabxllty and often 1nvolves excess:ve computat1on. Th1s
prov1des the mot1vat1on for mod1fy1ng the EKF algorithm into

‘purely a’ parameter 1dent1f1er in- order to reduce the

computatronal requirements. - ] o ’ <

.

'The main d1ff1culty assoc1ated w1th the stochastlc

“7ldent1f1catlon problem has been 1argely the lack of methods

Ay

for the analy51s of convergence propertles. Thls_motlvated

,,exten51on of the stab111ty theor1es, which had been
deg%loped ma1nly for the determ1n15t1c problem, to the
‘stochastlc problem (Kushner, 1967- Jumarie, 1979). Of a
, number of stablllty theorles, the hyperstablllty theory
‘(Popov, 1962-‘2ames, 1966) has been most extensively used 1np‘
'varlous appllcatlons to the determ1n1st1c problem in order
vto gbtaln adapt1ve stable’ systems (Landau, 1974) Thus, it
is a rather natural cho1ce to extend the appllcable area of
'ithe hyperstablllty theorem ‘to the stochastlc 1dent1f1cat1on'
O problem. Th1s vas’ flrst successfully achieved by Landau

- (1976) w1th an: 1ntroduct10n of a decrea51ng gain matrix to 3
:estlmate the parameters of a l1near-system contamlnated by a

. ’ /

colored noise. ,This'work was'again extended by Ljung ’ //

-(1977a) to estlmate the parameters of the noise as vell as
'the system. The real 1mportance of the. Ljung s work /
'however, rests on f1nd1ng the role of a p051t1ve real

Aatransfer functxon in the ELS method.’ ThlS f1nd1ng not only

enables one to deflne ‘the reg:on of convergence but also



"suggests~a wav lead{ng to.a.convergent‘algdrithm;v

'f1 .2 Scope of the The51s Co o
e mann object1ve of ‘this thes1s is the dlscu551op
and the development of several model . reference adapt1ve tos

.1dent1f1cat1on algor:thms for l;near-stochastlc systems,,?, -

Te e

- In Chapter 11, a. representatlon of the 1inear
StOChaSth system is fully d1scussed in order to fac111tate
the formulatlon of the 1dent1f1catlon problem treated 1n
Chapter Iv. Poss1b1e approaches to be taken, ‘in general, to

this problem are also dlscussed

Chapter I11 presents a\fast adapt1ve 1dent1f1cat1on

:method for a 11near determ1nlstfoﬁ5ystem. The ma1n reason’,
. A
‘for do;ng thls is to develop certaln\}deas whlch Wlll be

\

used to solve the 1dent1f1cat1on problem for\the llnear »';ff
stochastic system. - The 1dent1f1catlon problem\? ejl S

stochastic case is, in general _a nqnlznear problem and\not ‘
amenable to direct solution. Therefore, a solut1on will be ?;,‘

. attempted by linearization. 1In th1s task the,con;epts usedv

’

+

‘in the development of the_algorithmvfor,a,deterministfo‘
“system will be QSefgl.‘ | | e
In.Section'3.2; a geomﬁtricfinterpretationJof the
Kudva—NarendraCSCheme (Kudva,bet al., 1973)-is givenr ThlS
'approach, whlch is very. cruC1al to the development of the
fast algorithm, provides greater insight into and - ;

R

consequently a clearer understanding of the K-N scheme.. In



-

Sectxon 3.3, the concept of orthogonal gradzent 1s usk d in
| order to develop the’ a196r1thm ﬁor rap1d converg ce, In ‘
Sectlon 3. 4 the effectlveness of the algor1thm proposed is

demonstrated hy the simulationustudles

Chapter v deals W1th the 11near stochastxc :’_\“%f
1dent1f1cat1on problem.\ Since this 1dent1flcat1on problem
.as formulated 1s 1nherently a nonl1near estlmat1on problem,_
| approxzmatzon technlques are . used to obtalm a fllter that is
phy51cally real1zab1e. Among the many technlques that can- »
be uSed the EKF techn1que is of partlcular 1nterest because
Qf its s1mp11c1ty and thus popular1ty 1n real applxcatrons.
dSectlon 4. 2 dlscusses the appllcat1bn of the EKF to the
1dent1f1catlon problem. JIn an attempt'to reduce,the
computat1ona1 requ1rements which arise in this‘approach

mod1f1cat1ons of the,EKF algor1thm are made resultlng in two

. 51mp11f1ed algorlthms. These are glven in Sectlon 4, 3 and

4;4. For obv1ous reasons these are labelled as EKF-M1 and

EKF-MZ respectlvely : Though these two algor1thms have

5us1m11ar1t1es to SOme ex1st1ng ones to the author’'s best

'~knowledge, the exact algorlthms reported here have not

3

appeared in the literature. - . Q; . v

Convergence analysxs 1s probably one of the most’
'1m brtant means to assess the usefulness of 1dent1£1catlond

'al orlthms. However, 51nce ERF~-M1 turns out to be similar

'to the RML algorlthm, no deta1led dlscu551on of its
S L : :
’con ergence propertylls.1nc1uded'here. ~In ‘Section 4.5,



b

,attention is therefore focused on the covvergence property N
of EKF-Mz.i rn chtion 4, 6, a generalxzat1on of EKF—MZ
'Qflead1ng to a‘tﬂfrd algorxthm BKF-M3 1s dz_cussed. L ;
'Comparison of the features of EKF-MB thh hose ot two other.r
"~ex1st1ng algorithms, namely, the RML method (Soderstrom,~ '

'd1973) and the ELS method (Panuska, 5968 196%).”

The usefulness of EKF-MB 1s evaluated Ly means’ of
sxmulatzon studxes. For purpoee of»compar1son, eimuletionr-
. s

studxes are’ also carr1ed out w1th the RML and ELS

algorithms. These resuls are reported in Chapter v, v .

Chapter VI prov1des a summary of the thes1s,;

conclu51ons and suggest1ons for further research



CHAPTER 11
- . i . /’ ’ ) .
FORMULATION OF IDENTIFICATION PROBLEM

ol

2.1 Introduction n

s An 1dent1f1cation problem is characterized by three
-quantities (zadeh, 1962). a class of model, a class of input
signals:and a criterion. The selection of the class of
. models cenerally leads to the determination of the structhre'
that mathemat?cally represents the system. Since input
signals have a profound effect on the performance of the
.1dent1fmcation scheme some limitations .are usually 1mposed
onjinpnt signals. It has been shown (Aoki, et al.,v1970;- R
Yuan; et al;, 1977) that the persistent excitationvcondition
4of input signals is sufficient in many cases to obtain
:consistent_estimatesvor improve the'performanceiof thehv
fidentification scheme. However, the seiection of 1nput
v51gnals itself is the ‘subject of an 1nterest1ng but separate

area of research hence we will not pursue thlS matter any

further.

The'structure”ofimodels describing the system‘gnder
consideration wields considerable influence on the
'complexity ofvidentification schemes in various'ways such as

computational requ1rements, con51stency ‘and uniqueness of
.estlmates, etc. Since different 1dent1f1cation methods are
necessary ‘for different representations there are very few

general rules available by which the optimality of 'the model
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sfructure chosen_can'be.determined. A conrvenient
characterization of the model for\@he recursive model
reference approach to the ident1ficatxon problem can be made
through the parametric representatlon since this is

relatively easy to implement on computers.

In the parametric tepresentation of linear systems,
the choice of mode}‘structure by which the system is
represented is iﬁ%luenced by the number of unknown
parameters to be identified and the applicability of the

‘real-time optimization teohniquesbwhich'are readily

available now. The number of parameters to be identified is

v

directly related to the efficiehcyjof the identification

algorithm as well as the unigqueness of the solution because

there exists a limit‘fo number of the paramters which can be

: uniquely determined by the input—outpotlrelations. Since
Vt;e identificatiohfproblem.is often formulated as an
optimization problem by intrOducing a,coét fuocoion, the
applicability of the avallable opt1m1zatlon techn1ques
should be taken 1nto account in the choice of a model

structure.

In th1s chaptef we restrlct our d1scussxon to llnear
multllnput singleoutput (MISO) stochastic systems for the
sake of s1mpl1c1ty. Since a lznear‘mu1t11nput multloutput
(MIMO) system can be regarded as a’group of MISO systemé
each of’which has an‘input-output’pair associated with it,

the exténsion to MIMO»SYStems can be readily carried out.

10
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2.2 Rep:oéentatiooL0£ MISO Linqgf Stochaatic Sy;tems

Kalman (1963) has shown that onlp»the comﬁietely
controllable and completely ob“;vable part of a system can
be charactorxzed from input-output relations., Thus, the\
System that is of‘intorest in this‘thesis is one which isl
completely controllable and completely observable. The‘

phase var1able representat1on (Chen, 1970) of such a system

L

is:
k(1) = Ax (k) + bufk) "+ olk) . (aa)
&(k)*’ - h':x(\k)’:# _vv(k)“ - o o | (2v.1.bv)
' Qoore | x(k) is ah’olestate vector, -

u(k) is én'iﬁput variable, -
w(k) is an nx1 system noise,
'y(k) is an output variable,

v(k) is a measurement noise,

A= ja|]—| -
. S 0 o ‘
. . h=[10---:0]’, |
,a.z [ait"' an]'r :
b = [b1 bn]'l o 'x\

'I‘is the unity matrix of appropriate dimension.

~and ' denotes tranpose of a matrix.

Here w(k) and »(k) are assumed to be N(O;Q) and N(0,r),

respectively. By means of Kalqan filtering theory (Kalman,
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_1960) the number of the uﬂknovn parameters wvhich
characterize noise can be reduced by an innovations
_representation (Kailath, 1968; Geesey, et al.,‘1969- Aetrdm,
1970) to.a form which requires a total of only 3n+1 unknown .
yparameters to completely characterlze the n th order system ‘;&
to be identified agalnst [2n+1]+[n(n+1)/2] unknown.
.parameters in equation (Z.L), namely
x(k+1) = Ax(k) + bu(k) + av(k) _ (2.2a)
| : g . T
y(k) = h'x(k) + v(k) - L (2.2b)
where v(k)mis Nﬁo;w),
w = h'Ph + r
P is the steady- state covarlance matr1x of the
‘ state error of the Kalman filter, o \
and d4d ={d, --- d,]"' is.the'steady state Kalman filter
' 'gain: S - ' - - S
Since the system matrlx A in equat:on (2.2a) contains the
'unknown vector a, 1t is useful to replace the partxally
nknown matrix A w1th F, a known matrlx but preservzng the : Y

same structure of the matrix A for the 1dent1f1catlon

problem‘

vKuation (2. 2) can be thus rewr1tten as:
/

/

x(k+1) = Fx(k) + (a-£)x,(K) + bu(k) + dv(k) (2.3a)

y(k) = hix(k) +v() . [2.2p]




—

vhere xy(k) = hx(k) - R

Pl — T
o ‘ —

\ . ‘ —— . ’ - ‘\“
and f - [ f . f,n ] ' , . . . \N i
: . 1 , | , | \
Using equation (2.2b), equation (2.3a) becomes

;\.
/

x(k+1) -_Fx(k)‘+ (t-é)v(k) + (a=£)y(k) + bu(k), | (2.3b)
y(k) = h'x(k)'$ v(k) \ o L "'\* [2.2b]

where c= a -~ d .

RegardingAﬁhe state vector x(k) as the sum of the | ‘ .
" state vectors x¢'’(k), x‘?’(k) and x‘?’(k) of the three ~ ~ . .

~systems driven by v(k)} y(k) and u(k), respectiVeiy, we

obtain: | - | - ' )
xCO(keT) = FxCOK) + (Fe)v(k) - c . (2.4a)
20 (k+1) = FRUD(K) + (arf)y(k)— " (2.4b)
o h : //'/-—,/“/~ - L
Wﬂf#x+f*rw$1 .sjpxsil(k)~+=bu(k) S (2.4¢)
| R ¢
y(k)- h x"’(k) + h'x"’(k) + h'xt3) (k) + v(k) _(2;4d)§5

WU e HJ—_"—“
"

Since equat1ons (2.4) can be cons1dered as a combination of

three 51ngle1nput 51ngleoutput (s180) systems they are.

: rewrltten as:

z,(k+1) = Ffz,(k) + hv(k) _ i o (2.5a) |




‘3a(k+1) = F'z3(k) + hy(k) | (2.5b)
z3(k+1) = F'gs(k) + hu(k) | (2.5¢)

y(k)e (£=¢)'zy (k) & (a=f)'25(k) * b'zs(k) + v(k)  (2.854)

Y

which are input-output equivalent 'to dquation (2.2), The

bloék diagram reprciontation of this system is provided in

\\
Fig?‘2~4\nhg£g\gﬁgenotea the shift operator
|

f.e. @ 'y(k) = y(k-l). ¢ - -
o

. This representation has long been used in the aéaptive
observer problem for deterministic systems (Anderson, 1974;
Kraft, 1976; Kreisselmeier, 1977) as is the case v(k) = 0.
The apparent advaﬁtaga of this reptesentation for the

deterministic system is the 11near1ty in parameters (Astrom,

et al.,” 1971) so that the usual least-~ -squares method can be

"”used.for identification problems (Kudva, et al., 1974).

However, for stochastic systems this advgﬁtagé quickly
disappears since equation (2.5d) is nonlinear in the e
parameters because Q(k),.thetefore z,(k), is not availaSle
for meésurement It should be noted that the. above

representatlon is equzvalent to an ARMA-model/lf all the

-

_elements of f are zero.

. |
Besides‘the determination of the structure of ‘model an

e

;1mportant requlrement in the 1dent1f1cat1on problem 15 the

cho1ce of an apprOprlate model order. It i

‘s well - at— ,
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vwhen the order of &odels does not match w1th that of the
system to be identified. There are several methods
avallable for chooS1ng an approprlate model order?(Ander=on,
1962; van den- Boom, et al., 1974; Unbehauenk et al., 1974;
Soderstrom, 1977- Young, et al., 1980) " Since this subject

‘ also stands alone as an 1nterest1ng research pro;ect we

ieave 1t here wtthout further dlscu551on

JY"'

Since ~omission of the control 1nput u(k) does not

-i.affect the character1st1cs of equatlons (2.5) except to .

'decrease theﬁnumber of unknown parameters, we shall droprthe ﬂ
~control input u(k) .in the»sequel for’the sake of 51mp11c1ty,

. giving rise to a problem of time- serles 1dent1f1cat1on.

The formatlon of a state vector 9(k) by 1nclud1ng all

the unmeasurables in equatlons (2 5) as:
‘e(k)'ge [9,(k)!,9z(k)',eg(k)?]

“ e k)

= Z1(k)
62(k) = f-c T
63(k) = a-f ~

‘lends itself.to~a'nonlinear equation in the state space as:

B(k+1) = #0(k) + vl -  (2.6a)

y(k)= [0 0 z,(k)'16(K) + 1/26(k)"S6(K) + v(k)  (2.6b)

where
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CF' 0 07 hl }
=101 O 7 = 0
[0 o 1| 0
"0 I 0]
s=|1°0 0 ‘
0 0 o]

and 0's are understood as vectors..or matrices of
; ~ LRI . .

appropriate dimension.:

2.3 Approaches to the Linear Identification Problem
Most of the approaches to the recurs1ve 1dent1f1catlon

‘ prdapem of llnear stochastlc systems have been developed
from statlstlcal considerations and many of them are based
on the mod1f1cat1on'of the LS method, Among them the best
known are the‘RMLimethod (Soderstrom,,1973), the rechrsive‘
instrumental variable (IV) method (Young,,1974) ‘ |
recursive predlctlon error (PE) method (Moore, et al. ,,1979
_1980).and the EKF algorithm (Kopp, et al., 1963; Cox, 1964 ).
The main shortcomlng of these methods, though some progress
has been recently made (LJung, 1977b), is the d1ff1culty
,encountered when attempts - to analyze the convergence

prOpertles of the correspondlng algorlthms are made.

Recursive identification problems could also be
treated as a modelftracking problem. It then becomes
ndtural to introduce the model reference adaptive (MRA)

method (Landau, 1974) as a design‘tool. In this approach
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{

|

dthe recursive algorithm is designed to make the function of

errors decrease asymptotically. ~For this task, it is useful
to apply well-known stability theories,-notably the

Kalman-Yakubovich (K-Y) lemma (Hitz, et al., 1969) and

;hyperstability theorem'(Landau, 1969;‘1979Y. The advantage-

of this~approaoh is that thefoverall stability of the

-~

dresultlng error system,w1th respect to “the convergence of

the algorithm 1s assured

Two conflguratlons related to the MRA technique could
be la1d out dependlng on the error measurement methods

'(Llon, 1966) The equatlon error methodt has been wldely

used for the problem of adaptlve observers and schemes which -

work sat1sfactor11y in real applications have been reported

(Luder . et al., 1974). The popularlty of this method for

the partlcular problem is largely due to the ease w1th whlchr

the gradlent of ‘the quadratlc cost funct1on of the errors.

can be obtalned and the 51mp11c1ty of de51gn1ng an recursive

algorlthm to decrease the cost functlon asymptotlcally The ”

results of. thls method however, are known to be blased 1f

'fcorrelated n01se is present. For thlS reason, the

appllcablllty of thlS method is somewhat 11m1ted for
jstochastlc problems. The output errorpmethod on the other
Hand,.has an appealing potential in that it has been shown

TThe equation error method is often referred as the
series-parallel approach and the output error method the
parallel approach. = These terms apparently have their origin
in the configurations. used for error measurement
(Martin-Sanchez, 1976)

18



" to yielé'anrudsiaséd estimate even‘fn the'preéence of
;6rrela£ed noise (Landau, 1976;'1978).' Reséa:éh has since
concentrated on the?pbssibleféxténéion of thi$ method to the
‘problem of,fhe‘identification (Dugard, et al., 1980) as well
és to,adaptive control of ;fochaétic sjsteqs."However, for
stocpisticysystemsiit tﬁrﬁs out that the'conditiéhs imposed
forithe ovefall'stability»afe not'alwaYSlpossiblé"£o be:v
satisfied‘be¢ause'6f the inVélvement.of the_parameiérS'that
are to bé'idehtified (Lﬁuﬁg, 1977a; Egar&t, 1980; Jéﬁnson,
© 1980). L | "
" Fig. 2-2 shows the block éiag:aﬁsvfor t;o error
measuremenf‘gethods'A::
‘;here' A{q-') =1 f'a1§4‘ + -11‘+ ahé'" o - (2.7a)

B(@~') = 1+ byq ' + -1+ + b,q"" ©(2.7D)

‘The inclusioﬁ 6f'che unknown parametefg té’theb
augmented state vector_traﬁ;forms,a'éé;émeter idedfificatidn
«problém into a honliﬁear estimation problem.  Since the
_optimal'solﬁtionkto nonlinear‘f{ltéring bfoblems‘is not, in
general, realizable in the‘fihiteudimensional syﬁteﬁs (Buc&,
.eé al.,,1971), nonlinéar filters aré,iin mosf cases, |
obtained by approximate design.methods.' While the EKF
“dffers the beét simplicity‘in implémentation, thus, being
most.widély used among‘the ﬁumerous methods, the applitaﬁidn

of this approach often unnecessarily increases the

computational requirements if only the parameters need to be

known. It would appear to be worth while to attempt .a

19
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! SYSTEM

u(k)
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.
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Algmt)
Blg-')

>

" b) The output error measurement

2.2 Two error measurement methods
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modification of the EKF in order to minimize the
‘-fcomﬁufétionaﬁ“burden._ it is,ﬁdtgﬁorthy that thé qonvergqgcé

- properties of some modified algorithms of the EKF could be =
.analy;ed‘ﬁith the étéﬁilify-theoriés-uSed in the déSg.of theiv\

' MRA method. -

In the next chapter, ﬁewwill'first discuss the
identification probLém.for thé\detetministic system and
~ develop a fast algdfithm through-a-tlear inSigh;ful.

ubderstanding of the existing algorithm.‘

S
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A RAPID IDENTIFICATION SCHEME FOR DETERMINISTIC SYSTEMS

f
! -

© 3.1 Introduction e

Since the stochastic identificatfon problem formolated
in the prev1ous chapter is. 1ptr1ns1cally nonllnear and thus
practlcally not amenable to an exact solutlon, an
'approxlmate solutlon will be- sought through the
llnear1zat1on of the problem. Wh1le the setting in Whlch
the solutzons sought for the determlnlstlc 1dent1f1catlon
problem can be'con51dered to be too. 1deal1st1c'from the-
stochastic poxnt of v1ew, the technlcue developed in this
chapter for the 1mprovement of an exlstlng determxnlstlc
1dent1f1catlon algorithm w1ll be useful to conceptually
iunderstand and thus solve the stochastlc problem, The
remaining portion of»th1s ‘chapter will be devoted to the
applicetion of MRA techhigues to the'Qeterministic‘
idéntification problem. | ' -

As briefly mentioned in the previous chaoter, the
preservation of the'linearity in the perameters,’by which it
is meant that a generallzed error 1s 11near in parameters
'(Astrom,'et al., 1971}, of the determ1nlst1c system prov1des
a good opportun1ty for a w1de range of appllcatlons of the
MRA. technlque to varlous problems of. the llnear | |
determ1nlst1c system. Furthermore, . the 11near system . | ’

theories represent the most active.research area and thus

»

22
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O
are readily'available.for'§arious:applications lncluding MRA
schemes. ponsequehtly, numerous successful MRA schemes for
the\identification problem'as ﬁell as the control problem |
have appeared‘in the literature.(Landau; 1974;

Kreisselmeier, 1980).

With*a few except1ons most of the recent developments
:1n the MRA schemes have adopted the stab111ty based approach :
in de51gn1ng an adaptatlon “echanlsm. In this approach
stab111ty_theor1es are used to determine the sufficient
cohditions under whichvthepadaptation hechahismlmakes'the
overall system‘aSYmptotically and globally stable. 'Thus,
the desigh problein associated with the deterministic MRA

4

_.method correspohds to a Stability problem. The crucial

"p01nt in the des1gn procedure is therefore to choose an

‘equat1on for updatlng the adjustable parameters in such a
way that the overall nonllnear error system which
const1tues the state error system and the adaptatioh

mechanism, is asymptotically stable.

Kudva and Narendra (1974) employed the Lyapunov Direct
Method which is one»of.the most w1dely used,stablllty—based
de51gn'methods, to'deVelop a simple adaptation mechanism for
the identification'of the discrete_moltivariable system. In
the'desigh.procedure,‘it is assumed that all the state
Qariables are accessible and that there is no noise |
involved. While this identification scheme (K-N-scheme;for

short) possesses the overall stability, simulation studies



show that the convergence spéed is often hnéesirably slow.
Thus, there is need for increasing the speed d{\convergenge.
A geometric interptetétioh of this adapti§é scheme
provides é greater insight into and consequently a clearer
undefﬁtanding of the scheme. Thoughlthé ﬁhderlyingvconcebt
is rather §implg,:this bééomas very crucial in the
vdevelopmént of §n algofithm.with rapid qonvefgence‘property
_ which isbimpgrtant'for on-line applications.' Thisvapproach
alsb_providés a genetél idea of howlfhe gain of'the improved
;lgorithm is to be modified if noise istresent. This, in

turn, has an enormous implication in the development of an

identification glgorithm for fhe_stochastic system,developed

‘in Chapter 1V,

A

S .03.2 Geometric Interpretation Bf the-K-N'Schemé

| ; ‘Kudvé ahd Narendra (1974) considered the problem'of
'identifying‘the unknown but constant nxn and nxr, (n2r)
-matricesz ahd:B‘of a noise free dynamié discrete system

given by

- x(k*1) = ax(k) + Bu(k) : o (3.1) -

and have derived the following adaptive algorithm:
| A . ) -

R0+1) = cR(k) + [R(k+1) - Clx(k) + Blk+Dhu(k)  (3.2) -

24



[A(k+1),B(k+1)] = [A(k),B(k)]

aZle(k) - Ce(k-1)1g(k=1)"
A (k=1) "9 (k-1)

(3.3)

where C is an nxn stable matrix, iLe.Aall its’eigénvalues
lie inside the unit circle, |

¢(k)' = [x(k)',u(k)'],

A is the largest eigenvalue of Z

and e(k) = %X(k) - x(k)

Kudva and Narendra have shown.that estimate
[A(k),B(k)] will converge asymptotically to [A,B] pro?idedr
that - - | o o |

i) the gain matrix T is chosen to be symmetric-and

positive definite, .
ii) 0 < a < 2, |
\}ii)‘the system (3.1)‘is completely qontrollable'
and iv) Ehe input sequence u(k) is general'enough (Kﬁdva,!

et al., 1974).

It follows from equations (3.1-3) that

e(k+1)

azﬁ(k)d(k—1)¢(k-y)'

;and P(k+1) “ﬁ(k) - - (3.5)

Ao (k-1)"¢(k=1)

Ce(k) + B(k+ng(k) (3.4

25
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whe£e7 BP(k) = ﬁ(k) - P,
'*ﬁ(k) = [A(k), ﬁ(k)]
and P. = [A,B].

L]

‘Since the matrix C does not appear in equation (3.5), the-
rdonvergence of this equation which is the main concern héfe,

does not depend on whether C = O“Or # 0. In simulation

T

'studles, C = 0 is the most’ conven1ent ch01ce.

In proving the‘stabiiity of equation (3.5), for the
sake of,convénience, we institute the following"éhangé of
g ' — ‘
variables:

!

W(k) = (k-1)/]]o(k=-1)]] -  (3.8)

where ||.|| denotes the Euclidean norm.

Equation (3.5) reduces to:-
CB(k+1) = Blk) - aZB (k)Y (k)W (k) ' /N~ - (3

Since P is a positive definite matrix, there exists a

nonsingular matrix T such that

TET- /N = A o . (3.8)
| v |

. where A is a diagonal matrix whoseé diagonal elements \; lie

in the range 0 < A<
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. Premultiplying eqbatidn (3.7) by T and using equation

(3.8), we get: ’
P(k+1) = B(k) - aAB(K)v(k)¥(k)" (3.9)
where  PF(k) = TB(K) | | (3.10)
We can pértition equation (3.16) rou-wise as below:
- ) 1\\' '
J5|(R¥1),= pilk) - ak,W(k)W(k)'ﬁn(k), iel1,n] B (3.11)

where 5, (k)' is the i-th Eou\vector“of the nx(n+r) matrix 3

?(k),‘k] is the>i-th diagonalkelemeht of A

and 4‘_ 0 <.ak,/<‘2.’ o o s “
™~
. Since
>
CBi(k)IW(k) = ||Bi(k)||cos8,, | | (3.12)
the choice aX, = 1 makes |[B{(k%ﬁ)1{,minimal for a given o ?S\\

¢(k) where 6, is thé.éﬁglé between p, (k) aade(k)u'

If we choose a = 1 for convenience, k.“mustfbe;l;ggg*\x\\\;

A = 1. Furthermore, if we choose T = 1 for'¢6nvenience_
then |
aZ/\ =1

£

L
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3.1 The geometric“effeét of gain



29

Fig. 3~1 shows the geometric tﬁft}pcotttf’h\ot*”’

cquation (3.11). Now that ve have obtained the optimnl gain
aL/A = I, we can go back to the original eqQuation (3.7).
With the choice of L = I and a = 1, equation (3.7) can'bo

written as: v
Pilk+1) = B, (k) - w(k)y(k)'P,(k), iel[1,n) (3.13)

~ where P, (k)' is the i-th row vector of P(k).

We can see that for a given y(k) the best poss1ble scalar

gain at each step is y(k)'P, (k).

The global aSymptotic stability of equation (3.13) is
guaranteed by the fact that condition (iv) in the K-N scheme
implies that any n+r consecutive vectors $(k) span the n+r

dimensionallEuclidean space, i.e,
[o(k),¢(k+1),....,0(k+n+r-1)] is nonsingular,

The implication of equation (3,13) is shown geometrically in

Figure 3-2 for third order ¢(k)'s.

Keeping in mind the directions of ¢(k-15 and y(k) are

the same, observation of Fiure 3-2 reveals the following'

properti;s of P, (k): h e

I

S

———a) p;(k+1) is orthogonal to v(k), ;
b) Bi(k+1) lies in the plane made up.-of P,(k) and ¥ (k)






&

and d). 1B (k1) || < ||p.(k)ll

vectors. We also choose a(k) to maximize

b ‘\‘\\ .
LN

c) 1f p.(k) is parallel to w(k) then Pi(k+1) is zero,

3.3 A Rapidly Convergent Algorithm (Kim, et al., 1981Y' ' <
While equation (3.13) maximizes the decrease of the
parameter error P, (k) at each step and thus‘ﬁj(k)-is assured

of convergence to the origin, the arbitrariness in the

‘direction of w(k) retards the speed of convergence'ﬁi(k) to
~ the origin. 1In order to circumvent thls difficulty, we |

introduce an orthogonal sequence of W(k) in the place-ofe

v(k) to coordinate systemetlcally the direction in‘whiqp
Pi(k) decreases and adjust the scalar gain a(k) in such a
way as to make B, (k+1) orthogonal to (k) (This adjustable

gain a(k) should not be confused with the fixed parameter a.

. used in Section 3.2). Then it is not'difficult to see from

“the propertles a) and b) that this n+r vector can be made to

be parallel to (k) in n+f\T\st\gs If this is done, then
by property c), p:(k) will converge\tb\the or1g1n in one
more step Thus the total number of stgps requ1red to br1ng

(k) to the or1g1n w1ll be utmost n+r.

- Another way of explalnlng this is as follows.” We
choose v(0) as the flrst basis/ vector of the n+r Euclidean
space, w(O) = ¢(0). We select W(k) as the remaining basis
[IPi(k)|| - ||Pi(k+1)|]| at each step so that the number of
steps required to bring p,(k) to the origin will ge a

»

minimum.
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In the light of the above. d1scu551on, we can use the
follow1ng algorlthm in place of equatlon (3.13).

c

Bi (k1) = Bi(k) = a(k)$(k)p(k=1)"8; (k), iel1,n]  (3.14)

Thepchoice of a(k) to maXimize'llﬁg(k)ll - llﬁi(k+1)1|'is
made as follows. n

1f an. orthogonal sequence w(k) 1s generated from the

sequence of ¢(k) by the Gram Schmidt process, the plane made .
up of w(k) and p,(k), and the plane made up of W(k) and
¢(k-1) are orthogonal to each-other (see Figure 3-3). (k)

can be expressed as:

Bi(k) = Biylk) + Brylk)
S R . S
where.p,y(k) is a projectionm of P, (k) on ¢y(k) and p.w(k) is
a projection of P, (k) on a vector orthogoﬁai to both ¥ (k)
and ¢(k31).‘ Slnce ¢(k-1) 15 orthogonal to p.w(k) and

'A@(k)'@(k)_=‘1' because of orthonormallty, we ‘can wr1te

W -‘2

¢(k-1)"p; (k) = ¢(k=1)"'F \o(k)

"

¢(k-—1).’[$(k)$‘(k)5;(k)] N

[o(k-=1)" FCI TV (KB (k)] (3.15)

. . S . : 0
Using equation (3.15), we can write equation (3.14) as:
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Bik+1) = Bi(k) = alk)y(k)[o(k=1)"$(K) 1P (k) "B, (KT (3.16)

for ie[1,n]

Foilowing equatfon (3.13), it has been pointed out that
v(k)'DP, (k) is the best possible;scalef gain for a given

v(k). By analogy, we see that the choice of
a(k) = 1/[3(k)  e(k-1)1 . O (3.17)

in equatlon (3. 16) w1ll make W(k) (k) the best p0551ble
gain for a glven w(k)

The resulting equation:, :

: O

2

TR SRS (k=1 B (k) ,
Bi(k+1) = By (k) - delt,n] . (3.18)

¢(k—1‘)‘~\l/(k)' ' _ '

: .is basicelly the same as‘the eguation (3. 13)§¢kcept that the

d1rect1on of the sequence of p;(k+1) - pi(k) is now

[N

.orthogonal to that of all preceed1ng elements, whlch enables

py(k) to convergeAto the origin in utmost,n+r steps.'

Q

The composite equation for all i, ie[1,n]vwould be:

3 . B(k)o (k=13 (k)" P
P(k+1) = P(k) - = e (3.19)
v(k)'¢(k=-1) o
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3.4 Simulations

Thus the resulting algorithm is:

e(k)¥ (k)"

P(k+1) = P(k) - - A (3.20)-

(k) o(k-1)

Flgure 3-3 shows the goemetrlc 1mp11catlon of equation

<-A
l‘»‘

(3. 18‘) ra ~ - _ o

The algorlthm\proposed by Westphal (1978) ylelds the
same results as the algorithm (3.20) on if p in the.
Westphal S scheme.- is set equal to n+r—1 However the
emphas1; placed by Westphal on the utlllzatlon of & priori

1nformatlon about the system parameters to improve the the

convergence unnecessarlly obscures the real strengtb of the -

algorlthm. As the 51mulatlon result%Ashow in the next
section, a priori information is not at all necessary for

ensuring rapid convergenée of the algorithm.

ThlS algorlthm is also readlly appllcable to a
determlnlstlc MIMO system whose present output can be
descrlbed as an inner product of the parameters and a

sequence of.the past.outputs and inputs.

Using ‘the algorithm (3.20), a computer simulation is

first carried out to identify the parameters of the

~dynamical discrete system:

x(k+1) = AT&x('l()"'t Bu(k) | '

34
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where A and B are the nknown but constaht matr1ces. For

the purpose of s1mulat10n, a fo rth order dlscrete system

 9.9963E-1

4

.6457E-4

’w1th the follow1ng values for A and B matrlces"

2.6990E-4 ~4.5584E-3 ]
4.7943E-4 9.8995E-1 =-1.7606E-4 =-4.0008E-2 .
9.9919E-4  3.6498E-3  9.9303E-1  1.4074E-2
5.0006E-6 1.8301E-5  9.9650E-3 1.0001E-0 |
4.4212E-3 , 1.75438-3
3.5272B-2 -7.5542E-2
® 7| -s.4000m-2  4.4605E-2
~2.7513E-4 | 2.2351E-4 -

is c%oSen,to demonstrate the effectiveness of the algovithm.
This system is actually obtained by discretizing the
1973; et al,

‘continuous system in (Narendra, et al., Luders,

1974) with saﬁpligg period 0.01%, Here the initial wvalues
of ﬁ(k) and B(k) are ehoseh'to Be all Zero'aﬁd the ;etrix C
“1n equat1on (3 2) is convenlently set to be zero. A part of
the results of the 51mulat1on is shown 1n Flgure 3-4,

Aﬁother simuldtion is carried out in order to show the
usefulness of the proposed algorithm to tackle a more
_realistic prbblem which -was generated by essumption that

only one state variable is measurable in the above example.

x(k+1) = ax(k) + Bu(k) Sy
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y(k) = [0 0 0 10]x(k)

This system is then equivalent to the system in eqﬁation

(2.1) in terms of the input-output relation as:
x(k+1) = Ax(k) + b,u, (k) + b,u, (k)

y(k) = h'x(k)

: i |
A = [a|———J v '
. 0 N

a =[3,9827 -5.9481 3.9480 -9.8265]"

where

b,

[-2.751 2.738  2.734  -2.721]'x{0-?
. b,

-

[2.235 -2.235 =-2.216 2.216]'x10-?
h=1[1000] ’

Following the procedure discussed in Sectidn 2.2 to
represent the above system in a more convenient form for the
identification problem, we obt?in:
: ;

/

z,(k+1) = F,'z,(k) + hy(k) /
z,(k¥1) = F,"z,(k) + hu, (k)
oz, (k+1) = F.'zy (k) + huy (k) - :

¥(k) = a'z,(k) + b,'z,(k) + b,'z, (k)
where F, is described in equation (2.3) with £ = 0.

. Then, Qé can readily apply the identification algorithm.

38
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proposed in Section 3.3, The simulation results are shown

in Figure "3-5.
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CHAPTER IV

ALGORITHMS FOR IDENTIFICATION OF STOCHAST{C SYSTEMS.

s

P .
- Ny

4.1 Introduction .
In this chapter we shall develop some new algorithms
fd:“the iden;ification of the Stochastic system described in
’Chapter II. Since the system is stochastic, it is alsov
natural that we consider the use of stochasfic estimation
techniéues in this development. It was pointed out in that
chapter that tpe augmentation 6f the state vector of the
stochastic system with the uhknown parameters makeé the

/
error system nonlinear and consequently we have a nonllnear

est1mat10n problem of a stochast1c system.

The méin objective of stochastic estimation problems
. is to obtain the chdit§Onal meaﬁ'values_aﬁd covariance
matrix of the‘unkndwn.quantitieéx‘ Th; mean is the estimate
with the minimum variance forAthe given measured data and:
the c6va;iance'matrix represents the measure of the
uncertainty in the estimates}m It is well known that ‘the
conditional mean and covarlance matrix cannot be, in

general, characterized by a finite set of the moments of the

conditional density function.

The involvémeﬁt of solutions of functional inteqral
difference equétions”%Bucy, et al., 1968) ﬁakes the
computation of ﬁhe exact'éonditional density function, in
general,vvirtually impossible; Thus, in practice,

o
-
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approximations of the conditional density function are used
and this results in suboptimal filters. it is rather
desirable that the conditional density function during the
process of approximation’ia repre:ented by'a finite set of
parameters so that the corresponding nonlinear fxlter is
made up of finite number of‘gquat1ons of ovolutlon for these
parameters. Unfortunately this simplification cannot be
achieved without the loss of sufficient statistics on the

estimates.

It is known that in the linear estimation problem the

ian, can completely

conditional density function, being Gay

s

. determine the mean vectoriﬁﬁp covarlaQCf” atrix. In this

case, the mean vector is usually treaf”Q . the state of a
linear fllter. This filter, in ‘turn, cafl be looked upon as
a reference model in anmmdel tracklng context The

covariance matrix is used to compute the direction and

magnitude of the ga1n vector. In order to take advantage of

this useful feature of the linear estimation‘problem the
nonlinear estimation problem is 11nearlzed by taklng only
the 11near part of the Taylor series representatlon of the
nonlinear system. 1f this is done, then, the Kalman
~estimation theory can be readily applled to the .approximated
system because at each step only llnear terms are involved.
The resultlng filter is called the ‘Extended Kalman fllter
(EKF) which has been most widely used in real-life
appllcatlons (Jazw1nsk1, 1970).

B
oy

-

// “‘ ‘
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i It is known that the convergence of the estimates of
the EKF algorithm to the true values.is'assured if the
estimates stay within a small neighﬁorhoodxof"the true
favalues. In the case of the MISO system descr1bed in Chapter
II, the augmented state vector cons1sts of the state vector
and~the parameter ‘'vector. If the parameter estlmates stay
‘within a sma%l neighborhood of the true/values, generaticn
of godd estimates of the state vector automatically follows
in the innovations representation. There is no need to
estimate the state-vector separately. Howeyer, use‘of,the
'standard EKF algorithm requires that thefestimates of the
- entirevaugmented state vector he determined at each step.
This unnecessariiykincreases the computational burden. One
. of objectiyesnin this chapter is to develop certain
modifications*of thewEKF algorithm'tc reducelthis

computational burden to facilitate on-line applications.

:Stability iseperhaps the most important consideration

in assesing the performance of any technlques of recursive
'adaptlve schemes. In the determ1nlstic system, a number of
hméthods are available to test or analyze the‘stahility of
recurs1ve adaptzve technlques, for example, Lyapunov method

and the hyperstablllty cr1ter1on. Among these, the
hyperstability criterion, whlch can be especially regarded

as a specific fotmulation of the Lyapunovﬁmethbd, offers the
most systematic approach to system design. The appl:catlon ‘@%

# o

of the hyperstablllty criterion to a. stochastlc
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identification problem was'first pioneered by Landau (1976)
and became a popular tool to design a recursive adaptive

C
scheme.,

In Sectiohv412 the applicatiop of the EKF algorithm to
the idehtification problem is discu§§edﬂWJ;nmghghfemaining
‘ sec;iéns of the chapter, seve?ai’modifiedvEKF algorithmé'for
the.stochastié identification problem are developed and
Eertainﬂsimilarities of these.algOrithhs Qith‘eérlier |

‘algorithms (Panuska, 1968: 1969; Soderstrom, 1973) are

shown. -

4:2 EKF Algorithm for Iaentification Problem o
A In‘this section, our éim is to derive EKF_eQuations

for the identificatioq of the system désé:ibed in Chapter

II. The derivation follows the approach in (Anderson,

et.*al,, 1979).

.

C6(k+1) = #8(K) * qu(k) [2.6a]
Cy()= [0 0 z;(k)'16(K) +.3/26(k)'S6(K) + v(k)  [2.6b]
where RE ‘
o r F' 00 0 h
$ = 0 1 0 n.= 0
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Fe |fl—
0

-

~

and 0's are understood as vectors or matrices of,an

W

appropriate dimension.

The nonlinear function, which appears only in the
observation system (2.6b), can be expanded in Taylor series

as:

Cy(k) = y(k) + w(k)'E(k) + 1/26(k)'SB(k) + v(k)  (4.1)

where (k) = 8,(k)'8;(kd + 2, (k) '6a(k) (4.2).
dy (k) R . ‘ '
vik)' = —— = 060 B ()2 (k)] (4.3)
| 36 (k) T | R .
6 = (k) - B
B(k) = 6(k) - 8(k) e  (4.4)
and  6(k) = [8,(k)",8,(k)"%6, (k)"]"is"ah‘estiﬁate

of O(k) based on the observations up to k 1 step.

fes

4

Neglectlng the seconé/oﬁéér term in equation (4.1), we
. 2/ g@w g

fa obtaln a llneﬁrlzed apptoxlmate ver51on of the system (2.6)

o

as: R , B . -
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CBk+1) = #0(K) + mv(k)  (s.5a)

Sy = s E) ¢ vk + F(k) - (4.5b)

Then, the épplicéﬁion'of the Kalman estimation method to
equation (4.5) yields the following algorithms

0(k+1? = ®6 (k) f'g,(k)[y(k) T.y&;’éh"j‘:]é& ’ | (4.6a)

gD

«gi‘

§UK) = 8, (k)" 8a (k) + 25 (k) ' 8,000 (4.6b)
g(k) = [8P(K)W(K) + mwlm(k) | A‘ I .(4.5c>_
P(k+1) = #P(K)®' - g(k)m(k)"g(k)‘:;.nwn' (4.6d)
. P(0) = P(0O)" >0
WO BIOYR) + Wl - _<4.§e>

0

.is the covariance of v(k) and P(k) is the

approximate covariance matrix of EKF.

g(k) and P(k) can be also, after a matrix manipulation (see

APPENDIX 4A), expressed as:
g(k) = &, (kK)PIv(kIm(k) *+ n o (4.7)

P(k+1) = &, (K)[P(K) = PUOW()mK)W(K) 'B(K) 18, (k)" (4.8)

where &,(k) = & - ny(k)" | - (4.9)



‘{/
i

‘The rearrangement of g(k) and P(k) makes ithﬁléar that P(k)

Hoes to zero as k » o if #,(k) is stable for all k. In this

case g(k) approaches 1.

o

The error state 6(k) satisfies the difference

equétion: ‘»QHEV)/ZJ

A W

6(k+1)

®6(k) - g(K)[y(k) - §(k)1 + qv(k)

#8(k) ~ &, (kK)P(K)y(KIm(k) (¥ (k) & (k)
+ 1/28(k)"SE (k) + v(k)]

- alv(k)'§(k) - 1/26(k) 'S8 (k)]

&, ()1 - P(R)v(k)m(K)y(k) 18 (k)
- 1/20¢, (k)P (k)¥ (k) m(k) %‘ﬁjé(k)'sﬁ(k>

- e, (OP(VIORM(KIV(K) (4.1

f{;As clearly seen in equation.(4.10), the effgct'of the
nonlinear term 5(k)VS§(k) is obvious. Thé)éonVérgenqe of
' the error state §(k) to the origin coula be thus assured,
only in a neighborhood of.the origin of the error state

spaceizhere»the effect of thenonlinearity is negligible.”

- Another advantage of employing the innovatiohs
representation, besides the reduction in number of

parameters to characterize noise,. is that the solution to a

48



Riccati equation’in brder‘to‘oetain ehe eteady state Kalman
filter gain can be avoided'(Astfom,'et a{f, 1971). This
implies that the noise, thus the exact state vector, in fhe
‘innovations repfesentation could beﬁeasily’generated as the
error betweenbtheﬂoutputs.of the system and the filter if
the system parameters are known. In the identification
problem‘under’consideratidn; the estimate 6,(k) can be
assumed to be equal to the state vector 8,(k) (thus z,(k))
in the nelghborhood of the orlgln of the parameter error
space, where the EKF is assured'of convergence to a true
values_ofﬂthe parameters.
4.3 First Modificatign of the.EKF Algorithm (EKF-M1)

"The approximate‘;ovafiance‘matrix P(k) can be

b

partitioned as:

Py, (k) Pya(k) Tin
P(k) =

Py.(k)"' Pzz'(k)b }2n

Then, we obtaih from equation (4.6d):
Pyi(k+1) = Fo(k)'Py (K)Fn(k) = he(k)'Py;(k)"F,(k)
= Fa(R)'Pia(K)e(K)h' + he(k)'Pay(K)g(K)h'
= [P (K) 'Ry (k)82 (k) - ho (k) 'Pyp(k) "6, (k)

- Fa(k)"Pys(k)o(k) = ho(k)'Paa(k)o(K)]

49
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m(k)[Fn(k)'Pta(k)éz(k) - ho(k)'Pya(k)6,(k) -

- Fa(k)'Pya(k)e(k) - h¢(k) e:,(k)¢(k)]'
| 2 | (4.11)
| | d
p;;<k41) = [F;(k)-p,,(k) - h¢<k)'p;,(k>]
- Lph(k)'é,,(k)é;(k) eh¢(k>'p,,(k)fé,<k)
- Fn(k)'P}z(k)¢(k)‘f(h¢(k)'Pzz(k)¢(k)]
:m(k)[P;z(k)'éz(k) + Poo(k)e(k)]" .(4.12)
Par(ke1) = Paz(k) - [Pya(k)'Ba(k) + PaalK)o(K))
-m<k)[p{z<k)'§;<k)‘+ Prz(K)o(K)]'  (4.13)
whe;g_]p,<k) ;‘F —'éz{k)h' N o i (4;14)
and ¢(k) = [é}ﬂkf';zz(k);]' | ; (4.15)

Suppose we assume that 8,(k) 'is nearly equal to 6,(k),

then P,1(k) whlch 1s an approx1mate measurement of the

'  uncertainity in 91(k), can be set equal to 0, thus ;educing

the computational requirements. A convenient choice f =0

considerably simplifies sz?k) and P,,(k) fom computational

purpose as:

-

Pra(k+1) = [Fo' - hBy(k)'1Py3(K) - he(k) 'Fis(k) (4.16)

2

Paa(kt1) Paa(k) = [Py2(k)'8a(k) + Pys(k)é(k)]



my (k) [Py, (k)"82(k) + Py (K)o(k)]'  (4.17)

i

where Fo = F : | , | (4.18)
£t =0

~and  m,(k) =-m(k)l | | for all k
o Pyi(k) =0 '

= [8(k)"P;2(k)o(k) + ¢(k)"P,,(k) b, (k)

+ B2 (0P (R)G(K) + Wl (2.19)
. It should. be mentioned that a certaln numerlcal problem
associated w1th equatlons (4 16-17) will arise such that
Pzz(k), which approximately represents the dhcertainity in
the estlmates 6 (k) and 9 (k), cduld be nonpositive
def;nlte. In order to get around thlS dlfflculty, we s1mply
- add .a positlveaécalar quantlty‘u to m, (k) "' so that B;,(k)
remains positive definite for all k Then this algorlthm
will be 1dent1cal with the algor;thm proposed by Ljung

4

(1979). If‘thls is done, define
U(k) & Piy(K)Pga(k)-t . (4.20)

" Thus, efuations (4.16—17) can‘be’fewritten és:
) ¥

-U(k+d)pzzﬂk+J)Ezz(k)" = [Fo' - h8.(k)'1U(k) - he(k)’
(4.21)

Paa(k+1) = Pyz(k) - Paa(RI[UCK)"8,(k) + ¢(k)] -

51



-
! .

v , \ o
m, (k)[U(Kk)'8,(k) + ¢(k))'Paa(k) — (4.22)

Since in a small neighborhood of the true values of the

parameter in [6;',05;']' vector spaée, it can be assumed that

Paz (k+1)Pya(k) " 2 1 | o (4.23)

Hence we can write U(k) and P,,(k) as:

UCk+1) = [Fo' - hé,(k)']JU(k) - he(k)' | (4.28)
Paa(k+1) =. Pyy(K) = Py (K)U(K+1) "hm, (K)h'U(K+1)Ps, (k)
| (4.25)

If we choose a positive scalar quantity.u such that -
ko= 62(k)'U(K)P,, (K)U(K) ', (k) f C O (4.26)
then we obtain’
(

my(k) = [h'U(k+1)P,, (K)U(k+1)'h + w]-" (4.27)

so that P,;(k) is assured to be positive definite for all k.

Y

 Hence the modified EKF becomes:

(¥ 4
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Bike1) = BlK) + g1 (k) [y (k) = §(k)]  (4.28a)
6, (k+1) -.Fo'éi(k>'+'gziy(k> - §(k)] © (4.28b)
.fr(k)‘ = ¢(k)'p(k) _ | | B (4.28¢)
G0 (K) = “Baz (00 1) by (k) | (4.zaa>
§z(k> = [Fo"U(K)P22 (K)o (k) + hlm, (k) | C . (4.280)
p(k) = [-é.;(.k)"',éa(lf')"]' ‘ | (4.28£)

Py

P,.(k) and U(k) are described in equations (4.24-25).°

The Salient feature of this aigorithm,.which we cail the

" first modified EKF (EKF-M1) in the sequel, is the retention
of P;,(k) so as to preserve the local convergence proberty

" which is'cohsideréd to be a very useful feature of EKF.
However, since this modification pf:EKF is based on the
assumption that the nonlinearity effect is negligible in a
neighborhood of the origin of the parameter error space, it, -
in general;bsﬁffers from the lack¥of the global convergghce'
property. . However, under certain conditions, such global
convergence 1is bossible;; The convéigence\of P(k), as shown.
in equation (4.8), cbmpleteiy depends on the stability of
¢,(k), which, in turn, is détermined by 6,(k). It is ’
therefore'necessary/to ensure that §,(k) lies id the fegion

for which ¢,(k) is stable. Such confinement of gz(k)vwill
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5¢
restrict the extent of observation nonlineariéy. A recent
'study (Ljung, 1979) has shown that the modified EKF
algorithm (4;28) when complemented by a facility to confine
8,(k) to the region where Fo' - hb,(k)' is stable, will
’eenable‘the parameter estimates to’converge'to Ehe true

values with probability 1 (w.p.i).' ' B ,7”({

B It will now be shown that the approximate RML
algorithm (Soderstrom, 1973) can be derived from EKF-M1 as
followsT Sinoe'éf(k) is approximately eqoal to 6,(k) in a -
neighborhood of the parameter error space, it follows that
e(k) = y(k) - y(k) is eqUai(to the noise term v(k). vThis,
in.turn, suggests that 8,(k) can be obtained from equation
(2.5a) using‘e(k) instead of'v(k). If this is done, the
. aloorithm turns out to be the same as thE'apprOXimate_RML )
Valgorithm with w = 1: That the approximate RML method
possesses the local convergence property (Ljuno, 1§75) can
be seen by noting that the géin gf(k) in equation (4.28e) is
almost equal'to h in a neighborhood of the o:igin of the
parameter error space. However, the global oonvergence,

~remains in question (Holst, 1977).

4.4 Second Modification of the EKF Algorithm (EKF-Mz)
| P,z(k) represents the correlation between two error

vectors, §,(k) and P(k) where
§,(k) = 8,(k) = 8,(k) e (4.29)

5(k) = p(k) - P(k) | (4.30)



-

p(k) = [6,(k)" 63(k)']" | | | (4.31)

~ -

The assumptibn that 6,(k) = 0, however, reduces the - ‘
importance of P,;(k), thus providing grounds for further
simplification by setting P,;(k) = 0 (thus U(k)) in equation
(4.28). |

‘This results in the followihg algorithm:

Blk+1) = B(K) + g2 (K)Iy(K) - §(K)] | . | (eaza)
é,<k+1} = Fo'61(k) + hm; (k) [y(k) - F k)] o (4.32b)
F(k) = o(k)' (k) o | - | (4.320)
gakk{ = P2z (K)o (k)m; (k) : S ,‘ | (4.32d)
Paa (ke 1) = Paa(k) = Pas(k)o(k)ms (K)8(K) P (k) | (4.326)
mz (k) = [6(k)'Pyz(K)g(k) + wl- | | (a.326)

In the séquel we shall refer to this élgorithm“as the second

modified EKF algorithm (EKF-M2).

L

- Following the same reasoning as before namely e (k)

could be assumed to be equal to v(k), we use equation (2.5a)

with e(k) in the place of v(k) to obtain @{(k). Then the
resulting algorithm with w = 1 in equation (4.32f) turns out
to be the ELS method derived by Paﬁuska (1968; 1969). The

main drawback of the ELS method as well as the second
] ; ' ' '
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modified EKF algorithm lies in the requirement of additional
‘restrictions on the system in order to ensure the

convergence of the estimates to the true values.

4.5 The Cdnvergence;Property of the EKF-M2 Algor}thm

In this section, thé convérgence property §f the ~
second modified EKF algorithm will bé discﬁssed using the
Kalmén-Yakubovich théorem which up to .now has é@én used to
study the §tability of deterministic.problems. Recall the
brief discussion in section 2.3 thét the identificatioen
problem cén be formulated as a model tracking problem. 1In
order to analyze the convergence property of EKF-M2 in the
model tracking context, we spa11 examine the stability of
the érror model. We obtain the errorvstates §,(k) and p(k)

sé}isfying the following gquétions with assumption w = 1 as:
64(k+1) = Fo'8,(k) - hms(k)e(k) + hv(k) (4.33a)
B(k+1) = Blk) -.gs(k)e(k) © o (4.33p) L
e(k) = y(k) - §(k) - NS T

= [6,(k)', 2,(k)"Ip(k) - 6(k)'B(k) + v(k) Vo B

= 6.78, (k) + @(K)'Blk) + v(k) (4,

where m, (k) = ms (k) = [1+ ¢(K)'Psa(k)o(K)]-"
| . e o= 1 A

Let e,(k) = my(k)e(k);, then




er(k) = 8378,(k) + @(k)'Plk) = 9(K)"Pya(k)d(k)a, (k)

+ v(k)
. )
= 8;'6,(k) + y(k) + v(k) | (4.34)
where (k) = ¢(k)'B(k) = (k) 'Bsz(K)o(k)es (k) (4.35)

Subipituting equations (4.32d) and (4.34) into (4.33b), we

obtain the following feedback system:

5,&»415 = [Fo' - h6;'16,(k) - hy(k) . | (4.36a)
er (k) = 8, 8,(k) + y(K)+ v(k) ) (4.36b)
| N
BCk+1) = B(k) = Paz(k)o(k)es (k) S (4.36¢)
v(k) = ¢£kj'ﬁ(k) - ¢(k)'Pzz(k)¢(k)e,(k)‘ | (4.36d)
CPaz(k+1) = Pyy(k) i Pzz(k)¢(k)m3;k)¢(k)‘Pzz(k) (4.36e)
u:ﬂx ;}c‘#_ . P,,(0) = P22(0)" >0 . A,g"“ﬁ L

e
' Yo h" ’ ‘t}z:&s o ) s

s

’.: T Q.;'A“‘R:“@, ’ - . Y
facefy(kT“can be expressed as ¢(k)'p(k+1), we ‘get

\

e (k) = 8,8, (k) + (k) B(ke1) + (k) (4.37)

‘Comparing the above equation with (4.33c),we'can easiiy
notice that e,(k) is the error after a correction is made on
ﬁ(k). In the sequel é;(k) is referred to as the a

posteriori error while e(k) is the a8 priori error. The
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condltlon for the convergence of the EKF M2 algor1thm to the

o

true values w1ll now be stated as below

rTheorem 1- Suppose that Fo - hé,' in‘equation (4.36a) has
all 1ts e1genvalue§‘jn51de the un1t c1rc1e, then the ‘errors
8, (k) and p(k) sat1sfy1ng equat1on (4.36) Vanlsh as k » =
| o . 1 '
if ‘ , - T — (4.38)
e 1 ‘Ci,q-' - PR _c“gun L 2 ] .

is strictly positive real (s.p.r.)

where “ ¢' [c1."‘,cn]

",and g is the shift . operator

The proof of Theorem 1 consists of two steps. Flrit ‘we
fw1ll prove u51ng the Kalman- Yakubov1ch theorem that 6, (k)
, and p(k) converge to the origin without v(k) in equatlon
(4. 36b) $hen ve prove that v(K) actually has no effect on

the convergence of g,(k) and\p(k) to the orlgln.f'
We need the following lemma.

Lemma: Given the following.set of time-varying systems:
: g : 4 :

Gy(k+1) = F'§,(k) - by(k) —— (4.39a)

ey (k) = 6376 () + (k) ’ . (4.39D)

Bk+1) = B(k) - Psz(k)¢(k)e,(k) © (4.39¢)
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7(k) = ¢(k)'B(k) - ¢(k)"Pz2(k)e(k)e, (k) | - (4.394)
Paa(k+1) = Paa(k) - Paa(K)@(K)ins(K)6(K)'P2;(K)  (4.39%)

pfz.z.(ob) = Pzz(O)' > 0

P

the errors 6,(k) and B(k) converge to the oqigfn‘as'k + o

if "‘ H(g™") =_1/2 - 6,'(ql -ﬂFc')"h - (4.40)

is s.p.r.
fwhere F. = Fo - 6;h' is assumed stéble

/
/

S

|
!
i
i

proof: See APPENDIX 4B.
' The above lemma is @he‘discretekvéfsion of'the
‘Kudva—Narendra theorem“(ﬂin, et al., 1978) with a,
modification that‘the gaﬁn matrix_Pzz(k)_decreaées in
magnitude as k intrease% .The'decrease of ng(k) is
necessary to account for the rejection of the n01se in

equation (4. 36b) by gradually decreasing the weight on the

noisy obserVatlons It, however, réqu1res a more stringent

|
~

*restrlctlon on the system than is neccesary wlth a fixed

%Pzz(k) (Landau, 1979).

Reéuming the broof of Theorem 1, note that the real
positivity condition (4.38) is equivalent to H(g™ ') in

(4.40) in that 6, is identical to -c With a choice’f = 0 in
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* ¥
F matrix. | Nﬁ&
From equations (4.34f35) we have: a.
er(k) = [62'8,(k) + ¢(k)'B(k) + v(k)Ims (k) (4.a1)

(k) = L8(K)BIK) -8 (K) Paa (K8 () 16,78, (k) + v(k) ]}

mj(k)

| (4.42)

oy

. Substituting (4.41-42) into (4.36), we have:

x(k+1) = 2(K)x(K) + B(k)v(k)

where
oo [ = (k) E,2(k)
- E(k) = | : o
5_21“() Ezz(lf)-’&

" UE., (k) = P % he(k) By (k)e(k)8s m, (k) )
o | o

=

“hé (k) 'ms (k)

E2,(k)

~Ba; (K)6(K) 6 mylk)

[}

l“_‘s ':,:‘2 ( k )

IR P () e(k)ms
> B(k) = ,/ | |
-P22(k)¢(k)Im, (k)
B ‘ ’/’ | |
x(k) = [61(}()',5(]()’]'

|

Hénce,‘x(k)'cd‘ be expressed as:
! .

/

1 - pzz(k)¢(k)¢<k)'m3(k)‘

(4.43)

(4.44)

(4.45a)

“(4.45b)

 (4.45Q)
 (4.46)

'(4.47)

(4.458)
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x (k)

i-

~(1)x(0) o z n Z(1)A(5)Iv(y)
‘ . j=0 i=q+1

+ Blk=T)v(k=1) (s

Since E(k) is stable from Lemma and v(k) is'a~white'nofse,

' »
4 x- , ‘ o
lim I E(i) = Q - o T ' (4.49)
~k?= i=0 - ' ' )
)
Lim B{ T _(1)6(3)v(3)} for 0sjs<k-2 (4.50)
ko imi+d S
lim E{B(k=1)v(k-1)} = 0 o . (4.51)
k¥ - . ] : ‘
Y - L
where E(-) denotes expectation.
Thus (Mendel, 1973),
1lim E{x(k)} = 0 ° | | T (4.52) .

we have proved Theorem 1 which, in turn, establishes the’

convergence of the EKF-M2 algorithm to the‘true values.
. . _

The difference between the ELS algorithm and EKF-M2 ~

ﬂalgorithm (4. 32) is that in ELS a pr1or1 erxor e(k) is used
' R
for the generat1on of 6,(k) while the EKF-ﬂQ algorlthm

(4. 32) uses a poster10r1 error e,(k) S1mulat1on studles
show that this enables the EKF-MZ algorlthm to converge more

ﬂ‘;j
T
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:rapidly thad the ELS algorithm.

l

/

| A 11m1tatlon of the EKF-M2 algorithm, however, lies in
the fact that the p051t1ve realness requ1rement (4.40) for
‘Aupbxased‘donvergence>depends on the unknown parameter vector
6,. vA'metﬁod which helps to oyorcohe this limitation to

- some extent is discussed in the next section.

4.6 Tﬁird modification of the EKF:(EKF—M3) _

Iﬁ'thé modifications of the EKF algorithm diSoﬁgSed SO
fa;,.we have sot the vector f ih the matfix“F equal to 0.
In this sectlon, the 1@@%1cation of using a general f, not
vneccesarlly 0, w111 béméyscossed The vector f will be
chosen such that a stable polynomlnal.of thé difference

between f and:-certain system parameter satisfies.a positive

realness condition.

If a»gene:é;ivector f is introduced in equation

(4.32), the followiﬁg aigorithm is obtained:

";z(k+15 = a'z;kg)_+ hykk):‘v d o o | (4.832)

‘ 'é,(k+r) = F'é;(#).+ hﬁ;(k)[y(k) = 5(3)] | : (4.53b5
ﬁ(k+1)'= p(k) ; pzz<x>¢§k>m;<k[tx<£) - §(k)]. _o',(;.53¢)
(k) §.¢(k)'ﬁ(;§ :' R B a | (4.533)
o(k) = f64kkxf,z;<k)'j' | e L (4.53¢)
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 Pzz(k+1) - Pza(k) = Pzz(k)o(k)my(k)¢(k)'Pyz(k) (4.53f)

This algorithm is referred to in the sequel as EKF-M3,

Convergence of the EKF-M3 algorithm - ,
.1Recall‘from‘equation (2.5) that the system can be described

as:

6, (k+1) = F'G,(k) + b (k) T (asaa)
22 (k+1) = F'z;(ﬁ)'+ hy (k) - | . (4.54b)
¥ () =.[8;(kY',zz(k)‘]p vk . q " ‘(4.545)_
', ,whe?.j"p = [6:",68,')" ‘: o l, (4.55)
| 6, = £ o o
6, = a-f

‘We obtain the following set of error equations:

Fy(k+1) = F'8(K) = hmy (K)e (k) + hv(k) | t4.56a)
Bk+1) = B(k) - Paa(k)o(k)my(K)e(k)  (4.s6b)
e(k) = y(k) - (k)

028, (k)7 + o (k) 'B(K) + v(k) (4.56c)

The introduction of

kg‘ .




L

o

o

s

ke
“

.+, 'makes it clear that (4”  3‘constitues a block feedback
' et/ |

f

e1(k) = my(k)elk) | (4.57)

(k) = 8(k)'B(K) - #(KIPs (K)G(K)er(K) (4.58)

v\;‘:j.v

'system described in th¢ following equations as: .

A
§,(k+1) = [F' - 16,'16,(k) - hy(k) (4.592)
€,(k) = e,'é,(k) + &(k) + Q(k) B | ~ (4.59b)
'vﬁ(k+1) = B(k) - Pya(k)g(k)e (k) | (4.59¢)
7 (k) é.¢(k?;§(k)'—uéék)'Pz;fk3¢(k);;(k) | (4.594)

CPaa(k¥1) = Ppy(k) = Poa(k)e(k)ma(k)e(k)'Pay(k} - (4.59)

P,2(0) = P;,(0)" > 0

Fig. 4-1 shows the block'diagram of the above feedback
system@
A theorem similar to Thedrem 1 cadn be stated as follows

e

Theorem 2: Suppose that F' - hé,;' in equation (4.59a) has
all its eigenvalues inside the unit circle, then the‘errofs
§,(k) and ﬁ(k)’satisfying'equation (4.59) vanish as k = =

S
1= £4q7" = v - £,q7"

if | —y - — (4.60)
. ) !‘A./ ] . 1 - C 1q - 1 - .‘ . .f - c‘nq;%ﬁ 2 r )
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is s.p.r.

proof: The proof is entireiy analoguous to that of

Theorem 1.

In recent years, -the use of the approach utilizing the
supermartlngale theory to the convergence proof of recursive -

1dent1f1c 'algorlthms has appeared in the literature

(Solo, 1979; Goodwin, et. al, 1979, Landau 1981: 1982). 1In
this approach, it is necessary to find what is known as a
corresponding supermartingale for the error feedback system.‘
Since a stochastic Lyapuno& function in the errox feedback'

~system should@ be positive endvdecrease in magnitude with
time, it can be looked upon as a sﬁpermartingale; It is
shown beiow that the use of this idea in the converggnge
proof for‘the'EKFrM3 algorithm leads to a stronger result,
nemely, martingale'convergence compared to tlee mean-square

convergence obtained in the earlier proof.
Proof of Martingale Convergence

This proof should be read‘in conjunction with

APPENDIX 4D where the definition and lemmas are given.

Since, as stated previously, 5,(k) becomes zero as
ﬁ(k) converges to p as a consequence of the use of .
innovations‘representation, we only need to prove that p(k)

actually converges to p if the positive realness condition

(4.60) holds. o : . L



Now, let s(k) be defined as:

WS(k) & B(k)'Paa(k)” ' Blk) - (4.
" . |

where B(k) = p(k) - p as defined in (4.30)
Then ' '

S(k+1) = P(k+1)"Pay(k+1) - 'Blk+1)

o vy

Bk+1)"[Py2(k) ™" + ¢(k)g(k)'I5(k+1)

[B(k) - Psa(K)o(K)e, (k)]

= y(k)? # s(k) - 2e,(k)¢(k)'P(k)
+ ey (K)70(k) Pz (k)@ (k) -

= y(k)* + s(k) - 2e,(k)v(k)
- er (k) Te(k) " Pa(k)elk) (4

Taking conditional expe¢tations in (4.62), we obtain

E{s(k+1) + 2e,(k)v(k) [ F(k=1)} s s(k) + o(k)* (4.

where o(k)* = E{y(k)*|F(k-1)} (4.

Siﬁce e, (k) and y(k) are the output and input signals of

strictly positive real system, the inequality

k }
Ze;(i)y(i) 2 0 for all k , (4.

i=1

always holds (Landau, 1969).

Defining a new martingale r(k)

61)

y(k)® + [B(k) = Pas(k)o(k)e, (k) 1"Pyy (k)"

{62)

63)

64)

the

65)
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_ . x '
r(k) = [s(k) + L e, (i)y(i)]}/k-1 (4.66)
. 1-1 )

we ha&e
E{r(k+1) [F(k=1)} s £(k) - r(k)/k + o(k)?/k (4.67)
Since y(k) is the signal of the stable feedback system,

we have E o(k)? < o
k=1

It follows from Lemma 5 in APPENDIXv4D that r(k) convérges

to a finite random variable r with probabilty 1 (w.p.1)'andb
kz1r(k)/k < e v.p. 1  (4.68)
which makes r = 0 “w.p.1.

. . . \
Since s(k) and Z e,(i)y(i) are positive, s(k)/k and
i=1 :

e, (1)y(i)/k should converge to zero w.b.?.

Setting T(k) = kP(k), we obtain

- T(k)p(k)o(k) "T(k) . ,
: + R(k® (4.69)

T(k+1) = .T(k) -
, : k + ¢(k)'"T(k)¢(k)

where
P(k)¢(k)o(k)'P(k)

k + ¢(k)"P(k)@(k)

"R(k) = P(k) -

Since y(k) is the output of the assumed stable system and
e(k) is the signal of tﬁe»stable feedback system, y(k) and
e(k) are bounded, so is ¢(k). Hence T(k) is upper bounded.

~This fact and s(k)/k\4,0 lead to the conclusion that



¥

lim $(k) = 0  w.p.1.
k2> .

Since (4.60) is\equivalent to (Siljak, 1968; 1970)

: - — (4.70)
1 - (C|"'f1)q-‘ i (Cn- fn)q_‘.n 2 V
_ ‘ /
if the polynomials
F#(q—y)" 1 - f1q-1 - e - vf"g‘" ’ ‘ (4.71)
C*(g@') = 1 -c,q ' = -+ - cag"" | (4.72)

‘are stable, the regl strength of Theorem 2 is that the

estimates 6,(k) and p(k) are assured of convergence to the
true values if e vector f is chosen such that f-c i.e. 6.,

satisfies the condition (4.70) regardless of the vector c

‘unlike in the case of the EKF-M2 algorithm (4.32).

Theorem 2 defxnes the extent of the sen51t1v1ty of the
9

algorlthm (4. 53) to the a priori knowledge of the

parameters. In fact, the algor1thm (4.32) could be

_ o : o
considered as a special case of the algorithm (4.53) with

f = 0.
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g(k)

dP(k)d'

A

' APPENDIX 4A

[P (k)y (k) + pwllv(k)'P(k)y¥(k) + w]-'

{[® - av(k)'IP(k)y(k) + n[W(k)'P(k)w(k)'+ wl}

[¥(R)"PLOY(RY + w]-"

[ - v (k)" IPCR)YCR) [V () 'PUOV(K) + wl-r +

@ (k)P(K)Y(k)m(k) + ¢

S [EP(V(K) + nuwln(k) [y (k) 'BCK)® + wp'] +

(k)8 ~ eP(K)v()m(k)v(K) 'P(K)é"
= ®p (k)Y (k) [W(k)"P(K)W(k) + wl-rwp'
- wW(R)TROROV(K) + wl* 'y (k) B(K)@"

= v (k) 'P(KIW(K) + wl-twn' + pun'

®P(k)®' - #P(k)y(k)m(k)y(k) 'P(k)@"

+ ®P(k)¥ (k) [¥(k) 'P(k}¥(k) + w]™!
[-w(k)'P(K)w(k) - w + w(k)'B(k)y(k)In®

+ al-v(K) POOW(K) = w + y(k) ' BOW(K)]
Tw(k)"P(R)W(k) + wl-'y(k)'P(k)®

/

a
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+"allw (k) BOOV(K) + w = wITW(K) RUOW(K) + w]- Wit
- - (A2,

8.
h & . ‘%-
= P(K)®' - #P(K)V(K)m(K)Y(K) \P(K)®’
» P . : ‘g ,
’ + P(K)Y(K)[w(X)'P(k)y(k) + w]

[-v(k)'P(k)y(K) - w + ¥(k)'P(K)w(k)]n®

o

+ nl-v(k)'P(k)¢y(k) - w + ¥(k)'P(k)y(k)]
[v(k)'P(Kk)Y(Kk) + w]l - 'y(k)'P(k)d'

+ (k) ROV OO [¥(K) 'BOROY(K) + wl twn!

= (k)P -‘QP(R)J?;)m(k)w(k)'P(k)é'

,h«?

+ ¢p(k)w<k)[w(g) P(k)W(k) + Wl
(- w(k) P(k)w le + V() BV (k) In'

+ n[ ¢(k) P(k)w(k) - w + (k)" P(k)W(k)]
[W(k) p(k)w<k) + w] ‘w(k) p(k)é'

¥ A 9.

s nw(k> p(k)w<k7{w(k) p<k>¢<k> s vl

[W(k) P(k)¢(k) + W= ¢(k) P(k)w(k)]ﬂ

N 2

.‘}&

= QP(k)Q' - QP(k)w(k)m(k)W(k) P(k)®!

+ q»p(k)wk){ 1 + [w(k) ’P(k)\l/(k) + w] '
w(k)"P(k)\U(k)}n

+ n[ I + \I/(k) p(k)w(k)w(k) P(k)y(k) + w]"}

w(k) P(k)¢(k)

(A3.

(A3,

(A3

(A3.

(A4,

(A4,

(A4.

(A4,

(As.

(A5

~ (AS.

4)

1)

2)

.3)

4)
1)

2)

3)

4)

1)

.2)

3)
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W) PR (K) I n"

1@ - nv(k)' ]

&, (k) {P(k) - P(R)WK)Im{K)Y(K) "P(k) 3§, (k)"

k

S

:
v

T . | A
o+ av(k) PR (k) {1 j‘Lw(k)'p(k)w(k)+ Wl

= 18 = (0 IR = PORIVAKM(K)Y (k)RR

5 °
B M

-3

A\
y,
«y
.

e E

T

(]
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e | - APPENDIX 4B
Proof of Lemma 1
The féedback system (4{39)'can be described as a

time-varying autonomous system:

x(k+1) = Z(K)x(k) I ey
~where .
| CEodk) Ea (0] R R
=(k) = | o s
il E 0 Eaa 0 T
Zoa (k) = B+ he(k)' P, (KIe(K)Ba ma(k) . . (B3)
C Eia(k) = -Be(k)'ma(k) S (e
Z,.(k) = ~Pag(K)B(K)6;'ma(k) . - (BS)
= [1 +opg .0 (LRI ) T @ (B6)
x(k) = [8,(k)",p(k)"]" AP PR (B

In equation (B6). we have uSgd‘thé matrix inversion lemma:

Paa(k+1) ' = ?iz(k)f"+ ¢(k)¢@1)'j': (B8 - T

Now,rconsider_theffollowihg quadratic function.as a

| candidate for the Lyapuhov'fdhction:'

V() = x(k)'TOx (k) S (89)
" where o
-
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. /
A tedious but stra1ghtforward matrlx man1pulat1on ﬂ{ Q(k)
L e - .
ylelds
Q.. (k) = F. ZFC -z PERTE g
+ ¢(k)' Pzz(k)¢(k)[9 hZF .’ + F.Zhé, ]m, N
+ [¢(k) P,a2(k)¢(k)]126;h' Zhezm,(k)’
912(’() AF Zh¢(k) m;(k) - 92¢(k) m;(k)
R = ¢(k) Pzz¢(k)9 h' Zh¢(k) m,(k) , '(Q}G)
S . , Y b
2., (0 5 #(OR'Ze (k) 'my (k) = ¢(k)¢(k)'m,kk) NG 15D
| | T |
where & . ‘ . o
d.]s(k)l Q1z(k) | ! '
Q(k) = _ - ~(B18)
SRR Q12(k)" Qz2(k) e T

"t

; (B14)

|

Th(k) = I (B10)
" Ty2(k) = Tay(k) = 0 (B11)
Taa(k) = Pap(k)- B (B12)
We ostaiﬁﬁiﬁ
CWU(k) = V(K1) - V(K = x(k)'R(K)X(K) . (B13)
where  Q(k) = Z(K)'T(k+DE(K) = T(k)
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‘Since H(g"') = 1/2 - 6,'(qQql - F.')"'h is s.p.r¥,
there exist a real vector £, a real scalar 7 and a'rea;‘

positive definite matrix I such that (Hitz, et al., 1969):

{e
FeIF,' - L = =f§' | | (B19)
.Fth‘=.-€z + 1t A R (B20)
h'Zh = t - 72 . o S (B21)

Using these relationships bnvequétiohj(Bls), ve have:
, 1

S5 (K) " - 9(k) "By

Q]](vk)

@1 (k) = = 7E6(K)my (k)
| - ¢(k)'P2a (k)¢

B
Qa2 (k) =~ ¢(BV@(K) ' [r2 4 (k) 'Baz (K)o W) Ima (k) (B24)
‘_Where' N
§(k) = & = 9(K)'Paz(k)o(k)Bzrmy(k)® . (m2s)
» ) ' T . . i . . Ty }‘
Since |
911;(';}() ‘0'9.121()()3222(1()‘912(‘()' ' : ‘;‘ _ - ” 'v h
< ¢(K)'Paa(k)e(k) - _ Y,
= - ——————{[§ + 76,m31[% + T6,m;]" » (B26)
T3 o+ ¢(k)_'Pzz(k)¢(k,’)) ‘ , ' _ S
is SémiénegatiVe~deiinitg.ﬁ‘ |
and 0 05.05.000 = @y, S 2

[4 ]

(K)6(k)620, ms(k)>  (B22)

Glky (1 - rma(k)r o (B23)
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by‘Lemma 2 in APPENDIX C, the matrix Q(k) is semi—hegative
‘definite where "*" denotes pseudoinvefse. It immediately

follows that the matrix E(k) is stable, so is the system
(4.39).
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- APPENDIX 4C -

Lemma 2: A given symmetric matrix @

v

Cou
91 1 91 2
Q = (c1)
' . M
Q 12 92” 2 .l? N
g,,
"is semi-negative definite
Hf @, 50
'911 - 9129210912' 5%0 g
and : 922922 912 =R,z !%\ '
o “
where nen denotes pseudolnverse.
Proof: . -
{ . 4
Consider. the quadratic form:
‘* = ’ - | .
Vo= (x",y")Q(x",y')" : |
= X'"Qx + 2X'Qy .y +'y'9229§§§ | - vv"k\ (CS)
where x and y are any“non—zerolveetors,of apprdpriate
“dimensions. V can be expressed as: ”
3 ) ) . ' :\
V= x 911X + 2x 912(922 sz)Y * Y szY
B 4 “m
+. X 912922 szﬂzz 912 X -
5= x“ﬂﬁzﬂzz Q:2022" le X
= x'(Qyy = €12Q:2°Q,2" )% D 3 -
) . - o , : : T ‘ .
+(y * Q22°Q02"x) (072(y + Q3,°Q43"'x) (ce)
. ' : : 0 . ,
V is non-positive. Hence, Q@ is semi-negative definite. - *
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APPENDIX: 4D

-

”

In th\s appendix, we introduce an important type of
StOChaStlc process called. supermartlngale and discuss those
of its properties pertinent to the proof pfesented in

Section 4.6.

Def1n1tlon (Kushner, 1971): Let {x(k)} gt a sequence of
random varlables measurable w1th respect to (w.r.t) a “random
variable z(k) and {7(k)} a sequence of an éver- 1ncre351ng
o-algebras generated by {z(1), ---, z(k)}. The §eQUence of

random varlable x(k) is then called a supermart1ﬂgale if

7-‘ y ‘uf‘ ;

E{'x(.kA)_L?(k-j){ s x(k=1) - )

3

with probability 1 (w.p.1) for each k.

) . _ e | . : ~§§§,
) _ . ’ . . IS . ‘ .

Orie of mosg successful applications of the
supermartingale theory is‘in the proof‘of the“conyergence of
recursxve algorlthms for stochastic systems. The
convergence proof using the supermartlngalé theony usuallyv 'gﬂ..
results in stronger convergence propert1es compared to that )
“in the mean squares sense. The appllcat1on of the
vsupermatingale theory for the convergence proof largely

. hinges on the following lemmas.

‘Lemma 3 (Kushner 1971): If {x{k)} is a‘nonnegativej'

supermartlngale sequence and E{h(k)} < = for all k, then

v?

‘e’{~x(k)L7(k -2)7 s x(k-2)"
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Proof: since F(k-2) Flk=1)

E{x(k)|[F(k-2)} = B{E{x(K) [F(k=1)} |Z(k-2)}

s E{x(.kﬁ)[?(kﬁ)} s, x(k-2)

gPThe 1mportant 1mplicat10n of the.above lemma is thagéE{x(k)}

i _
converges to a f1n1te random varlable. The proof of this

SR

1mp11cat1on could be found in (Neuve, 1975).

. &emma 4 (Neuve, 1975) Let {a(k)} and {x(k)} be sequences of

3,
‘..

‘nonnegative random varlables measurable'q,r.t j?(k) and\

. .

E(x(k) [Z(k=-1)} s x(k-1) +" a(k). ,

1 %
then .,x(k).e Xx < ® w,p.1 exists
if Z a(k) < o )
. . ' R X §
 Proof: Let r(k) = x(k) “izja(i)
, v o X
- then. E{r(k)[F(k-1)} s x(k-1) -;F a(i) - a(k)

= r(k-3) - a(k)*s r(k)-

:
" thus r(k)\isié supermartiqgale and this'implies, aeeprding
to'Lemma 3 and its consequeﬁce; that (k) converges to r

v.w.pel :.r 4 o | |

'Since L a(i) < n,lx(k) = r(k) + E a(l) converges to a _
fihite rendom variable x < =, o ' i
»Lemmais.(Soib, 1979):VLet {B(k)} and‘{s(k)}_be‘SGQuenceS»of_

nonnegative-'random variables measurable w.r.t Z(k) and let



E{s(k) |[#(k-1)} < s(k-1) + a(k) - B(k)
and 2 a(k) <o w.p.1

then s(k);+ s w.p.! andkEiB(‘k)v <® w.p.l

wvhere s is a finite random variable.
. POl
"y

A C X
Proof: Define t(k) ='s(k) + I B(i)
s im=1

then E{t (k) [F(k-1)} 5 t(k=1) + a(k)

It fcllgw&w£m6m-meﬁa 4 thatQQ f;»

s

s(k) +s < mmfﬁ?§;1 and k§1§(k) < @\‘w.p.1,
&4 : ‘

e

B

%

-
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CHAPTER V .
SIMULATIONS

5.1 Introdugtion

In the previous chapter, three recursive
identificatgak»algotithms for the'linear stochastic system
were derived. The algorithms were obtained by modifying the
standa:d EKF elgorithmvfor identification in order to reduce
the computational\burden and/or to avoid biesedness of the
estimates. Of the three algorithms, it was shown-that the
~third algotithm (EKF-M3) is the most general and hence most
useful. In thi5~chepte:, the eﬁfectiveness of this -
algorithm as compared with two?other'algorithms previously
reported in the literature will also be discussed with the

help of simulation studies.

since the ultimate objective of developing these
« algorlthms is to apply them to real-life systems, it would
'seem appropflate that the compar1son of various algor1thms'
'ishould be carrled opt with respect to real- 11fe systems.
However, this has certain dlsadvantages. In app1y1ng an
algorithm to e/ﬁartlcular system espec1ally if very 11ttle
‘1s known about the system, spec1a; approaches or  tricks have
to be used.’ These trzcks may vary from algorlthm to
'algorlthm and system to system. Consequently a proper
compar1son of the d1fferent algorlthms may become d1£f1cult.'

On the other hand, computer s1mulatzons provide a great deal
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of insight into the relative strengths and weaknesses of gpé

“different algorithms tested for the fbllowing reasons.,

i) complete control can be exercised on the conditions

¢

associated with the system in order to achieve

clear comparison

and 1ii) it is possible to eliminate or reduce dispensable

elements which may otherwise obscure the comparison

of results,

The comparison of algorithms will therefore be carried dut

. vy & . . :
by means of computer simulations.

Many'different recﬁrsive algorithms have been proposed

(saridis, 1974; Isermann, et Sii, 1974; Soderstrom, et

1978; Dugard, et :a'l., 1980). Listed belbw are the mos’

s,

1°well—known-algbrithms which hawﬁ been publiéﬁg%:

RLS - the
RIV - the

* RGLS- the

ELS - Ehf

RML - the.

' - ' : ‘
recursive least-squares algorithm ‘

recursive instrumental variable algotithm
generalized least-squares algorithm
extended least-squafes algorithm

recursive approximate maximum.likelihood\.

algorithm.

Considering that both RLS and RIV aléqrithms are formulated

to estimate only the process parameters, not the noise )

parameters which are gf main interest here, these two

i

algorithms will not be used in the simulation_studiés.

Although the

RGLS method is intended to esiimaté’thefnoise
- ED N .o

N

Y
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parameters as well as the process parameters, the model
structure representing noise differs from that used {n the
EKF—M3‘and the last two algorithms listed. Consequently,
the RGLS methoé will be of little.value in the comparison
studies in terms of assessement for possible real |
agplications; thus this algorithm is also exclbded. The ELS
:and RML algorithms will be used in simulations along with
the EKF-MB‘algorithm developed in this thesis., It is noted
that the features‘ofvthe ELS and RML algorithms were
dioussed in the previous chaper.

-

Two examples will be used for the simulation studies.

In Sectxon 5.2, results ‘based on a vell" Known example which
i
. first appeared in (Ljung, et al. 1975) are discussed. \

Tnese,studles w111 compare the convergence propertles of the

algorlthms. In Sectlon 5.3, general comparison of the k

algor1thms is reported based on a fourth order" example used

exten51vely ‘by Lee’ (1964) and Saridis (1974) ,
5.2 First SimulatiOh Study\

’A~secohd~order system is chosen:
: L a, 1‘ v 61 )
clke1) = [ K0 + ‘]v(-k)
: a; 0 : © 4. .
o : " Lo ' :
Cy(k) = [t Olx(k) + w(k) | "

" with the foIlowing parameter varaes'
: S; - -0. 95
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x5

d, = 0.6 | : ' .

d; = -0.2
thus, c, = a, - d; = -1.5 / .
c: = a; - dp = -0.75 o .

and v(ik) ~ N(0,1)

This ;xample isvthe same as that uséd by'Ljung, et ai.
(1975) as a counterexampie to dembnstrate a biased
conve;gence'of.the'ELSwéigorithm. Since the EkE*M%/////
- algorithm as welf as the RML algorithms yield unbiased
estimates, the ELSvélgorithm was modified also to yield an
unbiased estimate SO(Fﬁat a‘true comparison of rates of
convergénce of the tnéle algorithms could be hade. The
vmod1f1ed ELS algor1thm 1s de51gnated as GELS. The details
of the. mod1f1cat1ons are given in Appendix 5A. % -
¢ T ' * /
, 'Several values of iﬁitiél state were qéed\in the
}simulatiOn‘studies. bﬁhilé\ghe GELS and the.EKF-M3‘qigorithm’
converged every time with a proper chqiég of vector f, ;ﬁé 
N .cénvergehce_of the hML'algorithm'ﬁas possible oniy by the -
use of a projection facility such that estimate c(k)'stays”

in a region where

1.

1 - &, (k)g-* = &;(k)g~*
S A : .
15 a}ya's stab&e. . 5 ‘ “54‘?'41

.'~~‘

5 - o : R o .
.~‘?' = . . R ’ -



 Fiqpre8 5-1 and ? shov the result

£ = [-1.0 -0.35]"

'megsurement y (k)

R P
2

'
¥

A

.. 5.3 Second Simﬁlation Study

For the second comparison study, the following fourth

order s}stem is chosen: °

R

where

x(K+1) = Ax(k) + w(k)

y(k) = h'x(k) + v(k)

sl

h=[1000]

P

- N
with the Gaussian noises

For purpose of simulation,

w(k) ~ N(0.0, Q)

v(k) ~ N(0.0, r)

are set as: .

a=1[1.00

Q=

to:

g

1,00
. O..oo
f 1.18
-1.60

T

- This system is eguivalent

0.18 -

0.00

. 0.00

0,00

0'00

0.78

1.18.

0.00

1.39°

-1.89

}?;’ <"' |
;

*

'_0 . 65] '

-1.607

0.00
=-1,89
2.56

in terms of

*

s as

the pérametérs.to be ;de7kified'

\
\. ' l
N e _‘“'
"Iﬁ
{‘ .
’ A

vell af xhe

i
t

-
.
i

input-output relation
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¢

x(k+1) = Ax(k) + dv+fﬁ
y(k) = h'x(k) + v(k)

_where d = [0.570 -0.027 0.306 -0.619]"
" thus, c = [0.430 -0.153 0.47¢ -0.041)"

and v(k) ~ N(0.0, 3.988) ' 8

\ ~ Two features of this. system are worth not1ng. ‘This
system is very sen51t1ve to n01se (Lee, 1964) and
consequently, it is d1ff1cu1t to. 1dent1fy the system ,

parameters wlthout bias (Saridis, 1974). ‘AISO

1 i S o

1 - 0.430q"' +.0.153q°* - 0.474G"® + 0.041g-¢ 2

' is not strictly positive real.’

The same three algorlthms used in . the first 51mulat10n

study are also used here. For the EKF-M3 and GELS
algorlthms, the followlng values were assumed as the
‘a priori 1nfgrmat1ons on the vector parameter c.« The same
values are also used as the[Veétor,g;‘.;

&(0) = £ = [o;zo 0;05‘0.30‘0.301'
The 'RML algorlthm was also 1n1t1ated w1th the same initial
values for fair comparlsons " The RML ‘algorithm is also
complemented with the pro;ectlon facxllty as the previous

simulation study. . The results of the 81mulat1on studies are

shown’in.Fiéure 5.3 and ‘5.4.
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5 4 Remarks

The results of the comparison are summarlzed in
'Figures‘s-s and'5~6 for both studles. These,fzgures
illustrate the convergence properties'of the algorithms

4 -

-The squared estlmatlon errors vere. normallzed by d1v1d1ng

then by the 1n1t1a1 squared errors to g1ve the same weight

‘to each estimate. .-

Both studles show that the performance of the EKF-M3

was vastly superlor to- those of the. other .two algorlthms for

'almost all the the parameters._ The performance of the RML

algorithm on the other hand var1ed con51derably depend1ng on

‘the parameters.v For example, in.the,second study\its
convergence rates for estlmates c1(k) and C3(k) were
runacceptably slow while those- for Cz(k) and cilk) were %
surprlslngly fast. Though the overall convergence rate “of
:the RML alg%rlthm was not much slower than other two

algorlthms as shown in the flgures, thls algorlthm

experlenced the worst tran51ent reponse among the three. As

\

'a~result even after 5000 1terat1ons the convergence of thls

4

galgorlthm was not conclu51ve. ,As expected, the GELS

algorlthm showed slowér,convergence than the EKF-M3

‘algorithm. Hdwever thezconvergence\patterns of the\both
: ‘o

algorlthms were qulte 51m1lar as shown in Flgure 5 4 because~

" the gradments of the error correctlon terms of the both

algorithms are the same,
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APPENDIX 5A

Derivation of the,Generalized Extended Least Squares

‘ithm (GELS)

As was p01nted out in Sect1on 4.5, 1t should be noted
that the dlfference between the ELS algorlthm and EKFrM2
algorlthm 1s that 1n ELS a pr10r1 error e(k) is used for the
generatlon of: 9 (k) while the EKF M2 algor1thm uses

a posteriorl error e,(k) ' It should also ment:oned that the

- EKF-M3. algorlthm was obtalned by general121ng EKF M2 using a

canonxca)\z:rm which 1ncluded a general vector £ to avoide.

the possib 1ty of blased convergence These two ideas w111 o

- now be used to obta1n a generallzed Extended Least Squares

"algor1thm.- The GELS algorlthm is then of the form.

Cz5(k+1) = F° zz(k) + hy(k) o ‘ _ - _-(Aimw)‘
8, (k+1) - F' 9 (k) + h[y(k) - y(k)] - . o (31.2)“
B(k+T) - p(k) + P2z (K)o (0ms (k) [y (k) - P01 an3)

v = )R N SO

o0 = (B 07,z s

CPaalkel) = Paslk) - Pzz(k)¢(k)m3(k)¢(k) Paa(k)  (AT.6)

S mak) = LT (k) Rn(k) e} g S anT

Rzz(o) = sz(O)f ? 0 o

3

Covergence of GELS )
 The errors p(k) =p - p(k) ‘and §, (k) = 0, (k) - 8,(k) .

R

satisfy the_follow1ng error equations:
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§(k+1) = BB, (K) - ho(k) T e " (A2.1)

(k) = 6276,(k) + v(k) + vik)  (A2.2)

Blk+1) = Blk) - P,z(k)¢(k)m,(k)e(k) a2

Y (k) = (k)" p(k) ) RN  (a2.4)

Paa(k+) = P*z(k) - p,,(k)¢<k)m,(k)¢(k)xp,2(k) (A2.5)
where F, = F - §,h' | , > _ | .‘ F

By
v . _ {'
As was the case for the EKF-M3 algorithm, the GELS algorithm

is also assured of unbiased convergence if the etrors P(k)

- and 8, (k) converge to the orlgln in the error vector space.

Furthermore, if the errors p(k) and 6,(k) converge to the
.'orlgln without the exp11¢1t noxse v(k) in the'equatlon
(A2.2), one can easily conclude by'similarity of the
g;ructure 6ffthe errdfhequations that the GELS algorithm

will yigld unbiased estimates of the parameters.

) 'Consequently, the'overallvunbiésed convergence of the _
_GELS .algorithm can be established by examining the stability
of the error feedback system‘without t@é,noise term v(k) in
equation (32.2).,'ThiS'$tability p:dbléﬁ can bebstated as
follows: | | | R h

. Lemma: Given the following time-varying system:

Bi(k+1) = BB () - by CERE
e(k) = 62'8,(K) + 7(k) - (a3
B(k+1) = B(k) - Pzz(k)¢(k)m3(k)e(k) - (A3.3)

y(k) = s(K)'B(R) o (A3.4)




Paa(k+1)i = Paz(k) = Pra(K)e(kIm(k)g(k)"P52(k)  (A3.5)

lpzz(O) ? Pzz(O)' b 0

'8, (k) and B(k) converge to zero as k -» =
if ¢(k)' Pzz(k)¢(k) <8 for allvk where § is a positive

~scalar and
Hg') £ 1/2 - 8, (ql - F.')-'h

is strictly positive real.
- _

Proqf:

‘Consider thetfollowihg quadratic function as a

candidate for the Lyapunov function:

V(k)

vitk). = B,(k)Z8, 00 (a8
= p(k)'Pya(k) - 'p(k) - | - (A6)

V2 (k)
It follows from equations. (A3.1-2):

Vv, (k)

= v (k+1) = v (k)
= §,(x)' [F ZF.' - £18,(k) - 28,(k)'F,Zhy(k).
+ h'Ehy(k)® S an
'VVQ(k7'= Vz(k+1)" Vz(k)

y(k)?* - 2y(k)e(k) + ¢(k) Pzz(k)¢(k)m3(k)e(k)’

(A8)

In equation (A8), the following matrix inversion lemma has
‘been used: -

\;

i

vik) ¢ va(k) .
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Paa(k+1)=' = Pyy(k)-' + ¢(k)o(K)'

Since H(g ') = 1/2 - 6,'(qI - Fc')"'h

is s.p.r.,

(A9)

cp

there exist

a real vector ¢, a real scalar‘r and a real positive

»

‘definite matrix I such that (Hitz, et al., 1969)

F. f? = -f¢' (A10)

Fc.Zh = -6, + f7 (A11)

h'Zh = t - r? (A12)
Withlthese relationships, equafioe (A7) becomes:

TUo(k) = =[6,(k)'E + 7(K)r]® + 27(k)e (k) - y(k)* (A13)

thus,

VV(k) = vV, (k) + VV (k)

= —{[e (k)" 5 + 7(k)T]’ - ¢(k) Pzz(k)¢(k)m3(k)e(k) } (A14)

s

Since ¢(k) is bound and P,,(k) is nonincreasing, there

exists a positive scalar & such that
A Y
$(k)'Paz(K)@(k) < 8

in which caSe\VV(k) <0,

and the feedback system (A3) is stable.

(A1$)

Consequently, the GELS algot1thm is assured of- produc1ng

- unbiased estimates of the parameters

The slower

convergence ovaELS compared to EKF-M3 can be attributed to -

this additional restriction (A15).
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CHAPTER VI

CONCLUSIONS

6.1 Summary ‘ - °

This thesis is entirely devoted to the development of
various recursive identification methods for determinisﬁic
as well as stochastic discrete linear time-invariant
systems. Though at the beginning of -each chaptef, there was
a brief discussion on the specific subject which was dealt
in that chapter, it is,the purpose of this section to
summarizé the salient features of each chapter and the

resglts obtained in this thesis.

In Chapter II, a canonical form of the iﬁh6§ations.
representation for the multiinput singleoutput system is
antroduced. JThe preference for using the innovations
representation over othef repfesentatibns,'in particular for
the identificétiqn problem is largely related to the
uniqueness of pafémeter estimates for a given measurement.
This uniquenesé, thch is‘of great importance for thé
identification problem, originates from the féct that the.
innovations representation is the sole minimum phase syétem
for a given rational spectral dehsity.(Anderédn, et al.,
1979). This, in turn, implies that for a given measurement
y(k), a stationary process,-fhere exists only one minimum
phase system whose output c§uld be regarded as the

measurement and this minimum phase system is identical to
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the innovations representation. Thus, by adoption of the
innovations represéntatiqn, a risk of ambiguities of
identified parameters §ould be almost elimirated.
Furthermore, the structure rof the canonical form introduced;
is suited especially to the least sguares method for the
identification problem. This form is also flexible enough‘

to facilitate the development of new identification

algorithms.

Chapter III presemts a fast identification algdrithm
for the deferministic linear Systeh.. This ﬁgs done by
geometricéily‘interpreting'the Kudva—Narend;;y(K—N)
identification.aiéorithm and improving the éonvergencé:speed
by the introduction of orthonormal véqtors. AThé special
advantage of this scheme is that the overall computatidnai
- requirements are.considerably reduced'in comparison to ;%e
K-N algorit?mi While' the unaerlying’ideafof this
development is simple and stréightforward, the geometric
interpretation makes it possible to visualize how the K-N
algerithmihpfks and consequently to improve the conyeréence
‘rate. Furthermore, thiS'approach‘érovided a basis for the
-direction to be taken for the-development of identification
algorithms when noise is present, i.e. the stochastié Sysfem

identification which is thevsubject of Chapter IV,

A stumbling block in the use of the standard least
quareé method for the stochastic system jdentification

problem is, in general, the inclination of the least squares
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method to bias the estimates (Astrom, et al., 1971) if noise
is cocrrelated, as‘is generaliy the case.h Several techhiques
‘have been preposed for the recursive iéentificatien probiem
to get erohhd this drawback. The basic philosophy behind
the proposed methods in common is to decompose the
correlated noise into a sequence.of weighted white noise or
/innovations, whi;h is often called as*Wo}d decomEesition‘and'
then to use the standard recursive least squares'method to
tide'nt_ify the auguhented parameters which includes the
parameters for welghlng the innovations. One of the obvious
problems ‘arising in this approath is that the innovations
are not amenable to measurement. .Consequently, different

methods have been suggested to estimate the innovations.

Since the identification problem fbt the linear
stochastlc system can be con51de5pd as a nonlinear
estlmatlon problem, the Extended Kalman Fllter algorithm has
been quite often used as a startlng step for developing new
:algorithms. ~In chapter IV th1s approach is once agaln’
taken to derive several d1fferent 1dent1f1cat1on algorlthms
1n~order}ma1nly to allev1ate the unnecessary computatlonalr
burden. .The medifications are/ﬁade,possfble!because of the
following observat1ons- |
1) the EKF algor1thm for the 1dent1f1cat10n problem is

assured of 1ts unblased convergence in the nezghborhood

of the true values of the parameters.

2) the use of the 1nnovat10ns representatlon combxned with



v

the above observation justifies metting some elements of
the approximatt covatiance matrix of the EKF algorithm to
be zero, thus leading to gsimpler algorithms in term of
computational requirements. ‘
The process of simplification has also revealed that some
existing algorithms which were developed by other methods
are merely modifications of the EKF algorithm. Thus, this
helps to understand better'the behaviour of these
algorithms. This understanding together with an effective
use of the canonical form introduced iq‘Ch;pter I1 makes it
possible to develop a fast but bias-free identification
algorithm if some ‘condition . is met. fhe requirement of the
condition could be in most cases satisfied with a priori

knowledge. of the system.

The dlfferences among the algor1thms d1scussed in this
the51s, namely, RML GELS and EKF-M3 are worth noting.
Whlle in the RML and GELS algorithms, a priori errors are
used to replace the true innovations, a postériori errors
are used for the EKF-M3 algorithm. It is this a postériori
error that is thought to be responsible for Faster
convergence of the EKF- M3 algor1thm to the true values
compared to the RML and GELS algorithms. Secondly, the RML
algorlthm 1ncorporates a prefilter with t1me—vary1ng
parameters. On the other hand, the-GELS and EKF-M3

algorithms employ a prefilter with fixed éarameters.

 Theoretically, identification algorithms ﬁith time-varying
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prefilter exhibit superior performance comparegd to
algorithms with time-invariant filters, provided the
parameters of the time-varying prefilter approach to the
final desired values uniformly. In the case of the RML
"‘algorithm this uniformity property is not present in the
prefilter, Consequently its convergence property is
inferior to that ot.either the GELS or EKF-M3 algorithm as
shown by the simulation studies in this thesis. Table 6-!
summarizes the properties of the various recursive

algorithms discussed in this thesis.

It should aiso mentioned that the analysis of Ljung on
the converg;nce of the RML algorithm (Ljung, 1979) though
elegant, proves just the mere convergence of the algorithm
and does not address the guestion whether the convergence is
either uniform or asymptotic. One of the advantages of
using a time-ivariant prefiltermas in the EKF-M3 algofithm,

is that it makes the analysis of the convergence property of

the algorithm straightforward.

Though the most of discussions have been for
multiinput singleoutput systems, the extension for
multiinput multioutput systems can be easily made (Anderson,

1974; 1977).
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6.2uSuggestions for Further Research
Fast buthbias—free identificqtion'algbrithms for the,'
linear system using a systematic approach‘have been
developed. But the ever-increasing use of on-line
identification methods for systems in the various fields
substantiallyiexpands the range of appliCation.of.the'
identifiCation techniques to systems in which more stringent
conditions are often”encounteted; for example,»it.ts often
'necessary to identify a system‘with very limited a priori
knowledge of the system. Thus there is a need to improVe

the existing algorithms so as to handle this 'situation
sati s,facto@y .

The employnent of a timefvarying prefilter instead of
a time-invariant one used for the algorithm developed in
this thesis seems extremely promising as an immediate
'improvement thus e11m1nat1ng the requirement of a pr10r1
information to guarantee unblased convergence. One very
1mportant problem requiring an 1mmed1ate attentlon is the
unblased convergence property of the mod;fled form of:the

;

algorithm.’ This' problem also demands a comprehensive study
of a more general form of representation for the stochastic.

system to accomodate the time-varing prefilter.

‘Another approach which has a great potentiai‘is to
treat the linear stochastic system as an unknown infinite

impulse response (IIR) filter and use the standard least
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”lsquares method Thls approach wlll involve the development

of an eff1c1ent recur51ve least squares method for an- -

n1nf1n1te d1men81onal system and a fast algorlthm to

transform a polynoq\al of ever 1ncea51ng order 1nto a.

'ratlonal polynomial\with a flxed order.

;While this thesis‘ﬁas'been devoted to -the thedretioal

development of eff1c1ent recursive 1dent1f1catlon algorlthms

for stochastlc systems, it is appropriate to mentlon that

~these,algor1thms,have a wide appllcatlon ln;the area of-

process control (Isermann, ed; 1980), communications

¢

”;(Friedlander,‘]982) and processing of seismic data

(Robinson, | 1957; Mendel 1977"Mahalanabis,det al., 1981).

»fobtalned from geophy51cal exploratlon to mentlon a few.

More'eXteégdve computer Simulations also needed for a

more tomplete evaluation of the algorlthms treated in this

" thesis. A comprehen51ve assessement of the, performance'
characterlstlcs 1nclud1ng sensxt1v1ty'to error in eStimation

~.system order and the effect of unusually large 1mpulse

i

n01se etc., whlch are of extreme 1mportance 1n real .

. appllcatlons should be made by means of 51mulatlon studles

before 1mplementatxon.
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COMPUTER ‘PROGRAMS

Following are the listings of the computeér programs
used in”éimulation studieéhof Chapter V. Since,‘as
mentioned previously, the EK?-MB and GELS algorithms differ
only in the use of é‘postériori or 5 priori errors, these .
3éwo algorithms are combined tbgether into one and selected
by a flag ICH of the routine GELS. The calculation of the
éain'vector'of the correction term of the paramétef
estimation is performed with the fast algorithm proposed by
Ljung, et al. (1978). The program GELS includsfthis fast
algorithm. The rest of GELS program and entirevRML program

follow exactly the same notations as used in Chapter IV,

K
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QOO0 O00Q00000N0O000000000NONNO0NN00NN00ON0"

SUBROUTINE GELS(YU,FV,P,ITER,IYU,NORD,NORDD,GAIN,ICH)

THESE ARE THE GENERALIZED'EXTENDED LEAST SQUARES AND
EKF-M3 IDENTIFICATION ALGORITHMS FOR THE SYSTEM
WITHOUT CONTROL INPUT, i.e. TIME-SERIES, OR WITH

. CONTROL INPUT.

THE CONTROL FLAG 'ICH' SWITCHES BETWEEN GEﬂS AND .
EKF-M3. ‘ : .

THE RESULTS WILL BE STORED IN A TEMPORARY FILE "-GELS"
IF GELS IS RUN OR "-EKF-M3" IF EKF-M3 IS RUN,

YU: OUTPUT OF THE SYSTEM WHOSE PAPRAMETERS ARE TO BE
IDENTIFIED AND THEN THE CONTROL INPUTS ARE
IMMEDIATELY FOLLOWED IF THEY EXIST.

FV: SYSTEM VECTOR OF THE SYSTEM MATRIX F OF THE

IDENTIFIER
T
I
F = FV | -
, 0
P: THISJVECTOR CONTAINS THE INITIAL ESTIMATES FOR

¢, a and b VECTORS
ITER: THE NUMBER OF ITERARTION DESIRED. .
IYU: THE NUMBER OF ENTRIES IN "YU" IF CONTROL . INPUTS
EXISTS THEN IYU=ITER*2, OTHERWISE IYU=ITER
NORD: ORDER OF THE SYSTEM :
NORDD: 2*%*NORD IF NO INPUTS
'3%*NORD IF INPUTS EXIST
GAIN: SCALAR VALUE FOR THE INITIAL GAIN MATRIX P22
S P22(0) WILL BE GAIN*IDENTITY MATRIX
"ICH:" SELECT GELS IF ICH=0
EKE M3 IF ICH=1

LOGICAL#1 DATA1(8),DATA2(8)
REAL K(15),%(15),A(15,3),FV(NORD),D(15,3),X1(3),

$ PRMT(15) ,YU(1IYU) ,EPSI(3),WKA(3,4),ISIG(3,3),

$ °  AMAX(15),AMIN(15),P(NORDD),EPSIO(3)

DATA DA}_TA1/"','G',.'E','L','S',3*i' v/ g
DATA DATAZ/'-',’Ef,"K',"’F','—',‘M','3',_' v/

ATTACH THE PROPER TEMPORARY FILE.FOR THE OUTPUTS

IF(ICH .EQ. 0)CALL FTNCMD('ASSIGN 3=?
IF(ICH .EQ. 1)CALL FTNCMD(' ASSIGN 3=?

,0,DATA1)
,0,DATA2)

~e we

DETERMINE IF THEREdARE,INPUTS TO THE SYSTEM
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aOOOO0 0O

00N

OO0

a0

00 anao0an

onn

— N

11

10

. DO 8 I=1,NORD
“P(I)= FV(I) P(1)

NDATA=NORDD/NORD

SET SIG(O)-GAIN*IDENTIT& MATRIX. THIS 1S EQUIVALENT TO
SETTING P22(0)=GAIN*IDENTITY MATRIX. THUS, THE INVERSE
OF SIG(0), ISIG(O) IDENTITY MATRIX/GAIN

DO 1 I=1 NDATA
DO 2 J=1,NDATA
ISIG(I, J)*O 0

"IF (I .EQ. J) ISIG(I, J)=1 0/GAIN

'CONTINUE
CONTINUE

SET A(0) AND D(0) EQUAL TO ZERO .

DO 5 I=1,NORDD
DO '6 J=1,NDATA
A(1,J3)=0.0
D(I,J)=0.0
CONTINUE

SET K(0) AND X(0) EQUAL TO ZERO

DO 7 1=1,NORDD

K(1)=0.0 '

X(1)=0.0

SET INITIAL ESTIMATES P, ‘P=[Fv—é}A;rv,B]
‘ -

P(I+NORD) = P(I+NORb) -FV(1)

SET INITIAL VALUE OF AMAX AND AMIN EQUAL TQ ZERO\

-DO 9 I=1, NORDD

AMAX(I)=-100 0

AMIN(I)= 100.0 ' | o

DO 1000 KKK=1,ITER

YH=0.0

L=1

DO 10 I=1,NDATA _ : o
DO 11 J=1,NORD ~ , T
YH=YHﬁP(L)*X((J 1)*NDATA+I)

L=L+1 %*

CONTINUE
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. ERR=YU(KKK)-YH

SEE Eqn. (4.13) in qung's Paper in I1JC

AH=1.0 ’

IF (ICH .EQ. O)GOTO 12

AM3=0.0

DO 15 I=1,NORDD

AM3=AM3+K(1)*X(1) ' ‘
AH=AH-AM3 TN

DO 17 I=1,NORD

PRMT(1)=FV(I)-P(I) :
PRMT (1 +NORD) =FV (I )+P(I+NORD) ’
IF (NDATA .EQ. 2)GOTO 17

PRMT (I+NORD#2 ) =P (I +NORD#*2)

CONTINUE

"DO 18 I=1,NORDD

AMAX(I)=AMAX1(AMAX(I),PRMT(1))
AMIN(I)=AMIN1(AMIN(I),PRMT(1))

WRITE(3,200) (PRMT(J) ,J=1,NORDD)
FORMAT(1X,15F12.4)

L=1

DO 20 I=1,NDATA

DO 21 J=1,NORD

P(L)=P(L)+ERR*K((J 1)*NDATA+I)

L=L+1 ,
CONTINUE' ,

CALCULATION OF NEW COMER FOR SHIFT REGISTER "X"

DO 25 I=1, NDATA

$=0.0

DO 26 J=1, NORD

S= S+FV(J)*X((J 1)*NDATA+I) e

‘IF (I .EQ. 1)HIN=ERR#AH

IF (1 .EQ. 2)HIN=YU(KKK)
IF (I ".EQ. 3)HIN=YU(ITER+KKK) .
XI(I)=S+HIN

EXREEREREREEE LR IR AR R KRR R R R KRR KRR AR KRR E R IR RRRREE

*
*
*

THE ITERATIVE METHOD OF CALCULATION OF "K" *
BY Ljung IS USED. SEE Int. J. of Contr., Vol. 27 No 1*°
pp 1 19, 1978. *

********************************************************
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34
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31

33

41
40

91
90

96

95

46

49

48
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CALCULATION OF "EPSILONO"™ OF Eqn. 4.!

DO 30 I=1,NDATA

S=0.,0

DO 31 J=1,NORDD

S=S+A(J,1)X(J)

EPSIO(I)=XI(I)+S

UPDATE "A" OF EqQn. 4.2

DO 33 I=1,NORDD

DO 34 J=1,NDATA
A(1,J)=A(1,J)-K(I)*EPSIO(J)
CONTINUE

CALCULATION OF "EPSILON" OF Eqgn. 4.3

DO 40 I=1,NDATA
S=0.0 _
DO 41 J=1,NORDD
S=S+A(J,1)*X(J)
EPSI(I)=XI(1)+S

UPDATE "ISIG" OF Eqn. 4.4. HERE THE MATRIX INVERSION
LEMMA HAS BEEN USED.

$=1.0 .

DO 90 I=1,NDATA

WKA(I,1)=0.0

WKA(I,2)=0.0

DO 91 J=1,NDATA
WKA(I,1)=WKA(I,1)+ISIG(I,J)*EPSI(J)
WKA(I,2)=WKA(I, 2)+EPSIO(J)*ISIG(J 1)

_S=S+WKA(I 2)*EPSI (I)

' DO 95 I-1,NDATA

DO 96 J=1,NDATA

IS1G(1, J)-ISIG(I J) WKA(I 1)*WKA(J,2)/S
CONTINUE

CALCULATION OF K-bar OF Egn. 4.5

DO 45 I=1,NDATA

~8$=0,0

DO 46 J=1,NDATA
S=S+ISIG(I,J)*EPSI(J)

- WKA(I,1)=S

DO 48 I=1,NORDD
$=0.0

DO 49 J=1,NDATA .
S=S+A(I,J)*WKA(J, 1)
K(I)=K(1)+S '



aOO0O0000000A0

***********************************************

*
x
*
*

HEREAFTER "EPSIO" WILL BE USED AS "ETAO", :
"XI" AS "XI(t-n)" in Egn. 4.7 *
""EPSI" AS "MU" in Egn. 4.6 N
"K"™ AS "M(t)" in Egn. 4.6 *

! ***********************************************

50

51

52

oNeNe]

Nnonon

OO0

aO0n

.56

55

58

61
60

66

65

UPDATE "X" AND COMPUTE "M(t)f and "MU(t)" in Egn. 4.6

NN=NORDD-NDATA
DO 50 I=1,NDATA

EPSI (1) =K (NN+I) .
WKA(I,2)=X(NN+I)

DO 51 I=1,NN

K (NORDD-I+1)=K(NN-I+1)

"X (NORDD-I+1)=X(NN-I+1)

DO 52 I=1,NDATA
X(I1)=XI1(1)
K(I)=WKA(I,1)
XI(1)=WKA(I,2)

~ CALCULATION OF "ETAO" OF Eqn. 4.7

DO 55 I=1, NDATA
$=0.0
DO 56 J=1,NORDD

.S=S+D(J,1)*X(J)

EPSIO(I)=XI(I)+S

UPDATE "D" OF Eqn. 4.8

"FIRSTLY, THE SECOND TERM OF THE RIGHT SIDE IN Eqn. 4.8
- AGAIN THE MATRIX INVERSION LEMMA HAS BEEN USED. '

S=1.0.
DO 58 I=1,NDATA
S=S- EPSI(I)*EPSIO(I)

DO 60 I=1,NDATA

"DO 61 J=1,NDATA

WKA (I, J)=EPSI(I)*EPSIO(J)/S

IF (I .EQ. J)WKA(I,J)=WKA(I,J)+1.0
CONTINUE

CONTINUE ‘

THEN, THE FIRST TERM OF THE RIGHT SIDE IN Eqn. 4.8
DO 65 I=1,NORDD '

DO 66 J=1,NDATA
D(1,3)=D(I,J)- K(I)*EPSIO(J)

CONTINUE

COMBINE THE ABOVE TWO TERMS
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72
71

73
70

nao.

76

75

1000

ot

DO 70 L=1 NoﬁmD-ﬂ
DO 71 I=1, NDATR

WKA(I 4)=

Do’ 72 J=1, NDATA
WKA(I, 4)=WKA(I 4)+D(L J)*WKA(J 1)

CONTINUE

DO 73 M=1,NDATA
D(L,M)=WKA(M,4)

CONTINUE

UPDATE "K"

DO 75 I=1,NORDD

$=0.0

DO 76 J=1,NDATA
S=S+D(I,J)*EPSI(J)
K(I)=K(I)-S

CONTINUE |

 WRITE(3,200) (AMAX(J),J=1,NORDD)
WRITE(3,200) (AMIN(J),J=1,NORDD)

00

300

-

WRITE(3, 300)

FORMAT(1X 'ESTIMATE OF C VECTOR IS FOLLOWED BY THAT

"¢ OF A')
WRITE(3, 301)

301

FORMAT( 1

,"IN FORMAT F12.4').

"WRITE(3, 302)

302

304

303
305

FORMAT('

.')

IF (ICH. EQ 0)GOTO 303
WRITE(3, 304)

PORMAT(1X
RETURN

'THESE ARE OUTPUT OF EKF-M3"')

WRITE (3, 305),

FORMAT ( 1

RETURN
END

, ' THESE. ARE OUTPUT OF GELS')
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O O000

anon

"~ NORDD;

SUBROUTINE’RML(YU,EV;P,ITER;IYU,NORD;NORDD,GAIN,ICH)

“\
1

THIS IS.THE RECURSIVE MAXIMUM LIKELIHOOD - .

 IDENTIFICATION ALGORITHM COMPLIMENTED WITH

PRNJECTOR WHICH PROJECTS THE C ESTIMATES INTO THE
-PREDETERMINED AREA 'FOR THE SYSTEM WITHOUT CONTROL

INPUT,

THE RESULTS WILL‘BE STOREDFIN‘A TEMPORARY FILE "-RML" |

YU;
FV:
P:
ITER:

I1YU:

- INPUTS EXIST THEN IYleTER*2

NORD:

‘GAIN: -

/

“'ICH:.

i.e., TIME-SERIES OR WITH CONTROL INPUT. : -

-2

OUTPUT OF .THE. SYSTEM WHOSE PAPRAMETERS ARE "TO
BE IDENTIFIED 'AND THEN THE CONTROL INPUTS ARE
IMMEDIATELY FOLLOWED IF THEY EXIST.

f

‘THE VECTOR FV IS ALL ZERO FOR RML THUS FORCED

TO BE ZERO. T

THIS VECTOR CONTAINS THE INITIAL ESTIMATES FOR
c, a and b VECTORS '

THE NUMBER OF ITERARTIONS REQUIRED. i.e. THE“ .
LENGTH OF ARRAY OF Y ) 2

'THE NUMBER OF ENTRIES IN "YU" IE CONTROL

OTHERWISE 'IYU=ITER

‘ORDER OF THE SYSTEM

2*NORD IF NO .INPUTS R
3¥NORD IF THERE ARE INPUTS ;

SCALAR VALUE FOR THE INITIAL GAIN MATRIX P22
922(0) WILL BE EQUAL TO GAIN¥IDENTITY MATRIX
ICH IS ADDED FOR. THIS ROUTINE TO BE FORMAT

COMPATIBLE WTTH GELS

~

LOGICAL*1 DATA1(8) - ‘ . [ 5:

REAL FO(5,5) ,H(5),P22(15,15),UP(S, 15) ,UN(5, 15)
$ 21(5),22(5),23(5), PRMT(15) ,FY(15),5(15),T(5),
§ ° YU(IYD),TMAX(15), TMIN(15) FV(NORD) P(NORDD)
$ - CI ‘ )

NIT(S) FC(5,5)

"+~ DATA H/1.0, 4#0 0/

DATA UP/75%0.0/ T
"DATA pATA]/'-'q'RfoM','L!,4*' "/

ATTACH

N -

THE PROPER TEMPORARY FILE FOR THE OUTPUTS

‘CALL FTNCMD( ASSIGN 3= 23 o DATAl)

DETERMI

~INPUT=0

NE IF THERE ARE INPUTS TO THE SYSTEM

IF (NORDD .EQ. 3*NORD)TINPUT=1

"SET UP

DO 600

FO - ‘ Coe T T L

I=1,NORD
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610"
600

620

/

-n -

-000

naan-

s XeXaXs) ;rxncﬁ

no

o~

650

10

TMHMI)=400.0

DO 777 K=1,ITER ~ -~ . .

DO 10 I=1,NORD
- FY(1)=21(1)

T , R ' 130

DO 610 J=1,NORD
FO(I,J)=0.0 ‘ , '

IF(I .EQ. J+1) FO(I J)=1.0 |
CONTINUE | ' '
CONTINUE

DO 620 I=1,NORD. | R
FV(1)=0.0 - o

' SET INITIAL GAIN MATRIX P22(0)=GAIN*IDENTITY MATRIX o ,
DO 1 I=1,NORDD - R S o ;
DO 2 J=1,NORDD | o o
P22(1,3)=0.0 : . . : :

CIF (I°.EQ. J): P22(I J) =GAIN

CONTINUE
CONTINUE

~ - : - /

 SET INITIAL ESTIMATES P, P=[FV-C,A-FV,B] R
: : ) : B R . e S .

DO 7 I=1,NORD =~ .
P(1)= FV(I) P(1) . ' : T
P(I+NORD) P(I+NORD)- FV(I) .
STORE THE INITIAL VALUES FOR ESTIMATE c »," K ‘ J
DO 8 I=1,NORD o 'T
CINIT(I) P(I) '

DO 650 I=1, NORDD e
TMAX(I)ff100 0. : e ,

FY(I+NORD)=22(I) ' o o
IF (INPUT .EQ. 0) GOTO 10 .~ R - SR
FY(I+NORD*2)= z3(1) _ R ‘ o Vo ’
CONTINUE o L - .
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42 .
40 -

ano

20

. DO 420 J=1,NORDD‘ :

YH=0.0 o
DO 20 I=1,NORDD -
YH=YH#EY(I)*P(I)' :

ERR= YU(K)- YH

CALCULATION OF. FC = FO - H#HTHETA2

DO 40 I-T NORD

‘DO 42 J=1,NORD ‘
FC(I, J)=F0(I J) H(I)*P(J)
CONTINUE

CALCULATION QF UP(k+1) 1n eqn

‘DO 410 I=1,NORD

UN(1,J3)=0.

. DO 430 L=1, NORD : '
430 UN(I,J)=UN(I,J)+FC(I,L)*UP(L, J)
420 UN(T,J)=UN(I,J)- H(I)*FY(J)
410 CONTINUE

CALCULATION OF S = P22(k)UP(k+1)'ﬁ:in eqn. (4.28d)

DO 450 I=1, NORDD
S(1)=0.0 .
DO 460 J=1,NORDD

| 460 S(I)=S(I)+P22(I,J)*UN(T, J)
450 CONTINUE - .

. \DO 58 I=1,NORDD . -

58

72

70

74

CALCULATION OF ml(k) with w=1
AM1-1 0

AM1= AM1+UN(1‘I)*S(I)

' AM]=11O/AMW‘

- UPDATE 21(k)"

DO 70 I=1,NORD
T(1)=0.0

DO 72 J=1,NORD -

T(I)= T(I)+F0(I J)*Z1(J)
T(I)=T(I)+H(I)*ERR

DO 74 I=1,NORD .
21(1)=T(1)

UPDATE zz(k)

DO 80 I-1 'NORD -

T(I) 0.0/

(4;24)1

in eqn.

(4.27)
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" DO 82 J=1,NORD
82

T(I)=T(I)+FO(I, J)%22(3)
T(I)= T(I)fH(I)*yu(K)

DO 84 I=1,NORD
84

22(1)=T(1).

“UPDATE 23(k)-

DO.86 I=1,NORD

T(1)=0.0 :

DO 87 J=1,NORD - _
T(I)=T(I)+FO(I,J)*23(J)
T(I)=T(I)+H(I)*YU(K+ITER)

DO 88 I=1,NORD

.z3(1) T(I)
UPDATE THE ESTIMATE P(k) in eqns (4 28a) and (4 28d)

DO 90 1-1 NORDD : '
;p(I)=P(I) S(I)*AM1*ERR :

TEST FOR ESTIMATE FOR VECTOR C

-'CALL RAIBLE(P NORD, ITEST)
CIF(ITEST .EQ. 0)GOTO . 102

DO 110 I=1,NORD
P(I)= CINIT(I)

DO .550 I=1,NORD
PRMT(1I)= FV(I) P(I)
PRMT (I +NORD) FV(I)+P(I+NORD)

. IF (INPUT .EQ. 0)GOTO 550

PRMT(I+NORD*2) P(I+NORD*2)

. CONTINUE

. DO 146 I=1,NORDD

TMAX(I)=AMAX1(TMAX(I),PRMT(I))

TMIN(I)=AMIN1(TMIN(I),PRMT(I)).,

WRITE(3,200) (PRMT(J),J=1,NORDD)
FORMAT(1X, 15F12.4) "

 UPDATE THE GAIN MATRIX P22 (k)

DO 120 I=1,NORDD
DO 122 J=1,NORDD
P22(1,J)= 922(1 J)-S(1)*S(J) *AM1

MOVE U(k+1) TQ U(k)

-y
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DO 124 L=1 NORD

UP(L,I)=UN(L,1)
_CONTINUE

CONTINUE

 WRITE(3,200) (TMAX(J) ,J=1,NORDD)
. WRITE(3,200)(TMIN(J),J=1,NORDD)

' WRITE(3 300)

FORMAT(IX 'ESTIMATE OF o VECTOR 18 FOLLOWED BY
~$ THAT OF A')
'WRITE(3,301)"

‘,FORMAT(1X "IN FORMAT F12 4 ) .
. WRITE(3, 302) :

FORMAT(' Ak

-WRITE(3 305) | ‘
FORMAT (1X, "THESE ARE OUTPUT OF RML')

RETURN .
END

’SUBROUTINE RAIQLE(A,N;iTESTi

THIS PROGRAM TESTS THE STABILITY OF THE POLYNOMIAL

F(Z) IN THE FORM

N' N—1,

Z + A1Z + ..... + An A
At AN ARRAY CONTAINING THE COEFFICIENTS OF F(Z)

N: THE DEGREE OF THE POLYNOMIAL F(2Z)
ITEST: 0 F(Z) IS STABLE .
1 F(Z) 1S UNSTABLE OR SIGULAR CASE

REAL A(N) AA(G) BB(S)

" NN=N+1

DO 10 I=2,NN
AA(I)=A(1-1)
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‘a0 o o

30

40

“AA(1)=1.0

DO 70 K=1,N
AK=AA(NN)/AA(1)
NN=NN-1

- DO 30 I=1,NN

BB(1)=-AK#AA (NN-1+2) |

DO 40 I=1,NN -
AA(1)=AA(1)+BB(I)

IF(AA(1) .GT. 0.0) GOTO 70.

- ITEST=1

70

RETURN

CONTINUE

ITEST=0

RETURN

"END
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